1 /* Broadcom NetXtreme-C/E network driver. 2 * 3 * Copyright (c) 2014-2016 Broadcom Corporation 4 * Copyright (c) 2016-2019 Broadcom Limited 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation. 9 */ 10 11 #include <linux/module.h> 12 13 #include <linux/stringify.h> 14 #include <linux/kernel.h> 15 #include <linux/timer.h> 16 #include <linux/errno.h> 17 #include <linux/ioport.h> 18 #include <linux/slab.h> 19 #include <linux/vmalloc.h> 20 #include <linux/interrupt.h> 21 #include <linux/pci.h> 22 #include <linux/netdevice.h> 23 #include <linux/etherdevice.h> 24 #include <linux/skbuff.h> 25 #include <linux/dma-mapping.h> 26 #include <linux/bitops.h> 27 #include <linux/io.h> 28 #include <linux/irq.h> 29 #include <linux/delay.h> 30 #include <asm/byteorder.h> 31 #include <asm/page.h> 32 #include <linux/time.h> 33 #include <linux/mii.h> 34 #include <linux/mdio.h> 35 #include <linux/if.h> 36 #include <linux/if_vlan.h> 37 #include <linux/if_bridge.h> 38 #include <linux/rtc.h> 39 #include <linux/bpf.h> 40 #include <net/ip.h> 41 #include <net/tcp.h> 42 #include <net/udp.h> 43 #include <net/checksum.h> 44 #include <net/ip6_checksum.h> 45 #include <net/udp_tunnel.h> 46 #include <linux/workqueue.h> 47 #include <linux/prefetch.h> 48 #include <linux/cache.h> 49 #include <linux/log2.h> 50 #include <linux/aer.h> 51 #include <linux/bitmap.h> 52 #include <linux/ptp_clock_kernel.h> 53 #include <linux/timecounter.h> 54 #include <linux/cpu_rmap.h> 55 #include <linux/cpumask.h> 56 #include <net/pkt_cls.h> 57 #include <linux/hwmon.h> 58 #include <linux/hwmon-sysfs.h> 59 #include <net/page_pool.h> 60 61 #include "bnxt_hsi.h" 62 #include "bnxt.h" 63 #include "bnxt_hwrm.h" 64 #include "bnxt_ulp.h" 65 #include "bnxt_sriov.h" 66 #include "bnxt_ethtool.h" 67 #include "bnxt_dcb.h" 68 #include "bnxt_xdp.h" 69 #include "bnxt_ptp.h" 70 #include "bnxt_vfr.h" 71 #include "bnxt_tc.h" 72 #include "bnxt_devlink.h" 73 #include "bnxt_debugfs.h" 74 75 #define BNXT_TX_TIMEOUT (5 * HZ) 76 #define BNXT_DEF_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_HW | \ 77 NETIF_MSG_TX_ERR) 78 79 MODULE_LICENSE("GPL"); 80 MODULE_DESCRIPTION("Broadcom BCM573xx network driver"); 81 82 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN) 83 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD 84 #define BNXT_RX_COPY_THRESH 256 85 86 #define BNXT_TX_PUSH_THRESH 164 87 88 enum board_idx { 89 BCM57301, 90 BCM57302, 91 BCM57304, 92 BCM57417_NPAR, 93 BCM58700, 94 BCM57311, 95 BCM57312, 96 BCM57402, 97 BCM57404, 98 BCM57406, 99 BCM57402_NPAR, 100 BCM57407, 101 BCM57412, 102 BCM57414, 103 BCM57416, 104 BCM57417, 105 BCM57412_NPAR, 106 BCM57314, 107 BCM57417_SFP, 108 BCM57416_SFP, 109 BCM57404_NPAR, 110 BCM57406_NPAR, 111 BCM57407_SFP, 112 BCM57407_NPAR, 113 BCM57414_NPAR, 114 BCM57416_NPAR, 115 BCM57452, 116 BCM57454, 117 BCM5745x_NPAR, 118 BCM57508, 119 BCM57504, 120 BCM57502, 121 BCM57508_NPAR, 122 BCM57504_NPAR, 123 BCM57502_NPAR, 124 BCM58802, 125 BCM58804, 126 BCM58808, 127 NETXTREME_E_VF, 128 NETXTREME_C_VF, 129 NETXTREME_S_VF, 130 NETXTREME_C_VF_HV, 131 NETXTREME_E_VF_HV, 132 NETXTREME_E_P5_VF, 133 NETXTREME_E_P5_VF_HV, 134 }; 135 136 /* indexed by enum above */ 137 static const struct { 138 char *name; 139 } board_info[] = { 140 [BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" }, 141 [BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" }, 142 [BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" }, 143 [BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" }, 144 [BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" }, 145 [BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" }, 146 [BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" }, 147 [BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" }, 148 [BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" }, 149 [BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" }, 150 [BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" }, 151 [BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" }, 152 [BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" }, 153 [BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" }, 154 [BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" }, 155 [BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" }, 156 [BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" }, 157 [BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" }, 158 [BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" }, 159 [BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" }, 160 [BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" }, 161 [BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" }, 162 [BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" }, 163 [BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" }, 164 [BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" }, 165 [BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" }, 166 [BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" }, 167 [BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 168 [BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" }, 169 [BCM57508] = { "Broadcom BCM57508 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" }, 170 [BCM57504] = { "Broadcom BCM57504 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" }, 171 [BCM57502] = { "Broadcom BCM57502 NetXtreme-E 10Gb/25Gb/50Gb Ethernet" }, 172 [BCM57508_NPAR] = { "Broadcom BCM57508 NetXtreme-E Ethernet Partition" }, 173 [BCM57504_NPAR] = { "Broadcom BCM57504 NetXtreme-E Ethernet Partition" }, 174 [BCM57502_NPAR] = { "Broadcom BCM57502 NetXtreme-E Ethernet Partition" }, 175 [BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" }, 176 [BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 177 [BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 178 [NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" }, 179 [NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" }, 180 [NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" }, 181 [NETXTREME_C_VF_HV] = { "Broadcom NetXtreme-C Virtual Function for Hyper-V" }, 182 [NETXTREME_E_VF_HV] = { "Broadcom NetXtreme-E Virtual Function for Hyper-V" }, 183 [NETXTREME_E_P5_VF] = { "Broadcom BCM5750X NetXtreme-E Ethernet Virtual Function" }, 184 [NETXTREME_E_P5_VF_HV] = { "Broadcom BCM5750X NetXtreme-E Virtual Function for Hyper-V" }, 185 }; 186 187 static const struct pci_device_id bnxt_pci_tbl[] = { 188 { PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR }, 189 { PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR }, 190 { PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 }, 191 { PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR }, 192 { PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 }, 193 { PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 }, 194 { PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 }, 195 { PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR }, 196 { PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 }, 197 { PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 }, 198 { PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 }, 199 { PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 }, 200 { PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 }, 201 { PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 }, 202 { PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR }, 203 { PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 }, 204 { PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 }, 205 { PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 }, 206 { PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 }, 207 { PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 }, 208 { PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR }, 209 { PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 }, 210 { PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP }, 211 { PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP }, 212 { PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR }, 213 { PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR }, 214 { PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP }, 215 { PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR }, 216 { PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR }, 217 { PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR }, 218 { PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR }, 219 { PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR }, 220 { PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR }, 221 { PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 }, 222 { PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 }, 223 { PCI_VDEVICE(BROADCOM, 0x1750), .driver_data = BCM57508 }, 224 { PCI_VDEVICE(BROADCOM, 0x1751), .driver_data = BCM57504 }, 225 { PCI_VDEVICE(BROADCOM, 0x1752), .driver_data = BCM57502 }, 226 { PCI_VDEVICE(BROADCOM, 0x1800), .driver_data = BCM57508_NPAR }, 227 { PCI_VDEVICE(BROADCOM, 0x1801), .driver_data = BCM57504_NPAR }, 228 { PCI_VDEVICE(BROADCOM, 0x1802), .driver_data = BCM57502_NPAR }, 229 { PCI_VDEVICE(BROADCOM, 0x1803), .driver_data = BCM57508_NPAR }, 230 { PCI_VDEVICE(BROADCOM, 0x1804), .driver_data = BCM57504_NPAR }, 231 { PCI_VDEVICE(BROADCOM, 0x1805), .driver_data = BCM57502_NPAR }, 232 { PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 }, 233 { PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 }, 234 #ifdef CONFIG_BNXT_SRIOV 235 { PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF }, 236 { PCI_VDEVICE(BROADCOM, 0x1607), .driver_data = NETXTREME_E_VF_HV }, 237 { PCI_VDEVICE(BROADCOM, 0x1608), .driver_data = NETXTREME_E_VF_HV }, 238 { PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF }, 239 { PCI_VDEVICE(BROADCOM, 0x16bd), .driver_data = NETXTREME_E_VF_HV }, 240 { PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF }, 241 { PCI_VDEVICE(BROADCOM, 0x16c2), .driver_data = NETXTREME_C_VF_HV }, 242 { PCI_VDEVICE(BROADCOM, 0x16c3), .driver_data = NETXTREME_C_VF_HV }, 243 { PCI_VDEVICE(BROADCOM, 0x16c4), .driver_data = NETXTREME_E_VF_HV }, 244 { PCI_VDEVICE(BROADCOM, 0x16c5), .driver_data = NETXTREME_E_VF_HV }, 245 { PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF }, 246 { PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF }, 247 { PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF }, 248 { PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF }, 249 { PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF }, 250 { PCI_VDEVICE(BROADCOM, 0x16e6), .driver_data = NETXTREME_C_VF_HV }, 251 { PCI_VDEVICE(BROADCOM, 0x1806), .driver_data = NETXTREME_E_P5_VF }, 252 { PCI_VDEVICE(BROADCOM, 0x1807), .driver_data = NETXTREME_E_P5_VF }, 253 { PCI_VDEVICE(BROADCOM, 0x1808), .driver_data = NETXTREME_E_P5_VF_HV }, 254 { PCI_VDEVICE(BROADCOM, 0x1809), .driver_data = NETXTREME_E_P5_VF_HV }, 255 { PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF }, 256 #endif 257 { 0 } 258 }; 259 260 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl); 261 262 static const u16 bnxt_vf_req_snif[] = { 263 HWRM_FUNC_CFG, 264 HWRM_FUNC_VF_CFG, 265 HWRM_PORT_PHY_QCFG, 266 HWRM_CFA_L2_FILTER_ALLOC, 267 }; 268 269 static const u16 bnxt_async_events_arr[] = { 270 ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE, 271 ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE, 272 ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD, 273 ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED, 274 ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE, 275 ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE, 276 ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE, 277 ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY, 278 ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY, 279 ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION, 280 ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE, 281 ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG, 282 ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST, 283 ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP, 284 ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT, 285 }; 286 287 static struct workqueue_struct *bnxt_pf_wq; 288 289 static bool bnxt_vf_pciid(enum board_idx idx) 290 { 291 return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF || 292 idx == NETXTREME_S_VF || idx == NETXTREME_C_VF_HV || 293 idx == NETXTREME_E_VF_HV || idx == NETXTREME_E_P5_VF || 294 idx == NETXTREME_E_P5_VF_HV); 295 } 296 297 #define DB_CP_REARM_FLAGS (DB_KEY_CP | DB_IDX_VALID) 298 #define DB_CP_FLAGS (DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS) 299 #define DB_CP_IRQ_DIS_FLAGS (DB_KEY_CP | DB_IRQ_DIS) 300 301 #define BNXT_CP_DB_IRQ_DIS(db) \ 302 writel(DB_CP_IRQ_DIS_FLAGS, db) 303 304 #define BNXT_DB_CQ(db, idx) \ 305 writel(DB_CP_FLAGS | RING_CMP(idx), (db)->doorbell) 306 307 #define BNXT_DB_NQ_P5(db, idx) \ 308 writeq((db)->db_key64 | DBR_TYPE_NQ | RING_CMP(idx), (db)->doorbell) 309 310 #define BNXT_DB_CQ_ARM(db, idx) \ 311 writel(DB_CP_REARM_FLAGS | RING_CMP(idx), (db)->doorbell) 312 313 #define BNXT_DB_NQ_ARM_P5(db, idx) \ 314 writeq((db)->db_key64 | DBR_TYPE_NQ_ARM | RING_CMP(idx), (db)->doorbell) 315 316 static void bnxt_db_nq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 317 { 318 if (bp->flags & BNXT_FLAG_CHIP_P5) 319 BNXT_DB_NQ_P5(db, idx); 320 else 321 BNXT_DB_CQ(db, idx); 322 } 323 324 static void bnxt_db_nq_arm(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 325 { 326 if (bp->flags & BNXT_FLAG_CHIP_P5) 327 BNXT_DB_NQ_ARM_P5(db, idx); 328 else 329 BNXT_DB_CQ_ARM(db, idx); 330 } 331 332 static void bnxt_db_cq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 333 { 334 if (bp->flags & BNXT_FLAG_CHIP_P5) 335 writeq(db->db_key64 | DBR_TYPE_CQ_ARMALL | RING_CMP(idx), 336 db->doorbell); 337 else 338 BNXT_DB_CQ(db, idx); 339 } 340 341 const u16 bnxt_lhint_arr[] = { 342 TX_BD_FLAGS_LHINT_512_AND_SMALLER, 343 TX_BD_FLAGS_LHINT_512_TO_1023, 344 TX_BD_FLAGS_LHINT_1024_TO_2047, 345 TX_BD_FLAGS_LHINT_1024_TO_2047, 346 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 347 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 348 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 349 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 350 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 351 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 352 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 353 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 354 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 355 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 356 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 357 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 358 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 359 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 360 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 361 }; 362 363 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb) 364 { 365 struct metadata_dst *md_dst = skb_metadata_dst(skb); 366 367 if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX) 368 return 0; 369 370 return md_dst->u.port_info.port_id; 371 } 372 373 static void bnxt_txr_db_kick(struct bnxt *bp, struct bnxt_tx_ring_info *txr, 374 u16 prod) 375 { 376 bnxt_db_write(bp, &txr->tx_db, prod); 377 txr->kick_pending = 0; 378 } 379 380 static bool bnxt_txr_netif_try_stop_queue(struct bnxt *bp, 381 struct bnxt_tx_ring_info *txr, 382 struct netdev_queue *txq) 383 { 384 netif_tx_stop_queue(txq); 385 386 /* netif_tx_stop_queue() must be done before checking 387 * tx index in bnxt_tx_avail() below, because in 388 * bnxt_tx_int(), we update tx index before checking for 389 * netif_tx_queue_stopped(). 390 */ 391 smp_mb(); 392 if (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh) { 393 netif_tx_wake_queue(txq); 394 return false; 395 } 396 397 return true; 398 } 399 400 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev) 401 { 402 struct bnxt *bp = netdev_priv(dev); 403 struct tx_bd *txbd; 404 struct tx_bd_ext *txbd1; 405 struct netdev_queue *txq; 406 int i; 407 dma_addr_t mapping; 408 unsigned int length, pad = 0; 409 u32 len, free_size, vlan_tag_flags, cfa_action, flags; 410 u16 prod, last_frag; 411 struct pci_dev *pdev = bp->pdev; 412 struct bnxt_tx_ring_info *txr; 413 struct bnxt_sw_tx_bd *tx_buf; 414 __le32 lflags = 0; 415 416 i = skb_get_queue_mapping(skb); 417 if (unlikely(i >= bp->tx_nr_rings)) { 418 dev_kfree_skb_any(skb); 419 atomic_long_inc(&dev->tx_dropped); 420 return NETDEV_TX_OK; 421 } 422 423 txq = netdev_get_tx_queue(dev, i); 424 txr = &bp->tx_ring[bp->tx_ring_map[i]]; 425 prod = txr->tx_prod; 426 427 free_size = bnxt_tx_avail(bp, txr); 428 if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) { 429 /* We must have raced with NAPI cleanup */ 430 if (net_ratelimit() && txr->kick_pending) 431 netif_warn(bp, tx_err, dev, 432 "bnxt: ring busy w/ flush pending!\n"); 433 if (bnxt_txr_netif_try_stop_queue(bp, txr, txq)) 434 return NETDEV_TX_BUSY; 435 } 436 437 length = skb->len; 438 len = skb_headlen(skb); 439 last_frag = skb_shinfo(skb)->nr_frags; 440 441 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; 442 443 txbd->tx_bd_opaque = prod; 444 445 tx_buf = &txr->tx_buf_ring[prod]; 446 tx_buf->skb = skb; 447 tx_buf->nr_frags = last_frag; 448 449 vlan_tag_flags = 0; 450 cfa_action = bnxt_xmit_get_cfa_action(skb); 451 if (skb_vlan_tag_present(skb)) { 452 vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN | 453 skb_vlan_tag_get(skb); 454 /* Currently supports 8021Q, 8021AD vlan offloads 455 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated 456 */ 457 if (skb->vlan_proto == htons(ETH_P_8021Q)) 458 vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT; 459 } 460 461 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) { 462 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 463 464 if (ptp && ptp->tx_tstamp_en && !skb_is_gso(skb) && 465 atomic_dec_if_positive(&ptp->tx_avail) >= 0) { 466 if (!bnxt_ptp_parse(skb, &ptp->tx_seqid, 467 &ptp->tx_hdr_off)) { 468 if (vlan_tag_flags) 469 ptp->tx_hdr_off += VLAN_HLEN; 470 lflags |= cpu_to_le32(TX_BD_FLAGS_STAMP); 471 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 472 } else { 473 atomic_inc(&bp->ptp_cfg->tx_avail); 474 } 475 } 476 } 477 478 if (unlikely(skb->no_fcs)) 479 lflags |= cpu_to_le32(TX_BD_FLAGS_NO_CRC); 480 481 if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh && 482 !lflags) { 483 struct tx_push_buffer *tx_push_buf = txr->tx_push; 484 struct tx_push_bd *tx_push = &tx_push_buf->push_bd; 485 struct tx_bd_ext *tx_push1 = &tx_push->txbd2; 486 void __iomem *db = txr->tx_db.doorbell; 487 void *pdata = tx_push_buf->data; 488 u64 *end; 489 int j, push_len; 490 491 /* Set COAL_NOW to be ready quickly for the next push */ 492 tx_push->tx_bd_len_flags_type = 493 cpu_to_le32((length << TX_BD_LEN_SHIFT) | 494 TX_BD_TYPE_LONG_TX_BD | 495 TX_BD_FLAGS_LHINT_512_AND_SMALLER | 496 TX_BD_FLAGS_COAL_NOW | 497 TX_BD_FLAGS_PACKET_END | 498 (2 << TX_BD_FLAGS_BD_CNT_SHIFT)); 499 500 if (skb->ip_summed == CHECKSUM_PARTIAL) 501 tx_push1->tx_bd_hsize_lflags = 502 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM); 503 else 504 tx_push1->tx_bd_hsize_lflags = 0; 505 506 tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags); 507 tx_push1->tx_bd_cfa_action = 508 cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT); 509 510 end = pdata + length; 511 end = PTR_ALIGN(end, 8) - 1; 512 *end = 0; 513 514 skb_copy_from_linear_data(skb, pdata, len); 515 pdata += len; 516 for (j = 0; j < last_frag; j++) { 517 skb_frag_t *frag = &skb_shinfo(skb)->frags[j]; 518 void *fptr; 519 520 fptr = skb_frag_address_safe(frag); 521 if (!fptr) 522 goto normal_tx; 523 524 memcpy(pdata, fptr, skb_frag_size(frag)); 525 pdata += skb_frag_size(frag); 526 } 527 528 txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type; 529 txbd->tx_bd_haddr = txr->data_mapping; 530 prod = NEXT_TX(prod); 531 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; 532 memcpy(txbd, tx_push1, sizeof(*txbd)); 533 prod = NEXT_TX(prod); 534 tx_push->doorbell = 535 cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod); 536 txr->tx_prod = prod; 537 538 tx_buf->is_push = 1; 539 netdev_tx_sent_queue(txq, skb->len); 540 wmb(); /* Sync is_push and byte queue before pushing data */ 541 542 push_len = (length + sizeof(*tx_push) + 7) / 8; 543 if (push_len > 16) { 544 __iowrite64_copy(db, tx_push_buf, 16); 545 __iowrite32_copy(db + 4, tx_push_buf + 1, 546 (push_len - 16) << 1); 547 } else { 548 __iowrite64_copy(db, tx_push_buf, push_len); 549 } 550 551 goto tx_done; 552 } 553 554 normal_tx: 555 if (length < BNXT_MIN_PKT_SIZE) { 556 pad = BNXT_MIN_PKT_SIZE - length; 557 if (skb_pad(skb, pad)) 558 /* SKB already freed. */ 559 goto tx_kick_pending; 560 length = BNXT_MIN_PKT_SIZE; 561 } 562 563 mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE); 564 565 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) 566 goto tx_free; 567 568 dma_unmap_addr_set(tx_buf, mapping, mapping); 569 flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD | 570 ((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT); 571 572 txbd->tx_bd_haddr = cpu_to_le64(mapping); 573 574 prod = NEXT_TX(prod); 575 txbd1 = (struct tx_bd_ext *) 576 &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; 577 578 txbd1->tx_bd_hsize_lflags = lflags; 579 if (skb_is_gso(skb)) { 580 u32 hdr_len; 581 582 if (skb->encapsulation) 583 hdr_len = skb_inner_network_offset(skb) + 584 skb_inner_network_header_len(skb) + 585 inner_tcp_hdrlen(skb); 586 else 587 hdr_len = skb_transport_offset(skb) + 588 tcp_hdrlen(skb); 589 590 txbd1->tx_bd_hsize_lflags |= cpu_to_le32(TX_BD_FLAGS_LSO | 591 TX_BD_FLAGS_T_IPID | 592 (hdr_len << (TX_BD_HSIZE_SHIFT - 1))); 593 length = skb_shinfo(skb)->gso_size; 594 txbd1->tx_bd_mss = cpu_to_le32(length); 595 length += hdr_len; 596 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 597 txbd1->tx_bd_hsize_lflags |= 598 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM); 599 txbd1->tx_bd_mss = 0; 600 } 601 602 length >>= 9; 603 if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) { 604 dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n", 605 skb->len); 606 i = 0; 607 goto tx_dma_error; 608 } 609 flags |= bnxt_lhint_arr[length]; 610 txbd->tx_bd_len_flags_type = cpu_to_le32(flags); 611 612 txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags); 613 txbd1->tx_bd_cfa_action = 614 cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT); 615 for (i = 0; i < last_frag; i++) { 616 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 617 618 prod = NEXT_TX(prod); 619 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; 620 621 len = skb_frag_size(frag); 622 mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len, 623 DMA_TO_DEVICE); 624 625 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) 626 goto tx_dma_error; 627 628 tx_buf = &txr->tx_buf_ring[prod]; 629 dma_unmap_addr_set(tx_buf, mapping, mapping); 630 631 txbd->tx_bd_haddr = cpu_to_le64(mapping); 632 633 flags = len << TX_BD_LEN_SHIFT; 634 txbd->tx_bd_len_flags_type = cpu_to_le32(flags); 635 } 636 637 flags &= ~TX_BD_LEN; 638 txbd->tx_bd_len_flags_type = 639 cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags | 640 TX_BD_FLAGS_PACKET_END); 641 642 netdev_tx_sent_queue(txq, skb->len); 643 644 skb_tx_timestamp(skb); 645 646 /* Sync BD data before updating doorbell */ 647 wmb(); 648 649 prod = NEXT_TX(prod); 650 txr->tx_prod = prod; 651 652 if (!netdev_xmit_more() || netif_xmit_stopped(txq)) 653 bnxt_txr_db_kick(bp, txr, prod); 654 else 655 txr->kick_pending = 1; 656 657 tx_done: 658 659 if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) { 660 if (netdev_xmit_more() && !tx_buf->is_push) 661 bnxt_txr_db_kick(bp, txr, prod); 662 663 bnxt_txr_netif_try_stop_queue(bp, txr, txq); 664 } 665 return NETDEV_TX_OK; 666 667 tx_dma_error: 668 if (BNXT_TX_PTP_IS_SET(lflags)) 669 atomic_inc(&bp->ptp_cfg->tx_avail); 670 671 last_frag = i; 672 673 /* start back at beginning and unmap skb */ 674 prod = txr->tx_prod; 675 tx_buf = &txr->tx_buf_ring[prod]; 676 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 677 skb_headlen(skb), DMA_TO_DEVICE); 678 prod = NEXT_TX(prod); 679 680 /* unmap remaining mapped pages */ 681 for (i = 0; i < last_frag; i++) { 682 prod = NEXT_TX(prod); 683 tx_buf = &txr->tx_buf_ring[prod]; 684 dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 685 skb_frag_size(&skb_shinfo(skb)->frags[i]), 686 DMA_TO_DEVICE); 687 } 688 689 tx_free: 690 dev_kfree_skb_any(skb); 691 tx_kick_pending: 692 if (txr->kick_pending) 693 bnxt_txr_db_kick(bp, txr, txr->tx_prod); 694 txr->tx_buf_ring[txr->tx_prod].skb = NULL; 695 atomic_long_inc(&dev->tx_dropped); 696 return NETDEV_TX_OK; 697 } 698 699 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts) 700 { 701 struct bnxt_tx_ring_info *txr = bnapi->tx_ring; 702 struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index); 703 u16 cons = txr->tx_cons; 704 struct pci_dev *pdev = bp->pdev; 705 int i; 706 unsigned int tx_bytes = 0; 707 708 for (i = 0; i < nr_pkts; i++) { 709 struct bnxt_sw_tx_bd *tx_buf; 710 bool compl_deferred = false; 711 struct sk_buff *skb; 712 int j, last; 713 714 tx_buf = &txr->tx_buf_ring[cons]; 715 cons = NEXT_TX(cons); 716 skb = tx_buf->skb; 717 tx_buf->skb = NULL; 718 719 if (tx_buf->is_push) { 720 tx_buf->is_push = 0; 721 goto next_tx_int; 722 } 723 724 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 725 skb_headlen(skb), DMA_TO_DEVICE); 726 last = tx_buf->nr_frags; 727 728 for (j = 0; j < last; j++) { 729 cons = NEXT_TX(cons); 730 tx_buf = &txr->tx_buf_ring[cons]; 731 dma_unmap_page( 732 &pdev->dev, 733 dma_unmap_addr(tx_buf, mapping), 734 skb_frag_size(&skb_shinfo(skb)->frags[j]), 735 DMA_TO_DEVICE); 736 } 737 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) { 738 if (bp->flags & BNXT_FLAG_CHIP_P5) { 739 if (!bnxt_get_tx_ts_p5(bp, skb)) 740 compl_deferred = true; 741 else 742 atomic_inc(&bp->ptp_cfg->tx_avail); 743 } 744 } 745 746 next_tx_int: 747 cons = NEXT_TX(cons); 748 749 tx_bytes += skb->len; 750 if (!compl_deferred) 751 dev_kfree_skb_any(skb); 752 } 753 754 netdev_tx_completed_queue(txq, nr_pkts, tx_bytes); 755 txr->tx_cons = cons; 756 757 /* Need to make the tx_cons update visible to bnxt_start_xmit() 758 * before checking for netif_tx_queue_stopped(). Without the 759 * memory barrier, there is a small possibility that bnxt_start_xmit() 760 * will miss it and cause the queue to be stopped forever. 761 */ 762 smp_mb(); 763 764 if (unlikely(netif_tx_queue_stopped(txq)) && 765 bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh && 766 READ_ONCE(txr->dev_state) != BNXT_DEV_STATE_CLOSING) 767 netif_tx_wake_queue(txq); 768 } 769 770 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping, 771 struct bnxt_rx_ring_info *rxr, 772 gfp_t gfp) 773 { 774 struct device *dev = &bp->pdev->dev; 775 struct page *page; 776 777 page = page_pool_dev_alloc_pages(rxr->page_pool); 778 if (!page) 779 return NULL; 780 781 *mapping = dma_map_page_attrs(dev, page, 0, PAGE_SIZE, bp->rx_dir, 782 DMA_ATTR_WEAK_ORDERING); 783 if (dma_mapping_error(dev, *mapping)) { 784 page_pool_recycle_direct(rxr->page_pool, page); 785 return NULL; 786 } 787 *mapping += bp->rx_dma_offset; 788 return page; 789 } 790 791 static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping, 792 gfp_t gfp) 793 { 794 u8 *data; 795 struct pci_dev *pdev = bp->pdev; 796 797 data = kmalloc(bp->rx_buf_size, gfp); 798 if (!data) 799 return NULL; 800 801 *mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset, 802 bp->rx_buf_use_size, bp->rx_dir, 803 DMA_ATTR_WEAK_ORDERING); 804 805 if (dma_mapping_error(&pdev->dev, *mapping)) { 806 kfree(data); 807 data = NULL; 808 } 809 return data; 810 } 811 812 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 813 u16 prod, gfp_t gfp) 814 { 815 struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 816 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod]; 817 dma_addr_t mapping; 818 819 if (BNXT_RX_PAGE_MODE(bp)) { 820 struct page *page = 821 __bnxt_alloc_rx_page(bp, &mapping, rxr, gfp); 822 823 if (!page) 824 return -ENOMEM; 825 826 rx_buf->data = page; 827 rx_buf->data_ptr = page_address(page) + bp->rx_offset; 828 } else { 829 u8 *data = __bnxt_alloc_rx_data(bp, &mapping, gfp); 830 831 if (!data) 832 return -ENOMEM; 833 834 rx_buf->data = data; 835 rx_buf->data_ptr = data + bp->rx_offset; 836 } 837 rx_buf->mapping = mapping; 838 839 rxbd->rx_bd_haddr = cpu_to_le64(mapping); 840 return 0; 841 } 842 843 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data) 844 { 845 u16 prod = rxr->rx_prod; 846 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf; 847 struct rx_bd *cons_bd, *prod_bd; 848 849 prod_rx_buf = &rxr->rx_buf_ring[prod]; 850 cons_rx_buf = &rxr->rx_buf_ring[cons]; 851 852 prod_rx_buf->data = data; 853 prod_rx_buf->data_ptr = cons_rx_buf->data_ptr; 854 855 prod_rx_buf->mapping = cons_rx_buf->mapping; 856 857 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 858 cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)]; 859 860 prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr; 861 } 862 863 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx) 864 { 865 u16 next, max = rxr->rx_agg_bmap_size; 866 867 next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx); 868 if (next >= max) 869 next = find_first_zero_bit(rxr->rx_agg_bmap, max); 870 return next; 871 } 872 873 static inline int bnxt_alloc_rx_page(struct bnxt *bp, 874 struct bnxt_rx_ring_info *rxr, 875 u16 prod, gfp_t gfp) 876 { 877 struct rx_bd *rxbd = 878 &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 879 struct bnxt_sw_rx_agg_bd *rx_agg_buf; 880 struct pci_dev *pdev = bp->pdev; 881 struct page *page; 882 dma_addr_t mapping; 883 u16 sw_prod = rxr->rx_sw_agg_prod; 884 unsigned int offset = 0; 885 886 if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) { 887 page = rxr->rx_page; 888 if (!page) { 889 page = alloc_page(gfp); 890 if (!page) 891 return -ENOMEM; 892 rxr->rx_page = page; 893 rxr->rx_page_offset = 0; 894 } 895 offset = rxr->rx_page_offset; 896 rxr->rx_page_offset += BNXT_RX_PAGE_SIZE; 897 if (rxr->rx_page_offset == PAGE_SIZE) 898 rxr->rx_page = NULL; 899 else 900 get_page(page); 901 } else { 902 page = alloc_page(gfp); 903 if (!page) 904 return -ENOMEM; 905 } 906 907 mapping = dma_map_page_attrs(&pdev->dev, page, offset, 908 BNXT_RX_PAGE_SIZE, DMA_FROM_DEVICE, 909 DMA_ATTR_WEAK_ORDERING); 910 if (dma_mapping_error(&pdev->dev, mapping)) { 911 __free_page(page); 912 return -EIO; 913 } 914 915 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap))) 916 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod); 917 918 __set_bit(sw_prod, rxr->rx_agg_bmap); 919 rx_agg_buf = &rxr->rx_agg_ring[sw_prod]; 920 rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod); 921 922 rx_agg_buf->page = page; 923 rx_agg_buf->offset = offset; 924 rx_agg_buf->mapping = mapping; 925 rxbd->rx_bd_haddr = cpu_to_le64(mapping); 926 rxbd->rx_bd_opaque = sw_prod; 927 return 0; 928 } 929 930 static struct rx_agg_cmp *bnxt_get_agg(struct bnxt *bp, 931 struct bnxt_cp_ring_info *cpr, 932 u16 cp_cons, u16 curr) 933 { 934 struct rx_agg_cmp *agg; 935 936 cp_cons = RING_CMP(ADV_RAW_CMP(cp_cons, curr)); 937 agg = (struct rx_agg_cmp *) 938 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 939 return agg; 940 } 941 942 static struct rx_agg_cmp *bnxt_get_tpa_agg_p5(struct bnxt *bp, 943 struct bnxt_rx_ring_info *rxr, 944 u16 agg_id, u16 curr) 945 { 946 struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[agg_id]; 947 948 return &tpa_info->agg_arr[curr]; 949 } 950 951 static void bnxt_reuse_rx_agg_bufs(struct bnxt_cp_ring_info *cpr, u16 idx, 952 u16 start, u32 agg_bufs, bool tpa) 953 { 954 struct bnxt_napi *bnapi = cpr->bnapi; 955 struct bnxt *bp = bnapi->bp; 956 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 957 u16 prod = rxr->rx_agg_prod; 958 u16 sw_prod = rxr->rx_sw_agg_prod; 959 bool p5_tpa = false; 960 u32 i; 961 962 if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa) 963 p5_tpa = true; 964 965 for (i = 0; i < agg_bufs; i++) { 966 u16 cons; 967 struct rx_agg_cmp *agg; 968 struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf; 969 struct rx_bd *prod_bd; 970 struct page *page; 971 972 if (p5_tpa) 973 agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, start + i); 974 else 975 agg = bnxt_get_agg(bp, cpr, idx, start + i); 976 cons = agg->rx_agg_cmp_opaque; 977 __clear_bit(cons, rxr->rx_agg_bmap); 978 979 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap))) 980 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod); 981 982 __set_bit(sw_prod, rxr->rx_agg_bmap); 983 prod_rx_buf = &rxr->rx_agg_ring[sw_prod]; 984 cons_rx_buf = &rxr->rx_agg_ring[cons]; 985 986 /* It is possible for sw_prod to be equal to cons, so 987 * set cons_rx_buf->page to NULL first. 988 */ 989 page = cons_rx_buf->page; 990 cons_rx_buf->page = NULL; 991 prod_rx_buf->page = page; 992 prod_rx_buf->offset = cons_rx_buf->offset; 993 994 prod_rx_buf->mapping = cons_rx_buf->mapping; 995 996 prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 997 998 prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping); 999 prod_bd->rx_bd_opaque = sw_prod; 1000 1001 prod = NEXT_RX_AGG(prod); 1002 sw_prod = NEXT_RX_AGG(sw_prod); 1003 } 1004 rxr->rx_agg_prod = prod; 1005 rxr->rx_sw_agg_prod = sw_prod; 1006 } 1007 1008 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp, 1009 struct bnxt_rx_ring_info *rxr, 1010 u16 cons, void *data, u8 *data_ptr, 1011 dma_addr_t dma_addr, 1012 unsigned int offset_and_len) 1013 { 1014 unsigned int payload = offset_and_len >> 16; 1015 unsigned int len = offset_and_len & 0xffff; 1016 skb_frag_t *frag; 1017 struct page *page = data; 1018 u16 prod = rxr->rx_prod; 1019 struct sk_buff *skb; 1020 int off, err; 1021 1022 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 1023 if (unlikely(err)) { 1024 bnxt_reuse_rx_data(rxr, cons, data); 1025 return NULL; 1026 } 1027 dma_addr -= bp->rx_dma_offset; 1028 dma_unmap_page_attrs(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir, 1029 DMA_ATTR_WEAK_ORDERING); 1030 page_pool_release_page(rxr->page_pool, page); 1031 1032 if (unlikely(!payload)) 1033 payload = eth_get_headlen(bp->dev, data_ptr, len); 1034 1035 skb = napi_alloc_skb(&rxr->bnapi->napi, payload); 1036 if (!skb) { 1037 __free_page(page); 1038 return NULL; 1039 } 1040 1041 off = (void *)data_ptr - page_address(page); 1042 skb_add_rx_frag(skb, 0, page, off, len, PAGE_SIZE); 1043 memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN, 1044 payload + NET_IP_ALIGN); 1045 1046 frag = &skb_shinfo(skb)->frags[0]; 1047 skb_frag_size_sub(frag, payload); 1048 skb_frag_off_add(frag, payload); 1049 skb->data_len -= payload; 1050 skb->tail += payload; 1051 1052 return skb; 1053 } 1054 1055 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp, 1056 struct bnxt_rx_ring_info *rxr, u16 cons, 1057 void *data, u8 *data_ptr, 1058 dma_addr_t dma_addr, 1059 unsigned int offset_and_len) 1060 { 1061 u16 prod = rxr->rx_prod; 1062 struct sk_buff *skb; 1063 int err; 1064 1065 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 1066 if (unlikely(err)) { 1067 bnxt_reuse_rx_data(rxr, cons, data); 1068 return NULL; 1069 } 1070 1071 skb = build_skb(data, 0); 1072 dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size, 1073 bp->rx_dir, DMA_ATTR_WEAK_ORDERING); 1074 if (!skb) { 1075 kfree(data); 1076 return NULL; 1077 } 1078 1079 skb_reserve(skb, bp->rx_offset); 1080 skb_put(skb, offset_and_len & 0xffff); 1081 return skb; 1082 } 1083 1084 static struct sk_buff *bnxt_rx_pages(struct bnxt *bp, 1085 struct bnxt_cp_ring_info *cpr, 1086 struct sk_buff *skb, u16 idx, 1087 u32 agg_bufs, bool tpa) 1088 { 1089 struct bnxt_napi *bnapi = cpr->bnapi; 1090 struct pci_dev *pdev = bp->pdev; 1091 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1092 u16 prod = rxr->rx_agg_prod; 1093 bool p5_tpa = false; 1094 u32 i; 1095 1096 if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa) 1097 p5_tpa = true; 1098 1099 for (i = 0; i < agg_bufs; i++) { 1100 u16 cons, frag_len; 1101 struct rx_agg_cmp *agg; 1102 struct bnxt_sw_rx_agg_bd *cons_rx_buf; 1103 struct page *page; 1104 dma_addr_t mapping; 1105 1106 if (p5_tpa) 1107 agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, i); 1108 else 1109 agg = bnxt_get_agg(bp, cpr, idx, i); 1110 cons = agg->rx_agg_cmp_opaque; 1111 frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) & 1112 RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT; 1113 1114 cons_rx_buf = &rxr->rx_agg_ring[cons]; 1115 skb_fill_page_desc(skb, i, cons_rx_buf->page, 1116 cons_rx_buf->offset, frag_len); 1117 __clear_bit(cons, rxr->rx_agg_bmap); 1118 1119 /* It is possible for bnxt_alloc_rx_page() to allocate 1120 * a sw_prod index that equals the cons index, so we 1121 * need to clear the cons entry now. 1122 */ 1123 mapping = cons_rx_buf->mapping; 1124 page = cons_rx_buf->page; 1125 cons_rx_buf->page = NULL; 1126 1127 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) { 1128 struct skb_shared_info *shinfo; 1129 unsigned int nr_frags; 1130 1131 shinfo = skb_shinfo(skb); 1132 nr_frags = --shinfo->nr_frags; 1133 __skb_frag_set_page(&shinfo->frags[nr_frags], NULL); 1134 1135 dev_kfree_skb(skb); 1136 1137 cons_rx_buf->page = page; 1138 1139 /* Update prod since possibly some pages have been 1140 * allocated already. 1141 */ 1142 rxr->rx_agg_prod = prod; 1143 bnxt_reuse_rx_agg_bufs(cpr, idx, i, agg_bufs - i, tpa); 1144 return NULL; 1145 } 1146 1147 dma_unmap_page_attrs(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE, 1148 DMA_FROM_DEVICE, 1149 DMA_ATTR_WEAK_ORDERING); 1150 1151 skb->data_len += frag_len; 1152 skb->len += frag_len; 1153 skb->truesize += PAGE_SIZE; 1154 1155 prod = NEXT_RX_AGG(prod); 1156 } 1157 rxr->rx_agg_prod = prod; 1158 return skb; 1159 } 1160 1161 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1162 u8 agg_bufs, u32 *raw_cons) 1163 { 1164 u16 last; 1165 struct rx_agg_cmp *agg; 1166 1167 *raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs); 1168 last = RING_CMP(*raw_cons); 1169 agg = (struct rx_agg_cmp *) 1170 &cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)]; 1171 return RX_AGG_CMP_VALID(agg, *raw_cons); 1172 } 1173 1174 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data, 1175 unsigned int len, 1176 dma_addr_t mapping) 1177 { 1178 struct bnxt *bp = bnapi->bp; 1179 struct pci_dev *pdev = bp->pdev; 1180 struct sk_buff *skb; 1181 1182 skb = napi_alloc_skb(&bnapi->napi, len); 1183 if (!skb) 1184 return NULL; 1185 1186 dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh, 1187 bp->rx_dir); 1188 1189 memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN, 1190 len + NET_IP_ALIGN); 1191 1192 dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh, 1193 bp->rx_dir); 1194 1195 skb_put(skb, len); 1196 return skb; 1197 } 1198 1199 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1200 u32 *raw_cons, void *cmp) 1201 { 1202 struct rx_cmp *rxcmp = cmp; 1203 u32 tmp_raw_cons = *raw_cons; 1204 u8 cmp_type, agg_bufs = 0; 1205 1206 cmp_type = RX_CMP_TYPE(rxcmp); 1207 1208 if (cmp_type == CMP_TYPE_RX_L2_CMP) { 1209 agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) & 1210 RX_CMP_AGG_BUFS) >> 1211 RX_CMP_AGG_BUFS_SHIFT; 1212 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 1213 struct rx_tpa_end_cmp *tpa_end = cmp; 1214 1215 if (bp->flags & BNXT_FLAG_CHIP_P5) 1216 return 0; 1217 1218 agg_bufs = TPA_END_AGG_BUFS(tpa_end); 1219 } 1220 1221 if (agg_bufs) { 1222 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons)) 1223 return -EBUSY; 1224 } 1225 *raw_cons = tmp_raw_cons; 1226 return 0; 1227 } 1228 1229 static void bnxt_queue_fw_reset_work(struct bnxt *bp, unsigned long delay) 1230 { 1231 if (!(test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))) 1232 return; 1233 1234 if (BNXT_PF(bp)) 1235 queue_delayed_work(bnxt_pf_wq, &bp->fw_reset_task, delay); 1236 else 1237 schedule_delayed_work(&bp->fw_reset_task, delay); 1238 } 1239 1240 static void bnxt_queue_sp_work(struct bnxt *bp) 1241 { 1242 if (BNXT_PF(bp)) 1243 queue_work(bnxt_pf_wq, &bp->sp_task); 1244 else 1245 schedule_work(&bp->sp_task); 1246 } 1247 1248 static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 1249 { 1250 if (!rxr->bnapi->in_reset) { 1251 rxr->bnapi->in_reset = true; 1252 if (bp->flags & BNXT_FLAG_CHIP_P5) 1253 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event); 1254 else 1255 set_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event); 1256 bnxt_queue_sp_work(bp); 1257 } 1258 rxr->rx_next_cons = 0xffff; 1259 } 1260 1261 static u16 bnxt_alloc_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id) 1262 { 1263 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1264 u16 idx = agg_id & MAX_TPA_P5_MASK; 1265 1266 if (test_bit(idx, map->agg_idx_bmap)) 1267 idx = find_first_zero_bit(map->agg_idx_bmap, 1268 BNXT_AGG_IDX_BMAP_SIZE); 1269 __set_bit(idx, map->agg_idx_bmap); 1270 map->agg_id_tbl[agg_id] = idx; 1271 return idx; 1272 } 1273 1274 static void bnxt_free_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx) 1275 { 1276 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1277 1278 __clear_bit(idx, map->agg_idx_bmap); 1279 } 1280 1281 static u16 bnxt_lookup_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id) 1282 { 1283 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1284 1285 return map->agg_id_tbl[agg_id]; 1286 } 1287 1288 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 1289 struct rx_tpa_start_cmp *tpa_start, 1290 struct rx_tpa_start_cmp_ext *tpa_start1) 1291 { 1292 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf; 1293 struct bnxt_tpa_info *tpa_info; 1294 u16 cons, prod, agg_id; 1295 struct rx_bd *prod_bd; 1296 dma_addr_t mapping; 1297 1298 if (bp->flags & BNXT_FLAG_CHIP_P5) { 1299 agg_id = TPA_START_AGG_ID_P5(tpa_start); 1300 agg_id = bnxt_alloc_agg_idx(rxr, agg_id); 1301 } else { 1302 agg_id = TPA_START_AGG_ID(tpa_start); 1303 } 1304 cons = tpa_start->rx_tpa_start_cmp_opaque; 1305 prod = rxr->rx_prod; 1306 cons_rx_buf = &rxr->rx_buf_ring[cons]; 1307 prod_rx_buf = &rxr->rx_buf_ring[prod]; 1308 tpa_info = &rxr->rx_tpa[agg_id]; 1309 1310 if (unlikely(cons != rxr->rx_next_cons || 1311 TPA_START_ERROR(tpa_start))) { 1312 netdev_warn(bp->dev, "TPA cons %x, expected cons %x, error code %x\n", 1313 cons, rxr->rx_next_cons, 1314 TPA_START_ERROR_CODE(tpa_start1)); 1315 bnxt_sched_reset(bp, rxr); 1316 return; 1317 } 1318 /* Store cfa_code in tpa_info to use in tpa_end 1319 * completion processing. 1320 */ 1321 tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1); 1322 prod_rx_buf->data = tpa_info->data; 1323 prod_rx_buf->data_ptr = tpa_info->data_ptr; 1324 1325 mapping = tpa_info->mapping; 1326 prod_rx_buf->mapping = mapping; 1327 1328 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 1329 1330 prod_bd->rx_bd_haddr = cpu_to_le64(mapping); 1331 1332 tpa_info->data = cons_rx_buf->data; 1333 tpa_info->data_ptr = cons_rx_buf->data_ptr; 1334 cons_rx_buf->data = NULL; 1335 tpa_info->mapping = cons_rx_buf->mapping; 1336 1337 tpa_info->len = 1338 le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >> 1339 RX_TPA_START_CMP_LEN_SHIFT; 1340 if (likely(TPA_START_HASH_VALID(tpa_start))) { 1341 u32 hash_type = TPA_START_HASH_TYPE(tpa_start); 1342 1343 tpa_info->hash_type = PKT_HASH_TYPE_L4; 1344 tpa_info->gso_type = SKB_GSO_TCPV4; 1345 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */ 1346 if (hash_type == 3 || TPA_START_IS_IPV6(tpa_start1)) 1347 tpa_info->gso_type = SKB_GSO_TCPV6; 1348 tpa_info->rss_hash = 1349 le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash); 1350 } else { 1351 tpa_info->hash_type = PKT_HASH_TYPE_NONE; 1352 tpa_info->gso_type = 0; 1353 netif_warn(bp, rx_err, bp->dev, "TPA packet without valid hash\n"); 1354 } 1355 tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2); 1356 tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata); 1357 tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info); 1358 tpa_info->agg_count = 0; 1359 1360 rxr->rx_prod = NEXT_RX(prod); 1361 cons = NEXT_RX(cons); 1362 rxr->rx_next_cons = NEXT_RX(cons); 1363 cons_rx_buf = &rxr->rx_buf_ring[cons]; 1364 1365 bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data); 1366 rxr->rx_prod = NEXT_RX(rxr->rx_prod); 1367 cons_rx_buf->data = NULL; 1368 } 1369 1370 static void bnxt_abort_tpa(struct bnxt_cp_ring_info *cpr, u16 idx, u32 agg_bufs) 1371 { 1372 if (agg_bufs) 1373 bnxt_reuse_rx_agg_bufs(cpr, idx, 0, agg_bufs, true); 1374 } 1375 1376 #ifdef CONFIG_INET 1377 static void bnxt_gro_tunnel(struct sk_buff *skb, __be16 ip_proto) 1378 { 1379 struct udphdr *uh = NULL; 1380 1381 if (ip_proto == htons(ETH_P_IP)) { 1382 struct iphdr *iph = (struct iphdr *)skb->data; 1383 1384 if (iph->protocol == IPPROTO_UDP) 1385 uh = (struct udphdr *)(iph + 1); 1386 } else { 1387 struct ipv6hdr *iph = (struct ipv6hdr *)skb->data; 1388 1389 if (iph->nexthdr == IPPROTO_UDP) 1390 uh = (struct udphdr *)(iph + 1); 1391 } 1392 if (uh) { 1393 if (uh->check) 1394 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL_CSUM; 1395 else 1396 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL; 1397 } 1398 } 1399 #endif 1400 1401 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info, 1402 int payload_off, int tcp_ts, 1403 struct sk_buff *skb) 1404 { 1405 #ifdef CONFIG_INET 1406 struct tcphdr *th; 1407 int len, nw_off; 1408 u16 outer_ip_off, inner_ip_off, inner_mac_off; 1409 u32 hdr_info = tpa_info->hdr_info; 1410 bool loopback = false; 1411 1412 inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info); 1413 inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info); 1414 outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info); 1415 1416 /* If the packet is an internal loopback packet, the offsets will 1417 * have an extra 4 bytes. 1418 */ 1419 if (inner_mac_off == 4) { 1420 loopback = true; 1421 } else if (inner_mac_off > 4) { 1422 __be16 proto = *((__be16 *)(skb->data + inner_ip_off - 1423 ETH_HLEN - 2)); 1424 1425 /* We only support inner iPv4/ipv6. If we don't see the 1426 * correct protocol ID, it must be a loopback packet where 1427 * the offsets are off by 4. 1428 */ 1429 if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6)) 1430 loopback = true; 1431 } 1432 if (loopback) { 1433 /* internal loopback packet, subtract all offsets by 4 */ 1434 inner_ip_off -= 4; 1435 inner_mac_off -= 4; 1436 outer_ip_off -= 4; 1437 } 1438 1439 nw_off = inner_ip_off - ETH_HLEN; 1440 skb_set_network_header(skb, nw_off); 1441 if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) { 1442 struct ipv6hdr *iph = ipv6_hdr(skb); 1443 1444 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr)); 1445 len = skb->len - skb_transport_offset(skb); 1446 th = tcp_hdr(skb); 1447 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0); 1448 } else { 1449 struct iphdr *iph = ip_hdr(skb); 1450 1451 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr)); 1452 len = skb->len - skb_transport_offset(skb); 1453 th = tcp_hdr(skb); 1454 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0); 1455 } 1456 1457 if (inner_mac_off) { /* tunnel */ 1458 __be16 proto = *((__be16 *)(skb->data + outer_ip_off - 1459 ETH_HLEN - 2)); 1460 1461 bnxt_gro_tunnel(skb, proto); 1462 } 1463 #endif 1464 return skb; 1465 } 1466 1467 static struct sk_buff *bnxt_gro_func_5750x(struct bnxt_tpa_info *tpa_info, 1468 int payload_off, int tcp_ts, 1469 struct sk_buff *skb) 1470 { 1471 #ifdef CONFIG_INET 1472 u16 outer_ip_off, inner_ip_off, inner_mac_off; 1473 u32 hdr_info = tpa_info->hdr_info; 1474 int iphdr_len, nw_off; 1475 1476 inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info); 1477 inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info); 1478 outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info); 1479 1480 nw_off = inner_ip_off - ETH_HLEN; 1481 skb_set_network_header(skb, nw_off); 1482 iphdr_len = (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) ? 1483 sizeof(struct ipv6hdr) : sizeof(struct iphdr); 1484 skb_set_transport_header(skb, nw_off + iphdr_len); 1485 1486 if (inner_mac_off) { /* tunnel */ 1487 __be16 proto = *((__be16 *)(skb->data + outer_ip_off - 1488 ETH_HLEN - 2)); 1489 1490 bnxt_gro_tunnel(skb, proto); 1491 } 1492 #endif 1493 return skb; 1494 } 1495 1496 #define BNXT_IPV4_HDR_SIZE (sizeof(struct iphdr) + sizeof(struct tcphdr)) 1497 #define BNXT_IPV6_HDR_SIZE (sizeof(struct ipv6hdr) + sizeof(struct tcphdr)) 1498 1499 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info, 1500 int payload_off, int tcp_ts, 1501 struct sk_buff *skb) 1502 { 1503 #ifdef CONFIG_INET 1504 struct tcphdr *th; 1505 int len, nw_off, tcp_opt_len = 0; 1506 1507 if (tcp_ts) 1508 tcp_opt_len = 12; 1509 1510 if (tpa_info->gso_type == SKB_GSO_TCPV4) { 1511 struct iphdr *iph; 1512 1513 nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len - 1514 ETH_HLEN; 1515 skb_set_network_header(skb, nw_off); 1516 iph = ip_hdr(skb); 1517 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr)); 1518 len = skb->len - skb_transport_offset(skb); 1519 th = tcp_hdr(skb); 1520 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0); 1521 } else if (tpa_info->gso_type == SKB_GSO_TCPV6) { 1522 struct ipv6hdr *iph; 1523 1524 nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len - 1525 ETH_HLEN; 1526 skb_set_network_header(skb, nw_off); 1527 iph = ipv6_hdr(skb); 1528 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr)); 1529 len = skb->len - skb_transport_offset(skb); 1530 th = tcp_hdr(skb); 1531 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0); 1532 } else { 1533 dev_kfree_skb_any(skb); 1534 return NULL; 1535 } 1536 1537 if (nw_off) /* tunnel */ 1538 bnxt_gro_tunnel(skb, skb->protocol); 1539 #endif 1540 return skb; 1541 } 1542 1543 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp, 1544 struct bnxt_tpa_info *tpa_info, 1545 struct rx_tpa_end_cmp *tpa_end, 1546 struct rx_tpa_end_cmp_ext *tpa_end1, 1547 struct sk_buff *skb) 1548 { 1549 #ifdef CONFIG_INET 1550 int payload_off; 1551 u16 segs; 1552 1553 segs = TPA_END_TPA_SEGS(tpa_end); 1554 if (segs == 1) 1555 return skb; 1556 1557 NAPI_GRO_CB(skb)->count = segs; 1558 skb_shinfo(skb)->gso_size = 1559 le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len); 1560 skb_shinfo(skb)->gso_type = tpa_info->gso_type; 1561 if (bp->flags & BNXT_FLAG_CHIP_P5) 1562 payload_off = TPA_END_PAYLOAD_OFF_P5(tpa_end1); 1563 else 1564 payload_off = TPA_END_PAYLOAD_OFF(tpa_end); 1565 skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb); 1566 if (likely(skb)) 1567 tcp_gro_complete(skb); 1568 #endif 1569 return skb; 1570 } 1571 1572 /* Given the cfa_code of a received packet determine which 1573 * netdev (vf-rep or PF) the packet is destined to. 1574 */ 1575 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code) 1576 { 1577 struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code); 1578 1579 /* if vf-rep dev is NULL, the must belongs to the PF */ 1580 return dev ? dev : bp->dev; 1581 } 1582 1583 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp, 1584 struct bnxt_cp_ring_info *cpr, 1585 u32 *raw_cons, 1586 struct rx_tpa_end_cmp *tpa_end, 1587 struct rx_tpa_end_cmp_ext *tpa_end1, 1588 u8 *event) 1589 { 1590 struct bnxt_napi *bnapi = cpr->bnapi; 1591 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1592 u8 *data_ptr, agg_bufs; 1593 unsigned int len; 1594 struct bnxt_tpa_info *tpa_info; 1595 dma_addr_t mapping; 1596 struct sk_buff *skb; 1597 u16 idx = 0, agg_id; 1598 void *data; 1599 bool gro; 1600 1601 if (unlikely(bnapi->in_reset)) { 1602 int rc = bnxt_discard_rx(bp, cpr, raw_cons, tpa_end); 1603 1604 if (rc < 0) 1605 return ERR_PTR(-EBUSY); 1606 return NULL; 1607 } 1608 1609 if (bp->flags & BNXT_FLAG_CHIP_P5) { 1610 agg_id = TPA_END_AGG_ID_P5(tpa_end); 1611 agg_id = bnxt_lookup_agg_idx(rxr, agg_id); 1612 agg_bufs = TPA_END_AGG_BUFS_P5(tpa_end1); 1613 tpa_info = &rxr->rx_tpa[agg_id]; 1614 if (unlikely(agg_bufs != tpa_info->agg_count)) { 1615 netdev_warn(bp->dev, "TPA end agg_buf %d != expected agg_bufs %d\n", 1616 agg_bufs, tpa_info->agg_count); 1617 agg_bufs = tpa_info->agg_count; 1618 } 1619 tpa_info->agg_count = 0; 1620 *event |= BNXT_AGG_EVENT; 1621 bnxt_free_agg_idx(rxr, agg_id); 1622 idx = agg_id; 1623 gro = !!(bp->flags & BNXT_FLAG_GRO); 1624 } else { 1625 agg_id = TPA_END_AGG_ID(tpa_end); 1626 agg_bufs = TPA_END_AGG_BUFS(tpa_end); 1627 tpa_info = &rxr->rx_tpa[agg_id]; 1628 idx = RING_CMP(*raw_cons); 1629 if (agg_bufs) { 1630 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons)) 1631 return ERR_PTR(-EBUSY); 1632 1633 *event |= BNXT_AGG_EVENT; 1634 idx = NEXT_CMP(idx); 1635 } 1636 gro = !!TPA_END_GRO(tpa_end); 1637 } 1638 data = tpa_info->data; 1639 data_ptr = tpa_info->data_ptr; 1640 prefetch(data_ptr); 1641 len = tpa_info->len; 1642 mapping = tpa_info->mapping; 1643 1644 if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) { 1645 bnxt_abort_tpa(cpr, idx, agg_bufs); 1646 if (agg_bufs > MAX_SKB_FRAGS) 1647 netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n", 1648 agg_bufs, (int)MAX_SKB_FRAGS); 1649 return NULL; 1650 } 1651 1652 if (len <= bp->rx_copy_thresh) { 1653 skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping); 1654 if (!skb) { 1655 bnxt_abort_tpa(cpr, idx, agg_bufs); 1656 cpr->sw_stats.rx.rx_oom_discards += 1; 1657 return NULL; 1658 } 1659 } else { 1660 u8 *new_data; 1661 dma_addr_t new_mapping; 1662 1663 new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC); 1664 if (!new_data) { 1665 bnxt_abort_tpa(cpr, idx, agg_bufs); 1666 cpr->sw_stats.rx.rx_oom_discards += 1; 1667 return NULL; 1668 } 1669 1670 tpa_info->data = new_data; 1671 tpa_info->data_ptr = new_data + bp->rx_offset; 1672 tpa_info->mapping = new_mapping; 1673 1674 skb = build_skb(data, 0); 1675 dma_unmap_single_attrs(&bp->pdev->dev, mapping, 1676 bp->rx_buf_use_size, bp->rx_dir, 1677 DMA_ATTR_WEAK_ORDERING); 1678 1679 if (!skb) { 1680 kfree(data); 1681 bnxt_abort_tpa(cpr, idx, agg_bufs); 1682 cpr->sw_stats.rx.rx_oom_discards += 1; 1683 return NULL; 1684 } 1685 skb_reserve(skb, bp->rx_offset); 1686 skb_put(skb, len); 1687 } 1688 1689 if (agg_bufs) { 1690 skb = bnxt_rx_pages(bp, cpr, skb, idx, agg_bufs, true); 1691 if (!skb) { 1692 /* Page reuse already handled by bnxt_rx_pages(). */ 1693 cpr->sw_stats.rx.rx_oom_discards += 1; 1694 return NULL; 1695 } 1696 } 1697 1698 skb->protocol = 1699 eth_type_trans(skb, bnxt_get_pkt_dev(bp, tpa_info->cfa_code)); 1700 1701 if (tpa_info->hash_type != PKT_HASH_TYPE_NONE) 1702 skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type); 1703 1704 if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) && 1705 (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) { 1706 __be16 vlan_proto = htons(tpa_info->metadata >> 1707 RX_CMP_FLAGS2_METADATA_TPID_SFT); 1708 u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK; 1709 1710 if (eth_type_vlan(vlan_proto)) { 1711 __vlan_hwaccel_put_tag(skb, vlan_proto, vtag); 1712 } else { 1713 dev_kfree_skb(skb); 1714 return NULL; 1715 } 1716 } 1717 1718 skb_checksum_none_assert(skb); 1719 if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) { 1720 skb->ip_summed = CHECKSUM_UNNECESSARY; 1721 skb->csum_level = 1722 (tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3; 1723 } 1724 1725 if (gro) 1726 skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb); 1727 1728 return skb; 1729 } 1730 1731 static void bnxt_tpa_agg(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 1732 struct rx_agg_cmp *rx_agg) 1733 { 1734 u16 agg_id = TPA_AGG_AGG_ID(rx_agg); 1735 struct bnxt_tpa_info *tpa_info; 1736 1737 agg_id = bnxt_lookup_agg_idx(rxr, agg_id); 1738 tpa_info = &rxr->rx_tpa[agg_id]; 1739 BUG_ON(tpa_info->agg_count >= MAX_SKB_FRAGS); 1740 tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg; 1741 } 1742 1743 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi, 1744 struct sk_buff *skb) 1745 { 1746 if (skb->dev != bp->dev) { 1747 /* this packet belongs to a vf-rep */ 1748 bnxt_vf_rep_rx(bp, skb); 1749 return; 1750 } 1751 skb_record_rx_queue(skb, bnapi->index); 1752 napi_gro_receive(&bnapi->napi, skb); 1753 } 1754 1755 /* returns the following: 1756 * 1 - 1 packet successfully received 1757 * 0 - successful TPA_START, packet not completed yet 1758 * -EBUSY - completion ring does not have all the agg buffers yet 1759 * -ENOMEM - packet aborted due to out of memory 1760 * -EIO - packet aborted due to hw error indicated in BD 1761 */ 1762 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1763 u32 *raw_cons, u8 *event) 1764 { 1765 struct bnxt_napi *bnapi = cpr->bnapi; 1766 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1767 struct net_device *dev = bp->dev; 1768 struct rx_cmp *rxcmp; 1769 struct rx_cmp_ext *rxcmp1; 1770 u32 tmp_raw_cons = *raw_cons; 1771 u16 cfa_code, cons, prod, cp_cons = RING_CMP(tmp_raw_cons); 1772 struct bnxt_sw_rx_bd *rx_buf; 1773 unsigned int len; 1774 u8 *data_ptr, agg_bufs, cmp_type; 1775 dma_addr_t dma_addr; 1776 struct sk_buff *skb; 1777 u32 flags, misc; 1778 void *data; 1779 int rc = 0; 1780 1781 rxcmp = (struct rx_cmp *) 1782 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 1783 1784 cmp_type = RX_CMP_TYPE(rxcmp); 1785 1786 if (cmp_type == CMP_TYPE_RX_TPA_AGG_CMP) { 1787 bnxt_tpa_agg(bp, rxr, (struct rx_agg_cmp *)rxcmp); 1788 goto next_rx_no_prod_no_len; 1789 } 1790 1791 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons); 1792 cp_cons = RING_CMP(tmp_raw_cons); 1793 rxcmp1 = (struct rx_cmp_ext *) 1794 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 1795 1796 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 1797 return -EBUSY; 1798 1799 /* The valid test of the entry must be done first before 1800 * reading any further. 1801 */ 1802 dma_rmb(); 1803 prod = rxr->rx_prod; 1804 1805 if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) { 1806 bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp, 1807 (struct rx_tpa_start_cmp_ext *)rxcmp1); 1808 1809 *event |= BNXT_RX_EVENT; 1810 goto next_rx_no_prod_no_len; 1811 1812 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 1813 skb = bnxt_tpa_end(bp, cpr, &tmp_raw_cons, 1814 (struct rx_tpa_end_cmp *)rxcmp, 1815 (struct rx_tpa_end_cmp_ext *)rxcmp1, event); 1816 1817 if (IS_ERR(skb)) 1818 return -EBUSY; 1819 1820 rc = -ENOMEM; 1821 if (likely(skb)) { 1822 bnxt_deliver_skb(bp, bnapi, skb); 1823 rc = 1; 1824 } 1825 *event |= BNXT_RX_EVENT; 1826 goto next_rx_no_prod_no_len; 1827 } 1828 1829 cons = rxcmp->rx_cmp_opaque; 1830 if (unlikely(cons != rxr->rx_next_cons)) { 1831 int rc1 = bnxt_discard_rx(bp, cpr, &tmp_raw_cons, rxcmp); 1832 1833 /* 0xffff is forced error, don't print it */ 1834 if (rxr->rx_next_cons != 0xffff) 1835 netdev_warn(bp->dev, "RX cons %x != expected cons %x\n", 1836 cons, rxr->rx_next_cons); 1837 bnxt_sched_reset(bp, rxr); 1838 if (rc1) 1839 return rc1; 1840 goto next_rx_no_prod_no_len; 1841 } 1842 rx_buf = &rxr->rx_buf_ring[cons]; 1843 data = rx_buf->data; 1844 data_ptr = rx_buf->data_ptr; 1845 prefetch(data_ptr); 1846 1847 misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1); 1848 agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT; 1849 1850 if (agg_bufs) { 1851 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons)) 1852 return -EBUSY; 1853 1854 cp_cons = NEXT_CMP(cp_cons); 1855 *event |= BNXT_AGG_EVENT; 1856 } 1857 *event |= BNXT_RX_EVENT; 1858 1859 rx_buf->data = NULL; 1860 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) { 1861 u32 rx_err = le32_to_cpu(rxcmp1->rx_cmp_cfa_code_errors_v2); 1862 1863 bnxt_reuse_rx_data(rxr, cons, data); 1864 if (agg_bufs) 1865 bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, agg_bufs, 1866 false); 1867 1868 rc = -EIO; 1869 if (rx_err & RX_CMPL_ERRORS_BUFFER_ERROR_MASK) { 1870 bnapi->cp_ring.sw_stats.rx.rx_buf_errors++; 1871 if (!(bp->flags & BNXT_FLAG_CHIP_P5) && 1872 !(bp->fw_cap & BNXT_FW_CAP_RING_MONITOR)) { 1873 netdev_warn_once(bp->dev, "RX buffer error %x\n", 1874 rx_err); 1875 bnxt_sched_reset(bp, rxr); 1876 } 1877 } 1878 goto next_rx_no_len; 1879 } 1880 1881 flags = le32_to_cpu(rxcmp->rx_cmp_len_flags_type); 1882 len = flags >> RX_CMP_LEN_SHIFT; 1883 dma_addr = rx_buf->mapping; 1884 1885 if (bnxt_rx_xdp(bp, rxr, cons, data, &data_ptr, &len, event)) { 1886 rc = 1; 1887 goto next_rx; 1888 } 1889 1890 if (len <= bp->rx_copy_thresh) { 1891 skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr); 1892 bnxt_reuse_rx_data(rxr, cons, data); 1893 if (!skb) { 1894 if (agg_bufs) 1895 bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, 1896 agg_bufs, false); 1897 cpr->sw_stats.rx.rx_oom_discards += 1; 1898 rc = -ENOMEM; 1899 goto next_rx; 1900 } 1901 } else { 1902 u32 payload; 1903 1904 if (rx_buf->data_ptr == data_ptr) 1905 payload = misc & RX_CMP_PAYLOAD_OFFSET; 1906 else 1907 payload = 0; 1908 skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr, 1909 payload | len); 1910 if (!skb) { 1911 cpr->sw_stats.rx.rx_oom_discards += 1; 1912 rc = -ENOMEM; 1913 goto next_rx; 1914 } 1915 } 1916 1917 if (agg_bufs) { 1918 skb = bnxt_rx_pages(bp, cpr, skb, cp_cons, agg_bufs, false); 1919 if (!skb) { 1920 cpr->sw_stats.rx.rx_oom_discards += 1; 1921 rc = -ENOMEM; 1922 goto next_rx; 1923 } 1924 } 1925 1926 if (RX_CMP_HASH_VALID(rxcmp)) { 1927 u32 hash_type = RX_CMP_HASH_TYPE(rxcmp); 1928 enum pkt_hash_types type = PKT_HASH_TYPE_L4; 1929 1930 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */ 1931 if (hash_type != 1 && hash_type != 3) 1932 type = PKT_HASH_TYPE_L3; 1933 skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type); 1934 } 1935 1936 cfa_code = RX_CMP_CFA_CODE(rxcmp1); 1937 skb->protocol = eth_type_trans(skb, bnxt_get_pkt_dev(bp, cfa_code)); 1938 1939 if ((rxcmp1->rx_cmp_flags2 & 1940 cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) && 1941 (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) { 1942 u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data); 1943 u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK; 1944 __be16 vlan_proto = htons(meta_data >> 1945 RX_CMP_FLAGS2_METADATA_TPID_SFT); 1946 1947 if (eth_type_vlan(vlan_proto)) { 1948 __vlan_hwaccel_put_tag(skb, vlan_proto, vtag); 1949 } else { 1950 dev_kfree_skb(skb); 1951 goto next_rx; 1952 } 1953 } 1954 1955 skb_checksum_none_assert(skb); 1956 if (RX_CMP_L4_CS_OK(rxcmp1)) { 1957 if (dev->features & NETIF_F_RXCSUM) { 1958 skb->ip_summed = CHECKSUM_UNNECESSARY; 1959 skb->csum_level = RX_CMP_ENCAP(rxcmp1); 1960 } 1961 } else { 1962 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) { 1963 if (dev->features & NETIF_F_RXCSUM) 1964 bnapi->cp_ring.sw_stats.rx.rx_l4_csum_errors++; 1965 } 1966 } 1967 1968 if (unlikely((flags & RX_CMP_FLAGS_ITYPES_MASK) == 1969 RX_CMP_FLAGS_ITYPE_PTP_W_TS)) { 1970 if (bp->flags & BNXT_FLAG_CHIP_P5) { 1971 u32 cmpl_ts = le32_to_cpu(rxcmp1->rx_cmp_timestamp); 1972 u64 ns, ts; 1973 1974 if (!bnxt_get_rx_ts_p5(bp, &ts, cmpl_ts)) { 1975 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 1976 1977 spin_lock_bh(&ptp->ptp_lock); 1978 ns = timecounter_cyc2time(&ptp->tc, ts); 1979 spin_unlock_bh(&ptp->ptp_lock); 1980 memset(skb_hwtstamps(skb), 0, 1981 sizeof(*skb_hwtstamps(skb))); 1982 skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns); 1983 } 1984 } 1985 } 1986 bnxt_deliver_skb(bp, bnapi, skb); 1987 rc = 1; 1988 1989 next_rx: 1990 cpr->rx_packets += 1; 1991 cpr->rx_bytes += len; 1992 1993 next_rx_no_len: 1994 rxr->rx_prod = NEXT_RX(prod); 1995 rxr->rx_next_cons = NEXT_RX(cons); 1996 1997 next_rx_no_prod_no_len: 1998 *raw_cons = tmp_raw_cons; 1999 2000 return rc; 2001 } 2002 2003 /* In netpoll mode, if we are using a combined completion ring, we need to 2004 * discard the rx packets and recycle the buffers. 2005 */ 2006 static int bnxt_force_rx_discard(struct bnxt *bp, 2007 struct bnxt_cp_ring_info *cpr, 2008 u32 *raw_cons, u8 *event) 2009 { 2010 u32 tmp_raw_cons = *raw_cons; 2011 struct rx_cmp_ext *rxcmp1; 2012 struct rx_cmp *rxcmp; 2013 u16 cp_cons; 2014 u8 cmp_type; 2015 int rc; 2016 2017 cp_cons = RING_CMP(tmp_raw_cons); 2018 rxcmp = (struct rx_cmp *) 2019 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2020 2021 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons); 2022 cp_cons = RING_CMP(tmp_raw_cons); 2023 rxcmp1 = (struct rx_cmp_ext *) 2024 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2025 2026 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 2027 return -EBUSY; 2028 2029 /* The valid test of the entry must be done first before 2030 * reading any further. 2031 */ 2032 dma_rmb(); 2033 cmp_type = RX_CMP_TYPE(rxcmp); 2034 if (cmp_type == CMP_TYPE_RX_L2_CMP) { 2035 rxcmp1->rx_cmp_cfa_code_errors_v2 |= 2036 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR); 2037 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 2038 struct rx_tpa_end_cmp_ext *tpa_end1; 2039 2040 tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1; 2041 tpa_end1->rx_tpa_end_cmp_errors_v2 |= 2042 cpu_to_le32(RX_TPA_END_CMP_ERRORS); 2043 } 2044 rc = bnxt_rx_pkt(bp, cpr, raw_cons, event); 2045 if (rc && rc != -EBUSY) 2046 cpr->sw_stats.rx.rx_netpoll_discards += 1; 2047 return rc; 2048 } 2049 2050 u32 bnxt_fw_health_readl(struct bnxt *bp, int reg_idx) 2051 { 2052 struct bnxt_fw_health *fw_health = bp->fw_health; 2053 u32 reg = fw_health->regs[reg_idx]; 2054 u32 reg_type, reg_off, val = 0; 2055 2056 reg_type = BNXT_FW_HEALTH_REG_TYPE(reg); 2057 reg_off = BNXT_FW_HEALTH_REG_OFF(reg); 2058 switch (reg_type) { 2059 case BNXT_FW_HEALTH_REG_TYPE_CFG: 2060 pci_read_config_dword(bp->pdev, reg_off, &val); 2061 break; 2062 case BNXT_FW_HEALTH_REG_TYPE_GRC: 2063 reg_off = fw_health->mapped_regs[reg_idx]; 2064 fallthrough; 2065 case BNXT_FW_HEALTH_REG_TYPE_BAR0: 2066 val = readl(bp->bar0 + reg_off); 2067 break; 2068 case BNXT_FW_HEALTH_REG_TYPE_BAR1: 2069 val = readl(bp->bar1 + reg_off); 2070 break; 2071 } 2072 if (reg_idx == BNXT_FW_RESET_INPROG_REG) 2073 val &= fw_health->fw_reset_inprog_reg_mask; 2074 return val; 2075 } 2076 2077 static u16 bnxt_agg_ring_id_to_grp_idx(struct bnxt *bp, u16 ring_id) 2078 { 2079 int i; 2080 2081 for (i = 0; i < bp->rx_nr_rings; i++) { 2082 u16 grp_idx = bp->rx_ring[i].bnapi->index; 2083 struct bnxt_ring_grp_info *grp_info; 2084 2085 grp_info = &bp->grp_info[grp_idx]; 2086 if (grp_info->agg_fw_ring_id == ring_id) 2087 return grp_idx; 2088 } 2089 return INVALID_HW_RING_ID; 2090 } 2091 2092 static void bnxt_event_error_report(struct bnxt *bp, u32 data1, u32 data2) 2093 { 2094 switch (BNXT_EVENT_ERROR_REPORT_TYPE(data1)) { 2095 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_INVALID_SIGNAL: 2096 netdev_err(bp->dev, "1PPS: Received invalid signal on pin%lu from the external source. Please fix the signal and reconfigure the pin\n", 2097 BNXT_EVENT_INVALID_SIGNAL_DATA(data2)); 2098 break; 2099 default: 2100 netdev_err(bp->dev, "FW reported unknown error type\n"); 2101 break; 2102 } 2103 } 2104 2105 #define BNXT_GET_EVENT_PORT(data) \ 2106 ((data) & \ 2107 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK) 2108 2109 #define BNXT_EVENT_RING_TYPE(data2) \ 2110 ((data2) & \ 2111 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_MASK) 2112 2113 #define BNXT_EVENT_RING_TYPE_RX(data2) \ 2114 (BNXT_EVENT_RING_TYPE(data2) == \ 2115 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_RX) 2116 2117 static int bnxt_async_event_process(struct bnxt *bp, 2118 struct hwrm_async_event_cmpl *cmpl) 2119 { 2120 u16 event_id = le16_to_cpu(cmpl->event_id); 2121 u32 data1 = le32_to_cpu(cmpl->event_data1); 2122 u32 data2 = le32_to_cpu(cmpl->event_data2); 2123 2124 /* TODO CHIMP_FW: Define event id's for link change, error etc */ 2125 switch (event_id) { 2126 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: { 2127 struct bnxt_link_info *link_info = &bp->link_info; 2128 2129 if (BNXT_VF(bp)) 2130 goto async_event_process_exit; 2131 2132 /* print unsupported speed warning in forced speed mode only */ 2133 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) && 2134 (data1 & 0x20000)) { 2135 u16 fw_speed = link_info->force_link_speed; 2136 u32 speed = bnxt_fw_to_ethtool_speed(fw_speed); 2137 2138 if (speed != SPEED_UNKNOWN) 2139 netdev_warn(bp->dev, "Link speed %d no longer supported\n", 2140 speed); 2141 } 2142 set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event); 2143 } 2144 fallthrough; 2145 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE: 2146 case ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE: 2147 set_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, &bp->sp_event); 2148 fallthrough; 2149 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE: 2150 set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event); 2151 break; 2152 case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD: 2153 set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event); 2154 break; 2155 case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: { 2156 u16 port_id = BNXT_GET_EVENT_PORT(data1); 2157 2158 if (BNXT_VF(bp)) 2159 break; 2160 2161 if (bp->pf.port_id != port_id) 2162 break; 2163 2164 set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event); 2165 break; 2166 } 2167 case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE: 2168 if (BNXT_PF(bp)) 2169 goto async_event_process_exit; 2170 set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event); 2171 break; 2172 case ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY: { 2173 char *fatal_str = "non-fatal"; 2174 2175 if (!bp->fw_health) 2176 goto async_event_process_exit; 2177 2178 bp->fw_reset_timestamp = jiffies; 2179 bp->fw_reset_min_dsecs = cmpl->timestamp_lo; 2180 if (!bp->fw_reset_min_dsecs) 2181 bp->fw_reset_min_dsecs = BNXT_DFLT_FW_RST_MIN_DSECS; 2182 bp->fw_reset_max_dsecs = le16_to_cpu(cmpl->timestamp_hi); 2183 if (!bp->fw_reset_max_dsecs) 2184 bp->fw_reset_max_dsecs = BNXT_DFLT_FW_RST_MAX_DSECS; 2185 if (EVENT_DATA1_RESET_NOTIFY_FATAL(data1)) { 2186 fatal_str = "fatal"; 2187 set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 2188 } 2189 netif_warn(bp, hw, bp->dev, 2190 "Firmware %s reset event, data1: 0x%x, data2: 0x%x, min wait %u ms, max wait %u ms\n", 2191 fatal_str, data1, data2, 2192 bp->fw_reset_min_dsecs * 100, 2193 bp->fw_reset_max_dsecs * 100); 2194 set_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event); 2195 break; 2196 } 2197 case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY: { 2198 struct bnxt_fw_health *fw_health = bp->fw_health; 2199 2200 if (!fw_health) 2201 goto async_event_process_exit; 2202 2203 fw_health->enabled = EVENT_DATA1_RECOVERY_ENABLED(data1); 2204 fw_health->master = EVENT_DATA1_RECOVERY_MASTER_FUNC(data1); 2205 if (!fw_health->enabled) { 2206 netif_info(bp, drv, bp->dev, 2207 "Error recovery info: error recovery[0]\n"); 2208 break; 2209 } 2210 fw_health->tmr_multiplier = 2211 DIV_ROUND_UP(fw_health->polling_dsecs * HZ, 2212 bp->current_interval * 10); 2213 fw_health->tmr_counter = fw_health->tmr_multiplier; 2214 fw_health->last_fw_heartbeat = 2215 bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 2216 fw_health->last_fw_reset_cnt = 2217 bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 2218 netif_info(bp, drv, bp->dev, 2219 "Error recovery info: error recovery[1], master[%d], reset count[%u], health status: 0x%x\n", 2220 fw_health->master, fw_health->last_fw_reset_cnt, 2221 bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG)); 2222 goto async_event_process_exit; 2223 } 2224 case ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION: 2225 netif_notice(bp, hw, bp->dev, 2226 "Received firmware debug notification, data1: 0x%x, data2: 0x%x\n", 2227 data1, data2); 2228 goto async_event_process_exit; 2229 case ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG: { 2230 struct bnxt_rx_ring_info *rxr; 2231 u16 grp_idx; 2232 2233 if (bp->flags & BNXT_FLAG_CHIP_P5) 2234 goto async_event_process_exit; 2235 2236 netdev_warn(bp->dev, "Ring monitor event, ring type %lu id 0x%x\n", 2237 BNXT_EVENT_RING_TYPE(data2), data1); 2238 if (!BNXT_EVENT_RING_TYPE_RX(data2)) 2239 goto async_event_process_exit; 2240 2241 grp_idx = bnxt_agg_ring_id_to_grp_idx(bp, data1); 2242 if (grp_idx == INVALID_HW_RING_ID) { 2243 netdev_warn(bp->dev, "Unknown RX agg ring id 0x%x\n", 2244 data1); 2245 goto async_event_process_exit; 2246 } 2247 rxr = bp->bnapi[grp_idx]->rx_ring; 2248 bnxt_sched_reset(bp, rxr); 2249 goto async_event_process_exit; 2250 } 2251 case ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST: { 2252 struct bnxt_fw_health *fw_health = bp->fw_health; 2253 2254 netif_notice(bp, hw, bp->dev, 2255 "Received firmware echo request, data1: 0x%x, data2: 0x%x\n", 2256 data1, data2); 2257 if (fw_health) { 2258 fw_health->echo_req_data1 = data1; 2259 fw_health->echo_req_data2 = data2; 2260 set_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event); 2261 break; 2262 } 2263 goto async_event_process_exit; 2264 } 2265 case ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP: { 2266 bnxt_ptp_pps_event(bp, data1, data2); 2267 goto async_event_process_exit; 2268 } 2269 case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT: { 2270 bnxt_event_error_report(bp, data1, data2); 2271 goto async_event_process_exit; 2272 } 2273 case ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE: { 2274 u16 seq_id = le32_to_cpu(cmpl->event_data2) & 0xffff; 2275 2276 hwrm_update_token(bp, seq_id, BNXT_HWRM_DEFERRED); 2277 goto async_event_process_exit; 2278 } 2279 default: 2280 goto async_event_process_exit; 2281 } 2282 bnxt_queue_sp_work(bp); 2283 async_event_process_exit: 2284 bnxt_ulp_async_events(bp, cmpl); 2285 return 0; 2286 } 2287 2288 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp) 2289 { 2290 u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id; 2291 struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp; 2292 struct hwrm_fwd_req_cmpl *fwd_req_cmpl = 2293 (struct hwrm_fwd_req_cmpl *)txcmp; 2294 2295 switch (cmpl_type) { 2296 case CMPL_BASE_TYPE_HWRM_DONE: 2297 seq_id = le16_to_cpu(h_cmpl->sequence_id); 2298 hwrm_update_token(bp, seq_id, BNXT_HWRM_COMPLETE); 2299 break; 2300 2301 case CMPL_BASE_TYPE_HWRM_FWD_REQ: 2302 vf_id = le16_to_cpu(fwd_req_cmpl->source_id); 2303 2304 if ((vf_id < bp->pf.first_vf_id) || 2305 (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) { 2306 netdev_err(bp->dev, "Msg contains invalid VF id %x\n", 2307 vf_id); 2308 return -EINVAL; 2309 } 2310 2311 set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap); 2312 set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event); 2313 bnxt_queue_sp_work(bp); 2314 break; 2315 2316 case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT: 2317 bnxt_async_event_process(bp, 2318 (struct hwrm_async_event_cmpl *)txcmp); 2319 break; 2320 2321 default: 2322 break; 2323 } 2324 2325 return 0; 2326 } 2327 2328 static irqreturn_t bnxt_msix(int irq, void *dev_instance) 2329 { 2330 struct bnxt_napi *bnapi = dev_instance; 2331 struct bnxt *bp = bnapi->bp; 2332 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2333 u32 cons = RING_CMP(cpr->cp_raw_cons); 2334 2335 cpr->event_ctr++; 2336 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]); 2337 napi_schedule(&bnapi->napi); 2338 return IRQ_HANDLED; 2339 } 2340 2341 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr) 2342 { 2343 u32 raw_cons = cpr->cp_raw_cons; 2344 u16 cons = RING_CMP(raw_cons); 2345 struct tx_cmp *txcmp; 2346 2347 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 2348 2349 return TX_CMP_VALID(txcmp, raw_cons); 2350 } 2351 2352 static irqreturn_t bnxt_inta(int irq, void *dev_instance) 2353 { 2354 struct bnxt_napi *bnapi = dev_instance; 2355 struct bnxt *bp = bnapi->bp; 2356 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2357 u32 cons = RING_CMP(cpr->cp_raw_cons); 2358 u32 int_status; 2359 2360 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]); 2361 2362 if (!bnxt_has_work(bp, cpr)) { 2363 int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS); 2364 /* return if erroneous interrupt */ 2365 if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id))) 2366 return IRQ_NONE; 2367 } 2368 2369 /* disable ring IRQ */ 2370 BNXT_CP_DB_IRQ_DIS(cpr->cp_db.doorbell); 2371 2372 /* Return here if interrupt is shared and is disabled. */ 2373 if (unlikely(atomic_read(&bp->intr_sem) != 0)) 2374 return IRQ_HANDLED; 2375 2376 napi_schedule(&bnapi->napi); 2377 return IRQ_HANDLED; 2378 } 2379 2380 static int __bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 2381 int budget) 2382 { 2383 struct bnxt_napi *bnapi = cpr->bnapi; 2384 u32 raw_cons = cpr->cp_raw_cons; 2385 u32 cons; 2386 int tx_pkts = 0; 2387 int rx_pkts = 0; 2388 u8 event = 0; 2389 struct tx_cmp *txcmp; 2390 2391 cpr->has_more_work = 0; 2392 cpr->had_work_done = 1; 2393 while (1) { 2394 int rc; 2395 2396 cons = RING_CMP(raw_cons); 2397 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 2398 2399 if (!TX_CMP_VALID(txcmp, raw_cons)) 2400 break; 2401 2402 /* The valid test of the entry must be done first before 2403 * reading any further. 2404 */ 2405 dma_rmb(); 2406 if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) { 2407 tx_pkts++; 2408 /* return full budget so NAPI will complete. */ 2409 if (unlikely(tx_pkts > bp->tx_wake_thresh)) { 2410 rx_pkts = budget; 2411 raw_cons = NEXT_RAW_CMP(raw_cons); 2412 if (budget) 2413 cpr->has_more_work = 1; 2414 break; 2415 } 2416 } else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) { 2417 if (likely(budget)) 2418 rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event); 2419 else 2420 rc = bnxt_force_rx_discard(bp, cpr, &raw_cons, 2421 &event); 2422 if (likely(rc >= 0)) 2423 rx_pkts += rc; 2424 /* Increment rx_pkts when rc is -ENOMEM to count towards 2425 * the NAPI budget. Otherwise, we may potentially loop 2426 * here forever if we consistently cannot allocate 2427 * buffers. 2428 */ 2429 else if (rc == -ENOMEM && budget) 2430 rx_pkts++; 2431 else if (rc == -EBUSY) /* partial completion */ 2432 break; 2433 } else if (unlikely((TX_CMP_TYPE(txcmp) == 2434 CMPL_BASE_TYPE_HWRM_DONE) || 2435 (TX_CMP_TYPE(txcmp) == 2436 CMPL_BASE_TYPE_HWRM_FWD_REQ) || 2437 (TX_CMP_TYPE(txcmp) == 2438 CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) { 2439 bnxt_hwrm_handler(bp, txcmp); 2440 } 2441 raw_cons = NEXT_RAW_CMP(raw_cons); 2442 2443 if (rx_pkts && rx_pkts == budget) { 2444 cpr->has_more_work = 1; 2445 break; 2446 } 2447 } 2448 2449 if (event & BNXT_REDIRECT_EVENT) 2450 xdp_do_flush_map(); 2451 2452 if (event & BNXT_TX_EVENT) { 2453 struct bnxt_tx_ring_info *txr = bnapi->tx_ring; 2454 u16 prod = txr->tx_prod; 2455 2456 /* Sync BD data before updating doorbell */ 2457 wmb(); 2458 2459 bnxt_db_write_relaxed(bp, &txr->tx_db, prod); 2460 } 2461 2462 cpr->cp_raw_cons = raw_cons; 2463 bnapi->tx_pkts += tx_pkts; 2464 bnapi->events |= event; 2465 return rx_pkts; 2466 } 2467 2468 static void __bnxt_poll_work_done(struct bnxt *bp, struct bnxt_napi *bnapi) 2469 { 2470 if (bnapi->tx_pkts) { 2471 bnapi->tx_int(bp, bnapi, bnapi->tx_pkts); 2472 bnapi->tx_pkts = 0; 2473 } 2474 2475 if ((bnapi->events & BNXT_RX_EVENT) && !(bnapi->in_reset)) { 2476 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 2477 2478 if (bnapi->events & BNXT_AGG_EVENT) 2479 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 2480 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 2481 } 2482 bnapi->events = 0; 2483 } 2484 2485 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 2486 int budget) 2487 { 2488 struct bnxt_napi *bnapi = cpr->bnapi; 2489 int rx_pkts; 2490 2491 rx_pkts = __bnxt_poll_work(bp, cpr, budget); 2492 2493 /* ACK completion ring before freeing tx ring and producing new 2494 * buffers in rx/agg rings to prevent overflowing the completion 2495 * ring. 2496 */ 2497 bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons); 2498 2499 __bnxt_poll_work_done(bp, bnapi); 2500 return rx_pkts; 2501 } 2502 2503 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget) 2504 { 2505 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 2506 struct bnxt *bp = bnapi->bp; 2507 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2508 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 2509 struct tx_cmp *txcmp; 2510 struct rx_cmp_ext *rxcmp1; 2511 u32 cp_cons, tmp_raw_cons; 2512 u32 raw_cons = cpr->cp_raw_cons; 2513 u32 rx_pkts = 0; 2514 u8 event = 0; 2515 2516 while (1) { 2517 int rc; 2518 2519 cp_cons = RING_CMP(raw_cons); 2520 txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2521 2522 if (!TX_CMP_VALID(txcmp, raw_cons)) 2523 break; 2524 2525 /* The valid test of the entry must be done first before 2526 * reading any further. 2527 */ 2528 dma_rmb(); 2529 if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) { 2530 tmp_raw_cons = NEXT_RAW_CMP(raw_cons); 2531 cp_cons = RING_CMP(tmp_raw_cons); 2532 rxcmp1 = (struct rx_cmp_ext *) 2533 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2534 2535 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 2536 break; 2537 2538 /* force an error to recycle the buffer */ 2539 rxcmp1->rx_cmp_cfa_code_errors_v2 |= 2540 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR); 2541 2542 rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event); 2543 if (likely(rc == -EIO) && budget) 2544 rx_pkts++; 2545 else if (rc == -EBUSY) /* partial completion */ 2546 break; 2547 } else if (unlikely(TX_CMP_TYPE(txcmp) == 2548 CMPL_BASE_TYPE_HWRM_DONE)) { 2549 bnxt_hwrm_handler(bp, txcmp); 2550 } else { 2551 netdev_err(bp->dev, 2552 "Invalid completion received on special ring\n"); 2553 } 2554 raw_cons = NEXT_RAW_CMP(raw_cons); 2555 2556 if (rx_pkts == budget) 2557 break; 2558 } 2559 2560 cpr->cp_raw_cons = raw_cons; 2561 BNXT_DB_CQ(&cpr->cp_db, cpr->cp_raw_cons); 2562 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 2563 2564 if (event & BNXT_AGG_EVENT) 2565 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 2566 2567 if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) { 2568 napi_complete_done(napi, rx_pkts); 2569 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 2570 } 2571 return rx_pkts; 2572 } 2573 2574 static int bnxt_poll(struct napi_struct *napi, int budget) 2575 { 2576 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 2577 struct bnxt *bp = bnapi->bp; 2578 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2579 int work_done = 0; 2580 2581 if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) { 2582 napi_complete(napi); 2583 return 0; 2584 } 2585 while (1) { 2586 work_done += bnxt_poll_work(bp, cpr, budget - work_done); 2587 2588 if (work_done >= budget) { 2589 if (!budget) 2590 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 2591 break; 2592 } 2593 2594 if (!bnxt_has_work(bp, cpr)) { 2595 if (napi_complete_done(napi, work_done)) 2596 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 2597 break; 2598 } 2599 } 2600 if (bp->flags & BNXT_FLAG_DIM) { 2601 struct dim_sample dim_sample = {}; 2602 2603 dim_update_sample(cpr->event_ctr, 2604 cpr->rx_packets, 2605 cpr->rx_bytes, 2606 &dim_sample); 2607 net_dim(&cpr->dim, dim_sample); 2608 } 2609 return work_done; 2610 } 2611 2612 static int __bnxt_poll_cqs(struct bnxt *bp, struct bnxt_napi *bnapi, int budget) 2613 { 2614 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2615 int i, work_done = 0; 2616 2617 for (i = 0; i < 2; i++) { 2618 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i]; 2619 2620 if (cpr2) { 2621 work_done += __bnxt_poll_work(bp, cpr2, 2622 budget - work_done); 2623 cpr->has_more_work |= cpr2->has_more_work; 2624 } 2625 } 2626 return work_done; 2627 } 2628 2629 static void __bnxt_poll_cqs_done(struct bnxt *bp, struct bnxt_napi *bnapi, 2630 u64 dbr_type) 2631 { 2632 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2633 int i; 2634 2635 for (i = 0; i < 2; i++) { 2636 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i]; 2637 struct bnxt_db_info *db; 2638 2639 if (cpr2 && cpr2->had_work_done) { 2640 db = &cpr2->cp_db; 2641 writeq(db->db_key64 | dbr_type | 2642 RING_CMP(cpr2->cp_raw_cons), db->doorbell); 2643 cpr2->had_work_done = 0; 2644 } 2645 } 2646 __bnxt_poll_work_done(bp, bnapi); 2647 } 2648 2649 static int bnxt_poll_p5(struct napi_struct *napi, int budget) 2650 { 2651 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 2652 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2653 u32 raw_cons = cpr->cp_raw_cons; 2654 struct bnxt *bp = bnapi->bp; 2655 struct nqe_cn *nqcmp; 2656 int work_done = 0; 2657 u32 cons; 2658 2659 if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) { 2660 napi_complete(napi); 2661 return 0; 2662 } 2663 if (cpr->has_more_work) { 2664 cpr->has_more_work = 0; 2665 work_done = __bnxt_poll_cqs(bp, bnapi, budget); 2666 } 2667 while (1) { 2668 cons = RING_CMP(raw_cons); 2669 nqcmp = &cpr->nq_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 2670 2671 if (!NQ_CMP_VALID(nqcmp, raw_cons)) { 2672 if (cpr->has_more_work) 2673 break; 2674 2675 __bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL); 2676 cpr->cp_raw_cons = raw_cons; 2677 if (napi_complete_done(napi, work_done)) 2678 BNXT_DB_NQ_ARM_P5(&cpr->cp_db, 2679 cpr->cp_raw_cons); 2680 return work_done; 2681 } 2682 2683 /* The valid test of the entry must be done first before 2684 * reading any further. 2685 */ 2686 dma_rmb(); 2687 2688 if (nqcmp->type == cpu_to_le16(NQ_CN_TYPE_CQ_NOTIFICATION)) { 2689 u32 idx = le32_to_cpu(nqcmp->cq_handle_low); 2690 struct bnxt_cp_ring_info *cpr2; 2691 2692 cpr2 = cpr->cp_ring_arr[idx]; 2693 work_done += __bnxt_poll_work(bp, cpr2, 2694 budget - work_done); 2695 cpr->has_more_work |= cpr2->has_more_work; 2696 } else { 2697 bnxt_hwrm_handler(bp, (struct tx_cmp *)nqcmp); 2698 } 2699 raw_cons = NEXT_RAW_CMP(raw_cons); 2700 } 2701 __bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ); 2702 if (raw_cons != cpr->cp_raw_cons) { 2703 cpr->cp_raw_cons = raw_cons; 2704 BNXT_DB_NQ_P5(&cpr->cp_db, raw_cons); 2705 } 2706 return work_done; 2707 } 2708 2709 static void bnxt_free_tx_skbs(struct bnxt *bp) 2710 { 2711 int i, max_idx; 2712 struct pci_dev *pdev = bp->pdev; 2713 2714 if (!bp->tx_ring) 2715 return; 2716 2717 max_idx = bp->tx_nr_pages * TX_DESC_CNT; 2718 for (i = 0; i < bp->tx_nr_rings; i++) { 2719 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 2720 int j; 2721 2722 for (j = 0; j < max_idx;) { 2723 struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j]; 2724 struct sk_buff *skb; 2725 int k, last; 2726 2727 if (i < bp->tx_nr_rings_xdp && 2728 tx_buf->action == XDP_REDIRECT) { 2729 dma_unmap_single(&pdev->dev, 2730 dma_unmap_addr(tx_buf, mapping), 2731 dma_unmap_len(tx_buf, len), 2732 DMA_TO_DEVICE); 2733 xdp_return_frame(tx_buf->xdpf); 2734 tx_buf->action = 0; 2735 tx_buf->xdpf = NULL; 2736 j++; 2737 continue; 2738 } 2739 2740 skb = tx_buf->skb; 2741 if (!skb) { 2742 j++; 2743 continue; 2744 } 2745 2746 tx_buf->skb = NULL; 2747 2748 if (tx_buf->is_push) { 2749 dev_kfree_skb(skb); 2750 j += 2; 2751 continue; 2752 } 2753 2754 dma_unmap_single(&pdev->dev, 2755 dma_unmap_addr(tx_buf, mapping), 2756 skb_headlen(skb), 2757 DMA_TO_DEVICE); 2758 2759 last = tx_buf->nr_frags; 2760 j += 2; 2761 for (k = 0; k < last; k++, j++) { 2762 int ring_idx = j & bp->tx_ring_mask; 2763 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 2764 2765 tx_buf = &txr->tx_buf_ring[ring_idx]; 2766 dma_unmap_page( 2767 &pdev->dev, 2768 dma_unmap_addr(tx_buf, mapping), 2769 skb_frag_size(frag), DMA_TO_DEVICE); 2770 } 2771 dev_kfree_skb(skb); 2772 } 2773 netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i)); 2774 } 2775 } 2776 2777 static void bnxt_free_one_rx_ring_skbs(struct bnxt *bp, int ring_nr) 2778 { 2779 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 2780 struct pci_dev *pdev = bp->pdev; 2781 struct bnxt_tpa_idx_map *map; 2782 int i, max_idx, max_agg_idx; 2783 2784 max_idx = bp->rx_nr_pages * RX_DESC_CNT; 2785 max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT; 2786 if (!rxr->rx_tpa) 2787 goto skip_rx_tpa_free; 2788 2789 for (i = 0; i < bp->max_tpa; i++) { 2790 struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[i]; 2791 u8 *data = tpa_info->data; 2792 2793 if (!data) 2794 continue; 2795 2796 dma_unmap_single_attrs(&pdev->dev, tpa_info->mapping, 2797 bp->rx_buf_use_size, bp->rx_dir, 2798 DMA_ATTR_WEAK_ORDERING); 2799 2800 tpa_info->data = NULL; 2801 2802 kfree(data); 2803 } 2804 2805 skip_rx_tpa_free: 2806 for (i = 0; i < max_idx; i++) { 2807 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[i]; 2808 dma_addr_t mapping = rx_buf->mapping; 2809 void *data = rx_buf->data; 2810 2811 if (!data) 2812 continue; 2813 2814 rx_buf->data = NULL; 2815 if (BNXT_RX_PAGE_MODE(bp)) { 2816 mapping -= bp->rx_dma_offset; 2817 dma_unmap_page_attrs(&pdev->dev, mapping, PAGE_SIZE, 2818 bp->rx_dir, 2819 DMA_ATTR_WEAK_ORDERING); 2820 page_pool_recycle_direct(rxr->page_pool, data); 2821 } else { 2822 dma_unmap_single_attrs(&pdev->dev, mapping, 2823 bp->rx_buf_use_size, bp->rx_dir, 2824 DMA_ATTR_WEAK_ORDERING); 2825 kfree(data); 2826 } 2827 } 2828 for (i = 0; i < max_agg_idx; i++) { 2829 struct bnxt_sw_rx_agg_bd *rx_agg_buf = &rxr->rx_agg_ring[i]; 2830 struct page *page = rx_agg_buf->page; 2831 2832 if (!page) 2833 continue; 2834 2835 dma_unmap_page_attrs(&pdev->dev, rx_agg_buf->mapping, 2836 BNXT_RX_PAGE_SIZE, DMA_FROM_DEVICE, 2837 DMA_ATTR_WEAK_ORDERING); 2838 2839 rx_agg_buf->page = NULL; 2840 __clear_bit(i, rxr->rx_agg_bmap); 2841 2842 __free_page(page); 2843 } 2844 if (rxr->rx_page) { 2845 __free_page(rxr->rx_page); 2846 rxr->rx_page = NULL; 2847 } 2848 map = rxr->rx_tpa_idx_map; 2849 if (map) 2850 memset(map->agg_idx_bmap, 0, sizeof(map->agg_idx_bmap)); 2851 } 2852 2853 static void bnxt_free_rx_skbs(struct bnxt *bp) 2854 { 2855 int i; 2856 2857 if (!bp->rx_ring) 2858 return; 2859 2860 for (i = 0; i < bp->rx_nr_rings; i++) 2861 bnxt_free_one_rx_ring_skbs(bp, i); 2862 } 2863 2864 static void bnxt_free_skbs(struct bnxt *bp) 2865 { 2866 bnxt_free_tx_skbs(bp); 2867 bnxt_free_rx_skbs(bp); 2868 } 2869 2870 static void bnxt_init_ctx_mem(struct bnxt_mem_init *mem_init, void *p, int len) 2871 { 2872 u8 init_val = mem_init->init_val; 2873 u16 offset = mem_init->offset; 2874 u8 *p2 = p; 2875 int i; 2876 2877 if (!init_val) 2878 return; 2879 if (offset == BNXT_MEM_INVALID_OFFSET) { 2880 memset(p, init_val, len); 2881 return; 2882 } 2883 for (i = 0; i < len; i += mem_init->size) 2884 *(p2 + i + offset) = init_val; 2885 } 2886 2887 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem) 2888 { 2889 struct pci_dev *pdev = bp->pdev; 2890 int i; 2891 2892 for (i = 0; i < rmem->nr_pages; i++) { 2893 if (!rmem->pg_arr[i]) 2894 continue; 2895 2896 dma_free_coherent(&pdev->dev, rmem->page_size, 2897 rmem->pg_arr[i], rmem->dma_arr[i]); 2898 2899 rmem->pg_arr[i] = NULL; 2900 } 2901 if (rmem->pg_tbl) { 2902 size_t pg_tbl_size = rmem->nr_pages * 8; 2903 2904 if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG) 2905 pg_tbl_size = rmem->page_size; 2906 dma_free_coherent(&pdev->dev, pg_tbl_size, 2907 rmem->pg_tbl, rmem->pg_tbl_map); 2908 rmem->pg_tbl = NULL; 2909 } 2910 if (rmem->vmem_size && *rmem->vmem) { 2911 vfree(*rmem->vmem); 2912 *rmem->vmem = NULL; 2913 } 2914 } 2915 2916 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem) 2917 { 2918 struct pci_dev *pdev = bp->pdev; 2919 u64 valid_bit = 0; 2920 int i; 2921 2922 if (rmem->flags & (BNXT_RMEM_VALID_PTE_FLAG | BNXT_RMEM_RING_PTE_FLAG)) 2923 valid_bit = PTU_PTE_VALID; 2924 if ((rmem->nr_pages > 1 || rmem->depth > 0) && !rmem->pg_tbl) { 2925 size_t pg_tbl_size = rmem->nr_pages * 8; 2926 2927 if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG) 2928 pg_tbl_size = rmem->page_size; 2929 rmem->pg_tbl = dma_alloc_coherent(&pdev->dev, pg_tbl_size, 2930 &rmem->pg_tbl_map, 2931 GFP_KERNEL); 2932 if (!rmem->pg_tbl) 2933 return -ENOMEM; 2934 } 2935 2936 for (i = 0; i < rmem->nr_pages; i++) { 2937 u64 extra_bits = valid_bit; 2938 2939 rmem->pg_arr[i] = dma_alloc_coherent(&pdev->dev, 2940 rmem->page_size, 2941 &rmem->dma_arr[i], 2942 GFP_KERNEL); 2943 if (!rmem->pg_arr[i]) 2944 return -ENOMEM; 2945 2946 if (rmem->mem_init) 2947 bnxt_init_ctx_mem(rmem->mem_init, rmem->pg_arr[i], 2948 rmem->page_size); 2949 if (rmem->nr_pages > 1 || rmem->depth > 0) { 2950 if (i == rmem->nr_pages - 2 && 2951 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG)) 2952 extra_bits |= PTU_PTE_NEXT_TO_LAST; 2953 else if (i == rmem->nr_pages - 1 && 2954 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG)) 2955 extra_bits |= PTU_PTE_LAST; 2956 rmem->pg_tbl[i] = 2957 cpu_to_le64(rmem->dma_arr[i] | extra_bits); 2958 } 2959 } 2960 2961 if (rmem->vmem_size) { 2962 *rmem->vmem = vzalloc(rmem->vmem_size); 2963 if (!(*rmem->vmem)) 2964 return -ENOMEM; 2965 } 2966 return 0; 2967 } 2968 2969 static void bnxt_free_tpa_info(struct bnxt *bp) 2970 { 2971 int i; 2972 2973 for (i = 0; i < bp->rx_nr_rings; i++) { 2974 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 2975 2976 kfree(rxr->rx_tpa_idx_map); 2977 rxr->rx_tpa_idx_map = NULL; 2978 if (rxr->rx_tpa) { 2979 kfree(rxr->rx_tpa[0].agg_arr); 2980 rxr->rx_tpa[0].agg_arr = NULL; 2981 } 2982 kfree(rxr->rx_tpa); 2983 rxr->rx_tpa = NULL; 2984 } 2985 } 2986 2987 static int bnxt_alloc_tpa_info(struct bnxt *bp) 2988 { 2989 int i, j, total_aggs = 0; 2990 2991 bp->max_tpa = MAX_TPA; 2992 if (bp->flags & BNXT_FLAG_CHIP_P5) { 2993 if (!bp->max_tpa_v2) 2994 return 0; 2995 bp->max_tpa = max_t(u16, bp->max_tpa_v2, MAX_TPA_P5); 2996 total_aggs = bp->max_tpa * MAX_SKB_FRAGS; 2997 } 2998 2999 for (i = 0; i < bp->rx_nr_rings; i++) { 3000 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3001 struct rx_agg_cmp *agg; 3002 3003 rxr->rx_tpa = kcalloc(bp->max_tpa, sizeof(struct bnxt_tpa_info), 3004 GFP_KERNEL); 3005 if (!rxr->rx_tpa) 3006 return -ENOMEM; 3007 3008 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 3009 continue; 3010 agg = kcalloc(total_aggs, sizeof(*agg), GFP_KERNEL); 3011 rxr->rx_tpa[0].agg_arr = agg; 3012 if (!agg) 3013 return -ENOMEM; 3014 for (j = 1; j < bp->max_tpa; j++) 3015 rxr->rx_tpa[j].agg_arr = agg + j * MAX_SKB_FRAGS; 3016 rxr->rx_tpa_idx_map = kzalloc(sizeof(*rxr->rx_tpa_idx_map), 3017 GFP_KERNEL); 3018 if (!rxr->rx_tpa_idx_map) 3019 return -ENOMEM; 3020 } 3021 return 0; 3022 } 3023 3024 static void bnxt_free_rx_rings(struct bnxt *bp) 3025 { 3026 int i; 3027 3028 if (!bp->rx_ring) 3029 return; 3030 3031 bnxt_free_tpa_info(bp); 3032 for (i = 0; i < bp->rx_nr_rings; i++) { 3033 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3034 struct bnxt_ring_struct *ring; 3035 3036 if (rxr->xdp_prog) 3037 bpf_prog_put(rxr->xdp_prog); 3038 3039 if (xdp_rxq_info_is_reg(&rxr->xdp_rxq)) 3040 xdp_rxq_info_unreg(&rxr->xdp_rxq); 3041 3042 page_pool_destroy(rxr->page_pool); 3043 rxr->page_pool = NULL; 3044 3045 kfree(rxr->rx_agg_bmap); 3046 rxr->rx_agg_bmap = NULL; 3047 3048 ring = &rxr->rx_ring_struct; 3049 bnxt_free_ring(bp, &ring->ring_mem); 3050 3051 ring = &rxr->rx_agg_ring_struct; 3052 bnxt_free_ring(bp, &ring->ring_mem); 3053 } 3054 } 3055 3056 static int bnxt_alloc_rx_page_pool(struct bnxt *bp, 3057 struct bnxt_rx_ring_info *rxr) 3058 { 3059 struct page_pool_params pp = { 0 }; 3060 3061 pp.pool_size = bp->rx_ring_size; 3062 pp.nid = dev_to_node(&bp->pdev->dev); 3063 pp.dev = &bp->pdev->dev; 3064 pp.dma_dir = DMA_BIDIRECTIONAL; 3065 3066 rxr->page_pool = page_pool_create(&pp); 3067 if (IS_ERR(rxr->page_pool)) { 3068 int err = PTR_ERR(rxr->page_pool); 3069 3070 rxr->page_pool = NULL; 3071 return err; 3072 } 3073 return 0; 3074 } 3075 3076 static int bnxt_alloc_rx_rings(struct bnxt *bp) 3077 { 3078 int i, rc = 0, agg_rings = 0; 3079 3080 if (!bp->rx_ring) 3081 return -ENOMEM; 3082 3083 if (bp->flags & BNXT_FLAG_AGG_RINGS) 3084 agg_rings = 1; 3085 3086 for (i = 0; i < bp->rx_nr_rings; i++) { 3087 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3088 struct bnxt_ring_struct *ring; 3089 3090 ring = &rxr->rx_ring_struct; 3091 3092 rc = bnxt_alloc_rx_page_pool(bp, rxr); 3093 if (rc) 3094 return rc; 3095 3096 rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i, 0); 3097 if (rc < 0) 3098 return rc; 3099 3100 rc = xdp_rxq_info_reg_mem_model(&rxr->xdp_rxq, 3101 MEM_TYPE_PAGE_POOL, 3102 rxr->page_pool); 3103 if (rc) { 3104 xdp_rxq_info_unreg(&rxr->xdp_rxq); 3105 return rc; 3106 } 3107 3108 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3109 if (rc) 3110 return rc; 3111 3112 ring->grp_idx = i; 3113 if (agg_rings) { 3114 u16 mem_size; 3115 3116 ring = &rxr->rx_agg_ring_struct; 3117 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3118 if (rc) 3119 return rc; 3120 3121 ring->grp_idx = i; 3122 rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1; 3123 mem_size = rxr->rx_agg_bmap_size / 8; 3124 rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL); 3125 if (!rxr->rx_agg_bmap) 3126 return -ENOMEM; 3127 } 3128 } 3129 if (bp->flags & BNXT_FLAG_TPA) 3130 rc = bnxt_alloc_tpa_info(bp); 3131 return rc; 3132 } 3133 3134 static void bnxt_free_tx_rings(struct bnxt *bp) 3135 { 3136 int i; 3137 struct pci_dev *pdev = bp->pdev; 3138 3139 if (!bp->tx_ring) 3140 return; 3141 3142 for (i = 0; i < bp->tx_nr_rings; i++) { 3143 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3144 struct bnxt_ring_struct *ring; 3145 3146 if (txr->tx_push) { 3147 dma_free_coherent(&pdev->dev, bp->tx_push_size, 3148 txr->tx_push, txr->tx_push_mapping); 3149 txr->tx_push = NULL; 3150 } 3151 3152 ring = &txr->tx_ring_struct; 3153 3154 bnxt_free_ring(bp, &ring->ring_mem); 3155 } 3156 } 3157 3158 static int bnxt_alloc_tx_rings(struct bnxt *bp) 3159 { 3160 int i, j, rc; 3161 struct pci_dev *pdev = bp->pdev; 3162 3163 bp->tx_push_size = 0; 3164 if (bp->tx_push_thresh) { 3165 int push_size; 3166 3167 push_size = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) + 3168 bp->tx_push_thresh); 3169 3170 if (push_size > 256) { 3171 push_size = 0; 3172 bp->tx_push_thresh = 0; 3173 } 3174 3175 bp->tx_push_size = push_size; 3176 } 3177 3178 for (i = 0, j = 0; i < bp->tx_nr_rings; i++) { 3179 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3180 struct bnxt_ring_struct *ring; 3181 u8 qidx; 3182 3183 ring = &txr->tx_ring_struct; 3184 3185 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3186 if (rc) 3187 return rc; 3188 3189 ring->grp_idx = txr->bnapi->index; 3190 if (bp->tx_push_size) { 3191 dma_addr_t mapping; 3192 3193 /* One pre-allocated DMA buffer to backup 3194 * TX push operation 3195 */ 3196 txr->tx_push = dma_alloc_coherent(&pdev->dev, 3197 bp->tx_push_size, 3198 &txr->tx_push_mapping, 3199 GFP_KERNEL); 3200 3201 if (!txr->tx_push) 3202 return -ENOMEM; 3203 3204 mapping = txr->tx_push_mapping + 3205 sizeof(struct tx_push_bd); 3206 txr->data_mapping = cpu_to_le64(mapping); 3207 } 3208 qidx = bp->tc_to_qidx[j]; 3209 ring->queue_id = bp->q_info[qidx].queue_id; 3210 if (i < bp->tx_nr_rings_xdp) 3211 continue; 3212 if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1)) 3213 j++; 3214 } 3215 return 0; 3216 } 3217 3218 static void bnxt_free_cp_arrays(struct bnxt_cp_ring_info *cpr) 3219 { 3220 kfree(cpr->cp_desc_ring); 3221 cpr->cp_desc_ring = NULL; 3222 kfree(cpr->cp_desc_mapping); 3223 cpr->cp_desc_mapping = NULL; 3224 } 3225 3226 static int bnxt_alloc_cp_arrays(struct bnxt_cp_ring_info *cpr, int n) 3227 { 3228 cpr->cp_desc_ring = kcalloc(n, sizeof(*cpr->cp_desc_ring), GFP_KERNEL); 3229 if (!cpr->cp_desc_ring) 3230 return -ENOMEM; 3231 cpr->cp_desc_mapping = kcalloc(n, sizeof(*cpr->cp_desc_mapping), 3232 GFP_KERNEL); 3233 if (!cpr->cp_desc_mapping) 3234 return -ENOMEM; 3235 return 0; 3236 } 3237 3238 static void bnxt_free_all_cp_arrays(struct bnxt *bp) 3239 { 3240 int i; 3241 3242 if (!bp->bnapi) 3243 return; 3244 for (i = 0; i < bp->cp_nr_rings; i++) { 3245 struct bnxt_napi *bnapi = bp->bnapi[i]; 3246 3247 if (!bnapi) 3248 continue; 3249 bnxt_free_cp_arrays(&bnapi->cp_ring); 3250 } 3251 } 3252 3253 static int bnxt_alloc_all_cp_arrays(struct bnxt *bp) 3254 { 3255 int i, n = bp->cp_nr_pages; 3256 3257 for (i = 0; i < bp->cp_nr_rings; i++) { 3258 struct bnxt_napi *bnapi = bp->bnapi[i]; 3259 int rc; 3260 3261 if (!bnapi) 3262 continue; 3263 rc = bnxt_alloc_cp_arrays(&bnapi->cp_ring, n); 3264 if (rc) 3265 return rc; 3266 } 3267 return 0; 3268 } 3269 3270 static void bnxt_free_cp_rings(struct bnxt *bp) 3271 { 3272 int i; 3273 3274 if (!bp->bnapi) 3275 return; 3276 3277 for (i = 0; i < bp->cp_nr_rings; i++) { 3278 struct bnxt_napi *bnapi = bp->bnapi[i]; 3279 struct bnxt_cp_ring_info *cpr; 3280 struct bnxt_ring_struct *ring; 3281 int j; 3282 3283 if (!bnapi) 3284 continue; 3285 3286 cpr = &bnapi->cp_ring; 3287 ring = &cpr->cp_ring_struct; 3288 3289 bnxt_free_ring(bp, &ring->ring_mem); 3290 3291 for (j = 0; j < 2; j++) { 3292 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j]; 3293 3294 if (cpr2) { 3295 ring = &cpr2->cp_ring_struct; 3296 bnxt_free_ring(bp, &ring->ring_mem); 3297 bnxt_free_cp_arrays(cpr2); 3298 kfree(cpr2); 3299 cpr->cp_ring_arr[j] = NULL; 3300 } 3301 } 3302 } 3303 } 3304 3305 static struct bnxt_cp_ring_info *bnxt_alloc_cp_sub_ring(struct bnxt *bp) 3306 { 3307 struct bnxt_ring_mem_info *rmem; 3308 struct bnxt_ring_struct *ring; 3309 struct bnxt_cp_ring_info *cpr; 3310 int rc; 3311 3312 cpr = kzalloc(sizeof(*cpr), GFP_KERNEL); 3313 if (!cpr) 3314 return NULL; 3315 3316 rc = bnxt_alloc_cp_arrays(cpr, bp->cp_nr_pages); 3317 if (rc) { 3318 bnxt_free_cp_arrays(cpr); 3319 kfree(cpr); 3320 return NULL; 3321 } 3322 ring = &cpr->cp_ring_struct; 3323 rmem = &ring->ring_mem; 3324 rmem->nr_pages = bp->cp_nr_pages; 3325 rmem->page_size = HW_CMPD_RING_SIZE; 3326 rmem->pg_arr = (void **)cpr->cp_desc_ring; 3327 rmem->dma_arr = cpr->cp_desc_mapping; 3328 rmem->flags = BNXT_RMEM_RING_PTE_FLAG; 3329 rc = bnxt_alloc_ring(bp, rmem); 3330 if (rc) { 3331 bnxt_free_ring(bp, rmem); 3332 bnxt_free_cp_arrays(cpr); 3333 kfree(cpr); 3334 cpr = NULL; 3335 } 3336 return cpr; 3337 } 3338 3339 static int bnxt_alloc_cp_rings(struct bnxt *bp) 3340 { 3341 bool sh = !!(bp->flags & BNXT_FLAG_SHARED_RINGS); 3342 int i, rc, ulp_base_vec, ulp_msix; 3343 3344 ulp_msix = bnxt_get_ulp_msix_num(bp); 3345 ulp_base_vec = bnxt_get_ulp_msix_base(bp); 3346 for (i = 0; i < bp->cp_nr_rings; i++) { 3347 struct bnxt_napi *bnapi = bp->bnapi[i]; 3348 struct bnxt_cp_ring_info *cpr; 3349 struct bnxt_ring_struct *ring; 3350 3351 if (!bnapi) 3352 continue; 3353 3354 cpr = &bnapi->cp_ring; 3355 cpr->bnapi = bnapi; 3356 ring = &cpr->cp_ring_struct; 3357 3358 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3359 if (rc) 3360 return rc; 3361 3362 if (ulp_msix && i >= ulp_base_vec) 3363 ring->map_idx = i + ulp_msix; 3364 else 3365 ring->map_idx = i; 3366 3367 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 3368 continue; 3369 3370 if (i < bp->rx_nr_rings) { 3371 struct bnxt_cp_ring_info *cpr2 = 3372 bnxt_alloc_cp_sub_ring(bp); 3373 3374 cpr->cp_ring_arr[BNXT_RX_HDL] = cpr2; 3375 if (!cpr2) 3376 return -ENOMEM; 3377 cpr2->bnapi = bnapi; 3378 } 3379 if ((sh && i < bp->tx_nr_rings) || 3380 (!sh && i >= bp->rx_nr_rings)) { 3381 struct bnxt_cp_ring_info *cpr2 = 3382 bnxt_alloc_cp_sub_ring(bp); 3383 3384 cpr->cp_ring_arr[BNXT_TX_HDL] = cpr2; 3385 if (!cpr2) 3386 return -ENOMEM; 3387 cpr2->bnapi = bnapi; 3388 } 3389 } 3390 return 0; 3391 } 3392 3393 static void bnxt_init_ring_struct(struct bnxt *bp) 3394 { 3395 int i; 3396 3397 for (i = 0; i < bp->cp_nr_rings; i++) { 3398 struct bnxt_napi *bnapi = bp->bnapi[i]; 3399 struct bnxt_ring_mem_info *rmem; 3400 struct bnxt_cp_ring_info *cpr; 3401 struct bnxt_rx_ring_info *rxr; 3402 struct bnxt_tx_ring_info *txr; 3403 struct bnxt_ring_struct *ring; 3404 3405 if (!bnapi) 3406 continue; 3407 3408 cpr = &bnapi->cp_ring; 3409 ring = &cpr->cp_ring_struct; 3410 rmem = &ring->ring_mem; 3411 rmem->nr_pages = bp->cp_nr_pages; 3412 rmem->page_size = HW_CMPD_RING_SIZE; 3413 rmem->pg_arr = (void **)cpr->cp_desc_ring; 3414 rmem->dma_arr = cpr->cp_desc_mapping; 3415 rmem->vmem_size = 0; 3416 3417 rxr = bnapi->rx_ring; 3418 if (!rxr) 3419 goto skip_rx; 3420 3421 ring = &rxr->rx_ring_struct; 3422 rmem = &ring->ring_mem; 3423 rmem->nr_pages = bp->rx_nr_pages; 3424 rmem->page_size = HW_RXBD_RING_SIZE; 3425 rmem->pg_arr = (void **)rxr->rx_desc_ring; 3426 rmem->dma_arr = rxr->rx_desc_mapping; 3427 rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages; 3428 rmem->vmem = (void **)&rxr->rx_buf_ring; 3429 3430 ring = &rxr->rx_agg_ring_struct; 3431 rmem = &ring->ring_mem; 3432 rmem->nr_pages = bp->rx_agg_nr_pages; 3433 rmem->page_size = HW_RXBD_RING_SIZE; 3434 rmem->pg_arr = (void **)rxr->rx_agg_desc_ring; 3435 rmem->dma_arr = rxr->rx_agg_desc_mapping; 3436 rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages; 3437 rmem->vmem = (void **)&rxr->rx_agg_ring; 3438 3439 skip_rx: 3440 txr = bnapi->tx_ring; 3441 if (!txr) 3442 continue; 3443 3444 ring = &txr->tx_ring_struct; 3445 rmem = &ring->ring_mem; 3446 rmem->nr_pages = bp->tx_nr_pages; 3447 rmem->page_size = HW_RXBD_RING_SIZE; 3448 rmem->pg_arr = (void **)txr->tx_desc_ring; 3449 rmem->dma_arr = txr->tx_desc_mapping; 3450 rmem->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages; 3451 rmem->vmem = (void **)&txr->tx_buf_ring; 3452 } 3453 } 3454 3455 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type) 3456 { 3457 int i; 3458 u32 prod; 3459 struct rx_bd **rx_buf_ring; 3460 3461 rx_buf_ring = (struct rx_bd **)ring->ring_mem.pg_arr; 3462 for (i = 0, prod = 0; i < ring->ring_mem.nr_pages; i++) { 3463 int j; 3464 struct rx_bd *rxbd; 3465 3466 rxbd = rx_buf_ring[i]; 3467 if (!rxbd) 3468 continue; 3469 3470 for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) { 3471 rxbd->rx_bd_len_flags_type = cpu_to_le32(type); 3472 rxbd->rx_bd_opaque = prod; 3473 } 3474 } 3475 } 3476 3477 static int bnxt_alloc_one_rx_ring(struct bnxt *bp, int ring_nr) 3478 { 3479 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 3480 struct net_device *dev = bp->dev; 3481 u32 prod; 3482 int i; 3483 3484 prod = rxr->rx_prod; 3485 for (i = 0; i < bp->rx_ring_size; i++) { 3486 if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL)) { 3487 netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n", 3488 ring_nr, i, bp->rx_ring_size); 3489 break; 3490 } 3491 prod = NEXT_RX(prod); 3492 } 3493 rxr->rx_prod = prod; 3494 3495 if (!(bp->flags & BNXT_FLAG_AGG_RINGS)) 3496 return 0; 3497 3498 prod = rxr->rx_agg_prod; 3499 for (i = 0; i < bp->rx_agg_ring_size; i++) { 3500 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL)) { 3501 netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n", 3502 ring_nr, i, bp->rx_ring_size); 3503 break; 3504 } 3505 prod = NEXT_RX_AGG(prod); 3506 } 3507 rxr->rx_agg_prod = prod; 3508 3509 if (rxr->rx_tpa) { 3510 dma_addr_t mapping; 3511 u8 *data; 3512 3513 for (i = 0; i < bp->max_tpa; i++) { 3514 data = __bnxt_alloc_rx_data(bp, &mapping, GFP_KERNEL); 3515 if (!data) 3516 return -ENOMEM; 3517 3518 rxr->rx_tpa[i].data = data; 3519 rxr->rx_tpa[i].data_ptr = data + bp->rx_offset; 3520 rxr->rx_tpa[i].mapping = mapping; 3521 } 3522 } 3523 return 0; 3524 } 3525 3526 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr) 3527 { 3528 struct bnxt_rx_ring_info *rxr; 3529 struct bnxt_ring_struct *ring; 3530 u32 type; 3531 3532 type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) | 3533 RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP; 3534 3535 if (NET_IP_ALIGN == 2) 3536 type |= RX_BD_FLAGS_SOP; 3537 3538 rxr = &bp->rx_ring[ring_nr]; 3539 ring = &rxr->rx_ring_struct; 3540 bnxt_init_rxbd_pages(ring, type); 3541 3542 if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) { 3543 bpf_prog_add(bp->xdp_prog, 1); 3544 rxr->xdp_prog = bp->xdp_prog; 3545 } 3546 ring->fw_ring_id = INVALID_HW_RING_ID; 3547 3548 ring = &rxr->rx_agg_ring_struct; 3549 ring->fw_ring_id = INVALID_HW_RING_ID; 3550 3551 if ((bp->flags & BNXT_FLAG_AGG_RINGS)) { 3552 type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) | 3553 RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP; 3554 3555 bnxt_init_rxbd_pages(ring, type); 3556 } 3557 3558 return bnxt_alloc_one_rx_ring(bp, ring_nr); 3559 } 3560 3561 static void bnxt_init_cp_rings(struct bnxt *bp) 3562 { 3563 int i, j; 3564 3565 for (i = 0; i < bp->cp_nr_rings; i++) { 3566 struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring; 3567 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 3568 3569 ring->fw_ring_id = INVALID_HW_RING_ID; 3570 cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks; 3571 cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs; 3572 for (j = 0; j < 2; j++) { 3573 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j]; 3574 3575 if (!cpr2) 3576 continue; 3577 3578 ring = &cpr2->cp_ring_struct; 3579 ring->fw_ring_id = INVALID_HW_RING_ID; 3580 cpr2->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks; 3581 cpr2->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs; 3582 } 3583 } 3584 } 3585 3586 static int bnxt_init_rx_rings(struct bnxt *bp) 3587 { 3588 int i, rc = 0; 3589 3590 if (BNXT_RX_PAGE_MODE(bp)) { 3591 bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM; 3592 bp->rx_dma_offset = XDP_PACKET_HEADROOM; 3593 } else { 3594 bp->rx_offset = BNXT_RX_OFFSET; 3595 bp->rx_dma_offset = BNXT_RX_DMA_OFFSET; 3596 } 3597 3598 for (i = 0; i < bp->rx_nr_rings; i++) { 3599 rc = bnxt_init_one_rx_ring(bp, i); 3600 if (rc) 3601 break; 3602 } 3603 3604 return rc; 3605 } 3606 3607 static int bnxt_init_tx_rings(struct bnxt *bp) 3608 { 3609 u16 i; 3610 3611 bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2, 3612 MAX_SKB_FRAGS + 1); 3613 3614 for (i = 0; i < bp->tx_nr_rings; i++) { 3615 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3616 struct bnxt_ring_struct *ring = &txr->tx_ring_struct; 3617 3618 ring->fw_ring_id = INVALID_HW_RING_ID; 3619 } 3620 3621 return 0; 3622 } 3623 3624 static void bnxt_free_ring_grps(struct bnxt *bp) 3625 { 3626 kfree(bp->grp_info); 3627 bp->grp_info = NULL; 3628 } 3629 3630 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init) 3631 { 3632 int i; 3633 3634 if (irq_re_init) { 3635 bp->grp_info = kcalloc(bp->cp_nr_rings, 3636 sizeof(struct bnxt_ring_grp_info), 3637 GFP_KERNEL); 3638 if (!bp->grp_info) 3639 return -ENOMEM; 3640 } 3641 for (i = 0; i < bp->cp_nr_rings; i++) { 3642 if (irq_re_init) 3643 bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID; 3644 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID; 3645 bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID; 3646 bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID; 3647 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID; 3648 } 3649 return 0; 3650 } 3651 3652 static void bnxt_free_vnics(struct bnxt *bp) 3653 { 3654 kfree(bp->vnic_info); 3655 bp->vnic_info = NULL; 3656 bp->nr_vnics = 0; 3657 } 3658 3659 static int bnxt_alloc_vnics(struct bnxt *bp) 3660 { 3661 int num_vnics = 1; 3662 3663 #ifdef CONFIG_RFS_ACCEL 3664 if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS) 3665 num_vnics += bp->rx_nr_rings; 3666 #endif 3667 3668 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 3669 num_vnics++; 3670 3671 bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info), 3672 GFP_KERNEL); 3673 if (!bp->vnic_info) 3674 return -ENOMEM; 3675 3676 bp->nr_vnics = num_vnics; 3677 return 0; 3678 } 3679 3680 static void bnxt_init_vnics(struct bnxt *bp) 3681 { 3682 int i; 3683 3684 for (i = 0; i < bp->nr_vnics; i++) { 3685 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 3686 int j; 3687 3688 vnic->fw_vnic_id = INVALID_HW_RING_ID; 3689 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) 3690 vnic->fw_rss_cos_lb_ctx[j] = INVALID_HW_RING_ID; 3691 3692 vnic->fw_l2_ctx_id = INVALID_HW_RING_ID; 3693 3694 if (bp->vnic_info[i].rss_hash_key) { 3695 if (i == 0) 3696 prandom_bytes(vnic->rss_hash_key, 3697 HW_HASH_KEY_SIZE); 3698 else 3699 memcpy(vnic->rss_hash_key, 3700 bp->vnic_info[0].rss_hash_key, 3701 HW_HASH_KEY_SIZE); 3702 } 3703 } 3704 } 3705 3706 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg) 3707 { 3708 int pages; 3709 3710 pages = ring_size / desc_per_pg; 3711 3712 if (!pages) 3713 return 1; 3714 3715 pages++; 3716 3717 while (pages & (pages - 1)) 3718 pages++; 3719 3720 return pages; 3721 } 3722 3723 void bnxt_set_tpa_flags(struct bnxt *bp) 3724 { 3725 bp->flags &= ~BNXT_FLAG_TPA; 3726 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) 3727 return; 3728 if (bp->dev->features & NETIF_F_LRO) 3729 bp->flags |= BNXT_FLAG_LRO; 3730 else if (bp->dev->features & NETIF_F_GRO_HW) 3731 bp->flags |= BNXT_FLAG_GRO; 3732 } 3733 3734 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must 3735 * be set on entry. 3736 */ 3737 void bnxt_set_ring_params(struct bnxt *bp) 3738 { 3739 u32 ring_size, rx_size, rx_space, max_rx_cmpl; 3740 u32 agg_factor = 0, agg_ring_size = 0; 3741 3742 /* 8 for CRC and VLAN */ 3743 rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8); 3744 3745 rx_space = rx_size + NET_SKB_PAD + 3746 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 3747 3748 bp->rx_copy_thresh = BNXT_RX_COPY_THRESH; 3749 ring_size = bp->rx_ring_size; 3750 bp->rx_agg_ring_size = 0; 3751 bp->rx_agg_nr_pages = 0; 3752 3753 if (bp->flags & BNXT_FLAG_TPA) 3754 agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE); 3755 3756 bp->flags &= ~BNXT_FLAG_JUMBO; 3757 if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) { 3758 u32 jumbo_factor; 3759 3760 bp->flags |= BNXT_FLAG_JUMBO; 3761 jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT; 3762 if (jumbo_factor > agg_factor) 3763 agg_factor = jumbo_factor; 3764 } 3765 if (agg_factor) { 3766 if (ring_size > BNXT_MAX_RX_DESC_CNT_JUM_ENA) { 3767 ring_size = BNXT_MAX_RX_DESC_CNT_JUM_ENA; 3768 netdev_warn(bp->dev, "RX ring size reduced from %d to %d because the jumbo ring is now enabled\n", 3769 bp->rx_ring_size, ring_size); 3770 bp->rx_ring_size = ring_size; 3771 } 3772 agg_ring_size = ring_size * agg_factor; 3773 3774 bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size, 3775 RX_DESC_CNT); 3776 if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) { 3777 u32 tmp = agg_ring_size; 3778 3779 bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES; 3780 agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1; 3781 netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n", 3782 tmp, agg_ring_size); 3783 } 3784 bp->rx_agg_ring_size = agg_ring_size; 3785 bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1; 3786 rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN); 3787 rx_space = rx_size + NET_SKB_PAD + 3788 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 3789 } 3790 3791 bp->rx_buf_use_size = rx_size; 3792 bp->rx_buf_size = rx_space; 3793 3794 bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT); 3795 bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1; 3796 3797 ring_size = bp->tx_ring_size; 3798 bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT); 3799 bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1; 3800 3801 max_rx_cmpl = bp->rx_ring_size; 3802 /* MAX TPA needs to be added because TPA_START completions are 3803 * immediately recycled, so the TPA completions are not bound by 3804 * the RX ring size. 3805 */ 3806 if (bp->flags & BNXT_FLAG_TPA) 3807 max_rx_cmpl += bp->max_tpa; 3808 /* RX and TPA completions are 32-byte, all others are 16-byte */ 3809 ring_size = max_rx_cmpl * 2 + agg_ring_size + bp->tx_ring_size; 3810 bp->cp_ring_size = ring_size; 3811 3812 bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT); 3813 if (bp->cp_nr_pages > MAX_CP_PAGES) { 3814 bp->cp_nr_pages = MAX_CP_PAGES; 3815 bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1; 3816 netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n", 3817 ring_size, bp->cp_ring_size); 3818 } 3819 bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT; 3820 bp->cp_ring_mask = bp->cp_bit - 1; 3821 } 3822 3823 /* Changing allocation mode of RX rings. 3824 * TODO: Update when extending xdp_rxq_info to support allocation modes. 3825 */ 3826 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode) 3827 { 3828 if (page_mode) { 3829 if (bp->dev->mtu > BNXT_MAX_PAGE_MODE_MTU) 3830 return -EOPNOTSUPP; 3831 bp->dev->max_mtu = 3832 min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU); 3833 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 3834 bp->flags |= BNXT_FLAG_NO_AGG_RINGS | BNXT_FLAG_RX_PAGE_MODE; 3835 bp->rx_dir = DMA_BIDIRECTIONAL; 3836 bp->rx_skb_func = bnxt_rx_page_skb; 3837 /* Disable LRO or GRO_HW */ 3838 netdev_update_features(bp->dev); 3839 } else { 3840 bp->dev->max_mtu = bp->max_mtu; 3841 bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE; 3842 bp->rx_dir = DMA_FROM_DEVICE; 3843 bp->rx_skb_func = bnxt_rx_skb; 3844 } 3845 return 0; 3846 } 3847 3848 static void bnxt_free_vnic_attributes(struct bnxt *bp) 3849 { 3850 int i; 3851 struct bnxt_vnic_info *vnic; 3852 struct pci_dev *pdev = bp->pdev; 3853 3854 if (!bp->vnic_info) 3855 return; 3856 3857 for (i = 0; i < bp->nr_vnics; i++) { 3858 vnic = &bp->vnic_info[i]; 3859 3860 kfree(vnic->fw_grp_ids); 3861 vnic->fw_grp_ids = NULL; 3862 3863 kfree(vnic->uc_list); 3864 vnic->uc_list = NULL; 3865 3866 if (vnic->mc_list) { 3867 dma_free_coherent(&pdev->dev, vnic->mc_list_size, 3868 vnic->mc_list, vnic->mc_list_mapping); 3869 vnic->mc_list = NULL; 3870 } 3871 3872 if (vnic->rss_table) { 3873 dma_free_coherent(&pdev->dev, vnic->rss_table_size, 3874 vnic->rss_table, 3875 vnic->rss_table_dma_addr); 3876 vnic->rss_table = NULL; 3877 } 3878 3879 vnic->rss_hash_key = NULL; 3880 vnic->flags = 0; 3881 } 3882 } 3883 3884 static int bnxt_alloc_vnic_attributes(struct bnxt *bp) 3885 { 3886 int i, rc = 0, size; 3887 struct bnxt_vnic_info *vnic; 3888 struct pci_dev *pdev = bp->pdev; 3889 int max_rings; 3890 3891 for (i = 0; i < bp->nr_vnics; i++) { 3892 vnic = &bp->vnic_info[i]; 3893 3894 if (vnic->flags & BNXT_VNIC_UCAST_FLAG) { 3895 int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN; 3896 3897 if (mem_size > 0) { 3898 vnic->uc_list = kmalloc(mem_size, GFP_KERNEL); 3899 if (!vnic->uc_list) { 3900 rc = -ENOMEM; 3901 goto out; 3902 } 3903 } 3904 } 3905 3906 if (vnic->flags & BNXT_VNIC_MCAST_FLAG) { 3907 vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN; 3908 vnic->mc_list = 3909 dma_alloc_coherent(&pdev->dev, 3910 vnic->mc_list_size, 3911 &vnic->mc_list_mapping, 3912 GFP_KERNEL); 3913 if (!vnic->mc_list) { 3914 rc = -ENOMEM; 3915 goto out; 3916 } 3917 } 3918 3919 if (bp->flags & BNXT_FLAG_CHIP_P5) 3920 goto vnic_skip_grps; 3921 3922 if (vnic->flags & BNXT_VNIC_RSS_FLAG) 3923 max_rings = bp->rx_nr_rings; 3924 else 3925 max_rings = 1; 3926 3927 vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL); 3928 if (!vnic->fw_grp_ids) { 3929 rc = -ENOMEM; 3930 goto out; 3931 } 3932 vnic_skip_grps: 3933 if ((bp->flags & BNXT_FLAG_NEW_RSS_CAP) && 3934 !(vnic->flags & BNXT_VNIC_RSS_FLAG)) 3935 continue; 3936 3937 /* Allocate rss table and hash key */ 3938 size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16)); 3939 if (bp->flags & BNXT_FLAG_CHIP_P5) 3940 size = L1_CACHE_ALIGN(BNXT_MAX_RSS_TABLE_SIZE_P5); 3941 3942 vnic->rss_table_size = size + HW_HASH_KEY_SIZE; 3943 vnic->rss_table = dma_alloc_coherent(&pdev->dev, 3944 vnic->rss_table_size, 3945 &vnic->rss_table_dma_addr, 3946 GFP_KERNEL); 3947 if (!vnic->rss_table) { 3948 rc = -ENOMEM; 3949 goto out; 3950 } 3951 3952 vnic->rss_hash_key = ((void *)vnic->rss_table) + size; 3953 vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size; 3954 } 3955 return 0; 3956 3957 out: 3958 return rc; 3959 } 3960 3961 static void bnxt_free_hwrm_resources(struct bnxt *bp) 3962 { 3963 struct bnxt_hwrm_wait_token *token; 3964 3965 dma_pool_destroy(bp->hwrm_dma_pool); 3966 bp->hwrm_dma_pool = NULL; 3967 3968 rcu_read_lock(); 3969 hlist_for_each_entry_rcu(token, &bp->hwrm_pending_list, node) 3970 WRITE_ONCE(token->state, BNXT_HWRM_CANCELLED); 3971 rcu_read_unlock(); 3972 } 3973 3974 static int bnxt_alloc_hwrm_resources(struct bnxt *bp) 3975 { 3976 bp->hwrm_dma_pool = dma_pool_create("bnxt_hwrm", &bp->pdev->dev, 3977 BNXT_HWRM_DMA_SIZE, 3978 BNXT_HWRM_DMA_ALIGN, 0); 3979 if (!bp->hwrm_dma_pool) 3980 return -ENOMEM; 3981 3982 INIT_HLIST_HEAD(&bp->hwrm_pending_list); 3983 3984 return 0; 3985 } 3986 3987 static void bnxt_free_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats) 3988 { 3989 kfree(stats->hw_masks); 3990 stats->hw_masks = NULL; 3991 kfree(stats->sw_stats); 3992 stats->sw_stats = NULL; 3993 if (stats->hw_stats) { 3994 dma_free_coherent(&bp->pdev->dev, stats->len, stats->hw_stats, 3995 stats->hw_stats_map); 3996 stats->hw_stats = NULL; 3997 } 3998 } 3999 4000 static int bnxt_alloc_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats, 4001 bool alloc_masks) 4002 { 4003 stats->hw_stats = dma_alloc_coherent(&bp->pdev->dev, stats->len, 4004 &stats->hw_stats_map, GFP_KERNEL); 4005 if (!stats->hw_stats) 4006 return -ENOMEM; 4007 4008 stats->sw_stats = kzalloc(stats->len, GFP_KERNEL); 4009 if (!stats->sw_stats) 4010 goto stats_mem_err; 4011 4012 if (alloc_masks) { 4013 stats->hw_masks = kzalloc(stats->len, GFP_KERNEL); 4014 if (!stats->hw_masks) 4015 goto stats_mem_err; 4016 } 4017 return 0; 4018 4019 stats_mem_err: 4020 bnxt_free_stats_mem(bp, stats); 4021 return -ENOMEM; 4022 } 4023 4024 static void bnxt_fill_masks(u64 *mask_arr, u64 mask, int count) 4025 { 4026 int i; 4027 4028 for (i = 0; i < count; i++) 4029 mask_arr[i] = mask; 4030 } 4031 4032 static void bnxt_copy_hw_masks(u64 *mask_arr, __le64 *hw_mask_arr, int count) 4033 { 4034 int i; 4035 4036 for (i = 0; i < count; i++) 4037 mask_arr[i] = le64_to_cpu(hw_mask_arr[i]); 4038 } 4039 4040 static int bnxt_hwrm_func_qstat_ext(struct bnxt *bp, 4041 struct bnxt_stats_mem *stats) 4042 { 4043 struct hwrm_func_qstats_ext_output *resp; 4044 struct hwrm_func_qstats_ext_input *req; 4045 __le64 *hw_masks; 4046 int rc; 4047 4048 if (!(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED) || 4049 !(bp->flags & BNXT_FLAG_CHIP_P5)) 4050 return -EOPNOTSUPP; 4051 4052 rc = hwrm_req_init(bp, req, HWRM_FUNC_QSTATS_EXT); 4053 if (rc) 4054 return rc; 4055 4056 req->fid = cpu_to_le16(0xffff); 4057 req->flags = FUNC_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK; 4058 4059 resp = hwrm_req_hold(bp, req); 4060 rc = hwrm_req_send(bp, req); 4061 if (!rc) { 4062 hw_masks = &resp->rx_ucast_pkts; 4063 bnxt_copy_hw_masks(stats->hw_masks, hw_masks, stats->len / 8); 4064 } 4065 hwrm_req_drop(bp, req); 4066 return rc; 4067 } 4068 4069 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags); 4070 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags); 4071 4072 static void bnxt_init_stats(struct bnxt *bp) 4073 { 4074 struct bnxt_napi *bnapi = bp->bnapi[0]; 4075 struct bnxt_cp_ring_info *cpr; 4076 struct bnxt_stats_mem *stats; 4077 __le64 *rx_stats, *tx_stats; 4078 int rc, rx_count, tx_count; 4079 u64 *rx_masks, *tx_masks; 4080 u64 mask; 4081 u8 flags; 4082 4083 cpr = &bnapi->cp_ring; 4084 stats = &cpr->stats; 4085 rc = bnxt_hwrm_func_qstat_ext(bp, stats); 4086 if (rc) { 4087 if (bp->flags & BNXT_FLAG_CHIP_P5) 4088 mask = (1ULL << 48) - 1; 4089 else 4090 mask = -1ULL; 4091 bnxt_fill_masks(stats->hw_masks, mask, stats->len / 8); 4092 } 4093 if (bp->flags & BNXT_FLAG_PORT_STATS) { 4094 stats = &bp->port_stats; 4095 rx_stats = stats->hw_stats; 4096 rx_masks = stats->hw_masks; 4097 rx_count = sizeof(struct rx_port_stats) / 8; 4098 tx_stats = rx_stats + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 4099 tx_masks = rx_masks + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 4100 tx_count = sizeof(struct tx_port_stats) / 8; 4101 4102 flags = PORT_QSTATS_REQ_FLAGS_COUNTER_MASK; 4103 rc = bnxt_hwrm_port_qstats(bp, flags); 4104 if (rc) { 4105 mask = (1ULL << 40) - 1; 4106 4107 bnxt_fill_masks(rx_masks, mask, rx_count); 4108 bnxt_fill_masks(tx_masks, mask, tx_count); 4109 } else { 4110 bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count); 4111 bnxt_copy_hw_masks(tx_masks, tx_stats, tx_count); 4112 bnxt_hwrm_port_qstats(bp, 0); 4113 } 4114 } 4115 if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) { 4116 stats = &bp->rx_port_stats_ext; 4117 rx_stats = stats->hw_stats; 4118 rx_masks = stats->hw_masks; 4119 rx_count = sizeof(struct rx_port_stats_ext) / 8; 4120 stats = &bp->tx_port_stats_ext; 4121 tx_stats = stats->hw_stats; 4122 tx_masks = stats->hw_masks; 4123 tx_count = sizeof(struct tx_port_stats_ext) / 8; 4124 4125 flags = PORT_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK; 4126 rc = bnxt_hwrm_port_qstats_ext(bp, flags); 4127 if (rc) { 4128 mask = (1ULL << 40) - 1; 4129 4130 bnxt_fill_masks(rx_masks, mask, rx_count); 4131 if (tx_stats) 4132 bnxt_fill_masks(tx_masks, mask, tx_count); 4133 } else { 4134 bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count); 4135 if (tx_stats) 4136 bnxt_copy_hw_masks(tx_masks, tx_stats, 4137 tx_count); 4138 bnxt_hwrm_port_qstats_ext(bp, 0); 4139 } 4140 } 4141 } 4142 4143 static void bnxt_free_port_stats(struct bnxt *bp) 4144 { 4145 bp->flags &= ~BNXT_FLAG_PORT_STATS; 4146 bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT; 4147 4148 bnxt_free_stats_mem(bp, &bp->port_stats); 4149 bnxt_free_stats_mem(bp, &bp->rx_port_stats_ext); 4150 bnxt_free_stats_mem(bp, &bp->tx_port_stats_ext); 4151 } 4152 4153 static void bnxt_free_ring_stats(struct bnxt *bp) 4154 { 4155 int i; 4156 4157 if (!bp->bnapi) 4158 return; 4159 4160 for (i = 0; i < bp->cp_nr_rings; i++) { 4161 struct bnxt_napi *bnapi = bp->bnapi[i]; 4162 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4163 4164 bnxt_free_stats_mem(bp, &cpr->stats); 4165 } 4166 } 4167 4168 static int bnxt_alloc_stats(struct bnxt *bp) 4169 { 4170 u32 size, i; 4171 int rc; 4172 4173 size = bp->hw_ring_stats_size; 4174 4175 for (i = 0; i < bp->cp_nr_rings; i++) { 4176 struct bnxt_napi *bnapi = bp->bnapi[i]; 4177 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4178 4179 cpr->stats.len = size; 4180 rc = bnxt_alloc_stats_mem(bp, &cpr->stats, !i); 4181 if (rc) 4182 return rc; 4183 4184 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID; 4185 } 4186 4187 if (BNXT_VF(bp) || bp->chip_num == CHIP_NUM_58700) 4188 return 0; 4189 4190 if (bp->port_stats.hw_stats) 4191 goto alloc_ext_stats; 4192 4193 bp->port_stats.len = BNXT_PORT_STATS_SIZE; 4194 rc = bnxt_alloc_stats_mem(bp, &bp->port_stats, true); 4195 if (rc) 4196 return rc; 4197 4198 bp->flags |= BNXT_FLAG_PORT_STATS; 4199 4200 alloc_ext_stats: 4201 /* Display extended statistics only if FW supports it */ 4202 if (bp->hwrm_spec_code < 0x10804 || bp->hwrm_spec_code == 0x10900) 4203 if (!(bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) 4204 return 0; 4205 4206 if (bp->rx_port_stats_ext.hw_stats) 4207 goto alloc_tx_ext_stats; 4208 4209 bp->rx_port_stats_ext.len = sizeof(struct rx_port_stats_ext); 4210 rc = bnxt_alloc_stats_mem(bp, &bp->rx_port_stats_ext, true); 4211 /* Extended stats are optional */ 4212 if (rc) 4213 return 0; 4214 4215 alloc_tx_ext_stats: 4216 if (bp->tx_port_stats_ext.hw_stats) 4217 return 0; 4218 4219 if (bp->hwrm_spec_code >= 0x10902 || 4220 (bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) { 4221 bp->tx_port_stats_ext.len = sizeof(struct tx_port_stats_ext); 4222 rc = bnxt_alloc_stats_mem(bp, &bp->tx_port_stats_ext, true); 4223 /* Extended stats are optional */ 4224 if (rc) 4225 return 0; 4226 } 4227 bp->flags |= BNXT_FLAG_PORT_STATS_EXT; 4228 return 0; 4229 } 4230 4231 static void bnxt_clear_ring_indices(struct bnxt *bp) 4232 { 4233 int i; 4234 4235 if (!bp->bnapi) 4236 return; 4237 4238 for (i = 0; i < bp->cp_nr_rings; i++) { 4239 struct bnxt_napi *bnapi = bp->bnapi[i]; 4240 struct bnxt_cp_ring_info *cpr; 4241 struct bnxt_rx_ring_info *rxr; 4242 struct bnxt_tx_ring_info *txr; 4243 4244 if (!bnapi) 4245 continue; 4246 4247 cpr = &bnapi->cp_ring; 4248 cpr->cp_raw_cons = 0; 4249 4250 txr = bnapi->tx_ring; 4251 if (txr) { 4252 txr->tx_prod = 0; 4253 txr->tx_cons = 0; 4254 } 4255 4256 rxr = bnapi->rx_ring; 4257 if (rxr) { 4258 rxr->rx_prod = 0; 4259 rxr->rx_agg_prod = 0; 4260 rxr->rx_sw_agg_prod = 0; 4261 rxr->rx_next_cons = 0; 4262 } 4263 } 4264 } 4265 4266 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit) 4267 { 4268 #ifdef CONFIG_RFS_ACCEL 4269 int i; 4270 4271 /* Under rtnl_lock and all our NAPIs have been disabled. It's 4272 * safe to delete the hash table. 4273 */ 4274 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) { 4275 struct hlist_head *head; 4276 struct hlist_node *tmp; 4277 struct bnxt_ntuple_filter *fltr; 4278 4279 head = &bp->ntp_fltr_hash_tbl[i]; 4280 hlist_for_each_entry_safe(fltr, tmp, head, hash) { 4281 hlist_del(&fltr->hash); 4282 kfree(fltr); 4283 } 4284 } 4285 if (irq_reinit) { 4286 kfree(bp->ntp_fltr_bmap); 4287 bp->ntp_fltr_bmap = NULL; 4288 } 4289 bp->ntp_fltr_count = 0; 4290 #endif 4291 } 4292 4293 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp) 4294 { 4295 #ifdef CONFIG_RFS_ACCEL 4296 int i, rc = 0; 4297 4298 if (!(bp->flags & BNXT_FLAG_RFS)) 4299 return 0; 4300 4301 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) 4302 INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]); 4303 4304 bp->ntp_fltr_count = 0; 4305 bp->ntp_fltr_bmap = kcalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR), 4306 sizeof(long), 4307 GFP_KERNEL); 4308 4309 if (!bp->ntp_fltr_bmap) 4310 rc = -ENOMEM; 4311 4312 return rc; 4313 #else 4314 return 0; 4315 #endif 4316 } 4317 4318 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init) 4319 { 4320 bnxt_free_vnic_attributes(bp); 4321 bnxt_free_tx_rings(bp); 4322 bnxt_free_rx_rings(bp); 4323 bnxt_free_cp_rings(bp); 4324 bnxt_free_all_cp_arrays(bp); 4325 bnxt_free_ntp_fltrs(bp, irq_re_init); 4326 if (irq_re_init) { 4327 bnxt_free_ring_stats(bp); 4328 if (!(bp->phy_flags & BNXT_PHY_FL_PORT_STATS_NO_RESET) || 4329 test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 4330 bnxt_free_port_stats(bp); 4331 bnxt_free_ring_grps(bp); 4332 bnxt_free_vnics(bp); 4333 kfree(bp->tx_ring_map); 4334 bp->tx_ring_map = NULL; 4335 kfree(bp->tx_ring); 4336 bp->tx_ring = NULL; 4337 kfree(bp->rx_ring); 4338 bp->rx_ring = NULL; 4339 kfree(bp->bnapi); 4340 bp->bnapi = NULL; 4341 } else { 4342 bnxt_clear_ring_indices(bp); 4343 } 4344 } 4345 4346 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init) 4347 { 4348 int i, j, rc, size, arr_size; 4349 void *bnapi; 4350 4351 if (irq_re_init) { 4352 /* Allocate bnapi mem pointer array and mem block for 4353 * all queues 4354 */ 4355 arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) * 4356 bp->cp_nr_rings); 4357 size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi)); 4358 bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL); 4359 if (!bnapi) 4360 return -ENOMEM; 4361 4362 bp->bnapi = bnapi; 4363 bnapi += arr_size; 4364 for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) { 4365 bp->bnapi[i] = bnapi; 4366 bp->bnapi[i]->index = i; 4367 bp->bnapi[i]->bp = bp; 4368 if (bp->flags & BNXT_FLAG_CHIP_P5) { 4369 struct bnxt_cp_ring_info *cpr = 4370 &bp->bnapi[i]->cp_ring; 4371 4372 cpr->cp_ring_struct.ring_mem.flags = 4373 BNXT_RMEM_RING_PTE_FLAG; 4374 } 4375 } 4376 4377 bp->rx_ring = kcalloc(bp->rx_nr_rings, 4378 sizeof(struct bnxt_rx_ring_info), 4379 GFP_KERNEL); 4380 if (!bp->rx_ring) 4381 return -ENOMEM; 4382 4383 for (i = 0; i < bp->rx_nr_rings; i++) { 4384 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 4385 4386 if (bp->flags & BNXT_FLAG_CHIP_P5) { 4387 rxr->rx_ring_struct.ring_mem.flags = 4388 BNXT_RMEM_RING_PTE_FLAG; 4389 rxr->rx_agg_ring_struct.ring_mem.flags = 4390 BNXT_RMEM_RING_PTE_FLAG; 4391 } 4392 rxr->bnapi = bp->bnapi[i]; 4393 bp->bnapi[i]->rx_ring = &bp->rx_ring[i]; 4394 } 4395 4396 bp->tx_ring = kcalloc(bp->tx_nr_rings, 4397 sizeof(struct bnxt_tx_ring_info), 4398 GFP_KERNEL); 4399 if (!bp->tx_ring) 4400 return -ENOMEM; 4401 4402 bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16), 4403 GFP_KERNEL); 4404 4405 if (!bp->tx_ring_map) 4406 return -ENOMEM; 4407 4408 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 4409 j = 0; 4410 else 4411 j = bp->rx_nr_rings; 4412 4413 for (i = 0; i < bp->tx_nr_rings; i++, j++) { 4414 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 4415 4416 if (bp->flags & BNXT_FLAG_CHIP_P5) 4417 txr->tx_ring_struct.ring_mem.flags = 4418 BNXT_RMEM_RING_PTE_FLAG; 4419 txr->bnapi = bp->bnapi[j]; 4420 bp->bnapi[j]->tx_ring = txr; 4421 bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i; 4422 if (i >= bp->tx_nr_rings_xdp) { 4423 txr->txq_index = i - bp->tx_nr_rings_xdp; 4424 bp->bnapi[j]->tx_int = bnxt_tx_int; 4425 } else { 4426 bp->bnapi[j]->flags |= BNXT_NAPI_FLAG_XDP; 4427 bp->bnapi[j]->tx_int = bnxt_tx_int_xdp; 4428 } 4429 } 4430 4431 rc = bnxt_alloc_stats(bp); 4432 if (rc) 4433 goto alloc_mem_err; 4434 bnxt_init_stats(bp); 4435 4436 rc = bnxt_alloc_ntp_fltrs(bp); 4437 if (rc) 4438 goto alloc_mem_err; 4439 4440 rc = bnxt_alloc_vnics(bp); 4441 if (rc) 4442 goto alloc_mem_err; 4443 } 4444 4445 rc = bnxt_alloc_all_cp_arrays(bp); 4446 if (rc) 4447 goto alloc_mem_err; 4448 4449 bnxt_init_ring_struct(bp); 4450 4451 rc = bnxt_alloc_rx_rings(bp); 4452 if (rc) 4453 goto alloc_mem_err; 4454 4455 rc = bnxt_alloc_tx_rings(bp); 4456 if (rc) 4457 goto alloc_mem_err; 4458 4459 rc = bnxt_alloc_cp_rings(bp); 4460 if (rc) 4461 goto alloc_mem_err; 4462 4463 bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG | 4464 BNXT_VNIC_UCAST_FLAG; 4465 rc = bnxt_alloc_vnic_attributes(bp); 4466 if (rc) 4467 goto alloc_mem_err; 4468 return 0; 4469 4470 alloc_mem_err: 4471 bnxt_free_mem(bp, true); 4472 return rc; 4473 } 4474 4475 static void bnxt_disable_int(struct bnxt *bp) 4476 { 4477 int i; 4478 4479 if (!bp->bnapi) 4480 return; 4481 4482 for (i = 0; i < bp->cp_nr_rings; i++) { 4483 struct bnxt_napi *bnapi = bp->bnapi[i]; 4484 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4485 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 4486 4487 if (ring->fw_ring_id != INVALID_HW_RING_ID) 4488 bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons); 4489 } 4490 } 4491 4492 static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n) 4493 { 4494 struct bnxt_napi *bnapi = bp->bnapi[n]; 4495 struct bnxt_cp_ring_info *cpr; 4496 4497 cpr = &bnapi->cp_ring; 4498 return cpr->cp_ring_struct.map_idx; 4499 } 4500 4501 static void bnxt_disable_int_sync(struct bnxt *bp) 4502 { 4503 int i; 4504 4505 if (!bp->irq_tbl) 4506 return; 4507 4508 atomic_inc(&bp->intr_sem); 4509 4510 bnxt_disable_int(bp); 4511 for (i = 0; i < bp->cp_nr_rings; i++) { 4512 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 4513 4514 synchronize_irq(bp->irq_tbl[map_idx].vector); 4515 } 4516 } 4517 4518 static void bnxt_enable_int(struct bnxt *bp) 4519 { 4520 int i; 4521 4522 atomic_set(&bp->intr_sem, 0); 4523 for (i = 0; i < bp->cp_nr_rings; i++) { 4524 struct bnxt_napi *bnapi = bp->bnapi[i]; 4525 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4526 4527 bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons); 4528 } 4529 } 4530 4531 int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp, unsigned long *bmap, int bmap_size, 4532 bool async_only) 4533 { 4534 DECLARE_BITMAP(async_events_bmap, 256); 4535 u32 *events = (u32 *)async_events_bmap; 4536 struct hwrm_func_drv_rgtr_output *resp; 4537 struct hwrm_func_drv_rgtr_input *req; 4538 u32 flags; 4539 int rc, i; 4540 4541 rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_RGTR); 4542 if (rc) 4543 return rc; 4544 4545 req->enables = cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE | 4546 FUNC_DRV_RGTR_REQ_ENABLES_VER | 4547 FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD); 4548 4549 req->os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX); 4550 flags = FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE; 4551 if (bp->fw_cap & BNXT_FW_CAP_HOT_RESET) 4552 flags |= FUNC_DRV_RGTR_REQ_FLAGS_HOT_RESET_SUPPORT; 4553 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) 4554 flags |= FUNC_DRV_RGTR_REQ_FLAGS_ERROR_RECOVERY_SUPPORT | 4555 FUNC_DRV_RGTR_REQ_FLAGS_MASTER_SUPPORT; 4556 req->flags = cpu_to_le32(flags); 4557 req->ver_maj_8b = DRV_VER_MAJ; 4558 req->ver_min_8b = DRV_VER_MIN; 4559 req->ver_upd_8b = DRV_VER_UPD; 4560 req->ver_maj = cpu_to_le16(DRV_VER_MAJ); 4561 req->ver_min = cpu_to_le16(DRV_VER_MIN); 4562 req->ver_upd = cpu_to_le16(DRV_VER_UPD); 4563 4564 if (BNXT_PF(bp)) { 4565 u32 data[8]; 4566 int i; 4567 4568 memset(data, 0, sizeof(data)); 4569 for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) { 4570 u16 cmd = bnxt_vf_req_snif[i]; 4571 unsigned int bit, idx; 4572 4573 idx = cmd / 32; 4574 bit = cmd % 32; 4575 data[idx] |= 1 << bit; 4576 } 4577 4578 for (i = 0; i < 8; i++) 4579 req->vf_req_fwd[i] = cpu_to_le32(data[i]); 4580 4581 req->enables |= 4582 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD); 4583 } 4584 4585 if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE) 4586 req->flags |= cpu_to_le32( 4587 FUNC_DRV_RGTR_REQ_FLAGS_FLOW_HANDLE_64BIT_MODE); 4588 4589 memset(async_events_bmap, 0, sizeof(async_events_bmap)); 4590 for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++) { 4591 u16 event_id = bnxt_async_events_arr[i]; 4592 4593 if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY && 4594 !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 4595 continue; 4596 __set_bit(bnxt_async_events_arr[i], async_events_bmap); 4597 } 4598 if (bmap && bmap_size) { 4599 for (i = 0; i < bmap_size; i++) { 4600 if (test_bit(i, bmap)) 4601 __set_bit(i, async_events_bmap); 4602 } 4603 } 4604 for (i = 0; i < 8; i++) 4605 req->async_event_fwd[i] |= cpu_to_le32(events[i]); 4606 4607 if (async_only) 4608 req->enables = 4609 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD); 4610 4611 resp = hwrm_req_hold(bp, req); 4612 rc = hwrm_req_send(bp, req); 4613 if (!rc) { 4614 set_bit(BNXT_STATE_DRV_REGISTERED, &bp->state); 4615 if (resp->flags & 4616 cpu_to_le32(FUNC_DRV_RGTR_RESP_FLAGS_IF_CHANGE_SUPPORTED)) 4617 bp->fw_cap |= BNXT_FW_CAP_IF_CHANGE; 4618 } 4619 hwrm_req_drop(bp, req); 4620 return rc; 4621 } 4622 4623 static int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp) 4624 { 4625 struct hwrm_func_drv_unrgtr_input *req; 4626 int rc; 4627 4628 if (!test_and_clear_bit(BNXT_STATE_DRV_REGISTERED, &bp->state)) 4629 return 0; 4630 4631 rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_UNRGTR); 4632 if (rc) 4633 return rc; 4634 return hwrm_req_send(bp, req); 4635 } 4636 4637 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type) 4638 { 4639 struct hwrm_tunnel_dst_port_free_input *req; 4640 int rc; 4641 4642 rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_FREE); 4643 if (rc) 4644 return rc; 4645 4646 req->tunnel_type = tunnel_type; 4647 4648 switch (tunnel_type) { 4649 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN: 4650 req->tunnel_dst_port_id = cpu_to_le16(bp->vxlan_fw_dst_port_id); 4651 bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID; 4652 break; 4653 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE: 4654 req->tunnel_dst_port_id = cpu_to_le16(bp->nge_fw_dst_port_id); 4655 bp->nge_fw_dst_port_id = INVALID_HW_RING_ID; 4656 break; 4657 default: 4658 break; 4659 } 4660 4661 rc = hwrm_req_send(bp, req); 4662 if (rc) 4663 netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n", 4664 rc); 4665 return rc; 4666 } 4667 4668 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port, 4669 u8 tunnel_type) 4670 { 4671 struct hwrm_tunnel_dst_port_alloc_output *resp; 4672 struct hwrm_tunnel_dst_port_alloc_input *req; 4673 int rc; 4674 4675 rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_ALLOC); 4676 if (rc) 4677 return rc; 4678 4679 req->tunnel_type = tunnel_type; 4680 req->tunnel_dst_port_val = port; 4681 4682 resp = hwrm_req_hold(bp, req); 4683 rc = hwrm_req_send(bp, req); 4684 if (rc) { 4685 netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n", 4686 rc); 4687 goto err_out; 4688 } 4689 4690 switch (tunnel_type) { 4691 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN: 4692 bp->vxlan_fw_dst_port_id = 4693 le16_to_cpu(resp->tunnel_dst_port_id); 4694 break; 4695 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE: 4696 bp->nge_fw_dst_port_id = le16_to_cpu(resp->tunnel_dst_port_id); 4697 break; 4698 default: 4699 break; 4700 } 4701 4702 err_out: 4703 hwrm_req_drop(bp, req); 4704 return rc; 4705 } 4706 4707 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id) 4708 { 4709 struct hwrm_cfa_l2_set_rx_mask_input *req; 4710 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 4711 int rc; 4712 4713 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_SET_RX_MASK); 4714 if (rc) 4715 return rc; 4716 4717 req->vnic_id = cpu_to_le32(vnic->fw_vnic_id); 4718 req->num_mc_entries = cpu_to_le32(vnic->mc_list_count); 4719 req->mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping); 4720 req->mask = cpu_to_le32(vnic->rx_mask); 4721 return hwrm_req_send_silent(bp, req); 4722 } 4723 4724 #ifdef CONFIG_RFS_ACCEL 4725 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp, 4726 struct bnxt_ntuple_filter *fltr) 4727 { 4728 struct hwrm_cfa_ntuple_filter_free_input *req; 4729 int rc; 4730 4731 rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_FREE); 4732 if (rc) 4733 return rc; 4734 4735 req->ntuple_filter_id = fltr->filter_id; 4736 return hwrm_req_send(bp, req); 4737 } 4738 4739 #define BNXT_NTP_FLTR_FLAGS \ 4740 (CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID | \ 4741 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE | \ 4742 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR | \ 4743 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE | \ 4744 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR | \ 4745 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK | \ 4746 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR | \ 4747 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK | \ 4748 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL | \ 4749 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT | \ 4750 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK | \ 4751 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT | \ 4752 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK | \ 4753 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID) 4754 4755 #define BNXT_NTP_TUNNEL_FLTR_FLAG \ 4756 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE 4757 4758 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp, 4759 struct bnxt_ntuple_filter *fltr) 4760 { 4761 struct hwrm_cfa_ntuple_filter_alloc_output *resp; 4762 struct hwrm_cfa_ntuple_filter_alloc_input *req; 4763 struct flow_keys *keys = &fltr->fkeys; 4764 struct bnxt_vnic_info *vnic; 4765 u32 flags = 0; 4766 int rc; 4767 4768 rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_ALLOC); 4769 if (rc) 4770 return rc; 4771 4772 req->l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx]; 4773 4774 if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) { 4775 flags = CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DEST_RFS_RING_IDX; 4776 req->dst_id = cpu_to_le16(fltr->rxq); 4777 } else { 4778 vnic = &bp->vnic_info[fltr->rxq + 1]; 4779 req->dst_id = cpu_to_le16(vnic->fw_vnic_id); 4780 } 4781 req->flags = cpu_to_le32(flags); 4782 req->enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS); 4783 4784 req->ethertype = htons(ETH_P_IP); 4785 memcpy(req->src_macaddr, fltr->src_mac_addr, ETH_ALEN); 4786 req->ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4; 4787 req->ip_protocol = keys->basic.ip_proto; 4788 4789 if (keys->basic.n_proto == htons(ETH_P_IPV6)) { 4790 int i; 4791 4792 req->ethertype = htons(ETH_P_IPV6); 4793 req->ip_addr_type = 4794 CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6; 4795 *(struct in6_addr *)&req->src_ipaddr[0] = 4796 keys->addrs.v6addrs.src; 4797 *(struct in6_addr *)&req->dst_ipaddr[0] = 4798 keys->addrs.v6addrs.dst; 4799 for (i = 0; i < 4; i++) { 4800 req->src_ipaddr_mask[i] = cpu_to_be32(0xffffffff); 4801 req->dst_ipaddr_mask[i] = cpu_to_be32(0xffffffff); 4802 } 4803 } else { 4804 req->src_ipaddr[0] = keys->addrs.v4addrs.src; 4805 req->src_ipaddr_mask[0] = cpu_to_be32(0xffffffff); 4806 req->dst_ipaddr[0] = keys->addrs.v4addrs.dst; 4807 req->dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff); 4808 } 4809 if (keys->control.flags & FLOW_DIS_ENCAPSULATION) { 4810 req->enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG); 4811 req->tunnel_type = 4812 CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL; 4813 } 4814 4815 req->src_port = keys->ports.src; 4816 req->src_port_mask = cpu_to_be16(0xffff); 4817 req->dst_port = keys->ports.dst; 4818 req->dst_port_mask = cpu_to_be16(0xffff); 4819 4820 resp = hwrm_req_hold(bp, req); 4821 rc = hwrm_req_send(bp, req); 4822 if (!rc) 4823 fltr->filter_id = resp->ntuple_filter_id; 4824 hwrm_req_drop(bp, req); 4825 return rc; 4826 } 4827 #endif 4828 4829 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx, 4830 u8 *mac_addr) 4831 { 4832 struct hwrm_cfa_l2_filter_alloc_output *resp; 4833 struct hwrm_cfa_l2_filter_alloc_input *req; 4834 int rc; 4835 4836 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_ALLOC); 4837 if (rc) 4838 return rc; 4839 4840 req->flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX); 4841 if (!BNXT_CHIP_TYPE_NITRO_A0(bp)) 4842 req->flags |= 4843 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST); 4844 req->dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id); 4845 req->enables = 4846 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR | 4847 CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID | 4848 CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK); 4849 memcpy(req->l2_addr, mac_addr, ETH_ALEN); 4850 req->l2_addr_mask[0] = 0xff; 4851 req->l2_addr_mask[1] = 0xff; 4852 req->l2_addr_mask[2] = 0xff; 4853 req->l2_addr_mask[3] = 0xff; 4854 req->l2_addr_mask[4] = 0xff; 4855 req->l2_addr_mask[5] = 0xff; 4856 4857 resp = hwrm_req_hold(bp, req); 4858 rc = hwrm_req_send(bp, req); 4859 if (!rc) 4860 bp->vnic_info[vnic_id].fw_l2_filter_id[idx] = 4861 resp->l2_filter_id; 4862 hwrm_req_drop(bp, req); 4863 return rc; 4864 } 4865 4866 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp) 4867 { 4868 struct hwrm_cfa_l2_filter_free_input *req; 4869 u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */ 4870 int rc; 4871 4872 /* Any associated ntuple filters will also be cleared by firmware. */ 4873 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE); 4874 if (rc) 4875 return rc; 4876 hwrm_req_hold(bp, req); 4877 for (i = 0; i < num_of_vnics; i++) { 4878 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 4879 4880 for (j = 0; j < vnic->uc_filter_count; j++) { 4881 req->l2_filter_id = vnic->fw_l2_filter_id[j]; 4882 4883 rc = hwrm_req_send(bp, req); 4884 } 4885 vnic->uc_filter_count = 0; 4886 } 4887 hwrm_req_drop(bp, req); 4888 return rc; 4889 } 4890 4891 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags) 4892 { 4893 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 4894 u16 max_aggs = VNIC_TPA_CFG_REQ_MAX_AGGS_MAX; 4895 struct hwrm_vnic_tpa_cfg_input *req; 4896 int rc; 4897 4898 if (vnic->fw_vnic_id == INVALID_HW_RING_ID) 4899 return 0; 4900 4901 rc = hwrm_req_init(bp, req, HWRM_VNIC_TPA_CFG); 4902 if (rc) 4903 return rc; 4904 4905 if (tpa_flags) { 4906 u16 mss = bp->dev->mtu - 40; 4907 u32 nsegs, n, segs = 0, flags; 4908 4909 flags = VNIC_TPA_CFG_REQ_FLAGS_TPA | 4910 VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA | 4911 VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE | 4912 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN | 4913 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ; 4914 if (tpa_flags & BNXT_FLAG_GRO) 4915 flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO; 4916 4917 req->flags = cpu_to_le32(flags); 4918 4919 req->enables = 4920 cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS | 4921 VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS | 4922 VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN); 4923 4924 /* Number of segs are log2 units, and first packet is not 4925 * included as part of this units. 4926 */ 4927 if (mss <= BNXT_RX_PAGE_SIZE) { 4928 n = BNXT_RX_PAGE_SIZE / mss; 4929 nsegs = (MAX_SKB_FRAGS - 1) * n; 4930 } else { 4931 n = mss / BNXT_RX_PAGE_SIZE; 4932 if (mss & (BNXT_RX_PAGE_SIZE - 1)) 4933 n++; 4934 nsegs = (MAX_SKB_FRAGS - n) / n; 4935 } 4936 4937 if (bp->flags & BNXT_FLAG_CHIP_P5) { 4938 segs = MAX_TPA_SEGS_P5; 4939 max_aggs = bp->max_tpa; 4940 } else { 4941 segs = ilog2(nsegs); 4942 } 4943 req->max_agg_segs = cpu_to_le16(segs); 4944 req->max_aggs = cpu_to_le16(max_aggs); 4945 4946 req->min_agg_len = cpu_to_le32(512); 4947 } 4948 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 4949 4950 return hwrm_req_send(bp, req); 4951 } 4952 4953 static u16 bnxt_cp_ring_from_grp(struct bnxt *bp, struct bnxt_ring_struct *ring) 4954 { 4955 struct bnxt_ring_grp_info *grp_info; 4956 4957 grp_info = &bp->grp_info[ring->grp_idx]; 4958 return grp_info->cp_fw_ring_id; 4959 } 4960 4961 static u16 bnxt_cp_ring_for_rx(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 4962 { 4963 if (bp->flags & BNXT_FLAG_CHIP_P5) { 4964 struct bnxt_napi *bnapi = rxr->bnapi; 4965 struct bnxt_cp_ring_info *cpr; 4966 4967 cpr = bnapi->cp_ring.cp_ring_arr[BNXT_RX_HDL]; 4968 return cpr->cp_ring_struct.fw_ring_id; 4969 } else { 4970 return bnxt_cp_ring_from_grp(bp, &rxr->rx_ring_struct); 4971 } 4972 } 4973 4974 static u16 bnxt_cp_ring_for_tx(struct bnxt *bp, struct bnxt_tx_ring_info *txr) 4975 { 4976 if (bp->flags & BNXT_FLAG_CHIP_P5) { 4977 struct bnxt_napi *bnapi = txr->bnapi; 4978 struct bnxt_cp_ring_info *cpr; 4979 4980 cpr = bnapi->cp_ring.cp_ring_arr[BNXT_TX_HDL]; 4981 return cpr->cp_ring_struct.fw_ring_id; 4982 } else { 4983 return bnxt_cp_ring_from_grp(bp, &txr->tx_ring_struct); 4984 } 4985 } 4986 4987 static int bnxt_alloc_rss_indir_tbl(struct bnxt *bp) 4988 { 4989 int entries; 4990 4991 if (bp->flags & BNXT_FLAG_CHIP_P5) 4992 entries = BNXT_MAX_RSS_TABLE_ENTRIES_P5; 4993 else 4994 entries = HW_HASH_INDEX_SIZE; 4995 4996 bp->rss_indir_tbl_entries = entries; 4997 bp->rss_indir_tbl = kmalloc_array(entries, sizeof(*bp->rss_indir_tbl), 4998 GFP_KERNEL); 4999 if (!bp->rss_indir_tbl) 5000 return -ENOMEM; 5001 return 0; 5002 } 5003 5004 static void bnxt_set_dflt_rss_indir_tbl(struct bnxt *bp) 5005 { 5006 u16 max_rings, max_entries, pad, i; 5007 5008 if (!bp->rx_nr_rings) 5009 return; 5010 5011 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 5012 max_rings = bp->rx_nr_rings - 1; 5013 else 5014 max_rings = bp->rx_nr_rings; 5015 5016 max_entries = bnxt_get_rxfh_indir_size(bp->dev); 5017 5018 for (i = 0; i < max_entries; i++) 5019 bp->rss_indir_tbl[i] = ethtool_rxfh_indir_default(i, max_rings); 5020 5021 pad = bp->rss_indir_tbl_entries - max_entries; 5022 if (pad) 5023 memset(&bp->rss_indir_tbl[i], 0, pad * sizeof(u16)); 5024 } 5025 5026 static u16 bnxt_get_max_rss_ring(struct bnxt *bp) 5027 { 5028 u16 i, tbl_size, max_ring = 0; 5029 5030 if (!bp->rss_indir_tbl) 5031 return 0; 5032 5033 tbl_size = bnxt_get_rxfh_indir_size(bp->dev); 5034 for (i = 0; i < tbl_size; i++) 5035 max_ring = max(max_ring, bp->rss_indir_tbl[i]); 5036 return max_ring; 5037 } 5038 5039 int bnxt_get_nr_rss_ctxs(struct bnxt *bp, int rx_rings) 5040 { 5041 if (bp->flags & BNXT_FLAG_CHIP_P5) 5042 return DIV_ROUND_UP(rx_rings, BNXT_RSS_TABLE_ENTRIES_P5); 5043 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 5044 return 2; 5045 return 1; 5046 } 5047 5048 static void __bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic) 5049 { 5050 bool no_rss = !(vnic->flags & BNXT_VNIC_RSS_FLAG); 5051 u16 i, j; 5052 5053 /* Fill the RSS indirection table with ring group ids */ 5054 for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++) { 5055 if (!no_rss) 5056 j = bp->rss_indir_tbl[i]; 5057 vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]); 5058 } 5059 } 5060 5061 static void __bnxt_fill_hw_rss_tbl_p5(struct bnxt *bp, 5062 struct bnxt_vnic_info *vnic) 5063 { 5064 __le16 *ring_tbl = vnic->rss_table; 5065 struct bnxt_rx_ring_info *rxr; 5066 u16 tbl_size, i; 5067 5068 tbl_size = bnxt_get_rxfh_indir_size(bp->dev); 5069 5070 for (i = 0; i < tbl_size; i++) { 5071 u16 ring_id, j; 5072 5073 j = bp->rss_indir_tbl[i]; 5074 rxr = &bp->rx_ring[j]; 5075 5076 ring_id = rxr->rx_ring_struct.fw_ring_id; 5077 *ring_tbl++ = cpu_to_le16(ring_id); 5078 ring_id = bnxt_cp_ring_for_rx(bp, rxr); 5079 *ring_tbl++ = cpu_to_le16(ring_id); 5080 } 5081 } 5082 5083 static void bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic) 5084 { 5085 if (bp->flags & BNXT_FLAG_CHIP_P5) 5086 __bnxt_fill_hw_rss_tbl_p5(bp, vnic); 5087 else 5088 __bnxt_fill_hw_rss_tbl(bp, vnic); 5089 } 5090 5091 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss) 5092 { 5093 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5094 struct hwrm_vnic_rss_cfg_input *req; 5095 int rc; 5096 5097 if ((bp->flags & BNXT_FLAG_CHIP_P5) || 5098 vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID) 5099 return 0; 5100 5101 rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG); 5102 if (rc) 5103 return rc; 5104 5105 if (set_rss) { 5106 bnxt_fill_hw_rss_tbl(bp, vnic); 5107 req->hash_type = cpu_to_le32(bp->rss_hash_cfg); 5108 req->hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT; 5109 req->ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr); 5110 req->hash_key_tbl_addr = 5111 cpu_to_le64(vnic->rss_hash_key_dma_addr); 5112 } 5113 req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 5114 return hwrm_req_send(bp, req); 5115 } 5116 5117 static int bnxt_hwrm_vnic_set_rss_p5(struct bnxt *bp, u16 vnic_id, bool set_rss) 5118 { 5119 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5120 struct hwrm_vnic_rss_cfg_input *req; 5121 dma_addr_t ring_tbl_map; 5122 u32 i, nr_ctxs; 5123 int rc; 5124 5125 rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG); 5126 if (rc) 5127 return rc; 5128 5129 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 5130 if (!set_rss) 5131 return hwrm_req_send(bp, req); 5132 5133 bnxt_fill_hw_rss_tbl(bp, vnic); 5134 req->hash_type = cpu_to_le32(bp->rss_hash_cfg); 5135 req->hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT; 5136 req->hash_key_tbl_addr = cpu_to_le64(vnic->rss_hash_key_dma_addr); 5137 ring_tbl_map = vnic->rss_table_dma_addr; 5138 nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings); 5139 5140 hwrm_req_hold(bp, req); 5141 for (i = 0; i < nr_ctxs; ring_tbl_map += BNXT_RSS_TABLE_SIZE_P5, i++) { 5142 req->ring_grp_tbl_addr = cpu_to_le64(ring_tbl_map); 5143 req->ring_table_pair_index = i; 5144 req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[i]); 5145 rc = hwrm_req_send(bp, req); 5146 if (rc) 5147 goto exit; 5148 } 5149 5150 exit: 5151 hwrm_req_drop(bp, req); 5152 return rc; 5153 } 5154 5155 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id) 5156 { 5157 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5158 struct hwrm_vnic_plcmodes_cfg_input *req; 5159 int rc; 5160 5161 rc = hwrm_req_init(bp, req, HWRM_VNIC_PLCMODES_CFG); 5162 if (rc) 5163 return rc; 5164 5165 req->flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT | 5166 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 | 5167 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6); 5168 req->enables = 5169 cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID | 5170 VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID); 5171 /* thresholds not implemented in firmware yet */ 5172 req->jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh); 5173 req->hds_threshold = cpu_to_le16(bp->rx_copy_thresh); 5174 req->vnic_id = cpu_to_le32(vnic->fw_vnic_id); 5175 return hwrm_req_send(bp, req); 5176 } 5177 5178 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id, 5179 u16 ctx_idx) 5180 { 5181 struct hwrm_vnic_rss_cos_lb_ctx_free_input *req; 5182 5183 if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_FREE)) 5184 return; 5185 5186 req->rss_cos_lb_ctx_id = 5187 cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]); 5188 5189 hwrm_req_send(bp, req); 5190 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID; 5191 } 5192 5193 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp) 5194 { 5195 int i, j; 5196 5197 for (i = 0; i < bp->nr_vnics; i++) { 5198 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 5199 5200 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) { 5201 if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID) 5202 bnxt_hwrm_vnic_ctx_free_one(bp, i, j); 5203 } 5204 } 5205 bp->rsscos_nr_ctxs = 0; 5206 } 5207 5208 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx) 5209 { 5210 struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp; 5211 struct hwrm_vnic_rss_cos_lb_ctx_alloc_input *req; 5212 int rc; 5213 5214 rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC); 5215 if (rc) 5216 return rc; 5217 5218 resp = hwrm_req_hold(bp, req); 5219 rc = hwrm_req_send(bp, req); 5220 if (!rc) 5221 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = 5222 le16_to_cpu(resp->rss_cos_lb_ctx_id); 5223 hwrm_req_drop(bp, req); 5224 5225 return rc; 5226 } 5227 5228 static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp) 5229 { 5230 if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP) 5231 return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE; 5232 return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE; 5233 } 5234 5235 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id) 5236 { 5237 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5238 struct hwrm_vnic_cfg_input *req; 5239 unsigned int ring = 0, grp_idx; 5240 u16 def_vlan = 0; 5241 int rc; 5242 5243 rc = hwrm_req_init(bp, req, HWRM_VNIC_CFG); 5244 if (rc) 5245 return rc; 5246 5247 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5248 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0]; 5249 5250 req->default_rx_ring_id = 5251 cpu_to_le16(rxr->rx_ring_struct.fw_ring_id); 5252 req->default_cmpl_ring_id = 5253 cpu_to_le16(bnxt_cp_ring_for_rx(bp, rxr)); 5254 req->enables = 5255 cpu_to_le32(VNIC_CFG_REQ_ENABLES_DEFAULT_RX_RING_ID | 5256 VNIC_CFG_REQ_ENABLES_DEFAULT_CMPL_RING_ID); 5257 goto vnic_mru; 5258 } 5259 req->enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP); 5260 /* Only RSS support for now TBD: COS & LB */ 5261 if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) { 5262 req->rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 5263 req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE | 5264 VNIC_CFG_REQ_ENABLES_MRU); 5265 } else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) { 5266 req->rss_rule = 5267 cpu_to_le16(bp->vnic_info[0].fw_rss_cos_lb_ctx[0]); 5268 req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE | 5269 VNIC_CFG_REQ_ENABLES_MRU); 5270 req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE); 5271 } else { 5272 req->rss_rule = cpu_to_le16(0xffff); 5273 } 5274 5275 if (BNXT_CHIP_TYPE_NITRO_A0(bp) && 5276 (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) { 5277 req->cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]); 5278 req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE); 5279 } else { 5280 req->cos_rule = cpu_to_le16(0xffff); 5281 } 5282 5283 if (vnic->flags & BNXT_VNIC_RSS_FLAG) 5284 ring = 0; 5285 else if (vnic->flags & BNXT_VNIC_RFS_FLAG) 5286 ring = vnic_id - 1; 5287 else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp)) 5288 ring = bp->rx_nr_rings - 1; 5289 5290 grp_idx = bp->rx_ring[ring].bnapi->index; 5291 req->dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id); 5292 req->lb_rule = cpu_to_le16(0xffff); 5293 vnic_mru: 5294 req->mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + VLAN_HLEN); 5295 5296 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 5297 #ifdef CONFIG_BNXT_SRIOV 5298 if (BNXT_VF(bp)) 5299 def_vlan = bp->vf.vlan; 5300 #endif 5301 if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan) 5302 req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE); 5303 if (!vnic_id && bnxt_ulp_registered(bp->edev, BNXT_ROCE_ULP)) 5304 req->flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp)); 5305 5306 return hwrm_req_send(bp, req); 5307 } 5308 5309 static void bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id) 5310 { 5311 if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) { 5312 struct hwrm_vnic_free_input *req; 5313 5314 if (hwrm_req_init(bp, req, HWRM_VNIC_FREE)) 5315 return; 5316 5317 req->vnic_id = 5318 cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id); 5319 5320 hwrm_req_send(bp, req); 5321 bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID; 5322 } 5323 } 5324 5325 static void bnxt_hwrm_vnic_free(struct bnxt *bp) 5326 { 5327 u16 i; 5328 5329 for (i = 0; i < bp->nr_vnics; i++) 5330 bnxt_hwrm_vnic_free_one(bp, i); 5331 } 5332 5333 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id, 5334 unsigned int start_rx_ring_idx, 5335 unsigned int nr_rings) 5336 { 5337 unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings; 5338 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5339 struct hwrm_vnic_alloc_output *resp; 5340 struct hwrm_vnic_alloc_input *req; 5341 int rc; 5342 5343 rc = hwrm_req_init(bp, req, HWRM_VNIC_ALLOC); 5344 if (rc) 5345 return rc; 5346 5347 if (bp->flags & BNXT_FLAG_CHIP_P5) 5348 goto vnic_no_ring_grps; 5349 5350 /* map ring groups to this vnic */ 5351 for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) { 5352 grp_idx = bp->rx_ring[i].bnapi->index; 5353 if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) { 5354 netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n", 5355 j, nr_rings); 5356 break; 5357 } 5358 vnic->fw_grp_ids[j] = bp->grp_info[grp_idx].fw_grp_id; 5359 } 5360 5361 vnic_no_ring_grps: 5362 for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++) 5363 vnic->fw_rss_cos_lb_ctx[i] = INVALID_HW_RING_ID; 5364 if (vnic_id == 0) 5365 req->flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT); 5366 5367 resp = hwrm_req_hold(bp, req); 5368 rc = hwrm_req_send(bp, req); 5369 if (!rc) 5370 vnic->fw_vnic_id = le32_to_cpu(resp->vnic_id); 5371 hwrm_req_drop(bp, req); 5372 return rc; 5373 } 5374 5375 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp) 5376 { 5377 struct hwrm_vnic_qcaps_output *resp; 5378 struct hwrm_vnic_qcaps_input *req; 5379 int rc; 5380 5381 bp->hw_ring_stats_size = sizeof(struct ctx_hw_stats); 5382 bp->flags &= ~(BNXT_FLAG_NEW_RSS_CAP | BNXT_FLAG_ROCE_MIRROR_CAP); 5383 if (bp->hwrm_spec_code < 0x10600) 5384 return 0; 5385 5386 rc = hwrm_req_init(bp, req, HWRM_VNIC_QCAPS); 5387 if (rc) 5388 return rc; 5389 5390 resp = hwrm_req_hold(bp, req); 5391 rc = hwrm_req_send(bp, req); 5392 if (!rc) { 5393 u32 flags = le32_to_cpu(resp->flags); 5394 5395 if (!(bp->flags & BNXT_FLAG_CHIP_P5) && 5396 (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP)) 5397 bp->flags |= BNXT_FLAG_NEW_RSS_CAP; 5398 if (flags & 5399 VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP) 5400 bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP; 5401 5402 /* Older P5 fw before EXT_HW_STATS support did not set 5403 * VLAN_STRIP_CAP properly. 5404 */ 5405 if ((flags & VNIC_QCAPS_RESP_FLAGS_VLAN_STRIP_CAP) || 5406 (BNXT_CHIP_P5_THOR(bp) && 5407 !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))) 5408 bp->fw_cap |= BNXT_FW_CAP_VLAN_RX_STRIP; 5409 bp->max_tpa_v2 = le16_to_cpu(resp->max_aggs_supported); 5410 if (bp->max_tpa_v2) { 5411 if (BNXT_CHIP_P5_THOR(bp)) 5412 bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5; 5413 else 5414 bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5_SR2; 5415 } 5416 } 5417 hwrm_req_drop(bp, req); 5418 return rc; 5419 } 5420 5421 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp) 5422 { 5423 struct hwrm_ring_grp_alloc_output *resp; 5424 struct hwrm_ring_grp_alloc_input *req; 5425 int rc; 5426 u16 i; 5427 5428 if (bp->flags & BNXT_FLAG_CHIP_P5) 5429 return 0; 5430 5431 rc = hwrm_req_init(bp, req, HWRM_RING_GRP_ALLOC); 5432 if (rc) 5433 return rc; 5434 5435 resp = hwrm_req_hold(bp, req); 5436 for (i = 0; i < bp->rx_nr_rings; i++) { 5437 unsigned int grp_idx = bp->rx_ring[i].bnapi->index; 5438 5439 req->cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id); 5440 req->rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id); 5441 req->ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id); 5442 req->sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx); 5443 5444 rc = hwrm_req_send(bp, req); 5445 5446 if (rc) 5447 break; 5448 5449 bp->grp_info[grp_idx].fw_grp_id = 5450 le32_to_cpu(resp->ring_group_id); 5451 } 5452 hwrm_req_drop(bp, req); 5453 return rc; 5454 } 5455 5456 static void bnxt_hwrm_ring_grp_free(struct bnxt *bp) 5457 { 5458 struct hwrm_ring_grp_free_input *req; 5459 u16 i; 5460 5461 if (!bp->grp_info || (bp->flags & BNXT_FLAG_CHIP_P5)) 5462 return; 5463 5464 if (hwrm_req_init(bp, req, HWRM_RING_GRP_FREE)) 5465 return; 5466 5467 hwrm_req_hold(bp, req); 5468 for (i = 0; i < bp->cp_nr_rings; i++) { 5469 if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID) 5470 continue; 5471 req->ring_group_id = 5472 cpu_to_le32(bp->grp_info[i].fw_grp_id); 5473 5474 hwrm_req_send(bp, req); 5475 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID; 5476 } 5477 hwrm_req_drop(bp, req); 5478 } 5479 5480 static int hwrm_ring_alloc_send_msg(struct bnxt *bp, 5481 struct bnxt_ring_struct *ring, 5482 u32 ring_type, u32 map_index) 5483 { 5484 struct hwrm_ring_alloc_output *resp; 5485 struct hwrm_ring_alloc_input *req; 5486 struct bnxt_ring_mem_info *rmem = &ring->ring_mem; 5487 struct bnxt_ring_grp_info *grp_info; 5488 int rc, err = 0; 5489 u16 ring_id; 5490 5491 rc = hwrm_req_init(bp, req, HWRM_RING_ALLOC); 5492 if (rc) 5493 goto exit; 5494 5495 req->enables = 0; 5496 if (rmem->nr_pages > 1) { 5497 req->page_tbl_addr = cpu_to_le64(rmem->pg_tbl_map); 5498 /* Page size is in log2 units */ 5499 req->page_size = BNXT_PAGE_SHIFT; 5500 req->page_tbl_depth = 1; 5501 } else { 5502 req->page_tbl_addr = cpu_to_le64(rmem->dma_arr[0]); 5503 } 5504 req->fbo = 0; 5505 /* Association of ring index with doorbell index and MSIX number */ 5506 req->logical_id = cpu_to_le16(map_index); 5507 5508 switch (ring_type) { 5509 case HWRM_RING_ALLOC_TX: { 5510 struct bnxt_tx_ring_info *txr; 5511 5512 txr = container_of(ring, struct bnxt_tx_ring_info, 5513 tx_ring_struct); 5514 req->ring_type = RING_ALLOC_REQ_RING_TYPE_TX; 5515 /* Association of transmit ring with completion ring */ 5516 grp_info = &bp->grp_info[ring->grp_idx]; 5517 req->cmpl_ring_id = cpu_to_le16(bnxt_cp_ring_for_tx(bp, txr)); 5518 req->length = cpu_to_le32(bp->tx_ring_mask + 1); 5519 req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 5520 req->queue_id = cpu_to_le16(ring->queue_id); 5521 break; 5522 } 5523 case HWRM_RING_ALLOC_RX: 5524 req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX; 5525 req->length = cpu_to_le32(bp->rx_ring_mask + 1); 5526 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5527 u16 flags = 0; 5528 5529 /* Association of rx ring with stats context */ 5530 grp_info = &bp->grp_info[ring->grp_idx]; 5531 req->rx_buf_size = cpu_to_le16(bp->rx_buf_use_size); 5532 req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 5533 req->enables |= cpu_to_le32( 5534 RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID); 5535 if (NET_IP_ALIGN == 2) 5536 flags = RING_ALLOC_REQ_FLAGS_RX_SOP_PAD; 5537 req->flags = cpu_to_le16(flags); 5538 } 5539 break; 5540 case HWRM_RING_ALLOC_AGG: 5541 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5542 req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX_AGG; 5543 /* Association of agg ring with rx ring */ 5544 grp_info = &bp->grp_info[ring->grp_idx]; 5545 req->rx_ring_id = cpu_to_le16(grp_info->rx_fw_ring_id); 5546 req->rx_buf_size = cpu_to_le16(BNXT_RX_PAGE_SIZE); 5547 req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 5548 req->enables |= cpu_to_le32( 5549 RING_ALLOC_REQ_ENABLES_RX_RING_ID_VALID | 5550 RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID); 5551 } else { 5552 req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX; 5553 } 5554 req->length = cpu_to_le32(bp->rx_agg_ring_mask + 1); 5555 break; 5556 case HWRM_RING_ALLOC_CMPL: 5557 req->ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL; 5558 req->length = cpu_to_le32(bp->cp_ring_mask + 1); 5559 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5560 /* Association of cp ring with nq */ 5561 grp_info = &bp->grp_info[map_index]; 5562 req->nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id); 5563 req->cq_handle = cpu_to_le64(ring->handle); 5564 req->enables |= cpu_to_le32( 5565 RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID); 5566 } else if (bp->flags & BNXT_FLAG_USING_MSIX) { 5567 req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX; 5568 } 5569 break; 5570 case HWRM_RING_ALLOC_NQ: 5571 req->ring_type = RING_ALLOC_REQ_RING_TYPE_NQ; 5572 req->length = cpu_to_le32(bp->cp_ring_mask + 1); 5573 if (bp->flags & BNXT_FLAG_USING_MSIX) 5574 req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX; 5575 break; 5576 default: 5577 netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n", 5578 ring_type); 5579 return -1; 5580 } 5581 5582 resp = hwrm_req_hold(bp, req); 5583 rc = hwrm_req_send(bp, req); 5584 err = le16_to_cpu(resp->error_code); 5585 ring_id = le16_to_cpu(resp->ring_id); 5586 hwrm_req_drop(bp, req); 5587 5588 exit: 5589 if (rc || err) { 5590 netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n", 5591 ring_type, rc, err); 5592 return -EIO; 5593 } 5594 ring->fw_ring_id = ring_id; 5595 return rc; 5596 } 5597 5598 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx) 5599 { 5600 int rc; 5601 5602 if (BNXT_PF(bp)) { 5603 struct hwrm_func_cfg_input *req; 5604 5605 rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG); 5606 if (rc) 5607 return rc; 5608 5609 req->fid = cpu_to_le16(0xffff); 5610 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR); 5611 req->async_event_cr = cpu_to_le16(idx); 5612 return hwrm_req_send(bp, req); 5613 } else { 5614 struct hwrm_func_vf_cfg_input *req; 5615 5616 rc = hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG); 5617 if (rc) 5618 return rc; 5619 5620 req->enables = 5621 cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR); 5622 req->async_event_cr = cpu_to_le16(idx); 5623 return hwrm_req_send(bp, req); 5624 } 5625 } 5626 5627 static void bnxt_set_db(struct bnxt *bp, struct bnxt_db_info *db, u32 ring_type, 5628 u32 map_idx, u32 xid) 5629 { 5630 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5631 if (BNXT_PF(bp)) 5632 db->doorbell = bp->bar1 + DB_PF_OFFSET_P5; 5633 else 5634 db->doorbell = bp->bar1 + DB_VF_OFFSET_P5; 5635 switch (ring_type) { 5636 case HWRM_RING_ALLOC_TX: 5637 db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SQ; 5638 break; 5639 case HWRM_RING_ALLOC_RX: 5640 case HWRM_RING_ALLOC_AGG: 5641 db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SRQ; 5642 break; 5643 case HWRM_RING_ALLOC_CMPL: 5644 db->db_key64 = DBR_PATH_L2; 5645 break; 5646 case HWRM_RING_ALLOC_NQ: 5647 db->db_key64 = DBR_PATH_L2; 5648 break; 5649 } 5650 db->db_key64 |= (u64)xid << DBR_XID_SFT; 5651 } else { 5652 db->doorbell = bp->bar1 + map_idx * 0x80; 5653 switch (ring_type) { 5654 case HWRM_RING_ALLOC_TX: 5655 db->db_key32 = DB_KEY_TX; 5656 break; 5657 case HWRM_RING_ALLOC_RX: 5658 case HWRM_RING_ALLOC_AGG: 5659 db->db_key32 = DB_KEY_RX; 5660 break; 5661 case HWRM_RING_ALLOC_CMPL: 5662 db->db_key32 = DB_KEY_CP; 5663 break; 5664 } 5665 } 5666 } 5667 5668 static int bnxt_hwrm_ring_alloc(struct bnxt *bp) 5669 { 5670 bool agg_rings = !!(bp->flags & BNXT_FLAG_AGG_RINGS); 5671 int i, rc = 0; 5672 u32 type; 5673 5674 if (bp->flags & BNXT_FLAG_CHIP_P5) 5675 type = HWRM_RING_ALLOC_NQ; 5676 else 5677 type = HWRM_RING_ALLOC_CMPL; 5678 for (i = 0; i < bp->cp_nr_rings; i++) { 5679 struct bnxt_napi *bnapi = bp->bnapi[i]; 5680 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5681 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 5682 u32 map_idx = ring->map_idx; 5683 unsigned int vector; 5684 5685 vector = bp->irq_tbl[map_idx].vector; 5686 disable_irq_nosync(vector); 5687 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 5688 if (rc) { 5689 enable_irq(vector); 5690 goto err_out; 5691 } 5692 bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id); 5693 bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons); 5694 enable_irq(vector); 5695 bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id; 5696 5697 if (!i) { 5698 rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id); 5699 if (rc) 5700 netdev_warn(bp->dev, "Failed to set async event completion ring.\n"); 5701 } 5702 } 5703 5704 type = HWRM_RING_ALLOC_TX; 5705 for (i = 0; i < bp->tx_nr_rings; i++) { 5706 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 5707 struct bnxt_ring_struct *ring; 5708 u32 map_idx; 5709 5710 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5711 struct bnxt_napi *bnapi = txr->bnapi; 5712 struct bnxt_cp_ring_info *cpr, *cpr2; 5713 u32 type2 = HWRM_RING_ALLOC_CMPL; 5714 5715 cpr = &bnapi->cp_ring; 5716 cpr2 = cpr->cp_ring_arr[BNXT_TX_HDL]; 5717 ring = &cpr2->cp_ring_struct; 5718 ring->handle = BNXT_TX_HDL; 5719 map_idx = bnapi->index; 5720 rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx); 5721 if (rc) 5722 goto err_out; 5723 bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx, 5724 ring->fw_ring_id); 5725 bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons); 5726 } 5727 ring = &txr->tx_ring_struct; 5728 map_idx = i; 5729 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 5730 if (rc) 5731 goto err_out; 5732 bnxt_set_db(bp, &txr->tx_db, type, map_idx, ring->fw_ring_id); 5733 } 5734 5735 type = HWRM_RING_ALLOC_RX; 5736 for (i = 0; i < bp->rx_nr_rings; i++) { 5737 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 5738 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct; 5739 struct bnxt_napi *bnapi = rxr->bnapi; 5740 u32 map_idx = bnapi->index; 5741 5742 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 5743 if (rc) 5744 goto err_out; 5745 bnxt_set_db(bp, &rxr->rx_db, type, map_idx, ring->fw_ring_id); 5746 /* If we have agg rings, post agg buffers first. */ 5747 if (!agg_rings) 5748 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 5749 bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id; 5750 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5751 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5752 u32 type2 = HWRM_RING_ALLOC_CMPL; 5753 struct bnxt_cp_ring_info *cpr2; 5754 5755 cpr2 = cpr->cp_ring_arr[BNXT_RX_HDL]; 5756 ring = &cpr2->cp_ring_struct; 5757 ring->handle = BNXT_RX_HDL; 5758 rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx); 5759 if (rc) 5760 goto err_out; 5761 bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx, 5762 ring->fw_ring_id); 5763 bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons); 5764 } 5765 } 5766 5767 if (agg_rings) { 5768 type = HWRM_RING_ALLOC_AGG; 5769 for (i = 0; i < bp->rx_nr_rings; i++) { 5770 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 5771 struct bnxt_ring_struct *ring = 5772 &rxr->rx_agg_ring_struct; 5773 u32 grp_idx = ring->grp_idx; 5774 u32 map_idx = grp_idx + bp->rx_nr_rings; 5775 5776 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 5777 if (rc) 5778 goto err_out; 5779 5780 bnxt_set_db(bp, &rxr->rx_agg_db, type, map_idx, 5781 ring->fw_ring_id); 5782 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 5783 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 5784 bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id; 5785 } 5786 } 5787 err_out: 5788 return rc; 5789 } 5790 5791 static int hwrm_ring_free_send_msg(struct bnxt *bp, 5792 struct bnxt_ring_struct *ring, 5793 u32 ring_type, int cmpl_ring_id) 5794 { 5795 struct hwrm_ring_free_output *resp; 5796 struct hwrm_ring_free_input *req; 5797 u16 error_code = 0; 5798 int rc; 5799 5800 if (BNXT_NO_FW_ACCESS(bp)) 5801 return 0; 5802 5803 rc = hwrm_req_init(bp, req, HWRM_RING_FREE); 5804 if (rc) 5805 goto exit; 5806 5807 req->cmpl_ring = cpu_to_le16(cmpl_ring_id); 5808 req->ring_type = ring_type; 5809 req->ring_id = cpu_to_le16(ring->fw_ring_id); 5810 5811 resp = hwrm_req_hold(bp, req); 5812 rc = hwrm_req_send(bp, req); 5813 error_code = le16_to_cpu(resp->error_code); 5814 hwrm_req_drop(bp, req); 5815 exit: 5816 if (rc || error_code) { 5817 netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n", 5818 ring_type, rc, error_code); 5819 return -EIO; 5820 } 5821 return 0; 5822 } 5823 5824 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path) 5825 { 5826 u32 type; 5827 int i; 5828 5829 if (!bp->bnapi) 5830 return; 5831 5832 for (i = 0; i < bp->tx_nr_rings; i++) { 5833 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 5834 struct bnxt_ring_struct *ring = &txr->tx_ring_struct; 5835 5836 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 5837 u32 cmpl_ring_id = bnxt_cp_ring_for_tx(bp, txr); 5838 5839 hwrm_ring_free_send_msg(bp, ring, 5840 RING_FREE_REQ_RING_TYPE_TX, 5841 close_path ? cmpl_ring_id : 5842 INVALID_HW_RING_ID); 5843 ring->fw_ring_id = INVALID_HW_RING_ID; 5844 } 5845 } 5846 5847 for (i = 0; i < bp->rx_nr_rings; i++) { 5848 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 5849 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct; 5850 u32 grp_idx = rxr->bnapi->index; 5851 5852 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 5853 u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr); 5854 5855 hwrm_ring_free_send_msg(bp, ring, 5856 RING_FREE_REQ_RING_TYPE_RX, 5857 close_path ? cmpl_ring_id : 5858 INVALID_HW_RING_ID); 5859 ring->fw_ring_id = INVALID_HW_RING_ID; 5860 bp->grp_info[grp_idx].rx_fw_ring_id = 5861 INVALID_HW_RING_ID; 5862 } 5863 } 5864 5865 if (bp->flags & BNXT_FLAG_CHIP_P5) 5866 type = RING_FREE_REQ_RING_TYPE_RX_AGG; 5867 else 5868 type = RING_FREE_REQ_RING_TYPE_RX; 5869 for (i = 0; i < bp->rx_nr_rings; i++) { 5870 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 5871 struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct; 5872 u32 grp_idx = rxr->bnapi->index; 5873 5874 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 5875 u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr); 5876 5877 hwrm_ring_free_send_msg(bp, ring, type, 5878 close_path ? cmpl_ring_id : 5879 INVALID_HW_RING_ID); 5880 ring->fw_ring_id = INVALID_HW_RING_ID; 5881 bp->grp_info[grp_idx].agg_fw_ring_id = 5882 INVALID_HW_RING_ID; 5883 } 5884 } 5885 5886 /* The completion rings are about to be freed. After that the 5887 * IRQ doorbell will not work anymore. So we need to disable 5888 * IRQ here. 5889 */ 5890 bnxt_disable_int_sync(bp); 5891 5892 if (bp->flags & BNXT_FLAG_CHIP_P5) 5893 type = RING_FREE_REQ_RING_TYPE_NQ; 5894 else 5895 type = RING_FREE_REQ_RING_TYPE_L2_CMPL; 5896 for (i = 0; i < bp->cp_nr_rings; i++) { 5897 struct bnxt_napi *bnapi = bp->bnapi[i]; 5898 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5899 struct bnxt_ring_struct *ring; 5900 int j; 5901 5902 for (j = 0; j < 2; j++) { 5903 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j]; 5904 5905 if (cpr2) { 5906 ring = &cpr2->cp_ring_struct; 5907 if (ring->fw_ring_id == INVALID_HW_RING_ID) 5908 continue; 5909 hwrm_ring_free_send_msg(bp, ring, 5910 RING_FREE_REQ_RING_TYPE_L2_CMPL, 5911 INVALID_HW_RING_ID); 5912 ring->fw_ring_id = INVALID_HW_RING_ID; 5913 } 5914 } 5915 ring = &cpr->cp_ring_struct; 5916 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 5917 hwrm_ring_free_send_msg(bp, ring, type, 5918 INVALID_HW_RING_ID); 5919 ring->fw_ring_id = INVALID_HW_RING_ID; 5920 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID; 5921 } 5922 } 5923 } 5924 5925 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 5926 bool shared); 5927 5928 static int bnxt_hwrm_get_rings(struct bnxt *bp) 5929 { 5930 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 5931 struct hwrm_func_qcfg_output *resp; 5932 struct hwrm_func_qcfg_input *req; 5933 int rc; 5934 5935 if (bp->hwrm_spec_code < 0x10601) 5936 return 0; 5937 5938 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); 5939 if (rc) 5940 return rc; 5941 5942 req->fid = cpu_to_le16(0xffff); 5943 resp = hwrm_req_hold(bp, req); 5944 rc = hwrm_req_send(bp, req); 5945 if (rc) { 5946 hwrm_req_drop(bp, req); 5947 return rc; 5948 } 5949 5950 hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings); 5951 if (BNXT_NEW_RM(bp)) { 5952 u16 cp, stats; 5953 5954 hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings); 5955 hw_resc->resv_hw_ring_grps = 5956 le32_to_cpu(resp->alloc_hw_ring_grps); 5957 hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics); 5958 cp = le16_to_cpu(resp->alloc_cmpl_rings); 5959 stats = le16_to_cpu(resp->alloc_stat_ctx); 5960 hw_resc->resv_irqs = cp; 5961 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5962 int rx = hw_resc->resv_rx_rings; 5963 int tx = hw_resc->resv_tx_rings; 5964 5965 if (bp->flags & BNXT_FLAG_AGG_RINGS) 5966 rx >>= 1; 5967 if (cp < (rx + tx)) { 5968 bnxt_trim_rings(bp, &rx, &tx, cp, false); 5969 if (bp->flags & BNXT_FLAG_AGG_RINGS) 5970 rx <<= 1; 5971 hw_resc->resv_rx_rings = rx; 5972 hw_resc->resv_tx_rings = tx; 5973 } 5974 hw_resc->resv_irqs = le16_to_cpu(resp->alloc_msix); 5975 hw_resc->resv_hw_ring_grps = rx; 5976 } 5977 hw_resc->resv_cp_rings = cp; 5978 hw_resc->resv_stat_ctxs = stats; 5979 } 5980 hwrm_req_drop(bp, req); 5981 return 0; 5982 } 5983 5984 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings) 5985 { 5986 struct hwrm_func_qcfg_output *resp; 5987 struct hwrm_func_qcfg_input *req; 5988 int rc; 5989 5990 if (bp->hwrm_spec_code < 0x10601) 5991 return 0; 5992 5993 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); 5994 if (rc) 5995 return rc; 5996 5997 req->fid = cpu_to_le16(fid); 5998 resp = hwrm_req_hold(bp, req); 5999 rc = hwrm_req_send(bp, req); 6000 if (!rc) 6001 *tx_rings = le16_to_cpu(resp->alloc_tx_rings); 6002 6003 hwrm_req_drop(bp, req); 6004 return rc; 6005 } 6006 6007 static bool bnxt_rfs_supported(struct bnxt *bp); 6008 6009 static struct hwrm_func_cfg_input * 6010 __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6011 int ring_grps, int cp_rings, int stats, int vnics) 6012 { 6013 struct hwrm_func_cfg_input *req; 6014 u32 enables = 0; 6015 6016 if (hwrm_req_init(bp, req, HWRM_FUNC_CFG)) 6017 return NULL; 6018 6019 req->fid = cpu_to_le16(0xffff); 6020 enables |= tx_rings ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0; 6021 req->num_tx_rings = cpu_to_le16(tx_rings); 6022 if (BNXT_NEW_RM(bp)) { 6023 enables |= rx_rings ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0; 6024 enables |= stats ? FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0; 6025 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6026 enables |= cp_rings ? FUNC_CFG_REQ_ENABLES_NUM_MSIX : 0; 6027 enables |= tx_rings + ring_grps ? 6028 FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 6029 enables |= rx_rings ? 6030 FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; 6031 } else { 6032 enables |= cp_rings ? 6033 FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 6034 enables |= ring_grps ? 6035 FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS | 6036 FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; 6037 } 6038 enables |= vnics ? FUNC_CFG_REQ_ENABLES_NUM_VNICS : 0; 6039 6040 req->num_rx_rings = cpu_to_le16(rx_rings); 6041 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6042 req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps); 6043 req->num_msix = cpu_to_le16(cp_rings); 6044 req->num_rsscos_ctxs = 6045 cpu_to_le16(DIV_ROUND_UP(ring_grps, 64)); 6046 } else { 6047 req->num_cmpl_rings = cpu_to_le16(cp_rings); 6048 req->num_hw_ring_grps = cpu_to_le16(ring_grps); 6049 req->num_rsscos_ctxs = cpu_to_le16(1); 6050 if (!(bp->flags & BNXT_FLAG_NEW_RSS_CAP) && 6051 bnxt_rfs_supported(bp)) 6052 req->num_rsscos_ctxs = 6053 cpu_to_le16(ring_grps + 1); 6054 } 6055 req->num_stat_ctxs = cpu_to_le16(stats); 6056 req->num_vnics = cpu_to_le16(vnics); 6057 } 6058 req->enables = cpu_to_le32(enables); 6059 return req; 6060 } 6061 6062 static struct hwrm_func_vf_cfg_input * 6063 __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6064 int ring_grps, int cp_rings, int stats, int vnics) 6065 { 6066 struct hwrm_func_vf_cfg_input *req; 6067 u32 enables = 0; 6068 6069 if (hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG)) 6070 return NULL; 6071 6072 enables |= tx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0; 6073 enables |= rx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS | 6074 FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; 6075 enables |= stats ? FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0; 6076 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6077 enables |= tx_rings + ring_grps ? 6078 FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 6079 } else { 6080 enables |= cp_rings ? 6081 FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 6082 enables |= ring_grps ? 6083 FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0; 6084 } 6085 enables |= vnics ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0; 6086 enables |= FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS; 6087 6088 req->num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX); 6089 req->num_tx_rings = cpu_to_le16(tx_rings); 6090 req->num_rx_rings = cpu_to_le16(rx_rings); 6091 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6092 req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps); 6093 req->num_rsscos_ctxs = cpu_to_le16(DIV_ROUND_UP(ring_grps, 64)); 6094 } else { 6095 req->num_cmpl_rings = cpu_to_le16(cp_rings); 6096 req->num_hw_ring_grps = cpu_to_le16(ring_grps); 6097 req->num_rsscos_ctxs = cpu_to_le16(BNXT_VF_MAX_RSS_CTX); 6098 } 6099 req->num_stat_ctxs = cpu_to_le16(stats); 6100 req->num_vnics = cpu_to_le16(vnics); 6101 6102 req->enables = cpu_to_le32(enables); 6103 return req; 6104 } 6105 6106 static int 6107 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6108 int ring_grps, int cp_rings, int stats, int vnics) 6109 { 6110 struct hwrm_func_cfg_input *req; 6111 int rc; 6112 6113 req = __bnxt_hwrm_reserve_pf_rings(bp, tx_rings, rx_rings, ring_grps, 6114 cp_rings, stats, vnics); 6115 if (!req) 6116 return -ENOMEM; 6117 6118 if (!req->enables) { 6119 hwrm_req_drop(bp, req); 6120 return 0; 6121 } 6122 6123 rc = hwrm_req_send(bp, req); 6124 if (rc) 6125 return rc; 6126 6127 if (bp->hwrm_spec_code < 0x10601) 6128 bp->hw_resc.resv_tx_rings = tx_rings; 6129 6130 return bnxt_hwrm_get_rings(bp); 6131 } 6132 6133 static int 6134 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6135 int ring_grps, int cp_rings, int stats, int vnics) 6136 { 6137 struct hwrm_func_vf_cfg_input *req; 6138 int rc; 6139 6140 if (!BNXT_NEW_RM(bp)) { 6141 bp->hw_resc.resv_tx_rings = tx_rings; 6142 return 0; 6143 } 6144 6145 req = __bnxt_hwrm_reserve_vf_rings(bp, tx_rings, rx_rings, ring_grps, 6146 cp_rings, stats, vnics); 6147 if (!req) 6148 return -ENOMEM; 6149 6150 rc = hwrm_req_send(bp, req); 6151 if (rc) 6152 return rc; 6153 6154 return bnxt_hwrm_get_rings(bp); 6155 } 6156 6157 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, int tx, int rx, int grp, 6158 int cp, int stat, int vnic) 6159 { 6160 if (BNXT_PF(bp)) 6161 return bnxt_hwrm_reserve_pf_rings(bp, tx, rx, grp, cp, stat, 6162 vnic); 6163 else 6164 return bnxt_hwrm_reserve_vf_rings(bp, tx, rx, grp, cp, stat, 6165 vnic); 6166 } 6167 6168 int bnxt_nq_rings_in_use(struct bnxt *bp) 6169 { 6170 int cp = bp->cp_nr_rings; 6171 int ulp_msix, ulp_base; 6172 6173 ulp_msix = bnxt_get_ulp_msix_num(bp); 6174 if (ulp_msix) { 6175 ulp_base = bnxt_get_ulp_msix_base(bp); 6176 cp += ulp_msix; 6177 if ((ulp_base + ulp_msix) > cp) 6178 cp = ulp_base + ulp_msix; 6179 } 6180 return cp; 6181 } 6182 6183 static int bnxt_cp_rings_in_use(struct bnxt *bp) 6184 { 6185 int cp; 6186 6187 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 6188 return bnxt_nq_rings_in_use(bp); 6189 6190 cp = bp->tx_nr_rings + bp->rx_nr_rings; 6191 return cp; 6192 } 6193 6194 static int bnxt_get_func_stat_ctxs(struct bnxt *bp) 6195 { 6196 int ulp_stat = bnxt_get_ulp_stat_ctxs(bp); 6197 int cp = bp->cp_nr_rings; 6198 6199 if (!ulp_stat) 6200 return cp; 6201 6202 if (bnxt_nq_rings_in_use(bp) > cp + bnxt_get_ulp_msix_num(bp)) 6203 return bnxt_get_ulp_msix_base(bp) + ulp_stat; 6204 6205 return cp + ulp_stat; 6206 } 6207 6208 /* Check if a default RSS map needs to be setup. This function is only 6209 * used on older firmware that does not require reserving RX rings. 6210 */ 6211 static void bnxt_check_rss_tbl_no_rmgr(struct bnxt *bp) 6212 { 6213 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 6214 6215 /* The RSS map is valid for RX rings set to resv_rx_rings */ 6216 if (hw_resc->resv_rx_rings != bp->rx_nr_rings) { 6217 hw_resc->resv_rx_rings = bp->rx_nr_rings; 6218 if (!netif_is_rxfh_configured(bp->dev)) 6219 bnxt_set_dflt_rss_indir_tbl(bp); 6220 } 6221 } 6222 6223 static bool bnxt_need_reserve_rings(struct bnxt *bp) 6224 { 6225 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 6226 int cp = bnxt_cp_rings_in_use(bp); 6227 int nq = bnxt_nq_rings_in_use(bp); 6228 int rx = bp->rx_nr_rings, stat; 6229 int vnic = 1, grp = rx; 6230 6231 if (hw_resc->resv_tx_rings != bp->tx_nr_rings && 6232 bp->hwrm_spec_code >= 0x10601) 6233 return true; 6234 6235 /* Old firmware does not need RX ring reservations but we still 6236 * need to setup a default RSS map when needed. With new firmware 6237 * we go through RX ring reservations first and then set up the 6238 * RSS map for the successfully reserved RX rings when needed. 6239 */ 6240 if (!BNXT_NEW_RM(bp)) { 6241 bnxt_check_rss_tbl_no_rmgr(bp); 6242 return false; 6243 } 6244 if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5)) 6245 vnic = rx + 1; 6246 if (bp->flags & BNXT_FLAG_AGG_RINGS) 6247 rx <<= 1; 6248 stat = bnxt_get_func_stat_ctxs(bp); 6249 if (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp || 6250 hw_resc->resv_vnics != vnic || hw_resc->resv_stat_ctxs != stat || 6251 (hw_resc->resv_hw_ring_grps != grp && 6252 !(bp->flags & BNXT_FLAG_CHIP_P5))) 6253 return true; 6254 if ((bp->flags & BNXT_FLAG_CHIP_P5) && BNXT_PF(bp) && 6255 hw_resc->resv_irqs != nq) 6256 return true; 6257 return false; 6258 } 6259 6260 static int __bnxt_reserve_rings(struct bnxt *bp) 6261 { 6262 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 6263 int cp = bnxt_nq_rings_in_use(bp); 6264 int tx = bp->tx_nr_rings; 6265 int rx = bp->rx_nr_rings; 6266 int grp, rx_rings, rc; 6267 int vnic = 1, stat; 6268 bool sh = false; 6269 6270 if (!bnxt_need_reserve_rings(bp)) 6271 return 0; 6272 6273 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 6274 sh = true; 6275 if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5)) 6276 vnic = rx + 1; 6277 if (bp->flags & BNXT_FLAG_AGG_RINGS) 6278 rx <<= 1; 6279 grp = bp->rx_nr_rings; 6280 stat = bnxt_get_func_stat_ctxs(bp); 6281 6282 rc = bnxt_hwrm_reserve_rings(bp, tx, rx, grp, cp, stat, vnic); 6283 if (rc) 6284 return rc; 6285 6286 tx = hw_resc->resv_tx_rings; 6287 if (BNXT_NEW_RM(bp)) { 6288 rx = hw_resc->resv_rx_rings; 6289 cp = hw_resc->resv_irqs; 6290 grp = hw_resc->resv_hw_ring_grps; 6291 vnic = hw_resc->resv_vnics; 6292 stat = hw_resc->resv_stat_ctxs; 6293 } 6294 6295 rx_rings = rx; 6296 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 6297 if (rx >= 2) { 6298 rx_rings = rx >> 1; 6299 } else { 6300 if (netif_running(bp->dev)) 6301 return -ENOMEM; 6302 6303 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 6304 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 6305 bp->dev->hw_features &= ~NETIF_F_LRO; 6306 bp->dev->features &= ~NETIF_F_LRO; 6307 bnxt_set_ring_params(bp); 6308 } 6309 } 6310 rx_rings = min_t(int, rx_rings, grp); 6311 cp = min_t(int, cp, bp->cp_nr_rings); 6312 if (stat > bnxt_get_ulp_stat_ctxs(bp)) 6313 stat -= bnxt_get_ulp_stat_ctxs(bp); 6314 cp = min_t(int, cp, stat); 6315 rc = bnxt_trim_rings(bp, &rx_rings, &tx, cp, sh); 6316 if (bp->flags & BNXT_FLAG_AGG_RINGS) 6317 rx = rx_rings << 1; 6318 cp = sh ? max_t(int, tx, rx_rings) : tx + rx_rings; 6319 bp->tx_nr_rings = tx; 6320 6321 /* If we cannot reserve all the RX rings, reset the RSS map only 6322 * if absolutely necessary 6323 */ 6324 if (rx_rings != bp->rx_nr_rings) { 6325 netdev_warn(bp->dev, "Able to reserve only %d out of %d requested RX rings\n", 6326 rx_rings, bp->rx_nr_rings); 6327 if ((bp->dev->priv_flags & IFF_RXFH_CONFIGURED) && 6328 (bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings) != 6329 bnxt_get_nr_rss_ctxs(bp, rx_rings) || 6330 bnxt_get_max_rss_ring(bp) >= rx_rings)) { 6331 netdev_warn(bp->dev, "RSS table entries reverting to default\n"); 6332 bp->dev->priv_flags &= ~IFF_RXFH_CONFIGURED; 6333 } 6334 } 6335 bp->rx_nr_rings = rx_rings; 6336 bp->cp_nr_rings = cp; 6337 6338 if (!tx || !rx || !cp || !grp || !vnic || !stat) 6339 return -ENOMEM; 6340 6341 if (!netif_is_rxfh_configured(bp->dev)) 6342 bnxt_set_dflt_rss_indir_tbl(bp); 6343 6344 return rc; 6345 } 6346 6347 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6348 int ring_grps, int cp_rings, int stats, 6349 int vnics) 6350 { 6351 struct hwrm_func_vf_cfg_input *req; 6352 u32 flags; 6353 6354 if (!BNXT_NEW_RM(bp)) 6355 return 0; 6356 6357 req = __bnxt_hwrm_reserve_vf_rings(bp, tx_rings, rx_rings, ring_grps, 6358 cp_rings, stats, vnics); 6359 flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST | 6360 FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST | 6361 FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST | 6362 FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST | 6363 FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST | 6364 FUNC_VF_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST; 6365 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 6366 flags |= FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST; 6367 6368 req->flags = cpu_to_le32(flags); 6369 return hwrm_req_send_silent(bp, req); 6370 } 6371 6372 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6373 int ring_grps, int cp_rings, int stats, 6374 int vnics) 6375 { 6376 struct hwrm_func_cfg_input *req; 6377 u32 flags; 6378 6379 req = __bnxt_hwrm_reserve_pf_rings(bp, tx_rings, rx_rings, ring_grps, 6380 cp_rings, stats, vnics); 6381 flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST; 6382 if (BNXT_NEW_RM(bp)) { 6383 flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST | 6384 FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST | 6385 FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST | 6386 FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST; 6387 if (bp->flags & BNXT_FLAG_CHIP_P5) 6388 flags |= FUNC_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST | 6389 FUNC_CFG_REQ_FLAGS_NQ_ASSETS_TEST; 6390 else 6391 flags |= FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST; 6392 } 6393 6394 req->flags = cpu_to_le32(flags); 6395 return hwrm_req_send_silent(bp, req); 6396 } 6397 6398 static int bnxt_hwrm_check_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6399 int ring_grps, int cp_rings, int stats, 6400 int vnics) 6401 { 6402 if (bp->hwrm_spec_code < 0x10801) 6403 return 0; 6404 6405 if (BNXT_PF(bp)) 6406 return bnxt_hwrm_check_pf_rings(bp, tx_rings, rx_rings, 6407 ring_grps, cp_rings, stats, 6408 vnics); 6409 6410 return bnxt_hwrm_check_vf_rings(bp, tx_rings, rx_rings, ring_grps, 6411 cp_rings, stats, vnics); 6412 } 6413 6414 static void bnxt_hwrm_coal_params_qcaps(struct bnxt *bp) 6415 { 6416 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 6417 struct hwrm_ring_aggint_qcaps_output *resp; 6418 struct hwrm_ring_aggint_qcaps_input *req; 6419 int rc; 6420 6421 coal_cap->cmpl_params = BNXT_LEGACY_COAL_CMPL_PARAMS; 6422 coal_cap->num_cmpl_dma_aggr_max = 63; 6423 coal_cap->num_cmpl_dma_aggr_during_int_max = 63; 6424 coal_cap->cmpl_aggr_dma_tmr_max = 65535; 6425 coal_cap->cmpl_aggr_dma_tmr_during_int_max = 65535; 6426 coal_cap->int_lat_tmr_min_max = 65535; 6427 coal_cap->int_lat_tmr_max_max = 65535; 6428 coal_cap->num_cmpl_aggr_int_max = 65535; 6429 coal_cap->timer_units = 80; 6430 6431 if (bp->hwrm_spec_code < 0x10902) 6432 return; 6433 6434 if (hwrm_req_init(bp, req, HWRM_RING_AGGINT_QCAPS)) 6435 return; 6436 6437 resp = hwrm_req_hold(bp, req); 6438 rc = hwrm_req_send_silent(bp, req); 6439 if (!rc) { 6440 coal_cap->cmpl_params = le32_to_cpu(resp->cmpl_params); 6441 coal_cap->nq_params = le32_to_cpu(resp->nq_params); 6442 coal_cap->num_cmpl_dma_aggr_max = 6443 le16_to_cpu(resp->num_cmpl_dma_aggr_max); 6444 coal_cap->num_cmpl_dma_aggr_during_int_max = 6445 le16_to_cpu(resp->num_cmpl_dma_aggr_during_int_max); 6446 coal_cap->cmpl_aggr_dma_tmr_max = 6447 le16_to_cpu(resp->cmpl_aggr_dma_tmr_max); 6448 coal_cap->cmpl_aggr_dma_tmr_during_int_max = 6449 le16_to_cpu(resp->cmpl_aggr_dma_tmr_during_int_max); 6450 coal_cap->int_lat_tmr_min_max = 6451 le16_to_cpu(resp->int_lat_tmr_min_max); 6452 coal_cap->int_lat_tmr_max_max = 6453 le16_to_cpu(resp->int_lat_tmr_max_max); 6454 coal_cap->num_cmpl_aggr_int_max = 6455 le16_to_cpu(resp->num_cmpl_aggr_int_max); 6456 coal_cap->timer_units = le16_to_cpu(resp->timer_units); 6457 } 6458 hwrm_req_drop(bp, req); 6459 } 6460 6461 static u16 bnxt_usec_to_coal_tmr(struct bnxt *bp, u16 usec) 6462 { 6463 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 6464 6465 return usec * 1000 / coal_cap->timer_units; 6466 } 6467 6468 static void bnxt_hwrm_set_coal_params(struct bnxt *bp, 6469 struct bnxt_coal *hw_coal, 6470 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req) 6471 { 6472 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 6473 u32 cmpl_params = coal_cap->cmpl_params; 6474 u16 val, tmr, max, flags = 0; 6475 6476 max = hw_coal->bufs_per_record * 128; 6477 if (hw_coal->budget) 6478 max = hw_coal->bufs_per_record * hw_coal->budget; 6479 max = min_t(u16, max, coal_cap->num_cmpl_aggr_int_max); 6480 6481 val = clamp_t(u16, hw_coal->coal_bufs, 1, max); 6482 req->num_cmpl_aggr_int = cpu_to_le16(val); 6483 6484 val = min_t(u16, val, coal_cap->num_cmpl_dma_aggr_max); 6485 req->num_cmpl_dma_aggr = cpu_to_le16(val); 6486 6487 val = clamp_t(u16, hw_coal->coal_bufs_irq, 1, 6488 coal_cap->num_cmpl_dma_aggr_during_int_max); 6489 req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val); 6490 6491 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks); 6492 tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_max_max); 6493 req->int_lat_tmr_max = cpu_to_le16(tmr); 6494 6495 /* min timer set to 1/2 of interrupt timer */ 6496 if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_INT_LAT_TMR_MIN) { 6497 val = tmr / 2; 6498 val = clamp_t(u16, val, 1, coal_cap->int_lat_tmr_min_max); 6499 req->int_lat_tmr_min = cpu_to_le16(val); 6500 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE); 6501 } 6502 6503 /* buf timer set to 1/4 of interrupt timer */ 6504 val = clamp_t(u16, tmr / 4, 1, coal_cap->cmpl_aggr_dma_tmr_max); 6505 req->cmpl_aggr_dma_tmr = cpu_to_le16(val); 6506 6507 if (cmpl_params & 6508 RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_NUM_CMPL_DMA_AGGR_DURING_INT) { 6509 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks_irq); 6510 val = clamp_t(u16, tmr, 1, 6511 coal_cap->cmpl_aggr_dma_tmr_during_int_max); 6512 req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(val); 6513 req->enables |= 6514 cpu_to_le16(BNXT_COAL_CMPL_AGGR_TMR_DURING_INT_ENABLE); 6515 } 6516 6517 if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_TIMER_RESET) 6518 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET; 6519 if ((cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_RING_IDLE) && 6520 hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh) 6521 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE; 6522 req->flags = cpu_to_le16(flags); 6523 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_ENABLES); 6524 } 6525 6526 static int __bnxt_hwrm_set_coal_nq(struct bnxt *bp, struct bnxt_napi *bnapi, 6527 struct bnxt_coal *hw_coal) 6528 { 6529 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req; 6530 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 6531 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 6532 u32 nq_params = coal_cap->nq_params; 6533 u16 tmr; 6534 int rc; 6535 6536 if (!(nq_params & RING_AGGINT_QCAPS_RESP_NQ_PARAMS_INT_LAT_TMR_MIN)) 6537 return 0; 6538 6539 rc = hwrm_req_init(bp, req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 6540 if (rc) 6541 return rc; 6542 6543 req->ring_id = cpu_to_le16(cpr->cp_ring_struct.fw_ring_id); 6544 req->flags = 6545 cpu_to_le16(RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_IS_NQ); 6546 6547 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks) / 2; 6548 tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_min_max); 6549 req->int_lat_tmr_min = cpu_to_le16(tmr); 6550 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE); 6551 return hwrm_req_send(bp, req); 6552 } 6553 6554 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi) 6555 { 6556 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx; 6557 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 6558 struct bnxt_coal coal; 6559 int rc; 6560 6561 /* Tick values in micro seconds. 6562 * 1 coal_buf x bufs_per_record = 1 completion record. 6563 */ 6564 memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal)); 6565 6566 coal.coal_ticks = cpr->rx_ring_coal.coal_ticks; 6567 coal.coal_bufs = cpr->rx_ring_coal.coal_bufs; 6568 6569 if (!bnapi->rx_ring) 6570 return -ENODEV; 6571 6572 rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 6573 if (rc) 6574 return rc; 6575 6576 bnxt_hwrm_set_coal_params(bp, &coal, req_rx); 6577 6578 req_rx->ring_id = cpu_to_le16(bnxt_cp_ring_for_rx(bp, bnapi->rx_ring)); 6579 6580 return hwrm_req_send(bp, req_rx); 6581 } 6582 6583 int bnxt_hwrm_set_coal(struct bnxt *bp) 6584 { 6585 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx, *req_tx, 6586 *req; 6587 int i, rc; 6588 6589 rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 6590 if (rc) 6591 return rc; 6592 6593 rc = hwrm_req_init(bp, req_tx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 6594 if (rc) { 6595 hwrm_req_drop(bp, req_rx); 6596 return rc; 6597 } 6598 6599 bnxt_hwrm_set_coal_params(bp, &bp->rx_coal, req_rx); 6600 bnxt_hwrm_set_coal_params(bp, &bp->tx_coal, req_tx); 6601 6602 hwrm_req_hold(bp, req_rx); 6603 hwrm_req_hold(bp, req_tx); 6604 for (i = 0; i < bp->cp_nr_rings; i++) { 6605 struct bnxt_napi *bnapi = bp->bnapi[i]; 6606 struct bnxt_coal *hw_coal; 6607 u16 ring_id; 6608 6609 req = req_rx; 6610 if (!bnapi->rx_ring) { 6611 ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring); 6612 req = req_tx; 6613 } else { 6614 ring_id = bnxt_cp_ring_for_rx(bp, bnapi->rx_ring); 6615 } 6616 req->ring_id = cpu_to_le16(ring_id); 6617 6618 rc = hwrm_req_send(bp, req); 6619 if (rc) 6620 break; 6621 6622 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 6623 continue; 6624 6625 if (bnapi->rx_ring && bnapi->tx_ring) { 6626 req = req_tx; 6627 ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring); 6628 req->ring_id = cpu_to_le16(ring_id); 6629 rc = hwrm_req_send(bp, req); 6630 if (rc) 6631 break; 6632 } 6633 if (bnapi->rx_ring) 6634 hw_coal = &bp->rx_coal; 6635 else 6636 hw_coal = &bp->tx_coal; 6637 __bnxt_hwrm_set_coal_nq(bp, bnapi, hw_coal); 6638 } 6639 hwrm_req_drop(bp, req_rx); 6640 hwrm_req_drop(bp, req_tx); 6641 return rc; 6642 } 6643 6644 static void bnxt_hwrm_stat_ctx_free(struct bnxt *bp) 6645 { 6646 struct hwrm_stat_ctx_clr_stats_input *req0 = NULL; 6647 struct hwrm_stat_ctx_free_input *req; 6648 int i; 6649 6650 if (!bp->bnapi) 6651 return; 6652 6653 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 6654 return; 6655 6656 if (hwrm_req_init(bp, req, HWRM_STAT_CTX_FREE)) 6657 return; 6658 if (BNXT_FW_MAJ(bp) <= 20) { 6659 if (hwrm_req_init(bp, req0, HWRM_STAT_CTX_CLR_STATS)) { 6660 hwrm_req_drop(bp, req); 6661 return; 6662 } 6663 hwrm_req_hold(bp, req0); 6664 } 6665 hwrm_req_hold(bp, req); 6666 for (i = 0; i < bp->cp_nr_rings; i++) { 6667 struct bnxt_napi *bnapi = bp->bnapi[i]; 6668 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 6669 6670 if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) { 6671 req->stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id); 6672 if (req0) { 6673 req0->stat_ctx_id = req->stat_ctx_id; 6674 hwrm_req_send(bp, req0); 6675 } 6676 hwrm_req_send(bp, req); 6677 6678 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID; 6679 } 6680 } 6681 hwrm_req_drop(bp, req); 6682 if (req0) 6683 hwrm_req_drop(bp, req0); 6684 } 6685 6686 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp) 6687 { 6688 struct hwrm_stat_ctx_alloc_output *resp; 6689 struct hwrm_stat_ctx_alloc_input *req; 6690 int rc, i; 6691 6692 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 6693 return 0; 6694 6695 rc = hwrm_req_init(bp, req, HWRM_STAT_CTX_ALLOC); 6696 if (rc) 6697 return rc; 6698 6699 req->stats_dma_length = cpu_to_le16(bp->hw_ring_stats_size); 6700 req->update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000); 6701 6702 resp = hwrm_req_hold(bp, req); 6703 for (i = 0; i < bp->cp_nr_rings; i++) { 6704 struct bnxt_napi *bnapi = bp->bnapi[i]; 6705 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 6706 6707 req->stats_dma_addr = cpu_to_le64(cpr->stats.hw_stats_map); 6708 6709 rc = hwrm_req_send(bp, req); 6710 if (rc) 6711 break; 6712 6713 cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id); 6714 6715 bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id; 6716 } 6717 hwrm_req_drop(bp, req); 6718 return rc; 6719 } 6720 6721 static int bnxt_hwrm_func_qcfg(struct bnxt *bp) 6722 { 6723 struct hwrm_func_qcfg_output *resp; 6724 struct hwrm_func_qcfg_input *req; 6725 u32 min_db_offset = 0; 6726 u16 flags; 6727 int rc; 6728 6729 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); 6730 if (rc) 6731 return rc; 6732 6733 req->fid = cpu_to_le16(0xffff); 6734 resp = hwrm_req_hold(bp, req); 6735 rc = hwrm_req_send(bp, req); 6736 if (rc) 6737 goto func_qcfg_exit; 6738 6739 #ifdef CONFIG_BNXT_SRIOV 6740 if (BNXT_VF(bp)) { 6741 struct bnxt_vf_info *vf = &bp->vf; 6742 6743 vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK; 6744 } else { 6745 bp->pf.registered_vfs = le16_to_cpu(resp->registered_vfs); 6746 } 6747 #endif 6748 flags = le16_to_cpu(resp->flags); 6749 if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED | 6750 FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) { 6751 bp->fw_cap |= BNXT_FW_CAP_LLDP_AGENT; 6752 if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED) 6753 bp->fw_cap |= BNXT_FW_CAP_DCBX_AGENT; 6754 } 6755 if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST)) 6756 bp->flags |= BNXT_FLAG_MULTI_HOST; 6757 if (flags & FUNC_QCFG_RESP_FLAGS_RING_MONITOR_ENABLED) 6758 bp->fw_cap |= BNXT_FW_CAP_RING_MONITOR; 6759 6760 switch (resp->port_partition_type) { 6761 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0: 6762 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5: 6763 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0: 6764 bp->port_partition_type = resp->port_partition_type; 6765 break; 6766 } 6767 if (bp->hwrm_spec_code < 0x10707 || 6768 resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB) 6769 bp->br_mode = BRIDGE_MODE_VEB; 6770 else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA) 6771 bp->br_mode = BRIDGE_MODE_VEPA; 6772 else 6773 bp->br_mode = BRIDGE_MODE_UNDEF; 6774 6775 bp->max_mtu = le16_to_cpu(resp->max_mtu_configured); 6776 if (!bp->max_mtu) 6777 bp->max_mtu = BNXT_MAX_MTU; 6778 6779 if (bp->db_size) 6780 goto func_qcfg_exit; 6781 6782 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6783 if (BNXT_PF(bp)) 6784 min_db_offset = DB_PF_OFFSET_P5; 6785 else 6786 min_db_offset = DB_VF_OFFSET_P5; 6787 } 6788 bp->db_size = PAGE_ALIGN(le16_to_cpu(resp->l2_doorbell_bar_size_kb) * 6789 1024); 6790 if (!bp->db_size || bp->db_size > pci_resource_len(bp->pdev, 2) || 6791 bp->db_size <= min_db_offset) 6792 bp->db_size = pci_resource_len(bp->pdev, 2); 6793 6794 func_qcfg_exit: 6795 hwrm_req_drop(bp, req); 6796 return rc; 6797 } 6798 6799 static void bnxt_init_ctx_initializer(struct bnxt_ctx_mem_info *ctx, 6800 struct hwrm_func_backing_store_qcaps_output *resp) 6801 { 6802 struct bnxt_mem_init *mem_init; 6803 u16 init_mask; 6804 u8 init_val; 6805 u8 *offset; 6806 int i; 6807 6808 init_val = resp->ctx_kind_initializer; 6809 init_mask = le16_to_cpu(resp->ctx_init_mask); 6810 offset = &resp->qp_init_offset; 6811 mem_init = &ctx->mem_init[BNXT_CTX_MEM_INIT_QP]; 6812 for (i = 0; i < BNXT_CTX_MEM_INIT_MAX; i++, mem_init++, offset++) { 6813 mem_init->init_val = init_val; 6814 mem_init->offset = BNXT_MEM_INVALID_OFFSET; 6815 if (!init_mask) 6816 continue; 6817 if (i == BNXT_CTX_MEM_INIT_STAT) 6818 offset = &resp->stat_init_offset; 6819 if (init_mask & (1 << i)) 6820 mem_init->offset = *offset * 4; 6821 else 6822 mem_init->init_val = 0; 6823 } 6824 ctx->mem_init[BNXT_CTX_MEM_INIT_QP].size = ctx->qp_entry_size; 6825 ctx->mem_init[BNXT_CTX_MEM_INIT_SRQ].size = ctx->srq_entry_size; 6826 ctx->mem_init[BNXT_CTX_MEM_INIT_CQ].size = ctx->cq_entry_size; 6827 ctx->mem_init[BNXT_CTX_MEM_INIT_VNIC].size = ctx->vnic_entry_size; 6828 ctx->mem_init[BNXT_CTX_MEM_INIT_STAT].size = ctx->stat_entry_size; 6829 ctx->mem_init[BNXT_CTX_MEM_INIT_MRAV].size = ctx->mrav_entry_size; 6830 } 6831 6832 static int bnxt_hwrm_func_backing_store_qcaps(struct bnxt *bp) 6833 { 6834 struct hwrm_func_backing_store_qcaps_output *resp; 6835 struct hwrm_func_backing_store_qcaps_input *req; 6836 int rc; 6837 6838 if (bp->hwrm_spec_code < 0x10902 || BNXT_VF(bp) || bp->ctx) 6839 return 0; 6840 6841 rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_QCAPS); 6842 if (rc) 6843 return rc; 6844 6845 resp = hwrm_req_hold(bp, req); 6846 rc = hwrm_req_send_silent(bp, req); 6847 if (!rc) { 6848 struct bnxt_ctx_pg_info *ctx_pg; 6849 struct bnxt_ctx_mem_info *ctx; 6850 int i, tqm_rings; 6851 6852 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 6853 if (!ctx) { 6854 rc = -ENOMEM; 6855 goto ctx_err; 6856 } 6857 ctx->qp_max_entries = le32_to_cpu(resp->qp_max_entries); 6858 ctx->qp_min_qp1_entries = le16_to_cpu(resp->qp_min_qp1_entries); 6859 ctx->qp_max_l2_entries = le16_to_cpu(resp->qp_max_l2_entries); 6860 ctx->qp_entry_size = le16_to_cpu(resp->qp_entry_size); 6861 ctx->srq_max_l2_entries = le16_to_cpu(resp->srq_max_l2_entries); 6862 ctx->srq_max_entries = le32_to_cpu(resp->srq_max_entries); 6863 ctx->srq_entry_size = le16_to_cpu(resp->srq_entry_size); 6864 ctx->cq_max_l2_entries = le16_to_cpu(resp->cq_max_l2_entries); 6865 ctx->cq_max_entries = le32_to_cpu(resp->cq_max_entries); 6866 ctx->cq_entry_size = le16_to_cpu(resp->cq_entry_size); 6867 ctx->vnic_max_vnic_entries = 6868 le16_to_cpu(resp->vnic_max_vnic_entries); 6869 ctx->vnic_max_ring_table_entries = 6870 le16_to_cpu(resp->vnic_max_ring_table_entries); 6871 ctx->vnic_entry_size = le16_to_cpu(resp->vnic_entry_size); 6872 ctx->stat_max_entries = le32_to_cpu(resp->stat_max_entries); 6873 ctx->stat_entry_size = le16_to_cpu(resp->stat_entry_size); 6874 ctx->tqm_entry_size = le16_to_cpu(resp->tqm_entry_size); 6875 ctx->tqm_min_entries_per_ring = 6876 le32_to_cpu(resp->tqm_min_entries_per_ring); 6877 ctx->tqm_max_entries_per_ring = 6878 le32_to_cpu(resp->tqm_max_entries_per_ring); 6879 ctx->tqm_entries_multiple = resp->tqm_entries_multiple; 6880 if (!ctx->tqm_entries_multiple) 6881 ctx->tqm_entries_multiple = 1; 6882 ctx->mrav_max_entries = le32_to_cpu(resp->mrav_max_entries); 6883 ctx->mrav_entry_size = le16_to_cpu(resp->mrav_entry_size); 6884 ctx->mrav_num_entries_units = 6885 le16_to_cpu(resp->mrav_num_entries_units); 6886 ctx->tim_entry_size = le16_to_cpu(resp->tim_entry_size); 6887 ctx->tim_max_entries = le32_to_cpu(resp->tim_max_entries); 6888 6889 bnxt_init_ctx_initializer(ctx, resp); 6890 6891 ctx->tqm_fp_rings_count = resp->tqm_fp_rings_count; 6892 if (!ctx->tqm_fp_rings_count) 6893 ctx->tqm_fp_rings_count = bp->max_q; 6894 else if (ctx->tqm_fp_rings_count > BNXT_MAX_TQM_FP_RINGS) 6895 ctx->tqm_fp_rings_count = BNXT_MAX_TQM_FP_RINGS; 6896 6897 tqm_rings = ctx->tqm_fp_rings_count + BNXT_MAX_TQM_SP_RINGS; 6898 ctx_pg = kcalloc(tqm_rings, sizeof(*ctx_pg), GFP_KERNEL); 6899 if (!ctx_pg) { 6900 kfree(ctx); 6901 rc = -ENOMEM; 6902 goto ctx_err; 6903 } 6904 for (i = 0; i < tqm_rings; i++, ctx_pg++) 6905 ctx->tqm_mem[i] = ctx_pg; 6906 bp->ctx = ctx; 6907 } else { 6908 rc = 0; 6909 } 6910 ctx_err: 6911 hwrm_req_drop(bp, req); 6912 return rc; 6913 } 6914 6915 static void bnxt_hwrm_set_pg_attr(struct bnxt_ring_mem_info *rmem, u8 *pg_attr, 6916 __le64 *pg_dir) 6917 { 6918 if (!rmem->nr_pages) 6919 return; 6920 6921 BNXT_SET_CTX_PAGE_ATTR(*pg_attr); 6922 if (rmem->depth >= 1) { 6923 if (rmem->depth == 2) 6924 *pg_attr |= 2; 6925 else 6926 *pg_attr |= 1; 6927 *pg_dir = cpu_to_le64(rmem->pg_tbl_map); 6928 } else { 6929 *pg_dir = cpu_to_le64(rmem->dma_arr[0]); 6930 } 6931 } 6932 6933 #define FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES \ 6934 (FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP | \ 6935 FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ | \ 6936 FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ | \ 6937 FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC | \ 6938 FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) 6939 6940 static int bnxt_hwrm_func_backing_store_cfg(struct bnxt *bp, u32 enables) 6941 { 6942 struct hwrm_func_backing_store_cfg_input *req; 6943 struct bnxt_ctx_mem_info *ctx = bp->ctx; 6944 struct bnxt_ctx_pg_info *ctx_pg; 6945 void **__req = (void **)&req; 6946 u32 req_len = sizeof(*req); 6947 __le32 *num_entries; 6948 __le64 *pg_dir; 6949 u32 flags = 0; 6950 u8 *pg_attr; 6951 u32 ena; 6952 int rc; 6953 int i; 6954 6955 if (!ctx) 6956 return 0; 6957 6958 if (req_len > bp->hwrm_max_ext_req_len) 6959 req_len = BNXT_BACKING_STORE_CFG_LEGACY_LEN; 6960 rc = __hwrm_req_init(bp, __req, HWRM_FUNC_BACKING_STORE_CFG, req_len); 6961 if (rc) 6962 return rc; 6963 6964 req->enables = cpu_to_le32(enables); 6965 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP) { 6966 ctx_pg = &ctx->qp_mem; 6967 req->qp_num_entries = cpu_to_le32(ctx_pg->entries); 6968 req->qp_num_qp1_entries = cpu_to_le16(ctx->qp_min_qp1_entries); 6969 req->qp_num_l2_entries = cpu_to_le16(ctx->qp_max_l2_entries); 6970 req->qp_entry_size = cpu_to_le16(ctx->qp_entry_size); 6971 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 6972 &req->qpc_pg_size_qpc_lvl, 6973 &req->qpc_page_dir); 6974 } 6975 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ) { 6976 ctx_pg = &ctx->srq_mem; 6977 req->srq_num_entries = cpu_to_le32(ctx_pg->entries); 6978 req->srq_num_l2_entries = cpu_to_le16(ctx->srq_max_l2_entries); 6979 req->srq_entry_size = cpu_to_le16(ctx->srq_entry_size); 6980 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 6981 &req->srq_pg_size_srq_lvl, 6982 &req->srq_page_dir); 6983 } 6984 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ) { 6985 ctx_pg = &ctx->cq_mem; 6986 req->cq_num_entries = cpu_to_le32(ctx_pg->entries); 6987 req->cq_num_l2_entries = cpu_to_le16(ctx->cq_max_l2_entries); 6988 req->cq_entry_size = cpu_to_le16(ctx->cq_entry_size); 6989 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 6990 &req->cq_pg_size_cq_lvl, 6991 &req->cq_page_dir); 6992 } 6993 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC) { 6994 ctx_pg = &ctx->vnic_mem; 6995 req->vnic_num_vnic_entries = 6996 cpu_to_le16(ctx->vnic_max_vnic_entries); 6997 req->vnic_num_ring_table_entries = 6998 cpu_to_le16(ctx->vnic_max_ring_table_entries); 6999 req->vnic_entry_size = cpu_to_le16(ctx->vnic_entry_size); 7000 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7001 &req->vnic_pg_size_vnic_lvl, 7002 &req->vnic_page_dir); 7003 } 7004 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) { 7005 ctx_pg = &ctx->stat_mem; 7006 req->stat_num_entries = cpu_to_le32(ctx->stat_max_entries); 7007 req->stat_entry_size = cpu_to_le16(ctx->stat_entry_size); 7008 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7009 &req->stat_pg_size_stat_lvl, 7010 &req->stat_page_dir); 7011 } 7012 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV) { 7013 ctx_pg = &ctx->mrav_mem; 7014 req->mrav_num_entries = cpu_to_le32(ctx_pg->entries); 7015 if (ctx->mrav_num_entries_units) 7016 flags |= 7017 FUNC_BACKING_STORE_CFG_REQ_FLAGS_MRAV_RESERVATION_SPLIT; 7018 req->mrav_entry_size = cpu_to_le16(ctx->mrav_entry_size); 7019 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7020 &req->mrav_pg_size_mrav_lvl, 7021 &req->mrav_page_dir); 7022 } 7023 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) { 7024 ctx_pg = &ctx->tim_mem; 7025 req->tim_num_entries = cpu_to_le32(ctx_pg->entries); 7026 req->tim_entry_size = cpu_to_le16(ctx->tim_entry_size); 7027 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7028 &req->tim_pg_size_tim_lvl, 7029 &req->tim_page_dir); 7030 } 7031 for (i = 0, num_entries = &req->tqm_sp_num_entries, 7032 pg_attr = &req->tqm_sp_pg_size_tqm_sp_lvl, 7033 pg_dir = &req->tqm_sp_page_dir, 7034 ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP; 7035 i < BNXT_MAX_TQM_RINGS; 7036 i++, num_entries++, pg_attr++, pg_dir++, ena <<= 1) { 7037 if (!(enables & ena)) 7038 continue; 7039 7040 req->tqm_entry_size = cpu_to_le16(ctx->tqm_entry_size); 7041 ctx_pg = ctx->tqm_mem[i]; 7042 *num_entries = cpu_to_le32(ctx_pg->entries); 7043 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, pg_attr, pg_dir); 7044 } 7045 req->flags = cpu_to_le32(flags); 7046 return hwrm_req_send(bp, req); 7047 } 7048 7049 static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp, 7050 struct bnxt_ctx_pg_info *ctx_pg) 7051 { 7052 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 7053 7054 rmem->page_size = BNXT_PAGE_SIZE; 7055 rmem->pg_arr = ctx_pg->ctx_pg_arr; 7056 rmem->dma_arr = ctx_pg->ctx_dma_arr; 7057 rmem->flags = BNXT_RMEM_VALID_PTE_FLAG; 7058 if (rmem->depth >= 1) 7059 rmem->flags |= BNXT_RMEM_USE_FULL_PAGE_FLAG; 7060 return bnxt_alloc_ring(bp, rmem); 7061 } 7062 7063 static int bnxt_alloc_ctx_pg_tbls(struct bnxt *bp, 7064 struct bnxt_ctx_pg_info *ctx_pg, u32 mem_size, 7065 u8 depth, struct bnxt_mem_init *mem_init) 7066 { 7067 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 7068 int rc; 7069 7070 if (!mem_size) 7071 return -EINVAL; 7072 7073 ctx_pg->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE); 7074 if (ctx_pg->nr_pages > MAX_CTX_TOTAL_PAGES) { 7075 ctx_pg->nr_pages = 0; 7076 return -EINVAL; 7077 } 7078 if (ctx_pg->nr_pages > MAX_CTX_PAGES || depth > 1) { 7079 int nr_tbls, i; 7080 7081 rmem->depth = 2; 7082 ctx_pg->ctx_pg_tbl = kcalloc(MAX_CTX_PAGES, sizeof(ctx_pg), 7083 GFP_KERNEL); 7084 if (!ctx_pg->ctx_pg_tbl) 7085 return -ENOMEM; 7086 nr_tbls = DIV_ROUND_UP(ctx_pg->nr_pages, MAX_CTX_PAGES); 7087 rmem->nr_pages = nr_tbls; 7088 rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg); 7089 if (rc) 7090 return rc; 7091 for (i = 0; i < nr_tbls; i++) { 7092 struct bnxt_ctx_pg_info *pg_tbl; 7093 7094 pg_tbl = kzalloc(sizeof(*pg_tbl), GFP_KERNEL); 7095 if (!pg_tbl) 7096 return -ENOMEM; 7097 ctx_pg->ctx_pg_tbl[i] = pg_tbl; 7098 rmem = &pg_tbl->ring_mem; 7099 rmem->pg_tbl = ctx_pg->ctx_pg_arr[i]; 7100 rmem->pg_tbl_map = ctx_pg->ctx_dma_arr[i]; 7101 rmem->depth = 1; 7102 rmem->nr_pages = MAX_CTX_PAGES; 7103 rmem->mem_init = mem_init; 7104 if (i == (nr_tbls - 1)) { 7105 int rem = ctx_pg->nr_pages % MAX_CTX_PAGES; 7106 7107 if (rem) 7108 rmem->nr_pages = rem; 7109 } 7110 rc = bnxt_alloc_ctx_mem_blk(bp, pg_tbl); 7111 if (rc) 7112 break; 7113 } 7114 } else { 7115 rmem->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE); 7116 if (rmem->nr_pages > 1 || depth) 7117 rmem->depth = 1; 7118 rmem->mem_init = mem_init; 7119 rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg); 7120 } 7121 return rc; 7122 } 7123 7124 static void bnxt_free_ctx_pg_tbls(struct bnxt *bp, 7125 struct bnxt_ctx_pg_info *ctx_pg) 7126 { 7127 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 7128 7129 if (rmem->depth > 1 || ctx_pg->nr_pages > MAX_CTX_PAGES || 7130 ctx_pg->ctx_pg_tbl) { 7131 int i, nr_tbls = rmem->nr_pages; 7132 7133 for (i = 0; i < nr_tbls; i++) { 7134 struct bnxt_ctx_pg_info *pg_tbl; 7135 struct bnxt_ring_mem_info *rmem2; 7136 7137 pg_tbl = ctx_pg->ctx_pg_tbl[i]; 7138 if (!pg_tbl) 7139 continue; 7140 rmem2 = &pg_tbl->ring_mem; 7141 bnxt_free_ring(bp, rmem2); 7142 ctx_pg->ctx_pg_arr[i] = NULL; 7143 kfree(pg_tbl); 7144 ctx_pg->ctx_pg_tbl[i] = NULL; 7145 } 7146 kfree(ctx_pg->ctx_pg_tbl); 7147 ctx_pg->ctx_pg_tbl = NULL; 7148 } 7149 bnxt_free_ring(bp, rmem); 7150 ctx_pg->nr_pages = 0; 7151 } 7152 7153 static void bnxt_free_ctx_mem(struct bnxt *bp) 7154 { 7155 struct bnxt_ctx_mem_info *ctx = bp->ctx; 7156 int i; 7157 7158 if (!ctx) 7159 return; 7160 7161 if (ctx->tqm_mem[0]) { 7162 for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++) 7163 bnxt_free_ctx_pg_tbls(bp, ctx->tqm_mem[i]); 7164 kfree(ctx->tqm_mem[0]); 7165 ctx->tqm_mem[0] = NULL; 7166 } 7167 7168 bnxt_free_ctx_pg_tbls(bp, &ctx->tim_mem); 7169 bnxt_free_ctx_pg_tbls(bp, &ctx->mrav_mem); 7170 bnxt_free_ctx_pg_tbls(bp, &ctx->stat_mem); 7171 bnxt_free_ctx_pg_tbls(bp, &ctx->vnic_mem); 7172 bnxt_free_ctx_pg_tbls(bp, &ctx->cq_mem); 7173 bnxt_free_ctx_pg_tbls(bp, &ctx->srq_mem); 7174 bnxt_free_ctx_pg_tbls(bp, &ctx->qp_mem); 7175 ctx->flags &= ~BNXT_CTX_FLAG_INITED; 7176 } 7177 7178 static int bnxt_alloc_ctx_mem(struct bnxt *bp) 7179 { 7180 struct bnxt_ctx_pg_info *ctx_pg; 7181 struct bnxt_ctx_mem_info *ctx; 7182 struct bnxt_mem_init *init; 7183 u32 mem_size, ena, entries; 7184 u32 entries_sp, min; 7185 u32 num_mr, num_ah; 7186 u32 extra_srqs = 0; 7187 u32 extra_qps = 0; 7188 u8 pg_lvl = 1; 7189 int i, rc; 7190 7191 rc = bnxt_hwrm_func_backing_store_qcaps(bp); 7192 if (rc) { 7193 netdev_err(bp->dev, "Failed querying context mem capability, rc = %d.\n", 7194 rc); 7195 return rc; 7196 } 7197 ctx = bp->ctx; 7198 if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED)) 7199 return 0; 7200 7201 if ((bp->flags & BNXT_FLAG_ROCE_CAP) && !is_kdump_kernel()) { 7202 pg_lvl = 2; 7203 extra_qps = 65536; 7204 extra_srqs = 8192; 7205 } 7206 7207 ctx_pg = &ctx->qp_mem; 7208 ctx_pg->entries = ctx->qp_min_qp1_entries + ctx->qp_max_l2_entries + 7209 extra_qps; 7210 if (ctx->qp_entry_size) { 7211 mem_size = ctx->qp_entry_size * ctx_pg->entries; 7212 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_QP]; 7213 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init); 7214 if (rc) 7215 return rc; 7216 } 7217 7218 ctx_pg = &ctx->srq_mem; 7219 ctx_pg->entries = ctx->srq_max_l2_entries + extra_srqs; 7220 if (ctx->srq_entry_size) { 7221 mem_size = ctx->srq_entry_size * ctx_pg->entries; 7222 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_SRQ]; 7223 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init); 7224 if (rc) 7225 return rc; 7226 } 7227 7228 ctx_pg = &ctx->cq_mem; 7229 ctx_pg->entries = ctx->cq_max_l2_entries + extra_qps * 2; 7230 if (ctx->cq_entry_size) { 7231 mem_size = ctx->cq_entry_size * ctx_pg->entries; 7232 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_CQ]; 7233 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init); 7234 if (rc) 7235 return rc; 7236 } 7237 7238 ctx_pg = &ctx->vnic_mem; 7239 ctx_pg->entries = ctx->vnic_max_vnic_entries + 7240 ctx->vnic_max_ring_table_entries; 7241 if (ctx->vnic_entry_size) { 7242 mem_size = ctx->vnic_entry_size * ctx_pg->entries; 7243 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_VNIC]; 7244 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, init); 7245 if (rc) 7246 return rc; 7247 } 7248 7249 ctx_pg = &ctx->stat_mem; 7250 ctx_pg->entries = ctx->stat_max_entries; 7251 if (ctx->stat_entry_size) { 7252 mem_size = ctx->stat_entry_size * ctx_pg->entries; 7253 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_STAT]; 7254 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, init); 7255 if (rc) 7256 return rc; 7257 } 7258 7259 ena = 0; 7260 if (!(bp->flags & BNXT_FLAG_ROCE_CAP)) 7261 goto skip_rdma; 7262 7263 ctx_pg = &ctx->mrav_mem; 7264 /* 128K extra is needed to accommodate static AH context 7265 * allocation by f/w. 7266 */ 7267 num_mr = 1024 * 256; 7268 num_ah = 1024 * 128; 7269 ctx_pg->entries = num_mr + num_ah; 7270 if (ctx->mrav_entry_size) { 7271 mem_size = ctx->mrav_entry_size * ctx_pg->entries; 7272 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_MRAV]; 7273 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 2, init); 7274 if (rc) 7275 return rc; 7276 } 7277 ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV; 7278 if (ctx->mrav_num_entries_units) 7279 ctx_pg->entries = 7280 ((num_mr / ctx->mrav_num_entries_units) << 16) | 7281 (num_ah / ctx->mrav_num_entries_units); 7282 7283 ctx_pg = &ctx->tim_mem; 7284 ctx_pg->entries = ctx->qp_mem.entries; 7285 if (ctx->tim_entry_size) { 7286 mem_size = ctx->tim_entry_size * ctx_pg->entries; 7287 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, NULL); 7288 if (rc) 7289 return rc; 7290 } 7291 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM; 7292 7293 skip_rdma: 7294 min = ctx->tqm_min_entries_per_ring; 7295 entries_sp = ctx->vnic_max_vnic_entries + ctx->qp_max_l2_entries + 7296 2 * (extra_qps + ctx->qp_min_qp1_entries) + min; 7297 entries_sp = roundup(entries_sp, ctx->tqm_entries_multiple); 7298 entries = ctx->qp_max_l2_entries + 2 * (extra_qps + ctx->qp_min_qp1_entries); 7299 entries = roundup(entries, ctx->tqm_entries_multiple); 7300 entries = clamp_t(u32, entries, min, ctx->tqm_max_entries_per_ring); 7301 for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++) { 7302 ctx_pg = ctx->tqm_mem[i]; 7303 ctx_pg->entries = i ? entries : entries_sp; 7304 if (ctx->tqm_entry_size) { 7305 mem_size = ctx->tqm_entry_size * ctx_pg->entries; 7306 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, 7307 NULL); 7308 if (rc) 7309 return rc; 7310 } 7311 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP << i; 7312 } 7313 ena |= FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES; 7314 rc = bnxt_hwrm_func_backing_store_cfg(bp, ena); 7315 if (rc) { 7316 netdev_err(bp->dev, "Failed configuring context mem, rc = %d.\n", 7317 rc); 7318 return rc; 7319 } 7320 ctx->flags |= BNXT_CTX_FLAG_INITED; 7321 return 0; 7322 } 7323 7324 int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all) 7325 { 7326 struct hwrm_func_resource_qcaps_output *resp; 7327 struct hwrm_func_resource_qcaps_input *req; 7328 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7329 int rc; 7330 7331 rc = hwrm_req_init(bp, req, HWRM_FUNC_RESOURCE_QCAPS); 7332 if (rc) 7333 return rc; 7334 7335 req->fid = cpu_to_le16(0xffff); 7336 resp = hwrm_req_hold(bp, req); 7337 rc = hwrm_req_send_silent(bp, req); 7338 if (rc) 7339 goto hwrm_func_resc_qcaps_exit; 7340 7341 hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs); 7342 if (!all) 7343 goto hwrm_func_resc_qcaps_exit; 7344 7345 hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx); 7346 hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx); 7347 hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings); 7348 hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings); 7349 hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings); 7350 hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings); 7351 hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings); 7352 hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings); 7353 hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps); 7354 hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps); 7355 hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs); 7356 hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs); 7357 hw_resc->min_vnics = le16_to_cpu(resp->min_vnics); 7358 hw_resc->max_vnics = le16_to_cpu(resp->max_vnics); 7359 hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx); 7360 hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx); 7361 7362 if (bp->flags & BNXT_FLAG_CHIP_P5) { 7363 u16 max_msix = le16_to_cpu(resp->max_msix); 7364 7365 hw_resc->max_nqs = max_msix; 7366 hw_resc->max_hw_ring_grps = hw_resc->max_rx_rings; 7367 } 7368 7369 if (BNXT_PF(bp)) { 7370 struct bnxt_pf_info *pf = &bp->pf; 7371 7372 pf->vf_resv_strategy = 7373 le16_to_cpu(resp->vf_reservation_strategy); 7374 if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC) 7375 pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL; 7376 } 7377 hwrm_func_resc_qcaps_exit: 7378 hwrm_req_drop(bp, req); 7379 return rc; 7380 } 7381 7382 static int __bnxt_hwrm_ptp_qcfg(struct bnxt *bp) 7383 { 7384 struct hwrm_port_mac_ptp_qcfg_output *resp; 7385 struct hwrm_port_mac_ptp_qcfg_input *req; 7386 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 7387 u8 flags; 7388 int rc; 7389 7390 if (bp->hwrm_spec_code < 0x10801) { 7391 rc = -ENODEV; 7392 goto no_ptp; 7393 } 7394 7395 rc = hwrm_req_init(bp, req, HWRM_PORT_MAC_PTP_QCFG); 7396 if (rc) 7397 goto no_ptp; 7398 7399 req->port_id = cpu_to_le16(bp->pf.port_id); 7400 resp = hwrm_req_hold(bp, req); 7401 rc = hwrm_req_send(bp, req); 7402 if (rc) 7403 goto exit; 7404 7405 flags = resp->flags; 7406 if (!(flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_HWRM_ACCESS)) { 7407 rc = -ENODEV; 7408 goto exit; 7409 } 7410 if (!ptp) { 7411 ptp = kzalloc(sizeof(*ptp), GFP_KERNEL); 7412 if (!ptp) { 7413 rc = -ENOMEM; 7414 goto exit; 7415 } 7416 ptp->bp = bp; 7417 bp->ptp_cfg = ptp; 7418 } 7419 if (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_PARTIAL_DIRECT_ACCESS_REF_CLOCK) { 7420 ptp->refclk_regs[0] = le32_to_cpu(resp->ts_ref_clock_reg_lower); 7421 ptp->refclk_regs[1] = le32_to_cpu(resp->ts_ref_clock_reg_upper); 7422 } else if (bp->flags & BNXT_FLAG_CHIP_P5) { 7423 ptp->refclk_regs[0] = BNXT_TS_REG_TIMESYNC_TS0_LOWER; 7424 ptp->refclk_regs[1] = BNXT_TS_REG_TIMESYNC_TS0_UPPER; 7425 } else { 7426 rc = -ENODEV; 7427 goto exit; 7428 } 7429 rc = bnxt_ptp_init(bp); 7430 if (rc) 7431 netdev_warn(bp->dev, "PTP initialization failed.\n"); 7432 exit: 7433 hwrm_req_drop(bp, req); 7434 if (!rc) 7435 return 0; 7436 7437 no_ptp: 7438 bnxt_ptp_clear(bp); 7439 kfree(ptp); 7440 bp->ptp_cfg = NULL; 7441 return rc; 7442 } 7443 7444 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp) 7445 { 7446 struct hwrm_func_qcaps_output *resp; 7447 struct hwrm_func_qcaps_input *req; 7448 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7449 u32 flags, flags_ext; 7450 int rc; 7451 7452 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCAPS); 7453 if (rc) 7454 return rc; 7455 7456 req->fid = cpu_to_le16(0xffff); 7457 resp = hwrm_req_hold(bp, req); 7458 rc = hwrm_req_send(bp, req); 7459 if (rc) 7460 goto hwrm_func_qcaps_exit; 7461 7462 flags = le32_to_cpu(resp->flags); 7463 if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED) 7464 bp->flags |= BNXT_FLAG_ROCEV1_CAP; 7465 if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED) 7466 bp->flags |= BNXT_FLAG_ROCEV2_CAP; 7467 if (flags & FUNC_QCAPS_RESP_FLAGS_PCIE_STATS_SUPPORTED) 7468 bp->fw_cap |= BNXT_FW_CAP_PCIE_STATS_SUPPORTED; 7469 if (flags & FUNC_QCAPS_RESP_FLAGS_HOT_RESET_CAPABLE) 7470 bp->fw_cap |= BNXT_FW_CAP_HOT_RESET; 7471 if (flags & FUNC_QCAPS_RESP_FLAGS_EXT_STATS_SUPPORTED) 7472 bp->fw_cap |= BNXT_FW_CAP_EXT_STATS_SUPPORTED; 7473 if (flags & FUNC_QCAPS_RESP_FLAGS_ERROR_RECOVERY_CAPABLE) 7474 bp->fw_cap |= BNXT_FW_CAP_ERROR_RECOVERY; 7475 if (flags & FUNC_QCAPS_RESP_FLAGS_ERR_RECOVER_RELOAD) 7476 bp->fw_cap |= BNXT_FW_CAP_ERR_RECOVER_RELOAD; 7477 if (!(flags & FUNC_QCAPS_RESP_FLAGS_VLAN_ACCELERATION_TX_DISABLED)) 7478 bp->fw_cap |= BNXT_FW_CAP_VLAN_TX_INSERT; 7479 7480 flags_ext = le32_to_cpu(resp->flags_ext); 7481 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_EXT_HW_STATS_SUPPORTED) 7482 bp->fw_cap |= BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED; 7483 if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_PPS_SUPPORTED)) 7484 bp->fw_cap |= BNXT_FW_CAP_PTP_PPS; 7485 7486 bp->tx_push_thresh = 0; 7487 if ((flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED) && 7488 BNXT_FW_MAJ(bp) > 217) 7489 bp->tx_push_thresh = BNXT_TX_PUSH_THRESH; 7490 7491 hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx); 7492 hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings); 7493 hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings); 7494 hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings); 7495 hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps); 7496 if (!hw_resc->max_hw_ring_grps) 7497 hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings; 7498 hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs); 7499 hw_resc->max_vnics = le16_to_cpu(resp->max_vnics); 7500 hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx); 7501 7502 if (BNXT_PF(bp)) { 7503 struct bnxt_pf_info *pf = &bp->pf; 7504 7505 pf->fw_fid = le16_to_cpu(resp->fid); 7506 pf->port_id = le16_to_cpu(resp->port_id); 7507 memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN); 7508 pf->first_vf_id = le16_to_cpu(resp->first_vf_id); 7509 pf->max_vfs = le16_to_cpu(resp->max_vfs); 7510 pf->max_encap_records = le32_to_cpu(resp->max_encap_records); 7511 pf->max_decap_records = le32_to_cpu(resp->max_decap_records); 7512 pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows); 7513 pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows); 7514 pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows); 7515 pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows); 7516 bp->flags &= ~BNXT_FLAG_WOL_CAP; 7517 if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED) 7518 bp->flags |= BNXT_FLAG_WOL_CAP; 7519 if (flags & FUNC_QCAPS_RESP_FLAGS_PTP_SUPPORTED) { 7520 __bnxt_hwrm_ptp_qcfg(bp); 7521 } else { 7522 bnxt_ptp_clear(bp); 7523 kfree(bp->ptp_cfg); 7524 bp->ptp_cfg = NULL; 7525 } 7526 } else { 7527 #ifdef CONFIG_BNXT_SRIOV 7528 struct bnxt_vf_info *vf = &bp->vf; 7529 7530 vf->fw_fid = le16_to_cpu(resp->fid); 7531 memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN); 7532 #endif 7533 } 7534 7535 hwrm_func_qcaps_exit: 7536 hwrm_req_drop(bp, req); 7537 return rc; 7538 } 7539 7540 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp); 7541 7542 static int bnxt_hwrm_func_qcaps(struct bnxt *bp) 7543 { 7544 int rc; 7545 7546 rc = __bnxt_hwrm_func_qcaps(bp); 7547 if (rc) 7548 return rc; 7549 rc = bnxt_hwrm_queue_qportcfg(bp); 7550 if (rc) { 7551 netdev_err(bp->dev, "hwrm query qportcfg failure rc: %d\n", rc); 7552 return rc; 7553 } 7554 if (bp->hwrm_spec_code >= 0x10803) { 7555 rc = bnxt_alloc_ctx_mem(bp); 7556 if (rc) 7557 return rc; 7558 rc = bnxt_hwrm_func_resc_qcaps(bp, true); 7559 if (!rc) 7560 bp->fw_cap |= BNXT_FW_CAP_NEW_RM; 7561 } 7562 return 0; 7563 } 7564 7565 static int bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(struct bnxt *bp) 7566 { 7567 struct hwrm_cfa_adv_flow_mgnt_qcaps_output *resp; 7568 struct hwrm_cfa_adv_flow_mgnt_qcaps_input *req; 7569 u32 flags; 7570 int rc; 7571 7572 if (!(bp->fw_cap & BNXT_FW_CAP_CFA_ADV_FLOW)) 7573 return 0; 7574 7575 rc = hwrm_req_init(bp, req, HWRM_CFA_ADV_FLOW_MGNT_QCAPS); 7576 if (rc) 7577 return rc; 7578 7579 resp = hwrm_req_hold(bp, req); 7580 rc = hwrm_req_send(bp, req); 7581 if (rc) 7582 goto hwrm_cfa_adv_qcaps_exit; 7583 7584 flags = le32_to_cpu(resp->flags); 7585 if (flags & 7586 CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V2_SUPPORTED) 7587 bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2; 7588 7589 hwrm_cfa_adv_qcaps_exit: 7590 hwrm_req_drop(bp, req); 7591 return rc; 7592 } 7593 7594 static int __bnxt_alloc_fw_health(struct bnxt *bp) 7595 { 7596 if (bp->fw_health) 7597 return 0; 7598 7599 bp->fw_health = kzalloc(sizeof(*bp->fw_health), GFP_KERNEL); 7600 if (!bp->fw_health) 7601 return -ENOMEM; 7602 7603 return 0; 7604 } 7605 7606 static int bnxt_alloc_fw_health(struct bnxt *bp) 7607 { 7608 int rc; 7609 7610 if (!(bp->fw_cap & BNXT_FW_CAP_HOT_RESET) && 7611 !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 7612 return 0; 7613 7614 rc = __bnxt_alloc_fw_health(bp); 7615 if (rc) { 7616 bp->fw_cap &= ~BNXT_FW_CAP_HOT_RESET; 7617 bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY; 7618 return rc; 7619 } 7620 7621 return 0; 7622 } 7623 7624 static void __bnxt_map_fw_health_reg(struct bnxt *bp, u32 reg) 7625 { 7626 writel(reg & BNXT_GRC_BASE_MASK, bp->bar0 + 7627 BNXT_GRCPF_REG_WINDOW_BASE_OUT + 7628 BNXT_FW_HEALTH_WIN_MAP_OFF); 7629 } 7630 7631 bool bnxt_is_fw_healthy(struct bnxt *bp) 7632 { 7633 if (bp->fw_health && bp->fw_health->status_reliable) { 7634 u32 fw_status; 7635 7636 fw_status = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 7637 if (fw_status && !BNXT_FW_IS_HEALTHY(fw_status)) 7638 return false; 7639 } 7640 7641 return true; 7642 } 7643 7644 static void bnxt_inv_fw_health_reg(struct bnxt *bp) 7645 { 7646 struct bnxt_fw_health *fw_health = bp->fw_health; 7647 u32 reg_type; 7648 7649 if (!fw_health || !fw_health->status_reliable) 7650 return; 7651 7652 reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_HEALTH_REG]); 7653 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) 7654 fw_health->status_reliable = false; 7655 } 7656 7657 static void bnxt_try_map_fw_health_reg(struct bnxt *bp) 7658 { 7659 void __iomem *hs; 7660 u32 status_loc; 7661 u32 reg_type; 7662 u32 sig; 7663 7664 if (bp->fw_health) 7665 bp->fw_health->status_reliable = false; 7666 7667 __bnxt_map_fw_health_reg(bp, HCOMM_STATUS_STRUCT_LOC); 7668 hs = bp->bar0 + BNXT_FW_HEALTH_WIN_OFF(HCOMM_STATUS_STRUCT_LOC); 7669 7670 sig = readl(hs + offsetof(struct hcomm_status, sig_ver)); 7671 if ((sig & HCOMM_STATUS_SIGNATURE_MASK) != HCOMM_STATUS_SIGNATURE_VAL) { 7672 if (!bp->chip_num) { 7673 __bnxt_map_fw_health_reg(bp, BNXT_GRC_REG_BASE); 7674 bp->chip_num = readl(bp->bar0 + 7675 BNXT_FW_HEALTH_WIN_BASE + 7676 BNXT_GRC_REG_CHIP_NUM); 7677 } 7678 if (!BNXT_CHIP_P5(bp)) 7679 return; 7680 7681 status_loc = BNXT_GRC_REG_STATUS_P5 | 7682 BNXT_FW_HEALTH_REG_TYPE_BAR0; 7683 } else { 7684 status_loc = readl(hs + offsetof(struct hcomm_status, 7685 fw_status_loc)); 7686 } 7687 7688 if (__bnxt_alloc_fw_health(bp)) { 7689 netdev_warn(bp->dev, "no memory for firmware status checks\n"); 7690 return; 7691 } 7692 7693 bp->fw_health->regs[BNXT_FW_HEALTH_REG] = status_loc; 7694 reg_type = BNXT_FW_HEALTH_REG_TYPE(status_loc); 7695 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) { 7696 __bnxt_map_fw_health_reg(bp, status_loc); 7697 bp->fw_health->mapped_regs[BNXT_FW_HEALTH_REG] = 7698 BNXT_FW_HEALTH_WIN_OFF(status_loc); 7699 } 7700 7701 bp->fw_health->status_reliable = true; 7702 } 7703 7704 static int bnxt_map_fw_health_regs(struct bnxt *bp) 7705 { 7706 struct bnxt_fw_health *fw_health = bp->fw_health; 7707 u32 reg_base = 0xffffffff; 7708 int i; 7709 7710 bp->fw_health->status_reliable = false; 7711 /* Only pre-map the monitoring GRC registers using window 3 */ 7712 for (i = 0; i < 4; i++) { 7713 u32 reg = fw_health->regs[i]; 7714 7715 if (BNXT_FW_HEALTH_REG_TYPE(reg) != BNXT_FW_HEALTH_REG_TYPE_GRC) 7716 continue; 7717 if (reg_base == 0xffffffff) 7718 reg_base = reg & BNXT_GRC_BASE_MASK; 7719 if ((reg & BNXT_GRC_BASE_MASK) != reg_base) 7720 return -ERANGE; 7721 fw_health->mapped_regs[i] = BNXT_FW_HEALTH_WIN_OFF(reg); 7722 } 7723 bp->fw_health->status_reliable = true; 7724 if (reg_base == 0xffffffff) 7725 return 0; 7726 7727 __bnxt_map_fw_health_reg(bp, reg_base); 7728 return 0; 7729 } 7730 7731 static int bnxt_hwrm_error_recovery_qcfg(struct bnxt *bp) 7732 { 7733 struct bnxt_fw_health *fw_health = bp->fw_health; 7734 struct hwrm_error_recovery_qcfg_output *resp; 7735 struct hwrm_error_recovery_qcfg_input *req; 7736 int rc, i; 7737 7738 if (!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 7739 return 0; 7740 7741 rc = hwrm_req_init(bp, req, HWRM_ERROR_RECOVERY_QCFG); 7742 if (rc) 7743 return rc; 7744 7745 resp = hwrm_req_hold(bp, req); 7746 rc = hwrm_req_send(bp, req); 7747 if (rc) 7748 goto err_recovery_out; 7749 fw_health->flags = le32_to_cpu(resp->flags); 7750 if ((fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) && 7751 !(bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL)) { 7752 rc = -EINVAL; 7753 goto err_recovery_out; 7754 } 7755 fw_health->polling_dsecs = le32_to_cpu(resp->driver_polling_freq); 7756 fw_health->master_func_wait_dsecs = 7757 le32_to_cpu(resp->master_func_wait_period); 7758 fw_health->normal_func_wait_dsecs = 7759 le32_to_cpu(resp->normal_func_wait_period); 7760 fw_health->post_reset_wait_dsecs = 7761 le32_to_cpu(resp->master_func_wait_period_after_reset); 7762 fw_health->post_reset_max_wait_dsecs = 7763 le32_to_cpu(resp->max_bailout_time_after_reset); 7764 fw_health->regs[BNXT_FW_HEALTH_REG] = 7765 le32_to_cpu(resp->fw_health_status_reg); 7766 fw_health->regs[BNXT_FW_HEARTBEAT_REG] = 7767 le32_to_cpu(resp->fw_heartbeat_reg); 7768 fw_health->regs[BNXT_FW_RESET_CNT_REG] = 7769 le32_to_cpu(resp->fw_reset_cnt_reg); 7770 fw_health->regs[BNXT_FW_RESET_INPROG_REG] = 7771 le32_to_cpu(resp->reset_inprogress_reg); 7772 fw_health->fw_reset_inprog_reg_mask = 7773 le32_to_cpu(resp->reset_inprogress_reg_mask); 7774 fw_health->fw_reset_seq_cnt = resp->reg_array_cnt; 7775 if (fw_health->fw_reset_seq_cnt >= 16) { 7776 rc = -EINVAL; 7777 goto err_recovery_out; 7778 } 7779 for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) { 7780 fw_health->fw_reset_seq_regs[i] = 7781 le32_to_cpu(resp->reset_reg[i]); 7782 fw_health->fw_reset_seq_vals[i] = 7783 le32_to_cpu(resp->reset_reg_val[i]); 7784 fw_health->fw_reset_seq_delay_msec[i] = 7785 resp->delay_after_reset[i]; 7786 } 7787 err_recovery_out: 7788 hwrm_req_drop(bp, req); 7789 if (!rc) 7790 rc = bnxt_map_fw_health_regs(bp); 7791 if (rc) 7792 bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY; 7793 return rc; 7794 } 7795 7796 static int bnxt_hwrm_func_reset(struct bnxt *bp) 7797 { 7798 struct hwrm_func_reset_input *req; 7799 int rc; 7800 7801 rc = hwrm_req_init(bp, req, HWRM_FUNC_RESET); 7802 if (rc) 7803 return rc; 7804 7805 req->enables = 0; 7806 hwrm_req_timeout(bp, req, HWRM_RESET_TIMEOUT); 7807 return hwrm_req_send(bp, req); 7808 } 7809 7810 static void bnxt_nvm_cfg_ver_get(struct bnxt *bp) 7811 { 7812 struct hwrm_nvm_get_dev_info_output nvm_info; 7813 7814 if (!bnxt_hwrm_nvm_get_dev_info(bp, &nvm_info)) 7815 snprintf(bp->nvm_cfg_ver, FW_VER_STR_LEN, "%d.%d.%d", 7816 nvm_info.nvm_cfg_ver_maj, nvm_info.nvm_cfg_ver_min, 7817 nvm_info.nvm_cfg_ver_upd); 7818 } 7819 7820 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp) 7821 { 7822 struct hwrm_queue_qportcfg_output *resp; 7823 struct hwrm_queue_qportcfg_input *req; 7824 u8 i, j, *qptr; 7825 bool no_rdma; 7826 int rc = 0; 7827 7828 rc = hwrm_req_init(bp, req, HWRM_QUEUE_QPORTCFG); 7829 if (rc) 7830 return rc; 7831 7832 resp = hwrm_req_hold(bp, req); 7833 rc = hwrm_req_send(bp, req); 7834 if (rc) 7835 goto qportcfg_exit; 7836 7837 if (!resp->max_configurable_queues) { 7838 rc = -EINVAL; 7839 goto qportcfg_exit; 7840 } 7841 bp->max_tc = resp->max_configurable_queues; 7842 bp->max_lltc = resp->max_configurable_lossless_queues; 7843 if (bp->max_tc > BNXT_MAX_QUEUE) 7844 bp->max_tc = BNXT_MAX_QUEUE; 7845 7846 no_rdma = !(bp->flags & BNXT_FLAG_ROCE_CAP); 7847 qptr = &resp->queue_id0; 7848 for (i = 0, j = 0; i < bp->max_tc; i++) { 7849 bp->q_info[j].queue_id = *qptr; 7850 bp->q_ids[i] = *qptr++; 7851 bp->q_info[j].queue_profile = *qptr++; 7852 bp->tc_to_qidx[j] = j; 7853 if (!BNXT_CNPQ(bp->q_info[j].queue_profile) || 7854 (no_rdma && BNXT_PF(bp))) 7855 j++; 7856 } 7857 bp->max_q = bp->max_tc; 7858 bp->max_tc = max_t(u8, j, 1); 7859 7860 if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG) 7861 bp->max_tc = 1; 7862 7863 if (bp->max_lltc > bp->max_tc) 7864 bp->max_lltc = bp->max_tc; 7865 7866 qportcfg_exit: 7867 hwrm_req_drop(bp, req); 7868 return rc; 7869 } 7870 7871 static int bnxt_hwrm_poll(struct bnxt *bp) 7872 { 7873 struct hwrm_ver_get_input *req; 7874 int rc; 7875 7876 rc = hwrm_req_init(bp, req, HWRM_VER_GET); 7877 if (rc) 7878 return rc; 7879 7880 req->hwrm_intf_maj = HWRM_VERSION_MAJOR; 7881 req->hwrm_intf_min = HWRM_VERSION_MINOR; 7882 req->hwrm_intf_upd = HWRM_VERSION_UPDATE; 7883 7884 hwrm_req_flags(bp, req, BNXT_HWRM_CTX_SILENT | BNXT_HWRM_FULL_WAIT); 7885 rc = hwrm_req_send(bp, req); 7886 return rc; 7887 } 7888 7889 static int bnxt_hwrm_ver_get(struct bnxt *bp) 7890 { 7891 struct hwrm_ver_get_output *resp; 7892 struct hwrm_ver_get_input *req; 7893 u16 fw_maj, fw_min, fw_bld, fw_rsv; 7894 u32 dev_caps_cfg, hwrm_ver; 7895 int rc, len; 7896 7897 rc = hwrm_req_init(bp, req, HWRM_VER_GET); 7898 if (rc) 7899 return rc; 7900 7901 hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT); 7902 bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN; 7903 req->hwrm_intf_maj = HWRM_VERSION_MAJOR; 7904 req->hwrm_intf_min = HWRM_VERSION_MINOR; 7905 req->hwrm_intf_upd = HWRM_VERSION_UPDATE; 7906 7907 resp = hwrm_req_hold(bp, req); 7908 rc = hwrm_req_send(bp, req); 7909 if (rc) 7910 goto hwrm_ver_get_exit; 7911 7912 memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output)); 7913 7914 bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 | 7915 resp->hwrm_intf_min_8b << 8 | 7916 resp->hwrm_intf_upd_8b; 7917 if (resp->hwrm_intf_maj_8b < 1) { 7918 netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n", 7919 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b, 7920 resp->hwrm_intf_upd_8b); 7921 netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n"); 7922 } 7923 7924 hwrm_ver = HWRM_VERSION_MAJOR << 16 | HWRM_VERSION_MINOR << 8 | 7925 HWRM_VERSION_UPDATE; 7926 7927 if (bp->hwrm_spec_code > hwrm_ver) 7928 snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d", 7929 HWRM_VERSION_MAJOR, HWRM_VERSION_MINOR, 7930 HWRM_VERSION_UPDATE); 7931 else 7932 snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d", 7933 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b, 7934 resp->hwrm_intf_upd_8b); 7935 7936 fw_maj = le16_to_cpu(resp->hwrm_fw_major); 7937 if (bp->hwrm_spec_code > 0x10803 && fw_maj) { 7938 fw_min = le16_to_cpu(resp->hwrm_fw_minor); 7939 fw_bld = le16_to_cpu(resp->hwrm_fw_build); 7940 fw_rsv = le16_to_cpu(resp->hwrm_fw_patch); 7941 len = FW_VER_STR_LEN; 7942 } else { 7943 fw_maj = resp->hwrm_fw_maj_8b; 7944 fw_min = resp->hwrm_fw_min_8b; 7945 fw_bld = resp->hwrm_fw_bld_8b; 7946 fw_rsv = resp->hwrm_fw_rsvd_8b; 7947 len = BC_HWRM_STR_LEN; 7948 } 7949 bp->fw_ver_code = BNXT_FW_VER_CODE(fw_maj, fw_min, fw_bld, fw_rsv); 7950 snprintf(bp->fw_ver_str, len, "%d.%d.%d.%d", fw_maj, fw_min, fw_bld, 7951 fw_rsv); 7952 7953 if (strlen(resp->active_pkg_name)) { 7954 int fw_ver_len = strlen(bp->fw_ver_str); 7955 7956 snprintf(bp->fw_ver_str + fw_ver_len, 7957 FW_VER_STR_LEN - fw_ver_len - 1, "/pkg %s", 7958 resp->active_pkg_name); 7959 bp->fw_cap |= BNXT_FW_CAP_PKG_VER; 7960 } 7961 7962 bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout); 7963 if (!bp->hwrm_cmd_timeout) 7964 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT; 7965 7966 if (resp->hwrm_intf_maj_8b >= 1) { 7967 bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len); 7968 bp->hwrm_max_ext_req_len = le16_to_cpu(resp->max_ext_req_len); 7969 } 7970 if (bp->hwrm_max_ext_req_len < HWRM_MAX_REQ_LEN) 7971 bp->hwrm_max_ext_req_len = HWRM_MAX_REQ_LEN; 7972 7973 bp->chip_num = le16_to_cpu(resp->chip_num); 7974 bp->chip_rev = resp->chip_rev; 7975 if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev && 7976 !resp->chip_metal) 7977 bp->flags |= BNXT_FLAG_CHIP_NITRO_A0; 7978 7979 dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg); 7980 if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) && 7981 (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED)) 7982 bp->fw_cap |= BNXT_FW_CAP_SHORT_CMD; 7983 7984 if (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_KONG_MB_CHNL_SUPPORTED) 7985 bp->fw_cap |= BNXT_FW_CAP_KONG_MB_CHNL; 7986 7987 if (dev_caps_cfg & 7988 VER_GET_RESP_DEV_CAPS_CFG_FLOW_HANDLE_64BIT_SUPPORTED) 7989 bp->fw_cap |= BNXT_FW_CAP_OVS_64BIT_HANDLE; 7990 7991 if (dev_caps_cfg & 7992 VER_GET_RESP_DEV_CAPS_CFG_TRUSTED_VF_SUPPORTED) 7993 bp->fw_cap |= BNXT_FW_CAP_TRUSTED_VF; 7994 7995 if (dev_caps_cfg & 7996 VER_GET_RESP_DEV_CAPS_CFG_CFA_ADV_FLOW_MGNT_SUPPORTED) 7997 bp->fw_cap |= BNXT_FW_CAP_CFA_ADV_FLOW; 7998 7999 hwrm_ver_get_exit: 8000 hwrm_req_drop(bp, req); 8001 return rc; 8002 } 8003 8004 int bnxt_hwrm_fw_set_time(struct bnxt *bp) 8005 { 8006 struct hwrm_fw_set_time_input *req; 8007 struct tm tm; 8008 time64_t now = ktime_get_real_seconds(); 8009 int rc; 8010 8011 if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) || 8012 bp->hwrm_spec_code < 0x10400) 8013 return -EOPNOTSUPP; 8014 8015 time64_to_tm(now, 0, &tm); 8016 rc = hwrm_req_init(bp, req, HWRM_FW_SET_TIME); 8017 if (rc) 8018 return rc; 8019 8020 req->year = cpu_to_le16(1900 + tm.tm_year); 8021 req->month = 1 + tm.tm_mon; 8022 req->day = tm.tm_mday; 8023 req->hour = tm.tm_hour; 8024 req->minute = tm.tm_min; 8025 req->second = tm.tm_sec; 8026 return hwrm_req_send(bp, req); 8027 } 8028 8029 static void bnxt_add_one_ctr(u64 hw, u64 *sw, u64 mask) 8030 { 8031 u64 sw_tmp; 8032 8033 hw &= mask; 8034 sw_tmp = (*sw & ~mask) | hw; 8035 if (hw < (*sw & mask)) 8036 sw_tmp += mask + 1; 8037 WRITE_ONCE(*sw, sw_tmp); 8038 } 8039 8040 static void __bnxt_accumulate_stats(__le64 *hw_stats, u64 *sw_stats, u64 *masks, 8041 int count, bool ignore_zero) 8042 { 8043 int i; 8044 8045 for (i = 0; i < count; i++) { 8046 u64 hw = le64_to_cpu(READ_ONCE(hw_stats[i])); 8047 8048 if (ignore_zero && !hw) 8049 continue; 8050 8051 if (masks[i] == -1ULL) 8052 sw_stats[i] = hw; 8053 else 8054 bnxt_add_one_ctr(hw, &sw_stats[i], masks[i]); 8055 } 8056 } 8057 8058 static void bnxt_accumulate_stats(struct bnxt_stats_mem *stats) 8059 { 8060 if (!stats->hw_stats) 8061 return; 8062 8063 __bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats, 8064 stats->hw_masks, stats->len / 8, false); 8065 } 8066 8067 static void bnxt_accumulate_all_stats(struct bnxt *bp) 8068 { 8069 struct bnxt_stats_mem *ring0_stats; 8070 bool ignore_zero = false; 8071 int i; 8072 8073 /* Chip bug. Counter intermittently becomes 0. */ 8074 if (bp->flags & BNXT_FLAG_CHIP_P5) 8075 ignore_zero = true; 8076 8077 for (i = 0; i < bp->cp_nr_rings; i++) { 8078 struct bnxt_napi *bnapi = bp->bnapi[i]; 8079 struct bnxt_cp_ring_info *cpr; 8080 struct bnxt_stats_mem *stats; 8081 8082 cpr = &bnapi->cp_ring; 8083 stats = &cpr->stats; 8084 if (!i) 8085 ring0_stats = stats; 8086 __bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats, 8087 ring0_stats->hw_masks, 8088 ring0_stats->len / 8, ignore_zero); 8089 } 8090 if (bp->flags & BNXT_FLAG_PORT_STATS) { 8091 struct bnxt_stats_mem *stats = &bp->port_stats; 8092 __le64 *hw_stats = stats->hw_stats; 8093 u64 *sw_stats = stats->sw_stats; 8094 u64 *masks = stats->hw_masks; 8095 int cnt; 8096 8097 cnt = sizeof(struct rx_port_stats) / 8; 8098 __bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false); 8099 8100 hw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 8101 sw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 8102 masks += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 8103 cnt = sizeof(struct tx_port_stats) / 8; 8104 __bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false); 8105 } 8106 if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) { 8107 bnxt_accumulate_stats(&bp->rx_port_stats_ext); 8108 bnxt_accumulate_stats(&bp->tx_port_stats_ext); 8109 } 8110 } 8111 8112 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags) 8113 { 8114 struct hwrm_port_qstats_input *req; 8115 struct bnxt_pf_info *pf = &bp->pf; 8116 int rc; 8117 8118 if (!(bp->flags & BNXT_FLAG_PORT_STATS)) 8119 return 0; 8120 8121 if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)) 8122 return -EOPNOTSUPP; 8123 8124 rc = hwrm_req_init(bp, req, HWRM_PORT_QSTATS); 8125 if (rc) 8126 return rc; 8127 8128 req->flags = flags; 8129 req->port_id = cpu_to_le16(pf->port_id); 8130 req->tx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map + 8131 BNXT_TX_PORT_STATS_BYTE_OFFSET); 8132 req->rx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map); 8133 return hwrm_req_send(bp, req); 8134 } 8135 8136 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags) 8137 { 8138 struct hwrm_queue_pri2cos_qcfg_output *resp_qc; 8139 struct hwrm_queue_pri2cos_qcfg_input *req_qc; 8140 struct hwrm_port_qstats_ext_output *resp_qs; 8141 struct hwrm_port_qstats_ext_input *req_qs; 8142 struct bnxt_pf_info *pf = &bp->pf; 8143 u32 tx_stat_size; 8144 int rc; 8145 8146 if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT)) 8147 return 0; 8148 8149 if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)) 8150 return -EOPNOTSUPP; 8151 8152 rc = hwrm_req_init(bp, req_qs, HWRM_PORT_QSTATS_EXT); 8153 if (rc) 8154 return rc; 8155 8156 req_qs->flags = flags; 8157 req_qs->port_id = cpu_to_le16(pf->port_id); 8158 req_qs->rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext)); 8159 req_qs->rx_stat_host_addr = cpu_to_le64(bp->rx_port_stats_ext.hw_stats_map); 8160 tx_stat_size = bp->tx_port_stats_ext.hw_stats ? 8161 sizeof(struct tx_port_stats_ext) : 0; 8162 req_qs->tx_stat_size = cpu_to_le16(tx_stat_size); 8163 req_qs->tx_stat_host_addr = cpu_to_le64(bp->tx_port_stats_ext.hw_stats_map); 8164 resp_qs = hwrm_req_hold(bp, req_qs); 8165 rc = hwrm_req_send(bp, req_qs); 8166 if (!rc) { 8167 bp->fw_rx_stats_ext_size = 8168 le16_to_cpu(resp_qs->rx_stat_size) / 8; 8169 bp->fw_tx_stats_ext_size = tx_stat_size ? 8170 le16_to_cpu(resp_qs->tx_stat_size) / 8 : 0; 8171 } else { 8172 bp->fw_rx_stats_ext_size = 0; 8173 bp->fw_tx_stats_ext_size = 0; 8174 } 8175 hwrm_req_drop(bp, req_qs); 8176 8177 if (flags) 8178 return rc; 8179 8180 if (bp->fw_tx_stats_ext_size <= 8181 offsetof(struct tx_port_stats_ext, pfc_pri0_tx_duration_us) / 8) { 8182 bp->pri2cos_valid = 0; 8183 return rc; 8184 } 8185 8186 rc = hwrm_req_init(bp, req_qc, HWRM_QUEUE_PRI2COS_QCFG); 8187 if (rc) 8188 return rc; 8189 8190 req_qc->flags = cpu_to_le32(QUEUE_PRI2COS_QCFG_REQ_FLAGS_IVLAN); 8191 8192 resp_qc = hwrm_req_hold(bp, req_qc); 8193 rc = hwrm_req_send(bp, req_qc); 8194 if (!rc) { 8195 u8 *pri2cos; 8196 int i, j; 8197 8198 pri2cos = &resp_qc->pri0_cos_queue_id; 8199 for (i = 0; i < 8; i++) { 8200 u8 queue_id = pri2cos[i]; 8201 u8 queue_idx; 8202 8203 /* Per port queue IDs start from 0, 10, 20, etc */ 8204 queue_idx = queue_id % 10; 8205 if (queue_idx > BNXT_MAX_QUEUE) { 8206 bp->pri2cos_valid = false; 8207 hwrm_req_drop(bp, req_qc); 8208 return rc; 8209 } 8210 for (j = 0; j < bp->max_q; j++) { 8211 if (bp->q_ids[j] == queue_id) 8212 bp->pri2cos_idx[i] = queue_idx; 8213 } 8214 } 8215 bp->pri2cos_valid = true; 8216 } 8217 hwrm_req_drop(bp, req_qc); 8218 8219 return rc; 8220 } 8221 8222 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp) 8223 { 8224 if (bp->vxlan_fw_dst_port_id != INVALID_HW_RING_ID) 8225 bnxt_hwrm_tunnel_dst_port_free( 8226 bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN); 8227 if (bp->nge_fw_dst_port_id != INVALID_HW_RING_ID) 8228 bnxt_hwrm_tunnel_dst_port_free( 8229 bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE); 8230 } 8231 8232 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa) 8233 { 8234 int rc, i; 8235 u32 tpa_flags = 0; 8236 8237 if (set_tpa) 8238 tpa_flags = bp->flags & BNXT_FLAG_TPA; 8239 else if (BNXT_NO_FW_ACCESS(bp)) 8240 return 0; 8241 for (i = 0; i < bp->nr_vnics; i++) { 8242 rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags); 8243 if (rc) { 8244 netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n", 8245 i, rc); 8246 return rc; 8247 } 8248 } 8249 return 0; 8250 } 8251 8252 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp) 8253 { 8254 int i; 8255 8256 for (i = 0; i < bp->nr_vnics; i++) 8257 bnxt_hwrm_vnic_set_rss(bp, i, false); 8258 } 8259 8260 static void bnxt_clear_vnic(struct bnxt *bp) 8261 { 8262 if (!bp->vnic_info) 8263 return; 8264 8265 bnxt_hwrm_clear_vnic_filter(bp); 8266 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) { 8267 /* clear all RSS setting before free vnic ctx */ 8268 bnxt_hwrm_clear_vnic_rss(bp); 8269 bnxt_hwrm_vnic_ctx_free(bp); 8270 } 8271 /* before free the vnic, undo the vnic tpa settings */ 8272 if (bp->flags & BNXT_FLAG_TPA) 8273 bnxt_set_tpa(bp, false); 8274 bnxt_hwrm_vnic_free(bp); 8275 if (bp->flags & BNXT_FLAG_CHIP_P5) 8276 bnxt_hwrm_vnic_ctx_free(bp); 8277 } 8278 8279 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path, 8280 bool irq_re_init) 8281 { 8282 bnxt_clear_vnic(bp); 8283 bnxt_hwrm_ring_free(bp, close_path); 8284 bnxt_hwrm_ring_grp_free(bp); 8285 if (irq_re_init) { 8286 bnxt_hwrm_stat_ctx_free(bp); 8287 bnxt_hwrm_free_tunnel_ports(bp); 8288 } 8289 } 8290 8291 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode) 8292 { 8293 struct hwrm_func_cfg_input *req; 8294 u8 evb_mode; 8295 int rc; 8296 8297 if (br_mode == BRIDGE_MODE_VEB) 8298 evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB; 8299 else if (br_mode == BRIDGE_MODE_VEPA) 8300 evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA; 8301 else 8302 return -EINVAL; 8303 8304 rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG); 8305 if (rc) 8306 return rc; 8307 8308 req->fid = cpu_to_le16(0xffff); 8309 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE); 8310 req->evb_mode = evb_mode; 8311 return hwrm_req_send(bp, req); 8312 } 8313 8314 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size) 8315 { 8316 struct hwrm_func_cfg_input *req; 8317 int rc; 8318 8319 if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803) 8320 return 0; 8321 8322 rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG); 8323 if (rc) 8324 return rc; 8325 8326 req->fid = cpu_to_le16(0xffff); 8327 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE); 8328 req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64; 8329 if (size == 128) 8330 req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128; 8331 8332 return hwrm_req_send(bp, req); 8333 } 8334 8335 static int __bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id) 8336 { 8337 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 8338 int rc; 8339 8340 if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) 8341 goto skip_rss_ctx; 8342 8343 /* allocate context for vnic */ 8344 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0); 8345 if (rc) { 8346 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n", 8347 vnic_id, rc); 8348 goto vnic_setup_err; 8349 } 8350 bp->rsscos_nr_ctxs++; 8351 8352 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 8353 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1); 8354 if (rc) { 8355 netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n", 8356 vnic_id, rc); 8357 goto vnic_setup_err; 8358 } 8359 bp->rsscos_nr_ctxs++; 8360 } 8361 8362 skip_rss_ctx: 8363 /* configure default vnic, ring grp */ 8364 rc = bnxt_hwrm_vnic_cfg(bp, vnic_id); 8365 if (rc) { 8366 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n", 8367 vnic_id, rc); 8368 goto vnic_setup_err; 8369 } 8370 8371 /* Enable RSS hashing on vnic */ 8372 rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true); 8373 if (rc) { 8374 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n", 8375 vnic_id, rc); 8376 goto vnic_setup_err; 8377 } 8378 8379 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 8380 rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id); 8381 if (rc) { 8382 netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n", 8383 vnic_id, rc); 8384 } 8385 } 8386 8387 vnic_setup_err: 8388 return rc; 8389 } 8390 8391 static int __bnxt_setup_vnic_p5(struct bnxt *bp, u16 vnic_id) 8392 { 8393 int rc, i, nr_ctxs; 8394 8395 nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings); 8396 for (i = 0; i < nr_ctxs; i++) { 8397 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, i); 8398 if (rc) { 8399 netdev_err(bp->dev, "hwrm vnic %d ctx %d alloc failure rc: %x\n", 8400 vnic_id, i, rc); 8401 break; 8402 } 8403 bp->rsscos_nr_ctxs++; 8404 } 8405 if (i < nr_ctxs) 8406 return -ENOMEM; 8407 8408 rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic_id, true); 8409 if (rc) { 8410 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n", 8411 vnic_id, rc); 8412 return rc; 8413 } 8414 rc = bnxt_hwrm_vnic_cfg(bp, vnic_id); 8415 if (rc) { 8416 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n", 8417 vnic_id, rc); 8418 return rc; 8419 } 8420 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 8421 rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id); 8422 if (rc) { 8423 netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n", 8424 vnic_id, rc); 8425 } 8426 } 8427 return rc; 8428 } 8429 8430 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id) 8431 { 8432 if (bp->flags & BNXT_FLAG_CHIP_P5) 8433 return __bnxt_setup_vnic_p5(bp, vnic_id); 8434 else 8435 return __bnxt_setup_vnic(bp, vnic_id); 8436 } 8437 8438 static int bnxt_alloc_rfs_vnics(struct bnxt *bp) 8439 { 8440 #ifdef CONFIG_RFS_ACCEL 8441 int i, rc = 0; 8442 8443 if (bp->flags & BNXT_FLAG_CHIP_P5) 8444 return 0; 8445 8446 for (i = 0; i < bp->rx_nr_rings; i++) { 8447 struct bnxt_vnic_info *vnic; 8448 u16 vnic_id = i + 1; 8449 u16 ring_id = i; 8450 8451 if (vnic_id >= bp->nr_vnics) 8452 break; 8453 8454 vnic = &bp->vnic_info[vnic_id]; 8455 vnic->flags |= BNXT_VNIC_RFS_FLAG; 8456 if (bp->flags & BNXT_FLAG_NEW_RSS_CAP) 8457 vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG; 8458 rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1); 8459 if (rc) { 8460 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n", 8461 vnic_id, rc); 8462 break; 8463 } 8464 rc = bnxt_setup_vnic(bp, vnic_id); 8465 if (rc) 8466 break; 8467 } 8468 return rc; 8469 #else 8470 return 0; 8471 #endif 8472 } 8473 8474 /* Allow PF, trusted VFs and VFs with default VLAN to be in promiscuous mode */ 8475 static bool bnxt_promisc_ok(struct bnxt *bp) 8476 { 8477 #ifdef CONFIG_BNXT_SRIOV 8478 if (BNXT_VF(bp) && !bp->vf.vlan && !bnxt_is_trusted_vf(bp, &bp->vf)) 8479 return false; 8480 #endif 8481 return true; 8482 } 8483 8484 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp) 8485 { 8486 unsigned int rc = 0; 8487 8488 rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1); 8489 if (rc) { 8490 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n", 8491 rc); 8492 return rc; 8493 } 8494 8495 rc = bnxt_hwrm_vnic_cfg(bp, 1); 8496 if (rc) { 8497 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n", 8498 rc); 8499 return rc; 8500 } 8501 return rc; 8502 } 8503 8504 static int bnxt_cfg_rx_mode(struct bnxt *); 8505 static bool bnxt_mc_list_updated(struct bnxt *, u32 *); 8506 8507 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init) 8508 { 8509 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 8510 int rc = 0; 8511 unsigned int rx_nr_rings = bp->rx_nr_rings; 8512 8513 if (irq_re_init) { 8514 rc = bnxt_hwrm_stat_ctx_alloc(bp); 8515 if (rc) { 8516 netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n", 8517 rc); 8518 goto err_out; 8519 } 8520 } 8521 8522 rc = bnxt_hwrm_ring_alloc(bp); 8523 if (rc) { 8524 netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc); 8525 goto err_out; 8526 } 8527 8528 rc = bnxt_hwrm_ring_grp_alloc(bp); 8529 if (rc) { 8530 netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc); 8531 goto err_out; 8532 } 8533 8534 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 8535 rx_nr_rings--; 8536 8537 /* default vnic 0 */ 8538 rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings); 8539 if (rc) { 8540 netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc); 8541 goto err_out; 8542 } 8543 8544 rc = bnxt_setup_vnic(bp, 0); 8545 if (rc) 8546 goto err_out; 8547 8548 if (bp->flags & BNXT_FLAG_RFS) { 8549 rc = bnxt_alloc_rfs_vnics(bp); 8550 if (rc) 8551 goto err_out; 8552 } 8553 8554 if (bp->flags & BNXT_FLAG_TPA) { 8555 rc = bnxt_set_tpa(bp, true); 8556 if (rc) 8557 goto err_out; 8558 } 8559 8560 if (BNXT_VF(bp)) 8561 bnxt_update_vf_mac(bp); 8562 8563 /* Filter for default vnic 0 */ 8564 rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr); 8565 if (rc) { 8566 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc); 8567 goto err_out; 8568 } 8569 vnic->uc_filter_count = 1; 8570 8571 vnic->rx_mask = 0; 8572 if (bp->dev->flags & IFF_BROADCAST) 8573 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST; 8574 8575 if (bp->dev->flags & IFF_PROMISC) 8576 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 8577 8578 if (bp->dev->flags & IFF_ALLMULTI) { 8579 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 8580 vnic->mc_list_count = 0; 8581 } else { 8582 u32 mask = 0; 8583 8584 bnxt_mc_list_updated(bp, &mask); 8585 vnic->rx_mask |= mask; 8586 } 8587 8588 rc = bnxt_cfg_rx_mode(bp); 8589 if (rc) 8590 goto err_out; 8591 8592 rc = bnxt_hwrm_set_coal(bp); 8593 if (rc) 8594 netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n", 8595 rc); 8596 8597 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 8598 rc = bnxt_setup_nitroa0_vnic(bp); 8599 if (rc) 8600 netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n", 8601 rc); 8602 } 8603 8604 if (BNXT_VF(bp)) { 8605 bnxt_hwrm_func_qcfg(bp); 8606 netdev_update_features(bp->dev); 8607 } 8608 8609 return 0; 8610 8611 err_out: 8612 bnxt_hwrm_resource_free(bp, 0, true); 8613 8614 return rc; 8615 } 8616 8617 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init) 8618 { 8619 bnxt_hwrm_resource_free(bp, 1, irq_re_init); 8620 return 0; 8621 } 8622 8623 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init) 8624 { 8625 bnxt_init_cp_rings(bp); 8626 bnxt_init_rx_rings(bp); 8627 bnxt_init_tx_rings(bp); 8628 bnxt_init_ring_grps(bp, irq_re_init); 8629 bnxt_init_vnics(bp); 8630 8631 return bnxt_init_chip(bp, irq_re_init); 8632 } 8633 8634 static int bnxt_set_real_num_queues(struct bnxt *bp) 8635 { 8636 int rc; 8637 struct net_device *dev = bp->dev; 8638 8639 rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings - 8640 bp->tx_nr_rings_xdp); 8641 if (rc) 8642 return rc; 8643 8644 rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings); 8645 if (rc) 8646 return rc; 8647 8648 #ifdef CONFIG_RFS_ACCEL 8649 if (bp->flags & BNXT_FLAG_RFS) 8650 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings); 8651 #endif 8652 8653 return rc; 8654 } 8655 8656 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 8657 bool shared) 8658 { 8659 int _rx = *rx, _tx = *tx; 8660 8661 if (shared) { 8662 *rx = min_t(int, _rx, max); 8663 *tx = min_t(int, _tx, max); 8664 } else { 8665 if (max < 2) 8666 return -ENOMEM; 8667 8668 while (_rx + _tx > max) { 8669 if (_rx > _tx && _rx > 1) 8670 _rx--; 8671 else if (_tx > 1) 8672 _tx--; 8673 } 8674 *rx = _rx; 8675 *tx = _tx; 8676 } 8677 return 0; 8678 } 8679 8680 static void bnxt_setup_msix(struct bnxt *bp) 8681 { 8682 const int len = sizeof(bp->irq_tbl[0].name); 8683 struct net_device *dev = bp->dev; 8684 int tcs, i; 8685 8686 tcs = netdev_get_num_tc(dev); 8687 if (tcs) { 8688 int i, off, count; 8689 8690 for (i = 0; i < tcs; i++) { 8691 count = bp->tx_nr_rings_per_tc; 8692 off = i * count; 8693 netdev_set_tc_queue(dev, i, count, off); 8694 } 8695 } 8696 8697 for (i = 0; i < bp->cp_nr_rings; i++) { 8698 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 8699 char *attr; 8700 8701 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 8702 attr = "TxRx"; 8703 else if (i < bp->rx_nr_rings) 8704 attr = "rx"; 8705 else 8706 attr = "tx"; 8707 8708 snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name, 8709 attr, i); 8710 bp->irq_tbl[map_idx].handler = bnxt_msix; 8711 } 8712 } 8713 8714 static void bnxt_setup_inta(struct bnxt *bp) 8715 { 8716 const int len = sizeof(bp->irq_tbl[0].name); 8717 8718 if (netdev_get_num_tc(bp->dev)) 8719 netdev_reset_tc(bp->dev); 8720 8721 snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx", 8722 0); 8723 bp->irq_tbl[0].handler = bnxt_inta; 8724 } 8725 8726 static int bnxt_init_int_mode(struct bnxt *bp); 8727 8728 static int bnxt_setup_int_mode(struct bnxt *bp) 8729 { 8730 int rc; 8731 8732 if (!bp->irq_tbl) { 8733 rc = bnxt_init_int_mode(bp); 8734 if (rc || !bp->irq_tbl) 8735 return rc ?: -ENODEV; 8736 } 8737 8738 if (bp->flags & BNXT_FLAG_USING_MSIX) 8739 bnxt_setup_msix(bp); 8740 else 8741 bnxt_setup_inta(bp); 8742 8743 rc = bnxt_set_real_num_queues(bp); 8744 return rc; 8745 } 8746 8747 #ifdef CONFIG_RFS_ACCEL 8748 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp) 8749 { 8750 return bp->hw_resc.max_rsscos_ctxs; 8751 } 8752 8753 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp) 8754 { 8755 return bp->hw_resc.max_vnics; 8756 } 8757 #endif 8758 8759 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp) 8760 { 8761 return bp->hw_resc.max_stat_ctxs; 8762 } 8763 8764 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp) 8765 { 8766 return bp->hw_resc.max_cp_rings; 8767 } 8768 8769 static unsigned int bnxt_get_max_func_cp_rings_for_en(struct bnxt *bp) 8770 { 8771 unsigned int cp = bp->hw_resc.max_cp_rings; 8772 8773 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 8774 cp -= bnxt_get_ulp_msix_num(bp); 8775 8776 return cp; 8777 } 8778 8779 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp) 8780 { 8781 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 8782 8783 if (bp->flags & BNXT_FLAG_CHIP_P5) 8784 return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_nqs); 8785 8786 return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings); 8787 } 8788 8789 static void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs) 8790 { 8791 bp->hw_resc.max_irqs = max_irqs; 8792 } 8793 8794 unsigned int bnxt_get_avail_cp_rings_for_en(struct bnxt *bp) 8795 { 8796 unsigned int cp; 8797 8798 cp = bnxt_get_max_func_cp_rings_for_en(bp); 8799 if (bp->flags & BNXT_FLAG_CHIP_P5) 8800 return cp - bp->rx_nr_rings - bp->tx_nr_rings; 8801 else 8802 return cp - bp->cp_nr_rings; 8803 } 8804 8805 unsigned int bnxt_get_avail_stat_ctxs_for_en(struct bnxt *bp) 8806 { 8807 return bnxt_get_max_func_stat_ctxs(bp) - bnxt_get_func_stat_ctxs(bp); 8808 } 8809 8810 int bnxt_get_avail_msix(struct bnxt *bp, int num) 8811 { 8812 int max_cp = bnxt_get_max_func_cp_rings(bp); 8813 int max_irq = bnxt_get_max_func_irqs(bp); 8814 int total_req = bp->cp_nr_rings + num; 8815 int max_idx, avail_msix; 8816 8817 max_idx = bp->total_irqs; 8818 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 8819 max_idx = min_t(int, bp->total_irqs, max_cp); 8820 avail_msix = max_idx - bp->cp_nr_rings; 8821 if (!BNXT_NEW_RM(bp) || avail_msix >= num) 8822 return avail_msix; 8823 8824 if (max_irq < total_req) { 8825 num = max_irq - bp->cp_nr_rings; 8826 if (num <= 0) 8827 return 0; 8828 } 8829 return num; 8830 } 8831 8832 static int bnxt_get_num_msix(struct bnxt *bp) 8833 { 8834 if (!BNXT_NEW_RM(bp)) 8835 return bnxt_get_max_func_irqs(bp); 8836 8837 return bnxt_nq_rings_in_use(bp); 8838 } 8839 8840 static int bnxt_init_msix(struct bnxt *bp) 8841 { 8842 int i, total_vecs, max, rc = 0, min = 1, ulp_msix; 8843 struct msix_entry *msix_ent; 8844 8845 total_vecs = bnxt_get_num_msix(bp); 8846 max = bnxt_get_max_func_irqs(bp); 8847 if (total_vecs > max) 8848 total_vecs = max; 8849 8850 if (!total_vecs) 8851 return 0; 8852 8853 msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL); 8854 if (!msix_ent) 8855 return -ENOMEM; 8856 8857 for (i = 0; i < total_vecs; i++) { 8858 msix_ent[i].entry = i; 8859 msix_ent[i].vector = 0; 8860 } 8861 8862 if (!(bp->flags & BNXT_FLAG_SHARED_RINGS)) 8863 min = 2; 8864 8865 total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs); 8866 ulp_msix = bnxt_get_ulp_msix_num(bp); 8867 if (total_vecs < 0 || total_vecs < ulp_msix) { 8868 rc = -ENODEV; 8869 goto msix_setup_exit; 8870 } 8871 8872 bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL); 8873 if (bp->irq_tbl) { 8874 for (i = 0; i < total_vecs; i++) 8875 bp->irq_tbl[i].vector = msix_ent[i].vector; 8876 8877 bp->total_irqs = total_vecs; 8878 /* Trim rings based upon num of vectors allocated */ 8879 rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings, 8880 total_vecs - ulp_msix, min == 1); 8881 if (rc) 8882 goto msix_setup_exit; 8883 8884 bp->cp_nr_rings = (min == 1) ? 8885 max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) : 8886 bp->tx_nr_rings + bp->rx_nr_rings; 8887 8888 } else { 8889 rc = -ENOMEM; 8890 goto msix_setup_exit; 8891 } 8892 bp->flags |= BNXT_FLAG_USING_MSIX; 8893 kfree(msix_ent); 8894 return 0; 8895 8896 msix_setup_exit: 8897 netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc); 8898 kfree(bp->irq_tbl); 8899 bp->irq_tbl = NULL; 8900 pci_disable_msix(bp->pdev); 8901 kfree(msix_ent); 8902 return rc; 8903 } 8904 8905 static int bnxt_init_inta(struct bnxt *bp) 8906 { 8907 bp->irq_tbl = kzalloc(sizeof(struct bnxt_irq), GFP_KERNEL); 8908 if (!bp->irq_tbl) 8909 return -ENOMEM; 8910 8911 bp->total_irqs = 1; 8912 bp->rx_nr_rings = 1; 8913 bp->tx_nr_rings = 1; 8914 bp->cp_nr_rings = 1; 8915 bp->flags |= BNXT_FLAG_SHARED_RINGS; 8916 bp->irq_tbl[0].vector = bp->pdev->irq; 8917 return 0; 8918 } 8919 8920 static int bnxt_init_int_mode(struct bnxt *bp) 8921 { 8922 int rc = -ENODEV; 8923 8924 if (bp->flags & BNXT_FLAG_MSIX_CAP) 8925 rc = bnxt_init_msix(bp); 8926 8927 if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) { 8928 /* fallback to INTA */ 8929 rc = bnxt_init_inta(bp); 8930 } 8931 return rc; 8932 } 8933 8934 static void bnxt_clear_int_mode(struct bnxt *bp) 8935 { 8936 if (bp->flags & BNXT_FLAG_USING_MSIX) 8937 pci_disable_msix(bp->pdev); 8938 8939 kfree(bp->irq_tbl); 8940 bp->irq_tbl = NULL; 8941 bp->flags &= ~BNXT_FLAG_USING_MSIX; 8942 } 8943 8944 int bnxt_reserve_rings(struct bnxt *bp, bool irq_re_init) 8945 { 8946 int tcs = netdev_get_num_tc(bp->dev); 8947 bool irq_cleared = false; 8948 int rc; 8949 8950 if (!bnxt_need_reserve_rings(bp)) 8951 return 0; 8952 8953 if (irq_re_init && BNXT_NEW_RM(bp) && 8954 bnxt_get_num_msix(bp) != bp->total_irqs) { 8955 bnxt_ulp_irq_stop(bp); 8956 bnxt_clear_int_mode(bp); 8957 irq_cleared = true; 8958 } 8959 rc = __bnxt_reserve_rings(bp); 8960 if (irq_cleared) { 8961 if (!rc) 8962 rc = bnxt_init_int_mode(bp); 8963 bnxt_ulp_irq_restart(bp, rc); 8964 } 8965 if (rc) { 8966 netdev_err(bp->dev, "ring reservation/IRQ init failure rc: %d\n", rc); 8967 return rc; 8968 } 8969 if (tcs && (bp->tx_nr_rings_per_tc * tcs != bp->tx_nr_rings)) { 8970 netdev_err(bp->dev, "tx ring reservation failure\n"); 8971 netdev_reset_tc(bp->dev); 8972 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 8973 return -ENOMEM; 8974 } 8975 return 0; 8976 } 8977 8978 static void bnxt_free_irq(struct bnxt *bp) 8979 { 8980 struct bnxt_irq *irq; 8981 int i; 8982 8983 #ifdef CONFIG_RFS_ACCEL 8984 free_irq_cpu_rmap(bp->dev->rx_cpu_rmap); 8985 bp->dev->rx_cpu_rmap = NULL; 8986 #endif 8987 if (!bp->irq_tbl || !bp->bnapi) 8988 return; 8989 8990 for (i = 0; i < bp->cp_nr_rings; i++) { 8991 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 8992 8993 irq = &bp->irq_tbl[map_idx]; 8994 if (irq->requested) { 8995 if (irq->have_cpumask) { 8996 irq_set_affinity_hint(irq->vector, NULL); 8997 free_cpumask_var(irq->cpu_mask); 8998 irq->have_cpumask = 0; 8999 } 9000 free_irq(irq->vector, bp->bnapi[i]); 9001 } 9002 9003 irq->requested = 0; 9004 } 9005 } 9006 9007 static int bnxt_request_irq(struct bnxt *bp) 9008 { 9009 int i, j, rc = 0; 9010 unsigned long flags = 0; 9011 #ifdef CONFIG_RFS_ACCEL 9012 struct cpu_rmap *rmap; 9013 #endif 9014 9015 rc = bnxt_setup_int_mode(bp); 9016 if (rc) { 9017 netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n", 9018 rc); 9019 return rc; 9020 } 9021 #ifdef CONFIG_RFS_ACCEL 9022 rmap = bp->dev->rx_cpu_rmap; 9023 #endif 9024 if (!(bp->flags & BNXT_FLAG_USING_MSIX)) 9025 flags = IRQF_SHARED; 9026 9027 for (i = 0, j = 0; i < bp->cp_nr_rings; i++) { 9028 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 9029 struct bnxt_irq *irq = &bp->irq_tbl[map_idx]; 9030 9031 #ifdef CONFIG_RFS_ACCEL 9032 if (rmap && bp->bnapi[i]->rx_ring) { 9033 rc = irq_cpu_rmap_add(rmap, irq->vector); 9034 if (rc) 9035 netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n", 9036 j); 9037 j++; 9038 } 9039 #endif 9040 rc = request_irq(irq->vector, irq->handler, flags, irq->name, 9041 bp->bnapi[i]); 9042 if (rc) 9043 break; 9044 9045 irq->requested = 1; 9046 9047 if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) { 9048 int numa_node = dev_to_node(&bp->pdev->dev); 9049 9050 irq->have_cpumask = 1; 9051 cpumask_set_cpu(cpumask_local_spread(i, numa_node), 9052 irq->cpu_mask); 9053 rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask); 9054 if (rc) { 9055 netdev_warn(bp->dev, 9056 "Set affinity failed, IRQ = %d\n", 9057 irq->vector); 9058 break; 9059 } 9060 } 9061 } 9062 return rc; 9063 } 9064 9065 static void bnxt_del_napi(struct bnxt *bp) 9066 { 9067 int i; 9068 9069 if (!bp->bnapi) 9070 return; 9071 9072 for (i = 0; i < bp->cp_nr_rings; i++) { 9073 struct bnxt_napi *bnapi = bp->bnapi[i]; 9074 9075 __netif_napi_del(&bnapi->napi); 9076 } 9077 /* We called __netif_napi_del(), we need 9078 * to respect an RCU grace period before freeing napi structures. 9079 */ 9080 synchronize_net(); 9081 } 9082 9083 static void bnxt_init_napi(struct bnxt *bp) 9084 { 9085 int i; 9086 unsigned int cp_nr_rings = bp->cp_nr_rings; 9087 struct bnxt_napi *bnapi; 9088 9089 if (bp->flags & BNXT_FLAG_USING_MSIX) { 9090 int (*poll_fn)(struct napi_struct *, int) = bnxt_poll; 9091 9092 if (bp->flags & BNXT_FLAG_CHIP_P5) 9093 poll_fn = bnxt_poll_p5; 9094 else if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 9095 cp_nr_rings--; 9096 for (i = 0; i < cp_nr_rings; i++) { 9097 bnapi = bp->bnapi[i]; 9098 netif_napi_add(bp->dev, &bnapi->napi, poll_fn, 64); 9099 } 9100 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 9101 bnapi = bp->bnapi[cp_nr_rings]; 9102 netif_napi_add(bp->dev, &bnapi->napi, 9103 bnxt_poll_nitroa0, 64); 9104 } 9105 } else { 9106 bnapi = bp->bnapi[0]; 9107 netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64); 9108 } 9109 } 9110 9111 static void bnxt_disable_napi(struct bnxt *bp) 9112 { 9113 int i; 9114 9115 if (!bp->bnapi || 9116 test_and_set_bit(BNXT_STATE_NAPI_DISABLED, &bp->state)) 9117 return; 9118 9119 for (i = 0; i < bp->cp_nr_rings; i++) { 9120 struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring; 9121 9122 napi_disable(&bp->bnapi[i]->napi); 9123 if (bp->bnapi[i]->rx_ring) 9124 cancel_work_sync(&cpr->dim.work); 9125 } 9126 } 9127 9128 static void bnxt_enable_napi(struct bnxt *bp) 9129 { 9130 int i; 9131 9132 clear_bit(BNXT_STATE_NAPI_DISABLED, &bp->state); 9133 for (i = 0; i < bp->cp_nr_rings; i++) { 9134 struct bnxt_napi *bnapi = bp->bnapi[i]; 9135 struct bnxt_cp_ring_info *cpr; 9136 9137 cpr = &bnapi->cp_ring; 9138 if (bnapi->in_reset) 9139 cpr->sw_stats.rx.rx_resets++; 9140 bnapi->in_reset = false; 9141 9142 if (bnapi->rx_ring) { 9143 INIT_WORK(&cpr->dim.work, bnxt_dim_work); 9144 cpr->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 9145 } 9146 napi_enable(&bnapi->napi); 9147 } 9148 } 9149 9150 void bnxt_tx_disable(struct bnxt *bp) 9151 { 9152 int i; 9153 struct bnxt_tx_ring_info *txr; 9154 9155 if (bp->tx_ring) { 9156 for (i = 0; i < bp->tx_nr_rings; i++) { 9157 txr = &bp->tx_ring[i]; 9158 WRITE_ONCE(txr->dev_state, BNXT_DEV_STATE_CLOSING); 9159 } 9160 } 9161 /* Make sure napi polls see @dev_state change */ 9162 synchronize_net(); 9163 /* Drop carrier first to prevent TX timeout */ 9164 netif_carrier_off(bp->dev); 9165 /* Stop all TX queues */ 9166 netif_tx_disable(bp->dev); 9167 } 9168 9169 void bnxt_tx_enable(struct bnxt *bp) 9170 { 9171 int i; 9172 struct bnxt_tx_ring_info *txr; 9173 9174 for (i = 0; i < bp->tx_nr_rings; i++) { 9175 txr = &bp->tx_ring[i]; 9176 WRITE_ONCE(txr->dev_state, 0); 9177 } 9178 /* Make sure napi polls see @dev_state change */ 9179 synchronize_net(); 9180 netif_tx_wake_all_queues(bp->dev); 9181 if (bp->link_info.link_up) 9182 netif_carrier_on(bp->dev); 9183 } 9184 9185 static char *bnxt_report_fec(struct bnxt_link_info *link_info) 9186 { 9187 u8 active_fec = link_info->active_fec_sig_mode & 9188 PORT_PHY_QCFG_RESP_ACTIVE_FEC_MASK; 9189 9190 switch (active_fec) { 9191 default: 9192 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_NONE_ACTIVE: 9193 return "None"; 9194 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE74_ACTIVE: 9195 return "Clause 74 BaseR"; 9196 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE91_ACTIVE: 9197 return "Clause 91 RS(528,514)"; 9198 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_1XN_ACTIVE: 9199 return "Clause 91 RS544_1XN"; 9200 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_IEEE_ACTIVE: 9201 return "Clause 91 RS(544,514)"; 9202 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_1XN_ACTIVE: 9203 return "Clause 91 RS272_1XN"; 9204 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_IEEE_ACTIVE: 9205 return "Clause 91 RS(272,257)"; 9206 } 9207 } 9208 9209 static void bnxt_report_link(struct bnxt *bp) 9210 { 9211 if (bp->link_info.link_up) { 9212 const char *signal = ""; 9213 const char *flow_ctrl; 9214 const char *duplex; 9215 u32 speed; 9216 u16 fec; 9217 9218 netif_carrier_on(bp->dev); 9219 speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed); 9220 if (speed == SPEED_UNKNOWN) { 9221 netdev_info(bp->dev, "NIC Link is Up, speed unknown\n"); 9222 return; 9223 } 9224 if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL) 9225 duplex = "full"; 9226 else 9227 duplex = "half"; 9228 if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH) 9229 flow_ctrl = "ON - receive & transmit"; 9230 else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX) 9231 flow_ctrl = "ON - transmit"; 9232 else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX) 9233 flow_ctrl = "ON - receive"; 9234 else 9235 flow_ctrl = "none"; 9236 if (bp->link_info.phy_qcfg_resp.option_flags & 9237 PORT_PHY_QCFG_RESP_OPTION_FLAGS_SIGNAL_MODE_KNOWN) { 9238 u8 sig_mode = bp->link_info.active_fec_sig_mode & 9239 PORT_PHY_QCFG_RESP_SIGNAL_MODE_MASK; 9240 switch (sig_mode) { 9241 case PORT_PHY_QCFG_RESP_SIGNAL_MODE_NRZ: 9242 signal = "(NRZ) "; 9243 break; 9244 case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4: 9245 signal = "(PAM4) "; 9246 break; 9247 default: 9248 break; 9249 } 9250 } 9251 netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s%s duplex, Flow control: %s\n", 9252 speed, signal, duplex, flow_ctrl); 9253 if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) 9254 netdev_info(bp->dev, "EEE is %s\n", 9255 bp->eee.eee_active ? "active" : 9256 "not active"); 9257 fec = bp->link_info.fec_cfg; 9258 if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED)) 9259 netdev_info(bp->dev, "FEC autoneg %s encoding: %s\n", 9260 (fec & BNXT_FEC_AUTONEG) ? "on" : "off", 9261 bnxt_report_fec(&bp->link_info)); 9262 } else { 9263 netif_carrier_off(bp->dev); 9264 netdev_err(bp->dev, "NIC Link is Down\n"); 9265 } 9266 } 9267 9268 static bool bnxt_phy_qcaps_no_speed(struct hwrm_port_phy_qcaps_output *resp) 9269 { 9270 if (!resp->supported_speeds_auto_mode && 9271 !resp->supported_speeds_force_mode && 9272 !resp->supported_pam4_speeds_auto_mode && 9273 !resp->supported_pam4_speeds_force_mode) 9274 return true; 9275 return false; 9276 } 9277 9278 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp) 9279 { 9280 struct bnxt_link_info *link_info = &bp->link_info; 9281 struct hwrm_port_phy_qcaps_output *resp; 9282 struct hwrm_port_phy_qcaps_input *req; 9283 int rc = 0; 9284 9285 if (bp->hwrm_spec_code < 0x10201) 9286 return 0; 9287 9288 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCAPS); 9289 if (rc) 9290 return rc; 9291 9292 resp = hwrm_req_hold(bp, req); 9293 rc = hwrm_req_send(bp, req); 9294 if (rc) 9295 goto hwrm_phy_qcaps_exit; 9296 9297 bp->phy_flags = resp->flags; 9298 if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) { 9299 struct ethtool_eee *eee = &bp->eee; 9300 u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode); 9301 9302 eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0); 9303 bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) & 9304 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK; 9305 bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) & 9306 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK; 9307 } 9308 9309 if (bp->hwrm_spec_code >= 0x10a01) { 9310 if (bnxt_phy_qcaps_no_speed(resp)) { 9311 link_info->phy_state = BNXT_PHY_STATE_DISABLED; 9312 netdev_warn(bp->dev, "Ethernet link disabled\n"); 9313 } else if (link_info->phy_state == BNXT_PHY_STATE_DISABLED) { 9314 link_info->phy_state = BNXT_PHY_STATE_ENABLED; 9315 netdev_info(bp->dev, "Ethernet link enabled\n"); 9316 /* Phy re-enabled, reprobe the speeds */ 9317 link_info->support_auto_speeds = 0; 9318 link_info->support_pam4_auto_speeds = 0; 9319 } 9320 } 9321 if (resp->supported_speeds_auto_mode) 9322 link_info->support_auto_speeds = 9323 le16_to_cpu(resp->supported_speeds_auto_mode); 9324 if (resp->supported_pam4_speeds_auto_mode) 9325 link_info->support_pam4_auto_speeds = 9326 le16_to_cpu(resp->supported_pam4_speeds_auto_mode); 9327 9328 bp->port_count = resp->port_cnt; 9329 9330 hwrm_phy_qcaps_exit: 9331 hwrm_req_drop(bp, req); 9332 return rc; 9333 } 9334 9335 static bool bnxt_support_dropped(u16 advertising, u16 supported) 9336 { 9337 u16 diff = advertising ^ supported; 9338 9339 return ((supported | diff) != supported); 9340 } 9341 9342 int bnxt_update_link(struct bnxt *bp, bool chng_link_state) 9343 { 9344 struct bnxt_link_info *link_info = &bp->link_info; 9345 struct hwrm_port_phy_qcfg_output *resp; 9346 struct hwrm_port_phy_qcfg_input *req; 9347 u8 link_up = link_info->link_up; 9348 bool support_changed = false; 9349 int rc; 9350 9351 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCFG); 9352 if (rc) 9353 return rc; 9354 9355 resp = hwrm_req_hold(bp, req); 9356 rc = hwrm_req_send(bp, req); 9357 if (rc) { 9358 hwrm_req_drop(bp, req); 9359 return rc; 9360 } 9361 9362 memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp)); 9363 link_info->phy_link_status = resp->link; 9364 link_info->duplex = resp->duplex_cfg; 9365 if (bp->hwrm_spec_code >= 0x10800) 9366 link_info->duplex = resp->duplex_state; 9367 link_info->pause = resp->pause; 9368 link_info->auto_mode = resp->auto_mode; 9369 link_info->auto_pause_setting = resp->auto_pause; 9370 link_info->lp_pause = resp->link_partner_adv_pause; 9371 link_info->force_pause_setting = resp->force_pause; 9372 link_info->duplex_setting = resp->duplex_cfg; 9373 if (link_info->phy_link_status == BNXT_LINK_LINK) 9374 link_info->link_speed = le16_to_cpu(resp->link_speed); 9375 else 9376 link_info->link_speed = 0; 9377 link_info->force_link_speed = le16_to_cpu(resp->force_link_speed); 9378 link_info->force_pam4_link_speed = 9379 le16_to_cpu(resp->force_pam4_link_speed); 9380 link_info->support_speeds = le16_to_cpu(resp->support_speeds); 9381 link_info->support_pam4_speeds = le16_to_cpu(resp->support_pam4_speeds); 9382 link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask); 9383 link_info->auto_pam4_link_speeds = 9384 le16_to_cpu(resp->auto_pam4_link_speed_mask); 9385 link_info->lp_auto_link_speeds = 9386 le16_to_cpu(resp->link_partner_adv_speeds); 9387 link_info->lp_auto_pam4_link_speeds = 9388 resp->link_partner_pam4_adv_speeds; 9389 link_info->preemphasis = le32_to_cpu(resp->preemphasis); 9390 link_info->phy_ver[0] = resp->phy_maj; 9391 link_info->phy_ver[1] = resp->phy_min; 9392 link_info->phy_ver[2] = resp->phy_bld; 9393 link_info->media_type = resp->media_type; 9394 link_info->phy_type = resp->phy_type; 9395 link_info->transceiver = resp->xcvr_pkg_type; 9396 link_info->phy_addr = resp->eee_config_phy_addr & 9397 PORT_PHY_QCFG_RESP_PHY_ADDR_MASK; 9398 link_info->module_status = resp->module_status; 9399 9400 if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) { 9401 struct ethtool_eee *eee = &bp->eee; 9402 u16 fw_speeds; 9403 9404 eee->eee_active = 0; 9405 if (resp->eee_config_phy_addr & 9406 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) { 9407 eee->eee_active = 1; 9408 fw_speeds = le16_to_cpu( 9409 resp->link_partner_adv_eee_link_speed_mask); 9410 eee->lp_advertised = 9411 _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0); 9412 } 9413 9414 /* Pull initial EEE config */ 9415 if (!chng_link_state) { 9416 if (resp->eee_config_phy_addr & 9417 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED) 9418 eee->eee_enabled = 1; 9419 9420 fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask); 9421 eee->advertised = 9422 _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0); 9423 9424 if (resp->eee_config_phy_addr & 9425 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) { 9426 __le32 tmr; 9427 9428 eee->tx_lpi_enabled = 1; 9429 tmr = resp->xcvr_identifier_type_tx_lpi_timer; 9430 eee->tx_lpi_timer = le32_to_cpu(tmr) & 9431 PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK; 9432 } 9433 } 9434 } 9435 9436 link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED; 9437 if (bp->hwrm_spec_code >= 0x10504) { 9438 link_info->fec_cfg = le16_to_cpu(resp->fec_cfg); 9439 link_info->active_fec_sig_mode = resp->active_fec_signal_mode; 9440 } 9441 /* TODO: need to add more logic to report VF link */ 9442 if (chng_link_state) { 9443 if (link_info->phy_link_status == BNXT_LINK_LINK) 9444 link_info->link_up = 1; 9445 else 9446 link_info->link_up = 0; 9447 if (link_up != link_info->link_up) 9448 bnxt_report_link(bp); 9449 } else { 9450 /* alwasy link down if not require to update link state */ 9451 link_info->link_up = 0; 9452 } 9453 hwrm_req_drop(bp, req); 9454 9455 if (!BNXT_PHY_CFG_ABLE(bp)) 9456 return 0; 9457 9458 /* Check if any advertised speeds are no longer supported. The caller 9459 * holds the link_lock mutex, so we can modify link_info settings. 9460 */ 9461 if (bnxt_support_dropped(link_info->advertising, 9462 link_info->support_auto_speeds)) { 9463 link_info->advertising = link_info->support_auto_speeds; 9464 support_changed = true; 9465 } 9466 if (bnxt_support_dropped(link_info->advertising_pam4, 9467 link_info->support_pam4_auto_speeds)) { 9468 link_info->advertising_pam4 = link_info->support_pam4_auto_speeds; 9469 support_changed = true; 9470 } 9471 if (support_changed && (link_info->autoneg & BNXT_AUTONEG_SPEED)) 9472 bnxt_hwrm_set_link_setting(bp, true, false); 9473 return 0; 9474 } 9475 9476 static void bnxt_get_port_module_status(struct bnxt *bp) 9477 { 9478 struct bnxt_link_info *link_info = &bp->link_info; 9479 struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp; 9480 u8 module_status; 9481 9482 if (bnxt_update_link(bp, true)) 9483 return; 9484 9485 module_status = link_info->module_status; 9486 switch (module_status) { 9487 case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX: 9488 case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN: 9489 case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG: 9490 netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n", 9491 bp->pf.port_id); 9492 if (bp->hwrm_spec_code >= 0x10201) { 9493 netdev_warn(bp->dev, "Module part number %s\n", 9494 resp->phy_vendor_partnumber); 9495 } 9496 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX) 9497 netdev_warn(bp->dev, "TX is disabled\n"); 9498 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN) 9499 netdev_warn(bp->dev, "SFP+ module is shutdown\n"); 9500 } 9501 } 9502 9503 static void 9504 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req) 9505 { 9506 if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) { 9507 if (bp->hwrm_spec_code >= 0x10201) 9508 req->auto_pause = 9509 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE; 9510 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX) 9511 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX; 9512 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX) 9513 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX; 9514 req->enables |= 9515 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE); 9516 } else { 9517 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX) 9518 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX; 9519 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX) 9520 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX; 9521 req->enables |= 9522 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE); 9523 if (bp->hwrm_spec_code >= 0x10201) { 9524 req->auto_pause = req->force_pause; 9525 req->enables |= cpu_to_le32( 9526 PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE); 9527 } 9528 } 9529 } 9530 9531 static void bnxt_hwrm_set_link_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req) 9532 { 9533 if (bp->link_info.autoneg & BNXT_AUTONEG_SPEED) { 9534 req->auto_mode |= PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK; 9535 if (bp->link_info.advertising) { 9536 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK); 9537 req->auto_link_speed_mask = cpu_to_le16(bp->link_info.advertising); 9538 } 9539 if (bp->link_info.advertising_pam4) { 9540 req->enables |= 9541 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAM4_LINK_SPEED_MASK); 9542 req->auto_link_pam4_speed_mask = 9543 cpu_to_le16(bp->link_info.advertising_pam4); 9544 } 9545 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE); 9546 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG); 9547 } else { 9548 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE); 9549 if (bp->link_info.req_signal_mode == BNXT_SIG_MODE_PAM4) { 9550 req->force_pam4_link_speed = cpu_to_le16(bp->link_info.req_link_speed); 9551 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAM4_LINK_SPEED); 9552 } else { 9553 req->force_link_speed = cpu_to_le16(bp->link_info.req_link_speed); 9554 } 9555 } 9556 9557 /* tell chimp that the setting takes effect immediately */ 9558 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY); 9559 } 9560 9561 int bnxt_hwrm_set_pause(struct bnxt *bp) 9562 { 9563 struct hwrm_port_phy_cfg_input *req; 9564 int rc; 9565 9566 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG); 9567 if (rc) 9568 return rc; 9569 9570 bnxt_hwrm_set_pause_common(bp, req); 9571 9572 if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) || 9573 bp->link_info.force_link_chng) 9574 bnxt_hwrm_set_link_common(bp, req); 9575 9576 rc = hwrm_req_send(bp, req); 9577 if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) { 9578 /* since changing of pause setting doesn't trigger any link 9579 * change event, the driver needs to update the current pause 9580 * result upon successfully return of the phy_cfg command 9581 */ 9582 bp->link_info.pause = 9583 bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl; 9584 bp->link_info.auto_pause_setting = 0; 9585 if (!bp->link_info.force_link_chng) 9586 bnxt_report_link(bp); 9587 } 9588 bp->link_info.force_link_chng = false; 9589 return rc; 9590 } 9591 9592 static void bnxt_hwrm_set_eee(struct bnxt *bp, 9593 struct hwrm_port_phy_cfg_input *req) 9594 { 9595 struct ethtool_eee *eee = &bp->eee; 9596 9597 if (eee->eee_enabled) { 9598 u16 eee_speeds; 9599 u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE; 9600 9601 if (eee->tx_lpi_enabled) 9602 flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE; 9603 else 9604 flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE; 9605 9606 req->flags |= cpu_to_le32(flags); 9607 eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised); 9608 req->eee_link_speed_mask = cpu_to_le16(eee_speeds); 9609 req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer); 9610 } else { 9611 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE); 9612 } 9613 } 9614 9615 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee) 9616 { 9617 struct hwrm_port_phy_cfg_input *req; 9618 int rc; 9619 9620 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG); 9621 if (rc) 9622 return rc; 9623 9624 if (set_pause) 9625 bnxt_hwrm_set_pause_common(bp, req); 9626 9627 bnxt_hwrm_set_link_common(bp, req); 9628 9629 if (set_eee) 9630 bnxt_hwrm_set_eee(bp, req); 9631 return hwrm_req_send(bp, req); 9632 } 9633 9634 static int bnxt_hwrm_shutdown_link(struct bnxt *bp) 9635 { 9636 struct hwrm_port_phy_cfg_input *req; 9637 int rc; 9638 9639 if (!BNXT_SINGLE_PF(bp)) 9640 return 0; 9641 9642 if (pci_num_vf(bp->pdev) && 9643 !(bp->phy_flags & BNXT_PHY_FL_FW_MANAGED_LKDN)) 9644 return 0; 9645 9646 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG); 9647 if (rc) 9648 return rc; 9649 9650 req->flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN); 9651 return hwrm_req_send(bp, req); 9652 } 9653 9654 static int bnxt_fw_init_one(struct bnxt *bp); 9655 9656 static int bnxt_fw_reset_via_optee(struct bnxt *bp) 9657 { 9658 #ifdef CONFIG_TEE_BNXT_FW 9659 int rc = tee_bnxt_fw_load(); 9660 9661 if (rc) 9662 netdev_err(bp->dev, "Failed FW reset via OP-TEE, rc=%d\n", rc); 9663 9664 return rc; 9665 #else 9666 netdev_err(bp->dev, "OP-TEE not supported\n"); 9667 return -ENODEV; 9668 #endif 9669 } 9670 9671 static int bnxt_try_recover_fw(struct bnxt *bp) 9672 { 9673 if (bp->fw_health && bp->fw_health->status_reliable) { 9674 int retry = 0, rc; 9675 u32 sts; 9676 9677 do { 9678 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 9679 rc = bnxt_hwrm_poll(bp); 9680 if (!BNXT_FW_IS_BOOTING(sts) && 9681 !BNXT_FW_IS_RECOVERING(sts)) 9682 break; 9683 retry++; 9684 } while (rc == -EBUSY && retry < BNXT_FW_RETRY); 9685 9686 if (!BNXT_FW_IS_HEALTHY(sts)) { 9687 netdev_err(bp->dev, 9688 "Firmware not responding, status: 0x%x\n", 9689 sts); 9690 rc = -ENODEV; 9691 } 9692 if (sts & FW_STATUS_REG_CRASHED_NO_MASTER) { 9693 netdev_warn(bp->dev, "Firmware recover via OP-TEE requested\n"); 9694 return bnxt_fw_reset_via_optee(bp); 9695 } 9696 return rc; 9697 } 9698 9699 return -ENODEV; 9700 } 9701 9702 static int bnxt_hwrm_if_change(struct bnxt *bp, bool up) 9703 { 9704 struct hwrm_func_drv_if_change_output *resp; 9705 struct hwrm_func_drv_if_change_input *req; 9706 bool fw_reset = !bp->irq_tbl; 9707 bool resc_reinit = false; 9708 int rc, retry = 0; 9709 u32 flags = 0; 9710 9711 if (!(bp->fw_cap & BNXT_FW_CAP_IF_CHANGE)) 9712 return 0; 9713 9714 rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_IF_CHANGE); 9715 if (rc) 9716 return rc; 9717 9718 if (up) 9719 req->flags = cpu_to_le32(FUNC_DRV_IF_CHANGE_REQ_FLAGS_UP); 9720 resp = hwrm_req_hold(bp, req); 9721 9722 hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT); 9723 while (retry < BNXT_FW_IF_RETRY) { 9724 rc = hwrm_req_send(bp, req); 9725 if (rc != -EAGAIN) 9726 break; 9727 9728 msleep(50); 9729 retry++; 9730 } 9731 9732 if (rc == -EAGAIN) { 9733 hwrm_req_drop(bp, req); 9734 return rc; 9735 } else if (!rc) { 9736 flags = le32_to_cpu(resp->flags); 9737 } else if (up) { 9738 rc = bnxt_try_recover_fw(bp); 9739 fw_reset = true; 9740 } 9741 hwrm_req_drop(bp, req); 9742 if (rc) 9743 return rc; 9744 9745 if (!up) { 9746 bnxt_inv_fw_health_reg(bp); 9747 return 0; 9748 } 9749 9750 if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_RESC_CHANGE) 9751 resc_reinit = true; 9752 if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_HOT_FW_RESET_DONE) 9753 fw_reset = true; 9754 else if (bp->fw_health && !bp->fw_health->status_reliable) 9755 bnxt_try_map_fw_health_reg(bp); 9756 9757 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state) && !fw_reset) { 9758 netdev_err(bp->dev, "RESET_DONE not set during FW reset.\n"); 9759 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 9760 return -ENODEV; 9761 } 9762 if (resc_reinit || fw_reset) { 9763 if (fw_reset) { 9764 set_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 9765 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 9766 bnxt_ulp_stop(bp); 9767 bnxt_free_ctx_mem(bp); 9768 kfree(bp->ctx); 9769 bp->ctx = NULL; 9770 bnxt_dcb_free(bp); 9771 rc = bnxt_fw_init_one(bp); 9772 if (rc) { 9773 clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 9774 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 9775 return rc; 9776 } 9777 bnxt_clear_int_mode(bp); 9778 rc = bnxt_init_int_mode(bp); 9779 if (rc) { 9780 clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 9781 netdev_err(bp->dev, "init int mode failed\n"); 9782 return rc; 9783 } 9784 } 9785 if (BNXT_NEW_RM(bp)) { 9786 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 9787 9788 rc = bnxt_hwrm_func_resc_qcaps(bp, true); 9789 if (rc) 9790 netdev_err(bp->dev, "resc_qcaps failed\n"); 9791 9792 hw_resc->resv_cp_rings = 0; 9793 hw_resc->resv_stat_ctxs = 0; 9794 hw_resc->resv_irqs = 0; 9795 hw_resc->resv_tx_rings = 0; 9796 hw_resc->resv_rx_rings = 0; 9797 hw_resc->resv_hw_ring_grps = 0; 9798 hw_resc->resv_vnics = 0; 9799 if (!fw_reset) { 9800 bp->tx_nr_rings = 0; 9801 bp->rx_nr_rings = 0; 9802 } 9803 } 9804 } 9805 return rc; 9806 } 9807 9808 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp) 9809 { 9810 struct hwrm_port_led_qcaps_output *resp; 9811 struct hwrm_port_led_qcaps_input *req; 9812 struct bnxt_pf_info *pf = &bp->pf; 9813 int rc; 9814 9815 bp->num_leds = 0; 9816 if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601) 9817 return 0; 9818 9819 rc = hwrm_req_init(bp, req, HWRM_PORT_LED_QCAPS); 9820 if (rc) 9821 return rc; 9822 9823 req->port_id = cpu_to_le16(pf->port_id); 9824 resp = hwrm_req_hold(bp, req); 9825 rc = hwrm_req_send(bp, req); 9826 if (rc) { 9827 hwrm_req_drop(bp, req); 9828 return rc; 9829 } 9830 if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) { 9831 int i; 9832 9833 bp->num_leds = resp->num_leds; 9834 memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) * 9835 bp->num_leds); 9836 for (i = 0; i < bp->num_leds; i++) { 9837 struct bnxt_led_info *led = &bp->leds[i]; 9838 __le16 caps = led->led_state_caps; 9839 9840 if (!led->led_group_id || 9841 !BNXT_LED_ALT_BLINK_CAP(caps)) { 9842 bp->num_leds = 0; 9843 break; 9844 } 9845 } 9846 } 9847 hwrm_req_drop(bp, req); 9848 return 0; 9849 } 9850 9851 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp) 9852 { 9853 struct hwrm_wol_filter_alloc_output *resp; 9854 struct hwrm_wol_filter_alloc_input *req; 9855 int rc; 9856 9857 rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_ALLOC); 9858 if (rc) 9859 return rc; 9860 9861 req->port_id = cpu_to_le16(bp->pf.port_id); 9862 req->wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT; 9863 req->enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS); 9864 memcpy(req->mac_address, bp->dev->dev_addr, ETH_ALEN); 9865 9866 resp = hwrm_req_hold(bp, req); 9867 rc = hwrm_req_send(bp, req); 9868 if (!rc) 9869 bp->wol_filter_id = resp->wol_filter_id; 9870 hwrm_req_drop(bp, req); 9871 return rc; 9872 } 9873 9874 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp) 9875 { 9876 struct hwrm_wol_filter_free_input *req; 9877 int rc; 9878 9879 rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_FREE); 9880 if (rc) 9881 return rc; 9882 9883 req->port_id = cpu_to_le16(bp->pf.port_id); 9884 req->enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID); 9885 req->wol_filter_id = bp->wol_filter_id; 9886 9887 return hwrm_req_send(bp, req); 9888 } 9889 9890 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle) 9891 { 9892 struct hwrm_wol_filter_qcfg_output *resp; 9893 struct hwrm_wol_filter_qcfg_input *req; 9894 u16 next_handle = 0; 9895 int rc; 9896 9897 rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_QCFG); 9898 if (rc) 9899 return rc; 9900 9901 req->port_id = cpu_to_le16(bp->pf.port_id); 9902 req->handle = cpu_to_le16(handle); 9903 resp = hwrm_req_hold(bp, req); 9904 rc = hwrm_req_send(bp, req); 9905 if (!rc) { 9906 next_handle = le16_to_cpu(resp->next_handle); 9907 if (next_handle != 0) { 9908 if (resp->wol_type == 9909 WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) { 9910 bp->wol = 1; 9911 bp->wol_filter_id = resp->wol_filter_id; 9912 } 9913 } 9914 } 9915 hwrm_req_drop(bp, req); 9916 return next_handle; 9917 } 9918 9919 static void bnxt_get_wol_settings(struct bnxt *bp) 9920 { 9921 u16 handle = 0; 9922 9923 bp->wol = 0; 9924 if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP)) 9925 return; 9926 9927 do { 9928 handle = bnxt_hwrm_get_wol_fltrs(bp, handle); 9929 } while (handle && handle != 0xffff); 9930 } 9931 9932 #ifdef CONFIG_BNXT_HWMON 9933 static ssize_t bnxt_show_temp(struct device *dev, 9934 struct device_attribute *devattr, char *buf) 9935 { 9936 struct hwrm_temp_monitor_query_output *resp; 9937 struct hwrm_temp_monitor_query_input *req; 9938 struct bnxt *bp = dev_get_drvdata(dev); 9939 u32 len = 0; 9940 int rc; 9941 9942 rc = hwrm_req_init(bp, req, HWRM_TEMP_MONITOR_QUERY); 9943 if (rc) 9944 return rc; 9945 resp = hwrm_req_hold(bp, req); 9946 rc = hwrm_req_send(bp, req); 9947 if (!rc) 9948 len = sprintf(buf, "%u\n", resp->temp * 1000); /* display millidegree */ 9949 hwrm_req_drop(bp, req); 9950 if (rc) 9951 return rc; 9952 return len; 9953 } 9954 static SENSOR_DEVICE_ATTR(temp1_input, 0444, bnxt_show_temp, NULL, 0); 9955 9956 static struct attribute *bnxt_attrs[] = { 9957 &sensor_dev_attr_temp1_input.dev_attr.attr, 9958 NULL 9959 }; 9960 ATTRIBUTE_GROUPS(bnxt); 9961 9962 static void bnxt_hwmon_close(struct bnxt *bp) 9963 { 9964 if (bp->hwmon_dev) { 9965 hwmon_device_unregister(bp->hwmon_dev); 9966 bp->hwmon_dev = NULL; 9967 } 9968 } 9969 9970 static void bnxt_hwmon_open(struct bnxt *bp) 9971 { 9972 struct hwrm_temp_monitor_query_input *req; 9973 struct pci_dev *pdev = bp->pdev; 9974 int rc; 9975 9976 rc = hwrm_req_init(bp, req, HWRM_TEMP_MONITOR_QUERY); 9977 if (!rc) 9978 rc = hwrm_req_send_silent(bp, req); 9979 if (rc == -EACCES || rc == -EOPNOTSUPP) { 9980 bnxt_hwmon_close(bp); 9981 return; 9982 } 9983 9984 if (bp->hwmon_dev) 9985 return; 9986 9987 bp->hwmon_dev = hwmon_device_register_with_groups(&pdev->dev, 9988 DRV_MODULE_NAME, bp, 9989 bnxt_groups); 9990 if (IS_ERR(bp->hwmon_dev)) { 9991 bp->hwmon_dev = NULL; 9992 dev_warn(&pdev->dev, "Cannot register hwmon device\n"); 9993 } 9994 } 9995 #else 9996 static void bnxt_hwmon_close(struct bnxt *bp) 9997 { 9998 } 9999 10000 static void bnxt_hwmon_open(struct bnxt *bp) 10001 { 10002 } 10003 #endif 10004 10005 static bool bnxt_eee_config_ok(struct bnxt *bp) 10006 { 10007 struct ethtool_eee *eee = &bp->eee; 10008 struct bnxt_link_info *link_info = &bp->link_info; 10009 10010 if (!(bp->phy_flags & BNXT_PHY_FL_EEE_CAP)) 10011 return true; 10012 10013 if (eee->eee_enabled) { 10014 u32 advertising = 10015 _bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0); 10016 10017 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) { 10018 eee->eee_enabled = 0; 10019 return false; 10020 } 10021 if (eee->advertised & ~advertising) { 10022 eee->advertised = advertising & eee->supported; 10023 return false; 10024 } 10025 } 10026 return true; 10027 } 10028 10029 static int bnxt_update_phy_setting(struct bnxt *bp) 10030 { 10031 int rc; 10032 bool update_link = false; 10033 bool update_pause = false; 10034 bool update_eee = false; 10035 struct bnxt_link_info *link_info = &bp->link_info; 10036 10037 rc = bnxt_update_link(bp, true); 10038 if (rc) { 10039 netdev_err(bp->dev, "failed to update link (rc: %x)\n", 10040 rc); 10041 return rc; 10042 } 10043 if (!BNXT_SINGLE_PF(bp)) 10044 return 0; 10045 10046 if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) && 10047 (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) != 10048 link_info->req_flow_ctrl) 10049 update_pause = true; 10050 if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) && 10051 link_info->force_pause_setting != link_info->req_flow_ctrl) 10052 update_pause = true; 10053 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) { 10054 if (BNXT_AUTO_MODE(link_info->auto_mode)) 10055 update_link = true; 10056 if (link_info->req_signal_mode == BNXT_SIG_MODE_NRZ && 10057 link_info->req_link_speed != link_info->force_link_speed) 10058 update_link = true; 10059 else if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4 && 10060 link_info->req_link_speed != link_info->force_pam4_link_speed) 10061 update_link = true; 10062 if (link_info->req_duplex != link_info->duplex_setting) 10063 update_link = true; 10064 } else { 10065 if (link_info->auto_mode == BNXT_LINK_AUTO_NONE) 10066 update_link = true; 10067 if (link_info->advertising != link_info->auto_link_speeds || 10068 link_info->advertising_pam4 != link_info->auto_pam4_link_speeds) 10069 update_link = true; 10070 } 10071 10072 /* The last close may have shutdown the link, so need to call 10073 * PHY_CFG to bring it back up. 10074 */ 10075 if (!bp->link_info.link_up) 10076 update_link = true; 10077 10078 if (!bnxt_eee_config_ok(bp)) 10079 update_eee = true; 10080 10081 if (update_link) 10082 rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee); 10083 else if (update_pause) 10084 rc = bnxt_hwrm_set_pause(bp); 10085 if (rc) { 10086 netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n", 10087 rc); 10088 return rc; 10089 } 10090 10091 return rc; 10092 } 10093 10094 /* Common routine to pre-map certain register block to different GRC window. 10095 * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows 10096 * in PF and 3 windows in VF that can be customized to map in different 10097 * register blocks. 10098 */ 10099 static void bnxt_preset_reg_win(struct bnxt *bp) 10100 { 10101 if (BNXT_PF(bp)) { 10102 /* CAG registers map to GRC window #4 */ 10103 writel(BNXT_CAG_REG_BASE, 10104 bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12); 10105 } 10106 } 10107 10108 static int bnxt_init_dflt_ring_mode(struct bnxt *bp); 10109 10110 static int bnxt_reinit_after_abort(struct bnxt *bp) 10111 { 10112 int rc; 10113 10114 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 10115 return -EBUSY; 10116 10117 if (bp->dev->reg_state == NETREG_UNREGISTERED) 10118 return -ENODEV; 10119 10120 rc = bnxt_fw_init_one(bp); 10121 if (!rc) { 10122 bnxt_clear_int_mode(bp); 10123 rc = bnxt_init_int_mode(bp); 10124 if (!rc) { 10125 clear_bit(BNXT_STATE_ABORT_ERR, &bp->state); 10126 set_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 10127 } 10128 } 10129 return rc; 10130 } 10131 10132 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 10133 { 10134 int rc = 0; 10135 10136 bnxt_preset_reg_win(bp); 10137 netif_carrier_off(bp->dev); 10138 if (irq_re_init) { 10139 /* Reserve rings now if none were reserved at driver probe. */ 10140 rc = bnxt_init_dflt_ring_mode(bp); 10141 if (rc) { 10142 netdev_err(bp->dev, "Failed to reserve default rings at open\n"); 10143 return rc; 10144 } 10145 } 10146 rc = bnxt_reserve_rings(bp, irq_re_init); 10147 if (rc) 10148 return rc; 10149 if ((bp->flags & BNXT_FLAG_RFS) && 10150 !(bp->flags & BNXT_FLAG_USING_MSIX)) { 10151 /* disable RFS if falling back to INTA */ 10152 bp->dev->hw_features &= ~NETIF_F_NTUPLE; 10153 bp->flags &= ~BNXT_FLAG_RFS; 10154 } 10155 10156 rc = bnxt_alloc_mem(bp, irq_re_init); 10157 if (rc) { 10158 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc); 10159 goto open_err_free_mem; 10160 } 10161 10162 if (irq_re_init) { 10163 bnxt_init_napi(bp); 10164 rc = bnxt_request_irq(bp); 10165 if (rc) { 10166 netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc); 10167 goto open_err_irq; 10168 } 10169 } 10170 10171 rc = bnxt_init_nic(bp, irq_re_init); 10172 if (rc) { 10173 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc); 10174 goto open_err_irq; 10175 } 10176 10177 bnxt_enable_napi(bp); 10178 bnxt_debug_dev_init(bp); 10179 10180 if (link_re_init) { 10181 mutex_lock(&bp->link_lock); 10182 rc = bnxt_update_phy_setting(bp); 10183 mutex_unlock(&bp->link_lock); 10184 if (rc) { 10185 netdev_warn(bp->dev, "failed to update phy settings\n"); 10186 if (BNXT_SINGLE_PF(bp)) { 10187 bp->link_info.phy_retry = true; 10188 bp->link_info.phy_retry_expires = 10189 jiffies + 5 * HZ; 10190 } 10191 } 10192 } 10193 10194 if (irq_re_init) 10195 udp_tunnel_nic_reset_ntf(bp->dev); 10196 10197 set_bit(BNXT_STATE_OPEN, &bp->state); 10198 bnxt_enable_int(bp); 10199 /* Enable TX queues */ 10200 bnxt_tx_enable(bp); 10201 mod_timer(&bp->timer, jiffies + bp->current_interval); 10202 /* Poll link status and check for SFP+ module status */ 10203 mutex_lock(&bp->link_lock); 10204 bnxt_get_port_module_status(bp); 10205 mutex_unlock(&bp->link_lock); 10206 10207 /* VF-reps may need to be re-opened after the PF is re-opened */ 10208 if (BNXT_PF(bp)) 10209 bnxt_vf_reps_open(bp); 10210 return 0; 10211 10212 open_err_irq: 10213 bnxt_del_napi(bp); 10214 10215 open_err_free_mem: 10216 bnxt_free_skbs(bp); 10217 bnxt_free_irq(bp); 10218 bnxt_free_mem(bp, true); 10219 return rc; 10220 } 10221 10222 /* rtnl_lock held */ 10223 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 10224 { 10225 int rc = 0; 10226 10227 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) 10228 rc = -EIO; 10229 if (!rc) 10230 rc = __bnxt_open_nic(bp, irq_re_init, link_re_init); 10231 if (rc) { 10232 netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc); 10233 dev_close(bp->dev); 10234 } 10235 return rc; 10236 } 10237 10238 /* rtnl_lock held, open the NIC half way by allocating all resources, but 10239 * NAPI, IRQ, and TX are not enabled. This is mainly used for offline 10240 * self tests. 10241 */ 10242 int bnxt_half_open_nic(struct bnxt *bp) 10243 { 10244 int rc = 0; 10245 10246 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 10247 netdev_err(bp->dev, "A previous firmware reset has not completed, aborting half open\n"); 10248 rc = -ENODEV; 10249 goto half_open_err; 10250 } 10251 10252 rc = bnxt_alloc_mem(bp, false); 10253 if (rc) { 10254 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc); 10255 goto half_open_err; 10256 } 10257 rc = bnxt_init_nic(bp, false); 10258 if (rc) { 10259 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc); 10260 goto half_open_err; 10261 } 10262 return 0; 10263 10264 half_open_err: 10265 bnxt_free_skbs(bp); 10266 bnxt_free_mem(bp, false); 10267 dev_close(bp->dev); 10268 return rc; 10269 } 10270 10271 /* rtnl_lock held, this call can only be made after a previous successful 10272 * call to bnxt_half_open_nic(). 10273 */ 10274 void bnxt_half_close_nic(struct bnxt *bp) 10275 { 10276 bnxt_hwrm_resource_free(bp, false, false); 10277 bnxt_free_skbs(bp); 10278 bnxt_free_mem(bp, false); 10279 } 10280 10281 static void bnxt_reenable_sriov(struct bnxt *bp) 10282 { 10283 if (BNXT_PF(bp)) { 10284 struct bnxt_pf_info *pf = &bp->pf; 10285 int n = pf->active_vfs; 10286 10287 if (n) 10288 bnxt_cfg_hw_sriov(bp, &n, true); 10289 } 10290 } 10291 10292 static int bnxt_open(struct net_device *dev) 10293 { 10294 struct bnxt *bp = netdev_priv(dev); 10295 int rc; 10296 10297 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 10298 rc = bnxt_reinit_after_abort(bp); 10299 if (rc) { 10300 if (rc == -EBUSY) 10301 netdev_err(bp->dev, "A previous firmware reset has not completed, aborting\n"); 10302 else 10303 netdev_err(bp->dev, "Failed to reinitialize after aborted firmware reset\n"); 10304 return -ENODEV; 10305 } 10306 } 10307 10308 rc = bnxt_hwrm_if_change(bp, true); 10309 if (rc) 10310 return rc; 10311 10312 rc = __bnxt_open_nic(bp, true, true); 10313 if (rc) { 10314 bnxt_hwrm_if_change(bp, false); 10315 } else { 10316 if (test_and_clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) { 10317 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 10318 bnxt_ulp_start(bp, 0); 10319 bnxt_reenable_sriov(bp); 10320 } 10321 } 10322 bnxt_hwmon_open(bp); 10323 } 10324 10325 return rc; 10326 } 10327 10328 static bool bnxt_drv_busy(struct bnxt *bp) 10329 { 10330 return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) || 10331 test_bit(BNXT_STATE_READ_STATS, &bp->state)); 10332 } 10333 10334 static void bnxt_get_ring_stats(struct bnxt *bp, 10335 struct rtnl_link_stats64 *stats); 10336 10337 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init, 10338 bool link_re_init) 10339 { 10340 /* Close the VF-reps before closing PF */ 10341 if (BNXT_PF(bp)) 10342 bnxt_vf_reps_close(bp); 10343 10344 /* Change device state to avoid TX queue wake up's */ 10345 bnxt_tx_disable(bp); 10346 10347 clear_bit(BNXT_STATE_OPEN, &bp->state); 10348 smp_mb__after_atomic(); 10349 while (bnxt_drv_busy(bp)) 10350 msleep(20); 10351 10352 /* Flush rings and and disable interrupts */ 10353 bnxt_shutdown_nic(bp, irq_re_init); 10354 10355 /* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */ 10356 10357 bnxt_debug_dev_exit(bp); 10358 bnxt_disable_napi(bp); 10359 del_timer_sync(&bp->timer); 10360 bnxt_free_skbs(bp); 10361 10362 /* Save ring stats before shutdown */ 10363 if (bp->bnapi && irq_re_init) 10364 bnxt_get_ring_stats(bp, &bp->net_stats_prev); 10365 if (irq_re_init) { 10366 bnxt_free_irq(bp); 10367 bnxt_del_napi(bp); 10368 } 10369 bnxt_free_mem(bp, irq_re_init); 10370 } 10371 10372 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 10373 { 10374 int rc = 0; 10375 10376 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 10377 /* If we get here, it means firmware reset is in progress 10378 * while we are trying to close. We can safely proceed with 10379 * the close because we are holding rtnl_lock(). Some firmware 10380 * messages may fail as we proceed to close. We set the 10381 * ABORT_ERR flag here so that the FW reset thread will later 10382 * abort when it gets the rtnl_lock() and sees the flag. 10383 */ 10384 netdev_warn(bp->dev, "FW reset in progress during close, FW reset will be aborted\n"); 10385 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 10386 } 10387 10388 #ifdef CONFIG_BNXT_SRIOV 10389 if (bp->sriov_cfg) { 10390 rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait, 10391 !bp->sriov_cfg, 10392 BNXT_SRIOV_CFG_WAIT_TMO); 10393 if (rc) 10394 netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n"); 10395 } 10396 #endif 10397 __bnxt_close_nic(bp, irq_re_init, link_re_init); 10398 return rc; 10399 } 10400 10401 static int bnxt_close(struct net_device *dev) 10402 { 10403 struct bnxt *bp = netdev_priv(dev); 10404 10405 bnxt_hwmon_close(bp); 10406 bnxt_close_nic(bp, true, true); 10407 bnxt_hwrm_shutdown_link(bp); 10408 bnxt_hwrm_if_change(bp, false); 10409 return 0; 10410 } 10411 10412 static int bnxt_hwrm_port_phy_read(struct bnxt *bp, u16 phy_addr, u16 reg, 10413 u16 *val) 10414 { 10415 struct hwrm_port_phy_mdio_read_output *resp; 10416 struct hwrm_port_phy_mdio_read_input *req; 10417 int rc; 10418 10419 if (bp->hwrm_spec_code < 0x10a00) 10420 return -EOPNOTSUPP; 10421 10422 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_READ); 10423 if (rc) 10424 return rc; 10425 10426 req->port_id = cpu_to_le16(bp->pf.port_id); 10427 req->phy_addr = phy_addr; 10428 req->reg_addr = cpu_to_le16(reg & 0x1f); 10429 if (mdio_phy_id_is_c45(phy_addr)) { 10430 req->cl45_mdio = 1; 10431 req->phy_addr = mdio_phy_id_prtad(phy_addr); 10432 req->dev_addr = mdio_phy_id_devad(phy_addr); 10433 req->reg_addr = cpu_to_le16(reg); 10434 } 10435 10436 resp = hwrm_req_hold(bp, req); 10437 rc = hwrm_req_send(bp, req); 10438 if (!rc) 10439 *val = le16_to_cpu(resp->reg_data); 10440 hwrm_req_drop(bp, req); 10441 return rc; 10442 } 10443 10444 static int bnxt_hwrm_port_phy_write(struct bnxt *bp, u16 phy_addr, u16 reg, 10445 u16 val) 10446 { 10447 struct hwrm_port_phy_mdio_write_input *req; 10448 int rc; 10449 10450 if (bp->hwrm_spec_code < 0x10a00) 10451 return -EOPNOTSUPP; 10452 10453 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_WRITE); 10454 if (rc) 10455 return rc; 10456 10457 req->port_id = cpu_to_le16(bp->pf.port_id); 10458 req->phy_addr = phy_addr; 10459 req->reg_addr = cpu_to_le16(reg & 0x1f); 10460 if (mdio_phy_id_is_c45(phy_addr)) { 10461 req->cl45_mdio = 1; 10462 req->phy_addr = mdio_phy_id_prtad(phy_addr); 10463 req->dev_addr = mdio_phy_id_devad(phy_addr); 10464 req->reg_addr = cpu_to_le16(reg); 10465 } 10466 req->reg_data = cpu_to_le16(val); 10467 10468 return hwrm_req_send(bp, req); 10469 } 10470 10471 /* rtnl_lock held */ 10472 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 10473 { 10474 struct mii_ioctl_data *mdio = if_mii(ifr); 10475 struct bnxt *bp = netdev_priv(dev); 10476 int rc; 10477 10478 switch (cmd) { 10479 case SIOCGMIIPHY: 10480 mdio->phy_id = bp->link_info.phy_addr; 10481 10482 fallthrough; 10483 case SIOCGMIIREG: { 10484 u16 mii_regval = 0; 10485 10486 if (!netif_running(dev)) 10487 return -EAGAIN; 10488 10489 rc = bnxt_hwrm_port_phy_read(bp, mdio->phy_id, mdio->reg_num, 10490 &mii_regval); 10491 mdio->val_out = mii_regval; 10492 return rc; 10493 } 10494 10495 case SIOCSMIIREG: 10496 if (!netif_running(dev)) 10497 return -EAGAIN; 10498 10499 return bnxt_hwrm_port_phy_write(bp, mdio->phy_id, mdio->reg_num, 10500 mdio->val_in); 10501 10502 case SIOCSHWTSTAMP: 10503 return bnxt_hwtstamp_set(dev, ifr); 10504 10505 case SIOCGHWTSTAMP: 10506 return bnxt_hwtstamp_get(dev, ifr); 10507 10508 default: 10509 /* do nothing */ 10510 break; 10511 } 10512 return -EOPNOTSUPP; 10513 } 10514 10515 static void bnxt_get_ring_stats(struct bnxt *bp, 10516 struct rtnl_link_stats64 *stats) 10517 { 10518 int i; 10519 10520 for (i = 0; i < bp->cp_nr_rings; i++) { 10521 struct bnxt_napi *bnapi = bp->bnapi[i]; 10522 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 10523 u64 *sw = cpr->stats.sw_stats; 10524 10525 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts); 10526 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts); 10527 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts); 10528 10529 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts); 10530 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts); 10531 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts); 10532 10533 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes); 10534 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes); 10535 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes); 10536 10537 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes); 10538 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes); 10539 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes); 10540 10541 stats->rx_missed_errors += 10542 BNXT_GET_RING_STATS64(sw, rx_discard_pkts); 10543 10544 stats->multicast += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts); 10545 10546 stats->tx_dropped += BNXT_GET_RING_STATS64(sw, tx_error_pkts); 10547 10548 stats->rx_dropped += 10549 cpr->sw_stats.rx.rx_netpoll_discards + 10550 cpr->sw_stats.rx.rx_oom_discards; 10551 } 10552 } 10553 10554 static void bnxt_add_prev_stats(struct bnxt *bp, 10555 struct rtnl_link_stats64 *stats) 10556 { 10557 struct rtnl_link_stats64 *prev_stats = &bp->net_stats_prev; 10558 10559 stats->rx_packets += prev_stats->rx_packets; 10560 stats->tx_packets += prev_stats->tx_packets; 10561 stats->rx_bytes += prev_stats->rx_bytes; 10562 stats->tx_bytes += prev_stats->tx_bytes; 10563 stats->rx_missed_errors += prev_stats->rx_missed_errors; 10564 stats->multicast += prev_stats->multicast; 10565 stats->rx_dropped += prev_stats->rx_dropped; 10566 stats->tx_dropped += prev_stats->tx_dropped; 10567 } 10568 10569 static void 10570 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) 10571 { 10572 struct bnxt *bp = netdev_priv(dev); 10573 10574 set_bit(BNXT_STATE_READ_STATS, &bp->state); 10575 /* Make sure bnxt_close_nic() sees that we are reading stats before 10576 * we check the BNXT_STATE_OPEN flag. 10577 */ 10578 smp_mb__after_atomic(); 10579 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 10580 clear_bit(BNXT_STATE_READ_STATS, &bp->state); 10581 *stats = bp->net_stats_prev; 10582 return; 10583 } 10584 10585 bnxt_get_ring_stats(bp, stats); 10586 bnxt_add_prev_stats(bp, stats); 10587 10588 if (bp->flags & BNXT_FLAG_PORT_STATS) { 10589 u64 *rx = bp->port_stats.sw_stats; 10590 u64 *tx = bp->port_stats.sw_stats + 10591 BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 10592 10593 stats->rx_crc_errors = 10594 BNXT_GET_RX_PORT_STATS64(rx, rx_fcs_err_frames); 10595 stats->rx_frame_errors = 10596 BNXT_GET_RX_PORT_STATS64(rx, rx_align_err_frames); 10597 stats->rx_length_errors = 10598 BNXT_GET_RX_PORT_STATS64(rx, rx_undrsz_frames) + 10599 BNXT_GET_RX_PORT_STATS64(rx, rx_ovrsz_frames) + 10600 BNXT_GET_RX_PORT_STATS64(rx, rx_runt_frames); 10601 stats->rx_errors = 10602 BNXT_GET_RX_PORT_STATS64(rx, rx_false_carrier_frames) + 10603 BNXT_GET_RX_PORT_STATS64(rx, rx_jbr_frames); 10604 stats->collisions = 10605 BNXT_GET_TX_PORT_STATS64(tx, tx_total_collisions); 10606 stats->tx_fifo_errors = 10607 BNXT_GET_TX_PORT_STATS64(tx, tx_fifo_underruns); 10608 stats->tx_errors = BNXT_GET_TX_PORT_STATS64(tx, tx_err); 10609 } 10610 clear_bit(BNXT_STATE_READ_STATS, &bp->state); 10611 } 10612 10613 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask) 10614 { 10615 struct net_device *dev = bp->dev; 10616 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 10617 struct netdev_hw_addr *ha; 10618 u8 *haddr; 10619 int mc_count = 0; 10620 bool update = false; 10621 int off = 0; 10622 10623 netdev_for_each_mc_addr(ha, dev) { 10624 if (mc_count >= BNXT_MAX_MC_ADDRS) { 10625 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 10626 vnic->mc_list_count = 0; 10627 return false; 10628 } 10629 haddr = ha->addr; 10630 if (!ether_addr_equal(haddr, vnic->mc_list + off)) { 10631 memcpy(vnic->mc_list + off, haddr, ETH_ALEN); 10632 update = true; 10633 } 10634 off += ETH_ALEN; 10635 mc_count++; 10636 } 10637 if (mc_count) 10638 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST; 10639 10640 if (mc_count != vnic->mc_list_count) { 10641 vnic->mc_list_count = mc_count; 10642 update = true; 10643 } 10644 return update; 10645 } 10646 10647 static bool bnxt_uc_list_updated(struct bnxt *bp) 10648 { 10649 struct net_device *dev = bp->dev; 10650 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 10651 struct netdev_hw_addr *ha; 10652 int off = 0; 10653 10654 if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1)) 10655 return true; 10656 10657 netdev_for_each_uc_addr(ha, dev) { 10658 if (!ether_addr_equal(ha->addr, vnic->uc_list + off)) 10659 return true; 10660 10661 off += ETH_ALEN; 10662 } 10663 return false; 10664 } 10665 10666 static void bnxt_set_rx_mode(struct net_device *dev) 10667 { 10668 struct bnxt *bp = netdev_priv(dev); 10669 struct bnxt_vnic_info *vnic; 10670 bool mc_update = false; 10671 bool uc_update; 10672 u32 mask; 10673 10674 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) 10675 return; 10676 10677 vnic = &bp->vnic_info[0]; 10678 mask = vnic->rx_mask; 10679 mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS | 10680 CFA_L2_SET_RX_MASK_REQ_MASK_MCAST | 10681 CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST | 10682 CFA_L2_SET_RX_MASK_REQ_MASK_BCAST); 10683 10684 if (dev->flags & IFF_PROMISC) 10685 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 10686 10687 uc_update = bnxt_uc_list_updated(bp); 10688 10689 if (dev->flags & IFF_BROADCAST) 10690 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST; 10691 if (dev->flags & IFF_ALLMULTI) { 10692 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 10693 vnic->mc_list_count = 0; 10694 } else { 10695 mc_update = bnxt_mc_list_updated(bp, &mask); 10696 } 10697 10698 if (mask != vnic->rx_mask || uc_update || mc_update) { 10699 vnic->rx_mask = mask; 10700 10701 set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event); 10702 bnxt_queue_sp_work(bp); 10703 } 10704 } 10705 10706 static int bnxt_cfg_rx_mode(struct bnxt *bp) 10707 { 10708 struct net_device *dev = bp->dev; 10709 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 10710 struct hwrm_cfa_l2_filter_free_input *req; 10711 struct netdev_hw_addr *ha; 10712 int i, off = 0, rc; 10713 bool uc_update; 10714 10715 netif_addr_lock_bh(dev); 10716 uc_update = bnxt_uc_list_updated(bp); 10717 netif_addr_unlock_bh(dev); 10718 10719 if (!uc_update) 10720 goto skip_uc; 10721 10722 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE); 10723 if (rc) 10724 return rc; 10725 hwrm_req_hold(bp, req); 10726 for (i = 1; i < vnic->uc_filter_count; i++) { 10727 req->l2_filter_id = vnic->fw_l2_filter_id[i]; 10728 10729 rc = hwrm_req_send(bp, req); 10730 } 10731 hwrm_req_drop(bp, req); 10732 10733 vnic->uc_filter_count = 1; 10734 10735 netif_addr_lock_bh(dev); 10736 if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) { 10737 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 10738 } else { 10739 netdev_for_each_uc_addr(ha, dev) { 10740 memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN); 10741 off += ETH_ALEN; 10742 vnic->uc_filter_count++; 10743 } 10744 } 10745 netif_addr_unlock_bh(dev); 10746 10747 for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) { 10748 rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off); 10749 if (rc) { 10750 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", 10751 rc); 10752 vnic->uc_filter_count = i; 10753 return rc; 10754 } 10755 } 10756 10757 skip_uc: 10758 if ((vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS) && 10759 !bnxt_promisc_ok(bp)) 10760 vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 10761 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0); 10762 if (rc && vnic->mc_list_count) { 10763 netdev_info(bp->dev, "Failed setting MC filters rc: %d, turning on ALL_MCAST mode\n", 10764 rc); 10765 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 10766 vnic->mc_list_count = 0; 10767 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0); 10768 } 10769 if (rc) 10770 netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %d\n", 10771 rc); 10772 10773 return rc; 10774 } 10775 10776 static bool bnxt_can_reserve_rings(struct bnxt *bp) 10777 { 10778 #ifdef CONFIG_BNXT_SRIOV 10779 if (BNXT_NEW_RM(bp) && BNXT_VF(bp)) { 10780 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 10781 10782 /* No minimum rings were provisioned by the PF. Don't 10783 * reserve rings by default when device is down. 10784 */ 10785 if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings) 10786 return true; 10787 10788 if (!netif_running(bp->dev)) 10789 return false; 10790 } 10791 #endif 10792 return true; 10793 } 10794 10795 /* If the chip and firmware supports RFS */ 10796 static bool bnxt_rfs_supported(struct bnxt *bp) 10797 { 10798 if (bp->flags & BNXT_FLAG_CHIP_P5) { 10799 if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) 10800 return true; 10801 return false; 10802 } 10803 /* 212 firmware is broken for aRFS */ 10804 if (BNXT_FW_MAJ(bp) == 212) 10805 return false; 10806 if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp)) 10807 return true; 10808 if (bp->flags & BNXT_FLAG_NEW_RSS_CAP) 10809 return true; 10810 return false; 10811 } 10812 10813 /* If runtime conditions support RFS */ 10814 static bool bnxt_rfs_capable(struct bnxt *bp) 10815 { 10816 #ifdef CONFIG_RFS_ACCEL 10817 int vnics, max_vnics, max_rss_ctxs; 10818 10819 if (bp->flags & BNXT_FLAG_CHIP_P5) 10820 return bnxt_rfs_supported(bp); 10821 if (!(bp->flags & BNXT_FLAG_MSIX_CAP) || !bnxt_can_reserve_rings(bp)) 10822 return false; 10823 10824 vnics = 1 + bp->rx_nr_rings; 10825 max_vnics = bnxt_get_max_func_vnics(bp); 10826 max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp); 10827 10828 /* RSS contexts not a limiting factor */ 10829 if (bp->flags & BNXT_FLAG_NEW_RSS_CAP) 10830 max_rss_ctxs = max_vnics; 10831 if (vnics > max_vnics || vnics > max_rss_ctxs) { 10832 if (bp->rx_nr_rings > 1) 10833 netdev_warn(bp->dev, 10834 "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n", 10835 min(max_rss_ctxs - 1, max_vnics - 1)); 10836 return false; 10837 } 10838 10839 if (!BNXT_NEW_RM(bp)) 10840 return true; 10841 10842 if (vnics == bp->hw_resc.resv_vnics) 10843 return true; 10844 10845 bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, vnics); 10846 if (vnics <= bp->hw_resc.resv_vnics) 10847 return true; 10848 10849 netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n"); 10850 bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, 1); 10851 return false; 10852 #else 10853 return false; 10854 #endif 10855 } 10856 10857 static netdev_features_t bnxt_fix_features(struct net_device *dev, 10858 netdev_features_t features) 10859 { 10860 struct bnxt *bp = netdev_priv(dev); 10861 netdev_features_t vlan_features; 10862 10863 if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp)) 10864 features &= ~NETIF_F_NTUPLE; 10865 10866 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) 10867 features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 10868 10869 if (!(features & NETIF_F_GRO)) 10870 features &= ~NETIF_F_GRO_HW; 10871 10872 if (features & NETIF_F_GRO_HW) 10873 features &= ~NETIF_F_LRO; 10874 10875 /* Both CTAG and STAG VLAN accelaration on the RX side have to be 10876 * turned on or off together. 10877 */ 10878 vlan_features = features & BNXT_HW_FEATURE_VLAN_ALL_RX; 10879 if (vlan_features != BNXT_HW_FEATURE_VLAN_ALL_RX) { 10880 if (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX) 10881 features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX; 10882 else if (vlan_features) 10883 features |= BNXT_HW_FEATURE_VLAN_ALL_RX; 10884 } 10885 #ifdef CONFIG_BNXT_SRIOV 10886 if (BNXT_VF(bp) && bp->vf.vlan) 10887 features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX; 10888 #endif 10889 return features; 10890 } 10891 10892 static int bnxt_set_features(struct net_device *dev, netdev_features_t features) 10893 { 10894 struct bnxt *bp = netdev_priv(dev); 10895 u32 flags = bp->flags; 10896 u32 changes; 10897 int rc = 0; 10898 bool re_init = false; 10899 bool update_tpa = false; 10900 10901 flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS; 10902 if (features & NETIF_F_GRO_HW) 10903 flags |= BNXT_FLAG_GRO; 10904 else if (features & NETIF_F_LRO) 10905 flags |= BNXT_FLAG_LRO; 10906 10907 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) 10908 flags &= ~BNXT_FLAG_TPA; 10909 10910 if (features & BNXT_HW_FEATURE_VLAN_ALL_RX) 10911 flags |= BNXT_FLAG_STRIP_VLAN; 10912 10913 if (features & NETIF_F_NTUPLE) 10914 flags |= BNXT_FLAG_RFS; 10915 10916 changes = flags ^ bp->flags; 10917 if (changes & BNXT_FLAG_TPA) { 10918 update_tpa = true; 10919 if ((bp->flags & BNXT_FLAG_TPA) == 0 || 10920 (flags & BNXT_FLAG_TPA) == 0 || 10921 (bp->flags & BNXT_FLAG_CHIP_P5)) 10922 re_init = true; 10923 } 10924 10925 if (changes & ~BNXT_FLAG_TPA) 10926 re_init = true; 10927 10928 if (flags != bp->flags) { 10929 u32 old_flags = bp->flags; 10930 10931 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 10932 bp->flags = flags; 10933 if (update_tpa) 10934 bnxt_set_ring_params(bp); 10935 return rc; 10936 } 10937 10938 if (re_init) { 10939 bnxt_close_nic(bp, false, false); 10940 bp->flags = flags; 10941 if (update_tpa) 10942 bnxt_set_ring_params(bp); 10943 10944 return bnxt_open_nic(bp, false, false); 10945 } 10946 if (update_tpa) { 10947 bp->flags = flags; 10948 rc = bnxt_set_tpa(bp, 10949 (flags & BNXT_FLAG_TPA) ? 10950 true : false); 10951 if (rc) 10952 bp->flags = old_flags; 10953 } 10954 } 10955 return rc; 10956 } 10957 10958 static bool bnxt_exthdr_check(struct bnxt *bp, struct sk_buff *skb, int nw_off, 10959 u8 **nextp) 10960 { 10961 struct ipv6hdr *ip6h = (struct ipv6hdr *)(skb->data + nw_off); 10962 int hdr_count = 0; 10963 u8 *nexthdr; 10964 int start; 10965 10966 /* Check that there are at most 2 IPv6 extension headers, no 10967 * fragment header, and each is <= 64 bytes. 10968 */ 10969 start = nw_off + sizeof(*ip6h); 10970 nexthdr = &ip6h->nexthdr; 10971 while (ipv6_ext_hdr(*nexthdr)) { 10972 struct ipv6_opt_hdr *hp; 10973 int hdrlen; 10974 10975 if (hdr_count >= 3 || *nexthdr == NEXTHDR_NONE || 10976 *nexthdr == NEXTHDR_FRAGMENT) 10977 return false; 10978 hp = __skb_header_pointer(NULL, start, sizeof(*hp), skb->data, 10979 skb_headlen(skb), NULL); 10980 if (!hp) 10981 return false; 10982 if (*nexthdr == NEXTHDR_AUTH) 10983 hdrlen = ipv6_authlen(hp); 10984 else 10985 hdrlen = ipv6_optlen(hp); 10986 10987 if (hdrlen > 64) 10988 return false; 10989 nexthdr = &hp->nexthdr; 10990 start += hdrlen; 10991 hdr_count++; 10992 } 10993 if (nextp) { 10994 /* Caller will check inner protocol */ 10995 if (skb->encapsulation) { 10996 *nextp = nexthdr; 10997 return true; 10998 } 10999 *nextp = NULL; 11000 } 11001 /* Only support TCP/UDP for non-tunneled ipv6 and inner ipv6 */ 11002 return *nexthdr == IPPROTO_TCP || *nexthdr == IPPROTO_UDP; 11003 } 11004 11005 /* For UDP, we can only handle 1 Vxlan port and 1 Geneve port. */ 11006 static bool bnxt_udp_tunl_check(struct bnxt *bp, struct sk_buff *skb) 11007 { 11008 struct udphdr *uh = udp_hdr(skb); 11009 __be16 udp_port = uh->dest; 11010 11011 if (udp_port != bp->vxlan_port && udp_port != bp->nge_port) 11012 return false; 11013 if (skb->inner_protocol_type == ENCAP_TYPE_ETHER) { 11014 struct ethhdr *eh = inner_eth_hdr(skb); 11015 11016 switch (eh->h_proto) { 11017 case htons(ETH_P_IP): 11018 return true; 11019 case htons(ETH_P_IPV6): 11020 return bnxt_exthdr_check(bp, skb, 11021 skb_inner_network_offset(skb), 11022 NULL); 11023 } 11024 } 11025 return false; 11026 } 11027 11028 static bool bnxt_tunl_check(struct bnxt *bp, struct sk_buff *skb, u8 l4_proto) 11029 { 11030 switch (l4_proto) { 11031 case IPPROTO_UDP: 11032 return bnxt_udp_tunl_check(bp, skb); 11033 case IPPROTO_IPIP: 11034 return true; 11035 case IPPROTO_GRE: { 11036 switch (skb->inner_protocol) { 11037 default: 11038 return false; 11039 case htons(ETH_P_IP): 11040 return true; 11041 case htons(ETH_P_IPV6): 11042 fallthrough; 11043 } 11044 } 11045 case IPPROTO_IPV6: 11046 /* Check ext headers of inner ipv6 */ 11047 return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb), 11048 NULL); 11049 } 11050 return false; 11051 } 11052 11053 static netdev_features_t bnxt_features_check(struct sk_buff *skb, 11054 struct net_device *dev, 11055 netdev_features_t features) 11056 { 11057 struct bnxt *bp = netdev_priv(dev); 11058 u8 *l4_proto; 11059 11060 features = vlan_features_check(skb, features); 11061 switch (vlan_get_protocol(skb)) { 11062 case htons(ETH_P_IP): 11063 if (!skb->encapsulation) 11064 return features; 11065 l4_proto = &ip_hdr(skb)->protocol; 11066 if (bnxt_tunl_check(bp, skb, *l4_proto)) 11067 return features; 11068 break; 11069 case htons(ETH_P_IPV6): 11070 if (!bnxt_exthdr_check(bp, skb, skb_network_offset(skb), 11071 &l4_proto)) 11072 break; 11073 if (!l4_proto || bnxt_tunl_check(bp, skb, *l4_proto)) 11074 return features; 11075 break; 11076 } 11077 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 11078 } 11079 11080 int bnxt_dbg_hwrm_rd_reg(struct bnxt *bp, u32 reg_off, u16 num_words, 11081 u32 *reg_buf) 11082 { 11083 struct hwrm_dbg_read_direct_output *resp; 11084 struct hwrm_dbg_read_direct_input *req; 11085 __le32 *dbg_reg_buf; 11086 dma_addr_t mapping; 11087 int rc, i; 11088 11089 rc = hwrm_req_init(bp, req, HWRM_DBG_READ_DIRECT); 11090 if (rc) 11091 return rc; 11092 11093 dbg_reg_buf = hwrm_req_dma_slice(bp, req, num_words * 4, 11094 &mapping); 11095 if (!dbg_reg_buf) { 11096 rc = -ENOMEM; 11097 goto dbg_rd_reg_exit; 11098 } 11099 11100 req->host_dest_addr = cpu_to_le64(mapping); 11101 11102 resp = hwrm_req_hold(bp, req); 11103 req->read_addr = cpu_to_le32(reg_off + CHIMP_REG_VIEW_ADDR); 11104 req->read_len32 = cpu_to_le32(num_words); 11105 11106 rc = hwrm_req_send(bp, req); 11107 if (rc || resp->error_code) { 11108 rc = -EIO; 11109 goto dbg_rd_reg_exit; 11110 } 11111 for (i = 0; i < num_words; i++) 11112 reg_buf[i] = le32_to_cpu(dbg_reg_buf[i]); 11113 11114 dbg_rd_reg_exit: 11115 hwrm_req_drop(bp, req); 11116 return rc; 11117 } 11118 11119 static int bnxt_dbg_hwrm_ring_info_get(struct bnxt *bp, u8 ring_type, 11120 u32 ring_id, u32 *prod, u32 *cons) 11121 { 11122 struct hwrm_dbg_ring_info_get_output *resp; 11123 struct hwrm_dbg_ring_info_get_input *req; 11124 int rc; 11125 11126 rc = hwrm_req_init(bp, req, HWRM_DBG_RING_INFO_GET); 11127 if (rc) 11128 return rc; 11129 11130 req->ring_type = ring_type; 11131 req->fw_ring_id = cpu_to_le32(ring_id); 11132 resp = hwrm_req_hold(bp, req); 11133 rc = hwrm_req_send(bp, req); 11134 if (!rc) { 11135 *prod = le32_to_cpu(resp->producer_index); 11136 *cons = le32_to_cpu(resp->consumer_index); 11137 } 11138 hwrm_req_drop(bp, req); 11139 return rc; 11140 } 11141 11142 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi) 11143 { 11144 struct bnxt_tx_ring_info *txr = bnapi->tx_ring; 11145 int i = bnapi->index; 11146 11147 if (!txr) 11148 return; 11149 11150 netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n", 11151 i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod, 11152 txr->tx_cons); 11153 } 11154 11155 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi) 11156 { 11157 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 11158 int i = bnapi->index; 11159 11160 if (!rxr) 11161 return; 11162 11163 netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n", 11164 i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod, 11165 rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod, 11166 rxr->rx_sw_agg_prod); 11167 } 11168 11169 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi) 11170 { 11171 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 11172 int i = bnapi->index; 11173 11174 netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n", 11175 i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons); 11176 } 11177 11178 static void bnxt_dbg_dump_states(struct bnxt *bp) 11179 { 11180 int i; 11181 struct bnxt_napi *bnapi; 11182 11183 for (i = 0; i < bp->cp_nr_rings; i++) { 11184 bnapi = bp->bnapi[i]; 11185 if (netif_msg_drv(bp)) { 11186 bnxt_dump_tx_sw_state(bnapi); 11187 bnxt_dump_rx_sw_state(bnapi); 11188 bnxt_dump_cp_sw_state(bnapi); 11189 } 11190 } 11191 } 11192 11193 static int bnxt_hwrm_rx_ring_reset(struct bnxt *bp, int ring_nr) 11194 { 11195 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 11196 struct hwrm_ring_reset_input *req; 11197 struct bnxt_napi *bnapi = rxr->bnapi; 11198 struct bnxt_cp_ring_info *cpr; 11199 u16 cp_ring_id; 11200 int rc; 11201 11202 rc = hwrm_req_init(bp, req, HWRM_RING_RESET); 11203 if (rc) 11204 return rc; 11205 11206 cpr = &bnapi->cp_ring; 11207 cp_ring_id = cpr->cp_ring_struct.fw_ring_id; 11208 req->cmpl_ring = cpu_to_le16(cp_ring_id); 11209 req->ring_type = RING_RESET_REQ_RING_TYPE_RX_RING_GRP; 11210 req->ring_id = cpu_to_le16(bp->grp_info[bnapi->index].fw_grp_id); 11211 return hwrm_req_send_silent(bp, req); 11212 } 11213 11214 static void bnxt_reset_task(struct bnxt *bp, bool silent) 11215 { 11216 if (!silent) 11217 bnxt_dbg_dump_states(bp); 11218 if (netif_running(bp->dev)) { 11219 int rc; 11220 11221 if (silent) { 11222 bnxt_close_nic(bp, false, false); 11223 bnxt_open_nic(bp, false, false); 11224 } else { 11225 bnxt_ulp_stop(bp); 11226 bnxt_close_nic(bp, true, false); 11227 rc = bnxt_open_nic(bp, true, false); 11228 bnxt_ulp_start(bp, rc); 11229 } 11230 } 11231 } 11232 11233 static void bnxt_tx_timeout(struct net_device *dev, unsigned int txqueue) 11234 { 11235 struct bnxt *bp = netdev_priv(dev); 11236 11237 netdev_err(bp->dev, "TX timeout detected, starting reset task!\n"); 11238 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event); 11239 bnxt_queue_sp_work(bp); 11240 } 11241 11242 static void bnxt_fw_health_check(struct bnxt *bp) 11243 { 11244 struct bnxt_fw_health *fw_health = bp->fw_health; 11245 u32 val; 11246 11247 if (!fw_health->enabled || test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 11248 return; 11249 11250 if (fw_health->tmr_counter) { 11251 fw_health->tmr_counter--; 11252 return; 11253 } 11254 11255 val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 11256 if (val == fw_health->last_fw_heartbeat) 11257 goto fw_reset; 11258 11259 fw_health->last_fw_heartbeat = val; 11260 11261 val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 11262 if (val != fw_health->last_fw_reset_cnt) 11263 goto fw_reset; 11264 11265 fw_health->tmr_counter = fw_health->tmr_multiplier; 11266 return; 11267 11268 fw_reset: 11269 set_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event); 11270 bnxt_queue_sp_work(bp); 11271 } 11272 11273 static void bnxt_timer(struct timer_list *t) 11274 { 11275 struct bnxt *bp = from_timer(bp, t, timer); 11276 struct net_device *dev = bp->dev; 11277 11278 if (!netif_running(dev) || !test_bit(BNXT_STATE_OPEN, &bp->state)) 11279 return; 11280 11281 if (atomic_read(&bp->intr_sem) != 0) 11282 goto bnxt_restart_timer; 11283 11284 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) 11285 bnxt_fw_health_check(bp); 11286 11287 if (bp->link_info.link_up && bp->stats_coal_ticks) { 11288 set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event); 11289 bnxt_queue_sp_work(bp); 11290 } 11291 11292 if (bnxt_tc_flower_enabled(bp)) { 11293 set_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event); 11294 bnxt_queue_sp_work(bp); 11295 } 11296 11297 #ifdef CONFIG_RFS_ACCEL 11298 if ((bp->flags & BNXT_FLAG_RFS) && bp->ntp_fltr_count) { 11299 set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event); 11300 bnxt_queue_sp_work(bp); 11301 } 11302 #endif /*CONFIG_RFS_ACCEL*/ 11303 11304 if (bp->link_info.phy_retry) { 11305 if (time_after(jiffies, bp->link_info.phy_retry_expires)) { 11306 bp->link_info.phy_retry = false; 11307 netdev_warn(bp->dev, "failed to update phy settings after maximum retries.\n"); 11308 } else { 11309 set_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event); 11310 bnxt_queue_sp_work(bp); 11311 } 11312 } 11313 11314 if ((bp->flags & BNXT_FLAG_CHIP_P5) && !bp->chip_rev && 11315 netif_carrier_ok(dev)) { 11316 set_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event); 11317 bnxt_queue_sp_work(bp); 11318 } 11319 bnxt_restart_timer: 11320 mod_timer(&bp->timer, jiffies + bp->current_interval); 11321 } 11322 11323 static void bnxt_rtnl_lock_sp(struct bnxt *bp) 11324 { 11325 /* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK 11326 * set. If the device is being closed, bnxt_close() may be holding 11327 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear. So we 11328 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl(). 11329 */ 11330 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 11331 rtnl_lock(); 11332 } 11333 11334 static void bnxt_rtnl_unlock_sp(struct bnxt *bp) 11335 { 11336 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 11337 rtnl_unlock(); 11338 } 11339 11340 /* Only called from bnxt_sp_task() */ 11341 static void bnxt_reset(struct bnxt *bp, bool silent) 11342 { 11343 bnxt_rtnl_lock_sp(bp); 11344 if (test_bit(BNXT_STATE_OPEN, &bp->state)) 11345 bnxt_reset_task(bp, silent); 11346 bnxt_rtnl_unlock_sp(bp); 11347 } 11348 11349 /* Only called from bnxt_sp_task() */ 11350 static void bnxt_rx_ring_reset(struct bnxt *bp) 11351 { 11352 int i; 11353 11354 bnxt_rtnl_lock_sp(bp); 11355 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 11356 bnxt_rtnl_unlock_sp(bp); 11357 return; 11358 } 11359 /* Disable and flush TPA before resetting the RX ring */ 11360 if (bp->flags & BNXT_FLAG_TPA) 11361 bnxt_set_tpa(bp, false); 11362 for (i = 0; i < bp->rx_nr_rings; i++) { 11363 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 11364 struct bnxt_cp_ring_info *cpr; 11365 int rc; 11366 11367 if (!rxr->bnapi->in_reset) 11368 continue; 11369 11370 rc = bnxt_hwrm_rx_ring_reset(bp, i); 11371 if (rc) { 11372 if (rc == -EINVAL || rc == -EOPNOTSUPP) 11373 netdev_info_once(bp->dev, "RX ring reset not supported by firmware, falling back to global reset\n"); 11374 else 11375 netdev_warn(bp->dev, "RX ring reset failed, rc = %d, falling back to global reset\n", 11376 rc); 11377 bnxt_reset_task(bp, true); 11378 break; 11379 } 11380 bnxt_free_one_rx_ring_skbs(bp, i); 11381 rxr->rx_prod = 0; 11382 rxr->rx_agg_prod = 0; 11383 rxr->rx_sw_agg_prod = 0; 11384 rxr->rx_next_cons = 0; 11385 rxr->bnapi->in_reset = false; 11386 bnxt_alloc_one_rx_ring(bp, i); 11387 cpr = &rxr->bnapi->cp_ring; 11388 cpr->sw_stats.rx.rx_resets++; 11389 if (bp->flags & BNXT_FLAG_AGG_RINGS) 11390 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 11391 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 11392 } 11393 if (bp->flags & BNXT_FLAG_TPA) 11394 bnxt_set_tpa(bp, true); 11395 bnxt_rtnl_unlock_sp(bp); 11396 } 11397 11398 static void bnxt_fw_reset_close(struct bnxt *bp) 11399 { 11400 bnxt_ulp_stop(bp); 11401 /* When firmware is in fatal state, quiesce device and disable 11402 * bus master to prevent any potential bad DMAs before freeing 11403 * kernel memory. 11404 */ 11405 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) { 11406 u16 val = 0; 11407 11408 pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val); 11409 if (val == 0xffff) 11410 bp->fw_reset_min_dsecs = 0; 11411 bnxt_tx_disable(bp); 11412 bnxt_disable_napi(bp); 11413 bnxt_disable_int_sync(bp); 11414 bnxt_free_irq(bp); 11415 bnxt_clear_int_mode(bp); 11416 pci_disable_device(bp->pdev); 11417 } 11418 __bnxt_close_nic(bp, true, false); 11419 bnxt_vf_reps_free(bp); 11420 bnxt_clear_int_mode(bp); 11421 bnxt_hwrm_func_drv_unrgtr(bp); 11422 if (pci_is_enabled(bp->pdev)) 11423 pci_disable_device(bp->pdev); 11424 bnxt_free_ctx_mem(bp); 11425 kfree(bp->ctx); 11426 bp->ctx = NULL; 11427 } 11428 11429 static bool is_bnxt_fw_ok(struct bnxt *bp) 11430 { 11431 struct bnxt_fw_health *fw_health = bp->fw_health; 11432 bool no_heartbeat = false, has_reset = false; 11433 u32 val; 11434 11435 val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 11436 if (val == fw_health->last_fw_heartbeat) 11437 no_heartbeat = true; 11438 11439 val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 11440 if (val != fw_health->last_fw_reset_cnt) 11441 has_reset = true; 11442 11443 if (!no_heartbeat && has_reset) 11444 return true; 11445 11446 return false; 11447 } 11448 11449 /* rtnl_lock is acquired before calling this function */ 11450 static void bnxt_force_fw_reset(struct bnxt *bp) 11451 { 11452 struct bnxt_fw_health *fw_health = bp->fw_health; 11453 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 11454 u32 wait_dsecs; 11455 11456 if (!test_bit(BNXT_STATE_OPEN, &bp->state) || 11457 test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 11458 return; 11459 11460 if (ptp) { 11461 spin_lock_bh(&ptp->ptp_lock); 11462 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 11463 spin_unlock_bh(&ptp->ptp_lock); 11464 } else { 11465 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 11466 } 11467 bnxt_fw_reset_close(bp); 11468 wait_dsecs = fw_health->master_func_wait_dsecs; 11469 if (fw_health->master) { 11470 if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) 11471 wait_dsecs = 0; 11472 bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW; 11473 } else { 11474 bp->fw_reset_timestamp = jiffies + wait_dsecs * HZ / 10; 11475 wait_dsecs = fw_health->normal_func_wait_dsecs; 11476 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 11477 } 11478 11479 bp->fw_reset_min_dsecs = fw_health->post_reset_wait_dsecs; 11480 bp->fw_reset_max_dsecs = fw_health->post_reset_max_wait_dsecs; 11481 bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10); 11482 } 11483 11484 void bnxt_fw_exception(struct bnxt *bp) 11485 { 11486 netdev_warn(bp->dev, "Detected firmware fatal condition, initiating reset\n"); 11487 set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 11488 bnxt_rtnl_lock_sp(bp); 11489 bnxt_force_fw_reset(bp); 11490 bnxt_rtnl_unlock_sp(bp); 11491 } 11492 11493 /* Returns the number of registered VFs, or 1 if VF configuration is pending, or 11494 * < 0 on error. 11495 */ 11496 static int bnxt_get_registered_vfs(struct bnxt *bp) 11497 { 11498 #ifdef CONFIG_BNXT_SRIOV 11499 int rc; 11500 11501 if (!BNXT_PF(bp)) 11502 return 0; 11503 11504 rc = bnxt_hwrm_func_qcfg(bp); 11505 if (rc) { 11506 netdev_err(bp->dev, "func_qcfg cmd failed, rc = %d\n", rc); 11507 return rc; 11508 } 11509 if (bp->pf.registered_vfs) 11510 return bp->pf.registered_vfs; 11511 if (bp->sriov_cfg) 11512 return 1; 11513 #endif 11514 return 0; 11515 } 11516 11517 void bnxt_fw_reset(struct bnxt *bp) 11518 { 11519 bnxt_rtnl_lock_sp(bp); 11520 if (test_bit(BNXT_STATE_OPEN, &bp->state) && 11521 !test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 11522 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 11523 int n = 0, tmo; 11524 11525 if (ptp) { 11526 spin_lock_bh(&ptp->ptp_lock); 11527 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 11528 spin_unlock_bh(&ptp->ptp_lock); 11529 } else { 11530 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 11531 } 11532 if (bp->pf.active_vfs && 11533 !test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) 11534 n = bnxt_get_registered_vfs(bp); 11535 if (n < 0) { 11536 netdev_err(bp->dev, "Firmware reset aborted, rc = %d\n", 11537 n); 11538 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 11539 dev_close(bp->dev); 11540 goto fw_reset_exit; 11541 } else if (n > 0) { 11542 u16 vf_tmo_dsecs = n * 10; 11543 11544 if (bp->fw_reset_max_dsecs < vf_tmo_dsecs) 11545 bp->fw_reset_max_dsecs = vf_tmo_dsecs; 11546 bp->fw_reset_state = 11547 BNXT_FW_RESET_STATE_POLL_VF; 11548 bnxt_queue_fw_reset_work(bp, HZ / 10); 11549 goto fw_reset_exit; 11550 } 11551 bnxt_fw_reset_close(bp); 11552 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 11553 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN; 11554 tmo = HZ / 10; 11555 } else { 11556 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 11557 tmo = bp->fw_reset_min_dsecs * HZ / 10; 11558 } 11559 bnxt_queue_fw_reset_work(bp, tmo); 11560 } 11561 fw_reset_exit: 11562 bnxt_rtnl_unlock_sp(bp); 11563 } 11564 11565 static void bnxt_chk_missed_irq(struct bnxt *bp) 11566 { 11567 int i; 11568 11569 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 11570 return; 11571 11572 for (i = 0; i < bp->cp_nr_rings; i++) { 11573 struct bnxt_napi *bnapi = bp->bnapi[i]; 11574 struct bnxt_cp_ring_info *cpr; 11575 u32 fw_ring_id; 11576 int j; 11577 11578 if (!bnapi) 11579 continue; 11580 11581 cpr = &bnapi->cp_ring; 11582 for (j = 0; j < 2; j++) { 11583 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j]; 11584 u32 val[2]; 11585 11586 if (!cpr2 || cpr2->has_more_work || 11587 !bnxt_has_work(bp, cpr2)) 11588 continue; 11589 11590 if (cpr2->cp_raw_cons != cpr2->last_cp_raw_cons) { 11591 cpr2->last_cp_raw_cons = cpr2->cp_raw_cons; 11592 continue; 11593 } 11594 fw_ring_id = cpr2->cp_ring_struct.fw_ring_id; 11595 bnxt_dbg_hwrm_ring_info_get(bp, 11596 DBG_RING_INFO_GET_REQ_RING_TYPE_L2_CMPL, 11597 fw_ring_id, &val[0], &val[1]); 11598 cpr->sw_stats.cmn.missed_irqs++; 11599 } 11600 } 11601 } 11602 11603 static void bnxt_cfg_ntp_filters(struct bnxt *); 11604 11605 static void bnxt_init_ethtool_link_settings(struct bnxt *bp) 11606 { 11607 struct bnxt_link_info *link_info = &bp->link_info; 11608 11609 if (BNXT_AUTO_MODE(link_info->auto_mode)) { 11610 link_info->autoneg = BNXT_AUTONEG_SPEED; 11611 if (bp->hwrm_spec_code >= 0x10201) { 11612 if (link_info->auto_pause_setting & 11613 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE) 11614 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL; 11615 } else { 11616 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL; 11617 } 11618 link_info->advertising = link_info->auto_link_speeds; 11619 link_info->advertising_pam4 = link_info->auto_pam4_link_speeds; 11620 } else { 11621 link_info->req_link_speed = link_info->force_link_speed; 11622 link_info->req_signal_mode = BNXT_SIG_MODE_NRZ; 11623 if (link_info->force_pam4_link_speed) { 11624 link_info->req_link_speed = 11625 link_info->force_pam4_link_speed; 11626 link_info->req_signal_mode = BNXT_SIG_MODE_PAM4; 11627 } 11628 link_info->req_duplex = link_info->duplex_setting; 11629 } 11630 if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) 11631 link_info->req_flow_ctrl = 11632 link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH; 11633 else 11634 link_info->req_flow_ctrl = link_info->force_pause_setting; 11635 } 11636 11637 static void bnxt_fw_echo_reply(struct bnxt *bp) 11638 { 11639 struct bnxt_fw_health *fw_health = bp->fw_health; 11640 struct hwrm_func_echo_response_input *req; 11641 int rc; 11642 11643 rc = hwrm_req_init(bp, req, HWRM_FUNC_ECHO_RESPONSE); 11644 if (rc) 11645 return; 11646 req->event_data1 = cpu_to_le32(fw_health->echo_req_data1); 11647 req->event_data2 = cpu_to_le32(fw_health->echo_req_data2); 11648 hwrm_req_send(bp, req); 11649 } 11650 11651 static void bnxt_sp_task(struct work_struct *work) 11652 { 11653 struct bnxt *bp = container_of(work, struct bnxt, sp_task); 11654 11655 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 11656 smp_mb__after_atomic(); 11657 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 11658 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 11659 return; 11660 } 11661 11662 if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event)) 11663 bnxt_cfg_rx_mode(bp); 11664 11665 if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event)) 11666 bnxt_cfg_ntp_filters(bp); 11667 if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event)) 11668 bnxt_hwrm_exec_fwd_req(bp); 11669 if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) { 11670 bnxt_hwrm_port_qstats(bp, 0); 11671 bnxt_hwrm_port_qstats_ext(bp, 0); 11672 bnxt_accumulate_all_stats(bp); 11673 } 11674 11675 if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) { 11676 int rc; 11677 11678 mutex_lock(&bp->link_lock); 11679 if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, 11680 &bp->sp_event)) 11681 bnxt_hwrm_phy_qcaps(bp); 11682 11683 rc = bnxt_update_link(bp, true); 11684 if (rc) 11685 netdev_err(bp->dev, "SP task can't update link (rc: %x)\n", 11686 rc); 11687 11688 if (test_and_clear_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, 11689 &bp->sp_event)) 11690 bnxt_init_ethtool_link_settings(bp); 11691 mutex_unlock(&bp->link_lock); 11692 } 11693 if (test_and_clear_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event)) { 11694 int rc; 11695 11696 mutex_lock(&bp->link_lock); 11697 rc = bnxt_update_phy_setting(bp); 11698 mutex_unlock(&bp->link_lock); 11699 if (rc) { 11700 netdev_warn(bp->dev, "update phy settings retry failed\n"); 11701 } else { 11702 bp->link_info.phy_retry = false; 11703 netdev_info(bp->dev, "update phy settings retry succeeded\n"); 11704 } 11705 } 11706 if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) { 11707 mutex_lock(&bp->link_lock); 11708 bnxt_get_port_module_status(bp); 11709 mutex_unlock(&bp->link_lock); 11710 } 11711 11712 if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event)) 11713 bnxt_tc_flow_stats_work(bp); 11714 11715 if (test_and_clear_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event)) 11716 bnxt_chk_missed_irq(bp); 11717 11718 if (test_and_clear_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event)) 11719 bnxt_fw_echo_reply(bp); 11720 11721 /* These functions below will clear BNXT_STATE_IN_SP_TASK. They 11722 * must be the last functions to be called before exiting. 11723 */ 11724 if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event)) 11725 bnxt_reset(bp, false); 11726 11727 if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event)) 11728 bnxt_reset(bp, true); 11729 11730 if (test_and_clear_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event)) 11731 bnxt_rx_ring_reset(bp); 11732 11733 if (test_and_clear_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event)) 11734 bnxt_devlink_health_report(bp, BNXT_FW_RESET_NOTIFY_SP_EVENT); 11735 11736 if (test_and_clear_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event)) { 11737 if (!is_bnxt_fw_ok(bp)) 11738 bnxt_devlink_health_report(bp, 11739 BNXT_FW_EXCEPTION_SP_EVENT); 11740 } 11741 11742 smp_mb__before_atomic(); 11743 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 11744 } 11745 11746 /* Under rtnl_lock */ 11747 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs, 11748 int tx_xdp) 11749 { 11750 int max_rx, max_tx, tx_sets = 1; 11751 int tx_rings_needed, stats; 11752 int rx_rings = rx; 11753 int cp, vnics, rc; 11754 11755 if (tcs) 11756 tx_sets = tcs; 11757 11758 rc = bnxt_get_max_rings(bp, &max_rx, &max_tx, sh); 11759 if (rc) 11760 return rc; 11761 11762 if (max_rx < rx) 11763 return -ENOMEM; 11764 11765 tx_rings_needed = tx * tx_sets + tx_xdp; 11766 if (max_tx < tx_rings_needed) 11767 return -ENOMEM; 11768 11769 vnics = 1; 11770 if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS) 11771 vnics += rx_rings; 11772 11773 if (bp->flags & BNXT_FLAG_AGG_RINGS) 11774 rx_rings <<= 1; 11775 cp = sh ? max_t(int, tx_rings_needed, rx) : tx_rings_needed + rx; 11776 stats = cp; 11777 if (BNXT_NEW_RM(bp)) { 11778 cp += bnxt_get_ulp_msix_num(bp); 11779 stats += bnxt_get_ulp_stat_ctxs(bp); 11780 } 11781 return bnxt_hwrm_check_rings(bp, tx_rings_needed, rx_rings, rx, cp, 11782 stats, vnics); 11783 } 11784 11785 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev) 11786 { 11787 if (bp->bar2) { 11788 pci_iounmap(pdev, bp->bar2); 11789 bp->bar2 = NULL; 11790 } 11791 11792 if (bp->bar1) { 11793 pci_iounmap(pdev, bp->bar1); 11794 bp->bar1 = NULL; 11795 } 11796 11797 if (bp->bar0) { 11798 pci_iounmap(pdev, bp->bar0); 11799 bp->bar0 = NULL; 11800 } 11801 } 11802 11803 static void bnxt_cleanup_pci(struct bnxt *bp) 11804 { 11805 bnxt_unmap_bars(bp, bp->pdev); 11806 pci_release_regions(bp->pdev); 11807 if (pci_is_enabled(bp->pdev)) 11808 pci_disable_device(bp->pdev); 11809 } 11810 11811 static void bnxt_init_dflt_coal(struct bnxt *bp) 11812 { 11813 struct bnxt_coal *coal; 11814 11815 /* Tick values in micro seconds. 11816 * 1 coal_buf x bufs_per_record = 1 completion record. 11817 */ 11818 coal = &bp->rx_coal; 11819 coal->coal_ticks = 10; 11820 coal->coal_bufs = 30; 11821 coal->coal_ticks_irq = 1; 11822 coal->coal_bufs_irq = 2; 11823 coal->idle_thresh = 50; 11824 coal->bufs_per_record = 2; 11825 coal->budget = 64; /* NAPI budget */ 11826 11827 coal = &bp->tx_coal; 11828 coal->coal_ticks = 28; 11829 coal->coal_bufs = 30; 11830 coal->coal_ticks_irq = 2; 11831 coal->coal_bufs_irq = 2; 11832 coal->bufs_per_record = 1; 11833 11834 bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS; 11835 } 11836 11837 static int bnxt_fw_init_one_p1(struct bnxt *bp) 11838 { 11839 int rc; 11840 11841 bp->fw_cap = 0; 11842 rc = bnxt_hwrm_ver_get(bp); 11843 bnxt_try_map_fw_health_reg(bp); 11844 if (rc) { 11845 rc = bnxt_try_recover_fw(bp); 11846 if (rc) 11847 return rc; 11848 rc = bnxt_hwrm_ver_get(bp); 11849 if (rc) 11850 return rc; 11851 } 11852 11853 bnxt_nvm_cfg_ver_get(bp); 11854 11855 rc = bnxt_hwrm_func_reset(bp); 11856 if (rc) 11857 return -ENODEV; 11858 11859 bnxt_hwrm_fw_set_time(bp); 11860 return 0; 11861 } 11862 11863 static int bnxt_fw_init_one_p2(struct bnxt *bp) 11864 { 11865 int rc; 11866 11867 /* Get the MAX capabilities for this function */ 11868 rc = bnxt_hwrm_func_qcaps(bp); 11869 if (rc) { 11870 netdev_err(bp->dev, "hwrm query capability failure rc: %x\n", 11871 rc); 11872 return -ENODEV; 11873 } 11874 11875 rc = bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(bp); 11876 if (rc) 11877 netdev_warn(bp->dev, "hwrm query adv flow mgnt failure rc: %d\n", 11878 rc); 11879 11880 if (bnxt_alloc_fw_health(bp)) { 11881 netdev_warn(bp->dev, "no memory for firmware error recovery\n"); 11882 } else { 11883 rc = bnxt_hwrm_error_recovery_qcfg(bp); 11884 if (rc) 11885 netdev_warn(bp->dev, "hwrm query error recovery failure rc: %d\n", 11886 rc); 11887 } 11888 11889 rc = bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false); 11890 if (rc) 11891 return -ENODEV; 11892 11893 bnxt_hwrm_func_qcfg(bp); 11894 bnxt_hwrm_vnic_qcaps(bp); 11895 bnxt_hwrm_port_led_qcaps(bp); 11896 bnxt_ethtool_init(bp); 11897 bnxt_dcb_init(bp); 11898 return 0; 11899 } 11900 11901 static void bnxt_set_dflt_rss_hash_type(struct bnxt *bp) 11902 { 11903 bp->flags &= ~BNXT_FLAG_UDP_RSS_CAP; 11904 bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 | 11905 VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 | 11906 VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 | 11907 VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6; 11908 if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) { 11909 bp->flags |= BNXT_FLAG_UDP_RSS_CAP; 11910 bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 | 11911 VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6; 11912 } 11913 } 11914 11915 static void bnxt_set_dflt_rfs(struct bnxt *bp) 11916 { 11917 struct net_device *dev = bp->dev; 11918 11919 dev->hw_features &= ~NETIF_F_NTUPLE; 11920 dev->features &= ~NETIF_F_NTUPLE; 11921 bp->flags &= ~BNXT_FLAG_RFS; 11922 if (bnxt_rfs_supported(bp)) { 11923 dev->hw_features |= NETIF_F_NTUPLE; 11924 if (bnxt_rfs_capable(bp)) { 11925 bp->flags |= BNXT_FLAG_RFS; 11926 dev->features |= NETIF_F_NTUPLE; 11927 } 11928 } 11929 } 11930 11931 static void bnxt_fw_init_one_p3(struct bnxt *bp) 11932 { 11933 struct pci_dev *pdev = bp->pdev; 11934 11935 bnxt_set_dflt_rss_hash_type(bp); 11936 bnxt_set_dflt_rfs(bp); 11937 11938 bnxt_get_wol_settings(bp); 11939 if (bp->flags & BNXT_FLAG_WOL_CAP) 11940 device_set_wakeup_enable(&pdev->dev, bp->wol); 11941 else 11942 device_set_wakeup_capable(&pdev->dev, false); 11943 11944 bnxt_hwrm_set_cache_line_size(bp, cache_line_size()); 11945 bnxt_hwrm_coal_params_qcaps(bp); 11946 } 11947 11948 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt); 11949 11950 static int bnxt_fw_init_one(struct bnxt *bp) 11951 { 11952 int rc; 11953 11954 rc = bnxt_fw_init_one_p1(bp); 11955 if (rc) { 11956 netdev_err(bp->dev, "Firmware init phase 1 failed\n"); 11957 return rc; 11958 } 11959 rc = bnxt_fw_init_one_p2(bp); 11960 if (rc) { 11961 netdev_err(bp->dev, "Firmware init phase 2 failed\n"); 11962 return rc; 11963 } 11964 rc = bnxt_probe_phy(bp, false); 11965 if (rc) 11966 return rc; 11967 rc = bnxt_approve_mac(bp, bp->dev->dev_addr, false); 11968 if (rc) 11969 return rc; 11970 11971 /* In case fw capabilities have changed, destroy the unneeded 11972 * reporters and create newly capable ones. 11973 */ 11974 bnxt_dl_fw_reporters_destroy(bp, false); 11975 bnxt_dl_fw_reporters_create(bp); 11976 bnxt_fw_init_one_p3(bp); 11977 return 0; 11978 } 11979 11980 static void bnxt_fw_reset_writel(struct bnxt *bp, int reg_idx) 11981 { 11982 struct bnxt_fw_health *fw_health = bp->fw_health; 11983 u32 reg = fw_health->fw_reset_seq_regs[reg_idx]; 11984 u32 val = fw_health->fw_reset_seq_vals[reg_idx]; 11985 u32 reg_type, reg_off, delay_msecs; 11986 11987 delay_msecs = fw_health->fw_reset_seq_delay_msec[reg_idx]; 11988 reg_type = BNXT_FW_HEALTH_REG_TYPE(reg); 11989 reg_off = BNXT_FW_HEALTH_REG_OFF(reg); 11990 switch (reg_type) { 11991 case BNXT_FW_HEALTH_REG_TYPE_CFG: 11992 pci_write_config_dword(bp->pdev, reg_off, val); 11993 break; 11994 case BNXT_FW_HEALTH_REG_TYPE_GRC: 11995 writel(reg_off & BNXT_GRC_BASE_MASK, 11996 bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4); 11997 reg_off = (reg_off & BNXT_GRC_OFFSET_MASK) + 0x2000; 11998 fallthrough; 11999 case BNXT_FW_HEALTH_REG_TYPE_BAR0: 12000 writel(val, bp->bar0 + reg_off); 12001 break; 12002 case BNXT_FW_HEALTH_REG_TYPE_BAR1: 12003 writel(val, bp->bar1 + reg_off); 12004 break; 12005 } 12006 if (delay_msecs) { 12007 pci_read_config_dword(bp->pdev, 0, &val); 12008 msleep(delay_msecs); 12009 } 12010 } 12011 12012 static void bnxt_reset_all(struct bnxt *bp) 12013 { 12014 struct bnxt_fw_health *fw_health = bp->fw_health; 12015 int i, rc; 12016 12017 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 12018 bnxt_fw_reset_via_optee(bp); 12019 bp->fw_reset_timestamp = jiffies; 12020 return; 12021 } 12022 12023 if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_HOST) { 12024 for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) 12025 bnxt_fw_reset_writel(bp, i); 12026 } else if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) { 12027 struct hwrm_fw_reset_input *req; 12028 12029 rc = hwrm_req_init(bp, req, HWRM_FW_RESET); 12030 if (!rc) { 12031 req->target_id = cpu_to_le16(HWRM_TARGET_ID_KONG); 12032 req->embedded_proc_type = FW_RESET_REQ_EMBEDDED_PROC_TYPE_CHIP; 12033 req->selfrst_status = FW_RESET_REQ_SELFRST_STATUS_SELFRSTASAP; 12034 req->flags = FW_RESET_REQ_FLAGS_RESET_GRACEFUL; 12035 rc = hwrm_req_send(bp, req); 12036 } 12037 if (rc != -ENODEV) 12038 netdev_warn(bp->dev, "Unable to reset FW rc=%d\n", rc); 12039 } 12040 bp->fw_reset_timestamp = jiffies; 12041 } 12042 12043 static bool bnxt_fw_reset_timeout(struct bnxt *bp) 12044 { 12045 return time_after(jiffies, bp->fw_reset_timestamp + 12046 (bp->fw_reset_max_dsecs * HZ / 10)); 12047 } 12048 12049 static void bnxt_fw_reset_abort(struct bnxt *bp, int rc) 12050 { 12051 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 12052 if (bp->fw_reset_state != BNXT_FW_RESET_STATE_POLL_VF) { 12053 bnxt_ulp_start(bp, rc); 12054 bnxt_dl_health_status_update(bp, false); 12055 } 12056 bp->fw_reset_state = 0; 12057 dev_close(bp->dev); 12058 } 12059 12060 static void bnxt_fw_reset_task(struct work_struct *work) 12061 { 12062 struct bnxt *bp = container_of(work, struct bnxt, fw_reset_task.work); 12063 int rc = 0; 12064 12065 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 12066 netdev_err(bp->dev, "bnxt_fw_reset_task() called when not in fw reset mode!\n"); 12067 return; 12068 } 12069 12070 switch (bp->fw_reset_state) { 12071 case BNXT_FW_RESET_STATE_POLL_VF: { 12072 int n = bnxt_get_registered_vfs(bp); 12073 int tmo; 12074 12075 if (n < 0) { 12076 netdev_err(bp->dev, "Firmware reset aborted, subsequent func_qcfg cmd failed, rc = %d, %d msecs since reset timestamp\n", 12077 n, jiffies_to_msecs(jiffies - 12078 bp->fw_reset_timestamp)); 12079 goto fw_reset_abort; 12080 } else if (n > 0) { 12081 if (bnxt_fw_reset_timeout(bp)) { 12082 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 12083 bp->fw_reset_state = 0; 12084 netdev_err(bp->dev, "Firmware reset aborted, bnxt_get_registered_vfs() returns %d\n", 12085 n); 12086 return; 12087 } 12088 bnxt_queue_fw_reset_work(bp, HZ / 10); 12089 return; 12090 } 12091 bp->fw_reset_timestamp = jiffies; 12092 rtnl_lock(); 12093 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 12094 bnxt_fw_reset_abort(bp, rc); 12095 rtnl_unlock(); 12096 return; 12097 } 12098 bnxt_fw_reset_close(bp); 12099 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 12100 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN; 12101 tmo = HZ / 10; 12102 } else { 12103 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 12104 tmo = bp->fw_reset_min_dsecs * HZ / 10; 12105 } 12106 rtnl_unlock(); 12107 bnxt_queue_fw_reset_work(bp, tmo); 12108 return; 12109 } 12110 case BNXT_FW_RESET_STATE_POLL_FW_DOWN: { 12111 u32 val; 12112 12113 val = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 12114 if (!(val & BNXT_FW_STATUS_SHUTDOWN) && 12115 !bnxt_fw_reset_timeout(bp)) { 12116 bnxt_queue_fw_reset_work(bp, HZ / 5); 12117 return; 12118 } 12119 12120 if (!bp->fw_health->master) { 12121 u32 wait_dsecs = bp->fw_health->normal_func_wait_dsecs; 12122 12123 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 12124 bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10); 12125 return; 12126 } 12127 bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW; 12128 } 12129 fallthrough; 12130 case BNXT_FW_RESET_STATE_RESET_FW: 12131 bnxt_reset_all(bp); 12132 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 12133 bnxt_queue_fw_reset_work(bp, bp->fw_reset_min_dsecs * HZ / 10); 12134 return; 12135 case BNXT_FW_RESET_STATE_ENABLE_DEV: 12136 bnxt_inv_fw_health_reg(bp); 12137 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) && 12138 !bp->fw_reset_min_dsecs) { 12139 u16 val; 12140 12141 pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val); 12142 if (val == 0xffff) { 12143 if (bnxt_fw_reset_timeout(bp)) { 12144 netdev_err(bp->dev, "Firmware reset aborted, PCI config space invalid\n"); 12145 rc = -ETIMEDOUT; 12146 goto fw_reset_abort; 12147 } 12148 bnxt_queue_fw_reset_work(bp, HZ / 1000); 12149 return; 12150 } 12151 } 12152 clear_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 12153 if (pci_enable_device(bp->pdev)) { 12154 netdev_err(bp->dev, "Cannot re-enable PCI device\n"); 12155 rc = -ENODEV; 12156 goto fw_reset_abort; 12157 } 12158 pci_set_master(bp->pdev); 12159 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW; 12160 fallthrough; 12161 case BNXT_FW_RESET_STATE_POLL_FW: 12162 bp->hwrm_cmd_timeout = SHORT_HWRM_CMD_TIMEOUT; 12163 rc = bnxt_hwrm_poll(bp); 12164 if (rc) { 12165 if (bnxt_fw_reset_timeout(bp)) { 12166 netdev_err(bp->dev, "Firmware reset aborted\n"); 12167 goto fw_reset_abort_status; 12168 } 12169 bnxt_queue_fw_reset_work(bp, HZ / 5); 12170 return; 12171 } 12172 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT; 12173 bp->fw_reset_state = BNXT_FW_RESET_STATE_OPENING; 12174 fallthrough; 12175 case BNXT_FW_RESET_STATE_OPENING: 12176 while (!rtnl_trylock()) { 12177 bnxt_queue_fw_reset_work(bp, HZ / 10); 12178 return; 12179 } 12180 rc = bnxt_open(bp->dev); 12181 if (rc) { 12182 netdev_err(bp->dev, "bnxt_open() failed during FW reset\n"); 12183 bnxt_fw_reset_abort(bp, rc); 12184 rtnl_unlock(); 12185 return; 12186 } 12187 12188 bp->fw_reset_state = 0; 12189 /* Make sure fw_reset_state is 0 before clearing the flag */ 12190 smp_mb__before_atomic(); 12191 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 12192 bnxt_ulp_start(bp, 0); 12193 bnxt_reenable_sriov(bp); 12194 bnxt_vf_reps_alloc(bp); 12195 bnxt_vf_reps_open(bp); 12196 bnxt_ptp_reapply_pps(bp); 12197 bnxt_dl_health_recovery_done(bp); 12198 bnxt_dl_health_status_update(bp, true); 12199 rtnl_unlock(); 12200 break; 12201 } 12202 return; 12203 12204 fw_reset_abort_status: 12205 if (bp->fw_health->status_reliable || 12206 (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) { 12207 u32 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 12208 12209 netdev_err(bp->dev, "fw_health_status 0x%x\n", sts); 12210 } 12211 fw_reset_abort: 12212 rtnl_lock(); 12213 bnxt_fw_reset_abort(bp, rc); 12214 rtnl_unlock(); 12215 } 12216 12217 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev) 12218 { 12219 int rc; 12220 struct bnxt *bp = netdev_priv(dev); 12221 12222 SET_NETDEV_DEV(dev, &pdev->dev); 12223 12224 /* enable device (incl. PCI PM wakeup), and bus-mastering */ 12225 rc = pci_enable_device(pdev); 12226 if (rc) { 12227 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n"); 12228 goto init_err; 12229 } 12230 12231 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { 12232 dev_err(&pdev->dev, 12233 "Cannot find PCI device base address, aborting\n"); 12234 rc = -ENODEV; 12235 goto init_err_disable; 12236 } 12237 12238 rc = pci_request_regions(pdev, DRV_MODULE_NAME); 12239 if (rc) { 12240 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n"); 12241 goto init_err_disable; 12242 } 12243 12244 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 && 12245 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) { 12246 dev_err(&pdev->dev, "System does not support DMA, aborting\n"); 12247 rc = -EIO; 12248 goto init_err_release; 12249 } 12250 12251 pci_set_master(pdev); 12252 12253 bp->dev = dev; 12254 bp->pdev = pdev; 12255 12256 /* Doorbell BAR bp->bar1 is mapped after bnxt_fw_init_one_p2() 12257 * determines the BAR size. 12258 */ 12259 bp->bar0 = pci_ioremap_bar(pdev, 0); 12260 if (!bp->bar0) { 12261 dev_err(&pdev->dev, "Cannot map device registers, aborting\n"); 12262 rc = -ENOMEM; 12263 goto init_err_release; 12264 } 12265 12266 bp->bar2 = pci_ioremap_bar(pdev, 4); 12267 if (!bp->bar2) { 12268 dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n"); 12269 rc = -ENOMEM; 12270 goto init_err_release; 12271 } 12272 12273 pci_enable_pcie_error_reporting(pdev); 12274 12275 INIT_WORK(&bp->sp_task, bnxt_sp_task); 12276 INIT_DELAYED_WORK(&bp->fw_reset_task, bnxt_fw_reset_task); 12277 12278 spin_lock_init(&bp->ntp_fltr_lock); 12279 #if BITS_PER_LONG == 32 12280 spin_lock_init(&bp->db_lock); 12281 #endif 12282 12283 bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE; 12284 bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE; 12285 12286 bnxt_init_dflt_coal(bp); 12287 12288 timer_setup(&bp->timer, bnxt_timer, 0); 12289 bp->current_interval = BNXT_TIMER_INTERVAL; 12290 12291 bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID; 12292 bp->nge_fw_dst_port_id = INVALID_HW_RING_ID; 12293 12294 clear_bit(BNXT_STATE_OPEN, &bp->state); 12295 return 0; 12296 12297 init_err_release: 12298 bnxt_unmap_bars(bp, pdev); 12299 pci_release_regions(pdev); 12300 12301 init_err_disable: 12302 pci_disable_device(pdev); 12303 12304 init_err: 12305 return rc; 12306 } 12307 12308 /* rtnl_lock held */ 12309 static int bnxt_change_mac_addr(struct net_device *dev, void *p) 12310 { 12311 struct sockaddr *addr = p; 12312 struct bnxt *bp = netdev_priv(dev); 12313 int rc = 0; 12314 12315 if (!is_valid_ether_addr(addr->sa_data)) 12316 return -EADDRNOTAVAIL; 12317 12318 if (ether_addr_equal(addr->sa_data, dev->dev_addr)) 12319 return 0; 12320 12321 rc = bnxt_approve_mac(bp, addr->sa_data, true); 12322 if (rc) 12323 return rc; 12324 12325 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 12326 if (netif_running(dev)) { 12327 bnxt_close_nic(bp, false, false); 12328 rc = bnxt_open_nic(bp, false, false); 12329 } 12330 12331 return rc; 12332 } 12333 12334 /* rtnl_lock held */ 12335 static int bnxt_change_mtu(struct net_device *dev, int new_mtu) 12336 { 12337 struct bnxt *bp = netdev_priv(dev); 12338 12339 if (netif_running(dev)) 12340 bnxt_close_nic(bp, true, false); 12341 12342 dev->mtu = new_mtu; 12343 bnxt_set_ring_params(bp); 12344 12345 if (netif_running(dev)) 12346 return bnxt_open_nic(bp, true, false); 12347 12348 return 0; 12349 } 12350 12351 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc) 12352 { 12353 struct bnxt *bp = netdev_priv(dev); 12354 bool sh = false; 12355 int rc; 12356 12357 if (tc > bp->max_tc) { 12358 netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n", 12359 tc, bp->max_tc); 12360 return -EINVAL; 12361 } 12362 12363 if (netdev_get_num_tc(dev) == tc) 12364 return 0; 12365 12366 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 12367 sh = true; 12368 12369 rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings, 12370 sh, tc, bp->tx_nr_rings_xdp); 12371 if (rc) 12372 return rc; 12373 12374 /* Needs to close the device and do hw resource re-allocations */ 12375 if (netif_running(bp->dev)) 12376 bnxt_close_nic(bp, true, false); 12377 12378 if (tc) { 12379 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc; 12380 netdev_set_num_tc(dev, tc); 12381 } else { 12382 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 12383 netdev_reset_tc(dev); 12384 } 12385 bp->tx_nr_rings += bp->tx_nr_rings_xdp; 12386 bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) : 12387 bp->tx_nr_rings + bp->rx_nr_rings; 12388 12389 if (netif_running(bp->dev)) 12390 return bnxt_open_nic(bp, true, false); 12391 12392 return 0; 12393 } 12394 12395 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 12396 void *cb_priv) 12397 { 12398 struct bnxt *bp = cb_priv; 12399 12400 if (!bnxt_tc_flower_enabled(bp) || 12401 !tc_cls_can_offload_and_chain0(bp->dev, type_data)) 12402 return -EOPNOTSUPP; 12403 12404 switch (type) { 12405 case TC_SETUP_CLSFLOWER: 12406 return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data); 12407 default: 12408 return -EOPNOTSUPP; 12409 } 12410 } 12411 12412 LIST_HEAD(bnxt_block_cb_list); 12413 12414 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type, 12415 void *type_data) 12416 { 12417 struct bnxt *bp = netdev_priv(dev); 12418 12419 switch (type) { 12420 case TC_SETUP_BLOCK: 12421 return flow_block_cb_setup_simple(type_data, 12422 &bnxt_block_cb_list, 12423 bnxt_setup_tc_block_cb, 12424 bp, bp, true); 12425 case TC_SETUP_QDISC_MQPRIO: { 12426 struct tc_mqprio_qopt *mqprio = type_data; 12427 12428 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 12429 12430 return bnxt_setup_mq_tc(dev, mqprio->num_tc); 12431 } 12432 default: 12433 return -EOPNOTSUPP; 12434 } 12435 } 12436 12437 #ifdef CONFIG_RFS_ACCEL 12438 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1, 12439 struct bnxt_ntuple_filter *f2) 12440 { 12441 struct flow_keys *keys1 = &f1->fkeys; 12442 struct flow_keys *keys2 = &f2->fkeys; 12443 12444 if (keys1->basic.n_proto != keys2->basic.n_proto || 12445 keys1->basic.ip_proto != keys2->basic.ip_proto) 12446 return false; 12447 12448 if (keys1->basic.n_proto == htons(ETH_P_IP)) { 12449 if (keys1->addrs.v4addrs.src != keys2->addrs.v4addrs.src || 12450 keys1->addrs.v4addrs.dst != keys2->addrs.v4addrs.dst) 12451 return false; 12452 } else { 12453 if (memcmp(&keys1->addrs.v6addrs.src, &keys2->addrs.v6addrs.src, 12454 sizeof(keys1->addrs.v6addrs.src)) || 12455 memcmp(&keys1->addrs.v6addrs.dst, &keys2->addrs.v6addrs.dst, 12456 sizeof(keys1->addrs.v6addrs.dst))) 12457 return false; 12458 } 12459 12460 if (keys1->ports.ports == keys2->ports.ports && 12461 keys1->control.flags == keys2->control.flags && 12462 ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) && 12463 ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr)) 12464 return true; 12465 12466 return false; 12467 } 12468 12469 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb, 12470 u16 rxq_index, u32 flow_id) 12471 { 12472 struct bnxt *bp = netdev_priv(dev); 12473 struct bnxt_ntuple_filter *fltr, *new_fltr; 12474 struct flow_keys *fkeys; 12475 struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb); 12476 int rc = 0, idx, bit_id, l2_idx = 0; 12477 struct hlist_head *head; 12478 u32 flags; 12479 12480 if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) { 12481 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 12482 int off = 0, j; 12483 12484 netif_addr_lock_bh(dev); 12485 for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) { 12486 if (ether_addr_equal(eth->h_dest, 12487 vnic->uc_list + off)) { 12488 l2_idx = j + 1; 12489 break; 12490 } 12491 } 12492 netif_addr_unlock_bh(dev); 12493 if (!l2_idx) 12494 return -EINVAL; 12495 } 12496 new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC); 12497 if (!new_fltr) 12498 return -ENOMEM; 12499 12500 fkeys = &new_fltr->fkeys; 12501 if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) { 12502 rc = -EPROTONOSUPPORT; 12503 goto err_free; 12504 } 12505 12506 if ((fkeys->basic.n_proto != htons(ETH_P_IP) && 12507 fkeys->basic.n_proto != htons(ETH_P_IPV6)) || 12508 ((fkeys->basic.ip_proto != IPPROTO_TCP) && 12509 (fkeys->basic.ip_proto != IPPROTO_UDP))) { 12510 rc = -EPROTONOSUPPORT; 12511 goto err_free; 12512 } 12513 if (fkeys->basic.n_proto == htons(ETH_P_IPV6) && 12514 bp->hwrm_spec_code < 0x10601) { 12515 rc = -EPROTONOSUPPORT; 12516 goto err_free; 12517 } 12518 flags = fkeys->control.flags; 12519 if (((flags & FLOW_DIS_ENCAPSULATION) && 12520 bp->hwrm_spec_code < 0x10601) || (flags & FLOW_DIS_IS_FRAGMENT)) { 12521 rc = -EPROTONOSUPPORT; 12522 goto err_free; 12523 } 12524 12525 memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN); 12526 memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN); 12527 12528 idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK; 12529 head = &bp->ntp_fltr_hash_tbl[idx]; 12530 rcu_read_lock(); 12531 hlist_for_each_entry_rcu(fltr, head, hash) { 12532 if (bnxt_fltr_match(fltr, new_fltr)) { 12533 rcu_read_unlock(); 12534 rc = 0; 12535 goto err_free; 12536 } 12537 } 12538 rcu_read_unlock(); 12539 12540 spin_lock_bh(&bp->ntp_fltr_lock); 12541 bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap, 12542 BNXT_NTP_FLTR_MAX_FLTR, 0); 12543 if (bit_id < 0) { 12544 spin_unlock_bh(&bp->ntp_fltr_lock); 12545 rc = -ENOMEM; 12546 goto err_free; 12547 } 12548 12549 new_fltr->sw_id = (u16)bit_id; 12550 new_fltr->flow_id = flow_id; 12551 new_fltr->l2_fltr_idx = l2_idx; 12552 new_fltr->rxq = rxq_index; 12553 hlist_add_head_rcu(&new_fltr->hash, head); 12554 bp->ntp_fltr_count++; 12555 spin_unlock_bh(&bp->ntp_fltr_lock); 12556 12557 set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event); 12558 bnxt_queue_sp_work(bp); 12559 12560 return new_fltr->sw_id; 12561 12562 err_free: 12563 kfree(new_fltr); 12564 return rc; 12565 } 12566 12567 static void bnxt_cfg_ntp_filters(struct bnxt *bp) 12568 { 12569 int i; 12570 12571 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) { 12572 struct hlist_head *head; 12573 struct hlist_node *tmp; 12574 struct bnxt_ntuple_filter *fltr; 12575 int rc; 12576 12577 head = &bp->ntp_fltr_hash_tbl[i]; 12578 hlist_for_each_entry_safe(fltr, tmp, head, hash) { 12579 bool del = false; 12580 12581 if (test_bit(BNXT_FLTR_VALID, &fltr->state)) { 12582 if (rps_may_expire_flow(bp->dev, fltr->rxq, 12583 fltr->flow_id, 12584 fltr->sw_id)) { 12585 bnxt_hwrm_cfa_ntuple_filter_free(bp, 12586 fltr); 12587 del = true; 12588 } 12589 } else { 12590 rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp, 12591 fltr); 12592 if (rc) 12593 del = true; 12594 else 12595 set_bit(BNXT_FLTR_VALID, &fltr->state); 12596 } 12597 12598 if (del) { 12599 spin_lock_bh(&bp->ntp_fltr_lock); 12600 hlist_del_rcu(&fltr->hash); 12601 bp->ntp_fltr_count--; 12602 spin_unlock_bh(&bp->ntp_fltr_lock); 12603 synchronize_rcu(); 12604 clear_bit(fltr->sw_id, bp->ntp_fltr_bmap); 12605 kfree(fltr); 12606 } 12607 } 12608 } 12609 if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event)) 12610 netdev_info(bp->dev, "Receive PF driver unload event!\n"); 12611 } 12612 12613 #else 12614 12615 static void bnxt_cfg_ntp_filters(struct bnxt *bp) 12616 { 12617 } 12618 12619 #endif /* CONFIG_RFS_ACCEL */ 12620 12621 static int bnxt_udp_tunnel_sync(struct net_device *netdev, unsigned int table) 12622 { 12623 struct bnxt *bp = netdev_priv(netdev); 12624 struct udp_tunnel_info ti; 12625 unsigned int cmd; 12626 12627 udp_tunnel_nic_get_port(netdev, table, 0, &ti); 12628 if (ti.type == UDP_TUNNEL_TYPE_VXLAN) { 12629 bp->vxlan_port = ti.port; 12630 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN; 12631 } else { 12632 bp->nge_port = ti.port; 12633 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE; 12634 } 12635 12636 if (ti.port) 12637 return bnxt_hwrm_tunnel_dst_port_alloc(bp, ti.port, cmd); 12638 12639 return bnxt_hwrm_tunnel_dst_port_free(bp, cmd); 12640 } 12641 12642 static const struct udp_tunnel_nic_info bnxt_udp_tunnels = { 12643 .sync_table = bnxt_udp_tunnel_sync, 12644 .flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP | 12645 UDP_TUNNEL_NIC_INFO_OPEN_ONLY, 12646 .tables = { 12647 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN, }, 12648 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, }, 12649 }, 12650 }; 12651 12652 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 12653 struct net_device *dev, u32 filter_mask, 12654 int nlflags) 12655 { 12656 struct bnxt *bp = netdev_priv(dev); 12657 12658 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0, 12659 nlflags, filter_mask, NULL); 12660 } 12661 12662 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 12663 u16 flags, struct netlink_ext_ack *extack) 12664 { 12665 struct bnxt *bp = netdev_priv(dev); 12666 struct nlattr *attr, *br_spec; 12667 int rem, rc = 0; 12668 12669 if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp)) 12670 return -EOPNOTSUPP; 12671 12672 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 12673 if (!br_spec) 12674 return -EINVAL; 12675 12676 nla_for_each_nested(attr, br_spec, rem) { 12677 u16 mode; 12678 12679 if (nla_type(attr) != IFLA_BRIDGE_MODE) 12680 continue; 12681 12682 if (nla_len(attr) < sizeof(mode)) 12683 return -EINVAL; 12684 12685 mode = nla_get_u16(attr); 12686 if (mode == bp->br_mode) 12687 break; 12688 12689 rc = bnxt_hwrm_set_br_mode(bp, mode); 12690 if (!rc) 12691 bp->br_mode = mode; 12692 break; 12693 } 12694 return rc; 12695 } 12696 12697 int bnxt_get_port_parent_id(struct net_device *dev, 12698 struct netdev_phys_item_id *ppid) 12699 { 12700 struct bnxt *bp = netdev_priv(dev); 12701 12702 if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV) 12703 return -EOPNOTSUPP; 12704 12705 /* The PF and it's VF-reps only support the switchdev framework */ 12706 if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_DSN_VALID)) 12707 return -EOPNOTSUPP; 12708 12709 ppid->id_len = sizeof(bp->dsn); 12710 memcpy(ppid->id, bp->dsn, ppid->id_len); 12711 12712 return 0; 12713 } 12714 12715 static struct devlink_port *bnxt_get_devlink_port(struct net_device *dev) 12716 { 12717 struct bnxt *bp = netdev_priv(dev); 12718 12719 return &bp->dl_port; 12720 } 12721 12722 static const struct net_device_ops bnxt_netdev_ops = { 12723 .ndo_open = bnxt_open, 12724 .ndo_start_xmit = bnxt_start_xmit, 12725 .ndo_stop = bnxt_close, 12726 .ndo_get_stats64 = bnxt_get_stats64, 12727 .ndo_set_rx_mode = bnxt_set_rx_mode, 12728 .ndo_eth_ioctl = bnxt_ioctl, 12729 .ndo_validate_addr = eth_validate_addr, 12730 .ndo_set_mac_address = bnxt_change_mac_addr, 12731 .ndo_change_mtu = bnxt_change_mtu, 12732 .ndo_fix_features = bnxt_fix_features, 12733 .ndo_set_features = bnxt_set_features, 12734 .ndo_features_check = bnxt_features_check, 12735 .ndo_tx_timeout = bnxt_tx_timeout, 12736 #ifdef CONFIG_BNXT_SRIOV 12737 .ndo_get_vf_config = bnxt_get_vf_config, 12738 .ndo_set_vf_mac = bnxt_set_vf_mac, 12739 .ndo_set_vf_vlan = bnxt_set_vf_vlan, 12740 .ndo_set_vf_rate = bnxt_set_vf_bw, 12741 .ndo_set_vf_link_state = bnxt_set_vf_link_state, 12742 .ndo_set_vf_spoofchk = bnxt_set_vf_spoofchk, 12743 .ndo_set_vf_trust = bnxt_set_vf_trust, 12744 #endif 12745 .ndo_setup_tc = bnxt_setup_tc, 12746 #ifdef CONFIG_RFS_ACCEL 12747 .ndo_rx_flow_steer = bnxt_rx_flow_steer, 12748 #endif 12749 .ndo_bpf = bnxt_xdp, 12750 .ndo_xdp_xmit = bnxt_xdp_xmit, 12751 .ndo_bridge_getlink = bnxt_bridge_getlink, 12752 .ndo_bridge_setlink = bnxt_bridge_setlink, 12753 .ndo_get_devlink_port = bnxt_get_devlink_port, 12754 }; 12755 12756 static void bnxt_remove_one(struct pci_dev *pdev) 12757 { 12758 struct net_device *dev = pci_get_drvdata(pdev); 12759 struct bnxt *bp = netdev_priv(dev); 12760 12761 if (BNXT_PF(bp)) 12762 bnxt_sriov_disable(bp); 12763 12764 if (BNXT_PF(bp)) 12765 devlink_port_type_clear(&bp->dl_port); 12766 12767 bnxt_ptp_clear(bp); 12768 pci_disable_pcie_error_reporting(pdev); 12769 unregister_netdev(dev); 12770 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 12771 /* Flush any pending tasks */ 12772 cancel_work_sync(&bp->sp_task); 12773 cancel_delayed_work_sync(&bp->fw_reset_task); 12774 bp->sp_event = 0; 12775 12776 bnxt_dl_fw_reporters_destroy(bp, true); 12777 bnxt_dl_unregister(bp); 12778 bnxt_shutdown_tc(bp); 12779 12780 bnxt_clear_int_mode(bp); 12781 bnxt_hwrm_func_drv_unrgtr(bp); 12782 bnxt_free_hwrm_resources(bp); 12783 bnxt_ethtool_free(bp); 12784 bnxt_dcb_free(bp); 12785 kfree(bp->edev); 12786 bp->edev = NULL; 12787 kfree(bp->ptp_cfg); 12788 bp->ptp_cfg = NULL; 12789 kfree(bp->fw_health); 12790 bp->fw_health = NULL; 12791 bnxt_cleanup_pci(bp); 12792 bnxt_free_ctx_mem(bp); 12793 kfree(bp->ctx); 12794 bp->ctx = NULL; 12795 kfree(bp->rss_indir_tbl); 12796 bp->rss_indir_tbl = NULL; 12797 bnxt_free_port_stats(bp); 12798 free_netdev(dev); 12799 } 12800 12801 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt) 12802 { 12803 int rc = 0; 12804 struct bnxt_link_info *link_info = &bp->link_info; 12805 12806 bp->phy_flags = 0; 12807 rc = bnxt_hwrm_phy_qcaps(bp); 12808 if (rc) { 12809 netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n", 12810 rc); 12811 return rc; 12812 } 12813 if (bp->phy_flags & BNXT_PHY_FL_NO_FCS) 12814 bp->dev->priv_flags |= IFF_SUPP_NOFCS; 12815 else 12816 bp->dev->priv_flags &= ~IFF_SUPP_NOFCS; 12817 if (!fw_dflt) 12818 return 0; 12819 12820 mutex_lock(&bp->link_lock); 12821 rc = bnxt_update_link(bp, false); 12822 if (rc) { 12823 mutex_unlock(&bp->link_lock); 12824 netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n", 12825 rc); 12826 return rc; 12827 } 12828 12829 /* Older firmware does not have supported_auto_speeds, so assume 12830 * that all supported speeds can be autonegotiated. 12831 */ 12832 if (link_info->auto_link_speeds && !link_info->support_auto_speeds) 12833 link_info->support_auto_speeds = link_info->support_speeds; 12834 12835 bnxt_init_ethtool_link_settings(bp); 12836 mutex_unlock(&bp->link_lock); 12837 return 0; 12838 } 12839 12840 static int bnxt_get_max_irq(struct pci_dev *pdev) 12841 { 12842 u16 ctrl; 12843 12844 if (!pdev->msix_cap) 12845 return 1; 12846 12847 pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl); 12848 return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1; 12849 } 12850 12851 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, 12852 int *max_cp) 12853 { 12854 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 12855 int max_ring_grps = 0, max_irq; 12856 12857 *max_tx = hw_resc->max_tx_rings; 12858 *max_rx = hw_resc->max_rx_rings; 12859 *max_cp = bnxt_get_max_func_cp_rings_for_en(bp); 12860 max_irq = min_t(int, bnxt_get_max_func_irqs(bp) - 12861 bnxt_get_ulp_msix_num(bp), 12862 hw_resc->max_stat_ctxs - bnxt_get_ulp_stat_ctxs(bp)); 12863 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 12864 *max_cp = min_t(int, *max_cp, max_irq); 12865 max_ring_grps = hw_resc->max_hw_ring_grps; 12866 if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) { 12867 *max_cp -= 1; 12868 *max_rx -= 2; 12869 } 12870 if (bp->flags & BNXT_FLAG_AGG_RINGS) 12871 *max_rx >>= 1; 12872 if (bp->flags & BNXT_FLAG_CHIP_P5) { 12873 bnxt_trim_rings(bp, max_rx, max_tx, *max_cp, false); 12874 /* On P5 chips, max_cp output param should be available NQs */ 12875 *max_cp = max_irq; 12876 } 12877 *max_rx = min_t(int, *max_rx, max_ring_grps); 12878 } 12879 12880 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared) 12881 { 12882 int rx, tx, cp; 12883 12884 _bnxt_get_max_rings(bp, &rx, &tx, &cp); 12885 *max_rx = rx; 12886 *max_tx = tx; 12887 if (!rx || !tx || !cp) 12888 return -ENOMEM; 12889 12890 return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared); 12891 } 12892 12893 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx, 12894 bool shared) 12895 { 12896 int rc; 12897 12898 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared); 12899 if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) { 12900 /* Not enough rings, try disabling agg rings. */ 12901 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 12902 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared); 12903 if (rc) { 12904 /* set BNXT_FLAG_AGG_RINGS back for consistency */ 12905 bp->flags |= BNXT_FLAG_AGG_RINGS; 12906 return rc; 12907 } 12908 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 12909 bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 12910 bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 12911 bnxt_set_ring_params(bp); 12912 } 12913 12914 if (bp->flags & BNXT_FLAG_ROCE_CAP) { 12915 int max_cp, max_stat, max_irq; 12916 12917 /* Reserve minimum resources for RoCE */ 12918 max_cp = bnxt_get_max_func_cp_rings(bp); 12919 max_stat = bnxt_get_max_func_stat_ctxs(bp); 12920 max_irq = bnxt_get_max_func_irqs(bp); 12921 if (max_cp <= BNXT_MIN_ROCE_CP_RINGS || 12922 max_irq <= BNXT_MIN_ROCE_CP_RINGS || 12923 max_stat <= BNXT_MIN_ROCE_STAT_CTXS) 12924 return 0; 12925 12926 max_cp -= BNXT_MIN_ROCE_CP_RINGS; 12927 max_irq -= BNXT_MIN_ROCE_CP_RINGS; 12928 max_stat -= BNXT_MIN_ROCE_STAT_CTXS; 12929 max_cp = min_t(int, max_cp, max_irq); 12930 max_cp = min_t(int, max_cp, max_stat); 12931 rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared); 12932 if (rc) 12933 rc = 0; 12934 } 12935 return rc; 12936 } 12937 12938 /* In initial default shared ring setting, each shared ring must have a 12939 * RX/TX ring pair. 12940 */ 12941 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp) 12942 { 12943 bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings); 12944 bp->rx_nr_rings = bp->cp_nr_rings; 12945 bp->tx_nr_rings_per_tc = bp->cp_nr_rings; 12946 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 12947 } 12948 12949 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh) 12950 { 12951 int dflt_rings, max_rx_rings, max_tx_rings, rc; 12952 12953 if (!bnxt_can_reserve_rings(bp)) 12954 return 0; 12955 12956 if (sh) 12957 bp->flags |= BNXT_FLAG_SHARED_RINGS; 12958 dflt_rings = is_kdump_kernel() ? 1 : netif_get_num_default_rss_queues(); 12959 /* Reduce default rings on multi-port cards so that total default 12960 * rings do not exceed CPU count. 12961 */ 12962 if (bp->port_count > 1) { 12963 int max_rings = 12964 max_t(int, num_online_cpus() / bp->port_count, 1); 12965 12966 dflt_rings = min_t(int, dflt_rings, max_rings); 12967 } 12968 rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh); 12969 if (rc) 12970 return rc; 12971 bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings); 12972 bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings); 12973 if (sh) 12974 bnxt_trim_dflt_sh_rings(bp); 12975 else 12976 bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings; 12977 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 12978 12979 rc = __bnxt_reserve_rings(bp); 12980 if (rc) 12981 netdev_warn(bp->dev, "Unable to reserve tx rings\n"); 12982 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 12983 if (sh) 12984 bnxt_trim_dflt_sh_rings(bp); 12985 12986 /* Rings may have been trimmed, re-reserve the trimmed rings. */ 12987 if (bnxt_need_reserve_rings(bp)) { 12988 rc = __bnxt_reserve_rings(bp); 12989 if (rc) 12990 netdev_warn(bp->dev, "2nd rings reservation failed.\n"); 12991 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 12992 } 12993 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 12994 bp->rx_nr_rings++; 12995 bp->cp_nr_rings++; 12996 } 12997 if (rc) { 12998 bp->tx_nr_rings = 0; 12999 bp->rx_nr_rings = 0; 13000 } 13001 return rc; 13002 } 13003 13004 static int bnxt_init_dflt_ring_mode(struct bnxt *bp) 13005 { 13006 int rc; 13007 13008 if (bp->tx_nr_rings) 13009 return 0; 13010 13011 bnxt_ulp_irq_stop(bp); 13012 bnxt_clear_int_mode(bp); 13013 rc = bnxt_set_dflt_rings(bp, true); 13014 if (rc) { 13015 netdev_err(bp->dev, "Not enough rings available.\n"); 13016 goto init_dflt_ring_err; 13017 } 13018 rc = bnxt_init_int_mode(bp); 13019 if (rc) 13020 goto init_dflt_ring_err; 13021 13022 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 13023 if (bnxt_rfs_supported(bp) && bnxt_rfs_capable(bp)) { 13024 bp->flags |= BNXT_FLAG_RFS; 13025 bp->dev->features |= NETIF_F_NTUPLE; 13026 } 13027 init_dflt_ring_err: 13028 bnxt_ulp_irq_restart(bp, rc); 13029 return rc; 13030 } 13031 13032 int bnxt_restore_pf_fw_resources(struct bnxt *bp) 13033 { 13034 int rc; 13035 13036 ASSERT_RTNL(); 13037 bnxt_hwrm_func_qcaps(bp); 13038 13039 if (netif_running(bp->dev)) 13040 __bnxt_close_nic(bp, true, false); 13041 13042 bnxt_ulp_irq_stop(bp); 13043 bnxt_clear_int_mode(bp); 13044 rc = bnxt_init_int_mode(bp); 13045 bnxt_ulp_irq_restart(bp, rc); 13046 13047 if (netif_running(bp->dev)) { 13048 if (rc) 13049 dev_close(bp->dev); 13050 else 13051 rc = bnxt_open_nic(bp, true, false); 13052 } 13053 13054 return rc; 13055 } 13056 13057 static int bnxt_init_mac_addr(struct bnxt *bp) 13058 { 13059 int rc = 0; 13060 13061 if (BNXT_PF(bp)) { 13062 memcpy(bp->dev->dev_addr, bp->pf.mac_addr, ETH_ALEN); 13063 } else { 13064 #ifdef CONFIG_BNXT_SRIOV 13065 struct bnxt_vf_info *vf = &bp->vf; 13066 bool strict_approval = true; 13067 13068 if (is_valid_ether_addr(vf->mac_addr)) { 13069 /* overwrite netdev dev_addr with admin VF MAC */ 13070 memcpy(bp->dev->dev_addr, vf->mac_addr, ETH_ALEN); 13071 /* Older PF driver or firmware may not approve this 13072 * correctly. 13073 */ 13074 strict_approval = false; 13075 } else { 13076 eth_hw_addr_random(bp->dev); 13077 } 13078 rc = bnxt_approve_mac(bp, bp->dev->dev_addr, strict_approval); 13079 #endif 13080 } 13081 return rc; 13082 } 13083 13084 #define BNXT_VPD_LEN 512 13085 static void bnxt_vpd_read_info(struct bnxt *bp) 13086 { 13087 struct pci_dev *pdev = bp->pdev; 13088 int i, len, pos, ro_size, size; 13089 ssize_t vpd_size; 13090 u8 *vpd_data; 13091 13092 vpd_data = kmalloc(BNXT_VPD_LEN, GFP_KERNEL); 13093 if (!vpd_data) 13094 return; 13095 13096 vpd_size = pci_read_vpd(pdev, 0, BNXT_VPD_LEN, vpd_data); 13097 if (vpd_size <= 0) { 13098 netdev_err(bp->dev, "Unable to read VPD\n"); 13099 goto exit; 13100 } 13101 13102 i = pci_vpd_find_tag(vpd_data, vpd_size, PCI_VPD_LRDT_RO_DATA); 13103 if (i < 0) { 13104 netdev_err(bp->dev, "VPD READ-Only not found\n"); 13105 goto exit; 13106 } 13107 13108 i = pci_vpd_find_tag(vpd_data, vpd_size, PCI_VPD_LRDT_RO_DATA); 13109 if (i < 0) { 13110 netdev_err(bp->dev, "VPD READ-Only not found\n"); 13111 goto exit; 13112 } 13113 13114 ro_size = pci_vpd_lrdt_size(&vpd_data[i]); 13115 i += PCI_VPD_LRDT_TAG_SIZE; 13116 if (i + ro_size > vpd_size) 13117 goto exit; 13118 13119 pos = pci_vpd_find_info_keyword(vpd_data, i, ro_size, 13120 PCI_VPD_RO_KEYWORD_PARTNO); 13121 if (pos < 0) 13122 goto read_sn; 13123 13124 len = pci_vpd_info_field_size(&vpd_data[pos]); 13125 pos += PCI_VPD_INFO_FLD_HDR_SIZE; 13126 if (len + pos > vpd_size) 13127 goto read_sn; 13128 13129 size = min(len, BNXT_VPD_FLD_LEN - 1); 13130 memcpy(bp->board_partno, &vpd_data[pos], size); 13131 13132 read_sn: 13133 pos = pci_vpd_find_info_keyword(vpd_data, i, ro_size, 13134 PCI_VPD_RO_KEYWORD_SERIALNO); 13135 if (pos < 0) 13136 goto exit; 13137 13138 len = pci_vpd_info_field_size(&vpd_data[pos]); 13139 pos += PCI_VPD_INFO_FLD_HDR_SIZE; 13140 if (len + pos > vpd_size) 13141 goto exit; 13142 13143 size = min(len, BNXT_VPD_FLD_LEN - 1); 13144 memcpy(bp->board_serialno, &vpd_data[pos], size); 13145 exit: 13146 kfree(vpd_data); 13147 } 13148 13149 static int bnxt_pcie_dsn_get(struct bnxt *bp, u8 dsn[]) 13150 { 13151 struct pci_dev *pdev = bp->pdev; 13152 u64 qword; 13153 13154 qword = pci_get_dsn(pdev); 13155 if (!qword) { 13156 netdev_info(bp->dev, "Unable to read adapter's DSN\n"); 13157 return -EOPNOTSUPP; 13158 } 13159 13160 put_unaligned_le64(qword, dsn); 13161 13162 bp->flags |= BNXT_FLAG_DSN_VALID; 13163 return 0; 13164 } 13165 13166 static int bnxt_map_db_bar(struct bnxt *bp) 13167 { 13168 if (!bp->db_size) 13169 return -ENODEV; 13170 bp->bar1 = pci_iomap(bp->pdev, 2, bp->db_size); 13171 if (!bp->bar1) 13172 return -ENOMEM; 13173 return 0; 13174 } 13175 13176 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 13177 { 13178 struct net_device *dev; 13179 struct bnxt *bp; 13180 int rc, max_irqs; 13181 13182 if (pci_is_bridge(pdev)) 13183 return -ENODEV; 13184 13185 /* Clear any pending DMA transactions from crash kernel 13186 * while loading driver in capture kernel. 13187 */ 13188 if (is_kdump_kernel()) { 13189 pci_clear_master(pdev); 13190 pcie_flr(pdev); 13191 } 13192 13193 max_irqs = bnxt_get_max_irq(pdev); 13194 dev = alloc_etherdev_mq(sizeof(*bp), max_irqs); 13195 if (!dev) 13196 return -ENOMEM; 13197 13198 bp = netdev_priv(dev); 13199 bp->msg_enable = BNXT_DEF_MSG_ENABLE; 13200 bnxt_set_max_func_irqs(bp, max_irqs); 13201 13202 if (bnxt_vf_pciid(ent->driver_data)) 13203 bp->flags |= BNXT_FLAG_VF; 13204 13205 if (pdev->msix_cap) 13206 bp->flags |= BNXT_FLAG_MSIX_CAP; 13207 13208 rc = bnxt_init_board(pdev, dev); 13209 if (rc < 0) 13210 goto init_err_free; 13211 13212 dev->netdev_ops = &bnxt_netdev_ops; 13213 dev->watchdog_timeo = BNXT_TX_TIMEOUT; 13214 dev->ethtool_ops = &bnxt_ethtool_ops; 13215 pci_set_drvdata(pdev, dev); 13216 13217 rc = bnxt_alloc_hwrm_resources(bp); 13218 if (rc) 13219 goto init_err_pci_clean; 13220 13221 mutex_init(&bp->hwrm_cmd_lock); 13222 mutex_init(&bp->link_lock); 13223 13224 rc = bnxt_fw_init_one_p1(bp); 13225 if (rc) 13226 goto init_err_pci_clean; 13227 13228 if (BNXT_PF(bp)) 13229 bnxt_vpd_read_info(bp); 13230 13231 if (BNXT_CHIP_P5(bp)) { 13232 bp->flags |= BNXT_FLAG_CHIP_P5; 13233 if (BNXT_CHIP_SR2(bp)) 13234 bp->flags |= BNXT_FLAG_CHIP_SR2; 13235 } 13236 13237 rc = bnxt_alloc_rss_indir_tbl(bp); 13238 if (rc) 13239 goto init_err_pci_clean; 13240 13241 rc = bnxt_fw_init_one_p2(bp); 13242 if (rc) 13243 goto init_err_pci_clean; 13244 13245 rc = bnxt_map_db_bar(bp); 13246 if (rc) { 13247 dev_err(&pdev->dev, "Cannot map doorbell BAR rc = %d, aborting\n", 13248 rc); 13249 goto init_err_pci_clean; 13250 } 13251 13252 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 13253 NETIF_F_TSO | NETIF_F_TSO6 | 13254 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | 13255 NETIF_F_GSO_IPXIP4 | 13256 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM | 13257 NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH | 13258 NETIF_F_RXCSUM | NETIF_F_GRO; 13259 13260 if (BNXT_SUPPORTS_TPA(bp)) 13261 dev->hw_features |= NETIF_F_LRO; 13262 13263 dev->hw_enc_features = 13264 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 13265 NETIF_F_TSO | NETIF_F_TSO6 | 13266 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | 13267 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM | 13268 NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL; 13269 dev->udp_tunnel_nic_info = &bnxt_udp_tunnels; 13270 13271 dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM | 13272 NETIF_F_GSO_GRE_CSUM; 13273 dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA; 13274 if (bp->fw_cap & BNXT_FW_CAP_VLAN_RX_STRIP) 13275 dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_RX; 13276 if (bp->fw_cap & BNXT_FW_CAP_VLAN_TX_INSERT) 13277 dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_TX; 13278 if (BNXT_SUPPORTS_TPA(bp)) 13279 dev->hw_features |= NETIF_F_GRO_HW; 13280 dev->features |= dev->hw_features | NETIF_F_HIGHDMA; 13281 if (dev->features & NETIF_F_GRO_HW) 13282 dev->features &= ~NETIF_F_LRO; 13283 dev->priv_flags |= IFF_UNICAST_FLT; 13284 13285 #ifdef CONFIG_BNXT_SRIOV 13286 init_waitqueue_head(&bp->sriov_cfg_wait); 13287 mutex_init(&bp->sriov_lock); 13288 #endif 13289 if (BNXT_SUPPORTS_TPA(bp)) { 13290 bp->gro_func = bnxt_gro_func_5730x; 13291 if (BNXT_CHIP_P4(bp)) 13292 bp->gro_func = bnxt_gro_func_5731x; 13293 else if (BNXT_CHIP_P5(bp)) 13294 bp->gro_func = bnxt_gro_func_5750x; 13295 } 13296 if (!BNXT_CHIP_P4_PLUS(bp)) 13297 bp->flags |= BNXT_FLAG_DOUBLE_DB; 13298 13299 rc = bnxt_init_mac_addr(bp); 13300 if (rc) { 13301 dev_err(&pdev->dev, "Unable to initialize mac address.\n"); 13302 rc = -EADDRNOTAVAIL; 13303 goto init_err_pci_clean; 13304 } 13305 13306 if (BNXT_PF(bp)) { 13307 /* Read the adapter's DSN to use as the eswitch switch_id */ 13308 rc = bnxt_pcie_dsn_get(bp, bp->dsn); 13309 } 13310 13311 /* MTU range: 60 - FW defined max */ 13312 dev->min_mtu = ETH_ZLEN; 13313 dev->max_mtu = bp->max_mtu; 13314 13315 rc = bnxt_probe_phy(bp, true); 13316 if (rc) 13317 goto init_err_pci_clean; 13318 13319 bnxt_set_rx_skb_mode(bp, false); 13320 bnxt_set_tpa_flags(bp); 13321 bnxt_set_ring_params(bp); 13322 rc = bnxt_set_dflt_rings(bp, true); 13323 if (rc) { 13324 netdev_err(bp->dev, "Not enough rings available.\n"); 13325 rc = -ENOMEM; 13326 goto init_err_pci_clean; 13327 } 13328 13329 bnxt_fw_init_one_p3(bp); 13330 13331 if (dev->hw_features & BNXT_HW_FEATURE_VLAN_ALL_RX) 13332 bp->flags |= BNXT_FLAG_STRIP_VLAN; 13333 13334 rc = bnxt_init_int_mode(bp); 13335 if (rc) 13336 goto init_err_pci_clean; 13337 13338 /* No TC has been set yet and rings may have been trimmed due to 13339 * limited MSIX, so we re-initialize the TX rings per TC. 13340 */ 13341 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 13342 13343 if (BNXT_PF(bp)) { 13344 if (!bnxt_pf_wq) { 13345 bnxt_pf_wq = 13346 create_singlethread_workqueue("bnxt_pf_wq"); 13347 if (!bnxt_pf_wq) { 13348 dev_err(&pdev->dev, "Unable to create workqueue.\n"); 13349 rc = -ENOMEM; 13350 goto init_err_pci_clean; 13351 } 13352 } 13353 rc = bnxt_init_tc(bp); 13354 if (rc) 13355 netdev_err(dev, "Failed to initialize TC flower offload, err = %d.\n", 13356 rc); 13357 } 13358 13359 bnxt_inv_fw_health_reg(bp); 13360 bnxt_dl_register(bp); 13361 13362 rc = register_netdev(dev); 13363 if (rc) 13364 goto init_err_cleanup; 13365 13366 if (BNXT_PF(bp)) 13367 devlink_port_type_eth_set(&bp->dl_port, bp->dev); 13368 bnxt_dl_fw_reporters_create(bp); 13369 13370 netdev_info(dev, "%s found at mem %lx, node addr %pM\n", 13371 board_info[ent->driver_data].name, 13372 (long)pci_resource_start(pdev, 0), dev->dev_addr); 13373 pcie_print_link_status(pdev); 13374 13375 pci_save_state(pdev); 13376 return 0; 13377 13378 init_err_cleanup: 13379 bnxt_dl_unregister(bp); 13380 bnxt_shutdown_tc(bp); 13381 bnxt_clear_int_mode(bp); 13382 13383 init_err_pci_clean: 13384 bnxt_hwrm_func_drv_unrgtr(bp); 13385 bnxt_free_hwrm_resources(bp); 13386 bnxt_ethtool_free(bp); 13387 bnxt_ptp_clear(bp); 13388 kfree(bp->ptp_cfg); 13389 bp->ptp_cfg = NULL; 13390 kfree(bp->fw_health); 13391 bp->fw_health = NULL; 13392 bnxt_cleanup_pci(bp); 13393 bnxt_free_ctx_mem(bp); 13394 kfree(bp->ctx); 13395 bp->ctx = NULL; 13396 kfree(bp->rss_indir_tbl); 13397 bp->rss_indir_tbl = NULL; 13398 13399 init_err_free: 13400 free_netdev(dev); 13401 return rc; 13402 } 13403 13404 static void bnxt_shutdown(struct pci_dev *pdev) 13405 { 13406 struct net_device *dev = pci_get_drvdata(pdev); 13407 struct bnxt *bp; 13408 13409 if (!dev) 13410 return; 13411 13412 rtnl_lock(); 13413 bp = netdev_priv(dev); 13414 if (!bp) 13415 goto shutdown_exit; 13416 13417 if (netif_running(dev)) 13418 dev_close(dev); 13419 13420 bnxt_ulp_shutdown(bp); 13421 bnxt_clear_int_mode(bp); 13422 pci_disable_device(pdev); 13423 13424 if (system_state == SYSTEM_POWER_OFF) { 13425 pci_wake_from_d3(pdev, bp->wol); 13426 pci_set_power_state(pdev, PCI_D3hot); 13427 } 13428 13429 shutdown_exit: 13430 rtnl_unlock(); 13431 } 13432 13433 #ifdef CONFIG_PM_SLEEP 13434 static int bnxt_suspend(struct device *device) 13435 { 13436 struct net_device *dev = dev_get_drvdata(device); 13437 struct bnxt *bp = netdev_priv(dev); 13438 int rc = 0; 13439 13440 rtnl_lock(); 13441 bnxt_ulp_stop(bp); 13442 if (netif_running(dev)) { 13443 netif_device_detach(dev); 13444 rc = bnxt_close(dev); 13445 } 13446 bnxt_hwrm_func_drv_unrgtr(bp); 13447 pci_disable_device(bp->pdev); 13448 bnxt_free_ctx_mem(bp); 13449 kfree(bp->ctx); 13450 bp->ctx = NULL; 13451 rtnl_unlock(); 13452 return rc; 13453 } 13454 13455 static int bnxt_resume(struct device *device) 13456 { 13457 struct net_device *dev = dev_get_drvdata(device); 13458 struct bnxt *bp = netdev_priv(dev); 13459 int rc = 0; 13460 13461 rtnl_lock(); 13462 rc = pci_enable_device(bp->pdev); 13463 if (rc) { 13464 netdev_err(dev, "Cannot re-enable PCI device during resume, err = %d\n", 13465 rc); 13466 goto resume_exit; 13467 } 13468 pci_set_master(bp->pdev); 13469 if (bnxt_hwrm_ver_get(bp)) { 13470 rc = -ENODEV; 13471 goto resume_exit; 13472 } 13473 rc = bnxt_hwrm_func_reset(bp); 13474 if (rc) { 13475 rc = -EBUSY; 13476 goto resume_exit; 13477 } 13478 13479 rc = bnxt_hwrm_func_qcaps(bp); 13480 if (rc) 13481 goto resume_exit; 13482 13483 if (bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false)) { 13484 rc = -ENODEV; 13485 goto resume_exit; 13486 } 13487 13488 bnxt_get_wol_settings(bp); 13489 if (netif_running(dev)) { 13490 rc = bnxt_open(dev); 13491 if (!rc) 13492 netif_device_attach(dev); 13493 } 13494 13495 resume_exit: 13496 bnxt_ulp_start(bp, rc); 13497 if (!rc) 13498 bnxt_reenable_sriov(bp); 13499 rtnl_unlock(); 13500 return rc; 13501 } 13502 13503 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume); 13504 #define BNXT_PM_OPS (&bnxt_pm_ops) 13505 13506 #else 13507 13508 #define BNXT_PM_OPS NULL 13509 13510 #endif /* CONFIG_PM_SLEEP */ 13511 13512 /** 13513 * bnxt_io_error_detected - called when PCI error is detected 13514 * @pdev: Pointer to PCI device 13515 * @state: The current pci connection state 13516 * 13517 * This function is called after a PCI bus error affecting 13518 * this device has been detected. 13519 */ 13520 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev, 13521 pci_channel_state_t state) 13522 { 13523 struct net_device *netdev = pci_get_drvdata(pdev); 13524 struct bnxt *bp = netdev_priv(netdev); 13525 13526 netdev_info(netdev, "PCI I/O error detected\n"); 13527 13528 rtnl_lock(); 13529 netif_device_detach(netdev); 13530 13531 bnxt_ulp_stop(bp); 13532 13533 if (state == pci_channel_io_perm_failure) { 13534 rtnl_unlock(); 13535 return PCI_ERS_RESULT_DISCONNECT; 13536 } 13537 13538 if (state == pci_channel_io_frozen) 13539 set_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, &bp->state); 13540 13541 if (netif_running(netdev)) 13542 bnxt_close(netdev); 13543 13544 if (pci_is_enabled(pdev)) 13545 pci_disable_device(pdev); 13546 bnxt_free_ctx_mem(bp); 13547 kfree(bp->ctx); 13548 bp->ctx = NULL; 13549 rtnl_unlock(); 13550 13551 /* Request a slot slot reset. */ 13552 return PCI_ERS_RESULT_NEED_RESET; 13553 } 13554 13555 /** 13556 * bnxt_io_slot_reset - called after the pci bus has been reset. 13557 * @pdev: Pointer to PCI device 13558 * 13559 * Restart the card from scratch, as if from a cold-boot. 13560 * At this point, the card has exprienced a hard reset, 13561 * followed by fixups by BIOS, and has its config space 13562 * set up identically to what it was at cold boot. 13563 */ 13564 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev) 13565 { 13566 pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT; 13567 struct net_device *netdev = pci_get_drvdata(pdev); 13568 struct bnxt *bp = netdev_priv(netdev); 13569 int err = 0, off; 13570 13571 netdev_info(bp->dev, "PCI Slot Reset\n"); 13572 13573 rtnl_lock(); 13574 13575 if (pci_enable_device(pdev)) { 13576 dev_err(&pdev->dev, 13577 "Cannot re-enable PCI device after reset.\n"); 13578 } else { 13579 pci_set_master(pdev); 13580 /* Upon fatal error, our device internal logic that latches to 13581 * BAR value is getting reset and will restore only upon 13582 * rewritting the BARs. 13583 * 13584 * As pci_restore_state() does not re-write the BARs if the 13585 * value is same as saved value earlier, driver needs to 13586 * write the BARs to 0 to force restore, in case of fatal error. 13587 */ 13588 if (test_and_clear_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, 13589 &bp->state)) { 13590 for (off = PCI_BASE_ADDRESS_0; 13591 off <= PCI_BASE_ADDRESS_5; off += 4) 13592 pci_write_config_dword(bp->pdev, off, 0); 13593 } 13594 pci_restore_state(pdev); 13595 pci_save_state(pdev); 13596 13597 err = bnxt_hwrm_func_reset(bp); 13598 if (!err) 13599 result = PCI_ERS_RESULT_RECOVERED; 13600 } 13601 13602 rtnl_unlock(); 13603 13604 return result; 13605 } 13606 13607 /** 13608 * bnxt_io_resume - called when traffic can start flowing again. 13609 * @pdev: Pointer to PCI device 13610 * 13611 * This callback is called when the error recovery driver tells 13612 * us that its OK to resume normal operation. 13613 */ 13614 static void bnxt_io_resume(struct pci_dev *pdev) 13615 { 13616 struct net_device *netdev = pci_get_drvdata(pdev); 13617 struct bnxt *bp = netdev_priv(netdev); 13618 int err; 13619 13620 netdev_info(bp->dev, "PCI Slot Resume\n"); 13621 rtnl_lock(); 13622 13623 err = bnxt_hwrm_func_qcaps(bp); 13624 if (!err && netif_running(netdev)) 13625 err = bnxt_open(netdev); 13626 13627 bnxt_ulp_start(bp, err); 13628 if (!err) { 13629 bnxt_reenable_sriov(bp); 13630 netif_device_attach(netdev); 13631 } 13632 13633 rtnl_unlock(); 13634 } 13635 13636 static const struct pci_error_handlers bnxt_err_handler = { 13637 .error_detected = bnxt_io_error_detected, 13638 .slot_reset = bnxt_io_slot_reset, 13639 .resume = bnxt_io_resume 13640 }; 13641 13642 static struct pci_driver bnxt_pci_driver = { 13643 .name = DRV_MODULE_NAME, 13644 .id_table = bnxt_pci_tbl, 13645 .probe = bnxt_init_one, 13646 .remove = bnxt_remove_one, 13647 .shutdown = bnxt_shutdown, 13648 .driver.pm = BNXT_PM_OPS, 13649 .err_handler = &bnxt_err_handler, 13650 #if defined(CONFIG_BNXT_SRIOV) 13651 .sriov_configure = bnxt_sriov_configure, 13652 #endif 13653 }; 13654 13655 static int __init bnxt_init(void) 13656 { 13657 bnxt_debug_init(); 13658 return pci_register_driver(&bnxt_pci_driver); 13659 } 13660 13661 static void __exit bnxt_exit(void) 13662 { 13663 pci_unregister_driver(&bnxt_pci_driver); 13664 if (bnxt_pf_wq) 13665 destroy_workqueue(bnxt_pf_wq); 13666 bnxt_debug_exit(); 13667 } 13668 13669 module_init(bnxt_init); 13670 module_exit(bnxt_exit); 13671