1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2016 Broadcom Corporation
4  * Copyright (c) 2016-2018 Broadcom Limited
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation.
9  */
10 
11 #include <linux/module.h>
12 #include <linux/pci.h>
13 #include <linux/netdevice.h>
14 #include <linux/if_vlan.h>
15 #include <linux/interrupt.h>
16 #include <linux/etherdevice.h>
17 #include "bnxt_hsi.h"
18 #include "bnxt.h"
19 #include "bnxt_ulp.h"
20 #include "bnxt_sriov.h"
21 #include "bnxt_vfr.h"
22 #include "bnxt_ethtool.h"
23 
24 #ifdef CONFIG_BNXT_SRIOV
25 static int bnxt_hwrm_fwd_async_event_cmpl(struct bnxt *bp,
26 					  struct bnxt_vf_info *vf, u16 event_id)
27 {
28 	struct hwrm_fwd_async_event_cmpl_input req = {0};
29 	struct hwrm_async_event_cmpl *async_cmpl;
30 	int rc = 0;
31 
32 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FWD_ASYNC_EVENT_CMPL, -1, -1);
33 	if (vf)
34 		req.encap_async_event_target_id = cpu_to_le16(vf->fw_fid);
35 	else
36 		/* broadcast this async event to all VFs */
37 		req.encap_async_event_target_id = cpu_to_le16(0xffff);
38 	async_cmpl = (struct hwrm_async_event_cmpl *)req.encap_async_event_cmpl;
39 	async_cmpl->type = cpu_to_le16(ASYNC_EVENT_CMPL_TYPE_HWRM_ASYNC_EVENT);
40 	async_cmpl->event_id = cpu_to_le16(event_id);
41 
42 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
43 	if (rc)
44 		netdev_err(bp->dev, "hwrm_fwd_async_event_cmpl failed. rc:%d\n",
45 			   rc);
46 	return rc;
47 }
48 
49 static int bnxt_vf_ndo_prep(struct bnxt *bp, int vf_id)
50 {
51 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
52 		netdev_err(bp->dev, "vf ndo called though PF is down\n");
53 		return -EINVAL;
54 	}
55 	if (!bp->pf.active_vfs) {
56 		netdev_err(bp->dev, "vf ndo called though sriov is disabled\n");
57 		return -EINVAL;
58 	}
59 	if (vf_id >= bp->pf.active_vfs) {
60 		netdev_err(bp->dev, "Invalid VF id %d\n", vf_id);
61 		return -EINVAL;
62 	}
63 	return 0;
64 }
65 
66 int bnxt_set_vf_spoofchk(struct net_device *dev, int vf_id, bool setting)
67 {
68 	struct hwrm_func_cfg_input req = {0};
69 	struct bnxt *bp = netdev_priv(dev);
70 	struct bnxt_vf_info *vf;
71 	bool old_setting = false;
72 	u32 func_flags;
73 	int rc;
74 
75 	if (bp->hwrm_spec_code < 0x10701)
76 		return -ENOTSUPP;
77 
78 	rc = bnxt_vf_ndo_prep(bp, vf_id);
79 	if (rc)
80 		return rc;
81 
82 	vf = &bp->pf.vf[vf_id];
83 	if (vf->flags & BNXT_VF_SPOOFCHK)
84 		old_setting = true;
85 	if (old_setting == setting)
86 		return 0;
87 
88 	if (setting)
89 		func_flags = FUNC_CFG_REQ_FLAGS_SRC_MAC_ADDR_CHECK_ENABLE;
90 	else
91 		func_flags = FUNC_CFG_REQ_FLAGS_SRC_MAC_ADDR_CHECK_DISABLE;
92 	/*TODO: if the driver supports VLAN filter on guest VLAN,
93 	 * the spoof check should also include vlan anti-spoofing
94 	 */
95 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
96 	req.fid = cpu_to_le16(vf->fw_fid);
97 	req.flags = cpu_to_le32(func_flags);
98 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
99 	if (!rc) {
100 		if (setting)
101 			vf->flags |= BNXT_VF_SPOOFCHK;
102 		else
103 			vf->flags &= ~BNXT_VF_SPOOFCHK;
104 	}
105 	return rc;
106 }
107 
108 static int bnxt_hwrm_func_qcfg_flags(struct bnxt *bp, struct bnxt_vf_info *vf)
109 {
110 	struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
111 	struct hwrm_func_qcfg_input req = {0};
112 	int rc;
113 
114 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
115 	req.fid = cpu_to_le16(vf->fw_fid);
116 	mutex_lock(&bp->hwrm_cmd_lock);
117 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
118 	if (rc) {
119 		mutex_unlock(&bp->hwrm_cmd_lock);
120 		return rc;
121 	}
122 	vf->func_qcfg_flags = le16_to_cpu(resp->flags);
123 	mutex_unlock(&bp->hwrm_cmd_lock);
124 	return 0;
125 }
126 
127 static bool bnxt_is_trusted_vf(struct bnxt *bp, struct bnxt_vf_info *vf)
128 {
129 	if (!(bp->fw_cap & BNXT_FW_CAP_TRUSTED_VF))
130 		return !!(vf->flags & BNXT_VF_TRUST);
131 
132 	bnxt_hwrm_func_qcfg_flags(bp, vf);
133 	return !!(vf->func_qcfg_flags & FUNC_QCFG_RESP_FLAGS_TRUSTED_VF);
134 }
135 
136 static int bnxt_hwrm_set_trusted_vf(struct bnxt *bp, struct bnxt_vf_info *vf)
137 {
138 	struct hwrm_func_cfg_input req = {0};
139 
140 	if (!(bp->fw_cap & BNXT_FW_CAP_TRUSTED_VF))
141 		return 0;
142 
143 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
144 	req.fid = cpu_to_le16(vf->fw_fid);
145 	if (vf->flags & BNXT_VF_TRUST)
146 		req.flags = cpu_to_le32(FUNC_CFG_REQ_FLAGS_TRUSTED_VF_ENABLE);
147 	else
148 		req.flags = cpu_to_le32(FUNC_CFG_REQ_FLAGS_TRUSTED_VF_DISABLE);
149 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
150 }
151 
152 int bnxt_set_vf_trust(struct net_device *dev, int vf_id, bool trusted)
153 {
154 	struct bnxt *bp = netdev_priv(dev);
155 	struct bnxt_vf_info *vf;
156 
157 	if (bnxt_vf_ndo_prep(bp, vf_id))
158 		return -EINVAL;
159 
160 	vf = &bp->pf.vf[vf_id];
161 	if (trusted)
162 		vf->flags |= BNXT_VF_TRUST;
163 	else
164 		vf->flags &= ~BNXT_VF_TRUST;
165 
166 	bnxt_hwrm_set_trusted_vf(bp, vf);
167 	return 0;
168 }
169 
170 int bnxt_get_vf_config(struct net_device *dev, int vf_id,
171 		       struct ifla_vf_info *ivi)
172 {
173 	struct bnxt *bp = netdev_priv(dev);
174 	struct bnxt_vf_info *vf;
175 	int rc;
176 
177 	rc = bnxt_vf_ndo_prep(bp, vf_id);
178 	if (rc)
179 		return rc;
180 
181 	ivi->vf = vf_id;
182 	vf = &bp->pf.vf[vf_id];
183 
184 	if (is_valid_ether_addr(vf->mac_addr))
185 		memcpy(&ivi->mac, vf->mac_addr, ETH_ALEN);
186 	else
187 		memcpy(&ivi->mac, vf->vf_mac_addr, ETH_ALEN);
188 	ivi->max_tx_rate = vf->max_tx_rate;
189 	ivi->min_tx_rate = vf->min_tx_rate;
190 	ivi->vlan = vf->vlan;
191 	if (vf->flags & BNXT_VF_QOS)
192 		ivi->qos = vf->vlan >> VLAN_PRIO_SHIFT;
193 	else
194 		ivi->qos = 0;
195 	ivi->spoofchk = !!(vf->flags & BNXT_VF_SPOOFCHK);
196 	ivi->trusted = bnxt_is_trusted_vf(bp, vf);
197 	if (!(vf->flags & BNXT_VF_LINK_FORCED))
198 		ivi->linkstate = IFLA_VF_LINK_STATE_AUTO;
199 	else if (vf->flags & BNXT_VF_LINK_UP)
200 		ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE;
201 	else
202 		ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE;
203 
204 	return 0;
205 }
206 
207 int bnxt_set_vf_mac(struct net_device *dev, int vf_id, u8 *mac)
208 {
209 	struct hwrm_func_cfg_input req = {0};
210 	struct bnxt *bp = netdev_priv(dev);
211 	struct bnxt_vf_info *vf;
212 	int rc;
213 
214 	rc = bnxt_vf_ndo_prep(bp, vf_id);
215 	if (rc)
216 		return rc;
217 	/* reject bc or mc mac addr, zero mac addr means allow
218 	 * VF to use its own mac addr
219 	 */
220 	if (is_multicast_ether_addr(mac)) {
221 		netdev_err(dev, "Invalid VF ethernet address\n");
222 		return -EINVAL;
223 	}
224 	vf = &bp->pf.vf[vf_id];
225 
226 	memcpy(vf->mac_addr, mac, ETH_ALEN);
227 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
228 	req.fid = cpu_to_le16(vf->fw_fid);
229 	req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_MAC_ADDR);
230 	memcpy(req.dflt_mac_addr, mac, ETH_ALEN);
231 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
232 }
233 
234 int bnxt_set_vf_vlan(struct net_device *dev, int vf_id, u16 vlan_id, u8 qos,
235 		     __be16 vlan_proto)
236 {
237 	struct hwrm_func_cfg_input req = {0};
238 	struct bnxt *bp = netdev_priv(dev);
239 	struct bnxt_vf_info *vf;
240 	u16 vlan_tag;
241 	int rc;
242 
243 	if (bp->hwrm_spec_code < 0x10201)
244 		return -ENOTSUPP;
245 
246 	if (vlan_proto != htons(ETH_P_8021Q))
247 		return -EPROTONOSUPPORT;
248 
249 	rc = bnxt_vf_ndo_prep(bp, vf_id);
250 	if (rc)
251 		return rc;
252 
253 	/* TODO: needed to implement proper handling of user priority,
254 	 * currently fail the command if there is valid priority
255 	 */
256 	if (vlan_id > 4095 || qos)
257 		return -EINVAL;
258 
259 	vf = &bp->pf.vf[vf_id];
260 	vlan_tag = vlan_id;
261 	if (vlan_tag == vf->vlan)
262 		return 0;
263 
264 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
265 	req.fid = cpu_to_le16(vf->fw_fid);
266 	req.dflt_vlan = cpu_to_le16(vlan_tag);
267 	req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_VLAN);
268 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
269 	if (!rc)
270 		vf->vlan = vlan_tag;
271 	return rc;
272 }
273 
274 int bnxt_set_vf_bw(struct net_device *dev, int vf_id, int min_tx_rate,
275 		   int max_tx_rate)
276 {
277 	struct hwrm_func_cfg_input req = {0};
278 	struct bnxt *bp = netdev_priv(dev);
279 	struct bnxt_vf_info *vf;
280 	u32 pf_link_speed;
281 	int rc;
282 
283 	rc = bnxt_vf_ndo_prep(bp, vf_id);
284 	if (rc)
285 		return rc;
286 
287 	vf = &bp->pf.vf[vf_id];
288 	pf_link_speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
289 	if (max_tx_rate > pf_link_speed) {
290 		netdev_info(bp->dev, "max tx rate %d exceed PF link speed for VF %d\n",
291 			    max_tx_rate, vf_id);
292 		return -EINVAL;
293 	}
294 
295 	if (min_tx_rate > pf_link_speed || min_tx_rate > max_tx_rate) {
296 		netdev_info(bp->dev, "min tx rate %d is invalid for VF %d\n",
297 			    min_tx_rate, vf_id);
298 		return -EINVAL;
299 	}
300 	if (min_tx_rate == vf->min_tx_rate && max_tx_rate == vf->max_tx_rate)
301 		return 0;
302 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
303 	req.fid = cpu_to_le16(vf->fw_fid);
304 	req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_MAX_BW);
305 	req.max_bw = cpu_to_le32(max_tx_rate);
306 	req.enables |= cpu_to_le32(FUNC_CFG_REQ_ENABLES_MIN_BW);
307 	req.min_bw = cpu_to_le32(min_tx_rate);
308 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
309 	if (!rc) {
310 		vf->min_tx_rate = min_tx_rate;
311 		vf->max_tx_rate = max_tx_rate;
312 	}
313 	return rc;
314 }
315 
316 int bnxt_set_vf_link_state(struct net_device *dev, int vf_id, int link)
317 {
318 	struct bnxt *bp = netdev_priv(dev);
319 	struct bnxt_vf_info *vf;
320 	int rc;
321 
322 	rc = bnxt_vf_ndo_prep(bp, vf_id);
323 	if (rc)
324 		return rc;
325 
326 	vf = &bp->pf.vf[vf_id];
327 
328 	vf->flags &= ~(BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED);
329 	switch (link) {
330 	case IFLA_VF_LINK_STATE_AUTO:
331 		vf->flags |= BNXT_VF_LINK_UP;
332 		break;
333 	case IFLA_VF_LINK_STATE_DISABLE:
334 		vf->flags |= BNXT_VF_LINK_FORCED;
335 		break;
336 	case IFLA_VF_LINK_STATE_ENABLE:
337 		vf->flags |= BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED;
338 		break;
339 	default:
340 		netdev_err(bp->dev, "Invalid link option\n");
341 		rc = -EINVAL;
342 		break;
343 	}
344 	if (vf->flags & (BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED))
345 		rc = bnxt_hwrm_fwd_async_event_cmpl(bp, vf,
346 			ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE);
347 	return rc;
348 }
349 
350 static int bnxt_set_vf_attr(struct bnxt *bp, int num_vfs)
351 {
352 	int i;
353 	struct bnxt_vf_info *vf;
354 
355 	for (i = 0; i < num_vfs; i++) {
356 		vf = &bp->pf.vf[i];
357 		memset(vf, 0, sizeof(*vf));
358 	}
359 	return 0;
360 }
361 
362 static int bnxt_hwrm_func_vf_resource_free(struct bnxt *bp, int num_vfs)
363 {
364 	int i, rc = 0;
365 	struct bnxt_pf_info *pf = &bp->pf;
366 	struct hwrm_func_vf_resc_free_input req = {0};
367 
368 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_RESC_FREE, -1, -1);
369 
370 	mutex_lock(&bp->hwrm_cmd_lock);
371 	for (i = pf->first_vf_id; i < pf->first_vf_id + num_vfs; i++) {
372 		req.vf_id = cpu_to_le16(i);
373 		rc = _hwrm_send_message(bp, &req, sizeof(req),
374 					HWRM_CMD_TIMEOUT);
375 		if (rc)
376 			break;
377 	}
378 	mutex_unlock(&bp->hwrm_cmd_lock);
379 	return rc;
380 }
381 
382 static void bnxt_free_vf_resources(struct bnxt *bp)
383 {
384 	struct pci_dev *pdev = bp->pdev;
385 	int i;
386 
387 	kfree(bp->pf.vf_event_bmap);
388 	bp->pf.vf_event_bmap = NULL;
389 
390 	for (i = 0; i < 4; i++) {
391 		if (bp->pf.hwrm_cmd_req_addr[i]) {
392 			dma_free_coherent(&pdev->dev, BNXT_PAGE_SIZE,
393 					  bp->pf.hwrm_cmd_req_addr[i],
394 					  bp->pf.hwrm_cmd_req_dma_addr[i]);
395 			bp->pf.hwrm_cmd_req_addr[i] = NULL;
396 		}
397 	}
398 
399 	bp->pf.active_vfs = 0;
400 	kfree(bp->pf.vf);
401 	bp->pf.vf = NULL;
402 }
403 
404 static int bnxt_alloc_vf_resources(struct bnxt *bp, int num_vfs)
405 {
406 	struct pci_dev *pdev = bp->pdev;
407 	u32 nr_pages, size, i, j, k = 0;
408 
409 	bp->pf.vf = kcalloc(num_vfs, sizeof(struct bnxt_vf_info), GFP_KERNEL);
410 	if (!bp->pf.vf)
411 		return -ENOMEM;
412 
413 	bnxt_set_vf_attr(bp, num_vfs);
414 
415 	size = num_vfs * BNXT_HWRM_REQ_MAX_SIZE;
416 	nr_pages = size / BNXT_PAGE_SIZE;
417 	if (size & (BNXT_PAGE_SIZE - 1))
418 		nr_pages++;
419 
420 	for (i = 0; i < nr_pages; i++) {
421 		bp->pf.hwrm_cmd_req_addr[i] =
422 			dma_alloc_coherent(&pdev->dev, BNXT_PAGE_SIZE,
423 					   &bp->pf.hwrm_cmd_req_dma_addr[i],
424 					   GFP_KERNEL);
425 
426 		if (!bp->pf.hwrm_cmd_req_addr[i])
427 			return -ENOMEM;
428 
429 		for (j = 0; j < BNXT_HWRM_REQS_PER_PAGE && k < num_vfs; j++) {
430 			struct bnxt_vf_info *vf = &bp->pf.vf[k];
431 
432 			vf->hwrm_cmd_req_addr = bp->pf.hwrm_cmd_req_addr[i] +
433 						j * BNXT_HWRM_REQ_MAX_SIZE;
434 			vf->hwrm_cmd_req_dma_addr =
435 				bp->pf.hwrm_cmd_req_dma_addr[i] + j *
436 				BNXT_HWRM_REQ_MAX_SIZE;
437 			k++;
438 		}
439 	}
440 
441 	/* Max 128 VF's */
442 	bp->pf.vf_event_bmap = kzalloc(16, GFP_KERNEL);
443 	if (!bp->pf.vf_event_bmap)
444 		return -ENOMEM;
445 
446 	bp->pf.hwrm_cmd_req_pages = nr_pages;
447 	return 0;
448 }
449 
450 static int bnxt_hwrm_func_buf_rgtr(struct bnxt *bp)
451 {
452 	struct hwrm_func_buf_rgtr_input req = {0};
453 
454 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_BUF_RGTR, -1, -1);
455 
456 	req.req_buf_num_pages = cpu_to_le16(bp->pf.hwrm_cmd_req_pages);
457 	req.req_buf_page_size = cpu_to_le16(BNXT_PAGE_SHIFT);
458 	req.req_buf_len = cpu_to_le16(BNXT_HWRM_REQ_MAX_SIZE);
459 	req.req_buf_page_addr0 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[0]);
460 	req.req_buf_page_addr1 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[1]);
461 	req.req_buf_page_addr2 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[2]);
462 	req.req_buf_page_addr3 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[3]);
463 
464 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
465 }
466 
467 /* Caller holds bp->hwrm_cmd_lock mutex lock */
468 static void __bnxt_set_vf_params(struct bnxt *bp, int vf_id)
469 {
470 	struct hwrm_func_cfg_input req = {0};
471 	struct bnxt_vf_info *vf;
472 
473 	vf = &bp->pf.vf[vf_id];
474 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
475 	req.fid = cpu_to_le16(vf->fw_fid);
476 
477 	if (is_valid_ether_addr(vf->mac_addr)) {
478 		req.enables |= cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_MAC_ADDR);
479 		memcpy(req.dflt_mac_addr, vf->mac_addr, ETH_ALEN);
480 	}
481 	if (vf->vlan) {
482 		req.enables |= cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_VLAN);
483 		req.dflt_vlan = cpu_to_le16(vf->vlan);
484 	}
485 	if (vf->max_tx_rate) {
486 		req.enables |= cpu_to_le32(FUNC_CFG_REQ_ENABLES_MAX_BW);
487 		req.max_bw = cpu_to_le32(vf->max_tx_rate);
488 #ifdef HAVE_IFLA_TX_RATE
489 		req.enables |= cpu_to_le32(FUNC_CFG_REQ_ENABLES_MIN_BW);
490 		req.min_bw = cpu_to_le32(vf->min_tx_rate);
491 #endif
492 	}
493 	if (vf->flags & BNXT_VF_TRUST)
494 		req.flags |= cpu_to_le32(FUNC_CFG_REQ_FLAGS_TRUSTED_VF_ENABLE);
495 
496 	_hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
497 }
498 
499 /* Only called by PF to reserve resources for VFs, returns actual number of
500  * VFs configured, or < 0 on error.
501  */
502 static int bnxt_hwrm_func_vf_resc_cfg(struct bnxt *bp, int num_vfs, bool reset)
503 {
504 	struct hwrm_func_vf_resource_cfg_input req = {0};
505 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
506 	u16 vf_tx_rings, vf_rx_rings, vf_cp_rings;
507 	u16 vf_stat_ctx, vf_vnics, vf_ring_grps;
508 	struct bnxt_pf_info *pf = &bp->pf;
509 	int i, rc = 0, min = 1;
510 	u16 vf_msix = 0;
511 	u16 vf_rss;
512 
513 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_RESOURCE_CFG, -1, -1);
514 
515 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
516 		vf_msix = hw_resc->max_nqs - bnxt_nq_rings_in_use(bp);
517 		vf_ring_grps = 0;
518 	} else {
519 		vf_ring_grps = hw_resc->max_hw_ring_grps - bp->rx_nr_rings;
520 	}
521 	vf_cp_rings = bnxt_get_avail_cp_rings_for_en(bp);
522 	vf_stat_ctx = bnxt_get_avail_stat_ctxs_for_en(bp);
523 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
524 		vf_rx_rings = hw_resc->max_rx_rings - bp->rx_nr_rings * 2;
525 	else
526 		vf_rx_rings = hw_resc->max_rx_rings - bp->rx_nr_rings;
527 	vf_tx_rings = hw_resc->max_tx_rings - bp->tx_nr_rings;
528 	vf_vnics = hw_resc->max_vnics - bp->nr_vnics;
529 	vf_vnics = min_t(u16, vf_vnics, vf_rx_rings);
530 	vf_rss = hw_resc->max_rsscos_ctxs - bp->rsscos_nr_ctxs;
531 
532 	req.min_rsscos_ctx = cpu_to_le16(BNXT_VF_MIN_RSS_CTX);
533 	if (pf->vf_resv_strategy == BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC) {
534 		min = 0;
535 		req.min_rsscos_ctx = cpu_to_le16(min);
536 	}
537 	if (pf->vf_resv_strategy == BNXT_VF_RESV_STRATEGY_MINIMAL ||
538 	    pf->vf_resv_strategy == BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC) {
539 		req.min_cmpl_rings = cpu_to_le16(min);
540 		req.min_tx_rings = cpu_to_le16(min);
541 		req.min_rx_rings = cpu_to_le16(min);
542 		req.min_l2_ctxs = cpu_to_le16(min);
543 		req.min_vnics = cpu_to_le16(min);
544 		req.min_stat_ctx = cpu_to_le16(min);
545 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
546 			req.min_hw_ring_grps = cpu_to_le16(min);
547 	} else {
548 		vf_cp_rings /= num_vfs;
549 		vf_tx_rings /= num_vfs;
550 		vf_rx_rings /= num_vfs;
551 		vf_vnics /= num_vfs;
552 		vf_stat_ctx /= num_vfs;
553 		vf_ring_grps /= num_vfs;
554 		vf_rss /= num_vfs;
555 
556 		req.min_cmpl_rings = cpu_to_le16(vf_cp_rings);
557 		req.min_tx_rings = cpu_to_le16(vf_tx_rings);
558 		req.min_rx_rings = cpu_to_le16(vf_rx_rings);
559 		req.min_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX);
560 		req.min_vnics = cpu_to_le16(vf_vnics);
561 		req.min_stat_ctx = cpu_to_le16(vf_stat_ctx);
562 		req.min_hw_ring_grps = cpu_to_le16(vf_ring_grps);
563 		req.min_rsscos_ctx = cpu_to_le16(vf_rss);
564 	}
565 	req.max_cmpl_rings = cpu_to_le16(vf_cp_rings);
566 	req.max_tx_rings = cpu_to_le16(vf_tx_rings);
567 	req.max_rx_rings = cpu_to_le16(vf_rx_rings);
568 	req.max_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX);
569 	req.max_vnics = cpu_to_le16(vf_vnics);
570 	req.max_stat_ctx = cpu_to_le16(vf_stat_ctx);
571 	req.max_hw_ring_grps = cpu_to_le16(vf_ring_grps);
572 	req.max_rsscos_ctx = cpu_to_le16(vf_rss);
573 	if (bp->flags & BNXT_FLAG_CHIP_P5)
574 		req.max_msix = cpu_to_le16(vf_msix / num_vfs);
575 
576 	mutex_lock(&bp->hwrm_cmd_lock);
577 	for (i = 0; i < num_vfs; i++) {
578 		if (reset)
579 			__bnxt_set_vf_params(bp, i);
580 
581 		req.vf_id = cpu_to_le16(pf->first_vf_id + i);
582 		rc = _hwrm_send_message(bp, &req, sizeof(req),
583 					HWRM_CMD_TIMEOUT);
584 		if (rc)
585 			break;
586 		pf->active_vfs = i + 1;
587 		pf->vf[i].fw_fid = pf->first_vf_id + i;
588 	}
589 	mutex_unlock(&bp->hwrm_cmd_lock);
590 	if (pf->active_vfs) {
591 		u16 n = pf->active_vfs;
592 
593 		hw_resc->max_tx_rings -= le16_to_cpu(req.min_tx_rings) * n;
594 		hw_resc->max_rx_rings -= le16_to_cpu(req.min_rx_rings) * n;
595 		hw_resc->max_hw_ring_grps -= le16_to_cpu(req.min_hw_ring_grps) *
596 					     n;
597 		hw_resc->max_cp_rings -= le16_to_cpu(req.min_cmpl_rings) * n;
598 		hw_resc->max_rsscos_ctxs -= le16_to_cpu(req.min_rsscos_ctx) * n;
599 		hw_resc->max_stat_ctxs -= le16_to_cpu(req.min_stat_ctx) * n;
600 		hw_resc->max_vnics -= le16_to_cpu(req.min_vnics) * n;
601 		if (bp->flags & BNXT_FLAG_CHIP_P5)
602 			hw_resc->max_irqs -= vf_msix * n;
603 
604 		rc = pf->active_vfs;
605 	}
606 	return rc;
607 }
608 
609 /* Only called by PF to reserve resources for VFs, returns actual number of
610  * VFs configured, or < 0 on error.
611  */
612 static int bnxt_hwrm_func_cfg(struct bnxt *bp, int num_vfs)
613 {
614 	u32 rc = 0, mtu, i;
615 	u16 vf_tx_rings, vf_rx_rings, vf_cp_rings, vf_stat_ctx, vf_vnics;
616 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
617 	struct hwrm_func_cfg_input req = {0};
618 	struct bnxt_pf_info *pf = &bp->pf;
619 	int total_vf_tx_rings = 0;
620 	u16 vf_ring_grps;
621 
622 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
623 
624 	/* Remaining rings are distributed equally amongs VF's for now */
625 	vf_cp_rings = bnxt_get_avail_cp_rings_for_en(bp) / num_vfs;
626 	vf_stat_ctx = bnxt_get_avail_stat_ctxs_for_en(bp) / num_vfs;
627 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
628 		vf_rx_rings = (hw_resc->max_rx_rings - bp->rx_nr_rings * 2) /
629 			      num_vfs;
630 	else
631 		vf_rx_rings = (hw_resc->max_rx_rings - bp->rx_nr_rings) /
632 			      num_vfs;
633 	vf_ring_grps = (hw_resc->max_hw_ring_grps - bp->rx_nr_rings) / num_vfs;
634 	vf_tx_rings = (hw_resc->max_tx_rings - bp->tx_nr_rings) / num_vfs;
635 	vf_vnics = (hw_resc->max_vnics - bp->nr_vnics) / num_vfs;
636 	vf_vnics = min_t(u16, vf_vnics, vf_rx_rings);
637 
638 	req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_MTU |
639 				  FUNC_CFG_REQ_ENABLES_MRU |
640 				  FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS |
641 				  FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS |
642 				  FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS |
643 				  FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS |
644 				  FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS |
645 				  FUNC_CFG_REQ_ENABLES_NUM_L2_CTXS |
646 				  FUNC_CFG_REQ_ENABLES_NUM_VNICS |
647 				  FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS);
648 
649 	mtu = bp->dev->mtu + ETH_HLEN + VLAN_HLEN;
650 	req.mru = cpu_to_le16(mtu);
651 	req.mtu = cpu_to_le16(mtu);
652 
653 	req.num_rsscos_ctxs = cpu_to_le16(1);
654 	req.num_cmpl_rings = cpu_to_le16(vf_cp_rings);
655 	req.num_tx_rings = cpu_to_le16(vf_tx_rings);
656 	req.num_rx_rings = cpu_to_le16(vf_rx_rings);
657 	req.num_hw_ring_grps = cpu_to_le16(vf_ring_grps);
658 	req.num_l2_ctxs = cpu_to_le16(4);
659 
660 	req.num_vnics = cpu_to_le16(vf_vnics);
661 	/* FIXME spec currently uses 1 bit for stats ctx */
662 	req.num_stat_ctxs = cpu_to_le16(vf_stat_ctx);
663 
664 	mutex_lock(&bp->hwrm_cmd_lock);
665 	for (i = 0; i < num_vfs; i++) {
666 		int vf_tx_rsvd = vf_tx_rings;
667 
668 		req.fid = cpu_to_le16(pf->first_vf_id + i);
669 		rc = _hwrm_send_message(bp, &req, sizeof(req),
670 					HWRM_CMD_TIMEOUT);
671 		if (rc)
672 			break;
673 		pf->active_vfs = i + 1;
674 		pf->vf[i].fw_fid = le16_to_cpu(req.fid);
675 		rc = __bnxt_hwrm_get_tx_rings(bp, pf->vf[i].fw_fid,
676 					      &vf_tx_rsvd);
677 		if (rc)
678 			break;
679 		total_vf_tx_rings += vf_tx_rsvd;
680 	}
681 	mutex_unlock(&bp->hwrm_cmd_lock);
682 	if (pf->active_vfs) {
683 		hw_resc->max_tx_rings -= total_vf_tx_rings;
684 		hw_resc->max_rx_rings -= vf_rx_rings * num_vfs;
685 		hw_resc->max_hw_ring_grps -= vf_ring_grps * num_vfs;
686 		hw_resc->max_cp_rings -= vf_cp_rings * num_vfs;
687 		hw_resc->max_rsscos_ctxs -= num_vfs;
688 		hw_resc->max_stat_ctxs -= vf_stat_ctx * num_vfs;
689 		hw_resc->max_vnics -= vf_vnics * num_vfs;
690 		rc = pf->active_vfs;
691 	}
692 	return rc;
693 }
694 
695 static int bnxt_func_cfg(struct bnxt *bp, int num_vfs, bool reset)
696 {
697 	if (BNXT_NEW_RM(bp))
698 		return bnxt_hwrm_func_vf_resc_cfg(bp, num_vfs, reset);
699 	else
700 		return bnxt_hwrm_func_cfg(bp, num_vfs);
701 }
702 
703 int bnxt_cfg_hw_sriov(struct bnxt *bp, int *num_vfs, bool reset)
704 {
705 	int rc;
706 
707 	/* Register buffers for VFs */
708 	rc = bnxt_hwrm_func_buf_rgtr(bp);
709 	if (rc)
710 		return rc;
711 
712 	/* Reserve resources for VFs */
713 	rc = bnxt_func_cfg(bp, *num_vfs, reset);
714 	if (rc != *num_vfs) {
715 		if (rc <= 0) {
716 			netdev_warn(bp->dev, "Unable to reserve resources for SRIOV.\n");
717 			*num_vfs = 0;
718 			return rc;
719 		}
720 		netdev_warn(bp->dev, "Only able to reserve resources for %d VFs.\n",
721 			    rc);
722 		*num_vfs = rc;
723 	}
724 
725 	bnxt_ulp_sriov_cfg(bp, *num_vfs);
726 	return 0;
727 }
728 
729 static int bnxt_sriov_enable(struct bnxt *bp, int *num_vfs)
730 {
731 	int rc = 0, vfs_supported;
732 	int min_rx_rings, min_tx_rings, min_rss_ctxs;
733 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
734 	int tx_ok = 0, rx_ok = 0, rss_ok = 0;
735 	int avail_cp, avail_stat;
736 
737 	/* Check if we can enable requested num of vf's. At a mininum
738 	 * we require 1 RX 1 TX rings for each VF. In this minimum conf
739 	 * features like TPA will not be available.
740 	 */
741 	vfs_supported = *num_vfs;
742 
743 	avail_cp = bnxt_get_avail_cp_rings_for_en(bp);
744 	avail_stat = bnxt_get_avail_stat_ctxs_for_en(bp);
745 	avail_cp = min_t(int, avail_cp, avail_stat);
746 
747 	while (vfs_supported) {
748 		min_rx_rings = vfs_supported;
749 		min_tx_rings = vfs_supported;
750 		min_rss_ctxs = vfs_supported;
751 
752 		if (bp->flags & BNXT_FLAG_AGG_RINGS) {
753 			if (hw_resc->max_rx_rings - bp->rx_nr_rings * 2 >=
754 			    min_rx_rings)
755 				rx_ok = 1;
756 		} else {
757 			if (hw_resc->max_rx_rings - bp->rx_nr_rings >=
758 			    min_rx_rings)
759 				rx_ok = 1;
760 		}
761 		if (hw_resc->max_vnics - bp->nr_vnics < min_rx_rings ||
762 		    avail_cp < min_rx_rings)
763 			rx_ok = 0;
764 
765 		if (hw_resc->max_tx_rings - bp->tx_nr_rings >= min_tx_rings &&
766 		    avail_cp >= min_tx_rings)
767 			tx_ok = 1;
768 
769 		if (hw_resc->max_rsscos_ctxs - bp->rsscos_nr_ctxs >=
770 		    min_rss_ctxs)
771 			rss_ok = 1;
772 
773 		if (tx_ok && rx_ok && rss_ok)
774 			break;
775 
776 		vfs_supported--;
777 	}
778 
779 	if (!vfs_supported) {
780 		netdev_err(bp->dev, "Cannot enable VF's as all resources are used by PF\n");
781 		return -EINVAL;
782 	}
783 
784 	if (vfs_supported != *num_vfs) {
785 		netdev_info(bp->dev, "Requested VFs %d, can enable %d\n",
786 			    *num_vfs, vfs_supported);
787 		*num_vfs = vfs_supported;
788 	}
789 
790 	rc = bnxt_alloc_vf_resources(bp, *num_vfs);
791 	if (rc)
792 		goto err_out1;
793 
794 	rc = bnxt_cfg_hw_sriov(bp, num_vfs, false);
795 	if (rc)
796 		goto err_out2;
797 
798 	rc = pci_enable_sriov(bp->pdev, *num_vfs);
799 	if (rc)
800 		goto err_out2;
801 
802 	return 0;
803 
804 err_out2:
805 	/* Free the resources reserved for various VF's */
806 	bnxt_hwrm_func_vf_resource_free(bp, *num_vfs);
807 
808 err_out1:
809 	bnxt_free_vf_resources(bp);
810 
811 	return rc;
812 }
813 
814 void bnxt_sriov_disable(struct bnxt *bp)
815 {
816 	u16 num_vfs = pci_num_vf(bp->pdev);
817 
818 	if (!num_vfs)
819 		return;
820 
821 	/* synchronize VF and VF-rep create and destroy */
822 	mutex_lock(&bp->sriov_lock);
823 	bnxt_vf_reps_destroy(bp);
824 
825 	if (pci_vfs_assigned(bp->pdev)) {
826 		bnxt_hwrm_fwd_async_event_cmpl(
827 			bp, NULL, ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD);
828 		netdev_warn(bp->dev, "Unable to free %d VFs because some are assigned to VMs.\n",
829 			    num_vfs);
830 	} else {
831 		pci_disable_sriov(bp->pdev);
832 		/* Free the HW resources reserved for various VF's */
833 		bnxt_hwrm_func_vf_resource_free(bp, num_vfs);
834 	}
835 	mutex_unlock(&bp->sriov_lock);
836 
837 	bnxt_free_vf_resources(bp);
838 
839 	/* Reclaim all resources for the PF. */
840 	rtnl_lock();
841 	bnxt_restore_pf_fw_resources(bp);
842 	rtnl_unlock();
843 
844 	bnxt_ulp_sriov_cfg(bp, 0);
845 }
846 
847 int bnxt_sriov_configure(struct pci_dev *pdev, int num_vfs)
848 {
849 	struct net_device *dev = pci_get_drvdata(pdev);
850 	struct bnxt *bp = netdev_priv(dev);
851 
852 	if (!(bp->flags & BNXT_FLAG_USING_MSIX)) {
853 		netdev_warn(dev, "Not allow SRIOV if the irq mode is not MSIX\n");
854 		return 0;
855 	}
856 
857 	rtnl_lock();
858 	if (!netif_running(dev)) {
859 		netdev_warn(dev, "Reject SRIOV config request since if is down!\n");
860 		rtnl_unlock();
861 		return 0;
862 	}
863 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
864 		netdev_warn(dev, "Reject SRIOV config request when FW reset is in progress\n");
865 		rtnl_unlock();
866 		return 0;
867 	}
868 	bp->sriov_cfg = true;
869 	rtnl_unlock();
870 
871 	if (pci_vfs_assigned(bp->pdev)) {
872 		netdev_warn(dev, "Unable to configure SRIOV since some VFs are assigned to VMs.\n");
873 		num_vfs = 0;
874 		goto sriov_cfg_exit;
875 	}
876 
877 	/* Check if enabled VFs is same as requested */
878 	if (num_vfs && num_vfs == bp->pf.active_vfs)
879 		goto sriov_cfg_exit;
880 
881 	/* if there are previous existing VFs, clean them up */
882 	bnxt_sriov_disable(bp);
883 	if (!num_vfs)
884 		goto sriov_cfg_exit;
885 
886 	bnxt_sriov_enable(bp, &num_vfs);
887 
888 sriov_cfg_exit:
889 	bp->sriov_cfg = false;
890 	wake_up(&bp->sriov_cfg_wait);
891 
892 	return num_vfs;
893 }
894 
895 static int bnxt_hwrm_fwd_resp(struct bnxt *bp, struct bnxt_vf_info *vf,
896 			      void *encap_resp, __le64 encap_resp_addr,
897 			      __le16 encap_resp_cpr, u32 msg_size)
898 {
899 	int rc = 0;
900 	struct hwrm_fwd_resp_input req = {0};
901 
902 	if (BNXT_FWD_RESP_SIZE_ERR(msg_size))
903 		return -EINVAL;
904 
905 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FWD_RESP, -1, -1);
906 
907 	/* Set the new target id */
908 	req.target_id = cpu_to_le16(vf->fw_fid);
909 	req.encap_resp_target_id = cpu_to_le16(vf->fw_fid);
910 	req.encap_resp_len = cpu_to_le16(msg_size);
911 	req.encap_resp_addr = encap_resp_addr;
912 	req.encap_resp_cmpl_ring = encap_resp_cpr;
913 	memcpy(req.encap_resp, encap_resp, msg_size);
914 
915 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
916 	if (rc)
917 		netdev_err(bp->dev, "hwrm_fwd_resp failed. rc:%d\n", rc);
918 	return rc;
919 }
920 
921 static int bnxt_hwrm_fwd_err_resp(struct bnxt *bp, struct bnxt_vf_info *vf,
922 				  u32 msg_size)
923 {
924 	int rc = 0;
925 	struct hwrm_reject_fwd_resp_input req = {0};
926 
927 	if (BNXT_REJ_FWD_RESP_SIZE_ERR(msg_size))
928 		return -EINVAL;
929 
930 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_REJECT_FWD_RESP, -1, -1);
931 	/* Set the new target id */
932 	req.target_id = cpu_to_le16(vf->fw_fid);
933 	req.encap_resp_target_id = cpu_to_le16(vf->fw_fid);
934 	memcpy(req.encap_request, vf->hwrm_cmd_req_addr, msg_size);
935 
936 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
937 	if (rc)
938 		netdev_err(bp->dev, "hwrm_fwd_err_resp failed. rc:%d\n", rc);
939 	return rc;
940 }
941 
942 static int bnxt_hwrm_exec_fwd_resp(struct bnxt *bp, struct bnxt_vf_info *vf,
943 				   u32 msg_size)
944 {
945 	int rc = 0;
946 	struct hwrm_exec_fwd_resp_input req = {0};
947 
948 	if (BNXT_EXEC_FWD_RESP_SIZE_ERR(msg_size))
949 		return -EINVAL;
950 
951 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_EXEC_FWD_RESP, -1, -1);
952 	/* Set the new target id */
953 	req.target_id = cpu_to_le16(vf->fw_fid);
954 	req.encap_resp_target_id = cpu_to_le16(vf->fw_fid);
955 	memcpy(req.encap_request, vf->hwrm_cmd_req_addr, msg_size);
956 
957 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
958 	if (rc)
959 		netdev_err(bp->dev, "hwrm_exec_fw_resp failed. rc:%d\n", rc);
960 	return rc;
961 }
962 
963 static int bnxt_vf_configure_mac(struct bnxt *bp, struct bnxt_vf_info *vf)
964 {
965 	u32 msg_size = sizeof(struct hwrm_func_vf_cfg_input);
966 	struct hwrm_func_vf_cfg_input *req =
967 		(struct hwrm_func_vf_cfg_input *)vf->hwrm_cmd_req_addr;
968 
969 	/* Allow VF to set a valid MAC address, if trust is set to on or
970 	 * if the PF assigned MAC address is zero
971 	 */
972 	if (req->enables & cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_DFLT_MAC_ADDR)) {
973 		bool trust = bnxt_is_trusted_vf(bp, vf);
974 
975 		if (is_valid_ether_addr(req->dflt_mac_addr) &&
976 		    (trust || !is_valid_ether_addr(vf->mac_addr) ||
977 		     ether_addr_equal(req->dflt_mac_addr, vf->mac_addr))) {
978 			ether_addr_copy(vf->vf_mac_addr, req->dflt_mac_addr);
979 			return bnxt_hwrm_exec_fwd_resp(bp, vf, msg_size);
980 		}
981 		return bnxt_hwrm_fwd_err_resp(bp, vf, msg_size);
982 	}
983 	return bnxt_hwrm_exec_fwd_resp(bp, vf, msg_size);
984 }
985 
986 static int bnxt_vf_validate_set_mac(struct bnxt *bp, struct bnxt_vf_info *vf)
987 {
988 	u32 msg_size = sizeof(struct hwrm_cfa_l2_filter_alloc_input);
989 	struct hwrm_cfa_l2_filter_alloc_input *req =
990 		(struct hwrm_cfa_l2_filter_alloc_input *)vf->hwrm_cmd_req_addr;
991 	bool mac_ok = false;
992 
993 	if (!is_valid_ether_addr((const u8 *)req->l2_addr))
994 		return bnxt_hwrm_fwd_err_resp(bp, vf, msg_size);
995 
996 	/* Allow VF to set a valid MAC address, if trust is set to on.
997 	 * Or VF MAC address must first match MAC address in PF's context.
998 	 * Otherwise, it must match the VF MAC address if firmware spec >=
999 	 * 1.2.2
1000 	 */
1001 	if (bnxt_is_trusted_vf(bp, vf)) {
1002 		mac_ok = true;
1003 	} else if (is_valid_ether_addr(vf->mac_addr)) {
1004 		if (ether_addr_equal((const u8 *)req->l2_addr, vf->mac_addr))
1005 			mac_ok = true;
1006 	} else if (is_valid_ether_addr(vf->vf_mac_addr)) {
1007 		if (ether_addr_equal((const u8 *)req->l2_addr, vf->vf_mac_addr))
1008 			mac_ok = true;
1009 	} else {
1010 		/* There are two cases:
1011 		 * 1.If firmware spec < 0x10202,VF MAC address is not forwarded
1012 		 *   to the PF and so it doesn't have to match
1013 		 * 2.Allow VF to modify it's own MAC when PF has not assigned a
1014 		 *   valid MAC address and firmware spec >= 0x10202
1015 		 */
1016 		mac_ok = true;
1017 	}
1018 	if (mac_ok)
1019 		return bnxt_hwrm_exec_fwd_resp(bp, vf, msg_size);
1020 	return bnxt_hwrm_fwd_err_resp(bp, vf, msg_size);
1021 }
1022 
1023 static int bnxt_vf_set_link(struct bnxt *bp, struct bnxt_vf_info *vf)
1024 {
1025 	int rc = 0;
1026 
1027 	if (!(vf->flags & BNXT_VF_LINK_FORCED)) {
1028 		/* real link */
1029 		rc = bnxt_hwrm_exec_fwd_resp(
1030 			bp, vf, sizeof(struct hwrm_port_phy_qcfg_input));
1031 	} else {
1032 		struct hwrm_port_phy_qcfg_output_compat phy_qcfg_resp = {0};
1033 		struct hwrm_port_phy_qcfg_input *phy_qcfg_req;
1034 
1035 		phy_qcfg_req =
1036 		(struct hwrm_port_phy_qcfg_input *)vf->hwrm_cmd_req_addr;
1037 		mutex_lock(&bp->hwrm_cmd_lock);
1038 		memcpy(&phy_qcfg_resp, &bp->link_info.phy_qcfg_resp,
1039 		       sizeof(phy_qcfg_resp));
1040 		mutex_unlock(&bp->hwrm_cmd_lock);
1041 		phy_qcfg_resp.resp_len = cpu_to_le16(sizeof(phy_qcfg_resp));
1042 		phy_qcfg_resp.seq_id = phy_qcfg_req->seq_id;
1043 		phy_qcfg_resp.valid = 1;
1044 
1045 		if (vf->flags & BNXT_VF_LINK_UP) {
1046 			/* if physical link is down, force link up on VF */
1047 			if (phy_qcfg_resp.link !=
1048 			    PORT_PHY_QCFG_RESP_LINK_LINK) {
1049 				phy_qcfg_resp.link =
1050 					PORT_PHY_QCFG_RESP_LINK_LINK;
1051 				phy_qcfg_resp.link_speed = cpu_to_le16(
1052 					PORT_PHY_QCFG_RESP_LINK_SPEED_10GB);
1053 				phy_qcfg_resp.duplex_cfg =
1054 					PORT_PHY_QCFG_RESP_DUPLEX_CFG_FULL;
1055 				phy_qcfg_resp.duplex_state =
1056 					PORT_PHY_QCFG_RESP_DUPLEX_STATE_FULL;
1057 				phy_qcfg_resp.pause =
1058 					(PORT_PHY_QCFG_RESP_PAUSE_TX |
1059 					 PORT_PHY_QCFG_RESP_PAUSE_RX);
1060 			}
1061 		} else {
1062 			/* force link down */
1063 			phy_qcfg_resp.link = PORT_PHY_QCFG_RESP_LINK_NO_LINK;
1064 			phy_qcfg_resp.link_speed = 0;
1065 			phy_qcfg_resp.duplex_state =
1066 				PORT_PHY_QCFG_RESP_DUPLEX_STATE_HALF;
1067 			phy_qcfg_resp.pause = 0;
1068 		}
1069 		rc = bnxt_hwrm_fwd_resp(bp, vf, &phy_qcfg_resp,
1070 					phy_qcfg_req->resp_addr,
1071 					phy_qcfg_req->cmpl_ring,
1072 					sizeof(phy_qcfg_resp));
1073 	}
1074 	return rc;
1075 }
1076 
1077 static int bnxt_vf_req_validate_snd(struct bnxt *bp, struct bnxt_vf_info *vf)
1078 {
1079 	int rc = 0;
1080 	struct input *encap_req = vf->hwrm_cmd_req_addr;
1081 	u32 req_type = le16_to_cpu(encap_req->req_type);
1082 
1083 	switch (req_type) {
1084 	case HWRM_FUNC_VF_CFG:
1085 		rc = bnxt_vf_configure_mac(bp, vf);
1086 		break;
1087 	case HWRM_CFA_L2_FILTER_ALLOC:
1088 		rc = bnxt_vf_validate_set_mac(bp, vf);
1089 		break;
1090 	case HWRM_FUNC_CFG:
1091 		/* TODO Validate if VF is allowed to change mac address,
1092 		 * mtu, num of rings etc
1093 		 */
1094 		rc = bnxt_hwrm_exec_fwd_resp(
1095 			bp, vf, sizeof(struct hwrm_func_cfg_input));
1096 		break;
1097 	case HWRM_PORT_PHY_QCFG:
1098 		rc = bnxt_vf_set_link(bp, vf);
1099 		break;
1100 	default:
1101 		break;
1102 	}
1103 	return rc;
1104 }
1105 
1106 void bnxt_hwrm_exec_fwd_req(struct bnxt *bp)
1107 {
1108 	u32 i = 0, active_vfs = bp->pf.active_vfs, vf_id;
1109 
1110 	/* Scan through VF's and process commands */
1111 	while (1) {
1112 		vf_id = find_next_bit(bp->pf.vf_event_bmap, active_vfs, i);
1113 		if (vf_id >= active_vfs)
1114 			break;
1115 
1116 		clear_bit(vf_id, bp->pf.vf_event_bmap);
1117 		bnxt_vf_req_validate_snd(bp, &bp->pf.vf[vf_id]);
1118 		i = vf_id + 1;
1119 	}
1120 }
1121 
1122 void bnxt_update_vf_mac(struct bnxt *bp)
1123 {
1124 	struct hwrm_func_qcaps_input req = {0};
1125 	struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
1126 
1127 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1);
1128 	req.fid = cpu_to_le16(0xffff);
1129 
1130 	mutex_lock(&bp->hwrm_cmd_lock);
1131 	if (_hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT))
1132 		goto update_vf_mac_exit;
1133 
1134 	/* Store MAC address from the firmware.  There are 2 cases:
1135 	 * 1. MAC address is valid.  It is assigned from the PF and we
1136 	 *    need to override the current VF MAC address with it.
1137 	 * 2. MAC address is zero.  The VF will use a random MAC address by
1138 	 *    default but the stored zero MAC will allow the VF user to change
1139 	 *    the random MAC address using ndo_set_mac_address() if he wants.
1140 	 */
1141 	if (!ether_addr_equal(resp->mac_address, bp->vf.mac_addr))
1142 		memcpy(bp->vf.mac_addr, resp->mac_address, ETH_ALEN);
1143 
1144 	/* overwrite netdev dev_addr with admin VF MAC */
1145 	if (is_valid_ether_addr(bp->vf.mac_addr))
1146 		memcpy(bp->dev->dev_addr, bp->vf.mac_addr, ETH_ALEN);
1147 update_vf_mac_exit:
1148 	mutex_unlock(&bp->hwrm_cmd_lock);
1149 }
1150 
1151 int bnxt_approve_mac(struct bnxt *bp, u8 *mac, bool strict)
1152 {
1153 	struct hwrm_func_vf_cfg_input req = {0};
1154 	int rc = 0;
1155 
1156 	if (!BNXT_VF(bp))
1157 		return 0;
1158 
1159 	if (bp->hwrm_spec_code < 0x10202) {
1160 		if (is_valid_ether_addr(bp->vf.mac_addr))
1161 			rc = -EADDRNOTAVAIL;
1162 		goto mac_done;
1163 	}
1164 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_CFG, -1, -1);
1165 	req.enables = cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_DFLT_MAC_ADDR);
1166 	memcpy(req.dflt_mac_addr, mac, ETH_ALEN);
1167 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
1168 mac_done:
1169 	if (rc && strict) {
1170 		rc = -EADDRNOTAVAIL;
1171 		netdev_warn(bp->dev, "VF MAC address %pM not approved by the PF\n",
1172 			    mac);
1173 		return rc;
1174 	}
1175 	return 0;
1176 }
1177 #else
1178 
1179 int bnxt_cfg_hw_sriov(struct bnxt *bp, int *num_vfs, bool reset)
1180 {
1181 	if (*num_vfs)
1182 		return -EOPNOTSUPP;
1183 	return 0;
1184 }
1185 
1186 void bnxt_sriov_disable(struct bnxt *bp)
1187 {
1188 }
1189 
1190 void bnxt_hwrm_exec_fwd_req(struct bnxt *bp)
1191 {
1192 	netdev_err(bp->dev, "Invalid VF message received when SRIOV is not enable\n");
1193 }
1194 
1195 void bnxt_update_vf_mac(struct bnxt *bp)
1196 {
1197 }
1198 
1199 int bnxt_approve_mac(struct bnxt *bp, u8 *mac, bool strict)
1200 {
1201 	return 0;
1202 }
1203 #endif
1204