1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2016 Broadcom Corporation
4  * Copyright (c) 2016-2019 Broadcom Limited
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation.
9  */
10 
11 #include <linux/module.h>
12 
13 #include <linux/stringify.h>
14 #include <linux/kernel.h>
15 #include <linux/timer.h>
16 #include <linux/errno.h>
17 #include <linux/ioport.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 #include <linux/interrupt.h>
21 #include <linux/pci.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/skbuff.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/bitops.h>
27 #include <linux/io.h>
28 #include <linux/irq.h>
29 #include <linux/delay.h>
30 #include <asm/byteorder.h>
31 #include <asm/page.h>
32 #include <linux/time.h>
33 #include <linux/mii.h>
34 #include <linux/mdio.h>
35 #include <linux/if.h>
36 #include <linux/if_vlan.h>
37 #include <linux/if_bridge.h>
38 #include <linux/rtc.h>
39 #include <linux/bpf.h>
40 #include <net/ip.h>
41 #include <net/tcp.h>
42 #include <net/udp.h>
43 #include <net/checksum.h>
44 #include <net/ip6_checksum.h>
45 #include <net/udp_tunnel.h>
46 #include <linux/workqueue.h>
47 #include <linux/prefetch.h>
48 #include <linux/cache.h>
49 #include <linux/log2.h>
50 #include <linux/aer.h>
51 #include <linux/bitmap.h>
52 #include <linux/ptp_clock_kernel.h>
53 #include <linux/timecounter.h>
54 #include <linux/cpu_rmap.h>
55 #include <linux/cpumask.h>
56 #include <net/pkt_cls.h>
57 #include <linux/hwmon.h>
58 #include <linux/hwmon-sysfs.h>
59 #include <net/page_pool.h>
60 
61 #include "bnxt_hsi.h"
62 #include "bnxt.h"
63 #include "bnxt_hwrm.h"
64 #include "bnxt_ulp.h"
65 #include "bnxt_sriov.h"
66 #include "bnxt_ethtool.h"
67 #include "bnxt_dcb.h"
68 #include "bnxt_xdp.h"
69 #include "bnxt_ptp.h"
70 #include "bnxt_vfr.h"
71 #include "bnxt_tc.h"
72 #include "bnxt_devlink.h"
73 #include "bnxt_debugfs.h"
74 
75 #define BNXT_TX_TIMEOUT		(5 * HZ)
76 #define BNXT_DEF_MSG_ENABLE	(NETIF_MSG_DRV | NETIF_MSG_HW | \
77 				 NETIF_MSG_TX_ERR)
78 
79 MODULE_LICENSE("GPL");
80 MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
81 
82 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
83 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
84 #define BNXT_RX_COPY_THRESH 256
85 
86 #define BNXT_TX_PUSH_THRESH 164
87 
88 enum board_idx {
89 	BCM57301,
90 	BCM57302,
91 	BCM57304,
92 	BCM57417_NPAR,
93 	BCM58700,
94 	BCM57311,
95 	BCM57312,
96 	BCM57402,
97 	BCM57404,
98 	BCM57406,
99 	BCM57402_NPAR,
100 	BCM57407,
101 	BCM57412,
102 	BCM57414,
103 	BCM57416,
104 	BCM57417,
105 	BCM57412_NPAR,
106 	BCM57314,
107 	BCM57417_SFP,
108 	BCM57416_SFP,
109 	BCM57404_NPAR,
110 	BCM57406_NPAR,
111 	BCM57407_SFP,
112 	BCM57407_NPAR,
113 	BCM57414_NPAR,
114 	BCM57416_NPAR,
115 	BCM57452,
116 	BCM57454,
117 	BCM5745x_NPAR,
118 	BCM57508,
119 	BCM57504,
120 	BCM57502,
121 	BCM57508_NPAR,
122 	BCM57504_NPAR,
123 	BCM57502_NPAR,
124 	BCM58802,
125 	BCM58804,
126 	BCM58808,
127 	NETXTREME_E_VF,
128 	NETXTREME_C_VF,
129 	NETXTREME_S_VF,
130 	NETXTREME_C_VF_HV,
131 	NETXTREME_E_VF_HV,
132 	NETXTREME_E_P5_VF,
133 	NETXTREME_E_P5_VF_HV,
134 };
135 
136 /* indexed by enum above */
137 static const struct {
138 	char *name;
139 } board_info[] = {
140 	[BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" },
141 	[BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" },
142 	[BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
143 	[BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" },
144 	[BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" },
145 	[BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" },
146 	[BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" },
147 	[BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" },
148 	[BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" },
149 	[BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" },
150 	[BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" },
151 	[BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" },
152 	[BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" },
153 	[BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" },
154 	[BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" },
155 	[BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" },
156 	[BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" },
157 	[BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
158 	[BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" },
159 	[BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" },
160 	[BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" },
161 	[BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" },
162 	[BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" },
163 	[BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" },
164 	[BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" },
165 	[BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" },
166 	[BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" },
167 	[BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
168 	[BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" },
169 	[BCM57508] = { "Broadcom BCM57508 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
170 	[BCM57504] = { "Broadcom BCM57504 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
171 	[BCM57502] = { "Broadcom BCM57502 NetXtreme-E 10Gb/25Gb/50Gb Ethernet" },
172 	[BCM57508_NPAR] = { "Broadcom BCM57508 NetXtreme-E Ethernet Partition" },
173 	[BCM57504_NPAR] = { "Broadcom BCM57504 NetXtreme-E Ethernet Partition" },
174 	[BCM57502_NPAR] = { "Broadcom BCM57502 NetXtreme-E Ethernet Partition" },
175 	[BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" },
176 	[BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
177 	[BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
178 	[NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" },
179 	[NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" },
180 	[NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" },
181 	[NETXTREME_C_VF_HV] = { "Broadcom NetXtreme-C Virtual Function for Hyper-V" },
182 	[NETXTREME_E_VF_HV] = { "Broadcom NetXtreme-E Virtual Function for Hyper-V" },
183 	[NETXTREME_E_P5_VF] = { "Broadcom BCM5750X NetXtreme-E Ethernet Virtual Function" },
184 	[NETXTREME_E_P5_VF_HV] = { "Broadcom BCM5750X NetXtreme-E Virtual Function for Hyper-V" },
185 };
186 
187 static const struct pci_device_id bnxt_pci_tbl[] = {
188 	{ PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR },
189 	{ PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR },
190 	{ PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 },
191 	{ PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR },
192 	{ PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
193 	{ PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
194 	{ PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
195 	{ PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR },
196 	{ PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 },
197 	{ PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 },
198 	{ PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 },
199 	{ PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
200 	{ PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
201 	{ PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
202 	{ PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR },
203 	{ PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 },
204 	{ PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 },
205 	{ PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 },
206 	{ PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 },
207 	{ PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 },
208 	{ PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR },
209 	{ PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 },
210 	{ PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP },
211 	{ PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP },
212 	{ PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR },
213 	{ PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR },
214 	{ PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP },
215 	{ PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR },
216 	{ PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR },
217 	{ PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR },
218 	{ PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR },
219 	{ PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR },
220 	{ PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR },
221 	{ PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 },
222 	{ PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 },
223 	{ PCI_VDEVICE(BROADCOM, 0x1750), .driver_data = BCM57508 },
224 	{ PCI_VDEVICE(BROADCOM, 0x1751), .driver_data = BCM57504 },
225 	{ PCI_VDEVICE(BROADCOM, 0x1752), .driver_data = BCM57502 },
226 	{ PCI_VDEVICE(BROADCOM, 0x1800), .driver_data = BCM57508_NPAR },
227 	{ PCI_VDEVICE(BROADCOM, 0x1801), .driver_data = BCM57504_NPAR },
228 	{ PCI_VDEVICE(BROADCOM, 0x1802), .driver_data = BCM57502_NPAR },
229 	{ PCI_VDEVICE(BROADCOM, 0x1803), .driver_data = BCM57508_NPAR },
230 	{ PCI_VDEVICE(BROADCOM, 0x1804), .driver_data = BCM57504_NPAR },
231 	{ PCI_VDEVICE(BROADCOM, 0x1805), .driver_data = BCM57502_NPAR },
232 	{ PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 },
233 	{ PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 },
234 #ifdef CONFIG_BNXT_SRIOV
235 	{ PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF },
236 	{ PCI_VDEVICE(BROADCOM, 0x1607), .driver_data = NETXTREME_E_VF_HV },
237 	{ PCI_VDEVICE(BROADCOM, 0x1608), .driver_data = NETXTREME_E_VF_HV },
238 	{ PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF },
239 	{ PCI_VDEVICE(BROADCOM, 0x16bd), .driver_data = NETXTREME_E_VF_HV },
240 	{ PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF },
241 	{ PCI_VDEVICE(BROADCOM, 0x16c2), .driver_data = NETXTREME_C_VF_HV },
242 	{ PCI_VDEVICE(BROADCOM, 0x16c3), .driver_data = NETXTREME_C_VF_HV },
243 	{ PCI_VDEVICE(BROADCOM, 0x16c4), .driver_data = NETXTREME_E_VF_HV },
244 	{ PCI_VDEVICE(BROADCOM, 0x16c5), .driver_data = NETXTREME_E_VF_HV },
245 	{ PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF },
246 	{ PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF },
247 	{ PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF },
248 	{ PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF },
249 	{ PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF },
250 	{ PCI_VDEVICE(BROADCOM, 0x16e6), .driver_data = NETXTREME_C_VF_HV },
251 	{ PCI_VDEVICE(BROADCOM, 0x1806), .driver_data = NETXTREME_E_P5_VF },
252 	{ PCI_VDEVICE(BROADCOM, 0x1807), .driver_data = NETXTREME_E_P5_VF },
253 	{ PCI_VDEVICE(BROADCOM, 0x1808), .driver_data = NETXTREME_E_P5_VF_HV },
254 	{ PCI_VDEVICE(BROADCOM, 0x1809), .driver_data = NETXTREME_E_P5_VF_HV },
255 	{ PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF },
256 #endif
257 	{ 0 }
258 };
259 
260 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
261 
262 static const u16 bnxt_vf_req_snif[] = {
263 	HWRM_FUNC_CFG,
264 	HWRM_FUNC_VF_CFG,
265 	HWRM_PORT_PHY_QCFG,
266 	HWRM_CFA_L2_FILTER_ALLOC,
267 };
268 
269 static const u16 bnxt_async_events_arr[] = {
270 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE,
271 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE,
272 	ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD,
273 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED,
274 	ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE,
275 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE,
276 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE,
277 	ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY,
278 	ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY,
279 	ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION,
280 	ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE,
281 	ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG,
282 	ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST,
283 	ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP,
284 	ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT,
285 };
286 
287 static struct workqueue_struct *bnxt_pf_wq;
288 
289 static bool bnxt_vf_pciid(enum board_idx idx)
290 {
291 	return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF ||
292 		idx == NETXTREME_S_VF || idx == NETXTREME_C_VF_HV ||
293 		idx == NETXTREME_E_VF_HV || idx == NETXTREME_E_P5_VF ||
294 		idx == NETXTREME_E_P5_VF_HV);
295 }
296 
297 #define DB_CP_REARM_FLAGS	(DB_KEY_CP | DB_IDX_VALID)
298 #define DB_CP_FLAGS		(DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
299 #define DB_CP_IRQ_DIS_FLAGS	(DB_KEY_CP | DB_IRQ_DIS)
300 
301 #define BNXT_CP_DB_IRQ_DIS(db)						\
302 		writel(DB_CP_IRQ_DIS_FLAGS, db)
303 
304 #define BNXT_DB_CQ(db, idx)						\
305 	writel(DB_CP_FLAGS | RING_CMP(idx), (db)->doorbell)
306 
307 #define BNXT_DB_NQ_P5(db, idx)						\
308 	writeq((db)->db_key64 | DBR_TYPE_NQ | RING_CMP(idx), (db)->doorbell)
309 
310 #define BNXT_DB_CQ_ARM(db, idx)						\
311 	writel(DB_CP_REARM_FLAGS | RING_CMP(idx), (db)->doorbell)
312 
313 #define BNXT_DB_NQ_ARM_P5(db, idx)					\
314 	writeq((db)->db_key64 | DBR_TYPE_NQ_ARM | RING_CMP(idx), (db)->doorbell)
315 
316 static void bnxt_db_nq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
317 {
318 	if (bp->flags & BNXT_FLAG_CHIP_P5)
319 		BNXT_DB_NQ_P5(db, idx);
320 	else
321 		BNXT_DB_CQ(db, idx);
322 }
323 
324 static void bnxt_db_nq_arm(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
325 {
326 	if (bp->flags & BNXT_FLAG_CHIP_P5)
327 		BNXT_DB_NQ_ARM_P5(db, idx);
328 	else
329 		BNXT_DB_CQ_ARM(db, idx);
330 }
331 
332 static void bnxt_db_cq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
333 {
334 	if (bp->flags & BNXT_FLAG_CHIP_P5)
335 		writeq(db->db_key64 | DBR_TYPE_CQ_ARMALL | RING_CMP(idx),
336 		       db->doorbell);
337 	else
338 		BNXT_DB_CQ(db, idx);
339 }
340 
341 const u16 bnxt_lhint_arr[] = {
342 	TX_BD_FLAGS_LHINT_512_AND_SMALLER,
343 	TX_BD_FLAGS_LHINT_512_TO_1023,
344 	TX_BD_FLAGS_LHINT_1024_TO_2047,
345 	TX_BD_FLAGS_LHINT_1024_TO_2047,
346 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
347 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
348 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
349 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
350 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
351 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
352 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
353 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
354 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
355 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
356 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
357 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
358 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
359 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
360 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
361 };
362 
363 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb)
364 {
365 	struct metadata_dst *md_dst = skb_metadata_dst(skb);
366 
367 	if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX)
368 		return 0;
369 
370 	return md_dst->u.port_info.port_id;
371 }
372 
373 static void bnxt_txr_db_kick(struct bnxt *bp, struct bnxt_tx_ring_info *txr,
374 			     u16 prod)
375 {
376 	bnxt_db_write(bp, &txr->tx_db, prod);
377 	txr->kick_pending = 0;
378 }
379 
380 static bool bnxt_txr_netif_try_stop_queue(struct bnxt *bp,
381 					  struct bnxt_tx_ring_info *txr,
382 					  struct netdev_queue *txq)
383 {
384 	netif_tx_stop_queue(txq);
385 
386 	/* netif_tx_stop_queue() must be done before checking
387 	 * tx index in bnxt_tx_avail() below, because in
388 	 * bnxt_tx_int(), we update tx index before checking for
389 	 * netif_tx_queue_stopped().
390 	 */
391 	smp_mb();
392 	if (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh) {
393 		netif_tx_wake_queue(txq);
394 		return false;
395 	}
396 
397 	return true;
398 }
399 
400 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
401 {
402 	struct bnxt *bp = netdev_priv(dev);
403 	struct tx_bd *txbd;
404 	struct tx_bd_ext *txbd1;
405 	struct netdev_queue *txq;
406 	int i;
407 	dma_addr_t mapping;
408 	unsigned int length, pad = 0;
409 	u32 len, free_size, vlan_tag_flags, cfa_action, flags;
410 	u16 prod, last_frag;
411 	struct pci_dev *pdev = bp->pdev;
412 	struct bnxt_tx_ring_info *txr;
413 	struct bnxt_sw_tx_bd *tx_buf;
414 	__le32 lflags = 0;
415 
416 	i = skb_get_queue_mapping(skb);
417 	if (unlikely(i >= bp->tx_nr_rings)) {
418 		dev_kfree_skb_any(skb);
419 		atomic_long_inc(&dev->tx_dropped);
420 		return NETDEV_TX_OK;
421 	}
422 
423 	txq = netdev_get_tx_queue(dev, i);
424 	txr = &bp->tx_ring[bp->tx_ring_map[i]];
425 	prod = txr->tx_prod;
426 
427 	free_size = bnxt_tx_avail(bp, txr);
428 	if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
429 		/* We must have raced with NAPI cleanup */
430 		if (net_ratelimit() && txr->kick_pending)
431 			netif_warn(bp, tx_err, dev,
432 				   "bnxt: ring busy w/ flush pending!\n");
433 		if (bnxt_txr_netif_try_stop_queue(bp, txr, txq))
434 			return NETDEV_TX_BUSY;
435 	}
436 
437 	length = skb->len;
438 	len = skb_headlen(skb);
439 	last_frag = skb_shinfo(skb)->nr_frags;
440 
441 	txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
442 
443 	txbd->tx_bd_opaque = prod;
444 
445 	tx_buf = &txr->tx_buf_ring[prod];
446 	tx_buf->skb = skb;
447 	tx_buf->nr_frags = last_frag;
448 
449 	vlan_tag_flags = 0;
450 	cfa_action = bnxt_xmit_get_cfa_action(skb);
451 	if (skb_vlan_tag_present(skb)) {
452 		vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
453 				 skb_vlan_tag_get(skb);
454 		/* Currently supports 8021Q, 8021AD vlan offloads
455 		 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
456 		 */
457 		if (skb->vlan_proto == htons(ETH_P_8021Q))
458 			vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
459 	}
460 
461 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
462 		struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
463 
464 		if (ptp && ptp->tx_tstamp_en && !skb_is_gso(skb) &&
465 		    atomic_dec_if_positive(&ptp->tx_avail) >= 0) {
466 			if (!bnxt_ptp_parse(skb, &ptp->tx_seqid,
467 					    &ptp->tx_hdr_off)) {
468 				if (vlan_tag_flags)
469 					ptp->tx_hdr_off += VLAN_HLEN;
470 				lflags |= cpu_to_le32(TX_BD_FLAGS_STAMP);
471 				skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
472 			} else {
473 				atomic_inc(&bp->ptp_cfg->tx_avail);
474 			}
475 		}
476 	}
477 
478 	if (unlikely(skb->no_fcs))
479 		lflags |= cpu_to_le32(TX_BD_FLAGS_NO_CRC);
480 
481 	if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh &&
482 	    !lflags) {
483 		struct tx_push_buffer *tx_push_buf = txr->tx_push;
484 		struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
485 		struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
486 		void __iomem *db = txr->tx_db.doorbell;
487 		void *pdata = tx_push_buf->data;
488 		u64 *end;
489 		int j, push_len;
490 
491 		/* Set COAL_NOW to be ready quickly for the next push */
492 		tx_push->tx_bd_len_flags_type =
493 			cpu_to_le32((length << TX_BD_LEN_SHIFT) |
494 					TX_BD_TYPE_LONG_TX_BD |
495 					TX_BD_FLAGS_LHINT_512_AND_SMALLER |
496 					TX_BD_FLAGS_COAL_NOW |
497 					TX_BD_FLAGS_PACKET_END |
498 					(2 << TX_BD_FLAGS_BD_CNT_SHIFT));
499 
500 		if (skb->ip_summed == CHECKSUM_PARTIAL)
501 			tx_push1->tx_bd_hsize_lflags =
502 					cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
503 		else
504 			tx_push1->tx_bd_hsize_lflags = 0;
505 
506 		tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
507 		tx_push1->tx_bd_cfa_action =
508 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
509 
510 		end = pdata + length;
511 		end = PTR_ALIGN(end, 8) - 1;
512 		*end = 0;
513 
514 		skb_copy_from_linear_data(skb, pdata, len);
515 		pdata += len;
516 		for (j = 0; j < last_frag; j++) {
517 			skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
518 			void *fptr;
519 
520 			fptr = skb_frag_address_safe(frag);
521 			if (!fptr)
522 				goto normal_tx;
523 
524 			memcpy(pdata, fptr, skb_frag_size(frag));
525 			pdata += skb_frag_size(frag);
526 		}
527 
528 		txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
529 		txbd->tx_bd_haddr = txr->data_mapping;
530 		prod = NEXT_TX(prod);
531 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
532 		memcpy(txbd, tx_push1, sizeof(*txbd));
533 		prod = NEXT_TX(prod);
534 		tx_push->doorbell =
535 			cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod);
536 		txr->tx_prod = prod;
537 
538 		tx_buf->is_push = 1;
539 		netdev_tx_sent_queue(txq, skb->len);
540 		wmb();	/* Sync is_push and byte queue before pushing data */
541 
542 		push_len = (length + sizeof(*tx_push) + 7) / 8;
543 		if (push_len > 16) {
544 			__iowrite64_copy(db, tx_push_buf, 16);
545 			__iowrite32_copy(db + 4, tx_push_buf + 1,
546 					 (push_len - 16) << 1);
547 		} else {
548 			__iowrite64_copy(db, tx_push_buf, push_len);
549 		}
550 
551 		goto tx_done;
552 	}
553 
554 normal_tx:
555 	if (length < BNXT_MIN_PKT_SIZE) {
556 		pad = BNXT_MIN_PKT_SIZE - length;
557 		if (skb_pad(skb, pad))
558 			/* SKB already freed. */
559 			goto tx_kick_pending;
560 		length = BNXT_MIN_PKT_SIZE;
561 	}
562 
563 	mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
564 
565 	if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
566 		goto tx_free;
567 
568 	dma_unmap_addr_set(tx_buf, mapping, mapping);
569 	flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
570 		((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
571 
572 	txbd->tx_bd_haddr = cpu_to_le64(mapping);
573 
574 	prod = NEXT_TX(prod);
575 	txbd1 = (struct tx_bd_ext *)
576 		&txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
577 
578 	txbd1->tx_bd_hsize_lflags = lflags;
579 	if (skb_is_gso(skb)) {
580 		u32 hdr_len;
581 
582 		if (skb->encapsulation)
583 			hdr_len = skb_inner_network_offset(skb) +
584 				skb_inner_network_header_len(skb) +
585 				inner_tcp_hdrlen(skb);
586 		else
587 			hdr_len = skb_transport_offset(skb) +
588 				tcp_hdrlen(skb);
589 
590 		txbd1->tx_bd_hsize_lflags |= cpu_to_le32(TX_BD_FLAGS_LSO |
591 					TX_BD_FLAGS_T_IPID |
592 					(hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
593 		length = skb_shinfo(skb)->gso_size;
594 		txbd1->tx_bd_mss = cpu_to_le32(length);
595 		length += hdr_len;
596 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
597 		txbd1->tx_bd_hsize_lflags |=
598 			cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
599 		txbd1->tx_bd_mss = 0;
600 	}
601 
602 	length >>= 9;
603 	if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) {
604 		dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n",
605 				     skb->len);
606 		i = 0;
607 		goto tx_dma_error;
608 	}
609 	flags |= bnxt_lhint_arr[length];
610 	txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
611 
612 	txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
613 	txbd1->tx_bd_cfa_action =
614 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
615 	for (i = 0; i < last_frag; i++) {
616 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
617 
618 		prod = NEXT_TX(prod);
619 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
620 
621 		len = skb_frag_size(frag);
622 		mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
623 					   DMA_TO_DEVICE);
624 
625 		if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
626 			goto tx_dma_error;
627 
628 		tx_buf = &txr->tx_buf_ring[prod];
629 		dma_unmap_addr_set(tx_buf, mapping, mapping);
630 
631 		txbd->tx_bd_haddr = cpu_to_le64(mapping);
632 
633 		flags = len << TX_BD_LEN_SHIFT;
634 		txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
635 	}
636 
637 	flags &= ~TX_BD_LEN;
638 	txbd->tx_bd_len_flags_type =
639 		cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
640 			    TX_BD_FLAGS_PACKET_END);
641 
642 	netdev_tx_sent_queue(txq, skb->len);
643 
644 	skb_tx_timestamp(skb);
645 
646 	/* Sync BD data before updating doorbell */
647 	wmb();
648 
649 	prod = NEXT_TX(prod);
650 	txr->tx_prod = prod;
651 
652 	if (!netdev_xmit_more() || netif_xmit_stopped(txq))
653 		bnxt_txr_db_kick(bp, txr, prod);
654 	else
655 		txr->kick_pending = 1;
656 
657 tx_done:
658 
659 	if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
660 		if (netdev_xmit_more() && !tx_buf->is_push)
661 			bnxt_txr_db_kick(bp, txr, prod);
662 
663 		bnxt_txr_netif_try_stop_queue(bp, txr, txq);
664 	}
665 	return NETDEV_TX_OK;
666 
667 tx_dma_error:
668 	if (BNXT_TX_PTP_IS_SET(lflags))
669 		atomic_inc(&bp->ptp_cfg->tx_avail);
670 
671 	last_frag = i;
672 
673 	/* start back at beginning and unmap skb */
674 	prod = txr->tx_prod;
675 	tx_buf = &txr->tx_buf_ring[prod];
676 	dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
677 			 skb_headlen(skb), DMA_TO_DEVICE);
678 	prod = NEXT_TX(prod);
679 
680 	/* unmap remaining mapped pages */
681 	for (i = 0; i < last_frag; i++) {
682 		prod = NEXT_TX(prod);
683 		tx_buf = &txr->tx_buf_ring[prod];
684 		dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
685 			       skb_frag_size(&skb_shinfo(skb)->frags[i]),
686 			       DMA_TO_DEVICE);
687 	}
688 
689 tx_free:
690 	dev_kfree_skb_any(skb);
691 tx_kick_pending:
692 	if (txr->kick_pending)
693 		bnxt_txr_db_kick(bp, txr, txr->tx_prod);
694 	txr->tx_buf_ring[txr->tx_prod].skb = NULL;
695 	atomic_long_inc(&dev->tx_dropped);
696 	return NETDEV_TX_OK;
697 }
698 
699 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts)
700 {
701 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
702 	struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index);
703 	u16 cons = txr->tx_cons;
704 	struct pci_dev *pdev = bp->pdev;
705 	int i;
706 	unsigned int tx_bytes = 0;
707 
708 	for (i = 0; i < nr_pkts; i++) {
709 		struct bnxt_sw_tx_bd *tx_buf;
710 		bool compl_deferred = false;
711 		struct sk_buff *skb;
712 		int j, last;
713 
714 		tx_buf = &txr->tx_buf_ring[cons];
715 		cons = NEXT_TX(cons);
716 		skb = tx_buf->skb;
717 		tx_buf->skb = NULL;
718 
719 		if (tx_buf->is_push) {
720 			tx_buf->is_push = 0;
721 			goto next_tx_int;
722 		}
723 
724 		dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
725 				 skb_headlen(skb), DMA_TO_DEVICE);
726 		last = tx_buf->nr_frags;
727 
728 		for (j = 0; j < last; j++) {
729 			cons = NEXT_TX(cons);
730 			tx_buf = &txr->tx_buf_ring[cons];
731 			dma_unmap_page(
732 				&pdev->dev,
733 				dma_unmap_addr(tx_buf, mapping),
734 				skb_frag_size(&skb_shinfo(skb)->frags[j]),
735 				DMA_TO_DEVICE);
736 		}
737 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
738 			if (bp->flags & BNXT_FLAG_CHIP_P5) {
739 				if (!bnxt_get_tx_ts_p5(bp, skb))
740 					compl_deferred = true;
741 				else
742 					atomic_inc(&bp->ptp_cfg->tx_avail);
743 			}
744 		}
745 
746 next_tx_int:
747 		cons = NEXT_TX(cons);
748 
749 		tx_bytes += skb->len;
750 		if (!compl_deferred)
751 			dev_kfree_skb_any(skb);
752 	}
753 
754 	netdev_tx_completed_queue(txq, nr_pkts, tx_bytes);
755 	txr->tx_cons = cons;
756 
757 	/* Need to make the tx_cons update visible to bnxt_start_xmit()
758 	 * before checking for netif_tx_queue_stopped().  Without the
759 	 * memory barrier, there is a small possibility that bnxt_start_xmit()
760 	 * will miss it and cause the queue to be stopped forever.
761 	 */
762 	smp_mb();
763 
764 	if (unlikely(netif_tx_queue_stopped(txq)) &&
765 	    bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh &&
766 	    READ_ONCE(txr->dev_state) != BNXT_DEV_STATE_CLOSING)
767 		netif_tx_wake_queue(txq);
768 }
769 
770 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping,
771 					 struct bnxt_rx_ring_info *rxr,
772 					 gfp_t gfp)
773 {
774 	struct device *dev = &bp->pdev->dev;
775 	struct page *page;
776 
777 	page = page_pool_dev_alloc_pages(rxr->page_pool);
778 	if (!page)
779 		return NULL;
780 
781 	*mapping = dma_map_page_attrs(dev, page, 0, PAGE_SIZE, bp->rx_dir,
782 				      DMA_ATTR_WEAK_ORDERING);
783 	if (dma_mapping_error(dev, *mapping)) {
784 		page_pool_recycle_direct(rxr->page_pool, page);
785 		return NULL;
786 	}
787 	*mapping += bp->rx_dma_offset;
788 	return page;
789 }
790 
791 static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping,
792 				       gfp_t gfp)
793 {
794 	u8 *data;
795 	struct pci_dev *pdev = bp->pdev;
796 
797 	data = kmalloc(bp->rx_buf_size, gfp);
798 	if (!data)
799 		return NULL;
800 
801 	*mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset,
802 					bp->rx_buf_use_size, bp->rx_dir,
803 					DMA_ATTR_WEAK_ORDERING);
804 
805 	if (dma_mapping_error(&pdev->dev, *mapping)) {
806 		kfree(data);
807 		data = NULL;
808 	}
809 	return data;
810 }
811 
812 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
813 		       u16 prod, gfp_t gfp)
814 {
815 	struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
816 	struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
817 	dma_addr_t mapping;
818 
819 	if (BNXT_RX_PAGE_MODE(bp)) {
820 		struct page *page =
821 			__bnxt_alloc_rx_page(bp, &mapping, rxr, gfp);
822 
823 		if (!page)
824 			return -ENOMEM;
825 
826 		rx_buf->data = page;
827 		rx_buf->data_ptr = page_address(page) + bp->rx_offset;
828 	} else {
829 		u8 *data = __bnxt_alloc_rx_data(bp, &mapping, gfp);
830 
831 		if (!data)
832 			return -ENOMEM;
833 
834 		rx_buf->data = data;
835 		rx_buf->data_ptr = data + bp->rx_offset;
836 	}
837 	rx_buf->mapping = mapping;
838 
839 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
840 	return 0;
841 }
842 
843 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data)
844 {
845 	u16 prod = rxr->rx_prod;
846 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
847 	struct rx_bd *cons_bd, *prod_bd;
848 
849 	prod_rx_buf = &rxr->rx_buf_ring[prod];
850 	cons_rx_buf = &rxr->rx_buf_ring[cons];
851 
852 	prod_rx_buf->data = data;
853 	prod_rx_buf->data_ptr = cons_rx_buf->data_ptr;
854 
855 	prod_rx_buf->mapping = cons_rx_buf->mapping;
856 
857 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
858 	cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
859 
860 	prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
861 }
862 
863 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
864 {
865 	u16 next, max = rxr->rx_agg_bmap_size;
866 
867 	next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
868 	if (next >= max)
869 		next = find_first_zero_bit(rxr->rx_agg_bmap, max);
870 	return next;
871 }
872 
873 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
874 				     struct bnxt_rx_ring_info *rxr,
875 				     u16 prod, gfp_t gfp)
876 {
877 	struct rx_bd *rxbd =
878 		&rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
879 	struct bnxt_sw_rx_agg_bd *rx_agg_buf;
880 	struct pci_dev *pdev = bp->pdev;
881 	struct page *page;
882 	dma_addr_t mapping;
883 	u16 sw_prod = rxr->rx_sw_agg_prod;
884 	unsigned int offset = 0;
885 
886 	if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) {
887 		page = rxr->rx_page;
888 		if (!page) {
889 			page = alloc_page(gfp);
890 			if (!page)
891 				return -ENOMEM;
892 			rxr->rx_page = page;
893 			rxr->rx_page_offset = 0;
894 		}
895 		offset = rxr->rx_page_offset;
896 		rxr->rx_page_offset += BNXT_RX_PAGE_SIZE;
897 		if (rxr->rx_page_offset == PAGE_SIZE)
898 			rxr->rx_page = NULL;
899 		else
900 			get_page(page);
901 	} else {
902 		page = alloc_page(gfp);
903 		if (!page)
904 			return -ENOMEM;
905 	}
906 
907 	mapping = dma_map_page_attrs(&pdev->dev, page, offset,
908 				     BNXT_RX_PAGE_SIZE, DMA_FROM_DEVICE,
909 				     DMA_ATTR_WEAK_ORDERING);
910 	if (dma_mapping_error(&pdev->dev, mapping)) {
911 		__free_page(page);
912 		return -EIO;
913 	}
914 
915 	if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
916 		sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
917 
918 	__set_bit(sw_prod, rxr->rx_agg_bmap);
919 	rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
920 	rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod);
921 
922 	rx_agg_buf->page = page;
923 	rx_agg_buf->offset = offset;
924 	rx_agg_buf->mapping = mapping;
925 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
926 	rxbd->rx_bd_opaque = sw_prod;
927 	return 0;
928 }
929 
930 static struct rx_agg_cmp *bnxt_get_agg(struct bnxt *bp,
931 				       struct bnxt_cp_ring_info *cpr,
932 				       u16 cp_cons, u16 curr)
933 {
934 	struct rx_agg_cmp *agg;
935 
936 	cp_cons = RING_CMP(ADV_RAW_CMP(cp_cons, curr));
937 	agg = (struct rx_agg_cmp *)
938 		&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
939 	return agg;
940 }
941 
942 static struct rx_agg_cmp *bnxt_get_tpa_agg_p5(struct bnxt *bp,
943 					      struct bnxt_rx_ring_info *rxr,
944 					      u16 agg_id, u16 curr)
945 {
946 	struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[agg_id];
947 
948 	return &tpa_info->agg_arr[curr];
949 }
950 
951 static void bnxt_reuse_rx_agg_bufs(struct bnxt_cp_ring_info *cpr, u16 idx,
952 				   u16 start, u32 agg_bufs, bool tpa)
953 {
954 	struct bnxt_napi *bnapi = cpr->bnapi;
955 	struct bnxt *bp = bnapi->bp;
956 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
957 	u16 prod = rxr->rx_agg_prod;
958 	u16 sw_prod = rxr->rx_sw_agg_prod;
959 	bool p5_tpa = false;
960 	u32 i;
961 
962 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa)
963 		p5_tpa = true;
964 
965 	for (i = 0; i < agg_bufs; i++) {
966 		u16 cons;
967 		struct rx_agg_cmp *agg;
968 		struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
969 		struct rx_bd *prod_bd;
970 		struct page *page;
971 
972 		if (p5_tpa)
973 			agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, start + i);
974 		else
975 			agg = bnxt_get_agg(bp, cpr, idx, start + i);
976 		cons = agg->rx_agg_cmp_opaque;
977 		__clear_bit(cons, rxr->rx_agg_bmap);
978 
979 		if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
980 			sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
981 
982 		__set_bit(sw_prod, rxr->rx_agg_bmap);
983 		prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
984 		cons_rx_buf = &rxr->rx_agg_ring[cons];
985 
986 		/* It is possible for sw_prod to be equal to cons, so
987 		 * set cons_rx_buf->page to NULL first.
988 		 */
989 		page = cons_rx_buf->page;
990 		cons_rx_buf->page = NULL;
991 		prod_rx_buf->page = page;
992 		prod_rx_buf->offset = cons_rx_buf->offset;
993 
994 		prod_rx_buf->mapping = cons_rx_buf->mapping;
995 
996 		prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
997 
998 		prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
999 		prod_bd->rx_bd_opaque = sw_prod;
1000 
1001 		prod = NEXT_RX_AGG(prod);
1002 		sw_prod = NEXT_RX_AGG(sw_prod);
1003 	}
1004 	rxr->rx_agg_prod = prod;
1005 	rxr->rx_sw_agg_prod = sw_prod;
1006 }
1007 
1008 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp,
1009 					struct bnxt_rx_ring_info *rxr,
1010 					u16 cons, void *data, u8 *data_ptr,
1011 					dma_addr_t dma_addr,
1012 					unsigned int offset_and_len)
1013 {
1014 	unsigned int payload = offset_and_len >> 16;
1015 	unsigned int len = offset_and_len & 0xffff;
1016 	skb_frag_t *frag;
1017 	struct page *page = data;
1018 	u16 prod = rxr->rx_prod;
1019 	struct sk_buff *skb;
1020 	int off, err;
1021 
1022 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
1023 	if (unlikely(err)) {
1024 		bnxt_reuse_rx_data(rxr, cons, data);
1025 		return NULL;
1026 	}
1027 	dma_addr -= bp->rx_dma_offset;
1028 	dma_unmap_page_attrs(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir,
1029 			     DMA_ATTR_WEAK_ORDERING);
1030 	page_pool_release_page(rxr->page_pool, page);
1031 
1032 	if (unlikely(!payload))
1033 		payload = eth_get_headlen(bp->dev, data_ptr, len);
1034 
1035 	skb = napi_alloc_skb(&rxr->bnapi->napi, payload);
1036 	if (!skb) {
1037 		__free_page(page);
1038 		return NULL;
1039 	}
1040 
1041 	off = (void *)data_ptr - page_address(page);
1042 	skb_add_rx_frag(skb, 0, page, off, len, PAGE_SIZE);
1043 	memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN,
1044 	       payload + NET_IP_ALIGN);
1045 
1046 	frag = &skb_shinfo(skb)->frags[0];
1047 	skb_frag_size_sub(frag, payload);
1048 	skb_frag_off_add(frag, payload);
1049 	skb->data_len -= payload;
1050 	skb->tail += payload;
1051 
1052 	return skb;
1053 }
1054 
1055 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
1056 				   struct bnxt_rx_ring_info *rxr, u16 cons,
1057 				   void *data, u8 *data_ptr,
1058 				   dma_addr_t dma_addr,
1059 				   unsigned int offset_and_len)
1060 {
1061 	u16 prod = rxr->rx_prod;
1062 	struct sk_buff *skb;
1063 	int err;
1064 
1065 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
1066 	if (unlikely(err)) {
1067 		bnxt_reuse_rx_data(rxr, cons, data);
1068 		return NULL;
1069 	}
1070 
1071 	skb = build_skb(data, 0);
1072 	dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
1073 			       bp->rx_dir, DMA_ATTR_WEAK_ORDERING);
1074 	if (!skb) {
1075 		kfree(data);
1076 		return NULL;
1077 	}
1078 
1079 	skb_reserve(skb, bp->rx_offset);
1080 	skb_put(skb, offset_and_len & 0xffff);
1081 	return skb;
1082 }
1083 
1084 static struct sk_buff *bnxt_rx_pages(struct bnxt *bp,
1085 				     struct bnxt_cp_ring_info *cpr,
1086 				     struct sk_buff *skb, u16 idx,
1087 				     u32 agg_bufs, bool tpa)
1088 {
1089 	struct bnxt_napi *bnapi = cpr->bnapi;
1090 	struct pci_dev *pdev = bp->pdev;
1091 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1092 	u16 prod = rxr->rx_agg_prod;
1093 	bool p5_tpa = false;
1094 	u32 i;
1095 
1096 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa)
1097 		p5_tpa = true;
1098 
1099 	for (i = 0; i < agg_bufs; i++) {
1100 		u16 cons, frag_len;
1101 		struct rx_agg_cmp *agg;
1102 		struct bnxt_sw_rx_agg_bd *cons_rx_buf;
1103 		struct page *page;
1104 		dma_addr_t mapping;
1105 
1106 		if (p5_tpa)
1107 			agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, i);
1108 		else
1109 			agg = bnxt_get_agg(bp, cpr, idx, i);
1110 		cons = agg->rx_agg_cmp_opaque;
1111 		frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
1112 			    RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
1113 
1114 		cons_rx_buf = &rxr->rx_agg_ring[cons];
1115 		skb_fill_page_desc(skb, i, cons_rx_buf->page,
1116 				   cons_rx_buf->offset, frag_len);
1117 		__clear_bit(cons, rxr->rx_agg_bmap);
1118 
1119 		/* It is possible for bnxt_alloc_rx_page() to allocate
1120 		 * a sw_prod index that equals the cons index, so we
1121 		 * need to clear the cons entry now.
1122 		 */
1123 		mapping = cons_rx_buf->mapping;
1124 		page = cons_rx_buf->page;
1125 		cons_rx_buf->page = NULL;
1126 
1127 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
1128 			struct skb_shared_info *shinfo;
1129 			unsigned int nr_frags;
1130 
1131 			shinfo = skb_shinfo(skb);
1132 			nr_frags = --shinfo->nr_frags;
1133 			__skb_frag_set_page(&shinfo->frags[nr_frags], NULL);
1134 
1135 			dev_kfree_skb(skb);
1136 
1137 			cons_rx_buf->page = page;
1138 
1139 			/* Update prod since possibly some pages have been
1140 			 * allocated already.
1141 			 */
1142 			rxr->rx_agg_prod = prod;
1143 			bnxt_reuse_rx_agg_bufs(cpr, idx, i, agg_bufs - i, tpa);
1144 			return NULL;
1145 		}
1146 
1147 		dma_unmap_page_attrs(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE,
1148 				     DMA_FROM_DEVICE,
1149 				     DMA_ATTR_WEAK_ORDERING);
1150 
1151 		skb->data_len += frag_len;
1152 		skb->len += frag_len;
1153 		skb->truesize += PAGE_SIZE;
1154 
1155 		prod = NEXT_RX_AGG(prod);
1156 	}
1157 	rxr->rx_agg_prod = prod;
1158 	return skb;
1159 }
1160 
1161 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1162 			       u8 agg_bufs, u32 *raw_cons)
1163 {
1164 	u16 last;
1165 	struct rx_agg_cmp *agg;
1166 
1167 	*raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
1168 	last = RING_CMP(*raw_cons);
1169 	agg = (struct rx_agg_cmp *)
1170 		&cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
1171 	return RX_AGG_CMP_VALID(agg, *raw_cons);
1172 }
1173 
1174 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
1175 					    unsigned int len,
1176 					    dma_addr_t mapping)
1177 {
1178 	struct bnxt *bp = bnapi->bp;
1179 	struct pci_dev *pdev = bp->pdev;
1180 	struct sk_buff *skb;
1181 
1182 	skb = napi_alloc_skb(&bnapi->napi, len);
1183 	if (!skb)
1184 		return NULL;
1185 
1186 	dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh,
1187 				bp->rx_dir);
1188 
1189 	memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN,
1190 	       len + NET_IP_ALIGN);
1191 
1192 	dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh,
1193 				   bp->rx_dir);
1194 
1195 	skb_put(skb, len);
1196 	return skb;
1197 }
1198 
1199 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1200 			   u32 *raw_cons, void *cmp)
1201 {
1202 	struct rx_cmp *rxcmp = cmp;
1203 	u32 tmp_raw_cons = *raw_cons;
1204 	u8 cmp_type, agg_bufs = 0;
1205 
1206 	cmp_type = RX_CMP_TYPE(rxcmp);
1207 
1208 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1209 		agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) &
1210 			    RX_CMP_AGG_BUFS) >>
1211 			   RX_CMP_AGG_BUFS_SHIFT;
1212 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1213 		struct rx_tpa_end_cmp *tpa_end = cmp;
1214 
1215 		if (bp->flags & BNXT_FLAG_CHIP_P5)
1216 			return 0;
1217 
1218 		agg_bufs = TPA_END_AGG_BUFS(tpa_end);
1219 	}
1220 
1221 	if (agg_bufs) {
1222 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1223 			return -EBUSY;
1224 	}
1225 	*raw_cons = tmp_raw_cons;
1226 	return 0;
1227 }
1228 
1229 static void bnxt_queue_fw_reset_work(struct bnxt *bp, unsigned long delay)
1230 {
1231 	if (!(test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)))
1232 		return;
1233 
1234 	if (BNXT_PF(bp))
1235 		queue_delayed_work(bnxt_pf_wq, &bp->fw_reset_task, delay);
1236 	else
1237 		schedule_delayed_work(&bp->fw_reset_task, delay);
1238 }
1239 
1240 static void bnxt_queue_sp_work(struct bnxt *bp)
1241 {
1242 	if (BNXT_PF(bp))
1243 		queue_work(bnxt_pf_wq, &bp->sp_task);
1244 	else
1245 		schedule_work(&bp->sp_task);
1246 }
1247 
1248 static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
1249 {
1250 	if (!rxr->bnapi->in_reset) {
1251 		rxr->bnapi->in_reset = true;
1252 		if (bp->flags & BNXT_FLAG_CHIP_P5)
1253 			set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
1254 		else
1255 			set_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event);
1256 		bnxt_queue_sp_work(bp);
1257 	}
1258 	rxr->rx_next_cons = 0xffff;
1259 }
1260 
1261 static u16 bnxt_alloc_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id)
1262 {
1263 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1264 	u16 idx = agg_id & MAX_TPA_P5_MASK;
1265 
1266 	if (test_bit(idx, map->agg_idx_bmap))
1267 		idx = find_first_zero_bit(map->agg_idx_bmap,
1268 					  BNXT_AGG_IDX_BMAP_SIZE);
1269 	__set_bit(idx, map->agg_idx_bmap);
1270 	map->agg_id_tbl[agg_id] = idx;
1271 	return idx;
1272 }
1273 
1274 static void bnxt_free_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
1275 {
1276 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1277 
1278 	__clear_bit(idx, map->agg_idx_bmap);
1279 }
1280 
1281 static u16 bnxt_lookup_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id)
1282 {
1283 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1284 
1285 	return map->agg_id_tbl[agg_id];
1286 }
1287 
1288 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1289 			   struct rx_tpa_start_cmp *tpa_start,
1290 			   struct rx_tpa_start_cmp_ext *tpa_start1)
1291 {
1292 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
1293 	struct bnxt_tpa_info *tpa_info;
1294 	u16 cons, prod, agg_id;
1295 	struct rx_bd *prod_bd;
1296 	dma_addr_t mapping;
1297 
1298 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
1299 		agg_id = TPA_START_AGG_ID_P5(tpa_start);
1300 		agg_id = bnxt_alloc_agg_idx(rxr, agg_id);
1301 	} else {
1302 		agg_id = TPA_START_AGG_ID(tpa_start);
1303 	}
1304 	cons = tpa_start->rx_tpa_start_cmp_opaque;
1305 	prod = rxr->rx_prod;
1306 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1307 	prod_rx_buf = &rxr->rx_buf_ring[prod];
1308 	tpa_info = &rxr->rx_tpa[agg_id];
1309 
1310 	if (unlikely(cons != rxr->rx_next_cons ||
1311 		     TPA_START_ERROR(tpa_start))) {
1312 		netdev_warn(bp->dev, "TPA cons %x, expected cons %x, error code %x\n",
1313 			    cons, rxr->rx_next_cons,
1314 			    TPA_START_ERROR_CODE(tpa_start1));
1315 		bnxt_sched_reset(bp, rxr);
1316 		return;
1317 	}
1318 	/* Store cfa_code in tpa_info to use in tpa_end
1319 	 * completion processing.
1320 	 */
1321 	tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1);
1322 	prod_rx_buf->data = tpa_info->data;
1323 	prod_rx_buf->data_ptr = tpa_info->data_ptr;
1324 
1325 	mapping = tpa_info->mapping;
1326 	prod_rx_buf->mapping = mapping;
1327 
1328 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
1329 
1330 	prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
1331 
1332 	tpa_info->data = cons_rx_buf->data;
1333 	tpa_info->data_ptr = cons_rx_buf->data_ptr;
1334 	cons_rx_buf->data = NULL;
1335 	tpa_info->mapping = cons_rx_buf->mapping;
1336 
1337 	tpa_info->len =
1338 		le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
1339 				RX_TPA_START_CMP_LEN_SHIFT;
1340 	if (likely(TPA_START_HASH_VALID(tpa_start))) {
1341 		u32 hash_type = TPA_START_HASH_TYPE(tpa_start);
1342 
1343 		tpa_info->hash_type = PKT_HASH_TYPE_L4;
1344 		tpa_info->gso_type = SKB_GSO_TCPV4;
1345 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1346 		if (hash_type == 3 || TPA_START_IS_IPV6(tpa_start1))
1347 			tpa_info->gso_type = SKB_GSO_TCPV6;
1348 		tpa_info->rss_hash =
1349 			le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
1350 	} else {
1351 		tpa_info->hash_type = PKT_HASH_TYPE_NONE;
1352 		tpa_info->gso_type = 0;
1353 		netif_warn(bp, rx_err, bp->dev, "TPA packet without valid hash\n");
1354 	}
1355 	tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
1356 	tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
1357 	tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info);
1358 	tpa_info->agg_count = 0;
1359 
1360 	rxr->rx_prod = NEXT_RX(prod);
1361 	cons = NEXT_RX(cons);
1362 	rxr->rx_next_cons = NEXT_RX(cons);
1363 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1364 
1365 	bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
1366 	rxr->rx_prod = NEXT_RX(rxr->rx_prod);
1367 	cons_rx_buf->data = NULL;
1368 }
1369 
1370 static void bnxt_abort_tpa(struct bnxt_cp_ring_info *cpr, u16 idx, u32 agg_bufs)
1371 {
1372 	if (agg_bufs)
1373 		bnxt_reuse_rx_agg_bufs(cpr, idx, 0, agg_bufs, true);
1374 }
1375 
1376 #ifdef CONFIG_INET
1377 static void bnxt_gro_tunnel(struct sk_buff *skb, __be16 ip_proto)
1378 {
1379 	struct udphdr *uh = NULL;
1380 
1381 	if (ip_proto == htons(ETH_P_IP)) {
1382 		struct iphdr *iph = (struct iphdr *)skb->data;
1383 
1384 		if (iph->protocol == IPPROTO_UDP)
1385 			uh = (struct udphdr *)(iph + 1);
1386 	} else {
1387 		struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1388 
1389 		if (iph->nexthdr == IPPROTO_UDP)
1390 			uh = (struct udphdr *)(iph + 1);
1391 	}
1392 	if (uh) {
1393 		if (uh->check)
1394 			skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL_CSUM;
1395 		else
1396 			skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1397 	}
1398 }
1399 #endif
1400 
1401 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info,
1402 					   int payload_off, int tcp_ts,
1403 					   struct sk_buff *skb)
1404 {
1405 #ifdef CONFIG_INET
1406 	struct tcphdr *th;
1407 	int len, nw_off;
1408 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1409 	u32 hdr_info = tpa_info->hdr_info;
1410 	bool loopback = false;
1411 
1412 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1413 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1414 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1415 
1416 	/* If the packet is an internal loopback packet, the offsets will
1417 	 * have an extra 4 bytes.
1418 	 */
1419 	if (inner_mac_off == 4) {
1420 		loopback = true;
1421 	} else if (inner_mac_off > 4) {
1422 		__be16 proto = *((__be16 *)(skb->data + inner_ip_off -
1423 					    ETH_HLEN - 2));
1424 
1425 		/* We only support inner iPv4/ipv6.  If we don't see the
1426 		 * correct protocol ID, it must be a loopback packet where
1427 		 * the offsets are off by 4.
1428 		 */
1429 		if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6))
1430 			loopback = true;
1431 	}
1432 	if (loopback) {
1433 		/* internal loopback packet, subtract all offsets by 4 */
1434 		inner_ip_off -= 4;
1435 		inner_mac_off -= 4;
1436 		outer_ip_off -= 4;
1437 	}
1438 
1439 	nw_off = inner_ip_off - ETH_HLEN;
1440 	skb_set_network_header(skb, nw_off);
1441 	if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) {
1442 		struct ipv6hdr *iph = ipv6_hdr(skb);
1443 
1444 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1445 		len = skb->len - skb_transport_offset(skb);
1446 		th = tcp_hdr(skb);
1447 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1448 	} else {
1449 		struct iphdr *iph = ip_hdr(skb);
1450 
1451 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1452 		len = skb->len - skb_transport_offset(skb);
1453 		th = tcp_hdr(skb);
1454 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1455 	}
1456 
1457 	if (inner_mac_off) { /* tunnel */
1458 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1459 					    ETH_HLEN - 2));
1460 
1461 		bnxt_gro_tunnel(skb, proto);
1462 	}
1463 #endif
1464 	return skb;
1465 }
1466 
1467 static struct sk_buff *bnxt_gro_func_5750x(struct bnxt_tpa_info *tpa_info,
1468 					   int payload_off, int tcp_ts,
1469 					   struct sk_buff *skb)
1470 {
1471 #ifdef CONFIG_INET
1472 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1473 	u32 hdr_info = tpa_info->hdr_info;
1474 	int iphdr_len, nw_off;
1475 
1476 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1477 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1478 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1479 
1480 	nw_off = inner_ip_off - ETH_HLEN;
1481 	skb_set_network_header(skb, nw_off);
1482 	iphdr_len = (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) ?
1483 		     sizeof(struct ipv6hdr) : sizeof(struct iphdr);
1484 	skb_set_transport_header(skb, nw_off + iphdr_len);
1485 
1486 	if (inner_mac_off) { /* tunnel */
1487 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1488 					    ETH_HLEN - 2));
1489 
1490 		bnxt_gro_tunnel(skb, proto);
1491 	}
1492 #endif
1493 	return skb;
1494 }
1495 
1496 #define BNXT_IPV4_HDR_SIZE	(sizeof(struct iphdr) + sizeof(struct tcphdr))
1497 #define BNXT_IPV6_HDR_SIZE	(sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
1498 
1499 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info,
1500 					   int payload_off, int tcp_ts,
1501 					   struct sk_buff *skb)
1502 {
1503 #ifdef CONFIG_INET
1504 	struct tcphdr *th;
1505 	int len, nw_off, tcp_opt_len = 0;
1506 
1507 	if (tcp_ts)
1508 		tcp_opt_len = 12;
1509 
1510 	if (tpa_info->gso_type == SKB_GSO_TCPV4) {
1511 		struct iphdr *iph;
1512 
1513 		nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
1514 			 ETH_HLEN;
1515 		skb_set_network_header(skb, nw_off);
1516 		iph = ip_hdr(skb);
1517 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1518 		len = skb->len - skb_transport_offset(skb);
1519 		th = tcp_hdr(skb);
1520 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1521 	} else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
1522 		struct ipv6hdr *iph;
1523 
1524 		nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
1525 			 ETH_HLEN;
1526 		skb_set_network_header(skb, nw_off);
1527 		iph = ipv6_hdr(skb);
1528 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1529 		len = skb->len - skb_transport_offset(skb);
1530 		th = tcp_hdr(skb);
1531 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1532 	} else {
1533 		dev_kfree_skb_any(skb);
1534 		return NULL;
1535 	}
1536 
1537 	if (nw_off) /* tunnel */
1538 		bnxt_gro_tunnel(skb, skb->protocol);
1539 #endif
1540 	return skb;
1541 }
1542 
1543 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp,
1544 					   struct bnxt_tpa_info *tpa_info,
1545 					   struct rx_tpa_end_cmp *tpa_end,
1546 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1547 					   struct sk_buff *skb)
1548 {
1549 #ifdef CONFIG_INET
1550 	int payload_off;
1551 	u16 segs;
1552 
1553 	segs = TPA_END_TPA_SEGS(tpa_end);
1554 	if (segs == 1)
1555 		return skb;
1556 
1557 	NAPI_GRO_CB(skb)->count = segs;
1558 	skb_shinfo(skb)->gso_size =
1559 		le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
1560 	skb_shinfo(skb)->gso_type = tpa_info->gso_type;
1561 	if (bp->flags & BNXT_FLAG_CHIP_P5)
1562 		payload_off = TPA_END_PAYLOAD_OFF_P5(tpa_end1);
1563 	else
1564 		payload_off = TPA_END_PAYLOAD_OFF(tpa_end);
1565 	skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb);
1566 	if (likely(skb))
1567 		tcp_gro_complete(skb);
1568 #endif
1569 	return skb;
1570 }
1571 
1572 /* Given the cfa_code of a received packet determine which
1573  * netdev (vf-rep or PF) the packet is destined to.
1574  */
1575 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code)
1576 {
1577 	struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code);
1578 
1579 	/* if vf-rep dev is NULL, the must belongs to the PF */
1580 	return dev ? dev : bp->dev;
1581 }
1582 
1583 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
1584 					   struct bnxt_cp_ring_info *cpr,
1585 					   u32 *raw_cons,
1586 					   struct rx_tpa_end_cmp *tpa_end,
1587 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1588 					   u8 *event)
1589 {
1590 	struct bnxt_napi *bnapi = cpr->bnapi;
1591 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1592 	u8 *data_ptr, agg_bufs;
1593 	unsigned int len;
1594 	struct bnxt_tpa_info *tpa_info;
1595 	dma_addr_t mapping;
1596 	struct sk_buff *skb;
1597 	u16 idx = 0, agg_id;
1598 	void *data;
1599 	bool gro;
1600 
1601 	if (unlikely(bnapi->in_reset)) {
1602 		int rc = bnxt_discard_rx(bp, cpr, raw_cons, tpa_end);
1603 
1604 		if (rc < 0)
1605 			return ERR_PTR(-EBUSY);
1606 		return NULL;
1607 	}
1608 
1609 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
1610 		agg_id = TPA_END_AGG_ID_P5(tpa_end);
1611 		agg_id = bnxt_lookup_agg_idx(rxr, agg_id);
1612 		agg_bufs = TPA_END_AGG_BUFS_P5(tpa_end1);
1613 		tpa_info = &rxr->rx_tpa[agg_id];
1614 		if (unlikely(agg_bufs != tpa_info->agg_count)) {
1615 			netdev_warn(bp->dev, "TPA end agg_buf %d != expected agg_bufs %d\n",
1616 				    agg_bufs, tpa_info->agg_count);
1617 			agg_bufs = tpa_info->agg_count;
1618 		}
1619 		tpa_info->agg_count = 0;
1620 		*event |= BNXT_AGG_EVENT;
1621 		bnxt_free_agg_idx(rxr, agg_id);
1622 		idx = agg_id;
1623 		gro = !!(bp->flags & BNXT_FLAG_GRO);
1624 	} else {
1625 		agg_id = TPA_END_AGG_ID(tpa_end);
1626 		agg_bufs = TPA_END_AGG_BUFS(tpa_end);
1627 		tpa_info = &rxr->rx_tpa[agg_id];
1628 		idx = RING_CMP(*raw_cons);
1629 		if (agg_bufs) {
1630 			if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
1631 				return ERR_PTR(-EBUSY);
1632 
1633 			*event |= BNXT_AGG_EVENT;
1634 			idx = NEXT_CMP(idx);
1635 		}
1636 		gro = !!TPA_END_GRO(tpa_end);
1637 	}
1638 	data = tpa_info->data;
1639 	data_ptr = tpa_info->data_ptr;
1640 	prefetch(data_ptr);
1641 	len = tpa_info->len;
1642 	mapping = tpa_info->mapping;
1643 
1644 	if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) {
1645 		bnxt_abort_tpa(cpr, idx, agg_bufs);
1646 		if (agg_bufs > MAX_SKB_FRAGS)
1647 			netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
1648 				    agg_bufs, (int)MAX_SKB_FRAGS);
1649 		return NULL;
1650 	}
1651 
1652 	if (len <= bp->rx_copy_thresh) {
1653 		skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping);
1654 		if (!skb) {
1655 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1656 			cpr->sw_stats.rx.rx_oom_discards += 1;
1657 			return NULL;
1658 		}
1659 	} else {
1660 		u8 *new_data;
1661 		dma_addr_t new_mapping;
1662 
1663 		new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC);
1664 		if (!new_data) {
1665 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1666 			cpr->sw_stats.rx.rx_oom_discards += 1;
1667 			return NULL;
1668 		}
1669 
1670 		tpa_info->data = new_data;
1671 		tpa_info->data_ptr = new_data + bp->rx_offset;
1672 		tpa_info->mapping = new_mapping;
1673 
1674 		skb = build_skb(data, 0);
1675 		dma_unmap_single_attrs(&bp->pdev->dev, mapping,
1676 				       bp->rx_buf_use_size, bp->rx_dir,
1677 				       DMA_ATTR_WEAK_ORDERING);
1678 
1679 		if (!skb) {
1680 			kfree(data);
1681 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1682 			cpr->sw_stats.rx.rx_oom_discards += 1;
1683 			return NULL;
1684 		}
1685 		skb_reserve(skb, bp->rx_offset);
1686 		skb_put(skb, len);
1687 	}
1688 
1689 	if (agg_bufs) {
1690 		skb = bnxt_rx_pages(bp, cpr, skb, idx, agg_bufs, true);
1691 		if (!skb) {
1692 			/* Page reuse already handled by bnxt_rx_pages(). */
1693 			cpr->sw_stats.rx.rx_oom_discards += 1;
1694 			return NULL;
1695 		}
1696 	}
1697 
1698 	skb->protocol =
1699 		eth_type_trans(skb, bnxt_get_pkt_dev(bp, tpa_info->cfa_code));
1700 
1701 	if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1702 		skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1703 
1704 	if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) &&
1705 	    (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) {
1706 		__be16 vlan_proto = htons(tpa_info->metadata >>
1707 					  RX_CMP_FLAGS2_METADATA_TPID_SFT);
1708 		u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1709 
1710 		if (eth_type_vlan(vlan_proto)) {
1711 			__vlan_hwaccel_put_tag(skb, vlan_proto, vtag);
1712 		} else {
1713 			dev_kfree_skb(skb);
1714 			return NULL;
1715 		}
1716 	}
1717 
1718 	skb_checksum_none_assert(skb);
1719 	if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1720 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1721 		skb->csum_level =
1722 			(tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1723 	}
1724 
1725 	if (gro)
1726 		skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb);
1727 
1728 	return skb;
1729 }
1730 
1731 static void bnxt_tpa_agg(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1732 			 struct rx_agg_cmp *rx_agg)
1733 {
1734 	u16 agg_id = TPA_AGG_AGG_ID(rx_agg);
1735 	struct bnxt_tpa_info *tpa_info;
1736 
1737 	agg_id = bnxt_lookup_agg_idx(rxr, agg_id);
1738 	tpa_info = &rxr->rx_tpa[agg_id];
1739 	BUG_ON(tpa_info->agg_count >= MAX_SKB_FRAGS);
1740 	tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg;
1741 }
1742 
1743 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi,
1744 			     struct sk_buff *skb)
1745 {
1746 	if (skb->dev != bp->dev) {
1747 		/* this packet belongs to a vf-rep */
1748 		bnxt_vf_rep_rx(bp, skb);
1749 		return;
1750 	}
1751 	skb_record_rx_queue(skb, bnapi->index);
1752 	napi_gro_receive(&bnapi->napi, skb);
1753 }
1754 
1755 /* returns the following:
1756  * 1       - 1 packet successfully received
1757  * 0       - successful TPA_START, packet not completed yet
1758  * -EBUSY  - completion ring does not have all the agg buffers yet
1759  * -ENOMEM - packet aborted due to out of memory
1760  * -EIO    - packet aborted due to hw error indicated in BD
1761  */
1762 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1763 		       u32 *raw_cons, u8 *event)
1764 {
1765 	struct bnxt_napi *bnapi = cpr->bnapi;
1766 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1767 	struct net_device *dev = bp->dev;
1768 	struct rx_cmp *rxcmp;
1769 	struct rx_cmp_ext *rxcmp1;
1770 	u32 tmp_raw_cons = *raw_cons;
1771 	u16 cfa_code, cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
1772 	struct bnxt_sw_rx_bd *rx_buf;
1773 	unsigned int len;
1774 	u8 *data_ptr, agg_bufs, cmp_type;
1775 	dma_addr_t dma_addr;
1776 	struct sk_buff *skb;
1777 	u32 flags, misc;
1778 	void *data;
1779 	int rc = 0;
1780 
1781 	rxcmp = (struct rx_cmp *)
1782 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1783 
1784 	cmp_type = RX_CMP_TYPE(rxcmp);
1785 
1786 	if (cmp_type == CMP_TYPE_RX_TPA_AGG_CMP) {
1787 		bnxt_tpa_agg(bp, rxr, (struct rx_agg_cmp *)rxcmp);
1788 		goto next_rx_no_prod_no_len;
1789 	}
1790 
1791 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1792 	cp_cons = RING_CMP(tmp_raw_cons);
1793 	rxcmp1 = (struct rx_cmp_ext *)
1794 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1795 
1796 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1797 		return -EBUSY;
1798 
1799 	/* The valid test of the entry must be done first before
1800 	 * reading any further.
1801 	 */
1802 	dma_rmb();
1803 	prod = rxr->rx_prod;
1804 
1805 	if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) {
1806 		bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp,
1807 			       (struct rx_tpa_start_cmp_ext *)rxcmp1);
1808 
1809 		*event |= BNXT_RX_EVENT;
1810 		goto next_rx_no_prod_no_len;
1811 
1812 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1813 		skb = bnxt_tpa_end(bp, cpr, &tmp_raw_cons,
1814 				   (struct rx_tpa_end_cmp *)rxcmp,
1815 				   (struct rx_tpa_end_cmp_ext *)rxcmp1, event);
1816 
1817 		if (IS_ERR(skb))
1818 			return -EBUSY;
1819 
1820 		rc = -ENOMEM;
1821 		if (likely(skb)) {
1822 			bnxt_deliver_skb(bp, bnapi, skb);
1823 			rc = 1;
1824 		}
1825 		*event |= BNXT_RX_EVENT;
1826 		goto next_rx_no_prod_no_len;
1827 	}
1828 
1829 	cons = rxcmp->rx_cmp_opaque;
1830 	if (unlikely(cons != rxr->rx_next_cons)) {
1831 		int rc1 = bnxt_discard_rx(bp, cpr, &tmp_raw_cons, rxcmp);
1832 
1833 		/* 0xffff is forced error, don't print it */
1834 		if (rxr->rx_next_cons != 0xffff)
1835 			netdev_warn(bp->dev, "RX cons %x != expected cons %x\n",
1836 				    cons, rxr->rx_next_cons);
1837 		bnxt_sched_reset(bp, rxr);
1838 		if (rc1)
1839 			return rc1;
1840 		goto next_rx_no_prod_no_len;
1841 	}
1842 	rx_buf = &rxr->rx_buf_ring[cons];
1843 	data = rx_buf->data;
1844 	data_ptr = rx_buf->data_ptr;
1845 	prefetch(data_ptr);
1846 
1847 	misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1);
1848 	agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT;
1849 
1850 	if (agg_bufs) {
1851 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1852 			return -EBUSY;
1853 
1854 		cp_cons = NEXT_CMP(cp_cons);
1855 		*event |= BNXT_AGG_EVENT;
1856 	}
1857 	*event |= BNXT_RX_EVENT;
1858 
1859 	rx_buf->data = NULL;
1860 	if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
1861 		u32 rx_err = le32_to_cpu(rxcmp1->rx_cmp_cfa_code_errors_v2);
1862 
1863 		bnxt_reuse_rx_data(rxr, cons, data);
1864 		if (agg_bufs)
1865 			bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, agg_bufs,
1866 					       false);
1867 
1868 		rc = -EIO;
1869 		if (rx_err & RX_CMPL_ERRORS_BUFFER_ERROR_MASK) {
1870 			bnapi->cp_ring.sw_stats.rx.rx_buf_errors++;
1871 			if (!(bp->flags & BNXT_FLAG_CHIP_P5) &&
1872 			    !(bp->fw_cap & BNXT_FW_CAP_RING_MONITOR)) {
1873 				netdev_warn_once(bp->dev, "RX buffer error %x\n",
1874 						 rx_err);
1875 				bnxt_sched_reset(bp, rxr);
1876 			}
1877 		}
1878 		goto next_rx_no_len;
1879 	}
1880 
1881 	flags = le32_to_cpu(rxcmp->rx_cmp_len_flags_type);
1882 	len = flags >> RX_CMP_LEN_SHIFT;
1883 	dma_addr = rx_buf->mapping;
1884 
1885 	if (bnxt_rx_xdp(bp, rxr, cons, data, &data_ptr, &len, event)) {
1886 		rc = 1;
1887 		goto next_rx;
1888 	}
1889 
1890 	if (len <= bp->rx_copy_thresh) {
1891 		skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr);
1892 		bnxt_reuse_rx_data(rxr, cons, data);
1893 		if (!skb) {
1894 			if (agg_bufs)
1895 				bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0,
1896 						       agg_bufs, false);
1897 			cpr->sw_stats.rx.rx_oom_discards += 1;
1898 			rc = -ENOMEM;
1899 			goto next_rx;
1900 		}
1901 	} else {
1902 		u32 payload;
1903 
1904 		if (rx_buf->data_ptr == data_ptr)
1905 			payload = misc & RX_CMP_PAYLOAD_OFFSET;
1906 		else
1907 			payload = 0;
1908 		skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr,
1909 				      payload | len);
1910 		if (!skb) {
1911 			cpr->sw_stats.rx.rx_oom_discards += 1;
1912 			rc = -ENOMEM;
1913 			goto next_rx;
1914 		}
1915 	}
1916 
1917 	if (agg_bufs) {
1918 		skb = bnxt_rx_pages(bp, cpr, skb, cp_cons, agg_bufs, false);
1919 		if (!skb) {
1920 			cpr->sw_stats.rx.rx_oom_discards += 1;
1921 			rc = -ENOMEM;
1922 			goto next_rx;
1923 		}
1924 	}
1925 
1926 	if (RX_CMP_HASH_VALID(rxcmp)) {
1927 		u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
1928 		enum pkt_hash_types type = PKT_HASH_TYPE_L4;
1929 
1930 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1931 		if (hash_type != 1 && hash_type != 3)
1932 			type = PKT_HASH_TYPE_L3;
1933 		skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
1934 	}
1935 
1936 	cfa_code = RX_CMP_CFA_CODE(rxcmp1);
1937 	skb->protocol = eth_type_trans(skb, bnxt_get_pkt_dev(bp, cfa_code));
1938 
1939 	if ((rxcmp1->rx_cmp_flags2 &
1940 	     cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) &&
1941 	    (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) {
1942 		u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
1943 		u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1944 		__be16 vlan_proto = htons(meta_data >>
1945 					  RX_CMP_FLAGS2_METADATA_TPID_SFT);
1946 
1947 		if (eth_type_vlan(vlan_proto)) {
1948 			__vlan_hwaccel_put_tag(skb, vlan_proto, vtag);
1949 		} else {
1950 			dev_kfree_skb(skb);
1951 			goto next_rx;
1952 		}
1953 	}
1954 
1955 	skb_checksum_none_assert(skb);
1956 	if (RX_CMP_L4_CS_OK(rxcmp1)) {
1957 		if (dev->features & NETIF_F_RXCSUM) {
1958 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1959 			skb->csum_level = RX_CMP_ENCAP(rxcmp1);
1960 		}
1961 	} else {
1962 		if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
1963 			if (dev->features & NETIF_F_RXCSUM)
1964 				bnapi->cp_ring.sw_stats.rx.rx_l4_csum_errors++;
1965 		}
1966 	}
1967 
1968 	if (unlikely((flags & RX_CMP_FLAGS_ITYPES_MASK) ==
1969 		     RX_CMP_FLAGS_ITYPE_PTP_W_TS)) {
1970 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
1971 			u32 cmpl_ts = le32_to_cpu(rxcmp1->rx_cmp_timestamp);
1972 			u64 ns, ts;
1973 
1974 			if (!bnxt_get_rx_ts_p5(bp, &ts, cmpl_ts)) {
1975 				struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
1976 
1977 				spin_lock_bh(&ptp->ptp_lock);
1978 				ns = timecounter_cyc2time(&ptp->tc, ts);
1979 				spin_unlock_bh(&ptp->ptp_lock);
1980 				memset(skb_hwtstamps(skb), 0,
1981 				       sizeof(*skb_hwtstamps(skb)));
1982 				skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
1983 			}
1984 		}
1985 	}
1986 	bnxt_deliver_skb(bp, bnapi, skb);
1987 	rc = 1;
1988 
1989 next_rx:
1990 	cpr->rx_packets += 1;
1991 	cpr->rx_bytes += len;
1992 
1993 next_rx_no_len:
1994 	rxr->rx_prod = NEXT_RX(prod);
1995 	rxr->rx_next_cons = NEXT_RX(cons);
1996 
1997 next_rx_no_prod_no_len:
1998 	*raw_cons = tmp_raw_cons;
1999 
2000 	return rc;
2001 }
2002 
2003 /* In netpoll mode, if we are using a combined completion ring, we need to
2004  * discard the rx packets and recycle the buffers.
2005  */
2006 static int bnxt_force_rx_discard(struct bnxt *bp,
2007 				 struct bnxt_cp_ring_info *cpr,
2008 				 u32 *raw_cons, u8 *event)
2009 {
2010 	u32 tmp_raw_cons = *raw_cons;
2011 	struct rx_cmp_ext *rxcmp1;
2012 	struct rx_cmp *rxcmp;
2013 	u16 cp_cons;
2014 	u8 cmp_type;
2015 	int rc;
2016 
2017 	cp_cons = RING_CMP(tmp_raw_cons);
2018 	rxcmp = (struct rx_cmp *)
2019 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2020 
2021 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
2022 	cp_cons = RING_CMP(tmp_raw_cons);
2023 	rxcmp1 = (struct rx_cmp_ext *)
2024 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2025 
2026 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
2027 		return -EBUSY;
2028 
2029 	/* The valid test of the entry must be done first before
2030 	 * reading any further.
2031 	 */
2032 	dma_rmb();
2033 	cmp_type = RX_CMP_TYPE(rxcmp);
2034 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
2035 		rxcmp1->rx_cmp_cfa_code_errors_v2 |=
2036 			cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
2037 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
2038 		struct rx_tpa_end_cmp_ext *tpa_end1;
2039 
2040 		tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1;
2041 		tpa_end1->rx_tpa_end_cmp_errors_v2 |=
2042 			cpu_to_le32(RX_TPA_END_CMP_ERRORS);
2043 	}
2044 	rc = bnxt_rx_pkt(bp, cpr, raw_cons, event);
2045 	if (rc && rc != -EBUSY)
2046 		cpr->sw_stats.rx.rx_netpoll_discards += 1;
2047 	return rc;
2048 }
2049 
2050 u32 bnxt_fw_health_readl(struct bnxt *bp, int reg_idx)
2051 {
2052 	struct bnxt_fw_health *fw_health = bp->fw_health;
2053 	u32 reg = fw_health->regs[reg_idx];
2054 	u32 reg_type, reg_off, val = 0;
2055 
2056 	reg_type = BNXT_FW_HEALTH_REG_TYPE(reg);
2057 	reg_off = BNXT_FW_HEALTH_REG_OFF(reg);
2058 	switch (reg_type) {
2059 	case BNXT_FW_HEALTH_REG_TYPE_CFG:
2060 		pci_read_config_dword(bp->pdev, reg_off, &val);
2061 		break;
2062 	case BNXT_FW_HEALTH_REG_TYPE_GRC:
2063 		reg_off = fw_health->mapped_regs[reg_idx];
2064 		fallthrough;
2065 	case BNXT_FW_HEALTH_REG_TYPE_BAR0:
2066 		val = readl(bp->bar0 + reg_off);
2067 		break;
2068 	case BNXT_FW_HEALTH_REG_TYPE_BAR1:
2069 		val = readl(bp->bar1 + reg_off);
2070 		break;
2071 	}
2072 	if (reg_idx == BNXT_FW_RESET_INPROG_REG)
2073 		val &= fw_health->fw_reset_inprog_reg_mask;
2074 	return val;
2075 }
2076 
2077 static u16 bnxt_agg_ring_id_to_grp_idx(struct bnxt *bp, u16 ring_id)
2078 {
2079 	int i;
2080 
2081 	for (i = 0; i < bp->rx_nr_rings; i++) {
2082 		u16 grp_idx = bp->rx_ring[i].bnapi->index;
2083 		struct bnxt_ring_grp_info *grp_info;
2084 
2085 		grp_info = &bp->grp_info[grp_idx];
2086 		if (grp_info->agg_fw_ring_id == ring_id)
2087 			return grp_idx;
2088 	}
2089 	return INVALID_HW_RING_ID;
2090 }
2091 
2092 static void bnxt_event_error_report(struct bnxt *bp, u32 data1, u32 data2)
2093 {
2094 	switch (BNXT_EVENT_ERROR_REPORT_TYPE(data1)) {
2095 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_INVALID_SIGNAL:
2096 		netdev_err(bp->dev, "1PPS: Received invalid signal on pin%lu from the external source. Please fix the signal and reconfigure the pin\n",
2097 			   BNXT_EVENT_INVALID_SIGNAL_DATA(data2));
2098 		break;
2099 	default:
2100 		netdev_err(bp->dev, "FW reported unknown error type\n");
2101 		break;
2102 	}
2103 }
2104 
2105 #define BNXT_GET_EVENT_PORT(data)	\
2106 	((data) &			\
2107 	 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK)
2108 
2109 #define BNXT_EVENT_RING_TYPE(data2)	\
2110 	((data2) &			\
2111 	 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_MASK)
2112 
2113 #define BNXT_EVENT_RING_TYPE_RX(data2)	\
2114 	(BNXT_EVENT_RING_TYPE(data2) ==	\
2115 	 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_RX)
2116 
2117 static int bnxt_async_event_process(struct bnxt *bp,
2118 				    struct hwrm_async_event_cmpl *cmpl)
2119 {
2120 	u16 event_id = le16_to_cpu(cmpl->event_id);
2121 	u32 data1 = le32_to_cpu(cmpl->event_data1);
2122 	u32 data2 = le32_to_cpu(cmpl->event_data2);
2123 
2124 	/* TODO CHIMP_FW: Define event id's for link change, error etc */
2125 	switch (event_id) {
2126 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: {
2127 		struct bnxt_link_info *link_info = &bp->link_info;
2128 
2129 		if (BNXT_VF(bp))
2130 			goto async_event_process_exit;
2131 
2132 		/* print unsupported speed warning in forced speed mode only */
2133 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) &&
2134 		    (data1 & 0x20000)) {
2135 			u16 fw_speed = link_info->force_link_speed;
2136 			u32 speed = bnxt_fw_to_ethtool_speed(fw_speed);
2137 
2138 			if (speed != SPEED_UNKNOWN)
2139 				netdev_warn(bp->dev, "Link speed %d no longer supported\n",
2140 					    speed);
2141 		}
2142 		set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event);
2143 	}
2144 		fallthrough;
2145 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE:
2146 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE:
2147 		set_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, &bp->sp_event);
2148 		fallthrough;
2149 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
2150 		set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
2151 		break;
2152 	case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD:
2153 		set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event);
2154 		break;
2155 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: {
2156 		u16 port_id = BNXT_GET_EVENT_PORT(data1);
2157 
2158 		if (BNXT_VF(bp))
2159 			break;
2160 
2161 		if (bp->pf.port_id != port_id)
2162 			break;
2163 
2164 		set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event);
2165 		break;
2166 	}
2167 	case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE:
2168 		if (BNXT_PF(bp))
2169 			goto async_event_process_exit;
2170 		set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event);
2171 		break;
2172 	case ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY: {
2173 		char *fatal_str = "non-fatal";
2174 
2175 		if (!bp->fw_health)
2176 			goto async_event_process_exit;
2177 
2178 		bp->fw_reset_timestamp = jiffies;
2179 		bp->fw_reset_min_dsecs = cmpl->timestamp_lo;
2180 		if (!bp->fw_reset_min_dsecs)
2181 			bp->fw_reset_min_dsecs = BNXT_DFLT_FW_RST_MIN_DSECS;
2182 		bp->fw_reset_max_dsecs = le16_to_cpu(cmpl->timestamp_hi);
2183 		if (!bp->fw_reset_max_dsecs)
2184 			bp->fw_reset_max_dsecs = BNXT_DFLT_FW_RST_MAX_DSECS;
2185 		if (EVENT_DATA1_RESET_NOTIFY_FATAL(data1)) {
2186 			fatal_str = "fatal";
2187 			set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
2188 		}
2189 		netif_warn(bp, hw, bp->dev,
2190 			   "Firmware %s reset event, data1: 0x%x, data2: 0x%x, min wait %u ms, max wait %u ms\n",
2191 			   fatal_str, data1, data2,
2192 			   bp->fw_reset_min_dsecs * 100,
2193 			   bp->fw_reset_max_dsecs * 100);
2194 		set_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event);
2195 		break;
2196 	}
2197 	case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY: {
2198 		struct bnxt_fw_health *fw_health = bp->fw_health;
2199 
2200 		if (!fw_health)
2201 			goto async_event_process_exit;
2202 
2203 		fw_health->enabled = EVENT_DATA1_RECOVERY_ENABLED(data1);
2204 		fw_health->master = EVENT_DATA1_RECOVERY_MASTER_FUNC(data1);
2205 		if (!fw_health->enabled) {
2206 			netif_info(bp, drv, bp->dev,
2207 				   "Error recovery info: error recovery[0]\n");
2208 			break;
2209 		}
2210 		fw_health->tmr_multiplier =
2211 			DIV_ROUND_UP(fw_health->polling_dsecs * HZ,
2212 				     bp->current_interval * 10);
2213 		fw_health->tmr_counter = fw_health->tmr_multiplier;
2214 		fw_health->last_fw_heartbeat =
2215 			bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
2216 		fw_health->last_fw_reset_cnt =
2217 			bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
2218 		netif_info(bp, drv, bp->dev,
2219 			   "Error recovery info: error recovery[1], master[%d], reset count[%u], health status: 0x%x\n",
2220 			   fw_health->master, fw_health->last_fw_reset_cnt,
2221 			   bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG));
2222 		goto async_event_process_exit;
2223 	}
2224 	case ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION:
2225 		netif_notice(bp, hw, bp->dev,
2226 			     "Received firmware debug notification, data1: 0x%x, data2: 0x%x\n",
2227 			     data1, data2);
2228 		goto async_event_process_exit;
2229 	case ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG: {
2230 		struct bnxt_rx_ring_info *rxr;
2231 		u16 grp_idx;
2232 
2233 		if (bp->flags & BNXT_FLAG_CHIP_P5)
2234 			goto async_event_process_exit;
2235 
2236 		netdev_warn(bp->dev, "Ring monitor event, ring type %lu id 0x%x\n",
2237 			    BNXT_EVENT_RING_TYPE(data2), data1);
2238 		if (!BNXT_EVENT_RING_TYPE_RX(data2))
2239 			goto async_event_process_exit;
2240 
2241 		grp_idx = bnxt_agg_ring_id_to_grp_idx(bp, data1);
2242 		if (grp_idx == INVALID_HW_RING_ID) {
2243 			netdev_warn(bp->dev, "Unknown RX agg ring id 0x%x\n",
2244 				    data1);
2245 			goto async_event_process_exit;
2246 		}
2247 		rxr = bp->bnapi[grp_idx]->rx_ring;
2248 		bnxt_sched_reset(bp, rxr);
2249 		goto async_event_process_exit;
2250 	}
2251 	case ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST: {
2252 		struct bnxt_fw_health *fw_health = bp->fw_health;
2253 
2254 		netif_notice(bp, hw, bp->dev,
2255 			     "Received firmware echo request, data1: 0x%x, data2: 0x%x\n",
2256 			     data1, data2);
2257 		if (fw_health) {
2258 			fw_health->echo_req_data1 = data1;
2259 			fw_health->echo_req_data2 = data2;
2260 			set_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event);
2261 			break;
2262 		}
2263 		goto async_event_process_exit;
2264 	}
2265 	case ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP: {
2266 		bnxt_ptp_pps_event(bp, data1, data2);
2267 		goto async_event_process_exit;
2268 	}
2269 	case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT: {
2270 		bnxt_event_error_report(bp, data1, data2);
2271 		goto async_event_process_exit;
2272 	}
2273 	case ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE: {
2274 		u16 seq_id = le32_to_cpu(cmpl->event_data2) & 0xffff;
2275 
2276 		hwrm_update_token(bp, seq_id, BNXT_HWRM_DEFERRED);
2277 		goto async_event_process_exit;
2278 	}
2279 	default:
2280 		goto async_event_process_exit;
2281 	}
2282 	bnxt_queue_sp_work(bp);
2283 async_event_process_exit:
2284 	bnxt_ulp_async_events(bp, cmpl);
2285 	return 0;
2286 }
2287 
2288 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
2289 {
2290 	u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
2291 	struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
2292 	struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
2293 				(struct hwrm_fwd_req_cmpl *)txcmp;
2294 
2295 	switch (cmpl_type) {
2296 	case CMPL_BASE_TYPE_HWRM_DONE:
2297 		seq_id = le16_to_cpu(h_cmpl->sequence_id);
2298 		hwrm_update_token(bp, seq_id, BNXT_HWRM_COMPLETE);
2299 		break;
2300 
2301 	case CMPL_BASE_TYPE_HWRM_FWD_REQ:
2302 		vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
2303 
2304 		if ((vf_id < bp->pf.first_vf_id) ||
2305 		    (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
2306 			netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
2307 				   vf_id);
2308 			return -EINVAL;
2309 		}
2310 
2311 		set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
2312 		set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event);
2313 		bnxt_queue_sp_work(bp);
2314 		break;
2315 
2316 	case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
2317 		bnxt_async_event_process(bp,
2318 					 (struct hwrm_async_event_cmpl *)txcmp);
2319 		break;
2320 
2321 	default:
2322 		break;
2323 	}
2324 
2325 	return 0;
2326 }
2327 
2328 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
2329 {
2330 	struct bnxt_napi *bnapi = dev_instance;
2331 	struct bnxt *bp = bnapi->bp;
2332 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2333 	u32 cons = RING_CMP(cpr->cp_raw_cons);
2334 
2335 	cpr->event_ctr++;
2336 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
2337 	napi_schedule(&bnapi->napi);
2338 	return IRQ_HANDLED;
2339 }
2340 
2341 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
2342 {
2343 	u32 raw_cons = cpr->cp_raw_cons;
2344 	u16 cons = RING_CMP(raw_cons);
2345 	struct tx_cmp *txcmp;
2346 
2347 	txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2348 
2349 	return TX_CMP_VALID(txcmp, raw_cons);
2350 }
2351 
2352 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
2353 {
2354 	struct bnxt_napi *bnapi = dev_instance;
2355 	struct bnxt *bp = bnapi->bp;
2356 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2357 	u32 cons = RING_CMP(cpr->cp_raw_cons);
2358 	u32 int_status;
2359 
2360 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
2361 
2362 	if (!bnxt_has_work(bp, cpr)) {
2363 		int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
2364 		/* return if erroneous interrupt */
2365 		if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
2366 			return IRQ_NONE;
2367 	}
2368 
2369 	/* disable ring IRQ */
2370 	BNXT_CP_DB_IRQ_DIS(cpr->cp_db.doorbell);
2371 
2372 	/* Return here if interrupt is shared and is disabled. */
2373 	if (unlikely(atomic_read(&bp->intr_sem) != 0))
2374 		return IRQ_HANDLED;
2375 
2376 	napi_schedule(&bnapi->napi);
2377 	return IRQ_HANDLED;
2378 }
2379 
2380 static int __bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2381 			    int budget)
2382 {
2383 	struct bnxt_napi *bnapi = cpr->bnapi;
2384 	u32 raw_cons = cpr->cp_raw_cons;
2385 	u32 cons;
2386 	int tx_pkts = 0;
2387 	int rx_pkts = 0;
2388 	u8 event = 0;
2389 	struct tx_cmp *txcmp;
2390 
2391 	cpr->has_more_work = 0;
2392 	cpr->had_work_done = 1;
2393 	while (1) {
2394 		int rc;
2395 
2396 		cons = RING_CMP(raw_cons);
2397 		txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2398 
2399 		if (!TX_CMP_VALID(txcmp, raw_cons))
2400 			break;
2401 
2402 		/* The valid test of the entry must be done first before
2403 		 * reading any further.
2404 		 */
2405 		dma_rmb();
2406 		if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) {
2407 			tx_pkts++;
2408 			/* return full budget so NAPI will complete. */
2409 			if (unlikely(tx_pkts > bp->tx_wake_thresh)) {
2410 				rx_pkts = budget;
2411 				raw_cons = NEXT_RAW_CMP(raw_cons);
2412 				if (budget)
2413 					cpr->has_more_work = 1;
2414 				break;
2415 			}
2416 		} else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
2417 			if (likely(budget))
2418 				rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
2419 			else
2420 				rc = bnxt_force_rx_discard(bp, cpr, &raw_cons,
2421 							   &event);
2422 			if (likely(rc >= 0))
2423 				rx_pkts += rc;
2424 			/* Increment rx_pkts when rc is -ENOMEM to count towards
2425 			 * the NAPI budget.  Otherwise, we may potentially loop
2426 			 * here forever if we consistently cannot allocate
2427 			 * buffers.
2428 			 */
2429 			else if (rc == -ENOMEM && budget)
2430 				rx_pkts++;
2431 			else if (rc == -EBUSY)	/* partial completion */
2432 				break;
2433 		} else if (unlikely((TX_CMP_TYPE(txcmp) ==
2434 				     CMPL_BASE_TYPE_HWRM_DONE) ||
2435 				    (TX_CMP_TYPE(txcmp) ==
2436 				     CMPL_BASE_TYPE_HWRM_FWD_REQ) ||
2437 				    (TX_CMP_TYPE(txcmp) ==
2438 				     CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) {
2439 			bnxt_hwrm_handler(bp, txcmp);
2440 		}
2441 		raw_cons = NEXT_RAW_CMP(raw_cons);
2442 
2443 		if (rx_pkts && rx_pkts == budget) {
2444 			cpr->has_more_work = 1;
2445 			break;
2446 		}
2447 	}
2448 
2449 	if (event & BNXT_REDIRECT_EVENT)
2450 		xdp_do_flush_map();
2451 
2452 	if (event & BNXT_TX_EVENT) {
2453 		struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
2454 		u16 prod = txr->tx_prod;
2455 
2456 		/* Sync BD data before updating doorbell */
2457 		wmb();
2458 
2459 		bnxt_db_write_relaxed(bp, &txr->tx_db, prod);
2460 	}
2461 
2462 	cpr->cp_raw_cons = raw_cons;
2463 	bnapi->tx_pkts += tx_pkts;
2464 	bnapi->events |= event;
2465 	return rx_pkts;
2466 }
2467 
2468 static void __bnxt_poll_work_done(struct bnxt *bp, struct bnxt_napi *bnapi)
2469 {
2470 	if (bnapi->tx_pkts) {
2471 		bnapi->tx_int(bp, bnapi, bnapi->tx_pkts);
2472 		bnapi->tx_pkts = 0;
2473 	}
2474 
2475 	if ((bnapi->events & BNXT_RX_EVENT) && !(bnapi->in_reset)) {
2476 		struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2477 
2478 		if (bnapi->events & BNXT_AGG_EVENT)
2479 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
2480 		bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
2481 	}
2482 	bnapi->events = 0;
2483 }
2484 
2485 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2486 			  int budget)
2487 {
2488 	struct bnxt_napi *bnapi = cpr->bnapi;
2489 	int rx_pkts;
2490 
2491 	rx_pkts = __bnxt_poll_work(bp, cpr, budget);
2492 
2493 	/* ACK completion ring before freeing tx ring and producing new
2494 	 * buffers in rx/agg rings to prevent overflowing the completion
2495 	 * ring.
2496 	 */
2497 	bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons);
2498 
2499 	__bnxt_poll_work_done(bp, bnapi);
2500 	return rx_pkts;
2501 }
2502 
2503 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget)
2504 {
2505 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2506 	struct bnxt *bp = bnapi->bp;
2507 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2508 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2509 	struct tx_cmp *txcmp;
2510 	struct rx_cmp_ext *rxcmp1;
2511 	u32 cp_cons, tmp_raw_cons;
2512 	u32 raw_cons = cpr->cp_raw_cons;
2513 	u32 rx_pkts = 0;
2514 	u8 event = 0;
2515 
2516 	while (1) {
2517 		int rc;
2518 
2519 		cp_cons = RING_CMP(raw_cons);
2520 		txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2521 
2522 		if (!TX_CMP_VALID(txcmp, raw_cons))
2523 			break;
2524 
2525 		/* The valid test of the entry must be done first before
2526 		 * reading any further.
2527 		 */
2528 		dma_rmb();
2529 		if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
2530 			tmp_raw_cons = NEXT_RAW_CMP(raw_cons);
2531 			cp_cons = RING_CMP(tmp_raw_cons);
2532 			rxcmp1 = (struct rx_cmp_ext *)
2533 			  &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2534 
2535 			if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
2536 				break;
2537 
2538 			/* force an error to recycle the buffer */
2539 			rxcmp1->rx_cmp_cfa_code_errors_v2 |=
2540 				cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
2541 
2542 			rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
2543 			if (likely(rc == -EIO) && budget)
2544 				rx_pkts++;
2545 			else if (rc == -EBUSY)	/* partial completion */
2546 				break;
2547 		} else if (unlikely(TX_CMP_TYPE(txcmp) ==
2548 				    CMPL_BASE_TYPE_HWRM_DONE)) {
2549 			bnxt_hwrm_handler(bp, txcmp);
2550 		} else {
2551 			netdev_err(bp->dev,
2552 				   "Invalid completion received on special ring\n");
2553 		}
2554 		raw_cons = NEXT_RAW_CMP(raw_cons);
2555 
2556 		if (rx_pkts == budget)
2557 			break;
2558 	}
2559 
2560 	cpr->cp_raw_cons = raw_cons;
2561 	BNXT_DB_CQ(&cpr->cp_db, cpr->cp_raw_cons);
2562 	bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
2563 
2564 	if (event & BNXT_AGG_EVENT)
2565 		bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
2566 
2567 	if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) {
2568 		napi_complete_done(napi, rx_pkts);
2569 		BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2570 	}
2571 	return rx_pkts;
2572 }
2573 
2574 static int bnxt_poll(struct napi_struct *napi, int budget)
2575 {
2576 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2577 	struct bnxt *bp = bnapi->bp;
2578 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2579 	int work_done = 0;
2580 
2581 	if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) {
2582 		napi_complete(napi);
2583 		return 0;
2584 	}
2585 	while (1) {
2586 		work_done += bnxt_poll_work(bp, cpr, budget - work_done);
2587 
2588 		if (work_done >= budget) {
2589 			if (!budget)
2590 				BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2591 			break;
2592 		}
2593 
2594 		if (!bnxt_has_work(bp, cpr)) {
2595 			if (napi_complete_done(napi, work_done))
2596 				BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2597 			break;
2598 		}
2599 	}
2600 	if (bp->flags & BNXT_FLAG_DIM) {
2601 		struct dim_sample dim_sample = {};
2602 
2603 		dim_update_sample(cpr->event_ctr,
2604 				  cpr->rx_packets,
2605 				  cpr->rx_bytes,
2606 				  &dim_sample);
2607 		net_dim(&cpr->dim, dim_sample);
2608 	}
2609 	return work_done;
2610 }
2611 
2612 static int __bnxt_poll_cqs(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
2613 {
2614 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2615 	int i, work_done = 0;
2616 
2617 	for (i = 0; i < 2; i++) {
2618 		struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i];
2619 
2620 		if (cpr2) {
2621 			work_done += __bnxt_poll_work(bp, cpr2,
2622 						      budget - work_done);
2623 			cpr->has_more_work |= cpr2->has_more_work;
2624 		}
2625 	}
2626 	return work_done;
2627 }
2628 
2629 static void __bnxt_poll_cqs_done(struct bnxt *bp, struct bnxt_napi *bnapi,
2630 				 u64 dbr_type)
2631 {
2632 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2633 	int i;
2634 
2635 	for (i = 0; i < 2; i++) {
2636 		struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i];
2637 		struct bnxt_db_info *db;
2638 
2639 		if (cpr2 && cpr2->had_work_done) {
2640 			db = &cpr2->cp_db;
2641 			writeq(db->db_key64 | dbr_type |
2642 			       RING_CMP(cpr2->cp_raw_cons), db->doorbell);
2643 			cpr2->had_work_done = 0;
2644 		}
2645 	}
2646 	__bnxt_poll_work_done(bp, bnapi);
2647 }
2648 
2649 static int bnxt_poll_p5(struct napi_struct *napi, int budget)
2650 {
2651 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2652 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2653 	u32 raw_cons = cpr->cp_raw_cons;
2654 	struct bnxt *bp = bnapi->bp;
2655 	struct nqe_cn *nqcmp;
2656 	int work_done = 0;
2657 	u32 cons;
2658 
2659 	if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) {
2660 		napi_complete(napi);
2661 		return 0;
2662 	}
2663 	if (cpr->has_more_work) {
2664 		cpr->has_more_work = 0;
2665 		work_done = __bnxt_poll_cqs(bp, bnapi, budget);
2666 	}
2667 	while (1) {
2668 		cons = RING_CMP(raw_cons);
2669 		nqcmp = &cpr->nq_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2670 
2671 		if (!NQ_CMP_VALID(nqcmp, raw_cons)) {
2672 			if (cpr->has_more_work)
2673 				break;
2674 
2675 			__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL);
2676 			cpr->cp_raw_cons = raw_cons;
2677 			if (napi_complete_done(napi, work_done))
2678 				BNXT_DB_NQ_ARM_P5(&cpr->cp_db,
2679 						  cpr->cp_raw_cons);
2680 			return work_done;
2681 		}
2682 
2683 		/* The valid test of the entry must be done first before
2684 		 * reading any further.
2685 		 */
2686 		dma_rmb();
2687 
2688 		if (nqcmp->type == cpu_to_le16(NQ_CN_TYPE_CQ_NOTIFICATION)) {
2689 			u32 idx = le32_to_cpu(nqcmp->cq_handle_low);
2690 			struct bnxt_cp_ring_info *cpr2;
2691 
2692 			cpr2 = cpr->cp_ring_arr[idx];
2693 			work_done += __bnxt_poll_work(bp, cpr2,
2694 						      budget - work_done);
2695 			cpr->has_more_work |= cpr2->has_more_work;
2696 		} else {
2697 			bnxt_hwrm_handler(bp, (struct tx_cmp *)nqcmp);
2698 		}
2699 		raw_cons = NEXT_RAW_CMP(raw_cons);
2700 	}
2701 	__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ);
2702 	if (raw_cons != cpr->cp_raw_cons) {
2703 		cpr->cp_raw_cons = raw_cons;
2704 		BNXT_DB_NQ_P5(&cpr->cp_db, raw_cons);
2705 	}
2706 	return work_done;
2707 }
2708 
2709 static void bnxt_free_tx_skbs(struct bnxt *bp)
2710 {
2711 	int i, max_idx;
2712 	struct pci_dev *pdev = bp->pdev;
2713 
2714 	if (!bp->tx_ring)
2715 		return;
2716 
2717 	max_idx = bp->tx_nr_pages * TX_DESC_CNT;
2718 	for (i = 0; i < bp->tx_nr_rings; i++) {
2719 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2720 		int j;
2721 
2722 		for (j = 0; j < max_idx;) {
2723 			struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
2724 			struct sk_buff *skb;
2725 			int k, last;
2726 
2727 			if (i < bp->tx_nr_rings_xdp &&
2728 			    tx_buf->action == XDP_REDIRECT) {
2729 				dma_unmap_single(&pdev->dev,
2730 					dma_unmap_addr(tx_buf, mapping),
2731 					dma_unmap_len(tx_buf, len),
2732 					DMA_TO_DEVICE);
2733 				xdp_return_frame(tx_buf->xdpf);
2734 				tx_buf->action = 0;
2735 				tx_buf->xdpf = NULL;
2736 				j++;
2737 				continue;
2738 			}
2739 
2740 			skb = tx_buf->skb;
2741 			if (!skb) {
2742 				j++;
2743 				continue;
2744 			}
2745 
2746 			tx_buf->skb = NULL;
2747 
2748 			if (tx_buf->is_push) {
2749 				dev_kfree_skb(skb);
2750 				j += 2;
2751 				continue;
2752 			}
2753 
2754 			dma_unmap_single(&pdev->dev,
2755 					 dma_unmap_addr(tx_buf, mapping),
2756 					 skb_headlen(skb),
2757 					 DMA_TO_DEVICE);
2758 
2759 			last = tx_buf->nr_frags;
2760 			j += 2;
2761 			for (k = 0; k < last; k++, j++) {
2762 				int ring_idx = j & bp->tx_ring_mask;
2763 				skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2764 
2765 				tx_buf = &txr->tx_buf_ring[ring_idx];
2766 				dma_unmap_page(
2767 					&pdev->dev,
2768 					dma_unmap_addr(tx_buf, mapping),
2769 					skb_frag_size(frag), DMA_TO_DEVICE);
2770 			}
2771 			dev_kfree_skb(skb);
2772 		}
2773 		netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
2774 	}
2775 }
2776 
2777 static void bnxt_free_one_rx_ring_skbs(struct bnxt *bp, int ring_nr)
2778 {
2779 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
2780 	struct pci_dev *pdev = bp->pdev;
2781 	struct bnxt_tpa_idx_map *map;
2782 	int i, max_idx, max_agg_idx;
2783 
2784 	max_idx = bp->rx_nr_pages * RX_DESC_CNT;
2785 	max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
2786 	if (!rxr->rx_tpa)
2787 		goto skip_rx_tpa_free;
2788 
2789 	for (i = 0; i < bp->max_tpa; i++) {
2790 		struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[i];
2791 		u8 *data = tpa_info->data;
2792 
2793 		if (!data)
2794 			continue;
2795 
2796 		dma_unmap_single_attrs(&pdev->dev, tpa_info->mapping,
2797 				       bp->rx_buf_use_size, bp->rx_dir,
2798 				       DMA_ATTR_WEAK_ORDERING);
2799 
2800 		tpa_info->data = NULL;
2801 
2802 		kfree(data);
2803 	}
2804 
2805 skip_rx_tpa_free:
2806 	for (i = 0; i < max_idx; i++) {
2807 		struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[i];
2808 		dma_addr_t mapping = rx_buf->mapping;
2809 		void *data = rx_buf->data;
2810 
2811 		if (!data)
2812 			continue;
2813 
2814 		rx_buf->data = NULL;
2815 		if (BNXT_RX_PAGE_MODE(bp)) {
2816 			mapping -= bp->rx_dma_offset;
2817 			dma_unmap_page_attrs(&pdev->dev, mapping, PAGE_SIZE,
2818 					     bp->rx_dir,
2819 					     DMA_ATTR_WEAK_ORDERING);
2820 			page_pool_recycle_direct(rxr->page_pool, data);
2821 		} else {
2822 			dma_unmap_single_attrs(&pdev->dev, mapping,
2823 					       bp->rx_buf_use_size, bp->rx_dir,
2824 					       DMA_ATTR_WEAK_ORDERING);
2825 			kfree(data);
2826 		}
2827 	}
2828 	for (i = 0; i < max_agg_idx; i++) {
2829 		struct bnxt_sw_rx_agg_bd *rx_agg_buf = &rxr->rx_agg_ring[i];
2830 		struct page *page = rx_agg_buf->page;
2831 
2832 		if (!page)
2833 			continue;
2834 
2835 		dma_unmap_page_attrs(&pdev->dev, rx_agg_buf->mapping,
2836 				     BNXT_RX_PAGE_SIZE, DMA_FROM_DEVICE,
2837 				     DMA_ATTR_WEAK_ORDERING);
2838 
2839 		rx_agg_buf->page = NULL;
2840 		__clear_bit(i, rxr->rx_agg_bmap);
2841 
2842 		__free_page(page);
2843 	}
2844 	if (rxr->rx_page) {
2845 		__free_page(rxr->rx_page);
2846 		rxr->rx_page = NULL;
2847 	}
2848 	map = rxr->rx_tpa_idx_map;
2849 	if (map)
2850 		memset(map->agg_idx_bmap, 0, sizeof(map->agg_idx_bmap));
2851 }
2852 
2853 static void bnxt_free_rx_skbs(struct bnxt *bp)
2854 {
2855 	int i;
2856 
2857 	if (!bp->rx_ring)
2858 		return;
2859 
2860 	for (i = 0; i < bp->rx_nr_rings; i++)
2861 		bnxt_free_one_rx_ring_skbs(bp, i);
2862 }
2863 
2864 static void bnxt_free_skbs(struct bnxt *bp)
2865 {
2866 	bnxt_free_tx_skbs(bp);
2867 	bnxt_free_rx_skbs(bp);
2868 }
2869 
2870 static void bnxt_init_ctx_mem(struct bnxt_mem_init *mem_init, void *p, int len)
2871 {
2872 	u8 init_val = mem_init->init_val;
2873 	u16 offset = mem_init->offset;
2874 	u8 *p2 = p;
2875 	int i;
2876 
2877 	if (!init_val)
2878 		return;
2879 	if (offset == BNXT_MEM_INVALID_OFFSET) {
2880 		memset(p, init_val, len);
2881 		return;
2882 	}
2883 	for (i = 0; i < len; i += mem_init->size)
2884 		*(p2 + i + offset) = init_val;
2885 }
2886 
2887 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
2888 {
2889 	struct pci_dev *pdev = bp->pdev;
2890 	int i;
2891 
2892 	for (i = 0; i < rmem->nr_pages; i++) {
2893 		if (!rmem->pg_arr[i])
2894 			continue;
2895 
2896 		dma_free_coherent(&pdev->dev, rmem->page_size,
2897 				  rmem->pg_arr[i], rmem->dma_arr[i]);
2898 
2899 		rmem->pg_arr[i] = NULL;
2900 	}
2901 	if (rmem->pg_tbl) {
2902 		size_t pg_tbl_size = rmem->nr_pages * 8;
2903 
2904 		if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
2905 			pg_tbl_size = rmem->page_size;
2906 		dma_free_coherent(&pdev->dev, pg_tbl_size,
2907 				  rmem->pg_tbl, rmem->pg_tbl_map);
2908 		rmem->pg_tbl = NULL;
2909 	}
2910 	if (rmem->vmem_size && *rmem->vmem) {
2911 		vfree(*rmem->vmem);
2912 		*rmem->vmem = NULL;
2913 	}
2914 }
2915 
2916 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
2917 {
2918 	struct pci_dev *pdev = bp->pdev;
2919 	u64 valid_bit = 0;
2920 	int i;
2921 
2922 	if (rmem->flags & (BNXT_RMEM_VALID_PTE_FLAG | BNXT_RMEM_RING_PTE_FLAG))
2923 		valid_bit = PTU_PTE_VALID;
2924 	if ((rmem->nr_pages > 1 || rmem->depth > 0) && !rmem->pg_tbl) {
2925 		size_t pg_tbl_size = rmem->nr_pages * 8;
2926 
2927 		if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
2928 			pg_tbl_size = rmem->page_size;
2929 		rmem->pg_tbl = dma_alloc_coherent(&pdev->dev, pg_tbl_size,
2930 						  &rmem->pg_tbl_map,
2931 						  GFP_KERNEL);
2932 		if (!rmem->pg_tbl)
2933 			return -ENOMEM;
2934 	}
2935 
2936 	for (i = 0; i < rmem->nr_pages; i++) {
2937 		u64 extra_bits = valid_bit;
2938 
2939 		rmem->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
2940 						     rmem->page_size,
2941 						     &rmem->dma_arr[i],
2942 						     GFP_KERNEL);
2943 		if (!rmem->pg_arr[i])
2944 			return -ENOMEM;
2945 
2946 		if (rmem->mem_init)
2947 			bnxt_init_ctx_mem(rmem->mem_init, rmem->pg_arr[i],
2948 					  rmem->page_size);
2949 		if (rmem->nr_pages > 1 || rmem->depth > 0) {
2950 			if (i == rmem->nr_pages - 2 &&
2951 			    (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
2952 				extra_bits |= PTU_PTE_NEXT_TO_LAST;
2953 			else if (i == rmem->nr_pages - 1 &&
2954 				 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
2955 				extra_bits |= PTU_PTE_LAST;
2956 			rmem->pg_tbl[i] =
2957 				cpu_to_le64(rmem->dma_arr[i] | extra_bits);
2958 		}
2959 	}
2960 
2961 	if (rmem->vmem_size) {
2962 		*rmem->vmem = vzalloc(rmem->vmem_size);
2963 		if (!(*rmem->vmem))
2964 			return -ENOMEM;
2965 	}
2966 	return 0;
2967 }
2968 
2969 static void bnxt_free_tpa_info(struct bnxt *bp)
2970 {
2971 	int i;
2972 
2973 	for (i = 0; i < bp->rx_nr_rings; i++) {
2974 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2975 
2976 		kfree(rxr->rx_tpa_idx_map);
2977 		rxr->rx_tpa_idx_map = NULL;
2978 		if (rxr->rx_tpa) {
2979 			kfree(rxr->rx_tpa[0].agg_arr);
2980 			rxr->rx_tpa[0].agg_arr = NULL;
2981 		}
2982 		kfree(rxr->rx_tpa);
2983 		rxr->rx_tpa = NULL;
2984 	}
2985 }
2986 
2987 static int bnxt_alloc_tpa_info(struct bnxt *bp)
2988 {
2989 	int i, j, total_aggs = 0;
2990 
2991 	bp->max_tpa = MAX_TPA;
2992 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
2993 		if (!bp->max_tpa_v2)
2994 			return 0;
2995 		bp->max_tpa = max_t(u16, bp->max_tpa_v2, MAX_TPA_P5);
2996 		total_aggs = bp->max_tpa * MAX_SKB_FRAGS;
2997 	}
2998 
2999 	for (i = 0; i < bp->rx_nr_rings; i++) {
3000 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3001 		struct rx_agg_cmp *agg;
3002 
3003 		rxr->rx_tpa = kcalloc(bp->max_tpa, sizeof(struct bnxt_tpa_info),
3004 				      GFP_KERNEL);
3005 		if (!rxr->rx_tpa)
3006 			return -ENOMEM;
3007 
3008 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
3009 			continue;
3010 		agg = kcalloc(total_aggs, sizeof(*agg), GFP_KERNEL);
3011 		rxr->rx_tpa[0].agg_arr = agg;
3012 		if (!agg)
3013 			return -ENOMEM;
3014 		for (j = 1; j < bp->max_tpa; j++)
3015 			rxr->rx_tpa[j].agg_arr = agg + j * MAX_SKB_FRAGS;
3016 		rxr->rx_tpa_idx_map = kzalloc(sizeof(*rxr->rx_tpa_idx_map),
3017 					      GFP_KERNEL);
3018 		if (!rxr->rx_tpa_idx_map)
3019 			return -ENOMEM;
3020 	}
3021 	return 0;
3022 }
3023 
3024 static void bnxt_free_rx_rings(struct bnxt *bp)
3025 {
3026 	int i;
3027 
3028 	if (!bp->rx_ring)
3029 		return;
3030 
3031 	bnxt_free_tpa_info(bp);
3032 	for (i = 0; i < bp->rx_nr_rings; i++) {
3033 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3034 		struct bnxt_ring_struct *ring;
3035 
3036 		if (rxr->xdp_prog)
3037 			bpf_prog_put(rxr->xdp_prog);
3038 
3039 		if (xdp_rxq_info_is_reg(&rxr->xdp_rxq))
3040 			xdp_rxq_info_unreg(&rxr->xdp_rxq);
3041 
3042 		page_pool_destroy(rxr->page_pool);
3043 		rxr->page_pool = NULL;
3044 
3045 		kfree(rxr->rx_agg_bmap);
3046 		rxr->rx_agg_bmap = NULL;
3047 
3048 		ring = &rxr->rx_ring_struct;
3049 		bnxt_free_ring(bp, &ring->ring_mem);
3050 
3051 		ring = &rxr->rx_agg_ring_struct;
3052 		bnxt_free_ring(bp, &ring->ring_mem);
3053 	}
3054 }
3055 
3056 static int bnxt_alloc_rx_page_pool(struct bnxt *bp,
3057 				   struct bnxt_rx_ring_info *rxr)
3058 {
3059 	struct page_pool_params pp = { 0 };
3060 
3061 	pp.pool_size = bp->rx_ring_size;
3062 	pp.nid = dev_to_node(&bp->pdev->dev);
3063 	pp.dev = &bp->pdev->dev;
3064 	pp.dma_dir = DMA_BIDIRECTIONAL;
3065 
3066 	rxr->page_pool = page_pool_create(&pp);
3067 	if (IS_ERR(rxr->page_pool)) {
3068 		int err = PTR_ERR(rxr->page_pool);
3069 
3070 		rxr->page_pool = NULL;
3071 		return err;
3072 	}
3073 	return 0;
3074 }
3075 
3076 static int bnxt_alloc_rx_rings(struct bnxt *bp)
3077 {
3078 	int i, rc = 0, agg_rings = 0;
3079 
3080 	if (!bp->rx_ring)
3081 		return -ENOMEM;
3082 
3083 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
3084 		agg_rings = 1;
3085 
3086 	for (i = 0; i < bp->rx_nr_rings; i++) {
3087 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3088 		struct bnxt_ring_struct *ring;
3089 
3090 		ring = &rxr->rx_ring_struct;
3091 
3092 		rc = bnxt_alloc_rx_page_pool(bp, rxr);
3093 		if (rc)
3094 			return rc;
3095 
3096 		rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i, 0);
3097 		if (rc < 0)
3098 			return rc;
3099 
3100 		rc = xdp_rxq_info_reg_mem_model(&rxr->xdp_rxq,
3101 						MEM_TYPE_PAGE_POOL,
3102 						rxr->page_pool);
3103 		if (rc) {
3104 			xdp_rxq_info_unreg(&rxr->xdp_rxq);
3105 			return rc;
3106 		}
3107 
3108 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3109 		if (rc)
3110 			return rc;
3111 
3112 		ring->grp_idx = i;
3113 		if (agg_rings) {
3114 			u16 mem_size;
3115 
3116 			ring = &rxr->rx_agg_ring_struct;
3117 			rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3118 			if (rc)
3119 				return rc;
3120 
3121 			ring->grp_idx = i;
3122 			rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
3123 			mem_size = rxr->rx_agg_bmap_size / 8;
3124 			rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
3125 			if (!rxr->rx_agg_bmap)
3126 				return -ENOMEM;
3127 		}
3128 	}
3129 	if (bp->flags & BNXT_FLAG_TPA)
3130 		rc = bnxt_alloc_tpa_info(bp);
3131 	return rc;
3132 }
3133 
3134 static void bnxt_free_tx_rings(struct bnxt *bp)
3135 {
3136 	int i;
3137 	struct pci_dev *pdev = bp->pdev;
3138 
3139 	if (!bp->tx_ring)
3140 		return;
3141 
3142 	for (i = 0; i < bp->tx_nr_rings; i++) {
3143 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3144 		struct bnxt_ring_struct *ring;
3145 
3146 		if (txr->tx_push) {
3147 			dma_free_coherent(&pdev->dev, bp->tx_push_size,
3148 					  txr->tx_push, txr->tx_push_mapping);
3149 			txr->tx_push = NULL;
3150 		}
3151 
3152 		ring = &txr->tx_ring_struct;
3153 
3154 		bnxt_free_ring(bp, &ring->ring_mem);
3155 	}
3156 }
3157 
3158 static int bnxt_alloc_tx_rings(struct bnxt *bp)
3159 {
3160 	int i, j, rc;
3161 	struct pci_dev *pdev = bp->pdev;
3162 
3163 	bp->tx_push_size = 0;
3164 	if (bp->tx_push_thresh) {
3165 		int push_size;
3166 
3167 		push_size  = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
3168 					bp->tx_push_thresh);
3169 
3170 		if (push_size > 256) {
3171 			push_size = 0;
3172 			bp->tx_push_thresh = 0;
3173 		}
3174 
3175 		bp->tx_push_size = push_size;
3176 	}
3177 
3178 	for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
3179 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3180 		struct bnxt_ring_struct *ring;
3181 		u8 qidx;
3182 
3183 		ring = &txr->tx_ring_struct;
3184 
3185 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3186 		if (rc)
3187 			return rc;
3188 
3189 		ring->grp_idx = txr->bnapi->index;
3190 		if (bp->tx_push_size) {
3191 			dma_addr_t mapping;
3192 
3193 			/* One pre-allocated DMA buffer to backup
3194 			 * TX push operation
3195 			 */
3196 			txr->tx_push = dma_alloc_coherent(&pdev->dev,
3197 						bp->tx_push_size,
3198 						&txr->tx_push_mapping,
3199 						GFP_KERNEL);
3200 
3201 			if (!txr->tx_push)
3202 				return -ENOMEM;
3203 
3204 			mapping = txr->tx_push_mapping +
3205 				sizeof(struct tx_push_bd);
3206 			txr->data_mapping = cpu_to_le64(mapping);
3207 		}
3208 		qidx = bp->tc_to_qidx[j];
3209 		ring->queue_id = bp->q_info[qidx].queue_id;
3210 		if (i < bp->tx_nr_rings_xdp)
3211 			continue;
3212 		if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1))
3213 			j++;
3214 	}
3215 	return 0;
3216 }
3217 
3218 static void bnxt_free_cp_arrays(struct bnxt_cp_ring_info *cpr)
3219 {
3220 	kfree(cpr->cp_desc_ring);
3221 	cpr->cp_desc_ring = NULL;
3222 	kfree(cpr->cp_desc_mapping);
3223 	cpr->cp_desc_mapping = NULL;
3224 }
3225 
3226 static int bnxt_alloc_cp_arrays(struct bnxt_cp_ring_info *cpr, int n)
3227 {
3228 	cpr->cp_desc_ring = kcalloc(n, sizeof(*cpr->cp_desc_ring), GFP_KERNEL);
3229 	if (!cpr->cp_desc_ring)
3230 		return -ENOMEM;
3231 	cpr->cp_desc_mapping = kcalloc(n, sizeof(*cpr->cp_desc_mapping),
3232 				       GFP_KERNEL);
3233 	if (!cpr->cp_desc_mapping)
3234 		return -ENOMEM;
3235 	return 0;
3236 }
3237 
3238 static void bnxt_free_all_cp_arrays(struct bnxt *bp)
3239 {
3240 	int i;
3241 
3242 	if (!bp->bnapi)
3243 		return;
3244 	for (i = 0; i < bp->cp_nr_rings; i++) {
3245 		struct bnxt_napi *bnapi = bp->bnapi[i];
3246 
3247 		if (!bnapi)
3248 			continue;
3249 		bnxt_free_cp_arrays(&bnapi->cp_ring);
3250 	}
3251 }
3252 
3253 static int bnxt_alloc_all_cp_arrays(struct bnxt *bp)
3254 {
3255 	int i, n = bp->cp_nr_pages;
3256 
3257 	for (i = 0; i < bp->cp_nr_rings; i++) {
3258 		struct bnxt_napi *bnapi = bp->bnapi[i];
3259 		int rc;
3260 
3261 		if (!bnapi)
3262 			continue;
3263 		rc = bnxt_alloc_cp_arrays(&bnapi->cp_ring, n);
3264 		if (rc)
3265 			return rc;
3266 	}
3267 	return 0;
3268 }
3269 
3270 static void bnxt_free_cp_rings(struct bnxt *bp)
3271 {
3272 	int i;
3273 
3274 	if (!bp->bnapi)
3275 		return;
3276 
3277 	for (i = 0; i < bp->cp_nr_rings; i++) {
3278 		struct bnxt_napi *bnapi = bp->bnapi[i];
3279 		struct bnxt_cp_ring_info *cpr;
3280 		struct bnxt_ring_struct *ring;
3281 		int j;
3282 
3283 		if (!bnapi)
3284 			continue;
3285 
3286 		cpr = &bnapi->cp_ring;
3287 		ring = &cpr->cp_ring_struct;
3288 
3289 		bnxt_free_ring(bp, &ring->ring_mem);
3290 
3291 		for (j = 0; j < 2; j++) {
3292 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
3293 
3294 			if (cpr2) {
3295 				ring = &cpr2->cp_ring_struct;
3296 				bnxt_free_ring(bp, &ring->ring_mem);
3297 				bnxt_free_cp_arrays(cpr2);
3298 				kfree(cpr2);
3299 				cpr->cp_ring_arr[j] = NULL;
3300 			}
3301 		}
3302 	}
3303 }
3304 
3305 static struct bnxt_cp_ring_info *bnxt_alloc_cp_sub_ring(struct bnxt *bp)
3306 {
3307 	struct bnxt_ring_mem_info *rmem;
3308 	struct bnxt_ring_struct *ring;
3309 	struct bnxt_cp_ring_info *cpr;
3310 	int rc;
3311 
3312 	cpr = kzalloc(sizeof(*cpr), GFP_KERNEL);
3313 	if (!cpr)
3314 		return NULL;
3315 
3316 	rc = bnxt_alloc_cp_arrays(cpr, bp->cp_nr_pages);
3317 	if (rc) {
3318 		bnxt_free_cp_arrays(cpr);
3319 		kfree(cpr);
3320 		return NULL;
3321 	}
3322 	ring = &cpr->cp_ring_struct;
3323 	rmem = &ring->ring_mem;
3324 	rmem->nr_pages = bp->cp_nr_pages;
3325 	rmem->page_size = HW_CMPD_RING_SIZE;
3326 	rmem->pg_arr = (void **)cpr->cp_desc_ring;
3327 	rmem->dma_arr = cpr->cp_desc_mapping;
3328 	rmem->flags = BNXT_RMEM_RING_PTE_FLAG;
3329 	rc = bnxt_alloc_ring(bp, rmem);
3330 	if (rc) {
3331 		bnxt_free_ring(bp, rmem);
3332 		bnxt_free_cp_arrays(cpr);
3333 		kfree(cpr);
3334 		cpr = NULL;
3335 	}
3336 	return cpr;
3337 }
3338 
3339 static int bnxt_alloc_cp_rings(struct bnxt *bp)
3340 {
3341 	bool sh = !!(bp->flags & BNXT_FLAG_SHARED_RINGS);
3342 	int i, rc, ulp_base_vec, ulp_msix;
3343 
3344 	ulp_msix = bnxt_get_ulp_msix_num(bp);
3345 	ulp_base_vec = bnxt_get_ulp_msix_base(bp);
3346 	for (i = 0; i < bp->cp_nr_rings; i++) {
3347 		struct bnxt_napi *bnapi = bp->bnapi[i];
3348 		struct bnxt_cp_ring_info *cpr;
3349 		struct bnxt_ring_struct *ring;
3350 
3351 		if (!bnapi)
3352 			continue;
3353 
3354 		cpr = &bnapi->cp_ring;
3355 		cpr->bnapi = bnapi;
3356 		ring = &cpr->cp_ring_struct;
3357 
3358 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3359 		if (rc)
3360 			return rc;
3361 
3362 		if (ulp_msix && i >= ulp_base_vec)
3363 			ring->map_idx = i + ulp_msix;
3364 		else
3365 			ring->map_idx = i;
3366 
3367 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
3368 			continue;
3369 
3370 		if (i < bp->rx_nr_rings) {
3371 			struct bnxt_cp_ring_info *cpr2 =
3372 				bnxt_alloc_cp_sub_ring(bp);
3373 
3374 			cpr->cp_ring_arr[BNXT_RX_HDL] = cpr2;
3375 			if (!cpr2)
3376 				return -ENOMEM;
3377 			cpr2->bnapi = bnapi;
3378 		}
3379 		if ((sh && i < bp->tx_nr_rings) ||
3380 		    (!sh && i >= bp->rx_nr_rings)) {
3381 			struct bnxt_cp_ring_info *cpr2 =
3382 				bnxt_alloc_cp_sub_ring(bp);
3383 
3384 			cpr->cp_ring_arr[BNXT_TX_HDL] = cpr2;
3385 			if (!cpr2)
3386 				return -ENOMEM;
3387 			cpr2->bnapi = bnapi;
3388 		}
3389 	}
3390 	return 0;
3391 }
3392 
3393 static void bnxt_init_ring_struct(struct bnxt *bp)
3394 {
3395 	int i;
3396 
3397 	for (i = 0; i < bp->cp_nr_rings; i++) {
3398 		struct bnxt_napi *bnapi = bp->bnapi[i];
3399 		struct bnxt_ring_mem_info *rmem;
3400 		struct bnxt_cp_ring_info *cpr;
3401 		struct bnxt_rx_ring_info *rxr;
3402 		struct bnxt_tx_ring_info *txr;
3403 		struct bnxt_ring_struct *ring;
3404 
3405 		if (!bnapi)
3406 			continue;
3407 
3408 		cpr = &bnapi->cp_ring;
3409 		ring = &cpr->cp_ring_struct;
3410 		rmem = &ring->ring_mem;
3411 		rmem->nr_pages = bp->cp_nr_pages;
3412 		rmem->page_size = HW_CMPD_RING_SIZE;
3413 		rmem->pg_arr = (void **)cpr->cp_desc_ring;
3414 		rmem->dma_arr = cpr->cp_desc_mapping;
3415 		rmem->vmem_size = 0;
3416 
3417 		rxr = bnapi->rx_ring;
3418 		if (!rxr)
3419 			goto skip_rx;
3420 
3421 		ring = &rxr->rx_ring_struct;
3422 		rmem = &ring->ring_mem;
3423 		rmem->nr_pages = bp->rx_nr_pages;
3424 		rmem->page_size = HW_RXBD_RING_SIZE;
3425 		rmem->pg_arr = (void **)rxr->rx_desc_ring;
3426 		rmem->dma_arr = rxr->rx_desc_mapping;
3427 		rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
3428 		rmem->vmem = (void **)&rxr->rx_buf_ring;
3429 
3430 		ring = &rxr->rx_agg_ring_struct;
3431 		rmem = &ring->ring_mem;
3432 		rmem->nr_pages = bp->rx_agg_nr_pages;
3433 		rmem->page_size = HW_RXBD_RING_SIZE;
3434 		rmem->pg_arr = (void **)rxr->rx_agg_desc_ring;
3435 		rmem->dma_arr = rxr->rx_agg_desc_mapping;
3436 		rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
3437 		rmem->vmem = (void **)&rxr->rx_agg_ring;
3438 
3439 skip_rx:
3440 		txr = bnapi->tx_ring;
3441 		if (!txr)
3442 			continue;
3443 
3444 		ring = &txr->tx_ring_struct;
3445 		rmem = &ring->ring_mem;
3446 		rmem->nr_pages = bp->tx_nr_pages;
3447 		rmem->page_size = HW_RXBD_RING_SIZE;
3448 		rmem->pg_arr = (void **)txr->tx_desc_ring;
3449 		rmem->dma_arr = txr->tx_desc_mapping;
3450 		rmem->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
3451 		rmem->vmem = (void **)&txr->tx_buf_ring;
3452 	}
3453 }
3454 
3455 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
3456 {
3457 	int i;
3458 	u32 prod;
3459 	struct rx_bd **rx_buf_ring;
3460 
3461 	rx_buf_ring = (struct rx_bd **)ring->ring_mem.pg_arr;
3462 	for (i = 0, prod = 0; i < ring->ring_mem.nr_pages; i++) {
3463 		int j;
3464 		struct rx_bd *rxbd;
3465 
3466 		rxbd = rx_buf_ring[i];
3467 		if (!rxbd)
3468 			continue;
3469 
3470 		for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
3471 			rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
3472 			rxbd->rx_bd_opaque = prod;
3473 		}
3474 	}
3475 }
3476 
3477 static int bnxt_alloc_one_rx_ring(struct bnxt *bp, int ring_nr)
3478 {
3479 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
3480 	struct net_device *dev = bp->dev;
3481 	u32 prod;
3482 	int i;
3483 
3484 	prod = rxr->rx_prod;
3485 	for (i = 0; i < bp->rx_ring_size; i++) {
3486 		if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL)) {
3487 			netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
3488 				    ring_nr, i, bp->rx_ring_size);
3489 			break;
3490 		}
3491 		prod = NEXT_RX(prod);
3492 	}
3493 	rxr->rx_prod = prod;
3494 
3495 	if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
3496 		return 0;
3497 
3498 	prod = rxr->rx_agg_prod;
3499 	for (i = 0; i < bp->rx_agg_ring_size; i++) {
3500 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL)) {
3501 			netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
3502 				    ring_nr, i, bp->rx_ring_size);
3503 			break;
3504 		}
3505 		prod = NEXT_RX_AGG(prod);
3506 	}
3507 	rxr->rx_agg_prod = prod;
3508 
3509 	if (rxr->rx_tpa) {
3510 		dma_addr_t mapping;
3511 		u8 *data;
3512 
3513 		for (i = 0; i < bp->max_tpa; i++) {
3514 			data = __bnxt_alloc_rx_data(bp, &mapping, GFP_KERNEL);
3515 			if (!data)
3516 				return -ENOMEM;
3517 
3518 			rxr->rx_tpa[i].data = data;
3519 			rxr->rx_tpa[i].data_ptr = data + bp->rx_offset;
3520 			rxr->rx_tpa[i].mapping = mapping;
3521 		}
3522 	}
3523 	return 0;
3524 }
3525 
3526 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
3527 {
3528 	struct bnxt_rx_ring_info *rxr;
3529 	struct bnxt_ring_struct *ring;
3530 	u32 type;
3531 
3532 	type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
3533 		RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
3534 
3535 	if (NET_IP_ALIGN == 2)
3536 		type |= RX_BD_FLAGS_SOP;
3537 
3538 	rxr = &bp->rx_ring[ring_nr];
3539 	ring = &rxr->rx_ring_struct;
3540 	bnxt_init_rxbd_pages(ring, type);
3541 
3542 	if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) {
3543 		bpf_prog_add(bp->xdp_prog, 1);
3544 		rxr->xdp_prog = bp->xdp_prog;
3545 	}
3546 	ring->fw_ring_id = INVALID_HW_RING_ID;
3547 
3548 	ring = &rxr->rx_agg_ring_struct;
3549 	ring->fw_ring_id = INVALID_HW_RING_ID;
3550 
3551 	if ((bp->flags & BNXT_FLAG_AGG_RINGS)) {
3552 		type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) |
3553 			RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
3554 
3555 		bnxt_init_rxbd_pages(ring, type);
3556 	}
3557 
3558 	return bnxt_alloc_one_rx_ring(bp, ring_nr);
3559 }
3560 
3561 static void bnxt_init_cp_rings(struct bnxt *bp)
3562 {
3563 	int i, j;
3564 
3565 	for (i = 0; i < bp->cp_nr_rings; i++) {
3566 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
3567 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3568 
3569 		ring->fw_ring_id = INVALID_HW_RING_ID;
3570 		cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
3571 		cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
3572 		for (j = 0; j < 2; j++) {
3573 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
3574 
3575 			if (!cpr2)
3576 				continue;
3577 
3578 			ring = &cpr2->cp_ring_struct;
3579 			ring->fw_ring_id = INVALID_HW_RING_ID;
3580 			cpr2->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
3581 			cpr2->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
3582 		}
3583 	}
3584 }
3585 
3586 static int bnxt_init_rx_rings(struct bnxt *bp)
3587 {
3588 	int i, rc = 0;
3589 
3590 	if (BNXT_RX_PAGE_MODE(bp)) {
3591 		bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM;
3592 		bp->rx_dma_offset = XDP_PACKET_HEADROOM;
3593 	} else {
3594 		bp->rx_offset = BNXT_RX_OFFSET;
3595 		bp->rx_dma_offset = BNXT_RX_DMA_OFFSET;
3596 	}
3597 
3598 	for (i = 0; i < bp->rx_nr_rings; i++) {
3599 		rc = bnxt_init_one_rx_ring(bp, i);
3600 		if (rc)
3601 			break;
3602 	}
3603 
3604 	return rc;
3605 }
3606 
3607 static int bnxt_init_tx_rings(struct bnxt *bp)
3608 {
3609 	u16 i;
3610 
3611 	bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
3612 				   MAX_SKB_FRAGS + 1);
3613 
3614 	for (i = 0; i < bp->tx_nr_rings; i++) {
3615 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3616 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
3617 
3618 		ring->fw_ring_id = INVALID_HW_RING_ID;
3619 	}
3620 
3621 	return 0;
3622 }
3623 
3624 static void bnxt_free_ring_grps(struct bnxt *bp)
3625 {
3626 	kfree(bp->grp_info);
3627 	bp->grp_info = NULL;
3628 }
3629 
3630 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
3631 {
3632 	int i;
3633 
3634 	if (irq_re_init) {
3635 		bp->grp_info = kcalloc(bp->cp_nr_rings,
3636 				       sizeof(struct bnxt_ring_grp_info),
3637 				       GFP_KERNEL);
3638 		if (!bp->grp_info)
3639 			return -ENOMEM;
3640 	}
3641 	for (i = 0; i < bp->cp_nr_rings; i++) {
3642 		if (irq_re_init)
3643 			bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
3644 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
3645 		bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
3646 		bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
3647 		bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
3648 	}
3649 	return 0;
3650 }
3651 
3652 static void bnxt_free_vnics(struct bnxt *bp)
3653 {
3654 	kfree(bp->vnic_info);
3655 	bp->vnic_info = NULL;
3656 	bp->nr_vnics = 0;
3657 }
3658 
3659 static int bnxt_alloc_vnics(struct bnxt *bp)
3660 {
3661 	int num_vnics = 1;
3662 
3663 #ifdef CONFIG_RFS_ACCEL
3664 	if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS)
3665 		num_vnics += bp->rx_nr_rings;
3666 #endif
3667 
3668 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
3669 		num_vnics++;
3670 
3671 	bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
3672 				GFP_KERNEL);
3673 	if (!bp->vnic_info)
3674 		return -ENOMEM;
3675 
3676 	bp->nr_vnics = num_vnics;
3677 	return 0;
3678 }
3679 
3680 static void bnxt_init_vnics(struct bnxt *bp)
3681 {
3682 	int i;
3683 
3684 	for (i = 0; i < bp->nr_vnics; i++) {
3685 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3686 		int j;
3687 
3688 		vnic->fw_vnic_id = INVALID_HW_RING_ID;
3689 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++)
3690 			vnic->fw_rss_cos_lb_ctx[j] = INVALID_HW_RING_ID;
3691 
3692 		vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
3693 
3694 		if (bp->vnic_info[i].rss_hash_key) {
3695 			if (i == 0)
3696 				prandom_bytes(vnic->rss_hash_key,
3697 					      HW_HASH_KEY_SIZE);
3698 			else
3699 				memcpy(vnic->rss_hash_key,
3700 				       bp->vnic_info[0].rss_hash_key,
3701 				       HW_HASH_KEY_SIZE);
3702 		}
3703 	}
3704 }
3705 
3706 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
3707 {
3708 	int pages;
3709 
3710 	pages = ring_size / desc_per_pg;
3711 
3712 	if (!pages)
3713 		return 1;
3714 
3715 	pages++;
3716 
3717 	while (pages & (pages - 1))
3718 		pages++;
3719 
3720 	return pages;
3721 }
3722 
3723 void bnxt_set_tpa_flags(struct bnxt *bp)
3724 {
3725 	bp->flags &= ~BNXT_FLAG_TPA;
3726 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
3727 		return;
3728 	if (bp->dev->features & NETIF_F_LRO)
3729 		bp->flags |= BNXT_FLAG_LRO;
3730 	else if (bp->dev->features & NETIF_F_GRO_HW)
3731 		bp->flags |= BNXT_FLAG_GRO;
3732 }
3733 
3734 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
3735  * be set on entry.
3736  */
3737 void bnxt_set_ring_params(struct bnxt *bp)
3738 {
3739 	u32 ring_size, rx_size, rx_space, max_rx_cmpl;
3740 	u32 agg_factor = 0, agg_ring_size = 0;
3741 
3742 	/* 8 for CRC and VLAN */
3743 	rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
3744 
3745 	rx_space = rx_size + NET_SKB_PAD +
3746 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3747 
3748 	bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
3749 	ring_size = bp->rx_ring_size;
3750 	bp->rx_agg_ring_size = 0;
3751 	bp->rx_agg_nr_pages = 0;
3752 
3753 	if (bp->flags & BNXT_FLAG_TPA)
3754 		agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE);
3755 
3756 	bp->flags &= ~BNXT_FLAG_JUMBO;
3757 	if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) {
3758 		u32 jumbo_factor;
3759 
3760 		bp->flags |= BNXT_FLAG_JUMBO;
3761 		jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
3762 		if (jumbo_factor > agg_factor)
3763 			agg_factor = jumbo_factor;
3764 	}
3765 	if (agg_factor) {
3766 		if (ring_size > BNXT_MAX_RX_DESC_CNT_JUM_ENA) {
3767 			ring_size = BNXT_MAX_RX_DESC_CNT_JUM_ENA;
3768 			netdev_warn(bp->dev, "RX ring size reduced from %d to %d because the jumbo ring is now enabled\n",
3769 				    bp->rx_ring_size, ring_size);
3770 			bp->rx_ring_size = ring_size;
3771 		}
3772 		agg_ring_size = ring_size * agg_factor;
3773 
3774 		bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
3775 							RX_DESC_CNT);
3776 		if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
3777 			u32 tmp = agg_ring_size;
3778 
3779 			bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
3780 			agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
3781 			netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
3782 				    tmp, agg_ring_size);
3783 		}
3784 		bp->rx_agg_ring_size = agg_ring_size;
3785 		bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
3786 		rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
3787 		rx_space = rx_size + NET_SKB_PAD +
3788 			SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3789 	}
3790 
3791 	bp->rx_buf_use_size = rx_size;
3792 	bp->rx_buf_size = rx_space;
3793 
3794 	bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
3795 	bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
3796 
3797 	ring_size = bp->tx_ring_size;
3798 	bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
3799 	bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
3800 
3801 	max_rx_cmpl = bp->rx_ring_size;
3802 	/* MAX TPA needs to be added because TPA_START completions are
3803 	 * immediately recycled, so the TPA completions are not bound by
3804 	 * the RX ring size.
3805 	 */
3806 	if (bp->flags & BNXT_FLAG_TPA)
3807 		max_rx_cmpl += bp->max_tpa;
3808 	/* RX and TPA completions are 32-byte, all others are 16-byte */
3809 	ring_size = max_rx_cmpl * 2 + agg_ring_size + bp->tx_ring_size;
3810 	bp->cp_ring_size = ring_size;
3811 
3812 	bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
3813 	if (bp->cp_nr_pages > MAX_CP_PAGES) {
3814 		bp->cp_nr_pages = MAX_CP_PAGES;
3815 		bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
3816 		netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
3817 			    ring_size, bp->cp_ring_size);
3818 	}
3819 	bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
3820 	bp->cp_ring_mask = bp->cp_bit - 1;
3821 }
3822 
3823 /* Changing allocation mode of RX rings.
3824  * TODO: Update when extending xdp_rxq_info to support allocation modes.
3825  */
3826 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode)
3827 {
3828 	if (page_mode) {
3829 		if (bp->dev->mtu > BNXT_MAX_PAGE_MODE_MTU)
3830 			return -EOPNOTSUPP;
3831 		bp->dev->max_mtu =
3832 			min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU);
3833 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
3834 		bp->flags |= BNXT_FLAG_NO_AGG_RINGS | BNXT_FLAG_RX_PAGE_MODE;
3835 		bp->rx_dir = DMA_BIDIRECTIONAL;
3836 		bp->rx_skb_func = bnxt_rx_page_skb;
3837 		/* Disable LRO or GRO_HW */
3838 		netdev_update_features(bp->dev);
3839 	} else {
3840 		bp->dev->max_mtu = bp->max_mtu;
3841 		bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE;
3842 		bp->rx_dir = DMA_FROM_DEVICE;
3843 		bp->rx_skb_func = bnxt_rx_skb;
3844 	}
3845 	return 0;
3846 }
3847 
3848 static void bnxt_free_vnic_attributes(struct bnxt *bp)
3849 {
3850 	int i;
3851 	struct bnxt_vnic_info *vnic;
3852 	struct pci_dev *pdev = bp->pdev;
3853 
3854 	if (!bp->vnic_info)
3855 		return;
3856 
3857 	for (i = 0; i < bp->nr_vnics; i++) {
3858 		vnic = &bp->vnic_info[i];
3859 
3860 		kfree(vnic->fw_grp_ids);
3861 		vnic->fw_grp_ids = NULL;
3862 
3863 		kfree(vnic->uc_list);
3864 		vnic->uc_list = NULL;
3865 
3866 		if (vnic->mc_list) {
3867 			dma_free_coherent(&pdev->dev, vnic->mc_list_size,
3868 					  vnic->mc_list, vnic->mc_list_mapping);
3869 			vnic->mc_list = NULL;
3870 		}
3871 
3872 		if (vnic->rss_table) {
3873 			dma_free_coherent(&pdev->dev, vnic->rss_table_size,
3874 					  vnic->rss_table,
3875 					  vnic->rss_table_dma_addr);
3876 			vnic->rss_table = NULL;
3877 		}
3878 
3879 		vnic->rss_hash_key = NULL;
3880 		vnic->flags = 0;
3881 	}
3882 }
3883 
3884 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
3885 {
3886 	int i, rc = 0, size;
3887 	struct bnxt_vnic_info *vnic;
3888 	struct pci_dev *pdev = bp->pdev;
3889 	int max_rings;
3890 
3891 	for (i = 0; i < bp->nr_vnics; i++) {
3892 		vnic = &bp->vnic_info[i];
3893 
3894 		if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
3895 			int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
3896 
3897 			if (mem_size > 0) {
3898 				vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
3899 				if (!vnic->uc_list) {
3900 					rc = -ENOMEM;
3901 					goto out;
3902 				}
3903 			}
3904 		}
3905 
3906 		if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
3907 			vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
3908 			vnic->mc_list =
3909 				dma_alloc_coherent(&pdev->dev,
3910 						   vnic->mc_list_size,
3911 						   &vnic->mc_list_mapping,
3912 						   GFP_KERNEL);
3913 			if (!vnic->mc_list) {
3914 				rc = -ENOMEM;
3915 				goto out;
3916 			}
3917 		}
3918 
3919 		if (bp->flags & BNXT_FLAG_CHIP_P5)
3920 			goto vnic_skip_grps;
3921 
3922 		if (vnic->flags & BNXT_VNIC_RSS_FLAG)
3923 			max_rings = bp->rx_nr_rings;
3924 		else
3925 			max_rings = 1;
3926 
3927 		vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
3928 		if (!vnic->fw_grp_ids) {
3929 			rc = -ENOMEM;
3930 			goto out;
3931 		}
3932 vnic_skip_grps:
3933 		if ((bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
3934 		    !(vnic->flags & BNXT_VNIC_RSS_FLAG))
3935 			continue;
3936 
3937 		/* Allocate rss table and hash key */
3938 		size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
3939 		if (bp->flags & BNXT_FLAG_CHIP_P5)
3940 			size = L1_CACHE_ALIGN(BNXT_MAX_RSS_TABLE_SIZE_P5);
3941 
3942 		vnic->rss_table_size = size + HW_HASH_KEY_SIZE;
3943 		vnic->rss_table = dma_alloc_coherent(&pdev->dev,
3944 						     vnic->rss_table_size,
3945 						     &vnic->rss_table_dma_addr,
3946 						     GFP_KERNEL);
3947 		if (!vnic->rss_table) {
3948 			rc = -ENOMEM;
3949 			goto out;
3950 		}
3951 
3952 		vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
3953 		vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
3954 	}
3955 	return 0;
3956 
3957 out:
3958 	return rc;
3959 }
3960 
3961 static void bnxt_free_hwrm_resources(struct bnxt *bp)
3962 {
3963 	struct bnxt_hwrm_wait_token *token;
3964 
3965 	dma_pool_destroy(bp->hwrm_dma_pool);
3966 	bp->hwrm_dma_pool = NULL;
3967 
3968 	rcu_read_lock();
3969 	hlist_for_each_entry_rcu(token, &bp->hwrm_pending_list, node)
3970 		WRITE_ONCE(token->state, BNXT_HWRM_CANCELLED);
3971 	rcu_read_unlock();
3972 }
3973 
3974 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
3975 {
3976 	bp->hwrm_dma_pool = dma_pool_create("bnxt_hwrm", &bp->pdev->dev,
3977 					    BNXT_HWRM_DMA_SIZE,
3978 					    BNXT_HWRM_DMA_ALIGN, 0);
3979 	if (!bp->hwrm_dma_pool)
3980 		return -ENOMEM;
3981 
3982 	INIT_HLIST_HEAD(&bp->hwrm_pending_list);
3983 
3984 	return 0;
3985 }
3986 
3987 static void bnxt_free_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats)
3988 {
3989 	kfree(stats->hw_masks);
3990 	stats->hw_masks = NULL;
3991 	kfree(stats->sw_stats);
3992 	stats->sw_stats = NULL;
3993 	if (stats->hw_stats) {
3994 		dma_free_coherent(&bp->pdev->dev, stats->len, stats->hw_stats,
3995 				  stats->hw_stats_map);
3996 		stats->hw_stats = NULL;
3997 	}
3998 }
3999 
4000 static int bnxt_alloc_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats,
4001 				bool alloc_masks)
4002 {
4003 	stats->hw_stats = dma_alloc_coherent(&bp->pdev->dev, stats->len,
4004 					     &stats->hw_stats_map, GFP_KERNEL);
4005 	if (!stats->hw_stats)
4006 		return -ENOMEM;
4007 
4008 	stats->sw_stats = kzalloc(stats->len, GFP_KERNEL);
4009 	if (!stats->sw_stats)
4010 		goto stats_mem_err;
4011 
4012 	if (alloc_masks) {
4013 		stats->hw_masks = kzalloc(stats->len, GFP_KERNEL);
4014 		if (!stats->hw_masks)
4015 			goto stats_mem_err;
4016 	}
4017 	return 0;
4018 
4019 stats_mem_err:
4020 	bnxt_free_stats_mem(bp, stats);
4021 	return -ENOMEM;
4022 }
4023 
4024 static void bnxt_fill_masks(u64 *mask_arr, u64 mask, int count)
4025 {
4026 	int i;
4027 
4028 	for (i = 0; i < count; i++)
4029 		mask_arr[i] = mask;
4030 }
4031 
4032 static void bnxt_copy_hw_masks(u64 *mask_arr, __le64 *hw_mask_arr, int count)
4033 {
4034 	int i;
4035 
4036 	for (i = 0; i < count; i++)
4037 		mask_arr[i] = le64_to_cpu(hw_mask_arr[i]);
4038 }
4039 
4040 static int bnxt_hwrm_func_qstat_ext(struct bnxt *bp,
4041 				    struct bnxt_stats_mem *stats)
4042 {
4043 	struct hwrm_func_qstats_ext_output *resp;
4044 	struct hwrm_func_qstats_ext_input *req;
4045 	__le64 *hw_masks;
4046 	int rc;
4047 
4048 	if (!(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED) ||
4049 	    !(bp->flags & BNXT_FLAG_CHIP_P5))
4050 		return -EOPNOTSUPP;
4051 
4052 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QSTATS_EXT);
4053 	if (rc)
4054 		return rc;
4055 
4056 	req->fid = cpu_to_le16(0xffff);
4057 	req->flags = FUNC_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK;
4058 
4059 	resp = hwrm_req_hold(bp, req);
4060 	rc = hwrm_req_send(bp, req);
4061 	if (!rc) {
4062 		hw_masks = &resp->rx_ucast_pkts;
4063 		bnxt_copy_hw_masks(stats->hw_masks, hw_masks, stats->len / 8);
4064 	}
4065 	hwrm_req_drop(bp, req);
4066 	return rc;
4067 }
4068 
4069 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags);
4070 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags);
4071 
4072 static void bnxt_init_stats(struct bnxt *bp)
4073 {
4074 	struct bnxt_napi *bnapi = bp->bnapi[0];
4075 	struct bnxt_cp_ring_info *cpr;
4076 	struct bnxt_stats_mem *stats;
4077 	__le64 *rx_stats, *tx_stats;
4078 	int rc, rx_count, tx_count;
4079 	u64 *rx_masks, *tx_masks;
4080 	u64 mask;
4081 	u8 flags;
4082 
4083 	cpr = &bnapi->cp_ring;
4084 	stats = &cpr->stats;
4085 	rc = bnxt_hwrm_func_qstat_ext(bp, stats);
4086 	if (rc) {
4087 		if (bp->flags & BNXT_FLAG_CHIP_P5)
4088 			mask = (1ULL << 48) - 1;
4089 		else
4090 			mask = -1ULL;
4091 		bnxt_fill_masks(stats->hw_masks, mask, stats->len / 8);
4092 	}
4093 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
4094 		stats = &bp->port_stats;
4095 		rx_stats = stats->hw_stats;
4096 		rx_masks = stats->hw_masks;
4097 		rx_count = sizeof(struct rx_port_stats) / 8;
4098 		tx_stats = rx_stats + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
4099 		tx_masks = rx_masks + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
4100 		tx_count = sizeof(struct tx_port_stats) / 8;
4101 
4102 		flags = PORT_QSTATS_REQ_FLAGS_COUNTER_MASK;
4103 		rc = bnxt_hwrm_port_qstats(bp, flags);
4104 		if (rc) {
4105 			mask = (1ULL << 40) - 1;
4106 
4107 			bnxt_fill_masks(rx_masks, mask, rx_count);
4108 			bnxt_fill_masks(tx_masks, mask, tx_count);
4109 		} else {
4110 			bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count);
4111 			bnxt_copy_hw_masks(tx_masks, tx_stats, tx_count);
4112 			bnxt_hwrm_port_qstats(bp, 0);
4113 		}
4114 	}
4115 	if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) {
4116 		stats = &bp->rx_port_stats_ext;
4117 		rx_stats = stats->hw_stats;
4118 		rx_masks = stats->hw_masks;
4119 		rx_count = sizeof(struct rx_port_stats_ext) / 8;
4120 		stats = &bp->tx_port_stats_ext;
4121 		tx_stats = stats->hw_stats;
4122 		tx_masks = stats->hw_masks;
4123 		tx_count = sizeof(struct tx_port_stats_ext) / 8;
4124 
4125 		flags = PORT_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK;
4126 		rc = bnxt_hwrm_port_qstats_ext(bp, flags);
4127 		if (rc) {
4128 			mask = (1ULL << 40) - 1;
4129 
4130 			bnxt_fill_masks(rx_masks, mask, rx_count);
4131 			if (tx_stats)
4132 				bnxt_fill_masks(tx_masks, mask, tx_count);
4133 		} else {
4134 			bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count);
4135 			if (tx_stats)
4136 				bnxt_copy_hw_masks(tx_masks, tx_stats,
4137 						   tx_count);
4138 			bnxt_hwrm_port_qstats_ext(bp, 0);
4139 		}
4140 	}
4141 }
4142 
4143 static void bnxt_free_port_stats(struct bnxt *bp)
4144 {
4145 	bp->flags &= ~BNXT_FLAG_PORT_STATS;
4146 	bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT;
4147 
4148 	bnxt_free_stats_mem(bp, &bp->port_stats);
4149 	bnxt_free_stats_mem(bp, &bp->rx_port_stats_ext);
4150 	bnxt_free_stats_mem(bp, &bp->tx_port_stats_ext);
4151 }
4152 
4153 static void bnxt_free_ring_stats(struct bnxt *bp)
4154 {
4155 	int i;
4156 
4157 	if (!bp->bnapi)
4158 		return;
4159 
4160 	for (i = 0; i < bp->cp_nr_rings; i++) {
4161 		struct bnxt_napi *bnapi = bp->bnapi[i];
4162 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4163 
4164 		bnxt_free_stats_mem(bp, &cpr->stats);
4165 	}
4166 }
4167 
4168 static int bnxt_alloc_stats(struct bnxt *bp)
4169 {
4170 	u32 size, i;
4171 	int rc;
4172 
4173 	size = bp->hw_ring_stats_size;
4174 
4175 	for (i = 0; i < bp->cp_nr_rings; i++) {
4176 		struct bnxt_napi *bnapi = bp->bnapi[i];
4177 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4178 
4179 		cpr->stats.len = size;
4180 		rc = bnxt_alloc_stats_mem(bp, &cpr->stats, !i);
4181 		if (rc)
4182 			return rc;
4183 
4184 		cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
4185 	}
4186 
4187 	if (BNXT_VF(bp) || bp->chip_num == CHIP_NUM_58700)
4188 		return 0;
4189 
4190 	if (bp->port_stats.hw_stats)
4191 		goto alloc_ext_stats;
4192 
4193 	bp->port_stats.len = BNXT_PORT_STATS_SIZE;
4194 	rc = bnxt_alloc_stats_mem(bp, &bp->port_stats, true);
4195 	if (rc)
4196 		return rc;
4197 
4198 	bp->flags |= BNXT_FLAG_PORT_STATS;
4199 
4200 alloc_ext_stats:
4201 	/* Display extended statistics only if FW supports it */
4202 	if (bp->hwrm_spec_code < 0x10804 || bp->hwrm_spec_code == 0x10900)
4203 		if (!(bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED))
4204 			return 0;
4205 
4206 	if (bp->rx_port_stats_ext.hw_stats)
4207 		goto alloc_tx_ext_stats;
4208 
4209 	bp->rx_port_stats_ext.len = sizeof(struct rx_port_stats_ext);
4210 	rc = bnxt_alloc_stats_mem(bp, &bp->rx_port_stats_ext, true);
4211 	/* Extended stats are optional */
4212 	if (rc)
4213 		return 0;
4214 
4215 alloc_tx_ext_stats:
4216 	if (bp->tx_port_stats_ext.hw_stats)
4217 		return 0;
4218 
4219 	if (bp->hwrm_spec_code >= 0x10902 ||
4220 	    (bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) {
4221 		bp->tx_port_stats_ext.len = sizeof(struct tx_port_stats_ext);
4222 		rc = bnxt_alloc_stats_mem(bp, &bp->tx_port_stats_ext, true);
4223 		/* Extended stats are optional */
4224 		if (rc)
4225 			return 0;
4226 	}
4227 	bp->flags |= BNXT_FLAG_PORT_STATS_EXT;
4228 	return 0;
4229 }
4230 
4231 static void bnxt_clear_ring_indices(struct bnxt *bp)
4232 {
4233 	int i;
4234 
4235 	if (!bp->bnapi)
4236 		return;
4237 
4238 	for (i = 0; i < bp->cp_nr_rings; i++) {
4239 		struct bnxt_napi *bnapi = bp->bnapi[i];
4240 		struct bnxt_cp_ring_info *cpr;
4241 		struct bnxt_rx_ring_info *rxr;
4242 		struct bnxt_tx_ring_info *txr;
4243 
4244 		if (!bnapi)
4245 			continue;
4246 
4247 		cpr = &bnapi->cp_ring;
4248 		cpr->cp_raw_cons = 0;
4249 
4250 		txr = bnapi->tx_ring;
4251 		if (txr) {
4252 			txr->tx_prod = 0;
4253 			txr->tx_cons = 0;
4254 		}
4255 
4256 		rxr = bnapi->rx_ring;
4257 		if (rxr) {
4258 			rxr->rx_prod = 0;
4259 			rxr->rx_agg_prod = 0;
4260 			rxr->rx_sw_agg_prod = 0;
4261 			rxr->rx_next_cons = 0;
4262 		}
4263 	}
4264 }
4265 
4266 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
4267 {
4268 #ifdef CONFIG_RFS_ACCEL
4269 	int i;
4270 
4271 	/* Under rtnl_lock and all our NAPIs have been disabled.  It's
4272 	 * safe to delete the hash table.
4273 	 */
4274 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
4275 		struct hlist_head *head;
4276 		struct hlist_node *tmp;
4277 		struct bnxt_ntuple_filter *fltr;
4278 
4279 		head = &bp->ntp_fltr_hash_tbl[i];
4280 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
4281 			hlist_del(&fltr->hash);
4282 			kfree(fltr);
4283 		}
4284 	}
4285 	if (irq_reinit) {
4286 		kfree(bp->ntp_fltr_bmap);
4287 		bp->ntp_fltr_bmap = NULL;
4288 	}
4289 	bp->ntp_fltr_count = 0;
4290 #endif
4291 }
4292 
4293 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
4294 {
4295 #ifdef CONFIG_RFS_ACCEL
4296 	int i, rc = 0;
4297 
4298 	if (!(bp->flags & BNXT_FLAG_RFS))
4299 		return 0;
4300 
4301 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
4302 		INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
4303 
4304 	bp->ntp_fltr_count = 0;
4305 	bp->ntp_fltr_bmap = kcalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR),
4306 				    sizeof(long),
4307 				    GFP_KERNEL);
4308 
4309 	if (!bp->ntp_fltr_bmap)
4310 		rc = -ENOMEM;
4311 
4312 	return rc;
4313 #else
4314 	return 0;
4315 #endif
4316 }
4317 
4318 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
4319 {
4320 	bnxt_free_vnic_attributes(bp);
4321 	bnxt_free_tx_rings(bp);
4322 	bnxt_free_rx_rings(bp);
4323 	bnxt_free_cp_rings(bp);
4324 	bnxt_free_all_cp_arrays(bp);
4325 	bnxt_free_ntp_fltrs(bp, irq_re_init);
4326 	if (irq_re_init) {
4327 		bnxt_free_ring_stats(bp);
4328 		if (!(bp->phy_flags & BNXT_PHY_FL_PORT_STATS_NO_RESET) ||
4329 		    test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
4330 			bnxt_free_port_stats(bp);
4331 		bnxt_free_ring_grps(bp);
4332 		bnxt_free_vnics(bp);
4333 		kfree(bp->tx_ring_map);
4334 		bp->tx_ring_map = NULL;
4335 		kfree(bp->tx_ring);
4336 		bp->tx_ring = NULL;
4337 		kfree(bp->rx_ring);
4338 		bp->rx_ring = NULL;
4339 		kfree(bp->bnapi);
4340 		bp->bnapi = NULL;
4341 	} else {
4342 		bnxt_clear_ring_indices(bp);
4343 	}
4344 }
4345 
4346 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
4347 {
4348 	int i, j, rc, size, arr_size;
4349 	void *bnapi;
4350 
4351 	if (irq_re_init) {
4352 		/* Allocate bnapi mem pointer array and mem block for
4353 		 * all queues
4354 		 */
4355 		arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
4356 				bp->cp_nr_rings);
4357 		size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
4358 		bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
4359 		if (!bnapi)
4360 			return -ENOMEM;
4361 
4362 		bp->bnapi = bnapi;
4363 		bnapi += arr_size;
4364 		for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
4365 			bp->bnapi[i] = bnapi;
4366 			bp->bnapi[i]->index = i;
4367 			bp->bnapi[i]->bp = bp;
4368 			if (bp->flags & BNXT_FLAG_CHIP_P5) {
4369 				struct bnxt_cp_ring_info *cpr =
4370 					&bp->bnapi[i]->cp_ring;
4371 
4372 				cpr->cp_ring_struct.ring_mem.flags =
4373 					BNXT_RMEM_RING_PTE_FLAG;
4374 			}
4375 		}
4376 
4377 		bp->rx_ring = kcalloc(bp->rx_nr_rings,
4378 				      sizeof(struct bnxt_rx_ring_info),
4379 				      GFP_KERNEL);
4380 		if (!bp->rx_ring)
4381 			return -ENOMEM;
4382 
4383 		for (i = 0; i < bp->rx_nr_rings; i++) {
4384 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4385 
4386 			if (bp->flags & BNXT_FLAG_CHIP_P5) {
4387 				rxr->rx_ring_struct.ring_mem.flags =
4388 					BNXT_RMEM_RING_PTE_FLAG;
4389 				rxr->rx_agg_ring_struct.ring_mem.flags =
4390 					BNXT_RMEM_RING_PTE_FLAG;
4391 			}
4392 			rxr->bnapi = bp->bnapi[i];
4393 			bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
4394 		}
4395 
4396 		bp->tx_ring = kcalloc(bp->tx_nr_rings,
4397 				      sizeof(struct bnxt_tx_ring_info),
4398 				      GFP_KERNEL);
4399 		if (!bp->tx_ring)
4400 			return -ENOMEM;
4401 
4402 		bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16),
4403 					  GFP_KERNEL);
4404 
4405 		if (!bp->tx_ring_map)
4406 			return -ENOMEM;
4407 
4408 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
4409 			j = 0;
4410 		else
4411 			j = bp->rx_nr_rings;
4412 
4413 		for (i = 0; i < bp->tx_nr_rings; i++, j++) {
4414 			struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
4415 
4416 			if (bp->flags & BNXT_FLAG_CHIP_P5)
4417 				txr->tx_ring_struct.ring_mem.flags =
4418 					BNXT_RMEM_RING_PTE_FLAG;
4419 			txr->bnapi = bp->bnapi[j];
4420 			bp->bnapi[j]->tx_ring = txr;
4421 			bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i;
4422 			if (i >= bp->tx_nr_rings_xdp) {
4423 				txr->txq_index = i - bp->tx_nr_rings_xdp;
4424 				bp->bnapi[j]->tx_int = bnxt_tx_int;
4425 			} else {
4426 				bp->bnapi[j]->flags |= BNXT_NAPI_FLAG_XDP;
4427 				bp->bnapi[j]->tx_int = bnxt_tx_int_xdp;
4428 			}
4429 		}
4430 
4431 		rc = bnxt_alloc_stats(bp);
4432 		if (rc)
4433 			goto alloc_mem_err;
4434 		bnxt_init_stats(bp);
4435 
4436 		rc = bnxt_alloc_ntp_fltrs(bp);
4437 		if (rc)
4438 			goto alloc_mem_err;
4439 
4440 		rc = bnxt_alloc_vnics(bp);
4441 		if (rc)
4442 			goto alloc_mem_err;
4443 	}
4444 
4445 	rc = bnxt_alloc_all_cp_arrays(bp);
4446 	if (rc)
4447 		goto alloc_mem_err;
4448 
4449 	bnxt_init_ring_struct(bp);
4450 
4451 	rc = bnxt_alloc_rx_rings(bp);
4452 	if (rc)
4453 		goto alloc_mem_err;
4454 
4455 	rc = bnxt_alloc_tx_rings(bp);
4456 	if (rc)
4457 		goto alloc_mem_err;
4458 
4459 	rc = bnxt_alloc_cp_rings(bp);
4460 	if (rc)
4461 		goto alloc_mem_err;
4462 
4463 	bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
4464 				  BNXT_VNIC_UCAST_FLAG;
4465 	rc = bnxt_alloc_vnic_attributes(bp);
4466 	if (rc)
4467 		goto alloc_mem_err;
4468 	return 0;
4469 
4470 alloc_mem_err:
4471 	bnxt_free_mem(bp, true);
4472 	return rc;
4473 }
4474 
4475 static void bnxt_disable_int(struct bnxt *bp)
4476 {
4477 	int i;
4478 
4479 	if (!bp->bnapi)
4480 		return;
4481 
4482 	for (i = 0; i < bp->cp_nr_rings; i++) {
4483 		struct bnxt_napi *bnapi = bp->bnapi[i];
4484 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4485 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
4486 
4487 		if (ring->fw_ring_id != INVALID_HW_RING_ID)
4488 			bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
4489 	}
4490 }
4491 
4492 static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n)
4493 {
4494 	struct bnxt_napi *bnapi = bp->bnapi[n];
4495 	struct bnxt_cp_ring_info *cpr;
4496 
4497 	cpr = &bnapi->cp_ring;
4498 	return cpr->cp_ring_struct.map_idx;
4499 }
4500 
4501 static void bnxt_disable_int_sync(struct bnxt *bp)
4502 {
4503 	int i;
4504 
4505 	if (!bp->irq_tbl)
4506 		return;
4507 
4508 	atomic_inc(&bp->intr_sem);
4509 
4510 	bnxt_disable_int(bp);
4511 	for (i = 0; i < bp->cp_nr_rings; i++) {
4512 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
4513 
4514 		synchronize_irq(bp->irq_tbl[map_idx].vector);
4515 	}
4516 }
4517 
4518 static void bnxt_enable_int(struct bnxt *bp)
4519 {
4520 	int i;
4521 
4522 	atomic_set(&bp->intr_sem, 0);
4523 	for (i = 0; i < bp->cp_nr_rings; i++) {
4524 		struct bnxt_napi *bnapi = bp->bnapi[i];
4525 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4526 
4527 		bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons);
4528 	}
4529 }
4530 
4531 int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp, unsigned long *bmap, int bmap_size,
4532 			    bool async_only)
4533 {
4534 	DECLARE_BITMAP(async_events_bmap, 256);
4535 	u32 *events = (u32 *)async_events_bmap;
4536 	struct hwrm_func_drv_rgtr_output *resp;
4537 	struct hwrm_func_drv_rgtr_input *req;
4538 	u32 flags;
4539 	int rc, i;
4540 
4541 	rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_RGTR);
4542 	if (rc)
4543 		return rc;
4544 
4545 	req->enables = cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
4546 				   FUNC_DRV_RGTR_REQ_ENABLES_VER |
4547 				   FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
4548 
4549 	req->os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX);
4550 	flags = FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE;
4551 	if (bp->fw_cap & BNXT_FW_CAP_HOT_RESET)
4552 		flags |= FUNC_DRV_RGTR_REQ_FLAGS_HOT_RESET_SUPPORT;
4553 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
4554 		flags |= FUNC_DRV_RGTR_REQ_FLAGS_ERROR_RECOVERY_SUPPORT |
4555 			 FUNC_DRV_RGTR_REQ_FLAGS_MASTER_SUPPORT;
4556 	req->flags = cpu_to_le32(flags);
4557 	req->ver_maj_8b = DRV_VER_MAJ;
4558 	req->ver_min_8b = DRV_VER_MIN;
4559 	req->ver_upd_8b = DRV_VER_UPD;
4560 	req->ver_maj = cpu_to_le16(DRV_VER_MAJ);
4561 	req->ver_min = cpu_to_le16(DRV_VER_MIN);
4562 	req->ver_upd = cpu_to_le16(DRV_VER_UPD);
4563 
4564 	if (BNXT_PF(bp)) {
4565 		u32 data[8];
4566 		int i;
4567 
4568 		memset(data, 0, sizeof(data));
4569 		for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) {
4570 			u16 cmd = bnxt_vf_req_snif[i];
4571 			unsigned int bit, idx;
4572 
4573 			idx = cmd / 32;
4574 			bit = cmd % 32;
4575 			data[idx] |= 1 << bit;
4576 		}
4577 
4578 		for (i = 0; i < 8; i++)
4579 			req->vf_req_fwd[i] = cpu_to_le32(data[i]);
4580 
4581 		req->enables |=
4582 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
4583 	}
4584 
4585 	if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE)
4586 		req->flags |= cpu_to_le32(
4587 			FUNC_DRV_RGTR_REQ_FLAGS_FLOW_HANDLE_64BIT_MODE);
4588 
4589 	memset(async_events_bmap, 0, sizeof(async_events_bmap));
4590 	for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++) {
4591 		u16 event_id = bnxt_async_events_arr[i];
4592 
4593 		if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY &&
4594 		    !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
4595 			continue;
4596 		__set_bit(bnxt_async_events_arr[i], async_events_bmap);
4597 	}
4598 	if (bmap && bmap_size) {
4599 		for (i = 0; i < bmap_size; i++) {
4600 			if (test_bit(i, bmap))
4601 				__set_bit(i, async_events_bmap);
4602 		}
4603 	}
4604 	for (i = 0; i < 8; i++)
4605 		req->async_event_fwd[i] |= cpu_to_le32(events[i]);
4606 
4607 	if (async_only)
4608 		req->enables =
4609 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
4610 
4611 	resp = hwrm_req_hold(bp, req);
4612 	rc = hwrm_req_send(bp, req);
4613 	if (!rc) {
4614 		set_bit(BNXT_STATE_DRV_REGISTERED, &bp->state);
4615 		if (resp->flags &
4616 		    cpu_to_le32(FUNC_DRV_RGTR_RESP_FLAGS_IF_CHANGE_SUPPORTED))
4617 			bp->fw_cap |= BNXT_FW_CAP_IF_CHANGE;
4618 	}
4619 	hwrm_req_drop(bp, req);
4620 	return rc;
4621 }
4622 
4623 static int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
4624 {
4625 	struct hwrm_func_drv_unrgtr_input *req;
4626 	int rc;
4627 
4628 	if (!test_and_clear_bit(BNXT_STATE_DRV_REGISTERED, &bp->state))
4629 		return 0;
4630 
4631 	rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_UNRGTR);
4632 	if (rc)
4633 		return rc;
4634 	return hwrm_req_send(bp, req);
4635 }
4636 
4637 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
4638 {
4639 	struct hwrm_tunnel_dst_port_free_input *req;
4640 	int rc;
4641 
4642 	rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_FREE);
4643 	if (rc)
4644 		return rc;
4645 
4646 	req->tunnel_type = tunnel_type;
4647 
4648 	switch (tunnel_type) {
4649 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
4650 		req->tunnel_dst_port_id = cpu_to_le16(bp->vxlan_fw_dst_port_id);
4651 		bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID;
4652 		break;
4653 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
4654 		req->tunnel_dst_port_id = cpu_to_le16(bp->nge_fw_dst_port_id);
4655 		bp->nge_fw_dst_port_id = INVALID_HW_RING_ID;
4656 		break;
4657 	default:
4658 		break;
4659 	}
4660 
4661 	rc = hwrm_req_send(bp, req);
4662 	if (rc)
4663 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
4664 			   rc);
4665 	return rc;
4666 }
4667 
4668 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
4669 					   u8 tunnel_type)
4670 {
4671 	struct hwrm_tunnel_dst_port_alloc_output *resp;
4672 	struct hwrm_tunnel_dst_port_alloc_input *req;
4673 	int rc;
4674 
4675 	rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_ALLOC);
4676 	if (rc)
4677 		return rc;
4678 
4679 	req->tunnel_type = tunnel_type;
4680 	req->tunnel_dst_port_val = port;
4681 
4682 	resp = hwrm_req_hold(bp, req);
4683 	rc = hwrm_req_send(bp, req);
4684 	if (rc) {
4685 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
4686 			   rc);
4687 		goto err_out;
4688 	}
4689 
4690 	switch (tunnel_type) {
4691 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN:
4692 		bp->vxlan_fw_dst_port_id =
4693 			le16_to_cpu(resp->tunnel_dst_port_id);
4694 		break;
4695 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE:
4696 		bp->nge_fw_dst_port_id = le16_to_cpu(resp->tunnel_dst_port_id);
4697 		break;
4698 	default:
4699 		break;
4700 	}
4701 
4702 err_out:
4703 	hwrm_req_drop(bp, req);
4704 	return rc;
4705 }
4706 
4707 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
4708 {
4709 	struct hwrm_cfa_l2_set_rx_mask_input *req;
4710 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4711 	int rc;
4712 
4713 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_SET_RX_MASK);
4714 	if (rc)
4715 		return rc;
4716 
4717 	req->vnic_id = cpu_to_le32(vnic->fw_vnic_id);
4718 	req->num_mc_entries = cpu_to_le32(vnic->mc_list_count);
4719 	req->mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
4720 	req->mask = cpu_to_le32(vnic->rx_mask);
4721 	return hwrm_req_send_silent(bp, req);
4722 }
4723 
4724 #ifdef CONFIG_RFS_ACCEL
4725 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
4726 					    struct bnxt_ntuple_filter *fltr)
4727 {
4728 	struct hwrm_cfa_ntuple_filter_free_input *req;
4729 	int rc;
4730 
4731 	rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_FREE);
4732 	if (rc)
4733 		return rc;
4734 
4735 	req->ntuple_filter_id = fltr->filter_id;
4736 	return hwrm_req_send(bp, req);
4737 }
4738 
4739 #define BNXT_NTP_FLTR_FLAGS					\
4740 	(CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID |	\
4741 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE |	\
4742 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR |	\
4743 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE |	\
4744 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR |	\
4745 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK |	\
4746 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR |	\
4747 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK |	\
4748 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL |	\
4749 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT |		\
4750 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK |	\
4751 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT |		\
4752 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK |	\
4753 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
4754 
4755 #define BNXT_NTP_TUNNEL_FLTR_FLAG				\
4756 		CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE
4757 
4758 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
4759 					     struct bnxt_ntuple_filter *fltr)
4760 {
4761 	struct hwrm_cfa_ntuple_filter_alloc_output *resp;
4762 	struct hwrm_cfa_ntuple_filter_alloc_input *req;
4763 	struct flow_keys *keys = &fltr->fkeys;
4764 	struct bnxt_vnic_info *vnic;
4765 	u32 flags = 0;
4766 	int rc;
4767 
4768 	rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_ALLOC);
4769 	if (rc)
4770 		return rc;
4771 
4772 	req->l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx];
4773 
4774 	if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) {
4775 		flags = CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DEST_RFS_RING_IDX;
4776 		req->dst_id = cpu_to_le16(fltr->rxq);
4777 	} else {
4778 		vnic = &bp->vnic_info[fltr->rxq + 1];
4779 		req->dst_id = cpu_to_le16(vnic->fw_vnic_id);
4780 	}
4781 	req->flags = cpu_to_le32(flags);
4782 	req->enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
4783 
4784 	req->ethertype = htons(ETH_P_IP);
4785 	memcpy(req->src_macaddr, fltr->src_mac_addr, ETH_ALEN);
4786 	req->ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
4787 	req->ip_protocol = keys->basic.ip_proto;
4788 
4789 	if (keys->basic.n_proto == htons(ETH_P_IPV6)) {
4790 		int i;
4791 
4792 		req->ethertype = htons(ETH_P_IPV6);
4793 		req->ip_addr_type =
4794 			CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6;
4795 		*(struct in6_addr *)&req->src_ipaddr[0] =
4796 			keys->addrs.v6addrs.src;
4797 		*(struct in6_addr *)&req->dst_ipaddr[0] =
4798 			keys->addrs.v6addrs.dst;
4799 		for (i = 0; i < 4; i++) {
4800 			req->src_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
4801 			req->dst_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
4802 		}
4803 	} else {
4804 		req->src_ipaddr[0] = keys->addrs.v4addrs.src;
4805 		req->src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
4806 		req->dst_ipaddr[0] = keys->addrs.v4addrs.dst;
4807 		req->dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
4808 	}
4809 	if (keys->control.flags & FLOW_DIS_ENCAPSULATION) {
4810 		req->enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG);
4811 		req->tunnel_type =
4812 			CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL;
4813 	}
4814 
4815 	req->src_port = keys->ports.src;
4816 	req->src_port_mask = cpu_to_be16(0xffff);
4817 	req->dst_port = keys->ports.dst;
4818 	req->dst_port_mask = cpu_to_be16(0xffff);
4819 
4820 	resp = hwrm_req_hold(bp, req);
4821 	rc = hwrm_req_send(bp, req);
4822 	if (!rc)
4823 		fltr->filter_id = resp->ntuple_filter_id;
4824 	hwrm_req_drop(bp, req);
4825 	return rc;
4826 }
4827 #endif
4828 
4829 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
4830 				     u8 *mac_addr)
4831 {
4832 	struct hwrm_cfa_l2_filter_alloc_output *resp;
4833 	struct hwrm_cfa_l2_filter_alloc_input *req;
4834 	int rc;
4835 
4836 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_ALLOC);
4837 	if (rc)
4838 		return rc;
4839 
4840 	req->flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX);
4841 	if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
4842 		req->flags |=
4843 			cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
4844 	req->dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
4845 	req->enables =
4846 		cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
4847 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
4848 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
4849 	memcpy(req->l2_addr, mac_addr, ETH_ALEN);
4850 	req->l2_addr_mask[0] = 0xff;
4851 	req->l2_addr_mask[1] = 0xff;
4852 	req->l2_addr_mask[2] = 0xff;
4853 	req->l2_addr_mask[3] = 0xff;
4854 	req->l2_addr_mask[4] = 0xff;
4855 	req->l2_addr_mask[5] = 0xff;
4856 
4857 	resp = hwrm_req_hold(bp, req);
4858 	rc = hwrm_req_send(bp, req);
4859 	if (!rc)
4860 		bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
4861 							resp->l2_filter_id;
4862 	hwrm_req_drop(bp, req);
4863 	return rc;
4864 }
4865 
4866 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
4867 {
4868 	struct hwrm_cfa_l2_filter_free_input *req;
4869 	u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
4870 	int rc;
4871 
4872 	/* Any associated ntuple filters will also be cleared by firmware. */
4873 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE);
4874 	if (rc)
4875 		return rc;
4876 	hwrm_req_hold(bp, req);
4877 	for (i = 0; i < num_of_vnics; i++) {
4878 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
4879 
4880 		for (j = 0; j < vnic->uc_filter_count; j++) {
4881 			req->l2_filter_id = vnic->fw_l2_filter_id[j];
4882 
4883 			rc = hwrm_req_send(bp, req);
4884 		}
4885 		vnic->uc_filter_count = 0;
4886 	}
4887 	hwrm_req_drop(bp, req);
4888 	return rc;
4889 }
4890 
4891 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
4892 {
4893 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4894 	u16 max_aggs = VNIC_TPA_CFG_REQ_MAX_AGGS_MAX;
4895 	struct hwrm_vnic_tpa_cfg_input *req;
4896 	int rc;
4897 
4898 	if (vnic->fw_vnic_id == INVALID_HW_RING_ID)
4899 		return 0;
4900 
4901 	rc = hwrm_req_init(bp, req, HWRM_VNIC_TPA_CFG);
4902 	if (rc)
4903 		return rc;
4904 
4905 	if (tpa_flags) {
4906 		u16 mss = bp->dev->mtu - 40;
4907 		u32 nsegs, n, segs = 0, flags;
4908 
4909 		flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
4910 			VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
4911 			VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
4912 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
4913 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
4914 		if (tpa_flags & BNXT_FLAG_GRO)
4915 			flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
4916 
4917 		req->flags = cpu_to_le32(flags);
4918 
4919 		req->enables =
4920 			cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
4921 				    VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
4922 				    VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
4923 
4924 		/* Number of segs are log2 units, and first packet is not
4925 		 * included as part of this units.
4926 		 */
4927 		if (mss <= BNXT_RX_PAGE_SIZE) {
4928 			n = BNXT_RX_PAGE_SIZE / mss;
4929 			nsegs = (MAX_SKB_FRAGS - 1) * n;
4930 		} else {
4931 			n = mss / BNXT_RX_PAGE_SIZE;
4932 			if (mss & (BNXT_RX_PAGE_SIZE - 1))
4933 				n++;
4934 			nsegs = (MAX_SKB_FRAGS - n) / n;
4935 		}
4936 
4937 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
4938 			segs = MAX_TPA_SEGS_P5;
4939 			max_aggs = bp->max_tpa;
4940 		} else {
4941 			segs = ilog2(nsegs);
4942 		}
4943 		req->max_agg_segs = cpu_to_le16(segs);
4944 		req->max_aggs = cpu_to_le16(max_aggs);
4945 
4946 		req->min_agg_len = cpu_to_le32(512);
4947 	}
4948 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
4949 
4950 	return hwrm_req_send(bp, req);
4951 }
4952 
4953 static u16 bnxt_cp_ring_from_grp(struct bnxt *bp, struct bnxt_ring_struct *ring)
4954 {
4955 	struct bnxt_ring_grp_info *grp_info;
4956 
4957 	grp_info = &bp->grp_info[ring->grp_idx];
4958 	return grp_info->cp_fw_ring_id;
4959 }
4960 
4961 static u16 bnxt_cp_ring_for_rx(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
4962 {
4963 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
4964 		struct bnxt_napi *bnapi = rxr->bnapi;
4965 		struct bnxt_cp_ring_info *cpr;
4966 
4967 		cpr = bnapi->cp_ring.cp_ring_arr[BNXT_RX_HDL];
4968 		return cpr->cp_ring_struct.fw_ring_id;
4969 	} else {
4970 		return bnxt_cp_ring_from_grp(bp, &rxr->rx_ring_struct);
4971 	}
4972 }
4973 
4974 static u16 bnxt_cp_ring_for_tx(struct bnxt *bp, struct bnxt_tx_ring_info *txr)
4975 {
4976 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
4977 		struct bnxt_napi *bnapi = txr->bnapi;
4978 		struct bnxt_cp_ring_info *cpr;
4979 
4980 		cpr = bnapi->cp_ring.cp_ring_arr[BNXT_TX_HDL];
4981 		return cpr->cp_ring_struct.fw_ring_id;
4982 	} else {
4983 		return bnxt_cp_ring_from_grp(bp, &txr->tx_ring_struct);
4984 	}
4985 }
4986 
4987 static int bnxt_alloc_rss_indir_tbl(struct bnxt *bp)
4988 {
4989 	int entries;
4990 
4991 	if (bp->flags & BNXT_FLAG_CHIP_P5)
4992 		entries = BNXT_MAX_RSS_TABLE_ENTRIES_P5;
4993 	else
4994 		entries = HW_HASH_INDEX_SIZE;
4995 
4996 	bp->rss_indir_tbl_entries = entries;
4997 	bp->rss_indir_tbl = kmalloc_array(entries, sizeof(*bp->rss_indir_tbl),
4998 					  GFP_KERNEL);
4999 	if (!bp->rss_indir_tbl)
5000 		return -ENOMEM;
5001 	return 0;
5002 }
5003 
5004 static void bnxt_set_dflt_rss_indir_tbl(struct bnxt *bp)
5005 {
5006 	u16 max_rings, max_entries, pad, i;
5007 
5008 	if (!bp->rx_nr_rings)
5009 		return;
5010 
5011 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5012 		max_rings = bp->rx_nr_rings - 1;
5013 	else
5014 		max_rings = bp->rx_nr_rings;
5015 
5016 	max_entries = bnxt_get_rxfh_indir_size(bp->dev);
5017 
5018 	for (i = 0; i < max_entries; i++)
5019 		bp->rss_indir_tbl[i] = ethtool_rxfh_indir_default(i, max_rings);
5020 
5021 	pad = bp->rss_indir_tbl_entries - max_entries;
5022 	if (pad)
5023 		memset(&bp->rss_indir_tbl[i], 0, pad * sizeof(u16));
5024 }
5025 
5026 static u16 bnxt_get_max_rss_ring(struct bnxt *bp)
5027 {
5028 	u16 i, tbl_size, max_ring = 0;
5029 
5030 	if (!bp->rss_indir_tbl)
5031 		return 0;
5032 
5033 	tbl_size = bnxt_get_rxfh_indir_size(bp->dev);
5034 	for (i = 0; i < tbl_size; i++)
5035 		max_ring = max(max_ring, bp->rss_indir_tbl[i]);
5036 	return max_ring;
5037 }
5038 
5039 int bnxt_get_nr_rss_ctxs(struct bnxt *bp, int rx_rings)
5040 {
5041 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5042 		return DIV_ROUND_UP(rx_rings, BNXT_RSS_TABLE_ENTRIES_P5);
5043 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5044 		return 2;
5045 	return 1;
5046 }
5047 
5048 static void __bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic)
5049 {
5050 	bool no_rss = !(vnic->flags & BNXT_VNIC_RSS_FLAG);
5051 	u16 i, j;
5052 
5053 	/* Fill the RSS indirection table with ring group ids */
5054 	for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++) {
5055 		if (!no_rss)
5056 			j = bp->rss_indir_tbl[i];
5057 		vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
5058 	}
5059 }
5060 
5061 static void __bnxt_fill_hw_rss_tbl_p5(struct bnxt *bp,
5062 				      struct bnxt_vnic_info *vnic)
5063 {
5064 	__le16 *ring_tbl = vnic->rss_table;
5065 	struct bnxt_rx_ring_info *rxr;
5066 	u16 tbl_size, i;
5067 
5068 	tbl_size = bnxt_get_rxfh_indir_size(bp->dev);
5069 
5070 	for (i = 0; i < tbl_size; i++) {
5071 		u16 ring_id, j;
5072 
5073 		j = bp->rss_indir_tbl[i];
5074 		rxr = &bp->rx_ring[j];
5075 
5076 		ring_id = rxr->rx_ring_struct.fw_ring_id;
5077 		*ring_tbl++ = cpu_to_le16(ring_id);
5078 		ring_id = bnxt_cp_ring_for_rx(bp, rxr);
5079 		*ring_tbl++ = cpu_to_le16(ring_id);
5080 	}
5081 }
5082 
5083 static void bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic)
5084 {
5085 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5086 		__bnxt_fill_hw_rss_tbl_p5(bp, vnic);
5087 	else
5088 		__bnxt_fill_hw_rss_tbl(bp, vnic);
5089 }
5090 
5091 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
5092 {
5093 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5094 	struct hwrm_vnic_rss_cfg_input *req;
5095 	int rc;
5096 
5097 	if ((bp->flags & BNXT_FLAG_CHIP_P5) ||
5098 	    vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID)
5099 		return 0;
5100 
5101 	rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG);
5102 	if (rc)
5103 		return rc;
5104 
5105 	if (set_rss) {
5106 		bnxt_fill_hw_rss_tbl(bp, vnic);
5107 		req->hash_type = cpu_to_le32(bp->rss_hash_cfg);
5108 		req->hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT;
5109 		req->ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
5110 		req->hash_key_tbl_addr =
5111 			cpu_to_le64(vnic->rss_hash_key_dma_addr);
5112 	}
5113 	req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
5114 	return hwrm_req_send(bp, req);
5115 }
5116 
5117 static int bnxt_hwrm_vnic_set_rss_p5(struct bnxt *bp, u16 vnic_id, bool set_rss)
5118 {
5119 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5120 	struct hwrm_vnic_rss_cfg_input *req;
5121 	dma_addr_t ring_tbl_map;
5122 	u32 i, nr_ctxs;
5123 	int rc;
5124 
5125 	rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG);
5126 	if (rc)
5127 		return rc;
5128 
5129 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5130 	if (!set_rss)
5131 		return hwrm_req_send(bp, req);
5132 
5133 	bnxt_fill_hw_rss_tbl(bp, vnic);
5134 	req->hash_type = cpu_to_le32(bp->rss_hash_cfg);
5135 	req->hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT;
5136 	req->hash_key_tbl_addr = cpu_to_le64(vnic->rss_hash_key_dma_addr);
5137 	ring_tbl_map = vnic->rss_table_dma_addr;
5138 	nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings);
5139 
5140 	hwrm_req_hold(bp, req);
5141 	for (i = 0; i < nr_ctxs; ring_tbl_map += BNXT_RSS_TABLE_SIZE_P5, i++) {
5142 		req->ring_grp_tbl_addr = cpu_to_le64(ring_tbl_map);
5143 		req->ring_table_pair_index = i;
5144 		req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[i]);
5145 		rc = hwrm_req_send(bp, req);
5146 		if (rc)
5147 			goto exit;
5148 	}
5149 
5150 exit:
5151 	hwrm_req_drop(bp, req);
5152 	return rc;
5153 }
5154 
5155 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
5156 {
5157 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5158 	struct hwrm_vnic_plcmodes_cfg_input *req;
5159 	int rc;
5160 
5161 	rc = hwrm_req_init(bp, req, HWRM_VNIC_PLCMODES_CFG);
5162 	if (rc)
5163 		return rc;
5164 
5165 	req->flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT |
5166 				 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
5167 				 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
5168 	req->enables =
5169 		cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID |
5170 			    VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
5171 	/* thresholds not implemented in firmware yet */
5172 	req->jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
5173 	req->hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
5174 	req->vnic_id = cpu_to_le32(vnic->fw_vnic_id);
5175 	return hwrm_req_send(bp, req);
5176 }
5177 
5178 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id,
5179 					u16 ctx_idx)
5180 {
5181 	struct hwrm_vnic_rss_cos_lb_ctx_free_input *req;
5182 
5183 	if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_FREE))
5184 		return;
5185 
5186 	req->rss_cos_lb_ctx_id =
5187 		cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]);
5188 
5189 	hwrm_req_send(bp, req);
5190 	bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID;
5191 }
5192 
5193 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
5194 {
5195 	int i, j;
5196 
5197 	for (i = 0; i < bp->nr_vnics; i++) {
5198 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
5199 
5200 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) {
5201 			if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID)
5202 				bnxt_hwrm_vnic_ctx_free_one(bp, i, j);
5203 		}
5204 	}
5205 	bp->rsscos_nr_ctxs = 0;
5206 }
5207 
5208 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx)
5209 {
5210 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp;
5211 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_input *req;
5212 	int rc;
5213 
5214 	rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC);
5215 	if (rc)
5216 		return rc;
5217 
5218 	resp = hwrm_req_hold(bp, req);
5219 	rc = hwrm_req_send(bp, req);
5220 	if (!rc)
5221 		bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] =
5222 			le16_to_cpu(resp->rss_cos_lb_ctx_id);
5223 	hwrm_req_drop(bp, req);
5224 
5225 	return rc;
5226 }
5227 
5228 static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp)
5229 {
5230 	if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP)
5231 		return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE;
5232 	return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE;
5233 }
5234 
5235 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
5236 {
5237 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5238 	struct hwrm_vnic_cfg_input *req;
5239 	unsigned int ring = 0, grp_idx;
5240 	u16 def_vlan = 0;
5241 	int rc;
5242 
5243 	rc = hwrm_req_init(bp, req, HWRM_VNIC_CFG);
5244 	if (rc)
5245 		return rc;
5246 
5247 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5248 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0];
5249 
5250 		req->default_rx_ring_id =
5251 			cpu_to_le16(rxr->rx_ring_struct.fw_ring_id);
5252 		req->default_cmpl_ring_id =
5253 			cpu_to_le16(bnxt_cp_ring_for_rx(bp, rxr));
5254 		req->enables =
5255 			cpu_to_le32(VNIC_CFG_REQ_ENABLES_DEFAULT_RX_RING_ID |
5256 				    VNIC_CFG_REQ_ENABLES_DEFAULT_CMPL_RING_ID);
5257 		goto vnic_mru;
5258 	}
5259 	req->enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP);
5260 	/* Only RSS support for now TBD: COS & LB */
5261 	if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) {
5262 		req->rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
5263 		req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
5264 					   VNIC_CFG_REQ_ENABLES_MRU);
5265 	} else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) {
5266 		req->rss_rule =
5267 			cpu_to_le16(bp->vnic_info[0].fw_rss_cos_lb_ctx[0]);
5268 		req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
5269 					   VNIC_CFG_REQ_ENABLES_MRU);
5270 		req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE);
5271 	} else {
5272 		req->rss_rule = cpu_to_le16(0xffff);
5273 	}
5274 
5275 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) &&
5276 	    (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) {
5277 		req->cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]);
5278 		req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE);
5279 	} else {
5280 		req->cos_rule = cpu_to_le16(0xffff);
5281 	}
5282 
5283 	if (vnic->flags & BNXT_VNIC_RSS_FLAG)
5284 		ring = 0;
5285 	else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
5286 		ring = vnic_id - 1;
5287 	else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp))
5288 		ring = bp->rx_nr_rings - 1;
5289 
5290 	grp_idx = bp->rx_ring[ring].bnapi->index;
5291 	req->dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
5292 	req->lb_rule = cpu_to_le16(0xffff);
5293 vnic_mru:
5294 	req->mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + VLAN_HLEN);
5295 
5296 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5297 #ifdef CONFIG_BNXT_SRIOV
5298 	if (BNXT_VF(bp))
5299 		def_vlan = bp->vf.vlan;
5300 #endif
5301 	if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan)
5302 		req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
5303 	if (!vnic_id && bnxt_ulp_registered(bp->edev, BNXT_ROCE_ULP))
5304 		req->flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp));
5305 
5306 	return hwrm_req_send(bp, req);
5307 }
5308 
5309 static void bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
5310 {
5311 	if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
5312 		struct hwrm_vnic_free_input *req;
5313 
5314 		if (hwrm_req_init(bp, req, HWRM_VNIC_FREE))
5315 			return;
5316 
5317 		req->vnic_id =
5318 			cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
5319 
5320 		hwrm_req_send(bp, req);
5321 		bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
5322 	}
5323 }
5324 
5325 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
5326 {
5327 	u16 i;
5328 
5329 	for (i = 0; i < bp->nr_vnics; i++)
5330 		bnxt_hwrm_vnic_free_one(bp, i);
5331 }
5332 
5333 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
5334 				unsigned int start_rx_ring_idx,
5335 				unsigned int nr_rings)
5336 {
5337 	unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
5338 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5339 	struct hwrm_vnic_alloc_output *resp;
5340 	struct hwrm_vnic_alloc_input *req;
5341 	int rc;
5342 
5343 	rc = hwrm_req_init(bp, req, HWRM_VNIC_ALLOC);
5344 	if (rc)
5345 		return rc;
5346 
5347 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5348 		goto vnic_no_ring_grps;
5349 
5350 	/* map ring groups to this vnic */
5351 	for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
5352 		grp_idx = bp->rx_ring[i].bnapi->index;
5353 		if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
5354 			netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
5355 				   j, nr_rings);
5356 			break;
5357 		}
5358 		vnic->fw_grp_ids[j] = bp->grp_info[grp_idx].fw_grp_id;
5359 	}
5360 
5361 vnic_no_ring_grps:
5362 	for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++)
5363 		vnic->fw_rss_cos_lb_ctx[i] = INVALID_HW_RING_ID;
5364 	if (vnic_id == 0)
5365 		req->flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
5366 
5367 	resp = hwrm_req_hold(bp, req);
5368 	rc = hwrm_req_send(bp, req);
5369 	if (!rc)
5370 		vnic->fw_vnic_id = le32_to_cpu(resp->vnic_id);
5371 	hwrm_req_drop(bp, req);
5372 	return rc;
5373 }
5374 
5375 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp)
5376 {
5377 	struct hwrm_vnic_qcaps_output *resp;
5378 	struct hwrm_vnic_qcaps_input *req;
5379 	int rc;
5380 
5381 	bp->hw_ring_stats_size = sizeof(struct ctx_hw_stats);
5382 	bp->flags &= ~(BNXT_FLAG_NEW_RSS_CAP | BNXT_FLAG_ROCE_MIRROR_CAP);
5383 	if (bp->hwrm_spec_code < 0x10600)
5384 		return 0;
5385 
5386 	rc = hwrm_req_init(bp, req, HWRM_VNIC_QCAPS);
5387 	if (rc)
5388 		return rc;
5389 
5390 	resp = hwrm_req_hold(bp, req);
5391 	rc = hwrm_req_send(bp, req);
5392 	if (!rc) {
5393 		u32 flags = le32_to_cpu(resp->flags);
5394 
5395 		if (!(bp->flags & BNXT_FLAG_CHIP_P5) &&
5396 		    (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP))
5397 			bp->flags |= BNXT_FLAG_NEW_RSS_CAP;
5398 		if (flags &
5399 		    VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP)
5400 			bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP;
5401 
5402 		/* Older P5 fw before EXT_HW_STATS support did not set
5403 		 * VLAN_STRIP_CAP properly.
5404 		 */
5405 		if ((flags & VNIC_QCAPS_RESP_FLAGS_VLAN_STRIP_CAP) ||
5406 		    (BNXT_CHIP_P5_THOR(bp) &&
5407 		     !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)))
5408 			bp->fw_cap |= BNXT_FW_CAP_VLAN_RX_STRIP;
5409 		bp->max_tpa_v2 = le16_to_cpu(resp->max_aggs_supported);
5410 		if (bp->max_tpa_v2) {
5411 			if (BNXT_CHIP_P5_THOR(bp))
5412 				bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5;
5413 			else
5414 				bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5_SR2;
5415 		}
5416 	}
5417 	hwrm_req_drop(bp, req);
5418 	return rc;
5419 }
5420 
5421 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
5422 {
5423 	struct hwrm_ring_grp_alloc_output *resp;
5424 	struct hwrm_ring_grp_alloc_input *req;
5425 	int rc;
5426 	u16 i;
5427 
5428 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5429 		return 0;
5430 
5431 	rc = hwrm_req_init(bp, req, HWRM_RING_GRP_ALLOC);
5432 	if (rc)
5433 		return rc;
5434 
5435 	resp = hwrm_req_hold(bp, req);
5436 	for (i = 0; i < bp->rx_nr_rings; i++) {
5437 		unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
5438 
5439 		req->cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
5440 		req->rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
5441 		req->ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
5442 		req->sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
5443 
5444 		rc = hwrm_req_send(bp, req);
5445 
5446 		if (rc)
5447 			break;
5448 
5449 		bp->grp_info[grp_idx].fw_grp_id =
5450 			le32_to_cpu(resp->ring_group_id);
5451 	}
5452 	hwrm_req_drop(bp, req);
5453 	return rc;
5454 }
5455 
5456 static void bnxt_hwrm_ring_grp_free(struct bnxt *bp)
5457 {
5458 	struct hwrm_ring_grp_free_input *req;
5459 	u16 i;
5460 
5461 	if (!bp->grp_info || (bp->flags & BNXT_FLAG_CHIP_P5))
5462 		return;
5463 
5464 	if (hwrm_req_init(bp, req, HWRM_RING_GRP_FREE))
5465 		return;
5466 
5467 	hwrm_req_hold(bp, req);
5468 	for (i = 0; i < bp->cp_nr_rings; i++) {
5469 		if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
5470 			continue;
5471 		req->ring_group_id =
5472 			cpu_to_le32(bp->grp_info[i].fw_grp_id);
5473 
5474 		hwrm_req_send(bp, req);
5475 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
5476 	}
5477 	hwrm_req_drop(bp, req);
5478 }
5479 
5480 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
5481 				    struct bnxt_ring_struct *ring,
5482 				    u32 ring_type, u32 map_index)
5483 {
5484 	struct hwrm_ring_alloc_output *resp;
5485 	struct hwrm_ring_alloc_input *req;
5486 	struct bnxt_ring_mem_info *rmem = &ring->ring_mem;
5487 	struct bnxt_ring_grp_info *grp_info;
5488 	int rc, err = 0;
5489 	u16 ring_id;
5490 
5491 	rc = hwrm_req_init(bp, req, HWRM_RING_ALLOC);
5492 	if (rc)
5493 		goto exit;
5494 
5495 	req->enables = 0;
5496 	if (rmem->nr_pages > 1) {
5497 		req->page_tbl_addr = cpu_to_le64(rmem->pg_tbl_map);
5498 		/* Page size is in log2 units */
5499 		req->page_size = BNXT_PAGE_SHIFT;
5500 		req->page_tbl_depth = 1;
5501 	} else {
5502 		req->page_tbl_addr =  cpu_to_le64(rmem->dma_arr[0]);
5503 	}
5504 	req->fbo = 0;
5505 	/* Association of ring index with doorbell index and MSIX number */
5506 	req->logical_id = cpu_to_le16(map_index);
5507 
5508 	switch (ring_type) {
5509 	case HWRM_RING_ALLOC_TX: {
5510 		struct bnxt_tx_ring_info *txr;
5511 
5512 		txr = container_of(ring, struct bnxt_tx_ring_info,
5513 				   tx_ring_struct);
5514 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
5515 		/* Association of transmit ring with completion ring */
5516 		grp_info = &bp->grp_info[ring->grp_idx];
5517 		req->cmpl_ring_id = cpu_to_le16(bnxt_cp_ring_for_tx(bp, txr));
5518 		req->length = cpu_to_le32(bp->tx_ring_mask + 1);
5519 		req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5520 		req->queue_id = cpu_to_le16(ring->queue_id);
5521 		break;
5522 	}
5523 	case HWRM_RING_ALLOC_RX:
5524 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
5525 		req->length = cpu_to_le32(bp->rx_ring_mask + 1);
5526 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5527 			u16 flags = 0;
5528 
5529 			/* Association of rx ring with stats context */
5530 			grp_info = &bp->grp_info[ring->grp_idx];
5531 			req->rx_buf_size = cpu_to_le16(bp->rx_buf_use_size);
5532 			req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5533 			req->enables |= cpu_to_le32(
5534 				RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
5535 			if (NET_IP_ALIGN == 2)
5536 				flags = RING_ALLOC_REQ_FLAGS_RX_SOP_PAD;
5537 			req->flags = cpu_to_le16(flags);
5538 		}
5539 		break;
5540 	case HWRM_RING_ALLOC_AGG:
5541 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5542 			req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX_AGG;
5543 			/* Association of agg ring with rx ring */
5544 			grp_info = &bp->grp_info[ring->grp_idx];
5545 			req->rx_ring_id = cpu_to_le16(grp_info->rx_fw_ring_id);
5546 			req->rx_buf_size = cpu_to_le16(BNXT_RX_PAGE_SIZE);
5547 			req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5548 			req->enables |= cpu_to_le32(
5549 				RING_ALLOC_REQ_ENABLES_RX_RING_ID_VALID |
5550 				RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
5551 		} else {
5552 			req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
5553 		}
5554 		req->length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
5555 		break;
5556 	case HWRM_RING_ALLOC_CMPL:
5557 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL;
5558 		req->length = cpu_to_le32(bp->cp_ring_mask + 1);
5559 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5560 			/* Association of cp ring with nq */
5561 			grp_info = &bp->grp_info[map_index];
5562 			req->nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id);
5563 			req->cq_handle = cpu_to_le64(ring->handle);
5564 			req->enables |= cpu_to_le32(
5565 				RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID);
5566 		} else if (bp->flags & BNXT_FLAG_USING_MSIX) {
5567 			req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
5568 		}
5569 		break;
5570 	case HWRM_RING_ALLOC_NQ:
5571 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_NQ;
5572 		req->length = cpu_to_le32(bp->cp_ring_mask + 1);
5573 		if (bp->flags & BNXT_FLAG_USING_MSIX)
5574 			req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
5575 		break;
5576 	default:
5577 		netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
5578 			   ring_type);
5579 		return -1;
5580 	}
5581 
5582 	resp = hwrm_req_hold(bp, req);
5583 	rc = hwrm_req_send(bp, req);
5584 	err = le16_to_cpu(resp->error_code);
5585 	ring_id = le16_to_cpu(resp->ring_id);
5586 	hwrm_req_drop(bp, req);
5587 
5588 exit:
5589 	if (rc || err) {
5590 		netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n",
5591 			   ring_type, rc, err);
5592 		return -EIO;
5593 	}
5594 	ring->fw_ring_id = ring_id;
5595 	return rc;
5596 }
5597 
5598 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx)
5599 {
5600 	int rc;
5601 
5602 	if (BNXT_PF(bp)) {
5603 		struct hwrm_func_cfg_input *req;
5604 
5605 		rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG);
5606 		if (rc)
5607 			return rc;
5608 
5609 		req->fid = cpu_to_le16(0xffff);
5610 		req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
5611 		req->async_event_cr = cpu_to_le16(idx);
5612 		return hwrm_req_send(bp, req);
5613 	} else {
5614 		struct hwrm_func_vf_cfg_input *req;
5615 
5616 		rc = hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG);
5617 		if (rc)
5618 			return rc;
5619 
5620 		req->enables =
5621 			cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
5622 		req->async_event_cr = cpu_to_le16(idx);
5623 		return hwrm_req_send(bp, req);
5624 	}
5625 }
5626 
5627 static void bnxt_set_db(struct bnxt *bp, struct bnxt_db_info *db, u32 ring_type,
5628 			u32 map_idx, u32 xid)
5629 {
5630 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5631 		if (BNXT_PF(bp))
5632 			db->doorbell = bp->bar1 + DB_PF_OFFSET_P5;
5633 		else
5634 			db->doorbell = bp->bar1 + DB_VF_OFFSET_P5;
5635 		switch (ring_type) {
5636 		case HWRM_RING_ALLOC_TX:
5637 			db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SQ;
5638 			break;
5639 		case HWRM_RING_ALLOC_RX:
5640 		case HWRM_RING_ALLOC_AGG:
5641 			db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SRQ;
5642 			break;
5643 		case HWRM_RING_ALLOC_CMPL:
5644 			db->db_key64 = DBR_PATH_L2;
5645 			break;
5646 		case HWRM_RING_ALLOC_NQ:
5647 			db->db_key64 = DBR_PATH_L2;
5648 			break;
5649 		}
5650 		db->db_key64 |= (u64)xid << DBR_XID_SFT;
5651 	} else {
5652 		db->doorbell = bp->bar1 + map_idx * 0x80;
5653 		switch (ring_type) {
5654 		case HWRM_RING_ALLOC_TX:
5655 			db->db_key32 = DB_KEY_TX;
5656 			break;
5657 		case HWRM_RING_ALLOC_RX:
5658 		case HWRM_RING_ALLOC_AGG:
5659 			db->db_key32 = DB_KEY_RX;
5660 			break;
5661 		case HWRM_RING_ALLOC_CMPL:
5662 			db->db_key32 = DB_KEY_CP;
5663 			break;
5664 		}
5665 	}
5666 }
5667 
5668 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
5669 {
5670 	bool agg_rings = !!(bp->flags & BNXT_FLAG_AGG_RINGS);
5671 	int i, rc = 0;
5672 	u32 type;
5673 
5674 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5675 		type = HWRM_RING_ALLOC_NQ;
5676 	else
5677 		type = HWRM_RING_ALLOC_CMPL;
5678 	for (i = 0; i < bp->cp_nr_rings; i++) {
5679 		struct bnxt_napi *bnapi = bp->bnapi[i];
5680 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5681 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
5682 		u32 map_idx = ring->map_idx;
5683 		unsigned int vector;
5684 
5685 		vector = bp->irq_tbl[map_idx].vector;
5686 		disable_irq_nosync(vector);
5687 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5688 		if (rc) {
5689 			enable_irq(vector);
5690 			goto err_out;
5691 		}
5692 		bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id);
5693 		bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
5694 		enable_irq(vector);
5695 		bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
5696 
5697 		if (!i) {
5698 			rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id);
5699 			if (rc)
5700 				netdev_warn(bp->dev, "Failed to set async event completion ring.\n");
5701 		}
5702 	}
5703 
5704 	type = HWRM_RING_ALLOC_TX;
5705 	for (i = 0; i < bp->tx_nr_rings; i++) {
5706 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
5707 		struct bnxt_ring_struct *ring;
5708 		u32 map_idx;
5709 
5710 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5711 			struct bnxt_napi *bnapi = txr->bnapi;
5712 			struct bnxt_cp_ring_info *cpr, *cpr2;
5713 			u32 type2 = HWRM_RING_ALLOC_CMPL;
5714 
5715 			cpr = &bnapi->cp_ring;
5716 			cpr2 = cpr->cp_ring_arr[BNXT_TX_HDL];
5717 			ring = &cpr2->cp_ring_struct;
5718 			ring->handle = BNXT_TX_HDL;
5719 			map_idx = bnapi->index;
5720 			rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
5721 			if (rc)
5722 				goto err_out;
5723 			bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
5724 				    ring->fw_ring_id);
5725 			bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
5726 		}
5727 		ring = &txr->tx_ring_struct;
5728 		map_idx = i;
5729 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5730 		if (rc)
5731 			goto err_out;
5732 		bnxt_set_db(bp, &txr->tx_db, type, map_idx, ring->fw_ring_id);
5733 	}
5734 
5735 	type = HWRM_RING_ALLOC_RX;
5736 	for (i = 0; i < bp->rx_nr_rings; i++) {
5737 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5738 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
5739 		struct bnxt_napi *bnapi = rxr->bnapi;
5740 		u32 map_idx = bnapi->index;
5741 
5742 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5743 		if (rc)
5744 			goto err_out;
5745 		bnxt_set_db(bp, &rxr->rx_db, type, map_idx, ring->fw_ring_id);
5746 		/* If we have agg rings, post agg buffers first. */
5747 		if (!agg_rings)
5748 			bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
5749 		bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
5750 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5751 			struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5752 			u32 type2 = HWRM_RING_ALLOC_CMPL;
5753 			struct bnxt_cp_ring_info *cpr2;
5754 
5755 			cpr2 = cpr->cp_ring_arr[BNXT_RX_HDL];
5756 			ring = &cpr2->cp_ring_struct;
5757 			ring->handle = BNXT_RX_HDL;
5758 			rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
5759 			if (rc)
5760 				goto err_out;
5761 			bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
5762 				    ring->fw_ring_id);
5763 			bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
5764 		}
5765 	}
5766 
5767 	if (agg_rings) {
5768 		type = HWRM_RING_ALLOC_AGG;
5769 		for (i = 0; i < bp->rx_nr_rings; i++) {
5770 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5771 			struct bnxt_ring_struct *ring =
5772 						&rxr->rx_agg_ring_struct;
5773 			u32 grp_idx = ring->grp_idx;
5774 			u32 map_idx = grp_idx + bp->rx_nr_rings;
5775 
5776 			rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5777 			if (rc)
5778 				goto err_out;
5779 
5780 			bnxt_set_db(bp, &rxr->rx_agg_db, type, map_idx,
5781 				    ring->fw_ring_id);
5782 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
5783 			bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
5784 			bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
5785 		}
5786 	}
5787 err_out:
5788 	return rc;
5789 }
5790 
5791 static int hwrm_ring_free_send_msg(struct bnxt *bp,
5792 				   struct bnxt_ring_struct *ring,
5793 				   u32 ring_type, int cmpl_ring_id)
5794 {
5795 	struct hwrm_ring_free_output *resp;
5796 	struct hwrm_ring_free_input *req;
5797 	u16 error_code = 0;
5798 	int rc;
5799 
5800 	if (BNXT_NO_FW_ACCESS(bp))
5801 		return 0;
5802 
5803 	rc = hwrm_req_init(bp, req, HWRM_RING_FREE);
5804 	if (rc)
5805 		goto exit;
5806 
5807 	req->cmpl_ring = cpu_to_le16(cmpl_ring_id);
5808 	req->ring_type = ring_type;
5809 	req->ring_id = cpu_to_le16(ring->fw_ring_id);
5810 
5811 	resp = hwrm_req_hold(bp, req);
5812 	rc = hwrm_req_send(bp, req);
5813 	error_code = le16_to_cpu(resp->error_code);
5814 	hwrm_req_drop(bp, req);
5815 exit:
5816 	if (rc || error_code) {
5817 		netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n",
5818 			   ring_type, rc, error_code);
5819 		return -EIO;
5820 	}
5821 	return 0;
5822 }
5823 
5824 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
5825 {
5826 	u32 type;
5827 	int i;
5828 
5829 	if (!bp->bnapi)
5830 		return;
5831 
5832 	for (i = 0; i < bp->tx_nr_rings; i++) {
5833 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
5834 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
5835 
5836 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5837 			u32 cmpl_ring_id = bnxt_cp_ring_for_tx(bp, txr);
5838 
5839 			hwrm_ring_free_send_msg(bp, ring,
5840 						RING_FREE_REQ_RING_TYPE_TX,
5841 						close_path ? cmpl_ring_id :
5842 						INVALID_HW_RING_ID);
5843 			ring->fw_ring_id = INVALID_HW_RING_ID;
5844 		}
5845 	}
5846 
5847 	for (i = 0; i < bp->rx_nr_rings; i++) {
5848 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5849 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
5850 		u32 grp_idx = rxr->bnapi->index;
5851 
5852 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5853 			u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
5854 
5855 			hwrm_ring_free_send_msg(bp, ring,
5856 						RING_FREE_REQ_RING_TYPE_RX,
5857 						close_path ? cmpl_ring_id :
5858 						INVALID_HW_RING_ID);
5859 			ring->fw_ring_id = INVALID_HW_RING_ID;
5860 			bp->grp_info[grp_idx].rx_fw_ring_id =
5861 				INVALID_HW_RING_ID;
5862 		}
5863 	}
5864 
5865 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5866 		type = RING_FREE_REQ_RING_TYPE_RX_AGG;
5867 	else
5868 		type = RING_FREE_REQ_RING_TYPE_RX;
5869 	for (i = 0; i < bp->rx_nr_rings; i++) {
5870 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5871 		struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
5872 		u32 grp_idx = rxr->bnapi->index;
5873 
5874 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5875 			u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
5876 
5877 			hwrm_ring_free_send_msg(bp, ring, type,
5878 						close_path ? cmpl_ring_id :
5879 						INVALID_HW_RING_ID);
5880 			ring->fw_ring_id = INVALID_HW_RING_ID;
5881 			bp->grp_info[grp_idx].agg_fw_ring_id =
5882 				INVALID_HW_RING_ID;
5883 		}
5884 	}
5885 
5886 	/* The completion rings are about to be freed.  After that the
5887 	 * IRQ doorbell will not work anymore.  So we need to disable
5888 	 * IRQ here.
5889 	 */
5890 	bnxt_disable_int_sync(bp);
5891 
5892 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5893 		type = RING_FREE_REQ_RING_TYPE_NQ;
5894 	else
5895 		type = RING_FREE_REQ_RING_TYPE_L2_CMPL;
5896 	for (i = 0; i < bp->cp_nr_rings; i++) {
5897 		struct bnxt_napi *bnapi = bp->bnapi[i];
5898 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5899 		struct bnxt_ring_struct *ring;
5900 		int j;
5901 
5902 		for (j = 0; j < 2; j++) {
5903 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
5904 
5905 			if (cpr2) {
5906 				ring = &cpr2->cp_ring_struct;
5907 				if (ring->fw_ring_id == INVALID_HW_RING_ID)
5908 					continue;
5909 				hwrm_ring_free_send_msg(bp, ring,
5910 					RING_FREE_REQ_RING_TYPE_L2_CMPL,
5911 					INVALID_HW_RING_ID);
5912 				ring->fw_ring_id = INVALID_HW_RING_ID;
5913 			}
5914 		}
5915 		ring = &cpr->cp_ring_struct;
5916 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5917 			hwrm_ring_free_send_msg(bp, ring, type,
5918 						INVALID_HW_RING_ID);
5919 			ring->fw_ring_id = INVALID_HW_RING_ID;
5920 			bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
5921 		}
5922 	}
5923 }
5924 
5925 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
5926 			   bool shared);
5927 
5928 static int bnxt_hwrm_get_rings(struct bnxt *bp)
5929 {
5930 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
5931 	struct hwrm_func_qcfg_output *resp;
5932 	struct hwrm_func_qcfg_input *req;
5933 	int rc;
5934 
5935 	if (bp->hwrm_spec_code < 0x10601)
5936 		return 0;
5937 
5938 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
5939 	if (rc)
5940 		return rc;
5941 
5942 	req->fid = cpu_to_le16(0xffff);
5943 	resp = hwrm_req_hold(bp, req);
5944 	rc = hwrm_req_send(bp, req);
5945 	if (rc) {
5946 		hwrm_req_drop(bp, req);
5947 		return rc;
5948 	}
5949 
5950 	hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings);
5951 	if (BNXT_NEW_RM(bp)) {
5952 		u16 cp, stats;
5953 
5954 		hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings);
5955 		hw_resc->resv_hw_ring_grps =
5956 			le32_to_cpu(resp->alloc_hw_ring_grps);
5957 		hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics);
5958 		cp = le16_to_cpu(resp->alloc_cmpl_rings);
5959 		stats = le16_to_cpu(resp->alloc_stat_ctx);
5960 		hw_resc->resv_irqs = cp;
5961 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5962 			int rx = hw_resc->resv_rx_rings;
5963 			int tx = hw_resc->resv_tx_rings;
5964 
5965 			if (bp->flags & BNXT_FLAG_AGG_RINGS)
5966 				rx >>= 1;
5967 			if (cp < (rx + tx)) {
5968 				bnxt_trim_rings(bp, &rx, &tx, cp, false);
5969 				if (bp->flags & BNXT_FLAG_AGG_RINGS)
5970 					rx <<= 1;
5971 				hw_resc->resv_rx_rings = rx;
5972 				hw_resc->resv_tx_rings = tx;
5973 			}
5974 			hw_resc->resv_irqs = le16_to_cpu(resp->alloc_msix);
5975 			hw_resc->resv_hw_ring_grps = rx;
5976 		}
5977 		hw_resc->resv_cp_rings = cp;
5978 		hw_resc->resv_stat_ctxs = stats;
5979 	}
5980 	hwrm_req_drop(bp, req);
5981 	return 0;
5982 }
5983 
5984 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings)
5985 {
5986 	struct hwrm_func_qcfg_output *resp;
5987 	struct hwrm_func_qcfg_input *req;
5988 	int rc;
5989 
5990 	if (bp->hwrm_spec_code < 0x10601)
5991 		return 0;
5992 
5993 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
5994 	if (rc)
5995 		return rc;
5996 
5997 	req->fid = cpu_to_le16(fid);
5998 	resp = hwrm_req_hold(bp, req);
5999 	rc = hwrm_req_send(bp, req);
6000 	if (!rc)
6001 		*tx_rings = le16_to_cpu(resp->alloc_tx_rings);
6002 
6003 	hwrm_req_drop(bp, req);
6004 	return rc;
6005 }
6006 
6007 static bool bnxt_rfs_supported(struct bnxt *bp);
6008 
6009 static struct hwrm_func_cfg_input *
6010 __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6011 			     int ring_grps, int cp_rings, int stats, int vnics)
6012 {
6013 	struct hwrm_func_cfg_input *req;
6014 	u32 enables = 0;
6015 
6016 	if (hwrm_req_init(bp, req, HWRM_FUNC_CFG))
6017 		return NULL;
6018 
6019 	req->fid = cpu_to_le16(0xffff);
6020 	enables |= tx_rings ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
6021 	req->num_tx_rings = cpu_to_le16(tx_rings);
6022 	if (BNXT_NEW_RM(bp)) {
6023 		enables |= rx_rings ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0;
6024 		enables |= stats ? FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
6025 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
6026 			enables |= cp_rings ? FUNC_CFG_REQ_ENABLES_NUM_MSIX : 0;
6027 			enables |= tx_rings + ring_grps ?
6028 				   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6029 			enables |= rx_rings ?
6030 				FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
6031 		} else {
6032 			enables |= cp_rings ?
6033 				   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6034 			enables |= ring_grps ?
6035 				   FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS |
6036 				   FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
6037 		}
6038 		enables |= vnics ? FUNC_CFG_REQ_ENABLES_NUM_VNICS : 0;
6039 
6040 		req->num_rx_rings = cpu_to_le16(rx_rings);
6041 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
6042 			req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps);
6043 			req->num_msix = cpu_to_le16(cp_rings);
6044 			req->num_rsscos_ctxs =
6045 				cpu_to_le16(DIV_ROUND_UP(ring_grps, 64));
6046 		} else {
6047 			req->num_cmpl_rings = cpu_to_le16(cp_rings);
6048 			req->num_hw_ring_grps = cpu_to_le16(ring_grps);
6049 			req->num_rsscos_ctxs = cpu_to_le16(1);
6050 			if (!(bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
6051 			    bnxt_rfs_supported(bp))
6052 				req->num_rsscos_ctxs =
6053 					cpu_to_le16(ring_grps + 1);
6054 		}
6055 		req->num_stat_ctxs = cpu_to_le16(stats);
6056 		req->num_vnics = cpu_to_le16(vnics);
6057 	}
6058 	req->enables = cpu_to_le32(enables);
6059 	return req;
6060 }
6061 
6062 static struct hwrm_func_vf_cfg_input *
6063 __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6064 			     int ring_grps, int cp_rings, int stats, int vnics)
6065 {
6066 	struct hwrm_func_vf_cfg_input *req;
6067 	u32 enables = 0;
6068 
6069 	if (hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG))
6070 		return NULL;
6071 
6072 	enables |= tx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
6073 	enables |= rx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS |
6074 			      FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
6075 	enables |= stats ? FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
6076 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
6077 		enables |= tx_rings + ring_grps ?
6078 			   FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6079 	} else {
6080 		enables |= cp_rings ?
6081 			   FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6082 		enables |= ring_grps ?
6083 			   FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0;
6084 	}
6085 	enables |= vnics ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0;
6086 	enables |= FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS;
6087 
6088 	req->num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX);
6089 	req->num_tx_rings = cpu_to_le16(tx_rings);
6090 	req->num_rx_rings = cpu_to_le16(rx_rings);
6091 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
6092 		req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps);
6093 		req->num_rsscos_ctxs = cpu_to_le16(DIV_ROUND_UP(ring_grps, 64));
6094 	} else {
6095 		req->num_cmpl_rings = cpu_to_le16(cp_rings);
6096 		req->num_hw_ring_grps = cpu_to_le16(ring_grps);
6097 		req->num_rsscos_ctxs = cpu_to_le16(BNXT_VF_MAX_RSS_CTX);
6098 	}
6099 	req->num_stat_ctxs = cpu_to_le16(stats);
6100 	req->num_vnics = cpu_to_le16(vnics);
6101 
6102 	req->enables = cpu_to_le32(enables);
6103 	return req;
6104 }
6105 
6106 static int
6107 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6108 			   int ring_grps, int cp_rings, int stats, int vnics)
6109 {
6110 	struct hwrm_func_cfg_input *req;
6111 	int rc;
6112 
6113 	req = __bnxt_hwrm_reserve_pf_rings(bp, tx_rings, rx_rings, ring_grps,
6114 					   cp_rings, stats, vnics);
6115 	if (!req)
6116 		return -ENOMEM;
6117 
6118 	if (!req->enables) {
6119 		hwrm_req_drop(bp, req);
6120 		return 0;
6121 	}
6122 
6123 	rc = hwrm_req_send(bp, req);
6124 	if (rc)
6125 		return rc;
6126 
6127 	if (bp->hwrm_spec_code < 0x10601)
6128 		bp->hw_resc.resv_tx_rings = tx_rings;
6129 
6130 	return bnxt_hwrm_get_rings(bp);
6131 }
6132 
6133 static int
6134 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6135 			   int ring_grps, int cp_rings, int stats, int vnics)
6136 {
6137 	struct hwrm_func_vf_cfg_input *req;
6138 	int rc;
6139 
6140 	if (!BNXT_NEW_RM(bp)) {
6141 		bp->hw_resc.resv_tx_rings = tx_rings;
6142 		return 0;
6143 	}
6144 
6145 	req = __bnxt_hwrm_reserve_vf_rings(bp, tx_rings, rx_rings, ring_grps,
6146 					   cp_rings, stats, vnics);
6147 	if (!req)
6148 		return -ENOMEM;
6149 
6150 	rc = hwrm_req_send(bp, req);
6151 	if (rc)
6152 		return rc;
6153 
6154 	return bnxt_hwrm_get_rings(bp);
6155 }
6156 
6157 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, int tx, int rx, int grp,
6158 				   int cp, int stat, int vnic)
6159 {
6160 	if (BNXT_PF(bp))
6161 		return bnxt_hwrm_reserve_pf_rings(bp, tx, rx, grp, cp, stat,
6162 						  vnic);
6163 	else
6164 		return bnxt_hwrm_reserve_vf_rings(bp, tx, rx, grp, cp, stat,
6165 						  vnic);
6166 }
6167 
6168 int bnxt_nq_rings_in_use(struct bnxt *bp)
6169 {
6170 	int cp = bp->cp_nr_rings;
6171 	int ulp_msix, ulp_base;
6172 
6173 	ulp_msix = bnxt_get_ulp_msix_num(bp);
6174 	if (ulp_msix) {
6175 		ulp_base = bnxt_get_ulp_msix_base(bp);
6176 		cp += ulp_msix;
6177 		if ((ulp_base + ulp_msix) > cp)
6178 			cp = ulp_base + ulp_msix;
6179 	}
6180 	return cp;
6181 }
6182 
6183 static int bnxt_cp_rings_in_use(struct bnxt *bp)
6184 {
6185 	int cp;
6186 
6187 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
6188 		return bnxt_nq_rings_in_use(bp);
6189 
6190 	cp = bp->tx_nr_rings + bp->rx_nr_rings;
6191 	return cp;
6192 }
6193 
6194 static int bnxt_get_func_stat_ctxs(struct bnxt *bp)
6195 {
6196 	int ulp_stat = bnxt_get_ulp_stat_ctxs(bp);
6197 	int cp = bp->cp_nr_rings;
6198 
6199 	if (!ulp_stat)
6200 		return cp;
6201 
6202 	if (bnxt_nq_rings_in_use(bp) > cp + bnxt_get_ulp_msix_num(bp))
6203 		return bnxt_get_ulp_msix_base(bp) + ulp_stat;
6204 
6205 	return cp + ulp_stat;
6206 }
6207 
6208 /* Check if a default RSS map needs to be setup.  This function is only
6209  * used on older firmware that does not require reserving RX rings.
6210  */
6211 static void bnxt_check_rss_tbl_no_rmgr(struct bnxt *bp)
6212 {
6213 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6214 
6215 	/* The RSS map is valid for RX rings set to resv_rx_rings */
6216 	if (hw_resc->resv_rx_rings != bp->rx_nr_rings) {
6217 		hw_resc->resv_rx_rings = bp->rx_nr_rings;
6218 		if (!netif_is_rxfh_configured(bp->dev))
6219 			bnxt_set_dflt_rss_indir_tbl(bp);
6220 	}
6221 }
6222 
6223 static bool bnxt_need_reserve_rings(struct bnxt *bp)
6224 {
6225 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6226 	int cp = bnxt_cp_rings_in_use(bp);
6227 	int nq = bnxt_nq_rings_in_use(bp);
6228 	int rx = bp->rx_nr_rings, stat;
6229 	int vnic = 1, grp = rx;
6230 
6231 	if (hw_resc->resv_tx_rings != bp->tx_nr_rings &&
6232 	    bp->hwrm_spec_code >= 0x10601)
6233 		return true;
6234 
6235 	/* Old firmware does not need RX ring reservations but we still
6236 	 * need to setup a default RSS map when needed.  With new firmware
6237 	 * we go through RX ring reservations first and then set up the
6238 	 * RSS map for the successfully reserved RX rings when needed.
6239 	 */
6240 	if (!BNXT_NEW_RM(bp)) {
6241 		bnxt_check_rss_tbl_no_rmgr(bp);
6242 		return false;
6243 	}
6244 	if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5))
6245 		vnic = rx + 1;
6246 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
6247 		rx <<= 1;
6248 	stat = bnxt_get_func_stat_ctxs(bp);
6249 	if (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp ||
6250 	    hw_resc->resv_vnics != vnic || hw_resc->resv_stat_ctxs != stat ||
6251 	    (hw_resc->resv_hw_ring_grps != grp &&
6252 	     !(bp->flags & BNXT_FLAG_CHIP_P5)))
6253 		return true;
6254 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && BNXT_PF(bp) &&
6255 	    hw_resc->resv_irqs != nq)
6256 		return true;
6257 	return false;
6258 }
6259 
6260 static int __bnxt_reserve_rings(struct bnxt *bp)
6261 {
6262 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6263 	int cp = bnxt_nq_rings_in_use(bp);
6264 	int tx = bp->tx_nr_rings;
6265 	int rx = bp->rx_nr_rings;
6266 	int grp, rx_rings, rc;
6267 	int vnic = 1, stat;
6268 	bool sh = false;
6269 
6270 	if (!bnxt_need_reserve_rings(bp))
6271 		return 0;
6272 
6273 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
6274 		sh = true;
6275 	if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5))
6276 		vnic = rx + 1;
6277 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
6278 		rx <<= 1;
6279 	grp = bp->rx_nr_rings;
6280 	stat = bnxt_get_func_stat_ctxs(bp);
6281 
6282 	rc = bnxt_hwrm_reserve_rings(bp, tx, rx, grp, cp, stat, vnic);
6283 	if (rc)
6284 		return rc;
6285 
6286 	tx = hw_resc->resv_tx_rings;
6287 	if (BNXT_NEW_RM(bp)) {
6288 		rx = hw_resc->resv_rx_rings;
6289 		cp = hw_resc->resv_irqs;
6290 		grp = hw_resc->resv_hw_ring_grps;
6291 		vnic = hw_resc->resv_vnics;
6292 		stat = hw_resc->resv_stat_ctxs;
6293 	}
6294 
6295 	rx_rings = rx;
6296 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
6297 		if (rx >= 2) {
6298 			rx_rings = rx >> 1;
6299 		} else {
6300 			if (netif_running(bp->dev))
6301 				return -ENOMEM;
6302 
6303 			bp->flags &= ~BNXT_FLAG_AGG_RINGS;
6304 			bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
6305 			bp->dev->hw_features &= ~NETIF_F_LRO;
6306 			bp->dev->features &= ~NETIF_F_LRO;
6307 			bnxt_set_ring_params(bp);
6308 		}
6309 	}
6310 	rx_rings = min_t(int, rx_rings, grp);
6311 	cp = min_t(int, cp, bp->cp_nr_rings);
6312 	if (stat > bnxt_get_ulp_stat_ctxs(bp))
6313 		stat -= bnxt_get_ulp_stat_ctxs(bp);
6314 	cp = min_t(int, cp, stat);
6315 	rc = bnxt_trim_rings(bp, &rx_rings, &tx, cp, sh);
6316 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
6317 		rx = rx_rings << 1;
6318 	cp = sh ? max_t(int, tx, rx_rings) : tx + rx_rings;
6319 	bp->tx_nr_rings = tx;
6320 
6321 	/* If we cannot reserve all the RX rings, reset the RSS map only
6322 	 * if absolutely necessary
6323 	 */
6324 	if (rx_rings != bp->rx_nr_rings) {
6325 		netdev_warn(bp->dev, "Able to reserve only %d out of %d requested RX rings\n",
6326 			    rx_rings, bp->rx_nr_rings);
6327 		if ((bp->dev->priv_flags & IFF_RXFH_CONFIGURED) &&
6328 		    (bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings) !=
6329 		     bnxt_get_nr_rss_ctxs(bp, rx_rings) ||
6330 		     bnxt_get_max_rss_ring(bp) >= rx_rings)) {
6331 			netdev_warn(bp->dev, "RSS table entries reverting to default\n");
6332 			bp->dev->priv_flags &= ~IFF_RXFH_CONFIGURED;
6333 		}
6334 	}
6335 	bp->rx_nr_rings = rx_rings;
6336 	bp->cp_nr_rings = cp;
6337 
6338 	if (!tx || !rx || !cp || !grp || !vnic || !stat)
6339 		return -ENOMEM;
6340 
6341 	if (!netif_is_rxfh_configured(bp->dev))
6342 		bnxt_set_dflt_rss_indir_tbl(bp);
6343 
6344 	return rc;
6345 }
6346 
6347 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6348 				    int ring_grps, int cp_rings, int stats,
6349 				    int vnics)
6350 {
6351 	struct hwrm_func_vf_cfg_input *req;
6352 	u32 flags;
6353 
6354 	if (!BNXT_NEW_RM(bp))
6355 		return 0;
6356 
6357 	req = __bnxt_hwrm_reserve_vf_rings(bp, tx_rings, rx_rings, ring_grps,
6358 					   cp_rings, stats, vnics);
6359 	flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST |
6360 		FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST |
6361 		FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
6362 		FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
6363 		FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST |
6364 		FUNC_VF_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST;
6365 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
6366 		flags |= FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
6367 
6368 	req->flags = cpu_to_le32(flags);
6369 	return hwrm_req_send_silent(bp, req);
6370 }
6371 
6372 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6373 				    int ring_grps, int cp_rings, int stats,
6374 				    int vnics)
6375 {
6376 	struct hwrm_func_cfg_input *req;
6377 	u32 flags;
6378 
6379 	req = __bnxt_hwrm_reserve_pf_rings(bp, tx_rings, rx_rings, ring_grps,
6380 					   cp_rings, stats, vnics);
6381 	flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST;
6382 	if (BNXT_NEW_RM(bp)) {
6383 		flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST |
6384 			 FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
6385 			 FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
6386 			 FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST;
6387 		if (bp->flags & BNXT_FLAG_CHIP_P5)
6388 			flags |= FUNC_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST |
6389 				 FUNC_CFG_REQ_FLAGS_NQ_ASSETS_TEST;
6390 		else
6391 			flags |= FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
6392 	}
6393 
6394 	req->flags = cpu_to_le32(flags);
6395 	return hwrm_req_send_silent(bp, req);
6396 }
6397 
6398 static int bnxt_hwrm_check_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6399 				 int ring_grps, int cp_rings, int stats,
6400 				 int vnics)
6401 {
6402 	if (bp->hwrm_spec_code < 0x10801)
6403 		return 0;
6404 
6405 	if (BNXT_PF(bp))
6406 		return bnxt_hwrm_check_pf_rings(bp, tx_rings, rx_rings,
6407 						ring_grps, cp_rings, stats,
6408 						vnics);
6409 
6410 	return bnxt_hwrm_check_vf_rings(bp, tx_rings, rx_rings, ring_grps,
6411 					cp_rings, stats, vnics);
6412 }
6413 
6414 static void bnxt_hwrm_coal_params_qcaps(struct bnxt *bp)
6415 {
6416 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6417 	struct hwrm_ring_aggint_qcaps_output *resp;
6418 	struct hwrm_ring_aggint_qcaps_input *req;
6419 	int rc;
6420 
6421 	coal_cap->cmpl_params = BNXT_LEGACY_COAL_CMPL_PARAMS;
6422 	coal_cap->num_cmpl_dma_aggr_max = 63;
6423 	coal_cap->num_cmpl_dma_aggr_during_int_max = 63;
6424 	coal_cap->cmpl_aggr_dma_tmr_max = 65535;
6425 	coal_cap->cmpl_aggr_dma_tmr_during_int_max = 65535;
6426 	coal_cap->int_lat_tmr_min_max = 65535;
6427 	coal_cap->int_lat_tmr_max_max = 65535;
6428 	coal_cap->num_cmpl_aggr_int_max = 65535;
6429 	coal_cap->timer_units = 80;
6430 
6431 	if (bp->hwrm_spec_code < 0x10902)
6432 		return;
6433 
6434 	if (hwrm_req_init(bp, req, HWRM_RING_AGGINT_QCAPS))
6435 		return;
6436 
6437 	resp = hwrm_req_hold(bp, req);
6438 	rc = hwrm_req_send_silent(bp, req);
6439 	if (!rc) {
6440 		coal_cap->cmpl_params = le32_to_cpu(resp->cmpl_params);
6441 		coal_cap->nq_params = le32_to_cpu(resp->nq_params);
6442 		coal_cap->num_cmpl_dma_aggr_max =
6443 			le16_to_cpu(resp->num_cmpl_dma_aggr_max);
6444 		coal_cap->num_cmpl_dma_aggr_during_int_max =
6445 			le16_to_cpu(resp->num_cmpl_dma_aggr_during_int_max);
6446 		coal_cap->cmpl_aggr_dma_tmr_max =
6447 			le16_to_cpu(resp->cmpl_aggr_dma_tmr_max);
6448 		coal_cap->cmpl_aggr_dma_tmr_during_int_max =
6449 			le16_to_cpu(resp->cmpl_aggr_dma_tmr_during_int_max);
6450 		coal_cap->int_lat_tmr_min_max =
6451 			le16_to_cpu(resp->int_lat_tmr_min_max);
6452 		coal_cap->int_lat_tmr_max_max =
6453 			le16_to_cpu(resp->int_lat_tmr_max_max);
6454 		coal_cap->num_cmpl_aggr_int_max =
6455 			le16_to_cpu(resp->num_cmpl_aggr_int_max);
6456 		coal_cap->timer_units = le16_to_cpu(resp->timer_units);
6457 	}
6458 	hwrm_req_drop(bp, req);
6459 }
6460 
6461 static u16 bnxt_usec_to_coal_tmr(struct bnxt *bp, u16 usec)
6462 {
6463 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6464 
6465 	return usec * 1000 / coal_cap->timer_units;
6466 }
6467 
6468 static void bnxt_hwrm_set_coal_params(struct bnxt *bp,
6469 	struct bnxt_coal *hw_coal,
6470 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
6471 {
6472 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6473 	u32 cmpl_params = coal_cap->cmpl_params;
6474 	u16 val, tmr, max, flags = 0;
6475 
6476 	max = hw_coal->bufs_per_record * 128;
6477 	if (hw_coal->budget)
6478 		max = hw_coal->bufs_per_record * hw_coal->budget;
6479 	max = min_t(u16, max, coal_cap->num_cmpl_aggr_int_max);
6480 
6481 	val = clamp_t(u16, hw_coal->coal_bufs, 1, max);
6482 	req->num_cmpl_aggr_int = cpu_to_le16(val);
6483 
6484 	val = min_t(u16, val, coal_cap->num_cmpl_dma_aggr_max);
6485 	req->num_cmpl_dma_aggr = cpu_to_le16(val);
6486 
6487 	val = clamp_t(u16, hw_coal->coal_bufs_irq, 1,
6488 		      coal_cap->num_cmpl_dma_aggr_during_int_max);
6489 	req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val);
6490 
6491 	tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks);
6492 	tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_max_max);
6493 	req->int_lat_tmr_max = cpu_to_le16(tmr);
6494 
6495 	/* min timer set to 1/2 of interrupt timer */
6496 	if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_INT_LAT_TMR_MIN) {
6497 		val = tmr / 2;
6498 		val = clamp_t(u16, val, 1, coal_cap->int_lat_tmr_min_max);
6499 		req->int_lat_tmr_min = cpu_to_le16(val);
6500 		req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
6501 	}
6502 
6503 	/* buf timer set to 1/4 of interrupt timer */
6504 	val = clamp_t(u16, tmr / 4, 1, coal_cap->cmpl_aggr_dma_tmr_max);
6505 	req->cmpl_aggr_dma_tmr = cpu_to_le16(val);
6506 
6507 	if (cmpl_params &
6508 	    RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_NUM_CMPL_DMA_AGGR_DURING_INT) {
6509 		tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks_irq);
6510 		val = clamp_t(u16, tmr, 1,
6511 			      coal_cap->cmpl_aggr_dma_tmr_during_int_max);
6512 		req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(val);
6513 		req->enables |=
6514 			cpu_to_le16(BNXT_COAL_CMPL_AGGR_TMR_DURING_INT_ENABLE);
6515 	}
6516 
6517 	if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_TIMER_RESET)
6518 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
6519 	if ((cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_RING_IDLE) &&
6520 	    hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh)
6521 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
6522 	req->flags = cpu_to_le16(flags);
6523 	req->enables |= cpu_to_le16(BNXT_COAL_CMPL_ENABLES);
6524 }
6525 
6526 static int __bnxt_hwrm_set_coal_nq(struct bnxt *bp, struct bnxt_napi *bnapi,
6527 				   struct bnxt_coal *hw_coal)
6528 {
6529 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req;
6530 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6531 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6532 	u32 nq_params = coal_cap->nq_params;
6533 	u16 tmr;
6534 	int rc;
6535 
6536 	if (!(nq_params & RING_AGGINT_QCAPS_RESP_NQ_PARAMS_INT_LAT_TMR_MIN))
6537 		return 0;
6538 
6539 	rc = hwrm_req_init(bp, req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
6540 	if (rc)
6541 		return rc;
6542 
6543 	req->ring_id = cpu_to_le16(cpr->cp_ring_struct.fw_ring_id);
6544 	req->flags =
6545 		cpu_to_le16(RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_IS_NQ);
6546 
6547 	tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks) / 2;
6548 	tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_min_max);
6549 	req->int_lat_tmr_min = cpu_to_le16(tmr);
6550 	req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
6551 	return hwrm_req_send(bp, req);
6552 }
6553 
6554 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi)
6555 {
6556 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx;
6557 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6558 	struct bnxt_coal coal;
6559 	int rc;
6560 
6561 	/* Tick values in micro seconds.
6562 	 * 1 coal_buf x bufs_per_record = 1 completion record.
6563 	 */
6564 	memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal));
6565 
6566 	coal.coal_ticks = cpr->rx_ring_coal.coal_ticks;
6567 	coal.coal_bufs = cpr->rx_ring_coal.coal_bufs;
6568 
6569 	if (!bnapi->rx_ring)
6570 		return -ENODEV;
6571 
6572 	rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
6573 	if (rc)
6574 		return rc;
6575 
6576 	bnxt_hwrm_set_coal_params(bp, &coal, req_rx);
6577 
6578 	req_rx->ring_id = cpu_to_le16(bnxt_cp_ring_for_rx(bp, bnapi->rx_ring));
6579 
6580 	return hwrm_req_send(bp, req_rx);
6581 }
6582 
6583 int bnxt_hwrm_set_coal(struct bnxt *bp)
6584 {
6585 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx, *req_tx,
6586 							   *req;
6587 	int i, rc;
6588 
6589 	rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
6590 	if (rc)
6591 		return rc;
6592 
6593 	rc = hwrm_req_init(bp, req_tx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
6594 	if (rc) {
6595 		hwrm_req_drop(bp, req_rx);
6596 		return rc;
6597 	}
6598 
6599 	bnxt_hwrm_set_coal_params(bp, &bp->rx_coal, req_rx);
6600 	bnxt_hwrm_set_coal_params(bp, &bp->tx_coal, req_tx);
6601 
6602 	hwrm_req_hold(bp, req_rx);
6603 	hwrm_req_hold(bp, req_tx);
6604 	for (i = 0; i < bp->cp_nr_rings; i++) {
6605 		struct bnxt_napi *bnapi = bp->bnapi[i];
6606 		struct bnxt_coal *hw_coal;
6607 		u16 ring_id;
6608 
6609 		req = req_rx;
6610 		if (!bnapi->rx_ring) {
6611 			ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring);
6612 			req = req_tx;
6613 		} else {
6614 			ring_id = bnxt_cp_ring_for_rx(bp, bnapi->rx_ring);
6615 		}
6616 		req->ring_id = cpu_to_le16(ring_id);
6617 
6618 		rc = hwrm_req_send(bp, req);
6619 		if (rc)
6620 			break;
6621 
6622 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
6623 			continue;
6624 
6625 		if (bnapi->rx_ring && bnapi->tx_ring) {
6626 			req = req_tx;
6627 			ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring);
6628 			req->ring_id = cpu_to_le16(ring_id);
6629 			rc = hwrm_req_send(bp, req);
6630 			if (rc)
6631 				break;
6632 		}
6633 		if (bnapi->rx_ring)
6634 			hw_coal = &bp->rx_coal;
6635 		else
6636 			hw_coal = &bp->tx_coal;
6637 		__bnxt_hwrm_set_coal_nq(bp, bnapi, hw_coal);
6638 	}
6639 	hwrm_req_drop(bp, req_rx);
6640 	hwrm_req_drop(bp, req_tx);
6641 	return rc;
6642 }
6643 
6644 static void bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
6645 {
6646 	struct hwrm_stat_ctx_clr_stats_input *req0 = NULL;
6647 	struct hwrm_stat_ctx_free_input *req;
6648 	int i;
6649 
6650 	if (!bp->bnapi)
6651 		return;
6652 
6653 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
6654 		return;
6655 
6656 	if (hwrm_req_init(bp, req, HWRM_STAT_CTX_FREE))
6657 		return;
6658 	if (BNXT_FW_MAJ(bp) <= 20) {
6659 		if (hwrm_req_init(bp, req0, HWRM_STAT_CTX_CLR_STATS)) {
6660 			hwrm_req_drop(bp, req);
6661 			return;
6662 		}
6663 		hwrm_req_hold(bp, req0);
6664 	}
6665 	hwrm_req_hold(bp, req);
6666 	for (i = 0; i < bp->cp_nr_rings; i++) {
6667 		struct bnxt_napi *bnapi = bp->bnapi[i];
6668 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6669 
6670 		if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
6671 			req->stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
6672 			if (req0) {
6673 				req0->stat_ctx_id = req->stat_ctx_id;
6674 				hwrm_req_send(bp, req0);
6675 			}
6676 			hwrm_req_send(bp, req);
6677 
6678 			cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
6679 		}
6680 	}
6681 	hwrm_req_drop(bp, req);
6682 	if (req0)
6683 		hwrm_req_drop(bp, req0);
6684 }
6685 
6686 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
6687 {
6688 	struct hwrm_stat_ctx_alloc_output *resp;
6689 	struct hwrm_stat_ctx_alloc_input *req;
6690 	int rc, i;
6691 
6692 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
6693 		return 0;
6694 
6695 	rc = hwrm_req_init(bp, req, HWRM_STAT_CTX_ALLOC);
6696 	if (rc)
6697 		return rc;
6698 
6699 	req->stats_dma_length = cpu_to_le16(bp->hw_ring_stats_size);
6700 	req->update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000);
6701 
6702 	resp = hwrm_req_hold(bp, req);
6703 	for (i = 0; i < bp->cp_nr_rings; i++) {
6704 		struct bnxt_napi *bnapi = bp->bnapi[i];
6705 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6706 
6707 		req->stats_dma_addr = cpu_to_le64(cpr->stats.hw_stats_map);
6708 
6709 		rc = hwrm_req_send(bp, req);
6710 		if (rc)
6711 			break;
6712 
6713 		cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
6714 
6715 		bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
6716 	}
6717 	hwrm_req_drop(bp, req);
6718 	return rc;
6719 }
6720 
6721 static int bnxt_hwrm_func_qcfg(struct bnxt *bp)
6722 {
6723 	struct hwrm_func_qcfg_output *resp;
6724 	struct hwrm_func_qcfg_input *req;
6725 	u32 min_db_offset = 0;
6726 	u16 flags;
6727 	int rc;
6728 
6729 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
6730 	if (rc)
6731 		return rc;
6732 
6733 	req->fid = cpu_to_le16(0xffff);
6734 	resp = hwrm_req_hold(bp, req);
6735 	rc = hwrm_req_send(bp, req);
6736 	if (rc)
6737 		goto func_qcfg_exit;
6738 
6739 #ifdef CONFIG_BNXT_SRIOV
6740 	if (BNXT_VF(bp)) {
6741 		struct bnxt_vf_info *vf = &bp->vf;
6742 
6743 		vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK;
6744 	} else {
6745 		bp->pf.registered_vfs = le16_to_cpu(resp->registered_vfs);
6746 	}
6747 #endif
6748 	flags = le16_to_cpu(resp->flags);
6749 	if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED |
6750 		     FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) {
6751 		bp->fw_cap |= BNXT_FW_CAP_LLDP_AGENT;
6752 		if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED)
6753 			bp->fw_cap |= BNXT_FW_CAP_DCBX_AGENT;
6754 	}
6755 	if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST))
6756 		bp->flags |= BNXT_FLAG_MULTI_HOST;
6757 	if (flags & FUNC_QCFG_RESP_FLAGS_RING_MONITOR_ENABLED)
6758 		bp->fw_cap |= BNXT_FW_CAP_RING_MONITOR;
6759 
6760 	switch (resp->port_partition_type) {
6761 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0:
6762 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5:
6763 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0:
6764 		bp->port_partition_type = resp->port_partition_type;
6765 		break;
6766 	}
6767 	if (bp->hwrm_spec_code < 0x10707 ||
6768 	    resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB)
6769 		bp->br_mode = BRIDGE_MODE_VEB;
6770 	else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA)
6771 		bp->br_mode = BRIDGE_MODE_VEPA;
6772 	else
6773 		bp->br_mode = BRIDGE_MODE_UNDEF;
6774 
6775 	bp->max_mtu = le16_to_cpu(resp->max_mtu_configured);
6776 	if (!bp->max_mtu)
6777 		bp->max_mtu = BNXT_MAX_MTU;
6778 
6779 	if (bp->db_size)
6780 		goto func_qcfg_exit;
6781 
6782 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
6783 		if (BNXT_PF(bp))
6784 			min_db_offset = DB_PF_OFFSET_P5;
6785 		else
6786 			min_db_offset = DB_VF_OFFSET_P5;
6787 	}
6788 	bp->db_size = PAGE_ALIGN(le16_to_cpu(resp->l2_doorbell_bar_size_kb) *
6789 				 1024);
6790 	if (!bp->db_size || bp->db_size > pci_resource_len(bp->pdev, 2) ||
6791 	    bp->db_size <= min_db_offset)
6792 		bp->db_size = pci_resource_len(bp->pdev, 2);
6793 
6794 func_qcfg_exit:
6795 	hwrm_req_drop(bp, req);
6796 	return rc;
6797 }
6798 
6799 static void bnxt_init_ctx_initializer(struct bnxt_ctx_mem_info *ctx,
6800 			struct hwrm_func_backing_store_qcaps_output *resp)
6801 {
6802 	struct bnxt_mem_init *mem_init;
6803 	u16 init_mask;
6804 	u8 init_val;
6805 	u8 *offset;
6806 	int i;
6807 
6808 	init_val = resp->ctx_kind_initializer;
6809 	init_mask = le16_to_cpu(resp->ctx_init_mask);
6810 	offset = &resp->qp_init_offset;
6811 	mem_init = &ctx->mem_init[BNXT_CTX_MEM_INIT_QP];
6812 	for (i = 0; i < BNXT_CTX_MEM_INIT_MAX; i++, mem_init++, offset++) {
6813 		mem_init->init_val = init_val;
6814 		mem_init->offset = BNXT_MEM_INVALID_OFFSET;
6815 		if (!init_mask)
6816 			continue;
6817 		if (i == BNXT_CTX_MEM_INIT_STAT)
6818 			offset = &resp->stat_init_offset;
6819 		if (init_mask & (1 << i))
6820 			mem_init->offset = *offset * 4;
6821 		else
6822 			mem_init->init_val = 0;
6823 	}
6824 	ctx->mem_init[BNXT_CTX_MEM_INIT_QP].size = ctx->qp_entry_size;
6825 	ctx->mem_init[BNXT_CTX_MEM_INIT_SRQ].size = ctx->srq_entry_size;
6826 	ctx->mem_init[BNXT_CTX_MEM_INIT_CQ].size = ctx->cq_entry_size;
6827 	ctx->mem_init[BNXT_CTX_MEM_INIT_VNIC].size = ctx->vnic_entry_size;
6828 	ctx->mem_init[BNXT_CTX_MEM_INIT_STAT].size = ctx->stat_entry_size;
6829 	ctx->mem_init[BNXT_CTX_MEM_INIT_MRAV].size = ctx->mrav_entry_size;
6830 }
6831 
6832 static int bnxt_hwrm_func_backing_store_qcaps(struct bnxt *bp)
6833 {
6834 	struct hwrm_func_backing_store_qcaps_output *resp;
6835 	struct hwrm_func_backing_store_qcaps_input *req;
6836 	int rc;
6837 
6838 	if (bp->hwrm_spec_code < 0x10902 || BNXT_VF(bp) || bp->ctx)
6839 		return 0;
6840 
6841 	rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_QCAPS);
6842 	if (rc)
6843 		return rc;
6844 
6845 	resp = hwrm_req_hold(bp, req);
6846 	rc = hwrm_req_send_silent(bp, req);
6847 	if (!rc) {
6848 		struct bnxt_ctx_pg_info *ctx_pg;
6849 		struct bnxt_ctx_mem_info *ctx;
6850 		int i, tqm_rings;
6851 
6852 		ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
6853 		if (!ctx) {
6854 			rc = -ENOMEM;
6855 			goto ctx_err;
6856 		}
6857 		ctx->qp_max_entries = le32_to_cpu(resp->qp_max_entries);
6858 		ctx->qp_min_qp1_entries = le16_to_cpu(resp->qp_min_qp1_entries);
6859 		ctx->qp_max_l2_entries = le16_to_cpu(resp->qp_max_l2_entries);
6860 		ctx->qp_entry_size = le16_to_cpu(resp->qp_entry_size);
6861 		ctx->srq_max_l2_entries = le16_to_cpu(resp->srq_max_l2_entries);
6862 		ctx->srq_max_entries = le32_to_cpu(resp->srq_max_entries);
6863 		ctx->srq_entry_size = le16_to_cpu(resp->srq_entry_size);
6864 		ctx->cq_max_l2_entries = le16_to_cpu(resp->cq_max_l2_entries);
6865 		ctx->cq_max_entries = le32_to_cpu(resp->cq_max_entries);
6866 		ctx->cq_entry_size = le16_to_cpu(resp->cq_entry_size);
6867 		ctx->vnic_max_vnic_entries =
6868 			le16_to_cpu(resp->vnic_max_vnic_entries);
6869 		ctx->vnic_max_ring_table_entries =
6870 			le16_to_cpu(resp->vnic_max_ring_table_entries);
6871 		ctx->vnic_entry_size = le16_to_cpu(resp->vnic_entry_size);
6872 		ctx->stat_max_entries = le32_to_cpu(resp->stat_max_entries);
6873 		ctx->stat_entry_size = le16_to_cpu(resp->stat_entry_size);
6874 		ctx->tqm_entry_size = le16_to_cpu(resp->tqm_entry_size);
6875 		ctx->tqm_min_entries_per_ring =
6876 			le32_to_cpu(resp->tqm_min_entries_per_ring);
6877 		ctx->tqm_max_entries_per_ring =
6878 			le32_to_cpu(resp->tqm_max_entries_per_ring);
6879 		ctx->tqm_entries_multiple = resp->tqm_entries_multiple;
6880 		if (!ctx->tqm_entries_multiple)
6881 			ctx->tqm_entries_multiple = 1;
6882 		ctx->mrav_max_entries = le32_to_cpu(resp->mrav_max_entries);
6883 		ctx->mrav_entry_size = le16_to_cpu(resp->mrav_entry_size);
6884 		ctx->mrav_num_entries_units =
6885 			le16_to_cpu(resp->mrav_num_entries_units);
6886 		ctx->tim_entry_size = le16_to_cpu(resp->tim_entry_size);
6887 		ctx->tim_max_entries = le32_to_cpu(resp->tim_max_entries);
6888 
6889 		bnxt_init_ctx_initializer(ctx, resp);
6890 
6891 		ctx->tqm_fp_rings_count = resp->tqm_fp_rings_count;
6892 		if (!ctx->tqm_fp_rings_count)
6893 			ctx->tqm_fp_rings_count = bp->max_q;
6894 		else if (ctx->tqm_fp_rings_count > BNXT_MAX_TQM_FP_RINGS)
6895 			ctx->tqm_fp_rings_count = BNXT_MAX_TQM_FP_RINGS;
6896 
6897 		tqm_rings = ctx->tqm_fp_rings_count + BNXT_MAX_TQM_SP_RINGS;
6898 		ctx_pg = kcalloc(tqm_rings, sizeof(*ctx_pg), GFP_KERNEL);
6899 		if (!ctx_pg) {
6900 			kfree(ctx);
6901 			rc = -ENOMEM;
6902 			goto ctx_err;
6903 		}
6904 		for (i = 0; i < tqm_rings; i++, ctx_pg++)
6905 			ctx->tqm_mem[i] = ctx_pg;
6906 		bp->ctx = ctx;
6907 	} else {
6908 		rc = 0;
6909 	}
6910 ctx_err:
6911 	hwrm_req_drop(bp, req);
6912 	return rc;
6913 }
6914 
6915 static void bnxt_hwrm_set_pg_attr(struct bnxt_ring_mem_info *rmem, u8 *pg_attr,
6916 				  __le64 *pg_dir)
6917 {
6918 	if (!rmem->nr_pages)
6919 		return;
6920 
6921 	BNXT_SET_CTX_PAGE_ATTR(*pg_attr);
6922 	if (rmem->depth >= 1) {
6923 		if (rmem->depth == 2)
6924 			*pg_attr |= 2;
6925 		else
6926 			*pg_attr |= 1;
6927 		*pg_dir = cpu_to_le64(rmem->pg_tbl_map);
6928 	} else {
6929 		*pg_dir = cpu_to_le64(rmem->dma_arr[0]);
6930 	}
6931 }
6932 
6933 #define FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES			\
6934 	(FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP |		\
6935 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ |		\
6936 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ |		\
6937 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC |		\
6938 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT)
6939 
6940 static int bnxt_hwrm_func_backing_store_cfg(struct bnxt *bp, u32 enables)
6941 {
6942 	struct hwrm_func_backing_store_cfg_input *req;
6943 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
6944 	struct bnxt_ctx_pg_info *ctx_pg;
6945 	void **__req = (void **)&req;
6946 	u32 req_len = sizeof(*req);
6947 	__le32 *num_entries;
6948 	__le64 *pg_dir;
6949 	u32 flags = 0;
6950 	u8 *pg_attr;
6951 	u32 ena;
6952 	int rc;
6953 	int i;
6954 
6955 	if (!ctx)
6956 		return 0;
6957 
6958 	if (req_len > bp->hwrm_max_ext_req_len)
6959 		req_len = BNXT_BACKING_STORE_CFG_LEGACY_LEN;
6960 	rc = __hwrm_req_init(bp, __req, HWRM_FUNC_BACKING_STORE_CFG, req_len);
6961 	if (rc)
6962 		return rc;
6963 
6964 	req->enables = cpu_to_le32(enables);
6965 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP) {
6966 		ctx_pg = &ctx->qp_mem;
6967 		req->qp_num_entries = cpu_to_le32(ctx_pg->entries);
6968 		req->qp_num_qp1_entries = cpu_to_le16(ctx->qp_min_qp1_entries);
6969 		req->qp_num_l2_entries = cpu_to_le16(ctx->qp_max_l2_entries);
6970 		req->qp_entry_size = cpu_to_le16(ctx->qp_entry_size);
6971 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6972 				      &req->qpc_pg_size_qpc_lvl,
6973 				      &req->qpc_page_dir);
6974 	}
6975 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ) {
6976 		ctx_pg = &ctx->srq_mem;
6977 		req->srq_num_entries = cpu_to_le32(ctx_pg->entries);
6978 		req->srq_num_l2_entries = cpu_to_le16(ctx->srq_max_l2_entries);
6979 		req->srq_entry_size = cpu_to_le16(ctx->srq_entry_size);
6980 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6981 				      &req->srq_pg_size_srq_lvl,
6982 				      &req->srq_page_dir);
6983 	}
6984 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ) {
6985 		ctx_pg = &ctx->cq_mem;
6986 		req->cq_num_entries = cpu_to_le32(ctx_pg->entries);
6987 		req->cq_num_l2_entries = cpu_to_le16(ctx->cq_max_l2_entries);
6988 		req->cq_entry_size = cpu_to_le16(ctx->cq_entry_size);
6989 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6990 				      &req->cq_pg_size_cq_lvl,
6991 				      &req->cq_page_dir);
6992 	}
6993 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC) {
6994 		ctx_pg = &ctx->vnic_mem;
6995 		req->vnic_num_vnic_entries =
6996 			cpu_to_le16(ctx->vnic_max_vnic_entries);
6997 		req->vnic_num_ring_table_entries =
6998 			cpu_to_le16(ctx->vnic_max_ring_table_entries);
6999 		req->vnic_entry_size = cpu_to_le16(ctx->vnic_entry_size);
7000 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7001 				      &req->vnic_pg_size_vnic_lvl,
7002 				      &req->vnic_page_dir);
7003 	}
7004 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) {
7005 		ctx_pg = &ctx->stat_mem;
7006 		req->stat_num_entries = cpu_to_le32(ctx->stat_max_entries);
7007 		req->stat_entry_size = cpu_to_le16(ctx->stat_entry_size);
7008 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7009 				      &req->stat_pg_size_stat_lvl,
7010 				      &req->stat_page_dir);
7011 	}
7012 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV) {
7013 		ctx_pg = &ctx->mrav_mem;
7014 		req->mrav_num_entries = cpu_to_le32(ctx_pg->entries);
7015 		if (ctx->mrav_num_entries_units)
7016 			flags |=
7017 			FUNC_BACKING_STORE_CFG_REQ_FLAGS_MRAV_RESERVATION_SPLIT;
7018 		req->mrav_entry_size = cpu_to_le16(ctx->mrav_entry_size);
7019 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7020 				      &req->mrav_pg_size_mrav_lvl,
7021 				      &req->mrav_page_dir);
7022 	}
7023 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) {
7024 		ctx_pg = &ctx->tim_mem;
7025 		req->tim_num_entries = cpu_to_le32(ctx_pg->entries);
7026 		req->tim_entry_size = cpu_to_le16(ctx->tim_entry_size);
7027 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7028 				      &req->tim_pg_size_tim_lvl,
7029 				      &req->tim_page_dir);
7030 	}
7031 	for (i = 0, num_entries = &req->tqm_sp_num_entries,
7032 	     pg_attr = &req->tqm_sp_pg_size_tqm_sp_lvl,
7033 	     pg_dir = &req->tqm_sp_page_dir,
7034 	     ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP;
7035 	     i < BNXT_MAX_TQM_RINGS;
7036 	     i++, num_entries++, pg_attr++, pg_dir++, ena <<= 1) {
7037 		if (!(enables & ena))
7038 			continue;
7039 
7040 		req->tqm_entry_size = cpu_to_le16(ctx->tqm_entry_size);
7041 		ctx_pg = ctx->tqm_mem[i];
7042 		*num_entries = cpu_to_le32(ctx_pg->entries);
7043 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, pg_attr, pg_dir);
7044 	}
7045 	req->flags = cpu_to_le32(flags);
7046 	return hwrm_req_send(bp, req);
7047 }
7048 
7049 static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp,
7050 				  struct bnxt_ctx_pg_info *ctx_pg)
7051 {
7052 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
7053 
7054 	rmem->page_size = BNXT_PAGE_SIZE;
7055 	rmem->pg_arr = ctx_pg->ctx_pg_arr;
7056 	rmem->dma_arr = ctx_pg->ctx_dma_arr;
7057 	rmem->flags = BNXT_RMEM_VALID_PTE_FLAG;
7058 	if (rmem->depth >= 1)
7059 		rmem->flags |= BNXT_RMEM_USE_FULL_PAGE_FLAG;
7060 	return bnxt_alloc_ring(bp, rmem);
7061 }
7062 
7063 static int bnxt_alloc_ctx_pg_tbls(struct bnxt *bp,
7064 				  struct bnxt_ctx_pg_info *ctx_pg, u32 mem_size,
7065 				  u8 depth, struct bnxt_mem_init *mem_init)
7066 {
7067 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
7068 	int rc;
7069 
7070 	if (!mem_size)
7071 		return -EINVAL;
7072 
7073 	ctx_pg->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
7074 	if (ctx_pg->nr_pages > MAX_CTX_TOTAL_PAGES) {
7075 		ctx_pg->nr_pages = 0;
7076 		return -EINVAL;
7077 	}
7078 	if (ctx_pg->nr_pages > MAX_CTX_PAGES || depth > 1) {
7079 		int nr_tbls, i;
7080 
7081 		rmem->depth = 2;
7082 		ctx_pg->ctx_pg_tbl = kcalloc(MAX_CTX_PAGES, sizeof(ctx_pg),
7083 					     GFP_KERNEL);
7084 		if (!ctx_pg->ctx_pg_tbl)
7085 			return -ENOMEM;
7086 		nr_tbls = DIV_ROUND_UP(ctx_pg->nr_pages, MAX_CTX_PAGES);
7087 		rmem->nr_pages = nr_tbls;
7088 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
7089 		if (rc)
7090 			return rc;
7091 		for (i = 0; i < nr_tbls; i++) {
7092 			struct bnxt_ctx_pg_info *pg_tbl;
7093 
7094 			pg_tbl = kzalloc(sizeof(*pg_tbl), GFP_KERNEL);
7095 			if (!pg_tbl)
7096 				return -ENOMEM;
7097 			ctx_pg->ctx_pg_tbl[i] = pg_tbl;
7098 			rmem = &pg_tbl->ring_mem;
7099 			rmem->pg_tbl = ctx_pg->ctx_pg_arr[i];
7100 			rmem->pg_tbl_map = ctx_pg->ctx_dma_arr[i];
7101 			rmem->depth = 1;
7102 			rmem->nr_pages = MAX_CTX_PAGES;
7103 			rmem->mem_init = mem_init;
7104 			if (i == (nr_tbls - 1)) {
7105 				int rem = ctx_pg->nr_pages % MAX_CTX_PAGES;
7106 
7107 				if (rem)
7108 					rmem->nr_pages = rem;
7109 			}
7110 			rc = bnxt_alloc_ctx_mem_blk(bp, pg_tbl);
7111 			if (rc)
7112 				break;
7113 		}
7114 	} else {
7115 		rmem->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
7116 		if (rmem->nr_pages > 1 || depth)
7117 			rmem->depth = 1;
7118 		rmem->mem_init = mem_init;
7119 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
7120 	}
7121 	return rc;
7122 }
7123 
7124 static void bnxt_free_ctx_pg_tbls(struct bnxt *bp,
7125 				  struct bnxt_ctx_pg_info *ctx_pg)
7126 {
7127 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
7128 
7129 	if (rmem->depth > 1 || ctx_pg->nr_pages > MAX_CTX_PAGES ||
7130 	    ctx_pg->ctx_pg_tbl) {
7131 		int i, nr_tbls = rmem->nr_pages;
7132 
7133 		for (i = 0; i < nr_tbls; i++) {
7134 			struct bnxt_ctx_pg_info *pg_tbl;
7135 			struct bnxt_ring_mem_info *rmem2;
7136 
7137 			pg_tbl = ctx_pg->ctx_pg_tbl[i];
7138 			if (!pg_tbl)
7139 				continue;
7140 			rmem2 = &pg_tbl->ring_mem;
7141 			bnxt_free_ring(bp, rmem2);
7142 			ctx_pg->ctx_pg_arr[i] = NULL;
7143 			kfree(pg_tbl);
7144 			ctx_pg->ctx_pg_tbl[i] = NULL;
7145 		}
7146 		kfree(ctx_pg->ctx_pg_tbl);
7147 		ctx_pg->ctx_pg_tbl = NULL;
7148 	}
7149 	bnxt_free_ring(bp, rmem);
7150 	ctx_pg->nr_pages = 0;
7151 }
7152 
7153 static void bnxt_free_ctx_mem(struct bnxt *bp)
7154 {
7155 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
7156 	int i;
7157 
7158 	if (!ctx)
7159 		return;
7160 
7161 	if (ctx->tqm_mem[0]) {
7162 		for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++)
7163 			bnxt_free_ctx_pg_tbls(bp, ctx->tqm_mem[i]);
7164 		kfree(ctx->tqm_mem[0]);
7165 		ctx->tqm_mem[0] = NULL;
7166 	}
7167 
7168 	bnxt_free_ctx_pg_tbls(bp, &ctx->tim_mem);
7169 	bnxt_free_ctx_pg_tbls(bp, &ctx->mrav_mem);
7170 	bnxt_free_ctx_pg_tbls(bp, &ctx->stat_mem);
7171 	bnxt_free_ctx_pg_tbls(bp, &ctx->vnic_mem);
7172 	bnxt_free_ctx_pg_tbls(bp, &ctx->cq_mem);
7173 	bnxt_free_ctx_pg_tbls(bp, &ctx->srq_mem);
7174 	bnxt_free_ctx_pg_tbls(bp, &ctx->qp_mem);
7175 	ctx->flags &= ~BNXT_CTX_FLAG_INITED;
7176 }
7177 
7178 static int bnxt_alloc_ctx_mem(struct bnxt *bp)
7179 {
7180 	struct bnxt_ctx_pg_info *ctx_pg;
7181 	struct bnxt_ctx_mem_info *ctx;
7182 	struct bnxt_mem_init *init;
7183 	u32 mem_size, ena, entries;
7184 	u32 entries_sp, min;
7185 	u32 num_mr, num_ah;
7186 	u32 extra_srqs = 0;
7187 	u32 extra_qps = 0;
7188 	u8 pg_lvl = 1;
7189 	int i, rc;
7190 
7191 	rc = bnxt_hwrm_func_backing_store_qcaps(bp);
7192 	if (rc) {
7193 		netdev_err(bp->dev, "Failed querying context mem capability, rc = %d.\n",
7194 			   rc);
7195 		return rc;
7196 	}
7197 	ctx = bp->ctx;
7198 	if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED))
7199 		return 0;
7200 
7201 	if ((bp->flags & BNXT_FLAG_ROCE_CAP) && !is_kdump_kernel()) {
7202 		pg_lvl = 2;
7203 		extra_qps = 65536;
7204 		extra_srqs = 8192;
7205 	}
7206 
7207 	ctx_pg = &ctx->qp_mem;
7208 	ctx_pg->entries = ctx->qp_min_qp1_entries + ctx->qp_max_l2_entries +
7209 			  extra_qps;
7210 	if (ctx->qp_entry_size) {
7211 		mem_size = ctx->qp_entry_size * ctx_pg->entries;
7212 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_QP];
7213 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init);
7214 		if (rc)
7215 			return rc;
7216 	}
7217 
7218 	ctx_pg = &ctx->srq_mem;
7219 	ctx_pg->entries = ctx->srq_max_l2_entries + extra_srqs;
7220 	if (ctx->srq_entry_size) {
7221 		mem_size = ctx->srq_entry_size * ctx_pg->entries;
7222 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_SRQ];
7223 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init);
7224 		if (rc)
7225 			return rc;
7226 	}
7227 
7228 	ctx_pg = &ctx->cq_mem;
7229 	ctx_pg->entries = ctx->cq_max_l2_entries + extra_qps * 2;
7230 	if (ctx->cq_entry_size) {
7231 		mem_size = ctx->cq_entry_size * ctx_pg->entries;
7232 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_CQ];
7233 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init);
7234 		if (rc)
7235 			return rc;
7236 	}
7237 
7238 	ctx_pg = &ctx->vnic_mem;
7239 	ctx_pg->entries = ctx->vnic_max_vnic_entries +
7240 			  ctx->vnic_max_ring_table_entries;
7241 	if (ctx->vnic_entry_size) {
7242 		mem_size = ctx->vnic_entry_size * ctx_pg->entries;
7243 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_VNIC];
7244 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, init);
7245 		if (rc)
7246 			return rc;
7247 	}
7248 
7249 	ctx_pg = &ctx->stat_mem;
7250 	ctx_pg->entries = ctx->stat_max_entries;
7251 	if (ctx->stat_entry_size) {
7252 		mem_size = ctx->stat_entry_size * ctx_pg->entries;
7253 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_STAT];
7254 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, init);
7255 		if (rc)
7256 			return rc;
7257 	}
7258 
7259 	ena = 0;
7260 	if (!(bp->flags & BNXT_FLAG_ROCE_CAP))
7261 		goto skip_rdma;
7262 
7263 	ctx_pg = &ctx->mrav_mem;
7264 	/* 128K extra is needed to accommodate static AH context
7265 	 * allocation by f/w.
7266 	 */
7267 	num_mr = 1024 * 256;
7268 	num_ah = 1024 * 128;
7269 	ctx_pg->entries = num_mr + num_ah;
7270 	if (ctx->mrav_entry_size) {
7271 		mem_size = ctx->mrav_entry_size * ctx_pg->entries;
7272 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_MRAV];
7273 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 2, init);
7274 		if (rc)
7275 			return rc;
7276 	}
7277 	ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV;
7278 	if (ctx->mrav_num_entries_units)
7279 		ctx_pg->entries =
7280 			((num_mr / ctx->mrav_num_entries_units) << 16) |
7281 			 (num_ah / ctx->mrav_num_entries_units);
7282 
7283 	ctx_pg = &ctx->tim_mem;
7284 	ctx_pg->entries = ctx->qp_mem.entries;
7285 	if (ctx->tim_entry_size) {
7286 		mem_size = ctx->tim_entry_size * ctx_pg->entries;
7287 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, NULL);
7288 		if (rc)
7289 			return rc;
7290 	}
7291 	ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM;
7292 
7293 skip_rdma:
7294 	min = ctx->tqm_min_entries_per_ring;
7295 	entries_sp = ctx->vnic_max_vnic_entries + ctx->qp_max_l2_entries +
7296 		     2 * (extra_qps + ctx->qp_min_qp1_entries) + min;
7297 	entries_sp = roundup(entries_sp, ctx->tqm_entries_multiple);
7298 	entries = ctx->qp_max_l2_entries + 2 * (extra_qps + ctx->qp_min_qp1_entries);
7299 	entries = roundup(entries, ctx->tqm_entries_multiple);
7300 	entries = clamp_t(u32, entries, min, ctx->tqm_max_entries_per_ring);
7301 	for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++) {
7302 		ctx_pg = ctx->tqm_mem[i];
7303 		ctx_pg->entries = i ? entries : entries_sp;
7304 		if (ctx->tqm_entry_size) {
7305 			mem_size = ctx->tqm_entry_size * ctx_pg->entries;
7306 			rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1,
7307 						    NULL);
7308 			if (rc)
7309 				return rc;
7310 		}
7311 		ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP << i;
7312 	}
7313 	ena |= FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES;
7314 	rc = bnxt_hwrm_func_backing_store_cfg(bp, ena);
7315 	if (rc) {
7316 		netdev_err(bp->dev, "Failed configuring context mem, rc = %d.\n",
7317 			   rc);
7318 		return rc;
7319 	}
7320 	ctx->flags |= BNXT_CTX_FLAG_INITED;
7321 	return 0;
7322 }
7323 
7324 int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all)
7325 {
7326 	struct hwrm_func_resource_qcaps_output *resp;
7327 	struct hwrm_func_resource_qcaps_input *req;
7328 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7329 	int rc;
7330 
7331 	rc = hwrm_req_init(bp, req, HWRM_FUNC_RESOURCE_QCAPS);
7332 	if (rc)
7333 		return rc;
7334 
7335 	req->fid = cpu_to_le16(0xffff);
7336 	resp = hwrm_req_hold(bp, req);
7337 	rc = hwrm_req_send_silent(bp, req);
7338 	if (rc)
7339 		goto hwrm_func_resc_qcaps_exit;
7340 
7341 	hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs);
7342 	if (!all)
7343 		goto hwrm_func_resc_qcaps_exit;
7344 
7345 	hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx);
7346 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
7347 	hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings);
7348 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
7349 	hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings);
7350 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
7351 	hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings);
7352 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
7353 	hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps);
7354 	hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps);
7355 	hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs);
7356 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
7357 	hw_resc->min_vnics = le16_to_cpu(resp->min_vnics);
7358 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
7359 	hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx);
7360 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
7361 
7362 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
7363 		u16 max_msix = le16_to_cpu(resp->max_msix);
7364 
7365 		hw_resc->max_nqs = max_msix;
7366 		hw_resc->max_hw_ring_grps = hw_resc->max_rx_rings;
7367 	}
7368 
7369 	if (BNXT_PF(bp)) {
7370 		struct bnxt_pf_info *pf = &bp->pf;
7371 
7372 		pf->vf_resv_strategy =
7373 			le16_to_cpu(resp->vf_reservation_strategy);
7374 		if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC)
7375 			pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL;
7376 	}
7377 hwrm_func_resc_qcaps_exit:
7378 	hwrm_req_drop(bp, req);
7379 	return rc;
7380 }
7381 
7382 static int __bnxt_hwrm_ptp_qcfg(struct bnxt *bp)
7383 {
7384 	struct hwrm_port_mac_ptp_qcfg_output *resp;
7385 	struct hwrm_port_mac_ptp_qcfg_input *req;
7386 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
7387 	u8 flags;
7388 	int rc;
7389 
7390 	if (bp->hwrm_spec_code < 0x10801) {
7391 		rc = -ENODEV;
7392 		goto no_ptp;
7393 	}
7394 
7395 	rc = hwrm_req_init(bp, req, HWRM_PORT_MAC_PTP_QCFG);
7396 	if (rc)
7397 		goto no_ptp;
7398 
7399 	req->port_id = cpu_to_le16(bp->pf.port_id);
7400 	resp = hwrm_req_hold(bp, req);
7401 	rc = hwrm_req_send(bp, req);
7402 	if (rc)
7403 		goto exit;
7404 
7405 	flags = resp->flags;
7406 	if (!(flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_HWRM_ACCESS)) {
7407 		rc = -ENODEV;
7408 		goto exit;
7409 	}
7410 	if (!ptp) {
7411 		ptp = kzalloc(sizeof(*ptp), GFP_KERNEL);
7412 		if (!ptp) {
7413 			rc = -ENOMEM;
7414 			goto exit;
7415 		}
7416 		ptp->bp = bp;
7417 		bp->ptp_cfg = ptp;
7418 	}
7419 	if (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_PARTIAL_DIRECT_ACCESS_REF_CLOCK) {
7420 		ptp->refclk_regs[0] = le32_to_cpu(resp->ts_ref_clock_reg_lower);
7421 		ptp->refclk_regs[1] = le32_to_cpu(resp->ts_ref_clock_reg_upper);
7422 	} else if (bp->flags & BNXT_FLAG_CHIP_P5) {
7423 		ptp->refclk_regs[0] = BNXT_TS_REG_TIMESYNC_TS0_LOWER;
7424 		ptp->refclk_regs[1] = BNXT_TS_REG_TIMESYNC_TS0_UPPER;
7425 	} else {
7426 		rc = -ENODEV;
7427 		goto exit;
7428 	}
7429 	rc = bnxt_ptp_init(bp);
7430 	if (rc)
7431 		netdev_warn(bp->dev, "PTP initialization failed.\n");
7432 exit:
7433 	hwrm_req_drop(bp, req);
7434 	if (!rc)
7435 		return 0;
7436 
7437 no_ptp:
7438 	bnxt_ptp_clear(bp);
7439 	kfree(ptp);
7440 	bp->ptp_cfg = NULL;
7441 	return rc;
7442 }
7443 
7444 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp)
7445 {
7446 	struct hwrm_func_qcaps_output *resp;
7447 	struct hwrm_func_qcaps_input *req;
7448 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7449 	u32 flags, flags_ext;
7450 	int rc;
7451 
7452 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCAPS);
7453 	if (rc)
7454 		return rc;
7455 
7456 	req->fid = cpu_to_le16(0xffff);
7457 	resp = hwrm_req_hold(bp, req);
7458 	rc = hwrm_req_send(bp, req);
7459 	if (rc)
7460 		goto hwrm_func_qcaps_exit;
7461 
7462 	flags = le32_to_cpu(resp->flags);
7463 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED)
7464 		bp->flags |= BNXT_FLAG_ROCEV1_CAP;
7465 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED)
7466 		bp->flags |= BNXT_FLAG_ROCEV2_CAP;
7467 	if (flags & FUNC_QCAPS_RESP_FLAGS_PCIE_STATS_SUPPORTED)
7468 		bp->fw_cap |= BNXT_FW_CAP_PCIE_STATS_SUPPORTED;
7469 	if (flags & FUNC_QCAPS_RESP_FLAGS_HOT_RESET_CAPABLE)
7470 		bp->fw_cap |= BNXT_FW_CAP_HOT_RESET;
7471 	if (flags & FUNC_QCAPS_RESP_FLAGS_EXT_STATS_SUPPORTED)
7472 		bp->fw_cap |= BNXT_FW_CAP_EXT_STATS_SUPPORTED;
7473 	if (flags &  FUNC_QCAPS_RESP_FLAGS_ERROR_RECOVERY_CAPABLE)
7474 		bp->fw_cap |= BNXT_FW_CAP_ERROR_RECOVERY;
7475 	if (flags & FUNC_QCAPS_RESP_FLAGS_ERR_RECOVER_RELOAD)
7476 		bp->fw_cap |= BNXT_FW_CAP_ERR_RECOVER_RELOAD;
7477 	if (!(flags & FUNC_QCAPS_RESP_FLAGS_VLAN_ACCELERATION_TX_DISABLED))
7478 		bp->fw_cap |= BNXT_FW_CAP_VLAN_TX_INSERT;
7479 
7480 	flags_ext = le32_to_cpu(resp->flags_ext);
7481 	if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_EXT_HW_STATS_SUPPORTED)
7482 		bp->fw_cap |= BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED;
7483 	if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_PPS_SUPPORTED))
7484 		bp->fw_cap |= BNXT_FW_CAP_PTP_PPS;
7485 
7486 	bp->tx_push_thresh = 0;
7487 	if ((flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED) &&
7488 	    BNXT_FW_MAJ(bp) > 217)
7489 		bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
7490 
7491 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
7492 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
7493 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
7494 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
7495 	hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
7496 	if (!hw_resc->max_hw_ring_grps)
7497 		hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings;
7498 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
7499 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
7500 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
7501 
7502 	if (BNXT_PF(bp)) {
7503 		struct bnxt_pf_info *pf = &bp->pf;
7504 
7505 		pf->fw_fid = le16_to_cpu(resp->fid);
7506 		pf->port_id = le16_to_cpu(resp->port_id);
7507 		memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN);
7508 		pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
7509 		pf->max_vfs = le16_to_cpu(resp->max_vfs);
7510 		pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
7511 		pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
7512 		pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
7513 		pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
7514 		pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
7515 		pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
7516 		bp->flags &= ~BNXT_FLAG_WOL_CAP;
7517 		if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED)
7518 			bp->flags |= BNXT_FLAG_WOL_CAP;
7519 		if (flags & FUNC_QCAPS_RESP_FLAGS_PTP_SUPPORTED) {
7520 			__bnxt_hwrm_ptp_qcfg(bp);
7521 		} else {
7522 			bnxt_ptp_clear(bp);
7523 			kfree(bp->ptp_cfg);
7524 			bp->ptp_cfg = NULL;
7525 		}
7526 	} else {
7527 #ifdef CONFIG_BNXT_SRIOV
7528 		struct bnxt_vf_info *vf = &bp->vf;
7529 
7530 		vf->fw_fid = le16_to_cpu(resp->fid);
7531 		memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN);
7532 #endif
7533 	}
7534 
7535 hwrm_func_qcaps_exit:
7536 	hwrm_req_drop(bp, req);
7537 	return rc;
7538 }
7539 
7540 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp);
7541 
7542 static int bnxt_hwrm_func_qcaps(struct bnxt *bp)
7543 {
7544 	int rc;
7545 
7546 	rc = __bnxt_hwrm_func_qcaps(bp);
7547 	if (rc)
7548 		return rc;
7549 	rc = bnxt_hwrm_queue_qportcfg(bp);
7550 	if (rc) {
7551 		netdev_err(bp->dev, "hwrm query qportcfg failure rc: %d\n", rc);
7552 		return rc;
7553 	}
7554 	if (bp->hwrm_spec_code >= 0x10803) {
7555 		rc = bnxt_alloc_ctx_mem(bp);
7556 		if (rc)
7557 			return rc;
7558 		rc = bnxt_hwrm_func_resc_qcaps(bp, true);
7559 		if (!rc)
7560 			bp->fw_cap |= BNXT_FW_CAP_NEW_RM;
7561 	}
7562 	return 0;
7563 }
7564 
7565 static int bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(struct bnxt *bp)
7566 {
7567 	struct hwrm_cfa_adv_flow_mgnt_qcaps_output *resp;
7568 	struct hwrm_cfa_adv_flow_mgnt_qcaps_input *req;
7569 	u32 flags;
7570 	int rc;
7571 
7572 	if (!(bp->fw_cap & BNXT_FW_CAP_CFA_ADV_FLOW))
7573 		return 0;
7574 
7575 	rc = hwrm_req_init(bp, req, HWRM_CFA_ADV_FLOW_MGNT_QCAPS);
7576 	if (rc)
7577 		return rc;
7578 
7579 	resp = hwrm_req_hold(bp, req);
7580 	rc = hwrm_req_send(bp, req);
7581 	if (rc)
7582 		goto hwrm_cfa_adv_qcaps_exit;
7583 
7584 	flags = le32_to_cpu(resp->flags);
7585 	if (flags &
7586 	    CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V2_SUPPORTED)
7587 		bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2;
7588 
7589 hwrm_cfa_adv_qcaps_exit:
7590 	hwrm_req_drop(bp, req);
7591 	return rc;
7592 }
7593 
7594 static int __bnxt_alloc_fw_health(struct bnxt *bp)
7595 {
7596 	if (bp->fw_health)
7597 		return 0;
7598 
7599 	bp->fw_health = kzalloc(sizeof(*bp->fw_health), GFP_KERNEL);
7600 	if (!bp->fw_health)
7601 		return -ENOMEM;
7602 
7603 	return 0;
7604 }
7605 
7606 static int bnxt_alloc_fw_health(struct bnxt *bp)
7607 {
7608 	int rc;
7609 
7610 	if (!(bp->fw_cap & BNXT_FW_CAP_HOT_RESET) &&
7611 	    !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
7612 		return 0;
7613 
7614 	rc = __bnxt_alloc_fw_health(bp);
7615 	if (rc) {
7616 		bp->fw_cap &= ~BNXT_FW_CAP_HOT_RESET;
7617 		bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
7618 		return rc;
7619 	}
7620 
7621 	return 0;
7622 }
7623 
7624 static void __bnxt_map_fw_health_reg(struct bnxt *bp, u32 reg)
7625 {
7626 	writel(reg & BNXT_GRC_BASE_MASK, bp->bar0 +
7627 					 BNXT_GRCPF_REG_WINDOW_BASE_OUT +
7628 					 BNXT_FW_HEALTH_WIN_MAP_OFF);
7629 }
7630 
7631 bool bnxt_is_fw_healthy(struct bnxt *bp)
7632 {
7633 	if (bp->fw_health && bp->fw_health->status_reliable) {
7634 		u32 fw_status;
7635 
7636 		fw_status = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
7637 		if (fw_status && !BNXT_FW_IS_HEALTHY(fw_status))
7638 			return false;
7639 	}
7640 
7641 	return true;
7642 }
7643 
7644 static void bnxt_inv_fw_health_reg(struct bnxt *bp)
7645 {
7646 	struct bnxt_fw_health *fw_health = bp->fw_health;
7647 	u32 reg_type;
7648 
7649 	if (!fw_health || !fw_health->status_reliable)
7650 		return;
7651 
7652 	reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_HEALTH_REG]);
7653 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC)
7654 		fw_health->status_reliable = false;
7655 }
7656 
7657 static void bnxt_try_map_fw_health_reg(struct bnxt *bp)
7658 {
7659 	void __iomem *hs;
7660 	u32 status_loc;
7661 	u32 reg_type;
7662 	u32 sig;
7663 
7664 	if (bp->fw_health)
7665 		bp->fw_health->status_reliable = false;
7666 
7667 	__bnxt_map_fw_health_reg(bp, HCOMM_STATUS_STRUCT_LOC);
7668 	hs = bp->bar0 + BNXT_FW_HEALTH_WIN_OFF(HCOMM_STATUS_STRUCT_LOC);
7669 
7670 	sig = readl(hs + offsetof(struct hcomm_status, sig_ver));
7671 	if ((sig & HCOMM_STATUS_SIGNATURE_MASK) != HCOMM_STATUS_SIGNATURE_VAL) {
7672 		if (!bp->chip_num) {
7673 			__bnxt_map_fw_health_reg(bp, BNXT_GRC_REG_BASE);
7674 			bp->chip_num = readl(bp->bar0 +
7675 					     BNXT_FW_HEALTH_WIN_BASE +
7676 					     BNXT_GRC_REG_CHIP_NUM);
7677 		}
7678 		if (!BNXT_CHIP_P5(bp))
7679 			return;
7680 
7681 		status_loc = BNXT_GRC_REG_STATUS_P5 |
7682 			     BNXT_FW_HEALTH_REG_TYPE_BAR0;
7683 	} else {
7684 		status_loc = readl(hs + offsetof(struct hcomm_status,
7685 						 fw_status_loc));
7686 	}
7687 
7688 	if (__bnxt_alloc_fw_health(bp)) {
7689 		netdev_warn(bp->dev, "no memory for firmware status checks\n");
7690 		return;
7691 	}
7692 
7693 	bp->fw_health->regs[BNXT_FW_HEALTH_REG] = status_loc;
7694 	reg_type = BNXT_FW_HEALTH_REG_TYPE(status_loc);
7695 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) {
7696 		__bnxt_map_fw_health_reg(bp, status_loc);
7697 		bp->fw_health->mapped_regs[BNXT_FW_HEALTH_REG] =
7698 			BNXT_FW_HEALTH_WIN_OFF(status_loc);
7699 	}
7700 
7701 	bp->fw_health->status_reliable = true;
7702 }
7703 
7704 static int bnxt_map_fw_health_regs(struct bnxt *bp)
7705 {
7706 	struct bnxt_fw_health *fw_health = bp->fw_health;
7707 	u32 reg_base = 0xffffffff;
7708 	int i;
7709 
7710 	bp->fw_health->status_reliable = false;
7711 	/* Only pre-map the monitoring GRC registers using window 3 */
7712 	for (i = 0; i < 4; i++) {
7713 		u32 reg = fw_health->regs[i];
7714 
7715 		if (BNXT_FW_HEALTH_REG_TYPE(reg) != BNXT_FW_HEALTH_REG_TYPE_GRC)
7716 			continue;
7717 		if (reg_base == 0xffffffff)
7718 			reg_base = reg & BNXT_GRC_BASE_MASK;
7719 		if ((reg & BNXT_GRC_BASE_MASK) != reg_base)
7720 			return -ERANGE;
7721 		fw_health->mapped_regs[i] = BNXT_FW_HEALTH_WIN_OFF(reg);
7722 	}
7723 	bp->fw_health->status_reliable = true;
7724 	if (reg_base == 0xffffffff)
7725 		return 0;
7726 
7727 	__bnxt_map_fw_health_reg(bp, reg_base);
7728 	return 0;
7729 }
7730 
7731 static int bnxt_hwrm_error_recovery_qcfg(struct bnxt *bp)
7732 {
7733 	struct bnxt_fw_health *fw_health = bp->fw_health;
7734 	struct hwrm_error_recovery_qcfg_output *resp;
7735 	struct hwrm_error_recovery_qcfg_input *req;
7736 	int rc, i;
7737 
7738 	if (!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
7739 		return 0;
7740 
7741 	rc = hwrm_req_init(bp, req, HWRM_ERROR_RECOVERY_QCFG);
7742 	if (rc)
7743 		return rc;
7744 
7745 	resp = hwrm_req_hold(bp, req);
7746 	rc = hwrm_req_send(bp, req);
7747 	if (rc)
7748 		goto err_recovery_out;
7749 	fw_health->flags = le32_to_cpu(resp->flags);
7750 	if ((fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) &&
7751 	    !(bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL)) {
7752 		rc = -EINVAL;
7753 		goto err_recovery_out;
7754 	}
7755 	fw_health->polling_dsecs = le32_to_cpu(resp->driver_polling_freq);
7756 	fw_health->master_func_wait_dsecs =
7757 		le32_to_cpu(resp->master_func_wait_period);
7758 	fw_health->normal_func_wait_dsecs =
7759 		le32_to_cpu(resp->normal_func_wait_period);
7760 	fw_health->post_reset_wait_dsecs =
7761 		le32_to_cpu(resp->master_func_wait_period_after_reset);
7762 	fw_health->post_reset_max_wait_dsecs =
7763 		le32_to_cpu(resp->max_bailout_time_after_reset);
7764 	fw_health->regs[BNXT_FW_HEALTH_REG] =
7765 		le32_to_cpu(resp->fw_health_status_reg);
7766 	fw_health->regs[BNXT_FW_HEARTBEAT_REG] =
7767 		le32_to_cpu(resp->fw_heartbeat_reg);
7768 	fw_health->regs[BNXT_FW_RESET_CNT_REG] =
7769 		le32_to_cpu(resp->fw_reset_cnt_reg);
7770 	fw_health->regs[BNXT_FW_RESET_INPROG_REG] =
7771 		le32_to_cpu(resp->reset_inprogress_reg);
7772 	fw_health->fw_reset_inprog_reg_mask =
7773 		le32_to_cpu(resp->reset_inprogress_reg_mask);
7774 	fw_health->fw_reset_seq_cnt = resp->reg_array_cnt;
7775 	if (fw_health->fw_reset_seq_cnt >= 16) {
7776 		rc = -EINVAL;
7777 		goto err_recovery_out;
7778 	}
7779 	for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) {
7780 		fw_health->fw_reset_seq_regs[i] =
7781 			le32_to_cpu(resp->reset_reg[i]);
7782 		fw_health->fw_reset_seq_vals[i] =
7783 			le32_to_cpu(resp->reset_reg_val[i]);
7784 		fw_health->fw_reset_seq_delay_msec[i] =
7785 			resp->delay_after_reset[i];
7786 	}
7787 err_recovery_out:
7788 	hwrm_req_drop(bp, req);
7789 	if (!rc)
7790 		rc = bnxt_map_fw_health_regs(bp);
7791 	if (rc)
7792 		bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
7793 	return rc;
7794 }
7795 
7796 static int bnxt_hwrm_func_reset(struct bnxt *bp)
7797 {
7798 	struct hwrm_func_reset_input *req;
7799 	int rc;
7800 
7801 	rc = hwrm_req_init(bp, req, HWRM_FUNC_RESET);
7802 	if (rc)
7803 		return rc;
7804 
7805 	req->enables = 0;
7806 	hwrm_req_timeout(bp, req, HWRM_RESET_TIMEOUT);
7807 	return hwrm_req_send(bp, req);
7808 }
7809 
7810 static void bnxt_nvm_cfg_ver_get(struct bnxt *bp)
7811 {
7812 	struct hwrm_nvm_get_dev_info_output nvm_info;
7813 
7814 	if (!bnxt_hwrm_nvm_get_dev_info(bp, &nvm_info))
7815 		snprintf(bp->nvm_cfg_ver, FW_VER_STR_LEN, "%d.%d.%d",
7816 			 nvm_info.nvm_cfg_ver_maj, nvm_info.nvm_cfg_ver_min,
7817 			 nvm_info.nvm_cfg_ver_upd);
7818 }
7819 
7820 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
7821 {
7822 	struct hwrm_queue_qportcfg_output *resp;
7823 	struct hwrm_queue_qportcfg_input *req;
7824 	u8 i, j, *qptr;
7825 	bool no_rdma;
7826 	int rc = 0;
7827 
7828 	rc = hwrm_req_init(bp, req, HWRM_QUEUE_QPORTCFG);
7829 	if (rc)
7830 		return rc;
7831 
7832 	resp = hwrm_req_hold(bp, req);
7833 	rc = hwrm_req_send(bp, req);
7834 	if (rc)
7835 		goto qportcfg_exit;
7836 
7837 	if (!resp->max_configurable_queues) {
7838 		rc = -EINVAL;
7839 		goto qportcfg_exit;
7840 	}
7841 	bp->max_tc = resp->max_configurable_queues;
7842 	bp->max_lltc = resp->max_configurable_lossless_queues;
7843 	if (bp->max_tc > BNXT_MAX_QUEUE)
7844 		bp->max_tc = BNXT_MAX_QUEUE;
7845 
7846 	no_rdma = !(bp->flags & BNXT_FLAG_ROCE_CAP);
7847 	qptr = &resp->queue_id0;
7848 	for (i = 0, j = 0; i < bp->max_tc; i++) {
7849 		bp->q_info[j].queue_id = *qptr;
7850 		bp->q_ids[i] = *qptr++;
7851 		bp->q_info[j].queue_profile = *qptr++;
7852 		bp->tc_to_qidx[j] = j;
7853 		if (!BNXT_CNPQ(bp->q_info[j].queue_profile) ||
7854 		    (no_rdma && BNXT_PF(bp)))
7855 			j++;
7856 	}
7857 	bp->max_q = bp->max_tc;
7858 	bp->max_tc = max_t(u8, j, 1);
7859 
7860 	if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG)
7861 		bp->max_tc = 1;
7862 
7863 	if (bp->max_lltc > bp->max_tc)
7864 		bp->max_lltc = bp->max_tc;
7865 
7866 qportcfg_exit:
7867 	hwrm_req_drop(bp, req);
7868 	return rc;
7869 }
7870 
7871 static int bnxt_hwrm_poll(struct bnxt *bp)
7872 {
7873 	struct hwrm_ver_get_input *req;
7874 	int rc;
7875 
7876 	rc = hwrm_req_init(bp, req, HWRM_VER_GET);
7877 	if (rc)
7878 		return rc;
7879 
7880 	req->hwrm_intf_maj = HWRM_VERSION_MAJOR;
7881 	req->hwrm_intf_min = HWRM_VERSION_MINOR;
7882 	req->hwrm_intf_upd = HWRM_VERSION_UPDATE;
7883 
7884 	hwrm_req_flags(bp, req, BNXT_HWRM_CTX_SILENT | BNXT_HWRM_FULL_WAIT);
7885 	rc = hwrm_req_send(bp, req);
7886 	return rc;
7887 }
7888 
7889 static int bnxt_hwrm_ver_get(struct bnxt *bp)
7890 {
7891 	struct hwrm_ver_get_output *resp;
7892 	struct hwrm_ver_get_input *req;
7893 	u16 fw_maj, fw_min, fw_bld, fw_rsv;
7894 	u32 dev_caps_cfg, hwrm_ver;
7895 	int rc, len;
7896 
7897 	rc = hwrm_req_init(bp, req, HWRM_VER_GET);
7898 	if (rc)
7899 		return rc;
7900 
7901 	hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT);
7902 	bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN;
7903 	req->hwrm_intf_maj = HWRM_VERSION_MAJOR;
7904 	req->hwrm_intf_min = HWRM_VERSION_MINOR;
7905 	req->hwrm_intf_upd = HWRM_VERSION_UPDATE;
7906 
7907 	resp = hwrm_req_hold(bp, req);
7908 	rc = hwrm_req_send(bp, req);
7909 	if (rc)
7910 		goto hwrm_ver_get_exit;
7911 
7912 	memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
7913 
7914 	bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 |
7915 			     resp->hwrm_intf_min_8b << 8 |
7916 			     resp->hwrm_intf_upd_8b;
7917 	if (resp->hwrm_intf_maj_8b < 1) {
7918 		netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
7919 			    resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
7920 			    resp->hwrm_intf_upd_8b);
7921 		netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
7922 	}
7923 
7924 	hwrm_ver = HWRM_VERSION_MAJOR << 16 | HWRM_VERSION_MINOR << 8 |
7925 			HWRM_VERSION_UPDATE;
7926 
7927 	if (bp->hwrm_spec_code > hwrm_ver)
7928 		snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d",
7929 			 HWRM_VERSION_MAJOR, HWRM_VERSION_MINOR,
7930 			 HWRM_VERSION_UPDATE);
7931 	else
7932 		snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d",
7933 			 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
7934 			 resp->hwrm_intf_upd_8b);
7935 
7936 	fw_maj = le16_to_cpu(resp->hwrm_fw_major);
7937 	if (bp->hwrm_spec_code > 0x10803 && fw_maj) {
7938 		fw_min = le16_to_cpu(resp->hwrm_fw_minor);
7939 		fw_bld = le16_to_cpu(resp->hwrm_fw_build);
7940 		fw_rsv = le16_to_cpu(resp->hwrm_fw_patch);
7941 		len = FW_VER_STR_LEN;
7942 	} else {
7943 		fw_maj = resp->hwrm_fw_maj_8b;
7944 		fw_min = resp->hwrm_fw_min_8b;
7945 		fw_bld = resp->hwrm_fw_bld_8b;
7946 		fw_rsv = resp->hwrm_fw_rsvd_8b;
7947 		len = BC_HWRM_STR_LEN;
7948 	}
7949 	bp->fw_ver_code = BNXT_FW_VER_CODE(fw_maj, fw_min, fw_bld, fw_rsv);
7950 	snprintf(bp->fw_ver_str, len, "%d.%d.%d.%d", fw_maj, fw_min, fw_bld,
7951 		 fw_rsv);
7952 
7953 	if (strlen(resp->active_pkg_name)) {
7954 		int fw_ver_len = strlen(bp->fw_ver_str);
7955 
7956 		snprintf(bp->fw_ver_str + fw_ver_len,
7957 			 FW_VER_STR_LEN - fw_ver_len - 1, "/pkg %s",
7958 			 resp->active_pkg_name);
7959 		bp->fw_cap |= BNXT_FW_CAP_PKG_VER;
7960 	}
7961 
7962 	bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout);
7963 	if (!bp->hwrm_cmd_timeout)
7964 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
7965 
7966 	if (resp->hwrm_intf_maj_8b >= 1) {
7967 		bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len);
7968 		bp->hwrm_max_ext_req_len = le16_to_cpu(resp->max_ext_req_len);
7969 	}
7970 	if (bp->hwrm_max_ext_req_len < HWRM_MAX_REQ_LEN)
7971 		bp->hwrm_max_ext_req_len = HWRM_MAX_REQ_LEN;
7972 
7973 	bp->chip_num = le16_to_cpu(resp->chip_num);
7974 	bp->chip_rev = resp->chip_rev;
7975 	if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev &&
7976 	    !resp->chip_metal)
7977 		bp->flags |= BNXT_FLAG_CHIP_NITRO_A0;
7978 
7979 	dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg);
7980 	if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) &&
7981 	    (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED))
7982 		bp->fw_cap |= BNXT_FW_CAP_SHORT_CMD;
7983 
7984 	if (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_KONG_MB_CHNL_SUPPORTED)
7985 		bp->fw_cap |= BNXT_FW_CAP_KONG_MB_CHNL;
7986 
7987 	if (dev_caps_cfg &
7988 	    VER_GET_RESP_DEV_CAPS_CFG_FLOW_HANDLE_64BIT_SUPPORTED)
7989 		bp->fw_cap |= BNXT_FW_CAP_OVS_64BIT_HANDLE;
7990 
7991 	if (dev_caps_cfg &
7992 	    VER_GET_RESP_DEV_CAPS_CFG_TRUSTED_VF_SUPPORTED)
7993 		bp->fw_cap |= BNXT_FW_CAP_TRUSTED_VF;
7994 
7995 	if (dev_caps_cfg &
7996 	    VER_GET_RESP_DEV_CAPS_CFG_CFA_ADV_FLOW_MGNT_SUPPORTED)
7997 		bp->fw_cap |= BNXT_FW_CAP_CFA_ADV_FLOW;
7998 
7999 hwrm_ver_get_exit:
8000 	hwrm_req_drop(bp, req);
8001 	return rc;
8002 }
8003 
8004 int bnxt_hwrm_fw_set_time(struct bnxt *bp)
8005 {
8006 	struct hwrm_fw_set_time_input *req;
8007 	struct tm tm;
8008 	time64_t now = ktime_get_real_seconds();
8009 	int rc;
8010 
8011 	if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) ||
8012 	    bp->hwrm_spec_code < 0x10400)
8013 		return -EOPNOTSUPP;
8014 
8015 	time64_to_tm(now, 0, &tm);
8016 	rc = hwrm_req_init(bp, req, HWRM_FW_SET_TIME);
8017 	if (rc)
8018 		return rc;
8019 
8020 	req->year = cpu_to_le16(1900 + tm.tm_year);
8021 	req->month = 1 + tm.tm_mon;
8022 	req->day = tm.tm_mday;
8023 	req->hour = tm.tm_hour;
8024 	req->minute = tm.tm_min;
8025 	req->second = tm.tm_sec;
8026 	return hwrm_req_send(bp, req);
8027 }
8028 
8029 static void bnxt_add_one_ctr(u64 hw, u64 *sw, u64 mask)
8030 {
8031 	u64 sw_tmp;
8032 
8033 	hw &= mask;
8034 	sw_tmp = (*sw & ~mask) | hw;
8035 	if (hw < (*sw & mask))
8036 		sw_tmp += mask + 1;
8037 	WRITE_ONCE(*sw, sw_tmp);
8038 }
8039 
8040 static void __bnxt_accumulate_stats(__le64 *hw_stats, u64 *sw_stats, u64 *masks,
8041 				    int count, bool ignore_zero)
8042 {
8043 	int i;
8044 
8045 	for (i = 0; i < count; i++) {
8046 		u64 hw = le64_to_cpu(READ_ONCE(hw_stats[i]));
8047 
8048 		if (ignore_zero && !hw)
8049 			continue;
8050 
8051 		if (masks[i] == -1ULL)
8052 			sw_stats[i] = hw;
8053 		else
8054 			bnxt_add_one_ctr(hw, &sw_stats[i], masks[i]);
8055 	}
8056 }
8057 
8058 static void bnxt_accumulate_stats(struct bnxt_stats_mem *stats)
8059 {
8060 	if (!stats->hw_stats)
8061 		return;
8062 
8063 	__bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats,
8064 				stats->hw_masks, stats->len / 8, false);
8065 }
8066 
8067 static void bnxt_accumulate_all_stats(struct bnxt *bp)
8068 {
8069 	struct bnxt_stats_mem *ring0_stats;
8070 	bool ignore_zero = false;
8071 	int i;
8072 
8073 	/* Chip bug.  Counter intermittently becomes 0. */
8074 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8075 		ignore_zero = true;
8076 
8077 	for (i = 0; i < bp->cp_nr_rings; i++) {
8078 		struct bnxt_napi *bnapi = bp->bnapi[i];
8079 		struct bnxt_cp_ring_info *cpr;
8080 		struct bnxt_stats_mem *stats;
8081 
8082 		cpr = &bnapi->cp_ring;
8083 		stats = &cpr->stats;
8084 		if (!i)
8085 			ring0_stats = stats;
8086 		__bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats,
8087 					ring0_stats->hw_masks,
8088 					ring0_stats->len / 8, ignore_zero);
8089 	}
8090 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
8091 		struct bnxt_stats_mem *stats = &bp->port_stats;
8092 		__le64 *hw_stats = stats->hw_stats;
8093 		u64 *sw_stats = stats->sw_stats;
8094 		u64 *masks = stats->hw_masks;
8095 		int cnt;
8096 
8097 		cnt = sizeof(struct rx_port_stats) / 8;
8098 		__bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false);
8099 
8100 		hw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
8101 		sw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
8102 		masks += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
8103 		cnt = sizeof(struct tx_port_stats) / 8;
8104 		__bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false);
8105 	}
8106 	if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) {
8107 		bnxt_accumulate_stats(&bp->rx_port_stats_ext);
8108 		bnxt_accumulate_stats(&bp->tx_port_stats_ext);
8109 	}
8110 }
8111 
8112 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags)
8113 {
8114 	struct hwrm_port_qstats_input *req;
8115 	struct bnxt_pf_info *pf = &bp->pf;
8116 	int rc;
8117 
8118 	if (!(bp->flags & BNXT_FLAG_PORT_STATS))
8119 		return 0;
8120 
8121 	if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))
8122 		return -EOPNOTSUPP;
8123 
8124 	rc = hwrm_req_init(bp, req, HWRM_PORT_QSTATS);
8125 	if (rc)
8126 		return rc;
8127 
8128 	req->flags = flags;
8129 	req->port_id = cpu_to_le16(pf->port_id);
8130 	req->tx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map +
8131 					    BNXT_TX_PORT_STATS_BYTE_OFFSET);
8132 	req->rx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map);
8133 	return hwrm_req_send(bp, req);
8134 }
8135 
8136 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags)
8137 {
8138 	struct hwrm_queue_pri2cos_qcfg_output *resp_qc;
8139 	struct hwrm_queue_pri2cos_qcfg_input *req_qc;
8140 	struct hwrm_port_qstats_ext_output *resp_qs;
8141 	struct hwrm_port_qstats_ext_input *req_qs;
8142 	struct bnxt_pf_info *pf = &bp->pf;
8143 	u32 tx_stat_size;
8144 	int rc;
8145 
8146 	if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT))
8147 		return 0;
8148 
8149 	if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))
8150 		return -EOPNOTSUPP;
8151 
8152 	rc = hwrm_req_init(bp, req_qs, HWRM_PORT_QSTATS_EXT);
8153 	if (rc)
8154 		return rc;
8155 
8156 	req_qs->flags = flags;
8157 	req_qs->port_id = cpu_to_le16(pf->port_id);
8158 	req_qs->rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext));
8159 	req_qs->rx_stat_host_addr = cpu_to_le64(bp->rx_port_stats_ext.hw_stats_map);
8160 	tx_stat_size = bp->tx_port_stats_ext.hw_stats ?
8161 		       sizeof(struct tx_port_stats_ext) : 0;
8162 	req_qs->tx_stat_size = cpu_to_le16(tx_stat_size);
8163 	req_qs->tx_stat_host_addr = cpu_to_le64(bp->tx_port_stats_ext.hw_stats_map);
8164 	resp_qs = hwrm_req_hold(bp, req_qs);
8165 	rc = hwrm_req_send(bp, req_qs);
8166 	if (!rc) {
8167 		bp->fw_rx_stats_ext_size =
8168 			le16_to_cpu(resp_qs->rx_stat_size) / 8;
8169 		bp->fw_tx_stats_ext_size = tx_stat_size ?
8170 			le16_to_cpu(resp_qs->tx_stat_size) / 8 : 0;
8171 	} else {
8172 		bp->fw_rx_stats_ext_size = 0;
8173 		bp->fw_tx_stats_ext_size = 0;
8174 	}
8175 	hwrm_req_drop(bp, req_qs);
8176 
8177 	if (flags)
8178 		return rc;
8179 
8180 	if (bp->fw_tx_stats_ext_size <=
8181 	    offsetof(struct tx_port_stats_ext, pfc_pri0_tx_duration_us) / 8) {
8182 		bp->pri2cos_valid = 0;
8183 		return rc;
8184 	}
8185 
8186 	rc = hwrm_req_init(bp, req_qc, HWRM_QUEUE_PRI2COS_QCFG);
8187 	if (rc)
8188 		return rc;
8189 
8190 	req_qc->flags = cpu_to_le32(QUEUE_PRI2COS_QCFG_REQ_FLAGS_IVLAN);
8191 
8192 	resp_qc = hwrm_req_hold(bp, req_qc);
8193 	rc = hwrm_req_send(bp, req_qc);
8194 	if (!rc) {
8195 		u8 *pri2cos;
8196 		int i, j;
8197 
8198 		pri2cos = &resp_qc->pri0_cos_queue_id;
8199 		for (i = 0; i < 8; i++) {
8200 			u8 queue_id = pri2cos[i];
8201 			u8 queue_idx;
8202 
8203 			/* Per port queue IDs start from 0, 10, 20, etc */
8204 			queue_idx = queue_id % 10;
8205 			if (queue_idx > BNXT_MAX_QUEUE) {
8206 				bp->pri2cos_valid = false;
8207 				hwrm_req_drop(bp, req_qc);
8208 				return rc;
8209 			}
8210 			for (j = 0; j < bp->max_q; j++) {
8211 				if (bp->q_ids[j] == queue_id)
8212 					bp->pri2cos_idx[i] = queue_idx;
8213 			}
8214 		}
8215 		bp->pri2cos_valid = true;
8216 	}
8217 	hwrm_req_drop(bp, req_qc);
8218 
8219 	return rc;
8220 }
8221 
8222 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
8223 {
8224 	if (bp->vxlan_fw_dst_port_id != INVALID_HW_RING_ID)
8225 		bnxt_hwrm_tunnel_dst_port_free(
8226 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
8227 	if (bp->nge_fw_dst_port_id != INVALID_HW_RING_ID)
8228 		bnxt_hwrm_tunnel_dst_port_free(
8229 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
8230 }
8231 
8232 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
8233 {
8234 	int rc, i;
8235 	u32 tpa_flags = 0;
8236 
8237 	if (set_tpa)
8238 		tpa_flags = bp->flags & BNXT_FLAG_TPA;
8239 	else if (BNXT_NO_FW_ACCESS(bp))
8240 		return 0;
8241 	for (i = 0; i < bp->nr_vnics; i++) {
8242 		rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
8243 		if (rc) {
8244 			netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
8245 				   i, rc);
8246 			return rc;
8247 		}
8248 	}
8249 	return 0;
8250 }
8251 
8252 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
8253 {
8254 	int i;
8255 
8256 	for (i = 0; i < bp->nr_vnics; i++)
8257 		bnxt_hwrm_vnic_set_rss(bp, i, false);
8258 }
8259 
8260 static void bnxt_clear_vnic(struct bnxt *bp)
8261 {
8262 	if (!bp->vnic_info)
8263 		return;
8264 
8265 	bnxt_hwrm_clear_vnic_filter(bp);
8266 	if (!(bp->flags & BNXT_FLAG_CHIP_P5)) {
8267 		/* clear all RSS setting before free vnic ctx */
8268 		bnxt_hwrm_clear_vnic_rss(bp);
8269 		bnxt_hwrm_vnic_ctx_free(bp);
8270 	}
8271 	/* before free the vnic, undo the vnic tpa settings */
8272 	if (bp->flags & BNXT_FLAG_TPA)
8273 		bnxt_set_tpa(bp, false);
8274 	bnxt_hwrm_vnic_free(bp);
8275 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8276 		bnxt_hwrm_vnic_ctx_free(bp);
8277 }
8278 
8279 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
8280 				    bool irq_re_init)
8281 {
8282 	bnxt_clear_vnic(bp);
8283 	bnxt_hwrm_ring_free(bp, close_path);
8284 	bnxt_hwrm_ring_grp_free(bp);
8285 	if (irq_re_init) {
8286 		bnxt_hwrm_stat_ctx_free(bp);
8287 		bnxt_hwrm_free_tunnel_ports(bp);
8288 	}
8289 }
8290 
8291 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode)
8292 {
8293 	struct hwrm_func_cfg_input *req;
8294 	u8 evb_mode;
8295 	int rc;
8296 
8297 	if (br_mode == BRIDGE_MODE_VEB)
8298 		evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB;
8299 	else if (br_mode == BRIDGE_MODE_VEPA)
8300 		evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA;
8301 	else
8302 		return -EINVAL;
8303 
8304 	rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG);
8305 	if (rc)
8306 		return rc;
8307 
8308 	req->fid = cpu_to_le16(0xffff);
8309 	req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE);
8310 	req->evb_mode = evb_mode;
8311 	return hwrm_req_send(bp, req);
8312 }
8313 
8314 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size)
8315 {
8316 	struct hwrm_func_cfg_input *req;
8317 	int rc;
8318 
8319 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803)
8320 		return 0;
8321 
8322 	rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG);
8323 	if (rc)
8324 		return rc;
8325 
8326 	req->fid = cpu_to_le16(0xffff);
8327 	req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE);
8328 	req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64;
8329 	if (size == 128)
8330 		req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128;
8331 
8332 	return hwrm_req_send(bp, req);
8333 }
8334 
8335 static int __bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
8336 {
8337 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
8338 	int rc;
8339 
8340 	if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG)
8341 		goto skip_rss_ctx;
8342 
8343 	/* allocate context for vnic */
8344 	rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0);
8345 	if (rc) {
8346 		netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
8347 			   vnic_id, rc);
8348 		goto vnic_setup_err;
8349 	}
8350 	bp->rsscos_nr_ctxs++;
8351 
8352 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
8353 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1);
8354 		if (rc) {
8355 			netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n",
8356 				   vnic_id, rc);
8357 			goto vnic_setup_err;
8358 		}
8359 		bp->rsscos_nr_ctxs++;
8360 	}
8361 
8362 skip_rss_ctx:
8363 	/* configure default vnic, ring grp */
8364 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
8365 	if (rc) {
8366 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
8367 			   vnic_id, rc);
8368 		goto vnic_setup_err;
8369 	}
8370 
8371 	/* Enable RSS hashing on vnic */
8372 	rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
8373 	if (rc) {
8374 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
8375 			   vnic_id, rc);
8376 		goto vnic_setup_err;
8377 	}
8378 
8379 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
8380 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
8381 		if (rc) {
8382 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
8383 				   vnic_id, rc);
8384 		}
8385 	}
8386 
8387 vnic_setup_err:
8388 	return rc;
8389 }
8390 
8391 static int __bnxt_setup_vnic_p5(struct bnxt *bp, u16 vnic_id)
8392 {
8393 	int rc, i, nr_ctxs;
8394 
8395 	nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings);
8396 	for (i = 0; i < nr_ctxs; i++) {
8397 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, i);
8398 		if (rc) {
8399 			netdev_err(bp->dev, "hwrm vnic %d ctx %d alloc failure rc: %x\n",
8400 				   vnic_id, i, rc);
8401 			break;
8402 		}
8403 		bp->rsscos_nr_ctxs++;
8404 	}
8405 	if (i < nr_ctxs)
8406 		return -ENOMEM;
8407 
8408 	rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic_id, true);
8409 	if (rc) {
8410 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n",
8411 			   vnic_id, rc);
8412 		return rc;
8413 	}
8414 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
8415 	if (rc) {
8416 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
8417 			   vnic_id, rc);
8418 		return rc;
8419 	}
8420 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
8421 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
8422 		if (rc) {
8423 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
8424 				   vnic_id, rc);
8425 		}
8426 	}
8427 	return rc;
8428 }
8429 
8430 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
8431 {
8432 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8433 		return __bnxt_setup_vnic_p5(bp, vnic_id);
8434 	else
8435 		return __bnxt_setup_vnic(bp, vnic_id);
8436 }
8437 
8438 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
8439 {
8440 #ifdef CONFIG_RFS_ACCEL
8441 	int i, rc = 0;
8442 
8443 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8444 		return 0;
8445 
8446 	for (i = 0; i < bp->rx_nr_rings; i++) {
8447 		struct bnxt_vnic_info *vnic;
8448 		u16 vnic_id = i + 1;
8449 		u16 ring_id = i;
8450 
8451 		if (vnic_id >= bp->nr_vnics)
8452 			break;
8453 
8454 		vnic = &bp->vnic_info[vnic_id];
8455 		vnic->flags |= BNXT_VNIC_RFS_FLAG;
8456 		if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
8457 			vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG;
8458 		rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1);
8459 		if (rc) {
8460 			netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
8461 				   vnic_id, rc);
8462 			break;
8463 		}
8464 		rc = bnxt_setup_vnic(bp, vnic_id);
8465 		if (rc)
8466 			break;
8467 	}
8468 	return rc;
8469 #else
8470 	return 0;
8471 #endif
8472 }
8473 
8474 /* Allow PF, trusted VFs and VFs with default VLAN to be in promiscuous mode */
8475 static bool bnxt_promisc_ok(struct bnxt *bp)
8476 {
8477 #ifdef CONFIG_BNXT_SRIOV
8478 	if (BNXT_VF(bp) && !bp->vf.vlan && !bnxt_is_trusted_vf(bp, &bp->vf))
8479 		return false;
8480 #endif
8481 	return true;
8482 }
8483 
8484 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp)
8485 {
8486 	unsigned int rc = 0;
8487 
8488 	rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1);
8489 	if (rc) {
8490 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
8491 			   rc);
8492 		return rc;
8493 	}
8494 
8495 	rc = bnxt_hwrm_vnic_cfg(bp, 1);
8496 	if (rc) {
8497 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
8498 			   rc);
8499 		return rc;
8500 	}
8501 	return rc;
8502 }
8503 
8504 static int bnxt_cfg_rx_mode(struct bnxt *);
8505 static bool bnxt_mc_list_updated(struct bnxt *, u32 *);
8506 
8507 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
8508 {
8509 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
8510 	int rc = 0;
8511 	unsigned int rx_nr_rings = bp->rx_nr_rings;
8512 
8513 	if (irq_re_init) {
8514 		rc = bnxt_hwrm_stat_ctx_alloc(bp);
8515 		if (rc) {
8516 			netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
8517 				   rc);
8518 			goto err_out;
8519 		}
8520 	}
8521 
8522 	rc = bnxt_hwrm_ring_alloc(bp);
8523 	if (rc) {
8524 		netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
8525 		goto err_out;
8526 	}
8527 
8528 	rc = bnxt_hwrm_ring_grp_alloc(bp);
8529 	if (rc) {
8530 		netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
8531 		goto err_out;
8532 	}
8533 
8534 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
8535 		rx_nr_rings--;
8536 
8537 	/* default vnic 0 */
8538 	rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings);
8539 	if (rc) {
8540 		netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
8541 		goto err_out;
8542 	}
8543 
8544 	rc = bnxt_setup_vnic(bp, 0);
8545 	if (rc)
8546 		goto err_out;
8547 
8548 	if (bp->flags & BNXT_FLAG_RFS) {
8549 		rc = bnxt_alloc_rfs_vnics(bp);
8550 		if (rc)
8551 			goto err_out;
8552 	}
8553 
8554 	if (bp->flags & BNXT_FLAG_TPA) {
8555 		rc = bnxt_set_tpa(bp, true);
8556 		if (rc)
8557 			goto err_out;
8558 	}
8559 
8560 	if (BNXT_VF(bp))
8561 		bnxt_update_vf_mac(bp);
8562 
8563 	/* Filter for default vnic 0 */
8564 	rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
8565 	if (rc) {
8566 		netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
8567 		goto err_out;
8568 	}
8569 	vnic->uc_filter_count = 1;
8570 
8571 	vnic->rx_mask = 0;
8572 	if (bp->dev->flags & IFF_BROADCAST)
8573 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
8574 
8575 	if (bp->dev->flags & IFF_PROMISC)
8576 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
8577 
8578 	if (bp->dev->flags & IFF_ALLMULTI) {
8579 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
8580 		vnic->mc_list_count = 0;
8581 	} else {
8582 		u32 mask = 0;
8583 
8584 		bnxt_mc_list_updated(bp, &mask);
8585 		vnic->rx_mask |= mask;
8586 	}
8587 
8588 	rc = bnxt_cfg_rx_mode(bp);
8589 	if (rc)
8590 		goto err_out;
8591 
8592 	rc = bnxt_hwrm_set_coal(bp);
8593 	if (rc)
8594 		netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
8595 				rc);
8596 
8597 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
8598 		rc = bnxt_setup_nitroa0_vnic(bp);
8599 		if (rc)
8600 			netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n",
8601 				   rc);
8602 	}
8603 
8604 	if (BNXT_VF(bp)) {
8605 		bnxt_hwrm_func_qcfg(bp);
8606 		netdev_update_features(bp->dev);
8607 	}
8608 
8609 	return 0;
8610 
8611 err_out:
8612 	bnxt_hwrm_resource_free(bp, 0, true);
8613 
8614 	return rc;
8615 }
8616 
8617 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
8618 {
8619 	bnxt_hwrm_resource_free(bp, 1, irq_re_init);
8620 	return 0;
8621 }
8622 
8623 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
8624 {
8625 	bnxt_init_cp_rings(bp);
8626 	bnxt_init_rx_rings(bp);
8627 	bnxt_init_tx_rings(bp);
8628 	bnxt_init_ring_grps(bp, irq_re_init);
8629 	bnxt_init_vnics(bp);
8630 
8631 	return bnxt_init_chip(bp, irq_re_init);
8632 }
8633 
8634 static int bnxt_set_real_num_queues(struct bnxt *bp)
8635 {
8636 	int rc;
8637 	struct net_device *dev = bp->dev;
8638 
8639 	rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings -
8640 					  bp->tx_nr_rings_xdp);
8641 	if (rc)
8642 		return rc;
8643 
8644 	rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
8645 	if (rc)
8646 		return rc;
8647 
8648 #ifdef CONFIG_RFS_ACCEL
8649 	if (bp->flags & BNXT_FLAG_RFS)
8650 		dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
8651 #endif
8652 
8653 	return rc;
8654 }
8655 
8656 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
8657 			   bool shared)
8658 {
8659 	int _rx = *rx, _tx = *tx;
8660 
8661 	if (shared) {
8662 		*rx = min_t(int, _rx, max);
8663 		*tx = min_t(int, _tx, max);
8664 	} else {
8665 		if (max < 2)
8666 			return -ENOMEM;
8667 
8668 		while (_rx + _tx > max) {
8669 			if (_rx > _tx && _rx > 1)
8670 				_rx--;
8671 			else if (_tx > 1)
8672 				_tx--;
8673 		}
8674 		*rx = _rx;
8675 		*tx = _tx;
8676 	}
8677 	return 0;
8678 }
8679 
8680 static void bnxt_setup_msix(struct bnxt *bp)
8681 {
8682 	const int len = sizeof(bp->irq_tbl[0].name);
8683 	struct net_device *dev = bp->dev;
8684 	int tcs, i;
8685 
8686 	tcs = netdev_get_num_tc(dev);
8687 	if (tcs) {
8688 		int i, off, count;
8689 
8690 		for (i = 0; i < tcs; i++) {
8691 			count = bp->tx_nr_rings_per_tc;
8692 			off = i * count;
8693 			netdev_set_tc_queue(dev, i, count, off);
8694 		}
8695 	}
8696 
8697 	for (i = 0; i < bp->cp_nr_rings; i++) {
8698 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
8699 		char *attr;
8700 
8701 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
8702 			attr = "TxRx";
8703 		else if (i < bp->rx_nr_rings)
8704 			attr = "rx";
8705 		else
8706 			attr = "tx";
8707 
8708 		snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name,
8709 			 attr, i);
8710 		bp->irq_tbl[map_idx].handler = bnxt_msix;
8711 	}
8712 }
8713 
8714 static void bnxt_setup_inta(struct bnxt *bp)
8715 {
8716 	const int len = sizeof(bp->irq_tbl[0].name);
8717 
8718 	if (netdev_get_num_tc(bp->dev))
8719 		netdev_reset_tc(bp->dev);
8720 
8721 	snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx",
8722 		 0);
8723 	bp->irq_tbl[0].handler = bnxt_inta;
8724 }
8725 
8726 static int bnxt_init_int_mode(struct bnxt *bp);
8727 
8728 static int bnxt_setup_int_mode(struct bnxt *bp)
8729 {
8730 	int rc;
8731 
8732 	if (!bp->irq_tbl) {
8733 		rc = bnxt_init_int_mode(bp);
8734 		if (rc || !bp->irq_tbl)
8735 			return rc ?: -ENODEV;
8736 	}
8737 
8738 	if (bp->flags & BNXT_FLAG_USING_MSIX)
8739 		bnxt_setup_msix(bp);
8740 	else
8741 		bnxt_setup_inta(bp);
8742 
8743 	rc = bnxt_set_real_num_queues(bp);
8744 	return rc;
8745 }
8746 
8747 #ifdef CONFIG_RFS_ACCEL
8748 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp)
8749 {
8750 	return bp->hw_resc.max_rsscos_ctxs;
8751 }
8752 
8753 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp)
8754 {
8755 	return bp->hw_resc.max_vnics;
8756 }
8757 #endif
8758 
8759 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp)
8760 {
8761 	return bp->hw_resc.max_stat_ctxs;
8762 }
8763 
8764 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp)
8765 {
8766 	return bp->hw_resc.max_cp_rings;
8767 }
8768 
8769 static unsigned int bnxt_get_max_func_cp_rings_for_en(struct bnxt *bp)
8770 {
8771 	unsigned int cp = bp->hw_resc.max_cp_rings;
8772 
8773 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
8774 		cp -= bnxt_get_ulp_msix_num(bp);
8775 
8776 	return cp;
8777 }
8778 
8779 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp)
8780 {
8781 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
8782 
8783 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8784 		return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_nqs);
8785 
8786 	return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings);
8787 }
8788 
8789 static void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs)
8790 {
8791 	bp->hw_resc.max_irqs = max_irqs;
8792 }
8793 
8794 unsigned int bnxt_get_avail_cp_rings_for_en(struct bnxt *bp)
8795 {
8796 	unsigned int cp;
8797 
8798 	cp = bnxt_get_max_func_cp_rings_for_en(bp);
8799 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8800 		return cp - bp->rx_nr_rings - bp->tx_nr_rings;
8801 	else
8802 		return cp - bp->cp_nr_rings;
8803 }
8804 
8805 unsigned int bnxt_get_avail_stat_ctxs_for_en(struct bnxt *bp)
8806 {
8807 	return bnxt_get_max_func_stat_ctxs(bp) - bnxt_get_func_stat_ctxs(bp);
8808 }
8809 
8810 int bnxt_get_avail_msix(struct bnxt *bp, int num)
8811 {
8812 	int max_cp = bnxt_get_max_func_cp_rings(bp);
8813 	int max_irq = bnxt_get_max_func_irqs(bp);
8814 	int total_req = bp->cp_nr_rings + num;
8815 	int max_idx, avail_msix;
8816 
8817 	max_idx = bp->total_irqs;
8818 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
8819 		max_idx = min_t(int, bp->total_irqs, max_cp);
8820 	avail_msix = max_idx - bp->cp_nr_rings;
8821 	if (!BNXT_NEW_RM(bp) || avail_msix >= num)
8822 		return avail_msix;
8823 
8824 	if (max_irq < total_req) {
8825 		num = max_irq - bp->cp_nr_rings;
8826 		if (num <= 0)
8827 			return 0;
8828 	}
8829 	return num;
8830 }
8831 
8832 static int bnxt_get_num_msix(struct bnxt *bp)
8833 {
8834 	if (!BNXT_NEW_RM(bp))
8835 		return bnxt_get_max_func_irqs(bp);
8836 
8837 	return bnxt_nq_rings_in_use(bp);
8838 }
8839 
8840 static int bnxt_init_msix(struct bnxt *bp)
8841 {
8842 	int i, total_vecs, max, rc = 0, min = 1, ulp_msix;
8843 	struct msix_entry *msix_ent;
8844 
8845 	total_vecs = bnxt_get_num_msix(bp);
8846 	max = bnxt_get_max_func_irqs(bp);
8847 	if (total_vecs > max)
8848 		total_vecs = max;
8849 
8850 	if (!total_vecs)
8851 		return 0;
8852 
8853 	msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
8854 	if (!msix_ent)
8855 		return -ENOMEM;
8856 
8857 	for (i = 0; i < total_vecs; i++) {
8858 		msix_ent[i].entry = i;
8859 		msix_ent[i].vector = 0;
8860 	}
8861 
8862 	if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
8863 		min = 2;
8864 
8865 	total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
8866 	ulp_msix = bnxt_get_ulp_msix_num(bp);
8867 	if (total_vecs < 0 || total_vecs < ulp_msix) {
8868 		rc = -ENODEV;
8869 		goto msix_setup_exit;
8870 	}
8871 
8872 	bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
8873 	if (bp->irq_tbl) {
8874 		for (i = 0; i < total_vecs; i++)
8875 			bp->irq_tbl[i].vector = msix_ent[i].vector;
8876 
8877 		bp->total_irqs = total_vecs;
8878 		/* Trim rings based upon num of vectors allocated */
8879 		rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
8880 				     total_vecs - ulp_msix, min == 1);
8881 		if (rc)
8882 			goto msix_setup_exit;
8883 
8884 		bp->cp_nr_rings = (min == 1) ?
8885 				  max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
8886 				  bp->tx_nr_rings + bp->rx_nr_rings;
8887 
8888 	} else {
8889 		rc = -ENOMEM;
8890 		goto msix_setup_exit;
8891 	}
8892 	bp->flags |= BNXT_FLAG_USING_MSIX;
8893 	kfree(msix_ent);
8894 	return 0;
8895 
8896 msix_setup_exit:
8897 	netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc);
8898 	kfree(bp->irq_tbl);
8899 	bp->irq_tbl = NULL;
8900 	pci_disable_msix(bp->pdev);
8901 	kfree(msix_ent);
8902 	return rc;
8903 }
8904 
8905 static int bnxt_init_inta(struct bnxt *bp)
8906 {
8907 	bp->irq_tbl = kzalloc(sizeof(struct bnxt_irq), GFP_KERNEL);
8908 	if (!bp->irq_tbl)
8909 		return -ENOMEM;
8910 
8911 	bp->total_irqs = 1;
8912 	bp->rx_nr_rings = 1;
8913 	bp->tx_nr_rings = 1;
8914 	bp->cp_nr_rings = 1;
8915 	bp->flags |= BNXT_FLAG_SHARED_RINGS;
8916 	bp->irq_tbl[0].vector = bp->pdev->irq;
8917 	return 0;
8918 }
8919 
8920 static int bnxt_init_int_mode(struct bnxt *bp)
8921 {
8922 	int rc = -ENODEV;
8923 
8924 	if (bp->flags & BNXT_FLAG_MSIX_CAP)
8925 		rc = bnxt_init_msix(bp);
8926 
8927 	if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) {
8928 		/* fallback to INTA */
8929 		rc = bnxt_init_inta(bp);
8930 	}
8931 	return rc;
8932 }
8933 
8934 static void bnxt_clear_int_mode(struct bnxt *bp)
8935 {
8936 	if (bp->flags & BNXT_FLAG_USING_MSIX)
8937 		pci_disable_msix(bp->pdev);
8938 
8939 	kfree(bp->irq_tbl);
8940 	bp->irq_tbl = NULL;
8941 	bp->flags &= ~BNXT_FLAG_USING_MSIX;
8942 }
8943 
8944 int bnxt_reserve_rings(struct bnxt *bp, bool irq_re_init)
8945 {
8946 	int tcs = netdev_get_num_tc(bp->dev);
8947 	bool irq_cleared = false;
8948 	int rc;
8949 
8950 	if (!bnxt_need_reserve_rings(bp))
8951 		return 0;
8952 
8953 	if (irq_re_init && BNXT_NEW_RM(bp) &&
8954 	    bnxt_get_num_msix(bp) != bp->total_irqs) {
8955 		bnxt_ulp_irq_stop(bp);
8956 		bnxt_clear_int_mode(bp);
8957 		irq_cleared = true;
8958 	}
8959 	rc = __bnxt_reserve_rings(bp);
8960 	if (irq_cleared) {
8961 		if (!rc)
8962 			rc = bnxt_init_int_mode(bp);
8963 		bnxt_ulp_irq_restart(bp, rc);
8964 	}
8965 	if (rc) {
8966 		netdev_err(bp->dev, "ring reservation/IRQ init failure rc: %d\n", rc);
8967 		return rc;
8968 	}
8969 	if (tcs && (bp->tx_nr_rings_per_tc * tcs != bp->tx_nr_rings)) {
8970 		netdev_err(bp->dev, "tx ring reservation failure\n");
8971 		netdev_reset_tc(bp->dev);
8972 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
8973 		return -ENOMEM;
8974 	}
8975 	return 0;
8976 }
8977 
8978 static void bnxt_free_irq(struct bnxt *bp)
8979 {
8980 	struct bnxt_irq *irq;
8981 	int i;
8982 
8983 #ifdef CONFIG_RFS_ACCEL
8984 	free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
8985 	bp->dev->rx_cpu_rmap = NULL;
8986 #endif
8987 	if (!bp->irq_tbl || !bp->bnapi)
8988 		return;
8989 
8990 	for (i = 0; i < bp->cp_nr_rings; i++) {
8991 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
8992 
8993 		irq = &bp->irq_tbl[map_idx];
8994 		if (irq->requested) {
8995 			if (irq->have_cpumask) {
8996 				irq_set_affinity_hint(irq->vector, NULL);
8997 				free_cpumask_var(irq->cpu_mask);
8998 				irq->have_cpumask = 0;
8999 			}
9000 			free_irq(irq->vector, bp->bnapi[i]);
9001 		}
9002 
9003 		irq->requested = 0;
9004 	}
9005 }
9006 
9007 static int bnxt_request_irq(struct bnxt *bp)
9008 {
9009 	int i, j, rc = 0;
9010 	unsigned long flags = 0;
9011 #ifdef CONFIG_RFS_ACCEL
9012 	struct cpu_rmap *rmap;
9013 #endif
9014 
9015 	rc = bnxt_setup_int_mode(bp);
9016 	if (rc) {
9017 		netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
9018 			   rc);
9019 		return rc;
9020 	}
9021 #ifdef CONFIG_RFS_ACCEL
9022 	rmap = bp->dev->rx_cpu_rmap;
9023 #endif
9024 	if (!(bp->flags & BNXT_FLAG_USING_MSIX))
9025 		flags = IRQF_SHARED;
9026 
9027 	for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
9028 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
9029 		struct bnxt_irq *irq = &bp->irq_tbl[map_idx];
9030 
9031 #ifdef CONFIG_RFS_ACCEL
9032 		if (rmap && bp->bnapi[i]->rx_ring) {
9033 			rc = irq_cpu_rmap_add(rmap, irq->vector);
9034 			if (rc)
9035 				netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
9036 					    j);
9037 			j++;
9038 		}
9039 #endif
9040 		rc = request_irq(irq->vector, irq->handler, flags, irq->name,
9041 				 bp->bnapi[i]);
9042 		if (rc)
9043 			break;
9044 
9045 		irq->requested = 1;
9046 
9047 		if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) {
9048 			int numa_node = dev_to_node(&bp->pdev->dev);
9049 
9050 			irq->have_cpumask = 1;
9051 			cpumask_set_cpu(cpumask_local_spread(i, numa_node),
9052 					irq->cpu_mask);
9053 			rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask);
9054 			if (rc) {
9055 				netdev_warn(bp->dev,
9056 					    "Set affinity failed, IRQ = %d\n",
9057 					    irq->vector);
9058 				break;
9059 			}
9060 		}
9061 	}
9062 	return rc;
9063 }
9064 
9065 static void bnxt_del_napi(struct bnxt *bp)
9066 {
9067 	int i;
9068 
9069 	if (!bp->bnapi)
9070 		return;
9071 
9072 	for (i = 0; i < bp->cp_nr_rings; i++) {
9073 		struct bnxt_napi *bnapi = bp->bnapi[i];
9074 
9075 		__netif_napi_del(&bnapi->napi);
9076 	}
9077 	/* We called __netif_napi_del(), we need
9078 	 * to respect an RCU grace period before freeing napi structures.
9079 	 */
9080 	synchronize_net();
9081 }
9082 
9083 static void bnxt_init_napi(struct bnxt *bp)
9084 {
9085 	int i;
9086 	unsigned int cp_nr_rings = bp->cp_nr_rings;
9087 	struct bnxt_napi *bnapi;
9088 
9089 	if (bp->flags & BNXT_FLAG_USING_MSIX) {
9090 		int (*poll_fn)(struct napi_struct *, int) = bnxt_poll;
9091 
9092 		if (bp->flags & BNXT_FLAG_CHIP_P5)
9093 			poll_fn = bnxt_poll_p5;
9094 		else if (BNXT_CHIP_TYPE_NITRO_A0(bp))
9095 			cp_nr_rings--;
9096 		for (i = 0; i < cp_nr_rings; i++) {
9097 			bnapi = bp->bnapi[i];
9098 			netif_napi_add(bp->dev, &bnapi->napi, poll_fn, 64);
9099 		}
9100 		if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
9101 			bnapi = bp->bnapi[cp_nr_rings];
9102 			netif_napi_add(bp->dev, &bnapi->napi,
9103 				       bnxt_poll_nitroa0, 64);
9104 		}
9105 	} else {
9106 		bnapi = bp->bnapi[0];
9107 		netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64);
9108 	}
9109 }
9110 
9111 static void bnxt_disable_napi(struct bnxt *bp)
9112 {
9113 	int i;
9114 
9115 	if (!bp->bnapi ||
9116 	    test_and_set_bit(BNXT_STATE_NAPI_DISABLED, &bp->state))
9117 		return;
9118 
9119 	for (i = 0; i < bp->cp_nr_rings; i++) {
9120 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
9121 
9122 		napi_disable(&bp->bnapi[i]->napi);
9123 		if (bp->bnapi[i]->rx_ring)
9124 			cancel_work_sync(&cpr->dim.work);
9125 	}
9126 }
9127 
9128 static void bnxt_enable_napi(struct bnxt *bp)
9129 {
9130 	int i;
9131 
9132 	clear_bit(BNXT_STATE_NAPI_DISABLED, &bp->state);
9133 	for (i = 0; i < bp->cp_nr_rings; i++) {
9134 		struct bnxt_napi *bnapi = bp->bnapi[i];
9135 		struct bnxt_cp_ring_info *cpr;
9136 
9137 		cpr = &bnapi->cp_ring;
9138 		if (bnapi->in_reset)
9139 			cpr->sw_stats.rx.rx_resets++;
9140 		bnapi->in_reset = false;
9141 
9142 		if (bnapi->rx_ring) {
9143 			INIT_WORK(&cpr->dim.work, bnxt_dim_work);
9144 			cpr->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
9145 		}
9146 		napi_enable(&bnapi->napi);
9147 	}
9148 }
9149 
9150 void bnxt_tx_disable(struct bnxt *bp)
9151 {
9152 	int i;
9153 	struct bnxt_tx_ring_info *txr;
9154 
9155 	if (bp->tx_ring) {
9156 		for (i = 0; i < bp->tx_nr_rings; i++) {
9157 			txr = &bp->tx_ring[i];
9158 			WRITE_ONCE(txr->dev_state, BNXT_DEV_STATE_CLOSING);
9159 		}
9160 	}
9161 	/* Make sure napi polls see @dev_state change */
9162 	synchronize_net();
9163 	/* Drop carrier first to prevent TX timeout */
9164 	netif_carrier_off(bp->dev);
9165 	/* Stop all TX queues */
9166 	netif_tx_disable(bp->dev);
9167 }
9168 
9169 void bnxt_tx_enable(struct bnxt *bp)
9170 {
9171 	int i;
9172 	struct bnxt_tx_ring_info *txr;
9173 
9174 	for (i = 0; i < bp->tx_nr_rings; i++) {
9175 		txr = &bp->tx_ring[i];
9176 		WRITE_ONCE(txr->dev_state, 0);
9177 	}
9178 	/* Make sure napi polls see @dev_state change */
9179 	synchronize_net();
9180 	netif_tx_wake_all_queues(bp->dev);
9181 	if (bp->link_info.link_up)
9182 		netif_carrier_on(bp->dev);
9183 }
9184 
9185 static char *bnxt_report_fec(struct bnxt_link_info *link_info)
9186 {
9187 	u8 active_fec = link_info->active_fec_sig_mode &
9188 			PORT_PHY_QCFG_RESP_ACTIVE_FEC_MASK;
9189 
9190 	switch (active_fec) {
9191 	default:
9192 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_NONE_ACTIVE:
9193 		return "None";
9194 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE74_ACTIVE:
9195 		return "Clause 74 BaseR";
9196 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE91_ACTIVE:
9197 		return "Clause 91 RS(528,514)";
9198 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_1XN_ACTIVE:
9199 		return "Clause 91 RS544_1XN";
9200 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_IEEE_ACTIVE:
9201 		return "Clause 91 RS(544,514)";
9202 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_1XN_ACTIVE:
9203 		return "Clause 91 RS272_1XN";
9204 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_IEEE_ACTIVE:
9205 		return "Clause 91 RS(272,257)";
9206 	}
9207 }
9208 
9209 static void bnxt_report_link(struct bnxt *bp)
9210 {
9211 	if (bp->link_info.link_up) {
9212 		const char *signal = "";
9213 		const char *flow_ctrl;
9214 		const char *duplex;
9215 		u32 speed;
9216 		u16 fec;
9217 
9218 		netif_carrier_on(bp->dev);
9219 		speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
9220 		if (speed == SPEED_UNKNOWN) {
9221 			netdev_info(bp->dev, "NIC Link is Up, speed unknown\n");
9222 			return;
9223 		}
9224 		if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
9225 			duplex = "full";
9226 		else
9227 			duplex = "half";
9228 		if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
9229 			flow_ctrl = "ON - receive & transmit";
9230 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
9231 			flow_ctrl = "ON - transmit";
9232 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
9233 			flow_ctrl = "ON - receive";
9234 		else
9235 			flow_ctrl = "none";
9236 		if (bp->link_info.phy_qcfg_resp.option_flags &
9237 		    PORT_PHY_QCFG_RESP_OPTION_FLAGS_SIGNAL_MODE_KNOWN) {
9238 			u8 sig_mode = bp->link_info.active_fec_sig_mode &
9239 				      PORT_PHY_QCFG_RESP_SIGNAL_MODE_MASK;
9240 			switch (sig_mode) {
9241 			case PORT_PHY_QCFG_RESP_SIGNAL_MODE_NRZ:
9242 				signal = "(NRZ) ";
9243 				break;
9244 			case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4:
9245 				signal = "(PAM4) ";
9246 				break;
9247 			default:
9248 				break;
9249 			}
9250 		}
9251 		netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s%s duplex, Flow control: %s\n",
9252 			    speed, signal, duplex, flow_ctrl);
9253 		if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP)
9254 			netdev_info(bp->dev, "EEE is %s\n",
9255 				    bp->eee.eee_active ? "active" :
9256 							 "not active");
9257 		fec = bp->link_info.fec_cfg;
9258 		if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED))
9259 			netdev_info(bp->dev, "FEC autoneg %s encoding: %s\n",
9260 				    (fec & BNXT_FEC_AUTONEG) ? "on" : "off",
9261 				    bnxt_report_fec(&bp->link_info));
9262 	} else {
9263 		netif_carrier_off(bp->dev);
9264 		netdev_err(bp->dev, "NIC Link is Down\n");
9265 	}
9266 }
9267 
9268 static bool bnxt_phy_qcaps_no_speed(struct hwrm_port_phy_qcaps_output *resp)
9269 {
9270 	if (!resp->supported_speeds_auto_mode &&
9271 	    !resp->supported_speeds_force_mode &&
9272 	    !resp->supported_pam4_speeds_auto_mode &&
9273 	    !resp->supported_pam4_speeds_force_mode)
9274 		return true;
9275 	return false;
9276 }
9277 
9278 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp)
9279 {
9280 	struct bnxt_link_info *link_info = &bp->link_info;
9281 	struct hwrm_port_phy_qcaps_output *resp;
9282 	struct hwrm_port_phy_qcaps_input *req;
9283 	int rc = 0;
9284 
9285 	if (bp->hwrm_spec_code < 0x10201)
9286 		return 0;
9287 
9288 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCAPS);
9289 	if (rc)
9290 		return rc;
9291 
9292 	resp = hwrm_req_hold(bp, req);
9293 	rc = hwrm_req_send(bp, req);
9294 	if (rc)
9295 		goto hwrm_phy_qcaps_exit;
9296 
9297 	bp->phy_flags = resp->flags;
9298 	if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) {
9299 		struct ethtool_eee *eee = &bp->eee;
9300 		u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode);
9301 
9302 		eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
9303 		bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) &
9304 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK;
9305 		bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) &
9306 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK;
9307 	}
9308 
9309 	if (bp->hwrm_spec_code >= 0x10a01) {
9310 		if (bnxt_phy_qcaps_no_speed(resp)) {
9311 			link_info->phy_state = BNXT_PHY_STATE_DISABLED;
9312 			netdev_warn(bp->dev, "Ethernet link disabled\n");
9313 		} else if (link_info->phy_state == BNXT_PHY_STATE_DISABLED) {
9314 			link_info->phy_state = BNXT_PHY_STATE_ENABLED;
9315 			netdev_info(bp->dev, "Ethernet link enabled\n");
9316 			/* Phy re-enabled, reprobe the speeds */
9317 			link_info->support_auto_speeds = 0;
9318 			link_info->support_pam4_auto_speeds = 0;
9319 		}
9320 	}
9321 	if (resp->supported_speeds_auto_mode)
9322 		link_info->support_auto_speeds =
9323 			le16_to_cpu(resp->supported_speeds_auto_mode);
9324 	if (resp->supported_pam4_speeds_auto_mode)
9325 		link_info->support_pam4_auto_speeds =
9326 			le16_to_cpu(resp->supported_pam4_speeds_auto_mode);
9327 
9328 	bp->port_count = resp->port_cnt;
9329 
9330 hwrm_phy_qcaps_exit:
9331 	hwrm_req_drop(bp, req);
9332 	return rc;
9333 }
9334 
9335 static bool bnxt_support_dropped(u16 advertising, u16 supported)
9336 {
9337 	u16 diff = advertising ^ supported;
9338 
9339 	return ((supported | diff) != supported);
9340 }
9341 
9342 int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
9343 {
9344 	struct bnxt_link_info *link_info = &bp->link_info;
9345 	struct hwrm_port_phy_qcfg_output *resp;
9346 	struct hwrm_port_phy_qcfg_input *req;
9347 	u8 link_up = link_info->link_up;
9348 	bool support_changed = false;
9349 	int rc;
9350 
9351 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCFG);
9352 	if (rc)
9353 		return rc;
9354 
9355 	resp = hwrm_req_hold(bp, req);
9356 	rc = hwrm_req_send(bp, req);
9357 	if (rc) {
9358 		hwrm_req_drop(bp, req);
9359 		return rc;
9360 	}
9361 
9362 	memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
9363 	link_info->phy_link_status = resp->link;
9364 	link_info->duplex = resp->duplex_cfg;
9365 	if (bp->hwrm_spec_code >= 0x10800)
9366 		link_info->duplex = resp->duplex_state;
9367 	link_info->pause = resp->pause;
9368 	link_info->auto_mode = resp->auto_mode;
9369 	link_info->auto_pause_setting = resp->auto_pause;
9370 	link_info->lp_pause = resp->link_partner_adv_pause;
9371 	link_info->force_pause_setting = resp->force_pause;
9372 	link_info->duplex_setting = resp->duplex_cfg;
9373 	if (link_info->phy_link_status == BNXT_LINK_LINK)
9374 		link_info->link_speed = le16_to_cpu(resp->link_speed);
9375 	else
9376 		link_info->link_speed = 0;
9377 	link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
9378 	link_info->force_pam4_link_speed =
9379 		le16_to_cpu(resp->force_pam4_link_speed);
9380 	link_info->support_speeds = le16_to_cpu(resp->support_speeds);
9381 	link_info->support_pam4_speeds = le16_to_cpu(resp->support_pam4_speeds);
9382 	link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
9383 	link_info->auto_pam4_link_speeds =
9384 		le16_to_cpu(resp->auto_pam4_link_speed_mask);
9385 	link_info->lp_auto_link_speeds =
9386 		le16_to_cpu(resp->link_partner_adv_speeds);
9387 	link_info->lp_auto_pam4_link_speeds =
9388 		resp->link_partner_pam4_adv_speeds;
9389 	link_info->preemphasis = le32_to_cpu(resp->preemphasis);
9390 	link_info->phy_ver[0] = resp->phy_maj;
9391 	link_info->phy_ver[1] = resp->phy_min;
9392 	link_info->phy_ver[2] = resp->phy_bld;
9393 	link_info->media_type = resp->media_type;
9394 	link_info->phy_type = resp->phy_type;
9395 	link_info->transceiver = resp->xcvr_pkg_type;
9396 	link_info->phy_addr = resp->eee_config_phy_addr &
9397 			      PORT_PHY_QCFG_RESP_PHY_ADDR_MASK;
9398 	link_info->module_status = resp->module_status;
9399 
9400 	if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) {
9401 		struct ethtool_eee *eee = &bp->eee;
9402 		u16 fw_speeds;
9403 
9404 		eee->eee_active = 0;
9405 		if (resp->eee_config_phy_addr &
9406 		    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) {
9407 			eee->eee_active = 1;
9408 			fw_speeds = le16_to_cpu(
9409 				resp->link_partner_adv_eee_link_speed_mask);
9410 			eee->lp_advertised =
9411 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
9412 		}
9413 
9414 		/* Pull initial EEE config */
9415 		if (!chng_link_state) {
9416 			if (resp->eee_config_phy_addr &
9417 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED)
9418 				eee->eee_enabled = 1;
9419 
9420 			fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask);
9421 			eee->advertised =
9422 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
9423 
9424 			if (resp->eee_config_phy_addr &
9425 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) {
9426 				__le32 tmr;
9427 
9428 				eee->tx_lpi_enabled = 1;
9429 				tmr = resp->xcvr_identifier_type_tx_lpi_timer;
9430 				eee->tx_lpi_timer = le32_to_cpu(tmr) &
9431 					PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK;
9432 			}
9433 		}
9434 	}
9435 
9436 	link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED;
9437 	if (bp->hwrm_spec_code >= 0x10504) {
9438 		link_info->fec_cfg = le16_to_cpu(resp->fec_cfg);
9439 		link_info->active_fec_sig_mode = resp->active_fec_signal_mode;
9440 	}
9441 	/* TODO: need to add more logic to report VF link */
9442 	if (chng_link_state) {
9443 		if (link_info->phy_link_status == BNXT_LINK_LINK)
9444 			link_info->link_up = 1;
9445 		else
9446 			link_info->link_up = 0;
9447 		if (link_up != link_info->link_up)
9448 			bnxt_report_link(bp);
9449 	} else {
9450 		/* alwasy link down if not require to update link state */
9451 		link_info->link_up = 0;
9452 	}
9453 	hwrm_req_drop(bp, req);
9454 
9455 	if (!BNXT_PHY_CFG_ABLE(bp))
9456 		return 0;
9457 
9458 	/* Check if any advertised speeds are no longer supported. The caller
9459 	 * holds the link_lock mutex, so we can modify link_info settings.
9460 	 */
9461 	if (bnxt_support_dropped(link_info->advertising,
9462 				 link_info->support_auto_speeds)) {
9463 		link_info->advertising = link_info->support_auto_speeds;
9464 		support_changed = true;
9465 	}
9466 	if (bnxt_support_dropped(link_info->advertising_pam4,
9467 				 link_info->support_pam4_auto_speeds)) {
9468 		link_info->advertising_pam4 = link_info->support_pam4_auto_speeds;
9469 		support_changed = true;
9470 	}
9471 	if (support_changed && (link_info->autoneg & BNXT_AUTONEG_SPEED))
9472 		bnxt_hwrm_set_link_setting(bp, true, false);
9473 	return 0;
9474 }
9475 
9476 static void bnxt_get_port_module_status(struct bnxt *bp)
9477 {
9478 	struct bnxt_link_info *link_info = &bp->link_info;
9479 	struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp;
9480 	u8 module_status;
9481 
9482 	if (bnxt_update_link(bp, true))
9483 		return;
9484 
9485 	module_status = link_info->module_status;
9486 	switch (module_status) {
9487 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX:
9488 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN:
9489 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG:
9490 		netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n",
9491 			    bp->pf.port_id);
9492 		if (bp->hwrm_spec_code >= 0x10201) {
9493 			netdev_warn(bp->dev, "Module part number %s\n",
9494 				    resp->phy_vendor_partnumber);
9495 		}
9496 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX)
9497 			netdev_warn(bp->dev, "TX is disabled\n");
9498 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN)
9499 			netdev_warn(bp->dev, "SFP+ module is shutdown\n");
9500 	}
9501 }
9502 
9503 static void
9504 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
9505 {
9506 	if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
9507 		if (bp->hwrm_spec_code >= 0x10201)
9508 			req->auto_pause =
9509 				PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE;
9510 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
9511 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
9512 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
9513 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX;
9514 		req->enables |=
9515 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
9516 	} else {
9517 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
9518 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
9519 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
9520 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
9521 		req->enables |=
9522 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
9523 		if (bp->hwrm_spec_code >= 0x10201) {
9524 			req->auto_pause = req->force_pause;
9525 			req->enables |= cpu_to_le32(
9526 				PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
9527 		}
9528 	}
9529 }
9530 
9531 static void bnxt_hwrm_set_link_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
9532 {
9533 	if (bp->link_info.autoneg & BNXT_AUTONEG_SPEED) {
9534 		req->auto_mode |= PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK;
9535 		if (bp->link_info.advertising) {
9536 			req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
9537 			req->auto_link_speed_mask = cpu_to_le16(bp->link_info.advertising);
9538 		}
9539 		if (bp->link_info.advertising_pam4) {
9540 			req->enables |=
9541 				cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAM4_LINK_SPEED_MASK);
9542 			req->auto_link_pam4_speed_mask =
9543 				cpu_to_le16(bp->link_info.advertising_pam4);
9544 		}
9545 		req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
9546 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
9547 	} else {
9548 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
9549 		if (bp->link_info.req_signal_mode == BNXT_SIG_MODE_PAM4) {
9550 			req->force_pam4_link_speed = cpu_to_le16(bp->link_info.req_link_speed);
9551 			req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAM4_LINK_SPEED);
9552 		} else {
9553 			req->force_link_speed = cpu_to_le16(bp->link_info.req_link_speed);
9554 		}
9555 	}
9556 
9557 	/* tell chimp that the setting takes effect immediately */
9558 	req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
9559 }
9560 
9561 int bnxt_hwrm_set_pause(struct bnxt *bp)
9562 {
9563 	struct hwrm_port_phy_cfg_input *req;
9564 	int rc;
9565 
9566 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
9567 	if (rc)
9568 		return rc;
9569 
9570 	bnxt_hwrm_set_pause_common(bp, req);
9571 
9572 	if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
9573 	    bp->link_info.force_link_chng)
9574 		bnxt_hwrm_set_link_common(bp, req);
9575 
9576 	rc = hwrm_req_send(bp, req);
9577 	if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
9578 		/* since changing of pause setting doesn't trigger any link
9579 		 * change event, the driver needs to update the current pause
9580 		 * result upon successfully return of the phy_cfg command
9581 		 */
9582 		bp->link_info.pause =
9583 		bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
9584 		bp->link_info.auto_pause_setting = 0;
9585 		if (!bp->link_info.force_link_chng)
9586 			bnxt_report_link(bp);
9587 	}
9588 	bp->link_info.force_link_chng = false;
9589 	return rc;
9590 }
9591 
9592 static void bnxt_hwrm_set_eee(struct bnxt *bp,
9593 			      struct hwrm_port_phy_cfg_input *req)
9594 {
9595 	struct ethtool_eee *eee = &bp->eee;
9596 
9597 	if (eee->eee_enabled) {
9598 		u16 eee_speeds;
9599 		u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE;
9600 
9601 		if (eee->tx_lpi_enabled)
9602 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE;
9603 		else
9604 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE;
9605 
9606 		req->flags |= cpu_to_le32(flags);
9607 		eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised);
9608 		req->eee_link_speed_mask = cpu_to_le16(eee_speeds);
9609 		req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer);
9610 	} else {
9611 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE);
9612 	}
9613 }
9614 
9615 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee)
9616 {
9617 	struct hwrm_port_phy_cfg_input *req;
9618 	int rc;
9619 
9620 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
9621 	if (rc)
9622 		return rc;
9623 
9624 	if (set_pause)
9625 		bnxt_hwrm_set_pause_common(bp, req);
9626 
9627 	bnxt_hwrm_set_link_common(bp, req);
9628 
9629 	if (set_eee)
9630 		bnxt_hwrm_set_eee(bp, req);
9631 	return hwrm_req_send(bp, req);
9632 }
9633 
9634 static int bnxt_hwrm_shutdown_link(struct bnxt *bp)
9635 {
9636 	struct hwrm_port_phy_cfg_input *req;
9637 	int rc;
9638 
9639 	if (!BNXT_SINGLE_PF(bp))
9640 		return 0;
9641 
9642 	if (pci_num_vf(bp->pdev) &&
9643 	    !(bp->phy_flags & BNXT_PHY_FL_FW_MANAGED_LKDN))
9644 		return 0;
9645 
9646 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
9647 	if (rc)
9648 		return rc;
9649 
9650 	req->flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN);
9651 	return hwrm_req_send(bp, req);
9652 }
9653 
9654 static int bnxt_fw_init_one(struct bnxt *bp);
9655 
9656 static int bnxt_fw_reset_via_optee(struct bnxt *bp)
9657 {
9658 #ifdef CONFIG_TEE_BNXT_FW
9659 	int rc = tee_bnxt_fw_load();
9660 
9661 	if (rc)
9662 		netdev_err(bp->dev, "Failed FW reset via OP-TEE, rc=%d\n", rc);
9663 
9664 	return rc;
9665 #else
9666 	netdev_err(bp->dev, "OP-TEE not supported\n");
9667 	return -ENODEV;
9668 #endif
9669 }
9670 
9671 static int bnxt_try_recover_fw(struct bnxt *bp)
9672 {
9673 	if (bp->fw_health && bp->fw_health->status_reliable) {
9674 		int retry = 0, rc;
9675 		u32 sts;
9676 
9677 		do {
9678 			sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
9679 			rc = bnxt_hwrm_poll(bp);
9680 			if (!BNXT_FW_IS_BOOTING(sts) &&
9681 			    !BNXT_FW_IS_RECOVERING(sts))
9682 				break;
9683 			retry++;
9684 		} while (rc == -EBUSY && retry < BNXT_FW_RETRY);
9685 
9686 		if (!BNXT_FW_IS_HEALTHY(sts)) {
9687 			netdev_err(bp->dev,
9688 				   "Firmware not responding, status: 0x%x\n",
9689 				   sts);
9690 			rc = -ENODEV;
9691 		}
9692 		if (sts & FW_STATUS_REG_CRASHED_NO_MASTER) {
9693 			netdev_warn(bp->dev, "Firmware recover via OP-TEE requested\n");
9694 			return bnxt_fw_reset_via_optee(bp);
9695 		}
9696 		return rc;
9697 	}
9698 
9699 	return -ENODEV;
9700 }
9701 
9702 static int bnxt_hwrm_if_change(struct bnxt *bp, bool up)
9703 {
9704 	struct hwrm_func_drv_if_change_output *resp;
9705 	struct hwrm_func_drv_if_change_input *req;
9706 	bool fw_reset = !bp->irq_tbl;
9707 	bool resc_reinit = false;
9708 	int rc, retry = 0;
9709 	u32 flags = 0;
9710 
9711 	if (!(bp->fw_cap & BNXT_FW_CAP_IF_CHANGE))
9712 		return 0;
9713 
9714 	rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_IF_CHANGE);
9715 	if (rc)
9716 		return rc;
9717 
9718 	if (up)
9719 		req->flags = cpu_to_le32(FUNC_DRV_IF_CHANGE_REQ_FLAGS_UP);
9720 	resp = hwrm_req_hold(bp, req);
9721 
9722 	hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT);
9723 	while (retry < BNXT_FW_IF_RETRY) {
9724 		rc = hwrm_req_send(bp, req);
9725 		if (rc != -EAGAIN)
9726 			break;
9727 
9728 		msleep(50);
9729 		retry++;
9730 	}
9731 
9732 	if (rc == -EAGAIN) {
9733 		hwrm_req_drop(bp, req);
9734 		return rc;
9735 	} else if (!rc) {
9736 		flags = le32_to_cpu(resp->flags);
9737 	} else if (up) {
9738 		rc = bnxt_try_recover_fw(bp);
9739 		fw_reset = true;
9740 	}
9741 	hwrm_req_drop(bp, req);
9742 	if (rc)
9743 		return rc;
9744 
9745 	if (!up) {
9746 		bnxt_inv_fw_health_reg(bp);
9747 		return 0;
9748 	}
9749 
9750 	if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_RESC_CHANGE)
9751 		resc_reinit = true;
9752 	if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_HOT_FW_RESET_DONE)
9753 		fw_reset = true;
9754 	else if (bp->fw_health && !bp->fw_health->status_reliable)
9755 		bnxt_try_map_fw_health_reg(bp);
9756 
9757 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state) && !fw_reset) {
9758 		netdev_err(bp->dev, "RESET_DONE not set during FW reset.\n");
9759 		set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
9760 		return -ENODEV;
9761 	}
9762 	if (resc_reinit || fw_reset) {
9763 		if (fw_reset) {
9764 			set_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
9765 			if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
9766 				bnxt_ulp_stop(bp);
9767 			bnxt_free_ctx_mem(bp);
9768 			kfree(bp->ctx);
9769 			bp->ctx = NULL;
9770 			bnxt_dcb_free(bp);
9771 			rc = bnxt_fw_init_one(bp);
9772 			if (rc) {
9773 				clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
9774 				set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
9775 				return rc;
9776 			}
9777 			bnxt_clear_int_mode(bp);
9778 			rc = bnxt_init_int_mode(bp);
9779 			if (rc) {
9780 				clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
9781 				netdev_err(bp->dev, "init int mode failed\n");
9782 				return rc;
9783 			}
9784 		}
9785 		if (BNXT_NEW_RM(bp)) {
9786 			struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
9787 
9788 			rc = bnxt_hwrm_func_resc_qcaps(bp, true);
9789 			if (rc)
9790 				netdev_err(bp->dev, "resc_qcaps failed\n");
9791 
9792 			hw_resc->resv_cp_rings = 0;
9793 			hw_resc->resv_stat_ctxs = 0;
9794 			hw_resc->resv_irqs = 0;
9795 			hw_resc->resv_tx_rings = 0;
9796 			hw_resc->resv_rx_rings = 0;
9797 			hw_resc->resv_hw_ring_grps = 0;
9798 			hw_resc->resv_vnics = 0;
9799 			if (!fw_reset) {
9800 				bp->tx_nr_rings = 0;
9801 				bp->rx_nr_rings = 0;
9802 			}
9803 		}
9804 	}
9805 	return rc;
9806 }
9807 
9808 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp)
9809 {
9810 	struct hwrm_port_led_qcaps_output *resp;
9811 	struct hwrm_port_led_qcaps_input *req;
9812 	struct bnxt_pf_info *pf = &bp->pf;
9813 	int rc;
9814 
9815 	bp->num_leds = 0;
9816 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601)
9817 		return 0;
9818 
9819 	rc = hwrm_req_init(bp, req, HWRM_PORT_LED_QCAPS);
9820 	if (rc)
9821 		return rc;
9822 
9823 	req->port_id = cpu_to_le16(pf->port_id);
9824 	resp = hwrm_req_hold(bp, req);
9825 	rc = hwrm_req_send(bp, req);
9826 	if (rc) {
9827 		hwrm_req_drop(bp, req);
9828 		return rc;
9829 	}
9830 	if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) {
9831 		int i;
9832 
9833 		bp->num_leds = resp->num_leds;
9834 		memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) *
9835 						 bp->num_leds);
9836 		for (i = 0; i < bp->num_leds; i++) {
9837 			struct bnxt_led_info *led = &bp->leds[i];
9838 			__le16 caps = led->led_state_caps;
9839 
9840 			if (!led->led_group_id ||
9841 			    !BNXT_LED_ALT_BLINK_CAP(caps)) {
9842 				bp->num_leds = 0;
9843 				break;
9844 			}
9845 		}
9846 	}
9847 	hwrm_req_drop(bp, req);
9848 	return 0;
9849 }
9850 
9851 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp)
9852 {
9853 	struct hwrm_wol_filter_alloc_output *resp;
9854 	struct hwrm_wol_filter_alloc_input *req;
9855 	int rc;
9856 
9857 	rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_ALLOC);
9858 	if (rc)
9859 		return rc;
9860 
9861 	req->port_id = cpu_to_le16(bp->pf.port_id);
9862 	req->wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT;
9863 	req->enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS);
9864 	memcpy(req->mac_address, bp->dev->dev_addr, ETH_ALEN);
9865 
9866 	resp = hwrm_req_hold(bp, req);
9867 	rc = hwrm_req_send(bp, req);
9868 	if (!rc)
9869 		bp->wol_filter_id = resp->wol_filter_id;
9870 	hwrm_req_drop(bp, req);
9871 	return rc;
9872 }
9873 
9874 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp)
9875 {
9876 	struct hwrm_wol_filter_free_input *req;
9877 	int rc;
9878 
9879 	rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_FREE);
9880 	if (rc)
9881 		return rc;
9882 
9883 	req->port_id = cpu_to_le16(bp->pf.port_id);
9884 	req->enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID);
9885 	req->wol_filter_id = bp->wol_filter_id;
9886 
9887 	return hwrm_req_send(bp, req);
9888 }
9889 
9890 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle)
9891 {
9892 	struct hwrm_wol_filter_qcfg_output *resp;
9893 	struct hwrm_wol_filter_qcfg_input *req;
9894 	u16 next_handle = 0;
9895 	int rc;
9896 
9897 	rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_QCFG);
9898 	if (rc)
9899 		return rc;
9900 
9901 	req->port_id = cpu_to_le16(bp->pf.port_id);
9902 	req->handle = cpu_to_le16(handle);
9903 	resp = hwrm_req_hold(bp, req);
9904 	rc = hwrm_req_send(bp, req);
9905 	if (!rc) {
9906 		next_handle = le16_to_cpu(resp->next_handle);
9907 		if (next_handle != 0) {
9908 			if (resp->wol_type ==
9909 			    WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) {
9910 				bp->wol = 1;
9911 				bp->wol_filter_id = resp->wol_filter_id;
9912 			}
9913 		}
9914 	}
9915 	hwrm_req_drop(bp, req);
9916 	return next_handle;
9917 }
9918 
9919 static void bnxt_get_wol_settings(struct bnxt *bp)
9920 {
9921 	u16 handle = 0;
9922 
9923 	bp->wol = 0;
9924 	if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP))
9925 		return;
9926 
9927 	do {
9928 		handle = bnxt_hwrm_get_wol_fltrs(bp, handle);
9929 	} while (handle && handle != 0xffff);
9930 }
9931 
9932 #ifdef CONFIG_BNXT_HWMON
9933 static ssize_t bnxt_show_temp(struct device *dev,
9934 			      struct device_attribute *devattr, char *buf)
9935 {
9936 	struct hwrm_temp_monitor_query_output *resp;
9937 	struct hwrm_temp_monitor_query_input *req;
9938 	struct bnxt *bp = dev_get_drvdata(dev);
9939 	u32 len = 0;
9940 	int rc;
9941 
9942 	rc = hwrm_req_init(bp, req, HWRM_TEMP_MONITOR_QUERY);
9943 	if (rc)
9944 		return rc;
9945 	resp = hwrm_req_hold(bp, req);
9946 	rc = hwrm_req_send(bp, req);
9947 	if (!rc)
9948 		len = sprintf(buf, "%u\n", resp->temp * 1000); /* display millidegree */
9949 	hwrm_req_drop(bp, req);
9950 	if (rc)
9951 		return rc;
9952 	return len;
9953 }
9954 static SENSOR_DEVICE_ATTR(temp1_input, 0444, bnxt_show_temp, NULL, 0);
9955 
9956 static struct attribute *bnxt_attrs[] = {
9957 	&sensor_dev_attr_temp1_input.dev_attr.attr,
9958 	NULL
9959 };
9960 ATTRIBUTE_GROUPS(bnxt);
9961 
9962 static void bnxt_hwmon_close(struct bnxt *bp)
9963 {
9964 	if (bp->hwmon_dev) {
9965 		hwmon_device_unregister(bp->hwmon_dev);
9966 		bp->hwmon_dev = NULL;
9967 	}
9968 }
9969 
9970 static void bnxt_hwmon_open(struct bnxt *bp)
9971 {
9972 	struct hwrm_temp_monitor_query_input *req;
9973 	struct pci_dev *pdev = bp->pdev;
9974 	int rc;
9975 
9976 	rc = hwrm_req_init(bp, req, HWRM_TEMP_MONITOR_QUERY);
9977 	if (!rc)
9978 		rc = hwrm_req_send_silent(bp, req);
9979 	if (rc == -EACCES || rc == -EOPNOTSUPP) {
9980 		bnxt_hwmon_close(bp);
9981 		return;
9982 	}
9983 
9984 	if (bp->hwmon_dev)
9985 		return;
9986 
9987 	bp->hwmon_dev = hwmon_device_register_with_groups(&pdev->dev,
9988 							  DRV_MODULE_NAME, bp,
9989 							  bnxt_groups);
9990 	if (IS_ERR(bp->hwmon_dev)) {
9991 		bp->hwmon_dev = NULL;
9992 		dev_warn(&pdev->dev, "Cannot register hwmon device\n");
9993 	}
9994 }
9995 #else
9996 static void bnxt_hwmon_close(struct bnxt *bp)
9997 {
9998 }
9999 
10000 static void bnxt_hwmon_open(struct bnxt *bp)
10001 {
10002 }
10003 #endif
10004 
10005 static bool bnxt_eee_config_ok(struct bnxt *bp)
10006 {
10007 	struct ethtool_eee *eee = &bp->eee;
10008 	struct bnxt_link_info *link_info = &bp->link_info;
10009 
10010 	if (!(bp->phy_flags & BNXT_PHY_FL_EEE_CAP))
10011 		return true;
10012 
10013 	if (eee->eee_enabled) {
10014 		u32 advertising =
10015 			_bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0);
10016 
10017 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
10018 			eee->eee_enabled = 0;
10019 			return false;
10020 		}
10021 		if (eee->advertised & ~advertising) {
10022 			eee->advertised = advertising & eee->supported;
10023 			return false;
10024 		}
10025 	}
10026 	return true;
10027 }
10028 
10029 static int bnxt_update_phy_setting(struct bnxt *bp)
10030 {
10031 	int rc;
10032 	bool update_link = false;
10033 	bool update_pause = false;
10034 	bool update_eee = false;
10035 	struct bnxt_link_info *link_info = &bp->link_info;
10036 
10037 	rc = bnxt_update_link(bp, true);
10038 	if (rc) {
10039 		netdev_err(bp->dev, "failed to update link (rc: %x)\n",
10040 			   rc);
10041 		return rc;
10042 	}
10043 	if (!BNXT_SINGLE_PF(bp))
10044 		return 0;
10045 
10046 	if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
10047 	    (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) !=
10048 	    link_info->req_flow_ctrl)
10049 		update_pause = true;
10050 	if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
10051 	    link_info->force_pause_setting != link_info->req_flow_ctrl)
10052 		update_pause = true;
10053 	if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
10054 		if (BNXT_AUTO_MODE(link_info->auto_mode))
10055 			update_link = true;
10056 		if (link_info->req_signal_mode == BNXT_SIG_MODE_NRZ &&
10057 		    link_info->req_link_speed != link_info->force_link_speed)
10058 			update_link = true;
10059 		else if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4 &&
10060 			 link_info->req_link_speed != link_info->force_pam4_link_speed)
10061 			update_link = true;
10062 		if (link_info->req_duplex != link_info->duplex_setting)
10063 			update_link = true;
10064 	} else {
10065 		if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
10066 			update_link = true;
10067 		if (link_info->advertising != link_info->auto_link_speeds ||
10068 		    link_info->advertising_pam4 != link_info->auto_pam4_link_speeds)
10069 			update_link = true;
10070 	}
10071 
10072 	/* The last close may have shutdown the link, so need to call
10073 	 * PHY_CFG to bring it back up.
10074 	 */
10075 	if (!bp->link_info.link_up)
10076 		update_link = true;
10077 
10078 	if (!bnxt_eee_config_ok(bp))
10079 		update_eee = true;
10080 
10081 	if (update_link)
10082 		rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee);
10083 	else if (update_pause)
10084 		rc = bnxt_hwrm_set_pause(bp);
10085 	if (rc) {
10086 		netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
10087 			   rc);
10088 		return rc;
10089 	}
10090 
10091 	return rc;
10092 }
10093 
10094 /* Common routine to pre-map certain register block to different GRC window.
10095  * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
10096  * in PF and 3 windows in VF that can be customized to map in different
10097  * register blocks.
10098  */
10099 static void bnxt_preset_reg_win(struct bnxt *bp)
10100 {
10101 	if (BNXT_PF(bp)) {
10102 		/* CAG registers map to GRC window #4 */
10103 		writel(BNXT_CAG_REG_BASE,
10104 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
10105 	}
10106 }
10107 
10108 static int bnxt_init_dflt_ring_mode(struct bnxt *bp);
10109 
10110 static int bnxt_reinit_after_abort(struct bnxt *bp)
10111 {
10112 	int rc;
10113 
10114 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
10115 		return -EBUSY;
10116 
10117 	if (bp->dev->reg_state == NETREG_UNREGISTERED)
10118 		return -ENODEV;
10119 
10120 	rc = bnxt_fw_init_one(bp);
10121 	if (!rc) {
10122 		bnxt_clear_int_mode(bp);
10123 		rc = bnxt_init_int_mode(bp);
10124 		if (!rc) {
10125 			clear_bit(BNXT_STATE_ABORT_ERR, &bp->state);
10126 			set_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
10127 		}
10128 	}
10129 	return rc;
10130 }
10131 
10132 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
10133 {
10134 	int rc = 0;
10135 
10136 	bnxt_preset_reg_win(bp);
10137 	netif_carrier_off(bp->dev);
10138 	if (irq_re_init) {
10139 		/* Reserve rings now if none were reserved at driver probe. */
10140 		rc = bnxt_init_dflt_ring_mode(bp);
10141 		if (rc) {
10142 			netdev_err(bp->dev, "Failed to reserve default rings at open\n");
10143 			return rc;
10144 		}
10145 	}
10146 	rc = bnxt_reserve_rings(bp, irq_re_init);
10147 	if (rc)
10148 		return rc;
10149 	if ((bp->flags & BNXT_FLAG_RFS) &&
10150 	    !(bp->flags & BNXT_FLAG_USING_MSIX)) {
10151 		/* disable RFS if falling back to INTA */
10152 		bp->dev->hw_features &= ~NETIF_F_NTUPLE;
10153 		bp->flags &= ~BNXT_FLAG_RFS;
10154 	}
10155 
10156 	rc = bnxt_alloc_mem(bp, irq_re_init);
10157 	if (rc) {
10158 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
10159 		goto open_err_free_mem;
10160 	}
10161 
10162 	if (irq_re_init) {
10163 		bnxt_init_napi(bp);
10164 		rc = bnxt_request_irq(bp);
10165 		if (rc) {
10166 			netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
10167 			goto open_err_irq;
10168 		}
10169 	}
10170 
10171 	rc = bnxt_init_nic(bp, irq_re_init);
10172 	if (rc) {
10173 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
10174 		goto open_err_irq;
10175 	}
10176 
10177 	bnxt_enable_napi(bp);
10178 	bnxt_debug_dev_init(bp);
10179 
10180 	if (link_re_init) {
10181 		mutex_lock(&bp->link_lock);
10182 		rc = bnxt_update_phy_setting(bp);
10183 		mutex_unlock(&bp->link_lock);
10184 		if (rc) {
10185 			netdev_warn(bp->dev, "failed to update phy settings\n");
10186 			if (BNXT_SINGLE_PF(bp)) {
10187 				bp->link_info.phy_retry = true;
10188 				bp->link_info.phy_retry_expires =
10189 					jiffies + 5 * HZ;
10190 			}
10191 		}
10192 	}
10193 
10194 	if (irq_re_init)
10195 		udp_tunnel_nic_reset_ntf(bp->dev);
10196 
10197 	set_bit(BNXT_STATE_OPEN, &bp->state);
10198 	bnxt_enable_int(bp);
10199 	/* Enable TX queues */
10200 	bnxt_tx_enable(bp);
10201 	mod_timer(&bp->timer, jiffies + bp->current_interval);
10202 	/* Poll link status and check for SFP+ module status */
10203 	mutex_lock(&bp->link_lock);
10204 	bnxt_get_port_module_status(bp);
10205 	mutex_unlock(&bp->link_lock);
10206 
10207 	/* VF-reps may need to be re-opened after the PF is re-opened */
10208 	if (BNXT_PF(bp))
10209 		bnxt_vf_reps_open(bp);
10210 	return 0;
10211 
10212 open_err_irq:
10213 	bnxt_del_napi(bp);
10214 
10215 open_err_free_mem:
10216 	bnxt_free_skbs(bp);
10217 	bnxt_free_irq(bp);
10218 	bnxt_free_mem(bp, true);
10219 	return rc;
10220 }
10221 
10222 /* rtnl_lock held */
10223 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
10224 {
10225 	int rc = 0;
10226 
10227 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state))
10228 		rc = -EIO;
10229 	if (!rc)
10230 		rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
10231 	if (rc) {
10232 		netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
10233 		dev_close(bp->dev);
10234 	}
10235 	return rc;
10236 }
10237 
10238 /* rtnl_lock held, open the NIC half way by allocating all resources, but
10239  * NAPI, IRQ, and TX are not enabled.  This is mainly used for offline
10240  * self tests.
10241  */
10242 int bnxt_half_open_nic(struct bnxt *bp)
10243 {
10244 	int rc = 0;
10245 
10246 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
10247 		netdev_err(bp->dev, "A previous firmware reset has not completed, aborting half open\n");
10248 		rc = -ENODEV;
10249 		goto half_open_err;
10250 	}
10251 
10252 	rc = bnxt_alloc_mem(bp, false);
10253 	if (rc) {
10254 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
10255 		goto half_open_err;
10256 	}
10257 	rc = bnxt_init_nic(bp, false);
10258 	if (rc) {
10259 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
10260 		goto half_open_err;
10261 	}
10262 	return 0;
10263 
10264 half_open_err:
10265 	bnxt_free_skbs(bp);
10266 	bnxt_free_mem(bp, false);
10267 	dev_close(bp->dev);
10268 	return rc;
10269 }
10270 
10271 /* rtnl_lock held, this call can only be made after a previous successful
10272  * call to bnxt_half_open_nic().
10273  */
10274 void bnxt_half_close_nic(struct bnxt *bp)
10275 {
10276 	bnxt_hwrm_resource_free(bp, false, false);
10277 	bnxt_free_skbs(bp);
10278 	bnxt_free_mem(bp, false);
10279 }
10280 
10281 static void bnxt_reenable_sriov(struct bnxt *bp)
10282 {
10283 	if (BNXT_PF(bp)) {
10284 		struct bnxt_pf_info *pf = &bp->pf;
10285 		int n = pf->active_vfs;
10286 
10287 		if (n)
10288 			bnxt_cfg_hw_sriov(bp, &n, true);
10289 	}
10290 }
10291 
10292 static int bnxt_open(struct net_device *dev)
10293 {
10294 	struct bnxt *bp = netdev_priv(dev);
10295 	int rc;
10296 
10297 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
10298 		rc = bnxt_reinit_after_abort(bp);
10299 		if (rc) {
10300 			if (rc == -EBUSY)
10301 				netdev_err(bp->dev, "A previous firmware reset has not completed, aborting\n");
10302 			else
10303 				netdev_err(bp->dev, "Failed to reinitialize after aborted firmware reset\n");
10304 			return -ENODEV;
10305 		}
10306 	}
10307 
10308 	rc = bnxt_hwrm_if_change(bp, true);
10309 	if (rc)
10310 		return rc;
10311 
10312 	rc = __bnxt_open_nic(bp, true, true);
10313 	if (rc) {
10314 		bnxt_hwrm_if_change(bp, false);
10315 	} else {
10316 		if (test_and_clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) {
10317 			if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
10318 				bnxt_ulp_start(bp, 0);
10319 				bnxt_reenable_sriov(bp);
10320 			}
10321 		}
10322 		bnxt_hwmon_open(bp);
10323 	}
10324 
10325 	return rc;
10326 }
10327 
10328 static bool bnxt_drv_busy(struct bnxt *bp)
10329 {
10330 	return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) ||
10331 		test_bit(BNXT_STATE_READ_STATS, &bp->state));
10332 }
10333 
10334 static void bnxt_get_ring_stats(struct bnxt *bp,
10335 				struct rtnl_link_stats64 *stats);
10336 
10337 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init,
10338 			     bool link_re_init)
10339 {
10340 	/* Close the VF-reps before closing PF */
10341 	if (BNXT_PF(bp))
10342 		bnxt_vf_reps_close(bp);
10343 
10344 	/* Change device state to avoid TX queue wake up's */
10345 	bnxt_tx_disable(bp);
10346 
10347 	clear_bit(BNXT_STATE_OPEN, &bp->state);
10348 	smp_mb__after_atomic();
10349 	while (bnxt_drv_busy(bp))
10350 		msleep(20);
10351 
10352 	/* Flush rings and and disable interrupts */
10353 	bnxt_shutdown_nic(bp, irq_re_init);
10354 
10355 	/* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
10356 
10357 	bnxt_debug_dev_exit(bp);
10358 	bnxt_disable_napi(bp);
10359 	del_timer_sync(&bp->timer);
10360 	bnxt_free_skbs(bp);
10361 
10362 	/* Save ring stats before shutdown */
10363 	if (bp->bnapi && irq_re_init)
10364 		bnxt_get_ring_stats(bp, &bp->net_stats_prev);
10365 	if (irq_re_init) {
10366 		bnxt_free_irq(bp);
10367 		bnxt_del_napi(bp);
10368 	}
10369 	bnxt_free_mem(bp, irq_re_init);
10370 }
10371 
10372 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
10373 {
10374 	int rc = 0;
10375 
10376 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
10377 		/* If we get here, it means firmware reset is in progress
10378 		 * while we are trying to close.  We can safely proceed with
10379 		 * the close because we are holding rtnl_lock().  Some firmware
10380 		 * messages may fail as we proceed to close.  We set the
10381 		 * ABORT_ERR flag here so that the FW reset thread will later
10382 		 * abort when it gets the rtnl_lock() and sees the flag.
10383 		 */
10384 		netdev_warn(bp->dev, "FW reset in progress during close, FW reset will be aborted\n");
10385 		set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
10386 	}
10387 
10388 #ifdef CONFIG_BNXT_SRIOV
10389 	if (bp->sriov_cfg) {
10390 		rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
10391 						      !bp->sriov_cfg,
10392 						      BNXT_SRIOV_CFG_WAIT_TMO);
10393 		if (rc)
10394 			netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
10395 	}
10396 #endif
10397 	__bnxt_close_nic(bp, irq_re_init, link_re_init);
10398 	return rc;
10399 }
10400 
10401 static int bnxt_close(struct net_device *dev)
10402 {
10403 	struct bnxt *bp = netdev_priv(dev);
10404 
10405 	bnxt_hwmon_close(bp);
10406 	bnxt_close_nic(bp, true, true);
10407 	bnxt_hwrm_shutdown_link(bp);
10408 	bnxt_hwrm_if_change(bp, false);
10409 	return 0;
10410 }
10411 
10412 static int bnxt_hwrm_port_phy_read(struct bnxt *bp, u16 phy_addr, u16 reg,
10413 				   u16 *val)
10414 {
10415 	struct hwrm_port_phy_mdio_read_output *resp;
10416 	struct hwrm_port_phy_mdio_read_input *req;
10417 	int rc;
10418 
10419 	if (bp->hwrm_spec_code < 0x10a00)
10420 		return -EOPNOTSUPP;
10421 
10422 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_READ);
10423 	if (rc)
10424 		return rc;
10425 
10426 	req->port_id = cpu_to_le16(bp->pf.port_id);
10427 	req->phy_addr = phy_addr;
10428 	req->reg_addr = cpu_to_le16(reg & 0x1f);
10429 	if (mdio_phy_id_is_c45(phy_addr)) {
10430 		req->cl45_mdio = 1;
10431 		req->phy_addr = mdio_phy_id_prtad(phy_addr);
10432 		req->dev_addr = mdio_phy_id_devad(phy_addr);
10433 		req->reg_addr = cpu_to_le16(reg);
10434 	}
10435 
10436 	resp = hwrm_req_hold(bp, req);
10437 	rc = hwrm_req_send(bp, req);
10438 	if (!rc)
10439 		*val = le16_to_cpu(resp->reg_data);
10440 	hwrm_req_drop(bp, req);
10441 	return rc;
10442 }
10443 
10444 static int bnxt_hwrm_port_phy_write(struct bnxt *bp, u16 phy_addr, u16 reg,
10445 				    u16 val)
10446 {
10447 	struct hwrm_port_phy_mdio_write_input *req;
10448 	int rc;
10449 
10450 	if (bp->hwrm_spec_code < 0x10a00)
10451 		return -EOPNOTSUPP;
10452 
10453 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_WRITE);
10454 	if (rc)
10455 		return rc;
10456 
10457 	req->port_id = cpu_to_le16(bp->pf.port_id);
10458 	req->phy_addr = phy_addr;
10459 	req->reg_addr = cpu_to_le16(reg & 0x1f);
10460 	if (mdio_phy_id_is_c45(phy_addr)) {
10461 		req->cl45_mdio = 1;
10462 		req->phy_addr = mdio_phy_id_prtad(phy_addr);
10463 		req->dev_addr = mdio_phy_id_devad(phy_addr);
10464 		req->reg_addr = cpu_to_le16(reg);
10465 	}
10466 	req->reg_data = cpu_to_le16(val);
10467 
10468 	return hwrm_req_send(bp, req);
10469 }
10470 
10471 /* rtnl_lock held */
10472 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
10473 {
10474 	struct mii_ioctl_data *mdio = if_mii(ifr);
10475 	struct bnxt *bp = netdev_priv(dev);
10476 	int rc;
10477 
10478 	switch (cmd) {
10479 	case SIOCGMIIPHY:
10480 		mdio->phy_id = bp->link_info.phy_addr;
10481 
10482 		fallthrough;
10483 	case SIOCGMIIREG: {
10484 		u16 mii_regval = 0;
10485 
10486 		if (!netif_running(dev))
10487 			return -EAGAIN;
10488 
10489 		rc = bnxt_hwrm_port_phy_read(bp, mdio->phy_id, mdio->reg_num,
10490 					     &mii_regval);
10491 		mdio->val_out = mii_regval;
10492 		return rc;
10493 	}
10494 
10495 	case SIOCSMIIREG:
10496 		if (!netif_running(dev))
10497 			return -EAGAIN;
10498 
10499 		return bnxt_hwrm_port_phy_write(bp, mdio->phy_id, mdio->reg_num,
10500 						mdio->val_in);
10501 
10502 	case SIOCSHWTSTAMP:
10503 		return bnxt_hwtstamp_set(dev, ifr);
10504 
10505 	case SIOCGHWTSTAMP:
10506 		return bnxt_hwtstamp_get(dev, ifr);
10507 
10508 	default:
10509 		/* do nothing */
10510 		break;
10511 	}
10512 	return -EOPNOTSUPP;
10513 }
10514 
10515 static void bnxt_get_ring_stats(struct bnxt *bp,
10516 				struct rtnl_link_stats64 *stats)
10517 {
10518 	int i;
10519 
10520 	for (i = 0; i < bp->cp_nr_rings; i++) {
10521 		struct bnxt_napi *bnapi = bp->bnapi[i];
10522 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
10523 		u64 *sw = cpr->stats.sw_stats;
10524 
10525 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts);
10526 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts);
10527 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts);
10528 
10529 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts);
10530 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts);
10531 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts);
10532 
10533 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes);
10534 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes);
10535 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes);
10536 
10537 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes);
10538 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes);
10539 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes);
10540 
10541 		stats->rx_missed_errors +=
10542 			BNXT_GET_RING_STATS64(sw, rx_discard_pkts);
10543 
10544 		stats->multicast += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts);
10545 
10546 		stats->tx_dropped += BNXT_GET_RING_STATS64(sw, tx_error_pkts);
10547 
10548 		stats->rx_dropped +=
10549 			cpr->sw_stats.rx.rx_netpoll_discards +
10550 			cpr->sw_stats.rx.rx_oom_discards;
10551 	}
10552 }
10553 
10554 static void bnxt_add_prev_stats(struct bnxt *bp,
10555 				struct rtnl_link_stats64 *stats)
10556 {
10557 	struct rtnl_link_stats64 *prev_stats = &bp->net_stats_prev;
10558 
10559 	stats->rx_packets += prev_stats->rx_packets;
10560 	stats->tx_packets += prev_stats->tx_packets;
10561 	stats->rx_bytes += prev_stats->rx_bytes;
10562 	stats->tx_bytes += prev_stats->tx_bytes;
10563 	stats->rx_missed_errors += prev_stats->rx_missed_errors;
10564 	stats->multicast += prev_stats->multicast;
10565 	stats->rx_dropped += prev_stats->rx_dropped;
10566 	stats->tx_dropped += prev_stats->tx_dropped;
10567 }
10568 
10569 static void
10570 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
10571 {
10572 	struct bnxt *bp = netdev_priv(dev);
10573 
10574 	set_bit(BNXT_STATE_READ_STATS, &bp->state);
10575 	/* Make sure bnxt_close_nic() sees that we are reading stats before
10576 	 * we check the BNXT_STATE_OPEN flag.
10577 	 */
10578 	smp_mb__after_atomic();
10579 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
10580 		clear_bit(BNXT_STATE_READ_STATS, &bp->state);
10581 		*stats = bp->net_stats_prev;
10582 		return;
10583 	}
10584 
10585 	bnxt_get_ring_stats(bp, stats);
10586 	bnxt_add_prev_stats(bp, stats);
10587 
10588 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
10589 		u64 *rx = bp->port_stats.sw_stats;
10590 		u64 *tx = bp->port_stats.sw_stats +
10591 			  BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
10592 
10593 		stats->rx_crc_errors =
10594 			BNXT_GET_RX_PORT_STATS64(rx, rx_fcs_err_frames);
10595 		stats->rx_frame_errors =
10596 			BNXT_GET_RX_PORT_STATS64(rx, rx_align_err_frames);
10597 		stats->rx_length_errors =
10598 			BNXT_GET_RX_PORT_STATS64(rx, rx_undrsz_frames) +
10599 			BNXT_GET_RX_PORT_STATS64(rx, rx_ovrsz_frames) +
10600 			BNXT_GET_RX_PORT_STATS64(rx, rx_runt_frames);
10601 		stats->rx_errors =
10602 			BNXT_GET_RX_PORT_STATS64(rx, rx_false_carrier_frames) +
10603 			BNXT_GET_RX_PORT_STATS64(rx, rx_jbr_frames);
10604 		stats->collisions =
10605 			BNXT_GET_TX_PORT_STATS64(tx, tx_total_collisions);
10606 		stats->tx_fifo_errors =
10607 			BNXT_GET_TX_PORT_STATS64(tx, tx_fifo_underruns);
10608 		stats->tx_errors = BNXT_GET_TX_PORT_STATS64(tx, tx_err);
10609 	}
10610 	clear_bit(BNXT_STATE_READ_STATS, &bp->state);
10611 }
10612 
10613 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
10614 {
10615 	struct net_device *dev = bp->dev;
10616 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
10617 	struct netdev_hw_addr *ha;
10618 	u8 *haddr;
10619 	int mc_count = 0;
10620 	bool update = false;
10621 	int off = 0;
10622 
10623 	netdev_for_each_mc_addr(ha, dev) {
10624 		if (mc_count >= BNXT_MAX_MC_ADDRS) {
10625 			*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
10626 			vnic->mc_list_count = 0;
10627 			return false;
10628 		}
10629 		haddr = ha->addr;
10630 		if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
10631 			memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
10632 			update = true;
10633 		}
10634 		off += ETH_ALEN;
10635 		mc_count++;
10636 	}
10637 	if (mc_count)
10638 		*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
10639 
10640 	if (mc_count != vnic->mc_list_count) {
10641 		vnic->mc_list_count = mc_count;
10642 		update = true;
10643 	}
10644 	return update;
10645 }
10646 
10647 static bool bnxt_uc_list_updated(struct bnxt *bp)
10648 {
10649 	struct net_device *dev = bp->dev;
10650 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
10651 	struct netdev_hw_addr *ha;
10652 	int off = 0;
10653 
10654 	if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
10655 		return true;
10656 
10657 	netdev_for_each_uc_addr(ha, dev) {
10658 		if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
10659 			return true;
10660 
10661 		off += ETH_ALEN;
10662 	}
10663 	return false;
10664 }
10665 
10666 static void bnxt_set_rx_mode(struct net_device *dev)
10667 {
10668 	struct bnxt *bp = netdev_priv(dev);
10669 	struct bnxt_vnic_info *vnic;
10670 	bool mc_update = false;
10671 	bool uc_update;
10672 	u32 mask;
10673 
10674 	if (!test_bit(BNXT_STATE_OPEN, &bp->state))
10675 		return;
10676 
10677 	vnic = &bp->vnic_info[0];
10678 	mask = vnic->rx_mask;
10679 	mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
10680 		  CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
10681 		  CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST |
10682 		  CFA_L2_SET_RX_MASK_REQ_MASK_BCAST);
10683 
10684 	if (dev->flags & IFF_PROMISC)
10685 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
10686 
10687 	uc_update = bnxt_uc_list_updated(bp);
10688 
10689 	if (dev->flags & IFF_BROADCAST)
10690 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
10691 	if (dev->flags & IFF_ALLMULTI) {
10692 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
10693 		vnic->mc_list_count = 0;
10694 	} else {
10695 		mc_update = bnxt_mc_list_updated(bp, &mask);
10696 	}
10697 
10698 	if (mask != vnic->rx_mask || uc_update || mc_update) {
10699 		vnic->rx_mask = mask;
10700 
10701 		set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
10702 		bnxt_queue_sp_work(bp);
10703 	}
10704 }
10705 
10706 static int bnxt_cfg_rx_mode(struct bnxt *bp)
10707 {
10708 	struct net_device *dev = bp->dev;
10709 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
10710 	struct hwrm_cfa_l2_filter_free_input *req;
10711 	struct netdev_hw_addr *ha;
10712 	int i, off = 0, rc;
10713 	bool uc_update;
10714 
10715 	netif_addr_lock_bh(dev);
10716 	uc_update = bnxt_uc_list_updated(bp);
10717 	netif_addr_unlock_bh(dev);
10718 
10719 	if (!uc_update)
10720 		goto skip_uc;
10721 
10722 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE);
10723 	if (rc)
10724 		return rc;
10725 	hwrm_req_hold(bp, req);
10726 	for (i = 1; i < vnic->uc_filter_count; i++) {
10727 		req->l2_filter_id = vnic->fw_l2_filter_id[i];
10728 
10729 		rc = hwrm_req_send(bp, req);
10730 	}
10731 	hwrm_req_drop(bp, req);
10732 
10733 	vnic->uc_filter_count = 1;
10734 
10735 	netif_addr_lock_bh(dev);
10736 	if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
10737 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
10738 	} else {
10739 		netdev_for_each_uc_addr(ha, dev) {
10740 			memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
10741 			off += ETH_ALEN;
10742 			vnic->uc_filter_count++;
10743 		}
10744 	}
10745 	netif_addr_unlock_bh(dev);
10746 
10747 	for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
10748 		rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
10749 		if (rc) {
10750 			netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n",
10751 				   rc);
10752 			vnic->uc_filter_count = i;
10753 			return rc;
10754 		}
10755 	}
10756 
10757 skip_uc:
10758 	if ((vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS) &&
10759 	    !bnxt_promisc_ok(bp))
10760 		vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
10761 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
10762 	if (rc && vnic->mc_list_count) {
10763 		netdev_info(bp->dev, "Failed setting MC filters rc: %d, turning on ALL_MCAST mode\n",
10764 			    rc);
10765 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
10766 		vnic->mc_list_count = 0;
10767 		rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
10768 	}
10769 	if (rc)
10770 		netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %d\n",
10771 			   rc);
10772 
10773 	return rc;
10774 }
10775 
10776 static bool bnxt_can_reserve_rings(struct bnxt *bp)
10777 {
10778 #ifdef CONFIG_BNXT_SRIOV
10779 	if (BNXT_NEW_RM(bp) && BNXT_VF(bp)) {
10780 		struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
10781 
10782 		/* No minimum rings were provisioned by the PF.  Don't
10783 		 * reserve rings by default when device is down.
10784 		 */
10785 		if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings)
10786 			return true;
10787 
10788 		if (!netif_running(bp->dev))
10789 			return false;
10790 	}
10791 #endif
10792 	return true;
10793 }
10794 
10795 /* If the chip and firmware supports RFS */
10796 static bool bnxt_rfs_supported(struct bnxt *bp)
10797 {
10798 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
10799 		if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2)
10800 			return true;
10801 		return false;
10802 	}
10803 	/* 212 firmware is broken for aRFS */
10804 	if (BNXT_FW_MAJ(bp) == 212)
10805 		return false;
10806 	if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
10807 		return true;
10808 	if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
10809 		return true;
10810 	return false;
10811 }
10812 
10813 /* If runtime conditions support RFS */
10814 static bool bnxt_rfs_capable(struct bnxt *bp)
10815 {
10816 #ifdef CONFIG_RFS_ACCEL
10817 	int vnics, max_vnics, max_rss_ctxs;
10818 
10819 	if (bp->flags & BNXT_FLAG_CHIP_P5)
10820 		return bnxt_rfs_supported(bp);
10821 	if (!(bp->flags & BNXT_FLAG_MSIX_CAP) || !bnxt_can_reserve_rings(bp))
10822 		return false;
10823 
10824 	vnics = 1 + bp->rx_nr_rings;
10825 	max_vnics = bnxt_get_max_func_vnics(bp);
10826 	max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp);
10827 
10828 	/* RSS contexts not a limiting factor */
10829 	if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
10830 		max_rss_ctxs = max_vnics;
10831 	if (vnics > max_vnics || vnics > max_rss_ctxs) {
10832 		if (bp->rx_nr_rings > 1)
10833 			netdev_warn(bp->dev,
10834 				    "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n",
10835 				    min(max_rss_ctxs - 1, max_vnics - 1));
10836 		return false;
10837 	}
10838 
10839 	if (!BNXT_NEW_RM(bp))
10840 		return true;
10841 
10842 	if (vnics == bp->hw_resc.resv_vnics)
10843 		return true;
10844 
10845 	bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, vnics);
10846 	if (vnics <= bp->hw_resc.resv_vnics)
10847 		return true;
10848 
10849 	netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n");
10850 	bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, 1);
10851 	return false;
10852 #else
10853 	return false;
10854 #endif
10855 }
10856 
10857 static netdev_features_t bnxt_fix_features(struct net_device *dev,
10858 					   netdev_features_t features)
10859 {
10860 	struct bnxt *bp = netdev_priv(dev);
10861 	netdev_features_t vlan_features;
10862 
10863 	if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp))
10864 		features &= ~NETIF_F_NTUPLE;
10865 
10866 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
10867 		features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
10868 
10869 	if (!(features & NETIF_F_GRO))
10870 		features &= ~NETIF_F_GRO_HW;
10871 
10872 	if (features & NETIF_F_GRO_HW)
10873 		features &= ~NETIF_F_LRO;
10874 
10875 	/* Both CTAG and STAG VLAN accelaration on the RX side have to be
10876 	 * turned on or off together.
10877 	 */
10878 	vlan_features = features & BNXT_HW_FEATURE_VLAN_ALL_RX;
10879 	if (vlan_features != BNXT_HW_FEATURE_VLAN_ALL_RX) {
10880 		if (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)
10881 			features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX;
10882 		else if (vlan_features)
10883 			features |= BNXT_HW_FEATURE_VLAN_ALL_RX;
10884 	}
10885 #ifdef CONFIG_BNXT_SRIOV
10886 	if (BNXT_VF(bp) && bp->vf.vlan)
10887 		features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX;
10888 #endif
10889 	return features;
10890 }
10891 
10892 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
10893 {
10894 	struct bnxt *bp = netdev_priv(dev);
10895 	u32 flags = bp->flags;
10896 	u32 changes;
10897 	int rc = 0;
10898 	bool re_init = false;
10899 	bool update_tpa = false;
10900 
10901 	flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
10902 	if (features & NETIF_F_GRO_HW)
10903 		flags |= BNXT_FLAG_GRO;
10904 	else if (features & NETIF_F_LRO)
10905 		flags |= BNXT_FLAG_LRO;
10906 
10907 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
10908 		flags &= ~BNXT_FLAG_TPA;
10909 
10910 	if (features & BNXT_HW_FEATURE_VLAN_ALL_RX)
10911 		flags |= BNXT_FLAG_STRIP_VLAN;
10912 
10913 	if (features & NETIF_F_NTUPLE)
10914 		flags |= BNXT_FLAG_RFS;
10915 
10916 	changes = flags ^ bp->flags;
10917 	if (changes & BNXT_FLAG_TPA) {
10918 		update_tpa = true;
10919 		if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
10920 		    (flags & BNXT_FLAG_TPA) == 0 ||
10921 		    (bp->flags & BNXT_FLAG_CHIP_P5))
10922 			re_init = true;
10923 	}
10924 
10925 	if (changes & ~BNXT_FLAG_TPA)
10926 		re_init = true;
10927 
10928 	if (flags != bp->flags) {
10929 		u32 old_flags = bp->flags;
10930 
10931 		if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
10932 			bp->flags = flags;
10933 			if (update_tpa)
10934 				bnxt_set_ring_params(bp);
10935 			return rc;
10936 		}
10937 
10938 		if (re_init) {
10939 			bnxt_close_nic(bp, false, false);
10940 			bp->flags = flags;
10941 			if (update_tpa)
10942 				bnxt_set_ring_params(bp);
10943 
10944 			return bnxt_open_nic(bp, false, false);
10945 		}
10946 		if (update_tpa) {
10947 			bp->flags = flags;
10948 			rc = bnxt_set_tpa(bp,
10949 					  (flags & BNXT_FLAG_TPA) ?
10950 					  true : false);
10951 			if (rc)
10952 				bp->flags = old_flags;
10953 		}
10954 	}
10955 	return rc;
10956 }
10957 
10958 static bool bnxt_exthdr_check(struct bnxt *bp, struct sk_buff *skb, int nw_off,
10959 			      u8 **nextp)
10960 {
10961 	struct ipv6hdr *ip6h = (struct ipv6hdr *)(skb->data + nw_off);
10962 	int hdr_count = 0;
10963 	u8 *nexthdr;
10964 	int start;
10965 
10966 	/* Check that there are at most 2 IPv6 extension headers, no
10967 	 * fragment header, and each is <= 64 bytes.
10968 	 */
10969 	start = nw_off + sizeof(*ip6h);
10970 	nexthdr = &ip6h->nexthdr;
10971 	while (ipv6_ext_hdr(*nexthdr)) {
10972 		struct ipv6_opt_hdr *hp;
10973 		int hdrlen;
10974 
10975 		if (hdr_count >= 3 || *nexthdr == NEXTHDR_NONE ||
10976 		    *nexthdr == NEXTHDR_FRAGMENT)
10977 			return false;
10978 		hp = __skb_header_pointer(NULL, start, sizeof(*hp), skb->data,
10979 					  skb_headlen(skb), NULL);
10980 		if (!hp)
10981 			return false;
10982 		if (*nexthdr == NEXTHDR_AUTH)
10983 			hdrlen = ipv6_authlen(hp);
10984 		else
10985 			hdrlen = ipv6_optlen(hp);
10986 
10987 		if (hdrlen > 64)
10988 			return false;
10989 		nexthdr = &hp->nexthdr;
10990 		start += hdrlen;
10991 		hdr_count++;
10992 	}
10993 	if (nextp) {
10994 		/* Caller will check inner protocol */
10995 		if (skb->encapsulation) {
10996 			*nextp = nexthdr;
10997 			return true;
10998 		}
10999 		*nextp = NULL;
11000 	}
11001 	/* Only support TCP/UDP for non-tunneled ipv6 and inner ipv6 */
11002 	return *nexthdr == IPPROTO_TCP || *nexthdr == IPPROTO_UDP;
11003 }
11004 
11005 /* For UDP, we can only handle 1 Vxlan port and 1 Geneve port. */
11006 static bool bnxt_udp_tunl_check(struct bnxt *bp, struct sk_buff *skb)
11007 {
11008 	struct udphdr *uh = udp_hdr(skb);
11009 	__be16 udp_port = uh->dest;
11010 
11011 	if (udp_port != bp->vxlan_port && udp_port != bp->nge_port)
11012 		return false;
11013 	if (skb->inner_protocol_type == ENCAP_TYPE_ETHER) {
11014 		struct ethhdr *eh = inner_eth_hdr(skb);
11015 
11016 		switch (eh->h_proto) {
11017 		case htons(ETH_P_IP):
11018 			return true;
11019 		case htons(ETH_P_IPV6):
11020 			return bnxt_exthdr_check(bp, skb,
11021 						 skb_inner_network_offset(skb),
11022 						 NULL);
11023 		}
11024 	}
11025 	return false;
11026 }
11027 
11028 static bool bnxt_tunl_check(struct bnxt *bp, struct sk_buff *skb, u8 l4_proto)
11029 {
11030 	switch (l4_proto) {
11031 	case IPPROTO_UDP:
11032 		return bnxt_udp_tunl_check(bp, skb);
11033 	case IPPROTO_IPIP:
11034 		return true;
11035 	case IPPROTO_GRE: {
11036 		switch (skb->inner_protocol) {
11037 		default:
11038 			return false;
11039 		case htons(ETH_P_IP):
11040 			return true;
11041 		case htons(ETH_P_IPV6):
11042 			fallthrough;
11043 		}
11044 	}
11045 	case IPPROTO_IPV6:
11046 		/* Check ext headers of inner ipv6 */
11047 		return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb),
11048 					 NULL);
11049 	}
11050 	return false;
11051 }
11052 
11053 static netdev_features_t bnxt_features_check(struct sk_buff *skb,
11054 					     struct net_device *dev,
11055 					     netdev_features_t features)
11056 {
11057 	struct bnxt *bp = netdev_priv(dev);
11058 	u8 *l4_proto;
11059 
11060 	features = vlan_features_check(skb, features);
11061 	switch (vlan_get_protocol(skb)) {
11062 	case htons(ETH_P_IP):
11063 		if (!skb->encapsulation)
11064 			return features;
11065 		l4_proto = &ip_hdr(skb)->protocol;
11066 		if (bnxt_tunl_check(bp, skb, *l4_proto))
11067 			return features;
11068 		break;
11069 	case htons(ETH_P_IPV6):
11070 		if (!bnxt_exthdr_check(bp, skb, skb_network_offset(skb),
11071 				       &l4_proto))
11072 			break;
11073 		if (!l4_proto || bnxt_tunl_check(bp, skb, *l4_proto))
11074 			return features;
11075 		break;
11076 	}
11077 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
11078 }
11079 
11080 int bnxt_dbg_hwrm_rd_reg(struct bnxt *bp, u32 reg_off, u16 num_words,
11081 			 u32 *reg_buf)
11082 {
11083 	struct hwrm_dbg_read_direct_output *resp;
11084 	struct hwrm_dbg_read_direct_input *req;
11085 	__le32 *dbg_reg_buf;
11086 	dma_addr_t mapping;
11087 	int rc, i;
11088 
11089 	rc = hwrm_req_init(bp, req, HWRM_DBG_READ_DIRECT);
11090 	if (rc)
11091 		return rc;
11092 
11093 	dbg_reg_buf = hwrm_req_dma_slice(bp, req, num_words * 4,
11094 					 &mapping);
11095 	if (!dbg_reg_buf) {
11096 		rc = -ENOMEM;
11097 		goto dbg_rd_reg_exit;
11098 	}
11099 
11100 	req->host_dest_addr = cpu_to_le64(mapping);
11101 
11102 	resp = hwrm_req_hold(bp, req);
11103 	req->read_addr = cpu_to_le32(reg_off + CHIMP_REG_VIEW_ADDR);
11104 	req->read_len32 = cpu_to_le32(num_words);
11105 
11106 	rc = hwrm_req_send(bp, req);
11107 	if (rc || resp->error_code) {
11108 		rc = -EIO;
11109 		goto dbg_rd_reg_exit;
11110 	}
11111 	for (i = 0; i < num_words; i++)
11112 		reg_buf[i] = le32_to_cpu(dbg_reg_buf[i]);
11113 
11114 dbg_rd_reg_exit:
11115 	hwrm_req_drop(bp, req);
11116 	return rc;
11117 }
11118 
11119 static int bnxt_dbg_hwrm_ring_info_get(struct bnxt *bp, u8 ring_type,
11120 				       u32 ring_id, u32 *prod, u32 *cons)
11121 {
11122 	struct hwrm_dbg_ring_info_get_output *resp;
11123 	struct hwrm_dbg_ring_info_get_input *req;
11124 	int rc;
11125 
11126 	rc = hwrm_req_init(bp, req, HWRM_DBG_RING_INFO_GET);
11127 	if (rc)
11128 		return rc;
11129 
11130 	req->ring_type = ring_type;
11131 	req->fw_ring_id = cpu_to_le32(ring_id);
11132 	resp = hwrm_req_hold(bp, req);
11133 	rc = hwrm_req_send(bp, req);
11134 	if (!rc) {
11135 		*prod = le32_to_cpu(resp->producer_index);
11136 		*cons = le32_to_cpu(resp->consumer_index);
11137 	}
11138 	hwrm_req_drop(bp, req);
11139 	return rc;
11140 }
11141 
11142 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
11143 {
11144 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
11145 	int i = bnapi->index;
11146 
11147 	if (!txr)
11148 		return;
11149 
11150 	netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
11151 		    i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
11152 		    txr->tx_cons);
11153 }
11154 
11155 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
11156 {
11157 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
11158 	int i = bnapi->index;
11159 
11160 	if (!rxr)
11161 		return;
11162 
11163 	netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
11164 		    i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
11165 		    rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
11166 		    rxr->rx_sw_agg_prod);
11167 }
11168 
11169 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
11170 {
11171 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
11172 	int i = bnapi->index;
11173 
11174 	netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
11175 		    i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
11176 }
11177 
11178 static void bnxt_dbg_dump_states(struct bnxt *bp)
11179 {
11180 	int i;
11181 	struct bnxt_napi *bnapi;
11182 
11183 	for (i = 0; i < bp->cp_nr_rings; i++) {
11184 		bnapi = bp->bnapi[i];
11185 		if (netif_msg_drv(bp)) {
11186 			bnxt_dump_tx_sw_state(bnapi);
11187 			bnxt_dump_rx_sw_state(bnapi);
11188 			bnxt_dump_cp_sw_state(bnapi);
11189 		}
11190 	}
11191 }
11192 
11193 static int bnxt_hwrm_rx_ring_reset(struct bnxt *bp, int ring_nr)
11194 {
11195 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
11196 	struct hwrm_ring_reset_input *req;
11197 	struct bnxt_napi *bnapi = rxr->bnapi;
11198 	struct bnxt_cp_ring_info *cpr;
11199 	u16 cp_ring_id;
11200 	int rc;
11201 
11202 	rc = hwrm_req_init(bp, req, HWRM_RING_RESET);
11203 	if (rc)
11204 		return rc;
11205 
11206 	cpr = &bnapi->cp_ring;
11207 	cp_ring_id = cpr->cp_ring_struct.fw_ring_id;
11208 	req->cmpl_ring = cpu_to_le16(cp_ring_id);
11209 	req->ring_type = RING_RESET_REQ_RING_TYPE_RX_RING_GRP;
11210 	req->ring_id = cpu_to_le16(bp->grp_info[bnapi->index].fw_grp_id);
11211 	return hwrm_req_send_silent(bp, req);
11212 }
11213 
11214 static void bnxt_reset_task(struct bnxt *bp, bool silent)
11215 {
11216 	if (!silent)
11217 		bnxt_dbg_dump_states(bp);
11218 	if (netif_running(bp->dev)) {
11219 		int rc;
11220 
11221 		if (silent) {
11222 			bnxt_close_nic(bp, false, false);
11223 			bnxt_open_nic(bp, false, false);
11224 		} else {
11225 			bnxt_ulp_stop(bp);
11226 			bnxt_close_nic(bp, true, false);
11227 			rc = bnxt_open_nic(bp, true, false);
11228 			bnxt_ulp_start(bp, rc);
11229 		}
11230 	}
11231 }
11232 
11233 static void bnxt_tx_timeout(struct net_device *dev, unsigned int txqueue)
11234 {
11235 	struct bnxt *bp = netdev_priv(dev);
11236 
11237 	netdev_err(bp->dev,  "TX timeout detected, starting reset task!\n");
11238 	set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
11239 	bnxt_queue_sp_work(bp);
11240 }
11241 
11242 static void bnxt_fw_health_check(struct bnxt *bp)
11243 {
11244 	struct bnxt_fw_health *fw_health = bp->fw_health;
11245 	u32 val;
11246 
11247 	if (!fw_health->enabled || test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
11248 		return;
11249 
11250 	if (fw_health->tmr_counter) {
11251 		fw_health->tmr_counter--;
11252 		return;
11253 	}
11254 
11255 	val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
11256 	if (val == fw_health->last_fw_heartbeat)
11257 		goto fw_reset;
11258 
11259 	fw_health->last_fw_heartbeat = val;
11260 
11261 	val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
11262 	if (val != fw_health->last_fw_reset_cnt)
11263 		goto fw_reset;
11264 
11265 	fw_health->tmr_counter = fw_health->tmr_multiplier;
11266 	return;
11267 
11268 fw_reset:
11269 	set_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event);
11270 	bnxt_queue_sp_work(bp);
11271 }
11272 
11273 static void bnxt_timer(struct timer_list *t)
11274 {
11275 	struct bnxt *bp = from_timer(bp, t, timer);
11276 	struct net_device *dev = bp->dev;
11277 
11278 	if (!netif_running(dev) || !test_bit(BNXT_STATE_OPEN, &bp->state))
11279 		return;
11280 
11281 	if (atomic_read(&bp->intr_sem) != 0)
11282 		goto bnxt_restart_timer;
11283 
11284 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
11285 		bnxt_fw_health_check(bp);
11286 
11287 	if (bp->link_info.link_up && bp->stats_coal_ticks) {
11288 		set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event);
11289 		bnxt_queue_sp_work(bp);
11290 	}
11291 
11292 	if (bnxt_tc_flower_enabled(bp)) {
11293 		set_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event);
11294 		bnxt_queue_sp_work(bp);
11295 	}
11296 
11297 #ifdef CONFIG_RFS_ACCEL
11298 	if ((bp->flags & BNXT_FLAG_RFS) && bp->ntp_fltr_count) {
11299 		set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
11300 		bnxt_queue_sp_work(bp);
11301 	}
11302 #endif /*CONFIG_RFS_ACCEL*/
11303 
11304 	if (bp->link_info.phy_retry) {
11305 		if (time_after(jiffies, bp->link_info.phy_retry_expires)) {
11306 			bp->link_info.phy_retry = false;
11307 			netdev_warn(bp->dev, "failed to update phy settings after maximum retries.\n");
11308 		} else {
11309 			set_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event);
11310 			bnxt_queue_sp_work(bp);
11311 		}
11312 	}
11313 
11314 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && !bp->chip_rev &&
11315 	    netif_carrier_ok(dev)) {
11316 		set_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event);
11317 		bnxt_queue_sp_work(bp);
11318 	}
11319 bnxt_restart_timer:
11320 	mod_timer(&bp->timer, jiffies + bp->current_interval);
11321 }
11322 
11323 static void bnxt_rtnl_lock_sp(struct bnxt *bp)
11324 {
11325 	/* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK
11326 	 * set.  If the device is being closed, bnxt_close() may be holding
11327 	 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear.  So we
11328 	 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl().
11329 	 */
11330 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
11331 	rtnl_lock();
11332 }
11333 
11334 static void bnxt_rtnl_unlock_sp(struct bnxt *bp)
11335 {
11336 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
11337 	rtnl_unlock();
11338 }
11339 
11340 /* Only called from bnxt_sp_task() */
11341 static void bnxt_reset(struct bnxt *bp, bool silent)
11342 {
11343 	bnxt_rtnl_lock_sp(bp);
11344 	if (test_bit(BNXT_STATE_OPEN, &bp->state))
11345 		bnxt_reset_task(bp, silent);
11346 	bnxt_rtnl_unlock_sp(bp);
11347 }
11348 
11349 /* Only called from bnxt_sp_task() */
11350 static void bnxt_rx_ring_reset(struct bnxt *bp)
11351 {
11352 	int i;
11353 
11354 	bnxt_rtnl_lock_sp(bp);
11355 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
11356 		bnxt_rtnl_unlock_sp(bp);
11357 		return;
11358 	}
11359 	/* Disable and flush TPA before resetting the RX ring */
11360 	if (bp->flags & BNXT_FLAG_TPA)
11361 		bnxt_set_tpa(bp, false);
11362 	for (i = 0; i < bp->rx_nr_rings; i++) {
11363 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
11364 		struct bnxt_cp_ring_info *cpr;
11365 		int rc;
11366 
11367 		if (!rxr->bnapi->in_reset)
11368 			continue;
11369 
11370 		rc = bnxt_hwrm_rx_ring_reset(bp, i);
11371 		if (rc) {
11372 			if (rc == -EINVAL || rc == -EOPNOTSUPP)
11373 				netdev_info_once(bp->dev, "RX ring reset not supported by firmware, falling back to global reset\n");
11374 			else
11375 				netdev_warn(bp->dev, "RX ring reset failed, rc = %d, falling back to global reset\n",
11376 					    rc);
11377 			bnxt_reset_task(bp, true);
11378 			break;
11379 		}
11380 		bnxt_free_one_rx_ring_skbs(bp, i);
11381 		rxr->rx_prod = 0;
11382 		rxr->rx_agg_prod = 0;
11383 		rxr->rx_sw_agg_prod = 0;
11384 		rxr->rx_next_cons = 0;
11385 		rxr->bnapi->in_reset = false;
11386 		bnxt_alloc_one_rx_ring(bp, i);
11387 		cpr = &rxr->bnapi->cp_ring;
11388 		cpr->sw_stats.rx.rx_resets++;
11389 		if (bp->flags & BNXT_FLAG_AGG_RINGS)
11390 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
11391 		bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
11392 	}
11393 	if (bp->flags & BNXT_FLAG_TPA)
11394 		bnxt_set_tpa(bp, true);
11395 	bnxt_rtnl_unlock_sp(bp);
11396 }
11397 
11398 static void bnxt_fw_reset_close(struct bnxt *bp)
11399 {
11400 	bnxt_ulp_stop(bp);
11401 	/* When firmware is in fatal state, quiesce device and disable
11402 	 * bus master to prevent any potential bad DMAs before freeing
11403 	 * kernel memory.
11404 	 */
11405 	if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) {
11406 		u16 val = 0;
11407 
11408 		pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val);
11409 		if (val == 0xffff)
11410 			bp->fw_reset_min_dsecs = 0;
11411 		bnxt_tx_disable(bp);
11412 		bnxt_disable_napi(bp);
11413 		bnxt_disable_int_sync(bp);
11414 		bnxt_free_irq(bp);
11415 		bnxt_clear_int_mode(bp);
11416 		pci_disable_device(bp->pdev);
11417 	}
11418 	__bnxt_close_nic(bp, true, false);
11419 	bnxt_vf_reps_free(bp);
11420 	bnxt_clear_int_mode(bp);
11421 	bnxt_hwrm_func_drv_unrgtr(bp);
11422 	if (pci_is_enabled(bp->pdev))
11423 		pci_disable_device(bp->pdev);
11424 	bnxt_free_ctx_mem(bp);
11425 	kfree(bp->ctx);
11426 	bp->ctx = NULL;
11427 }
11428 
11429 static bool is_bnxt_fw_ok(struct bnxt *bp)
11430 {
11431 	struct bnxt_fw_health *fw_health = bp->fw_health;
11432 	bool no_heartbeat = false, has_reset = false;
11433 	u32 val;
11434 
11435 	val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
11436 	if (val == fw_health->last_fw_heartbeat)
11437 		no_heartbeat = true;
11438 
11439 	val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
11440 	if (val != fw_health->last_fw_reset_cnt)
11441 		has_reset = true;
11442 
11443 	if (!no_heartbeat && has_reset)
11444 		return true;
11445 
11446 	return false;
11447 }
11448 
11449 /* rtnl_lock is acquired before calling this function */
11450 static void bnxt_force_fw_reset(struct bnxt *bp)
11451 {
11452 	struct bnxt_fw_health *fw_health = bp->fw_health;
11453 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
11454 	u32 wait_dsecs;
11455 
11456 	if (!test_bit(BNXT_STATE_OPEN, &bp->state) ||
11457 	    test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
11458 		return;
11459 
11460 	if (ptp) {
11461 		spin_lock_bh(&ptp->ptp_lock);
11462 		set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11463 		spin_unlock_bh(&ptp->ptp_lock);
11464 	} else {
11465 		set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11466 	}
11467 	bnxt_fw_reset_close(bp);
11468 	wait_dsecs = fw_health->master_func_wait_dsecs;
11469 	if (fw_health->master) {
11470 		if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU)
11471 			wait_dsecs = 0;
11472 		bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW;
11473 	} else {
11474 		bp->fw_reset_timestamp = jiffies + wait_dsecs * HZ / 10;
11475 		wait_dsecs = fw_health->normal_func_wait_dsecs;
11476 		bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
11477 	}
11478 
11479 	bp->fw_reset_min_dsecs = fw_health->post_reset_wait_dsecs;
11480 	bp->fw_reset_max_dsecs = fw_health->post_reset_max_wait_dsecs;
11481 	bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10);
11482 }
11483 
11484 void bnxt_fw_exception(struct bnxt *bp)
11485 {
11486 	netdev_warn(bp->dev, "Detected firmware fatal condition, initiating reset\n");
11487 	set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
11488 	bnxt_rtnl_lock_sp(bp);
11489 	bnxt_force_fw_reset(bp);
11490 	bnxt_rtnl_unlock_sp(bp);
11491 }
11492 
11493 /* Returns the number of registered VFs, or 1 if VF configuration is pending, or
11494  * < 0 on error.
11495  */
11496 static int bnxt_get_registered_vfs(struct bnxt *bp)
11497 {
11498 #ifdef CONFIG_BNXT_SRIOV
11499 	int rc;
11500 
11501 	if (!BNXT_PF(bp))
11502 		return 0;
11503 
11504 	rc = bnxt_hwrm_func_qcfg(bp);
11505 	if (rc) {
11506 		netdev_err(bp->dev, "func_qcfg cmd failed, rc = %d\n", rc);
11507 		return rc;
11508 	}
11509 	if (bp->pf.registered_vfs)
11510 		return bp->pf.registered_vfs;
11511 	if (bp->sriov_cfg)
11512 		return 1;
11513 #endif
11514 	return 0;
11515 }
11516 
11517 void bnxt_fw_reset(struct bnxt *bp)
11518 {
11519 	bnxt_rtnl_lock_sp(bp);
11520 	if (test_bit(BNXT_STATE_OPEN, &bp->state) &&
11521 	    !test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
11522 		struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
11523 		int n = 0, tmo;
11524 
11525 		if (ptp) {
11526 			spin_lock_bh(&ptp->ptp_lock);
11527 			set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11528 			spin_unlock_bh(&ptp->ptp_lock);
11529 		} else {
11530 			set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11531 		}
11532 		if (bp->pf.active_vfs &&
11533 		    !test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
11534 			n = bnxt_get_registered_vfs(bp);
11535 		if (n < 0) {
11536 			netdev_err(bp->dev, "Firmware reset aborted, rc = %d\n",
11537 				   n);
11538 			clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11539 			dev_close(bp->dev);
11540 			goto fw_reset_exit;
11541 		} else if (n > 0) {
11542 			u16 vf_tmo_dsecs = n * 10;
11543 
11544 			if (bp->fw_reset_max_dsecs < vf_tmo_dsecs)
11545 				bp->fw_reset_max_dsecs = vf_tmo_dsecs;
11546 			bp->fw_reset_state =
11547 				BNXT_FW_RESET_STATE_POLL_VF;
11548 			bnxt_queue_fw_reset_work(bp, HZ / 10);
11549 			goto fw_reset_exit;
11550 		}
11551 		bnxt_fw_reset_close(bp);
11552 		if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
11553 			bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN;
11554 			tmo = HZ / 10;
11555 		} else {
11556 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
11557 			tmo = bp->fw_reset_min_dsecs * HZ / 10;
11558 		}
11559 		bnxt_queue_fw_reset_work(bp, tmo);
11560 	}
11561 fw_reset_exit:
11562 	bnxt_rtnl_unlock_sp(bp);
11563 }
11564 
11565 static void bnxt_chk_missed_irq(struct bnxt *bp)
11566 {
11567 	int i;
11568 
11569 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
11570 		return;
11571 
11572 	for (i = 0; i < bp->cp_nr_rings; i++) {
11573 		struct bnxt_napi *bnapi = bp->bnapi[i];
11574 		struct bnxt_cp_ring_info *cpr;
11575 		u32 fw_ring_id;
11576 		int j;
11577 
11578 		if (!bnapi)
11579 			continue;
11580 
11581 		cpr = &bnapi->cp_ring;
11582 		for (j = 0; j < 2; j++) {
11583 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
11584 			u32 val[2];
11585 
11586 			if (!cpr2 || cpr2->has_more_work ||
11587 			    !bnxt_has_work(bp, cpr2))
11588 				continue;
11589 
11590 			if (cpr2->cp_raw_cons != cpr2->last_cp_raw_cons) {
11591 				cpr2->last_cp_raw_cons = cpr2->cp_raw_cons;
11592 				continue;
11593 			}
11594 			fw_ring_id = cpr2->cp_ring_struct.fw_ring_id;
11595 			bnxt_dbg_hwrm_ring_info_get(bp,
11596 				DBG_RING_INFO_GET_REQ_RING_TYPE_L2_CMPL,
11597 				fw_ring_id, &val[0], &val[1]);
11598 			cpr->sw_stats.cmn.missed_irqs++;
11599 		}
11600 	}
11601 }
11602 
11603 static void bnxt_cfg_ntp_filters(struct bnxt *);
11604 
11605 static void bnxt_init_ethtool_link_settings(struct bnxt *bp)
11606 {
11607 	struct bnxt_link_info *link_info = &bp->link_info;
11608 
11609 	if (BNXT_AUTO_MODE(link_info->auto_mode)) {
11610 		link_info->autoneg = BNXT_AUTONEG_SPEED;
11611 		if (bp->hwrm_spec_code >= 0x10201) {
11612 			if (link_info->auto_pause_setting &
11613 			    PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE)
11614 				link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
11615 		} else {
11616 			link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
11617 		}
11618 		link_info->advertising = link_info->auto_link_speeds;
11619 		link_info->advertising_pam4 = link_info->auto_pam4_link_speeds;
11620 	} else {
11621 		link_info->req_link_speed = link_info->force_link_speed;
11622 		link_info->req_signal_mode = BNXT_SIG_MODE_NRZ;
11623 		if (link_info->force_pam4_link_speed) {
11624 			link_info->req_link_speed =
11625 				link_info->force_pam4_link_speed;
11626 			link_info->req_signal_mode = BNXT_SIG_MODE_PAM4;
11627 		}
11628 		link_info->req_duplex = link_info->duplex_setting;
11629 	}
11630 	if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL)
11631 		link_info->req_flow_ctrl =
11632 			link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH;
11633 	else
11634 		link_info->req_flow_ctrl = link_info->force_pause_setting;
11635 }
11636 
11637 static void bnxt_fw_echo_reply(struct bnxt *bp)
11638 {
11639 	struct bnxt_fw_health *fw_health = bp->fw_health;
11640 	struct hwrm_func_echo_response_input *req;
11641 	int rc;
11642 
11643 	rc = hwrm_req_init(bp, req, HWRM_FUNC_ECHO_RESPONSE);
11644 	if (rc)
11645 		return;
11646 	req->event_data1 = cpu_to_le32(fw_health->echo_req_data1);
11647 	req->event_data2 = cpu_to_le32(fw_health->echo_req_data2);
11648 	hwrm_req_send(bp, req);
11649 }
11650 
11651 static void bnxt_sp_task(struct work_struct *work)
11652 {
11653 	struct bnxt *bp = container_of(work, struct bnxt, sp_task);
11654 
11655 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
11656 	smp_mb__after_atomic();
11657 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
11658 		clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
11659 		return;
11660 	}
11661 
11662 	if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
11663 		bnxt_cfg_rx_mode(bp);
11664 
11665 	if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
11666 		bnxt_cfg_ntp_filters(bp);
11667 	if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
11668 		bnxt_hwrm_exec_fwd_req(bp);
11669 	if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) {
11670 		bnxt_hwrm_port_qstats(bp, 0);
11671 		bnxt_hwrm_port_qstats_ext(bp, 0);
11672 		bnxt_accumulate_all_stats(bp);
11673 	}
11674 
11675 	if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
11676 		int rc;
11677 
11678 		mutex_lock(&bp->link_lock);
11679 		if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT,
11680 				       &bp->sp_event))
11681 			bnxt_hwrm_phy_qcaps(bp);
11682 
11683 		rc = bnxt_update_link(bp, true);
11684 		if (rc)
11685 			netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
11686 				   rc);
11687 
11688 		if (test_and_clear_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT,
11689 				       &bp->sp_event))
11690 			bnxt_init_ethtool_link_settings(bp);
11691 		mutex_unlock(&bp->link_lock);
11692 	}
11693 	if (test_and_clear_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event)) {
11694 		int rc;
11695 
11696 		mutex_lock(&bp->link_lock);
11697 		rc = bnxt_update_phy_setting(bp);
11698 		mutex_unlock(&bp->link_lock);
11699 		if (rc) {
11700 			netdev_warn(bp->dev, "update phy settings retry failed\n");
11701 		} else {
11702 			bp->link_info.phy_retry = false;
11703 			netdev_info(bp->dev, "update phy settings retry succeeded\n");
11704 		}
11705 	}
11706 	if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) {
11707 		mutex_lock(&bp->link_lock);
11708 		bnxt_get_port_module_status(bp);
11709 		mutex_unlock(&bp->link_lock);
11710 	}
11711 
11712 	if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event))
11713 		bnxt_tc_flow_stats_work(bp);
11714 
11715 	if (test_and_clear_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event))
11716 		bnxt_chk_missed_irq(bp);
11717 
11718 	if (test_and_clear_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event))
11719 		bnxt_fw_echo_reply(bp);
11720 
11721 	/* These functions below will clear BNXT_STATE_IN_SP_TASK.  They
11722 	 * must be the last functions to be called before exiting.
11723 	 */
11724 	if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event))
11725 		bnxt_reset(bp, false);
11726 
11727 	if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event))
11728 		bnxt_reset(bp, true);
11729 
11730 	if (test_and_clear_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event))
11731 		bnxt_rx_ring_reset(bp);
11732 
11733 	if (test_and_clear_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event))
11734 		bnxt_devlink_health_report(bp, BNXT_FW_RESET_NOTIFY_SP_EVENT);
11735 
11736 	if (test_and_clear_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event)) {
11737 		if (!is_bnxt_fw_ok(bp))
11738 			bnxt_devlink_health_report(bp,
11739 						   BNXT_FW_EXCEPTION_SP_EVENT);
11740 	}
11741 
11742 	smp_mb__before_atomic();
11743 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
11744 }
11745 
11746 /* Under rtnl_lock */
11747 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs,
11748 		     int tx_xdp)
11749 {
11750 	int max_rx, max_tx, tx_sets = 1;
11751 	int tx_rings_needed, stats;
11752 	int rx_rings = rx;
11753 	int cp, vnics, rc;
11754 
11755 	if (tcs)
11756 		tx_sets = tcs;
11757 
11758 	rc = bnxt_get_max_rings(bp, &max_rx, &max_tx, sh);
11759 	if (rc)
11760 		return rc;
11761 
11762 	if (max_rx < rx)
11763 		return -ENOMEM;
11764 
11765 	tx_rings_needed = tx * tx_sets + tx_xdp;
11766 	if (max_tx < tx_rings_needed)
11767 		return -ENOMEM;
11768 
11769 	vnics = 1;
11770 	if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS)
11771 		vnics += rx_rings;
11772 
11773 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
11774 		rx_rings <<= 1;
11775 	cp = sh ? max_t(int, tx_rings_needed, rx) : tx_rings_needed + rx;
11776 	stats = cp;
11777 	if (BNXT_NEW_RM(bp)) {
11778 		cp += bnxt_get_ulp_msix_num(bp);
11779 		stats += bnxt_get_ulp_stat_ctxs(bp);
11780 	}
11781 	return bnxt_hwrm_check_rings(bp, tx_rings_needed, rx_rings, rx, cp,
11782 				     stats, vnics);
11783 }
11784 
11785 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev)
11786 {
11787 	if (bp->bar2) {
11788 		pci_iounmap(pdev, bp->bar2);
11789 		bp->bar2 = NULL;
11790 	}
11791 
11792 	if (bp->bar1) {
11793 		pci_iounmap(pdev, bp->bar1);
11794 		bp->bar1 = NULL;
11795 	}
11796 
11797 	if (bp->bar0) {
11798 		pci_iounmap(pdev, bp->bar0);
11799 		bp->bar0 = NULL;
11800 	}
11801 }
11802 
11803 static void bnxt_cleanup_pci(struct bnxt *bp)
11804 {
11805 	bnxt_unmap_bars(bp, bp->pdev);
11806 	pci_release_regions(bp->pdev);
11807 	if (pci_is_enabled(bp->pdev))
11808 		pci_disable_device(bp->pdev);
11809 }
11810 
11811 static void bnxt_init_dflt_coal(struct bnxt *bp)
11812 {
11813 	struct bnxt_coal *coal;
11814 
11815 	/* Tick values in micro seconds.
11816 	 * 1 coal_buf x bufs_per_record = 1 completion record.
11817 	 */
11818 	coal = &bp->rx_coal;
11819 	coal->coal_ticks = 10;
11820 	coal->coal_bufs = 30;
11821 	coal->coal_ticks_irq = 1;
11822 	coal->coal_bufs_irq = 2;
11823 	coal->idle_thresh = 50;
11824 	coal->bufs_per_record = 2;
11825 	coal->budget = 64;		/* NAPI budget */
11826 
11827 	coal = &bp->tx_coal;
11828 	coal->coal_ticks = 28;
11829 	coal->coal_bufs = 30;
11830 	coal->coal_ticks_irq = 2;
11831 	coal->coal_bufs_irq = 2;
11832 	coal->bufs_per_record = 1;
11833 
11834 	bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS;
11835 }
11836 
11837 static int bnxt_fw_init_one_p1(struct bnxt *bp)
11838 {
11839 	int rc;
11840 
11841 	bp->fw_cap = 0;
11842 	rc = bnxt_hwrm_ver_get(bp);
11843 	bnxt_try_map_fw_health_reg(bp);
11844 	if (rc) {
11845 		rc = bnxt_try_recover_fw(bp);
11846 		if (rc)
11847 			return rc;
11848 		rc = bnxt_hwrm_ver_get(bp);
11849 		if (rc)
11850 			return rc;
11851 	}
11852 
11853 	bnxt_nvm_cfg_ver_get(bp);
11854 
11855 	rc = bnxt_hwrm_func_reset(bp);
11856 	if (rc)
11857 		return -ENODEV;
11858 
11859 	bnxt_hwrm_fw_set_time(bp);
11860 	return 0;
11861 }
11862 
11863 static int bnxt_fw_init_one_p2(struct bnxt *bp)
11864 {
11865 	int rc;
11866 
11867 	/* Get the MAX capabilities for this function */
11868 	rc = bnxt_hwrm_func_qcaps(bp);
11869 	if (rc) {
11870 		netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
11871 			   rc);
11872 		return -ENODEV;
11873 	}
11874 
11875 	rc = bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(bp);
11876 	if (rc)
11877 		netdev_warn(bp->dev, "hwrm query adv flow mgnt failure rc: %d\n",
11878 			    rc);
11879 
11880 	if (bnxt_alloc_fw_health(bp)) {
11881 		netdev_warn(bp->dev, "no memory for firmware error recovery\n");
11882 	} else {
11883 		rc = bnxt_hwrm_error_recovery_qcfg(bp);
11884 		if (rc)
11885 			netdev_warn(bp->dev, "hwrm query error recovery failure rc: %d\n",
11886 				    rc);
11887 	}
11888 
11889 	rc = bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false);
11890 	if (rc)
11891 		return -ENODEV;
11892 
11893 	bnxt_hwrm_func_qcfg(bp);
11894 	bnxt_hwrm_vnic_qcaps(bp);
11895 	bnxt_hwrm_port_led_qcaps(bp);
11896 	bnxt_ethtool_init(bp);
11897 	bnxt_dcb_init(bp);
11898 	return 0;
11899 }
11900 
11901 static void bnxt_set_dflt_rss_hash_type(struct bnxt *bp)
11902 {
11903 	bp->flags &= ~BNXT_FLAG_UDP_RSS_CAP;
11904 	bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 |
11905 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 |
11906 			   VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 |
11907 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6;
11908 	if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) {
11909 		bp->flags |= BNXT_FLAG_UDP_RSS_CAP;
11910 		bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 |
11911 				    VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6;
11912 	}
11913 }
11914 
11915 static void bnxt_set_dflt_rfs(struct bnxt *bp)
11916 {
11917 	struct net_device *dev = bp->dev;
11918 
11919 	dev->hw_features &= ~NETIF_F_NTUPLE;
11920 	dev->features &= ~NETIF_F_NTUPLE;
11921 	bp->flags &= ~BNXT_FLAG_RFS;
11922 	if (bnxt_rfs_supported(bp)) {
11923 		dev->hw_features |= NETIF_F_NTUPLE;
11924 		if (bnxt_rfs_capable(bp)) {
11925 			bp->flags |= BNXT_FLAG_RFS;
11926 			dev->features |= NETIF_F_NTUPLE;
11927 		}
11928 	}
11929 }
11930 
11931 static void bnxt_fw_init_one_p3(struct bnxt *bp)
11932 {
11933 	struct pci_dev *pdev = bp->pdev;
11934 
11935 	bnxt_set_dflt_rss_hash_type(bp);
11936 	bnxt_set_dflt_rfs(bp);
11937 
11938 	bnxt_get_wol_settings(bp);
11939 	if (bp->flags & BNXT_FLAG_WOL_CAP)
11940 		device_set_wakeup_enable(&pdev->dev, bp->wol);
11941 	else
11942 		device_set_wakeup_capable(&pdev->dev, false);
11943 
11944 	bnxt_hwrm_set_cache_line_size(bp, cache_line_size());
11945 	bnxt_hwrm_coal_params_qcaps(bp);
11946 }
11947 
11948 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt);
11949 
11950 static int bnxt_fw_init_one(struct bnxt *bp)
11951 {
11952 	int rc;
11953 
11954 	rc = bnxt_fw_init_one_p1(bp);
11955 	if (rc) {
11956 		netdev_err(bp->dev, "Firmware init phase 1 failed\n");
11957 		return rc;
11958 	}
11959 	rc = bnxt_fw_init_one_p2(bp);
11960 	if (rc) {
11961 		netdev_err(bp->dev, "Firmware init phase 2 failed\n");
11962 		return rc;
11963 	}
11964 	rc = bnxt_probe_phy(bp, false);
11965 	if (rc)
11966 		return rc;
11967 	rc = bnxt_approve_mac(bp, bp->dev->dev_addr, false);
11968 	if (rc)
11969 		return rc;
11970 
11971 	/* In case fw capabilities have changed, destroy the unneeded
11972 	 * reporters and create newly capable ones.
11973 	 */
11974 	bnxt_dl_fw_reporters_destroy(bp, false);
11975 	bnxt_dl_fw_reporters_create(bp);
11976 	bnxt_fw_init_one_p3(bp);
11977 	return 0;
11978 }
11979 
11980 static void bnxt_fw_reset_writel(struct bnxt *bp, int reg_idx)
11981 {
11982 	struct bnxt_fw_health *fw_health = bp->fw_health;
11983 	u32 reg = fw_health->fw_reset_seq_regs[reg_idx];
11984 	u32 val = fw_health->fw_reset_seq_vals[reg_idx];
11985 	u32 reg_type, reg_off, delay_msecs;
11986 
11987 	delay_msecs = fw_health->fw_reset_seq_delay_msec[reg_idx];
11988 	reg_type = BNXT_FW_HEALTH_REG_TYPE(reg);
11989 	reg_off = BNXT_FW_HEALTH_REG_OFF(reg);
11990 	switch (reg_type) {
11991 	case BNXT_FW_HEALTH_REG_TYPE_CFG:
11992 		pci_write_config_dword(bp->pdev, reg_off, val);
11993 		break;
11994 	case BNXT_FW_HEALTH_REG_TYPE_GRC:
11995 		writel(reg_off & BNXT_GRC_BASE_MASK,
11996 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4);
11997 		reg_off = (reg_off & BNXT_GRC_OFFSET_MASK) + 0x2000;
11998 		fallthrough;
11999 	case BNXT_FW_HEALTH_REG_TYPE_BAR0:
12000 		writel(val, bp->bar0 + reg_off);
12001 		break;
12002 	case BNXT_FW_HEALTH_REG_TYPE_BAR1:
12003 		writel(val, bp->bar1 + reg_off);
12004 		break;
12005 	}
12006 	if (delay_msecs) {
12007 		pci_read_config_dword(bp->pdev, 0, &val);
12008 		msleep(delay_msecs);
12009 	}
12010 }
12011 
12012 static void bnxt_reset_all(struct bnxt *bp)
12013 {
12014 	struct bnxt_fw_health *fw_health = bp->fw_health;
12015 	int i, rc;
12016 
12017 	if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
12018 		bnxt_fw_reset_via_optee(bp);
12019 		bp->fw_reset_timestamp = jiffies;
12020 		return;
12021 	}
12022 
12023 	if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_HOST) {
12024 		for (i = 0; i < fw_health->fw_reset_seq_cnt; i++)
12025 			bnxt_fw_reset_writel(bp, i);
12026 	} else if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) {
12027 		struct hwrm_fw_reset_input *req;
12028 
12029 		rc = hwrm_req_init(bp, req, HWRM_FW_RESET);
12030 		if (!rc) {
12031 			req->target_id = cpu_to_le16(HWRM_TARGET_ID_KONG);
12032 			req->embedded_proc_type = FW_RESET_REQ_EMBEDDED_PROC_TYPE_CHIP;
12033 			req->selfrst_status = FW_RESET_REQ_SELFRST_STATUS_SELFRSTASAP;
12034 			req->flags = FW_RESET_REQ_FLAGS_RESET_GRACEFUL;
12035 			rc = hwrm_req_send(bp, req);
12036 		}
12037 		if (rc != -ENODEV)
12038 			netdev_warn(bp->dev, "Unable to reset FW rc=%d\n", rc);
12039 	}
12040 	bp->fw_reset_timestamp = jiffies;
12041 }
12042 
12043 static bool bnxt_fw_reset_timeout(struct bnxt *bp)
12044 {
12045 	return time_after(jiffies, bp->fw_reset_timestamp +
12046 			  (bp->fw_reset_max_dsecs * HZ / 10));
12047 }
12048 
12049 static void bnxt_fw_reset_abort(struct bnxt *bp, int rc)
12050 {
12051 	clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12052 	if (bp->fw_reset_state != BNXT_FW_RESET_STATE_POLL_VF) {
12053 		bnxt_ulp_start(bp, rc);
12054 		bnxt_dl_health_status_update(bp, false);
12055 	}
12056 	bp->fw_reset_state = 0;
12057 	dev_close(bp->dev);
12058 }
12059 
12060 static void bnxt_fw_reset_task(struct work_struct *work)
12061 {
12062 	struct bnxt *bp = container_of(work, struct bnxt, fw_reset_task.work);
12063 	int rc = 0;
12064 
12065 	if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
12066 		netdev_err(bp->dev, "bnxt_fw_reset_task() called when not in fw reset mode!\n");
12067 		return;
12068 	}
12069 
12070 	switch (bp->fw_reset_state) {
12071 	case BNXT_FW_RESET_STATE_POLL_VF: {
12072 		int n = bnxt_get_registered_vfs(bp);
12073 		int tmo;
12074 
12075 		if (n < 0) {
12076 			netdev_err(bp->dev, "Firmware reset aborted, subsequent func_qcfg cmd failed, rc = %d, %d msecs since reset timestamp\n",
12077 				   n, jiffies_to_msecs(jiffies -
12078 				   bp->fw_reset_timestamp));
12079 			goto fw_reset_abort;
12080 		} else if (n > 0) {
12081 			if (bnxt_fw_reset_timeout(bp)) {
12082 				clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12083 				bp->fw_reset_state = 0;
12084 				netdev_err(bp->dev, "Firmware reset aborted, bnxt_get_registered_vfs() returns %d\n",
12085 					   n);
12086 				return;
12087 			}
12088 			bnxt_queue_fw_reset_work(bp, HZ / 10);
12089 			return;
12090 		}
12091 		bp->fw_reset_timestamp = jiffies;
12092 		rtnl_lock();
12093 		if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
12094 			bnxt_fw_reset_abort(bp, rc);
12095 			rtnl_unlock();
12096 			return;
12097 		}
12098 		bnxt_fw_reset_close(bp);
12099 		if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
12100 			bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN;
12101 			tmo = HZ / 10;
12102 		} else {
12103 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
12104 			tmo = bp->fw_reset_min_dsecs * HZ / 10;
12105 		}
12106 		rtnl_unlock();
12107 		bnxt_queue_fw_reset_work(bp, tmo);
12108 		return;
12109 	}
12110 	case BNXT_FW_RESET_STATE_POLL_FW_DOWN: {
12111 		u32 val;
12112 
12113 		val = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
12114 		if (!(val & BNXT_FW_STATUS_SHUTDOWN) &&
12115 		    !bnxt_fw_reset_timeout(bp)) {
12116 			bnxt_queue_fw_reset_work(bp, HZ / 5);
12117 			return;
12118 		}
12119 
12120 		if (!bp->fw_health->master) {
12121 			u32 wait_dsecs = bp->fw_health->normal_func_wait_dsecs;
12122 
12123 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
12124 			bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10);
12125 			return;
12126 		}
12127 		bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW;
12128 	}
12129 		fallthrough;
12130 	case BNXT_FW_RESET_STATE_RESET_FW:
12131 		bnxt_reset_all(bp);
12132 		bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
12133 		bnxt_queue_fw_reset_work(bp, bp->fw_reset_min_dsecs * HZ / 10);
12134 		return;
12135 	case BNXT_FW_RESET_STATE_ENABLE_DEV:
12136 		bnxt_inv_fw_health_reg(bp);
12137 		if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) &&
12138 		    !bp->fw_reset_min_dsecs) {
12139 			u16 val;
12140 
12141 			pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val);
12142 			if (val == 0xffff) {
12143 				if (bnxt_fw_reset_timeout(bp)) {
12144 					netdev_err(bp->dev, "Firmware reset aborted, PCI config space invalid\n");
12145 					rc = -ETIMEDOUT;
12146 					goto fw_reset_abort;
12147 				}
12148 				bnxt_queue_fw_reset_work(bp, HZ / 1000);
12149 				return;
12150 			}
12151 		}
12152 		clear_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
12153 		if (pci_enable_device(bp->pdev)) {
12154 			netdev_err(bp->dev, "Cannot re-enable PCI device\n");
12155 			rc = -ENODEV;
12156 			goto fw_reset_abort;
12157 		}
12158 		pci_set_master(bp->pdev);
12159 		bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW;
12160 		fallthrough;
12161 	case BNXT_FW_RESET_STATE_POLL_FW:
12162 		bp->hwrm_cmd_timeout = SHORT_HWRM_CMD_TIMEOUT;
12163 		rc = bnxt_hwrm_poll(bp);
12164 		if (rc) {
12165 			if (bnxt_fw_reset_timeout(bp)) {
12166 				netdev_err(bp->dev, "Firmware reset aborted\n");
12167 				goto fw_reset_abort_status;
12168 			}
12169 			bnxt_queue_fw_reset_work(bp, HZ / 5);
12170 			return;
12171 		}
12172 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
12173 		bp->fw_reset_state = BNXT_FW_RESET_STATE_OPENING;
12174 		fallthrough;
12175 	case BNXT_FW_RESET_STATE_OPENING:
12176 		while (!rtnl_trylock()) {
12177 			bnxt_queue_fw_reset_work(bp, HZ / 10);
12178 			return;
12179 		}
12180 		rc = bnxt_open(bp->dev);
12181 		if (rc) {
12182 			netdev_err(bp->dev, "bnxt_open() failed during FW reset\n");
12183 			bnxt_fw_reset_abort(bp, rc);
12184 			rtnl_unlock();
12185 			return;
12186 		}
12187 
12188 		bp->fw_reset_state = 0;
12189 		/* Make sure fw_reset_state is 0 before clearing the flag */
12190 		smp_mb__before_atomic();
12191 		clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12192 		bnxt_ulp_start(bp, 0);
12193 		bnxt_reenable_sriov(bp);
12194 		bnxt_vf_reps_alloc(bp);
12195 		bnxt_vf_reps_open(bp);
12196 		bnxt_ptp_reapply_pps(bp);
12197 		bnxt_dl_health_recovery_done(bp);
12198 		bnxt_dl_health_status_update(bp, true);
12199 		rtnl_unlock();
12200 		break;
12201 	}
12202 	return;
12203 
12204 fw_reset_abort_status:
12205 	if (bp->fw_health->status_reliable ||
12206 	    (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) {
12207 		u32 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
12208 
12209 		netdev_err(bp->dev, "fw_health_status 0x%x\n", sts);
12210 	}
12211 fw_reset_abort:
12212 	rtnl_lock();
12213 	bnxt_fw_reset_abort(bp, rc);
12214 	rtnl_unlock();
12215 }
12216 
12217 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
12218 {
12219 	int rc;
12220 	struct bnxt *bp = netdev_priv(dev);
12221 
12222 	SET_NETDEV_DEV(dev, &pdev->dev);
12223 
12224 	/* enable device (incl. PCI PM wakeup), and bus-mastering */
12225 	rc = pci_enable_device(pdev);
12226 	if (rc) {
12227 		dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
12228 		goto init_err;
12229 	}
12230 
12231 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
12232 		dev_err(&pdev->dev,
12233 			"Cannot find PCI device base address, aborting\n");
12234 		rc = -ENODEV;
12235 		goto init_err_disable;
12236 	}
12237 
12238 	rc = pci_request_regions(pdev, DRV_MODULE_NAME);
12239 	if (rc) {
12240 		dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
12241 		goto init_err_disable;
12242 	}
12243 
12244 	if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
12245 	    dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
12246 		dev_err(&pdev->dev, "System does not support DMA, aborting\n");
12247 		rc = -EIO;
12248 		goto init_err_release;
12249 	}
12250 
12251 	pci_set_master(pdev);
12252 
12253 	bp->dev = dev;
12254 	bp->pdev = pdev;
12255 
12256 	/* Doorbell BAR bp->bar1 is mapped after bnxt_fw_init_one_p2()
12257 	 * determines the BAR size.
12258 	 */
12259 	bp->bar0 = pci_ioremap_bar(pdev, 0);
12260 	if (!bp->bar0) {
12261 		dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
12262 		rc = -ENOMEM;
12263 		goto init_err_release;
12264 	}
12265 
12266 	bp->bar2 = pci_ioremap_bar(pdev, 4);
12267 	if (!bp->bar2) {
12268 		dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
12269 		rc = -ENOMEM;
12270 		goto init_err_release;
12271 	}
12272 
12273 	pci_enable_pcie_error_reporting(pdev);
12274 
12275 	INIT_WORK(&bp->sp_task, bnxt_sp_task);
12276 	INIT_DELAYED_WORK(&bp->fw_reset_task, bnxt_fw_reset_task);
12277 
12278 	spin_lock_init(&bp->ntp_fltr_lock);
12279 #if BITS_PER_LONG == 32
12280 	spin_lock_init(&bp->db_lock);
12281 #endif
12282 
12283 	bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
12284 	bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
12285 
12286 	bnxt_init_dflt_coal(bp);
12287 
12288 	timer_setup(&bp->timer, bnxt_timer, 0);
12289 	bp->current_interval = BNXT_TIMER_INTERVAL;
12290 
12291 	bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID;
12292 	bp->nge_fw_dst_port_id = INVALID_HW_RING_ID;
12293 
12294 	clear_bit(BNXT_STATE_OPEN, &bp->state);
12295 	return 0;
12296 
12297 init_err_release:
12298 	bnxt_unmap_bars(bp, pdev);
12299 	pci_release_regions(pdev);
12300 
12301 init_err_disable:
12302 	pci_disable_device(pdev);
12303 
12304 init_err:
12305 	return rc;
12306 }
12307 
12308 /* rtnl_lock held */
12309 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
12310 {
12311 	struct sockaddr *addr = p;
12312 	struct bnxt *bp = netdev_priv(dev);
12313 	int rc = 0;
12314 
12315 	if (!is_valid_ether_addr(addr->sa_data))
12316 		return -EADDRNOTAVAIL;
12317 
12318 	if (ether_addr_equal(addr->sa_data, dev->dev_addr))
12319 		return 0;
12320 
12321 	rc = bnxt_approve_mac(bp, addr->sa_data, true);
12322 	if (rc)
12323 		return rc;
12324 
12325 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
12326 	if (netif_running(dev)) {
12327 		bnxt_close_nic(bp, false, false);
12328 		rc = bnxt_open_nic(bp, false, false);
12329 	}
12330 
12331 	return rc;
12332 }
12333 
12334 /* rtnl_lock held */
12335 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
12336 {
12337 	struct bnxt *bp = netdev_priv(dev);
12338 
12339 	if (netif_running(dev))
12340 		bnxt_close_nic(bp, true, false);
12341 
12342 	dev->mtu = new_mtu;
12343 	bnxt_set_ring_params(bp);
12344 
12345 	if (netif_running(dev))
12346 		return bnxt_open_nic(bp, true, false);
12347 
12348 	return 0;
12349 }
12350 
12351 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc)
12352 {
12353 	struct bnxt *bp = netdev_priv(dev);
12354 	bool sh = false;
12355 	int rc;
12356 
12357 	if (tc > bp->max_tc) {
12358 		netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n",
12359 			   tc, bp->max_tc);
12360 		return -EINVAL;
12361 	}
12362 
12363 	if (netdev_get_num_tc(dev) == tc)
12364 		return 0;
12365 
12366 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
12367 		sh = true;
12368 
12369 	rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings,
12370 			      sh, tc, bp->tx_nr_rings_xdp);
12371 	if (rc)
12372 		return rc;
12373 
12374 	/* Needs to close the device and do hw resource re-allocations */
12375 	if (netif_running(bp->dev))
12376 		bnxt_close_nic(bp, true, false);
12377 
12378 	if (tc) {
12379 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
12380 		netdev_set_num_tc(dev, tc);
12381 	} else {
12382 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
12383 		netdev_reset_tc(dev);
12384 	}
12385 	bp->tx_nr_rings += bp->tx_nr_rings_xdp;
12386 	bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
12387 			       bp->tx_nr_rings + bp->rx_nr_rings;
12388 
12389 	if (netif_running(bp->dev))
12390 		return bnxt_open_nic(bp, true, false);
12391 
12392 	return 0;
12393 }
12394 
12395 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
12396 				  void *cb_priv)
12397 {
12398 	struct bnxt *bp = cb_priv;
12399 
12400 	if (!bnxt_tc_flower_enabled(bp) ||
12401 	    !tc_cls_can_offload_and_chain0(bp->dev, type_data))
12402 		return -EOPNOTSUPP;
12403 
12404 	switch (type) {
12405 	case TC_SETUP_CLSFLOWER:
12406 		return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data);
12407 	default:
12408 		return -EOPNOTSUPP;
12409 	}
12410 }
12411 
12412 LIST_HEAD(bnxt_block_cb_list);
12413 
12414 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type,
12415 			 void *type_data)
12416 {
12417 	struct bnxt *bp = netdev_priv(dev);
12418 
12419 	switch (type) {
12420 	case TC_SETUP_BLOCK:
12421 		return flow_block_cb_setup_simple(type_data,
12422 						  &bnxt_block_cb_list,
12423 						  bnxt_setup_tc_block_cb,
12424 						  bp, bp, true);
12425 	case TC_SETUP_QDISC_MQPRIO: {
12426 		struct tc_mqprio_qopt *mqprio = type_data;
12427 
12428 		mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
12429 
12430 		return bnxt_setup_mq_tc(dev, mqprio->num_tc);
12431 	}
12432 	default:
12433 		return -EOPNOTSUPP;
12434 	}
12435 }
12436 
12437 #ifdef CONFIG_RFS_ACCEL
12438 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
12439 			    struct bnxt_ntuple_filter *f2)
12440 {
12441 	struct flow_keys *keys1 = &f1->fkeys;
12442 	struct flow_keys *keys2 = &f2->fkeys;
12443 
12444 	if (keys1->basic.n_proto != keys2->basic.n_proto ||
12445 	    keys1->basic.ip_proto != keys2->basic.ip_proto)
12446 		return false;
12447 
12448 	if (keys1->basic.n_proto == htons(ETH_P_IP)) {
12449 		if (keys1->addrs.v4addrs.src != keys2->addrs.v4addrs.src ||
12450 		    keys1->addrs.v4addrs.dst != keys2->addrs.v4addrs.dst)
12451 			return false;
12452 	} else {
12453 		if (memcmp(&keys1->addrs.v6addrs.src, &keys2->addrs.v6addrs.src,
12454 			   sizeof(keys1->addrs.v6addrs.src)) ||
12455 		    memcmp(&keys1->addrs.v6addrs.dst, &keys2->addrs.v6addrs.dst,
12456 			   sizeof(keys1->addrs.v6addrs.dst)))
12457 			return false;
12458 	}
12459 
12460 	if (keys1->ports.ports == keys2->ports.ports &&
12461 	    keys1->control.flags == keys2->control.flags &&
12462 	    ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) &&
12463 	    ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr))
12464 		return true;
12465 
12466 	return false;
12467 }
12468 
12469 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
12470 			      u16 rxq_index, u32 flow_id)
12471 {
12472 	struct bnxt *bp = netdev_priv(dev);
12473 	struct bnxt_ntuple_filter *fltr, *new_fltr;
12474 	struct flow_keys *fkeys;
12475 	struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
12476 	int rc = 0, idx, bit_id, l2_idx = 0;
12477 	struct hlist_head *head;
12478 	u32 flags;
12479 
12480 	if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) {
12481 		struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
12482 		int off = 0, j;
12483 
12484 		netif_addr_lock_bh(dev);
12485 		for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) {
12486 			if (ether_addr_equal(eth->h_dest,
12487 					     vnic->uc_list + off)) {
12488 				l2_idx = j + 1;
12489 				break;
12490 			}
12491 		}
12492 		netif_addr_unlock_bh(dev);
12493 		if (!l2_idx)
12494 			return -EINVAL;
12495 	}
12496 	new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
12497 	if (!new_fltr)
12498 		return -ENOMEM;
12499 
12500 	fkeys = &new_fltr->fkeys;
12501 	if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
12502 		rc = -EPROTONOSUPPORT;
12503 		goto err_free;
12504 	}
12505 
12506 	if ((fkeys->basic.n_proto != htons(ETH_P_IP) &&
12507 	     fkeys->basic.n_proto != htons(ETH_P_IPV6)) ||
12508 	    ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
12509 	     (fkeys->basic.ip_proto != IPPROTO_UDP))) {
12510 		rc = -EPROTONOSUPPORT;
12511 		goto err_free;
12512 	}
12513 	if (fkeys->basic.n_proto == htons(ETH_P_IPV6) &&
12514 	    bp->hwrm_spec_code < 0x10601) {
12515 		rc = -EPROTONOSUPPORT;
12516 		goto err_free;
12517 	}
12518 	flags = fkeys->control.flags;
12519 	if (((flags & FLOW_DIS_ENCAPSULATION) &&
12520 	     bp->hwrm_spec_code < 0x10601) || (flags & FLOW_DIS_IS_FRAGMENT)) {
12521 		rc = -EPROTONOSUPPORT;
12522 		goto err_free;
12523 	}
12524 
12525 	memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN);
12526 	memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
12527 
12528 	idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
12529 	head = &bp->ntp_fltr_hash_tbl[idx];
12530 	rcu_read_lock();
12531 	hlist_for_each_entry_rcu(fltr, head, hash) {
12532 		if (bnxt_fltr_match(fltr, new_fltr)) {
12533 			rcu_read_unlock();
12534 			rc = 0;
12535 			goto err_free;
12536 		}
12537 	}
12538 	rcu_read_unlock();
12539 
12540 	spin_lock_bh(&bp->ntp_fltr_lock);
12541 	bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
12542 					 BNXT_NTP_FLTR_MAX_FLTR, 0);
12543 	if (bit_id < 0) {
12544 		spin_unlock_bh(&bp->ntp_fltr_lock);
12545 		rc = -ENOMEM;
12546 		goto err_free;
12547 	}
12548 
12549 	new_fltr->sw_id = (u16)bit_id;
12550 	new_fltr->flow_id = flow_id;
12551 	new_fltr->l2_fltr_idx = l2_idx;
12552 	new_fltr->rxq = rxq_index;
12553 	hlist_add_head_rcu(&new_fltr->hash, head);
12554 	bp->ntp_fltr_count++;
12555 	spin_unlock_bh(&bp->ntp_fltr_lock);
12556 
12557 	set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
12558 	bnxt_queue_sp_work(bp);
12559 
12560 	return new_fltr->sw_id;
12561 
12562 err_free:
12563 	kfree(new_fltr);
12564 	return rc;
12565 }
12566 
12567 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
12568 {
12569 	int i;
12570 
12571 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
12572 		struct hlist_head *head;
12573 		struct hlist_node *tmp;
12574 		struct bnxt_ntuple_filter *fltr;
12575 		int rc;
12576 
12577 		head = &bp->ntp_fltr_hash_tbl[i];
12578 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
12579 			bool del = false;
12580 
12581 			if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
12582 				if (rps_may_expire_flow(bp->dev, fltr->rxq,
12583 							fltr->flow_id,
12584 							fltr->sw_id)) {
12585 					bnxt_hwrm_cfa_ntuple_filter_free(bp,
12586 									 fltr);
12587 					del = true;
12588 				}
12589 			} else {
12590 				rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
12591 								       fltr);
12592 				if (rc)
12593 					del = true;
12594 				else
12595 					set_bit(BNXT_FLTR_VALID, &fltr->state);
12596 			}
12597 
12598 			if (del) {
12599 				spin_lock_bh(&bp->ntp_fltr_lock);
12600 				hlist_del_rcu(&fltr->hash);
12601 				bp->ntp_fltr_count--;
12602 				spin_unlock_bh(&bp->ntp_fltr_lock);
12603 				synchronize_rcu();
12604 				clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
12605 				kfree(fltr);
12606 			}
12607 		}
12608 	}
12609 	if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event))
12610 		netdev_info(bp->dev, "Receive PF driver unload event!\n");
12611 }
12612 
12613 #else
12614 
12615 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
12616 {
12617 }
12618 
12619 #endif /* CONFIG_RFS_ACCEL */
12620 
12621 static int bnxt_udp_tunnel_sync(struct net_device *netdev, unsigned int table)
12622 {
12623 	struct bnxt *bp = netdev_priv(netdev);
12624 	struct udp_tunnel_info ti;
12625 	unsigned int cmd;
12626 
12627 	udp_tunnel_nic_get_port(netdev, table, 0, &ti);
12628 	if (ti.type == UDP_TUNNEL_TYPE_VXLAN) {
12629 		bp->vxlan_port = ti.port;
12630 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN;
12631 	} else {
12632 		bp->nge_port = ti.port;
12633 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE;
12634 	}
12635 
12636 	if (ti.port)
12637 		return bnxt_hwrm_tunnel_dst_port_alloc(bp, ti.port, cmd);
12638 
12639 	return bnxt_hwrm_tunnel_dst_port_free(bp, cmd);
12640 }
12641 
12642 static const struct udp_tunnel_nic_info bnxt_udp_tunnels = {
12643 	.sync_table	= bnxt_udp_tunnel_sync,
12644 	.flags		= UDP_TUNNEL_NIC_INFO_MAY_SLEEP |
12645 			  UDP_TUNNEL_NIC_INFO_OPEN_ONLY,
12646 	.tables		= {
12647 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN,  },
12648 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
12649 	},
12650 };
12651 
12652 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
12653 			       struct net_device *dev, u32 filter_mask,
12654 			       int nlflags)
12655 {
12656 	struct bnxt *bp = netdev_priv(dev);
12657 
12658 	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0,
12659 				       nlflags, filter_mask, NULL);
12660 }
12661 
12662 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
12663 			       u16 flags, struct netlink_ext_ack *extack)
12664 {
12665 	struct bnxt *bp = netdev_priv(dev);
12666 	struct nlattr *attr, *br_spec;
12667 	int rem, rc = 0;
12668 
12669 	if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp))
12670 		return -EOPNOTSUPP;
12671 
12672 	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
12673 	if (!br_spec)
12674 		return -EINVAL;
12675 
12676 	nla_for_each_nested(attr, br_spec, rem) {
12677 		u16 mode;
12678 
12679 		if (nla_type(attr) != IFLA_BRIDGE_MODE)
12680 			continue;
12681 
12682 		if (nla_len(attr) < sizeof(mode))
12683 			return -EINVAL;
12684 
12685 		mode = nla_get_u16(attr);
12686 		if (mode == bp->br_mode)
12687 			break;
12688 
12689 		rc = bnxt_hwrm_set_br_mode(bp, mode);
12690 		if (!rc)
12691 			bp->br_mode = mode;
12692 		break;
12693 	}
12694 	return rc;
12695 }
12696 
12697 int bnxt_get_port_parent_id(struct net_device *dev,
12698 			    struct netdev_phys_item_id *ppid)
12699 {
12700 	struct bnxt *bp = netdev_priv(dev);
12701 
12702 	if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV)
12703 		return -EOPNOTSUPP;
12704 
12705 	/* The PF and it's VF-reps only support the switchdev framework */
12706 	if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_DSN_VALID))
12707 		return -EOPNOTSUPP;
12708 
12709 	ppid->id_len = sizeof(bp->dsn);
12710 	memcpy(ppid->id, bp->dsn, ppid->id_len);
12711 
12712 	return 0;
12713 }
12714 
12715 static struct devlink_port *bnxt_get_devlink_port(struct net_device *dev)
12716 {
12717 	struct bnxt *bp = netdev_priv(dev);
12718 
12719 	return &bp->dl_port;
12720 }
12721 
12722 static const struct net_device_ops bnxt_netdev_ops = {
12723 	.ndo_open		= bnxt_open,
12724 	.ndo_start_xmit		= bnxt_start_xmit,
12725 	.ndo_stop		= bnxt_close,
12726 	.ndo_get_stats64	= bnxt_get_stats64,
12727 	.ndo_set_rx_mode	= bnxt_set_rx_mode,
12728 	.ndo_eth_ioctl		= bnxt_ioctl,
12729 	.ndo_validate_addr	= eth_validate_addr,
12730 	.ndo_set_mac_address	= bnxt_change_mac_addr,
12731 	.ndo_change_mtu		= bnxt_change_mtu,
12732 	.ndo_fix_features	= bnxt_fix_features,
12733 	.ndo_set_features	= bnxt_set_features,
12734 	.ndo_features_check	= bnxt_features_check,
12735 	.ndo_tx_timeout		= bnxt_tx_timeout,
12736 #ifdef CONFIG_BNXT_SRIOV
12737 	.ndo_get_vf_config	= bnxt_get_vf_config,
12738 	.ndo_set_vf_mac		= bnxt_set_vf_mac,
12739 	.ndo_set_vf_vlan	= bnxt_set_vf_vlan,
12740 	.ndo_set_vf_rate	= bnxt_set_vf_bw,
12741 	.ndo_set_vf_link_state	= bnxt_set_vf_link_state,
12742 	.ndo_set_vf_spoofchk	= bnxt_set_vf_spoofchk,
12743 	.ndo_set_vf_trust	= bnxt_set_vf_trust,
12744 #endif
12745 	.ndo_setup_tc           = bnxt_setup_tc,
12746 #ifdef CONFIG_RFS_ACCEL
12747 	.ndo_rx_flow_steer	= bnxt_rx_flow_steer,
12748 #endif
12749 	.ndo_bpf		= bnxt_xdp,
12750 	.ndo_xdp_xmit		= bnxt_xdp_xmit,
12751 	.ndo_bridge_getlink	= bnxt_bridge_getlink,
12752 	.ndo_bridge_setlink	= bnxt_bridge_setlink,
12753 	.ndo_get_devlink_port	= bnxt_get_devlink_port,
12754 };
12755 
12756 static void bnxt_remove_one(struct pci_dev *pdev)
12757 {
12758 	struct net_device *dev = pci_get_drvdata(pdev);
12759 	struct bnxt *bp = netdev_priv(dev);
12760 
12761 	if (BNXT_PF(bp))
12762 		bnxt_sriov_disable(bp);
12763 
12764 	if (BNXT_PF(bp))
12765 		devlink_port_type_clear(&bp->dl_port);
12766 
12767 	bnxt_ptp_clear(bp);
12768 	pci_disable_pcie_error_reporting(pdev);
12769 	unregister_netdev(dev);
12770 	clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12771 	/* Flush any pending tasks */
12772 	cancel_work_sync(&bp->sp_task);
12773 	cancel_delayed_work_sync(&bp->fw_reset_task);
12774 	bp->sp_event = 0;
12775 
12776 	bnxt_dl_fw_reporters_destroy(bp, true);
12777 	bnxt_dl_unregister(bp);
12778 	bnxt_shutdown_tc(bp);
12779 
12780 	bnxt_clear_int_mode(bp);
12781 	bnxt_hwrm_func_drv_unrgtr(bp);
12782 	bnxt_free_hwrm_resources(bp);
12783 	bnxt_ethtool_free(bp);
12784 	bnxt_dcb_free(bp);
12785 	kfree(bp->edev);
12786 	bp->edev = NULL;
12787 	kfree(bp->ptp_cfg);
12788 	bp->ptp_cfg = NULL;
12789 	kfree(bp->fw_health);
12790 	bp->fw_health = NULL;
12791 	bnxt_cleanup_pci(bp);
12792 	bnxt_free_ctx_mem(bp);
12793 	kfree(bp->ctx);
12794 	bp->ctx = NULL;
12795 	kfree(bp->rss_indir_tbl);
12796 	bp->rss_indir_tbl = NULL;
12797 	bnxt_free_port_stats(bp);
12798 	free_netdev(dev);
12799 }
12800 
12801 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt)
12802 {
12803 	int rc = 0;
12804 	struct bnxt_link_info *link_info = &bp->link_info;
12805 
12806 	bp->phy_flags = 0;
12807 	rc = bnxt_hwrm_phy_qcaps(bp);
12808 	if (rc) {
12809 		netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n",
12810 			   rc);
12811 		return rc;
12812 	}
12813 	if (bp->phy_flags & BNXT_PHY_FL_NO_FCS)
12814 		bp->dev->priv_flags |= IFF_SUPP_NOFCS;
12815 	else
12816 		bp->dev->priv_flags &= ~IFF_SUPP_NOFCS;
12817 	if (!fw_dflt)
12818 		return 0;
12819 
12820 	mutex_lock(&bp->link_lock);
12821 	rc = bnxt_update_link(bp, false);
12822 	if (rc) {
12823 		mutex_unlock(&bp->link_lock);
12824 		netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
12825 			   rc);
12826 		return rc;
12827 	}
12828 
12829 	/* Older firmware does not have supported_auto_speeds, so assume
12830 	 * that all supported speeds can be autonegotiated.
12831 	 */
12832 	if (link_info->auto_link_speeds && !link_info->support_auto_speeds)
12833 		link_info->support_auto_speeds = link_info->support_speeds;
12834 
12835 	bnxt_init_ethtool_link_settings(bp);
12836 	mutex_unlock(&bp->link_lock);
12837 	return 0;
12838 }
12839 
12840 static int bnxt_get_max_irq(struct pci_dev *pdev)
12841 {
12842 	u16 ctrl;
12843 
12844 	if (!pdev->msix_cap)
12845 		return 1;
12846 
12847 	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
12848 	return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
12849 }
12850 
12851 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
12852 				int *max_cp)
12853 {
12854 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
12855 	int max_ring_grps = 0, max_irq;
12856 
12857 	*max_tx = hw_resc->max_tx_rings;
12858 	*max_rx = hw_resc->max_rx_rings;
12859 	*max_cp = bnxt_get_max_func_cp_rings_for_en(bp);
12860 	max_irq = min_t(int, bnxt_get_max_func_irqs(bp) -
12861 			bnxt_get_ulp_msix_num(bp),
12862 			hw_resc->max_stat_ctxs - bnxt_get_ulp_stat_ctxs(bp));
12863 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
12864 		*max_cp = min_t(int, *max_cp, max_irq);
12865 	max_ring_grps = hw_resc->max_hw_ring_grps;
12866 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) {
12867 		*max_cp -= 1;
12868 		*max_rx -= 2;
12869 	}
12870 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
12871 		*max_rx >>= 1;
12872 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
12873 		bnxt_trim_rings(bp, max_rx, max_tx, *max_cp, false);
12874 		/* On P5 chips, max_cp output param should be available NQs */
12875 		*max_cp = max_irq;
12876 	}
12877 	*max_rx = min_t(int, *max_rx, max_ring_grps);
12878 }
12879 
12880 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
12881 {
12882 	int rx, tx, cp;
12883 
12884 	_bnxt_get_max_rings(bp, &rx, &tx, &cp);
12885 	*max_rx = rx;
12886 	*max_tx = tx;
12887 	if (!rx || !tx || !cp)
12888 		return -ENOMEM;
12889 
12890 	return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
12891 }
12892 
12893 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx,
12894 			       bool shared)
12895 {
12896 	int rc;
12897 
12898 	rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
12899 	if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) {
12900 		/* Not enough rings, try disabling agg rings. */
12901 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
12902 		rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
12903 		if (rc) {
12904 			/* set BNXT_FLAG_AGG_RINGS back for consistency */
12905 			bp->flags |= BNXT_FLAG_AGG_RINGS;
12906 			return rc;
12907 		}
12908 		bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
12909 		bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
12910 		bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
12911 		bnxt_set_ring_params(bp);
12912 	}
12913 
12914 	if (bp->flags & BNXT_FLAG_ROCE_CAP) {
12915 		int max_cp, max_stat, max_irq;
12916 
12917 		/* Reserve minimum resources for RoCE */
12918 		max_cp = bnxt_get_max_func_cp_rings(bp);
12919 		max_stat = bnxt_get_max_func_stat_ctxs(bp);
12920 		max_irq = bnxt_get_max_func_irqs(bp);
12921 		if (max_cp <= BNXT_MIN_ROCE_CP_RINGS ||
12922 		    max_irq <= BNXT_MIN_ROCE_CP_RINGS ||
12923 		    max_stat <= BNXT_MIN_ROCE_STAT_CTXS)
12924 			return 0;
12925 
12926 		max_cp -= BNXT_MIN_ROCE_CP_RINGS;
12927 		max_irq -= BNXT_MIN_ROCE_CP_RINGS;
12928 		max_stat -= BNXT_MIN_ROCE_STAT_CTXS;
12929 		max_cp = min_t(int, max_cp, max_irq);
12930 		max_cp = min_t(int, max_cp, max_stat);
12931 		rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared);
12932 		if (rc)
12933 			rc = 0;
12934 	}
12935 	return rc;
12936 }
12937 
12938 /* In initial default shared ring setting, each shared ring must have a
12939  * RX/TX ring pair.
12940  */
12941 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp)
12942 {
12943 	bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings);
12944 	bp->rx_nr_rings = bp->cp_nr_rings;
12945 	bp->tx_nr_rings_per_tc = bp->cp_nr_rings;
12946 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
12947 }
12948 
12949 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh)
12950 {
12951 	int dflt_rings, max_rx_rings, max_tx_rings, rc;
12952 
12953 	if (!bnxt_can_reserve_rings(bp))
12954 		return 0;
12955 
12956 	if (sh)
12957 		bp->flags |= BNXT_FLAG_SHARED_RINGS;
12958 	dflt_rings = is_kdump_kernel() ? 1 : netif_get_num_default_rss_queues();
12959 	/* Reduce default rings on multi-port cards so that total default
12960 	 * rings do not exceed CPU count.
12961 	 */
12962 	if (bp->port_count > 1) {
12963 		int max_rings =
12964 			max_t(int, num_online_cpus() / bp->port_count, 1);
12965 
12966 		dflt_rings = min_t(int, dflt_rings, max_rings);
12967 	}
12968 	rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh);
12969 	if (rc)
12970 		return rc;
12971 	bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
12972 	bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
12973 	if (sh)
12974 		bnxt_trim_dflt_sh_rings(bp);
12975 	else
12976 		bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings;
12977 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
12978 
12979 	rc = __bnxt_reserve_rings(bp);
12980 	if (rc)
12981 		netdev_warn(bp->dev, "Unable to reserve tx rings\n");
12982 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
12983 	if (sh)
12984 		bnxt_trim_dflt_sh_rings(bp);
12985 
12986 	/* Rings may have been trimmed, re-reserve the trimmed rings. */
12987 	if (bnxt_need_reserve_rings(bp)) {
12988 		rc = __bnxt_reserve_rings(bp);
12989 		if (rc)
12990 			netdev_warn(bp->dev, "2nd rings reservation failed.\n");
12991 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
12992 	}
12993 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
12994 		bp->rx_nr_rings++;
12995 		bp->cp_nr_rings++;
12996 	}
12997 	if (rc) {
12998 		bp->tx_nr_rings = 0;
12999 		bp->rx_nr_rings = 0;
13000 	}
13001 	return rc;
13002 }
13003 
13004 static int bnxt_init_dflt_ring_mode(struct bnxt *bp)
13005 {
13006 	int rc;
13007 
13008 	if (bp->tx_nr_rings)
13009 		return 0;
13010 
13011 	bnxt_ulp_irq_stop(bp);
13012 	bnxt_clear_int_mode(bp);
13013 	rc = bnxt_set_dflt_rings(bp, true);
13014 	if (rc) {
13015 		netdev_err(bp->dev, "Not enough rings available.\n");
13016 		goto init_dflt_ring_err;
13017 	}
13018 	rc = bnxt_init_int_mode(bp);
13019 	if (rc)
13020 		goto init_dflt_ring_err;
13021 
13022 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
13023 	if (bnxt_rfs_supported(bp) && bnxt_rfs_capable(bp)) {
13024 		bp->flags |= BNXT_FLAG_RFS;
13025 		bp->dev->features |= NETIF_F_NTUPLE;
13026 	}
13027 init_dflt_ring_err:
13028 	bnxt_ulp_irq_restart(bp, rc);
13029 	return rc;
13030 }
13031 
13032 int bnxt_restore_pf_fw_resources(struct bnxt *bp)
13033 {
13034 	int rc;
13035 
13036 	ASSERT_RTNL();
13037 	bnxt_hwrm_func_qcaps(bp);
13038 
13039 	if (netif_running(bp->dev))
13040 		__bnxt_close_nic(bp, true, false);
13041 
13042 	bnxt_ulp_irq_stop(bp);
13043 	bnxt_clear_int_mode(bp);
13044 	rc = bnxt_init_int_mode(bp);
13045 	bnxt_ulp_irq_restart(bp, rc);
13046 
13047 	if (netif_running(bp->dev)) {
13048 		if (rc)
13049 			dev_close(bp->dev);
13050 		else
13051 			rc = bnxt_open_nic(bp, true, false);
13052 	}
13053 
13054 	return rc;
13055 }
13056 
13057 static int bnxt_init_mac_addr(struct bnxt *bp)
13058 {
13059 	int rc = 0;
13060 
13061 	if (BNXT_PF(bp)) {
13062 		memcpy(bp->dev->dev_addr, bp->pf.mac_addr, ETH_ALEN);
13063 	} else {
13064 #ifdef CONFIG_BNXT_SRIOV
13065 		struct bnxt_vf_info *vf = &bp->vf;
13066 		bool strict_approval = true;
13067 
13068 		if (is_valid_ether_addr(vf->mac_addr)) {
13069 			/* overwrite netdev dev_addr with admin VF MAC */
13070 			memcpy(bp->dev->dev_addr, vf->mac_addr, ETH_ALEN);
13071 			/* Older PF driver or firmware may not approve this
13072 			 * correctly.
13073 			 */
13074 			strict_approval = false;
13075 		} else {
13076 			eth_hw_addr_random(bp->dev);
13077 		}
13078 		rc = bnxt_approve_mac(bp, bp->dev->dev_addr, strict_approval);
13079 #endif
13080 	}
13081 	return rc;
13082 }
13083 
13084 #define BNXT_VPD_LEN	512
13085 static void bnxt_vpd_read_info(struct bnxt *bp)
13086 {
13087 	struct pci_dev *pdev = bp->pdev;
13088 	int i, len, pos, ro_size, size;
13089 	ssize_t vpd_size;
13090 	u8 *vpd_data;
13091 
13092 	vpd_data = kmalloc(BNXT_VPD_LEN, GFP_KERNEL);
13093 	if (!vpd_data)
13094 		return;
13095 
13096 	vpd_size = pci_read_vpd(pdev, 0, BNXT_VPD_LEN, vpd_data);
13097 	if (vpd_size <= 0) {
13098 		netdev_err(bp->dev, "Unable to read VPD\n");
13099 		goto exit;
13100 	}
13101 
13102 	i = pci_vpd_find_tag(vpd_data, vpd_size, PCI_VPD_LRDT_RO_DATA);
13103 	if (i < 0) {
13104 		netdev_err(bp->dev, "VPD READ-Only not found\n");
13105 		goto exit;
13106 	}
13107 
13108 	i = pci_vpd_find_tag(vpd_data, vpd_size, PCI_VPD_LRDT_RO_DATA);
13109 	if (i < 0) {
13110 		netdev_err(bp->dev, "VPD READ-Only not found\n");
13111 		goto exit;
13112 	}
13113 
13114 	ro_size = pci_vpd_lrdt_size(&vpd_data[i]);
13115 	i += PCI_VPD_LRDT_TAG_SIZE;
13116 	if (i + ro_size > vpd_size)
13117 		goto exit;
13118 
13119 	pos = pci_vpd_find_info_keyword(vpd_data, i, ro_size,
13120 					PCI_VPD_RO_KEYWORD_PARTNO);
13121 	if (pos < 0)
13122 		goto read_sn;
13123 
13124 	len = pci_vpd_info_field_size(&vpd_data[pos]);
13125 	pos += PCI_VPD_INFO_FLD_HDR_SIZE;
13126 	if (len + pos > vpd_size)
13127 		goto read_sn;
13128 
13129 	size = min(len, BNXT_VPD_FLD_LEN - 1);
13130 	memcpy(bp->board_partno, &vpd_data[pos], size);
13131 
13132 read_sn:
13133 	pos = pci_vpd_find_info_keyword(vpd_data, i, ro_size,
13134 					PCI_VPD_RO_KEYWORD_SERIALNO);
13135 	if (pos < 0)
13136 		goto exit;
13137 
13138 	len = pci_vpd_info_field_size(&vpd_data[pos]);
13139 	pos += PCI_VPD_INFO_FLD_HDR_SIZE;
13140 	if (len + pos > vpd_size)
13141 		goto exit;
13142 
13143 	size = min(len, BNXT_VPD_FLD_LEN - 1);
13144 	memcpy(bp->board_serialno, &vpd_data[pos], size);
13145 exit:
13146 	kfree(vpd_data);
13147 }
13148 
13149 static int bnxt_pcie_dsn_get(struct bnxt *bp, u8 dsn[])
13150 {
13151 	struct pci_dev *pdev = bp->pdev;
13152 	u64 qword;
13153 
13154 	qword = pci_get_dsn(pdev);
13155 	if (!qword) {
13156 		netdev_info(bp->dev, "Unable to read adapter's DSN\n");
13157 		return -EOPNOTSUPP;
13158 	}
13159 
13160 	put_unaligned_le64(qword, dsn);
13161 
13162 	bp->flags |= BNXT_FLAG_DSN_VALID;
13163 	return 0;
13164 }
13165 
13166 static int bnxt_map_db_bar(struct bnxt *bp)
13167 {
13168 	if (!bp->db_size)
13169 		return -ENODEV;
13170 	bp->bar1 = pci_iomap(bp->pdev, 2, bp->db_size);
13171 	if (!bp->bar1)
13172 		return -ENOMEM;
13173 	return 0;
13174 }
13175 
13176 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
13177 {
13178 	struct net_device *dev;
13179 	struct bnxt *bp;
13180 	int rc, max_irqs;
13181 
13182 	if (pci_is_bridge(pdev))
13183 		return -ENODEV;
13184 
13185 	/* Clear any pending DMA transactions from crash kernel
13186 	 * while loading driver in capture kernel.
13187 	 */
13188 	if (is_kdump_kernel()) {
13189 		pci_clear_master(pdev);
13190 		pcie_flr(pdev);
13191 	}
13192 
13193 	max_irqs = bnxt_get_max_irq(pdev);
13194 	dev = alloc_etherdev_mq(sizeof(*bp), max_irqs);
13195 	if (!dev)
13196 		return -ENOMEM;
13197 
13198 	bp = netdev_priv(dev);
13199 	bp->msg_enable = BNXT_DEF_MSG_ENABLE;
13200 	bnxt_set_max_func_irqs(bp, max_irqs);
13201 
13202 	if (bnxt_vf_pciid(ent->driver_data))
13203 		bp->flags |= BNXT_FLAG_VF;
13204 
13205 	if (pdev->msix_cap)
13206 		bp->flags |= BNXT_FLAG_MSIX_CAP;
13207 
13208 	rc = bnxt_init_board(pdev, dev);
13209 	if (rc < 0)
13210 		goto init_err_free;
13211 
13212 	dev->netdev_ops = &bnxt_netdev_ops;
13213 	dev->watchdog_timeo = BNXT_TX_TIMEOUT;
13214 	dev->ethtool_ops = &bnxt_ethtool_ops;
13215 	pci_set_drvdata(pdev, dev);
13216 
13217 	rc = bnxt_alloc_hwrm_resources(bp);
13218 	if (rc)
13219 		goto init_err_pci_clean;
13220 
13221 	mutex_init(&bp->hwrm_cmd_lock);
13222 	mutex_init(&bp->link_lock);
13223 
13224 	rc = bnxt_fw_init_one_p1(bp);
13225 	if (rc)
13226 		goto init_err_pci_clean;
13227 
13228 	if (BNXT_PF(bp))
13229 		bnxt_vpd_read_info(bp);
13230 
13231 	if (BNXT_CHIP_P5(bp)) {
13232 		bp->flags |= BNXT_FLAG_CHIP_P5;
13233 		if (BNXT_CHIP_SR2(bp))
13234 			bp->flags |= BNXT_FLAG_CHIP_SR2;
13235 	}
13236 
13237 	rc = bnxt_alloc_rss_indir_tbl(bp);
13238 	if (rc)
13239 		goto init_err_pci_clean;
13240 
13241 	rc = bnxt_fw_init_one_p2(bp);
13242 	if (rc)
13243 		goto init_err_pci_clean;
13244 
13245 	rc = bnxt_map_db_bar(bp);
13246 	if (rc) {
13247 		dev_err(&pdev->dev, "Cannot map doorbell BAR rc = %d, aborting\n",
13248 			rc);
13249 		goto init_err_pci_clean;
13250 	}
13251 
13252 	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
13253 			   NETIF_F_TSO | NETIF_F_TSO6 |
13254 			   NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
13255 			   NETIF_F_GSO_IPXIP4 |
13256 			   NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
13257 			   NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH |
13258 			   NETIF_F_RXCSUM | NETIF_F_GRO;
13259 
13260 	if (BNXT_SUPPORTS_TPA(bp))
13261 		dev->hw_features |= NETIF_F_LRO;
13262 
13263 	dev->hw_enc_features =
13264 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
13265 			NETIF_F_TSO | NETIF_F_TSO6 |
13266 			NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
13267 			NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
13268 			NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL;
13269 	dev->udp_tunnel_nic_info = &bnxt_udp_tunnels;
13270 
13271 	dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM |
13272 				    NETIF_F_GSO_GRE_CSUM;
13273 	dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
13274 	if (bp->fw_cap & BNXT_FW_CAP_VLAN_RX_STRIP)
13275 		dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_RX;
13276 	if (bp->fw_cap & BNXT_FW_CAP_VLAN_TX_INSERT)
13277 		dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_TX;
13278 	if (BNXT_SUPPORTS_TPA(bp))
13279 		dev->hw_features |= NETIF_F_GRO_HW;
13280 	dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
13281 	if (dev->features & NETIF_F_GRO_HW)
13282 		dev->features &= ~NETIF_F_LRO;
13283 	dev->priv_flags |= IFF_UNICAST_FLT;
13284 
13285 #ifdef CONFIG_BNXT_SRIOV
13286 	init_waitqueue_head(&bp->sriov_cfg_wait);
13287 	mutex_init(&bp->sriov_lock);
13288 #endif
13289 	if (BNXT_SUPPORTS_TPA(bp)) {
13290 		bp->gro_func = bnxt_gro_func_5730x;
13291 		if (BNXT_CHIP_P4(bp))
13292 			bp->gro_func = bnxt_gro_func_5731x;
13293 		else if (BNXT_CHIP_P5(bp))
13294 			bp->gro_func = bnxt_gro_func_5750x;
13295 	}
13296 	if (!BNXT_CHIP_P4_PLUS(bp))
13297 		bp->flags |= BNXT_FLAG_DOUBLE_DB;
13298 
13299 	rc = bnxt_init_mac_addr(bp);
13300 	if (rc) {
13301 		dev_err(&pdev->dev, "Unable to initialize mac address.\n");
13302 		rc = -EADDRNOTAVAIL;
13303 		goto init_err_pci_clean;
13304 	}
13305 
13306 	if (BNXT_PF(bp)) {
13307 		/* Read the adapter's DSN to use as the eswitch switch_id */
13308 		rc = bnxt_pcie_dsn_get(bp, bp->dsn);
13309 	}
13310 
13311 	/* MTU range: 60 - FW defined max */
13312 	dev->min_mtu = ETH_ZLEN;
13313 	dev->max_mtu = bp->max_mtu;
13314 
13315 	rc = bnxt_probe_phy(bp, true);
13316 	if (rc)
13317 		goto init_err_pci_clean;
13318 
13319 	bnxt_set_rx_skb_mode(bp, false);
13320 	bnxt_set_tpa_flags(bp);
13321 	bnxt_set_ring_params(bp);
13322 	rc = bnxt_set_dflt_rings(bp, true);
13323 	if (rc) {
13324 		netdev_err(bp->dev, "Not enough rings available.\n");
13325 		rc = -ENOMEM;
13326 		goto init_err_pci_clean;
13327 	}
13328 
13329 	bnxt_fw_init_one_p3(bp);
13330 
13331 	if (dev->hw_features & BNXT_HW_FEATURE_VLAN_ALL_RX)
13332 		bp->flags |= BNXT_FLAG_STRIP_VLAN;
13333 
13334 	rc = bnxt_init_int_mode(bp);
13335 	if (rc)
13336 		goto init_err_pci_clean;
13337 
13338 	/* No TC has been set yet and rings may have been trimmed due to
13339 	 * limited MSIX, so we re-initialize the TX rings per TC.
13340 	 */
13341 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
13342 
13343 	if (BNXT_PF(bp)) {
13344 		if (!bnxt_pf_wq) {
13345 			bnxt_pf_wq =
13346 				create_singlethread_workqueue("bnxt_pf_wq");
13347 			if (!bnxt_pf_wq) {
13348 				dev_err(&pdev->dev, "Unable to create workqueue.\n");
13349 				rc = -ENOMEM;
13350 				goto init_err_pci_clean;
13351 			}
13352 		}
13353 		rc = bnxt_init_tc(bp);
13354 		if (rc)
13355 			netdev_err(dev, "Failed to initialize TC flower offload, err = %d.\n",
13356 				   rc);
13357 	}
13358 
13359 	bnxt_inv_fw_health_reg(bp);
13360 	bnxt_dl_register(bp);
13361 
13362 	rc = register_netdev(dev);
13363 	if (rc)
13364 		goto init_err_cleanup;
13365 
13366 	if (BNXT_PF(bp))
13367 		devlink_port_type_eth_set(&bp->dl_port, bp->dev);
13368 	bnxt_dl_fw_reporters_create(bp);
13369 
13370 	netdev_info(dev, "%s found at mem %lx, node addr %pM\n",
13371 		    board_info[ent->driver_data].name,
13372 		    (long)pci_resource_start(pdev, 0), dev->dev_addr);
13373 	pcie_print_link_status(pdev);
13374 
13375 	pci_save_state(pdev);
13376 	return 0;
13377 
13378 init_err_cleanup:
13379 	bnxt_dl_unregister(bp);
13380 	bnxt_shutdown_tc(bp);
13381 	bnxt_clear_int_mode(bp);
13382 
13383 init_err_pci_clean:
13384 	bnxt_hwrm_func_drv_unrgtr(bp);
13385 	bnxt_free_hwrm_resources(bp);
13386 	bnxt_ethtool_free(bp);
13387 	bnxt_ptp_clear(bp);
13388 	kfree(bp->ptp_cfg);
13389 	bp->ptp_cfg = NULL;
13390 	kfree(bp->fw_health);
13391 	bp->fw_health = NULL;
13392 	bnxt_cleanup_pci(bp);
13393 	bnxt_free_ctx_mem(bp);
13394 	kfree(bp->ctx);
13395 	bp->ctx = NULL;
13396 	kfree(bp->rss_indir_tbl);
13397 	bp->rss_indir_tbl = NULL;
13398 
13399 init_err_free:
13400 	free_netdev(dev);
13401 	return rc;
13402 }
13403 
13404 static void bnxt_shutdown(struct pci_dev *pdev)
13405 {
13406 	struct net_device *dev = pci_get_drvdata(pdev);
13407 	struct bnxt *bp;
13408 
13409 	if (!dev)
13410 		return;
13411 
13412 	rtnl_lock();
13413 	bp = netdev_priv(dev);
13414 	if (!bp)
13415 		goto shutdown_exit;
13416 
13417 	if (netif_running(dev))
13418 		dev_close(dev);
13419 
13420 	bnxt_ulp_shutdown(bp);
13421 	bnxt_clear_int_mode(bp);
13422 	pci_disable_device(pdev);
13423 
13424 	if (system_state == SYSTEM_POWER_OFF) {
13425 		pci_wake_from_d3(pdev, bp->wol);
13426 		pci_set_power_state(pdev, PCI_D3hot);
13427 	}
13428 
13429 shutdown_exit:
13430 	rtnl_unlock();
13431 }
13432 
13433 #ifdef CONFIG_PM_SLEEP
13434 static int bnxt_suspend(struct device *device)
13435 {
13436 	struct net_device *dev = dev_get_drvdata(device);
13437 	struct bnxt *bp = netdev_priv(dev);
13438 	int rc = 0;
13439 
13440 	rtnl_lock();
13441 	bnxt_ulp_stop(bp);
13442 	if (netif_running(dev)) {
13443 		netif_device_detach(dev);
13444 		rc = bnxt_close(dev);
13445 	}
13446 	bnxt_hwrm_func_drv_unrgtr(bp);
13447 	pci_disable_device(bp->pdev);
13448 	bnxt_free_ctx_mem(bp);
13449 	kfree(bp->ctx);
13450 	bp->ctx = NULL;
13451 	rtnl_unlock();
13452 	return rc;
13453 }
13454 
13455 static int bnxt_resume(struct device *device)
13456 {
13457 	struct net_device *dev = dev_get_drvdata(device);
13458 	struct bnxt *bp = netdev_priv(dev);
13459 	int rc = 0;
13460 
13461 	rtnl_lock();
13462 	rc = pci_enable_device(bp->pdev);
13463 	if (rc) {
13464 		netdev_err(dev, "Cannot re-enable PCI device during resume, err = %d\n",
13465 			   rc);
13466 		goto resume_exit;
13467 	}
13468 	pci_set_master(bp->pdev);
13469 	if (bnxt_hwrm_ver_get(bp)) {
13470 		rc = -ENODEV;
13471 		goto resume_exit;
13472 	}
13473 	rc = bnxt_hwrm_func_reset(bp);
13474 	if (rc) {
13475 		rc = -EBUSY;
13476 		goto resume_exit;
13477 	}
13478 
13479 	rc = bnxt_hwrm_func_qcaps(bp);
13480 	if (rc)
13481 		goto resume_exit;
13482 
13483 	if (bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false)) {
13484 		rc = -ENODEV;
13485 		goto resume_exit;
13486 	}
13487 
13488 	bnxt_get_wol_settings(bp);
13489 	if (netif_running(dev)) {
13490 		rc = bnxt_open(dev);
13491 		if (!rc)
13492 			netif_device_attach(dev);
13493 	}
13494 
13495 resume_exit:
13496 	bnxt_ulp_start(bp, rc);
13497 	if (!rc)
13498 		bnxt_reenable_sriov(bp);
13499 	rtnl_unlock();
13500 	return rc;
13501 }
13502 
13503 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume);
13504 #define BNXT_PM_OPS (&bnxt_pm_ops)
13505 
13506 #else
13507 
13508 #define BNXT_PM_OPS NULL
13509 
13510 #endif /* CONFIG_PM_SLEEP */
13511 
13512 /**
13513  * bnxt_io_error_detected - called when PCI error is detected
13514  * @pdev: Pointer to PCI device
13515  * @state: The current pci connection state
13516  *
13517  * This function is called after a PCI bus error affecting
13518  * this device has been detected.
13519  */
13520 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev,
13521 					       pci_channel_state_t state)
13522 {
13523 	struct net_device *netdev = pci_get_drvdata(pdev);
13524 	struct bnxt *bp = netdev_priv(netdev);
13525 
13526 	netdev_info(netdev, "PCI I/O error detected\n");
13527 
13528 	rtnl_lock();
13529 	netif_device_detach(netdev);
13530 
13531 	bnxt_ulp_stop(bp);
13532 
13533 	if (state == pci_channel_io_perm_failure) {
13534 		rtnl_unlock();
13535 		return PCI_ERS_RESULT_DISCONNECT;
13536 	}
13537 
13538 	if (state == pci_channel_io_frozen)
13539 		set_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, &bp->state);
13540 
13541 	if (netif_running(netdev))
13542 		bnxt_close(netdev);
13543 
13544 	if (pci_is_enabled(pdev))
13545 		pci_disable_device(pdev);
13546 	bnxt_free_ctx_mem(bp);
13547 	kfree(bp->ctx);
13548 	bp->ctx = NULL;
13549 	rtnl_unlock();
13550 
13551 	/* Request a slot slot reset. */
13552 	return PCI_ERS_RESULT_NEED_RESET;
13553 }
13554 
13555 /**
13556  * bnxt_io_slot_reset - called after the pci bus has been reset.
13557  * @pdev: Pointer to PCI device
13558  *
13559  * Restart the card from scratch, as if from a cold-boot.
13560  * At this point, the card has exprienced a hard reset,
13561  * followed by fixups by BIOS, and has its config space
13562  * set up identically to what it was at cold boot.
13563  */
13564 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev)
13565 {
13566 	pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
13567 	struct net_device *netdev = pci_get_drvdata(pdev);
13568 	struct bnxt *bp = netdev_priv(netdev);
13569 	int err = 0, off;
13570 
13571 	netdev_info(bp->dev, "PCI Slot Reset\n");
13572 
13573 	rtnl_lock();
13574 
13575 	if (pci_enable_device(pdev)) {
13576 		dev_err(&pdev->dev,
13577 			"Cannot re-enable PCI device after reset.\n");
13578 	} else {
13579 		pci_set_master(pdev);
13580 		/* Upon fatal error, our device internal logic that latches to
13581 		 * BAR value is getting reset and will restore only upon
13582 		 * rewritting the BARs.
13583 		 *
13584 		 * As pci_restore_state() does not re-write the BARs if the
13585 		 * value is same as saved value earlier, driver needs to
13586 		 * write the BARs to 0 to force restore, in case of fatal error.
13587 		 */
13588 		if (test_and_clear_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN,
13589 				       &bp->state)) {
13590 			for (off = PCI_BASE_ADDRESS_0;
13591 			     off <= PCI_BASE_ADDRESS_5; off += 4)
13592 				pci_write_config_dword(bp->pdev, off, 0);
13593 		}
13594 		pci_restore_state(pdev);
13595 		pci_save_state(pdev);
13596 
13597 		err = bnxt_hwrm_func_reset(bp);
13598 		if (!err)
13599 			result = PCI_ERS_RESULT_RECOVERED;
13600 	}
13601 
13602 	rtnl_unlock();
13603 
13604 	return result;
13605 }
13606 
13607 /**
13608  * bnxt_io_resume - called when traffic can start flowing again.
13609  * @pdev: Pointer to PCI device
13610  *
13611  * This callback is called when the error recovery driver tells
13612  * us that its OK to resume normal operation.
13613  */
13614 static void bnxt_io_resume(struct pci_dev *pdev)
13615 {
13616 	struct net_device *netdev = pci_get_drvdata(pdev);
13617 	struct bnxt *bp = netdev_priv(netdev);
13618 	int err;
13619 
13620 	netdev_info(bp->dev, "PCI Slot Resume\n");
13621 	rtnl_lock();
13622 
13623 	err = bnxt_hwrm_func_qcaps(bp);
13624 	if (!err && netif_running(netdev))
13625 		err = bnxt_open(netdev);
13626 
13627 	bnxt_ulp_start(bp, err);
13628 	if (!err) {
13629 		bnxt_reenable_sriov(bp);
13630 		netif_device_attach(netdev);
13631 	}
13632 
13633 	rtnl_unlock();
13634 }
13635 
13636 static const struct pci_error_handlers bnxt_err_handler = {
13637 	.error_detected	= bnxt_io_error_detected,
13638 	.slot_reset	= bnxt_io_slot_reset,
13639 	.resume		= bnxt_io_resume
13640 };
13641 
13642 static struct pci_driver bnxt_pci_driver = {
13643 	.name		= DRV_MODULE_NAME,
13644 	.id_table	= bnxt_pci_tbl,
13645 	.probe		= bnxt_init_one,
13646 	.remove		= bnxt_remove_one,
13647 	.shutdown	= bnxt_shutdown,
13648 	.driver.pm	= BNXT_PM_OPS,
13649 	.err_handler	= &bnxt_err_handler,
13650 #if defined(CONFIG_BNXT_SRIOV)
13651 	.sriov_configure = bnxt_sriov_configure,
13652 #endif
13653 };
13654 
13655 static int __init bnxt_init(void)
13656 {
13657 	bnxt_debug_init();
13658 	return pci_register_driver(&bnxt_pci_driver);
13659 }
13660 
13661 static void __exit bnxt_exit(void)
13662 {
13663 	pci_unregister_driver(&bnxt_pci_driver);
13664 	if (bnxt_pf_wq)
13665 		destroy_workqueue(bnxt_pf_wq);
13666 	bnxt_debug_exit();
13667 }
13668 
13669 module_init(bnxt_init);
13670 module_exit(bnxt_exit);
13671