1 /* Broadcom NetXtreme-C/E network driver. 2 * 3 * Copyright (c) 2014-2016 Broadcom Corporation 4 * Copyright (c) 2016-2019 Broadcom Limited 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation. 9 */ 10 11 #include <linux/module.h> 12 13 #include <linux/stringify.h> 14 #include <linux/kernel.h> 15 #include <linux/timer.h> 16 #include <linux/errno.h> 17 #include <linux/ioport.h> 18 #include <linux/slab.h> 19 #include <linux/vmalloc.h> 20 #include <linux/interrupt.h> 21 #include <linux/pci.h> 22 #include <linux/netdevice.h> 23 #include <linux/etherdevice.h> 24 #include <linux/skbuff.h> 25 #include <linux/dma-mapping.h> 26 #include <linux/bitops.h> 27 #include <linux/io.h> 28 #include <linux/irq.h> 29 #include <linux/delay.h> 30 #include <asm/byteorder.h> 31 #include <asm/page.h> 32 #include <linux/time.h> 33 #include <linux/mii.h> 34 #include <linux/mdio.h> 35 #include <linux/if.h> 36 #include <linux/if_vlan.h> 37 #include <linux/if_bridge.h> 38 #include <linux/rtc.h> 39 #include <linux/bpf.h> 40 #include <net/ip.h> 41 #include <net/tcp.h> 42 #include <net/udp.h> 43 #include <net/checksum.h> 44 #include <net/ip6_checksum.h> 45 #include <net/udp_tunnel.h> 46 #include <linux/workqueue.h> 47 #include <linux/prefetch.h> 48 #include <linux/cache.h> 49 #include <linux/log2.h> 50 #include <linux/aer.h> 51 #include <linux/bitmap.h> 52 #include <linux/ptp_clock_kernel.h> 53 #include <linux/timecounter.h> 54 #include <linux/cpu_rmap.h> 55 #include <linux/cpumask.h> 56 #include <net/pkt_cls.h> 57 #include <linux/hwmon.h> 58 #include <linux/hwmon-sysfs.h> 59 #include <net/page_pool.h> 60 61 #include "bnxt_hsi.h" 62 #include "bnxt.h" 63 #include "bnxt_ulp.h" 64 #include "bnxt_sriov.h" 65 #include "bnxt_ethtool.h" 66 #include "bnxt_dcb.h" 67 #include "bnxt_xdp.h" 68 #include "bnxt_ptp.h" 69 #include "bnxt_vfr.h" 70 #include "bnxt_tc.h" 71 #include "bnxt_devlink.h" 72 #include "bnxt_debugfs.h" 73 74 #define BNXT_TX_TIMEOUT (5 * HZ) 75 #define BNXT_DEF_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_HW | \ 76 NETIF_MSG_TX_ERR) 77 78 MODULE_LICENSE("GPL"); 79 MODULE_DESCRIPTION("Broadcom BCM573xx network driver"); 80 81 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN) 82 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD 83 #define BNXT_RX_COPY_THRESH 256 84 85 #define BNXT_TX_PUSH_THRESH 164 86 87 enum board_idx { 88 BCM57301, 89 BCM57302, 90 BCM57304, 91 BCM57417_NPAR, 92 BCM58700, 93 BCM57311, 94 BCM57312, 95 BCM57402, 96 BCM57404, 97 BCM57406, 98 BCM57402_NPAR, 99 BCM57407, 100 BCM57412, 101 BCM57414, 102 BCM57416, 103 BCM57417, 104 BCM57412_NPAR, 105 BCM57314, 106 BCM57417_SFP, 107 BCM57416_SFP, 108 BCM57404_NPAR, 109 BCM57406_NPAR, 110 BCM57407_SFP, 111 BCM57407_NPAR, 112 BCM57414_NPAR, 113 BCM57416_NPAR, 114 BCM57452, 115 BCM57454, 116 BCM5745x_NPAR, 117 BCM57508, 118 BCM57504, 119 BCM57502, 120 BCM57508_NPAR, 121 BCM57504_NPAR, 122 BCM57502_NPAR, 123 BCM58802, 124 BCM58804, 125 BCM58808, 126 NETXTREME_E_VF, 127 NETXTREME_C_VF, 128 NETXTREME_S_VF, 129 NETXTREME_C_VF_HV, 130 NETXTREME_E_VF_HV, 131 NETXTREME_E_P5_VF, 132 NETXTREME_E_P5_VF_HV, 133 }; 134 135 /* indexed by enum above */ 136 static const struct { 137 char *name; 138 } board_info[] = { 139 [BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" }, 140 [BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" }, 141 [BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" }, 142 [BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" }, 143 [BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" }, 144 [BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" }, 145 [BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" }, 146 [BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" }, 147 [BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" }, 148 [BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" }, 149 [BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" }, 150 [BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" }, 151 [BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" }, 152 [BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" }, 153 [BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" }, 154 [BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" }, 155 [BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" }, 156 [BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" }, 157 [BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" }, 158 [BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" }, 159 [BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" }, 160 [BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" }, 161 [BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" }, 162 [BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" }, 163 [BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" }, 164 [BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" }, 165 [BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" }, 166 [BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 167 [BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" }, 168 [BCM57508] = { "Broadcom BCM57508 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" }, 169 [BCM57504] = { "Broadcom BCM57504 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" }, 170 [BCM57502] = { "Broadcom BCM57502 NetXtreme-E 10Gb/25Gb/50Gb Ethernet" }, 171 [BCM57508_NPAR] = { "Broadcom BCM57508 NetXtreme-E Ethernet Partition" }, 172 [BCM57504_NPAR] = { "Broadcom BCM57504 NetXtreme-E Ethernet Partition" }, 173 [BCM57502_NPAR] = { "Broadcom BCM57502 NetXtreme-E Ethernet Partition" }, 174 [BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" }, 175 [BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 176 [BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 177 [NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" }, 178 [NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" }, 179 [NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" }, 180 [NETXTREME_C_VF_HV] = { "Broadcom NetXtreme-C Virtual Function for Hyper-V" }, 181 [NETXTREME_E_VF_HV] = { "Broadcom NetXtreme-E Virtual Function for Hyper-V" }, 182 [NETXTREME_E_P5_VF] = { "Broadcom BCM5750X NetXtreme-E Ethernet Virtual Function" }, 183 [NETXTREME_E_P5_VF_HV] = { "Broadcom BCM5750X NetXtreme-E Virtual Function for Hyper-V" }, 184 }; 185 186 static const struct pci_device_id bnxt_pci_tbl[] = { 187 { PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR }, 188 { PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR }, 189 { PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 }, 190 { PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR }, 191 { PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 }, 192 { PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 }, 193 { PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 }, 194 { PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR }, 195 { PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 }, 196 { PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 }, 197 { PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 }, 198 { PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 }, 199 { PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 }, 200 { PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 }, 201 { PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR }, 202 { PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 }, 203 { PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 }, 204 { PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 }, 205 { PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 }, 206 { PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 }, 207 { PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR }, 208 { PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 }, 209 { PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP }, 210 { PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP }, 211 { PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR }, 212 { PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR }, 213 { PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP }, 214 { PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR }, 215 { PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR }, 216 { PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR }, 217 { PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR }, 218 { PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR }, 219 { PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR }, 220 { PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 }, 221 { PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 }, 222 { PCI_VDEVICE(BROADCOM, 0x1750), .driver_data = BCM57508 }, 223 { PCI_VDEVICE(BROADCOM, 0x1751), .driver_data = BCM57504 }, 224 { PCI_VDEVICE(BROADCOM, 0x1752), .driver_data = BCM57502 }, 225 { PCI_VDEVICE(BROADCOM, 0x1800), .driver_data = BCM57508_NPAR }, 226 { PCI_VDEVICE(BROADCOM, 0x1801), .driver_data = BCM57504_NPAR }, 227 { PCI_VDEVICE(BROADCOM, 0x1802), .driver_data = BCM57502_NPAR }, 228 { PCI_VDEVICE(BROADCOM, 0x1803), .driver_data = BCM57508_NPAR }, 229 { PCI_VDEVICE(BROADCOM, 0x1804), .driver_data = BCM57504_NPAR }, 230 { PCI_VDEVICE(BROADCOM, 0x1805), .driver_data = BCM57502_NPAR }, 231 { PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 }, 232 { PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 }, 233 #ifdef CONFIG_BNXT_SRIOV 234 { PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF }, 235 { PCI_VDEVICE(BROADCOM, 0x1607), .driver_data = NETXTREME_E_VF_HV }, 236 { PCI_VDEVICE(BROADCOM, 0x1608), .driver_data = NETXTREME_E_VF_HV }, 237 { PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF }, 238 { PCI_VDEVICE(BROADCOM, 0x16bd), .driver_data = NETXTREME_E_VF_HV }, 239 { PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF }, 240 { PCI_VDEVICE(BROADCOM, 0x16c2), .driver_data = NETXTREME_C_VF_HV }, 241 { PCI_VDEVICE(BROADCOM, 0x16c3), .driver_data = NETXTREME_C_VF_HV }, 242 { PCI_VDEVICE(BROADCOM, 0x16c4), .driver_data = NETXTREME_E_VF_HV }, 243 { PCI_VDEVICE(BROADCOM, 0x16c5), .driver_data = NETXTREME_E_VF_HV }, 244 { PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF }, 245 { PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF }, 246 { PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF }, 247 { PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF }, 248 { PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF }, 249 { PCI_VDEVICE(BROADCOM, 0x16e6), .driver_data = NETXTREME_C_VF_HV }, 250 { PCI_VDEVICE(BROADCOM, 0x1806), .driver_data = NETXTREME_E_P5_VF }, 251 { PCI_VDEVICE(BROADCOM, 0x1807), .driver_data = NETXTREME_E_P5_VF }, 252 { PCI_VDEVICE(BROADCOM, 0x1808), .driver_data = NETXTREME_E_P5_VF_HV }, 253 { PCI_VDEVICE(BROADCOM, 0x1809), .driver_data = NETXTREME_E_P5_VF_HV }, 254 { PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF }, 255 #endif 256 { 0 } 257 }; 258 259 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl); 260 261 static const u16 bnxt_vf_req_snif[] = { 262 HWRM_FUNC_CFG, 263 HWRM_FUNC_VF_CFG, 264 HWRM_PORT_PHY_QCFG, 265 HWRM_CFA_L2_FILTER_ALLOC, 266 }; 267 268 static const u16 bnxt_async_events_arr[] = { 269 ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE, 270 ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE, 271 ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD, 272 ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED, 273 ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE, 274 ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE, 275 ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE, 276 ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY, 277 ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY, 278 ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION, 279 ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG, 280 ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST, 281 ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP, 282 ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT, 283 }; 284 285 static struct workqueue_struct *bnxt_pf_wq; 286 287 static bool bnxt_vf_pciid(enum board_idx idx) 288 { 289 return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF || 290 idx == NETXTREME_S_VF || idx == NETXTREME_C_VF_HV || 291 idx == NETXTREME_E_VF_HV || idx == NETXTREME_E_P5_VF || 292 idx == NETXTREME_E_P5_VF_HV); 293 } 294 295 #define DB_CP_REARM_FLAGS (DB_KEY_CP | DB_IDX_VALID) 296 #define DB_CP_FLAGS (DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS) 297 #define DB_CP_IRQ_DIS_FLAGS (DB_KEY_CP | DB_IRQ_DIS) 298 299 #define BNXT_CP_DB_IRQ_DIS(db) \ 300 writel(DB_CP_IRQ_DIS_FLAGS, db) 301 302 #define BNXT_DB_CQ(db, idx) \ 303 writel(DB_CP_FLAGS | RING_CMP(idx), (db)->doorbell) 304 305 #define BNXT_DB_NQ_P5(db, idx) \ 306 writeq((db)->db_key64 | DBR_TYPE_NQ | RING_CMP(idx), (db)->doorbell) 307 308 #define BNXT_DB_CQ_ARM(db, idx) \ 309 writel(DB_CP_REARM_FLAGS | RING_CMP(idx), (db)->doorbell) 310 311 #define BNXT_DB_NQ_ARM_P5(db, idx) \ 312 writeq((db)->db_key64 | DBR_TYPE_NQ_ARM | RING_CMP(idx), (db)->doorbell) 313 314 static void bnxt_db_nq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 315 { 316 if (bp->flags & BNXT_FLAG_CHIP_P5) 317 BNXT_DB_NQ_P5(db, idx); 318 else 319 BNXT_DB_CQ(db, idx); 320 } 321 322 static void bnxt_db_nq_arm(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 323 { 324 if (bp->flags & BNXT_FLAG_CHIP_P5) 325 BNXT_DB_NQ_ARM_P5(db, idx); 326 else 327 BNXT_DB_CQ_ARM(db, idx); 328 } 329 330 static void bnxt_db_cq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 331 { 332 if (bp->flags & BNXT_FLAG_CHIP_P5) 333 writeq(db->db_key64 | DBR_TYPE_CQ_ARMALL | RING_CMP(idx), 334 db->doorbell); 335 else 336 BNXT_DB_CQ(db, idx); 337 } 338 339 const u16 bnxt_lhint_arr[] = { 340 TX_BD_FLAGS_LHINT_512_AND_SMALLER, 341 TX_BD_FLAGS_LHINT_512_TO_1023, 342 TX_BD_FLAGS_LHINT_1024_TO_2047, 343 TX_BD_FLAGS_LHINT_1024_TO_2047, 344 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 345 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 346 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 347 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 348 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 349 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 350 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 351 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 352 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 353 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 354 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 355 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 356 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 357 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 358 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 359 }; 360 361 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb) 362 { 363 struct metadata_dst *md_dst = skb_metadata_dst(skb); 364 365 if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX) 366 return 0; 367 368 return md_dst->u.port_info.port_id; 369 } 370 371 static void bnxt_txr_db_kick(struct bnxt *bp, struct bnxt_tx_ring_info *txr, 372 u16 prod) 373 { 374 bnxt_db_write(bp, &txr->tx_db, prod); 375 txr->kick_pending = 0; 376 } 377 378 static bool bnxt_txr_netif_try_stop_queue(struct bnxt *bp, 379 struct bnxt_tx_ring_info *txr, 380 struct netdev_queue *txq) 381 { 382 netif_tx_stop_queue(txq); 383 384 /* netif_tx_stop_queue() must be done before checking 385 * tx index in bnxt_tx_avail() below, because in 386 * bnxt_tx_int(), we update tx index before checking for 387 * netif_tx_queue_stopped(). 388 */ 389 smp_mb(); 390 if (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh) { 391 netif_tx_wake_queue(txq); 392 return false; 393 } 394 395 return true; 396 } 397 398 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev) 399 { 400 struct bnxt *bp = netdev_priv(dev); 401 struct tx_bd *txbd; 402 struct tx_bd_ext *txbd1; 403 struct netdev_queue *txq; 404 int i; 405 dma_addr_t mapping; 406 unsigned int length, pad = 0; 407 u32 len, free_size, vlan_tag_flags, cfa_action, flags; 408 u16 prod, last_frag; 409 struct pci_dev *pdev = bp->pdev; 410 struct bnxt_tx_ring_info *txr; 411 struct bnxt_sw_tx_bd *tx_buf; 412 __le32 lflags = 0; 413 414 i = skb_get_queue_mapping(skb); 415 if (unlikely(i >= bp->tx_nr_rings)) { 416 dev_kfree_skb_any(skb); 417 atomic_long_inc(&dev->tx_dropped); 418 return NETDEV_TX_OK; 419 } 420 421 txq = netdev_get_tx_queue(dev, i); 422 txr = &bp->tx_ring[bp->tx_ring_map[i]]; 423 prod = txr->tx_prod; 424 425 free_size = bnxt_tx_avail(bp, txr); 426 if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) { 427 /* We must have raced with NAPI cleanup */ 428 if (net_ratelimit() && txr->kick_pending) 429 netif_warn(bp, tx_err, dev, 430 "bnxt: ring busy w/ flush pending!\n"); 431 if (bnxt_txr_netif_try_stop_queue(bp, txr, txq)) 432 return NETDEV_TX_BUSY; 433 } 434 435 length = skb->len; 436 len = skb_headlen(skb); 437 last_frag = skb_shinfo(skb)->nr_frags; 438 439 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; 440 441 txbd->tx_bd_opaque = prod; 442 443 tx_buf = &txr->tx_buf_ring[prod]; 444 tx_buf->skb = skb; 445 tx_buf->nr_frags = last_frag; 446 447 vlan_tag_flags = 0; 448 cfa_action = bnxt_xmit_get_cfa_action(skb); 449 if (skb_vlan_tag_present(skb)) { 450 vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN | 451 skb_vlan_tag_get(skb); 452 /* Currently supports 8021Q, 8021AD vlan offloads 453 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated 454 */ 455 if (skb->vlan_proto == htons(ETH_P_8021Q)) 456 vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT; 457 } 458 459 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) { 460 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 461 462 if (ptp && ptp->tx_tstamp_en && !skb_is_gso(skb) && 463 atomic_dec_if_positive(&ptp->tx_avail) >= 0) { 464 if (!bnxt_ptp_parse(skb, &ptp->tx_seqid, 465 &ptp->tx_hdr_off)) { 466 if (vlan_tag_flags) 467 ptp->tx_hdr_off += VLAN_HLEN; 468 lflags |= cpu_to_le32(TX_BD_FLAGS_STAMP); 469 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 470 } else { 471 atomic_inc(&bp->ptp_cfg->tx_avail); 472 } 473 } 474 } 475 476 if (unlikely(skb->no_fcs)) 477 lflags |= cpu_to_le32(TX_BD_FLAGS_NO_CRC); 478 479 if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh && 480 !lflags) { 481 struct tx_push_buffer *tx_push_buf = txr->tx_push; 482 struct tx_push_bd *tx_push = &tx_push_buf->push_bd; 483 struct tx_bd_ext *tx_push1 = &tx_push->txbd2; 484 void __iomem *db = txr->tx_db.doorbell; 485 void *pdata = tx_push_buf->data; 486 u64 *end; 487 int j, push_len; 488 489 /* Set COAL_NOW to be ready quickly for the next push */ 490 tx_push->tx_bd_len_flags_type = 491 cpu_to_le32((length << TX_BD_LEN_SHIFT) | 492 TX_BD_TYPE_LONG_TX_BD | 493 TX_BD_FLAGS_LHINT_512_AND_SMALLER | 494 TX_BD_FLAGS_COAL_NOW | 495 TX_BD_FLAGS_PACKET_END | 496 (2 << TX_BD_FLAGS_BD_CNT_SHIFT)); 497 498 if (skb->ip_summed == CHECKSUM_PARTIAL) 499 tx_push1->tx_bd_hsize_lflags = 500 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM); 501 else 502 tx_push1->tx_bd_hsize_lflags = 0; 503 504 tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags); 505 tx_push1->tx_bd_cfa_action = 506 cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT); 507 508 end = pdata + length; 509 end = PTR_ALIGN(end, 8) - 1; 510 *end = 0; 511 512 skb_copy_from_linear_data(skb, pdata, len); 513 pdata += len; 514 for (j = 0; j < last_frag; j++) { 515 skb_frag_t *frag = &skb_shinfo(skb)->frags[j]; 516 void *fptr; 517 518 fptr = skb_frag_address_safe(frag); 519 if (!fptr) 520 goto normal_tx; 521 522 memcpy(pdata, fptr, skb_frag_size(frag)); 523 pdata += skb_frag_size(frag); 524 } 525 526 txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type; 527 txbd->tx_bd_haddr = txr->data_mapping; 528 prod = NEXT_TX(prod); 529 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; 530 memcpy(txbd, tx_push1, sizeof(*txbd)); 531 prod = NEXT_TX(prod); 532 tx_push->doorbell = 533 cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod); 534 txr->tx_prod = prod; 535 536 tx_buf->is_push = 1; 537 netdev_tx_sent_queue(txq, skb->len); 538 wmb(); /* Sync is_push and byte queue before pushing data */ 539 540 push_len = (length + sizeof(*tx_push) + 7) / 8; 541 if (push_len > 16) { 542 __iowrite64_copy(db, tx_push_buf, 16); 543 __iowrite32_copy(db + 4, tx_push_buf + 1, 544 (push_len - 16) << 1); 545 } else { 546 __iowrite64_copy(db, tx_push_buf, push_len); 547 } 548 549 goto tx_done; 550 } 551 552 normal_tx: 553 if (length < BNXT_MIN_PKT_SIZE) { 554 pad = BNXT_MIN_PKT_SIZE - length; 555 if (skb_pad(skb, pad)) 556 /* SKB already freed. */ 557 goto tx_kick_pending; 558 length = BNXT_MIN_PKT_SIZE; 559 } 560 561 mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE); 562 563 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) 564 goto tx_free; 565 566 dma_unmap_addr_set(tx_buf, mapping, mapping); 567 flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD | 568 ((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT); 569 570 txbd->tx_bd_haddr = cpu_to_le64(mapping); 571 572 prod = NEXT_TX(prod); 573 txbd1 = (struct tx_bd_ext *) 574 &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; 575 576 txbd1->tx_bd_hsize_lflags = lflags; 577 if (skb_is_gso(skb)) { 578 u32 hdr_len; 579 580 if (skb->encapsulation) 581 hdr_len = skb_inner_network_offset(skb) + 582 skb_inner_network_header_len(skb) + 583 inner_tcp_hdrlen(skb); 584 else 585 hdr_len = skb_transport_offset(skb) + 586 tcp_hdrlen(skb); 587 588 txbd1->tx_bd_hsize_lflags |= cpu_to_le32(TX_BD_FLAGS_LSO | 589 TX_BD_FLAGS_T_IPID | 590 (hdr_len << (TX_BD_HSIZE_SHIFT - 1))); 591 length = skb_shinfo(skb)->gso_size; 592 txbd1->tx_bd_mss = cpu_to_le32(length); 593 length += hdr_len; 594 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 595 txbd1->tx_bd_hsize_lflags |= 596 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM); 597 txbd1->tx_bd_mss = 0; 598 } 599 600 length >>= 9; 601 if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) { 602 dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n", 603 skb->len); 604 i = 0; 605 goto tx_dma_error; 606 } 607 flags |= bnxt_lhint_arr[length]; 608 txbd->tx_bd_len_flags_type = cpu_to_le32(flags); 609 610 txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags); 611 txbd1->tx_bd_cfa_action = 612 cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT); 613 for (i = 0; i < last_frag; i++) { 614 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 615 616 prod = NEXT_TX(prod); 617 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; 618 619 len = skb_frag_size(frag); 620 mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len, 621 DMA_TO_DEVICE); 622 623 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) 624 goto tx_dma_error; 625 626 tx_buf = &txr->tx_buf_ring[prod]; 627 dma_unmap_addr_set(tx_buf, mapping, mapping); 628 629 txbd->tx_bd_haddr = cpu_to_le64(mapping); 630 631 flags = len << TX_BD_LEN_SHIFT; 632 txbd->tx_bd_len_flags_type = cpu_to_le32(flags); 633 } 634 635 flags &= ~TX_BD_LEN; 636 txbd->tx_bd_len_flags_type = 637 cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags | 638 TX_BD_FLAGS_PACKET_END); 639 640 netdev_tx_sent_queue(txq, skb->len); 641 642 skb_tx_timestamp(skb); 643 644 /* Sync BD data before updating doorbell */ 645 wmb(); 646 647 prod = NEXT_TX(prod); 648 txr->tx_prod = prod; 649 650 if (!netdev_xmit_more() || netif_xmit_stopped(txq)) 651 bnxt_txr_db_kick(bp, txr, prod); 652 else 653 txr->kick_pending = 1; 654 655 tx_done: 656 657 if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) { 658 if (netdev_xmit_more() && !tx_buf->is_push) 659 bnxt_txr_db_kick(bp, txr, prod); 660 661 bnxt_txr_netif_try_stop_queue(bp, txr, txq); 662 } 663 return NETDEV_TX_OK; 664 665 tx_dma_error: 666 if (BNXT_TX_PTP_IS_SET(lflags)) 667 atomic_inc(&bp->ptp_cfg->tx_avail); 668 669 last_frag = i; 670 671 /* start back at beginning and unmap skb */ 672 prod = txr->tx_prod; 673 tx_buf = &txr->tx_buf_ring[prod]; 674 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 675 skb_headlen(skb), DMA_TO_DEVICE); 676 prod = NEXT_TX(prod); 677 678 /* unmap remaining mapped pages */ 679 for (i = 0; i < last_frag; i++) { 680 prod = NEXT_TX(prod); 681 tx_buf = &txr->tx_buf_ring[prod]; 682 dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 683 skb_frag_size(&skb_shinfo(skb)->frags[i]), 684 DMA_TO_DEVICE); 685 } 686 687 tx_free: 688 dev_kfree_skb_any(skb); 689 tx_kick_pending: 690 if (txr->kick_pending) 691 bnxt_txr_db_kick(bp, txr, txr->tx_prod); 692 txr->tx_buf_ring[txr->tx_prod].skb = NULL; 693 atomic_long_inc(&dev->tx_dropped); 694 return NETDEV_TX_OK; 695 } 696 697 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts) 698 { 699 struct bnxt_tx_ring_info *txr = bnapi->tx_ring; 700 struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index); 701 u16 cons = txr->tx_cons; 702 struct pci_dev *pdev = bp->pdev; 703 int i; 704 unsigned int tx_bytes = 0; 705 706 for (i = 0; i < nr_pkts; i++) { 707 struct bnxt_sw_tx_bd *tx_buf; 708 bool compl_deferred = false; 709 struct sk_buff *skb; 710 int j, last; 711 712 tx_buf = &txr->tx_buf_ring[cons]; 713 cons = NEXT_TX(cons); 714 skb = tx_buf->skb; 715 tx_buf->skb = NULL; 716 717 if (tx_buf->is_push) { 718 tx_buf->is_push = 0; 719 goto next_tx_int; 720 } 721 722 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 723 skb_headlen(skb), DMA_TO_DEVICE); 724 last = tx_buf->nr_frags; 725 726 for (j = 0; j < last; j++) { 727 cons = NEXT_TX(cons); 728 tx_buf = &txr->tx_buf_ring[cons]; 729 dma_unmap_page( 730 &pdev->dev, 731 dma_unmap_addr(tx_buf, mapping), 732 skb_frag_size(&skb_shinfo(skb)->frags[j]), 733 DMA_TO_DEVICE); 734 } 735 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) { 736 if (bp->flags & BNXT_FLAG_CHIP_P5) { 737 if (!bnxt_get_tx_ts_p5(bp, skb)) 738 compl_deferred = true; 739 else 740 atomic_inc(&bp->ptp_cfg->tx_avail); 741 } 742 } 743 744 next_tx_int: 745 cons = NEXT_TX(cons); 746 747 tx_bytes += skb->len; 748 if (!compl_deferred) 749 dev_kfree_skb_any(skb); 750 } 751 752 netdev_tx_completed_queue(txq, nr_pkts, tx_bytes); 753 txr->tx_cons = cons; 754 755 /* Need to make the tx_cons update visible to bnxt_start_xmit() 756 * before checking for netif_tx_queue_stopped(). Without the 757 * memory barrier, there is a small possibility that bnxt_start_xmit() 758 * will miss it and cause the queue to be stopped forever. 759 */ 760 smp_mb(); 761 762 if (unlikely(netif_tx_queue_stopped(txq)) && 763 bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh && 764 READ_ONCE(txr->dev_state) != BNXT_DEV_STATE_CLOSING) 765 netif_tx_wake_queue(txq); 766 } 767 768 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping, 769 struct bnxt_rx_ring_info *rxr, 770 gfp_t gfp) 771 { 772 struct device *dev = &bp->pdev->dev; 773 struct page *page; 774 775 page = page_pool_dev_alloc_pages(rxr->page_pool); 776 if (!page) 777 return NULL; 778 779 *mapping = dma_map_page_attrs(dev, page, 0, PAGE_SIZE, bp->rx_dir, 780 DMA_ATTR_WEAK_ORDERING); 781 if (dma_mapping_error(dev, *mapping)) { 782 page_pool_recycle_direct(rxr->page_pool, page); 783 return NULL; 784 } 785 *mapping += bp->rx_dma_offset; 786 return page; 787 } 788 789 static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping, 790 gfp_t gfp) 791 { 792 u8 *data; 793 struct pci_dev *pdev = bp->pdev; 794 795 data = kmalloc(bp->rx_buf_size, gfp); 796 if (!data) 797 return NULL; 798 799 *mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset, 800 bp->rx_buf_use_size, bp->rx_dir, 801 DMA_ATTR_WEAK_ORDERING); 802 803 if (dma_mapping_error(&pdev->dev, *mapping)) { 804 kfree(data); 805 data = NULL; 806 } 807 return data; 808 } 809 810 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 811 u16 prod, gfp_t gfp) 812 { 813 struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 814 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod]; 815 dma_addr_t mapping; 816 817 if (BNXT_RX_PAGE_MODE(bp)) { 818 struct page *page = 819 __bnxt_alloc_rx_page(bp, &mapping, rxr, gfp); 820 821 if (!page) 822 return -ENOMEM; 823 824 rx_buf->data = page; 825 rx_buf->data_ptr = page_address(page) + bp->rx_offset; 826 } else { 827 u8 *data = __bnxt_alloc_rx_data(bp, &mapping, gfp); 828 829 if (!data) 830 return -ENOMEM; 831 832 rx_buf->data = data; 833 rx_buf->data_ptr = data + bp->rx_offset; 834 } 835 rx_buf->mapping = mapping; 836 837 rxbd->rx_bd_haddr = cpu_to_le64(mapping); 838 return 0; 839 } 840 841 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data) 842 { 843 u16 prod = rxr->rx_prod; 844 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf; 845 struct rx_bd *cons_bd, *prod_bd; 846 847 prod_rx_buf = &rxr->rx_buf_ring[prod]; 848 cons_rx_buf = &rxr->rx_buf_ring[cons]; 849 850 prod_rx_buf->data = data; 851 prod_rx_buf->data_ptr = cons_rx_buf->data_ptr; 852 853 prod_rx_buf->mapping = cons_rx_buf->mapping; 854 855 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 856 cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)]; 857 858 prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr; 859 } 860 861 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx) 862 { 863 u16 next, max = rxr->rx_agg_bmap_size; 864 865 next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx); 866 if (next >= max) 867 next = find_first_zero_bit(rxr->rx_agg_bmap, max); 868 return next; 869 } 870 871 static inline int bnxt_alloc_rx_page(struct bnxt *bp, 872 struct bnxt_rx_ring_info *rxr, 873 u16 prod, gfp_t gfp) 874 { 875 struct rx_bd *rxbd = 876 &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 877 struct bnxt_sw_rx_agg_bd *rx_agg_buf; 878 struct pci_dev *pdev = bp->pdev; 879 struct page *page; 880 dma_addr_t mapping; 881 u16 sw_prod = rxr->rx_sw_agg_prod; 882 unsigned int offset = 0; 883 884 if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) { 885 page = rxr->rx_page; 886 if (!page) { 887 page = alloc_page(gfp); 888 if (!page) 889 return -ENOMEM; 890 rxr->rx_page = page; 891 rxr->rx_page_offset = 0; 892 } 893 offset = rxr->rx_page_offset; 894 rxr->rx_page_offset += BNXT_RX_PAGE_SIZE; 895 if (rxr->rx_page_offset == PAGE_SIZE) 896 rxr->rx_page = NULL; 897 else 898 get_page(page); 899 } else { 900 page = alloc_page(gfp); 901 if (!page) 902 return -ENOMEM; 903 } 904 905 mapping = dma_map_page_attrs(&pdev->dev, page, offset, 906 BNXT_RX_PAGE_SIZE, DMA_FROM_DEVICE, 907 DMA_ATTR_WEAK_ORDERING); 908 if (dma_mapping_error(&pdev->dev, mapping)) { 909 __free_page(page); 910 return -EIO; 911 } 912 913 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap))) 914 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod); 915 916 __set_bit(sw_prod, rxr->rx_agg_bmap); 917 rx_agg_buf = &rxr->rx_agg_ring[sw_prod]; 918 rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod); 919 920 rx_agg_buf->page = page; 921 rx_agg_buf->offset = offset; 922 rx_agg_buf->mapping = mapping; 923 rxbd->rx_bd_haddr = cpu_to_le64(mapping); 924 rxbd->rx_bd_opaque = sw_prod; 925 return 0; 926 } 927 928 static struct rx_agg_cmp *bnxt_get_agg(struct bnxt *bp, 929 struct bnxt_cp_ring_info *cpr, 930 u16 cp_cons, u16 curr) 931 { 932 struct rx_agg_cmp *agg; 933 934 cp_cons = RING_CMP(ADV_RAW_CMP(cp_cons, curr)); 935 agg = (struct rx_agg_cmp *) 936 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 937 return agg; 938 } 939 940 static struct rx_agg_cmp *bnxt_get_tpa_agg_p5(struct bnxt *bp, 941 struct bnxt_rx_ring_info *rxr, 942 u16 agg_id, u16 curr) 943 { 944 struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[agg_id]; 945 946 return &tpa_info->agg_arr[curr]; 947 } 948 949 static void bnxt_reuse_rx_agg_bufs(struct bnxt_cp_ring_info *cpr, u16 idx, 950 u16 start, u32 agg_bufs, bool tpa) 951 { 952 struct bnxt_napi *bnapi = cpr->bnapi; 953 struct bnxt *bp = bnapi->bp; 954 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 955 u16 prod = rxr->rx_agg_prod; 956 u16 sw_prod = rxr->rx_sw_agg_prod; 957 bool p5_tpa = false; 958 u32 i; 959 960 if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa) 961 p5_tpa = true; 962 963 for (i = 0; i < agg_bufs; i++) { 964 u16 cons; 965 struct rx_agg_cmp *agg; 966 struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf; 967 struct rx_bd *prod_bd; 968 struct page *page; 969 970 if (p5_tpa) 971 agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, start + i); 972 else 973 agg = bnxt_get_agg(bp, cpr, idx, start + i); 974 cons = agg->rx_agg_cmp_opaque; 975 __clear_bit(cons, rxr->rx_agg_bmap); 976 977 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap))) 978 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod); 979 980 __set_bit(sw_prod, rxr->rx_agg_bmap); 981 prod_rx_buf = &rxr->rx_agg_ring[sw_prod]; 982 cons_rx_buf = &rxr->rx_agg_ring[cons]; 983 984 /* It is possible for sw_prod to be equal to cons, so 985 * set cons_rx_buf->page to NULL first. 986 */ 987 page = cons_rx_buf->page; 988 cons_rx_buf->page = NULL; 989 prod_rx_buf->page = page; 990 prod_rx_buf->offset = cons_rx_buf->offset; 991 992 prod_rx_buf->mapping = cons_rx_buf->mapping; 993 994 prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 995 996 prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping); 997 prod_bd->rx_bd_opaque = sw_prod; 998 999 prod = NEXT_RX_AGG(prod); 1000 sw_prod = NEXT_RX_AGG(sw_prod); 1001 } 1002 rxr->rx_agg_prod = prod; 1003 rxr->rx_sw_agg_prod = sw_prod; 1004 } 1005 1006 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp, 1007 struct bnxt_rx_ring_info *rxr, 1008 u16 cons, void *data, u8 *data_ptr, 1009 dma_addr_t dma_addr, 1010 unsigned int offset_and_len) 1011 { 1012 unsigned int payload = offset_and_len >> 16; 1013 unsigned int len = offset_and_len & 0xffff; 1014 skb_frag_t *frag; 1015 struct page *page = data; 1016 u16 prod = rxr->rx_prod; 1017 struct sk_buff *skb; 1018 int off, err; 1019 1020 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 1021 if (unlikely(err)) { 1022 bnxt_reuse_rx_data(rxr, cons, data); 1023 return NULL; 1024 } 1025 dma_addr -= bp->rx_dma_offset; 1026 dma_unmap_page_attrs(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir, 1027 DMA_ATTR_WEAK_ORDERING); 1028 page_pool_release_page(rxr->page_pool, page); 1029 1030 if (unlikely(!payload)) 1031 payload = eth_get_headlen(bp->dev, data_ptr, len); 1032 1033 skb = napi_alloc_skb(&rxr->bnapi->napi, payload); 1034 if (!skb) { 1035 __free_page(page); 1036 return NULL; 1037 } 1038 1039 off = (void *)data_ptr - page_address(page); 1040 skb_add_rx_frag(skb, 0, page, off, len, PAGE_SIZE); 1041 memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN, 1042 payload + NET_IP_ALIGN); 1043 1044 frag = &skb_shinfo(skb)->frags[0]; 1045 skb_frag_size_sub(frag, payload); 1046 skb_frag_off_add(frag, payload); 1047 skb->data_len -= payload; 1048 skb->tail += payload; 1049 1050 return skb; 1051 } 1052 1053 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp, 1054 struct bnxt_rx_ring_info *rxr, u16 cons, 1055 void *data, u8 *data_ptr, 1056 dma_addr_t dma_addr, 1057 unsigned int offset_and_len) 1058 { 1059 u16 prod = rxr->rx_prod; 1060 struct sk_buff *skb; 1061 int err; 1062 1063 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 1064 if (unlikely(err)) { 1065 bnxt_reuse_rx_data(rxr, cons, data); 1066 return NULL; 1067 } 1068 1069 skb = build_skb(data, 0); 1070 dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size, 1071 bp->rx_dir, DMA_ATTR_WEAK_ORDERING); 1072 if (!skb) { 1073 kfree(data); 1074 return NULL; 1075 } 1076 1077 skb_reserve(skb, bp->rx_offset); 1078 skb_put(skb, offset_and_len & 0xffff); 1079 return skb; 1080 } 1081 1082 static struct sk_buff *bnxt_rx_pages(struct bnxt *bp, 1083 struct bnxt_cp_ring_info *cpr, 1084 struct sk_buff *skb, u16 idx, 1085 u32 agg_bufs, bool tpa) 1086 { 1087 struct bnxt_napi *bnapi = cpr->bnapi; 1088 struct pci_dev *pdev = bp->pdev; 1089 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1090 u16 prod = rxr->rx_agg_prod; 1091 bool p5_tpa = false; 1092 u32 i; 1093 1094 if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa) 1095 p5_tpa = true; 1096 1097 for (i = 0; i < agg_bufs; i++) { 1098 u16 cons, frag_len; 1099 struct rx_agg_cmp *agg; 1100 struct bnxt_sw_rx_agg_bd *cons_rx_buf; 1101 struct page *page; 1102 dma_addr_t mapping; 1103 1104 if (p5_tpa) 1105 agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, i); 1106 else 1107 agg = bnxt_get_agg(bp, cpr, idx, i); 1108 cons = agg->rx_agg_cmp_opaque; 1109 frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) & 1110 RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT; 1111 1112 cons_rx_buf = &rxr->rx_agg_ring[cons]; 1113 skb_fill_page_desc(skb, i, cons_rx_buf->page, 1114 cons_rx_buf->offset, frag_len); 1115 __clear_bit(cons, rxr->rx_agg_bmap); 1116 1117 /* It is possible for bnxt_alloc_rx_page() to allocate 1118 * a sw_prod index that equals the cons index, so we 1119 * need to clear the cons entry now. 1120 */ 1121 mapping = cons_rx_buf->mapping; 1122 page = cons_rx_buf->page; 1123 cons_rx_buf->page = NULL; 1124 1125 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) { 1126 struct skb_shared_info *shinfo; 1127 unsigned int nr_frags; 1128 1129 shinfo = skb_shinfo(skb); 1130 nr_frags = --shinfo->nr_frags; 1131 __skb_frag_set_page(&shinfo->frags[nr_frags], NULL); 1132 1133 dev_kfree_skb(skb); 1134 1135 cons_rx_buf->page = page; 1136 1137 /* Update prod since possibly some pages have been 1138 * allocated already. 1139 */ 1140 rxr->rx_agg_prod = prod; 1141 bnxt_reuse_rx_agg_bufs(cpr, idx, i, agg_bufs - i, tpa); 1142 return NULL; 1143 } 1144 1145 dma_unmap_page_attrs(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE, 1146 DMA_FROM_DEVICE, 1147 DMA_ATTR_WEAK_ORDERING); 1148 1149 skb->data_len += frag_len; 1150 skb->len += frag_len; 1151 skb->truesize += PAGE_SIZE; 1152 1153 prod = NEXT_RX_AGG(prod); 1154 } 1155 rxr->rx_agg_prod = prod; 1156 return skb; 1157 } 1158 1159 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1160 u8 agg_bufs, u32 *raw_cons) 1161 { 1162 u16 last; 1163 struct rx_agg_cmp *agg; 1164 1165 *raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs); 1166 last = RING_CMP(*raw_cons); 1167 agg = (struct rx_agg_cmp *) 1168 &cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)]; 1169 return RX_AGG_CMP_VALID(agg, *raw_cons); 1170 } 1171 1172 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data, 1173 unsigned int len, 1174 dma_addr_t mapping) 1175 { 1176 struct bnxt *bp = bnapi->bp; 1177 struct pci_dev *pdev = bp->pdev; 1178 struct sk_buff *skb; 1179 1180 skb = napi_alloc_skb(&bnapi->napi, len); 1181 if (!skb) 1182 return NULL; 1183 1184 dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh, 1185 bp->rx_dir); 1186 1187 memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN, 1188 len + NET_IP_ALIGN); 1189 1190 dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh, 1191 bp->rx_dir); 1192 1193 skb_put(skb, len); 1194 return skb; 1195 } 1196 1197 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1198 u32 *raw_cons, void *cmp) 1199 { 1200 struct rx_cmp *rxcmp = cmp; 1201 u32 tmp_raw_cons = *raw_cons; 1202 u8 cmp_type, agg_bufs = 0; 1203 1204 cmp_type = RX_CMP_TYPE(rxcmp); 1205 1206 if (cmp_type == CMP_TYPE_RX_L2_CMP) { 1207 agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) & 1208 RX_CMP_AGG_BUFS) >> 1209 RX_CMP_AGG_BUFS_SHIFT; 1210 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 1211 struct rx_tpa_end_cmp *tpa_end = cmp; 1212 1213 if (bp->flags & BNXT_FLAG_CHIP_P5) 1214 return 0; 1215 1216 agg_bufs = TPA_END_AGG_BUFS(tpa_end); 1217 } 1218 1219 if (agg_bufs) { 1220 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons)) 1221 return -EBUSY; 1222 } 1223 *raw_cons = tmp_raw_cons; 1224 return 0; 1225 } 1226 1227 static void bnxt_queue_fw_reset_work(struct bnxt *bp, unsigned long delay) 1228 { 1229 if (!(test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))) 1230 return; 1231 1232 if (BNXT_PF(bp)) 1233 queue_delayed_work(bnxt_pf_wq, &bp->fw_reset_task, delay); 1234 else 1235 schedule_delayed_work(&bp->fw_reset_task, delay); 1236 } 1237 1238 static void bnxt_queue_sp_work(struct bnxt *bp) 1239 { 1240 if (BNXT_PF(bp)) 1241 queue_work(bnxt_pf_wq, &bp->sp_task); 1242 else 1243 schedule_work(&bp->sp_task); 1244 } 1245 1246 static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 1247 { 1248 if (!rxr->bnapi->in_reset) { 1249 rxr->bnapi->in_reset = true; 1250 if (bp->flags & BNXT_FLAG_CHIP_P5) 1251 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event); 1252 else 1253 set_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event); 1254 bnxt_queue_sp_work(bp); 1255 } 1256 rxr->rx_next_cons = 0xffff; 1257 } 1258 1259 static u16 bnxt_alloc_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id) 1260 { 1261 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1262 u16 idx = agg_id & MAX_TPA_P5_MASK; 1263 1264 if (test_bit(idx, map->agg_idx_bmap)) 1265 idx = find_first_zero_bit(map->agg_idx_bmap, 1266 BNXT_AGG_IDX_BMAP_SIZE); 1267 __set_bit(idx, map->agg_idx_bmap); 1268 map->agg_id_tbl[agg_id] = idx; 1269 return idx; 1270 } 1271 1272 static void bnxt_free_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx) 1273 { 1274 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1275 1276 __clear_bit(idx, map->agg_idx_bmap); 1277 } 1278 1279 static u16 bnxt_lookup_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id) 1280 { 1281 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1282 1283 return map->agg_id_tbl[agg_id]; 1284 } 1285 1286 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 1287 struct rx_tpa_start_cmp *tpa_start, 1288 struct rx_tpa_start_cmp_ext *tpa_start1) 1289 { 1290 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf; 1291 struct bnxt_tpa_info *tpa_info; 1292 u16 cons, prod, agg_id; 1293 struct rx_bd *prod_bd; 1294 dma_addr_t mapping; 1295 1296 if (bp->flags & BNXT_FLAG_CHIP_P5) { 1297 agg_id = TPA_START_AGG_ID_P5(tpa_start); 1298 agg_id = bnxt_alloc_agg_idx(rxr, agg_id); 1299 } else { 1300 agg_id = TPA_START_AGG_ID(tpa_start); 1301 } 1302 cons = tpa_start->rx_tpa_start_cmp_opaque; 1303 prod = rxr->rx_prod; 1304 cons_rx_buf = &rxr->rx_buf_ring[cons]; 1305 prod_rx_buf = &rxr->rx_buf_ring[prod]; 1306 tpa_info = &rxr->rx_tpa[agg_id]; 1307 1308 if (unlikely(cons != rxr->rx_next_cons || 1309 TPA_START_ERROR(tpa_start))) { 1310 netdev_warn(bp->dev, "TPA cons %x, expected cons %x, error code %x\n", 1311 cons, rxr->rx_next_cons, 1312 TPA_START_ERROR_CODE(tpa_start1)); 1313 bnxt_sched_reset(bp, rxr); 1314 return; 1315 } 1316 /* Store cfa_code in tpa_info to use in tpa_end 1317 * completion processing. 1318 */ 1319 tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1); 1320 prod_rx_buf->data = tpa_info->data; 1321 prod_rx_buf->data_ptr = tpa_info->data_ptr; 1322 1323 mapping = tpa_info->mapping; 1324 prod_rx_buf->mapping = mapping; 1325 1326 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 1327 1328 prod_bd->rx_bd_haddr = cpu_to_le64(mapping); 1329 1330 tpa_info->data = cons_rx_buf->data; 1331 tpa_info->data_ptr = cons_rx_buf->data_ptr; 1332 cons_rx_buf->data = NULL; 1333 tpa_info->mapping = cons_rx_buf->mapping; 1334 1335 tpa_info->len = 1336 le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >> 1337 RX_TPA_START_CMP_LEN_SHIFT; 1338 if (likely(TPA_START_HASH_VALID(tpa_start))) { 1339 u32 hash_type = TPA_START_HASH_TYPE(tpa_start); 1340 1341 tpa_info->hash_type = PKT_HASH_TYPE_L4; 1342 tpa_info->gso_type = SKB_GSO_TCPV4; 1343 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */ 1344 if (hash_type == 3 || TPA_START_IS_IPV6(tpa_start1)) 1345 tpa_info->gso_type = SKB_GSO_TCPV6; 1346 tpa_info->rss_hash = 1347 le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash); 1348 } else { 1349 tpa_info->hash_type = PKT_HASH_TYPE_NONE; 1350 tpa_info->gso_type = 0; 1351 netif_warn(bp, rx_err, bp->dev, "TPA packet without valid hash\n"); 1352 } 1353 tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2); 1354 tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata); 1355 tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info); 1356 tpa_info->agg_count = 0; 1357 1358 rxr->rx_prod = NEXT_RX(prod); 1359 cons = NEXT_RX(cons); 1360 rxr->rx_next_cons = NEXT_RX(cons); 1361 cons_rx_buf = &rxr->rx_buf_ring[cons]; 1362 1363 bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data); 1364 rxr->rx_prod = NEXT_RX(rxr->rx_prod); 1365 cons_rx_buf->data = NULL; 1366 } 1367 1368 static void bnxt_abort_tpa(struct bnxt_cp_ring_info *cpr, u16 idx, u32 agg_bufs) 1369 { 1370 if (agg_bufs) 1371 bnxt_reuse_rx_agg_bufs(cpr, idx, 0, agg_bufs, true); 1372 } 1373 1374 #ifdef CONFIG_INET 1375 static void bnxt_gro_tunnel(struct sk_buff *skb, __be16 ip_proto) 1376 { 1377 struct udphdr *uh = NULL; 1378 1379 if (ip_proto == htons(ETH_P_IP)) { 1380 struct iphdr *iph = (struct iphdr *)skb->data; 1381 1382 if (iph->protocol == IPPROTO_UDP) 1383 uh = (struct udphdr *)(iph + 1); 1384 } else { 1385 struct ipv6hdr *iph = (struct ipv6hdr *)skb->data; 1386 1387 if (iph->nexthdr == IPPROTO_UDP) 1388 uh = (struct udphdr *)(iph + 1); 1389 } 1390 if (uh) { 1391 if (uh->check) 1392 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL_CSUM; 1393 else 1394 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL; 1395 } 1396 } 1397 #endif 1398 1399 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info, 1400 int payload_off, int tcp_ts, 1401 struct sk_buff *skb) 1402 { 1403 #ifdef CONFIG_INET 1404 struct tcphdr *th; 1405 int len, nw_off; 1406 u16 outer_ip_off, inner_ip_off, inner_mac_off; 1407 u32 hdr_info = tpa_info->hdr_info; 1408 bool loopback = false; 1409 1410 inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info); 1411 inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info); 1412 outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info); 1413 1414 /* If the packet is an internal loopback packet, the offsets will 1415 * have an extra 4 bytes. 1416 */ 1417 if (inner_mac_off == 4) { 1418 loopback = true; 1419 } else if (inner_mac_off > 4) { 1420 __be16 proto = *((__be16 *)(skb->data + inner_ip_off - 1421 ETH_HLEN - 2)); 1422 1423 /* We only support inner iPv4/ipv6. If we don't see the 1424 * correct protocol ID, it must be a loopback packet where 1425 * the offsets are off by 4. 1426 */ 1427 if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6)) 1428 loopback = true; 1429 } 1430 if (loopback) { 1431 /* internal loopback packet, subtract all offsets by 4 */ 1432 inner_ip_off -= 4; 1433 inner_mac_off -= 4; 1434 outer_ip_off -= 4; 1435 } 1436 1437 nw_off = inner_ip_off - ETH_HLEN; 1438 skb_set_network_header(skb, nw_off); 1439 if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) { 1440 struct ipv6hdr *iph = ipv6_hdr(skb); 1441 1442 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr)); 1443 len = skb->len - skb_transport_offset(skb); 1444 th = tcp_hdr(skb); 1445 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0); 1446 } else { 1447 struct iphdr *iph = ip_hdr(skb); 1448 1449 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr)); 1450 len = skb->len - skb_transport_offset(skb); 1451 th = tcp_hdr(skb); 1452 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0); 1453 } 1454 1455 if (inner_mac_off) { /* tunnel */ 1456 __be16 proto = *((__be16 *)(skb->data + outer_ip_off - 1457 ETH_HLEN - 2)); 1458 1459 bnxt_gro_tunnel(skb, proto); 1460 } 1461 #endif 1462 return skb; 1463 } 1464 1465 static struct sk_buff *bnxt_gro_func_5750x(struct bnxt_tpa_info *tpa_info, 1466 int payload_off, int tcp_ts, 1467 struct sk_buff *skb) 1468 { 1469 #ifdef CONFIG_INET 1470 u16 outer_ip_off, inner_ip_off, inner_mac_off; 1471 u32 hdr_info = tpa_info->hdr_info; 1472 int iphdr_len, nw_off; 1473 1474 inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info); 1475 inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info); 1476 outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info); 1477 1478 nw_off = inner_ip_off - ETH_HLEN; 1479 skb_set_network_header(skb, nw_off); 1480 iphdr_len = (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) ? 1481 sizeof(struct ipv6hdr) : sizeof(struct iphdr); 1482 skb_set_transport_header(skb, nw_off + iphdr_len); 1483 1484 if (inner_mac_off) { /* tunnel */ 1485 __be16 proto = *((__be16 *)(skb->data + outer_ip_off - 1486 ETH_HLEN - 2)); 1487 1488 bnxt_gro_tunnel(skb, proto); 1489 } 1490 #endif 1491 return skb; 1492 } 1493 1494 #define BNXT_IPV4_HDR_SIZE (sizeof(struct iphdr) + sizeof(struct tcphdr)) 1495 #define BNXT_IPV6_HDR_SIZE (sizeof(struct ipv6hdr) + sizeof(struct tcphdr)) 1496 1497 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info, 1498 int payload_off, int tcp_ts, 1499 struct sk_buff *skb) 1500 { 1501 #ifdef CONFIG_INET 1502 struct tcphdr *th; 1503 int len, nw_off, tcp_opt_len = 0; 1504 1505 if (tcp_ts) 1506 tcp_opt_len = 12; 1507 1508 if (tpa_info->gso_type == SKB_GSO_TCPV4) { 1509 struct iphdr *iph; 1510 1511 nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len - 1512 ETH_HLEN; 1513 skb_set_network_header(skb, nw_off); 1514 iph = ip_hdr(skb); 1515 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr)); 1516 len = skb->len - skb_transport_offset(skb); 1517 th = tcp_hdr(skb); 1518 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0); 1519 } else if (tpa_info->gso_type == SKB_GSO_TCPV6) { 1520 struct ipv6hdr *iph; 1521 1522 nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len - 1523 ETH_HLEN; 1524 skb_set_network_header(skb, nw_off); 1525 iph = ipv6_hdr(skb); 1526 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr)); 1527 len = skb->len - skb_transport_offset(skb); 1528 th = tcp_hdr(skb); 1529 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0); 1530 } else { 1531 dev_kfree_skb_any(skb); 1532 return NULL; 1533 } 1534 1535 if (nw_off) /* tunnel */ 1536 bnxt_gro_tunnel(skb, skb->protocol); 1537 #endif 1538 return skb; 1539 } 1540 1541 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp, 1542 struct bnxt_tpa_info *tpa_info, 1543 struct rx_tpa_end_cmp *tpa_end, 1544 struct rx_tpa_end_cmp_ext *tpa_end1, 1545 struct sk_buff *skb) 1546 { 1547 #ifdef CONFIG_INET 1548 int payload_off; 1549 u16 segs; 1550 1551 segs = TPA_END_TPA_SEGS(tpa_end); 1552 if (segs == 1) 1553 return skb; 1554 1555 NAPI_GRO_CB(skb)->count = segs; 1556 skb_shinfo(skb)->gso_size = 1557 le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len); 1558 skb_shinfo(skb)->gso_type = tpa_info->gso_type; 1559 if (bp->flags & BNXT_FLAG_CHIP_P5) 1560 payload_off = TPA_END_PAYLOAD_OFF_P5(tpa_end1); 1561 else 1562 payload_off = TPA_END_PAYLOAD_OFF(tpa_end); 1563 skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb); 1564 if (likely(skb)) 1565 tcp_gro_complete(skb); 1566 #endif 1567 return skb; 1568 } 1569 1570 /* Given the cfa_code of a received packet determine which 1571 * netdev (vf-rep or PF) the packet is destined to. 1572 */ 1573 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code) 1574 { 1575 struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code); 1576 1577 /* if vf-rep dev is NULL, the must belongs to the PF */ 1578 return dev ? dev : bp->dev; 1579 } 1580 1581 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp, 1582 struct bnxt_cp_ring_info *cpr, 1583 u32 *raw_cons, 1584 struct rx_tpa_end_cmp *tpa_end, 1585 struct rx_tpa_end_cmp_ext *tpa_end1, 1586 u8 *event) 1587 { 1588 struct bnxt_napi *bnapi = cpr->bnapi; 1589 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1590 u8 *data_ptr, agg_bufs; 1591 unsigned int len; 1592 struct bnxt_tpa_info *tpa_info; 1593 dma_addr_t mapping; 1594 struct sk_buff *skb; 1595 u16 idx = 0, agg_id; 1596 void *data; 1597 bool gro; 1598 1599 if (unlikely(bnapi->in_reset)) { 1600 int rc = bnxt_discard_rx(bp, cpr, raw_cons, tpa_end); 1601 1602 if (rc < 0) 1603 return ERR_PTR(-EBUSY); 1604 return NULL; 1605 } 1606 1607 if (bp->flags & BNXT_FLAG_CHIP_P5) { 1608 agg_id = TPA_END_AGG_ID_P5(tpa_end); 1609 agg_id = bnxt_lookup_agg_idx(rxr, agg_id); 1610 agg_bufs = TPA_END_AGG_BUFS_P5(tpa_end1); 1611 tpa_info = &rxr->rx_tpa[agg_id]; 1612 if (unlikely(agg_bufs != tpa_info->agg_count)) { 1613 netdev_warn(bp->dev, "TPA end agg_buf %d != expected agg_bufs %d\n", 1614 agg_bufs, tpa_info->agg_count); 1615 agg_bufs = tpa_info->agg_count; 1616 } 1617 tpa_info->agg_count = 0; 1618 *event |= BNXT_AGG_EVENT; 1619 bnxt_free_agg_idx(rxr, agg_id); 1620 idx = agg_id; 1621 gro = !!(bp->flags & BNXT_FLAG_GRO); 1622 } else { 1623 agg_id = TPA_END_AGG_ID(tpa_end); 1624 agg_bufs = TPA_END_AGG_BUFS(tpa_end); 1625 tpa_info = &rxr->rx_tpa[agg_id]; 1626 idx = RING_CMP(*raw_cons); 1627 if (agg_bufs) { 1628 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons)) 1629 return ERR_PTR(-EBUSY); 1630 1631 *event |= BNXT_AGG_EVENT; 1632 idx = NEXT_CMP(idx); 1633 } 1634 gro = !!TPA_END_GRO(tpa_end); 1635 } 1636 data = tpa_info->data; 1637 data_ptr = tpa_info->data_ptr; 1638 prefetch(data_ptr); 1639 len = tpa_info->len; 1640 mapping = tpa_info->mapping; 1641 1642 if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) { 1643 bnxt_abort_tpa(cpr, idx, agg_bufs); 1644 if (agg_bufs > MAX_SKB_FRAGS) 1645 netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n", 1646 agg_bufs, (int)MAX_SKB_FRAGS); 1647 return NULL; 1648 } 1649 1650 if (len <= bp->rx_copy_thresh) { 1651 skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping); 1652 if (!skb) { 1653 bnxt_abort_tpa(cpr, idx, agg_bufs); 1654 return NULL; 1655 } 1656 } else { 1657 u8 *new_data; 1658 dma_addr_t new_mapping; 1659 1660 new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC); 1661 if (!new_data) { 1662 bnxt_abort_tpa(cpr, idx, agg_bufs); 1663 return NULL; 1664 } 1665 1666 tpa_info->data = new_data; 1667 tpa_info->data_ptr = new_data + bp->rx_offset; 1668 tpa_info->mapping = new_mapping; 1669 1670 skb = build_skb(data, 0); 1671 dma_unmap_single_attrs(&bp->pdev->dev, mapping, 1672 bp->rx_buf_use_size, bp->rx_dir, 1673 DMA_ATTR_WEAK_ORDERING); 1674 1675 if (!skb) { 1676 kfree(data); 1677 bnxt_abort_tpa(cpr, idx, agg_bufs); 1678 return NULL; 1679 } 1680 skb_reserve(skb, bp->rx_offset); 1681 skb_put(skb, len); 1682 } 1683 1684 if (agg_bufs) { 1685 skb = bnxt_rx_pages(bp, cpr, skb, idx, agg_bufs, true); 1686 if (!skb) { 1687 /* Page reuse already handled by bnxt_rx_pages(). */ 1688 return NULL; 1689 } 1690 } 1691 1692 skb->protocol = 1693 eth_type_trans(skb, bnxt_get_pkt_dev(bp, tpa_info->cfa_code)); 1694 1695 if (tpa_info->hash_type != PKT_HASH_TYPE_NONE) 1696 skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type); 1697 1698 if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) && 1699 (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) { 1700 __be16 vlan_proto = htons(tpa_info->metadata >> 1701 RX_CMP_FLAGS2_METADATA_TPID_SFT); 1702 u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK; 1703 1704 if (eth_type_vlan(vlan_proto)) { 1705 __vlan_hwaccel_put_tag(skb, vlan_proto, vtag); 1706 } else { 1707 dev_kfree_skb(skb); 1708 return NULL; 1709 } 1710 } 1711 1712 skb_checksum_none_assert(skb); 1713 if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) { 1714 skb->ip_summed = CHECKSUM_UNNECESSARY; 1715 skb->csum_level = 1716 (tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3; 1717 } 1718 1719 if (gro) 1720 skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb); 1721 1722 return skb; 1723 } 1724 1725 static void bnxt_tpa_agg(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 1726 struct rx_agg_cmp *rx_agg) 1727 { 1728 u16 agg_id = TPA_AGG_AGG_ID(rx_agg); 1729 struct bnxt_tpa_info *tpa_info; 1730 1731 agg_id = bnxt_lookup_agg_idx(rxr, agg_id); 1732 tpa_info = &rxr->rx_tpa[agg_id]; 1733 BUG_ON(tpa_info->agg_count >= MAX_SKB_FRAGS); 1734 tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg; 1735 } 1736 1737 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi, 1738 struct sk_buff *skb) 1739 { 1740 if (skb->dev != bp->dev) { 1741 /* this packet belongs to a vf-rep */ 1742 bnxt_vf_rep_rx(bp, skb); 1743 return; 1744 } 1745 skb_record_rx_queue(skb, bnapi->index); 1746 napi_gro_receive(&bnapi->napi, skb); 1747 } 1748 1749 /* returns the following: 1750 * 1 - 1 packet successfully received 1751 * 0 - successful TPA_START, packet not completed yet 1752 * -EBUSY - completion ring does not have all the agg buffers yet 1753 * -ENOMEM - packet aborted due to out of memory 1754 * -EIO - packet aborted due to hw error indicated in BD 1755 */ 1756 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1757 u32 *raw_cons, u8 *event) 1758 { 1759 struct bnxt_napi *bnapi = cpr->bnapi; 1760 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1761 struct net_device *dev = bp->dev; 1762 struct rx_cmp *rxcmp; 1763 struct rx_cmp_ext *rxcmp1; 1764 u32 tmp_raw_cons = *raw_cons; 1765 u16 cfa_code, cons, prod, cp_cons = RING_CMP(tmp_raw_cons); 1766 struct bnxt_sw_rx_bd *rx_buf; 1767 unsigned int len; 1768 u8 *data_ptr, agg_bufs, cmp_type; 1769 dma_addr_t dma_addr; 1770 struct sk_buff *skb; 1771 u32 flags, misc; 1772 void *data; 1773 int rc = 0; 1774 1775 rxcmp = (struct rx_cmp *) 1776 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 1777 1778 cmp_type = RX_CMP_TYPE(rxcmp); 1779 1780 if (cmp_type == CMP_TYPE_RX_TPA_AGG_CMP) { 1781 bnxt_tpa_agg(bp, rxr, (struct rx_agg_cmp *)rxcmp); 1782 goto next_rx_no_prod_no_len; 1783 } 1784 1785 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons); 1786 cp_cons = RING_CMP(tmp_raw_cons); 1787 rxcmp1 = (struct rx_cmp_ext *) 1788 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 1789 1790 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 1791 return -EBUSY; 1792 1793 /* The valid test of the entry must be done first before 1794 * reading any further. 1795 */ 1796 dma_rmb(); 1797 prod = rxr->rx_prod; 1798 1799 if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) { 1800 bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp, 1801 (struct rx_tpa_start_cmp_ext *)rxcmp1); 1802 1803 *event |= BNXT_RX_EVENT; 1804 goto next_rx_no_prod_no_len; 1805 1806 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 1807 skb = bnxt_tpa_end(bp, cpr, &tmp_raw_cons, 1808 (struct rx_tpa_end_cmp *)rxcmp, 1809 (struct rx_tpa_end_cmp_ext *)rxcmp1, event); 1810 1811 if (IS_ERR(skb)) 1812 return -EBUSY; 1813 1814 rc = -ENOMEM; 1815 if (likely(skb)) { 1816 bnxt_deliver_skb(bp, bnapi, skb); 1817 rc = 1; 1818 } 1819 *event |= BNXT_RX_EVENT; 1820 goto next_rx_no_prod_no_len; 1821 } 1822 1823 cons = rxcmp->rx_cmp_opaque; 1824 if (unlikely(cons != rxr->rx_next_cons)) { 1825 int rc1 = bnxt_discard_rx(bp, cpr, &tmp_raw_cons, rxcmp); 1826 1827 /* 0xffff is forced error, don't print it */ 1828 if (rxr->rx_next_cons != 0xffff) 1829 netdev_warn(bp->dev, "RX cons %x != expected cons %x\n", 1830 cons, rxr->rx_next_cons); 1831 bnxt_sched_reset(bp, rxr); 1832 if (rc1) 1833 return rc1; 1834 goto next_rx_no_prod_no_len; 1835 } 1836 rx_buf = &rxr->rx_buf_ring[cons]; 1837 data = rx_buf->data; 1838 data_ptr = rx_buf->data_ptr; 1839 prefetch(data_ptr); 1840 1841 misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1); 1842 agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT; 1843 1844 if (agg_bufs) { 1845 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons)) 1846 return -EBUSY; 1847 1848 cp_cons = NEXT_CMP(cp_cons); 1849 *event |= BNXT_AGG_EVENT; 1850 } 1851 *event |= BNXT_RX_EVENT; 1852 1853 rx_buf->data = NULL; 1854 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) { 1855 u32 rx_err = le32_to_cpu(rxcmp1->rx_cmp_cfa_code_errors_v2); 1856 1857 bnxt_reuse_rx_data(rxr, cons, data); 1858 if (agg_bufs) 1859 bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, agg_bufs, 1860 false); 1861 1862 rc = -EIO; 1863 if (rx_err & RX_CMPL_ERRORS_BUFFER_ERROR_MASK) { 1864 bnapi->cp_ring.sw_stats.rx.rx_buf_errors++; 1865 if (!(bp->flags & BNXT_FLAG_CHIP_P5) && 1866 !(bp->fw_cap & BNXT_FW_CAP_RING_MONITOR)) { 1867 netdev_warn_once(bp->dev, "RX buffer error %x\n", 1868 rx_err); 1869 bnxt_sched_reset(bp, rxr); 1870 } 1871 } 1872 goto next_rx_no_len; 1873 } 1874 1875 flags = le32_to_cpu(rxcmp->rx_cmp_len_flags_type); 1876 len = flags >> RX_CMP_LEN_SHIFT; 1877 dma_addr = rx_buf->mapping; 1878 1879 if (bnxt_rx_xdp(bp, rxr, cons, data, &data_ptr, &len, event)) { 1880 rc = 1; 1881 goto next_rx; 1882 } 1883 1884 if (len <= bp->rx_copy_thresh) { 1885 skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr); 1886 bnxt_reuse_rx_data(rxr, cons, data); 1887 if (!skb) { 1888 if (agg_bufs) 1889 bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, 1890 agg_bufs, false); 1891 rc = -ENOMEM; 1892 goto next_rx; 1893 } 1894 } else { 1895 u32 payload; 1896 1897 if (rx_buf->data_ptr == data_ptr) 1898 payload = misc & RX_CMP_PAYLOAD_OFFSET; 1899 else 1900 payload = 0; 1901 skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr, 1902 payload | len); 1903 if (!skb) { 1904 rc = -ENOMEM; 1905 goto next_rx; 1906 } 1907 } 1908 1909 if (agg_bufs) { 1910 skb = bnxt_rx_pages(bp, cpr, skb, cp_cons, agg_bufs, false); 1911 if (!skb) { 1912 rc = -ENOMEM; 1913 goto next_rx; 1914 } 1915 } 1916 1917 if (RX_CMP_HASH_VALID(rxcmp)) { 1918 u32 hash_type = RX_CMP_HASH_TYPE(rxcmp); 1919 enum pkt_hash_types type = PKT_HASH_TYPE_L4; 1920 1921 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */ 1922 if (hash_type != 1 && hash_type != 3) 1923 type = PKT_HASH_TYPE_L3; 1924 skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type); 1925 } 1926 1927 cfa_code = RX_CMP_CFA_CODE(rxcmp1); 1928 skb->protocol = eth_type_trans(skb, bnxt_get_pkt_dev(bp, cfa_code)); 1929 1930 if ((rxcmp1->rx_cmp_flags2 & 1931 cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) && 1932 (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) { 1933 u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data); 1934 u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK; 1935 __be16 vlan_proto = htons(meta_data >> 1936 RX_CMP_FLAGS2_METADATA_TPID_SFT); 1937 1938 if (eth_type_vlan(vlan_proto)) { 1939 __vlan_hwaccel_put_tag(skb, vlan_proto, vtag); 1940 } else { 1941 dev_kfree_skb(skb); 1942 goto next_rx; 1943 } 1944 } 1945 1946 skb_checksum_none_assert(skb); 1947 if (RX_CMP_L4_CS_OK(rxcmp1)) { 1948 if (dev->features & NETIF_F_RXCSUM) { 1949 skb->ip_summed = CHECKSUM_UNNECESSARY; 1950 skb->csum_level = RX_CMP_ENCAP(rxcmp1); 1951 } 1952 } else { 1953 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) { 1954 if (dev->features & NETIF_F_RXCSUM) 1955 bnapi->cp_ring.sw_stats.rx.rx_l4_csum_errors++; 1956 } 1957 } 1958 1959 if (unlikely((flags & RX_CMP_FLAGS_ITYPES_MASK) == 1960 RX_CMP_FLAGS_ITYPE_PTP_W_TS)) { 1961 if (bp->flags & BNXT_FLAG_CHIP_P5) { 1962 u32 cmpl_ts = le32_to_cpu(rxcmp1->rx_cmp_timestamp); 1963 u64 ns, ts; 1964 1965 if (!bnxt_get_rx_ts_p5(bp, &ts, cmpl_ts)) { 1966 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 1967 1968 spin_lock_bh(&ptp->ptp_lock); 1969 ns = timecounter_cyc2time(&ptp->tc, ts); 1970 spin_unlock_bh(&ptp->ptp_lock); 1971 memset(skb_hwtstamps(skb), 0, 1972 sizeof(*skb_hwtstamps(skb))); 1973 skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns); 1974 } 1975 } 1976 } 1977 bnxt_deliver_skb(bp, bnapi, skb); 1978 rc = 1; 1979 1980 next_rx: 1981 cpr->rx_packets += 1; 1982 cpr->rx_bytes += len; 1983 1984 next_rx_no_len: 1985 rxr->rx_prod = NEXT_RX(prod); 1986 rxr->rx_next_cons = NEXT_RX(cons); 1987 1988 next_rx_no_prod_no_len: 1989 *raw_cons = tmp_raw_cons; 1990 1991 return rc; 1992 } 1993 1994 /* In netpoll mode, if we are using a combined completion ring, we need to 1995 * discard the rx packets and recycle the buffers. 1996 */ 1997 static int bnxt_force_rx_discard(struct bnxt *bp, 1998 struct bnxt_cp_ring_info *cpr, 1999 u32 *raw_cons, u8 *event) 2000 { 2001 u32 tmp_raw_cons = *raw_cons; 2002 struct rx_cmp_ext *rxcmp1; 2003 struct rx_cmp *rxcmp; 2004 u16 cp_cons; 2005 u8 cmp_type; 2006 2007 cp_cons = RING_CMP(tmp_raw_cons); 2008 rxcmp = (struct rx_cmp *) 2009 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2010 2011 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons); 2012 cp_cons = RING_CMP(tmp_raw_cons); 2013 rxcmp1 = (struct rx_cmp_ext *) 2014 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2015 2016 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 2017 return -EBUSY; 2018 2019 /* The valid test of the entry must be done first before 2020 * reading any further. 2021 */ 2022 dma_rmb(); 2023 cmp_type = RX_CMP_TYPE(rxcmp); 2024 if (cmp_type == CMP_TYPE_RX_L2_CMP) { 2025 rxcmp1->rx_cmp_cfa_code_errors_v2 |= 2026 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR); 2027 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 2028 struct rx_tpa_end_cmp_ext *tpa_end1; 2029 2030 tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1; 2031 tpa_end1->rx_tpa_end_cmp_errors_v2 |= 2032 cpu_to_le32(RX_TPA_END_CMP_ERRORS); 2033 } 2034 return bnxt_rx_pkt(bp, cpr, raw_cons, event); 2035 } 2036 2037 u32 bnxt_fw_health_readl(struct bnxt *bp, int reg_idx) 2038 { 2039 struct bnxt_fw_health *fw_health = bp->fw_health; 2040 u32 reg = fw_health->regs[reg_idx]; 2041 u32 reg_type, reg_off, val = 0; 2042 2043 reg_type = BNXT_FW_HEALTH_REG_TYPE(reg); 2044 reg_off = BNXT_FW_HEALTH_REG_OFF(reg); 2045 switch (reg_type) { 2046 case BNXT_FW_HEALTH_REG_TYPE_CFG: 2047 pci_read_config_dword(bp->pdev, reg_off, &val); 2048 break; 2049 case BNXT_FW_HEALTH_REG_TYPE_GRC: 2050 reg_off = fw_health->mapped_regs[reg_idx]; 2051 fallthrough; 2052 case BNXT_FW_HEALTH_REG_TYPE_BAR0: 2053 val = readl(bp->bar0 + reg_off); 2054 break; 2055 case BNXT_FW_HEALTH_REG_TYPE_BAR1: 2056 val = readl(bp->bar1 + reg_off); 2057 break; 2058 } 2059 if (reg_idx == BNXT_FW_RESET_INPROG_REG) 2060 val &= fw_health->fw_reset_inprog_reg_mask; 2061 return val; 2062 } 2063 2064 static u16 bnxt_agg_ring_id_to_grp_idx(struct bnxt *bp, u16 ring_id) 2065 { 2066 int i; 2067 2068 for (i = 0; i < bp->rx_nr_rings; i++) { 2069 u16 grp_idx = bp->rx_ring[i].bnapi->index; 2070 struct bnxt_ring_grp_info *grp_info; 2071 2072 grp_info = &bp->grp_info[grp_idx]; 2073 if (grp_info->agg_fw_ring_id == ring_id) 2074 return grp_idx; 2075 } 2076 return INVALID_HW_RING_ID; 2077 } 2078 2079 static void bnxt_event_error_report(struct bnxt *bp, u32 data1, u32 data2) 2080 { 2081 switch (BNXT_EVENT_ERROR_REPORT_TYPE(data1)) { 2082 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_INVALID_SIGNAL: 2083 netdev_err(bp->dev, "1PPS: Received invalid signal on pin%lu from the external source. Please fix the signal and reconfigure the pin\n", 2084 BNXT_EVENT_INVALID_SIGNAL_DATA(data2)); 2085 break; 2086 default: 2087 netdev_err(bp->dev, "FW reported unknown error type\n"); 2088 break; 2089 } 2090 } 2091 2092 #define BNXT_GET_EVENT_PORT(data) \ 2093 ((data) & \ 2094 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK) 2095 2096 #define BNXT_EVENT_RING_TYPE(data2) \ 2097 ((data2) & \ 2098 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_MASK) 2099 2100 #define BNXT_EVENT_RING_TYPE_RX(data2) \ 2101 (BNXT_EVENT_RING_TYPE(data2) == \ 2102 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_RX) 2103 2104 static int bnxt_async_event_process(struct bnxt *bp, 2105 struct hwrm_async_event_cmpl *cmpl) 2106 { 2107 u16 event_id = le16_to_cpu(cmpl->event_id); 2108 u32 data1 = le32_to_cpu(cmpl->event_data1); 2109 u32 data2 = le32_to_cpu(cmpl->event_data2); 2110 2111 /* TODO CHIMP_FW: Define event id's for link change, error etc */ 2112 switch (event_id) { 2113 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: { 2114 struct bnxt_link_info *link_info = &bp->link_info; 2115 2116 if (BNXT_VF(bp)) 2117 goto async_event_process_exit; 2118 2119 /* print unsupported speed warning in forced speed mode only */ 2120 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) && 2121 (data1 & 0x20000)) { 2122 u16 fw_speed = link_info->force_link_speed; 2123 u32 speed = bnxt_fw_to_ethtool_speed(fw_speed); 2124 2125 if (speed != SPEED_UNKNOWN) 2126 netdev_warn(bp->dev, "Link speed %d no longer supported\n", 2127 speed); 2128 } 2129 set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event); 2130 } 2131 fallthrough; 2132 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE: 2133 case ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE: 2134 set_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, &bp->sp_event); 2135 fallthrough; 2136 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE: 2137 set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event); 2138 break; 2139 case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD: 2140 set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event); 2141 break; 2142 case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: { 2143 u16 port_id = BNXT_GET_EVENT_PORT(data1); 2144 2145 if (BNXT_VF(bp)) 2146 break; 2147 2148 if (bp->pf.port_id != port_id) 2149 break; 2150 2151 set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event); 2152 break; 2153 } 2154 case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE: 2155 if (BNXT_PF(bp)) 2156 goto async_event_process_exit; 2157 set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event); 2158 break; 2159 case ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY: { 2160 char *fatal_str = "non-fatal"; 2161 2162 if (!bp->fw_health) 2163 goto async_event_process_exit; 2164 2165 bp->fw_reset_timestamp = jiffies; 2166 bp->fw_reset_min_dsecs = cmpl->timestamp_lo; 2167 if (!bp->fw_reset_min_dsecs) 2168 bp->fw_reset_min_dsecs = BNXT_DFLT_FW_RST_MIN_DSECS; 2169 bp->fw_reset_max_dsecs = le16_to_cpu(cmpl->timestamp_hi); 2170 if (!bp->fw_reset_max_dsecs) 2171 bp->fw_reset_max_dsecs = BNXT_DFLT_FW_RST_MAX_DSECS; 2172 if (EVENT_DATA1_RESET_NOTIFY_FATAL(data1)) { 2173 fatal_str = "fatal"; 2174 set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 2175 } 2176 netif_warn(bp, hw, bp->dev, 2177 "Firmware %s reset event, data1: 0x%x, data2: 0x%x, min wait %u ms, max wait %u ms\n", 2178 fatal_str, data1, data2, 2179 bp->fw_reset_min_dsecs * 100, 2180 bp->fw_reset_max_dsecs * 100); 2181 set_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event); 2182 break; 2183 } 2184 case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY: { 2185 struct bnxt_fw_health *fw_health = bp->fw_health; 2186 2187 if (!fw_health) 2188 goto async_event_process_exit; 2189 2190 fw_health->enabled = EVENT_DATA1_RECOVERY_ENABLED(data1); 2191 fw_health->master = EVENT_DATA1_RECOVERY_MASTER_FUNC(data1); 2192 if (!fw_health->enabled) { 2193 netif_info(bp, drv, bp->dev, 2194 "Error recovery info: error recovery[0]\n"); 2195 break; 2196 } 2197 fw_health->tmr_multiplier = 2198 DIV_ROUND_UP(fw_health->polling_dsecs * HZ, 2199 bp->current_interval * 10); 2200 fw_health->tmr_counter = fw_health->tmr_multiplier; 2201 fw_health->last_fw_heartbeat = 2202 bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 2203 fw_health->last_fw_reset_cnt = 2204 bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 2205 netif_info(bp, drv, bp->dev, 2206 "Error recovery info: error recovery[1], master[%d], reset count[%u], health status: 0x%x\n", 2207 fw_health->master, fw_health->last_fw_reset_cnt, 2208 bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG)); 2209 goto async_event_process_exit; 2210 } 2211 case ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION: 2212 netif_notice(bp, hw, bp->dev, 2213 "Received firmware debug notification, data1: 0x%x, data2: 0x%x\n", 2214 data1, data2); 2215 goto async_event_process_exit; 2216 case ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG: { 2217 struct bnxt_rx_ring_info *rxr; 2218 u16 grp_idx; 2219 2220 if (bp->flags & BNXT_FLAG_CHIP_P5) 2221 goto async_event_process_exit; 2222 2223 netdev_warn(bp->dev, "Ring monitor event, ring type %lu id 0x%x\n", 2224 BNXT_EVENT_RING_TYPE(data2), data1); 2225 if (!BNXT_EVENT_RING_TYPE_RX(data2)) 2226 goto async_event_process_exit; 2227 2228 grp_idx = bnxt_agg_ring_id_to_grp_idx(bp, data1); 2229 if (grp_idx == INVALID_HW_RING_ID) { 2230 netdev_warn(bp->dev, "Unknown RX agg ring id 0x%x\n", 2231 data1); 2232 goto async_event_process_exit; 2233 } 2234 rxr = bp->bnapi[grp_idx]->rx_ring; 2235 bnxt_sched_reset(bp, rxr); 2236 goto async_event_process_exit; 2237 } 2238 case ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST: { 2239 struct bnxt_fw_health *fw_health = bp->fw_health; 2240 2241 netif_notice(bp, hw, bp->dev, 2242 "Received firmware echo request, data1: 0x%x, data2: 0x%x\n", 2243 data1, data2); 2244 if (fw_health) { 2245 fw_health->echo_req_data1 = data1; 2246 fw_health->echo_req_data2 = data2; 2247 set_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event); 2248 break; 2249 } 2250 goto async_event_process_exit; 2251 } 2252 case ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP: { 2253 bnxt_ptp_pps_event(bp, data1, data2); 2254 goto async_event_process_exit; 2255 } 2256 case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT: { 2257 bnxt_event_error_report(bp, data1, data2); 2258 goto async_event_process_exit; 2259 } 2260 default: 2261 goto async_event_process_exit; 2262 } 2263 bnxt_queue_sp_work(bp); 2264 async_event_process_exit: 2265 bnxt_ulp_async_events(bp, cmpl); 2266 return 0; 2267 } 2268 2269 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp) 2270 { 2271 u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id; 2272 struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp; 2273 struct hwrm_fwd_req_cmpl *fwd_req_cmpl = 2274 (struct hwrm_fwd_req_cmpl *)txcmp; 2275 2276 switch (cmpl_type) { 2277 case CMPL_BASE_TYPE_HWRM_DONE: 2278 seq_id = le16_to_cpu(h_cmpl->sequence_id); 2279 if (seq_id == bp->hwrm_intr_seq_id) 2280 bp->hwrm_intr_seq_id = (u16)~bp->hwrm_intr_seq_id; 2281 else 2282 netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id); 2283 break; 2284 2285 case CMPL_BASE_TYPE_HWRM_FWD_REQ: 2286 vf_id = le16_to_cpu(fwd_req_cmpl->source_id); 2287 2288 if ((vf_id < bp->pf.first_vf_id) || 2289 (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) { 2290 netdev_err(bp->dev, "Msg contains invalid VF id %x\n", 2291 vf_id); 2292 return -EINVAL; 2293 } 2294 2295 set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap); 2296 set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event); 2297 bnxt_queue_sp_work(bp); 2298 break; 2299 2300 case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT: 2301 bnxt_async_event_process(bp, 2302 (struct hwrm_async_event_cmpl *)txcmp); 2303 break; 2304 2305 default: 2306 break; 2307 } 2308 2309 return 0; 2310 } 2311 2312 static irqreturn_t bnxt_msix(int irq, void *dev_instance) 2313 { 2314 struct bnxt_napi *bnapi = dev_instance; 2315 struct bnxt *bp = bnapi->bp; 2316 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2317 u32 cons = RING_CMP(cpr->cp_raw_cons); 2318 2319 cpr->event_ctr++; 2320 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]); 2321 napi_schedule(&bnapi->napi); 2322 return IRQ_HANDLED; 2323 } 2324 2325 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr) 2326 { 2327 u32 raw_cons = cpr->cp_raw_cons; 2328 u16 cons = RING_CMP(raw_cons); 2329 struct tx_cmp *txcmp; 2330 2331 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 2332 2333 return TX_CMP_VALID(txcmp, raw_cons); 2334 } 2335 2336 static irqreturn_t bnxt_inta(int irq, void *dev_instance) 2337 { 2338 struct bnxt_napi *bnapi = dev_instance; 2339 struct bnxt *bp = bnapi->bp; 2340 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2341 u32 cons = RING_CMP(cpr->cp_raw_cons); 2342 u32 int_status; 2343 2344 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]); 2345 2346 if (!bnxt_has_work(bp, cpr)) { 2347 int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS); 2348 /* return if erroneous interrupt */ 2349 if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id))) 2350 return IRQ_NONE; 2351 } 2352 2353 /* disable ring IRQ */ 2354 BNXT_CP_DB_IRQ_DIS(cpr->cp_db.doorbell); 2355 2356 /* Return here if interrupt is shared and is disabled. */ 2357 if (unlikely(atomic_read(&bp->intr_sem) != 0)) 2358 return IRQ_HANDLED; 2359 2360 napi_schedule(&bnapi->napi); 2361 return IRQ_HANDLED; 2362 } 2363 2364 static int __bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 2365 int budget) 2366 { 2367 struct bnxt_napi *bnapi = cpr->bnapi; 2368 u32 raw_cons = cpr->cp_raw_cons; 2369 u32 cons; 2370 int tx_pkts = 0; 2371 int rx_pkts = 0; 2372 u8 event = 0; 2373 struct tx_cmp *txcmp; 2374 2375 cpr->has_more_work = 0; 2376 cpr->had_work_done = 1; 2377 while (1) { 2378 int rc; 2379 2380 cons = RING_CMP(raw_cons); 2381 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 2382 2383 if (!TX_CMP_VALID(txcmp, raw_cons)) 2384 break; 2385 2386 /* The valid test of the entry must be done first before 2387 * reading any further. 2388 */ 2389 dma_rmb(); 2390 if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) { 2391 tx_pkts++; 2392 /* return full budget so NAPI will complete. */ 2393 if (unlikely(tx_pkts > bp->tx_wake_thresh)) { 2394 rx_pkts = budget; 2395 raw_cons = NEXT_RAW_CMP(raw_cons); 2396 if (budget) 2397 cpr->has_more_work = 1; 2398 break; 2399 } 2400 } else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) { 2401 if (likely(budget)) 2402 rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event); 2403 else 2404 rc = bnxt_force_rx_discard(bp, cpr, &raw_cons, 2405 &event); 2406 if (likely(rc >= 0)) 2407 rx_pkts += rc; 2408 /* Increment rx_pkts when rc is -ENOMEM to count towards 2409 * the NAPI budget. Otherwise, we may potentially loop 2410 * here forever if we consistently cannot allocate 2411 * buffers. 2412 */ 2413 else if (rc == -ENOMEM && budget) 2414 rx_pkts++; 2415 else if (rc == -EBUSY) /* partial completion */ 2416 break; 2417 } else if (unlikely((TX_CMP_TYPE(txcmp) == 2418 CMPL_BASE_TYPE_HWRM_DONE) || 2419 (TX_CMP_TYPE(txcmp) == 2420 CMPL_BASE_TYPE_HWRM_FWD_REQ) || 2421 (TX_CMP_TYPE(txcmp) == 2422 CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) { 2423 bnxt_hwrm_handler(bp, txcmp); 2424 } 2425 raw_cons = NEXT_RAW_CMP(raw_cons); 2426 2427 if (rx_pkts && rx_pkts == budget) { 2428 cpr->has_more_work = 1; 2429 break; 2430 } 2431 } 2432 2433 if (event & BNXT_REDIRECT_EVENT) 2434 xdp_do_flush_map(); 2435 2436 if (event & BNXT_TX_EVENT) { 2437 struct bnxt_tx_ring_info *txr = bnapi->tx_ring; 2438 u16 prod = txr->tx_prod; 2439 2440 /* Sync BD data before updating doorbell */ 2441 wmb(); 2442 2443 bnxt_db_write_relaxed(bp, &txr->tx_db, prod); 2444 } 2445 2446 cpr->cp_raw_cons = raw_cons; 2447 bnapi->tx_pkts += tx_pkts; 2448 bnapi->events |= event; 2449 return rx_pkts; 2450 } 2451 2452 static void __bnxt_poll_work_done(struct bnxt *bp, struct bnxt_napi *bnapi) 2453 { 2454 if (bnapi->tx_pkts) { 2455 bnapi->tx_int(bp, bnapi, bnapi->tx_pkts); 2456 bnapi->tx_pkts = 0; 2457 } 2458 2459 if ((bnapi->events & BNXT_RX_EVENT) && !(bnapi->in_reset)) { 2460 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 2461 2462 if (bnapi->events & BNXT_AGG_EVENT) 2463 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 2464 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 2465 } 2466 bnapi->events = 0; 2467 } 2468 2469 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 2470 int budget) 2471 { 2472 struct bnxt_napi *bnapi = cpr->bnapi; 2473 int rx_pkts; 2474 2475 rx_pkts = __bnxt_poll_work(bp, cpr, budget); 2476 2477 /* ACK completion ring before freeing tx ring and producing new 2478 * buffers in rx/agg rings to prevent overflowing the completion 2479 * ring. 2480 */ 2481 bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons); 2482 2483 __bnxt_poll_work_done(bp, bnapi); 2484 return rx_pkts; 2485 } 2486 2487 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget) 2488 { 2489 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 2490 struct bnxt *bp = bnapi->bp; 2491 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2492 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 2493 struct tx_cmp *txcmp; 2494 struct rx_cmp_ext *rxcmp1; 2495 u32 cp_cons, tmp_raw_cons; 2496 u32 raw_cons = cpr->cp_raw_cons; 2497 u32 rx_pkts = 0; 2498 u8 event = 0; 2499 2500 while (1) { 2501 int rc; 2502 2503 cp_cons = RING_CMP(raw_cons); 2504 txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2505 2506 if (!TX_CMP_VALID(txcmp, raw_cons)) 2507 break; 2508 2509 /* The valid test of the entry must be done first before 2510 * reading any further. 2511 */ 2512 dma_rmb(); 2513 if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) { 2514 tmp_raw_cons = NEXT_RAW_CMP(raw_cons); 2515 cp_cons = RING_CMP(tmp_raw_cons); 2516 rxcmp1 = (struct rx_cmp_ext *) 2517 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2518 2519 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 2520 break; 2521 2522 /* force an error to recycle the buffer */ 2523 rxcmp1->rx_cmp_cfa_code_errors_v2 |= 2524 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR); 2525 2526 rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event); 2527 if (likely(rc == -EIO) && budget) 2528 rx_pkts++; 2529 else if (rc == -EBUSY) /* partial completion */ 2530 break; 2531 } else if (unlikely(TX_CMP_TYPE(txcmp) == 2532 CMPL_BASE_TYPE_HWRM_DONE)) { 2533 bnxt_hwrm_handler(bp, txcmp); 2534 } else { 2535 netdev_err(bp->dev, 2536 "Invalid completion received on special ring\n"); 2537 } 2538 raw_cons = NEXT_RAW_CMP(raw_cons); 2539 2540 if (rx_pkts == budget) 2541 break; 2542 } 2543 2544 cpr->cp_raw_cons = raw_cons; 2545 BNXT_DB_CQ(&cpr->cp_db, cpr->cp_raw_cons); 2546 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 2547 2548 if (event & BNXT_AGG_EVENT) 2549 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 2550 2551 if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) { 2552 napi_complete_done(napi, rx_pkts); 2553 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 2554 } 2555 return rx_pkts; 2556 } 2557 2558 static int bnxt_poll(struct napi_struct *napi, int budget) 2559 { 2560 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 2561 struct bnxt *bp = bnapi->bp; 2562 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2563 int work_done = 0; 2564 2565 if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) { 2566 napi_complete(napi); 2567 return 0; 2568 } 2569 while (1) { 2570 work_done += bnxt_poll_work(bp, cpr, budget - work_done); 2571 2572 if (work_done >= budget) { 2573 if (!budget) 2574 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 2575 break; 2576 } 2577 2578 if (!bnxt_has_work(bp, cpr)) { 2579 if (napi_complete_done(napi, work_done)) 2580 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 2581 break; 2582 } 2583 } 2584 if (bp->flags & BNXT_FLAG_DIM) { 2585 struct dim_sample dim_sample = {}; 2586 2587 dim_update_sample(cpr->event_ctr, 2588 cpr->rx_packets, 2589 cpr->rx_bytes, 2590 &dim_sample); 2591 net_dim(&cpr->dim, dim_sample); 2592 } 2593 return work_done; 2594 } 2595 2596 static int __bnxt_poll_cqs(struct bnxt *bp, struct bnxt_napi *bnapi, int budget) 2597 { 2598 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2599 int i, work_done = 0; 2600 2601 for (i = 0; i < 2; i++) { 2602 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i]; 2603 2604 if (cpr2) { 2605 work_done += __bnxt_poll_work(bp, cpr2, 2606 budget - work_done); 2607 cpr->has_more_work |= cpr2->has_more_work; 2608 } 2609 } 2610 return work_done; 2611 } 2612 2613 static void __bnxt_poll_cqs_done(struct bnxt *bp, struct bnxt_napi *bnapi, 2614 u64 dbr_type) 2615 { 2616 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2617 int i; 2618 2619 for (i = 0; i < 2; i++) { 2620 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i]; 2621 struct bnxt_db_info *db; 2622 2623 if (cpr2 && cpr2->had_work_done) { 2624 db = &cpr2->cp_db; 2625 writeq(db->db_key64 | dbr_type | 2626 RING_CMP(cpr2->cp_raw_cons), db->doorbell); 2627 cpr2->had_work_done = 0; 2628 } 2629 } 2630 __bnxt_poll_work_done(bp, bnapi); 2631 } 2632 2633 static int bnxt_poll_p5(struct napi_struct *napi, int budget) 2634 { 2635 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 2636 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2637 u32 raw_cons = cpr->cp_raw_cons; 2638 struct bnxt *bp = bnapi->bp; 2639 struct nqe_cn *nqcmp; 2640 int work_done = 0; 2641 u32 cons; 2642 2643 if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) { 2644 napi_complete(napi); 2645 return 0; 2646 } 2647 if (cpr->has_more_work) { 2648 cpr->has_more_work = 0; 2649 work_done = __bnxt_poll_cqs(bp, bnapi, budget); 2650 } 2651 while (1) { 2652 cons = RING_CMP(raw_cons); 2653 nqcmp = &cpr->nq_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 2654 2655 if (!NQ_CMP_VALID(nqcmp, raw_cons)) { 2656 if (cpr->has_more_work) 2657 break; 2658 2659 __bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL); 2660 cpr->cp_raw_cons = raw_cons; 2661 if (napi_complete_done(napi, work_done)) 2662 BNXT_DB_NQ_ARM_P5(&cpr->cp_db, 2663 cpr->cp_raw_cons); 2664 return work_done; 2665 } 2666 2667 /* The valid test of the entry must be done first before 2668 * reading any further. 2669 */ 2670 dma_rmb(); 2671 2672 if (nqcmp->type == cpu_to_le16(NQ_CN_TYPE_CQ_NOTIFICATION)) { 2673 u32 idx = le32_to_cpu(nqcmp->cq_handle_low); 2674 struct bnxt_cp_ring_info *cpr2; 2675 2676 cpr2 = cpr->cp_ring_arr[idx]; 2677 work_done += __bnxt_poll_work(bp, cpr2, 2678 budget - work_done); 2679 cpr->has_more_work |= cpr2->has_more_work; 2680 } else { 2681 bnxt_hwrm_handler(bp, (struct tx_cmp *)nqcmp); 2682 } 2683 raw_cons = NEXT_RAW_CMP(raw_cons); 2684 } 2685 __bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ); 2686 if (raw_cons != cpr->cp_raw_cons) { 2687 cpr->cp_raw_cons = raw_cons; 2688 BNXT_DB_NQ_P5(&cpr->cp_db, raw_cons); 2689 } 2690 return work_done; 2691 } 2692 2693 static void bnxt_free_tx_skbs(struct bnxt *bp) 2694 { 2695 int i, max_idx; 2696 struct pci_dev *pdev = bp->pdev; 2697 2698 if (!bp->tx_ring) 2699 return; 2700 2701 max_idx = bp->tx_nr_pages * TX_DESC_CNT; 2702 for (i = 0; i < bp->tx_nr_rings; i++) { 2703 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 2704 int j; 2705 2706 for (j = 0; j < max_idx;) { 2707 struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j]; 2708 struct sk_buff *skb; 2709 int k, last; 2710 2711 if (i < bp->tx_nr_rings_xdp && 2712 tx_buf->action == XDP_REDIRECT) { 2713 dma_unmap_single(&pdev->dev, 2714 dma_unmap_addr(tx_buf, mapping), 2715 dma_unmap_len(tx_buf, len), 2716 DMA_TO_DEVICE); 2717 xdp_return_frame(tx_buf->xdpf); 2718 tx_buf->action = 0; 2719 tx_buf->xdpf = NULL; 2720 j++; 2721 continue; 2722 } 2723 2724 skb = tx_buf->skb; 2725 if (!skb) { 2726 j++; 2727 continue; 2728 } 2729 2730 tx_buf->skb = NULL; 2731 2732 if (tx_buf->is_push) { 2733 dev_kfree_skb(skb); 2734 j += 2; 2735 continue; 2736 } 2737 2738 dma_unmap_single(&pdev->dev, 2739 dma_unmap_addr(tx_buf, mapping), 2740 skb_headlen(skb), 2741 DMA_TO_DEVICE); 2742 2743 last = tx_buf->nr_frags; 2744 j += 2; 2745 for (k = 0; k < last; k++, j++) { 2746 int ring_idx = j & bp->tx_ring_mask; 2747 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 2748 2749 tx_buf = &txr->tx_buf_ring[ring_idx]; 2750 dma_unmap_page( 2751 &pdev->dev, 2752 dma_unmap_addr(tx_buf, mapping), 2753 skb_frag_size(frag), DMA_TO_DEVICE); 2754 } 2755 dev_kfree_skb(skb); 2756 } 2757 netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i)); 2758 } 2759 } 2760 2761 static void bnxt_free_one_rx_ring_skbs(struct bnxt *bp, int ring_nr) 2762 { 2763 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 2764 struct pci_dev *pdev = bp->pdev; 2765 struct bnxt_tpa_idx_map *map; 2766 int i, max_idx, max_agg_idx; 2767 2768 max_idx = bp->rx_nr_pages * RX_DESC_CNT; 2769 max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT; 2770 if (!rxr->rx_tpa) 2771 goto skip_rx_tpa_free; 2772 2773 for (i = 0; i < bp->max_tpa; i++) { 2774 struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[i]; 2775 u8 *data = tpa_info->data; 2776 2777 if (!data) 2778 continue; 2779 2780 dma_unmap_single_attrs(&pdev->dev, tpa_info->mapping, 2781 bp->rx_buf_use_size, bp->rx_dir, 2782 DMA_ATTR_WEAK_ORDERING); 2783 2784 tpa_info->data = NULL; 2785 2786 kfree(data); 2787 } 2788 2789 skip_rx_tpa_free: 2790 for (i = 0; i < max_idx; i++) { 2791 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[i]; 2792 dma_addr_t mapping = rx_buf->mapping; 2793 void *data = rx_buf->data; 2794 2795 if (!data) 2796 continue; 2797 2798 rx_buf->data = NULL; 2799 if (BNXT_RX_PAGE_MODE(bp)) { 2800 mapping -= bp->rx_dma_offset; 2801 dma_unmap_page_attrs(&pdev->dev, mapping, PAGE_SIZE, 2802 bp->rx_dir, 2803 DMA_ATTR_WEAK_ORDERING); 2804 page_pool_recycle_direct(rxr->page_pool, data); 2805 } else { 2806 dma_unmap_single_attrs(&pdev->dev, mapping, 2807 bp->rx_buf_use_size, bp->rx_dir, 2808 DMA_ATTR_WEAK_ORDERING); 2809 kfree(data); 2810 } 2811 } 2812 for (i = 0; i < max_agg_idx; i++) { 2813 struct bnxt_sw_rx_agg_bd *rx_agg_buf = &rxr->rx_agg_ring[i]; 2814 struct page *page = rx_agg_buf->page; 2815 2816 if (!page) 2817 continue; 2818 2819 dma_unmap_page_attrs(&pdev->dev, rx_agg_buf->mapping, 2820 BNXT_RX_PAGE_SIZE, DMA_FROM_DEVICE, 2821 DMA_ATTR_WEAK_ORDERING); 2822 2823 rx_agg_buf->page = NULL; 2824 __clear_bit(i, rxr->rx_agg_bmap); 2825 2826 __free_page(page); 2827 } 2828 if (rxr->rx_page) { 2829 __free_page(rxr->rx_page); 2830 rxr->rx_page = NULL; 2831 } 2832 map = rxr->rx_tpa_idx_map; 2833 if (map) 2834 memset(map->agg_idx_bmap, 0, sizeof(map->agg_idx_bmap)); 2835 } 2836 2837 static void bnxt_free_rx_skbs(struct bnxt *bp) 2838 { 2839 int i; 2840 2841 if (!bp->rx_ring) 2842 return; 2843 2844 for (i = 0; i < bp->rx_nr_rings; i++) 2845 bnxt_free_one_rx_ring_skbs(bp, i); 2846 } 2847 2848 static void bnxt_free_skbs(struct bnxt *bp) 2849 { 2850 bnxt_free_tx_skbs(bp); 2851 bnxt_free_rx_skbs(bp); 2852 } 2853 2854 static void bnxt_init_ctx_mem(struct bnxt_mem_init *mem_init, void *p, int len) 2855 { 2856 u8 init_val = mem_init->init_val; 2857 u16 offset = mem_init->offset; 2858 u8 *p2 = p; 2859 int i; 2860 2861 if (!init_val) 2862 return; 2863 if (offset == BNXT_MEM_INVALID_OFFSET) { 2864 memset(p, init_val, len); 2865 return; 2866 } 2867 for (i = 0; i < len; i += mem_init->size) 2868 *(p2 + i + offset) = init_val; 2869 } 2870 2871 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem) 2872 { 2873 struct pci_dev *pdev = bp->pdev; 2874 int i; 2875 2876 for (i = 0; i < rmem->nr_pages; i++) { 2877 if (!rmem->pg_arr[i]) 2878 continue; 2879 2880 dma_free_coherent(&pdev->dev, rmem->page_size, 2881 rmem->pg_arr[i], rmem->dma_arr[i]); 2882 2883 rmem->pg_arr[i] = NULL; 2884 } 2885 if (rmem->pg_tbl) { 2886 size_t pg_tbl_size = rmem->nr_pages * 8; 2887 2888 if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG) 2889 pg_tbl_size = rmem->page_size; 2890 dma_free_coherent(&pdev->dev, pg_tbl_size, 2891 rmem->pg_tbl, rmem->pg_tbl_map); 2892 rmem->pg_tbl = NULL; 2893 } 2894 if (rmem->vmem_size && *rmem->vmem) { 2895 vfree(*rmem->vmem); 2896 *rmem->vmem = NULL; 2897 } 2898 } 2899 2900 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem) 2901 { 2902 struct pci_dev *pdev = bp->pdev; 2903 u64 valid_bit = 0; 2904 int i; 2905 2906 if (rmem->flags & (BNXT_RMEM_VALID_PTE_FLAG | BNXT_RMEM_RING_PTE_FLAG)) 2907 valid_bit = PTU_PTE_VALID; 2908 if ((rmem->nr_pages > 1 || rmem->depth > 0) && !rmem->pg_tbl) { 2909 size_t pg_tbl_size = rmem->nr_pages * 8; 2910 2911 if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG) 2912 pg_tbl_size = rmem->page_size; 2913 rmem->pg_tbl = dma_alloc_coherent(&pdev->dev, pg_tbl_size, 2914 &rmem->pg_tbl_map, 2915 GFP_KERNEL); 2916 if (!rmem->pg_tbl) 2917 return -ENOMEM; 2918 } 2919 2920 for (i = 0; i < rmem->nr_pages; i++) { 2921 u64 extra_bits = valid_bit; 2922 2923 rmem->pg_arr[i] = dma_alloc_coherent(&pdev->dev, 2924 rmem->page_size, 2925 &rmem->dma_arr[i], 2926 GFP_KERNEL); 2927 if (!rmem->pg_arr[i]) 2928 return -ENOMEM; 2929 2930 if (rmem->mem_init) 2931 bnxt_init_ctx_mem(rmem->mem_init, rmem->pg_arr[i], 2932 rmem->page_size); 2933 if (rmem->nr_pages > 1 || rmem->depth > 0) { 2934 if (i == rmem->nr_pages - 2 && 2935 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG)) 2936 extra_bits |= PTU_PTE_NEXT_TO_LAST; 2937 else if (i == rmem->nr_pages - 1 && 2938 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG)) 2939 extra_bits |= PTU_PTE_LAST; 2940 rmem->pg_tbl[i] = 2941 cpu_to_le64(rmem->dma_arr[i] | extra_bits); 2942 } 2943 } 2944 2945 if (rmem->vmem_size) { 2946 *rmem->vmem = vzalloc(rmem->vmem_size); 2947 if (!(*rmem->vmem)) 2948 return -ENOMEM; 2949 } 2950 return 0; 2951 } 2952 2953 static void bnxt_free_tpa_info(struct bnxt *bp) 2954 { 2955 int i; 2956 2957 for (i = 0; i < bp->rx_nr_rings; i++) { 2958 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 2959 2960 kfree(rxr->rx_tpa_idx_map); 2961 rxr->rx_tpa_idx_map = NULL; 2962 if (rxr->rx_tpa) { 2963 kfree(rxr->rx_tpa[0].agg_arr); 2964 rxr->rx_tpa[0].agg_arr = NULL; 2965 } 2966 kfree(rxr->rx_tpa); 2967 rxr->rx_tpa = NULL; 2968 } 2969 } 2970 2971 static int bnxt_alloc_tpa_info(struct bnxt *bp) 2972 { 2973 int i, j, total_aggs = 0; 2974 2975 bp->max_tpa = MAX_TPA; 2976 if (bp->flags & BNXT_FLAG_CHIP_P5) { 2977 if (!bp->max_tpa_v2) 2978 return 0; 2979 bp->max_tpa = max_t(u16, bp->max_tpa_v2, MAX_TPA_P5); 2980 total_aggs = bp->max_tpa * MAX_SKB_FRAGS; 2981 } 2982 2983 for (i = 0; i < bp->rx_nr_rings; i++) { 2984 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 2985 struct rx_agg_cmp *agg; 2986 2987 rxr->rx_tpa = kcalloc(bp->max_tpa, sizeof(struct bnxt_tpa_info), 2988 GFP_KERNEL); 2989 if (!rxr->rx_tpa) 2990 return -ENOMEM; 2991 2992 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 2993 continue; 2994 agg = kcalloc(total_aggs, sizeof(*agg), GFP_KERNEL); 2995 rxr->rx_tpa[0].agg_arr = agg; 2996 if (!agg) 2997 return -ENOMEM; 2998 for (j = 1; j < bp->max_tpa; j++) 2999 rxr->rx_tpa[j].agg_arr = agg + j * MAX_SKB_FRAGS; 3000 rxr->rx_tpa_idx_map = kzalloc(sizeof(*rxr->rx_tpa_idx_map), 3001 GFP_KERNEL); 3002 if (!rxr->rx_tpa_idx_map) 3003 return -ENOMEM; 3004 } 3005 return 0; 3006 } 3007 3008 static void bnxt_free_rx_rings(struct bnxt *bp) 3009 { 3010 int i; 3011 3012 if (!bp->rx_ring) 3013 return; 3014 3015 bnxt_free_tpa_info(bp); 3016 for (i = 0; i < bp->rx_nr_rings; i++) { 3017 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3018 struct bnxt_ring_struct *ring; 3019 3020 if (rxr->xdp_prog) 3021 bpf_prog_put(rxr->xdp_prog); 3022 3023 if (xdp_rxq_info_is_reg(&rxr->xdp_rxq)) 3024 xdp_rxq_info_unreg(&rxr->xdp_rxq); 3025 3026 page_pool_destroy(rxr->page_pool); 3027 rxr->page_pool = NULL; 3028 3029 kfree(rxr->rx_agg_bmap); 3030 rxr->rx_agg_bmap = NULL; 3031 3032 ring = &rxr->rx_ring_struct; 3033 bnxt_free_ring(bp, &ring->ring_mem); 3034 3035 ring = &rxr->rx_agg_ring_struct; 3036 bnxt_free_ring(bp, &ring->ring_mem); 3037 } 3038 } 3039 3040 static int bnxt_alloc_rx_page_pool(struct bnxt *bp, 3041 struct bnxt_rx_ring_info *rxr) 3042 { 3043 struct page_pool_params pp = { 0 }; 3044 3045 pp.pool_size = bp->rx_ring_size; 3046 pp.nid = dev_to_node(&bp->pdev->dev); 3047 pp.dev = &bp->pdev->dev; 3048 pp.dma_dir = DMA_BIDIRECTIONAL; 3049 3050 rxr->page_pool = page_pool_create(&pp); 3051 if (IS_ERR(rxr->page_pool)) { 3052 int err = PTR_ERR(rxr->page_pool); 3053 3054 rxr->page_pool = NULL; 3055 return err; 3056 } 3057 return 0; 3058 } 3059 3060 static int bnxt_alloc_rx_rings(struct bnxt *bp) 3061 { 3062 int i, rc = 0, agg_rings = 0; 3063 3064 if (!bp->rx_ring) 3065 return -ENOMEM; 3066 3067 if (bp->flags & BNXT_FLAG_AGG_RINGS) 3068 agg_rings = 1; 3069 3070 for (i = 0; i < bp->rx_nr_rings; i++) { 3071 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3072 struct bnxt_ring_struct *ring; 3073 3074 ring = &rxr->rx_ring_struct; 3075 3076 rc = bnxt_alloc_rx_page_pool(bp, rxr); 3077 if (rc) 3078 return rc; 3079 3080 rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i, 0); 3081 if (rc < 0) 3082 return rc; 3083 3084 rc = xdp_rxq_info_reg_mem_model(&rxr->xdp_rxq, 3085 MEM_TYPE_PAGE_POOL, 3086 rxr->page_pool); 3087 if (rc) { 3088 xdp_rxq_info_unreg(&rxr->xdp_rxq); 3089 return rc; 3090 } 3091 3092 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3093 if (rc) 3094 return rc; 3095 3096 ring->grp_idx = i; 3097 if (agg_rings) { 3098 u16 mem_size; 3099 3100 ring = &rxr->rx_agg_ring_struct; 3101 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3102 if (rc) 3103 return rc; 3104 3105 ring->grp_idx = i; 3106 rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1; 3107 mem_size = rxr->rx_agg_bmap_size / 8; 3108 rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL); 3109 if (!rxr->rx_agg_bmap) 3110 return -ENOMEM; 3111 } 3112 } 3113 if (bp->flags & BNXT_FLAG_TPA) 3114 rc = bnxt_alloc_tpa_info(bp); 3115 return rc; 3116 } 3117 3118 static void bnxt_free_tx_rings(struct bnxt *bp) 3119 { 3120 int i; 3121 struct pci_dev *pdev = bp->pdev; 3122 3123 if (!bp->tx_ring) 3124 return; 3125 3126 for (i = 0; i < bp->tx_nr_rings; i++) { 3127 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3128 struct bnxt_ring_struct *ring; 3129 3130 if (txr->tx_push) { 3131 dma_free_coherent(&pdev->dev, bp->tx_push_size, 3132 txr->tx_push, txr->tx_push_mapping); 3133 txr->tx_push = NULL; 3134 } 3135 3136 ring = &txr->tx_ring_struct; 3137 3138 bnxt_free_ring(bp, &ring->ring_mem); 3139 } 3140 } 3141 3142 static int bnxt_alloc_tx_rings(struct bnxt *bp) 3143 { 3144 int i, j, rc; 3145 struct pci_dev *pdev = bp->pdev; 3146 3147 bp->tx_push_size = 0; 3148 if (bp->tx_push_thresh) { 3149 int push_size; 3150 3151 push_size = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) + 3152 bp->tx_push_thresh); 3153 3154 if (push_size > 256) { 3155 push_size = 0; 3156 bp->tx_push_thresh = 0; 3157 } 3158 3159 bp->tx_push_size = push_size; 3160 } 3161 3162 for (i = 0, j = 0; i < bp->tx_nr_rings; i++) { 3163 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3164 struct bnxt_ring_struct *ring; 3165 u8 qidx; 3166 3167 ring = &txr->tx_ring_struct; 3168 3169 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3170 if (rc) 3171 return rc; 3172 3173 ring->grp_idx = txr->bnapi->index; 3174 if (bp->tx_push_size) { 3175 dma_addr_t mapping; 3176 3177 /* One pre-allocated DMA buffer to backup 3178 * TX push operation 3179 */ 3180 txr->tx_push = dma_alloc_coherent(&pdev->dev, 3181 bp->tx_push_size, 3182 &txr->tx_push_mapping, 3183 GFP_KERNEL); 3184 3185 if (!txr->tx_push) 3186 return -ENOMEM; 3187 3188 mapping = txr->tx_push_mapping + 3189 sizeof(struct tx_push_bd); 3190 txr->data_mapping = cpu_to_le64(mapping); 3191 } 3192 qidx = bp->tc_to_qidx[j]; 3193 ring->queue_id = bp->q_info[qidx].queue_id; 3194 if (i < bp->tx_nr_rings_xdp) 3195 continue; 3196 if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1)) 3197 j++; 3198 } 3199 return 0; 3200 } 3201 3202 static void bnxt_free_cp_arrays(struct bnxt_cp_ring_info *cpr) 3203 { 3204 kfree(cpr->cp_desc_ring); 3205 cpr->cp_desc_ring = NULL; 3206 kfree(cpr->cp_desc_mapping); 3207 cpr->cp_desc_mapping = NULL; 3208 } 3209 3210 static int bnxt_alloc_cp_arrays(struct bnxt_cp_ring_info *cpr, int n) 3211 { 3212 cpr->cp_desc_ring = kcalloc(n, sizeof(*cpr->cp_desc_ring), GFP_KERNEL); 3213 if (!cpr->cp_desc_ring) 3214 return -ENOMEM; 3215 cpr->cp_desc_mapping = kcalloc(n, sizeof(*cpr->cp_desc_mapping), 3216 GFP_KERNEL); 3217 if (!cpr->cp_desc_mapping) 3218 return -ENOMEM; 3219 return 0; 3220 } 3221 3222 static void bnxt_free_all_cp_arrays(struct bnxt *bp) 3223 { 3224 int i; 3225 3226 if (!bp->bnapi) 3227 return; 3228 for (i = 0; i < bp->cp_nr_rings; i++) { 3229 struct bnxt_napi *bnapi = bp->bnapi[i]; 3230 3231 if (!bnapi) 3232 continue; 3233 bnxt_free_cp_arrays(&bnapi->cp_ring); 3234 } 3235 } 3236 3237 static int bnxt_alloc_all_cp_arrays(struct bnxt *bp) 3238 { 3239 int i, n = bp->cp_nr_pages; 3240 3241 for (i = 0; i < bp->cp_nr_rings; i++) { 3242 struct bnxt_napi *bnapi = bp->bnapi[i]; 3243 int rc; 3244 3245 if (!bnapi) 3246 continue; 3247 rc = bnxt_alloc_cp_arrays(&bnapi->cp_ring, n); 3248 if (rc) 3249 return rc; 3250 } 3251 return 0; 3252 } 3253 3254 static void bnxt_free_cp_rings(struct bnxt *bp) 3255 { 3256 int i; 3257 3258 if (!bp->bnapi) 3259 return; 3260 3261 for (i = 0; i < bp->cp_nr_rings; i++) { 3262 struct bnxt_napi *bnapi = bp->bnapi[i]; 3263 struct bnxt_cp_ring_info *cpr; 3264 struct bnxt_ring_struct *ring; 3265 int j; 3266 3267 if (!bnapi) 3268 continue; 3269 3270 cpr = &bnapi->cp_ring; 3271 ring = &cpr->cp_ring_struct; 3272 3273 bnxt_free_ring(bp, &ring->ring_mem); 3274 3275 for (j = 0; j < 2; j++) { 3276 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j]; 3277 3278 if (cpr2) { 3279 ring = &cpr2->cp_ring_struct; 3280 bnxt_free_ring(bp, &ring->ring_mem); 3281 bnxt_free_cp_arrays(cpr2); 3282 kfree(cpr2); 3283 cpr->cp_ring_arr[j] = NULL; 3284 } 3285 } 3286 } 3287 } 3288 3289 static struct bnxt_cp_ring_info *bnxt_alloc_cp_sub_ring(struct bnxt *bp) 3290 { 3291 struct bnxt_ring_mem_info *rmem; 3292 struct bnxt_ring_struct *ring; 3293 struct bnxt_cp_ring_info *cpr; 3294 int rc; 3295 3296 cpr = kzalloc(sizeof(*cpr), GFP_KERNEL); 3297 if (!cpr) 3298 return NULL; 3299 3300 rc = bnxt_alloc_cp_arrays(cpr, bp->cp_nr_pages); 3301 if (rc) { 3302 bnxt_free_cp_arrays(cpr); 3303 kfree(cpr); 3304 return NULL; 3305 } 3306 ring = &cpr->cp_ring_struct; 3307 rmem = &ring->ring_mem; 3308 rmem->nr_pages = bp->cp_nr_pages; 3309 rmem->page_size = HW_CMPD_RING_SIZE; 3310 rmem->pg_arr = (void **)cpr->cp_desc_ring; 3311 rmem->dma_arr = cpr->cp_desc_mapping; 3312 rmem->flags = BNXT_RMEM_RING_PTE_FLAG; 3313 rc = bnxt_alloc_ring(bp, rmem); 3314 if (rc) { 3315 bnxt_free_ring(bp, rmem); 3316 bnxt_free_cp_arrays(cpr); 3317 kfree(cpr); 3318 cpr = NULL; 3319 } 3320 return cpr; 3321 } 3322 3323 static int bnxt_alloc_cp_rings(struct bnxt *bp) 3324 { 3325 bool sh = !!(bp->flags & BNXT_FLAG_SHARED_RINGS); 3326 int i, rc, ulp_base_vec, ulp_msix; 3327 3328 ulp_msix = bnxt_get_ulp_msix_num(bp); 3329 ulp_base_vec = bnxt_get_ulp_msix_base(bp); 3330 for (i = 0; i < bp->cp_nr_rings; i++) { 3331 struct bnxt_napi *bnapi = bp->bnapi[i]; 3332 struct bnxt_cp_ring_info *cpr; 3333 struct bnxt_ring_struct *ring; 3334 3335 if (!bnapi) 3336 continue; 3337 3338 cpr = &bnapi->cp_ring; 3339 cpr->bnapi = bnapi; 3340 ring = &cpr->cp_ring_struct; 3341 3342 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3343 if (rc) 3344 return rc; 3345 3346 if (ulp_msix && i >= ulp_base_vec) 3347 ring->map_idx = i + ulp_msix; 3348 else 3349 ring->map_idx = i; 3350 3351 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 3352 continue; 3353 3354 if (i < bp->rx_nr_rings) { 3355 struct bnxt_cp_ring_info *cpr2 = 3356 bnxt_alloc_cp_sub_ring(bp); 3357 3358 cpr->cp_ring_arr[BNXT_RX_HDL] = cpr2; 3359 if (!cpr2) 3360 return -ENOMEM; 3361 cpr2->bnapi = bnapi; 3362 } 3363 if ((sh && i < bp->tx_nr_rings) || 3364 (!sh && i >= bp->rx_nr_rings)) { 3365 struct bnxt_cp_ring_info *cpr2 = 3366 bnxt_alloc_cp_sub_ring(bp); 3367 3368 cpr->cp_ring_arr[BNXT_TX_HDL] = cpr2; 3369 if (!cpr2) 3370 return -ENOMEM; 3371 cpr2->bnapi = bnapi; 3372 } 3373 } 3374 return 0; 3375 } 3376 3377 static void bnxt_init_ring_struct(struct bnxt *bp) 3378 { 3379 int i; 3380 3381 for (i = 0; i < bp->cp_nr_rings; i++) { 3382 struct bnxt_napi *bnapi = bp->bnapi[i]; 3383 struct bnxt_ring_mem_info *rmem; 3384 struct bnxt_cp_ring_info *cpr; 3385 struct bnxt_rx_ring_info *rxr; 3386 struct bnxt_tx_ring_info *txr; 3387 struct bnxt_ring_struct *ring; 3388 3389 if (!bnapi) 3390 continue; 3391 3392 cpr = &bnapi->cp_ring; 3393 ring = &cpr->cp_ring_struct; 3394 rmem = &ring->ring_mem; 3395 rmem->nr_pages = bp->cp_nr_pages; 3396 rmem->page_size = HW_CMPD_RING_SIZE; 3397 rmem->pg_arr = (void **)cpr->cp_desc_ring; 3398 rmem->dma_arr = cpr->cp_desc_mapping; 3399 rmem->vmem_size = 0; 3400 3401 rxr = bnapi->rx_ring; 3402 if (!rxr) 3403 goto skip_rx; 3404 3405 ring = &rxr->rx_ring_struct; 3406 rmem = &ring->ring_mem; 3407 rmem->nr_pages = bp->rx_nr_pages; 3408 rmem->page_size = HW_RXBD_RING_SIZE; 3409 rmem->pg_arr = (void **)rxr->rx_desc_ring; 3410 rmem->dma_arr = rxr->rx_desc_mapping; 3411 rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages; 3412 rmem->vmem = (void **)&rxr->rx_buf_ring; 3413 3414 ring = &rxr->rx_agg_ring_struct; 3415 rmem = &ring->ring_mem; 3416 rmem->nr_pages = bp->rx_agg_nr_pages; 3417 rmem->page_size = HW_RXBD_RING_SIZE; 3418 rmem->pg_arr = (void **)rxr->rx_agg_desc_ring; 3419 rmem->dma_arr = rxr->rx_agg_desc_mapping; 3420 rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages; 3421 rmem->vmem = (void **)&rxr->rx_agg_ring; 3422 3423 skip_rx: 3424 txr = bnapi->tx_ring; 3425 if (!txr) 3426 continue; 3427 3428 ring = &txr->tx_ring_struct; 3429 rmem = &ring->ring_mem; 3430 rmem->nr_pages = bp->tx_nr_pages; 3431 rmem->page_size = HW_RXBD_RING_SIZE; 3432 rmem->pg_arr = (void **)txr->tx_desc_ring; 3433 rmem->dma_arr = txr->tx_desc_mapping; 3434 rmem->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages; 3435 rmem->vmem = (void **)&txr->tx_buf_ring; 3436 } 3437 } 3438 3439 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type) 3440 { 3441 int i; 3442 u32 prod; 3443 struct rx_bd **rx_buf_ring; 3444 3445 rx_buf_ring = (struct rx_bd **)ring->ring_mem.pg_arr; 3446 for (i = 0, prod = 0; i < ring->ring_mem.nr_pages; i++) { 3447 int j; 3448 struct rx_bd *rxbd; 3449 3450 rxbd = rx_buf_ring[i]; 3451 if (!rxbd) 3452 continue; 3453 3454 for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) { 3455 rxbd->rx_bd_len_flags_type = cpu_to_le32(type); 3456 rxbd->rx_bd_opaque = prod; 3457 } 3458 } 3459 } 3460 3461 static int bnxt_alloc_one_rx_ring(struct bnxt *bp, int ring_nr) 3462 { 3463 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 3464 struct net_device *dev = bp->dev; 3465 u32 prod; 3466 int i; 3467 3468 prod = rxr->rx_prod; 3469 for (i = 0; i < bp->rx_ring_size; i++) { 3470 if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL)) { 3471 netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n", 3472 ring_nr, i, bp->rx_ring_size); 3473 break; 3474 } 3475 prod = NEXT_RX(prod); 3476 } 3477 rxr->rx_prod = prod; 3478 3479 if (!(bp->flags & BNXT_FLAG_AGG_RINGS)) 3480 return 0; 3481 3482 prod = rxr->rx_agg_prod; 3483 for (i = 0; i < bp->rx_agg_ring_size; i++) { 3484 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL)) { 3485 netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n", 3486 ring_nr, i, bp->rx_ring_size); 3487 break; 3488 } 3489 prod = NEXT_RX_AGG(prod); 3490 } 3491 rxr->rx_agg_prod = prod; 3492 3493 if (rxr->rx_tpa) { 3494 dma_addr_t mapping; 3495 u8 *data; 3496 3497 for (i = 0; i < bp->max_tpa; i++) { 3498 data = __bnxt_alloc_rx_data(bp, &mapping, GFP_KERNEL); 3499 if (!data) 3500 return -ENOMEM; 3501 3502 rxr->rx_tpa[i].data = data; 3503 rxr->rx_tpa[i].data_ptr = data + bp->rx_offset; 3504 rxr->rx_tpa[i].mapping = mapping; 3505 } 3506 } 3507 return 0; 3508 } 3509 3510 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr) 3511 { 3512 struct bnxt_rx_ring_info *rxr; 3513 struct bnxt_ring_struct *ring; 3514 u32 type; 3515 3516 type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) | 3517 RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP; 3518 3519 if (NET_IP_ALIGN == 2) 3520 type |= RX_BD_FLAGS_SOP; 3521 3522 rxr = &bp->rx_ring[ring_nr]; 3523 ring = &rxr->rx_ring_struct; 3524 bnxt_init_rxbd_pages(ring, type); 3525 3526 if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) { 3527 bpf_prog_add(bp->xdp_prog, 1); 3528 rxr->xdp_prog = bp->xdp_prog; 3529 } 3530 ring->fw_ring_id = INVALID_HW_RING_ID; 3531 3532 ring = &rxr->rx_agg_ring_struct; 3533 ring->fw_ring_id = INVALID_HW_RING_ID; 3534 3535 if ((bp->flags & BNXT_FLAG_AGG_RINGS)) { 3536 type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) | 3537 RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP; 3538 3539 bnxt_init_rxbd_pages(ring, type); 3540 } 3541 3542 return bnxt_alloc_one_rx_ring(bp, ring_nr); 3543 } 3544 3545 static void bnxt_init_cp_rings(struct bnxt *bp) 3546 { 3547 int i, j; 3548 3549 for (i = 0; i < bp->cp_nr_rings; i++) { 3550 struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring; 3551 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 3552 3553 ring->fw_ring_id = INVALID_HW_RING_ID; 3554 cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks; 3555 cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs; 3556 for (j = 0; j < 2; j++) { 3557 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j]; 3558 3559 if (!cpr2) 3560 continue; 3561 3562 ring = &cpr2->cp_ring_struct; 3563 ring->fw_ring_id = INVALID_HW_RING_ID; 3564 cpr2->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks; 3565 cpr2->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs; 3566 } 3567 } 3568 } 3569 3570 static int bnxt_init_rx_rings(struct bnxt *bp) 3571 { 3572 int i, rc = 0; 3573 3574 if (BNXT_RX_PAGE_MODE(bp)) { 3575 bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM; 3576 bp->rx_dma_offset = XDP_PACKET_HEADROOM; 3577 } else { 3578 bp->rx_offset = BNXT_RX_OFFSET; 3579 bp->rx_dma_offset = BNXT_RX_DMA_OFFSET; 3580 } 3581 3582 for (i = 0; i < bp->rx_nr_rings; i++) { 3583 rc = bnxt_init_one_rx_ring(bp, i); 3584 if (rc) 3585 break; 3586 } 3587 3588 return rc; 3589 } 3590 3591 static int bnxt_init_tx_rings(struct bnxt *bp) 3592 { 3593 u16 i; 3594 3595 bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2, 3596 MAX_SKB_FRAGS + 1); 3597 3598 for (i = 0; i < bp->tx_nr_rings; i++) { 3599 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3600 struct bnxt_ring_struct *ring = &txr->tx_ring_struct; 3601 3602 ring->fw_ring_id = INVALID_HW_RING_ID; 3603 } 3604 3605 return 0; 3606 } 3607 3608 static void bnxt_free_ring_grps(struct bnxt *bp) 3609 { 3610 kfree(bp->grp_info); 3611 bp->grp_info = NULL; 3612 } 3613 3614 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init) 3615 { 3616 int i; 3617 3618 if (irq_re_init) { 3619 bp->grp_info = kcalloc(bp->cp_nr_rings, 3620 sizeof(struct bnxt_ring_grp_info), 3621 GFP_KERNEL); 3622 if (!bp->grp_info) 3623 return -ENOMEM; 3624 } 3625 for (i = 0; i < bp->cp_nr_rings; i++) { 3626 if (irq_re_init) 3627 bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID; 3628 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID; 3629 bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID; 3630 bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID; 3631 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID; 3632 } 3633 return 0; 3634 } 3635 3636 static void bnxt_free_vnics(struct bnxt *bp) 3637 { 3638 kfree(bp->vnic_info); 3639 bp->vnic_info = NULL; 3640 bp->nr_vnics = 0; 3641 } 3642 3643 static int bnxt_alloc_vnics(struct bnxt *bp) 3644 { 3645 int num_vnics = 1; 3646 3647 #ifdef CONFIG_RFS_ACCEL 3648 if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS) 3649 num_vnics += bp->rx_nr_rings; 3650 #endif 3651 3652 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 3653 num_vnics++; 3654 3655 bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info), 3656 GFP_KERNEL); 3657 if (!bp->vnic_info) 3658 return -ENOMEM; 3659 3660 bp->nr_vnics = num_vnics; 3661 return 0; 3662 } 3663 3664 static void bnxt_init_vnics(struct bnxt *bp) 3665 { 3666 int i; 3667 3668 for (i = 0; i < bp->nr_vnics; i++) { 3669 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 3670 int j; 3671 3672 vnic->fw_vnic_id = INVALID_HW_RING_ID; 3673 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) 3674 vnic->fw_rss_cos_lb_ctx[j] = INVALID_HW_RING_ID; 3675 3676 vnic->fw_l2_ctx_id = INVALID_HW_RING_ID; 3677 3678 if (bp->vnic_info[i].rss_hash_key) { 3679 if (i == 0) 3680 prandom_bytes(vnic->rss_hash_key, 3681 HW_HASH_KEY_SIZE); 3682 else 3683 memcpy(vnic->rss_hash_key, 3684 bp->vnic_info[0].rss_hash_key, 3685 HW_HASH_KEY_SIZE); 3686 } 3687 } 3688 } 3689 3690 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg) 3691 { 3692 int pages; 3693 3694 pages = ring_size / desc_per_pg; 3695 3696 if (!pages) 3697 return 1; 3698 3699 pages++; 3700 3701 while (pages & (pages - 1)) 3702 pages++; 3703 3704 return pages; 3705 } 3706 3707 void bnxt_set_tpa_flags(struct bnxt *bp) 3708 { 3709 bp->flags &= ~BNXT_FLAG_TPA; 3710 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) 3711 return; 3712 if (bp->dev->features & NETIF_F_LRO) 3713 bp->flags |= BNXT_FLAG_LRO; 3714 else if (bp->dev->features & NETIF_F_GRO_HW) 3715 bp->flags |= BNXT_FLAG_GRO; 3716 } 3717 3718 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must 3719 * be set on entry. 3720 */ 3721 void bnxt_set_ring_params(struct bnxt *bp) 3722 { 3723 u32 ring_size, rx_size, rx_space, max_rx_cmpl; 3724 u32 agg_factor = 0, agg_ring_size = 0; 3725 3726 /* 8 for CRC and VLAN */ 3727 rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8); 3728 3729 rx_space = rx_size + NET_SKB_PAD + 3730 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 3731 3732 bp->rx_copy_thresh = BNXT_RX_COPY_THRESH; 3733 ring_size = bp->rx_ring_size; 3734 bp->rx_agg_ring_size = 0; 3735 bp->rx_agg_nr_pages = 0; 3736 3737 if (bp->flags & BNXT_FLAG_TPA) 3738 agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE); 3739 3740 bp->flags &= ~BNXT_FLAG_JUMBO; 3741 if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) { 3742 u32 jumbo_factor; 3743 3744 bp->flags |= BNXT_FLAG_JUMBO; 3745 jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT; 3746 if (jumbo_factor > agg_factor) 3747 agg_factor = jumbo_factor; 3748 } 3749 if (agg_factor) { 3750 if (ring_size > BNXT_MAX_RX_DESC_CNT_JUM_ENA) { 3751 ring_size = BNXT_MAX_RX_DESC_CNT_JUM_ENA; 3752 netdev_warn(bp->dev, "RX ring size reduced from %d to %d because the jumbo ring is now enabled\n", 3753 bp->rx_ring_size, ring_size); 3754 bp->rx_ring_size = ring_size; 3755 } 3756 agg_ring_size = ring_size * agg_factor; 3757 3758 bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size, 3759 RX_DESC_CNT); 3760 if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) { 3761 u32 tmp = agg_ring_size; 3762 3763 bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES; 3764 agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1; 3765 netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n", 3766 tmp, agg_ring_size); 3767 } 3768 bp->rx_agg_ring_size = agg_ring_size; 3769 bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1; 3770 rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN); 3771 rx_space = rx_size + NET_SKB_PAD + 3772 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 3773 } 3774 3775 bp->rx_buf_use_size = rx_size; 3776 bp->rx_buf_size = rx_space; 3777 3778 bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT); 3779 bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1; 3780 3781 ring_size = bp->tx_ring_size; 3782 bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT); 3783 bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1; 3784 3785 max_rx_cmpl = bp->rx_ring_size; 3786 /* MAX TPA needs to be added because TPA_START completions are 3787 * immediately recycled, so the TPA completions are not bound by 3788 * the RX ring size. 3789 */ 3790 if (bp->flags & BNXT_FLAG_TPA) 3791 max_rx_cmpl += bp->max_tpa; 3792 /* RX and TPA completions are 32-byte, all others are 16-byte */ 3793 ring_size = max_rx_cmpl * 2 + agg_ring_size + bp->tx_ring_size; 3794 bp->cp_ring_size = ring_size; 3795 3796 bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT); 3797 if (bp->cp_nr_pages > MAX_CP_PAGES) { 3798 bp->cp_nr_pages = MAX_CP_PAGES; 3799 bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1; 3800 netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n", 3801 ring_size, bp->cp_ring_size); 3802 } 3803 bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT; 3804 bp->cp_ring_mask = bp->cp_bit - 1; 3805 } 3806 3807 /* Changing allocation mode of RX rings. 3808 * TODO: Update when extending xdp_rxq_info to support allocation modes. 3809 */ 3810 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode) 3811 { 3812 if (page_mode) { 3813 if (bp->dev->mtu > BNXT_MAX_PAGE_MODE_MTU) 3814 return -EOPNOTSUPP; 3815 bp->dev->max_mtu = 3816 min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU); 3817 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 3818 bp->flags |= BNXT_FLAG_NO_AGG_RINGS | BNXT_FLAG_RX_PAGE_MODE; 3819 bp->rx_dir = DMA_BIDIRECTIONAL; 3820 bp->rx_skb_func = bnxt_rx_page_skb; 3821 /* Disable LRO or GRO_HW */ 3822 netdev_update_features(bp->dev); 3823 } else { 3824 bp->dev->max_mtu = bp->max_mtu; 3825 bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE; 3826 bp->rx_dir = DMA_FROM_DEVICE; 3827 bp->rx_skb_func = bnxt_rx_skb; 3828 } 3829 return 0; 3830 } 3831 3832 static void bnxt_free_vnic_attributes(struct bnxt *bp) 3833 { 3834 int i; 3835 struct bnxt_vnic_info *vnic; 3836 struct pci_dev *pdev = bp->pdev; 3837 3838 if (!bp->vnic_info) 3839 return; 3840 3841 for (i = 0; i < bp->nr_vnics; i++) { 3842 vnic = &bp->vnic_info[i]; 3843 3844 kfree(vnic->fw_grp_ids); 3845 vnic->fw_grp_ids = NULL; 3846 3847 kfree(vnic->uc_list); 3848 vnic->uc_list = NULL; 3849 3850 if (vnic->mc_list) { 3851 dma_free_coherent(&pdev->dev, vnic->mc_list_size, 3852 vnic->mc_list, vnic->mc_list_mapping); 3853 vnic->mc_list = NULL; 3854 } 3855 3856 if (vnic->rss_table) { 3857 dma_free_coherent(&pdev->dev, vnic->rss_table_size, 3858 vnic->rss_table, 3859 vnic->rss_table_dma_addr); 3860 vnic->rss_table = NULL; 3861 } 3862 3863 vnic->rss_hash_key = NULL; 3864 vnic->flags = 0; 3865 } 3866 } 3867 3868 static int bnxt_alloc_vnic_attributes(struct bnxt *bp) 3869 { 3870 int i, rc = 0, size; 3871 struct bnxt_vnic_info *vnic; 3872 struct pci_dev *pdev = bp->pdev; 3873 int max_rings; 3874 3875 for (i = 0; i < bp->nr_vnics; i++) { 3876 vnic = &bp->vnic_info[i]; 3877 3878 if (vnic->flags & BNXT_VNIC_UCAST_FLAG) { 3879 int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN; 3880 3881 if (mem_size > 0) { 3882 vnic->uc_list = kmalloc(mem_size, GFP_KERNEL); 3883 if (!vnic->uc_list) { 3884 rc = -ENOMEM; 3885 goto out; 3886 } 3887 } 3888 } 3889 3890 if (vnic->flags & BNXT_VNIC_MCAST_FLAG) { 3891 vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN; 3892 vnic->mc_list = 3893 dma_alloc_coherent(&pdev->dev, 3894 vnic->mc_list_size, 3895 &vnic->mc_list_mapping, 3896 GFP_KERNEL); 3897 if (!vnic->mc_list) { 3898 rc = -ENOMEM; 3899 goto out; 3900 } 3901 } 3902 3903 if (bp->flags & BNXT_FLAG_CHIP_P5) 3904 goto vnic_skip_grps; 3905 3906 if (vnic->flags & BNXT_VNIC_RSS_FLAG) 3907 max_rings = bp->rx_nr_rings; 3908 else 3909 max_rings = 1; 3910 3911 vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL); 3912 if (!vnic->fw_grp_ids) { 3913 rc = -ENOMEM; 3914 goto out; 3915 } 3916 vnic_skip_grps: 3917 if ((bp->flags & BNXT_FLAG_NEW_RSS_CAP) && 3918 !(vnic->flags & BNXT_VNIC_RSS_FLAG)) 3919 continue; 3920 3921 /* Allocate rss table and hash key */ 3922 size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16)); 3923 if (bp->flags & BNXT_FLAG_CHIP_P5) 3924 size = L1_CACHE_ALIGN(BNXT_MAX_RSS_TABLE_SIZE_P5); 3925 3926 vnic->rss_table_size = size + HW_HASH_KEY_SIZE; 3927 vnic->rss_table = dma_alloc_coherent(&pdev->dev, 3928 vnic->rss_table_size, 3929 &vnic->rss_table_dma_addr, 3930 GFP_KERNEL); 3931 if (!vnic->rss_table) { 3932 rc = -ENOMEM; 3933 goto out; 3934 } 3935 3936 vnic->rss_hash_key = ((void *)vnic->rss_table) + size; 3937 vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size; 3938 } 3939 return 0; 3940 3941 out: 3942 return rc; 3943 } 3944 3945 static void bnxt_free_hwrm_resources(struct bnxt *bp) 3946 { 3947 struct pci_dev *pdev = bp->pdev; 3948 3949 if (bp->hwrm_cmd_resp_addr) { 3950 dma_free_coherent(&pdev->dev, PAGE_SIZE, bp->hwrm_cmd_resp_addr, 3951 bp->hwrm_cmd_resp_dma_addr); 3952 bp->hwrm_cmd_resp_addr = NULL; 3953 } 3954 3955 if (bp->hwrm_cmd_kong_resp_addr) { 3956 dma_free_coherent(&pdev->dev, PAGE_SIZE, 3957 bp->hwrm_cmd_kong_resp_addr, 3958 bp->hwrm_cmd_kong_resp_dma_addr); 3959 bp->hwrm_cmd_kong_resp_addr = NULL; 3960 } 3961 } 3962 3963 static int bnxt_alloc_kong_hwrm_resources(struct bnxt *bp) 3964 { 3965 struct pci_dev *pdev = bp->pdev; 3966 3967 if (bp->hwrm_cmd_kong_resp_addr) 3968 return 0; 3969 3970 bp->hwrm_cmd_kong_resp_addr = 3971 dma_alloc_coherent(&pdev->dev, PAGE_SIZE, 3972 &bp->hwrm_cmd_kong_resp_dma_addr, 3973 GFP_KERNEL); 3974 if (!bp->hwrm_cmd_kong_resp_addr) 3975 return -ENOMEM; 3976 3977 return 0; 3978 } 3979 3980 static int bnxt_alloc_hwrm_resources(struct bnxt *bp) 3981 { 3982 struct pci_dev *pdev = bp->pdev; 3983 3984 bp->hwrm_cmd_resp_addr = dma_alloc_coherent(&pdev->dev, PAGE_SIZE, 3985 &bp->hwrm_cmd_resp_dma_addr, 3986 GFP_KERNEL); 3987 if (!bp->hwrm_cmd_resp_addr) 3988 return -ENOMEM; 3989 3990 return 0; 3991 } 3992 3993 static void bnxt_free_hwrm_short_cmd_req(struct bnxt *bp) 3994 { 3995 if (bp->hwrm_short_cmd_req_addr) { 3996 struct pci_dev *pdev = bp->pdev; 3997 3998 dma_free_coherent(&pdev->dev, bp->hwrm_max_ext_req_len, 3999 bp->hwrm_short_cmd_req_addr, 4000 bp->hwrm_short_cmd_req_dma_addr); 4001 bp->hwrm_short_cmd_req_addr = NULL; 4002 } 4003 } 4004 4005 static int bnxt_alloc_hwrm_short_cmd_req(struct bnxt *bp) 4006 { 4007 struct pci_dev *pdev = bp->pdev; 4008 4009 if (bp->hwrm_short_cmd_req_addr) 4010 return 0; 4011 4012 bp->hwrm_short_cmd_req_addr = 4013 dma_alloc_coherent(&pdev->dev, bp->hwrm_max_ext_req_len, 4014 &bp->hwrm_short_cmd_req_dma_addr, 4015 GFP_KERNEL); 4016 if (!bp->hwrm_short_cmd_req_addr) 4017 return -ENOMEM; 4018 4019 return 0; 4020 } 4021 4022 static void bnxt_free_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats) 4023 { 4024 kfree(stats->hw_masks); 4025 stats->hw_masks = NULL; 4026 kfree(stats->sw_stats); 4027 stats->sw_stats = NULL; 4028 if (stats->hw_stats) { 4029 dma_free_coherent(&bp->pdev->dev, stats->len, stats->hw_stats, 4030 stats->hw_stats_map); 4031 stats->hw_stats = NULL; 4032 } 4033 } 4034 4035 static int bnxt_alloc_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats, 4036 bool alloc_masks) 4037 { 4038 stats->hw_stats = dma_alloc_coherent(&bp->pdev->dev, stats->len, 4039 &stats->hw_stats_map, GFP_KERNEL); 4040 if (!stats->hw_stats) 4041 return -ENOMEM; 4042 4043 stats->sw_stats = kzalloc(stats->len, GFP_KERNEL); 4044 if (!stats->sw_stats) 4045 goto stats_mem_err; 4046 4047 if (alloc_masks) { 4048 stats->hw_masks = kzalloc(stats->len, GFP_KERNEL); 4049 if (!stats->hw_masks) 4050 goto stats_mem_err; 4051 } 4052 return 0; 4053 4054 stats_mem_err: 4055 bnxt_free_stats_mem(bp, stats); 4056 return -ENOMEM; 4057 } 4058 4059 static void bnxt_fill_masks(u64 *mask_arr, u64 mask, int count) 4060 { 4061 int i; 4062 4063 for (i = 0; i < count; i++) 4064 mask_arr[i] = mask; 4065 } 4066 4067 static void bnxt_copy_hw_masks(u64 *mask_arr, __le64 *hw_mask_arr, int count) 4068 { 4069 int i; 4070 4071 for (i = 0; i < count; i++) 4072 mask_arr[i] = le64_to_cpu(hw_mask_arr[i]); 4073 } 4074 4075 static int bnxt_hwrm_func_qstat_ext(struct bnxt *bp, 4076 struct bnxt_stats_mem *stats) 4077 { 4078 struct hwrm_func_qstats_ext_output *resp = bp->hwrm_cmd_resp_addr; 4079 struct hwrm_func_qstats_ext_input req = {0}; 4080 __le64 *hw_masks; 4081 int rc; 4082 4083 if (!(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED) || 4084 !(bp->flags & BNXT_FLAG_CHIP_P5)) 4085 return -EOPNOTSUPP; 4086 4087 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QSTATS_EXT, -1, -1); 4088 req.fid = cpu_to_le16(0xffff); 4089 req.flags = FUNC_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK; 4090 mutex_lock(&bp->hwrm_cmd_lock); 4091 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 4092 if (rc) 4093 goto qstat_exit; 4094 4095 hw_masks = &resp->rx_ucast_pkts; 4096 bnxt_copy_hw_masks(stats->hw_masks, hw_masks, stats->len / 8); 4097 4098 qstat_exit: 4099 mutex_unlock(&bp->hwrm_cmd_lock); 4100 return rc; 4101 } 4102 4103 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags); 4104 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags); 4105 4106 static void bnxt_init_stats(struct bnxt *bp) 4107 { 4108 struct bnxt_napi *bnapi = bp->bnapi[0]; 4109 struct bnxt_cp_ring_info *cpr; 4110 struct bnxt_stats_mem *stats; 4111 __le64 *rx_stats, *tx_stats; 4112 int rc, rx_count, tx_count; 4113 u64 *rx_masks, *tx_masks; 4114 u64 mask; 4115 u8 flags; 4116 4117 cpr = &bnapi->cp_ring; 4118 stats = &cpr->stats; 4119 rc = bnxt_hwrm_func_qstat_ext(bp, stats); 4120 if (rc) { 4121 if (bp->flags & BNXT_FLAG_CHIP_P5) 4122 mask = (1ULL << 48) - 1; 4123 else 4124 mask = -1ULL; 4125 bnxt_fill_masks(stats->hw_masks, mask, stats->len / 8); 4126 } 4127 if (bp->flags & BNXT_FLAG_PORT_STATS) { 4128 stats = &bp->port_stats; 4129 rx_stats = stats->hw_stats; 4130 rx_masks = stats->hw_masks; 4131 rx_count = sizeof(struct rx_port_stats) / 8; 4132 tx_stats = rx_stats + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 4133 tx_masks = rx_masks + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 4134 tx_count = sizeof(struct tx_port_stats) / 8; 4135 4136 flags = PORT_QSTATS_REQ_FLAGS_COUNTER_MASK; 4137 rc = bnxt_hwrm_port_qstats(bp, flags); 4138 if (rc) { 4139 mask = (1ULL << 40) - 1; 4140 4141 bnxt_fill_masks(rx_masks, mask, rx_count); 4142 bnxt_fill_masks(tx_masks, mask, tx_count); 4143 } else { 4144 bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count); 4145 bnxt_copy_hw_masks(tx_masks, tx_stats, tx_count); 4146 bnxt_hwrm_port_qstats(bp, 0); 4147 } 4148 } 4149 if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) { 4150 stats = &bp->rx_port_stats_ext; 4151 rx_stats = stats->hw_stats; 4152 rx_masks = stats->hw_masks; 4153 rx_count = sizeof(struct rx_port_stats_ext) / 8; 4154 stats = &bp->tx_port_stats_ext; 4155 tx_stats = stats->hw_stats; 4156 tx_masks = stats->hw_masks; 4157 tx_count = sizeof(struct tx_port_stats_ext) / 8; 4158 4159 flags = PORT_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK; 4160 rc = bnxt_hwrm_port_qstats_ext(bp, flags); 4161 if (rc) { 4162 mask = (1ULL << 40) - 1; 4163 4164 bnxt_fill_masks(rx_masks, mask, rx_count); 4165 if (tx_stats) 4166 bnxt_fill_masks(tx_masks, mask, tx_count); 4167 } else { 4168 bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count); 4169 if (tx_stats) 4170 bnxt_copy_hw_masks(tx_masks, tx_stats, 4171 tx_count); 4172 bnxt_hwrm_port_qstats_ext(bp, 0); 4173 } 4174 } 4175 } 4176 4177 static void bnxt_free_port_stats(struct bnxt *bp) 4178 { 4179 bp->flags &= ~BNXT_FLAG_PORT_STATS; 4180 bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT; 4181 4182 bnxt_free_stats_mem(bp, &bp->port_stats); 4183 bnxt_free_stats_mem(bp, &bp->rx_port_stats_ext); 4184 bnxt_free_stats_mem(bp, &bp->tx_port_stats_ext); 4185 } 4186 4187 static void bnxt_free_ring_stats(struct bnxt *bp) 4188 { 4189 int i; 4190 4191 if (!bp->bnapi) 4192 return; 4193 4194 for (i = 0; i < bp->cp_nr_rings; i++) { 4195 struct bnxt_napi *bnapi = bp->bnapi[i]; 4196 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4197 4198 bnxt_free_stats_mem(bp, &cpr->stats); 4199 } 4200 } 4201 4202 static int bnxt_alloc_stats(struct bnxt *bp) 4203 { 4204 u32 size, i; 4205 int rc; 4206 4207 size = bp->hw_ring_stats_size; 4208 4209 for (i = 0; i < bp->cp_nr_rings; i++) { 4210 struct bnxt_napi *bnapi = bp->bnapi[i]; 4211 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4212 4213 cpr->stats.len = size; 4214 rc = bnxt_alloc_stats_mem(bp, &cpr->stats, !i); 4215 if (rc) 4216 return rc; 4217 4218 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID; 4219 } 4220 4221 if (BNXT_VF(bp) || bp->chip_num == CHIP_NUM_58700) 4222 return 0; 4223 4224 if (bp->port_stats.hw_stats) 4225 goto alloc_ext_stats; 4226 4227 bp->port_stats.len = BNXT_PORT_STATS_SIZE; 4228 rc = bnxt_alloc_stats_mem(bp, &bp->port_stats, true); 4229 if (rc) 4230 return rc; 4231 4232 bp->flags |= BNXT_FLAG_PORT_STATS; 4233 4234 alloc_ext_stats: 4235 /* Display extended statistics only if FW supports it */ 4236 if (bp->hwrm_spec_code < 0x10804 || bp->hwrm_spec_code == 0x10900) 4237 if (!(bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) 4238 return 0; 4239 4240 if (bp->rx_port_stats_ext.hw_stats) 4241 goto alloc_tx_ext_stats; 4242 4243 bp->rx_port_stats_ext.len = sizeof(struct rx_port_stats_ext); 4244 rc = bnxt_alloc_stats_mem(bp, &bp->rx_port_stats_ext, true); 4245 /* Extended stats are optional */ 4246 if (rc) 4247 return 0; 4248 4249 alloc_tx_ext_stats: 4250 if (bp->tx_port_stats_ext.hw_stats) 4251 return 0; 4252 4253 if (bp->hwrm_spec_code >= 0x10902 || 4254 (bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) { 4255 bp->tx_port_stats_ext.len = sizeof(struct tx_port_stats_ext); 4256 rc = bnxt_alloc_stats_mem(bp, &bp->tx_port_stats_ext, true); 4257 /* Extended stats are optional */ 4258 if (rc) 4259 return 0; 4260 } 4261 bp->flags |= BNXT_FLAG_PORT_STATS_EXT; 4262 return 0; 4263 } 4264 4265 static void bnxt_clear_ring_indices(struct bnxt *bp) 4266 { 4267 int i; 4268 4269 if (!bp->bnapi) 4270 return; 4271 4272 for (i = 0; i < bp->cp_nr_rings; i++) { 4273 struct bnxt_napi *bnapi = bp->bnapi[i]; 4274 struct bnxt_cp_ring_info *cpr; 4275 struct bnxt_rx_ring_info *rxr; 4276 struct bnxt_tx_ring_info *txr; 4277 4278 if (!bnapi) 4279 continue; 4280 4281 cpr = &bnapi->cp_ring; 4282 cpr->cp_raw_cons = 0; 4283 4284 txr = bnapi->tx_ring; 4285 if (txr) { 4286 txr->tx_prod = 0; 4287 txr->tx_cons = 0; 4288 } 4289 4290 rxr = bnapi->rx_ring; 4291 if (rxr) { 4292 rxr->rx_prod = 0; 4293 rxr->rx_agg_prod = 0; 4294 rxr->rx_sw_agg_prod = 0; 4295 rxr->rx_next_cons = 0; 4296 } 4297 } 4298 } 4299 4300 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit) 4301 { 4302 #ifdef CONFIG_RFS_ACCEL 4303 int i; 4304 4305 /* Under rtnl_lock and all our NAPIs have been disabled. It's 4306 * safe to delete the hash table. 4307 */ 4308 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) { 4309 struct hlist_head *head; 4310 struct hlist_node *tmp; 4311 struct bnxt_ntuple_filter *fltr; 4312 4313 head = &bp->ntp_fltr_hash_tbl[i]; 4314 hlist_for_each_entry_safe(fltr, tmp, head, hash) { 4315 hlist_del(&fltr->hash); 4316 kfree(fltr); 4317 } 4318 } 4319 if (irq_reinit) { 4320 kfree(bp->ntp_fltr_bmap); 4321 bp->ntp_fltr_bmap = NULL; 4322 } 4323 bp->ntp_fltr_count = 0; 4324 #endif 4325 } 4326 4327 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp) 4328 { 4329 #ifdef CONFIG_RFS_ACCEL 4330 int i, rc = 0; 4331 4332 if (!(bp->flags & BNXT_FLAG_RFS)) 4333 return 0; 4334 4335 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) 4336 INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]); 4337 4338 bp->ntp_fltr_count = 0; 4339 bp->ntp_fltr_bmap = kcalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR), 4340 sizeof(long), 4341 GFP_KERNEL); 4342 4343 if (!bp->ntp_fltr_bmap) 4344 rc = -ENOMEM; 4345 4346 return rc; 4347 #else 4348 return 0; 4349 #endif 4350 } 4351 4352 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init) 4353 { 4354 bnxt_free_vnic_attributes(bp); 4355 bnxt_free_tx_rings(bp); 4356 bnxt_free_rx_rings(bp); 4357 bnxt_free_cp_rings(bp); 4358 bnxt_free_all_cp_arrays(bp); 4359 bnxt_free_ntp_fltrs(bp, irq_re_init); 4360 if (irq_re_init) { 4361 bnxt_free_ring_stats(bp); 4362 if (!(bp->phy_flags & BNXT_PHY_FL_PORT_STATS_NO_RESET) || 4363 test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 4364 bnxt_free_port_stats(bp); 4365 bnxt_free_ring_grps(bp); 4366 bnxt_free_vnics(bp); 4367 kfree(bp->tx_ring_map); 4368 bp->tx_ring_map = NULL; 4369 kfree(bp->tx_ring); 4370 bp->tx_ring = NULL; 4371 kfree(bp->rx_ring); 4372 bp->rx_ring = NULL; 4373 kfree(bp->bnapi); 4374 bp->bnapi = NULL; 4375 } else { 4376 bnxt_clear_ring_indices(bp); 4377 } 4378 } 4379 4380 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init) 4381 { 4382 int i, j, rc, size, arr_size; 4383 void *bnapi; 4384 4385 if (irq_re_init) { 4386 /* Allocate bnapi mem pointer array and mem block for 4387 * all queues 4388 */ 4389 arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) * 4390 bp->cp_nr_rings); 4391 size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi)); 4392 bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL); 4393 if (!bnapi) 4394 return -ENOMEM; 4395 4396 bp->bnapi = bnapi; 4397 bnapi += arr_size; 4398 for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) { 4399 bp->bnapi[i] = bnapi; 4400 bp->bnapi[i]->index = i; 4401 bp->bnapi[i]->bp = bp; 4402 if (bp->flags & BNXT_FLAG_CHIP_P5) { 4403 struct bnxt_cp_ring_info *cpr = 4404 &bp->bnapi[i]->cp_ring; 4405 4406 cpr->cp_ring_struct.ring_mem.flags = 4407 BNXT_RMEM_RING_PTE_FLAG; 4408 } 4409 } 4410 4411 bp->rx_ring = kcalloc(bp->rx_nr_rings, 4412 sizeof(struct bnxt_rx_ring_info), 4413 GFP_KERNEL); 4414 if (!bp->rx_ring) 4415 return -ENOMEM; 4416 4417 for (i = 0; i < bp->rx_nr_rings; i++) { 4418 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 4419 4420 if (bp->flags & BNXT_FLAG_CHIP_P5) { 4421 rxr->rx_ring_struct.ring_mem.flags = 4422 BNXT_RMEM_RING_PTE_FLAG; 4423 rxr->rx_agg_ring_struct.ring_mem.flags = 4424 BNXT_RMEM_RING_PTE_FLAG; 4425 } 4426 rxr->bnapi = bp->bnapi[i]; 4427 bp->bnapi[i]->rx_ring = &bp->rx_ring[i]; 4428 } 4429 4430 bp->tx_ring = kcalloc(bp->tx_nr_rings, 4431 sizeof(struct bnxt_tx_ring_info), 4432 GFP_KERNEL); 4433 if (!bp->tx_ring) 4434 return -ENOMEM; 4435 4436 bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16), 4437 GFP_KERNEL); 4438 4439 if (!bp->tx_ring_map) 4440 return -ENOMEM; 4441 4442 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 4443 j = 0; 4444 else 4445 j = bp->rx_nr_rings; 4446 4447 for (i = 0; i < bp->tx_nr_rings; i++, j++) { 4448 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 4449 4450 if (bp->flags & BNXT_FLAG_CHIP_P5) 4451 txr->tx_ring_struct.ring_mem.flags = 4452 BNXT_RMEM_RING_PTE_FLAG; 4453 txr->bnapi = bp->bnapi[j]; 4454 bp->bnapi[j]->tx_ring = txr; 4455 bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i; 4456 if (i >= bp->tx_nr_rings_xdp) { 4457 txr->txq_index = i - bp->tx_nr_rings_xdp; 4458 bp->bnapi[j]->tx_int = bnxt_tx_int; 4459 } else { 4460 bp->bnapi[j]->flags |= BNXT_NAPI_FLAG_XDP; 4461 bp->bnapi[j]->tx_int = bnxt_tx_int_xdp; 4462 } 4463 } 4464 4465 rc = bnxt_alloc_stats(bp); 4466 if (rc) 4467 goto alloc_mem_err; 4468 bnxt_init_stats(bp); 4469 4470 rc = bnxt_alloc_ntp_fltrs(bp); 4471 if (rc) 4472 goto alloc_mem_err; 4473 4474 rc = bnxt_alloc_vnics(bp); 4475 if (rc) 4476 goto alloc_mem_err; 4477 } 4478 4479 rc = bnxt_alloc_all_cp_arrays(bp); 4480 if (rc) 4481 goto alloc_mem_err; 4482 4483 bnxt_init_ring_struct(bp); 4484 4485 rc = bnxt_alloc_rx_rings(bp); 4486 if (rc) 4487 goto alloc_mem_err; 4488 4489 rc = bnxt_alloc_tx_rings(bp); 4490 if (rc) 4491 goto alloc_mem_err; 4492 4493 rc = bnxt_alloc_cp_rings(bp); 4494 if (rc) 4495 goto alloc_mem_err; 4496 4497 bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG | 4498 BNXT_VNIC_UCAST_FLAG; 4499 rc = bnxt_alloc_vnic_attributes(bp); 4500 if (rc) 4501 goto alloc_mem_err; 4502 return 0; 4503 4504 alloc_mem_err: 4505 bnxt_free_mem(bp, true); 4506 return rc; 4507 } 4508 4509 static void bnxt_disable_int(struct bnxt *bp) 4510 { 4511 int i; 4512 4513 if (!bp->bnapi) 4514 return; 4515 4516 for (i = 0; i < bp->cp_nr_rings; i++) { 4517 struct bnxt_napi *bnapi = bp->bnapi[i]; 4518 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4519 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 4520 4521 if (ring->fw_ring_id != INVALID_HW_RING_ID) 4522 bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons); 4523 } 4524 } 4525 4526 static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n) 4527 { 4528 struct bnxt_napi *bnapi = bp->bnapi[n]; 4529 struct bnxt_cp_ring_info *cpr; 4530 4531 cpr = &bnapi->cp_ring; 4532 return cpr->cp_ring_struct.map_idx; 4533 } 4534 4535 static void bnxt_disable_int_sync(struct bnxt *bp) 4536 { 4537 int i; 4538 4539 if (!bp->irq_tbl) 4540 return; 4541 4542 atomic_inc(&bp->intr_sem); 4543 4544 bnxt_disable_int(bp); 4545 for (i = 0; i < bp->cp_nr_rings; i++) { 4546 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 4547 4548 synchronize_irq(bp->irq_tbl[map_idx].vector); 4549 } 4550 } 4551 4552 static void bnxt_enable_int(struct bnxt *bp) 4553 { 4554 int i; 4555 4556 atomic_set(&bp->intr_sem, 0); 4557 for (i = 0; i < bp->cp_nr_rings; i++) { 4558 struct bnxt_napi *bnapi = bp->bnapi[i]; 4559 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4560 4561 bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons); 4562 } 4563 } 4564 4565 void bnxt_hwrm_cmd_hdr_init(struct bnxt *bp, void *request, u16 req_type, 4566 u16 cmpl_ring, u16 target_id) 4567 { 4568 struct input *req = request; 4569 4570 req->req_type = cpu_to_le16(req_type); 4571 req->cmpl_ring = cpu_to_le16(cmpl_ring); 4572 req->target_id = cpu_to_le16(target_id); 4573 if (bnxt_kong_hwrm_message(bp, req)) 4574 req->resp_addr = cpu_to_le64(bp->hwrm_cmd_kong_resp_dma_addr); 4575 else 4576 req->resp_addr = cpu_to_le64(bp->hwrm_cmd_resp_dma_addr); 4577 } 4578 4579 static int bnxt_hwrm_to_stderr(u32 hwrm_err) 4580 { 4581 switch (hwrm_err) { 4582 case HWRM_ERR_CODE_SUCCESS: 4583 return 0; 4584 case HWRM_ERR_CODE_RESOURCE_LOCKED: 4585 return -EROFS; 4586 case HWRM_ERR_CODE_RESOURCE_ACCESS_DENIED: 4587 return -EACCES; 4588 case HWRM_ERR_CODE_RESOURCE_ALLOC_ERROR: 4589 return -ENOSPC; 4590 case HWRM_ERR_CODE_INVALID_PARAMS: 4591 case HWRM_ERR_CODE_INVALID_FLAGS: 4592 case HWRM_ERR_CODE_INVALID_ENABLES: 4593 case HWRM_ERR_CODE_UNSUPPORTED_TLV: 4594 case HWRM_ERR_CODE_UNSUPPORTED_OPTION_ERR: 4595 return -EINVAL; 4596 case HWRM_ERR_CODE_NO_BUFFER: 4597 return -ENOMEM; 4598 case HWRM_ERR_CODE_HOT_RESET_PROGRESS: 4599 case HWRM_ERR_CODE_BUSY: 4600 return -EAGAIN; 4601 case HWRM_ERR_CODE_CMD_NOT_SUPPORTED: 4602 return -EOPNOTSUPP; 4603 default: 4604 return -EIO; 4605 } 4606 } 4607 4608 static int bnxt_hwrm_do_send_msg(struct bnxt *bp, void *msg, u32 msg_len, 4609 int timeout, bool silent) 4610 { 4611 int i, intr_process, rc, tmo_count; 4612 struct input *req = msg; 4613 u32 *data = msg; 4614 u8 *valid; 4615 u16 cp_ring_id, len = 0; 4616 struct hwrm_err_output *resp = bp->hwrm_cmd_resp_addr; 4617 u16 max_req_len = BNXT_HWRM_MAX_REQ_LEN; 4618 struct hwrm_short_input short_input = {0}; 4619 u32 doorbell_offset = BNXT_GRCPF_REG_CHIMP_COMM_TRIGGER; 4620 u32 bar_offset = BNXT_GRCPF_REG_CHIMP_COMM; 4621 u16 dst = BNXT_HWRM_CHNL_CHIMP; 4622 4623 if (BNXT_NO_FW_ACCESS(bp) && 4624 le16_to_cpu(req->req_type) != HWRM_FUNC_RESET) 4625 return -EBUSY; 4626 4627 if (msg_len > BNXT_HWRM_MAX_REQ_LEN) { 4628 if (msg_len > bp->hwrm_max_ext_req_len || 4629 !bp->hwrm_short_cmd_req_addr) 4630 return -EINVAL; 4631 } 4632 4633 if (bnxt_hwrm_kong_chnl(bp, req)) { 4634 dst = BNXT_HWRM_CHNL_KONG; 4635 bar_offset = BNXT_GRCPF_REG_KONG_COMM; 4636 doorbell_offset = BNXT_GRCPF_REG_KONG_COMM_TRIGGER; 4637 resp = bp->hwrm_cmd_kong_resp_addr; 4638 } 4639 4640 memset(resp, 0, PAGE_SIZE); 4641 cp_ring_id = le16_to_cpu(req->cmpl_ring); 4642 intr_process = (cp_ring_id == INVALID_HW_RING_ID) ? 0 : 1; 4643 4644 req->seq_id = cpu_to_le16(bnxt_get_hwrm_seq_id(bp, dst)); 4645 /* currently supports only one outstanding message */ 4646 if (intr_process) 4647 bp->hwrm_intr_seq_id = le16_to_cpu(req->seq_id); 4648 4649 if ((bp->fw_cap & BNXT_FW_CAP_SHORT_CMD) || 4650 msg_len > BNXT_HWRM_MAX_REQ_LEN) { 4651 void *short_cmd_req = bp->hwrm_short_cmd_req_addr; 4652 u16 max_msg_len; 4653 4654 /* Set boundary for maximum extended request length for short 4655 * cmd format. If passed up from device use the max supported 4656 * internal req length. 4657 */ 4658 max_msg_len = bp->hwrm_max_ext_req_len; 4659 4660 memcpy(short_cmd_req, req, msg_len); 4661 if (msg_len < max_msg_len) 4662 memset(short_cmd_req + msg_len, 0, 4663 max_msg_len - msg_len); 4664 4665 short_input.req_type = req->req_type; 4666 short_input.signature = 4667 cpu_to_le16(SHORT_REQ_SIGNATURE_SHORT_CMD); 4668 short_input.size = cpu_to_le16(msg_len); 4669 short_input.req_addr = 4670 cpu_to_le64(bp->hwrm_short_cmd_req_dma_addr); 4671 4672 data = (u32 *)&short_input; 4673 msg_len = sizeof(short_input); 4674 4675 /* Sync memory write before updating doorbell */ 4676 wmb(); 4677 4678 max_req_len = BNXT_HWRM_SHORT_REQ_LEN; 4679 } 4680 4681 /* Write request msg to hwrm channel */ 4682 __iowrite32_copy(bp->bar0 + bar_offset, data, msg_len / 4); 4683 4684 for (i = msg_len; i < max_req_len; i += 4) 4685 writel(0, bp->bar0 + bar_offset + i); 4686 4687 /* Ring channel doorbell */ 4688 writel(1, bp->bar0 + doorbell_offset); 4689 4690 if (!pci_is_enabled(bp->pdev)) 4691 return -ENODEV; 4692 4693 if (!timeout) 4694 timeout = DFLT_HWRM_CMD_TIMEOUT; 4695 /* Limit timeout to an upper limit */ 4696 timeout = min(timeout, HWRM_CMD_MAX_TIMEOUT); 4697 /* convert timeout to usec */ 4698 timeout *= 1000; 4699 4700 i = 0; 4701 /* Short timeout for the first few iterations: 4702 * number of loops = number of loops for short timeout + 4703 * number of loops for standard timeout. 4704 */ 4705 tmo_count = HWRM_SHORT_TIMEOUT_COUNTER; 4706 timeout = timeout - HWRM_SHORT_MIN_TIMEOUT * HWRM_SHORT_TIMEOUT_COUNTER; 4707 tmo_count += DIV_ROUND_UP(timeout, HWRM_MIN_TIMEOUT); 4708 4709 if (intr_process) { 4710 u16 seq_id = bp->hwrm_intr_seq_id; 4711 4712 /* Wait until hwrm response cmpl interrupt is processed */ 4713 while (bp->hwrm_intr_seq_id != (u16)~seq_id && 4714 i++ < tmo_count) { 4715 /* Abort the wait for completion if the FW health 4716 * check has failed. 4717 */ 4718 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) 4719 return -EBUSY; 4720 /* on first few passes, just barely sleep */ 4721 if (i < HWRM_SHORT_TIMEOUT_COUNTER) { 4722 usleep_range(HWRM_SHORT_MIN_TIMEOUT, 4723 HWRM_SHORT_MAX_TIMEOUT); 4724 } else { 4725 if (HWRM_WAIT_MUST_ABORT(bp, req)) 4726 break; 4727 usleep_range(HWRM_MIN_TIMEOUT, 4728 HWRM_MAX_TIMEOUT); 4729 } 4730 } 4731 4732 if (bp->hwrm_intr_seq_id != (u16)~seq_id) { 4733 if (!silent) 4734 netdev_err(bp->dev, "Resp cmpl intr err msg: 0x%x\n", 4735 le16_to_cpu(req->req_type)); 4736 return -EBUSY; 4737 } 4738 len = le16_to_cpu(resp->resp_len); 4739 valid = ((u8 *)resp) + len - 1; 4740 } else { 4741 int j; 4742 4743 /* Check if response len is updated */ 4744 for (i = 0; i < tmo_count; i++) { 4745 /* Abort the wait for completion if the FW health 4746 * check has failed. 4747 */ 4748 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) 4749 return -EBUSY; 4750 len = le16_to_cpu(resp->resp_len); 4751 if (len) 4752 break; 4753 /* on first few passes, just barely sleep */ 4754 if (i < HWRM_SHORT_TIMEOUT_COUNTER) { 4755 usleep_range(HWRM_SHORT_MIN_TIMEOUT, 4756 HWRM_SHORT_MAX_TIMEOUT); 4757 } else { 4758 if (HWRM_WAIT_MUST_ABORT(bp, req)) 4759 goto timeout_abort; 4760 usleep_range(HWRM_MIN_TIMEOUT, 4761 HWRM_MAX_TIMEOUT); 4762 } 4763 } 4764 4765 if (i >= tmo_count) { 4766 timeout_abort: 4767 if (!silent) 4768 netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d\n", 4769 HWRM_TOTAL_TIMEOUT(i), 4770 le16_to_cpu(req->req_type), 4771 le16_to_cpu(req->seq_id), len); 4772 return -EBUSY; 4773 } 4774 4775 /* Last byte of resp contains valid bit */ 4776 valid = ((u8 *)resp) + len - 1; 4777 for (j = 0; j < HWRM_VALID_BIT_DELAY_USEC; j++) { 4778 /* make sure we read from updated DMA memory */ 4779 dma_rmb(); 4780 if (*valid) 4781 break; 4782 usleep_range(1, 5); 4783 } 4784 4785 if (j >= HWRM_VALID_BIT_DELAY_USEC) { 4786 if (!silent) 4787 netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d v:%d\n", 4788 HWRM_TOTAL_TIMEOUT(i), 4789 le16_to_cpu(req->req_type), 4790 le16_to_cpu(req->seq_id), len, 4791 *valid); 4792 return -EBUSY; 4793 } 4794 } 4795 4796 /* Zero valid bit for compatibility. Valid bit in an older spec 4797 * may become a new field in a newer spec. We must make sure that 4798 * a new field not implemented by old spec will read zero. 4799 */ 4800 *valid = 0; 4801 rc = le16_to_cpu(resp->error_code); 4802 if (rc && !silent) 4803 netdev_err(bp->dev, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n", 4804 le16_to_cpu(resp->req_type), 4805 le16_to_cpu(resp->seq_id), rc); 4806 return bnxt_hwrm_to_stderr(rc); 4807 } 4808 4809 int _hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout) 4810 { 4811 return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, false); 4812 } 4813 4814 int _hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len, 4815 int timeout) 4816 { 4817 return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true); 4818 } 4819 4820 int hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout) 4821 { 4822 int rc; 4823 4824 mutex_lock(&bp->hwrm_cmd_lock); 4825 rc = _hwrm_send_message(bp, msg, msg_len, timeout); 4826 mutex_unlock(&bp->hwrm_cmd_lock); 4827 return rc; 4828 } 4829 4830 int hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len, 4831 int timeout) 4832 { 4833 int rc; 4834 4835 mutex_lock(&bp->hwrm_cmd_lock); 4836 rc = bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true); 4837 mutex_unlock(&bp->hwrm_cmd_lock); 4838 return rc; 4839 } 4840 4841 int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp, unsigned long *bmap, int bmap_size, 4842 bool async_only) 4843 { 4844 struct hwrm_func_drv_rgtr_output *resp = bp->hwrm_cmd_resp_addr; 4845 struct hwrm_func_drv_rgtr_input req = {0}; 4846 DECLARE_BITMAP(async_events_bmap, 256); 4847 u32 *events = (u32 *)async_events_bmap; 4848 u32 flags; 4849 int rc, i; 4850 4851 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1); 4852 4853 req.enables = 4854 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE | 4855 FUNC_DRV_RGTR_REQ_ENABLES_VER | 4856 FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD); 4857 4858 req.os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX); 4859 flags = FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE; 4860 if (bp->fw_cap & BNXT_FW_CAP_HOT_RESET) 4861 flags |= FUNC_DRV_RGTR_REQ_FLAGS_HOT_RESET_SUPPORT; 4862 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) 4863 flags |= FUNC_DRV_RGTR_REQ_FLAGS_ERROR_RECOVERY_SUPPORT | 4864 FUNC_DRV_RGTR_REQ_FLAGS_MASTER_SUPPORT; 4865 req.flags = cpu_to_le32(flags); 4866 req.ver_maj_8b = DRV_VER_MAJ; 4867 req.ver_min_8b = DRV_VER_MIN; 4868 req.ver_upd_8b = DRV_VER_UPD; 4869 req.ver_maj = cpu_to_le16(DRV_VER_MAJ); 4870 req.ver_min = cpu_to_le16(DRV_VER_MIN); 4871 req.ver_upd = cpu_to_le16(DRV_VER_UPD); 4872 4873 if (BNXT_PF(bp)) { 4874 u32 data[8]; 4875 int i; 4876 4877 memset(data, 0, sizeof(data)); 4878 for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) { 4879 u16 cmd = bnxt_vf_req_snif[i]; 4880 unsigned int bit, idx; 4881 4882 idx = cmd / 32; 4883 bit = cmd % 32; 4884 data[idx] |= 1 << bit; 4885 } 4886 4887 for (i = 0; i < 8; i++) 4888 req.vf_req_fwd[i] = cpu_to_le32(data[i]); 4889 4890 req.enables |= 4891 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD); 4892 } 4893 4894 if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE) 4895 req.flags |= cpu_to_le32( 4896 FUNC_DRV_RGTR_REQ_FLAGS_FLOW_HANDLE_64BIT_MODE); 4897 4898 memset(async_events_bmap, 0, sizeof(async_events_bmap)); 4899 for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++) { 4900 u16 event_id = bnxt_async_events_arr[i]; 4901 4902 if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY && 4903 !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 4904 continue; 4905 __set_bit(bnxt_async_events_arr[i], async_events_bmap); 4906 } 4907 if (bmap && bmap_size) { 4908 for (i = 0; i < bmap_size; i++) { 4909 if (test_bit(i, bmap)) 4910 __set_bit(i, async_events_bmap); 4911 } 4912 } 4913 for (i = 0; i < 8; i++) 4914 req.async_event_fwd[i] |= cpu_to_le32(events[i]); 4915 4916 if (async_only) 4917 req.enables = 4918 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD); 4919 4920 mutex_lock(&bp->hwrm_cmd_lock); 4921 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 4922 if (!rc) { 4923 set_bit(BNXT_STATE_DRV_REGISTERED, &bp->state); 4924 if (resp->flags & 4925 cpu_to_le32(FUNC_DRV_RGTR_RESP_FLAGS_IF_CHANGE_SUPPORTED)) 4926 bp->fw_cap |= BNXT_FW_CAP_IF_CHANGE; 4927 } 4928 mutex_unlock(&bp->hwrm_cmd_lock); 4929 return rc; 4930 } 4931 4932 static int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp) 4933 { 4934 struct hwrm_func_drv_unrgtr_input req = {0}; 4935 4936 if (!test_and_clear_bit(BNXT_STATE_DRV_REGISTERED, &bp->state)) 4937 return 0; 4938 4939 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_UNRGTR, -1, -1); 4940 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 4941 } 4942 4943 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type) 4944 { 4945 u32 rc = 0; 4946 struct hwrm_tunnel_dst_port_free_input req = {0}; 4947 4948 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_FREE, -1, -1); 4949 req.tunnel_type = tunnel_type; 4950 4951 switch (tunnel_type) { 4952 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN: 4953 req.tunnel_dst_port_id = cpu_to_le16(bp->vxlan_fw_dst_port_id); 4954 bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID; 4955 break; 4956 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE: 4957 req.tunnel_dst_port_id = cpu_to_le16(bp->nge_fw_dst_port_id); 4958 bp->nge_fw_dst_port_id = INVALID_HW_RING_ID; 4959 break; 4960 default: 4961 break; 4962 } 4963 4964 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 4965 if (rc) 4966 netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n", 4967 rc); 4968 return rc; 4969 } 4970 4971 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port, 4972 u8 tunnel_type) 4973 { 4974 u32 rc = 0; 4975 struct hwrm_tunnel_dst_port_alloc_input req = {0}; 4976 struct hwrm_tunnel_dst_port_alloc_output *resp = bp->hwrm_cmd_resp_addr; 4977 4978 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_ALLOC, -1, -1); 4979 4980 req.tunnel_type = tunnel_type; 4981 req.tunnel_dst_port_val = port; 4982 4983 mutex_lock(&bp->hwrm_cmd_lock); 4984 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 4985 if (rc) { 4986 netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n", 4987 rc); 4988 goto err_out; 4989 } 4990 4991 switch (tunnel_type) { 4992 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN: 4993 bp->vxlan_fw_dst_port_id = 4994 le16_to_cpu(resp->tunnel_dst_port_id); 4995 break; 4996 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE: 4997 bp->nge_fw_dst_port_id = le16_to_cpu(resp->tunnel_dst_port_id); 4998 break; 4999 default: 5000 break; 5001 } 5002 5003 err_out: 5004 mutex_unlock(&bp->hwrm_cmd_lock); 5005 return rc; 5006 } 5007 5008 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id) 5009 { 5010 struct hwrm_cfa_l2_set_rx_mask_input req = {0}; 5011 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5012 5013 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_SET_RX_MASK, -1, -1); 5014 req.vnic_id = cpu_to_le32(vnic->fw_vnic_id); 5015 5016 req.num_mc_entries = cpu_to_le32(vnic->mc_list_count); 5017 req.mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping); 5018 req.mask = cpu_to_le32(vnic->rx_mask); 5019 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5020 } 5021 5022 #ifdef CONFIG_RFS_ACCEL 5023 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp, 5024 struct bnxt_ntuple_filter *fltr) 5025 { 5026 struct hwrm_cfa_ntuple_filter_free_input req = {0}; 5027 5028 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_FREE, -1, -1); 5029 req.ntuple_filter_id = fltr->filter_id; 5030 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5031 } 5032 5033 #define BNXT_NTP_FLTR_FLAGS \ 5034 (CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID | \ 5035 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE | \ 5036 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR | \ 5037 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE | \ 5038 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR | \ 5039 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK | \ 5040 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR | \ 5041 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK | \ 5042 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL | \ 5043 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT | \ 5044 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK | \ 5045 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT | \ 5046 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK | \ 5047 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID) 5048 5049 #define BNXT_NTP_TUNNEL_FLTR_FLAG \ 5050 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE 5051 5052 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp, 5053 struct bnxt_ntuple_filter *fltr) 5054 { 5055 struct hwrm_cfa_ntuple_filter_alloc_input req = {0}; 5056 struct hwrm_cfa_ntuple_filter_alloc_output *resp; 5057 struct flow_keys *keys = &fltr->fkeys; 5058 struct bnxt_vnic_info *vnic; 5059 u32 flags = 0; 5060 int rc = 0; 5061 5062 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_ALLOC, -1, -1); 5063 req.l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx]; 5064 5065 if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) { 5066 flags = CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DEST_RFS_RING_IDX; 5067 req.dst_id = cpu_to_le16(fltr->rxq); 5068 } else { 5069 vnic = &bp->vnic_info[fltr->rxq + 1]; 5070 req.dst_id = cpu_to_le16(vnic->fw_vnic_id); 5071 } 5072 req.flags = cpu_to_le32(flags); 5073 req.enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS); 5074 5075 req.ethertype = htons(ETH_P_IP); 5076 memcpy(req.src_macaddr, fltr->src_mac_addr, ETH_ALEN); 5077 req.ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4; 5078 req.ip_protocol = keys->basic.ip_proto; 5079 5080 if (keys->basic.n_proto == htons(ETH_P_IPV6)) { 5081 int i; 5082 5083 req.ethertype = htons(ETH_P_IPV6); 5084 req.ip_addr_type = 5085 CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6; 5086 *(struct in6_addr *)&req.src_ipaddr[0] = 5087 keys->addrs.v6addrs.src; 5088 *(struct in6_addr *)&req.dst_ipaddr[0] = 5089 keys->addrs.v6addrs.dst; 5090 for (i = 0; i < 4; i++) { 5091 req.src_ipaddr_mask[i] = cpu_to_be32(0xffffffff); 5092 req.dst_ipaddr_mask[i] = cpu_to_be32(0xffffffff); 5093 } 5094 } else { 5095 req.src_ipaddr[0] = keys->addrs.v4addrs.src; 5096 req.src_ipaddr_mask[0] = cpu_to_be32(0xffffffff); 5097 req.dst_ipaddr[0] = keys->addrs.v4addrs.dst; 5098 req.dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff); 5099 } 5100 if (keys->control.flags & FLOW_DIS_ENCAPSULATION) { 5101 req.enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG); 5102 req.tunnel_type = 5103 CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL; 5104 } 5105 5106 req.src_port = keys->ports.src; 5107 req.src_port_mask = cpu_to_be16(0xffff); 5108 req.dst_port = keys->ports.dst; 5109 req.dst_port_mask = cpu_to_be16(0xffff); 5110 5111 mutex_lock(&bp->hwrm_cmd_lock); 5112 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5113 if (!rc) { 5114 resp = bnxt_get_hwrm_resp_addr(bp, &req); 5115 fltr->filter_id = resp->ntuple_filter_id; 5116 } 5117 mutex_unlock(&bp->hwrm_cmd_lock); 5118 return rc; 5119 } 5120 #endif 5121 5122 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx, 5123 u8 *mac_addr) 5124 { 5125 u32 rc = 0; 5126 struct hwrm_cfa_l2_filter_alloc_input req = {0}; 5127 struct hwrm_cfa_l2_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr; 5128 5129 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_ALLOC, -1, -1); 5130 req.flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX); 5131 if (!BNXT_CHIP_TYPE_NITRO_A0(bp)) 5132 req.flags |= 5133 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST); 5134 req.dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id); 5135 req.enables = 5136 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR | 5137 CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID | 5138 CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK); 5139 memcpy(req.l2_addr, mac_addr, ETH_ALEN); 5140 req.l2_addr_mask[0] = 0xff; 5141 req.l2_addr_mask[1] = 0xff; 5142 req.l2_addr_mask[2] = 0xff; 5143 req.l2_addr_mask[3] = 0xff; 5144 req.l2_addr_mask[4] = 0xff; 5145 req.l2_addr_mask[5] = 0xff; 5146 5147 mutex_lock(&bp->hwrm_cmd_lock); 5148 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5149 if (!rc) 5150 bp->vnic_info[vnic_id].fw_l2_filter_id[idx] = 5151 resp->l2_filter_id; 5152 mutex_unlock(&bp->hwrm_cmd_lock); 5153 return rc; 5154 } 5155 5156 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp) 5157 { 5158 u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */ 5159 int rc = 0; 5160 5161 /* Any associated ntuple filters will also be cleared by firmware. */ 5162 mutex_lock(&bp->hwrm_cmd_lock); 5163 for (i = 0; i < num_of_vnics; i++) { 5164 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 5165 5166 for (j = 0; j < vnic->uc_filter_count; j++) { 5167 struct hwrm_cfa_l2_filter_free_input req = {0}; 5168 5169 bnxt_hwrm_cmd_hdr_init(bp, &req, 5170 HWRM_CFA_L2_FILTER_FREE, -1, -1); 5171 5172 req.l2_filter_id = vnic->fw_l2_filter_id[j]; 5173 5174 rc = _hwrm_send_message(bp, &req, sizeof(req), 5175 HWRM_CMD_TIMEOUT); 5176 } 5177 vnic->uc_filter_count = 0; 5178 } 5179 mutex_unlock(&bp->hwrm_cmd_lock); 5180 5181 return rc; 5182 } 5183 5184 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags) 5185 { 5186 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5187 u16 max_aggs = VNIC_TPA_CFG_REQ_MAX_AGGS_MAX; 5188 struct hwrm_vnic_tpa_cfg_input req = {0}; 5189 5190 if (vnic->fw_vnic_id == INVALID_HW_RING_ID) 5191 return 0; 5192 5193 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_TPA_CFG, -1, -1); 5194 5195 if (tpa_flags) { 5196 u16 mss = bp->dev->mtu - 40; 5197 u32 nsegs, n, segs = 0, flags; 5198 5199 flags = VNIC_TPA_CFG_REQ_FLAGS_TPA | 5200 VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA | 5201 VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE | 5202 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN | 5203 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ; 5204 if (tpa_flags & BNXT_FLAG_GRO) 5205 flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO; 5206 5207 req.flags = cpu_to_le32(flags); 5208 5209 req.enables = 5210 cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS | 5211 VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS | 5212 VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN); 5213 5214 /* Number of segs are log2 units, and first packet is not 5215 * included as part of this units. 5216 */ 5217 if (mss <= BNXT_RX_PAGE_SIZE) { 5218 n = BNXT_RX_PAGE_SIZE / mss; 5219 nsegs = (MAX_SKB_FRAGS - 1) * n; 5220 } else { 5221 n = mss / BNXT_RX_PAGE_SIZE; 5222 if (mss & (BNXT_RX_PAGE_SIZE - 1)) 5223 n++; 5224 nsegs = (MAX_SKB_FRAGS - n) / n; 5225 } 5226 5227 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5228 segs = MAX_TPA_SEGS_P5; 5229 max_aggs = bp->max_tpa; 5230 } else { 5231 segs = ilog2(nsegs); 5232 } 5233 req.max_agg_segs = cpu_to_le16(segs); 5234 req.max_aggs = cpu_to_le16(max_aggs); 5235 5236 req.min_agg_len = cpu_to_le32(512); 5237 } 5238 req.vnic_id = cpu_to_le16(vnic->fw_vnic_id); 5239 5240 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5241 } 5242 5243 static u16 bnxt_cp_ring_from_grp(struct bnxt *bp, struct bnxt_ring_struct *ring) 5244 { 5245 struct bnxt_ring_grp_info *grp_info; 5246 5247 grp_info = &bp->grp_info[ring->grp_idx]; 5248 return grp_info->cp_fw_ring_id; 5249 } 5250 5251 static u16 bnxt_cp_ring_for_rx(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 5252 { 5253 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5254 struct bnxt_napi *bnapi = rxr->bnapi; 5255 struct bnxt_cp_ring_info *cpr; 5256 5257 cpr = bnapi->cp_ring.cp_ring_arr[BNXT_RX_HDL]; 5258 return cpr->cp_ring_struct.fw_ring_id; 5259 } else { 5260 return bnxt_cp_ring_from_grp(bp, &rxr->rx_ring_struct); 5261 } 5262 } 5263 5264 static u16 bnxt_cp_ring_for_tx(struct bnxt *bp, struct bnxt_tx_ring_info *txr) 5265 { 5266 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5267 struct bnxt_napi *bnapi = txr->bnapi; 5268 struct bnxt_cp_ring_info *cpr; 5269 5270 cpr = bnapi->cp_ring.cp_ring_arr[BNXT_TX_HDL]; 5271 return cpr->cp_ring_struct.fw_ring_id; 5272 } else { 5273 return bnxt_cp_ring_from_grp(bp, &txr->tx_ring_struct); 5274 } 5275 } 5276 5277 static int bnxt_alloc_rss_indir_tbl(struct bnxt *bp) 5278 { 5279 int entries; 5280 5281 if (bp->flags & BNXT_FLAG_CHIP_P5) 5282 entries = BNXT_MAX_RSS_TABLE_ENTRIES_P5; 5283 else 5284 entries = HW_HASH_INDEX_SIZE; 5285 5286 bp->rss_indir_tbl_entries = entries; 5287 bp->rss_indir_tbl = kmalloc_array(entries, sizeof(*bp->rss_indir_tbl), 5288 GFP_KERNEL); 5289 if (!bp->rss_indir_tbl) 5290 return -ENOMEM; 5291 return 0; 5292 } 5293 5294 static void bnxt_set_dflt_rss_indir_tbl(struct bnxt *bp) 5295 { 5296 u16 max_rings, max_entries, pad, i; 5297 5298 if (!bp->rx_nr_rings) 5299 return; 5300 5301 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 5302 max_rings = bp->rx_nr_rings - 1; 5303 else 5304 max_rings = bp->rx_nr_rings; 5305 5306 max_entries = bnxt_get_rxfh_indir_size(bp->dev); 5307 5308 for (i = 0; i < max_entries; i++) 5309 bp->rss_indir_tbl[i] = ethtool_rxfh_indir_default(i, max_rings); 5310 5311 pad = bp->rss_indir_tbl_entries - max_entries; 5312 if (pad) 5313 memset(&bp->rss_indir_tbl[i], 0, pad * sizeof(u16)); 5314 } 5315 5316 static u16 bnxt_get_max_rss_ring(struct bnxt *bp) 5317 { 5318 u16 i, tbl_size, max_ring = 0; 5319 5320 if (!bp->rss_indir_tbl) 5321 return 0; 5322 5323 tbl_size = bnxt_get_rxfh_indir_size(bp->dev); 5324 for (i = 0; i < tbl_size; i++) 5325 max_ring = max(max_ring, bp->rss_indir_tbl[i]); 5326 return max_ring; 5327 } 5328 5329 int bnxt_get_nr_rss_ctxs(struct bnxt *bp, int rx_rings) 5330 { 5331 if (bp->flags & BNXT_FLAG_CHIP_P5) 5332 return DIV_ROUND_UP(rx_rings, BNXT_RSS_TABLE_ENTRIES_P5); 5333 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 5334 return 2; 5335 return 1; 5336 } 5337 5338 static void __bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic) 5339 { 5340 bool no_rss = !(vnic->flags & BNXT_VNIC_RSS_FLAG); 5341 u16 i, j; 5342 5343 /* Fill the RSS indirection table with ring group ids */ 5344 for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++) { 5345 if (!no_rss) 5346 j = bp->rss_indir_tbl[i]; 5347 vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]); 5348 } 5349 } 5350 5351 static void __bnxt_fill_hw_rss_tbl_p5(struct bnxt *bp, 5352 struct bnxt_vnic_info *vnic) 5353 { 5354 __le16 *ring_tbl = vnic->rss_table; 5355 struct bnxt_rx_ring_info *rxr; 5356 u16 tbl_size, i; 5357 5358 tbl_size = bnxt_get_rxfh_indir_size(bp->dev); 5359 5360 for (i = 0; i < tbl_size; i++) { 5361 u16 ring_id, j; 5362 5363 j = bp->rss_indir_tbl[i]; 5364 rxr = &bp->rx_ring[j]; 5365 5366 ring_id = rxr->rx_ring_struct.fw_ring_id; 5367 *ring_tbl++ = cpu_to_le16(ring_id); 5368 ring_id = bnxt_cp_ring_for_rx(bp, rxr); 5369 *ring_tbl++ = cpu_to_le16(ring_id); 5370 } 5371 } 5372 5373 static void bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic) 5374 { 5375 if (bp->flags & BNXT_FLAG_CHIP_P5) 5376 __bnxt_fill_hw_rss_tbl_p5(bp, vnic); 5377 else 5378 __bnxt_fill_hw_rss_tbl(bp, vnic); 5379 } 5380 5381 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss) 5382 { 5383 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5384 struct hwrm_vnic_rss_cfg_input req = {0}; 5385 5386 if ((bp->flags & BNXT_FLAG_CHIP_P5) || 5387 vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID) 5388 return 0; 5389 5390 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1); 5391 if (set_rss) { 5392 bnxt_fill_hw_rss_tbl(bp, vnic); 5393 req.hash_type = cpu_to_le32(bp->rss_hash_cfg); 5394 req.hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT; 5395 req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr); 5396 req.hash_key_tbl_addr = 5397 cpu_to_le64(vnic->rss_hash_key_dma_addr); 5398 } 5399 req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 5400 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5401 } 5402 5403 static int bnxt_hwrm_vnic_set_rss_p5(struct bnxt *bp, u16 vnic_id, bool set_rss) 5404 { 5405 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5406 struct hwrm_vnic_rss_cfg_input req = {0}; 5407 dma_addr_t ring_tbl_map; 5408 u32 i, nr_ctxs; 5409 5410 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1); 5411 req.vnic_id = cpu_to_le16(vnic->fw_vnic_id); 5412 if (!set_rss) { 5413 hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5414 return 0; 5415 } 5416 bnxt_fill_hw_rss_tbl(bp, vnic); 5417 req.hash_type = cpu_to_le32(bp->rss_hash_cfg); 5418 req.hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT; 5419 req.hash_key_tbl_addr = cpu_to_le64(vnic->rss_hash_key_dma_addr); 5420 ring_tbl_map = vnic->rss_table_dma_addr; 5421 nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings); 5422 for (i = 0; i < nr_ctxs; ring_tbl_map += BNXT_RSS_TABLE_SIZE_P5, i++) { 5423 int rc; 5424 5425 req.ring_grp_tbl_addr = cpu_to_le64(ring_tbl_map); 5426 req.ring_table_pair_index = i; 5427 req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[i]); 5428 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5429 if (rc) 5430 return rc; 5431 } 5432 return 0; 5433 } 5434 5435 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id) 5436 { 5437 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5438 struct hwrm_vnic_plcmodes_cfg_input req = {0}; 5439 5440 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_PLCMODES_CFG, -1, -1); 5441 req.flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT | 5442 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 | 5443 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6); 5444 req.enables = 5445 cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID | 5446 VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID); 5447 /* thresholds not implemented in firmware yet */ 5448 req.jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh); 5449 req.hds_threshold = cpu_to_le16(bp->rx_copy_thresh); 5450 req.vnic_id = cpu_to_le32(vnic->fw_vnic_id); 5451 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5452 } 5453 5454 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id, 5455 u16 ctx_idx) 5456 { 5457 struct hwrm_vnic_rss_cos_lb_ctx_free_input req = {0}; 5458 5459 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_FREE, -1, -1); 5460 req.rss_cos_lb_ctx_id = 5461 cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]); 5462 5463 hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5464 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID; 5465 } 5466 5467 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp) 5468 { 5469 int i, j; 5470 5471 for (i = 0; i < bp->nr_vnics; i++) { 5472 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 5473 5474 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) { 5475 if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID) 5476 bnxt_hwrm_vnic_ctx_free_one(bp, i, j); 5477 } 5478 } 5479 bp->rsscos_nr_ctxs = 0; 5480 } 5481 5482 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx) 5483 { 5484 int rc; 5485 struct hwrm_vnic_rss_cos_lb_ctx_alloc_input req = {0}; 5486 struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp = 5487 bp->hwrm_cmd_resp_addr; 5488 5489 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC, -1, 5490 -1); 5491 5492 mutex_lock(&bp->hwrm_cmd_lock); 5493 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5494 if (!rc) 5495 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = 5496 le16_to_cpu(resp->rss_cos_lb_ctx_id); 5497 mutex_unlock(&bp->hwrm_cmd_lock); 5498 5499 return rc; 5500 } 5501 5502 static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp) 5503 { 5504 if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP) 5505 return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE; 5506 return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE; 5507 } 5508 5509 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id) 5510 { 5511 unsigned int ring = 0, grp_idx; 5512 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5513 struct hwrm_vnic_cfg_input req = {0}; 5514 u16 def_vlan = 0; 5515 5516 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_CFG, -1, -1); 5517 5518 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5519 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0]; 5520 5521 req.default_rx_ring_id = 5522 cpu_to_le16(rxr->rx_ring_struct.fw_ring_id); 5523 req.default_cmpl_ring_id = 5524 cpu_to_le16(bnxt_cp_ring_for_rx(bp, rxr)); 5525 req.enables = 5526 cpu_to_le32(VNIC_CFG_REQ_ENABLES_DEFAULT_RX_RING_ID | 5527 VNIC_CFG_REQ_ENABLES_DEFAULT_CMPL_RING_ID); 5528 goto vnic_mru; 5529 } 5530 req.enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP); 5531 /* Only RSS support for now TBD: COS & LB */ 5532 if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) { 5533 req.rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 5534 req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE | 5535 VNIC_CFG_REQ_ENABLES_MRU); 5536 } else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) { 5537 req.rss_rule = 5538 cpu_to_le16(bp->vnic_info[0].fw_rss_cos_lb_ctx[0]); 5539 req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE | 5540 VNIC_CFG_REQ_ENABLES_MRU); 5541 req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE); 5542 } else { 5543 req.rss_rule = cpu_to_le16(0xffff); 5544 } 5545 5546 if (BNXT_CHIP_TYPE_NITRO_A0(bp) && 5547 (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) { 5548 req.cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]); 5549 req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE); 5550 } else { 5551 req.cos_rule = cpu_to_le16(0xffff); 5552 } 5553 5554 if (vnic->flags & BNXT_VNIC_RSS_FLAG) 5555 ring = 0; 5556 else if (vnic->flags & BNXT_VNIC_RFS_FLAG) 5557 ring = vnic_id - 1; 5558 else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp)) 5559 ring = bp->rx_nr_rings - 1; 5560 5561 grp_idx = bp->rx_ring[ring].bnapi->index; 5562 req.dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id); 5563 req.lb_rule = cpu_to_le16(0xffff); 5564 vnic_mru: 5565 req.mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + VLAN_HLEN); 5566 5567 req.vnic_id = cpu_to_le16(vnic->fw_vnic_id); 5568 #ifdef CONFIG_BNXT_SRIOV 5569 if (BNXT_VF(bp)) 5570 def_vlan = bp->vf.vlan; 5571 #endif 5572 if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan) 5573 req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE); 5574 if (!vnic_id && bnxt_ulp_registered(bp->edev, BNXT_ROCE_ULP)) 5575 req.flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp)); 5576 5577 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5578 } 5579 5580 static void bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id) 5581 { 5582 if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) { 5583 struct hwrm_vnic_free_input req = {0}; 5584 5585 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_FREE, -1, -1); 5586 req.vnic_id = 5587 cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id); 5588 5589 hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5590 bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID; 5591 } 5592 } 5593 5594 static void bnxt_hwrm_vnic_free(struct bnxt *bp) 5595 { 5596 u16 i; 5597 5598 for (i = 0; i < bp->nr_vnics; i++) 5599 bnxt_hwrm_vnic_free_one(bp, i); 5600 } 5601 5602 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id, 5603 unsigned int start_rx_ring_idx, 5604 unsigned int nr_rings) 5605 { 5606 int rc = 0; 5607 unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings; 5608 struct hwrm_vnic_alloc_input req = {0}; 5609 struct hwrm_vnic_alloc_output *resp = bp->hwrm_cmd_resp_addr; 5610 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5611 5612 if (bp->flags & BNXT_FLAG_CHIP_P5) 5613 goto vnic_no_ring_grps; 5614 5615 /* map ring groups to this vnic */ 5616 for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) { 5617 grp_idx = bp->rx_ring[i].bnapi->index; 5618 if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) { 5619 netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n", 5620 j, nr_rings); 5621 break; 5622 } 5623 vnic->fw_grp_ids[j] = bp->grp_info[grp_idx].fw_grp_id; 5624 } 5625 5626 vnic_no_ring_grps: 5627 for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++) 5628 vnic->fw_rss_cos_lb_ctx[i] = INVALID_HW_RING_ID; 5629 if (vnic_id == 0) 5630 req.flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT); 5631 5632 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_ALLOC, -1, -1); 5633 5634 mutex_lock(&bp->hwrm_cmd_lock); 5635 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5636 if (!rc) 5637 vnic->fw_vnic_id = le32_to_cpu(resp->vnic_id); 5638 mutex_unlock(&bp->hwrm_cmd_lock); 5639 return rc; 5640 } 5641 5642 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp) 5643 { 5644 struct hwrm_vnic_qcaps_output *resp = bp->hwrm_cmd_resp_addr; 5645 struct hwrm_vnic_qcaps_input req = {0}; 5646 int rc; 5647 5648 bp->hw_ring_stats_size = sizeof(struct ctx_hw_stats); 5649 bp->flags &= ~(BNXT_FLAG_NEW_RSS_CAP | BNXT_FLAG_ROCE_MIRROR_CAP); 5650 if (bp->hwrm_spec_code < 0x10600) 5651 return 0; 5652 5653 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_QCAPS, -1, -1); 5654 mutex_lock(&bp->hwrm_cmd_lock); 5655 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5656 if (!rc) { 5657 u32 flags = le32_to_cpu(resp->flags); 5658 5659 if (!(bp->flags & BNXT_FLAG_CHIP_P5) && 5660 (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP)) 5661 bp->flags |= BNXT_FLAG_NEW_RSS_CAP; 5662 if (flags & 5663 VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP) 5664 bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP; 5665 5666 /* Older P5 fw before EXT_HW_STATS support did not set 5667 * VLAN_STRIP_CAP properly. 5668 */ 5669 if ((flags & VNIC_QCAPS_RESP_FLAGS_VLAN_STRIP_CAP) || 5670 (BNXT_CHIP_P5_THOR(bp) && 5671 !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))) 5672 bp->fw_cap |= BNXT_FW_CAP_VLAN_RX_STRIP; 5673 bp->max_tpa_v2 = le16_to_cpu(resp->max_aggs_supported); 5674 if (bp->max_tpa_v2) { 5675 if (BNXT_CHIP_P5_THOR(bp)) 5676 bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5; 5677 else 5678 bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5_SR2; 5679 } 5680 } 5681 mutex_unlock(&bp->hwrm_cmd_lock); 5682 return rc; 5683 } 5684 5685 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp) 5686 { 5687 u16 i; 5688 u32 rc = 0; 5689 5690 if (bp->flags & BNXT_FLAG_CHIP_P5) 5691 return 0; 5692 5693 mutex_lock(&bp->hwrm_cmd_lock); 5694 for (i = 0; i < bp->rx_nr_rings; i++) { 5695 struct hwrm_ring_grp_alloc_input req = {0}; 5696 struct hwrm_ring_grp_alloc_output *resp = 5697 bp->hwrm_cmd_resp_addr; 5698 unsigned int grp_idx = bp->rx_ring[i].bnapi->index; 5699 5700 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_ALLOC, -1, -1); 5701 5702 req.cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id); 5703 req.rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id); 5704 req.ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id); 5705 req.sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx); 5706 5707 rc = _hwrm_send_message(bp, &req, sizeof(req), 5708 HWRM_CMD_TIMEOUT); 5709 if (rc) 5710 break; 5711 5712 bp->grp_info[grp_idx].fw_grp_id = 5713 le32_to_cpu(resp->ring_group_id); 5714 } 5715 mutex_unlock(&bp->hwrm_cmd_lock); 5716 return rc; 5717 } 5718 5719 static void bnxt_hwrm_ring_grp_free(struct bnxt *bp) 5720 { 5721 u16 i; 5722 struct hwrm_ring_grp_free_input req = {0}; 5723 5724 if (!bp->grp_info || (bp->flags & BNXT_FLAG_CHIP_P5)) 5725 return; 5726 5727 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_FREE, -1, -1); 5728 5729 mutex_lock(&bp->hwrm_cmd_lock); 5730 for (i = 0; i < bp->cp_nr_rings; i++) { 5731 if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID) 5732 continue; 5733 req.ring_group_id = 5734 cpu_to_le32(bp->grp_info[i].fw_grp_id); 5735 5736 _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5737 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID; 5738 } 5739 mutex_unlock(&bp->hwrm_cmd_lock); 5740 } 5741 5742 static int hwrm_ring_alloc_send_msg(struct bnxt *bp, 5743 struct bnxt_ring_struct *ring, 5744 u32 ring_type, u32 map_index) 5745 { 5746 int rc = 0, err = 0; 5747 struct hwrm_ring_alloc_input req = {0}; 5748 struct hwrm_ring_alloc_output *resp = bp->hwrm_cmd_resp_addr; 5749 struct bnxt_ring_mem_info *rmem = &ring->ring_mem; 5750 struct bnxt_ring_grp_info *grp_info; 5751 u16 ring_id; 5752 5753 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_ALLOC, -1, -1); 5754 5755 req.enables = 0; 5756 if (rmem->nr_pages > 1) { 5757 req.page_tbl_addr = cpu_to_le64(rmem->pg_tbl_map); 5758 /* Page size is in log2 units */ 5759 req.page_size = BNXT_PAGE_SHIFT; 5760 req.page_tbl_depth = 1; 5761 } else { 5762 req.page_tbl_addr = cpu_to_le64(rmem->dma_arr[0]); 5763 } 5764 req.fbo = 0; 5765 /* Association of ring index with doorbell index and MSIX number */ 5766 req.logical_id = cpu_to_le16(map_index); 5767 5768 switch (ring_type) { 5769 case HWRM_RING_ALLOC_TX: { 5770 struct bnxt_tx_ring_info *txr; 5771 5772 txr = container_of(ring, struct bnxt_tx_ring_info, 5773 tx_ring_struct); 5774 req.ring_type = RING_ALLOC_REQ_RING_TYPE_TX; 5775 /* Association of transmit ring with completion ring */ 5776 grp_info = &bp->grp_info[ring->grp_idx]; 5777 req.cmpl_ring_id = cpu_to_le16(bnxt_cp_ring_for_tx(bp, txr)); 5778 req.length = cpu_to_le32(bp->tx_ring_mask + 1); 5779 req.stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 5780 req.queue_id = cpu_to_le16(ring->queue_id); 5781 break; 5782 } 5783 case HWRM_RING_ALLOC_RX: 5784 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX; 5785 req.length = cpu_to_le32(bp->rx_ring_mask + 1); 5786 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5787 u16 flags = 0; 5788 5789 /* Association of rx ring with stats context */ 5790 grp_info = &bp->grp_info[ring->grp_idx]; 5791 req.rx_buf_size = cpu_to_le16(bp->rx_buf_use_size); 5792 req.stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 5793 req.enables |= cpu_to_le32( 5794 RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID); 5795 if (NET_IP_ALIGN == 2) 5796 flags = RING_ALLOC_REQ_FLAGS_RX_SOP_PAD; 5797 req.flags = cpu_to_le16(flags); 5798 } 5799 break; 5800 case HWRM_RING_ALLOC_AGG: 5801 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5802 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX_AGG; 5803 /* Association of agg ring with rx ring */ 5804 grp_info = &bp->grp_info[ring->grp_idx]; 5805 req.rx_ring_id = cpu_to_le16(grp_info->rx_fw_ring_id); 5806 req.rx_buf_size = cpu_to_le16(BNXT_RX_PAGE_SIZE); 5807 req.stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 5808 req.enables |= cpu_to_le32( 5809 RING_ALLOC_REQ_ENABLES_RX_RING_ID_VALID | 5810 RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID); 5811 } else { 5812 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX; 5813 } 5814 req.length = cpu_to_le32(bp->rx_agg_ring_mask + 1); 5815 break; 5816 case HWRM_RING_ALLOC_CMPL: 5817 req.ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL; 5818 req.length = cpu_to_le32(bp->cp_ring_mask + 1); 5819 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5820 /* Association of cp ring with nq */ 5821 grp_info = &bp->grp_info[map_index]; 5822 req.nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id); 5823 req.cq_handle = cpu_to_le64(ring->handle); 5824 req.enables |= cpu_to_le32( 5825 RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID); 5826 } else if (bp->flags & BNXT_FLAG_USING_MSIX) { 5827 req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX; 5828 } 5829 break; 5830 case HWRM_RING_ALLOC_NQ: 5831 req.ring_type = RING_ALLOC_REQ_RING_TYPE_NQ; 5832 req.length = cpu_to_le32(bp->cp_ring_mask + 1); 5833 if (bp->flags & BNXT_FLAG_USING_MSIX) 5834 req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX; 5835 break; 5836 default: 5837 netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n", 5838 ring_type); 5839 return -1; 5840 } 5841 5842 mutex_lock(&bp->hwrm_cmd_lock); 5843 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5844 err = le16_to_cpu(resp->error_code); 5845 ring_id = le16_to_cpu(resp->ring_id); 5846 mutex_unlock(&bp->hwrm_cmd_lock); 5847 5848 if (rc || err) { 5849 netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n", 5850 ring_type, rc, err); 5851 return -EIO; 5852 } 5853 ring->fw_ring_id = ring_id; 5854 return rc; 5855 } 5856 5857 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx) 5858 { 5859 int rc; 5860 5861 if (BNXT_PF(bp)) { 5862 struct hwrm_func_cfg_input req = {0}; 5863 5864 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1); 5865 req.fid = cpu_to_le16(0xffff); 5866 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR); 5867 req.async_event_cr = cpu_to_le16(idx); 5868 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5869 } else { 5870 struct hwrm_func_vf_cfg_input req = {0}; 5871 5872 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_CFG, -1, -1); 5873 req.enables = 5874 cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR); 5875 req.async_event_cr = cpu_to_le16(idx); 5876 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5877 } 5878 return rc; 5879 } 5880 5881 static void bnxt_set_db(struct bnxt *bp, struct bnxt_db_info *db, u32 ring_type, 5882 u32 map_idx, u32 xid) 5883 { 5884 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5885 if (BNXT_PF(bp)) 5886 db->doorbell = bp->bar1 + DB_PF_OFFSET_P5; 5887 else 5888 db->doorbell = bp->bar1 + DB_VF_OFFSET_P5; 5889 switch (ring_type) { 5890 case HWRM_RING_ALLOC_TX: 5891 db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SQ; 5892 break; 5893 case HWRM_RING_ALLOC_RX: 5894 case HWRM_RING_ALLOC_AGG: 5895 db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SRQ; 5896 break; 5897 case HWRM_RING_ALLOC_CMPL: 5898 db->db_key64 = DBR_PATH_L2; 5899 break; 5900 case HWRM_RING_ALLOC_NQ: 5901 db->db_key64 = DBR_PATH_L2; 5902 break; 5903 } 5904 db->db_key64 |= (u64)xid << DBR_XID_SFT; 5905 } else { 5906 db->doorbell = bp->bar1 + map_idx * 0x80; 5907 switch (ring_type) { 5908 case HWRM_RING_ALLOC_TX: 5909 db->db_key32 = DB_KEY_TX; 5910 break; 5911 case HWRM_RING_ALLOC_RX: 5912 case HWRM_RING_ALLOC_AGG: 5913 db->db_key32 = DB_KEY_RX; 5914 break; 5915 case HWRM_RING_ALLOC_CMPL: 5916 db->db_key32 = DB_KEY_CP; 5917 break; 5918 } 5919 } 5920 } 5921 5922 static int bnxt_hwrm_ring_alloc(struct bnxt *bp) 5923 { 5924 bool agg_rings = !!(bp->flags & BNXT_FLAG_AGG_RINGS); 5925 int i, rc = 0; 5926 u32 type; 5927 5928 if (bp->flags & BNXT_FLAG_CHIP_P5) 5929 type = HWRM_RING_ALLOC_NQ; 5930 else 5931 type = HWRM_RING_ALLOC_CMPL; 5932 for (i = 0; i < bp->cp_nr_rings; i++) { 5933 struct bnxt_napi *bnapi = bp->bnapi[i]; 5934 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5935 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 5936 u32 map_idx = ring->map_idx; 5937 unsigned int vector; 5938 5939 vector = bp->irq_tbl[map_idx].vector; 5940 disable_irq_nosync(vector); 5941 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 5942 if (rc) { 5943 enable_irq(vector); 5944 goto err_out; 5945 } 5946 bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id); 5947 bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons); 5948 enable_irq(vector); 5949 bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id; 5950 5951 if (!i) { 5952 rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id); 5953 if (rc) 5954 netdev_warn(bp->dev, "Failed to set async event completion ring.\n"); 5955 } 5956 } 5957 5958 type = HWRM_RING_ALLOC_TX; 5959 for (i = 0; i < bp->tx_nr_rings; i++) { 5960 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 5961 struct bnxt_ring_struct *ring; 5962 u32 map_idx; 5963 5964 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5965 struct bnxt_napi *bnapi = txr->bnapi; 5966 struct bnxt_cp_ring_info *cpr, *cpr2; 5967 u32 type2 = HWRM_RING_ALLOC_CMPL; 5968 5969 cpr = &bnapi->cp_ring; 5970 cpr2 = cpr->cp_ring_arr[BNXT_TX_HDL]; 5971 ring = &cpr2->cp_ring_struct; 5972 ring->handle = BNXT_TX_HDL; 5973 map_idx = bnapi->index; 5974 rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx); 5975 if (rc) 5976 goto err_out; 5977 bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx, 5978 ring->fw_ring_id); 5979 bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons); 5980 } 5981 ring = &txr->tx_ring_struct; 5982 map_idx = i; 5983 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 5984 if (rc) 5985 goto err_out; 5986 bnxt_set_db(bp, &txr->tx_db, type, map_idx, ring->fw_ring_id); 5987 } 5988 5989 type = HWRM_RING_ALLOC_RX; 5990 for (i = 0; i < bp->rx_nr_rings; i++) { 5991 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 5992 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct; 5993 struct bnxt_napi *bnapi = rxr->bnapi; 5994 u32 map_idx = bnapi->index; 5995 5996 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 5997 if (rc) 5998 goto err_out; 5999 bnxt_set_db(bp, &rxr->rx_db, type, map_idx, ring->fw_ring_id); 6000 /* If we have agg rings, post agg buffers first. */ 6001 if (!agg_rings) 6002 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 6003 bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id; 6004 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6005 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 6006 u32 type2 = HWRM_RING_ALLOC_CMPL; 6007 struct bnxt_cp_ring_info *cpr2; 6008 6009 cpr2 = cpr->cp_ring_arr[BNXT_RX_HDL]; 6010 ring = &cpr2->cp_ring_struct; 6011 ring->handle = BNXT_RX_HDL; 6012 rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx); 6013 if (rc) 6014 goto err_out; 6015 bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx, 6016 ring->fw_ring_id); 6017 bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons); 6018 } 6019 } 6020 6021 if (agg_rings) { 6022 type = HWRM_RING_ALLOC_AGG; 6023 for (i = 0; i < bp->rx_nr_rings; i++) { 6024 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 6025 struct bnxt_ring_struct *ring = 6026 &rxr->rx_agg_ring_struct; 6027 u32 grp_idx = ring->grp_idx; 6028 u32 map_idx = grp_idx + bp->rx_nr_rings; 6029 6030 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 6031 if (rc) 6032 goto err_out; 6033 6034 bnxt_set_db(bp, &rxr->rx_agg_db, type, map_idx, 6035 ring->fw_ring_id); 6036 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 6037 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 6038 bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id; 6039 } 6040 } 6041 err_out: 6042 return rc; 6043 } 6044 6045 static int hwrm_ring_free_send_msg(struct bnxt *bp, 6046 struct bnxt_ring_struct *ring, 6047 u32 ring_type, int cmpl_ring_id) 6048 { 6049 int rc; 6050 struct hwrm_ring_free_input req = {0}; 6051 struct hwrm_ring_free_output *resp = bp->hwrm_cmd_resp_addr; 6052 u16 error_code; 6053 6054 if (BNXT_NO_FW_ACCESS(bp)) 6055 return 0; 6056 6057 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_FREE, cmpl_ring_id, -1); 6058 req.ring_type = ring_type; 6059 req.ring_id = cpu_to_le16(ring->fw_ring_id); 6060 6061 mutex_lock(&bp->hwrm_cmd_lock); 6062 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 6063 error_code = le16_to_cpu(resp->error_code); 6064 mutex_unlock(&bp->hwrm_cmd_lock); 6065 6066 if (rc || error_code) { 6067 netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n", 6068 ring_type, rc, error_code); 6069 return -EIO; 6070 } 6071 return 0; 6072 } 6073 6074 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path) 6075 { 6076 u32 type; 6077 int i; 6078 6079 if (!bp->bnapi) 6080 return; 6081 6082 for (i = 0; i < bp->tx_nr_rings; i++) { 6083 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 6084 struct bnxt_ring_struct *ring = &txr->tx_ring_struct; 6085 6086 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 6087 u32 cmpl_ring_id = bnxt_cp_ring_for_tx(bp, txr); 6088 6089 hwrm_ring_free_send_msg(bp, ring, 6090 RING_FREE_REQ_RING_TYPE_TX, 6091 close_path ? cmpl_ring_id : 6092 INVALID_HW_RING_ID); 6093 ring->fw_ring_id = INVALID_HW_RING_ID; 6094 } 6095 } 6096 6097 for (i = 0; i < bp->rx_nr_rings; i++) { 6098 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 6099 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct; 6100 u32 grp_idx = rxr->bnapi->index; 6101 6102 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 6103 u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr); 6104 6105 hwrm_ring_free_send_msg(bp, ring, 6106 RING_FREE_REQ_RING_TYPE_RX, 6107 close_path ? cmpl_ring_id : 6108 INVALID_HW_RING_ID); 6109 ring->fw_ring_id = INVALID_HW_RING_ID; 6110 bp->grp_info[grp_idx].rx_fw_ring_id = 6111 INVALID_HW_RING_ID; 6112 } 6113 } 6114 6115 if (bp->flags & BNXT_FLAG_CHIP_P5) 6116 type = RING_FREE_REQ_RING_TYPE_RX_AGG; 6117 else 6118 type = RING_FREE_REQ_RING_TYPE_RX; 6119 for (i = 0; i < bp->rx_nr_rings; i++) { 6120 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 6121 struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct; 6122 u32 grp_idx = rxr->bnapi->index; 6123 6124 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 6125 u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr); 6126 6127 hwrm_ring_free_send_msg(bp, ring, type, 6128 close_path ? cmpl_ring_id : 6129 INVALID_HW_RING_ID); 6130 ring->fw_ring_id = INVALID_HW_RING_ID; 6131 bp->grp_info[grp_idx].agg_fw_ring_id = 6132 INVALID_HW_RING_ID; 6133 } 6134 } 6135 6136 /* The completion rings are about to be freed. After that the 6137 * IRQ doorbell will not work anymore. So we need to disable 6138 * IRQ here. 6139 */ 6140 bnxt_disable_int_sync(bp); 6141 6142 if (bp->flags & BNXT_FLAG_CHIP_P5) 6143 type = RING_FREE_REQ_RING_TYPE_NQ; 6144 else 6145 type = RING_FREE_REQ_RING_TYPE_L2_CMPL; 6146 for (i = 0; i < bp->cp_nr_rings; i++) { 6147 struct bnxt_napi *bnapi = bp->bnapi[i]; 6148 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 6149 struct bnxt_ring_struct *ring; 6150 int j; 6151 6152 for (j = 0; j < 2; j++) { 6153 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j]; 6154 6155 if (cpr2) { 6156 ring = &cpr2->cp_ring_struct; 6157 if (ring->fw_ring_id == INVALID_HW_RING_ID) 6158 continue; 6159 hwrm_ring_free_send_msg(bp, ring, 6160 RING_FREE_REQ_RING_TYPE_L2_CMPL, 6161 INVALID_HW_RING_ID); 6162 ring->fw_ring_id = INVALID_HW_RING_ID; 6163 } 6164 } 6165 ring = &cpr->cp_ring_struct; 6166 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 6167 hwrm_ring_free_send_msg(bp, ring, type, 6168 INVALID_HW_RING_ID); 6169 ring->fw_ring_id = INVALID_HW_RING_ID; 6170 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID; 6171 } 6172 } 6173 } 6174 6175 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 6176 bool shared); 6177 6178 static int bnxt_hwrm_get_rings(struct bnxt *bp) 6179 { 6180 struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr; 6181 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 6182 struct hwrm_func_qcfg_input req = {0}; 6183 int rc; 6184 6185 if (bp->hwrm_spec_code < 0x10601) 6186 return 0; 6187 6188 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1); 6189 req.fid = cpu_to_le16(0xffff); 6190 mutex_lock(&bp->hwrm_cmd_lock); 6191 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 6192 if (rc) { 6193 mutex_unlock(&bp->hwrm_cmd_lock); 6194 return rc; 6195 } 6196 6197 hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings); 6198 if (BNXT_NEW_RM(bp)) { 6199 u16 cp, stats; 6200 6201 hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings); 6202 hw_resc->resv_hw_ring_grps = 6203 le32_to_cpu(resp->alloc_hw_ring_grps); 6204 hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics); 6205 cp = le16_to_cpu(resp->alloc_cmpl_rings); 6206 stats = le16_to_cpu(resp->alloc_stat_ctx); 6207 hw_resc->resv_irqs = cp; 6208 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6209 int rx = hw_resc->resv_rx_rings; 6210 int tx = hw_resc->resv_tx_rings; 6211 6212 if (bp->flags & BNXT_FLAG_AGG_RINGS) 6213 rx >>= 1; 6214 if (cp < (rx + tx)) { 6215 bnxt_trim_rings(bp, &rx, &tx, cp, false); 6216 if (bp->flags & BNXT_FLAG_AGG_RINGS) 6217 rx <<= 1; 6218 hw_resc->resv_rx_rings = rx; 6219 hw_resc->resv_tx_rings = tx; 6220 } 6221 hw_resc->resv_irqs = le16_to_cpu(resp->alloc_msix); 6222 hw_resc->resv_hw_ring_grps = rx; 6223 } 6224 hw_resc->resv_cp_rings = cp; 6225 hw_resc->resv_stat_ctxs = stats; 6226 } 6227 mutex_unlock(&bp->hwrm_cmd_lock); 6228 return 0; 6229 } 6230 6231 /* Caller must hold bp->hwrm_cmd_lock */ 6232 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings) 6233 { 6234 struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr; 6235 struct hwrm_func_qcfg_input req = {0}; 6236 int rc; 6237 6238 if (bp->hwrm_spec_code < 0x10601) 6239 return 0; 6240 6241 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1); 6242 req.fid = cpu_to_le16(fid); 6243 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 6244 if (!rc) 6245 *tx_rings = le16_to_cpu(resp->alloc_tx_rings); 6246 6247 return rc; 6248 } 6249 6250 static bool bnxt_rfs_supported(struct bnxt *bp); 6251 6252 static void 6253 __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, struct hwrm_func_cfg_input *req, 6254 int tx_rings, int rx_rings, int ring_grps, 6255 int cp_rings, int stats, int vnics) 6256 { 6257 u32 enables = 0; 6258 6259 bnxt_hwrm_cmd_hdr_init(bp, req, HWRM_FUNC_CFG, -1, -1); 6260 req->fid = cpu_to_le16(0xffff); 6261 enables |= tx_rings ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0; 6262 req->num_tx_rings = cpu_to_le16(tx_rings); 6263 if (BNXT_NEW_RM(bp)) { 6264 enables |= rx_rings ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0; 6265 enables |= stats ? FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0; 6266 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6267 enables |= cp_rings ? FUNC_CFG_REQ_ENABLES_NUM_MSIX : 0; 6268 enables |= tx_rings + ring_grps ? 6269 FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 6270 enables |= rx_rings ? 6271 FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; 6272 } else { 6273 enables |= cp_rings ? 6274 FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 6275 enables |= ring_grps ? 6276 FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS | 6277 FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; 6278 } 6279 enables |= vnics ? FUNC_CFG_REQ_ENABLES_NUM_VNICS : 0; 6280 6281 req->num_rx_rings = cpu_to_le16(rx_rings); 6282 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6283 req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps); 6284 req->num_msix = cpu_to_le16(cp_rings); 6285 req->num_rsscos_ctxs = 6286 cpu_to_le16(DIV_ROUND_UP(ring_grps, 64)); 6287 } else { 6288 req->num_cmpl_rings = cpu_to_le16(cp_rings); 6289 req->num_hw_ring_grps = cpu_to_le16(ring_grps); 6290 req->num_rsscos_ctxs = cpu_to_le16(1); 6291 if (!(bp->flags & BNXT_FLAG_NEW_RSS_CAP) && 6292 bnxt_rfs_supported(bp)) 6293 req->num_rsscos_ctxs = 6294 cpu_to_le16(ring_grps + 1); 6295 } 6296 req->num_stat_ctxs = cpu_to_le16(stats); 6297 req->num_vnics = cpu_to_le16(vnics); 6298 } 6299 req->enables = cpu_to_le32(enables); 6300 } 6301 6302 static void 6303 __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, 6304 struct hwrm_func_vf_cfg_input *req, int tx_rings, 6305 int rx_rings, int ring_grps, int cp_rings, 6306 int stats, int vnics) 6307 { 6308 u32 enables = 0; 6309 6310 bnxt_hwrm_cmd_hdr_init(bp, req, HWRM_FUNC_VF_CFG, -1, -1); 6311 enables |= tx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0; 6312 enables |= rx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS | 6313 FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; 6314 enables |= stats ? FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0; 6315 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6316 enables |= tx_rings + ring_grps ? 6317 FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 6318 } else { 6319 enables |= cp_rings ? 6320 FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 6321 enables |= ring_grps ? 6322 FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0; 6323 } 6324 enables |= vnics ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0; 6325 enables |= FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS; 6326 6327 req->num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX); 6328 req->num_tx_rings = cpu_to_le16(tx_rings); 6329 req->num_rx_rings = cpu_to_le16(rx_rings); 6330 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6331 req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps); 6332 req->num_rsscos_ctxs = cpu_to_le16(DIV_ROUND_UP(ring_grps, 64)); 6333 } else { 6334 req->num_cmpl_rings = cpu_to_le16(cp_rings); 6335 req->num_hw_ring_grps = cpu_to_le16(ring_grps); 6336 req->num_rsscos_ctxs = cpu_to_le16(BNXT_VF_MAX_RSS_CTX); 6337 } 6338 req->num_stat_ctxs = cpu_to_le16(stats); 6339 req->num_vnics = cpu_to_le16(vnics); 6340 6341 req->enables = cpu_to_le32(enables); 6342 } 6343 6344 static int 6345 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6346 int ring_grps, int cp_rings, int stats, int vnics) 6347 { 6348 struct hwrm_func_cfg_input req = {0}; 6349 int rc; 6350 6351 __bnxt_hwrm_reserve_pf_rings(bp, &req, tx_rings, rx_rings, ring_grps, 6352 cp_rings, stats, vnics); 6353 if (!req.enables) 6354 return 0; 6355 6356 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 6357 if (rc) 6358 return rc; 6359 6360 if (bp->hwrm_spec_code < 0x10601) 6361 bp->hw_resc.resv_tx_rings = tx_rings; 6362 6363 return bnxt_hwrm_get_rings(bp); 6364 } 6365 6366 static int 6367 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6368 int ring_grps, int cp_rings, int stats, int vnics) 6369 { 6370 struct hwrm_func_vf_cfg_input req = {0}; 6371 int rc; 6372 6373 if (!BNXT_NEW_RM(bp)) { 6374 bp->hw_resc.resv_tx_rings = tx_rings; 6375 return 0; 6376 } 6377 6378 __bnxt_hwrm_reserve_vf_rings(bp, &req, tx_rings, rx_rings, ring_grps, 6379 cp_rings, stats, vnics); 6380 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 6381 if (rc) 6382 return rc; 6383 6384 return bnxt_hwrm_get_rings(bp); 6385 } 6386 6387 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, int tx, int rx, int grp, 6388 int cp, int stat, int vnic) 6389 { 6390 if (BNXT_PF(bp)) 6391 return bnxt_hwrm_reserve_pf_rings(bp, tx, rx, grp, cp, stat, 6392 vnic); 6393 else 6394 return bnxt_hwrm_reserve_vf_rings(bp, tx, rx, grp, cp, stat, 6395 vnic); 6396 } 6397 6398 int bnxt_nq_rings_in_use(struct bnxt *bp) 6399 { 6400 int cp = bp->cp_nr_rings; 6401 int ulp_msix, ulp_base; 6402 6403 ulp_msix = bnxt_get_ulp_msix_num(bp); 6404 if (ulp_msix) { 6405 ulp_base = bnxt_get_ulp_msix_base(bp); 6406 cp += ulp_msix; 6407 if ((ulp_base + ulp_msix) > cp) 6408 cp = ulp_base + ulp_msix; 6409 } 6410 return cp; 6411 } 6412 6413 static int bnxt_cp_rings_in_use(struct bnxt *bp) 6414 { 6415 int cp; 6416 6417 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 6418 return bnxt_nq_rings_in_use(bp); 6419 6420 cp = bp->tx_nr_rings + bp->rx_nr_rings; 6421 return cp; 6422 } 6423 6424 static int bnxt_get_func_stat_ctxs(struct bnxt *bp) 6425 { 6426 int ulp_stat = bnxt_get_ulp_stat_ctxs(bp); 6427 int cp = bp->cp_nr_rings; 6428 6429 if (!ulp_stat) 6430 return cp; 6431 6432 if (bnxt_nq_rings_in_use(bp) > cp + bnxt_get_ulp_msix_num(bp)) 6433 return bnxt_get_ulp_msix_base(bp) + ulp_stat; 6434 6435 return cp + ulp_stat; 6436 } 6437 6438 /* Check if a default RSS map needs to be setup. This function is only 6439 * used on older firmware that does not require reserving RX rings. 6440 */ 6441 static void bnxt_check_rss_tbl_no_rmgr(struct bnxt *bp) 6442 { 6443 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 6444 6445 /* The RSS map is valid for RX rings set to resv_rx_rings */ 6446 if (hw_resc->resv_rx_rings != bp->rx_nr_rings) { 6447 hw_resc->resv_rx_rings = bp->rx_nr_rings; 6448 if (!netif_is_rxfh_configured(bp->dev)) 6449 bnxt_set_dflt_rss_indir_tbl(bp); 6450 } 6451 } 6452 6453 static bool bnxt_need_reserve_rings(struct bnxt *bp) 6454 { 6455 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 6456 int cp = bnxt_cp_rings_in_use(bp); 6457 int nq = bnxt_nq_rings_in_use(bp); 6458 int rx = bp->rx_nr_rings, stat; 6459 int vnic = 1, grp = rx; 6460 6461 if (hw_resc->resv_tx_rings != bp->tx_nr_rings && 6462 bp->hwrm_spec_code >= 0x10601) 6463 return true; 6464 6465 /* Old firmware does not need RX ring reservations but we still 6466 * need to setup a default RSS map when needed. With new firmware 6467 * we go through RX ring reservations first and then set up the 6468 * RSS map for the successfully reserved RX rings when needed. 6469 */ 6470 if (!BNXT_NEW_RM(bp)) { 6471 bnxt_check_rss_tbl_no_rmgr(bp); 6472 return false; 6473 } 6474 if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5)) 6475 vnic = rx + 1; 6476 if (bp->flags & BNXT_FLAG_AGG_RINGS) 6477 rx <<= 1; 6478 stat = bnxt_get_func_stat_ctxs(bp); 6479 if (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp || 6480 hw_resc->resv_vnics != vnic || hw_resc->resv_stat_ctxs != stat || 6481 (hw_resc->resv_hw_ring_grps != grp && 6482 !(bp->flags & BNXT_FLAG_CHIP_P5))) 6483 return true; 6484 if ((bp->flags & BNXT_FLAG_CHIP_P5) && BNXT_PF(bp) && 6485 hw_resc->resv_irqs != nq) 6486 return true; 6487 return false; 6488 } 6489 6490 static int __bnxt_reserve_rings(struct bnxt *bp) 6491 { 6492 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 6493 int cp = bnxt_nq_rings_in_use(bp); 6494 int tx = bp->tx_nr_rings; 6495 int rx = bp->rx_nr_rings; 6496 int grp, rx_rings, rc; 6497 int vnic = 1, stat; 6498 bool sh = false; 6499 6500 if (!bnxt_need_reserve_rings(bp)) 6501 return 0; 6502 6503 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 6504 sh = true; 6505 if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5)) 6506 vnic = rx + 1; 6507 if (bp->flags & BNXT_FLAG_AGG_RINGS) 6508 rx <<= 1; 6509 grp = bp->rx_nr_rings; 6510 stat = bnxt_get_func_stat_ctxs(bp); 6511 6512 rc = bnxt_hwrm_reserve_rings(bp, tx, rx, grp, cp, stat, vnic); 6513 if (rc) 6514 return rc; 6515 6516 tx = hw_resc->resv_tx_rings; 6517 if (BNXT_NEW_RM(bp)) { 6518 rx = hw_resc->resv_rx_rings; 6519 cp = hw_resc->resv_irqs; 6520 grp = hw_resc->resv_hw_ring_grps; 6521 vnic = hw_resc->resv_vnics; 6522 stat = hw_resc->resv_stat_ctxs; 6523 } 6524 6525 rx_rings = rx; 6526 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 6527 if (rx >= 2) { 6528 rx_rings = rx >> 1; 6529 } else { 6530 if (netif_running(bp->dev)) 6531 return -ENOMEM; 6532 6533 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 6534 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 6535 bp->dev->hw_features &= ~NETIF_F_LRO; 6536 bp->dev->features &= ~NETIF_F_LRO; 6537 bnxt_set_ring_params(bp); 6538 } 6539 } 6540 rx_rings = min_t(int, rx_rings, grp); 6541 cp = min_t(int, cp, bp->cp_nr_rings); 6542 if (stat > bnxt_get_ulp_stat_ctxs(bp)) 6543 stat -= bnxt_get_ulp_stat_ctxs(bp); 6544 cp = min_t(int, cp, stat); 6545 rc = bnxt_trim_rings(bp, &rx_rings, &tx, cp, sh); 6546 if (bp->flags & BNXT_FLAG_AGG_RINGS) 6547 rx = rx_rings << 1; 6548 cp = sh ? max_t(int, tx, rx_rings) : tx + rx_rings; 6549 bp->tx_nr_rings = tx; 6550 6551 /* If we cannot reserve all the RX rings, reset the RSS map only 6552 * if absolutely necessary 6553 */ 6554 if (rx_rings != bp->rx_nr_rings) { 6555 netdev_warn(bp->dev, "Able to reserve only %d out of %d requested RX rings\n", 6556 rx_rings, bp->rx_nr_rings); 6557 if ((bp->dev->priv_flags & IFF_RXFH_CONFIGURED) && 6558 (bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings) != 6559 bnxt_get_nr_rss_ctxs(bp, rx_rings) || 6560 bnxt_get_max_rss_ring(bp) >= rx_rings)) { 6561 netdev_warn(bp->dev, "RSS table entries reverting to default\n"); 6562 bp->dev->priv_flags &= ~IFF_RXFH_CONFIGURED; 6563 } 6564 } 6565 bp->rx_nr_rings = rx_rings; 6566 bp->cp_nr_rings = cp; 6567 6568 if (!tx || !rx || !cp || !grp || !vnic || !stat) 6569 return -ENOMEM; 6570 6571 if (!netif_is_rxfh_configured(bp->dev)) 6572 bnxt_set_dflt_rss_indir_tbl(bp); 6573 6574 return rc; 6575 } 6576 6577 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6578 int ring_grps, int cp_rings, int stats, 6579 int vnics) 6580 { 6581 struct hwrm_func_vf_cfg_input req = {0}; 6582 u32 flags; 6583 6584 if (!BNXT_NEW_RM(bp)) 6585 return 0; 6586 6587 __bnxt_hwrm_reserve_vf_rings(bp, &req, tx_rings, rx_rings, ring_grps, 6588 cp_rings, stats, vnics); 6589 flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST | 6590 FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST | 6591 FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST | 6592 FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST | 6593 FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST | 6594 FUNC_VF_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST; 6595 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 6596 flags |= FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST; 6597 6598 req.flags = cpu_to_le32(flags); 6599 return hwrm_send_message_silent(bp, &req, sizeof(req), 6600 HWRM_CMD_TIMEOUT); 6601 } 6602 6603 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6604 int ring_grps, int cp_rings, int stats, 6605 int vnics) 6606 { 6607 struct hwrm_func_cfg_input req = {0}; 6608 u32 flags; 6609 6610 __bnxt_hwrm_reserve_pf_rings(bp, &req, tx_rings, rx_rings, ring_grps, 6611 cp_rings, stats, vnics); 6612 flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST; 6613 if (BNXT_NEW_RM(bp)) { 6614 flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST | 6615 FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST | 6616 FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST | 6617 FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST; 6618 if (bp->flags & BNXT_FLAG_CHIP_P5) 6619 flags |= FUNC_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST | 6620 FUNC_CFG_REQ_FLAGS_NQ_ASSETS_TEST; 6621 else 6622 flags |= FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST; 6623 } 6624 6625 req.flags = cpu_to_le32(flags); 6626 return hwrm_send_message_silent(bp, &req, sizeof(req), 6627 HWRM_CMD_TIMEOUT); 6628 } 6629 6630 static int bnxt_hwrm_check_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6631 int ring_grps, int cp_rings, int stats, 6632 int vnics) 6633 { 6634 if (bp->hwrm_spec_code < 0x10801) 6635 return 0; 6636 6637 if (BNXT_PF(bp)) 6638 return bnxt_hwrm_check_pf_rings(bp, tx_rings, rx_rings, 6639 ring_grps, cp_rings, stats, 6640 vnics); 6641 6642 return bnxt_hwrm_check_vf_rings(bp, tx_rings, rx_rings, ring_grps, 6643 cp_rings, stats, vnics); 6644 } 6645 6646 static void bnxt_hwrm_coal_params_qcaps(struct bnxt *bp) 6647 { 6648 struct hwrm_ring_aggint_qcaps_output *resp = bp->hwrm_cmd_resp_addr; 6649 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 6650 struct hwrm_ring_aggint_qcaps_input req = {0}; 6651 int rc; 6652 6653 coal_cap->cmpl_params = BNXT_LEGACY_COAL_CMPL_PARAMS; 6654 coal_cap->num_cmpl_dma_aggr_max = 63; 6655 coal_cap->num_cmpl_dma_aggr_during_int_max = 63; 6656 coal_cap->cmpl_aggr_dma_tmr_max = 65535; 6657 coal_cap->cmpl_aggr_dma_tmr_during_int_max = 65535; 6658 coal_cap->int_lat_tmr_min_max = 65535; 6659 coal_cap->int_lat_tmr_max_max = 65535; 6660 coal_cap->num_cmpl_aggr_int_max = 65535; 6661 coal_cap->timer_units = 80; 6662 6663 if (bp->hwrm_spec_code < 0x10902) 6664 return; 6665 6666 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_AGGINT_QCAPS, -1, -1); 6667 mutex_lock(&bp->hwrm_cmd_lock); 6668 rc = _hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 6669 if (!rc) { 6670 coal_cap->cmpl_params = le32_to_cpu(resp->cmpl_params); 6671 coal_cap->nq_params = le32_to_cpu(resp->nq_params); 6672 coal_cap->num_cmpl_dma_aggr_max = 6673 le16_to_cpu(resp->num_cmpl_dma_aggr_max); 6674 coal_cap->num_cmpl_dma_aggr_during_int_max = 6675 le16_to_cpu(resp->num_cmpl_dma_aggr_during_int_max); 6676 coal_cap->cmpl_aggr_dma_tmr_max = 6677 le16_to_cpu(resp->cmpl_aggr_dma_tmr_max); 6678 coal_cap->cmpl_aggr_dma_tmr_during_int_max = 6679 le16_to_cpu(resp->cmpl_aggr_dma_tmr_during_int_max); 6680 coal_cap->int_lat_tmr_min_max = 6681 le16_to_cpu(resp->int_lat_tmr_min_max); 6682 coal_cap->int_lat_tmr_max_max = 6683 le16_to_cpu(resp->int_lat_tmr_max_max); 6684 coal_cap->num_cmpl_aggr_int_max = 6685 le16_to_cpu(resp->num_cmpl_aggr_int_max); 6686 coal_cap->timer_units = le16_to_cpu(resp->timer_units); 6687 } 6688 mutex_unlock(&bp->hwrm_cmd_lock); 6689 } 6690 6691 static u16 bnxt_usec_to_coal_tmr(struct bnxt *bp, u16 usec) 6692 { 6693 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 6694 6695 return usec * 1000 / coal_cap->timer_units; 6696 } 6697 6698 static void bnxt_hwrm_set_coal_params(struct bnxt *bp, 6699 struct bnxt_coal *hw_coal, 6700 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req) 6701 { 6702 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 6703 u32 cmpl_params = coal_cap->cmpl_params; 6704 u16 val, tmr, max, flags = 0; 6705 6706 max = hw_coal->bufs_per_record * 128; 6707 if (hw_coal->budget) 6708 max = hw_coal->bufs_per_record * hw_coal->budget; 6709 max = min_t(u16, max, coal_cap->num_cmpl_aggr_int_max); 6710 6711 val = clamp_t(u16, hw_coal->coal_bufs, 1, max); 6712 req->num_cmpl_aggr_int = cpu_to_le16(val); 6713 6714 val = min_t(u16, val, coal_cap->num_cmpl_dma_aggr_max); 6715 req->num_cmpl_dma_aggr = cpu_to_le16(val); 6716 6717 val = clamp_t(u16, hw_coal->coal_bufs_irq, 1, 6718 coal_cap->num_cmpl_dma_aggr_during_int_max); 6719 req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val); 6720 6721 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks); 6722 tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_max_max); 6723 req->int_lat_tmr_max = cpu_to_le16(tmr); 6724 6725 /* min timer set to 1/2 of interrupt timer */ 6726 if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_INT_LAT_TMR_MIN) { 6727 val = tmr / 2; 6728 val = clamp_t(u16, val, 1, coal_cap->int_lat_tmr_min_max); 6729 req->int_lat_tmr_min = cpu_to_le16(val); 6730 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE); 6731 } 6732 6733 /* buf timer set to 1/4 of interrupt timer */ 6734 val = clamp_t(u16, tmr / 4, 1, coal_cap->cmpl_aggr_dma_tmr_max); 6735 req->cmpl_aggr_dma_tmr = cpu_to_le16(val); 6736 6737 if (cmpl_params & 6738 RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_NUM_CMPL_DMA_AGGR_DURING_INT) { 6739 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks_irq); 6740 val = clamp_t(u16, tmr, 1, 6741 coal_cap->cmpl_aggr_dma_tmr_during_int_max); 6742 req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(val); 6743 req->enables |= 6744 cpu_to_le16(BNXT_COAL_CMPL_AGGR_TMR_DURING_INT_ENABLE); 6745 } 6746 6747 if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_TIMER_RESET) 6748 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET; 6749 if ((cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_RING_IDLE) && 6750 hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh) 6751 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE; 6752 req->flags = cpu_to_le16(flags); 6753 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_ENABLES); 6754 } 6755 6756 /* Caller holds bp->hwrm_cmd_lock */ 6757 static int __bnxt_hwrm_set_coal_nq(struct bnxt *bp, struct bnxt_napi *bnapi, 6758 struct bnxt_coal *hw_coal) 6759 { 6760 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req = {0}; 6761 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 6762 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 6763 u32 nq_params = coal_cap->nq_params; 6764 u16 tmr; 6765 6766 if (!(nq_params & RING_AGGINT_QCAPS_RESP_NQ_PARAMS_INT_LAT_TMR_MIN)) 6767 return 0; 6768 6769 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, 6770 -1, -1); 6771 req.ring_id = cpu_to_le16(cpr->cp_ring_struct.fw_ring_id); 6772 req.flags = 6773 cpu_to_le16(RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_IS_NQ); 6774 6775 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks) / 2; 6776 tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_min_max); 6777 req.int_lat_tmr_min = cpu_to_le16(tmr); 6778 req.enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE); 6779 return _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 6780 } 6781 6782 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi) 6783 { 6784 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0}; 6785 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 6786 struct bnxt_coal coal; 6787 6788 /* Tick values in micro seconds. 6789 * 1 coal_buf x bufs_per_record = 1 completion record. 6790 */ 6791 memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal)); 6792 6793 coal.coal_ticks = cpr->rx_ring_coal.coal_ticks; 6794 coal.coal_bufs = cpr->rx_ring_coal.coal_bufs; 6795 6796 if (!bnapi->rx_ring) 6797 return -ENODEV; 6798 6799 bnxt_hwrm_cmd_hdr_init(bp, &req_rx, 6800 HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1); 6801 6802 bnxt_hwrm_set_coal_params(bp, &coal, &req_rx); 6803 6804 req_rx.ring_id = cpu_to_le16(bnxt_cp_ring_for_rx(bp, bnapi->rx_ring)); 6805 6806 return hwrm_send_message(bp, &req_rx, sizeof(req_rx), 6807 HWRM_CMD_TIMEOUT); 6808 } 6809 6810 int bnxt_hwrm_set_coal(struct bnxt *bp) 6811 { 6812 int i, rc = 0; 6813 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0}, 6814 req_tx = {0}, *req; 6815 6816 bnxt_hwrm_cmd_hdr_init(bp, &req_rx, 6817 HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1); 6818 bnxt_hwrm_cmd_hdr_init(bp, &req_tx, 6819 HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1); 6820 6821 bnxt_hwrm_set_coal_params(bp, &bp->rx_coal, &req_rx); 6822 bnxt_hwrm_set_coal_params(bp, &bp->tx_coal, &req_tx); 6823 6824 mutex_lock(&bp->hwrm_cmd_lock); 6825 for (i = 0; i < bp->cp_nr_rings; i++) { 6826 struct bnxt_napi *bnapi = bp->bnapi[i]; 6827 struct bnxt_coal *hw_coal; 6828 u16 ring_id; 6829 6830 req = &req_rx; 6831 if (!bnapi->rx_ring) { 6832 ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring); 6833 req = &req_tx; 6834 } else { 6835 ring_id = bnxt_cp_ring_for_rx(bp, bnapi->rx_ring); 6836 } 6837 req->ring_id = cpu_to_le16(ring_id); 6838 6839 rc = _hwrm_send_message(bp, req, sizeof(*req), 6840 HWRM_CMD_TIMEOUT); 6841 if (rc) 6842 break; 6843 6844 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 6845 continue; 6846 6847 if (bnapi->rx_ring && bnapi->tx_ring) { 6848 req = &req_tx; 6849 ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring); 6850 req->ring_id = cpu_to_le16(ring_id); 6851 rc = _hwrm_send_message(bp, req, sizeof(*req), 6852 HWRM_CMD_TIMEOUT); 6853 if (rc) 6854 break; 6855 } 6856 if (bnapi->rx_ring) 6857 hw_coal = &bp->rx_coal; 6858 else 6859 hw_coal = &bp->tx_coal; 6860 __bnxt_hwrm_set_coal_nq(bp, bnapi, hw_coal); 6861 } 6862 mutex_unlock(&bp->hwrm_cmd_lock); 6863 return rc; 6864 } 6865 6866 static void bnxt_hwrm_stat_ctx_free(struct bnxt *bp) 6867 { 6868 struct hwrm_stat_ctx_clr_stats_input req0 = {0}; 6869 struct hwrm_stat_ctx_free_input req = {0}; 6870 int i; 6871 6872 if (!bp->bnapi) 6873 return; 6874 6875 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 6876 return; 6877 6878 bnxt_hwrm_cmd_hdr_init(bp, &req0, HWRM_STAT_CTX_CLR_STATS, -1, -1); 6879 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_FREE, -1, -1); 6880 6881 mutex_lock(&bp->hwrm_cmd_lock); 6882 for (i = 0; i < bp->cp_nr_rings; i++) { 6883 struct bnxt_napi *bnapi = bp->bnapi[i]; 6884 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 6885 6886 if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) { 6887 req.stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id); 6888 if (BNXT_FW_MAJ(bp) <= 20) { 6889 req0.stat_ctx_id = req.stat_ctx_id; 6890 _hwrm_send_message(bp, &req0, sizeof(req0), 6891 HWRM_CMD_TIMEOUT); 6892 } 6893 _hwrm_send_message(bp, &req, sizeof(req), 6894 HWRM_CMD_TIMEOUT); 6895 6896 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID; 6897 } 6898 } 6899 mutex_unlock(&bp->hwrm_cmd_lock); 6900 } 6901 6902 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp) 6903 { 6904 int rc = 0, i; 6905 struct hwrm_stat_ctx_alloc_input req = {0}; 6906 struct hwrm_stat_ctx_alloc_output *resp = bp->hwrm_cmd_resp_addr; 6907 6908 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 6909 return 0; 6910 6911 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_ALLOC, -1, -1); 6912 6913 req.stats_dma_length = cpu_to_le16(bp->hw_ring_stats_size); 6914 req.update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000); 6915 6916 mutex_lock(&bp->hwrm_cmd_lock); 6917 for (i = 0; i < bp->cp_nr_rings; i++) { 6918 struct bnxt_napi *bnapi = bp->bnapi[i]; 6919 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 6920 6921 req.stats_dma_addr = cpu_to_le64(cpr->stats.hw_stats_map); 6922 6923 rc = _hwrm_send_message(bp, &req, sizeof(req), 6924 HWRM_CMD_TIMEOUT); 6925 if (rc) 6926 break; 6927 6928 cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id); 6929 6930 bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id; 6931 } 6932 mutex_unlock(&bp->hwrm_cmd_lock); 6933 return rc; 6934 } 6935 6936 static int bnxt_hwrm_func_qcfg(struct bnxt *bp) 6937 { 6938 struct hwrm_func_qcfg_input req = {0}; 6939 struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr; 6940 u32 min_db_offset = 0; 6941 u16 flags; 6942 int rc; 6943 6944 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1); 6945 req.fid = cpu_to_le16(0xffff); 6946 mutex_lock(&bp->hwrm_cmd_lock); 6947 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 6948 if (rc) 6949 goto func_qcfg_exit; 6950 6951 #ifdef CONFIG_BNXT_SRIOV 6952 if (BNXT_VF(bp)) { 6953 struct bnxt_vf_info *vf = &bp->vf; 6954 6955 vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK; 6956 } else { 6957 bp->pf.registered_vfs = le16_to_cpu(resp->registered_vfs); 6958 } 6959 #endif 6960 flags = le16_to_cpu(resp->flags); 6961 if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED | 6962 FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) { 6963 bp->fw_cap |= BNXT_FW_CAP_LLDP_AGENT; 6964 if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED) 6965 bp->fw_cap |= BNXT_FW_CAP_DCBX_AGENT; 6966 } 6967 if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST)) 6968 bp->flags |= BNXT_FLAG_MULTI_HOST; 6969 if (flags & FUNC_QCFG_RESP_FLAGS_RING_MONITOR_ENABLED) 6970 bp->fw_cap |= BNXT_FW_CAP_RING_MONITOR; 6971 6972 switch (resp->port_partition_type) { 6973 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0: 6974 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5: 6975 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0: 6976 bp->port_partition_type = resp->port_partition_type; 6977 break; 6978 } 6979 if (bp->hwrm_spec_code < 0x10707 || 6980 resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB) 6981 bp->br_mode = BRIDGE_MODE_VEB; 6982 else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA) 6983 bp->br_mode = BRIDGE_MODE_VEPA; 6984 else 6985 bp->br_mode = BRIDGE_MODE_UNDEF; 6986 6987 bp->max_mtu = le16_to_cpu(resp->max_mtu_configured); 6988 if (!bp->max_mtu) 6989 bp->max_mtu = BNXT_MAX_MTU; 6990 6991 if (bp->db_size) 6992 goto func_qcfg_exit; 6993 6994 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6995 if (BNXT_PF(bp)) 6996 min_db_offset = DB_PF_OFFSET_P5; 6997 else 6998 min_db_offset = DB_VF_OFFSET_P5; 6999 } 7000 bp->db_size = PAGE_ALIGN(le16_to_cpu(resp->l2_doorbell_bar_size_kb) * 7001 1024); 7002 if (!bp->db_size || bp->db_size > pci_resource_len(bp->pdev, 2) || 7003 bp->db_size <= min_db_offset) 7004 bp->db_size = pci_resource_len(bp->pdev, 2); 7005 7006 func_qcfg_exit: 7007 mutex_unlock(&bp->hwrm_cmd_lock); 7008 return rc; 7009 } 7010 7011 static void bnxt_init_ctx_initializer(struct bnxt_ctx_mem_info *ctx, 7012 struct hwrm_func_backing_store_qcaps_output *resp) 7013 { 7014 struct bnxt_mem_init *mem_init; 7015 u16 init_mask; 7016 u8 init_val; 7017 u8 *offset; 7018 int i; 7019 7020 init_val = resp->ctx_kind_initializer; 7021 init_mask = le16_to_cpu(resp->ctx_init_mask); 7022 offset = &resp->qp_init_offset; 7023 mem_init = &ctx->mem_init[BNXT_CTX_MEM_INIT_QP]; 7024 for (i = 0; i < BNXT_CTX_MEM_INIT_MAX; i++, mem_init++, offset++) { 7025 mem_init->init_val = init_val; 7026 mem_init->offset = BNXT_MEM_INVALID_OFFSET; 7027 if (!init_mask) 7028 continue; 7029 if (i == BNXT_CTX_MEM_INIT_STAT) 7030 offset = &resp->stat_init_offset; 7031 if (init_mask & (1 << i)) 7032 mem_init->offset = *offset * 4; 7033 else 7034 mem_init->init_val = 0; 7035 } 7036 ctx->mem_init[BNXT_CTX_MEM_INIT_QP].size = ctx->qp_entry_size; 7037 ctx->mem_init[BNXT_CTX_MEM_INIT_SRQ].size = ctx->srq_entry_size; 7038 ctx->mem_init[BNXT_CTX_MEM_INIT_CQ].size = ctx->cq_entry_size; 7039 ctx->mem_init[BNXT_CTX_MEM_INIT_VNIC].size = ctx->vnic_entry_size; 7040 ctx->mem_init[BNXT_CTX_MEM_INIT_STAT].size = ctx->stat_entry_size; 7041 ctx->mem_init[BNXT_CTX_MEM_INIT_MRAV].size = ctx->mrav_entry_size; 7042 } 7043 7044 static int bnxt_hwrm_func_backing_store_qcaps(struct bnxt *bp) 7045 { 7046 struct hwrm_func_backing_store_qcaps_input req = {0}; 7047 struct hwrm_func_backing_store_qcaps_output *resp = 7048 bp->hwrm_cmd_resp_addr; 7049 int rc; 7050 7051 if (bp->hwrm_spec_code < 0x10902 || BNXT_VF(bp) || bp->ctx) 7052 return 0; 7053 7054 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_BACKING_STORE_QCAPS, -1, -1); 7055 mutex_lock(&bp->hwrm_cmd_lock); 7056 rc = _hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 7057 if (!rc) { 7058 struct bnxt_ctx_pg_info *ctx_pg; 7059 struct bnxt_ctx_mem_info *ctx; 7060 int i, tqm_rings; 7061 7062 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 7063 if (!ctx) { 7064 rc = -ENOMEM; 7065 goto ctx_err; 7066 } 7067 ctx->qp_max_entries = le32_to_cpu(resp->qp_max_entries); 7068 ctx->qp_min_qp1_entries = le16_to_cpu(resp->qp_min_qp1_entries); 7069 ctx->qp_max_l2_entries = le16_to_cpu(resp->qp_max_l2_entries); 7070 ctx->qp_entry_size = le16_to_cpu(resp->qp_entry_size); 7071 ctx->srq_max_l2_entries = le16_to_cpu(resp->srq_max_l2_entries); 7072 ctx->srq_max_entries = le32_to_cpu(resp->srq_max_entries); 7073 ctx->srq_entry_size = le16_to_cpu(resp->srq_entry_size); 7074 ctx->cq_max_l2_entries = le16_to_cpu(resp->cq_max_l2_entries); 7075 ctx->cq_max_entries = le32_to_cpu(resp->cq_max_entries); 7076 ctx->cq_entry_size = le16_to_cpu(resp->cq_entry_size); 7077 ctx->vnic_max_vnic_entries = 7078 le16_to_cpu(resp->vnic_max_vnic_entries); 7079 ctx->vnic_max_ring_table_entries = 7080 le16_to_cpu(resp->vnic_max_ring_table_entries); 7081 ctx->vnic_entry_size = le16_to_cpu(resp->vnic_entry_size); 7082 ctx->stat_max_entries = le32_to_cpu(resp->stat_max_entries); 7083 ctx->stat_entry_size = le16_to_cpu(resp->stat_entry_size); 7084 ctx->tqm_entry_size = le16_to_cpu(resp->tqm_entry_size); 7085 ctx->tqm_min_entries_per_ring = 7086 le32_to_cpu(resp->tqm_min_entries_per_ring); 7087 ctx->tqm_max_entries_per_ring = 7088 le32_to_cpu(resp->tqm_max_entries_per_ring); 7089 ctx->tqm_entries_multiple = resp->tqm_entries_multiple; 7090 if (!ctx->tqm_entries_multiple) 7091 ctx->tqm_entries_multiple = 1; 7092 ctx->mrav_max_entries = le32_to_cpu(resp->mrav_max_entries); 7093 ctx->mrav_entry_size = le16_to_cpu(resp->mrav_entry_size); 7094 ctx->mrav_num_entries_units = 7095 le16_to_cpu(resp->mrav_num_entries_units); 7096 ctx->tim_entry_size = le16_to_cpu(resp->tim_entry_size); 7097 ctx->tim_max_entries = le32_to_cpu(resp->tim_max_entries); 7098 7099 bnxt_init_ctx_initializer(ctx, resp); 7100 7101 ctx->tqm_fp_rings_count = resp->tqm_fp_rings_count; 7102 if (!ctx->tqm_fp_rings_count) 7103 ctx->tqm_fp_rings_count = bp->max_q; 7104 else if (ctx->tqm_fp_rings_count > BNXT_MAX_TQM_FP_RINGS) 7105 ctx->tqm_fp_rings_count = BNXT_MAX_TQM_FP_RINGS; 7106 7107 tqm_rings = ctx->tqm_fp_rings_count + BNXT_MAX_TQM_SP_RINGS; 7108 ctx_pg = kcalloc(tqm_rings, sizeof(*ctx_pg), GFP_KERNEL); 7109 if (!ctx_pg) { 7110 kfree(ctx); 7111 rc = -ENOMEM; 7112 goto ctx_err; 7113 } 7114 for (i = 0; i < tqm_rings; i++, ctx_pg++) 7115 ctx->tqm_mem[i] = ctx_pg; 7116 bp->ctx = ctx; 7117 } else { 7118 rc = 0; 7119 } 7120 ctx_err: 7121 mutex_unlock(&bp->hwrm_cmd_lock); 7122 return rc; 7123 } 7124 7125 static void bnxt_hwrm_set_pg_attr(struct bnxt_ring_mem_info *rmem, u8 *pg_attr, 7126 __le64 *pg_dir) 7127 { 7128 if (!rmem->nr_pages) 7129 return; 7130 7131 BNXT_SET_CTX_PAGE_ATTR(*pg_attr); 7132 if (rmem->depth >= 1) { 7133 if (rmem->depth == 2) 7134 *pg_attr |= 2; 7135 else 7136 *pg_attr |= 1; 7137 *pg_dir = cpu_to_le64(rmem->pg_tbl_map); 7138 } else { 7139 *pg_dir = cpu_to_le64(rmem->dma_arr[0]); 7140 } 7141 } 7142 7143 #define FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES \ 7144 (FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP | \ 7145 FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ | \ 7146 FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ | \ 7147 FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC | \ 7148 FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) 7149 7150 static int bnxt_hwrm_func_backing_store_cfg(struct bnxt *bp, u32 enables) 7151 { 7152 struct hwrm_func_backing_store_cfg_input req = {0}; 7153 struct bnxt_ctx_mem_info *ctx = bp->ctx; 7154 struct bnxt_ctx_pg_info *ctx_pg; 7155 u32 req_len = sizeof(req); 7156 __le32 *num_entries; 7157 __le64 *pg_dir; 7158 u32 flags = 0; 7159 u8 *pg_attr; 7160 u32 ena; 7161 int i; 7162 7163 if (!ctx) 7164 return 0; 7165 7166 if (req_len > bp->hwrm_max_ext_req_len) 7167 req_len = BNXT_BACKING_STORE_CFG_LEGACY_LEN; 7168 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_BACKING_STORE_CFG, -1, -1); 7169 req.enables = cpu_to_le32(enables); 7170 7171 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP) { 7172 ctx_pg = &ctx->qp_mem; 7173 req.qp_num_entries = cpu_to_le32(ctx_pg->entries); 7174 req.qp_num_qp1_entries = cpu_to_le16(ctx->qp_min_qp1_entries); 7175 req.qp_num_l2_entries = cpu_to_le16(ctx->qp_max_l2_entries); 7176 req.qp_entry_size = cpu_to_le16(ctx->qp_entry_size); 7177 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7178 &req.qpc_pg_size_qpc_lvl, 7179 &req.qpc_page_dir); 7180 } 7181 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ) { 7182 ctx_pg = &ctx->srq_mem; 7183 req.srq_num_entries = cpu_to_le32(ctx_pg->entries); 7184 req.srq_num_l2_entries = cpu_to_le16(ctx->srq_max_l2_entries); 7185 req.srq_entry_size = cpu_to_le16(ctx->srq_entry_size); 7186 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7187 &req.srq_pg_size_srq_lvl, 7188 &req.srq_page_dir); 7189 } 7190 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ) { 7191 ctx_pg = &ctx->cq_mem; 7192 req.cq_num_entries = cpu_to_le32(ctx_pg->entries); 7193 req.cq_num_l2_entries = cpu_to_le16(ctx->cq_max_l2_entries); 7194 req.cq_entry_size = cpu_to_le16(ctx->cq_entry_size); 7195 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, &req.cq_pg_size_cq_lvl, 7196 &req.cq_page_dir); 7197 } 7198 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC) { 7199 ctx_pg = &ctx->vnic_mem; 7200 req.vnic_num_vnic_entries = 7201 cpu_to_le16(ctx->vnic_max_vnic_entries); 7202 req.vnic_num_ring_table_entries = 7203 cpu_to_le16(ctx->vnic_max_ring_table_entries); 7204 req.vnic_entry_size = cpu_to_le16(ctx->vnic_entry_size); 7205 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7206 &req.vnic_pg_size_vnic_lvl, 7207 &req.vnic_page_dir); 7208 } 7209 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) { 7210 ctx_pg = &ctx->stat_mem; 7211 req.stat_num_entries = cpu_to_le32(ctx->stat_max_entries); 7212 req.stat_entry_size = cpu_to_le16(ctx->stat_entry_size); 7213 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7214 &req.stat_pg_size_stat_lvl, 7215 &req.stat_page_dir); 7216 } 7217 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV) { 7218 ctx_pg = &ctx->mrav_mem; 7219 req.mrav_num_entries = cpu_to_le32(ctx_pg->entries); 7220 if (ctx->mrav_num_entries_units) 7221 flags |= 7222 FUNC_BACKING_STORE_CFG_REQ_FLAGS_MRAV_RESERVATION_SPLIT; 7223 req.mrav_entry_size = cpu_to_le16(ctx->mrav_entry_size); 7224 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7225 &req.mrav_pg_size_mrav_lvl, 7226 &req.mrav_page_dir); 7227 } 7228 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) { 7229 ctx_pg = &ctx->tim_mem; 7230 req.tim_num_entries = cpu_to_le32(ctx_pg->entries); 7231 req.tim_entry_size = cpu_to_le16(ctx->tim_entry_size); 7232 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7233 &req.tim_pg_size_tim_lvl, 7234 &req.tim_page_dir); 7235 } 7236 for (i = 0, num_entries = &req.tqm_sp_num_entries, 7237 pg_attr = &req.tqm_sp_pg_size_tqm_sp_lvl, 7238 pg_dir = &req.tqm_sp_page_dir, 7239 ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP; 7240 i < BNXT_MAX_TQM_RINGS; 7241 i++, num_entries++, pg_attr++, pg_dir++, ena <<= 1) { 7242 if (!(enables & ena)) 7243 continue; 7244 7245 req.tqm_entry_size = cpu_to_le16(ctx->tqm_entry_size); 7246 ctx_pg = ctx->tqm_mem[i]; 7247 *num_entries = cpu_to_le32(ctx_pg->entries); 7248 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, pg_attr, pg_dir); 7249 } 7250 req.flags = cpu_to_le32(flags); 7251 return hwrm_send_message(bp, &req, req_len, HWRM_CMD_TIMEOUT); 7252 } 7253 7254 static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp, 7255 struct bnxt_ctx_pg_info *ctx_pg) 7256 { 7257 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 7258 7259 rmem->page_size = BNXT_PAGE_SIZE; 7260 rmem->pg_arr = ctx_pg->ctx_pg_arr; 7261 rmem->dma_arr = ctx_pg->ctx_dma_arr; 7262 rmem->flags = BNXT_RMEM_VALID_PTE_FLAG; 7263 if (rmem->depth >= 1) 7264 rmem->flags |= BNXT_RMEM_USE_FULL_PAGE_FLAG; 7265 return bnxt_alloc_ring(bp, rmem); 7266 } 7267 7268 static int bnxt_alloc_ctx_pg_tbls(struct bnxt *bp, 7269 struct bnxt_ctx_pg_info *ctx_pg, u32 mem_size, 7270 u8 depth, struct bnxt_mem_init *mem_init) 7271 { 7272 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 7273 int rc; 7274 7275 if (!mem_size) 7276 return -EINVAL; 7277 7278 ctx_pg->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE); 7279 if (ctx_pg->nr_pages > MAX_CTX_TOTAL_PAGES) { 7280 ctx_pg->nr_pages = 0; 7281 return -EINVAL; 7282 } 7283 if (ctx_pg->nr_pages > MAX_CTX_PAGES || depth > 1) { 7284 int nr_tbls, i; 7285 7286 rmem->depth = 2; 7287 ctx_pg->ctx_pg_tbl = kcalloc(MAX_CTX_PAGES, sizeof(ctx_pg), 7288 GFP_KERNEL); 7289 if (!ctx_pg->ctx_pg_tbl) 7290 return -ENOMEM; 7291 nr_tbls = DIV_ROUND_UP(ctx_pg->nr_pages, MAX_CTX_PAGES); 7292 rmem->nr_pages = nr_tbls; 7293 rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg); 7294 if (rc) 7295 return rc; 7296 for (i = 0; i < nr_tbls; i++) { 7297 struct bnxt_ctx_pg_info *pg_tbl; 7298 7299 pg_tbl = kzalloc(sizeof(*pg_tbl), GFP_KERNEL); 7300 if (!pg_tbl) 7301 return -ENOMEM; 7302 ctx_pg->ctx_pg_tbl[i] = pg_tbl; 7303 rmem = &pg_tbl->ring_mem; 7304 rmem->pg_tbl = ctx_pg->ctx_pg_arr[i]; 7305 rmem->pg_tbl_map = ctx_pg->ctx_dma_arr[i]; 7306 rmem->depth = 1; 7307 rmem->nr_pages = MAX_CTX_PAGES; 7308 rmem->mem_init = mem_init; 7309 if (i == (nr_tbls - 1)) { 7310 int rem = ctx_pg->nr_pages % MAX_CTX_PAGES; 7311 7312 if (rem) 7313 rmem->nr_pages = rem; 7314 } 7315 rc = bnxt_alloc_ctx_mem_blk(bp, pg_tbl); 7316 if (rc) 7317 break; 7318 } 7319 } else { 7320 rmem->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE); 7321 if (rmem->nr_pages > 1 || depth) 7322 rmem->depth = 1; 7323 rmem->mem_init = mem_init; 7324 rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg); 7325 } 7326 return rc; 7327 } 7328 7329 static void bnxt_free_ctx_pg_tbls(struct bnxt *bp, 7330 struct bnxt_ctx_pg_info *ctx_pg) 7331 { 7332 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 7333 7334 if (rmem->depth > 1 || ctx_pg->nr_pages > MAX_CTX_PAGES || 7335 ctx_pg->ctx_pg_tbl) { 7336 int i, nr_tbls = rmem->nr_pages; 7337 7338 for (i = 0; i < nr_tbls; i++) { 7339 struct bnxt_ctx_pg_info *pg_tbl; 7340 struct bnxt_ring_mem_info *rmem2; 7341 7342 pg_tbl = ctx_pg->ctx_pg_tbl[i]; 7343 if (!pg_tbl) 7344 continue; 7345 rmem2 = &pg_tbl->ring_mem; 7346 bnxt_free_ring(bp, rmem2); 7347 ctx_pg->ctx_pg_arr[i] = NULL; 7348 kfree(pg_tbl); 7349 ctx_pg->ctx_pg_tbl[i] = NULL; 7350 } 7351 kfree(ctx_pg->ctx_pg_tbl); 7352 ctx_pg->ctx_pg_tbl = NULL; 7353 } 7354 bnxt_free_ring(bp, rmem); 7355 ctx_pg->nr_pages = 0; 7356 } 7357 7358 static void bnxt_free_ctx_mem(struct bnxt *bp) 7359 { 7360 struct bnxt_ctx_mem_info *ctx = bp->ctx; 7361 int i; 7362 7363 if (!ctx) 7364 return; 7365 7366 if (ctx->tqm_mem[0]) { 7367 for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++) 7368 bnxt_free_ctx_pg_tbls(bp, ctx->tqm_mem[i]); 7369 kfree(ctx->tqm_mem[0]); 7370 ctx->tqm_mem[0] = NULL; 7371 } 7372 7373 bnxt_free_ctx_pg_tbls(bp, &ctx->tim_mem); 7374 bnxt_free_ctx_pg_tbls(bp, &ctx->mrav_mem); 7375 bnxt_free_ctx_pg_tbls(bp, &ctx->stat_mem); 7376 bnxt_free_ctx_pg_tbls(bp, &ctx->vnic_mem); 7377 bnxt_free_ctx_pg_tbls(bp, &ctx->cq_mem); 7378 bnxt_free_ctx_pg_tbls(bp, &ctx->srq_mem); 7379 bnxt_free_ctx_pg_tbls(bp, &ctx->qp_mem); 7380 ctx->flags &= ~BNXT_CTX_FLAG_INITED; 7381 } 7382 7383 static int bnxt_alloc_ctx_mem(struct bnxt *bp) 7384 { 7385 struct bnxt_ctx_pg_info *ctx_pg; 7386 struct bnxt_ctx_mem_info *ctx; 7387 struct bnxt_mem_init *init; 7388 u32 mem_size, ena, entries; 7389 u32 entries_sp, min; 7390 u32 num_mr, num_ah; 7391 u32 extra_srqs = 0; 7392 u32 extra_qps = 0; 7393 u8 pg_lvl = 1; 7394 int i, rc; 7395 7396 rc = bnxt_hwrm_func_backing_store_qcaps(bp); 7397 if (rc) { 7398 netdev_err(bp->dev, "Failed querying context mem capability, rc = %d.\n", 7399 rc); 7400 return rc; 7401 } 7402 ctx = bp->ctx; 7403 if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED)) 7404 return 0; 7405 7406 if ((bp->flags & BNXT_FLAG_ROCE_CAP) && !is_kdump_kernel()) { 7407 pg_lvl = 2; 7408 extra_qps = 65536; 7409 extra_srqs = 8192; 7410 } 7411 7412 ctx_pg = &ctx->qp_mem; 7413 ctx_pg->entries = ctx->qp_min_qp1_entries + ctx->qp_max_l2_entries + 7414 extra_qps; 7415 if (ctx->qp_entry_size) { 7416 mem_size = ctx->qp_entry_size * ctx_pg->entries; 7417 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_QP]; 7418 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init); 7419 if (rc) 7420 return rc; 7421 } 7422 7423 ctx_pg = &ctx->srq_mem; 7424 ctx_pg->entries = ctx->srq_max_l2_entries + extra_srqs; 7425 if (ctx->srq_entry_size) { 7426 mem_size = ctx->srq_entry_size * ctx_pg->entries; 7427 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_SRQ]; 7428 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init); 7429 if (rc) 7430 return rc; 7431 } 7432 7433 ctx_pg = &ctx->cq_mem; 7434 ctx_pg->entries = ctx->cq_max_l2_entries + extra_qps * 2; 7435 if (ctx->cq_entry_size) { 7436 mem_size = ctx->cq_entry_size * ctx_pg->entries; 7437 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_CQ]; 7438 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init); 7439 if (rc) 7440 return rc; 7441 } 7442 7443 ctx_pg = &ctx->vnic_mem; 7444 ctx_pg->entries = ctx->vnic_max_vnic_entries + 7445 ctx->vnic_max_ring_table_entries; 7446 if (ctx->vnic_entry_size) { 7447 mem_size = ctx->vnic_entry_size * ctx_pg->entries; 7448 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_VNIC]; 7449 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, init); 7450 if (rc) 7451 return rc; 7452 } 7453 7454 ctx_pg = &ctx->stat_mem; 7455 ctx_pg->entries = ctx->stat_max_entries; 7456 if (ctx->stat_entry_size) { 7457 mem_size = ctx->stat_entry_size * ctx_pg->entries; 7458 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_STAT]; 7459 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, init); 7460 if (rc) 7461 return rc; 7462 } 7463 7464 ena = 0; 7465 if (!(bp->flags & BNXT_FLAG_ROCE_CAP)) 7466 goto skip_rdma; 7467 7468 ctx_pg = &ctx->mrav_mem; 7469 /* 128K extra is needed to accommodate static AH context 7470 * allocation by f/w. 7471 */ 7472 num_mr = 1024 * 256; 7473 num_ah = 1024 * 128; 7474 ctx_pg->entries = num_mr + num_ah; 7475 if (ctx->mrav_entry_size) { 7476 mem_size = ctx->mrav_entry_size * ctx_pg->entries; 7477 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_MRAV]; 7478 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 2, init); 7479 if (rc) 7480 return rc; 7481 } 7482 ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV; 7483 if (ctx->mrav_num_entries_units) 7484 ctx_pg->entries = 7485 ((num_mr / ctx->mrav_num_entries_units) << 16) | 7486 (num_ah / ctx->mrav_num_entries_units); 7487 7488 ctx_pg = &ctx->tim_mem; 7489 ctx_pg->entries = ctx->qp_mem.entries; 7490 if (ctx->tim_entry_size) { 7491 mem_size = ctx->tim_entry_size * ctx_pg->entries; 7492 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, NULL); 7493 if (rc) 7494 return rc; 7495 } 7496 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM; 7497 7498 skip_rdma: 7499 min = ctx->tqm_min_entries_per_ring; 7500 entries_sp = ctx->vnic_max_vnic_entries + ctx->qp_max_l2_entries + 7501 2 * (extra_qps + ctx->qp_min_qp1_entries) + min; 7502 entries_sp = roundup(entries_sp, ctx->tqm_entries_multiple); 7503 entries = ctx->qp_max_l2_entries + 2 * (extra_qps + ctx->qp_min_qp1_entries); 7504 entries = roundup(entries, ctx->tqm_entries_multiple); 7505 entries = clamp_t(u32, entries, min, ctx->tqm_max_entries_per_ring); 7506 for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++) { 7507 ctx_pg = ctx->tqm_mem[i]; 7508 ctx_pg->entries = i ? entries : entries_sp; 7509 if (ctx->tqm_entry_size) { 7510 mem_size = ctx->tqm_entry_size * ctx_pg->entries; 7511 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, 7512 NULL); 7513 if (rc) 7514 return rc; 7515 } 7516 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP << i; 7517 } 7518 ena |= FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES; 7519 rc = bnxt_hwrm_func_backing_store_cfg(bp, ena); 7520 if (rc) { 7521 netdev_err(bp->dev, "Failed configuring context mem, rc = %d.\n", 7522 rc); 7523 return rc; 7524 } 7525 ctx->flags |= BNXT_CTX_FLAG_INITED; 7526 return 0; 7527 } 7528 7529 int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all) 7530 { 7531 struct hwrm_func_resource_qcaps_output *resp = bp->hwrm_cmd_resp_addr; 7532 struct hwrm_func_resource_qcaps_input req = {0}; 7533 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7534 int rc; 7535 7536 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESOURCE_QCAPS, -1, -1); 7537 req.fid = cpu_to_le16(0xffff); 7538 7539 mutex_lock(&bp->hwrm_cmd_lock); 7540 rc = _hwrm_send_message_silent(bp, &req, sizeof(req), 7541 HWRM_CMD_TIMEOUT); 7542 if (rc) 7543 goto hwrm_func_resc_qcaps_exit; 7544 7545 hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs); 7546 if (!all) 7547 goto hwrm_func_resc_qcaps_exit; 7548 7549 hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx); 7550 hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx); 7551 hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings); 7552 hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings); 7553 hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings); 7554 hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings); 7555 hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings); 7556 hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings); 7557 hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps); 7558 hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps); 7559 hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs); 7560 hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs); 7561 hw_resc->min_vnics = le16_to_cpu(resp->min_vnics); 7562 hw_resc->max_vnics = le16_to_cpu(resp->max_vnics); 7563 hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx); 7564 hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx); 7565 7566 if (bp->flags & BNXT_FLAG_CHIP_P5) { 7567 u16 max_msix = le16_to_cpu(resp->max_msix); 7568 7569 hw_resc->max_nqs = max_msix; 7570 hw_resc->max_hw_ring_grps = hw_resc->max_rx_rings; 7571 } 7572 7573 if (BNXT_PF(bp)) { 7574 struct bnxt_pf_info *pf = &bp->pf; 7575 7576 pf->vf_resv_strategy = 7577 le16_to_cpu(resp->vf_reservation_strategy); 7578 if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC) 7579 pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL; 7580 } 7581 hwrm_func_resc_qcaps_exit: 7582 mutex_unlock(&bp->hwrm_cmd_lock); 7583 return rc; 7584 } 7585 7586 /* bp->hwrm_cmd_lock already held. */ 7587 static int __bnxt_hwrm_ptp_qcfg(struct bnxt *bp) 7588 { 7589 struct hwrm_port_mac_ptp_qcfg_output *resp = bp->hwrm_cmd_resp_addr; 7590 struct hwrm_port_mac_ptp_qcfg_input req = {0}; 7591 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 7592 u8 flags; 7593 int rc; 7594 7595 if (bp->hwrm_spec_code < 0x10801) { 7596 rc = -ENODEV; 7597 goto no_ptp; 7598 } 7599 7600 req.port_id = cpu_to_le16(bp->pf.port_id); 7601 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_MAC_PTP_QCFG, -1, -1); 7602 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 7603 if (rc) 7604 goto no_ptp; 7605 7606 flags = resp->flags; 7607 if (!(flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_HWRM_ACCESS)) { 7608 rc = -ENODEV; 7609 goto no_ptp; 7610 } 7611 if (!ptp) { 7612 ptp = kzalloc(sizeof(*ptp), GFP_KERNEL); 7613 if (!ptp) 7614 return -ENOMEM; 7615 ptp->bp = bp; 7616 bp->ptp_cfg = ptp; 7617 } 7618 if (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_PARTIAL_DIRECT_ACCESS_REF_CLOCK) { 7619 ptp->refclk_regs[0] = le32_to_cpu(resp->ts_ref_clock_reg_lower); 7620 ptp->refclk_regs[1] = le32_to_cpu(resp->ts_ref_clock_reg_upper); 7621 } else if (bp->flags & BNXT_FLAG_CHIP_P5) { 7622 ptp->refclk_regs[0] = BNXT_TS_REG_TIMESYNC_TS0_LOWER; 7623 ptp->refclk_regs[1] = BNXT_TS_REG_TIMESYNC_TS0_UPPER; 7624 } else { 7625 rc = -ENODEV; 7626 goto no_ptp; 7627 } 7628 rc = bnxt_ptp_init(bp); 7629 if (!rc) 7630 return 0; 7631 7632 netdev_warn(bp->dev, "PTP initialization failed.\n"); 7633 7634 no_ptp: 7635 bnxt_ptp_clear(bp); 7636 kfree(ptp); 7637 bp->ptp_cfg = NULL; 7638 return rc; 7639 } 7640 7641 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp) 7642 { 7643 int rc = 0; 7644 struct hwrm_func_qcaps_input req = {0}; 7645 struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr; 7646 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7647 u32 flags, flags_ext; 7648 7649 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1); 7650 req.fid = cpu_to_le16(0xffff); 7651 7652 mutex_lock(&bp->hwrm_cmd_lock); 7653 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 7654 if (rc) 7655 goto hwrm_func_qcaps_exit; 7656 7657 flags = le32_to_cpu(resp->flags); 7658 if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED) 7659 bp->flags |= BNXT_FLAG_ROCEV1_CAP; 7660 if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED) 7661 bp->flags |= BNXT_FLAG_ROCEV2_CAP; 7662 if (flags & FUNC_QCAPS_RESP_FLAGS_PCIE_STATS_SUPPORTED) 7663 bp->fw_cap |= BNXT_FW_CAP_PCIE_STATS_SUPPORTED; 7664 if (flags & FUNC_QCAPS_RESP_FLAGS_HOT_RESET_CAPABLE) 7665 bp->fw_cap |= BNXT_FW_CAP_HOT_RESET; 7666 if (flags & FUNC_QCAPS_RESP_FLAGS_EXT_STATS_SUPPORTED) 7667 bp->fw_cap |= BNXT_FW_CAP_EXT_STATS_SUPPORTED; 7668 if (flags & FUNC_QCAPS_RESP_FLAGS_ERROR_RECOVERY_CAPABLE) 7669 bp->fw_cap |= BNXT_FW_CAP_ERROR_RECOVERY; 7670 if (flags & FUNC_QCAPS_RESP_FLAGS_ERR_RECOVER_RELOAD) 7671 bp->fw_cap |= BNXT_FW_CAP_ERR_RECOVER_RELOAD; 7672 if (!(flags & FUNC_QCAPS_RESP_FLAGS_VLAN_ACCELERATION_TX_DISABLED)) 7673 bp->fw_cap |= BNXT_FW_CAP_VLAN_TX_INSERT; 7674 7675 flags_ext = le32_to_cpu(resp->flags_ext); 7676 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_EXT_HW_STATS_SUPPORTED) 7677 bp->fw_cap |= BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED; 7678 if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_PPS_SUPPORTED)) 7679 bp->fw_cap |= BNXT_FW_CAP_PTP_PPS; 7680 7681 bp->tx_push_thresh = 0; 7682 if ((flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED) && 7683 BNXT_FW_MAJ(bp) > 217) 7684 bp->tx_push_thresh = BNXT_TX_PUSH_THRESH; 7685 7686 hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx); 7687 hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings); 7688 hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings); 7689 hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings); 7690 hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps); 7691 if (!hw_resc->max_hw_ring_grps) 7692 hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings; 7693 hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs); 7694 hw_resc->max_vnics = le16_to_cpu(resp->max_vnics); 7695 hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx); 7696 7697 if (BNXT_PF(bp)) { 7698 struct bnxt_pf_info *pf = &bp->pf; 7699 7700 pf->fw_fid = le16_to_cpu(resp->fid); 7701 pf->port_id = le16_to_cpu(resp->port_id); 7702 memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN); 7703 pf->first_vf_id = le16_to_cpu(resp->first_vf_id); 7704 pf->max_vfs = le16_to_cpu(resp->max_vfs); 7705 pf->max_encap_records = le32_to_cpu(resp->max_encap_records); 7706 pf->max_decap_records = le32_to_cpu(resp->max_decap_records); 7707 pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows); 7708 pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows); 7709 pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows); 7710 pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows); 7711 bp->flags &= ~BNXT_FLAG_WOL_CAP; 7712 if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED) 7713 bp->flags |= BNXT_FLAG_WOL_CAP; 7714 if (flags & FUNC_QCAPS_RESP_FLAGS_PTP_SUPPORTED) { 7715 __bnxt_hwrm_ptp_qcfg(bp); 7716 } else { 7717 bnxt_ptp_clear(bp); 7718 kfree(bp->ptp_cfg); 7719 bp->ptp_cfg = NULL; 7720 } 7721 } else { 7722 #ifdef CONFIG_BNXT_SRIOV 7723 struct bnxt_vf_info *vf = &bp->vf; 7724 7725 vf->fw_fid = le16_to_cpu(resp->fid); 7726 memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN); 7727 #endif 7728 } 7729 7730 hwrm_func_qcaps_exit: 7731 mutex_unlock(&bp->hwrm_cmd_lock); 7732 return rc; 7733 } 7734 7735 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp); 7736 7737 static int bnxt_hwrm_func_qcaps(struct bnxt *bp) 7738 { 7739 int rc; 7740 7741 rc = __bnxt_hwrm_func_qcaps(bp); 7742 if (rc) 7743 return rc; 7744 rc = bnxt_hwrm_queue_qportcfg(bp); 7745 if (rc) { 7746 netdev_err(bp->dev, "hwrm query qportcfg failure rc: %d\n", rc); 7747 return rc; 7748 } 7749 if (bp->hwrm_spec_code >= 0x10803) { 7750 rc = bnxt_alloc_ctx_mem(bp); 7751 if (rc) 7752 return rc; 7753 rc = bnxt_hwrm_func_resc_qcaps(bp, true); 7754 if (!rc) 7755 bp->fw_cap |= BNXT_FW_CAP_NEW_RM; 7756 } 7757 return 0; 7758 } 7759 7760 static int bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(struct bnxt *bp) 7761 { 7762 struct hwrm_cfa_adv_flow_mgnt_qcaps_input req = {0}; 7763 struct hwrm_cfa_adv_flow_mgnt_qcaps_output *resp; 7764 int rc = 0; 7765 u32 flags; 7766 7767 if (!(bp->fw_cap & BNXT_FW_CAP_CFA_ADV_FLOW)) 7768 return 0; 7769 7770 resp = bp->hwrm_cmd_resp_addr; 7771 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_ADV_FLOW_MGNT_QCAPS, -1, -1); 7772 7773 mutex_lock(&bp->hwrm_cmd_lock); 7774 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 7775 if (rc) 7776 goto hwrm_cfa_adv_qcaps_exit; 7777 7778 flags = le32_to_cpu(resp->flags); 7779 if (flags & 7780 CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V2_SUPPORTED) 7781 bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2; 7782 7783 hwrm_cfa_adv_qcaps_exit: 7784 mutex_unlock(&bp->hwrm_cmd_lock); 7785 return rc; 7786 } 7787 7788 static int __bnxt_alloc_fw_health(struct bnxt *bp) 7789 { 7790 if (bp->fw_health) 7791 return 0; 7792 7793 bp->fw_health = kzalloc(sizeof(*bp->fw_health), GFP_KERNEL); 7794 if (!bp->fw_health) 7795 return -ENOMEM; 7796 7797 return 0; 7798 } 7799 7800 static int bnxt_alloc_fw_health(struct bnxt *bp) 7801 { 7802 int rc; 7803 7804 if (!(bp->fw_cap & BNXT_FW_CAP_HOT_RESET) && 7805 !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 7806 return 0; 7807 7808 rc = __bnxt_alloc_fw_health(bp); 7809 if (rc) { 7810 bp->fw_cap &= ~BNXT_FW_CAP_HOT_RESET; 7811 bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY; 7812 return rc; 7813 } 7814 7815 return 0; 7816 } 7817 7818 static void __bnxt_map_fw_health_reg(struct bnxt *bp, u32 reg) 7819 { 7820 writel(reg & BNXT_GRC_BASE_MASK, bp->bar0 + 7821 BNXT_GRCPF_REG_WINDOW_BASE_OUT + 7822 BNXT_FW_HEALTH_WIN_MAP_OFF); 7823 } 7824 7825 bool bnxt_is_fw_healthy(struct bnxt *bp) 7826 { 7827 if (bp->fw_health && bp->fw_health->status_reliable) { 7828 u32 fw_status; 7829 7830 fw_status = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 7831 if (fw_status && !BNXT_FW_IS_HEALTHY(fw_status)) 7832 return false; 7833 } 7834 7835 return true; 7836 } 7837 7838 static void bnxt_inv_fw_health_reg(struct bnxt *bp) 7839 { 7840 struct bnxt_fw_health *fw_health = bp->fw_health; 7841 u32 reg_type; 7842 7843 if (!fw_health || !fw_health->status_reliable) 7844 return; 7845 7846 reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_HEALTH_REG]); 7847 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) 7848 fw_health->status_reliable = false; 7849 } 7850 7851 static void bnxt_try_map_fw_health_reg(struct bnxt *bp) 7852 { 7853 void __iomem *hs; 7854 u32 status_loc; 7855 u32 reg_type; 7856 u32 sig; 7857 7858 if (bp->fw_health) 7859 bp->fw_health->status_reliable = false; 7860 7861 __bnxt_map_fw_health_reg(bp, HCOMM_STATUS_STRUCT_LOC); 7862 hs = bp->bar0 + BNXT_FW_HEALTH_WIN_OFF(HCOMM_STATUS_STRUCT_LOC); 7863 7864 sig = readl(hs + offsetof(struct hcomm_status, sig_ver)); 7865 if ((sig & HCOMM_STATUS_SIGNATURE_MASK) != HCOMM_STATUS_SIGNATURE_VAL) { 7866 if (!bp->chip_num) { 7867 __bnxt_map_fw_health_reg(bp, BNXT_GRC_REG_BASE); 7868 bp->chip_num = readl(bp->bar0 + 7869 BNXT_FW_HEALTH_WIN_BASE + 7870 BNXT_GRC_REG_CHIP_NUM); 7871 } 7872 if (!BNXT_CHIP_P5(bp)) 7873 return; 7874 7875 status_loc = BNXT_GRC_REG_STATUS_P5 | 7876 BNXT_FW_HEALTH_REG_TYPE_BAR0; 7877 } else { 7878 status_loc = readl(hs + offsetof(struct hcomm_status, 7879 fw_status_loc)); 7880 } 7881 7882 if (__bnxt_alloc_fw_health(bp)) { 7883 netdev_warn(bp->dev, "no memory for firmware status checks\n"); 7884 return; 7885 } 7886 7887 bp->fw_health->regs[BNXT_FW_HEALTH_REG] = status_loc; 7888 reg_type = BNXT_FW_HEALTH_REG_TYPE(status_loc); 7889 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) { 7890 __bnxt_map_fw_health_reg(bp, status_loc); 7891 bp->fw_health->mapped_regs[BNXT_FW_HEALTH_REG] = 7892 BNXT_FW_HEALTH_WIN_OFF(status_loc); 7893 } 7894 7895 bp->fw_health->status_reliable = true; 7896 } 7897 7898 static int bnxt_map_fw_health_regs(struct bnxt *bp) 7899 { 7900 struct bnxt_fw_health *fw_health = bp->fw_health; 7901 u32 reg_base = 0xffffffff; 7902 int i; 7903 7904 bp->fw_health->status_reliable = false; 7905 /* Only pre-map the monitoring GRC registers using window 3 */ 7906 for (i = 0; i < 4; i++) { 7907 u32 reg = fw_health->regs[i]; 7908 7909 if (BNXT_FW_HEALTH_REG_TYPE(reg) != BNXT_FW_HEALTH_REG_TYPE_GRC) 7910 continue; 7911 if (reg_base == 0xffffffff) 7912 reg_base = reg & BNXT_GRC_BASE_MASK; 7913 if ((reg & BNXT_GRC_BASE_MASK) != reg_base) 7914 return -ERANGE; 7915 fw_health->mapped_regs[i] = BNXT_FW_HEALTH_WIN_OFF(reg); 7916 } 7917 bp->fw_health->status_reliable = true; 7918 if (reg_base == 0xffffffff) 7919 return 0; 7920 7921 __bnxt_map_fw_health_reg(bp, reg_base); 7922 return 0; 7923 } 7924 7925 static int bnxt_hwrm_error_recovery_qcfg(struct bnxt *bp) 7926 { 7927 struct hwrm_error_recovery_qcfg_output *resp = bp->hwrm_cmd_resp_addr; 7928 struct bnxt_fw_health *fw_health = bp->fw_health; 7929 struct hwrm_error_recovery_qcfg_input req = {0}; 7930 int rc, i; 7931 7932 if (!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 7933 return 0; 7934 7935 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_ERROR_RECOVERY_QCFG, -1, -1); 7936 mutex_lock(&bp->hwrm_cmd_lock); 7937 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 7938 if (rc) 7939 goto err_recovery_out; 7940 fw_health->flags = le32_to_cpu(resp->flags); 7941 if ((fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) && 7942 !(bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL)) { 7943 rc = -EINVAL; 7944 goto err_recovery_out; 7945 } 7946 fw_health->polling_dsecs = le32_to_cpu(resp->driver_polling_freq); 7947 fw_health->master_func_wait_dsecs = 7948 le32_to_cpu(resp->master_func_wait_period); 7949 fw_health->normal_func_wait_dsecs = 7950 le32_to_cpu(resp->normal_func_wait_period); 7951 fw_health->post_reset_wait_dsecs = 7952 le32_to_cpu(resp->master_func_wait_period_after_reset); 7953 fw_health->post_reset_max_wait_dsecs = 7954 le32_to_cpu(resp->max_bailout_time_after_reset); 7955 fw_health->regs[BNXT_FW_HEALTH_REG] = 7956 le32_to_cpu(resp->fw_health_status_reg); 7957 fw_health->regs[BNXT_FW_HEARTBEAT_REG] = 7958 le32_to_cpu(resp->fw_heartbeat_reg); 7959 fw_health->regs[BNXT_FW_RESET_CNT_REG] = 7960 le32_to_cpu(resp->fw_reset_cnt_reg); 7961 fw_health->regs[BNXT_FW_RESET_INPROG_REG] = 7962 le32_to_cpu(resp->reset_inprogress_reg); 7963 fw_health->fw_reset_inprog_reg_mask = 7964 le32_to_cpu(resp->reset_inprogress_reg_mask); 7965 fw_health->fw_reset_seq_cnt = resp->reg_array_cnt; 7966 if (fw_health->fw_reset_seq_cnt >= 16) { 7967 rc = -EINVAL; 7968 goto err_recovery_out; 7969 } 7970 for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) { 7971 fw_health->fw_reset_seq_regs[i] = 7972 le32_to_cpu(resp->reset_reg[i]); 7973 fw_health->fw_reset_seq_vals[i] = 7974 le32_to_cpu(resp->reset_reg_val[i]); 7975 fw_health->fw_reset_seq_delay_msec[i] = 7976 resp->delay_after_reset[i]; 7977 } 7978 err_recovery_out: 7979 mutex_unlock(&bp->hwrm_cmd_lock); 7980 if (!rc) 7981 rc = bnxt_map_fw_health_regs(bp); 7982 if (rc) 7983 bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY; 7984 return rc; 7985 } 7986 7987 static int bnxt_hwrm_func_reset(struct bnxt *bp) 7988 { 7989 struct hwrm_func_reset_input req = {0}; 7990 7991 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESET, -1, -1); 7992 req.enables = 0; 7993 7994 return hwrm_send_message(bp, &req, sizeof(req), HWRM_RESET_TIMEOUT); 7995 } 7996 7997 static void bnxt_nvm_cfg_ver_get(struct bnxt *bp) 7998 { 7999 struct hwrm_nvm_get_dev_info_output nvm_info; 8000 8001 if (!bnxt_hwrm_nvm_get_dev_info(bp, &nvm_info)) 8002 snprintf(bp->nvm_cfg_ver, FW_VER_STR_LEN, "%d.%d.%d", 8003 nvm_info.nvm_cfg_ver_maj, nvm_info.nvm_cfg_ver_min, 8004 nvm_info.nvm_cfg_ver_upd); 8005 } 8006 8007 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp) 8008 { 8009 int rc = 0; 8010 struct hwrm_queue_qportcfg_input req = {0}; 8011 struct hwrm_queue_qportcfg_output *resp = bp->hwrm_cmd_resp_addr; 8012 u8 i, j, *qptr; 8013 bool no_rdma; 8014 8015 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_QUEUE_QPORTCFG, -1, -1); 8016 8017 mutex_lock(&bp->hwrm_cmd_lock); 8018 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 8019 if (rc) 8020 goto qportcfg_exit; 8021 8022 if (!resp->max_configurable_queues) { 8023 rc = -EINVAL; 8024 goto qportcfg_exit; 8025 } 8026 bp->max_tc = resp->max_configurable_queues; 8027 bp->max_lltc = resp->max_configurable_lossless_queues; 8028 if (bp->max_tc > BNXT_MAX_QUEUE) 8029 bp->max_tc = BNXT_MAX_QUEUE; 8030 8031 no_rdma = !(bp->flags & BNXT_FLAG_ROCE_CAP); 8032 qptr = &resp->queue_id0; 8033 for (i = 0, j = 0; i < bp->max_tc; i++) { 8034 bp->q_info[j].queue_id = *qptr; 8035 bp->q_ids[i] = *qptr++; 8036 bp->q_info[j].queue_profile = *qptr++; 8037 bp->tc_to_qidx[j] = j; 8038 if (!BNXT_CNPQ(bp->q_info[j].queue_profile) || 8039 (no_rdma && BNXT_PF(bp))) 8040 j++; 8041 } 8042 bp->max_q = bp->max_tc; 8043 bp->max_tc = max_t(u8, j, 1); 8044 8045 if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG) 8046 bp->max_tc = 1; 8047 8048 if (bp->max_lltc > bp->max_tc) 8049 bp->max_lltc = bp->max_tc; 8050 8051 qportcfg_exit: 8052 mutex_unlock(&bp->hwrm_cmd_lock); 8053 return rc; 8054 } 8055 8056 static int __bnxt_hwrm_ver_get(struct bnxt *bp, bool silent) 8057 { 8058 struct hwrm_ver_get_input req = {0}; 8059 int rc; 8060 8061 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VER_GET, -1, -1); 8062 req.hwrm_intf_maj = HWRM_VERSION_MAJOR; 8063 req.hwrm_intf_min = HWRM_VERSION_MINOR; 8064 req.hwrm_intf_upd = HWRM_VERSION_UPDATE; 8065 8066 rc = bnxt_hwrm_do_send_msg(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT, 8067 silent); 8068 return rc; 8069 } 8070 8071 static int bnxt_hwrm_ver_get(struct bnxt *bp) 8072 { 8073 struct hwrm_ver_get_output *resp = bp->hwrm_cmd_resp_addr; 8074 u16 fw_maj, fw_min, fw_bld, fw_rsv; 8075 u32 dev_caps_cfg, hwrm_ver; 8076 int rc, len; 8077 8078 bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN; 8079 mutex_lock(&bp->hwrm_cmd_lock); 8080 rc = __bnxt_hwrm_ver_get(bp, false); 8081 if (rc) 8082 goto hwrm_ver_get_exit; 8083 8084 memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output)); 8085 8086 bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 | 8087 resp->hwrm_intf_min_8b << 8 | 8088 resp->hwrm_intf_upd_8b; 8089 if (resp->hwrm_intf_maj_8b < 1) { 8090 netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n", 8091 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b, 8092 resp->hwrm_intf_upd_8b); 8093 netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n"); 8094 } 8095 8096 hwrm_ver = HWRM_VERSION_MAJOR << 16 | HWRM_VERSION_MINOR << 8 | 8097 HWRM_VERSION_UPDATE; 8098 8099 if (bp->hwrm_spec_code > hwrm_ver) 8100 snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d", 8101 HWRM_VERSION_MAJOR, HWRM_VERSION_MINOR, 8102 HWRM_VERSION_UPDATE); 8103 else 8104 snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d", 8105 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b, 8106 resp->hwrm_intf_upd_8b); 8107 8108 fw_maj = le16_to_cpu(resp->hwrm_fw_major); 8109 if (bp->hwrm_spec_code > 0x10803 && fw_maj) { 8110 fw_min = le16_to_cpu(resp->hwrm_fw_minor); 8111 fw_bld = le16_to_cpu(resp->hwrm_fw_build); 8112 fw_rsv = le16_to_cpu(resp->hwrm_fw_patch); 8113 len = FW_VER_STR_LEN; 8114 } else { 8115 fw_maj = resp->hwrm_fw_maj_8b; 8116 fw_min = resp->hwrm_fw_min_8b; 8117 fw_bld = resp->hwrm_fw_bld_8b; 8118 fw_rsv = resp->hwrm_fw_rsvd_8b; 8119 len = BC_HWRM_STR_LEN; 8120 } 8121 bp->fw_ver_code = BNXT_FW_VER_CODE(fw_maj, fw_min, fw_bld, fw_rsv); 8122 snprintf(bp->fw_ver_str, len, "%d.%d.%d.%d", fw_maj, fw_min, fw_bld, 8123 fw_rsv); 8124 8125 if (strlen(resp->active_pkg_name)) { 8126 int fw_ver_len = strlen(bp->fw_ver_str); 8127 8128 snprintf(bp->fw_ver_str + fw_ver_len, 8129 FW_VER_STR_LEN - fw_ver_len - 1, "/pkg %s", 8130 resp->active_pkg_name); 8131 bp->fw_cap |= BNXT_FW_CAP_PKG_VER; 8132 } 8133 8134 bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout); 8135 if (!bp->hwrm_cmd_timeout) 8136 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT; 8137 8138 if (resp->hwrm_intf_maj_8b >= 1) { 8139 bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len); 8140 bp->hwrm_max_ext_req_len = le16_to_cpu(resp->max_ext_req_len); 8141 } 8142 if (bp->hwrm_max_ext_req_len < HWRM_MAX_REQ_LEN) 8143 bp->hwrm_max_ext_req_len = HWRM_MAX_REQ_LEN; 8144 8145 bp->chip_num = le16_to_cpu(resp->chip_num); 8146 bp->chip_rev = resp->chip_rev; 8147 if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev && 8148 !resp->chip_metal) 8149 bp->flags |= BNXT_FLAG_CHIP_NITRO_A0; 8150 8151 dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg); 8152 if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) && 8153 (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED)) 8154 bp->fw_cap |= BNXT_FW_CAP_SHORT_CMD; 8155 8156 if (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_KONG_MB_CHNL_SUPPORTED) 8157 bp->fw_cap |= BNXT_FW_CAP_KONG_MB_CHNL; 8158 8159 if (dev_caps_cfg & 8160 VER_GET_RESP_DEV_CAPS_CFG_FLOW_HANDLE_64BIT_SUPPORTED) 8161 bp->fw_cap |= BNXT_FW_CAP_OVS_64BIT_HANDLE; 8162 8163 if (dev_caps_cfg & 8164 VER_GET_RESP_DEV_CAPS_CFG_TRUSTED_VF_SUPPORTED) 8165 bp->fw_cap |= BNXT_FW_CAP_TRUSTED_VF; 8166 8167 if (dev_caps_cfg & 8168 VER_GET_RESP_DEV_CAPS_CFG_CFA_ADV_FLOW_MGNT_SUPPORTED) 8169 bp->fw_cap |= BNXT_FW_CAP_CFA_ADV_FLOW; 8170 8171 hwrm_ver_get_exit: 8172 mutex_unlock(&bp->hwrm_cmd_lock); 8173 return rc; 8174 } 8175 8176 int bnxt_hwrm_fw_set_time(struct bnxt *bp) 8177 { 8178 struct hwrm_fw_set_time_input req = {0}; 8179 struct tm tm; 8180 time64_t now = ktime_get_real_seconds(); 8181 8182 if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) || 8183 bp->hwrm_spec_code < 0x10400) 8184 return -EOPNOTSUPP; 8185 8186 time64_to_tm(now, 0, &tm); 8187 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FW_SET_TIME, -1, -1); 8188 req.year = cpu_to_le16(1900 + tm.tm_year); 8189 req.month = 1 + tm.tm_mon; 8190 req.day = tm.tm_mday; 8191 req.hour = tm.tm_hour; 8192 req.minute = tm.tm_min; 8193 req.second = tm.tm_sec; 8194 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 8195 } 8196 8197 static void bnxt_add_one_ctr(u64 hw, u64 *sw, u64 mask) 8198 { 8199 u64 sw_tmp; 8200 8201 hw &= mask; 8202 sw_tmp = (*sw & ~mask) | hw; 8203 if (hw < (*sw & mask)) 8204 sw_tmp += mask + 1; 8205 WRITE_ONCE(*sw, sw_tmp); 8206 } 8207 8208 static void __bnxt_accumulate_stats(__le64 *hw_stats, u64 *sw_stats, u64 *masks, 8209 int count, bool ignore_zero) 8210 { 8211 int i; 8212 8213 for (i = 0; i < count; i++) { 8214 u64 hw = le64_to_cpu(READ_ONCE(hw_stats[i])); 8215 8216 if (ignore_zero && !hw) 8217 continue; 8218 8219 if (masks[i] == -1ULL) 8220 sw_stats[i] = hw; 8221 else 8222 bnxt_add_one_ctr(hw, &sw_stats[i], masks[i]); 8223 } 8224 } 8225 8226 static void bnxt_accumulate_stats(struct bnxt_stats_mem *stats) 8227 { 8228 if (!stats->hw_stats) 8229 return; 8230 8231 __bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats, 8232 stats->hw_masks, stats->len / 8, false); 8233 } 8234 8235 static void bnxt_accumulate_all_stats(struct bnxt *bp) 8236 { 8237 struct bnxt_stats_mem *ring0_stats; 8238 bool ignore_zero = false; 8239 int i; 8240 8241 /* Chip bug. Counter intermittently becomes 0. */ 8242 if (bp->flags & BNXT_FLAG_CHIP_P5) 8243 ignore_zero = true; 8244 8245 for (i = 0; i < bp->cp_nr_rings; i++) { 8246 struct bnxt_napi *bnapi = bp->bnapi[i]; 8247 struct bnxt_cp_ring_info *cpr; 8248 struct bnxt_stats_mem *stats; 8249 8250 cpr = &bnapi->cp_ring; 8251 stats = &cpr->stats; 8252 if (!i) 8253 ring0_stats = stats; 8254 __bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats, 8255 ring0_stats->hw_masks, 8256 ring0_stats->len / 8, ignore_zero); 8257 } 8258 if (bp->flags & BNXT_FLAG_PORT_STATS) { 8259 struct bnxt_stats_mem *stats = &bp->port_stats; 8260 __le64 *hw_stats = stats->hw_stats; 8261 u64 *sw_stats = stats->sw_stats; 8262 u64 *masks = stats->hw_masks; 8263 int cnt; 8264 8265 cnt = sizeof(struct rx_port_stats) / 8; 8266 __bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false); 8267 8268 hw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 8269 sw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 8270 masks += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 8271 cnt = sizeof(struct tx_port_stats) / 8; 8272 __bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false); 8273 } 8274 if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) { 8275 bnxt_accumulate_stats(&bp->rx_port_stats_ext); 8276 bnxt_accumulate_stats(&bp->tx_port_stats_ext); 8277 } 8278 } 8279 8280 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags) 8281 { 8282 struct bnxt_pf_info *pf = &bp->pf; 8283 struct hwrm_port_qstats_input req = {0}; 8284 8285 if (!(bp->flags & BNXT_FLAG_PORT_STATS)) 8286 return 0; 8287 8288 if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)) 8289 return -EOPNOTSUPP; 8290 8291 req.flags = flags; 8292 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS, -1, -1); 8293 req.port_id = cpu_to_le16(pf->port_id); 8294 req.tx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map + 8295 BNXT_TX_PORT_STATS_BYTE_OFFSET); 8296 req.rx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map); 8297 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 8298 } 8299 8300 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags) 8301 { 8302 struct hwrm_port_qstats_ext_output *resp = bp->hwrm_cmd_resp_addr; 8303 struct hwrm_queue_pri2cos_qcfg_input req2 = {0}; 8304 struct hwrm_port_qstats_ext_input req = {0}; 8305 struct bnxt_pf_info *pf = &bp->pf; 8306 u32 tx_stat_size; 8307 int rc; 8308 8309 if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT)) 8310 return 0; 8311 8312 if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)) 8313 return -EOPNOTSUPP; 8314 8315 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS_EXT, -1, -1); 8316 req.flags = flags; 8317 req.port_id = cpu_to_le16(pf->port_id); 8318 req.rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext)); 8319 req.rx_stat_host_addr = cpu_to_le64(bp->rx_port_stats_ext.hw_stats_map); 8320 tx_stat_size = bp->tx_port_stats_ext.hw_stats ? 8321 sizeof(struct tx_port_stats_ext) : 0; 8322 req.tx_stat_size = cpu_to_le16(tx_stat_size); 8323 req.tx_stat_host_addr = cpu_to_le64(bp->tx_port_stats_ext.hw_stats_map); 8324 mutex_lock(&bp->hwrm_cmd_lock); 8325 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 8326 if (!rc) { 8327 bp->fw_rx_stats_ext_size = le16_to_cpu(resp->rx_stat_size) / 8; 8328 bp->fw_tx_stats_ext_size = tx_stat_size ? 8329 le16_to_cpu(resp->tx_stat_size) / 8 : 0; 8330 } else { 8331 bp->fw_rx_stats_ext_size = 0; 8332 bp->fw_tx_stats_ext_size = 0; 8333 } 8334 if (flags) 8335 goto qstats_done; 8336 8337 if (bp->fw_tx_stats_ext_size <= 8338 offsetof(struct tx_port_stats_ext, pfc_pri0_tx_duration_us) / 8) { 8339 mutex_unlock(&bp->hwrm_cmd_lock); 8340 bp->pri2cos_valid = 0; 8341 return rc; 8342 } 8343 8344 bnxt_hwrm_cmd_hdr_init(bp, &req2, HWRM_QUEUE_PRI2COS_QCFG, -1, -1); 8345 req2.flags = cpu_to_le32(QUEUE_PRI2COS_QCFG_REQ_FLAGS_IVLAN); 8346 8347 rc = _hwrm_send_message(bp, &req2, sizeof(req2), HWRM_CMD_TIMEOUT); 8348 if (!rc) { 8349 struct hwrm_queue_pri2cos_qcfg_output *resp2; 8350 u8 *pri2cos; 8351 int i, j; 8352 8353 resp2 = bp->hwrm_cmd_resp_addr; 8354 pri2cos = &resp2->pri0_cos_queue_id; 8355 for (i = 0; i < 8; i++) { 8356 u8 queue_id = pri2cos[i]; 8357 u8 queue_idx; 8358 8359 /* Per port queue IDs start from 0, 10, 20, etc */ 8360 queue_idx = queue_id % 10; 8361 if (queue_idx > BNXT_MAX_QUEUE) { 8362 bp->pri2cos_valid = false; 8363 goto qstats_done; 8364 } 8365 for (j = 0; j < bp->max_q; j++) { 8366 if (bp->q_ids[j] == queue_id) 8367 bp->pri2cos_idx[i] = queue_idx; 8368 } 8369 } 8370 bp->pri2cos_valid = 1; 8371 } 8372 qstats_done: 8373 mutex_unlock(&bp->hwrm_cmd_lock); 8374 return rc; 8375 } 8376 8377 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp) 8378 { 8379 if (bp->vxlan_fw_dst_port_id != INVALID_HW_RING_ID) 8380 bnxt_hwrm_tunnel_dst_port_free( 8381 bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN); 8382 if (bp->nge_fw_dst_port_id != INVALID_HW_RING_ID) 8383 bnxt_hwrm_tunnel_dst_port_free( 8384 bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE); 8385 } 8386 8387 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa) 8388 { 8389 int rc, i; 8390 u32 tpa_flags = 0; 8391 8392 if (set_tpa) 8393 tpa_flags = bp->flags & BNXT_FLAG_TPA; 8394 else if (BNXT_NO_FW_ACCESS(bp)) 8395 return 0; 8396 for (i = 0; i < bp->nr_vnics; i++) { 8397 rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags); 8398 if (rc) { 8399 netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n", 8400 i, rc); 8401 return rc; 8402 } 8403 } 8404 return 0; 8405 } 8406 8407 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp) 8408 { 8409 int i; 8410 8411 for (i = 0; i < bp->nr_vnics; i++) 8412 bnxt_hwrm_vnic_set_rss(bp, i, false); 8413 } 8414 8415 static void bnxt_clear_vnic(struct bnxt *bp) 8416 { 8417 if (!bp->vnic_info) 8418 return; 8419 8420 bnxt_hwrm_clear_vnic_filter(bp); 8421 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) { 8422 /* clear all RSS setting before free vnic ctx */ 8423 bnxt_hwrm_clear_vnic_rss(bp); 8424 bnxt_hwrm_vnic_ctx_free(bp); 8425 } 8426 /* before free the vnic, undo the vnic tpa settings */ 8427 if (bp->flags & BNXT_FLAG_TPA) 8428 bnxt_set_tpa(bp, false); 8429 bnxt_hwrm_vnic_free(bp); 8430 if (bp->flags & BNXT_FLAG_CHIP_P5) 8431 bnxt_hwrm_vnic_ctx_free(bp); 8432 } 8433 8434 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path, 8435 bool irq_re_init) 8436 { 8437 bnxt_clear_vnic(bp); 8438 bnxt_hwrm_ring_free(bp, close_path); 8439 bnxt_hwrm_ring_grp_free(bp); 8440 if (irq_re_init) { 8441 bnxt_hwrm_stat_ctx_free(bp); 8442 bnxt_hwrm_free_tunnel_ports(bp); 8443 } 8444 } 8445 8446 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode) 8447 { 8448 struct hwrm_func_cfg_input req = {0}; 8449 8450 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1); 8451 req.fid = cpu_to_le16(0xffff); 8452 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE); 8453 if (br_mode == BRIDGE_MODE_VEB) 8454 req.evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB; 8455 else if (br_mode == BRIDGE_MODE_VEPA) 8456 req.evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA; 8457 else 8458 return -EINVAL; 8459 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 8460 } 8461 8462 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size) 8463 { 8464 struct hwrm_func_cfg_input req = {0}; 8465 8466 if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803) 8467 return 0; 8468 8469 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1); 8470 req.fid = cpu_to_le16(0xffff); 8471 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE); 8472 req.options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64; 8473 if (size == 128) 8474 req.options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128; 8475 8476 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 8477 } 8478 8479 static int __bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id) 8480 { 8481 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 8482 int rc; 8483 8484 if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) 8485 goto skip_rss_ctx; 8486 8487 /* allocate context for vnic */ 8488 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0); 8489 if (rc) { 8490 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n", 8491 vnic_id, rc); 8492 goto vnic_setup_err; 8493 } 8494 bp->rsscos_nr_ctxs++; 8495 8496 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 8497 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1); 8498 if (rc) { 8499 netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n", 8500 vnic_id, rc); 8501 goto vnic_setup_err; 8502 } 8503 bp->rsscos_nr_ctxs++; 8504 } 8505 8506 skip_rss_ctx: 8507 /* configure default vnic, ring grp */ 8508 rc = bnxt_hwrm_vnic_cfg(bp, vnic_id); 8509 if (rc) { 8510 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n", 8511 vnic_id, rc); 8512 goto vnic_setup_err; 8513 } 8514 8515 /* Enable RSS hashing on vnic */ 8516 rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true); 8517 if (rc) { 8518 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n", 8519 vnic_id, rc); 8520 goto vnic_setup_err; 8521 } 8522 8523 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 8524 rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id); 8525 if (rc) { 8526 netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n", 8527 vnic_id, rc); 8528 } 8529 } 8530 8531 vnic_setup_err: 8532 return rc; 8533 } 8534 8535 static int __bnxt_setup_vnic_p5(struct bnxt *bp, u16 vnic_id) 8536 { 8537 int rc, i, nr_ctxs; 8538 8539 nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings); 8540 for (i = 0; i < nr_ctxs; i++) { 8541 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, i); 8542 if (rc) { 8543 netdev_err(bp->dev, "hwrm vnic %d ctx %d alloc failure rc: %x\n", 8544 vnic_id, i, rc); 8545 break; 8546 } 8547 bp->rsscos_nr_ctxs++; 8548 } 8549 if (i < nr_ctxs) 8550 return -ENOMEM; 8551 8552 rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic_id, true); 8553 if (rc) { 8554 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n", 8555 vnic_id, rc); 8556 return rc; 8557 } 8558 rc = bnxt_hwrm_vnic_cfg(bp, vnic_id); 8559 if (rc) { 8560 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n", 8561 vnic_id, rc); 8562 return rc; 8563 } 8564 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 8565 rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id); 8566 if (rc) { 8567 netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n", 8568 vnic_id, rc); 8569 } 8570 } 8571 return rc; 8572 } 8573 8574 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id) 8575 { 8576 if (bp->flags & BNXT_FLAG_CHIP_P5) 8577 return __bnxt_setup_vnic_p5(bp, vnic_id); 8578 else 8579 return __bnxt_setup_vnic(bp, vnic_id); 8580 } 8581 8582 static int bnxt_alloc_rfs_vnics(struct bnxt *bp) 8583 { 8584 #ifdef CONFIG_RFS_ACCEL 8585 int i, rc = 0; 8586 8587 if (bp->flags & BNXT_FLAG_CHIP_P5) 8588 return 0; 8589 8590 for (i = 0; i < bp->rx_nr_rings; i++) { 8591 struct bnxt_vnic_info *vnic; 8592 u16 vnic_id = i + 1; 8593 u16 ring_id = i; 8594 8595 if (vnic_id >= bp->nr_vnics) 8596 break; 8597 8598 vnic = &bp->vnic_info[vnic_id]; 8599 vnic->flags |= BNXT_VNIC_RFS_FLAG; 8600 if (bp->flags & BNXT_FLAG_NEW_RSS_CAP) 8601 vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG; 8602 rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1); 8603 if (rc) { 8604 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n", 8605 vnic_id, rc); 8606 break; 8607 } 8608 rc = bnxt_setup_vnic(bp, vnic_id); 8609 if (rc) 8610 break; 8611 } 8612 return rc; 8613 #else 8614 return 0; 8615 #endif 8616 } 8617 8618 /* Allow PF, trusted VFs and VFs with default VLAN to be in promiscuous mode */ 8619 static bool bnxt_promisc_ok(struct bnxt *bp) 8620 { 8621 #ifdef CONFIG_BNXT_SRIOV 8622 if (BNXT_VF(bp) && !bp->vf.vlan && !bnxt_is_trusted_vf(bp, &bp->vf)) 8623 return false; 8624 #endif 8625 return true; 8626 } 8627 8628 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp) 8629 { 8630 unsigned int rc = 0; 8631 8632 rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1); 8633 if (rc) { 8634 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n", 8635 rc); 8636 return rc; 8637 } 8638 8639 rc = bnxt_hwrm_vnic_cfg(bp, 1); 8640 if (rc) { 8641 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n", 8642 rc); 8643 return rc; 8644 } 8645 return rc; 8646 } 8647 8648 static int bnxt_cfg_rx_mode(struct bnxt *); 8649 static bool bnxt_mc_list_updated(struct bnxt *, u32 *); 8650 8651 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init) 8652 { 8653 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 8654 int rc = 0; 8655 unsigned int rx_nr_rings = bp->rx_nr_rings; 8656 8657 if (irq_re_init) { 8658 rc = bnxt_hwrm_stat_ctx_alloc(bp); 8659 if (rc) { 8660 netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n", 8661 rc); 8662 goto err_out; 8663 } 8664 } 8665 8666 rc = bnxt_hwrm_ring_alloc(bp); 8667 if (rc) { 8668 netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc); 8669 goto err_out; 8670 } 8671 8672 rc = bnxt_hwrm_ring_grp_alloc(bp); 8673 if (rc) { 8674 netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc); 8675 goto err_out; 8676 } 8677 8678 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 8679 rx_nr_rings--; 8680 8681 /* default vnic 0 */ 8682 rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings); 8683 if (rc) { 8684 netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc); 8685 goto err_out; 8686 } 8687 8688 rc = bnxt_setup_vnic(bp, 0); 8689 if (rc) 8690 goto err_out; 8691 8692 if (bp->flags & BNXT_FLAG_RFS) { 8693 rc = bnxt_alloc_rfs_vnics(bp); 8694 if (rc) 8695 goto err_out; 8696 } 8697 8698 if (bp->flags & BNXT_FLAG_TPA) { 8699 rc = bnxt_set_tpa(bp, true); 8700 if (rc) 8701 goto err_out; 8702 } 8703 8704 if (BNXT_VF(bp)) 8705 bnxt_update_vf_mac(bp); 8706 8707 /* Filter for default vnic 0 */ 8708 rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr); 8709 if (rc) { 8710 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc); 8711 goto err_out; 8712 } 8713 vnic->uc_filter_count = 1; 8714 8715 vnic->rx_mask = 0; 8716 if (bp->dev->flags & IFF_BROADCAST) 8717 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST; 8718 8719 if (bp->dev->flags & IFF_PROMISC) 8720 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 8721 8722 if (bp->dev->flags & IFF_ALLMULTI) { 8723 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 8724 vnic->mc_list_count = 0; 8725 } else { 8726 u32 mask = 0; 8727 8728 bnxt_mc_list_updated(bp, &mask); 8729 vnic->rx_mask |= mask; 8730 } 8731 8732 rc = bnxt_cfg_rx_mode(bp); 8733 if (rc) 8734 goto err_out; 8735 8736 rc = bnxt_hwrm_set_coal(bp); 8737 if (rc) 8738 netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n", 8739 rc); 8740 8741 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 8742 rc = bnxt_setup_nitroa0_vnic(bp); 8743 if (rc) 8744 netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n", 8745 rc); 8746 } 8747 8748 if (BNXT_VF(bp)) { 8749 bnxt_hwrm_func_qcfg(bp); 8750 netdev_update_features(bp->dev); 8751 } 8752 8753 return 0; 8754 8755 err_out: 8756 bnxt_hwrm_resource_free(bp, 0, true); 8757 8758 return rc; 8759 } 8760 8761 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init) 8762 { 8763 bnxt_hwrm_resource_free(bp, 1, irq_re_init); 8764 return 0; 8765 } 8766 8767 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init) 8768 { 8769 bnxt_init_cp_rings(bp); 8770 bnxt_init_rx_rings(bp); 8771 bnxt_init_tx_rings(bp); 8772 bnxt_init_ring_grps(bp, irq_re_init); 8773 bnxt_init_vnics(bp); 8774 8775 return bnxt_init_chip(bp, irq_re_init); 8776 } 8777 8778 static int bnxt_set_real_num_queues(struct bnxt *bp) 8779 { 8780 int rc; 8781 struct net_device *dev = bp->dev; 8782 8783 rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings - 8784 bp->tx_nr_rings_xdp); 8785 if (rc) 8786 return rc; 8787 8788 rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings); 8789 if (rc) 8790 return rc; 8791 8792 #ifdef CONFIG_RFS_ACCEL 8793 if (bp->flags & BNXT_FLAG_RFS) 8794 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings); 8795 #endif 8796 8797 return rc; 8798 } 8799 8800 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 8801 bool shared) 8802 { 8803 int _rx = *rx, _tx = *tx; 8804 8805 if (shared) { 8806 *rx = min_t(int, _rx, max); 8807 *tx = min_t(int, _tx, max); 8808 } else { 8809 if (max < 2) 8810 return -ENOMEM; 8811 8812 while (_rx + _tx > max) { 8813 if (_rx > _tx && _rx > 1) 8814 _rx--; 8815 else if (_tx > 1) 8816 _tx--; 8817 } 8818 *rx = _rx; 8819 *tx = _tx; 8820 } 8821 return 0; 8822 } 8823 8824 static void bnxt_setup_msix(struct bnxt *bp) 8825 { 8826 const int len = sizeof(bp->irq_tbl[0].name); 8827 struct net_device *dev = bp->dev; 8828 int tcs, i; 8829 8830 tcs = netdev_get_num_tc(dev); 8831 if (tcs) { 8832 int i, off, count; 8833 8834 for (i = 0; i < tcs; i++) { 8835 count = bp->tx_nr_rings_per_tc; 8836 off = i * count; 8837 netdev_set_tc_queue(dev, i, count, off); 8838 } 8839 } 8840 8841 for (i = 0; i < bp->cp_nr_rings; i++) { 8842 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 8843 char *attr; 8844 8845 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 8846 attr = "TxRx"; 8847 else if (i < bp->rx_nr_rings) 8848 attr = "rx"; 8849 else 8850 attr = "tx"; 8851 8852 snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name, 8853 attr, i); 8854 bp->irq_tbl[map_idx].handler = bnxt_msix; 8855 } 8856 } 8857 8858 static void bnxt_setup_inta(struct bnxt *bp) 8859 { 8860 const int len = sizeof(bp->irq_tbl[0].name); 8861 8862 if (netdev_get_num_tc(bp->dev)) 8863 netdev_reset_tc(bp->dev); 8864 8865 snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx", 8866 0); 8867 bp->irq_tbl[0].handler = bnxt_inta; 8868 } 8869 8870 static int bnxt_init_int_mode(struct bnxt *bp); 8871 8872 static int bnxt_setup_int_mode(struct bnxt *bp) 8873 { 8874 int rc; 8875 8876 if (!bp->irq_tbl) { 8877 rc = bnxt_init_int_mode(bp); 8878 if (rc || !bp->irq_tbl) 8879 return rc ?: -ENODEV; 8880 } 8881 8882 if (bp->flags & BNXT_FLAG_USING_MSIX) 8883 bnxt_setup_msix(bp); 8884 else 8885 bnxt_setup_inta(bp); 8886 8887 rc = bnxt_set_real_num_queues(bp); 8888 return rc; 8889 } 8890 8891 #ifdef CONFIG_RFS_ACCEL 8892 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp) 8893 { 8894 return bp->hw_resc.max_rsscos_ctxs; 8895 } 8896 8897 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp) 8898 { 8899 return bp->hw_resc.max_vnics; 8900 } 8901 #endif 8902 8903 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp) 8904 { 8905 return bp->hw_resc.max_stat_ctxs; 8906 } 8907 8908 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp) 8909 { 8910 return bp->hw_resc.max_cp_rings; 8911 } 8912 8913 static unsigned int bnxt_get_max_func_cp_rings_for_en(struct bnxt *bp) 8914 { 8915 unsigned int cp = bp->hw_resc.max_cp_rings; 8916 8917 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 8918 cp -= bnxt_get_ulp_msix_num(bp); 8919 8920 return cp; 8921 } 8922 8923 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp) 8924 { 8925 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 8926 8927 if (bp->flags & BNXT_FLAG_CHIP_P5) 8928 return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_nqs); 8929 8930 return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings); 8931 } 8932 8933 static void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs) 8934 { 8935 bp->hw_resc.max_irqs = max_irqs; 8936 } 8937 8938 unsigned int bnxt_get_avail_cp_rings_for_en(struct bnxt *bp) 8939 { 8940 unsigned int cp; 8941 8942 cp = bnxt_get_max_func_cp_rings_for_en(bp); 8943 if (bp->flags & BNXT_FLAG_CHIP_P5) 8944 return cp - bp->rx_nr_rings - bp->tx_nr_rings; 8945 else 8946 return cp - bp->cp_nr_rings; 8947 } 8948 8949 unsigned int bnxt_get_avail_stat_ctxs_for_en(struct bnxt *bp) 8950 { 8951 return bnxt_get_max_func_stat_ctxs(bp) - bnxt_get_func_stat_ctxs(bp); 8952 } 8953 8954 int bnxt_get_avail_msix(struct bnxt *bp, int num) 8955 { 8956 int max_cp = bnxt_get_max_func_cp_rings(bp); 8957 int max_irq = bnxt_get_max_func_irqs(bp); 8958 int total_req = bp->cp_nr_rings + num; 8959 int max_idx, avail_msix; 8960 8961 max_idx = bp->total_irqs; 8962 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 8963 max_idx = min_t(int, bp->total_irqs, max_cp); 8964 avail_msix = max_idx - bp->cp_nr_rings; 8965 if (!BNXT_NEW_RM(bp) || avail_msix >= num) 8966 return avail_msix; 8967 8968 if (max_irq < total_req) { 8969 num = max_irq - bp->cp_nr_rings; 8970 if (num <= 0) 8971 return 0; 8972 } 8973 return num; 8974 } 8975 8976 static int bnxt_get_num_msix(struct bnxt *bp) 8977 { 8978 if (!BNXT_NEW_RM(bp)) 8979 return bnxt_get_max_func_irqs(bp); 8980 8981 return bnxt_nq_rings_in_use(bp); 8982 } 8983 8984 static int bnxt_init_msix(struct bnxt *bp) 8985 { 8986 int i, total_vecs, max, rc = 0, min = 1, ulp_msix; 8987 struct msix_entry *msix_ent; 8988 8989 total_vecs = bnxt_get_num_msix(bp); 8990 max = bnxt_get_max_func_irqs(bp); 8991 if (total_vecs > max) 8992 total_vecs = max; 8993 8994 if (!total_vecs) 8995 return 0; 8996 8997 msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL); 8998 if (!msix_ent) 8999 return -ENOMEM; 9000 9001 for (i = 0; i < total_vecs; i++) { 9002 msix_ent[i].entry = i; 9003 msix_ent[i].vector = 0; 9004 } 9005 9006 if (!(bp->flags & BNXT_FLAG_SHARED_RINGS)) 9007 min = 2; 9008 9009 total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs); 9010 ulp_msix = bnxt_get_ulp_msix_num(bp); 9011 if (total_vecs < 0 || total_vecs < ulp_msix) { 9012 rc = -ENODEV; 9013 goto msix_setup_exit; 9014 } 9015 9016 bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL); 9017 if (bp->irq_tbl) { 9018 for (i = 0; i < total_vecs; i++) 9019 bp->irq_tbl[i].vector = msix_ent[i].vector; 9020 9021 bp->total_irqs = total_vecs; 9022 /* Trim rings based upon num of vectors allocated */ 9023 rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings, 9024 total_vecs - ulp_msix, min == 1); 9025 if (rc) 9026 goto msix_setup_exit; 9027 9028 bp->cp_nr_rings = (min == 1) ? 9029 max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) : 9030 bp->tx_nr_rings + bp->rx_nr_rings; 9031 9032 } else { 9033 rc = -ENOMEM; 9034 goto msix_setup_exit; 9035 } 9036 bp->flags |= BNXT_FLAG_USING_MSIX; 9037 kfree(msix_ent); 9038 return 0; 9039 9040 msix_setup_exit: 9041 netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc); 9042 kfree(bp->irq_tbl); 9043 bp->irq_tbl = NULL; 9044 pci_disable_msix(bp->pdev); 9045 kfree(msix_ent); 9046 return rc; 9047 } 9048 9049 static int bnxt_init_inta(struct bnxt *bp) 9050 { 9051 bp->irq_tbl = kzalloc(sizeof(struct bnxt_irq), GFP_KERNEL); 9052 if (!bp->irq_tbl) 9053 return -ENOMEM; 9054 9055 bp->total_irqs = 1; 9056 bp->rx_nr_rings = 1; 9057 bp->tx_nr_rings = 1; 9058 bp->cp_nr_rings = 1; 9059 bp->flags |= BNXT_FLAG_SHARED_RINGS; 9060 bp->irq_tbl[0].vector = bp->pdev->irq; 9061 return 0; 9062 } 9063 9064 static int bnxt_init_int_mode(struct bnxt *bp) 9065 { 9066 int rc = -ENODEV; 9067 9068 if (bp->flags & BNXT_FLAG_MSIX_CAP) 9069 rc = bnxt_init_msix(bp); 9070 9071 if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) { 9072 /* fallback to INTA */ 9073 rc = bnxt_init_inta(bp); 9074 } 9075 return rc; 9076 } 9077 9078 static void bnxt_clear_int_mode(struct bnxt *bp) 9079 { 9080 if (bp->flags & BNXT_FLAG_USING_MSIX) 9081 pci_disable_msix(bp->pdev); 9082 9083 kfree(bp->irq_tbl); 9084 bp->irq_tbl = NULL; 9085 bp->flags &= ~BNXT_FLAG_USING_MSIX; 9086 } 9087 9088 int bnxt_reserve_rings(struct bnxt *bp, bool irq_re_init) 9089 { 9090 int tcs = netdev_get_num_tc(bp->dev); 9091 bool irq_cleared = false; 9092 int rc; 9093 9094 if (!bnxt_need_reserve_rings(bp)) 9095 return 0; 9096 9097 if (irq_re_init && BNXT_NEW_RM(bp) && 9098 bnxt_get_num_msix(bp) != bp->total_irqs) { 9099 bnxt_ulp_irq_stop(bp); 9100 bnxt_clear_int_mode(bp); 9101 irq_cleared = true; 9102 } 9103 rc = __bnxt_reserve_rings(bp); 9104 if (irq_cleared) { 9105 if (!rc) 9106 rc = bnxt_init_int_mode(bp); 9107 bnxt_ulp_irq_restart(bp, rc); 9108 } 9109 if (rc) { 9110 netdev_err(bp->dev, "ring reservation/IRQ init failure rc: %d\n", rc); 9111 return rc; 9112 } 9113 if (tcs && (bp->tx_nr_rings_per_tc * tcs != bp->tx_nr_rings)) { 9114 netdev_err(bp->dev, "tx ring reservation failure\n"); 9115 netdev_reset_tc(bp->dev); 9116 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 9117 return -ENOMEM; 9118 } 9119 return 0; 9120 } 9121 9122 static void bnxt_free_irq(struct bnxt *bp) 9123 { 9124 struct bnxt_irq *irq; 9125 int i; 9126 9127 #ifdef CONFIG_RFS_ACCEL 9128 free_irq_cpu_rmap(bp->dev->rx_cpu_rmap); 9129 bp->dev->rx_cpu_rmap = NULL; 9130 #endif 9131 if (!bp->irq_tbl || !bp->bnapi) 9132 return; 9133 9134 for (i = 0; i < bp->cp_nr_rings; i++) { 9135 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 9136 9137 irq = &bp->irq_tbl[map_idx]; 9138 if (irq->requested) { 9139 if (irq->have_cpumask) { 9140 irq_set_affinity_hint(irq->vector, NULL); 9141 free_cpumask_var(irq->cpu_mask); 9142 irq->have_cpumask = 0; 9143 } 9144 free_irq(irq->vector, bp->bnapi[i]); 9145 } 9146 9147 irq->requested = 0; 9148 } 9149 } 9150 9151 static int bnxt_request_irq(struct bnxt *bp) 9152 { 9153 int i, j, rc = 0; 9154 unsigned long flags = 0; 9155 #ifdef CONFIG_RFS_ACCEL 9156 struct cpu_rmap *rmap; 9157 #endif 9158 9159 rc = bnxt_setup_int_mode(bp); 9160 if (rc) { 9161 netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n", 9162 rc); 9163 return rc; 9164 } 9165 #ifdef CONFIG_RFS_ACCEL 9166 rmap = bp->dev->rx_cpu_rmap; 9167 #endif 9168 if (!(bp->flags & BNXT_FLAG_USING_MSIX)) 9169 flags = IRQF_SHARED; 9170 9171 for (i = 0, j = 0; i < bp->cp_nr_rings; i++) { 9172 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 9173 struct bnxt_irq *irq = &bp->irq_tbl[map_idx]; 9174 9175 #ifdef CONFIG_RFS_ACCEL 9176 if (rmap && bp->bnapi[i]->rx_ring) { 9177 rc = irq_cpu_rmap_add(rmap, irq->vector); 9178 if (rc) 9179 netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n", 9180 j); 9181 j++; 9182 } 9183 #endif 9184 rc = request_irq(irq->vector, irq->handler, flags, irq->name, 9185 bp->bnapi[i]); 9186 if (rc) 9187 break; 9188 9189 irq->requested = 1; 9190 9191 if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) { 9192 int numa_node = dev_to_node(&bp->pdev->dev); 9193 9194 irq->have_cpumask = 1; 9195 cpumask_set_cpu(cpumask_local_spread(i, numa_node), 9196 irq->cpu_mask); 9197 rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask); 9198 if (rc) { 9199 netdev_warn(bp->dev, 9200 "Set affinity failed, IRQ = %d\n", 9201 irq->vector); 9202 break; 9203 } 9204 } 9205 } 9206 return rc; 9207 } 9208 9209 static void bnxt_del_napi(struct bnxt *bp) 9210 { 9211 int i; 9212 9213 if (!bp->bnapi) 9214 return; 9215 9216 for (i = 0; i < bp->cp_nr_rings; i++) { 9217 struct bnxt_napi *bnapi = bp->bnapi[i]; 9218 9219 __netif_napi_del(&bnapi->napi); 9220 } 9221 /* We called __netif_napi_del(), we need 9222 * to respect an RCU grace period before freeing napi structures. 9223 */ 9224 synchronize_net(); 9225 } 9226 9227 static void bnxt_init_napi(struct bnxt *bp) 9228 { 9229 int i; 9230 unsigned int cp_nr_rings = bp->cp_nr_rings; 9231 struct bnxt_napi *bnapi; 9232 9233 if (bp->flags & BNXT_FLAG_USING_MSIX) { 9234 int (*poll_fn)(struct napi_struct *, int) = bnxt_poll; 9235 9236 if (bp->flags & BNXT_FLAG_CHIP_P5) 9237 poll_fn = bnxt_poll_p5; 9238 else if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 9239 cp_nr_rings--; 9240 for (i = 0; i < cp_nr_rings; i++) { 9241 bnapi = bp->bnapi[i]; 9242 netif_napi_add(bp->dev, &bnapi->napi, poll_fn, 64); 9243 } 9244 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 9245 bnapi = bp->bnapi[cp_nr_rings]; 9246 netif_napi_add(bp->dev, &bnapi->napi, 9247 bnxt_poll_nitroa0, 64); 9248 } 9249 } else { 9250 bnapi = bp->bnapi[0]; 9251 netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64); 9252 } 9253 } 9254 9255 static void bnxt_disable_napi(struct bnxt *bp) 9256 { 9257 int i; 9258 9259 if (!bp->bnapi || 9260 test_and_set_bit(BNXT_STATE_NAPI_DISABLED, &bp->state)) 9261 return; 9262 9263 for (i = 0; i < bp->cp_nr_rings; i++) { 9264 struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring; 9265 9266 napi_disable(&bp->bnapi[i]->napi); 9267 if (bp->bnapi[i]->rx_ring) 9268 cancel_work_sync(&cpr->dim.work); 9269 } 9270 } 9271 9272 static void bnxt_enable_napi(struct bnxt *bp) 9273 { 9274 int i; 9275 9276 clear_bit(BNXT_STATE_NAPI_DISABLED, &bp->state); 9277 for (i = 0; i < bp->cp_nr_rings; i++) { 9278 struct bnxt_napi *bnapi = bp->bnapi[i]; 9279 struct bnxt_cp_ring_info *cpr; 9280 9281 cpr = &bnapi->cp_ring; 9282 if (bnapi->in_reset) 9283 cpr->sw_stats.rx.rx_resets++; 9284 bnapi->in_reset = false; 9285 9286 if (bnapi->rx_ring) { 9287 INIT_WORK(&cpr->dim.work, bnxt_dim_work); 9288 cpr->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 9289 } 9290 napi_enable(&bnapi->napi); 9291 } 9292 } 9293 9294 void bnxt_tx_disable(struct bnxt *bp) 9295 { 9296 int i; 9297 struct bnxt_tx_ring_info *txr; 9298 9299 if (bp->tx_ring) { 9300 for (i = 0; i < bp->tx_nr_rings; i++) { 9301 txr = &bp->tx_ring[i]; 9302 WRITE_ONCE(txr->dev_state, BNXT_DEV_STATE_CLOSING); 9303 } 9304 } 9305 /* Make sure napi polls see @dev_state change */ 9306 synchronize_net(); 9307 /* Drop carrier first to prevent TX timeout */ 9308 netif_carrier_off(bp->dev); 9309 /* Stop all TX queues */ 9310 netif_tx_disable(bp->dev); 9311 } 9312 9313 void bnxt_tx_enable(struct bnxt *bp) 9314 { 9315 int i; 9316 struct bnxt_tx_ring_info *txr; 9317 9318 for (i = 0; i < bp->tx_nr_rings; i++) { 9319 txr = &bp->tx_ring[i]; 9320 WRITE_ONCE(txr->dev_state, 0); 9321 } 9322 /* Make sure napi polls see @dev_state change */ 9323 synchronize_net(); 9324 netif_tx_wake_all_queues(bp->dev); 9325 if (bp->link_info.link_up) 9326 netif_carrier_on(bp->dev); 9327 } 9328 9329 static char *bnxt_report_fec(struct bnxt_link_info *link_info) 9330 { 9331 u8 active_fec = link_info->active_fec_sig_mode & 9332 PORT_PHY_QCFG_RESP_ACTIVE_FEC_MASK; 9333 9334 switch (active_fec) { 9335 default: 9336 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_NONE_ACTIVE: 9337 return "None"; 9338 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE74_ACTIVE: 9339 return "Clause 74 BaseR"; 9340 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE91_ACTIVE: 9341 return "Clause 91 RS(528,514)"; 9342 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_1XN_ACTIVE: 9343 return "Clause 91 RS544_1XN"; 9344 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_IEEE_ACTIVE: 9345 return "Clause 91 RS(544,514)"; 9346 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_1XN_ACTIVE: 9347 return "Clause 91 RS272_1XN"; 9348 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_IEEE_ACTIVE: 9349 return "Clause 91 RS(272,257)"; 9350 } 9351 } 9352 9353 static void bnxt_report_link(struct bnxt *bp) 9354 { 9355 if (bp->link_info.link_up) { 9356 const char *signal = ""; 9357 const char *flow_ctrl; 9358 const char *duplex; 9359 u32 speed; 9360 u16 fec; 9361 9362 netif_carrier_on(bp->dev); 9363 speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed); 9364 if (speed == SPEED_UNKNOWN) { 9365 netdev_info(bp->dev, "NIC Link is Up, speed unknown\n"); 9366 return; 9367 } 9368 if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL) 9369 duplex = "full"; 9370 else 9371 duplex = "half"; 9372 if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH) 9373 flow_ctrl = "ON - receive & transmit"; 9374 else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX) 9375 flow_ctrl = "ON - transmit"; 9376 else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX) 9377 flow_ctrl = "ON - receive"; 9378 else 9379 flow_ctrl = "none"; 9380 if (bp->link_info.phy_qcfg_resp.option_flags & 9381 PORT_PHY_QCFG_RESP_OPTION_FLAGS_SIGNAL_MODE_KNOWN) { 9382 u8 sig_mode = bp->link_info.active_fec_sig_mode & 9383 PORT_PHY_QCFG_RESP_SIGNAL_MODE_MASK; 9384 switch (sig_mode) { 9385 case PORT_PHY_QCFG_RESP_SIGNAL_MODE_NRZ: 9386 signal = "(NRZ) "; 9387 break; 9388 case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4: 9389 signal = "(PAM4) "; 9390 break; 9391 default: 9392 break; 9393 } 9394 } 9395 netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s%s duplex, Flow control: %s\n", 9396 speed, signal, duplex, flow_ctrl); 9397 if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) 9398 netdev_info(bp->dev, "EEE is %s\n", 9399 bp->eee.eee_active ? "active" : 9400 "not active"); 9401 fec = bp->link_info.fec_cfg; 9402 if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED)) 9403 netdev_info(bp->dev, "FEC autoneg %s encoding: %s\n", 9404 (fec & BNXT_FEC_AUTONEG) ? "on" : "off", 9405 bnxt_report_fec(&bp->link_info)); 9406 } else { 9407 netif_carrier_off(bp->dev); 9408 netdev_err(bp->dev, "NIC Link is Down\n"); 9409 } 9410 } 9411 9412 static bool bnxt_phy_qcaps_no_speed(struct hwrm_port_phy_qcaps_output *resp) 9413 { 9414 if (!resp->supported_speeds_auto_mode && 9415 !resp->supported_speeds_force_mode && 9416 !resp->supported_pam4_speeds_auto_mode && 9417 !resp->supported_pam4_speeds_force_mode) 9418 return true; 9419 return false; 9420 } 9421 9422 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp) 9423 { 9424 int rc = 0; 9425 struct hwrm_port_phy_qcaps_input req = {0}; 9426 struct hwrm_port_phy_qcaps_output *resp = bp->hwrm_cmd_resp_addr; 9427 struct bnxt_link_info *link_info = &bp->link_info; 9428 9429 if (bp->hwrm_spec_code < 0x10201) 9430 return 0; 9431 9432 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCAPS, -1, -1); 9433 9434 mutex_lock(&bp->hwrm_cmd_lock); 9435 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 9436 if (rc) 9437 goto hwrm_phy_qcaps_exit; 9438 9439 bp->phy_flags = resp->flags; 9440 if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) { 9441 struct ethtool_eee *eee = &bp->eee; 9442 u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode); 9443 9444 eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0); 9445 bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) & 9446 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK; 9447 bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) & 9448 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK; 9449 } 9450 9451 if (bp->hwrm_spec_code >= 0x10a01) { 9452 if (bnxt_phy_qcaps_no_speed(resp)) { 9453 link_info->phy_state = BNXT_PHY_STATE_DISABLED; 9454 netdev_warn(bp->dev, "Ethernet link disabled\n"); 9455 } else if (link_info->phy_state == BNXT_PHY_STATE_DISABLED) { 9456 link_info->phy_state = BNXT_PHY_STATE_ENABLED; 9457 netdev_info(bp->dev, "Ethernet link enabled\n"); 9458 /* Phy re-enabled, reprobe the speeds */ 9459 link_info->support_auto_speeds = 0; 9460 link_info->support_pam4_auto_speeds = 0; 9461 } 9462 } 9463 if (resp->supported_speeds_auto_mode) 9464 link_info->support_auto_speeds = 9465 le16_to_cpu(resp->supported_speeds_auto_mode); 9466 if (resp->supported_pam4_speeds_auto_mode) 9467 link_info->support_pam4_auto_speeds = 9468 le16_to_cpu(resp->supported_pam4_speeds_auto_mode); 9469 9470 bp->port_count = resp->port_cnt; 9471 9472 hwrm_phy_qcaps_exit: 9473 mutex_unlock(&bp->hwrm_cmd_lock); 9474 return rc; 9475 } 9476 9477 static bool bnxt_support_dropped(u16 advertising, u16 supported) 9478 { 9479 u16 diff = advertising ^ supported; 9480 9481 return ((supported | diff) != supported); 9482 } 9483 9484 int bnxt_update_link(struct bnxt *bp, bool chng_link_state) 9485 { 9486 int rc = 0; 9487 struct bnxt_link_info *link_info = &bp->link_info; 9488 struct hwrm_port_phy_qcfg_input req = {0}; 9489 struct hwrm_port_phy_qcfg_output *resp = bp->hwrm_cmd_resp_addr; 9490 u8 link_up = link_info->link_up; 9491 bool support_changed = false; 9492 9493 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCFG, -1, -1); 9494 9495 mutex_lock(&bp->hwrm_cmd_lock); 9496 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 9497 if (rc) { 9498 mutex_unlock(&bp->hwrm_cmd_lock); 9499 return rc; 9500 } 9501 9502 memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp)); 9503 link_info->phy_link_status = resp->link; 9504 link_info->duplex = resp->duplex_cfg; 9505 if (bp->hwrm_spec_code >= 0x10800) 9506 link_info->duplex = resp->duplex_state; 9507 link_info->pause = resp->pause; 9508 link_info->auto_mode = resp->auto_mode; 9509 link_info->auto_pause_setting = resp->auto_pause; 9510 link_info->lp_pause = resp->link_partner_adv_pause; 9511 link_info->force_pause_setting = resp->force_pause; 9512 link_info->duplex_setting = resp->duplex_cfg; 9513 if (link_info->phy_link_status == BNXT_LINK_LINK) 9514 link_info->link_speed = le16_to_cpu(resp->link_speed); 9515 else 9516 link_info->link_speed = 0; 9517 link_info->force_link_speed = le16_to_cpu(resp->force_link_speed); 9518 link_info->force_pam4_link_speed = 9519 le16_to_cpu(resp->force_pam4_link_speed); 9520 link_info->support_speeds = le16_to_cpu(resp->support_speeds); 9521 link_info->support_pam4_speeds = le16_to_cpu(resp->support_pam4_speeds); 9522 link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask); 9523 link_info->auto_pam4_link_speeds = 9524 le16_to_cpu(resp->auto_pam4_link_speed_mask); 9525 link_info->lp_auto_link_speeds = 9526 le16_to_cpu(resp->link_partner_adv_speeds); 9527 link_info->lp_auto_pam4_link_speeds = 9528 resp->link_partner_pam4_adv_speeds; 9529 link_info->preemphasis = le32_to_cpu(resp->preemphasis); 9530 link_info->phy_ver[0] = resp->phy_maj; 9531 link_info->phy_ver[1] = resp->phy_min; 9532 link_info->phy_ver[2] = resp->phy_bld; 9533 link_info->media_type = resp->media_type; 9534 link_info->phy_type = resp->phy_type; 9535 link_info->transceiver = resp->xcvr_pkg_type; 9536 link_info->phy_addr = resp->eee_config_phy_addr & 9537 PORT_PHY_QCFG_RESP_PHY_ADDR_MASK; 9538 link_info->module_status = resp->module_status; 9539 9540 if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) { 9541 struct ethtool_eee *eee = &bp->eee; 9542 u16 fw_speeds; 9543 9544 eee->eee_active = 0; 9545 if (resp->eee_config_phy_addr & 9546 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) { 9547 eee->eee_active = 1; 9548 fw_speeds = le16_to_cpu( 9549 resp->link_partner_adv_eee_link_speed_mask); 9550 eee->lp_advertised = 9551 _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0); 9552 } 9553 9554 /* Pull initial EEE config */ 9555 if (!chng_link_state) { 9556 if (resp->eee_config_phy_addr & 9557 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED) 9558 eee->eee_enabled = 1; 9559 9560 fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask); 9561 eee->advertised = 9562 _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0); 9563 9564 if (resp->eee_config_phy_addr & 9565 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) { 9566 __le32 tmr; 9567 9568 eee->tx_lpi_enabled = 1; 9569 tmr = resp->xcvr_identifier_type_tx_lpi_timer; 9570 eee->tx_lpi_timer = le32_to_cpu(tmr) & 9571 PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK; 9572 } 9573 } 9574 } 9575 9576 link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED; 9577 if (bp->hwrm_spec_code >= 0x10504) { 9578 link_info->fec_cfg = le16_to_cpu(resp->fec_cfg); 9579 link_info->active_fec_sig_mode = resp->active_fec_signal_mode; 9580 } 9581 /* TODO: need to add more logic to report VF link */ 9582 if (chng_link_state) { 9583 if (link_info->phy_link_status == BNXT_LINK_LINK) 9584 link_info->link_up = 1; 9585 else 9586 link_info->link_up = 0; 9587 if (link_up != link_info->link_up) 9588 bnxt_report_link(bp); 9589 } else { 9590 /* alwasy link down if not require to update link state */ 9591 link_info->link_up = 0; 9592 } 9593 mutex_unlock(&bp->hwrm_cmd_lock); 9594 9595 if (!BNXT_PHY_CFG_ABLE(bp)) 9596 return 0; 9597 9598 /* Check if any advertised speeds are no longer supported. The caller 9599 * holds the link_lock mutex, so we can modify link_info settings. 9600 */ 9601 if (bnxt_support_dropped(link_info->advertising, 9602 link_info->support_auto_speeds)) { 9603 link_info->advertising = link_info->support_auto_speeds; 9604 support_changed = true; 9605 } 9606 if (bnxt_support_dropped(link_info->advertising_pam4, 9607 link_info->support_pam4_auto_speeds)) { 9608 link_info->advertising_pam4 = link_info->support_pam4_auto_speeds; 9609 support_changed = true; 9610 } 9611 if (support_changed && (link_info->autoneg & BNXT_AUTONEG_SPEED)) 9612 bnxt_hwrm_set_link_setting(bp, true, false); 9613 return 0; 9614 } 9615 9616 static void bnxt_get_port_module_status(struct bnxt *bp) 9617 { 9618 struct bnxt_link_info *link_info = &bp->link_info; 9619 struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp; 9620 u8 module_status; 9621 9622 if (bnxt_update_link(bp, true)) 9623 return; 9624 9625 module_status = link_info->module_status; 9626 switch (module_status) { 9627 case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX: 9628 case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN: 9629 case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG: 9630 netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n", 9631 bp->pf.port_id); 9632 if (bp->hwrm_spec_code >= 0x10201) { 9633 netdev_warn(bp->dev, "Module part number %s\n", 9634 resp->phy_vendor_partnumber); 9635 } 9636 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX) 9637 netdev_warn(bp->dev, "TX is disabled\n"); 9638 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN) 9639 netdev_warn(bp->dev, "SFP+ module is shutdown\n"); 9640 } 9641 } 9642 9643 static void 9644 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req) 9645 { 9646 if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) { 9647 if (bp->hwrm_spec_code >= 0x10201) 9648 req->auto_pause = 9649 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE; 9650 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX) 9651 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX; 9652 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX) 9653 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX; 9654 req->enables |= 9655 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE); 9656 } else { 9657 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX) 9658 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX; 9659 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX) 9660 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX; 9661 req->enables |= 9662 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE); 9663 if (bp->hwrm_spec_code >= 0x10201) { 9664 req->auto_pause = req->force_pause; 9665 req->enables |= cpu_to_le32( 9666 PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE); 9667 } 9668 } 9669 } 9670 9671 static void bnxt_hwrm_set_link_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req) 9672 { 9673 if (bp->link_info.autoneg & BNXT_AUTONEG_SPEED) { 9674 req->auto_mode |= PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK; 9675 if (bp->link_info.advertising) { 9676 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK); 9677 req->auto_link_speed_mask = cpu_to_le16(bp->link_info.advertising); 9678 } 9679 if (bp->link_info.advertising_pam4) { 9680 req->enables |= 9681 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAM4_LINK_SPEED_MASK); 9682 req->auto_link_pam4_speed_mask = 9683 cpu_to_le16(bp->link_info.advertising_pam4); 9684 } 9685 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE); 9686 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG); 9687 } else { 9688 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE); 9689 if (bp->link_info.req_signal_mode == BNXT_SIG_MODE_PAM4) { 9690 req->force_pam4_link_speed = cpu_to_le16(bp->link_info.req_link_speed); 9691 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAM4_LINK_SPEED); 9692 } else { 9693 req->force_link_speed = cpu_to_le16(bp->link_info.req_link_speed); 9694 } 9695 } 9696 9697 /* tell chimp that the setting takes effect immediately */ 9698 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY); 9699 } 9700 9701 int bnxt_hwrm_set_pause(struct bnxt *bp) 9702 { 9703 struct hwrm_port_phy_cfg_input req = {0}; 9704 int rc; 9705 9706 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1); 9707 bnxt_hwrm_set_pause_common(bp, &req); 9708 9709 if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) || 9710 bp->link_info.force_link_chng) 9711 bnxt_hwrm_set_link_common(bp, &req); 9712 9713 mutex_lock(&bp->hwrm_cmd_lock); 9714 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 9715 if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) { 9716 /* since changing of pause setting doesn't trigger any link 9717 * change event, the driver needs to update the current pause 9718 * result upon successfully return of the phy_cfg command 9719 */ 9720 bp->link_info.pause = 9721 bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl; 9722 bp->link_info.auto_pause_setting = 0; 9723 if (!bp->link_info.force_link_chng) 9724 bnxt_report_link(bp); 9725 } 9726 bp->link_info.force_link_chng = false; 9727 mutex_unlock(&bp->hwrm_cmd_lock); 9728 return rc; 9729 } 9730 9731 static void bnxt_hwrm_set_eee(struct bnxt *bp, 9732 struct hwrm_port_phy_cfg_input *req) 9733 { 9734 struct ethtool_eee *eee = &bp->eee; 9735 9736 if (eee->eee_enabled) { 9737 u16 eee_speeds; 9738 u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE; 9739 9740 if (eee->tx_lpi_enabled) 9741 flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE; 9742 else 9743 flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE; 9744 9745 req->flags |= cpu_to_le32(flags); 9746 eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised); 9747 req->eee_link_speed_mask = cpu_to_le16(eee_speeds); 9748 req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer); 9749 } else { 9750 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE); 9751 } 9752 } 9753 9754 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee) 9755 { 9756 struct hwrm_port_phy_cfg_input req = {0}; 9757 9758 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1); 9759 if (set_pause) 9760 bnxt_hwrm_set_pause_common(bp, &req); 9761 9762 bnxt_hwrm_set_link_common(bp, &req); 9763 9764 if (set_eee) 9765 bnxt_hwrm_set_eee(bp, &req); 9766 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 9767 } 9768 9769 static int bnxt_hwrm_shutdown_link(struct bnxt *bp) 9770 { 9771 struct hwrm_port_phy_cfg_input req = {0}; 9772 9773 if (!BNXT_SINGLE_PF(bp)) 9774 return 0; 9775 9776 if (pci_num_vf(bp->pdev) && 9777 !(bp->phy_flags & BNXT_PHY_FL_FW_MANAGED_LKDN)) 9778 return 0; 9779 9780 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1); 9781 req.flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN); 9782 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 9783 } 9784 9785 static int bnxt_fw_init_one(struct bnxt *bp); 9786 9787 static int bnxt_fw_reset_via_optee(struct bnxt *bp) 9788 { 9789 #ifdef CONFIG_TEE_BNXT_FW 9790 int rc = tee_bnxt_fw_load(); 9791 9792 if (rc) 9793 netdev_err(bp->dev, "Failed FW reset via OP-TEE, rc=%d\n", rc); 9794 9795 return rc; 9796 #else 9797 netdev_err(bp->dev, "OP-TEE not supported\n"); 9798 return -ENODEV; 9799 #endif 9800 } 9801 9802 static int bnxt_try_recover_fw(struct bnxt *bp) 9803 { 9804 if (bp->fw_health && bp->fw_health->status_reliable) { 9805 int retry = 0, rc; 9806 u32 sts; 9807 9808 mutex_lock(&bp->hwrm_cmd_lock); 9809 do { 9810 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 9811 rc = __bnxt_hwrm_ver_get(bp, true); 9812 if (!BNXT_FW_IS_BOOTING(sts) && 9813 !BNXT_FW_IS_RECOVERING(sts)) 9814 break; 9815 retry++; 9816 } while (rc == -EBUSY && retry < BNXT_FW_RETRY); 9817 mutex_unlock(&bp->hwrm_cmd_lock); 9818 9819 if (!BNXT_FW_IS_HEALTHY(sts)) { 9820 netdev_err(bp->dev, 9821 "Firmware not responding, status: 0x%x\n", 9822 sts); 9823 rc = -ENODEV; 9824 } 9825 if (sts & FW_STATUS_REG_CRASHED_NO_MASTER) { 9826 netdev_warn(bp->dev, "Firmware recover via OP-TEE requested\n"); 9827 return bnxt_fw_reset_via_optee(bp); 9828 } 9829 return rc; 9830 } 9831 9832 return -ENODEV; 9833 } 9834 9835 static int bnxt_hwrm_if_change(struct bnxt *bp, bool up) 9836 { 9837 struct hwrm_func_drv_if_change_output *resp = bp->hwrm_cmd_resp_addr; 9838 struct hwrm_func_drv_if_change_input req = {0}; 9839 bool fw_reset = !bp->irq_tbl; 9840 bool resc_reinit = false; 9841 int rc, retry = 0; 9842 u32 flags = 0; 9843 9844 if (!(bp->fw_cap & BNXT_FW_CAP_IF_CHANGE)) 9845 return 0; 9846 9847 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_IF_CHANGE, -1, -1); 9848 if (up) 9849 req.flags = cpu_to_le32(FUNC_DRV_IF_CHANGE_REQ_FLAGS_UP); 9850 mutex_lock(&bp->hwrm_cmd_lock); 9851 while (retry < BNXT_FW_IF_RETRY) { 9852 rc = _hwrm_send_message(bp, &req, sizeof(req), 9853 HWRM_CMD_TIMEOUT); 9854 if (rc != -EAGAIN) 9855 break; 9856 9857 msleep(50); 9858 retry++; 9859 } 9860 if (!rc) 9861 flags = le32_to_cpu(resp->flags); 9862 mutex_unlock(&bp->hwrm_cmd_lock); 9863 9864 if (rc == -EAGAIN) 9865 return rc; 9866 if (rc && up) { 9867 rc = bnxt_try_recover_fw(bp); 9868 fw_reset = true; 9869 } 9870 if (rc) 9871 return rc; 9872 9873 if (!up) { 9874 bnxt_inv_fw_health_reg(bp); 9875 return 0; 9876 } 9877 9878 if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_RESC_CHANGE) 9879 resc_reinit = true; 9880 if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_HOT_FW_RESET_DONE) 9881 fw_reset = true; 9882 else if (bp->fw_health && !bp->fw_health->status_reliable) 9883 bnxt_try_map_fw_health_reg(bp); 9884 9885 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state) && !fw_reset) { 9886 netdev_err(bp->dev, "RESET_DONE not set during FW reset.\n"); 9887 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 9888 return -ENODEV; 9889 } 9890 if (resc_reinit || fw_reset) { 9891 if (fw_reset) { 9892 set_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 9893 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 9894 bnxt_ulp_stop(bp); 9895 bnxt_free_ctx_mem(bp); 9896 kfree(bp->ctx); 9897 bp->ctx = NULL; 9898 bnxt_dcb_free(bp); 9899 rc = bnxt_fw_init_one(bp); 9900 if (rc) { 9901 clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 9902 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 9903 return rc; 9904 } 9905 bnxt_clear_int_mode(bp); 9906 rc = bnxt_init_int_mode(bp); 9907 if (rc) { 9908 clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 9909 netdev_err(bp->dev, "init int mode failed\n"); 9910 return rc; 9911 } 9912 } 9913 if (BNXT_NEW_RM(bp)) { 9914 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 9915 9916 rc = bnxt_hwrm_func_resc_qcaps(bp, true); 9917 if (rc) 9918 netdev_err(bp->dev, "resc_qcaps failed\n"); 9919 9920 hw_resc->resv_cp_rings = 0; 9921 hw_resc->resv_stat_ctxs = 0; 9922 hw_resc->resv_irqs = 0; 9923 hw_resc->resv_tx_rings = 0; 9924 hw_resc->resv_rx_rings = 0; 9925 hw_resc->resv_hw_ring_grps = 0; 9926 hw_resc->resv_vnics = 0; 9927 if (!fw_reset) { 9928 bp->tx_nr_rings = 0; 9929 bp->rx_nr_rings = 0; 9930 } 9931 } 9932 } 9933 return rc; 9934 } 9935 9936 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp) 9937 { 9938 struct hwrm_port_led_qcaps_output *resp = bp->hwrm_cmd_resp_addr; 9939 struct hwrm_port_led_qcaps_input req = {0}; 9940 struct bnxt_pf_info *pf = &bp->pf; 9941 int rc; 9942 9943 bp->num_leds = 0; 9944 if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601) 9945 return 0; 9946 9947 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_LED_QCAPS, -1, -1); 9948 req.port_id = cpu_to_le16(pf->port_id); 9949 mutex_lock(&bp->hwrm_cmd_lock); 9950 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 9951 if (rc) { 9952 mutex_unlock(&bp->hwrm_cmd_lock); 9953 return rc; 9954 } 9955 if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) { 9956 int i; 9957 9958 bp->num_leds = resp->num_leds; 9959 memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) * 9960 bp->num_leds); 9961 for (i = 0; i < bp->num_leds; i++) { 9962 struct bnxt_led_info *led = &bp->leds[i]; 9963 __le16 caps = led->led_state_caps; 9964 9965 if (!led->led_group_id || 9966 !BNXT_LED_ALT_BLINK_CAP(caps)) { 9967 bp->num_leds = 0; 9968 break; 9969 } 9970 } 9971 } 9972 mutex_unlock(&bp->hwrm_cmd_lock); 9973 return 0; 9974 } 9975 9976 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp) 9977 { 9978 struct hwrm_wol_filter_alloc_input req = {0}; 9979 struct hwrm_wol_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr; 9980 int rc; 9981 9982 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_ALLOC, -1, -1); 9983 req.port_id = cpu_to_le16(bp->pf.port_id); 9984 req.wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT; 9985 req.enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS); 9986 memcpy(req.mac_address, bp->dev->dev_addr, ETH_ALEN); 9987 mutex_lock(&bp->hwrm_cmd_lock); 9988 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 9989 if (!rc) 9990 bp->wol_filter_id = resp->wol_filter_id; 9991 mutex_unlock(&bp->hwrm_cmd_lock); 9992 return rc; 9993 } 9994 9995 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp) 9996 { 9997 struct hwrm_wol_filter_free_input req = {0}; 9998 9999 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_FREE, -1, -1); 10000 req.port_id = cpu_to_le16(bp->pf.port_id); 10001 req.enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID); 10002 req.wol_filter_id = bp->wol_filter_id; 10003 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 10004 } 10005 10006 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle) 10007 { 10008 struct hwrm_wol_filter_qcfg_input req = {0}; 10009 struct hwrm_wol_filter_qcfg_output *resp = bp->hwrm_cmd_resp_addr; 10010 u16 next_handle = 0; 10011 int rc; 10012 10013 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_QCFG, -1, -1); 10014 req.port_id = cpu_to_le16(bp->pf.port_id); 10015 req.handle = cpu_to_le16(handle); 10016 mutex_lock(&bp->hwrm_cmd_lock); 10017 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 10018 if (!rc) { 10019 next_handle = le16_to_cpu(resp->next_handle); 10020 if (next_handle != 0) { 10021 if (resp->wol_type == 10022 WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) { 10023 bp->wol = 1; 10024 bp->wol_filter_id = resp->wol_filter_id; 10025 } 10026 } 10027 } 10028 mutex_unlock(&bp->hwrm_cmd_lock); 10029 return next_handle; 10030 } 10031 10032 static void bnxt_get_wol_settings(struct bnxt *bp) 10033 { 10034 u16 handle = 0; 10035 10036 bp->wol = 0; 10037 if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP)) 10038 return; 10039 10040 do { 10041 handle = bnxt_hwrm_get_wol_fltrs(bp, handle); 10042 } while (handle && handle != 0xffff); 10043 } 10044 10045 #ifdef CONFIG_BNXT_HWMON 10046 static ssize_t bnxt_show_temp(struct device *dev, 10047 struct device_attribute *devattr, char *buf) 10048 { 10049 struct hwrm_temp_monitor_query_input req = {0}; 10050 struct hwrm_temp_monitor_query_output *resp; 10051 struct bnxt *bp = dev_get_drvdata(dev); 10052 u32 len = 0; 10053 int rc; 10054 10055 resp = bp->hwrm_cmd_resp_addr; 10056 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TEMP_MONITOR_QUERY, -1, -1); 10057 mutex_lock(&bp->hwrm_cmd_lock); 10058 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 10059 if (!rc) 10060 len = sprintf(buf, "%u\n", resp->temp * 1000); /* display millidegree */ 10061 mutex_unlock(&bp->hwrm_cmd_lock); 10062 if (rc) 10063 return rc; 10064 return len; 10065 } 10066 static SENSOR_DEVICE_ATTR(temp1_input, 0444, bnxt_show_temp, NULL, 0); 10067 10068 static struct attribute *bnxt_attrs[] = { 10069 &sensor_dev_attr_temp1_input.dev_attr.attr, 10070 NULL 10071 }; 10072 ATTRIBUTE_GROUPS(bnxt); 10073 10074 static void bnxt_hwmon_close(struct bnxt *bp) 10075 { 10076 if (bp->hwmon_dev) { 10077 hwmon_device_unregister(bp->hwmon_dev); 10078 bp->hwmon_dev = NULL; 10079 } 10080 } 10081 10082 static void bnxt_hwmon_open(struct bnxt *bp) 10083 { 10084 struct hwrm_temp_monitor_query_input req = {0}; 10085 struct pci_dev *pdev = bp->pdev; 10086 int rc; 10087 10088 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TEMP_MONITOR_QUERY, -1, -1); 10089 rc = hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 10090 if (rc == -EACCES || rc == -EOPNOTSUPP) { 10091 bnxt_hwmon_close(bp); 10092 return; 10093 } 10094 10095 if (bp->hwmon_dev) 10096 return; 10097 10098 bp->hwmon_dev = hwmon_device_register_with_groups(&pdev->dev, 10099 DRV_MODULE_NAME, bp, 10100 bnxt_groups); 10101 if (IS_ERR(bp->hwmon_dev)) { 10102 bp->hwmon_dev = NULL; 10103 dev_warn(&pdev->dev, "Cannot register hwmon device\n"); 10104 } 10105 } 10106 #else 10107 static void bnxt_hwmon_close(struct bnxt *bp) 10108 { 10109 } 10110 10111 static void bnxt_hwmon_open(struct bnxt *bp) 10112 { 10113 } 10114 #endif 10115 10116 static bool bnxt_eee_config_ok(struct bnxt *bp) 10117 { 10118 struct ethtool_eee *eee = &bp->eee; 10119 struct bnxt_link_info *link_info = &bp->link_info; 10120 10121 if (!(bp->phy_flags & BNXT_PHY_FL_EEE_CAP)) 10122 return true; 10123 10124 if (eee->eee_enabled) { 10125 u32 advertising = 10126 _bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0); 10127 10128 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) { 10129 eee->eee_enabled = 0; 10130 return false; 10131 } 10132 if (eee->advertised & ~advertising) { 10133 eee->advertised = advertising & eee->supported; 10134 return false; 10135 } 10136 } 10137 return true; 10138 } 10139 10140 static int bnxt_update_phy_setting(struct bnxt *bp) 10141 { 10142 int rc; 10143 bool update_link = false; 10144 bool update_pause = false; 10145 bool update_eee = false; 10146 struct bnxt_link_info *link_info = &bp->link_info; 10147 10148 rc = bnxt_update_link(bp, true); 10149 if (rc) { 10150 netdev_err(bp->dev, "failed to update link (rc: %x)\n", 10151 rc); 10152 return rc; 10153 } 10154 if (!BNXT_SINGLE_PF(bp)) 10155 return 0; 10156 10157 if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) && 10158 (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) != 10159 link_info->req_flow_ctrl) 10160 update_pause = true; 10161 if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) && 10162 link_info->force_pause_setting != link_info->req_flow_ctrl) 10163 update_pause = true; 10164 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) { 10165 if (BNXT_AUTO_MODE(link_info->auto_mode)) 10166 update_link = true; 10167 if (link_info->req_signal_mode == BNXT_SIG_MODE_NRZ && 10168 link_info->req_link_speed != link_info->force_link_speed) 10169 update_link = true; 10170 else if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4 && 10171 link_info->req_link_speed != link_info->force_pam4_link_speed) 10172 update_link = true; 10173 if (link_info->req_duplex != link_info->duplex_setting) 10174 update_link = true; 10175 } else { 10176 if (link_info->auto_mode == BNXT_LINK_AUTO_NONE) 10177 update_link = true; 10178 if (link_info->advertising != link_info->auto_link_speeds || 10179 link_info->advertising_pam4 != link_info->auto_pam4_link_speeds) 10180 update_link = true; 10181 } 10182 10183 /* The last close may have shutdown the link, so need to call 10184 * PHY_CFG to bring it back up. 10185 */ 10186 if (!bp->link_info.link_up) 10187 update_link = true; 10188 10189 if (!bnxt_eee_config_ok(bp)) 10190 update_eee = true; 10191 10192 if (update_link) 10193 rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee); 10194 else if (update_pause) 10195 rc = bnxt_hwrm_set_pause(bp); 10196 if (rc) { 10197 netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n", 10198 rc); 10199 return rc; 10200 } 10201 10202 return rc; 10203 } 10204 10205 /* Common routine to pre-map certain register block to different GRC window. 10206 * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows 10207 * in PF and 3 windows in VF that can be customized to map in different 10208 * register blocks. 10209 */ 10210 static void bnxt_preset_reg_win(struct bnxt *bp) 10211 { 10212 if (BNXT_PF(bp)) { 10213 /* CAG registers map to GRC window #4 */ 10214 writel(BNXT_CAG_REG_BASE, 10215 bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12); 10216 } 10217 } 10218 10219 static int bnxt_init_dflt_ring_mode(struct bnxt *bp); 10220 10221 static int bnxt_reinit_after_abort(struct bnxt *bp) 10222 { 10223 int rc; 10224 10225 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 10226 return -EBUSY; 10227 10228 if (bp->dev->reg_state == NETREG_UNREGISTERED) 10229 return -ENODEV; 10230 10231 rc = bnxt_fw_init_one(bp); 10232 if (!rc) { 10233 bnxt_clear_int_mode(bp); 10234 rc = bnxt_init_int_mode(bp); 10235 if (!rc) { 10236 clear_bit(BNXT_STATE_ABORT_ERR, &bp->state); 10237 set_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 10238 } 10239 } 10240 return rc; 10241 } 10242 10243 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 10244 { 10245 int rc = 0; 10246 10247 bnxt_preset_reg_win(bp); 10248 netif_carrier_off(bp->dev); 10249 if (irq_re_init) { 10250 /* Reserve rings now if none were reserved at driver probe. */ 10251 rc = bnxt_init_dflt_ring_mode(bp); 10252 if (rc) { 10253 netdev_err(bp->dev, "Failed to reserve default rings at open\n"); 10254 return rc; 10255 } 10256 } 10257 rc = bnxt_reserve_rings(bp, irq_re_init); 10258 if (rc) 10259 return rc; 10260 if ((bp->flags & BNXT_FLAG_RFS) && 10261 !(bp->flags & BNXT_FLAG_USING_MSIX)) { 10262 /* disable RFS if falling back to INTA */ 10263 bp->dev->hw_features &= ~NETIF_F_NTUPLE; 10264 bp->flags &= ~BNXT_FLAG_RFS; 10265 } 10266 10267 rc = bnxt_alloc_mem(bp, irq_re_init); 10268 if (rc) { 10269 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc); 10270 goto open_err_free_mem; 10271 } 10272 10273 if (irq_re_init) { 10274 bnxt_init_napi(bp); 10275 rc = bnxt_request_irq(bp); 10276 if (rc) { 10277 netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc); 10278 goto open_err_irq; 10279 } 10280 } 10281 10282 rc = bnxt_init_nic(bp, irq_re_init); 10283 if (rc) { 10284 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc); 10285 goto open_err_irq; 10286 } 10287 10288 bnxt_enable_napi(bp); 10289 bnxt_debug_dev_init(bp); 10290 10291 if (link_re_init) { 10292 mutex_lock(&bp->link_lock); 10293 rc = bnxt_update_phy_setting(bp); 10294 mutex_unlock(&bp->link_lock); 10295 if (rc) { 10296 netdev_warn(bp->dev, "failed to update phy settings\n"); 10297 if (BNXT_SINGLE_PF(bp)) { 10298 bp->link_info.phy_retry = true; 10299 bp->link_info.phy_retry_expires = 10300 jiffies + 5 * HZ; 10301 } 10302 } 10303 } 10304 10305 if (irq_re_init) 10306 udp_tunnel_nic_reset_ntf(bp->dev); 10307 10308 set_bit(BNXT_STATE_OPEN, &bp->state); 10309 bnxt_enable_int(bp); 10310 /* Enable TX queues */ 10311 bnxt_tx_enable(bp); 10312 mod_timer(&bp->timer, jiffies + bp->current_interval); 10313 /* Poll link status and check for SFP+ module status */ 10314 bnxt_get_port_module_status(bp); 10315 10316 /* VF-reps may need to be re-opened after the PF is re-opened */ 10317 if (BNXT_PF(bp)) 10318 bnxt_vf_reps_open(bp); 10319 return 0; 10320 10321 open_err_irq: 10322 bnxt_del_napi(bp); 10323 10324 open_err_free_mem: 10325 bnxt_free_skbs(bp); 10326 bnxt_free_irq(bp); 10327 bnxt_free_mem(bp, true); 10328 return rc; 10329 } 10330 10331 /* rtnl_lock held */ 10332 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 10333 { 10334 int rc = 0; 10335 10336 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) 10337 rc = -EIO; 10338 if (!rc) 10339 rc = __bnxt_open_nic(bp, irq_re_init, link_re_init); 10340 if (rc) { 10341 netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc); 10342 dev_close(bp->dev); 10343 } 10344 return rc; 10345 } 10346 10347 /* rtnl_lock held, open the NIC half way by allocating all resources, but 10348 * NAPI, IRQ, and TX are not enabled. This is mainly used for offline 10349 * self tests. 10350 */ 10351 int bnxt_half_open_nic(struct bnxt *bp) 10352 { 10353 int rc = 0; 10354 10355 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 10356 netdev_err(bp->dev, "A previous firmware reset has not completed, aborting half open\n"); 10357 rc = -ENODEV; 10358 goto half_open_err; 10359 } 10360 10361 rc = bnxt_alloc_mem(bp, false); 10362 if (rc) { 10363 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc); 10364 goto half_open_err; 10365 } 10366 rc = bnxt_init_nic(bp, false); 10367 if (rc) { 10368 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc); 10369 goto half_open_err; 10370 } 10371 return 0; 10372 10373 half_open_err: 10374 bnxt_free_skbs(bp); 10375 bnxt_free_mem(bp, false); 10376 dev_close(bp->dev); 10377 return rc; 10378 } 10379 10380 /* rtnl_lock held, this call can only be made after a previous successful 10381 * call to bnxt_half_open_nic(). 10382 */ 10383 void bnxt_half_close_nic(struct bnxt *bp) 10384 { 10385 bnxt_hwrm_resource_free(bp, false, false); 10386 bnxt_free_skbs(bp); 10387 bnxt_free_mem(bp, false); 10388 } 10389 10390 static void bnxt_reenable_sriov(struct bnxt *bp) 10391 { 10392 if (BNXT_PF(bp)) { 10393 struct bnxt_pf_info *pf = &bp->pf; 10394 int n = pf->active_vfs; 10395 10396 if (n) 10397 bnxt_cfg_hw_sriov(bp, &n, true); 10398 } 10399 } 10400 10401 static int bnxt_open(struct net_device *dev) 10402 { 10403 struct bnxt *bp = netdev_priv(dev); 10404 int rc; 10405 10406 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 10407 rc = bnxt_reinit_after_abort(bp); 10408 if (rc) { 10409 if (rc == -EBUSY) 10410 netdev_err(bp->dev, "A previous firmware reset has not completed, aborting\n"); 10411 else 10412 netdev_err(bp->dev, "Failed to reinitialize after aborted firmware reset\n"); 10413 return -ENODEV; 10414 } 10415 } 10416 10417 rc = bnxt_hwrm_if_change(bp, true); 10418 if (rc) 10419 return rc; 10420 10421 rc = __bnxt_open_nic(bp, true, true); 10422 if (rc) { 10423 bnxt_hwrm_if_change(bp, false); 10424 } else { 10425 if (test_and_clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) { 10426 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 10427 bnxt_ulp_start(bp, 0); 10428 bnxt_reenable_sriov(bp); 10429 } 10430 } 10431 bnxt_hwmon_open(bp); 10432 } 10433 10434 return rc; 10435 } 10436 10437 static bool bnxt_drv_busy(struct bnxt *bp) 10438 { 10439 return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) || 10440 test_bit(BNXT_STATE_READ_STATS, &bp->state)); 10441 } 10442 10443 static void bnxt_get_ring_stats(struct bnxt *bp, 10444 struct rtnl_link_stats64 *stats); 10445 10446 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init, 10447 bool link_re_init) 10448 { 10449 /* Close the VF-reps before closing PF */ 10450 if (BNXT_PF(bp)) 10451 bnxt_vf_reps_close(bp); 10452 10453 /* Change device state to avoid TX queue wake up's */ 10454 bnxt_tx_disable(bp); 10455 10456 clear_bit(BNXT_STATE_OPEN, &bp->state); 10457 smp_mb__after_atomic(); 10458 while (bnxt_drv_busy(bp)) 10459 msleep(20); 10460 10461 /* Flush rings and and disable interrupts */ 10462 bnxt_shutdown_nic(bp, irq_re_init); 10463 10464 /* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */ 10465 10466 bnxt_debug_dev_exit(bp); 10467 bnxt_disable_napi(bp); 10468 del_timer_sync(&bp->timer); 10469 bnxt_free_skbs(bp); 10470 10471 /* Save ring stats before shutdown */ 10472 if (bp->bnapi && irq_re_init) 10473 bnxt_get_ring_stats(bp, &bp->net_stats_prev); 10474 if (irq_re_init) { 10475 bnxt_free_irq(bp); 10476 bnxt_del_napi(bp); 10477 } 10478 bnxt_free_mem(bp, irq_re_init); 10479 } 10480 10481 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 10482 { 10483 int rc = 0; 10484 10485 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 10486 /* If we get here, it means firmware reset is in progress 10487 * while we are trying to close. We can safely proceed with 10488 * the close because we are holding rtnl_lock(). Some firmware 10489 * messages may fail as we proceed to close. We set the 10490 * ABORT_ERR flag here so that the FW reset thread will later 10491 * abort when it gets the rtnl_lock() and sees the flag. 10492 */ 10493 netdev_warn(bp->dev, "FW reset in progress during close, FW reset will be aborted\n"); 10494 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 10495 } 10496 10497 #ifdef CONFIG_BNXT_SRIOV 10498 if (bp->sriov_cfg) { 10499 rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait, 10500 !bp->sriov_cfg, 10501 BNXT_SRIOV_CFG_WAIT_TMO); 10502 if (rc) 10503 netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n"); 10504 } 10505 #endif 10506 __bnxt_close_nic(bp, irq_re_init, link_re_init); 10507 return rc; 10508 } 10509 10510 static int bnxt_close(struct net_device *dev) 10511 { 10512 struct bnxt *bp = netdev_priv(dev); 10513 10514 bnxt_hwmon_close(bp); 10515 bnxt_close_nic(bp, true, true); 10516 bnxt_hwrm_shutdown_link(bp); 10517 bnxt_hwrm_if_change(bp, false); 10518 return 0; 10519 } 10520 10521 static int bnxt_hwrm_port_phy_read(struct bnxt *bp, u16 phy_addr, u16 reg, 10522 u16 *val) 10523 { 10524 struct hwrm_port_phy_mdio_read_output *resp = bp->hwrm_cmd_resp_addr; 10525 struct hwrm_port_phy_mdio_read_input req = {0}; 10526 int rc; 10527 10528 if (bp->hwrm_spec_code < 0x10a00) 10529 return -EOPNOTSUPP; 10530 10531 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_MDIO_READ, -1, -1); 10532 req.port_id = cpu_to_le16(bp->pf.port_id); 10533 req.phy_addr = phy_addr; 10534 req.reg_addr = cpu_to_le16(reg & 0x1f); 10535 if (mdio_phy_id_is_c45(phy_addr)) { 10536 req.cl45_mdio = 1; 10537 req.phy_addr = mdio_phy_id_prtad(phy_addr); 10538 req.dev_addr = mdio_phy_id_devad(phy_addr); 10539 req.reg_addr = cpu_to_le16(reg); 10540 } 10541 10542 mutex_lock(&bp->hwrm_cmd_lock); 10543 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 10544 if (!rc) 10545 *val = le16_to_cpu(resp->reg_data); 10546 mutex_unlock(&bp->hwrm_cmd_lock); 10547 return rc; 10548 } 10549 10550 static int bnxt_hwrm_port_phy_write(struct bnxt *bp, u16 phy_addr, u16 reg, 10551 u16 val) 10552 { 10553 struct hwrm_port_phy_mdio_write_input req = {0}; 10554 10555 if (bp->hwrm_spec_code < 0x10a00) 10556 return -EOPNOTSUPP; 10557 10558 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_MDIO_WRITE, -1, -1); 10559 req.port_id = cpu_to_le16(bp->pf.port_id); 10560 req.phy_addr = phy_addr; 10561 req.reg_addr = cpu_to_le16(reg & 0x1f); 10562 if (mdio_phy_id_is_c45(phy_addr)) { 10563 req.cl45_mdio = 1; 10564 req.phy_addr = mdio_phy_id_prtad(phy_addr); 10565 req.dev_addr = mdio_phy_id_devad(phy_addr); 10566 req.reg_addr = cpu_to_le16(reg); 10567 } 10568 req.reg_data = cpu_to_le16(val); 10569 10570 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 10571 } 10572 10573 /* rtnl_lock held */ 10574 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 10575 { 10576 struct mii_ioctl_data *mdio = if_mii(ifr); 10577 struct bnxt *bp = netdev_priv(dev); 10578 int rc; 10579 10580 switch (cmd) { 10581 case SIOCGMIIPHY: 10582 mdio->phy_id = bp->link_info.phy_addr; 10583 10584 fallthrough; 10585 case SIOCGMIIREG: { 10586 u16 mii_regval = 0; 10587 10588 if (!netif_running(dev)) 10589 return -EAGAIN; 10590 10591 rc = bnxt_hwrm_port_phy_read(bp, mdio->phy_id, mdio->reg_num, 10592 &mii_regval); 10593 mdio->val_out = mii_regval; 10594 return rc; 10595 } 10596 10597 case SIOCSMIIREG: 10598 if (!netif_running(dev)) 10599 return -EAGAIN; 10600 10601 return bnxt_hwrm_port_phy_write(bp, mdio->phy_id, mdio->reg_num, 10602 mdio->val_in); 10603 10604 case SIOCSHWTSTAMP: 10605 return bnxt_hwtstamp_set(dev, ifr); 10606 10607 case SIOCGHWTSTAMP: 10608 return bnxt_hwtstamp_get(dev, ifr); 10609 10610 default: 10611 /* do nothing */ 10612 break; 10613 } 10614 return -EOPNOTSUPP; 10615 } 10616 10617 static void bnxt_get_ring_stats(struct bnxt *bp, 10618 struct rtnl_link_stats64 *stats) 10619 { 10620 int i; 10621 10622 for (i = 0; i < bp->cp_nr_rings; i++) { 10623 struct bnxt_napi *bnapi = bp->bnapi[i]; 10624 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 10625 u64 *sw = cpr->stats.sw_stats; 10626 10627 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts); 10628 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts); 10629 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts); 10630 10631 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts); 10632 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts); 10633 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts); 10634 10635 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes); 10636 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes); 10637 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes); 10638 10639 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes); 10640 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes); 10641 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes); 10642 10643 stats->rx_missed_errors += 10644 BNXT_GET_RING_STATS64(sw, rx_discard_pkts); 10645 10646 stats->multicast += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts); 10647 10648 stats->tx_dropped += BNXT_GET_RING_STATS64(sw, tx_error_pkts); 10649 } 10650 } 10651 10652 static void bnxt_add_prev_stats(struct bnxt *bp, 10653 struct rtnl_link_stats64 *stats) 10654 { 10655 struct rtnl_link_stats64 *prev_stats = &bp->net_stats_prev; 10656 10657 stats->rx_packets += prev_stats->rx_packets; 10658 stats->tx_packets += prev_stats->tx_packets; 10659 stats->rx_bytes += prev_stats->rx_bytes; 10660 stats->tx_bytes += prev_stats->tx_bytes; 10661 stats->rx_missed_errors += prev_stats->rx_missed_errors; 10662 stats->multicast += prev_stats->multicast; 10663 stats->tx_dropped += prev_stats->tx_dropped; 10664 } 10665 10666 static void 10667 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) 10668 { 10669 struct bnxt *bp = netdev_priv(dev); 10670 10671 set_bit(BNXT_STATE_READ_STATS, &bp->state); 10672 /* Make sure bnxt_close_nic() sees that we are reading stats before 10673 * we check the BNXT_STATE_OPEN flag. 10674 */ 10675 smp_mb__after_atomic(); 10676 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 10677 clear_bit(BNXT_STATE_READ_STATS, &bp->state); 10678 *stats = bp->net_stats_prev; 10679 return; 10680 } 10681 10682 bnxt_get_ring_stats(bp, stats); 10683 bnxt_add_prev_stats(bp, stats); 10684 10685 if (bp->flags & BNXT_FLAG_PORT_STATS) { 10686 u64 *rx = bp->port_stats.sw_stats; 10687 u64 *tx = bp->port_stats.sw_stats + 10688 BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 10689 10690 stats->rx_crc_errors = 10691 BNXT_GET_RX_PORT_STATS64(rx, rx_fcs_err_frames); 10692 stats->rx_frame_errors = 10693 BNXT_GET_RX_PORT_STATS64(rx, rx_align_err_frames); 10694 stats->rx_length_errors = 10695 BNXT_GET_RX_PORT_STATS64(rx, rx_undrsz_frames) + 10696 BNXT_GET_RX_PORT_STATS64(rx, rx_ovrsz_frames) + 10697 BNXT_GET_RX_PORT_STATS64(rx, rx_runt_frames); 10698 stats->rx_errors = 10699 BNXT_GET_RX_PORT_STATS64(rx, rx_false_carrier_frames) + 10700 BNXT_GET_RX_PORT_STATS64(rx, rx_jbr_frames); 10701 stats->collisions = 10702 BNXT_GET_TX_PORT_STATS64(tx, tx_total_collisions); 10703 stats->tx_fifo_errors = 10704 BNXT_GET_TX_PORT_STATS64(tx, tx_fifo_underruns); 10705 stats->tx_errors = BNXT_GET_TX_PORT_STATS64(tx, tx_err); 10706 } 10707 clear_bit(BNXT_STATE_READ_STATS, &bp->state); 10708 } 10709 10710 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask) 10711 { 10712 struct net_device *dev = bp->dev; 10713 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 10714 struct netdev_hw_addr *ha; 10715 u8 *haddr; 10716 int mc_count = 0; 10717 bool update = false; 10718 int off = 0; 10719 10720 netdev_for_each_mc_addr(ha, dev) { 10721 if (mc_count >= BNXT_MAX_MC_ADDRS) { 10722 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 10723 vnic->mc_list_count = 0; 10724 return false; 10725 } 10726 haddr = ha->addr; 10727 if (!ether_addr_equal(haddr, vnic->mc_list + off)) { 10728 memcpy(vnic->mc_list + off, haddr, ETH_ALEN); 10729 update = true; 10730 } 10731 off += ETH_ALEN; 10732 mc_count++; 10733 } 10734 if (mc_count) 10735 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST; 10736 10737 if (mc_count != vnic->mc_list_count) { 10738 vnic->mc_list_count = mc_count; 10739 update = true; 10740 } 10741 return update; 10742 } 10743 10744 static bool bnxt_uc_list_updated(struct bnxt *bp) 10745 { 10746 struct net_device *dev = bp->dev; 10747 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 10748 struct netdev_hw_addr *ha; 10749 int off = 0; 10750 10751 if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1)) 10752 return true; 10753 10754 netdev_for_each_uc_addr(ha, dev) { 10755 if (!ether_addr_equal(ha->addr, vnic->uc_list + off)) 10756 return true; 10757 10758 off += ETH_ALEN; 10759 } 10760 return false; 10761 } 10762 10763 static void bnxt_set_rx_mode(struct net_device *dev) 10764 { 10765 struct bnxt *bp = netdev_priv(dev); 10766 struct bnxt_vnic_info *vnic; 10767 bool mc_update = false; 10768 bool uc_update; 10769 u32 mask; 10770 10771 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) 10772 return; 10773 10774 vnic = &bp->vnic_info[0]; 10775 mask = vnic->rx_mask; 10776 mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS | 10777 CFA_L2_SET_RX_MASK_REQ_MASK_MCAST | 10778 CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST | 10779 CFA_L2_SET_RX_MASK_REQ_MASK_BCAST); 10780 10781 if (dev->flags & IFF_PROMISC) 10782 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 10783 10784 uc_update = bnxt_uc_list_updated(bp); 10785 10786 if (dev->flags & IFF_BROADCAST) 10787 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST; 10788 if (dev->flags & IFF_ALLMULTI) { 10789 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 10790 vnic->mc_list_count = 0; 10791 } else { 10792 mc_update = bnxt_mc_list_updated(bp, &mask); 10793 } 10794 10795 if (mask != vnic->rx_mask || uc_update || mc_update) { 10796 vnic->rx_mask = mask; 10797 10798 set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event); 10799 bnxt_queue_sp_work(bp); 10800 } 10801 } 10802 10803 static int bnxt_cfg_rx_mode(struct bnxt *bp) 10804 { 10805 struct net_device *dev = bp->dev; 10806 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 10807 struct netdev_hw_addr *ha; 10808 int i, off = 0, rc; 10809 bool uc_update; 10810 10811 netif_addr_lock_bh(dev); 10812 uc_update = bnxt_uc_list_updated(bp); 10813 netif_addr_unlock_bh(dev); 10814 10815 if (!uc_update) 10816 goto skip_uc; 10817 10818 mutex_lock(&bp->hwrm_cmd_lock); 10819 for (i = 1; i < vnic->uc_filter_count; i++) { 10820 struct hwrm_cfa_l2_filter_free_input req = {0}; 10821 10822 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_FREE, -1, 10823 -1); 10824 10825 req.l2_filter_id = vnic->fw_l2_filter_id[i]; 10826 10827 rc = _hwrm_send_message(bp, &req, sizeof(req), 10828 HWRM_CMD_TIMEOUT); 10829 } 10830 mutex_unlock(&bp->hwrm_cmd_lock); 10831 10832 vnic->uc_filter_count = 1; 10833 10834 netif_addr_lock_bh(dev); 10835 if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) { 10836 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 10837 } else { 10838 netdev_for_each_uc_addr(ha, dev) { 10839 memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN); 10840 off += ETH_ALEN; 10841 vnic->uc_filter_count++; 10842 } 10843 } 10844 netif_addr_unlock_bh(dev); 10845 10846 for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) { 10847 rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off); 10848 if (rc) { 10849 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", 10850 rc); 10851 vnic->uc_filter_count = i; 10852 return rc; 10853 } 10854 } 10855 10856 skip_uc: 10857 if ((vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS) && 10858 !bnxt_promisc_ok(bp)) 10859 vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 10860 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0); 10861 if (rc && vnic->mc_list_count) { 10862 netdev_info(bp->dev, "Failed setting MC filters rc: %d, turning on ALL_MCAST mode\n", 10863 rc); 10864 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 10865 vnic->mc_list_count = 0; 10866 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0); 10867 } 10868 if (rc) 10869 netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %d\n", 10870 rc); 10871 10872 return rc; 10873 } 10874 10875 static bool bnxt_can_reserve_rings(struct bnxt *bp) 10876 { 10877 #ifdef CONFIG_BNXT_SRIOV 10878 if (BNXT_NEW_RM(bp) && BNXT_VF(bp)) { 10879 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 10880 10881 /* No minimum rings were provisioned by the PF. Don't 10882 * reserve rings by default when device is down. 10883 */ 10884 if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings) 10885 return true; 10886 10887 if (!netif_running(bp->dev)) 10888 return false; 10889 } 10890 #endif 10891 return true; 10892 } 10893 10894 /* If the chip and firmware supports RFS */ 10895 static bool bnxt_rfs_supported(struct bnxt *bp) 10896 { 10897 if (bp->flags & BNXT_FLAG_CHIP_P5) { 10898 if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) 10899 return true; 10900 return false; 10901 } 10902 /* 212 firmware is broken for aRFS */ 10903 if (BNXT_FW_MAJ(bp) == 212) 10904 return false; 10905 if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp)) 10906 return true; 10907 if (bp->flags & BNXT_FLAG_NEW_RSS_CAP) 10908 return true; 10909 return false; 10910 } 10911 10912 /* If runtime conditions support RFS */ 10913 static bool bnxt_rfs_capable(struct bnxt *bp) 10914 { 10915 #ifdef CONFIG_RFS_ACCEL 10916 int vnics, max_vnics, max_rss_ctxs; 10917 10918 if (bp->flags & BNXT_FLAG_CHIP_P5) 10919 return bnxt_rfs_supported(bp); 10920 if (!(bp->flags & BNXT_FLAG_MSIX_CAP) || !bnxt_can_reserve_rings(bp)) 10921 return false; 10922 10923 vnics = 1 + bp->rx_nr_rings; 10924 max_vnics = bnxt_get_max_func_vnics(bp); 10925 max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp); 10926 10927 /* RSS contexts not a limiting factor */ 10928 if (bp->flags & BNXT_FLAG_NEW_RSS_CAP) 10929 max_rss_ctxs = max_vnics; 10930 if (vnics > max_vnics || vnics > max_rss_ctxs) { 10931 if (bp->rx_nr_rings > 1) 10932 netdev_warn(bp->dev, 10933 "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n", 10934 min(max_rss_ctxs - 1, max_vnics - 1)); 10935 return false; 10936 } 10937 10938 if (!BNXT_NEW_RM(bp)) 10939 return true; 10940 10941 if (vnics == bp->hw_resc.resv_vnics) 10942 return true; 10943 10944 bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, vnics); 10945 if (vnics <= bp->hw_resc.resv_vnics) 10946 return true; 10947 10948 netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n"); 10949 bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, 1); 10950 return false; 10951 #else 10952 return false; 10953 #endif 10954 } 10955 10956 static netdev_features_t bnxt_fix_features(struct net_device *dev, 10957 netdev_features_t features) 10958 { 10959 struct bnxt *bp = netdev_priv(dev); 10960 netdev_features_t vlan_features; 10961 10962 if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp)) 10963 features &= ~NETIF_F_NTUPLE; 10964 10965 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) 10966 features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 10967 10968 if (!(features & NETIF_F_GRO)) 10969 features &= ~NETIF_F_GRO_HW; 10970 10971 if (features & NETIF_F_GRO_HW) 10972 features &= ~NETIF_F_LRO; 10973 10974 /* Both CTAG and STAG VLAN accelaration on the RX side have to be 10975 * turned on or off together. 10976 */ 10977 vlan_features = features & BNXT_HW_FEATURE_VLAN_ALL_RX; 10978 if (vlan_features != BNXT_HW_FEATURE_VLAN_ALL_RX) { 10979 if (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX) 10980 features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX; 10981 else if (vlan_features) 10982 features |= BNXT_HW_FEATURE_VLAN_ALL_RX; 10983 } 10984 #ifdef CONFIG_BNXT_SRIOV 10985 if (BNXT_VF(bp) && bp->vf.vlan) 10986 features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX; 10987 #endif 10988 return features; 10989 } 10990 10991 static int bnxt_set_features(struct net_device *dev, netdev_features_t features) 10992 { 10993 struct bnxt *bp = netdev_priv(dev); 10994 u32 flags = bp->flags; 10995 u32 changes; 10996 int rc = 0; 10997 bool re_init = false; 10998 bool update_tpa = false; 10999 11000 flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS; 11001 if (features & NETIF_F_GRO_HW) 11002 flags |= BNXT_FLAG_GRO; 11003 else if (features & NETIF_F_LRO) 11004 flags |= BNXT_FLAG_LRO; 11005 11006 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) 11007 flags &= ~BNXT_FLAG_TPA; 11008 11009 if (features & BNXT_HW_FEATURE_VLAN_ALL_RX) 11010 flags |= BNXT_FLAG_STRIP_VLAN; 11011 11012 if (features & NETIF_F_NTUPLE) 11013 flags |= BNXT_FLAG_RFS; 11014 11015 changes = flags ^ bp->flags; 11016 if (changes & BNXT_FLAG_TPA) { 11017 update_tpa = true; 11018 if ((bp->flags & BNXT_FLAG_TPA) == 0 || 11019 (flags & BNXT_FLAG_TPA) == 0 || 11020 (bp->flags & BNXT_FLAG_CHIP_P5)) 11021 re_init = true; 11022 } 11023 11024 if (changes & ~BNXT_FLAG_TPA) 11025 re_init = true; 11026 11027 if (flags != bp->flags) { 11028 u32 old_flags = bp->flags; 11029 11030 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 11031 bp->flags = flags; 11032 if (update_tpa) 11033 bnxt_set_ring_params(bp); 11034 return rc; 11035 } 11036 11037 if (re_init) { 11038 bnxt_close_nic(bp, false, false); 11039 bp->flags = flags; 11040 if (update_tpa) 11041 bnxt_set_ring_params(bp); 11042 11043 return bnxt_open_nic(bp, false, false); 11044 } 11045 if (update_tpa) { 11046 bp->flags = flags; 11047 rc = bnxt_set_tpa(bp, 11048 (flags & BNXT_FLAG_TPA) ? 11049 true : false); 11050 if (rc) 11051 bp->flags = old_flags; 11052 } 11053 } 11054 return rc; 11055 } 11056 11057 static bool bnxt_exthdr_check(struct bnxt *bp, struct sk_buff *skb, int nw_off, 11058 u8 **nextp) 11059 { 11060 struct ipv6hdr *ip6h = (struct ipv6hdr *)(skb->data + nw_off); 11061 int hdr_count = 0; 11062 u8 *nexthdr; 11063 int start; 11064 11065 /* Check that there are at most 2 IPv6 extension headers, no 11066 * fragment header, and each is <= 64 bytes. 11067 */ 11068 start = nw_off + sizeof(*ip6h); 11069 nexthdr = &ip6h->nexthdr; 11070 while (ipv6_ext_hdr(*nexthdr)) { 11071 struct ipv6_opt_hdr *hp; 11072 int hdrlen; 11073 11074 if (hdr_count >= 3 || *nexthdr == NEXTHDR_NONE || 11075 *nexthdr == NEXTHDR_FRAGMENT) 11076 return false; 11077 hp = __skb_header_pointer(NULL, start, sizeof(*hp), skb->data, 11078 skb_headlen(skb), NULL); 11079 if (!hp) 11080 return false; 11081 if (*nexthdr == NEXTHDR_AUTH) 11082 hdrlen = ipv6_authlen(hp); 11083 else 11084 hdrlen = ipv6_optlen(hp); 11085 11086 if (hdrlen > 64) 11087 return false; 11088 nexthdr = &hp->nexthdr; 11089 start += hdrlen; 11090 hdr_count++; 11091 } 11092 if (nextp) { 11093 /* Caller will check inner protocol */ 11094 if (skb->encapsulation) { 11095 *nextp = nexthdr; 11096 return true; 11097 } 11098 *nextp = NULL; 11099 } 11100 /* Only support TCP/UDP for non-tunneled ipv6 and inner ipv6 */ 11101 return *nexthdr == IPPROTO_TCP || *nexthdr == IPPROTO_UDP; 11102 } 11103 11104 /* For UDP, we can only handle 1 Vxlan port and 1 Geneve port. */ 11105 static bool bnxt_udp_tunl_check(struct bnxt *bp, struct sk_buff *skb) 11106 { 11107 struct udphdr *uh = udp_hdr(skb); 11108 __be16 udp_port = uh->dest; 11109 11110 if (udp_port != bp->vxlan_port && udp_port != bp->nge_port) 11111 return false; 11112 if (skb->inner_protocol_type == ENCAP_TYPE_ETHER) { 11113 struct ethhdr *eh = inner_eth_hdr(skb); 11114 11115 switch (eh->h_proto) { 11116 case htons(ETH_P_IP): 11117 return true; 11118 case htons(ETH_P_IPV6): 11119 return bnxt_exthdr_check(bp, skb, 11120 skb_inner_network_offset(skb), 11121 NULL); 11122 } 11123 } 11124 return false; 11125 } 11126 11127 static bool bnxt_tunl_check(struct bnxt *bp, struct sk_buff *skb, u8 l4_proto) 11128 { 11129 switch (l4_proto) { 11130 case IPPROTO_UDP: 11131 return bnxt_udp_tunl_check(bp, skb); 11132 case IPPROTO_IPIP: 11133 return true; 11134 case IPPROTO_GRE: { 11135 switch (skb->inner_protocol) { 11136 default: 11137 return false; 11138 case htons(ETH_P_IP): 11139 return true; 11140 case htons(ETH_P_IPV6): 11141 fallthrough; 11142 } 11143 } 11144 case IPPROTO_IPV6: 11145 /* Check ext headers of inner ipv6 */ 11146 return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb), 11147 NULL); 11148 } 11149 return false; 11150 } 11151 11152 static netdev_features_t bnxt_features_check(struct sk_buff *skb, 11153 struct net_device *dev, 11154 netdev_features_t features) 11155 { 11156 struct bnxt *bp = netdev_priv(dev); 11157 u8 *l4_proto; 11158 11159 features = vlan_features_check(skb, features); 11160 switch (vlan_get_protocol(skb)) { 11161 case htons(ETH_P_IP): 11162 if (!skb->encapsulation) 11163 return features; 11164 l4_proto = &ip_hdr(skb)->protocol; 11165 if (bnxt_tunl_check(bp, skb, *l4_proto)) 11166 return features; 11167 break; 11168 case htons(ETH_P_IPV6): 11169 if (!bnxt_exthdr_check(bp, skb, skb_network_offset(skb), 11170 &l4_proto)) 11171 break; 11172 if (!l4_proto || bnxt_tunl_check(bp, skb, *l4_proto)) 11173 return features; 11174 break; 11175 } 11176 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 11177 } 11178 11179 int bnxt_dbg_hwrm_rd_reg(struct bnxt *bp, u32 reg_off, u16 num_words, 11180 u32 *reg_buf) 11181 { 11182 struct hwrm_dbg_read_direct_output *resp = bp->hwrm_cmd_resp_addr; 11183 struct hwrm_dbg_read_direct_input req = {0}; 11184 __le32 *dbg_reg_buf; 11185 dma_addr_t mapping; 11186 int rc, i; 11187 11188 dbg_reg_buf = dma_alloc_coherent(&bp->pdev->dev, num_words * 4, 11189 &mapping, GFP_KERNEL); 11190 if (!dbg_reg_buf) 11191 return -ENOMEM; 11192 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_DBG_READ_DIRECT, -1, -1); 11193 req.host_dest_addr = cpu_to_le64(mapping); 11194 req.read_addr = cpu_to_le32(reg_off + CHIMP_REG_VIEW_ADDR); 11195 req.read_len32 = cpu_to_le32(num_words); 11196 mutex_lock(&bp->hwrm_cmd_lock); 11197 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 11198 if (rc || resp->error_code) { 11199 rc = -EIO; 11200 goto dbg_rd_reg_exit; 11201 } 11202 for (i = 0; i < num_words; i++) 11203 reg_buf[i] = le32_to_cpu(dbg_reg_buf[i]); 11204 11205 dbg_rd_reg_exit: 11206 mutex_unlock(&bp->hwrm_cmd_lock); 11207 dma_free_coherent(&bp->pdev->dev, num_words * 4, dbg_reg_buf, mapping); 11208 return rc; 11209 } 11210 11211 static int bnxt_dbg_hwrm_ring_info_get(struct bnxt *bp, u8 ring_type, 11212 u32 ring_id, u32 *prod, u32 *cons) 11213 { 11214 struct hwrm_dbg_ring_info_get_output *resp = bp->hwrm_cmd_resp_addr; 11215 struct hwrm_dbg_ring_info_get_input req = {0}; 11216 int rc; 11217 11218 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_DBG_RING_INFO_GET, -1, -1); 11219 req.ring_type = ring_type; 11220 req.fw_ring_id = cpu_to_le32(ring_id); 11221 mutex_lock(&bp->hwrm_cmd_lock); 11222 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 11223 if (!rc) { 11224 *prod = le32_to_cpu(resp->producer_index); 11225 *cons = le32_to_cpu(resp->consumer_index); 11226 } 11227 mutex_unlock(&bp->hwrm_cmd_lock); 11228 return rc; 11229 } 11230 11231 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi) 11232 { 11233 struct bnxt_tx_ring_info *txr = bnapi->tx_ring; 11234 int i = bnapi->index; 11235 11236 if (!txr) 11237 return; 11238 11239 netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n", 11240 i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod, 11241 txr->tx_cons); 11242 } 11243 11244 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi) 11245 { 11246 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 11247 int i = bnapi->index; 11248 11249 if (!rxr) 11250 return; 11251 11252 netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n", 11253 i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod, 11254 rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod, 11255 rxr->rx_sw_agg_prod); 11256 } 11257 11258 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi) 11259 { 11260 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 11261 int i = bnapi->index; 11262 11263 netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n", 11264 i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons); 11265 } 11266 11267 static void bnxt_dbg_dump_states(struct bnxt *bp) 11268 { 11269 int i; 11270 struct bnxt_napi *bnapi; 11271 11272 for (i = 0; i < bp->cp_nr_rings; i++) { 11273 bnapi = bp->bnapi[i]; 11274 if (netif_msg_drv(bp)) { 11275 bnxt_dump_tx_sw_state(bnapi); 11276 bnxt_dump_rx_sw_state(bnapi); 11277 bnxt_dump_cp_sw_state(bnapi); 11278 } 11279 } 11280 } 11281 11282 static int bnxt_hwrm_rx_ring_reset(struct bnxt *bp, int ring_nr) 11283 { 11284 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 11285 struct hwrm_ring_reset_input req = {0}; 11286 struct bnxt_napi *bnapi = rxr->bnapi; 11287 struct bnxt_cp_ring_info *cpr; 11288 u16 cp_ring_id; 11289 11290 cpr = &bnapi->cp_ring; 11291 cp_ring_id = cpr->cp_ring_struct.fw_ring_id; 11292 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_RESET, cp_ring_id, -1); 11293 req.ring_type = RING_RESET_REQ_RING_TYPE_RX_RING_GRP; 11294 req.ring_id = cpu_to_le16(bp->grp_info[bnapi->index].fw_grp_id); 11295 return hwrm_send_message_silent(bp, &req, sizeof(req), 11296 HWRM_CMD_TIMEOUT); 11297 } 11298 11299 static void bnxt_reset_task(struct bnxt *bp, bool silent) 11300 { 11301 if (!silent) 11302 bnxt_dbg_dump_states(bp); 11303 if (netif_running(bp->dev)) { 11304 int rc; 11305 11306 if (silent) { 11307 bnxt_close_nic(bp, false, false); 11308 bnxt_open_nic(bp, false, false); 11309 } else { 11310 bnxt_ulp_stop(bp); 11311 bnxt_close_nic(bp, true, false); 11312 rc = bnxt_open_nic(bp, true, false); 11313 bnxt_ulp_start(bp, rc); 11314 } 11315 } 11316 } 11317 11318 static void bnxt_tx_timeout(struct net_device *dev, unsigned int txqueue) 11319 { 11320 struct bnxt *bp = netdev_priv(dev); 11321 11322 netdev_err(bp->dev, "TX timeout detected, starting reset task!\n"); 11323 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event); 11324 bnxt_queue_sp_work(bp); 11325 } 11326 11327 static void bnxt_fw_health_check(struct bnxt *bp) 11328 { 11329 struct bnxt_fw_health *fw_health = bp->fw_health; 11330 u32 val; 11331 11332 if (!fw_health->enabled || test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 11333 return; 11334 11335 if (fw_health->tmr_counter) { 11336 fw_health->tmr_counter--; 11337 return; 11338 } 11339 11340 val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 11341 if (val == fw_health->last_fw_heartbeat) 11342 goto fw_reset; 11343 11344 fw_health->last_fw_heartbeat = val; 11345 11346 val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 11347 if (val != fw_health->last_fw_reset_cnt) 11348 goto fw_reset; 11349 11350 fw_health->tmr_counter = fw_health->tmr_multiplier; 11351 return; 11352 11353 fw_reset: 11354 set_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event); 11355 bnxt_queue_sp_work(bp); 11356 } 11357 11358 static void bnxt_timer(struct timer_list *t) 11359 { 11360 struct bnxt *bp = from_timer(bp, t, timer); 11361 struct net_device *dev = bp->dev; 11362 11363 if (!netif_running(dev) || !test_bit(BNXT_STATE_OPEN, &bp->state)) 11364 return; 11365 11366 if (atomic_read(&bp->intr_sem) != 0) 11367 goto bnxt_restart_timer; 11368 11369 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) 11370 bnxt_fw_health_check(bp); 11371 11372 if (bp->link_info.link_up && bp->stats_coal_ticks) { 11373 set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event); 11374 bnxt_queue_sp_work(bp); 11375 } 11376 11377 if (bnxt_tc_flower_enabled(bp)) { 11378 set_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event); 11379 bnxt_queue_sp_work(bp); 11380 } 11381 11382 #ifdef CONFIG_RFS_ACCEL 11383 if ((bp->flags & BNXT_FLAG_RFS) && bp->ntp_fltr_count) { 11384 set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event); 11385 bnxt_queue_sp_work(bp); 11386 } 11387 #endif /*CONFIG_RFS_ACCEL*/ 11388 11389 if (bp->link_info.phy_retry) { 11390 if (time_after(jiffies, bp->link_info.phy_retry_expires)) { 11391 bp->link_info.phy_retry = false; 11392 netdev_warn(bp->dev, "failed to update phy settings after maximum retries.\n"); 11393 } else { 11394 set_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event); 11395 bnxt_queue_sp_work(bp); 11396 } 11397 } 11398 11399 if ((bp->flags & BNXT_FLAG_CHIP_P5) && !bp->chip_rev && 11400 netif_carrier_ok(dev)) { 11401 set_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event); 11402 bnxt_queue_sp_work(bp); 11403 } 11404 bnxt_restart_timer: 11405 mod_timer(&bp->timer, jiffies + bp->current_interval); 11406 } 11407 11408 static void bnxt_rtnl_lock_sp(struct bnxt *bp) 11409 { 11410 /* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK 11411 * set. If the device is being closed, bnxt_close() may be holding 11412 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear. So we 11413 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl(). 11414 */ 11415 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 11416 rtnl_lock(); 11417 } 11418 11419 static void bnxt_rtnl_unlock_sp(struct bnxt *bp) 11420 { 11421 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 11422 rtnl_unlock(); 11423 } 11424 11425 /* Only called from bnxt_sp_task() */ 11426 static void bnxt_reset(struct bnxt *bp, bool silent) 11427 { 11428 bnxt_rtnl_lock_sp(bp); 11429 if (test_bit(BNXT_STATE_OPEN, &bp->state)) 11430 bnxt_reset_task(bp, silent); 11431 bnxt_rtnl_unlock_sp(bp); 11432 } 11433 11434 /* Only called from bnxt_sp_task() */ 11435 static void bnxt_rx_ring_reset(struct bnxt *bp) 11436 { 11437 int i; 11438 11439 bnxt_rtnl_lock_sp(bp); 11440 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 11441 bnxt_rtnl_unlock_sp(bp); 11442 return; 11443 } 11444 /* Disable and flush TPA before resetting the RX ring */ 11445 if (bp->flags & BNXT_FLAG_TPA) 11446 bnxt_set_tpa(bp, false); 11447 for (i = 0; i < bp->rx_nr_rings; i++) { 11448 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 11449 struct bnxt_cp_ring_info *cpr; 11450 int rc; 11451 11452 if (!rxr->bnapi->in_reset) 11453 continue; 11454 11455 rc = bnxt_hwrm_rx_ring_reset(bp, i); 11456 if (rc) { 11457 if (rc == -EINVAL || rc == -EOPNOTSUPP) 11458 netdev_info_once(bp->dev, "RX ring reset not supported by firmware, falling back to global reset\n"); 11459 else 11460 netdev_warn(bp->dev, "RX ring reset failed, rc = %d, falling back to global reset\n", 11461 rc); 11462 bnxt_reset_task(bp, true); 11463 break; 11464 } 11465 bnxt_free_one_rx_ring_skbs(bp, i); 11466 rxr->rx_prod = 0; 11467 rxr->rx_agg_prod = 0; 11468 rxr->rx_sw_agg_prod = 0; 11469 rxr->rx_next_cons = 0; 11470 rxr->bnapi->in_reset = false; 11471 bnxt_alloc_one_rx_ring(bp, i); 11472 cpr = &rxr->bnapi->cp_ring; 11473 cpr->sw_stats.rx.rx_resets++; 11474 if (bp->flags & BNXT_FLAG_AGG_RINGS) 11475 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 11476 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 11477 } 11478 if (bp->flags & BNXT_FLAG_TPA) 11479 bnxt_set_tpa(bp, true); 11480 bnxt_rtnl_unlock_sp(bp); 11481 } 11482 11483 static void bnxt_fw_reset_close(struct bnxt *bp) 11484 { 11485 bnxt_ulp_stop(bp); 11486 /* When firmware is in fatal state, quiesce device and disable 11487 * bus master to prevent any potential bad DMAs before freeing 11488 * kernel memory. 11489 */ 11490 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) { 11491 u16 val = 0; 11492 11493 pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val); 11494 if (val == 0xffff) 11495 bp->fw_reset_min_dsecs = 0; 11496 bnxt_tx_disable(bp); 11497 bnxt_disable_napi(bp); 11498 bnxt_disable_int_sync(bp); 11499 bnxt_free_irq(bp); 11500 bnxt_clear_int_mode(bp); 11501 pci_disable_device(bp->pdev); 11502 } 11503 __bnxt_close_nic(bp, true, false); 11504 bnxt_vf_reps_free(bp); 11505 bnxt_clear_int_mode(bp); 11506 bnxt_hwrm_func_drv_unrgtr(bp); 11507 if (pci_is_enabled(bp->pdev)) 11508 pci_disable_device(bp->pdev); 11509 bnxt_free_ctx_mem(bp); 11510 kfree(bp->ctx); 11511 bp->ctx = NULL; 11512 } 11513 11514 static bool is_bnxt_fw_ok(struct bnxt *bp) 11515 { 11516 struct bnxt_fw_health *fw_health = bp->fw_health; 11517 bool no_heartbeat = false, has_reset = false; 11518 u32 val; 11519 11520 val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 11521 if (val == fw_health->last_fw_heartbeat) 11522 no_heartbeat = true; 11523 11524 val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 11525 if (val != fw_health->last_fw_reset_cnt) 11526 has_reset = true; 11527 11528 if (!no_heartbeat && has_reset) 11529 return true; 11530 11531 return false; 11532 } 11533 11534 /* rtnl_lock is acquired before calling this function */ 11535 static void bnxt_force_fw_reset(struct bnxt *bp) 11536 { 11537 struct bnxt_fw_health *fw_health = bp->fw_health; 11538 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 11539 u32 wait_dsecs; 11540 11541 if (!test_bit(BNXT_STATE_OPEN, &bp->state) || 11542 test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 11543 return; 11544 11545 if (ptp) { 11546 spin_lock_bh(&ptp->ptp_lock); 11547 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 11548 spin_unlock_bh(&ptp->ptp_lock); 11549 } else { 11550 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 11551 } 11552 bnxt_fw_reset_close(bp); 11553 wait_dsecs = fw_health->master_func_wait_dsecs; 11554 if (fw_health->master) { 11555 if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) 11556 wait_dsecs = 0; 11557 bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW; 11558 } else { 11559 bp->fw_reset_timestamp = jiffies + wait_dsecs * HZ / 10; 11560 wait_dsecs = fw_health->normal_func_wait_dsecs; 11561 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 11562 } 11563 11564 bp->fw_reset_min_dsecs = fw_health->post_reset_wait_dsecs; 11565 bp->fw_reset_max_dsecs = fw_health->post_reset_max_wait_dsecs; 11566 bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10); 11567 } 11568 11569 void bnxt_fw_exception(struct bnxt *bp) 11570 { 11571 netdev_warn(bp->dev, "Detected firmware fatal condition, initiating reset\n"); 11572 set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 11573 bnxt_rtnl_lock_sp(bp); 11574 bnxt_force_fw_reset(bp); 11575 bnxt_rtnl_unlock_sp(bp); 11576 } 11577 11578 /* Returns the number of registered VFs, or 1 if VF configuration is pending, or 11579 * < 0 on error. 11580 */ 11581 static int bnxt_get_registered_vfs(struct bnxt *bp) 11582 { 11583 #ifdef CONFIG_BNXT_SRIOV 11584 int rc; 11585 11586 if (!BNXT_PF(bp)) 11587 return 0; 11588 11589 rc = bnxt_hwrm_func_qcfg(bp); 11590 if (rc) { 11591 netdev_err(bp->dev, "func_qcfg cmd failed, rc = %d\n", rc); 11592 return rc; 11593 } 11594 if (bp->pf.registered_vfs) 11595 return bp->pf.registered_vfs; 11596 if (bp->sriov_cfg) 11597 return 1; 11598 #endif 11599 return 0; 11600 } 11601 11602 void bnxt_fw_reset(struct bnxt *bp) 11603 { 11604 bnxt_rtnl_lock_sp(bp); 11605 if (test_bit(BNXT_STATE_OPEN, &bp->state) && 11606 !test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 11607 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 11608 int n = 0, tmo; 11609 11610 if (ptp) { 11611 spin_lock_bh(&ptp->ptp_lock); 11612 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 11613 spin_unlock_bh(&ptp->ptp_lock); 11614 } else { 11615 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 11616 } 11617 if (bp->pf.active_vfs && 11618 !test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) 11619 n = bnxt_get_registered_vfs(bp); 11620 if (n < 0) { 11621 netdev_err(bp->dev, "Firmware reset aborted, rc = %d\n", 11622 n); 11623 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 11624 dev_close(bp->dev); 11625 goto fw_reset_exit; 11626 } else if (n > 0) { 11627 u16 vf_tmo_dsecs = n * 10; 11628 11629 if (bp->fw_reset_max_dsecs < vf_tmo_dsecs) 11630 bp->fw_reset_max_dsecs = vf_tmo_dsecs; 11631 bp->fw_reset_state = 11632 BNXT_FW_RESET_STATE_POLL_VF; 11633 bnxt_queue_fw_reset_work(bp, HZ / 10); 11634 goto fw_reset_exit; 11635 } 11636 bnxt_fw_reset_close(bp); 11637 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 11638 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN; 11639 tmo = HZ / 10; 11640 } else { 11641 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 11642 tmo = bp->fw_reset_min_dsecs * HZ / 10; 11643 } 11644 bnxt_queue_fw_reset_work(bp, tmo); 11645 } 11646 fw_reset_exit: 11647 bnxt_rtnl_unlock_sp(bp); 11648 } 11649 11650 static void bnxt_chk_missed_irq(struct bnxt *bp) 11651 { 11652 int i; 11653 11654 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 11655 return; 11656 11657 for (i = 0; i < bp->cp_nr_rings; i++) { 11658 struct bnxt_napi *bnapi = bp->bnapi[i]; 11659 struct bnxt_cp_ring_info *cpr; 11660 u32 fw_ring_id; 11661 int j; 11662 11663 if (!bnapi) 11664 continue; 11665 11666 cpr = &bnapi->cp_ring; 11667 for (j = 0; j < 2; j++) { 11668 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j]; 11669 u32 val[2]; 11670 11671 if (!cpr2 || cpr2->has_more_work || 11672 !bnxt_has_work(bp, cpr2)) 11673 continue; 11674 11675 if (cpr2->cp_raw_cons != cpr2->last_cp_raw_cons) { 11676 cpr2->last_cp_raw_cons = cpr2->cp_raw_cons; 11677 continue; 11678 } 11679 fw_ring_id = cpr2->cp_ring_struct.fw_ring_id; 11680 bnxt_dbg_hwrm_ring_info_get(bp, 11681 DBG_RING_INFO_GET_REQ_RING_TYPE_L2_CMPL, 11682 fw_ring_id, &val[0], &val[1]); 11683 cpr->sw_stats.cmn.missed_irqs++; 11684 } 11685 } 11686 } 11687 11688 static void bnxt_cfg_ntp_filters(struct bnxt *); 11689 11690 static void bnxt_init_ethtool_link_settings(struct bnxt *bp) 11691 { 11692 struct bnxt_link_info *link_info = &bp->link_info; 11693 11694 if (BNXT_AUTO_MODE(link_info->auto_mode)) { 11695 link_info->autoneg = BNXT_AUTONEG_SPEED; 11696 if (bp->hwrm_spec_code >= 0x10201) { 11697 if (link_info->auto_pause_setting & 11698 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE) 11699 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL; 11700 } else { 11701 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL; 11702 } 11703 link_info->advertising = link_info->auto_link_speeds; 11704 link_info->advertising_pam4 = link_info->auto_pam4_link_speeds; 11705 } else { 11706 link_info->req_link_speed = link_info->force_link_speed; 11707 link_info->req_signal_mode = BNXT_SIG_MODE_NRZ; 11708 if (link_info->force_pam4_link_speed) { 11709 link_info->req_link_speed = 11710 link_info->force_pam4_link_speed; 11711 link_info->req_signal_mode = BNXT_SIG_MODE_PAM4; 11712 } 11713 link_info->req_duplex = link_info->duplex_setting; 11714 } 11715 if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) 11716 link_info->req_flow_ctrl = 11717 link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH; 11718 else 11719 link_info->req_flow_ctrl = link_info->force_pause_setting; 11720 } 11721 11722 static void bnxt_fw_echo_reply(struct bnxt *bp) 11723 { 11724 struct bnxt_fw_health *fw_health = bp->fw_health; 11725 struct hwrm_func_echo_response_input req = {0}; 11726 11727 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_ECHO_RESPONSE, -1, -1); 11728 req.event_data1 = cpu_to_le32(fw_health->echo_req_data1); 11729 req.event_data2 = cpu_to_le32(fw_health->echo_req_data2); 11730 hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 11731 } 11732 11733 static void bnxt_sp_task(struct work_struct *work) 11734 { 11735 struct bnxt *bp = container_of(work, struct bnxt, sp_task); 11736 11737 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 11738 smp_mb__after_atomic(); 11739 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 11740 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 11741 return; 11742 } 11743 11744 if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event)) 11745 bnxt_cfg_rx_mode(bp); 11746 11747 if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event)) 11748 bnxt_cfg_ntp_filters(bp); 11749 if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event)) 11750 bnxt_hwrm_exec_fwd_req(bp); 11751 if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) { 11752 bnxt_hwrm_port_qstats(bp, 0); 11753 bnxt_hwrm_port_qstats_ext(bp, 0); 11754 bnxt_accumulate_all_stats(bp); 11755 } 11756 11757 if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) { 11758 int rc; 11759 11760 mutex_lock(&bp->link_lock); 11761 if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, 11762 &bp->sp_event)) 11763 bnxt_hwrm_phy_qcaps(bp); 11764 11765 rc = bnxt_update_link(bp, true); 11766 if (rc) 11767 netdev_err(bp->dev, "SP task can't update link (rc: %x)\n", 11768 rc); 11769 11770 if (test_and_clear_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, 11771 &bp->sp_event)) 11772 bnxt_init_ethtool_link_settings(bp); 11773 mutex_unlock(&bp->link_lock); 11774 } 11775 if (test_and_clear_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event)) { 11776 int rc; 11777 11778 mutex_lock(&bp->link_lock); 11779 rc = bnxt_update_phy_setting(bp); 11780 mutex_unlock(&bp->link_lock); 11781 if (rc) { 11782 netdev_warn(bp->dev, "update phy settings retry failed\n"); 11783 } else { 11784 bp->link_info.phy_retry = false; 11785 netdev_info(bp->dev, "update phy settings retry succeeded\n"); 11786 } 11787 } 11788 if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) { 11789 mutex_lock(&bp->link_lock); 11790 bnxt_get_port_module_status(bp); 11791 mutex_unlock(&bp->link_lock); 11792 } 11793 11794 if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event)) 11795 bnxt_tc_flow_stats_work(bp); 11796 11797 if (test_and_clear_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event)) 11798 bnxt_chk_missed_irq(bp); 11799 11800 if (test_and_clear_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event)) 11801 bnxt_fw_echo_reply(bp); 11802 11803 /* These functions below will clear BNXT_STATE_IN_SP_TASK. They 11804 * must be the last functions to be called before exiting. 11805 */ 11806 if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event)) 11807 bnxt_reset(bp, false); 11808 11809 if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event)) 11810 bnxt_reset(bp, true); 11811 11812 if (test_and_clear_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event)) 11813 bnxt_rx_ring_reset(bp); 11814 11815 if (test_and_clear_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event)) 11816 bnxt_devlink_health_report(bp, BNXT_FW_RESET_NOTIFY_SP_EVENT); 11817 11818 if (test_and_clear_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event)) { 11819 if (!is_bnxt_fw_ok(bp)) 11820 bnxt_devlink_health_report(bp, 11821 BNXT_FW_EXCEPTION_SP_EVENT); 11822 } 11823 11824 smp_mb__before_atomic(); 11825 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 11826 } 11827 11828 /* Under rtnl_lock */ 11829 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs, 11830 int tx_xdp) 11831 { 11832 int max_rx, max_tx, tx_sets = 1; 11833 int tx_rings_needed, stats; 11834 int rx_rings = rx; 11835 int cp, vnics, rc; 11836 11837 if (tcs) 11838 tx_sets = tcs; 11839 11840 rc = bnxt_get_max_rings(bp, &max_rx, &max_tx, sh); 11841 if (rc) 11842 return rc; 11843 11844 if (max_rx < rx) 11845 return -ENOMEM; 11846 11847 tx_rings_needed = tx * tx_sets + tx_xdp; 11848 if (max_tx < tx_rings_needed) 11849 return -ENOMEM; 11850 11851 vnics = 1; 11852 if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS) 11853 vnics += rx_rings; 11854 11855 if (bp->flags & BNXT_FLAG_AGG_RINGS) 11856 rx_rings <<= 1; 11857 cp = sh ? max_t(int, tx_rings_needed, rx) : tx_rings_needed + rx; 11858 stats = cp; 11859 if (BNXT_NEW_RM(bp)) { 11860 cp += bnxt_get_ulp_msix_num(bp); 11861 stats += bnxt_get_ulp_stat_ctxs(bp); 11862 } 11863 return bnxt_hwrm_check_rings(bp, tx_rings_needed, rx_rings, rx, cp, 11864 stats, vnics); 11865 } 11866 11867 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev) 11868 { 11869 if (bp->bar2) { 11870 pci_iounmap(pdev, bp->bar2); 11871 bp->bar2 = NULL; 11872 } 11873 11874 if (bp->bar1) { 11875 pci_iounmap(pdev, bp->bar1); 11876 bp->bar1 = NULL; 11877 } 11878 11879 if (bp->bar0) { 11880 pci_iounmap(pdev, bp->bar0); 11881 bp->bar0 = NULL; 11882 } 11883 } 11884 11885 static void bnxt_cleanup_pci(struct bnxt *bp) 11886 { 11887 bnxt_unmap_bars(bp, bp->pdev); 11888 pci_release_regions(bp->pdev); 11889 if (pci_is_enabled(bp->pdev)) 11890 pci_disable_device(bp->pdev); 11891 } 11892 11893 static void bnxt_init_dflt_coal(struct bnxt *bp) 11894 { 11895 struct bnxt_coal *coal; 11896 11897 /* Tick values in micro seconds. 11898 * 1 coal_buf x bufs_per_record = 1 completion record. 11899 */ 11900 coal = &bp->rx_coal; 11901 coal->coal_ticks = 10; 11902 coal->coal_bufs = 30; 11903 coal->coal_ticks_irq = 1; 11904 coal->coal_bufs_irq = 2; 11905 coal->idle_thresh = 50; 11906 coal->bufs_per_record = 2; 11907 coal->budget = 64; /* NAPI budget */ 11908 11909 coal = &bp->tx_coal; 11910 coal->coal_ticks = 28; 11911 coal->coal_bufs = 30; 11912 coal->coal_ticks_irq = 2; 11913 coal->coal_bufs_irq = 2; 11914 coal->bufs_per_record = 1; 11915 11916 bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS; 11917 } 11918 11919 static int bnxt_fw_init_one_p1(struct bnxt *bp) 11920 { 11921 int rc; 11922 11923 bp->fw_cap = 0; 11924 rc = bnxt_hwrm_ver_get(bp); 11925 bnxt_try_map_fw_health_reg(bp); 11926 if (rc) { 11927 rc = bnxt_try_recover_fw(bp); 11928 if (rc) 11929 return rc; 11930 rc = bnxt_hwrm_ver_get(bp); 11931 if (rc) 11932 return rc; 11933 } 11934 11935 if (bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL) { 11936 rc = bnxt_alloc_kong_hwrm_resources(bp); 11937 if (rc) 11938 bp->fw_cap &= ~BNXT_FW_CAP_KONG_MB_CHNL; 11939 } 11940 11941 if ((bp->fw_cap & BNXT_FW_CAP_SHORT_CMD) || 11942 bp->hwrm_max_ext_req_len > BNXT_HWRM_MAX_REQ_LEN) { 11943 rc = bnxt_alloc_hwrm_short_cmd_req(bp); 11944 if (rc) 11945 return rc; 11946 } 11947 bnxt_nvm_cfg_ver_get(bp); 11948 11949 rc = bnxt_hwrm_func_reset(bp); 11950 if (rc) 11951 return -ENODEV; 11952 11953 bnxt_hwrm_fw_set_time(bp); 11954 return 0; 11955 } 11956 11957 static int bnxt_fw_init_one_p2(struct bnxt *bp) 11958 { 11959 int rc; 11960 11961 /* Get the MAX capabilities for this function */ 11962 rc = bnxt_hwrm_func_qcaps(bp); 11963 if (rc) { 11964 netdev_err(bp->dev, "hwrm query capability failure rc: %x\n", 11965 rc); 11966 return -ENODEV; 11967 } 11968 11969 rc = bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(bp); 11970 if (rc) 11971 netdev_warn(bp->dev, "hwrm query adv flow mgnt failure rc: %d\n", 11972 rc); 11973 11974 if (bnxt_alloc_fw_health(bp)) { 11975 netdev_warn(bp->dev, "no memory for firmware error recovery\n"); 11976 } else { 11977 rc = bnxt_hwrm_error_recovery_qcfg(bp); 11978 if (rc) 11979 netdev_warn(bp->dev, "hwrm query error recovery failure rc: %d\n", 11980 rc); 11981 } 11982 11983 rc = bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false); 11984 if (rc) 11985 return -ENODEV; 11986 11987 bnxt_hwrm_func_qcfg(bp); 11988 bnxt_hwrm_vnic_qcaps(bp); 11989 bnxt_hwrm_port_led_qcaps(bp); 11990 bnxt_ethtool_init(bp); 11991 bnxt_dcb_init(bp); 11992 return 0; 11993 } 11994 11995 static void bnxt_set_dflt_rss_hash_type(struct bnxt *bp) 11996 { 11997 bp->flags &= ~BNXT_FLAG_UDP_RSS_CAP; 11998 bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 | 11999 VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 | 12000 VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 | 12001 VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6; 12002 if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) { 12003 bp->flags |= BNXT_FLAG_UDP_RSS_CAP; 12004 bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 | 12005 VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6; 12006 } 12007 } 12008 12009 static void bnxt_set_dflt_rfs(struct bnxt *bp) 12010 { 12011 struct net_device *dev = bp->dev; 12012 12013 dev->hw_features &= ~NETIF_F_NTUPLE; 12014 dev->features &= ~NETIF_F_NTUPLE; 12015 bp->flags &= ~BNXT_FLAG_RFS; 12016 if (bnxt_rfs_supported(bp)) { 12017 dev->hw_features |= NETIF_F_NTUPLE; 12018 if (bnxt_rfs_capable(bp)) { 12019 bp->flags |= BNXT_FLAG_RFS; 12020 dev->features |= NETIF_F_NTUPLE; 12021 } 12022 } 12023 } 12024 12025 static void bnxt_fw_init_one_p3(struct bnxt *bp) 12026 { 12027 struct pci_dev *pdev = bp->pdev; 12028 12029 bnxt_set_dflt_rss_hash_type(bp); 12030 bnxt_set_dflt_rfs(bp); 12031 12032 bnxt_get_wol_settings(bp); 12033 if (bp->flags & BNXT_FLAG_WOL_CAP) 12034 device_set_wakeup_enable(&pdev->dev, bp->wol); 12035 else 12036 device_set_wakeup_capable(&pdev->dev, false); 12037 12038 bnxt_hwrm_set_cache_line_size(bp, cache_line_size()); 12039 bnxt_hwrm_coal_params_qcaps(bp); 12040 } 12041 12042 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt); 12043 12044 static int bnxt_fw_init_one(struct bnxt *bp) 12045 { 12046 int rc; 12047 12048 rc = bnxt_fw_init_one_p1(bp); 12049 if (rc) { 12050 netdev_err(bp->dev, "Firmware init phase 1 failed\n"); 12051 return rc; 12052 } 12053 rc = bnxt_fw_init_one_p2(bp); 12054 if (rc) { 12055 netdev_err(bp->dev, "Firmware init phase 2 failed\n"); 12056 return rc; 12057 } 12058 rc = bnxt_probe_phy(bp, false); 12059 if (rc) 12060 return rc; 12061 rc = bnxt_approve_mac(bp, bp->dev->dev_addr, false); 12062 if (rc) 12063 return rc; 12064 12065 /* In case fw capabilities have changed, destroy the unneeded 12066 * reporters and create newly capable ones. 12067 */ 12068 bnxt_dl_fw_reporters_destroy(bp, false); 12069 bnxt_dl_fw_reporters_create(bp); 12070 bnxt_fw_init_one_p3(bp); 12071 return 0; 12072 } 12073 12074 static void bnxt_fw_reset_writel(struct bnxt *bp, int reg_idx) 12075 { 12076 struct bnxt_fw_health *fw_health = bp->fw_health; 12077 u32 reg = fw_health->fw_reset_seq_regs[reg_idx]; 12078 u32 val = fw_health->fw_reset_seq_vals[reg_idx]; 12079 u32 reg_type, reg_off, delay_msecs; 12080 12081 delay_msecs = fw_health->fw_reset_seq_delay_msec[reg_idx]; 12082 reg_type = BNXT_FW_HEALTH_REG_TYPE(reg); 12083 reg_off = BNXT_FW_HEALTH_REG_OFF(reg); 12084 switch (reg_type) { 12085 case BNXT_FW_HEALTH_REG_TYPE_CFG: 12086 pci_write_config_dword(bp->pdev, reg_off, val); 12087 break; 12088 case BNXT_FW_HEALTH_REG_TYPE_GRC: 12089 writel(reg_off & BNXT_GRC_BASE_MASK, 12090 bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4); 12091 reg_off = (reg_off & BNXT_GRC_OFFSET_MASK) + 0x2000; 12092 fallthrough; 12093 case BNXT_FW_HEALTH_REG_TYPE_BAR0: 12094 writel(val, bp->bar0 + reg_off); 12095 break; 12096 case BNXT_FW_HEALTH_REG_TYPE_BAR1: 12097 writel(val, bp->bar1 + reg_off); 12098 break; 12099 } 12100 if (delay_msecs) { 12101 pci_read_config_dword(bp->pdev, 0, &val); 12102 msleep(delay_msecs); 12103 } 12104 } 12105 12106 static void bnxt_reset_all(struct bnxt *bp) 12107 { 12108 struct bnxt_fw_health *fw_health = bp->fw_health; 12109 int i, rc; 12110 12111 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 12112 bnxt_fw_reset_via_optee(bp); 12113 bp->fw_reset_timestamp = jiffies; 12114 return; 12115 } 12116 12117 if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_HOST) { 12118 for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) 12119 bnxt_fw_reset_writel(bp, i); 12120 } else if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) { 12121 struct hwrm_fw_reset_input req = {0}; 12122 12123 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FW_RESET, -1, -1); 12124 req.resp_addr = cpu_to_le64(bp->hwrm_cmd_kong_resp_dma_addr); 12125 req.embedded_proc_type = FW_RESET_REQ_EMBEDDED_PROC_TYPE_CHIP; 12126 req.selfrst_status = FW_RESET_REQ_SELFRST_STATUS_SELFRSTASAP; 12127 req.flags = FW_RESET_REQ_FLAGS_RESET_GRACEFUL; 12128 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 12129 if (rc != -ENODEV) 12130 netdev_warn(bp->dev, "Unable to reset FW rc=%d\n", rc); 12131 } 12132 bp->fw_reset_timestamp = jiffies; 12133 } 12134 12135 static bool bnxt_fw_reset_timeout(struct bnxt *bp) 12136 { 12137 return time_after(jiffies, bp->fw_reset_timestamp + 12138 (bp->fw_reset_max_dsecs * HZ / 10)); 12139 } 12140 12141 static void bnxt_fw_reset_abort(struct bnxt *bp, int rc) 12142 { 12143 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 12144 if (bp->fw_reset_state != BNXT_FW_RESET_STATE_POLL_VF) { 12145 bnxt_ulp_start(bp, rc); 12146 bnxt_dl_health_status_update(bp, false); 12147 } 12148 bp->fw_reset_state = 0; 12149 dev_close(bp->dev); 12150 } 12151 12152 static void bnxt_fw_reset_task(struct work_struct *work) 12153 { 12154 struct bnxt *bp = container_of(work, struct bnxt, fw_reset_task.work); 12155 int rc = 0; 12156 12157 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 12158 netdev_err(bp->dev, "bnxt_fw_reset_task() called when not in fw reset mode!\n"); 12159 return; 12160 } 12161 12162 switch (bp->fw_reset_state) { 12163 case BNXT_FW_RESET_STATE_POLL_VF: { 12164 int n = bnxt_get_registered_vfs(bp); 12165 int tmo; 12166 12167 if (n < 0) { 12168 netdev_err(bp->dev, "Firmware reset aborted, subsequent func_qcfg cmd failed, rc = %d, %d msecs since reset timestamp\n", 12169 n, jiffies_to_msecs(jiffies - 12170 bp->fw_reset_timestamp)); 12171 goto fw_reset_abort; 12172 } else if (n > 0) { 12173 if (bnxt_fw_reset_timeout(bp)) { 12174 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 12175 bp->fw_reset_state = 0; 12176 netdev_err(bp->dev, "Firmware reset aborted, bnxt_get_registered_vfs() returns %d\n", 12177 n); 12178 return; 12179 } 12180 bnxt_queue_fw_reset_work(bp, HZ / 10); 12181 return; 12182 } 12183 bp->fw_reset_timestamp = jiffies; 12184 rtnl_lock(); 12185 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 12186 bnxt_fw_reset_abort(bp, rc); 12187 rtnl_unlock(); 12188 return; 12189 } 12190 bnxt_fw_reset_close(bp); 12191 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 12192 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN; 12193 tmo = HZ / 10; 12194 } else { 12195 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 12196 tmo = bp->fw_reset_min_dsecs * HZ / 10; 12197 } 12198 rtnl_unlock(); 12199 bnxt_queue_fw_reset_work(bp, tmo); 12200 return; 12201 } 12202 case BNXT_FW_RESET_STATE_POLL_FW_DOWN: { 12203 u32 val; 12204 12205 val = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 12206 if (!(val & BNXT_FW_STATUS_SHUTDOWN) && 12207 !bnxt_fw_reset_timeout(bp)) { 12208 bnxt_queue_fw_reset_work(bp, HZ / 5); 12209 return; 12210 } 12211 12212 if (!bp->fw_health->master) { 12213 u32 wait_dsecs = bp->fw_health->normal_func_wait_dsecs; 12214 12215 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 12216 bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10); 12217 return; 12218 } 12219 bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW; 12220 } 12221 fallthrough; 12222 case BNXT_FW_RESET_STATE_RESET_FW: 12223 bnxt_reset_all(bp); 12224 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 12225 bnxt_queue_fw_reset_work(bp, bp->fw_reset_min_dsecs * HZ / 10); 12226 return; 12227 case BNXT_FW_RESET_STATE_ENABLE_DEV: 12228 bnxt_inv_fw_health_reg(bp); 12229 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) && 12230 !bp->fw_reset_min_dsecs) { 12231 u16 val; 12232 12233 pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val); 12234 if (val == 0xffff) { 12235 if (bnxt_fw_reset_timeout(bp)) { 12236 netdev_err(bp->dev, "Firmware reset aborted, PCI config space invalid\n"); 12237 rc = -ETIMEDOUT; 12238 goto fw_reset_abort; 12239 } 12240 bnxt_queue_fw_reset_work(bp, HZ / 1000); 12241 return; 12242 } 12243 } 12244 clear_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 12245 if (pci_enable_device(bp->pdev)) { 12246 netdev_err(bp->dev, "Cannot re-enable PCI device\n"); 12247 rc = -ENODEV; 12248 goto fw_reset_abort; 12249 } 12250 pci_set_master(bp->pdev); 12251 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW; 12252 fallthrough; 12253 case BNXT_FW_RESET_STATE_POLL_FW: 12254 bp->hwrm_cmd_timeout = SHORT_HWRM_CMD_TIMEOUT; 12255 rc = __bnxt_hwrm_ver_get(bp, true); 12256 if (rc) { 12257 if (bnxt_fw_reset_timeout(bp)) { 12258 netdev_err(bp->dev, "Firmware reset aborted\n"); 12259 goto fw_reset_abort_status; 12260 } 12261 bnxt_queue_fw_reset_work(bp, HZ / 5); 12262 return; 12263 } 12264 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT; 12265 bp->fw_reset_state = BNXT_FW_RESET_STATE_OPENING; 12266 fallthrough; 12267 case BNXT_FW_RESET_STATE_OPENING: 12268 while (!rtnl_trylock()) { 12269 bnxt_queue_fw_reset_work(bp, HZ / 10); 12270 return; 12271 } 12272 rc = bnxt_open(bp->dev); 12273 if (rc) { 12274 netdev_err(bp->dev, "bnxt_open() failed during FW reset\n"); 12275 bnxt_fw_reset_abort(bp, rc); 12276 rtnl_unlock(); 12277 return; 12278 } 12279 12280 bp->fw_reset_state = 0; 12281 /* Make sure fw_reset_state is 0 before clearing the flag */ 12282 smp_mb__before_atomic(); 12283 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 12284 bnxt_ulp_start(bp, 0); 12285 bnxt_reenable_sriov(bp); 12286 bnxt_vf_reps_alloc(bp); 12287 bnxt_vf_reps_open(bp); 12288 bnxt_ptp_reapply_pps(bp); 12289 bnxt_dl_health_recovery_done(bp); 12290 bnxt_dl_health_status_update(bp, true); 12291 rtnl_unlock(); 12292 break; 12293 } 12294 return; 12295 12296 fw_reset_abort_status: 12297 if (bp->fw_health->status_reliable || 12298 (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) { 12299 u32 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 12300 12301 netdev_err(bp->dev, "fw_health_status 0x%x\n", sts); 12302 } 12303 fw_reset_abort: 12304 rtnl_lock(); 12305 bnxt_fw_reset_abort(bp, rc); 12306 rtnl_unlock(); 12307 } 12308 12309 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev) 12310 { 12311 int rc; 12312 struct bnxt *bp = netdev_priv(dev); 12313 12314 SET_NETDEV_DEV(dev, &pdev->dev); 12315 12316 /* enable device (incl. PCI PM wakeup), and bus-mastering */ 12317 rc = pci_enable_device(pdev); 12318 if (rc) { 12319 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n"); 12320 goto init_err; 12321 } 12322 12323 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { 12324 dev_err(&pdev->dev, 12325 "Cannot find PCI device base address, aborting\n"); 12326 rc = -ENODEV; 12327 goto init_err_disable; 12328 } 12329 12330 rc = pci_request_regions(pdev, DRV_MODULE_NAME); 12331 if (rc) { 12332 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n"); 12333 goto init_err_disable; 12334 } 12335 12336 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 && 12337 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) { 12338 dev_err(&pdev->dev, "System does not support DMA, aborting\n"); 12339 rc = -EIO; 12340 goto init_err_release; 12341 } 12342 12343 pci_set_master(pdev); 12344 12345 bp->dev = dev; 12346 bp->pdev = pdev; 12347 12348 /* Doorbell BAR bp->bar1 is mapped after bnxt_fw_init_one_p2() 12349 * determines the BAR size. 12350 */ 12351 bp->bar0 = pci_ioremap_bar(pdev, 0); 12352 if (!bp->bar0) { 12353 dev_err(&pdev->dev, "Cannot map device registers, aborting\n"); 12354 rc = -ENOMEM; 12355 goto init_err_release; 12356 } 12357 12358 bp->bar2 = pci_ioremap_bar(pdev, 4); 12359 if (!bp->bar2) { 12360 dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n"); 12361 rc = -ENOMEM; 12362 goto init_err_release; 12363 } 12364 12365 pci_enable_pcie_error_reporting(pdev); 12366 12367 INIT_WORK(&bp->sp_task, bnxt_sp_task); 12368 INIT_DELAYED_WORK(&bp->fw_reset_task, bnxt_fw_reset_task); 12369 12370 spin_lock_init(&bp->ntp_fltr_lock); 12371 #if BITS_PER_LONG == 32 12372 spin_lock_init(&bp->db_lock); 12373 #endif 12374 12375 bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE; 12376 bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE; 12377 12378 bnxt_init_dflt_coal(bp); 12379 12380 timer_setup(&bp->timer, bnxt_timer, 0); 12381 bp->current_interval = BNXT_TIMER_INTERVAL; 12382 12383 bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID; 12384 bp->nge_fw_dst_port_id = INVALID_HW_RING_ID; 12385 12386 clear_bit(BNXT_STATE_OPEN, &bp->state); 12387 return 0; 12388 12389 init_err_release: 12390 bnxt_unmap_bars(bp, pdev); 12391 pci_release_regions(pdev); 12392 12393 init_err_disable: 12394 pci_disable_device(pdev); 12395 12396 init_err: 12397 return rc; 12398 } 12399 12400 /* rtnl_lock held */ 12401 static int bnxt_change_mac_addr(struct net_device *dev, void *p) 12402 { 12403 struct sockaddr *addr = p; 12404 struct bnxt *bp = netdev_priv(dev); 12405 int rc = 0; 12406 12407 if (!is_valid_ether_addr(addr->sa_data)) 12408 return -EADDRNOTAVAIL; 12409 12410 if (ether_addr_equal(addr->sa_data, dev->dev_addr)) 12411 return 0; 12412 12413 rc = bnxt_approve_mac(bp, addr->sa_data, true); 12414 if (rc) 12415 return rc; 12416 12417 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 12418 if (netif_running(dev)) { 12419 bnxt_close_nic(bp, false, false); 12420 rc = bnxt_open_nic(bp, false, false); 12421 } 12422 12423 return rc; 12424 } 12425 12426 /* rtnl_lock held */ 12427 static int bnxt_change_mtu(struct net_device *dev, int new_mtu) 12428 { 12429 struct bnxt *bp = netdev_priv(dev); 12430 12431 if (netif_running(dev)) 12432 bnxt_close_nic(bp, true, false); 12433 12434 dev->mtu = new_mtu; 12435 bnxt_set_ring_params(bp); 12436 12437 if (netif_running(dev)) 12438 return bnxt_open_nic(bp, true, false); 12439 12440 return 0; 12441 } 12442 12443 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc) 12444 { 12445 struct bnxt *bp = netdev_priv(dev); 12446 bool sh = false; 12447 int rc; 12448 12449 if (tc > bp->max_tc) { 12450 netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n", 12451 tc, bp->max_tc); 12452 return -EINVAL; 12453 } 12454 12455 if (netdev_get_num_tc(dev) == tc) 12456 return 0; 12457 12458 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 12459 sh = true; 12460 12461 rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings, 12462 sh, tc, bp->tx_nr_rings_xdp); 12463 if (rc) 12464 return rc; 12465 12466 /* Needs to close the device and do hw resource re-allocations */ 12467 if (netif_running(bp->dev)) 12468 bnxt_close_nic(bp, true, false); 12469 12470 if (tc) { 12471 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc; 12472 netdev_set_num_tc(dev, tc); 12473 } else { 12474 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 12475 netdev_reset_tc(dev); 12476 } 12477 bp->tx_nr_rings += bp->tx_nr_rings_xdp; 12478 bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) : 12479 bp->tx_nr_rings + bp->rx_nr_rings; 12480 12481 if (netif_running(bp->dev)) 12482 return bnxt_open_nic(bp, true, false); 12483 12484 return 0; 12485 } 12486 12487 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 12488 void *cb_priv) 12489 { 12490 struct bnxt *bp = cb_priv; 12491 12492 if (!bnxt_tc_flower_enabled(bp) || 12493 !tc_cls_can_offload_and_chain0(bp->dev, type_data)) 12494 return -EOPNOTSUPP; 12495 12496 switch (type) { 12497 case TC_SETUP_CLSFLOWER: 12498 return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data); 12499 default: 12500 return -EOPNOTSUPP; 12501 } 12502 } 12503 12504 LIST_HEAD(bnxt_block_cb_list); 12505 12506 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type, 12507 void *type_data) 12508 { 12509 struct bnxt *bp = netdev_priv(dev); 12510 12511 switch (type) { 12512 case TC_SETUP_BLOCK: 12513 return flow_block_cb_setup_simple(type_data, 12514 &bnxt_block_cb_list, 12515 bnxt_setup_tc_block_cb, 12516 bp, bp, true); 12517 case TC_SETUP_QDISC_MQPRIO: { 12518 struct tc_mqprio_qopt *mqprio = type_data; 12519 12520 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 12521 12522 return bnxt_setup_mq_tc(dev, mqprio->num_tc); 12523 } 12524 default: 12525 return -EOPNOTSUPP; 12526 } 12527 } 12528 12529 #ifdef CONFIG_RFS_ACCEL 12530 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1, 12531 struct bnxt_ntuple_filter *f2) 12532 { 12533 struct flow_keys *keys1 = &f1->fkeys; 12534 struct flow_keys *keys2 = &f2->fkeys; 12535 12536 if (keys1->basic.n_proto != keys2->basic.n_proto || 12537 keys1->basic.ip_proto != keys2->basic.ip_proto) 12538 return false; 12539 12540 if (keys1->basic.n_proto == htons(ETH_P_IP)) { 12541 if (keys1->addrs.v4addrs.src != keys2->addrs.v4addrs.src || 12542 keys1->addrs.v4addrs.dst != keys2->addrs.v4addrs.dst) 12543 return false; 12544 } else { 12545 if (memcmp(&keys1->addrs.v6addrs.src, &keys2->addrs.v6addrs.src, 12546 sizeof(keys1->addrs.v6addrs.src)) || 12547 memcmp(&keys1->addrs.v6addrs.dst, &keys2->addrs.v6addrs.dst, 12548 sizeof(keys1->addrs.v6addrs.dst))) 12549 return false; 12550 } 12551 12552 if (keys1->ports.ports == keys2->ports.ports && 12553 keys1->control.flags == keys2->control.flags && 12554 ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) && 12555 ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr)) 12556 return true; 12557 12558 return false; 12559 } 12560 12561 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb, 12562 u16 rxq_index, u32 flow_id) 12563 { 12564 struct bnxt *bp = netdev_priv(dev); 12565 struct bnxt_ntuple_filter *fltr, *new_fltr; 12566 struct flow_keys *fkeys; 12567 struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb); 12568 int rc = 0, idx, bit_id, l2_idx = 0; 12569 struct hlist_head *head; 12570 u32 flags; 12571 12572 if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) { 12573 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 12574 int off = 0, j; 12575 12576 netif_addr_lock_bh(dev); 12577 for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) { 12578 if (ether_addr_equal(eth->h_dest, 12579 vnic->uc_list + off)) { 12580 l2_idx = j + 1; 12581 break; 12582 } 12583 } 12584 netif_addr_unlock_bh(dev); 12585 if (!l2_idx) 12586 return -EINVAL; 12587 } 12588 new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC); 12589 if (!new_fltr) 12590 return -ENOMEM; 12591 12592 fkeys = &new_fltr->fkeys; 12593 if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) { 12594 rc = -EPROTONOSUPPORT; 12595 goto err_free; 12596 } 12597 12598 if ((fkeys->basic.n_proto != htons(ETH_P_IP) && 12599 fkeys->basic.n_proto != htons(ETH_P_IPV6)) || 12600 ((fkeys->basic.ip_proto != IPPROTO_TCP) && 12601 (fkeys->basic.ip_proto != IPPROTO_UDP))) { 12602 rc = -EPROTONOSUPPORT; 12603 goto err_free; 12604 } 12605 if (fkeys->basic.n_proto == htons(ETH_P_IPV6) && 12606 bp->hwrm_spec_code < 0x10601) { 12607 rc = -EPROTONOSUPPORT; 12608 goto err_free; 12609 } 12610 flags = fkeys->control.flags; 12611 if (((flags & FLOW_DIS_ENCAPSULATION) && 12612 bp->hwrm_spec_code < 0x10601) || (flags & FLOW_DIS_IS_FRAGMENT)) { 12613 rc = -EPROTONOSUPPORT; 12614 goto err_free; 12615 } 12616 12617 memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN); 12618 memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN); 12619 12620 idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK; 12621 head = &bp->ntp_fltr_hash_tbl[idx]; 12622 rcu_read_lock(); 12623 hlist_for_each_entry_rcu(fltr, head, hash) { 12624 if (bnxt_fltr_match(fltr, new_fltr)) { 12625 rcu_read_unlock(); 12626 rc = 0; 12627 goto err_free; 12628 } 12629 } 12630 rcu_read_unlock(); 12631 12632 spin_lock_bh(&bp->ntp_fltr_lock); 12633 bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap, 12634 BNXT_NTP_FLTR_MAX_FLTR, 0); 12635 if (bit_id < 0) { 12636 spin_unlock_bh(&bp->ntp_fltr_lock); 12637 rc = -ENOMEM; 12638 goto err_free; 12639 } 12640 12641 new_fltr->sw_id = (u16)bit_id; 12642 new_fltr->flow_id = flow_id; 12643 new_fltr->l2_fltr_idx = l2_idx; 12644 new_fltr->rxq = rxq_index; 12645 hlist_add_head_rcu(&new_fltr->hash, head); 12646 bp->ntp_fltr_count++; 12647 spin_unlock_bh(&bp->ntp_fltr_lock); 12648 12649 set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event); 12650 bnxt_queue_sp_work(bp); 12651 12652 return new_fltr->sw_id; 12653 12654 err_free: 12655 kfree(new_fltr); 12656 return rc; 12657 } 12658 12659 static void bnxt_cfg_ntp_filters(struct bnxt *bp) 12660 { 12661 int i; 12662 12663 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) { 12664 struct hlist_head *head; 12665 struct hlist_node *tmp; 12666 struct bnxt_ntuple_filter *fltr; 12667 int rc; 12668 12669 head = &bp->ntp_fltr_hash_tbl[i]; 12670 hlist_for_each_entry_safe(fltr, tmp, head, hash) { 12671 bool del = false; 12672 12673 if (test_bit(BNXT_FLTR_VALID, &fltr->state)) { 12674 if (rps_may_expire_flow(bp->dev, fltr->rxq, 12675 fltr->flow_id, 12676 fltr->sw_id)) { 12677 bnxt_hwrm_cfa_ntuple_filter_free(bp, 12678 fltr); 12679 del = true; 12680 } 12681 } else { 12682 rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp, 12683 fltr); 12684 if (rc) 12685 del = true; 12686 else 12687 set_bit(BNXT_FLTR_VALID, &fltr->state); 12688 } 12689 12690 if (del) { 12691 spin_lock_bh(&bp->ntp_fltr_lock); 12692 hlist_del_rcu(&fltr->hash); 12693 bp->ntp_fltr_count--; 12694 spin_unlock_bh(&bp->ntp_fltr_lock); 12695 synchronize_rcu(); 12696 clear_bit(fltr->sw_id, bp->ntp_fltr_bmap); 12697 kfree(fltr); 12698 } 12699 } 12700 } 12701 if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event)) 12702 netdev_info(bp->dev, "Receive PF driver unload event!\n"); 12703 } 12704 12705 #else 12706 12707 static void bnxt_cfg_ntp_filters(struct bnxt *bp) 12708 { 12709 } 12710 12711 #endif /* CONFIG_RFS_ACCEL */ 12712 12713 static int bnxt_udp_tunnel_sync(struct net_device *netdev, unsigned int table) 12714 { 12715 struct bnxt *bp = netdev_priv(netdev); 12716 struct udp_tunnel_info ti; 12717 unsigned int cmd; 12718 12719 udp_tunnel_nic_get_port(netdev, table, 0, &ti); 12720 if (ti.type == UDP_TUNNEL_TYPE_VXLAN) { 12721 bp->vxlan_port = ti.port; 12722 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN; 12723 } else { 12724 bp->nge_port = ti.port; 12725 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE; 12726 } 12727 12728 if (ti.port) 12729 return bnxt_hwrm_tunnel_dst_port_alloc(bp, ti.port, cmd); 12730 12731 return bnxt_hwrm_tunnel_dst_port_free(bp, cmd); 12732 } 12733 12734 static const struct udp_tunnel_nic_info bnxt_udp_tunnels = { 12735 .sync_table = bnxt_udp_tunnel_sync, 12736 .flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP | 12737 UDP_TUNNEL_NIC_INFO_OPEN_ONLY, 12738 .tables = { 12739 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN, }, 12740 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, }, 12741 }, 12742 }; 12743 12744 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 12745 struct net_device *dev, u32 filter_mask, 12746 int nlflags) 12747 { 12748 struct bnxt *bp = netdev_priv(dev); 12749 12750 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0, 12751 nlflags, filter_mask, NULL); 12752 } 12753 12754 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 12755 u16 flags, struct netlink_ext_ack *extack) 12756 { 12757 struct bnxt *bp = netdev_priv(dev); 12758 struct nlattr *attr, *br_spec; 12759 int rem, rc = 0; 12760 12761 if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp)) 12762 return -EOPNOTSUPP; 12763 12764 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 12765 if (!br_spec) 12766 return -EINVAL; 12767 12768 nla_for_each_nested(attr, br_spec, rem) { 12769 u16 mode; 12770 12771 if (nla_type(attr) != IFLA_BRIDGE_MODE) 12772 continue; 12773 12774 if (nla_len(attr) < sizeof(mode)) 12775 return -EINVAL; 12776 12777 mode = nla_get_u16(attr); 12778 if (mode == bp->br_mode) 12779 break; 12780 12781 rc = bnxt_hwrm_set_br_mode(bp, mode); 12782 if (!rc) 12783 bp->br_mode = mode; 12784 break; 12785 } 12786 return rc; 12787 } 12788 12789 int bnxt_get_port_parent_id(struct net_device *dev, 12790 struct netdev_phys_item_id *ppid) 12791 { 12792 struct bnxt *bp = netdev_priv(dev); 12793 12794 if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV) 12795 return -EOPNOTSUPP; 12796 12797 /* The PF and it's VF-reps only support the switchdev framework */ 12798 if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_DSN_VALID)) 12799 return -EOPNOTSUPP; 12800 12801 ppid->id_len = sizeof(bp->dsn); 12802 memcpy(ppid->id, bp->dsn, ppid->id_len); 12803 12804 return 0; 12805 } 12806 12807 static struct devlink_port *bnxt_get_devlink_port(struct net_device *dev) 12808 { 12809 struct bnxt *bp = netdev_priv(dev); 12810 12811 return &bp->dl_port; 12812 } 12813 12814 static const struct net_device_ops bnxt_netdev_ops = { 12815 .ndo_open = bnxt_open, 12816 .ndo_start_xmit = bnxt_start_xmit, 12817 .ndo_stop = bnxt_close, 12818 .ndo_get_stats64 = bnxt_get_stats64, 12819 .ndo_set_rx_mode = bnxt_set_rx_mode, 12820 .ndo_eth_ioctl = bnxt_ioctl, 12821 .ndo_validate_addr = eth_validate_addr, 12822 .ndo_set_mac_address = bnxt_change_mac_addr, 12823 .ndo_change_mtu = bnxt_change_mtu, 12824 .ndo_fix_features = bnxt_fix_features, 12825 .ndo_set_features = bnxt_set_features, 12826 .ndo_features_check = bnxt_features_check, 12827 .ndo_tx_timeout = bnxt_tx_timeout, 12828 #ifdef CONFIG_BNXT_SRIOV 12829 .ndo_get_vf_config = bnxt_get_vf_config, 12830 .ndo_set_vf_mac = bnxt_set_vf_mac, 12831 .ndo_set_vf_vlan = bnxt_set_vf_vlan, 12832 .ndo_set_vf_rate = bnxt_set_vf_bw, 12833 .ndo_set_vf_link_state = bnxt_set_vf_link_state, 12834 .ndo_set_vf_spoofchk = bnxt_set_vf_spoofchk, 12835 .ndo_set_vf_trust = bnxt_set_vf_trust, 12836 #endif 12837 .ndo_setup_tc = bnxt_setup_tc, 12838 #ifdef CONFIG_RFS_ACCEL 12839 .ndo_rx_flow_steer = bnxt_rx_flow_steer, 12840 #endif 12841 .ndo_bpf = bnxt_xdp, 12842 .ndo_xdp_xmit = bnxt_xdp_xmit, 12843 .ndo_bridge_getlink = bnxt_bridge_getlink, 12844 .ndo_bridge_setlink = bnxt_bridge_setlink, 12845 .ndo_get_devlink_port = bnxt_get_devlink_port, 12846 }; 12847 12848 static void bnxt_remove_one(struct pci_dev *pdev) 12849 { 12850 struct net_device *dev = pci_get_drvdata(pdev); 12851 struct bnxt *bp = netdev_priv(dev); 12852 12853 if (BNXT_PF(bp)) 12854 bnxt_sriov_disable(bp); 12855 12856 if (BNXT_PF(bp)) 12857 devlink_port_type_clear(&bp->dl_port); 12858 12859 bnxt_ptp_clear(bp); 12860 pci_disable_pcie_error_reporting(pdev); 12861 unregister_netdev(dev); 12862 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 12863 /* Flush any pending tasks */ 12864 cancel_work_sync(&bp->sp_task); 12865 cancel_delayed_work_sync(&bp->fw_reset_task); 12866 bp->sp_event = 0; 12867 12868 bnxt_dl_fw_reporters_destroy(bp, true); 12869 bnxt_dl_unregister(bp); 12870 bnxt_shutdown_tc(bp); 12871 12872 bnxt_clear_int_mode(bp); 12873 bnxt_hwrm_func_drv_unrgtr(bp); 12874 bnxt_free_hwrm_resources(bp); 12875 bnxt_free_hwrm_short_cmd_req(bp); 12876 bnxt_ethtool_free(bp); 12877 bnxt_dcb_free(bp); 12878 kfree(bp->edev); 12879 bp->edev = NULL; 12880 kfree(bp->ptp_cfg); 12881 bp->ptp_cfg = NULL; 12882 kfree(bp->fw_health); 12883 bp->fw_health = NULL; 12884 bnxt_cleanup_pci(bp); 12885 bnxt_free_ctx_mem(bp); 12886 kfree(bp->ctx); 12887 bp->ctx = NULL; 12888 kfree(bp->rss_indir_tbl); 12889 bp->rss_indir_tbl = NULL; 12890 bnxt_free_port_stats(bp); 12891 free_netdev(dev); 12892 } 12893 12894 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt) 12895 { 12896 int rc = 0; 12897 struct bnxt_link_info *link_info = &bp->link_info; 12898 12899 bp->phy_flags = 0; 12900 rc = bnxt_hwrm_phy_qcaps(bp); 12901 if (rc) { 12902 netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n", 12903 rc); 12904 return rc; 12905 } 12906 if (bp->phy_flags & BNXT_PHY_FL_NO_FCS) 12907 bp->dev->priv_flags |= IFF_SUPP_NOFCS; 12908 else 12909 bp->dev->priv_flags &= ~IFF_SUPP_NOFCS; 12910 if (!fw_dflt) 12911 return 0; 12912 12913 rc = bnxt_update_link(bp, false); 12914 if (rc) { 12915 netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n", 12916 rc); 12917 return rc; 12918 } 12919 12920 /* Older firmware does not have supported_auto_speeds, so assume 12921 * that all supported speeds can be autonegotiated. 12922 */ 12923 if (link_info->auto_link_speeds && !link_info->support_auto_speeds) 12924 link_info->support_auto_speeds = link_info->support_speeds; 12925 12926 bnxt_init_ethtool_link_settings(bp); 12927 return 0; 12928 } 12929 12930 static int bnxt_get_max_irq(struct pci_dev *pdev) 12931 { 12932 u16 ctrl; 12933 12934 if (!pdev->msix_cap) 12935 return 1; 12936 12937 pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl); 12938 return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1; 12939 } 12940 12941 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, 12942 int *max_cp) 12943 { 12944 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 12945 int max_ring_grps = 0, max_irq; 12946 12947 *max_tx = hw_resc->max_tx_rings; 12948 *max_rx = hw_resc->max_rx_rings; 12949 *max_cp = bnxt_get_max_func_cp_rings_for_en(bp); 12950 max_irq = min_t(int, bnxt_get_max_func_irqs(bp) - 12951 bnxt_get_ulp_msix_num(bp), 12952 hw_resc->max_stat_ctxs - bnxt_get_ulp_stat_ctxs(bp)); 12953 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 12954 *max_cp = min_t(int, *max_cp, max_irq); 12955 max_ring_grps = hw_resc->max_hw_ring_grps; 12956 if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) { 12957 *max_cp -= 1; 12958 *max_rx -= 2; 12959 } 12960 if (bp->flags & BNXT_FLAG_AGG_RINGS) 12961 *max_rx >>= 1; 12962 if (bp->flags & BNXT_FLAG_CHIP_P5) { 12963 bnxt_trim_rings(bp, max_rx, max_tx, *max_cp, false); 12964 /* On P5 chips, max_cp output param should be available NQs */ 12965 *max_cp = max_irq; 12966 } 12967 *max_rx = min_t(int, *max_rx, max_ring_grps); 12968 } 12969 12970 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared) 12971 { 12972 int rx, tx, cp; 12973 12974 _bnxt_get_max_rings(bp, &rx, &tx, &cp); 12975 *max_rx = rx; 12976 *max_tx = tx; 12977 if (!rx || !tx || !cp) 12978 return -ENOMEM; 12979 12980 return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared); 12981 } 12982 12983 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx, 12984 bool shared) 12985 { 12986 int rc; 12987 12988 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared); 12989 if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) { 12990 /* Not enough rings, try disabling agg rings. */ 12991 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 12992 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared); 12993 if (rc) { 12994 /* set BNXT_FLAG_AGG_RINGS back for consistency */ 12995 bp->flags |= BNXT_FLAG_AGG_RINGS; 12996 return rc; 12997 } 12998 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 12999 bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 13000 bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 13001 bnxt_set_ring_params(bp); 13002 } 13003 13004 if (bp->flags & BNXT_FLAG_ROCE_CAP) { 13005 int max_cp, max_stat, max_irq; 13006 13007 /* Reserve minimum resources for RoCE */ 13008 max_cp = bnxt_get_max_func_cp_rings(bp); 13009 max_stat = bnxt_get_max_func_stat_ctxs(bp); 13010 max_irq = bnxt_get_max_func_irqs(bp); 13011 if (max_cp <= BNXT_MIN_ROCE_CP_RINGS || 13012 max_irq <= BNXT_MIN_ROCE_CP_RINGS || 13013 max_stat <= BNXT_MIN_ROCE_STAT_CTXS) 13014 return 0; 13015 13016 max_cp -= BNXT_MIN_ROCE_CP_RINGS; 13017 max_irq -= BNXT_MIN_ROCE_CP_RINGS; 13018 max_stat -= BNXT_MIN_ROCE_STAT_CTXS; 13019 max_cp = min_t(int, max_cp, max_irq); 13020 max_cp = min_t(int, max_cp, max_stat); 13021 rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared); 13022 if (rc) 13023 rc = 0; 13024 } 13025 return rc; 13026 } 13027 13028 /* In initial default shared ring setting, each shared ring must have a 13029 * RX/TX ring pair. 13030 */ 13031 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp) 13032 { 13033 bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings); 13034 bp->rx_nr_rings = bp->cp_nr_rings; 13035 bp->tx_nr_rings_per_tc = bp->cp_nr_rings; 13036 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 13037 } 13038 13039 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh) 13040 { 13041 int dflt_rings, max_rx_rings, max_tx_rings, rc; 13042 13043 if (!bnxt_can_reserve_rings(bp)) 13044 return 0; 13045 13046 if (sh) 13047 bp->flags |= BNXT_FLAG_SHARED_RINGS; 13048 dflt_rings = is_kdump_kernel() ? 1 : netif_get_num_default_rss_queues(); 13049 /* Reduce default rings on multi-port cards so that total default 13050 * rings do not exceed CPU count. 13051 */ 13052 if (bp->port_count > 1) { 13053 int max_rings = 13054 max_t(int, num_online_cpus() / bp->port_count, 1); 13055 13056 dflt_rings = min_t(int, dflt_rings, max_rings); 13057 } 13058 rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh); 13059 if (rc) 13060 return rc; 13061 bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings); 13062 bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings); 13063 if (sh) 13064 bnxt_trim_dflt_sh_rings(bp); 13065 else 13066 bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings; 13067 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 13068 13069 rc = __bnxt_reserve_rings(bp); 13070 if (rc) 13071 netdev_warn(bp->dev, "Unable to reserve tx rings\n"); 13072 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 13073 if (sh) 13074 bnxt_trim_dflt_sh_rings(bp); 13075 13076 /* Rings may have been trimmed, re-reserve the trimmed rings. */ 13077 if (bnxt_need_reserve_rings(bp)) { 13078 rc = __bnxt_reserve_rings(bp); 13079 if (rc) 13080 netdev_warn(bp->dev, "2nd rings reservation failed.\n"); 13081 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 13082 } 13083 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 13084 bp->rx_nr_rings++; 13085 bp->cp_nr_rings++; 13086 } 13087 if (rc) { 13088 bp->tx_nr_rings = 0; 13089 bp->rx_nr_rings = 0; 13090 } 13091 return rc; 13092 } 13093 13094 static int bnxt_init_dflt_ring_mode(struct bnxt *bp) 13095 { 13096 int rc; 13097 13098 if (bp->tx_nr_rings) 13099 return 0; 13100 13101 bnxt_ulp_irq_stop(bp); 13102 bnxt_clear_int_mode(bp); 13103 rc = bnxt_set_dflt_rings(bp, true); 13104 if (rc) { 13105 netdev_err(bp->dev, "Not enough rings available.\n"); 13106 goto init_dflt_ring_err; 13107 } 13108 rc = bnxt_init_int_mode(bp); 13109 if (rc) 13110 goto init_dflt_ring_err; 13111 13112 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 13113 if (bnxt_rfs_supported(bp) && bnxt_rfs_capable(bp)) { 13114 bp->flags |= BNXT_FLAG_RFS; 13115 bp->dev->features |= NETIF_F_NTUPLE; 13116 } 13117 init_dflt_ring_err: 13118 bnxt_ulp_irq_restart(bp, rc); 13119 return rc; 13120 } 13121 13122 int bnxt_restore_pf_fw_resources(struct bnxt *bp) 13123 { 13124 int rc; 13125 13126 ASSERT_RTNL(); 13127 bnxt_hwrm_func_qcaps(bp); 13128 13129 if (netif_running(bp->dev)) 13130 __bnxt_close_nic(bp, true, false); 13131 13132 bnxt_ulp_irq_stop(bp); 13133 bnxt_clear_int_mode(bp); 13134 rc = bnxt_init_int_mode(bp); 13135 bnxt_ulp_irq_restart(bp, rc); 13136 13137 if (netif_running(bp->dev)) { 13138 if (rc) 13139 dev_close(bp->dev); 13140 else 13141 rc = bnxt_open_nic(bp, true, false); 13142 } 13143 13144 return rc; 13145 } 13146 13147 static int bnxt_init_mac_addr(struct bnxt *bp) 13148 { 13149 int rc = 0; 13150 13151 if (BNXT_PF(bp)) { 13152 memcpy(bp->dev->dev_addr, bp->pf.mac_addr, ETH_ALEN); 13153 } else { 13154 #ifdef CONFIG_BNXT_SRIOV 13155 struct bnxt_vf_info *vf = &bp->vf; 13156 bool strict_approval = true; 13157 13158 if (is_valid_ether_addr(vf->mac_addr)) { 13159 /* overwrite netdev dev_addr with admin VF MAC */ 13160 memcpy(bp->dev->dev_addr, vf->mac_addr, ETH_ALEN); 13161 /* Older PF driver or firmware may not approve this 13162 * correctly. 13163 */ 13164 strict_approval = false; 13165 } else { 13166 eth_hw_addr_random(bp->dev); 13167 } 13168 rc = bnxt_approve_mac(bp, bp->dev->dev_addr, strict_approval); 13169 #endif 13170 } 13171 return rc; 13172 } 13173 13174 #define BNXT_VPD_LEN 512 13175 static void bnxt_vpd_read_info(struct bnxt *bp) 13176 { 13177 struct pci_dev *pdev = bp->pdev; 13178 int i, len, pos, ro_size, size; 13179 ssize_t vpd_size; 13180 u8 *vpd_data; 13181 13182 vpd_data = kmalloc(BNXT_VPD_LEN, GFP_KERNEL); 13183 if (!vpd_data) 13184 return; 13185 13186 vpd_size = pci_read_vpd(pdev, 0, BNXT_VPD_LEN, vpd_data); 13187 if (vpd_size <= 0) { 13188 netdev_err(bp->dev, "Unable to read VPD\n"); 13189 goto exit; 13190 } 13191 13192 i = pci_vpd_find_tag(vpd_data, vpd_size, PCI_VPD_LRDT_RO_DATA); 13193 if (i < 0) { 13194 netdev_err(bp->dev, "VPD READ-Only not found\n"); 13195 goto exit; 13196 } 13197 13198 i = pci_vpd_find_tag(vpd_data, vpd_size, PCI_VPD_LRDT_RO_DATA); 13199 if (i < 0) { 13200 netdev_err(bp->dev, "VPD READ-Only not found\n"); 13201 goto exit; 13202 } 13203 13204 ro_size = pci_vpd_lrdt_size(&vpd_data[i]); 13205 i += PCI_VPD_LRDT_TAG_SIZE; 13206 if (i + ro_size > vpd_size) 13207 goto exit; 13208 13209 pos = pci_vpd_find_info_keyword(vpd_data, i, ro_size, 13210 PCI_VPD_RO_KEYWORD_PARTNO); 13211 if (pos < 0) 13212 goto read_sn; 13213 13214 len = pci_vpd_info_field_size(&vpd_data[pos]); 13215 pos += PCI_VPD_INFO_FLD_HDR_SIZE; 13216 if (len + pos > vpd_size) 13217 goto read_sn; 13218 13219 size = min(len, BNXT_VPD_FLD_LEN - 1); 13220 memcpy(bp->board_partno, &vpd_data[pos], size); 13221 13222 read_sn: 13223 pos = pci_vpd_find_info_keyword(vpd_data, i, ro_size, 13224 PCI_VPD_RO_KEYWORD_SERIALNO); 13225 if (pos < 0) 13226 goto exit; 13227 13228 len = pci_vpd_info_field_size(&vpd_data[pos]); 13229 pos += PCI_VPD_INFO_FLD_HDR_SIZE; 13230 if (len + pos > vpd_size) 13231 goto exit; 13232 13233 size = min(len, BNXT_VPD_FLD_LEN - 1); 13234 memcpy(bp->board_serialno, &vpd_data[pos], size); 13235 exit: 13236 kfree(vpd_data); 13237 } 13238 13239 static int bnxt_pcie_dsn_get(struct bnxt *bp, u8 dsn[]) 13240 { 13241 struct pci_dev *pdev = bp->pdev; 13242 u64 qword; 13243 13244 qword = pci_get_dsn(pdev); 13245 if (!qword) { 13246 netdev_info(bp->dev, "Unable to read adapter's DSN\n"); 13247 return -EOPNOTSUPP; 13248 } 13249 13250 put_unaligned_le64(qword, dsn); 13251 13252 bp->flags |= BNXT_FLAG_DSN_VALID; 13253 return 0; 13254 } 13255 13256 static int bnxt_map_db_bar(struct bnxt *bp) 13257 { 13258 if (!bp->db_size) 13259 return -ENODEV; 13260 bp->bar1 = pci_iomap(bp->pdev, 2, bp->db_size); 13261 if (!bp->bar1) 13262 return -ENOMEM; 13263 return 0; 13264 } 13265 13266 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 13267 { 13268 struct net_device *dev; 13269 struct bnxt *bp; 13270 int rc, max_irqs; 13271 13272 if (pci_is_bridge(pdev)) 13273 return -ENODEV; 13274 13275 /* Clear any pending DMA transactions from crash kernel 13276 * while loading driver in capture kernel. 13277 */ 13278 if (is_kdump_kernel()) { 13279 pci_clear_master(pdev); 13280 pcie_flr(pdev); 13281 } 13282 13283 max_irqs = bnxt_get_max_irq(pdev); 13284 dev = alloc_etherdev_mq(sizeof(*bp), max_irqs); 13285 if (!dev) 13286 return -ENOMEM; 13287 13288 bp = netdev_priv(dev); 13289 bp->msg_enable = BNXT_DEF_MSG_ENABLE; 13290 bnxt_set_max_func_irqs(bp, max_irqs); 13291 13292 if (bnxt_vf_pciid(ent->driver_data)) 13293 bp->flags |= BNXT_FLAG_VF; 13294 13295 if (pdev->msix_cap) 13296 bp->flags |= BNXT_FLAG_MSIX_CAP; 13297 13298 rc = bnxt_init_board(pdev, dev); 13299 if (rc < 0) 13300 goto init_err_free; 13301 13302 dev->netdev_ops = &bnxt_netdev_ops; 13303 dev->watchdog_timeo = BNXT_TX_TIMEOUT; 13304 dev->ethtool_ops = &bnxt_ethtool_ops; 13305 pci_set_drvdata(pdev, dev); 13306 13307 rc = bnxt_alloc_hwrm_resources(bp); 13308 if (rc) 13309 goto init_err_pci_clean; 13310 13311 mutex_init(&bp->hwrm_cmd_lock); 13312 mutex_init(&bp->link_lock); 13313 13314 rc = bnxt_fw_init_one_p1(bp); 13315 if (rc) 13316 goto init_err_pci_clean; 13317 13318 if (BNXT_PF(bp)) 13319 bnxt_vpd_read_info(bp); 13320 13321 if (BNXT_CHIP_P5(bp)) { 13322 bp->flags |= BNXT_FLAG_CHIP_P5; 13323 if (BNXT_CHIP_SR2(bp)) 13324 bp->flags |= BNXT_FLAG_CHIP_SR2; 13325 } 13326 13327 rc = bnxt_alloc_rss_indir_tbl(bp); 13328 if (rc) 13329 goto init_err_pci_clean; 13330 13331 rc = bnxt_fw_init_one_p2(bp); 13332 if (rc) 13333 goto init_err_pci_clean; 13334 13335 rc = bnxt_map_db_bar(bp); 13336 if (rc) { 13337 dev_err(&pdev->dev, "Cannot map doorbell BAR rc = %d, aborting\n", 13338 rc); 13339 goto init_err_pci_clean; 13340 } 13341 13342 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 13343 NETIF_F_TSO | NETIF_F_TSO6 | 13344 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | 13345 NETIF_F_GSO_IPXIP4 | 13346 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM | 13347 NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH | 13348 NETIF_F_RXCSUM | NETIF_F_GRO; 13349 13350 if (BNXT_SUPPORTS_TPA(bp)) 13351 dev->hw_features |= NETIF_F_LRO; 13352 13353 dev->hw_enc_features = 13354 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 13355 NETIF_F_TSO | NETIF_F_TSO6 | 13356 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | 13357 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM | 13358 NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL; 13359 dev->udp_tunnel_nic_info = &bnxt_udp_tunnels; 13360 13361 dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM | 13362 NETIF_F_GSO_GRE_CSUM; 13363 dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA; 13364 if (bp->fw_cap & BNXT_FW_CAP_VLAN_RX_STRIP) 13365 dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_RX; 13366 if (bp->fw_cap & BNXT_FW_CAP_VLAN_TX_INSERT) 13367 dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_TX; 13368 if (BNXT_SUPPORTS_TPA(bp)) 13369 dev->hw_features |= NETIF_F_GRO_HW; 13370 dev->features |= dev->hw_features | NETIF_F_HIGHDMA; 13371 if (dev->features & NETIF_F_GRO_HW) 13372 dev->features &= ~NETIF_F_LRO; 13373 dev->priv_flags |= IFF_UNICAST_FLT; 13374 13375 #ifdef CONFIG_BNXT_SRIOV 13376 init_waitqueue_head(&bp->sriov_cfg_wait); 13377 mutex_init(&bp->sriov_lock); 13378 #endif 13379 if (BNXT_SUPPORTS_TPA(bp)) { 13380 bp->gro_func = bnxt_gro_func_5730x; 13381 if (BNXT_CHIP_P4(bp)) 13382 bp->gro_func = bnxt_gro_func_5731x; 13383 else if (BNXT_CHIP_P5(bp)) 13384 bp->gro_func = bnxt_gro_func_5750x; 13385 } 13386 if (!BNXT_CHIP_P4_PLUS(bp)) 13387 bp->flags |= BNXT_FLAG_DOUBLE_DB; 13388 13389 rc = bnxt_init_mac_addr(bp); 13390 if (rc) { 13391 dev_err(&pdev->dev, "Unable to initialize mac address.\n"); 13392 rc = -EADDRNOTAVAIL; 13393 goto init_err_pci_clean; 13394 } 13395 13396 if (BNXT_PF(bp)) { 13397 /* Read the adapter's DSN to use as the eswitch switch_id */ 13398 rc = bnxt_pcie_dsn_get(bp, bp->dsn); 13399 } 13400 13401 /* MTU range: 60 - FW defined max */ 13402 dev->min_mtu = ETH_ZLEN; 13403 dev->max_mtu = bp->max_mtu; 13404 13405 rc = bnxt_probe_phy(bp, true); 13406 if (rc) 13407 goto init_err_pci_clean; 13408 13409 bnxt_set_rx_skb_mode(bp, false); 13410 bnxt_set_tpa_flags(bp); 13411 bnxt_set_ring_params(bp); 13412 rc = bnxt_set_dflt_rings(bp, true); 13413 if (rc) { 13414 netdev_err(bp->dev, "Not enough rings available.\n"); 13415 rc = -ENOMEM; 13416 goto init_err_pci_clean; 13417 } 13418 13419 bnxt_fw_init_one_p3(bp); 13420 13421 if (dev->hw_features & BNXT_HW_FEATURE_VLAN_ALL_RX) 13422 bp->flags |= BNXT_FLAG_STRIP_VLAN; 13423 13424 rc = bnxt_init_int_mode(bp); 13425 if (rc) 13426 goto init_err_pci_clean; 13427 13428 /* No TC has been set yet and rings may have been trimmed due to 13429 * limited MSIX, so we re-initialize the TX rings per TC. 13430 */ 13431 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 13432 13433 if (BNXT_PF(bp)) { 13434 if (!bnxt_pf_wq) { 13435 bnxt_pf_wq = 13436 create_singlethread_workqueue("bnxt_pf_wq"); 13437 if (!bnxt_pf_wq) { 13438 dev_err(&pdev->dev, "Unable to create workqueue.\n"); 13439 rc = -ENOMEM; 13440 goto init_err_pci_clean; 13441 } 13442 } 13443 rc = bnxt_init_tc(bp); 13444 if (rc) 13445 netdev_err(dev, "Failed to initialize TC flower offload, err = %d.\n", 13446 rc); 13447 } 13448 13449 bnxt_inv_fw_health_reg(bp); 13450 bnxt_dl_register(bp); 13451 13452 rc = register_netdev(dev); 13453 if (rc) 13454 goto init_err_cleanup; 13455 13456 if (BNXT_PF(bp)) 13457 devlink_port_type_eth_set(&bp->dl_port, bp->dev); 13458 bnxt_dl_fw_reporters_create(bp); 13459 13460 netdev_info(dev, "%s found at mem %lx, node addr %pM\n", 13461 board_info[ent->driver_data].name, 13462 (long)pci_resource_start(pdev, 0), dev->dev_addr); 13463 pcie_print_link_status(pdev); 13464 13465 pci_save_state(pdev); 13466 return 0; 13467 13468 init_err_cleanup: 13469 bnxt_dl_unregister(bp); 13470 bnxt_shutdown_tc(bp); 13471 bnxt_clear_int_mode(bp); 13472 13473 init_err_pci_clean: 13474 bnxt_hwrm_func_drv_unrgtr(bp); 13475 bnxt_free_hwrm_short_cmd_req(bp); 13476 bnxt_free_hwrm_resources(bp); 13477 bnxt_ethtool_free(bp); 13478 bnxt_ptp_clear(bp); 13479 kfree(bp->ptp_cfg); 13480 bp->ptp_cfg = NULL; 13481 kfree(bp->fw_health); 13482 bp->fw_health = NULL; 13483 bnxt_cleanup_pci(bp); 13484 bnxt_free_ctx_mem(bp); 13485 kfree(bp->ctx); 13486 bp->ctx = NULL; 13487 kfree(bp->rss_indir_tbl); 13488 bp->rss_indir_tbl = NULL; 13489 13490 init_err_free: 13491 free_netdev(dev); 13492 return rc; 13493 } 13494 13495 static void bnxt_shutdown(struct pci_dev *pdev) 13496 { 13497 struct net_device *dev = pci_get_drvdata(pdev); 13498 struct bnxt *bp; 13499 13500 if (!dev) 13501 return; 13502 13503 rtnl_lock(); 13504 bp = netdev_priv(dev); 13505 if (!bp) 13506 goto shutdown_exit; 13507 13508 if (netif_running(dev)) 13509 dev_close(dev); 13510 13511 bnxt_ulp_shutdown(bp); 13512 bnxt_clear_int_mode(bp); 13513 pci_disable_device(pdev); 13514 13515 if (system_state == SYSTEM_POWER_OFF) { 13516 pci_wake_from_d3(pdev, bp->wol); 13517 pci_set_power_state(pdev, PCI_D3hot); 13518 } 13519 13520 shutdown_exit: 13521 rtnl_unlock(); 13522 } 13523 13524 #ifdef CONFIG_PM_SLEEP 13525 static int bnxt_suspend(struct device *device) 13526 { 13527 struct net_device *dev = dev_get_drvdata(device); 13528 struct bnxt *bp = netdev_priv(dev); 13529 int rc = 0; 13530 13531 rtnl_lock(); 13532 bnxt_ulp_stop(bp); 13533 if (netif_running(dev)) { 13534 netif_device_detach(dev); 13535 rc = bnxt_close(dev); 13536 } 13537 bnxt_hwrm_func_drv_unrgtr(bp); 13538 pci_disable_device(bp->pdev); 13539 bnxt_free_ctx_mem(bp); 13540 kfree(bp->ctx); 13541 bp->ctx = NULL; 13542 rtnl_unlock(); 13543 return rc; 13544 } 13545 13546 static int bnxt_resume(struct device *device) 13547 { 13548 struct net_device *dev = dev_get_drvdata(device); 13549 struct bnxt *bp = netdev_priv(dev); 13550 int rc = 0; 13551 13552 rtnl_lock(); 13553 rc = pci_enable_device(bp->pdev); 13554 if (rc) { 13555 netdev_err(dev, "Cannot re-enable PCI device during resume, err = %d\n", 13556 rc); 13557 goto resume_exit; 13558 } 13559 pci_set_master(bp->pdev); 13560 if (bnxt_hwrm_ver_get(bp)) { 13561 rc = -ENODEV; 13562 goto resume_exit; 13563 } 13564 rc = bnxt_hwrm_func_reset(bp); 13565 if (rc) { 13566 rc = -EBUSY; 13567 goto resume_exit; 13568 } 13569 13570 rc = bnxt_hwrm_func_qcaps(bp); 13571 if (rc) 13572 goto resume_exit; 13573 13574 if (bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false)) { 13575 rc = -ENODEV; 13576 goto resume_exit; 13577 } 13578 13579 bnxt_get_wol_settings(bp); 13580 if (netif_running(dev)) { 13581 rc = bnxt_open(dev); 13582 if (!rc) 13583 netif_device_attach(dev); 13584 } 13585 13586 resume_exit: 13587 bnxt_ulp_start(bp, rc); 13588 if (!rc) 13589 bnxt_reenable_sriov(bp); 13590 rtnl_unlock(); 13591 return rc; 13592 } 13593 13594 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume); 13595 #define BNXT_PM_OPS (&bnxt_pm_ops) 13596 13597 #else 13598 13599 #define BNXT_PM_OPS NULL 13600 13601 #endif /* CONFIG_PM_SLEEP */ 13602 13603 /** 13604 * bnxt_io_error_detected - called when PCI error is detected 13605 * @pdev: Pointer to PCI device 13606 * @state: The current pci connection state 13607 * 13608 * This function is called after a PCI bus error affecting 13609 * this device has been detected. 13610 */ 13611 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev, 13612 pci_channel_state_t state) 13613 { 13614 struct net_device *netdev = pci_get_drvdata(pdev); 13615 struct bnxt *bp = netdev_priv(netdev); 13616 13617 netdev_info(netdev, "PCI I/O error detected\n"); 13618 13619 rtnl_lock(); 13620 netif_device_detach(netdev); 13621 13622 bnxt_ulp_stop(bp); 13623 13624 if (state == pci_channel_io_perm_failure) { 13625 rtnl_unlock(); 13626 return PCI_ERS_RESULT_DISCONNECT; 13627 } 13628 13629 if (state == pci_channel_io_frozen) 13630 set_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, &bp->state); 13631 13632 if (netif_running(netdev)) 13633 bnxt_close(netdev); 13634 13635 if (pci_is_enabled(pdev)) 13636 pci_disable_device(pdev); 13637 bnxt_free_ctx_mem(bp); 13638 kfree(bp->ctx); 13639 bp->ctx = NULL; 13640 rtnl_unlock(); 13641 13642 /* Request a slot slot reset. */ 13643 return PCI_ERS_RESULT_NEED_RESET; 13644 } 13645 13646 /** 13647 * bnxt_io_slot_reset - called after the pci bus has been reset. 13648 * @pdev: Pointer to PCI device 13649 * 13650 * Restart the card from scratch, as if from a cold-boot. 13651 * At this point, the card has exprienced a hard reset, 13652 * followed by fixups by BIOS, and has its config space 13653 * set up identically to what it was at cold boot. 13654 */ 13655 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev) 13656 { 13657 pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT; 13658 struct net_device *netdev = pci_get_drvdata(pdev); 13659 struct bnxt *bp = netdev_priv(netdev); 13660 int err = 0, off; 13661 13662 netdev_info(bp->dev, "PCI Slot Reset\n"); 13663 13664 rtnl_lock(); 13665 13666 if (pci_enable_device(pdev)) { 13667 dev_err(&pdev->dev, 13668 "Cannot re-enable PCI device after reset.\n"); 13669 } else { 13670 pci_set_master(pdev); 13671 /* Upon fatal error, our device internal logic that latches to 13672 * BAR value is getting reset and will restore only upon 13673 * rewritting the BARs. 13674 * 13675 * As pci_restore_state() does not re-write the BARs if the 13676 * value is same as saved value earlier, driver needs to 13677 * write the BARs to 0 to force restore, in case of fatal error. 13678 */ 13679 if (test_and_clear_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, 13680 &bp->state)) { 13681 for (off = PCI_BASE_ADDRESS_0; 13682 off <= PCI_BASE_ADDRESS_5; off += 4) 13683 pci_write_config_dword(bp->pdev, off, 0); 13684 } 13685 pci_restore_state(pdev); 13686 pci_save_state(pdev); 13687 13688 err = bnxt_hwrm_func_reset(bp); 13689 if (!err) 13690 result = PCI_ERS_RESULT_RECOVERED; 13691 } 13692 13693 rtnl_unlock(); 13694 13695 return result; 13696 } 13697 13698 /** 13699 * bnxt_io_resume - called when traffic can start flowing again. 13700 * @pdev: Pointer to PCI device 13701 * 13702 * This callback is called when the error recovery driver tells 13703 * us that its OK to resume normal operation. 13704 */ 13705 static void bnxt_io_resume(struct pci_dev *pdev) 13706 { 13707 struct net_device *netdev = pci_get_drvdata(pdev); 13708 struct bnxt *bp = netdev_priv(netdev); 13709 int err; 13710 13711 netdev_info(bp->dev, "PCI Slot Resume\n"); 13712 rtnl_lock(); 13713 13714 err = bnxt_hwrm_func_qcaps(bp); 13715 if (!err && netif_running(netdev)) 13716 err = bnxt_open(netdev); 13717 13718 bnxt_ulp_start(bp, err); 13719 if (!err) { 13720 bnxt_reenable_sriov(bp); 13721 netif_device_attach(netdev); 13722 } 13723 13724 rtnl_unlock(); 13725 } 13726 13727 static const struct pci_error_handlers bnxt_err_handler = { 13728 .error_detected = bnxt_io_error_detected, 13729 .slot_reset = bnxt_io_slot_reset, 13730 .resume = bnxt_io_resume 13731 }; 13732 13733 static struct pci_driver bnxt_pci_driver = { 13734 .name = DRV_MODULE_NAME, 13735 .id_table = bnxt_pci_tbl, 13736 .probe = bnxt_init_one, 13737 .remove = bnxt_remove_one, 13738 .shutdown = bnxt_shutdown, 13739 .driver.pm = BNXT_PM_OPS, 13740 .err_handler = &bnxt_err_handler, 13741 #if defined(CONFIG_BNXT_SRIOV) 13742 .sriov_configure = bnxt_sriov_configure, 13743 #endif 13744 }; 13745 13746 static int __init bnxt_init(void) 13747 { 13748 bnxt_debug_init(); 13749 return pci_register_driver(&bnxt_pci_driver); 13750 } 13751 13752 static void __exit bnxt_exit(void) 13753 { 13754 pci_unregister_driver(&bnxt_pci_driver); 13755 if (bnxt_pf_wq) 13756 destroy_workqueue(bnxt_pf_wq); 13757 bnxt_debug_exit(); 13758 } 13759 13760 module_init(bnxt_init); 13761 module_exit(bnxt_exit); 13762