1 /* Broadcom NetXtreme-C/E network driver. 2 * 3 * Copyright (c) 2014-2016 Broadcom Corporation 4 * Copyright (c) 2016-2018 Broadcom Limited 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation. 9 */ 10 11 #include <linux/module.h> 12 #include <linux/pci.h> 13 #include <linux/netdevice.h> 14 #include <linux/if_vlan.h> 15 #include <linux/interrupt.h> 16 #include <linux/etherdevice.h> 17 #include "bnxt_hsi.h" 18 #include "bnxt.h" 19 #include "bnxt_ulp.h" 20 #include "bnxt_sriov.h" 21 #include "bnxt_vfr.h" 22 #include "bnxt_ethtool.h" 23 24 #ifdef CONFIG_BNXT_SRIOV 25 static int bnxt_hwrm_fwd_async_event_cmpl(struct bnxt *bp, 26 struct bnxt_vf_info *vf, u16 event_id) 27 { 28 struct hwrm_fwd_async_event_cmpl_input req = {0}; 29 struct hwrm_async_event_cmpl *async_cmpl; 30 int rc = 0; 31 32 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FWD_ASYNC_EVENT_CMPL, -1, -1); 33 if (vf) 34 req.encap_async_event_target_id = cpu_to_le16(vf->fw_fid); 35 else 36 /* broadcast this async event to all VFs */ 37 req.encap_async_event_target_id = cpu_to_le16(0xffff); 38 async_cmpl = (struct hwrm_async_event_cmpl *)req.encap_async_event_cmpl; 39 async_cmpl->type = cpu_to_le16(ASYNC_EVENT_CMPL_TYPE_HWRM_ASYNC_EVENT); 40 async_cmpl->event_id = cpu_to_le16(event_id); 41 42 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 43 if (rc) 44 netdev_err(bp->dev, "hwrm_fwd_async_event_cmpl failed. rc:%d\n", 45 rc); 46 return rc; 47 } 48 49 static int bnxt_vf_ndo_prep(struct bnxt *bp, int vf_id) 50 { 51 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 52 netdev_err(bp->dev, "vf ndo called though PF is down\n"); 53 return -EINVAL; 54 } 55 if (!bp->pf.active_vfs) { 56 netdev_err(bp->dev, "vf ndo called though sriov is disabled\n"); 57 return -EINVAL; 58 } 59 if (vf_id >= bp->pf.active_vfs) { 60 netdev_err(bp->dev, "Invalid VF id %d\n", vf_id); 61 return -EINVAL; 62 } 63 return 0; 64 } 65 66 int bnxt_set_vf_spoofchk(struct net_device *dev, int vf_id, bool setting) 67 { 68 struct hwrm_func_cfg_input req = {0}; 69 struct bnxt *bp = netdev_priv(dev); 70 struct bnxt_vf_info *vf; 71 bool old_setting = false; 72 u32 func_flags; 73 int rc; 74 75 if (bp->hwrm_spec_code < 0x10701) 76 return -ENOTSUPP; 77 78 rc = bnxt_vf_ndo_prep(bp, vf_id); 79 if (rc) 80 return rc; 81 82 vf = &bp->pf.vf[vf_id]; 83 if (vf->flags & BNXT_VF_SPOOFCHK) 84 old_setting = true; 85 if (old_setting == setting) 86 return 0; 87 88 if (setting) 89 func_flags = FUNC_CFG_REQ_FLAGS_SRC_MAC_ADDR_CHECK_ENABLE; 90 else 91 func_flags = FUNC_CFG_REQ_FLAGS_SRC_MAC_ADDR_CHECK_DISABLE; 92 /*TODO: if the driver supports VLAN filter on guest VLAN, 93 * the spoof check should also include vlan anti-spoofing 94 */ 95 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1); 96 req.fid = cpu_to_le16(vf->fw_fid); 97 req.flags = cpu_to_le32(func_flags); 98 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 99 if (!rc) { 100 if (setting) 101 vf->flags |= BNXT_VF_SPOOFCHK; 102 else 103 vf->flags &= ~BNXT_VF_SPOOFCHK; 104 } 105 return rc; 106 } 107 108 static int bnxt_hwrm_func_qcfg_flags(struct bnxt *bp, struct bnxt_vf_info *vf) 109 { 110 struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr; 111 struct hwrm_func_qcfg_input req = {0}; 112 int rc; 113 114 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1); 115 req.fid = cpu_to_le16(vf->fw_fid); 116 mutex_lock(&bp->hwrm_cmd_lock); 117 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 118 if (rc) { 119 mutex_unlock(&bp->hwrm_cmd_lock); 120 return rc; 121 } 122 vf->func_qcfg_flags = le16_to_cpu(resp->flags); 123 mutex_unlock(&bp->hwrm_cmd_lock); 124 return 0; 125 } 126 127 static bool bnxt_is_trusted_vf(struct bnxt *bp, struct bnxt_vf_info *vf) 128 { 129 if (!(bp->fw_cap & BNXT_FW_CAP_TRUSTED_VF)) 130 return !!(vf->flags & BNXT_VF_TRUST); 131 132 bnxt_hwrm_func_qcfg_flags(bp, vf); 133 return !!(vf->func_qcfg_flags & FUNC_QCFG_RESP_FLAGS_TRUSTED_VF); 134 } 135 136 static int bnxt_hwrm_set_trusted_vf(struct bnxt *bp, struct bnxt_vf_info *vf) 137 { 138 struct hwrm_func_cfg_input req = {0}; 139 140 if (!(bp->fw_cap & BNXT_FW_CAP_TRUSTED_VF)) 141 return 0; 142 143 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1); 144 req.fid = cpu_to_le16(vf->fw_fid); 145 if (vf->flags & BNXT_VF_TRUST) 146 req.flags = cpu_to_le32(FUNC_CFG_REQ_FLAGS_TRUSTED_VF_ENABLE); 147 else 148 req.flags = cpu_to_le32(FUNC_CFG_REQ_FLAGS_TRUSTED_VF_DISABLE); 149 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 150 } 151 152 int bnxt_set_vf_trust(struct net_device *dev, int vf_id, bool trusted) 153 { 154 struct bnxt *bp = netdev_priv(dev); 155 struct bnxt_vf_info *vf; 156 157 if (bnxt_vf_ndo_prep(bp, vf_id)) 158 return -EINVAL; 159 160 vf = &bp->pf.vf[vf_id]; 161 if (trusted) 162 vf->flags |= BNXT_VF_TRUST; 163 else 164 vf->flags &= ~BNXT_VF_TRUST; 165 166 bnxt_hwrm_set_trusted_vf(bp, vf); 167 return 0; 168 } 169 170 int bnxt_get_vf_config(struct net_device *dev, int vf_id, 171 struct ifla_vf_info *ivi) 172 { 173 struct bnxt *bp = netdev_priv(dev); 174 struct bnxt_vf_info *vf; 175 int rc; 176 177 rc = bnxt_vf_ndo_prep(bp, vf_id); 178 if (rc) 179 return rc; 180 181 ivi->vf = vf_id; 182 vf = &bp->pf.vf[vf_id]; 183 184 if (is_valid_ether_addr(vf->mac_addr)) 185 memcpy(&ivi->mac, vf->mac_addr, ETH_ALEN); 186 else 187 memcpy(&ivi->mac, vf->vf_mac_addr, ETH_ALEN); 188 ivi->max_tx_rate = vf->max_tx_rate; 189 ivi->min_tx_rate = vf->min_tx_rate; 190 ivi->vlan = vf->vlan; 191 if (vf->flags & BNXT_VF_QOS) 192 ivi->qos = vf->vlan >> VLAN_PRIO_SHIFT; 193 else 194 ivi->qos = 0; 195 ivi->spoofchk = !!(vf->flags & BNXT_VF_SPOOFCHK); 196 ivi->trusted = bnxt_is_trusted_vf(bp, vf); 197 if (!(vf->flags & BNXT_VF_LINK_FORCED)) 198 ivi->linkstate = IFLA_VF_LINK_STATE_AUTO; 199 else if (vf->flags & BNXT_VF_LINK_UP) 200 ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE; 201 else 202 ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE; 203 204 return 0; 205 } 206 207 int bnxt_set_vf_mac(struct net_device *dev, int vf_id, u8 *mac) 208 { 209 struct hwrm_func_cfg_input req = {0}; 210 struct bnxt *bp = netdev_priv(dev); 211 struct bnxt_vf_info *vf; 212 int rc; 213 214 rc = bnxt_vf_ndo_prep(bp, vf_id); 215 if (rc) 216 return rc; 217 /* reject bc or mc mac addr, zero mac addr means allow 218 * VF to use its own mac addr 219 */ 220 if (is_multicast_ether_addr(mac)) { 221 netdev_err(dev, "Invalid VF ethernet address\n"); 222 return -EINVAL; 223 } 224 vf = &bp->pf.vf[vf_id]; 225 226 memcpy(vf->mac_addr, mac, ETH_ALEN); 227 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1); 228 req.fid = cpu_to_le16(vf->fw_fid); 229 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_MAC_ADDR); 230 memcpy(req.dflt_mac_addr, mac, ETH_ALEN); 231 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 232 } 233 234 int bnxt_set_vf_vlan(struct net_device *dev, int vf_id, u16 vlan_id, u8 qos, 235 __be16 vlan_proto) 236 { 237 struct hwrm_func_cfg_input req = {0}; 238 struct bnxt *bp = netdev_priv(dev); 239 struct bnxt_vf_info *vf; 240 u16 vlan_tag; 241 int rc; 242 243 if (bp->hwrm_spec_code < 0x10201) 244 return -ENOTSUPP; 245 246 if (vlan_proto != htons(ETH_P_8021Q)) 247 return -EPROTONOSUPPORT; 248 249 rc = bnxt_vf_ndo_prep(bp, vf_id); 250 if (rc) 251 return rc; 252 253 /* TODO: needed to implement proper handling of user priority, 254 * currently fail the command if there is valid priority 255 */ 256 if (vlan_id > 4095 || qos) 257 return -EINVAL; 258 259 vf = &bp->pf.vf[vf_id]; 260 vlan_tag = vlan_id; 261 if (vlan_tag == vf->vlan) 262 return 0; 263 264 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1); 265 req.fid = cpu_to_le16(vf->fw_fid); 266 req.dflt_vlan = cpu_to_le16(vlan_tag); 267 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_VLAN); 268 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 269 if (!rc) 270 vf->vlan = vlan_tag; 271 return rc; 272 } 273 274 int bnxt_set_vf_bw(struct net_device *dev, int vf_id, int min_tx_rate, 275 int max_tx_rate) 276 { 277 struct hwrm_func_cfg_input req = {0}; 278 struct bnxt *bp = netdev_priv(dev); 279 struct bnxt_vf_info *vf; 280 u32 pf_link_speed; 281 int rc; 282 283 rc = bnxt_vf_ndo_prep(bp, vf_id); 284 if (rc) 285 return rc; 286 287 vf = &bp->pf.vf[vf_id]; 288 pf_link_speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed); 289 if (max_tx_rate > pf_link_speed) { 290 netdev_info(bp->dev, "max tx rate %d exceed PF link speed for VF %d\n", 291 max_tx_rate, vf_id); 292 return -EINVAL; 293 } 294 295 if (min_tx_rate > pf_link_speed || min_tx_rate > max_tx_rate) { 296 netdev_info(bp->dev, "min tx rate %d is invalid for VF %d\n", 297 min_tx_rate, vf_id); 298 return -EINVAL; 299 } 300 if (min_tx_rate == vf->min_tx_rate && max_tx_rate == vf->max_tx_rate) 301 return 0; 302 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1); 303 req.fid = cpu_to_le16(vf->fw_fid); 304 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_MAX_BW); 305 req.max_bw = cpu_to_le32(max_tx_rate); 306 req.enables |= cpu_to_le32(FUNC_CFG_REQ_ENABLES_MIN_BW); 307 req.min_bw = cpu_to_le32(min_tx_rate); 308 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 309 if (!rc) { 310 vf->min_tx_rate = min_tx_rate; 311 vf->max_tx_rate = max_tx_rate; 312 } 313 return rc; 314 } 315 316 int bnxt_set_vf_link_state(struct net_device *dev, int vf_id, int link) 317 { 318 struct bnxt *bp = netdev_priv(dev); 319 struct bnxt_vf_info *vf; 320 int rc; 321 322 rc = bnxt_vf_ndo_prep(bp, vf_id); 323 if (rc) 324 return rc; 325 326 vf = &bp->pf.vf[vf_id]; 327 328 vf->flags &= ~(BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED); 329 switch (link) { 330 case IFLA_VF_LINK_STATE_AUTO: 331 vf->flags |= BNXT_VF_LINK_UP; 332 break; 333 case IFLA_VF_LINK_STATE_DISABLE: 334 vf->flags |= BNXT_VF_LINK_FORCED; 335 break; 336 case IFLA_VF_LINK_STATE_ENABLE: 337 vf->flags |= BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED; 338 break; 339 default: 340 netdev_err(bp->dev, "Invalid link option\n"); 341 rc = -EINVAL; 342 break; 343 } 344 if (vf->flags & (BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED)) 345 rc = bnxt_hwrm_fwd_async_event_cmpl(bp, vf, 346 ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE); 347 return rc; 348 } 349 350 static int bnxt_set_vf_attr(struct bnxt *bp, int num_vfs) 351 { 352 int i; 353 struct bnxt_vf_info *vf; 354 355 for (i = 0; i < num_vfs; i++) { 356 vf = &bp->pf.vf[i]; 357 memset(vf, 0, sizeof(*vf)); 358 } 359 return 0; 360 } 361 362 static int bnxt_hwrm_func_vf_resource_free(struct bnxt *bp, int num_vfs) 363 { 364 int i, rc = 0; 365 struct bnxt_pf_info *pf = &bp->pf; 366 struct hwrm_func_vf_resc_free_input req = {0}; 367 368 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_RESC_FREE, -1, -1); 369 370 mutex_lock(&bp->hwrm_cmd_lock); 371 for (i = pf->first_vf_id; i < pf->first_vf_id + num_vfs; i++) { 372 req.vf_id = cpu_to_le16(i); 373 rc = _hwrm_send_message(bp, &req, sizeof(req), 374 HWRM_CMD_TIMEOUT); 375 if (rc) 376 break; 377 } 378 mutex_unlock(&bp->hwrm_cmd_lock); 379 return rc; 380 } 381 382 static void bnxt_free_vf_resources(struct bnxt *bp) 383 { 384 struct pci_dev *pdev = bp->pdev; 385 int i; 386 387 kfree(bp->pf.vf_event_bmap); 388 bp->pf.vf_event_bmap = NULL; 389 390 for (i = 0; i < 4; i++) { 391 if (bp->pf.hwrm_cmd_req_addr[i]) { 392 dma_free_coherent(&pdev->dev, BNXT_PAGE_SIZE, 393 bp->pf.hwrm_cmd_req_addr[i], 394 bp->pf.hwrm_cmd_req_dma_addr[i]); 395 bp->pf.hwrm_cmd_req_addr[i] = NULL; 396 } 397 } 398 399 bp->pf.active_vfs = 0; 400 kfree(bp->pf.vf); 401 bp->pf.vf = NULL; 402 } 403 404 static int bnxt_alloc_vf_resources(struct bnxt *bp, int num_vfs) 405 { 406 struct pci_dev *pdev = bp->pdev; 407 u32 nr_pages, size, i, j, k = 0; 408 409 bp->pf.vf = kcalloc(num_vfs, sizeof(struct bnxt_vf_info), GFP_KERNEL); 410 if (!bp->pf.vf) 411 return -ENOMEM; 412 413 bnxt_set_vf_attr(bp, num_vfs); 414 415 size = num_vfs * BNXT_HWRM_REQ_MAX_SIZE; 416 nr_pages = size / BNXT_PAGE_SIZE; 417 if (size & (BNXT_PAGE_SIZE - 1)) 418 nr_pages++; 419 420 for (i = 0; i < nr_pages; i++) { 421 bp->pf.hwrm_cmd_req_addr[i] = 422 dma_alloc_coherent(&pdev->dev, BNXT_PAGE_SIZE, 423 &bp->pf.hwrm_cmd_req_dma_addr[i], 424 GFP_KERNEL); 425 426 if (!bp->pf.hwrm_cmd_req_addr[i]) 427 return -ENOMEM; 428 429 for (j = 0; j < BNXT_HWRM_REQS_PER_PAGE && k < num_vfs; j++) { 430 struct bnxt_vf_info *vf = &bp->pf.vf[k]; 431 432 vf->hwrm_cmd_req_addr = bp->pf.hwrm_cmd_req_addr[i] + 433 j * BNXT_HWRM_REQ_MAX_SIZE; 434 vf->hwrm_cmd_req_dma_addr = 435 bp->pf.hwrm_cmd_req_dma_addr[i] + j * 436 BNXT_HWRM_REQ_MAX_SIZE; 437 k++; 438 } 439 } 440 441 /* Max 128 VF's */ 442 bp->pf.vf_event_bmap = kzalloc(16, GFP_KERNEL); 443 if (!bp->pf.vf_event_bmap) 444 return -ENOMEM; 445 446 bp->pf.hwrm_cmd_req_pages = nr_pages; 447 return 0; 448 } 449 450 static int bnxt_hwrm_func_buf_rgtr(struct bnxt *bp) 451 { 452 struct hwrm_func_buf_rgtr_input req = {0}; 453 454 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_BUF_RGTR, -1, -1); 455 456 req.req_buf_num_pages = cpu_to_le16(bp->pf.hwrm_cmd_req_pages); 457 req.req_buf_page_size = cpu_to_le16(BNXT_PAGE_SHIFT); 458 req.req_buf_len = cpu_to_le16(BNXT_HWRM_REQ_MAX_SIZE); 459 req.req_buf_page_addr0 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[0]); 460 req.req_buf_page_addr1 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[1]); 461 req.req_buf_page_addr2 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[2]); 462 req.req_buf_page_addr3 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[3]); 463 464 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 465 } 466 467 /* Caller holds bp->hwrm_cmd_lock mutex lock */ 468 static void __bnxt_set_vf_params(struct bnxt *bp, int vf_id) 469 { 470 struct hwrm_func_cfg_input req = {0}; 471 struct bnxt_vf_info *vf; 472 473 vf = &bp->pf.vf[vf_id]; 474 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1); 475 req.fid = cpu_to_le16(vf->fw_fid); 476 477 if (is_valid_ether_addr(vf->mac_addr)) { 478 req.enables |= cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_MAC_ADDR); 479 memcpy(req.dflt_mac_addr, vf->mac_addr, ETH_ALEN); 480 } 481 if (vf->vlan) { 482 req.enables |= cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_VLAN); 483 req.dflt_vlan = cpu_to_le16(vf->vlan); 484 } 485 if (vf->max_tx_rate) { 486 req.enables |= cpu_to_le32(FUNC_CFG_REQ_ENABLES_MAX_BW); 487 req.max_bw = cpu_to_le32(vf->max_tx_rate); 488 #ifdef HAVE_IFLA_TX_RATE 489 req.enables |= cpu_to_le32(FUNC_CFG_REQ_ENABLES_MIN_BW); 490 req.min_bw = cpu_to_le32(vf->min_tx_rate); 491 #endif 492 } 493 if (vf->flags & BNXT_VF_TRUST) 494 req.flags |= cpu_to_le32(FUNC_CFG_REQ_FLAGS_TRUSTED_VF_ENABLE); 495 496 _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 497 } 498 499 /* Only called by PF to reserve resources for VFs, returns actual number of 500 * VFs configured, or < 0 on error. 501 */ 502 static int bnxt_hwrm_func_vf_resc_cfg(struct bnxt *bp, int num_vfs, bool reset) 503 { 504 struct hwrm_func_vf_resource_cfg_input req = {0}; 505 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 506 u16 vf_tx_rings, vf_rx_rings, vf_cp_rings; 507 u16 vf_stat_ctx, vf_vnics, vf_ring_grps; 508 struct bnxt_pf_info *pf = &bp->pf; 509 int i, rc = 0, min = 1; 510 u16 vf_msix = 0; 511 u16 vf_rss; 512 513 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_RESOURCE_CFG, -1, -1); 514 515 if (bp->flags & BNXT_FLAG_CHIP_P5) { 516 vf_msix = hw_resc->max_nqs - bnxt_nq_rings_in_use(bp); 517 vf_ring_grps = 0; 518 } else { 519 vf_ring_grps = hw_resc->max_hw_ring_grps - bp->rx_nr_rings; 520 } 521 vf_cp_rings = bnxt_get_avail_cp_rings_for_en(bp); 522 vf_stat_ctx = bnxt_get_avail_stat_ctxs_for_en(bp); 523 if (bp->flags & BNXT_FLAG_AGG_RINGS) 524 vf_rx_rings = hw_resc->max_rx_rings - bp->rx_nr_rings * 2; 525 else 526 vf_rx_rings = hw_resc->max_rx_rings - bp->rx_nr_rings; 527 vf_tx_rings = hw_resc->max_tx_rings - bp->tx_nr_rings; 528 vf_vnics = hw_resc->max_vnics - bp->nr_vnics; 529 vf_vnics = min_t(u16, vf_vnics, vf_rx_rings); 530 vf_rss = hw_resc->max_rsscos_ctxs - bp->rsscos_nr_ctxs; 531 532 req.min_rsscos_ctx = cpu_to_le16(BNXT_VF_MIN_RSS_CTX); 533 if (pf->vf_resv_strategy == BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC) { 534 min = 0; 535 req.min_rsscos_ctx = cpu_to_le16(min); 536 } 537 if (pf->vf_resv_strategy == BNXT_VF_RESV_STRATEGY_MINIMAL || 538 pf->vf_resv_strategy == BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC) { 539 req.min_cmpl_rings = cpu_to_le16(min); 540 req.min_tx_rings = cpu_to_le16(min); 541 req.min_rx_rings = cpu_to_le16(min); 542 req.min_l2_ctxs = cpu_to_le16(min); 543 req.min_vnics = cpu_to_le16(min); 544 req.min_stat_ctx = cpu_to_le16(min); 545 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 546 req.min_hw_ring_grps = cpu_to_le16(min); 547 } else { 548 vf_cp_rings /= num_vfs; 549 vf_tx_rings /= num_vfs; 550 vf_rx_rings /= num_vfs; 551 vf_vnics /= num_vfs; 552 vf_stat_ctx /= num_vfs; 553 vf_ring_grps /= num_vfs; 554 vf_rss /= num_vfs; 555 556 req.min_cmpl_rings = cpu_to_le16(vf_cp_rings); 557 req.min_tx_rings = cpu_to_le16(vf_tx_rings); 558 req.min_rx_rings = cpu_to_le16(vf_rx_rings); 559 req.min_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX); 560 req.min_vnics = cpu_to_le16(vf_vnics); 561 req.min_stat_ctx = cpu_to_le16(vf_stat_ctx); 562 req.min_hw_ring_grps = cpu_to_le16(vf_ring_grps); 563 req.min_rsscos_ctx = cpu_to_le16(vf_rss); 564 } 565 req.max_cmpl_rings = cpu_to_le16(vf_cp_rings); 566 req.max_tx_rings = cpu_to_le16(vf_tx_rings); 567 req.max_rx_rings = cpu_to_le16(vf_rx_rings); 568 req.max_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX); 569 req.max_vnics = cpu_to_le16(vf_vnics); 570 req.max_stat_ctx = cpu_to_le16(vf_stat_ctx); 571 req.max_hw_ring_grps = cpu_to_le16(vf_ring_grps); 572 req.max_rsscos_ctx = cpu_to_le16(vf_rss); 573 if (bp->flags & BNXT_FLAG_CHIP_P5) 574 req.max_msix = cpu_to_le16(vf_msix / num_vfs); 575 576 mutex_lock(&bp->hwrm_cmd_lock); 577 for (i = 0; i < num_vfs; i++) { 578 if (reset) 579 __bnxt_set_vf_params(bp, i); 580 581 req.vf_id = cpu_to_le16(pf->first_vf_id + i); 582 rc = _hwrm_send_message(bp, &req, sizeof(req), 583 HWRM_CMD_TIMEOUT); 584 if (rc) 585 break; 586 pf->active_vfs = i + 1; 587 pf->vf[i].fw_fid = pf->first_vf_id + i; 588 } 589 mutex_unlock(&bp->hwrm_cmd_lock); 590 if (pf->active_vfs) { 591 u16 n = pf->active_vfs; 592 593 hw_resc->max_tx_rings -= le16_to_cpu(req.min_tx_rings) * n; 594 hw_resc->max_rx_rings -= le16_to_cpu(req.min_rx_rings) * n; 595 hw_resc->max_hw_ring_grps -= le16_to_cpu(req.min_hw_ring_grps) * 596 n; 597 hw_resc->max_cp_rings -= le16_to_cpu(req.min_cmpl_rings) * n; 598 hw_resc->max_rsscos_ctxs -= le16_to_cpu(req.min_rsscos_ctx) * n; 599 hw_resc->max_stat_ctxs -= le16_to_cpu(req.min_stat_ctx) * n; 600 hw_resc->max_vnics -= le16_to_cpu(req.min_vnics) * n; 601 if (bp->flags & BNXT_FLAG_CHIP_P5) 602 hw_resc->max_irqs -= vf_msix * n; 603 604 rc = pf->active_vfs; 605 } 606 return rc; 607 } 608 609 /* Only called by PF to reserve resources for VFs, returns actual number of 610 * VFs configured, or < 0 on error. 611 */ 612 static int bnxt_hwrm_func_cfg(struct bnxt *bp, int num_vfs) 613 { 614 u32 rc = 0, mtu, i; 615 u16 vf_tx_rings, vf_rx_rings, vf_cp_rings, vf_stat_ctx, vf_vnics; 616 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 617 struct hwrm_func_cfg_input req = {0}; 618 struct bnxt_pf_info *pf = &bp->pf; 619 int total_vf_tx_rings = 0; 620 u16 vf_ring_grps; 621 622 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1); 623 624 /* Remaining rings are distributed equally amongs VF's for now */ 625 vf_cp_rings = bnxt_get_avail_cp_rings_for_en(bp) / num_vfs; 626 vf_stat_ctx = bnxt_get_avail_stat_ctxs_for_en(bp) / num_vfs; 627 if (bp->flags & BNXT_FLAG_AGG_RINGS) 628 vf_rx_rings = (hw_resc->max_rx_rings - bp->rx_nr_rings * 2) / 629 num_vfs; 630 else 631 vf_rx_rings = (hw_resc->max_rx_rings - bp->rx_nr_rings) / 632 num_vfs; 633 vf_ring_grps = (hw_resc->max_hw_ring_grps - bp->rx_nr_rings) / num_vfs; 634 vf_tx_rings = (hw_resc->max_tx_rings - bp->tx_nr_rings) / num_vfs; 635 vf_vnics = (hw_resc->max_vnics - bp->nr_vnics) / num_vfs; 636 vf_vnics = min_t(u16, vf_vnics, vf_rx_rings); 637 638 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_MTU | 639 FUNC_CFG_REQ_ENABLES_MRU | 640 FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS | 641 FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS | 642 FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS | 643 FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS | 644 FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS | 645 FUNC_CFG_REQ_ENABLES_NUM_L2_CTXS | 646 FUNC_CFG_REQ_ENABLES_NUM_VNICS | 647 FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS); 648 649 mtu = bp->dev->mtu + ETH_HLEN + VLAN_HLEN; 650 req.mru = cpu_to_le16(mtu); 651 req.mtu = cpu_to_le16(mtu); 652 653 req.num_rsscos_ctxs = cpu_to_le16(1); 654 req.num_cmpl_rings = cpu_to_le16(vf_cp_rings); 655 req.num_tx_rings = cpu_to_le16(vf_tx_rings); 656 req.num_rx_rings = cpu_to_le16(vf_rx_rings); 657 req.num_hw_ring_grps = cpu_to_le16(vf_ring_grps); 658 req.num_l2_ctxs = cpu_to_le16(4); 659 660 req.num_vnics = cpu_to_le16(vf_vnics); 661 /* FIXME spec currently uses 1 bit for stats ctx */ 662 req.num_stat_ctxs = cpu_to_le16(vf_stat_ctx); 663 664 mutex_lock(&bp->hwrm_cmd_lock); 665 for (i = 0; i < num_vfs; i++) { 666 int vf_tx_rsvd = vf_tx_rings; 667 668 req.fid = cpu_to_le16(pf->first_vf_id + i); 669 rc = _hwrm_send_message(bp, &req, sizeof(req), 670 HWRM_CMD_TIMEOUT); 671 if (rc) 672 break; 673 pf->active_vfs = i + 1; 674 pf->vf[i].fw_fid = le16_to_cpu(req.fid); 675 rc = __bnxt_hwrm_get_tx_rings(bp, pf->vf[i].fw_fid, 676 &vf_tx_rsvd); 677 if (rc) 678 break; 679 total_vf_tx_rings += vf_tx_rsvd; 680 } 681 mutex_unlock(&bp->hwrm_cmd_lock); 682 if (pf->active_vfs) { 683 hw_resc->max_tx_rings -= total_vf_tx_rings; 684 hw_resc->max_rx_rings -= vf_rx_rings * num_vfs; 685 hw_resc->max_hw_ring_grps -= vf_ring_grps * num_vfs; 686 hw_resc->max_cp_rings -= vf_cp_rings * num_vfs; 687 hw_resc->max_rsscos_ctxs -= num_vfs; 688 hw_resc->max_stat_ctxs -= vf_stat_ctx * num_vfs; 689 hw_resc->max_vnics -= vf_vnics * num_vfs; 690 rc = pf->active_vfs; 691 } 692 return rc; 693 } 694 695 static int bnxt_func_cfg(struct bnxt *bp, int num_vfs, bool reset) 696 { 697 if (BNXT_NEW_RM(bp)) 698 return bnxt_hwrm_func_vf_resc_cfg(bp, num_vfs, reset); 699 else 700 return bnxt_hwrm_func_cfg(bp, num_vfs); 701 } 702 703 int bnxt_cfg_hw_sriov(struct bnxt *bp, int *num_vfs, bool reset) 704 { 705 int rc; 706 707 /* Register buffers for VFs */ 708 rc = bnxt_hwrm_func_buf_rgtr(bp); 709 if (rc) 710 return rc; 711 712 /* Reserve resources for VFs */ 713 rc = bnxt_func_cfg(bp, *num_vfs, reset); 714 if (rc != *num_vfs) { 715 if (rc <= 0) { 716 netdev_warn(bp->dev, "Unable to reserve resources for SRIOV.\n"); 717 *num_vfs = 0; 718 return rc; 719 } 720 netdev_warn(bp->dev, "Only able to reserve resources for %d VFs.\n", 721 rc); 722 *num_vfs = rc; 723 } 724 725 bnxt_ulp_sriov_cfg(bp, *num_vfs); 726 return 0; 727 } 728 729 static int bnxt_sriov_enable(struct bnxt *bp, int *num_vfs) 730 { 731 int rc = 0, vfs_supported; 732 int min_rx_rings, min_tx_rings, min_rss_ctxs; 733 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 734 int tx_ok = 0, rx_ok = 0, rss_ok = 0; 735 int avail_cp, avail_stat; 736 737 /* Check if we can enable requested num of vf's. At a mininum 738 * we require 1 RX 1 TX rings for each VF. In this minimum conf 739 * features like TPA will not be available. 740 */ 741 vfs_supported = *num_vfs; 742 743 avail_cp = bnxt_get_avail_cp_rings_for_en(bp); 744 avail_stat = bnxt_get_avail_stat_ctxs_for_en(bp); 745 avail_cp = min_t(int, avail_cp, avail_stat); 746 747 while (vfs_supported) { 748 min_rx_rings = vfs_supported; 749 min_tx_rings = vfs_supported; 750 min_rss_ctxs = vfs_supported; 751 752 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 753 if (hw_resc->max_rx_rings - bp->rx_nr_rings * 2 >= 754 min_rx_rings) 755 rx_ok = 1; 756 } else { 757 if (hw_resc->max_rx_rings - bp->rx_nr_rings >= 758 min_rx_rings) 759 rx_ok = 1; 760 } 761 if (hw_resc->max_vnics - bp->nr_vnics < min_rx_rings || 762 avail_cp < min_rx_rings) 763 rx_ok = 0; 764 765 if (hw_resc->max_tx_rings - bp->tx_nr_rings >= min_tx_rings && 766 avail_cp >= min_tx_rings) 767 tx_ok = 1; 768 769 if (hw_resc->max_rsscos_ctxs - bp->rsscos_nr_ctxs >= 770 min_rss_ctxs) 771 rss_ok = 1; 772 773 if (tx_ok && rx_ok && rss_ok) 774 break; 775 776 vfs_supported--; 777 } 778 779 if (!vfs_supported) { 780 netdev_err(bp->dev, "Cannot enable VF's as all resources are used by PF\n"); 781 return -EINVAL; 782 } 783 784 if (vfs_supported != *num_vfs) { 785 netdev_info(bp->dev, "Requested VFs %d, can enable %d\n", 786 *num_vfs, vfs_supported); 787 *num_vfs = vfs_supported; 788 } 789 790 rc = bnxt_alloc_vf_resources(bp, *num_vfs); 791 if (rc) 792 goto err_out1; 793 794 rc = bnxt_cfg_hw_sriov(bp, num_vfs, false); 795 if (rc) 796 goto err_out2; 797 798 rc = pci_enable_sriov(bp->pdev, *num_vfs); 799 if (rc) 800 goto err_out2; 801 802 return 0; 803 804 err_out2: 805 /* Free the resources reserved for various VF's */ 806 bnxt_hwrm_func_vf_resource_free(bp, *num_vfs); 807 808 err_out1: 809 bnxt_free_vf_resources(bp); 810 811 return rc; 812 } 813 814 void bnxt_sriov_disable(struct bnxt *bp) 815 { 816 u16 num_vfs = pci_num_vf(bp->pdev); 817 818 if (!num_vfs) 819 return; 820 821 /* synchronize VF and VF-rep create and destroy */ 822 mutex_lock(&bp->sriov_lock); 823 bnxt_vf_reps_destroy(bp); 824 825 if (pci_vfs_assigned(bp->pdev)) { 826 bnxt_hwrm_fwd_async_event_cmpl( 827 bp, NULL, ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD); 828 netdev_warn(bp->dev, "Unable to free %d VFs because some are assigned to VMs.\n", 829 num_vfs); 830 } else { 831 pci_disable_sriov(bp->pdev); 832 /* Free the HW resources reserved for various VF's */ 833 bnxt_hwrm_func_vf_resource_free(bp, num_vfs); 834 } 835 mutex_unlock(&bp->sriov_lock); 836 837 bnxt_free_vf_resources(bp); 838 839 /* Reclaim all resources for the PF. */ 840 rtnl_lock(); 841 bnxt_restore_pf_fw_resources(bp); 842 rtnl_unlock(); 843 844 bnxt_ulp_sriov_cfg(bp, 0); 845 } 846 847 int bnxt_sriov_configure(struct pci_dev *pdev, int num_vfs) 848 { 849 struct net_device *dev = pci_get_drvdata(pdev); 850 struct bnxt *bp = netdev_priv(dev); 851 852 if (!(bp->flags & BNXT_FLAG_USING_MSIX)) { 853 netdev_warn(dev, "Not allow SRIOV if the irq mode is not MSIX\n"); 854 return 0; 855 } 856 857 rtnl_lock(); 858 if (!netif_running(dev)) { 859 netdev_warn(dev, "Reject SRIOV config request since if is down!\n"); 860 rtnl_unlock(); 861 return 0; 862 } 863 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 864 netdev_warn(dev, "Reject SRIOV config request when FW reset is in progress\n"); 865 rtnl_unlock(); 866 return 0; 867 } 868 bp->sriov_cfg = true; 869 rtnl_unlock(); 870 871 if (pci_vfs_assigned(bp->pdev)) { 872 netdev_warn(dev, "Unable to configure SRIOV since some VFs are assigned to VMs.\n"); 873 num_vfs = 0; 874 goto sriov_cfg_exit; 875 } 876 877 /* Check if enabled VFs is same as requested */ 878 if (num_vfs && num_vfs == bp->pf.active_vfs) 879 goto sriov_cfg_exit; 880 881 /* if there are previous existing VFs, clean them up */ 882 bnxt_sriov_disable(bp); 883 if (!num_vfs) 884 goto sriov_cfg_exit; 885 886 bnxt_sriov_enable(bp, &num_vfs); 887 888 sriov_cfg_exit: 889 bp->sriov_cfg = false; 890 wake_up(&bp->sriov_cfg_wait); 891 892 return num_vfs; 893 } 894 895 static int bnxt_hwrm_fwd_resp(struct bnxt *bp, struct bnxt_vf_info *vf, 896 void *encap_resp, __le64 encap_resp_addr, 897 __le16 encap_resp_cpr, u32 msg_size) 898 { 899 int rc = 0; 900 struct hwrm_fwd_resp_input req = {0}; 901 902 if (BNXT_FWD_RESP_SIZE_ERR(msg_size)) 903 return -EINVAL; 904 905 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FWD_RESP, -1, -1); 906 907 /* Set the new target id */ 908 req.target_id = cpu_to_le16(vf->fw_fid); 909 req.encap_resp_target_id = cpu_to_le16(vf->fw_fid); 910 req.encap_resp_len = cpu_to_le16(msg_size); 911 req.encap_resp_addr = encap_resp_addr; 912 req.encap_resp_cmpl_ring = encap_resp_cpr; 913 memcpy(req.encap_resp, encap_resp, msg_size); 914 915 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 916 if (rc) 917 netdev_err(bp->dev, "hwrm_fwd_resp failed. rc:%d\n", rc); 918 return rc; 919 } 920 921 static int bnxt_hwrm_fwd_err_resp(struct bnxt *bp, struct bnxt_vf_info *vf, 922 u32 msg_size) 923 { 924 int rc = 0; 925 struct hwrm_reject_fwd_resp_input req = {0}; 926 927 if (BNXT_REJ_FWD_RESP_SIZE_ERR(msg_size)) 928 return -EINVAL; 929 930 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_REJECT_FWD_RESP, -1, -1); 931 /* Set the new target id */ 932 req.target_id = cpu_to_le16(vf->fw_fid); 933 req.encap_resp_target_id = cpu_to_le16(vf->fw_fid); 934 memcpy(req.encap_request, vf->hwrm_cmd_req_addr, msg_size); 935 936 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 937 if (rc) 938 netdev_err(bp->dev, "hwrm_fwd_err_resp failed. rc:%d\n", rc); 939 return rc; 940 } 941 942 static int bnxt_hwrm_exec_fwd_resp(struct bnxt *bp, struct bnxt_vf_info *vf, 943 u32 msg_size) 944 { 945 int rc = 0; 946 struct hwrm_exec_fwd_resp_input req = {0}; 947 948 if (BNXT_EXEC_FWD_RESP_SIZE_ERR(msg_size)) 949 return -EINVAL; 950 951 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_EXEC_FWD_RESP, -1, -1); 952 /* Set the new target id */ 953 req.target_id = cpu_to_le16(vf->fw_fid); 954 req.encap_resp_target_id = cpu_to_le16(vf->fw_fid); 955 memcpy(req.encap_request, vf->hwrm_cmd_req_addr, msg_size); 956 957 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 958 if (rc) 959 netdev_err(bp->dev, "hwrm_exec_fw_resp failed. rc:%d\n", rc); 960 return rc; 961 } 962 963 static int bnxt_vf_configure_mac(struct bnxt *bp, struct bnxt_vf_info *vf) 964 { 965 u32 msg_size = sizeof(struct hwrm_func_vf_cfg_input); 966 struct hwrm_func_vf_cfg_input *req = 967 (struct hwrm_func_vf_cfg_input *)vf->hwrm_cmd_req_addr; 968 969 /* Allow VF to set a valid MAC address, if trust is set to on or 970 * if the PF assigned MAC address is zero 971 */ 972 if (req->enables & cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_DFLT_MAC_ADDR)) { 973 bool trust = bnxt_is_trusted_vf(bp, vf); 974 975 if (is_valid_ether_addr(req->dflt_mac_addr) && 976 (trust || !is_valid_ether_addr(vf->mac_addr) || 977 ether_addr_equal(req->dflt_mac_addr, vf->mac_addr))) { 978 ether_addr_copy(vf->vf_mac_addr, req->dflt_mac_addr); 979 return bnxt_hwrm_exec_fwd_resp(bp, vf, msg_size); 980 } 981 return bnxt_hwrm_fwd_err_resp(bp, vf, msg_size); 982 } 983 return bnxt_hwrm_exec_fwd_resp(bp, vf, msg_size); 984 } 985 986 static int bnxt_vf_validate_set_mac(struct bnxt *bp, struct bnxt_vf_info *vf) 987 { 988 u32 msg_size = sizeof(struct hwrm_cfa_l2_filter_alloc_input); 989 struct hwrm_cfa_l2_filter_alloc_input *req = 990 (struct hwrm_cfa_l2_filter_alloc_input *)vf->hwrm_cmd_req_addr; 991 bool mac_ok = false; 992 993 if (!is_valid_ether_addr((const u8 *)req->l2_addr)) 994 return bnxt_hwrm_fwd_err_resp(bp, vf, msg_size); 995 996 /* Allow VF to set a valid MAC address, if trust is set to on. 997 * Or VF MAC address must first match MAC address in PF's context. 998 * Otherwise, it must match the VF MAC address if firmware spec >= 999 * 1.2.2 1000 */ 1001 if (bnxt_is_trusted_vf(bp, vf)) { 1002 mac_ok = true; 1003 } else if (is_valid_ether_addr(vf->mac_addr)) { 1004 if (ether_addr_equal((const u8 *)req->l2_addr, vf->mac_addr)) 1005 mac_ok = true; 1006 } else if (is_valid_ether_addr(vf->vf_mac_addr)) { 1007 if (ether_addr_equal((const u8 *)req->l2_addr, vf->vf_mac_addr)) 1008 mac_ok = true; 1009 } else { 1010 /* There are two cases: 1011 * 1.If firmware spec < 0x10202,VF MAC address is not forwarded 1012 * to the PF and so it doesn't have to match 1013 * 2.Allow VF to modify it's own MAC when PF has not assigned a 1014 * valid MAC address and firmware spec >= 0x10202 1015 */ 1016 mac_ok = true; 1017 } 1018 if (mac_ok) 1019 return bnxt_hwrm_exec_fwd_resp(bp, vf, msg_size); 1020 return bnxt_hwrm_fwd_err_resp(bp, vf, msg_size); 1021 } 1022 1023 static int bnxt_vf_set_link(struct bnxt *bp, struct bnxt_vf_info *vf) 1024 { 1025 int rc = 0; 1026 1027 if (!(vf->flags & BNXT_VF_LINK_FORCED)) { 1028 /* real link */ 1029 rc = bnxt_hwrm_exec_fwd_resp( 1030 bp, vf, sizeof(struct hwrm_port_phy_qcfg_input)); 1031 } else { 1032 struct hwrm_port_phy_qcfg_output_compat phy_qcfg_resp = {0}; 1033 struct hwrm_port_phy_qcfg_input *phy_qcfg_req; 1034 1035 phy_qcfg_req = 1036 (struct hwrm_port_phy_qcfg_input *)vf->hwrm_cmd_req_addr; 1037 mutex_lock(&bp->hwrm_cmd_lock); 1038 memcpy(&phy_qcfg_resp, &bp->link_info.phy_qcfg_resp, 1039 sizeof(phy_qcfg_resp)); 1040 mutex_unlock(&bp->hwrm_cmd_lock); 1041 phy_qcfg_resp.resp_len = cpu_to_le16(sizeof(phy_qcfg_resp)); 1042 phy_qcfg_resp.seq_id = phy_qcfg_req->seq_id; 1043 phy_qcfg_resp.valid = 1; 1044 1045 if (vf->flags & BNXT_VF_LINK_UP) { 1046 /* if physical link is down, force link up on VF */ 1047 if (phy_qcfg_resp.link != 1048 PORT_PHY_QCFG_RESP_LINK_LINK) { 1049 phy_qcfg_resp.link = 1050 PORT_PHY_QCFG_RESP_LINK_LINK; 1051 phy_qcfg_resp.link_speed = cpu_to_le16( 1052 PORT_PHY_QCFG_RESP_LINK_SPEED_10GB); 1053 phy_qcfg_resp.duplex_cfg = 1054 PORT_PHY_QCFG_RESP_DUPLEX_CFG_FULL; 1055 phy_qcfg_resp.duplex_state = 1056 PORT_PHY_QCFG_RESP_DUPLEX_STATE_FULL; 1057 phy_qcfg_resp.pause = 1058 (PORT_PHY_QCFG_RESP_PAUSE_TX | 1059 PORT_PHY_QCFG_RESP_PAUSE_RX); 1060 } 1061 } else { 1062 /* force link down */ 1063 phy_qcfg_resp.link = PORT_PHY_QCFG_RESP_LINK_NO_LINK; 1064 phy_qcfg_resp.link_speed = 0; 1065 phy_qcfg_resp.duplex_state = 1066 PORT_PHY_QCFG_RESP_DUPLEX_STATE_HALF; 1067 phy_qcfg_resp.pause = 0; 1068 } 1069 rc = bnxt_hwrm_fwd_resp(bp, vf, &phy_qcfg_resp, 1070 phy_qcfg_req->resp_addr, 1071 phy_qcfg_req->cmpl_ring, 1072 sizeof(phy_qcfg_resp)); 1073 } 1074 return rc; 1075 } 1076 1077 static int bnxt_vf_req_validate_snd(struct bnxt *bp, struct bnxt_vf_info *vf) 1078 { 1079 int rc = 0; 1080 struct input *encap_req = vf->hwrm_cmd_req_addr; 1081 u32 req_type = le16_to_cpu(encap_req->req_type); 1082 1083 switch (req_type) { 1084 case HWRM_FUNC_VF_CFG: 1085 rc = bnxt_vf_configure_mac(bp, vf); 1086 break; 1087 case HWRM_CFA_L2_FILTER_ALLOC: 1088 rc = bnxt_vf_validate_set_mac(bp, vf); 1089 break; 1090 case HWRM_FUNC_CFG: 1091 /* TODO Validate if VF is allowed to change mac address, 1092 * mtu, num of rings etc 1093 */ 1094 rc = bnxt_hwrm_exec_fwd_resp( 1095 bp, vf, sizeof(struct hwrm_func_cfg_input)); 1096 break; 1097 case HWRM_PORT_PHY_QCFG: 1098 rc = bnxt_vf_set_link(bp, vf); 1099 break; 1100 default: 1101 break; 1102 } 1103 return rc; 1104 } 1105 1106 void bnxt_hwrm_exec_fwd_req(struct bnxt *bp) 1107 { 1108 u32 i = 0, active_vfs = bp->pf.active_vfs, vf_id; 1109 1110 /* Scan through VF's and process commands */ 1111 while (1) { 1112 vf_id = find_next_bit(bp->pf.vf_event_bmap, active_vfs, i); 1113 if (vf_id >= active_vfs) 1114 break; 1115 1116 clear_bit(vf_id, bp->pf.vf_event_bmap); 1117 bnxt_vf_req_validate_snd(bp, &bp->pf.vf[vf_id]); 1118 i = vf_id + 1; 1119 } 1120 } 1121 1122 void bnxt_update_vf_mac(struct bnxt *bp) 1123 { 1124 struct hwrm_func_qcaps_input req = {0}; 1125 struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr; 1126 1127 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1); 1128 req.fid = cpu_to_le16(0xffff); 1129 1130 mutex_lock(&bp->hwrm_cmd_lock); 1131 if (_hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT)) 1132 goto update_vf_mac_exit; 1133 1134 /* Store MAC address from the firmware. There are 2 cases: 1135 * 1. MAC address is valid. It is assigned from the PF and we 1136 * need to override the current VF MAC address with it. 1137 * 2. MAC address is zero. The VF will use a random MAC address by 1138 * default but the stored zero MAC will allow the VF user to change 1139 * the random MAC address using ndo_set_mac_address() if he wants. 1140 */ 1141 if (!ether_addr_equal(resp->mac_address, bp->vf.mac_addr)) 1142 memcpy(bp->vf.mac_addr, resp->mac_address, ETH_ALEN); 1143 1144 /* overwrite netdev dev_addr with admin VF MAC */ 1145 if (is_valid_ether_addr(bp->vf.mac_addr)) 1146 memcpy(bp->dev->dev_addr, bp->vf.mac_addr, ETH_ALEN); 1147 update_vf_mac_exit: 1148 mutex_unlock(&bp->hwrm_cmd_lock); 1149 } 1150 1151 int bnxt_approve_mac(struct bnxt *bp, u8 *mac, bool strict) 1152 { 1153 struct hwrm_func_vf_cfg_input req = {0}; 1154 int rc = 0; 1155 1156 if (!BNXT_VF(bp)) 1157 return 0; 1158 1159 if (bp->hwrm_spec_code < 0x10202) { 1160 if (is_valid_ether_addr(bp->vf.mac_addr)) 1161 rc = -EADDRNOTAVAIL; 1162 goto mac_done; 1163 } 1164 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_CFG, -1, -1); 1165 req.enables = cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_DFLT_MAC_ADDR); 1166 memcpy(req.dflt_mac_addr, mac, ETH_ALEN); 1167 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 1168 mac_done: 1169 if (rc && strict) { 1170 rc = -EADDRNOTAVAIL; 1171 netdev_warn(bp->dev, "VF MAC address %pM not approved by the PF\n", 1172 mac); 1173 return rc; 1174 } 1175 return 0; 1176 } 1177 #else 1178 1179 int bnxt_cfg_hw_sriov(struct bnxt *bp, int *num_vfs, bool reset) 1180 { 1181 if (*num_vfs) 1182 return -EOPNOTSUPP; 1183 return 0; 1184 } 1185 1186 void bnxt_sriov_disable(struct bnxt *bp) 1187 { 1188 } 1189 1190 void bnxt_hwrm_exec_fwd_req(struct bnxt *bp) 1191 { 1192 netdev_err(bp->dev, "Invalid VF message received when SRIOV is not enable\n"); 1193 } 1194 1195 void bnxt_update_vf_mac(struct bnxt *bp) 1196 { 1197 } 1198 1199 int bnxt_approve_mac(struct bnxt *bp, u8 *mac, bool strict) 1200 { 1201 return 0; 1202 } 1203 #endif 1204