1 /* Broadcom NetXtreme-C/E network driver. 2 * 3 * Copyright (c) 2014-2016 Broadcom Corporation 4 * Copyright (c) 2016-2018 Broadcom Limited 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation. 9 */ 10 11 #include <linux/module.h> 12 #include <linux/pci.h> 13 #include <linux/netdevice.h> 14 #include <linux/if_vlan.h> 15 #include <linux/interrupt.h> 16 #include <linux/etherdevice.h> 17 #include "bnxt_hsi.h" 18 #include "bnxt.h" 19 #include "bnxt_ulp.h" 20 #include "bnxt_sriov.h" 21 #include "bnxt_vfr.h" 22 #include "bnxt_ethtool.h" 23 24 #ifdef CONFIG_BNXT_SRIOV 25 static int bnxt_hwrm_fwd_async_event_cmpl(struct bnxt *bp, 26 struct bnxt_vf_info *vf, u16 event_id) 27 { 28 struct hwrm_fwd_async_event_cmpl_output *resp = bp->hwrm_cmd_resp_addr; 29 struct hwrm_fwd_async_event_cmpl_input req = {0}; 30 struct hwrm_async_event_cmpl *async_cmpl; 31 int rc = 0; 32 33 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FWD_ASYNC_EVENT_CMPL, -1, -1); 34 if (vf) 35 req.encap_async_event_target_id = cpu_to_le16(vf->fw_fid); 36 else 37 /* broadcast this async event to all VFs */ 38 req.encap_async_event_target_id = cpu_to_le16(0xffff); 39 async_cmpl = (struct hwrm_async_event_cmpl *)req.encap_async_event_cmpl; 40 async_cmpl->type = cpu_to_le16(ASYNC_EVENT_CMPL_TYPE_HWRM_ASYNC_EVENT); 41 async_cmpl->event_id = cpu_to_le16(event_id); 42 43 mutex_lock(&bp->hwrm_cmd_lock); 44 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 45 46 if (rc) { 47 netdev_err(bp->dev, "hwrm_fwd_async_event_cmpl failed. rc:%d\n", 48 rc); 49 goto fwd_async_event_cmpl_exit; 50 } 51 52 if (resp->error_code) { 53 netdev_err(bp->dev, "hwrm_fwd_async_event_cmpl error %d\n", 54 resp->error_code); 55 rc = -1; 56 } 57 58 fwd_async_event_cmpl_exit: 59 mutex_unlock(&bp->hwrm_cmd_lock); 60 return rc; 61 } 62 63 static int bnxt_vf_ndo_prep(struct bnxt *bp, int vf_id) 64 { 65 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 66 netdev_err(bp->dev, "vf ndo called though PF is down\n"); 67 return -EINVAL; 68 } 69 if (!bp->pf.active_vfs) { 70 netdev_err(bp->dev, "vf ndo called though sriov is disabled\n"); 71 return -EINVAL; 72 } 73 if (vf_id >= bp->pf.active_vfs) { 74 netdev_err(bp->dev, "Invalid VF id %d\n", vf_id); 75 return -EINVAL; 76 } 77 return 0; 78 } 79 80 int bnxt_set_vf_spoofchk(struct net_device *dev, int vf_id, bool setting) 81 { 82 struct hwrm_func_cfg_input req = {0}; 83 struct bnxt *bp = netdev_priv(dev); 84 struct bnxt_vf_info *vf; 85 bool old_setting = false; 86 u32 func_flags; 87 int rc; 88 89 if (bp->hwrm_spec_code < 0x10701) 90 return -ENOTSUPP; 91 92 rc = bnxt_vf_ndo_prep(bp, vf_id); 93 if (rc) 94 return rc; 95 96 vf = &bp->pf.vf[vf_id]; 97 if (vf->flags & BNXT_VF_SPOOFCHK) 98 old_setting = true; 99 if (old_setting == setting) 100 return 0; 101 102 func_flags = vf->func_flags; 103 if (setting) 104 func_flags |= FUNC_CFG_REQ_FLAGS_SRC_MAC_ADDR_CHECK_ENABLE; 105 else 106 func_flags |= FUNC_CFG_REQ_FLAGS_SRC_MAC_ADDR_CHECK_DISABLE; 107 /*TODO: if the driver supports VLAN filter on guest VLAN, 108 * the spoof check should also include vlan anti-spoofing 109 */ 110 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1); 111 req.fid = cpu_to_le16(vf->fw_fid); 112 req.flags = cpu_to_le32(func_flags); 113 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 114 if (!rc) { 115 vf->func_flags = func_flags; 116 if (setting) 117 vf->flags |= BNXT_VF_SPOOFCHK; 118 else 119 vf->flags &= ~BNXT_VF_SPOOFCHK; 120 } 121 return rc; 122 } 123 124 int bnxt_set_vf_trust(struct net_device *dev, int vf_id, bool trusted) 125 { 126 struct bnxt *bp = netdev_priv(dev); 127 struct bnxt_vf_info *vf; 128 129 if (bnxt_vf_ndo_prep(bp, vf_id)) 130 return -EINVAL; 131 132 vf = &bp->pf.vf[vf_id]; 133 if (trusted) 134 vf->flags |= BNXT_VF_TRUST; 135 else 136 vf->flags &= ~BNXT_VF_TRUST; 137 138 return 0; 139 } 140 141 int bnxt_get_vf_config(struct net_device *dev, int vf_id, 142 struct ifla_vf_info *ivi) 143 { 144 struct bnxt *bp = netdev_priv(dev); 145 struct bnxt_vf_info *vf; 146 int rc; 147 148 rc = bnxt_vf_ndo_prep(bp, vf_id); 149 if (rc) 150 return rc; 151 152 ivi->vf = vf_id; 153 vf = &bp->pf.vf[vf_id]; 154 155 if (is_valid_ether_addr(vf->mac_addr)) 156 memcpy(&ivi->mac, vf->mac_addr, ETH_ALEN); 157 else 158 memcpy(&ivi->mac, vf->vf_mac_addr, ETH_ALEN); 159 ivi->max_tx_rate = vf->max_tx_rate; 160 ivi->min_tx_rate = vf->min_tx_rate; 161 ivi->vlan = vf->vlan; 162 if (vf->flags & BNXT_VF_QOS) 163 ivi->qos = vf->vlan >> VLAN_PRIO_SHIFT; 164 else 165 ivi->qos = 0; 166 ivi->spoofchk = !!(vf->flags & BNXT_VF_SPOOFCHK); 167 ivi->trusted = !!(vf->flags & BNXT_VF_TRUST); 168 if (!(vf->flags & BNXT_VF_LINK_FORCED)) 169 ivi->linkstate = IFLA_VF_LINK_STATE_AUTO; 170 else if (vf->flags & BNXT_VF_LINK_UP) 171 ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE; 172 else 173 ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE; 174 175 return 0; 176 } 177 178 int bnxt_set_vf_mac(struct net_device *dev, int vf_id, u8 *mac) 179 { 180 struct hwrm_func_cfg_input req = {0}; 181 struct bnxt *bp = netdev_priv(dev); 182 struct bnxt_vf_info *vf; 183 int rc; 184 185 rc = bnxt_vf_ndo_prep(bp, vf_id); 186 if (rc) 187 return rc; 188 /* reject bc or mc mac addr, zero mac addr means allow 189 * VF to use its own mac addr 190 */ 191 if (is_multicast_ether_addr(mac)) { 192 netdev_err(dev, "Invalid VF ethernet address\n"); 193 return -EINVAL; 194 } 195 vf = &bp->pf.vf[vf_id]; 196 197 memcpy(vf->mac_addr, mac, ETH_ALEN); 198 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1); 199 req.fid = cpu_to_le16(vf->fw_fid); 200 req.flags = cpu_to_le32(vf->func_flags); 201 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_MAC_ADDR); 202 memcpy(req.dflt_mac_addr, mac, ETH_ALEN); 203 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 204 } 205 206 int bnxt_set_vf_vlan(struct net_device *dev, int vf_id, u16 vlan_id, u8 qos, 207 __be16 vlan_proto) 208 { 209 struct hwrm_func_cfg_input req = {0}; 210 struct bnxt *bp = netdev_priv(dev); 211 struct bnxt_vf_info *vf; 212 u16 vlan_tag; 213 int rc; 214 215 if (bp->hwrm_spec_code < 0x10201) 216 return -ENOTSUPP; 217 218 if (vlan_proto != htons(ETH_P_8021Q)) 219 return -EPROTONOSUPPORT; 220 221 rc = bnxt_vf_ndo_prep(bp, vf_id); 222 if (rc) 223 return rc; 224 225 /* TODO: needed to implement proper handling of user priority, 226 * currently fail the command if there is valid priority 227 */ 228 if (vlan_id > 4095 || qos) 229 return -EINVAL; 230 231 vf = &bp->pf.vf[vf_id]; 232 vlan_tag = vlan_id; 233 if (vlan_tag == vf->vlan) 234 return 0; 235 236 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1); 237 req.fid = cpu_to_le16(vf->fw_fid); 238 req.flags = cpu_to_le32(vf->func_flags); 239 req.dflt_vlan = cpu_to_le16(vlan_tag); 240 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_VLAN); 241 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 242 if (!rc) 243 vf->vlan = vlan_tag; 244 return rc; 245 } 246 247 int bnxt_set_vf_bw(struct net_device *dev, int vf_id, int min_tx_rate, 248 int max_tx_rate) 249 { 250 struct hwrm_func_cfg_input req = {0}; 251 struct bnxt *bp = netdev_priv(dev); 252 struct bnxt_vf_info *vf; 253 u32 pf_link_speed; 254 int rc; 255 256 rc = bnxt_vf_ndo_prep(bp, vf_id); 257 if (rc) 258 return rc; 259 260 vf = &bp->pf.vf[vf_id]; 261 pf_link_speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed); 262 if (max_tx_rate > pf_link_speed) { 263 netdev_info(bp->dev, "max tx rate %d exceed PF link speed for VF %d\n", 264 max_tx_rate, vf_id); 265 return -EINVAL; 266 } 267 268 if (min_tx_rate > pf_link_speed || min_tx_rate > max_tx_rate) { 269 netdev_info(bp->dev, "min tx rate %d is invalid for VF %d\n", 270 min_tx_rate, vf_id); 271 return -EINVAL; 272 } 273 if (min_tx_rate == vf->min_tx_rate && max_tx_rate == vf->max_tx_rate) 274 return 0; 275 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1); 276 req.fid = cpu_to_le16(vf->fw_fid); 277 req.flags = cpu_to_le32(vf->func_flags); 278 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_MAX_BW); 279 req.max_bw = cpu_to_le32(max_tx_rate); 280 req.enables |= cpu_to_le32(FUNC_CFG_REQ_ENABLES_MIN_BW); 281 req.min_bw = cpu_to_le32(min_tx_rate); 282 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 283 if (!rc) { 284 vf->min_tx_rate = min_tx_rate; 285 vf->max_tx_rate = max_tx_rate; 286 } 287 return rc; 288 } 289 290 int bnxt_set_vf_link_state(struct net_device *dev, int vf_id, int link) 291 { 292 struct bnxt *bp = netdev_priv(dev); 293 struct bnxt_vf_info *vf; 294 int rc; 295 296 rc = bnxt_vf_ndo_prep(bp, vf_id); 297 if (rc) 298 return rc; 299 300 vf = &bp->pf.vf[vf_id]; 301 302 vf->flags &= ~(BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED); 303 switch (link) { 304 case IFLA_VF_LINK_STATE_AUTO: 305 vf->flags |= BNXT_VF_LINK_UP; 306 break; 307 case IFLA_VF_LINK_STATE_DISABLE: 308 vf->flags |= BNXT_VF_LINK_FORCED; 309 break; 310 case IFLA_VF_LINK_STATE_ENABLE: 311 vf->flags |= BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED; 312 break; 313 default: 314 netdev_err(bp->dev, "Invalid link option\n"); 315 rc = -EINVAL; 316 break; 317 } 318 if (vf->flags & (BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED)) 319 rc = bnxt_hwrm_fwd_async_event_cmpl(bp, vf, 320 ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE); 321 return rc; 322 } 323 324 static int bnxt_set_vf_attr(struct bnxt *bp, int num_vfs) 325 { 326 int i; 327 struct bnxt_vf_info *vf; 328 329 for (i = 0; i < num_vfs; i++) { 330 vf = &bp->pf.vf[i]; 331 memset(vf, 0, sizeof(*vf)); 332 } 333 return 0; 334 } 335 336 static int bnxt_hwrm_func_vf_resource_free(struct bnxt *bp, int num_vfs) 337 { 338 int i, rc = 0; 339 struct bnxt_pf_info *pf = &bp->pf; 340 struct hwrm_func_vf_resc_free_input req = {0}; 341 342 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_RESC_FREE, -1, -1); 343 344 mutex_lock(&bp->hwrm_cmd_lock); 345 for (i = pf->first_vf_id; i < pf->first_vf_id + num_vfs; i++) { 346 req.vf_id = cpu_to_le16(i); 347 rc = _hwrm_send_message(bp, &req, sizeof(req), 348 HWRM_CMD_TIMEOUT); 349 if (rc) 350 break; 351 } 352 mutex_unlock(&bp->hwrm_cmd_lock); 353 return rc; 354 } 355 356 static void bnxt_free_vf_resources(struct bnxt *bp) 357 { 358 struct pci_dev *pdev = bp->pdev; 359 int i; 360 361 kfree(bp->pf.vf_event_bmap); 362 bp->pf.vf_event_bmap = NULL; 363 364 for (i = 0; i < 4; i++) { 365 if (bp->pf.hwrm_cmd_req_addr[i]) { 366 dma_free_coherent(&pdev->dev, BNXT_PAGE_SIZE, 367 bp->pf.hwrm_cmd_req_addr[i], 368 bp->pf.hwrm_cmd_req_dma_addr[i]); 369 bp->pf.hwrm_cmd_req_addr[i] = NULL; 370 } 371 } 372 373 kfree(bp->pf.vf); 374 bp->pf.vf = NULL; 375 } 376 377 static int bnxt_alloc_vf_resources(struct bnxt *bp, int num_vfs) 378 { 379 struct pci_dev *pdev = bp->pdev; 380 u32 nr_pages, size, i, j, k = 0; 381 382 bp->pf.vf = kcalloc(num_vfs, sizeof(struct bnxt_vf_info), GFP_KERNEL); 383 if (!bp->pf.vf) 384 return -ENOMEM; 385 386 bnxt_set_vf_attr(bp, num_vfs); 387 388 size = num_vfs * BNXT_HWRM_REQ_MAX_SIZE; 389 nr_pages = size / BNXT_PAGE_SIZE; 390 if (size & (BNXT_PAGE_SIZE - 1)) 391 nr_pages++; 392 393 for (i = 0; i < nr_pages; i++) { 394 bp->pf.hwrm_cmd_req_addr[i] = 395 dma_alloc_coherent(&pdev->dev, BNXT_PAGE_SIZE, 396 &bp->pf.hwrm_cmd_req_dma_addr[i], 397 GFP_KERNEL); 398 399 if (!bp->pf.hwrm_cmd_req_addr[i]) 400 return -ENOMEM; 401 402 for (j = 0; j < BNXT_HWRM_REQS_PER_PAGE && k < num_vfs; j++) { 403 struct bnxt_vf_info *vf = &bp->pf.vf[k]; 404 405 vf->hwrm_cmd_req_addr = bp->pf.hwrm_cmd_req_addr[i] + 406 j * BNXT_HWRM_REQ_MAX_SIZE; 407 vf->hwrm_cmd_req_dma_addr = 408 bp->pf.hwrm_cmd_req_dma_addr[i] + j * 409 BNXT_HWRM_REQ_MAX_SIZE; 410 k++; 411 } 412 } 413 414 /* Max 128 VF's */ 415 bp->pf.vf_event_bmap = kzalloc(16, GFP_KERNEL); 416 if (!bp->pf.vf_event_bmap) 417 return -ENOMEM; 418 419 bp->pf.hwrm_cmd_req_pages = nr_pages; 420 return 0; 421 } 422 423 static int bnxt_hwrm_func_buf_rgtr(struct bnxt *bp) 424 { 425 struct hwrm_func_buf_rgtr_input req = {0}; 426 427 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_BUF_RGTR, -1, -1); 428 429 req.req_buf_num_pages = cpu_to_le16(bp->pf.hwrm_cmd_req_pages); 430 req.req_buf_page_size = cpu_to_le16(BNXT_PAGE_SHIFT); 431 req.req_buf_len = cpu_to_le16(BNXT_HWRM_REQ_MAX_SIZE); 432 req.req_buf_page_addr0 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[0]); 433 req.req_buf_page_addr1 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[1]); 434 req.req_buf_page_addr2 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[2]); 435 req.req_buf_page_addr3 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[3]); 436 437 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 438 } 439 440 /* Only called by PF to reserve resources for VFs, returns actual number of 441 * VFs configured, or < 0 on error. 442 */ 443 static int bnxt_hwrm_func_vf_resc_cfg(struct bnxt *bp, int num_vfs) 444 { 445 struct hwrm_func_vf_resource_cfg_input req = {0}; 446 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 447 u16 vf_tx_rings, vf_rx_rings, vf_cp_rings; 448 u16 vf_stat_ctx, vf_vnics, vf_ring_grps; 449 struct bnxt_pf_info *pf = &bp->pf; 450 int i, rc = 0, min = 1; 451 u16 vf_msix = 0; 452 453 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_RESOURCE_CFG, -1, -1); 454 455 if (bp->flags & BNXT_FLAG_CHIP_P5) { 456 vf_msix = hw_resc->max_nqs - bnxt_nq_rings_in_use(bp); 457 vf_ring_grps = 0; 458 } else { 459 vf_ring_grps = hw_resc->max_hw_ring_grps - bp->rx_nr_rings; 460 } 461 vf_cp_rings = bnxt_get_avail_cp_rings_for_en(bp); 462 vf_stat_ctx = bnxt_get_avail_stat_ctxs_for_en(bp); 463 if (bp->flags & BNXT_FLAG_AGG_RINGS) 464 vf_rx_rings = hw_resc->max_rx_rings - bp->rx_nr_rings * 2; 465 else 466 vf_rx_rings = hw_resc->max_rx_rings - bp->rx_nr_rings; 467 vf_tx_rings = hw_resc->max_tx_rings - bp->tx_nr_rings; 468 vf_vnics = hw_resc->max_vnics - bp->nr_vnics; 469 vf_vnics = min_t(u16, vf_vnics, vf_rx_rings); 470 471 req.min_rsscos_ctx = cpu_to_le16(BNXT_VF_MIN_RSS_CTX); 472 req.max_rsscos_ctx = cpu_to_le16(BNXT_VF_MAX_RSS_CTX); 473 if (pf->vf_resv_strategy == BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC) { 474 min = 0; 475 req.min_rsscos_ctx = cpu_to_le16(min); 476 } 477 if (pf->vf_resv_strategy == BNXT_VF_RESV_STRATEGY_MINIMAL || 478 pf->vf_resv_strategy == BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC) { 479 req.min_cmpl_rings = cpu_to_le16(min); 480 req.min_tx_rings = cpu_to_le16(min); 481 req.min_rx_rings = cpu_to_le16(min); 482 req.min_l2_ctxs = cpu_to_le16(min); 483 req.min_vnics = cpu_to_le16(min); 484 req.min_stat_ctx = cpu_to_le16(min); 485 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 486 req.min_hw_ring_grps = cpu_to_le16(min); 487 } else { 488 vf_cp_rings /= num_vfs; 489 vf_tx_rings /= num_vfs; 490 vf_rx_rings /= num_vfs; 491 vf_vnics /= num_vfs; 492 vf_stat_ctx /= num_vfs; 493 vf_ring_grps /= num_vfs; 494 495 req.min_cmpl_rings = cpu_to_le16(vf_cp_rings); 496 req.min_tx_rings = cpu_to_le16(vf_tx_rings); 497 req.min_rx_rings = cpu_to_le16(vf_rx_rings); 498 req.min_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX); 499 req.min_vnics = cpu_to_le16(vf_vnics); 500 req.min_stat_ctx = cpu_to_le16(vf_stat_ctx); 501 req.min_hw_ring_grps = cpu_to_le16(vf_ring_grps); 502 } 503 req.max_cmpl_rings = cpu_to_le16(vf_cp_rings); 504 req.max_tx_rings = cpu_to_le16(vf_tx_rings); 505 req.max_rx_rings = cpu_to_le16(vf_rx_rings); 506 req.max_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX); 507 req.max_vnics = cpu_to_le16(vf_vnics); 508 req.max_stat_ctx = cpu_to_le16(vf_stat_ctx); 509 req.max_hw_ring_grps = cpu_to_le16(vf_ring_grps); 510 if (bp->flags & BNXT_FLAG_CHIP_P5) 511 req.max_msix = cpu_to_le16(vf_msix / num_vfs); 512 513 mutex_lock(&bp->hwrm_cmd_lock); 514 for (i = 0; i < num_vfs; i++) { 515 req.vf_id = cpu_to_le16(pf->first_vf_id + i); 516 rc = _hwrm_send_message(bp, &req, sizeof(req), 517 HWRM_CMD_TIMEOUT); 518 if (rc) { 519 rc = -ENOMEM; 520 break; 521 } 522 pf->active_vfs = i + 1; 523 pf->vf[i].fw_fid = pf->first_vf_id + i; 524 } 525 mutex_unlock(&bp->hwrm_cmd_lock); 526 if (pf->active_vfs) { 527 u16 n = pf->active_vfs; 528 529 hw_resc->max_tx_rings -= le16_to_cpu(req.min_tx_rings) * n; 530 hw_resc->max_rx_rings -= le16_to_cpu(req.min_rx_rings) * n; 531 hw_resc->max_hw_ring_grps -= le16_to_cpu(req.min_hw_ring_grps) * 532 n; 533 hw_resc->max_cp_rings -= le16_to_cpu(req.min_cmpl_rings) * n; 534 hw_resc->max_rsscos_ctxs -= pf->active_vfs; 535 hw_resc->max_stat_ctxs -= le16_to_cpu(req.min_stat_ctx) * n; 536 hw_resc->max_vnics -= le16_to_cpu(req.min_vnics) * n; 537 if (bp->flags & BNXT_FLAG_CHIP_P5) 538 hw_resc->max_irqs -= vf_msix * n; 539 540 rc = pf->active_vfs; 541 } 542 return rc; 543 } 544 545 /* Only called by PF to reserve resources for VFs, returns actual number of 546 * VFs configured, or < 0 on error. 547 */ 548 static int bnxt_hwrm_func_cfg(struct bnxt *bp, int num_vfs) 549 { 550 u32 rc = 0, mtu, i; 551 u16 vf_tx_rings, vf_rx_rings, vf_cp_rings, vf_stat_ctx, vf_vnics; 552 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 553 struct hwrm_func_cfg_input req = {0}; 554 struct bnxt_pf_info *pf = &bp->pf; 555 int total_vf_tx_rings = 0; 556 u16 vf_ring_grps; 557 558 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1); 559 560 /* Remaining rings are distributed equally amongs VF's for now */ 561 vf_cp_rings = bnxt_get_avail_cp_rings_for_en(bp) / num_vfs; 562 vf_stat_ctx = bnxt_get_avail_stat_ctxs_for_en(bp) / num_vfs; 563 if (bp->flags & BNXT_FLAG_AGG_RINGS) 564 vf_rx_rings = (hw_resc->max_rx_rings - bp->rx_nr_rings * 2) / 565 num_vfs; 566 else 567 vf_rx_rings = (hw_resc->max_rx_rings - bp->rx_nr_rings) / 568 num_vfs; 569 vf_ring_grps = (hw_resc->max_hw_ring_grps - bp->rx_nr_rings) / num_vfs; 570 vf_tx_rings = (hw_resc->max_tx_rings - bp->tx_nr_rings) / num_vfs; 571 vf_vnics = (hw_resc->max_vnics - bp->nr_vnics) / num_vfs; 572 vf_vnics = min_t(u16, vf_vnics, vf_rx_rings); 573 574 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_MTU | 575 FUNC_CFG_REQ_ENABLES_MRU | 576 FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS | 577 FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS | 578 FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS | 579 FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS | 580 FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS | 581 FUNC_CFG_REQ_ENABLES_NUM_L2_CTXS | 582 FUNC_CFG_REQ_ENABLES_NUM_VNICS | 583 FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS); 584 585 mtu = bp->dev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 586 req.mru = cpu_to_le16(mtu); 587 req.mtu = cpu_to_le16(mtu); 588 589 req.num_rsscos_ctxs = cpu_to_le16(1); 590 req.num_cmpl_rings = cpu_to_le16(vf_cp_rings); 591 req.num_tx_rings = cpu_to_le16(vf_tx_rings); 592 req.num_rx_rings = cpu_to_le16(vf_rx_rings); 593 req.num_hw_ring_grps = cpu_to_le16(vf_ring_grps); 594 req.num_l2_ctxs = cpu_to_le16(4); 595 596 req.num_vnics = cpu_to_le16(vf_vnics); 597 /* FIXME spec currently uses 1 bit for stats ctx */ 598 req.num_stat_ctxs = cpu_to_le16(vf_stat_ctx); 599 600 mutex_lock(&bp->hwrm_cmd_lock); 601 for (i = 0; i < num_vfs; i++) { 602 int vf_tx_rsvd = vf_tx_rings; 603 604 req.fid = cpu_to_le16(pf->first_vf_id + i); 605 rc = _hwrm_send_message(bp, &req, sizeof(req), 606 HWRM_CMD_TIMEOUT); 607 if (rc) 608 break; 609 pf->active_vfs = i + 1; 610 pf->vf[i].fw_fid = le16_to_cpu(req.fid); 611 rc = __bnxt_hwrm_get_tx_rings(bp, pf->vf[i].fw_fid, 612 &vf_tx_rsvd); 613 if (rc) 614 break; 615 total_vf_tx_rings += vf_tx_rsvd; 616 } 617 mutex_unlock(&bp->hwrm_cmd_lock); 618 if (rc) 619 rc = -ENOMEM; 620 if (pf->active_vfs) { 621 hw_resc->max_tx_rings -= total_vf_tx_rings; 622 hw_resc->max_rx_rings -= vf_rx_rings * num_vfs; 623 hw_resc->max_hw_ring_grps -= vf_ring_grps * num_vfs; 624 hw_resc->max_cp_rings -= vf_cp_rings * num_vfs; 625 hw_resc->max_rsscos_ctxs -= num_vfs; 626 hw_resc->max_stat_ctxs -= vf_stat_ctx * num_vfs; 627 hw_resc->max_vnics -= vf_vnics * num_vfs; 628 rc = pf->active_vfs; 629 } 630 return rc; 631 } 632 633 static int bnxt_func_cfg(struct bnxt *bp, int num_vfs) 634 { 635 if (BNXT_NEW_RM(bp)) 636 return bnxt_hwrm_func_vf_resc_cfg(bp, num_vfs); 637 else 638 return bnxt_hwrm_func_cfg(bp, num_vfs); 639 } 640 641 static int bnxt_sriov_enable(struct bnxt *bp, int *num_vfs) 642 { 643 int rc = 0, vfs_supported; 644 int min_rx_rings, min_tx_rings, min_rss_ctxs; 645 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 646 int tx_ok = 0, rx_ok = 0, rss_ok = 0; 647 int avail_cp, avail_stat; 648 649 /* Check if we can enable requested num of vf's. At a mininum 650 * we require 1 RX 1 TX rings for each VF. In this minimum conf 651 * features like TPA will not be available. 652 */ 653 vfs_supported = *num_vfs; 654 655 avail_cp = bnxt_get_avail_cp_rings_for_en(bp); 656 avail_stat = bnxt_get_avail_stat_ctxs_for_en(bp); 657 avail_cp = min_t(int, avail_cp, avail_stat); 658 659 while (vfs_supported) { 660 min_rx_rings = vfs_supported; 661 min_tx_rings = vfs_supported; 662 min_rss_ctxs = vfs_supported; 663 664 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 665 if (hw_resc->max_rx_rings - bp->rx_nr_rings * 2 >= 666 min_rx_rings) 667 rx_ok = 1; 668 } else { 669 if (hw_resc->max_rx_rings - bp->rx_nr_rings >= 670 min_rx_rings) 671 rx_ok = 1; 672 } 673 if (hw_resc->max_vnics - bp->nr_vnics < min_rx_rings || 674 avail_cp < min_rx_rings) 675 rx_ok = 0; 676 677 if (hw_resc->max_tx_rings - bp->tx_nr_rings >= min_tx_rings && 678 avail_cp >= min_tx_rings) 679 tx_ok = 1; 680 681 if (hw_resc->max_rsscos_ctxs - bp->rsscos_nr_ctxs >= 682 min_rss_ctxs) 683 rss_ok = 1; 684 685 if (tx_ok && rx_ok && rss_ok) 686 break; 687 688 vfs_supported--; 689 } 690 691 if (!vfs_supported) { 692 netdev_err(bp->dev, "Cannot enable VF's as all resources are used by PF\n"); 693 return -EINVAL; 694 } 695 696 if (vfs_supported != *num_vfs) { 697 netdev_info(bp->dev, "Requested VFs %d, can enable %d\n", 698 *num_vfs, vfs_supported); 699 *num_vfs = vfs_supported; 700 } 701 702 rc = bnxt_alloc_vf_resources(bp, *num_vfs); 703 if (rc) 704 goto err_out1; 705 706 /* Reserve resources for VFs */ 707 rc = bnxt_func_cfg(bp, *num_vfs); 708 if (rc != *num_vfs) { 709 if (rc <= 0) { 710 netdev_warn(bp->dev, "Unable to reserve resources for SRIOV.\n"); 711 *num_vfs = 0; 712 goto err_out2; 713 } 714 netdev_warn(bp->dev, "Only able to reserve resources for %d VFs.\n", rc); 715 *num_vfs = rc; 716 } 717 718 /* Register buffers for VFs */ 719 rc = bnxt_hwrm_func_buf_rgtr(bp); 720 if (rc) 721 goto err_out2; 722 723 bnxt_ulp_sriov_cfg(bp, *num_vfs); 724 725 rc = pci_enable_sriov(bp->pdev, *num_vfs); 726 if (rc) 727 goto err_out2; 728 729 return 0; 730 731 err_out2: 732 /* Free the resources reserved for various VF's */ 733 bnxt_hwrm_func_vf_resource_free(bp, *num_vfs); 734 735 err_out1: 736 bnxt_free_vf_resources(bp); 737 738 return rc; 739 } 740 741 void bnxt_sriov_disable(struct bnxt *bp) 742 { 743 u16 num_vfs = pci_num_vf(bp->pdev); 744 745 if (!num_vfs) 746 return; 747 748 /* synchronize VF and VF-rep create and destroy */ 749 mutex_lock(&bp->sriov_lock); 750 bnxt_vf_reps_destroy(bp); 751 752 if (pci_vfs_assigned(bp->pdev)) { 753 bnxt_hwrm_fwd_async_event_cmpl( 754 bp, NULL, ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD); 755 netdev_warn(bp->dev, "Unable to free %d VFs because some are assigned to VMs.\n", 756 num_vfs); 757 } else { 758 pci_disable_sriov(bp->pdev); 759 /* Free the HW resources reserved for various VF's */ 760 bnxt_hwrm_func_vf_resource_free(bp, num_vfs); 761 } 762 mutex_unlock(&bp->sriov_lock); 763 764 bnxt_free_vf_resources(bp); 765 766 bp->pf.active_vfs = 0; 767 /* Reclaim all resources for the PF. */ 768 rtnl_lock(); 769 bnxt_restore_pf_fw_resources(bp); 770 rtnl_unlock(); 771 772 bnxt_ulp_sriov_cfg(bp, 0); 773 } 774 775 int bnxt_sriov_configure(struct pci_dev *pdev, int num_vfs) 776 { 777 struct net_device *dev = pci_get_drvdata(pdev); 778 struct bnxt *bp = netdev_priv(dev); 779 780 if (!(bp->flags & BNXT_FLAG_USING_MSIX)) { 781 netdev_warn(dev, "Not allow SRIOV if the irq mode is not MSIX\n"); 782 return 0; 783 } 784 785 rtnl_lock(); 786 if (!netif_running(dev)) { 787 netdev_warn(dev, "Reject SRIOV config request since if is down!\n"); 788 rtnl_unlock(); 789 return 0; 790 } 791 bp->sriov_cfg = true; 792 rtnl_unlock(); 793 794 if (pci_vfs_assigned(bp->pdev)) { 795 netdev_warn(dev, "Unable to configure SRIOV since some VFs are assigned to VMs.\n"); 796 num_vfs = 0; 797 goto sriov_cfg_exit; 798 } 799 800 /* Check if enabled VFs is same as requested */ 801 if (num_vfs && num_vfs == bp->pf.active_vfs) 802 goto sriov_cfg_exit; 803 804 /* if there are previous existing VFs, clean them up */ 805 bnxt_sriov_disable(bp); 806 if (!num_vfs) 807 goto sriov_cfg_exit; 808 809 bnxt_sriov_enable(bp, &num_vfs); 810 811 sriov_cfg_exit: 812 bp->sriov_cfg = false; 813 wake_up(&bp->sriov_cfg_wait); 814 815 return num_vfs; 816 } 817 818 static int bnxt_hwrm_fwd_resp(struct bnxt *bp, struct bnxt_vf_info *vf, 819 void *encap_resp, __le64 encap_resp_addr, 820 __le16 encap_resp_cpr, u32 msg_size) 821 { 822 int rc = 0; 823 struct hwrm_fwd_resp_input req = {0}; 824 struct hwrm_fwd_resp_output *resp = bp->hwrm_cmd_resp_addr; 825 826 if (BNXT_FWD_RESP_SIZE_ERR(msg_size)) 827 return -EINVAL; 828 829 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FWD_RESP, -1, -1); 830 831 /* Set the new target id */ 832 req.target_id = cpu_to_le16(vf->fw_fid); 833 req.encap_resp_target_id = cpu_to_le16(vf->fw_fid); 834 req.encap_resp_len = cpu_to_le16(msg_size); 835 req.encap_resp_addr = encap_resp_addr; 836 req.encap_resp_cmpl_ring = encap_resp_cpr; 837 memcpy(req.encap_resp, encap_resp, msg_size); 838 839 mutex_lock(&bp->hwrm_cmd_lock); 840 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 841 842 if (rc) { 843 netdev_err(bp->dev, "hwrm_fwd_resp failed. rc:%d\n", rc); 844 goto fwd_resp_exit; 845 } 846 847 if (resp->error_code) { 848 netdev_err(bp->dev, "hwrm_fwd_resp error %d\n", 849 resp->error_code); 850 rc = -1; 851 } 852 853 fwd_resp_exit: 854 mutex_unlock(&bp->hwrm_cmd_lock); 855 return rc; 856 } 857 858 static int bnxt_hwrm_fwd_err_resp(struct bnxt *bp, struct bnxt_vf_info *vf, 859 u32 msg_size) 860 { 861 int rc = 0; 862 struct hwrm_reject_fwd_resp_input req = {0}; 863 struct hwrm_reject_fwd_resp_output *resp = bp->hwrm_cmd_resp_addr; 864 865 if (BNXT_REJ_FWD_RESP_SIZE_ERR(msg_size)) 866 return -EINVAL; 867 868 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_REJECT_FWD_RESP, -1, -1); 869 /* Set the new target id */ 870 req.target_id = cpu_to_le16(vf->fw_fid); 871 req.encap_resp_target_id = cpu_to_le16(vf->fw_fid); 872 memcpy(req.encap_request, vf->hwrm_cmd_req_addr, msg_size); 873 874 mutex_lock(&bp->hwrm_cmd_lock); 875 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 876 877 if (rc) { 878 netdev_err(bp->dev, "hwrm_fwd_err_resp failed. rc:%d\n", rc); 879 goto fwd_err_resp_exit; 880 } 881 882 if (resp->error_code) { 883 netdev_err(bp->dev, "hwrm_fwd_err_resp error %d\n", 884 resp->error_code); 885 rc = -1; 886 } 887 888 fwd_err_resp_exit: 889 mutex_unlock(&bp->hwrm_cmd_lock); 890 return rc; 891 } 892 893 static int bnxt_hwrm_exec_fwd_resp(struct bnxt *bp, struct bnxt_vf_info *vf, 894 u32 msg_size) 895 { 896 int rc = 0; 897 struct hwrm_exec_fwd_resp_input req = {0}; 898 struct hwrm_exec_fwd_resp_output *resp = bp->hwrm_cmd_resp_addr; 899 900 if (BNXT_EXEC_FWD_RESP_SIZE_ERR(msg_size)) 901 return -EINVAL; 902 903 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_EXEC_FWD_RESP, -1, -1); 904 /* Set the new target id */ 905 req.target_id = cpu_to_le16(vf->fw_fid); 906 req.encap_resp_target_id = cpu_to_le16(vf->fw_fid); 907 memcpy(req.encap_request, vf->hwrm_cmd_req_addr, msg_size); 908 909 mutex_lock(&bp->hwrm_cmd_lock); 910 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 911 912 if (rc) { 913 netdev_err(bp->dev, "hwrm_exec_fw_resp failed. rc:%d\n", rc); 914 goto exec_fwd_resp_exit; 915 } 916 917 if (resp->error_code) { 918 netdev_err(bp->dev, "hwrm_exec_fw_resp error %d\n", 919 resp->error_code); 920 rc = -1; 921 } 922 923 exec_fwd_resp_exit: 924 mutex_unlock(&bp->hwrm_cmd_lock); 925 return rc; 926 } 927 928 static int bnxt_vf_configure_mac(struct bnxt *bp, struct bnxt_vf_info *vf) 929 { 930 u32 msg_size = sizeof(struct hwrm_func_vf_cfg_input); 931 struct hwrm_func_vf_cfg_input *req = 932 (struct hwrm_func_vf_cfg_input *)vf->hwrm_cmd_req_addr; 933 934 /* Allow VF to set a valid MAC address, if trust is set to on or 935 * if the PF assigned MAC address is zero 936 */ 937 if (req->enables & cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_DFLT_MAC_ADDR)) { 938 if (is_valid_ether_addr(req->dflt_mac_addr) && 939 ((vf->flags & BNXT_VF_TRUST) || 940 !is_valid_ether_addr(vf->mac_addr) || 941 ether_addr_equal(req->dflt_mac_addr, vf->mac_addr))) { 942 ether_addr_copy(vf->vf_mac_addr, req->dflt_mac_addr); 943 return bnxt_hwrm_exec_fwd_resp(bp, vf, msg_size); 944 } 945 return bnxt_hwrm_fwd_err_resp(bp, vf, msg_size); 946 } 947 return bnxt_hwrm_exec_fwd_resp(bp, vf, msg_size); 948 } 949 950 static int bnxt_vf_validate_set_mac(struct bnxt *bp, struct bnxt_vf_info *vf) 951 { 952 u32 msg_size = sizeof(struct hwrm_cfa_l2_filter_alloc_input); 953 struct hwrm_cfa_l2_filter_alloc_input *req = 954 (struct hwrm_cfa_l2_filter_alloc_input *)vf->hwrm_cmd_req_addr; 955 bool mac_ok = false; 956 957 if (!is_valid_ether_addr((const u8 *)req->l2_addr)) 958 return bnxt_hwrm_fwd_err_resp(bp, vf, msg_size); 959 960 /* Allow VF to set a valid MAC address, if trust is set to on. 961 * Or VF MAC address must first match MAC address in PF's context. 962 * Otherwise, it must match the VF MAC address if firmware spec >= 963 * 1.2.2 964 */ 965 if (vf->flags & BNXT_VF_TRUST) { 966 mac_ok = true; 967 } else if (is_valid_ether_addr(vf->mac_addr)) { 968 if (ether_addr_equal((const u8 *)req->l2_addr, vf->mac_addr)) 969 mac_ok = true; 970 } else if (is_valid_ether_addr(vf->vf_mac_addr)) { 971 if (ether_addr_equal((const u8 *)req->l2_addr, vf->vf_mac_addr)) 972 mac_ok = true; 973 } else { 974 /* There are two cases: 975 * 1.If firmware spec < 0x10202,VF MAC address is not forwarded 976 * to the PF and so it doesn't have to match 977 * 2.Allow VF to modify it's own MAC when PF has not assigned a 978 * valid MAC address and firmware spec >= 0x10202 979 */ 980 mac_ok = true; 981 } 982 if (mac_ok) 983 return bnxt_hwrm_exec_fwd_resp(bp, vf, msg_size); 984 return bnxt_hwrm_fwd_err_resp(bp, vf, msg_size); 985 } 986 987 static int bnxt_vf_set_link(struct bnxt *bp, struct bnxt_vf_info *vf) 988 { 989 int rc = 0; 990 991 if (!(vf->flags & BNXT_VF_LINK_FORCED)) { 992 /* real link */ 993 rc = bnxt_hwrm_exec_fwd_resp( 994 bp, vf, sizeof(struct hwrm_port_phy_qcfg_input)); 995 } else { 996 struct hwrm_port_phy_qcfg_output phy_qcfg_resp; 997 struct hwrm_port_phy_qcfg_input *phy_qcfg_req; 998 999 phy_qcfg_req = 1000 (struct hwrm_port_phy_qcfg_input *)vf->hwrm_cmd_req_addr; 1001 mutex_lock(&bp->hwrm_cmd_lock); 1002 memcpy(&phy_qcfg_resp, &bp->link_info.phy_qcfg_resp, 1003 sizeof(phy_qcfg_resp)); 1004 mutex_unlock(&bp->hwrm_cmd_lock); 1005 phy_qcfg_resp.resp_len = cpu_to_le16(sizeof(phy_qcfg_resp)); 1006 phy_qcfg_resp.seq_id = phy_qcfg_req->seq_id; 1007 phy_qcfg_resp.valid = 1; 1008 1009 if (vf->flags & BNXT_VF_LINK_UP) { 1010 /* if physical link is down, force link up on VF */ 1011 if (phy_qcfg_resp.link != 1012 PORT_PHY_QCFG_RESP_LINK_LINK) { 1013 phy_qcfg_resp.link = 1014 PORT_PHY_QCFG_RESP_LINK_LINK; 1015 phy_qcfg_resp.link_speed = cpu_to_le16( 1016 PORT_PHY_QCFG_RESP_LINK_SPEED_10GB); 1017 phy_qcfg_resp.duplex_cfg = 1018 PORT_PHY_QCFG_RESP_DUPLEX_CFG_FULL; 1019 phy_qcfg_resp.duplex_state = 1020 PORT_PHY_QCFG_RESP_DUPLEX_STATE_FULL; 1021 phy_qcfg_resp.pause = 1022 (PORT_PHY_QCFG_RESP_PAUSE_TX | 1023 PORT_PHY_QCFG_RESP_PAUSE_RX); 1024 } 1025 } else { 1026 /* force link down */ 1027 phy_qcfg_resp.link = PORT_PHY_QCFG_RESP_LINK_NO_LINK; 1028 phy_qcfg_resp.link_speed = 0; 1029 phy_qcfg_resp.duplex_state = 1030 PORT_PHY_QCFG_RESP_DUPLEX_STATE_HALF; 1031 phy_qcfg_resp.pause = 0; 1032 } 1033 rc = bnxt_hwrm_fwd_resp(bp, vf, &phy_qcfg_resp, 1034 phy_qcfg_req->resp_addr, 1035 phy_qcfg_req->cmpl_ring, 1036 sizeof(phy_qcfg_resp)); 1037 } 1038 return rc; 1039 } 1040 1041 static int bnxt_vf_req_validate_snd(struct bnxt *bp, struct bnxt_vf_info *vf) 1042 { 1043 int rc = 0; 1044 struct input *encap_req = vf->hwrm_cmd_req_addr; 1045 u32 req_type = le16_to_cpu(encap_req->req_type); 1046 1047 switch (req_type) { 1048 case HWRM_FUNC_VF_CFG: 1049 rc = bnxt_vf_configure_mac(bp, vf); 1050 break; 1051 case HWRM_CFA_L2_FILTER_ALLOC: 1052 rc = bnxt_vf_validate_set_mac(bp, vf); 1053 break; 1054 case HWRM_FUNC_CFG: 1055 /* TODO Validate if VF is allowed to change mac address, 1056 * mtu, num of rings etc 1057 */ 1058 rc = bnxt_hwrm_exec_fwd_resp( 1059 bp, vf, sizeof(struct hwrm_func_cfg_input)); 1060 break; 1061 case HWRM_PORT_PHY_QCFG: 1062 rc = bnxt_vf_set_link(bp, vf); 1063 break; 1064 default: 1065 break; 1066 } 1067 return rc; 1068 } 1069 1070 void bnxt_hwrm_exec_fwd_req(struct bnxt *bp) 1071 { 1072 u32 i = 0, active_vfs = bp->pf.active_vfs, vf_id; 1073 1074 /* Scan through VF's and process commands */ 1075 while (1) { 1076 vf_id = find_next_bit(bp->pf.vf_event_bmap, active_vfs, i); 1077 if (vf_id >= active_vfs) 1078 break; 1079 1080 clear_bit(vf_id, bp->pf.vf_event_bmap); 1081 bnxt_vf_req_validate_snd(bp, &bp->pf.vf[vf_id]); 1082 i = vf_id + 1; 1083 } 1084 } 1085 1086 void bnxt_update_vf_mac(struct bnxt *bp) 1087 { 1088 struct hwrm_func_qcaps_input req = {0}; 1089 struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr; 1090 1091 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1); 1092 req.fid = cpu_to_le16(0xffff); 1093 1094 mutex_lock(&bp->hwrm_cmd_lock); 1095 if (_hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT)) 1096 goto update_vf_mac_exit; 1097 1098 /* Store MAC address from the firmware. There are 2 cases: 1099 * 1. MAC address is valid. It is assigned from the PF and we 1100 * need to override the current VF MAC address with it. 1101 * 2. MAC address is zero. The VF will use a random MAC address by 1102 * default but the stored zero MAC will allow the VF user to change 1103 * the random MAC address using ndo_set_mac_address() if he wants. 1104 */ 1105 if (!ether_addr_equal(resp->mac_address, bp->vf.mac_addr)) 1106 memcpy(bp->vf.mac_addr, resp->mac_address, ETH_ALEN); 1107 1108 /* overwrite netdev dev_addr with admin VF MAC */ 1109 if (is_valid_ether_addr(bp->vf.mac_addr)) 1110 memcpy(bp->dev->dev_addr, bp->vf.mac_addr, ETH_ALEN); 1111 update_vf_mac_exit: 1112 mutex_unlock(&bp->hwrm_cmd_lock); 1113 } 1114 1115 int bnxt_approve_mac(struct bnxt *bp, u8 *mac, bool strict) 1116 { 1117 struct hwrm_func_vf_cfg_input req = {0}; 1118 int rc = 0; 1119 1120 if (!BNXT_VF(bp)) 1121 return 0; 1122 1123 if (bp->hwrm_spec_code < 0x10202) { 1124 if (is_valid_ether_addr(bp->vf.mac_addr)) 1125 rc = -EADDRNOTAVAIL; 1126 goto mac_done; 1127 } 1128 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_CFG, -1, -1); 1129 req.enables = cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_DFLT_MAC_ADDR); 1130 memcpy(req.dflt_mac_addr, mac, ETH_ALEN); 1131 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 1132 mac_done: 1133 if (rc && strict) { 1134 rc = -EADDRNOTAVAIL; 1135 netdev_warn(bp->dev, "VF MAC address %pM not approved by the PF\n", 1136 mac); 1137 return rc; 1138 } 1139 return 0; 1140 } 1141 #else 1142 1143 void bnxt_sriov_disable(struct bnxt *bp) 1144 { 1145 } 1146 1147 void bnxt_hwrm_exec_fwd_req(struct bnxt *bp) 1148 { 1149 netdev_err(bp->dev, "Invalid VF message received when SRIOV is not enable\n"); 1150 } 1151 1152 void bnxt_update_vf_mac(struct bnxt *bp) 1153 { 1154 } 1155 1156 int bnxt_approve_mac(struct bnxt *bp, u8 *mac, bool strict) 1157 { 1158 return 0; 1159 } 1160 #endif 1161