1 /* Broadcom NetXtreme-C/E network driver. 2 * 3 * Copyright (c) 2020 Broadcom Limited 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation. 8 */ 9 10 #include <asm/byteorder.h> 11 #include <linux/dma-mapping.h> 12 #include <linux/dmapool.h> 13 #include <linux/errno.h> 14 #include <linux/ethtool.h> 15 #include <linux/if_ether.h> 16 #include <linux/io.h> 17 #include <linux/irq.h> 18 #include <linux/kernel.h> 19 #include <linux/list.h> 20 #include <linux/netdevice.h> 21 #include <linux/pci.h> 22 #include <linux/skbuff.h> 23 24 #include "bnxt_hsi.h" 25 #include "bnxt.h" 26 #include "bnxt_hwrm.h" 27 28 static u64 hwrm_calc_sentinel(struct bnxt_hwrm_ctx *ctx, u16 req_type) 29 { 30 return (((uintptr_t)ctx) + req_type) ^ BNXT_HWRM_SENTINEL; 31 } 32 33 /** 34 * __hwrm_req_init() - Initialize an HWRM request. 35 * @bp: The driver context. 36 * @req: A pointer to the request pointer to initialize. 37 * @req_type: The request type. This will be converted to the little endian 38 * before being written to the req_type field of the returned request. 39 * @req_len: The length of the request to be allocated. 40 * 41 * Allocate DMA resources and initialize a new HWRM request object of the 42 * given type. The response address field in the request is configured with 43 * the DMA bus address that has been mapped for the response and the passed 44 * request is pointed to kernel virtual memory mapped for the request (such 45 * that short_input indirection can be accomplished without copying). The 46 * request’s target and completion ring are initialized to default values and 47 * can be overridden by writing to the returned request object directly. 48 * 49 * The initialized request can be further customized by writing to its fields 50 * directly, taking care to covert such fields to little endian. The request 51 * object will be consumed (and all its associated resources release) upon 52 * passing it to hwrm_req_send() unless ownership of the request has been 53 * claimed by the caller via a call to hwrm_req_hold(). If the request is not 54 * consumed, either because it is never sent or because ownership has been 55 * claimed, then it must be released by a call to hwrm_req_drop(). 56 * 57 * Return: zero on success, negative error code otherwise: 58 * E2BIG: the type of request pointer is too large to fit. 59 * ENOMEM: an allocation failure occurred. 60 */ 61 int __hwrm_req_init(struct bnxt *bp, void **req, u16 req_type, u32 req_len) 62 { 63 struct bnxt_hwrm_ctx *ctx; 64 dma_addr_t dma_handle; 65 u8 *req_addr; 66 67 if (req_len > BNXT_HWRM_CTX_OFFSET) 68 return -E2BIG; 69 70 req_addr = dma_pool_alloc(bp->hwrm_dma_pool, GFP_KERNEL | __GFP_ZERO, 71 &dma_handle); 72 if (!req_addr) 73 return -ENOMEM; 74 75 ctx = (struct bnxt_hwrm_ctx *)(req_addr + BNXT_HWRM_CTX_OFFSET); 76 /* safety first, sentinel used to check for invalid requests */ 77 ctx->sentinel = hwrm_calc_sentinel(ctx, req_type); 78 ctx->req_len = req_len; 79 ctx->req = (struct input *)req_addr; 80 ctx->resp = (struct output *)(req_addr + BNXT_HWRM_RESP_OFFSET); 81 ctx->dma_handle = dma_handle; 82 ctx->flags = 0; /* __GFP_ZERO, but be explicit regarding ownership */ 83 ctx->timeout = bp->hwrm_cmd_timeout ?: DFLT_HWRM_CMD_TIMEOUT; 84 ctx->allocated = BNXT_HWRM_DMA_SIZE - BNXT_HWRM_CTX_OFFSET; 85 ctx->gfp = GFP_KERNEL; 86 ctx->slice_addr = NULL; 87 88 /* initialize common request fields */ 89 ctx->req->req_type = cpu_to_le16(req_type); 90 ctx->req->resp_addr = cpu_to_le64(dma_handle + BNXT_HWRM_RESP_OFFSET); 91 ctx->req->cmpl_ring = cpu_to_le16(BNXT_HWRM_NO_CMPL_RING); 92 ctx->req->target_id = cpu_to_le16(BNXT_HWRM_TARGET); 93 *req = ctx->req; 94 95 return 0; 96 } 97 98 static struct bnxt_hwrm_ctx *__hwrm_ctx(struct bnxt *bp, u8 *req_addr) 99 { 100 void *ctx_addr = req_addr + BNXT_HWRM_CTX_OFFSET; 101 struct input *req = (struct input *)req_addr; 102 struct bnxt_hwrm_ctx *ctx = ctx_addr; 103 u64 sentinel; 104 105 if (!req) { 106 /* can only be due to software bug, be loud */ 107 netdev_err(bp->dev, "null HWRM request"); 108 dump_stack(); 109 return NULL; 110 } 111 112 /* HWRM API has no type safety, verify sentinel to validate address */ 113 sentinel = hwrm_calc_sentinel(ctx, le16_to_cpu(req->req_type)); 114 if (ctx->sentinel != sentinel) { 115 /* can only be due to software bug, be loud */ 116 netdev_err(bp->dev, "HWRM sentinel mismatch, req_type = %u\n", 117 (u32)le16_to_cpu(req->req_type)); 118 dump_stack(); 119 return NULL; 120 } 121 122 return ctx; 123 } 124 125 /** 126 * hwrm_req_timeout() - Set the completion timeout for the request. 127 * @bp: The driver context. 128 * @req: The request to set the timeout. 129 * @timeout: The timeout in milliseconds. 130 * 131 * Set the timeout associated with the request for subsequent calls to 132 * hwrm_req_send(). Some requests are long running and require a different 133 * timeout than the default. 134 */ 135 void hwrm_req_timeout(struct bnxt *bp, void *req, unsigned int timeout) 136 { 137 struct bnxt_hwrm_ctx *ctx = __hwrm_ctx(bp, req); 138 139 if (ctx) 140 ctx->timeout = timeout; 141 } 142 143 /** 144 * hwrm_req_alloc_flags() - Sets GFP allocation flags for slices. 145 * @bp: The driver context. 146 * @req: The request for which calls to hwrm_req_dma_slice() will have altered 147 * allocation flags. 148 * @gfp: A bitmask of GFP flags. These flags are passed to dma_alloc_coherent() 149 * whenever it is used to allocate backing memory for slices. Note that 150 * calls to hwrm_req_dma_slice() will not always result in new allocations, 151 * however, memory suballocated from the request buffer is already 152 * __GFP_ZERO. 153 * 154 * Sets the GFP allocation flags associated with the request for subsequent 155 * calls to hwrm_req_dma_slice(). This can be useful for specifying __GFP_ZERO 156 * for slice allocations. 157 */ 158 void hwrm_req_alloc_flags(struct bnxt *bp, void *req, gfp_t gfp) 159 { 160 struct bnxt_hwrm_ctx *ctx = __hwrm_ctx(bp, req); 161 162 if (ctx) 163 ctx->gfp = gfp; 164 } 165 166 /** 167 * hwrm_req_replace() - Replace request data. 168 * @bp: The driver context. 169 * @req: The request to modify. A call to hwrm_req_replace() is conceptually 170 * an assignment of new_req to req. Subsequent calls to HWRM API functions, 171 * such as hwrm_req_send(), should thus use req and not new_req (in fact, 172 * calls to HWRM API functions will fail if non-managed request objects 173 * are passed). 174 * @len: The length of new_req. 175 * @new_req: The pre-built request to copy or reference. 176 * 177 * Replaces the request data in req with that of new_req. This is useful in 178 * scenarios where a request object has already been constructed by a third 179 * party prior to creating a resource managed request using hwrm_req_init(). 180 * Depending on the length, hwrm_req_replace() will either copy the new 181 * request data into the DMA memory allocated for req, or it will simply 182 * reference the new request and use it in lieu of req during subsequent 183 * calls to hwrm_req_send(). The resource management is associated with 184 * req and is independent of and does not apply to new_req. The caller must 185 * ensure that the lifetime of new_req is least as long as req. Any slices 186 * that may have been associated with the original request are released. 187 * 188 * Return: zero on success, negative error code otherwise: 189 * E2BIG: Request is too large. 190 * EINVAL: Invalid request to modify. 191 */ 192 int hwrm_req_replace(struct bnxt *bp, void *req, void *new_req, u32 len) 193 { 194 struct bnxt_hwrm_ctx *ctx = __hwrm_ctx(bp, req); 195 struct input *internal_req = req; 196 u16 req_type; 197 198 if (!ctx) 199 return -EINVAL; 200 201 if (len > BNXT_HWRM_CTX_OFFSET) 202 return -E2BIG; 203 204 /* free any existing slices */ 205 ctx->allocated = BNXT_HWRM_DMA_SIZE - BNXT_HWRM_CTX_OFFSET; 206 if (ctx->slice_addr) { 207 dma_free_coherent(&bp->pdev->dev, ctx->slice_size, 208 ctx->slice_addr, ctx->slice_handle); 209 ctx->slice_addr = NULL; 210 } 211 ctx->gfp = GFP_KERNEL; 212 213 if ((bp->fw_cap & BNXT_FW_CAP_SHORT_CMD) || len > BNXT_HWRM_MAX_REQ_LEN) { 214 memcpy(internal_req, new_req, len); 215 } else { 216 internal_req->req_type = ((struct input *)new_req)->req_type; 217 ctx->req = new_req; 218 } 219 220 ctx->req_len = len; 221 ctx->req->resp_addr = cpu_to_le64(ctx->dma_handle + 222 BNXT_HWRM_RESP_OFFSET); 223 224 /* update sentinel for potentially new request type */ 225 req_type = le16_to_cpu(internal_req->req_type); 226 ctx->sentinel = hwrm_calc_sentinel(ctx, req_type); 227 228 return 0; 229 } 230 231 /** 232 * hwrm_req_flags() - Set non internal flags of the ctx 233 * @bp: The driver context. 234 * @req: The request containing the HWRM command 235 * @flags: ctx flags that don't have BNXT_HWRM_INTERNAL_FLAG set 236 * 237 * ctx flags can be used by the callers to instruct how the subsequent 238 * hwrm_req_send() should behave. Example: callers can use hwrm_req_flags 239 * with BNXT_HWRM_CTX_SILENT to omit kernel prints of errors of hwrm_req_send() 240 * or with BNXT_HWRM_FULL_WAIT enforce hwrm_req_send() to wait for full timeout 241 * even if FW is not responding. 242 * This generic function can be used to set any flag that is not an internal flag 243 * of the HWRM module. 244 */ 245 void hwrm_req_flags(struct bnxt *bp, void *req, enum bnxt_hwrm_ctx_flags flags) 246 { 247 struct bnxt_hwrm_ctx *ctx = __hwrm_ctx(bp, req); 248 249 if (ctx) 250 ctx->flags |= (flags & HWRM_API_FLAGS); 251 } 252 253 /** 254 * hwrm_req_hold() - Claim ownership of the request's resources. 255 * @bp: The driver context. 256 * @req: A pointer to the request to own. The request will no longer be 257 * consumed by calls to hwrm_req_send(). 258 * 259 * Take ownership of the request. Ownership places responsibility on the 260 * caller to free the resources associated with the request via a call to 261 * hwrm_req_drop(). The caller taking ownership implies that a subsequent 262 * call to hwrm_req_send() will not consume the request (ie. sending will 263 * not free the associated resources if the request is owned by the caller). 264 * Taking ownership returns a reference to the response. Retaining and 265 * accessing the response data is the most common reason to take ownership 266 * of the request. Ownership can also be acquired in order to reuse the same 267 * request object across multiple invocations of hwrm_req_send(). 268 * 269 * Return: A pointer to the response object. 270 * 271 * The resources associated with the response will remain available to the 272 * caller until ownership of the request is relinquished via a call to 273 * hwrm_req_drop(). It is not possible for hwrm_req_hold() to return NULL if 274 * a valid request is provided. A returned NULL value would imply a driver 275 * bug and the implementation will complain loudly in the logs to aid in 276 * detection. It should not be necessary to check the result for NULL. 277 */ 278 void *hwrm_req_hold(struct bnxt *bp, void *req) 279 { 280 struct bnxt_hwrm_ctx *ctx = __hwrm_ctx(bp, req); 281 struct input *input = (struct input *)req; 282 283 if (!ctx) 284 return NULL; 285 286 if (ctx->flags & BNXT_HWRM_INTERNAL_CTX_OWNED) { 287 /* can only be due to software bug, be loud */ 288 netdev_err(bp->dev, "HWRM context already owned, req_type = %u\n", 289 (u32)le16_to_cpu(input->req_type)); 290 dump_stack(); 291 return NULL; 292 } 293 294 ctx->flags |= BNXT_HWRM_INTERNAL_CTX_OWNED; 295 return ((u8 *)req) + BNXT_HWRM_RESP_OFFSET; 296 } 297 298 static void __hwrm_ctx_drop(struct bnxt *bp, struct bnxt_hwrm_ctx *ctx) 299 { 300 void *addr = ((u8 *)ctx) - BNXT_HWRM_CTX_OFFSET; 301 dma_addr_t dma_handle = ctx->dma_handle; /* save before invalidate */ 302 303 /* unmap any auxiliary DMA slice */ 304 if (ctx->slice_addr) 305 dma_free_coherent(&bp->pdev->dev, ctx->slice_size, 306 ctx->slice_addr, ctx->slice_handle); 307 308 /* invalidate, ensure ownership, sentinel and dma_handle are cleared */ 309 memset(ctx, 0, sizeof(struct bnxt_hwrm_ctx)); 310 311 /* return the buffer to the DMA pool */ 312 if (dma_handle) 313 dma_pool_free(bp->hwrm_dma_pool, addr, dma_handle); 314 } 315 316 /** 317 * hwrm_req_drop() - Release all resources associated with the request. 318 * @bp: The driver context. 319 * @req: The request to consume, releasing the associated resources. The 320 * request object, any slices, and its associated response are no 321 * longer valid. 322 * 323 * It is legal to call hwrm_req_drop() on an unowned request, provided it 324 * has not already been consumed by hwrm_req_send() (for example, to release 325 * an aborted request). A given request should not be dropped more than once, 326 * nor should it be dropped after having been consumed by hwrm_req_send(). To 327 * do so is an error (the context will not be found and a stack trace will be 328 * rendered in the kernel log). 329 */ 330 void hwrm_req_drop(struct bnxt *bp, void *req) 331 { 332 struct bnxt_hwrm_ctx *ctx = __hwrm_ctx(bp, req); 333 334 if (ctx) 335 __hwrm_ctx_drop(bp, ctx); 336 } 337 338 static int __hwrm_to_stderr(u32 hwrm_err) 339 { 340 switch (hwrm_err) { 341 case HWRM_ERR_CODE_SUCCESS: 342 return 0; 343 case HWRM_ERR_CODE_RESOURCE_LOCKED: 344 return -EROFS; 345 case HWRM_ERR_CODE_RESOURCE_ACCESS_DENIED: 346 return -EACCES; 347 case HWRM_ERR_CODE_RESOURCE_ALLOC_ERROR: 348 return -ENOSPC; 349 case HWRM_ERR_CODE_INVALID_PARAMS: 350 case HWRM_ERR_CODE_INVALID_FLAGS: 351 case HWRM_ERR_CODE_INVALID_ENABLES: 352 case HWRM_ERR_CODE_UNSUPPORTED_TLV: 353 case HWRM_ERR_CODE_UNSUPPORTED_OPTION_ERR: 354 return -EINVAL; 355 case HWRM_ERR_CODE_NO_BUFFER: 356 return -ENOMEM; 357 case HWRM_ERR_CODE_HOT_RESET_PROGRESS: 358 case HWRM_ERR_CODE_BUSY: 359 return -EAGAIN; 360 case HWRM_ERR_CODE_CMD_NOT_SUPPORTED: 361 return -EOPNOTSUPP; 362 default: 363 return -EIO; 364 } 365 } 366 367 static struct bnxt_hwrm_wait_token * 368 __hwrm_acquire_token(struct bnxt *bp, enum bnxt_hwrm_chnl dst) 369 { 370 struct bnxt_hwrm_wait_token *token; 371 372 token = kzalloc(sizeof(*token), GFP_KERNEL); 373 if (!token) 374 return NULL; 375 376 mutex_lock(&bp->hwrm_cmd_lock); 377 378 token->dst = dst; 379 token->state = BNXT_HWRM_PENDING; 380 if (dst == BNXT_HWRM_CHNL_CHIMP) { 381 token->seq_id = bp->hwrm_cmd_seq++; 382 hlist_add_head_rcu(&token->node, &bp->hwrm_pending_list); 383 } else { 384 token->seq_id = bp->hwrm_cmd_kong_seq++; 385 } 386 387 return token; 388 } 389 390 static void 391 __hwrm_release_token(struct bnxt *bp, struct bnxt_hwrm_wait_token *token) 392 { 393 if (token->dst == BNXT_HWRM_CHNL_CHIMP) { 394 hlist_del_rcu(&token->node); 395 kfree_rcu(token, rcu); 396 } else { 397 kfree(token); 398 } 399 mutex_unlock(&bp->hwrm_cmd_lock); 400 } 401 402 void 403 hwrm_update_token(struct bnxt *bp, u16 seq_id, enum bnxt_hwrm_wait_state state) 404 { 405 struct bnxt_hwrm_wait_token *token; 406 407 rcu_read_lock(); 408 hlist_for_each_entry_rcu(token, &bp->hwrm_pending_list, node) { 409 if (token->seq_id == seq_id) { 410 WRITE_ONCE(token->state, state); 411 rcu_read_unlock(); 412 return; 413 } 414 } 415 rcu_read_unlock(); 416 netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id); 417 } 418 419 static int __hwrm_send(struct bnxt *bp, struct bnxt_hwrm_ctx *ctx) 420 { 421 u32 doorbell_offset = BNXT_GRCPF_REG_CHIMP_COMM_TRIGGER; 422 enum bnxt_hwrm_chnl dst = BNXT_HWRM_CHNL_CHIMP; 423 u32 bar_offset = BNXT_GRCPF_REG_CHIMP_COMM; 424 struct bnxt_hwrm_wait_token *token = NULL; 425 struct hwrm_short_input short_input = {0}; 426 u16 max_req_len = BNXT_HWRM_MAX_REQ_LEN; 427 unsigned int i, timeout, tmo_count; 428 u32 *data = (u32 *)ctx->req; 429 u32 msg_len = ctx->req_len; 430 int rc = -EBUSY; 431 u32 req_type; 432 u16 len = 0; 433 u8 *valid; 434 435 if (ctx->flags & BNXT_HWRM_INTERNAL_RESP_DIRTY) 436 memset(ctx->resp, 0, PAGE_SIZE); 437 438 req_type = le16_to_cpu(ctx->req->req_type); 439 if (BNXT_NO_FW_ACCESS(bp) && req_type != HWRM_FUNC_RESET) 440 goto exit; 441 442 if (msg_len > BNXT_HWRM_MAX_REQ_LEN && 443 msg_len > bp->hwrm_max_ext_req_len) { 444 rc = -E2BIG; 445 goto exit; 446 } 447 448 if (bnxt_kong_hwrm_message(bp, ctx->req)) { 449 dst = BNXT_HWRM_CHNL_KONG; 450 bar_offset = BNXT_GRCPF_REG_KONG_COMM; 451 doorbell_offset = BNXT_GRCPF_REG_KONG_COMM_TRIGGER; 452 if (le16_to_cpu(ctx->req->cmpl_ring) != INVALID_HW_RING_ID) { 453 netdev_err(bp->dev, "Ring completions not supported for KONG commands, req_type = %d\n", 454 req_type); 455 rc = -EINVAL; 456 goto exit; 457 } 458 } 459 460 token = __hwrm_acquire_token(bp, dst); 461 if (!token) { 462 rc = -ENOMEM; 463 goto exit; 464 } 465 ctx->req->seq_id = cpu_to_le16(token->seq_id); 466 467 if ((bp->fw_cap & BNXT_FW_CAP_SHORT_CMD) || 468 msg_len > BNXT_HWRM_MAX_REQ_LEN) { 469 short_input.req_type = ctx->req->req_type; 470 short_input.signature = 471 cpu_to_le16(SHORT_REQ_SIGNATURE_SHORT_CMD); 472 short_input.size = cpu_to_le16(msg_len); 473 short_input.req_addr = cpu_to_le64(ctx->dma_handle); 474 475 data = (u32 *)&short_input; 476 msg_len = sizeof(short_input); 477 478 max_req_len = BNXT_HWRM_SHORT_REQ_LEN; 479 } 480 481 /* Ensure any associated DMA buffers are written before doorbell */ 482 wmb(); 483 484 /* Write request msg to hwrm channel */ 485 __iowrite32_copy(bp->bar0 + bar_offset, data, msg_len / 4); 486 487 for (i = msg_len; i < max_req_len; i += 4) 488 writel(0, bp->bar0 + bar_offset + i); 489 490 /* Ring channel doorbell */ 491 writel(1, bp->bar0 + doorbell_offset); 492 493 if (!pci_is_enabled(bp->pdev)) { 494 rc = -ENODEV; 495 goto exit; 496 } 497 498 /* Limit timeout to an upper limit */ 499 timeout = min_t(uint, ctx->timeout, HWRM_CMD_MAX_TIMEOUT); 500 /* convert timeout to usec */ 501 timeout *= 1000; 502 503 i = 0; 504 /* Short timeout for the first few iterations: 505 * number of loops = number of loops for short timeout + 506 * number of loops for standard timeout. 507 */ 508 tmo_count = HWRM_SHORT_TIMEOUT_COUNTER; 509 timeout = timeout - HWRM_SHORT_MIN_TIMEOUT * HWRM_SHORT_TIMEOUT_COUNTER; 510 tmo_count += DIV_ROUND_UP(timeout, HWRM_MIN_TIMEOUT); 511 512 if (le16_to_cpu(ctx->req->cmpl_ring) != INVALID_HW_RING_ID) { 513 /* Wait until hwrm response cmpl interrupt is processed */ 514 while (READ_ONCE(token->state) < BNXT_HWRM_COMPLETE && 515 i++ < tmo_count) { 516 /* Abort the wait for completion if the FW health 517 * check has failed. 518 */ 519 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) 520 goto exit; 521 /* on first few passes, just barely sleep */ 522 if (i < HWRM_SHORT_TIMEOUT_COUNTER) { 523 usleep_range(HWRM_SHORT_MIN_TIMEOUT, 524 HWRM_SHORT_MAX_TIMEOUT); 525 } else { 526 if (HWRM_WAIT_MUST_ABORT(bp, ctx)) 527 break; 528 usleep_range(HWRM_MIN_TIMEOUT, 529 HWRM_MAX_TIMEOUT); 530 } 531 } 532 533 if (READ_ONCE(token->state) != BNXT_HWRM_COMPLETE) { 534 if (!(ctx->flags & BNXT_HWRM_CTX_SILENT)) 535 netdev_err(bp->dev, "Resp cmpl intr err msg: 0x%x\n", 536 le16_to_cpu(ctx->req->req_type)); 537 goto exit; 538 } 539 len = le16_to_cpu(READ_ONCE(ctx->resp->resp_len)); 540 valid = ((u8 *)ctx->resp) + len - 1; 541 } else { 542 __le16 seen_out_of_seq = ctx->req->seq_id; /* will never see */ 543 int j; 544 545 /* Check if response len is updated */ 546 for (i = 0; i < tmo_count; i++) { 547 /* Abort the wait for completion if the FW health 548 * check has failed. 549 */ 550 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) 551 goto exit; 552 553 if (token && 554 READ_ONCE(token->state) == BNXT_HWRM_DEFERRED) { 555 __hwrm_release_token(bp, token); 556 token = NULL; 557 } 558 559 len = le16_to_cpu(READ_ONCE(ctx->resp->resp_len)); 560 if (len) { 561 __le16 resp_seq = READ_ONCE(ctx->resp->seq_id); 562 563 if (resp_seq == ctx->req->seq_id) 564 break; 565 if (resp_seq != seen_out_of_seq) { 566 netdev_warn(bp->dev, "Discarding out of seq response: 0x%x for msg {0x%x 0x%x}\n", 567 le16_to_cpu(resp_seq), 568 le16_to_cpu(ctx->req->req_type), 569 le16_to_cpu(ctx->req->seq_id)); 570 seen_out_of_seq = resp_seq; 571 } 572 } 573 574 /* on first few passes, just barely sleep */ 575 if (i < HWRM_SHORT_TIMEOUT_COUNTER) { 576 usleep_range(HWRM_SHORT_MIN_TIMEOUT, 577 HWRM_SHORT_MAX_TIMEOUT); 578 } else { 579 if (HWRM_WAIT_MUST_ABORT(bp, ctx)) 580 goto timeout_abort; 581 usleep_range(HWRM_MIN_TIMEOUT, 582 HWRM_MAX_TIMEOUT); 583 } 584 } 585 586 if (i >= tmo_count) { 587 timeout_abort: 588 if (!(ctx->flags & BNXT_HWRM_CTX_SILENT)) 589 netdev_err(bp->dev, "Error (timeout: %u) msg {0x%x 0x%x} len:%d\n", 590 hwrm_total_timeout(i), 591 le16_to_cpu(ctx->req->req_type), 592 le16_to_cpu(ctx->req->seq_id), len); 593 goto exit; 594 } 595 596 /* Last byte of resp contains valid bit */ 597 valid = ((u8 *)ctx->resp) + len - 1; 598 for (j = 0; j < HWRM_VALID_BIT_DELAY_USEC; j++) { 599 /* make sure we read from updated DMA memory */ 600 dma_rmb(); 601 if (*valid) 602 break; 603 usleep_range(1, 5); 604 } 605 606 if (j >= HWRM_VALID_BIT_DELAY_USEC) { 607 if (!(ctx->flags & BNXT_HWRM_CTX_SILENT)) 608 netdev_err(bp->dev, "Error (timeout: %u) msg {0x%x 0x%x} len:%d v:%d\n", 609 hwrm_total_timeout(i), 610 le16_to_cpu(ctx->req->req_type), 611 le16_to_cpu(ctx->req->seq_id), len, 612 *valid); 613 goto exit; 614 } 615 } 616 617 /* Zero valid bit for compatibility. Valid bit in an older spec 618 * may become a new field in a newer spec. We must make sure that 619 * a new field not implemented by old spec will read zero. 620 */ 621 *valid = 0; 622 rc = le16_to_cpu(ctx->resp->error_code); 623 if (rc && !(ctx->flags & BNXT_HWRM_CTX_SILENT)) { 624 netdev_err(bp->dev, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n", 625 le16_to_cpu(ctx->resp->req_type), 626 le16_to_cpu(ctx->resp->seq_id), rc); 627 } 628 rc = __hwrm_to_stderr(rc); 629 exit: 630 if (token) 631 __hwrm_release_token(bp, token); 632 if (ctx->flags & BNXT_HWRM_INTERNAL_CTX_OWNED) 633 ctx->flags |= BNXT_HWRM_INTERNAL_RESP_DIRTY; 634 else 635 __hwrm_ctx_drop(bp, ctx); 636 return rc; 637 } 638 639 /** 640 * hwrm_req_send() - Execute an HWRM command. 641 * @bp: The driver context. 642 * @req: A pointer to the request to send. The DMA resources associated with 643 * the request will be released (ie. the request will be consumed) unless 644 * ownership of the request has been assumed by the caller via a call to 645 * hwrm_req_hold(). 646 * 647 * Send an HWRM request to the device and wait for a response. The request is 648 * consumed if it is not owned by the caller. This function will block until 649 * the request has either completed or times out due to an error. 650 * 651 * Return: A result code. 652 * 653 * The result is zero on success, otherwise the negative error code indicates 654 * one of the following errors: 655 * E2BIG: The request was too large. 656 * EBUSY: The firmware is in a fatal state or the request timed out 657 * EACCESS: HWRM access denied. 658 * ENOSPC: HWRM resource allocation error. 659 * EINVAL: Request parameters are invalid. 660 * ENOMEM: HWRM has no buffers. 661 * EAGAIN: HWRM busy or reset in progress. 662 * EOPNOTSUPP: Invalid request type. 663 * EIO: Any other error. 664 * Error handling is orthogonal to request ownership. An unowned request will 665 * still be consumed on error. If the caller owns the request, then the caller 666 * is responsible for releasing the resources. Otherwise, hwrm_req_send() will 667 * always consume the request. 668 */ 669 int hwrm_req_send(struct bnxt *bp, void *req) 670 { 671 struct bnxt_hwrm_ctx *ctx = __hwrm_ctx(bp, req); 672 673 if (!ctx) 674 return -EINVAL; 675 676 return __hwrm_send(bp, ctx); 677 } 678 679 /** 680 * hwrm_req_send_silent() - A silent version of hwrm_req_send(). 681 * @bp: The driver context. 682 * @req: The request to send without logging. 683 * 684 * The same as hwrm_req_send(), except that the request is silenced using 685 * hwrm_req_silence() prior the call. This version of the function is 686 * provided solely to preserve the legacy API’s flavor for this functionality. 687 * 688 * Return: A result code, see hwrm_req_send(). 689 */ 690 int hwrm_req_send_silent(struct bnxt *bp, void *req) 691 { 692 hwrm_req_flags(bp, req, BNXT_HWRM_CTX_SILENT); 693 return hwrm_req_send(bp, req); 694 } 695 696 /** 697 * hwrm_req_dma_slice() - Allocate a slice of DMA mapped memory. 698 * @bp: The driver context. 699 * @req: The request for which indirect data will be associated. 700 * @size: The size of the allocation. 701 * @dma_handle: The bus address associated with the allocation. The HWRM API has 702 * no knowledge about the type of the request and so cannot infer how the 703 * caller intends to use the indirect data. Thus, the caller is 704 * responsible for configuring the request object appropriately to 705 * point to the associated indirect memory. Note, DMA handle has the 706 * same definition as it does in dma_alloc_coherent(), the caller is 707 * responsible for endian conversions via cpu_to_le64() before assigning 708 * this address. 709 * 710 * Allocates DMA mapped memory for indirect data related to a request. The 711 * lifetime of the DMA resources will be bound to that of the request (ie. 712 * they will be automatically released when the request is either consumed by 713 * hwrm_req_send() or dropped by hwrm_req_drop()). Small allocations are 714 * efficiently suballocated out of the request buffer space, hence the name 715 * slice, while larger requests are satisfied via an underlying call to 716 * dma_alloc_coherent(). Multiple suballocations are supported, however, only 717 * one externally mapped region is. 718 * 719 * Return: The kernel virtual address of the DMA mapping. 720 */ 721 void * 722 hwrm_req_dma_slice(struct bnxt *bp, void *req, u32 size, dma_addr_t *dma_handle) 723 { 724 struct bnxt_hwrm_ctx *ctx = __hwrm_ctx(bp, req); 725 u8 *end = ((u8 *)req) + BNXT_HWRM_DMA_SIZE; 726 struct input *input = req; 727 u8 *addr, *req_addr = req; 728 u32 max_offset, offset; 729 730 if (!ctx) 731 return NULL; 732 733 max_offset = BNXT_HWRM_DMA_SIZE - ctx->allocated; 734 offset = max_offset - size; 735 offset = ALIGN_DOWN(offset, BNXT_HWRM_DMA_ALIGN); 736 addr = req_addr + offset; 737 738 if (addr < req_addr + max_offset && req_addr + ctx->req_len <= addr) { 739 ctx->allocated = end - addr; 740 *dma_handle = ctx->dma_handle + offset; 741 return addr; 742 } 743 744 /* could not suballocate from ctx buffer, try create a new mapping */ 745 if (ctx->slice_addr) { 746 /* if one exists, can only be due to software bug, be loud */ 747 netdev_err(bp->dev, "HWRM refusing to reallocate DMA slice, req_type = %u\n", 748 (u32)le16_to_cpu(input->req_type)); 749 dump_stack(); 750 return NULL; 751 } 752 753 addr = dma_alloc_coherent(&bp->pdev->dev, size, dma_handle, ctx->gfp); 754 755 if (!addr) 756 return NULL; 757 758 ctx->slice_addr = addr; 759 ctx->slice_size = size; 760 ctx->slice_handle = *dma_handle; 761 762 return addr; 763 } 764