1 /* Broadcom NetXtreme-C/E network driver. 2 * 3 * Copyright (c) 2014-2016 Broadcom Corporation 4 * Copyright (c) 2016-2018 Broadcom Limited 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation. 9 */ 10 11 #include <linux/module.h> 12 #include <linux/pci.h> 13 #include <linux/netdevice.h> 14 #include <linux/if_vlan.h> 15 #include <linux/interrupt.h> 16 #include <linux/etherdevice.h> 17 #include "bnxt_hsi.h" 18 #include "bnxt.h" 19 #include "bnxt_ulp.h" 20 #include "bnxt_sriov.h" 21 #include "bnxt_vfr.h" 22 #include "bnxt_ethtool.h" 23 24 #ifdef CONFIG_BNXT_SRIOV 25 static int bnxt_hwrm_fwd_async_event_cmpl(struct bnxt *bp, 26 struct bnxt_vf_info *vf, u16 event_id) 27 { 28 struct hwrm_fwd_async_event_cmpl_output *resp = bp->hwrm_cmd_resp_addr; 29 struct hwrm_fwd_async_event_cmpl_input req = {0}; 30 struct hwrm_async_event_cmpl *async_cmpl; 31 int rc = 0; 32 33 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FWD_ASYNC_EVENT_CMPL, -1, -1); 34 if (vf) 35 req.encap_async_event_target_id = cpu_to_le16(vf->fw_fid); 36 else 37 /* broadcast this async event to all VFs */ 38 req.encap_async_event_target_id = cpu_to_le16(0xffff); 39 async_cmpl = (struct hwrm_async_event_cmpl *)req.encap_async_event_cmpl; 40 async_cmpl->type = cpu_to_le16(ASYNC_EVENT_CMPL_TYPE_HWRM_ASYNC_EVENT); 41 async_cmpl->event_id = cpu_to_le16(event_id); 42 43 mutex_lock(&bp->hwrm_cmd_lock); 44 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 45 46 if (rc) { 47 netdev_err(bp->dev, "hwrm_fwd_async_event_cmpl failed. rc:%d\n", 48 rc); 49 goto fwd_async_event_cmpl_exit; 50 } 51 52 if (resp->error_code) { 53 netdev_err(bp->dev, "hwrm_fwd_async_event_cmpl error %d\n", 54 resp->error_code); 55 rc = -1; 56 } 57 58 fwd_async_event_cmpl_exit: 59 mutex_unlock(&bp->hwrm_cmd_lock); 60 return rc; 61 } 62 63 static int bnxt_vf_ndo_prep(struct bnxt *bp, int vf_id) 64 { 65 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 66 netdev_err(bp->dev, "vf ndo called though PF is down\n"); 67 return -EINVAL; 68 } 69 if (!bp->pf.active_vfs) { 70 netdev_err(bp->dev, "vf ndo called though sriov is disabled\n"); 71 return -EINVAL; 72 } 73 if (vf_id >= bp->pf.active_vfs) { 74 netdev_err(bp->dev, "Invalid VF id %d\n", vf_id); 75 return -EINVAL; 76 } 77 return 0; 78 } 79 80 int bnxt_set_vf_spoofchk(struct net_device *dev, int vf_id, bool setting) 81 { 82 struct hwrm_func_cfg_input req = {0}; 83 struct bnxt *bp = netdev_priv(dev); 84 struct bnxt_vf_info *vf; 85 bool old_setting = false; 86 u32 func_flags; 87 int rc; 88 89 if (bp->hwrm_spec_code < 0x10701) 90 return -ENOTSUPP; 91 92 rc = bnxt_vf_ndo_prep(bp, vf_id); 93 if (rc) 94 return rc; 95 96 vf = &bp->pf.vf[vf_id]; 97 if (vf->flags & BNXT_VF_SPOOFCHK) 98 old_setting = true; 99 if (old_setting == setting) 100 return 0; 101 102 func_flags = vf->func_flags; 103 if (setting) 104 func_flags |= FUNC_CFG_REQ_FLAGS_SRC_MAC_ADDR_CHECK_ENABLE; 105 else 106 func_flags |= FUNC_CFG_REQ_FLAGS_SRC_MAC_ADDR_CHECK_DISABLE; 107 /*TODO: if the driver supports VLAN filter on guest VLAN, 108 * the spoof check should also include vlan anti-spoofing 109 */ 110 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1); 111 req.fid = cpu_to_le16(vf->fw_fid); 112 req.flags = cpu_to_le32(func_flags); 113 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 114 if (!rc) { 115 vf->func_flags = func_flags; 116 if (setting) 117 vf->flags |= BNXT_VF_SPOOFCHK; 118 else 119 vf->flags &= ~BNXT_VF_SPOOFCHK; 120 } 121 return rc; 122 } 123 124 int bnxt_set_vf_trust(struct net_device *dev, int vf_id, bool trusted) 125 { 126 struct bnxt *bp = netdev_priv(dev); 127 struct bnxt_vf_info *vf; 128 129 if (bnxt_vf_ndo_prep(bp, vf_id)) 130 return -EINVAL; 131 132 vf = &bp->pf.vf[vf_id]; 133 if (trusted) 134 vf->flags |= BNXT_VF_TRUST; 135 else 136 vf->flags &= ~BNXT_VF_TRUST; 137 138 return 0; 139 } 140 141 int bnxt_get_vf_config(struct net_device *dev, int vf_id, 142 struct ifla_vf_info *ivi) 143 { 144 struct bnxt *bp = netdev_priv(dev); 145 struct bnxt_vf_info *vf; 146 int rc; 147 148 rc = bnxt_vf_ndo_prep(bp, vf_id); 149 if (rc) 150 return rc; 151 152 ivi->vf = vf_id; 153 vf = &bp->pf.vf[vf_id]; 154 155 if (is_valid_ether_addr(vf->mac_addr)) 156 memcpy(&ivi->mac, vf->mac_addr, ETH_ALEN); 157 else 158 memcpy(&ivi->mac, vf->vf_mac_addr, ETH_ALEN); 159 ivi->max_tx_rate = vf->max_tx_rate; 160 ivi->min_tx_rate = vf->min_tx_rate; 161 ivi->vlan = vf->vlan; 162 if (vf->flags & BNXT_VF_QOS) 163 ivi->qos = vf->vlan >> VLAN_PRIO_SHIFT; 164 else 165 ivi->qos = 0; 166 ivi->spoofchk = !!(vf->flags & BNXT_VF_SPOOFCHK); 167 ivi->trusted = !!(vf->flags & BNXT_VF_TRUST); 168 if (!(vf->flags & BNXT_VF_LINK_FORCED)) 169 ivi->linkstate = IFLA_VF_LINK_STATE_AUTO; 170 else if (vf->flags & BNXT_VF_LINK_UP) 171 ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE; 172 else 173 ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE; 174 175 return 0; 176 } 177 178 int bnxt_set_vf_mac(struct net_device *dev, int vf_id, u8 *mac) 179 { 180 struct hwrm_func_cfg_input req = {0}; 181 struct bnxt *bp = netdev_priv(dev); 182 struct bnxt_vf_info *vf; 183 int rc; 184 185 rc = bnxt_vf_ndo_prep(bp, vf_id); 186 if (rc) 187 return rc; 188 /* reject bc or mc mac addr, zero mac addr means allow 189 * VF to use its own mac addr 190 */ 191 if (is_multicast_ether_addr(mac)) { 192 netdev_err(dev, "Invalid VF ethernet address\n"); 193 return -EINVAL; 194 } 195 vf = &bp->pf.vf[vf_id]; 196 197 memcpy(vf->mac_addr, mac, ETH_ALEN); 198 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1); 199 req.fid = cpu_to_le16(vf->fw_fid); 200 req.flags = cpu_to_le32(vf->func_flags); 201 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_MAC_ADDR); 202 memcpy(req.dflt_mac_addr, mac, ETH_ALEN); 203 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 204 } 205 206 int bnxt_set_vf_vlan(struct net_device *dev, int vf_id, u16 vlan_id, u8 qos, 207 __be16 vlan_proto) 208 { 209 struct hwrm_func_cfg_input req = {0}; 210 struct bnxt *bp = netdev_priv(dev); 211 struct bnxt_vf_info *vf; 212 u16 vlan_tag; 213 int rc; 214 215 if (bp->hwrm_spec_code < 0x10201) 216 return -ENOTSUPP; 217 218 if (vlan_proto != htons(ETH_P_8021Q)) 219 return -EPROTONOSUPPORT; 220 221 rc = bnxt_vf_ndo_prep(bp, vf_id); 222 if (rc) 223 return rc; 224 225 /* TODO: needed to implement proper handling of user priority, 226 * currently fail the command if there is valid priority 227 */ 228 if (vlan_id > 4095 || qos) 229 return -EINVAL; 230 231 vf = &bp->pf.vf[vf_id]; 232 vlan_tag = vlan_id; 233 if (vlan_tag == vf->vlan) 234 return 0; 235 236 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1); 237 req.fid = cpu_to_le16(vf->fw_fid); 238 req.flags = cpu_to_le32(vf->func_flags); 239 req.dflt_vlan = cpu_to_le16(vlan_tag); 240 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_VLAN); 241 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 242 if (!rc) 243 vf->vlan = vlan_tag; 244 return rc; 245 } 246 247 int bnxt_set_vf_bw(struct net_device *dev, int vf_id, int min_tx_rate, 248 int max_tx_rate) 249 { 250 struct hwrm_func_cfg_input req = {0}; 251 struct bnxt *bp = netdev_priv(dev); 252 struct bnxt_vf_info *vf; 253 u32 pf_link_speed; 254 int rc; 255 256 rc = bnxt_vf_ndo_prep(bp, vf_id); 257 if (rc) 258 return rc; 259 260 vf = &bp->pf.vf[vf_id]; 261 pf_link_speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed); 262 if (max_tx_rate > pf_link_speed) { 263 netdev_info(bp->dev, "max tx rate %d exceed PF link speed for VF %d\n", 264 max_tx_rate, vf_id); 265 return -EINVAL; 266 } 267 268 if (min_tx_rate > pf_link_speed || min_tx_rate > max_tx_rate) { 269 netdev_info(bp->dev, "min tx rate %d is invalid for VF %d\n", 270 min_tx_rate, vf_id); 271 return -EINVAL; 272 } 273 if (min_tx_rate == vf->min_tx_rate && max_tx_rate == vf->max_tx_rate) 274 return 0; 275 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1); 276 req.fid = cpu_to_le16(vf->fw_fid); 277 req.flags = cpu_to_le32(vf->func_flags); 278 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_MAX_BW); 279 req.max_bw = cpu_to_le32(max_tx_rate); 280 req.enables |= cpu_to_le32(FUNC_CFG_REQ_ENABLES_MIN_BW); 281 req.min_bw = cpu_to_le32(min_tx_rate); 282 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 283 if (!rc) { 284 vf->min_tx_rate = min_tx_rate; 285 vf->max_tx_rate = max_tx_rate; 286 } 287 return rc; 288 } 289 290 int bnxt_set_vf_link_state(struct net_device *dev, int vf_id, int link) 291 { 292 struct bnxt *bp = netdev_priv(dev); 293 struct bnxt_vf_info *vf; 294 int rc; 295 296 rc = bnxt_vf_ndo_prep(bp, vf_id); 297 if (rc) 298 return rc; 299 300 vf = &bp->pf.vf[vf_id]; 301 302 vf->flags &= ~(BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED); 303 switch (link) { 304 case IFLA_VF_LINK_STATE_AUTO: 305 vf->flags |= BNXT_VF_LINK_UP; 306 break; 307 case IFLA_VF_LINK_STATE_DISABLE: 308 vf->flags |= BNXT_VF_LINK_FORCED; 309 break; 310 case IFLA_VF_LINK_STATE_ENABLE: 311 vf->flags |= BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED; 312 break; 313 default: 314 netdev_err(bp->dev, "Invalid link option\n"); 315 rc = -EINVAL; 316 break; 317 } 318 if (vf->flags & (BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED)) 319 rc = bnxt_hwrm_fwd_async_event_cmpl(bp, vf, 320 ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE); 321 return rc; 322 } 323 324 static int bnxt_set_vf_attr(struct bnxt *bp, int num_vfs) 325 { 326 int i; 327 struct bnxt_vf_info *vf; 328 329 for (i = 0; i < num_vfs; i++) { 330 vf = &bp->pf.vf[i]; 331 memset(vf, 0, sizeof(*vf)); 332 } 333 return 0; 334 } 335 336 static int bnxt_hwrm_func_vf_resource_free(struct bnxt *bp, int num_vfs) 337 { 338 int i, rc = 0; 339 struct bnxt_pf_info *pf = &bp->pf; 340 struct hwrm_func_vf_resc_free_input req = {0}; 341 342 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_RESC_FREE, -1, -1); 343 344 mutex_lock(&bp->hwrm_cmd_lock); 345 for (i = pf->first_vf_id; i < pf->first_vf_id + num_vfs; i++) { 346 req.vf_id = cpu_to_le16(i); 347 rc = _hwrm_send_message(bp, &req, sizeof(req), 348 HWRM_CMD_TIMEOUT); 349 if (rc) 350 break; 351 } 352 mutex_unlock(&bp->hwrm_cmd_lock); 353 return rc; 354 } 355 356 static void bnxt_free_vf_resources(struct bnxt *bp) 357 { 358 struct pci_dev *pdev = bp->pdev; 359 int i; 360 361 kfree(bp->pf.vf_event_bmap); 362 bp->pf.vf_event_bmap = NULL; 363 364 for (i = 0; i < 4; i++) { 365 if (bp->pf.hwrm_cmd_req_addr[i]) { 366 dma_free_coherent(&pdev->dev, BNXT_PAGE_SIZE, 367 bp->pf.hwrm_cmd_req_addr[i], 368 bp->pf.hwrm_cmd_req_dma_addr[i]); 369 bp->pf.hwrm_cmd_req_addr[i] = NULL; 370 } 371 } 372 373 kfree(bp->pf.vf); 374 bp->pf.vf = NULL; 375 } 376 377 static int bnxt_alloc_vf_resources(struct bnxt *bp, int num_vfs) 378 { 379 struct pci_dev *pdev = bp->pdev; 380 u32 nr_pages, size, i, j, k = 0; 381 382 bp->pf.vf = kcalloc(num_vfs, sizeof(struct bnxt_vf_info), GFP_KERNEL); 383 if (!bp->pf.vf) 384 return -ENOMEM; 385 386 bnxt_set_vf_attr(bp, num_vfs); 387 388 size = num_vfs * BNXT_HWRM_REQ_MAX_SIZE; 389 nr_pages = size / BNXT_PAGE_SIZE; 390 if (size & (BNXT_PAGE_SIZE - 1)) 391 nr_pages++; 392 393 for (i = 0; i < nr_pages; i++) { 394 bp->pf.hwrm_cmd_req_addr[i] = 395 dma_alloc_coherent(&pdev->dev, BNXT_PAGE_SIZE, 396 &bp->pf.hwrm_cmd_req_dma_addr[i], 397 GFP_KERNEL); 398 399 if (!bp->pf.hwrm_cmd_req_addr[i]) 400 return -ENOMEM; 401 402 for (j = 0; j < BNXT_HWRM_REQS_PER_PAGE && k < num_vfs; j++) { 403 struct bnxt_vf_info *vf = &bp->pf.vf[k]; 404 405 vf->hwrm_cmd_req_addr = bp->pf.hwrm_cmd_req_addr[i] + 406 j * BNXT_HWRM_REQ_MAX_SIZE; 407 vf->hwrm_cmd_req_dma_addr = 408 bp->pf.hwrm_cmd_req_dma_addr[i] + j * 409 BNXT_HWRM_REQ_MAX_SIZE; 410 k++; 411 } 412 } 413 414 /* Max 128 VF's */ 415 bp->pf.vf_event_bmap = kzalloc(16, GFP_KERNEL); 416 if (!bp->pf.vf_event_bmap) 417 return -ENOMEM; 418 419 bp->pf.hwrm_cmd_req_pages = nr_pages; 420 return 0; 421 } 422 423 static int bnxt_hwrm_func_buf_rgtr(struct bnxt *bp) 424 { 425 struct hwrm_func_buf_rgtr_input req = {0}; 426 427 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_BUF_RGTR, -1, -1); 428 429 req.req_buf_num_pages = cpu_to_le16(bp->pf.hwrm_cmd_req_pages); 430 req.req_buf_page_size = cpu_to_le16(BNXT_PAGE_SHIFT); 431 req.req_buf_len = cpu_to_le16(BNXT_HWRM_REQ_MAX_SIZE); 432 req.req_buf_page_addr0 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[0]); 433 req.req_buf_page_addr1 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[1]); 434 req.req_buf_page_addr2 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[2]); 435 req.req_buf_page_addr3 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[3]); 436 437 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 438 } 439 440 /* Only called by PF to reserve resources for VFs, returns actual number of 441 * VFs configured, or < 0 on error. 442 */ 443 static int bnxt_hwrm_func_vf_resc_cfg(struct bnxt *bp, int num_vfs) 444 { 445 struct hwrm_func_vf_resource_cfg_input req = {0}; 446 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 447 u16 vf_tx_rings, vf_rx_rings, vf_cp_rings; 448 u16 vf_stat_ctx, vf_vnics, vf_ring_grps; 449 struct bnxt_pf_info *pf = &bp->pf; 450 int i, rc = 0; 451 452 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_RESOURCE_CFG, -1, -1); 453 454 vf_cp_rings = hw_resc->max_cp_rings - bp->cp_nr_rings; 455 vf_stat_ctx = hw_resc->max_stat_ctxs - bp->num_stat_ctxs; 456 if (bp->flags & BNXT_FLAG_AGG_RINGS) 457 vf_rx_rings = hw_resc->max_rx_rings - bp->rx_nr_rings * 2; 458 else 459 vf_rx_rings = hw_resc->max_rx_rings - bp->rx_nr_rings; 460 vf_ring_grps = hw_resc->max_hw_ring_grps - bp->rx_nr_rings; 461 vf_tx_rings = hw_resc->max_tx_rings - bp->tx_nr_rings; 462 vf_vnics = hw_resc->max_vnics - bp->nr_vnics; 463 vf_vnics = min_t(u16, vf_vnics, vf_rx_rings); 464 465 req.min_rsscos_ctx = cpu_to_le16(1); 466 req.max_rsscos_ctx = cpu_to_le16(1); 467 if (pf->vf_resv_strategy == BNXT_VF_RESV_STRATEGY_MINIMAL) { 468 req.min_cmpl_rings = cpu_to_le16(1); 469 req.min_tx_rings = cpu_to_le16(1); 470 req.min_rx_rings = cpu_to_le16(1); 471 req.min_l2_ctxs = cpu_to_le16(1); 472 req.min_vnics = cpu_to_le16(1); 473 req.min_stat_ctx = cpu_to_le16(1); 474 req.min_hw_ring_grps = cpu_to_le16(1); 475 } else { 476 vf_cp_rings /= num_vfs; 477 vf_tx_rings /= num_vfs; 478 vf_rx_rings /= num_vfs; 479 vf_vnics /= num_vfs; 480 vf_stat_ctx /= num_vfs; 481 vf_ring_grps /= num_vfs; 482 483 req.min_cmpl_rings = cpu_to_le16(vf_cp_rings); 484 req.min_tx_rings = cpu_to_le16(vf_tx_rings); 485 req.min_rx_rings = cpu_to_le16(vf_rx_rings); 486 req.min_l2_ctxs = cpu_to_le16(4); 487 req.min_vnics = cpu_to_le16(vf_vnics); 488 req.min_stat_ctx = cpu_to_le16(vf_stat_ctx); 489 req.min_hw_ring_grps = cpu_to_le16(vf_ring_grps); 490 } 491 req.max_cmpl_rings = cpu_to_le16(vf_cp_rings); 492 req.max_tx_rings = cpu_to_le16(vf_tx_rings); 493 req.max_rx_rings = cpu_to_le16(vf_rx_rings); 494 req.max_l2_ctxs = cpu_to_le16(4); 495 req.max_vnics = cpu_to_le16(vf_vnics); 496 req.max_stat_ctx = cpu_to_le16(vf_stat_ctx); 497 req.max_hw_ring_grps = cpu_to_le16(vf_ring_grps); 498 499 mutex_lock(&bp->hwrm_cmd_lock); 500 for (i = 0; i < num_vfs; i++) { 501 req.vf_id = cpu_to_le16(pf->first_vf_id + i); 502 rc = _hwrm_send_message(bp, &req, sizeof(req), 503 HWRM_CMD_TIMEOUT); 504 if (rc) { 505 rc = -ENOMEM; 506 break; 507 } 508 pf->active_vfs = i + 1; 509 pf->vf[i].fw_fid = pf->first_vf_id + i; 510 } 511 mutex_unlock(&bp->hwrm_cmd_lock); 512 if (pf->active_vfs) { 513 u16 n = pf->active_vfs; 514 515 hw_resc->max_tx_rings -= le16_to_cpu(req.min_tx_rings) * n; 516 hw_resc->max_rx_rings -= le16_to_cpu(req.min_rx_rings) * n; 517 hw_resc->max_hw_ring_grps -= le16_to_cpu(req.min_hw_ring_grps) * 518 n; 519 hw_resc->max_cp_rings -= le16_to_cpu(req.min_cmpl_rings) * n; 520 hw_resc->max_rsscos_ctxs -= pf->active_vfs; 521 hw_resc->max_stat_ctxs -= le16_to_cpu(req.min_stat_ctx) * n; 522 hw_resc->max_vnics -= le16_to_cpu(req.min_vnics) * n; 523 524 rc = pf->active_vfs; 525 } 526 return rc; 527 } 528 529 /* Only called by PF to reserve resources for VFs, returns actual number of 530 * VFs configured, or < 0 on error. 531 */ 532 static int bnxt_hwrm_func_cfg(struct bnxt *bp, int num_vfs) 533 { 534 u32 rc = 0, mtu, i; 535 u16 vf_tx_rings, vf_rx_rings, vf_cp_rings, vf_stat_ctx, vf_vnics; 536 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 537 u16 vf_ring_grps, max_stat_ctxs; 538 struct hwrm_func_cfg_input req = {0}; 539 struct bnxt_pf_info *pf = &bp->pf; 540 int total_vf_tx_rings = 0; 541 542 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1); 543 544 max_stat_ctxs = hw_resc->max_stat_ctxs; 545 546 /* Remaining rings are distributed equally amongs VF's for now */ 547 vf_cp_rings = (hw_resc->max_cp_rings - bp->cp_nr_rings) / num_vfs; 548 vf_stat_ctx = (max_stat_ctxs - bp->num_stat_ctxs) / num_vfs; 549 if (bp->flags & BNXT_FLAG_AGG_RINGS) 550 vf_rx_rings = (hw_resc->max_rx_rings - bp->rx_nr_rings * 2) / 551 num_vfs; 552 else 553 vf_rx_rings = (hw_resc->max_rx_rings - bp->rx_nr_rings) / 554 num_vfs; 555 vf_ring_grps = (hw_resc->max_hw_ring_grps - bp->rx_nr_rings) / num_vfs; 556 vf_tx_rings = (hw_resc->max_tx_rings - bp->tx_nr_rings) / num_vfs; 557 vf_vnics = (hw_resc->max_vnics - bp->nr_vnics) / num_vfs; 558 vf_vnics = min_t(u16, vf_vnics, vf_rx_rings); 559 560 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_MTU | 561 FUNC_CFG_REQ_ENABLES_MRU | 562 FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS | 563 FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS | 564 FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS | 565 FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS | 566 FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS | 567 FUNC_CFG_REQ_ENABLES_NUM_L2_CTXS | 568 FUNC_CFG_REQ_ENABLES_NUM_VNICS | 569 FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS); 570 571 mtu = bp->dev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 572 req.mru = cpu_to_le16(mtu); 573 req.mtu = cpu_to_le16(mtu); 574 575 req.num_rsscos_ctxs = cpu_to_le16(1); 576 req.num_cmpl_rings = cpu_to_le16(vf_cp_rings); 577 req.num_tx_rings = cpu_to_le16(vf_tx_rings); 578 req.num_rx_rings = cpu_to_le16(vf_rx_rings); 579 req.num_hw_ring_grps = cpu_to_le16(vf_ring_grps); 580 req.num_l2_ctxs = cpu_to_le16(4); 581 582 req.num_vnics = cpu_to_le16(vf_vnics); 583 /* FIXME spec currently uses 1 bit for stats ctx */ 584 req.num_stat_ctxs = cpu_to_le16(vf_stat_ctx); 585 586 mutex_lock(&bp->hwrm_cmd_lock); 587 for (i = 0; i < num_vfs; i++) { 588 int vf_tx_rsvd = vf_tx_rings; 589 590 req.fid = cpu_to_le16(pf->first_vf_id + i); 591 rc = _hwrm_send_message(bp, &req, sizeof(req), 592 HWRM_CMD_TIMEOUT); 593 if (rc) 594 break; 595 pf->active_vfs = i + 1; 596 pf->vf[i].fw_fid = le16_to_cpu(req.fid); 597 rc = __bnxt_hwrm_get_tx_rings(bp, pf->vf[i].fw_fid, 598 &vf_tx_rsvd); 599 if (rc) 600 break; 601 total_vf_tx_rings += vf_tx_rsvd; 602 } 603 mutex_unlock(&bp->hwrm_cmd_lock); 604 if (rc) 605 rc = -ENOMEM; 606 if (pf->active_vfs) { 607 hw_resc->max_tx_rings -= total_vf_tx_rings; 608 hw_resc->max_rx_rings -= vf_rx_rings * num_vfs; 609 hw_resc->max_hw_ring_grps -= vf_ring_grps * num_vfs; 610 hw_resc->max_cp_rings -= vf_cp_rings * num_vfs; 611 hw_resc->max_rsscos_ctxs -= num_vfs; 612 hw_resc->max_stat_ctxs -= vf_stat_ctx * num_vfs; 613 hw_resc->max_vnics -= vf_vnics * num_vfs; 614 rc = pf->active_vfs; 615 } 616 return rc; 617 } 618 619 static int bnxt_func_cfg(struct bnxt *bp, int num_vfs) 620 { 621 if (bp->flags & BNXT_FLAG_NEW_RM) 622 return bnxt_hwrm_func_vf_resc_cfg(bp, num_vfs); 623 else 624 return bnxt_hwrm_func_cfg(bp, num_vfs); 625 } 626 627 static int bnxt_sriov_enable(struct bnxt *bp, int *num_vfs) 628 { 629 int rc = 0, vfs_supported; 630 int min_rx_rings, min_tx_rings, min_rss_ctxs; 631 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 632 int tx_ok = 0, rx_ok = 0, rss_ok = 0; 633 int avail_cp, avail_stat; 634 635 /* Check if we can enable requested num of vf's. At a mininum 636 * we require 1 RX 1 TX rings for each VF. In this minimum conf 637 * features like TPA will not be available. 638 */ 639 vfs_supported = *num_vfs; 640 641 avail_cp = hw_resc->max_cp_rings - bp->cp_nr_rings; 642 avail_stat = hw_resc->max_stat_ctxs - bp->num_stat_ctxs; 643 avail_cp = min_t(int, avail_cp, avail_stat); 644 645 while (vfs_supported) { 646 min_rx_rings = vfs_supported; 647 min_tx_rings = vfs_supported; 648 min_rss_ctxs = vfs_supported; 649 650 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 651 if (hw_resc->max_rx_rings - bp->rx_nr_rings * 2 >= 652 min_rx_rings) 653 rx_ok = 1; 654 } else { 655 if (hw_resc->max_rx_rings - bp->rx_nr_rings >= 656 min_rx_rings) 657 rx_ok = 1; 658 } 659 if (hw_resc->max_vnics - bp->nr_vnics < min_rx_rings || 660 avail_cp < min_rx_rings) 661 rx_ok = 0; 662 663 if (hw_resc->max_tx_rings - bp->tx_nr_rings >= min_tx_rings && 664 avail_cp >= min_tx_rings) 665 tx_ok = 1; 666 667 if (hw_resc->max_rsscos_ctxs - bp->rsscos_nr_ctxs >= 668 min_rss_ctxs) 669 rss_ok = 1; 670 671 if (tx_ok && rx_ok && rss_ok) 672 break; 673 674 vfs_supported--; 675 } 676 677 if (!vfs_supported) { 678 netdev_err(bp->dev, "Cannot enable VF's as all resources are used by PF\n"); 679 return -EINVAL; 680 } 681 682 if (vfs_supported != *num_vfs) { 683 netdev_info(bp->dev, "Requested VFs %d, can enable %d\n", 684 *num_vfs, vfs_supported); 685 *num_vfs = vfs_supported; 686 } 687 688 rc = bnxt_alloc_vf_resources(bp, *num_vfs); 689 if (rc) 690 goto err_out1; 691 692 /* Reserve resources for VFs */ 693 rc = bnxt_func_cfg(bp, *num_vfs); 694 if (rc != *num_vfs) { 695 if (rc <= 0) { 696 netdev_warn(bp->dev, "Unable to reserve resources for SRIOV.\n"); 697 *num_vfs = 0; 698 goto err_out2; 699 } 700 netdev_warn(bp->dev, "Only able to reserve resources for %d VFs.\n", rc); 701 *num_vfs = rc; 702 } 703 704 /* Register buffers for VFs */ 705 rc = bnxt_hwrm_func_buf_rgtr(bp); 706 if (rc) 707 goto err_out2; 708 709 bnxt_ulp_sriov_cfg(bp, *num_vfs); 710 711 rc = pci_enable_sriov(bp->pdev, *num_vfs); 712 if (rc) 713 goto err_out2; 714 715 return 0; 716 717 err_out2: 718 /* Free the resources reserved for various VF's */ 719 bnxt_hwrm_func_vf_resource_free(bp, *num_vfs); 720 721 err_out1: 722 bnxt_free_vf_resources(bp); 723 724 return rc; 725 } 726 727 void bnxt_sriov_disable(struct bnxt *bp) 728 { 729 u16 num_vfs = pci_num_vf(bp->pdev); 730 731 if (!num_vfs) 732 return; 733 734 /* synchronize VF and VF-rep create and destroy */ 735 mutex_lock(&bp->sriov_lock); 736 bnxt_vf_reps_destroy(bp); 737 738 if (pci_vfs_assigned(bp->pdev)) { 739 bnxt_hwrm_fwd_async_event_cmpl( 740 bp, NULL, ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD); 741 netdev_warn(bp->dev, "Unable to free %d VFs because some are assigned to VMs.\n", 742 num_vfs); 743 } else { 744 pci_disable_sriov(bp->pdev); 745 /* Free the HW resources reserved for various VF's */ 746 bnxt_hwrm_func_vf_resource_free(bp, num_vfs); 747 } 748 mutex_unlock(&bp->sriov_lock); 749 750 bnxt_free_vf_resources(bp); 751 752 bp->pf.active_vfs = 0; 753 /* Reclaim all resources for the PF. */ 754 rtnl_lock(); 755 bnxt_restore_pf_fw_resources(bp); 756 rtnl_unlock(); 757 758 bnxt_ulp_sriov_cfg(bp, 0); 759 } 760 761 int bnxt_sriov_configure(struct pci_dev *pdev, int num_vfs) 762 { 763 struct net_device *dev = pci_get_drvdata(pdev); 764 struct bnxt *bp = netdev_priv(dev); 765 766 if (!(bp->flags & BNXT_FLAG_USING_MSIX)) { 767 netdev_warn(dev, "Not allow SRIOV if the irq mode is not MSIX\n"); 768 return 0; 769 } 770 771 rtnl_lock(); 772 if (!netif_running(dev)) { 773 netdev_warn(dev, "Reject SRIOV config request since if is down!\n"); 774 rtnl_unlock(); 775 return 0; 776 } 777 bp->sriov_cfg = true; 778 rtnl_unlock(); 779 780 if (pci_vfs_assigned(bp->pdev)) { 781 netdev_warn(dev, "Unable to configure SRIOV since some VFs are assigned to VMs.\n"); 782 num_vfs = 0; 783 goto sriov_cfg_exit; 784 } 785 786 /* Check if enabled VFs is same as requested */ 787 if (num_vfs && num_vfs == bp->pf.active_vfs) 788 goto sriov_cfg_exit; 789 790 /* if there are previous existing VFs, clean them up */ 791 bnxt_sriov_disable(bp); 792 if (!num_vfs) 793 goto sriov_cfg_exit; 794 795 bnxt_sriov_enable(bp, &num_vfs); 796 797 sriov_cfg_exit: 798 bp->sriov_cfg = false; 799 wake_up(&bp->sriov_cfg_wait); 800 801 return num_vfs; 802 } 803 804 static int bnxt_hwrm_fwd_resp(struct bnxt *bp, struct bnxt_vf_info *vf, 805 void *encap_resp, __le64 encap_resp_addr, 806 __le16 encap_resp_cpr, u32 msg_size) 807 { 808 int rc = 0; 809 struct hwrm_fwd_resp_input req = {0}; 810 struct hwrm_fwd_resp_output *resp = bp->hwrm_cmd_resp_addr; 811 812 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FWD_RESP, -1, -1); 813 814 /* Set the new target id */ 815 req.target_id = cpu_to_le16(vf->fw_fid); 816 req.encap_resp_target_id = cpu_to_le16(vf->fw_fid); 817 req.encap_resp_len = cpu_to_le16(msg_size); 818 req.encap_resp_addr = encap_resp_addr; 819 req.encap_resp_cmpl_ring = encap_resp_cpr; 820 memcpy(req.encap_resp, encap_resp, msg_size); 821 822 mutex_lock(&bp->hwrm_cmd_lock); 823 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 824 825 if (rc) { 826 netdev_err(bp->dev, "hwrm_fwd_resp failed. rc:%d\n", rc); 827 goto fwd_resp_exit; 828 } 829 830 if (resp->error_code) { 831 netdev_err(bp->dev, "hwrm_fwd_resp error %d\n", 832 resp->error_code); 833 rc = -1; 834 } 835 836 fwd_resp_exit: 837 mutex_unlock(&bp->hwrm_cmd_lock); 838 return rc; 839 } 840 841 static int bnxt_hwrm_fwd_err_resp(struct bnxt *bp, struct bnxt_vf_info *vf, 842 u32 msg_size) 843 { 844 int rc = 0; 845 struct hwrm_reject_fwd_resp_input req = {0}; 846 struct hwrm_reject_fwd_resp_output *resp = bp->hwrm_cmd_resp_addr; 847 848 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_REJECT_FWD_RESP, -1, -1); 849 /* Set the new target id */ 850 req.target_id = cpu_to_le16(vf->fw_fid); 851 req.encap_resp_target_id = cpu_to_le16(vf->fw_fid); 852 memcpy(req.encap_request, vf->hwrm_cmd_req_addr, msg_size); 853 854 mutex_lock(&bp->hwrm_cmd_lock); 855 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 856 857 if (rc) { 858 netdev_err(bp->dev, "hwrm_fwd_err_resp failed. rc:%d\n", rc); 859 goto fwd_err_resp_exit; 860 } 861 862 if (resp->error_code) { 863 netdev_err(bp->dev, "hwrm_fwd_err_resp error %d\n", 864 resp->error_code); 865 rc = -1; 866 } 867 868 fwd_err_resp_exit: 869 mutex_unlock(&bp->hwrm_cmd_lock); 870 return rc; 871 } 872 873 static int bnxt_hwrm_exec_fwd_resp(struct bnxt *bp, struct bnxt_vf_info *vf, 874 u32 msg_size) 875 { 876 int rc = 0; 877 struct hwrm_exec_fwd_resp_input req = {0}; 878 struct hwrm_exec_fwd_resp_output *resp = bp->hwrm_cmd_resp_addr; 879 880 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_EXEC_FWD_RESP, -1, -1); 881 /* Set the new target id */ 882 req.target_id = cpu_to_le16(vf->fw_fid); 883 req.encap_resp_target_id = cpu_to_le16(vf->fw_fid); 884 memcpy(req.encap_request, vf->hwrm_cmd_req_addr, msg_size); 885 886 mutex_lock(&bp->hwrm_cmd_lock); 887 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 888 889 if (rc) { 890 netdev_err(bp->dev, "hwrm_exec_fw_resp failed. rc:%d\n", rc); 891 goto exec_fwd_resp_exit; 892 } 893 894 if (resp->error_code) { 895 netdev_err(bp->dev, "hwrm_exec_fw_resp error %d\n", 896 resp->error_code); 897 rc = -1; 898 } 899 900 exec_fwd_resp_exit: 901 mutex_unlock(&bp->hwrm_cmd_lock); 902 return rc; 903 } 904 905 static int bnxt_vf_configure_mac(struct bnxt *bp, struct bnxt_vf_info *vf) 906 { 907 u32 msg_size = sizeof(struct hwrm_func_vf_cfg_input); 908 struct hwrm_func_vf_cfg_input *req = 909 (struct hwrm_func_vf_cfg_input *)vf->hwrm_cmd_req_addr; 910 911 /* Allow VF to set a valid MAC address, if trust is set to on or 912 * if the PF assigned MAC address is zero 913 */ 914 if (req->enables & cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_DFLT_MAC_ADDR)) { 915 if (is_valid_ether_addr(req->dflt_mac_addr) && 916 ((vf->flags & BNXT_VF_TRUST) || 917 (!is_valid_ether_addr(vf->mac_addr)))) { 918 ether_addr_copy(vf->vf_mac_addr, req->dflt_mac_addr); 919 return bnxt_hwrm_exec_fwd_resp(bp, vf, msg_size); 920 } 921 return bnxt_hwrm_fwd_err_resp(bp, vf, msg_size); 922 } 923 return bnxt_hwrm_exec_fwd_resp(bp, vf, msg_size); 924 } 925 926 static int bnxt_vf_validate_set_mac(struct bnxt *bp, struct bnxt_vf_info *vf) 927 { 928 u32 msg_size = sizeof(struct hwrm_cfa_l2_filter_alloc_input); 929 struct hwrm_cfa_l2_filter_alloc_input *req = 930 (struct hwrm_cfa_l2_filter_alloc_input *)vf->hwrm_cmd_req_addr; 931 bool mac_ok = false; 932 933 if (!is_valid_ether_addr((const u8 *)req->l2_addr)) 934 return bnxt_hwrm_fwd_err_resp(bp, vf, msg_size); 935 936 /* Allow VF to set a valid MAC address, if trust is set to on. 937 * Or VF MAC address must first match MAC address in PF's context. 938 * Otherwise, it must match the VF MAC address if firmware spec >= 939 * 1.2.2 940 */ 941 if (vf->flags & BNXT_VF_TRUST) { 942 mac_ok = true; 943 } else if (is_valid_ether_addr(vf->mac_addr)) { 944 if (ether_addr_equal((const u8 *)req->l2_addr, vf->mac_addr)) 945 mac_ok = true; 946 } else if (is_valid_ether_addr(vf->vf_mac_addr)) { 947 if (ether_addr_equal((const u8 *)req->l2_addr, vf->vf_mac_addr)) 948 mac_ok = true; 949 } else if (bp->hwrm_spec_code < 0x10202) { 950 mac_ok = true; 951 } else { 952 mac_ok = true; 953 } 954 if (mac_ok) 955 return bnxt_hwrm_exec_fwd_resp(bp, vf, msg_size); 956 return bnxt_hwrm_fwd_err_resp(bp, vf, msg_size); 957 } 958 959 static int bnxt_vf_set_link(struct bnxt *bp, struct bnxt_vf_info *vf) 960 { 961 int rc = 0; 962 963 if (!(vf->flags & BNXT_VF_LINK_FORCED)) { 964 /* real link */ 965 rc = bnxt_hwrm_exec_fwd_resp( 966 bp, vf, sizeof(struct hwrm_port_phy_qcfg_input)); 967 } else { 968 struct hwrm_port_phy_qcfg_output phy_qcfg_resp; 969 struct hwrm_port_phy_qcfg_input *phy_qcfg_req; 970 971 phy_qcfg_req = 972 (struct hwrm_port_phy_qcfg_input *)vf->hwrm_cmd_req_addr; 973 mutex_lock(&bp->hwrm_cmd_lock); 974 memcpy(&phy_qcfg_resp, &bp->link_info.phy_qcfg_resp, 975 sizeof(phy_qcfg_resp)); 976 mutex_unlock(&bp->hwrm_cmd_lock); 977 phy_qcfg_resp.resp_len = cpu_to_le16(sizeof(phy_qcfg_resp)); 978 phy_qcfg_resp.seq_id = phy_qcfg_req->seq_id; 979 phy_qcfg_resp.valid = 1; 980 981 if (vf->flags & BNXT_VF_LINK_UP) { 982 /* if physical link is down, force link up on VF */ 983 if (phy_qcfg_resp.link != 984 PORT_PHY_QCFG_RESP_LINK_LINK) { 985 phy_qcfg_resp.link = 986 PORT_PHY_QCFG_RESP_LINK_LINK; 987 phy_qcfg_resp.link_speed = cpu_to_le16( 988 PORT_PHY_QCFG_RESP_LINK_SPEED_10GB); 989 phy_qcfg_resp.duplex_cfg = 990 PORT_PHY_QCFG_RESP_DUPLEX_CFG_FULL; 991 phy_qcfg_resp.duplex_state = 992 PORT_PHY_QCFG_RESP_DUPLEX_STATE_FULL; 993 phy_qcfg_resp.pause = 994 (PORT_PHY_QCFG_RESP_PAUSE_TX | 995 PORT_PHY_QCFG_RESP_PAUSE_RX); 996 } 997 } else { 998 /* force link down */ 999 phy_qcfg_resp.link = PORT_PHY_QCFG_RESP_LINK_NO_LINK; 1000 phy_qcfg_resp.link_speed = 0; 1001 phy_qcfg_resp.duplex_state = 1002 PORT_PHY_QCFG_RESP_DUPLEX_STATE_HALF; 1003 phy_qcfg_resp.pause = 0; 1004 } 1005 rc = bnxt_hwrm_fwd_resp(bp, vf, &phy_qcfg_resp, 1006 phy_qcfg_req->resp_addr, 1007 phy_qcfg_req->cmpl_ring, 1008 sizeof(phy_qcfg_resp)); 1009 } 1010 return rc; 1011 } 1012 1013 static int bnxt_vf_req_validate_snd(struct bnxt *bp, struct bnxt_vf_info *vf) 1014 { 1015 int rc = 0; 1016 struct input *encap_req = vf->hwrm_cmd_req_addr; 1017 u32 req_type = le16_to_cpu(encap_req->req_type); 1018 1019 switch (req_type) { 1020 case HWRM_FUNC_VF_CFG: 1021 rc = bnxt_vf_configure_mac(bp, vf); 1022 break; 1023 case HWRM_CFA_L2_FILTER_ALLOC: 1024 rc = bnxt_vf_validate_set_mac(bp, vf); 1025 break; 1026 case HWRM_FUNC_CFG: 1027 /* TODO Validate if VF is allowed to change mac address, 1028 * mtu, num of rings etc 1029 */ 1030 rc = bnxt_hwrm_exec_fwd_resp( 1031 bp, vf, sizeof(struct hwrm_func_cfg_input)); 1032 break; 1033 case HWRM_PORT_PHY_QCFG: 1034 rc = bnxt_vf_set_link(bp, vf); 1035 break; 1036 default: 1037 break; 1038 } 1039 return rc; 1040 } 1041 1042 void bnxt_hwrm_exec_fwd_req(struct bnxt *bp) 1043 { 1044 u32 i = 0, active_vfs = bp->pf.active_vfs, vf_id; 1045 1046 /* Scan through VF's and process commands */ 1047 while (1) { 1048 vf_id = find_next_bit(bp->pf.vf_event_bmap, active_vfs, i); 1049 if (vf_id >= active_vfs) 1050 break; 1051 1052 clear_bit(vf_id, bp->pf.vf_event_bmap); 1053 bnxt_vf_req_validate_snd(bp, &bp->pf.vf[vf_id]); 1054 i = vf_id + 1; 1055 } 1056 } 1057 1058 void bnxt_update_vf_mac(struct bnxt *bp) 1059 { 1060 struct hwrm_func_qcaps_input req = {0}; 1061 struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr; 1062 1063 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1); 1064 req.fid = cpu_to_le16(0xffff); 1065 1066 mutex_lock(&bp->hwrm_cmd_lock); 1067 if (_hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT)) 1068 goto update_vf_mac_exit; 1069 1070 /* Store MAC address from the firmware. There are 2 cases: 1071 * 1. MAC address is valid. It is assigned from the PF and we 1072 * need to override the current VF MAC address with it. 1073 * 2. MAC address is zero. The VF will use a random MAC address by 1074 * default but the stored zero MAC will allow the VF user to change 1075 * the random MAC address using ndo_set_mac_address() if he wants. 1076 */ 1077 if (!ether_addr_equal(resp->mac_address, bp->vf.mac_addr)) 1078 memcpy(bp->vf.mac_addr, resp->mac_address, ETH_ALEN); 1079 1080 /* overwrite netdev dev_addr with admin VF MAC */ 1081 if (is_valid_ether_addr(bp->vf.mac_addr)) 1082 memcpy(bp->dev->dev_addr, bp->vf.mac_addr, ETH_ALEN); 1083 update_vf_mac_exit: 1084 mutex_unlock(&bp->hwrm_cmd_lock); 1085 } 1086 1087 int bnxt_approve_mac(struct bnxt *bp, u8 *mac) 1088 { 1089 struct hwrm_func_vf_cfg_input req = {0}; 1090 int rc = 0; 1091 1092 if (!BNXT_VF(bp)) 1093 return 0; 1094 1095 if (bp->hwrm_spec_code < 0x10202) { 1096 if (is_valid_ether_addr(bp->vf.mac_addr)) 1097 rc = -EADDRNOTAVAIL; 1098 goto mac_done; 1099 } 1100 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_CFG, -1, -1); 1101 req.enables = cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_DFLT_MAC_ADDR); 1102 memcpy(req.dflt_mac_addr, mac, ETH_ALEN); 1103 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 1104 mac_done: 1105 if (rc) { 1106 rc = -EADDRNOTAVAIL; 1107 netdev_warn(bp->dev, "VF MAC address %pM not approved by the PF\n", 1108 mac); 1109 } 1110 return rc; 1111 } 1112 #else 1113 1114 void bnxt_sriov_disable(struct bnxt *bp) 1115 { 1116 } 1117 1118 void bnxt_hwrm_exec_fwd_req(struct bnxt *bp) 1119 { 1120 netdev_err(bp->dev, "Invalid VF message received when SRIOV is not enable\n"); 1121 } 1122 1123 void bnxt_update_vf_mac(struct bnxt *bp) 1124 { 1125 } 1126 1127 int bnxt_approve_mac(struct bnxt *bp, u8 *mac) 1128 { 1129 return 0; 1130 } 1131 #endif 1132