1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2016 Broadcom Corporation
4  * Copyright (c) 2016-2017 Broadcom Limited
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation.
9  */
10 
11 #include <linux/module.h>
12 #include <linux/pci.h>
13 #include <linux/netdevice.h>
14 #include <linux/if_vlan.h>
15 #include <linux/interrupt.h>
16 #include <linux/etherdevice.h>
17 #include "bnxt_hsi.h"
18 #include "bnxt.h"
19 #include "bnxt_ulp.h"
20 #include "bnxt_sriov.h"
21 #include "bnxt_vfr.h"
22 #include "bnxt_ethtool.h"
23 
24 #ifdef CONFIG_BNXT_SRIOV
25 static int bnxt_hwrm_fwd_async_event_cmpl(struct bnxt *bp,
26 					  struct bnxt_vf_info *vf, u16 event_id)
27 {
28 	struct hwrm_fwd_async_event_cmpl_output *resp = bp->hwrm_cmd_resp_addr;
29 	struct hwrm_fwd_async_event_cmpl_input req = {0};
30 	struct hwrm_async_event_cmpl *async_cmpl;
31 	int rc = 0;
32 
33 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FWD_ASYNC_EVENT_CMPL, -1, -1);
34 	if (vf)
35 		req.encap_async_event_target_id = cpu_to_le16(vf->fw_fid);
36 	else
37 		/* broadcast this async event to all VFs */
38 		req.encap_async_event_target_id = cpu_to_le16(0xffff);
39 	async_cmpl = (struct hwrm_async_event_cmpl *)req.encap_async_event_cmpl;
40 	async_cmpl->type = cpu_to_le16(ASYNC_EVENT_CMPL_TYPE_HWRM_ASYNC_EVENT);
41 	async_cmpl->event_id = cpu_to_le16(event_id);
42 
43 	mutex_lock(&bp->hwrm_cmd_lock);
44 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
45 
46 	if (rc) {
47 		netdev_err(bp->dev, "hwrm_fwd_async_event_cmpl failed. rc:%d\n",
48 			   rc);
49 		goto fwd_async_event_cmpl_exit;
50 	}
51 
52 	if (resp->error_code) {
53 		netdev_err(bp->dev, "hwrm_fwd_async_event_cmpl error %d\n",
54 			   resp->error_code);
55 		rc = -1;
56 	}
57 
58 fwd_async_event_cmpl_exit:
59 	mutex_unlock(&bp->hwrm_cmd_lock);
60 	return rc;
61 }
62 
63 static int bnxt_vf_ndo_prep(struct bnxt *bp, int vf_id)
64 {
65 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
66 		netdev_err(bp->dev, "vf ndo called though PF is down\n");
67 		return -EINVAL;
68 	}
69 	if (!bp->pf.active_vfs) {
70 		netdev_err(bp->dev, "vf ndo called though sriov is disabled\n");
71 		return -EINVAL;
72 	}
73 	if (vf_id >= bp->pf.active_vfs) {
74 		netdev_err(bp->dev, "Invalid VF id %d\n", vf_id);
75 		return -EINVAL;
76 	}
77 	return 0;
78 }
79 
80 int bnxt_set_vf_spoofchk(struct net_device *dev, int vf_id, bool setting)
81 {
82 	struct hwrm_func_cfg_input req = {0};
83 	struct bnxt *bp = netdev_priv(dev);
84 	struct bnxt_vf_info *vf;
85 	bool old_setting = false;
86 	u32 func_flags;
87 	int rc;
88 
89 	if (bp->hwrm_spec_code < 0x10701)
90 		return -ENOTSUPP;
91 
92 	rc = bnxt_vf_ndo_prep(bp, vf_id);
93 	if (rc)
94 		return rc;
95 
96 	vf = &bp->pf.vf[vf_id];
97 	if (vf->flags & BNXT_VF_SPOOFCHK)
98 		old_setting = true;
99 	if (old_setting == setting)
100 		return 0;
101 
102 	func_flags = vf->func_flags;
103 	if (setting)
104 		func_flags |= FUNC_CFG_REQ_FLAGS_SRC_MAC_ADDR_CHECK_ENABLE;
105 	else
106 		func_flags |= FUNC_CFG_REQ_FLAGS_SRC_MAC_ADDR_CHECK_DISABLE;
107 	/*TODO: if the driver supports VLAN filter on guest VLAN,
108 	 * the spoof check should also include vlan anti-spoofing
109 	 */
110 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
111 	req.fid = cpu_to_le16(vf->fw_fid);
112 	req.flags = cpu_to_le32(func_flags);
113 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
114 	if (!rc) {
115 		vf->func_flags = func_flags;
116 		if (setting)
117 			vf->flags |= BNXT_VF_SPOOFCHK;
118 		else
119 			vf->flags &= ~BNXT_VF_SPOOFCHK;
120 	}
121 	return rc;
122 }
123 
124 int bnxt_get_vf_config(struct net_device *dev, int vf_id,
125 		       struct ifla_vf_info *ivi)
126 {
127 	struct bnxt *bp = netdev_priv(dev);
128 	struct bnxt_vf_info *vf;
129 	int rc;
130 
131 	rc = bnxt_vf_ndo_prep(bp, vf_id);
132 	if (rc)
133 		return rc;
134 
135 	ivi->vf = vf_id;
136 	vf = &bp->pf.vf[vf_id];
137 
138 	if (is_valid_ether_addr(vf->mac_addr))
139 		memcpy(&ivi->mac, vf->mac_addr, ETH_ALEN);
140 	else
141 		memcpy(&ivi->mac, vf->vf_mac_addr, ETH_ALEN);
142 	ivi->max_tx_rate = vf->max_tx_rate;
143 	ivi->min_tx_rate = vf->min_tx_rate;
144 	ivi->vlan = vf->vlan;
145 	if (vf->flags & BNXT_VF_QOS)
146 		ivi->qos = vf->vlan >> VLAN_PRIO_SHIFT;
147 	else
148 		ivi->qos = 0;
149 	ivi->spoofchk = !!(vf->flags & BNXT_VF_SPOOFCHK);
150 	if (!(vf->flags & BNXT_VF_LINK_FORCED))
151 		ivi->linkstate = IFLA_VF_LINK_STATE_AUTO;
152 	else if (vf->flags & BNXT_VF_LINK_UP)
153 		ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE;
154 	else
155 		ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE;
156 
157 	return 0;
158 }
159 
160 int bnxt_set_vf_mac(struct net_device *dev, int vf_id, u8 *mac)
161 {
162 	struct hwrm_func_cfg_input req = {0};
163 	struct bnxt *bp = netdev_priv(dev);
164 	struct bnxt_vf_info *vf;
165 	int rc;
166 
167 	rc = bnxt_vf_ndo_prep(bp, vf_id);
168 	if (rc)
169 		return rc;
170 	/* reject bc or mc mac addr, zero mac addr means allow
171 	 * VF to use its own mac addr
172 	 */
173 	if (is_multicast_ether_addr(mac)) {
174 		netdev_err(dev, "Invalid VF ethernet address\n");
175 		return -EINVAL;
176 	}
177 	vf = &bp->pf.vf[vf_id];
178 
179 	memcpy(vf->mac_addr, mac, ETH_ALEN);
180 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
181 	req.fid = cpu_to_le16(vf->fw_fid);
182 	req.flags = cpu_to_le32(vf->func_flags);
183 	req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_MAC_ADDR);
184 	memcpy(req.dflt_mac_addr, mac, ETH_ALEN);
185 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
186 }
187 
188 int bnxt_set_vf_vlan(struct net_device *dev, int vf_id, u16 vlan_id, u8 qos,
189 		     __be16 vlan_proto)
190 {
191 	struct hwrm_func_cfg_input req = {0};
192 	struct bnxt *bp = netdev_priv(dev);
193 	struct bnxt_vf_info *vf;
194 	u16 vlan_tag;
195 	int rc;
196 
197 	if (bp->hwrm_spec_code < 0x10201)
198 		return -ENOTSUPP;
199 
200 	if (vlan_proto != htons(ETH_P_8021Q))
201 		return -EPROTONOSUPPORT;
202 
203 	rc = bnxt_vf_ndo_prep(bp, vf_id);
204 	if (rc)
205 		return rc;
206 
207 	/* TODO: needed to implement proper handling of user priority,
208 	 * currently fail the command if there is valid priority
209 	 */
210 	if (vlan_id > 4095 || qos)
211 		return -EINVAL;
212 
213 	vf = &bp->pf.vf[vf_id];
214 	vlan_tag = vlan_id;
215 	if (vlan_tag == vf->vlan)
216 		return 0;
217 
218 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
219 	req.fid = cpu_to_le16(vf->fw_fid);
220 	req.flags = cpu_to_le32(vf->func_flags);
221 	req.dflt_vlan = cpu_to_le16(vlan_tag);
222 	req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_VLAN);
223 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
224 	if (!rc)
225 		vf->vlan = vlan_tag;
226 	return rc;
227 }
228 
229 int bnxt_set_vf_bw(struct net_device *dev, int vf_id, int min_tx_rate,
230 		   int max_tx_rate)
231 {
232 	struct hwrm_func_cfg_input req = {0};
233 	struct bnxt *bp = netdev_priv(dev);
234 	struct bnxt_vf_info *vf;
235 	u32 pf_link_speed;
236 	int rc;
237 
238 	rc = bnxt_vf_ndo_prep(bp, vf_id);
239 	if (rc)
240 		return rc;
241 
242 	vf = &bp->pf.vf[vf_id];
243 	pf_link_speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
244 	if (max_tx_rate > pf_link_speed) {
245 		netdev_info(bp->dev, "max tx rate %d exceed PF link speed for VF %d\n",
246 			    max_tx_rate, vf_id);
247 		return -EINVAL;
248 	}
249 
250 	if (min_tx_rate > pf_link_speed || min_tx_rate > max_tx_rate) {
251 		netdev_info(bp->dev, "min tx rate %d is invalid for VF %d\n",
252 			    min_tx_rate, vf_id);
253 		return -EINVAL;
254 	}
255 	if (min_tx_rate == vf->min_tx_rate && max_tx_rate == vf->max_tx_rate)
256 		return 0;
257 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
258 	req.fid = cpu_to_le16(vf->fw_fid);
259 	req.flags = cpu_to_le32(vf->func_flags);
260 	req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_MAX_BW);
261 	req.max_bw = cpu_to_le32(max_tx_rate);
262 	req.enables |= cpu_to_le32(FUNC_CFG_REQ_ENABLES_MIN_BW);
263 	req.min_bw = cpu_to_le32(min_tx_rate);
264 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
265 	if (!rc) {
266 		vf->min_tx_rate = min_tx_rate;
267 		vf->max_tx_rate = max_tx_rate;
268 	}
269 	return rc;
270 }
271 
272 int bnxt_set_vf_link_state(struct net_device *dev, int vf_id, int link)
273 {
274 	struct bnxt *bp = netdev_priv(dev);
275 	struct bnxt_vf_info *vf;
276 	int rc;
277 
278 	rc = bnxt_vf_ndo_prep(bp, vf_id);
279 	if (rc)
280 		return rc;
281 
282 	vf = &bp->pf.vf[vf_id];
283 
284 	vf->flags &= ~(BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED);
285 	switch (link) {
286 	case IFLA_VF_LINK_STATE_AUTO:
287 		vf->flags |= BNXT_VF_LINK_UP;
288 		break;
289 	case IFLA_VF_LINK_STATE_DISABLE:
290 		vf->flags |= BNXT_VF_LINK_FORCED;
291 		break;
292 	case IFLA_VF_LINK_STATE_ENABLE:
293 		vf->flags |= BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED;
294 		break;
295 	default:
296 		netdev_err(bp->dev, "Invalid link option\n");
297 		rc = -EINVAL;
298 		break;
299 	}
300 	if (vf->flags & (BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED))
301 		rc = bnxt_hwrm_fwd_async_event_cmpl(bp, vf,
302 			ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE);
303 	return rc;
304 }
305 
306 static int bnxt_set_vf_attr(struct bnxt *bp, int num_vfs)
307 {
308 	int i;
309 	struct bnxt_vf_info *vf;
310 
311 	for (i = 0; i < num_vfs; i++) {
312 		vf = &bp->pf.vf[i];
313 		memset(vf, 0, sizeof(*vf));
314 	}
315 	return 0;
316 }
317 
318 static int bnxt_hwrm_func_vf_resource_free(struct bnxt *bp, int num_vfs)
319 {
320 	int i, rc = 0;
321 	struct bnxt_pf_info *pf = &bp->pf;
322 	struct hwrm_func_vf_resc_free_input req = {0};
323 
324 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_RESC_FREE, -1, -1);
325 
326 	mutex_lock(&bp->hwrm_cmd_lock);
327 	for (i = pf->first_vf_id; i < pf->first_vf_id + num_vfs; i++) {
328 		req.vf_id = cpu_to_le16(i);
329 		rc = _hwrm_send_message(bp, &req, sizeof(req),
330 					HWRM_CMD_TIMEOUT);
331 		if (rc)
332 			break;
333 	}
334 	mutex_unlock(&bp->hwrm_cmd_lock);
335 	return rc;
336 }
337 
338 static void bnxt_free_vf_resources(struct bnxt *bp)
339 {
340 	struct pci_dev *pdev = bp->pdev;
341 	int i;
342 
343 	kfree(bp->pf.vf_event_bmap);
344 	bp->pf.vf_event_bmap = NULL;
345 
346 	for (i = 0; i < 4; i++) {
347 		if (bp->pf.hwrm_cmd_req_addr[i]) {
348 			dma_free_coherent(&pdev->dev, BNXT_PAGE_SIZE,
349 					  bp->pf.hwrm_cmd_req_addr[i],
350 					  bp->pf.hwrm_cmd_req_dma_addr[i]);
351 			bp->pf.hwrm_cmd_req_addr[i] = NULL;
352 		}
353 	}
354 
355 	kfree(bp->pf.vf);
356 	bp->pf.vf = NULL;
357 }
358 
359 static int bnxt_alloc_vf_resources(struct bnxt *bp, int num_vfs)
360 {
361 	struct pci_dev *pdev = bp->pdev;
362 	u32 nr_pages, size, i, j, k = 0;
363 
364 	bp->pf.vf = kcalloc(num_vfs, sizeof(struct bnxt_vf_info), GFP_KERNEL);
365 	if (!bp->pf.vf)
366 		return -ENOMEM;
367 
368 	bnxt_set_vf_attr(bp, num_vfs);
369 
370 	size = num_vfs * BNXT_HWRM_REQ_MAX_SIZE;
371 	nr_pages = size / BNXT_PAGE_SIZE;
372 	if (size & (BNXT_PAGE_SIZE - 1))
373 		nr_pages++;
374 
375 	for (i = 0; i < nr_pages; i++) {
376 		bp->pf.hwrm_cmd_req_addr[i] =
377 			dma_alloc_coherent(&pdev->dev, BNXT_PAGE_SIZE,
378 					   &bp->pf.hwrm_cmd_req_dma_addr[i],
379 					   GFP_KERNEL);
380 
381 		if (!bp->pf.hwrm_cmd_req_addr[i])
382 			return -ENOMEM;
383 
384 		for (j = 0; j < BNXT_HWRM_REQS_PER_PAGE && k < num_vfs; j++) {
385 			struct bnxt_vf_info *vf = &bp->pf.vf[k];
386 
387 			vf->hwrm_cmd_req_addr = bp->pf.hwrm_cmd_req_addr[i] +
388 						j * BNXT_HWRM_REQ_MAX_SIZE;
389 			vf->hwrm_cmd_req_dma_addr =
390 				bp->pf.hwrm_cmd_req_dma_addr[i] + j *
391 				BNXT_HWRM_REQ_MAX_SIZE;
392 			k++;
393 		}
394 	}
395 
396 	/* Max 128 VF's */
397 	bp->pf.vf_event_bmap = kzalloc(16, GFP_KERNEL);
398 	if (!bp->pf.vf_event_bmap)
399 		return -ENOMEM;
400 
401 	bp->pf.hwrm_cmd_req_pages = nr_pages;
402 	return 0;
403 }
404 
405 static int bnxt_hwrm_func_buf_rgtr(struct bnxt *bp)
406 {
407 	struct hwrm_func_buf_rgtr_input req = {0};
408 
409 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_BUF_RGTR, -1, -1);
410 
411 	req.req_buf_num_pages = cpu_to_le16(bp->pf.hwrm_cmd_req_pages);
412 	req.req_buf_page_size = cpu_to_le16(BNXT_PAGE_SHIFT);
413 	req.req_buf_len = cpu_to_le16(BNXT_HWRM_REQ_MAX_SIZE);
414 	req.req_buf_page_addr0 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[0]);
415 	req.req_buf_page_addr1 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[1]);
416 	req.req_buf_page_addr2 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[2]);
417 	req.req_buf_page_addr3 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[3]);
418 
419 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
420 }
421 
422 /* Only called by PF to reserve resources for VFs, returns actual number of
423  * VFs configured, or < 0 on error.
424  */
425 static int bnxt_hwrm_func_vf_resc_cfg(struct bnxt *bp, int num_vfs)
426 {
427 	struct hwrm_func_vf_resource_cfg_input req = {0};
428 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
429 	u16 vf_tx_rings, vf_rx_rings, vf_cp_rings;
430 	u16 vf_stat_ctx, vf_vnics, vf_ring_grps;
431 	struct bnxt_pf_info *pf = &bp->pf;
432 	int i, rc = 0;
433 
434 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_RESOURCE_CFG, -1, -1);
435 
436 	vf_cp_rings = hw_resc->max_cp_rings - bp->cp_nr_rings;
437 	vf_stat_ctx = hw_resc->max_stat_ctxs - bp->num_stat_ctxs;
438 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
439 		vf_rx_rings = hw_resc->max_rx_rings - bp->rx_nr_rings * 2;
440 	else
441 		vf_rx_rings = hw_resc->max_rx_rings - bp->rx_nr_rings;
442 	vf_ring_grps = hw_resc->max_hw_ring_grps - bp->rx_nr_rings;
443 	vf_tx_rings = hw_resc->max_tx_rings - bp->tx_nr_rings;
444 	vf_vnics = hw_resc->max_vnics - bp->nr_vnics;
445 	vf_vnics = min_t(u16, vf_vnics, vf_rx_rings);
446 
447 	req.min_rsscos_ctx = cpu_to_le16(1);
448 	req.max_rsscos_ctx = cpu_to_le16(1);
449 	if (pf->vf_resv_strategy == BNXT_VF_RESV_STRATEGY_MINIMAL) {
450 		req.min_cmpl_rings = cpu_to_le16(1);
451 		req.min_tx_rings = cpu_to_le16(1);
452 		req.min_rx_rings = cpu_to_le16(1);
453 		req.min_l2_ctxs = cpu_to_le16(1);
454 		req.min_vnics = cpu_to_le16(1);
455 		req.min_stat_ctx = cpu_to_le16(1);
456 		req.min_hw_ring_grps = cpu_to_le16(1);
457 	} else {
458 		vf_cp_rings /= num_vfs;
459 		vf_tx_rings /= num_vfs;
460 		vf_rx_rings /= num_vfs;
461 		vf_vnics /= num_vfs;
462 		vf_stat_ctx /= num_vfs;
463 		vf_ring_grps /= num_vfs;
464 
465 		req.min_cmpl_rings = cpu_to_le16(vf_cp_rings);
466 		req.min_tx_rings = cpu_to_le16(vf_tx_rings);
467 		req.min_rx_rings = cpu_to_le16(vf_rx_rings);
468 		req.min_l2_ctxs = cpu_to_le16(4);
469 		req.min_vnics = cpu_to_le16(vf_vnics);
470 		req.min_stat_ctx = cpu_to_le16(vf_stat_ctx);
471 		req.min_hw_ring_grps = cpu_to_le16(vf_ring_grps);
472 	}
473 	req.max_cmpl_rings = cpu_to_le16(vf_cp_rings);
474 	req.max_tx_rings = cpu_to_le16(vf_tx_rings);
475 	req.max_rx_rings = cpu_to_le16(vf_rx_rings);
476 	req.max_l2_ctxs = cpu_to_le16(4);
477 	req.max_vnics = cpu_to_le16(vf_vnics);
478 	req.max_stat_ctx = cpu_to_le16(vf_stat_ctx);
479 	req.max_hw_ring_grps = cpu_to_le16(vf_ring_grps);
480 
481 	mutex_lock(&bp->hwrm_cmd_lock);
482 	for (i = 0; i < num_vfs; i++) {
483 		req.vf_id = cpu_to_le16(pf->first_vf_id + i);
484 		rc = _hwrm_send_message(bp, &req, sizeof(req),
485 					HWRM_CMD_TIMEOUT);
486 		if (rc) {
487 			rc = -ENOMEM;
488 			break;
489 		}
490 		pf->active_vfs = i + 1;
491 		pf->vf[i].fw_fid = pf->first_vf_id + i;
492 	}
493 	mutex_unlock(&bp->hwrm_cmd_lock);
494 	if (pf->active_vfs) {
495 		u16 n = 1;
496 
497 		if (pf->vf_resv_strategy != BNXT_VF_RESV_STRATEGY_MINIMAL)
498 			n = pf->active_vfs;
499 
500 		hw_resc->max_tx_rings -= vf_tx_rings * n;
501 		hw_resc->max_rx_rings -= vf_rx_rings * n;
502 		hw_resc->max_hw_ring_grps -= vf_ring_grps * n;
503 		hw_resc->max_cp_rings -= vf_cp_rings * n;
504 		hw_resc->max_rsscos_ctxs -= pf->active_vfs;
505 		hw_resc->max_stat_ctxs -= vf_stat_ctx * n;
506 		hw_resc->max_vnics -= vf_vnics * n;
507 
508 		rc = pf->active_vfs;
509 	}
510 	return rc;
511 }
512 
513 /* Only called by PF to reserve resources for VFs, returns actual number of
514  * VFs configured, or < 0 on error.
515  */
516 static int bnxt_hwrm_func_cfg(struct bnxt *bp, int num_vfs)
517 {
518 	u32 rc = 0, mtu, i;
519 	u16 vf_tx_rings, vf_rx_rings, vf_cp_rings, vf_stat_ctx, vf_vnics;
520 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
521 	u16 vf_ring_grps, max_stat_ctxs;
522 	struct hwrm_func_cfg_input req = {0};
523 	struct bnxt_pf_info *pf = &bp->pf;
524 	int total_vf_tx_rings = 0;
525 
526 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
527 
528 	max_stat_ctxs = hw_resc->max_stat_ctxs;
529 
530 	/* Remaining rings are distributed equally amongs VF's for now */
531 	vf_cp_rings = (hw_resc->max_cp_rings - bp->cp_nr_rings) / num_vfs;
532 	vf_stat_ctx = (max_stat_ctxs - bp->num_stat_ctxs) / num_vfs;
533 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
534 		vf_rx_rings = (hw_resc->max_rx_rings - bp->rx_nr_rings * 2) /
535 			      num_vfs;
536 	else
537 		vf_rx_rings = (hw_resc->max_rx_rings - bp->rx_nr_rings) /
538 			      num_vfs;
539 	vf_ring_grps = (hw_resc->max_hw_ring_grps - bp->rx_nr_rings) / num_vfs;
540 	vf_tx_rings = (hw_resc->max_tx_rings - bp->tx_nr_rings) / num_vfs;
541 	vf_vnics = (hw_resc->max_vnics - bp->nr_vnics) / num_vfs;
542 	vf_vnics = min_t(u16, vf_vnics, vf_rx_rings);
543 
544 	req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_MTU |
545 				  FUNC_CFG_REQ_ENABLES_MRU |
546 				  FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS |
547 				  FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS |
548 				  FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS |
549 				  FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS |
550 				  FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS |
551 				  FUNC_CFG_REQ_ENABLES_NUM_L2_CTXS |
552 				  FUNC_CFG_REQ_ENABLES_NUM_VNICS |
553 				  FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS);
554 
555 	mtu = bp->dev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
556 	req.mru = cpu_to_le16(mtu);
557 	req.mtu = cpu_to_le16(mtu);
558 
559 	req.num_rsscos_ctxs = cpu_to_le16(1);
560 	req.num_cmpl_rings = cpu_to_le16(vf_cp_rings);
561 	req.num_tx_rings = cpu_to_le16(vf_tx_rings);
562 	req.num_rx_rings = cpu_to_le16(vf_rx_rings);
563 	req.num_hw_ring_grps = cpu_to_le16(vf_ring_grps);
564 	req.num_l2_ctxs = cpu_to_le16(4);
565 
566 	req.num_vnics = cpu_to_le16(vf_vnics);
567 	/* FIXME spec currently uses 1 bit for stats ctx */
568 	req.num_stat_ctxs = cpu_to_le16(vf_stat_ctx);
569 
570 	mutex_lock(&bp->hwrm_cmd_lock);
571 	for (i = 0; i < num_vfs; i++) {
572 		int vf_tx_rsvd = vf_tx_rings;
573 
574 		req.fid = cpu_to_le16(pf->first_vf_id + i);
575 		rc = _hwrm_send_message(bp, &req, sizeof(req),
576 					HWRM_CMD_TIMEOUT);
577 		if (rc)
578 			break;
579 		pf->active_vfs = i + 1;
580 		pf->vf[i].fw_fid = le16_to_cpu(req.fid);
581 		rc = __bnxt_hwrm_get_tx_rings(bp, pf->vf[i].fw_fid,
582 					      &vf_tx_rsvd);
583 		if (rc)
584 			break;
585 		total_vf_tx_rings += vf_tx_rsvd;
586 	}
587 	mutex_unlock(&bp->hwrm_cmd_lock);
588 	if (rc)
589 		rc = -ENOMEM;
590 	if (pf->active_vfs) {
591 		hw_resc->max_tx_rings -= total_vf_tx_rings;
592 		hw_resc->max_rx_rings -= vf_rx_rings * num_vfs;
593 		hw_resc->max_hw_ring_grps -= vf_ring_grps * num_vfs;
594 		hw_resc->max_cp_rings -= vf_cp_rings * num_vfs;
595 		hw_resc->max_rsscos_ctxs -= num_vfs;
596 		hw_resc->max_stat_ctxs -= vf_stat_ctx * num_vfs;
597 		hw_resc->max_vnics -= vf_vnics * num_vfs;
598 		rc = pf->active_vfs;
599 	}
600 	return rc;
601 }
602 
603 static int bnxt_func_cfg(struct bnxt *bp, int num_vfs)
604 {
605 	if (bp->flags & BNXT_FLAG_NEW_RM)
606 		return bnxt_hwrm_func_vf_resc_cfg(bp, num_vfs);
607 	else
608 		return bnxt_hwrm_func_cfg(bp, num_vfs);
609 }
610 
611 static int bnxt_sriov_enable(struct bnxt *bp, int *num_vfs)
612 {
613 	int rc = 0, vfs_supported;
614 	int min_rx_rings, min_tx_rings, min_rss_ctxs;
615 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
616 	int tx_ok = 0, rx_ok = 0, rss_ok = 0;
617 	int avail_cp, avail_stat;
618 
619 	/* Check if we can enable requested num of vf's. At a mininum
620 	 * we require 1 RX 1 TX rings for each VF. In this minimum conf
621 	 * features like TPA will not be available.
622 	 */
623 	vfs_supported = *num_vfs;
624 
625 	avail_cp = hw_resc->max_cp_rings - bp->cp_nr_rings;
626 	avail_stat = hw_resc->max_stat_ctxs - bp->num_stat_ctxs;
627 	avail_cp = min_t(int, avail_cp, avail_stat);
628 
629 	while (vfs_supported) {
630 		min_rx_rings = vfs_supported;
631 		min_tx_rings = vfs_supported;
632 		min_rss_ctxs = vfs_supported;
633 
634 		if (bp->flags & BNXT_FLAG_AGG_RINGS) {
635 			if (hw_resc->max_rx_rings - bp->rx_nr_rings * 2 >=
636 			    min_rx_rings)
637 				rx_ok = 1;
638 		} else {
639 			if (hw_resc->max_rx_rings - bp->rx_nr_rings >=
640 			    min_rx_rings)
641 				rx_ok = 1;
642 		}
643 		if (hw_resc->max_vnics - bp->nr_vnics < min_rx_rings ||
644 		    avail_cp < min_rx_rings)
645 			rx_ok = 0;
646 
647 		if (hw_resc->max_tx_rings - bp->tx_nr_rings >= min_tx_rings &&
648 		    avail_cp >= min_tx_rings)
649 			tx_ok = 1;
650 
651 		if (hw_resc->max_rsscos_ctxs - bp->rsscos_nr_ctxs >=
652 		    min_rss_ctxs)
653 			rss_ok = 1;
654 
655 		if (tx_ok && rx_ok && rss_ok)
656 			break;
657 
658 		vfs_supported--;
659 	}
660 
661 	if (!vfs_supported) {
662 		netdev_err(bp->dev, "Cannot enable VF's as all resources are used by PF\n");
663 		return -EINVAL;
664 	}
665 
666 	if (vfs_supported != *num_vfs) {
667 		netdev_info(bp->dev, "Requested VFs %d, can enable %d\n",
668 			    *num_vfs, vfs_supported);
669 		*num_vfs = vfs_supported;
670 	}
671 
672 	rc = bnxt_alloc_vf_resources(bp, *num_vfs);
673 	if (rc)
674 		goto err_out1;
675 
676 	/* Reserve resources for VFs */
677 	rc = bnxt_func_cfg(bp, *num_vfs);
678 	if (rc != *num_vfs) {
679 		if (rc <= 0) {
680 			netdev_warn(bp->dev, "Unable to reserve resources for SRIOV.\n");
681 			*num_vfs = 0;
682 			goto err_out2;
683 		}
684 		netdev_warn(bp->dev, "Only able to reserve resources for %d VFs.\n", rc);
685 		*num_vfs = rc;
686 	}
687 
688 	/* Register buffers for VFs */
689 	rc = bnxt_hwrm_func_buf_rgtr(bp);
690 	if (rc)
691 		goto err_out2;
692 
693 	bnxt_ulp_sriov_cfg(bp, *num_vfs);
694 
695 	rc = pci_enable_sriov(bp->pdev, *num_vfs);
696 	if (rc)
697 		goto err_out2;
698 
699 	return 0;
700 
701 err_out2:
702 	/* Free the resources reserved for various VF's */
703 	bnxt_hwrm_func_vf_resource_free(bp, *num_vfs);
704 
705 err_out1:
706 	bnxt_free_vf_resources(bp);
707 
708 	return rc;
709 }
710 
711 void bnxt_sriov_disable(struct bnxt *bp)
712 {
713 	u16 num_vfs = pci_num_vf(bp->pdev);
714 
715 	if (!num_vfs)
716 		return;
717 
718 	/* synchronize VF and VF-rep create and destroy */
719 	mutex_lock(&bp->sriov_lock);
720 	bnxt_vf_reps_destroy(bp);
721 
722 	if (pci_vfs_assigned(bp->pdev)) {
723 		bnxt_hwrm_fwd_async_event_cmpl(
724 			bp, NULL, ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD);
725 		netdev_warn(bp->dev, "Unable to free %d VFs because some are assigned to VMs.\n",
726 			    num_vfs);
727 	} else {
728 		pci_disable_sriov(bp->pdev);
729 		/* Free the HW resources reserved for various VF's */
730 		bnxt_hwrm_func_vf_resource_free(bp, num_vfs);
731 	}
732 	mutex_unlock(&bp->sriov_lock);
733 
734 	bnxt_free_vf_resources(bp);
735 
736 	bp->pf.active_vfs = 0;
737 	/* Reclaim all resources for the PF. */
738 	rtnl_lock();
739 	bnxt_restore_pf_fw_resources(bp);
740 	rtnl_unlock();
741 
742 	bnxt_ulp_sriov_cfg(bp, 0);
743 }
744 
745 int bnxt_sriov_configure(struct pci_dev *pdev, int num_vfs)
746 {
747 	struct net_device *dev = pci_get_drvdata(pdev);
748 	struct bnxt *bp = netdev_priv(dev);
749 
750 	if (!(bp->flags & BNXT_FLAG_USING_MSIX)) {
751 		netdev_warn(dev, "Not allow SRIOV if the irq mode is not MSIX\n");
752 		return 0;
753 	}
754 
755 	rtnl_lock();
756 	if (!netif_running(dev)) {
757 		netdev_warn(dev, "Reject SRIOV config request since if is down!\n");
758 		rtnl_unlock();
759 		return 0;
760 	}
761 	bp->sriov_cfg = true;
762 	rtnl_unlock();
763 
764 	if (pci_vfs_assigned(bp->pdev)) {
765 		netdev_warn(dev, "Unable to configure SRIOV since some VFs are assigned to VMs.\n");
766 		num_vfs = 0;
767 		goto sriov_cfg_exit;
768 	}
769 
770 	/* Check if enabled VFs is same as requested */
771 	if (num_vfs && num_vfs == bp->pf.active_vfs)
772 		goto sriov_cfg_exit;
773 
774 	/* if there are previous existing VFs, clean them up */
775 	bnxt_sriov_disable(bp);
776 	if (!num_vfs)
777 		goto sriov_cfg_exit;
778 
779 	bnxt_sriov_enable(bp, &num_vfs);
780 
781 sriov_cfg_exit:
782 	bp->sriov_cfg = false;
783 	wake_up(&bp->sriov_cfg_wait);
784 
785 	return num_vfs;
786 }
787 
788 static int bnxt_hwrm_fwd_resp(struct bnxt *bp, struct bnxt_vf_info *vf,
789 			      void *encap_resp, __le64 encap_resp_addr,
790 			      __le16 encap_resp_cpr, u32 msg_size)
791 {
792 	int rc = 0;
793 	struct hwrm_fwd_resp_input req = {0};
794 	struct hwrm_fwd_resp_output *resp = bp->hwrm_cmd_resp_addr;
795 
796 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FWD_RESP, -1, -1);
797 
798 	/* Set the new target id */
799 	req.target_id = cpu_to_le16(vf->fw_fid);
800 	req.encap_resp_target_id = cpu_to_le16(vf->fw_fid);
801 	req.encap_resp_len = cpu_to_le16(msg_size);
802 	req.encap_resp_addr = encap_resp_addr;
803 	req.encap_resp_cmpl_ring = encap_resp_cpr;
804 	memcpy(req.encap_resp, encap_resp, msg_size);
805 
806 	mutex_lock(&bp->hwrm_cmd_lock);
807 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
808 
809 	if (rc) {
810 		netdev_err(bp->dev, "hwrm_fwd_resp failed. rc:%d\n", rc);
811 		goto fwd_resp_exit;
812 	}
813 
814 	if (resp->error_code) {
815 		netdev_err(bp->dev, "hwrm_fwd_resp error %d\n",
816 			   resp->error_code);
817 		rc = -1;
818 	}
819 
820 fwd_resp_exit:
821 	mutex_unlock(&bp->hwrm_cmd_lock);
822 	return rc;
823 }
824 
825 static int bnxt_hwrm_fwd_err_resp(struct bnxt *bp, struct bnxt_vf_info *vf,
826 				  u32 msg_size)
827 {
828 	int rc = 0;
829 	struct hwrm_reject_fwd_resp_input req = {0};
830 	struct hwrm_reject_fwd_resp_output *resp = bp->hwrm_cmd_resp_addr;
831 
832 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_REJECT_FWD_RESP, -1, -1);
833 	/* Set the new target id */
834 	req.target_id = cpu_to_le16(vf->fw_fid);
835 	req.encap_resp_target_id = cpu_to_le16(vf->fw_fid);
836 	memcpy(req.encap_request, vf->hwrm_cmd_req_addr, msg_size);
837 
838 	mutex_lock(&bp->hwrm_cmd_lock);
839 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
840 
841 	if (rc) {
842 		netdev_err(bp->dev, "hwrm_fwd_err_resp failed. rc:%d\n", rc);
843 		goto fwd_err_resp_exit;
844 	}
845 
846 	if (resp->error_code) {
847 		netdev_err(bp->dev, "hwrm_fwd_err_resp error %d\n",
848 			   resp->error_code);
849 		rc = -1;
850 	}
851 
852 fwd_err_resp_exit:
853 	mutex_unlock(&bp->hwrm_cmd_lock);
854 	return rc;
855 }
856 
857 static int bnxt_hwrm_exec_fwd_resp(struct bnxt *bp, struct bnxt_vf_info *vf,
858 				   u32 msg_size)
859 {
860 	int rc = 0;
861 	struct hwrm_exec_fwd_resp_input req = {0};
862 	struct hwrm_exec_fwd_resp_output *resp = bp->hwrm_cmd_resp_addr;
863 
864 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_EXEC_FWD_RESP, -1, -1);
865 	/* Set the new target id */
866 	req.target_id = cpu_to_le16(vf->fw_fid);
867 	req.encap_resp_target_id = cpu_to_le16(vf->fw_fid);
868 	memcpy(req.encap_request, vf->hwrm_cmd_req_addr, msg_size);
869 
870 	mutex_lock(&bp->hwrm_cmd_lock);
871 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
872 
873 	if (rc) {
874 		netdev_err(bp->dev, "hwrm_exec_fw_resp failed. rc:%d\n", rc);
875 		goto exec_fwd_resp_exit;
876 	}
877 
878 	if (resp->error_code) {
879 		netdev_err(bp->dev, "hwrm_exec_fw_resp error %d\n",
880 			   resp->error_code);
881 		rc = -1;
882 	}
883 
884 exec_fwd_resp_exit:
885 	mutex_unlock(&bp->hwrm_cmd_lock);
886 	return rc;
887 }
888 
889 static int bnxt_vf_store_mac(struct bnxt *bp, struct bnxt_vf_info *vf)
890 {
891 	u32 msg_size = sizeof(struct hwrm_func_vf_cfg_input);
892 	struct hwrm_func_vf_cfg_input *req =
893 		(struct hwrm_func_vf_cfg_input *)vf->hwrm_cmd_req_addr;
894 
895 	/* Only allow VF to set a valid MAC address if the PF assigned MAC
896 	 * address is zero
897 	 */
898 	if (req->enables & cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_DFLT_MAC_ADDR)) {
899 		if (is_valid_ether_addr(req->dflt_mac_addr) &&
900 		    !is_valid_ether_addr(vf->mac_addr)) {
901 			ether_addr_copy(vf->vf_mac_addr, req->dflt_mac_addr);
902 			return bnxt_hwrm_exec_fwd_resp(bp, vf, msg_size);
903 		}
904 		return bnxt_hwrm_fwd_err_resp(bp, vf, msg_size);
905 	}
906 	return bnxt_hwrm_exec_fwd_resp(bp, vf, msg_size);
907 }
908 
909 static int bnxt_vf_validate_set_mac(struct bnxt *bp, struct bnxt_vf_info *vf)
910 {
911 	u32 msg_size = sizeof(struct hwrm_cfa_l2_filter_alloc_input);
912 	struct hwrm_cfa_l2_filter_alloc_input *req =
913 		(struct hwrm_cfa_l2_filter_alloc_input *)vf->hwrm_cmd_req_addr;
914 	bool mac_ok = false;
915 
916 	/* VF MAC address must first match PF MAC address, if it is valid.
917 	 * Otherwise, it must match the VF MAC address if firmware spec >=
918 	 * 1.2.2
919 	 */
920 	if (is_valid_ether_addr(vf->mac_addr)) {
921 		if (ether_addr_equal((const u8 *)req->l2_addr, vf->mac_addr))
922 			mac_ok = true;
923 	} else if (is_valid_ether_addr(vf->vf_mac_addr)) {
924 		if (ether_addr_equal((const u8 *)req->l2_addr, vf->vf_mac_addr))
925 			mac_ok = true;
926 	} else if (bp->hwrm_spec_code < 0x10202) {
927 		mac_ok = true;
928 	} else {
929 		mac_ok = true;
930 	}
931 	if (mac_ok)
932 		return bnxt_hwrm_exec_fwd_resp(bp, vf, msg_size);
933 	return bnxt_hwrm_fwd_err_resp(bp, vf, msg_size);
934 }
935 
936 static int bnxt_vf_set_link(struct bnxt *bp, struct bnxt_vf_info *vf)
937 {
938 	int rc = 0;
939 
940 	if (!(vf->flags & BNXT_VF_LINK_FORCED)) {
941 		/* real link */
942 		rc = bnxt_hwrm_exec_fwd_resp(
943 			bp, vf, sizeof(struct hwrm_port_phy_qcfg_input));
944 	} else {
945 		struct hwrm_port_phy_qcfg_output phy_qcfg_resp;
946 		struct hwrm_port_phy_qcfg_input *phy_qcfg_req;
947 
948 		phy_qcfg_req =
949 		(struct hwrm_port_phy_qcfg_input *)vf->hwrm_cmd_req_addr;
950 		mutex_lock(&bp->hwrm_cmd_lock);
951 		memcpy(&phy_qcfg_resp, &bp->link_info.phy_qcfg_resp,
952 		       sizeof(phy_qcfg_resp));
953 		mutex_unlock(&bp->hwrm_cmd_lock);
954 		phy_qcfg_resp.seq_id = phy_qcfg_req->seq_id;
955 
956 		if (vf->flags & BNXT_VF_LINK_UP) {
957 			/* if physical link is down, force link up on VF */
958 			if (phy_qcfg_resp.link !=
959 			    PORT_PHY_QCFG_RESP_LINK_LINK) {
960 				phy_qcfg_resp.link =
961 					PORT_PHY_QCFG_RESP_LINK_LINK;
962 				phy_qcfg_resp.link_speed = cpu_to_le16(
963 					PORT_PHY_QCFG_RESP_LINK_SPEED_10GB);
964 				phy_qcfg_resp.duplex_cfg =
965 					PORT_PHY_QCFG_RESP_DUPLEX_CFG_FULL;
966 				phy_qcfg_resp.duplex_state =
967 					PORT_PHY_QCFG_RESP_DUPLEX_STATE_FULL;
968 				phy_qcfg_resp.pause =
969 					(PORT_PHY_QCFG_RESP_PAUSE_TX |
970 					 PORT_PHY_QCFG_RESP_PAUSE_RX);
971 			}
972 		} else {
973 			/* force link down */
974 			phy_qcfg_resp.link = PORT_PHY_QCFG_RESP_LINK_NO_LINK;
975 			phy_qcfg_resp.link_speed = 0;
976 			phy_qcfg_resp.duplex_state =
977 				PORT_PHY_QCFG_RESP_DUPLEX_STATE_HALF;
978 			phy_qcfg_resp.pause = 0;
979 		}
980 		rc = bnxt_hwrm_fwd_resp(bp, vf, &phy_qcfg_resp,
981 					phy_qcfg_req->resp_addr,
982 					phy_qcfg_req->cmpl_ring,
983 					sizeof(phy_qcfg_resp));
984 	}
985 	return rc;
986 }
987 
988 static int bnxt_vf_req_validate_snd(struct bnxt *bp, struct bnxt_vf_info *vf)
989 {
990 	int rc = 0;
991 	struct input *encap_req = vf->hwrm_cmd_req_addr;
992 	u32 req_type = le16_to_cpu(encap_req->req_type);
993 
994 	switch (req_type) {
995 	case HWRM_FUNC_VF_CFG:
996 		rc = bnxt_vf_store_mac(bp, vf);
997 		break;
998 	case HWRM_CFA_L2_FILTER_ALLOC:
999 		rc = bnxt_vf_validate_set_mac(bp, vf);
1000 		break;
1001 	case HWRM_FUNC_CFG:
1002 		/* TODO Validate if VF is allowed to change mac address,
1003 		 * mtu, num of rings etc
1004 		 */
1005 		rc = bnxt_hwrm_exec_fwd_resp(
1006 			bp, vf, sizeof(struct hwrm_func_cfg_input));
1007 		break;
1008 	case HWRM_PORT_PHY_QCFG:
1009 		rc = bnxt_vf_set_link(bp, vf);
1010 		break;
1011 	default:
1012 		break;
1013 	}
1014 	return rc;
1015 }
1016 
1017 void bnxt_hwrm_exec_fwd_req(struct bnxt *bp)
1018 {
1019 	u32 i = 0, active_vfs = bp->pf.active_vfs, vf_id;
1020 
1021 	/* Scan through VF's and process commands */
1022 	while (1) {
1023 		vf_id = find_next_bit(bp->pf.vf_event_bmap, active_vfs, i);
1024 		if (vf_id >= active_vfs)
1025 			break;
1026 
1027 		clear_bit(vf_id, bp->pf.vf_event_bmap);
1028 		bnxt_vf_req_validate_snd(bp, &bp->pf.vf[vf_id]);
1029 		i = vf_id + 1;
1030 	}
1031 }
1032 
1033 void bnxt_update_vf_mac(struct bnxt *bp)
1034 {
1035 	struct hwrm_func_qcaps_input req = {0};
1036 	struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
1037 
1038 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1);
1039 	req.fid = cpu_to_le16(0xffff);
1040 
1041 	mutex_lock(&bp->hwrm_cmd_lock);
1042 	if (_hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT))
1043 		goto update_vf_mac_exit;
1044 
1045 	/* Store MAC address from the firmware.  There are 2 cases:
1046 	 * 1. MAC address is valid.  It is assigned from the PF and we
1047 	 *    need to override the current VF MAC address with it.
1048 	 * 2. MAC address is zero.  The VF will use a random MAC address by
1049 	 *    default but the stored zero MAC will allow the VF user to change
1050 	 *    the random MAC address using ndo_set_mac_address() if he wants.
1051 	 */
1052 	if (!ether_addr_equal(resp->mac_address, bp->vf.mac_addr))
1053 		memcpy(bp->vf.mac_addr, resp->mac_address, ETH_ALEN);
1054 
1055 	/* overwrite netdev dev_addr with admin VF MAC */
1056 	if (is_valid_ether_addr(bp->vf.mac_addr))
1057 		memcpy(bp->dev->dev_addr, bp->vf.mac_addr, ETH_ALEN);
1058 update_vf_mac_exit:
1059 	mutex_unlock(&bp->hwrm_cmd_lock);
1060 }
1061 
1062 int bnxt_approve_mac(struct bnxt *bp, u8 *mac)
1063 {
1064 	struct hwrm_func_vf_cfg_input req = {0};
1065 	int rc = 0;
1066 
1067 	if (!BNXT_VF(bp))
1068 		return 0;
1069 
1070 	if (bp->hwrm_spec_code < 0x10202) {
1071 		if (is_valid_ether_addr(bp->vf.mac_addr))
1072 			rc = -EADDRNOTAVAIL;
1073 		goto mac_done;
1074 	}
1075 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_CFG, -1, -1);
1076 	req.enables = cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_DFLT_MAC_ADDR);
1077 	memcpy(req.dflt_mac_addr, mac, ETH_ALEN);
1078 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
1079 mac_done:
1080 	if (rc) {
1081 		rc = -EADDRNOTAVAIL;
1082 		netdev_warn(bp->dev, "VF MAC address %pM not approved by the PF\n",
1083 			    mac);
1084 	}
1085 	return rc;
1086 }
1087 #else
1088 
1089 void bnxt_sriov_disable(struct bnxt *bp)
1090 {
1091 }
1092 
1093 void bnxt_hwrm_exec_fwd_req(struct bnxt *bp)
1094 {
1095 	netdev_err(bp->dev, "Invalid VF message received when SRIOV is not enable\n");
1096 }
1097 
1098 void bnxt_update_vf_mac(struct bnxt *bp)
1099 {
1100 }
1101 
1102 int bnxt_approve_mac(struct bnxt *bp, u8 *mac)
1103 {
1104 	return 0;
1105 }
1106 #endif
1107