1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2015 Broadcom Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation.
8  */
9 
10 #include <linux/module.h>
11 #include <linux/pci.h>
12 #include <linux/netdevice.h>
13 #include <linux/if_vlan.h>
14 #include <linux/interrupt.h>
15 #include <linux/etherdevice.h>
16 #include "bnxt_hsi.h"
17 #include "bnxt.h"
18 #include "bnxt_sriov.h"
19 #include "bnxt_ethtool.h"
20 
21 #ifdef CONFIG_BNXT_SRIOV
22 static int bnxt_vf_ndo_prep(struct bnxt *bp, int vf_id)
23 {
24 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
25 		netdev_err(bp->dev, "vf ndo called though PF is down\n");
26 		return -EINVAL;
27 	}
28 	if (!bp->pf.active_vfs) {
29 		netdev_err(bp->dev, "vf ndo called though sriov is disabled\n");
30 		return -EINVAL;
31 	}
32 	if (vf_id >= bp->pf.max_vfs) {
33 		netdev_err(bp->dev, "Invalid VF id %d\n", vf_id);
34 		return -EINVAL;
35 	}
36 	return 0;
37 }
38 
39 int bnxt_set_vf_spoofchk(struct net_device *dev, int vf_id, bool setting)
40 {
41 	struct hwrm_func_cfg_input req = {0};
42 	struct bnxt *bp = netdev_priv(dev);
43 	struct bnxt_vf_info *vf;
44 	bool old_setting = false;
45 	u32 func_flags;
46 	int rc;
47 
48 	rc = bnxt_vf_ndo_prep(bp, vf_id);
49 	if (rc)
50 		return rc;
51 
52 	vf = &bp->pf.vf[vf_id];
53 	if (vf->flags & BNXT_VF_SPOOFCHK)
54 		old_setting = true;
55 	if (old_setting == setting)
56 		return 0;
57 
58 	func_flags = vf->func_flags;
59 	if (setting)
60 		func_flags |= FUNC_CFG_REQ_FLAGS_SRC_MAC_ADDR_CHECK;
61 	else
62 		func_flags &= ~FUNC_CFG_REQ_FLAGS_SRC_MAC_ADDR_CHECK;
63 	/*TODO: if the driver supports VLAN filter on guest VLAN,
64 	 * the spoof check should also include vlan anti-spoofing
65 	 */
66 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
67 	req.fid = cpu_to_le16(vf->fw_fid);
68 	req.flags = cpu_to_le32(func_flags);
69 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
70 	if (!rc) {
71 		vf->func_flags = func_flags;
72 		if (setting)
73 			vf->flags |= BNXT_VF_SPOOFCHK;
74 		else
75 			vf->flags &= ~BNXT_VF_SPOOFCHK;
76 	}
77 	return rc;
78 }
79 
80 int bnxt_get_vf_config(struct net_device *dev, int vf_id,
81 		       struct ifla_vf_info *ivi)
82 {
83 	struct bnxt *bp = netdev_priv(dev);
84 	struct bnxt_vf_info *vf;
85 	int rc;
86 
87 	rc = bnxt_vf_ndo_prep(bp, vf_id);
88 	if (rc)
89 		return rc;
90 
91 	ivi->vf = vf_id;
92 	vf = &bp->pf.vf[vf_id];
93 
94 	memcpy(&ivi->mac, vf->mac_addr, ETH_ALEN);
95 	ivi->max_tx_rate = vf->max_tx_rate;
96 	ivi->min_tx_rate = vf->min_tx_rate;
97 	ivi->vlan = vf->vlan;
98 	ivi->qos = vf->flags & BNXT_VF_QOS;
99 	ivi->spoofchk = vf->flags & BNXT_VF_SPOOFCHK;
100 	if (!(vf->flags & BNXT_VF_LINK_FORCED))
101 		ivi->linkstate = IFLA_VF_LINK_STATE_AUTO;
102 	else if (vf->flags & BNXT_VF_LINK_UP)
103 		ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE;
104 	else
105 		ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE;
106 
107 	return 0;
108 }
109 
110 int bnxt_set_vf_mac(struct net_device *dev, int vf_id, u8 *mac)
111 {
112 	struct hwrm_func_cfg_input req = {0};
113 	struct bnxt *bp = netdev_priv(dev);
114 	struct bnxt_vf_info *vf;
115 	int rc;
116 
117 	rc = bnxt_vf_ndo_prep(bp, vf_id);
118 	if (rc)
119 		return rc;
120 	/* reject bc or mc mac addr, zero mac addr means allow
121 	 * VF to use its own mac addr
122 	 */
123 	if (is_multicast_ether_addr(mac)) {
124 		netdev_err(dev, "Invalid VF ethernet address\n");
125 		return -EINVAL;
126 	}
127 	vf = &bp->pf.vf[vf_id];
128 
129 	memcpy(vf->mac_addr, mac, ETH_ALEN);
130 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
131 	req.fid = cpu_to_le16(vf->fw_fid);
132 	req.flags = cpu_to_le32(vf->func_flags);
133 	req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_MAC_ADDR);
134 	memcpy(req.dflt_mac_addr, mac, ETH_ALEN);
135 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
136 }
137 
138 int bnxt_set_vf_vlan(struct net_device *dev, int vf_id, u16 vlan_id, u8 qos)
139 {
140 	struct hwrm_func_cfg_input req = {0};
141 	struct bnxt *bp = netdev_priv(dev);
142 	struct bnxt_vf_info *vf;
143 	u16 vlan_tag;
144 	int rc;
145 
146 	rc = bnxt_vf_ndo_prep(bp, vf_id);
147 	if (rc)
148 		return rc;
149 
150 	/* TODO: needed to implement proper handling of user priority,
151 	 * currently fail the command if there is valid priority
152 	 */
153 	if (vlan_id > 4095 || qos)
154 		return -EINVAL;
155 
156 	vf = &bp->pf.vf[vf_id];
157 	vlan_tag = vlan_id;
158 	if (vlan_tag == vf->vlan)
159 		return 0;
160 
161 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
162 	req.fid = cpu_to_le16(vf->fw_fid);
163 	req.flags = cpu_to_le32(vf->func_flags);
164 	req.dflt_vlan = cpu_to_le16(vlan_tag);
165 	req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_VLAN);
166 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
167 	if (!rc)
168 		vf->vlan = vlan_tag;
169 	return rc;
170 }
171 
172 int bnxt_set_vf_bw(struct net_device *dev, int vf_id, int min_tx_rate,
173 		   int max_tx_rate)
174 {
175 	struct hwrm_func_cfg_input req = {0};
176 	struct bnxt *bp = netdev_priv(dev);
177 	struct bnxt_vf_info *vf;
178 	u32 pf_link_speed;
179 	int rc;
180 
181 	rc = bnxt_vf_ndo_prep(bp, vf_id);
182 	if (rc)
183 		return rc;
184 
185 	vf = &bp->pf.vf[vf_id];
186 	pf_link_speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
187 	if (max_tx_rate > pf_link_speed) {
188 		netdev_info(bp->dev, "max tx rate %d exceed PF link speed for VF %d\n",
189 			    max_tx_rate, vf_id);
190 		return -EINVAL;
191 	}
192 
193 	if (min_tx_rate > pf_link_speed || min_tx_rate > max_tx_rate) {
194 		netdev_info(bp->dev, "min tx rate %d is invalid for VF %d\n",
195 			    min_tx_rate, vf_id);
196 		return -EINVAL;
197 	}
198 	if (min_tx_rate == vf->min_tx_rate && max_tx_rate == vf->max_tx_rate)
199 		return 0;
200 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
201 	req.fid = cpu_to_le16(vf->fw_fid);
202 	req.flags = cpu_to_le32(vf->func_flags);
203 	req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_MAX_BW);
204 	req.max_bw = cpu_to_le32(max_tx_rate);
205 	req.enables |= cpu_to_le32(FUNC_CFG_REQ_ENABLES_MIN_BW);
206 	req.min_bw = cpu_to_le32(min_tx_rate);
207 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
208 	if (!rc) {
209 		vf->min_tx_rate = min_tx_rate;
210 		vf->max_tx_rate = max_tx_rate;
211 	}
212 	return rc;
213 }
214 
215 int bnxt_set_vf_link_state(struct net_device *dev, int vf_id, int link)
216 {
217 	struct bnxt *bp = netdev_priv(dev);
218 	struct bnxt_vf_info *vf;
219 	int rc;
220 
221 	rc = bnxt_vf_ndo_prep(bp, vf_id);
222 	if (rc)
223 		return rc;
224 
225 	vf = &bp->pf.vf[vf_id];
226 
227 	vf->flags &= ~(BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED);
228 	switch (link) {
229 	case IFLA_VF_LINK_STATE_AUTO:
230 		vf->flags |= BNXT_VF_LINK_UP;
231 		break;
232 	case IFLA_VF_LINK_STATE_DISABLE:
233 		vf->flags |= BNXT_VF_LINK_FORCED;
234 		break;
235 	case IFLA_VF_LINK_STATE_ENABLE:
236 		vf->flags |= BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED;
237 		break;
238 	default:
239 		netdev_err(bp->dev, "Invalid link option\n");
240 		rc = -EINVAL;
241 		break;
242 	}
243 	/* CHIMP TODO: send msg to VF to update new link state */
244 
245 	return rc;
246 }
247 
248 static int bnxt_set_vf_attr(struct bnxt *bp, int num_vfs)
249 {
250 	int i;
251 	struct bnxt_vf_info *vf;
252 
253 	for (i = 0; i < num_vfs; i++) {
254 		vf = &bp->pf.vf[i];
255 		memset(vf, 0, sizeof(*vf));
256 		vf->flags = BNXT_VF_QOS | BNXT_VF_LINK_UP;
257 	}
258 	return 0;
259 }
260 
261 static int bnxt_hwrm_func_vf_resource_free(struct bnxt *bp, int num_vfs)
262 {
263 	int i, rc = 0;
264 	struct bnxt_pf_info *pf = &bp->pf;
265 	struct hwrm_func_vf_resc_free_input req = {0};
266 
267 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_RESC_FREE, -1, -1);
268 
269 	mutex_lock(&bp->hwrm_cmd_lock);
270 	for (i = pf->first_vf_id; i < pf->first_vf_id + num_vfs; i++) {
271 		req.vf_id = cpu_to_le16(i);
272 		rc = _hwrm_send_message(bp, &req, sizeof(req),
273 					HWRM_CMD_TIMEOUT);
274 		if (rc)
275 			break;
276 	}
277 	mutex_unlock(&bp->hwrm_cmd_lock);
278 	return rc;
279 }
280 
281 static void bnxt_free_vf_resources(struct bnxt *bp)
282 {
283 	struct pci_dev *pdev = bp->pdev;
284 	int i;
285 
286 	kfree(bp->pf.vf_event_bmap);
287 	bp->pf.vf_event_bmap = NULL;
288 
289 	for (i = 0; i < 4; i++) {
290 		if (bp->pf.hwrm_cmd_req_addr[i]) {
291 			dma_free_coherent(&pdev->dev, BNXT_PAGE_SIZE,
292 					  bp->pf.hwrm_cmd_req_addr[i],
293 					  bp->pf.hwrm_cmd_req_dma_addr[i]);
294 			bp->pf.hwrm_cmd_req_addr[i] = NULL;
295 		}
296 	}
297 
298 	kfree(bp->pf.vf);
299 	bp->pf.vf = NULL;
300 }
301 
302 static int bnxt_alloc_vf_resources(struct bnxt *bp, int num_vfs)
303 {
304 	struct pci_dev *pdev = bp->pdev;
305 	u32 nr_pages, size, i, j, k = 0;
306 
307 	bp->pf.vf = kcalloc(num_vfs, sizeof(struct bnxt_vf_info), GFP_KERNEL);
308 	if (!bp->pf.vf)
309 		return -ENOMEM;
310 
311 	bnxt_set_vf_attr(bp, num_vfs);
312 
313 	size = num_vfs * BNXT_HWRM_REQ_MAX_SIZE;
314 	nr_pages = size / BNXT_PAGE_SIZE;
315 	if (size & (BNXT_PAGE_SIZE - 1))
316 		nr_pages++;
317 
318 	for (i = 0; i < nr_pages; i++) {
319 		bp->pf.hwrm_cmd_req_addr[i] =
320 			dma_alloc_coherent(&pdev->dev, BNXT_PAGE_SIZE,
321 					   &bp->pf.hwrm_cmd_req_dma_addr[i],
322 					   GFP_KERNEL);
323 
324 		if (!bp->pf.hwrm_cmd_req_addr[i])
325 			return -ENOMEM;
326 
327 		for (j = 0; j < BNXT_HWRM_REQS_PER_PAGE && k < num_vfs; j++) {
328 			struct bnxt_vf_info *vf = &bp->pf.vf[k];
329 
330 			vf->hwrm_cmd_req_addr = bp->pf.hwrm_cmd_req_addr[i] +
331 						j * BNXT_HWRM_REQ_MAX_SIZE;
332 			vf->hwrm_cmd_req_dma_addr =
333 				bp->pf.hwrm_cmd_req_dma_addr[i] + j *
334 				BNXT_HWRM_REQ_MAX_SIZE;
335 			k++;
336 		}
337 	}
338 
339 	/* Max 128 VF's */
340 	bp->pf.vf_event_bmap = kzalloc(16, GFP_KERNEL);
341 	if (!bp->pf.vf_event_bmap)
342 		return -ENOMEM;
343 
344 	bp->pf.hwrm_cmd_req_pages = nr_pages;
345 	return 0;
346 }
347 
348 static int bnxt_hwrm_func_buf_rgtr(struct bnxt *bp)
349 {
350 	struct hwrm_func_buf_rgtr_input req = {0};
351 
352 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_BUF_RGTR, -1, -1);
353 
354 	req.req_buf_num_pages = cpu_to_le16(bp->pf.hwrm_cmd_req_pages);
355 	req.req_buf_page_size = cpu_to_le16(BNXT_PAGE_SHIFT);
356 	req.req_buf_len = cpu_to_le16(BNXT_HWRM_REQ_MAX_SIZE);
357 	req.req_buf_page_addr0 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[0]);
358 	req.req_buf_page_addr1 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[1]);
359 	req.req_buf_page_addr2 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[2]);
360 	req.req_buf_page_addr3 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[3]);
361 
362 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
363 }
364 
365 /* only call by PF to reserve resources for VF */
366 static int bnxt_hwrm_func_cfg(struct bnxt *bp, int num_vfs)
367 {
368 	u32 rc = 0, mtu, i;
369 	u16 vf_tx_rings, vf_rx_rings, vf_cp_rings, vf_stat_ctx, vf_vnics;
370 	u16 vf_ring_grps;
371 	struct hwrm_func_cfg_input req = {0};
372 	struct bnxt_pf_info *pf = &bp->pf;
373 
374 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
375 
376 	/* Remaining rings are distributed equally amongs VF's for now */
377 	/* TODO: the following workaroud is needed to restrict total number
378 	 * of vf_cp_rings not exceed number of HW ring groups. This WA should
379 	 * be removed once new HWRM provides HW ring groups capability in
380 	 * hwrm_func_qcap.
381 	 */
382 	vf_cp_rings = min_t(u16, pf->max_cp_rings, pf->max_stat_ctxs);
383 	vf_cp_rings = (vf_cp_rings - bp->cp_nr_rings) / num_vfs;
384 	/* TODO: restore this logic below once the WA above is removed */
385 	/* vf_cp_rings = (pf->max_cp_rings - bp->cp_nr_rings) / num_vfs; */
386 	vf_stat_ctx = (pf->max_stat_ctxs - bp->num_stat_ctxs) / num_vfs;
387 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
388 		vf_rx_rings = (pf->max_rx_rings - bp->rx_nr_rings * 2) /
389 			      num_vfs;
390 	else
391 		vf_rx_rings = (pf->max_rx_rings - bp->rx_nr_rings) / num_vfs;
392 	vf_ring_grps = (bp->pf.max_hw_ring_grps - bp->rx_nr_rings) / num_vfs;
393 	vf_tx_rings = (pf->max_tx_rings - bp->tx_nr_rings) / num_vfs;
394 
395 	req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_MTU |
396 				  FUNC_CFG_REQ_ENABLES_MRU |
397 				  FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS |
398 				  FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS |
399 				  FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS |
400 				  FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS |
401 				  FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS |
402 				  FUNC_CFG_REQ_ENABLES_NUM_L2_CTXS |
403 				  FUNC_CFG_REQ_ENABLES_NUM_VNICS |
404 				  FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS);
405 
406 	mtu = bp->dev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
407 	req.mru = cpu_to_le16(mtu);
408 	req.mtu = cpu_to_le16(mtu);
409 
410 	req.num_rsscos_ctxs = cpu_to_le16(1);
411 	req.num_cmpl_rings = cpu_to_le16(vf_cp_rings);
412 	req.num_tx_rings = cpu_to_le16(vf_tx_rings);
413 	req.num_rx_rings = cpu_to_le16(vf_rx_rings);
414 	req.num_hw_ring_grps = cpu_to_le16(vf_ring_grps);
415 	req.num_l2_ctxs = cpu_to_le16(4);
416 	vf_vnics = 1;
417 
418 	req.num_vnics = cpu_to_le16(vf_vnics);
419 	/* FIXME spec currently uses 1 bit for stats ctx */
420 	req.num_stat_ctxs = cpu_to_le16(vf_stat_ctx);
421 
422 	mutex_lock(&bp->hwrm_cmd_lock);
423 	for (i = 0; i < num_vfs; i++) {
424 		req.fid = cpu_to_le16(pf->first_vf_id + i);
425 		rc = _hwrm_send_message(bp, &req, sizeof(req),
426 					HWRM_CMD_TIMEOUT);
427 		if (rc)
428 			break;
429 		pf->active_vfs = i + 1;
430 		pf->vf[i].fw_fid = le16_to_cpu(req.fid);
431 	}
432 	mutex_unlock(&bp->hwrm_cmd_lock);
433 	if (!rc) {
434 		pf->max_tx_rings -= vf_tx_rings * num_vfs;
435 		pf->max_rx_rings -= vf_rx_rings * num_vfs;
436 		pf->max_hw_ring_grps -= vf_ring_grps * num_vfs;
437 		pf->max_cp_rings -= vf_cp_rings * num_vfs;
438 		pf->max_rsscos_ctxs -= num_vfs;
439 		pf->max_stat_ctxs -= vf_stat_ctx * num_vfs;
440 		pf->max_vnics -= vf_vnics * num_vfs;
441 	}
442 	return rc;
443 }
444 
445 static int bnxt_sriov_enable(struct bnxt *bp, int *num_vfs)
446 {
447 	int rc = 0, vfs_supported;
448 	int min_rx_rings, min_tx_rings, min_rss_ctxs;
449 	int tx_ok = 0, rx_ok = 0, rss_ok = 0;
450 
451 	/* Check if we can enable requested num of vf's. At a mininum
452 	 * we require 1 RX 1 TX rings for each VF. In this minimum conf
453 	 * features like TPA will not be available.
454 	 */
455 	vfs_supported = *num_vfs;
456 
457 	while (vfs_supported) {
458 		min_rx_rings = vfs_supported;
459 		min_tx_rings = vfs_supported;
460 		min_rss_ctxs = vfs_supported;
461 
462 		if (bp->flags & BNXT_FLAG_AGG_RINGS) {
463 			if (bp->pf.max_rx_rings - bp->rx_nr_rings * 2 >=
464 			    min_rx_rings)
465 				rx_ok = 1;
466 		} else {
467 			if (bp->pf.max_rx_rings - bp->rx_nr_rings >=
468 			    min_rx_rings)
469 				rx_ok = 1;
470 		}
471 
472 		if (bp->pf.max_tx_rings - bp->tx_nr_rings >= min_tx_rings)
473 			tx_ok = 1;
474 
475 		if (bp->pf.max_rsscos_ctxs - bp->rsscos_nr_ctxs >= min_rss_ctxs)
476 			rss_ok = 1;
477 
478 		if (tx_ok && rx_ok && rss_ok)
479 			break;
480 
481 		vfs_supported--;
482 	}
483 
484 	if (!vfs_supported) {
485 		netdev_err(bp->dev, "Cannot enable VF's as all resources are used by PF\n");
486 		return -EINVAL;
487 	}
488 
489 	if (vfs_supported != *num_vfs) {
490 		netdev_info(bp->dev, "Requested VFs %d, can enable %d\n",
491 			    *num_vfs, vfs_supported);
492 		*num_vfs = vfs_supported;
493 	}
494 
495 	rc = bnxt_alloc_vf_resources(bp, *num_vfs);
496 	if (rc)
497 		goto err_out1;
498 
499 	/* Reserve resources for VFs */
500 	rc = bnxt_hwrm_func_cfg(bp, *num_vfs);
501 	if (rc)
502 		goto err_out2;
503 
504 	/* Register buffers for VFs */
505 	rc = bnxt_hwrm_func_buf_rgtr(bp);
506 	if (rc)
507 		goto err_out2;
508 
509 	rc = pci_enable_sriov(bp->pdev, *num_vfs);
510 	if (rc)
511 		goto err_out2;
512 
513 	return 0;
514 
515 err_out2:
516 	/* Free the resources reserved for various VF's */
517 	bnxt_hwrm_func_vf_resource_free(bp, *num_vfs);
518 
519 err_out1:
520 	bnxt_free_vf_resources(bp);
521 
522 	return rc;
523 }
524 
525 void bnxt_sriov_disable(struct bnxt *bp)
526 {
527 	u16 num_vfs = pci_num_vf(bp->pdev);
528 
529 	if (!num_vfs)
530 		return;
531 
532 	if (pci_vfs_assigned(bp->pdev)) {
533 		netdev_warn(bp->dev, "Unable to free %d VFs because some are assigned to VMs.\n",
534 			    num_vfs);
535 	} else {
536 		pci_disable_sriov(bp->pdev);
537 		/* Free the HW resources reserved for various VF's */
538 		bnxt_hwrm_func_vf_resource_free(bp, num_vfs);
539 	}
540 
541 	bnxt_free_vf_resources(bp);
542 
543 	bp->pf.active_vfs = 0;
544 	/* Reclaim all resources for the PF. */
545 	bnxt_hwrm_func_qcaps(bp);
546 }
547 
548 int bnxt_sriov_configure(struct pci_dev *pdev, int num_vfs)
549 {
550 	struct net_device *dev = pci_get_drvdata(pdev);
551 	struct bnxt *bp = netdev_priv(dev);
552 
553 	if (!(bp->flags & BNXT_FLAG_USING_MSIX)) {
554 		netdev_warn(dev, "Not allow SRIOV if the irq mode is not MSIX\n");
555 		return 0;
556 	}
557 
558 	rtnl_lock();
559 	if (!netif_running(dev)) {
560 		netdev_warn(dev, "Reject SRIOV config request since if is down!\n");
561 		rtnl_unlock();
562 		return 0;
563 	}
564 	bp->sriov_cfg = true;
565 	rtnl_unlock();
566 
567 	if (pci_vfs_assigned(bp->pdev)) {
568 		netdev_warn(dev, "Unable to configure SRIOV since some VFs are assigned to VMs.\n");
569 		num_vfs = 0;
570 		goto sriov_cfg_exit;
571 	}
572 
573 	/* Check if enabled VFs is same as requested */
574 	if (num_vfs && num_vfs == bp->pf.active_vfs)
575 		goto sriov_cfg_exit;
576 
577 	/* if there are previous existing VFs, clean them up */
578 	bnxt_sriov_disable(bp);
579 	if (!num_vfs)
580 		goto sriov_cfg_exit;
581 
582 	bnxt_sriov_enable(bp, &num_vfs);
583 
584 sriov_cfg_exit:
585 	bp->sriov_cfg = false;
586 	wake_up(&bp->sriov_cfg_wait);
587 
588 	return num_vfs;
589 }
590 
591 static int bnxt_hwrm_fwd_resp(struct bnxt *bp, struct bnxt_vf_info *vf,
592 			      void *encap_resp, __le64 encap_resp_addr,
593 			      __le16 encap_resp_cpr, u32 msg_size)
594 {
595 	int rc = 0;
596 	struct hwrm_fwd_resp_input req = {0};
597 	struct hwrm_fwd_resp_output *resp = bp->hwrm_cmd_resp_addr;
598 
599 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FWD_RESP, -1, -1);
600 
601 	/* Set the new target id */
602 	req.target_id = cpu_to_le16(vf->fw_fid);
603 	req.encap_resp_target_id = cpu_to_le16(vf->fw_fid);
604 	req.encap_resp_len = cpu_to_le16(msg_size);
605 	req.encap_resp_addr = encap_resp_addr;
606 	req.encap_resp_cmpl_ring = encap_resp_cpr;
607 	memcpy(req.encap_resp, encap_resp, msg_size);
608 
609 	mutex_lock(&bp->hwrm_cmd_lock);
610 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
611 
612 	if (rc) {
613 		netdev_err(bp->dev, "hwrm_fwd_resp failed. rc:%d\n", rc);
614 		goto fwd_resp_exit;
615 	}
616 
617 	if (resp->error_code) {
618 		netdev_err(bp->dev, "hwrm_fwd_resp error %d\n",
619 			   resp->error_code);
620 		rc = -1;
621 	}
622 
623 fwd_resp_exit:
624 	mutex_unlock(&bp->hwrm_cmd_lock);
625 	return rc;
626 }
627 
628 static int bnxt_hwrm_fwd_err_resp(struct bnxt *bp, struct bnxt_vf_info *vf,
629 				  u32 msg_size)
630 {
631 	int rc = 0;
632 	struct hwrm_reject_fwd_resp_input req = {0};
633 	struct hwrm_reject_fwd_resp_output *resp = bp->hwrm_cmd_resp_addr;
634 
635 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_REJECT_FWD_RESP, -1, -1);
636 	/* Set the new target id */
637 	req.target_id = cpu_to_le16(vf->fw_fid);
638 	req.encap_resp_target_id = cpu_to_le16(vf->fw_fid);
639 	memcpy(req.encap_request, vf->hwrm_cmd_req_addr, msg_size);
640 
641 	mutex_lock(&bp->hwrm_cmd_lock);
642 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
643 
644 	if (rc) {
645 		netdev_err(bp->dev, "hwrm_fwd_err_resp failed. rc:%d\n", rc);
646 		goto fwd_err_resp_exit;
647 	}
648 
649 	if (resp->error_code) {
650 		netdev_err(bp->dev, "hwrm_fwd_err_resp error %d\n",
651 			   resp->error_code);
652 		rc = -1;
653 	}
654 
655 fwd_err_resp_exit:
656 	mutex_unlock(&bp->hwrm_cmd_lock);
657 	return rc;
658 }
659 
660 static int bnxt_hwrm_exec_fwd_resp(struct bnxt *bp, struct bnxt_vf_info *vf,
661 				   u32 msg_size)
662 {
663 	int rc = 0;
664 	struct hwrm_exec_fwd_resp_input req = {0};
665 	struct hwrm_exec_fwd_resp_output *resp = bp->hwrm_cmd_resp_addr;
666 
667 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_EXEC_FWD_RESP, -1, -1);
668 	/* Set the new target id */
669 	req.target_id = cpu_to_le16(vf->fw_fid);
670 	req.encap_resp_target_id = cpu_to_le16(vf->fw_fid);
671 	memcpy(req.encap_request, vf->hwrm_cmd_req_addr, msg_size);
672 
673 	mutex_lock(&bp->hwrm_cmd_lock);
674 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
675 
676 	if (rc) {
677 		netdev_err(bp->dev, "hwrm_exec_fw_resp failed. rc:%d\n", rc);
678 		goto exec_fwd_resp_exit;
679 	}
680 
681 	if (resp->error_code) {
682 		netdev_err(bp->dev, "hwrm_exec_fw_resp error %d\n",
683 			   resp->error_code);
684 		rc = -1;
685 	}
686 
687 exec_fwd_resp_exit:
688 	mutex_unlock(&bp->hwrm_cmd_lock);
689 	return rc;
690 }
691 
692 static int bnxt_vf_validate_set_mac(struct bnxt *bp, struct bnxt_vf_info *vf)
693 {
694 	u32 msg_size = sizeof(struct hwrm_cfa_l2_filter_alloc_input);
695 	struct hwrm_cfa_l2_filter_alloc_input *req =
696 		(struct hwrm_cfa_l2_filter_alloc_input *)vf->hwrm_cmd_req_addr;
697 
698 	if (!is_valid_ether_addr(vf->mac_addr) ||
699 	    ether_addr_equal((const u8 *)req->l2_addr, vf->mac_addr))
700 		return bnxt_hwrm_exec_fwd_resp(bp, vf, msg_size);
701 	else
702 		return bnxt_hwrm_fwd_err_resp(bp, vf, msg_size);
703 }
704 
705 static int bnxt_vf_set_link(struct bnxt *bp, struct bnxt_vf_info *vf)
706 {
707 	int rc = 0;
708 
709 	if (!(vf->flags & BNXT_VF_LINK_FORCED)) {
710 		/* real link */
711 		rc = bnxt_hwrm_exec_fwd_resp(
712 			bp, vf, sizeof(struct hwrm_port_phy_qcfg_input));
713 	} else {
714 		struct hwrm_port_phy_qcfg_output phy_qcfg_resp;
715 		struct hwrm_port_phy_qcfg_input *phy_qcfg_req;
716 
717 		phy_qcfg_req =
718 		(struct hwrm_port_phy_qcfg_input *)vf->hwrm_cmd_req_addr;
719 		mutex_lock(&bp->hwrm_cmd_lock);
720 		memcpy(&phy_qcfg_resp, &bp->link_info.phy_qcfg_resp,
721 		       sizeof(phy_qcfg_resp));
722 		mutex_unlock(&bp->hwrm_cmd_lock);
723 		phy_qcfg_resp.seq_id = phy_qcfg_req->seq_id;
724 
725 		if (vf->flags & BNXT_VF_LINK_UP) {
726 			/* if physical link is down, force link up on VF */
727 			if (phy_qcfg_resp.link ==
728 			    PORT_PHY_QCFG_RESP_LINK_NO_LINK) {
729 				phy_qcfg_resp.link =
730 					PORT_PHY_QCFG_RESP_LINK_LINK;
731 				if (phy_qcfg_resp.auto_link_speed)
732 					phy_qcfg_resp.link_speed =
733 						phy_qcfg_resp.auto_link_speed;
734 				else
735 					phy_qcfg_resp.link_speed =
736 						phy_qcfg_resp.force_link_speed;
737 				phy_qcfg_resp.duplex =
738 					PORT_PHY_QCFG_RESP_DUPLEX_FULL;
739 				phy_qcfg_resp.pause =
740 					(PORT_PHY_QCFG_RESP_PAUSE_TX |
741 					 PORT_PHY_QCFG_RESP_PAUSE_RX);
742 			}
743 		} else {
744 			/* force link down */
745 			phy_qcfg_resp.link = PORT_PHY_QCFG_RESP_LINK_NO_LINK;
746 			phy_qcfg_resp.link_speed = 0;
747 			phy_qcfg_resp.duplex = PORT_PHY_QCFG_RESP_DUPLEX_HALF;
748 			phy_qcfg_resp.pause = 0;
749 		}
750 		rc = bnxt_hwrm_fwd_resp(bp, vf, &phy_qcfg_resp,
751 					phy_qcfg_req->resp_addr,
752 					phy_qcfg_req->cmpl_ring,
753 					sizeof(phy_qcfg_resp));
754 	}
755 	return rc;
756 }
757 
758 static int bnxt_vf_req_validate_snd(struct bnxt *bp, struct bnxt_vf_info *vf)
759 {
760 	int rc = 0;
761 	struct hwrm_cmd_req_hdr *encap_req = vf->hwrm_cmd_req_addr;
762 	u32 req_type = le32_to_cpu(encap_req->cmpl_ring_req_type) & 0xffff;
763 
764 	switch (req_type) {
765 	case HWRM_CFA_L2_FILTER_ALLOC:
766 		rc = bnxt_vf_validate_set_mac(bp, vf);
767 		break;
768 	case HWRM_FUNC_CFG:
769 		/* TODO Validate if VF is allowed to change mac address,
770 		 * mtu, num of rings etc
771 		 */
772 		rc = bnxt_hwrm_exec_fwd_resp(
773 			bp, vf, sizeof(struct hwrm_func_cfg_input));
774 		break;
775 	case HWRM_PORT_PHY_QCFG:
776 		rc = bnxt_vf_set_link(bp, vf);
777 		break;
778 	default:
779 		break;
780 	}
781 	return rc;
782 }
783 
784 void bnxt_hwrm_exec_fwd_req(struct bnxt *bp)
785 {
786 	u32 i = 0, active_vfs = bp->pf.active_vfs, vf_id;
787 
788 	/* Scan through VF's and process commands */
789 	while (1) {
790 		vf_id = find_next_bit(bp->pf.vf_event_bmap, active_vfs, i);
791 		if (vf_id >= active_vfs)
792 			break;
793 
794 		clear_bit(vf_id, bp->pf.vf_event_bmap);
795 		bnxt_vf_req_validate_snd(bp, &bp->pf.vf[vf_id]);
796 		i = vf_id + 1;
797 	}
798 }
799 
800 void bnxt_update_vf_mac(struct bnxt *bp)
801 {
802 	struct hwrm_func_qcaps_input req = {0};
803 	struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
804 
805 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1);
806 	req.fid = cpu_to_le16(0xffff);
807 
808 	mutex_lock(&bp->hwrm_cmd_lock);
809 	if (_hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT))
810 		goto update_vf_mac_exit;
811 
812 	if (!is_valid_ether_addr(resp->perm_mac_address))
813 		goto update_vf_mac_exit;
814 
815 	if (!ether_addr_equal(resp->perm_mac_address, bp->vf.mac_addr))
816 		memcpy(bp->vf.mac_addr, resp->perm_mac_address, ETH_ALEN);
817 	/* overwrite netdev dev_adr with admin VF MAC */
818 	memcpy(bp->dev->dev_addr, bp->vf.mac_addr, ETH_ALEN);
819 update_vf_mac_exit:
820 	mutex_unlock(&bp->hwrm_cmd_lock);
821 }
822 
823 #else
824 
825 void bnxt_sriov_disable(struct bnxt *bp)
826 {
827 }
828 
829 void bnxt_hwrm_exec_fwd_req(struct bnxt *bp)
830 {
831 	netdev_err(bp->dev, "Invalid VF message received when SRIOV is not enable\n");
832 }
833 
834 void bnxt_update_vf_mac(struct bnxt *bp)
835 {
836 }
837 #endif
838