1 /* Broadcom NetXtreme-C/E network driver. 2 * 3 * Copyright (c) 2014-2016 Broadcom Corporation 4 * Copyright (c) 2016-2018 Broadcom Limited 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation. 9 */ 10 11 #include <linux/ethtool.h> 12 #include <linux/module.h> 13 #include <linux/pci.h> 14 #include <linux/netdevice.h> 15 #include <linux/if_vlan.h> 16 #include <linux/interrupt.h> 17 #include <linux/etherdevice.h> 18 #include "bnxt_hsi.h" 19 #include "bnxt.h" 20 #include "bnxt_ulp.h" 21 #include "bnxt_sriov.h" 22 #include "bnxt_vfr.h" 23 #include "bnxt_ethtool.h" 24 25 #ifdef CONFIG_BNXT_SRIOV 26 static int bnxt_hwrm_fwd_async_event_cmpl(struct bnxt *bp, 27 struct bnxt_vf_info *vf, u16 event_id) 28 { 29 struct hwrm_fwd_async_event_cmpl_input req = {0}; 30 struct hwrm_async_event_cmpl *async_cmpl; 31 int rc = 0; 32 33 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FWD_ASYNC_EVENT_CMPL, -1, -1); 34 if (vf) 35 req.encap_async_event_target_id = cpu_to_le16(vf->fw_fid); 36 else 37 /* broadcast this async event to all VFs */ 38 req.encap_async_event_target_id = cpu_to_le16(0xffff); 39 async_cmpl = (struct hwrm_async_event_cmpl *)req.encap_async_event_cmpl; 40 async_cmpl->type = cpu_to_le16(ASYNC_EVENT_CMPL_TYPE_HWRM_ASYNC_EVENT); 41 async_cmpl->event_id = cpu_to_le16(event_id); 42 43 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 44 if (rc) 45 netdev_err(bp->dev, "hwrm_fwd_async_event_cmpl failed. rc:%d\n", 46 rc); 47 return rc; 48 } 49 50 static int bnxt_vf_ndo_prep(struct bnxt *bp, int vf_id) 51 { 52 if (!bp->pf.active_vfs) { 53 netdev_err(bp->dev, "vf ndo called though sriov is disabled\n"); 54 return -EINVAL; 55 } 56 if (vf_id >= bp->pf.active_vfs) { 57 netdev_err(bp->dev, "Invalid VF id %d\n", vf_id); 58 return -EINVAL; 59 } 60 return 0; 61 } 62 63 int bnxt_set_vf_spoofchk(struct net_device *dev, int vf_id, bool setting) 64 { 65 struct hwrm_func_cfg_input req = {0}; 66 struct bnxt *bp = netdev_priv(dev); 67 struct bnxt_vf_info *vf; 68 bool old_setting = false; 69 u32 func_flags; 70 int rc; 71 72 if (bp->hwrm_spec_code < 0x10701) 73 return -ENOTSUPP; 74 75 rc = bnxt_vf_ndo_prep(bp, vf_id); 76 if (rc) 77 return rc; 78 79 vf = &bp->pf.vf[vf_id]; 80 if (vf->flags & BNXT_VF_SPOOFCHK) 81 old_setting = true; 82 if (old_setting == setting) 83 return 0; 84 85 if (setting) 86 func_flags = FUNC_CFG_REQ_FLAGS_SRC_MAC_ADDR_CHECK_ENABLE; 87 else 88 func_flags = FUNC_CFG_REQ_FLAGS_SRC_MAC_ADDR_CHECK_DISABLE; 89 /*TODO: if the driver supports VLAN filter on guest VLAN, 90 * the spoof check should also include vlan anti-spoofing 91 */ 92 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1); 93 req.fid = cpu_to_le16(vf->fw_fid); 94 req.flags = cpu_to_le32(func_flags); 95 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 96 if (!rc) { 97 if (setting) 98 vf->flags |= BNXT_VF_SPOOFCHK; 99 else 100 vf->flags &= ~BNXT_VF_SPOOFCHK; 101 } 102 return rc; 103 } 104 105 static int bnxt_hwrm_func_qcfg_flags(struct bnxt *bp, struct bnxt_vf_info *vf) 106 { 107 struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr; 108 struct hwrm_func_qcfg_input req = {0}; 109 int rc; 110 111 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1); 112 req.fid = cpu_to_le16(BNXT_PF(bp) ? vf->fw_fid : 0xffff); 113 mutex_lock(&bp->hwrm_cmd_lock); 114 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 115 if (rc) { 116 mutex_unlock(&bp->hwrm_cmd_lock); 117 return rc; 118 } 119 vf->func_qcfg_flags = le16_to_cpu(resp->flags); 120 mutex_unlock(&bp->hwrm_cmd_lock); 121 return 0; 122 } 123 124 bool bnxt_is_trusted_vf(struct bnxt *bp, struct bnxt_vf_info *vf) 125 { 126 if (BNXT_PF(bp) && !(bp->fw_cap & BNXT_FW_CAP_TRUSTED_VF)) 127 return !!(vf->flags & BNXT_VF_TRUST); 128 129 bnxt_hwrm_func_qcfg_flags(bp, vf); 130 return !!(vf->func_qcfg_flags & FUNC_QCFG_RESP_FLAGS_TRUSTED_VF); 131 } 132 133 static int bnxt_hwrm_set_trusted_vf(struct bnxt *bp, struct bnxt_vf_info *vf) 134 { 135 struct hwrm_func_cfg_input req = {0}; 136 137 if (!(bp->fw_cap & BNXT_FW_CAP_TRUSTED_VF)) 138 return 0; 139 140 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1); 141 req.fid = cpu_to_le16(vf->fw_fid); 142 if (vf->flags & BNXT_VF_TRUST) 143 req.flags = cpu_to_le32(FUNC_CFG_REQ_FLAGS_TRUSTED_VF_ENABLE); 144 else 145 req.flags = cpu_to_le32(FUNC_CFG_REQ_FLAGS_TRUSTED_VF_DISABLE); 146 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 147 } 148 149 int bnxt_set_vf_trust(struct net_device *dev, int vf_id, bool trusted) 150 { 151 struct bnxt *bp = netdev_priv(dev); 152 struct bnxt_vf_info *vf; 153 154 if (bnxt_vf_ndo_prep(bp, vf_id)) 155 return -EINVAL; 156 157 vf = &bp->pf.vf[vf_id]; 158 if (trusted) 159 vf->flags |= BNXT_VF_TRUST; 160 else 161 vf->flags &= ~BNXT_VF_TRUST; 162 163 bnxt_hwrm_set_trusted_vf(bp, vf); 164 return 0; 165 } 166 167 int bnxt_get_vf_config(struct net_device *dev, int vf_id, 168 struct ifla_vf_info *ivi) 169 { 170 struct bnxt *bp = netdev_priv(dev); 171 struct bnxt_vf_info *vf; 172 int rc; 173 174 rc = bnxt_vf_ndo_prep(bp, vf_id); 175 if (rc) 176 return rc; 177 178 ivi->vf = vf_id; 179 vf = &bp->pf.vf[vf_id]; 180 181 if (is_valid_ether_addr(vf->mac_addr)) 182 memcpy(&ivi->mac, vf->mac_addr, ETH_ALEN); 183 else 184 memcpy(&ivi->mac, vf->vf_mac_addr, ETH_ALEN); 185 ivi->max_tx_rate = vf->max_tx_rate; 186 ivi->min_tx_rate = vf->min_tx_rate; 187 ivi->vlan = vf->vlan; 188 if (vf->flags & BNXT_VF_QOS) 189 ivi->qos = vf->vlan >> VLAN_PRIO_SHIFT; 190 else 191 ivi->qos = 0; 192 ivi->spoofchk = !!(vf->flags & BNXT_VF_SPOOFCHK); 193 ivi->trusted = bnxt_is_trusted_vf(bp, vf); 194 if (!(vf->flags & BNXT_VF_LINK_FORCED)) 195 ivi->linkstate = IFLA_VF_LINK_STATE_AUTO; 196 else if (vf->flags & BNXT_VF_LINK_UP) 197 ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE; 198 else 199 ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE; 200 201 return 0; 202 } 203 204 int bnxt_set_vf_mac(struct net_device *dev, int vf_id, u8 *mac) 205 { 206 struct hwrm_func_cfg_input req = {0}; 207 struct bnxt *bp = netdev_priv(dev); 208 struct bnxt_vf_info *vf; 209 int rc; 210 211 rc = bnxt_vf_ndo_prep(bp, vf_id); 212 if (rc) 213 return rc; 214 /* reject bc or mc mac addr, zero mac addr means allow 215 * VF to use its own mac addr 216 */ 217 if (is_multicast_ether_addr(mac)) { 218 netdev_err(dev, "Invalid VF ethernet address\n"); 219 return -EINVAL; 220 } 221 vf = &bp->pf.vf[vf_id]; 222 223 memcpy(vf->mac_addr, mac, ETH_ALEN); 224 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1); 225 req.fid = cpu_to_le16(vf->fw_fid); 226 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_MAC_ADDR); 227 memcpy(req.dflt_mac_addr, mac, ETH_ALEN); 228 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 229 } 230 231 int bnxt_set_vf_vlan(struct net_device *dev, int vf_id, u16 vlan_id, u8 qos, 232 __be16 vlan_proto) 233 { 234 struct hwrm_func_cfg_input req = {0}; 235 struct bnxt *bp = netdev_priv(dev); 236 struct bnxt_vf_info *vf; 237 u16 vlan_tag; 238 int rc; 239 240 if (bp->hwrm_spec_code < 0x10201) 241 return -ENOTSUPP; 242 243 if (vlan_proto != htons(ETH_P_8021Q)) 244 return -EPROTONOSUPPORT; 245 246 rc = bnxt_vf_ndo_prep(bp, vf_id); 247 if (rc) 248 return rc; 249 250 /* TODO: needed to implement proper handling of user priority, 251 * currently fail the command if there is valid priority 252 */ 253 if (vlan_id > 4095 || qos) 254 return -EINVAL; 255 256 vf = &bp->pf.vf[vf_id]; 257 vlan_tag = vlan_id; 258 if (vlan_tag == vf->vlan) 259 return 0; 260 261 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1); 262 req.fid = cpu_to_le16(vf->fw_fid); 263 req.dflt_vlan = cpu_to_le16(vlan_tag); 264 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_VLAN); 265 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 266 if (!rc) 267 vf->vlan = vlan_tag; 268 return rc; 269 } 270 271 int bnxt_set_vf_bw(struct net_device *dev, int vf_id, int min_tx_rate, 272 int max_tx_rate) 273 { 274 struct hwrm_func_cfg_input req = {0}; 275 struct bnxt *bp = netdev_priv(dev); 276 struct bnxt_vf_info *vf; 277 u32 pf_link_speed; 278 int rc; 279 280 rc = bnxt_vf_ndo_prep(bp, vf_id); 281 if (rc) 282 return rc; 283 284 vf = &bp->pf.vf[vf_id]; 285 pf_link_speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed); 286 if (max_tx_rate > pf_link_speed) { 287 netdev_info(bp->dev, "max tx rate %d exceed PF link speed for VF %d\n", 288 max_tx_rate, vf_id); 289 return -EINVAL; 290 } 291 292 if (min_tx_rate > pf_link_speed || min_tx_rate > max_tx_rate) { 293 netdev_info(bp->dev, "min tx rate %d is invalid for VF %d\n", 294 min_tx_rate, vf_id); 295 return -EINVAL; 296 } 297 if (min_tx_rate == vf->min_tx_rate && max_tx_rate == vf->max_tx_rate) 298 return 0; 299 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1); 300 req.fid = cpu_to_le16(vf->fw_fid); 301 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_MAX_BW); 302 req.max_bw = cpu_to_le32(max_tx_rate); 303 req.enables |= cpu_to_le32(FUNC_CFG_REQ_ENABLES_MIN_BW); 304 req.min_bw = cpu_to_le32(min_tx_rate); 305 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 306 if (!rc) { 307 vf->min_tx_rate = min_tx_rate; 308 vf->max_tx_rate = max_tx_rate; 309 } 310 return rc; 311 } 312 313 int bnxt_set_vf_link_state(struct net_device *dev, int vf_id, int link) 314 { 315 struct bnxt *bp = netdev_priv(dev); 316 struct bnxt_vf_info *vf; 317 int rc; 318 319 rc = bnxt_vf_ndo_prep(bp, vf_id); 320 if (rc) 321 return rc; 322 323 vf = &bp->pf.vf[vf_id]; 324 325 vf->flags &= ~(BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED); 326 switch (link) { 327 case IFLA_VF_LINK_STATE_AUTO: 328 vf->flags |= BNXT_VF_LINK_UP; 329 break; 330 case IFLA_VF_LINK_STATE_DISABLE: 331 vf->flags |= BNXT_VF_LINK_FORCED; 332 break; 333 case IFLA_VF_LINK_STATE_ENABLE: 334 vf->flags |= BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED; 335 break; 336 default: 337 netdev_err(bp->dev, "Invalid link option\n"); 338 rc = -EINVAL; 339 break; 340 } 341 if (vf->flags & (BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED)) 342 rc = bnxt_hwrm_fwd_async_event_cmpl(bp, vf, 343 ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE); 344 return rc; 345 } 346 347 static int bnxt_set_vf_attr(struct bnxt *bp, int num_vfs) 348 { 349 int i; 350 struct bnxt_vf_info *vf; 351 352 for (i = 0; i < num_vfs; i++) { 353 vf = &bp->pf.vf[i]; 354 memset(vf, 0, sizeof(*vf)); 355 } 356 return 0; 357 } 358 359 static int bnxt_hwrm_func_vf_resource_free(struct bnxt *bp, int num_vfs) 360 { 361 int i, rc = 0; 362 struct bnxt_pf_info *pf = &bp->pf; 363 struct hwrm_func_vf_resc_free_input req = {0}; 364 365 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_RESC_FREE, -1, -1); 366 367 mutex_lock(&bp->hwrm_cmd_lock); 368 for (i = pf->first_vf_id; i < pf->first_vf_id + num_vfs; i++) { 369 req.vf_id = cpu_to_le16(i); 370 rc = _hwrm_send_message(bp, &req, sizeof(req), 371 HWRM_CMD_TIMEOUT); 372 if (rc) 373 break; 374 } 375 mutex_unlock(&bp->hwrm_cmd_lock); 376 return rc; 377 } 378 379 static void bnxt_free_vf_resources(struct bnxt *bp) 380 { 381 struct pci_dev *pdev = bp->pdev; 382 int i; 383 384 kfree(bp->pf.vf_event_bmap); 385 bp->pf.vf_event_bmap = NULL; 386 387 for (i = 0; i < 4; i++) { 388 if (bp->pf.hwrm_cmd_req_addr[i]) { 389 dma_free_coherent(&pdev->dev, BNXT_PAGE_SIZE, 390 bp->pf.hwrm_cmd_req_addr[i], 391 bp->pf.hwrm_cmd_req_dma_addr[i]); 392 bp->pf.hwrm_cmd_req_addr[i] = NULL; 393 } 394 } 395 396 bp->pf.active_vfs = 0; 397 kfree(bp->pf.vf); 398 bp->pf.vf = NULL; 399 } 400 401 static int bnxt_alloc_vf_resources(struct bnxt *bp, int num_vfs) 402 { 403 struct pci_dev *pdev = bp->pdev; 404 u32 nr_pages, size, i, j, k = 0; 405 406 bp->pf.vf = kcalloc(num_vfs, sizeof(struct bnxt_vf_info), GFP_KERNEL); 407 if (!bp->pf.vf) 408 return -ENOMEM; 409 410 bnxt_set_vf_attr(bp, num_vfs); 411 412 size = num_vfs * BNXT_HWRM_REQ_MAX_SIZE; 413 nr_pages = size / BNXT_PAGE_SIZE; 414 if (size & (BNXT_PAGE_SIZE - 1)) 415 nr_pages++; 416 417 for (i = 0; i < nr_pages; i++) { 418 bp->pf.hwrm_cmd_req_addr[i] = 419 dma_alloc_coherent(&pdev->dev, BNXT_PAGE_SIZE, 420 &bp->pf.hwrm_cmd_req_dma_addr[i], 421 GFP_KERNEL); 422 423 if (!bp->pf.hwrm_cmd_req_addr[i]) 424 return -ENOMEM; 425 426 for (j = 0; j < BNXT_HWRM_REQS_PER_PAGE && k < num_vfs; j++) { 427 struct bnxt_vf_info *vf = &bp->pf.vf[k]; 428 429 vf->hwrm_cmd_req_addr = bp->pf.hwrm_cmd_req_addr[i] + 430 j * BNXT_HWRM_REQ_MAX_SIZE; 431 vf->hwrm_cmd_req_dma_addr = 432 bp->pf.hwrm_cmd_req_dma_addr[i] + j * 433 BNXT_HWRM_REQ_MAX_SIZE; 434 k++; 435 } 436 } 437 438 /* Max 128 VF's */ 439 bp->pf.vf_event_bmap = kzalloc(16, GFP_KERNEL); 440 if (!bp->pf.vf_event_bmap) 441 return -ENOMEM; 442 443 bp->pf.hwrm_cmd_req_pages = nr_pages; 444 return 0; 445 } 446 447 static int bnxt_hwrm_func_buf_rgtr(struct bnxt *bp) 448 { 449 struct hwrm_func_buf_rgtr_input req = {0}; 450 451 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_BUF_RGTR, -1, -1); 452 453 req.req_buf_num_pages = cpu_to_le16(bp->pf.hwrm_cmd_req_pages); 454 req.req_buf_page_size = cpu_to_le16(BNXT_PAGE_SHIFT); 455 req.req_buf_len = cpu_to_le16(BNXT_HWRM_REQ_MAX_SIZE); 456 req.req_buf_page_addr0 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[0]); 457 req.req_buf_page_addr1 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[1]); 458 req.req_buf_page_addr2 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[2]); 459 req.req_buf_page_addr3 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[3]); 460 461 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 462 } 463 464 /* Caller holds bp->hwrm_cmd_lock mutex lock */ 465 static void __bnxt_set_vf_params(struct bnxt *bp, int vf_id) 466 { 467 struct hwrm_func_cfg_input req = {0}; 468 struct bnxt_vf_info *vf; 469 470 vf = &bp->pf.vf[vf_id]; 471 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1); 472 req.fid = cpu_to_le16(vf->fw_fid); 473 474 if (is_valid_ether_addr(vf->mac_addr)) { 475 req.enables |= cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_MAC_ADDR); 476 memcpy(req.dflt_mac_addr, vf->mac_addr, ETH_ALEN); 477 } 478 if (vf->vlan) { 479 req.enables |= cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_VLAN); 480 req.dflt_vlan = cpu_to_le16(vf->vlan); 481 } 482 if (vf->max_tx_rate) { 483 req.enables |= cpu_to_le32(FUNC_CFG_REQ_ENABLES_MAX_BW); 484 req.max_bw = cpu_to_le32(vf->max_tx_rate); 485 #ifdef HAVE_IFLA_TX_RATE 486 req.enables |= cpu_to_le32(FUNC_CFG_REQ_ENABLES_MIN_BW); 487 req.min_bw = cpu_to_le32(vf->min_tx_rate); 488 #endif 489 } 490 if (vf->flags & BNXT_VF_TRUST) 491 req.flags |= cpu_to_le32(FUNC_CFG_REQ_FLAGS_TRUSTED_VF_ENABLE); 492 493 _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 494 } 495 496 /* Only called by PF to reserve resources for VFs, returns actual number of 497 * VFs configured, or < 0 on error. 498 */ 499 static int bnxt_hwrm_func_vf_resc_cfg(struct bnxt *bp, int num_vfs, bool reset) 500 { 501 struct hwrm_func_vf_resource_cfg_input req = {0}; 502 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 503 u16 vf_tx_rings, vf_rx_rings, vf_cp_rings; 504 u16 vf_stat_ctx, vf_vnics, vf_ring_grps; 505 struct bnxt_pf_info *pf = &bp->pf; 506 int i, rc = 0, min = 1; 507 u16 vf_msix = 0; 508 u16 vf_rss; 509 510 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_RESOURCE_CFG, -1, -1); 511 512 if (bp->flags & BNXT_FLAG_CHIP_P5) { 513 vf_msix = hw_resc->max_nqs - bnxt_nq_rings_in_use(bp); 514 vf_ring_grps = 0; 515 } else { 516 vf_ring_grps = hw_resc->max_hw_ring_grps - bp->rx_nr_rings; 517 } 518 vf_cp_rings = bnxt_get_avail_cp_rings_for_en(bp); 519 vf_stat_ctx = bnxt_get_avail_stat_ctxs_for_en(bp); 520 if (bp->flags & BNXT_FLAG_AGG_RINGS) 521 vf_rx_rings = hw_resc->max_rx_rings - bp->rx_nr_rings * 2; 522 else 523 vf_rx_rings = hw_resc->max_rx_rings - bp->rx_nr_rings; 524 vf_tx_rings = hw_resc->max_tx_rings - bp->tx_nr_rings; 525 vf_vnics = hw_resc->max_vnics - bp->nr_vnics; 526 vf_vnics = min_t(u16, vf_vnics, vf_rx_rings); 527 vf_rss = hw_resc->max_rsscos_ctxs - bp->rsscos_nr_ctxs; 528 529 req.min_rsscos_ctx = cpu_to_le16(BNXT_VF_MIN_RSS_CTX); 530 if (pf->vf_resv_strategy == BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC) { 531 min = 0; 532 req.min_rsscos_ctx = cpu_to_le16(min); 533 } 534 if (pf->vf_resv_strategy == BNXT_VF_RESV_STRATEGY_MINIMAL || 535 pf->vf_resv_strategy == BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC) { 536 req.min_cmpl_rings = cpu_to_le16(min); 537 req.min_tx_rings = cpu_to_le16(min); 538 req.min_rx_rings = cpu_to_le16(min); 539 req.min_l2_ctxs = cpu_to_le16(min); 540 req.min_vnics = cpu_to_le16(min); 541 req.min_stat_ctx = cpu_to_le16(min); 542 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 543 req.min_hw_ring_grps = cpu_to_le16(min); 544 } else { 545 vf_cp_rings /= num_vfs; 546 vf_tx_rings /= num_vfs; 547 vf_rx_rings /= num_vfs; 548 vf_vnics /= num_vfs; 549 vf_stat_ctx /= num_vfs; 550 vf_ring_grps /= num_vfs; 551 vf_rss /= num_vfs; 552 553 req.min_cmpl_rings = cpu_to_le16(vf_cp_rings); 554 req.min_tx_rings = cpu_to_le16(vf_tx_rings); 555 req.min_rx_rings = cpu_to_le16(vf_rx_rings); 556 req.min_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX); 557 req.min_vnics = cpu_to_le16(vf_vnics); 558 req.min_stat_ctx = cpu_to_le16(vf_stat_ctx); 559 req.min_hw_ring_grps = cpu_to_le16(vf_ring_grps); 560 req.min_rsscos_ctx = cpu_to_le16(vf_rss); 561 } 562 req.max_cmpl_rings = cpu_to_le16(vf_cp_rings); 563 req.max_tx_rings = cpu_to_le16(vf_tx_rings); 564 req.max_rx_rings = cpu_to_le16(vf_rx_rings); 565 req.max_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX); 566 req.max_vnics = cpu_to_le16(vf_vnics); 567 req.max_stat_ctx = cpu_to_le16(vf_stat_ctx); 568 req.max_hw_ring_grps = cpu_to_le16(vf_ring_grps); 569 req.max_rsscos_ctx = cpu_to_le16(vf_rss); 570 if (bp->flags & BNXT_FLAG_CHIP_P5) 571 req.max_msix = cpu_to_le16(vf_msix / num_vfs); 572 573 mutex_lock(&bp->hwrm_cmd_lock); 574 for (i = 0; i < num_vfs; i++) { 575 if (reset) 576 __bnxt_set_vf_params(bp, i); 577 578 req.vf_id = cpu_to_le16(pf->first_vf_id + i); 579 rc = _hwrm_send_message(bp, &req, sizeof(req), 580 HWRM_CMD_TIMEOUT); 581 if (rc) 582 break; 583 pf->active_vfs = i + 1; 584 pf->vf[i].fw_fid = pf->first_vf_id + i; 585 } 586 mutex_unlock(&bp->hwrm_cmd_lock); 587 if (pf->active_vfs) { 588 u16 n = pf->active_vfs; 589 590 hw_resc->max_tx_rings -= le16_to_cpu(req.min_tx_rings) * n; 591 hw_resc->max_rx_rings -= le16_to_cpu(req.min_rx_rings) * n; 592 hw_resc->max_hw_ring_grps -= le16_to_cpu(req.min_hw_ring_grps) * 593 n; 594 hw_resc->max_cp_rings -= le16_to_cpu(req.min_cmpl_rings) * n; 595 hw_resc->max_rsscos_ctxs -= le16_to_cpu(req.min_rsscos_ctx) * n; 596 hw_resc->max_stat_ctxs -= le16_to_cpu(req.min_stat_ctx) * n; 597 hw_resc->max_vnics -= le16_to_cpu(req.min_vnics) * n; 598 if (bp->flags & BNXT_FLAG_CHIP_P5) 599 hw_resc->max_irqs -= vf_msix * n; 600 601 rc = pf->active_vfs; 602 } 603 return rc; 604 } 605 606 /* Only called by PF to reserve resources for VFs, returns actual number of 607 * VFs configured, or < 0 on error. 608 */ 609 static int bnxt_hwrm_func_cfg(struct bnxt *bp, int num_vfs) 610 { 611 u32 rc = 0, mtu, i; 612 u16 vf_tx_rings, vf_rx_rings, vf_cp_rings, vf_stat_ctx, vf_vnics; 613 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 614 struct hwrm_func_cfg_input req = {0}; 615 struct bnxt_pf_info *pf = &bp->pf; 616 int total_vf_tx_rings = 0; 617 u16 vf_ring_grps; 618 619 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1); 620 621 /* Remaining rings are distributed equally amongs VF's for now */ 622 vf_cp_rings = bnxt_get_avail_cp_rings_for_en(bp) / num_vfs; 623 vf_stat_ctx = bnxt_get_avail_stat_ctxs_for_en(bp) / num_vfs; 624 if (bp->flags & BNXT_FLAG_AGG_RINGS) 625 vf_rx_rings = (hw_resc->max_rx_rings - bp->rx_nr_rings * 2) / 626 num_vfs; 627 else 628 vf_rx_rings = (hw_resc->max_rx_rings - bp->rx_nr_rings) / 629 num_vfs; 630 vf_ring_grps = (hw_resc->max_hw_ring_grps - bp->rx_nr_rings) / num_vfs; 631 vf_tx_rings = (hw_resc->max_tx_rings - bp->tx_nr_rings) / num_vfs; 632 vf_vnics = (hw_resc->max_vnics - bp->nr_vnics) / num_vfs; 633 vf_vnics = min_t(u16, vf_vnics, vf_rx_rings); 634 635 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_MTU | 636 FUNC_CFG_REQ_ENABLES_MRU | 637 FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS | 638 FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS | 639 FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS | 640 FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS | 641 FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS | 642 FUNC_CFG_REQ_ENABLES_NUM_L2_CTXS | 643 FUNC_CFG_REQ_ENABLES_NUM_VNICS | 644 FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS); 645 646 mtu = bp->dev->mtu + ETH_HLEN + VLAN_HLEN; 647 req.mru = cpu_to_le16(mtu); 648 req.mtu = cpu_to_le16(mtu); 649 650 req.num_rsscos_ctxs = cpu_to_le16(1); 651 req.num_cmpl_rings = cpu_to_le16(vf_cp_rings); 652 req.num_tx_rings = cpu_to_le16(vf_tx_rings); 653 req.num_rx_rings = cpu_to_le16(vf_rx_rings); 654 req.num_hw_ring_grps = cpu_to_le16(vf_ring_grps); 655 req.num_l2_ctxs = cpu_to_le16(4); 656 657 req.num_vnics = cpu_to_le16(vf_vnics); 658 /* FIXME spec currently uses 1 bit for stats ctx */ 659 req.num_stat_ctxs = cpu_to_le16(vf_stat_ctx); 660 661 mutex_lock(&bp->hwrm_cmd_lock); 662 for (i = 0; i < num_vfs; i++) { 663 int vf_tx_rsvd = vf_tx_rings; 664 665 req.fid = cpu_to_le16(pf->first_vf_id + i); 666 rc = _hwrm_send_message(bp, &req, sizeof(req), 667 HWRM_CMD_TIMEOUT); 668 if (rc) 669 break; 670 pf->active_vfs = i + 1; 671 pf->vf[i].fw_fid = le16_to_cpu(req.fid); 672 rc = __bnxt_hwrm_get_tx_rings(bp, pf->vf[i].fw_fid, 673 &vf_tx_rsvd); 674 if (rc) 675 break; 676 total_vf_tx_rings += vf_tx_rsvd; 677 } 678 mutex_unlock(&bp->hwrm_cmd_lock); 679 if (pf->active_vfs) { 680 hw_resc->max_tx_rings -= total_vf_tx_rings; 681 hw_resc->max_rx_rings -= vf_rx_rings * num_vfs; 682 hw_resc->max_hw_ring_grps -= vf_ring_grps * num_vfs; 683 hw_resc->max_cp_rings -= vf_cp_rings * num_vfs; 684 hw_resc->max_rsscos_ctxs -= num_vfs; 685 hw_resc->max_stat_ctxs -= vf_stat_ctx * num_vfs; 686 hw_resc->max_vnics -= vf_vnics * num_vfs; 687 rc = pf->active_vfs; 688 } 689 return rc; 690 } 691 692 static int bnxt_func_cfg(struct bnxt *bp, int num_vfs, bool reset) 693 { 694 if (BNXT_NEW_RM(bp)) 695 return bnxt_hwrm_func_vf_resc_cfg(bp, num_vfs, reset); 696 else 697 return bnxt_hwrm_func_cfg(bp, num_vfs); 698 } 699 700 int bnxt_cfg_hw_sriov(struct bnxt *bp, int *num_vfs, bool reset) 701 { 702 int rc; 703 704 /* Register buffers for VFs */ 705 rc = bnxt_hwrm_func_buf_rgtr(bp); 706 if (rc) 707 return rc; 708 709 /* Reserve resources for VFs */ 710 rc = bnxt_func_cfg(bp, *num_vfs, reset); 711 if (rc != *num_vfs) { 712 if (rc <= 0) { 713 netdev_warn(bp->dev, "Unable to reserve resources for SRIOV.\n"); 714 *num_vfs = 0; 715 return rc; 716 } 717 netdev_warn(bp->dev, "Only able to reserve resources for %d VFs.\n", 718 rc); 719 *num_vfs = rc; 720 } 721 722 bnxt_ulp_sriov_cfg(bp, *num_vfs); 723 return 0; 724 } 725 726 static int bnxt_sriov_enable(struct bnxt *bp, int *num_vfs) 727 { 728 int rc = 0, vfs_supported; 729 int min_rx_rings, min_tx_rings, min_rss_ctxs; 730 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 731 int tx_ok = 0, rx_ok = 0, rss_ok = 0; 732 int avail_cp, avail_stat; 733 734 /* Check if we can enable requested num of vf's. At a mininum 735 * we require 1 RX 1 TX rings for each VF. In this minimum conf 736 * features like TPA will not be available. 737 */ 738 vfs_supported = *num_vfs; 739 740 avail_cp = bnxt_get_avail_cp_rings_for_en(bp); 741 avail_stat = bnxt_get_avail_stat_ctxs_for_en(bp); 742 avail_cp = min_t(int, avail_cp, avail_stat); 743 744 while (vfs_supported) { 745 min_rx_rings = vfs_supported; 746 min_tx_rings = vfs_supported; 747 min_rss_ctxs = vfs_supported; 748 749 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 750 if (hw_resc->max_rx_rings - bp->rx_nr_rings * 2 >= 751 min_rx_rings) 752 rx_ok = 1; 753 } else { 754 if (hw_resc->max_rx_rings - bp->rx_nr_rings >= 755 min_rx_rings) 756 rx_ok = 1; 757 } 758 if (hw_resc->max_vnics - bp->nr_vnics < min_rx_rings || 759 avail_cp < min_rx_rings) 760 rx_ok = 0; 761 762 if (hw_resc->max_tx_rings - bp->tx_nr_rings >= min_tx_rings && 763 avail_cp >= min_tx_rings) 764 tx_ok = 1; 765 766 if (hw_resc->max_rsscos_ctxs - bp->rsscos_nr_ctxs >= 767 min_rss_ctxs) 768 rss_ok = 1; 769 770 if (tx_ok && rx_ok && rss_ok) 771 break; 772 773 vfs_supported--; 774 } 775 776 if (!vfs_supported) { 777 netdev_err(bp->dev, "Cannot enable VF's as all resources are used by PF\n"); 778 return -EINVAL; 779 } 780 781 if (vfs_supported != *num_vfs) { 782 netdev_info(bp->dev, "Requested VFs %d, can enable %d\n", 783 *num_vfs, vfs_supported); 784 *num_vfs = vfs_supported; 785 } 786 787 rc = bnxt_alloc_vf_resources(bp, *num_vfs); 788 if (rc) 789 goto err_out1; 790 791 rc = bnxt_cfg_hw_sriov(bp, num_vfs, false); 792 if (rc) 793 goto err_out2; 794 795 rc = pci_enable_sriov(bp->pdev, *num_vfs); 796 if (rc) 797 goto err_out2; 798 799 return 0; 800 801 err_out2: 802 /* Free the resources reserved for various VF's */ 803 bnxt_hwrm_func_vf_resource_free(bp, *num_vfs); 804 805 err_out1: 806 bnxt_free_vf_resources(bp); 807 808 return rc; 809 } 810 811 void bnxt_sriov_disable(struct bnxt *bp) 812 { 813 u16 num_vfs = pci_num_vf(bp->pdev); 814 815 if (!num_vfs) 816 return; 817 818 /* synchronize VF and VF-rep create and destroy */ 819 mutex_lock(&bp->sriov_lock); 820 bnxt_vf_reps_destroy(bp); 821 822 if (pci_vfs_assigned(bp->pdev)) { 823 bnxt_hwrm_fwd_async_event_cmpl( 824 bp, NULL, ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD); 825 netdev_warn(bp->dev, "Unable to free %d VFs because some are assigned to VMs.\n", 826 num_vfs); 827 } else { 828 pci_disable_sriov(bp->pdev); 829 /* Free the HW resources reserved for various VF's */ 830 bnxt_hwrm_func_vf_resource_free(bp, num_vfs); 831 } 832 mutex_unlock(&bp->sriov_lock); 833 834 bnxt_free_vf_resources(bp); 835 836 /* Reclaim all resources for the PF. */ 837 rtnl_lock(); 838 bnxt_restore_pf_fw_resources(bp); 839 rtnl_unlock(); 840 841 bnxt_ulp_sriov_cfg(bp, 0); 842 } 843 844 int bnxt_sriov_configure(struct pci_dev *pdev, int num_vfs) 845 { 846 struct net_device *dev = pci_get_drvdata(pdev); 847 struct bnxt *bp = netdev_priv(dev); 848 849 if (!(bp->flags & BNXT_FLAG_USING_MSIX)) { 850 netdev_warn(dev, "Not allow SRIOV if the irq mode is not MSIX\n"); 851 return 0; 852 } 853 854 rtnl_lock(); 855 if (!netif_running(dev)) { 856 netdev_warn(dev, "Reject SRIOV config request since if is down!\n"); 857 rtnl_unlock(); 858 return 0; 859 } 860 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 861 netdev_warn(dev, "Reject SRIOV config request when FW reset is in progress\n"); 862 rtnl_unlock(); 863 return 0; 864 } 865 bp->sriov_cfg = true; 866 rtnl_unlock(); 867 868 if (pci_vfs_assigned(bp->pdev)) { 869 netdev_warn(dev, "Unable to configure SRIOV since some VFs are assigned to VMs.\n"); 870 num_vfs = 0; 871 goto sriov_cfg_exit; 872 } 873 874 /* Check if enabled VFs is same as requested */ 875 if (num_vfs && num_vfs == bp->pf.active_vfs) 876 goto sriov_cfg_exit; 877 878 /* if there are previous existing VFs, clean them up */ 879 bnxt_sriov_disable(bp); 880 if (!num_vfs) 881 goto sriov_cfg_exit; 882 883 bnxt_sriov_enable(bp, &num_vfs); 884 885 sriov_cfg_exit: 886 bp->sriov_cfg = false; 887 wake_up(&bp->sriov_cfg_wait); 888 889 return num_vfs; 890 } 891 892 static int bnxt_hwrm_fwd_resp(struct bnxt *bp, struct bnxt_vf_info *vf, 893 void *encap_resp, __le64 encap_resp_addr, 894 __le16 encap_resp_cpr, u32 msg_size) 895 { 896 int rc = 0; 897 struct hwrm_fwd_resp_input req = {0}; 898 899 if (BNXT_FWD_RESP_SIZE_ERR(msg_size)) 900 return -EINVAL; 901 902 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FWD_RESP, -1, -1); 903 904 /* Set the new target id */ 905 req.target_id = cpu_to_le16(vf->fw_fid); 906 req.encap_resp_target_id = cpu_to_le16(vf->fw_fid); 907 req.encap_resp_len = cpu_to_le16(msg_size); 908 req.encap_resp_addr = encap_resp_addr; 909 req.encap_resp_cmpl_ring = encap_resp_cpr; 910 memcpy(req.encap_resp, encap_resp, msg_size); 911 912 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 913 if (rc) 914 netdev_err(bp->dev, "hwrm_fwd_resp failed. rc:%d\n", rc); 915 return rc; 916 } 917 918 static int bnxt_hwrm_fwd_err_resp(struct bnxt *bp, struct bnxt_vf_info *vf, 919 u32 msg_size) 920 { 921 int rc = 0; 922 struct hwrm_reject_fwd_resp_input req = {0}; 923 924 if (BNXT_REJ_FWD_RESP_SIZE_ERR(msg_size)) 925 return -EINVAL; 926 927 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_REJECT_FWD_RESP, -1, -1); 928 /* Set the new target id */ 929 req.target_id = cpu_to_le16(vf->fw_fid); 930 req.encap_resp_target_id = cpu_to_le16(vf->fw_fid); 931 memcpy(req.encap_request, vf->hwrm_cmd_req_addr, msg_size); 932 933 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 934 if (rc) 935 netdev_err(bp->dev, "hwrm_fwd_err_resp failed. rc:%d\n", rc); 936 return rc; 937 } 938 939 static int bnxt_hwrm_exec_fwd_resp(struct bnxt *bp, struct bnxt_vf_info *vf, 940 u32 msg_size) 941 { 942 int rc = 0; 943 struct hwrm_exec_fwd_resp_input req = {0}; 944 945 if (BNXT_EXEC_FWD_RESP_SIZE_ERR(msg_size)) 946 return -EINVAL; 947 948 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_EXEC_FWD_RESP, -1, -1); 949 /* Set the new target id */ 950 req.target_id = cpu_to_le16(vf->fw_fid); 951 req.encap_resp_target_id = cpu_to_le16(vf->fw_fid); 952 memcpy(req.encap_request, vf->hwrm_cmd_req_addr, msg_size); 953 954 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 955 if (rc) 956 netdev_err(bp->dev, "hwrm_exec_fw_resp failed. rc:%d\n", rc); 957 return rc; 958 } 959 960 static int bnxt_vf_configure_mac(struct bnxt *bp, struct bnxt_vf_info *vf) 961 { 962 u32 msg_size = sizeof(struct hwrm_func_vf_cfg_input); 963 struct hwrm_func_vf_cfg_input *req = 964 (struct hwrm_func_vf_cfg_input *)vf->hwrm_cmd_req_addr; 965 966 /* Allow VF to set a valid MAC address, if trust is set to on or 967 * if the PF assigned MAC address is zero 968 */ 969 if (req->enables & cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_DFLT_MAC_ADDR)) { 970 bool trust = bnxt_is_trusted_vf(bp, vf); 971 972 if (is_valid_ether_addr(req->dflt_mac_addr) && 973 (trust || !is_valid_ether_addr(vf->mac_addr) || 974 ether_addr_equal(req->dflt_mac_addr, vf->mac_addr))) { 975 ether_addr_copy(vf->vf_mac_addr, req->dflt_mac_addr); 976 return bnxt_hwrm_exec_fwd_resp(bp, vf, msg_size); 977 } 978 return bnxt_hwrm_fwd_err_resp(bp, vf, msg_size); 979 } 980 return bnxt_hwrm_exec_fwd_resp(bp, vf, msg_size); 981 } 982 983 static int bnxt_vf_validate_set_mac(struct bnxt *bp, struct bnxt_vf_info *vf) 984 { 985 u32 msg_size = sizeof(struct hwrm_cfa_l2_filter_alloc_input); 986 struct hwrm_cfa_l2_filter_alloc_input *req = 987 (struct hwrm_cfa_l2_filter_alloc_input *)vf->hwrm_cmd_req_addr; 988 bool mac_ok = false; 989 990 if (!is_valid_ether_addr((const u8 *)req->l2_addr)) 991 return bnxt_hwrm_fwd_err_resp(bp, vf, msg_size); 992 993 /* Allow VF to set a valid MAC address, if trust is set to on. 994 * Or VF MAC address must first match MAC address in PF's context. 995 * Otherwise, it must match the VF MAC address if firmware spec >= 996 * 1.2.2 997 */ 998 if (bnxt_is_trusted_vf(bp, vf)) { 999 mac_ok = true; 1000 } else if (is_valid_ether_addr(vf->mac_addr)) { 1001 if (ether_addr_equal((const u8 *)req->l2_addr, vf->mac_addr)) 1002 mac_ok = true; 1003 } else if (is_valid_ether_addr(vf->vf_mac_addr)) { 1004 if (ether_addr_equal((const u8 *)req->l2_addr, vf->vf_mac_addr)) 1005 mac_ok = true; 1006 } else { 1007 /* There are two cases: 1008 * 1.If firmware spec < 0x10202,VF MAC address is not forwarded 1009 * to the PF and so it doesn't have to match 1010 * 2.Allow VF to modify it's own MAC when PF has not assigned a 1011 * valid MAC address and firmware spec >= 0x10202 1012 */ 1013 mac_ok = true; 1014 } 1015 if (mac_ok) 1016 return bnxt_hwrm_exec_fwd_resp(bp, vf, msg_size); 1017 return bnxt_hwrm_fwd_err_resp(bp, vf, msg_size); 1018 } 1019 1020 static int bnxt_vf_set_link(struct bnxt *bp, struct bnxt_vf_info *vf) 1021 { 1022 int rc = 0; 1023 1024 if (!(vf->flags & BNXT_VF_LINK_FORCED)) { 1025 /* real link */ 1026 rc = bnxt_hwrm_exec_fwd_resp( 1027 bp, vf, sizeof(struct hwrm_port_phy_qcfg_input)); 1028 } else { 1029 struct hwrm_port_phy_qcfg_output phy_qcfg_resp = {0}; 1030 struct hwrm_port_phy_qcfg_input *phy_qcfg_req; 1031 1032 phy_qcfg_req = 1033 (struct hwrm_port_phy_qcfg_input *)vf->hwrm_cmd_req_addr; 1034 mutex_lock(&bp->hwrm_cmd_lock); 1035 memcpy(&phy_qcfg_resp, &bp->link_info.phy_qcfg_resp, 1036 sizeof(phy_qcfg_resp)); 1037 mutex_unlock(&bp->hwrm_cmd_lock); 1038 phy_qcfg_resp.resp_len = cpu_to_le16(sizeof(phy_qcfg_resp)); 1039 phy_qcfg_resp.seq_id = phy_qcfg_req->seq_id; 1040 phy_qcfg_resp.valid = 1; 1041 1042 if (vf->flags & BNXT_VF_LINK_UP) { 1043 /* if physical link is down, force link up on VF */ 1044 if (phy_qcfg_resp.link != 1045 PORT_PHY_QCFG_RESP_LINK_LINK) { 1046 phy_qcfg_resp.link = 1047 PORT_PHY_QCFG_RESP_LINK_LINK; 1048 phy_qcfg_resp.link_speed = cpu_to_le16( 1049 PORT_PHY_QCFG_RESP_LINK_SPEED_10GB); 1050 phy_qcfg_resp.duplex_cfg = 1051 PORT_PHY_QCFG_RESP_DUPLEX_CFG_FULL; 1052 phy_qcfg_resp.duplex_state = 1053 PORT_PHY_QCFG_RESP_DUPLEX_STATE_FULL; 1054 phy_qcfg_resp.pause = 1055 (PORT_PHY_QCFG_RESP_PAUSE_TX | 1056 PORT_PHY_QCFG_RESP_PAUSE_RX); 1057 } 1058 } else { 1059 /* force link down */ 1060 phy_qcfg_resp.link = PORT_PHY_QCFG_RESP_LINK_NO_LINK; 1061 phy_qcfg_resp.link_speed = 0; 1062 phy_qcfg_resp.duplex_state = 1063 PORT_PHY_QCFG_RESP_DUPLEX_STATE_HALF; 1064 phy_qcfg_resp.pause = 0; 1065 } 1066 rc = bnxt_hwrm_fwd_resp(bp, vf, &phy_qcfg_resp, 1067 phy_qcfg_req->resp_addr, 1068 phy_qcfg_req->cmpl_ring, 1069 sizeof(phy_qcfg_resp)); 1070 } 1071 return rc; 1072 } 1073 1074 static int bnxt_vf_req_validate_snd(struct bnxt *bp, struct bnxt_vf_info *vf) 1075 { 1076 int rc = 0; 1077 struct input *encap_req = vf->hwrm_cmd_req_addr; 1078 u32 req_type = le16_to_cpu(encap_req->req_type); 1079 1080 switch (req_type) { 1081 case HWRM_FUNC_VF_CFG: 1082 rc = bnxt_vf_configure_mac(bp, vf); 1083 break; 1084 case HWRM_CFA_L2_FILTER_ALLOC: 1085 rc = bnxt_vf_validate_set_mac(bp, vf); 1086 break; 1087 case HWRM_FUNC_CFG: 1088 /* TODO Validate if VF is allowed to change mac address, 1089 * mtu, num of rings etc 1090 */ 1091 rc = bnxt_hwrm_exec_fwd_resp( 1092 bp, vf, sizeof(struct hwrm_func_cfg_input)); 1093 break; 1094 case HWRM_PORT_PHY_QCFG: 1095 rc = bnxt_vf_set_link(bp, vf); 1096 break; 1097 default: 1098 break; 1099 } 1100 return rc; 1101 } 1102 1103 void bnxt_hwrm_exec_fwd_req(struct bnxt *bp) 1104 { 1105 u32 i = 0, active_vfs = bp->pf.active_vfs, vf_id; 1106 1107 /* Scan through VF's and process commands */ 1108 while (1) { 1109 vf_id = find_next_bit(bp->pf.vf_event_bmap, active_vfs, i); 1110 if (vf_id >= active_vfs) 1111 break; 1112 1113 clear_bit(vf_id, bp->pf.vf_event_bmap); 1114 bnxt_vf_req_validate_snd(bp, &bp->pf.vf[vf_id]); 1115 i = vf_id + 1; 1116 } 1117 } 1118 1119 int bnxt_approve_mac(struct bnxt *bp, u8 *mac, bool strict) 1120 { 1121 struct hwrm_func_vf_cfg_input req = {0}; 1122 int rc = 0; 1123 1124 if (!BNXT_VF(bp)) 1125 return 0; 1126 1127 if (bp->hwrm_spec_code < 0x10202) { 1128 if (is_valid_ether_addr(bp->vf.mac_addr)) 1129 rc = -EADDRNOTAVAIL; 1130 goto mac_done; 1131 } 1132 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_CFG, -1, -1); 1133 req.enables = cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_DFLT_MAC_ADDR); 1134 memcpy(req.dflt_mac_addr, mac, ETH_ALEN); 1135 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 1136 mac_done: 1137 if (rc && strict) { 1138 rc = -EADDRNOTAVAIL; 1139 netdev_warn(bp->dev, "VF MAC address %pM not approved by the PF\n", 1140 mac); 1141 return rc; 1142 } 1143 return 0; 1144 } 1145 1146 void bnxt_update_vf_mac(struct bnxt *bp) 1147 { 1148 struct hwrm_func_qcaps_input req = {0}; 1149 struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr; 1150 bool inform_pf = false; 1151 1152 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1); 1153 req.fid = cpu_to_le16(0xffff); 1154 1155 mutex_lock(&bp->hwrm_cmd_lock); 1156 if (_hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT)) 1157 goto update_vf_mac_exit; 1158 1159 /* Store MAC address from the firmware. There are 2 cases: 1160 * 1. MAC address is valid. It is assigned from the PF and we 1161 * need to override the current VF MAC address with it. 1162 * 2. MAC address is zero. The VF will use a random MAC address by 1163 * default but the stored zero MAC will allow the VF user to change 1164 * the random MAC address using ndo_set_mac_address() if he wants. 1165 */ 1166 if (!ether_addr_equal(resp->mac_address, bp->vf.mac_addr)) { 1167 memcpy(bp->vf.mac_addr, resp->mac_address, ETH_ALEN); 1168 /* This means we are now using our own MAC address, let 1169 * the PF know about this MAC address. 1170 */ 1171 if (!is_valid_ether_addr(bp->vf.mac_addr)) 1172 inform_pf = true; 1173 } 1174 1175 /* overwrite netdev dev_addr with admin VF MAC */ 1176 if (is_valid_ether_addr(bp->vf.mac_addr)) 1177 memcpy(bp->dev->dev_addr, bp->vf.mac_addr, ETH_ALEN); 1178 update_vf_mac_exit: 1179 mutex_unlock(&bp->hwrm_cmd_lock); 1180 if (inform_pf) 1181 bnxt_approve_mac(bp, bp->dev->dev_addr, false); 1182 } 1183 1184 #else 1185 1186 int bnxt_cfg_hw_sriov(struct bnxt *bp, int *num_vfs, bool reset) 1187 { 1188 if (*num_vfs) 1189 return -EOPNOTSUPP; 1190 return 0; 1191 } 1192 1193 void bnxt_sriov_disable(struct bnxt *bp) 1194 { 1195 } 1196 1197 void bnxt_hwrm_exec_fwd_req(struct bnxt *bp) 1198 { 1199 netdev_err(bp->dev, "Invalid VF message received when SRIOV is not enable\n"); 1200 } 1201 1202 void bnxt_update_vf_mac(struct bnxt *bp) 1203 { 1204 } 1205 1206 int bnxt_approve_mac(struct bnxt *bp, u8 *mac, bool strict) 1207 { 1208 return 0; 1209 } 1210 #endif 1211