1 /* Broadcom NetXtreme-C/E network driver. 2 * 3 * Copyright (c) 2014-2016 Broadcom Corporation 4 * Copyright (c) 2016-2018 Broadcom Limited 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation. 9 */ 10 11 #include <linux/module.h> 12 #include <linux/pci.h> 13 #include <linux/netdevice.h> 14 #include <linux/if_vlan.h> 15 #include <linux/interrupt.h> 16 #include <linux/etherdevice.h> 17 #include "bnxt_hsi.h" 18 #include "bnxt.h" 19 #include "bnxt_ulp.h" 20 #include "bnxt_sriov.h" 21 #include "bnxt_vfr.h" 22 #include "bnxt_ethtool.h" 23 24 #ifdef CONFIG_BNXT_SRIOV 25 static int bnxt_hwrm_fwd_async_event_cmpl(struct bnxt *bp, 26 struct bnxt_vf_info *vf, u16 event_id) 27 { 28 struct hwrm_fwd_async_event_cmpl_output *resp = bp->hwrm_cmd_resp_addr; 29 struct hwrm_fwd_async_event_cmpl_input req = {0}; 30 struct hwrm_async_event_cmpl *async_cmpl; 31 int rc = 0; 32 33 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FWD_ASYNC_EVENT_CMPL, -1, -1); 34 if (vf) 35 req.encap_async_event_target_id = cpu_to_le16(vf->fw_fid); 36 else 37 /* broadcast this async event to all VFs */ 38 req.encap_async_event_target_id = cpu_to_le16(0xffff); 39 async_cmpl = (struct hwrm_async_event_cmpl *)req.encap_async_event_cmpl; 40 async_cmpl->type = cpu_to_le16(ASYNC_EVENT_CMPL_TYPE_HWRM_ASYNC_EVENT); 41 async_cmpl->event_id = cpu_to_le16(event_id); 42 43 mutex_lock(&bp->hwrm_cmd_lock); 44 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 45 46 if (rc) { 47 netdev_err(bp->dev, "hwrm_fwd_async_event_cmpl failed. rc:%d\n", 48 rc); 49 goto fwd_async_event_cmpl_exit; 50 } 51 52 if (resp->error_code) { 53 netdev_err(bp->dev, "hwrm_fwd_async_event_cmpl error %d\n", 54 resp->error_code); 55 rc = -1; 56 } 57 58 fwd_async_event_cmpl_exit: 59 mutex_unlock(&bp->hwrm_cmd_lock); 60 return rc; 61 } 62 63 static int bnxt_vf_ndo_prep(struct bnxt *bp, int vf_id) 64 { 65 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 66 netdev_err(bp->dev, "vf ndo called though PF is down\n"); 67 return -EINVAL; 68 } 69 if (!bp->pf.active_vfs) { 70 netdev_err(bp->dev, "vf ndo called though sriov is disabled\n"); 71 return -EINVAL; 72 } 73 if (vf_id >= bp->pf.active_vfs) { 74 netdev_err(bp->dev, "Invalid VF id %d\n", vf_id); 75 return -EINVAL; 76 } 77 return 0; 78 } 79 80 int bnxt_set_vf_spoofchk(struct net_device *dev, int vf_id, bool setting) 81 { 82 struct hwrm_func_cfg_input req = {0}; 83 struct bnxt *bp = netdev_priv(dev); 84 struct bnxt_vf_info *vf; 85 bool old_setting = false; 86 u32 func_flags; 87 int rc; 88 89 if (bp->hwrm_spec_code < 0x10701) 90 return -ENOTSUPP; 91 92 rc = bnxt_vf_ndo_prep(bp, vf_id); 93 if (rc) 94 return rc; 95 96 vf = &bp->pf.vf[vf_id]; 97 if (vf->flags & BNXT_VF_SPOOFCHK) 98 old_setting = true; 99 if (old_setting == setting) 100 return 0; 101 102 func_flags = vf->func_flags; 103 if (setting) 104 func_flags |= FUNC_CFG_REQ_FLAGS_SRC_MAC_ADDR_CHECK_ENABLE; 105 else 106 func_flags |= FUNC_CFG_REQ_FLAGS_SRC_MAC_ADDR_CHECK_DISABLE; 107 /*TODO: if the driver supports VLAN filter on guest VLAN, 108 * the spoof check should also include vlan anti-spoofing 109 */ 110 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1); 111 req.fid = cpu_to_le16(vf->fw_fid); 112 req.flags = cpu_to_le32(func_flags); 113 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 114 if (!rc) { 115 vf->func_flags = func_flags; 116 if (setting) 117 vf->flags |= BNXT_VF_SPOOFCHK; 118 else 119 vf->flags &= ~BNXT_VF_SPOOFCHK; 120 } 121 return rc; 122 } 123 124 int bnxt_set_vf_trust(struct net_device *dev, int vf_id, bool trusted) 125 { 126 struct bnxt *bp = netdev_priv(dev); 127 struct bnxt_vf_info *vf; 128 129 if (bnxt_vf_ndo_prep(bp, vf_id)) 130 return -EINVAL; 131 132 vf = &bp->pf.vf[vf_id]; 133 if (trusted) 134 vf->flags |= BNXT_VF_TRUST; 135 else 136 vf->flags &= ~BNXT_VF_TRUST; 137 138 return 0; 139 } 140 141 int bnxt_get_vf_config(struct net_device *dev, int vf_id, 142 struct ifla_vf_info *ivi) 143 { 144 struct bnxt *bp = netdev_priv(dev); 145 struct bnxt_vf_info *vf; 146 int rc; 147 148 rc = bnxt_vf_ndo_prep(bp, vf_id); 149 if (rc) 150 return rc; 151 152 ivi->vf = vf_id; 153 vf = &bp->pf.vf[vf_id]; 154 155 if (is_valid_ether_addr(vf->mac_addr)) 156 memcpy(&ivi->mac, vf->mac_addr, ETH_ALEN); 157 else 158 memcpy(&ivi->mac, vf->vf_mac_addr, ETH_ALEN); 159 ivi->max_tx_rate = vf->max_tx_rate; 160 ivi->min_tx_rate = vf->min_tx_rate; 161 ivi->vlan = vf->vlan; 162 if (vf->flags & BNXT_VF_QOS) 163 ivi->qos = vf->vlan >> VLAN_PRIO_SHIFT; 164 else 165 ivi->qos = 0; 166 ivi->spoofchk = !!(vf->flags & BNXT_VF_SPOOFCHK); 167 ivi->trusted = !!(vf->flags & BNXT_VF_TRUST); 168 if (!(vf->flags & BNXT_VF_LINK_FORCED)) 169 ivi->linkstate = IFLA_VF_LINK_STATE_AUTO; 170 else if (vf->flags & BNXT_VF_LINK_UP) 171 ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE; 172 else 173 ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE; 174 175 return 0; 176 } 177 178 int bnxt_set_vf_mac(struct net_device *dev, int vf_id, u8 *mac) 179 { 180 struct hwrm_func_cfg_input req = {0}; 181 struct bnxt *bp = netdev_priv(dev); 182 struct bnxt_vf_info *vf; 183 int rc; 184 185 rc = bnxt_vf_ndo_prep(bp, vf_id); 186 if (rc) 187 return rc; 188 /* reject bc or mc mac addr, zero mac addr means allow 189 * VF to use its own mac addr 190 */ 191 if (is_multicast_ether_addr(mac)) { 192 netdev_err(dev, "Invalid VF ethernet address\n"); 193 return -EINVAL; 194 } 195 vf = &bp->pf.vf[vf_id]; 196 197 memcpy(vf->mac_addr, mac, ETH_ALEN); 198 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1); 199 req.fid = cpu_to_le16(vf->fw_fid); 200 req.flags = cpu_to_le32(vf->func_flags); 201 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_MAC_ADDR); 202 memcpy(req.dflt_mac_addr, mac, ETH_ALEN); 203 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 204 } 205 206 int bnxt_set_vf_vlan(struct net_device *dev, int vf_id, u16 vlan_id, u8 qos, 207 __be16 vlan_proto) 208 { 209 struct hwrm_func_cfg_input req = {0}; 210 struct bnxt *bp = netdev_priv(dev); 211 struct bnxt_vf_info *vf; 212 u16 vlan_tag; 213 int rc; 214 215 if (bp->hwrm_spec_code < 0x10201) 216 return -ENOTSUPP; 217 218 if (vlan_proto != htons(ETH_P_8021Q)) 219 return -EPROTONOSUPPORT; 220 221 rc = bnxt_vf_ndo_prep(bp, vf_id); 222 if (rc) 223 return rc; 224 225 /* TODO: needed to implement proper handling of user priority, 226 * currently fail the command if there is valid priority 227 */ 228 if (vlan_id > 4095 || qos) 229 return -EINVAL; 230 231 vf = &bp->pf.vf[vf_id]; 232 vlan_tag = vlan_id; 233 if (vlan_tag == vf->vlan) 234 return 0; 235 236 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1); 237 req.fid = cpu_to_le16(vf->fw_fid); 238 req.flags = cpu_to_le32(vf->func_flags); 239 req.dflt_vlan = cpu_to_le16(vlan_tag); 240 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_VLAN); 241 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 242 if (!rc) 243 vf->vlan = vlan_tag; 244 return rc; 245 } 246 247 int bnxt_set_vf_bw(struct net_device *dev, int vf_id, int min_tx_rate, 248 int max_tx_rate) 249 { 250 struct hwrm_func_cfg_input req = {0}; 251 struct bnxt *bp = netdev_priv(dev); 252 struct bnxt_vf_info *vf; 253 u32 pf_link_speed; 254 int rc; 255 256 rc = bnxt_vf_ndo_prep(bp, vf_id); 257 if (rc) 258 return rc; 259 260 vf = &bp->pf.vf[vf_id]; 261 pf_link_speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed); 262 if (max_tx_rate > pf_link_speed) { 263 netdev_info(bp->dev, "max tx rate %d exceed PF link speed for VF %d\n", 264 max_tx_rate, vf_id); 265 return -EINVAL; 266 } 267 268 if (min_tx_rate > pf_link_speed || min_tx_rate > max_tx_rate) { 269 netdev_info(bp->dev, "min tx rate %d is invalid for VF %d\n", 270 min_tx_rate, vf_id); 271 return -EINVAL; 272 } 273 if (min_tx_rate == vf->min_tx_rate && max_tx_rate == vf->max_tx_rate) 274 return 0; 275 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1); 276 req.fid = cpu_to_le16(vf->fw_fid); 277 req.flags = cpu_to_le32(vf->func_flags); 278 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_MAX_BW); 279 req.max_bw = cpu_to_le32(max_tx_rate); 280 req.enables |= cpu_to_le32(FUNC_CFG_REQ_ENABLES_MIN_BW); 281 req.min_bw = cpu_to_le32(min_tx_rate); 282 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 283 if (!rc) { 284 vf->min_tx_rate = min_tx_rate; 285 vf->max_tx_rate = max_tx_rate; 286 } 287 return rc; 288 } 289 290 int bnxt_set_vf_link_state(struct net_device *dev, int vf_id, int link) 291 { 292 struct bnxt *bp = netdev_priv(dev); 293 struct bnxt_vf_info *vf; 294 int rc; 295 296 rc = bnxt_vf_ndo_prep(bp, vf_id); 297 if (rc) 298 return rc; 299 300 vf = &bp->pf.vf[vf_id]; 301 302 vf->flags &= ~(BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED); 303 switch (link) { 304 case IFLA_VF_LINK_STATE_AUTO: 305 vf->flags |= BNXT_VF_LINK_UP; 306 break; 307 case IFLA_VF_LINK_STATE_DISABLE: 308 vf->flags |= BNXT_VF_LINK_FORCED; 309 break; 310 case IFLA_VF_LINK_STATE_ENABLE: 311 vf->flags |= BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED; 312 break; 313 default: 314 netdev_err(bp->dev, "Invalid link option\n"); 315 rc = -EINVAL; 316 break; 317 } 318 if (vf->flags & (BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED)) 319 rc = bnxt_hwrm_fwd_async_event_cmpl(bp, vf, 320 ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE); 321 return rc; 322 } 323 324 static int bnxt_set_vf_attr(struct bnxt *bp, int num_vfs) 325 { 326 int i; 327 struct bnxt_vf_info *vf; 328 329 for (i = 0; i < num_vfs; i++) { 330 vf = &bp->pf.vf[i]; 331 memset(vf, 0, sizeof(*vf)); 332 } 333 return 0; 334 } 335 336 static int bnxt_hwrm_func_vf_resource_free(struct bnxt *bp, int num_vfs) 337 { 338 int i, rc = 0; 339 struct bnxt_pf_info *pf = &bp->pf; 340 struct hwrm_func_vf_resc_free_input req = {0}; 341 342 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_RESC_FREE, -1, -1); 343 344 mutex_lock(&bp->hwrm_cmd_lock); 345 for (i = pf->first_vf_id; i < pf->first_vf_id + num_vfs; i++) { 346 req.vf_id = cpu_to_le16(i); 347 rc = _hwrm_send_message(bp, &req, sizeof(req), 348 HWRM_CMD_TIMEOUT); 349 if (rc) 350 break; 351 } 352 mutex_unlock(&bp->hwrm_cmd_lock); 353 return rc; 354 } 355 356 static void bnxt_free_vf_resources(struct bnxt *bp) 357 { 358 struct pci_dev *pdev = bp->pdev; 359 int i; 360 361 kfree(bp->pf.vf_event_bmap); 362 bp->pf.vf_event_bmap = NULL; 363 364 for (i = 0; i < 4; i++) { 365 if (bp->pf.hwrm_cmd_req_addr[i]) { 366 dma_free_coherent(&pdev->dev, BNXT_PAGE_SIZE, 367 bp->pf.hwrm_cmd_req_addr[i], 368 bp->pf.hwrm_cmd_req_dma_addr[i]); 369 bp->pf.hwrm_cmd_req_addr[i] = NULL; 370 } 371 } 372 373 kfree(bp->pf.vf); 374 bp->pf.vf = NULL; 375 } 376 377 static int bnxt_alloc_vf_resources(struct bnxt *bp, int num_vfs) 378 { 379 struct pci_dev *pdev = bp->pdev; 380 u32 nr_pages, size, i, j, k = 0; 381 382 bp->pf.vf = kcalloc(num_vfs, sizeof(struct bnxt_vf_info), GFP_KERNEL); 383 if (!bp->pf.vf) 384 return -ENOMEM; 385 386 bnxt_set_vf_attr(bp, num_vfs); 387 388 size = num_vfs * BNXT_HWRM_REQ_MAX_SIZE; 389 nr_pages = size / BNXT_PAGE_SIZE; 390 if (size & (BNXT_PAGE_SIZE - 1)) 391 nr_pages++; 392 393 for (i = 0; i < nr_pages; i++) { 394 bp->pf.hwrm_cmd_req_addr[i] = 395 dma_alloc_coherent(&pdev->dev, BNXT_PAGE_SIZE, 396 &bp->pf.hwrm_cmd_req_dma_addr[i], 397 GFP_KERNEL); 398 399 if (!bp->pf.hwrm_cmd_req_addr[i]) 400 return -ENOMEM; 401 402 for (j = 0; j < BNXT_HWRM_REQS_PER_PAGE && k < num_vfs; j++) { 403 struct bnxt_vf_info *vf = &bp->pf.vf[k]; 404 405 vf->hwrm_cmd_req_addr = bp->pf.hwrm_cmd_req_addr[i] + 406 j * BNXT_HWRM_REQ_MAX_SIZE; 407 vf->hwrm_cmd_req_dma_addr = 408 bp->pf.hwrm_cmd_req_dma_addr[i] + j * 409 BNXT_HWRM_REQ_MAX_SIZE; 410 k++; 411 } 412 } 413 414 /* Max 128 VF's */ 415 bp->pf.vf_event_bmap = kzalloc(16, GFP_KERNEL); 416 if (!bp->pf.vf_event_bmap) 417 return -ENOMEM; 418 419 bp->pf.hwrm_cmd_req_pages = nr_pages; 420 return 0; 421 } 422 423 static int bnxt_hwrm_func_buf_rgtr(struct bnxt *bp) 424 { 425 struct hwrm_func_buf_rgtr_input req = {0}; 426 427 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_BUF_RGTR, -1, -1); 428 429 req.req_buf_num_pages = cpu_to_le16(bp->pf.hwrm_cmd_req_pages); 430 req.req_buf_page_size = cpu_to_le16(BNXT_PAGE_SHIFT); 431 req.req_buf_len = cpu_to_le16(BNXT_HWRM_REQ_MAX_SIZE); 432 req.req_buf_page_addr0 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[0]); 433 req.req_buf_page_addr1 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[1]); 434 req.req_buf_page_addr2 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[2]); 435 req.req_buf_page_addr3 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[3]); 436 437 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 438 } 439 440 /* Only called by PF to reserve resources for VFs, returns actual number of 441 * VFs configured, or < 0 on error. 442 */ 443 static int bnxt_hwrm_func_vf_resc_cfg(struct bnxt *bp, int num_vfs) 444 { 445 struct hwrm_func_vf_resource_cfg_input req = {0}; 446 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 447 u16 vf_tx_rings, vf_rx_rings, vf_cp_rings; 448 u16 vf_stat_ctx, vf_vnics, vf_ring_grps; 449 struct bnxt_pf_info *pf = &bp->pf; 450 int i, rc = 0, min = 1; 451 452 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_RESOURCE_CFG, -1, -1); 453 454 vf_cp_rings = bnxt_get_max_func_cp_rings_for_en(bp) - bp->cp_nr_rings; 455 vf_stat_ctx = hw_resc->max_stat_ctxs - bp->num_stat_ctxs; 456 if (bp->flags & BNXT_FLAG_AGG_RINGS) 457 vf_rx_rings = hw_resc->max_rx_rings - bp->rx_nr_rings * 2; 458 else 459 vf_rx_rings = hw_resc->max_rx_rings - bp->rx_nr_rings; 460 vf_ring_grps = hw_resc->max_hw_ring_grps - bp->rx_nr_rings; 461 vf_tx_rings = hw_resc->max_tx_rings - bp->tx_nr_rings; 462 vf_vnics = hw_resc->max_vnics - bp->nr_vnics; 463 vf_vnics = min_t(u16, vf_vnics, vf_rx_rings); 464 465 req.min_rsscos_ctx = cpu_to_le16(BNXT_VF_MIN_RSS_CTX); 466 req.max_rsscos_ctx = cpu_to_le16(BNXT_VF_MAX_RSS_CTX); 467 if (pf->vf_resv_strategy == BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC) { 468 min = 0; 469 req.min_rsscos_ctx = cpu_to_le16(min); 470 } 471 if (pf->vf_resv_strategy == BNXT_VF_RESV_STRATEGY_MINIMAL || 472 pf->vf_resv_strategy == BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC) { 473 req.min_cmpl_rings = cpu_to_le16(min); 474 req.min_tx_rings = cpu_to_le16(min); 475 req.min_rx_rings = cpu_to_le16(min); 476 req.min_l2_ctxs = cpu_to_le16(min); 477 req.min_vnics = cpu_to_le16(min); 478 req.min_stat_ctx = cpu_to_le16(min); 479 req.min_hw_ring_grps = cpu_to_le16(min); 480 } else { 481 vf_cp_rings /= num_vfs; 482 vf_tx_rings /= num_vfs; 483 vf_rx_rings /= num_vfs; 484 vf_vnics /= num_vfs; 485 vf_stat_ctx /= num_vfs; 486 vf_ring_grps /= num_vfs; 487 488 req.min_cmpl_rings = cpu_to_le16(vf_cp_rings); 489 req.min_tx_rings = cpu_to_le16(vf_tx_rings); 490 req.min_rx_rings = cpu_to_le16(vf_rx_rings); 491 req.min_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX); 492 req.min_vnics = cpu_to_le16(vf_vnics); 493 req.min_stat_ctx = cpu_to_le16(vf_stat_ctx); 494 req.min_hw_ring_grps = cpu_to_le16(vf_ring_grps); 495 } 496 req.max_cmpl_rings = cpu_to_le16(vf_cp_rings); 497 req.max_tx_rings = cpu_to_le16(vf_tx_rings); 498 req.max_rx_rings = cpu_to_le16(vf_rx_rings); 499 req.max_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX); 500 req.max_vnics = cpu_to_le16(vf_vnics); 501 req.max_stat_ctx = cpu_to_le16(vf_stat_ctx); 502 req.max_hw_ring_grps = cpu_to_le16(vf_ring_grps); 503 504 mutex_lock(&bp->hwrm_cmd_lock); 505 for (i = 0; i < num_vfs; i++) { 506 req.vf_id = cpu_to_le16(pf->first_vf_id + i); 507 rc = _hwrm_send_message(bp, &req, sizeof(req), 508 HWRM_CMD_TIMEOUT); 509 if (rc) { 510 rc = -ENOMEM; 511 break; 512 } 513 pf->active_vfs = i + 1; 514 pf->vf[i].fw_fid = pf->first_vf_id + i; 515 } 516 mutex_unlock(&bp->hwrm_cmd_lock); 517 if (pf->active_vfs) { 518 u16 n = pf->active_vfs; 519 520 hw_resc->max_tx_rings -= le16_to_cpu(req.min_tx_rings) * n; 521 hw_resc->max_rx_rings -= le16_to_cpu(req.min_rx_rings) * n; 522 hw_resc->max_hw_ring_grps -= le16_to_cpu(req.min_hw_ring_grps) * 523 n; 524 hw_resc->max_cp_rings -= le16_to_cpu(req.min_cmpl_rings) * n; 525 hw_resc->max_rsscos_ctxs -= pf->active_vfs; 526 hw_resc->max_stat_ctxs -= le16_to_cpu(req.min_stat_ctx) * n; 527 hw_resc->max_vnics -= le16_to_cpu(req.min_vnics) * n; 528 529 rc = pf->active_vfs; 530 } 531 return rc; 532 } 533 534 /* Only called by PF to reserve resources for VFs, returns actual number of 535 * VFs configured, or < 0 on error. 536 */ 537 static int bnxt_hwrm_func_cfg(struct bnxt *bp, int num_vfs) 538 { 539 u32 rc = 0, mtu, i; 540 u16 vf_tx_rings, vf_rx_rings, vf_cp_rings, vf_stat_ctx, vf_vnics; 541 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 542 u16 vf_ring_grps, max_stat_ctxs; 543 struct hwrm_func_cfg_input req = {0}; 544 struct bnxt_pf_info *pf = &bp->pf; 545 int total_vf_tx_rings = 0; 546 547 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1); 548 549 max_stat_ctxs = hw_resc->max_stat_ctxs; 550 551 /* Remaining rings are distributed equally amongs VF's for now */ 552 vf_cp_rings = (bnxt_get_max_func_cp_rings_for_en(bp) - 553 bp->cp_nr_rings) / num_vfs; 554 vf_stat_ctx = (max_stat_ctxs - bp->num_stat_ctxs) / num_vfs; 555 if (bp->flags & BNXT_FLAG_AGG_RINGS) 556 vf_rx_rings = (hw_resc->max_rx_rings - bp->rx_nr_rings * 2) / 557 num_vfs; 558 else 559 vf_rx_rings = (hw_resc->max_rx_rings - bp->rx_nr_rings) / 560 num_vfs; 561 vf_ring_grps = (hw_resc->max_hw_ring_grps - bp->rx_nr_rings) / num_vfs; 562 vf_tx_rings = (hw_resc->max_tx_rings - bp->tx_nr_rings) / num_vfs; 563 vf_vnics = (hw_resc->max_vnics - bp->nr_vnics) / num_vfs; 564 vf_vnics = min_t(u16, vf_vnics, vf_rx_rings); 565 566 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_MTU | 567 FUNC_CFG_REQ_ENABLES_MRU | 568 FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS | 569 FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS | 570 FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS | 571 FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS | 572 FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS | 573 FUNC_CFG_REQ_ENABLES_NUM_L2_CTXS | 574 FUNC_CFG_REQ_ENABLES_NUM_VNICS | 575 FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS); 576 577 mtu = bp->dev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 578 req.mru = cpu_to_le16(mtu); 579 req.mtu = cpu_to_le16(mtu); 580 581 req.num_rsscos_ctxs = cpu_to_le16(1); 582 req.num_cmpl_rings = cpu_to_le16(vf_cp_rings); 583 req.num_tx_rings = cpu_to_le16(vf_tx_rings); 584 req.num_rx_rings = cpu_to_le16(vf_rx_rings); 585 req.num_hw_ring_grps = cpu_to_le16(vf_ring_grps); 586 req.num_l2_ctxs = cpu_to_le16(4); 587 588 req.num_vnics = cpu_to_le16(vf_vnics); 589 /* FIXME spec currently uses 1 bit for stats ctx */ 590 req.num_stat_ctxs = cpu_to_le16(vf_stat_ctx); 591 592 mutex_lock(&bp->hwrm_cmd_lock); 593 for (i = 0; i < num_vfs; i++) { 594 int vf_tx_rsvd = vf_tx_rings; 595 596 req.fid = cpu_to_le16(pf->first_vf_id + i); 597 rc = _hwrm_send_message(bp, &req, sizeof(req), 598 HWRM_CMD_TIMEOUT); 599 if (rc) 600 break; 601 pf->active_vfs = i + 1; 602 pf->vf[i].fw_fid = le16_to_cpu(req.fid); 603 rc = __bnxt_hwrm_get_tx_rings(bp, pf->vf[i].fw_fid, 604 &vf_tx_rsvd); 605 if (rc) 606 break; 607 total_vf_tx_rings += vf_tx_rsvd; 608 } 609 mutex_unlock(&bp->hwrm_cmd_lock); 610 if (rc) 611 rc = -ENOMEM; 612 if (pf->active_vfs) { 613 hw_resc->max_tx_rings -= total_vf_tx_rings; 614 hw_resc->max_rx_rings -= vf_rx_rings * num_vfs; 615 hw_resc->max_hw_ring_grps -= vf_ring_grps * num_vfs; 616 hw_resc->max_cp_rings -= vf_cp_rings * num_vfs; 617 hw_resc->max_rsscos_ctxs -= num_vfs; 618 hw_resc->max_stat_ctxs -= vf_stat_ctx * num_vfs; 619 hw_resc->max_vnics -= vf_vnics * num_vfs; 620 rc = pf->active_vfs; 621 } 622 return rc; 623 } 624 625 static int bnxt_func_cfg(struct bnxt *bp, int num_vfs) 626 { 627 if (BNXT_NEW_RM(bp)) 628 return bnxt_hwrm_func_vf_resc_cfg(bp, num_vfs); 629 else 630 return bnxt_hwrm_func_cfg(bp, num_vfs); 631 } 632 633 static int bnxt_sriov_enable(struct bnxt *bp, int *num_vfs) 634 { 635 int rc = 0, vfs_supported; 636 int min_rx_rings, min_tx_rings, min_rss_ctxs; 637 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 638 int tx_ok = 0, rx_ok = 0, rss_ok = 0; 639 int avail_cp, avail_stat; 640 641 /* Check if we can enable requested num of vf's. At a mininum 642 * we require 1 RX 1 TX rings for each VF. In this minimum conf 643 * features like TPA will not be available. 644 */ 645 vfs_supported = *num_vfs; 646 647 avail_cp = bnxt_get_max_func_cp_rings_for_en(bp) - bp->cp_nr_rings; 648 avail_stat = hw_resc->max_stat_ctxs - bp->num_stat_ctxs; 649 avail_cp = min_t(int, avail_cp, avail_stat); 650 651 while (vfs_supported) { 652 min_rx_rings = vfs_supported; 653 min_tx_rings = vfs_supported; 654 min_rss_ctxs = vfs_supported; 655 656 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 657 if (hw_resc->max_rx_rings - bp->rx_nr_rings * 2 >= 658 min_rx_rings) 659 rx_ok = 1; 660 } else { 661 if (hw_resc->max_rx_rings - bp->rx_nr_rings >= 662 min_rx_rings) 663 rx_ok = 1; 664 } 665 if (hw_resc->max_vnics - bp->nr_vnics < min_rx_rings || 666 avail_cp < min_rx_rings) 667 rx_ok = 0; 668 669 if (hw_resc->max_tx_rings - bp->tx_nr_rings >= min_tx_rings && 670 avail_cp >= min_tx_rings) 671 tx_ok = 1; 672 673 if (hw_resc->max_rsscos_ctxs - bp->rsscos_nr_ctxs >= 674 min_rss_ctxs) 675 rss_ok = 1; 676 677 if (tx_ok && rx_ok && rss_ok) 678 break; 679 680 vfs_supported--; 681 } 682 683 if (!vfs_supported) { 684 netdev_err(bp->dev, "Cannot enable VF's as all resources are used by PF\n"); 685 return -EINVAL; 686 } 687 688 if (vfs_supported != *num_vfs) { 689 netdev_info(bp->dev, "Requested VFs %d, can enable %d\n", 690 *num_vfs, vfs_supported); 691 *num_vfs = vfs_supported; 692 } 693 694 rc = bnxt_alloc_vf_resources(bp, *num_vfs); 695 if (rc) 696 goto err_out1; 697 698 /* Reserve resources for VFs */ 699 rc = bnxt_func_cfg(bp, *num_vfs); 700 if (rc != *num_vfs) { 701 if (rc <= 0) { 702 netdev_warn(bp->dev, "Unable to reserve resources for SRIOV.\n"); 703 *num_vfs = 0; 704 goto err_out2; 705 } 706 netdev_warn(bp->dev, "Only able to reserve resources for %d VFs.\n", rc); 707 *num_vfs = rc; 708 } 709 710 /* Register buffers for VFs */ 711 rc = bnxt_hwrm_func_buf_rgtr(bp); 712 if (rc) 713 goto err_out2; 714 715 bnxt_ulp_sriov_cfg(bp, *num_vfs); 716 717 rc = pci_enable_sriov(bp->pdev, *num_vfs); 718 if (rc) 719 goto err_out2; 720 721 return 0; 722 723 err_out2: 724 /* Free the resources reserved for various VF's */ 725 bnxt_hwrm_func_vf_resource_free(bp, *num_vfs); 726 727 err_out1: 728 bnxt_free_vf_resources(bp); 729 730 return rc; 731 } 732 733 void bnxt_sriov_disable(struct bnxt *bp) 734 { 735 u16 num_vfs = pci_num_vf(bp->pdev); 736 737 if (!num_vfs) 738 return; 739 740 /* synchronize VF and VF-rep create and destroy */ 741 mutex_lock(&bp->sriov_lock); 742 bnxt_vf_reps_destroy(bp); 743 744 if (pci_vfs_assigned(bp->pdev)) { 745 bnxt_hwrm_fwd_async_event_cmpl( 746 bp, NULL, ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD); 747 netdev_warn(bp->dev, "Unable to free %d VFs because some are assigned to VMs.\n", 748 num_vfs); 749 } else { 750 pci_disable_sriov(bp->pdev); 751 /* Free the HW resources reserved for various VF's */ 752 bnxt_hwrm_func_vf_resource_free(bp, num_vfs); 753 } 754 mutex_unlock(&bp->sriov_lock); 755 756 bnxt_free_vf_resources(bp); 757 758 bp->pf.active_vfs = 0; 759 /* Reclaim all resources for the PF. */ 760 rtnl_lock(); 761 bnxt_restore_pf_fw_resources(bp); 762 rtnl_unlock(); 763 764 bnxt_ulp_sriov_cfg(bp, 0); 765 } 766 767 int bnxt_sriov_configure(struct pci_dev *pdev, int num_vfs) 768 { 769 struct net_device *dev = pci_get_drvdata(pdev); 770 struct bnxt *bp = netdev_priv(dev); 771 772 if (!(bp->flags & BNXT_FLAG_USING_MSIX)) { 773 netdev_warn(dev, "Not allow SRIOV if the irq mode is not MSIX\n"); 774 return 0; 775 } 776 777 rtnl_lock(); 778 if (!netif_running(dev)) { 779 netdev_warn(dev, "Reject SRIOV config request since if is down!\n"); 780 rtnl_unlock(); 781 return 0; 782 } 783 bp->sriov_cfg = true; 784 rtnl_unlock(); 785 786 if (pci_vfs_assigned(bp->pdev)) { 787 netdev_warn(dev, "Unable to configure SRIOV since some VFs are assigned to VMs.\n"); 788 num_vfs = 0; 789 goto sriov_cfg_exit; 790 } 791 792 /* Check if enabled VFs is same as requested */ 793 if (num_vfs && num_vfs == bp->pf.active_vfs) 794 goto sriov_cfg_exit; 795 796 /* if there are previous existing VFs, clean them up */ 797 bnxt_sriov_disable(bp); 798 if (!num_vfs) 799 goto sriov_cfg_exit; 800 801 bnxt_sriov_enable(bp, &num_vfs); 802 803 sriov_cfg_exit: 804 bp->sriov_cfg = false; 805 wake_up(&bp->sriov_cfg_wait); 806 807 return num_vfs; 808 } 809 810 static int bnxt_hwrm_fwd_resp(struct bnxt *bp, struct bnxt_vf_info *vf, 811 void *encap_resp, __le64 encap_resp_addr, 812 __le16 encap_resp_cpr, u32 msg_size) 813 { 814 int rc = 0; 815 struct hwrm_fwd_resp_input req = {0}; 816 struct hwrm_fwd_resp_output *resp = bp->hwrm_cmd_resp_addr; 817 818 if (BNXT_FWD_RESP_SIZE_ERR(msg_size)) 819 return -EINVAL; 820 821 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FWD_RESP, -1, -1); 822 823 /* Set the new target id */ 824 req.target_id = cpu_to_le16(vf->fw_fid); 825 req.encap_resp_target_id = cpu_to_le16(vf->fw_fid); 826 req.encap_resp_len = cpu_to_le16(msg_size); 827 req.encap_resp_addr = encap_resp_addr; 828 req.encap_resp_cmpl_ring = encap_resp_cpr; 829 memcpy(req.encap_resp, encap_resp, msg_size); 830 831 mutex_lock(&bp->hwrm_cmd_lock); 832 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 833 834 if (rc) { 835 netdev_err(bp->dev, "hwrm_fwd_resp failed. rc:%d\n", rc); 836 goto fwd_resp_exit; 837 } 838 839 if (resp->error_code) { 840 netdev_err(bp->dev, "hwrm_fwd_resp error %d\n", 841 resp->error_code); 842 rc = -1; 843 } 844 845 fwd_resp_exit: 846 mutex_unlock(&bp->hwrm_cmd_lock); 847 return rc; 848 } 849 850 static int bnxt_hwrm_fwd_err_resp(struct bnxt *bp, struct bnxt_vf_info *vf, 851 u32 msg_size) 852 { 853 int rc = 0; 854 struct hwrm_reject_fwd_resp_input req = {0}; 855 struct hwrm_reject_fwd_resp_output *resp = bp->hwrm_cmd_resp_addr; 856 857 if (BNXT_REJ_FWD_RESP_SIZE_ERR(msg_size)) 858 return -EINVAL; 859 860 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_REJECT_FWD_RESP, -1, -1); 861 /* Set the new target id */ 862 req.target_id = cpu_to_le16(vf->fw_fid); 863 req.encap_resp_target_id = cpu_to_le16(vf->fw_fid); 864 memcpy(req.encap_request, vf->hwrm_cmd_req_addr, msg_size); 865 866 mutex_lock(&bp->hwrm_cmd_lock); 867 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 868 869 if (rc) { 870 netdev_err(bp->dev, "hwrm_fwd_err_resp failed. rc:%d\n", rc); 871 goto fwd_err_resp_exit; 872 } 873 874 if (resp->error_code) { 875 netdev_err(bp->dev, "hwrm_fwd_err_resp error %d\n", 876 resp->error_code); 877 rc = -1; 878 } 879 880 fwd_err_resp_exit: 881 mutex_unlock(&bp->hwrm_cmd_lock); 882 return rc; 883 } 884 885 static int bnxt_hwrm_exec_fwd_resp(struct bnxt *bp, struct bnxt_vf_info *vf, 886 u32 msg_size) 887 { 888 int rc = 0; 889 struct hwrm_exec_fwd_resp_input req = {0}; 890 struct hwrm_exec_fwd_resp_output *resp = bp->hwrm_cmd_resp_addr; 891 892 if (BNXT_EXEC_FWD_RESP_SIZE_ERR(msg_size)) 893 return -EINVAL; 894 895 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_EXEC_FWD_RESP, -1, -1); 896 /* Set the new target id */ 897 req.target_id = cpu_to_le16(vf->fw_fid); 898 req.encap_resp_target_id = cpu_to_le16(vf->fw_fid); 899 memcpy(req.encap_request, vf->hwrm_cmd_req_addr, msg_size); 900 901 mutex_lock(&bp->hwrm_cmd_lock); 902 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 903 904 if (rc) { 905 netdev_err(bp->dev, "hwrm_exec_fw_resp failed. rc:%d\n", rc); 906 goto exec_fwd_resp_exit; 907 } 908 909 if (resp->error_code) { 910 netdev_err(bp->dev, "hwrm_exec_fw_resp error %d\n", 911 resp->error_code); 912 rc = -1; 913 } 914 915 exec_fwd_resp_exit: 916 mutex_unlock(&bp->hwrm_cmd_lock); 917 return rc; 918 } 919 920 static int bnxt_vf_configure_mac(struct bnxt *bp, struct bnxt_vf_info *vf) 921 { 922 u32 msg_size = sizeof(struct hwrm_func_vf_cfg_input); 923 struct hwrm_func_vf_cfg_input *req = 924 (struct hwrm_func_vf_cfg_input *)vf->hwrm_cmd_req_addr; 925 926 /* Allow VF to set a valid MAC address, if trust is set to on or 927 * if the PF assigned MAC address is zero 928 */ 929 if (req->enables & cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_DFLT_MAC_ADDR)) { 930 if (is_valid_ether_addr(req->dflt_mac_addr) && 931 ((vf->flags & BNXT_VF_TRUST) || 932 !is_valid_ether_addr(vf->mac_addr) || 933 ether_addr_equal(req->dflt_mac_addr, vf->mac_addr))) { 934 ether_addr_copy(vf->vf_mac_addr, req->dflt_mac_addr); 935 return bnxt_hwrm_exec_fwd_resp(bp, vf, msg_size); 936 } 937 return bnxt_hwrm_fwd_err_resp(bp, vf, msg_size); 938 } 939 return bnxt_hwrm_exec_fwd_resp(bp, vf, msg_size); 940 } 941 942 static int bnxt_vf_validate_set_mac(struct bnxt *bp, struct bnxt_vf_info *vf) 943 { 944 u32 msg_size = sizeof(struct hwrm_cfa_l2_filter_alloc_input); 945 struct hwrm_cfa_l2_filter_alloc_input *req = 946 (struct hwrm_cfa_l2_filter_alloc_input *)vf->hwrm_cmd_req_addr; 947 bool mac_ok = false; 948 949 if (!is_valid_ether_addr((const u8 *)req->l2_addr)) 950 return bnxt_hwrm_fwd_err_resp(bp, vf, msg_size); 951 952 /* Allow VF to set a valid MAC address, if trust is set to on. 953 * Or VF MAC address must first match MAC address in PF's context. 954 * Otherwise, it must match the VF MAC address if firmware spec >= 955 * 1.2.2 956 */ 957 if (vf->flags & BNXT_VF_TRUST) { 958 mac_ok = true; 959 } else if (is_valid_ether_addr(vf->mac_addr)) { 960 if (ether_addr_equal((const u8 *)req->l2_addr, vf->mac_addr)) 961 mac_ok = true; 962 } else if (is_valid_ether_addr(vf->vf_mac_addr)) { 963 if (ether_addr_equal((const u8 *)req->l2_addr, vf->vf_mac_addr)) 964 mac_ok = true; 965 } else { 966 /* There are two cases: 967 * 1.If firmware spec < 0x10202,VF MAC address is not forwarded 968 * to the PF and so it doesn't have to match 969 * 2.Allow VF to modify it's own MAC when PF has not assigned a 970 * valid MAC address and firmware spec >= 0x10202 971 */ 972 mac_ok = true; 973 } 974 if (mac_ok) 975 return bnxt_hwrm_exec_fwd_resp(bp, vf, msg_size); 976 return bnxt_hwrm_fwd_err_resp(bp, vf, msg_size); 977 } 978 979 static int bnxt_vf_set_link(struct bnxt *bp, struct bnxt_vf_info *vf) 980 { 981 int rc = 0; 982 983 if (!(vf->flags & BNXT_VF_LINK_FORCED)) { 984 /* real link */ 985 rc = bnxt_hwrm_exec_fwd_resp( 986 bp, vf, sizeof(struct hwrm_port_phy_qcfg_input)); 987 } else { 988 struct hwrm_port_phy_qcfg_output phy_qcfg_resp; 989 struct hwrm_port_phy_qcfg_input *phy_qcfg_req; 990 991 phy_qcfg_req = 992 (struct hwrm_port_phy_qcfg_input *)vf->hwrm_cmd_req_addr; 993 mutex_lock(&bp->hwrm_cmd_lock); 994 memcpy(&phy_qcfg_resp, &bp->link_info.phy_qcfg_resp, 995 sizeof(phy_qcfg_resp)); 996 mutex_unlock(&bp->hwrm_cmd_lock); 997 phy_qcfg_resp.resp_len = cpu_to_le16(sizeof(phy_qcfg_resp)); 998 phy_qcfg_resp.seq_id = phy_qcfg_req->seq_id; 999 phy_qcfg_resp.valid = 1; 1000 1001 if (vf->flags & BNXT_VF_LINK_UP) { 1002 /* if physical link is down, force link up on VF */ 1003 if (phy_qcfg_resp.link != 1004 PORT_PHY_QCFG_RESP_LINK_LINK) { 1005 phy_qcfg_resp.link = 1006 PORT_PHY_QCFG_RESP_LINK_LINK; 1007 phy_qcfg_resp.link_speed = cpu_to_le16( 1008 PORT_PHY_QCFG_RESP_LINK_SPEED_10GB); 1009 phy_qcfg_resp.duplex_cfg = 1010 PORT_PHY_QCFG_RESP_DUPLEX_CFG_FULL; 1011 phy_qcfg_resp.duplex_state = 1012 PORT_PHY_QCFG_RESP_DUPLEX_STATE_FULL; 1013 phy_qcfg_resp.pause = 1014 (PORT_PHY_QCFG_RESP_PAUSE_TX | 1015 PORT_PHY_QCFG_RESP_PAUSE_RX); 1016 } 1017 } else { 1018 /* force link down */ 1019 phy_qcfg_resp.link = PORT_PHY_QCFG_RESP_LINK_NO_LINK; 1020 phy_qcfg_resp.link_speed = 0; 1021 phy_qcfg_resp.duplex_state = 1022 PORT_PHY_QCFG_RESP_DUPLEX_STATE_HALF; 1023 phy_qcfg_resp.pause = 0; 1024 } 1025 rc = bnxt_hwrm_fwd_resp(bp, vf, &phy_qcfg_resp, 1026 phy_qcfg_req->resp_addr, 1027 phy_qcfg_req->cmpl_ring, 1028 sizeof(phy_qcfg_resp)); 1029 } 1030 return rc; 1031 } 1032 1033 static int bnxt_vf_req_validate_snd(struct bnxt *bp, struct bnxt_vf_info *vf) 1034 { 1035 int rc = 0; 1036 struct input *encap_req = vf->hwrm_cmd_req_addr; 1037 u32 req_type = le16_to_cpu(encap_req->req_type); 1038 1039 switch (req_type) { 1040 case HWRM_FUNC_VF_CFG: 1041 rc = bnxt_vf_configure_mac(bp, vf); 1042 break; 1043 case HWRM_CFA_L2_FILTER_ALLOC: 1044 rc = bnxt_vf_validate_set_mac(bp, vf); 1045 break; 1046 case HWRM_FUNC_CFG: 1047 /* TODO Validate if VF is allowed to change mac address, 1048 * mtu, num of rings etc 1049 */ 1050 rc = bnxt_hwrm_exec_fwd_resp( 1051 bp, vf, sizeof(struct hwrm_func_cfg_input)); 1052 break; 1053 case HWRM_PORT_PHY_QCFG: 1054 rc = bnxt_vf_set_link(bp, vf); 1055 break; 1056 default: 1057 break; 1058 } 1059 return rc; 1060 } 1061 1062 void bnxt_hwrm_exec_fwd_req(struct bnxt *bp) 1063 { 1064 u32 i = 0, active_vfs = bp->pf.active_vfs, vf_id; 1065 1066 /* Scan through VF's and process commands */ 1067 while (1) { 1068 vf_id = find_next_bit(bp->pf.vf_event_bmap, active_vfs, i); 1069 if (vf_id >= active_vfs) 1070 break; 1071 1072 clear_bit(vf_id, bp->pf.vf_event_bmap); 1073 bnxt_vf_req_validate_snd(bp, &bp->pf.vf[vf_id]); 1074 i = vf_id + 1; 1075 } 1076 } 1077 1078 void bnxt_update_vf_mac(struct bnxt *bp) 1079 { 1080 struct hwrm_func_qcaps_input req = {0}; 1081 struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr; 1082 1083 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1); 1084 req.fid = cpu_to_le16(0xffff); 1085 1086 mutex_lock(&bp->hwrm_cmd_lock); 1087 if (_hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT)) 1088 goto update_vf_mac_exit; 1089 1090 /* Store MAC address from the firmware. There are 2 cases: 1091 * 1. MAC address is valid. It is assigned from the PF and we 1092 * need to override the current VF MAC address with it. 1093 * 2. MAC address is zero. The VF will use a random MAC address by 1094 * default but the stored zero MAC will allow the VF user to change 1095 * the random MAC address using ndo_set_mac_address() if he wants. 1096 */ 1097 if (!ether_addr_equal(resp->mac_address, bp->vf.mac_addr)) 1098 memcpy(bp->vf.mac_addr, resp->mac_address, ETH_ALEN); 1099 1100 /* overwrite netdev dev_addr with admin VF MAC */ 1101 if (is_valid_ether_addr(bp->vf.mac_addr)) 1102 memcpy(bp->dev->dev_addr, bp->vf.mac_addr, ETH_ALEN); 1103 update_vf_mac_exit: 1104 mutex_unlock(&bp->hwrm_cmd_lock); 1105 } 1106 1107 int bnxt_approve_mac(struct bnxt *bp, u8 *mac, bool strict) 1108 { 1109 struct hwrm_func_vf_cfg_input req = {0}; 1110 int rc = 0; 1111 1112 if (!BNXT_VF(bp)) 1113 return 0; 1114 1115 if (bp->hwrm_spec_code < 0x10202) { 1116 if (is_valid_ether_addr(bp->vf.mac_addr)) 1117 rc = -EADDRNOTAVAIL; 1118 goto mac_done; 1119 } 1120 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_CFG, -1, -1); 1121 req.enables = cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_DFLT_MAC_ADDR); 1122 memcpy(req.dflt_mac_addr, mac, ETH_ALEN); 1123 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 1124 mac_done: 1125 if (rc && strict) { 1126 rc = -EADDRNOTAVAIL; 1127 netdev_warn(bp->dev, "VF MAC address %pM not approved by the PF\n", 1128 mac); 1129 return rc; 1130 } 1131 return 0; 1132 } 1133 #else 1134 1135 void bnxt_sriov_disable(struct bnxt *bp) 1136 { 1137 } 1138 1139 void bnxt_hwrm_exec_fwd_req(struct bnxt *bp) 1140 { 1141 netdev_err(bp->dev, "Invalid VF message received when SRIOV is not enable\n"); 1142 } 1143 1144 void bnxt_update_vf_mac(struct bnxt *bp) 1145 { 1146 } 1147 1148 int bnxt_approve_mac(struct bnxt *bp, u8 *mac, bool strict) 1149 { 1150 return 0; 1151 } 1152 #endif 1153