1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2016 Broadcom Corporation
4  * Copyright (c) 2016-2019 Broadcom Limited
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation.
9  */
10 
11 #include <linux/module.h>
12 
13 #include <linux/stringify.h>
14 #include <linux/kernel.h>
15 #include <linux/timer.h>
16 #include <linux/errno.h>
17 #include <linux/ioport.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 #include <linux/interrupt.h>
21 #include <linux/pci.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/skbuff.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/bitops.h>
27 #include <linux/io.h>
28 #include <linux/irq.h>
29 #include <linux/delay.h>
30 #include <asm/byteorder.h>
31 #include <asm/page.h>
32 #include <linux/time.h>
33 #include <linux/mii.h>
34 #include <linux/mdio.h>
35 #include <linux/if.h>
36 #include <linux/if_vlan.h>
37 #include <linux/if_bridge.h>
38 #include <linux/rtc.h>
39 #include <linux/bpf.h>
40 #include <net/gro.h>
41 #include <net/ip.h>
42 #include <net/tcp.h>
43 #include <net/udp.h>
44 #include <net/checksum.h>
45 #include <net/ip6_checksum.h>
46 #include <net/udp_tunnel.h>
47 #include <linux/workqueue.h>
48 #include <linux/prefetch.h>
49 #include <linux/cache.h>
50 #include <linux/log2.h>
51 #include <linux/aer.h>
52 #include <linux/bitmap.h>
53 #include <linux/cpu_rmap.h>
54 #include <linux/cpumask.h>
55 #include <net/pkt_cls.h>
56 #include <linux/hwmon.h>
57 #include <linux/hwmon-sysfs.h>
58 #include <net/page_pool.h>
59 #include <linux/align.h>
60 
61 #include "bnxt_hsi.h"
62 #include "bnxt.h"
63 #include "bnxt_hwrm.h"
64 #include "bnxt_ulp.h"
65 #include "bnxt_sriov.h"
66 #include "bnxt_ethtool.h"
67 #include "bnxt_dcb.h"
68 #include "bnxt_xdp.h"
69 #include "bnxt_ptp.h"
70 #include "bnxt_vfr.h"
71 #include "bnxt_tc.h"
72 #include "bnxt_devlink.h"
73 #include "bnxt_debugfs.h"
74 
75 #define BNXT_TX_TIMEOUT		(5 * HZ)
76 #define BNXT_DEF_MSG_ENABLE	(NETIF_MSG_DRV | NETIF_MSG_HW | \
77 				 NETIF_MSG_TX_ERR)
78 
79 MODULE_LICENSE("GPL");
80 MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
81 
82 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
83 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
84 #define BNXT_RX_COPY_THRESH 256
85 
86 #define BNXT_TX_PUSH_THRESH 164
87 
88 /* indexed by enum board_idx */
89 static const struct {
90 	char *name;
91 } board_info[] = {
92 	[BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" },
93 	[BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" },
94 	[BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
95 	[BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" },
96 	[BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" },
97 	[BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" },
98 	[BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" },
99 	[BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" },
100 	[BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" },
101 	[BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" },
102 	[BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" },
103 	[BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" },
104 	[BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" },
105 	[BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" },
106 	[BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" },
107 	[BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" },
108 	[BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" },
109 	[BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
110 	[BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" },
111 	[BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" },
112 	[BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" },
113 	[BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" },
114 	[BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" },
115 	[BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" },
116 	[BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" },
117 	[BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" },
118 	[BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" },
119 	[BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
120 	[BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" },
121 	[BCM57508] = { "Broadcom BCM57508 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
122 	[BCM57504] = { "Broadcom BCM57504 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
123 	[BCM57502] = { "Broadcom BCM57502 NetXtreme-E 10Gb/25Gb/50Gb Ethernet" },
124 	[BCM57508_NPAR] = { "Broadcom BCM57508 NetXtreme-E Ethernet Partition" },
125 	[BCM57504_NPAR] = { "Broadcom BCM57504 NetXtreme-E Ethernet Partition" },
126 	[BCM57502_NPAR] = { "Broadcom BCM57502 NetXtreme-E Ethernet Partition" },
127 	[BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" },
128 	[BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
129 	[BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
130 	[NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" },
131 	[NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" },
132 	[NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" },
133 	[NETXTREME_C_VF_HV] = { "Broadcom NetXtreme-C Virtual Function for Hyper-V" },
134 	[NETXTREME_E_VF_HV] = { "Broadcom NetXtreme-E Virtual Function for Hyper-V" },
135 	[NETXTREME_E_P5_VF] = { "Broadcom BCM5750X NetXtreme-E Ethernet Virtual Function" },
136 	[NETXTREME_E_P5_VF_HV] = { "Broadcom BCM5750X NetXtreme-E Virtual Function for Hyper-V" },
137 };
138 
139 static const struct pci_device_id bnxt_pci_tbl[] = {
140 	{ PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR },
141 	{ PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR },
142 	{ PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 },
143 	{ PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR },
144 	{ PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
145 	{ PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
146 	{ PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
147 	{ PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR },
148 	{ PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 },
149 	{ PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 },
150 	{ PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 },
151 	{ PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
152 	{ PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
153 	{ PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
154 	{ PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR },
155 	{ PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 },
156 	{ PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 },
157 	{ PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 },
158 	{ PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 },
159 	{ PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 },
160 	{ PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR },
161 	{ PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 },
162 	{ PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP },
163 	{ PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP },
164 	{ PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR },
165 	{ PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR },
166 	{ PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP },
167 	{ PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR },
168 	{ PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR },
169 	{ PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR },
170 	{ PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR },
171 	{ PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR },
172 	{ PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR },
173 	{ PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 },
174 	{ PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 },
175 	{ PCI_VDEVICE(BROADCOM, 0x1750), .driver_data = BCM57508 },
176 	{ PCI_VDEVICE(BROADCOM, 0x1751), .driver_data = BCM57504 },
177 	{ PCI_VDEVICE(BROADCOM, 0x1752), .driver_data = BCM57502 },
178 	{ PCI_VDEVICE(BROADCOM, 0x1800), .driver_data = BCM57508_NPAR },
179 	{ PCI_VDEVICE(BROADCOM, 0x1801), .driver_data = BCM57504_NPAR },
180 	{ PCI_VDEVICE(BROADCOM, 0x1802), .driver_data = BCM57502_NPAR },
181 	{ PCI_VDEVICE(BROADCOM, 0x1803), .driver_data = BCM57508_NPAR },
182 	{ PCI_VDEVICE(BROADCOM, 0x1804), .driver_data = BCM57504_NPAR },
183 	{ PCI_VDEVICE(BROADCOM, 0x1805), .driver_data = BCM57502_NPAR },
184 	{ PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 },
185 	{ PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 },
186 #ifdef CONFIG_BNXT_SRIOV
187 	{ PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF },
188 	{ PCI_VDEVICE(BROADCOM, 0x1607), .driver_data = NETXTREME_E_VF_HV },
189 	{ PCI_VDEVICE(BROADCOM, 0x1608), .driver_data = NETXTREME_E_VF_HV },
190 	{ PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF },
191 	{ PCI_VDEVICE(BROADCOM, 0x16bd), .driver_data = NETXTREME_E_VF_HV },
192 	{ PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF },
193 	{ PCI_VDEVICE(BROADCOM, 0x16c2), .driver_data = NETXTREME_C_VF_HV },
194 	{ PCI_VDEVICE(BROADCOM, 0x16c3), .driver_data = NETXTREME_C_VF_HV },
195 	{ PCI_VDEVICE(BROADCOM, 0x16c4), .driver_data = NETXTREME_E_VF_HV },
196 	{ PCI_VDEVICE(BROADCOM, 0x16c5), .driver_data = NETXTREME_E_VF_HV },
197 	{ PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF },
198 	{ PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF },
199 	{ PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF },
200 	{ PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF },
201 	{ PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF },
202 	{ PCI_VDEVICE(BROADCOM, 0x16e6), .driver_data = NETXTREME_C_VF_HV },
203 	{ PCI_VDEVICE(BROADCOM, 0x1806), .driver_data = NETXTREME_E_P5_VF },
204 	{ PCI_VDEVICE(BROADCOM, 0x1807), .driver_data = NETXTREME_E_P5_VF },
205 	{ PCI_VDEVICE(BROADCOM, 0x1808), .driver_data = NETXTREME_E_P5_VF_HV },
206 	{ PCI_VDEVICE(BROADCOM, 0x1809), .driver_data = NETXTREME_E_P5_VF_HV },
207 	{ PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF },
208 #endif
209 	{ 0 }
210 };
211 
212 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
213 
214 static const u16 bnxt_vf_req_snif[] = {
215 	HWRM_FUNC_CFG,
216 	HWRM_FUNC_VF_CFG,
217 	HWRM_PORT_PHY_QCFG,
218 	HWRM_CFA_L2_FILTER_ALLOC,
219 };
220 
221 static const u16 bnxt_async_events_arr[] = {
222 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE,
223 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE,
224 	ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD,
225 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED,
226 	ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE,
227 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE,
228 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE,
229 	ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY,
230 	ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY,
231 	ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION,
232 	ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE,
233 	ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG,
234 	ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST,
235 	ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP,
236 	ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT,
237 	ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE,
238 };
239 
240 static struct workqueue_struct *bnxt_pf_wq;
241 
242 static bool bnxt_vf_pciid(enum board_idx idx)
243 {
244 	return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF ||
245 		idx == NETXTREME_S_VF || idx == NETXTREME_C_VF_HV ||
246 		idx == NETXTREME_E_VF_HV || idx == NETXTREME_E_P5_VF ||
247 		idx == NETXTREME_E_P5_VF_HV);
248 }
249 
250 #define DB_CP_REARM_FLAGS	(DB_KEY_CP | DB_IDX_VALID)
251 #define DB_CP_FLAGS		(DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
252 #define DB_CP_IRQ_DIS_FLAGS	(DB_KEY_CP | DB_IRQ_DIS)
253 
254 #define BNXT_CP_DB_IRQ_DIS(db)						\
255 		writel(DB_CP_IRQ_DIS_FLAGS, db)
256 
257 #define BNXT_DB_CQ(db, idx)						\
258 	writel(DB_CP_FLAGS | RING_CMP(idx), (db)->doorbell)
259 
260 #define BNXT_DB_NQ_P5(db, idx)						\
261 	bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ | RING_CMP(idx),	\
262 		    (db)->doorbell)
263 
264 #define BNXT_DB_CQ_ARM(db, idx)						\
265 	writel(DB_CP_REARM_FLAGS | RING_CMP(idx), (db)->doorbell)
266 
267 #define BNXT_DB_NQ_ARM_P5(db, idx)					\
268 	bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ_ARM | RING_CMP(idx),\
269 		    (db)->doorbell)
270 
271 static void bnxt_db_nq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
272 {
273 	if (bp->flags & BNXT_FLAG_CHIP_P5)
274 		BNXT_DB_NQ_P5(db, idx);
275 	else
276 		BNXT_DB_CQ(db, idx);
277 }
278 
279 static void bnxt_db_nq_arm(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
280 {
281 	if (bp->flags & BNXT_FLAG_CHIP_P5)
282 		BNXT_DB_NQ_ARM_P5(db, idx);
283 	else
284 		BNXT_DB_CQ_ARM(db, idx);
285 }
286 
287 static void bnxt_db_cq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
288 {
289 	if (bp->flags & BNXT_FLAG_CHIP_P5)
290 		bnxt_writeq(bp, db->db_key64 | DBR_TYPE_CQ_ARMALL |
291 			    RING_CMP(idx), db->doorbell);
292 	else
293 		BNXT_DB_CQ(db, idx);
294 }
295 
296 const u16 bnxt_lhint_arr[] = {
297 	TX_BD_FLAGS_LHINT_512_AND_SMALLER,
298 	TX_BD_FLAGS_LHINT_512_TO_1023,
299 	TX_BD_FLAGS_LHINT_1024_TO_2047,
300 	TX_BD_FLAGS_LHINT_1024_TO_2047,
301 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
302 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
303 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
304 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
305 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
306 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
307 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
308 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
309 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
310 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
311 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
312 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
313 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
314 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
315 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
316 };
317 
318 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb)
319 {
320 	struct metadata_dst *md_dst = skb_metadata_dst(skb);
321 
322 	if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX)
323 		return 0;
324 
325 	return md_dst->u.port_info.port_id;
326 }
327 
328 static void bnxt_txr_db_kick(struct bnxt *bp, struct bnxt_tx_ring_info *txr,
329 			     u16 prod)
330 {
331 	bnxt_db_write(bp, &txr->tx_db, prod);
332 	txr->kick_pending = 0;
333 }
334 
335 static bool bnxt_txr_netif_try_stop_queue(struct bnxt *bp,
336 					  struct bnxt_tx_ring_info *txr,
337 					  struct netdev_queue *txq)
338 {
339 	netif_tx_stop_queue(txq);
340 
341 	/* netif_tx_stop_queue() must be done before checking
342 	 * tx index in bnxt_tx_avail() below, because in
343 	 * bnxt_tx_int(), we update tx index before checking for
344 	 * netif_tx_queue_stopped().
345 	 */
346 	smp_mb();
347 	if (bnxt_tx_avail(bp, txr) >= bp->tx_wake_thresh) {
348 		netif_tx_wake_queue(txq);
349 		return false;
350 	}
351 
352 	return true;
353 }
354 
355 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
356 {
357 	struct bnxt *bp = netdev_priv(dev);
358 	struct tx_bd *txbd;
359 	struct tx_bd_ext *txbd1;
360 	struct netdev_queue *txq;
361 	int i;
362 	dma_addr_t mapping;
363 	unsigned int length, pad = 0;
364 	u32 len, free_size, vlan_tag_flags, cfa_action, flags;
365 	u16 prod, last_frag;
366 	struct pci_dev *pdev = bp->pdev;
367 	struct bnxt_tx_ring_info *txr;
368 	struct bnxt_sw_tx_bd *tx_buf;
369 	__le32 lflags = 0;
370 
371 	i = skb_get_queue_mapping(skb);
372 	if (unlikely(i >= bp->tx_nr_rings)) {
373 		dev_kfree_skb_any(skb);
374 		dev_core_stats_tx_dropped_inc(dev);
375 		return NETDEV_TX_OK;
376 	}
377 
378 	txq = netdev_get_tx_queue(dev, i);
379 	txr = &bp->tx_ring[bp->tx_ring_map[i]];
380 	prod = txr->tx_prod;
381 
382 	free_size = bnxt_tx_avail(bp, txr);
383 	if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
384 		/* We must have raced with NAPI cleanup */
385 		if (net_ratelimit() && txr->kick_pending)
386 			netif_warn(bp, tx_err, dev,
387 				   "bnxt: ring busy w/ flush pending!\n");
388 		if (bnxt_txr_netif_try_stop_queue(bp, txr, txq))
389 			return NETDEV_TX_BUSY;
390 	}
391 
392 	length = skb->len;
393 	len = skb_headlen(skb);
394 	last_frag = skb_shinfo(skb)->nr_frags;
395 
396 	txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
397 
398 	txbd->tx_bd_opaque = prod;
399 
400 	tx_buf = &txr->tx_buf_ring[prod];
401 	tx_buf->skb = skb;
402 	tx_buf->nr_frags = last_frag;
403 
404 	vlan_tag_flags = 0;
405 	cfa_action = bnxt_xmit_get_cfa_action(skb);
406 	if (skb_vlan_tag_present(skb)) {
407 		vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
408 				 skb_vlan_tag_get(skb);
409 		/* Currently supports 8021Q, 8021AD vlan offloads
410 		 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
411 		 */
412 		if (skb->vlan_proto == htons(ETH_P_8021Q))
413 			vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
414 	}
415 
416 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
417 		struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
418 
419 		if (ptp && ptp->tx_tstamp_en && !skb_is_gso(skb) &&
420 		    atomic_dec_if_positive(&ptp->tx_avail) >= 0) {
421 			if (!bnxt_ptp_parse(skb, &ptp->tx_seqid,
422 					    &ptp->tx_hdr_off)) {
423 				if (vlan_tag_flags)
424 					ptp->tx_hdr_off += VLAN_HLEN;
425 				lflags |= cpu_to_le32(TX_BD_FLAGS_STAMP);
426 				skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
427 			} else {
428 				atomic_inc(&bp->ptp_cfg->tx_avail);
429 			}
430 		}
431 	}
432 
433 	if (unlikely(skb->no_fcs))
434 		lflags |= cpu_to_le32(TX_BD_FLAGS_NO_CRC);
435 
436 	if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh &&
437 	    !lflags) {
438 		struct tx_push_buffer *tx_push_buf = txr->tx_push;
439 		struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
440 		struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
441 		void __iomem *db = txr->tx_db.doorbell;
442 		void *pdata = tx_push_buf->data;
443 		u64 *end;
444 		int j, push_len;
445 
446 		/* Set COAL_NOW to be ready quickly for the next push */
447 		tx_push->tx_bd_len_flags_type =
448 			cpu_to_le32((length << TX_BD_LEN_SHIFT) |
449 					TX_BD_TYPE_LONG_TX_BD |
450 					TX_BD_FLAGS_LHINT_512_AND_SMALLER |
451 					TX_BD_FLAGS_COAL_NOW |
452 					TX_BD_FLAGS_PACKET_END |
453 					(2 << TX_BD_FLAGS_BD_CNT_SHIFT));
454 
455 		if (skb->ip_summed == CHECKSUM_PARTIAL)
456 			tx_push1->tx_bd_hsize_lflags =
457 					cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
458 		else
459 			tx_push1->tx_bd_hsize_lflags = 0;
460 
461 		tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
462 		tx_push1->tx_bd_cfa_action =
463 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
464 
465 		end = pdata + length;
466 		end = PTR_ALIGN(end, 8) - 1;
467 		*end = 0;
468 
469 		skb_copy_from_linear_data(skb, pdata, len);
470 		pdata += len;
471 		for (j = 0; j < last_frag; j++) {
472 			skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
473 			void *fptr;
474 
475 			fptr = skb_frag_address_safe(frag);
476 			if (!fptr)
477 				goto normal_tx;
478 
479 			memcpy(pdata, fptr, skb_frag_size(frag));
480 			pdata += skb_frag_size(frag);
481 		}
482 
483 		txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
484 		txbd->tx_bd_haddr = txr->data_mapping;
485 		prod = NEXT_TX(prod);
486 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
487 		memcpy(txbd, tx_push1, sizeof(*txbd));
488 		prod = NEXT_TX(prod);
489 		tx_push->doorbell =
490 			cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod);
491 		txr->tx_prod = prod;
492 
493 		tx_buf->is_push = 1;
494 		netdev_tx_sent_queue(txq, skb->len);
495 		wmb();	/* Sync is_push and byte queue before pushing data */
496 
497 		push_len = (length + sizeof(*tx_push) + 7) / 8;
498 		if (push_len > 16) {
499 			__iowrite64_copy(db, tx_push_buf, 16);
500 			__iowrite32_copy(db + 4, tx_push_buf + 1,
501 					 (push_len - 16) << 1);
502 		} else {
503 			__iowrite64_copy(db, tx_push_buf, push_len);
504 		}
505 
506 		goto tx_done;
507 	}
508 
509 normal_tx:
510 	if (length < BNXT_MIN_PKT_SIZE) {
511 		pad = BNXT_MIN_PKT_SIZE - length;
512 		if (skb_pad(skb, pad))
513 			/* SKB already freed. */
514 			goto tx_kick_pending;
515 		length = BNXT_MIN_PKT_SIZE;
516 	}
517 
518 	mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
519 
520 	if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
521 		goto tx_free;
522 
523 	dma_unmap_addr_set(tx_buf, mapping, mapping);
524 	flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
525 		((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
526 
527 	txbd->tx_bd_haddr = cpu_to_le64(mapping);
528 
529 	prod = NEXT_TX(prod);
530 	txbd1 = (struct tx_bd_ext *)
531 		&txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
532 
533 	txbd1->tx_bd_hsize_lflags = lflags;
534 	if (skb_is_gso(skb)) {
535 		u32 hdr_len;
536 
537 		if (skb->encapsulation)
538 			hdr_len = skb_inner_tcp_all_headers(skb);
539 		else
540 			hdr_len = skb_tcp_all_headers(skb);
541 
542 		txbd1->tx_bd_hsize_lflags |= cpu_to_le32(TX_BD_FLAGS_LSO |
543 					TX_BD_FLAGS_T_IPID |
544 					(hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
545 		length = skb_shinfo(skb)->gso_size;
546 		txbd1->tx_bd_mss = cpu_to_le32(length);
547 		length += hdr_len;
548 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
549 		txbd1->tx_bd_hsize_lflags |=
550 			cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
551 		txbd1->tx_bd_mss = 0;
552 	}
553 
554 	length >>= 9;
555 	if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) {
556 		dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n",
557 				     skb->len);
558 		i = 0;
559 		goto tx_dma_error;
560 	}
561 	flags |= bnxt_lhint_arr[length];
562 	txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
563 
564 	txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
565 	txbd1->tx_bd_cfa_action =
566 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
567 	for (i = 0; i < last_frag; i++) {
568 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
569 
570 		prod = NEXT_TX(prod);
571 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
572 
573 		len = skb_frag_size(frag);
574 		mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
575 					   DMA_TO_DEVICE);
576 
577 		if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
578 			goto tx_dma_error;
579 
580 		tx_buf = &txr->tx_buf_ring[prod];
581 		dma_unmap_addr_set(tx_buf, mapping, mapping);
582 
583 		txbd->tx_bd_haddr = cpu_to_le64(mapping);
584 
585 		flags = len << TX_BD_LEN_SHIFT;
586 		txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
587 	}
588 
589 	flags &= ~TX_BD_LEN;
590 	txbd->tx_bd_len_flags_type =
591 		cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
592 			    TX_BD_FLAGS_PACKET_END);
593 
594 	netdev_tx_sent_queue(txq, skb->len);
595 
596 	skb_tx_timestamp(skb);
597 
598 	/* Sync BD data before updating doorbell */
599 	wmb();
600 
601 	prod = NEXT_TX(prod);
602 	txr->tx_prod = prod;
603 
604 	if (!netdev_xmit_more() || netif_xmit_stopped(txq))
605 		bnxt_txr_db_kick(bp, txr, prod);
606 	else
607 		txr->kick_pending = 1;
608 
609 tx_done:
610 
611 	if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
612 		if (netdev_xmit_more() && !tx_buf->is_push)
613 			bnxt_txr_db_kick(bp, txr, prod);
614 
615 		bnxt_txr_netif_try_stop_queue(bp, txr, txq);
616 	}
617 	return NETDEV_TX_OK;
618 
619 tx_dma_error:
620 	if (BNXT_TX_PTP_IS_SET(lflags))
621 		atomic_inc(&bp->ptp_cfg->tx_avail);
622 
623 	last_frag = i;
624 
625 	/* start back at beginning and unmap skb */
626 	prod = txr->tx_prod;
627 	tx_buf = &txr->tx_buf_ring[prod];
628 	dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
629 			 skb_headlen(skb), DMA_TO_DEVICE);
630 	prod = NEXT_TX(prod);
631 
632 	/* unmap remaining mapped pages */
633 	for (i = 0; i < last_frag; i++) {
634 		prod = NEXT_TX(prod);
635 		tx_buf = &txr->tx_buf_ring[prod];
636 		dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
637 			       skb_frag_size(&skb_shinfo(skb)->frags[i]),
638 			       DMA_TO_DEVICE);
639 	}
640 
641 tx_free:
642 	dev_kfree_skb_any(skb);
643 tx_kick_pending:
644 	if (txr->kick_pending)
645 		bnxt_txr_db_kick(bp, txr, txr->tx_prod);
646 	txr->tx_buf_ring[txr->tx_prod].skb = NULL;
647 	dev_core_stats_tx_dropped_inc(dev);
648 	return NETDEV_TX_OK;
649 }
650 
651 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts)
652 {
653 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
654 	struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index);
655 	u16 cons = txr->tx_cons;
656 	struct pci_dev *pdev = bp->pdev;
657 	int i;
658 	unsigned int tx_bytes = 0;
659 
660 	for (i = 0; i < nr_pkts; i++) {
661 		struct bnxt_sw_tx_bd *tx_buf;
662 		bool compl_deferred = false;
663 		struct sk_buff *skb;
664 		int j, last;
665 
666 		tx_buf = &txr->tx_buf_ring[cons];
667 		cons = NEXT_TX(cons);
668 		skb = tx_buf->skb;
669 		tx_buf->skb = NULL;
670 
671 		if (tx_buf->is_push) {
672 			tx_buf->is_push = 0;
673 			goto next_tx_int;
674 		}
675 
676 		dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
677 				 skb_headlen(skb), DMA_TO_DEVICE);
678 		last = tx_buf->nr_frags;
679 
680 		for (j = 0; j < last; j++) {
681 			cons = NEXT_TX(cons);
682 			tx_buf = &txr->tx_buf_ring[cons];
683 			dma_unmap_page(
684 				&pdev->dev,
685 				dma_unmap_addr(tx_buf, mapping),
686 				skb_frag_size(&skb_shinfo(skb)->frags[j]),
687 				DMA_TO_DEVICE);
688 		}
689 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
690 			if (bp->flags & BNXT_FLAG_CHIP_P5) {
691 				if (!bnxt_get_tx_ts_p5(bp, skb))
692 					compl_deferred = true;
693 				else
694 					atomic_inc(&bp->ptp_cfg->tx_avail);
695 			}
696 		}
697 
698 next_tx_int:
699 		cons = NEXT_TX(cons);
700 
701 		tx_bytes += skb->len;
702 		if (!compl_deferred)
703 			dev_kfree_skb_any(skb);
704 	}
705 
706 	netdev_tx_completed_queue(txq, nr_pkts, tx_bytes);
707 	txr->tx_cons = cons;
708 
709 	/* Need to make the tx_cons update visible to bnxt_start_xmit()
710 	 * before checking for netif_tx_queue_stopped().  Without the
711 	 * memory barrier, there is a small possibility that bnxt_start_xmit()
712 	 * will miss it and cause the queue to be stopped forever.
713 	 */
714 	smp_mb();
715 
716 	if (unlikely(netif_tx_queue_stopped(txq)) &&
717 	    bnxt_tx_avail(bp, txr) >= bp->tx_wake_thresh &&
718 	    READ_ONCE(txr->dev_state) != BNXT_DEV_STATE_CLOSING)
719 		netif_tx_wake_queue(txq);
720 }
721 
722 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping,
723 					 struct bnxt_rx_ring_info *rxr,
724 					 gfp_t gfp)
725 {
726 	struct device *dev = &bp->pdev->dev;
727 	struct page *page;
728 
729 	page = page_pool_dev_alloc_pages(rxr->page_pool);
730 	if (!page)
731 		return NULL;
732 
733 	*mapping = dma_map_page_attrs(dev, page, 0, PAGE_SIZE, bp->rx_dir,
734 				      DMA_ATTR_WEAK_ORDERING);
735 	if (dma_mapping_error(dev, *mapping)) {
736 		page_pool_recycle_direct(rxr->page_pool, page);
737 		return NULL;
738 	}
739 	return page;
740 }
741 
742 static inline u8 *__bnxt_alloc_rx_frag(struct bnxt *bp, dma_addr_t *mapping,
743 				       gfp_t gfp)
744 {
745 	u8 *data;
746 	struct pci_dev *pdev = bp->pdev;
747 
748 	if (gfp == GFP_ATOMIC)
749 		data = napi_alloc_frag(bp->rx_buf_size);
750 	else
751 		data = netdev_alloc_frag(bp->rx_buf_size);
752 	if (!data)
753 		return NULL;
754 
755 	*mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset,
756 					bp->rx_buf_use_size, bp->rx_dir,
757 					DMA_ATTR_WEAK_ORDERING);
758 
759 	if (dma_mapping_error(&pdev->dev, *mapping)) {
760 		skb_free_frag(data);
761 		data = NULL;
762 	}
763 	return data;
764 }
765 
766 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
767 		       u16 prod, gfp_t gfp)
768 {
769 	struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
770 	struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
771 	dma_addr_t mapping;
772 
773 	if (BNXT_RX_PAGE_MODE(bp)) {
774 		struct page *page =
775 			__bnxt_alloc_rx_page(bp, &mapping, rxr, gfp);
776 
777 		if (!page)
778 			return -ENOMEM;
779 
780 		mapping += bp->rx_dma_offset;
781 		rx_buf->data = page;
782 		rx_buf->data_ptr = page_address(page) + bp->rx_offset;
783 	} else {
784 		u8 *data = __bnxt_alloc_rx_frag(bp, &mapping, gfp);
785 
786 		if (!data)
787 			return -ENOMEM;
788 
789 		rx_buf->data = data;
790 		rx_buf->data_ptr = data + bp->rx_offset;
791 	}
792 	rx_buf->mapping = mapping;
793 
794 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
795 	return 0;
796 }
797 
798 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data)
799 {
800 	u16 prod = rxr->rx_prod;
801 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
802 	struct rx_bd *cons_bd, *prod_bd;
803 
804 	prod_rx_buf = &rxr->rx_buf_ring[prod];
805 	cons_rx_buf = &rxr->rx_buf_ring[cons];
806 
807 	prod_rx_buf->data = data;
808 	prod_rx_buf->data_ptr = cons_rx_buf->data_ptr;
809 
810 	prod_rx_buf->mapping = cons_rx_buf->mapping;
811 
812 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
813 	cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
814 
815 	prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
816 }
817 
818 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
819 {
820 	u16 next, max = rxr->rx_agg_bmap_size;
821 
822 	next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
823 	if (next >= max)
824 		next = find_first_zero_bit(rxr->rx_agg_bmap, max);
825 	return next;
826 }
827 
828 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
829 				     struct bnxt_rx_ring_info *rxr,
830 				     u16 prod, gfp_t gfp)
831 {
832 	struct rx_bd *rxbd =
833 		&rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
834 	struct bnxt_sw_rx_agg_bd *rx_agg_buf;
835 	struct pci_dev *pdev = bp->pdev;
836 	struct page *page;
837 	dma_addr_t mapping;
838 	u16 sw_prod = rxr->rx_sw_agg_prod;
839 	unsigned int offset = 0;
840 
841 	if (BNXT_RX_PAGE_MODE(bp)) {
842 		page = __bnxt_alloc_rx_page(bp, &mapping, rxr, gfp);
843 
844 		if (!page)
845 			return -ENOMEM;
846 
847 	} else {
848 		if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) {
849 			page = rxr->rx_page;
850 			if (!page) {
851 				page = alloc_page(gfp);
852 				if (!page)
853 					return -ENOMEM;
854 				rxr->rx_page = page;
855 				rxr->rx_page_offset = 0;
856 			}
857 			offset = rxr->rx_page_offset;
858 			rxr->rx_page_offset += BNXT_RX_PAGE_SIZE;
859 			if (rxr->rx_page_offset == PAGE_SIZE)
860 				rxr->rx_page = NULL;
861 			else
862 				get_page(page);
863 		} else {
864 			page = alloc_page(gfp);
865 			if (!page)
866 				return -ENOMEM;
867 		}
868 
869 		mapping = dma_map_page_attrs(&pdev->dev, page, offset,
870 					     BNXT_RX_PAGE_SIZE, DMA_FROM_DEVICE,
871 					     DMA_ATTR_WEAK_ORDERING);
872 		if (dma_mapping_error(&pdev->dev, mapping)) {
873 			__free_page(page);
874 			return -EIO;
875 		}
876 	}
877 
878 	if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
879 		sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
880 
881 	__set_bit(sw_prod, rxr->rx_agg_bmap);
882 	rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
883 	rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod);
884 
885 	rx_agg_buf->page = page;
886 	rx_agg_buf->offset = offset;
887 	rx_agg_buf->mapping = mapping;
888 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
889 	rxbd->rx_bd_opaque = sw_prod;
890 	return 0;
891 }
892 
893 static struct rx_agg_cmp *bnxt_get_agg(struct bnxt *bp,
894 				       struct bnxt_cp_ring_info *cpr,
895 				       u16 cp_cons, u16 curr)
896 {
897 	struct rx_agg_cmp *agg;
898 
899 	cp_cons = RING_CMP(ADV_RAW_CMP(cp_cons, curr));
900 	agg = (struct rx_agg_cmp *)
901 		&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
902 	return agg;
903 }
904 
905 static struct rx_agg_cmp *bnxt_get_tpa_agg_p5(struct bnxt *bp,
906 					      struct bnxt_rx_ring_info *rxr,
907 					      u16 agg_id, u16 curr)
908 {
909 	struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[agg_id];
910 
911 	return &tpa_info->agg_arr[curr];
912 }
913 
914 static void bnxt_reuse_rx_agg_bufs(struct bnxt_cp_ring_info *cpr, u16 idx,
915 				   u16 start, u32 agg_bufs, bool tpa)
916 {
917 	struct bnxt_napi *bnapi = cpr->bnapi;
918 	struct bnxt *bp = bnapi->bp;
919 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
920 	u16 prod = rxr->rx_agg_prod;
921 	u16 sw_prod = rxr->rx_sw_agg_prod;
922 	bool p5_tpa = false;
923 	u32 i;
924 
925 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa)
926 		p5_tpa = true;
927 
928 	for (i = 0; i < agg_bufs; i++) {
929 		u16 cons;
930 		struct rx_agg_cmp *agg;
931 		struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
932 		struct rx_bd *prod_bd;
933 		struct page *page;
934 
935 		if (p5_tpa)
936 			agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, start + i);
937 		else
938 			agg = bnxt_get_agg(bp, cpr, idx, start + i);
939 		cons = agg->rx_agg_cmp_opaque;
940 		__clear_bit(cons, rxr->rx_agg_bmap);
941 
942 		if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
943 			sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
944 
945 		__set_bit(sw_prod, rxr->rx_agg_bmap);
946 		prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
947 		cons_rx_buf = &rxr->rx_agg_ring[cons];
948 
949 		/* It is possible for sw_prod to be equal to cons, so
950 		 * set cons_rx_buf->page to NULL first.
951 		 */
952 		page = cons_rx_buf->page;
953 		cons_rx_buf->page = NULL;
954 		prod_rx_buf->page = page;
955 		prod_rx_buf->offset = cons_rx_buf->offset;
956 
957 		prod_rx_buf->mapping = cons_rx_buf->mapping;
958 
959 		prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
960 
961 		prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
962 		prod_bd->rx_bd_opaque = sw_prod;
963 
964 		prod = NEXT_RX_AGG(prod);
965 		sw_prod = NEXT_RX_AGG(sw_prod);
966 	}
967 	rxr->rx_agg_prod = prod;
968 	rxr->rx_sw_agg_prod = sw_prod;
969 }
970 
971 static struct sk_buff *bnxt_rx_multi_page_skb(struct bnxt *bp,
972 					      struct bnxt_rx_ring_info *rxr,
973 					      u16 cons, void *data, u8 *data_ptr,
974 					      dma_addr_t dma_addr,
975 					      unsigned int offset_and_len)
976 {
977 	unsigned int len = offset_and_len & 0xffff;
978 	struct page *page = data;
979 	u16 prod = rxr->rx_prod;
980 	struct sk_buff *skb;
981 	int err;
982 
983 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
984 	if (unlikely(err)) {
985 		bnxt_reuse_rx_data(rxr, cons, data);
986 		return NULL;
987 	}
988 	dma_addr -= bp->rx_dma_offset;
989 	dma_unmap_page_attrs(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir,
990 			     DMA_ATTR_WEAK_ORDERING);
991 	skb = build_skb(page_address(page), BNXT_PAGE_MODE_BUF_SIZE +
992 					    bp->rx_dma_offset);
993 	if (!skb) {
994 		__free_page(page);
995 		return NULL;
996 	}
997 	skb_mark_for_recycle(skb);
998 	skb_reserve(skb, bp->rx_dma_offset);
999 	__skb_put(skb, len);
1000 
1001 	return skb;
1002 }
1003 
1004 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp,
1005 					struct bnxt_rx_ring_info *rxr,
1006 					u16 cons, void *data, u8 *data_ptr,
1007 					dma_addr_t dma_addr,
1008 					unsigned int offset_and_len)
1009 {
1010 	unsigned int payload = offset_and_len >> 16;
1011 	unsigned int len = offset_and_len & 0xffff;
1012 	skb_frag_t *frag;
1013 	struct page *page = data;
1014 	u16 prod = rxr->rx_prod;
1015 	struct sk_buff *skb;
1016 	int off, err;
1017 
1018 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
1019 	if (unlikely(err)) {
1020 		bnxt_reuse_rx_data(rxr, cons, data);
1021 		return NULL;
1022 	}
1023 	dma_addr -= bp->rx_dma_offset;
1024 	dma_unmap_page_attrs(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir,
1025 			     DMA_ATTR_WEAK_ORDERING);
1026 
1027 	if (unlikely(!payload))
1028 		payload = eth_get_headlen(bp->dev, data_ptr, len);
1029 
1030 	skb = napi_alloc_skb(&rxr->bnapi->napi, payload);
1031 	if (!skb) {
1032 		__free_page(page);
1033 		return NULL;
1034 	}
1035 
1036 	skb_mark_for_recycle(skb);
1037 	off = (void *)data_ptr - page_address(page);
1038 	skb_add_rx_frag(skb, 0, page, off, len, PAGE_SIZE);
1039 	memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN,
1040 	       payload + NET_IP_ALIGN);
1041 
1042 	frag = &skb_shinfo(skb)->frags[0];
1043 	skb_frag_size_sub(frag, payload);
1044 	skb_frag_off_add(frag, payload);
1045 	skb->data_len -= payload;
1046 	skb->tail += payload;
1047 
1048 	return skb;
1049 }
1050 
1051 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
1052 				   struct bnxt_rx_ring_info *rxr, u16 cons,
1053 				   void *data, u8 *data_ptr,
1054 				   dma_addr_t dma_addr,
1055 				   unsigned int offset_and_len)
1056 {
1057 	u16 prod = rxr->rx_prod;
1058 	struct sk_buff *skb;
1059 	int err;
1060 
1061 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
1062 	if (unlikely(err)) {
1063 		bnxt_reuse_rx_data(rxr, cons, data);
1064 		return NULL;
1065 	}
1066 
1067 	skb = build_skb(data, bp->rx_buf_size);
1068 	dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
1069 			       bp->rx_dir, DMA_ATTR_WEAK_ORDERING);
1070 	if (!skb) {
1071 		skb_free_frag(data);
1072 		return NULL;
1073 	}
1074 
1075 	skb_reserve(skb, bp->rx_offset);
1076 	skb_put(skb, offset_and_len & 0xffff);
1077 	return skb;
1078 }
1079 
1080 static u32 __bnxt_rx_agg_pages(struct bnxt *bp,
1081 			       struct bnxt_cp_ring_info *cpr,
1082 			       struct skb_shared_info *shinfo,
1083 			       u16 idx, u32 agg_bufs, bool tpa,
1084 			       struct xdp_buff *xdp)
1085 {
1086 	struct bnxt_napi *bnapi = cpr->bnapi;
1087 	struct pci_dev *pdev = bp->pdev;
1088 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1089 	u16 prod = rxr->rx_agg_prod;
1090 	u32 i, total_frag_len = 0;
1091 	bool p5_tpa = false;
1092 
1093 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa)
1094 		p5_tpa = true;
1095 
1096 	for (i = 0; i < agg_bufs; i++) {
1097 		skb_frag_t *frag = &shinfo->frags[i];
1098 		u16 cons, frag_len;
1099 		struct rx_agg_cmp *agg;
1100 		struct bnxt_sw_rx_agg_bd *cons_rx_buf;
1101 		struct page *page;
1102 		dma_addr_t mapping;
1103 
1104 		if (p5_tpa)
1105 			agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, i);
1106 		else
1107 			agg = bnxt_get_agg(bp, cpr, idx, i);
1108 		cons = agg->rx_agg_cmp_opaque;
1109 		frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
1110 			    RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
1111 
1112 		cons_rx_buf = &rxr->rx_agg_ring[cons];
1113 		skb_frag_off_set(frag, cons_rx_buf->offset);
1114 		skb_frag_size_set(frag, frag_len);
1115 		__skb_frag_set_page(frag, cons_rx_buf->page);
1116 		shinfo->nr_frags = i + 1;
1117 		__clear_bit(cons, rxr->rx_agg_bmap);
1118 
1119 		/* It is possible for bnxt_alloc_rx_page() to allocate
1120 		 * a sw_prod index that equals the cons index, so we
1121 		 * need to clear the cons entry now.
1122 		 */
1123 		mapping = cons_rx_buf->mapping;
1124 		page = cons_rx_buf->page;
1125 		cons_rx_buf->page = NULL;
1126 
1127 		if (xdp && page_is_pfmemalloc(page))
1128 			xdp_buff_set_frag_pfmemalloc(xdp);
1129 
1130 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
1131 			unsigned int nr_frags;
1132 
1133 			nr_frags = --shinfo->nr_frags;
1134 			__skb_frag_set_page(&shinfo->frags[nr_frags], NULL);
1135 			cons_rx_buf->page = page;
1136 
1137 			/* Update prod since possibly some pages have been
1138 			 * allocated already.
1139 			 */
1140 			rxr->rx_agg_prod = prod;
1141 			bnxt_reuse_rx_agg_bufs(cpr, idx, i, agg_bufs - i, tpa);
1142 			return 0;
1143 		}
1144 
1145 		dma_unmap_page_attrs(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE,
1146 				     bp->rx_dir,
1147 				     DMA_ATTR_WEAK_ORDERING);
1148 
1149 		total_frag_len += frag_len;
1150 		prod = NEXT_RX_AGG(prod);
1151 	}
1152 	rxr->rx_agg_prod = prod;
1153 	return total_frag_len;
1154 }
1155 
1156 static struct sk_buff *bnxt_rx_agg_pages_skb(struct bnxt *bp,
1157 					     struct bnxt_cp_ring_info *cpr,
1158 					     struct sk_buff *skb, u16 idx,
1159 					     u32 agg_bufs, bool tpa)
1160 {
1161 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1162 	u32 total_frag_len = 0;
1163 
1164 	total_frag_len = __bnxt_rx_agg_pages(bp, cpr, shinfo, idx,
1165 					     agg_bufs, tpa, NULL);
1166 	if (!total_frag_len) {
1167 		dev_kfree_skb(skb);
1168 		return NULL;
1169 	}
1170 
1171 	skb->data_len += total_frag_len;
1172 	skb->len += total_frag_len;
1173 	skb->truesize += PAGE_SIZE * agg_bufs;
1174 	return skb;
1175 }
1176 
1177 static u32 bnxt_rx_agg_pages_xdp(struct bnxt *bp,
1178 				 struct bnxt_cp_ring_info *cpr,
1179 				 struct xdp_buff *xdp, u16 idx,
1180 				 u32 agg_bufs, bool tpa)
1181 {
1182 	struct skb_shared_info *shinfo = xdp_get_shared_info_from_buff(xdp);
1183 	u32 total_frag_len = 0;
1184 
1185 	if (!xdp_buff_has_frags(xdp))
1186 		shinfo->nr_frags = 0;
1187 
1188 	total_frag_len = __bnxt_rx_agg_pages(bp, cpr, shinfo,
1189 					     idx, agg_bufs, tpa, xdp);
1190 	if (total_frag_len) {
1191 		xdp_buff_set_frags_flag(xdp);
1192 		shinfo->nr_frags = agg_bufs;
1193 		shinfo->xdp_frags_size = total_frag_len;
1194 	}
1195 	return total_frag_len;
1196 }
1197 
1198 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1199 			       u8 agg_bufs, u32 *raw_cons)
1200 {
1201 	u16 last;
1202 	struct rx_agg_cmp *agg;
1203 
1204 	*raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
1205 	last = RING_CMP(*raw_cons);
1206 	agg = (struct rx_agg_cmp *)
1207 		&cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
1208 	return RX_AGG_CMP_VALID(agg, *raw_cons);
1209 }
1210 
1211 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
1212 					    unsigned int len,
1213 					    dma_addr_t mapping)
1214 {
1215 	struct bnxt *bp = bnapi->bp;
1216 	struct pci_dev *pdev = bp->pdev;
1217 	struct sk_buff *skb;
1218 
1219 	skb = napi_alloc_skb(&bnapi->napi, len);
1220 	if (!skb)
1221 		return NULL;
1222 
1223 	dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh,
1224 				bp->rx_dir);
1225 
1226 	memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN,
1227 	       len + NET_IP_ALIGN);
1228 
1229 	dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh,
1230 				   bp->rx_dir);
1231 
1232 	skb_put(skb, len);
1233 	return skb;
1234 }
1235 
1236 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1237 			   u32 *raw_cons, void *cmp)
1238 {
1239 	struct rx_cmp *rxcmp = cmp;
1240 	u32 tmp_raw_cons = *raw_cons;
1241 	u8 cmp_type, agg_bufs = 0;
1242 
1243 	cmp_type = RX_CMP_TYPE(rxcmp);
1244 
1245 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1246 		agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) &
1247 			    RX_CMP_AGG_BUFS) >>
1248 			   RX_CMP_AGG_BUFS_SHIFT;
1249 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1250 		struct rx_tpa_end_cmp *tpa_end = cmp;
1251 
1252 		if (bp->flags & BNXT_FLAG_CHIP_P5)
1253 			return 0;
1254 
1255 		agg_bufs = TPA_END_AGG_BUFS(tpa_end);
1256 	}
1257 
1258 	if (agg_bufs) {
1259 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1260 			return -EBUSY;
1261 	}
1262 	*raw_cons = tmp_raw_cons;
1263 	return 0;
1264 }
1265 
1266 static void bnxt_queue_fw_reset_work(struct bnxt *bp, unsigned long delay)
1267 {
1268 	if (!(test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)))
1269 		return;
1270 
1271 	if (BNXT_PF(bp))
1272 		queue_delayed_work(bnxt_pf_wq, &bp->fw_reset_task, delay);
1273 	else
1274 		schedule_delayed_work(&bp->fw_reset_task, delay);
1275 }
1276 
1277 static void bnxt_queue_sp_work(struct bnxt *bp)
1278 {
1279 	if (BNXT_PF(bp))
1280 		queue_work(bnxt_pf_wq, &bp->sp_task);
1281 	else
1282 		schedule_work(&bp->sp_task);
1283 }
1284 
1285 static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
1286 {
1287 	if (!rxr->bnapi->in_reset) {
1288 		rxr->bnapi->in_reset = true;
1289 		if (bp->flags & BNXT_FLAG_CHIP_P5)
1290 			set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
1291 		else
1292 			set_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event);
1293 		bnxt_queue_sp_work(bp);
1294 	}
1295 	rxr->rx_next_cons = 0xffff;
1296 }
1297 
1298 static u16 bnxt_alloc_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id)
1299 {
1300 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1301 	u16 idx = agg_id & MAX_TPA_P5_MASK;
1302 
1303 	if (test_bit(idx, map->agg_idx_bmap))
1304 		idx = find_first_zero_bit(map->agg_idx_bmap,
1305 					  BNXT_AGG_IDX_BMAP_SIZE);
1306 	__set_bit(idx, map->agg_idx_bmap);
1307 	map->agg_id_tbl[agg_id] = idx;
1308 	return idx;
1309 }
1310 
1311 static void bnxt_free_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
1312 {
1313 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1314 
1315 	__clear_bit(idx, map->agg_idx_bmap);
1316 }
1317 
1318 static u16 bnxt_lookup_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id)
1319 {
1320 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1321 
1322 	return map->agg_id_tbl[agg_id];
1323 }
1324 
1325 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1326 			   struct rx_tpa_start_cmp *tpa_start,
1327 			   struct rx_tpa_start_cmp_ext *tpa_start1)
1328 {
1329 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
1330 	struct bnxt_tpa_info *tpa_info;
1331 	u16 cons, prod, agg_id;
1332 	struct rx_bd *prod_bd;
1333 	dma_addr_t mapping;
1334 
1335 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
1336 		agg_id = TPA_START_AGG_ID_P5(tpa_start);
1337 		agg_id = bnxt_alloc_agg_idx(rxr, agg_id);
1338 	} else {
1339 		agg_id = TPA_START_AGG_ID(tpa_start);
1340 	}
1341 	cons = tpa_start->rx_tpa_start_cmp_opaque;
1342 	prod = rxr->rx_prod;
1343 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1344 	prod_rx_buf = &rxr->rx_buf_ring[prod];
1345 	tpa_info = &rxr->rx_tpa[agg_id];
1346 
1347 	if (unlikely(cons != rxr->rx_next_cons ||
1348 		     TPA_START_ERROR(tpa_start))) {
1349 		netdev_warn(bp->dev, "TPA cons %x, expected cons %x, error code %x\n",
1350 			    cons, rxr->rx_next_cons,
1351 			    TPA_START_ERROR_CODE(tpa_start1));
1352 		bnxt_sched_reset(bp, rxr);
1353 		return;
1354 	}
1355 	/* Store cfa_code in tpa_info to use in tpa_end
1356 	 * completion processing.
1357 	 */
1358 	tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1);
1359 	prod_rx_buf->data = tpa_info->data;
1360 	prod_rx_buf->data_ptr = tpa_info->data_ptr;
1361 
1362 	mapping = tpa_info->mapping;
1363 	prod_rx_buf->mapping = mapping;
1364 
1365 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
1366 
1367 	prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
1368 
1369 	tpa_info->data = cons_rx_buf->data;
1370 	tpa_info->data_ptr = cons_rx_buf->data_ptr;
1371 	cons_rx_buf->data = NULL;
1372 	tpa_info->mapping = cons_rx_buf->mapping;
1373 
1374 	tpa_info->len =
1375 		le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
1376 				RX_TPA_START_CMP_LEN_SHIFT;
1377 	if (likely(TPA_START_HASH_VALID(tpa_start))) {
1378 		u32 hash_type = TPA_START_HASH_TYPE(tpa_start);
1379 
1380 		tpa_info->hash_type = PKT_HASH_TYPE_L4;
1381 		tpa_info->gso_type = SKB_GSO_TCPV4;
1382 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1383 		if (hash_type == 3 || TPA_START_IS_IPV6(tpa_start1))
1384 			tpa_info->gso_type = SKB_GSO_TCPV6;
1385 		tpa_info->rss_hash =
1386 			le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
1387 	} else {
1388 		tpa_info->hash_type = PKT_HASH_TYPE_NONE;
1389 		tpa_info->gso_type = 0;
1390 		netif_warn(bp, rx_err, bp->dev, "TPA packet without valid hash\n");
1391 	}
1392 	tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
1393 	tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
1394 	tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info);
1395 	tpa_info->agg_count = 0;
1396 
1397 	rxr->rx_prod = NEXT_RX(prod);
1398 	cons = NEXT_RX(cons);
1399 	rxr->rx_next_cons = NEXT_RX(cons);
1400 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1401 
1402 	bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
1403 	rxr->rx_prod = NEXT_RX(rxr->rx_prod);
1404 	cons_rx_buf->data = NULL;
1405 }
1406 
1407 static void bnxt_abort_tpa(struct bnxt_cp_ring_info *cpr, u16 idx, u32 agg_bufs)
1408 {
1409 	if (agg_bufs)
1410 		bnxt_reuse_rx_agg_bufs(cpr, idx, 0, agg_bufs, true);
1411 }
1412 
1413 #ifdef CONFIG_INET
1414 static void bnxt_gro_tunnel(struct sk_buff *skb, __be16 ip_proto)
1415 {
1416 	struct udphdr *uh = NULL;
1417 
1418 	if (ip_proto == htons(ETH_P_IP)) {
1419 		struct iphdr *iph = (struct iphdr *)skb->data;
1420 
1421 		if (iph->protocol == IPPROTO_UDP)
1422 			uh = (struct udphdr *)(iph + 1);
1423 	} else {
1424 		struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1425 
1426 		if (iph->nexthdr == IPPROTO_UDP)
1427 			uh = (struct udphdr *)(iph + 1);
1428 	}
1429 	if (uh) {
1430 		if (uh->check)
1431 			skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL_CSUM;
1432 		else
1433 			skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1434 	}
1435 }
1436 #endif
1437 
1438 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info,
1439 					   int payload_off, int tcp_ts,
1440 					   struct sk_buff *skb)
1441 {
1442 #ifdef CONFIG_INET
1443 	struct tcphdr *th;
1444 	int len, nw_off;
1445 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1446 	u32 hdr_info = tpa_info->hdr_info;
1447 	bool loopback = false;
1448 
1449 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1450 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1451 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1452 
1453 	/* If the packet is an internal loopback packet, the offsets will
1454 	 * have an extra 4 bytes.
1455 	 */
1456 	if (inner_mac_off == 4) {
1457 		loopback = true;
1458 	} else if (inner_mac_off > 4) {
1459 		__be16 proto = *((__be16 *)(skb->data + inner_ip_off -
1460 					    ETH_HLEN - 2));
1461 
1462 		/* We only support inner iPv4/ipv6.  If we don't see the
1463 		 * correct protocol ID, it must be a loopback packet where
1464 		 * the offsets are off by 4.
1465 		 */
1466 		if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6))
1467 			loopback = true;
1468 	}
1469 	if (loopback) {
1470 		/* internal loopback packet, subtract all offsets by 4 */
1471 		inner_ip_off -= 4;
1472 		inner_mac_off -= 4;
1473 		outer_ip_off -= 4;
1474 	}
1475 
1476 	nw_off = inner_ip_off - ETH_HLEN;
1477 	skb_set_network_header(skb, nw_off);
1478 	if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) {
1479 		struct ipv6hdr *iph = ipv6_hdr(skb);
1480 
1481 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1482 		len = skb->len - skb_transport_offset(skb);
1483 		th = tcp_hdr(skb);
1484 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1485 	} else {
1486 		struct iphdr *iph = ip_hdr(skb);
1487 
1488 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1489 		len = skb->len - skb_transport_offset(skb);
1490 		th = tcp_hdr(skb);
1491 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1492 	}
1493 
1494 	if (inner_mac_off) { /* tunnel */
1495 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1496 					    ETH_HLEN - 2));
1497 
1498 		bnxt_gro_tunnel(skb, proto);
1499 	}
1500 #endif
1501 	return skb;
1502 }
1503 
1504 static struct sk_buff *bnxt_gro_func_5750x(struct bnxt_tpa_info *tpa_info,
1505 					   int payload_off, int tcp_ts,
1506 					   struct sk_buff *skb)
1507 {
1508 #ifdef CONFIG_INET
1509 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1510 	u32 hdr_info = tpa_info->hdr_info;
1511 	int iphdr_len, nw_off;
1512 
1513 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1514 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1515 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1516 
1517 	nw_off = inner_ip_off - ETH_HLEN;
1518 	skb_set_network_header(skb, nw_off);
1519 	iphdr_len = (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) ?
1520 		     sizeof(struct ipv6hdr) : sizeof(struct iphdr);
1521 	skb_set_transport_header(skb, nw_off + iphdr_len);
1522 
1523 	if (inner_mac_off) { /* tunnel */
1524 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1525 					    ETH_HLEN - 2));
1526 
1527 		bnxt_gro_tunnel(skb, proto);
1528 	}
1529 #endif
1530 	return skb;
1531 }
1532 
1533 #define BNXT_IPV4_HDR_SIZE	(sizeof(struct iphdr) + sizeof(struct tcphdr))
1534 #define BNXT_IPV6_HDR_SIZE	(sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
1535 
1536 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info,
1537 					   int payload_off, int tcp_ts,
1538 					   struct sk_buff *skb)
1539 {
1540 #ifdef CONFIG_INET
1541 	struct tcphdr *th;
1542 	int len, nw_off, tcp_opt_len = 0;
1543 
1544 	if (tcp_ts)
1545 		tcp_opt_len = 12;
1546 
1547 	if (tpa_info->gso_type == SKB_GSO_TCPV4) {
1548 		struct iphdr *iph;
1549 
1550 		nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
1551 			 ETH_HLEN;
1552 		skb_set_network_header(skb, nw_off);
1553 		iph = ip_hdr(skb);
1554 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1555 		len = skb->len - skb_transport_offset(skb);
1556 		th = tcp_hdr(skb);
1557 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1558 	} else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
1559 		struct ipv6hdr *iph;
1560 
1561 		nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
1562 			 ETH_HLEN;
1563 		skb_set_network_header(skb, nw_off);
1564 		iph = ipv6_hdr(skb);
1565 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1566 		len = skb->len - skb_transport_offset(skb);
1567 		th = tcp_hdr(skb);
1568 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1569 	} else {
1570 		dev_kfree_skb_any(skb);
1571 		return NULL;
1572 	}
1573 
1574 	if (nw_off) /* tunnel */
1575 		bnxt_gro_tunnel(skb, skb->protocol);
1576 #endif
1577 	return skb;
1578 }
1579 
1580 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp,
1581 					   struct bnxt_tpa_info *tpa_info,
1582 					   struct rx_tpa_end_cmp *tpa_end,
1583 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1584 					   struct sk_buff *skb)
1585 {
1586 #ifdef CONFIG_INET
1587 	int payload_off;
1588 	u16 segs;
1589 
1590 	segs = TPA_END_TPA_SEGS(tpa_end);
1591 	if (segs == 1)
1592 		return skb;
1593 
1594 	NAPI_GRO_CB(skb)->count = segs;
1595 	skb_shinfo(skb)->gso_size =
1596 		le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
1597 	skb_shinfo(skb)->gso_type = tpa_info->gso_type;
1598 	if (bp->flags & BNXT_FLAG_CHIP_P5)
1599 		payload_off = TPA_END_PAYLOAD_OFF_P5(tpa_end1);
1600 	else
1601 		payload_off = TPA_END_PAYLOAD_OFF(tpa_end);
1602 	skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb);
1603 	if (likely(skb))
1604 		tcp_gro_complete(skb);
1605 #endif
1606 	return skb;
1607 }
1608 
1609 /* Given the cfa_code of a received packet determine which
1610  * netdev (vf-rep or PF) the packet is destined to.
1611  */
1612 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code)
1613 {
1614 	struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code);
1615 
1616 	/* if vf-rep dev is NULL, the must belongs to the PF */
1617 	return dev ? dev : bp->dev;
1618 }
1619 
1620 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
1621 					   struct bnxt_cp_ring_info *cpr,
1622 					   u32 *raw_cons,
1623 					   struct rx_tpa_end_cmp *tpa_end,
1624 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1625 					   u8 *event)
1626 {
1627 	struct bnxt_napi *bnapi = cpr->bnapi;
1628 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1629 	u8 *data_ptr, agg_bufs;
1630 	unsigned int len;
1631 	struct bnxt_tpa_info *tpa_info;
1632 	dma_addr_t mapping;
1633 	struct sk_buff *skb;
1634 	u16 idx = 0, agg_id;
1635 	void *data;
1636 	bool gro;
1637 
1638 	if (unlikely(bnapi->in_reset)) {
1639 		int rc = bnxt_discard_rx(bp, cpr, raw_cons, tpa_end);
1640 
1641 		if (rc < 0)
1642 			return ERR_PTR(-EBUSY);
1643 		return NULL;
1644 	}
1645 
1646 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
1647 		agg_id = TPA_END_AGG_ID_P5(tpa_end);
1648 		agg_id = bnxt_lookup_agg_idx(rxr, agg_id);
1649 		agg_bufs = TPA_END_AGG_BUFS_P5(tpa_end1);
1650 		tpa_info = &rxr->rx_tpa[agg_id];
1651 		if (unlikely(agg_bufs != tpa_info->agg_count)) {
1652 			netdev_warn(bp->dev, "TPA end agg_buf %d != expected agg_bufs %d\n",
1653 				    agg_bufs, tpa_info->agg_count);
1654 			agg_bufs = tpa_info->agg_count;
1655 		}
1656 		tpa_info->agg_count = 0;
1657 		*event |= BNXT_AGG_EVENT;
1658 		bnxt_free_agg_idx(rxr, agg_id);
1659 		idx = agg_id;
1660 		gro = !!(bp->flags & BNXT_FLAG_GRO);
1661 	} else {
1662 		agg_id = TPA_END_AGG_ID(tpa_end);
1663 		agg_bufs = TPA_END_AGG_BUFS(tpa_end);
1664 		tpa_info = &rxr->rx_tpa[agg_id];
1665 		idx = RING_CMP(*raw_cons);
1666 		if (agg_bufs) {
1667 			if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
1668 				return ERR_PTR(-EBUSY);
1669 
1670 			*event |= BNXT_AGG_EVENT;
1671 			idx = NEXT_CMP(idx);
1672 		}
1673 		gro = !!TPA_END_GRO(tpa_end);
1674 	}
1675 	data = tpa_info->data;
1676 	data_ptr = tpa_info->data_ptr;
1677 	prefetch(data_ptr);
1678 	len = tpa_info->len;
1679 	mapping = tpa_info->mapping;
1680 
1681 	if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) {
1682 		bnxt_abort_tpa(cpr, idx, agg_bufs);
1683 		if (agg_bufs > MAX_SKB_FRAGS)
1684 			netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
1685 				    agg_bufs, (int)MAX_SKB_FRAGS);
1686 		return NULL;
1687 	}
1688 
1689 	if (len <= bp->rx_copy_thresh) {
1690 		skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping);
1691 		if (!skb) {
1692 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1693 			cpr->sw_stats.rx.rx_oom_discards += 1;
1694 			return NULL;
1695 		}
1696 	} else {
1697 		u8 *new_data;
1698 		dma_addr_t new_mapping;
1699 
1700 		new_data = __bnxt_alloc_rx_frag(bp, &new_mapping, GFP_ATOMIC);
1701 		if (!new_data) {
1702 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1703 			cpr->sw_stats.rx.rx_oom_discards += 1;
1704 			return NULL;
1705 		}
1706 
1707 		tpa_info->data = new_data;
1708 		tpa_info->data_ptr = new_data + bp->rx_offset;
1709 		tpa_info->mapping = new_mapping;
1710 
1711 		skb = build_skb(data, bp->rx_buf_size);
1712 		dma_unmap_single_attrs(&bp->pdev->dev, mapping,
1713 				       bp->rx_buf_use_size, bp->rx_dir,
1714 				       DMA_ATTR_WEAK_ORDERING);
1715 
1716 		if (!skb) {
1717 			skb_free_frag(data);
1718 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1719 			cpr->sw_stats.rx.rx_oom_discards += 1;
1720 			return NULL;
1721 		}
1722 		skb_reserve(skb, bp->rx_offset);
1723 		skb_put(skb, len);
1724 	}
1725 
1726 	if (agg_bufs) {
1727 		skb = bnxt_rx_agg_pages_skb(bp, cpr, skb, idx, agg_bufs, true);
1728 		if (!skb) {
1729 			/* Page reuse already handled by bnxt_rx_pages(). */
1730 			cpr->sw_stats.rx.rx_oom_discards += 1;
1731 			return NULL;
1732 		}
1733 	}
1734 
1735 	skb->protocol =
1736 		eth_type_trans(skb, bnxt_get_pkt_dev(bp, tpa_info->cfa_code));
1737 
1738 	if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1739 		skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1740 
1741 	if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) &&
1742 	    (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) {
1743 		__be16 vlan_proto = htons(tpa_info->metadata >>
1744 					  RX_CMP_FLAGS2_METADATA_TPID_SFT);
1745 		u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1746 
1747 		if (eth_type_vlan(vlan_proto)) {
1748 			__vlan_hwaccel_put_tag(skb, vlan_proto, vtag);
1749 		} else {
1750 			dev_kfree_skb(skb);
1751 			return NULL;
1752 		}
1753 	}
1754 
1755 	skb_checksum_none_assert(skb);
1756 	if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1757 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1758 		skb->csum_level =
1759 			(tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1760 	}
1761 
1762 	if (gro)
1763 		skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb);
1764 
1765 	return skb;
1766 }
1767 
1768 static void bnxt_tpa_agg(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1769 			 struct rx_agg_cmp *rx_agg)
1770 {
1771 	u16 agg_id = TPA_AGG_AGG_ID(rx_agg);
1772 	struct bnxt_tpa_info *tpa_info;
1773 
1774 	agg_id = bnxt_lookup_agg_idx(rxr, agg_id);
1775 	tpa_info = &rxr->rx_tpa[agg_id];
1776 	BUG_ON(tpa_info->agg_count >= MAX_SKB_FRAGS);
1777 	tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg;
1778 }
1779 
1780 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi,
1781 			     struct sk_buff *skb)
1782 {
1783 	if (skb->dev != bp->dev) {
1784 		/* this packet belongs to a vf-rep */
1785 		bnxt_vf_rep_rx(bp, skb);
1786 		return;
1787 	}
1788 	skb_record_rx_queue(skb, bnapi->index);
1789 	napi_gro_receive(&bnapi->napi, skb);
1790 }
1791 
1792 /* returns the following:
1793  * 1       - 1 packet successfully received
1794  * 0       - successful TPA_START, packet not completed yet
1795  * -EBUSY  - completion ring does not have all the agg buffers yet
1796  * -ENOMEM - packet aborted due to out of memory
1797  * -EIO    - packet aborted due to hw error indicated in BD
1798  */
1799 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1800 		       u32 *raw_cons, u8 *event)
1801 {
1802 	struct bnxt_napi *bnapi = cpr->bnapi;
1803 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1804 	struct net_device *dev = bp->dev;
1805 	struct rx_cmp *rxcmp;
1806 	struct rx_cmp_ext *rxcmp1;
1807 	u32 tmp_raw_cons = *raw_cons;
1808 	u16 cfa_code, cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
1809 	struct bnxt_sw_rx_bd *rx_buf;
1810 	unsigned int len;
1811 	u8 *data_ptr, agg_bufs, cmp_type;
1812 	bool xdp_active = false;
1813 	dma_addr_t dma_addr;
1814 	struct sk_buff *skb;
1815 	struct xdp_buff xdp;
1816 	u32 flags, misc;
1817 	void *data;
1818 	int rc = 0;
1819 
1820 	rxcmp = (struct rx_cmp *)
1821 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1822 
1823 	cmp_type = RX_CMP_TYPE(rxcmp);
1824 
1825 	if (cmp_type == CMP_TYPE_RX_TPA_AGG_CMP) {
1826 		bnxt_tpa_agg(bp, rxr, (struct rx_agg_cmp *)rxcmp);
1827 		goto next_rx_no_prod_no_len;
1828 	}
1829 
1830 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1831 	cp_cons = RING_CMP(tmp_raw_cons);
1832 	rxcmp1 = (struct rx_cmp_ext *)
1833 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1834 
1835 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1836 		return -EBUSY;
1837 
1838 	/* The valid test of the entry must be done first before
1839 	 * reading any further.
1840 	 */
1841 	dma_rmb();
1842 	prod = rxr->rx_prod;
1843 
1844 	if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) {
1845 		bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp,
1846 			       (struct rx_tpa_start_cmp_ext *)rxcmp1);
1847 
1848 		*event |= BNXT_RX_EVENT;
1849 		goto next_rx_no_prod_no_len;
1850 
1851 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1852 		skb = bnxt_tpa_end(bp, cpr, &tmp_raw_cons,
1853 				   (struct rx_tpa_end_cmp *)rxcmp,
1854 				   (struct rx_tpa_end_cmp_ext *)rxcmp1, event);
1855 
1856 		if (IS_ERR(skb))
1857 			return -EBUSY;
1858 
1859 		rc = -ENOMEM;
1860 		if (likely(skb)) {
1861 			bnxt_deliver_skb(bp, bnapi, skb);
1862 			rc = 1;
1863 		}
1864 		*event |= BNXT_RX_EVENT;
1865 		goto next_rx_no_prod_no_len;
1866 	}
1867 
1868 	cons = rxcmp->rx_cmp_opaque;
1869 	if (unlikely(cons != rxr->rx_next_cons)) {
1870 		int rc1 = bnxt_discard_rx(bp, cpr, &tmp_raw_cons, rxcmp);
1871 
1872 		/* 0xffff is forced error, don't print it */
1873 		if (rxr->rx_next_cons != 0xffff)
1874 			netdev_warn(bp->dev, "RX cons %x != expected cons %x\n",
1875 				    cons, rxr->rx_next_cons);
1876 		bnxt_sched_reset(bp, rxr);
1877 		if (rc1)
1878 			return rc1;
1879 		goto next_rx_no_prod_no_len;
1880 	}
1881 	rx_buf = &rxr->rx_buf_ring[cons];
1882 	data = rx_buf->data;
1883 	data_ptr = rx_buf->data_ptr;
1884 	prefetch(data_ptr);
1885 
1886 	misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1);
1887 	agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT;
1888 
1889 	if (agg_bufs) {
1890 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1891 			return -EBUSY;
1892 
1893 		cp_cons = NEXT_CMP(cp_cons);
1894 		*event |= BNXT_AGG_EVENT;
1895 	}
1896 	*event |= BNXT_RX_EVENT;
1897 
1898 	rx_buf->data = NULL;
1899 	if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
1900 		u32 rx_err = le32_to_cpu(rxcmp1->rx_cmp_cfa_code_errors_v2);
1901 
1902 		bnxt_reuse_rx_data(rxr, cons, data);
1903 		if (agg_bufs)
1904 			bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, agg_bufs,
1905 					       false);
1906 
1907 		rc = -EIO;
1908 		if (rx_err & RX_CMPL_ERRORS_BUFFER_ERROR_MASK) {
1909 			bnapi->cp_ring.sw_stats.rx.rx_buf_errors++;
1910 			if (!(bp->flags & BNXT_FLAG_CHIP_P5) &&
1911 			    !(bp->fw_cap & BNXT_FW_CAP_RING_MONITOR)) {
1912 				netdev_warn_once(bp->dev, "RX buffer error %x\n",
1913 						 rx_err);
1914 				bnxt_sched_reset(bp, rxr);
1915 			}
1916 		}
1917 		goto next_rx_no_len;
1918 	}
1919 
1920 	flags = le32_to_cpu(rxcmp->rx_cmp_len_flags_type);
1921 	len = flags >> RX_CMP_LEN_SHIFT;
1922 	dma_addr = rx_buf->mapping;
1923 
1924 	if (bnxt_xdp_attached(bp, rxr)) {
1925 		bnxt_xdp_buff_init(bp, rxr, cons, &data_ptr, &len, &xdp);
1926 		if (agg_bufs) {
1927 			u32 frag_len = bnxt_rx_agg_pages_xdp(bp, cpr, &xdp,
1928 							     cp_cons, agg_bufs,
1929 							     false);
1930 			if (!frag_len) {
1931 				cpr->sw_stats.rx.rx_oom_discards += 1;
1932 				rc = -ENOMEM;
1933 				goto next_rx;
1934 			}
1935 		}
1936 		xdp_active = true;
1937 	}
1938 
1939 	if (xdp_active) {
1940 		if (bnxt_rx_xdp(bp, rxr, cons, xdp, data, &len, event)) {
1941 			rc = 1;
1942 			goto next_rx;
1943 		}
1944 	}
1945 
1946 	if (len <= bp->rx_copy_thresh) {
1947 		skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr);
1948 		bnxt_reuse_rx_data(rxr, cons, data);
1949 		if (!skb) {
1950 			if (agg_bufs) {
1951 				if (!xdp_active)
1952 					bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0,
1953 							       agg_bufs, false);
1954 				else
1955 					bnxt_xdp_buff_frags_free(rxr, &xdp);
1956 			}
1957 			cpr->sw_stats.rx.rx_oom_discards += 1;
1958 			rc = -ENOMEM;
1959 			goto next_rx;
1960 		}
1961 	} else {
1962 		u32 payload;
1963 
1964 		if (rx_buf->data_ptr == data_ptr)
1965 			payload = misc & RX_CMP_PAYLOAD_OFFSET;
1966 		else
1967 			payload = 0;
1968 		skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr,
1969 				      payload | len);
1970 		if (!skb) {
1971 			cpr->sw_stats.rx.rx_oom_discards += 1;
1972 			rc = -ENOMEM;
1973 			goto next_rx;
1974 		}
1975 	}
1976 
1977 	if (agg_bufs) {
1978 		if (!xdp_active) {
1979 			skb = bnxt_rx_agg_pages_skb(bp, cpr, skb, cp_cons, agg_bufs, false);
1980 			if (!skb) {
1981 				cpr->sw_stats.rx.rx_oom_discards += 1;
1982 				rc = -ENOMEM;
1983 				goto next_rx;
1984 			}
1985 		} else {
1986 			skb = bnxt_xdp_build_skb(bp, skb, agg_bufs, rxr->page_pool, &xdp, rxcmp1);
1987 			if (!skb) {
1988 				/* we should be able to free the old skb here */
1989 				bnxt_xdp_buff_frags_free(rxr, &xdp);
1990 				cpr->sw_stats.rx.rx_oom_discards += 1;
1991 				rc = -ENOMEM;
1992 				goto next_rx;
1993 			}
1994 		}
1995 	}
1996 
1997 	if (RX_CMP_HASH_VALID(rxcmp)) {
1998 		u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
1999 		enum pkt_hash_types type = PKT_HASH_TYPE_L4;
2000 
2001 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
2002 		if (hash_type != 1 && hash_type != 3)
2003 			type = PKT_HASH_TYPE_L3;
2004 		skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
2005 	}
2006 
2007 	cfa_code = RX_CMP_CFA_CODE(rxcmp1);
2008 	skb->protocol = eth_type_trans(skb, bnxt_get_pkt_dev(bp, cfa_code));
2009 
2010 	if ((rxcmp1->rx_cmp_flags2 &
2011 	     cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) &&
2012 	    (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) {
2013 		u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
2014 		u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK;
2015 		__be16 vlan_proto = htons(meta_data >>
2016 					  RX_CMP_FLAGS2_METADATA_TPID_SFT);
2017 
2018 		if (eth_type_vlan(vlan_proto)) {
2019 			__vlan_hwaccel_put_tag(skb, vlan_proto, vtag);
2020 		} else {
2021 			dev_kfree_skb(skb);
2022 			goto next_rx;
2023 		}
2024 	}
2025 
2026 	skb_checksum_none_assert(skb);
2027 	if (RX_CMP_L4_CS_OK(rxcmp1)) {
2028 		if (dev->features & NETIF_F_RXCSUM) {
2029 			skb->ip_summed = CHECKSUM_UNNECESSARY;
2030 			skb->csum_level = RX_CMP_ENCAP(rxcmp1);
2031 		}
2032 	} else {
2033 		if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
2034 			if (dev->features & NETIF_F_RXCSUM)
2035 				bnapi->cp_ring.sw_stats.rx.rx_l4_csum_errors++;
2036 		}
2037 	}
2038 
2039 	if (unlikely((flags & RX_CMP_FLAGS_ITYPES_MASK) ==
2040 		     RX_CMP_FLAGS_ITYPE_PTP_W_TS) || bp->ptp_all_rx_tstamp) {
2041 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
2042 			u32 cmpl_ts = le32_to_cpu(rxcmp1->rx_cmp_timestamp);
2043 			u64 ns, ts;
2044 
2045 			if (!bnxt_get_rx_ts_p5(bp, &ts, cmpl_ts)) {
2046 				struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2047 
2048 				spin_lock_bh(&ptp->ptp_lock);
2049 				ns = timecounter_cyc2time(&ptp->tc, ts);
2050 				spin_unlock_bh(&ptp->ptp_lock);
2051 				memset(skb_hwtstamps(skb), 0,
2052 				       sizeof(*skb_hwtstamps(skb)));
2053 				skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
2054 			}
2055 		}
2056 	}
2057 	bnxt_deliver_skb(bp, bnapi, skb);
2058 	rc = 1;
2059 
2060 next_rx:
2061 	cpr->rx_packets += 1;
2062 	cpr->rx_bytes += len;
2063 
2064 next_rx_no_len:
2065 	rxr->rx_prod = NEXT_RX(prod);
2066 	rxr->rx_next_cons = NEXT_RX(cons);
2067 
2068 next_rx_no_prod_no_len:
2069 	*raw_cons = tmp_raw_cons;
2070 
2071 	return rc;
2072 }
2073 
2074 /* In netpoll mode, if we are using a combined completion ring, we need to
2075  * discard the rx packets and recycle the buffers.
2076  */
2077 static int bnxt_force_rx_discard(struct bnxt *bp,
2078 				 struct bnxt_cp_ring_info *cpr,
2079 				 u32 *raw_cons, u8 *event)
2080 {
2081 	u32 tmp_raw_cons = *raw_cons;
2082 	struct rx_cmp_ext *rxcmp1;
2083 	struct rx_cmp *rxcmp;
2084 	u16 cp_cons;
2085 	u8 cmp_type;
2086 	int rc;
2087 
2088 	cp_cons = RING_CMP(tmp_raw_cons);
2089 	rxcmp = (struct rx_cmp *)
2090 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2091 
2092 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
2093 	cp_cons = RING_CMP(tmp_raw_cons);
2094 	rxcmp1 = (struct rx_cmp_ext *)
2095 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2096 
2097 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
2098 		return -EBUSY;
2099 
2100 	/* The valid test of the entry must be done first before
2101 	 * reading any further.
2102 	 */
2103 	dma_rmb();
2104 	cmp_type = RX_CMP_TYPE(rxcmp);
2105 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
2106 		rxcmp1->rx_cmp_cfa_code_errors_v2 |=
2107 			cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
2108 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
2109 		struct rx_tpa_end_cmp_ext *tpa_end1;
2110 
2111 		tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1;
2112 		tpa_end1->rx_tpa_end_cmp_errors_v2 |=
2113 			cpu_to_le32(RX_TPA_END_CMP_ERRORS);
2114 	}
2115 	rc = bnxt_rx_pkt(bp, cpr, raw_cons, event);
2116 	if (rc && rc != -EBUSY)
2117 		cpr->sw_stats.rx.rx_netpoll_discards += 1;
2118 	return rc;
2119 }
2120 
2121 u32 bnxt_fw_health_readl(struct bnxt *bp, int reg_idx)
2122 {
2123 	struct bnxt_fw_health *fw_health = bp->fw_health;
2124 	u32 reg = fw_health->regs[reg_idx];
2125 	u32 reg_type, reg_off, val = 0;
2126 
2127 	reg_type = BNXT_FW_HEALTH_REG_TYPE(reg);
2128 	reg_off = BNXT_FW_HEALTH_REG_OFF(reg);
2129 	switch (reg_type) {
2130 	case BNXT_FW_HEALTH_REG_TYPE_CFG:
2131 		pci_read_config_dword(bp->pdev, reg_off, &val);
2132 		break;
2133 	case BNXT_FW_HEALTH_REG_TYPE_GRC:
2134 		reg_off = fw_health->mapped_regs[reg_idx];
2135 		fallthrough;
2136 	case BNXT_FW_HEALTH_REG_TYPE_BAR0:
2137 		val = readl(bp->bar0 + reg_off);
2138 		break;
2139 	case BNXT_FW_HEALTH_REG_TYPE_BAR1:
2140 		val = readl(bp->bar1 + reg_off);
2141 		break;
2142 	}
2143 	if (reg_idx == BNXT_FW_RESET_INPROG_REG)
2144 		val &= fw_health->fw_reset_inprog_reg_mask;
2145 	return val;
2146 }
2147 
2148 static u16 bnxt_agg_ring_id_to_grp_idx(struct bnxt *bp, u16 ring_id)
2149 {
2150 	int i;
2151 
2152 	for (i = 0; i < bp->rx_nr_rings; i++) {
2153 		u16 grp_idx = bp->rx_ring[i].bnapi->index;
2154 		struct bnxt_ring_grp_info *grp_info;
2155 
2156 		grp_info = &bp->grp_info[grp_idx];
2157 		if (grp_info->agg_fw_ring_id == ring_id)
2158 			return grp_idx;
2159 	}
2160 	return INVALID_HW_RING_ID;
2161 }
2162 
2163 static void bnxt_event_error_report(struct bnxt *bp, u32 data1, u32 data2)
2164 {
2165 	u32 err_type = BNXT_EVENT_ERROR_REPORT_TYPE(data1);
2166 
2167 	switch (err_type) {
2168 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_INVALID_SIGNAL:
2169 		netdev_err(bp->dev, "1PPS: Received invalid signal on pin%lu from the external source. Please fix the signal and reconfigure the pin\n",
2170 			   BNXT_EVENT_INVALID_SIGNAL_DATA(data2));
2171 		break;
2172 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_PAUSE_STORM:
2173 		netdev_warn(bp->dev, "Pause Storm detected!\n");
2174 		break;
2175 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_DOORBELL_DROP_THRESHOLD:
2176 		netdev_warn(bp->dev, "One or more MMIO doorbells dropped by the device!\n");
2177 		break;
2178 	default:
2179 		netdev_err(bp->dev, "FW reported unknown error type %u\n",
2180 			   err_type);
2181 		break;
2182 	}
2183 }
2184 
2185 #define BNXT_GET_EVENT_PORT(data)	\
2186 	((data) &			\
2187 	 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK)
2188 
2189 #define BNXT_EVENT_RING_TYPE(data2)	\
2190 	((data2) &			\
2191 	 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_MASK)
2192 
2193 #define BNXT_EVENT_RING_TYPE_RX(data2)	\
2194 	(BNXT_EVENT_RING_TYPE(data2) ==	\
2195 	 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_RX)
2196 
2197 #define BNXT_EVENT_PHC_EVENT_TYPE(data1)	\
2198 	(((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_MASK) >>\
2199 	 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_SFT)
2200 
2201 #define BNXT_EVENT_PHC_RTC_UPDATE(data1)	\
2202 	(((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_MASK) >>\
2203 	 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_SFT)
2204 
2205 #define BNXT_PHC_BITS	48
2206 
2207 static int bnxt_async_event_process(struct bnxt *bp,
2208 				    struct hwrm_async_event_cmpl *cmpl)
2209 {
2210 	u16 event_id = le16_to_cpu(cmpl->event_id);
2211 	u32 data1 = le32_to_cpu(cmpl->event_data1);
2212 	u32 data2 = le32_to_cpu(cmpl->event_data2);
2213 
2214 	netdev_dbg(bp->dev, "hwrm event 0x%x {0x%x, 0x%x}\n",
2215 		   event_id, data1, data2);
2216 
2217 	/* TODO CHIMP_FW: Define event id's for link change, error etc */
2218 	switch (event_id) {
2219 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: {
2220 		struct bnxt_link_info *link_info = &bp->link_info;
2221 
2222 		if (BNXT_VF(bp))
2223 			goto async_event_process_exit;
2224 
2225 		/* print unsupported speed warning in forced speed mode only */
2226 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) &&
2227 		    (data1 & 0x20000)) {
2228 			u16 fw_speed = link_info->force_link_speed;
2229 			u32 speed = bnxt_fw_to_ethtool_speed(fw_speed);
2230 
2231 			if (speed != SPEED_UNKNOWN)
2232 				netdev_warn(bp->dev, "Link speed %d no longer supported\n",
2233 					    speed);
2234 		}
2235 		set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event);
2236 	}
2237 		fallthrough;
2238 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE:
2239 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE:
2240 		set_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, &bp->sp_event);
2241 		fallthrough;
2242 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
2243 		set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
2244 		break;
2245 	case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD:
2246 		set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event);
2247 		break;
2248 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: {
2249 		u16 port_id = BNXT_GET_EVENT_PORT(data1);
2250 
2251 		if (BNXT_VF(bp))
2252 			break;
2253 
2254 		if (bp->pf.port_id != port_id)
2255 			break;
2256 
2257 		set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event);
2258 		break;
2259 	}
2260 	case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE:
2261 		if (BNXT_PF(bp))
2262 			goto async_event_process_exit;
2263 		set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event);
2264 		break;
2265 	case ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY: {
2266 		char *type_str = "Solicited";
2267 
2268 		if (!bp->fw_health)
2269 			goto async_event_process_exit;
2270 
2271 		bp->fw_reset_timestamp = jiffies;
2272 		bp->fw_reset_min_dsecs = cmpl->timestamp_lo;
2273 		if (!bp->fw_reset_min_dsecs)
2274 			bp->fw_reset_min_dsecs = BNXT_DFLT_FW_RST_MIN_DSECS;
2275 		bp->fw_reset_max_dsecs = le16_to_cpu(cmpl->timestamp_hi);
2276 		if (!bp->fw_reset_max_dsecs)
2277 			bp->fw_reset_max_dsecs = BNXT_DFLT_FW_RST_MAX_DSECS;
2278 		if (EVENT_DATA1_RESET_NOTIFY_FW_ACTIVATION(data1)) {
2279 			set_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state);
2280 		} else if (EVENT_DATA1_RESET_NOTIFY_FATAL(data1)) {
2281 			type_str = "Fatal";
2282 			bp->fw_health->fatalities++;
2283 			set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
2284 		} else if (data2 && BNXT_FW_STATUS_HEALTHY !=
2285 			   EVENT_DATA2_RESET_NOTIFY_FW_STATUS_CODE(data2)) {
2286 			type_str = "Non-fatal";
2287 			bp->fw_health->survivals++;
2288 			set_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state);
2289 		}
2290 		netif_warn(bp, hw, bp->dev,
2291 			   "%s firmware reset event, data1: 0x%x, data2: 0x%x, min wait %u ms, max wait %u ms\n",
2292 			   type_str, data1, data2,
2293 			   bp->fw_reset_min_dsecs * 100,
2294 			   bp->fw_reset_max_dsecs * 100);
2295 		set_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event);
2296 		break;
2297 	}
2298 	case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY: {
2299 		struct bnxt_fw_health *fw_health = bp->fw_health;
2300 		char *status_desc = "healthy";
2301 		u32 status;
2302 
2303 		if (!fw_health)
2304 			goto async_event_process_exit;
2305 
2306 		if (!EVENT_DATA1_RECOVERY_ENABLED(data1)) {
2307 			fw_health->enabled = false;
2308 			netif_info(bp, drv, bp->dev, "Driver recovery watchdog is disabled\n");
2309 			break;
2310 		}
2311 		fw_health->primary = EVENT_DATA1_RECOVERY_MASTER_FUNC(data1);
2312 		fw_health->tmr_multiplier =
2313 			DIV_ROUND_UP(fw_health->polling_dsecs * HZ,
2314 				     bp->current_interval * 10);
2315 		fw_health->tmr_counter = fw_health->tmr_multiplier;
2316 		if (!fw_health->enabled)
2317 			fw_health->last_fw_heartbeat =
2318 				bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
2319 		fw_health->last_fw_reset_cnt =
2320 			bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
2321 		status = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
2322 		if (status != BNXT_FW_STATUS_HEALTHY)
2323 			status_desc = "unhealthy";
2324 		netif_info(bp, drv, bp->dev,
2325 			   "Driver recovery watchdog, role: %s, firmware status: 0x%x (%s), resets: %u\n",
2326 			   fw_health->primary ? "primary" : "backup", status,
2327 			   status_desc, fw_health->last_fw_reset_cnt);
2328 		if (!fw_health->enabled) {
2329 			/* Make sure tmr_counter is set and visible to
2330 			 * bnxt_health_check() before setting enabled to true.
2331 			 */
2332 			smp_wmb();
2333 			fw_health->enabled = true;
2334 		}
2335 		goto async_event_process_exit;
2336 	}
2337 	case ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION:
2338 		netif_notice(bp, hw, bp->dev,
2339 			     "Received firmware debug notification, data1: 0x%x, data2: 0x%x\n",
2340 			     data1, data2);
2341 		goto async_event_process_exit;
2342 	case ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG: {
2343 		struct bnxt_rx_ring_info *rxr;
2344 		u16 grp_idx;
2345 
2346 		if (bp->flags & BNXT_FLAG_CHIP_P5)
2347 			goto async_event_process_exit;
2348 
2349 		netdev_warn(bp->dev, "Ring monitor event, ring type %lu id 0x%x\n",
2350 			    BNXT_EVENT_RING_TYPE(data2), data1);
2351 		if (!BNXT_EVENT_RING_TYPE_RX(data2))
2352 			goto async_event_process_exit;
2353 
2354 		grp_idx = bnxt_agg_ring_id_to_grp_idx(bp, data1);
2355 		if (grp_idx == INVALID_HW_RING_ID) {
2356 			netdev_warn(bp->dev, "Unknown RX agg ring id 0x%x\n",
2357 				    data1);
2358 			goto async_event_process_exit;
2359 		}
2360 		rxr = bp->bnapi[grp_idx]->rx_ring;
2361 		bnxt_sched_reset(bp, rxr);
2362 		goto async_event_process_exit;
2363 	}
2364 	case ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST: {
2365 		struct bnxt_fw_health *fw_health = bp->fw_health;
2366 
2367 		netif_notice(bp, hw, bp->dev,
2368 			     "Received firmware echo request, data1: 0x%x, data2: 0x%x\n",
2369 			     data1, data2);
2370 		if (fw_health) {
2371 			fw_health->echo_req_data1 = data1;
2372 			fw_health->echo_req_data2 = data2;
2373 			set_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event);
2374 			break;
2375 		}
2376 		goto async_event_process_exit;
2377 	}
2378 	case ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP: {
2379 		bnxt_ptp_pps_event(bp, data1, data2);
2380 		goto async_event_process_exit;
2381 	}
2382 	case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT: {
2383 		bnxt_event_error_report(bp, data1, data2);
2384 		goto async_event_process_exit;
2385 	}
2386 	case ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE: {
2387 		switch (BNXT_EVENT_PHC_EVENT_TYPE(data1)) {
2388 		case ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_PHC_RTC_UPDATE:
2389 			if (bp->fw_cap & BNXT_FW_CAP_PTP_RTC) {
2390 				struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2391 				u64 ns;
2392 
2393 				spin_lock_bh(&ptp->ptp_lock);
2394 				bnxt_ptp_update_current_time(bp);
2395 				ns = (((u64)BNXT_EVENT_PHC_RTC_UPDATE(data1) <<
2396 				       BNXT_PHC_BITS) | ptp->current_time);
2397 				bnxt_ptp_rtc_timecounter_init(ptp, ns);
2398 				spin_unlock_bh(&ptp->ptp_lock);
2399 			}
2400 			break;
2401 		}
2402 		goto async_event_process_exit;
2403 	}
2404 	case ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE: {
2405 		u16 seq_id = le32_to_cpu(cmpl->event_data2) & 0xffff;
2406 
2407 		hwrm_update_token(bp, seq_id, BNXT_HWRM_DEFERRED);
2408 		goto async_event_process_exit;
2409 	}
2410 	default:
2411 		goto async_event_process_exit;
2412 	}
2413 	bnxt_queue_sp_work(bp);
2414 async_event_process_exit:
2415 	bnxt_ulp_async_events(bp, cmpl);
2416 	return 0;
2417 }
2418 
2419 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
2420 {
2421 	u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
2422 	struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
2423 	struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
2424 				(struct hwrm_fwd_req_cmpl *)txcmp;
2425 
2426 	switch (cmpl_type) {
2427 	case CMPL_BASE_TYPE_HWRM_DONE:
2428 		seq_id = le16_to_cpu(h_cmpl->sequence_id);
2429 		hwrm_update_token(bp, seq_id, BNXT_HWRM_COMPLETE);
2430 		break;
2431 
2432 	case CMPL_BASE_TYPE_HWRM_FWD_REQ:
2433 		vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
2434 
2435 		if ((vf_id < bp->pf.first_vf_id) ||
2436 		    (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
2437 			netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
2438 				   vf_id);
2439 			return -EINVAL;
2440 		}
2441 
2442 		set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
2443 		set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event);
2444 		bnxt_queue_sp_work(bp);
2445 		break;
2446 
2447 	case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
2448 		bnxt_async_event_process(bp,
2449 					 (struct hwrm_async_event_cmpl *)txcmp);
2450 		break;
2451 
2452 	default:
2453 		break;
2454 	}
2455 
2456 	return 0;
2457 }
2458 
2459 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
2460 {
2461 	struct bnxt_napi *bnapi = dev_instance;
2462 	struct bnxt *bp = bnapi->bp;
2463 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2464 	u32 cons = RING_CMP(cpr->cp_raw_cons);
2465 
2466 	cpr->event_ctr++;
2467 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
2468 	napi_schedule(&bnapi->napi);
2469 	return IRQ_HANDLED;
2470 }
2471 
2472 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
2473 {
2474 	u32 raw_cons = cpr->cp_raw_cons;
2475 	u16 cons = RING_CMP(raw_cons);
2476 	struct tx_cmp *txcmp;
2477 
2478 	txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2479 
2480 	return TX_CMP_VALID(txcmp, raw_cons);
2481 }
2482 
2483 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
2484 {
2485 	struct bnxt_napi *bnapi = dev_instance;
2486 	struct bnxt *bp = bnapi->bp;
2487 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2488 	u32 cons = RING_CMP(cpr->cp_raw_cons);
2489 	u32 int_status;
2490 
2491 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
2492 
2493 	if (!bnxt_has_work(bp, cpr)) {
2494 		int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
2495 		/* return if erroneous interrupt */
2496 		if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
2497 			return IRQ_NONE;
2498 	}
2499 
2500 	/* disable ring IRQ */
2501 	BNXT_CP_DB_IRQ_DIS(cpr->cp_db.doorbell);
2502 
2503 	/* Return here if interrupt is shared and is disabled. */
2504 	if (unlikely(atomic_read(&bp->intr_sem) != 0))
2505 		return IRQ_HANDLED;
2506 
2507 	napi_schedule(&bnapi->napi);
2508 	return IRQ_HANDLED;
2509 }
2510 
2511 static int __bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2512 			    int budget)
2513 {
2514 	struct bnxt_napi *bnapi = cpr->bnapi;
2515 	u32 raw_cons = cpr->cp_raw_cons;
2516 	u32 cons;
2517 	int tx_pkts = 0;
2518 	int rx_pkts = 0;
2519 	u8 event = 0;
2520 	struct tx_cmp *txcmp;
2521 
2522 	cpr->has_more_work = 0;
2523 	cpr->had_work_done = 1;
2524 	while (1) {
2525 		int rc;
2526 
2527 		cons = RING_CMP(raw_cons);
2528 		txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2529 
2530 		if (!TX_CMP_VALID(txcmp, raw_cons))
2531 			break;
2532 
2533 		/* The valid test of the entry must be done first before
2534 		 * reading any further.
2535 		 */
2536 		dma_rmb();
2537 		if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) {
2538 			tx_pkts++;
2539 			/* return full budget so NAPI will complete. */
2540 			if (unlikely(tx_pkts >= bp->tx_wake_thresh)) {
2541 				rx_pkts = budget;
2542 				raw_cons = NEXT_RAW_CMP(raw_cons);
2543 				if (budget)
2544 					cpr->has_more_work = 1;
2545 				break;
2546 			}
2547 		} else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
2548 			if (likely(budget))
2549 				rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
2550 			else
2551 				rc = bnxt_force_rx_discard(bp, cpr, &raw_cons,
2552 							   &event);
2553 			if (likely(rc >= 0))
2554 				rx_pkts += rc;
2555 			/* Increment rx_pkts when rc is -ENOMEM to count towards
2556 			 * the NAPI budget.  Otherwise, we may potentially loop
2557 			 * here forever if we consistently cannot allocate
2558 			 * buffers.
2559 			 */
2560 			else if (rc == -ENOMEM && budget)
2561 				rx_pkts++;
2562 			else if (rc == -EBUSY)	/* partial completion */
2563 				break;
2564 		} else if (unlikely((TX_CMP_TYPE(txcmp) ==
2565 				     CMPL_BASE_TYPE_HWRM_DONE) ||
2566 				    (TX_CMP_TYPE(txcmp) ==
2567 				     CMPL_BASE_TYPE_HWRM_FWD_REQ) ||
2568 				    (TX_CMP_TYPE(txcmp) ==
2569 				     CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) {
2570 			bnxt_hwrm_handler(bp, txcmp);
2571 		}
2572 		raw_cons = NEXT_RAW_CMP(raw_cons);
2573 
2574 		if (rx_pkts && rx_pkts == budget) {
2575 			cpr->has_more_work = 1;
2576 			break;
2577 		}
2578 	}
2579 
2580 	if (event & BNXT_REDIRECT_EVENT)
2581 		xdp_do_flush();
2582 
2583 	if (event & BNXT_TX_EVENT) {
2584 		struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
2585 		u16 prod = txr->tx_prod;
2586 
2587 		/* Sync BD data before updating doorbell */
2588 		wmb();
2589 
2590 		bnxt_db_write_relaxed(bp, &txr->tx_db, prod);
2591 	}
2592 
2593 	cpr->cp_raw_cons = raw_cons;
2594 	bnapi->tx_pkts += tx_pkts;
2595 	bnapi->events |= event;
2596 	return rx_pkts;
2597 }
2598 
2599 static void __bnxt_poll_work_done(struct bnxt *bp, struct bnxt_napi *bnapi)
2600 {
2601 	if (bnapi->tx_pkts) {
2602 		bnapi->tx_int(bp, bnapi, bnapi->tx_pkts);
2603 		bnapi->tx_pkts = 0;
2604 	}
2605 
2606 	if ((bnapi->events & BNXT_RX_EVENT) && !(bnapi->in_reset)) {
2607 		struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2608 
2609 		bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
2610 	}
2611 	if (bnapi->events & BNXT_AGG_EVENT) {
2612 		struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2613 
2614 		bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
2615 	}
2616 	bnapi->events = 0;
2617 }
2618 
2619 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2620 			  int budget)
2621 {
2622 	struct bnxt_napi *bnapi = cpr->bnapi;
2623 	int rx_pkts;
2624 
2625 	rx_pkts = __bnxt_poll_work(bp, cpr, budget);
2626 
2627 	/* ACK completion ring before freeing tx ring and producing new
2628 	 * buffers in rx/agg rings to prevent overflowing the completion
2629 	 * ring.
2630 	 */
2631 	bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons);
2632 
2633 	__bnxt_poll_work_done(bp, bnapi);
2634 	return rx_pkts;
2635 }
2636 
2637 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget)
2638 {
2639 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2640 	struct bnxt *bp = bnapi->bp;
2641 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2642 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2643 	struct tx_cmp *txcmp;
2644 	struct rx_cmp_ext *rxcmp1;
2645 	u32 cp_cons, tmp_raw_cons;
2646 	u32 raw_cons = cpr->cp_raw_cons;
2647 	u32 rx_pkts = 0;
2648 	u8 event = 0;
2649 
2650 	while (1) {
2651 		int rc;
2652 
2653 		cp_cons = RING_CMP(raw_cons);
2654 		txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2655 
2656 		if (!TX_CMP_VALID(txcmp, raw_cons))
2657 			break;
2658 
2659 		/* The valid test of the entry must be done first before
2660 		 * reading any further.
2661 		 */
2662 		dma_rmb();
2663 		if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
2664 			tmp_raw_cons = NEXT_RAW_CMP(raw_cons);
2665 			cp_cons = RING_CMP(tmp_raw_cons);
2666 			rxcmp1 = (struct rx_cmp_ext *)
2667 			  &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2668 
2669 			if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
2670 				break;
2671 
2672 			/* force an error to recycle the buffer */
2673 			rxcmp1->rx_cmp_cfa_code_errors_v2 |=
2674 				cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
2675 
2676 			rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
2677 			if (likely(rc == -EIO) && budget)
2678 				rx_pkts++;
2679 			else if (rc == -EBUSY)	/* partial completion */
2680 				break;
2681 		} else if (unlikely(TX_CMP_TYPE(txcmp) ==
2682 				    CMPL_BASE_TYPE_HWRM_DONE)) {
2683 			bnxt_hwrm_handler(bp, txcmp);
2684 		} else {
2685 			netdev_err(bp->dev,
2686 				   "Invalid completion received on special ring\n");
2687 		}
2688 		raw_cons = NEXT_RAW_CMP(raw_cons);
2689 
2690 		if (rx_pkts == budget)
2691 			break;
2692 	}
2693 
2694 	cpr->cp_raw_cons = raw_cons;
2695 	BNXT_DB_CQ(&cpr->cp_db, cpr->cp_raw_cons);
2696 	bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
2697 
2698 	if (event & BNXT_AGG_EVENT)
2699 		bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
2700 
2701 	if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) {
2702 		napi_complete_done(napi, rx_pkts);
2703 		BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2704 	}
2705 	return rx_pkts;
2706 }
2707 
2708 static int bnxt_poll(struct napi_struct *napi, int budget)
2709 {
2710 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2711 	struct bnxt *bp = bnapi->bp;
2712 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2713 	int work_done = 0;
2714 
2715 	if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) {
2716 		napi_complete(napi);
2717 		return 0;
2718 	}
2719 	while (1) {
2720 		work_done += bnxt_poll_work(bp, cpr, budget - work_done);
2721 
2722 		if (work_done >= budget) {
2723 			if (!budget)
2724 				BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2725 			break;
2726 		}
2727 
2728 		if (!bnxt_has_work(bp, cpr)) {
2729 			if (napi_complete_done(napi, work_done))
2730 				BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2731 			break;
2732 		}
2733 	}
2734 	if (bp->flags & BNXT_FLAG_DIM) {
2735 		struct dim_sample dim_sample = {};
2736 
2737 		dim_update_sample(cpr->event_ctr,
2738 				  cpr->rx_packets,
2739 				  cpr->rx_bytes,
2740 				  &dim_sample);
2741 		net_dim(&cpr->dim, dim_sample);
2742 	}
2743 	return work_done;
2744 }
2745 
2746 static int __bnxt_poll_cqs(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
2747 {
2748 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2749 	int i, work_done = 0;
2750 
2751 	for (i = 0; i < 2; i++) {
2752 		struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i];
2753 
2754 		if (cpr2) {
2755 			work_done += __bnxt_poll_work(bp, cpr2,
2756 						      budget - work_done);
2757 			cpr->has_more_work |= cpr2->has_more_work;
2758 		}
2759 	}
2760 	return work_done;
2761 }
2762 
2763 static void __bnxt_poll_cqs_done(struct bnxt *bp, struct bnxt_napi *bnapi,
2764 				 u64 dbr_type)
2765 {
2766 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2767 	int i;
2768 
2769 	for (i = 0; i < 2; i++) {
2770 		struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i];
2771 		struct bnxt_db_info *db;
2772 
2773 		if (cpr2 && cpr2->had_work_done) {
2774 			db = &cpr2->cp_db;
2775 			bnxt_writeq(bp, db->db_key64 | dbr_type |
2776 				    RING_CMP(cpr2->cp_raw_cons), db->doorbell);
2777 			cpr2->had_work_done = 0;
2778 		}
2779 	}
2780 	__bnxt_poll_work_done(bp, bnapi);
2781 }
2782 
2783 static int bnxt_poll_p5(struct napi_struct *napi, int budget)
2784 {
2785 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2786 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2787 	struct bnxt_cp_ring_info *cpr_rx;
2788 	u32 raw_cons = cpr->cp_raw_cons;
2789 	struct bnxt *bp = bnapi->bp;
2790 	struct nqe_cn *nqcmp;
2791 	int work_done = 0;
2792 	u32 cons;
2793 
2794 	if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) {
2795 		napi_complete(napi);
2796 		return 0;
2797 	}
2798 	if (cpr->has_more_work) {
2799 		cpr->has_more_work = 0;
2800 		work_done = __bnxt_poll_cqs(bp, bnapi, budget);
2801 	}
2802 	while (1) {
2803 		cons = RING_CMP(raw_cons);
2804 		nqcmp = &cpr->nq_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2805 
2806 		if (!NQ_CMP_VALID(nqcmp, raw_cons)) {
2807 			if (cpr->has_more_work)
2808 				break;
2809 
2810 			__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL);
2811 			cpr->cp_raw_cons = raw_cons;
2812 			if (napi_complete_done(napi, work_done))
2813 				BNXT_DB_NQ_ARM_P5(&cpr->cp_db,
2814 						  cpr->cp_raw_cons);
2815 			goto poll_done;
2816 		}
2817 
2818 		/* The valid test of the entry must be done first before
2819 		 * reading any further.
2820 		 */
2821 		dma_rmb();
2822 
2823 		if (nqcmp->type == cpu_to_le16(NQ_CN_TYPE_CQ_NOTIFICATION)) {
2824 			u32 idx = le32_to_cpu(nqcmp->cq_handle_low);
2825 			struct bnxt_cp_ring_info *cpr2;
2826 
2827 			/* No more budget for RX work */
2828 			if (budget && work_done >= budget && idx == BNXT_RX_HDL)
2829 				break;
2830 
2831 			cpr2 = cpr->cp_ring_arr[idx];
2832 			work_done += __bnxt_poll_work(bp, cpr2,
2833 						      budget - work_done);
2834 			cpr->has_more_work |= cpr2->has_more_work;
2835 		} else {
2836 			bnxt_hwrm_handler(bp, (struct tx_cmp *)nqcmp);
2837 		}
2838 		raw_cons = NEXT_RAW_CMP(raw_cons);
2839 	}
2840 	__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ);
2841 	if (raw_cons != cpr->cp_raw_cons) {
2842 		cpr->cp_raw_cons = raw_cons;
2843 		BNXT_DB_NQ_P5(&cpr->cp_db, raw_cons);
2844 	}
2845 poll_done:
2846 	cpr_rx = cpr->cp_ring_arr[BNXT_RX_HDL];
2847 	if (cpr_rx && (bp->flags & BNXT_FLAG_DIM)) {
2848 		struct dim_sample dim_sample = {};
2849 
2850 		dim_update_sample(cpr->event_ctr,
2851 				  cpr_rx->rx_packets,
2852 				  cpr_rx->rx_bytes,
2853 				  &dim_sample);
2854 		net_dim(&cpr->dim, dim_sample);
2855 	}
2856 	return work_done;
2857 }
2858 
2859 static void bnxt_free_tx_skbs(struct bnxt *bp)
2860 {
2861 	int i, max_idx;
2862 	struct pci_dev *pdev = bp->pdev;
2863 
2864 	if (!bp->tx_ring)
2865 		return;
2866 
2867 	max_idx = bp->tx_nr_pages * TX_DESC_CNT;
2868 	for (i = 0; i < bp->tx_nr_rings; i++) {
2869 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2870 		int j;
2871 
2872 		if (!txr->tx_buf_ring)
2873 			continue;
2874 
2875 		for (j = 0; j < max_idx;) {
2876 			struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
2877 			struct sk_buff *skb;
2878 			int k, last;
2879 
2880 			if (i < bp->tx_nr_rings_xdp &&
2881 			    tx_buf->action == XDP_REDIRECT) {
2882 				dma_unmap_single(&pdev->dev,
2883 					dma_unmap_addr(tx_buf, mapping),
2884 					dma_unmap_len(tx_buf, len),
2885 					DMA_TO_DEVICE);
2886 				xdp_return_frame(tx_buf->xdpf);
2887 				tx_buf->action = 0;
2888 				tx_buf->xdpf = NULL;
2889 				j++;
2890 				continue;
2891 			}
2892 
2893 			skb = tx_buf->skb;
2894 			if (!skb) {
2895 				j++;
2896 				continue;
2897 			}
2898 
2899 			tx_buf->skb = NULL;
2900 
2901 			if (tx_buf->is_push) {
2902 				dev_kfree_skb(skb);
2903 				j += 2;
2904 				continue;
2905 			}
2906 
2907 			dma_unmap_single(&pdev->dev,
2908 					 dma_unmap_addr(tx_buf, mapping),
2909 					 skb_headlen(skb),
2910 					 DMA_TO_DEVICE);
2911 
2912 			last = tx_buf->nr_frags;
2913 			j += 2;
2914 			for (k = 0; k < last; k++, j++) {
2915 				int ring_idx = j & bp->tx_ring_mask;
2916 				skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2917 
2918 				tx_buf = &txr->tx_buf_ring[ring_idx];
2919 				dma_unmap_page(
2920 					&pdev->dev,
2921 					dma_unmap_addr(tx_buf, mapping),
2922 					skb_frag_size(frag), DMA_TO_DEVICE);
2923 			}
2924 			dev_kfree_skb(skb);
2925 		}
2926 		netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
2927 	}
2928 }
2929 
2930 static void bnxt_free_one_rx_ring_skbs(struct bnxt *bp, int ring_nr)
2931 {
2932 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
2933 	struct pci_dev *pdev = bp->pdev;
2934 	struct bnxt_tpa_idx_map *map;
2935 	int i, max_idx, max_agg_idx;
2936 
2937 	max_idx = bp->rx_nr_pages * RX_DESC_CNT;
2938 	max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
2939 	if (!rxr->rx_tpa)
2940 		goto skip_rx_tpa_free;
2941 
2942 	for (i = 0; i < bp->max_tpa; i++) {
2943 		struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[i];
2944 		u8 *data = tpa_info->data;
2945 
2946 		if (!data)
2947 			continue;
2948 
2949 		dma_unmap_single_attrs(&pdev->dev, tpa_info->mapping,
2950 				       bp->rx_buf_use_size, bp->rx_dir,
2951 				       DMA_ATTR_WEAK_ORDERING);
2952 
2953 		tpa_info->data = NULL;
2954 
2955 		skb_free_frag(data);
2956 	}
2957 
2958 skip_rx_tpa_free:
2959 	if (!rxr->rx_buf_ring)
2960 		goto skip_rx_buf_free;
2961 
2962 	for (i = 0; i < max_idx; i++) {
2963 		struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[i];
2964 		dma_addr_t mapping = rx_buf->mapping;
2965 		void *data = rx_buf->data;
2966 
2967 		if (!data)
2968 			continue;
2969 
2970 		rx_buf->data = NULL;
2971 		if (BNXT_RX_PAGE_MODE(bp)) {
2972 			mapping -= bp->rx_dma_offset;
2973 			dma_unmap_page_attrs(&pdev->dev, mapping, PAGE_SIZE,
2974 					     bp->rx_dir,
2975 					     DMA_ATTR_WEAK_ORDERING);
2976 			page_pool_recycle_direct(rxr->page_pool, data);
2977 		} else {
2978 			dma_unmap_single_attrs(&pdev->dev, mapping,
2979 					       bp->rx_buf_use_size, bp->rx_dir,
2980 					       DMA_ATTR_WEAK_ORDERING);
2981 			skb_free_frag(data);
2982 		}
2983 	}
2984 
2985 skip_rx_buf_free:
2986 	if (!rxr->rx_agg_ring)
2987 		goto skip_rx_agg_free;
2988 
2989 	for (i = 0; i < max_agg_idx; i++) {
2990 		struct bnxt_sw_rx_agg_bd *rx_agg_buf = &rxr->rx_agg_ring[i];
2991 		struct page *page = rx_agg_buf->page;
2992 
2993 		if (!page)
2994 			continue;
2995 
2996 		if (BNXT_RX_PAGE_MODE(bp)) {
2997 			dma_unmap_page_attrs(&pdev->dev, rx_agg_buf->mapping,
2998 					     BNXT_RX_PAGE_SIZE, bp->rx_dir,
2999 					     DMA_ATTR_WEAK_ORDERING);
3000 			rx_agg_buf->page = NULL;
3001 			__clear_bit(i, rxr->rx_agg_bmap);
3002 
3003 			page_pool_recycle_direct(rxr->page_pool, page);
3004 		} else {
3005 			dma_unmap_page_attrs(&pdev->dev, rx_agg_buf->mapping,
3006 					     BNXT_RX_PAGE_SIZE, DMA_FROM_DEVICE,
3007 					     DMA_ATTR_WEAK_ORDERING);
3008 			rx_agg_buf->page = NULL;
3009 			__clear_bit(i, rxr->rx_agg_bmap);
3010 
3011 			__free_page(page);
3012 		}
3013 	}
3014 
3015 skip_rx_agg_free:
3016 	if (rxr->rx_page) {
3017 		__free_page(rxr->rx_page);
3018 		rxr->rx_page = NULL;
3019 	}
3020 	map = rxr->rx_tpa_idx_map;
3021 	if (map)
3022 		memset(map->agg_idx_bmap, 0, sizeof(map->agg_idx_bmap));
3023 }
3024 
3025 static void bnxt_free_rx_skbs(struct bnxt *bp)
3026 {
3027 	int i;
3028 
3029 	if (!bp->rx_ring)
3030 		return;
3031 
3032 	for (i = 0; i < bp->rx_nr_rings; i++)
3033 		bnxt_free_one_rx_ring_skbs(bp, i);
3034 }
3035 
3036 static void bnxt_free_skbs(struct bnxt *bp)
3037 {
3038 	bnxt_free_tx_skbs(bp);
3039 	bnxt_free_rx_skbs(bp);
3040 }
3041 
3042 static void bnxt_init_ctx_mem(struct bnxt_mem_init *mem_init, void *p, int len)
3043 {
3044 	u8 init_val = mem_init->init_val;
3045 	u16 offset = mem_init->offset;
3046 	u8 *p2 = p;
3047 	int i;
3048 
3049 	if (!init_val)
3050 		return;
3051 	if (offset == BNXT_MEM_INVALID_OFFSET) {
3052 		memset(p, init_val, len);
3053 		return;
3054 	}
3055 	for (i = 0; i < len; i += mem_init->size)
3056 		*(p2 + i + offset) = init_val;
3057 }
3058 
3059 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
3060 {
3061 	struct pci_dev *pdev = bp->pdev;
3062 	int i;
3063 
3064 	if (!rmem->pg_arr)
3065 		goto skip_pages;
3066 
3067 	for (i = 0; i < rmem->nr_pages; i++) {
3068 		if (!rmem->pg_arr[i])
3069 			continue;
3070 
3071 		dma_free_coherent(&pdev->dev, rmem->page_size,
3072 				  rmem->pg_arr[i], rmem->dma_arr[i]);
3073 
3074 		rmem->pg_arr[i] = NULL;
3075 	}
3076 skip_pages:
3077 	if (rmem->pg_tbl) {
3078 		size_t pg_tbl_size = rmem->nr_pages * 8;
3079 
3080 		if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
3081 			pg_tbl_size = rmem->page_size;
3082 		dma_free_coherent(&pdev->dev, pg_tbl_size,
3083 				  rmem->pg_tbl, rmem->pg_tbl_map);
3084 		rmem->pg_tbl = NULL;
3085 	}
3086 	if (rmem->vmem_size && *rmem->vmem) {
3087 		vfree(*rmem->vmem);
3088 		*rmem->vmem = NULL;
3089 	}
3090 }
3091 
3092 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
3093 {
3094 	struct pci_dev *pdev = bp->pdev;
3095 	u64 valid_bit = 0;
3096 	int i;
3097 
3098 	if (rmem->flags & (BNXT_RMEM_VALID_PTE_FLAG | BNXT_RMEM_RING_PTE_FLAG))
3099 		valid_bit = PTU_PTE_VALID;
3100 	if ((rmem->nr_pages > 1 || rmem->depth > 0) && !rmem->pg_tbl) {
3101 		size_t pg_tbl_size = rmem->nr_pages * 8;
3102 
3103 		if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
3104 			pg_tbl_size = rmem->page_size;
3105 		rmem->pg_tbl = dma_alloc_coherent(&pdev->dev, pg_tbl_size,
3106 						  &rmem->pg_tbl_map,
3107 						  GFP_KERNEL);
3108 		if (!rmem->pg_tbl)
3109 			return -ENOMEM;
3110 	}
3111 
3112 	for (i = 0; i < rmem->nr_pages; i++) {
3113 		u64 extra_bits = valid_bit;
3114 
3115 		rmem->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
3116 						     rmem->page_size,
3117 						     &rmem->dma_arr[i],
3118 						     GFP_KERNEL);
3119 		if (!rmem->pg_arr[i])
3120 			return -ENOMEM;
3121 
3122 		if (rmem->mem_init)
3123 			bnxt_init_ctx_mem(rmem->mem_init, rmem->pg_arr[i],
3124 					  rmem->page_size);
3125 		if (rmem->nr_pages > 1 || rmem->depth > 0) {
3126 			if (i == rmem->nr_pages - 2 &&
3127 			    (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
3128 				extra_bits |= PTU_PTE_NEXT_TO_LAST;
3129 			else if (i == rmem->nr_pages - 1 &&
3130 				 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
3131 				extra_bits |= PTU_PTE_LAST;
3132 			rmem->pg_tbl[i] =
3133 				cpu_to_le64(rmem->dma_arr[i] | extra_bits);
3134 		}
3135 	}
3136 
3137 	if (rmem->vmem_size) {
3138 		*rmem->vmem = vzalloc(rmem->vmem_size);
3139 		if (!(*rmem->vmem))
3140 			return -ENOMEM;
3141 	}
3142 	return 0;
3143 }
3144 
3145 static void bnxt_free_tpa_info(struct bnxt *bp)
3146 {
3147 	int i;
3148 
3149 	for (i = 0; i < bp->rx_nr_rings; i++) {
3150 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3151 
3152 		kfree(rxr->rx_tpa_idx_map);
3153 		rxr->rx_tpa_idx_map = NULL;
3154 		if (rxr->rx_tpa) {
3155 			kfree(rxr->rx_tpa[0].agg_arr);
3156 			rxr->rx_tpa[0].agg_arr = NULL;
3157 		}
3158 		kfree(rxr->rx_tpa);
3159 		rxr->rx_tpa = NULL;
3160 	}
3161 }
3162 
3163 static int bnxt_alloc_tpa_info(struct bnxt *bp)
3164 {
3165 	int i, j, total_aggs = 0;
3166 
3167 	bp->max_tpa = MAX_TPA;
3168 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
3169 		if (!bp->max_tpa_v2)
3170 			return 0;
3171 		bp->max_tpa = max_t(u16, bp->max_tpa_v2, MAX_TPA_P5);
3172 		total_aggs = bp->max_tpa * MAX_SKB_FRAGS;
3173 	}
3174 
3175 	for (i = 0; i < bp->rx_nr_rings; i++) {
3176 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3177 		struct rx_agg_cmp *agg;
3178 
3179 		rxr->rx_tpa = kcalloc(bp->max_tpa, sizeof(struct bnxt_tpa_info),
3180 				      GFP_KERNEL);
3181 		if (!rxr->rx_tpa)
3182 			return -ENOMEM;
3183 
3184 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
3185 			continue;
3186 		agg = kcalloc(total_aggs, sizeof(*agg), GFP_KERNEL);
3187 		rxr->rx_tpa[0].agg_arr = agg;
3188 		if (!agg)
3189 			return -ENOMEM;
3190 		for (j = 1; j < bp->max_tpa; j++)
3191 			rxr->rx_tpa[j].agg_arr = agg + j * MAX_SKB_FRAGS;
3192 		rxr->rx_tpa_idx_map = kzalloc(sizeof(*rxr->rx_tpa_idx_map),
3193 					      GFP_KERNEL);
3194 		if (!rxr->rx_tpa_idx_map)
3195 			return -ENOMEM;
3196 	}
3197 	return 0;
3198 }
3199 
3200 static void bnxt_free_rx_rings(struct bnxt *bp)
3201 {
3202 	int i;
3203 
3204 	if (!bp->rx_ring)
3205 		return;
3206 
3207 	bnxt_free_tpa_info(bp);
3208 	for (i = 0; i < bp->rx_nr_rings; i++) {
3209 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3210 		struct bnxt_ring_struct *ring;
3211 
3212 		if (rxr->xdp_prog)
3213 			bpf_prog_put(rxr->xdp_prog);
3214 
3215 		if (xdp_rxq_info_is_reg(&rxr->xdp_rxq))
3216 			xdp_rxq_info_unreg(&rxr->xdp_rxq);
3217 
3218 		page_pool_destroy(rxr->page_pool);
3219 		rxr->page_pool = NULL;
3220 
3221 		kfree(rxr->rx_agg_bmap);
3222 		rxr->rx_agg_bmap = NULL;
3223 
3224 		ring = &rxr->rx_ring_struct;
3225 		bnxt_free_ring(bp, &ring->ring_mem);
3226 
3227 		ring = &rxr->rx_agg_ring_struct;
3228 		bnxt_free_ring(bp, &ring->ring_mem);
3229 	}
3230 }
3231 
3232 static int bnxt_alloc_rx_page_pool(struct bnxt *bp,
3233 				   struct bnxt_rx_ring_info *rxr)
3234 {
3235 	struct page_pool_params pp = { 0 };
3236 
3237 	pp.pool_size = bp->rx_ring_size;
3238 	pp.nid = dev_to_node(&bp->pdev->dev);
3239 	pp.dev = &bp->pdev->dev;
3240 	pp.dma_dir = DMA_BIDIRECTIONAL;
3241 
3242 	rxr->page_pool = page_pool_create(&pp);
3243 	if (IS_ERR(rxr->page_pool)) {
3244 		int err = PTR_ERR(rxr->page_pool);
3245 
3246 		rxr->page_pool = NULL;
3247 		return err;
3248 	}
3249 	return 0;
3250 }
3251 
3252 static int bnxt_alloc_rx_rings(struct bnxt *bp)
3253 {
3254 	int i, rc = 0, agg_rings = 0;
3255 
3256 	if (!bp->rx_ring)
3257 		return -ENOMEM;
3258 
3259 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
3260 		agg_rings = 1;
3261 
3262 	for (i = 0; i < bp->rx_nr_rings; i++) {
3263 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3264 		struct bnxt_ring_struct *ring;
3265 
3266 		ring = &rxr->rx_ring_struct;
3267 
3268 		rc = bnxt_alloc_rx_page_pool(bp, rxr);
3269 		if (rc)
3270 			return rc;
3271 
3272 		rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i, 0);
3273 		if (rc < 0)
3274 			return rc;
3275 
3276 		rc = xdp_rxq_info_reg_mem_model(&rxr->xdp_rxq,
3277 						MEM_TYPE_PAGE_POOL,
3278 						rxr->page_pool);
3279 		if (rc) {
3280 			xdp_rxq_info_unreg(&rxr->xdp_rxq);
3281 			return rc;
3282 		}
3283 
3284 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3285 		if (rc)
3286 			return rc;
3287 
3288 		ring->grp_idx = i;
3289 		if (agg_rings) {
3290 			u16 mem_size;
3291 
3292 			ring = &rxr->rx_agg_ring_struct;
3293 			rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3294 			if (rc)
3295 				return rc;
3296 
3297 			ring->grp_idx = i;
3298 			rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
3299 			mem_size = rxr->rx_agg_bmap_size / 8;
3300 			rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
3301 			if (!rxr->rx_agg_bmap)
3302 				return -ENOMEM;
3303 		}
3304 	}
3305 	if (bp->flags & BNXT_FLAG_TPA)
3306 		rc = bnxt_alloc_tpa_info(bp);
3307 	return rc;
3308 }
3309 
3310 static void bnxt_free_tx_rings(struct bnxt *bp)
3311 {
3312 	int i;
3313 	struct pci_dev *pdev = bp->pdev;
3314 
3315 	if (!bp->tx_ring)
3316 		return;
3317 
3318 	for (i = 0; i < bp->tx_nr_rings; i++) {
3319 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3320 		struct bnxt_ring_struct *ring;
3321 
3322 		if (txr->tx_push) {
3323 			dma_free_coherent(&pdev->dev, bp->tx_push_size,
3324 					  txr->tx_push, txr->tx_push_mapping);
3325 			txr->tx_push = NULL;
3326 		}
3327 
3328 		ring = &txr->tx_ring_struct;
3329 
3330 		bnxt_free_ring(bp, &ring->ring_mem);
3331 	}
3332 }
3333 
3334 static int bnxt_alloc_tx_rings(struct bnxt *bp)
3335 {
3336 	int i, j, rc;
3337 	struct pci_dev *pdev = bp->pdev;
3338 
3339 	bp->tx_push_size = 0;
3340 	if (bp->tx_push_thresh) {
3341 		int push_size;
3342 
3343 		push_size  = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
3344 					bp->tx_push_thresh);
3345 
3346 		if (push_size > 256) {
3347 			push_size = 0;
3348 			bp->tx_push_thresh = 0;
3349 		}
3350 
3351 		bp->tx_push_size = push_size;
3352 	}
3353 
3354 	for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
3355 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3356 		struct bnxt_ring_struct *ring;
3357 		u8 qidx;
3358 
3359 		ring = &txr->tx_ring_struct;
3360 
3361 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3362 		if (rc)
3363 			return rc;
3364 
3365 		ring->grp_idx = txr->bnapi->index;
3366 		if (bp->tx_push_size) {
3367 			dma_addr_t mapping;
3368 
3369 			/* One pre-allocated DMA buffer to backup
3370 			 * TX push operation
3371 			 */
3372 			txr->tx_push = dma_alloc_coherent(&pdev->dev,
3373 						bp->tx_push_size,
3374 						&txr->tx_push_mapping,
3375 						GFP_KERNEL);
3376 
3377 			if (!txr->tx_push)
3378 				return -ENOMEM;
3379 
3380 			mapping = txr->tx_push_mapping +
3381 				sizeof(struct tx_push_bd);
3382 			txr->data_mapping = cpu_to_le64(mapping);
3383 		}
3384 		qidx = bp->tc_to_qidx[j];
3385 		ring->queue_id = bp->q_info[qidx].queue_id;
3386 		spin_lock_init(&txr->xdp_tx_lock);
3387 		if (i < bp->tx_nr_rings_xdp)
3388 			continue;
3389 		if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1))
3390 			j++;
3391 	}
3392 	return 0;
3393 }
3394 
3395 static void bnxt_free_cp_arrays(struct bnxt_cp_ring_info *cpr)
3396 {
3397 	struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3398 
3399 	kfree(cpr->cp_desc_ring);
3400 	cpr->cp_desc_ring = NULL;
3401 	ring->ring_mem.pg_arr = NULL;
3402 	kfree(cpr->cp_desc_mapping);
3403 	cpr->cp_desc_mapping = NULL;
3404 	ring->ring_mem.dma_arr = NULL;
3405 }
3406 
3407 static int bnxt_alloc_cp_arrays(struct bnxt_cp_ring_info *cpr, int n)
3408 {
3409 	cpr->cp_desc_ring = kcalloc(n, sizeof(*cpr->cp_desc_ring), GFP_KERNEL);
3410 	if (!cpr->cp_desc_ring)
3411 		return -ENOMEM;
3412 	cpr->cp_desc_mapping = kcalloc(n, sizeof(*cpr->cp_desc_mapping),
3413 				       GFP_KERNEL);
3414 	if (!cpr->cp_desc_mapping)
3415 		return -ENOMEM;
3416 	return 0;
3417 }
3418 
3419 static void bnxt_free_all_cp_arrays(struct bnxt *bp)
3420 {
3421 	int i;
3422 
3423 	if (!bp->bnapi)
3424 		return;
3425 	for (i = 0; i < bp->cp_nr_rings; i++) {
3426 		struct bnxt_napi *bnapi = bp->bnapi[i];
3427 
3428 		if (!bnapi)
3429 			continue;
3430 		bnxt_free_cp_arrays(&bnapi->cp_ring);
3431 	}
3432 }
3433 
3434 static int bnxt_alloc_all_cp_arrays(struct bnxt *bp)
3435 {
3436 	int i, n = bp->cp_nr_pages;
3437 
3438 	for (i = 0; i < bp->cp_nr_rings; i++) {
3439 		struct bnxt_napi *bnapi = bp->bnapi[i];
3440 		int rc;
3441 
3442 		if (!bnapi)
3443 			continue;
3444 		rc = bnxt_alloc_cp_arrays(&bnapi->cp_ring, n);
3445 		if (rc)
3446 			return rc;
3447 	}
3448 	return 0;
3449 }
3450 
3451 static void bnxt_free_cp_rings(struct bnxt *bp)
3452 {
3453 	int i;
3454 
3455 	if (!bp->bnapi)
3456 		return;
3457 
3458 	for (i = 0; i < bp->cp_nr_rings; i++) {
3459 		struct bnxt_napi *bnapi = bp->bnapi[i];
3460 		struct bnxt_cp_ring_info *cpr;
3461 		struct bnxt_ring_struct *ring;
3462 		int j;
3463 
3464 		if (!bnapi)
3465 			continue;
3466 
3467 		cpr = &bnapi->cp_ring;
3468 		ring = &cpr->cp_ring_struct;
3469 
3470 		bnxt_free_ring(bp, &ring->ring_mem);
3471 
3472 		for (j = 0; j < 2; j++) {
3473 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
3474 
3475 			if (cpr2) {
3476 				ring = &cpr2->cp_ring_struct;
3477 				bnxt_free_ring(bp, &ring->ring_mem);
3478 				bnxt_free_cp_arrays(cpr2);
3479 				kfree(cpr2);
3480 				cpr->cp_ring_arr[j] = NULL;
3481 			}
3482 		}
3483 	}
3484 }
3485 
3486 static struct bnxt_cp_ring_info *bnxt_alloc_cp_sub_ring(struct bnxt *bp)
3487 {
3488 	struct bnxt_ring_mem_info *rmem;
3489 	struct bnxt_ring_struct *ring;
3490 	struct bnxt_cp_ring_info *cpr;
3491 	int rc;
3492 
3493 	cpr = kzalloc(sizeof(*cpr), GFP_KERNEL);
3494 	if (!cpr)
3495 		return NULL;
3496 
3497 	rc = bnxt_alloc_cp_arrays(cpr, bp->cp_nr_pages);
3498 	if (rc) {
3499 		bnxt_free_cp_arrays(cpr);
3500 		kfree(cpr);
3501 		return NULL;
3502 	}
3503 	ring = &cpr->cp_ring_struct;
3504 	rmem = &ring->ring_mem;
3505 	rmem->nr_pages = bp->cp_nr_pages;
3506 	rmem->page_size = HW_CMPD_RING_SIZE;
3507 	rmem->pg_arr = (void **)cpr->cp_desc_ring;
3508 	rmem->dma_arr = cpr->cp_desc_mapping;
3509 	rmem->flags = BNXT_RMEM_RING_PTE_FLAG;
3510 	rc = bnxt_alloc_ring(bp, rmem);
3511 	if (rc) {
3512 		bnxt_free_ring(bp, rmem);
3513 		bnxt_free_cp_arrays(cpr);
3514 		kfree(cpr);
3515 		cpr = NULL;
3516 	}
3517 	return cpr;
3518 }
3519 
3520 static int bnxt_alloc_cp_rings(struct bnxt *bp)
3521 {
3522 	bool sh = !!(bp->flags & BNXT_FLAG_SHARED_RINGS);
3523 	int i, rc, ulp_base_vec, ulp_msix;
3524 
3525 	ulp_msix = bnxt_get_ulp_msix_num(bp);
3526 	ulp_base_vec = bnxt_get_ulp_msix_base(bp);
3527 	for (i = 0; i < bp->cp_nr_rings; i++) {
3528 		struct bnxt_napi *bnapi = bp->bnapi[i];
3529 		struct bnxt_cp_ring_info *cpr;
3530 		struct bnxt_ring_struct *ring;
3531 
3532 		if (!bnapi)
3533 			continue;
3534 
3535 		cpr = &bnapi->cp_ring;
3536 		cpr->bnapi = bnapi;
3537 		ring = &cpr->cp_ring_struct;
3538 
3539 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3540 		if (rc)
3541 			return rc;
3542 
3543 		if (ulp_msix && i >= ulp_base_vec)
3544 			ring->map_idx = i + ulp_msix;
3545 		else
3546 			ring->map_idx = i;
3547 
3548 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
3549 			continue;
3550 
3551 		if (i < bp->rx_nr_rings) {
3552 			struct bnxt_cp_ring_info *cpr2 =
3553 				bnxt_alloc_cp_sub_ring(bp);
3554 
3555 			cpr->cp_ring_arr[BNXT_RX_HDL] = cpr2;
3556 			if (!cpr2)
3557 				return -ENOMEM;
3558 			cpr2->bnapi = bnapi;
3559 		}
3560 		if ((sh && i < bp->tx_nr_rings) ||
3561 		    (!sh && i >= bp->rx_nr_rings)) {
3562 			struct bnxt_cp_ring_info *cpr2 =
3563 				bnxt_alloc_cp_sub_ring(bp);
3564 
3565 			cpr->cp_ring_arr[BNXT_TX_HDL] = cpr2;
3566 			if (!cpr2)
3567 				return -ENOMEM;
3568 			cpr2->bnapi = bnapi;
3569 		}
3570 	}
3571 	return 0;
3572 }
3573 
3574 static void bnxt_init_ring_struct(struct bnxt *bp)
3575 {
3576 	int i;
3577 
3578 	for (i = 0; i < bp->cp_nr_rings; i++) {
3579 		struct bnxt_napi *bnapi = bp->bnapi[i];
3580 		struct bnxt_ring_mem_info *rmem;
3581 		struct bnxt_cp_ring_info *cpr;
3582 		struct bnxt_rx_ring_info *rxr;
3583 		struct bnxt_tx_ring_info *txr;
3584 		struct bnxt_ring_struct *ring;
3585 
3586 		if (!bnapi)
3587 			continue;
3588 
3589 		cpr = &bnapi->cp_ring;
3590 		ring = &cpr->cp_ring_struct;
3591 		rmem = &ring->ring_mem;
3592 		rmem->nr_pages = bp->cp_nr_pages;
3593 		rmem->page_size = HW_CMPD_RING_SIZE;
3594 		rmem->pg_arr = (void **)cpr->cp_desc_ring;
3595 		rmem->dma_arr = cpr->cp_desc_mapping;
3596 		rmem->vmem_size = 0;
3597 
3598 		rxr = bnapi->rx_ring;
3599 		if (!rxr)
3600 			goto skip_rx;
3601 
3602 		ring = &rxr->rx_ring_struct;
3603 		rmem = &ring->ring_mem;
3604 		rmem->nr_pages = bp->rx_nr_pages;
3605 		rmem->page_size = HW_RXBD_RING_SIZE;
3606 		rmem->pg_arr = (void **)rxr->rx_desc_ring;
3607 		rmem->dma_arr = rxr->rx_desc_mapping;
3608 		rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
3609 		rmem->vmem = (void **)&rxr->rx_buf_ring;
3610 
3611 		ring = &rxr->rx_agg_ring_struct;
3612 		rmem = &ring->ring_mem;
3613 		rmem->nr_pages = bp->rx_agg_nr_pages;
3614 		rmem->page_size = HW_RXBD_RING_SIZE;
3615 		rmem->pg_arr = (void **)rxr->rx_agg_desc_ring;
3616 		rmem->dma_arr = rxr->rx_agg_desc_mapping;
3617 		rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
3618 		rmem->vmem = (void **)&rxr->rx_agg_ring;
3619 
3620 skip_rx:
3621 		txr = bnapi->tx_ring;
3622 		if (!txr)
3623 			continue;
3624 
3625 		ring = &txr->tx_ring_struct;
3626 		rmem = &ring->ring_mem;
3627 		rmem->nr_pages = bp->tx_nr_pages;
3628 		rmem->page_size = HW_RXBD_RING_SIZE;
3629 		rmem->pg_arr = (void **)txr->tx_desc_ring;
3630 		rmem->dma_arr = txr->tx_desc_mapping;
3631 		rmem->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
3632 		rmem->vmem = (void **)&txr->tx_buf_ring;
3633 	}
3634 }
3635 
3636 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
3637 {
3638 	int i;
3639 	u32 prod;
3640 	struct rx_bd **rx_buf_ring;
3641 
3642 	rx_buf_ring = (struct rx_bd **)ring->ring_mem.pg_arr;
3643 	for (i = 0, prod = 0; i < ring->ring_mem.nr_pages; i++) {
3644 		int j;
3645 		struct rx_bd *rxbd;
3646 
3647 		rxbd = rx_buf_ring[i];
3648 		if (!rxbd)
3649 			continue;
3650 
3651 		for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
3652 			rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
3653 			rxbd->rx_bd_opaque = prod;
3654 		}
3655 	}
3656 }
3657 
3658 static int bnxt_alloc_one_rx_ring(struct bnxt *bp, int ring_nr)
3659 {
3660 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
3661 	struct net_device *dev = bp->dev;
3662 	u32 prod;
3663 	int i;
3664 
3665 	prod = rxr->rx_prod;
3666 	for (i = 0; i < bp->rx_ring_size; i++) {
3667 		if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL)) {
3668 			netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
3669 				    ring_nr, i, bp->rx_ring_size);
3670 			break;
3671 		}
3672 		prod = NEXT_RX(prod);
3673 	}
3674 	rxr->rx_prod = prod;
3675 
3676 	if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
3677 		return 0;
3678 
3679 	prod = rxr->rx_agg_prod;
3680 	for (i = 0; i < bp->rx_agg_ring_size; i++) {
3681 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL)) {
3682 			netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
3683 				    ring_nr, i, bp->rx_ring_size);
3684 			break;
3685 		}
3686 		prod = NEXT_RX_AGG(prod);
3687 	}
3688 	rxr->rx_agg_prod = prod;
3689 
3690 	if (rxr->rx_tpa) {
3691 		dma_addr_t mapping;
3692 		u8 *data;
3693 
3694 		for (i = 0; i < bp->max_tpa; i++) {
3695 			data = __bnxt_alloc_rx_frag(bp, &mapping, GFP_KERNEL);
3696 			if (!data)
3697 				return -ENOMEM;
3698 
3699 			rxr->rx_tpa[i].data = data;
3700 			rxr->rx_tpa[i].data_ptr = data + bp->rx_offset;
3701 			rxr->rx_tpa[i].mapping = mapping;
3702 		}
3703 	}
3704 	return 0;
3705 }
3706 
3707 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
3708 {
3709 	struct bnxt_rx_ring_info *rxr;
3710 	struct bnxt_ring_struct *ring;
3711 	u32 type;
3712 
3713 	type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
3714 		RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
3715 
3716 	if (NET_IP_ALIGN == 2)
3717 		type |= RX_BD_FLAGS_SOP;
3718 
3719 	rxr = &bp->rx_ring[ring_nr];
3720 	ring = &rxr->rx_ring_struct;
3721 	bnxt_init_rxbd_pages(ring, type);
3722 
3723 	if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) {
3724 		bpf_prog_add(bp->xdp_prog, 1);
3725 		rxr->xdp_prog = bp->xdp_prog;
3726 	}
3727 	ring->fw_ring_id = INVALID_HW_RING_ID;
3728 
3729 	ring = &rxr->rx_agg_ring_struct;
3730 	ring->fw_ring_id = INVALID_HW_RING_ID;
3731 
3732 	if ((bp->flags & BNXT_FLAG_AGG_RINGS)) {
3733 		type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) |
3734 			RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
3735 
3736 		bnxt_init_rxbd_pages(ring, type);
3737 	}
3738 
3739 	return bnxt_alloc_one_rx_ring(bp, ring_nr);
3740 }
3741 
3742 static void bnxt_init_cp_rings(struct bnxt *bp)
3743 {
3744 	int i, j;
3745 
3746 	for (i = 0; i < bp->cp_nr_rings; i++) {
3747 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
3748 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3749 
3750 		ring->fw_ring_id = INVALID_HW_RING_ID;
3751 		cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
3752 		cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
3753 		for (j = 0; j < 2; j++) {
3754 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
3755 
3756 			if (!cpr2)
3757 				continue;
3758 
3759 			ring = &cpr2->cp_ring_struct;
3760 			ring->fw_ring_id = INVALID_HW_RING_ID;
3761 			cpr2->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
3762 			cpr2->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
3763 		}
3764 	}
3765 }
3766 
3767 static int bnxt_init_rx_rings(struct bnxt *bp)
3768 {
3769 	int i, rc = 0;
3770 
3771 	if (BNXT_RX_PAGE_MODE(bp)) {
3772 		bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM;
3773 		bp->rx_dma_offset = XDP_PACKET_HEADROOM;
3774 	} else {
3775 		bp->rx_offset = BNXT_RX_OFFSET;
3776 		bp->rx_dma_offset = BNXT_RX_DMA_OFFSET;
3777 	}
3778 
3779 	for (i = 0; i < bp->rx_nr_rings; i++) {
3780 		rc = bnxt_init_one_rx_ring(bp, i);
3781 		if (rc)
3782 			break;
3783 	}
3784 
3785 	return rc;
3786 }
3787 
3788 static int bnxt_init_tx_rings(struct bnxt *bp)
3789 {
3790 	u16 i;
3791 
3792 	bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
3793 				   BNXT_MIN_TX_DESC_CNT);
3794 
3795 	for (i = 0; i < bp->tx_nr_rings; i++) {
3796 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3797 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
3798 
3799 		ring->fw_ring_id = INVALID_HW_RING_ID;
3800 	}
3801 
3802 	return 0;
3803 }
3804 
3805 static void bnxt_free_ring_grps(struct bnxt *bp)
3806 {
3807 	kfree(bp->grp_info);
3808 	bp->grp_info = NULL;
3809 }
3810 
3811 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
3812 {
3813 	int i;
3814 
3815 	if (irq_re_init) {
3816 		bp->grp_info = kcalloc(bp->cp_nr_rings,
3817 				       sizeof(struct bnxt_ring_grp_info),
3818 				       GFP_KERNEL);
3819 		if (!bp->grp_info)
3820 			return -ENOMEM;
3821 	}
3822 	for (i = 0; i < bp->cp_nr_rings; i++) {
3823 		if (irq_re_init)
3824 			bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
3825 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
3826 		bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
3827 		bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
3828 		bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
3829 	}
3830 	return 0;
3831 }
3832 
3833 static void bnxt_free_vnics(struct bnxt *bp)
3834 {
3835 	kfree(bp->vnic_info);
3836 	bp->vnic_info = NULL;
3837 	bp->nr_vnics = 0;
3838 }
3839 
3840 static int bnxt_alloc_vnics(struct bnxt *bp)
3841 {
3842 	int num_vnics = 1;
3843 
3844 #ifdef CONFIG_RFS_ACCEL
3845 	if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS)
3846 		num_vnics += bp->rx_nr_rings;
3847 #endif
3848 
3849 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
3850 		num_vnics++;
3851 
3852 	bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
3853 				GFP_KERNEL);
3854 	if (!bp->vnic_info)
3855 		return -ENOMEM;
3856 
3857 	bp->nr_vnics = num_vnics;
3858 	return 0;
3859 }
3860 
3861 static void bnxt_init_vnics(struct bnxt *bp)
3862 {
3863 	int i;
3864 
3865 	for (i = 0; i < bp->nr_vnics; i++) {
3866 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3867 		int j;
3868 
3869 		vnic->fw_vnic_id = INVALID_HW_RING_ID;
3870 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++)
3871 			vnic->fw_rss_cos_lb_ctx[j] = INVALID_HW_RING_ID;
3872 
3873 		vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
3874 
3875 		if (bp->vnic_info[i].rss_hash_key) {
3876 			if (i == 0)
3877 				prandom_bytes(vnic->rss_hash_key,
3878 					      HW_HASH_KEY_SIZE);
3879 			else
3880 				memcpy(vnic->rss_hash_key,
3881 				       bp->vnic_info[0].rss_hash_key,
3882 				       HW_HASH_KEY_SIZE);
3883 		}
3884 	}
3885 }
3886 
3887 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
3888 {
3889 	int pages;
3890 
3891 	pages = ring_size / desc_per_pg;
3892 
3893 	if (!pages)
3894 		return 1;
3895 
3896 	pages++;
3897 
3898 	while (pages & (pages - 1))
3899 		pages++;
3900 
3901 	return pages;
3902 }
3903 
3904 void bnxt_set_tpa_flags(struct bnxt *bp)
3905 {
3906 	bp->flags &= ~BNXT_FLAG_TPA;
3907 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
3908 		return;
3909 	if (bp->dev->features & NETIF_F_LRO)
3910 		bp->flags |= BNXT_FLAG_LRO;
3911 	else if (bp->dev->features & NETIF_F_GRO_HW)
3912 		bp->flags |= BNXT_FLAG_GRO;
3913 }
3914 
3915 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
3916  * be set on entry.
3917  */
3918 void bnxt_set_ring_params(struct bnxt *bp)
3919 {
3920 	u32 ring_size, rx_size, rx_space, max_rx_cmpl;
3921 	u32 agg_factor = 0, agg_ring_size = 0;
3922 
3923 	/* 8 for CRC and VLAN */
3924 	rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
3925 
3926 	rx_space = rx_size + ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) +
3927 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3928 
3929 	bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
3930 	ring_size = bp->rx_ring_size;
3931 	bp->rx_agg_ring_size = 0;
3932 	bp->rx_agg_nr_pages = 0;
3933 
3934 	if (bp->flags & BNXT_FLAG_TPA)
3935 		agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE);
3936 
3937 	bp->flags &= ~BNXT_FLAG_JUMBO;
3938 	if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) {
3939 		u32 jumbo_factor;
3940 
3941 		bp->flags |= BNXT_FLAG_JUMBO;
3942 		jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
3943 		if (jumbo_factor > agg_factor)
3944 			agg_factor = jumbo_factor;
3945 	}
3946 	if (agg_factor) {
3947 		if (ring_size > BNXT_MAX_RX_DESC_CNT_JUM_ENA) {
3948 			ring_size = BNXT_MAX_RX_DESC_CNT_JUM_ENA;
3949 			netdev_warn(bp->dev, "RX ring size reduced from %d to %d because the jumbo ring is now enabled\n",
3950 				    bp->rx_ring_size, ring_size);
3951 			bp->rx_ring_size = ring_size;
3952 		}
3953 		agg_ring_size = ring_size * agg_factor;
3954 
3955 		bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
3956 							RX_DESC_CNT);
3957 		if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
3958 			u32 tmp = agg_ring_size;
3959 
3960 			bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
3961 			agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
3962 			netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
3963 				    tmp, agg_ring_size);
3964 		}
3965 		bp->rx_agg_ring_size = agg_ring_size;
3966 		bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
3967 
3968 		if (BNXT_RX_PAGE_MODE(bp)) {
3969 			rx_space = BNXT_PAGE_MODE_BUF_SIZE;
3970 			rx_size = BNXT_MAX_PAGE_MODE_MTU;
3971 		} else {
3972 			rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
3973 			rx_space = rx_size + NET_SKB_PAD +
3974 				SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3975 		}
3976 	}
3977 
3978 	bp->rx_buf_use_size = rx_size;
3979 	bp->rx_buf_size = rx_space;
3980 
3981 	bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
3982 	bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
3983 
3984 	ring_size = bp->tx_ring_size;
3985 	bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
3986 	bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
3987 
3988 	max_rx_cmpl = bp->rx_ring_size;
3989 	/* MAX TPA needs to be added because TPA_START completions are
3990 	 * immediately recycled, so the TPA completions are not bound by
3991 	 * the RX ring size.
3992 	 */
3993 	if (bp->flags & BNXT_FLAG_TPA)
3994 		max_rx_cmpl += bp->max_tpa;
3995 	/* RX and TPA completions are 32-byte, all others are 16-byte */
3996 	ring_size = max_rx_cmpl * 2 + agg_ring_size + bp->tx_ring_size;
3997 	bp->cp_ring_size = ring_size;
3998 
3999 	bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
4000 	if (bp->cp_nr_pages > MAX_CP_PAGES) {
4001 		bp->cp_nr_pages = MAX_CP_PAGES;
4002 		bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
4003 		netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
4004 			    ring_size, bp->cp_ring_size);
4005 	}
4006 	bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
4007 	bp->cp_ring_mask = bp->cp_bit - 1;
4008 }
4009 
4010 /* Changing allocation mode of RX rings.
4011  * TODO: Update when extending xdp_rxq_info to support allocation modes.
4012  */
4013 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode)
4014 {
4015 	if (page_mode) {
4016 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
4017 		bp->flags |= BNXT_FLAG_RX_PAGE_MODE;
4018 
4019 		if (bp->dev->mtu > BNXT_MAX_PAGE_MODE_MTU) {
4020 			bp->flags |= BNXT_FLAG_JUMBO;
4021 			bp->rx_skb_func = bnxt_rx_multi_page_skb;
4022 			bp->dev->max_mtu =
4023 				min_t(u16, bp->max_mtu, BNXT_MAX_MTU);
4024 		} else {
4025 			bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
4026 			bp->rx_skb_func = bnxt_rx_page_skb;
4027 			bp->dev->max_mtu =
4028 				min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU);
4029 		}
4030 		bp->rx_dir = DMA_BIDIRECTIONAL;
4031 		/* Disable LRO or GRO_HW */
4032 		netdev_update_features(bp->dev);
4033 	} else {
4034 		bp->dev->max_mtu = bp->max_mtu;
4035 		bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE;
4036 		bp->rx_dir = DMA_FROM_DEVICE;
4037 		bp->rx_skb_func = bnxt_rx_skb;
4038 	}
4039 	return 0;
4040 }
4041 
4042 static void bnxt_free_vnic_attributes(struct bnxt *bp)
4043 {
4044 	int i;
4045 	struct bnxt_vnic_info *vnic;
4046 	struct pci_dev *pdev = bp->pdev;
4047 
4048 	if (!bp->vnic_info)
4049 		return;
4050 
4051 	for (i = 0; i < bp->nr_vnics; i++) {
4052 		vnic = &bp->vnic_info[i];
4053 
4054 		kfree(vnic->fw_grp_ids);
4055 		vnic->fw_grp_ids = NULL;
4056 
4057 		kfree(vnic->uc_list);
4058 		vnic->uc_list = NULL;
4059 
4060 		if (vnic->mc_list) {
4061 			dma_free_coherent(&pdev->dev, vnic->mc_list_size,
4062 					  vnic->mc_list, vnic->mc_list_mapping);
4063 			vnic->mc_list = NULL;
4064 		}
4065 
4066 		if (vnic->rss_table) {
4067 			dma_free_coherent(&pdev->dev, vnic->rss_table_size,
4068 					  vnic->rss_table,
4069 					  vnic->rss_table_dma_addr);
4070 			vnic->rss_table = NULL;
4071 		}
4072 
4073 		vnic->rss_hash_key = NULL;
4074 		vnic->flags = 0;
4075 	}
4076 }
4077 
4078 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
4079 {
4080 	int i, rc = 0, size;
4081 	struct bnxt_vnic_info *vnic;
4082 	struct pci_dev *pdev = bp->pdev;
4083 	int max_rings;
4084 
4085 	for (i = 0; i < bp->nr_vnics; i++) {
4086 		vnic = &bp->vnic_info[i];
4087 
4088 		if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
4089 			int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
4090 
4091 			if (mem_size > 0) {
4092 				vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
4093 				if (!vnic->uc_list) {
4094 					rc = -ENOMEM;
4095 					goto out;
4096 				}
4097 			}
4098 		}
4099 
4100 		if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
4101 			vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
4102 			vnic->mc_list =
4103 				dma_alloc_coherent(&pdev->dev,
4104 						   vnic->mc_list_size,
4105 						   &vnic->mc_list_mapping,
4106 						   GFP_KERNEL);
4107 			if (!vnic->mc_list) {
4108 				rc = -ENOMEM;
4109 				goto out;
4110 			}
4111 		}
4112 
4113 		if (bp->flags & BNXT_FLAG_CHIP_P5)
4114 			goto vnic_skip_grps;
4115 
4116 		if (vnic->flags & BNXT_VNIC_RSS_FLAG)
4117 			max_rings = bp->rx_nr_rings;
4118 		else
4119 			max_rings = 1;
4120 
4121 		vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
4122 		if (!vnic->fw_grp_ids) {
4123 			rc = -ENOMEM;
4124 			goto out;
4125 		}
4126 vnic_skip_grps:
4127 		if ((bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
4128 		    !(vnic->flags & BNXT_VNIC_RSS_FLAG))
4129 			continue;
4130 
4131 		/* Allocate rss table and hash key */
4132 		size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
4133 		if (bp->flags & BNXT_FLAG_CHIP_P5)
4134 			size = L1_CACHE_ALIGN(BNXT_MAX_RSS_TABLE_SIZE_P5);
4135 
4136 		vnic->rss_table_size = size + HW_HASH_KEY_SIZE;
4137 		vnic->rss_table = dma_alloc_coherent(&pdev->dev,
4138 						     vnic->rss_table_size,
4139 						     &vnic->rss_table_dma_addr,
4140 						     GFP_KERNEL);
4141 		if (!vnic->rss_table) {
4142 			rc = -ENOMEM;
4143 			goto out;
4144 		}
4145 
4146 		vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
4147 		vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
4148 	}
4149 	return 0;
4150 
4151 out:
4152 	return rc;
4153 }
4154 
4155 static void bnxt_free_hwrm_resources(struct bnxt *bp)
4156 {
4157 	struct bnxt_hwrm_wait_token *token;
4158 
4159 	dma_pool_destroy(bp->hwrm_dma_pool);
4160 	bp->hwrm_dma_pool = NULL;
4161 
4162 	rcu_read_lock();
4163 	hlist_for_each_entry_rcu(token, &bp->hwrm_pending_list, node)
4164 		WRITE_ONCE(token->state, BNXT_HWRM_CANCELLED);
4165 	rcu_read_unlock();
4166 }
4167 
4168 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
4169 {
4170 	bp->hwrm_dma_pool = dma_pool_create("bnxt_hwrm", &bp->pdev->dev,
4171 					    BNXT_HWRM_DMA_SIZE,
4172 					    BNXT_HWRM_DMA_ALIGN, 0);
4173 	if (!bp->hwrm_dma_pool)
4174 		return -ENOMEM;
4175 
4176 	INIT_HLIST_HEAD(&bp->hwrm_pending_list);
4177 
4178 	return 0;
4179 }
4180 
4181 static void bnxt_free_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats)
4182 {
4183 	kfree(stats->hw_masks);
4184 	stats->hw_masks = NULL;
4185 	kfree(stats->sw_stats);
4186 	stats->sw_stats = NULL;
4187 	if (stats->hw_stats) {
4188 		dma_free_coherent(&bp->pdev->dev, stats->len, stats->hw_stats,
4189 				  stats->hw_stats_map);
4190 		stats->hw_stats = NULL;
4191 	}
4192 }
4193 
4194 static int bnxt_alloc_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats,
4195 				bool alloc_masks)
4196 {
4197 	stats->hw_stats = dma_alloc_coherent(&bp->pdev->dev, stats->len,
4198 					     &stats->hw_stats_map, GFP_KERNEL);
4199 	if (!stats->hw_stats)
4200 		return -ENOMEM;
4201 
4202 	stats->sw_stats = kzalloc(stats->len, GFP_KERNEL);
4203 	if (!stats->sw_stats)
4204 		goto stats_mem_err;
4205 
4206 	if (alloc_masks) {
4207 		stats->hw_masks = kzalloc(stats->len, GFP_KERNEL);
4208 		if (!stats->hw_masks)
4209 			goto stats_mem_err;
4210 	}
4211 	return 0;
4212 
4213 stats_mem_err:
4214 	bnxt_free_stats_mem(bp, stats);
4215 	return -ENOMEM;
4216 }
4217 
4218 static void bnxt_fill_masks(u64 *mask_arr, u64 mask, int count)
4219 {
4220 	int i;
4221 
4222 	for (i = 0; i < count; i++)
4223 		mask_arr[i] = mask;
4224 }
4225 
4226 static void bnxt_copy_hw_masks(u64 *mask_arr, __le64 *hw_mask_arr, int count)
4227 {
4228 	int i;
4229 
4230 	for (i = 0; i < count; i++)
4231 		mask_arr[i] = le64_to_cpu(hw_mask_arr[i]);
4232 }
4233 
4234 static int bnxt_hwrm_func_qstat_ext(struct bnxt *bp,
4235 				    struct bnxt_stats_mem *stats)
4236 {
4237 	struct hwrm_func_qstats_ext_output *resp;
4238 	struct hwrm_func_qstats_ext_input *req;
4239 	__le64 *hw_masks;
4240 	int rc;
4241 
4242 	if (!(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED) ||
4243 	    !(bp->flags & BNXT_FLAG_CHIP_P5))
4244 		return -EOPNOTSUPP;
4245 
4246 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QSTATS_EXT);
4247 	if (rc)
4248 		return rc;
4249 
4250 	req->fid = cpu_to_le16(0xffff);
4251 	req->flags = FUNC_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK;
4252 
4253 	resp = hwrm_req_hold(bp, req);
4254 	rc = hwrm_req_send(bp, req);
4255 	if (!rc) {
4256 		hw_masks = &resp->rx_ucast_pkts;
4257 		bnxt_copy_hw_masks(stats->hw_masks, hw_masks, stats->len / 8);
4258 	}
4259 	hwrm_req_drop(bp, req);
4260 	return rc;
4261 }
4262 
4263 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags);
4264 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags);
4265 
4266 static void bnxt_init_stats(struct bnxt *bp)
4267 {
4268 	struct bnxt_napi *bnapi = bp->bnapi[0];
4269 	struct bnxt_cp_ring_info *cpr;
4270 	struct bnxt_stats_mem *stats;
4271 	__le64 *rx_stats, *tx_stats;
4272 	int rc, rx_count, tx_count;
4273 	u64 *rx_masks, *tx_masks;
4274 	u64 mask;
4275 	u8 flags;
4276 
4277 	cpr = &bnapi->cp_ring;
4278 	stats = &cpr->stats;
4279 	rc = bnxt_hwrm_func_qstat_ext(bp, stats);
4280 	if (rc) {
4281 		if (bp->flags & BNXT_FLAG_CHIP_P5)
4282 			mask = (1ULL << 48) - 1;
4283 		else
4284 			mask = -1ULL;
4285 		bnxt_fill_masks(stats->hw_masks, mask, stats->len / 8);
4286 	}
4287 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
4288 		stats = &bp->port_stats;
4289 		rx_stats = stats->hw_stats;
4290 		rx_masks = stats->hw_masks;
4291 		rx_count = sizeof(struct rx_port_stats) / 8;
4292 		tx_stats = rx_stats + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
4293 		tx_masks = rx_masks + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
4294 		tx_count = sizeof(struct tx_port_stats) / 8;
4295 
4296 		flags = PORT_QSTATS_REQ_FLAGS_COUNTER_MASK;
4297 		rc = bnxt_hwrm_port_qstats(bp, flags);
4298 		if (rc) {
4299 			mask = (1ULL << 40) - 1;
4300 
4301 			bnxt_fill_masks(rx_masks, mask, rx_count);
4302 			bnxt_fill_masks(tx_masks, mask, tx_count);
4303 		} else {
4304 			bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count);
4305 			bnxt_copy_hw_masks(tx_masks, tx_stats, tx_count);
4306 			bnxt_hwrm_port_qstats(bp, 0);
4307 		}
4308 	}
4309 	if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) {
4310 		stats = &bp->rx_port_stats_ext;
4311 		rx_stats = stats->hw_stats;
4312 		rx_masks = stats->hw_masks;
4313 		rx_count = sizeof(struct rx_port_stats_ext) / 8;
4314 		stats = &bp->tx_port_stats_ext;
4315 		tx_stats = stats->hw_stats;
4316 		tx_masks = stats->hw_masks;
4317 		tx_count = sizeof(struct tx_port_stats_ext) / 8;
4318 
4319 		flags = PORT_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK;
4320 		rc = bnxt_hwrm_port_qstats_ext(bp, flags);
4321 		if (rc) {
4322 			mask = (1ULL << 40) - 1;
4323 
4324 			bnxt_fill_masks(rx_masks, mask, rx_count);
4325 			if (tx_stats)
4326 				bnxt_fill_masks(tx_masks, mask, tx_count);
4327 		} else {
4328 			bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count);
4329 			if (tx_stats)
4330 				bnxt_copy_hw_masks(tx_masks, tx_stats,
4331 						   tx_count);
4332 			bnxt_hwrm_port_qstats_ext(bp, 0);
4333 		}
4334 	}
4335 }
4336 
4337 static void bnxt_free_port_stats(struct bnxt *bp)
4338 {
4339 	bp->flags &= ~BNXT_FLAG_PORT_STATS;
4340 	bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT;
4341 
4342 	bnxt_free_stats_mem(bp, &bp->port_stats);
4343 	bnxt_free_stats_mem(bp, &bp->rx_port_stats_ext);
4344 	bnxt_free_stats_mem(bp, &bp->tx_port_stats_ext);
4345 }
4346 
4347 static void bnxt_free_ring_stats(struct bnxt *bp)
4348 {
4349 	int i;
4350 
4351 	if (!bp->bnapi)
4352 		return;
4353 
4354 	for (i = 0; i < bp->cp_nr_rings; i++) {
4355 		struct bnxt_napi *bnapi = bp->bnapi[i];
4356 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4357 
4358 		bnxt_free_stats_mem(bp, &cpr->stats);
4359 	}
4360 }
4361 
4362 static int bnxt_alloc_stats(struct bnxt *bp)
4363 {
4364 	u32 size, i;
4365 	int rc;
4366 
4367 	size = bp->hw_ring_stats_size;
4368 
4369 	for (i = 0; i < bp->cp_nr_rings; i++) {
4370 		struct bnxt_napi *bnapi = bp->bnapi[i];
4371 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4372 
4373 		cpr->stats.len = size;
4374 		rc = bnxt_alloc_stats_mem(bp, &cpr->stats, !i);
4375 		if (rc)
4376 			return rc;
4377 
4378 		cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
4379 	}
4380 
4381 	if (BNXT_VF(bp) || bp->chip_num == CHIP_NUM_58700)
4382 		return 0;
4383 
4384 	if (bp->port_stats.hw_stats)
4385 		goto alloc_ext_stats;
4386 
4387 	bp->port_stats.len = BNXT_PORT_STATS_SIZE;
4388 	rc = bnxt_alloc_stats_mem(bp, &bp->port_stats, true);
4389 	if (rc)
4390 		return rc;
4391 
4392 	bp->flags |= BNXT_FLAG_PORT_STATS;
4393 
4394 alloc_ext_stats:
4395 	/* Display extended statistics only if FW supports it */
4396 	if (bp->hwrm_spec_code < 0x10804 || bp->hwrm_spec_code == 0x10900)
4397 		if (!(bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED))
4398 			return 0;
4399 
4400 	if (bp->rx_port_stats_ext.hw_stats)
4401 		goto alloc_tx_ext_stats;
4402 
4403 	bp->rx_port_stats_ext.len = sizeof(struct rx_port_stats_ext);
4404 	rc = bnxt_alloc_stats_mem(bp, &bp->rx_port_stats_ext, true);
4405 	/* Extended stats are optional */
4406 	if (rc)
4407 		return 0;
4408 
4409 alloc_tx_ext_stats:
4410 	if (bp->tx_port_stats_ext.hw_stats)
4411 		return 0;
4412 
4413 	if (bp->hwrm_spec_code >= 0x10902 ||
4414 	    (bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) {
4415 		bp->tx_port_stats_ext.len = sizeof(struct tx_port_stats_ext);
4416 		rc = bnxt_alloc_stats_mem(bp, &bp->tx_port_stats_ext, true);
4417 		/* Extended stats are optional */
4418 		if (rc)
4419 			return 0;
4420 	}
4421 	bp->flags |= BNXT_FLAG_PORT_STATS_EXT;
4422 	return 0;
4423 }
4424 
4425 static void bnxt_clear_ring_indices(struct bnxt *bp)
4426 {
4427 	int i;
4428 
4429 	if (!bp->bnapi)
4430 		return;
4431 
4432 	for (i = 0; i < bp->cp_nr_rings; i++) {
4433 		struct bnxt_napi *bnapi = bp->bnapi[i];
4434 		struct bnxt_cp_ring_info *cpr;
4435 		struct bnxt_rx_ring_info *rxr;
4436 		struct bnxt_tx_ring_info *txr;
4437 
4438 		if (!bnapi)
4439 			continue;
4440 
4441 		cpr = &bnapi->cp_ring;
4442 		cpr->cp_raw_cons = 0;
4443 
4444 		txr = bnapi->tx_ring;
4445 		if (txr) {
4446 			txr->tx_prod = 0;
4447 			txr->tx_cons = 0;
4448 		}
4449 
4450 		rxr = bnapi->rx_ring;
4451 		if (rxr) {
4452 			rxr->rx_prod = 0;
4453 			rxr->rx_agg_prod = 0;
4454 			rxr->rx_sw_agg_prod = 0;
4455 			rxr->rx_next_cons = 0;
4456 		}
4457 	}
4458 }
4459 
4460 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
4461 {
4462 #ifdef CONFIG_RFS_ACCEL
4463 	int i;
4464 
4465 	/* Under rtnl_lock and all our NAPIs have been disabled.  It's
4466 	 * safe to delete the hash table.
4467 	 */
4468 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
4469 		struct hlist_head *head;
4470 		struct hlist_node *tmp;
4471 		struct bnxt_ntuple_filter *fltr;
4472 
4473 		head = &bp->ntp_fltr_hash_tbl[i];
4474 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
4475 			hlist_del(&fltr->hash);
4476 			kfree(fltr);
4477 		}
4478 	}
4479 	if (irq_reinit) {
4480 		kfree(bp->ntp_fltr_bmap);
4481 		bp->ntp_fltr_bmap = NULL;
4482 	}
4483 	bp->ntp_fltr_count = 0;
4484 #endif
4485 }
4486 
4487 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
4488 {
4489 #ifdef CONFIG_RFS_ACCEL
4490 	int i, rc = 0;
4491 
4492 	if (!(bp->flags & BNXT_FLAG_RFS))
4493 		return 0;
4494 
4495 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
4496 		INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
4497 
4498 	bp->ntp_fltr_count = 0;
4499 	bp->ntp_fltr_bmap = kcalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR),
4500 				    sizeof(long),
4501 				    GFP_KERNEL);
4502 
4503 	if (!bp->ntp_fltr_bmap)
4504 		rc = -ENOMEM;
4505 
4506 	return rc;
4507 #else
4508 	return 0;
4509 #endif
4510 }
4511 
4512 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
4513 {
4514 	bnxt_free_vnic_attributes(bp);
4515 	bnxt_free_tx_rings(bp);
4516 	bnxt_free_rx_rings(bp);
4517 	bnxt_free_cp_rings(bp);
4518 	bnxt_free_all_cp_arrays(bp);
4519 	bnxt_free_ntp_fltrs(bp, irq_re_init);
4520 	if (irq_re_init) {
4521 		bnxt_free_ring_stats(bp);
4522 		if (!(bp->phy_flags & BNXT_PHY_FL_PORT_STATS_NO_RESET) ||
4523 		    test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
4524 			bnxt_free_port_stats(bp);
4525 		bnxt_free_ring_grps(bp);
4526 		bnxt_free_vnics(bp);
4527 		kfree(bp->tx_ring_map);
4528 		bp->tx_ring_map = NULL;
4529 		kfree(bp->tx_ring);
4530 		bp->tx_ring = NULL;
4531 		kfree(bp->rx_ring);
4532 		bp->rx_ring = NULL;
4533 		kfree(bp->bnapi);
4534 		bp->bnapi = NULL;
4535 	} else {
4536 		bnxt_clear_ring_indices(bp);
4537 	}
4538 }
4539 
4540 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
4541 {
4542 	int i, j, rc, size, arr_size;
4543 	void *bnapi;
4544 
4545 	if (irq_re_init) {
4546 		/* Allocate bnapi mem pointer array and mem block for
4547 		 * all queues
4548 		 */
4549 		arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
4550 				bp->cp_nr_rings);
4551 		size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
4552 		bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
4553 		if (!bnapi)
4554 			return -ENOMEM;
4555 
4556 		bp->bnapi = bnapi;
4557 		bnapi += arr_size;
4558 		for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
4559 			bp->bnapi[i] = bnapi;
4560 			bp->bnapi[i]->index = i;
4561 			bp->bnapi[i]->bp = bp;
4562 			if (bp->flags & BNXT_FLAG_CHIP_P5) {
4563 				struct bnxt_cp_ring_info *cpr =
4564 					&bp->bnapi[i]->cp_ring;
4565 
4566 				cpr->cp_ring_struct.ring_mem.flags =
4567 					BNXT_RMEM_RING_PTE_FLAG;
4568 			}
4569 		}
4570 
4571 		bp->rx_ring = kcalloc(bp->rx_nr_rings,
4572 				      sizeof(struct bnxt_rx_ring_info),
4573 				      GFP_KERNEL);
4574 		if (!bp->rx_ring)
4575 			return -ENOMEM;
4576 
4577 		for (i = 0; i < bp->rx_nr_rings; i++) {
4578 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4579 
4580 			if (bp->flags & BNXT_FLAG_CHIP_P5) {
4581 				rxr->rx_ring_struct.ring_mem.flags =
4582 					BNXT_RMEM_RING_PTE_FLAG;
4583 				rxr->rx_agg_ring_struct.ring_mem.flags =
4584 					BNXT_RMEM_RING_PTE_FLAG;
4585 			}
4586 			rxr->bnapi = bp->bnapi[i];
4587 			bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
4588 		}
4589 
4590 		bp->tx_ring = kcalloc(bp->tx_nr_rings,
4591 				      sizeof(struct bnxt_tx_ring_info),
4592 				      GFP_KERNEL);
4593 		if (!bp->tx_ring)
4594 			return -ENOMEM;
4595 
4596 		bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16),
4597 					  GFP_KERNEL);
4598 
4599 		if (!bp->tx_ring_map)
4600 			return -ENOMEM;
4601 
4602 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
4603 			j = 0;
4604 		else
4605 			j = bp->rx_nr_rings;
4606 
4607 		for (i = 0; i < bp->tx_nr_rings; i++, j++) {
4608 			struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
4609 
4610 			if (bp->flags & BNXT_FLAG_CHIP_P5)
4611 				txr->tx_ring_struct.ring_mem.flags =
4612 					BNXT_RMEM_RING_PTE_FLAG;
4613 			txr->bnapi = bp->bnapi[j];
4614 			bp->bnapi[j]->tx_ring = txr;
4615 			bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i;
4616 			if (i >= bp->tx_nr_rings_xdp) {
4617 				txr->txq_index = i - bp->tx_nr_rings_xdp;
4618 				bp->bnapi[j]->tx_int = bnxt_tx_int;
4619 			} else {
4620 				bp->bnapi[j]->flags |= BNXT_NAPI_FLAG_XDP;
4621 				bp->bnapi[j]->tx_int = bnxt_tx_int_xdp;
4622 			}
4623 		}
4624 
4625 		rc = bnxt_alloc_stats(bp);
4626 		if (rc)
4627 			goto alloc_mem_err;
4628 		bnxt_init_stats(bp);
4629 
4630 		rc = bnxt_alloc_ntp_fltrs(bp);
4631 		if (rc)
4632 			goto alloc_mem_err;
4633 
4634 		rc = bnxt_alloc_vnics(bp);
4635 		if (rc)
4636 			goto alloc_mem_err;
4637 	}
4638 
4639 	rc = bnxt_alloc_all_cp_arrays(bp);
4640 	if (rc)
4641 		goto alloc_mem_err;
4642 
4643 	bnxt_init_ring_struct(bp);
4644 
4645 	rc = bnxt_alloc_rx_rings(bp);
4646 	if (rc)
4647 		goto alloc_mem_err;
4648 
4649 	rc = bnxt_alloc_tx_rings(bp);
4650 	if (rc)
4651 		goto alloc_mem_err;
4652 
4653 	rc = bnxt_alloc_cp_rings(bp);
4654 	if (rc)
4655 		goto alloc_mem_err;
4656 
4657 	bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
4658 				  BNXT_VNIC_UCAST_FLAG;
4659 	rc = bnxt_alloc_vnic_attributes(bp);
4660 	if (rc)
4661 		goto alloc_mem_err;
4662 	return 0;
4663 
4664 alloc_mem_err:
4665 	bnxt_free_mem(bp, true);
4666 	return rc;
4667 }
4668 
4669 static void bnxt_disable_int(struct bnxt *bp)
4670 {
4671 	int i;
4672 
4673 	if (!bp->bnapi)
4674 		return;
4675 
4676 	for (i = 0; i < bp->cp_nr_rings; i++) {
4677 		struct bnxt_napi *bnapi = bp->bnapi[i];
4678 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4679 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
4680 
4681 		if (ring->fw_ring_id != INVALID_HW_RING_ID)
4682 			bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
4683 	}
4684 }
4685 
4686 static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n)
4687 {
4688 	struct bnxt_napi *bnapi = bp->bnapi[n];
4689 	struct bnxt_cp_ring_info *cpr;
4690 
4691 	cpr = &bnapi->cp_ring;
4692 	return cpr->cp_ring_struct.map_idx;
4693 }
4694 
4695 static void bnxt_disable_int_sync(struct bnxt *bp)
4696 {
4697 	int i;
4698 
4699 	if (!bp->irq_tbl)
4700 		return;
4701 
4702 	atomic_inc(&bp->intr_sem);
4703 
4704 	bnxt_disable_int(bp);
4705 	for (i = 0; i < bp->cp_nr_rings; i++) {
4706 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
4707 
4708 		synchronize_irq(bp->irq_tbl[map_idx].vector);
4709 	}
4710 }
4711 
4712 static void bnxt_enable_int(struct bnxt *bp)
4713 {
4714 	int i;
4715 
4716 	atomic_set(&bp->intr_sem, 0);
4717 	for (i = 0; i < bp->cp_nr_rings; i++) {
4718 		struct bnxt_napi *bnapi = bp->bnapi[i];
4719 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4720 
4721 		bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons);
4722 	}
4723 }
4724 
4725 int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp, unsigned long *bmap, int bmap_size,
4726 			    bool async_only)
4727 {
4728 	DECLARE_BITMAP(async_events_bmap, 256);
4729 	u32 *events = (u32 *)async_events_bmap;
4730 	struct hwrm_func_drv_rgtr_output *resp;
4731 	struct hwrm_func_drv_rgtr_input *req;
4732 	u32 flags;
4733 	int rc, i;
4734 
4735 	rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_RGTR);
4736 	if (rc)
4737 		return rc;
4738 
4739 	req->enables = cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
4740 				   FUNC_DRV_RGTR_REQ_ENABLES_VER |
4741 				   FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
4742 
4743 	req->os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX);
4744 	flags = FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE;
4745 	if (bp->fw_cap & BNXT_FW_CAP_HOT_RESET)
4746 		flags |= FUNC_DRV_RGTR_REQ_FLAGS_HOT_RESET_SUPPORT;
4747 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
4748 		flags |= FUNC_DRV_RGTR_REQ_FLAGS_ERROR_RECOVERY_SUPPORT |
4749 			 FUNC_DRV_RGTR_REQ_FLAGS_MASTER_SUPPORT;
4750 	req->flags = cpu_to_le32(flags);
4751 	req->ver_maj_8b = DRV_VER_MAJ;
4752 	req->ver_min_8b = DRV_VER_MIN;
4753 	req->ver_upd_8b = DRV_VER_UPD;
4754 	req->ver_maj = cpu_to_le16(DRV_VER_MAJ);
4755 	req->ver_min = cpu_to_le16(DRV_VER_MIN);
4756 	req->ver_upd = cpu_to_le16(DRV_VER_UPD);
4757 
4758 	if (BNXT_PF(bp)) {
4759 		u32 data[8];
4760 		int i;
4761 
4762 		memset(data, 0, sizeof(data));
4763 		for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) {
4764 			u16 cmd = bnxt_vf_req_snif[i];
4765 			unsigned int bit, idx;
4766 
4767 			idx = cmd / 32;
4768 			bit = cmd % 32;
4769 			data[idx] |= 1 << bit;
4770 		}
4771 
4772 		for (i = 0; i < 8; i++)
4773 			req->vf_req_fwd[i] = cpu_to_le32(data[i]);
4774 
4775 		req->enables |=
4776 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
4777 	}
4778 
4779 	if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE)
4780 		req->flags |= cpu_to_le32(
4781 			FUNC_DRV_RGTR_REQ_FLAGS_FLOW_HANDLE_64BIT_MODE);
4782 
4783 	memset(async_events_bmap, 0, sizeof(async_events_bmap));
4784 	for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++) {
4785 		u16 event_id = bnxt_async_events_arr[i];
4786 
4787 		if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY &&
4788 		    !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
4789 			continue;
4790 		__set_bit(bnxt_async_events_arr[i], async_events_bmap);
4791 	}
4792 	if (bmap && bmap_size) {
4793 		for (i = 0; i < bmap_size; i++) {
4794 			if (test_bit(i, bmap))
4795 				__set_bit(i, async_events_bmap);
4796 		}
4797 	}
4798 	for (i = 0; i < 8; i++)
4799 		req->async_event_fwd[i] |= cpu_to_le32(events[i]);
4800 
4801 	if (async_only)
4802 		req->enables =
4803 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
4804 
4805 	resp = hwrm_req_hold(bp, req);
4806 	rc = hwrm_req_send(bp, req);
4807 	if (!rc) {
4808 		set_bit(BNXT_STATE_DRV_REGISTERED, &bp->state);
4809 		if (resp->flags &
4810 		    cpu_to_le32(FUNC_DRV_RGTR_RESP_FLAGS_IF_CHANGE_SUPPORTED))
4811 			bp->fw_cap |= BNXT_FW_CAP_IF_CHANGE;
4812 	}
4813 	hwrm_req_drop(bp, req);
4814 	return rc;
4815 }
4816 
4817 int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
4818 {
4819 	struct hwrm_func_drv_unrgtr_input *req;
4820 	int rc;
4821 
4822 	if (!test_and_clear_bit(BNXT_STATE_DRV_REGISTERED, &bp->state))
4823 		return 0;
4824 
4825 	rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_UNRGTR);
4826 	if (rc)
4827 		return rc;
4828 	return hwrm_req_send(bp, req);
4829 }
4830 
4831 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
4832 {
4833 	struct hwrm_tunnel_dst_port_free_input *req;
4834 	int rc;
4835 
4836 	if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN &&
4837 	    bp->vxlan_fw_dst_port_id == INVALID_HW_RING_ID)
4838 		return 0;
4839 	if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE &&
4840 	    bp->nge_fw_dst_port_id == INVALID_HW_RING_ID)
4841 		return 0;
4842 
4843 	rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_FREE);
4844 	if (rc)
4845 		return rc;
4846 
4847 	req->tunnel_type = tunnel_type;
4848 
4849 	switch (tunnel_type) {
4850 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
4851 		req->tunnel_dst_port_id = cpu_to_le16(bp->vxlan_fw_dst_port_id);
4852 		bp->vxlan_port = 0;
4853 		bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID;
4854 		break;
4855 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
4856 		req->tunnel_dst_port_id = cpu_to_le16(bp->nge_fw_dst_port_id);
4857 		bp->nge_port = 0;
4858 		bp->nge_fw_dst_port_id = INVALID_HW_RING_ID;
4859 		break;
4860 	default:
4861 		break;
4862 	}
4863 
4864 	rc = hwrm_req_send(bp, req);
4865 	if (rc)
4866 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
4867 			   rc);
4868 	return rc;
4869 }
4870 
4871 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
4872 					   u8 tunnel_type)
4873 {
4874 	struct hwrm_tunnel_dst_port_alloc_output *resp;
4875 	struct hwrm_tunnel_dst_port_alloc_input *req;
4876 	int rc;
4877 
4878 	rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_ALLOC);
4879 	if (rc)
4880 		return rc;
4881 
4882 	req->tunnel_type = tunnel_type;
4883 	req->tunnel_dst_port_val = port;
4884 
4885 	resp = hwrm_req_hold(bp, req);
4886 	rc = hwrm_req_send(bp, req);
4887 	if (rc) {
4888 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
4889 			   rc);
4890 		goto err_out;
4891 	}
4892 
4893 	switch (tunnel_type) {
4894 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN:
4895 		bp->vxlan_port = port;
4896 		bp->vxlan_fw_dst_port_id =
4897 			le16_to_cpu(resp->tunnel_dst_port_id);
4898 		break;
4899 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE:
4900 		bp->nge_port = port;
4901 		bp->nge_fw_dst_port_id = le16_to_cpu(resp->tunnel_dst_port_id);
4902 		break;
4903 	default:
4904 		break;
4905 	}
4906 
4907 err_out:
4908 	hwrm_req_drop(bp, req);
4909 	return rc;
4910 }
4911 
4912 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
4913 {
4914 	struct hwrm_cfa_l2_set_rx_mask_input *req;
4915 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4916 	int rc;
4917 
4918 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_SET_RX_MASK);
4919 	if (rc)
4920 		return rc;
4921 
4922 	req->vnic_id = cpu_to_le32(vnic->fw_vnic_id);
4923 	if (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST) {
4924 		req->num_mc_entries = cpu_to_le32(vnic->mc_list_count);
4925 		req->mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
4926 	}
4927 	req->mask = cpu_to_le32(vnic->rx_mask);
4928 	return hwrm_req_send_silent(bp, req);
4929 }
4930 
4931 #ifdef CONFIG_RFS_ACCEL
4932 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
4933 					    struct bnxt_ntuple_filter *fltr)
4934 {
4935 	struct hwrm_cfa_ntuple_filter_free_input *req;
4936 	int rc;
4937 
4938 	rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_FREE);
4939 	if (rc)
4940 		return rc;
4941 
4942 	req->ntuple_filter_id = fltr->filter_id;
4943 	return hwrm_req_send(bp, req);
4944 }
4945 
4946 #define BNXT_NTP_FLTR_FLAGS					\
4947 	(CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID |	\
4948 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE |	\
4949 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR |	\
4950 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE |	\
4951 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR |	\
4952 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK |	\
4953 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR |	\
4954 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK |	\
4955 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL |	\
4956 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT |		\
4957 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK |	\
4958 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT |		\
4959 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK |	\
4960 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
4961 
4962 #define BNXT_NTP_TUNNEL_FLTR_FLAG				\
4963 		CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE
4964 
4965 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
4966 					     struct bnxt_ntuple_filter *fltr)
4967 {
4968 	struct hwrm_cfa_ntuple_filter_alloc_output *resp;
4969 	struct hwrm_cfa_ntuple_filter_alloc_input *req;
4970 	struct flow_keys *keys = &fltr->fkeys;
4971 	struct bnxt_vnic_info *vnic;
4972 	u32 flags = 0;
4973 	int rc;
4974 
4975 	rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_ALLOC);
4976 	if (rc)
4977 		return rc;
4978 
4979 	req->l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx];
4980 
4981 	if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) {
4982 		flags = CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DEST_RFS_RING_IDX;
4983 		req->dst_id = cpu_to_le16(fltr->rxq);
4984 	} else {
4985 		vnic = &bp->vnic_info[fltr->rxq + 1];
4986 		req->dst_id = cpu_to_le16(vnic->fw_vnic_id);
4987 	}
4988 	req->flags = cpu_to_le32(flags);
4989 	req->enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
4990 
4991 	req->ethertype = htons(ETH_P_IP);
4992 	memcpy(req->src_macaddr, fltr->src_mac_addr, ETH_ALEN);
4993 	req->ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
4994 	req->ip_protocol = keys->basic.ip_proto;
4995 
4996 	if (keys->basic.n_proto == htons(ETH_P_IPV6)) {
4997 		int i;
4998 
4999 		req->ethertype = htons(ETH_P_IPV6);
5000 		req->ip_addr_type =
5001 			CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6;
5002 		*(struct in6_addr *)&req->src_ipaddr[0] =
5003 			keys->addrs.v6addrs.src;
5004 		*(struct in6_addr *)&req->dst_ipaddr[0] =
5005 			keys->addrs.v6addrs.dst;
5006 		for (i = 0; i < 4; i++) {
5007 			req->src_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
5008 			req->dst_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
5009 		}
5010 	} else {
5011 		req->src_ipaddr[0] = keys->addrs.v4addrs.src;
5012 		req->src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
5013 		req->dst_ipaddr[0] = keys->addrs.v4addrs.dst;
5014 		req->dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
5015 	}
5016 	if (keys->control.flags & FLOW_DIS_ENCAPSULATION) {
5017 		req->enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG);
5018 		req->tunnel_type =
5019 			CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL;
5020 	}
5021 
5022 	req->src_port = keys->ports.src;
5023 	req->src_port_mask = cpu_to_be16(0xffff);
5024 	req->dst_port = keys->ports.dst;
5025 	req->dst_port_mask = cpu_to_be16(0xffff);
5026 
5027 	resp = hwrm_req_hold(bp, req);
5028 	rc = hwrm_req_send(bp, req);
5029 	if (!rc)
5030 		fltr->filter_id = resp->ntuple_filter_id;
5031 	hwrm_req_drop(bp, req);
5032 	return rc;
5033 }
5034 #endif
5035 
5036 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
5037 				     const u8 *mac_addr)
5038 {
5039 	struct hwrm_cfa_l2_filter_alloc_output *resp;
5040 	struct hwrm_cfa_l2_filter_alloc_input *req;
5041 	int rc;
5042 
5043 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_ALLOC);
5044 	if (rc)
5045 		return rc;
5046 
5047 	req->flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX);
5048 	if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
5049 		req->flags |=
5050 			cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
5051 	req->dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
5052 	req->enables =
5053 		cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
5054 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
5055 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
5056 	memcpy(req->l2_addr, mac_addr, ETH_ALEN);
5057 	req->l2_addr_mask[0] = 0xff;
5058 	req->l2_addr_mask[1] = 0xff;
5059 	req->l2_addr_mask[2] = 0xff;
5060 	req->l2_addr_mask[3] = 0xff;
5061 	req->l2_addr_mask[4] = 0xff;
5062 	req->l2_addr_mask[5] = 0xff;
5063 
5064 	resp = hwrm_req_hold(bp, req);
5065 	rc = hwrm_req_send(bp, req);
5066 	if (!rc)
5067 		bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
5068 							resp->l2_filter_id;
5069 	hwrm_req_drop(bp, req);
5070 	return rc;
5071 }
5072 
5073 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
5074 {
5075 	struct hwrm_cfa_l2_filter_free_input *req;
5076 	u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
5077 	int rc;
5078 
5079 	/* Any associated ntuple filters will also be cleared by firmware. */
5080 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE);
5081 	if (rc)
5082 		return rc;
5083 	hwrm_req_hold(bp, req);
5084 	for (i = 0; i < num_of_vnics; i++) {
5085 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
5086 
5087 		for (j = 0; j < vnic->uc_filter_count; j++) {
5088 			req->l2_filter_id = vnic->fw_l2_filter_id[j];
5089 
5090 			rc = hwrm_req_send(bp, req);
5091 		}
5092 		vnic->uc_filter_count = 0;
5093 	}
5094 	hwrm_req_drop(bp, req);
5095 	return rc;
5096 }
5097 
5098 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
5099 {
5100 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5101 	u16 max_aggs = VNIC_TPA_CFG_REQ_MAX_AGGS_MAX;
5102 	struct hwrm_vnic_tpa_cfg_input *req;
5103 	int rc;
5104 
5105 	if (vnic->fw_vnic_id == INVALID_HW_RING_ID)
5106 		return 0;
5107 
5108 	rc = hwrm_req_init(bp, req, HWRM_VNIC_TPA_CFG);
5109 	if (rc)
5110 		return rc;
5111 
5112 	if (tpa_flags) {
5113 		u16 mss = bp->dev->mtu - 40;
5114 		u32 nsegs, n, segs = 0, flags;
5115 
5116 		flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
5117 			VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
5118 			VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
5119 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
5120 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
5121 		if (tpa_flags & BNXT_FLAG_GRO)
5122 			flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
5123 
5124 		req->flags = cpu_to_le32(flags);
5125 
5126 		req->enables =
5127 			cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
5128 				    VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
5129 				    VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
5130 
5131 		/* Number of segs are log2 units, and first packet is not
5132 		 * included as part of this units.
5133 		 */
5134 		if (mss <= BNXT_RX_PAGE_SIZE) {
5135 			n = BNXT_RX_PAGE_SIZE / mss;
5136 			nsegs = (MAX_SKB_FRAGS - 1) * n;
5137 		} else {
5138 			n = mss / BNXT_RX_PAGE_SIZE;
5139 			if (mss & (BNXT_RX_PAGE_SIZE - 1))
5140 				n++;
5141 			nsegs = (MAX_SKB_FRAGS - n) / n;
5142 		}
5143 
5144 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5145 			segs = MAX_TPA_SEGS_P5;
5146 			max_aggs = bp->max_tpa;
5147 		} else {
5148 			segs = ilog2(nsegs);
5149 		}
5150 		req->max_agg_segs = cpu_to_le16(segs);
5151 		req->max_aggs = cpu_to_le16(max_aggs);
5152 
5153 		req->min_agg_len = cpu_to_le32(512);
5154 	}
5155 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5156 
5157 	return hwrm_req_send(bp, req);
5158 }
5159 
5160 static u16 bnxt_cp_ring_from_grp(struct bnxt *bp, struct bnxt_ring_struct *ring)
5161 {
5162 	struct bnxt_ring_grp_info *grp_info;
5163 
5164 	grp_info = &bp->grp_info[ring->grp_idx];
5165 	return grp_info->cp_fw_ring_id;
5166 }
5167 
5168 static u16 bnxt_cp_ring_for_rx(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
5169 {
5170 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5171 		struct bnxt_napi *bnapi = rxr->bnapi;
5172 		struct bnxt_cp_ring_info *cpr;
5173 
5174 		cpr = bnapi->cp_ring.cp_ring_arr[BNXT_RX_HDL];
5175 		return cpr->cp_ring_struct.fw_ring_id;
5176 	} else {
5177 		return bnxt_cp_ring_from_grp(bp, &rxr->rx_ring_struct);
5178 	}
5179 }
5180 
5181 static u16 bnxt_cp_ring_for_tx(struct bnxt *bp, struct bnxt_tx_ring_info *txr)
5182 {
5183 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5184 		struct bnxt_napi *bnapi = txr->bnapi;
5185 		struct bnxt_cp_ring_info *cpr;
5186 
5187 		cpr = bnapi->cp_ring.cp_ring_arr[BNXT_TX_HDL];
5188 		return cpr->cp_ring_struct.fw_ring_id;
5189 	} else {
5190 		return bnxt_cp_ring_from_grp(bp, &txr->tx_ring_struct);
5191 	}
5192 }
5193 
5194 static int bnxt_alloc_rss_indir_tbl(struct bnxt *bp)
5195 {
5196 	int entries;
5197 
5198 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5199 		entries = BNXT_MAX_RSS_TABLE_ENTRIES_P5;
5200 	else
5201 		entries = HW_HASH_INDEX_SIZE;
5202 
5203 	bp->rss_indir_tbl_entries = entries;
5204 	bp->rss_indir_tbl = kmalloc_array(entries, sizeof(*bp->rss_indir_tbl),
5205 					  GFP_KERNEL);
5206 	if (!bp->rss_indir_tbl)
5207 		return -ENOMEM;
5208 	return 0;
5209 }
5210 
5211 static void bnxt_set_dflt_rss_indir_tbl(struct bnxt *bp)
5212 {
5213 	u16 max_rings, max_entries, pad, i;
5214 
5215 	if (!bp->rx_nr_rings)
5216 		return;
5217 
5218 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5219 		max_rings = bp->rx_nr_rings - 1;
5220 	else
5221 		max_rings = bp->rx_nr_rings;
5222 
5223 	max_entries = bnxt_get_rxfh_indir_size(bp->dev);
5224 
5225 	for (i = 0; i < max_entries; i++)
5226 		bp->rss_indir_tbl[i] = ethtool_rxfh_indir_default(i, max_rings);
5227 
5228 	pad = bp->rss_indir_tbl_entries - max_entries;
5229 	if (pad)
5230 		memset(&bp->rss_indir_tbl[i], 0, pad * sizeof(u16));
5231 }
5232 
5233 static u16 bnxt_get_max_rss_ring(struct bnxt *bp)
5234 {
5235 	u16 i, tbl_size, max_ring = 0;
5236 
5237 	if (!bp->rss_indir_tbl)
5238 		return 0;
5239 
5240 	tbl_size = bnxt_get_rxfh_indir_size(bp->dev);
5241 	for (i = 0; i < tbl_size; i++)
5242 		max_ring = max(max_ring, bp->rss_indir_tbl[i]);
5243 	return max_ring;
5244 }
5245 
5246 int bnxt_get_nr_rss_ctxs(struct bnxt *bp, int rx_rings)
5247 {
5248 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5249 		return DIV_ROUND_UP(rx_rings, BNXT_RSS_TABLE_ENTRIES_P5);
5250 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5251 		return 2;
5252 	return 1;
5253 }
5254 
5255 static void __bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic)
5256 {
5257 	bool no_rss = !(vnic->flags & BNXT_VNIC_RSS_FLAG);
5258 	u16 i, j;
5259 
5260 	/* Fill the RSS indirection table with ring group ids */
5261 	for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++) {
5262 		if (!no_rss)
5263 			j = bp->rss_indir_tbl[i];
5264 		vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
5265 	}
5266 }
5267 
5268 static void __bnxt_fill_hw_rss_tbl_p5(struct bnxt *bp,
5269 				      struct bnxt_vnic_info *vnic)
5270 {
5271 	__le16 *ring_tbl = vnic->rss_table;
5272 	struct bnxt_rx_ring_info *rxr;
5273 	u16 tbl_size, i;
5274 
5275 	tbl_size = bnxt_get_rxfh_indir_size(bp->dev);
5276 
5277 	for (i = 0; i < tbl_size; i++) {
5278 		u16 ring_id, j;
5279 
5280 		j = bp->rss_indir_tbl[i];
5281 		rxr = &bp->rx_ring[j];
5282 
5283 		ring_id = rxr->rx_ring_struct.fw_ring_id;
5284 		*ring_tbl++ = cpu_to_le16(ring_id);
5285 		ring_id = bnxt_cp_ring_for_rx(bp, rxr);
5286 		*ring_tbl++ = cpu_to_le16(ring_id);
5287 	}
5288 }
5289 
5290 static void bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic)
5291 {
5292 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5293 		__bnxt_fill_hw_rss_tbl_p5(bp, vnic);
5294 	else
5295 		__bnxt_fill_hw_rss_tbl(bp, vnic);
5296 }
5297 
5298 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
5299 {
5300 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5301 	struct hwrm_vnic_rss_cfg_input *req;
5302 	int rc;
5303 
5304 	if ((bp->flags & BNXT_FLAG_CHIP_P5) ||
5305 	    vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID)
5306 		return 0;
5307 
5308 	rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG);
5309 	if (rc)
5310 		return rc;
5311 
5312 	if (set_rss) {
5313 		bnxt_fill_hw_rss_tbl(bp, vnic);
5314 		req->hash_type = cpu_to_le32(bp->rss_hash_cfg);
5315 		req->hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT;
5316 		req->ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
5317 		req->hash_key_tbl_addr =
5318 			cpu_to_le64(vnic->rss_hash_key_dma_addr);
5319 	}
5320 	req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
5321 	return hwrm_req_send(bp, req);
5322 }
5323 
5324 static int bnxt_hwrm_vnic_set_rss_p5(struct bnxt *bp, u16 vnic_id, bool set_rss)
5325 {
5326 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5327 	struct hwrm_vnic_rss_cfg_input *req;
5328 	dma_addr_t ring_tbl_map;
5329 	u32 i, nr_ctxs;
5330 	int rc;
5331 
5332 	rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG);
5333 	if (rc)
5334 		return rc;
5335 
5336 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5337 	if (!set_rss)
5338 		return hwrm_req_send(bp, req);
5339 
5340 	bnxt_fill_hw_rss_tbl(bp, vnic);
5341 	req->hash_type = cpu_to_le32(bp->rss_hash_cfg);
5342 	req->hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT;
5343 	req->hash_key_tbl_addr = cpu_to_le64(vnic->rss_hash_key_dma_addr);
5344 	ring_tbl_map = vnic->rss_table_dma_addr;
5345 	nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings);
5346 
5347 	hwrm_req_hold(bp, req);
5348 	for (i = 0; i < nr_ctxs; ring_tbl_map += BNXT_RSS_TABLE_SIZE_P5, i++) {
5349 		req->ring_grp_tbl_addr = cpu_to_le64(ring_tbl_map);
5350 		req->ring_table_pair_index = i;
5351 		req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[i]);
5352 		rc = hwrm_req_send(bp, req);
5353 		if (rc)
5354 			goto exit;
5355 	}
5356 
5357 exit:
5358 	hwrm_req_drop(bp, req);
5359 	return rc;
5360 }
5361 
5362 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
5363 {
5364 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5365 	struct hwrm_vnic_plcmodes_cfg_input *req;
5366 	int rc;
5367 
5368 	rc = hwrm_req_init(bp, req, HWRM_VNIC_PLCMODES_CFG);
5369 	if (rc)
5370 		return rc;
5371 
5372 	req->flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT);
5373 	req->enables = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID);
5374 
5375 	if (BNXT_RX_PAGE_MODE(bp) && !BNXT_RX_JUMBO_MODE(bp)) {
5376 		req->flags |= cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
5377 					  VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
5378 		req->enables |=
5379 			cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
5380 	}
5381 	/* thresholds not implemented in firmware yet */
5382 	req->jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
5383 	req->hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
5384 	req->vnic_id = cpu_to_le32(vnic->fw_vnic_id);
5385 	return hwrm_req_send(bp, req);
5386 }
5387 
5388 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id,
5389 					u16 ctx_idx)
5390 {
5391 	struct hwrm_vnic_rss_cos_lb_ctx_free_input *req;
5392 
5393 	if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_FREE))
5394 		return;
5395 
5396 	req->rss_cos_lb_ctx_id =
5397 		cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]);
5398 
5399 	hwrm_req_send(bp, req);
5400 	bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID;
5401 }
5402 
5403 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
5404 {
5405 	int i, j;
5406 
5407 	for (i = 0; i < bp->nr_vnics; i++) {
5408 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
5409 
5410 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) {
5411 			if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID)
5412 				bnxt_hwrm_vnic_ctx_free_one(bp, i, j);
5413 		}
5414 	}
5415 	bp->rsscos_nr_ctxs = 0;
5416 }
5417 
5418 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx)
5419 {
5420 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp;
5421 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_input *req;
5422 	int rc;
5423 
5424 	rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC);
5425 	if (rc)
5426 		return rc;
5427 
5428 	resp = hwrm_req_hold(bp, req);
5429 	rc = hwrm_req_send(bp, req);
5430 	if (!rc)
5431 		bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] =
5432 			le16_to_cpu(resp->rss_cos_lb_ctx_id);
5433 	hwrm_req_drop(bp, req);
5434 
5435 	return rc;
5436 }
5437 
5438 static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp)
5439 {
5440 	if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP)
5441 		return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE;
5442 	return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE;
5443 }
5444 
5445 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
5446 {
5447 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5448 	struct hwrm_vnic_cfg_input *req;
5449 	unsigned int ring = 0, grp_idx;
5450 	u16 def_vlan = 0;
5451 	int rc;
5452 
5453 	rc = hwrm_req_init(bp, req, HWRM_VNIC_CFG);
5454 	if (rc)
5455 		return rc;
5456 
5457 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5458 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0];
5459 
5460 		req->default_rx_ring_id =
5461 			cpu_to_le16(rxr->rx_ring_struct.fw_ring_id);
5462 		req->default_cmpl_ring_id =
5463 			cpu_to_le16(bnxt_cp_ring_for_rx(bp, rxr));
5464 		req->enables =
5465 			cpu_to_le32(VNIC_CFG_REQ_ENABLES_DEFAULT_RX_RING_ID |
5466 				    VNIC_CFG_REQ_ENABLES_DEFAULT_CMPL_RING_ID);
5467 		goto vnic_mru;
5468 	}
5469 	req->enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP);
5470 	/* Only RSS support for now TBD: COS & LB */
5471 	if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) {
5472 		req->rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
5473 		req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
5474 					   VNIC_CFG_REQ_ENABLES_MRU);
5475 	} else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) {
5476 		req->rss_rule =
5477 			cpu_to_le16(bp->vnic_info[0].fw_rss_cos_lb_ctx[0]);
5478 		req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
5479 					   VNIC_CFG_REQ_ENABLES_MRU);
5480 		req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE);
5481 	} else {
5482 		req->rss_rule = cpu_to_le16(0xffff);
5483 	}
5484 
5485 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) &&
5486 	    (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) {
5487 		req->cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]);
5488 		req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE);
5489 	} else {
5490 		req->cos_rule = cpu_to_le16(0xffff);
5491 	}
5492 
5493 	if (vnic->flags & BNXT_VNIC_RSS_FLAG)
5494 		ring = 0;
5495 	else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
5496 		ring = vnic_id - 1;
5497 	else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp))
5498 		ring = bp->rx_nr_rings - 1;
5499 
5500 	grp_idx = bp->rx_ring[ring].bnapi->index;
5501 	req->dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
5502 	req->lb_rule = cpu_to_le16(0xffff);
5503 vnic_mru:
5504 	req->mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + VLAN_HLEN);
5505 
5506 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5507 #ifdef CONFIG_BNXT_SRIOV
5508 	if (BNXT_VF(bp))
5509 		def_vlan = bp->vf.vlan;
5510 #endif
5511 	if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan)
5512 		req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
5513 	if (!vnic_id && bnxt_ulp_registered(bp->edev, BNXT_ROCE_ULP))
5514 		req->flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp));
5515 
5516 	return hwrm_req_send(bp, req);
5517 }
5518 
5519 static void bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
5520 {
5521 	if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
5522 		struct hwrm_vnic_free_input *req;
5523 
5524 		if (hwrm_req_init(bp, req, HWRM_VNIC_FREE))
5525 			return;
5526 
5527 		req->vnic_id =
5528 			cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
5529 
5530 		hwrm_req_send(bp, req);
5531 		bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
5532 	}
5533 }
5534 
5535 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
5536 {
5537 	u16 i;
5538 
5539 	for (i = 0; i < bp->nr_vnics; i++)
5540 		bnxt_hwrm_vnic_free_one(bp, i);
5541 }
5542 
5543 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
5544 				unsigned int start_rx_ring_idx,
5545 				unsigned int nr_rings)
5546 {
5547 	unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
5548 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5549 	struct hwrm_vnic_alloc_output *resp;
5550 	struct hwrm_vnic_alloc_input *req;
5551 	int rc;
5552 
5553 	rc = hwrm_req_init(bp, req, HWRM_VNIC_ALLOC);
5554 	if (rc)
5555 		return rc;
5556 
5557 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5558 		goto vnic_no_ring_grps;
5559 
5560 	/* map ring groups to this vnic */
5561 	for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
5562 		grp_idx = bp->rx_ring[i].bnapi->index;
5563 		if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
5564 			netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
5565 				   j, nr_rings);
5566 			break;
5567 		}
5568 		vnic->fw_grp_ids[j] = bp->grp_info[grp_idx].fw_grp_id;
5569 	}
5570 
5571 vnic_no_ring_grps:
5572 	for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++)
5573 		vnic->fw_rss_cos_lb_ctx[i] = INVALID_HW_RING_ID;
5574 	if (vnic_id == 0)
5575 		req->flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
5576 
5577 	resp = hwrm_req_hold(bp, req);
5578 	rc = hwrm_req_send(bp, req);
5579 	if (!rc)
5580 		vnic->fw_vnic_id = le32_to_cpu(resp->vnic_id);
5581 	hwrm_req_drop(bp, req);
5582 	return rc;
5583 }
5584 
5585 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp)
5586 {
5587 	struct hwrm_vnic_qcaps_output *resp;
5588 	struct hwrm_vnic_qcaps_input *req;
5589 	int rc;
5590 
5591 	bp->hw_ring_stats_size = sizeof(struct ctx_hw_stats);
5592 	bp->flags &= ~(BNXT_FLAG_NEW_RSS_CAP | BNXT_FLAG_ROCE_MIRROR_CAP);
5593 	if (bp->hwrm_spec_code < 0x10600)
5594 		return 0;
5595 
5596 	rc = hwrm_req_init(bp, req, HWRM_VNIC_QCAPS);
5597 	if (rc)
5598 		return rc;
5599 
5600 	resp = hwrm_req_hold(bp, req);
5601 	rc = hwrm_req_send(bp, req);
5602 	if (!rc) {
5603 		u32 flags = le32_to_cpu(resp->flags);
5604 
5605 		if (!(bp->flags & BNXT_FLAG_CHIP_P5) &&
5606 		    (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP))
5607 			bp->flags |= BNXT_FLAG_NEW_RSS_CAP;
5608 		if (flags &
5609 		    VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP)
5610 			bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP;
5611 
5612 		/* Older P5 fw before EXT_HW_STATS support did not set
5613 		 * VLAN_STRIP_CAP properly.
5614 		 */
5615 		if ((flags & VNIC_QCAPS_RESP_FLAGS_VLAN_STRIP_CAP) ||
5616 		    (BNXT_CHIP_P5_THOR(bp) &&
5617 		     !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)))
5618 			bp->fw_cap |= BNXT_FW_CAP_VLAN_RX_STRIP;
5619 		bp->max_tpa_v2 = le16_to_cpu(resp->max_aggs_supported);
5620 		if (bp->max_tpa_v2) {
5621 			if (BNXT_CHIP_P5_THOR(bp))
5622 				bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5;
5623 			else
5624 				bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5_SR2;
5625 		}
5626 	}
5627 	hwrm_req_drop(bp, req);
5628 	return rc;
5629 }
5630 
5631 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
5632 {
5633 	struct hwrm_ring_grp_alloc_output *resp;
5634 	struct hwrm_ring_grp_alloc_input *req;
5635 	int rc;
5636 	u16 i;
5637 
5638 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5639 		return 0;
5640 
5641 	rc = hwrm_req_init(bp, req, HWRM_RING_GRP_ALLOC);
5642 	if (rc)
5643 		return rc;
5644 
5645 	resp = hwrm_req_hold(bp, req);
5646 	for (i = 0; i < bp->rx_nr_rings; i++) {
5647 		unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
5648 
5649 		req->cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
5650 		req->rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
5651 		req->ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
5652 		req->sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
5653 
5654 		rc = hwrm_req_send(bp, req);
5655 
5656 		if (rc)
5657 			break;
5658 
5659 		bp->grp_info[grp_idx].fw_grp_id =
5660 			le32_to_cpu(resp->ring_group_id);
5661 	}
5662 	hwrm_req_drop(bp, req);
5663 	return rc;
5664 }
5665 
5666 static void bnxt_hwrm_ring_grp_free(struct bnxt *bp)
5667 {
5668 	struct hwrm_ring_grp_free_input *req;
5669 	u16 i;
5670 
5671 	if (!bp->grp_info || (bp->flags & BNXT_FLAG_CHIP_P5))
5672 		return;
5673 
5674 	if (hwrm_req_init(bp, req, HWRM_RING_GRP_FREE))
5675 		return;
5676 
5677 	hwrm_req_hold(bp, req);
5678 	for (i = 0; i < bp->cp_nr_rings; i++) {
5679 		if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
5680 			continue;
5681 		req->ring_group_id =
5682 			cpu_to_le32(bp->grp_info[i].fw_grp_id);
5683 
5684 		hwrm_req_send(bp, req);
5685 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
5686 	}
5687 	hwrm_req_drop(bp, req);
5688 }
5689 
5690 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
5691 				    struct bnxt_ring_struct *ring,
5692 				    u32 ring_type, u32 map_index)
5693 {
5694 	struct hwrm_ring_alloc_output *resp;
5695 	struct hwrm_ring_alloc_input *req;
5696 	struct bnxt_ring_mem_info *rmem = &ring->ring_mem;
5697 	struct bnxt_ring_grp_info *grp_info;
5698 	int rc, err = 0;
5699 	u16 ring_id;
5700 
5701 	rc = hwrm_req_init(bp, req, HWRM_RING_ALLOC);
5702 	if (rc)
5703 		goto exit;
5704 
5705 	req->enables = 0;
5706 	if (rmem->nr_pages > 1) {
5707 		req->page_tbl_addr = cpu_to_le64(rmem->pg_tbl_map);
5708 		/* Page size is in log2 units */
5709 		req->page_size = BNXT_PAGE_SHIFT;
5710 		req->page_tbl_depth = 1;
5711 	} else {
5712 		req->page_tbl_addr =  cpu_to_le64(rmem->dma_arr[0]);
5713 	}
5714 	req->fbo = 0;
5715 	/* Association of ring index with doorbell index and MSIX number */
5716 	req->logical_id = cpu_to_le16(map_index);
5717 
5718 	switch (ring_type) {
5719 	case HWRM_RING_ALLOC_TX: {
5720 		struct bnxt_tx_ring_info *txr;
5721 
5722 		txr = container_of(ring, struct bnxt_tx_ring_info,
5723 				   tx_ring_struct);
5724 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
5725 		/* Association of transmit ring with completion ring */
5726 		grp_info = &bp->grp_info[ring->grp_idx];
5727 		req->cmpl_ring_id = cpu_to_le16(bnxt_cp_ring_for_tx(bp, txr));
5728 		req->length = cpu_to_le32(bp->tx_ring_mask + 1);
5729 		req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5730 		req->queue_id = cpu_to_le16(ring->queue_id);
5731 		break;
5732 	}
5733 	case HWRM_RING_ALLOC_RX:
5734 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
5735 		req->length = cpu_to_le32(bp->rx_ring_mask + 1);
5736 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5737 			u16 flags = 0;
5738 
5739 			/* Association of rx ring with stats context */
5740 			grp_info = &bp->grp_info[ring->grp_idx];
5741 			req->rx_buf_size = cpu_to_le16(bp->rx_buf_use_size);
5742 			req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5743 			req->enables |= cpu_to_le32(
5744 				RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
5745 			if (NET_IP_ALIGN == 2)
5746 				flags = RING_ALLOC_REQ_FLAGS_RX_SOP_PAD;
5747 			req->flags = cpu_to_le16(flags);
5748 		}
5749 		break;
5750 	case HWRM_RING_ALLOC_AGG:
5751 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5752 			req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX_AGG;
5753 			/* Association of agg ring with rx ring */
5754 			grp_info = &bp->grp_info[ring->grp_idx];
5755 			req->rx_ring_id = cpu_to_le16(grp_info->rx_fw_ring_id);
5756 			req->rx_buf_size = cpu_to_le16(BNXT_RX_PAGE_SIZE);
5757 			req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5758 			req->enables |= cpu_to_le32(
5759 				RING_ALLOC_REQ_ENABLES_RX_RING_ID_VALID |
5760 				RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
5761 		} else {
5762 			req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
5763 		}
5764 		req->length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
5765 		break;
5766 	case HWRM_RING_ALLOC_CMPL:
5767 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL;
5768 		req->length = cpu_to_le32(bp->cp_ring_mask + 1);
5769 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5770 			/* Association of cp ring with nq */
5771 			grp_info = &bp->grp_info[map_index];
5772 			req->nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id);
5773 			req->cq_handle = cpu_to_le64(ring->handle);
5774 			req->enables |= cpu_to_le32(
5775 				RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID);
5776 		} else if (bp->flags & BNXT_FLAG_USING_MSIX) {
5777 			req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
5778 		}
5779 		break;
5780 	case HWRM_RING_ALLOC_NQ:
5781 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_NQ;
5782 		req->length = cpu_to_le32(bp->cp_ring_mask + 1);
5783 		if (bp->flags & BNXT_FLAG_USING_MSIX)
5784 			req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
5785 		break;
5786 	default:
5787 		netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
5788 			   ring_type);
5789 		return -1;
5790 	}
5791 
5792 	resp = hwrm_req_hold(bp, req);
5793 	rc = hwrm_req_send(bp, req);
5794 	err = le16_to_cpu(resp->error_code);
5795 	ring_id = le16_to_cpu(resp->ring_id);
5796 	hwrm_req_drop(bp, req);
5797 
5798 exit:
5799 	if (rc || err) {
5800 		netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n",
5801 			   ring_type, rc, err);
5802 		return -EIO;
5803 	}
5804 	ring->fw_ring_id = ring_id;
5805 	return rc;
5806 }
5807 
5808 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx)
5809 {
5810 	int rc;
5811 
5812 	if (BNXT_PF(bp)) {
5813 		struct hwrm_func_cfg_input *req;
5814 
5815 		rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG);
5816 		if (rc)
5817 			return rc;
5818 
5819 		req->fid = cpu_to_le16(0xffff);
5820 		req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
5821 		req->async_event_cr = cpu_to_le16(idx);
5822 		return hwrm_req_send(bp, req);
5823 	} else {
5824 		struct hwrm_func_vf_cfg_input *req;
5825 
5826 		rc = hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG);
5827 		if (rc)
5828 			return rc;
5829 
5830 		req->enables =
5831 			cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
5832 		req->async_event_cr = cpu_to_le16(idx);
5833 		return hwrm_req_send(bp, req);
5834 	}
5835 }
5836 
5837 static void bnxt_set_db(struct bnxt *bp, struct bnxt_db_info *db, u32 ring_type,
5838 			u32 map_idx, u32 xid)
5839 {
5840 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5841 		if (BNXT_PF(bp))
5842 			db->doorbell = bp->bar1 + DB_PF_OFFSET_P5;
5843 		else
5844 			db->doorbell = bp->bar1 + DB_VF_OFFSET_P5;
5845 		switch (ring_type) {
5846 		case HWRM_RING_ALLOC_TX:
5847 			db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SQ;
5848 			break;
5849 		case HWRM_RING_ALLOC_RX:
5850 		case HWRM_RING_ALLOC_AGG:
5851 			db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SRQ;
5852 			break;
5853 		case HWRM_RING_ALLOC_CMPL:
5854 			db->db_key64 = DBR_PATH_L2;
5855 			break;
5856 		case HWRM_RING_ALLOC_NQ:
5857 			db->db_key64 = DBR_PATH_L2;
5858 			break;
5859 		}
5860 		db->db_key64 |= (u64)xid << DBR_XID_SFT;
5861 	} else {
5862 		db->doorbell = bp->bar1 + map_idx * 0x80;
5863 		switch (ring_type) {
5864 		case HWRM_RING_ALLOC_TX:
5865 			db->db_key32 = DB_KEY_TX;
5866 			break;
5867 		case HWRM_RING_ALLOC_RX:
5868 		case HWRM_RING_ALLOC_AGG:
5869 			db->db_key32 = DB_KEY_RX;
5870 			break;
5871 		case HWRM_RING_ALLOC_CMPL:
5872 			db->db_key32 = DB_KEY_CP;
5873 			break;
5874 		}
5875 	}
5876 }
5877 
5878 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
5879 {
5880 	bool agg_rings = !!(bp->flags & BNXT_FLAG_AGG_RINGS);
5881 	int i, rc = 0;
5882 	u32 type;
5883 
5884 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5885 		type = HWRM_RING_ALLOC_NQ;
5886 	else
5887 		type = HWRM_RING_ALLOC_CMPL;
5888 	for (i = 0; i < bp->cp_nr_rings; i++) {
5889 		struct bnxt_napi *bnapi = bp->bnapi[i];
5890 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5891 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
5892 		u32 map_idx = ring->map_idx;
5893 		unsigned int vector;
5894 
5895 		vector = bp->irq_tbl[map_idx].vector;
5896 		disable_irq_nosync(vector);
5897 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5898 		if (rc) {
5899 			enable_irq(vector);
5900 			goto err_out;
5901 		}
5902 		bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id);
5903 		bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
5904 		enable_irq(vector);
5905 		bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
5906 
5907 		if (!i) {
5908 			rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id);
5909 			if (rc)
5910 				netdev_warn(bp->dev, "Failed to set async event completion ring.\n");
5911 		}
5912 	}
5913 
5914 	type = HWRM_RING_ALLOC_TX;
5915 	for (i = 0; i < bp->tx_nr_rings; i++) {
5916 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
5917 		struct bnxt_ring_struct *ring;
5918 		u32 map_idx;
5919 
5920 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5921 			struct bnxt_napi *bnapi = txr->bnapi;
5922 			struct bnxt_cp_ring_info *cpr, *cpr2;
5923 			u32 type2 = HWRM_RING_ALLOC_CMPL;
5924 
5925 			cpr = &bnapi->cp_ring;
5926 			cpr2 = cpr->cp_ring_arr[BNXT_TX_HDL];
5927 			ring = &cpr2->cp_ring_struct;
5928 			ring->handle = BNXT_TX_HDL;
5929 			map_idx = bnapi->index;
5930 			rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
5931 			if (rc)
5932 				goto err_out;
5933 			bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
5934 				    ring->fw_ring_id);
5935 			bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
5936 		}
5937 		ring = &txr->tx_ring_struct;
5938 		map_idx = i;
5939 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5940 		if (rc)
5941 			goto err_out;
5942 		bnxt_set_db(bp, &txr->tx_db, type, map_idx, ring->fw_ring_id);
5943 	}
5944 
5945 	type = HWRM_RING_ALLOC_RX;
5946 	for (i = 0; i < bp->rx_nr_rings; i++) {
5947 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5948 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
5949 		struct bnxt_napi *bnapi = rxr->bnapi;
5950 		u32 map_idx = bnapi->index;
5951 
5952 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5953 		if (rc)
5954 			goto err_out;
5955 		bnxt_set_db(bp, &rxr->rx_db, type, map_idx, ring->fw_ring_id);
5956 		/* If we have agg rings, post agg buffers first. */
5957 		if (!agg_rings)
5958 			bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
5959 		bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
5960 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5961 			struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5962 			u32 type2 = HWRM_RING_ALLOC_CMPL;
5963 			struct bnxt_cp_ring_info *cpr2;
5964 
5965 			cpr2 = cpr->cp_ring_arr[BNXT_RX_HDL];
5966 			ring = &cpr2->cp_ring_struct;
5967 			ring->handle = BNXT_RX_HDL;
5968 			rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
5969 			if (rc)
5970 				goto err_out;
5971 			bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
5972 				    ring->fw_ring_id);
5973 			bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
5974 		}
5975 	}
5976 
5977 	if (agg_rings) {
5978 		type = HWRM_RING_ALLOC_AGG;
5979 		for (i = 0; i < bp->rx_nr_rings; i++) {
5980 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5981 			struct bnxt_ring_struct *ring =
5982 						&rxr->rx_agg_ring_struct;
5983 			u32 grp_idx = ring->grp_idx;
5984 			u32 map_idx = grp_idx + bp->rx_nr_rings;
5985 
5986 			rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5987 			if (rc)
5988 				goto err_out;
5989 
5990 			bnxt_set_db(bp, &rxr->rx_agg_db, type, map_idx,
5991 				    ring->fw_ring_id);
5992 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
5993 			bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
5994 			bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
5995 		}
5996 	}
5997 err_out:
5998 	return rc;
5999 }
6000 
6001 static int hwrm_ring_free_send_msg(struct bnxt *bp,
6002 				   struct bnxt_ring_struct *ring,
6003 				   u32 ring_type, int cmpl_ring_id)
6004 {
6005 	struct hwrm_ring_free_output *resp;
6006 	struct hwrm_ring_free_input *req;
6007 	u16 error_code = 0;
6008 	int rc;
6009 
6010 	if (BNXT_NO_FW_ACCESS(bp))
6011 		return 0;
6012 
6013 	rc = hwrm_req_init(bp, req, HWRM_RING_FREE);
6014 	if (rc)
6015 		goto exit;
6016 
6017 	req->cmpl_ring = cpu_to_le16(cmpl_ring_id);
6018 	req->ring_type = ring_type;
6019 	req->ring_id = cpu_to_le16(ring->fw_ring_id);
6020 
6021 	resp = hwrm_req_hold(bp, req);
6022 	rc = hwrm_req_send(bp, req);
6023 	error_code = le16_to_cpu(resp->error_code);
6024 	hwrm_req_drop(bp, req);
6025 exit:
6026 	if (rc || error_code) {
6027 		netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n",
6028 			   ring_type, rc, error_code);
6029 		return -EIO;
6030 	}
6031 	return 0;
6032 }
6033 
6034 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
6035 {
6036 	u32 type;
6037 	int i;
6038 
6039 	if (!bp->bnapi)
6040 		return;
6041 
6042 	for (i = 0; i < bp->tx_nr_rings; i++) {
6043 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
6044 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
6045 
6046 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
6047 			u32 cmpl_ring_id = bnxt_cp_ring_for_tx(bp, txr);
6048 
6049 			hwrm_ring_free_send_msg(bp, ring,
6050 						RING_FREE_REQ_RING_TYPE_TX,
6051 						close_path ? cmpl_ring_id :
6052 						INVALID_HW_RING_ID);
6053 			ring->fw_ring_id = INVALID_HW_RING_ID;
6054 		}
6055 	}
6056 
6057 	for (i = 0; i < bp->rx_nr_rings; i++) {
6058 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
6059 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
6060 		u32 grp_idx = rxr->bnapi->index;
6061 
6062 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
6063 			u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
6064 
6065 			hwrm_ring_free_send_msg(bp, ring,
6066 						RING_FREE_REQ_RING_TYPE_RX,
6067 						close_path ? cmpl_ring_id :
6068 						INVALID_HW_RING_ID);
6069 			ring->fw_ring_id = INVALID_HW_RING_ID;
6070 			bp->grp_info[grp_idx].rx_fw_ring_id =
6071 				INVALID_HW_RING_ID;
6072 		}
6073 	}
6074 
6075 	if (bp->flags & BNXT_FLAG_CHIP_P5)
6076 		type = RING_FREE_REQ_RING_TYPE_RX_AGG;
6077 	else
6078 		type = RING_FREE_REQ_RING_TYPE_RX;
6079 	for (i = 0; i < bp->rx_nr_rings; i++) {
6080 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
6081 		struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
6082 		u32 grp_idx = rxr->bnapi->index;
6083 
6084 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
6085 			u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
6086 
6087 			hwrm_ring_free_send_msg(bp, ring, type,
6088 						close_path ? cmpl_ring_id :
6089 						INVALID_HW_RING_ID);
6090 			ring->fw_ring_id = INVALID_HW_RING_ID;
6091 			bp->grp_info[grp_idx].agg_fw_ring_id =
6092 				INVALID_HW_RING_ID;
6093 		}
6094 	}
6095 
6096 	/* The completion rings are about to be freed.  After that the
6097 	 * IRQ doorbell will not work anymore.  So we need to disable
6098 	 * IRQ here.
6099 	 */
6100 	bnxt_disable_int_sync(bp);
6101 
6102 	if (bp->flags & BNXT_FLAG_CHIP_P5)
6103 		type = RING_FREE_REQ_RING_TYPE_NQ;
6104 	else
6105 		type = RING_FREE_REQ_RING_TYPE_L2_CMPL;
6106 	for (i = 0; i < bp->cp_nr_rings; i++) {
6107 		struct bnxt_napi *bnapi = bp->bnapi[i];
6108 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6109 		struct bnxt_ring_struct *ring;
6110 		int j;
6111 
6112 		for (j = 0; j < 2; j++) {
6113 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
6114 
6115 			if (cpr2) {
6116 				ring = &cpr2->cp_ring_struct;
6117 				if (ring->fw_ring_id == INVALID_HW_RING_ID)
6118 					continue;
6119 				hwrm_ring_free_send_msg(bp, ring,
6120 					RING_FREE_REQ_RING_TYPE_L2_CMPL,
6121 					INVALID_HW_RING_ID);
6122 				ring->fw_ring_id = INVALID_HW_RING_ID;
6123 			}
6124 		}
6125 		ring = &cpr->cp_ring_struct;
6126 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
6127 			hwrm_ring_free_send_msg(bp, ring, type,
6128 						INVALID_HW_RING_ID);
6129 			ring->fw_ring_id = INVALID_HW_RING_ID;
6130 			bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
6131 		}
6132 	}
6133 }
6134 
6135 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
6136 			   bool shared);
6137 
6138 static int bnxt_hwrm_get_rings(struct bnxt *bp)
6139 {
6140 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6141 	struct hwrm_func_qcfg_output *resp;
6142 	struct hwrm_func_qcfg_input *req;
6143 	int rc;
6144 
6145 	if (bp->hwrm_spec_code < 0x10601)
6146 		return 0;
6147 
6148 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
6149 	if (rc)
6150 		return rc;
6151 
6152 	req->fid = cpu_to_le16(0xffff);
6153 	resp = hwrm_req_hold(bp, req);
6154 	rc = hwrm_req_send(bp, req);
6155 	if (rc) {
6156 		hwrm_req_drop(bp, req);
6157 		return rc;
6158 	}
6159 
6160 	hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings);
6161 	if (BNXT_NEW_RM(bp)) {
6162 		u16 cp, stats;
6163 
6164 		hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings);
6165 		hw_resc->resv_hw_ring_grps =
6166 			le32_to_cpu(resp->alloc_hw_ring_grps);
6167 		hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics);
6168 		cp = le16_to_cpu(resp->alloc_cmpl_rings);
6169 		stats = le16_to_cpu(resp->alloc_stat_ctx);
6170 		hw_resc->resv_irqs = cp;
6171 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
6172 			int rx = hw_resc->resv_rx_rings;
6173 			int tx = hw_resc->resv_tx_rings;
6174 
6175 			if (bp->flags & BNXT_FLAG_AGG_RINGS)
6176 				rx >>= 1;
6177 			if (cp < (rx + tx)) {
6178 				bnxt_trim_rings(bp, &rx, &tx, cp, false);
6179 				if (bp->flags & BNXT_FLAG_AGG_RINGS)
6180 					rx <<= 1;
6181 				hw_resc->resv_rx_rings = rx;
6182 				hw_resc->resv_tx_rings = tx;
6183 			}
6184 			hw_resc->resv_irqs = le16_to_cpu(resp->alloc_msix);
6185 			hw_resc->resv_hw_ring_grps = rx;
6186 		}
6187 		hw_resc->resv_cp_rings = cp;
6188 		hw_resc->resv_stat_ctxs = stats;
6189 	}
6190 	hwrm_req_drop(bp, req);
6191 	return 0;
6192 }
6193 
6194 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings)
6195 {
6196 	struct hwrm_func_qcfg_output *resp;
6197 	struct hwrm_func_qcfg_input *req;
6198 	int rc;
6199 
6200 	if (bp->hwrm_spec_code < 0x10601)
6201 		return 0;
6202 
6203 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
6204 	if (rc)
6205 		return rc;
6206 
6207 	req->fid = cpu_to_le16(fid);
6208 	resp = hwrm_req_hold(bp, req);
6209 	rc = hwrm_req_send(bp, req);
6210 	if (!rc)
6211 		*tx_rings = le16_to_cpu(resp->alloc_tx_rings);
6212 
6213 	hwrm_req_drop(bp, req);
6214 	return rc;
6215 }
6216 
6217 static bool bnxt_rfs_supported(struct bnxt *bp);
6218 
6219 static struct hwrm_func_cfg_input *
6220 __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6221 			     int ring_grps, int cp_rings, int stats, int vnics)
6222 {
6223 	struct hwrm_func_cfg_input *req;
6224 	u32 enables = 0;
6225 
6226 	if (hwrm_req_init(bp, req, HWRM_FUNC_CFG))
6227 		return NULL;
6228 
6229 	req->fid = cpu_to_le16(0xffff);
6230 	enables |= tx_rings ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
6231 	req->num_tx_rings = cpu_to_le16(tx_rings);
6232 	if (BNXT_NEW_RM(bp)) {
6233 		enables |= rx_rings ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0;
6234 		enables |= stats ? FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
6235 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
6236 			enables |= cp_rings ? FUNC_CFG_REQ_ENABLES_NUM_MSIX : 0;
6237 			enables |= tx_rings + ring_grps ?
6238 				   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6239 			enables |= rx_rings ?
6240 				FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
6241 		} else {
6242 			enables |= cp_rings ?
6243 				   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6244 			enables |= ring_grps ?
6245 				   FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS |
6246 				   FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
6247 		}
6248 		enables |= vnics ? FUNC_CFG_REQ_ENABLES_NUM_VNICS : 0;
6249 
6250 		req->num_rx_rings = cpu_to_le16(rx_rings);
6251 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
6252 			req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps);
6253 			req->num_msix = cpu_to_le16(cp_rings);
6254 			req->num_rsscos_ctxs =
6255 				cpu_to_le16(DIV_ROUND_UP(ring_grps, 64));
6256 		} else {
6257 			req->num_cmpl_rings = cpu_to_le16(cp_rings);
6258 			req->num_hw_ring_grps = cpu_to_le16(ring_grps);
6259 			req->num_rsscos_ctxs = cpu_to_le16(1);
6260 			if (!(bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
6261 			    bnxt_rfs_supported(bp))
6262 				req->num_rsscos_ctxs =
6263 					cpu_to_le16(ring_grps + 1);
6264 		}
6265 		req->num_stat_ctxs = cpu_to_le16(stats);
6266 		req->num_vnics = cpu_to_le16(vnics);
6267 	}
6268 	req->enables = cpu_to_le32(enables);
6269 	return req;
6270 }
6271 
6272 static struct hwrm_func_vf_cfg_input *
6273 __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6274 			     int ring_grps, int cp_rings, int stats, int vnics)
6275 {
6276 	struct hwrm_func_vf_cfg_input *req;
6277 	u32 enables = 0;
6278 
6279 	if (hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG))
6280 		return NULL;
6281 
6282 	enables |= tx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
6283 	enables |= rx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS |
6284 			      FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
6285 	enables |= stats ? FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
6286 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
6287 		enables |= tx_rings + ring_grps ?
6288 			   FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6289 	} else {
6290 		enables |= cp_rings ?
6291 			   FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6292 		enables |= ring_grps ?
6293 			   FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0;
6294 	}
6295 	enables |= vnics ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0;
6296 	enables |= FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS;
6297 
6298 	req->num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX);
6299 	req->num_tx_rings = cpu_to_le16(tx_rings);
6300 	req->num_rx_rings = cpu_to_le16(rx_rings);
6301 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
6302 		req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps);
6303 		req->num_rsscos_ctxs = cpu_to_le16(DIV_ROUND_UP(ring_grps, 64));
6304 	} else {
6305 		req->num_cmpl_rings = cpu_to_le16(cp_rings);
6306 		req->num_hw_ring_grps = cpu_to_le16(ring_grps);
6307 		req->num_rsscos_ctxs = cpu_to_le16(BNXT_VF_MAX_RSS_CTX);
6308 	}
6309 	req->num_stat_ctxs = cpu_to_le16(stats);
6310 	req->num_vnics = cpu_to_le16(vnics);
6311 
6312 	req->enables = cpu_to_le32(enables);
6313 	return req;
6314 }
6315 
6316 static int
6317 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6318 			   int ring_grps, int cp_rings, int stats, int vnics)
6319 {
6320 	struct hwrm_func_cfg_input *req;
6321 	int rc;
6322 
6323 	req = __bnxt_hwrm_reserve_pf_rings(bp, tx_rings, rx_rings, ring_grps,
6324 					   cp_rings, stats, vnics);
6325 	if (!req)
6326 		return -ENOMEM;
6327 
6328 	if (!req->enables) {
6329 		hwrm_req_drop(bp, req);
6330 		return 0;
6331 	}
6332 
6333 	rc = hwrm_req_send(bp, req);
6334 	if (rc)
6335 		return rc;
6336 
6337 	if (bp->hwrm_spec_code < 0x10601)
6338 		bp->hw_resc.resv_tx_rings = tx_rings;
6339 
6340 	return bnxt_hwrm_get_rings(bp);
6341 }
6342 
6343 static int
6344 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6345 			   int ring_grps, int cp_rings, int stats, int vnics)
6346 {
6347 	struct hwrm_func_vf_cfg_input *req;
6348 	int rc;
6349 
6350 	if (!BNXT_NEW_RM(bp)) {
6351 		bp->hw_resc.resv_tx_rings = tx_rings;
6352 		return 0;
6353 	}
6354 
6355 	req = __bnxt_hwrm_reserve_vf_rings(bp, tx_rings, rx_rings, ring_grps,
6356 					   cp_rings, stats, vnics);
6357 	if (!req)
6358 		return -ENOMEM;
6359 
6360 	rc = hwrm_req_send(bp, req);
6361 	if (rc)
6362 		return rc;
6363 
6364 	return bnxt_hwrm_get_rings(bp);
6365 }
6366 
6367 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, int tx, int rx, int grp,
6368 				   int cp, int stat, int vnic)
6369 {
6370 	if (BNXT_PF(bp))
6371 		return bnxt_hwrm_reserve_pf_rings(bp, tx, rx, grp, cp, stat,
6372 						  vnic);
6373 	else
6374 		return bnxt_hwrm_reserve_vf_rings(bp, tx, rx, grp, cp, stat,
6375 						  vnic);
6376 }
6377 
6378 int bnxt_nq_rings_in_use(struct bnxt *bp)
6379 {
6380 	int cp = bp->cp_nr_rings;
6381 	int ulp_msix, ulp_base;
6382 
6383 	ulp_msix = bnxt_get_ulp_msix_num(bp);
6384 	if (ulp_msix) {
6385 		ulp_base = bnxt_get_ulp_msix_base(bp);
6386 		cp += ulp_msix;
6387 		if ((ulp_base + ulp_msix) > cp)
6388 			cp = ulp_base + ulp_msix;
6389 	}
6390 	return cp;
6391 }
6392 
6393 static int bnxt_cp_rings_in_use(struct bnxt *bp)
6394 {
6395 	int cp;
6396 
6397 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
6398 		return bnxt_nq_rings_in_use(bp);
6399 
6400 	cp = bp->tx_nr_rings + bp->rx_nr_rings;
6401 	return cp;
6402 }
6403 
6404 static int bnxt_get_func_stat_ctxs(struct bnxt *bp)
6405 {
6406 	int ulp_stat = bnxt_get_ulp_stat_ctxs(bp);
6407 	int cp = bp->cp_nr_rings;
6408 
6409 	if (!ulp_stat)
6410 		return cp;
6411 
6412 	if (bnxt_nq_rings_in_use(bp) > cp + bnxt_get_ulp_msix_num(bp))
6413 		return bnxt_get_ulp_msix_base(bp) + ulp_stat;
6414 
6415 	return cp + ulp_stat;
6416 }
6417 
6418 /* Check if a default RSS map needs to be setup.  This function is only
6419  * used on older firmware that does not require reserving RX rings.
6420  */
6421 static void bnxt_check_rss_tbl_no_rmgr(struct bnxt *bp)
6422 {
6423 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6424 
6425 	/* The RSS map is valid for RX rings set to resv_rx_rings */
6426 	if (hw_resc->resv_rx_rings != bp->rx_nr_rings) {
6427 		hw_resc->resv_rx_rings = bp->rx_nr_rings;
6428 		if (!netif_is_rxfh_configured(bp->dev))
6429 			bnxt_set_dflt_rss_indir_tbl(bp);
6430 	}
6431 }
6432 
6433 static bool bnxt_need_reserve_rings(struct bnxt *bp)
6434 {
6435 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6436 	int cp = bnxt_cp_rings_in_use(bp);
6437 	int nq = bnxt_nq_rings_in_use(bp);
6438 	int rx = bp->rx_nr_rings, stat;
6439 	int vnic = 1, grp = rx;
6440 
6441 	if (hw_resc->resv_tx_rings != bp->tx_nr_rings &&
6442 	    bp->hwrm_spec_code >= 0x10601)
6443 		return true;
6444 
6445 	/* Old firmware does not need RX ring reservations but we still
6446 	 * need to setup a default RSS map when needed.  With new firmware
6447 	 * we go through RX ring reservations first and then set up the
6448 	 * RSS map for the successfully reserved RX rings when needed.
6449 	 */
6450 	if (!BNXT_NEW_RM(bp)) {
6451 		bnxt_check_rss_tbl_no_rmgr(bp);
6452 		return false;
6453 	}
6454 	if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5))
6455 		vnic = rx + 1;
6456 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
6457 		rx <<= 1;
6458 	stat = bnxt_get_func_stat_ctxs(bp);
6459 	if (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp ||
6460 	    hw_resc->resv_vnics != vnic || hw_resc->resv_stat_ctxs != stat ||
6461 	    (hw_resc->resv_hw_ring_grps != grp &&
6462 	     !(bp->flags & BNXT_FLAG_CHIP_P5)))
6463 		return true;
6464 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && BNXT_PF(bp) &&
6465 	    hw_resc->resv_irqs != nq)
6466 		return true;
6467 	return false;
6468 }
6469 
6470 static int __bnxt_reserve_rings(struct bnxt *bp)
6471 {
6472 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6473 	int cp = bnxt_nq_rings_in_use(bp);
6474 	int tx = bp->tx_nr_rings;
6475 	int rx = bp->rx_nr_rings;
6476 	int grp, rx_rings, rc;
6477 	int vnic = 1, stat;
6478 	bool sh = false;
6479 
6480 	if (!bnxt_need_reserve_rings(bp))
6481 		return 0;
6482 
6483 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
6484 		sh = true;
6485 	if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5))
6486 		vnic = rx + 1;
6487 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
6488 		rx <<= 1;
6489 	grp = bp->rx_nr_rings;
6490 	stat = bnxt_get_func_stat_ctxs(bp);
6491 
6492 	rc = bnxt_hwrm_reserve_rings(bp, tx, rx, grp, cp, stat, vnic);
6493 	if (rc)
6494 		return rc;
6495 
6496 	tx = hw_resc->resv_tx_rings;
6497 	if (BNXT_NEW_RM(bp)) {
6498 		rx = hw_resc->resv_rx_rings;
6499 		cp = hw_resc->resv_irqs;
6500 		grp = hw_resc->resv_hw_ring_grps;
6501 		vnic = hw_resc->resv_vnics;
6502 		stat = hw_resc->resv_stat_ctxs;
6503 	}
6504 
6505 	rx_rings = rx;
6506 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
6507 		if (rx >= 2) {
6508 			rx_rings = rx >> 1;
6509 		} else {
6510 			if (netif_running(bp->dev))
6511 				return -ENOMEM;
6512 
6513 			bp->flags &= ~BNXT_FLAG_AGG_RINGS;
6514 			bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
6515 			bp->dev->hw_features &= ~NETIF_F_LRO;
6516 			bp->dev->features &= ~NETIF_F_LRO;
6517 			bnxt_set_ring_params(bp);
6518 		}
6519 	}
6520 	rx_rings = min_t(int, rx_rings, grp);
6521 	cp = min_t(int, cp, bp->cp_nr_rings);
6522 	if (stat > bnxt_get_ulp_stat_ctxs(bp))
6523 		stat -= bnxt_get_ulp_stat_ctxs(bp);
6524 	cp = min_t(int, cp, stat);
6525 	rc = bnxt_trim_rings(bp, &rx_rings, &tx, cp, sh);
6526 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
6527 		rx = rx_rings << 1;
6528 	cp = sh ? max_t(int, tx, rx_rings) : tx + rx_rings;
6529 	bp->tx_nr_rings = tx;
6530 
6531 	/* If we cannot reserve all the RX rings, reset the RSS map only
6532 	 * if absolutely necessary
6533 	 */
6534 	if (rx_rings != bp->rx_nr_rings) {
6535 		netdev_warn(bp->dev, "Able to reserve only %d out of %d requested RX rings\n",
6536 			    rx_rings, bp->rx_nr_rings);
6537 		if (netif_is_rxfh_configured(bp->dev) &&
6538 		    (bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings) !=
6539 		     bnxt_get_nr_rss_ctxs(bp, rx_rings) ||
6540 		     bnxt_get_max_rss_ring(bp) >= rx_rings)) {
6541 			netdev_warn(bp->dev, "RSS table entries reverting to default\n");
6542 			bp->dev->priv_flags &= ~IFF_RXFH_CONFIGURED;
6543 		}
6544 	}
6545 	bp->rx_nr_rings = rx_rings;
6546 	bp->cp_nr_rings = cp;
6547 
6548 	if (!tx || !rx || !cp || !grp || !vnic || !stat)
6549 		return -ENOMEM;
6550 
6551 	if (!netif_is_rxfh_configured(bp->dev))
6552 		bnxt_set_dflt_rss_indir_tbl(bp);
6553 
6554 	return rc;
6555 }
6556 
6557 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6558 				    int ring_grps, int cp_rings, int stats,
6559 				    int vnics)
6560 {
6561 	struct hwrm_func_vf_cfg_input *req;
6562 	u32 flags;
6563 
6564 	if (!BNXT_NEW_RM(bp))
6565 		return 0;
6566 
6567 	req = __bnxt_hwrm_reserve_vf_rings(bp, tx_rings, rx_rings, ring_grps,
6568 					   cp_rings, stats, vnics);
6569 	flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST |
6570 		FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST |
6571 		FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
6572 		FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
6573 		FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST |
6574 		FUNC_VF_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST;
6575 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
6576 		flags |= FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
6577 
6578 	req->flags = cpu_to_le32(flags);
6579 	return hwrm_req_send_silent(bp, req);
6580 }
6581 
6582 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6583 				    int ring_grps, int cp_rings, int stats,
6584 				    int vnics)
6585 {
6586 	struct hwrm_func_cfg_input *req;
6587 	u32 flags;
6588 
6589 	req = __bnxt_hwrm_reserve_pf_rings(bp, tx_rings, rx_rings, ring_grps,
6590 					   cp_rings, stats, vnics);
6591 	flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST;
6592 	if (BNXT_NEW_RM(bp)) {
6593 		flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST |
6594 			 FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
6595 			 FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
6596 			 FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST;
6597 		if (bp->flags & BNXT_FLAG_CHIP_P5)
6598 			flags |= FUNC_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST |
6599 				 FUNC_CFG_REQ_FLAGS_NQ_ASSETS_TEST;
6600 		else
6601 			flags |= FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
6602 	}
6603 
6604 	req->flags = cpu_to_le32(flags);
6605 	return hwrm_req_send_silent(bp, req);
6606 }
6607 
6608 static int bnxt_hwrm_check_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6609 				 int ring_grps, int cp_rings, int stats,
6610 				 int vnics)
6611 {
6612 	if (bp->hwrm_spec_code < 0x10801)
6613 		return 0;
6614 
6615 	if (BNXT_PF(bp))
6616 		return bnxt_hwrm_check_pf_rings(bp, tx_rings, rx_rings,
6617 						ring_grps, cp_rings, stats,
6618 						vnics);
6619 
6620 	return bnxt_hwrm_check_vf_rings(bp, tx_rings, rx_rings, ring_grps,
6621 					cp_rings, stats, vnics);
6622 }
6623 
6624 static void bnxt_hwrm_coal_params_qcaps(struct bnxt *bp)
6625 {
6626 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6627 	struct hwrm_ring_aggint_qcaps_output *resp;
6628 	struct hwrm_ring_aggint_qcaps_input *req;
6629 	int rc;
6630 
6631 	coal_cap->cmpl_params = BNXT_LEGACY_COAL_CMPL_PARAMS;
6632 	coal_cap->num_cmpl_dma_aggr_max = 63;
6633 	coal_cap->num_cmpl_dma_aggr_during_int_max = 63;
6634 	coal_cap->cmpl_aggr_dma_tmr_max = 65535;
6635 	coal_cap->cmpl_aggr_dma_tmr_during_int_max = 65535;
6636 	coal_cap->int_lat_tmr_min_max = 65535;
6637 	coal_cap->int_lat_tmr_max_max = 65535;
6638 	coal_cap->num_cmpl_aggr_int_max = 65535;
6639 	coal_cap->timer_units = 80;
6640 
6641 	if (bp->hwrm_spec_code < 0x10902)
6642 		return;
6643 
6644 	if (hwrm_req_init(bp, req, HWRM_RING_AGGINT_QCAPS))
6645 		return;
6646 
6647 	resp = hwrm_req_hold(bp, req);
6648 	rc = hwrm_req_send_silent(bp, req);
6649 	if (!rc) {
6650 		coal_cap->cmpl_params = le32_to_cpu(resp->cmpl_params);
6651 		coal_cap->nq_params = le32_to_cpu(resp->nq_params);
6652 		coal_cap->num_cmpl_dma_aggr_max =
6653 			le16_to_cpu(resp->num_cmpl_dma_aggr_max);
6654 		coal_cap->num_cmpl_dma_aggr_during_int_max =
6655 			le16_to_cpu(resp->num_cmpl_dma_aggr_during_int_max);
6656 		coal_cap->cmpl_aggr_dma_tmr_max =
6657 			le16_to_cpu(resp->cmpl_aggr_dma_tmr_max);
6658 		coal_cap->cmpl_aggr_dma_tmr_during_int_max =
6659 			le16_to_cpu(resp->cmpl_aggr_dma_tmr_during_int_max);
6660 		coal_cap->int_lat_tmr_min_max =
6661 			le16_to_cpu(resp->int_lat_tmr_min_max);
6662 		coal_cap->int_lat_tmr_max_max =
6663 			le16_to_cpu(resp->int_lat_tmr_max_max);
6664 		coal_cap->num_cmpl_aggr_int_max =
6665 			le16_to_cpu(resp->num_cmpl_aggr_int_max);
6666 		coal_cap->timer_units = le16_to_cpu(resp->timer_units);
6667 	}
6668 	hwrm_req_drop(bp, req);
6669 }
6670 
6671 static u16 bnxt_usec_to_coal_tmr(struct bnxt *bp, u16 usec)
6672 {
6673 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6674 
6675 	return usec * 1000 / coal_cap->timer_units;
6676 }
6677 
6678 static void bnxt_hwrm_set_coal_params(struct bnxt *bp,
6679 	struct bnxt_coal *hw_coal,
6680 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
6681 {
6682 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6683 	u16 val, tmr, max, flags = hw_coal->flags;
6684 	u32 cmpl_params = coal_cap->cmpl_params;
6685 
6686 	max = hw_coal->bufs_per_record * 128;
6687 	if (hw_coal->budget)
6688 		max = hw_coal->bufs_per_record * hw_coal->budget;
6689 	max = min_t(u16, max, coal_cap->num_cmpl_aggr_int_max);
6690 
6691 	val = clamp_t(u16, hw_coal->coal_bufs, 1, max);
6692 	req->num_cmpl_aggr_int = cpu_to_le16(val);
6693 
6694 	val = min_t(u16, val, coal_cap->num_cmpl_dma_aggr_max);
6695 	req->num_cmpl_dma_aggr = cpu_to_le16(val);
6696 
6697 	val = clamp_t(u16, hw_coal->coal_bufs_irq, 1,
6698 		      coal_cap->num_cmpl_dma_aggr_during_int_max);
6699 	req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val);
6700 
6701 	tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks);
6702 	tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_max_max);
6703 	req->int_lat_tmr_max = cpu_to_le16(tmr);
6704 
6705 	/* min timer set to 1/2 of interrupt timer */
6706 	if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_INT_LAT_TMR_MIN) {
6707 		val = tmr / 2;
6708 		val = clamp_t(u16, val, 1, coal_cap->int_lat_tmr_min_max);
6709 		req->int_lat_tmr_min = cpu_to_le16(val);
6710 		req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
6711 	}
6712 
6713 	/* buf timer set to 1/4 of interrupt timer */
6714 	val = clamp_t(u16, tmr / 4, 1, coal_cap->cmpl_aggr_dma_tmr_max);
6715 	req->cmpl_aggr_dma_tmr = cpu_to_le16(val);
6716 
6717 	if (cmpl_params &
6718 	    RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_NUM_CMPL_DMA_AGGR_DURING_INT) {
6719 		tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks_irq);
6720 		val = clamp_t(u16, tmr, 1,
6721 			      coal_cap->cmpl_aggr_dma_tmr_during_int_max);
6722 		req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(val);
6723 		req->enables |=
6724 			cpu_to_le16(BNXT_COAL_CMPL_AGGR_TMR_DURING_INT_ENABLE);
6725 	}
6726 
6727 	if ((cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_RING_IDLE) &&
6728 	    hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh)
6729 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
6730 	req->flags = cpu_to_le16(flags);
6731 	req->enables |= cpu_to_le16(BNXT_COAL_CMPL_ENABLES);
6732 }
6733 
6734 static int __bnxt_hwrm_set_coal_nq(struct bnxt *bp, struct bnxt_napi *bnapi,
6735 				   struct bnxt_coal *hw_coal)
6736 {
6737 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req;
6738 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6739 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6740 	u32 nq_params = coal_cap->nq_params;
6741 	u16 tmr;
6742 	int rc;
6743 
6744 	if (!(nq_params & RING_AGGINT_QCAPS_RESP_NQ_PARAMS_INT_LAT_TMR_MIN))
6745 		return 0;
6746 
6747 	rc = hwrm_req_init(bp, req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
6748 	if (rc)
6749 		return rc;
6750 
6751 	req->ring_id = cpu_to_le16(cpr->cp_ring_struct.fw_ring_id);
6752 	req->flags =
6753 		cpu_to_le16(RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_IS_NQ);
6754 
6755 	tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks) / 2;
6756 	tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_min_max);
6757 	req->int_lat_tmr_min = cpu_to_le16(tmr);
6758 	req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
6759 	return hwrm_req_send(bp, req);
6760 }
6761 
6762 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi)
6763 {
6764 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx;
6765 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6766 	struct bnxt_coal coal;
6767 	int rc;
6768 
6769 	/* Tick values in micro seconds.
6770 	 * 1 coal_buf x bufs_per_record = 1 completion record.
6771 	 */
6772 	memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal));
6773 
6774 	coal.coal_ticks = cpr->rx_ring_coal.coal_ticks;
6775 	coal.coal_bufs = cpr->rx_ring_coal.coal_bufs;
6776 
6777 	if (!bnapi->rx_ring)
6778 		return -ENODEV;
6779 
6780 	rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
6781 	if (rc)
6782 		return rc;
6783 
6784 	bnxt_hwrm_set_coal_params(bp, &coal, req_rx);
6785 
6786 	req_rx->ring_id = cpu_to_le16(bnxt_cp_ring_for_rx(bp, bnapi->rx_ring));
6787 
6788 	return hwrm_req_send(bp, req_rx);
6789 }
6790 
6791 int bnxt_hwrm_set_coal(struct bnxt *bp)
6792 {
6793 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx, *req_tx,
6794 							   *req;
6795 	int i, rc;
6796 
6797 	rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
6798 	if (rc)
6799 		return rc;
6800 
6801 	rc = hwrm_req_init(bp, req_tx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
6802 	if (rc) {
6803 		hwrm_req_drop(bp, req_rx);
6804 		return rc;
6805 	}
6806 
6807 	bnxt_hwrm_set_coal_params(bp, &bp->rx_coal, req_rx);
6808 	bnxt_hwrm_set_coal_params(bp, &bp->tx_coal, req_tx);
6809 
6810 	hwrm_req_hold(bp, req_rx);
6811 	hwrm_req_hold(bp, req_tx);
6812 	for (i = 0; i < bp->cp_nr_rings; i++) {
6813 		struct bnxt_napi *bnapi = bp->bnapi[i];
6814 		struct bnxt_coal *hw_coal;
6815 		u16 ring_id;
6816 
6817 		req = req_rx;
6818 		if (!bnapi->rx_ring) {
6819 			ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring);
6820 			req = req_tx;
6821 		} else {
6822 			ring_id = bnxt_cp_ring_for_rx(bp, bnapi->rx_ring);
6823 		}
6824 		req->ring_id = cpu_to_le16(ring_id);
6825 
6826 		rc = hwrm_req_send(bp, req);
6827 		if (rc)
6828 			break;
6829 
6830 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
6831 			continue;
6832 
6833 		if (bnapi->rx_ring && bnapi->tx_ring) {
6834 			req = req_tx;
6835 			ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring);
6836 			req->ring_id = cpu_to_le16(ring_id);
6837 			rc = hwrm_req_send(bp, req);
6838 			if (rc)
6839 				break;
6840 		}
6841 		if (bnapi->rx_ring)
6842 			hw_coal = &bp->rx_coal;
6843 		else
6844 			hw_coal = &bp->tx_coal;
6845 		__bnxt_hwrm_set_coal_nq(bp, bnapi, hw_coal);
6846 	}
6847 	hwrm_req_drop(bp, req_rx);
6848 	hwrm_req_drop(bp, req_tx);
6849 	return rc;
6850 }
6851 
6852 static void bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
6853 {
6854 	struct hwrm_stat_ctx_clr_stats_input *req0 = NULL;
6855 	struct hwrm_stat_ctx_free_input *req;
6856 	int i;
6857 
6858 	if (!bp->bnapi)
6859 		return;
6860 
6861 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
6862 		return;
6863 
6864 	if (hwrm_req_init(bp, req, HWRM_STAT_CTX_FREE))
6865 		return;
6866 	if (BNXT_FW_MAJ(bp) <= 20) {
6867 		if (hwrm_req_init(bp, req0, HWRM_STAT_CTX_CLR_STATS)) {
6868 			hwrm_req_drop(bp, req);
6869 			return;
6870 		}
6871 		hwrm_req_hold(bp, req0);
6872 	}
6873 	hwrm_req_hold(bp, req);
6874 	for (i = 0; i < bp->cp_nr_rings; i++) {
6875 		struct bnxt_napi *bnapi = bp->bnapi[i];
6876 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6877 
6878 		if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
6879 			req->stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
6880 			if (req0) {
6881 				req0->stat_ctx_id = req->stat_ctx_id;
6882 				hwrm_req_send(bp, req0);
6883 			}
6884 			hwrm_req_send(bp, req);
6885 
6886 			cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
6887 		}
6888 	}
6889 	hwrm_req_drop(bp, req);
6890 	if (req0)
6891 		hwrm_req_drop(bp, req0);
6892 }
6893 
6894 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
6895 {
6896 	struct hwrm_stat_ctx_alloc_output *resp;
6897 	struct hwrm_stat_ctx_alloc_input *req;
6898 	int rc, i;
6899 
6900 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
6901 		return 0;
6902 
6903 	rc = hwrm_req_init(bp, req, HWRM_STAT_CTX_ALLOC);
6904 	if (rc)
6905 		return rc;
6906 
6907 	req->stats_dma_length = cpu_to_le16(bp->hw_ring_stats_size);
6908 	req->update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000);
6909 
6910 	resp = hwrm_req_hold(bp, req);
6911 	for (i = 0; i < bp->cp_nr_rings; i++) {
6912 		struct bnxt_napi *bnapi = bp->bnapi[i];
6913 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6914 
6915 		req->stats_dma_addr = cpu_to_le64(cpr->stats.hw_stats_map);
6916 
6917 		rc = hwrm_req_send(bp, req);
6918 		if (rc)
6919 			break;
6920 
6921 		cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
6922 
6923 		bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
6924 	}
6925 	hwrm_req_drop(bp, req);
6926 	return rc;
6927 }
6928 
6929 static int bnxt_hwrm_func_qcfg(struct bnxt *bp)
6930 {
6931 	struct hwrm_func_qcfg_output *resp;
6932 	struct hwrm_func_qcfg_input *req;
6933 	u32 min_db_offset = 0;
6934 	u16 flags;
6935 	int rc;
6936 
6937 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
6938 	if (rc)
6939 		return rc;
6940 
6941 	req->fid = cpu_to_le16(0xffff);
6942 	resp = hwrm_req_hold(bp, req);
6943 	rc = hwrm_req_send(bp, req);
6944 	if (rc)
6945 		goto func_qcfg_exit;
6946 
6947 #ifdef CONFIG_BNXT_SRIOV
6948 	if (BNXT_VF(bp)) {
6949 		struct bnxt_vf_info *vf = &bp->vf;
6950 
6951 		vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK;
6952 	} else {
6953 		bp->pf.registered_vfs = le16_to_cpu(resp->registered_vfs);
6954 	}
6955 #endif
6956 	flags = le16_to_cpu(resp->flags);
6957 	if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED |
6958 		     FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) {
6959 		bp->fw_cap |= BNXT_FW_CAP_LLDP_AGENT;
6960 		if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED)
6961 			bp->fw_cap |= BNXT_FW_CAP_DCBX_AGENT;
6962 	}
6963 	if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST))
6964 		bp->flags |= BNXT_FLAG_MULTI_HOST;
6965 	if (flags & FUNC_QCFG_RESP_FLAGS_RING_MONITOR_ENABLED)
6966 		bp->fw_cap |= BNXT_FW_CAP_RING_MONITOR;
6967 
6968 	switch (resp->port_partition_type) {
6969 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0:
6970 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5:
6971 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0:
6972 		bp->port_partition_type = resp->port_partition_type;
6973 		break;
6974 	}
6975 	if (bp->hwrm_spec_code < 0x10707 ||
6976 	    resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB)
6977 		bp->br_mode = BRIDGE_MODE_VEB;
6978 	else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA)
6979 		bp->br_mode = BRIDGE_MODE_VEPA;
6980 	else
6981 		bp->br_mode = BRIDGE_MODE_UNDEF;
6982 
6983 	bp->max_mtu = le16_to_cpu(resp->max_mtu_configured);
6984 	if (!bp->max_mtu)
6985 		bp->max_mtu = BNXT_MAX_MTU;
6986 
6987 	if (bp->db_size)
6988 		goto func_qcfg_exit;
6989 
6990 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
6991 		if (BNXT_PF(bp))
6992 			min_db_offset = DB_PF_OFFSET_P5;
6993 		else
6994 			min_db_offset = DB_VF_OFFSET_P5;
6995 	}
6996 	bp->db_size = PAGE_ALIGN(le16_to_cpu(resp->l2_doorbell_bar_size_kb) *
6997 				 1024);
6998 	if (!bp->db_size || bp->db_size > pci_resource_len(bp->pdev, 2) ||
6999 	    bp->db_size <= min_db_offset)
7000 		bp->db_size = pci_resource_len(bp->pdev, 2);
7001 
7002 func_qcfg_exit:
7003 	hwrm_req_drop(bp, req);
7004 	return rc;
7005 }
7006 
7007 static void bnxt_init_ctx_initializer(struct bnxt_ctx_mem_info *ctx,
7008 			struct hwrm_func_backing_store_qcaps_output *resp)
7009 {
7010 	struct bnxt_mem_init *mem_init;
7011 	u16 init_mask;
7012 	u8 init_val;
7013 	u8 *offset;
7014 	int i;
7015 
7016 	init_val = resp->ctx_kind_initializer;
7017 	init_mask = le16_to_cpu(resp->ctx_init_mask);
7018 	offset = &resp->qp_init_offset;
7019 	mem_init = &ctx->mem_init[BNXT_CTX_MEM_INIT_QP];
7020 	for (i = 0; i < BNXT_CTX_MEM_INIT_MAX; i++, mem_init++, offset++) {
7021 		mem_init->init_val = init_val;
7022 		mem_init->offset = BNXT_MEM_INVALID_OFFSET;
7023 		if (!init_mask)
7024 			continue;
7025 		if (i == BNXT_CTX_MEM_INIT_STAT)
7026 			offset = &resp->stat_init_offset;
7027 		if (init_mask & (1 << i))
7028 			mem_init->offset = *offset * 4;
7029 		else
7030 			mem_init->init_val = 0;
7031 	}
7032 	ctx->mem_init[BNXT_CTX_MEM_INIT_QP].size = ctx->qp_entry_size;
7033 	ctx->mem_init[BNXT_CTX_MEM_INIT_SRQ].size = ctx->srq_entry_size;
7034 	ctx->mem_init[BNXT_CTX_MEM_INIT_CQ].size = ctx->cq_entry_size;
7035 	ctx->mem_init[BNXT_CTX_MEM_INIT_VNIC].size = ctx->vnic_entry_size;
7036 	ctx->mem_init[BNXT_CTX_MEM_INIT_STAT].size = ctx->stat_entry_size;
7037 	ctx->mem_init[BNXT_CTX_MEM_INIT_MRAV].size = ctx->mrav_entry_size;
7038 }
7039 
7040 static int bnxt_hwrm_func_backing_store_qcaps(struct bnxt *bp)
7041 {
7042 	struct hwrm_func_backing_store_qcaps_output *resp;
7043 	struct hwrm_func_backing_store_qcaps_input *req;
7044 	int rc;
7045 
7046 	if (bp->hwrm_spec_code < 0x10902 || BNXT_VF(bp) || bp->ctx)
7047 		return 0;
7048 
7049 	rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_QCAPS);
7050 	if (rc)
7051 		return rc;
7052 
7053 	resp = hwrm_req_hold(bp, req);
7054 	rc = hwrm_req_send_silent(bp, req);
7055 	if (!rc) {
7056 		struct bnxt_ctx_pg_info *ctx_pg;
7057 		struct bnxt_ctx_mem_info *ctx;
7058 		int i, tqm_rings;
7059 
7060 		ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
7061 		if (!ctx) {
7062 			rc = -ENOMEM;
7063 			goto ctx_err;
7064 		}
7065 		ctx->qp_max_entries = le32_to_cpu(resp->qp_max_entries);
7066 		ctx->qp_min_qp1_entries = le16_to_cpu(resp->qp_min_qp1_entries);
7067 		ctx->qp_max_l2_entries = le16_to_cpu(resp->qp_max_l2_entries);
7068 		ctx->qp_entry_size = le16_to_cpu(resp->qp_entry_size);
7069 		ctx->srq_max_l2_entries = le16_to_cpu(resp->srq_max_l2_entries);
7070 		ctx->srq_max_entries = le32_to_cpu(resp->srq_max_entries);
7071 		ctx->srq_entry_size = le16_to_cpu(resp->srq_entry_size);
7072 		ctx->cq_max_l2_entries = le16_to_cpu(resp->cq_max_l2_entries);
7073 		ctx->cq_max_entries = le32_to_cpu(resp->cq_max_entries);
7074 		ctx->cq_entry_size = le16_to_cpu(resp->cq_entry_size);
7075 		ctx->vnic_max_vnic_entries =
7076 			le16_to_cpu(resp->vnic_max_vnic_entries);
7077 		ctx->vnic_max_ring_table_entries =
7078 			le16_to_cpu(resp->vnic_max_ring_table_entries);
7079 		ctx->vnic_entry_size = le16_to_cpu(resp->vnic_entry_size);
7080 		ctx->stat_max_entries = le32_to_cpu(resp->stat_max_entries);
7081 		ctx->stat_entry_size = le16_to_cpu(resp->stat_entry_size);
7082 		ctx->tqm_entry_size = le16_to_cpu(resp->tqm_entry_size);
7083 		ctx->tqm_min_entries_per_ring =
7084 			le32_to_cpu(resp->tqm_min_entries_per_ring);
7085 		ctx->tqm_max_entries_per_ring =
7086 			le32_to_cpu(resp->tqm_max_entries_per_ring);
7087 		ctx->tqm_entries_multiple = resp->tqm_entries_multiple;
7088 		if (!ctx->tqm_entries_multiple)
7089 			ctx->tqm_entries_multiple = 1;
7090 		ctx->mrav_max_entries = le32_to_cpu(resp->mrav_max_entries);
7091 		ctx->mrav_entry_size = le16_to_cpu(resp->mrav_entry_size);
7092 		ctx->mrav_num_entries_units =
7093 			le16_to_cpu(resp->mrav_num_entries_units);
7094 		ctx->tim_entry_size = le16_to_cpu(resp->tim_entry_size);
7095 		ctx->tim_max_entries = le32_to_cpu(resp->tim_max_entries);
7096 
7097 		bnxt_init_ctx_initializer(ctx, resp);
7098 
7099 		ctx->tqm_fp_rings_count = resp->tqm_fp_rings_count;
7100 		if (!ctx->tqm_fp_rings_count)
7101 			ctx->tqm_fp_rings_count = bp->max_q;
7102 		else if (ctx->tqm_fp_rings_count > BNXT_MAX_TQM_FP_RINGS)
7103 			ctx->tqm_fp_rings_count = BNXT_MAX_TQM_FP_RINGS;
7104 
7105 		tqm_rings = ctx->tqm_fp_rings_count + BNXT_MAX_TQM_SP_RINGS;
7106 		ctx_pg = kcalloc(tqm_rings, sizeof(*ctx_pg), GFP_KERNEL);
7107 		if (!ctx_pg) {
7108 			kfree(ctx);
7109 			rc = -ENOMEM;
7110 			goto ctx_err;
7111 		}
7112 		for (i = 0; i < tqm_rings; i++, ctx_pg++)
7113 			ctx->tqm_mem[i] = ctx_pg;
7114 		bp->ctx = ctx;
7115 	} else {
7116 		rc = 0;
7117 	}
7118 ctx_err:
7119 	hwrm_req_drop(bp, req);
7120 	return rc;
7121 }
7122 
7123 static void bnxt_hwrm_set_pg_attr(struct bnxt_ring_mem_info *rmem, u8 *pg_attr,
7124 				  __le64 *pg_dir)
7125 {
7126 	if (!rmem->nr_pages)
7127 		return;
7128 
7129 	BNXT_SET_CTX_PAGE_ATTR(*pg_attr);
7130 	if (rmem->depth >= 1) {
7131 		if (rmem->depth == 2)
7132 			*pg_attr |= 2;
7133 		else
7134 			*pg_attr |= 1;
7135 		*pg_dir = cpu_to_le64(rmem->pg_tbl_map);
7136 	} else {
7137 		*pg_dir = cpu_to_le64(rmem->dma_arr[0]);
7138 	}
7139 }
7140 
7141 #define FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES			\
7142 	(FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP |		\
7143 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ |		\
7144 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ |		\
7145 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC |		\
7146 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT)
7147 
7148 static int bnxt_hwrm_func_backing_store_cfg(struct bnxt *bp, u32 enables)
7149 {
7150 	struct hwrm_func_backing_store_cfg_input *req;
7151 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
7152 	struct bnxt_ctx_pg_info *ctx_pg;
7153 	void **__req = (void **)&req;
7154 	u32 req_len = sizeof(*req);
7155 	__le32 *num_entries;
7156 	__le64 *pg_dir;
7157 	u32 flags = 0;
7158 	u8 *pg_attr;
7159 	u32 ena;
7160 	int rc;
7161 	int i;
7162 
7163 	if (!ctx)
7164 		return 0;
7165 
7166 	if (req_len > bp->hwrm_max_ext_req_len)
7167 		req_len = BNXT_BACKING_STORE_CFG_LEGACY_LEN;
7168 	rc = __hwrm_req_init(bp, __req, HWRM_FUNC_BACKING_STORE_CFG, req_len);
7169 	if (rc)
7170 		return rc;
7171 
7172 	req->enables = cpu_to_le32(enables);
7173 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP) {
7174 		ctx_pg = &ctx->qp_mem;
7175 		req->qp_num_entries = cpu_to_le32(ctx_pg->entries);
7176 		req->qp_num_qp1_entries = cpu_to_le16(ctx->qp_min_qp1_entries);
7177 		req->qp_num_l2_entries = cpu_to_le16(ctx->qp_max_l2_entries);
7178 		req->qp_entry_size = cpu_to_le16(ctx->qp_entry_size);
7179 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7180 				      &req->qpc_pg_size_qpc_lvl,
7181 				      &req->qpc_page_dir);
7182 	}
7183 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ) {
7184 		ctx_pg = &ctx->srq_mem;
7185 		req->srq_num_entries = cpu_to_le32(ctx_pg->entries);
7186 		req->srq_num_l2_entries = cpu_to_le16(ctx->srq_max_l2_entries);
7187 		req->srq_entry_size = cpu_to_le16(ctx->srq_entry_size);
7188 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7189 				      &req->srq_pg_size_srq_lvl,
7190 				      &req->srq_page_dir);
7191 	}
7192 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ) {
7193 		ctx_pg = &ctx->cq_mem;
7194 		req->cq_num_entries = cpu_to_le32(ctx_pg->entries);
7195 		req->cq_num_l2_entries = cpu_to_le16(ctx->cq_max_l2_entries);
7196 		req->cq_entry_size = cpu_to_le16(ctx->cq_entry_size);
7197 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7198 				      &req->cq_pg_size_cq_lvl,
7199 				      &req->cq_page_dir);
7200 	}
7201 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC) {
7202 		ctx_pg = &ctx->vnic_mem;
7203 		req->vnic_num_vnic_entries =
7204 			cpu_to_le16(ctx->vnic_max_vnic_entries);
7205 		req->vnic_num_ring_table_entries =
7206 			cpu_to_le16(ctx->vnic_max_ring_table_entries);
7207 		req->vnic_entry_size = cpu_to_le16(ctx->vnic_entry_size);
7208 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7209 				      &req->vnic_pg_size_vnic_lvl,
7210 				      &req->vnic_page_dir);
7211 	}
7212 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) {
7213 		ctx_pg = &ctx->stat_mem;
7214 		req->stat_num_entries = cpu_to_le32(ctx->stat_max_entries);
7215 		req->stat_entry_size = cpu_to_le16(ctx->stat_entry_size);
7216 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7217 				      &req->stat_pg_size_stat_lvl,
7218 				      &req->stat_page_dir);
7219 	}
7220 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV) {
7221 		ctx_pg = &ctx->mrav_mem;
7222 		req->mrav_num_entries = cpu_to_le32(ctx_pg->entries);
7223 		if (ctx->mrav_num_entries_units)
7224 			flags |=
7225 			FUNC_BACKING_STORE_CFG_REQ_FLAGS_MRAV_RESERVATION_SPLIT;
7226 		req->mrav_entry_size = cpu_to_le16(ctx->mrav_entry_size);
7227 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7228 				      &req->mrav_pg_size_mrav_lvl,
7229 				      &req->mrav_page_dir);
7230 	}
7231 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) {
7232 		ctx_pg = &ctx->tim_mem;
7233 		req->tim_num_entries = cpu_to_le32(ctx_pg->entries);
7234 		req->tim_entry_size = cpu_to_le16(ctx->tim_entry_size);
7235 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7236 				      &req->tim_pg_size_tim_lvl,
7237 				      &req->tim_page_dir);
7238 	}
7239 	for (i = 0, num_entries = &req->tqm_sp_num_entries,
7240 	     pg_attr = &req->tqm_sp_pg_size_tqm_sp_lvl,
7241 	     pg_dir = &req->tqm_sp_page_dir,
7242 	     ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP;
7243 	     i < BNXT_MAX_TQM_RINGS;
7244 	     i++, num_entries++, pg_attr++, pg_dir++, ena <<= 1) {
7245 		if (!(enables & ena))
7246 			continue;
7247 
7248 		req->tqm_entry_size = cpu_to_le16(ctx->tqm_entry_size);
7249 		ctx_pg = ctx->tqm_mem[i];
7250 		*num_entries = cpu_to_le32(ctx_pg->entries);
7251 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, pg_attr, pg_dir);
7252 	}
7253 	req->flags = cpu_to_le32(flags);
7254 	return hwrm_req_send(bp, req);
7255 }
7256 
7257 static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp,
7258 				  struct bnxt_ctx_pg_info *ctx_pg)
7259 {
7260 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
7261 
7262 	rmem->page_size = BNXT_PAGE_SIZE;
7263 	rmem->pg_arr = ctx_pg->ctx_pg_arr;
7264 	rmem->dma_arr = ctx_pg->ctx_dma_arr;
7265 	rmem->flags = BNXT_RMEM_VALID_PTE_FLAG;
7266 	if (rmem->depth >= 1)
7267 		rmem->flags |= BNXT_RMEM_USE_FULL_PAGE_FLAG;
7268 	return bnxt_alloc_ring(bp, rmem);
7269 }
7270 
7271 static int bnxt_alloc_ctx_pg_tbls(struct bnxt *bp,
7272 				  struct bnxt_ctx_pg_info *ctx_pg, u32 mem_size,
7273 				  u8 depth, struct bnxt_mem_init *mem_init)
7274 {
7275 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
7276 	int rc;
7277 
7278 	if (!mem_size)
7279 		return -EINVAL;
7280 
7281 	ctx_pg->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
7282 	if (ctx_pg->nr_pages > MAX_CTX_TOTAL_PAGES) {
7283 		ctx_pg->nr_pages = 0;
7284 		return -EINVAL;
7285 	}
7286 	if (ctx_pg->nr_pages > MAX_CTX_PAGES || depth > 1) {
7287 		int nr_tbls, i;
7288 
7289 		rmem->depth = 2;
7290 		ctx_pg->ctx_pg_tbl = kcalloc(MAX_CTX_PAGES, sizeof(ctx_pg),
7291 					     GFP_KERNEL);
7292 		if (!ctx_pg->ctx_pg_tbl)
7293 			return -ENOMEM;
7294 		nr_tbls = DIV_ROUND_UP(ctx_pg->nr_pages, MAX_CTX_PAGES);
7295 		rmem->nr_pages = nr_tbls;
7296 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
7297 		if (rc)
7298 			return rc;
7299 		for (i = 0; i < nr_tbls; i++) {
7300 			struct bnxt_ctx_pg_info *pg_tbl;
7301 
7302 			pg_tbl = kzalloc(sizeof(*pg_tbl), GFP_KERNEL);
7303 			if (!pg_tbl)
7304 				return -ENOMEM;
7305 			ctx_pg->ctx_pg_tbl[i] = pg_tbl;
7306 			rmem = &pg_tbl->ring_mem;
7307 			rmem->pg_tbl = ctx_pg->ctx_pg_arr[i];
7308 			rmem->pg_tbl_map = ctx_pg->ctx_dma_arr[i];
7309 			rmem->depth = 1;
7310 			rmem->nr_pages = MAX_CTX_PAGES;
7311 			rmem->mem_init = mem_init;
7312 			if (i == (nr_tbls - 1)) {
7313 				int rem = ctx_pg->nr_pages % MAX_CTX_PAGES;
7314 
7315 				if (rem)
7316 					rmem->nr_pages = rem;
7317 			}
7318 			rc = bnxt_alloc_ctx_mem_blk(bp, pg_tbl);
7319 			if (rc)
7320 				break;
7321 		}
7322 	} else {
7323 		rmem->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
7324 		if (rmem->nr_pages > 1 || depth)
7325 			rmem->depth = 1;
7326 		rmem->mem_init = mem_init;
7327 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
7328 	}
7329 	return rc;
7330 }
7331 
7332 static void bnxt_free_ctx_pg_tbls(struct bnxt *bp,
7333 				  struct bnxt_ctx_pg_info *ctx_pg)
7334 {
7335 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
7336 
7337 	if (rmem->depth > 1 || ctx_pg->nr_pages > MAX_CTX_PAGES ||
7338 	    ctx_pg->ctx_pg_tbl) {
7339 		int i, nr_tbls = rmem->nr_pages;
7340 
7341 		for (i = 0; i < nr_tbls; i++) {
7342 			struct bnxt_ctx_pg_info *pg_tbl;
7343 			struct bnxt_ring_mem_info *rmem2;
7344 
7345 			pg_tbl = ctx_pg->ctx_pg_tbl[i];
7346 			if (!pg_tbl)
7347 				continue;
7348 			rmem2 = &pg_tbl->ring_mem;
7349 			bnxt_free_ring(bp, rmem2);
7350 			ctx_pg->ctx_pg_arr[i] = NULL;
7351 			kfree(pg_tbl);
7352 			ctx_pg->ctx_pg_tbl[i] = NULL;
7353 		}
7354 		kfree(ctx_pg->ctx_pg_tbl);
7355 		ctx_pg->ctx_pg_tbl = NULL;
7356 	}
7357 	bnxt_free_ring(bp, rmem);
7358 	ctx_pg->nr_pages = 0;
7359 }
7360 
7361 void bnxt_free_ctx_mem(struct bnxt *bp)
7362 {
7363 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
7364 	int i;
7365 
7366 	if (!ctx)
7367 		return;
7368 
7369 	if (ctx->tqm_mem[0]) {
7370 		for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++)
7371 			bnxt_free_ctx_pg_tbls(bp, ctx->tqm_mem[i]);
7372 		kfree(ctx->tqm_mem[0]);
7373 		ctx->tqm_mem[0] = NULL;
7374 	}
7375 
7376 	bnxt_free_ctx_pg_tbls(bp, &ctx->tim_mem);
7377 	bnxt_free_ctx_pg_tbls(bp, &ctx->mrav_mem);
7378 	bnxt_free_ctx_pg_tbls(bp, &ctx->stat_mem);
7379 	bnxt_free_ctx_pg_tbls(bp, &ctx->vnic_mem);
7380 	bnxt_free_ctx_pg_tbls(bp, &ctx->cq_mem);
7381 	bnxt_free_ctx_pg_tbls(bp, &ctx->srq_mem);
7382 	bnxt_free_ctx_pg_tbls(bp, &ctx->qp_mem);
7383 	ctx->flags &= ~BNXT_CTX_FLAG_INITED;
7384 }
7385 
7386 static int bnxt_alloc_ctx_mem(struct bnxt *bp)
7387 {
7388 	struct bnxt_ctx_pg_info *ctx_pg;
7389 	struct bnxt_ctx_mem_info *ctx;
7390 	struct bnxt_mem_init *init;
7391 	u32 mem_size, ena, entries;
7392 	u32 entries_sp, min;
7393 	u32 num_mr, num_ah;
7394 	u32 extra_srqs = 0;
7395 	u32 extra_qps = 0;
7396 	u8 pg_lvl = 1;
7397 	int i, rc;
7398 
7399 	rc = bnxt_hwrm_func_backing_store_qcaps(bp);
7400 	if (rc) {
7401 		netdev_err(bp->dev, "Failed querying context mem capability, rc = %d.\n",
7402 			   rc);
7403 		return rc;
7404 	}
7405 	ctx = bp->ctx;
7406 	if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED))
7407 		return 0;
7408 
7409 	if ((bp->flags & BNXT_FLAG_ROCE_CAP) && !is_kdump_kernel()) {
7410 		pg_lvl = 2;
7411 		extra_qps = 65536;
7412 		extra_srqs = 8192;
7413 	}
7414 
7415 	ctx_pg = &ctx->qp_mem;
7416 	ctx_pg->entries = ctx->qp_min_qp1_entries + ctx->qp_max_l2_entries +
7417 			  extra_qps;
7418 	if (ctx->qp_entry_size) {
7419 		mem_size = ctx->qp_entry_size * ctx_pg->entries;
7420 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_QP];
7421 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init);
7422 		if (rc)
7423 			return rc;
7424 	}
7425 
7426 	ctx_pg = &ctx->srq_mem;
7427 	ctx_pg->entries = ctx->srq_max_l2_entries + extra_srqs;
7428 	if (ctx->srq_entry_size) {
7429 		mem_size = ctx->srq_entry_size * ctx_pg->entries;
7430 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_SRQ];
7431 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init);
7432 		if (rc)
7433 			return rc;
7434 	}
7435 
7436 	ctx_pg = &ctx->cq_mem;
7437 	ctx_pg->entries = ctx->cq_max_l2_entries + extra_qps * 2;
7438 	if (ctx->cq_entry_size) {
7439 		mem_size = ctx->cq_entry_size * ctx_pg->entries;
7440 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_CQ];
7441 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init);
7442 		if (rc)
7443 			return rc;
7444 	}
7445 
7446 	ctx_pg = &ctx->vnic_mem;
7447 	ctx_pg->entries = ctx->vnic_max_vnic_entries +
7448 			  ctx->vnic_max_ring_table_entries;
7449 	if (ctx->vnic_entry_size) {
7450 		mem_size = ctx->vnic_entry_size * ctx_pg->entries;
7451 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_VNIC];
7452 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, init);
7453 		if (rc)
7454 			return rc;
7455 	}
7456 
7457 	ctx_pg = &ctx->stat_mem;
7458 	ctx_pg->entries = ctx->stat_max_entries;
7459 	if (ctx->stat_entry_size) {
7460 		mem_size = ctx->stat_entry_size * ctx_pg->entries;
7461 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_STAT];
7462 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, init);
7463 		if (rc)
7464 			return rc;
7465 	}
7466 
7467 	ena = 0;
7468 	if (!(bp->flags & BNXT_FLAG_ROCE_CAP))
7469 		goto skip_rdma;
7470 
7471 	ctx_pg = &ctx->mrav_mem;
7472 	/* 128K extra is needed to accommodate static AH context
7473 	 * allocation by f/w.
7474 	 */
7475 	num_mr = 1024 * 256;
7476 	num_ah = 1024 * 128;
7477 	ctx_pg->entries = num_mr + num_ah;
7478 	if (ctx->mrav_entry_size) {
7479 		mem_size = ctx->mrav_entry_size * ctx_pg->entries;
7480 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_MRAV];
7481 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 2, init);
7482 		if (rc)
7483 			return rc;
7484 	}
7485 	ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV;
7486 	if (ctx->mrav_num_entries_units)
7487 		ctx_pg->entries =
7488 			((num_mr / ctx->mrav_num_entries_units) << 16) |
7489 			 (num_ah / ctx->mrav_num_entries_units);
7490 
7491 	ctx_pg = &ctx->tim_mem;
7492 	ctx_pg->entries = ctx->qp_mem.entries;
7493 	if (ctx->tim_entry_size) {
7494 		mem_size = ctx->tim_entry_size * ctx_pg->entries;
7495 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, NULL);
7496 		if (rc)
7497 			return rc;
7498 	}
7499 	ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM;
7500 
7501 skip_rdma:
7502 	min = ctx->tqm_min_entries_per_ring;
7503 	entries_sp = ctx->vnic_max_vnic_entries + ctx->qp_max_l2_entries +
7504 		     2 * (extra_qps + ctx->qp_min_qp1_entries) + min;
7505 	entries_sp = roundup(entries_sp, ctx->tqm_entries_multiple);
7506 	entries = ctx->qp_max_l2_entries + 2 * (extra_qps + ctx->qp_min_qp1_entries);
7507 	entries = roundup(entries, ctx->tqm_entries_multiple);
7508 	entries = clamp_t(u32, entries, min, ctx->tqm_max_entries_per_ring);
7509 	for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++) {
7510 		ctx_pg = ctx->tqm_mem[i];
7511 		ctx_pg->entries = i ? entries : entries_sp;
7512 		if (ctx->tqm_entry_size) {
7513 			mem_size = ctx->tqm_entry_size * ctx_pg->entries;
7514 			rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1,
7515 						    NULL);
7516 			if (rc)
7517 				return rc;
7518 		}
7519 		ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP << i;
7520 	}
7521 	ena |= FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES;
7522 	rc = bnxt_hwrm_func_backing_store_cfg(bp, ena);
7523 	if (rc) {
7524 		netdev_err(bp->dev, "Failed configuring context mem, rc = %d.\n",
7525 			   rc);
7526 		return rc;
7527 	}
7528 	ctx->flags |= BNXT_CTX_FLAG_INITED;
7529 	return 0;
7530 }
7531 
7532 int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all)
7533 {
7534 	struct hwrm_func_resource_qcaps_output *resp;
7535 	struct hwrm_func_resource_qcaps_input *req;
7536 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7537 	int rc;
7538 
7539 	rc = hwrm_req_init(bp, req, HWRM_FUNC_RESOURCE_QCAPS);
7540 	if (rc)
7541 		return rc;
7542 
7543 	req->fid = cpu_to_le16(0xffff);
7544 	resp = hwrm_req_hold(bp, req);
7545 	rc = hwrm_req_send_silent(bp, req);
7546 	if (rc)
7547 		goto hwrm_func_resc_qcaps_exit;
7548 
7549 	hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs);
7550 	if (!all)
7551 		goto hwrm_func_resc_qcaps_exit;
7552 
7553 	hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx);
7554 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
7555 	hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings);
7556 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
7557 	hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings);
7558 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
7559 	hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings);
7560 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
7561 	hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps);
7562 	hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps);
7563 	hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs);
7564 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
7565 	hw_resc->min_vnics = le16_to_cpu(resp->min_vnics);
7566 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
7567 	hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx);
7568 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
7569 
7570 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
7571 		u16 max_msix = le16_to_cpu(resp->max_msix);
7572 
7573 		hw_resc->max_nqs = max_msix;
7574 		hw_resc->max_hw_ring_grps = hw_resc->max_rx_rings;
7575 	}
7576 
7577 	if (BNXT_PF(bp)) {
7578 		struct bnxt_pf_info *pf = &bp->pf;
7579 
7580 		pf->vf_resv_strategy =
7581 			le16_to_cpu(resp->vf_reservation_strategy);
7582 		if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC)
7583 			pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL;
7584 	}
7585 hwrm_func_resc_qcaps_exit:
7586 	hwrm_req_drop(bp, req);
7587 	return rc;
7588 }
7589 
7590 static int __bnxt_hwrm_ptp_qcfg(struct bnxt *bp)
7591 {
7592 	struct hwrm_port_mac_ptp_qcfg_output *resp;
7593 	struct hwrm_port_mac_ptp_qcfg_input *req;
7594 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
7595 	bool phc_cfg;
7596 	u8 flags;
7597 	int rc;
7598 
7599 	if (bp->hwrm_spec_code < 0x10801) {
7600 		rc = -ENODEV;
7601 		goto no_ptp;
7602 	}
7603 
7604 	rc = hwrm_req_init(bp, req, HWRM_PORT_MAC_PTP_QCFG);
7605 	if (rc)
7606 		goto no_ptp;
7607 
7608 	req->port_id = cpu_to_le16(bp->pf.port_id);
7609 	resp = hwrm_req_hold(bp, req);
7610 	rc = hwrm_req_send(bp, req);
7611 	if (rc)
7612 		goto exit;
7613 
7614 	flags = resp->flags;
7615 	if (!(flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_HWRM_ACCESS)) {
7616 		rc = -ENODEV;
7617 		goto exit;
7618 	}
7619 	if (!ptp) {
7620 		ptp = kzalloc(sizeof(*ptp), GFP_KERNEL);
7621 		if (!ptp) {
7622 			rc = -ENOMEM;
7623 			goto exit;
7624 		}
7625 		ptp->bp = bp;
7626 		bp->ptp_cfg = ptp;
7627 	}
7628 	if (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_PARTIAL_DIRECT_ACCESS_REF_CLOCK) {
7629 		ptp->refclk_regs[0] = le32_to_cpu(resp->ts_ref_clock_reg_lower);
7630 		ptp->refclk_regs[1] = le32_to_cpu(resp->ts_ref_clock_reg_upper);
7631 	} else if (bp->flags & BNXT_FLAG_CHIP_P5) {
7632 		ptp->refclk_regs[0] = BNXT_TS_REG_TIMESYNC_TS0_LOWER;
7633 		ptp->refclk_regs[1] = BNXT_TS_REG_TIMESYNC_TS0_UPPER;
7634 	} else {
7635 		rc = -ENODEV;
7636 		goto exit;
7637 	}
7638 	phc_cfg = (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_RTC_CONFIGURED) != 0;
7639 	rc = bnxt_ptp_init(bp, phc_cfg);
7640 	if (rc)
7641 		netdev_warn(bp->dev, "PTP initialization failed.\n");
7642 exit:
7643 	hwrm_req_drop(bp, req);
7644 	if (!rc)
7645 		return 0;
7646 
7647 no_ptp:
7648 	bnxt_ptp_clear(bp);
7649 	kfree(ptp);
7650 	bp->ptp_cfg = NULL;
7651 	return rc;
7652 }
7653 
7654 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp)
7655 {
7656 	struct hwrm_func_qcaps_output *resp;
7657 	struct hwrm_func_qcaps_input *req;
7658 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7659 	u32 flags, flags_ext, flags_ext2;
7660 	int rc;
7661 
7662 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCAPS);
7663 	if (rc)
7664 		return rc;
7665 
7666 	req->fid = cpu_to_le16(0xffff);
7667 	resp = hwrm_req_hold(bp, req);
7668 	rc = hwrm_req_send(bp, req);
7669 	if (rc)
7670 		goto hwrm_func_qcaps_exit;
7671 
7672 	flags = le32_to_cpu(resp->flags);
7673 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED)
7674 		bp->flags |= BNXT_FLAG_ROCEV1_CAP;
7675 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED)
7676 		bp->flags |= BNXT_FLAG_ROCEV2_CAP;
7677 	if (flags & FUNC_QCAPS_RESP_FLAGS_PCIE_STATS_SUPPORTED)
7678 		bp->fw_cap |= BNXT_FW_CAP_PCIE_STATS_SUPPORTED;
7679 	if (flags & FUNC_QCAPS_RESP_FLAGS_HOT_RESET_CAPABLE)
7680 		bp->fw_cap |= BNXT_FW_CAP_HOT_RESET;
7681 	if (flags & FUNC_QCAPS_RESP_FLAGS_EXT_STATS_SUPPORTED)
7682 		bp->fw_cap |= BNXT_FW_CAP_EXT_STATS_SUPPORTED;
7683 	if (flags &  FUNC_QCAPS_RESP_FLAGS_ERROR_RECOVERY_CAPABLE)
7684 		bp->fw_cap |= BNXT_FW_CAP_ERROR_RECOVERY;
7685 	if (flags & FUNC_QCAPS_RESP_FLAGS_ERR_RECOVER_RELOAD)
7686 		bp->fw_cap |= BNXT_FW_CAP_ERR_RECOVER_RELOAD;
7687 	if (!(flags & FUNC_QCAPS_RESP_FLAGS_VLAN_ACCELERATION_TX_DISABLED))
7688 		bp->fw_cap |= BNXT_FW_CAP_VLAN_TX_INSERT;
7689 	if (flags & FUNC_QCAPS_RESP_FLAGS_DBG_QCAPS_CMD_SUPPORTED)
7690 		bp->fw_cap |= BNXT_FW_CAP_DBG_QCAPS;
7691 
7692 	flags_ext = le32_to_cpu(resp->flags_ext);
7693 	if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_EXT_HW_STATS_SUPPORTED)
7694 		bp->fw_cap |= BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED;
7695 	if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_PPS_SUPPORTED))
7696 		bp->fw_cap |= BNXT_FW_CAP_PTP_PPS;
7697 	if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_64BIT_RTC_SUPPORTED)
7698 		bp->fw_cap |= BNXT_FW_CAP_PTP_RTC;
7699 	if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_HOT_RESET_IF_SUPPORT))
7700 		bp->fw_cap |= BNXT_FW_CAP_HOT_RESET_IF;
7701 	if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_FW_LIVEPATCH_SUPPORTED))
7702 		bp->fw_cap |= BNXT_FW_CAP_LIVEPATCH;
7703 
7704 	flags_ext2 = le32_to_cpu(resp->flags_ext2);
7705 	if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_RX_ALL_PKTS_TIMESTAMPS_SUPPORTED)
7706 		bp->fw_cap |= BNXT_FW_CAP_RX_ALL_PKT_TS;
7707 
7708 	bp->tx_push_thresh = 0;
7709 	if ((flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED) &&
7710 	    BNXT_FW_MAJ(bp) > 217)
7711 		bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
7712 
7713 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
7714 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
7715 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
7716 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
7717 	hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
7718 	if (!hw_resc->max_hw_ring_grps)
7719 		hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings;
7720 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
7721 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
7722 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
7723 
7724 	if (BNXT_PF(bp)) {
7725 		struct bnxt_pf_info *pf = &bp->pf;
7726 
7727 		pf->fw_fid = le16_to_cpu(resp->fid);
7728 		pf->port_id = le16_to_cpu(resp->port_id);
7729 		memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN);
7730 		pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
7731 		pf->max_vfs = le16_to_cpu(resp->max_vfs);
7732 		pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
7733 		pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
7734 		pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
7735 		pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
7736 		pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
7737 		pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
7738 		bp->flags &= ~BNXT_FLAG_WOL_CAP;
7739 		if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED)
7740 			bp->flags |= BNXT_FLAG_WOL_CAP;
7741 		if (flags & FUNC_QCAPS_RESP_FLAGS_PTP_SUPPORTED) {
7742 			__bnxt_hwrm_ptp_qcfg(bp);
7743 		} else {
7744 			bnxt_ptp_clear(bp);
7745 			kfree(bp->ptp_cfg);
7746 			bp->ptp_cfg = NULL;
7747 		}
7748 	} else {
7749 #ifdef CONFIG_BNXT_SRIOV
7750 		struct bnxt_vf_info *vf = &bp->vf;
7751 
7752 		vf->fw_fid = le16_to_cpu(resp->fid);
7753 		memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN);
7754 #endif
7755 	}
7756 
7757 hwrm_func_qcaps_exit:
7758 	hwrm_req_drop(bp, req);
7759 	return rc;
7760 }
7761 
7762 static void bnxt_hwrm_dbg_qcaps(struct bnxt *bp)
7763 {
7764 	struct hwrm_dbg_qcaps_output *resp;
7765 	struct hwrm_dbg_qcaps_input *req;
7766 	int rc;
7767 
7768 	bp->fw_dbg_cap = 0;
7769 	if (!(bp->fw_cap & BNXT_FW_CAP_DBG_QCAPS))
7770 		return;
7771 
7772 	rc = hwrm_req_init(bp, req, HWRM_DBG_QCAPS);
7773 	if (rc)
7774 		return;
7775 
7776 	req->fid = cpu_to_le16(0xffff);
7777 	resp = hwrm_req_hold(bp, req);
7778 	rc = hwrm_req_send(bp, req);
7779 	if (rc)
7780 		goto hwrm_dbg_qcaps_exit;
7781 
7782 	bp->fw_dbg_cap = le32_to_cpu(resp->flags);
7783 
7784 hwrm_dbg_qcaps_exit:
7785 	hwrm_req_drop(bp, req);
7786 }
7787 
7788 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp);
7789 
7790 static int bnxt_hwrm_func_qcaps(struct bnxt *bp)
7791 {
7792 	int rc;
7793 
7794 	rc = __bnxt_hwrm_func_qcaps(bp);
7795 	if (rc)
7796 		return rc;
7797 
7798 	bnxt_hwrm_dbg_qcaps(bp);
7799 
7800 	rc = bnxt_hwrm_queue_qportcfg(bp);
7801 	if (rc) {
7802 		netdev_err(bp->dev, "hwrm query qportcfg failure rc: %d\n", rc);
7803 		return rc;
7804 	}
7805 	if (bp->hwrm_spec_code >= 0x10803) {
7806 		rc = bnxt_alloc_ctx_mem(bp);
7807 		if (rc)
7808 			return rc;
7809 		rc = bnxt_hwrm_func_resc_qcaps(bp, true);
7810 		if (!rc)
7811 			bp->fw_cap |= BNXT_FW_CAP_NEW_RM;
7812 	}
7813 	return 0;
7814 }
7815 
7816 static int bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(struct bnxt *bp)
7817 {
7818 	struct hwrm_cfa_adv_flow_mgnt_qcaps_output *resp;
7819 	struct hwrm_cfa_adv_flow_mgnt_qcaps_input *req;
7820 	u32 flags;
7821 	int rc;
7822 
7823 	if (!(bp->fw_cap & BNXT_FW_CAP_CFA_ADV_FLOW))
7824 		return 0;
7825 
7826 	rc = hwrm_req_init(bp, req, HWRM_CFA_ADV_FLOW_MGNT_QCAPS);
7827 	if (rc)
7828 		return rc;
7829 
7830 	resp = hwrm_req_hold(bp, req);
7831 	rc = hwrm_req_send(bp, req);
7832 	if (rc)
7833 		goto hwrm_cfa_adv_qcaps_exit;
7834 
7835 	flags = le32_to_cpu(resp->flags);
7836 	if (flags &
7837 	    CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V2_SUPPORTED)
7838 		bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2;
7839 
7840 hwrm_cfa_adv_qcaps_exit:
7841 	hwrm_req_drop(bp, req);
7842 	return rc;
7843 }
7844 
7845 static int __bnxt_alloc_fw_health(struct bnxt *bp)
7846 {
7847 	if (bp->fw_health)
7848 		return 0;
7849 
7850 	bp->fw_health = kzalloc(sizeof(*bp->fw_health), GFP_KERNEL);
7851 	if (!bp->fw_health)
7852 		return -ENOMEM;
7853 
7854 	mutex_init(&bp->fw_health->lock);
7855 	return 0;
7856 }
7857 
7858 static int bnxt_alloc_fw_health(struct bnxt *bp)
7859 {
7860 	int rc;
7861 
7862 	if (!(bp->fw_cap & BNXT_FW_CAP_HOT_RESET) &&
7863 	    !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
7864 		return 0;
7865 
7866 	rc = __bnxt_alloc_fw_health(bp);
7867 	if (rc) {
7868 		bp->fw_cap &= ~BNXT_FW_CAP_HOT_RESET;
7869 		bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
7870 		return rc;
7871 	}
7872 
7873 	return 0;
7874 }
7875 
7876 static void __bnxt_map_fw_health_reg(struct bnxt *bp, u32 reg)
7877 {
7878 	writel(reg & BNXT_GRC_BASE_MASK, bp->bar0 +
7879 					 BNXT_GRCPF_REG_WINDOW_BASE_OUT +
7880 					 BNXT_FW_HEALTH_WIN_MAP_OFF);
7881 }
7882 
7883 static void bnxt_inv_fw_health_reg(struct bnxt *bp)
7884 {
7885 	struct bnxt_fw_health *fw_health = bp->fw_health;
7886 	u32 reg_type;
7887 
7888 	if (!fw_health)
7889 		return;
7890 
7891 	reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_HEALTH_REG]);
7892 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC)
7893 		fw_health->status_reliable = false;
7894 
7895 	reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_RESET_CNT_REG]);
7896 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC)
7897 		fw_health->resets_reliable = false;
7898 }
7899 
7900 static void bnxt_try_map_fw_health_reg(struct bnxt *bp)
7901 {
7902 	void __iomem *hs;
7903 	u32 status_loc;
7904 	u32 reg_type;
7905 	u32 sig;
7906 
7907 	if (bp->fw_health)
7908 		bp->fw_health->status_reliable = false;
7909 
7910 	__bnxt_map_fw_health_reg(bp, HCOMM_STATUS_STRUCT_LOC);
7911 	hs = bp->bar0 + BNXT_FW_HEALTH_WIN_OFF(HCOMM_STATUS_STRUCT_LOC);
7912 
7913 	sig = readl(hs + offsetof(struct hcomm_status, sig_ver));
7914 	if ((sig & HCOMM_STATUS_SIGNATURE_MASK) != HCOMM_STATUS_SIGNATURE_VAL) {
7915 		if (!bp->chip_num) {
7916 			__bnxt_map_fw_health_reg(bp, BNXT_GRC_REG_BASE);
7917 			bp->chip_num = readl(bp->bar0 +
7918 					     BNXT_FW_HEALTH_WIN_BASE +
7919 					     BNXT_GRC_REG_CHIP_NUM);
7920 		}
7921 		if (!BNXT_CHIP_P5(bp))
7922 			return;
7923 
7924 		status_loc = BNXT_GRC_REG_STATUS_P5 |
7925 			     BNXT_FW_HEALTH_REG_TYPE_BAR0;
7926 	} else {
7927 		status_loc = readl(hs + offsetof(struct hcomm_status,
7928 						 fw_status_loc));
7929 	}
7930 
7931 	if (__bnxt_alloc_fw_health(bp)) {
7932 		netdev_warn(bp->dev, "no memory for firmware status checks\n");
7933 		return;
7934 	}
7935 
7936 	bp->fw_health->regs[BNXT_FW_HEALTH_REG] = status_loc;
7937 	reg_type = BNXT_FW_HEALTH_REG_TYPE(status_loc);
7938 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) {
7939 		__bnxt_map_fw_health_reg(bp, status_loc);
7940 		bp->fw_health->mapped_regs[BNXT_FW_HEALTH_REG] =
7941 			BNXT_FW_HEALTH_WIN_OFF(status_loc);
7942 	}
7943 
7944 	bp->fw_health->status_reliable = true;
7945 }
7946 
7947 static int bnxt_map_fw_health_regs(struct bnxt *bp)
7948 {
7949 	struct bnxt_fw_health *fw_health = bp->fw_health;
7950 	u32 reg_base = 0xffffffff;
7951 	int i;
7952 
7953 	bp->fw_health->status_reliable = false;
7954 	bp->fw_health->resets_reliable = false;
7955 	/* Only pre-map the monitoring GRC registers using window 3 */
7956 	for (i = 0; i < 4; i++) {
7957 		u32 reg = fw_health->regs[i];
7958 
7959 		if (BNXT_FW_HEALTH_REG_TYPE(reg) != BNXT_FW_HEALTH_REG_TYPE_GRC)
7960 			continue;
7961 		if (reg_base == 0xffffffff)
7962 			reg_base = reg & BNXT_GRC_BASE_MASK;
7963 		if ((reg & BNXT_GRC_BASE_MASK) != reg_base)
7964 			return -ERANGE;
7965 		fw_health->mapped_regs[i] = BNXT_FW_HEALTH_WIN_OFF(reg);
7966 	}
7967 	bp->fw_health->status_reliable = true;
7968 	bp->fw_health->resets_reliable = true;
7969 	if (reg_base == 0xffffffff)
7970 		return 0;
7971 
7972 	__bnxt_map_fw_health_reg(bp, reg_base);
7973 	return 0;
7974 }
7975 
7976 static void bnxt_remap_fw_health_regs(struct bnxt *bp)
7977 {
7978 	if (!bp->fw_health)
7979 		return;
7980 
7981 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) {
7982 		bp->fw_health->status_reliable = true;
7983 		bp->fw_health->resets_reliable = true;
7984 	} else {
7985 		bnxt_try_map_fw_health_reg(bp);
7986 	}
7987 }
7988 
7989 static int bnxt_hwrm_error_recovery_qcfg(struct bnxt *bp)
7990 {
7991 	struct bnxt_fw_health *fw_health = bp->fw_health;
7992 	struct hwrm_error_recovery_qcfg_output *resp;
7993 	struct hwrm_error_recovery_qcfg_input *req;
7994 	int rc, i;
7995 
7996 	if (!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
7997 		return 0;
7998 
7999 	rc = hwrm_req_init(bp, req, HWRM_ERROR_RECOVERY_QCFG);
8000 	if (rc)
8001 		return rc;
8002 
8003 	resp = hwrm_req_hold(bp, req);
8004 	rc = hwrm_req_send(bp, req);
8005 	if (rc)
8006 		goto err_recovery_out;
8007 	fw_health->flags = le32_to_cpu(resp->flags);
8008 	if ((fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) &&
8009 	    !(bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL)) {
8010 		rc = -EINVAL;
8011 		goto err_recovery_out;
8012 	}
8013 	fw_health->polling_dsecs = le32_to_cpu(resp->driver_polling_freq);
8014 	fw_health->master_func_wait_dsecs =
8015 		le32_to_cpu(resp->master_func_wait_period);
8016 	fw_health->normal_func_wait_dsecs =
8017 		le32_to_cpu(resp->normal_func_wait_period);
8018 	fw_health->post_reset_wait_dsecs =
8019 		le32_to_cpu(resp->master_func_wait_period_after_reset);
8020 	fw_health->post_reset_max_wait_dsecs =
8021 		le32_to_cpu(resp->max_bailout_time_after_reset);
8022 	fw_health->regs[BNXT_FW_HEALTH_REG] =
8023 		le32_to_cpu(resp->fw_health_status_reg);
8024 	fw_health->regs[BNXT_FW_HEARTBEAT_REG] =
8025 		le32_to_cpu(resp->fw_heartbeat_reg);
8026 	fw_health->regs[BNXT_FW_RESET_CNT_REG] =
8027 		le32_to_cpu(resp->fw_reset_cnt_reg);
8028 	fw_health->regs[BNXT_FW_RESET_INPROG_REG] =
8029 		le32_to_cpu(resp->reset_inprogress_reg);
8030 	fw_health->fw_reset_inprog_reg_mask =
8031 		le32_to_cpu(resp->reset_inprogress_reg_mask);
8032 	fw_health->fw_reset_seq_cnt = resp->reg_array_cnt;
8033 	if (fw_health->fw_reset_seq_cnt >= 16) {
8034 		rc = -EINVAL;
8035 		goto err_recovery_out;
8036 	}
8037 	for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) {
8038 		fw_health->fw_reset_seq_regs[i] =
8039 			le32_to_cpu(resp->reset_reg[i]);
8040 		fw_health->fw_reset_seq_vals[i] =
8041 			le32_to_cpu(resp->reset_reg_val[i]);
8042 		fw_health->fw_reset_seq_delay_msec[i] =
8043 			resp->delay_after_reset[i];
8044 	}
8045 err_recovery_out:
8046 	hwrm_req_drop(bp, req);
8047 	if (!rc)
8048 		rc = bnxt_map_fw_health_regs(bp);
8049 	if (rc)
8050 		bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
8051 	return rc;
8052 }
8053 
8054 static int bnxt_hwrm_func_reset(struct bnxt *bp)
8055 {
8056 	struct hwrm_func_reset_input *req;
8057 	int rc;
8058 
8059 	rc = hwrm_req_init(bp, req, HWRM_FUNC_RESET);
8060 	if (rc)
8061 		return rc;
8062 
8063 	req->enables = 0;
8064 	hwrm_req_timeout(bp, req, HWRM_RESET_TIMEOUT);
8065 	return hwrm_req_send(bp, req);
8066 }
8067 
8068 static void bnxt_nvm_cfg_ver_get(struct bnxt *bp)
8069 {
8070 	struct hwrm_nvm_get_dev_info_output nvm_info;
8071 
8072 	if (!bnxt_hwrm_nvm_get_dev_info(bp, &nvm_info))
8073 		snprintf(bp->nvm_cfg_ver, FW_VER_STR_LEN, "%d.%d.%d",
8074 			 nvm_info.nvm_cfg_ver_maj, nvm_info.nvm_cfg_ver_min,
8075 			 nvm_info.nvm_cfg_ver_upd);
8076 }
8077 
8078 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
8079 {
8080 	struct hwrm_queue_qportcfg_output *resp;
8081 	struct hwrm_queue_qportcfg_input *req;
8082 	u8 i, j, *qptr;
8083 	bool no_rdma;
8084 	int rc = 0;
8085 
8086 	rc = hwrm_req_init(bp, req, HWRM_QUEUE_QPORTCFG);
8087 	if (rc)
8088 		return rc;
8089 
8090 	resp = hwrm_req_hold(bp, req);
8091 	rc = hwrm_req_send(bp, req);
8092 	if (rc)
8093 		goto qportcfg_exit;
8094 
8095 	if (!resp->max_configurable_queues) {
8096 		rc = -EINVAL;
8097 		goto qportcfg_exit;
8098 	}
8099 	bp->max_tc = resp->max_configurable_queues;
8100 	bp->max_lltc = resp->max_configurable_lossless_queues;
8101 	if (bp->max_tc > BNXT_MAX_QUEUE)
8102 		bp->max_tc = BNXT_MAX_QUEUE;
8103 
8104 	no_rdma = !(bp->flags & BNXT_FLAG_ROCE_CAP);
8105 	qptr = &resp->queue_id0;
8106 	for (i = 0, j = 0; i < bp->max_tc; i++) {
8107 		bp->q_info[j].queue_id = *qptr;
8108 		bp->q_ids[i] = *qptr++;
8109 		bp->q_info[j].queue_profile = *qptr++;
8110 		bp->tc_to_qidx[j] = j;
8111 		if (!BNXT_CNPQ(bp->q_info[j].queue_profile) ||
8112 		    (no_rdma && BNXT_PF(bp)))
8113 			j++;
8114 	}
8115 	bp->max_q = bp->max_tc;
8116 	bp->max_tc = max_t(u8, j, 1);
8117 
8118 	if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG)
8119 		bp->max_tc = 1;
8120 
8121 	if (bp->max_lltc > bp->max_tc)
8122 		bp->max_lltc = bp->max_tc;
8123 
8124 qportcfg_exit:
8125 	hwrm_req_drop(bp, req);
8126 	return rc;
8127 }
8128 
8129 static int bnxt_hwrm_poll(struct bnxt *bp)
8130 {
8131 	struct hwrm_ver_get_input *req;
8132 	int rc;
8133 
8134 	rc = hwrm_req_init(bp, req, HWRM_VER_GET);
8135 	if (rc)
8136 		return rc;
8137 
8138 	req->hwrm_intf_maj = HWRM_VERSION_MAJOR;
8139 	req->hwrm_intf_min = HWRM_VERSION_MINOR;
8140 	req->hwrm_intf_upd = HWRM_VERSION_UPDATE;
8141 
8142 	hwrm_req_flags(bp, req, BNXT_HWRM_CTX_SILENT | BNXT_HWRM_FULL_WAIT);
8143 	rc = hwrm_req_send(bp, req);
8144 	return rc;
8145 }
8146 
8147 static int bnxt_hwrm_ver_get(struct bnxt *bp)
8148 {
8149 	struct hwrm_ver_get_output *resp;
8150 	struct hwrm_ver_get_input *req;
8151 	u16 fw_maj, fw_min, fw_bld, fw_rsv;
8152 	u32 dev_caps_cfg, hwrm_ver;
8153 	int rc, len;
8154 
8155 	rc = hwrm_req_init(bp, req, HWRM_VER_GET);
8156 	if (rc)
8157 		return rc;
8158 
8159 	hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT);
8160 	bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN;
8161 	req->hwrm_intf_maj = HWRM_VERSION_MAJOR;
8162 	req->hwrm_intf_min = HWRM_VERSION_MINOR;
8163 	req->hwrm_intf_upd = HWRM_VERSION_UPDATE;
8164 
8165 	resp = hwrm_req_hold(bp, req);
8166 	rc = hwrm_req_send(bp, req);
8167 	if (rc)
8168 		goto hwrm_ver_get_exit;
8169 
8170 	memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
8171 
8172 	bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 |
8173 			     resp->hwrm_intf_min_8b << 8 |
8174 			     resp->hwrm_intf_upd_8b;
8175 	if (resp->hwrm_intf_maj_8b < 1) {
8176 		netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
8177 			    resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
8178 			    resp->hwrm_intf_upd_8b);
8179 		netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
8180 	}
8181 
8182 	hwrm_ver = HWRM_VERSION_MAJOR << 16 | HWRM_VERSION_MINOR << 8 |
8183 			HWRM_VERSION_UPDATE;
8184 
8185 	if (bp->hwrm_spec_code > hwrm_ver)
8186 		snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d",
8187 			 HWRM_VERSION_MAJOR, HWRM_VERSION_MINOR,
8188 			 HWRM_VERSION_UPDATE);
8189 	else
8190 		snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d",
8191 			 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
8192 			 resp->hwrm_intf_upd_8b);
8193 
8194 	fw_maj = le16_to_cpu(resp->hwrm_fw_major);
8195 	if (bp->hwrm_spec_code > 0x10803 && fw_maj) {
8196 		fw_min = le16_to_cpu(resp->hwrm_fw_minor);
8197 		fw_bld = le16_to_cpu(resp->hwrm_fw_build);
8198 		fw_rsv = le16_to_cpu(resp->hwrm_fw_patch);
8199 		len = FW_VER_STR_LEN;
8200 	} else {
8201 		fw_maj = resp->hwrm_fw_maj_8b;
8202 		fw_min = resp->hwrm_fw_min_8b;
8203 		fw_bld = resp->hwrm_fw_bld_8b;
8204 		fw_rsv = resp->hwrm_fw_rsvd_8b;
8205 		len = BC_HWRM_STR_LEN;
8206 	}
8207 	bp->fw_ver_code = BNXT_FW_VER_CODE(fw_maj, fw_min, fw_bld, fw_rsv);
8208 	snprintf(bp->fw_ver_str, len, "%d.%d.%d.%d", fw_maj, fw_min, fw_bld,
8209 		 fw_rsv);
8210 
8211 	if (strlen(resp->active_pkg_name)) {
8212 		int fw_ver_len = strlen(bp->fw_ver_str);
8213 
8214 		snprintf(bp->fw_ver_str + fw_ver_len,
8215 			 FW_VER_STR_LEN - fw_ver_len - 1, "/pkg %s",
8216 			 resp->active_pkg_name);
8217 		bp->fw_cap |= BNXT_FW_CAP_PKG_VER;
8218 	}
8219 
8220 	bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout);
8221 	if (!bp->hwrm_cmd_timeout)
8222 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
8223 	bp->hwrm_cmd_max_timeout = le16_to_cpu(resp->max_req_timeout) * 1000;
8224 	if (!bp->hwrm_cmd_max_timeout)
8225 		bp->hwrm_cmd_max_timeout = HWRM_CMD_MAX_TIMEOUT;
8226 	else if (bp->hwrm_cmd_max_timeout > HWRM_CMD_MAX_TIMEOUT)
8227 		netdev_warn(bp->dev, "Device requests max timeout of %d seconds, may trigger hung task watchdog\n",
8228 			    bp->hwrm_cmd_max_timeout / 1000);
8229 
8230 	if (resp->hwrm_intf_maj_8b >= 1) {
8231 		bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len);
8232 		bp->hwrm_max_ext_req_len = le16_to_cpu(resp->max_ext_req_len);
8233 	}
8234 	if (bp->hwrm_max_ext_req_len < HWRM_MAX_REQ_LEN)
8235 		bp->hwrm_max_ext_req_len = HWRM_MAX_REQ_LEN;
8236 
8237 	bp->chip_num = le16_to_cpu(resp->chip_num);
8238 	bp->chip_rev = resp->chip_rev;
8239 	if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev &&
8240 	    !resp->chip_metal)
8241 		bp->flags |= BNXT_FLAG_CHIP_NITRO_A0;
8242 
8243 	dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg);
8244 	if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) &&
8245 	    (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED))
8246 		bp->fw_cap |= BNXT_FW_CAP_SHORT_CMD;
8247 
8248 	if (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_KONG_MB_CHNL_SUPPORTED)
8249 		bp->fw_cap |= BNXT_FW_CAP_KONG_MB_CHNL;
8250 
8251 	if (dev_caps_cfg &
8252 	    VER_GET_RESP_DEV_CAPS_CFG_FLOW_HANDLE_64BIT_SUPPORTED)
8253 		bp->fw_cap |= BNXT_FW_CAP_OVS_64BIT_HANDLE;
8254 
8255 	if (dev_caps_cfg &
8256 	    VER_GET_RESP_DEV_CAPS_CFG_TRUSTED_VF_SUPPORTED)
8257 		bp->fw_cap |= BNXT_FW_CAP_TRUSTED_VF;
8258 
8259 	if (dev_caps_cfg &
8260 	    VER_GET_RESP_DEV_CAPS_CFG_CFA_ADV_FLOW_MGNT_SUPPORTED)
8261 		bp->fw_cap |= BNXT_FW_CAP_CFA_ADV_FLOW;
8262 
8263 hwrm_ver_get_exit:
8264 	hwrm_req_drop(bp, req);
8265 	return rc;
8266 }
8267 
8268 int bnxt_hwrm_fw_set_time(struct bnxt *bp)
8269 {
8270 	struct hwrm_fw_set_time_input *req;
8271 	struct tm tm;
8272 	time64_t now = ktime_get_real_seconds();
8273 	int rc;
8274 
8275 	if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) ||
8276 	    bp->hwrm_spec_code < 0x10400)
8277 		return -EOPNOTSUPP;
8278 
8279 	time64_to_tm(now, 0, &tm);
8280 	rc = hwrm_req_init(bp, req, HWRM_FW_SET_TIME);
8281 	if (rc)
8282 		return rc;
8283 
8284 	req->year = cpu_to_le16(1900 + tm.tm_year);
8285 	req->month = 1 + tm.tm_mon;
8286 	req->day = tm.tm_mday;
8287 	req->hour = tm.tm_hour;
8288 	req->minute = tm.tm_min;
8289 	req->second = tm.tm_sec;
8290 	return hwrm_req_send(bp, req);
8291 }
8292 
8293 static void bnxt_add_one_ctr(u64 hw, u64 *sw, u64 mask)
8294 {
8295 	u64 sw_tmp;
8296 
8297 	hw &= mask;
8298 	sw_tmp = (*sw & ~mask) | hw;
8299 	if (hw < (*sw & mask))
8300 		sw_tmp += mask + 1;
8301 	WRITE_ONCE(*sw, sw_tmp);
8302 }
8303 
8304 static void __bnxt_accumulate_stats(__le64 *hw_stats, u64 *sw_stats, u64 *masks,
8305 				    int count, bool ignore_zero)
8306 {
8307 	int i;
8308 
8309 	for (i = 0; i < count; i++) {
8310 		u64 hw = le64_to_cpu(READ_ONCE(hw_stats[i]));
8311 
8312 		if (ignore_zero && !hw)
8313 			continue;
8314 
8315 		if (masks[i] == -1ULL)
8316 			sw_stats[i] = hw;
8317 		else
8318 			bnxt_add_one_ctr(hw, &sw_stats[i], masks[i]);
8319 	}
8320 }
8321 
8322 static void bnxt_accumulate_stats(struct bnxt_stats_mem *stats)
8323 {
8324 	if (!stats->hw_stats)
8325 		return;
8326 
8327 	__bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats,
8328 				stats->hw_masks, stats->len / 8, false);
8329 }
8330 
8331 static void bnxt_accumulate_all_stats(struct bnxt *bp)
8332 {
8333 	struct bnxt_stats_mem *ring0_stats;
8334 	bool ignore_zero = false;
8335 	int i;
8336 
8337 	/* Chip bug.  Counter intermittently becomes 0. */
8338 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8339 		ignore_zero = true;
8340 
8341 	for (i = 0; i < bp->cp_nr_rings; i++) {
8342 		struct bnxt_napi *bnapi = bp->bnapi[i];
8343 		struct bnxt_cp_ring_info *cpr;
8344 		struct bnxt_stats_mem *stats;
8345 
8346 		cpr = &bnapi->cp_ring;
8347 		stats = &cpr->stats;
8348 		if (!i)
8349 			ring0_stats = stats;
8350 		__bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats,
8351 					ring0_stats->hw_masks,
8352 					ring0_stats->len / 8, ignore_zero);
8353 	}
8354 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
8355 		struct bnxt_stats_mem *stats = &bp->port_stats;
8356 		__le64 *hw_stats = stats->hw_stats;
8357 		u64 *sw_stats = stats->sw_stats;
8358 		u64 *masks = stats->hw_masks;
8359 		int cnt;
8360 
8361 		cnt = sizeof(struct rx_port_stats) / 8;
8362 		__bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false);
8363 
8364 		hw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
8365 		sw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
8366 		masks += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
8367 		cnt = sizeof(struct tx_port_stats) / 8;
8368 		__bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false);
8369 	}
8370 	if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) {
8371 		bnxt_accumulate_stats(&bp->rx_port_stats_ext);
8372 		bnxt_accumulate_stats(&bp->tx_port_stats_ext);
8373 	}
8374 }
8375 
8376 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags)
8377 {
8378 	struct hwrm_port_qstats_input *req;
8379 	struct bnxt_pf_info *pf = &bp->pf;
8380 	int rc;
8381 
8382 	if (!(bp->flags & BNXT_FLAG_PORT_STATS))
8383 		return 0;
8384 
8385 	if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))
8386 		return -EOPNOTSUPP;
8387 
8388 	rc = hwrm_req_init(bp, req, HWRM_PORT_QSTATS);
8389 	if (rc)
8390 		return rc;
8391 
8392 	req->flags = flags;
8393 	req->port_id = cpu_to_le16(pf->port_id);
8394 	req->tx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map +
8395 					    BNXT_TX_PORT_STATS_BYTE_OFFSET);
8396 	req->rx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map);
8397 	return hwrm_req_send(bp, req);
8398 }
8399 
8400 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags)
8401 {
8402 	struct hwrm_queue_pri2cos_qcfg_output *resp_qc;
8403 	struct hwrm_queue_pri2cos_qcfg_input *req_qc;
8404 	struct hwrm_port_qstats_ext_output *resp_qs;
8405 	struct hwrm_port_qstats_ext_input *req_qs;
8406 	struct bnxt_pf_info *pf = &bp->pf;
8407 	u32 tx_stat_size;
8408 	int rc;
8409 
8410 	if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT))
8411 		return 0;
8412 
8413 	if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))
8414 		return -EOPNOTSUPP;
8415 
8416 	rc = hwrm_req_init(bp, req_qs, HWRM_PORT_QSTATS_EXT);
8417 	if (rc)
8418 		return rc;
8419 
8420 	req_qs->flags = flags;
8421 	req_qs->port_id = cpu_to_le16(pf->port_id);
8422 	req_qs->rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext));
8423 	req_qs->rx_stat_host_addr = cpu_to_le64(bp->rx_port_stats_ext.hw_stats_map);
8424 	tx_stat_size = bp->tx_port_stats_ext.hw_stats ?
8425 		       sizeof(struct tx_port_stats_ext) : 0;
8426 	req_qs->tx_stat_size = cpu_to_le16(tx_stat_size);
8427 	req_qs->tx_stat_host_addr = cpu_to_le64(bp->tx_port_stats_ext.hw_stats_map);
8428 	resp_qs = hwrm_req_hold(bp, req_qs);
8429 	rc = hwrm_req_send(bp, req_qs);
8430 	if (!rc) {
8431 		bp->fw_rx_stats_ext_size =
8432 			le16_to_cpu(resp_qs->rx_stat_size) / 8;
8433 		if (BNXT_FW_MAJ(bp) < 220 &&
8434 		    bp->fw_rx_stats_ext_size > BNXT_RX_STATS_EXT_NUM_LEGACY)
8435 			bp->fw_rx_stats_ext_size = BNXT_RX_STATS_EXT_NUM_LEGACY;
8436 
8437 		bp->fw_tx_stats_ext_size = tx_stat_size ?
8438 			le16_to_cpu(resp_qs->tx_stat_size) / 8 : 0;
8439 	} else {
8440 		bp->fw_rx_stats_ext_size = 0;
8441 		bp->fw_tx_stats_ext_size = 0;
8442 	}
8443 	hwrm_req_drop(bp, req_qs);
8444 
8445 	if (flags)
8446 		return rc;
8447 
8448 	if (bp->fw_tx_stats_ext_size <=
8449 	    offsetof(struct tx_port_stats_ext, pfc_pri0_tx_duration_us) / 8) {
8450 		bp->pri2cos_valid = 0;
8451 		return rc;
8452 	}
8453 
8454 	rc = hwrm_req_init(bp, req_qc, HWRM_QUEUE_PRI2COS_QCFG);
8455 	if (rc)
8456 		return rc;
8457 
8458 	req_qc->flags = cpu_to_le32(QUEUE_PRI2COS_QCFG_REQ_FLAGS_IVLAN);
8459 
8460 	resp_qc = hwrm_req_hold(bp, req_qc);
8461 	rc = hwrm_req_send(bp, req_qc);
8462 	if (!rc) {
8463 		u8 *pri2cos;
8464 		int i, j;
8465 
8466 		pri2cos = &resp_qc->pri0_cos_queue_id;
8467 		for (i = 0; i < 8; i++) {
8468 			u8 queue_id = pri2cos[i];
8469 			u8 queue_idx;
8470 
8471 			/* Per port queue IDs start from 0, 10, 20, etc */
8472 			queue_idx = queue_id % 10;
8473 			if (queue_idx > BNXT_MAX_QUEUE) {
8474 				bp->pri2cos_valid = false;
8475 				hwrm_req_drop(bp, req_qc);
8476 				return rc;
8477 			}
8478 			for (j = 0; j < bp->max_q; j++) {
8479 				if (bp->q_ids[j] == queue_id)
8480 					bp->pri2cos_idx[i] = queue_idx;
8481 			}
8482 		}
8483 		bp->pri2cos_valid = true;
8484 	}
8485 	hwrm_req_drop(bp, req_qc);
8486 
8487 	return rc;
8488 }
8489 
8490 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
8491 {
8492 	bnxt_hwrm_tunnel_dst_port_free(bp,
8493 		TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
8494 	bnxt_hwrm_tunnel_dst_port_free(bp,
8495 		TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
8496 }
8497 
8498 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
8499 {
8500 	int rc, i;
8501 	u32 tpa_flags = 0;
8502 
8503 	if (set_tpa)
8504 		tpa_flags = bp->flags & BNXT_FLAG_TPA;
8505 	else if (BNXT_NO_FW_ACCESS(bp))
8506 		return 0;
8507 	for (i = 0; i < bp->nr_vnics; i++) {
8508 		rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
8509 		if (rc) {
8510 			netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
8511 				   i, rc);
8512 			return rc;
8513 		}
8514 	}
8515 	return 0;
8516 }
8517 
8518 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
8519 {
8520 	int i;
8521 
8522 	for (i = 0; i < bp->nr_vnics; i++)
8523 		bnxt_hwrm_vnic_set_rss(bp, i, false);
8524 }
8525 
8526 static void bnxt_clear_vnic(struct bnxt *bp)
8527 {
8528 	if (!bp->vnic_info)
8529 		return;
8530 
8531 	bnxt_hwrm_clear_vnic_filter(bp);
8532 	if (!(bp->flags & BNXT_FLAG_CHIP_P5)) {
8533 		/* clear all RSS setting before free vnic ctx */
8534 		bnxt_hwrm_clear_vnic_rss(bp);
8535 		bnxt_hwrm_vnic_ctx_free(bp);
8536 	}
8537 	/* before free the vnic, undo the vnic tpa settings */
8538 	if (bp->flags & BNXT_FLAG_TPA)
8539 		bnxt_set_tpa(bp, false);
8540 	bnxt_hwrm_vnic_free(bp);
8541 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8542 		bnxt_hwrm_vnic_ctx_free(bp);
8543 }
8544 
8545 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
8546 				    bool irq_re_init)
8547 {
8548 	bnxt_clear_vnic(bp);
8549 	bnxt_hwrm_ring_free(bp, close_path);
8550 	bnxt_hwrm_ring_grp_free(bp);
8551 	if (irq_re_init) {
8552 		bnxt_hwrm_stat_ctx_free(bp);
8553 		bnxt_hwrm_free_tunnel_ports(bp);
8554 	}
8555 }
8556 
8557 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode)
8558 {
8559 	struct hwrm_func_cfg_input *req;
8560 	u8 evb_mode;
8561 	int rc;
8562 
8563 	if (br_mode == BRIDGE_MODE_VEB)
8564 		evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB;
8565 	else if (br_mode == BRIDGE_MODE_VEPA)
8566 		evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA;
8567 	else
8568 		return -EINVAL;
8569 
8570 	rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG);
8571 	if (rc)
8572 		return rc;
8573 
8574 	req->fid = cpu_to_le16(0xffff);
8575 	req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE);
8576 	req->evb_mode = evb_mode;
8577 	return hwrm_req_send(bp, req);
8578 }
8579 
8580 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size)
8581 {
8582 	struct hwrm_func_cfg_input *req;
8583 	int rc;
8584 
8585 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803)
8586 		return 0;
8587 
8588 	rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG);
8589 	if (rc)
8590 		return rc;
8591 
8592 	req->fid = cpu_to_le16(0xffff);
8593 	req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE);
8594 	req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64;
8595 	if (size == 128)
8596 		req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128;
8597 
8598 	return hwrm_req_send(bp, req);
8599 }
8600 
8601 static int __bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
8602 {
8603 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
8604 	int rc;
8605 
8606 	if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG)
8607 		goto skip_rss_ctx;
8608 
8609 	/* allocate context for vnic */
8610 	rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0);
8611 	if (rc) {
8612 		netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
8613 			   vnic_id, rc);
8614 		goto vnic_setup_err;
8615 	}
8616 	bp->rsscos_nr_ctxs++;
8617 
8618 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
8619 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1);
8620 		if (rc) {
8621 			netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n",
8622 				   vnic_id, rc);
8623 			goto vnic_setup_err;
8624 		}
8625 		bp->rsscos_nr_ctxs++;
8626 	}
8627 
8628 skip_rss_ctx:
8629 	/* configure default vnic, ring grp */
8630 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
8631 	if (rc) {
8632 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
8633 			   vnic_id, rc);
8634 		goto vnic_setup_err;
8635 	}
8636 
8637 	/* Enable RSS hashing on vnic */
8638 	rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
8639 	if (rc) {
8640 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
8641 			   vnic_id, rc);
8642 		goto vnic_setup_err;
8643 	}
8644 
8645 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
8646 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
8647 		if (rc) {
8648 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
8649 				   vnic_id, rc);
8650 		}
8651 	}
8652 
8653 vnic_setup_err:
8654 	return rc;
8655 }
8656 
8657 static int __bnxt_setup_vnic_p5(struct bnxt *bp, u16 vnic_id)
8658 {
8659 	int rc, i, nr_ctxs;
8660 
8661 	nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings);
8662 	for (i = 0; i < nr_ctxs; i++) {
8663 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, i);
8664 		if (rc) {
8665 			netdev_err(bp->dev, "hwrm vnic %d ctx %d alloc failure rc: %x\n",
8666 				   vnic_id, i, rc);
8667 			break;
8668 		}
8669 		bp->rsscos_nr_ctxs++;
8670 	}
8671 	if (i < nr_ctxs)
8672 		return -ENOMEM;
8673 
8674 	rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic_id, true);
8675 	if (rc) {
8676 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n",
8677 			   vnic_id, rc);
8678 		return rc;
8679 	}
8680 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
8681 	if (rc) {
8682 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
8683 			   vnic_id, rc);
8684 		return rc;
8685 	}
8686 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
8687 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
8688 		if (rc) {
8689 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
8690 				   vnic_id, rc);
8691 		}
8692 	}
8693 	return rc;
8694 }
8695 
8696 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
8697 {
8698 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8699 		return __bnxt_setup_vnic_p5(bp, vnic_id);
8700 	else
8701 		return __bnxt_setup_vnic(bp, vnic_id);
8702 }
8703 
8704 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
8705 {
8706 #ifdef CONFIG_RFS_ACCEL
8707 	int i, rc = 0;
8708 
8709 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8710 		return 0;
8711 
8712 	for (i = 0; i < bp->rx_nr_rings; i++) {
8713 		struct bnxt_vnic_info *vnic;
8714 		u16 vnic_id = i + 1;
8715 		u16 ring_id = i;
8716 
8717 		if (vnic_id >= bp->nr_vnics)
8718 			break;
8719 
8720 		vnic = &bp->vnic_info[vnic_id];
8721 		vnic->flags |= BNXT_VNIC_RFS_FLAG;
8722 		if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
8723 			vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG;
8724 		rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1);
8725 		if (rc) {
8726 			netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
8727 				   vnic_id, rc);
8728 			break;
8729 		}
8730 		rc = bnxt_setup_vnic(bp, vnic_id);
8731 		if (rc)
8732 			break;
8733 	}
8734 	return rc;
8735 #else
8736 	return 0;
8737 #endif
8738 }
8739 
8740 /* Allow PF, trusted VFs and VFs with default VLAN to be in promiscuous mode */
8741 static bool bnxt_promisc_ok(struct bnxt *bp)
8742 {
8743 #ifdef CONFIG_BNXT_SRIOV
8744 	if (BNXT_VF(bp) && !bp->vf.vlan && !bnxt_is_trusted_vf(bp, &bp->vf))
8745 		return false;
8746 #endif
8747 	return true;
8748 }
8749 
8750 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp)
8751 {
8752 	unsigned int rc = 0;
8753 
8754 	rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1);
8755 	if (rc) {
8756 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
8757 			   rc);
8758 		return rc;
8759 	}
8760 
8761 	rc = bnxt_hwrm_vnic_cfg(bp, 1);
8762 	if (rc) {
8763 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
8764 			   rc);
8765 		return rc;
8766 	}
8767 	return rc;
8768 }
8769 
8770 static int bnxt_cfg_rx_mode(struct bnxt *);
8771 static bool bnxt_mc_list_updated(struct bnxt *, u32 *);
8772 
8773 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
8774 {
8775 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
8776 	int rc = 0;
8777 	unsigned int rx_nr_rings = bp->rx_nr_rings;
8778 
8779 	if (irq_re_init) {
8780 		rc = bnxt_hwrm_stat_ctx_alloc(bp);
8781 		if (rc) {
8782 			netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
8783 				   rc);
8784 			goto err_out;
8785 		}
8786 	}
8787 
8788 	rc = bnxt_hwrm_ring_alloc(bp);
8789 	if (rc) {
8790 		netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
8791 		goto err_out;
8792 	}
8793 
8794 	rc = bnxt_hwrm_ring_grp_alloc(bp);
8795 	if (rc) {
8796 		netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
8797 		goto err_out;
8798 	}
8799 
8800 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
8801 		rx_nr_rings--;
8802 
8803 	/* default vnic 0 */
8804 	rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings);
8805 	if (rc) {
8806 		netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
8807 		goto err_out;
8808 	}
8809 
8810 	rc = bnxt_setup_vnic(bp, 0);
8811 	if (rc)
8812 		goto err_out;
8813 
8814 	if (bp->flags & BNXT_FLAG_RFS) {
8815 		rc = bnxt_alloc_rfs_vnics(bp);
8816 		if (rc)
8817 			goto err_out;
8818 	}
8819 
8820 	if (bp->flags & BNXT_FLAG_TPA) {
8821 		rc = bnxt_set_tpa(bp, true);
8822 		if (rc)
8823 			goto err_out;
8824 	}
8825 
8826 	if (BNXT_VF(bp))
8827 		bnxt_update_vf_mac(bp);
8828 
8829 	/* Filter for default vnic 0 */
8830 	rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
8831 	if (rc) {
8832 		if (BNXT_VF(bp) && rc == -ENODEV)
8833 			netdev_err(bp->dev, "Cannot configure L2 filter while PF is unavailable\n");
8834 		else
8835 			netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
8836 		goto err_out;
8837 	}
8838 	vnic->uc_filter_count = 1;
8839 
8840 	vnic->rx_mask = 0;
8841 	if (test_bit(BNXT_STATE_HALF_OPEN, &bp->state))
8842 		goto skip_rx_mask;
8843 
8844 	if (bp->dev->flags & IFF_BROADCAST)
8845 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
8846 
8847 	if (bp->dev->flags & IFF_PROMISC)
8848 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
8849 
8850 	if (bp->dev->flags & IFF_ALLMULTI) {
8851 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
8852 		vnic->mc_list_count = 0;
8853 	} else if (bp->dev->flags & IFF_MULTICAST) {
8854 		u32 mask = 0;
8855 
8856 		bnxt_mc_list_updated(bp, &mask);
8857 		vnic->rx_mask |= mask;
8858 	}
8859 
8860 	rc = bnxt_cfg_rx_mode(bp);
8861 	if (rc)
8862 		goto err_out;
8863 
8864 skip_rx_mask:
8865 	rc = bnxt_hwrm_set_coal(bp);
8866 	if (rc)
8867 		netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
8868 				rc);
8869 
8870 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
8871 		rc = bnxt_setup_nitroa0_vnic(bp);
8872 		if (rc)
8873 			netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n",
8874 				   rc);
8875 	}
8876 
8877 	if (BNXT_VF(bp)) {
8878 		bnxt_hwrm_func_qcfg(bp);
8879 		netdev_update_features(bp->dev);
8880 	}
8881 
8882 	return 0;
8883 
8884 err_out:
8885 	bnxt_hwrm_resource_free(bp, 0, true);
8886 
8887 	return rc;
8888 }
8889 
8890 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
8891 {
8892 	bnxt_hwrm_resource_free(bp, 1, irq_re_init);
8893 	return 0;
8894 }
8895 
8896 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
8897 {
8898 	bnxt_init_cp_rings(bp);
8899 	bnxt_init_rx_rings(bp);
8900 	bnxt_init_tx_rings(bp);
8901 	bnxt_init_ring_grps(bp, irq_re_init);
8902 	bnxt_init_vnics(bp);
8903 
8904 	return bnxt_init_chip(bp, irq_re_init);
8905 }
8906 
8907 static int bnxt_set_real_num_queues(struct bnxt *bp)
8908 {
8909 	int rc;
8910 	struct net_device *dev = bp->dev;
8911 
8912 	rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings -
8913 					  bp->tx_nr_rings_xdp);
8914 	if (rc)
8915 		return rc;
8916 
8917 	rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
8918 	if (rc)
8919 		return rc;
8920 
8921 #ifdef CONFIG_RFS_ACCEL
8922 	if (bp->flags & BNXT_FLAG_RFS)
8923 		dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
8924 #endif
8925 
8926 	return rc;
8927 }
8928 
8929 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
8930 			   bool shared)
8931 {
8932 	int _rx = *rx, _tx = *tx;
8933 
8934 	if (shared) {
8935 		*rx = min_t(int, _rx, max);
8936 		*tx = min_t(int, _tx, max);
8937 	} else {
8938 		if (max < 2)
8939 			return -ENOMEM;
8940 
8941 		while (_rx + _tx > max) {
8942 			if (_rx > _tx && _rx > 1)
8943 				_rx--;
8944 			else if (_tx > 1)
8945 				_tx--;
8946 		}
8947 		*rx = _rx;
8948 		*tx = _tx;
8949 	}
8950 	return 0;
8951 }
8952 
8953 static void bnxt_setup_msix(struct bnxt *bp)
8954 {
8955 	const int len = sizeof(bp->irq_tbl[0].name);
8956 	struct net_device *dev = bp->dev;
8957 	int tcs, i;
8958 
8959 	tcs = netdev_get_num_tc(dev);
8960 	if (tcs) {
8961 		int i, off, count;
8962 
8963 		for (i = 0; i < tcs; i++) {
8964 			count = bp->tx_nr_rings_per_tc;
8965 			off = i * count;
8966 			netdev_set_tc_queue(dev, i, count, off);
8967 		}
8968 	}
8969 
8970 	for (i = 0; i < bp->cp_nr_rings; i++) {
8971 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
8972 		char *attr;
8973 
8974 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
8975 			attr = "TxRx";
8976 		else if (i < bp->rx_nr_rings)
8977 			attr = "rx";
8978 		else
8979 			attr = "tx";
8980 
8981 		snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name,
8982 			 attr, i);
8983 		bp->irq_tbl[map_idx].handler = bnxt_msix;
8984 	}
8985 }
8986 
8987 static void bnxt_setup_inta(struct bnxt *bp)
8988 {
8989 	const int len = sizeof(bp->irq_tbl[0].name);
8990 
8991 	if (netdev_get_num_tc(bp->dev))
8992 		netdev_reset_tc(bp->dev);
8993 
8994 	snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx",
8995 		 0);
8996 	bp->irq_tbl[0].handler = bnxt_inta;
8997 }
8998 
8999 static int bnxt_init_int_mode(struct bnxt *bp);
9000 
9001 static int bnxt_setup_int_mode(struct bnxt *bp)
9002 {
9003 	int rc;
9004 
9005 	if (!bp->irq_tbl) {
9006 		rc = bnxt_init_int_mode(bp);
9007 		if (rc || !bp->irq_tbl)
9008 			return rc ?: -ENODEV;
9009 	}
9010 
9011 	if (bp->flags & BNXT_FLAG_USING_MSIX)
9012 		bnxt_setup_msix(bp);
9013 	else
9014 		bnxt_setup_inta(bp);
9015 
9016 	rc = bnxt_set_real_num_queues(bp);
9017 	return rc;
9018 }
9019 
9020 #ifdef CONFIG_RFS_ACCEL
9021 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp)
9022 {
9023 	return bp->hw_resc.max_rsscos_ctxs;
9024 }
9025 
9026 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp)
9027 {
9028 	return bp->hw_resc.max_vnics;
9029 }
9030 #endif
9031 
9032 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp)
9033 {
9034 	return bp->hw_resc.max_stat_ctxs;
9035 }
9036 
9037 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp)
9038 {
9039 	return bp->hw_resc.max_cp_rings;
9040 }
9041 
9042 static unsigned int bnxt_get_max_func_cp_rings_for_en(struct bnxt *bp)
9043 {
9044 	unsigned int cp = bp->hw_resc.max_cp_rings;
9045 
9046 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
9047 		cp -= bnxt_get_ulp_msix_num(bp);
9048 
9049 	return cp;
9050 }
9051 
9052 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp)
9053 {
9054 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
9055 
9056 	if (bp->flags & BNXT_FLAG_CHIP_P5)
9057 		return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_nqs);
9058 
9059 	return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings);
9060 }
9061 
9062 static void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs)
9063 {
9064 	bp->hw_resc.max_irqs = max_irqs;
9065 }
9066 
9067 unsigned int bnxt_get_avail_cp_rings_for_en(struct bnxt *bp)
9068 {
9069 	unsigned int cp;
9070 
9071 	cp = bnxt_get_max_func_cp_rings_for_en(bp);
9072 	if (bp->flags & BNXT_FLAG_CHIP_P5)
9073 		return cp - bp->rx_nr_rings - bp->tx_nr_rings;
9074 	else
9075 		return cp - bp->cp_nr_rings;
9076 }
9077 
9078 unsigned int bnxt_get_avail_stat_ctxs_for_en(struct bnxt *bp)
9079 {
9080 	return bnxt_get_max_func_stat_ctxs(bp) - bnxt_get_func_stat_ctxs(bp);
9081 }
9082 
9083 int bnxt_get_avail_msix(struct bnxt *bp, int num)
9084 {
9085 	int max_cp = bnxt_get_max_func_cp_rings(bp);
9086 	int max_irq = bnxt_get_max_func_irqs(bp);
9087 	int total_req = bp->cp_nr_rings + num;
9088 	int max_idx, avail_msix;
9089 
9090 	max_idx = bp->total_irqs;
9091 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
9092 		max_idx = min_t(int, bp->total_irqs, max_cp);
9093 	avail_msix = max_idx - bp->cp_nr_rings;
9094 	if (!BNXT_NEW_RM(bp) || avail_msix >= num)
9095 		return avail_msix;
9096 
9097 	if (max_irq < total_req) {
9098 		num = max_irq - bp->cp_nr_rings;
9099 		if (num <= 0)
9100 			return 0;
9101 	}
9102 	return num;
9103 }
9104 
9105 static int bnxt_get_num_msix(struct bnxt *bp)
9106 {
9107 	if (!BNXT_NEW_RM(bp))
9108 		return bnxt_get_max_func_irqs(bp);
9109 
9110 	return bnxt_nq_rings_in_use(bp);
9111 }
9112 
9113 static int bnxt_init_msix(struct bnxt *bp)
9114 {
9115 	int i, total_vecs, max, rc = 0, min = 1, ulp_msix;
9116 	struct msix_entry *msix_ent;
9117 
9118 	total_vecs = bnxt_get_num_msix(bp);
9119 	max = bnxt_get_max_func_irqs(bp);
9120 	if (total_vecs > max)
9121 		total_vecs = max;
9122 
9123 	if (!total_vecs)
9124 		return 0;
9125 
9126 	msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
9127 	if (!msix_ent)
9128 		return -ENOMEM;
9129 
9130 	for (i = 0; i < total_vecs; i++) {
9131 		msix_ent[i].entry = i;
9132 		msix_ent[i].vector = 0;
9133 	}
9134 
9135 	if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
9136 		min = 2;
9137 
9138 	total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
9139 	ulp_msix = bnxt_get_ulp_msix_num(bp);
9140 	if (total_vecs < 0 || total_vecs < ulp_msix) {
9141 		rc = -ENODEV;
9142 		goto msix_setup_exit;
9143 	}
9144 
9145 	bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
9146 	if (bp->irq_tbl) {
9147 		for (i = 0; i < total_vecs; i++)
9148 			bp->irq_tbl[i].vector = msix_ent[i].vector;
9149 
9150 		bp->total_irqs = total_vecs;
9151 		/* Trim rings based upon num of vectors allocated */
9152 		rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
9153 				     total_vecs - ulp_msix, min == 1);
9154 		if (rc)
9155 			goto msix_setup_exit;
9156 
9157 		bp->cp_nr_rings = (min == 1) ?
9158 				  max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
9159 				  bp->tx_nr_rings + bp->rx_nr_rings;
9160 
9161 	} else {
9162 		rc = -ENOMEM;
9163 		goto msix_setup_exit;
9164 	}
9165 	bp->flags |= BNXT_FLAG_USING_MSIX;
9166 	kfree(msix_ent);
9167 	return 0;
9168 
9169 msix_setup_exit:
9170 	netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc);
9171 	kfree(bp->irq_tbl);
9172 	bp->irq_tbl = NULL;
9173 	pci_disable_msix(bp->pdev);
9174 	kfree(msix_ent);
9175 	return rc;
9176 }
9177 
9178 static int bnxt_init_inta(struct bnxt *bp)
9179 {
9180 	bp->irq_tbl = kzalloc(sizeof(struct bnxt_irq), GFP_KERNEL);
9181 	if (!bp->irq_tbl)
9182 		return -ENOMEM;
9183 
9184 	bp->total_irqs = 1;
9185 	bp->rx_nr_rings = 1;
9186 	bp->tx_nr_rings = 1;
9187 	bp->cp_nr_rings = 1;
9188 	bp->flags |= BNXT_FLAG_SHARED_RINGS;
9189 	bp->irq_tbl[0].vector = bp->pdev->irq;
9190 	return 0;
9191 }
9192 
9193 static int bnxt_init_int_mode(struct bnxt *bp)
9194 {
9195 	int rc = -ENODEV;
9196 
9197 	if (bp->flags & BNXT_FLAG_MSIX_CAP)
9198 		rc = bnxt_init_msix(bp);
9199 
9200 	if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) {
9201 		/* fallback to INTA */
9202 		rc = bnxt_init_inta(bp);
9203 	}
9204 	return rc;
9205 }
9206 
9207 static void bnxt_clear_int_mode(struct bnxt *bp)
9208 {
9209 	if (bp->flags & BNXT_FLAG_USING_MSIX)
9210 		pci_disable_msix(bp->pdev);
9211 
9212 	kfree(bp->irq_tbl);
9213 	bp->irq_tbl = NULL;
9214 	bp->flags &= ~BNXT_FLAG_USING_MSIX;
9215 }
9216 
9217 int bnxt_reserve_rings(struct bnxt *bp, bool irq_re_init)
9218 {
9219 	int tcs = netdev_get_num_tc(bp->dev);
9220 	bool irq_cleared = false;
9221 	int rc;
9222 
9223 	if (!bnxt_need_reserve_rings(bp))
9224 		return 0;
9225 
9226 	if (irq_re_init && BNXT_NEW_RM(bp) &&
9227 	    bnxt_get_num_msix(bp) != bp->total_irqs) {
9228 		bnxt_ulp_irq_stop(bp);
9229 		bnxt_clear_int_mode(bp);
9230 		irq_cleared = true;
9231 	}
9232 	rc = __bnxt_reserve_rings(bp);
9233 	if (irq_cleared) {
9234 		if (!rc)
9235 			rc = bnxt_init_int_mode(bp);
9236 		bnxt_ulp_irq_restart(bp, rc);
9237 	}
9238 	if (rc) {
9239 		netdev_err(bp->dev, "ring reservation/IRQ init failure rc: %d\n", rc);
9240 		return rc;
9241 	}
9242 	if (tcs && (bp->tx_nr_rings_per_tc * tcs != bp->tx_nr_rings)) {
9243 		netdev_err(bp->dev, "tx ring reservation failure\n");
9244 		netdev_reset_tc(bp->dev);
9245 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
9246 		return -ENOMEM;
9247 	}
9248 	return 0;
9249 }
9250 
9251 static void bnxt_free_irq(struct bnxt *bp)
9252 {
9253 	struct bnxt_irq *irq;
9254 	int i;
9255 
9256 #ifdef CONFIG_RFS_ACCEL
9257 	free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
9258 	bp->dev->rx_cpu_rmap = NULL;
9259 #endif
9260 	if (!bp->irq_tbl || !bp->bnapi)
9261 		return;
9262 
9263 	for (i = 0; i < bp->cp_nr_rings; i++) {
9264 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
9265 
9266 		irq = &bp->irq_tbl[map_idx];
9267 		if (irq->requested) {
9268 			if (irq->have_cpumask) {
9269 				irq_set_affinity_hint(irq->vector, NULL);
9270 				free_cpumask_var(irq->cpu_mask);
9271 				irq->have_cpumask = 0;
9272 			}
9273 			free_irq(irq->vector, bp->bnapi[i]);
9274 		}
9275 
9276 		irq->requested = 0;
9277 	}
9278 }
9279 
9280 static int bnxt_request_irq(struct bnxt *bp)
9281 {
9282 	int i, j, rc = 0;
9283 	unsigned long flags = 0;
9284 #ifdef CONFIG_RFS_ACCEL
9285 	struct cpu_rmap *rmap;
9286 #endif
9287 
9288 	rc = bnxt_setup_int_mode(bp);
9289 	if (rc) {
9290 		netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
9291 			   rc);
9292 		return rc;
9293 	}
9294 #ifdef CONFIG_RFS_ACCEL
9295 	rmap = bp->dev->rx_cpu_rmap;
9296 #endif
9297 	if (!(bp->flags & BNXT_FLAG_USING_MSIX))
9298 		flags = IRQF_SHARED;
9299 
9300 	for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
9301 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
9302 		struct bnxt_irq *irq = &bp->irq_tbl[map_idx];
9303 
9304 #ifdef CONFIG_RFS_ACCEL
9305 		if (rmap && bp->bnapi[i]->rx_ring) {
9306 			rc = irq_cpu_rmap_add(rmap, irq->vector);
9307 			if (rc)
9308 				netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
9309 					    j);
9310 			j++;
9311 		}
9312 #endif
9313 		rc = request_irq(irq->vector, irq->handler, flags, irq->name,
9314 				 bp->bnapi[i]);
9315 		if (rc)
9316 			break;
9317 
9318 		irq->requested = 1;
9319 
9320 		if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) {
9321 			int numa_node = dev_to_node(&bp->pdev->dev);
9322 
9323 			irq->have_cpumask = 1;
9324 			cpumask_set_cpu(cpumask_local_spread(i, numa_node),
9325 					irq->cpu_mask);
9326 			rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask);
9327 			if (rc) {
9328 				netdev_warn(bp->dev,
9329 					    "Set affinity failed, IRQ = %d\n",
9330 					    irq->vector);
9331 				break;
9332 			}
9333 		}
9334 	}
9335 	return rc;
9336 }
9337 
9338 static void bnxt_del_napi(struct bnxt *bp)
9339 {
9340 	int i;
9341 
9342 	if (!bp->bnapi)
9343 		return;
9344 
9345 	for (i = 0; i < bp->cp_nr_rings; i++) {
9346 		struct bnxt_napi *bnapi = bp->bnapi[i];
9347 
9348 		__netif_napi_del(&bnapi->napi);
9349 	}
9350 	/* We called __netif_napi_del(), we need
9351 	 * to respect an RCU grace period before freeing napi structures.
9352 	 */
9353 	synchronize_net();
9354 }
9355 
9356 static void bnxt_init_napi(struct bnxt *bp)
9357 {
9358 	int i;
9359 	unsigned int cp_nr_rings = bp->cp_nr_rings;
9360 	struct bnxt_napi *bnapi;
9361 
9362 	if (bp->flags & BNXT_FLAG_USING_MSIX) {
9363 		int (*poll_fn)(struct napi_struct *, int) = bnxt_poll;
9364 
9365 		if (bp->flags & BNXT_FLAG_CHIP_P5)
9366 			poll_fn = bnxt_poll_p5;
9367 		else if (BNXT_CHIP_TYPE_NITRO_A0(bp))
9368 			cp_nr_rings--;
9369 		for (i = 0; i < cp_nr_rings; i++) {
9370 			bnapi = bp->bnapi[i];
9371 			netif_napi_add(bp->dev, &bnapi->napi, poll_fn, 64);
9372 		}
9373 		if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
9374 			bnapi = bp->bnapi[cp_nr_rings];
9375 			netif_napi_add(bp->dev, &bnapi->napi,
9376 				       bnxt_poll_nitroa0, 64);
9377 		}
9378 	} else {
9379 		bnapi = bp->bnapi[0];
9380 		netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64);
9381 	}
9382 }
9383 
9384 static void bnxt_disable_napi(struct bnxt *bp)
9385 {
9386 	int i;
9387 
9388 	if (!bp->bnapi ||
9389 	    test_and_set_bit(BNXT_STATE_NAPI_DISABLED, &bp->state))
9390 		return;
9391 
9392 	for (i = 0; i < bp->cp_nr_rings; i++) {
9393 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
9394 
9395 		napi_disable(&bp->bnapi[i]->napi);
9396 		if (bp->bnapi[i]->rx_ring)
9397 			cancel_work_sync(&cpr->dim.work);
9398 	}
9399 }
9400 
9401 static void bnxt_enable_napi(struct bnxt *bp)
9402 {
9403 	int i;
9404 
9405 	clear_bit(BNXT_STATE_NAPI_DISABLED, &bp->state);
9406 	for (i = 0; i < bp->cp_nr_rings; i++) {
9407 		struct bnxt_napi *bnapi = bp->bnapi[i];
9408 		struct bnxt_cp_ring_info *cpr;
9409 
9410 		cpr = &bnapi->cp_ring;
9411 		if (bnapi->in_reset)
9412 			cpr->sw_stats.rx.rx_resets++;
9413 		bnapi->in_reset = false;
9414 
9415 		if (bnapi->rx_ring) {
9416 			INIT_WORK(&cpr->dim.work, bnxt_dim_work);
9417 			cpr->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
9418 		}
9419 		napi_enable(&bnapi->napi);
9420 	}
9421 }
9422 
9423 void bnxt_tx_disable(struct bnxt *bp)
9424 {
9425 	int i;
9426 	struct bnxt_tx_ring_info *txr;
9427 
9428 	if (bp->tx_ring) {
9429 		for (i = 0; i < bp->tx_nr_rings; i++) {
9430 			txr = &bp->tx_ring[i];
9431 			WRITE_ONCE(txr->dev_state, BNXT_DEV_STATE_CLOSING);
9432 		}
9433 	}
9434 	/* Make sure napi polls see @dev_state change */
9435 	synchronize_net();
9436 	/* Drop carrier first to prevent TX timeout */
9437 	netif_carrier_off(bp->dev);
9438 	/* Stop all TX queues */
9439 	netif_tx_disable(bp->dev);
9440 }
9441 
9442 void bnxt_tx_enable(struct bnxt *bp)
9443 {
9444 	int i;
9445 	struct bnxt_tx_ring_info *txr;
9446 
9447 	for (i = 0; i < bp->tx_nr_rings; i++) {
9448 		txr = &bp->tx_ring[i];
9449 		WRITE_ONCE(txr->dev_state, 0);
9450 	}
9451 	/* Make sure napi polls see @dev_state change */
9452 	synchronize_net();
9453 	netif_tx_wake_all_queues(bp->dev);
9454 	if (BNXT_LINK_IS_UP(bp))
9455 		netif_carrier_on(bp->dev);
9456 }
9457 
9458 static char *bnxt_report_fec(struct bnxt_link_info *link_info)
9459 {
9460 	u8 active_fec = link_info->active_fec_sig_mode &
9461 			PORT_PHY_QCFG_RESP_ACTIVE_FEC_MASK;
9462 
9463 	switch (active_fec) {
9464 	default:
9465 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_NONE_ACTIVE:
9466 		return "None";
9467 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE74_ACTIVE:
9468 		return "Clause 74 BaseR";
9469 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE91_ACTIVE:
9470 		return "Clause 91 RS(528,514)";
9471 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_1XN_ACTIVE:
9472 		return "Clause 91 RS544_1XN";
9473 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_IEEE_ACTIVE:
9474 		return "Clause 91 RS(544,514)";
9475 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_1XN_ACTIVE:
9476 		return "Clause 91 RS272_1XN";
9477 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_IEEE_ACTIVE:
9478 		return "Clause 91 RS(272,257)";
9479 	}
9480 }
9481 
9482 void bnxt_report_link(struct bnxt *bp)
9483 {
9484 	if (BNXT_LINK_IS_UP(bp)) {
9485 		const char *signal = "";
9486 		const char *flow_ctrl;
9487 		const char *duplex;
9488 		u32 speed;
9489 		u16 fec;
9490 
9491 		netif_carrier_on(bp->dev);
9492 		speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
9493 		if (speed == SPEED_UNKNOWN) {
9494 			netdev_info(bp->dev, "NIC Link is Up, speed unknown\n");
9495 			return;
9496 		}
9497 		if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
9498 			duplex = "full";
9499 		else
9500 			duplex = "half";
9501 		if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
9502 			flow_ctrl = "ON - receive & transmit";
9503 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
9504 			flow_ctrl = "ON - transmit";
9505 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
9506 			flow_ctrl = "ON - receive";
9507 		else
9508 			flow_ctrl = "none";
9509 		if (bp->link_info.phy_qcfg_resp.option_flags &
9510 		    PORT_PHY_QCFG_RESP_OPTION_FLAGS_SIGNAL_MODE_KNOWN) {
9511 			u8 sig_mode = bp->link_info.active_fec_sig_mode &
9512 				      PORT_PHY_QCFG_RESP_SIGNAL_MODE_MASK;
9513 			switch (sig_mode) {
9514 			case PORT_PHY_QCFG_RESP_SIGNAL_MODE_NRZ:
9515 				signal = "(NRZ) ";
9516 				break;
9517 			case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4:
9518 				signal = "(PAM4) ";
9519 				break;
9520 			default:
9521 				break;
9522 			}
9523 		}
9524 		netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s%s duplex, Flow control: %s\n",
9525 			    speed, signal, duplex, flow_ctrl);
9526 		if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP)
9527 			netdev_info(bp->dev, "EEE is %s\n",
9528 				    bp->eee.eee_active ? "active" :
9529 							 "not active");
9530 		fec = bp->link_info.fec_cfg;
9531 		if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED))
9532 			netdev_info(bp->dev, "FEC autoneg %s encoding: %s\n",
9533 				    (fec & BNXT_FEC_AUTONEG) ? "on" : "off",
9534 				    bnxt_report_fec(&bp->link_info));
9535 	} else {
9536 		netif_carrier_off(bp->dev);
9537 		netdev_err(bp->dev, "NIC Link is Down\n");
9538 	}
9539 }
9540 
9541 static bool bnxt_phy_qcaps_no_speed(struct hwrm_port_phy_qcaps_output *resp)
9542 {
9543 	if (!resp->supported_speeds_auto_mode &&
9544 	    !resp->supported_speeds_force_mode &&
9545 	    !resp->supported_pam4_speeds_auto_mode &&
9546 	    !resp->supported_pam4_speeds_force_mode)
9547 		return true;
9548 	return false;
9549 }
9550 
9551 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp)
9552 {
9553 	struct bnxt_link_info *link_info = &bp->link_info;
9554 	struct hwrm_port_phy_qcaps_output *resp;
9555 	struct hwrm_port_phy_qcaps_input *req;
9556 	int rc = 0;
9557 
9558 	if (bp->hwrm_spec_code < 0x10201)
9559 		return 0;
9560 
9561 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCAPS);
9562 	if (rc)
9563 		return rc;
9564 
9565 	resp = hwrm_req_hold(bp, req);
9566 	rc = hwrm_req_send(bp, req);
9567 	if (rc)
9568 		goto hwrm_phy_qcaps_exit;
9569 
9570 	bp->phy_flags = resp->flags | (le16_to_cpu(resp->flags2) << 8);
9571 	if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) {
9572 		struct ethtool_eee *eee = &bp->eee;
9573 		u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode);
9574 
9575 		eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
9576 		bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) &
9577 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK;
9578 		bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) &
9579 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK;
9580 	}
9581 
9582 	if (bp->hwrm_spec_code >= 0x10a01) {
9583 		if (bnxt_phy_qcaps_no_speed(resp)) {
9584 			link_info->phy_state = BNXT_PHY_STATE_DISABLED;
9585 			netdev_warn(bp->dev, "Ethernet link disabled\n");
9586 		} else if (link_info->phy_state == BNXT_PHY_STATE_DISABLED) {
9587 			link_info->phy_state = BNXT_PHY_STATE_ENABLED;
9588 			netdev_info(bp->dev, "Ethernet link enabled\n");
9589 			/* Phy re-enabled, reprobe the speeds */
9590 			link_info->support_auto_speeds = 0;
9591 			link_info->support_pam4_auto_speeds = 0;
9592 		}
9593 	}
9594 	if (resp->supported_speeds_auto_mode)
9595 		link_info->support_auto_speeds =
9596 			le16_to_cpu(resp->supported_speeds_auto_mode);
9597 	if (resp->supported_pam4_speeds_auto_mode)
9598 		link_info->support_pam4_auto_speeds =
9599 			le16_to_cpu(resp->supported_pam4_speeds_auto_mode);
9600 
9601 	bp->port_count = resp->port_cnt;
9602 
9603 hwrm_phy_qcaps_exit:
9604 	hwrm_req_drop(bp, req);
9605 	return rc;
9606 }
9607 
9608 static bool bnxt_support_dropped(u16 advertising, u16 supported)
9609 {
9610 	u16 diff = advertising ^ supported;
9611 
9612 	return ((supported | diff) != supported);
9613 }
9614 
9615 int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
9616 {
9617 	struct bnxt_link_info *link_info = &bp->link_info;
9618 	struct hwrm_port_phy_qcfg_output *resp;
9619 	struct hwrm_port_phy_qcfg_input *req;
9620 	u8 link_state = link_info->link_state;
9621 	bool support_changed = false;
9622 	int rc;
9623 
9624 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCFG);
9625 	if (rc)
9626 		return rc;
9627 
9628 	resp = hwrm_req_hold(bp, req);
9629 	rc = hwrm_req_send(bp, req);
9630 	if (rc) {
9631 		hwrm_req_drop(bp, req);
9632 		if (BNXT_VF(bp) && rc == -ENODEV) {
9633 			netdev_warn(bp->dev, "Cannot obtain link state while PF unavailable.\n");
9634 			rc = 0;
9635 		}
9636 		return rc;
9637 	}
9638 
9639 	memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
9640 	link_info->phy_link_status = resp->link;
9641 	link_info->duplex = resp->duplex_cfg;
9642 	if (bp->hwrm_spec_code >= 0x10800)
9643 		link_info->duplex = resp->duplex_state;
9644 	link_info->pause = resp->pause;
9645 	link_info->auto_mode = resp->auto_mode;
9646 	link_info->auto_pause_setting = resp->auto_pause;
9647 	link_info->lp_pause = resp->link_partner_adv_pause;
9648 	link_info->force_pause_setting = resp->force_pause;
9649 	link_info->duplex_setting = resp->duplex_cfg;
9650 	if (link_info->phy_link_status == BNXT_LINK_LINK)
9651 		link_info->link_speed = le16_to_cpu(resp->link_speed);
9652 	else
9653 		link_info->link_speed = 0;
9654 	link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
9655 	link_info->force_pam4_link_speed =
9656 		le16_to_cpu(resp->force_pam4_link_speed);
9657 	link_info->support_speeds = le16_to_cpu(resp->support_speeds);
9658 	link_info->support_pam4_speeds = le16_to_cpu(resp->support_pam4_speeds);
9659 	link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
9660 	link_info->auto_pam4_link_speeds =
9661 		le16_to_cpu(resp->auto_pam4_link_speed_mask);
9662 	link_info->lp_auto_link_speeds =
9663 		le16_to_cpu(resp->link_partner_adv_speeds);
9664 	link_info->lp_auto_pam4_link_speeds =
9665 		resp->link_partner_pam4_adv_speeds;
9666 	link_info->preemphasis = le32_to_cpu(resp->preemphasis);
9667 	link_info->phy_ver[0] = resp->phy_maj;
9668 	link_info->phy_ver[1] = resp->phy_min;
9669 	link_info->phy_ver[2] = resp->phy_bld;
9670 	link_info->media_type = resp->media_type;
9671 	link_info->phy_type = resp->phy_type;
9672 	link_info->transceiver = resp->xcvr_pkg_type;
9673 	link_info->phy_addr = resp->eee_config_phy_addr &
9674 			      PORT_PHY_QCFG_RESP_PHY_ADDR_MASK;
9675 	link_info->module_status = resp->module_status;
9676 
9677 	if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) {
9678 		struct ethtool_eee *eee = &bp->eee;
9679 		u16 fw_speeds;
9680 
9681 		eee->eee_active = 0;
9682 		if (resp->eee_config_phy_addr &
9683 		    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) {
9684 			eee->eee_active = 1;
9685 			fw_speeds = le16_to_cpu(
9686 				resp->link_partner_adv_eee_link_speed_mask);
9687 			eee->lp_advertised =
9688 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
9689 		}
9690 
9691 		/* Pull initial EEE config */
9692 		if (!chng_link_state) {
9693 			if (resp->eee_config_phy_addr &
9694 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED)
9695 				eee->eee_enabled = 1;
9696 
9697 			fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask);
9698 			eee->advertised =
9699 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
9700 
9701 			if (resp->eee_config_phy_addr &
9702 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) {
9703 				__le32 tmr;
9704 
9705 				eee->tx_lpi_enabled = 1;
9706 				tmr = resp->xcvr_identifier_type_tx_lpi_timer;
9707 				eee->tx_lpi_timer = le32_to_cpu(tmr) &
9708 					PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK;
9709 			}
9710 		}
9711 	}
9712 
9713 	link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED;
9714 	if (bp->hwrm_spec_code >= 0x10504) {
9715 		link_info->fec_cfg = le16_to_cpu(resp->fec_cfg);
9716 		link_info->active_fec_sig_mode = resp->active_fec_signal_mode;
9717 	}
9718 	/* TODO: need to add more logic to report VF link */
9719 	if (chng_link_state) {
9720 		if (link_info->phy_link_status == BNXT_LINK_LINK)
9721 			link_info->link_state = BNXT_LINK_STATE_UP;
9722 		else
9723 			link_info->link_state = BNXT_LINK_STATE_DOWN;
9724 		if (link_state != link_info->link_state)
9725 			bnxt_report_link(bp);
9726 	} else {
9727 		/* always link down if not require to update link state */
9728 		link_info->link_state = BNXT_LINK_STATE_DOWN;
9729 	}
9730 	hwrm_req_drop(bp, req);
9731 
9732 	if (!BNXT_PHY_CFG_ABLE(bp))
9733 		return 0;
9734 
9735 	/* Check if any advertised speeds are no longer supported. The caller
9736 	 * holds the link_lock mutex, so we can modify link_info settings.
9737 	 */
9738 	if (bnxt_support_dropped(link_info->advertising,
9739 				 link_info->support_auto_speeds)) {
9740 		link_info->advertising = link_info->support_auto_speeds;
9741 		support_changed = true;
9742 	}
9743 	if (bnxt_support_dropped(link_info->advertising_pam4,
9744 				 link_info->support_pam4_auto_speeds)) {
9745 		link_info->advertising_pam4 = link_info->support_pam4_auto_speeds;
9746 		support_changed = true;
9747 	}
9748 	if (support_changed && (link_info->autoneg & BNXT_AUTONEG_SPEED))
9749 		bnxt_hwrm_set_link_setting(bp, true, false);
9750 	return 0;
9751 }
9752 
9753 static void bnxt_get_port_module_status(struct bnxt *bp)
9754 {
9755 	struct bnxt_link_info *link_info = &bp->link_info;
9756 	struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp;
9757 	u8 module_status;
9758 
9759 	if (bnxt_update_link(bp, true))
9760 		return;
9761 
9762 	module_status = link_info->module_status;
9763 	switch (module_status) {
9764 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX:
9765 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN:
9766 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG:
9767 		netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n",
9768 			    bp->pf.port_id);
9769 		if (bp->hwrm_spec_code >= 0x10201) {
9770 			netdev_warn(bp->dev, "Module part number %s\n",
9771 				    resp->phy_vendor_partnumber);
9772 		}
9773 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX)
9774 			netdev_warn(bp->dev, "TX is disabled\n");
9775 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN)
9776 			netdev_warn(bp->dev, "SFP+ module is shutdown\n");
9777 	}
9778 }
9779 
9780 static void
9781 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
9782 {
9783 	if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
9784 		if (bp->hwrm_spec_code >= 0x10201)
9785 			req->auto_pause =
9786 				PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE;
9787 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
9788 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
9789 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
9790 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX;
9791 		req->enables |=
9792 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
9793 	} else {
9794 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
9795 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
9796 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
9797 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
9798 		req->enables |=
9799 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
9800 		if (bp->hwrm_spec_code >= 0x10201) {
9801 			req->auto_pause = req->force_pause;
9802 			req->enables |= cpu_to_le32(
9803 				PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
9804 		}
9805 	}
9806 }
9807 
9808 static void bnxt_hwrm_set_link_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
9809 {
9810 	if (bp->link_info.autoneg & BNXT_AUTONEG_SPEED) {
9811 		req->auto_mode |= PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK;
9812 		if (bp->link_info.advertising) {
9813 			req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
9814 			req->auto_link_speed_mask = cpu_to_le16(bp->link_info.advertising);
9815 		}
9816 		if (bp->link_info.advertising_pam4) {
9817 			req->enables |=
9818 				cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAM4_LINK_SPEED_MASK);
9819 			req->auto_link_pam4_speed_mask =
9820 				cpu_to_le16(bp->link_info.advertising_pam4);
9821 		}
9822 		req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
9823 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
9824 	} else {
9825 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
9826 		if (bp->link_info.req_signal_mode == BNXT_SIG_MODE_PAM4) {
9827 			req->force_pam4_link_speed = cpu_to_le16(bp->link_info.req_link_speed);
9828 			req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAM4_LINK_SPEED);
9829 		} else {
9830 			req->force_link_speed = cpu_to_le16(bp->link_info.req_link_speed);
9831 		}
9832 	}
9833 
9834 	/* tell chimp that the setting takes effect immediately */
9835 	req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
9836 }
9837 
9838 int bnxt_hwrm_set_pause(struct bnxt *bp)
9839 {
9840 	struct hwrm_port_phy_cfg_input *req;
9841 	int rc;
9842 
9843 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
9844 	if (rc)
9845 		return rc;
9846 
9847 	bnxt_hwrm_set_pause_common(bp, req);
9848 
9849 	if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
9850 	    bp->link_info.force_link_chng)
9851 		bnxt_hwrm_set_link_common(bp, req);
9852 
9853 	rc = hwrm_req_send(bp, req);
9854 	if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
9855 		/* since changing of pause setting doesn't trigger any link
9856 		 * change event, the driver needs to update the current pause
9857 		 * result upon successfully return of the phy_cfg command
9858 		 */
9859 		bp->link_info.pause =
9860 		bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
9861 		bp->link_info.auto_pause_setting = 0;
9862 		if (!bp->link_info.force_link_chng)
9863 			bnxt_report_link(bp);
9864 	}
9865 	bp->link_info.force_link_chng = false;
9866 	return rc;
9867 }
9868 
9869 static void bnxt_hwrm_set_eee(struct bnxt *bp,
9870 			      struct hwrm_port_phy_cfg_input *req)
9871 {
9872 	struct ethtool_eee *eee = &bp->eee;
9873 
9874 	if (eee->eee_enabled) {
9875 		u16 eee_speeds;
9876 		u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE;
9877 
9878 		if (eee->tx_lpi_enabled)
9879 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE;
9880 		else
9881 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE;
9882 
9883 		req->flags |= cpu_to_le32(flags);
9884 		eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised);
9885 		req->eee_link_speed_mask = cpu_to_le16(eee_speeds);
9886 		req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer);
9887 	} else {
9888 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE);
9889 	}
9890 }
9891 
9892 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee)
9893 {
9894 	struct hwrm_port_phy_cfg_input *req;
9895 	int rc;
9896 
9897 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
9898 	if (rc)
9899 		return rc;
9900 
9901 	if (set_pause)
9902 		bnxt_hwrm_set_pause_common(bp, req);
9903 
9904 	bnxt_hwrm_set_link_common(bp, req);
9905 
9906 	if (set_eee)
9907 		bnxt_hwrm_set_eee(bp, req);
9908 	return hwrm_req_send(bp, req);
9909 }
9910 
9911 static int bnxt_hwrm_shutdown_link(struct bnxt *bp)
9912 {
9913 	struct hwrm_port_phy_cfg_input *req;
9914 	int rc;
9915 
9916 	if (!BNXT_SINGLE_PF(bp))
9917 		return 0;
9918 
9919 	if (pci_num_vf(bp->pdev) &&
9920 	    !(bp->phy_flags & BNXT_PHY_FL_FW_MANAGED_LKDN))
9921 		return 0;
9922 
9923 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
9924 	if (rc)
9925 		return rc;
9926 
9927 	req->flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN);
9928 	rc = hwrm_req_send(bp, req);
9929 	if (!rc) {
9930 		mutex_lock(&bp->link_lock);
9931 		/* Device is not obliged link down in certain scenarios, even
9932 		 * when forced. Setting the state unknown is consistent with
9933 		 * driver startup and will force link state to be reported
9934 		 * during subsequent open based on PORT_PHY_QCFG.
9935 		 */
9936 		bp->link_info.link_state = BNXT_LINK_STATE_UNKNOWN;
9937 		mutex_unlock(&bp->link_lock);
9938 	}
9939 	return rc;
9940 }
9941 
9942 static int bnxt_fw_reset_via_optee(struct bnxt *bp)
9943 {
9944 #ifdef CONFIG_TEE_BNXT_FW
9945 	int rc = tee_bnxt_fw_load();
9946 
9947 	if (rc)
9948 		netdev_err(bp->dev, "Failed FW reset via OP-TEE, rc=%d\n", rc);
9949 
9950 	return rc;
9951 #else
9952 	netdev_err(bp->dev, "OP-TEE not supported\n");
9953 	return -ENODEV;
9954 #endif
9955 }
9956 
9957 static int bnxt_try_recover_fw(struct bnxt *bp)
9958 {
9959 	if (bp->fw_health && bp->fw_health->status_reliable) {
9960 		int retry = 0, rc;
9961 		u32 sts;
9962 
9963 		do {
9964 			sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
9965 			rc = bnxt_hwrm_poll(bp);
9966 			if (!BNXT_FW_IS_BOOTING(sts) &&
9967 			    !BNXT_FW_IS_RECOVERING(sts))
9968 				break;
9969 			retry++;
9970 		} while (rc == -EBUSY && retry < BNXT_FW_RETRY);
9971 
9972 		if (!BNXT_FW_IS_HEALTHY(sts)) {
9973 			netdev_err(bp->dev,
9974 				   "Firmware not responding, status: 0x%x\n",
9975 				   sts);
9976 			rc = -ENODEV;
9977 		}
9978 		if (sts & FW_STATUS_REG_CRASHED_NO_MASTER) {
9979 			netdev_warn(bp->dev, "Firmware recover via OP-TEE requested\n");
9980 			return bnxt_fw_reset_via_optee(bp);
9981 		}
9982 		return rc;
9983 	}
9984 
9985 	return -ENODEV;
9986 }
9987 
9988 int bnxt_cancel_reservations(struct bnxt *bp, bool fw_reset)
9989 {
9990 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
9991 	int rc;
9992 
9993 	if (!BNXT_NEW_RM(bp))
9994 		return 0; /* no resource reservations required */
9995 
9996 	rc = bnxt_hwrm_func_resc_qcaps(bp, true);
9997 	if (rc)
9998 		netdev_err(bp->dev, "resc_qcaps failed\n");
9999 
10000 	hw_resc->resv_cp_rings = 0;
10001 	hw_resc->resv_stat_ctxs = 0;
10002 	hw_resc->resv_irqs = 0;
10003 	hw_resc->resv_tx_rings = 0;
10004 	hw_resc->resv_rx_rings = 0;
10005 	hw_resc->resv_hw_ring_grps = 0;
10006 	hw_resc->resv_vnics = 0;
10007 	if (!fw_reset) {
10008 		bp->tx_nr_rings = 0;
10009 		bp->rx_nr_rings = 0;
10010 	}
10011 
10012 	return rc;
10013 }
10014 
10015 static int bnxt_hwrm_if_change(struct bnxt *bp, bool up)
10016 {
10017 	struct hwrm_func_drv_if_change_output *resp;
10018 	struct hwrm_func_drv_if_change_input *req;
10019 	bool fw_reset = !bp->irq_tbl;
10020 	bool resc_reinit = false;
10021 	int rc, retry = 0;
10022 	u32 flags = 0;
10023 
10024 	if (!(bp->fw_cap & BNXT_FW_CAP_IF_CHANGE))
10025 		return 0;
10026 
10027 	rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_IF_CHANGE);
10028 	if (rc)
10029 		return rc;
10030 
10031 	if (up)
10032 		req->flags = cpu_to_le32(FUNC_DRV_IF_CHANGE_REQ_FLAGS_UP);
10033 	resp = hwrm_req_hold(bp, req);
10034 
10035 	hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT);
10036 	while (retry < BNXT_FW_IF_RETRY) {
10037 		rc = hwrm_req_send(bp, req);
10038 		if (rc != -EAGAIN)
10039 			break;
10040 
10041 		msleep(50);
10042 		retry++;
10043 	}
10044 
10045 	if (rc == -EAGAIN) {
10046 		hwrm_req_drop(bp, req);
10047 		return rc;
10048 	} else if (!rc) {
10049 		flags = le32_to_cpu(resp->flags);
10050 	} else if (up) {
10051 		rc = bnxt_try_recover_fw(bp);
10052 		fw_reset = true;
10053 	}
10054 	hwrm_req_drop(bp, req);
10055 	if (rc)
10056 		return rc;
10057 
10058 	if (!up) {
10059 		bnxt_inv_fw_health_reg(bp);
10060 		return 0;
10061 	}
10062 
10063 	if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_RESC_CHANGE)
10064 		resc_reinit = true;
10065 	if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_HOT_FW_RESET_DONE)
10066 		fw_reset = true;
10067 	else
10068 		bnxt_remap_fw_health_regs(bp);
10069 
10070 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state) && !fw_reset) {
10071 		netdev_err(bp->dev, "RESET_DONE not set during FW reset.\n");
10072 		set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
10073 		return -ENODEV;
10074 	}
10075 	if (resc_reinit || fw_reset) {
10076 		if (fw_reset) {
10077 			set_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
10078 			if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
10079 				bnxt_ulp_stop(bp);
10080 			bnxt_free_ctx_mem(bp);
10081 			kfree(bp->ctx);
10082 			bp->ctx = NULL;
10083 			bnxt_dcb_free(bp);
10084 			rc = bnxt_fw_init_one(bp);
10085 			if (rc) {
10086 				clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
10087 				set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
10088 				return rc;
10089 			}
10090 			bnxt_clear_int_mode(bp);
10091 			rc = bnxt_init_int_mode(bp);
10092 			if (rc) {
10093 				clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
10094 				netdev_err(bp->dev, "init int mode failed\n");
10095 				return rc;
10096 			}
10097 		}
10098 		rc = bnxt_cancel_reservations(bp, fw_reset);
10099 	}
10100 	return rc;
10101 }
10102 
10103 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp)
10104 {
10105 	struct hwrm_port_led_qcaps_output *resp;
10106 	struct hwrm_port_led_qcaps_input *req;
10107 	struct bnxt_pf_info *pf = &bp->pf;
10108 	int rc;
10109 
10110 	bp->num_leds = 0;
10111 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601)
10112 		return 0;
10113 
10114 	rc = hwrm_req_init(bp, req, HWRM_PORT_LED_QCAPS);
10115 	if (rc)
10116 		return rc;
10117 
10118 	req->port_id = cpu_to_le16(pf->port_id);
10119 	resp = hwrm_req_hold(bp, req);
10120 	rc = hwrm_req_send(bp, req);
10121 	if (rc) {
10122 		hwrm_req_drop(bp, req);
10123 		return rc;
10124 	}
10125 	if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) {
10126 		int i;
10127 
10128 		bp->num_leds = resp->num_leds;
10129 		memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) *
10130 						 bp->num_leds);
10131 		for (i = 0; i < bp->num_leds; i++) {
10132 			struct bnxt_led_info *led = &bp->leds[i];
10133 			__le16 caps = led->led_state_caps;
10134 
10135 			if (!led->led_group_id ||
10136 			    !BNXT_LED_ALT_BLINK_CAP(caps)) {
10137 				bp->num_leds = 0;
10138 				break;
10139 			}
10140 		}
10141 	}
10142 	hwrm_req_drop(bp, req);
10143 	return 0;
10144 }
10145 
10146 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp)
10147 {
10148 	struct hwrm_wol_filter_alloc_output *resp;
10149 	struct hwrm_wol_filter_alloc_input *req;
10150 	int rc;
10151 
10152 	rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_ALLOC);
10153 	if (rc)
10154 		return rc;
10155 
10156 	req->port_id = cpu_to_le16(bp->pf.port_id);
10157 	req->wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT;
10158 	req->enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS);
10159 	memcpy(req->mac_address, bp->dev->dev_addr, ETH_ALEN);
10160 
10161 	resp = hwrm_req_hold(bp, req);
10162 	rc = hwrm_req_send(bp, req);
10163 	if (!rc)
10164 		bp->wol_filter_id = resp->wol_filter_id;
10165 	hwrm_req_drop(bp, req);
10166 	return rc;
10167 }
10168 
10169 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp)
10170 {
10171 	struct hwrm_wol_filter_free_input *req;
10172 	int rc;
10173 
10174 	rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_FREE);
10175 	if (rc)
10176 		return rc;
10177 
10178 	req->port_id = cpu_to_le16(bp->pf.port_id);
10179 	req->enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID);
10180 	req->wol_filter_id = bp->wol_filter_id;
10181 
10182 	return hwrm_req_send(bp, req);
10183 }
10184 
10185 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle)
10186 {
10187 	struct hwrm_wol_filter_qcfg_output *resp;
10188 	struct hwrm_wol_filter_qcfg_input *req;
10189 	u16 next_handle = 0;
10190 	int rc;
10191 
10192 	rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_QCFG);
10193 	if (rc)
10194 		return rc;
10195 
10196 	req->port_id = cpu_to_le16(bp->pf.port_id);
10197 	req->handle = cpu_to_le16(handle);
10198 	resp = hwrm_req_hold(bp, req);
10199 	rc = hwrm_req_send(bp, req);
10200 	if (!rc) {
10201 		next_handle = le16_to_cpu(resp->next_handle);
10202 		if (next_handle != 0) {
10203 			if (resp->wol_type ==
10204 			    WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) {
10205 				bp->wol = 1;
10206 				bp->wol_filter_id = resp->wol_filter_id;
10207 			}
10208 		}
10209 	}
10210 	hwrm_req_drop(bp, req);
10211 	return next_handle;
10212 }
10213 
10214 static void bnxt_get_wol_settings(struct bnxt *bp)
10215 {
10216 	u16 handle = 0;
10217 
10218 	bp->wol = 0;
10219 	if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP))
10220 		return;
10221 
10222 	do {
10223 		handle = bnxt_hwrm_get_wol_fltrs(bp, handle);
10224 	} while (handle && handle != 0xffff);
10225 }
10226 
10227 #ifdef CONFIG_BNXT_HWMON
10228 static ssize_t bnxt_show_temp(struct device *dev,
10229 			      struct device_attribute *devattr, char *buf)
10230 {
10231 	struct hwrm_temp_monitor_query_output *resp;
10232 	struct hwrm_temp_monitor_query_input *req;
10233 	struct bnxt *bp = dev_get_drvdata(dev);
10234 	u32 len = 0;
10235 	int rc;
10236 
10237 	rc = hwrm_req_init(bp, req, HWRM_TEMP_MONITOR_QUERY);
10238 	if (rc)
10239 		return rc;
10240 	resp = hwrm_req_hold(bp, req);
10241 	rc = hwrm_req_send(bp, req);
10242 	if (!rc)
10243 		len = sprintf(buf, "%u\n", resp->temp * 1000); /* display millidegree */
10244 	hwrm_req_drop(bp, req);
10245 	if (rc)
10246 		return rc;
10247 	return len;
10248 }
10249 static SENSOR_DEVICE_ATTR(temp1_input, 0444, bnxt_show_temp, NULL, 0);
10250 
10251 static struct attribute *bnxt_attrs[] = {
10252 	&sensor_dev_attr_temp1_input.dev_attr.attr,
10253 	NULL
10254 };
10255 ATTRIBUTE_GROUPS(bnxt);
10256 
10257 static void bnxt_hwmon_close(struct bnxt *bp)
10258 {
10259 	if (bp->hwmon_dev) {
10260 		hwmon_device_unregister(bp->hwmon_dev);
10261 		bp->hwmon_dev = NULL;
10262 	}
10263 }
10264 
10265 static void bnxt_hwmon_open(struct bnxt *bp)
10266 {
10267 	struct hwrm_temp_monitor_query_input *req;
10268 	struct pci_dev *pdev = bp->pdev;
10269 	int rc;
10270 
10271 	rc = hwrm_req_init(bp, req, HWRM_TEMP_MONITOR_QUERY);
10272 	if (!rc)
10273 		rc = hwrm_req_send_silent(bp, req);
10274 	if (rc == -EACCES || rc == -EOPNOTSUPP) {
10275 		bnxt_hwmon_close(bp);
10276 		return;
10277 	}
10278 
10279 	if (bp->hwmon_dev)
10280 		return;
10281 
10282 	bp->hwmon_dev = hwmon_device_register_with_groups(&pdev->dev,
10283 							  DRV_MODULE_NAME, bp,
10284 							  bnxt_groups);
10285 	if (IS_ERR(bp->hwmon_dev)) {
10286 		bp->hwmon_dev = NULL;
10287 		dev_warn(&pdev->dev, "Cannot register hwmon device\n");
10288 	}
10289 }
10290 #else
10291 static void bnxt_hwmon_close(struct bnxt *bp)
10292 {
10293 }
10294 
10295 static void bnxt_hwmon_open(struct bnxt *bp)
10296 {
10297 }
10298 #endif
10299 
10300 static bool bnxt_eee_config_ok(struct bnxt *bp)
10301 {
10302 	struct ethtool_eee *eee = &bp->eee;
10303 	struct bnxt_link_info *link_info = &bp->link_info;
10304 
10305 	if (!(bp->phy_flags & BNXT_PHY_FL_EEE_CAP))
10306 		return true;
10307 
10308 	if (eee->eee_enabled) {
10309 		u32 advertising =
10310 			_bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0);
10311 
10312 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
10313 			eee->eee_enabled = 0;
10314 			return false;
10315 		}
10316 		if (eee->advertised & ~advertising) {
10317 			eee->advertised = advertising & eee->supported;
10318 			return false;
10319 		}
10320 	}
10321 	return true;
10322 }
10323 
10324 static int bnxt_update_phy_setting(struct bnxt *bp)
10325 {
10326 	int rc;
10327 	bool update_link = false;
10328 	bool update_pause = false;
10329 	bool update_eee = false;
10330 	struct bnxt_link_info *link_info = &bp->link_info;
10331 
10332 	rc = bnxt_update_link(bp, true);
10333 	if (rc) {
10334 		netdev_err(bp->dev, "failed to update link (rc: %x)\n",
10335 			   rc);
10336 		return rc;
10337 	}
10338 	if (!BNXT_SINGLE_PF(bp))
10339 		return 0;
10340 
10341 	if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
10342 	    (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) !=
10343 	    link_info->req_flow_ctrl)
10344 		update_pause = true;
10345 	if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
10346 	    link_info->force_pause_setting != link_info->req_flow_ctrl)
10347 		update_pause = true;
10348 	if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
10349 		if (BNXT_AUTO_MODE(link_info->auto_mode))
10350 			update_link = true;
10351 		if (link_info->req_signal_mode == BNXT_SIG_MODE_NRZ &&
10352 		    link_info->req_link_speed != link_info->force_link_speed)
10353 			update_link = true;
10354 		else if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4 &&
10355 			 link_info->req_link_speed != link_info->force_pam4_link_speed)
10356 			update_link = true;
10357 		if (link_info->req_duplex != link_info->duplex_setting)
10358 			update_link = true;
10359 	} else {
10360 		if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
10361 			update_link = true;
10362 		if (link_info->advertising != link_info->auto_link_speeds ||
10363 		    link_info->advertising_pam4 != link_info->auto_pam4_link_speeds)
10364 			update_link = true;
10365 	}
10366 
10367 	/* The last close may have shutdown the link, so need to call
10368 	 * PHY_CFG to bring it back up.
10369 	 */
10370 	if (!BNXT_LINK_IS_UP(bp))
10371 		update_link = true;
10372 
10373 	if (!bnxt_eee_config_ok(bp))
10374 		update_eee = true;
10375 
10376 	if (update_link)
10377 		rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee);
10378 	else if (update_pause)
10379 		rc = bnxt_hwrm_set_pause(bp);
10380 	if (rc) {
10381 		netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
10382 			   rc);
10383 		return rc;
10384 	}
10385 
10386 	return rc;
10387 }
10388 
10389 /* Common routine to pre-map certain register block to different GRC window.
10390  * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
10391  * in PF and 3 windows in VF that can be customized to map in different
10392  * register blocks.
10393  */
10394 static void bnxt_preset_reg_win(struct bnxt *bp)
10395 {
10396 	if (BNXT_PF(bp)) {
10397 		/* CAG registers map to GRC window #4 */
10398 		writel(BNXT_CAG_REG_BASE,
10399 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
10400 	}
10401 }
10402 
10403 static int bnxt_init_dflt_ring_mode(struct bnxt *bp);
10404 
10405 static int bnxt_reinit_after_abort(struct bnxt *bp)
10406 {
10407 	int rc;
10408 
10409 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
10410 		return -EBUSY;
10411 
10412 	if (bp->dev->reg_state == NETREG_UNREGISTERED)
10413 		return -ENODEV;
10414 
10415 	rc = bnxt_fw_init_one(bp);
10416 	if (!rc) {
10417 		bnxt_clear_int_mode(bp);
10418 		rc = bnxt_init_int_mode(bp);
10419 		if (!rc) {
10420 			clear_bit(BNXT_STATE_ABORT_ERR, &bp->state);
10421 			set_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
10422 		}
10423 	}
10424 	return rc;
10425 }
10426 
10427 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
10428 {
10429 	int rc = 0;
10430 
10431 	bnxt_preset_reg_win(bp);
10432 	netif_carrier_off(bp->dev);
10433 	if (irq_re_init) {
10434 		/* Reserve rings now if none were reserved at driver probe. */
10435 		rc = bnxt_init_dflt_ring_mode(bp);
10436 		if (rc) {
10437 			netdev_err(bp->dev, "Failed to reserve default rings at open\n");
10438 			return rc;
10439 		}
10440 	}
10441 	rc = bnxt_reserve_rings(bp, irq_re_init);
10442 	if (rc)
10443 		return rc;
10444 	if ((bp->flags & BNXT_FLAG_RFS) &&
10445 	    !(bp->flags & BNXT_FLAG_USING_MSIX)) {
10446 		/* disable RFS if falling back to INTA */
10447 		bp->dev->hw_features &= ~NETIF_F_NTUPLE;
10448 		bp->flags &= ~BNXT_FLAG_RFS;
10449 	}
10450 
10451 	rc = bnxt_alloc_mem(bp, irq_re_init);
10452 	if (rc) {
10453 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
10454 		goto open_err_free_mem;
10455 	}
10456 
10457 	if (irq_re_init) {
10458 		bnxt_init_napi(bp);
10459 		rc = bnxt_request_irq(bp);
10460 		if (rc) {
10461 			netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
10462 			goto open_err_irq;
10463 		}
10464 	}
10465 
10466 	rc = bnxt_init_nic(bp, irq_re_init);
10467 	if (rc) {
10468 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
10469 		goto open_err_irq;
10470 	}
10471 
10472 	bnxt_enable_napi(bp);
10473 	bnxt_debug_dev_init(bp);
10474 
10475 	if (link_re_init) {
10476 		mutex_lock(&bp->link_lock);
10477 		rc = bnxt_update_phy_setting(bp);
10478 		mutex_unlock(&bp->link_lock);
10479 		if (rc) {
10480 			netdev_warn(bp->dev, "failed to update phy settings\n");
10481 			if (BNXT_SINGLE_PF(bp)) {
10482 				bp->link_info.phy_retry = true;
10483 				bp->link_info.phy_retry_expires =
10484 					jiffies + 5 * HZ;
10485 			}
10486 		}
10487 	}
10488 
10489 	if (irq_re_init)
10490 		udp_tunnel_nic_reset_ntf(bp->dev);
10491 
10492 	if (bp->tx_nr_rings_xdp < num_possible_cpus()) {
10493 		if (!static_key_enabled(&bnxt_xdp_locking_key))
10494 			static_branch_enable(&bnxt_xdp_locking_key);
10495 	} else if (static_key_enabled(&bnxt_xdp_locking_key)) {
10496 		static_branch_disable(&bnxt_xdp_locking_key);
10497 	}
10498 	set_bit(BNXT_STATE_OPEN, &bp->state);
10499 	bnxt_enable_int(bp);
10500 	/* Enable TX queues */
10501 	bnxt_tx_enable(bp);
10502 	mod_timer(&bp->timer, jiffies + bp->current_interval);
10503 	/* Poll link status and check for SFP+ module status */
10504 	mutex_lock(&bp->link_lock);
10505 	bnxt_get_port_module_status(bp);
10506 	mutex_unlock(&bp->link_lock);
10507 
10508 	/* VF-reps may need to be re-opened after the PF is re-opened */
10509 	if (BNXT_PF(bp))
10510 		bnxt_vf_reps_open(bp);
10511 	bnxt_ptp_init_rtc(bp, true);
10512 	bnxt_ptp_cfg_tstamp_filters(bp);
10513 	return 0;
10514 
10515 open_err_irq:
10516 	bnxt_del_napi(bp);
10517 
10518 open_err_free_mem:
10519 	bnxt_free_skbs(bp);
10520 	bnxt_free_irq(bp);
10521 	bnxt_free_mem(bp, true);
10522 	return rc;
10523 }
10524 
10525 /* rtnl_lock held */
10526 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
10527 {
10528 	int rc = 0;
10529 
10530 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state))
10531 		rc = -EIO;
10532 	if (!rc)
10533 		rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
10534 	if (rc) {
10535 		netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
10536 		dev_close(bp->dev);
10537 	}
10538 	return rc;
10539 }
10540 
10541 /* rtnl_lock held, open the NIC half way by allocating all resources, but
10542  * NAPI, IRQ, and TX are not enabled.  This is mainly used for offline
10543  * self tests.
10544  */
10545 int bnxt_half_open_nic(struct bnxt *bp)
10546 {
10547 	int rc = 0;
10548 
10549 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
10550 		netdev_err(bp->dev, "A previous firmware reset has not completed, aborting half open\n");
10551 		rc = -ENODEV;
10552 		goto half_open_err;
10553 	}
10554 
10555 	rc = bnxt_alloc_mem(bp, true);
10556 	if (rc) {
10557 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
10558 		goto half_open_err;
10559 	}
10560 	set_bit(BNXT_STATE_HALF_OPEN, &bp->state);
10561 	rc = bnxt_init_nic(bp, true);
10562 	if (rc) {
10563 		clear_bit(BNXT_STATE_HALF_OPEN, &bp->state);
10564 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
10565 		goto half_open_err;
10566 	}
10567 	return 0;
10568 
10569 half_open_err:
10570 	bnxt_free_skbs(bp);
10571 	bnxt_free_mem(bp, true);
10572 	dev_close(bp->dev);
10573 	return rc;
10574 }
10575 
10576 /* rtnl_lock held, this call can only be made after a previous successful
10577  * call to bnxt_half_open_nic().
10578  */
10579 void bnxt_half_close_nic(struct bnxt *bp)
10580 {
10581 	bnxt_hwrm_resource_free(bp, false, true);
10582 	bnxt_free_skbs(bp);
10583 	bnxt_free_mem(bp, true);
10584 	clear_bit(BNXT_STATE_HALF_OPEN, &bp->state);
10585 }
10586 
10587 void bnxt_reenable_sriov(struct bnxt *bp)
10588 {
10589 	if (BNXT_PF(bp)) {
10590 		struct bnxt_pf_info *pf = &bp->pf;
10591 		int n = pf->active_vfs;
10592 
10593 		if (n)
10594 			bnxt_cfg_hw_sriov(bp, &n, true);
10595 	}
10596 }
10597 
10598 static int bnxt_open(struct net_device *dev)
10599 {
10600 	struct bnxt *bp = netdev_priv(dev);
10601 	int rc;
10602 
10603 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
10604 		rc = bnxt_reinit_after_abort(bp);
10605 		if (rc) {
10606 			if (rc == -EBUSY)
10607 				netdev_err(bp->dev, "A previous firmware reset has not completed, aborting\n");
10608 			else
10609 				netdev_err(bp->dev, "Failed to reinitialize after aborted firmware reset\n");
10610 			return -ENODEV;
10611 		}
10612 	}
10613 
10614 	rc = bnxt_hwrm_if_change(bp, true);
10615 	if (rc)
10616 		return rc;
10617 
10618 	rc = __bnxt_open_nic(bp, true, true);
10619 	if (rc) {
10620 		bnxt_hwrm_if_change(bp, false);
10621 	} else {
10622 		if (test_and_clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) {
10623 			if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
10624 				bnxt_ulp_start(bp, 0);
10625 				bnxt_reenable_sriov(bp);
10626 			}
10627 		}
10628 		bnxt_hwmon_open(bp);
10629 	}
10630 
10631 	return rc;
10632 }
10633 
10634 static bool bnxt_drv_busy(struct bnxt *bp)
10635 {
10636 	return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) ||
10637 		test_bit(BNXT_STATE_READ_STATS, &bp->state));
10638 }
10639 
10640 static void bnxt_get_ring_stats(struct bnxt *bp,
10641 				struct rtnl_link_stats64 *stats);
10642 
10643 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init,
10644 			     bool link_re_init)
10645 {
10646 	/* Close the VF-reps before closing PF */
10647 	if (BNXT_PF(bp))
10648 		bnxt_vf_reps_close(bp);
10649 
10650 	/* Change device state to avoid TX queue wake up's */
10651 	bnxt_tx_disable(bp);
10652 
10653 	clear_bit(BNXT_STATE_OPEN, &bp->state);
10654 	smp_mb__after_atomic();
10655 	while (bnxt_drv_busy(bp))
10656 		msleep(20);
10657 
10658 	/* Flush rings and disable interrupts */
10659 	bnxt_shutdown_nic(bp, irq_re_init);
10660 
10661 	/* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
10662 
10663 	bnxt_debug_dev_exit(bp);
10664 	bnxt_disable_napi(bp);
10665 	del_timer_sync(&bp->timer);
10666 	bnxt_free_skbs(bp);
10667 
10668 	/* Save ring stats before shutdown */
10669 	if (bp->bnapi && irq_re_init)
10670 		bnxt_get_ring_stats(bp, &bp->net_stats_prev);
10671 	if (irq_re_init) {
10672 		bnxt_free_irq(bp);
10673 		bnxt_del_napi(bp);
10674 	}
10675 	bnxt_free_mem(bp, irq_re_init);
10676 }
10677 
10678 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
10679 {
10680 	int rc = 0;
10681 
10682 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
10683 		/* If we get here, it means firmware reset is in progress
10684 		 * while we are trying to close.  We can safely proceed with
10685 		 * the close because we are holding rtnl_lock().  Some firmware
10686 		 * messages may fail as we proceed to close.  We set the
10687 		 * ABORT_ERR flag here so that the FW reset thread will later
10688 		 * abort when it gets the rtnl_lock() and sees the flag.
10689 		 */
10690 		netdev_warn(bp->dev, "FW reset in progress during close, FW reset will be aborted\n");
10691 		set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
10692 	}
10693 
10694 #ifdef CONFIG_BNXT_SRIOV
10695 	if (bp->sriov_cfg) {
10696 		rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
10697 						      !bp->sriov_cfg,
10698 						      BNXT_SRIOV_CFG_WAIT_TMO);
10699 		if (rc)
10700 			netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
10701 	}
10702 #endif
10703 	__bnxt_close_nic(bp, irq_re_init, link_re_init);
10704 	return rc;
10705 }
10706 
10707 static int bnxt_close(struct net_device *dev)
10708 {
10709 	struct bnxt *bp = netdev_priv(dev);
10710 
10711 	bnxt_hwmon_close(bp);
10712 	bnxt_close_nic(bp, true, true);
10713 	bnxt_hwrm_shutdown_link(bp);
10714 	bnxt_hwrm_if_change(bp, false);
10715 	return 0;
10716 }
10717 
10718 static int bnxt_hwrm_port_phy_read(struct bnxt *bp, u16 phy_addr, u16 reg,
10719 				   u16 *val)
10720 {
10721 	struct hwrm_port_phy_mdio_read_output *resp;
10722 	struct hwrm_port_phy_mdio_read_input *req;
10723 	int rc;
10724 
10725 	if (bp->hwrm_spec_code < 0x10a00)
10726 		return -EOPNOTSUPP;
10727 
10728 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_READ);
10729 	if (rc)
10730 		return rc;
10731 
10732 	req->port_id = cpu_to_le16(bp->pf.port_id);
10733 	req->phy_addr = phy_addr;
10734 	req->reg_addr = cpu_to_le16(reg & 0x1f);
10735 	if (mdio_phy_id_is_c45(phy_addr)) {
10736 		req->cl45_mdio = 1;
10737 		req->phy_addr = mdio_phy_id_prtad(phy_addr);
10738 		req->dev_addr = mdio_phy_id_devad(phy_addr);
10739 		req->reg_addr = cpu_to_le16(reg);
10740 	}
10741 
10742 	resp = hwrm_req_hold(bp, req);
10743 	rc = hwrm_req_send(bp, req);
10744 	if (!rc)
10745 		*val = le16_to_cpu(resp->reg_data);
10746 	hwrm_req_drop(bp, req);
10747 	return rc;
10748 }
10749 
10750 static int bnxt_hwrm_port_phy_write(struct bnxt *bp, u16 phy_addr, u16 reg,
10751 				    u16 val)
10752 {
10753 	struct hwrm_port_phy_mdio_write_input *req;
10754 	int rc;
10755 
10756 	if (bp->hwrm_spec_code < 0x10a00)
10757 		return -EOPNOTSUPP;
10758 
10759 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_WRITE);
10760 	if (rc)
10761 		return rc;
10762 
10763 	req->port_id = cpu_to_le16(bp->pf.port_id);
10764 	req->phy_addr = phy_addr;
10765 	req->reg_addr = cpu_to_le16(reg & 0x1f);
10766 	if (mdio_phy_id_is_c45(phy_addr)) {
10767 		req->cl45_mdio = 1;
10768 		req->phy_addr = mdio_phy_id_prtad(phy_addr);
10769 		req->dev_addr = mdio_phy_id_devad(phy_addr);
10770 		req->reg_addr = cpu_to_le16(reg);
10771 	}
10772 	req->reg_data = cpu_to_le16(val);
10773 
10774 	return hwrm_req_send(bp, req);
10775 }
10776 
10777 /* rtnl_lock held */
10778 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
10779 {
10780 	struct mii_ioctl_data *mdio = if_mii(ifr);
10781 	struct bnxt *bp = netdev_priv(dev);
10782 	int rc;
10783 
10784 	switch (cmd) {
10785 	case SIOCGMIIPHY:
10786 		mdio->phy_id = bp->link_info.phy_addr;
10787 
10788 		fallthrough;
10789 	case SIOCGMIIREG: {
10790 		u16 mii_regval = 0;
10791 
10792 		if (!netif_running(dev))
10793 			return -EAGAIN;
10794 
10795 		rc = bnxt_hwrm_port_phy_read(bp, mdio->phy_id, mdio->reg_num,
10796 					     &mii_regval);
10797 		mdio->val_out = mii_regval;
10798 		return rc;
10799 	}
10800 
10801 	case SIOCSMIIREG:
10802 		if (!netif_running(dev))
10803 			return -EAGAIN;
10804 
10805 		return bnxt_hwrm_port_phy_write(bp, mdio->phy_id, mdio->reg_num,
10806 						mdio->val_in);
10807 
10808 	case SIOCSHWTSTAMP:
10809 		return bnxt_hwtstamp_set(dev, ifr);
10810 
10811 	case SIOCGHWTSTAMP:
10812 		return bnxt_hwtstamp_get(dev, ifr);
10813 
10814 	default:
10815 		/* do nothing */
10816 		break;
10817 	}
10818 	return -EOPNOTSUPP;
10819 }
10820 
10821 static void bnxt_get_ring_stats(struct bnxt *bp,
10822 				struct rtnl_link_stats64 *stats)
10823 {
10824 	int i;
10825 
10826 	for (i = 0; i < bp->cp_nr_rings; i++) {
10827 		struct bnxt_napi *bnapi = bp->bnapi[i];
10828 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
10829 		u64 *sw = cpr->stats.sw_stats;
10830 
10831 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts);
10832 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts);
10833 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts);
10834 
10835 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts);
10836 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts);
10837 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts);
10838 
10839 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes);
10840 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes);
10841 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes);
10842 
10843 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes);
10844 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes);
10845 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes);
10846 
10847 		stats->rx_missed_errors +=
10848 			BNXT_GET_RING_STATS64(sw, rx_discard_pkts);
10849 
10850 		stats->multicast += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts);
10851 
10852 		stats->tx_dropped += BNXT_GET_RING_STATS64(sw, tx_error_pkts);
10853 
10854 		stats->rx_dropped +=
10855 			cpr->sw_stats.rx.rx_netpoll_discards +
10856 			cpr->sw_stats.rx.rx_oom_discards;
10857 	}
10858 }
10859 
10860 static void bnxt_add_prev_stats(struct bnxt *bp,
10861 				struct rtnl_link_stats64 *stats)
10862 {
10863 	struct rtnl_link_stats64 *prev_stats = &bp->net_stats_prev;
10864 
10865 	stats->rx_packets += prev_stats->rx_packets;
10866 	stats->tx_packets += prev_stats->tx_packets;
10867 	stats->rx_bytes += prev_stats->rx_bytes;
10868 	stats->tx_bytes += prev_stats->tx_bytes;
10869 	stats->rx_missed_errors += prev_stats->rx_missed_errors;
10870 	stats->multicast += prev_stats->multicast;
10871 	stats->rx_dropped += prev_stats->rx_dropped;
10872 	stats->tx_dropped += prev_stats->tx_dropped;
10873 }
10874 
10875 static void
10876 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
10877 {
10878 	struct bnxt *bp = netdev_priv(dev);
10879 
10880 	set_bit(BNXT_STATE_READ_STATS, &bp->state);
10881 	/* Make sure bnxt_close_nic() sees that we are reading stats before
10882 	 * we check the BNXT_STATE_OPEN flag.
10883 	 */
10884 	smp_mb__after_atomic();
10885 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
10886 		clear_bit(BNXT_STATE_READ_STATS, &bp->state);
10887 		*stats = bp->net_stats_prev;
10888 		return;
10889 	}
10890 
10891 	bnxt_get_ring_stats(bp, stats);
10892 	bnxt_add_prev_stats(bp, stats);
10893 
10894 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
10895 		u64 *rx = bp->port_stats.sw_stats;
10896 		u64 *tx = bp->port_stats.sw_stats +
10897 			  BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
10898 
10899 		stats->rx_crc_errors =
10900 			BNXT_GET_RX_PORT_STATS64(rx, rx_fcs_err_frames);
10901 		stats->rx_frame_errors =
10902 			BNXT_GET_RX_PORT_STATS64(rx, rx_align_err_frames);
10903 		stats->rx_length_errors =
10904 			BNXT_GET_RX_PORT_STATS64(rx, rx_undrsz_frames) +
10905 			BNXT_GET_RX_PORT_STATS64(rx, rx_ovrsz_frames) +
10906 			BNXT_GET_RX_PORT_STATS64(rx, rx_runt_frames);
10907 		stats->rx_errors =
10908 			BNXT_GET_RX_PORT_STATS64(rx, rx_false_carrier_frames) +
10909 			BNXT_GET_RX_PORT_STATS64(rx, rx_jbr_frames);
10910 		stats->collisions =
10911 			BNXT_GET_TX_PORT_STATS64(tx, tx_total_collisions);
10912 		stats->tx_fifo_errors =
10913 			BNXT_GET_TX_PORT_STATS64(tx, tx_fifo_underruns);
10914 		stats->tx_errors = BNXT_GET_TX_PORT_STATS64(tx, tx_err);
10915 	}
10916 	clear_bit(BNXT_STATE_READ_STATS, &bp->state);
10917 }
10918 
10919 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
10920 {
10921 	struct net_device *dev = bp->dev;
10922 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
10923 	struct netdev_hw_addr *ha;
10924 	u8 *haddr;
10925 	int mc_count = 0;
10926 	bool update = false;
10927 	int off = 0;
10928 
10929 	netdev_for_each_mc_addr(ha, dev) {
10930 		if (mc_count >= BNXT_MAX_MC_ADDRS) {
10931 			*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
10932 			vnic->mc_list_count = 0;
10933 			return false;
10934 		}
10935 		haddr = ha->addr;
10936 		if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
10937 			memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
10938 			update = true;
10939 		}
10940 		off += ETH_ALEN;
10941 		mc_count++;
10942 	}
10943 	if (mc_count)
10944 		*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
10945 
10946 	if (mc_count != vnic->mc_list_count) {
10947 		vnic->mc_list_count = mc_count;
10948 		update = true;
10949 	}
10950 	return update;
10951 }
10952 
10953 static bool bnxt_uc_list_updated(struct bnxt *bp)
10954 {
10955 	struct net_device *dev = bp->dev;
10956 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
10957 	struct netdev_hw_addr *ha;
10958 	int off = 0;
10959 
10960 	if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
10961 		return true;
10962 
10963 	netdev_for_each_uc_addr(ha, dev) {
10964 		if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
10965 			return true;
10966 
10967 		off += ETH_ALEN;
10968 	}
10969 	return false;
10970 }
10971 
10972 static void bnxt_set_rx_mode(struct net_device *dev)
10973 {
10974 	struct bnxt *bp = netdev_priv(dev);
10975 	struct bnxt_vnic_info *vnic;
10976 	bool mc_update = false;
10977 	bool uc_update;
10978 	u32 mask;
10979 
10980 	if (!test_bit(BNXT_STATE_OPEN, &bp->state))
10981 		return;
10982 
10983 	vnic = &bp->vnic_info[0];
10984 	mask = vnic->rx_mask;
10985 	mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
10986 		  CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
10987 		  CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST |
10988 		  CFA_L2_SET_RX_MASK_REQ_MASK_BCAST);
10989 
10990 	if (dev->flags & IFF_PROMISC)
10991 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
10992 
10993 	uc_update = bnxt_uc_list_updated(bp);
10994 
10995 	if (dev->flags & IFF_BROADCAST)
10996 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
10997 	if (dev->flags & IFF_ALLMULTI) {
10998 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
10999 		vnic->mc_list_count = 0;
11000 	} else if (dev->flags & IFF_MULTICAST) {
11001 		mc_update = bnxt_mc_list_updated(bp, &mask);
11002 	}
11003 
11004 	if (mask != vnic->rx_mask || uc_update || mc_update) {
11005 		vnic->rx_mask = mask;
11006 
11007 		set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
11008 		bnxt_queue_sp_work(bp);
11009 	}
11010 }
11011 
11012 static int bnxt_cfg_rx_mode(struct bnxt *bp)
11013 {
11014 	struct net_device *dev = bp->dev;
11015 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
11016 	struct hwrm_cfa_l2_filter_free_input *req;
11017 	struct netdev_hw_addr *ha;
11018 	int i, off = 0, rc;
11019 	bool uc_update;
11020 
11021 	netif_addr_lock_bh(dev);
11022 	uc_update = bnxt_uc_list_updated(bp);
11023 	netif_addr_unlock_bh(dev);
11024 
11025 	if (!uc_update)
11026 		goto skip_uc;
11027 
11028 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE);
11029 	if (rc)
11030 		return rc;
11031 	hwrm_req_hold(bp, req);
11032 	for (i = 1; i < vnic->uc_filter_count; i++) {
11033 		req->l2_filter_id = vnic->fw_l2_filter_id[i];
11034 
11035 		rc = hwrm_req_send(bp, req);
11036 	}
11037 	hwrm_req_drop(bp, req);
11038 
11039 	vnic->uc_filter_count = 1;
11040 
11041 	netif_addr_lock_bh(dev);
11042 	if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
11043 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
11044 	} else {
11045 		netdev_for_each_uc_addr(ha, dev) {
11046 			memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
11047 			off += ETH_ALEN;
11048 			vnic->uc_filter_count++;
11049 		}
11050 	}
11051 	netif_addr_unlock_bh(dev);
11052 
11053 	for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
11054 		rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
11055 		if (rc) {
11056 			if (BNXT_VF(bp) && rc == -ENODEV) {
11057 				if (!test_and_set_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state))
11058 					netdev_warn(bp->dev, "Cannot configure L2 filters while PF is unavailable, will retry\n");
11059 				else
11060 					netdev_dbg(bp->dev, "PF still unavailable while configuring L2 filters.\n");
11061 				rc = 0;
11062 			} else {
11063 				netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
11064 			}
11065 			vnic->uc_filter_count = i;
11066 			return rc;
11067 		}
11068 	}
11069 	if (test_and_clear_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state))
11070 		netdev_notice(bp->dev, "Retry of L2 filter configuration successful.\n");
11071 
11072 skip_uc:
11073 	if ((vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS) &&
11074 	    !bnxt_promisc_ok(bp))
11075 		vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
11076 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
11077 	if (rc && (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST)) {
11078 		netdev_info(bp->dev, "Failed setting MC filters rc: %d, turning on ALL_MCAST mode\n",
11079 			    rc);
11080 		vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
11081 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
11082 		vnic->mc_list_count = 0;
11083 		rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
11084 	}
11085 	if (rc)
11086 		netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %d\n",
11087 			   rc);
11088 
11089 	return rc;
11090 }
11091 
11092 static bool bnxt_can_reserve_rings(struct bnxt *bp)
11093 {
11094 #ifdef CONFIG_BNXT_SRIOV
11095 	if (BNXT_NEW_RM(bp) && BNXT_VF(bp)) {
11096 		struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
11097 
11098 		/* No minimum rings were provisioned by the PF.  Don't
11099 		 * reserve rings by default when device is down.
11100 		 */
11101 		if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings)
11102 			return true;
11103 
11104 		if (!netif_running(bp->dev))
11105 			return false;
11106 	}
11107 #endif
11108 	return true;
11109 }
11110 
11111 /* If the chip and firmware supports RFS */
11112 static bool bnxt_rfs_supported(struct bnxt *bp)
11113 {
11114 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
11115 		if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2)
11116 			return true;
11117 		return false;
11118 	}
11119 	/* 212 firmware is broken for aRFS */
11120 	if (BNXT_FW_MAJ(bp) == 212)
11121 		return false;
11122 	if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
11123 		return true;
11124 	if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
11125 		return true;
11126 	return false;
11127 }
11128 
11129 /* If runtime conditions support RFS */
11130 static bool bnxt_rfs_capable(struct bnxt *bp)
11131 {
11132 #ifdef CONFIG_RFS_ACCEL
11133 	int vnics, max_vnics, max_rss_ctxs;
11134 
11135 	if (bp->flags & BNXT_FLAG_CHIP_P5)
11136 		return bnxt_rfs_supported(bp);
11137 	if (!(bp->flags & BNXT_FLAG_MSIX_CAP) || !bnxt_can_reserve_rings(bp) || !bp->rx_nr_rings)
11138 		return false;
11139 
11140 	vnics = 1 + bp->rx_nr_rings;
11141 	max_vnics = bnxt_get_max_func_vnics(bp);
11142 	max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp);
11143 
11144 	/* RSS contexts not a limiting factor */
11145 	if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
11146 		max_rss_ctxs = max_vnics;
11147 	if (vnics > max_vnics || vnics > max_rss_ctxs) {
11148 		if (bp->rx_nr_rings > 1)
11149 			netdev_warn(bp->dev,
11150 				    "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n",
11151 				    min(max_rss_ctxs - 1, max_vnics - 1));
11152 		return false;
11153 	}
11154 
11155 	if (!BNXT_NEW_RM(bp))
11156 		return true;
11157 
11158 	if (vnics == bp->hw_resc.resv_vnics)
11159 		return true;
11160 
11161 	bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, vnics);
11162 	if (vnics <= bp->hw_resc.resv_vnics)
11163 		return true;
11164 
11165 	netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n");
11166 	bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, 1);
11167 	return false;
11168 #else
11169 	return false;
11170 #endif
11171 }
11172 
11173 static netdev_features_t bnxt_fix_features(struct net_device *dev,
11174 					   netdev_features_t features)
11175 {
11176 	struct bnxt *bp = netdev_priv(dev);
11177 	netdev_features_t vlan_features;
11178 
11179 	if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp))
11180 		features &= ~NETIF_F_NTUPLE;
11181 
11182 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
11183 		features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
11184 
11185 	if (!(bp->flags & BNXT_FLAG_TPA))
11186 		features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
11187 
11188 	if (!(features & NETIF_F_GRO))
11189 		features &= ~NETIF_F_GRO_HW;
11190 
11191 	if (features & NETIF_F_GRO_HW)
11192 		features &= ~NETIF_F_LRO;
11193 
11194 	/* Both CTAG and STAG VLAN accelaration on the RX side have to be
11195 	 * turned on or off together.
11196 	 */
11197 	vlan_features = features & BNXT_HW_FEATURE_VLAN_ALL_RX;
11198 	if (vlan_features != BNXT_HW_FEATURE_VLAN_ALL_RX) {
11199 		if (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)
11200 			features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX;
11201 		else if (vlan_features)
11202 			features |= BNXT_HW_FEATURE_VLAN_ALL_RX;
11203 	}
11204 #ifdef CONFIG_BNXT_SRIOV
11205 	if (BNXT_VF(bp) && bp->vf.vlan)
11206 		features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX;
11207 #endif
11208 	return features;
11209 }
11210 
11211 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
11212 {
11213 	struct bnxt *bp = netdev_priv(dev);
11214 	u32 flags = bp->flags;
11215 	u32 changes;
11216 	int rc = 0;
11217 	bool re_init = false;
11218 	bool update_tpa = false;
11219 
11220 	flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
11221 	if (features & NETIF_F_GRO_HW)
11222 		flags |= BNXT_FLAG_GRO;
11223 	else if (features & NETIF_F_LRO)
11224 		flags |= BNXT_FLAG_LRO;
11225 
11226 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
11227 		flags &= ~BNXT_FLAG_TPA;
11228 
11229 	if (features & BNXT_HW_FEATURE_VLAN_ALL_RX)
11230 		flags |= BNXT_FLAG_STRIP_VLAN;
11231 
11232 	if (features & NETIF_F_NTUPLE)
11233 		flags |= BNXT_FLAG_RFS;
11234 
11235 	changes = flags ^ bp->flags;
11236 	if (changes & BNXT_FLAG_TPA) {
11237 		update_tpa = true;
11238 		if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
11239 		    (flags & BNXT_FLAG_TPA) == 0 ||
11240 		    (bp->flags & BNXT_FLAG_CHIP_P5))
11241 			re_init = true;
11242 	}
11243 
11244 	if (changes & ~BNXT_FLAG_TPA)
11245 		re_init = true;
11246 
11247 	if (flags != bp->flags) {
11248 		u32 old_flags = bp->flags;
11249 
11250 		if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
11251 			bp->flags = flags;
11252 			if (update_tpa)
11253 				bnxt_set_ring_params(bp);
11254 			return rc;
11255 		}
11256 
11257 		if (re_init) {
11258 			bnxt_close_nic(bp, false, false);
11259 			bp->flags = flags;
11260 			if (update_tpa)
11261 				bnxt_set_ring_params(bp);
11262 
11263 			return bnxt_open_nic(bp, false, false);
11264 		}
11265 		if (update_tpa) {
11266 			bp->flags = flags;
11267 			rc = bnxt_set_tpa(bp,
11268 					  (flags & BNXT_FLAG_TPA) ?
11269 					  true : false);
11270 			if (rc)
11271 				bp->flags = old_flags;
11272 		}
11273 	}
11274 	return rc;
11275 }
11276 
11277 static bool bnxt_exthdr_check(struct bnxt *bp, struct sk_buff *skb, int nw_off,
11278 			      u8 **nextp)
11279 {
11280 	struct ipv6hdr *ip6h = (struct ipv6hdr *)(skb->data + nw_off);
11281 	int hdr_count = 0;
11282 	u8 *nexthdr;
11283 	int start;
11284 
11285 	/* Check that there are at most 2 IPv6 extension headers, no
11286 	 * fragment header, and each is <= 64 bytes.
11287 	 */
11288 	start = nw_off + sizeof(*ip6h);
11289 	nexthdr = &ip6h->nexthdr;
11290 	while (ipv6_ext_hdr(*nexthdr)) {
11291 		struct ipv6_opt_hdr *hp;
11292 		int hdrlen;
11293 
11294 		if (hdr_count >= 3 || *nexthdr == NEXTHDR_NONE ||
11295 		    *nexthdr == NEXTHDR_FRAGMENT)
11296 			return false;
11297 		hp = __skb_header_pointer(NULL, start, sizeof(*hp), skb->data,
11298 					  skb_headlen(skb), NULL);
11299 		if (!hp)
11300 			return false;
11301 		if (*nexthdr == NEXTHDR_AUTH)
11302 			hdrlen = ipv6_authlen(hp);
11303 		else
11304 			hdrlen = ipv6_optlen(hp);
11305 
11306 		if (hdrlen > 64)
11307 			return false;
11308 		nexthdr = &hp->nexthdr;
11309 		start += hdrlen;
11310 		hdr_count++;
11311 	}
11312 	if (nextp) {
11313 		/* Caller will check inner protocol */
11314 		if (skb->encapsulation) {
11315 			*nextp = nexthdr;
11316 			return true;
11317 		}
11318 		*nextp = NULL;
11319 	}
11320 	/* Only support TCP/UDP for non-tunneled ipv6 and inner ipv6 */
11321 	return *nexthdr == IPPROTO_TCP || *nexthdr == IPPROTO_UDP;
11322 }
11323 
11324 /* For UDP, we can only handle 1 Vxlan port and 1 Geneve port. */
11325 static bool bnxt_udp_tunl_check(struct bnxt *bp, struct sk_buff *skb)
11326 {
11327 	struct udphdr *uh = udp_hdr(skb);
11328 	__be16 udp_port = uh->dest;
11329 
11330 	if (udp_port != bp->vxlan_port && udp_port != bp->nge_port)
11331 		return false;
11332 	if (skb->inner_protocol_type == ENCAP_TYPE_ETHER) {
11333 		struct ethhdr *eh = inner_eth_hdr(skb);
11334 
11335 		switch (eh->h_proto) {
11336 		case htons(ETH_P_IP):
11337 			return true;
11338 		case htons(ETH_P_IPV6):
11339 			return bnxt_exthdr_check(bp, skb,
11340 						 skb_inner_network_offset(skb),
11341 						 NULL);
11342 		}
11343 	}
11344 	return false;
11345 }
11346 
11347 static bool bnxt_tunl_check(struct bnxt *bp, struct sk_buff *skb, u8 l4_proto)
11348 {
11349 	switch (l4_proto) {
11350 	case IPPROTO_UDP:
11351 		return bnxt_udp_tunl_check(bp, skb);
11352 	case IPPROTO_IPIP:
11353 		return true;
11354 	case IPPROTO_GRE: {
11355 		switch (skb->inner_protocol) {
11356 		default:
11357 			return false;
11358 		case htons(ETH_P_IP):
11359 			return true;
11360 		case htons(ETH_P_IPV6):
11361 			fallthrough;
11362 		}
11363 	}
11364 	case IPPROTO_IPV6:
11365 		/* Check ext headers of inner ipv6 */
11366 		return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb),
11367 					 NULL);
11368 	}
11369 	return false;
11370 }
11371 
11372 static netdev_features_t bnxt_features_check(struct sk_buff *skb,
11373 					     struct net_device *dev,
11374 					     netdev_features_t features)
11375 {
11376 	struct bnxt *bp = netdev_priv(dev);
11377 	u8 *l4_proto;
11378 
11379 	features = vlan_features_check(skb, features);
11380 	switch (vlan_get_protocol(skb)) {
11381 	case htons(ETH_P_IP):
11382 		if (!skb->encapsulation)
11383 			return features;
11384 		l4_proto = &ip_hdr(skb)->protocol;
11385 		if (bnxt_tunl_check(bp, skb, *l4_proto))
11386 			return features;
11387 		break;
11388 	case htons(ETH_P_IPV6):
11389 		if (!bnxt_exthdr_check(bp, skb, skb_network_offset(skb),
11390 				       &l4_proto))
11391 			break;
11392 		if (!l4_proto || bnxt_tunl_check(bp, skb, *l4_proto))
11393 			return features;
11394 		break;
11395 	}
11396 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
11397 }
11398 
11399 int bnxt_dbg_hwrm_rd_reg(struct bnxt *bp, u32 reg_off, u16 num_words,
11400 			 u32 *reg_buf)
11401 {
11402 	struct hwrm_dbg_read_direct_output *resp;
11403 	struct hwrm_dbg_read_direct_input *req;
11404 	__le32 *dbg_reg_buf;
11405 	dma_addr_t mapping;
11406 	int rc, i;
11407 
11408 	rc = hwrm_req_init(bp, req, HWRM_DBG_READ_DIRECT);
11409 	if (rc)
11410 		return rc;
11411 
11412 	dbg_reg_buf = hwrm_req_dma_slice(bp, req, num_words * 4,
11413 					 &mapping);
11414 	if (!dbg_reg_buf) {
11415 		rc = -ENOMEM;
11416 		goto dbg_rd_reg_exit;
11417 	}
11418 
11419 	req->host_dest_addr = cpu_to_le64(mapping);
11420 
11421 	resp = hwrm_req_hold(bp, req);
11422 	req->read_addr = cpu_to_le32(reg_off + CHIMP_REG_VIEW_ADDR);
11423 	req->read_len32 = cpu_to_le32(num_words);
11424 
11425 	rc = hwrm_req_send(bp, req);
11426 	if (rc || resp->error_code) {
11427 		rc = -EIO;
11428 		goto dbg_rd_reg_exit;
11429 	}
11430 	for (i = 0; i < num_words; i++)
11431 		reg_buf[i] = le32_to_cpu(dbg_reg_buf[i]);
11432 
11433 dbg_rd_reg_exit:
11434 	hwrm_req_drop(bp, req);
11435 	return rc;
11436 }
11437 
11438 static int bnxt_dbg_hwrm_ring_info_get(struct bnxt *bp, u8 ring_type,
11439 				       u32 ring_id, u32 *prod, u32 *cons)
11440 {
11441 	struct hwrm_dbg_ring_info_get_output *resp;
11442 	struct hwrm_dbg_ring_info_get_input *req;
11443 	int rc;
11444 
11445 	rc = hwrm_req_init(bp, req, HWRM_DBG_RING_INFO_GET);
11446 	if (rc)
11447 		return rc;
11448 
11449 	req->ring_type = ring_type;
11450 	req->fw_ring_id = cpu_to_le32(ring_id);
11451 	resp = hwrm_req_hold(bp, req);
11452 	rc = hwrm_req_send(bp, req);
11453 	if (!rc) {
11454 		*prod = le32_to_cpu(resp->producer_index);
11455 		*cons = le32_to_cpu(resp->consumer_index);
11456 	}
11457 	hwrm_req_drop(bp, req);
11458 	return rc;
11459 }
11460 
11461 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
11462 {
11463 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
11464 	int i = bnapi->index;
11465 
11466 	if (!txr)
11467 		return;
11468 
11469 	netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
11470 		    i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
11471 		    txr->tx_cons);
11472 }
11473 
11474 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
11475 {
11476 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
11477 	int i = bnapi->index;
11478 
11479 	if (!rxr)
11480 		return;
11481 
11482 	netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
11483 		    i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
11484 		    rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
11485 		    rxr->rx_sw_agg_prod);
11486 }
11487 
11488 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
11489 {
11490 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
11491 	int i = bnapi->index;
11492 
11493 	netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
11494 		    i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
11495 }
11496 
11497 static void bnxt_dbg_dump_states(struct bnxt *bp)
11498 {
11499 	int i;
11500 	struct bnxt_napi *bnapi;
11501 
11502 	for (i = 0; i < bp->cp_nr_rings; i++) {
11503 		bnapi = bp->bnapi[i];
11504 		if (netif_msg_drv(bp)) {
11505 			bnxt_dump_tx_sw_state(bnapi);
11506 			bnxt_dump_rx_sw_state(bnapi);
11507 			bnxt_dump_cp_sw_state(bnapi);
11508 		}
11509 	}
11510 }
11511 
11512 static int bnxt_hwrm_rx_ring_reset(struct bnxt *bp, int ring_nr)
11513 {
11514 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
11515 	struct hwrm_ring_reset_input *req;
11516 	struct bnxt_napi *bnapi = rxr->bnapi;
11517 	struct bnxt_cp_ring_info *cpr;
11518 	u16 cp_ring_id;
11519 	int rc;
11520 
11521 	rc = hwrm_req_init(bp, req, HWRM_RING_RESET);
11522 	if (rc)
11523 		return rc;
11524 
11525 	cpr = &bnapi->cp_ring;
11526 	cp_ring_id = cpr->cp_ring_struct.fw_ring_id;
11527 	req->cmpl_ring = cpu_to_le16(cp_ring_id);
11528 	req->ring_type = RING_RESET_REQ_RING_TYPE_RX_RING_GRP;
11529 	req->ring_id = cpu_to_le16(bp->grp_info[bnapi->index].fw_grp_id);
11530 	return hwrm_req_send_silent(bp, req);
11531 }
11532 
11533 static void bnxt_reset_task(struct bnxt *bp, bool silent)
11534 {
11535 	if (!silent)
11536 		bnxt_dbg_dump_states(bp);
11537 	if (netif_running(bp->dev)) {
11538 		int rc;
11539 
11540 		if (silent) {
11541 			bnxt_close_nic(bp, false, false);
11542 			bnxt_open_nic(bp, false, false);
11543 		} else {
11544 			bnxt_ulp_stop(bp);
11545 			bnxt_close_nic(bp, true, false);
11546 			rc = bnxt_open_nic(bp, true, false);
11547 			bnxt_ulp_start(bp, rc);
11548 		}
11549 	}
11550 }
11551 
11552 static void bnxt_tx_timeout(struct net_device *dev, unsigned int txqueue)
11553 {
11554 	struct bnxt *bp = netdev_priv(dev);
11555 
11556 	netdev_err(bp->dev,  "TX timeout detected, starting reset task!\n");
11557 	set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
11558 	bnxt_queue_sp_work(bp);
11559 }
11560 
11561 static void bnxt_fw_health_check(struct bnxt *bp)
11562 {
11563 	struct bnxt_fw_health *fw_health = bp->fw_health;
11564 	u32 val;
11565 
11566 	if (!fw_health->enabled || test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
11567 		return;
11568 
11569 	/* Make sure it is enabled before checking the tmr_counter. */
11570 	smp_rmb();
11571 	if (fw_health->tmr_counter) {
11572 		fw_health->tmr_counter--;
11573 		return;
11574 	}
11575 
11576 	val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
11577 	if (val == fw_health->last_fw_heartbeat) {
11578 		fw_health->arrests++;
11579 		goto fw_reset;
11580 	}
11581 
11582 	fw_health->last_fw_heartbeat = val;
11583 
11584 	val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
11585 	if (val != fw_health->last_fw_reset_cnt) {
11586 		fw_health->discoveries++;
11587 		goto fw_reset;
11588 	}
11589 
11590 	fw_health->tmr_counter = fw_health->tmr_multiplier;
11591 	return;
11592 
11593 fw_reset:
11594 	set_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event);
11595 	bnxt_queue_sp_work(bp);
11596 }
11597 
11598 static void bnxt_timer(struct timer_list *t)
11599 {
11600 	struct bnxt *bp = from_timer(bp, t, timer);
11601 	struct net_device *dev = bp->dev;
11602 
11603 	if (!netif_running(dev) || !test_bit(BNXT_STATE_OPEN, &bp->state))
11604 		return;
11605 
11606 	if (atomic_read(&bp->intr_sem) != 0)
11607 		goto bnxt_restart_timer;
11608 
11609 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
11610 		bnxt_fw_health_check(bp);
11611 
11612 	if (BNXT_LINK_IS_UP(bp) && bp->stats_coal_ticks) {
11613 		set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event);
11614 		bnxt_queue_sp_work(bp);
11615 	}
11616 
11617 	if (bnxt_tc_flower_enabled(bp)) {
11618 		set_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event);
11619 		bnxt_queue_sp_work(bp);
11620 	}
11621 
11622 #ifdef CONFIG_RFS_ACCEL
11623 	if ((bp->flags & BNXT_FLAG_RFS) && bp->ntp_fltr_count) {
11624 		set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
11625 		bnxt_queue_sp_work(bp);
11626 	}
11627 #endif /*CONFIG_RFS_ACCEL*/
11628 
11629 	if (bp->link_info.phy_retry) {
11630 		if (time_after(jiffies, bp->link_info.phy_retry_expires)) {
11631 			bp->link_info.phy_retry = false;
11632 			netdev_warn(bp->dev, "failed to update phy settings after maximum retries.\n");
11633 		} else {
11634 			set_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event);
11635 			bnxt_queue_sp_work(bp);
11636 		}
11637 	}
11638 
11639 	if (test_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state)) {
11640 		set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
11641 		bnxt_queue_sp_work(bp);
11642 	}
11643 
11644 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && !bp->chip_rev &&
11645 	    netif_carrier_ok(dev)) {
11646 		set_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event);
11647 		bnxt_queue_sp_work(bp);
11648 	}
11649 bnxt_restart_timer:
11650 	mod_timer(&bp->timer, jiffies + bp->current_interval);
11651 }
11652 
11653 static void bnxt_rtnl_lock_sp(struct bnxt *bp)
11654 {
11655 	/* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK
11656 	 * set.  If the device is being closed, bnxt_close() may be holding
11657 	 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear.  So we
11658 	 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl().
11659 	 */
11660 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
11661 	rtnl_lock();
11662 }
11663 
11664 static void bnxt_rtnl_unlock_sp(struct bnxt *bp)
11665 {
11666 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
11667 	rtnl_unlock();
11668 }
11669 
11670 /* Only called from bnxt_sp_task() */
11671 static void bnxt_reset(struct bnxt *bp, bool silent)
11672 {
11673 	bnxt_rtnl_lock_sp(bp);
11674 	if (test_bit(BNXT_STATE_OPEN, &bp->state))
11675 		bnxt_reset_task(bp, silent);
11676 	bnxt_rtnl_unlock_sp(bp);
11677 }
11678 
11679 /* Only called from bnxt_sp_task() */
11680 static void bnxt_rx_ring_reset(struct bnxt *bp)
11681 {
11682 	int i;
11683 
11684 	bnxt_rtnl_lock_sp(bp);
11685 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
11686 		bnxt_rtnl_unlock_sp(bp);
11687 		return;
11688 	}
11689 	/* Disable and flush TPA before resetting the RX ring */
11690 	if (bp->flags & BNXT_FLAG_TPA)
11691 		bnxt_set_tpa(bp, false);
11692 	for (i = 0; i < bp->rx_nr_rings; i++) {
11693 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
11694 		struct bnxt_cp_ring_info *cpr;
11695 		int rc;
11696 
11697 		if (!rxr->bnapi->in_reset)
11698 			continue;
11699 
11700 		rc = bnxt_hwrm_rx_ring_reset(bp, i);
11701 		if (rc) {
11702 			if (rc == -EINVAL || rc == -EOPNOTSUPP)
11703 				netdev_info_once(bp->dev, "RX ring reset not supported by firmware, falling back to global reset\n");
11704 			else
11705 				netdev_warn(bp->dev, "RX ring reset failed, rc = %d, falling back to global reset\n",
11706 					    rc);
11707 			bnxt_reset_task(bp, true);
11708 			break;
11709 		}
11710 		bnxt_free_one_rx_ring_skbs(bp, i);
11711 		rxr->rx_prod = 0;
11712 		rxr->rx_agg_prod = 0;
11713 		rxr->rx_sw_agg_prod = 0;
11714 		rxr->rx_next_cons = 0;
11715 		rxr->bnapi->in_reset = false;
11716 		bnxt_alloc_one_rx_ring(bp, i);
11717 		cpr = &rxr->bnapi->cp_ring;
11718 		cpr->sw_stats.rx.rx_resets++;
11719 		if (bp->flags & BNXT_FLAG_AGG_RINGS)
11720 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
11721 		bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
11722 	}
11723 	if (bp->flags & BNXT_FLAG_TPA)
11724 		bnxt_set_tpa(bp, true);
11725 	bnxt_rtnl_unlock_sp(bp);
11726 }
11727 
11728 static void bnxt_fw_reset_close(struct bnxt *bp)
11729 {
11730 	bnxt_ulp_stop(bp);
11731 	/* When firmware is in fatal state, quiesce device and disable
11732 	 * bus master to prevent any potential bad DMAs before freeing
11733 	 * kernel memory.
11734 	 */
11735 	if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) {
11736 		u16 val = 0;
11737 
11738 		pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val);
11739 		if (val == 0xffff)
11740 			bp->fw_reset_min_dsecs = 0;
11741 		bnxt_tx_disable(bp);
11742 		bnxt_disable_napi(bp);
11743 		bnxt_disable_int_sync(bp);
11744 		bnxt_free_irq(bp);
11745 		bnxt_clear_int_mode(bp);
11746 		pci_disable_device(bp->pdev);
11747 	}
11748 	__bnxt_close_nic(bp, true, false);
11749 	bnxt_vf_reps_free(bp);
11750 	bnxt_clear_int_mode(bp);
11751 	bnxt_hwrm_func_drv_unrgtr(bp);
11752 	if (pci_is_enabled(bp->pdev))
11753 		pci_disable_device(bp->pdev);
11754 	bnxt_free_ctx_mem(bp);
11755 	kfree(bp->ctx);
11756 	bp->ctx = NULL;
11757 }
11758 
11759 static bool is_bnxt_fw_ok(struct bnxt *bp)
11760 {
11761 	struct bnxt_fw_health *fw_health = bp->fw_health;
11762 	bool no_heartbeat = false, has_reset = false;
11763 	u32 val;
11764 
11765 	val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
11766 	if (val == fw_health->last_fw_heartbeat)
11767 		no_heartbeat = true;
11768 
11769 	val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
11770 	if (val != fw_health->last_fw_reset_cnt)
11771 		has_reset = true;
11772 
11773 	if (!no_heartbeat && has_reset)
11774 		return true;
11775 
11776 	return false;
11777 }
11778 
11779 /* rtnl_lock is acquired before calling this function */
11780 static void bnxt_force_fw_reset(struct bnxt *bp)
11781 {
11782 	struct bnxt_fw_health *fw_health = bp->fw_health;
11783 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
11784 	u32 wait_dsecs;
11785 
11786 	if (!test_bit(BNXT_STATE_OPEN, &bp->state) ||
11787 	    test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
11788 		return;
11789 
11790 	if (ptp) {
11791 		spin_lock_bh(&ptp->ptp_lock);
11792 		set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11793 		spin_unlock_bh(&ptp->ptp_lock);
11794 	} else {
11795 		set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11796 	}
11797 	bnxt_fw_reset_close(bp);
11798 	wait_dsecs = fw_health->master_func_wait_dsecs;
11799 	if (fw_health->primary) {
11800 		if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU)
11801 			wait_dsecs = 0;
11802 		bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW;
11803 	} else {
11804 		bp->fw_reset_timestamp = jiffies + wait_dsecs * HZ / 10;
11805 		wait_dsecs = fw_health->normal_func_wait_dsecs;
11806 		bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
11807 	}
11808 
11809 	bp->fw_reset_min_dsecs = fw_health->post_reset_wait_dsecs;
11810 	bp->fw_reset_max_dsecs = fw_health->post_reset_max_wait_dsecs;
11811 	bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10);
11812 }
11813 
11814 void bnxt_fw_exception(struct bnxt *bp)
11815 {
11816 	netdev_warn(bp->dev, "Detected firmware fatal condition, initiating reset\n");
11817 	set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
11818 	bnxt_rtnl_lock_sp(bp);
11819 	bnxt_force_fw_reset(bp);
11820 	bnxt_rtnl_unlock_sp(bp);
11821 }
11822 
11823 /* Returns the number of registered VFs, or 1 if VF configuration is pending, or
11824  * < 0 on error.
11825  */
11826 static int bnxt_get_registered_vfs(struct bnxt *bp)
11827 {
11828 #ifdef CONFIG_BNXT_SRIOV
11829 	int rc;
11830 
11831 	if (!BNXT_PF(bp))
11832 		return 0;
11833 
11834 	rc = bnxt_hwrm_func_qcfg(bp);
11835 	if (rc) {
11836 		netdev_err(bp->dev, "func_qcfg cmd failed, rc = %d\n", rc);
11837 		return rc;
11838 	}
11839 	if (bp->pf.registered_vfs)
11840 		return bp->pf.registered_vfs;
11841 	if (bp->sriov_cfg)
11842 		return 1;
11843 #endif
11844 	return 0;
11845 }
11846 
11847 void bnxt_fw_reset(struct bnxt *bp)
11848 {
11849 	bnxt_rtnl_lock_sp(bp);
11850 	if (test_bit(BNXT_STATE_OPEN, &bp->state) &&
11851 	    !test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
11852 		struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
11853 		int n = 0, tmo;
11854 
11855 		if (ptp) {
11856 			spin_lock_bh(&ptp->ptp_lock);
11857 			set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11858 			spin_unlock_bh(&ptp->ptp_lock);
11859 		} else {
11860 			set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11861 		}
11862 		if (bp->pf.active_vfs &&
11863 		    !test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
11864 			n = bnxt_get_registered_vfs(bp);
11865 		if (n < 0) {
11866 			netdev_err(bp->dev, "Firmware reset aborted, rc = %d\n",
11867 				   n);
11868 			clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11869 			dev_close(bp->dev);
11870 			goto fw_reset_exit;
11871 		} else if (n > 0) {
11872 			u16 vf_tmo_dsecs = n * 10;
11873 
11874 			if (bp->fw_reset_max_dsecs < vf_tmo_dsecs)
11875 				bp->fw_reset_max_dsecs = vf_tmo_dsecs;
11876 			bp->fw_reset_state =
11877 				BNXT_FW_RESET_STATE_POLL_VF;
11878 			bnxt_queue_fw_reset_work(bp, HZ / 10);
11879 			goto fw_reset_exit;
11880 		}
11881 		bnxt_fw_reset_close(bp);
11882 		if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
11883 			bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN;
11884 			tmo = HZ / 10;
11885 		} else {
11886 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
11887 			tmo = bp->fw_reset_min_dsecs * HZ / 10;
11888 		}
11889 		bnxt_queue_fw_reset_work(bp, tmo);
11890 	}
11891 fw_reset_exit:
11892 	bnxt_rtnl_unlock_sp(bp);
11893 }
11894 
11895 static void bnxt_chk_missed_irq(struct bnxt *bp)
11896 {
11897 	int i;
11898 
11899 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
11900 		return;
11901 
11902 	for (i = 0; i < bp->cp_nr_rings; i++) {
11903 		struct bnxt_napi *bnapi = bp->bnapi[i];
11904 		struct bnxt_cp_ring_info *cpr;
11905 		u32 fw_ring_id;
11906 		int j;
11907 
11908 		if (!bnapi)
11909 			continue;
11910 
11911 		cpr = &bnapi->cp_ring;
11912 		for (j = 0; j < 2; j++) {
11913 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
11914 			u32 val[2];
11915 
11916 			if (!cpr2 || cpr2->has_more_work ||
11917 			    !bnxt_has_work(bp, cpr2))
11918 				continue;
11919 
11920 			if (cpr2->cp_raw_cons != cpr2->last_cp_raw_cons) {
11921 				cpr2->last_cp_raw_cons = cpr2->cp_raw_cons;
11922 				continue;
11923 			}
11924 			fw_ring_id = cpr2->cp_ring_struct.fw_ring_id;
11925 			bnxt_dbg_hwrm_ring_info_get(bp,
11926 				DBG_RING_INFO_GET_REQ_RING_TYPE_L2_CMPL,
11927 				fw_ring_id, &val[0], &val[1]);
11928 			cpr->sw_stats.cmn.missed_irqs++;
11929 		}
11930 	}
11931 }
11932 
11933 static void bnxt_cfg_ntp_filters(struct bnxt *);
11934 
11935 static void bnxt_init_ethtool_link_settings(struct bnxt *bp)
11936 {
11937 	struct bnxt_link_info *link_info = &bp->link_info;
11938 
11939 	if (BNXT_AUTO_MODE(link_info->auto_mode)) {
11940 		link_info->autoneg = BNXT_AUTONEG_SPEED;
11941 		if (bp->hwrm_spec_code >= 0x10201) {
11942 			if (link_info->auto_pause_setting &
11943 			    PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE)
11944 				link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
11945 		} else {
11946 			link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
11947 		}
11948 		link_info->advertising = link_info->auto_link_speeds;
11949 		link_info->advertising_pam4 = link_info->auto_pam4_link_speeds;
11950 	} else {
11951 		link_info->req_link_speed = link_info->force_link_speed;
11952 		link_info->req_signal_mode = BNXT_SIG_MODE_NRZ;
11953 		if (link_info->force_pam4_link_speed) {
11954 			link_info->req_link_speed =
11955 				link_info->force_pam4_link_speed;
11956 			link_info->req_signal_mode = BNXT_SIG_MODE_PAM4;
11957 		}
11958 		link_info->req_duplex = link_info->duplex_setting;
11959 	}
11960 	if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL)
11961 		link_info->req_flow_ctrl =
11962 			link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH;
11963 	else
11964 		link_info->req_flow_ctrl = link_info->force_pause_setting;
11965 }
11966 
11967 static void bnxt_fw_echo_reply(struct bnxt *bp)
11968 {
11969 	struct bnxt_fw_health *fw_health = bp->fw_health;
11970 	struct hwrm_func_echo_response_input *req;
11971 	int rc;
11972 
11973 	rc = hwrm_req_init(bp, req, HWRM_FUNC_ECHO_RESPONSE);
11974 	if (rc)
11975 		return;
11976 	req->event_data1 = cpu_to_le32(fw_health->echo_req_data1);
11977 	req->event_data2 = cpu_to_le32(fw_health->echo_req_data2);
11978 	hwrm_req_send(bp, req);
11979 }
11980 
11981 static void bnxt_sp_task(struct work_struct *work)
11982 {
11983 	struct bnxt *bp = container_of(work, struct bnxt, sp_task);
11984 
11985 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
11986 	smp_mb__after_atomic();
11987 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
11988 		clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
11989 		return;
11990 	}
11991 
11992 	if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
11993 		bnxt_cfg_rx_mode(bp);
11994 
11995 	if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
11996 		bnxt_cfg_ntp_filters(bp);
11997 	if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
11998 		bnxt_hwrm_exec_fwd_req(bp);
11999 	if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) {
12000 		bnxt_hwrm_port_qstats(bp, 0);
12001 		bnxt_hwrm_port_qstats_ext(bp, 0);
12002 		bnxt_accumulate_all_stats(bp);
12003 	}
12004 
12005 	if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
12006 		int rc;
12007 
12008 		mutex_lock(&bp->link_lock);
12009 		if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT,
12010 				       &bp->sp_event))
12011 			bnxt_hwrm_phy_qcaps(bp);
12012 
12013 		rc = bnxt_update_link(bp, true);
12014 		if (rc)
12015 			netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
12016 				   rc);
12017 
12018 		if (test_and_clear_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT,
12019 				       &bp->sp_event))
12020 			bnxt_init_ethtool_link_settings(bp);
12021 		mutex_unlock(&bp->link_lock);
12022 	}
12023 	if (test_and_clear_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event)) {
12024 		int rc;
12025 
12026 		mutex_lock(&bp->link_lock);
12027 		rc = bnxt_update_phy_setting(bp);
12028 		mutex_unlock(&bp->link_lock);
12029 		if (rc) {
12030 			netdev_warn(bp->dev, "update phy settings retry failed\n");
12031 		} else {
12032 			bp->link_info.phy_retry = false;
12033 			netdev_info(bp->dev, "update phy settings retry succeeded\n");
12034 		}
12035 	}
12036 	if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) {
12037 		mutex_lock(&bp->link_lock);
12038 		bnxt_get_port_module_status(bp);
12039 		mutex_unlock(&bp->link_lock);
12040 	}
12041 
12042 	if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event))
12043 		bnxt_tc_flow_stats_work(bp);
12044 
12045 	if (test_and_clear_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event))
12046 		bnxt_chk_missed_irq(bp);
12047 
12048 	if (test_and_clear_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event))
12049 		bnxt_fw_echo_reply(bp);
12050 
12051 	/* These functions below will clear BNXT_STATE_IN_SP_TASK.  They
12052 	 * must be the last functions to be called before exiting.
12053 	 */
12054 	if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event))
12055 		bnxt_reset(bp, false);
12056 
12057 	if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event))
12058 		bnxt_reset(bp, true);
12059 
12060 	if (test_and_clear_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event))
12061 		bnxt_rx_ring_reset(bp);
12062 
12063 	if (test_and_clear_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event)) {
12064 		if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) ||
12065 		    test_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state))
12066 			bnxt_devlink_health_fw_report(bp);
12067 		else
12068 			bnxt_fw_reset(bp);
12069 	}
12070 
12071 	if (test_and_clear_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event)) {
12072 		if (!is_bnxt_fw_ok(bp))
12073 			bnxt_devlink_health_fw_report(bp);
12074 	}
12075 
12076 	smp_mb__before_atomic();
12077 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
12078 }
12079 
12080 /* Under rtnl_lock */
12081 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs,
12082 		     int tx_xdp)
12083 {
12084 	int max_rx, max_tx, tx_sets = 1;
12085 	int tx_rings_needed, stats;
12086 	int rx_rings = rx;
12087 	int cp, vnics, rc;
12088 
12089 	if (tcs)
12090 		tx_sets = tcs;
12091 
12092 	rc = bnxt_get_max_rings(bp, &max_rx, &max_tx, sh);
12093 	if (rc)
12094 		return rc;
12095 
12096 	if (max_rx < rx)
12097 		return -ENOMEM;
12098 
12099 	tx_rings_needed = tx * tx_sets + tx_xdp;
12100 	if (max_tx < tx_rings_needed)
12101 		return -ENOMEM;
12102 
12103 	vnics = 1;
12104 	if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS)
12105 		vnics += rx_rings;
12106 
12107 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
12108 		rx_rings <<= 1;
12109 	cp = sh ? max_t(int, tx_rings_needed, rx) : tx_rings_needed + rx;
12110 	stats = cp;
12111 	if (BNXT_NEW_RM(bp)) {
12112 		cp += bnxt_get_ulp_msix_num(bp);
12113 		stats += bnxt_get_ulp_stat_ctxs(bp);
12114 	}
12115 	return bnxt_hwrm_check_rings(bp, tx_rings_needed, rx_rings, rx, cp,
12116 				     stats, vnics);
12117 }
12118 
12119 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev)
12120 {
12121 	if (bp->bar2) {
12122 		pci_iounmap(pdev, bp->bar2);
12123 		bp->bar2 = NULL;
12124 	}
12125 
12126 	if (bp->bar1) {
12127 		pci_iounmap(pdev, bp->bar1);
12128 		bp->bar1 = NULL;
12129 	}
12130 
12131 	if (bp->bar0) {
12132 		pci_iounmap(pdev, bp->bar0);
12133 		bp->bar0 = NULL;
12134 	}
12135 }
12136 
12137 static void bnxt_cleanup_pci(struct bnxt *bp)
12138 {
12139 	bnxt_unmap_bars(bp, bp->pdev);
12140 	pci_release_regions(bp->pdev);
12141 	if (pci_is_enabled(bp->pdev))
12142 		pci_disable_device(bp->pdev);
12143 }
12144 
12145 static void bnxt_init_dflt_coal(struct bnxt *bp)
12146 {
12147 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
12148 	struct bnxt_coal *coal;
12149 	u16 flags = 0;
12150 
12151 	if (coal_cap->cmpl_params &
12152 	    RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_TIMER_RESET)
12153 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
12154 
12155 	/* Tick values in micro seconds.
12156 	 * 1 coal_buf x bufs_per_record = 1 completion record.
12157 	 */
12158 	coal = &bp->rx_coal;
12159 	coal->coal_ticks = 10;
12160 	coal->coal_bufs = 30;
12161 	coal->coal_ticks_irq = 1;
12162 	coal->coal_bufs_irq = 2;
12163 	coal->idle_thresh = 50;
12164 	coal->bufs_per_record = 2;
12165 	coal->budget = 64;		/* NAPI budget */
12166 	coal->flags = flags;
12167 
12168 	coal = &bp->tx_coal;
12169 	coal->coal_ticks = 28;
12170 	coal->coal_bufs = 30;
12171 	coal->coal_ticks_irq = 2;
12172 	coal->coal_bufs_irq = 2;
12173 	coal->bufs_per_record = 1;
12174 	coal->flags = flags;
12175 
12176 	bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS;
12177 }
12178 
12179 static int bnxt_fw_init_one_p1(struct bnxt *bp)
12180 {
12181 	int rc;
12182 
12183 	bp->fw_cap = 0;
12184 	rc = bnxt_hwrm_ver_get(bp);
12185 	bnxt_try_map_fw_health_reg(bp);
12186 	if (rc) {
12187 		rc = bnxt_try_recover_fw(bp);
12188 		if (rc)
12189 			return rc;
12190 		rc = bnxt_hwrm_ver_get(bp);
12191 		if (rc)
12192 			return rc;
12193 	}
12194 
12195 	bnxt_nvm_cfg_ver_get(bp);
12196 
12197 	rc = bnxt_hwrm_func_reset(bp);
12198 	if (rc)
12199 		return -ENODEV;
12200 
12201 	bnxt_hwrm_fw_set_time(bp);
12202 	return 0;
12203 }
12204 
12205 static int bnxt_fw_init_one_p2(struct bnxt *bp)
12206 {
12207 	int rc;
12208 
12209 	/* Get the MAX capabilities for this function */
12210 	rc = bnxt_hwrm_func_qcaps(bp);
12211 	if (rc) {
12212 		netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
12213 			   rc);
12214 		return -ENODEV;
12215 	}
12216 
12217 	rc = bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(bp);
12218 	if (rc)
12219 		netdev_warn(bp->dev, "hwrm query adv flow mgnt failure rc: %d\n",
12220 			    rc);
12221 
12222 	if (bnxt_alloc_fw_health(bp)) {
12223 		netdev_warn(bp->dev, "no memory for firmware error recovery\n");
12224 	} else {
12225 		rc = bnxt_hwrm_error_recovery_qcfg(bp);
12226 		if (rc)
12227 			netdev_warn(bp->dev, "hwrm query error recovery failure rc: %d\n",
12228 				    rc);
12229 	}
12230 
12231 	rc = bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false);
12232 	if (rc)
12233 		return -ENODEV;
12234 
12235 	bnxt_hwrm_func_qcfg(bp);
12236 	bnxt_hwrm_vnic_qcaps(bp);
12237 	bnxt_hwrm_port_led_qcaps(bp);
12238 	bnxt_ethtool_init(bp);
12239 	bnxt_dcb_init(bp);
12240 	return 0;
12241 }
12242 
12243 static void bnxt_set_dflt_rss_hash_type(struct bnxt *bp)
12244 {
12245 	bp->flags &= ~BNXT_FLAG_UDP_RSS_CAP;
12246 	bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 |
12247 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 |
12248 			   VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 |
12249 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6;
12250 	if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) {
12251 		bp->flags |= BNXT_FLAG_UDP_RSS_CAP;
12252 		bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 |
12253 				    VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6;
12254 	}
12255 }
12256 
12257 static void bnxt_set_dflt_rfs(struct bnxt *bp)
12258 {
12259 	struct net_device *dev = bp->dev;
12260 
12261 	dev->hw_features &= ~NETIF_F_NTUPLE;
12262 	dev->features &= ~NETIF_F_NTUPLE;
12263 	bp->flags &= ~BNXT_FLAG_RFS;
12264 	if (bnxt_rfs_supported(bp)) {
12265 		dev->hw_features |= NETIF_F_NTUPLE;
12266 		if (bnxt_rfs_capable(bp)) {
12267 			bp->flags |= BNXT_FLAG_RFS;
12268 			dev->features |= NETIF_F_NTUPLE;
12269 		}
12270 	}
12271 }
12272 
12273 static void bnxt_fw_init_one_p3(struct bnxt *bp)
12274 {
12275 	struct pci_dev *pdev = bp->pdev;
12276 
12277 	bnxt_set_dflt_rss_hash_type(bp);
12278 	bnxt_set_dflt_rfs(bp);
12279 
12280 	bnxt_get_wol_settings(bp);
12281 	if (bp->flags & BNXT_FLAG_WOL_CAP)
12282 		device_set_wakeup_enable(&pdev->dev, bp->wol);
12283 	else
12284 		device_set_wakeup_capable(&pdev->dev, false);
12285 
12286 	bnxt_hwrm_set_cache_line_size(bp, cache_line_size());
12287 	bnxt_hwrm_coal_params_qcaps(bp);
12288 }
12289 
12290 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt);
12291 
12292 int bnxt_fw_init_one(struct bnxt *bp)
12293 {
12294 	int rc;
12295 
12296 	rc = bnxt_fw_init_one_p1(bp);
12297 	if (rc) {
12298 		netdev_err(bp->dev, "Firmware init phase 1 failed\n");
12299 		return rc;
12300 	}
12301 	rc = bnxt_fw_init_one_p2(bp);
12302 	if (rc) {
12303 		netdev_err(bp->dev, "Firmware init phase 2 failed\n");
12304 		return rc;
12305 	}
12306 	rc = bnxt_probe_phy(bp, false);
12307 	if (rc)
12308 		return rc;
12309 	rc = bnxt_approve_mac(bp, bp->dev->dev_addr, false);
12310 	if (rc)
12311 		return rc;
12312 
12313 	bnxt_fw_init_one_p3(bp);
12314 	return 0;
12315 }
12316 
12317 static void bnxt_fw_reset_writel(struct bnxt *bp, int reg_idx)
12318 {
12319 	struct bnxt_fw_health *fw_health = bp->fw_health;
12320 	u32 reg = fw_health->fw_reset_seq_regs[reg_idx];
12321 	u32 val = fw_health->fw_reset_seq_vals[reg_idx];
12322 	u32 reg_type, reg_off, delay_msecs;
12323 
12324 	delay_msecs = fw_health->fw_reset_seq_delay_msec[reg_idx];
12325 	reg_type = BNXT_FW_HEALTH_REG_TYPE(reg);
12326 	reg_off = BNXT_FW_HEALTH_REG_OFF(reg);
12327 	switch (reg_type) {
12328 	case BNXT_FW_HEALTH_REG_TYPE_CFG:
12329 		pci_write_config_dword(bp->pdev, reg_off, val);
12330 		break;
12331 	case BNXT_FW_HEALTH_REG_TYPE_GRC:
12332 		writel(reg_off & BNXT_GRC_BASE_MASK,
12333 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4);
12334 		reg_off = (reg_off & BNXT_GRC_OFFSET_MASK) + 0x2000;
12335 		fallthrough;
12336 	case BNXT_FW_HEALTH_REG_TYPE_BAR0:
12337 		writel(val, bp->bar0 + reg_off);
12338 		break;
12339 	case BNXT_FW_HEALTH_REG_TYPE_BAR1:
12340 		writel(val, bp->bar1 + reg_off);
12341 		break;
12342 	}
12343 	if (delay_msecs) {
12344 		pci_read_config_dword(bp->pdev, 0, &val);
12345 		msleep(delay_msecs);
12346 	}
12347 }
12348 
12349 bool bnxt_hwrm_reset_permitted(struct bnxt *bp)
12350 {
12351 	struct hwrm_func_qcfg_output *resp;
12352 	struct hwrm_func_qcfg_input *req;
12353 	bool result = true; /* firmware will enforce if unknown */
12354 
12355 	if (~bp->fw_cap & BNXT_FW_CAP_HOT_RESET_IF)
12356 		return result;
12357 
12358 	if (hwrm_req_init(bp, req, HWRM_FUNC_QCFG))
12359 		return result;
12360 
12361 	req->fid = cpu_to_le16(0xffff);
12362 	resp = hwrm_req_hold(bp, req);
12363 	if (!hwrm_req_send(bp, req))
12364 		result = !!(le16_to_cpu(resp->flags) &
12365 			    FUNC_QCFG_RESP_FLAGS_HOT_RESET_ALLOWED);
12366 	hwrm_req_drop(bp, req);
12367 	return result;
12368 }
12369 
12370 static void bnxt_reset_all(struct bnxt *bp)
12371 {
12372 	struct bnxt_fw_health *fw_health = bp->fw_health;
12373 	int i, rc;
12374 
12375 	if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
12376 		bnxt_fw_reset_via_optee(bp);
12377 		bp->fw_reset_timestamp = jiffies;
12378 		return;
12379 	}
12380 
12381 	if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_HOST) {
12382 		for (i = 0; i < fw_health->fw_reset_seq_cnt; i++)
12383 			bnxt_fw_reset_writel(bp, i);
12384 	} else if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) {
12385 		struct hwrm_fw_reset_input *req;
12386 
12387 		rc = hwrm_req_init(bp, req, HWRM_FW_RESET);
12388 		if (!rc) {
12389 			req->target_id = cpu_to_le16(HWRM_TARGET_ID_KONG);
12390 			req->embedded_proc_type = FW_RESET_REQ_EMBEDDED_PROC_TYPE_CHIP;
12391 			req->selfrst_status = FW_RESET_REQ_SELFRST_STATUS_SELFRSTASAP;
12392 			req->flags = FW_RESET_REQ_FLAGS_RESET_GRACEFUL;
12393 			rc = hwrm_req_send(bp, req);
12394 		}
12395 		if (rc != -ENODEV)
12396 			netdev_warn(bp->dev, "Unable to reset FW rc=%d\n", rc);
12397 	}
12398 	bp->fw_reset_timestamp = jiffies;
12399 }
12400 
12401 static bool bnxt_fw_reset_timeout(struct bnxt *bp)
12402 {
12403 	return time_after(jiffies, bp->fw_reset_timestamp +
12404 			  (bp->fw_reset_max_dsecs * HZ / 10));
12405 }
12406 
12407 static void bnxt_fw_reset_abort(struct bnxt *bp, int rc)
12408 {
12409 	clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12410 	if (bp->fw_reset_state != BNXT_FW_RESET_STATE_POLL_VF) {
12411 		bnxt_ulp_start(bp, rc);
12412 		bnxt_dl_health_fw_status_update(bp, false);
12413 	}
12414 	bp->fw_reset_state = 0;
12415 	dev_close(bp->dev);
12416 }
12417 
12418 static void bnxt_fw_reset_task(struct work_struct *work)
12419 {
12420 	struct bnxt *bp = container_of(work, struct bnxt, fw_reset_task.work);
12421 	int rc = 0;
12422 
12423 	if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
12424 		netdev_err(bp->dev, "bnxt_fw_reset_task() called when not in fw reset mode!\n");
12425 		return;
12426 	}
12427 
12428 	switch (bp->fw_reset_state) {
12429 	case BNXT_FW_RESET_STATE_POLL_VF: {
12430 		int n = bnxt_get_registered_vfs(bp);
12431 		int tmo;
12432 
12433 		if (n < 0) {
12434 			netdev_err(bp->dev, "Firmware reset aborted, subsequent func_qcfg cmd failed, rc = %d, %d msecs since reset timestamp\n",
12435 				   n, jiffies_to_msecs(jiffies -
12436 				   bp->fw_reset_timestamp));
12437 			goto fw_reset_abort;
12438 		} else if (n > 0) {
12439 			if (bnxt_fw_reset_timeout(bp)) {
12440 				clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12441 				bp->fw_reset_state = 0;
12442 				netdev_err(bp->dev, "Firmware reset aborted, bnxt_get_registered_vfs() returns %d\n",
12443 					   n);
12444 				return;
12445 			}
12446 			bnxt_queue_fw_reset_work(bp, HZ / 10);
12447 			return;
12448 		}
12449 		bp->fw_reset_timestamp = jiffies;
12450 		rtnl_lock();
12451 		if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
12452 			bnxt_fw_reset_abort(bp, rc);
12453 			rtnl_unlock();
12454 			return;
12455 		}
12456 		bnxt_fw_reset_close(bp);
12457 		if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
12458 			bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN;
12459 			tmo = HZ / 10;
12460 		} else {
12461 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
12462 			tmo = bp->fw_reset_min_dsecs * HZ / 10;
12463 		}
12464 		rtnl_unlock();
12465 		bnxt_queue_fw_reset_work(bp, tmo);
12466 		return;
12467 	}
12468 	case BNXT_FW_RESET_STATE_POLL_FW_DOWN: {
12469 		u32 val;
12470 
12471 		val = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
12472 		if (!(val & BNXT_FW_STATUS_SHUTDOWN) &&
12473 		    !bnxt_fw_reset_timeout(bp)) {
12474 			bnxt_queue_fw_reset_work(bp, HZ / 5);
12475 			return;
12476 		}
12477 
12478 		if (!bp->fw_health->primary) {
12479 			u32 wait_dsecs = bp->fw_health->normal_func_wait_dsecs;
12480 
12481 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
12482 			bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10);
12483 			return;
12484 		}
12485 		bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW;
12486 	}
12487 		fallthrough;
12488 	case BNXT_FW_RESET_STATE_RESET_FW:
12489 		bnxt_reset_all(bp);
12490 		bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
12491 		bnxt_queue_fw_reset_work(bp, bp->fw_reset_min_dsecs * HZ / 10);
12492 		return;
12493 	case BNXT_FW_RESET_STATE_ENABLE_DEV:
12494 		bnxt_inv_fw_health_reg(bp);
12495 		if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) &&
12496 		    !bp->fw_reset_min_dsecs) {
12497 			u16 val;
12498 
12499 			pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val);
12500 			if (val == 0xffff) {
12501 				if (bnxt_fw_reset_timeout(bp)) {
12502 					netdev_err(bp->dev, "Firmware reset aborted, PCI config space invalid\n");
12503 					rc = -ETIMEDOUT;
12504 					goto fw_reset_abort;
12505 				}
12506 				bnxt_queue_fw_reset_work(bp, HZ / 1000);
12507 				return;
12508 			}
12509 		}
12510 		clear_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
12511 		clear_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state);
12512 		if (test_and_clear_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state) &&
12513 		    !test_bit(BNXT_STATE_FW_ACTIVATE, &bp->state))
12514 			bnxt_dl_remote_reload(bp);
12515 		if (pci_enable_device(bp->pdev)) {
12516 			netdev_err(bp->dev, "Cannot re-enable PCI device\n");
12517 			rc = -ENODEV;
12518 			goto fw_reset_abort;
12519 		}
12520 		pci_set_master(bp->pdev);
12521 		bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW;
12522 		fallthrough;
12523 	case BNXT_FW_RESET_STATE_POLL_FW:
12524 		bp->hwrm_cmd_timeout = SHORT_HWRM_CMD_TIMEOUT;
12525 		rc = bnxt_hwrm_poll(bp);
12526 		if (rc) {
12527 			if (bnxt_fw_reset_timeout(bp)) {
12528 				netdev_err(bp->dev, "Firmware reset aborted\n");
12529 				goto fw_reset_abort_status;
12530 			}
12531 			bnxt_queue_fw_reset_work(bp, HZ / 5);
12532 			return;
12533 		}
12534 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
12535 		bp->fw_reset_state = BNXT_FW_RESET_STATE_OPENING;
12536 		fallthrough;
12537 	case BNXT_FW_RESET_STATE_OPENING:
12538 		while (!rtnl_trylock()) {
12539 			bnxt_queue_fw_reset_work(bp, HZ / 10);
12540 			return;
12541 		}
12542 		rc = bnxt_open(bp->dev);
12543 		if (rc) {
12544 			netdev_err(bp->dev, "bnxt_open() failed during FW reset\n");
12545 			bnxt_fw_reset_abort(bp, rc);
12546 			rtnl_unlock();
12547 			return;
12548 		}
12549 
12550 		if ((bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) &&
12551 		    bp->fw_health->enabled) {
12552 			bp->fw_health->last_fw_reset_cnt =
12553 				bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
12554 		}
12555 		bp->fw_reset_state = 0;
12556 		/* Make sure fw_reset_state is 0 before clearing the flag */
12557 		smp_mb__before_atomic();
12558 		clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12559 		bnxt_ulp_start(bp, 0);
12560 		bnxt_reenable_sriov(bp);
12561 		bnxt_vf_reps_alloc(bp);
12562 		bnxt_vf_reps_open(bp);
12563 		bnxt_ptp_reapply_pps(bp);
12564 		clear_bit(BNXT_STATE_FW_ACTIVATE, &bp->state);
12565 		if (test_and_clear_bit(BNXT_STATE_RECOVER, &bp->state)) {
12566 			bnxt_dl_health_fw_recovery_done(bp);
12567 			bnxt_dl_health_fw_status_update(bp, true);
12568 		}
12569 		rtnl_unlock();
12570 		break;
12571 	}
12572 	return;
12573 
12574 fw_reset_abort_status:
12575 	if (bp->fw_health->status_reliable ||
12576 	    (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) {
12577 		u32 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
12578 
12579 		netdev_err(bp->dev, "fw_health_status 0x%x\n", sts);
12580 	}
12581 fw_reset_abort:
12582 	rtnl_lock();
12583 	bnxt_fw_reset_abort(bp, rc);
12584 	rtnl_unlock();
12585 }
12586 
12587 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
12588 {
12589 	int rc;
12590 	struct bnxt *bp = netdev_priv(dev);
12591 
12592 	SET_NETDEV_DEV(dev, &pdev->dev);
12593 
12594 	/* enable device (incl. PCI PM wakeup), and bus-mastering */
12595 	rc = pci_enable_device(pdev);
12596 	if (rc) {
12597 		dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
12598 		goto init_err;
12599 	}
12600 
12601 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
12602 		dev_err(&pdev->dev,
12603 			"Cannot find PCI device base address, aborting\n");
12604 		rc = -ENODEV;
12605 		goto init_err_disable;
12606 	}
12607 
12608 	rc = pci_request_regions(pdev, DRV_MODULE_NAME);
12609 	if (rc) {
12610 		dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
12611 		goto init_err_disable;
12612 	}
12613 
12614 	if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
12615 	    dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
12616 		dev_err(&pdev->dev, "System does not support DMA, aborting\n");
12617 		rc = -EIO;
12618 		goto init_err_release;
12619 	}
12620 
12621 	pci_set_master(pdev);
12622 
12623 	bp->dev = dev;
12624 	bp->pdev = pdev;
12625 
12626 	/* Doorbell BAR bp->bar1 is mapped after bnxt_fw_init_one_p2()
12627 	 * determines the BAR size.
12628 	 */
12629 	bp->bar0 = pci_ioremap_bar(pdev, 0);
12630 	if (!bp->bar0) {
12631 		dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
12632 		rc = -ENOMEM;
12633 		goto init_err_release;
12634 	}
12635 
12636 	bp->bar2 = pci_ioremap_bar(pdev, 4);
12637 	if (!bp->bar2) {
12638 		dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
12639 		rc = -ENOMEM;
12640 		goto init_err_release;
12641 	}
12642 
12643 	pci_enable_pcie_error_reporting(pdev);
12644 
12645 	INIT_WORK(&bp->sp_task, bnxt_sp_task);
12646 	INIT_DELAYED_WORK(&bp->fw_reset_task, bnxt_fw_reset_task);
12647 
12648 	spin_lock_init(&bp->ntp_fltr_lock);
12649 #if BITS_PER_LONG == 32
12650 	spin_lock_init(&bp->db_lock);
12651 #endif
12652 
12653 	bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
12654 	bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
12655 
12656 	timer_setup(&bp->timer, bnxt_timer, 0);
12657 	bp->current_interval = BNXT_TIMER_INTERVAL;
12658 
12659 	bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID;
12660 	bp->nge_fw_dst_port_id = INVALID_HW_RING_ID;
12661 
12662 	clear_bit(BNXT_STATE_OPEN, &bp->state);
12663 	return 0;
12664 
12665 init_err_release:
12666 	bnxt_unmap_bars(bp, pdev);
12667 	pci_release_regions(pdev);
12668 
12669 init_err_disable:
12670 	pci_disable_device(pdev);
12671 
12672 init_err:
12673 	return rc;
12674 }
12675 
12676 /* rtnl_lock held */
12677 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
12678 {
12679 	struct sockaddr *addr = p;
12680 	struct bnxt *bp = netdev_priv(dev);
12681 	int rc = 0;
12682 
12683 	if (!is_valid_ether_addr(addr->sa_data))
12684 		return -EADDRNOTAVAIL;
12685 
12686 	if (ether_addr_equal(addr->sa_data, dev->dev_addr))
12687 		return 0;
12688 
12689 	rc = bnxt_approve_mac(bp, addr->sa_data, true);
12690 	if (rc)
12691 		return rc;
12692 
12693 	eth_hw_addr_set(dev, addr->sa_data);
12694 	if (netif_running(dev)) {
12695 		bnxt_close_nic(bp, false, false);
12696 		rc = bnxt_open_nic(bp, false, false);
12697 	}
12698 
12699 	return rc;
12700 }
12701 
12702 /* rtnl_lock held */
12703 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
12704 {
12705 	struct bnxt *bp = netdev_priv(dev);
12706 
12707 	if (netif_running(dev))
12708 		bnxt_close_nic(bp, true, false);
12709 
12710 	dev->mtu = new_mtu;
12711 	bnxt_set_ring_params(bp);
12712 
12713 	if (netif_running(dev))
12714 		return bnxt_open_nic(bp, true, false);
12715 
12716 	return 0;
12717 }
12718 
12719 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc)
12720 {
12721 	struct bnxt *bp = netdev_priv(dev);
12722 	bool sh = false;
12723 	int rc;
12724 
12725 	if (tc > bp->max_tc) {
12726 		netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n",
12727 			   tc, bp->max_tc);
12728 		return -EINVAL;
12729 	}
12730 
12731 	if (netdev_get_num_tc(dev) == tc)
12732 		return 0;
12733 
12734 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
12735 		sh = true;
12736 
12737 	rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings,
12738 			      sh, tc, bp->tx_nr_rings_xdp);
12739 	if (rc)
12740 		return rc;
12741 
12742 	/* Needs to close the device and do hw resource re-allocations */
12743 	if (netif_running(bp->dev))
12744 		bnxt_close_nic(bp, true, false);
12745 
12746 	if (tc) {
12747 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
12748 		netdev_set_num_tc(dev, tc);
12749 	} else {
12750 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
12751 		netdev_reset_tc(dev);
12752 	}
12753 	bp->tx_nr_rings += bp->tx_nr_rings_xdp;
12754 	bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
12755 			       bp->tx_nr_rings + bp->rx_nr_rings;
12756 
12757 	if (netif_running(bp->dev))
12758 		return bnxt_open_nic(bp, true, false);
12759 
12760 	return 0;
12761 }
12762 
12763 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
12764 				  void *cb_priv)
12765 {
12766 	struct bnxt *bp = cb_priv;
12767 
12768 	if (!bnxt_tc_flower_enabled(bp) ||
12769 	    !tc_cls_can_offload_and_chain0(bp->dev, type_data))
12770 		return -EOPNOTSUPP;
12771 
12772 	switch (type) {
12773 	case TC_SETUP_CLSFLOWER:
12774 		return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data);
12775 	default:
12776 		return -EOPNOTSUPP;
12777 	}
12778 }
12779 
12780 LIST_HEAD(bnxt_block_cb_list);
12781 
12782 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type,
12783 			 void *type_data)
12784 {
12785 	struct bnxt *bp = netdev_priv(dev);
12786 
12787 	switch (type) {
12788 	case TC_SETUP_BLOCK:
12789 		return flow_block_cb_setup_simple(type_data,
12790 						  &bnxt_block_cb_list,
12791 						  bnxt_setup_tc_block_cb,
12792 						  bp, bp, true);
12793 	case TC_SETUP_QDISC_MQPRIO: {
12794 		struct tc_mqprio_qopt *mqprio = type_data;
12795 
12796 		mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
12797 
12798 		return bnxt_setup_mq_tc(dev, mqprio->num_tc);
12799 	}
12800 	default:
12801 		return -EOPNOTSUPP;
12802 	}
12803 }
12804 
12805 #ifdef CONFIG_RFS_ACCEL
12806 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
12807 			    struct bnxt_ntuple_filter *f2)
12808 {
12809 	struct flow_keys *keys1 = &f1->fkeys;
12810 	struct flow_keys *keys2 = &f2->fkeys;
12811 
12812 	if (keys1->basic.n_proto != keys2->basic.n_proto ||
12813 	    keys1->basic.ip_proto != keys2->basic.ip_proto)
12814 		return false;
12815 
12816 	if (keys1->basic.n_proto == htons(ETH_P_IP)) {
12817 		if (keys1->addrs.v4addrs.src != keys2->addrs.v4addrs.src ||
12818 		    keys1->addrs.v4addrs.dst != keys2->addrs.v4addrs.dst)
12819 			return false;
12820 	} else {
12821 		if (memcmp(&keys1->addrs.v6addrs.src, &keys2->addrs.v6addrs.src,
12822 			   sizeof(keys1->addrs.v6addrs.src)) ||
12823 		    memcmp(&keys1->addrs.v6addrs.dst, &keys2->addrs.v6addrs.dst,
12824 			   sizeof(keys1->addrs.v6addrs.dst)))
12825 			return false;
12826 	}
12827 
12828 	if (keys1->ports.ports == keys2->ports.ports &&
12829 	    keys1->control.flags == keys2->control.flags &&
12830 	    ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) &&
12831 	    ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr))
12832 		return true;
12833 
12834 	return false;
12835 }
12836 
12837 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
12838 			      u16 rxq_index, u32 flow_id)
12839 {
12840 	struct bnxt *bp = netdev_priv(dev);
12841 	struct bnxt_ntuple_filter *fltr, *new_fltr;
12842 	struct flow_keys *fkeys;
12843 	struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
12844 	int rc = 0, idx, bit_id, l2_idx = 0;
12845 	struct hlist_head *head;
12846 	u32 flags;
12847 
12848 	if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) {
12849 		struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
12850 		int off = 0, j;
12851 
12852 		netif_addr_lock_bh(dev);
12853 		for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) {
12854 			if (ether_addr_equal(eth->h_dest,
12855 					     vnic->uc_list + off)) {
12856 				l2_idx = j + 1;
12857 				break;
12858 			}
12859 		}
12860 		netif_addr_unlock_bh(dev);
12861 		if (!l2_idx)
12862 			return -EINVAL;
12863 	}
12864 	new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
12865 	if (!new_fltr)
12866 		return -ENOMEM;
12867 
12868 	fkeys = &new_fltr->fkeys;
12869 	if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
12870 		rc = -EPROTONOSUPPORT;
12871 		goto err_free;
12872 	}
12873 
12874 	if ((fkeys->basic.n_proto != htons(ETH_P_IP) &&
12875 	     fkeys->basic.n_proto != htons(ETH_P_IPV6)) ||
12876 	    ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
12877 	     (fkeys->basic.ip_proto != IPPROTO_UDP))) {
12878 		rc = -EPROTONOSUPPORT;
12879 		goto err_free;
12880 	}
12881 	if (fkeys->basic.n_proto == htons(ETH_P_IPV6) &&
12882 	    bp->hwrm_spec_code < 0x10601) {
12883 		rc = -EPROTONOSUPPORT;
12884 		goto err_free;
12885 	}
12886 	flags = fkeys->control.flags;
12887 	if (((flags & FLOW_DIS_ENCAPSULATION) &&
12888 	     bp->hwrm_spec_code < 0x10601) || (flags & FLOW_DIS_IS_FRAGMENT)) {
12889 		rc = -EPROTONOSUPPORT;
12890 		goto err_free;
12891 	}
12892 
12893 	memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN);
12894 	memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
12895 
12896 	idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
12897 	head = &bp->ntp_fltr_hash_tbl[idx];
12898 	rcu_read_lock();
12899 	hlist_for_each_entry_rcu(fltr, head, hash) {
12900 		if (bnxt_fltr_match(fltr, new_fltr)) {
12901 			rcu_read_unlock();
12902 			rc = 0;
12903 			goto err_free;
12904 		}
12905 	}
12906 	rcu_read_unlock();
12907 
12908 	spin_lock_bh(&bp->ntp_fltr_lock);
12909 	bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
12910 					 BNXT_NTP_FLTR_MAX_FLTR, 0);
12911 	if (bit_id < 0) {
12912 		spin_unlock_bh(&bp->ntp_fltr_lock);
12913 		rc = -ENOMEM;
12914 		goto err_free;
12915 	}
12916 
12917 	new_fltr->sw_id = (u16)bit_id;
12918 	new_fltr->flow_id = flow_id;
12919 	new_fltr->l2_fltr_idx = l2_idx;
12920 	new_fltr->rxq = rxq_index;
12921 	hlist_add_head_rcu(&new_fltr->hash, head);
12922 	bp->ntp_fltr_count++;
12923 	spin_unlock_bh(&bp->ntp_fltr_lock);
12924 
12925 	set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
12926 	bnxt_queue_sp_work(bp);
12927 
12928 	return new_fltr->sw_id;
12929 
12930 err_free:
12931 	kfree(new_fltr);
12932 	return rc;
12933 }
12934 
12935 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
12936 {
12937 	int i;
12938 
12939 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
12940 		struct hlist_head *head;
12941 		struct hlist_node *tmp;
12942 		struct bnxt_ntuple_filter *fltr;
12943 		int rc;
12944 
12945 		head = &bp->ntp_fltr_hash_tbl[i];
12946 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
12947 			bool del = false;
12948 
12949 			if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
12950 				if (rps_may_expire_flow(bp->dev, fltr->rxq,
12951 							fltr->flow_id,
12952 							fltr->sw_id)) {
12953 					bnxt_hwrm_cfa_ntuple_filter_free(bp,
12954 									 fltr);
12955 					del = true;
12956 				}
12957 			} else {
12958 				rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
12959 								       fltr);
12960 				if (rc)
12961 					del = true;
12962 				else
12963 					set_bit(BNXT_FLTR_VALID, &fltr->state);
12964 			}
12965 
12966 			if (del) {
12967 				spin_lock_bh(&bp->ntp_fltr_lock);
12968 				hlist_del_rcu(&fltr->hash);
12969 				bp->ntp_fltr_count--;
12970 				spin_unlock_bh(&bp->ntp_fltr_lock);
12971 				synchronize_rcu();
12972 				clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
12973 				kfree(fltr);
12974 			}
12975 		}
12976 	}
12977 	if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event))
12978 		netdev_info(bp->dev, "Receive PF driver unload event!\n");
12979 }
12980 
12981 #else
12982 
12983 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
12984 {
12985 }
12986 
12987 #endif /* CONFIG_RFS_ACCEL */
12988 
12989 static int bnxt_udp_tunnel_sync(struct net_device *netdev, unsigned int table)
12990 {
12991 	struct bnxt *bp = netdev_priv(netdev);
12992 	struct udp_tunnel_info ti;
12993 	unsigned int cmd;
12994 
12995 	udp_tunnel_nic_get_port(netdev, table, 0, &ti);
12996 	if (ti.type == UDP_TUNNEL_TYPE_VXLAN)
12997 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN;
12998 	else
12999 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE;
13000 
13001 	if (ti.port)
13002 		return bnxt_hwrm_tunnel_dst_port_alloc(bp, ti.port, cmd);
13003 
13004 	return bnxt_hwrm_tunnel_dst_port_free(bp, cmd);
13005 }
13006 
13007 static const struct udp_tunnel_nic_info bnxt_udp_tunnels = {
13008 	.sync_table	= bnxt_udp_tunnel_sync,
13009 	.flags		= UDP_TUNNEL_NIC_INFO_MAY_SLEEP |
13010 			  UDP_TUNNEL_NIC_INFO_OPEN_ONLY,
13011 	.tables		= {
13012 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN,  },
13013 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
13014 	},
13015 };
13016 
13017 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
13018 			       struct net_device *dev, u32 filter_mask,
13019 			       int nlflags)
13020 {
13021 	struct bnxt *bp = netdev_priv(dev);
13022 
13023 	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0,
13024 				       nlflags, filter_mask, NULL);
13025 }
13026 
13027 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
13028 			       u16 flags, struct netlink_ext_ack *extack)
13029 {
13030 	struct bnxt *bp = netdev_priv(dev);
13031 	struct nlattr *attr, *br_spec;
13032 	int rem, rc = 0;
13033 
13034 	if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp))
13035 		return -EOPNOTSUPP;
13036 
13037 	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
13038 	if (!br_spec)
13039 		return -EINVAL;
13040 
13041 	nla_for_each_nested(attr, br_spec, rem) {
13042 		u16 mode;
13043 
13044 		if (nla_type(attr) != IFLA_BRIDGE_MODE)
13045 			continue;
13046 
13047 		if (nla_len(attr) < sizeof(mode))
13048 			return -EINVAL;
13049 
13050 		mode = nla_get_u16(attr);
13051 		if (mode == bp->br_mode)
13052 			break;
13053 
13054 		rc = bnxt_hwrm_set_br_mode(bp, mode);
13055 		if (!rc)
13056 			bp->br_mode = mode;
13057 		break;
13058 	}
13059 	return rc;
13060 }
13061 
13062 int bnxt_get_port_parent_id(struct net_device *dev,
13063 			    struct netdev_phys_item_id *ppid)
13064 {
13065 	struct bnxt *bp = netdev_priv(dev);
13066 
13067 	if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV)
13068 		return -EOPNOTSUPP;
13069 
13070 	/* The PF and it's VF-reps only support the switchdev framework */
13071 	if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_DSN_VALID))
13072 		return -EOPNOTSUPP;
13073 
13074 	ppid->id_len = sizeof(bp->dsn);
13075 	memcpy(ppid->id, bp->dsn, ppid->id_len);
13076 
13077 	return 0;
13078 }
13079 
13080 static struct devlink_port *bnxt_get_devlink_port(struct net_device *dev)
13081 {
13082 	struct bnxt *bp = netdev_priv(dev);
13083 
13084 	return &bp->dl_port;
13085 }
13086 
13087 static const struct net_device_ops bnxt_netdev_ops = {
13088 	.ndo_open		= bnxt_open,
13089 	.ndo_start_xmit		= bnxt_start_xmit,
13090 	.ndo_stop		= bnxt_close,
13091 	.ndo_get_stats64	= bnxt_get_stats64,
13092 	.ndo_set_rx_mode	= bnxt_set_rx_mode,
13093 	.ndo_eth_ioctl		= bnxt_ioctl,
13094 	.ndo_validate_addr	= eth_validate_addr,
13095 	.ndo_set_mac_address	= bnxt_change_mac_addr,
13096 	.ndo_change_mtu		= bnxt_change_mtu,
13097 	.ndo_fix_features	= bnxt_fix_features,
13098 	.ndo_set_features	= bnxt_set_features,
13099 	.ndo_features_check	= bnxt_features_check,
13100 	.ndo_tx_timeout		= bnxt_tx_timeout,
13101 #ifdef CONFIG_BNXT_SRIOV
13102 	.ndo_get_vf_config	= bnxt_get_vf_config,
13103 	.ndo_set_vf_mac		= bnxt_set_vf_mac,
13104 	.ndo_set_vf_vlan	= bnxt_set_vf_vlan,
13105 	.ndo_set_vf_rate	= bnxt_set_vf_bw,
13106 	.ndo_set_vf_link_state	= bnxt_set_vf_link_state,
13107 	.ndo_set_vf_spoofchk	= bnxt_set_vf_spoofchk,
13108 	.ndo_set_vf_trust	= bnxt_set_vf_trust,
13109 #endif
13110 	.ndo_setup_tc           = bnxt_setup_tc,
13111 #ifdef CONFIG_RFS_ACCEL
13112 	.ndo_rx_flow_steer	= bnxt_rx_flow_steer,
13113 #endif
13114 	.ndo_bpf		= bnxt_xdp,
13115 	.ndo_xdp_xmit		= bnxt_xdp_xmit,
13116 	.ndo_bridge_getlink	= bnxt_bridge_getlink,
13117 	.ndo_bridge_setlink	= bnxt_bridge_setlink,
13118 	.ndo_get_devlink_port	= bnxt_get_devlink_port,
13119 };
13120 
13121 static void bnxt_remove_one(struct pci_dev *pdev)
13122 {
13123 	struct net_device *dev = pci_get_drvdata(pdev);
13124 	struct bnxt *bp = netdev_priv(dev);
13125 
13126 	if (BNXT_PF(bp))
13127 		bnxt_sriov_disable(bp);
13128 
13129 	if (BNXT_PF(bp))
13130 		devlink_port_type_clear(&bp->dl_port);
13131 
13132 	bnxt_ptp_clear(bp);
13133 	pci_disable_pcie_error_reporting(pdev);
13134 	unregister_netdev(dev);
13135 	clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
13136 	/* Flush any pending tasks */
13137 	cancel_work_sync(&bp->sp_task);
13138 	cancel_delayed_work_sync(&bp->fw_reset_task);
13139 	bp->sp_event = 0;
13140 
13141 	bnxt_dl_fw_reporters_destroy(bp);
13142 	bnxt_dl_unregister(bp);
13143 	bnxt_shutdown_tc(bp);
13144 
13145 	bnxt_clear_int_mode(bp);
13146 	bnxt_hwrm_func_drv_unrgtr(bp);
13147 	bnxt_free_hwrm_resources(bp);
13148 	bnxt_ethtool_free(bp);
13149 	bnxt_dcb_free(bp);
13150 	kfree(bp->edev);
13151 	bp->edev = NULL;
13152 	kfree(bp->ptp_cfg);
13153 	bp->ptp_cfg = NULL;
13154 	kfree(bp->fw_health);
13155 	bp->fw_health = NULL;
13156 	bnxt_cleanup_pci(bp);
13157 	bnxt_free_ctx_mem(bp);
13158 	kfree(bp->ctx);
13159 	bp->ctx = NULL;
13160 	kfree(bp->rss_indir_tbl);
13161 	bp->rss_indir_tbl = NULL;
13162 	bnxt_free_port_stats(bp);
13163 	free_netdev(dev);
13164 }
13165 
13166 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt)
13167 {
13168 	int rc = 0;
13169 	struct bnxt_link_info *link_info = &bp->link_info;
13170 
13171 	bp->phy_flags = 0;
13172 	rc = bnxt_hwrm_phy_qcaps(bp);
13173 	if (rc) {
13174 		netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n",
13175 			   rc);
13176 		return rc;
13177 	}
13178 	if (bp->phy_flags & BNXT_PHY_FL_NO_FCS)
13179 		bp->dev->priv_flags |= IFF_SUPP_NOFCS;
13180 	else
13181 		bp->dev->priv_flags &= ~IFF_SUPP_NOFCS;
13182 	if (!fw_dflt)
13183 		return 0;
13184 
13185 	mutex_lock(&bp->link_lock);
13186 	rc = bnxt_update_link(bp, false);
13187 	if (rc) {
13188 		mutex_unlock(&bp->link_lock);
13189 		netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
13190 			   rc);
13191 		return rc;
13192 	}
13193 
13194 	/* Older firmware does not have supported_auto_speeds, so assume
13195 	 * that all supported speeds can be autonegotiated.
13196 	 */
13197 	if (link_info->auto_link_speeds && !link_info->support_auto_speeds)
13198 		link_info->support_auto_speeds = link_info->support_speeds;
13199 
13200 	bnxt_init_ethtool_link_settings(bp);
13201 	mutex_unlock(&bp->link_lock);
13202 	return 0;
13203 }
13204 
13205 static int bnxt_get_max_irq(struct pci_dev *pdev)
13206 {
13207 	u16 ctrl;
13208 
13209 	if (!pdev->msix_cap)
13210 		return 1;
13211 
13212 	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
13213 	return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
13214 }
13215 
13216 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
13217 				int *max_cp)
13218 {
13219 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
13220 	int max_ring_grps = 0, max_irq;
13221 
13222 	*max_tx = hw_resc->max_tx_rings;
13223 	*max_rx = hw_resc->max_rx_rings;
13224 	*max_cp = bnxt_get_max_func_cp_rings_for_en(bp);
13225 	max_irq = min_t(int, bnxt_get_max_func_irqs(bp) -
13226 			bnxt_get_ulp_msix_num(bp),
13227 			hw_resc->max_stat_ctxs - bnxt_get_ulp_stat_ctxs(bp));
13228 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
13229 		*max_cp = min_t(int, *max_cp, max_irq);
13230 	max_ring_grps = hw_resc->max_hw_ring_grps;
13231 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) {
13232 		*max_cp -= 1;
13233 		*max_rx -= 2;
13234 	}
13235 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
13236 		*max_rx >>= 1;
13237 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
13238 		bnxt_trim_rings(bp, max_rx, max_tx, *max_cp, false);
13239 		/* On P5 chips, max_cp output param should be available NQs */
13240 		*max_cp = max_irq;
13241 	}
13242 	*max_rx = min_t(int, *max_rx, max_ring_grps);
13243 }
13244 
13245 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
13246 {
13247 	int rx, tx, cp;
13248 
13249 	_bnxt_get_max_rings(bp, &rx, &tx, &cp);
13250 	*max_rx = rx;
13251 	*max_tx = tx;
13252 	if (!rx || !tx || !cp)
13253 		return -ENOMEM;
13254 
13255 	return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
13256 }
13257 
13258 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx,
13259 			       bool shared)
13260 {
13261 	int rc;
13262 
13263 	rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
13264 	if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) {
13265 		/* Not enough rings, try disabling agg rings. */
13266 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
13267 		rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
13268 		if (rc) {
13269 			/* set BNXT_FLAG_AGG_RINGS back for consistency */
13270 			bp->flags |= BNXT_FLAG_AGG_RINGS;
13271 			return rc;
13272 		}
13273 		bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
13274 		bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
13275 		bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
13276 		bnxt_set_ring_params(bp);
13277 	}
13278 
13279 	if (bp->flags & BNXT_FLAG_ROCE_CAP) {
13280 		int max_cp, max_stat, max_irq;
13281 
13282 		/* Reserve minimum resources for RoCE */
13283 		max_cp = bnxt_get_max_func_cp_rings(bp);
13284 		max_stat = bnxt_get_max_func_stat_ctxs(bp);
13285 		max_irq = bnxt_get_max_func_irqs(bp);
13286 		if (max_cp <= BNXT_MIN_ROCE_CP_RINGS ||
13287 		    max_irq <= BNXT_MIN_ROCE_CP_RINGS ||
13288 		    max_stat <= BNXT_MIN_ROCE_STAT_CTXS)
13289 			return 0;
13290 
13291 		max_cp -= BNXT_MIN_ROCE_CP_RINGS;
13292 		max_irq -= BNXT_MIN_ROCE_CP_RINGS;
13293 		max_stat -= BNXT_MIN_ROCE_STAT_CTXS;
13294 		max_cp = min_t(int, max_cp, max_irq);
13295 		max_cp = min_t(int, max_cp, max_stat);
13296 		rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared);
13297 		if (rc)
13298 			rc = 0;
13299 	}
13300 	return rc;
13301 }
13302 
13303 /* In initial default shared ring setting, each shared ring must have a
13304  * RX/TX ring pair.
13305  */
13306 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp)
13307 {
13308 	bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings);
13309 	bp->rx_nr_rings = bp->cp_nr_rings;
13310 	bp->tx_nr_rings_per_tc = bp->cp_nr_rings;
13311 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
13312 }
13313 
13314 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh)
13315 {
13316 	int dflt_rings, max_rx_rings, max_tx_rings, rc;
13317 
13318 	if (!bnxt_can_reserve_rings(bp))
13319 		return 0;
13320 
13321 	if (sh)
13322 		bp->flags |= BNXT_FLAG_SHARED_RINGS;
13323 	dflt_rings = is_kdump_kernel() ? 1 : netif_get_num_default_rss_queues();
13324 	/* Reduce default rings on multi-port cards so that total default
13325 	 * rings do not exceed CPU count.
13326 	 */
13327 	if (bp->port_count > 1) {
13328 		int max_rings =
13329 			max_t(int, num_online_cpus() / bp->port_count, 1);
13330 
13331 		dflt_rings = min_t(int, dflt_rings, max_rings);
13332 	}
13333 	rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh);
13334 	if (rc)
13335 		return rc;
13336 	bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
13337 	bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
13338 	if (sh)
13339 		bnxt_trim_dflt_sh_rings(bp);
13340 	else
13341 		bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings;
13342 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
13343 
13344 	rc = __bnxt_reserve_rings(bp);
13345 	if (rc && rc != -ENODEV)
13346 		netdev_warn(bp->dev, "Unable to reserve tx rings\n");
13347 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
13348 	if (sh)
13349 		bnxt_trim_dflt_sh_rings(bp);
13350 
13351 	/* Rings may have been trimmed, re-reserve the trimmed rings. */
13352 	if (bnxt_need_reserve_rings(bp)) {
13353 		rc = __bnxt_reserve_rings(bp);
13354 		if (rc && rc != -ENODEV)
13355 			netdev_warn(bp->dev, "2nd rings reservation failed.\n");
13356 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
13357 	}
13358 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
13359 		bp->rx_nr_rings++;
13360 		bp->cp_nr_rings++;
13361 	}
13362 	if (rc) {
13363 		bp->tx_nr_rings = 0;
13364 		bp->rx_nr_rings = 0;
13365 	}
13366 	return rc;
13367 }
13368 
13369 static int bnxt_init_dflt_ring_mode(struct bnxt *bp)
13370 {
13371 	int rc;
13372 
13373 	if (bp->tx_nr_rings)
13374 		return 0;
13375 
13376 	bnxt_ulp_irq_stop(bp);
13377 	bnxt_clear_int_mode(bp);
13378 	rc = bnxt_set_dflt_rings(bp, true);
13379 	if (rc) {
13380 		if (BNXT_VF(bp) && rc == -ENODEV)
13381 			netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n");
13382 		else
13383 			netdev_err(bp->dev, "Not enough rings available.\n");
13384 		goto init_dflt_ring_err;
13385 	}
13386 	rc = bnxt_init_int_mode(bp);
13387 	if (rc)
13388 		goto init_dflt_ring_err;
13389 
13390 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
13391 
13392 	bnxt_set_dflt_rfs(bp);
13393 
13394 init_dflt_ring_err:
13395 	bnxt_ulp_irq_restart(bp, rc);
13396 	return rc;
13397 }
13398 
13399 int bnxt_restore_pf_fw_resources(struct bnxt *bp)
13400 {
13401 	int rc;
13402 
13403 	ASSERT_RTNL();
13404 	bnxt_hwrm_func_qcaps(bp);
13405 
13406 	if (netif_running(bp->dev))
13407 		__bnxt_close_nic(bp, true, false);
13408 
13409 	bnxt_ulp_irq_stop(bp);
13410 	bnxt_clear_int_mode(bp);
13411 	rc = bnxt_init_int_mode(bp);
13412 	bnxt_ulp_irq_restart(bp, rc);
13413 
13414 	if (netif_running(bp->dev)) {
13415 		if (rc)
13416 			dev_close(bp->dev);
13417 		else
13418 			rc = bnxt_open_nic(bp, true, false);
13419 	}
13420 
13421 	return rc;
13422 }
13423 
13424 static int bnxt_init_mac_addr(struct bnxt *bp)
13425 {
13426 	int rc = 0;
13427 
13428 	if (BNXT_PF(bp)) {
13429 		eth_hw_addr_set(bp->dev, bp->pf.mac_addr);
13430 	} else {
13431 #ifdef CONFIG_BNXT_SRIOV
13432 		struct bnxt_vf_info *vf = &bp->vf;
13433 		bool strict_approval = true;
13434 
13435 		if (is_valid_ether_addr(vf->mac_addr)) {
13436 			/* overwrite netdev dev_addr with admin VF MAC */
13437 			eth_hw_addr_set(bp->dev, vf->mac_addr);
13438 			/* Older PF driver or firmware may not approve this
13439 			 * correctly.
13440 			 */
13441 			strict_approval = false;
13442 		} else {
13443 			eth_hw_addr_random(bp->dev);
13444 		}
13445 		rc = bnxt_approve_mac(bp, bp->dev->dev_addr, strict_approval);
13446 #endif
13447 	}
13448 	return rc;
13449 }
13450 
13451 static void bnxt_vpd_read_info(struct bnxt *bp)
13452 {
13453 	struct pci_dev *pdev = bp->pdev;
13454 	unsigned int vpd_size, kw_len;
13455 	int pos, size;
13456 	u8 *vpd_data;
13457 
13458 	vpd_data = pci_vpd_alloc(pdev, &vpd_size);
13459 	if (IS_ERR(vpd_data)) {
13460 		pci_warn(pdev, "Unable to read VPD\n");
13461 		return;
13462 	}
13463 
13464 	pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
13465 					   PCI_VPD_RO_KEYWORD_PARTNO, &kw_len);
13466 	if (pos < 0)
13467 		goto read_sn;
13468 
13469 	size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1);
13470 	memcpy(bp->board_partno, &vpd_data[pos], size);
13471 
13472 read_sn:
13473 	pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
13474 					   PCI_VPD_RO_KEYWORD_SERIALNO,
13475 					   &kw_len);
13476 	if (pos < 0)
13477 		goto exit;
13478 
13479 	size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1);
13480 	memcpy(bp->board_serialno, &vpd_data[pos], size);
13481 exit:
13482 	kfree(vpd_data);
13483 }
13484 
13485 static int bnxt_pcie_dsn_get(struct bnxt *bp, u8 dsn[])
13486 {
13487 	struct pci_dev *pdev = bp->pdev;
13488 	u64 qword;
13489 
13490 	qword = pci_get_dsn(pdev);
13491 	if (!qword) {
13492 		netdev_info(bp->dev, "Unable to read adapter's DSN\n");
13493 		return -EOPNOTSUPP;
13494 	}
13495 
13496 	put_unaligned_le64(qword, dsn);
13497 
13498 	bp->flags |= BNXT_FLAG_DSN_VALID;
13499 	return 0;
13500 }
13501 
13502 static int bnxt_map_db_bar(struct bnxt *bp)
13503 {
13504 	if (!bp->db_size)
13505 		return -ENODEV;
13506 	bp->bar1 = pci_iomap(bp->pdev, 2, bp->db_size);
13507 	if (!bp->bar1)
13508 		return -ENOMEM;
13509 	return 0;
13510 }
13511 
13512 void bnxt_print_device_info(struct bnxt *bp)
13513 {
13514 	netdev_info(bp->dev, "%s found at mem %lx, node addr %pM\n",
13515 		    board_info[bp->board_idx].name,
13516 		    (long)pci_resource_start(bp->pdev, 0), bp->dev->dev_addr);
13517 
13518 	pcie_print_link_status(bp->pdev);
13519 }
13520 
13521 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
13522 {
13523 	struct net_device *dev;
13524 	struct bnxt *bp;
13525 	int rc, max_irqs;
13526 
13527 	if (pci_is_bridge(pdev))
13528 		return -ENODEV;
13529 
13530 	/* Clear any pending DMA transactions from crash kernel
13531 	 * while loading driver in capture kernel.
13532 	 */
13533 	if (is_kdump_kernel()) {
13534 		pci_clear_master(pdev);
13535 		pcie_flr(pdev);
13536 	}
13537 
13538 	max_irqs = bnxt_get_max_irq(pdev);
13539 	dev = alloc_etherdev_mq(sizeof(*bp), max_irqs);
13540 	if (!dev)
13541 		return -ENOMEM;
13542 
13543 	bp = netdev_priv(dev);
13544 	bp->board_idx = ent->driver_data;
13545 	bp->msg_enable = BNXT_DEF_MSG_ENABLE;
13546 	bnxt_set_max_func_irqs(bp, max_irqs);
13547 
13548 	if (bnxt_vf_pciid(bp->board_idx))
13549 		bp->flags |= BNXT_FLAG_VF;
13550 
13551 	if (pdev->msix_cap)
13552 		bp->flags |= BNXT_FLAG_MSIX_CAP;
13553 
13554 	rc = bnxt_init_board(pdev, dev);
13555 	if (rc < 0)
13556 		goto init_err_free;
13557 
13558 	dev->netdev_ops = &bnxt_netdev_ops;
13559 	dev->watchdog_timeo = BNXT_TX_TIMEOUT;
13560 	dev->ethtool_ops = &bnxt_ethtool_ops;
13561 	pci_set_drvdata(pdev, dev);
13562 
13563 	rc = bnxt_alloc_hwrm_resources(bp);
13564 	if (rc)
13565 		goto init_err_pci_clean;
13566 
13567 	mutex_init(&bp->hwrm_cmd_lock);
13568 	mutex_init(&bp->link_lock);
13569 
13570 	rc = bnxt_fw_init_one_p1(bp);
13571 	if (rc)
13572 		goto init_err_pci_clean;
13573 
13574 	if (BNXT_PF(bp))
13575 		bnxt_vpd_read_info(bp);
13576 
13577 	if (BNXT_CHIP_P5(bp)) {
13578 		bp->flags |= BNXT_FLAG_CHIP_P5;
13579 		if (BNXT_CHIP_SR2(bp))
13580 			bp->flags |= BNXT_FLAG_CHIP_SR2;
13581 	}
13582 
13583 	rc = bnxt_alloc_rss_indir_tbl(bp);
13584 	if (rc)
13585 		goto init_err_pci_clean;
13586 
13587 	rc = bnxt_fw_init_one_p2(bp);
13588 	if (rc)
13589 		goto init_err_pci_clean;
13590 
13591 	rc = bnxt_map_db_bar(bp);
13592 	if (rc) {
13593 		dev_err(&pdev->dev, "Cannot map doorbell BAR rc = %d, aborting\n",
13594 			rc);
13595 		goto init_err_pci_clean;
13596 	}
13597 
13598 	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
13599 			   NETIF_F_TSO | NETIF_F_TSO6 |
13600 			   NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
13601 			   NETIF_F_GSO_IPXIP4 |
13602 			   NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
13603 			   NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH |
13604 			   NETIF_F_RXCSUM | NETIF_F_GRO;
13605 
13606 	if (BNXT_SUPPORTS_TPA(bp))
13607 		dev->hw_features |= NETIF_F_LRO;
13608 
13609 	dev->hw_enc_features =
13610 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
13611 			NETIF_F_TSO | NETIF_F_TSO6 |
13612 			NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
13613 			NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
13614 			NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL;
13615 	dev->udp_tunnel_nic_info = &bnxt_udp_tunnels;
13616 
13617 	dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM |
13618 				    NETIF_F_GSO_GRE_CSUM;
13619 	dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
13620 	if (bp->fw_cap & BNXT_FW_CAP_VLAN_RX_STRIP)
13621 		dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_RX;
13622 	if (bp->fw_cap & BNXT_FW_CAP_VLAN_TX_INSERT)
13623 		dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_TX;
13624 	if (BNXT_SUPPORTS_TPA(bp))
13625 		dev->hw_features |= NETIF_F_GRO_HW;
13626 	dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
13627 	if (dev->features & NETIF_F_GRO_HW)
13628 		dev->features &= ~NETIF_F_LRO;
13629 	dev->priv_flags |= IFF_UNICAST_FLT;
13630 
13631 #ifdef CONFIG_BNXT_SRIOV
13632 	init_waitqueue_head(&bp->sriov_cfg_wait);
13633 #endif
13634 	if (BNXT_SUPPORTS_TPA(bp)) {
13635 		bp->gro_func = bnxt_gro_func_5730x;
13636 		if (BNXT_CHIP_P4(bp))
13637 			bp->gro_func = bnxt_gro_func_5731x;
13638 		else if (BNXT_CHIP_P5(bp))
13639 			bp->gro_func = bnxt_gro_func_5750x;
13640 	}
13641 	if (!BNXT_CHIP_P4_PLUS(bp))
13642 		bp->flags |= BNXT_FLAG_DOUBLE_DB;
13643 
13644 	rc = bnxt_init_mac_addr(bp);
13645 	if (rc) {
13646 		dev_err(&pdev->dev, "Unable to initialize mac address.\n");
13647 		rc = -EADDRNOTAVAIL;
13648 		goto init_err_pci_clean;
13649 	}
13650 
13651 	if (BNXT_PF(bp)) {
13652 		/* Read the adapter's DSN to use as the eswitch switch_id */
13653 		rc = bnxt_pcie_dsn_get(bp, bp->dsn);
13654 	}
13655 
13656 	/* MTU range: 60 - FW defined max */
13657 	dev->min_mtu = ETH_ZLEN;
13658 	dev->max_mtu = bp->max_mtu;
13659 
13660 	rc = bnxt_probe_phy(bp, true);
13661 	if (rc)
13662 		goto init_err_pci_clean;
13663 
13664 	bnxt_set_rx_skb_mode(bp, false);
13665 	bnxt_set_tpa_flags(bp);
13666 	bnxt_set_ring_params(bp);
13667 	rc = bnxt_set_dflt_rings(bp, true);
13668 	if (rc) {
13669 		if (BNXT_VF(bp) && rc == -ENODEV) {
13670 			netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n");
13671 		} else {
13672 			netdev_err(bp->dev, "Not enough rings available.\n");
13673 			rc = -ENOMEM;
13674 		}
13675 		goto init_err_pci_clean;
13676 	}
13677 
13678 	bnxt_fw_init_one_p3(bp);
13679 
13680 	bnxt_init_dflt_coal(bp);
13681 
13682 	if (dev->hw_features & BNXT_HW_FEATURE_VLAN_ALL_RX)
13683 		bp->flags |= BNXT_FLAG_STRIP_VLAN;
13684 
13685 	rc = bnxt_init_int_mode(bp);
13686 	if (rc)
13687 		goto init_err_pci_clean;
13688 
13689 	/* No TC has been set yet and rings may have been trimmed due to
13690 	 * limited MSIX, so we re-initialize the TX rings per TC.
13691 	 */
13692 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
13693 
13694 	if (BNXT_PF(bp)) {
13695 		if (!bnxt_pf_wq) {
13696 			bnxt_pf_wq =
13697 				create_singlethread_workqueue("bnxt_pf_wq");
13698 			if (!bnxt_pf_wq) {
13699 				dev_err(&pdev->dev, "Unable to create workqueue.\n");
13700 				rc = -ENOMEM;
13701 				goto init_err_pci_clean;
13702 			}
13703 		}
13704 		rc = bnxt_init_tc(bp);
13705 		if (rc)
13706 			netdev_err(dev, "Failed to initialize TC flower offload, err = %d.\n",
13707 				   rc);
13708 	}
13709 
13710 	bnxt_inv_fw_health_reg(bp);
13711 	rc = bnxt_dl_register(bp);
13712 	if (rc)
13713 		goto init_err_dl;
13714 
13715 	rc = register_netdev(dev);
13716 	if (rc)
13717 		goto init_err_cleanup;
13718 
13719 	if (BNXT_PF(bp))
13720 		devlink_port_type_eth_set(&bp->dl_port, bp->dev);
13721 	bnxt_dl_fw_reporters_create(bp);
13722 
13723 	bnxt_print_device_info(bp);
13724 
13725 	pci_save_state(pdev);
13726 	return 0;
13727 
13728 init_err_cleanup:
13729 	bnxt_dl_unregister(bp);
13730 init_err_dl:
13731 	bnxt_shutdown_tc(bp);
13732 	bnxt_clear_int_mode(bp);
13733 
13734 init_err_pci_clean:
13735 	bnxt_hwrm_func_drv_unrgtr(bp);
13736 	bnxt_free_hwrm_resources(bp);
13737 	bnxt_ethtool_free(bp);
13738 	bnxt_ptp_clear(bp);
13739 	kfree(bp->ptp_cfg);
13740 	bp->ptp_cfg = NULL;
13741 	kfree(bp->fw_health);
13742 	bp->fw_health = NULL;
13743 	bnxt_cleanup_pci(bp);
13744 	bnxt_free_ctx_mem(bp);
13745 	kfree(bp->ctx);
13746 	bp->ctx = NULL;
13747 	kfree(bp->rss_indir_tbl);
13748 	bp->rss_indir_tbl = NULL;
13749 
13750 init_err_free:
13751 	free_netdev(dev);
13752 	return rc;
13753 }
13754 
13755 static void bnxt_shutdown(struct pci_dev *pdev)
13756 {
13757 	struct net_device *dev = pci_get_drvdata(pdev);
13758 	struct bnxt *bp;
13759 
13760 	if (!dev)
13761 		return;
13762 
13763 	rtnl_lock();
13764 	bp = netdev_priv(dev);
13765 	if (!bp)
13766 		goto shutdown_exit;
13767 
13768 	if (netif_running(dev))
13769 		dev_close(dev);
13770 
13771 	bnxt_ulp_shutdown(bp);
13772 	bnxt_clear_int_mode(bp);
13773 	pci_disable_device(pdev);
13774 
13775 	if (system_state == SYSTEM_POWER_OFF) {
13776 		pci_wake_from_d3(pdev, bp->wol);
13777 		pci_set_power_state(pdev, PCI_D3hot);
13778 	}
13779 
13780 shutdown_exit:
13781 	rtnl_unlock();
13782 }
13783 
13784 #ifdef CONFIG_PM_SLEEP
13785 static int bnxt_suspend(struct device *device)
13786 {
13787 	struct net_device *dev = dev_get_drvdata(device);
13788 	struct bnxt *bp = netdev_priv(dev);
13789 	int rc = 0;
13790 
13791 	rtnl_lock();
13792 	bnxt_ulp_stop(bp);
13793 	if (netif_running(dev)) {
13794 		netif_device_detach(dev);
13795 		rc = bnxt_close(dev);
13796 	}
13797 	bnxt_hwrm_func_drv_unrgtr(bp);
13798 	pci_disable_device(bp->pdev);
13799 	bnxt_free_ctx_mem(bp);
13800 	kfree(bp->ctx);
13801 	bp->ctx = NULL;
13802 	rtnl_unlock();
13803 	return rc;
13804 }
13805 
13806 static int bnxt_resume(struct device *device)
13807 {
13808 	struct net_device *dev = dev_get_drvdata(device);
13809 	struct bnxt *bp = netdev_priv(dev);
13810 	int rc = 0;
13811 
13812 	rtnl_lock();
13813 	rc = pci_enable_device(bp->pdev);
13814 	if (rc) {
13815 		netdev_err(dev, "Cannot re-enable PCI device during resume, err = %d\n",
13816 			   rc);
13817 		goto resume_exit;
13818 	}
13819 	pci_set_master(bp->pdev);
13820 	if (bnxt_hwrm_ver_get(bp)) {
13821 		rc = -ENODEV;
13822 		goto resume_exit;
13823 	}
13824 	rc = bnxt_hwrm_func_reset(bp);
13825 	if (rc) {
13826 		rc = -EBUSY;
13827 		goto resume_exit;
13828 	}
13829 
13830 	rc = bnxt_hwrm_func_qcaps(bp);
13831 	if (rc)
13832 		goto resume_exit;
13833 
13834 	if (bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false)) {
13835 		rc = -ENODEV;
13836 		goto resume_exit;
13837 	}
13838 
13839 	bnxt_get_wol_settings(bp);
13840 	if (netif_running(dev)) {
13841 		rc = bnxt_open(dev);
13842 		if (!rc)
13843 			netif_device_attach(dev);
13844 	}
13845 
13846 resume_exit:
13847 	bnxt_ulp_start(bp, rc);
13848 	if (!rc)
13849 		bnxt_reenable_sriov(bp);
13850 	rtnl_unlock();
13851 	return rc;
13852 }
13853 
13854 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume);
13855 #define BNXT_PM_OPS (&bnxt_pm_ops)
13856 
13857 #else
13858 
13859 #define BNXT_PM_OPS NULL
13860 
13861 #endif /* CONFIG_PM_SLEEP */
13862 
13863 /**
13864  * bnxt_io_error_detected - called when PCI error is detected
13865  * @pdev: Pointer to PCI device
13866  * @state: The current pci connection state
13867  *
13868  * This function is called after a PCI bus error affecting
13869  * this device has been detected.
13870  */
13871 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev,
13872 					       pci_channel_state_t state)
13873 {
13874 	struct net_device *netdev = pci_get_drvdata(pdev);
13875 	struct bnxt *bp = netdev_priv(netdev);
13876 
13877 	netdev_info(netdev, "PCI I/O error detected\n");
13878 
13879 	rtnl_lock();
13880 	netif_device_detach(netdev);
13881 
13882 	bnxt_ulp_stop(bp);
13883 
13884 	if (state == pci_channel_io_perm_failure) {
13885 		rtnl_unlock();
13886 		return PCI_ERS_RESULT_DISCONNECT;
13887 	}
13888 
13889 	if (state == pci_channel_io_frozen)
13890 		set_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, &bp->state);
13891 
13892 	if (netif_running(netdev))
13893 		bnxt_close(netdev);
13894 
13895 	if (pci_is_enabled(pdev))
13896 		pci_disable_device(pdev);
13897 	bnxt_free_ctx_mem(bp);
13898 	kfree(bp->ctx);
13899 	bp->ctx = NULL;
13900 	rtnl_unlock();
13901 
13902 	/* Request a slot slot reset. */
13903 	return PCI_ERS_RESULT_NEED_RESET;
13904 }
13905 
13906 /**
13907  * bnxt_io_slot_reset - called after the pci bus has been reset.
13908  * @pdev: Pointer to PCI device
13909  *
13910  * Restart the card from scratch, as if from a cold-boot.
13911  * At this point, the card has exprienced a hard reset,
13912  * followed by fixups by BIOS, and has its config space
13913  * set up identically to what it was at cold boot.
13914  */
13915 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev)
13916 {
13917 	pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
13918 	struct net_device *netdev = pci_get_drvdata(pdev);
13919 	struct bnxt *bp = netdev_priv(netdev);
13920 	int err = 0, off;
13921 
13922 	netdev_info(bp->dev, "PCI Slot Reset\n");
13923 
13924 	rtnl_lock();
13925 
13926 	if (pci_enable_device(pdev)) {
13927 		dev_err(&pdev->dev,
13928 			"Cannot re-enable PCI device after reset.\n");
13929 	} else {
13930 		pci_set_master(pdev);
13931 		/* Upon fatal error, our device internal logic that latches to
13932 		 * BAR value is getting reset and will restore only upon
13933 		 * rewritting the BARs.
13934 		 *
13935 		 * As pci_restore_state() does not re-write the BARs if the
13936 		 * value is same as saved value earlier, driver needs to
13937 		 * write the BARs to 0 to force restore, in case of fatal error.
13938 		 */
13939 		if (test_and_clear_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN,
13940 				       &bp->state)) {
13941 			for (off = PCI_BASE_ADDRESS_0;
13942 			     off <= PCI_BASE_ADDRESS_5; off += 4)
13943 				pci_write_config_dword(bp->pdev, off, 0);
13944 		}
13945 		pci_restore_state(pdev);
13946 		pci_save_state(pdev);
13947 
13948 		err = bnxt_hwrm_func_reset(bp);
13949 		if (!err)
13950 			result = PCI_ERS_RESULT_RECOVERED;
13951 	}
13952 
13953 	rtnl_unlock();
13954 
13955 	return result;
13956 }
13957 
13958 /**
13959  * bnxt_io_resume - called when traffic can start flowing again.
13960  * @pdev: Pointer to PCI device
13961  *
13962  * This callback is called when the error recovery driver tells
13963  * us that its OK to resume normal operation.
13964  */
13965 static void bnxt_io_resume(struct pci_dev *pdev)
13966 {
13967 	struct net_device *netdev = pci_get_drvdata(pdev);
13968 	struct bnxt *bp = netdev_priv(netdev);
13969 	int err;
13970 
13971 	netdev_info(bp->dev, "PCI Slot Resume\n");
13972 	rtnl_lock();
13973 
13974 	err = bnxt_hwrm_func_qcaps(bp);
13975 	if (!err && netif_running(netdev))
13976 		err = bnxt_open(netdev);
13977 
13978 	bnxt_ulp_start(bp, err);
13979 	if (!err) {
13980 		bnxt_reenable_sriov(bp);
13981 		netif_device_attach(netdev);
13982 	}
13983 
13984 	rtnl_unlock();
13985 }
13986 
13987 static const struct pci_error_handlers bnxt_err_handler = {
13988 	.error_detected	= bnxt_io_error_detected,
13989 	.slot_reset	= bnxt_io_slot_reset,
13990 	.resume		= bnxt_io_resume
13991 };
13992 
13993 static struct pci_driver bnxt_pci_driver = {
13994 	.name		= DRV_MODULE_NAME,
13995 	.id_table	= bnxt_pci_tbl,
13996 	.probe		= bnxt_init_one,
13997 	.remove		= bnxt_remove_one,
13998 	.shutdown	= bnxt_shutdown,
13999 	.driver.pm	= BNXT_PM_OPS,
14000 	.err_handler	= &bnxt_err_handler,
14001 #if defined(CONFIG_BNXT_SRIOV)
14002 	.sriov_configure = bnxt_sriov_configure,
14003 #endif
14004 };
14005 
14006 static int __init bnxt_init(void)
14007 {
14008 	bnxt_debug_init();
14009 	return pci_register_driver(&bnxt_pci_driver);
14010 }
14011 
14012 static void __exit bnxt_exit(void)
14013 {
14014 	pci_unregister_driver(&bnxt_pci_driver);
14015 	if (bnxt_pf_wq)
14016 		destroy_workqueue(bnxt_pf_wq);
14017 	bnxt_debug_exit();
14018 }
14019 
14020 module_init(bnxt_init);
14021 module_exit(bnxt_exit);
14022