1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2020 Broadcom Limited
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation.
8  */
9 
10 #include <asm/byteorder.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmapool.h>
13 #include <linux/errno.h>
14 #include <linux/ethtool.h>
15 #include <linux/if_ether.h>
16 #include <linux/io.h>
17 #include <linux/irq.h>
18 #include <linux/kernel.h>
19 #include <linux/list.h>
20 #include <linux/netdevice.h>
21 #include <linux/pci.h>
22 #include <linux/skbuff.h>
23 
24 #include "bnxt_hsi.h"
25 #include "bnxt.h"
26 #include "bnxt_hwrm.h"
27 
28 static u64 hwrm_calc_sentinel(struct bnxt_hwrm_ctx *ctx, u16 req_type)
29 {
30 	return (((uintptr_t)ctx) + req_type) ^ BNXT_HWRM_SENTINEL;
31 }
32 
33 /**
34  * __hwrm_req_init() - Initialize an HWRM request.
35  * @bp: The driver context.
36  * @req: A pointer to the request pointer to initialize.
37  * @req_type: The request type. This will be converted to the little endian
38  *	before being written to the req_type field of the returned request.
39  * @req_len: The length of the request to be allocated.
40  *
41  * Allocate DMA resources and initialize a new HWRM request object of the
42  * given type. The response address field in the request is configured with
43  * the DMA bus address that has been mapped for the response and the passed
44  * request is pointed to kernel virtual memory mapped for the request (such
45  * that short_input indirection can be accomplished without copying). The
46  * request’s target and completion ring are initialized to default values and
47  * can be overridden by writing to the returned request object directly.
48  *
49  * The initialized request can be further customized by writing to its fields
50  * directly, taking care to covert such fields to little endian. The request
51  * object will be consumed (and all its associated resources release) upon
52  * passing it to hwrm_req_send() unless ownership of the request has been
53  * claimed by the caller via a call to hwrm_req_hold(). If the request is not
54  * consumed, either because it is never sent or because ownership has been
55  * claimed, then it must be released by a call to hwrm_req_drop().
56  *
57  * Return: zero on success, negative error code otherwise:
58  *	E2BIG: the type of request pointer is too large to fit.
59  *	ENOMEM: an allocation failure occurred.
60  */
61 int __hwrm_req_init(struct bnxt *bp, void **req, u16 req_type, u32 req_len)
62 {
63 	struct bnxt_hwrm_ctx *ctx;
64 	dma_addr_t dma_handle;
65 	u8 *req_addr;
66 
67 	if (req_len > BNXT_HWRM_CTX_OFFSET)
68 		return -E2BIG;
69 
70 	req_addr = dma_pool_alloc(bp->hwrm_dma_pool, GFP_KERNEL | __GFP_ZERO,
71 				  &dma_handle);
72 	if (!req_addr)
73 		return -ENOMEM;
74 
75 	ctx = (struct bnxt_hwrm_ctx *)(req_addr + BNXT_HWRM_CTX_OFFSET);
76 	/* safety first, sentinel used to check for invalid requests */
77 	ctx->sentinel = hwrm_calc_sentinel(ctx, req_type);
78 	ctx->req_len = req_len;
79 	ctx->req = (struct input *)req_addr;
80 	ctx->resp = (struct output *)(req_addr + BNXT_HWRM_RESP_OFFSET);
81 	ctx->dma_handle = dma_handle;
82 	ctx->flags = 0; /* __GFP_ZERO, but be explicit regarding ownership */
83 	ctx->timeout = bp->hwrm_cmd_timeout ?: DFLT_HWRM_CMD_TIMEOUT;
84 	ctx->allocated = BNXT_HWRM_DMA_SIZE - BNXT_HWRM_CTX_OFFSET;
85 	ctx->gfp = GFP_KERNEL;
86 	ctx->slice_addr = NULL;
87 
88 	/* initialize common request fields */
89 	ctx->req->req_type = cpu_to_le16(req_type);
90 	ctx->req->resp_addr = cpu_to_le64(dma_handle + BNXT_HWRM_RESP_OFFSET);
91 	ctx->req->cmpl_ring = cpu_to_le16(BNXT_HWRM_NO_CMPL_RING);
92 	ctx->req->target_id = cpu_to_le16(BNXT_HWRM_TARGET);
93 	*req = ctx->req;
94 
95 	return 0;
96 }
97 
98 static struct bnxt_hwrm_ctx *__hwrm_ctx(struct bnxt *bp, u8 *req_addr)
99 {
100 	void *ctx_addr = req_addr + BNXT_HWRM_CTX_OFFSET;
101 	struct input *req = (struct input *)req_addr;
102 	struct bnxt_hwrm_ctx *ctx = ctx_addr;
103 	u64 sentinel;
104 
105 	if (!req) {
106 		/* can only be due to software bug, be loud */
107 		netdev_err(bp->dev, "null HWRM request");
108 		dump_stack();
109 		return NULL;
110 	}
111 
112 	/* HWRM API has no type safety, verify sentinel to validate address */
113 	sentinel = hwrm_calc_sentinel(ctx, le16_to_cpu(req->req_type));
114 	if (ctx->sentinel != sentinel) {
115 		/* can only be due to software bug, be loud */
116 		netdev_err(bp->dev, "HWRM sentinel mismatch, req_type = %u\n",
117 			   (u32)le16_to_cpu(req->req_type));
118 		dump_stack();
119 		return NULL;
120 	}
121 
122 	return ctx;
123 }
124 
125 /**
126  * hwrm_req_timeout() - Set the completion timeout for the request.
127  * @bp: The driver context.
128  * @req: The request to set the timeout.
129  * @timeout: The timeout in milliseconds.
130  *
131  * Set the timeout associated with the request for subsequent calls to
132  * hwrm_req_send(). Some requests are long running and require a different
133  * timeout than the default.
134  */
135 void hwrm_req_timeout(struct bnxt *bp, void *req, unsigned int timeout)
136 {
137 	struct bnxt_hwrm_ctx *ctx = __hwrm_ctx(bp, req);
138 
139 	if (ctx)
140 		ctx->timeout = timeout;
141 }
142 
143 /**
144  * hwrm_req_alloc_flags() - Sets GFP allocation flags for slices.
145  * @bp: The driver context.
146  * @req: The request for which calls to hwrm_req_dma_slice() will have altered
147  *	allocation flags.
148  * @gfp: A bitmask of GFP flags. These flags are passed to dma_alloc_coherent()
149  *	whenever it is used to allocate backing memory for slices. Note that
150  *	calls to hwrm_req_dma_slice() will not always result in new allocations,
151  *	however, memory suballocated from the request buffer is already
152  *	__GFP_ZERO.
153  *
154  * Sets the GFP allocation flags associated with the request for subsequent
155  * calls to hwrm_req_dma_slice(). This can be useful for specifying __GFP_ZERO
156  * for slice allocations.
157  */
158 void hwrm_req_alloc_flags(struct bnxt *bp, void *req, gfp_t gfp)
159 {
160 	struct bnxt_hwrm_ctx *ctx = __hwrm_ctx(bp, req);
161 
162 	if (ctx)
163 		ctx->gfp = gfp;
164 }
165 
166 /**
167  * hwrm_req_replace() - Replace request data.
168  * @bp: The driver context.
169  * @req: The request to modify. A call to hwrm_req_replace() is conceptually
170  *	an assignment of new_req to req. Subsequent calls to HWRM API functions,
171  *	such as hwrm_req_send(), should thus use req and not new_req (in fact,
172  *	calls to HWRM API functions will fail if non-managed request objects
173  *	are passed).
174  * @len: The length of new_req.
175  * @new_req: The pre-built request to copy or reference.
176  *
177  * Replaces the request data in req with that of new_req. This is useful in
178  * scenarios where a request object has already been constructed by a third
179  * party prior to creating a resource managed request using hwrm_req_init().
180  * Depending on the length, hwrm_req_replace() will either copy the new
181  * request data into the DMA memory allocated for req, or it will simply
182  * reference the new request and use it in lieu of req during subsequent
183  * calls to hwrm_req_send(). The resource management is associated with
184  * req and is independent of and does not apply to new_req. The caller must
185  * ensure that the lifetime of new_req is least as long as req. Any slices
186  * that may have been associated with the original request are released.
187  *
188  * Return: zero on success, negative error code otherwise:
189  *     E2BIG: Request is too large.
190  *     EINVAL: Invalid request to modify.
191  */
192 int hwrm_req_replace(struct bnxt *bp, void *req, void *new_req, u32 len)
193 {
194 	struct bnxt_hwrm_ctx *ctx = __hwrm_ctx(bp, req);
195 	struct input *internal_req = req;
196 	u16 req_type;
197 
198 	if (!ctx)
199 		return -EINVAL;
200 
201 	if (len > BNXT_HWRM_CTX_OFFSET)
202 		return -E2BIG;
203 
204 	/* free any existing slices */
205 	ctx->allocated = BNXT_HWRM_DMA_SIZE - BNXT_HWRM_CTX_OFFSET;
206 	if (ctx->slice_addr) {
207 		dma_free_coherent(&bp->pdev->dev, ctx->slice_size,
208 				  ctx->slice_addr, ctx->slice_handle);
209 		ctx->slice_addr = NULL;
210 	}
211 	ctx->gfp = GFP_KERNEL;
212 
213 	if ((bp->fw_cap & BNXT_FW_CAP_SHORT_CMD) || len > BNXT_HWRM_MAX_REQ_LEN) {
214 		memcpy(internal_req, new_req, len);
215 	} else {
216 		internal_req->req_type = ((struct input *)new_req)->req_type;
217 		ctx->req = new_req;
218 	}
219 
220 	ctx->req_len = len;
221 	ctx->req->resp_addr = cpu_to_le64(ctx->dma_handle +
222 					  BNXT_HWRM_RESP_OFFSET);
223 
224 	/* update sentinel for potentially new request type */
225 	req_type = le16_to_cpu(internal_req->req_type);
226 	ctx->sentinel = hwrm_calc_sentinel(ctx, req_type);
227 
228 	return 0;
229 }
230 
231 /**
232  * hwrm_req_flags() - Set non internal flags of the ctx
233  * @bp: The driver context.
234  * @req: The request containing the HWRM command
235  * @flags: ctx flags that don't have BNXT_HWRM_INTERNAL_FLAG set
236  *
237  * ctx flags can be used by the callers to instruct how the subsequent
238  * hwrm_req_send() should behave. Example: callers can use hwrm_req_flags
239  * with BNXT_HWRM_CTX_SILENT to omit kernel prints of errors of hwrm_req_send()
240  * or with BNXT_HWRM_FULL_WAIT enforce hwrm_req_send() to wait for full timeout
241  * even if FW is not responding.
242  * This generic function can be used to set any flag that is not an internal flag
243  * of the HWRM module.
244  */
245 void hwrm_req_flags(struct bnxt *bp, void *req, enum bnxt_hwrm_ctx_flags flags)
246 {
247 	struct bnxt_hwrm_ctx *ctx = __hwrm_ctx(bp, req);
248 
249 	if (ctx)
250 		ctx->flags |= (flags & HWRM_API_FLAGS);
251 }
252 
253 /**
254  * hwrm_req_hold() - Claim ownership of the request's resources.
255  * @bp: The driver context.
256  * @req: A pointer to the request to own. The request will no longer be
257  *	consumed by calls to hwrm_req_send().
258  *
259  * Take ownership of the request. Ownership places responsibility on the
260  * caller to free the resources associated with the request via a call to
261  * hwrm_req_drop(). The caller taking ownership implies that a subsequent
262  * call to hwrm_req_send() will not consume the request (ie. sending will
263  * not free the associated resources if the request is owned by the caller).
264  * Taking ownership returns a reference to the response. Retaining and
265  * accessing the response data is the most common reason to take ownership
266  * of the request. Ownership can also be acquired in order to reuse the same
267  * request object across multiple invocations of hwrm_req_send().
268  *
269  * Return: A pointer to the response object.
270  *
271  * The resources associated with the response will remain available to the
272  * caller until ownership of the request is relinquished via a call to
273  * hwrm_req_drop(). It is not possible for hwrm_req_hold() to return NULL if
274  * a valid request is provided. A returned NULL value would imply a driver
275  * bug and the implementation will complain loudly in the logs to aid in
276  * detection. It should not be necessary to check the result for NULL.
277  */
278 void *hwrm_req_hold(struct bnxt *bp, void *req)
279 {
280 	struct bnxt_hwrm_ctx *ctx = __hwrm_ctx(bp, req);
281 	struct input *input = (struct input *)req;
282 
283 	if (!ctx)
284 		return NULL;
285 
286 	if (ctx->flags & BNXT_HWRM_INTERNAL_CTX_OWNED) {
287 		/* can only be due to software bug, be loud */
288 		netdev_err(bp->dev, "HWRM context already owned, req_type = %u\n",
289 			   (u32)le16_to_cpu(input->req_type));
290 		dump_stack();
291 		return NULL;
292 	}
293 
294 	ctx->flags |= BNXT_HWRM_INTERNAL_CTX_OWNED;
295 	return ((u8 *)req) + BNXT_HWRM_RESP_OFFSET;
296 }
297 
298 static void __hwrm_ctx_drop(struct bnxt *bp, struct bnxt_hwrm_ctx *ctx)
299 {
300 	void *addr = ((u8 *)ctx) - BNXT_HWRM_CTX_OFFSET;
301 	dma_addr_t dma_handle = ctx->dma_handle; /* save before invalidate */
302 
303 	/* unmap any auxiliary DMA slice */
304 	if (ctx->slice_addr)
305 		dma_free_coherent(&bp->pdev->dev, ctx->slice_size,
306 				  ctx->slice_addr, ctx->slice_handle);
307 
308 	/* invalidate, ensure ownership, sentinel and dma_handle are cleared */
309 	memset(ctx, 0, sizeof(struct bnxt_hwrm_ctx));
310 
311 	/* return the buffer to the DMA pool */
312 	if (dma_handle)
313 		dma_pool_free(bp->hwrm_dma_pool, addr, dma_handle);
314 }
315 
316 /**
317  * hwrm_req_drop() - Release all resources associated with the request.
318  * @bp: The driver context.
319  * @req: The request to consume, releasing the associated resources. The
320  *	request object, any slices, and its associated response are no
321  *	longer valid.
322  *
323  * It is legal to call hwrm_req_drop() on an unowned request, provided it
324  * has not already been consumed by hwrm_req_send() (for example, to release
325  * an aborted request). A given request should not be dropped more than once,
326  * nor should it be dropped after having been consumed by hwrm_req_send(). To
327  * do so is an error (the context will not be found and a stack trace will be
328  * rendered in the kernel log).
329  */
330 void hwrm_req_drop(struct bnxt *bp, void *req)
331 {
332 	struct bnxt_hwrm_ctx *ctx = __hwrm_ctx(bp, req);
333 
334 	if (ctx)
335 		__hwrm_ctx_drop(bp, ctx);
336 }
337 
338 static int __hwrm_to_stderr(u32 hwrm_err)
339 {
340 	switch (hwrm_err) {
341 	case HWRM_ERR_CODE_SUCCESS:
342 		return 0;
343 	case HWRM_ERR_CODE_RESOURCE_LOCKED:
344 		return -EROFS;
345 	case HWRM_ERR_CODE_RESOURCE_ACCESS_DENIED:
346 		return -EACCES;
347 	case HWRM_ERR_CODE_RESOURCE_ALLOC_ERROR:
348 		return -ENOSPC;
349 	case HWRM_ERR_CODE_INVALID_PARAMS:
350 	case HWRM_ERR_CODE_INVALID_FLAGS:
351 	case HWRM_ERR_CODE_INVALID_ENABLES:
352 	case HWRM_ERR_CODE_UNSUPPORTED_TLV:
353 	case HWRM_ERR_CODE_UNSUPPORTED_OPTION_ERR:
354 		return -EINVAL;
355 	case HWRM_ERR_CODE_NO_BUFFER:
356 		return -ENOMEM;
357 	case HWRM_ERR_CODE_HOT_RESET_PROGRESS:
358 	case HWRM_ERR_CODE_BUSY:
359 		return -EAGAIN;
360 	case HWRM_ERR_CODE_CMD_NOT_SUPPORTED:
361 		return -EOPNOTSUPP;
362 	default:
363 		return -EIO;
364 	}
365 }
366 
367 static struct bnxt_hwrm_wait_token *
368 __hwrm_acquire_token(struct bnxt *bp, enum bnxt_hwrm_chnl dst)
369 {
370 	struct bnxt_hwrm_wait_token *token;
371 
372 	token = kzalloc(sizeof(*token), GFP_KERNEL);
373 	if (!token)
374 		return NULL;
375 
376 	mutex_lock(&bp->hwrm_cmd_lock);
377 
378 	token->dst = dst;
379 	token->state = BNXT_HWRM_PENDING;
380 	if (dst == BNXT_HWRM_CHNL_CHIMP) {
381 		token->seq_id = bp->hwrm_cmd_seq++;
382 		hlist_add_head_rcu(&token->node, &bp->hwrm_pending_list);
383 	} else {
384 		token->seq_id = bp->hwrm_cmd_kong_seq++;
385 	}
386 
387 	return token;
388 }
389 
390 static void
391 __hwrm_release_token(struct bnxt *bp, struct bnxt_hwrm_wait_token *token)
392 {
393 	if (token->dst == BNXT_HWRM_CHNL_CHIMP) {
394 		hlist_del_rcu(&token->node);
395 		kfree_rcu(token, rcu);
396 	} else {
397 		kfree(token);
398 	}
399 	mutex_unlock(&bp->hwrm_cmd_lock);
400 }
401 
402 void
403 hwrm_update_token(struct bnxt *bp, u16 seq_id, enum bnxt_hwrm_wait_state state)
404 {
405 	struct bnxt_hwrm_wait_token *token;
406 
407 	rcu_read_lock();
408 	hlist_for_each_entry_rcu(token, &bp->hwrm_pending_list, node) {
409 		if (token->seq_id == seq_id) {
410 			WRITE_ONCE(token->state, state);
411 			rcu_read_unlock();
412 			return;
413 		}
414 	}
415 	rcu_read_unlock();
416 	netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id);
417 }
418 
419 static int __hwrm_send(struct bnxt *bp, struct bnxt_hwrm_ctx *ctx)
420 {
421 	u32 doorbell_offset = BNXT_GRCPF_REG_CHIMP_COMM_TRIGGER;
422 	enum bnxt_hwrm_chnl dst = BNXT_HWRM_CHNL_CHIMP;
423 	u32 bar_offset = BNXT_GRCPF_REG_CHIMP_COMM;
424 	struct bnxt_hwrm_wait_token *token = NULL;
425 	struct hwrm_short_input short_input = {0};
426 	u16 max_req_len = BNXT_HWRM_MAX_REQ_LEN;
427 	unsigned int i, timeout, tmo_count;
428 	u32 *data = (u32 *)ctx->req;
429 	u32 msg_len = ctx->req_len;
430 	int rc = -EBUSY;
431 	u32 req_type;
432 	u16 len = 0;
433 	u8 *valid;
434 
435 	if (ctx->flags & BNXT_HWRM_INTERNAL_RESP_DIRTY)
436 		memset(ctx->resp, 0, PAGE_SIZE);
437 
438 	req_type = le16_to_cpu(ctx->req->req_type);
439 	if (BNXT_NO_FW_ACCESS(bp) && req_type != HWRM_FUNC_RESET)
440 		goto exit;
441 
442 	if (msg_len > BNXT_HWRM_MAX_REQ_LEN &&
443 	    msg_len > bp->hwrm_max_ext_req_len) {
444 		rc = -E2BIG;
445 		goto exit;
446 	}
447 
448 	if (bnxt_kong_hwrm_message(bp, ctx->req)) {
449 		dst = BNXT_HWRM_CHNL_KONG;
450 		bar_offset = BNXT_GRCPF_REG_KONG_COMM;
451 		doorbell_offset = BNXT_GRCPF_REG_KONG_COMM_TRIGGER;
452 		if (le16_to_cpu(ctx->req->cmpl_ring) != INVALID_HW_RING_ID) {
453 			netdev_err(bp->dev, "Ring completions not supported for KONG commands, req_type = %d\n",
454 				   req_type);
455 			rc = -EINVAL;
456 			goto exit;
457 		}
458 	}
459 
460 	token = __hwrm_acquire_token(bp, dst);
461 	if (!token) {
462 		rc = -ENOMEM;
463 		goto exit;
464 	}
465 	ctx->req->seq_id = cpu_to_le16(token->seq_id);
466 
467 	if ((bp->fw_cap & BNXT_FW_CAP_SHORT_CMD) ||
468 	    msg_len > BNXT_HWRM_MAX_REQ_LEN) {
469 		short_input.req_type = ctx->req->req_type;
470 		short_input.signature =
471 				cpu_to_le16(SHORT_REQ_SIGNATURE_SHORT_CMD);
472 		short_input.size = cpu_to_le16(msg_len);
473 		short_input.req_addr = cpu_to_le64(ctx->dma_handle);
474 
475 		data = (u32 *)&short_input;
476 		msg_len = sizeof(short_input);
477 
478 		max_req_len = BNXT_HWRM_SHORT_REQ_LEN;
479 	}
480 
481 	/* Ensure any associated DMA buffers are written before doorbell */
482 	wmb();
483 
484 	/* Write request msg to hwrm channel */
485 	__iowrite32_copy(bp->bar0 + bar_offset, data, msg_len / 4);
486 
487 	for (i = msg_len; i < max_req_len; i += 4)
488 		writel(0, bp->bar0 + bar_offset + i);
489 
490 	/* Ring channel doorbell */
491 	writel(1, bp->bar0 + doorbell_offset);
492 
493 	if (!pci_is_enabled(bp->pdev)) {
494 		rc = -ENODEV;
495 		goto exit;
496 	}
497 
498 	/* Limit timeout to an upper limit */
499 	timeout = min(ctx->timeout, bp->hwrm_cmd_max_timeout ?: HWRM_CMD_MAX_TIMEOUT);
500 	/* convert timeout to usec */
501 	timeout *= 1000;
502 
503 	i = 0;
504 	/* Short timeout for the first few iterations:
505 	 * number of loops = number of loops for short timeout +
506 	 * number of loops for standard timeout.
507 	 */
508 	tmo_count = HWRM_SHORT_TIMEOUT_COUNTER;
509 	timeout = timeout - HWRM_SHORT_MIN_TIMEOUT * HWRM_SHORT_TIMEOUT_COUNTER;
510 	tmo_count += DIV_ROUND_UP(timeout, HWRM_MIN_TIMEOUT);
511 
512 	if (le16_to_cpu(ctx->req->cmpl_ring) != INVALID_HW_RING_ID) {
513 		/* Wait until hwrm response cmpl interrupt is processed */
514 		while (READ_ONCE(token->state) < BNXT_HWRM_COMPLETE &&
515 		       i++ < tmo_count) {
516 			/* Abort the wait for completion if the FW health
517 			 * check has failed.
518 			 */
519 			if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
520 				goto exit;
521 			/* on first few passes, just barely sleep */
522 			if (i < HWRM_SHORT_TIMEOUT_COUNTER) {
523 				usleep_range(HWRM_SHORT_MIN_TIMEOUT,
524 					     HWRM_SHORT_MAX_TIMEOUT);
525 			} else {
526 				if (HWRM_WAIT_MUST_ABORT(bp, ctx))
527 					break;
528 				usleep_range(HWRM_MIN_TIMEOUT,
529 					     HWRM_MAX_TIMEOUT);
530 			}
531 		}
532 
533 		if (READ_ONCE(token->state) != BNXT_HWRM_COMPLETE) {
534 			if (!(ctx->flags & BNXT_HWRM_CTX_SILENT))
535 				netdev_err(bp->dev, "Resp cmpl intr err msg: 0x%x\n",
536 					   le16_to_cpu(ctx->req->req_type));
537 			goto exit;
538 		}
539 		len = le16_to_cpu(READ_ONCE(ctx->resp->resp_len));
540 		valid = ((u8 *)ctx->resp) + len - 1;
541 	} else {
542 		__le16 seen_out_of_seq = ctx->req->seq_id; /* will never see */
543 		int j;
544 
545 		/* Check if response len is updated */
546 		for (i = 0; i < tmo_count; i++) {
547 			/* Abort the wait for completion if the FW health
548 			 * check has failed.
549 			 */
550 			if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
551 				goto exit;
552 
553 			if (token &&
554 			    READ_ONCE(token->state) == BNXT_HWRM_DEFERRED) {
555 				__hwrm_release_token(bp, token);
556 				token = NULL;
557 			}
558 
559 			len = le16_to_cpu(READ_ONCE(ctx->resp->resp_len));
560 			if (len) {
561 				__le16 resp_seq = READ_ONCE(ctx->resp->seq_id);
562 
563 				if (resp_seq == ctx->req->seq_id)
564 					break;
565 				if (resp_seq != seen_out_of_seq) {
566 					netdev_warn(bp->dev, "Discarding out of seq response: 0x%x for msg {0x%x 0x%x}\n",
567 						    le16_to_cpu(resp_seq),
568 						    le16_to_cpu(ctx->req->req_type),
569 						    le16_to_cpu(ctx->req->seq_id));
570 					seen_out_of_seq = resp_seq;
571 				}
572 			}
573 
574 			/* on first few passes, just barely sleep */
575 			if (i < HWRM_SHORT_TIMEOUT_COUNTER) {
576 				usleep_range(HWRM_SHORT_MIN_TIMEOUT,
577 					     HWRM_SHORT_MAX_TIMEOUT);
578 			} else {
579 				if (HWRM_WAIT_MUST_ABORT(bp, ctx))
580 					goto timeout_abort;
581 				usleep_range(HWRM_MIN_TIMEOUT,
582 					     HWRM_MAX_TIMEOUT);
583 			}
584 		}
585 
586 		if (i >= tmo_count) {
587 timeout_abort:
588 			if (!(ctx->flags & BNXT_HWRM_CTX_SILENT))
589 				netdev_err(bp->dev, "Error (timeout: %u) msg {0x%x 0x%x} len:%d\n",
590 					   hwrm_total_timeout(i),
591 					   le16_to_cpu(ctx->req->req_type),
592 					   le16_to_cpu(ctx->req->seq_id), len);
593 			goto exit;
594 		}
595 
596 		/* Last byte of resp contains valid bit */
597 		valid = ((u8 *)ctx->resp) + len - 1;
598 		for (j = 0; j < HWRM_VALID_BIT_DELAY_USEC; j++) {
599 			/* make sure we read from updated DMA memory */
600 			dma_rmb();
601 			if (*valid)
602 				break;
603 			usleep_range(1, 5);
604 		}
605 
606 		if (j >= HWRM_VALID_BIT_DELAY_USEC) {
607 			if (!(ctx->flags & BNXT_HWRM_CTX_SILENT))
608 				netdev_err(bp->dev, "Error (timeout: %u) msg {0x%x 0x%x} len:%d v:%d\n",
609 					   hwrm_total_timeout(i),
610 					   le16_to_cpu(ctx->req->req_type),
611 					   le16_to_cpu(ctx->req->seq_id), len,
612 					   *valid);
613 			goto exit;
614 		}
615 	}
616 
617 	/* Zero valid bit for compatibility.  Valid bit in an older spec
618 	 * may become a new field in a newer spec.  We must make sure that
619 	 * a new field not implemented by old spec will read zero.
620 	 */
621 	*valid = 0;
622 	rc = le16_to_cpu(ctx->resp->error_code);
623 	if (rc && !(ctx->flags & BNXT_HWRM_CTX_SILENT)) {
624 		netdev_err(bp->dev, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n",
625 			   le16_to_cpu(ctx->resp->req_type),
626 			   le16_to_cpu(ctx->resp->seq_id), rc);
627 	}
628 	rc = __hwrm_to_stderr(rc);
629 exit:
630 	if (token)
631 		__hwrm_release_token(bp, token);
632 	if (ctx->flags & BNXT_HWRM_INTERNAL_CTX_OWNED)
633 		ctx->flags |= BNXT_HWRM_INTERNAL_RESP_DIRTY;
634 	else
635 		__hwrm_ctx_drop(bp, ctx);
636 	return rc;
637 }
638 
639 /**
640  * hwrm_req_send() - Execute an HWRM command.
641  * @bp: The driver context.
642  * @req: A pointer to the request to send. The DMA resources associated with
643  *	the request will be released (ie. the request will be consumed) unless
644  *	ownership of the request has been assumed by the caller via a call to
645  *	hwrm_req_hold().
646  *
647  * Send an HWRM request to the device and wait for a response. The request is
648  * consumed if it is not owned by the caller. This function will block until
649  * the request has either completed or times out due to an error.
650  *
651  * Return: A result code.
652  *
653  * The result is zero on success, otherwise the negative error code indicates
654  * one of the following errors:
655  *	E2BIG: The request was too large.
656  *	EBUSY: The firmware is in a fatal state or the request timed out
657  *	EACCESS: HWRM access denied.
658  *	ENOSPC: HWRM resource allocation error.
659  *	EINVAL: Request parameters are invalid.
660  *	ENOMEM: HWRM has no buffers.
661  *	EAGAIN: HWRM busy or reset in progress.
662  *	EOPNOTSUPP: Invalid request type.
663  *	EIO: Any other error.
664  * Error handling is orthogonal to request ownership. An unowned request will
665  * still be consumed on error. If the caller owns the request, then the caller
666  * is responsible for releasing the resources. Otherwise, hwrm_req_send() will
667  * always consume the request.
668  */
669 int hwrm_req_send(struct bnxt *bp, void *req)
670 {
671 	struct bnxt_hwrm_ctx *ctx = __hwrm_ctx(bp, req);
672 
673 	if (!ctx)
674 		return -EINVAL;
675 
676 	return __hwrm_send(bp, ctx);
677 }
678 
679 /**
680  * hwrm_req_send_silent() - A silent version of hwrm_req_send().
681  * @bp: The driver context.
682  * @req: The request to send without logging.
683  *
684  * The same as hwrm_req_send(), except that the request is silenced using
685  * hwrm_req_silence() prior the call. This version of the function is
686  * provided solely to preserve the legacy API’s flavor for this functionality.
687  *
688  * Return: A result code, see hwrm_req_send().
689  */
690 int hwrm_req_send_silent(struct bnxt *bp, void *req)
691 {
692 	hwrm_req_flags(bp, req, BNXT_HWRM_CTX_SILENT);
693 	return hwrm_req_send(bp, req);
694 }
695 
696 /**
697  * hwrm_req_dma_slice() - Allocate a slice of DMA mapped memory.
698  * @bp: The driver context.
699  * @req: The request for which indirect data will be associated.
700  * @size: The size of the allocation.
701  * @dma_handle: The bus address associated with the allocation. The HWRM API has
702  *	no knowledge about the type of the request and so cannot infer how the
703  *	caller intends to use the indirect data. Thus, the caller is
704  *	responsible for configuring the request object appropriately to
705  *	point to the associated indirect memory. Note, DMA handle has the
706  *	same definition as it does in dma_alloc_coherent(), the caller is
707  *	responsible for endian conversions via cpu_to_le64() before assigning
708  *	this address.
709  *
710  * Allocates DMA mapped memory for indirect data related to a request. The
711  * lifetime of the DMA resources will be bound to that of the request (ie.
712  * they will be automatically released when the request is either consumed by
713  * hwrm_req_send() or dropped by hwrm_req_drop()). Small allocations are
714  * efficiently suballocated out of the request buffer space, hence the name
715  * slice, while larger requests are satisfied via an underlying call to
716  * dma_alloc_coherent(). Multiple suballocations are supported, however, only
717  * one externally mapped region is.
718  *
719  * Return: The kernel virtual address of the DMA mapping.
720  */
721 void *
722 hwrm_req_dma_slice(struct bnxt *bp, void *req, u32 size, dma_addr_t *dma_handle)
723 {
724 	struct bnxt_hwrm_ctx *ctx = __hwrm_ctx(bp, req);
725 	u8 *end = ((u8 *)req) + BNXT_HWRM_DMA_SIZE;
726 	struct input *input = req;
727 	u8 *addr, *req_addr = req;
728 	u32 max_offset, offset;
729 
730 	if (!ctx)
731 		return NULL;
732 
733 	max_offset = BNXT_HWRM_DMA_SIZE - ctx->allocated;
734 	offset = max_offset - size;
735 	offset = ALIGN_DOWN(offset, BNXT_HWRM_DMA_ALIGN);
736 	addr = req_addr + offset;
737 
738 	if (addr < req_addr + max_offset && req_addr + ctx->req_len <= addr) {
739 		ctx->allocated = end - addr;
740 		*dma_handle = ctx->dma_handle + offset;
741 		return addr;
742 	}
743 
744 	/* could not suballocate from ctx buffer, try create a new mapping */
745 	if (ctx->slice_addr) {
746 		/* if one exists, can only be due to software bug, be loud */
747 		netdev_err(bp->dev, "HWRM refusing to reallocate DMA slice, req_type = %u\n",
748 			   (u32)le16_to_cpu(input->req_type));
749 		dump_stack();
750 		return NULL;
751 	}
752 
753 	addr = dma_alloc_coherent(&bp->pdev->dev, size, dma_handle, ctx->gfp);
754 
755 	if (!addr)
756 		return NULL;
757 
758 	ctx->slice_addr = addr;
759 	ctx->slice_size = size;
760 	ctx->slice_handle = *dma_handle;
761 
762 	return addr;
763 }
764