xref: /openbmc/linux/drivers/net/ethernet/broadcom/bnxt/bnxt.c (revision f97cee494dc92395a668445bcd24d34c89f4ff8c)
1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2016 Broadcom Corporation
4  * Copyright (c) 2016-2019 Broadcom Limited
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation.
9  */
10 
11 #include <linux/module.h>
12 
13 #include <linux/stringify.h>
14 #include <linux/kernel.h>
15 #include <linux/timer.h>
16 #include <linux/errno.h>
17 #include <linux/ioport.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 #include <linux/interrupt.h>
21 #include <linux/pci.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/skbuff.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/bitops.h>
27 #include <linux/io.h>
28 #include <linux/irq.h>
29 #include <linux/delay.h>
30 #include <asm/byteorder.h>
31 #include <asm/page.h>
32 #include <linux/time.h>
33 #include <linux/mii.h>
34 #include <linux/mdio.h>
35 #include <linux/if.h>
36 #include <linux/if_vlan.h>
37 #include <linux/if_bridge.h>
38 #include <linux/rtc.h>
39 #include <linux/bpf.h>
40 #include <net/ip.h>
41 #include <net/tcp.h>
42 #include <net/udp.h>
43 #include <net/checksum.h>
44 #include <net/ip6_checksum.h>
45 #include <net/udp_tunnel.h>
46 #include <linux/workqueue.h>
47 #include <linux/prefetch.h>
48 #include <linux/cache.h>
49 #include <linux/log2.h>
50 #include <linux/aer.h>
51 #include <linux/bitmap.h>
52 #include <linux/cpu_rmap.h>
53 #include <linux/cpumask.h>
54 #include <net/pkt_cls.h>
55 #include <linux/hwmon.h>
56 #include <linux/hwmon-sysfs.h>
57 #include <net/page_pool.h>
58 
59 #include "bnxt_hsi.h"
60 #include "bnxt.h"
61 #include "bnxt_ulp.h"
62 #include "bnxt_sriov.h"
63 #include "bnxt_ethtool.h"
64 #include "bnxt_dcb.h"
65 #include "bnxt_xdp.h"
66 #include "bnxt_vfr.h"
67 #include "bnxt_tc.h"
68 #include "bnxt_devlink.h"
69 #include "bnxt_debugfs.h"
70 
71 #define BNXT_TX_TIMEOUT		(5 * HZ)
72 
73 MODULE_LICENSE("GPL");
74 MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
75 
76 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
77 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
78 #define BNXT_RX_COPY_THRESH 256
79 
80 #define BNXT_TX_PUSH_THRESH 164
81 
82 enum board_idx {
83 	BCM57301,
84 	BCM57302,
85 	BCM57304,
86 	BCM57417_NPAR,
87 	BCM58700,
88 	BCM57311,
89 	BCM57312,
90 	BCM57402,
91 	BCM57404,
92 	BCM57406,
93 	BCM57402_NPAR,
94 	BCM57407,
95 	BCM57412,
96 	BCM57414,
97 	BCM57416,
98 	BCM57417,
99 	BCM57412_NPAR,
100 	BCM57314,
101 	BCM57417_SFP,
102 	BCM57416_SFP,
103 	BCM57404_NPAR,
104 	BCM57406_NPAR,
105 	BCM57407_SFP,
106 	BCM57407_NPAR,
107 	BCM57414_NPAR,
108 	BCM57416_NPAR,
109 	BCM57452,
110 	BCM57454,
111 	BCM5745x_NPAR,
112 	BCM57508,
113 	BCM57504,
114 	BCM57502,
115 	BCM57508_NPAR,
116 	BCM57504_NPAR,
117 	BCM57502_NPAR,
118 	BCM58802,
119 	BCM58804,
120 	BCM58808,
121 	NETXTREME_E_VF,
122 	NETXTREME_C_VF,
123 	NETXTREME_S_VF,
124 	NETXTREME_E_P5_VF,
125 };
126 
127 /* indexed by enum above */
128 static const struct {
129 	char *name;
130 } board_info[] = {
131 	[BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" },
132 	[BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" },
133 	[BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
134 	[BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" },
135 	[BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" },
136 	[BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" },
137 	[BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" },
138 	[BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" },
139 	[BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" },
140 	[BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" },
141 	[BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" },
142 	[BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" },
143 	[BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" },
144 	[BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" },
145 	[BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" },
146 	[BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" },
147 	[BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" },
148 	[BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
149 	[BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" },
150 	[BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" },
151 	[BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" },
152 	[BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" },
153 	[BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" },
154 	[BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" },
155 	[BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" },
156 	[BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" },
157 	[BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" },
158 	[BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
159 	[BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" },
160 	[BCM57508] = { "Broadcom BCM57508 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
161 	[BCM57504] = { "Broadcom BCM57504 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
162 	[BCM57502] = { "Broadcom BCM57502 NetXtreme-E 10Gb/25Gb/50Gb Ethernet" },
163 	[BCM57508_NPAR] = { "Broadcom BCM57508 NetXtreme-E Ethernet Partition" },
164 	[BCM57504_NPAR] = { "Broadcom BCM57504 NetXtreme-E Ethernet Partition" },
165 	[BCM57502_NPAR] = { "Broadcom BCM57502 NetXtreme-E Ethernet Partition" },
166 	[BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" },
167 	[BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
168 	[BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
169 	[NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" },
170 	[NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" },
171 	[NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" },
172 	[NETXTREME_E_P5_VF] = { "Broadcom BCM5750X NetXtreme-E Ethernet Virtual Function" },
173 };
174 
175 static const struct pci_device_id bnxt_pci_tbl[] = {
176 	{ PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR },
177 	{ PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR },
178 	{ PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 },
179 	{ PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR },
180 	{ PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
181 	{ PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
182 	{ PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
183 	{ PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR },
184 	{ PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 },
185 	{ PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 },
186 	{ PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 },
187 	{ PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
188 	{ PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
189 	{ PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
190 	{ PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR },
191 	{ PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 },
192 	{ PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 },
193 	{ PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 },
194 	{ PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 },
195 	{ PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 },
196 	{ PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR },
197 	{ PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 },
198 	{ PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP },
199 	{ PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP },
200 	{ PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR },
201 	{ PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR },
202 	{ PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP },
203 	{ PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR },
204 	{ PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR },
205 	{ PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR },
206 	{ PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR },
207 	{ PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR },
208 	{ PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR },
209 	{ PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 },
210 	{ PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 },
211 	{ PCI_VDEVICE(BROADCOM, 0x1750), .driver_data = BCM57508 },
212 	{ PCI_VDEVICE(BROADCOM, 0x1751), .driver_data = BCM57504 },
213 	{ PCI_VDEVICE(BROADCOM, 0x1752), .driver_data = BCM57502 },
214 	{ PCI_VDEVICE(BROADCOM, 0x1800), .driver_data = BCM57508_NPAR },
215 	{ PCI_VDEVICE(BROADCOM, 0x1801), .driver_data = BCM57504_NPAR },
216 	{ PCI_VDEVICE(BROADCOM, 0x1802), .driver_data = BCM57502_NPAR },
217 	{ PCI_VDEVICE(BROADCOM, 0x1803), .driver_data = BCM57508_NPAR },
218 	{ PCI_VDEVICE(BROADCOM, 0x1804), .driver_data = BCM57504_NPAR },
219 	{ PCI_VDEVICE(BROADCOM, 0x1805), .driver_data = BCM57502_NPAR },
220 	{ PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 },
221 	{ PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 },
222 #ifdef CONFIG_BNXT_SRIOV
223 	{ PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF },
224 	{ PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF },
225 	{ PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF },
226 	{ PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF },
227 	{ PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF },
228 	{ PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF },
229 	{ PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF },
230 	{ PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF },
231 	{ PCI_VDEVICE(BROADCOM, 0x1806), .driver_data = NETXTREME_E_P5_VF },
232 	{ PCI_VDEVICE(BROADCOM, 0x1807), .driver_data = NETXTREME_E_P5_VF },
233 	{ PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF },
234 #endif
235 	{ 0 }
236 };
237 
238 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
239 
240 static const u16 bnxt_vf_req_snif[] = {
241 	HWRM_FUNC_CFG,
242 	HWRM_FUNC_VF_CFG,
243 	HWRM_PORT_PHY_QCFG,
244 	HWRM_CFA_L2_FILTER_ALLOC,
245 };
246 
247 static const u16 bnxt_async_events_arr[] = {
248 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE,
249 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE,
250 	ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD,
251 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED,
252 	ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE,
253 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE,
254 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE,
255 	ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY,
256 	ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY,
257 };
258 
259 static struct workqueue_struct *bnxt_pf_wq;
260 
261 static bool bnxt_vf_pciid(enum board_idx idx)
262 {
263 	return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF ||
264 		idx == NETXTREME_S_VF || idx == NETXTREME_E_P5_VF);
265 }
266 
267 #define DB_CP_REARM_FLAGS	(DB_KEY_CP | DB_IDX_VALID)
268 #define DB_CP_FLAGS		(DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
269 #define DB_CP_IRQ_DIS_FLAGS	(DB_KEY_CP | DB_IRQ_DIS)
270 
271 #define BNXT_CP_DB_IRQ_DIS(db)						\
272 		writel(DB_CP_IRQ_DIS_FLAGS, db)
273 
274 #define BNXT_DB_CQ(db, idx)						\
275 	writel(DB_CP_FLAGS | RING_CMP(idx), (db)->doorbell)
276 
277 #define BNXT_DB_NQ_P5(db, idx)						\
278 	writeq((db)->db_key64 | DBR_TYPE_NQ | RING_CMP(idx), (db)->doorbell)
279 
280 #define BNXT_DB_CQ_ARM(db, idx)						\
281 	writel(DB_CP_REARM_FLAGS | RING_CMP(idx), (db)->doorbell)
282 
283 #define BNXT_DB_NQ_ARM_P5(db, idx)					\
284 	writeq((db)->db_key64 | DBR_TYPE_NQ_ARM | RING_CMP(idx), (db)->doorbell)
285 
286 static void bnxt_db_nq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
287 {
288 	if (bp->flags & BNXT_FLAG_CHIP_P5)
289 		BNXT_DB_NQ_P5(db, idx);
290 	else
291 		BNXT_DB_CQ(db, idx);
292 }
293 
294 static void bnxt_db_nq_arm(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
295 {
296 	if (bp->flags & BNXT_FLAG_CHIP_P5)
297 		BNXT_DB_NQ_ARM_P5(db, idx);
298 	else
299 		BNXT_DB_CQ_ARM(db, idx);
300 }
301 
302 static void bnxt_db_cq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
303 {
304 	if (bp->flags & BNXT_FLAG_CHIP_P5)
305 		writeq(db->db_key64 | DBR_TYPE_CQ_ARMALL | RING_CMP(idx),
306 		       db->doorbell);
307 	else
308 		BNXT_DB_CQ(db, idx);
309 }
310 
311 const u16 bnxt_lhint_arr[] = {
312 	TX_BD_FLAGS_LHINT_512_AND_SMALLER,
313 	TX_BD_FLAGS_LHINT_512_TO_1023,
314 	TX_BD_FLAGS_LHINT_1024_TO_2047,
315 	TX_BD_FLAGS_LHINT_1024_TO_2047,
316 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
317 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
318 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
319 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
320 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
321 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
322 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
323 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
324 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
325 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
326 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
327 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
328 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
329 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
330 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
331 };
332 
333 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb)
334 {
335 	struct metadata_dst *md_dst = skb_metadata_dst(skb);
336 
337 	if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX)
338 		return 0;
339 
340 	return md_dst->u.port_info.port_id;
341 }
342 
343 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
344 {
345 	struct bnxt *bp = netdev_priv(dev);
346 	struct tx_bd *txbd;
347 	struct tx_bd_ext *txbd1;
348 	struct netdev_queue *txq;
349 	int i;
350 	dma_addr_t mapping;
351 	unsigned int length, pad = 0;
352 	u32 len, free_size, vlan_tag_flags, cfa_action, flags;
353 	u16 prod, last_frag;
354 	struct pci_dev *pdev = bp->pdev;
355 	struct bnxt_tx_ring_info *txr;
356 	struct bnxt_sw_tx_bd *tx_buf;
357 
358 	i = skb_get_queue_mapping(skb);
359 	if (unlikely(i >= bp->tx_nr_rings)) {
360 		dev_kfree_skb_any(skb);
361 		return NETDEV_TX_OK;
362 	}
363 
364 	txq = netdev_get_tx_queue(dev, i);
365 	txr = &bp->tx_ring[bp->tx_ring_map[i]];
366 	prod = txr->tx_prod;
367 
368 	free_size = bnxt_tx_avail(bp, txr);
369 	if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
370 		netif_tx_stop_queue(txq);
371 		return NETDEV_TX_BUSY;
372 	}
373 
374 	length = skb->len;
375 	len = skb_headlen(skb);
376 	last_frag = skb_shinfo(skb)->nr_frags;
377 
378 	txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
379 
380 	txbd->tx_bd_opaque = prod;
381 
382 	tx_buf = &txr->tx_buf_ring[prod];
383 	tx_buf->skb = skb;
384 	tx_buf->nr_frags = last_frag;
385 
386 	vlan_tag_flags = 0;
387 	cfa_action = bnxt_xmit_get_cfa_action(skb);
388 	if (skb_vlan_tag_present(skb)) {
389 		vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
390 				 skb_vlan_tag_get(skb);
391 		/* Currently supports 8021Q, 8021AD vlan offloads
392 		 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
393 		 */
394 		if (skb->vlan_proto == htons(ETH_P_8021Q))
395 			vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
396 	}
397 
398 	if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh) {
399 		struct tx_push_buffer *tx_push_buf = txr->tx_push;
400 		struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
401 		struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
402 		void __iomem *db = txr->tx_db.doorbell;
403 		void *pdata = tx_push_buf->data;
404 		u64 *end;
405 		int j, push_len;
406 
407 		/* Set COAL_NOW to be ready quickly for the next push */
408 		tx_push->tx_bd_len_flags_type =
409 			cpu_to_le32((length << TX_BD_LEN_SHIFT) |
410 					TX_BD_TYPE_LONG_TX_BD |
411 					TX_BD_FLAGS_LHINT_512_AND_SMALLER |
412 					TX_BD_FLAGS_COAL_NOW |
413 					TX_BD_FLAGS_PACKET_END |
414 					(2 << TX_BD_FLAGS_BD_CNT_SHIFT));
415 
416 		if (skb->ip_summed == CHECKSUM_PARTIAL)
417 			tx_push1->tx_bd_hsize_lflags =
418 					cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
419 		else
420 			tx_push1->tx_bd_hsize_lflags = 0;
421 
422 		tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
423 		tx_push1->tx_bd_cfa_action =
424 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
425 
426 		end = pdata + length;
427 		end = PTR_ALIGN(end, 8) - 1;
428 		*end = 0;
429 
430 		skb_copy_from_linear_data(skb, pdata, len);
431 		pdata += len;
432 		for (j = 0; j < last_frag; j++) {
433 			skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
434 			void *fptr;
435 
436 			fptr = skb_frag_address_safe(frag);
437 			if (!fptr)
438 				goto normal_tx;
439 
440 			memcpy(pdata, fptr, skb_frag_size(frag));
441 			pdata += skb_frag_size(frag);
442 		}
443 
444 		txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
445 		txbd->tx_bd_haddr = txr->data_mapping;
446 		prod = NEXT_TX(prod);
447 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
448 		memcpy(txbd, tx_push1, sizeof(*txbd));
449 		prod = NEXT_TX(prod);
450 		tx_push->doorbell =
451 			cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod);
452 		txr->tx_prod = prod;
453 
454 		tx_buf->is_push = 1;
455 		netdev_tx_sent_queue(txq, skb->len);
456 		wmb();	/* Sync is_push and byte queue before pushing data */
457 
458 		push_len = (length + sizeof(*tx_push) + 7) / 8;
459 		if (push_len > 16) {
460 			__iowrite64_copy(db, tx_push_buf, 16);
461 			__iowrite32_copy(db + 4, tx_push_buf + 1,
462 					 (push_len - 16) << 1);
463 		} else {
464 			__iowrite64_copy(db, tx_push_buf, push_len);
465 		}
466 
467 		goto tx_done;
468 	}
469 
470 normal_tx:
471 	if (length < BNXT_MIN_PKT_SIZE) {
472 		pad = BNXT_MIN_PKT_SIZE - length;
473 		if (skb_pad(skb, pad)) {
474 			/* SKB already freed. */
475 			tx_buf->skb = NULL;
476 			return NETDEV_TX_OK;
477 		}
478 		length = BNXT_MIN_PKT_SIZE;
479 	}
480 
481 	mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
482 
483 	if (unlikely(dma_mapping_error(&pdev->dev, mapping))) {
484 		dev_kfree_skb_any(skb);
485 		tx_buf->skb = NULL;
486 		return NETDEV_TX_OK;
487 	}
488 
489 	dma_unmap_addr_set(tx_buf, mapping, mapping);
490 	flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
491 		((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
492 
493 	txbd->tx_bd_haddr = cpu_to_le64(mapping);
494 
495 	prod = NEXT_TX(prod);
496 	txbd1 = (struct tx_bd_ext *)
497 		&txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
498 
499 	txbd1->tx_bd_hsize_lflags = 0;
500 	if (skb_is_gso(skb)) {
501 		u32 hdr_len;
502 
503 		if (skb->encapsulation)
504 			hdr_len = skb_inner_network_offset(skb) +
505 				skb_inner_network_header_len(skb) +
506 				inner_tcp_hdrlen(skb);
507 		else
508 			hdr_len = skb_transport_offset(skb) +
509 				tcp_hdrlen(skb);
510 
511 		txbd1->tx_bd_hsize_lflags = cpu_to_le32(TX_BD_FLAGS_LSO |
512 					TX_BD_FLAGS_T_IPID |
513 					(hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
514 		length = skb_shinfo(skb)->gso_size;
515 		txbd1->tx_bd_mss = cpu_to_le32(length);
516 		length += hdr_len;
517 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
518 		txbd1->tx_bd_hsize_lflags =
519 			cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
520 		txbd1->tx_bd_mss = 0;
521 	}
522 
523 	length >>= 9;
524 	if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) {
525 		dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n",
526 				     skb->len);
527 		i = 0;
528 		goto tx_dma_error;
529 	}
530 	flags |= bnxt_lhint_arr[length];
531 	txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
532 
533 	txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
534 	txbd1->tx_bd_cfa_action =
535 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
536 	for (i = 0; i < last_frag; i++) {
537 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
538 
539 		prod = NEXT_TX(prod);
540 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
541 
542 		len = skb_frag_size(frag);
543 		mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
544 					   DMA_TO_DEVICE);
545 
546 		if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
547 			goto tx_dma_error;
548 
549 		tx_buf = &txr->tx_buf_ring[prod];
550 		dma_unmap_addr_set(tx_buf, mapping, mapping);
551 
552 		txbd->tx_bd_haddr = cpu_to_le64(mapping);
553 
554 		flags = len << TX_BD_LEN_SHIFT;
555 		txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
556 	}
557 
558 	flags &= ~TX_BD_LEN;
559 	txbd->tx_bd_len_flags_type =
560 		cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
561 			    TX_BD_FLAGS_PACKET_END);
562 
563 	netdev_tx_sent_queue(txq, skb->len);
564 
565 	/* Sync BD data before updating doorbell */
566 	wmb();
567 
568 	prod = NEXT_TX(prod);
569 	txr->tx_prod = prod;
570 
571 	if (!netdev_xmit_more() || netif_xmit_stopped(txq))
572 		bnxt_db_write(bp, &txr->tx_db, prod);
573 
574 tx_done:
575 
576 	if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
577 		if (netdev_xmit_more() && !tx_buf->is_push)
578 			bnxt_db_write(bp, &txr->tx_db, prod);
579 
580 		netif_tx_stop_queue(txq);
581 
582 		/* netif_tx_stop_queue() must be done before checking
583 		 * tx index in bnxt_tx_avail() below, because in
584 		 * bnxt_tx_int(), we update tx index before checking for
585 		 * netif_tx_queue_stopped().
586 		 */
587 		smp_mb();
588 		if (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)
589 			netif_tx_wake_queue(txq);
590 	}
591 	return NETDEV_TX_OK;
592 
593 tx_dma_error:
594 	last_frag = i;
595 
596 	/* start back at beginning and unmap skb */
597 	prod = txr->tx_prod;
598 	tx_buf = &txr->tx_buf_ring[prod];
599 	tx_buf->skb = NULL;
600 	dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
601 			 skb_headlen(skb), PCI_DMA_TODEVICE);
602 	prod = NEXT_TX(prod);
603 
604 	/* unmap remaining mapped pages */
605 	for (i = 0; i < last_frag; i++) {
606 		prod = NEXT_TX(prod);
607 		tx_buf = &txr->tx_buf_ring[prod];
608 		dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
609 			       skb_frag_size(&skb_shinfo(skb)->frags[i]),
610 			       PCI_DMA_TODEVICE);
611 	}
612 
613 	dev_kfree_skb_any(skb);
614 	return NETDEV_TX_OK;
615 }
616 
617 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts)
618 {
619 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
620 	struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index);
621 	u16 cons = txr->tx_cons;
622 	struct pci_dev *pdev = bp->pdev;
623 	int i;
624 	unsigned int tx_bytes = 0;
625 
626 	for (i = 0; i < nr_pkts; i++) {
627 		struct bnxt_sw_tx_bd *tx_buf;
628 		struct sk_buff *skb;
629 		int j, last;
630 
631 		tx_buf = &txr->tx_buf_ring[cons];
632 		cons = NEXT_TX(cons);
633 		skb = tx_buf->skb;
634 		tx_buf->skb = NULL;
635 
636 		if (tx_buf->is_push) {
637 			tx_buf->is_push = 0;
638 			goto next_tx_int;
639 		}
640 
641 		dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
642 				 skb_headlen(skb), PCI_DMA_TODEVICE);
643 		last = tx_buf->nr_frags;
644 
645 		for (j = 0; j < last; j++) {
646 			cons = NEXT_TX(cons);
647 			tx_buf = &txr->tx_buf_ring[cons];
648 			dma_unmap_page(
649 				&pdev->dev,
650 				dma_unmap_addr(tx_buf, mapping),
651 				skb_frag_size(&skb_shinfo(skb)->frags[j]),
652 				PCI_DMA_TODEVICE);
653 		}
654 
655 next_tx_int:
656 		cons = NEXT_TX(cons);
657 
658 		tx_bytes += skb->len;
659 		dev_kfree_skb_any(skb);
660 	}
661 
662 	netdev_tx_completed_queue(txq, nr_pkts, tx_bytes);
663 	txr->tx_cons = cons;
664 
665 	/* Need to make the tx_cons update visible to bnxt_start_xmit()
666 	 * before checking for netif_tx_queue_stopped().  Without the
667 	 * memory barrier, there is a small possibility that bnxt_start_xmit()
668 	 * will miss it and cause the queue to be stopped forever.
669 	 */
670 	smp_mb();
671 
672 	if (unlikely(netif_tx_queue_stopped(txq)) &&
673 	    (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
674 		__netif_tx_lock(txq, smp_processor_id());
675 		if (netif_tx_queue_stopped(txq) &&
676 		    bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh &&
677 		    txr->dev_state != BNXT_DEV_STATE_CLOSING)
678 			netif_tx_wake_queue(txq);
679 		__netif_tx_unlock(txq);
680 	}
681 }
682 
683 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping,
684 					 struct bnxt_rx_ring_info *rxr,
685 					 gfp_t gfp)
686 {
687 	struct device *dev = &bp->pdev->dev;
688 	struct page *page;
689 
690 	page = page_pool_dev_alloc_pages(rxr->page_pool);
691 	if (!page)
692 		return NULL;
693 
694 	*mapping = dma_map_page_attrs(dev, page, 0, PAGE_SIZE, bp->rx_dir,
695 				      DMA_ATTR_WEAK_ORDERING);
696 	if (dma_mapping_error(dev, *mapping)) {
697 		page_pool_recycle_direct(rxr->page_pool, page);
698 		return NULL;
699 	}
700 	*mapping += bp->rx_dma_offset;
701 	return page;
702 }
703 
704 static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping,
705 				       gfp_t gfp)
706 {
707 	u8 *data;
708 	struct pci_dev *pdev = bp->pdev;
709 
710 	data = kmalloc(bp->rx_buf_size, gfp);
711 	if (!data)
712 		return NULL;
713 
714 	*mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset,
715 					bp->rx_buf_use_size, bp->rx_dir,
716 					DMA_ATTR_WEAK_ORDERING);
717 
718 	if (dma_mapping_error(&pdev->dev, *mapping)) {
719 		kfree(data);
720 		data = NULL;
721 	}
722 	return data;
723 }
724 
725 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
726 		       u16 prod, gfp_t gfp)
727 {
728 	struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
729 	struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
730 	dma_addr_t mapping;
731 
732 	if (BNXT_RX_PAGE_MODE(bp)) {
733 		struct page *page =
734 			__bnxt_alloc_rx_page(bp, &mapping, rxr, gfp);
735 
736 		if (!page)
737 			return -ENOMEM;
738 
739 		rx_buf->data = page;
740 		rx_buf->data_ptr = page_address(page) + bp->rx_offset;
741 	} else {
742 		u8 *data = __bnxt_alloc_rx_data(bp, &mapping, gfp);
743 
744 		if (!data)
745 			return -ENOMEM;
746 
747 		rx_buf->data = data;
748 		rx_buf->data_ptr = data + bp->rx_offset;
749 	}
750 	rx_buf->mapping = mapping;
751 
752 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
753 	return 0;
754 }
755 
756 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data)
757 {
758 	u16 prod = rxr->rx_prod;
759 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
760 	struct rx_bd *cons_bd, *prod_bd;
761 
762 	prod_rx_buf = &rxr->rx_buf_ring[prod];
763 	cons_rx_buf = &rxr->rx_buf_ring[cons];
764 
765 	prod_rx_buf->data = data;
766 	prod_rx_buf->data_ptr = cons_rx_buf->data_ptr;
767 
768 	prod_rx_buf->mapping = cons_rx_buf->mapping;
769 
770 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
771 	cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
772 
773 	prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
774 }
775 
776 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
777 {
778 	u16 next, max = rxr->rx_agg_bmap_size;
779 
780 	next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
781 	if (next >= max)
782 		next = find_first_zero_bit(rxr->rx_agg_bmap, max);
783 	return next;
784 }
785 
786 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
787 				     struct bnxt_rx_ring_info *rxr,
788 				     u16 prod, gfp_t gfp)
789 {
790 	struct rx_bd *rxbd =
791 		&rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
792 	struct bnxt_sw_rx_agg_bd *rx_agg_buf;
793 	struct pci_dev *pdev = bp->pdev;
794 	struct page *page;
795 	dma_addr_t mapping;
796 	u16 sw_prod = rxr->rx_sw_agg_prod;
797 	unsigned int offset = 0;
798 
799 	if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) {
800 		page = rxr->rx_page;
801 		if (!page) {
802 			page = alloc_page(gfp);
803 			if (!page)
804 				return -ENOMEM;
805 			rxr->rx_page = page;
806 			rxr->rx_page_offset = 0;
807 		}
808 		offset = rxr->rx_page_offset;
809 		rxr->rx_page_offset += BNXT_RX_PAGE_SIZE;
810 		if (rxr->rx_page_offset == PAGE_SIZE)
811 			rxr->rx_page = NULL;
812 		else
813 			get_page(page);
814 	} else {
815 		page = alloc_page(gfp);
816 		if (!page)
817 			return -ENOMEM;
818 	}
819 
820 	mapping = dma_map_page_attrs(&pdev->dev, page, offset,
821 				     BNXT_RX_PAGE_SIZE, PCI_DMA_FROMDEVICE,
822 				     DMA_ATTR_WEAK_ORDERING);
823 	if (dma_mapping_error(&pdev->dev, mapping)) {
824 		__free_page(page);
825 		return -EIO;
826 	}
827 
828 	if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
829 		sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
830 
831 	__set_bit(sw_prod, rxr->rx_agg_bmap);
832 	rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
833 	rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod);
834 
835 	rx_agg_buf->page = page;
836 	rx_agg_buf->offset = offset;
837 	rx_agg_buf->mapping = mapping;
838 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
839 	rxbd->rx_bd_opaque = sw_prod;
840 	return 0;
841 }
842 
843 static struct rx_agg_cmp *bnxt_get_agg(struct bnxt *bp,
844 				       struct bnxt_cp_ring_info *cpr,
845 				       u16 cp_cons, u16 curr)
846 {
847 	struct rx_agg_cmp *agg;
848 
849 	cp_cons = RING_CMP(ADV_RAW_CMP(cp_cons, curr));
850 	agg = (struct rx_agg_cmp *)
851 		&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
852 	return agg;
853 }
854 
855 static struct rx_agg_cmp *bnxt_get_tpa_agg_p5(struct bnxt *bp,
856 					      struct bnxt_rx_ring_info *rxr,
857 					      u16 agg_id, u16 curr)
858 {
859 	struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[agg_id];
860 
861 	return &tpa_info->agg_arr[curr];
862 }
863 
864 static void bnxt_reuse_rx_agg_bufs(struct bnxt_cp_ring_info *cpr, u16 idx,
865 				   u16 start, u32 agg_bufs, bool tpa)
866 {
867 	struct bnxt_napi *bnapi = cpr->bnapi;
868 	struct bnxt *bp = bnapi->bp;
869 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
870 	u16 prod = rxr->rx_agg_prod;
871 	u16 sw_prod = rxr->rx_sw_agg_prod;
872 	bool p5_tpa = false;
873 	u32 i;
874 
875 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa)
876 		p5_tpa = true;
877 
878 	for (i = 0; i < agg_bufs; i++) {
879 		u16 cons;
880 		struct rx_agg_cmp *agg;
881 		struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
882 		struct rx_bd *prod_bd;
883 		struct page *page;
884 
885 		if (p5_tpa)
886 			agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, start + i);
887 		else
888 			agg = bnxt_get_agg(bp, cpr, idx, start + i);
889 		cons = agg->rx_agg_cmp_opaque;
890 		__clear_bit(cons, rxr->rx_agg_bmap);
891 
892 		if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
893 			sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
894 
895 		__set_bit(sw_prod, rxr->rx_agg_bmap);
896 		prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
897 		cons_rx_buf = &rxr->rx_agg_ring[cons];
898 
899 		/* It is possible for sw_prod to be equal to cons, so
900 		 * set cons_rx_buf->page to NULL first.
901 		 */
902 		page = cons_rx_buf->page;
903 		cons_rx_buf->page = NULL;
904 		prod_rx_buf->page = page;
905 		prod_rx_buf->offset = cons_rx_buf->offset;
906 
907 		prod_rx_buf->mapping = cons_rx_buf->mapping;
908 
909 		prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
910 
911 		prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
912 		prod_bd->rx_bd_opaque = sw_prod;
913 
914 		prod = NEXT_RX_AGG(prod);
915 		sw_prod = NEXT_RX_AGG(sw_prod);
916 	}
917 	rxr->rx_agg_prod = prod;
918 	rxr->rx_sw_agg_prod = sw_prod;
919 }
920 
921 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp,
922 					struct bnxt_rx_ring_info *rxr,
923 					u16 cons, void *data, u8 *data_ptr,
924 					dma_addr_t dma_addr,
925 					unsigned int offset_and_len)
926 {
927 	unsigned int payload = offset_and_len >> 16;
928 	unsigned int len = offset_and_len & 0xffff;
929 	skb_frag_t *frag;
930 	struct page *page = data;
931 	u16 prod = rxr->rx_prod;
932 	struct sk_buff *skb;
933 	int off, err;
934 
935 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
936 	if (unlikely(err)) {
937 		bnxt_reuse_rx_data(rxr, cons, data);
938 		return NULL;
939 	}
940 	dma_addr -= bp->rx_dma_offset;
941 	dma_unmap_page_attrs(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir,
942 			     DMA_ATTR_WEAK_ORDERING);
943 	page_pool_release_page(rxr->page_pool, page);
944 
945 	if (unlikely(!payload))
946 		payload = eth_get_headlen(bp->dev, data_ptr, len);
947 
948 	skb = napi_alloc_skb(&rxr->bnapi->napi, payload);
949 	if (!skb) {
950 		__free_page(page);
951 		return NULL;
952 	}
953 
954 	off = (void *)data_ptr - page_address(page);
955 	skb_add_rx_frag(skb, 0, page, off, len, PAGE_SIZE);
956 	memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN,
957 	       payload + NET_IP_ALIGN);
958 
959 	frag = &skb_shinfo(skb)->frags[0];
960 	skb_frag_size_sub(frag, payload);
961 	skb_frag_off_add(frag, payload);
962 	skb->data_len -= payload;
963 	skb->tail += payload;
964 
965 	return skb;
966 }
967 
968 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
969 				   struct bnxt_rx_ring_info *rxr, u16 cons,
970 				   void *data, u8 *data_ptr,
971 				   dma_addr_t dma_addr,
972 				   unsigned int offset_and_len)
973 {
974 	u16 prod = rxr->rx_prod;
975 	struct sk_buff *skb;
976 	int err;
977 
978 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
979 	if (unlikely(err)) {
980 		bnxt_reuse_rx_data(rxr, cons, data);
981 		return NULL;
982 	}
983 
984 	skb = build_skb(data, 0);
985 	dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
986 			       bp->rx_dir, DMA_ATTR_WEAK_ORDERING);
987 	if (!skb) {
988 		kfree(data);
989 		return NULL;
990 	}
991 
992 	skb_reserve(skb, bp->rx_offset);
993 	skb_put(skb, offset_and_len & 0xffff);
994 	return skb;
995 }
996 
997 static struct sk_buff *bnxt_rx_pages(struct bnxt *bp,
998 				     struct bnxt_cp_ring_info *cpr,
999 				     struct sk_buff *skb, u16 idx,
1000 				     u32 agg_bufs, bool tpa)
1001 {
1002 	struct bnxt_napi *bnapi = cpr->bnapi;
1003 	struct pci_dev *pdev = bp->pdev;
1004 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1005 	u16 prod = rxr->rx_agg_prod;
1006 	bool p5_tpa = false;
1007 	u32 i;
1008 
1009 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa)
1010 		p5_tpa = true;
1011 
1012 	for (i = 0; i < agg_bufs; i++) {
1013 		u16 cons, frag_len;
1014 		struct rx_agg_cmp *agg;
1015 		struct bnxt_sw_rx_agg_bd *cons_rx_buf;
1016 		struct page *page;
1017 		dma_addr_t mapping;
1018 
1019 		if (p5_tpa)
1020 			agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, i);
1021 		else
1022 			agg = bnxt_get_agg(bp, cpr, idx, i);
1023 		cons = agg->rx_agg_cmp_opaque;
1024 		frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
1025 			    RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
1026 
1027 		cons_rx_buf = &rxr->rx_agg_ring[cons];
1028 		skb_fill_page_desc(skb, i, cons_rx_buf->page,
1029 				   cons_rx_buf->offset, frag_len);
1030 		__clear_bit(cons, rxr->rx_agg_bmap);
1031 
1032 		/* It is possible for bnxt_alloc_rx_page() to allocate
1033 		 * a sw_prod index that equals the cons index, so we
1034 		 * need to clear the cons entry now.
1035 		 */
1036 		mapping = cons_rx_buf->mapping;
1037 		page = cons_rx_buf->page;
1038 		cons_rx_buf->page = NULL;
1039 
1040 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
1041 			struct skb_shared_info *shinfo;
1042 			unsigned int nr_frags;
1043 
1044 			shinfo = skb_shinfo(skb);
1045 			nr_frags = --shinfo->nr_frags;
1046 			__skb_frag_set_page(&shinfo->frags[nr_frags], NULL);
1047 
1048 			dev_kfree_skb(skb);
1049 
1050 			cons_rx_buf->page = page;
1051 
1052 			/* Update prod since possibly some pages have been
1053 			 * allocated already.
1054 			 */
1055 			rxr->rx_agg_prod = prod;
1056 			bnxt_reuse_rx_agg_bufs(cpr, idx, i, agg_bufs - i, tpa);
1057 			return NULL;
1058 		}
1059 
1060 		dma_unmap_page_attrs(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE,
1061 				     PCI_DMA_FROMDEVICE,
1062 				     DMA_ATTR_WEAK_ORDERING);
1063 
1064 		skb->data_len += frag_len;
1065 		skb->len += frag_len;
1066 		skb->truesize += PAGE_SIZE;
1067 
1068 		prod = NEXT_RX_AGG(prod);
1069 	}
1070 	rxr->rx_agg_prod = prod;
1071 	return skb;
1072 }
1073 
1074 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1075 			       u8 agg_bufs, u32 *raw_cons)
1076 {
1077 	u16 last;
1078 	struct rx_agg_cmp *agg;
1079 
1080 	*raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
1081 	last = RING_CMP(*raw_cons);
1082 	agg = (struct rx_agg_cmp *)
1083 		&cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
1084 	return RX_AGG_CMP_VALID(agg, *raw_cons);
1085 }
1086 
1087 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
1088 					    unsigned int len,
1089 					    dma_addr_t mapping)
1090 {
1091 	struct bnxt *bp = bnapi->bp;
1092 	struct pci_dev *pdev = bp->pdev;
1093 	struct sk_buff *skb;
1094 
1095 	skb = napi_alloc_skb(&bnapi->napi, len);
1096 	if (!skb)
1097 		return NULL;
1098 
1099 	dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh,
1100 				bp->rx_dir);
1101 
1102 	memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN,
1103 	       len + NET_IP_ALIGN);
1104 
1105 	dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh,
1106 				   bp->rx_dir);
1107 
1108 	skb_put(skb, len);
1109 	return skb;
1110 }
1111 
1112 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1113 			   u32 *raw_cons, void *cmp)
1114 {
1115 	struct rx_cmp *rxcmp = cmp;
1116 	u32 tmp_raw_cons = *raw_cons;
1117 	u8 cmp_type, agg_bufs = 0;
1118 
1119 	cmp_type = RX_CMP_TYPE(rxcmp);
1120 
1121 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1122 		agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) &
1123 			    RX_CMP_AGG_BUFS) >>
1124 			   RX_CMP_AGG_BUFS_SHIFT;
1125 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1126 		struct rx_tpa_end_cmp *tpa_end = cmp;
1127 
1128 		if (bp->flags & BNXT_FLAG_CHIP_P5)
1129 			return 0;
1130 
1131 		agg_bufs = TPA_END_AGG_BUFS(tpa_end);
1132 	}
1133 
1134 	if (agg_bufs) {
1135 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1136 			return -EBUSY;
1137 	}
1138 	*raw_cons = tmp_raw_cons;
1139 	return 0;
1140 }
1141 
1142 static void bnxt_queue_fw_reset_work(struct bnxt *bp, unsigned long delay)
1143 {
1144 	if (!(test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)))
1145 		return;
1146 
1147 	if (BNXT_PF(bp))
1148 		queue_delayed_work(bnxt_pf_wq, &bp->fw_reset_task, delay);
1149 	else
1150 		schedule_delayed_work(&bp->fw_reset_task, delay);
1151 }
1152 
1153 static void bnxt_queue_sp_work(struct bnxt *bp)
1154 {
1155 	if (BNXT_PF(bp))
1156 		queue_work(bnxt_pf_wq, &bp->sp_task);
1157 	else
1158 		schedule_work(&bp->sp_task);
1159 }
1160 
1161 static void bnxt_cancel_sp_work(struct bnxt *bp)
1162 {
1163 	if (BNXT_PF(bp)) {
1164 		flush_workqueue(bnxt_pf_wq);
1165 	} else {
1166 		cancel_work_sync(&bp->sp_task);
1167 		cancel_delayed_work_sync(&bp->fw_reset_task);
1168 	}
1169 }
1170 
1171 static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
1172 {
1173 	if (!rxr->bnapi->in_reset) {
1174 		rxr->bnapi->in_reset = true;
1175 		set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
1176 		bnxt_queue_sp_work(bp);
1177 	}
1178 	rxr->rx_next_cons = 0xffff;
1179 }
1180 
1181 static u16 bnxt_alloc_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id)
1182 {
1183 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1184 	u16 idx = agg_id & MAX_TPA_P5_MASK;
1185 
1186 	if (test_bit(idx, map->agg_idx_bmap))
1187 		idx = find_first_zero_bit(map->agg_idx_bmap,
1188 					  BNXT_AGG_IDX_BMAP_SIZE);
1189 	__set_bit(idx, map->agg_idx_bmap);
1190 	map->agg_id_tbl[agg_id] = idx;
1191 	return idx;
1192 }
1193 
1194 static void bnxt_free_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
1195 {
1196 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1197 
1198 	__clear_bit(idx, map->agg_idx_bmap);
1199 }
1200 
1201 static u16 bnxt_lookup_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id)
1202 {
1203 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1204 
1205 	return map->agg_id_tbl[agg_id];
1206 }
1207 
1208 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1209 			   struct rx_tpa_start_cmp *tpa_start,
1210 			   struct rx_tpa_start_cmp_ext *tpa_start1)
1211 {
1212 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
1213 	struct bnxt_tpa_info *tpa_info;
1214 	u16 cons, prod, agg_id;
1215 	struct rx_bd *prod_bd;
1216 	dma_addr_t mapping;
1217 
1218 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
1219 		agg_id = TPA_START_AGG_ID_P5(tpa_start);
1220 		agg_id = bnxt_alloc_agg_idx(rxr, agg_id);
1221 	} else {
1222 		agg_id = TPA_START_AGG_ID(tpa_start);
1223 	}
1224 	cons = tpa_start->rx_tpa_start_cmp_opaque;
1225 	prod = rxr->rx_prod;
1226 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1227 	prod_rx_buf = &rxr->rx_buf_ring[prod];
1228 	tpa_info = &rxr->rx_tpa[agg_id];
1229 
1230 	if (unlikely(cons != rxr->rx_next_cons ||
1231 		     TPA_START_ERROR(tpa_start))) {
1232 		netdev_warn(bp->dev, "TPA cons %x, expected cons %x, error code %x\n",
1233 			    cons, rxr->rx_next_cons,
1234 			    TPA_START_ERROR_CODE(tpa_start1));
1235 		bnxt_sched_reset(bp, rxr);
1236 		return;
1237 	}
1238 	/* Store cfa_code in tpa_info to use in tpa_end
1239 	 * completion processing.
1240 	 */
1241 	tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1);
1242 	prod_rx_buf->data = tpa_info->data;
1243 	prod_rx_buf->data_ptr = tpa_info->data_ptr;
1244 
1245 	mapping = tpa_info->mapping;
1246 	prod_rx_buf->mapping = mapping;
1247 
1248 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
1249 
1250 	prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
1251 
1252 	tpa_info->data = cons_rx_buf->data;
1253 	tpa_info->data_ptr = cons_rx_buf->data_ptr;
1254 	cons_rx_buf->data = NULL;
1255 	tpa_info->mapping = cons_rx_buf->mapping;
1256 
1257 	tpa_info->len =
1258 		le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
1259 				RX_TPA_START_CMP_LEN_SHIFT;
1260 	if (likely(TPA_START_HASH_VALID(tpa_start))) {
1261 		u32 hash_type = TPA_START_HASH_TYPE(tpa_start);
1262 
1263 		tpa_info->hash_type = PKT_HASH_TYPE_L4;
1264 		tpa_info->gso_type = SKB_GSO_TCPV4;
1265 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1266 		if (hash_type == 3 || TPA_START_IS_IPV6(tpa_start1))
1267 			tpa_info->gso_type = SKB_GSO_TCPV6;
1268 		tpa_info->rss_hash =
1269 			le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
1270 	} else {
1271 		tpa_info->hash_type = PKT_HASH_TYPE_NONE;
1272 		tpa_info->gso_type = 0;
1273 		if (netif_msg_rx_err(bp))
1274 			netdev_warn(bp->dev, "TPA packet without valid hash\n");
1275 	}
1276 	tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
1277 	tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
1278 	tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info);
1279 	tpa_info->agg_count = 0;
1280 
1281 	rxr->rx_prod = NEXT_RX(prod);
1282 	cons = NEXT_RX(cons);
1283 	rxr->rx_next_cons = NEXT_RX(cons);
1284 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1285 
1286 	bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
1287 	rxr->rx_prod = NEXT_RX(rxr->rx_prod);
1288 	cons_rx_buf->data = NULL;
1289 }
1290 
1291 static void bnxt_abort_tpa(struct bnxt_cp_ring_info *cpr, u16 idx, u32 agg_bufs)
1292 {
1293 	if (agg_bufs)
1294 		bnxt_reuse_rx_agg_bufs(cpr, idx, 0, agg_bufs, true);
1295 }
1296 
1297 #ifdef CONFIG_INET
1298 static void bnxt_gro_tunnel(struct sk_buff *skb, __be16 ip_proto)
1299 {
1300 	struct udphdr *uh = NULL;
1301 
1302 	if (ip_proto == htons(ETH_P_IP)) {
1303 		struct iphdr *iph = (struct iphdr *)skb->data;
1304 
1305 		if (iph->protocol == IPPROTO_UDP)
1306 			uh = (struct udphdr *)(iph + 1);
1307 	} else {
1308 		struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1309 
1310 		if (iph->nexthdr == IPPROTO_UDP)
1311 			uh = (struct udphdr *)(iph + 1);
1312 	}
1313 	if (uh) {
1314 		if (uh->check)
1315 			skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL_CSUM;
1316 		else
1317 			skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1318 	}
1319 }
1320 #endif
1321 
1322 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info,
1323 					   int payload_off, int tcp_ts,
1324 					   struct sk_buff *skb)
1325 {
1326 #ifdef CONFIG_INET
1327 	struct tcphdr *th;
1328 	int len, nw_off;
1329 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1330 	u32 hdr_info = tpa_info->hdr_info;
1331 	bool loopback = false;
1332 
1333 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1334 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1335 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1336 
1337 	/* If the packet is an internal loopback packet, the offsets will
1338 	 * have an extra 4 bytes.
1339 	 */
1340 	if (inner_mac_off == 4) {
1341 		loopback = true;
1342 	} else if (inner_mac_off > 4) {
1343 		__be16 proto = *((__be16 *)(skb->data + inner_ip_off -
1344 					    ETH_HLEN - 2));
1345 
1346 		/* We only support inner iPv4/ipv6.  If we don't see the
1347 		 * correct protocol ID, it must be a loopback packet where
1348 		 * the offsets are off by 4.
1349 		 */
1350 		if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6))
1351 			loopback = true;
1352 	}
1353 	if (loopback) {
1354 		/* internal loopback packet, subtract all offsets by 4 */
1355 		inner_ip_off -= 4;
1356 		inner_mac_off -= 4;
1357 		outer_ip_off -= 4;
1358 	}
1359 
1360 	nw_off = inner_ip_off - ETH_HLEN;
1361 	skb_set_network_header(skb, nw_off);
1362 	if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) {
1363 		struct ipv6hdr *iph = ipv6_hdr(skb);
1364 
1365 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1366 		len = skb->len - skb_transport_offset(skb);
1367 		th = tcp_hdr(skb);
1368 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1369 	} else {
1370 		struct iphdr *iph = ip_hdr(skb);
1371 
1372 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1373 		len = skb->len - skb_transport_offset(skb);
1374 		th = tcp_hdr(skb);
1375 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1376 	}
1377 
1378 	if (inner_mac_off) { /* tunnel */
1379 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1380 					    ETH_HLEN - 2));
1381 
1382 		bnxt_gro_tunnel(skb, proto);
1383 	}
1384 #endif
1385 	return skb;
1386 }
1387 
1388 static struct sk_buff *bnxt_gro_func_5750x(struct bnxt_tpa_info *tpa_info,
1389 					   int payload_off, int tcp_ts,
1390 					   struct sk_buff *skb)
1391 {
1392 #ifdef CONFIG_INET
1393 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1394 	u32 hdr_info = tpa_info->hdr_info;
1395 	int iphdr_len, nw_off;
1396 
1397 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1398 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1399 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1400 
1401 	nw_off = inner_ip_off - ETH_HLEN;
1402 	skb_set_network_header(skb, nw_off);
1403 	iphdr_len = (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) ?
1404 		     sizeof(struct ipv6hdr) : sizeof(struct iphdr);
1405 	skb_set_transport_header(skb, nw_off + iphdr_len);
1406 
1407 	if (inner_mac_off) { /* tunnel */
1408 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1409 					    ETH_HLEN - 2));
1410 
1411 		bnxt_gro_tunnel(skb, proto);
1412 	}
1413 #endif
1414 	return skb;
1415 }
1416 
1417 #define BNXT_IPV4_HDR_SIZE	(sizeof(struct iphdr) + sizeof(struct tcphdr))
1418 #define BNXT_IPV6_HDR_SIZE	(sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
1419 
1420 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info,
1421 					   int payload_off, int tcp_ts,
1422 					   struct sk_buff *skb)
1423 {
1424 #ifdef CONFIG_INET
1425 	struct tcphdr *th;
1426 	int len, nw_off, tcp_opt_len = 0;
1427 
1428 	if (tcp_ts)
1429 		tcp_opt_len = 12;
1430 
1431 	if (tpa_info->gso_type == SKB_GSO_TCPV4) {
1432 		struct iphdr *iph;
1433 
1434 		nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
1435 			 ETH_HLEN;
1436 		skb_set_network_header(skb, nw_off);
1437 		iph = ip_hdr(skb);
1438 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1439 		len = skb->len - skb_transport_offset(skb);
1440 		th = tcp_hdr(skb);
1441 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1442 	} else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
1443 		struct ipv6hdr *iph;
1444 
1445 		nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
1446 			 ETH_HLEN;
1447 		skb_set_network_header(skb, nw_off);
1448 		iph = ipv6_hdr(skb);
1449 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1450 		len = skb->len - skb_transport_offset(skb);
1451 		th = tcp_hdr(skb);
1452 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1453 	} else {
1454 		dev_kfree_skb_any(skb);
1455 		return NULL;
1456 	}
1457 
1458 	if (nw_off) /* tunnel */
1459 		bnxt_gro_tunnel(skb, skb->protocol);
1460 #endif
1461 	return skb;
1462 }
1463 
1464 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp,
1465 					   struct bnxt_tpa_info *tpa_info,
1466 					   struct rx_tpa_end_cmp *tpa_end,
1467 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1468 					   struct sk_buff *skb)
1469 {
1470 #ifdef CONFIG_INET
1471 	int payload_off;
1472 	u16 segs;
1473 
1474 	segs = TPA_END_TPA_SEGS(tpa_end);
1475 	if (segs == 1)
1476 		return skb;
1477 
1478 	NAPI_GRO_CB(skb)->count = segs;
1479 	skb_shinfo(skb)->gso_size =
1480 		le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
1481 	skb_shinfo(skb)->gso_type = tpa_info->gso_type;
1482 	if (bp->flags & BNXT_FLAG_CHIP_P5)
1483 		payload_off = TPA_END_PAYLOAD_OFF_P5(tpa_end1);
1484 	else
1485 		payload_off = TPA_END_PAYLOAD_OFF(tpa_end);
1486 	skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb);
1487 	if (likely(skb))
1488 		tcp_gro_complete(skb);
1489 #endif
1490 	return skb;
1491 }
1492 
1493 /* Given the cfa_code of a received packet determine which
1494  * netdev (vf-rep or PF) the packet is destined to.
1495  */
1496 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code)
1497 {
1498 	struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code);
1499 
1500 	/* if vf-rep dev is NULL, the must belongs to the PF */
1501 	return dev ? dev : bp->dev;
1502 }
1503 
1504 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
1505 					   struct bnxt_cp_ring_info *cpr,
1506 					   u32 *raw_cons,
1507 					   struct rx_tpa_end_cmp *tpa_end,
1508 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1509 					   u8 *event)
1510 {
1511 	struct bnxt_napi *bnapi = cpr->bnapi;
1512 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1513 	u8 *data_ptr, agg_bufs;
1514 	unsigned int len;
1515 	struct bnxt_tpa_info *tpa_info;
1516 	dma_addr_t mapping;
1517 	struct sk_buff *skb;
1518 	u16 idx = 0, agg_id;
1519 	void *data;
1520 	bool gro;
1521 
1522 	if (unlikely(bnapi->in_reset)) {
1523 		int rc = bnxt_discard_rx(bp, cpr, raw_cons, tpa_end);
1524 
1525 		if (rc < 0)
1526 			return ERR_PTR(-EBUSY);
1527 		return NULL;
1528 	}
1529 
1530 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
1531 		agg_id = TPA_END_AGG_ID_P5(tpa_end);
1532 		agg_id = bnxt_lookup_agg_idx(rxr, agg_id);
1533 		agg_bufs = TPA_END_AGG_BUFS_P5(tpa_end1);
1534 		tpa_info = &rxr->rx_tpa[agg_id];
1535 		if (unlikely(agg_bufs != tpa_info->agg_count)) {
1536 			netdev_warn(bp->dev, "TPA end agg_buf %d != expected agg_bufs %d\n",
1537 				    agg_bufs, tpa_info->agg_count);
1538 			agg_bufs = tpa_info->agg_count;
1539 		}
1540 		tpa_info->agg_count = 0;
1541 		*event |= BNXT_AGG_EVENT;
1542 		bnxt_free_agg_idx(rxr, agg_id);
1543 		idx = agg_id;
1544 		gro = !!(bp->flags & BNXT_FLAG_GRO);
1545 	} else {
1546 		agg_id = TPA_END_AGG_ID(tpa_end);
1547 		agg_bufs = TPA_END_AGG_BUFS(tpa_end);
1548 		tpa_info = &rxr->rx_tpa[agg_id];
1549 		idx = RING_CMP(*raw_cons);
1550 		if (agg_bufs) {
1551 			if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
1552 				return ERR_PTR(-EBUSY);
1553 
1554 			*event |= BNXT_AGG_EVENT;
1555 			idx = NEXT_CMP(idx);
1556 		}
1557 		gro = !!TPA_END_GRO(tpa_end);
1558 	}
1559 	data = tpa_info->data;
1560 	data_ptr = tpa_info->data_ptr;
1561 	prefetch(data_ptr);
1562 	len = tpa_info->len;
1563 	mapping = tpa_info->mapping;
1564 
1565 	if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) {
1566 		bnxt_abort_tpa(cpr, idx, agg_bufs);
1567 		if (agg_bufs > MAX_SKB_FRAGS)
1568 			netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
1569 				    agg_bufs, (int)MAX_SKB_FRAGS);
1570 		return NULL;
1571 	}
1572 
1573 	if (len <= bp->rx_copy_thresh) {
1574 		skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping);
1575 		if (!skb) {
1576 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1577 			return NULL;
1578 		}
1579 	} else {
1580 		u8 *new_data;
1581 		dma_addr_t new_mapping;
1582 
1583 		new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC);
1584 		if (!new_data) {
1585 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1586 			return NULL;
1587 		}
1588 
1589 		tpa_info->data = new_data;
1590 		tpa_info->data_ptr = new_data + bp->rx_offset;
1591 		tpa_info->mapping = new_mapping;
1592 
1593 		skb = build_skb(data, 0);
1594 		dma_unmap_single_attrs(&bp->pdev->dev, mapping,
1595 				       bp->rx_buf_use_size, bp->rx_dir,
1596 				       DMA_ATTR_WEAK_ORDERING);
1597 
1598 		if (!skb) {
1599 			kfree(data);
1600 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1601 			return NULL;
1602 		}
1603 		skb_reserve(skb, bp->rx_offset);
1604 		skb_put(skb, len);
1605 	}
1606 
1607 	if (agg_bufs) {
1608 		skb = bnxt_rx_pages(bp, cpr, skb, idx, agg_bufs, true);
1609 		if (!skb) {
1610 			/* Page reuse already handled by bnxt_rx_pages(). */
1611 			return NULL;
1612 		}
1613 	}
1614 
1615 	skb->protocol =
1616 		eth_type_trans(skb, bnxt_get_pkt_dev(bp, tpa_info->cfa_code));
1617 
1618 	if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1619 		skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1620 
1621 	if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) &&
1622 	    (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) {
1623 		u16 vlan_proto = tpa_info->metadata >>
1624 			RX_CMP_FLAGS2_METADATA_TPID_SFT;
1625 		u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1626 
1627 		__vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1628 	}
1629 
1630 	skb_checksum_none_assert(skb);
1631 	if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1632 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1633 		skb->csum_level =
1634 			(tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1635 	}
1636 
1637 	if (gro)
1638 		skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb);
1639 
1640 	return skb;
1641 }
1642 
1643 static void bnxt_tpa_agg(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1644 			 struct rx_agg_cmp *rx_agg)
1645 {
1646 	u16 agg_id = TPA_AGG_AGG_ID(rx_agg);
1647 	struct bnxt_tpa_info *tpa_info;
1648 
1649 	agg_id = bnxt_lookup_agg_idx(rxr, agg_id);
1650 	tpa_info = &rxr->rx_tpa[agg_id];
1651 	BUG_ON(tpa_info->agg_count >= MAX_SKB_FRAGS);
1652 	tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg;
1653 }
1654 
1655 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi,
1656 			     struct sk_buff *skb)
1657 {
1658 	if (skb->dev != bp->dev) {
1659 		/* this packet belongs to a vf-rep */
1660 		bnxt_vf_rep_rx(bp, skb);
1661 		return;
1662 	}
1663 	skb_record_rx_queue(skb, bnapi->index);
1664 	napi_gro_receive(&bnapi->napi, skb);
1665 }
1666 
1667 /* returns the following:
1668  * 1       - 1 packet successfully received
1669  * 0       - successful TPA_START, packet not completed yet
1670  * -EBUSY  - completion ring does not have all the agg buffers yet
1671  * -ENOMEM - packet aborted due to out of memory
1672  * -EIO    - packet aborted due to hw error indicated in BD
1673  */
1674 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1675 		       u32 *raw_cons, u8 *event)
1676 {
1677 	struct bnxt_napi *bnapi = cpr->bnapi;
1678 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1679 	struct net_device *dev = bp->dev;
1680 	struct rx_cmp *rxcmp;
1681 	struct rx_cmp_ext *rxcmp1;
1682 	u32 tmp_raw_cons = *raw_cons;
1683 	u16 cfa_code, cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
1684 	struct bnxt_sw_rx_bd *rx_buf;
1685 	unsigned int len;
1686 	u8 *data_ptr, agg_bufs, cmp_type;
1687 	dma_addr_t dma_addr;
1688 	struct sk_buff *skb;
1689 	void *data;
1690 	int rc = 0;
1691 	u32 misc;
1692 
1693 	rxcmp = (struct rx_cmp *)
1694 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1695 
1696 	cmp_type = RX_CMP_TYPE(rxcmp);
1697 
1698 	if (cmp_type == CMP_TYPE_RX_TPA_AGG_CMP) {
1699 		bnxt_tpa_agg(bp, rxr, (struct rx_agg_cmp *)rxcmp);
1700 		goto next_rx_no_prod_no_len;
1701 	}
1702 
1703 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1704 	cp_cons = RING_CMP(tmp_raw_cons);
1705 	rxcmp1 = (struct rx_cmp_ext *)
1706 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1707 
1708 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1709 		return -EBUSY;
1710 
1711 	prod = rxr->rx_prod;
1712 
1713 	if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) {
1714 		bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp,
1715 			       (struct rx_tpa_start_cmp_ext *)rxcmp1);
1716 
1717 		*event |= BNXT_RX_EVENT;
1718 		goto next_rx_no_prod_no_len;
1719 
1720 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1721 		skb = bnxt_tpa_end(bp, cpr, &tmp_raw_cons,
1722 				   (struct rx_tpa_end_cmp *)rxcmp,
1723 				   (struct rx_tpa_end_cmp_ext *)rxcmp1, event);
1724 
1725 		if (IS_ERR(skb))
1726 			return -EBUSY;
1727 
1728 		rc = -ENOMEM;
1729 		if (likely(skb)) {
1730 			bnxt_deliver_skb(bp, bnapi, skb);
1731 			rc = 1;
1732 		}
1733 		*event |= BNXT_RX_EVENT;
1734 		goto next_rx_no_prod_no_len;
1735 	}
1736 
1737 	cons = rxcmp->rx_cmp_opaque;
1738 	if (unlikely(cons != rxr->rx_next_cons)) {
1739 		int rc1 = bnxt_discard_rx(bp, cpr, raw_cons, rxcmp);
1740 
1741 		netdev_warn(bp->dev, "RX cons %x != expected cons %x\n",
1742 			    cons, rxr->rx_next_cons);
1743 		bnxt_sched_reset(bp, rxr);
1744 		return rc1;
1745 	}
1746 	rx_buf = &rxr->rx_buf_ring[cons];
1747 	data = rx_buf->data;
1748 	data_ptr = rx_buf->data_ptr;
1749 	prefetch(data_ptr);
1750 
1751 	misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1);
1752 	agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT;
1753 
1754 	if (agg_bufs) {
1755 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1756 			return -EBUSY;
1757 
1758 		cp_cons = NEXT_CMP(cp_cons);
1759 		*event |= BNXT_AGG_EVENT;
1760 	}
1761 	*event |= BNXT_RX_EVENT;
1762 
1763 	rx_buf->data = NULL;
1764 	if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
1765 		u32 rx_err = le32_to_cpu(rxcmp1->rx_cmp_cfa_code_errors_v2);
1766 
1767 		bnxt_reuse_rx_data(rxr, cons, data);
1768 		if (agg_bufs)
1769 			bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, agg_bufs,
1770 					       false);
1771 
1772 		rc = -EIO;
1773 		if (rx_err & RX_CMPL_ERRORS_BUFFER_ERROR_MASK) {
1774 			bnapi->cp_ring.sw_stats.rx.rx_buf_errors++;
1775 			if (!(bp->flags & BNXT_FLAG_CHIP_P5)) {
1776 				netdev_warn(bp->dev, "RX buffer error %x\n",
1777 					    rx_err);
1778 				bnxt_sched_reset(bp, rxr);
1779 			}
1780 		}
1781 		goto next_rx_no_len;
1782 	}
1783 
1784 	len = le32_to_cpu(rxcmp->rx_cmp_len_flags_type) >> RX_CMP_LEN_SHIFT;
1785 	dma_addr = rx_buf->mapping;
1786 
1787 	if (bnxt_rx_xdp(bp, rxr, cons, data, &data_ptr, &len, event)) {
1788 		rc = 1;
1789 		goto next_rx;
1790 	}
1791 
1792 	if (len <= bp->rx_copy_thresh) {
1793 		skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr);
1794 		bnxt_reuse_rx_data(rxr, cons, data);
1795 		if (!skb) {
1796 			if (agg_bufs)
1797 				bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0,
1798 						       agg_bufs, false);
1799 			rc = -ENOMEM;
1800 			goto next_rx;
1801 		}
1802 	} else {
1803 		u32 payload;
1804 
1805 		if (rx_buf->data_ptr == data_ptr)
1806 			payload = misc & RX_CMP_PAYLOAD_OFFSET;
1807 		else
1808 			payload = 0;
1809 		skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr,
1810 				      payload | len);
1811 		if (!skb) {
1812 			rc = -ENOMEM;
1813 			goto next_rx;
1814 		}
1815 	}
1816 
1817 	if (agg_bufs) {
1818 		skb = bnxt_rx_pages(bp, cpr, skb, cp_cons, agg_bufs, false);
1819 		if (!skb) {
1820 			rc = -ENOMEM;
1821 			goto next_rx;
1822 		}
1823 	}
1824 
1825 	if (RX_CMP_HASH_VALID(rxcmp)) {
1826 		u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
1827 		enum pkt_hash_types type = PKT_HASH_TYPE_L4;
1828 
1829 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1830 		if (hash_type != 1 && hash_type != 3)
1831 			type = PKT_HASH_TYPE_L3;
1832 		skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
1833 	}
1834 
1835 	cfa_code = RX_CMP_CFA_CODE(rxcmp1);
1836 	skb->protocol = eth_type_trans(skb, bnxt_get_pkt_dev(bp, cfa_code));
1837 
1838 	if ((rxcmp1->rx_cmp_flags2 &
1839 	     cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) &&
1840 	    (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) {
1841 		u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
1842 		u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1843 		u16 vlan_proto = meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT;
1844 
1845 		__vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1846 	}
1847 
1848 	skb_checksum_none_assert(skb);
1849 	if (RX_CMP_L4_CS_OK(rxcmp1)) {
1850 		if (dev->features & NETIF_F_RXCSUM) {
1851 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1852 			skb->csum_level = RX_CMP_ENCAP(rxcmp1);
1853 		}
1854 	} else {
1855 		if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
1856 			if (dev->features & NETIF_F_RXCSUM)
1857 				bnapi->cp_ring.sw_stats.rx.rx_l4_csum_errors++;
1858 		}
1859 	}
1860 
1861 	bnxt_deliver_skb(bp, bnapi, skb);
1862 	rc = 1;
1863 
1864 next_rx:
1865 	cpr->rx_packets += 1;
1866 	cpr->rx_bytes += len;
1867 
1868 next_rx_no_len:
1869 	rxr->rx_prod = NEXT_RX(prod);
1870 	rxr->rx_next_cons = NEXT_RX(cons);
1871 
1872 next_rx_no_prod_no_len:
1873 	*raw_cons = tmp_raw_cons;
1874 
1875 	return rc;
1876 }
1877 
1878 /* In netpoll mode, if we are using a combined completion ring, we need to
1879  * discard the rx packets and recycle the buffers.
1880  */
1881 static int bnxt_force_rx_discard(struct bnxt *bp,
1882 				 struct bnxt_cp_ring_info *cpr,
1883 				 u32 *raw_cons, u8 *event)
1884 {
1885 	u32 tmp_raw_cons = *raw_cons;
1886 	struct rx_cmp_ext *rxcmp1;
1887 	struct rx_cmp *rxcmp;
1888 	u16 cp_cons;
1889 	u8 cmp_type;
1890 
1891 	cp_cons = RING_CMP(tmp_raw_cons);
1892 	rxcmp = (struct rx_cmp *)
1893 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1894 
1895 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1896 	cp_cons = RING_CMP(tmp_raw_cons);
1897 	rxcmp1 = (struct rx_cmp_ext *)
1898 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1899 
1900 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1901 		return -EBUSY;
1902 
1903 	cmp_type = RX_CMP_TYPE(rxcmp);
1904 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1905 		rxcmp1->rx_cmp_cfa_code_errors_v2 |=
1906 			cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
1907 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1908 		struct rx_tpa_end_cmp_ext *tpa_end1;
1909 
1910 		tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1;
1911 		tpa_end1->rx_tpa_end_cmp_errors_v2 |=
1912 			cpu_to_le32(RX_TPA_END_CMP_ERRORS);
1913 	}
1914 	return bnxt_rx_pkt(bp, cpr, raw_cons, event);
1915 }
1916 
1917 u32 bnxt_fw_health_readl(struct bnxt *bp, int reg_idx)
1918 {
1919 	struct bnxt_fw_health *fw_health = bp->fw_health;
1920 	u32 reg = fw_health->regs[reg_idx];
1921 	u32 reg_type, reg_off, val = 0;
1922 
1923 	reg_type = BNXT_FW_HEALTH_REG_TYPE(reg);
1924 	reg_off = BNXT_FW_HEALTH_REG_OFF(reg);
1925 	switch (reg_type) {
1926 	case BNXT_FW_HEALTH_REG_TYPE_CFG:
1927 		pci_read_config_dword(bp->pdev, reg_off, &val);
1928 		break;
1929 	case BNXT_FW_HEALTH_REG_TYPE_GRC:
1930 		reg_off = fw_health->mapped_regs[reg_idx];
1931 		fallthrough;
1932 	case BNXT_FW_HEALTH_REG_TYPE_BAR0:
1933 		val = readl(bp->bar0 + reg_off);
1934 		break;
1935 	case BNXT_FW_HEALTH_REG_TYPE_BAR1:
1936 		val = readl(bp->bar1 + reg_off);
1937 		break;
1938 	}
1939 	if (reg_idx == BNXT_FW_RESET_INPROG_REG)
1940 		val &= fw_health->fw_reset_inprog_reg_mask;
1941 	return val;
1942 }
1943 
1944 #define BNXT_GET_EVENT_PORT(data)	\
1945 	((data) &			\
1946 	 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK)
1947 
1948 static int bnxt_async_event_process(struct bnxt *bp,
1949 				    struct hwrm_async_event_cmpl *cmpl)
1950 {
1951 	u16 event_id = le16_to_cpu(cmpl->event_id);
1952 
1953 	/* TODO CHIMP_FW: Define event id's for link change, error etc */
1954 	switch (event_id) {
1955 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: {
1956 		u32 data1 = le32_to_cpu(cmpl->event_data1);
1957 		struct bnxt_link_info *link_info = &bp->link_info;
1958 
1959 		if (BNXT_VF(bp))
1960 			goto async_event_process_exit;
1961 
1962 		/* print unsupported speed warning in forced speed mode only */
1963 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) &&
1964 		    (data1 & 0x20000)) {
1965 			u16 fw_speed = link_info->force_link_speed;
1966 			u32 speed = bnxt_fw_to_ethtool_speed(fw_speed);
1967 
1968 			if (speed != SPEED_UNKNOWN)
1969 				netdev_warn(bp->dev, "Link speed %d no longer supported\n",
1970 					    speed);
1971 		}
1972 		set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event);
1973 	}
1974 		fallthrough;
1975 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE:
1976 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE:
1977 		set_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, &bp->sp_event);
1978 		fallthrough;
1979 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
1980 		set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
1981 		break;
1982 	case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD:
1983 		set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event);
1984 		break;
1985 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: {
1986 		u32 data1 = le32_to_cpu(cmpl->event_data1);
1987 		u16 port_id = BNXT_GET_EVENT_PORT(data1);
1988 
1989 		if (BNXT_VF(bp))
1990 			break;
1991 
1992 		if (bp->pf.port_id != port_id)
1993 			break;
1994 
1995 		set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event);
1996 		break;
1997 	}
1998 	case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE:
1999 		if (BNXT_PF(bp))
2000 			goto async_event_process_exit;
2001 		set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event);
2002 		break;
2003 	case ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY: {
2004 		u32 data1 = le32_to_cpu(cmpl->event_data1);
2005 
2006 		if (!bp->fw_health)
2007 			goto async_event_process_exit;
2008 
2009 		bp->fw_reset_timestamp = jiffies;
2010 		bp->fw_reset_min_dsecs = cmpl->timestamp_lo;
2011 		if (!bp->fw_reset_min_dsecs)
2012 			bp->fw_reset_min_dsecs = BNXT_DFLT_FW_RST_MIN_DSECS;
2013 		bp->fw_reset_max_dsecs = le16_to_cpu(cmpl->timestamp_hi);
2014 		if (!bp->fw_reset_max_dsecs)
2015 			bp->fw_reset_max_dsecs = BNXT_DFLT_FW_RST_MAX_DSECS;
2016 		if (EVENT_DATA1_RESET_NOTIFY_FATAL(data1)) {
2017 			netdev_warn(bp->dev, "Firmware fatal reset event received\n");
2018 			set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
2019 		} else {
2020 			netdev_warn(bp->dev, "Firmware non-fatal reset event received, max wait time %d msec\n",
2021 				    bp->fw_reset_max_dsecs * 100);
2022 		}
2023 		set_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event);
2024 		break;
2025 	}
2026 	case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY: {
2027 		struct bnxt_fw_health *fw_health = bp->fw_health;
2028 		u32 data1 = le32_to_cpu(cmpl->event_data1);
2029 
2030 		if (!fw_health)
2031 			goto async_event_process_exit;
2032 
2033 		fw_health->enabled = EVENT_DATA1_RECOVERY_ENABLED(data1);
2034 		fw_health->master = EVENT_DATA1_RECOVERY_MASTER_FUNC(data1);
2035 		if (!fw_health->enabled)
2036 			break;
2037 
2038 		if (netif_msg_drv(bp))
2039 			netdev_info(bp->dev, "Error recovery info: error recovery[%d], master[%d], reset count[0x%x], health status: 0x%x\n",
2040 				    fw_health->enabled, fw_health->master,
2041 				    bnxt_fw_health_readl(bp,
2042 							 BNXT_FW_RESET_CNT_REG),
2043 				    bnxt_fw_health_readl(bp,
2044 							 BNXT_FW_HEALTH_REG));
2045 		fw_health->tmr_multiplier =
2046 			DIV_ROUND_UP(fw_health->polling_dsecs * HZ,
2047 				     bp->current_interval * 10);
2048 		fw_health->tmr_counter = fw_health->tmr_multiplier;
2049 		fw_health->last_fw_heartbeat =
2050 			bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
2051 		fw_health->last_fw_reset_cnt =
2052 			bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
2053 		goto async_event_process_exit;
2054 	}
2055 	default:
2056 		goto async_event_process_exit;
2057 	}
2058 	bnxt_queue_sp_work(bp);
2059 async_event_process_exit:
2060 	bnxt_ulp_async_events(bp, cmpl);
2061 	return 0;
2062 }
2063 
2064 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
2065 {
2066 	u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
2067 	struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
2068 	struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
2069 				(struct hwrm_fwd_req_cmpl *)txcmp;
2070 
2071 	switch (cmpl_type) {
2072 	case CMPL_BASE_TYPE_HWRM_DONE:
2073 		seq_id = le16_to_cpu(h_cmpl->sequence_id);
2074 		if (seq_id == bp->hwrm_intr_seq_id)
2075 			bp->hwrm_intr_seq_id = (u16)~bp->hwrm_intr_seq_id;
2076 		else
2077 			netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id);
2078 		break;
2079 
2080 	case CMPL_BASE_TYPE_HWRM_FWD_REQ:
2081 		vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
2082 
2083 		if ((vf_id < bp->pf.first_vf_id) ||
2084 		    (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
2085 			netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
2086 				   vf_id);
2087 			return -EINVAL;
2088 		}
2089 
2090 		set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
2091 		set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event);
2092 		bnxt_queue_sp_work(bp);
2093 		break;
2094 
2095 	case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
2096 		bnxt_async_event_process(bp,
2097 					 (struct hwrm_async_event_cmpl *)txcmp);
2098 
2099 	default:
2100 		break;
2101 	}
2102 
2103 	return 0;
2104 }
2105 
2106 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
2107 {
2108 	struct bnxt_napi *bnapi = dev_instance;
2109 	struct bnxt *bp = bnapi->bp;
2110 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2111 	u32 cons = RING_CMP(cpr->cp_raw_cons);
2112 
2113 	cpr->event_ctr++;
2114 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
2115 	napi_schedule(&bnapi->napi);
2116 	return IRQ_HANDLED;
2117 }
2118 
2119 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
2120 {
2121 	u32 raw_cons = cpr->cp_raw_cons;
2122 	u16 cons = RING_CMP(raw_cons);
2123 	struct tx_cmp *txcmp;
2124 
2125 	txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2126 
2127 	return TX_CMP_VALID(txcmp, raw_cons);
2128 }
2129 
2130 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
2131 {
2132 	struct bnxt_napi *bnapi = dev_instance;
2133 	struct bnxt *bp = bnapi->bp;
2134 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2135 	u32 cons = RING_CMP(cpr->cp_raw_cons);
2136 	u32 int_status;
2137 
2138 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
2139 
2140 	if (!bnxt_has_work(bp, cpr)) {
2141 		int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
2142 		/* return if erroneous interrupt */
2143 		if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
2144 			return IRQ_NONE;
2145 	}
2146 
2147 	/* disable ring IRQ */
2148 	BNXT_CP_DB_IRQ_DIS(cpr->cp_db.doorbell);
2149 
2150 	/* Return here if interrupt is shared and is disabled. */
2151 	if (unlikely(atomic_read(&bp->intr_sem) != 0))
2152 		return IRQ_HANDLED;
2153 
2154 	napi_schedule(&bnapi->napi);
2155 	return IRQ_HANDLED;
2156 }
2157 
2158 static int __bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2159 			    int budget)
2160 {
2161 	struct bnxt_napi *bnapi = cpr->bnapi;
2162 	u32 raw_cons = cpr->cp_raw_cons;
2163 	u32 cons;
2164 	int tx_pkts = 0;
2165 	int rx_pkts = 0;
2166 	u8 event = 0;
2167 	struct tx_cmp *txcmp;
2168 
2169 	cpr->has_more_work = 0;
2170 	cpr->had_work_done = 1;
2171 	while (1) {
2172 		int rc;
2173 
2174 		cons = RING_CMP(raw_cons);
2175 		txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2176 
2177 		if (!TX_CMP_VALID(txcmp, raw_cons))
2178 			break;
2179 
2180 		/* The valid test of the entry must be done first before
2181 		 * reading any further.
2182 		 */
2183 		dma_rmb();
2184 		if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) {
2185 			tx_pkts++;
2186 			/* return full budget so NAPI will complete. */
2187 			if (unlikely(tx_pkts > bp->tx_wake_thresh)) {
2188 				rx_pkts = budget;
2189 				raw_cons = NEXT_RAW_CMP(raw_cons);
2190 				if (budget)
2191 					cpr->has_more_work = 1;
2192 				break;
2193 			}
2194 		} else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
2195 			if (likely(budget))
2196 				rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
2197 			else
2198 				rc = bnxt_force_rx_discard(bp, cpr, &raw_cons,
2199 							   &event);
2200 			if (likely(rc >= 0))
2201 				rx_pkts += rc;
2202 			/* Increment rx_pkts when rc is -ENOMEM to count towards
2203 			 * the NAPI budget.  Otherwise, we may potentially loop
2204 			 * here forever if we consistently cannot allocate
2205 			 * buffers.
2206 			 */
2207 			else if (rc == -ENOMEM && budget)
2208 				rx_pkts++;
2209 			else if (rc == -EBUSY)	/* partial completion */
2210 				break;
2211 		} else if (unlikely((TX_CMP_TYPE(txcmp) ==
2212 				     CMPL_BASE_TYPE_HWRM_DONE) ||
2213 				    (TX_CMP_TYPE(txcmp) ==
2214 				     CMPL_BASE_TYPE_HWRM_FWD_REQ) ||
2215 				    (TX_CMP_TYPE(txcmp) ==
2216 				     CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) {
2217 			bnxt_hwrm_handler(bp, txcmp);
2218 		}
2219 		raw_cons = NEXT_RAW_CMP(raw_cons);
2220 
2221 		if (rx_pkts && rx_pkts == budget) {
2222 			cpr->has_more_work = 1;
2223 			break;
2224 		}
2225 	}
2226 
2227 	if (event & BNXT_REDIRECT_EVENT)
2228 		xdp_do_flush_map();
2229 
2230 	if (event & BNXT_TX_EVENT) {
2231 		struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
2232 		u16 prod = txr->tx_prod;
2233 
2234 		/* Sync BD data before updating doorbell */
2235 		wmb();
2236 
2237 		bnxt_db_write_relaxed(bp, &txr->tx_db, prod);
2238 	}
2239 
2240 	cpr->cp_raw_cons = raw_cons;
2241 	bnapi->tx_pkts += tx_pkts;
2242 	bnapi->events |= event;
2243 	return rx_pkts;
2244 }
2245 
2246 static void __bnxt_poll_work_done(struct bnxt *bp, struct bnxt_napi *bnapi)
2247 {
2248 	if (bnapi->tx_pkts) {
2249 		bnapi->tx_int(bp, bnapi, bnapi->tx_pkts);
2250 		bnapi->tx_pkts = 0;
2251 	}
2252 
2253 	if (bnapi->events & BNXT_RX_EVENT) {
2254 		struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2255 
2256 		if (bnapi->events & BNXT_AGG_EVENT)
2257 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
2258 		bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
2259 	}
2260 	bnapi->events = 0;
2261 }
2262 
2263 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2264 			  int budget)
2265 {
2266 	struct bnxt_napi *bnapi = cpr->bnapi;
2267 	int rx_pkts;
2268 
2269 	rx_pkts = __bnxt_poll_work(bp, cpr, budget);
2270 
2271 	/* ACK completion ring before freeing tx ring and producing new
2272 	 * buffers in rx/agg rings to prevent overflowing the completion
2273 	 * ring.
2274 	 */
2275 	bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons);
2276 
2277 	__bnxt_poll_work_done(bp, bnapi);
2278 	return rx_pkts;
2279 }
2280 
2281 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget)
2282 {
2283 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2284 	struct bnxt *bp = bnapi->bp;
2285 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2286 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2287 	struct tx_cmp *txcmp;
2288 	struct rx_cmp_ext *rxcmp1;
2289 	u32 cp_cons, tmp_raw_cons;
2290 	u32 raw_cons = cpr->cp_raw_cons;
2291 	u32 rx_pkts = 0;
2292 	u8 event = 0;
2293 
2294 	while (1) {
2295 		int rc;
2296 
2297 		cp_cons = RING_CMP(raw_cons);
2298 		txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2299 
2300 		if (!TX_CMP_VALID(txcmp, raw_cons))
2301 			break;
2302 
2303 		if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
2304 			tmp_raw_cons = NEXT_RAW_CMP(raw_cons);
2305 			cp_cons = RING_CMP(tmp_raw_cons);
2306 			rxcmp1 = (struct rx_cmp_ext *)
2307 			  &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2308 
2309 			if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
2310 				break;
2311 
2312 			/* force an error to recycle the buffer */
2313 			rxcmp1->rx_cmp_cfa_code_errors_v2 |=
2314 				cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
2315 
2316 			rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
2317 			if (likely(rc == -EIO) && budget)
2318 				rx_pkts++;
2319 			else if (rc == -EBUSY)	/* partial completion */
2320 				break;
2321 		} else if (unlikely(TX_CMP_TYPE(txcmp) ==
2322 				    CMPL_BASE_TYPE_HWRM_DONE)) {
2323 			bnxt_hwrm_handler(bp, txcmp);
2324 		} else {
2325 			netdev_err(bp->dev,
2326 				   "Invalid completion received on special ring\n");
2327 		}
2328 		raw_cons = NEXT_RAW_CMP(raw_cons);
2329 
2330 		if (rx_pkts == budget)
2331 			break;
2332 	}
2333 
2334 	cpr->cp_raw_cons = raw_cons;
2335 	BNXT_DB_CQ(&cpr->cp_db, cpr->cp_raw_cons);
2336 	bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
2337 
2338 	if (event & BNXT_AGG_EVENT)
2339 		bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
2340 
2341 	if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) {
2342 		napi_complete_done(napi, rx_pkts);
2343 		BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2344 	}
2345 	return rx_pkts;
2346 }
2347 
2348 static int bnxt_poll(struct napi_struct *napi, int budget)
2349 {
2350 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2351 	struct bnxt *bp = bnapi->bp;
2352 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2353 	int work_done = 0;
2354 
2355 	while (1) {
2356 		work_done += bnxt_poll_work(bp, cpr, budget - work_done);
2357 
2358 		if (work_done >= budget) {
2359 			if (!budget)
2360 				BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2361 			break;
2362 		}
2363 
2364 		if (!bnxt_has_work(bp, cpr)) {
2365 			if (napi_complete_done(napi, work_done))
2366 				BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2367 			break;
2368 		}
2369 	}
2370 	if (bp->flags & BNXT_FLAG_DIM) {
2371 		struct dim_sample dim_sample = {};
2372 
2373 		dim_update_sample(cpr->event_ctr,
2374 				  cpr->rx_packets,
2375 				  cpr->rx_bytes,
2376 				  &dim_sample);
2377 		net_dim(&cpr->dim, dim_sample);
2378 	}
2379 	return work_done;
2380 }
2381 
2382 static int __bnxt_poll_cqs(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
2383 {
2384 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2385 	int i, work_done = 0;
2386 
2387 	for (i = 0; i < 2; i++) {
2388 		struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i];
2389 
2390 		if (cpr2) {
2391 			work_done += __bnxt_poll_work(bp, cpr2,
2392 						      budget - work_done);
2393 			cpr->has_more_work |= cpr2->has_more_work;
2394 		}
2395 	}
2396 	return work_done;
2397 }
2398 
2399 static void __bnxt_poll_cqs_done(struct bnxt *bp, struct bnxt_napi *bnapi,
2400 				 u64 dbr_type)
2401 {
2402 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2403 	int i;
2404 
2405 	for (i = 0; i < 2; i++) {
2406 		struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i];
2407 		struct bnxt_db_info *db;
2408 
2409 		if (cpr2 && cpr2->had_work_done) {
2410 			db = &cpr2->cp_db;
2411 			writeq(db->db_key64 | dbr_type |
2412 			       RING_CMP(cpr2->cp_raw_cons), db->doorbell);
2413 			cpr2->had_work_done = 0;
2414 		}
2415 	}
2416 	__bnxt_poll_work_done(bp, bnapi);
2417 }
2418 
2419 static int bnxt_poll_p5(struct napi_struct *napi, int budget)
2420 {
2421 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2422 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2423 	u32 raw_cons = cpr->cp_raw_cons;
2424 	struct bnxt *bp = bnapi->bp;
2425 	struct nqe_cn *nqcmp;
2426 	int work_done = 0;
2427 	u32 cons;
2428 
2429 	if (cpr->has_more_work) {
2430 		cpr->has_more_work = 0;
2431 		work_done = __bnxt_poll_cqs(bp, bnapi, budget);
2432 	}
2433 	while (1) {
2434 		cons = RING_CMP(raw_cons);
2435 		nqcmp = &cpr->nq_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2436 
2437 		if (!NQ_CMP_VALID(nqcmp, raw_cons)) {
2438 			if (cpr->has_more_work)
2439 				break;
2440 
2441 			__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL);
2442 			cpr->cp_raw_cons = raw_cons;
2443 			if (napi_complete_done(napi, work_done))
2444 				BNXT_DB_NQ_ARM_P5(&cpr->cp_db,
2445 						  cpr->cp_raw_cons);
2446 			return work_done;
2447 		}
2448 
2449 		/* The valid test of the entry must be done first before
2450 		 * reading any further.
2451 		 */
2452 		dma_rmb();
2453 
2454 		if (nqcmp->type == cpu_to_le16(NQ_CN_TYPE_CQ_NOTIFICATION)) {
2455 			u32 idx = le32_to_cpu(nqcmp->cq_handle_low);
2456 			struct bnxt_cp_ring_info *cpr2;
2457 
2458 			cpr2 = cpr->cp_ring_arr[idx];
2459 			work_done += __bnxt_poll_work(bp, cpr2,
2460 						      budget - work_done);
2461 			cpr->has_more_work |= cpr2->has_more_work;
2462 		} else {
2463 			bnxt_hwrm_handler(bp, (struct tx_cmp *)nqcmp);
2464 		}
2465 		raw_cons = NEXT_RAW_CMP(raw_cons);
2466 	}
2467 	__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ);
2468 	if (raw_cons != cpr->cp_raw_cons) {
2469 		cpr->cp_raw_cons = raw_cons;
2470 		BNXT_DB_NQ_P5(&cpr->cp_db, raw_cons);
2471 	}
2472 	return work_done;
2473 }
2474 
2475 static void bnxt_free_tx_skbs(struct bnxt *bp)
2476 {
2477 	int i, max_idx;
2478 	struct pci_dev *pdev = bp->pdev;
2479 
2480 	if (!bp->tx_ring)
2481 		return;
2482 
2483 	max_idx = bp->tx_nr_pages * TX_DESC_CNT;
2484 	for (i = 0; i < bp->tx_nr_rings; i++) {
2485 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2486 		int j;
2487 
2488 		for (j = 0; j < max_idx;) {
2489 			struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
2490 			struct sk_buff *skb;
2491 			int k, last;
2492 
2493 			if (i < bp->tx_nr_rings_xdp &&
2494 			    tx_buf->action == XDP_REDIRECT) {
2495 				dma_unmap_single(&pdev->dev,
2496 					dma_unmap_addr(tx_buf, mapping),
2497 					dma_unmap_len(tx_buf, len),
2498 					PCI_DMA_TODEVICE);
2499 				xdp_return_frame(tx_buf->xdpf);
2500 				tx_buf->action = 0;
2501 				tx_buf->xdpf = NULL;
2502 				j++;
2503 				continue;
2504 			}
2505 
2506 			skb = tx_buf->skb;
2507 			if (!skb) {
2508 				j++;
2509 				continue;
2510 			}
2511 
2512 			tx_buf->skb = NULL;
2513 
2514 			if (tx_buf->is_push) {
2515 				dev_kfree_skb(skb);
2516 				j += 2;
2517 				continue;
2518 			}
2519 
2520 			dma_unmap_single(&pdev->dev,
2521 					 dma_unmap_addr(tx_buf, mapping),
2522 					 skb_headlen(skb),
2523 					 PCI_DMA_TODEVICE);
2524 
2525 			last = tx_buf->nr_frags;
2526 			j += 2;
2527 			for (k = 0; k < last; k++, j++) {
2528 				int ring_idx = j & bp->tx_ring_mask;
2529 				skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2530 
2531 				tx_buf = &txr->tx_buf_ring[ring_idx];
2532 				dma_unmap_page(
2533 					&pdev->dev,
2534 					dma_unmap_addr(tx_buf, mapping),
2535 					skb_frag_size(frag), PCI_DMA_TODEVICE);
2536 			}
2537 			dev_kfree_skb(skb);
2538 		}
2539 		netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
2540 	}
2541 }
2542 
2543 static void bnxt_free_rx_skbs(struct bnxt *bp)
2544 {
2545 	int i, max_idx, max_agg_idx;
2546 	struct pci_dev *pdev = bp->pdev;
2547 
2548 	if (!bp->rx_ring)
2549 		return;
2550 
2551 	max_idx = bp->rx_nr_pages * RX_DESC_CNT;
2552 	max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
2553 	for (i = 0; i < bp->rx_nr_rings; i++) {
2554 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2555 		struct bnxt_tpa_idx_map *map;
2556 		int j;
2557 
2558 		if (rxr->rx_tpa) {
2559 			for (j = 0; j < bp->max_tpa; j++) {
2560 				struct bnxt_tpa_info *tpa_info =
2561 							&rxr->rx_tpa[j];
2562 				u8 *data = tpa_info->data;
2563 
2564 				if (!data)
2565 					continue;
2566 
2567 				dma_unmap_single_attrs(&pdev->dev,
2568 						       tpa_info->mapping,
2569 						       bp->rx_buf_use_size,
2570 						       bp->rx_dir,
2571 						       DMA_ATTR_WEAK_ORDERING);
2572 
2573 				tpa_info->data = NULL;
2574 
2575 				kfree(data);
2576 			}
2577 		}
2578 
2579 		for (j = 0; j < max_idx; j++) {
2580 			struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[j];
2581 			dma_addr_t mapping = rx_buf->mapping;
2582 			void *data = rx_buf->data;
2583 
2584 			if (!data)
2585 				continue;
2586 
2587 			rx_buf->data = NULL;
2588 
2589 			if (BNXT_RX_PAGE_MODE(bp)) {
2590 				mapping -= bp->rx_dma_offset;
2591 				dma_unmap_page_attrs(&pdev->dev, mapping,
2592 						     PAGE_SIZE, bp->rx_dir,
2593 						     DMA_ATTR_WEAK_ORDERING);
2594 				page_pool_recycle_direct(rxr->page_pool, data);
2595 			} else {
2596 				dma_unmap_single_attrs(&pdev->dev, mapping,
2597 						       bp->rx_buf_use_size,
2598 						       bp->rx_dir,
2599 						       DMA_ATTR_WEAK_ORDERING);
2600 				kfree(data);
2601 			}
2602 		}
2603 
2604 		for (j = 0; j < max_agg_idx; j++) {
2605 			struct bnxt_sw_rx_agg_bd *rx_agg_buf =
2606 				&rxr->rx_agg_ring[j];
2607 			struct page *page = rx_agg_buf->page;
2608 
2609 			if (!page)
2610 				continue;
2611 
2612 			dma_unmap_page_attrs(&pdev->dev, rx_agg_buf->mapping,
2613 					     BNXT_RX_PAGE_SIZE,
2614 					     PCI_DMA_FROMDEVICE,
2615 					     DMA_ATTR_WEAK_ORDERING);
2616 
2617 			rx_agg_buf->page = NULL;
2618 			__clear_bit(j, rxr->rx_agg_bmap);
2619 
2620 			__free_page(page);
2621 		}
2622 		if (rxr->rx_page) {
2623 			__free_page(rxr->rx_page);
2624 			rxr->rx_page = NULL;
2625 		}
2626 		map = rxr->rx_tpa_idx_map;
2627 		if (map)
2628 			memset(map->agg_idx_bmap, 0, sizeof(map->agg_idx_bmap));
2629 	}
2630 }
2631 
2632 static void bnxt_free_skbs(struct bnxt *bp)
2633 {
2634 	bnxt_free_tx_skbs(bp);
2635 	bnxt_free_rx_skbs(bp);
2636 }
2637 
2638 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
2639 {
2640 	struct pci_dev *pdev = bp->pdev;
2641 	int i;
2642 
2643 	for (i = 0; i < rmem->nr_pages; i++) {
2644 		if (!rmem->pg_arr[i])
2645 			continue;
2646 
2647 		dma_free_coherent(&pdev->dev, rmem->page_size,
2648 				  rmem->pg_arr[i], rmem->dma_arr[i]);
2649 
2650 		rmem->pg_arr[i] = NULL;
2651 	}
2652 	if (rmem->pg_tbl) {
2653 		size_t pg_tbl_size = rmem->nr_pages * 8;
2654 
2655 		if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
2656 			pg_tbl_size = rmem->page_size;
2657 		dma_free_coherent(&pdev->dev, pg_tbl_size,
2658 				  rmem->pg_tbl, rmem->pg_tbl_map);
2659 		rmem->pg_tbl = NULL;
2660 	}
2661 	if (rmem->vmem_size && *rmem->vmem) {
2662 		vfree(*rmem->vmem);
2663 		*rmem->vmem = NULL;
2664 	}
2665 }
2666 
2667 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
2668 {
2669 	struct pci_dev *pdev = bp->pdev;
2670 	u64 valid_bit = 0;
2671 	int i;
2672 
2673 	if (rmem->flags & (BNXT_RMEM_VALID_PTE_FLAG | BNXT_RMEM_RING_PTE_FLAG))
2674 		valid_bit = PTU_PTE_VALID;
2675 	if ((rmem->nr_pages > 1 || rmem->depth > 0) && !rmem->pg_tbl) {
2676 		size_t pg_tbl_size = rmem->nr_pages * 8;
2677 
2678 		if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
2679 			pg_tbl_size = rmem->page_size;
2680 		rmem->pg_tbl = dma_alloc_coherent(&pdev->dev, pg_tbl_size,
2681 						  &rmem->pg_tbl_map,
2682 						  GFP_KERNEL);
2683 		if (!rmem->pg_tbl)
2684 			return -ENOMEM;
2685 	}
2686 
2687 	for (i = 0; i < rmem->nr_pages; i++) {
2688 		u64 extra_bits = valid_bit;
2689 
2690 		rmem->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
2691 						     rmem->page_size,
2692 						     &rmem->dma_arr[i],
2693 						     GFP_KERNEL);
2694 		if (!rmem->pg_arr[i])
2695 			return -ENOMEM;
2696 
2697 		if (rmem->init_val)
2698 			memset(rmem->pg_arr[i], rmem->init_val,
2699 			       rmem->page_size);
2700 		if (rmem->nr_pages > 1 || rmem->depth > 0) {
2701 			if (i == rmem->nr_pages - 2 &&
2702 			    (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
2703 				extra_bits |= PTU_PTE_NEXT_TO_LAST;
2704 			else if (i == rmem->nr_pages - 1 &&
2705 				 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
2706 				extra_bits |= PTU_PTE_LAST;
2707 			rmem->pg_tbl[i] =
2708 				cpu_to_le64(rmem->dma_arr[i] | extra_bits);
2709 		}
2710 	}
2711 
2712 	if (rmem->vmem_size) {
2713 		*rmem->vmem = vzalloc(rmem->vmem_size);
2714 		if (!(*rmem->vmem))
2715 			return -ENOMEM;
2716 	}
2717 	return 0;
2718 }
2719 
2720 static void bnxt_free_tpa_info(struct bnxt *bp)
2721 {
2722 	int i;
2723 
2724 	for (i = 0; i < bp->rx_nr_rings; i++) {
2725 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2726 
2727 		kfree(rxr->rx_tpa_idx_map);
2728 		rxr->rx_tpa_idx_map = NULL;
2729 		if (rxr->rx_tpa) {
2730 			kfree(rxr->rx_tpa[0].agg_arr);
2731 			rxr->rx_tpa[0].agg_arr = NULL;
2732 		}
2733 		kfree(rxr->rx_tpa);
2734 		rxr->rx_tpa = NULL;
2735 	}
2736 }
2737 
2738 static int bnxt_alloc_tpa_info(struct bnxt *bp)
2739 {
2740 	int i, j, total_aggs = 0;
2741 
2742 	bp->max_tpa = MAX_TPA;
2743 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
2744 		if (!bp->max_tpa_v2)
2745 			return 0;
2746 		bp->max_tpa = max_t(u16, bp->max_tpa_v2, MAX_TPA_P5);
2747 		total_aggs = bp->max_tpa * MAX_SKB_FRAGS;
2748 	}
2749 
2750 	for (i = 0; i < bp->rx_nr_rings; i++) {
2751 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2752 		struct rx_agg_cmp *agg;
2753 
2754 		rxr->rx_tpa = kcalloc(bp->max_tpa, sizeof(struct bnxt_tpa_info),
2755 				      GFP_KERNEL);
2756 		if (!rxr->rx_tpa)
2757 			return -ENOMEM;
2758 
2759 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
2760 			continue;
2761 		agg = kcalloc(total_aggs, sizeof(*agg), GFP_KERNEL);
2762 		rxr->rx_tpa[0].agg_arr = agg;
2763 		if (!agg)
2764 			return -ENOMEM;
2765 		for (j = 1; j < bp->max_tpa; j++)
2766 			rxr->rx_tpa[j].agg_arr = agg + j * MAX_SKB_FRAGS;
2767 		rxr->rx_tpa_idx_map = kzalloc(sizeof(*rxr->rx_tpa_idx_map),
2768 					      GFP_KERNEL);
2769 		if (!rxr->rx_tpa_idx_map)
2770 			return -ENOMEM;
2771 	}
2772 	return 0;
2773 }
2774 
2775 static void bnxt_free_rx_rings(struct bnxt *bp)
2776 {
2777 	int i;
2778 
2779 	if (!bp->rx_ring)
2780 		return;
2781 
2782 	bnxt_free_tpa_info(bp);
2783 	for (i = 0; i < bp->rx_nr_rings; i++) {
2784 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2785 		struct bnxt_ring_struct *ring;
2786 
2787 		if (rxr->xdp_prog)
2788 			bpf_prog_put(rxr->xdp_prog);
2789 
2790 		if (xdp_rxq_info_is_reg(&rxr->xdp_rxq))
2791 			xdp_rxq_info_unreg(&rxr->xdp_rxq);
2792 
2793 		page_pool_destroy(rxr->page_pool);
2794 		rxr->page_pool = NULL;
2795 
2796 		kfree(rxr->rx_agg_bmap);
2797 		rxr->rx_agg_bmap = NULL;
2798 
2799 		ring = &rxr->rx_ring_struct;
2800 		bnxt_free_ring(bp, &ring->ring_mem);
2801 
2802 		ring = &rxr->rx_agg_ring_struct;
2803 		bnxt_free_ring(bp, &ring->ring_mem);
2804 	}
2805 }
2806 
2807 static int bnxt_alloc_rx_page_pool(struct bnxt *bp,
2808 				   struct bnxt_rx_ring_info *rxr)
2809 {
2810 	struct page_pool_params pp = { 0 };
2811 
2812 	pp.pool_size = bp->rx_ring_size;
2813 	pp.nid = dev_to_node(&bp->pdev->dev);
2814 	pp.dev = &bp->pdev->dev;
2815 	pp.dma_dir = DMA_BIDIRECTIONAL;
2816 
2817 	rxr->page_pool = page_pool_create(&pp);
2818 	if (IS_ERR(rxr->page_pool)) {
2819 		int err = PTR_ERR(rxr->page_pool);
2820 
2821 		rxr->page_pool = NULL;
2822 		return err;
2823 	}
2824 	return 0;
2825 }
2826 
2827 static int bnxt_alloc_rx_rings(struct bnxt *bp)
2828 {
2829 	int i, rc = 0, agg_rings = 0;
2830 
2831 	if (!bp->rx_ring)
2832 		return -ENOMEM;
2833 
2834 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
2835 		agg_rings = 1;
2836 
2837 	for (i = 0; i < bp->rx_nr_rings; i++) {
2838 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2839 		struct bnxt_ring_struct *ring;
2840 
2841 		ring = &rxr->rx_ring_struct;
2842 
2843 		rc = bnxt_alloc_rx_page_pool(bp, rxr);
2844 		if (rc)
2845 			return rc;
2846 
2847 		rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i);
2848 		if (rc < 0)
2849 			return rc;
2850 
2851 		rc = xdp_rxq_info_reg_mem_model(&rxr->xdp_rxq,
2852 						MEM_TYPE_PAGE_POOL,
2853 						rxr->page_pool);
2854 		if (rc) {
2855 			xdp_rxq_info_unreg(&rxr->xdp_rxq);
2856 			return rc;
2857 		}
2858 
2859 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
2860 		if (rc)
2861 			return rc;
2862 
2863 		ring->grp_idx = i;
2864 		if (agg_rings) {
2865 			u16 mem_size;
2866 
2867 			ring = &rxr->rx_agg_ring_struct;
2868 			rc = bnxt_alloc_ring(bp, &ring->ring_mem);
2869 			if (rc)
2870 				return rc;
2871 
2872 			ring->grp_idx = i;
2873 			rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
2874 			mem_size = rxr->rx_agg_bmap_size / 8;
2875 			rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
2876 			if (!rxr->rx_agg_bmap)
2877 				return -ENOMEM;
2878 		}
2879 	}
2880 	if (bp->flags & BNXT_FLAG_TPA)
2881 		rc = bnxt_alloc_tpa_info(bp);
2882 	return rc;
2883 }
2884 
2885 static void bnxt_free_tx_rings(struct bnxt *bp)
2886 {
2887 	int i;
2888 	struct pci_dev *pdev = bp->pdev;
2889 
2890 	if (!bp->tx_ring)
2891 		return;
2892 
2893 	for (i = 0; i < bp->tx_nr_rings; i++) {
2894 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2895 		struct bnxt_ring_struct *ring;
2896 
2897 		if (txr->tx_push) {
2898 			dma_free_coherent(&pdev->dev, bp->tx_push_size,
2899 					  txr->tx_push, txr->tx_push_mapping);
2900 			txr->tx_push = NULL;
2901 		}
2902 
2903 		ring = &txr->tx_ring_struct;
2904 
2905 		bnxt_free_ring(bp, &ring->ring_mem);
2906 	}
2907 }
2908 
2909 static int bnxt_alloc_tx_rings(struct bnxt *bp)
2910 {
2911 	int i, j, rc;
2912 	struct pci_dev *pdev = bp->pdev;
2913 
2914 	bp->tx_push_size = 0;
2915 	if (bp->tx_push_thresh) {
2916 		int push_size;
2917 
2918 		push_size  = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
2919 					bp->tx_push_thresh);
2920 
2921 		if (push_size > 256) {
2922 			push_size = 0;
2923 			bp->tx_push_thresh = 0;
2924 		}
2925 
2926 		bp->tx_push_size = push_size;
2927 	}
2928 
2929 	for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
2930 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2931 		struct bnxt_ring_struct *ring;
2932 		u8 qidx;
2933 
2934 		ring = &txr->tx_ring_struct;
2935 
2936 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
2937 		if (rc)
2938 			return rc;
2939 
2940 		ring->grp_idx = txr->bnapi->index;
2941 		if (bp->tx_push_size) {
2942 			dma_addr_t mapping;
2943 
2944 			/* One pre-allocated DMA buffer to backup
2945 			 * TX push operation
2946 			 */
2947 			txr->tx_push = dma_alloc_coherent(&pdev->dev,
2948 						bp->tx_push_size,
2949 						&txr->tx_push_mapping,
2950 						GFP_KERNEL);
2951 
2952 			if (!txr->tx_push)
2953 				return -ENOMEM;
2954 
2955 			mapping = txr->tx_push_mapping +
2956 				sizeof(struct tx_push_bd);
2957 			txr->data_mapping = cpu_to_le64(mapping);
2958 		}
2959 		qidx = bp->tc_to_qidx[j];
2960 		ring->queue_id = bp->q_info[qidx].queue_id;
2961 		if (i < bp->tx_nr_rings_xdp)
2962 			continue;
2963 		if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1))
2964 			j++;
2965 	}
2966 	return 0;
2967 }
2968 
2969 static void bnxt_free_cp_rings(struct bnxt *bp)
2970 {
2971 	int i;
2972 
2973 	if (!bp->bnapi)
2974 		return;
2975 
2976 	for (i = 0; i < bp->cp_nr_rings; i++) {
2977 		struct bnxt_napi *bnapi = bp->bnapi[i];
2978 		struct bnxt_cp_ring_info *cpr;
2979 		struct bnxt_ring_struct *ring;
2980 		int j;
2981 
2982 		if (!bnapi)
2983 			continue;
2984 
2985 		cpr = &bnapi->cp_ring;
2986 		ring = &cpr->cp_ring_struct;
2987 
2988 		bnxt_free_ring(bp, &ring->ring_mem);
2989 
2990 		for (j = 0; j < 2; j++) {
2991 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
2992 
2993 			if (cpr2) {
2994 				ring = &cpr2->cp_ring_struct;
2995 				bnxt_free_ring(bp, &ring->ring_mem);
2996 				kfree(cpr2);
2997 				cpr->cp_ring_arr[j] = NULL;
2998 			}
2999 		}
3000 	}
3001 }
3002 
3003 static struct bnxt_cp_ring_info *bnxt_alloc_cp_sub_ring(struct bnxt *bp)
3004 {
3005 	struct bnxt_ring_mem_info *rmem;
3006 	struct bnxt_ring_struct *ring;
3007 	struct bnxt_cp_ring_info *cpr;
3008 	int rc;
3009 
3010 	cpr = kzalloc(sizeof(*cpr), GFP_KERNEL);
3011 	if (!cpr)
3012 		return NULL;
3013 
3014 	ring = &cpr->cp_ring_struct;
3015 	rmem = &ring->ring_mem;
3016 	rmem->nr_pages = bp->cp_nr_pages;
3017 	rmem->page_size = HW_CMPD_RING_SIZE;
3018 	rmem->pg_arr = (void **)cpr->cp_desc_ring;
3019 	rmem->dma_arr = cpr->cp_desc_mapping;
3020 	rmem->flags = BNXT_RMEM_RING_PTE_FLAG;
3021 	rc = bnxt_alloc_ring(bp, rmem);
3022 	if (rc) {
3023 		bnxt_free_ring(bp, rmem);
3024 		kfree(cpr);
3025 		cpr = NULL;
3026 	}
3027 	return cpr;
3028 }
3029 
3030 static int bnxt_alloc_cp_rings(struct bnxt *bp)
3031 {
3032 	bool sh = !!(bp->flags & BNXT_FLAG_SHARED_RINGS);
3033 	int i, rc, ulp_base_vec, ulp_msix;
3034 
3035 	ulp_msix = bnxt_get_ulp_msix_num(bp);
3036 	ulp_base_vec = bnxt_get_ulp_msix_base(bp);
3037 	for (i = 0; i < bp->cp_nr_rings; i++) {
3038 		struct bnxt_napi *bnapi = bp->bnapi[i];
3039 		struct bnxt_cp_ring_info *cpr;
3040 		struct bnxt_ring_struct *ring;
3041 
3042 		if (!bnapi)
3043 			continue;
3044 
3045 		cpr = &bnapi->cp_ring;
3046 		cpr->bnapi = bnapi;
3047 		ring = &cpr->cp_ring_struct;
3048 
3049 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3050 		if (rc)
3051 			return rc;
3052 
3053 		if (ulp_msix && i >= ulp_base_vec)
3054 			ring->map_idx = i + ulp_msix;
3055 		else
3056 			ring->map_idx = i;
3057 
3058 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
3059 			continue;
3060 
3061 		if (i < bp->rx_nr_rings) {
3062 			struct bnxt_cp_ring_info *cpr2 =
3063 				bnxt_alloc_cp_sub_ring(bp);
3064 
3065 			cpr->cp_ring_arr[BNXT_RX_HDL] = cpr2;
3066 			if (!cpr2)
3067 				return -ENOMEM;
3068 			cpr2->bnapi = bnapi;
3069 		}
3070 		if ((sh && i < bp->tx_nr_rings) ||
3071 		    (!sh && i >= bp->rx_nr_rings)) {
3072 			struct bnxt_cp_ring_info *cpr2 =
3073 				bnxt_alloc_cp_sub_ring(bp);
3074 
3075 			cpr->cp_ring_arr[BNXT_TX_HDL] = cpr2;
3076 			if (!cpr2)
3077 				return -ENOMEM;
3078 			cpr2->bnapi = bnapi;
3079 		}
3080 	}
3081 	return 0;
3082 }
3083 
3084 static void bnxt_init_ring_struct(struct bnxt *bp)
3085 {
3086 	int i;
3087 
3088 	for (i = 0; i < bp->cp_nr_rings; i++) {
3089 		struct bnxt_napi *bnapi = bp->bnapi[i];
3090 		struct bnxt_ring_mem_info *rmem;
3091 		struct bnxt_cp_ring_info *cpr;
3092 		struct bnxt_rx_ring_info *rxr;
3093 		struct bnxt_tx_ring_info *txr;
3094 		struct bnxt_ring_struct *ring;
3095 
3096 		if (!bnapi)
3097 			continue;
3098 
3099 		cpr = &bnapi->cp_ring;
3100 		ring = &cpr->cp_ring_struct;
3101 		rmem = &ring->ring_mem;
3102 		rmem->nr_pages = bp->cp_nr_pages;
3103 		rmem->page_size = HW_CMPD_RING_SIZE;
3104 		rmem->pg_arr = (void **)cpr->cp_desc_ring;
3105 		rmem->dma_arr = cpr->cp_desc_mapping;
3106 		rmem->vmem_size = 0;
3107 
3108 		rxr = bnapi->rx_ring;
3109 		if (!rxr)
3110 			goto skip_rx;
3111 
3112 		ring = &rxr->rx_ring_struct;
3113 		rmem = &ring->ring_mem;
3114 		rmem->nr_pages = bp->rx_nr_pages;
3115 		rmem->page_size = HW_RXBD_RING_SIZE;
3116 		rmem->pg_arr = (void **)rxr->rx_desc_ring;
3117 		rmem->dma_arr = rxr->rx_desc_mapping;
3118 		rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
3119 		rmem->vmem = (void **)&rxr->rx_buf_ring;
3120 
3121 		ring = &rxr->rx_agg_ring_struct;
3122 		rmem = &ring->ring_mem;
3123 		rmem->nr_pages = bp->rx_agg_nr_pages;
3124 		rmem->page_size = HW_RXBD_RING_SIZE;
3125 		rmem->pg_arr = (void **)rxr->rx_agg_desc_ring;
3126 		rmem->dma_arr = rxr->rx_agg_desc_mapping;
3127 		rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
3128 		rmem->vmem = (void **)&rxr->rx_agg_ring;
3129 
3130 skip_rx:
3131 		txr = bnapi->tx_ring;
3132 		if (!txr)
3133 			continue;
3134 
3135 		ring = &txr->tx_ring_struct;
3136 		rmem = &ring->ring_mem;
3137 		rmem->nr_pages = bp->tx_nr_pages;
3138 		rmem->page_size = HW_RXBD_RING_SIZE;
3139 		rmem->pg_arr = (void **)txr->tx_desc_ring;
3140 		rmem->dma_arr = txr->tx_desc_mapping;
3141 		rmem->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
3142 		rmem->vmem = (void **)&txr->tx_buf_ring;
3143 	}
3144 }
3145 
3146 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
3147 {
3148 	int i;
3149 	u32 prod;
3150 	struct rx_bd **rx_buf_ring;
3151 
3152 	rx_buf_ring = (struct rx_bd **)ring->ring_mem.pg_arr;
3153 	for (i = 0, prod = 0; i < ring->ring_mem.nr_pages; i++) {
3154 		int j;
3155 		struct rx_bd *rxbd;
3156 
3157 		rxbd = rx_buf_ring[i];
3158 		if (!rxbd)
3159 			continue;
3160 
3161 		for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
3162 			rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
3163 			rxbd->rx_bd_opaque = prod;
3164 		}
3165 	}
3166 }
3167 
3168 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
3169 {
3170 	struct net_device *dev = bp->dev;
3171 	struct bnxt_rx_ring_info *rxr;
3172 	struct bnxt_ring_struct *ring;
3173 	u32 prod, type;
3174 	int i;
3175 
3176 	type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
3177 		RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
3178 
3179 	if (NET_IP_ALIGN == 2)
3180 		type |= RX_BD_FLAGS_SOP;
3181 
3182 	rxr = &bp->rx_ring[ring_nr];
3183 	ring = &rxr->rx_ring_struct;
3184 	bnxt_init_rxbd_pages(ring, type);
3185 
3186 	if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) {
3187 		bpf_prog_add(bp->xdp_prog, 1);
3188 		rxr->xdp_prog = bp->xdp_prog;
3189 	}
3190 	prod = rxr->rx_prod;
3191 	for (i = 0; i < bp->rx_ring_size; i++) {
3192 		if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL) != 0) {
3193 			netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
3194 				    ring_nr, i, bp->rx_ring_size);
3195 			break;
3196 		}
3197 		prod = NEXT_RX(prod);
3198 	}
3199 	rxr->rx_prod = prod;
3200 	ring->fw_ring_id = INVALID_HW_RING_ID;
3201 
3202 	ring = &rxr->rx_agg_ring_struct;
3203 	ring->fw_ring_id = INVALID_HW_RING_ID;
3204 
3205 	if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
3206 		return 0;
3207 
3208 	type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) |
3209 		RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
3210 
3211 	bnxt_init_rxbd_pages(ring, type);
3212 
3213 	prod = rxr->rx_agg_prod;
3214 	for (i = 0; i < bp->rx_agg_ring_size; i++) {
3215 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL) != 0) {
3216 			netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
3217 				    ring_nr, i, bp->rx_ring_size);
3218 			break;
3219 		}
3220 		prod = NEXT_RX_AGG(prod);
3221 	}
3222 	rxr->rx_agg_prod = prod;
3223 
3224 	if (bp->flags & BNXT_FLAG_TPA) {
3225 		if (rxr->rx_tpa) {
3226 			u8 *data;
3227 			dma_addr_t mapping;
3228 
3229 			for (i = 0; i < bp->max_tpa; i++) {
3230 				data = __bnxt_alloc_rx_data(bp, &mapping,
3231 							    GFP_KERNEL);
3232 				if (!data)
3233 					return -ENOMEM;
3234 
3235 				rxr->rx_tpa[i].data = data;
3236 				rxr->rx_tpa[i].data_ptr = data + bp->rx_offset;
3237 				rxr->rx_tpa[i].mapping = mapping;
3238 			}
3239 		} else {
3240 			netdev_err(bp->dev, "No resource allocated for LRO/GRO\n");
3241 			return -ENOMEM;
3242 		}
3243 	}
3244 
3245 	return 0;
3246 }
3247 
3248 static void bnxt_init_cp_rings(struct bnxt *bp)
3249 {
3250 	int i, j;
3251 
3252 	for (i = 0; i < bp->cp_nr_rings; i++) {
3253 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
3254 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3255 
3256 		ring->fw_ring_id = INVALID_HW_RING_ID;
3257 		cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
3258 		cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
3259 		for (j = 0; j < 2; j++) {
3260 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
3261 
3262 			if (!cpr2)
3263 				continue;
3264 
3265 			ring = &cpr2->cp_ring_struct;
3266 			ring->fw_ring_id = INVALID_HW_RING_ID;
3267 			cpr2->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
3268 			cpr2->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
3269 		}
3270 	}
3271 }
3272 
3273 static int bnxt_init_rx_rings(struct bnxt *bp)
3274 {
3275 	int i, rc = 0;
3276 
3277 	if (BNXT_RX_PAGE_MODE(bp)) {
3278 		bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM;
3279 		bp->rx_dma_offset = XDP_PACKET_HEADROOM;
3280 	} else {
3281 		bp->rx_offset = BNXT_RX_OFFSET;
3282 		bp->rx_dma_offset = BNXT_RX_DMA_OFFSET;
3283 	}
3284 
3285 	for (i = 0; i < bp->rx_nr_rings; i++) {
3286 		rc = bnxt_init_one_rx_ring(bp, i);
3287 		if (rc)
3288 			break;
3289 	}
3290 
3291 	return rc;
3292 }
3293 
3294 static int bnxt_init_tx_rings(struct bnxt *bp)
3295 {
3296 	u16 i;
3297 
3298 	bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
3299 				   MAX_SKB_FRAGS + 1);
3300 
3301 	for (i = 0; i < bp->tx_nr_rings; i++) {
3302 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3303 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
3304 
3305 		ring->fw_ring_id = INVALID_HW_RING_ID;
3306 	}
3307 
3308 	return 0;
3309 }
3310 
3311 static void bnxt_free_ring_grps(struct bnxt *bp)
3312 {
3313 	kfree(bp->grp_info);
3314 	bp->grp_info = NULL;
3315 }
3316 
3317 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
3318 {
3319 	int i;
3320 
3321 	if (irq_re_init) {
3322 		bp->grp_info = kcalloc(bp->cp_nr_rings,
3323 				       sizeof(struct bnxt_ring_grp_info),
3324 				       GFP_KERNEL);
3325 		if (!bp->grp_info)
3326 			return -ENOMEM;
3327 	}
3328 	for (i = 0; i < bp->cp_nr_rings; i++) {
3329 		if (irq_re_init)
3330 			bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
3331 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
3332 		bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
3333 		bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
3334 		bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
3335 	}
3336 	return 0;
3337 }
3338 
3339 static void bnxt_free_vnics(struct bnxt *bp)
3340 {
3341 	kfree(bp->vnic_info);
3342 	bp->vnic_info = NULL;
3343 	bp->nr_vnics = 0;
3344 }
3345 
3346 static int bnxt_alloc_vnics(struct bnxt *bp)
3347 {
3348 	int num_vnics = 1;
3349 
3350 #ifdef CONFIG_RFS_ACCEL
3351 	if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS)
3352 		num_vnics += bp->rx_nr_rings;
3353 #endif
3354 
3355 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
3356 		num_vnics++;
3357 
3358 	bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
3359 				GFP_KERNEL);
3360 	if (!bp->vnic_info)
3361 		return -ENOMEM;
3362 
3363 	bp->nr_vnics = num_vnics;
3364 	return 0;
3365 }
3366 
3367 static void bnxt_init_vnics(struct bnxt *bp)
3368 {
3369 	int i;
3370 
3371 	for (i = 0; i < bp->nr_vnics; i++) {
3372 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3373 		int j;
3374 
3375 		vnic->fw_vnic_id = INVALID_HW_RING_ID;
3376 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++)
3377 			vnic->fw_rss_cos_lb_ctx[j] = INVALID_HW_RING_ID;
3378 
3379 		vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
3380 
3381 		if (bp->vnic_info[i].rss_hash_key) {
3382 			if (i == 0)
3383 				prandom_bytes(vnic->rss_hash_key,
3384 					      HW_HASH_KEY_SIZE);
3385 			else
3386 				memcpy(vnic->rss_hash_key,
3387 				       bp->vnic_info[0].rss_hash_key,
3388 				       HW_HASH_KEY_SIZE);
3389 		}
3390 	}
3391 }
3392 
3393 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
3394 {
3395 	int pages;
3396 
3397 	pages = ring_size / desc_per_pg;
3398 
3399 	if (!pages)
3400 		return 1;
3401 
3402 	pages++;
3403 
3404 	while (pages & (pages - 1))
3405 		pages++;
3406 
3407 	return pages;
3408 }
3409 
3410 void bnxt_set_tpa_flags(struct bnxt *bp)
3411 {
3412 	bp->flags &= ~BNXT_FLAG_TPA;
3413 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
3414 		return;
3415 	if (bp->dev->features & NETIF_F_LRO)
3416 		bp->flags |= BNXT_FLAG_LRO;
3417 	else if (bp->dev->features & NETIF_F_GRO_HW)
3418 		bp->flags |= BNXT_FLAG_GRO;
3419 }
3420 
3421 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
3422  * be set on entry.
3423  */
3424 void bnxt_set_ring_params(struct bnxt *bp)
3425 {
3426 	u32 ring_size, rx_size, rx_space, max_rx_cmpl;
3427 	u32 agg_factor = 0, agg_ring_size = 0;
3428 
3429 	/* 8 for CRC and VLAN */
3430 	rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
3431 
3432 	rx_space = rx_size + NET_SKB_PAD +
3433 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3434 
3435 	bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
3436 	ring_size = bp->rx_ring_size;
3437 	bp->rx_agg_ring_size = 0;
3438 	bp->rx_agg_nr_pages = 0;
3439 
3440 	if (bp->flags & BNXT_FLAG_TPA)
3441 		agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE);
3442 
3443 	bp->flags &= ~BNXT_FLAG_JUMBO;
3444 	if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) {
3445 		u32 jumbo_factor;
3446 
3447 		bp->flags |= BNXT_FLAG_JUMBO;
3448 		jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
3449 		if (jumbo_factor > agg_factor)
3450 			agg_factor = jumbo_factor;
3451 	}
3452 	agg_ring_size = ring_size * agg_factor;
3453 
3454 	if (agg_ring_size) {
3455 		bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
3456 							RX_DESC_CNT);
3457 		if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
3458 			u32 tmp = agg_ring_size;
3459 
3460 			bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
3461 			agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
3462 			netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
3463 				    tmp, agg_ring_size);
3464 		}
3465 		bp->rx_agg_ring_size = agg_ring_size;
3466 		bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
3467 		rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
3468 		rx_space = rx_size + NET_SKB_PAD +
3469 			SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3470 	}
3471 
3472 	bp->rx_buf_use_size = rx_size;
3473 	bp->rx_buf_size = rx_space;
3474 
3475 	bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
3476 	bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
3477 
3478 	ring_size = bp->tx_ring_size;
3479 	bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
3480 	bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
3481 
3482 	max_rx_cmpl = bp->rx_ring_size;
3483 	/* MAX TPA needs to be added because TPA_START completions are
3484 	 * immediately recycled, so the TPA completions are not bound by
3485 	 * the RX ring size.
3486 	 */
3487 	if (bp->flags & BNXT_FLAG_TPA)
3488 		max_rx_cmpl += bp->max_tpa;
3489 	/* RX and TPA completions are 32-byte, all others are 16-byte */
3490 	ring_size = max_rx_cmpl * 2 + agg_ring_size + bp->tx_ring_size;
3491 	bp->cp_ring_size = ring_size;
3492 
3493 	bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
3494 	if (bp->cp_nr_pages > MAX_CP_PAGES) {
3495 		bp->cp_nr_pages = MAX_CP_PAGES;
3496 		bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
3497 		netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
3498 			    ring_size, bp->cp_ring_size);
3499 	}
3500 	bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
3501 	bp->cp_ring_mask = bp->cp_bit - 1;
3502 }
3503 
3504 /* Changing allocation mode of RX rings.
3505  * TODO: Update when extending xdp_rxq_info to support allocation modes.
3506  */
3507 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode)
3508 {
3509 	if (page_mode) {
3510 		if (bp->dev->mtu > BNXT_MAX_PAGE_MODE_MTU)
3511 			return -EOPNOTSUPP;
3512 		bp->dev->max_mtu =
3513 			min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU);
3514 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
3515 		bp->flags |= BNXT_FLAG_NO_AGG_RINGS | BNXT_FLAG_RX_PAGE_MODE;
3516 		bp->rx_dir = DMA_BIDIRECTIONAL;
3517 		bp->rx_skb_func = bnxt_rx_page_skb;
3518 		/* Disable LRO or GRO_HW */
3519 		netdev_update_features(bp->dev);
3520 	} else {
3521 		bp->dev->max_mtu = bp->max_mtu;
3522 		bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE;
3523 		bp->rx_dir = DMA_FROM_DEVICE;
3524 		bp->rx_skb_func = bnxt_rx_skb;
3525 	}
3526 	return 0;
3527 }
3528 
3529 static void bnxt_free_vnic_attributes(struct bnxt *bp)
3530 {
3531 	int i;
3532 	struct bnxt_vnic_info *vnic;
3533 	struct pci_dev *pdev = bp->pdev;
3534 
3535 	if (!bp->vnic_info)
3536 		return;
3537 
3538 	for (i = 0; i < bp->nr_vnics; i++) {
3539 		vnic = &bp->vnic_info[i];
3540 
3541 		kfree(vnic->fw_grp_ids);
3542 		vnic->fw_grp_ids = NULL;
3543 
3544 		kfree(vnic->uc_list);
3545 		vnic->uc_list = NULL;
3546 
3547 		if (vnic->mc_list) {
3548 			dma_free_coherent(&pdev->dev, vnic->mc_list_size,
3549 					  vnic->mc_list, vnic->mc_list_mapping);
3550 			vnic->mc_list = NULL;
3551 		}
3552 
3553 		if (vnic->rss_table) {
3554 			dma_free_coherent(&pdev->dev, vnic->rss_table_size,
3555 					  vnic->rss_table,
3556 					  vnic->rss_table_dma_addr);
3557 			vnic->rss_table = NULL;
3558 		}
3559 
3560 		vnic->rss_hash_key = NULL;
3561 		vnic->flags = 0;
3562 	}
3563 }
3564 
3565 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
3566 {
3567 	int i, rc = 0, size;
3568 	struct bnxt_vnic_info *vnic;
3569 	struct pci_dev *pdev = bp->pdev;
3570 	int max_rings;
3571 
3572 	for (i = 0; i < bp->nr_vnics; i++) {
3573 		vnic = &bp->vnic_info[i];
3574 
3575 		if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
3576 			int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
3577 
3578 			if (mem_size > 0) {
3579 				vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
3580 				if (!vnic->uc_list) {
3581 					rc = -ENOMEM;
3582 					goto out;
3583 				}
3584 			}
3585 		}
3586 
3587 		if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
3588 			vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
3589 			vnic->mc_list =
3590 				dma_alloc_coherent(&pdev->dev,
3591 						   vnic->mc_list_size,
3592 						   &vnic->mc_list_mapping,
3593 						   GFP_KERNEL);
3594 			if (!vnic->mc_list) {
3595 				rc = -ENOMEM;
3596 				goto out;
3597 			}
3598 		}
3599 
3600 		if (bp->flags & BNXT_FLAG_CHIP_P5)
3601 			goto vnic_skip_grps;
3602 
3603 		if (vnic->flags & BNXT_VNIC_RSS_FLAG)
3604 			max_rings = bp->rx_nr_rings;
3605 		else
3606 			max_rings = 1;
3607 
3608 		vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
3609 		if (!vnic->fw_grp_ids) {
3610 			rc = -ENOMEM;
3611 			goto out;
3612 		}
3613 vnic_skip_grps:
3614 		if ((bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
3615 		    !(vnic->flags & BNXT_VNIC_RSS_FLAG))
3616 			continue;
3617 
3618 		/* Allocate rss table and hash key */
3619 		size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
3620 		if (bp->flags & BNXT_FLAG_CHIP_P5)
3621 			size = L1_CACHE_ALIGN(BNXT_MAX_RSS_TABLE_SIZE_P5);
3622 
3623 		vnic->rss_table_size = size + HW_HASH_KEY_SIZE;
3624 		vnic->rss_table = dma_alloc_coherent(&pdev->dev,
3625 						     vnic->rss_table_size,
3626 						     &vnic->rss_table_dma_addr,
3627 						     GFP_KERNEL);
3628 		if (!vnic->rss_table) {
3629 			rc = -ENOMEM;
3630 			goto out;
3631 		}
3632 
3633 		vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
3634 		vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
3635 	}
3636 	return 0;
3637 
3638 out:
3639 	return rc;
3640 }
3641 
3642 static void bnxt_free_hwrm_resources(struct bnxt *bp)
3643 {
3644 	struct pci_dev *pdev = bp->pdev;
3645 
3646 	if (bp->hwrm_cmd_resp_addr) {
3647 		dma_free_coherent(&pdev->dev, PAGE_SIZE, bp->hwrm_cmd_resp_addr,
3648 				  bp->hwrm_cmd_resp_dma_addr);
3649 		bp->hwrm_cmd_resp_addr = NULL;
3650 	}
3651 
3652 	if (bp->hwrm_cmd_kong_resp_addr) {
3653 		dma_free_coherent(&pdev->dev, PAGE_SIZE,
3654 				  bp->hwrm_cmd_kong_resp_addr,
3655 				  bp->hwrm_cmd_kong_resp_dma_addr);
3656 		bp->hwrm_cmd_kong_resp_addr = NULL;
3657 	}
3658 }
3659 
3660 static int bnxt_alloc_kong_hwrm_resources(struct bnxt *bp)
3661 {
3662 	struct pci_dev *pdev = bp->pdev;
3663 
3664 	if (bp->hwrm_cmd_kong_resp_addr)
3665 		return 0;
3666 
3667 	bp->hwrm_cmd_kong_resp_addr =
3668 		dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
3669 				   &bp->hwrm_cmd_kong_resp_dma_addr,
3670 				   GFP_KERNEL);
3671 	if (!bp->hwrm_cmd_kong_resp_addr)
3672 		return -ENOMEM;
3673 
3674 	return 0;
3675 }
3676 
3677 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
3678 {
3679 	struct pci_dev *pdev = bp->pdev;
3680 
3681 	bp->hwrm_cmd_resp_addr = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
3682 						   &bp->hwrm_cmd_resp_dma_addr,
3683 						   GFP_KERNEL);
3684 	if (!bp->hwrm_cmd_resp_addr)
3685 		return -ENOMEM;
3686 
3687 	return 0;
3688 }
3689 
3690 static void bnxt_free_hwrm_short_cmd_req(struct bnxt *bp)
3691 {
3692 	if (bp->hwrm_short_cmd_req_addr) {
3693 		struct pci_dev *pdev = bp->pdev;
3694 
3695 		dma_free_coherent(&pdev->dev, bp->hwrm_max_ext_req_len,
3696 				  bp->hwrm_short_cmd_req_addr,
3697 				  bp->hwrm_short_cmd_req_dma_addr);
3698 		bp->hwrm_short_cmd_req_addr = NULL;
3699 	}
3700 }
3701 
3702 static int bnxt_alloc_hwrm_short_cmd_req(struct bnxt *bp)
3703 {
3704 	struct pci_dev *pdev = bp->pdev;
3705 
3706 	if (bp->hwrm_short_cmd_req_addr)
3707 		return 0;
3708 
3709 	bp->hwrm_short_cmd_req_addr =
3710 		dma_alloc_coherent(&pdev->dev, bp->hwrm_max_ext_req_len,
3711 				   &bp->hwrm_short_cmd_req_dma_addr,
3712 				   GFP_KERNEL);
3713 	if (!bp->hwrm_short_cmd_req_addr)
3714 		return -ENOMEM;
3715 
3716 	return 0;
3717 }
3718 
3719 static void bnxt_free_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats)
3720 {
3721 	kfree(stats->hw_masks);
3722 	stats->hw_masks = NULL;
3723 	kfree(stats->sw_stats);
3724 	stats->sw_stats = NULL;
3725 	if (stats->hw_stats) {
3726 		dma_free_coherent(&bp->pdev->dev, stats->len, stats->hw_stats,
3727 				  stats->hw_stats_map);
3728 		stats->hw_stats = NULL;
3729 	}
3730 }
3731 
3732 static int bnxt_alloc_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats,
3733 				bool alloc_masks)
3734 {
3735 	stats->hw_stats = dma_alloc_coherent(&bp->pdev->dev, stats->len,
3736 					     &stats->hw_stats_map, GFP_KERNEL);
3737 	if (!stats->hw_stats)
3738 		return -ENOMEM;
3739 
3740 	stats->sw_stats = kzalloc(stats->len, GFP_KERNEL);
3741 	if (!stats->sw_stats)
3742 		goto stats_mem_err;
3743 
3744 	if (alloc_masks) {
3745 		stats->hw_masks = kzalloc(stats->len, GFP_KERNEL);
3746 		if (!stats->hw_masks)
3747 			goto stats_mem_err;
3748 	}
3749 	return 0;
3750 
3751 stats_mem_err:
3752 	bnxt_free_stats_mem(bp, stats);
3753 	return -ENOMEM;
3754 }
3755 
3756 static void bnxt_fill_masks(u64 *mask_arr, u64 mask, int count)
3757 {
3758 	int i;
3759 
3760 	for (i = 0; i < count; i++)
3761 		mask_arr[i] = mask;
3762 }
3763 
3764 static void bnxt_copy_hw_masks(u64 *mask_arr, __le64 *hw_mask_arr, int count)
3765 {
3766 	int i;
3767 
3768 	for (i = 0; i < count; i++)
3769 		mask_arr[i] = le64_to_cpu(hw_mask_arr[i]);
3770 }
3771 
3772 static int bnxt_hwrm_func_qstat_ext(struct bnxt *bp,
3773 				    struct bnxt_stats_mem *stats)
3774 {
3775 	struct hwrm_func_qstats_ext_output *resp = bp->hwrm_cmd_resp_addr;
3776 	struct hwrm_func_qstats_ext_input req = {0};
3777 	__le64 *hw_masks;
3778 	int rc;
3779 
3780 	if (!(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED) ||
3781 	    !(bp->flags & BNXT_FLAG_CHIP_P5))
3782 		return -EOPNOTSUPP;
3783 
3784 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QSTATS_EXT, -1, -1);
3785 	req.fid = cpu_to_le16(0xffff);
3786 	req.flags = FUNC_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK;
3787 	mutex_lock(&bp->hwrm_cmd_lock);
3788 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3789 	if (rc)
3790 		goto qstat_exit;
3791 
3792 	hw_masks = &resp->rx_ucast_pkts;
3793 	bnxt_copy_hw_masks(stats->hw_masks, hw_masks, stats->len / 8);
3794 
3795 qstat_exit:
3796 	mutex_unlock(&bp->hwrm_cmd_lock);
3797 	return rc;
3798 }
3799 
3800 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags);
3801 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags);
3802 
3803 static void bnxt_init_stats(struct bnxt *bp)
3804 {
3805 	struct bnxt_napi *bnapi = bp->bnapi[0];
3806 	struct bnxt_cp_ring_info *cpr;
3807 	struct bnxt_stats_mem *stats;
3808 	__le64 *rx_stats, *tx_stats;
3809 	int rc, rx_count, tx_count;
3810 	u64 *rx_masks, *tx_masks;
3811 	u64 mask;
3812 	u8 flags;
3813 
3814 	cpr = &bnapi->cp_ring;
3815 	stats = &cpr->stats;
3816 	rc = bnxt_hwrm_func_qstat_ext(bp, stats);
3817 	if (rc) {
3818 		if (bp->flags & BNXT_FLAG_CHIP_P5)
3819 			mask = (1ULL << 48) - 1;
3820 		else
3821 			mask = -1ULL;
3822 		bnxt_fill_masks(stats->hw_masks, mask, stats->len / 8);
3823 	}
3824 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
3825 		stats = &bp->port_stats;
3826 		rx_stats = stats->hw_stats;
3827 		rx_masks = stats->hw_masks;
3828 		rx_count = sizeof(struct rx_port_stats) / 8;
3829 		tx_stats = rx_stats + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
3830 		tx_masks = rx_masks + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
3831 		tx_count = sizeof(struct tx_port_stats) / 8;
3832 
3833 		flags = PORT_QSTATS_REQ_FLAGS_COUNTER_MASK;
3834 		rc = bnxt_hwrm_port_qstats(bp, flags);
3835 		if (rc) {
3836 			mask = (1ULL << 40) - 1;
3837 
3838 			bnxt_fill_masks(rx_masks, mask, rx_count);
3839 			bnxt_fill_masks(tx_masks, mask, tx_count);
3840 		} else {
3841 			bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count);
3842 			bnxt_copy_hw_masks(tx_masks, tx_stats, tx_count);
3843 			bnxt_hwrm_port_qstats(bp, 0);
3844 		}
3845 	}
3846 	if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) {
3847 		stats = &bp->rx_port_stats_ext;
3848 		rx_stats = stats->hw_stats;
3849 		rx_masks = stats->hw_masks;
3850 		rx_count = sizeof(struct rx_port_stats_ext) / 8;
3851 		stats = &bp->tx_port_stats_ext;
3852 		tx_stats = stats->hw_stats;
3853 		tx_masks = stats->hw_masks;
3854 		tx_count = sizeof(struct tx_port_stats_ext) / 8;
3855 
3856 		flags = PORT_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK;
3857 		rc = bnxt_hwrm_port_qstats_ext(bp, flags);
3858 		if (rc) {
3859 			mask = (1ULL << 40) - 1;
3860 
3861 			bnxt_fill_masks(rx_masks, mask, rx_count);
3862 			if (tx_stats)
3863 				bnxt_fill_masks(tx_masks, mask, tx_count);
3864 		} else {
3865 			bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count);
3866 			if (tx_stats)
3867 				bnxt_copy_hw_masks(tx_masks, tx_stats,
3868 						   tx_count);
3869 			bnxt_hwrm_port_qstats_ext(bp, 0);
3870 		}
3871 	}
3872 }
3873 
3874 static void bnxt_free_port_stats(struct bnxt *bp)
3875 {
3876 	bp->flags &= ~BNXT_FLAG_PORT_STATS;
3877 	bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT;
3878 
3879 	bnxt_free_stats_mem(bp, &bp->port_stats);
3880 	bnxt_free_stats_mem(bp, &bp->rx_port_stats_ext);
3881 	bnxt_free_stats_mem(bp, &bp->tx_port_stats_ext);
3882 }
3883 
3884 static void bnxt_free_ring_stats(struct bnxt *bp)
3885 {
3886 	int i;
3887 
3888 	if (!bp->bnapi)
3889 		return;
3890 
3891 	for (i = 0; i < bp->cp_nr_rings; i++) {
3892 		struct bnxt_napi *bnapi = bp->bnapi[i];
3893 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3894 
3895 		bnxt_free_stats_mem(bp, &cpr->stats);
3896 	}
3897 }
3898 
3899 static int bnxt_alloc_stats(struct bnxt *bp)
3900 {
3901 	u32 size, i;
3902 	int rc;
3903 
3904 	size = bp->hw_ring_stats_size;
3905 
3906 	for (i = 0; i < bp->cp_nr_rings; i++) {
3907 		struct bnxt_napi *bnapi = bp->bnapi[i];
3908 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3909 
3910 		cpr->stats.len = size;
3911 		rc = bnxt_alloc_stats_mem(bp, &cpr->stats, !i);
3912 		if (rc)
3913 			return rc;
3914 
3915 		cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
3916 	}
3917 
3918 	if (BNXT_VF(bp) || bp->chip_num == CHIP_NUM_58700)
3919 		return 0;
3920 
3921 	if (bp->port_stats.hw_stats)
3922 		goto alloc_ext_stats;
3923 
3924 	bp->port_stats.len = BNXT_PORT_STATS_SIZE;
3925 	rc = bnxt_alloc_stats_mem(bp, &bp->port_stats, true);
3926 	if (rc)
3927 		return rc;
3928 
3929 	bp->flags |= BNXT_FLAG_PORT_STATS;
3930 
3931 alloc_ext_stats:
3932 	/* Display extended statistics only if FW supports it */
3933 	if (bp->hwrm_spec_code < 0x10804 || bp->hwrm_spec_code == 0x10900)
3934 		if (!(bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED))
3935 			return 0;
3936 
3937 	if (bp->rx_port_stats_ext.hw_stats)
3938 		goto alloc_tx_ext_stats;
3939 
3940 	bp->rx_port_stats_ext.len = sizeof(struct rx_port_stats_ext);
3941 	rc = bnxt_alloc_stats_mem(bp, &bp->rx_port_stats_ext, true);
3942 	/* Extended stats are optional */
3943 	if (rc)
3944 		return 0;
3945 
3946 alloc_tx_ext_stats:
3947 	if (bp->tx_port_stats_ext.hw_stats)
3948 		return 0;
3949 
3950 	if (bp->hwrm_spec_code >= 0x10902 ||
3951 	    (bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) {
3952 		bp->tx_port_stats_ext.len = sizeof(struct tx_port_stats_ext);
3953 		rc = bnxt_alloc_stats_mem(bp, &bp->tx_port_stats_ext, true);
3954 		/* Extended stats are optional */
3955 		if (rc)
3956 			return 0;
3957 	}
3958 	bp->flags |= BNXT_FLAG_PORT_STATS_EXT;
3959 	return 0;
3960 }
3961 
3962 static void bnxt_clear_ring_indices(struct bnxt *bp)
3963 {
3964 	int i;
3965 
3966 	if (!bp->bnapi)
3967 		return;
3968 
3969 	for (i = 0; i < bp->cp_nr_rings; i++) {
3970 		struct bnxt_napi *bnapi = bp->bnapi[i];
3971 		struct bnxt_cp_ring_info *cpr;
3972 		struct bnxt_rx_ring_info *rxr;
3973 		struct bnxt_tx_ring_info *txr;
3974 
3975 		if (!bnapi)
3976 			continue;
3977 
3978 		cpr = &bnapi->cp_ring;
3979 		cpr->cp_raw_cons = 0;
3980 
3981 		txr = bnapi->tx_ring;
3982 		if (txr) {
3983 			txr->tx_prod = 0;
3984 			txr->tx_cons = 0;
3985 		}
3986 
3987 		rxr = bnapi->rx_ring;
3988 		if (rxr) {
3989 			rxr->rx_prod = 0;
3990 			rxr->rx_agg_prod = 0;
3991 			rxr->rx_sw_agg_prod = 0;
3992 			rxr->rx_next_cons = 0;
3993 		}
3994 	}
3995 }
3996 
3997 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
3998 {
3999 #ifdef CONFIG_RFS_ACCEL
4000 	int i;
4001 
4002 	/* Under rtnl_lock and all our NAPIs have been disabled.  It's
4003 	 * safe to delete the hash table.
4004 	 */
4005 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
4006 		struct hlist_head *head;
4007 		struct hlist_node *tmp;
4008 		struct bnxt_ntuple_filter *fltr;
4009 
4010 		head = &bp->ntp_fltr_hash_tbl[i];
4011 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
4012 			hlist_del(&fltr->hash);
4013 			kfree(fltr);
4014 		}
4015 	}
4016 	if (irq_reinit) {
4017 		kfree(bp->ntp_fltr_bmap);
4018 		bp->ntp_fltr_bmap = NULL;
4019 	}
4020 	bp->ntp_fltr_count = 0;
4021 #endif
4022 }
4023 
4024 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
4025 {
4026 #ifdef CONFIG_RFS_ACCEL
4027 	int i, rc = 0;
4028 
4029 	if (!(bp->flags & BNXT_FLAG_RFS))
4030 		return 0;
4031 
4032 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
4033 		INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
4034 
4035 	bp->ntp_fltr_count = 0;
4036 	bp->ntp_fltr_bmap = kcalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR),
4037 				    sizeof(long),
4038 				    GFP_KERNEL);
4039 
4040 	if (!bp->ntp_fltr_bmap)
4041 		rc = -ENOMEM;
4042 
4043 	return rc;
4044 #else
4045 	return 0;
4046 #endif
4047 }
4048 
4049 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
4050 {
4051 	bnxt_free_vnic_attributes(bp);
4052 	bnxt_free_tx_rings(bp);
4053 	bnxt_free_rx_rings(bp);
4054 	bnxt_free_cp_rings(bp);
4055 	bnxt_free_ntp_fltrs(bp, irq_re_init);
4056 	if (irq_re_init) {
4057 		bnxt_free_ring_stats(bp);
4058 		if (!(bp->fw_cap & BNXT_FW_CAP_PORT_STATS_NO_RESET))
4059 			bnxt_free_port_stats(bp);
4060 		bnxt_free_ring_grps(bp);
4061 		bnxt_free_vnics(bp);
4062 		kfree(bp->tx_ring_map);
4063 		bp->tx_ring_map = NULL;
4064 		kfree(bp->tx_ring);
4065 		bp->tx_ring = NULL;
4066 		kfree(bp->rx_ring);
4067 		bp->rx_ring = NULL;
4068 		kfree(bp->bnapi);
4069 		bp->bnapi = NULL;
4070 	} else {
4071 		bnxt_clear_ring_indices(bp);
4072 	}
4073 }
4074 
4075 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
4076 {
4077 	int i, j, rc, size, arr_size;
4078 	void *bnapi;
4079 
4080 	if (irq_re_init) {
4081 		/* Allocate bnapi mem pointer array and mem block for
4082 		 * all queues
4083 		 */
4084 		arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
4085 				bp->cp_nr_rings);
4086 		size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
4087 		bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
4088 		if (!bnapi)
4089 			return -ENOMEM;
4090 
4091 		bp->bnapi = bnapi;
4092 		bnapi += arr_size;
4093 		for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
4094 			bp->bnapi[i] = bnapi;
4095 			bp->bnapi[i]->index = i;
4096 			bp->bnapi[i]->bp = bp;
4097 			if (bp->flags & BNXT_FLAG_CHIP_P5) {
4098 				struct bnxt_cp_ring_info *cpr =
4099 					&bp->bnapi[i]->cp_ring;
4100 
4101 				cpr->cp_ring_struct.ring_mem.flags =
4102 					BNXT_RMEM_RING_PTE_FLAG;
4103 			}
4104 		}
4105 
4106 		bp->rx_ring = kcalloc(bp->rx_nr_rings,
4107 				      sizeof(struct bnxt_rx_ring_info),
4108 				      GFP_KERNEL);
4109 		if (!bp->rx_ring)
4110 			return -ENOMEM;
4111 
4112 		for (i = 0; i < bp->rx_nr_rings; i++) {
4113 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4114 
4115 			if (bp->flags & BNXT_FLAG_CHIP_P5) {
4116 				rxr->rx_ring_struct.ring_mem.flags =
4117 					BNXT_RMEM_RING_PTE_FLAG;
4118 				rxr->rx_agg_ring_struct.ring_mem.flags =
4119 					BNXT_RMEM_RING_PTE_FLAG;
4120 			}
4121 			rxr->bnapi = bp->bnapi[i];
4122 			bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
4123 		}
4124 
4125 		bp->tx_ring = kcalloc(bp->tx_nr_rings,
4126 				      sizeof(struct bnxt_tx_ring_info),
4127 				      GFP_KERNEL);
4128 		if (!bp->tx_ring)
4129 			return -ENOMEM;
4130 
4131 		bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16),
4132 					  GFP_KERNEL);
4133 
4134 		if (!bp->tx_ring_map)
4135 			return -ENOMEM;
4136 
4137 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
4138 			j = 0;
4139 		else
4140 			j = bp->rx_nr_rings;
4141 
4142 		for (i = 0; i < bp->tx_nr_rings; i++, j++) {
4143 			struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
4144 
4145 			if (bp->flags & BNXT_FLAG_CHIP_P5)
4146 				txr->tx_ring_struct.ring_mem.flags =
4147 					BNXT_RMEM_RING_PTE_FLAG;
4148 			txr->bnapi = bp->bnapi[j];
4149 			bp->bnapi[j]->tx_ring = txr;
4150 			bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i;
4151 			if (i >= bp->tx_nr_rings_xdp) {
4152 				txr->txq_index = i - bp->tx_nr_rings_xdp;
4153 				bp->bnapi[j]->tx_int = bnxt_tx_int;
4154 			} else {
4155 				bp->bnapi[j]->flags |= BNXT_NAPI_FLAG_XDP;
4156 				bp->bnapi[j]->tx_int = bnxt_tx_int_xdp;
4157 			}
4158 		}
4159 
4160 		rc = bnxt_alloc_stats(bp);
4161 		if (rc)
4162 			goto alloc_mem_err;
4163 		bnxt_init_stats(bp);
4164 
4165 		rc = bnxt_alloc_ntp_fltrs(bp);
4166 		if (rc)
4167 			goto alloc_mem_err;
4168 
4169 		rc = bnxt_alloc_vnics(bp);
4170 		if (rc)
4171 			goto alloc_mem_err;
4172 	}
4173 
4174 	bnxt_init_ring_struct(bp);
4175 
4176 	rc = bnxt_alloc_rx_rings(bp);
4177 	if (rc)
4178 		goto alloc_mem_err;
4179 
4180 	rc = bnxt_alloc_tx_rings(bp);
4181 	if (rc)
4182 		goto alloc_mem_err;
4183 
4184 	rc = bnxt_alloc_cp_rings(bp);
4185 	if (rc)
4186 		goto alloc_mem_err;
4187 
4188 	bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
4189 				  BNXT_VNIC_UCAST_FLAG;
4190 	rc = bnxt_alloc_vnic_attributes(bp);
4191 	if (rc)
4192 		goto alloc_mem_err;
4193 	return 0;
4194 
4195 alloc_mem_err:
4196 	bnxt_free_mem(bp, true);
4197 	return rc;
4198 }
4199 
4200 static void bnxt_disable_int(struct bnxt *bp)
4201 {
4202 	int i;
4203 
4204 	if (!bp->bnapi)
4205 		return;
4206 
4207 	for (i = 0; i < bp->cp_nr_rings; i++) {
4208 		struct bnxt_napi *bnapi = bp->bnapi[i];
4209 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4210 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
4211 
4212 		if (ring->fw_ring_id != INVALID_HW_RING_ID)
4213 			bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
4214 	}
4215 }
4216 
4217 static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n)
4218 {
4219 	struct bnxt_napi *bnapi = bp->bnapi[n];
4220 	struct bnxt_cp_ring_info *cpr;
4221 
4222 	cpr = &bnapi->cp_ring;
4223 	return cpr->cp_ring_struct.map_idx;
4224 }
4225 
4226 static void bnxt_disable_int_sync(struct bnxt *bp)
4227 {
4228 	int i;
4229 
4230 	atomic_inc(&bp->intr_sem);
4231 
4232 	bnxt_disable_int(bp);
4233 	for (i = 0; i < bp->cp_nr_rings; i++) {
4234 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
4235 
4236 		synchronize_irq(bp->irq_tbl[map_idx].vector);
4237 	}
4238 }
4239 
4240 static void bnxt_enable_int(struct bnxt *bp)
4241 {
4242 	int i;
4243 
4244 	atomic_set(&bp->intr_sem, 0);
4245 	for (i = 0; i < bp->cp_nr_rings; i++) {
4246 		struct bnxt_napi *bnapi = bp->bnapi[i];
4247 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4248 
4249 		bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons);
4250 	}
4251 }
4252 
4253 void bnxt_hwrm_cmd_hdr_init(struct bnxt *bp, void *request, u16 req_type,
4254 			    u16 cmpl_ring, u16 target_id)
4255 {
4256 	struct input *req = request;
4257 
4258 	req->req_type = cpu_to_le16(req_type);
4259 	req->cmpl_ring = cpu_to_le16(cmpl_ring);
4260 	req->target_id = cpu_to_le16(target_id);
4261 	if (bnxt_kong_hwrm_message(bp, req))
4262 		req->resp_addr = cpu_to_le64(bp->hwrm_cmd_kong_resp_dma_addr);
4263 	else
4264 		req->resp_addr = cpu_to_le64(bp->hwrm_cmd_resp_dma_addr);
4265 }
4266 
4267 static int bnxt_hwrm_to_stderr(u32 hwrm_err)
4268 {
4269 	switch (hwrm_err) {
4270 	case HWRM_ERR_CODE_SUCCESS:
4271 		return 0;
4272 	case HWRM_ERR_CODE_RESOURCE_ACCESS_DENIED:
4273 		return -EACCES;
4274 	case HWRM_ERR_CODE_RESOURCE_ALLOC_ERROR:
4275 		return -ENOSPC;
4276 	case HWRM_ERR_CODE_INVALID_PARAMS:
4277 	case HWRM_ERR_CODE_INVALID_FLAGS:
4278 	case HWRM_ERR_CODE_INVALID_ENABLES:
4279 	case HWRM_ERR_CODE_UNSUPPORTED_TLV:
4280 	case HWRM_ERR_CODE_UNSUPPORTED_OPTION_ERR:
4281 		return -EINVAL;
4282 	case HWRM_ERR_CODE_NO_BUFFER:
4283 		return -ENOMEM;
4284 	case HWRM_ERR_CODE_HOT_RESET_PROGRESS:
4285 	case HWRM_ERR_CODE_BUSY:
4286 		return -EAGAIN;
4287 	case HWRM_ERR_CODE_CMD_NOT_SUPPORTED:
4288 		return -EOPNOTSUPP;
4289 	default:
4290 		return -EIO;
4291 	}
4292 }
4293 
4294 static int bnxt_hwrm_do_send_msg(struct bnxt *bp, void *msg, u32 msg_len,
4295 				 int timeout, bool silent)
4296 {
4297 	int i, intr_process, rc, tmo_count;
4298 	struct input *req = msg;
4299 	u32 *data = msg;
4300 	u8 *valid;
4301 	u16 cp_ring_id, len = 0;
4302 	struct hwrm_err_output *resp = bp->hwrm_cmd_resp_addr;
4303 	u16 max_req_len = BNXT_HWRM_MAX_REQ_LEN;
4304 	struct hwrm_short_input short_input = {0};
4305 	u32 doorbell_offset = BNXT_GRCPF_REG_CHIMP_COMM_TRIGGER;
4306 	u32 bar_offset = BNXT_GRCPF_REG_CHIMP_COMM;
4307 	u16 dst = BNXT_HWRM_CHNL_CHIMP;
4308 
4309 	if (BNXT_NO_FW_ACCESS(bp))
4310 		return -EBUSY;
4311 
4312 	if (msg_len > BNXT_HWRM_MAX_REQ_LEN) {
4313 		if (msg_len > bp->hwrm_max_ext_req_len ||
4314 		    !bp->hwrm_short_cmd_req_addr)
4315 			return -EINVAL;
4316 	}
4317 
4318 	if (bnxt_hwrm_kong_chnl(bp, req)) {
4319 		dst = BNXT_HWRM_CHNL_KONG;
4320 		bar_offset = BNXT_GRCPF_REG_KONG_COMM;
4321 		doorbell_offset = BNXT_GRCPF_REG_KONG_COMM_TRIGGER;
4322 		resp = bp->hwrm_cmd_kong_resp_addr;
4323 	}
4324 
4325 	memset(resp, 0, PAGE_SIZE);
4326 	cp_ring_id = le16_to_cpu(req->cmpl_ring);
4327 	intr_process = (cp_ring_id == INVALID_HW_RING_ID) ? 0 : 1;
4328 
4329 	req->seq_id = cpu_to_le16(bnxt_get_hwrm_seq_id(bp, dst));
4330 	/* currently supports only one outstanding message */
4331 	if (intr_process)
4332 		bp->hwrm_intr_seq_id = le16_to_cpu(req->seq_id);
4333 
4334 	if ((bp->fw_cap & BNXT_FW_CAP_SHORT_CMD) ||
4335 	    msg_len > BNXT_HWRM_MAX_REQ_LEN) {
4336 		void *short_cmd_req = bp->hwrm_short_cmd_req_addr;
4337 		u16 max_msg_len;
4338 
4339 		/* Set boundary for maximum extended request length for short
4340 		 * cmd format. If passed up from device use the max supported
4341 		 * internal req length.
4342 		 */
4343 		max_msg_len = bp->hwrm_max_ext_req_len;
4344 
4345 		memcpy(short_cmd_req, req, msg_len);
4346 		if (msg_len < max_msg_len)
4347 			memset(short_cmd_req + msg_len, 0,
4348 			       max_msg_len - msg_len);
4349 
4350 		short_input.req_type = req->req_type;
4351 		short_input.signature =
4352 				cpu_to_le16(SHORT_REQ_SIGNATURE_SHORT_CMD);
4353 		short_input.size = cpu_to_le16(msg_len);
4354 		short_input.req_addr =
4355 			cpu_to_le64(bp->hwrm_short_cmd_req_dma_addr);
4356 
4357 		data = (u32 *)&short_input;
4358 		msg_len = sizeof(short_input);
4359 
4360 		/* Sync memory write before updating doorbell */
4361 		wmb();
4362 
4363 		max_req_len = BNXT_HWRM_SHORT_REQ_LEN;
4364 	}
4365 
4366 	/* Write request msg to hwrm channel */
4367 	__iowrite32_copy(bp->bar0 + bar_offset, data, msg_len / 4);
4368 
4369 	for (i = msg_len; i < max_req_len; i += 4)
4370 		writel(0, bp->bar0 + bar_offset + i);
4371 
4372 	/* Ring channel doorbell */
4373 	writel(1, bp->bar0 + doorbell_offset);
4374 
4375 	if (!pci_is_enabled(bp->pdev))
4376 		return 0;
4377 
4378 	if (!timeout)
4379 		timeout = DFLT_HWRM_CMD_TIMEOUT;
4380 	/* convert timeout to usec */
4381 	timeout *= 1000;
4382 
4383 	i = 0;
4384 	/* Short timeout for the first few iterations:
4385 	 * number of loops = number of loops for short timeout +
4386 	 * number of loops for standard timeout.
4387 	 */
4388 	tmo_count = HWRM_SHORT_TIMEOUT_COUNTER;
4389 	timeout = timeout - HWRM_SHORT_MIN_TIMEOUT * HWRM_SHORT_TIMEOUT_COUNTER;
4390 	tmo_count += DIV_ROUND_UP(timeout, HWRM_MIN_TIMEOUT);
4391 
4392 	if (intr_process) {
4393 		u16 seq_id = bp->hwrm_intr_seq_id;
4394 
4395 		/* Wait until hwrm response cmpl interrupt is processed */
4396 		while (bp->hwrm_intr_seq_id != (u16)~seq_id &&
4397 		       i++ < tmo_count) {
4398 			/* Abort the wait for completion if the FW health
4399 			 * check has failed.
4400 			 */
4401 			if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
4402 				return -EBUSY;
4403 			/* on first few passes, just barely sleep */
4404 			if (i < HWRM_SHORT_TIMEOUT_COUNTER)
4405 				usleep_range(HWRM_SHORT_MIN_TIMEOUT,
4406 					     HWRM_SHORT_MAX_TIMEOUT);
4407 			else
4408 				usleep_range(HWRM_MIN_TIMEOUT,
4409 					     HWRM_MAX_TIMEOUT);
4410 		}
4411 
4412 		if (bp->hwrm_intr_seq_id != (u16)~seq_id) {
4413 			if (!silent)
4414 				netdev_err(bp->dev, "Resp cmpl intr err msg: 0x%x\n",
4415 					   le16_to_cpu(req->req_type));
4416 			return -EBUSY;
4417 		}
4418 		len = le16_to_cpu(resp->resp_len);
4419 		valid = ((u8 *)resp) + len - 1;
4420 	} else {
4421 		int j;
4422 
4423 		/* Check if response len is updated */
4424 		for (i = 0; i < tmo_count; i++) {
4425 			/* Abort the wait for completion if the FW health
4426 			 * check has failed.
4427 			 */
4428 			if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
4429 				return -EBUSY;
4430 			len = le16_to_cpu(resp->resp_len);
4431 			if (len)
4432 				break;
4433 			/* on first few passes, just barely sleep */
4434 			if (i < HWRM_SHORT_TIMEOUT_COUNTER)
4435 				usleep_range(HWRM_SHORT_MIN_TIMEOUT,
4436 					     HWRM_SHORT_MAX_TIMEOUT);
4437 			else
4438 				usleep_range(HWRM_MIN_TIMEOUT,
4439 					     HWRM_MAX_TIMEOUT);
4440 		}
4441 
4442 		if (i >= tmo_count) {
4443 			if (!silent)
4444 				netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d\n",
4445 					   HWRM_TOTAL_TIMEOUT(i),
4446 					   le16_to_cpu(req->req_type),
4447 					   le16_to_cpu(req->seq_id), len);
4448 			return -EBUSY;
4449 		}
4450 
4451 		/* Last byte of resp contains valid bit */
4452 		valid = ((u8 *)resp) + len - 1;
4453 		for (j = 0; j < HWRM_VALID_BIT_DELAY_USEC; j++) {
4454 			/* make sure we read from updated DMA memory */
4455 			dma_rmb();
4456 			if (*valid)
4457 				break;
4458 			usleep_range(1, 5);
4459 		}
4460 
4461 		if (j >= HWRM_VALID_BIT_DELAY_USEC) {
4462 			if (!silent)
4463 				netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d v:%d\n",
4464 					   HWRM_TOTAL_TIMEOUT(i),
4465 					   le16_to_cpu(req->req_type),
4466 					   le16_to_cpu(req->seq_id), len,
4467 					   *valid);
4468 			return -EBUSY;
4469 		}
4470 	}
4471 
4472 	/* Zero valid bit for compatibility.  Valid bit in an older spec
4473 	 * may become a new field in a newer spec.  We must make sure that
4474 	 * a new field not implemented by old spec will read zero.
4475 	 */
4476 	*valid = 0;
4477 	rc = le16_to_cpu(resp->error_code);
4478 	if (rc && !silent)
4479 		netdev_err(bp->dev, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n",
4480 			   le16_to_cpu(resp->req_type),
4481 			   le16_to_cpu(resp->seq_id), rc);
4482 	return bnxt_hwrm_to_stderr(rc);
4483 }
4484 
4485 int _hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
4486 {
4487 	return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, false);
4488 }
4489 
4490 int _hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len,
4491 			      int timeout)
4492 {
4493 	return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true);
4494 }
4495 
4496 int hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
4497 {
4498 	int rc;
4499 
4500 	mutex_lock(&bp->hwrm_cmd_lock);
4501 	rc = _hwrm_send_message(bp, msg, msg_len, timeout);
4502 	mutex_unlock(&bp->hwrm_cmd_lock);
4503 	return rc;
4504 }
4505 
4506 int hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len,
4507 			     int timeout)
4508 {
4509 	int rc;
4510 
4511 	mutex_lock(&bp->hwrm_cmd_lock);
4512 	rc = bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true);
4513 	mutex_unlock(&bp->hwrm_cmd_lock);
4514 	return rc;
4515 }
4516 
4517 int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp, unsigned long *bmap, int bmap_size,
4518 			    bool async_only)
4519 {
4520 	struct hwrm_func_drv_rgtr_output *resp = bp->hwrm_cmd_resp_addr;
4521 	struct hwrm_func_drv_rgtr_input req = {0};
4522 	DECLARE_BITMAP(async_events_bmap, 256);
4523 	u32 *events = (u32 *)async_events_bmap;
4524 	u32 flags;
4525 	int rc, i;
4526 
4527 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
4528 
4529 	req.enables =
4530 		cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
4531 			    FUNC_DRV_RGTR_REQ_ENABLES_VER |
4532 			    FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
4533 
4534 	req.os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX);
4535 	flags = FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE;
4536 	if (bp->fw_cap & BNXT_FW_CAP_HOT_RESET)
4537 		flags |= FUNC_DRV_RGTR_REQ_FLAGS_HOT_RESET_SUPPORT;
4538 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
4539 		flags |= FUNC_DRV_RGTR_REQ_FLAGS_ERROR_RECOVERY_SUPPORT |
4540 			 FUNC_DRV_RGTR_REQ_FLAGS_MASTER_SUPPORT;
4541 	req.flags = cpu_to_le32(flags);
4542 	req.ver_maj_8b = DRV_VER_MAJ;
4543 	req.ver_min_8b = DRV_VER_MIN;
4544 	req.ver_upd_8b = DRV_VER_UPD;
4545 	req.ver_maj = cpu_to_le16(DRV_VER_MAJ);
4546 	req.ver_min = cpu_to_le16(DRV_VER_MIN);
4547 	req.ver_upd = cpu_to_le16(DRV_VER_UPD);
4548 
4549 	if (BNXT_PF(bp)) {
4550 		u32 data[8];
4551 		int i;
4552 
4553 		memset(data, 0, sizeof(data));
4554 		for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) {
4555 			u16 cmd = bnxt_vf_req_snif[i];
4556 			unsigned int bit, idx;
4557 
4558 			idx = cmd / 32;
4559 			bit = cmd % 32;
4560 			data[idx] |= 1 << bit;
4561 		}
4562 
4563 		for (i = 0; i < 8; i++)
4564 			req.vf_req_fwd[i] = cpu_to_le32(data[i]);
4565 
4566 		req.enables |=
4567 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
4568 	}
4569 
4570 	if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE)
4571 		req.flags |= cpu_to_le32(
4572 			FUNC_DRV_RGTR_REQ_FLAGS_FLOW_HANDLE_64BIT_MODE);
4573 
4574 	memset(async_events_bmap, 0, sizeof(async_events_bmap));
4575 	for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++) {
4576 		u16 event_id = bnxt_async_events_arr[i];
4577 
4578 		if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY &&
4579 		    !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
4580 			continue;
4581 		__set_bit(bnxt_async_events_arr[i], async_events_bmap);
4582 	}
4583 	if (bmap && bmap_size) {
4584 		for (i = 0; i < bmap_size; i++) {
4585 			if (test_bit(i, bmap))
4586 				__set_bit(i, async_events_bmap);
4587 		}
4588 	}
4589 	for (i = 0; i < 8; i++)
4590 		req.async_event_fwd[i] |= cpu_to_le32(events[i]);
4591 
4592 	if (async_only)
4593 		req.enables =
4594 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
4595 
4596 	mutex_lock(&bp->hwrm_cmd_lock);
4597 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4598 	if (!rc) {
4599 		set_bit(BNXT_STATE_DRV_REGISTERED, &bp->state);
4600 		if (resp->flags &
4601 		    cpu_to_le32(FUNC_DRV_RGTR_RESP_FLAGS_IF_CHANGE_SUPPORTED))
4602 			bp->fw_cap |= BNXT_FW_CAP_IF_CHANGE;
4603 	}
4604 	mutex_unlock(&bp->hwrm_cmd_lock);
4605 	return rc;
4606 }
4607 
4608 static int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
4609 {
4610 	struct hwrm_func_drv_unrgtr_input req = {0};
4611 
4612 	if (!test_and_clear_bit(BNXT_STATE_DRV_REGISTERED, &bp->state))
4613 		return 0;
4614 
4615 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_UNRGTR, -1, -1);
4616 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4617 }
4618 
4619 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
4620 {
4621 	u32 rc = 0;
4622 	struct hwrm_tunnel_dst_port_free_input req = {0};
4623 
4624 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_FREE, -1, -1);
4625 	req.tunnel_type = tunnel_type;
4626 
4627 	switch (tunnel_type) {
4628 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
4629 		req.tunnel_dst_port_id = cpu_to_le16(bp->vxlan_fw_dst_port_id);
4630 		bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID;
4631 		break;
4632 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
4633 		req.tunnel_dst_port_id = cpu_to_le16(bp->nge_fw_dst_port_id);
4634 		bp->nge_fw_dst_port_id = INVALID_HW_RING_ID;
4635 		break;
4636 	default:
4637 		break;
4638 	}
4639 
4640 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4641 	if (rc)
4642 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
4643 			   rc);
4644 	return rc;
4645 }
4646 
4647 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
4648 					   u8 tunnel_type)
4649 {
4650 	u32 rc = 0;
4651 	struct hwrm_tunnel_dst_port_alloc_input req = {0};
4652 	struct hwrm_tunnel_dst_port_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4653 
4654 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_ALLOC, -1, -1);
4655 
4656 	req.tunnel_type = tunnel_type;
4657 	req.tunnel_dst_port_val = port;
4658 
4659 	mutex_lock(&bp->hwrm_cmd_lock);
4660 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4661 	if (rc) {
4662 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
4663 			   rc);
4664 		goto err_out;
4665 	}
4666 
4667 	switch (tunnel_type) {
4668 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN:
4669 		bp->vxlan_fw_dst_port_id =
4670 			le16_to_cpu(resp->tunnel_dst_port_id);
4671 		break;
4672 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE:
4673 		bp->nge_fw_dst_port_id = le16_to_cpu(resp->tunnel_dst_port_id);
4674 		break;
4675 	default:
4676 		break;
4677 	}
4678 
4679 err_out:
4680 	mutex_unlock(&bp->hwrm_cmd_lock);
4681 	return rc;
4682 }
4683 
4684 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
4685 {
4686 	struct hwrm_cfa_l2_set_rx_mask_input req = {0};
4687 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4688 
4689 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_SET_RX_MASK, -1, -1);
4690 	req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
4691 
4692 	req.num_mc_entries = cpu_to_le32(vnic->mc_list_count);
4693 	req.mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
4694 	req.mask = cpu_to_le32(vnic->rx_mask);
4695 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4696 }
4697 
4698 #ifdef CONFIG_RFS_ACCEL
4699 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
4700 					    struct bnxt_ntuple_filter *fltr)
4701 {
4702 	struct hwrm_cfa_ntuple_filter_free_input req = {0};
4703 
4704 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_FREE, -1, -1);
4705 	req.ntuple_filter_id = fltr->filter_id;
4706 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4707 }
4708 
4709 #define BNXT_NTP_FLTR_FLAGS					\
4710 	(CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID |	\
4711 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE |	\
4712 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR |	\
4713 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE |	\
4714 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR |	\
4715 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK |	\
4716 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR |	\
4717 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK |	\
4718 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL |	\
4719 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT |		\
4720 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK |	\
4721 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT |		\
4722 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK |	\
4723 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
4724 
4725 #define BNXT_NTP_TUNNEL_FLTR_FLAG				\
4726 		CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE
4727 
4728 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
4729 					     struct bnxt_ntuple_filter *fltr)
4730 {
4731 	struct hwrm_cfa_ntuple_filter_alloc_input req = {0};
4732 	struct hwrm_cfa_ntuple_filter_alloc_output *resp;
4733 	struct flow_keys *keys = &fltr->fkeys;
4734 	struct bnxt_vnic_info *vnic;
4735 	u32 flags = 0;
4736 	int rc = 0;
4737 
4738 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_ALLOC, -1, -1);
4739 	req.l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx];
4740 
4741 	if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) {
4742 		flags = CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DEST_RFS_RING_IDX;
4743 		req.dst_id = cpu_to_le16(fltr->rxq);
4744 	} else {
4745 		vnic = &bp->vnic_info[fltr->rxq + 1];
4746 		req.dst_id = cpu_to_le16(vnic->fw_vnic_id);
4747 	}
4748 	req.flags = cpu_to_le32(flags);
4749 	req.enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
4750 
4751 	req.ethertype = htons(ETH_P_IP);
4752 	memcpy(req.src_macaddr, fltr->src_mac_addr, ETH_ALEN);
4753 	req.ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
4754 	req.ip_protocol = keys->basic.ip_proto;
4755 
4756 	if (keys->basic.n_proto == htons(ETH_P_IPV6)) {
4757 		int i;
4758 
4759 		req.ethertype = htons(ETH_P_IPV6);
4760 		req.ip_addr_type =
4761 			CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6;
4762 		*(struct in6_addr *)&req.src_ipaddr[0] =
4763 			keys->addrs.v6addrs.src;
4764 		*(struct in6_addr *)&req.dst_ipaddr[0] =
4765 			keys->addrs.v6addrs.dst;
4766 		for (i = 0; i < 4; i++) {
4767 			req.src_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
4768 			req.dst_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
4769 		}
4770 	} else {
4771 		req.src_ipaddr[0] = keys->addrs.v4addrs.src;
4772 		req.src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
4773 		req.dst_ipaddr[0] = keys->addrs.v4addrs.dst;
4774 		req.dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
4775 	}
4776 	if (keys->control.flags & FLOW_DIS_ENCAPSULATION) {
4777 		req.enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG);
4778 		req.tunnel_type =
4779 			CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL;
4780 	}
4781 
4782 	req.src_port = keys->ports.src;
4783 	req.src_port_mask = cpu_to_be16(0xffff);
4784 	req.dst_port = keys->ports.dst;
4785 	req.dst_port_mask = cpu_to_be16(0xffff);
4786 
4787 	mutex_lock(&bp->hwrm_cmd_lock);
4788 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4789 	if (!rc) {
4790 		resp = bnxt_get_hwrm_resp_addr(bp, &req);
4791 		fltr->filter_id = resp->ntuple_filter_id;
4792 	}
4793 	mutex_unlock(&bp->hwrm_cmd_lock);
4794 	return rc;
4795 }
4796 #endif
4797 
4798 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
4799 				     u8 *mac_addr)
4800 {
4801 	u32 rc = 0;
4802 	struct hwrm_cfa_l2_filter_alloc_input req = {0};
4803 	struct hwrm_cfa_l2_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4804 
4805 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_ALLOC, -1, -1);
4806 	req.flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX);
4807 	if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
4808 		req.flags |=
4809 			cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
4810 	req.dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
4811 	req.enables =
4812 		cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
4813 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
4814 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
4815 	memcpy(req.l2_addr, mac_addr, ETH_ALEN);
4816 	req.l2_addr_mask[0] = 0xff;
4817 	req.l2_addr_mask[1] = 0xff;
4818 	req.l2_addr_mask[2] = 0xff;
4819 	req.l2_addr_mask[3] = 0xff;
4820 	req.l2_addr_mask[4] = 0xff;
4821 	req.l2_addr_mask[5] = 0xff;
4822 
4823 	mutex_lock(&bp->hwrm_cmd_lock);
4824 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4825 	if (!rc)
4826 		bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
4827 							resp->l2_filter_id;
4828 	mutex_unlock(&bp->hwrm_cmd_lock);
4829 	return rc;
4830 }
4831 
4832 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
4833 {
4834 	u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
4835 	int rc = 0;
4836 
4837 	/* Any associated ntuple filters will also be cleared by firmware. */
4838 	mutex_lock(&bp->hwrm_cmd_lock);
4839 	for (i = 0; i < num_of_vnics; i++) {
4840 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
4841 
4842 		for (j = 0; j < vnic->uc_filter_count; j++) {
4843 			struct hwrm_cfa_l2_filter_free_input req = {0};
4844 
4845 			bnxt_hwrm_cmd_hdr_init(bp, &req,
4846 					       HWRM_CFA_L2_FILTER_FREE, -1, -1);
4847 
4848 			req.l2_filter_id = vnic->fw_l2_filter_id[j];
4849 
4850 			rc = _hwrm_send_message(bp, &req, sizeof(req),
4851 						HWRM_CMD_TIMEOUT);
4852 		}
4853 		vnic->uc_filter_count = 0;
4854 	}
4855 	mutex_unlock(&bp->hwrm_cmd_lock);
4856 
4857 	return rc;
4858 }
4859 
4860 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
4861 {
4862 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4863 	u16 max_aggs = VNIC_TPA_CFG_REQ_MAX_AGGS_MAX;
4864 	struct hwrm_vnic_tpa_cfg_input req = {0};
4865 
4866 	if (vnic->fw_vnic_id == INVALID_HW_RING_ID)
4867 		return 0;
4868 
4869 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_TPA_CFG, -1, -1);
4870 
4871 	if (tpa_flags) {
4872 		u16 mss = bp->dev->mtu - 40;
4873 		u32 nsegs, n, segs = 0, flags;
4874 
4875 		flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
4876 			VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
4877 			VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
4878 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
4879 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
4880 		if (tpa_flags & BNXT_FLAG_GRO)
4881 			flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
4882 
4883 		req.flags = cpu_to_le32(flags);
4884 
4885 		req.enables =
4886 			cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
4887 				    VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
4888 				    VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
4889 
4890 		/* Number of segs are log2 units, and first packet is not
4891 		 * included as part of this units.
4892 		 */
4893 		if (mss <= BNXT_RX_PAGE_SIZE) {
4894 			n = BNXT_RX_PAGE_SIZE / mss;
4895 			nsegs = (MAX_SKB_FRAGS - 1) * n;
4896 		} else {
4897 			n = mss / BNXT_RX_PAGE_SIZE;
4898 			if (mss & (BNXT_RX_PAGE_SIZE - 1))
4899 				n++;
4900 			nsegs = (MAX_SKB_FRAGS - n) / n;
4901 		}
4902 
4903 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
4904 			segs = MAX_TPA_SEGS_P5;
4905 			max_aggs = bp->max_tpa;
4906 		} else {
4907 			segs = ilog2(nsegs);
4908 		}
4909 		req.max_agg_segs = cpu_to_le16(segs);
4910 		req.max_aggs = cpu_to_le16(max_aggs);
4911 
4912 		req.min_agg_len = cpu_to_le32(512);
4913 	}
4914 	req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
4915 
4916 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4917 }
4918 
4919 static u16 bnxt_cp_ring_from_grp(struct bnxt *bp, struct bnxt_ring_struct *ring)
4920 {
4921 	struct bnxt_ring_grp_info *grp_info;
4922 
4923 	grp_info = &bp->grp_info[ring->grp_idx];
4924 	return grp_info->cp_fw_ring_id;
4925 }
4926 
4927 static u16 bnxt_cp_ring_for_rx(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
4928 {
4929 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
4930 		struct bnxt_napi *bnapi = rxr->bnapi;
4931 		struct bnxt_cp_ring_info *cpr;
4932 
4933 		cpr = bnapi->cp_ring.cp_ring_arr[BNXT_RX_HDL];
4934 		return cpr->cp_ring_struct.fw_ring_id;
4935 	} else {
4936 		return bnxt_cp_ring_from_grp(bp, &rxr->rx_ring_struct);
4937 	}
4938 }
4939 
4940 static u16 bnxt_cp_ring_for_tx(struct bnxt *bp, struct bnxt_tx_ring_info *txr)
4941 {
4942 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
4943 		struct bnxt_napi *bnapi = txr->bnapi;
4944 		struct bnxt_cp_ring_info *cpr;
4945 
4946 		cpr = bnapi->cp_ring.cp_ring_arr[BNXT_TX_HDL];
4947 		return cpr->cp_ring_struct.fw_ring_id;
4948 	} else {
4949 		return bnxt_cp_ring_from_grp(bp, &txr->tx_ring_struct);
4950 	}
4951 }
4952 
4953 static int bnxt_alloc_rss_indir_tbl(struct bnxt *bp)
4954 {
4955 	int entries;
4956 
4957 	if (bp->flags & BNXT_FLAG_CHIP_P5)
4958 		entries = BNXT_MAX_RSS_TABLE_ENTRIES_P5;
4959 	else
4960 		entries = HW_HASH_INDEX_SIZE;
4961 
4962 	bp->rss_indir_tbl_entries = entries;
4963 	bp->rss_indir_tbl = kmalloc_array(entries, sizeof(*bp->rss_indir_tbl),
4964 					  GFP_KERNEL);
4965 	if (!bp->rss_indir_tbl)
4966 		return -ENOMEM;
4967 	return 0;
4968 }
4969 
4970 static void bnxt_set_dflt_rss_indir_tbl(struct bnxt *bp)
4971 {
4972 	u16 max_rings, max_entries, pad, i;
4973 
4974 	if (!bp->rx_nr_rings)
4975 		return;
4976 
4977 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
4978 		max_rings = bp->rx_nr_rings - 1;
4979 	else
4980 		max_rings = bp->rx_nr_rings;
4981 
4982 	max_entries = bnxt_get_rxfh_indir_size(bp->dev);
4983 
4984 	for (i = 0; i < max_entries; i++)
4985 		bp->rss_indir_tbl[i] = ethtool_rxfh_indir_default(i, max_rings);
4986 
4987 	pad = bp->rss_indir_tbl_entries - max_entries;
4988 	if (pad)
4989 		memset(&bp->rss_indir_tbl[i], 0, pad * sizeof(u16));
4990 }
4991 
4992 static u16 bnxt_get_max_rss_ring(struct bnxt *bp)
4993 {
4994 	u16 i, tbl_size, max_ring = 0;
4995 
4996 	if (!bp->rss_indir_tbl)
4997 		return 0;
4998 
4999 	tbl_size = bnxt_get_rxfh_indir_size(bp->dev);
5000 	for (i = 0; i < tbl_size; i++)
5001 		max_ring = max(max_ring, bp->rss_indir_tbl[i]);
5002 	return max_ring;
5003 }
5004 
5005 int bnxt_get_nr_rss_ctxs(struct bnxt *bp, int rx_rings)
5006 {
5007 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5008 		return DIV_ROUND_UP(rx_rings, BNXT_RSS_TABLE_ENTRIES_P5);
5009 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5010 		return 2;
5011 	return 1;
5012 }
5013 
5014 static void __bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic)
5015 {
5016 	bool no_rss = !(vnic->flags & BNXT_VNIC_RSS_FLAG);
5017 	u16 i, j;
5018 
5019 	/* Fill the RSS indirection table with ring group ids */
5020 	for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++) {
5021 		if (!no_rss)
5022 			j = bp->rss_indir_tbl[i];
5023 		vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
5024 	}
5025 }
5026 
5027 static void __bnxt_fill_hw_rss_tbl_p5(struct bnxt *bp,
5028 				      struct bnxt_vnic_info *vnic)
5029 {
5030 	__le16 *ring_tbl = vnic->rss_table;
5031 	struct bnxt_rx_ring_info *rxr;
5032 	u16 tbl_size, i;
5033 
5034 	tbl_size = bnxt_get_rxfh_indir_size(bp->dev);
5035 
5036 	for (i = 0; i < tbl_size; i++) {
5037 		u16 ring_id, j;
5038 
5039 		j = bp->rss_indir_tbl[i];
5040 		rxr = &bp->rx_ring[j];
5041 
5042 		ring_id = rxr->rx_ring_struct.fw_ring_id;
5043 		*ring_tbl++ = cpu_to_le16(ring_id);
5044 		ring_id = bnxt_cp_ring_for_rx(bp, rxr);
5045 		*ring_tbl++ = cpu_to_le16(ring_id);
5046 	}
5047 }
5048 
5049 static void bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic)
5050 {
5051 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5052 		__bnxt_fill_hw_rss_tbl_p5(bp, vnic);
5053 	else
5054 		__bnxt_fill_hw_rss_tbl(bp, vnic);
5055 }
5056 
5057 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
5058 {
5059 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5060 	struct hwrm_vnic_rss_cfg_input req = {0};
5061 
5062 	if ((bp->flags & BNXT_FLAG_CHIP_P5) ||
5063 	    vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID)
5064 		return 0;
5065 
5066 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1);
5067 	if (set_rss) {
5068 		bnxt_fill_hw_rss_tbl(bp, vnic);
5069 		req.hash_type = cpu_to_le32(bp->rss_hash_cfg);
5070 		req.hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT;
5071 		req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
5072 		req.hash_key_tbl_addr =
5073 			cpu_to_le64(vnic->rss_hash_key_dma_addr);
5074 	}
5075 	req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
5076 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5077 }
5078 
5079 static int bnxt_hwrm_vnic_set_rss_p5(struct bnxt *bp, u16 vnic_id, bool set_rss)
5080 {
5081 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5082 	struct hwrm_vnic_rss_cfg_input req = {0};
5083 	dma_addr_t ring_tbl_map;
5084 	u32 i, nr_ctxs;
5085 
5086 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1);
5087 	req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5088 	if (!set_rss) {
5089 		hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5090 		return 0;
5091 	}
5092 	bnxt_fill_hw_rss_tbl(bp, vnic);
5093 	req.hash_type = cpu_to_le32(bp->rss_hash_cfg);
5094 	req.hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT;
5095 	req.hash_key_tbl_addr = cpu_to_le64(vnic->rss_hash_key_dma_addr);
5096 	ring_tbl_map = vnic->rss_table_dma_addr;
5097 	nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings);
5098 	for (i = 0; i < nr_ctxs; ring_tbl_map += BNXT_RSS_TABLE_SIZE_P5, i++) {
5099 		int rc;
5100 
5101 		req.ring_grp_tbl_addr = cpu_to_le64(ring_tbl_map);
5102 		req.ring_table_pair_index = i;
5103 		req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[i]);
5104 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5105 		if (rc)
5106 			return rc;
5107 	}
5108 	return 0;
5109 }
5110 
5111 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
5112 {
5113 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5114 	struct hwrm_vnic_plcmodes_cfg_input req = {0};
5115 
5116 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_PLCMODES_CFG, -1, -1);
5117 	req.flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT |
5118 				VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
5119 				VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
5120 	req.enables =
5121 		cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID |
5122 			    VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
5123 	/* thresholds not implemented in firmware yet */
5124 	req.jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
5125 	req.hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
5126 	req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
5127 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5128 }
5129 
5130 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id,
5131 					u16 ctx_idx)
5132 {
5133 	struct hwrm_vnic_rss_cos_lb_ctx_free_input req = {0};
5134 
5135 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_FREE, -1, -1);
5136 	req.rss_cos_lb_ctx_id =
5137 		cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]);
5138 
5139 	hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5140 	bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID;
5141 }
5142 
5143 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
5144 {
5145 	int i, j;
5146 
5147 	for (i = 0; i < bp->nr_vnics; i++) {
5148 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
5149 
5150 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) {
5151 			if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID)
5152 				bnxt_hwrm_vnic_ctx_free_one(bp, i, j);
5153 		}
5154 	}
5155 	bp->rsscos_nr_ctxs = 0;
5156 }
5157 
5158 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx)
5159 {
5160 	int rc;
5161 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_input req = {0};
5162 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp =
5163 						bp->hwrm_cmd_resp_addr;
5164 
5165 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC, -1,
5166 			       -1);
5167 
5168 	mutex_lock(&bp->hwrm_cmd_lock);
5169 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5170 	if (!rc)
5171 		bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] =
5172 			le16_to_cpu(resp->rss_cos_lb_ctx_id);
5173 	mutex_unlock(&bp->hwrm_cmd_lock);
5174 
5175 	return rc;
5176 }
5177 
5178 static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp)
5179 {
5180 	if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP)
5181 		return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE;
5182 	return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE;
5183 }
5184 
5185 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
5186 {
5187 	unsigned int ring = 0, grp_idx;
5188 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5189 	struct hwrm_vnic_cfg_input req = {0};
5190 	u16 def_vlan = 0;
5191 
5192 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_CFG, -1, -1);
5193 
5194 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5195 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0];
5196 
5197 		req.default_rx_ring_id =
5198 			cpu_to_le16(rxr->rx_ring_struct.fw_ring_id);
5199 		req.default_cmpl_ring_id =
5200 			cpu_to_le16(bnxt_cp_ring_for_rx(bp, rxr));
5201 		req.enables =
5202 			cpu_to_le32(VNIC_CFG_REQ_ENABLES_DEFAULT_RX_RING_ID |
5203 				    VNIC_CFG_REQ_ENABLES_DEFAULT_CMPL_RING_ID);
5204 		goto vnic_mru;
5205 	}
5206 	req.enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP);
5207 	/* Only RSS support for now TBD: COS & LB */
5208 	if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) {
5209 		req.rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
5210 		req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
5211 					   VNIC_CFG_REQ_ENABLES_MRU);
5212 	} else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) {
5213 		req.rss_rule =
5214 			cpu_to_le16(bp->vnic_info[0].fw_rss_cos_lb_ctx[0]);
5215 		req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
5216 					   VNIC_CFG_REQ_ENABLES_MRU);
5217 		req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE);
5218 	} else {
5219 		req.rss_rule = cpu_to_le16(0xffff);
5220 	}
5221 
5222 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) &&
5223 	    (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) {
5224 		req.cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]);
5225 		req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE);
5226 	} else {
5227 		req.cos_rule = cpu_to_le16(0xffff);
5228 	}
5229 
5230 	if (vnic->flags & BNXT_VNIC_RSS_FLAG)
5231 		ring = 0;
5232 	else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
5233 		ring = vnic_id - 1;
5234 	else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp))
5235 		ring = bp->rx_nr_rings - 1;
5236 
5237 	grp_idx = bp->rx_ring[ring].bnapi->index;
5238 	req.dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
5239 	req.lb_rule = cpu_to_le16(0xffff);
5240 vnic_mru:
5241 	req.mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + VLAN_HLEN);
5242 
5243 	req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5244 #ifdef CONFIG_BNXT_SRIOV
5245 	if (BNXT_VF(bp))
5246 		def_vlan = bp->vf.vlan;
5247 #endif
5248 	if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan)
5249 		req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
5250 	if (!vnic_id && bnxt_ulp_registered(bp->edev, BNXT_ROCE_ULP))
5251 		req.flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp));
5252 
5253 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5254 }
5255 
5256 static void bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
5257 {
5258 	if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
5259 		struct hwrm_vnic_free_input req = {0};
5260 
5261 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_FREE, -1, -1);
5262 		req.vnic_id =
5263 			cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
5264 
5265 		hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5266 		bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
5267 	}
5268 }
5269 
5270 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
5271 {
5272 	u16 i;
5273 
5274 	for (i = 0; i < bp->nr_vnics; i++)
5275 		bnxt_hwrm_vnic_free_one(bp, i);
5276 }
5277 
5278 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
5279 				unsigned int start_rx_ring_idx,
5280 				unsigned int nr_rings)
5281 {
5282 	int rc = 0;
5283 	unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
5284 	struct hwrm_vnic_alloc_input req = {0};
5285 	struct hwrm_vnic_alloc_output *resp = bp->hwrm_cmd_resp_addr;
5286 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5287 
5288 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5289 		goto vnic_no_ring_grps;
5290 
5291 	/* map ring groups to this vnic */
5292 	for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
5293 		grp_idx = bp->rx_ring[i].bnapi->index;
5294 		if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
5295 			netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
5296 				   j, nr_rings);
5297 			break;
5298 		}
5299 		vnic->fw_grp_ids[j] = bp->grp_info[grp_idx].fw_grp_id;
5300 	}
5301 
5302 vnic_no_ring_grps:
5303 	for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++)
5304 		vnic->fw_rss_cos_lb_ctx[i] = INVALID_HW_RING_ID;
5305 	if (vnic_id == 0)
5306 		req.flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
5307 
5308 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_ALLOC, -1, -1);
5309 
5310 	mutex_lock(&bp->hwrm_cmd_lock);
5311 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5312 	if (!rc)
5313 		vnic->fw_vnic_id = le32_to_cpu(resp->vnic_id);
5314 	mutex_unlock(&bp->hwrm_cmd_lock);
5315 	return rc;
5316 }
5317 
5318 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp)
5319 {
5320 	struct hwrm_vnic_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
5321 	struct hwrm_vnic_qcaps_input req = {0};
5322 	int rc;
5323 
5324 	bp->hw_ring_stats_size = sizeof(struct ctx_hw_stats);
5325 	bp->flags &= ~(BNXT_FLAG_NEW_RSS_CAP | BNXT_FLAG_ROCE_MIRROR_CAP);
5326 	if (bp->hwrm_spec_code < 0x10600)
5327 		return 0;
5328 
5329 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_QCAPS, -1, -1);
5330 	mutex_lock(&bp->hwrm_cmd_lock);
5331 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5332 	if (!rc) {
5333 		u32 flags = le32_to_cpu(resp->flags);
5334 
5335 		if (!(bp->flags & BNXT_FLAG_CHIP_P5) &&
5336 		    (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP))
5337 			bp->flags |= BNXT_FLAG_NEW_RSS_CAP;
5338 		if (flags &
5339 		    VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP)
5340 			bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP;
5341 
5342 		/* Older P5 fw before EXT_HW_STATS support did not set
5343 		 * VLAN_STRIP_CAP properly.
5344 		 */
5345 		if ((flags & VNIC_QCAPS_RESP_FLAGS_VLAN_STRIP_CAP) ||
5346 		    ((bp->flags & BNXT_FLAG_CHIP_P5) &&
5347 		     !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)))
5348 			bp->fw_cap |= BNXT_FW_CAP_VLAN_RX_STRIP;
5349 		bp->max_tpa_v2 = le16_to_cpu(resp->max_aggs_supported);
5350 		if (bp->max_tpa_v2)
5351 			bp->hw_ring_stats_size =
5352 				sizeof(struct ctx_hw_stats_ext);
5353 	}
5354 	mutex_unlock(&bp->hwrm_cmd_lock);
5355 	return rc;
5356 }
5357 
5358 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
5359 {
5360 	u16 i;
5361 	u32 rc = 0;
5362 
5363 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5364 		return 0;
5365 
5366 	mutex_lock(&bp->hwrm_cmd_lock);
5367 	for (i = 0; i < bp->rx_nr_rings; i++) {
5368 		struct hwrm_ring_grp_alloc_input req = {0};
5369 		struct hwrm_ring_grp_alloc_output *resp =
5370 					bp->hwrm_cmd_resp_addr;
5371 		unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
5372 
5373 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_ALLOC, -1, -1);
5374 
5375 		req.cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
5376 		req.rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
5377 		req.ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
5378 		req.sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
5379 
5380 		rc = _hwrm_send_message(bp, &req, sizeof(req),
5381 					HWRM_CMD_TIMEOUT);
5382 		if (rc)
5383 			break;
5384 
5385 		bp->grp_info[grp_idx].fw_grp_id =
5386 			le32_to_cpu(resp->ring_group_id);
5387 	}
5388 	mutex_unlock(&bp->hwrm_cmd_lock);
5389 	return rc;
5390 }
5391 
5392 static void bnxt_hwrm_ring_grp_free(struct bnxt *bp)
5393 {
5394 	u16 i;
5395 	struct hwrm_ring_grp_free_input req = {0};
5396 
5397 	if (!bp->grp_info || (bp->flags & BNXT_FLAG_CHIP_P5))
5398 		return;
5399 
5400 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_FREE, -1, -1);
5401 
5402 	mutex_lock(&bp->hwrm_cmd_lock);
5403 	for (i = 0; i < bp->cp_nr_rings; i++) {
5404 		if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
5405 			continue;
5406 		req.ring_group_id =
5407 			cpu_to_le32(bp->grp_info[i].fw_grp_id);
5408 
5409 		_hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5410 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
5411 	}
5412 	mutex_unlock(&bp->hwrm_cmd_lock);
5413 }
5414 
5415 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
5416 				    struct bnxt_ring_struct *ring,
5417 				    u32 ring_type, u32 map_index)
5418 {
5419 	int rc = 0, err = 0;
5420 	struct hwrm_ring_alloc_input req = {0};
5421 	struct hwrm_ring_alloc_output *resp = bp->hwrm_cmd_resp_addr;
5422 	struct bnxt_ring_mem_info *rmem = &ring->ring_mem;
5423 	struct bnxt_ring_grp_info *grp_info;
5424 	u16 ring_id;
5425 
5426 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_ALLOC, -1, -1);
5427 
5428 	req.enables = 0;
5429 	if (rmem->nr_pages > 1) {
5430 		req.page_tbl_addr = cpu_to_le64(rmem->pg_tbl_map);
5431 		/* Page size is in log2 units */
5432 		req.page_size = BNXT_PAGE_SHIFT;
5433 		req.page_tbl_depth = 1;
5434 	} else {
5435 		req.page_tbl_addr =  cpu_to_le64(rmem->dma_arr[0]);
5436 	}
5437 	req.fbo = 0;
5438 	/* Association of ring index with doorbell index and MSIX number */
5439 	req.logical_id = cpu_to_le16(map_index);
5440 
5441 	switch (ring_type) {
5442 	case HWRM_RING_ALLOC_TX: {
5443 		struct bnxt_tx_ring_info *txr;
5444 
5445 		txr = container_of(ring, struct bnxt_tx_ring_info,
5446 				   tx_ring_struct);
5447 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
5448 		/* Association of transmit ring with completion ring */
5449 		grp_info = &bp->grp_info[ring->grp_idx];
5450 		req.cmpl_ring_id = cpu_to_le16(bnxt_cp_ring_for_tx(bp, txr));
5451 		req.length = cpu_to_le32(bp->tx_ring_mask + 1);
5452 		req.stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5453 		req.queue_id = cpu_to_le16(ring->queue_id);
5454 		break;
5455 	}
5456 	case HWRM_RING_ALLOC_RX:
5457 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
5458 		req.length = cpu_to_le32(bp->rx_ring_mask + 1);
5459 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5460 			u16 flags = 0;
5461 
5462 			/* Association of rx ring with stats context */
5463 			grp_info = &bp->grp_info[ring->grp_idx];
5464 			req.rx_buf_size = cpu_to_le16(bp->rx_buf_use_size);
5465 			req.stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5466 			req.enables |= cpu_to_le32(
5467 				RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
5468 			if (NET_IP_ALIGN == 2)
5469 				flags = RING_ALLOC_REQ_FLAGS_RX_SOP_PAD;
5470 			req.flags = cpu_to_le16(flags);
5471 		}
5472 		break;
5473 	case HWRM_RING_ALLOC_AGG:
5474 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5475 			req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX_AGG;
5476 			/* Association of agg ring with rx ring */
5477 			grp_info = &bp->grp_info[ring->grp_idx];
5478 			req.rx_ring_id = cpu_to_le16(grp_info->rx_fw_ring_id);
5479 			req.rx_buf_size = cpu_to_le16(BNXT_RX_PAGE_SIZE);
5480 			req.stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5481 			req.enables |= cpu_to_le32(
5482 				RING_ALLOC_REQ_ENABLES_RX_RING_ID_VALID |
5483 				RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
5484 		} else {
5485 			req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
5486 		}
5487 		req.length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
5488 		break;
5489 	case HWRM_RING_ALLOC_CMPL:
5490 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL;
5491 		req.length = cpu_to_le32(bp->cp_ring_mask + 1);
5492 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5493 			/* Association of cp ring with nq */
5494 			grp_info = &bp->grp_info[map_index];
5495 			req.nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id);
5496 			req.cq_handle = cpu_to_le64(ring->handle);
5497 			req.enables |= cpu_to_le32(
5498 				RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID);
5499 		} else if (bp->flags & BNXT_FLAG_USING_MSIX) {
5500 			req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
5501 		}
5502 		break;
5503 	case HWRM_RING_ALLOC_NQ:
5504 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_NQ;
5505 		req.length = cpu_to_le32(bp->cp_ring_mask + 1);
5506 		if (bp->flags & BNXT_FLAG_USING_MSIX)
5507 			req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
5508 		break;
5509 	default:
5510 		netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
5511 			   ring_type);
5512 		return -1;
5513 	}
5514 
5515 	mutex_lock(&bp->hwrm_cmd_lock);
5516 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5517 	err = le16_to_cpu(resp->error_code);
5518 	ring_id = le16_to_cpu(resp->ring_id);
5519 	mutex_unlock(&bp->hwrm_cmd_lock);
5520 
5521 	if (rc || err) {
5522 		netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n",
5523 			   ring_type, rc, err);
5524 		return -EIO;
5525 	}
5526 	ring->fw_ring_id = ring_id;
5527 	return rc;
5528 }
5529 
5530 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx)
5531 {
5532 	int rc;
5533 
5534 	if (BNXT_PF(bp)) {
5535 		struct hwrm_func_cfg_input req = {0};
5536 
5537 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
5538 		req.fid = cpu_to_le16(0xffff);
5539 		req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
5540 		req.async_event_cr = cpu_to_le16(idx);
5541 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5542 	} else {
5543 		struct hwrm_func_vf_cfg_input req = {0};
5544 
5545 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_CFG, -1, -1);
5546 		req.enables =
5547 			cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
5548 		req.async_event_cr = cpu_to_le16(idx);
5549 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5550 	}
5551 	return rc;
5552 }
5553 
5554 static void bnxt_set_db(struct bnxt *bp, struct bnxt_db_info *db, u32 ring_type,
5555 			u32 map_idx, u32 xid)
5556 {
5557 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5558 		if (BNXT_PF(bp))
5559 			db->doorbell = bp->bar1 + DB_PF_OFFSET_P5;
5560 		else
5561 			db->doorbell = bp->bar1 + DB_VF_OFFSET_P5;
5562 		switch (ring_type) {
5563 		case HWRM_RING_ALLOC_TX:
5564 			db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SQ;
5565 			break;
5566 		case HWRM_RING_ALLOC_RX:
5567 		case HWRM_RING_ALLOC_AGG:
5568 			db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SRQ;
5569 			break;
5570 		case HWRM_RING_ALLOC_CMPL:
5571 			db->db_key64 = DBR_PATH_L2;
5572 			break;
5573 		case HWRM_RING_ALLOC_NQ:
5574 			db->db_key64 = DBR_PATH_L2;
5575 			break;
5576 		}
5577 		db->db_key64 |= (u64)xid << DBR_XID_SFT;
5578 	} else {
5579 		db->doorbell = bp->bar1 + map_idx * 0x80;
5580 		switch (ring_type) {
5581 		case HWRM_RING_ALLOC_TX:
5582 			db->db_key32 = DB_KEY_TX;
5583 			break;
5584 		case HWRM_RING_ALLOC_RX:
5585 		case HWRM_RING_ALLOC_AGG:
5586 			db->db_key32 = DB_KEY_RX;
5587 			break;
5588 		case HWRM_RING_ALLOC_CMPL:
5589 			db->db_key32 = DB_KEY_CP;
5590 			break;
5591 		}
5592 	}
5593 }
5594 
5595 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
5596 {
5597 	bool agg_rings = !!(bp->flags & BNXT_FLAG_AGG_RINGS);
5598 	int i, rc = 0;
5599 	u32 type;
5600 
5601 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5602 		type = HWRM_RING_ALLOC_NQ;
5603 	else
5604 		type = HWRM_RING_ALLOC_CMPL;
5605 	for (i = 0; i < bp->cp_nr_rings; i++) {
5606 		struct bnxt_napi *bnapi = bp->bnapi[i];
5607 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5608 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
5609 		u32 map_idx = ring->map_idx;
5610 		unsigned int vector;
5611 
5612 		vector = bp->irq_tbl[map_idx].vector;
5613 		disable_irq_nosync(vector);
5614 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5615 		if (rc) {
5616 			enable_irq(vector);
5617 			goto err_out;
5618 		}
5619 		bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id);
5620 		bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
5621 		enable_irq(vector);
5622 		bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
5623 
5624 		if (!i) {
5625 			rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id);
5626 			if (rc)
5627 				netdev_warn(bp->dev, "Failed to set async event completion ring.\n");
5628 		}
5629 	}
5630 
5631 	type = HWRM_RING_ALLOC_TX;
5632 	for (i = 0; i < bp->tx_nr_rings; i++) {
5633 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
5634 		struct bnxt_ring_struct *ring;
5635 		u32 map_idx;
5636 
5637 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5638 			struct bnxt_napi *bnapi = txr->bnapi;
5639 			struct bnxt_cp_ring_info *cpr, *cpr2;
5640 			u32 type2 = HWRM_RING_ALLOC_CMPL;
5641 
5642 			cpr = &bnapi->cp_ring;
5643 			cpr2 = cpr->cp_ring_arr[BNXT_TX_HDL];
5644 			ring = &cpr2->cp_ring_struct;
5645 			ring->handle = BNXT_TX_HDL;
5646 			map_idx = bnapi->index;
5647 			rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
5648 			if (rc)
5649 				goto err_out;
5650 			bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
5651 				    ring->fw_ring_id);
5652 			bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
5653 		}
5654 		ring = &txr->tx_ring_struct;
5655 		map_idx = i;
5656 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5657 		if (rc)
5658 			goto err_out;
5659 		bnxt_set_db(bp, &txr->tx_db, type, map_idx, ring->fw_ring_id);
5660 	}
5661 
5662 	type = HWRM_RING_ALLOC_RX;
5663 	for (i = 0; i < bp->rx_nr_rings; i++) {
5664 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5665 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
5666 		struct bnxt_napi *bnapi = rxr->bnapi;
5667 		u32 map_idx = bnapi->index;
5668 
5669 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5670 		if (rc)
5671 			goto err_out;
5672 		bnxt_set_db(bp, &rxr->rx_db, type, map_idx, ring->fw_ring_id);
5673 		/* If we have agg rings, post agg buffers first. */
5674 		if (!agg_rings)
5675 			bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
5676 		bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
5677 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5678 			struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5679 			u32 type2 = HWRM_RING_ALLOC_CMPL;
5680 			struct bnxt_cp_ring_info *cpr2;
5681 
5682 			cpr2 = cpr->cp_ring_arr[BNXT_RX_HDL];
5683 			ring = &cpr2->cp_ring_struct;
5684 			ring->handle = BNXT_RX_HDL;
5685 			rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
5686 			if (rc)
5687 				goto err_out;
5688 			bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
5689 				    ring->fw_ring_id);
5690 			bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
5691 		}
5692 	}
5693 
5694 	if (agg_rings) {
5695 		type = HWRM_RING_ALLOC_AGG;
5696 		for (i = 0; i < bp->rx_nr_rings; i++) {
5697 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5698 			struct bnxt_ring_struct *ring =
5699 						&rxr->rx_agg_ring_struct;
5700 			u32 grp_idx = ring->grp_idx;
5701 			u32 map_idx = grp_idx + bp->rx_nr_rings;
5702 
5703 			rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5704 			if (rc)
5705 				goto err_out;
5706 
5707 			bnxt_set_db(bp, &rxr->rx_agg_db, type, map_idx,
5708 				    ring->fw_ring_id);
5709 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
5710 			bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
5711 			bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
5712 		}
5713 	}
5714 err_out:
5715 	return rc;
5716 }
5717 
5718 static int hwrm_ring_free_send_msg(struct bnxt *bp,
5719 				   struct bnxt_ring_struct *ring,
5720 				   u32 ring_type, int cmpl_ring_id)
5721 {
5722 	int rc;
5723 	struct hwrm_ring_free_input req = {0};
5724 	struct hwrm_ring_free_output *resp = bp->hwrm_cmd_resp_addr;
5725 	u16 error_code;
5726 
5727 	if (BNXT_NO_FW_ACCESS(bp))
5728 		return 0;
5729 
5730 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_FREE, cmpl_ring_id, -1);
5731 	req.ring_type = ring_type;
5732 	req.ring_id = cpu_to_le16(ring->fw_ring_id);
5733 
5734 	mutex_lock(&bp->hwrm_cmd_lock);
5735 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5736 	error_code = le16_to_cpu(resp->error_code);
5737 	mutex_unlock(&bp->hwrm_cmd_lock);
5738 
5739 	if (rc || error_code) {
5740 		netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n",
5741 			   ring_type, rc, error_code);
5742 		return -EIO;
5743 	}
5744 	return 0;
5745 }
5746 
5747 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
5748 {
5749 	u32 type;
5750 	int i;
5751 
5752 	if (!bp->bnapi)
5753 		return;
5754 
5755 	for (i = 0; i < bp->tx_nr_rings; i++) {
5756 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
5757 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
5758 
5759 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5760 			u32 cmpl_ring_id = bnxt_cp_ring_for_tx(bp, txr);
5761 
5762 			hwrm_ring_free_send_msg(bp, ring,
5763 						RING_FREE_REQ_RING_TYPE_TX,
5764 						close_path ? cmpl_ring_id :
5765 						INVALID_HW_RING_ID);
5766 			ring->fw_ring_id = INVALID_HW_RING_ID;
5767 		}
5768 	}
5769 
5770 	for (i = 0; i < bp->rx_nr_rings; i++) {
5771 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5772 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
5773 		u32 grp_idx = rxr->bnapi->index;
5774 
5775 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5776 			u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
5777 
5778 			hwrm_ring_free_send_msg(bp, ring,
5779 						RING_FREE_REQ_RING_TYPE_RX,
5780 						close_path ? cmpl_ring_id :
5781 						INVALID_HW_RING_ID);
5782 			ring->fw_ring_id = INVALID_HW_RING_ID;
5783 			bp->grp_info[grp_idx].rx_fw_ring_id =
5784 				INVALID_HW_RING_ID;
5785 		}
5786 	}
5787 
5788 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5789 		type = RING_FREE_REQ_RING_TYPE_RX_AGG;
5790 	else
5791 		type = RING_FREE_REQ_RING_TYPE_RX;
5792 	for (i = 0; i < bp->rx_nr_rings; i++) {
5793 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5794 		struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
5795 		u32 grp_idx = rxr->bnapi->index;
5796 
5797 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5798 			u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
5799 
5800 			hwrm_ring_free_send_msg(bp, ring, type,
5801 						close_path ? cmpl_ring_id :
5802 						INVALID_HW_RING_ID);
5803 			ring->fw_ring_id = INVALID_HW_RING_ID;
5804 			bp->grp_info[grp_idx].agg_fw_ring_id =
5805 				INVALID_HW_RING_ID;
5806 		}
5807 	}
5808 
5809 	/* The completion rings are about to be freed.  After that the
5810 	 * IRQ doorbell will not work anymore.  So we need to disable
5811 	 * IRQ here.
5812 	 */
5813 	bnxt_disable_int_sync(bp);
5814 
5815 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5816 		type = RING_FREE_REQ_RING_TYPE_NQ;
5817 	else
5818 		type = RING_FREE_REQ_RING_TYPE_L2_CMPL;
5819 	for (i = 0; i < bp->cp_nr_rings; i++) {
5820 		struct bnxt_napi *bnapi = bp->bnapi[i];
5821 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5822 		struct bnxt_ring_struct *ring;
5823 		int j;
5824 
5825 		for (j = 0; j < 2; j++) {
5826 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
5827 
5828 			if (cpr2) {
5829 				ring = &cpr2->cp_ring_struct;
5830 				if (ring->fw_ring_id == INVALID_HW_RING_ID)
5831 					continue;
5832 				hwrm_ring_free_send_msg(bp, ring,
5833 					RING_FREE_REQ_RING_TYPE_L2_CMPL,
5834 					INVALID_HW_RING_ID);
5835 				ring->fw_ring_id = INVALID_HW_RING_ID;
5836 			}
5837 		}
5838 		ring = &cpr->cp_ring_struct;
5839 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5840 			hwrm_ring_free_send_msg(bp, ring, type,
5841 						INVALID_HW_RING_ID);
5842 			ring->fw_ring_id = INVALID_HW_RING_ID;
5843 			bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
5844 		}
5845 	}
5846 }
5847 
5848 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
5849 			   bool shared);
5850 
5851 static int bnxt_hwrm_get_rings(struct bnxt *bp)
5852 {
5853 	struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
5854 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
5855 	struct hwrm_func_qcfg_input req = {0};
5856 	int rc;
5857 
5858 	if (bp->hwrm_spec_code < 0x10601)
5859 		return 0;
5860 
5861 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
5862 	req.fid = cpu_to_le16(0xffff);
5863 	mutex_lock(&bp->hwrm_cmd_lock);
5864 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5865 	if (rc) {
5866 		mutex_unlock(&bp->hwrm_cmd_lock);
5867 		return rc;
5868 	}
5869 
5870 	hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings);
5871 	if (BNXT_NEW_RM(bp)) {
5872 		u16 cp, stats;
5873 
5874 		hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings);
5875 		hw_resc->resv_hw_ring_grps =
5876 			le32_to_cpu(resp->alloc_hw_ring_grps);
5877 		hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics);
5878 		cp = le16_to_cpu(resp->alloc_cmpl_rings);
5879 		stats = le16_to_cpu(resp->alloc_stat_ctx);
5880 		hw_resc->resv_irqs = cp;
5881 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5882 			int rx = hw_resc->resv_rx_rings;
5883 			int tx = hw_resc->resv_tx_rings;
5884 
5885 			if (bp->flags & BNXT_FLAG_AGG_RINGS)
5886 				rx >>= 1;
5887 			if (cp < (rx + tx)) {
5888 				bnxt_trim_rings(bp, &rx, &tx, cp, false);
5889 				if (bp->flags & BNXT_FLAG_AGG_RINGS)
5890 					rx <<= 1;
5891 				hw_resc->resv_rx_rings = rx;
5892 				hw_resc->resv_tx_rings = tx;
5893 			}
5894 			hw_resc->resv_irqs = le16_to_cpu(resp->alloc_msix);
5895 			hw_resc->resv_hw_ring_grps = rx;
5896 		}
5897 		hw_resc->resv_cp_rings = cp;
5898 		hw_resc->resv_stat_ctxs = stats;
5899 	}
5900 	mutex_unlock(&bp->hwrm_cmd_lock);
5901 	return 0;
5902 }
5903 
5904 /* Caller must hold bp->hwrm_cmd_lock */
5905 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings)
5906 {
5907 	struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
5908 	struct hwrm_func_qcfg_input req = {0};
5909 	int rc;
5910 
5911 	if (bp->hwrm_spec_code < 0x10601)
5912 		return 0;
5913 
5914 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
5915 	req.fid = cpu_to_le16(fid);
5916 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5917 	if (!rc)
5918 		*tx_rings = le16_to_cpu(resp->alloc_tx_rings);
5919 
5920 	return rc;
5921 }
5922 
5923 static bool bnxt_rfs_supported(struct bnxt *bp);
5924 
5925 static void
5926 __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, struct hwrm_func_cfg_input *req,
5927 			     int tx_rings, int rx_rings, int ring_grps,
5928 			     int cp_rings, int stats, int vnics)
5929 {
5930 	u32 enables = 0;
5931 
5932 	bnxt_hwrm_cmd_hdr_init(bp, req, HWRM_FUNC_CFG, -1, -1);
5933 	req->fid = cpu_to_le16(0xffff);
5934 	enables |= tx_rings ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
5935 	req->num_tx_rings = cpu_to_le16(tx_rings);
5936 	if (BNXT_NEW_RM(bp)) {
5937 		enables |= rx_rings ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0;
5938 		enables |= stats ? FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
5939 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5940 			enables |= cp_rings ? FUNC_CFG_REQ_ENABLES_NUM_MSIX : 0;
5941 			enables |= tx_rings + ring_grps ?
5942 				   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
5943 			enables |= rx_rings ?
5944 				FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
5945 		} else {
5946 			enables |= cp_rings ?
5947 				   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
5948 			enables |= ring_grps ?
5949 				   FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS |
5950 				   FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
5951 		}
5952 		enables |= vnics ? FUNC_CFG_REQ_ENABLES_NUM_VNICS : 0;
5953 
5954 		req->num_rx_rings = cpu_to_le16(rx_rings);
5955 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5956 			req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps);
5957 			req->num_msix = cpu_to_le16(cp_rings);
5958 			req->num_rsscos_ctxs =
5959 				cpu_to_le16(DIV_ROUND_UP(ring_grps, 64));
5960 		} else {
5961 			req->num_cmpl_rings = cpu_to_le16(cp_rings);
5962 			req->num_hw_ring_grps = cpu_to_le16(ring_grps);
5963 			req->num_rsscos_ctxs = cpu_to_le16(1);
5964 			if (!(bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
5965 			    bnxt_rfs_supported(bp))
5966 				req->num_rsscos_ctxs =
5967 					cpu_to_le16(ring_grps + 1);
5968 		}
5969 		req->num_stat_ctxs = cpu_to_le16(stats);
5970 		req->num_vnics = cpu_to_le16(vnics);
5971 	}
5972 	req->enables = cpu_to_le32(enables);
5973 }
5974 
5975 static void
5976 __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp,
5977 			     struct hwrm_func_vf_cfg_input *req, int tx_rings,
5978 			     int rx_rings, int ring_grps, int cp_rings,
5979 			     int stats, int vnics)
5980 {
5981 	u32 enables = 0;
5982 
5983 	bnxt_hwrm_cmd_hdr_init(bp, req, HWRM_FUNC_VF_CFG, -1, -1);
5984 	enables |= tx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
5985 	enables |= rx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS |
5986 			      FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
5987 	enables |= stats ? FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
5988 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5989 		enables |= tx_rings + ring_grps ?
5990 			   FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
5991 	} else {
5992 		enables |= cp_rings ?
5993 			   FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
5994 		enables |= ring_grps ?
5995 			   FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0;
5996 	}
5997 	enables |= vnics ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0;
5998 	enables |= FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS;
5999 
6000 	req->num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX);
6001 	req->num_tx_rings = cpu_to_le16(tx_rings);
6002 	req->num_rx_rings = cpu_to_le16(rx_rings);
6003 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
6004 		req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps);
6005 		req->num_rsscos_ctxs = cpu_to_le16(DIV_ROUND_UP(ring_grps, 64));
6006 	} else {
6007 		req->num_cmpl_rings = cpu_to_le16(cp_rings);
6008 		req->num_hw_ring_grps = cpu_to_le16(ring_grps);
6009 		req->num_rsscos_ctxs = cpu_to_le16(BNXT_VF_MAX_RSS_CTX);
6010 	}
6011 	req->num_stat_ctxs = cpu_to_le16(stats);
6012 	req->num_vnics = cpu_to_le16(vnics);
6013 
6014 	req->enables = cpu_to_le32(enables);
6015 }
6016 
6017 static int
6018 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6019 			   int ring_grps, int cp_rings, int stats, int vnics)
6020 {
6021 	struct hwrm_func_cfg_input req = {0};
6022 	int rc;
6023 
6024 	__bnxt_hwrm_reserve_pf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
6025 				     cp_rings, stats, vnics);
6026 	if (!req.enables)
6027 		return 0;
6028 
6029 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6030 	if (rc)
6031 		return rc;
6032 
6033 	if (bp->hwrm_spec_code < 0x10601)
6034 		bp->hw_resc.resv_tx_rings = tx_rings;
6035 
6036 	return bnxt_hwrm_get_rings(bp);
6037 }
6038 
6039 static int
6040 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6041 			   int ring_grps, int cp_rings, int stats, int vnics)
6042 {
6043 	struct hwrm_func_vf_cfg_input req = {0};
6044 	int rc;
6045 
6046 	if (!BNXT_NEW_RM(bp)) {
6047 		bp->hw_resc.resv_tx_rings = tx_rings;
6048 		return 0;
6049 	}
6050 
6051 	__bnxt_hwrm_reserve_vf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
6052 				     cp_rings, stats, vnics);
6053 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6054 	if (rc)
6055 		return rc;
6056 
6057 	return bnxt_hwrm_get_rings(bp);
6058 }
6059 
6060 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, int tx, int rx, int grp,
6061 				   int cp, int stat, int vnic)
6062 {
6063 	if (BNXT_PF(bp))
6064 		return bnxt_hwrm_reserve_pf_rings(bp, tx, rx, grp, cp, stat,
6065 						  vnic);
6066 	else
6067 		return bnxt_hwrm_reserve_vf_rings(bp, tx, rx, grp, cp, stat,
6068 						  vnic);
6069 }
6070 
6071 int bnxt_nq_rings_in_use(struct bnxt *bp)
6072 {
6073 	int cp = bp->cp_nr_rings;
6074 	int ulp_msix, ulp_base;
6075 
6076 	ulp_msix = bnxt_get_ulp_msix_num(bp);
6077 	if (ulp_msix) {
6078 		ulp_base = bnxt_get_ulp_msix_base(bp);
6079 		cp += ulp_msix;
6080 		if ((ulp_base + ulp_msix) > cp)
6081 			cp = ulp_base + ulp_msix;
6082 	}
6083 	return cp;
6084 }
6085 
6086 static int bnxt_cp_rings_in_use(struct bnxt *bp)
6087 {
6088 	int cp;
6089 
6090 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
6091 		return bnxt_nq_rings_in_use(bp);
6092 
6093 	cp = bp->tx_nr_rings + bp->rx_nr_rings;
6094 	return cp;
6095 }
6096 
6097 static int bnxt_get_func_stat_ctxs(struct bnxt *bp)
6098 {
6099 	int ulp_stat = bnxt_get_ulp_stat_ctxs(bp);
6100 	int cp = bp->cp_nr_rings;
6101 
6102 	if (!ulp_stat)
6103 		return cp;
6104 
6105 	if (bnxt_nq_rings_in_use(bp) > cp + bnxt_get_ulp_msix_num(bp))
6106 		return bnxt_get_ulp_msix_base(bp) + ulp_stat;
6107 
6108 	return cp + ulp_stat;
6109 }
6110 
6111 /* Check if a default RSS map needs to be setup.  This function is only
6112  * used on older firmware that does not require reserving RX rings.
6113  */
6114 static void bnxt_check_rss_tbl_no_rmgr(struct bnxt *bp)
6115 {
6116 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6117 
6118 	/* The RSS map is valid for RX rings set to resv_rx_rings */
6119 	if (hw_resc->resv_rx_rings != bp->rx_nr_rings) {
6120 		hw_resc->resv_rx_rings = bp->rx_nr_rings;
6121 		if (!netif_is_rxfh_configured(bp->dev))
6122 			bnxt_set_dflt_rss_indir_tbl(bp);
6123 	}
6124 }
6125 
6126 static bool bnxt_need_reserve_rings(struct bnxt *bp)
6127 {
6128 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6129 	int cp = bnxt_cp_rings_in_use(bp);
6130 	int nq = bnxt_nq_rings_in_use(bp);
6131 	int rx = bp->rx_nr_rings, stat;
6132 	int vnic = 1, grp = rx;
6133 
6134 	if (hw_resc->resv_tx_rings != bp->tx_nr_rings &&
6135 	    bp->hwrm_spec_code >= 0x10601)
6136 		return true;
6137 
6138 	/* Old firmware does not need RX ring reservations but we still
6139 	 * need to setup a default RSS map when needed.  With new firmware
6140 	 * we go through RX ring reservations first and then set up the
6141 	 * RSS map for the successfully reserved RX rings when needed.
6142 	 */
6143 	if (!BNXT_NEW_RM(bp)) {
6144 		bnxt_check_rss_tbl_no_rmgr(bp);
6145 		return false;
6146 	}
6147 	if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5))
6148 		vnic = rx + 1;
6149 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
6150 		rx <<= 1;
6151 	stat = bnxt_get_func_stat_ctxs(bp);
6152 	if (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp ||
6153 	    hw_resc->resv_vnics != vnic || hw_resc->resv_stat_ctxs != stat ||
6154 	    (hw_resc->resv_hw_ring_grps != grp &&
6155 	     !(bp->flags & BNXT_FLAG_CHIP_P5)))
6156 		return true;
6157 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && BNXT_PF(bp) &&
6158 	    hw_resc->resv_irqs != nq)
6159 		return true;
6160 	return false;
6161 }
6162 
6163 static int __bnxt_reserve_rings(struct bnxt *bp)
6164 {
6165 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6166 	int cp = bnxt_nq_rings_in_use(bp);
6167 	int tx = bp->tx_nr_rings;
6168 	int rx = bp->rx_nr_rings;
6169 	int grp, rx_rings, rc;
6170 	int vnic = 1, stat;
6171 	bool sh = false;
6172 
6173 	if (!bnxt_need_reserve_rings(bp))
6174 		return 0;
6175 
6176 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
6177 		sh = true;
6178 	if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5))
6179 		vnic = rx + 1;
6180 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
6181 		rx <<= 1;
6182 	grp = bp->rx_nr_rings;
6183 	stat = bnxt_get_func_stat_ctxs(bp);
6184 
6185 	rc = bnxt_hwrm_reserve_rings(bp, tx, rx, grp, cp, stat, vnic);
6186 	if (rc)
6187 		return rc;
6188 
6189 	tx = hw_resc->resv_tx_rings;
6190 	if (BNXT_NEW_RM(bp)) {
6191 		rx = hw_resc->resv_rx_rings;
6192 		cp = hw_resc->resv_irqs;
6193 		grp = hw_resc->resv_hw_ring_grps;
6194 		vnic = hw_resc->resv_vnics;
6195 		stat = hw_resc->resv_stat_ctxs;
6196 	}
6197 
6198 	rx_rings = rx;
6199 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
6200 		if (rx >= 2) {
6201 			rx_rings = rx >> 1;
6202 		} else {
6203 			if (netif_running(bp->dev))
6204 				return -ENOMEM;
6205 
6206 			bp->flags &= ~BNXT_FLAG_AGG_RINGS;
6207 			bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
6208 			bp->dev->hw_features &= ~NETIF_F_LRO;
6209 			bp->dev->features &= ~NETIF_F_LRO;
6210 			bnxt_set_ring_params(bp);
6211 		}
6212 	}
6213 	rx_rings = min_t(int, rx_rings, grp);
6214 	cp = min_t(int, cp, bp->cp_nr_rings);
6215 	if (stat > bnxt_get_ulp_stat_ctxs(bp))
6216 		stat -= bnxt_get_ulp_stat_ctxs(bp);
6217 	cp = min_t(int, cp, stat);
6218 	rc = bnxt_trim_rings(bp, &rx_rings, &tx, cp, sh);
6219 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
6220 		rx = rx_rings << 1;
6221 	cp = sh ? max_t(int, tx, rx_rings) : tx + rx_rings;
6222 	bp->tx_nr_rings = tx;
6223 
6224 	/* If we cannot reserve all the RX rings, reset the RSS map only
6225 	 * if absolutely necessary
6226 	 */
6227 	if (rx_rings != bp->rx_nr_rings) {
6228 		netdev_warn(bp->dev, "Able to reserve only %d out of %d requested RX rings\n",
6229 			    rx_rings, bp->rx_nr_rings);
6230 		if ((bp->dev->priv_flags & IFF_RXFH_CONFIGURED) &&
6231 		    (bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings) !=
6232 		     bnxt_get_nr_rss_ctxs(bp, rx_rings) ||
6233 		     bnxt_get_max_rss_ring(bp) >= rx_rings)) {
6234 			netdev_warn(bp->dev, "RSS table entries reverting to default\n");
6235 			bp->dev->priv_flags &= ~IFF_RXFH_CONFIGURED;
6236 		}
6237 	}
6238 	bp->rx_nr_rings = rx_rings;
6239 	bp->cp_nr_rings = cp;
6240 
6241 	if (!tx || !rx || !cp || !grp || !vnic || !stat)
6242 		return -ENOMEM;
6243 
6244 	if (!netif_is_rxfh_configured(bp->dev))
6245 		bnxt_set_dflt_rss_indir_tbl(bp);
6246 
6247 	return rc;
6248 }
6249 
6250 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6251 				    int ring_grps, int cp_rings, int stats,
6252 				    int vnics)
6253 {
6254 	struct hwrm_func_vf_cfg_input req = {0};
6255 	u32 flags;
6256 
6257 	if (!BNXT_NEW_RM(bp))
6258 		return 0;
6259 
6260 	__bnxt_hwrm_reserve_vf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
6261 				     cp_rings, stats, vnics);
6262 	flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST |
6263 		FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST |
6264 		FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
6265 		FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
6266 		FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST |
6267 		FUNC_VF_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST;
6268 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
6269 		flags |= FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
6270 
6271 	req.flags = cpu_to_le32(flags);
6272 	return hwrm_send_message_silent(bp, &req, sizeof(req),
6273 					HWRM_CMD_TIMEOUT);
6274 }
6275 
6276 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6277 				    int ring_grps, int cp_rings, int stats,
6278 				    int vnics)
6279 {
6280 	struct hwrm_func_cfg_input req = {0};
6281 	u32 flags;
6282 
6283 	__bnxt_hwrm_reserve_pf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
6284 				     cp_rings, stats, vnics);
6285 	flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST;
6286 	if (BNXT_NEW_RM(bp)) {
6287 		flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST |
6288 			 FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
6289 			 FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
6290 			 FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST;
6291 		if (bp->flags & BNXT_FLAG_CHIP_P5)
6292 			flags |= FUNC_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST |
6293 				 FUNC_CFG_REQ_FLAGS_NQ_ASSETS_TEST;
6294 		else
6295 			flags |= FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
6296 	}
6297 
6298 	req.flags = cpu_to_le32(flags);
6299 	return hwrm_send_message_silent(bp, &req, sizeof(req),
6300 					HWRM_CMD_TIMEOUT);
6301 }
6302 
6303 static int bnxt_hwrm_check_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6304 				 int ring_grps, int cp_rings, int stats,
6305 				 int vnics)
6306 {
6307 	if (bp->hwrm_spec_code < 0x10801)
6308 		return 0;
6309 
6310 	if (BNXT_PF(bp))
6311 		return bnxt_hwrm_check_pf_rings(bp, tx_rings, rx_rings,
6312 						ring_grps, cp_rings, stats,
6313 						vnics);
6314 
6315 	return bnxt_hwrm_check_vf_rings(bp, tx_rings, rx_rings, ring_grps,
6316 					cp_rings, stats, vnics);
6317 }
6318 
6319 static void bnxt_hwrm_coal_params_qcaps(struct bnxt *bp)
6320 {
6321 	struct hwrm_ring_aggint_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
6322 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6323 	struct hwrm_ring_aggint_qcaps_input req = {0};
6324 	int rc;
6325 
6326 	coal_cap->cmpl_params = BNXT_LEGACY_COAL_CMPL_PARAMS;
6327 	coal_cap->num_cmpl_dma_aggr_max = 63;
6328 	coal_cap->num_cmpl_dma_aggr_during_int_max = 63;
6329 	coal_cap->cmpl_aggr_dma_tmr_max = 65535;
6330 	coal_cap->cmpl_aggr_dma_tmr_during_int_max = 65535;
6331 	coal_cap->int_lat_tmr_min_max = 65535;
6332 	coal_cap->int_lat_tmr_max_max = 65535;
6333 	coal_cap->num_cmpl_aggr_int_max = 65535;
6334 	coal_cap->timer_units = 80;
6335 
6336 	if (bp->hwrm_spec_code < 0x10902)
6337 		return;
6338 
6339 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_AGGINT_QCAPS, -1, -1);
6340 	mutex_lock(&bp->hwrm_cmd_lock);
6341 	rc = _hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6342 	if (!rc) {
6343 		coal_cap->cmpl_params = le32_to_cpu(resp->cmpl_params);
6344 		coal_cap->nq_params = le32_to_cpu(resp->nq_params);
6345 		coal_cap->num_cmpl_dma_aggr_max =
6346 			le16_to_cpu(resp->num_cmpl_dma_aggr_max);
6347 		coal_cap->num_cmpl_dma_aggr_during_int_max =
6348 			le16_to_cpu(resp->num_cmpl_dma_aggr_during_int_max);
6349 		coal_cap->cmpl_aggr_dma_tmr_max =
6350 			le16_to_cpu(resp->cmpl_aggr_dma_tmr_max);
6351 		coal_cap->cmpl_aggr_dma_tmr_during_int_max =
6352 			le16_to_cpu(resp->cmpl_aggr_dma_tmr_during_int_max);
6353 		coal_cap->int_lat_tmr_min_max =
6354 			le16_to_cpu(resp->int_lat_tmr_min_max);
6355 		coal_cap->int_lat_tmr_max_max =
6356 			le16_to_cpu(resp->int_lat_tmr_max_max);
6357 		coal_cap->num_cmpl_aggr_int_max =
6358 			le16_to_cpu(resp->num_cmpl_aggr_int_max);
6359 		coal_cap->timer_units = le16_to_cpu(resp->timer_units);
6360 	}
6361 	mutex_unlock(&bp->hwrm_cmd_lock);
6362 }
6363 
6364 static u16 bnxt_usec_to_coal_tmr(struct bnxt *bp, u16 usec)
6365 {
6366 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6367 
6368 	return usec * 1000 / coal_cap->timer_units;
6369 }
6370 
6371 static void bnxt_hwrm_set_coal_params(struct bnxt *bp,
6372 	struct bnxt_coal *hw_coal,
6373 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
6374 {
6375 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6376 	u32 cmpl_params = coal_cap->cmpl_params;
6377 	u16 val, tmr, max, flags = 0;
6378 
6379 	max = hw_coal->bufs_per_record * 128;
6380 	if (hw_coal->budget)
6381 		max = hw_coal->bufs_per_record * hw_coal->budget;
6382 	max = min_t(u16, max, coal_cap->num_cmpl_aggr_int_max);
6383 
6384 	val = clamp_t(u16, hw_coal->coal_bufs, 1, max);
6385 	req->num_cmpl_aggr_int = cpu_to_le16(val);
6386 
6387 	val = min_t(u16, val, coal_cap->num_cmpl_dma_aggr_max);
6388 	req->num_cmpl_dma_aggr = cpu_to_le16(val);
6389 
6390 	val = clamp_t(u16, hw_coal->coal_bufs_irq, 1,
6391 		      coal_cap->num_cmpl_dma_aggr_during_int_max);
6392 	req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val);
6393 
6394 	tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks);
6395 	tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_max_max);
6396 	req->int_lat_tmr_max = cpu_to_le16(tmr);
6397 
6398 	/* min timer set to 1/2 of interrupt timer */
6399 	if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_INT_LAT_TMR_MIN) {
6400 		val = tmr / 2;
6401 		val = clamp_t(u16, val, 1, coal_cap->int_lat_tmr_min_max);
6402 		req->int_lat_tmr_min = cpu_to_le16(val);
6403 		req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
6404 	}
6405 
6406 	/* buf timer set to 1/4 of interrupt timer */
6407 	val = clamp_t(u16, tmr / 4, 1, coal_cap->cmpl_aggr_dma_tmr_max);
6408 	req->cmpl_aggr_dma_tmr = cpu_to_le16(val);
6409 
6410 	if (cmpl_params &
6411 	    RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_NUM_CMPL_DMA_AGGR_DURING_INT) {
6412 		tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks_irq);
6413 		val = clamp_t(u16, tmr, 1,
6414 			      coal_cap->cmpl_aggr_dma_tmr_during_int_max);
6415 		req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(val);
6416 		req->enables |=
6417 			cpu_to_le16(BNXT_COAL_CMPL_AGGR_TMR_DURING_INT_ENABLE);
6418 	}
6419 
6420 	if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_TIMER_RESET)
6421 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
6422 	if ((cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_RING_IDLE) &&
6423 	    hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh)
6424 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
6425 	req->flags = cpu_to_le16(flags);
6426 	req->enables |= cpu_to_le16(BNXT_COAL_CMPL_ENABLES);
6427 }
6428 
6429 /* Caller holds bp->hwrm_cmd_lock */
6430 static int __bnxt_hwrm_set_coal_nq(struct bnxt *bp, struct bnxt_napi *bnapi,
6431 				   struct bnxt_coal *hw_coal)
6432 {
6433 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req = {0};
6434 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6435 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6436 	u32 nq_params = coal_cap->nq_params;
6437 	u16 tmr;
6438 
6439 	if (!(nq_params & RING_AGGINT_QCAPS_RESP_NQ_PARAMS_INT_LAT_TMR_MIN))
6440 		return 0;
6441 
6442 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS,
6443 			       -1, -1);
6444 	req.ring_id = cpu_to_le16(cpr->cp_ring_struct.fw_ring_id);
6445 	req.flags =
6446 		cpu_to_le16(RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_IS_NQ);
6447 
6448 	tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks) / 2;
6449 	tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_min_max);
6450 	req.int_lat_tmr_min = cpu_to_le16(tmr);
6451 	req.enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
6452 	return _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6453 }
6454 
6455 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi)
6456 {
6457 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0};
6458 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6459 	struct bnxt_coal coal;
6460 
6461 	/* Tick values in micro seconds.
6462 	 * 1 coal_buf x bufs_per_record = 1 completion record.
6463 	 */
6464 	memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal));
6465 
6466 	coal.coal_ticks = cpr->rx_ring_coal.coal_ticks;
6467 	coal.coal_bufs = cpr->rx_ring_coal.coal_bufs;
6468 
6469 	if (!bnapi->rx_ring)
6470 		return -ENODEV;
6471 
6472 	bnxt_hwrm_cmd_hdr_init(bp, &req_rx,
6473 			       HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
6474 
6475 	bnxt_hwrm_set_coal_params(bp, &coal, &req_rx);
6476 
6477 	req_rx.ring_id = cpu_to_le16(bnxt_cp_ring_for_rx(bp, bnapi->rx_ring));
6478 
6479 	return hwrm_send_message(bp, &req_rx, sizeof(req_rx),
6480 				 HWRM_CMD_TIMEOUT);
6481 }
6482 
6483 int bnxt_hwrm_set_coal(struct bnxt *bp)
6484 {
6485 	int i, rc = 0;
6486 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0},
6487 							   req_tx = {0}, *req;
6488 
6489 	bnxt_hwrm_cmd_hdr_init(bp, &req_rx,
6490 			       HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
6491 	bnxt_hwrm_cmd_hdr_init(bp, &req_tx,
6492 			       HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
6493 
6494 	bnxt_hwrm_set_coal_params(bp, &bp->rx_coal, &req_rx);
6495 	bnxt_hwrm_set_coal_params(bp, &bp->tx_coal, &req_tx);
6496 
6497 	mutex_lock(&bp->hwrm_cmd_lock);
6498 	for (i = 0; i < bp->cp_nr_rings; i++) {
6499 		struct bnxt_napi *bnapi = bp->bnapi[i];
6500 		struct bnxt_coal *hw_coal;
6501 		u16 ring_id;
6502 
6503 		req = &req_rx;
6504 		if (!bnapi->rx_ring) {
6505 			ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring);
6506 			req = &req_tx;
6507 		} else {
6508 			ring_id = bnxt_cp_ring_for_rx(bp, bnapi->rx_ring);
6509 		}
6510 		req->ring_id = cpu_to_le16(ring_id);
6511 
6512 		rc = _hwrm_send_message(bp, req, sizeof(*req),
6513 					HWRM_CMD_TIMEOUT);
6514 		if (rc)
6515 			break;
6516 
6517 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
6518 			continue;
6519 
6520 		if (bnapi->rx_ring && bnapi->tx_ring) {
6521 			req = &req_tx;
6522 			ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring);
6523 			req->ring_id = cpu_to_le16(ring_id);
6524 			rc = _hwrm_send_message(bp, req, sizeof(*req),
6525 						HWRM_CMD_TIMEOUT);
6526 			if (rc)
6527 				break;
6528 		}
6529 		if (bnapi->rx_ring)
6530 			hw_coal = &bp->rx_coal;
6531 		else
6532 			hw_coal = &bp->tx_coal;
6533 		__bnxt_hwrm_set_coal_nq(bp, bnapi, hw_coal);
6534 	}
6535 	mutex_unlock(&bp->hwrm_cmd_lock);
6536 	return rc;
6537 }
6538 
6539 static void bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
6540 {
6541 	struct hwrm_stat_ctx_clr_stats_input req0 = {0};
6542 	struct hwrm_stat_ctx_free_input req = {0};
6543 	int i;
6544 
6545 	if (!bp->bnapi)
6546 		return;
6547 
6548 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
6549 		return;
6550 
6551 	bnxt_hwrm_cmd_hdr_init(bp, &req0, HWRM_STAT_CTX_CLR_STATS, -1, -1);
6552 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_FREE, -1, -1);
6553 
6554 	mutex_lock(&bp->hwrm_cmd_lock);
6555 	for (i = 0; i < bp->cp_nr_rings; i++) {
6556 		struct bnxt_napi *bnapi = bp->bnapi[i];
6557 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6558 
6559 		if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
6560 			req.stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
6561 			if (BNXT_FW_MAJ(bp) <= 20) {
6562 				req0.stat_ctx_id = req.stat_ctx_id;
6563 				_hwrm_send_message(bp, &req0, sizeof(req0),
6564 						   HWRM_CMD_TIMEOUT);
6565 			}
6566 			_hwrm_send_message(bp, &req, sizeof(req),
6567 					   HWRM_CMD_TIMEOUT);
6568 
6569 			cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
6570 		}
6571 	}
6572 	mutex_unlock(&bp->hwrm_cmd_lock);
6573 }
6574 
6575 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
6576 {
6577 	int rc = 0, i;
6578 	struct hwrm_stat_ctx_alloc_input req = {0};
6579 	struct hwrm_stat_ctx_alloc_output *resp = bp->hwrm_cmd_resp_addr;
6580 
6581 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
6582 		return 0;
6583 
6584 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_ALLOC, -1, -1);
6585 
6586 	req.stats_dma_length = cpu_to_le16(bp->hw_ring_stats_size);
6587 	req.update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000);
6588 
6589 	mutex_lock(&bp->hwrm_cmd_lock);
6590 	for (i = 0; i < bp->cp_nr_rings; i++) {
6591 		struct bnxt_napi *bnapi = bp->bnapi[i];
6592 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6593 
6594 		req.stats_dma_addr = cpu_to_le64(cpr->stats.hw_stats_map);
6595 
6596 		rc = _hwrm_send_message(bp, &req, sizeof(req),
6597 					HWRM_CMD_TIMEOUT);
6598 		if (rc)
6599 			break;
6600 
6601 		cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
6602 
6603 		bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
6604 	}
6605 	mutex_unlock(&bp->hwrm_cmd_lock);
6606 	return rc;
6607 }
6608 
6609 static int bnxt_hwrm_func_qcfg(struct bnxt *bp)
6610 {
6611 	struct hwrm_func_qcfg_input req = {0};
6612 	struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
6613 	u32 min_db_offset = 0;
6614 	u16 flags;
6615 	int rc;
6616 
6617 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
6618 	req.fid = cpu_to_le16(0xffff);
6619 	mutex_lock(&bp->hwrm_cmd_lock);
6620 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6621 	if (rc)
6622 		goto func_qcfg_exit;
6623 
6624 #ifdef CONFIG_BNXT_SRIOV
6625 	if (BNXT_VF(bp)) {
6626 		struct bnxt_vf_info *vf = &bp->vf;
6627 
6628 		vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK;
6629 	} else {
6630 		bp->pf.registered_vfs = le16_to_cpu(resp->registered_vfs);
6631 	}
6632 #endif
6633 	flags = le16_to_cpu(resp->flags);
6634 	if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED |
6635 		     FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) {
6636 		bp->fw_cap |= BNXT_FW_CAP_LLDP_AGENT;
6637 		if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED)
6638 			bp->fw_cap |= BNXT_FW_CAP_DCBX_AGENT;
6639 	}
6640 	if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST))
6641 		bp->flags |= BNXT_FLAG_MULTI_HOST;
6642 
6643 	switch (resp->port_partition_type) {
6644 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0:
6645 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5:
6646 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0:
6647 		bp->port_partition_type = resp->port_partition_type;
6648 		break;
6649 	}
6650 	if (bp->hwrm_spec_code < 0x10707 ||
6651 	    resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB)
6652 		bp->br_mode = BRIDGE_MODE_VEB;
6653 	else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA)
6654 		bp->br_mode = BRIDGE_MODE_VEPA;
6655 	else
6656 		bp->br_mode = BRIDGE_MODE_UNDEF;
6657 
6658 	bp->max_mtu = le16_to_cpu(resp->max_mtu_configured);
6659 	if (!bp->max_mtu)
6660 		bp->max_mtu = BNXT_MAX_MTU;
6661 
6662 	if (bp->db_size)
6663 		goto func_qcfg_exit;
6664 
6665 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
6666 		if (BNXT_PF(bp))
6667 			min_db_offset = DB_PF_OFFSET_P5;
6668 		else
6669 			min_db_offset = DB_VF_OFFSET_P5;
6670 	}
6671 	bp->db_size = PAGE_ALIGN(le16_to_cpu(resp->l2_doorbell_bar_size_kb) *
6672 				 1024);
6673 	if (!bp->db_size || bp->db_size > pci_resource_len(bp->pdev, 2) ||
6674 	    bp->db_size <= min_db_offset)
6675 		bp->db_size = pci_resource_len(bp->pdev, 2);
6676 
6677 func_qcfg_exit:
6678 	mutex_unlock(&bp->hwrm_cmd_lock);
6679 	return rc;
6680 }
6681 
6682 static int bnxt_hwrm_func_backing_store_qcaps(struct bnxt *bp)
6683 {
6684 	struct hwrm_func_backing_store_qcaps_input req = {0};
6685 	struct hwrm_func_backing_store_qcaps_output *resp =
6686 		bp->hwrm_cmd_resp_addr;
6687 	int rc;
6688 
6689 	if (bp->hwrm_spec_code < 0x10902 || BNXT_VF(bp) || bp->ctx)
6690 		return 0;
6691 
6692 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_BACKING_STORE_QCAPS, -1, -1);
6693 	mutex_lock(&bp->hwrm_cmd_lock);
6694 	rc = _hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6695 	if (!rc) {
6696 		struct bnxt_ctx_pg_info *ctx_pg;
6697 		struct bnxt_ctx_mem_info *ctx;
6698 		int i, tqm_rings;
6699 
6700 		ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
6701 		if (!ctx) {
6702 			rc = -ENOMEM;
6703 			goto ctx_err;
6704 		}
6705 		ctx->qp_max_entries = le32_to_cpu(resp->qp_max_entries);
6706 		ctx->qp_min_qp1_entries = le16_to_cpu(resp->qp_min_qp1_entries);
6707 		ctx->qp_max_l2_entries = le16_to_cpu(resp->qp_max_l2_entries);
6708 		ctx->qp_entry_size = le16_to_cpu(resp->qp_entry_size);
6709 		ctx->srq_max_l2_entries = le16_to_cpu(resp->srq_max_l2_entries);
6710 		ctx->srq_max_entries = le32_to_cpu(resp->srq_max_entries);
6711 		ctx->srq_entry_size = le16_to_cpu(resp->srq_entry_size);
6712 		ctx->cq_max_l2_entries = le16_to_cpu(resp->cq_max_l2_entries);
6713 		ctx->cq_max_entries = le32_to_cpu(resp->cq_max_entries);
6714 		ctx->cq_entry_size = le16_to_cpu(resp->cq_entry_size);
6715 		ctx->vnic_max_vnic_entries =
6716 			le16_to_cpu(resp->vnic_max_vnic_entries);
6717 		ctx->vnic_max_ring_table_entries =
6718 			le16_to_cpu(resp->vnic_max_ring_table_entries);
6719 		ctx->vnic_entry_size = le16_to_cpu(resp->vnic_entry_size);
6720 		ctx->stat_max_entries = le32_to_cpu(resp->stat_max_entries);
6721 		ctx->stat_entry_size = le16_to_cpu(resp->stat_entry_size);
6722 		ctx->tqm_entry_size = le16_to_cpu(resp->tqm_entry_size);
6723 		ctx->tqm_min_entries_per_ring =
6724 			le32_to_cpu(resp->tqm_min_entries_per_ring);
6725 		ctx->tqm_max_entries_per_ring =
6726 			le32_to_cpu(resp->tqm_max_entries_per_ring);
6727 		ctx->tqm_entries_multiple = resp->tqm_entries_multiple;
6728 		if (!ctx->tqm_entries_multiple)
6729 			ctx->tqm_entries_multiple = 1;
6730 		ctx->mrav_max_entries = le32_to_cpu(resp->mrav_max_entries);
6731 		ctx->mrav_entry_size = le16_to_cpu(resp->mrav_entry_size);
6732 		ctx->mrav_num_entries_units =
6733 			le16_to_cpu(resp->mrav_num_entries_units);
6734 		ctx->tim_entry_size = le16_to_cpu(resp->tim_entry_size);
6735 		ctx->tim_max_entries = le32_to_cpu(resp->tim_max_entries);
6736 		ctx->ctx_kind_initializer = resp->ctx_kind_initializer;
6737 		ctx->tqm_fp_rings_count = resp->tqm_fp_rings_count;
6738 		if (!ctx->tqm_fp_rings_count)
6739 			ctx->tqm_fp_rings_count = bp->max_q;
6740 
6741 		tqm_rings = ctx->tqm_fp_rings_count + 1;
6742 		ctx_pg = kcalloc(tqm_rings, sizeof(*ctx_pg), GFP_KERNEL);
6743 		if (!ctx_pg) {
6744 			kfree(ctx);
6745 			rc = -ENOMEM;
6746 			goto ctx_err;
6747 		}
6748 		for (i = 0; i < tqm_rings; i++, ctx_pg++)
6749 			ctx->tqm_mem[i] = ctx_pg;
6750 		bp->ctx = ctx;
6751 	} else {
6752 		rc = 0;
6753 	}
6754 ctx_err:
6755 	mutex_unlock(&bp->hwrm_cmd_lock);
6756 	return rc;
6757 }
6758 
6759 static void bnxt_hwrm_set_pg_attr(struct bnxt_ring_mem_info *rmem, u8 *pg_attr,
6760 				  __le64 *pg_dir)
6761 {
6762 	u8 pg_size = 0;
6763 
6764 	if (BNXT_PAGE_SHIFT == 13)
6765 		pg_size = 1 << 4;
6766 	else if (BNXT_PAGE_SIZE == 16)
6767 		pg_size = 2 << 4;
6768 
6769 	*pg_attr = pg_size;
6770 	if (rmem->depth >= 1) {
6771 		if (rmem->depth == 2)
6772 			*pg_attr |= 2;
6773 		else
6774 			*pg_attr |= 1;
6775 		*pg_dir = cpu_to_le64(rmem->pg_tbl_map);
6776 	} else {
6777 		*pg_dir = cpu_to_le64(rmem->dma_arr[0]);
6778 	}
6779 }
6780 
6781 #define FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES			\
6782 	(FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP |		\
6783 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ |		\
6784 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ |		\
6785 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC |		\
6786 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT)
6787 
6788 static int bnxt_hwrm_func_backing_store_cfg(struct bnxt *bp, u32 enables)
6789 {
6790 	struct hwrm_func_backing_store_cfg_input req = {0};
6791 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
6792 	struct bnxt_ctx_pg_info *ctx_pg;
6793 	__le32 *num_entries;
6794 	__le64 *pg_dir;
6795 	u32 flags = 0;
6796 	u8 *pg_attr;
6797 	u32 ena;
6798 	int i;
6799 
6800 	if (!ctx)
6801 		return 0;
6802 
6803 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_BACKING_STORE_CFG, -1, -1);
6804 	req.enables = cpu_to_le32(enables);
6805 
6806 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP) {
6807 		ctx_pg = &ctx->qp_mem;
6808 		req.qp_num_entries = cpu_to_le32(ctx_pg->entries);
6809 		req.qp_num_qp1_entries = cpu_to_le16(ctx->qp_min_qp1_entries);
6810 		req.qp_num_l2_entries = cpu_to_le16(ctx->qp_max_l2_entries);
6811 		req.qp_entry_size = cpu_to_le16(ctx->qp_entry_size);
6812 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6813 				      &req.qpc_pg_size_qpc_lvl,
6814 				      &req.qpc_page_dir);
6815 	}
6816 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ) {
6817 		ctx_pg = &ctx->srq_mem;
6818 		req.srq_num_entries = cpu_to_le32(ctx_pg->entries);
6819 		req.srq_num_l2_entries = cpu_to_le16(ctx->srq_max_l2_entries);
6820 		req.srq_entry_size = cpu_to_le16(ctx->srq_entry_size);
6821 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6822 				      &req.srq_pg_size_srq_lvl,
6823 				      &req.srq_page_dir);
6824 	}
6825 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ) {
6826 		ctx_pg = &ctx->cq_mem;
6827 		req.cq_num_entries = cpu_to_le32(ctx_pg->entries);
6828 		req.cq_num_l2_entries = cpu_to_le16(ctx->cq_max_l2_entries);
6829 		req.cq_entry_size = cpu_to_le16(ctx->cq_entry_size);
6830 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, &req.cq_pg_size_cq_lvl,
6831 				      &req.cq_page_dir);
6832 	}
6833 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC) {
6834 		ctx_pg = &ctx->vnic_mem;
6835 		req.vnic_num_vnic_entries =
6836 			cpu_to_le16(ctx->vnic_max_vnic_entries);
6837 		req.vnic_num_ring_table_entries =
6838 			cpu_to_le16(ctx->vnic_max_ring_table_entries);
6839 		req.vnic_entry_size = cpu_to_le16(ctx->vnic_entry_size);
6840 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6841 				      &req.vnic_pg_size_vnic_lvl,
6842 				      &req.vnic_page_dir);
6843 	}
6844 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) {
6845 		ctx_pg = &ctx->stat_mem;
6846 		req.stat_num_entries = cpu_to_le32(ctx->stat_max_entries);
6847 		req.stat_entry_size = cpu_to_le16(ctx->stat_entry_size);
6848 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6849 				      &req.stat_pg_size_stat_lvl,
6850 				      &req.stat_page_dir);
6851 	}
6852 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV) {
6853 		ctx_pg = &ctx->mrav_mem;
6854 		req.mrav_num_entries = cpu_to_le32(ctx_pg->entries);
6855 		if (ctx->mrav_num_entries_units)
6856 			flags |=
6857 			FUNC_BACKING_STORE_CFG_REQ_FLAGS_MRAV_RESERVATION_SPLIT;
6858 		req.mrav_entry_size = cpu_to_le16(ctx->mrav_entry_size);
6859 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6860 				      &req.mrav_pg_size_mrav_lvl,
6861 				      &req.mrav_page_dir);
6862 	}
6863 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) {
6864 		ctx_pg = &ctx->tim_mem;
6865 		req.tim_num_entries = cpu_to_le32(ctx_pg->entries);
6866 		req.tim_entry_size = cpu_to_le16(ctx->tim_entry_size);
6867 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6868 				      &req.tim_pg_size_tim_lvl,
6869 				      &req.tim_page_dir);
6870 	}
6871 	for (i = 0, num_entries = &req.tqm_sp_num_entries,
6872 	     pg_attr = &req.tqm_sp_pg_size_tqm_sp_lvl,
6873 	     pg_dir = &req.tqm_sp_page_dir,
6874 	     ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP;
6875 	     i < 9; i++, num_entries++, pg_attr++, pg_dir++, ena <<= 1) {
6876 		if (!(enables & ena))
6877 			continue;
6878 
6879 		req.tqm_entry_size = cpu_to_le16(ctx->tqm_entry_size);
6880 		ctx_pg = ctx->tqm_mem[i];
6881 		*num_entries = cpu_to_le32(ctx_pg->entries);
6882 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, pg_attr, pg_dir);
6883 	}
6884 	req.flags = cpu_to_le32(flags);
6885 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6886 }
6887 
6888 static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp,
6889 				  struct bnxt_ctx_pg_info *ctx_pg)
6890 {
6891 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
6892 
6893 	rmem->page_size = BNXT_PAGE_SIZE;
6894 	rmem->pg_arr = ctx_pg->ctx_pg_arr;
6895 	rmem->dma_arr = ctx_pg->ctx_dma_arr;
6896 	rmem->flags = BNXT_RMEM_VALID_PTE_FLAG;
6897 	if (rmem->depth >= 1)
6898 		rmem->flags |= BNXT_RMEM_USE_FULL_PAGE_FLAG;
6899 	return bnxt_alloc_ring(bp, rmem);
6900 }
6901 
6902 static int bnxt_alloc_ctx_pg_tbls(struct bnxt *bp,
6903 				  struct bnxt_ctx_pg_info *ctx_pg, u32 mem_size,
6904 				  u8 depth, bool use_init_val)
6905 {
6906 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
6907 	int rc;
6908 
6909 	if (!mem_size)
6910 		return -EINVAL;
6911 
6912 	ctx_pg->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
6913 	if (ctx_pg->nr_pages > MAX_CTX_TOTAL_PAGES) {
6914 		ctx_pg->nr_pages = 0;
6915 		return -EINVAL;
6916 	}
6917 	if (ctx_pg->nr_pages > MAX_CTX_PAGES || depth > 1) {
6918 		int nr_tbls, i;
6919 
6920 		rmem->depth = 2;
6921 		ctx_pg->ctx_pg_tbl = kcalloc(MAX_CTX_PAGES, sizeof(ctx_pg),
6922 					     GFP_KERNEL);
6923 		if (!ctx_pg->ctx_pg_tbl)
6924 			return -ENOMEM;
6925 		nr_tbls = DIV_ROUND_UP(ctx_pg->nr_pages, MAX_CTX_PAGES);
6926 		rmem->nr_pages = nr_tbls;
6927 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
6928 		if (rc)
6929 			return rc;
6930 		for (i = 0; i < nr_tbls; i++) {
6931 			struct bnxt_ctx_pg_info *pg_tbl;
6932 
6933 			pg_tbl = kzalloc(sizeof(*pg_tbl), GFP_KERNEL);
6934 			if (!pg_tbl)
6935 				return -ENOMEM;
6936 			ctx_pg->ctx_pg_tbl[i] = pg_tbl;
6937 			rmem = &pg_tbl->ring_mem;
6938 			rmem->pg_tbl = ctx_pg->ctx_pg_arr[i];
6939 			rmem->pg_tbl_map = ctx_pg->ctx_dma_arr[i];
6940 			rmem->depth = 1;
6941 			rmem->nr_pages = MAX_CTX_PAGES;
6942 			if (use_init_val)
6943 				rmem->init_val = bp->ctx->ctx_kind_initializer;
6944 			if (i == (nr_tbls - 1)) {
6945 				int rem = ctx_pg->nr_pages % MAX_CTX_PAGES;
6946 
6947 				if (rem)
6948 					rmem->nr_pages = rem;
6949 			}
6950 			rc = bnxt_alloc_ctx_mem_blk(bp, pg_tbl);
6951 			if (rc)
6952 				break;
6953 		}
6954 	} else {
6955 		rmem->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
6956 		if (rmem->nr_pages > 1 || depth)
6957 			rmem->depth = 1;
6958 		if (use_init_val)
6959 			rmem->init_val = bp->ctx->ctx_kind_initializer;
6960 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
6961 	}
6962 	return rc;
6963 }
6964 
6965 static void bnxt_free_ctx_pg_tbls(struct bnxt *bp,
6966 				  struct bnxt_ctx_pg_info *ctx_pg)
6967 {
6968 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
6969 
6970 	if (rmem->depth > 1 || ctx_pg->nr_pages > MAX_CTX_PAGES ||
6971 	    ctx_pg->ctx_pg_tbl) {
6972 		int i, nr_tbls = rmem->nr_pages;
6973 
6974 		for (i = 0; i < nr_tbls; i++) {
6975 			struct bnxt_ctx_pg_info *pg_tbl;
6976 			struct bnxt_ring_mem_info *rmem2;
6977 
6978 			pg_tbl = ctx_pg->ctx_pg_tbl[i];
6979 			if (!pg_tbl)
6980 				continue;
6981 			rmem2 = &pg_tbl->ring_mem;
6982 			bnxt_free_ring(bp, rmem2);
6983 			ctx_pg->ctx_pg_arr[i] = NULL;
6984 			kfree(pg_tbl);
6985 			ctx_pg->ctx_pg_tbl[i] = NULL;
6986 		}
6987 		kfree(ctx_pg->ctx_pg_tbl);
6988 		ctx_pg->ctx_pg_tbl = NULL;
6989 	}
6990 	bnxt_free_ring(bp, rmem);
6991 	ctx_pg->nr_pages = 0;
6992 }
6993 
6994 static void bnxt_free_ctx_mem(struct bnxt *bp)
6995 {
6996 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
6997 	int i;
6998 
6999 	if (!ctx)
7000 		return;
7001 
7002 	if (ctx->tqm_mem[0]) {
7003 		for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++)
7004 			bnxt_free_ctx_pg_tbls(bp, ctx->tqm_mem[i]);
7005 		kfree(ctx->tqm_mem[0]);
7006 		ctx->tqm_mem[0] = NULL;
7007 	}
7008 
7009 	bnxt_free_ctx_pg_tbls(bp, &ctx->tim_mem);
7010 	bnxt_free_ctx_pg_tbls(bp, &ctx->mrav_mem);
7011 	bnxt_free_ctx_pg_tbls(bp, &ctx->stat_mem);
7012 	bnxt_free_ctx_pg_tbls(bp, &ctx->vnic_mem);
7013 	bnxt_free_ctx_pg_tbls(bp, &ctx->cq_mem);
7014 	bnxt_free_ctx_pg_tbls(bp, &ctx->srq_mem);
7015 	bnxt_free_ctx_pg_tbls(bp, &ctx->qp_mem);
7016 	ctx->flags &= ~BNXT_CTX_FLAG_INITED;
7017 }
7018 
7019 static int bnxt_alloc_ctx_mem(struct bnxt *bp)
7020 {
7021 	struct bnxt_ctx_pg_info *ctx_pg;
7022 	struct bnxt_ctx_mem_info *ctx;
7023 	u32 mem_size, ena, entries;
7024 	u32 entries_sp, min;
7025 	u32 num_mr, num_ah;
7026 	u32 extra_srqs = 0;
7027 	u32 extra_qps = 0;
7028 	u8 pg_lvl = 1;
7029 	int i, rc;
7030 
7031 	rc = bnxt_hwrm_func_backing_store_qcaps(bp);
7032 	if (rc) {
7033 		netdev_err(bp->dev, "Failed querying context mem capability, rc = %d.\n",
7034 			   rc);
7035 		return rc;
7036 	}
7037 	ctx = bp->ctx;
7038 	if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED))
7039 		return 0;
7040 
7041 	if ((bp->flags & BNXT_FLAG_ROCE_CAP) && !is_kdump_kernel()) {
7042 		pg_lvl = 2;
7043 		extra_qps = 65536;
7044 		extra_srqs = 8192;
7045 	}
7046 
7047 	ctx_pg = &ctx->qp_mem;
7048 	ctx_pg->entries = ctx->qp_min_qp1_entries + ctx->qp_max_l2_entries +
7049 			  extra_qps;
7050 	mem_size = ctx->qp_entry_size * ctx_pg->entries;
7051 	rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, true);
7052 	if (rc)
7053 		return rc;
7054 
7055 	ctx_pg = &ctx->srq_mem;
7056 	ctx_pg->entries = ctx->srq_max_l2_entries + extra_srqs;
7057 	mem_size = ctx->srq_entry_size * ctx_pg->entries;
7058 	rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, true);
7059 	if (rc)
7060 		return rc;
7061 
7062 	ctx_pg = &ctx->cq_mem;
7063 	ctx_pg->entries = ctx->cq_max_l2_entries + extra_qps * 2;
7064 	mem_size = ctx->cq_entry_size * ctx_pg->entries;
7065 	rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, true);
7066 	if (rc)
7067 		return rc;
7068 
7069 	ctx_pg = &ctx->vnic_mem;
7070 	ctx_pg->entries = ctx->vnic_max_vnic_entries +
7071 			  ctx->vnic_max_ring_table_entries;
7072 	mem_size = ctx->vnic_entry_size * ctx_pg->entries;
7073 	rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, true);
7074 	if (rc)
7075 		return rc;
7076 
7077 	ctx_pg = &ctx->stat_mem;
7078 	ctx_pg->entries = ctx->stat_max_entries;
7079 	mem_size = ctx->stat_entry_size * ctx_pg->entries;
7080 	rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, true);
7081 	if (rc)
7082 		return rc;
7083 
7084 	ena = 0;
7085 	if (!(bp->flags & BNXT_FLAG_ROCE_CAP))
7086 		goto skip_rdma;
7087 
7088 	ctx_pg = &ctx->mrav_mem;
7089 	/* 128K extra is needed to accommodate static AH context
7090 	 * allocation by f/w.
7091 	 */
7092 	num_mr = 1024 * 256;
7093 	num_ah = 1024 * 128;
7094 	ctx_pg->entries = num_mr + num_ah;
7095 	mem_size = ctx->mrav_entry_size * ctx_pg->entries;
7096 	rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 2, true);
7097 	if (rc)
7098 		return rc;
7099 	ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV;
7100 	if (ctx->mrav_num_entries_units)
7101 		ctx_pg->entries =
7102 			((num_mr / ctx->mrav_num_entries_units) << 16) |
7103 			 (num_ah / ctx->mrav_num_entries_units);
7104 
7105 	ctx_pg = &ctx->tim_mem;
7106 	ctx_pg->entries = ctx->qp_mem.entries;
7107 	mem_size = ctx->tim_entry_size * ctx_pg->entries;
7108 	rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, false);
7109 	if (rc)
7110 		return rc;
7111 	ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM;
7112 
7113 skip_rdma:
7114 	min = ctx->tqm_min_entries_per_ring;
7115 	entries_sp = ctx->vnic_max_vnic_entries + ctx->qp_max_l2_entries +
7116 		     2 * (extra_qps + ctx->qp_min_qp1_entries) + min;
7117 	entries_sp = roundup(entries_sp, ctx->tqm_entries_multiple);
7118 	entries = ctx->qp_max_l2_entries + extra_qps + ctx->qp_min_qp1_entries;
7119 	entries = roundup(entries, ctx->tqm_entries_multiple);
7120 	entries = clamp_t(u32, entries, min, ctx->tqm_max_entries_per_ring);
7121 	for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++) {
7122 		ctx_pg = ctx->tqm_mem[i];
7123 		ctx_pg->entries = i ? entries : entries_sp;
7124 		mem_size = ctx->tqm_entry_size * ctx_pg->entries;
7125 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, false);
7126 		if (rc)
7127 			return rc;
7128 		ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP << i;
7129 	}
7130 	ena |= FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES;
7131 	rc = bnxt_hwrm_func_backing_store_cfg(bp, ena);
7132 	if (rc) {
7133 		netdev_err(bp->dev, "Failed configuring context mem, rc = %d.\n",
7134 			   rc);
7135 		return rc;
7136 	}
7137 	ctx->flags |= BNXT_CTX_FLAG_INITED;
7138 	return 0;
7139 }
7140 
7141 int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all)
7142 {
7143 	struct hwrm_func_resource_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
7144 	struct hwrm_func_resource_qcaps_input req = {0};
7145 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7146 	int rc;
7147 
7148 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESOURCE_QCAPS, -1, -1);
7149 	req.fid = cpu_to_le16(0xffff);
7150 
7151 	mutex_lock(&bp->hwrm_cmd_lock);
7152 	rc = _hwrm_send_message_silent(bp, &req, sizeof(req),
7153 				       HWRM_CMD_TIMEOUT);
7154 	if (rc)
7155 		goto hwrm_func_resc_qcaps_exit;
7156 
7157 	hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs);
7158 	if (!all)
7159 		goto hwrm_func_resc_qcaps_exit;
7160 
7161 	hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx);
7162 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
7163 	hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings);
7164 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
7165 	hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings);
7166 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
7167 	hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings);
7168 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
7169 	hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps);
7170 	hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps);
7171 	hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs);
7172 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
7173 	hw_resc->min_vnics = le16_to_cpu(resp->min_vnics);
7174 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
7175 	hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx);
7176 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
7177 
7178 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
7179 		u16 max_msix = le16_to_cpu(resp->max_msix);
7180 
7181 		hw_resc->max_nqs = max_msix;
7182 		hw_resc->max_hw_ring_grps = hw_resc->max_rx_rings;
7183 	}
7184 
7185 	if (BNXT_PF(bp)) {
7186 		struct bnxt_pf_info *pf = &bp->pf;
7187 
7188 		pf->vf_resv_strategy =
7189 			le16_to_cpu(resp->vf_reservation_strategy);
7190 		if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC)
7191 			pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL;
7192 	}
7193 hwrm_func_resc_qcaps_exit:
7194 	mutex_unlock(&bp->hwrm_cmd_lock);
7195 	return rc;
7196 }
7197 
7198 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp)
7199 {
7200 	int rc = 0;
7201 	struct hwrm_func_qcaps_input req = {0};
7202 	struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
7203 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7204 	u32 flags, flags_ext;
7205 
7206 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1);
7207 	req.fid = cpu_to_le16(0xffff);
7208 
7209 	mutex_lock(&bp->hwrm_cmd_lock);
7210 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7211 	if (rc)
7212 		goto hwrm_func_qcaps_exit;
7213 
7214 	flags = le32_to_cpu(resp->flags);
7215 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED)
7216 		bp->flags |= BNXT_FLAG_ROCEV1_CAP;
7217 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED)
7218 		bp->flags |= BNXT_FLAG_ROCEV2_CAP;
7219 	if (flags & FUNC_QCAPS_RESP_FLAGS_PCIE_STATS_SUPPORTED)
7220 		bp->fw_cap |= BNXT_FW_CAP_PCIE_STATS_SUPPORTED;
7221 	if (flags & FUNC_QCAPS_RESP_FLAGS_HOT_RESET_CAPABLE)
7222 		bp->fw_cap |= BNXT_FW_CAP_HOT_RESET;
7223 	if (flags & FUNC_QCAPS_RESP_FLAGS_EXT_STATS_SUPPORTED)
7224 		bp->fw_cap |= BNXT_FW_CAP_EXT_STATS_SUPPORTED;
7225 	if (flags &  FUNC_QCAPS_RESP_FLAGS_ERROR_RECOVERY_CAPABLE)
7226 		bp->fw_cap |= BNXT_FW_CAP_ERROR_RECOVERY;
7227 	if (flags & FUNC_QCAPS_RESP_FLAGS_ERR_RECOVER_RELOAD)
7228 		bp->fw_cap |= BNXT_FW_CAP_ERR_RECOVER_RELOAD;
7229 	if (!(flags & FUNC_QCAPS_RESP_FLAGS_VLAN_ACCELERATION_TX_DISABLED))
7230 		bp->fw_cap |= BNXT_FW_CAP_VLAN_TX_INSERT;
7231 
7232 	flags_ext = le32_to_cpu(resp->flags_ext);
7233 	if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_EXT_HW_STATS_SUPPORTED)
7234 		bp->fw_cap |= BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED;
7235 
7236 	bp->tx_push_thresh = 0;
7237 	if ((flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED) &&
7238 	    BNXT_FW_MAJ(bp) > 217)
7239 		bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
7240 
7241 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
7242 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
7243 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
7244 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
7245 	hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
7246 	if (!hw_resc->max_hw_ring_grps)
7247 		hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings;
7248 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
7249 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
7250 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
7251 
7252 	if (BNXT_PF(bp)) {
7253 		struct bnxt_pf_info *pf = &bp->pf;
7254 
7255 		pf->fw_fid = le16_to_cpu(resp->fid);
7256 		pf->port_id = le16_to_cpu(resp->port_id);
7257 		memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN);
7258 		pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
7259 		pf->max_vfs = le16_to_cpu(resp->max_vfs);
7260 		pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
7261 		pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
7262 		pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
7263 		pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
7264 		pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
7265 		pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
7266 		bp->flags &= ~BNXT_FLAG_WOL_CAP;
7267 		if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED)
7268 			bp->flags |= BNXT_FLAG_WOL_CAP;
7269 	} else {
7270 #ifdef CONFIG_BNXT_SRIOV
7271 		struct bnxt_vf_info *vf = &bp->vf;
7272 
7273 		vf->fw_fid = le16_to_cpu(resp->fid);
7274 		memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN);
7275 #endif
7276 	}
7277 
7278 hwrm_func_qcaps_exit:
7279 	mutex_unlock(&bp->hwrm_cmd_lock);
7280 	return rc;
7281 }
7282 
7283 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp);
7284 
7285 static int bnxt_hwrm_func_qcaps(struct bnxt *bp)
7286 {
7287 	int rc;
7288 
7289 	rc = __bnxt_hwrm_func_qcaps(bp);
7290 	if (rc)
7291 		return rc;
7292 	rc = bnxt_hwrm_queue_qportcfg(bp);
7293 	if (rc) {
7294 		netdev_err(bp->dev, "hwrm query qportcfg failure rc: %d\n", rc);
7295 		return rc;
7296 	}
7297 	if (bp->hwrm_spec_code >= 0x10803) {
7298 		rc = bnxt_alloc_ctx_mem(bp);
7299 		if (rc)
7300 			return rc;
7301 		rc = bnxt_hwrm_func_resc_qcaps(bp, true);
7302 		if (!rc)
7303 			bp->fw_cap |= BNXT_FW_CAP_NEW_RM;
7304 	}
7305 	return 0;
7306 }
7307 
7308 static int bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(struct bnxt *bp)
7309 {
7310 	struct hwrm_cfa_adv_flow_mgnt_qcaps_input req = {0};
7311 	struct hwrm_cfa_adv_flow_mgnt_qcaps_output *resp;
7312 	int rc = 0;
7313 	u32 flags;
7314 
7315 	if (!(bp->fw_cap & BNXT_FW_CAP_CFA_ADV_FLOW))
7316 		return 0;
7317 
7318 	resp = bp->hwrm_cmd_resp_addr;
7319 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_ADV_FLOW_MGNT_QCAPS, -1, -1);
7320 
7321 	mutex_lock(&bp->hwrm_cmd_lock);
7322 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7323 	if (rc)
7324 		goto hwrm_cfa_adv_qcaps_exit;
7325 
7326 	flags = le32_to_cpu(resp->flags);
7327 	if (flags &
7328 	    CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V2_SUPPORTED)
7329 		bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2;
7330 
7331 hwrm_cfa_adv_qcaps_exit:
7332 	mutex_unlock(&bp->hwrm_cmd_lock);
7333 	return rc;
7334 }
7335 
7336 static int bnxt_map_fw_health_regs(struct bnxt *bp)
7337 {
7338 	struct bnxt_fw_health *fw_health = bp->fw_health;
7339 	u32 reg_base = 0xffffffff;
7340 	int i;
7341 
7342 	/* Only pre-map the monitoring GRC registers using window 3 */
7343 	for (i = 0; i < 4; i++) {
7344 		u32 reg = fw_health->regs[i];
7345 
7346 		if (BNXT_FW_HEALTH_REG_TYPE(reg) != BNXT_FW_HEALTH_REG_TYPE_GRC)
7347 			continue;
7348 		if (reg_base == 0xffffffff)
7349 			reg_base = reg & BNXT_GRC_BASE_MASK;
7350 		if ((reg & BNXT_GRC_BASE_MASK) != reg_base)
7351 			return -ERANGE;
7352 		fw_health->mapped_regs[i] = BNXT_FW_HEALTH_WIN_BASE +
7353 					    (reg & BNXT_GRC_OFFSET_MASK);
7354 	}
7355 	if (reg_base == 0xffffffff)
7356 		return 0;
7357 
7358 	writel(reg_base, bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT +
7359 			 BNXT_FW_HEALTH_WIN_MAP_OFF);
7360 	return 0;
7361 }
7362 
7363 static int bnxt_hwrm_error_recovery_qcfg(struct bnxt *bp)
7364 {
7365 	struct hwrm_error_recovery_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
7366 	struct bnxt_fw_health *fw_health = bp->fw_health;
7367 	struct hwrm_error_recovery_qcfg_input req = {0};
7368 	int rc, i;
7369 
7370 	if (!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
7371 		return 0;
7372 
7373 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_ERROR_RECOVERY_QCFG, -1, -1);
7374 	mutex_lock(&bp->hwrm_cmd_lock);
7375 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7376 	if (rc)
7377 		goto err_recovery_out;
7378 	fw_health->flags = le32_to_cpu(resp->flags);
7379 	if ((fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) &&
7380 	    !(bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL)) {
7381 		rc = -EINVAL;
7382 		goto err_recovery_out;
7383 	}
7384 	fw_health->polling_dsecs = le32_to_cpu(resp->driver_polling_freq);
7385 	fw_health->master_func_wait_dsecs =
7386 		le32_to_cpu(resp->master_func_wait_period);
7387 	fw_health->normal_func_wait_dsecs =
7388 		le32_to_cpu(resp->normal_func_wait_period);
7389 	fw_health->post_reset_wait_dsecs =
7390 		le32_to_cpu(resp->master_func_wait_period_after_reset);
7391 	fw_health->post_reset_max_wait_dsecs =
7392 		le32_to_cpu(resp->max_bailout_time_after_reset);
7393 	fw_health->regs[BNXT_FW_HEALTH_REG] =
7394 		le32_to_cpu(resp->fw_health_status_reg);
7395 	fw_health->regs[BNXT_FW_HEARTBEAT_REG] =
7396 		le32_to_cpu(resp->fw_heartbeat_reg);
7397 	fw_health->regs[BNXT_FW_RESET_CNT_REG] =
7398 		le32_to_cpu(resp->fw_reset_cnt_reg);
7399 	fw_health->regs[BNXT_FW_RESET_INPROG_REG] =
7400 		le32_to_cpu(resp->reset_inprogress_reg);
7401 	fw_health->fw_reset_inprog_reg_mask =
7402 		le32_to_cpu(resp->reset_inprogress_reg_mask);
7403 	fw_health->fw_reset_seq_cnt = resp->reg_array_cnt;
7404 	if (fw_health->fw_reset_seq_cnt >= 16) {
7405 		rc = -EINVAL;
7406 		goto err_recovery_out;
7407 	}
7408 	for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) {
7409 		fw_health->fw_reset_seq_regs[i] =
7410 			le32_to_cpu(resp->reset_reg[i]);
7411 		fw_health->fw_reset_seq_vals[i] =
7412 			le32_to_cpu(resp->reset_reg_val[i]);
7413 		fw_health->fw_reset_seq_delay_msec[i] =
7414 			resp->delay_after_reset[i];
7415 	}
7416 err_recovery_out:
7417 	mutex_unlock(&bp->hwrm_cmd_lock);
7418 	if (!rc)
7419 		rc = bnxt_map_fw_health_regs(bp);
7420 	if (rc)
7421 		bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
7422 	return rc;
7423 }
7424 
7425 static int bnxt_hwrm_func_reset(struct bnxt *bp)
7426 {
7427 	struct hwrm_func_reset_input req = {0};
7428 
7429 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESET, -1, -1);
7430 	req.enables = 0;
7431 
7432 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_RESET_TIMEOUT);
7433 }
7434 
7435 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
7436 {
7437 	int rc = 0;
7438 	struct hwrm_queue_qportcfg_input req = {0};
7439 	struct hwrm_queue_qportcfg_output *resp = bp->hwrm_cmd_resp_addr;
7440 	u8 i, j, *qptr;
7441 	bool no_rdma;
7442 
7443 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_QUEUE_QPORTCFG, -1, -1);
7444 
7445 	mutex_lock(&bp->hwrm_cmd_lock);
7446 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7447 	if (rc)
7448 		goto qportcfg_exit;
7449 
7450 	if (!resp->max_configurable_queues) {
7451 		rc = -EINVAL;
7452 		goto qportcfg_exit;
7453 	}
7454 	bp->max_tc = resp->max_configurable_queues;
7455 	bp->max_lltc = resp->max_configurable_lossless_queues;
7456 	if (bp->max_tc > BNXT_MAX_QUEUE)
7457 		bp->max_tc = BNXT_MAX_QUEUE;
7458 
7459 	no_rdma = !(bp->flags & BNXT_FLAG_ROCE_CAP);
7460 	qptr = &resp->queue_id0;
7461 	for (i = 0, j = 0; i < bp->max_tc; i++) {
7462 		bp->q_info[j].queue_id = *qptr;
7463 		bp->q_ids[i] = *qptr++;
7464 		bp->q_info[j].queue_profile = *qptr++;
7465 		bp->tc_to_qidx[j] = j;
7466 		if (!BNXT_CNPQ(bp->q_info[j].queue_profile) ||
7467 		    (no_rdma && BNXT_PF(bp)))
7468 			j++;
7469 	}
7470 	bp->max_q = bp->max_tc;
7471 	bp->max_tc = max_t(u8, j, 1);
7472 
7473 	if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG)
7474 		bp->max_tc = 1;
7475 
7476 	if (bp->max_lltc > bp->max_tc)
7477 		bp->max_lltc = bp->max_tc;
7478 
7479 qportcfg_exit:
7480 	mutex_unlock(&bp->hwrm_cmd_lock);
7481 	return rc;
7482 }
7483 
7484 static int __bnxt_hwrm_ver_get(struct bnxt *bp, bool silent)
7485 {
7486 	struct hwrm_ver_get_input req = {0};
7487 	int rc;
7488 
7489 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VER_GET, -1, -1);
7490 	req.hwrm_intf_maj = HWRM_VERSION_MAJOR;
7491 	req.hwrm_intf_min = HWRM_VERSION_MINOR;
7492 	req.hwrm_intf_upd = HWRM_VERSION_UPDATE;
7493 
7494 	rc = bnxt_hwrm_do_send_msg(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT,
7495 				   silent);
7496 	return rc;
7497 }
7498 
7499 static int bnxt_hwrm_ver_get(struct bnxt *bp)
7500 {
7501 	struct hwrm_ver_get_output *resp = bp->hwrm_cmd_resp_addr;
7502 	u16 fw_maj, fw_min, fw_bld, fw_rsv;
7503 	u32 dev_caps_cfg, hwrm_ver;
7504 	int rc, len;
7505 
7506 	bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN;
7507 	mutex_lock(&bp->hwrm_cmd_lock);
7508 	rc = __bnxt_hwrm_ver_get(bp, false);
7509 	if (rc)
7510 		goto hwrm_ver_get_exit;
7511 
7512 	memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
7513 
7514 	bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 |
7515 			     resp->hwrm_intf_min_8b << 8 |
7516 			     resp->hwrm_intf_upd_8b;
7517 	if (resp->hwrm_intf_maj_8b < 1) {
7518 		netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
7519 			    resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
7520 			    resp->hwrm_intf_upd_8b);
7521 		netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
7522 	}
7523 
7524 	hwrm_ver = HWRM_VERSION_MAJOR << 16 | HWRM_VERSION_MINOR << 8 |
7525 			HWRM_VERSION_UPDATE;
7526 
7527 	if (bp->hwrm_spec_code > hwrm_ver)
7528 		snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d",
7529 			 HWRM_VERSION_MAJOR, HWRM_VERSION_MINOR,
7530 			 HWRM_VERSION_UPDATE);
7531 	else
7532 		snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d",
7533 			 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
7534 			 resp->hwrm_intf_upd_8b);
7535 
7536 	fw_maj = le16_to_cpu(resp->hwrm_fw_major);
7537 	if (bp->hwrm_spec_code > 0x10803 && fw_maj) {
7538 		fw_min = le16_to_cpu(resp->hwrm_fw_minor);
7539 		fw_bld = le16_to_cpu(resp->hwrm_fw_build);
7540 		fw_rsv = le16_to_cpu(resp->hwrm_fw_patch);
7541 		len = FW_VER_STR_LEN;
7542 	} else {
7543 		fw_maj = resp->hwrm_fw_maj_8b;
7544 		fw_min = resp->hwrm_fw_min_8b;
7545 		fw_bld = resp->hwrm_fw_bld_8b;
7546 		fw_rsv = resp->hwrm_fw_rsvd_8b;
7547 		len = BC_HWRM_STR_LEN;
7548 	}
7549 	bp->fw_ver_code = BNXT_FW_VER_CODE(fw_maj, fw_min, fw_bld, fw_rsv);
7550 	snprintf(bp->fw_ver_str, len, "%d.%d.%d.%d", fw_maj, fw_min, fw_bld,
7551 		 fw_rsv);
7552 
7553 	if (strlen(resp->active_pkg_name)) {
7554 		int fw_ver_len = strlen(bp->fw_ver_str);
7555 
7556 		snprintf(bp->fw_ver_str + fw_ver_len,
7557 			 FW_VER_STR_LEN - fw_ver_len - 1, "/pkg %s",
7558 			 resp->active_pkg_name);
7559 		bp->fw_cap |= BNXT_FW_CAP_PKG_VER;
7560 	}
7561 
7562 	bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout);
7563 	if (!bp->hwrm_cmd_timeout)
7564 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
7565 
7566 	if (resp->hwrm_intf_maj_8b >= 1) {
7567 		bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len);
7568 		bp->hwrm_max_ext_req_len = le16_to_cpu(resp->max_ext_req_len);
7569 	}
7570 	if (bp->hwrm_max_ext_req_len < HWRM_MAX_REQ_LEN)
7571 		bp->hwrm_max_ext_req_len = HWRM_MAX_REQ_LEN;
7572 
7573 	bp->chip_num = le16_to_cpu(resp->chip_num);
7574 	bp->chip_rev = resp->chip_rev;
7575 	if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev &&
7576 	    !resp->chip_metal)
7577 		bp->flags |= BNXT_FLAG_CHIP_NITRO_A0;
7578 
7579 	dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg);
7580 	if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) &&
7581 	    (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED))
7582 		bp->fw_cap |= BNXT_FW_CAP_SHORT_CMD;
7583 
7584 	if (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_KONG_MB_CHNL_SUPPORTED)
7585 		bp->fw_cap |= BNXT_FW_CAP_KONG_MB_CHNL;
7586 
7587 	if (dev_caps_cfg &
7588 	    VER_GET_RESP_DEV_CAPS_CFG_FLOW_HANDLE_64BIT_SUPPORTED)
7589 		bp->fw_cap |= BNXT_FW_CAP_OVS_64BIT_HANDLE;
7590 
7591 	if (dev_caps_cfg &
7592 	    VER_GET_RESP_DEV_CAPS_CFG_TRUSTED_VF_SUPPORTED)
7593 		bp->fw_cap |= BNXT_FW_CAP_TRUSTED_VF;
7594 
7595 	if (dev_caps_cfg &
7596 	    VER_GET_RESP_DEV_CAPS_CFG_CFA_ADV_FLOW_MGNT_SUPPORTED)
7597 		bp->fw_cap |= BNXT_FW_CAP_CFA_ADV_FLOW;
7598 
7599 hwrm_ver_get_exit:
7600 	mutex_unlock(&bp->hwrm_cmd_lock);
7601 	return rc;
7602 }
7603 
7604 int bnxt_hwrm_fw_set_time(struct bnxt *bp)
7605 {
7606 	struct hwrm_fw_set_time_input req = {0};
7607 	struct tm tm;
7608 	time64_t now = ktime_get_real_seconds();
7609 
7610 	if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) ||
7611 	    bp->hwrm_spec_code < 0x10400)
7612 		return -EOPNOTSUPP;
7613 
7614 	time64_to_tm(now, 0, &tm);
7615 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FW_SET_TIME, -1, -1);
7616 	req.year = cpu_to_le16(1900 + tm.tm_year);
7617 	req.month = 1 + tm.tm_mon;
7618 	req.day = tm.tm_mday;
7619 	req.hour = tm.tm_hour;
7620 	req.minute = tm.tm_min;
7621 	req.second = tm.tm_sec;
7622 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7623 }
7624 
7625 static void bnxt_add_one_ctr(u64 hw, u64 *sw, u64 mask)
7626 {
7627 	u64 sw_tmp;
7628 
7629 	sw_tmp = (*sw & ~mask) | hw;
7630 	if (hw < (*sw & mask))
7631 		sw_tmp += mask + 1;
7632 	WRITE_ONCE(*sw, sw_tmp);
7633 }
7634 
7635 static void __bnxt_accumulate_stats(__le64 *hw_stats, u64 *sw_stats, u64 *masks,
7636 				    int count, bool ignore_zero)
7637 {
7638 	int i;
7639 
7640 	for (i = 0; i < count; i++) {
7641 		u64 hw = le64_to_cpu(READ_ONCE(hw_stats[i]));
7642 
7643 		if (ignore_zero && !hw)
7644 			continue;
7645 
7646 		if (masks[i] == -1ULL)
7647 			sw_stats[i] = hw;
7648 		else
7649 			bnxt_add_one_ctr(hw, &sw_stats[i], masks[i]);
7650 	}
7651 }
7652 
7653 static void bnxt_accumulate_stats(struct bnxt_stats_mem *stats)
7654 {
7655 	if (!stats->hw_stats)
7656 		return;
7657 
7658 	__bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats,
7659 				stats->hw_masks, stats->len / 8, false);
7660 }
7661 
7662 static void bnxt_accumulate_all_stats(struct bnxt *bp)
7663 {
7664 	struct bnxt_stats_mem *ring0_stats;
7665 	bool ignore_zero = false;
7666 	int i;
7667 
7668 	/* Chip bug.  Counter intermittently becomes 0. */
7669 	if (bp->flags & BNXT_FLAG_CHIP_P5)
7670 		ignore_zero = true;
7671 
7672 	for (i = 0; i < bp->cp_nr_rings; i++) {
7673 		struct bnxt_napi *bnapi = bp->bnapi[i];
7674 		struct bnxt_cp_ring_info *cpr;
7675 		struct bnxt_stats_mem *stats;
7676 
7677 		cpr = &bnapi->cp_ring;
7678 		stats = &cpr->stats;
7679 		if (!i)
7680 			ring0_stats = stats;
7681 		__bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats,
7682 					ring0_stats->hw_masks,
7683 					ring0_stats->len / 8, ignore_zero);
7684 	}
7685 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
7686 		struct bnxt_stats_mem *stats = &bp->port_stats;
7687 		__le64 *hw_stats = stats->hw_stats;
7688 		u64 *sw_stats = stats->sw_stats;
7689 		u64 *masks = stats->hw_masks;
7690 		int cnt;
7691 
7692 		cnt = sizeof(struct rx_port_stats) / 8;
7693 		__bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false);
7694 
7695 		hw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
7696 		sw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
7697 		masks += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
7698 		cnt = sizeof(struct tx_port_stats) / 8;
7699 		__bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false);
7700 	}
7701 	if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) {
7702 		bnxt_accumulate_stats(&bp->rx_port_stats_ext);
7703 		bnxt_accumulate_stats(&bp->tx_port_stats_ext);
7704 	}
7705 }
7706 
7707 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags)
7708 {
7709 	struct bnxt_pf_info *pf = &bp->pf;
7710 	struct hwrm_port_qstats_input req = {0};
7711 
7712 	if (!(bp->flags & BNXT_FLAG_PORT_STATS))
7713 		return 0;
7714 
7715 	if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))
7716 		return -EOPNOTSUPP;
7717 
7718 	req.flags = flags;
7719 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS, -1, -1);
7720 	req.port_id = cpu_to_le16(pf->port_id);
7721 	req.tx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map +
7722 					    BNXT_TX_PORT_STATS_BYTE_OFFSET);
7723 	req.rx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map);
7724 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7725 }
7726 
7727 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags)
7728 {
7729 	struct hwrm_port_qstats_ext_output *resp = bp->hwrm_cmd_resp_addr;
7730 	struct hwrm_queue_pri2cos_qcfg_input req2 = {0};
7731 	struct hwrm_port_qstats_ext_input req = {0};
7732 	struct bnxt_pf_info *pf = &bp->pf;
7733 	u32 tx_stat_size;
7734 	int rc;
7735 
7736 	if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT))
7737 		return 0;
7738 
7739 	if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))
7740 		return -EOPNOTSUPP;
7741 
7742 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS_EXT, -1, -1);
7743 	req.flags = flags;
7744 	req.port_id = cpu_to_le16(pf->port_id);
7745 	req.rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext));
7746 	req.rx_stat_host_addr = cpu_to_le64(bp->rx_port_stats_ext.hw_stats_map);
7747 	tx_stat_size = bp->tx_port_stats_ext.hw_stats ?
7748 		       sizeof(struct tx_port_stats_ext) : 0;
7749 	req.tx_stat_size = cpu_to_le16(tx_stat_size);
7750 	req.tx_stat_host_addr = cpu_to_le64(bp->tx_port_stats_ext.hw_stats_map);
7751 	mutex_lock(&bp->hwrm_cmd_lock);
7752 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7753 	if (!rc) {
7754 		bp->fw_rx_stats_ext_size = le16_to_cpu(resp->rx_stat_size) / 8;
7755 		bp->fw_tx_stats_ext_size = tx_stat_size ?
7756 			le16_to_cpu(resp->tx_stat_size) / 8 : 0;
7757 	} else {
7758 		bp->fw_rx_stats_ext_size = 0;
7759 		bp->fw_tx_stats_ext_size = 0;
7760 	}
7761 	if (flags)
7762 		goto qstats_done;
7763 
7764 	if (bp->fw_tx_stats_ext_size <=
7765 	    offsetof(struct tx_port_stats_ext, pfc_pri0_tx_duration_us) / 8) {
7766 		mutex_unlock(&bp->hwrm_cmd_lock);
7767 		bp->pri2cos_valid = 0;
7768 		return rc;
7769 	}
7770 
7771 	bnxt_hwrm_cmd_hdr_init(bp, &req2, HWRM_QUEUE_PRI2COS_QCFG, -1, -1);
7772 	req2.flags = cpu_to_le32(QUEUE_PRI2COS_QCFG_REQ_FLAGS_IVLAN);
7773 
7774 	rc = _hwrm_send_message(bp, &req2, sizeof(req2), HWRM_CMD_TIMEOUT);
7775 	if (!rc) {
7776 		struct hwrm_queue_pri2cos_qcfg_output *resp2;
7777 		u8 *pri2cos;
7778 		int i, j;
7779 
7780 		resp2 = bp->hwrm_cmd_resp_addr;
7781 		pri2cos = &resp2->pri0_cos_queue_id;
7782 		for (i = 0; i < 8; i++) {
7783 			u8 queue_id = pri2cos[i];
7784 			u8 queue_idx;
7785 
7786 			/* Per port queue IDs start from 0, 10, 20, etc */
7787 			queue_idx = queue_id % 10;
7788 			if (queue_idx > BNXT_MAX_QUEUE) {
7789 				bp->pri2cos_valid = false;
7790 				goto qstats_done;
7791 			}
7792 			for (j = 0; j < bp->max_q; j++) {
7793 				if (bp->q_ids[j] == queue_id)
7794 					bp->pri2cos_idx[i] = queue_idx;
7795 			}
7796 		}
7797 		bp->pri2cos_valid = 1;
7798 	}
7799 qstats_done:
7800 	mutex_unlock(&bp->hwrm_cmd_lock);
7801 	return rc;
7802 }
7803 
7804 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
7805 {
7806 	if (bp->vxlan_fw_dst_port_id != INVALID_HW_RING_ID)
7807 		bnxt_hwrm_tunnel_dst_port_free(
7808 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
7809 	if (bp->nge_fw_dst_port_id != INVALID_HW_RING_ID)
7810 		bnxt_hwrm_tunnel_dst_port_free(
7811 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
7812 }
7813 
7814 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
7815 {
7816 	int rc, i;
7817 	u32 tpa_flags = 0;
7818 
7819 	if (set_tpa)
7820 		tpa_flags = bp->flags & BNXT_FLAG_TPA;
7821 	else if (BNXT_NO_FW_ACCESS(bp))
7822 		return 0;
7823 	for (i = 0; i < bp->nr_vnics; i++) {
7824 		rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
7825 		if (rc) {
7826 			netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
7827 				   i, rc);
7828 			return rc;
7829 		}
7830 	}
7831 	return 0;
7832 }
7833 
7834 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
7835 {
7836 	int i;
7837 
7838 	for (i = 0; i < bp->nr_vnics; i++)
7839 		bnxt_hwrm_vnic_set_rss(bp, i, false);
7840 }
7841 
7842 static void bnxt_clear_vnic(struct bnxt *bp)
7843 {
7844 	if (!bp->vnic_info)
7845 		return;
7846 
7847 	bnxt_hwrm_clear_vnic_filter(bp);
7848 	if (!(bp->flags & BNXT_FLAG_CHIP_P5)) {
7849 		/* clear all RSS setting before free vnic ctx */
7850 		bnxt_hwrm_clear_vnic_rss(bp);
7851 		bnxt_hwrm_vnic_ctx_free(bp);
7852 	}
7853 	/* before free the vnic, undo the vnic tpa settings */
7854 	if (bp->flags & BNXT_FLAG_TPA)
7855 		bnxt_set_tpa(bp, false);
7856 	bnxt_hwrm_vnic_free(bp);
7857 	if (bp->flags & BNXT_FLAG_CHIP_P5)
7858 		bnxt_hwrm_vnic_ctx_free(bp);
7859 }
7860 
7861 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
7862 				    bool irq_re_init)
7863 {
7864 	bnxt_clear_vnic(bp);
7865 	bnxt_hwrm_ring_free(bp, close_path);
7866 	bnxt_hwrm_ring_grp_free(bp);
7867 	if (irq_re_init) {
7868 		bnxt_hwrm_stat_ctx_free(bp);
7869 		bnxt_hwrm_free_tunnel_ports(bp);
7870 	}
7871 }
7872 
7873 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode)
7874 {
7875 	struct hwrm_func_cfg_input req = {0};
7876 
7877 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
7878 	req.fid = cpu_to_le16(0xffff);
7879 	req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE);
7880 	if (br_mode == BRIDGE_MODE_VEB)
7881 		req.evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB;
7882 	else if (br_mode == BRIDGE_MODE_VEPA)
7883 		req.evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA;
7884 	else
7885 		return -EINVAL;
7886 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7887 }
7888 
7889 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size)
7890 {
7891 	struct hwrm_func_cfg_input req = {0};
7892 
7893 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803)
7894 		return 0;
7895 
7896 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
7897 	req.fid = cpu_to_le16(0xffff);
7898 	req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE);
7899 	req.options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64;
7900 	if (size == 128)
7901 		req.options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128;
7902 
7903 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7904 }
7905 
7906 static int __bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
7907 {
7908 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
7909 	int rc;
7910 
7911 	if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG)
7912 		goto skip_rss_ctx;
7913 
7914 	/* allocate context for vnic */
7915 	rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0);
7916 	if (rc) {
7917 		netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
7918 			   vnic_id, rc);
7919 		goto vnic_setup_err;
7920 	}
7921 	bp->rsscos_nr_ctxs++;
7922 
7923 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
7924 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1);
7925 		if (rc) {
7926 			netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n",
7927 				   vnic_id, rc);
7928 			goto vnic_setup_err;
7929 		}
7930 		bp->rsscos_nr_ctxs++;
7931 	}
7932 
7933 skip_rss_ctx:
7934 	/* configure default vnic, ring grp */
7935 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
7936 	if (rc) {
7937 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
7938 			   vnic_id, rc);
7939 		goto vnic_setup_err;
7940 	}
7941 
7942 	/* Enable RSS hashing on vnic */
7943 	rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
7944 	if (rc) {
7945 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
7946 			   vnic_id, rc);
7947 		goto vnic_setup_err;
7948 	}
7949 
7950 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
7951 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
7952 		if (rc) {
7953 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
7954 				   vnic_id, rc);
7955 		}
7956 	}
7957 
7958 vnic_setup_err:
7959 	return rc;
7960 }
7961 
7962 static int __bnxt_setup_vnic_p5(struct bnxt *bp, u16 vnic_id)
7963 {
7964 	int rc, i, nr_ctxs;
7965 
7966 	nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings);
7967 	for (i = 0; i < nr_ctxs; i++) {
7968 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, i);
7969 		if (rc) {
7970 			netdev_err(bp->dev, "hwrm vnic %d ctx %d alloc failure rc: %x\n",
7971 				   vnic_id, i, rc);
7972 			break;
7973 		}
7974 		bp->rsscos_nr_ctxs++;
7975 	}
7976 	if (i < nr_ctxs)
7977 		return -ENOMEM;
7978 
7979 	rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic_id, true);
7980 	if (rc) {
7981 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n",
7982 			   vnic_id, rc);
7983 		return rc;
7984 	}
7985 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
7986 	if (rc) {
7987 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
7988 			   vnic_id, rc);
7989 		return rc;
7990 	}
7991 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
7992 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
7993 		if (rc) {
7994 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
7995 				   vnic_id, rc);
7996 		}
7997 	}
7998 	return rc;
7999 }
8000 
8001 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
8002 {
8003 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8004 		return __bnxt_setup_vnic_p5(bp, vnic_id);
8005 	else
8006 		return __bnxt_setup_vnic(bp, vnic_id);
8007 }
8008 
8009 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
8010 {
8011 #ifdef CONFIG_RFS_ACCEL
8012 	int i, rc = 0;
8013 
8014 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8015 		return 0;
8016 
8017 	for (i = 0; i < bp->rx_nr_rings; i++) {
8018 		struct bnxt_vnic_info *vnic;
8019 		u16 vnic_id = i + 1;
8020 		u16 ring_id = i;
8021 
8022 		if (vnic_id >= bp->nr_vnics)
8023 			break;
8024 
8025 		vnic = &bp->vnic_info[vnic_id];
8026 		vnic->flags |= BNXT_VNIC_RFS_FLAG;
8027 		if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
8028 			vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG;
8029 		rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1);
8030 		if (rc) {
8031 			netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
8032 				   vnic_id, rc);
8033 			break;
8034 		}
8035 		rc = bnxt_setup_vnic(bp, vnic_id);
8036 		if (rc)
8037 			break;
8038 	}
8039 	return rc;
8040 #else
8041 	return 0;
8042 #endif
8043 }
8044 
8045 /* Allow PF and VF with default VLAN to be in promiscuous mode */
8046 static bool bnxt_promisc_ok(struct bnxt *bp)
8047 {
8048 #ifdef CONFIG_BNXT_SRIOV
8049 	if (BNXT_VF(bp) && !bp->vf.vlan)
8050 		return false;
8051 #endif
8052 	return true;
8053 }
8054 
8055 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp)
8056 {
8057 	unsigned int rc = 0;
8058 
8059 	rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1);
8060 	if (rc) {
8061 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
8062 			   rc);
8063 		return rc;
8064 	}
8065 
8066 	rc = bnxt_hwrm_vnic_cfg(bp, 1);
8067 	if (rc) {
8068 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
8069 			   rc);
8070 		return rc;
8071 	}
8072 	return rc;
8073 }
8074 
8075 static int bnxt_cfg_rx_mode(struct bnxt *);
8076 static bool bnxt_mc_list_updated(struct bnxt *, u32 *);
8077 
8078 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
8079 {
8080 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
8081 	int rc = 0;
8082 	unsigned int rx_nr_rings = bp->rx_nr_rings;
8083 
8084 	if (irq_re_init) {
8085 		rc = bnxt_hwrm_stat_ctx_alloc(bp);
8086 		if (rc) {
8087 			netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
8088 				   rc);
8089 			goto err_out;
8090 		}
8091 	}
8092 
8093 	rc = bnxt_hwrm_ring_alloc(bp);
8094 	if (rc) {
8095 		netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
8096 		goto err_out;
8097 	}
8098 
8099 	rc = bnxt_hwrm_ring_grp_alloc(bp);
8100 	if (rc) {
8101 		netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
8102 		goto err_out;
8103 	}
8104 
8105 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
8106 		rx_nr_rings--;
8107 
8108 	/* default vnic 0 */
8109 	rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings);
8110 	if (rc) {
8111 		netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
8112 		goto err_out;
8113 	}
8114 
8115 	rc = bnxt_setup_vnic(bp, 0);
8116 	if (rc)
8117 		goto err_out;
8118 
8119 	if (bp->flags & BNXT_FLAG_RFS) {
8120 		rc = bnxt_alloc_rfs_vnics(bp);
8121 		if (rc)
8122 			goto err_out;
8123 	}
8124 
8125 	if (bp->flags & BNXT_FLAG_TPA) {
8126 		rc = bnxt_set_tpa(bp, true);
8127 		if (rc)
8128 			goto err_out;
8129 	}
8130 
8131 	if (BNXT_VF(bp))
8132 		bnxt_update_vf_mac(bp);
8133 
8134 	/* Filter for default vnic 0 */
8135 	rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
8136 	if (rc) {
8137 		netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
8138 		goto err_out;
8139 	}
8140 	vnic->uc_filter_count = 1;
8141 
8142 	vnic->rx_mask = 0;
8143 	if (bp->dev->flags & IFF_BROADCAST)
8144 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
8145 
8146 	if ((bp->dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
8147 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
8148 
8149 	if (bp->dev->flags & IFF_ALLMULTI) {
8150 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
8151 		vnic->mc_list_count = 0;
8152 	} else {
8153 		u32 mask = 0;
8154 
8155 		bnxt_mc_list_updated(bp, &mask);
8156 		vnic->rx_mask |= mask;
8157 	}
8158 
8159 	rc = bnxt_cfg_rx_mode(bp);
8160 	if (rc)
8161 		goto err_out;
8162 
8163 	rc = bnxt_hwrm_set_coal(bp);
8164 	if (rc)
8165 		netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
8166 				rc);
8167 
8168 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
8169 		rc = bnxt_setup_nitroa0_vnic(bp);
8170 		if (rc)
8171 			netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n",
8172 				   rc);
8173 	}
8174 
8175 	if (BNXT_VF(bp)) {
8176 		bnxt_hwrm_func_qcfg(bp);
8177 		netdev_update_features(bp->dev);
8178 	}
8179 
8180 	return 0;
8181 
8182 err_out:
8183 	bnxt_hwrm_resource_free(bp, 0, true);
8184 
8185 	return rc;
8186 }
8187 
8188 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
8189 {
8190 	bnxt_hwrm_resource_free(bp, 1, irq_re_init);
8191 	return 0;
8192 }
8193 
8194 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
8195 {
8196 	bnxt_init_cp_rings(bp);
8197 	bnxt_init_rx_rings(bp);
8198 	bnxt_init_tx_rings(bp);
8199 	bnxt_init_ring_grps(bp, irq_re_init);
8200 	bnxt_init_vnics(bp);
8201 
8202 	return bnxt_init_chip(bp, irq_re_init);
8203 }
8204 
8205 static int bnxt_set_real_num_queues(struct bnxt *bp)
8206 {
8207 	int rc;
8208 	struct net_device *dev = bp->dev;
8209 
8210 	rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings -
8211 					  bp->tx_nr_rings_xdp);
8212 	if (rc)
8213 		return rc;
8214 
8215 	rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
8216 	if (rc)
8217 		return rc;
8218 
8219 #ifdef CONFIG_RFS_ACCEL
8220 	if (bp->flags & BNXT_FLAG_RFS)
8221 		dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
8222 #endif
8223 
8224 	return rc;
8225 }
8226 
8227 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
8228 			   bool shared)
8229 {
8230 	int _rx = *rx, _tx = *tx;
8231 
8232 	if (shared) {
8233 		*rx = min_t(int, _rx, max);
8234 		*tx = min_t(int, _tx, max);
8235 	} else {
8236 		if (max < 2)
8237 			return -ENOMEM;
8238 
8239 		while (_rx + _tx > max) {
8240 			if (_rx > _tx && _rx > 1)
8241 				_rx--;
8242 			else if (_tx > 1)
8243 				_tx--;
8244 		}
8245 		*rx = _rx;
8246 		*tx = _tx;
8247 	}
8248 	return 0;
8249 }
8250 
8251 static void bnxt_setup_msix(struct bnxt *bp)
8252 {
8253 	const int len = sizeof(bp->irq_tbl[0].name);
8254 	struct net_device *dev = bp->dev;
8255 	int tcs, i;
8256 
8257 	tcs = netdev_get_num_tc(dev);
8258 	if (tcs) {
8259 		int i, off, count;
8260 
8261 		for (i = 0; i < tcs; i++) {
8262 			count = bp->tx_nr_rings_per_tc;
8263 			off = i * count;
8264 			netdev_set_tc_queue(dev, i, count, off);
8265 		}
8266 	}
8267 
8268 	for (i = 0; i < bp->cp_nr_rings; i++) {
8269 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
8270 		char *attr;
8271 
8272 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
8273 			attr = "TxRx";
8274 		else if (i < bp->rx_nr_rings)
8275 			attr = "rx";
8276 		else
8277 			attr = "tx";
8278 
8279 		snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name,
8280 			 attr, i);
8281 		bp->irq_tbl[map_idx].handler = bnxt_msix;
8282 	}
8283 }
8284 
8285 static void bnxt_setup_inta(struct bnxt *bp)
8286 {
8287 	const int len = sizeof(bp->irq_tbl[0].name);
8288 
8289 	if (netdev_get_num_tc(bp->dev))
8290 		netdev_reset_tc(bp->dev);
8291 
8292 	snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx",
8293 		 0);
8294 	bp->irq_tbl[0].handler = bnxt_inta;
8295 }
8296 
8297 static int bnxt_setup_int_mode(struct bnxt *bp)
8298 {
8299 	int rc;
8300 
8301 	if (bp->flags & BNXT_FLAG_USING_MSIX)
8302 		bnxt_setup_msix(bp);
8303 	else
8304 		bnxt_setup_inta(bp);
8305 
8306 	rc = bnxt_set_real_num_queues(bp);
8307 	return rc;
8308 }
8309 
8310 #ifdef CONFIG_RFS_ACCEL
8311 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp)
8312 {
8313 	return bp->hw_resc.max_rsscos_ctxs;
8314 }
8315 
8316 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp)
8317 {
8318 	return bp->hw_resc.max_vnics;
8319 }
8320 #endif
8321 
8322 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp)
8323 {
8324 	return bp->hw_resc.max_stat_ctxs;
8325 }
8326 
8327 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp)
8328 {
8329 	return bp->hw_resc.max_cp_rings;
8330 }
8331 
8332 static unsigned int bnxt_get_max_func_cp_rings_for_en(struct bnxt *bp)
8333 {
8334 	unsigned int cp = bp->hw_resc.max_cp_rings;
8335 
8336 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
8337 		cp -= bnxt_get_ulp_msix_num(bp);
8338 
8339 	return cp;
8340 }
8341 
8342 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp)
8343 {
8344 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
8345 
8346 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8347 		return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_nqs);
8348 
8349 	return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings);
8350 }
8351 
8352 static void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs)
8353 {
8354 	bp->hw_resc.max_irqs = max_irqs;
8355 }
8356 
8357 unsigned int bnxt_get_avail_cp_rings_for_en(struct bnxt *bp)
8358 {
8359 	unsigned int cp;
8360 
8361 	cp = bnxt_get_max_func_cp_rings_for_en(bp);
8362 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8363 		return cp - bp->rx_nr_rings - bp->tx_nr_rings;
8364 	else
8365 		return cp - bp->cp_nr_rings;
8366 }
8367 
8368 unsigned int bnxt_get_avail_stat_ctxs_for_en(struct bnxt *bp)
8369 {
8370 	return bnxt_get_max_func_stat_ctxs(bp) - bnxt_get_func_stat_ctxs(bp);
8371 }
8372 
8373 int bnxt_get_avail_msix(struct bnxt *bp, int num)
8374 {
8375 	int max_cp = bnxt_get_max_func_cp_rings(bp);
8376 	int max_irq = bnxt_get_max_func_irqs(bp);
8377 	int total_req = bp->cp_nr_rings + num;
8378 	int max_idx, avail_msix;
8379 
8380 	max_idx = bp->total_irqs;
8381 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
8382 		max_idx = min_t(int, bp->total_irqs, max_cp);
8383 	avail_msix = max_idx - bp->cp_nr_rings;
8384 	if (!BNXT_NEW_RM(bp) || avail_msix >= num)
8385 		return avail_msix;
8386 
8387 	if (max_irq < total_req) {
8388 		num = max_irq - bp->cp_nr_rings;
8389 		if (num <= 0)
8390 			return 0;
8391 	}
8392 	return num;
8393 }
8394 
8395 static int bnxt_get_num_msix(struct bnxt *bp)
8396 {
8397 	if (!BNXT_NEW_RM(bp))
8398 		return bnxt_get_max_func_irqs(bp);
8399 
8400 	return bnxt_nq_rings_in_use(bp);
8401 }
8402 
8403 static int bnxt_init_msix(struct bnxt *bp)
8404 {
8405 	int i, total_vecs, max, rc = 0, min = 1, ulp_msix;
8406 	struct msix_entry *msix_ent;
8407 
8408 	total_vecs = bnxt_get_num_msix(bp);
8409 	max = bnxt_get_max_func_irqs(bp);
8410 	if (total_vecs > max)
8411 		total_vecs = max;
8412 
8413 	if (!total_vecs)
8414 		return 0;
8415 
8416 	msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
8417 	if (!msix_ent)
8418 		return -ENOMEM;
8419 
8420 	for (i = 0; i < total_vecs; i++) {
8421 		msix_ent[i].entry = i;
8422 		msix_ent[i].vector = 0;
8423 	}
8424 
8425 	if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
8426 		min = 2;
8427 
8428 	total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
8429 	ulp_msix = bnxt_get_ulp_msix_num(bp);
8430 	if (total_vecs < 0 || total_vecs < ulp_msix) {
8431 		rc = -ENODEV;
8432 		goto msix_setup_exit;
8433 	}
8434 
8435 	bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
8436 	if (bp->irq_tbl) {
8437 		for (i = 0; i < total_vecs; i++)
8438 			bp->irq_tbl[i].vector = msix_ent[i].vector;
8439 
8440 		bp->total_irqs = total_vecs;
8441 		/* Trim rings based upon num of vectors allocated */
8442 		rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
8443 				     total_vecs - ulp_msix, min == 1);
8444 		if (rc)
8445 			goto msix_setup_exit;
8446 
8447 		bp->cp_nr_rings = (min == 1) ?
8448 				  max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
8449 				  bp->tx_nr_rings + bp->rx_nr_rings;
8450 
8451 	} else {
8452 		rc = -ENOMEM;
8453 		goto msix_setup_exit;
8454 	}
8455 	bp->flags |= BNXT_FLAG_USING_MSIX;
8456 	kfree(msix_ent);
8457 	return 0;
8458 
8459 msix_setup_exit:
8460 	netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc);
8461 	kfree(bp->irq_tbl);
8462 	bp->irq_tbl = NULL;
8463 	pci_disable_msix(bp->pdev);
8464 	kfree(msix_ent);
8465 	return rc;
8466 }
8467 
8468 static int bnxt_init_inta(struct bnxt *bp)
8469 {
8470 	bp->irq_tbl = kcalloc(1, sizeof(struct bnxt_irq), GFP_KERNEL);
8471 	if (!bp->irq_tbl)
8472 		return -ENOMEM;
8473 
8474 	bp->total_irqs = 1;
8475 	bp->rx_nr_rings = 1;
8476 	bp->tx_nr_rings = 1;
8477 	bp->cp_nr_rings = 1;
8478 	bp->flags |= BNXT_FLAG_SHARED_RINGS;
8479 	bp->irq_tbl[0].vector = bp->pdev->irq;
8480 	return 0;
8481 }
8482 
8483 static int bnxt_init_int_mode(struct bnxt *bp)
8484 {
8485 	int rc = 0;
8486 
8487 	if (bp->flags & BNXT_FLAG_MSIX_CAP)
8488 		rc = bnxt_init_msix(bp);
8489 
8490 	if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) {
8491 		/* fallback to INTA */
8492 		rc = bnxt_init_inta(bp);
8493 	}
8494 	return rc;
8495 }
8496 
8497 static void bnxt_clear_int_mode(struct bnxt *bp)
8498 {
8499 	if (bp->flags & BNXT_FLAG_USING_MSIX)
8500 		pci_disable_msix(bp->pdev);
8501 
8502 	kfree(bp->irq_tbl);
8503 	bp->irq_tbl = NULL;
8504 	bp->flags &= ~BNXT_FLAG_USING_MSIX;
8505 }
8506 
8507 int bnxt_reserve_rings(struct bnxt *bp, bool irq_re_init)
8508 {
8509 	int tcs = netdev_get_num_tc(bp->dev);
8510 	bool irq_cleared = false;
8511 	int rc;
8512 
8513 	if (!bnxt_need_reserve_rings(bp))
8514 		return 0;
8515 
8516 	if (irq_re_init && BNXT_NEW_RM(bp) &&
8517 	    bnxt_get_num_msix(bp) != bp->total_irqs) {
8518 		bnxt_ulp_irq_stop(bp);
8519 		bnxt_clear_int_mode(bp);
8520 		irq_cleared = true;
8521 	}
8522 	rc = __bnxt_reserve_rings(bp);
8523 	if (irq_cleared) {
8524 		if (!rc)
8525 			rc = bnxt_init_int_mode(bp);
8526 		bnxt_ulp_irq_restart(bp, rc);
8527 	}
8528 	if (rc) {
8529 		netdev_err(bp->dev, "ring reservation/IRQ init failure rc: %d\n", rc);
8530 		return rc;
8531 	}
8532 	if (tcs && (bp->tx_nr_rings_per_tc * tcs != bp->tx_nr_rings)) {
8533 		netdev_err(bp->dev, "tx ring reservation failure\n");
8534 		netdev_reset_tc(bp->dev);
8535 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
8536 		return -ENOMEM;
8537 	}
8538 	return 0;
8539 }
8540 
8541 static void bnxt_free_irq(struct bnxt *bp)
8542 {
8543 	struct bnxt_irq *irq;
8544 	int i;
8545 
8546 #ifdef CONFIG_RFS_ACCEL
8547 	free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
8548 	bp->dev->rx_cpu_rmap = NULL;
8549 #endif
8550 	if (!bp->irq_tbl || !bp->bnapi)
8551 		return;
8552 
8553 	for (i = 0; i < bp->cp_nr_rings; i++) {
8554 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
8555 
8556 		irq = &bp->irq_tbl[map_idx];
8557 		if (irq->requested) {
8558 			if (irq->have_cpumask) {
8559 				irq_set_affinity_hint(irq->vector, NULL);
8560 				free_cpumask_var(irq->cpu_mask);
8561 				irq->have_cpumask = 0;
8562 			}
8563 			free_irq(irq->vector, bp->bnapi[i]);
8564 		}
8565 
8566 		irq->requested = 0;
8567 	}
8568 }
8569 
8570 static int bnxt_request_irq(struct bnxt *bp)
8571 {
8572 	int i, j, rc = 0;
8573 	unsigned long flags = 0;
8574 #ifdef CONFIG_RFS_ACCEL
8575 	struct cpu_rmap *rmap;
8576 #endif
8577 
8578 	rc = bnxt_setup_int_mode(bp);
8579 	if (rc) {
8580 		netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
8581 			   rc);
8582 		return rc;
8583 	}
8584 #ifdef CONFIG_RFS_ACCEL
8585 	rmap = bp->dev->rx_cpu_rmap;
8586 #endif
8587 	if (!(bp->flags & BNXT_FLAG_USING_MSIX))
8588 		flags = IRQF_SHARED;
8589 
8590 	for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
8591 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
8592 		struct bnxt_irq *irq = &bp->irq_tbl[map_idx];
8593 
8594 #ifdef CONFIG_RFS_ACCEL
8595 		if (rmap && bp->bnapi[i]->rx_ring) {
8596 			rc = irq_cpu_rmap_add(rmap, irq->vector);
8597 			if (rc)
8598 				netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
8599 					    j);
8600 			j++;
8601 		}
8602 #endif
8603 		rc = request_irq(irq->vector, irq->handler, flags, irq->name,
8604 				 bp->bnapi[i]);
8605 		if (rc)
8606 			break;
8607 
8608 		irq->requested = 1;
8609 
8610 		if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) {
8611 			int numa_node = dev_to_node(&bp->pdev->dev);
8612 
8613 			irq->have_cpumask = 1;
8614 			cpumask_set_cpu(cpumask_local_spread(i, numa_node),
8615 					irq->cpu_mask);
8616 			rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask);
8617 			if (rc) {
8618 				netdev_warn(bp->dev,
8619 					    "Set affinity failed, IRQ = %d\n",
8620 					    irq->vector);
8621 				break;
8622 			}
8623 		}
8624 	}
8625 	return rc;
8626 }
8627 
8628 static void bnxt_del_napi(struct bnxt *bp)
8629 {
8630 	int i;
8631 
8632 	if (!bp->bnapi)
8633 		return;
8634 
8635 	for (i = 0; i < bp->cp_nr_rings; i++) {
8636 		struct bnxt_napi *bnapi = bp->bnapi[i];
8637 
8638 		napi_hash_del(&bnapi->napi);
8639 		netif_napi_del(&bnapi->napi);
8640 	}
8641 	/* We called napi_hash_del() before netif_napi_del(), we need
8642 	 * to respect an RCU grace period before freeing napi structures.
8643 	 */
8644 	synchronize_net();
8645 }
8646 
8647 static void bnxt_init_napi(struct bnxt *bp)
8648 {
8649 	int i;
8650 	unsigned int cp_nr_rings = bp->cp_nr_rings;
8651 	struct bnxt_napi *bnapi;
8652 
8653 	if (bp->flags & BNXT_FLAG_USING_MSIX) {
8654 		int (*poll_fn)(struct napi_struct *, int) = bnxt_poll;
8655 
8656 		if (bp->flags & BNXT_FLAG_CHIP_P5)
8657 			poll_fn = bnxt_poll_p5;
8658 		else if (BNXT_CHIP_TYPE_NITRO_A0(bp))
8659 			cp_nr_rings--;
8660 		for (i = 0; i < cp_nr_rings; i++) {
8661 			bnapi = bp->bnapi[i];
8662 			netif_napi_add(bp->dev, &bnapi->napi, poll_fn, 64);
8663 		}
8664 		if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
8665 			bnapi = bp->bnapi[cp_nr_rings];
8666 			netif_napi_add(bp->dev, &bnapi->napi,
8667 				       bnxt_poll_nitroa0, 64);
8668 		}
8669 	} else {
8670 		bnapi = bp->bnapi[0];
8671 		netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64);
8672 	}
8673 }
8674 
8675 static void bnxt_disable_napi(struct bnxt *bp)
8676 {
8677 	int i;
8678 
8679 	if (!bp->bnapi)
8680 		return;
8681 
8682 	for (i = 0; i < bp->cp_nr_rings; i++) {
8683 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
8684 
8685 		if (bp->bnapi[i]->rx_ring)
8686 			cancel_work_sync(&cpr->dim.work);
8687 
8688 		napi_disable(&bp->bnapi[i]->napi);
8689 	}
8690 }
8691 
8692 static void bnxt_enable_napi(struct bnxt *bp)
8693 {
8694 	int i;
8695 
8696 	for (i = 0; i < bp->cp_nr_rings; i++) {
8697 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
8698 		bp->bnapi[i]->in_reset = false;
8699 
8700 		if (bp->bnapi[i]->rx_ring) {
8701 			INIT_WORK(&cpr->dim.work, bnxt_dim_work);
8702 			cpr->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
8703 		}
8704 		napi_enable(&bp->bnapi[i]->napi);
8705 	}
8706 }
8707 
8708 void bnxt_tx_disable(struct bnxt *bp)
8709 {
8710 	int i;
8711 	struct bnxt_tx_ring_info *txr;
8712 
8713 	if (bp->tx_ring) {
8714 		for (i = 0; i < bp->tx_nr_rings; i++) {
8715 			txr = &bp->tx_ring[i];
8716 			txr->dev_state = BNXT_DEV_STATE_CLOSING;
8717 		}
8718 	}
8719 	/* Stop all TX queues */
8720 	netif_tx_disable(bp->dev);
8721 	netif_carrier_off(bp->dev);
8722 }
8723 
8724 void bnxt_tx_enable(struct bnxt *bp)
8725 {
8726 	int i;
8727 	struct bnxt_tx_ring_info *txr;
8728 
8729 	for (i = 0; i < bp->tx_nr_rings; i++) {
8730 		txr = &bp->tx_ring[i];
8731 		txr->dev_state = 0;
8732 	}
8733 	netif_tx_wake_all_queues(bp->dev);
8734 	if (bp->link_info.link_up)
8735 		netif_carrier_on(bp->dev);
8736 }
8737 
8738 static void bnxt_report_link(struct bnxt *bp)
8739 {
8740 	if (bp->link_info.link_up) {
8741 		const char *duplex;
8742 		const char *flow_ctrl;
8743 		u32 speed;
8744 		u16 fec;
8745 
8746 		netif_carrier_on(bp->dev);
8747 		if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
8748 			duplex = "full";
8749 		else
8750 			duplex = "half";
8751 		if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
8752 			flow_ctrl = "ON - receive & transmit";
8753 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
8754 			flow_ctrl = "ON - transmit";
8755 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
8756 			flow_ctrl = "ON - receive";
8757 		else
8758 			flow_ctrl = "none";
8759 		speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
8760 		netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s duplex, Flow control: %s\n",
8761 			    speed, duplex, flow_ctrl);
8762 		if (bp->flags & BNXT_FLAG_EEE_CAP)
8763 			netdev_info(bp->dev, "EEE is %s\n",
8764 				    bp->eee.eee_active ? "active" :
8765 							 "not active");
8766 		fec = bp->link_info.fec_cfg;
8767 		if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED))
8768 			netdev_info(bp->dev, "FEC autoneg %s encodings: %s\n",
8769 				    (fec & BNXT_FEC_AUTONEG) ? "on" : "off",
8770 				    (fec & BNXT_FEC_ENC_BASE_R) ? "BaseR" :
8771 				     (fec & BNXT_FEC_ENC_RS) ? "RS" : "None");
8772 	} else {
8773 		netif_carrier_off(bp->dev);
8774 		netdev_err(bp->dev, "NIC Link is Down\n");
8775 	}
8776 }
8777 
8778 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp)
8779 {
8780 	int rc = 0;
8781 	struct hwrm_port_phy_qcaps_input req = {0};
8782 	struct hwrm_port_phy_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
8783 	struct bnxt_link_info *link_info = &bp->link_info;
8784 
8785 	bp->flags &= ~BNXT_FLAG_EEE_CAP;
8786 	if (bp->test_info)
8787 		bp->test_info->flags &= ~(BNXT_TEST_FL_EXT_LPBK |
8788 					  BNXT_TEST_FL_AN_PHY_LPBK);
8789 	if (bp->hwrm_spec_code < 0x10201)
8790 		return 0;
8791 
8792 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCAPS, -1, -1);
8793 
8794 	mutex_lock(&bp->hwrm_cmd_lock);
8795 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8796 	if (rc)
8797 		goto hwrm_phy_qcaps_exit;
8798 
8799 	if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) {
8800 		struct ethtool_eee *eee = &bp->eee;
8801 		u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode);
8802 
8803 		bp->flags |= BNXT_FLAG_EEE_CAP;
8804 		eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
8805 		bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) &
8806 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK;
8807 		bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) &
8808 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK;
8809 	}
8810 	if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EXTERNAL_LPBK_SUPPORTED) {
8811 		if (bp->test_info)
8812 			bp->test_info->flags |= BNXT_TEST_FL_EXT_LPBK;
8813 	}
8814 	if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_AUTONEG_LPBK_SUPPORTED) {
8815 		if (bp->test_info)
8816 			bp->test_info->flags |= BNXT_TEST_FL_AN_PHY_LPBK;
8817 	}
8818 	if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_SHARED_PHY_CFG_SUPPORTED) {
8819 		if (BNXT_PF(bp))
8820 			bp->fw_cap |= BNXT_FW_CAP_SHARED_PORT_CFG;
8821 	}
8822 	if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_CUMULATIVE_COUNTERS_ON_RESET)
8823 		bp->fw_cap |= BNXT_FW_CAP_PORT_STATS_NO_RESET;
8824 
8825 	if (resp->supported_speeds_auto_mode)
8826 		link_info->support_auto_speeds =
8827 			le16_to_cpu(resp->supported_speeds_auto_mode);
8828 
8829 	bp->port_count = resp->port_cnt;
8830 
8831 hwrm_phy_qcaps_exit:
8832 	mutex_unlock(&bp->hwrm_cmd_lock);
8833 	return rc;
8834 }
8835 
8836 static int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
8837 {
8838 	int rc = 0;
8839 	struct bnxt_link_info *link_info = &bp->link_info;
8840 	struct hwrm_port_phy_qcfg_input req = {0};
8841 	struct hwrm_port_phy_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
8842 	u8 link_up = link_info->link_up;
8843 	u16 diff;
8844 
8845 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCFG, -1, -1);
8846 
8847 	mutex_lock(&bp->hwrm_cmd_lock);
8848 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8849 	if (rc) {
8850 		mutex_unlock(&bp->hwrm_cmd_lock);
8851 		return rc;
8852 	}
8853 
8854 	memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
8855 	link_info->phy_link_status = resp->link;
8856 	link_info->duplex = resp->duplex_cfg;
8857 	if (bp->hwrm_spec_code >= 0x10800)
8858 		link_info->duplex = resp->duplex_state;
8859 	link_info->pause = resp->pause;
8860 	link_info->auto_mode = resp->auto_mode;
8861 	link_info->auto_pause_setting = resp->auto_pause;
8862 	link_info->lp_pause = resp->link_partner_adv_pause;
8863 	link_info->force_pause_setting = resp->force_pause;
8864 	link_info->duplex_setting = resp->duplex_cfg;
8865 	if (link_info->phy_link_status == BNXT_LINK_LINK)
8866 		link_info->link_speed = le16_to_cpu(resp->link_speed);
8867 	else
8868 		link_info->link_speed = 0;
8869 	link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
8870 	link_info->support_speeds = le16_to_cpu(resp->support_speeds);
8871 	link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
8872 	link_info->lp_auto_link_speeds =
8873 		le16_to_cpu(resp->link_partner_adv_speeds);
8874 	link_info->preemphasis = le32_to_cpu(resp->preemphasis);
8875 	link_info->phy_ver[0] = resp->phy_maj;
8876 	link_info->phy_ver[1] = resp->phy_min;
8877 	link_info->phy_ver[2] = resp->phy_bld;
8878 	link_info->media_type = resp->media_type;
8879 	link_info->phy_type = resp->phy_type;
8880 	link_info->transceiver = resp->xcvr_pkg_type;
8881 	link_info->phy_addr = resp->eee_config_phy_addr &
8882 			      PORT_PHY_QCFG_RESP_PHY_ADDR_MASK;
8883 	link_info->module_status = resp->module_status;
8884 
8885 	if (bp->flags & BNXT_FLAG_EEE_CAP) {
8886 		struct ethtool_eee *eee = &bp->eee;
8887 		u16 fw_speeds;
8888 
8889 		eee->eee_active = 0;
8890 		if (resp->eee_config_phy_addr &
8891 		    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) {
8892 			eee->eee_active = 1;
8893 			fw_speeds = le16_to_cpu(
8894 				resp->link_partner_adv_eee_link_speed_mask);
8895 			eee->lp_advertised =
8896 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
8897 		}
8898 
8899 		/* Pull initial EEE config */
8900 		if (!chng_link_state) {
8901 			if (resp->eee_config_phy_addr &
8902 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED)
8903 				eee->eee_enabled = 1;
8904 
8905 			fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask);
8906 			eee->advertised =
8907 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
8908 
8909 			if (resp->eee_config_phy_addr &
8910 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) {
8911 				__le32 tmr;
8912 
8913 				eee->tx_lpi_enabled = 1;
8914 				tmr = resp->xcvr_identifier_type_tx_lpi_timer;
8915 				eee->tx_lpi_timer = le32_to_cpu(tmr) &
8916 					PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK;
8917 			}
8918 		}
8919 	}
8920 
8921 	link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED;
8922 	if (bp->hwrm_spec_code >= 0x10504)
8923 		link_info->fec_cfg = le16_to_cpu(resp->fec_cfg);
8924 
8925 	/* TODO: need to add more logic to report VF link */
8926 	if (chng_link_state) {
8927 		if (link_info->phy_link_status == BNXT_LINK_LINK)
8928 			link_info->link_up = 1;
8929 		else
8930 			link_info->link_up = 0;
8931 		if (link_up != link_info->link_up)
8932 			bnxt_report_link(bp);
8933 	} else {
8934 		/* alwasy link down if not require to update link state */
8935 		link_info->link_up = 0;
8936 	}
8937 	mutex_unlock(&bp->hwrm_cmd_lock);
8938 
8939 	if (!BNXT_PHY_CFG_ABLE(bp))
8940 		return 0;
8941 
8942 	diff = link_info->support_auto_speeds ^ link_info->advertising;
8943 	if ((link_info->support_auto_speeds | diff) !=
8944 	    link_info->support_auto_speeds) {
8945 		/* An advertised speed is no longer supported, so we need to
8946 		 * update the advertisement settings.  Caller holds RTNL
8947 		 * so we can modify link settings.
8948 		 */
8949 		link_info->advertising = link_info->support_auto_speeds;
8950 		if (link_info->autoneg & BNXT_AUTONEG_SPEED)
8951 			bnxt_hwrm_set_link_setting(bp, true, false);
8952 	}
8953 	return 0;
8954 }
8955 
8956 static void bnxt_get_port_module_status(struct bnxt *bp)
8957 {
8958 	struct bnxt_link_info *link_info = &bp->link_info;
8959 	struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp;
8960 	u8 module_status;
8961 
8962 	if (bnxt_update_link(bp, true))
8963 		return;
8964 
8965 	module_status = link_info->module_status;
8966 	switch (module_status) {
8967 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX:
8968 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN:
8969 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG:
8970 		netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n",
8971 			    bp->pf.port_id);
8972 		if (bp->hwrm_spec_code >= 0x10201) {
8973 			netdev_warn(bp->dev, "Module part number %s\n",
8974 				    resp->phy_vendor_partnumber);
8975 		}
8976 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX)
8977 			netdev_warn(bp->dev, "TX is disabled\n");
8978 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN)
8979 			netdev_warn(bp->dev, "SFP+ module is shutdown\n");
8980 	}
8981 }
8982 
8983 static void
8984 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
8985 {
8986 	if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
8987 		if (bp->hwrm_spec_code >= 0x10201)
8988 			req->auto_pause =
8989 				PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE;
8990 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
8991 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
8992 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
8993 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX;
8994 		req->enables |=
8995 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
8996 	} else {
8997 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
8998 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
8999 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
9000 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
9001 		req->enables |=
9002 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
9003 		if (bp->hwrm_spec_code >= 0x10201) {
9004 			req->auto_pause = req->force_pause;
9005 			req->enables |= cpu_to_le32(
9006 				PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
9007 		}
9008 	}
9009 }
9010 
9011 static void bnxt_hwrm_set_link_common(struct bnxt *bp,
9012 				      struct hwrm_port_phy_cfg_input *req)
9013 {
9014 	u8 autoneg = bp->link_info.autoneg;
9015 	u16 fw_link_speed = bp->link_info.req_link_speed;
9016 	u16 advertising = bp->link_info.advertising;
9017 
9018 	if (autoneg & BNXT_AUTONEG_SPEED) {
9019 		req->auto_mode |=
9020 			PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK;
9021 
9022 		req->enables |= cpu_to_le32(
9023 			PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
9024 		req->auto_link_speed_mask = cpu_to_le16(advertising);
9025 
9026 		req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
9027 		req->flags |=
9028 			cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
9029 	} else {
9030 		req->force_link_speed = cpu_to_le16(fw_link_speed);
9031 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
9032 	}
9033 
9034 	/* tell chimp that the setting takes effect immediately */
9035 	req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
9036 }
9037 
9038 int bnxt_hwrm_set_pause(struct bnxt *bp)
9039 {
9040 	struct hwrm_port_phy_cfg_input req = {0};
9041 	int rc;
9042 
9043 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
9044 	bnxt_hwrm_set_pause_common(bp, &req);
9045 
9046 	if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
9047 	    bp->link_info.force_link_chng)
9048 		bnxt_hwrm_set_link_common(bp, &req);
9049 
9050 	mutex_lock(&bp->hwrm_cmd_lock);
9051 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9052 	if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
9053 		/* since changing of pause setting doesn't trigger any link
9054 		 * change event, the driver needs to update the current pause
9055 		 * result upon successfully return of the phy_cfg command
9056 		 */
9057 		bp->link_info.pause =
9058 		bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
9059 		bp->link_info.auto_pause_setting = 0;
9060 		if (!bp->link_info.force_link_chng)
9061 			bnxt_report_link(bp);
9062 	}
9063 	bp->link_info.force_link_chng = false;
9064 	mutex_unlock(&bp->hwrm_cmd_lock);
9065 	return rc;
9066 }
9067 
9068 static void bnxt_hwrm_set_eee(struct bnxt *bp,
9069 			      struct hwrm_port_phy_cfg_input *req)
9070 {
9071 	struct ethtool_eee *eee = &bp->eee;
9072 
9073 	if (eee->eee_enabled) {
9074 		u16 eee_speeds;
9075 		u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE;
9076 
9077 		if (eee->tx_lpi_enabled)
9078 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE;
9079 		else
9080 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE;
9081 
9082 		req->flags |= cpu_to_le32(flags);
9083 		eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised);
9084 		req->eee_link_speed_mask = cpu_to_le16(eee_speeds);
9085 		req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer);
9086 	} else {
9087 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE);
9088 	}
9089 }
9090 
9091 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee)
9092 {
9093 	struct hwrm_port_phy_cfg_input req = {0};
9094 
9095 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
9096 	if (set_pause)
9097 		bnxt_hwrm_set_pause_common(bp, &req);
9098 
9099 	bnxt_hwrm_set_link_common(bp, &req);
9100 
9101 	if (set_eee)
9102 		bnxt_hwrm_set_eee(bp, &req);
9103 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9104 }
9105 
9106 static int bnxt_hwrm_shutdown_link(struct bnxt *bp)
9107 {
9108 	struct hwrm_port_phy_cfg_input req = {0};
9109 
9110 	if (!BNXT_SINGLE_PF(bp))
9111 		return 0;
9112 
9113 	if (pci_num_vf(bp->pdev))
9114 		return 0;
9115 
9116 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
9117 	req.flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN);
9118 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9119 }
9120 
9121 static int bnxt_fw_init_one(struct bnxt *bp);
9122 
9123 static int bnxt_hwrm_if_change(struct bnxt *bp, bool up)
9124 {
9125 	struct hwrm_func_drv_if_change_output *resp = bp->hwrm_cmd_resp_addr;
9126 	struct hwrm_func_drv_if_change_input req = {0};
9127 	bool resc_reinit = false, fw_reset = false;
9128 	u32 flags = 0;
9129 	int rc;
9130 
9131 	if (!(bp->fw_cap & BNXT_FW_CAP_IF_CHANGE))
9132 		return 0;
9133 
9134 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_IF_CHANGE, -1, -1);
9135 	if (up)
9136 		req.flags = cpu_to_le32(FUNC_DRV_IF_CHANGE_REQ_FLAGS_UP);
9137 	mutex_lock(&bp->hwrm_cmd_lock);
9138 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9139 	if (!rc)
9140 		flags = le32_to_cpu(resp->flags);
9141 	mutex_unlock(&bp->hwrm_cmd_lock);
9142 	if (rc)
9143 		return rc;
9144 
9145 	if (!up)
9146 		return 0;
9147 
9148 	if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_RESC_CHANGE)
9149 		resc_reinit = true;
9150 	if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_HOT_FW_RESET_DONE)
9151 		fw_reset = true;
9152 
9153 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state) && !fw_reset) {
9154 		netdev_err(bp->dev, "RESET_DONE not set during FW reset.\n");
9155 		return -ENODEV;
9156 	}
9157 	if (resc_reinit || fw_reset) {
9158 		if (fw_reset) {
9159 			if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
9160 				bnxt_ulp_stop(bp);
9161 			bnxt_free_ctx_mem(bp);
9162 			kfree(bp->ctx);
9163 			bp->ctx = NULL;
9164 			bnxt_dcb_free(bp);
9165 			rc = bnxt_fw_init_one(bp);
9166 			if (rc) {
9167 				set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
9168 				return rc;
9169 			}
9170 			bnxt_clear_int_mode(bp);
9171 			rc = bnxt_init_int_mode(bp);
9172 			if (rc) {
9173 				netdev_err(bp->dev, "init int mode failed\n");
9174 				return rc;
9175 			}
9176 			set_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
9177 		}
9178 		if (BNXT_NEW_RM(bp)) {
9179 			struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
9180 
9181 			rc = bnxt_hwrm_func_resc_qcaps(bp, true);
9182 			hw_resc->resv_cp_rings = 0;
9183 			hw_resc->resv_stat_ctxs = 0;
9184 			hw_resc->resv_irqs = 0;
9185 			hw_resc->resv_tx_rings = 0;
9186 			hw_resc->resv_rx_rings = 0;
9187 			hw_resc->resv_hw_ring_grps = 0;
9188 			hw_resc->resv_vnics = 0;
9189 			if (!fw_reset) {
9190 				bp->tx_nr_rings = 0;
9191 				bp->rx_nr_rings = 0;
9192 			}
9193 		}
9194 	}
9195 	return 0;
9196 }
9197 
9198 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp)
9199 {
9200 	struct hwrm_port_led_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
9201 	struct hwrm_port_led_qcaps_input req = {0};
9202 	struct bnxt_pf_info *pf = &bp->pf;
9203 	int rc;
9204 
9205 	bp->num_leds = 0;
9206 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601)
9207 		return 0;
9208 
9209 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_LED_QCAPS, -1, -1);
9210 	req.port_id = cpu_to_le16(pf->port_id);
9211 	mutex_lock(&bp->hwrm_cmd_lock);
9212 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9213 	if (rc) {
9214 		mutex_unlock(&bp->hwrm_cmd_lock);
9215 		return rc;
9216 	}
9217 	if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) {
9218 		int i;
9219 
9220 		bp->num_leds = resp->num_leds;
9221 		memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) *
9222 						 bp->num_leds);
9223 		for (i = 0; i < bp->num_leds; i++) {
9224 			struct bnxt_led_info *led = &bp->leds[i];
9225 			__le16 caps = led->led_state_caps;
9226 
9227 			if (!led->led_group_id ||
9228 			    !BNXT_LED_ALT_BLINK_CAP(caps)) {
9229 				bp->num_leds = 0;
9230 				break;
9231 			}
9232 		}
9233 	}
9234 	mutex_unlock(&bp->hwrm_cmd_lock);
9235 	return 0;
9236 }
9237 
9238 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp)
9239 {
9240 	struct hwrm_wol_filter_alloc_input req = {0};
9241 	struct hwrm_wol_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
9242 	int rc;
9243 
9244 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_ALLOC, -1, -1);
9245 	req.port_id = cpu_to_le16(bp->pf.port_id);
9246 	req.wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT;
9247 	req.enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS);
9248 	memcpy(req.mac_address, bp->dev->dev_addr, ETH_ALEN);
9249 	mutex_lock(&bp->hwrm_cmd_lock);
9250 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9251 	if (!rc)
9252 		bp->wol_filter_id = resp->wol_filter_id;
9253 	mutex_unlock(&bp->hwrm_cmd_lock);
9254 	return rc;
9255 }
9256 
9257 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp)
9258 {
9259 	struct hwrm_wol_filter_free_input req = {0};
9260 
9261 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_FREE, -1, -1);
9262 	req.port_id = cpu_to_le16(bp->pf.port_id);
9263 	req.enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID);
9264 	req.wol_filter_id = bp->wol_filter_id;
9265 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9266 }
9267 
9268 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle)
9269 {
9270 	struct hwrm_wol_filter_qcfg_input req = {0};
9271 	struct hwrm_wol_filter_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
9272 	u16 next_handle = 0;
9273 	int rc;
9274 
9275 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_QCFG, -1, -1);
9276 	req.port_id = cpu_to_le16(bp->pf.port_id);
9277 	req.handle = cpu_to_le16(handle);
9278 	mutex_lock(&bp->hwrm_cmd_lock);
9279 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9280 	if (!rc) {
9281 		next_handle = le16_to_cpu(resp->next_handle);
9282 		if (next_handle != 0) {
9283 			if (resp->wol_type ==
9284 			    WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) {
9285 				bp->wol = 1;
9286 				bp->wol_filter_id = resp->wol_filter_id;
9287 			}
9288 		}
9289 	}
9290 	mutex_unlock(&bp->hwrm_cmd_lock);
9291 	return next_handle;
9292 }
9293 
9294 static void bnxt_get_wol_settings(struct bnxt *bp)
9295 {
9296 	u16 handle = 0;
9297 
9298 	bp->wol = 0;
9299 	if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP))
9300 		return;
9301 
9302 	do {
9303 		handle = bnxt_hwrm_get_wol_fltrs(bp, handle);
9304 	} while (handle && handle != 0xffff);
9305 }
9306 
9307 #ifdef CONFIG_BNXT_HWMON
9308 static ssize_t bnxt_show_temp(struct device *dev,
9309 			      struct device_attribute *devattr, char *buf)
9310 {
9311 	struct hwrm_temp_monitor_query_input req = {0};
9312 	struct hwrm_temp_monitor_query_output *resp;
9313 	struct bnxt *bp = dev_get_drvdata(dev);
9314 	u32 len = 0;
9315 	int rc;
9316 
9317 	resp = bp->hwrm_cmd_resp_addr;
9318 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TEMP_MONITOR_QUERY, -1, -1);
9319 	mutex_lock(&bp->hwrm_cmd_lock);
9320 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9321 	if (!rc)
9322 		len = sprintf(buf, "%u\n", resp->temp * 1000); /* display millidegree */
9323 	mutex_unlock(&bp->hwrm_cmd_lock);
9324 	return rc ?: len;
9325 }
9326 static SENSOR_DEVICE_ATTR(temp1_input, 0444, bnxt_show_temp, NULL, 0);
9327 
9328 static struct attribute *bnxt_attrs[] = {
9329 	&sensor_dev_attr_temp1_input.dev_attr.attr,
9330 	NULL
9331 };
9332 ATTRIBUTE_GROUPS(bnxt);
9333 
9334 static void bnxt_hwmon_close(struct bnxt *bp)
9335 {
9336 	if (bp->hwmon_dev) {
9337 		hwmon_device_unregister(bp->hwmon_dev);
9338 		bp->hwmon_dev = NULL;
9339 	}
9340 }
9341 
9342 static void bnxt_hwmon_open(struct bnxt *bp)
9343 {
9344 	struct hwrm_temp_monitor_query_input req = {0};
9345 	struct pci_dev *pdev = bp->pdev;
9346 	int rc;
9347 
9348 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TEMP_MONITOR_QUERY, -1, -1);
9349 	rc = hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9350 	if (rc == -EACCES || rc == -EOPNOTSUPP) {
9351 		bnxt_hwmon_close(bp);
9352 		return;
9353 	}
9354 
9355 	if (bp->hwmon_dev)
9356 		return;
9357 
9358 	bp->hwmon_dev = hwmon_device_register_with_groups(&pdev->dev,
9359 							  DRV_MODULE_NAME, bp,
9360 							  bnxt_groups);
9361 	if (IS_ERR(bp->hwmon_dev)) {
9362 		bp->hwmon_dev = NULL;
9363 		dev_warn(&pdev->dev, "Cannot register hwmon device\n");
9364 	}
9365 }
9366 #else
9367 static void bnxt_hwmon_close(struct bnxt *bp)
9368 {
9369 }
9370 
9371 static void bnxt_hwmon_open(struct bnxt *bp)
9372 {
9373 }
9374 #endif
9375 
9376 static bool bnxt_eee_config_ok(struct bnxt *bp)
9377 {
9378 	struct ethtool_eee *eee = &bp->eee;
9379 	struct bnxt_link_info *link_info = &bp->link_info;
9380 
9381 	if (!(bp->flags & BNXT_FLAG_EEE_CAP))
9382 		return true;
9383 
9384 	if (eee->eee_enabled) {
9385 		u32 advertising =
9386 			_bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0);
9387 
9388 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
9389 			eee->eee_enabled = 0;
9390 			return false;
9391 		}
9392 		if (eee->advertised & ~advertising) {
9393 			eee->advertised = advertising & eee->supported;
9394 			return false;
9395 		}
9396 	}
9397 	return true;
9398 }
9399 
9400 static int bnxt_update_phy_setting(struct bnxt *bp)
9401 {
9402 	int rc;
9403 	bool update_link = false;
9404 	bool update_pause = false;
9405 	bool update_eee = false;
9406 	struct bnxt_link_info *link_info = &bp->link_info;
9407 
9408 	rc = bnxt_update_link(bp, true);
9409 	if (rc) {
9410 		netdev_err(bp->dev, "failed to update link (rc: %x)\n",
9411 			   rc);
9412 		return rc;
9413 	}
9414 	if (!BNXT_SINGLE_PF(bp))
9415 		return 0;
9416 
9417 	if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
9418 	    (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) !=
9419 	    link_info->req_flow_ctrl)
9420 		update_pause = true;
9421 	if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
9422 	    link_info->force_pause_setting != link_info->req_flow_ctrl)
9423 		update_pause = true;
9424 	if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
9425 		if (BNXT_AUTO_MODE(link_info->auto_mode))
9426 			update_link = true;
9427 		if (link_info->req_link_speed != link_info->force_link_speed)
9428 			update_link = true;
9429 		if (link_info->req_duplex != link_info->duplex_setting)
9430 			update_link = true;
9431 	} else {
9432 		if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
9433 			update_link = true;
9434 		if (link_info->advertising != link_info->auto_link_speeds)
9435 			update_link = true;
9436 	}
9437 
9438 	/* The last close may have shutdown the link, so need to call
9439 	 * PHY_CFG to bring it back up.
9440 	 */
9441 	if (!bp->link_info.link_up)
9442 		update_link = true;
9443 
9444 	if (!bnxt_eee_config_ok(bp))
9445 		update_eee = true;
9446 
9447 	if (update_link)
9448 		rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee);
9449 	else if (update_pause)
9450 		rc = bnxt_hwrm_set_pause(bp);
9451 	if (rc) {
9452 		netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
9453 			   rc);
9454 		return rc;
9455 	}
9456 
9457 	return rc;
9458 }
9459 
9460 /* Common routine to pre-map certain register block to different GRC window.
9461  * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
9462  * in PF and 3 windows in VF that can be customized to map in different
9463  * register blocks.
9464  */
9465 static void bnxt_preset_reg_win(struct bnxt *bp)
9466 {
9467 	if (BNXT_PF(bp)) {
9468 		/* CAG registers map to GRC window #4 */
9469 		writel(BNXT_CAG_REG_BASE,
9470 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
9471 	}
9472 }
9473 
9474 static int bnxt_init_dflt_ring_mode(struct bnxt *bp);
9475 
9476 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
9477 {
9478 	int rc = 0;
9479 
9480 	bnxt_preset_reg_win(bp);
9481 	netif_carrier_off(bp->dev);
9482 	if (irq_re_init) {
9483 		/* Reserve rings now if none were reserved at driver probe. */
9484 		rc = bnxt_init_dflt_ring_mode(bp);
9485 		if (rc) {
9486 			netdev_err(bp->dev, "Failed to reserve default rings at open\n");
9487 			return rc;
9488 		}
9489 	}
9490 	rc = bnxt_reserve_rings(bp, irq_re_init);
9491 	if (rc)
9492 		return rc;
9493 	if ((bp->flags & BNXT_FLAG_RFS) &&
9494 	    !(bp->flags & BNXT_FLAG_USING_MSIX)) {
9495 		/* disable RFS if falling back to INTA */
9496 		bp->dev->hw_features &= ~NETIF_F_NTUPLE;
9497 		bp->flags &= ~BNXT_FLAG_RFS;
9498 	}
9499 
9500 	rc = bnxt_alloc_mem(bp, irq_re_init);
9501 	if (rc) {
9502 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
9503 		goto open_err_free_mem;
9504 	}
9505 
9506 	if (irq_re_init) {
9507 		bnxt_init_napi(bp);
9508 		rc = bnxt_request_irq(bp);
9509 		if (rc) {
9510 			netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
9511 			goto open_err_irq;
9512 		}
9513 	}
9514 
9515 	rc = bnxt_init_nic(bp, irq_re_init);
9516 	if (rc) {
9517 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
9518 		goto open_err_irq;
9519 	}
9520 
9521 	bnxt_enable_napi(bp);
9522 	bnxt_debug_dev_init(bp);
9523 
9524 	if (link_re_init) {
9525 		mutex_lock(&bp->link_lock);
9526 		rc = bnxt_update_phy_setting(bp);
9527 		mutex_unlock(&bp->link_lock);
9528 		if (rc) {
9529 			netdev_warn(bp->dev, "failed to update phy settings\n");
9530 			if (BNXT_SINGLE_PF(bp)) {
9531 				bp->link_info.phy_retry = true;
9532 				bp->link_info.phy_retry_expires =
9533 					jiffies + 5 * HZ;
9534 			}
9535 		}
9536 	}
9537 
9538 	if (irq_re_init)
9539 		udp_tunnel_nic_reset_ntf(bp->dev);
9540 
9541 	set_bit(BNXT_STATE_OPEN, &bp->state);
9542 	bnxt_enable_int(bp);
9543 	/* Enable TX queues */
9544 	bnxt_tx_enable(bp);
9545 	mod_timer(&bp->timer, jiffies + bp->current_interval);
9546 	/* Poll link status and check for SFP+ module status */
9547 	bnxt_get_port_module_status(bp);
9548 
9549 	/* VF-reps may need to be re-opened after the PF is re-opened */
9550 	if (BNXT_PF(bp))
9551 		bnxt_vf_reps_open(bp);
9552 	return 0;
9553 
9554 open_err_irq:
9555 	bnxt_del_napi(bp);
9556 
9557 open_err_free_mem:
9558 	bnxt_free_skbs(bp);
9559 	bnxt_free_irq(bp);
9560 	bnxt_free_mem(bp, true);
9561 	return rc;
9562 }
9563 
9564 /* rtnl_lock held */
9565 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
9566 {
9567 	int rc = 0;
9568 
9569 	rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
9570 	if (rc) {
9571 		netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
9572 		dev_close(bp->dev);
9573 	}
9574 	return rc;
9575 }
9576 
9577 /* rtnl_lock held, open the NIC half way by allocating all resources, but
9578  * NAPI, IRQ, and TX are not enabled.  This is mainly used for offline
9579  * self tests.
9580  */
9581 int bnxt_half_open_nic(struct bnxt *bp)
9582 {
9583 	int rc = 0;
9584 
9585 	rc = bnxt_alloc_mem(bp, false);
9586 	if (rc) {
9587 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
9588 		goto half_open_err;
9589 	}
9590 	rc = bnxt_init_nic(bp, false);
9591 	if (rc) {
9592 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
9593 		goto half_open_err;
9594 	}
9595 	return 0;
9596 
9597 half_open_err:
9598 	bnxt_free_skbs(bp);
9599 	bnxt_free_mem(bp, false);
9600 	dev_close(bp->dev);
9601 	return rc;
9602 }
9603 
9604 /* rtnl_lock held, this call can only be made after a previous successful
9605  * call to bnxt_half_open_nic().
9606  */
9607 void bnxt_half_close_nic(struct bnxt *bp)
9608 {
9609 	bnxt_hwrm_resource_free(bp, false, false);
9610 	bnxt_free_skbs(bp);
9611 	bnxt_free_mem(bp, false);
9612 }
9613 
9614 static void bnxt_reenable_sriov(struct bnxt *bp)
9615 {
9616 	if (BNXT_PF(bp)) {
9617 		struct bnxt_pf_info *pf = &bp->pf;
9618 		int n = pf->active_vfs;
9619 
9620 		if (n)
9621 			bnxt_cfg_hw_sriov(bp, &n, true);
9622 	}
9623 }
9624 
9625 static int bnxt_open(struct net_device *dev)
9626 {
9627 	struct bnxt *bp = netdev_priv(dev);
9628 	int rc;
9629 
9630 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
9631 		netdev_err(bp->dev, "A previous firmware reset did not complete, aborting\n");
9632 		return -ENODEV;
9633 	}
9634 
9635 	rc = bnxt_hwrm_if_change(bp, true);
9636 	if (rc)
9637 		return rc;
9638 	rc = __bnxt_open_nic(bp, true, true);
9639 	if (rc) {
9640 		bnxt_hwrm_if_change(bp, false);
9641 	} else {
9642 		if (test_and_clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) {
9643 			if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
9644 				bnxt_ulp_start(bp, 0);
9645 				bnxt_reenable_sriov(bp);
9646 			}
9647 		}
9648 		bnxt_hwmon_open(bp);
9649 	}
9650 
9651 	return rc;
9652 }
9653 
9654 static bool bnxt_drv_busy(struct bnxt *bp)
9655 {
9656 	return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) ||
9657 		test_bit(BNXT_STATE_READ_STATS, &bp->state));
9658 }
9659 
9660 static void bnxt_get_ring_stats(struct bnxt *bp,
9661 				struct rtnl_link_stats64 *stats);
9662 
9663 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init,
9664 			     bool link_re_init)
9665 {
9666 	/* Close the VF-reps before closing PF */
9667 	if (BNXT_PF(bp))
9668 		bnxt_vf_reps_close(bp);
9669 
9670 	/* Change device state to avoid TX queue wake up's */
9671 	bnxt_tx_disable(bp);
9672 
9673 	clear_bit(BNXT_STATE_OPEN, &bp->state);
9674 	smp_mb__after_atomic();
9675 	while (bnxt_drv_busy(bp))
9676 		msleep(20);
9677 
9678 	/* Flush rings and and disable interrupts */
9679 	bnxt_shutdown_nic(bp, irq_re_init);
9680 
9681 	/* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
9682 
9683 	bnxt_debug_dev_exit(bp);
9684 	bnxt_disable_napi(bp);
9685 	del_timer_sync(&bp->timer);
9686 	bnxt_free_skbs(bp);
9687 
9688 	/* Save ring stats before shutdown */
9689 	if (bp->bnapi && irq_re_init)
9690 		bnxt_get_ring_stats(bp, &bp->net_stats_prev);
9691 	if (irq_re_init) {
9692 		bnxt_free_irq(bp);
9693 		bnxt_del_napi(bp);
9694 	}
9695 	bnxt_free_mem(bp, irq_re_init);
9696 }
9697 
9698 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
9699 {
9700 	int rc = 0;
9701 
9702 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
9703 		/* If we get here, it means firmware reset is in progress
9704 		 * while we are trying to close.  We can safely proceed with
9705 		 * the close because we are holding rtnl_lock().  Some firmware
9706 		 * messages may fail as we proceed to close.  We set the
9707 		 * ABORT_ERR flag here so that the FW reset thread will later
9708 		 * abort when it gets the rtnl_lock() and sees the flag.
9709 		 */
9710 		netdev_warn(bp->dev, "FW reset in progress during close, FW reset will be aborted\n");
9711 		set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
9712 	}
9713 
9714 #ifdef CONFIG_BNXT_SRIOV
9715 	if (bp->sriov_cfg) {
9716 		rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
9717 						      !bp->sriov_cfg,
9718 						      BNXT_SRIOV_CFG_WAIT_TMO);
9719 		if (rc)
9720 			netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
9721 	}
9722 #endif
9723 	__bnxt_close_nic(bp, irq_re_init, link_re_init);
9724 	return rc;
9725 }
9726 
9727 static int bnxt_close(struct net_device *dev)
9728 {
9729 	struct bnxt *bp = netdev_priv(dev);
9730 
9731 	bnxt_hwmon_close(bp);
9732 	bnxt_close_nic(bp, true, true);
9733 	bnxt_hwrm_shutdown_link(bp);
9734 	bnxt_hwrm_if_change(bp, false);
9735 	return 0;
9736 }
9737 
9738 static int bnxt_hwrm_port_phy_read(struct bnxt *bp, u16 phy_addr, u16 reg,
9739 				   u16 *val)
9740 {
9741 	struct hwrm_port_phy_mdio_read_output *resp = bp->hwrm_cmd_resp_addr;
9742 	struct hwrm_port_phy_mdio_read_input req = {0};
9743 	int rc;
9744 
9745 	if (bp->hwrm_spec_code < 0x10a00)
9746 		return -EOPNOTSUPP;
9747 
9748 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_MDIO_READ, -1, -1);
9749 	req.port_id = cpu_to_le16(bp->pf.port_id);
9750 	req.phy_addr = phy_addr;
9751 	req.reg_addr = cpu_to_le16(reg & 0x1f);
9752 	if (mdio_phy_id_is_c45(phy_addr)) {
9753 		req.cl45_mdio = 1;
9754 		req.phy_addr = mdio_phy_id_prtad(phy_addr);
9755 		req.dev_addr = mdio_phy_id_devad(phy_addr);
9756 		req.reg_addr = cpu_to_le16(reg);
9757 	}
9758 
9759 	mutex_lock(&bp->hwrm_cmd_lock);
9760 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9761 	if (!rc)
9762 		*val = le16_to_cpu(resp->reg_data);
9763 	mutex_unlock(&bp->hwrm_cmd_lock);
9764 	return rc;
9765 }
9766 
9767 static int bnxt_hwrm_port_phy_write(struct bnxt *bp, u16 phy_addr, u16 reg,
9768 				    u16 val)
9769 {
9770 	struct hwrm_port_phy_mdio_write_input req = {0};
9771 
9772 	if (bp->hwrm_spec_code < 0x10a00)
9773 		return -EOPNOTSUPP;
9774 
9775 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_MDIO_WRITE, -1, -1);
9776 	req.port_id = cpu_to_le16(bp->pf.port_id);
9777 	req.phy_addr = phy_addr;
9778 	req.reg_addr = cpu_to_le16(reg & 0x1f);
9779 	if (mdio_phy_id_is_c45(phy_addr)) {
9780 		req.cl45_mdio = 1;
9781 		req.phy_addr = mdio_phy_id_prtad(phy_addr);
9782 		req.dev_addr = mdio_phy_id_devad(phy_addr);
9783 		req.reg_addr = cpu_to_le16(reg);
9784 	}
9785 	req.reg_data = cpu_to_le16(val);
9786 
9787 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9788 }
9789 
9790 /* rtnl_lock held */
9791 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
9792 {
9793 	struct mii_ioctl_data *mdio = if_mii(ifr);
9794 	struct bnxt *bp = netdev_priv(dev);
9795 	int rc;
9796 
9797 	switch (cmd) {
9798 	case SIOCGMIIPHY:
9799 		mdio->phy_id = bp->link_info.phy_addr;
9800 
9801 		fallthrough;
9802 	case SIOCGMIIREG: {
9803 		u16 mii_regval = 0;
9804 
9805 		if (!netif_running(dev))
9806 			return -EAGAIN;
9807 
9808 		rc = bnxt_hwrm_port_phy_read(bp, mdio->phy_id, mdio->reg_num,
9809 					     &mii_regval);
9810 		mdio->val_out = mii_regval;
9811 		return rc;
9812 	}
9813 
9814 	case SIOCSMIIREG:
9815 		if (!netif_running(dev))
9816 			return -EAGAIN;
9817 
9818 		return bnxt_hwrm_port_phy_write(bp, mdio->phy_id, mdio->reg_num,
9819 						mdio->val_in);
9820 
9821 	default:
9822 		/* do nothing */
9823 		break;
9824 	}
9825 	return -EOPNOTSUPP;
9826 }
9827 
9828 static void bnxt_get_ring_stats(struct bnxt *bp,
9829 				struct rtnl_link_stats64 *stats)
9830 {
9831 	int i;
9832 
9833 	for (i = 0; i < bp->cp_nr_rings; i++) {
9834 		struct bnxt_napi *bnapi = bp->bnapi[i];
9835 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
9836 		u64 *sw = cpr->stats.sw_stats;
9837 
9838 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts);
9839 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts);
9840 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts);
9841 
9842 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts);
9843 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts);
9844 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts);
9845 
9846 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes);
9847 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes);
9848 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes);
9849 
9850 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes);
9851 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes);
9852 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes);
9853 
9854 		stats->rx_missed_errors +=
9855 			BNXT_GET_RING_STATS64(sw, rx_discard_pkts);
9856 
9857 		stats->multicast += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts);
9858 
9859 		stats->tx_dropped += BNXT_GET_RING_STATS64(sw, tx_error_pkts);
9860 	}
9861 }
9862 
9863 static void bnxt_add_prev_stats(struct bnxt *bp,
9864 				struct rtnl_link_stats64 *stats)
9865 {
9866 	struct rtnl_link_stats64 *prev_stats = &bp->net_stats_prev;
9867 
9868 	stats->rx_packets += prev_stats->rx_packets;
9869 	stats->tx_packets += prev_stats->tx_packets;
9870 	stats->rx_bytes += prev_stats->rx_bytes;
9871 	stats->tx_bytes += prev_stats->tx_bytes;
9872 	stats->rx_missed_errors += prev_stats->rx_missed_errors;
9873 	stats->multicast += prev_stats->multicast;
9874 	stats->tx_dropped += prev_stats->tx_dropped;
9875 }
9876 
9877 static void
9878 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
9879 {
9880 	struct bnxt *bp = netdev_priv(dev);
9881 
9882 	set_bit(BNXT_STATE_READ_STATS, &bp->state);
9883 	/* Make sure bnxt_close_nic() sees that we are reading stats before
9884 	 * we check the BNXT_STATE_OPEN flag.
9885 	 */
9886 	smp_mb__after_atomic();
9887 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
9888 		clear_bit(BNXT_STATE_READ_STATS, &bp->state);
9889 		*stats = bp->net_stats_prev;
9890 		return;
9891 	}
9892 
9893 	bnxt_get_ring_stats(bp, stats);
9894 	bnxt_add_prev_stats(bp, stats);
9895 
9896 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
9897 		u64 *rx = bp->port_stats.sw_stats;
9898 		u64 *tx = bp->port_stats.sw_stats +
9899 			  BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
9900 
9901 		stats->rx_crc_errors =
9902 			BNXT_GET_RX_PORT_STATS64(rx, rx_fcs_err_frames);
9903 		stats->rx_frame_errors =
9904 			BNXT_GET_RX_PORT_STATS64(rx, rx_align_err_frames);
9905 		stats->rx_length_errors =
9906 			BNXT_GET_RX_PORT_STATS64(rx, rx_undrsz_frames) +
9907 			BNXT_GET_RX_PORT_STATS64(rx, rx_ovrsz_frames) +
9908 			BNXT_GET_RX_PORT_STATS64(rx, rx_runt_frames);
9909 		stats->rx_errors =
9910 			BNXT_GET_RX_PORT_STATS64(rx, rx_false_carrier_frames) +
9911 			BNXT_GET_RX_PORT_STATS64(rx, rx_jbr_frames);
9912 		stats->collisions =
9913 			BNXT_GET_TX_PORT_STATS64(tx, tx_total_collisions);
9914 		stats->tx_fifo_errors =
9915 			BNXT_GET_TX_PORT_STATS64(tx, tx_fifo_underruns);
9916 		stats->tx_errors = BNXT_GET_TX_PORT_STATS64(tx, tx_err);
9917 	}
9918 	clear_bit(BNXT_STATE_READ_STATS, &bp->state);
9919 }
9920 
9921 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
9922 {
9923 	struct net_device *dev = bp->dev;
9924 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
9925 	struct netdev_hw_addr *ha;
9926 	u8 *haddr;
9927 	int mc_count = 0;
9928 	bool update = false;
9929 	int off = 0;
9930 
9931 	netdev_for_each_mc_addr(ha, dev) {
9932 		if (mc_count >= BNXT_MAX_MC_ADDRS) {
9933 			*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
9934 			vnic->mc_list_count = 0;
9935 			return false;
9936 		}
9937 		haddr = ha->addr;
9938 		if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
9939 			memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
9940 			update = true;
9941 		}
9942 		off += ETH_ALEN;
9943 		mc_count++;
9944 	}
9945 	if (mc_count)
9946 		*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
9947 
9948 	if (mc_count != vnic->mc_list_count) {
9949 		vnic->mc_list_count = mc_count;
9950 		update = true;
9951 	}
9952 	return update;
9953 }
9954 
9955 static bool bnxt_uc_list_updated(struct bnxt *bp)
9956 {
9957 	struct net_device *dev = bp->dev;
9958 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
9959 	struct netdev_hw_addr *ha;
9960 	int off = 0;
9961 
9962 	if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
9963 		return true;
9964 
9965 	netdev_for_each_uc_addr(ha, dev) {
9966 		if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
9967 			return true;
9968 
9969 		off += ETH_ALEN;
9970 	}
9971 	return false;
9972 }
9973 
9974 static void bnxt_set_rx_mode(struct net_device *dev)
9975 {
9976 	struct bnxt *bp = netdev_priv(dev);
9977 	struct bnxt_vnic_info *vnic;
9978 	bool mc_update = false;
9979 	bool uc_update;
9980 	u32 mask;
9981 
9982 	if (!test_bit(BNXT_STATE_OPEN, &bp->state))
9983 		return;
9984 
9985 	vnic = &bp->vnic_info[0];
9986 	mask = vnic->rx_mask;
9987 	mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
9988 		  CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
9989 		  CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST |
9990 		  CFA_L2_SET_RX_MASK_REQ_MASK_BCAST);
9991 
9992 	if ((dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
9993 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
9994 
9995 	uc_update = bnxt_uc_list_updated(bp);
9996 
9997 	if (dev->flags & IFF_BROADCAST)
9998 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
9999 	if (dev->flags & IFF_ALLMULTI) {
10000 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
10001 		vnic->mc_list_count = 0;
10002 	} else {
10003 		mc_update = bnxt_mc_list_updated(bp, &mask);
10004 	}
10005 
10006 	if (mask != vnic->rx_mask || uc_update || mc_update) {
10007 		vnic->rx_mask = mask;
10008 
10009 		set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
10010 		bnxt_queue_sp_work(bp);
10011 	}
10012 }
10013 
10014 static int bnxt_cfg_rx_mode(struct bnxt *bp)
10015 {
10016 	struct net_device *dev = bp->dev;
10017 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
10018 	struct netdev_hw_addr *ha;
10019 	int i, off = 0, rc;
10020 	bool uc_update;
10021 
10022 	netif_addr_lock_bh(dev);
10023 	uc_update = bnxt_uc_list_updated(bp);
10024 	netif_addr_unlock_bh(dev);
10025 
10026 	if (!uc_update)
10027 		goto skip_uc;
10028 
10029 	mutex_lock(&bp->hwrm_cmd_lock);
10030 	for (i = 1; i < vnic->uc_filter_count; i++) {
10031 		struct hwrm_cfa_l2_filter_free_input req = {0};
10032 
10033 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_FREE, -1,
10034 				       -1);
10035 
10036 		req.l2_filter_id = vnic->fw_l2_filter_id[i];
10037 
10038 		rc = _hwrm_send_message(bp, &req, sizeof(req),
10039 					HWRM_CMD_TIMEOUT);
10040 	}
10041 	mutex_unlock(&bp->hwrm_cmd_lock);
10042 
10043 	vnic->uc_filter_count = 1;
10044 
10045 	netif_addr_lock_bh(dev);
10046 	if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
10047 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
10048 	} else {
10049 		netdev_for_each_uc_addr(ha, dev) {
10050 			memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
10051 			off += ETH_ALEN;
10052 			vnic->uc_filter_count++;
10053 		}
10054 	}
10055 	netif_addr_unlock_bh(dev);
10056 
10057 	for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
10058 		rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
10059 		if (rc) {
10060 			netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n",
10061 				   rc);
10062 			vnic->uc_filter_count = i;
10063 			return rc;
10064 		}
10065 	}
10066 
10067 skip_uc:
10068 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
10069 	if (rc && vnic->mc_list_count) {
10070 		netdev_info(bp->dev, "Failed setting MC filters rc: %d, turning on ALL_MCAST mode\n",
10071 			    rc);
10072 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
10073 		vnic->mc_list_count = 0;
10074 		rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
10075 	}
10076 	if (rc)
10077 		netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %d\n",
10078 			   rc);
10079 
10080 	return rc;
10081 }
10082 
10083 static bool bnxt_can_reserve_rings(struct bnxt *bp)
10084 {
10085 #ifdef CONFIG_BNXT_SRIOV
10086 	if (BNXT_NEW_RM(bp) && BNXT_VF(bp)) {
10087 		struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
10088 
10089 		/* No minimum rings were provisioned by the PF.  Don't
10090 		 * reserve rings by default when device is down.
10091 		 */
10092 		if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings)
10093 			return true;
10094 
10095 		if (!netif_running(bp->dev))
10096 			return false;
10097 	}
10098 #endif
10099 	return true;
10100 }
10101 
10102 /* If the chip and firmware supports RFS */
10103 static bool bnxt_rfs_supported(struct bnxt *bp)
10104 {
10105 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
10106 		if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2)
10107 			return true;
10108 		return false;
10109 	}
10110 	if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
10111 		return true;
10112 	if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
10113 		return true;
10114 	return false;
10115 }
10116 
10117 /* If runtime conditions support RFS */
10118 static bool bnxt_rfs_capable(struct bnxt *bp)
10119 {
10120 #ifdef CONFIG_RFS_ACCEL
10121 	int vnics, max_vnics, max_rss_ctxs;
10122 
10123 	if (bp->flags & BNXT_FLAG_CHIP_P5)
10124 		return bnxt_rfs_supported(bp);
10125 	if (!(bp->flags & BNXT_FLAG_MSIX_CAP) || !bnxt_can_reserve_rings(bp))
10126 		return false;
10127 
10128 	vnics = 1 + bp->rx_nr_rings;
10129 	max_vnics = bnxt_get_max_func_vnics(bp);
10130 	max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp);
10131 
10132 	/* RSS contexts not a limiting factor */
10133 	if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
10134 		max_rss_ctxs = max_vnics;
10135 	if (vnics > max_vnics || vnics > max_rss_ctxs) {
10136 		if (bp->rx_nr_rings > 1)
10137 			netdev_warn(bp->dev,
10138 				    "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n",
10139 				    min(max_rss_ctxs - 1, max_vnics - 1));
10140 		return false;
10141 	}
10142 
10143 	if (!BNXT_NEW_RM(bp))
10144 		return true;
10145 
10146 	if (vnics == bp->hw_resc.resv_vnics)
10147 		return true;
10148 
10149 	bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, vnics);
10150 	if (vnics <= bp->hw_resc.resv_vnics)
10151 		return true;
10152 
10153 	netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n");
10154 	bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, 1);
10155 	return false;
10156 #else
10157 	return false;
10158 #endif
10159 }
10160 
10161 static netdev_features_t bnxt_fix_features(struct net_device *dev,
10162 					   netdev_features_t features)
10163 {
10164 	struct bnxt *bp = netdev_priv(dev);
10165 	netdev_features_t vlan_features;
10166 
10167 	if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp))
10168 		features &= ~NETIF_F_NTUPLE;
10169 
10170 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
10171 		features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
10172 
10173 	if (!(features & NETIF_F_GRO))
10174 		features &= ~NETIF_F_GRO_HW;
10175 
10176 	if (features & NETIF_F_GRO_HW)
10177 		features &= ~NETIF_F_LRO;
10178 
10179 	/* Both CTAG and STAG VLAN accelaration on the RX side have to be
10180 	 * turned on or off together.
10181 	 */
10182 	vlan_features = features & BNXT_HW_FEATURE_VLAN_ALL_RX;
10183 	if (vlan_features != BNXT_HW_FEATURE_VLAN_ALL_RX) {
10184 		if (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)
10185 			features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX;
10186 		else if (vlan_features)
10187 			features |= BNXT_HW_FEATURE_VLAN_ALL_RX;
10188 	}
10189 #ifdef CONFIG_BNXT_SRIOV
10190 	if (BNXT_VF(bp) && bp->vf.vlan)
10191 		features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX;
10192 #endif
10193 	return features;
10194 }
10195 
10196 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
10197 {
10198 	struct bnxt *bp = netdev_priv(dev);
10199 	u32 flags = bp->flags;
10200 	u32 changes;
10201 	int rc = 0;
10202 	bool re_init = false;
10203 	bool update_tpa = false;
10204 
10205 	flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
10206 	if (features & NETIF_F_GRO_HW)
10207 		flags |= BNXT_FLAG_GRO;
10208 	else if (features & NETIF_F_LRO)
10209 		flags |= BNXT_FLAG_LRO;
10210 
10211 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
10212 		flags &= ~BNXT_FLAG_TPA;
10213 
10214 	if (features & BNXT_HW_FEATURE_VLAN_ALL_RX)
10215 		flags |= BNXT_FLAG_STRIP_VLAN;
10216 
10217 	if (features & NETIF_F_NTUPLE)
10218 		flags |= BNXT_FLAG_RFS;
10219 
10220 	changes = flags ^ bp->flags;
10221 	if (changes & BNXT_FLAG_TPA) {
10222 		update_tpa = true;
10223 		if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
10224 		    (flags & BNXT_FLAG_TPA) == 0 ||
10225 		    (bp->flags & BNXT_FLAG_CHIP_P5))
10226 			re_init = true;
10227 	}
10228 
10229 	if (changes & ~BNXT_FLAG_TPA)
10230 		re_init = true;
10231 
10232 	if (flags != bp->flags) {
10233 		u32 old_flags = bp->flags;
10234 
10235 		if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
10236 			bp->flags = flags;
10237 			if (update_tpa)
10238 				bnxt_set_ring_params(bp);
10239 			return rc;
10240 		}
10241 
10242 		if (re_init) {
10243 			bnxt_close_nic(bp, false, false);
10244 			bp->flags = flags;
10245 			if (update_tpa)
10246 				bnxt_set_ring_params(bp);
10247 
10248 			return bnxt_open_nic(bp, false, false);
10249 		}
10250 		if (update_tpa) {
10251 			bp->flags = flags;
10252 			rc = bnxt_set_tpa(bp,
10253 					  (flags & BNXT_FLAG_TPA) ?
10254 					  true : false);
10255 			if (rc)
10256 				bp->flags = old_flags;
10257 		}
10258 	}
10259 	return rc;
10260 }
10261 
10262 int bnxt_dbg_hwrm_rd_reg(struct bnxt *bp, u32 reg_off, u16 num_words,
10263 			 u32 *reg_buf)
10264 {
10265 	struct hwrm_dbg_read_direct_output *resp = bp->hwrm_cmd_resp_addr;
10266 	struct hwrm_dbg_read_direct_input req = {0};
10267 	__le32 *dbg_reg_buf;
10268 	dma_addr_t mapping;
10269 	int rc, i;
10270 
10271 	dbg_reg_buf = dma_alloc_coherent(&bp->pdev->dev, num_words * 4,
10272 					 &mapping, GFP_KERNEL);
10273 	if (!dbg_reg_buf)
10274 		return -ENOMEM;
10275 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_DBG_READ_DIRECT, -1, -1);
10276 	req.host_dest_addr = cpu_to_le64(mapping);
10277 	req.read_addr = cpu_to_le32(reg_off + CHIMP_REG_VIEW_ADDR);
10278 	req.read_len32 = cpu_to_le32(num_words);
10279 	mutex_lock(&bp->hwrm_cmd_lock);
10280 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
10281 	if (rc || resp->error_code) {
10282 		rc = -EIO;
10283 		goto dbg_rd_reg_exit;
10284 	}
10285 	for (i = 0; i < num_words; i++)
10286 		reg_buf[i] = le32_to_cpu(dbg_reg_buf[i]);
10287 
10288 dbg_rd_reg_exit:
10289 	mutex_unlock(&bp->hwrm_cmd_lock);
10290 	dma_free_coherent(&bp->pdev->dev, num_words * 4, dbg_reg_buf, mapping);
10291 	return rc;
10292 }
10293 
10294 static int bnxt_dbg_hwrm_ring_info_get(struct bnxt *bp, u8 ring_type,
10295 				       u32 ring_id, u32 *prod, u32 *cons)
10296 {
10297 	struct hwrm_dbg_ring_info_get_output *resp = bp->hwrm_cmd_resp_addr;
10298 	struct hwrm_dbg_ring_info_get_input req = {0};
10299 	int rc;
10300 
10301 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_DBG_RING_INFO_GET, -1, -1);
10302 	req.ring_type = ring_type;
10303 	req.fw_ring_id = cpu_to_le32(ring_id);
10304 	mutex_lock(&bp->hwrm_cmd_lock);
10305 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
10306 	if (!rc) {
10307 		*prod = le32_to_cpu(resp->producer_index);
10308 		*cons = le32_to_cpu(resp->consumer_index);
10309 	}
10310 	mutex_unlock(&bp->hwrm_cmd_lock);
10311 	return rc;
10312 }
10313 
10314 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
10315 {
10316 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
10317 	int i = bnapi->index;
10318 
10319 	if (!txr)
10320 		return;
10321 
10322 	netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
10323 		    i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
10324 		    txr->tx_cons);
10325 }
10326 
10327 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
10328 {
10329 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
10330 	int i = bnapi->index;
10331 
10332 	if (!rxr)
10333 		return;
10334 
10335 	netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
10336 		    i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
10337 		    rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
10338 		    rxr->rx_sw_agg_prod);
10339 }
10340 
10341 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
10342 {
10343 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
10344 	int i = bnapi->index;
10345 
10346 	netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
10347 		    i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
10348 }
10349 
10350 static void bnxt_dbg_dump_states(struct bnxt *bp)
10351 {
10352 	int i;
10353 	struct bnxt_napi *bnapi;
10354 
10355 	for (i = 0; i < bp->cp_nr_rings; i++) {
10356 		bnapi = bp->bnapi[i];
10357 		if (netif_msg_drv(bp)) {
10358 			bnxt_dump_tx_sw_state(bnapi);
10359 			bnxt_dump_rx_sw_state(bnapi);
10360 			bnxt_dump_cp_sw_state(bnapi);
10361 		}
10362 	}
10363 }
10364 
10365 static void bnxt_reset_task(struct bnxt *bp, bool silent)
10366 {
10367 	if (!silent)
10368 		bnxt_dbg_dump_states(bp);
10369 	if (netif_running(bp->dev)) {
10370 		int rc;
10371 
10372 		if (silent) {
10373 			bnxt_close_nic(bp, false, false);
10374 			bnxt_open_nic(bp, false, false);
10375 		} else {
10376 			bnxt_ulp_stop(bp);
10377 			bnxt_close_nic(bp, true, false);
10378 			rc = bnxt_open_nic(bp, true, false);
10379 			bnxt_ulp_start(bp, rc);
10380 		}
10381 	}
10382 }
10383 
10384 static void bnxt_tx_timeout(struct net_device *dev, unsigned int txqueue)
10385 {
10386 	struct bnxt *bp = netdev_priv(dev);
10387 
10388 	netdev_err(bp->dev,  "TX timeout detected, starting reset task!\n");
10389 	set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
10390 	bnxt_queue_sp_work(bp);
10391 }
10392 
10393 static void bnxt_fw_health_check(struct bnxt *bp)
10394 {
10395 	struct bnxt_fw_health *fw_health = bp->fw_health;
10396 	u32 val;
10397 
10398 	if (!fw_health->enabled || test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
10399 		return;
10400 
10401 	if (fw_health->tmr_counter) {
10402 		fw_health->tmr_counter--;
10403 		return;
10404 	}
10405 
10406 	val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
10407 	if (val == fw_health->last_fw_heartbeat)
10408 		goto fw_reset;
10409 
10410 	fw_health->last_fw_heartbeat = val;
10411 
10412 	val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
10413 	if (val != fw_health->last_fw_reset_cnt)
10414 		goto fw_reset;
10415 
10416 	fw_health->tmr_counter = fw_health->tmr_multiplier;
10417 	return;
10418 
10419 fw_reset:
10420 	set_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event);
10421 	bnxt_queue_sp_work(bp);
10422 }
10423 
10424 static void bnxt_timer(struct timer_list *t)
10425 {
10426 	struct bnxt *bp = from_timer(bp, t, timer);
10427 	struct net_device *dev = bp->dev;
10428 
10429 	if (!netif_running(dev) || !test_bit(BNXT_STATE_OPEN, &bp->state))
10430 		return;
10431 
10432 	if (atomic_read(&bp->intr_sem) != 0)
10433 		goto bnxt_restart_timer;
10434 
10435 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
10436 		bnxt_fw_health_check(bp);
10437 
10438 	if (bp->link_info.link_up && bp->stats_coal_ticks) {
10439 		set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event);
10440 		bnxt_queue_sp_work(bp);
10441 	}
10442 
10443 	if (bnxt_tc_flower_enabled(bp)) {
10444 		set_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event);
10445 		bnxt_queue_sp_work(bp);
10446 	}
10447 
10448 #ifdef CONFIG_RFS_ACCEL
10449 	if ((bp->flags & BNXT_FLAG_RFS) && bp->ntp_fltr_count) {
10450 		set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
10451 		bnxt_queue_sp_work(bp);
10452 	}
10453 #endif /*CONFIG_RFS_ACCEL*/
10454 
10455 	if (bp->link_info.phy_retry) {
10456 		if (time_after(jiffies, bp->link_info.phy_retry_expires)) {
10457 			bp->link_info.phy_retry = false;
10458 			netdev_warn(bp->dev, "failed to update phy settings after maximum retries.\n");
10459 		} else {
10460 			set_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event);
10461 			bnxt_queue_sp_work(bp);
10462 		}
10463 	}
10464 
10465 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && !bp->chip_rev &&
10466 	    netif_carrier_ok(dev)) {
10467 		set_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event);
10468 		bnxt_queue_sp_work(bp);
10469 	}
10470 bnxt_restart_timer:
10471 	mod_timer(&bp->timer, jiffies + bp->current_interval);
10472 }
10473 
10474 static void bnxt_rtnl_lock_sp(struct bnxt *bp)
10475 {
10476 	/* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK
10477 	 * set.  If the device is being closed, bnxt_close() may be holding
10478 	 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear.  So we
10479 	 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl().
10480 	 */
10481 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
10482 	rtnl_lock();
10483 }
10484 
10485 static void bnxt_rtnl_unlock_sp(struct bnxt *bp)
10486 {
10487 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
10488 	rtnl_unlock();
10489 }
10490 
10491 /* Only called from bnxt_sp_task() */
10492 static void bnxt_reset(struct bnxt *bp, bool silent)
10493 {
10494 	bnxt_rtnl_lock_sp(bp);
10495 	if (test_bit(BNXT_STATE_OPEN, &bp->state))
10496 		bnxt_reset_task(bp, silent);
10497 	bnxt_rtnl_unlock_sp(bp);
10498 }
10499 
10500 static void bnxt_fw_reset_close(struct bnxt *bp)
10501 {
10502 	bnxt_ulp_stop(bp);
10503 	/* When firmware is fatal state, disable PCI device to prevent
10504 	 * any potential bad DMAs before freeing kernel memory.
10505 	 */
10506 	if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
10507 		pci_disable_device(bp->pdev);
10508 	__bnxt_close_nic(bp, true, false);
10509 	bnxt_clear_int_mode(bp);
10510 	bnxt_hwrm_func_drv_unrgtr(bp);
10511 	if (pci_is_enabled(bp->pdev))
10512 		pci_disable_device(bp->pdev);
10513 	bnxt_free_ctx_mem(bp);
10514 	kfree(bp->ctx);
10515 	bp->ctx = NULL;
10516 }
10517 
10518 static bool is_bnxt_fw_ok(struct bnxt *bp)
10519 {
10520 	struct bnxt_fw_health *fw_health = bp->fw_health;
10521 	bool no_heartbeat = false, has_reset = false;
10522 	u32 val;
10523 
10524 	val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
10525 	if (val == fw_health->last_fw_heartbeat)
10526 		no_heartbeat = true;
10527 
10528 	val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
10529 	if (val != fw_health->last_fw_reset_cnt)
10530 		has_reset = true;
10531 
10532 	if (!no_heartbeat && has_reset)
10533 		return true;
10534 
10535 	return false;
10536 }
10537 
10538 /* rtnl_lock is acquired before calling this function */
10539 static void bnxt_force_fw_reset(struct bnxt *bp)
10540 {
10541 	struct bnxt_fw_health *fw_health = bp->fw_health;
10542 	u32 wait_dsecs;
10543 
10544 	if (!test_bit(BNXT_STATE_OPEN, &bp->state) ||
10545 	    test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
10546 		return;
10547 
10548 	set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
10549 	bnxt_fw_reset_close(bp);
10550 	wait_dsecs = fw_health->master_func_wait_dsecs;
10551 	if (fw_health->master) {
10552 		if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU)
10553 			wait_dsecs = 0;
10554 		bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW;
10555 	} else {
10556 		bp->fw_reset_timestamp = jiffies + wait_dsecs * HZ / 10;
10557 		wait_dsecs = fw_health->normal_func_wait_dsecs;
10558 		bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
10559 	}
10560 
10561 	bp->fw_reset_min_dsecs = fw_health->post_reset_wait_dsecs;
10562 	bp->fw_reset_max_dsecs = fw_health->post_reset_max_wait_dsecs;
10563 	bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10);
10564 }
10565 
10566 void bnxt_fw_exception(struct bnxt *bp)
10567 {
10568 	netdev_warn(bp->dev, "Detected firmware fatal condition, initiating reset\n");
10569 	set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
10570 	bnxt_rtnl_lock_sp(bp);
10571 	bnxt_force_fw_reset(bp);
10572 	bnxt_rtnl_unlock_sp(bp);
10573 }
10574 
10575 /* Returns the number of registered VFs, or 1 if VF configuration is pending, or
10576  * < 0 on error.
10577  */
10578 static int bnxt_get_registered_vfs(struct bnxt *bp)
10579 {
10580 #ifdef CONFIG_BNXT_SRIOV
10581 	int rc;
10582 
10583 	if (!BNXT_PF(bp))
10584 		return 0;
10585 
10586 	rc = bnxt_hwrm_func_qcfg(bp);
10587 	if (rc) {
10588 		netdev_err(bp->dev, "func_qcfg cmd failed, rc = %d\n", rc);
10589 		return rc;
10590 	}
10591 	if (bp->pf.registered_vfs)
10592 		return bp->pf.registered_vfs;
10593 	if (bp->sriov_cfg)
10594 		return 1;
10595 #endif
10596 	return 0;
10597 }
10598 
10599 void bnxt_fw_reset(struct bnxt *bp)
10600 {
10601 	bnxt_rtnl_lock_sp(bp);
10602 	if (test_bit(BNXT_STATE_OPEN, &bp->state) &&
10603 	    !test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
10604 		int n = 0, tmo;
10605 
10606 		set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
10607 		if (bp->pf.active_vfs &&
10608 		    !test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
10609 			n = bnxt_get_registered_vfs(bp);
10610 		if (n < 0) {
10611 			netdev_err(bp->dev, "Firmware reset aborted, rc = %d\n",
10612 				   n);
10613 			clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
10614 			dev_close(bp->dev);
10615 			goto fw_reset_exit;
10616 		} else if (n > 0) {
10617 			u16 vf_tmo_dsecs = n * 10;
10618 
10619 			if (bp->fw_reset_max_dsecs < vf_tmo_dsecs)
10620 				bp->fw_reset_max_dsecs = vf_tmo_dsecs;
10621 			bp->fw_reset_state =
10622 				BNXT_FW_RESET_STATE_POLL_VF;
10623 			bnxt_queue_fw_reset_work(bp, HZ / 10);
10624 			goto fw_reset_exit;
10625 		}
10626 		bnxt_fw_reset_close(bp);
10627 		if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
10628 			bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN;
10629 			tmo = HZ / 10;
10630 		} else {
10631 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
10632 			tmo = bp->fw_reset_min_dsecs * HZ / 10;
10633 		}
10634 		bnxt_queue_fw_reset_work(bp, tmo);
10635 	}
10636 fw_reset_exit:
10637 	bnxt_rtnl_unlock_sp(bp);
10638 }
10639 
10640 static void bnxt_chk_missed_irq(struct bnxt *bp)
10641 {
10642 	int i;
10643 
10644 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
10645 		return;
10646 
10647 	for (i = 0; i < bp->cp_nr_rings; i++) {
10648 		struct bnxt_napi *bnapi = bp->bnapi[i];
10649 		struct bnxt_cp_ring_info *cpr;
10650 		u32 fw_ring_id;
10651 		int j;
10652 
10653 		if (!bnapi)
10654 			continue;
10655 
10656 		cpr = &bnapi->cp_ring;
10657 		for (j = 0; j < 2; j++) {
10658 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
10659 			u32 val[2];
10660 
10661 			if (!cpr2 || cpr2->has_more_work ||
10662 			    !bnxt_has_work(bp, cpr2))
10663 				continue;
10664 
10665 			if (cpr2->cp_raw_cons != cpr2->last_cp_raw_cons) {
10666 				cpr2->last_cp_raw_cons = cpr2->cp_raw_cons;
10667 				continue;
10668 			}
10669 			fw_ring_id = cpr2->cp_ring_struct.fw_ring_id;
10670 			bnxt_dbg_hwrm_ring_info_get(bp,
10671 				DBG_RING_INFO_GET_REQ_RING_TYPE_L2_CMPL,
10672 				fw_ring_id, &val[0], &val[1]);
10673 			cpr->sw_stats.cmn.missed_irqs++;
10674 		}
10675 	}
10676 }
10677 
10678 static void bnxt_cfg_ntp_filters(struct bnxt *);
10679 
10680 static void bnxt_init_ethtool_link_settings(struct bnxt *bp)
10681 {
10682 	struct bnxt_link_info *link_info = &bp->link_info;
10683 
10684 	if (BNXT_AUTO_MODE(link_info->auto_mode)) {
10685 		link_info->autoneg = BNXT_AUTONEG_SPEED;
10686 		if (bp->hwrm_spec_code >= 0x10201) {
10687 			if (link_info->auto_pause_setting &
10688 			    PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE)
10689 				link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
10690 		} else {
10691 			link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
10692 		}
10693 		link_info->advertising = link_info->auto_link_speeds;
10694 	} else {
10695 		link_info->req_link_speed = link_info->force_link_speed;
10696 		link_info->req_duplex = link_info->duplex_setting;
10697 	}
10698 	if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL)
10699 		link_info->req_flow_ctrl =
10700 			link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH;
10701 	else
10702 		link_info->req_flow_ctrl = link_info->force_pause_setting;
10703 }
10704 
10705 static void bnxt_sp_task(struct work_struct *work)
10706 {
10707 	struct bnxt *bp = container_of(work, struct bnxt, sp_task);
10708 
10709 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
10710 	smp_mb__after_atomic();
10711 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
10712 		clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
10713 		return;
10714 	}
10715 
10716 	if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
10717 		bnxt_cfg_rx_mode(bp);
10718 
10719 	if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
10720 		bnxt_cfg_ntp_filters(bp);
10721 	if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
10722 		bnxt_hwrm_exec_fwd_req(bp);
10723 	if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) {
10724 		bnxt_hwrm_port_qstats(bp, 0);
10725 		bnxt_hwrm_port_qstats_ext(bp, 0);
10726 		bnxt_accumulate_all_stats(bp);
10727 	}
10728 
10729 	if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
10730 		int rc;
10731 
10732 		mutex_lock(&bp->link_lock);
10733 		if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT,
10734 				       &bp->sp_event))
10735 			bnxt_hwrm_phy_qcaps(bp);
10736 
10737 		rc = bnxt_update_link(bp, true);
10738 		if (rc)
10739 			netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
10740 				   rc);
10741 
10742 		if (test_and_clear_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT,
10743 				       &bp->sp_event))
10744 			bnxt_init_ethtool_link_settings(bp);
10745 		mutex_unlock(&bp->link_lock);
10746 	}
10747 	if (test_and_clear_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event)) {
10748 		int rc;
10749 
10750 		mutex_lock(&bp->link_lock);
10751 		rc = bnxt_update_phy_setting(bp);
10752 		mutex_unlock(&bp->link_lock);
10753 		if (rc) {
10754 			netdev_warn(bp->dev, "update phy settings retry failed\n");
10755 		} else {
10756 			bp->link_info.phy_retry = false;
10757 			netdev_info(bp->dev, "update phy settings retry succeeded\n");
10758 		}
10759 	}
10760 	if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) {
10761 		mutex_lock(&bp->link_lock);
10762 		bnxt_get_port_module_status(bp);
10763 		mutex_unlock(&bp->link_lock);
10764 	}
10765 
10766 	if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event))
10767 		bnxt_tc_flow_stats_work(bp);
10768 
10769 	if (test_and_clear_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event))
10770 		bnxt_chk_missed_irq(bp);
10771 
10772 	/* These functions below will clear BNXT_STATE_IN_SP_TASK.  They
10773 	 * must be the last functions to be called before exiting.
10774 	 */
10775 	if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event))
10776 		bnxt_reset(bp, false);
10777 
10778 	if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event))
10779 		bnxt_reset(bp, true);
10780 
10781 	if (test_and_clear_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event))
10782 		bnxt_devlink_health_report(bp, BNXT_FW_RESET_NOTIFY_SP_EVENT);
10783 
10784 	if (test_and_clear_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event)) {
10785 		if (!is_bnxt_fw_ok(bp))
10786 			bnxt_devlink_health_report(bp,
10787 						   BNXT_FW_EXCEPTION_SP_EVENT);
10788 	}
10789 
10790 	smp_mb__before_atomic();
10791 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
10792 }
10793 
10794 /* Under rtnl_lock */
10795 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs,
10796 		     int tx_xdp)
10797 {
10798 	int max_rx, max_tx, tx_sets = 1;
10799 	int tx_rings_needed, stats;
10800 	int rx_rings = rx;
10801 	int cp, vnics, rc;
10802 
10803 	if (tcs)
10804 		tx_sets = tcs;
10805 
10806 	rc = bnxt_get_max_rings(bp, &max_rx, &max_tx, sh);
10807 	if (rc)
10808 		return rc;
10809 
10810 	if (max_rx < rx)
10811 		return -ENOMEM;
10812 
10813 	tx_rings_needed = tx * tx_sets + tx_xdp;
10814 	if (max_tx < tx_rings_needed)
10815 		return -ENOMEM;
10816 
10817 	vnics = 1;
10818 	if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS)
10819 		vnics += rx_rings;
10820 
10821 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
10822 		rx_rings <<= 1;
10823 	cp = sh ? max_t(int, tx_rings_needed, rx) : tx_rings_needed + rx;
10824 	stats = cp;
10825 	if (BNXT_NEW_RM(bp)) {
10826 		cp += bnxt_get_ulp_msix_num(bp);
10827 		stats += bnxt_get_ulp_stat_ctxs(bp);
10828 	}
10829 	return bnxt_hwrm_check_rings(bp, tx_rings_needed, rx_rings, rx, cp,
10830 				     stats, vnics);
10831 }
10832 
10833 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev)
10834 {
10835 	if (bp->bar2) {
10836 		pci_iounmap(pdev, bp->bar2);
10837 		bp->bar2 = NULL;
10838 	}
10839 
10840 	if (bp->bar1) {
10841 		pci_iounmap(pdev, bp->bar1);
10842 		bp->bar1 = NULL;
10843 	}
10844 
10845 	if (bp->bar0) {
10846 		pci_iounmap(pdev, bp->bar0);
10847 		bp->bar0 = NULL;
10848 	}
10849 }
10850 
10851 static void bnxt_cleanup_pci(struct bnxt *bp)
10852 {
10853 	bnxt_unmap_bars(bp, bp->pdev);
10854 	pci_release_regions(bp->pdev);
10855 	if (pci_is_enabled(bp->pdev))
10856 		pci_disable_device(bp->pdev);
10857 }
10858 
10859 static void bnxt_init_dflt_coal(struct bnxt *bp)
10860 {
10861 	struct bnxt_coal *coal;
10862 
10863 	/* Tick values in micro seconds.
10864 	 * 1 coal_buf x bufs_per_record = 1 completion record.
10865 	 */
10866 	coal = &bp->rx_coal;
10867 	coal->coal_ticks = 10;
10868 	coal->coal_bufs = 30;
10869 	coal->coal_ticks_irq = 1;
10870 	coal->coal_bufs_irq = 2;
10871 	coal->idle_thresh = 50;
10872 	coal->bufs_per_record = 2;
10873 	coal->budget = 64;		/* NAPI budget */
10874 
10875 	coal = &bp->tx_coal;
10876 	coal->coal_ticks = 28;
10877 	coal->coal_bufs = 30;
10878 	coal->coal_ticks_irq = 2;
10879 	coal->coal_bufs_irq = 2;
10880 	coal->bufs_per_record = 1;
10881 
10882 	bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS;
10883 }
10884 
10885 static void bnxt_alloc_fw_health(struct bnxt *bp)
10886 {
10887 	if (bp->fw_health)
10888 		return;
10889 
10890 	if (!(bp->fw_cap & BNXT_FW_CAP_HOT_RESET) &&
10891 	    !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
10892 		return;
10893 
10894 	bp->fw_health = kzalloc(sizeof(*bp->fw_health), GFP_KERNEL);
10895 	if (!bp->fw_health) {
10896 		netdev_warn(bp->dev, "Failed to allocate fw_health\n");
10897 		bp->fw_cap &= ~BNXT_FW_CAP_HOT_RESET;
10898 		bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
10899 	}
10900 }
10901 
10902 static int bnxt_fw_init_one_p1(struct bnxt *bp)
10903 {
10904 	int rc;
10905 
10906 	bp->fw_cap = 0;
10907 	rc = bnxt_hwrm_ver_get(bp);
10908 	if (rc)
10909 		return rc;
10910 
10911 	if (bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL) {
10912 		rc = bnxt_alloc_kong_hwrm_resources(bp);
10913 		if (rc)
10914 			bp->fw_cap &= ~BNXT_FW_CAP_KONG_MB_CHNL;
10915 	}
10916 
10917 	if ((bp->fw_cap & BNXT_FW_CAP_SHORT_CMD) ||
10918 	    bp->hwrm_max_ext_req_len > BNXT_HWRM_MAX_REQ_LEN) {
10919 		rc = bnxt_alloc_hwrm_short_cmd_req(bp);
10920 		if (rc)
10921 			return rc;
10922 	}
10923 	rc = bnxt_hwrm_func_reset(bp);
10924 	if (rc)
10925 		return -ENODEV;
10926 
10927 	bnxt_hwrm_fw_set_time(bp);
10928 	return 0;
10929 }
10930 
10931 static int bnxt_fw_init_one_p2(struct bnxt *bp)
10932 {
10933 	int rc;
10934 
10935 	/* Get the MAX capabilities for this function */
10936 	rc = bnxt_hwrm_func_qcaps(bp);
10937 	if (rc) {
10938 		netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
10939 			   rc);
10940 		return -ENODEV;
10941 	}
10942 
10943 	rc = bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(bp);
10944 	if (rc)
10945 		netdev_warn(bp->dev, "hwrm query adv flow mgnt failure rc: %d\n",
10946 			    rc);
10947 
10948 	bnxt_alloc_fw_health(bp);
10949 	rc = bnxt_hwrm_error_recovery_qcfg(bp);
10950 	if (rc)
10951 		netdev_warn(bp->dev, "hwrm query error recovery failure rc: %d\n",
10952 			    rc);
10953 
10954 	rc = bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false);
10955 	if (rc)
10956 		return -ENODEV;
10957 
10958 	bnxt_hwrm_func_qcfg(bp);
10959 	bnxt_hwrm_vnic_qcaps(bp);
10960 	bnxt_hwrm_port_led_qcaps(bp);
10961 	bnxt_ethtool_init(bp);
10962 	bnxt_dcb_init(bp);
10963 	return 0;
10964 }
10965 
10966 static void bnxt_set_dflt_rss_hash_type(struct bnxt *bp)
10967 {
10968 	bp->flags &= ~BNXT_FLAG_UDP_RSS_CAP;
10969 	bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 |
10970 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 |
10971 			   VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 |
10972 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6;
10973 	if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) {
10974 		bp->flags |= BNXT_FLAG_UDP_RSS_CAP;
10975 		bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 |
10976 				    VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6;
10977 	}
10978 }
10979 
10980 static void bnxt_set_dflt_rfs(struct bnxt *bp)
10981 {
10982 	struct net_device *dev = bp->dev;
10983 
10984 	dev->hw_features &= ~NETIF_F_NTUPLE;
10985 	dev->features &= ~NETIF_F_NTUPLE;
10986 	bp->flags &= ~BNXT_FLAG_RFS;
10987 	if (bnxt_rfs_supported(bp)) {
10988 		dev->hw_features |= NETIF_F_NTUPLE;
10989 		if (bnxt_rfs_capable(bp)) {
10990 			bp->flags |= BNXT_FLAG_RFS;
10991 			dev->features |= NETIF_F_NTUPLE;
10992 		}
10993 	}
10994 }
10995 
10996 static void bnxt_fw_init_one_p3(struct bnxt *bp)
10997 {
10998 	struct pci_dev *pdev = bp->pdev;
10999 
11000 	bnxt_set_dflt_rss_hash_type(bp);
11001 	bnxt_set_dflt_rfs(bp);
11002 
11003 	bnxt_get_wol_settings(bp);
11004 	if (bp->flags & BNXT_FLAG_WOL_CAP)
11005 		device_set_wakeup_enable(&pdev->dev, bp->wol);
11006 	else
11007 		device_set_wakeup_capable(&pdev->dev, false);
11008 
11009 	bnxt_hwrm_set_cache_line_size(bp, cache_line_size());
11010 	bnxt_hwrm_coal_params_qcaps(bp);
11011 }
11012 
11013 static int bnxt_fw_init_one(struct bnxt *bp)
11014 {
11015 	int rc;
11016 
11017 	rc = bnxt_fw_init_one_p1(bp);
11018 	if (rc) {
11019 		netdev_err(bp->dev, "Firmware init phase 1 failed\n");
11020 		return rc;
11021 	}
11022 	rc = bnxt_fw_init_one_p2(bp);
11023 	if (rc) {
11024 		netdev_err(bp->dev, "Firmware init phase 2 failed\n");
11025 		return rc;
11026 	}
11027 	rc = bnxt_approve_mac(bp, bp->dev->dev_addr, false);
11028 	if (rc)
11029 		return rc;
11030 
11031 	/* In case fw capabilities have changed, destroy the unneeded
11032 	 * reporters and create newly capable ones.
11033 	 */
11034 	bnxt_dl_fw_reporters_destroy(bp, false);
11035 	bnxt_dl_fw_reporters_create(bp);
11036 	bnxt_fw_init_one_p3(bp);
11037 	return 0;
11038 }
11039 
11040 static void bnxt_fw_reset_writel(struct bnxt *bp, int reg_idx)
11041 {
11042 	struct bnxt_fw_health *fw_health = bp->fw_health;
11043 	u32 reg = fw_health->fw_reset_seq_regs[reg_idx];
11044 	u32 val = fw_health->fw_reset_seq_vals[reg_idx];
11045 	u32 reg_type, reg_off, delay_msecs;
11046 
11047 	delay_msecs = fw_health->fw_reset_seq_delay_msec[reg_idx];
11048 	reg_type = BNXT_FW_HEALTH_REG_TYPE(reg);
11049 	reg_off = BNXT_FW_HEALTH_REG_OFF(reg);
11050 	switch (reg_type) {
11051 	case BNXT_FW_HEALTH_REG_TYPE_CFG:
11052 		pci_write_config_dword(bp->pdev, reg_off, val);
11053 		break;
11054 	case BNXT_FW_HEALTH_REG_TYPE_GRC:
11055 		writel(reg_off & BNXT_GRC_BASE_MASK,
11056 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4);
11057 		reg_off = (reg_off & BNXT_GRC_OFFSET_MASK) + 0x2000;
11058 		fallthrough;
11059 	case BNXT_FW_HEALTH_REG_TYPE_BAR0:
11060 		writel(val, bp->bar0 + reg_off);
11061 		break;
11062 	case BNXT_FW_HEALTH_REG_TYPE_BAR1:
11063 		writel(val, bp->bar1 + reg_off);
11064 		break;
11065 	}
11066 	if (delay_msecs) {
11067 		pci_read_config_dword(bp->pdev, 0, &val);
11068 		msleep(delay_msecs);
11069 	}
11070 }
11071 
11072 static void bnxt_reset_all(struct bnxt *bp)
11073 {
11074 	struct bnxt_fw_health *fw_health = bp->fw_health;
11075 	int i, rc;
11076 
11077 	if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
11078 #ifdef CONFIG_TEE_BNXT_FW
11079 		rc = tee_bnxt_fw_load();
11080 		if (rc)
11081 			netdev_err(bp->dev, "Unable to reset FW rc=%d\n", rc);
11082 		bp->fw_reset_timestamp = jiffies;
11083 #endif
11084 		return;
11085 	}
11086 
11087 	if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_HOST) {
11088 		for (i = 0; i < fw_health->fw_reset_seq_cnt; i++)
11089 			bnxt_fw_reset_writel(bp, i);
11090 	} else if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) {
11091 		struct hwrm_fw_reset_input req = {0};
11092 
11093 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FW_RESET, -1, -1);
11094 		req.resp_addr = cpu_to_le64(bp->hwrm_cmd_kong_resp_dma_addr);
11095 		req.embedded_proc_type = FW_RESET_REQ_EMBEDDED_PROC_TYPE_CHIP;
11096 		req.selfrst_status = FW_RESET_REQ_SELFRST_STATUS_SELFRSTASAP;
11097 		req.flags = FW_RESET_REQ_FLAGS_RESET_GRACEFUL;
11098 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
11099 		if (rc)
11100 			netdev_warn(bp->dev, "Unable to reset FW rc=%d\n", rc);
11101 	}
11102 	bp->fw_reset_timestamp = jiffies;
11103 }
11104 
11105 static void bnxt_fw_reset_task(struct work_struct *work)
11106 {
11107 	struct bnxt *bp = container_of(work, struct bnxt, fw_reset_task.work);
11108 	int rc;
11109 
11110 	if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
11111 		netdev_err(bp->dev, "bnxt_fw_reset_task() called when not in fw reset mode!\n");
11112 		return;
11113 	}
11114 
11115 	switch (bp->fw_reset_state) {
11116 	case BNXT_FW_RESET_STATE_POLL_VF: {
11117 		int n = bnxt_get_registered_vfs(bp);
11118 		int tmo;
11119 
11120 		if (n < 0) {
11121 			netdev_err(bp->dev, "Firmware reset aborted, subsequent func_qcfg cmd failed, rc = %d, %d msecs since reset timestamp\n",
11122 				   n, jiffies_to_msecs(jiffies -
11123 				   bp->fw_reset_timestamp));
11124 			goto fw_reset_abort;
11125 		} else if (n > 0) {
11126 			if (time_after(jiffies, bp->fw_reset_timestamp +
11127 				       (bp->fw_reset_max_dsecs * HZ / 10))) {
11128 				clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11129 				bp->fw_reset_state = 0;
11130 				netdev_err(bp->dev, "Firmware reset aborted, bnxt_get_registered_vfs() returns %d\n",
11131 					   n);
11132 				return;
11133 			}
11134 			bnxt_queue_fw_reset_work(bp, HZ / 10);
11135 			return;
11136 		}
11137 		bp->fw_reset_timestamp = jiffies;
11138 		rtnl_lock();
11139 		bnxt_fw_reset_close(bp);
11140 		if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
11141 			bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN;
11142 			tmo = HZ / 10;
11143 		} else {
11144 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
11145 			tmo = bp->fw_reset_min_dsecs * HZ / 10;
11146 		}
11147 		rtnl_unlock();
11148 		bnxt_queue_fw_reset_work(bp, tmo);
11149 		return;
11150 	}
11151 	case BNXT_FW_RESET_STATE_POLL_FW_DOWN: {
11152 		u32 val;
11153 
11154 		val = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
11155 		if (!(val & BNXT_FW_STATUS_SHUTDOWN) &&
11156 		    !time_after(jiffies, bp->fw_reset_timestamp +
11157 		    (bp->fw_reset_max_dsecs * HZ / 10))) {
11158 			bnxt_queue_fw_reset_work(bp, HZ / 5);
11159 			return;
11160 		}
11161 
11162 		if (!bp->fw_health->master) {
11163 			u32 wait_dsecs = bp->fw_health->normal_func_wait_dsecs;
11164 
11165 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
11166 			bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10);
11167 			return;
11168 		}
11169 		bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW;
11170 	}
11171 		fallthrough;
11172 	case BNXT_FW_RESET_STATE_RESET_FW:
11173 		bnxt_reset_all(bp);
11174 		bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
11175 		bnxt_queue_fw_reset_work(bp, bp->fw_reset_min_dsecs * HZ / 10);
11176 		return;
11177 	case BNXT_FW_RESET_STATE_ENABLE_DEV:
11178 		if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) {
11179 			u32 val;
11180 
11181 			val = bnxt_fw_health_readl(bp,
11182 						   BNXT_FW_RESET_INPROG_REG);
11183 			if (val)
11184 				netdev_warn(bp->dev, "FW reset inprog %x after min wait time.\n",
11185 					    val);
11186 		}
11187 		clear_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
11188 		if (pci_enable_device(bp->pdev)) {
11189 			netdev_err(bp->dev, "Cannot re-enable PCI device\n");
11190 			goto fw_reset_abort;
11191 		}
11192 		pci_set_master(bp->pdev);
11193 		bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW;
11194 		fallthrough;
11195 	case BNXT_FW_RESET_STATE_POLL_FW:
11196 		bp->hwrm_cmd_timeout = SHORT_HWRM_CMD_TIMEOUT;
11197 		rc = __bnxt_hwrm_ver_get(bp, true);
11198 		if (rc) {
11199 			if (time_after(jiffies, bp->fw_reset_timestamp +
11200 				       (bp->fw_reset_max_dsecs * HZ / 10))) {
11201 				netdev_err(bp->dev, "Firmware reset aborted\n");
11202 				goto fw_reset_abort;
11203 			}
11204 			bnxt_queue_fw_reset_work(bp, HZ / 5);
11205 			return;
11206 		}
11207 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
11208 		bp->fw_reset_state = BNXT_FW_RESET_STATE_OPENING;
11209 		fallthrough;
11210 	case BNXT_FW_RESET_STATE_OPENING:
11211 		while (!rtnl_trylock()) {
11212 			bnxt_queue_fw_reset_work(bp, HZ / 10);
11213 			return;
11214 		}
11215 		rc = bnxt_open(bp->dev);
11216 		if (rc) {
11217 			netdev_err(bp->dev, "bnxt_open_nic() failed\n");
11218 			clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11219 			dev_close(bp->dev);
11220 		}
11221 
11222 		bp->fw_reset_state = 0;
11223 		/* Make sure fw_reset_state is 0 before clearing the flag */
11224 		smp_mb__before_atomic();
11225 		clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11226 		bnxt_ulp_start(bp, rc);
11227 		if (!rc)
11228 			bnxt_reenable_sriov(bp);
11229 		bnxt_dl_health_recovery_done(bp);
11230 		bnxt_dl_health_status_update(bp, true);
11231 		rtnl_unlock();
11232 		break;
11233 	}
11234 	return;
11235 
11236 fw_reset_abort:
11237 	clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11238 	if (bp->fw_reset_state != BNXT_FW_RESET_STATE_POLL_VF)
11239 		bnxt_dl_health_status_update(bp, false);
11240 	bp->fw_reset_state = 0;
11241 	rtnl_lock();
11242 	dev_close(bp->dev);
11243 	rtnl_unlock();
11244 }
11245 
11246 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
11247 {
11248 	int rc;
11249 	struct bnxt *bp = netdev_priv(dev);
11250 
11251 	SET_NETDEV_DEV(dev, &pdev->dev);
11252 
11253 	/* enable device (incl. PCI PM wakeup), and bus-mastering */
11254 	rc = pci_enable_device(pdev);
11255 	if (rc) {
11256 		dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
11257 		goto init_err;
11258 	}
11259 
11260 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
11261 		dev_err(&pdev->dev,
11262 			"Cannot find PCI device base address, aborting\n");
11263 		rc = -ENODEV;
11264 		goto init_err_disable;
11265 	}
11266 
11267 	rc = pci_request_regions(pdev, DRV_MODULE_NAME);
11268 	if (rc) {
11269 		dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
11270 		goto init_err_disable;
11271 	}
11272 
11273 	if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
11274 	    dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
11275 		dev_err(&pdev->dev, "System does not support DMA, aborting\n");
11276 		goto init_err_disable;
11277 	}
11278 
11279 	pci_set_master(pdev);
11280 
11281 	bp->dev = dev;
11282 	bp->pdev = pdev;
11283 
11284 	/* Doorbell BAR bp->bar1 is mapped after bnxt_fw_init_one_p2()
11285 	 * determines the BAR size.
11286 	 */
11287 	bp->bar0 = pci_ioremap_bar(pdev, 0);
11288 	if (!bp->bar0) {
11289 		dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
11290 		rc = -ENOMEM;
11291 		goto init_err_release;
11292 	}
11293 
11294 	bp->bar2 = pci_ioremap_bar(pdev, 4);
11295 	if (!bp->bar2) {
11296 		dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
11297 		rc = -ENOMEM;
11298 		goto init_err_release;
11299 	}
11300 
11301 	pci_enable_pcie_error_reporting(pdev);
11302 
11303 	INIT_WORK(&bp->sp_task, bnxt_sp_task);
11304 	INIT_DELAYED_WORK(&bp->fw_reset_task, bnxt_fw_reset_task);
11305 
11306 	spin_lock_init(&bp->ntp_fltr_lock);
11307 #if BITS_PER_LONG == 32
11308 	spin_lock_init(&bp->db_lock);
11309 #endif
11310 
11311 	bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
11312 	bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
11313 
11314 	bnxt_init_dflt_coal(bp);
11315 
11316 	timer_setup(&bp->timer, bnxt_timer, 0);
11317 	bp->current_interval = BNXT_TIMER_INTERVAL;
11318 
11319 	bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID;
11320 	bp->nge_fw_dst_port_id = INVALID_HW_RING_ID;
11321 
11322 	clear_bit(BNXT_STATE_OPEN, &bp->state);
11323 	return 0;
11324 
11325 init_err_release:
11326 	bnxt_unmap_bars(bp, pdev);
11327 	pci_release_regions(pdev);
11328 
11329 init_err_disable:
11330 	pci_disable_device(pdev);
11331 
11332 init_err:
11333 	return rc;
11334 }
11335 
11336 /* rtnl_lock held */
11337 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
11338 {
11339 	struct sockaddr *addr = p;
11340 	struct bnxt *bp = netdev_priv(dev);
11341 	int rc = 0;
11342 
11343 	if (!is_valid_ether_addr(addr->sa_data))
11344 		return -EADDRNOTAVAIL;
11345 
11346 	if (ether_addr_equal(addr->sa_data, dev->dev_addr))
11347 		return 0;
11348 
11349 	rc = bnxt_approve_mac(bp, addr->sa_data, true);
11350 	if (rc)
11351 		return rc;
11352 
11353 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
11354 	if (netif_running(dev)) {
11355 		bnxt_close_nic(bp, false, false);
11356 		rc = bnxt_open_nic(bp, false, false);
11357 	}
11358 
11359 	return rc;
11360 }
11361 
11362 /* rtnl_lock held */
11363 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
11364 {
11365 	struct bnxt *bp = netdev_priv(dev);
11366 
11367 	if (netif_running(dev))
11368 		bnxt_close_nic(bp, true, false);
11369 
11370 	dev->mtu = new_mtu;
11371 	bnxt_set_ring_params(bp);
11372 
11373 	if (netif_running(dev))
11374 		return bnxt_open_nic(bp, true, false);
11375 
11376 	return 0;
11377 }
11378 
11379 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc)
11380 {
11381 	struct bnxt *bp = netdev_priv(dev);
11382 	bool sh = false;
11383 	int rc;
11384 
11385 	if (tc > bp->max_tc) {
11386 		netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n",
11387 			   tc, bp->max_tc);
11388 		return -EINVAL;
11389 	}
11390 
11391 	if (netdev_get_num_tc(dev) == tc)
11392 		return 0;
11393 
11394 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
11395 		sh = true;
11396 
11397 	rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings,
11398 			      sh, tc, bp->tx_nr_rings_xdp);
11399 	if (rc)
11400 		return rc;
11401 
11402 	/* Needs to close the device and do hw resource re-allocations */
11403 	if (netif_running(bp->dev))
11404 		bnxt_close_nic(bp, true, false);
11405 
11406 	if (tc) {
11407 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
11408 		netdev_set_num_tc(dev, tc);
11409 	} else {
11410 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
11411 		netdev_reset_tc(dev);
11412 	}
11413 	bp->tx_nr_rings += bp->tx_nr_rings_xdp;
11414 	bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
11415 			       bp->tx_nr_rings + bp->rx_nr_rings;
11416 
11417 	if (netif_running(bp->dev))
11418 		return bnxt_open_nic(bp, true, false);
11419 
11420 	return 0;
11421 }
11422 
11423 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
11424 				  void *cb_priv)
11425 {
11426 	struct bnxt *bp = cb_priv;
11427 
11428 	if (!bnxt_tc_flower_enabled(bp) ||
11429 	    !tc_cls_can_offload_and_chain0(bp->dev, type_data))
11430 		return -EOPNOTSUPP;
11431 
11432 	switch (type) {
11433 	case TC_SETUP_CLSFLOWER:
11434 		return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data);
11435 	default:
11436 		return -EOPNOTSUPP;
11437 	}
11438 }
11439 
11440 LIST_HEAD(bnxt_block_cb_list);
11441 
11442 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type,
11443 			 void *type_data)
11444 {
11445 	struct bnxt *bp = netdev_priv(dev);
11446 
11447 	switch (type) {
11448 	case TC_SETUP_BLOCK:
11449 		return flow_block_cb_setup_simple(type_data,
11450 						  &bnxt_block_cb_list,
11451 						  bnxt_setup_tc_block_cb,
11452 						  bp, bp, true);
11453 	case TC_SETUP_QDISC_MQPRIO: {
11454 		struct tc_mqprio_qopt *mqprio = type_data;
11455 
11456 		mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
11457 
11458 		return bnxt_setup_mq_tc(dev, mqprio->num_tc);
11459 	}
11460 	default:
11461 		return -EOPNOTSUPP;
11462 	}
11463 }
11464 
11465 #ifdef CONFIG_RFS_ACCEL
11466 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
11467 			    struct bnxt_ntuple_filter *f2)
11468 {
11469 	struct flow_keys *keys1 = &f1->fkeys;
11470 	struct flow_keys *keys2 = &f2->fkeys;
11471 
11472 	if (keys1->basic.n_proto != keys2->basic.n_proto ||
11473 	    keys1->basic.ip_proto != keys2->basic.ip_proto)
11474 		return false;
11475 
11476 	if (keys1->basic.n_proto == htons(ETH_P_IP)) {
11477 		if (keys1->addrs.v4addrs.src != keys2->addrs.v4addrs.src ||
11478 		    keys1->addrs.v4addrs.dst != keys2->addrs.v4addrs.dst)
11479 			return false;
11480 	} else {
11481 		if (memcmp(&keys1->addrs.v6addrs.src, &keys2->addrs.v6addrs.src,
11482 			   sizeof(keys1->addrs.v6addrs.src)) ||
11483 		    memcmp(&keys1->addrs.v6addrs.dst, &keys2->addrs.v6addrs.dst,
11484 			   sizeof(keys1->addrs.v6addrs.dst)))
11485 			return false;
11486 	}
11487 
11488 	if (keys1->ports.ports == keys2->ports.ports &&
11489 	    keys1->control.flags == keys2->control.flags &&
11490 	    ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) &&
11491 	    ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr))
11492 		return true;
11493 
11494 	return false;
11495 }
11496 
11497 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
11498 			      u16 rxq_index, u32 flow_id)
11499 {
11500 	struct bnxt *bp = netdev_priv(dev);
11501 	struct bnxt_ntuple_filter *fltr, *new_fltr;
11502 	struct flow_keys *fkeys;
11503 	struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
11504 	int rc = 0, idx, bit_id, l2_idx = 0;
11505 	struct hlist_head *head;
11506 	u32 flags;
11507 
11508 	if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) {
11509 		struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
11510 		int off = 0, j;
11511 
11512 		netif_addr_lock_bh(dev);
11513 		for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) {
11514 			if (ether_addr_equal(eth->h_dest,
11515 					     vnic->uc_list + off)) {
11516 				l2_idx = j + 1;
11517 				break;
11518 			}
11519 		}
11520 		netif_addr_unlock_bh(dev);
11521 		if (!l2_idx)
11522 			return -EINVAL;
11523 	}
11524 	new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
11525 	if (!new_fltr)
11526 		return -ENOMEM;
11527 
11528 	fkeys = &new_fltr->fkeys;
11529 	if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
11530 		rc = -EPROTONOSUPPORT;
11531 		goto err_free;
11532 	}
11533 
11534 	if ((fkeys->basic.n_proto != htons(ETH_P_IP) &&
11535 	     fkeys->basic.n_proto != htons(ETH_P_IPV6)) ||
11536 	    ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
11537 	     (fkeys->basic.ip_proto != IPPROTO_UDP))) {
11538 		rc = -EPROTONOSUPPORT;
11539 		goto err_free;
11540 	}
11541 	if (fkeys->basic.n_proto == htons(ETH_P_IPV6) &&
11542 	    bp->hwrm_spec_code < 0x10601) {
11543 		rc = -EPROTONOSUPPORT;
11544 		goto err_free;
11545 	}
11546 	flags = fkeys->control.flags;
11547 	if (((flags & FLOW_DIS_ENCAPSULATION) &&
11548 	     bp->hwrm_spec_code < 0x10601) || (flags & FLOW_DIS_IS_FRAGMENT)) {
11549 		rc = -EPROTONOSUPPORT;
11550 		goto err_free;
11551 	}
11552 
11553 	memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN);
11554 	memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
11555 
11556 	idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
11557 	head = &bp->ntp_fltr_hash_tbl[idx];
11558 	rcu_read_lock();
11559 	hlist_for_each_entry_rcu(fltr, head, hash) {
11560 		if (bnxt_fltr_match(fltr, new_fltr)) {
11561 			rcu_read_unlock();
11562 			rc = 0;
11563 			goto err_free;
11564 		}
11565 	}
11566 	rcu_read_unlock();
11567 
11568 	spin_lock_bh(&bp->ntp_fltr_lock);
11569 	bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
11570 					 BNXT_NTP_FLTR_MAX_FLTR, 0);
11571 	if (bit_id < 0) {
11572 		spin_unlock_bh(&bp->ntp_fltr_lock);
11573 		rc = -ENOMEM;
11574 		goto err_free;
11575 	}
11576 
11577 	new_fltr->sw_id = (u16)bit_id;
11578 	new_fltr->flow_id = flow_id;
11579 	new_fltr->l2_fltr_idx = l2_idx;
11580 	new_fltr->rxq = rxq_index;
11581 	hlist_add_head_rcu(&new_fltr->hash, head);
11582 	bp->ntp_fltr_count++;
11583 	spin_unlock_bh(&bp->ntp_fltr_lock);
11584 
11585 	set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
11586 	bnxt_queue_sp_work(bp);
11587 
11588 	return new_fltr->sw_id;
11589 
11590 err_free:
11591 	kfree(new_fltr);
11592 	return rc;
11593 }
11594 
11595 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
11596 {
11597 	int i;
11598 
11599 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
11600 		struct hlist_head *head;
11601 		struct hlist_node *tmp;
11602 		struct bnxt_ntuple_filter *fltr;
11603 		int rc;
11604 
11605 		head = &bp->ntp_fltr_hash_tbl[i];
11606 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
11607 			bool del = false;
11608 
11609 			if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
11610 				if (rps_may_expire_flow(bp->dev, fltr->rxq,
11611 							fltr->flow_id,
11612 							fltr->sw_id)) {
11613 					bnxt_hwrm_cfa_ntuple_filter_free(bp,
11614 									 fltr);
11615 					del = true;
11616 				}
11617 			} else {
11618 				rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
11619 								       fltr);
11620 				if (rc)
11621 					del = true;
11622 				else
11623 					set_bit(BNXT_FLTR_VALID, &fltr->state);
11624 			}
11625 
11626 			if (del) {
11627 				spin_lock_bh(&bp->ntp_fltr_lock);
11628 				hlist_del_rcu(&fltr->hash);
11629 				bp->ntp_fltr_count--;
11630 				spin_unlock_bh(&bp->ntp_fltr_lock);
11631 				synchronize_rcu();
11632 				clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
11633 				kfree(fltr);
11634 			}
11635 		}
11636 	}
11637 	if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event))
11638 		netdev_info(bp->dev, "Receive PF driver unload event!\n");
11639 }
11640 
11641 #else
11642 
11643 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
11644 {
11645 }
11646 
11647 #endif /* CONFIG_RFS_ACCEL */
11648 
11649 static int bnxt_udp_tunnel_sync(struct net_device *netdev, unsigned int table)
11650 {
11651 	struct bnxt *bp = netdev_priv(netdev);
11652 	struct udp_tunnel_info ti;
11653 	unsigned int cmd;
11654 
11655 	udp_tunnel_nic_get_port(netdev, table, 0, &ti);
11656 	if (ti.type == UDP_TUNNEL_TYPE_VXLAN)
11657 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN;
11658 	else
11659 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE;
11660 
11661 	if (ti.port)
11662 		return bnxt_hwrm_tunnel_dst_port_alloc(bp, ti.port, cmd);
11663 
11664 	return bnxt_hwrm_tunnel_dst_port_free(bp, cmd);
11665 }
11666 
11667 static const struct udp_tunnel_nic_info bnxt_udp_tunnels = {
11668 	.sync_table	= bnxt_udp_tunnel_sync,
11669 	.flags		= UDP_TUNNEL_NIC_INFO_MAY_SLEEP |
11670 			  UDP_TUNNEL_NIC_INFO_OPEN_ONLY,
11671 	.tables		= {
11672 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN,  },
11673 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
11674 	},
11675 };
11676 
11677 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
11678 			       struct net_device *dev, u32 filter_mask,
11679 			       int nlflags)
11680 {
11681 	struct bnxt *bp = netdev_priv(dev);
11682 
11683 	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0,
11684 				       nlflags, filter_mask, NULL);
11685 }
11686 
11687 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
11688 			       u16 flags, struct netlink_ext_ack *extack)
11689 {
11690 	struct bnxt *bp = netdev_priv(dev);
11691 	struct nlattr *attr, *br_spec;
11692 	int rem, rc = 0;
11693 
11694 	if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp))
11695 		return -EOPNOTSUPP;
11696 
11697 	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
11698 	if (!br_spec)
11699 		return -EINVAL;
11700 
11701 	nla_for_each_nested(attr, br_spec, rem) {
11702 		u16 mode;
11703 
11704 		if (nla_type(attr) != IFLA_BRIDGE_MODE)
11705 			continue;
11706 
11707 		if (nla_len(attr) < sizeof(mode))
11708 			return -EINVAL;
11709 
11710 		mode = nla_get_u16(attr);
11711 		if (mode == bp->br_mode)
11712 			break;
11713 
11714 		rc = bnxt_hwrm_set_br_mode(bp, mode);
11715 		if (!rc)
11716 			bp->br_mode = mode;
11717 		break;
11718 	}
11719 	return rc;
11720 }
11721 
11722 int bnxt_get_port_parent_id(struct net_device *dev,
11723 			    struct netdev_phys_item_id *ppid)
11724 {
11725 	struct bnxt *bp = netdev_priv(dev);
11726 
11727 	if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV)
11728 		return -EOPNOTSUPP;
11729 
11730 	/* The PF and it's VF-reps only support the switchdev framework */
11731 	if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_DSN_VALID))
11732 		return -EOPNOTSUPP;
11733 
11734 	ppid->id_len = sizeof(bp->dsn);
11735 	memcpy(ppid->id, bp->dsn, ppid->id_len);
11736 
11737 	return 0;
11738 }
11739 
11740 static struct devlink_port *bnxt_get_devlink_port(struct net_device *dev)
11741 {
11742 	struct bnxt *bp = netdev_priv(dev);
11743 
11744 	return &bp->dl_port;
11745 }
11746 
11747 static const struct net_device_ops bnxt_netdev_ops = {
11748 	.ndo_open		= bnxt_open,
11749 	.ndo_start_xmit		= bnxt_start_xmit,
11750 	.ndo_stop		= bnxt_close,
11751 	.ndo_get_stats64	= bnxt_get_stats64,
11752 	.ndo_set_rx_mode	= bnxt_set_rx_mode,
11753 	.ndo_do_ioctl		= bnxt_ioctl,
11754 	.ndo_validate_addr	= eth_validate_addr,
11755 	.ndo_set_mac_address	= bnxt_change_mac_addr,
11756 	.ndo_change_mtu		= bnxt_change_mtu,
11757 	.ndo_fix_features	= bnxt_fix_features,
11758 	.ndo_set_features	= bnxt_set_features,
11759 	.ndo_tx_timeout		= bnxt_tx_timeout,
11760 #ifdef CONFIG_BNXT_SRIOV
11761 	.ndo_get_vf_config	= bnxt_get_vf_config,
11762 	.ndo_set_vf_mac		= bnxt_set_vf_mac,
11763 	.ndo_set_vf_vlan	= bnxt_set_vf_vlan,
11764 	.ndo_set_vf_rate	= bnxt_set_vf_bw,
11765 	.ndo_set_vf_link_state	= bnxt_set_vf_link_state,
11766 	.ndo_set_vf_spoofchk	= bnxt_set_vf_spoofchk,
11767 	.ndo_set_vf_trust	= bnxt_set_vf_trust,
11768 #endif
11769 	.ndo_setup_tc           = bnxt_setup_tc,
11770 #ifdef CONFIG_RFS_ACCEL
11771 	.ndo_rx_flow_steer	= bnxt_rx_flow_steer,
11772 #endif
11773 	.ndo_udp_tunnel_add	= udp_tunnel_nic_add_port,
11774 	.ndo_udp_tunnel_del	= udp_tunnel_nic_del_port,
11775 	.ndo_bpf		= bnxt_xdp,
11776 	.ndo_xdp_xmit		= bnxt_xdp_xmit,
11777 	.ndo_bridge_getlink	= bnxt_bridge_getlink,
11778 	.ndo_bridge_setlink	= bnxt_bridge_setlink,
11779 	.ndo_get_devlink_port	= bnxt_get_devlink_port,
11780 };
11781 
11782 static void bnxt_remove_one(struct pci_dev *pdev)
11783 {
11784 	struct net_device *dev = pci_get_drvdata(pdev);
11785 	struct bnxt *bp = netdev_priv(dev);
11786 
11787 	if (BNXT_PF(bp))
11788 		bnxt_sriov_disable(bp);
11789 
11790 	clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11791 	bnxt_cancel_sp_work(bp);
11792 	bp->sp_event = 0;
11793 
11794 	bnxt_dl_fw_reporters_destroy(bp, true);
11795 	if (BNXT_PF(bp))
11796 		devlink_port_type_clear(&bp->dl_port);
11797 	pci_disable_pcie_error_reporting(pdev);
11798 	unregister_netdev(dev);
11799 	bnxt_dl_unregister(bp);
11800 	bnxt_shutdown_tc(bp);
11801 
11802 	bnxt_clear_int_mode(bp);
11803 	bnxt_hwrm_func_drv_unrgtr(bp);
11804 	bnxt_free_hwrm_resources(bp);
11805 	bnxt_free_hwrm_short_cmd_req(bp);
11806 	bnxt_ethtool_free(bp);
11807 	bnxt_dcb_free(bp);
11808 	kfree(bp->edev);
11809 	bp->edev = NULL;
11810 	kfree(bp->fw_health);
11811 	bp->fw_health = NULL;
11812 	bnxt_cleanup_pci(bp);
11813 	bnxt_free_ctx_mem(bp);
11814 	kfree(bp->ctx);
11815 	bp->ctx = NULL;
11816 	kfree(bp->rss_indir_tbl);
11817 	bp->rss_indir_tbl = NULL;
11818 	bnxt_free_port_stats(bp);
11819 	free_netdev(dev);
11820 }
11821 
11822 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt)
11823 {
11824 	int rc = 0;
11825 	struct bnxt_link_info *link_info = &bp->link_info;
11826 
11827 	rc = bnxt_hwrm_phy_qcaps(bp);
11828 	if (rc) {
11829 		netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n",
11830 			   rc);
11831 		return rc;
11832 	}
11833 	if (!fw_dflt)
11834 		return 0;
11835 
11836 	rc = bnxt_update_link(bp, false);
11837 	if (rc) {
11838 		netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
11839 			   rc);
11840 		return rc;
11841 	}
11842 
11843 	/* Older firmware does not have supported_auto_speeds, so assume
11844 	 * that all supported speeds can be autonegotiated.
11845 	 */
11846 	if (link_info->auto_link_speeds && !link_info->support_auto_speeds)
11847 		link_info->support_auto_speeds = link_info->support_speeds;
11848 
11849 	bnxt_init_ethtool_link_settings(bp);
11850 	return 0;
11851 }
11852 
11853 static int bnxt_get_max_irq(struct pci_dev *pdev)
11854 {
11855 	u16 ctrl;
11856 
11857 	if (!pdev->msix_cap)
11858 		return 1;
11859 
11860 	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
11861 	return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
11862 }
11863 
11864 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
11865 				int *max_cp)
11866 {
11867 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
11868 	int max_ring_grps = 0, max_irq;
11869 
11870 	*max_tx = hw_resc->max_tx_rings;
11871 	*max_rx = hw_resc->max_rx_rings;
11872 	*max_cp = bnxt_get_max_func_cp_rings_for_en(bp);
11873 	max_irq = min_t(int, bnxt_get_max_func_irqs(bp) -
11874 			bnxt_get_ulp_msix_num(bp),
11875 			hw_resc->max_stat_ctxs - bnxt_get_ulp_stat_ctxs(bp));
11876 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
11877 		*max_cp = min_t(int, *max_cp, max_irq);
11878 	max_ring_grps = hw_resc->max_hw_ring_grps;
11879 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) {
11880 		*max_cp -= 1;
11881 		*max_rx -= 2;
11882 	}
11883 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
11884 		*max_rx >>= 1;
11885 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
11886 		bnxt_trim_rings(bp, max_rx, max_tx, *max_cp, false);
11887 		/* On P5 chips, max_cp output param should be available NQs */
11888 		*max_cp = max_irq;
11889 	}
11890 	*max_rx = min_t(int, *max_rx, max_ring_grps);
11891 }
11892 
11893 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
11894 {
11895 	int rx, tx, cp;
11896 
11897 	_bnxt_get_max_rings(bp, &rx, &tx, &cp);
11898 	*max_rx = rx;
11899 	*max_tx = tx;
11900 	if (!rx || !tx || !cp)
11901 		return -ENOMEM;
11902 
11903 	return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
11904 }
11905 
11906 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx,
11907 			       bool shared)
11908 {
11909 	int rc;
11910 
11911 	rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
11912 	if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) {
11913 		/* Not enough rings, try disabling agg rings. */
11914 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
11915 		rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
11916 		if (rc) {
11917 			/* set BNXT_FLAG_AGG_RINGS back for consistency */
11918 			bp->flags |= BNXT_FLAG_AGG_RINGS;
11919 			return rc;
11920 		}
11921 		bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
11922 		bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
11923 		bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
11924 		bnxt_set_ring_params(bp);
11925 	}
11926 
11927 	if (bp->flags & BNXT_FLAG_ROCE_CAP) {
11928 		int max_cp, max_stat, max_irq;
11929 
11930 		/* Reserve minimum resources for RoCE */
11931 		max_cp = bnxt_get_max_func_cp_rings(bp);
11932 		max_stat = bnxt_get_max_func_stat_ctxs(bp);
11933 		max_irq = bnxt_get_max_func_irqs(bp);
11934 		if (max_cp <= BNXT_MIN_ROCE_CP_RINGS ||
11935 		    max_irq <= BNXT_MIN_ROCE_CP_RINGS ||
11936 		    max_stat <= BNXT_MIN_ROCE_STAT_CTXS)
11937 			return 0;
11938 
11939 		max_cp -= BNXT_MIN_ROCE_CP_RINGS;
11940 		max_irq -= BNXT_MIN_ROCE_CP_RINGS;
11941 		max_stat -= BNXT_MIN_ROCE_STAT_CTXS;
11942 		max_cp = min_t(int, max_cp, max_irq);
11943 		max_cp = min_t(int, max_cp, max_stat);
11944 		rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared);
11945 		if (rc)
11946 			rc = 0;
11947 	}
11948 	return rc;
11949 }
11950 
11951 /* In initial default shared ring setting, each shared ring must have a
11952  * RX/TX ring pair.
11953  */
11954 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp)
11955 {
11956 	bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings);
11957 	bp->rx_nr_rings = bp->cp_nr_rings;
11958 	bp->tx_nr_rings_per_tc = bp->cp_nr_rings;
11959 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
11960 }
11961 
11962 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh)
11963 {
11964 	int dflt_rings, max_rx_rings, max_tx_rings, rc;
11965 
11966 	if (!bnxt_can_reserve_rings(bp))
11967 		return 0;
11968 
11969 	if (sh)
11970 		bp->flags |= BNXT_FLAG_SHARED_RINGS;
11971 	dflt_rings = is_kdump_kernel() ? 1 : netif_get_num_default_rss_queues();
11972 	/* Reduce default rings on multi-port cards so that total default
11973 	 * rings do not exceed CPU count.
11974 	 */
11975 	if (bp->port_count > 1) {
11976 		int max_rings =
11977 			max_t(int, num_online_cpus() / bp->port_count, 1);
11978 
11979 		dflt_rings = min_t(int, dflt_rings, max_rings);
11980 	}
11981 	rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh);
11982 	if (rc)
11983 		return rc;
11984 	bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
11985 	bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
11986 	if (sh)
11987 		bnxt_trim_dflt_sh_rings(bp);
11988 	else
11989 		bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings;
11990 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
11991 
11992 	rc = __bnxt_reserve_rings(bp);
11993 	if (rc)
11994 		netdev_warn(bp->dev, "Unable to reserve tx rings\n");
11995 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
11996 	if (sh)
11997 		bnxt_trim_dflt_sh_rings(bp);
11998 
11999 	/* Rings may have been trimmed, re-reserve the trimmed rings. */
12000 	if (bnxt_need_reserve_rings(bp)) {
12001 		rc = __bnxt_reserve_rings(bp);
12002 		if (rc)
12003 			netdev_warn(bp->dev, "2nd rings reservation failed.\n");
12004 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
12005 	}
12006 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
12007 		bp->rx_nr_rings++;
12008 		bp->cp_nr_rings++;
12009 	}
12010 	if (rc) {
12011 		bp->tx_nr_rings = 0;
12012 		bp->rx_nr_rings = 0;
12013 	}
12014 	return rc;
12015 }
12016 
12017 static int bnxt_init_dflt_ring_mode(struct bnxt *bp)
12018 {
12019 	int rc;
12020 
12021 	if (bp->tx_nr_rings)
12022 		return 0;
12023 
12024 	bnxt_ulp_irq_stop(bp);
12025 	bnxt_clear_int_mode(bp);
12026 	rc = bnxt_set_dflt_rings(bp, true);
12027 	if (rc) {
12028 		netdev_err(bp->dev, "Not enough rings available.\n");
12029 		goto init_dflt_ring_err;
12030 	}
12031 	rc = bnxt_init_int_mode(bp);
12032 	if (rc)
12033 		goto init_dflt_ring_err;
12034 
12035 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
12036 	if (bnxt_rfs_supported(bp) && bnxt_rfs_capable(bp)) {
12037 		bp->flags |= BNXT_FLAG_RFS;
12038 		bp->dev->features |= NETIF_F_NTUPLE;
12039 	}
12040 init_dflt_ring_err:
12041 	bnxt_ulp_irq_restart(bp, rc);
12042 	return rc;
12043 }
12044 
12045 int bnxt_restore_pf_fw_resources(struct bnxt *bp)
12046 {
12047 	int rc;
12048 
12049 	ASSERT_RTNL();
12050 	bnxt_hwrm_func_qcaps(bp);
12051 
12052 	if (netif_running(bp->dev))
12053 		__bnxt_close_nic(bp, true, false);
12054 
12055 	bnxt_ulp_irq_stop(bp);
12056 	bnxt_clear_int_mode(bp);
12057 	rc = bnxt_init_int_mode(bp);
12058 	bnxt_ulp_irq_restart(bp, rc);
12059 
12060 	if (netif_running(bp->dev)) {
12061 		if (rc)
12062 			dev_close(bp->dev);
12063 		else
12064 			rc = bnxt_open_nic(bp, true, false);
12065 	}
12066 
12067 	return rc;
12068 }
12069 
12070 static int bnxt_init_mac_addr(struct bnxt *bp)
12071 {
12072 	int rc = 0;
12073 
12074 	if (BNXT_PF(bp)) {
12075 		memcpy(bp->dev->dev_addr, bp->pf.mac_addr, ETH_ALEN);
12076 	} else {
12077 #ifdef CONFIG_BNXT_SRIOV
12078 		struct bnxt_vf_info *vf = &bp->vf;
12079 		bool strict_approval = true;
12080 
12081 		if (is_valid_ether_addr(vf->mac_addr)) {
12082 			/* overwrite netdev dev_addr with admin VF MAC */
12083 			memcpy(bp->dev->dev_addr, vf->mac_addr, ETH_ALEN);
12084 			/* Older PF driver or firmware may not approve this
12085 			 * correctly.
12086 			 */
12087 			strict_approval = false;
12088 		} else {
12089 			eth_hw_addr_random(bp->dev);
12090 		}
12091 		rc = bnxt_approve_mac(bp, bp->dev->dev_addr, strict_approval);
12092 #endif
12093 	}
12094 	return rc;
12095 }
12096 
12097 #define BNXT_VPD_LEN	512
12098 static void bnxt_vpd_read_info(struct bnxt *bp)
12099 {
12100 	struct pci_dev *pdev = bp->pdev;
12101 	int i, len, pos, ro_size, size;
12102 	ssize_t vpd_size;
12103 	u8 *vpd_data;
12104 
12105 	vpd_data = kmalloc(BNXT_VPD_LEN, GFP_KERNEL);
12106 	if (!vpd_data)
12107 		return;
12108 
12109 	vpd_size = pci_read_vpd(pdev, 0, BNXT_VPD_LEN, vpd_data);
12110 	if (vpd_size <= 0) {
12111 		netdev_err(bp->dev, "Unable to read VPD\n");
12112 		goto exit;
12113 	}
12114 
12115 	i = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
12116 	if (i < 0) {
12117 		netdev_err(bp->dev, "VPD READ-Only not found\n");
12118 		goto exit;
12119 	}
12120 
12121 	ro_size = pci_vpd_lrdt_size(&vpd_data[i]);
12122 	i += PCI_VPD_LRDT_TAG_SIZE;
12123 	if (i + ro_size > vpd_size)
12124 		goto exit;
12125 
12126 	pos = pci_vpd_find_info_keyword(vpd_data, i, ro_size,
12127 					PCI_VPD_RO_KEYWORD_PARTNO);
12128 	if (pos < 0)
12129 		goto read_sn;
12130 
12131 	len = pci_vpd_info_field_size(&vpd_data[pos]);
12132 	pos += PCI_VPD_INFO_FLD_HDR_SIZE;
12133 	if (len + pos > vpd_size)
12134 		goto read_sn;
12135 
12136 	size = min(len, BNXT_VPD_FLD_LEN - 1);
12137 	memcpy(bp->board_partno, &vpd_data[pos], size);
12138 
12139 read_sn:
12140 	pos = pci_vpd_find_info_keyword(vpd_data, i, ro_size,
12141 					PCI_VPD_RO_KEYWORD_SERIALNO);
12142 	if (pos < 0)
12143 		goto exit;
12144 
12145 	len = pci_vpd_info_field_size(&vpd_data[pos]);
12146 	pos += PCI_VPD_INFO_FLD_HDR_SIZE;
12147 	if (len + pos > vpd_size)
12148 		goto exit;
12149 
12150 	size = min(len, BNXT_VPD_FLD_LEN - 1);
12151 	memcpy(bp->board_serialno, &vpd_data[pos], size);
12152 exit:
12153 	kfree(vpd_data);
12154 }
12155 
12156 static int bnxt_pcie_dsn_get(struct bnxt *bp, u8 dsn[])
12157 {
12158 	struct pci_dev *pdev = bp->pdev;
12159 	u64 qword;
12160 
12161 	qword = pci_get_dsn(pdev);
12162 	if (!qword) {
12163 		netdev_info(bp->dev, "Unable to read adapter's DSN\n");
12164 		return -EOPNOTSUPP;
12165 	}
12166 
12167 	put_unaligned_le64(qword, dsn);
12168 
12169 	bp->flags |= BNXT_FLAG_DSN_VALID;
12170 	return 0;
12171 }
12172 
12173 static int bnxt_map_db_bar(struct bnxt *bp)
12174 {
12175 	if (!bp->db_size)
12176 		return -ENODEV;
12177 	bp->bar1 = pci_iomap(bp->pdev, 2, bp->db_size);
12178 	if (!bp->bar1)
12179 		return -ENOMEM;
12180 	return 0;
12181 }
12182 
12183 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
12184 {
12185 	struct net_device *dev;
12186 	struct bnxt *bp;
12187 	int rc, max_irqs;
12188 
12189 	if (pci_is_bridge(pdev))
12190 		return -ENODEV;
12191 
12192 	/* Clear any pending DMA transactions from crash kernel
12193 	 * while loading driver in capture kernel.
12194 	 */
12195 	if (is_kdump_kernel()) {
12196 		pci_clear_master(pdev);
12197 		pcie_flr(pdev);
12198 	}
12199 
12200 	max_irqs = bnxt_get_max_irq(pdev);
12201 	dev = alloc_etherdev_mq(sizeof(*bp), max_irqs);
12202 	if (!dev)
12203 		return -ENOMEM;
12204 
12205 	bp = netdev_priv(dev);
12206 	bnxt_set_max_func_irqs(bp, max_irqs);
12207 
12208 	if (bnxt_vf_pciid(ent->driver_data))
12209 		bp->flags |= BNXT_FLAG_VF;
12210 
12211 	if (pdev->msix_cap)
12212 		bp->flags |= BNXT_FLAG_MSIX_CAP;
12213 
12214 	rc = bnxt_init_board(pdev, dev);
12215 	if (rc < 0)
12216 		goto init_err_free;
12217 
12218 	dev->netdev_ops = &bnxt_netdev_ops;
12219 	dev->watchdog_timeo = BNXT_TX_TIMEOUT;
12220 	dev->ethtool_ops = &bnxt_ethtool_ops;
12221 	pci_set_drvdata(pdev, dev);
12222 
12223 	if (BNXT_PF(bp))
12224 		bnxt_vpd_read_info(bp);
12225 
12226 	rc = bnxt_alloc_hwrm_resources(bp);
12227 	if (rc)
12228 		goto init_err_pci_clean;
12229 
12230 	mutex_init(&bp->hwrm_cmd_lock);
12231 	mutex_init(&bp->link_lock);
12232 
12233 	rc = bnxt_fw_init_one_p1(bp);
12234 	if (rc)
12235 		goto init_err_pci_clean;
12236 
12237 	if (BNXT_CHIP_P5(bp))
12238 		bp->flags |= BNXT_FLAG_CHIP_P5;
12239 
12240 	rc = bnxt_alloc_rss_indir_tbl(bp);
12241 	if (rc)
12242 		goto init_err_pci_clean;
12243 
12244 	rc = bnxt_fw_init_one_p2(bp);
12245 	if (rc)
12246 		goto init_err_pci_clean;
12247 
12248 	rc = bnxt_map_db_bar(bp);
12249 	if (rc) {
12250 		dev_err(&pdev->dev, "Cannot map doorbell BAR rc = %d, aborting\n",
12251 			rc);
12252 		goto init_err_pci_clean;
12253 	}
12254 
12255 	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
12256 			   NETIF_F_TSO | NETIF_F_TSO6 |
12257 			   NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
12258 			   NETIF_F_GSO_IPXIP4 |
12259 			   NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
12260 			   NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH |
12261 			   NETIF_F_RXCSUM | NETIF_F_GRO;
12262 
12263 	if (BNXT_SUPPORTS_TPA(bp))
12264 		dev->hw_features |= NETIF_F_LRO;
12265 
12266 	dev->hw_enc_features =
12267 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
12268 			NETIF_F_TSO | NETIF_F_TSO6 |
12269 			NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
12270 			NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
12271 			NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL;
12272 	dev->udp_tunnel_nic_info = &bnxt_udp_tunnels;
12273 
12274 	dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM |
12275 				    NETIF_F_GSO_GRE_CSUM;
12276 	dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
12277 	if (bp->fw_cap & BNXT_FW_CAP_VLAN_RX_STRIP)
12278 		dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_RX;
12279 	if (bp->fw_cap & BNXT_FW_CAP_VLAN_TX_INSERT)
12280 		dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_TX;
12281 	if (BNXT_SUPPORTS_TPA(bp))
12282 		dev->hw_features |= NETIF_F_GRO_HW;
12283 	dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
12284 	if (dev->features & NETIF_F_GRO_HW)
12285 		dev->features &= ~NETIF_F_LRO;
12286 	dev->priv_flags |= IFF_UNICAST_FLT;
12287 
12288 #ifdef CONFIG_BNXT_SRIOV
12289 	init_waitqueue_head(&bp->sriov_cfg_wait);
12290 	mutex_init(&bp->sriov_lock);
12291 #endif
12292 	if (BNXT_SUPPORTS_TPA(bp)) {
12293 		bp->gro_func = bnxt_gro_func_5730x;
12294 		if (BNXT_CHIP_P4(bp))
12295 			bp->gro_func = bnxt_gro_func_5731x;
12296 		else if (BNXT_CHIP_P5(bp))
12297 			bp->gro_func = bnxt_gro_func_5750x;
12298 	}
12299 	if (!BNXT_CHIP_P4_PLUS(bp))
12300 		bp->flags |= BNXT_FLAG_DOUBLE_DB;
12301 
12302 	bp->ulp_probe = bnxt_ulp_probe;
12303 
12304 	rc = bnxt_init_mac_addr(bp);
12305 	if (rc) {
12306 		dev_err(&pdev->dev, "Unable to initialize mac address.\n");
12307 		rc = -EADDRNOTAVAIL;
12308 		goto init_err_pci_clean;
12309 	}
12310 
12311 	if (BNXT_PF(bp)) {
12312 		/* Read the adapter's DSN to use as the eswitch switch_id */
12313 		rc = bnxt_pcie_dsn_get(bp, bp->dsn);
12314 	}
12315 
12316 	/* MTU range: 60 - FW defined max */
12317 	dev->min_mtu = ETH_ZLEN;
12318 	dev->max_mtu = bp->max_mtu;
12319 
12320 	rc = bnxt_probe_phy(bp, true);
12321 	if (rc)
12322 		goto init_err_pci_clean;
12323 
12324 	bnxt_set_rx_skb_mode(bp, false);
12325 	bnxt_set_tpa_flags(bp);
12326 	bnxt_set_ring_params(bp);
12327 	rc = bnxt_set_dflt_rings(bp, true);
12328 	if (rc) {
12329 		netdev_err(bp->dev, "Not enough rings available.\n");
12330 		rc = -ENOMEM;
12331 		goto init_err_pci_clean;
12332 	}
12333 
12334 	bnxt_fw_init_one_p3(bp);
12335 
12336 	if (dev->hw_features & BNXT_HW_FEATURE_VLAN_ALL_RX)
12337 		bp->flags |= BNXT_FLAG_STRIP_VLAN;
12338 
12339 	rc = bnxt_init_int_mode(bp);
12340 	if (rc)
12341 		goto init_err_pci_clean;
12342 
12343 	/* No TC has been set yet and rings may have been trimmed due to
12344 	 * limited MSIX, so we re-initialize the TX rings per TC.
12345 	 */
12346 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
12347 
12348 	if (BNXT_PF(bp)) {
12349 		if (!bnxt_pf_wq) {
12350 			bnxt_pf_wq =
12351 				create_singlethread_workqueue("bnxt_pf_wq");
12352 			if (!bnxt_pf_wq) {
12353 				dev_err(&pdev->dev, "Unable to create workqueue.\n");
12354 				goto init_err_pci_clean;
12355 			}
12356 		}
12357 		rc = bnxt_init_tc(bp);
12358 		if (rc)
12359 			netdev_err(dev, "Failed to initialize TC flower offload, err = %d.\n",
12360 				   rc);
12361 	}
12362 
12363 	bnxt_dl_register(bp);
12364 
12365 	rc = register_netdev(dev);
12366 	if (rc)
12367 		goto init_err_cleanup;
12368 
12369 	if (BNXT_PF(bp))
12370 		devlink_port_type_eth_set(&bp->dl_port, bp->dev);
12371 	bnxt_dl_fw_reporters_create(bp);
12372 
12373 	netdev_info(dev, "%s found at mem %lx, node addr %pM\n",
12374 		    board_info[ent->driver_data].name,
12375 		    (long)pci_resource_start(pdev, 0), dev->dev_addr);
12376 	pcie_print_link_status(pdev);
12377 
12378 	pci_save_state(pdev);
12379 	return 0;
12380 
12381 init_err_cleanup:
12382 	bnxt_dl_unregister(bp);
12383 	bnxt_shutdown_tc(bp);
12384 	bnxt_clear_int_mode(bp);
12385 
12386 init_err_pci_clean:
12387 	bnxt_hwrm_func_drv_unrgtr(bp);
12388 	bnxt_free_hwrm_short_cmd_req(bp);
12389 	bnxt_free_hwrm_resources(bp);
12390 	kfree(bp->fw_health);
12391 	bp->fw_health = NULL;
12392 	bnxt_cleanup_pci(bp);
12393 	bnxt_free_ctx_mem(bp);
12394 	kfree(bp->ctx);
12395 	bp->ctx = NULL;
12396 	kfree(bp->rss_indir_tbl);
12397 	bp->rss_indir_tbl = NULL;
12398 
12399 init_err_free:
12400 	free_netdev(dev);
12401 	return rc;
12402 }
12403 
12404 static void bnxt_shutdown(struct pci_dev *pdev)
12405 {
12406 	struct net_device *dev = pci_get_drvdata(pdev);
12407 	struct bnxt *bp;
12408 
12409 	if (!dev)
12410 		return;
12411 
12412 	rtnl_lock();
12413 	bp = netdev_priv(dev);
12414 	if (!bp)
12415 		goto shutdown_exit;
12416 
12417 	if (netif_running(dev))
12418 		dev_close(dev);
12419 
12420 	bnxt_ulp_shutdown(bp);
12421 	bnxt_clear_int_mode(bp);
12422 	pci_disable_device(pdev);
12423 
12424 	if (system_state == SYSTEM_POWER_OFF) {
12425 		pci_wake_from_d3(pdev, bp->wol);
12426 		pci_set_power_state(pdev, PCI_D3hot);
12427 	}
12428 
12429 shutdown_exit:
12430 	rtnl_unlock();
12431 }
12432 
12433 #ifdef CONFIG_PM_SLEEP
12434 static int bnxt_suspend(struct device *device)
12435 {
12436 	struct net_device *dev = dev_get_drvdata(device);
12437 	struct bnxt *bp = netdev_priv(dev);
12438 	int rc = 0;
12439 
12440 	rtnl_lock();
12441 	bnxt_ulp_stop(bp);
12442 	if (netif_running(dev)) {
12443 		netif_device_detach(dev);
12444 		rc = bnxt_close(dev);
12445 	}
12446 	bnxt_hwrm_func_drv_unrgtr(bp);
12447 	pci_disable_device(bp->pdev);
12448 	bnxt_free_ctx_mem(bp);
12449 	kfree(bp->ctx);
12450 	bp->ctx = NULL;
12451 	rtnl_unlock();
12452 	return rc;
12453 }
12454 
12455 static int bnxt_resume(struct device *device)
12456 {
12457 	struct net_device *dev = dev_get_drvdata(device);
12458 	struct bnxt *bp = netdev_priv(dev);
12459 	int rc = 0;
12460 
12461 	rtnl_lock();
12462 	rc = pci_enable_device(bp->pdev);
12463 	if (rc) {
12464 		netdev_err(dev, "Cannot re-enable PCI device during resume, err = %d\n",
12465 			   rc);
12466 		goto resume_exit;
12467 	}
12468 	pci_set_master(bp->pdev);
12469 	if (bnxt_hwrm_ver_get(bp)) {
12470 		rc = -ENODEV;
12471 		goto resume_exit;
12472 	}
12473 	rc = bnxt_hwrm_func_reset(bp);
12474 	if (rc) {
12475 		rc = -EBUSY;
12476 		goto resume_exit;
12477 	}
12478 
12479 	rc = bnxt_hwrm_func_qcaps(bp);
12480 	if (rc)
12481 		goto resume_exit;
12482 
12483 	if (bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false)) {
12484 		rc = -ENODEV;
12485 		goto resume_exit;
12486 	}
12487 
12488 	bnxt_get_wol_settings(bp);
12489 	if (netif_running(dev)) {
12490 		rc = bnxt_open(dev);
12491 		if (!rc)
12492 			netif_device_attach(dev);
12493 	}
12494 
12495 resume_exit:
12496 	bnxt_ulp_start(bp, rc);
12497 	if (!rc)
12498 		bnxt_reenable_sriov(bp);
12499 	rtnl_unlock();
12500 	return rc;
12501 }
12502 
12503 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume);
12504 #define BNXT_PM_OPS (&bnxt_pm_ops)
12505 
12506 #else
12507 
12508 #define BNXT_PM_OPS NULL
12509 
12510 #endif /* CONFIG_PM_SLEEP */
12511 
12512 /**
12513  * bnxt_io_error_detected - called when PCI error is detected
12514  * @pdev: Pointer to PCI device
12515  * @state: The current pci connection state
12516  *
12517  * This function is called after a PCI bus error affecting
12518  * this device has been detected.
12519  */
12520 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev,
12521 					       pci_channel_state_t state)
12522 {
12523 	struct net_device *netdev = pci_get_drvdata(pdev);
12524 	struct bnxt *bp = netdev_priv(netdev);
12525 
12526 	netdev_info(netdev, "PCI I/O error detected\n");
12527 
12528 	rtnl_lock();
12529 	netif_device_detach(netdev);
12530 
12531 	bnxt_ulp_stop(bp);
12532 
12533 	if (state == pci_channel_io_perm_failure) {
12534 		rtnl_unlock();
12535 		return PCI_ERS_RESULT_DISCONNECT;
12536 	}
12537 
12538 	if (netif_running(netdev))
12539 		bnxt_close(netdev);
12540 
12541 	pci_disable_device(pdev);
12542 	bnxt_free_ctx_mem(bp);
12543 	kfree(bp->ctx);
12544 	bp->ctx = NULL;
12545 	rtnl_unlock();
12546 
12547 	/* Request a slot slot reset. */
12548 	return PCI_ERS_RESULT_NEED_RESET;
12549 }
12550 
12551 /**
12552  * bnxt_io_slot_reset - called after the pci bus has been reset.
12553  * @pdev: Pointer to PCI device
12554  *
12555  * Restart the card from scratch, as if from a cold-boot.
12556  * At this point, the card has exprienced a hard reset,
12557  * followed by fixups by BIOS, and has its config space
12558  * set up identically to what it was at cold boot.
12559  */
12560 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev)
12561 {
12562 	struct net_device *netdev = pci_get_drvdata(pdev);
12563 	struct bnxt *bp = netdev_priv(netdev);
12564 	int err = 0;
12565 	pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
12566 
12567 	netdev_info(bp->dev, "PCI Slot Reset\n");
12568 
12569 	rtnl_lock();
12570 
12571 	if (pci_enable_device(pdev)) {
12572 		dev_err(&pdev->dev,
12573 			"Cannot re-enable PCI device after reset.\n");
12574 	} else {
12575 		pci_set_master(pdev);
12576 		pci_restore_state(pdev);
12577 		pci_save_state(pdev);
12578 
12579 		err = bnxt_hwrm_func_reset(bp);
12580 		if (!err) {
12581 			err = bnxt_hwrm_func_qcaps(bp);
12582 			if (!err && netif_running(netdev))
12583 				err = bnxt_open(netdev);
12584 		}
12585 		bnxt_ulp_start(bp, err);
12586 		if (!err) {
12587 			bnxt_reenable_sriov(bp);
12588 			result = PCI_ERS_RESULT_RECOVERED;
12589 		}
12590 	}
12591 
12592 	if (result != PCI_ERS_RESULT_RECOVERED) {
12593 		if (netif_running(netdev))
12594 			dev_close(netdev);
12595 		pci_disable_device(pdev);
12596 	}
12597 
12598 	rtnl_unlock();
12599 
12600 	return result;
12601 }
12602 
12603 /**
12604  * bnxt_io_resume - called when traffic can start flowing again.
12605  * @pdev: Pointer to PCI device
12606  *
12607  * This callback is called when the error recovery driver tells
12608  * us that its OK to resume normal operation.
12609  */
12610 static void bnxt_io_resume(struct pci_dev *pdev)
12611 {
12612 	struct net_device *netdev = pci_get_drvdata(pdev);
12613 
12614 	rtnl_lock();
12615 
12616 	netif_device_attach(netdev);
12617 
12618 	rtnl_unlock();
12619 }
12620 
12621 static const struct pci_error_handlers bnxt_err_handler = {
12622 	.error_detected	= bnxt_io_error_detected,
12623 	.slot_reset	= bnxt_io_slot_reset,
12624 	.resume		= bnxt_io_resume
12625 };
12626 
12627 static struct pci_driver bnxt_pci_driver = {
12628 	.name		= DRV_MODULE_NAME,
12629 	.id_table	= bnxt_pci_tbl,
12630 	.probe		= bnxt_init_one,
12631 	.remove		= bnxt_remove_one,
12632 	.shutdown	= bnxt_shutdown,
12633 	.driver.pm	= BNXT_PM_OPS,
12634 	.err_handler	= &bnxt_err_handler,
12635 #if defined(CONFIG_BNXT_SRIOV)
12636 	.sriov_configure = bnxt_sriov_configure,
12637 #endif
12638 };
12639 
12640 static int __init bnxt_init(void)
12641 {
12642 	bnxt_debug_init();
12643 	return pci_register_driver(&bnxt_pci_driver);
12644 }
12645 
12646 static void __exit bnxt_exit(void)
12647 {
12648 	pci_unregister_driver(&bnxt_pci_driver);
12649 	if (bnxt_pf_wq)
12650 		destroy_workqueue(bnxt_pf_wq);
12651 	bnxt_debug_exit();
12652 }
12653 
12654 module_init(bnxt_init);
12655 module_exit(bnxt_exit);
12656