1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2016 Broadcom Corporation
4  * Copyright (c) 2016-2019 Broadcom Limited
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation.
9  */
10 
11 #include <linux/module.h>
12 
13 #include <linux/stringify.h>
14 #include <linux/kernel.h>
15 #include <linux/timer.h>
16 #include <linux/errno.h>
17 #include <linux/ioport.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 #include <linux/interrupt.h>
21 #include <linux/pci.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/skbuff.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/bitops.h>
27 #include <linux/io.h>
28 #include <linux/irq.h>
29 #include <linux/delay.h>
30 #include <asm/byteorder.h>
31 #include <asm/page.h>
32 #include <linux/time.h>
33 #include <linux/mii.h>
34 #include <linux/mdio.h>
35 #include <linux/if.h>
36 #include <linux/if_vlan.h>
37 #include <linux/if_bridge.h>
38 #include <linux/rtc.h>
39 #include <linux/bpf.h>
40 #include <net/ip.h>
41 #include <net/tcp.h>
42 #include <net/udp.h>
43 #include <net/checksum.h>
44 #include <net/ip6_checksum.h>
45 #include <net/udp_tunnel.h>
46 #include <linux/workqueue.h>
47 #include <linux/prefetch.h>
48 #include <linux/cache.h>
49 #include <linux/log2.h>
50 #include <linux/aer.h>
51 #include <linux/bitmap.h>
52 #include <linux/cpu_rmap.h>
53 #include <linux/cpumask.h>
54 #include <net/pkt_cls.h>
55 #include <linux/hwmon.h>
56 #include <linux/hwmon-sysfs.h>
57 #include <net/page_pool.h>
58 
59 #include "bnxt_hsi.h"
60 #include "bnxt.h"
61 #include "bnxt_ulp.h"
62 #include "bnxt_sriov.h"
63 #include "bnxt_ethtool.h"
64 #include "bnxt_dcb.h"
65 #include "bnxt_xdp.h"
66 #include "bnxt_vfr.h"
67 #include "bnxt_tc.h"
68 #include "bnxt_devlink.h"
69 #include "bnxt_debugfs.h"
70 
71 #define BNXT_TX_TIMEOUT		(5 * HZ)
72 #define BNXT_DEF_MSG_ENABLE	(NETIF_MSG_DRV | NETIF_MSG_HW)
73 
74 MODULE_LICENSE("GPL");
75 MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
76 
77 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
78 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
79 #define BNXT_RX_COPY_THRESH 256
80 
81 #define BNXT_TX_PUSH_THRESH 164
82 
83 enum board_idx {
84 	BCM57301,
85 	BCM57302,
86 	BCM57304,
87 	BCM57417_NPAR,
88 	BCM58700,
89 	BCM57311,
90 	BCM57312,
91 	BCM57402,
92 	BCM57404,
93 	BCM57406,
94 	BCM57402_NPAR,
95 	BCM57407,
96 	BCM57412,
97 	BCM57414,
98 	BCM57416,
99 	BCM57417,
100 	BCM57412_NPAR,
101 	BCM57314,
102 	BCM57417_SFP,
103 	BCM57416_SFP,
104 	BCM57404_NPAR,
105 	BCM57406_NPAR,
106 	BCM57407_SFP,
107 	BCM57407_NPAR,
108 	BCM57414_NPAR,
109 	BCM57416_NPAR,
110 	BCM57452,
111 	BCM57454,
112 	BCM5745x_NPAR,
113 	BCM57508,
114 	BCM57504,
115 	BCM57502,
116 	BCM57508_NPAR,
117 	BCM57504_NPAR,
118 	BCM57502_NPAR,
119 	BCM58802,
120 	BCM58804,
121 	BCM58808,
122 	NETXTREME_E_VF,
123 	NETXTREME_C_VF,
124 	NETXTREME_S_VF,
125 	NETXTREME_E_P5_VF,
126 };
127 
128 /* indexed by enum above */
129 static const struct {
130 	char *name;
131 } board_info[] = {
132 	[BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" },
133 	[BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" },
134 	[BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
135 	[BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" },
136 	[BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" },
137 	[BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" },
138 	[BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" },
139 	[BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" },
140 	[BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" },
141 	[BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" },
142 	[BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" },
143 	[BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" },
144 	[BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" },
145 	[BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" },
146 	[BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" },
147 	[BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" },
148 	[BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" },
149 	[BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
150 	[BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" },
151 	[BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" },
152 	[BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" },
153 	[BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" },
154 	[BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" },
155 	[BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" },
156 	[BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" },
157 	[BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" },
158 	[BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" },
159 	[BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
160 	[BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" },
161 	[BCM57508] = { "Broadcom BCM57508 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
162 	[BCM57504] = { "Broadcom BCM57504 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
163 	[BCM57502] = { "Broadcom BCM57502 NetXtreme-E 10Gb/25Gb/50Gb Ethernet" },
164 	[BCM57508_NPAR] = { "Broadcom BCM57508 NetXtreme-E Ethernet Partition" },
165 	[BCM57504_NPAR] = { "Broadcom BCM57504 NetXtreme-E Ethernet Partition" },
166 	[BCM57502_NPAR] = { "Broadcom BCM57502 NetXtreme-E Ethernet Partition" },
167 	[BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" },
168 	[BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
169 	[BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
170 	[NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" },
171 	[NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" },
172 	[NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" },
173 	[NETXTREME_E_P5_VF] = { "Broadcom BCM5750X NetXtreme-E Ethernet Virtual Function" },
174 };
175 
176 static const struct pci_device_id bnxt_pci_tbl[] = {
177 	{ PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR },
178 	{ PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR },
179 	{ PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 },
180 	{ PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR },
181 	{ PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
182 	{ PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
183 	{ PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
184 	{ PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR },
185 	{ PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 },
186 	{ PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 },
187 	{ PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 },
188 	{ PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
189 	{ PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
190 	{ PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
191 	{ PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR },
192 	{ PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 },
193 	{ PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 },
194 	{ PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 },
195 	{ PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 },
196 	{ PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 },
197 	{ PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR },
198 	{ PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 },
199 	{ PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP },
200 	{ PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP },
201 	{ PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR },
202 	{ PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR },
203 	{ PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP },
204 	{ PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR },
205 	{ PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR },
206 	{ PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR },
207 	{ PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR },
208 	{ PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR },
209 	{ PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR },
210 	{ PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 },
211 	{ PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 },
212 	{ PCI_VDEVICE(BROADCOM, 0x1750), .driver_data = BCM57508 },
213 	{ PCI_VDEVICE(BROADCOM, 0x1751), .driver_data = BCM57504 },
214 	{ PCI_VDEVICE(BROADCOM, 0x1752), .driver_data = BCM57502 },
215 	{ PCI_VDEVICE(BROADCOM, 0x1800), .driver_data = BCM57508_NPAR },
216 	{ PCI_VDEVICE(BROADCOM, 0x1801), .driver_data = BCM57504_NPAR },
217 	{ PCI_VDEVICE(BROADCOM, 0x1802), .driver_data = BCM57502_NPAR },
218 	{ PCI_VDEVICE(BROADCOM, 0x1803), .driver_data = BCM57508_NPAR },
219 	{ PCI_VDEVICE(BROADCOM, 0x1804), .driver_data = BCM57504_NPAR },
220 	{ PCI_VDEVICE(BROADCOM, 0x1805), .driver_data = BCM57502_NPAR },
221 	{ PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 },
222 	{ PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 },
223 #ifdef CONFIG_BNXT_SRIOV
224 	{ PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF },
225 	{ PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF },
226 	{ PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF },
227 	{ PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF },
228 	{ PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF },
229 	{ PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF },
230 	{ PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF },
231 	{ PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF },
232 	{ PCI_VDEVICE(BROADCOM, 0x1806), .driver_data = NETXTREME_E_P5_VF },
233 	{ PCI_VDEVICE(BROADCOM, 0x1807), .driver_data = NETXTREME_E_P5_VF },
234 	{ PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF },
235 #endif
236 	{ 0 }
237 };
238 
239 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
240 
241 static const u16 bnxt_vf_req_snif[] = {
242 	HWRM_FUNC_CFG,
243 	HWRM_FUNC_VF_CFG,
244 	HWRM_PORT_PHY_QCFG,
245 	HWRM_CFA_L2_FILTER_ALLOC,
246 };
247 
248 static const u16 bnxt_async_events_arr[] = {
249 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE,
250 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE,
251 	ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD,
252 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED,
253 	ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE,
254 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE,
255 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE,
256 	ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY,
257 	ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY,
258 	ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG,
259 };
260 
261 static struct workqueue_struct *bnxt_pf_wq;
262 
263 static bool bnxt_vf_pciid(enum board_idx idx)
264 {
265 	return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF ||
266 		idx == NETXTREME_S_VF || idx == NETXTREME_E_P5_VF);
267 }
268 
269 #define DB_CP_REARM_FLAGS	(DB_KEY_CP | DB_IDX_VALID)
270 #define DB_CP_FLAGS		(DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
271 #define DB_CP_IRQ_DIS_FLAGS	(DB_KEY_CP | DB_IRQ_DIS)
272 
273 #define BNXT_CP_DB_IRQ_DIS(db)						\
274 		writel(DB_CP_IRQ_DIS_FLAGS, db)
275 
276 #define BNXT_DB_CQ(db, idx)						\
277 	writel(DB_CP_FLAGS | RING_CMP(idx), (db)->doorbell)
278 
279 #define BNXT_DB_NQ_P5(db, idx)						\
280 	writeq((db)->db_key64 | DBR_TYPE_NQ | RING_CMP(idx), (db)->doorbell)
281 
282 #define BNXT_DB_CQ_ARM(db, idx)						\
283 	writel(DB_CP_REARM_FLAGS | RING_CMP(idx), (db)->doorbell)
284 
285 #define BNXT_DB_NQ_ARM_P5(db, idx)					\
286 	writeq((db)->db_key64 | DBR_TYPE_NQ_ARM | RING_CMP(idx), (db)->doorbell)
287 
288 static void bnxt_db_nq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
289 {
290 	if (bp->flags & BNXT_FLAG_CHIP_P5)
291 		BNXT_DB_NQ_P5(db, idx);
292 	else
293 		BNXT_DB_CQ(db, idx);
294 }
295 
296 static void bnxt_db_nq_arm(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
297 {
298 	if (bp->flags & BNXT_FLAG_CHIP_P5)
299 		BNXT_DB_NQ_ARM_P5(db, idx);
300 	else
301 		BNXT_DB_CQ_ARM(db, idx);
302 }
303 
304 static void bnxt_db_cq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
305 {
306 	if (bp->flags & BNXT_FLAG_CHIP_P5)
307 		writeq(db->db_key64 | DBR_TYPE_CQ_ARMALL | RING_CMP(idx),
308 		       db->doorbell);
309 	else
310 		BNXT_DB_CQ(db, idx);
311 }
312 
313 const u16 bnxt_lhint_arr[] = {
314 	TX_BD_FLAGS_LHINT_512_AND_SMALLER,
315 	TX_BD_FLAGS_LHINT_512_TO_1023,
316 	TX_BD_FLAGS_LHINT_1024_TO_2047,
317 	TX_BD_FLAGS_LHINT_1024_TO_2047,
318 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
319 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
320 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
321 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
322 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
323 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
324 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
325 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
326 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
327 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
328 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
329 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
330 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
331 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
332 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
333 };
334 
335 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb)
336 {
337 	struct metadata_dst *md_dst = skb_metadata_dst(skb);
338 
339 	if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX)
340 		return 0;
341 
342 	return md_dst->u.port_info.port_id;
343 }
344 
345 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
346 {
347 	struct bnxt *bp = netdev_priv(dev);
348 	struct tx_bd *txbd;
349 	struct tx_bd_ext *txbd1;
350 	struct netdev_queue *txq;
351 	int i;
352 	dma_addr_t mapping;
353 	unsigned int length, pad = 0;
354 	u32 len, free_size, vlan_tag_flags, cfa_action, flags;
355 	u16 prod, last_frag;
356 	struct pci_dev *pdev = bp->pdev;
357 	struct bnxt_tx_ring_info *txr;
358 	struct bnxt_sw_tx_bd *tx_buf;
359 
360 	i = skb_get_queue_mapping(skb);
361 	if (unlikely(i >= bp->tx_nr_rings)) {
362 		dev_kfree_skb_any(skb);
363 		return NETDEV_TX_OK;
364 	}
365 
366 	txq = netdev_get_tx_queue(dev, i);
367 	txr = &bp->tx_ring[bp->tx_ring_map[i]];
368 	prod = txr->tx_prod;
369 
370 	free_size = bnxt_tx_avail(bp, txr);
371 	if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
372 		netif_tx_stop_queue(txq);
373 		return NETDEV_TX_BUSY;
374 	}
375 
376 	length = skb->len;
377 	len = skb_headlen(skb);
378 	last_frag = skb_shinfo(skb)->nr_frags;
379 
380 	txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
381 
382 	txbd->tx_bd_opaque = prod;
383 
384 	tx_buf = &txr->tx_buf_ring[prod];
385 	tx_buf->skb = skb;
386 	tx_buf->nr_frags = last_frag;
387 
388 	vlan_tag_flags = 0;
389 	cfa_action = bnxt_xmit_get_cfa_action(skb);
390 	if (skb_vlan_tag_present(skb)) {
391 		vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
392 				 skb_vlan_tag_get(skb);
393 		/* Currently supports 8021Q, 8021AD vlan offloads
394 		 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
395 		 */
396 		if (skb->vlan_proto == htons(ETH_P_8021Q))
397 			vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
398 	}
399 
400 	if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh) {
401 		struct tx_push_buffer *tx_push_buf = txr->tx_push;
402 		struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
403 		struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
404 		void __iomem *db = txr->tx_db.doorbell;
405 		void *pdata = tx_push_buf->data;
406 		u64 *end;
407 		int j, push_len;
408 
409 		/* Set COAL_NOW to be ready quickly for the next push */
410 		tx_push->tx_bd_len_flags_type =
411 			cpu_to_le32((length << TX_BD_LEN_SHIFT) |
412 					TX_BD_TYPE_LONG_TX_BD |
413 					TX_BD_FLAGS_LHINT_512_AND_SMALLER |
414 					TX_BD_FLAGS_COAL_NOW |
415 					TX_BD_FLAGS_PACKET_END |
416 					(2 << TX_BD_FLAGS_BD_CNT_SHIFT));
417 
418 		if (skb->ip_summed == CHECKSUM_PARTIAL)
419 			tx_push1->tx_bd_hsize_lflags =
420 					cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
421 		else
422 			tx_push1->tx_bd_hsize_lflags = 0;
423 
424 		tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
425 		tx_push1->tx_bd_cfa_action =
426 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
427 
428 		end = pdata + length;
429 		end = PTR_ALIGN(end, 8) - 1;
430 		*end = 0;
431 
432 		skb_copy_from_linear_data(skb, pdata, len);
433 		pdata += len;
434 		for (j = 0; j < last_frag; j++) {
435 			skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
436 			void *fptr;
437 
438 			fptr = skb_frag_address_safe(frag);
439 			if (!fptr)
440 				goto normal_tx;
441 
442 			memcpy(pdata, fptr, skb_frag_size(frag));
443 			pdata += skb_frag_size(frag);
444 		}
445 
446 		txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
447 		txbd->tx_bd_haddr = txr->data_mapping;
448 		prod = NEXT_TX(prod);
449 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
450 		memcpy(txbd, tx_push1, sizeof(*txbd));
451 		prod = NEXT_TX(prod);
452 		tx_push->doorbell =
453 			cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod);
454 		txr->tx_prod = prod;
455 
456 		tx_buf->is_push = 1;
457 		netdev_tx_sent_queue(txq, skb->len);
458 		wmb();	/* Sync is_push and byte queue before pushing data */
459 
460 		push_len = (length + sizeof(*tx_push) + 7) / 8;
461 		if (push_len > 16) {
462 			__iowrite64_copy(db, tx_push_buf, 16);
463 			__iowrite32_copy(db + 4, tx_push_buf + 1,
464 					 (push_len - 16) << 1);
465 		} else {
466 			__iowrite64_copy(db, tx_push_buf, push_len);
467 		}
468 
469 		goto tx_done;
470 	}
471 
472 normal_tx:
473 	if (length < BNXT_MIN_PKT_SIZE) {
474 		pad = BNXT_MIN_PKT_SIZE - length;
475 		if (skb_pad(skb, pad)) {
476 			/* SKB already freed. */
477 			tx_buf->skb = NULL;
478 			return NETDEV_TX_OK;
479 		}
480 		length = BNXT_MIN_PKT_SIZE;
481 	}
482 
483 	mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
484 
485 	if (unlikely(dma_mapping_error(&pdev->dev, mapping))) {
486 		dev_kfree_skb_any(skb);
487 		tx_buf->skb = NULL;
488 		return NETDEV_TX_OK;
489 	}
490 
491 	dma_unmap_addr_set(tx_buf, mapping, mapping);
492 	flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
493 		((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
494 
495 	txbd->tx_bd_haddr = cpu_to_le64(mapping);
496 
497 	prod = NEXT_TX(prod);
498 	txbd1 = (struct tx_bd_ext *)
499 		&txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
500 
501 	txbd1->tx_bd_hsize_lflags = 0;
502 	if (skb_is_gso(skb)) {
503 		u32 hdr_len;
504 
505 		if (skb->encapsulation)
506 			hdr_len = skb_inner_network_offset(skb) +
507 				skb_inner_network_header_len(skb) +
508 				inner_tcp_hdrlen(skb);
509 		else
510 			hdr_len = skb_transport_offset(skb) +
511 				tcp_hdrlen(skb);
512 
513 		txbd1->tx_bd_hsize_lflags = cpu_to_le32(TX_BD_FLAGS_LSO |
514 					TX_BD_FLAGS_T_IPID |
515 					(hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
516 		length = skb_shinfo(skb)->gso_size;
517 		txbd1->tx_bd_mss = cpu_to_le32(length);
518 		length += hdr_len;
519 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
520 		txbd1->tx_bd_hsize_lflags =
521 			cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
522 		txbd1->tx_bd_mss = 0;
523 	}
524 
525 	length >>= 9;
526 	if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) {
527 		dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n",
528 				     skb->len);
529 		i = 0;
530 		goto tx_dma_error;
531 	}
532 	flags |= bnxt_lhint_arr[length];
533 	txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
534 
535 	txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
536 	txbd1->tx_bd_cfa_action =
537 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
538 	for (i = 0; i < last_frag; i++) {
539 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
540 
541 		prod = NEXT_TX(prod);
542 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
543 
544 		len = skb_frag_size(frag);
545 		mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
546 					   DMA_TO_DEVICE);
547 
548 		if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
549 			goto tx_dma_error;
550 
551 		tx_buf = &txr->tx_buf_ring[prod];
552 		dma_unmap_addr_set(tx_buf, mapping, mapping);
553 
554 		txbd->tx_bd_haddr = cpu_to_le64(mapping);
555 
556 		flags = len << TX_BD_LEN_SHIFT;
557 		txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
558 	}
559 
560 	flags &= ~TX_BD_LEN;
561 	txbd->tx_bd_len_flags_type =
562 		cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
563 			    TX_BD_FLAGS_PACKET_END);
564 
565 	netdev_tx_sent_queue(txq, skb->len);
566 
567 	/* Sync BD data before updating doorbell */
568 	wmb();
569 
570 	prod = NEXT_TX(prod);
571 	txr->tx_prod = prod;
572 
573 	if (!netdev_xmit_more() || netif_xmit_stopped(txq))
574 		bnxt_db_write(bp, &txr->tx_db, prod);
575 
576 tx_done:
577 
578 	if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
579 		if (netdev_xmit_more() && !tx_buf->is_push)
580 			bnxt_db_write(bp, &txr->tx_db, prod);
581 
582 		netif_tx_stop_queue(txq);
583 
584 		/* netif_tx_stop_queue() must be done before checking
585 		 * tx index in bnxt_tx_avail() below, because in
586 		 * bnxt_tx_int(), we update tx index before checking for
587 		 * netif_tx_queue_stopped().
588 		 */
589 		smp_mb();
590 		if (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)
591 			netif_tx_wake_queue(txq);
592 	}
593 	return NETDEV_TX_OK;
594 
595 tx_dma_error:
596 	last_frag = i;
597 
598 	/* start back at beginning and unmap skb */
599 	prod = txr->tx_prod;
600 	tx_buf = &txr->tx_buf_ring[prod];
601 	tx_buf->skb = NULL;
602 	dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
603 			 skb_headlen(skb), PCI_DMA_TODEVICE);
604 	prod = NEXT_TX(prod);
605 
606 	/* unmap remaining mapped pages */
607 	for (i = 0; i < last_frag; i++) {
608 		prod = NEXT_TX(prod);
609 		tx_buf = &txr->tx_buf_ring[prod];
610 		dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
611 			       skb_frag_size(&skb_shinfo(skb)->frags[i]),
612 			       PCI_DMA_TODEVICE);
613 	}
614 
615 	dev_kfree_skb_any(skb);
616 	return NETDEV_TX_OK;
617 }
618 
619 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts)
620 {
621 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
622 	struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index);
623 	u16 cons = txr->tx_cons;
624 	struct pci_dev *pdev = bp->pdev;
625 	int i;
626 	unsigned int tx_bytes = 0;
627 
628 	for (i = 0; i < nr_pkts; i++) {
629 		struct bnxt_sw_tx_bd *tx_buf;
630 		struct sk_buff *skb;
631 		int j, last;
632 
633 		tx_buf = &txr->tx_buf_ring[cons];
634 		cons = NEXT_TX(cons);
635 		skb = tx_buf->skb;
636 		tx_buf->skb = NULL;
637 
638 		if (tx_buf->is_push) {
639 			tx_buf->is_push = 0;
640 			goto next_tx_int;
641 		}
642 
643 		dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
644 				 skb_headlen(skb), PCI_DMA_TODEVICE);
645 		last = tx_buf->nr_frags;
646 
647 		for (j = 0; j < last; j++) {
648 			cons = NEXT_TX(cons);
649 			tx_buf = &txr->tx_buf_ring[cons];
650 			dma_unmap_page(
651 				&pdev->dev,
652 				dma_unmap_addr(tx_buf, mapping),
653 				skb_frag_size(&skb_shinfo(skb)->frags[j]),
654 				PCI_DMA_TODEVICE);
655 		}
656 
657 next_tx_int:
658 		cons = NEXT_TX(cons);
659 
660 		tx_bytes += skb->len;
661 		dev_kfree_skb_any(skb);
662 	}
663 
664 	netdev_tx_completed_queue(txq, nr_pkts, tx_bytes);
665 	txr->tx_cons = cons;
666 
667 	/* Need to make the tx_cons update visible to bnxt_start_xmit()
668 	 * before checking for netif_tx_queue_stopped().  Without the
669 	 * memory barrier, there is a small possibility that bnxt_start_xmit()
670 	 * will miss it and cause the queue to be stopped forever.
671 	 */
672 	smp_mb();
673 
674 	if (unlikely(netif_tx_queue_stopped(txq)) &&
675 	    (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
676 		__netif_tx_lock(txq, smp_processor_id());
677 		if (netif_tx_queue_stopped(txq) &&
678 		    bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh &&
679 		    txr->dev_state != BNXT_DEV_STATE_CLOSING)
680 			netif_tx_wake_queue(txq);
681 		__netif_tx_unlock(txq);
682 	}
683 }
684 
685 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping,
686 					 struct bnxt_rx_ring_info *rxr,
687 					 gfp_t gfp)
688 {
689 	struct device *dev = &bp->pdev->dev;
690 	struct page *page;
691 
692 	page = page_pool_dev_alloc_pages(rxr->page_pool);
693 	if (!page)
694 		return NULL;
695 
696 	*mapping = dma_map_page_attrs(dev, page, 0, PAGE_SIZE, bp->rx_dir,
697 				      DMA_ATTR_WEAK_ORDERING);
698 	if (dma_mapping_error(dev, *mapping)) {
699 		page_pool_recycle_direct(rxr->page_pool, page);
700 		return NULL;
701 	}
702 	*mapping += bp->rx_dma_offset;
703 	return page;
704 }
705 
706 static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping,
707 				       gfp_t gfp)
708 {
709 	u8 *data;
710 	struct pci_dev *pdev = bp->pdev;
711 
712 	data = kmalloc(bp->rx_buf_size, gfp);
713 	if (!data)
714 		return NULL;
715 
716 	*mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset,
717 					bp->rx_buf_use_size, bp->rx_dir,
718 					DMA_ATTR_WEAK_ORDERING);
719 
720 	if (dma_mapping_error(&pdev->dev, *mapping)) {
721 		kfree(data);
722 		data = NULL;
723 	}
724 	return data;
725 }
726 
727 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
728 		       u16 prod, gfp_t gfp)
729 {
730 	struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
731 	struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
732 	dma_addr_t mapping;
733 
734 	if (BNXT_RX_PAGE_MODE(bp)) {
735 		struct page *page =
736 			__bnxt_alloc_rx_page(bp, &mapping, rxr, gfp);
737 
738 		if (!page)
739 			return -ENOMEM;
740 
741 		rx_buf->data = page;
742 		rx_buf->data_ptr = page_address(page) + bp->rx_offset;
743 	} else {
744 		u8 *data = __bnxt_alloc_rx_data(bp, &mapping, gfp);
745 
746 		if (!data)
747 			return -ENOMEM;
748 
749 		rx_buf->data = data;
750 		rx_buf->data_ptr = data + bp->rx_offset;
751 	}
752 	rx_buf->mapping = mapping;
753 
754 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
755 	return 0;
756 }
757 
758 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data)
759 {
760 	u16 prod = rxr->rx_prod;
761 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
762 	struct rx_bd *cons_bd, *prod_bd;
763 
764 	prod_rx_buf = &rxr->rx_buf_ring[prod];
765 	cons_rx_buf = &rxr->rx_buf_ring[cons];
766 
767 	prod_rx_buf->data = data;
768 	prod_rx_buf->data_ptr = cons_rx_buf->data_ptr;
769 
770 	prod_rx_buf->mapping = cons_rx_buf->mapping;
771 
772 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
773 	cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
774 
775 	prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
776 }
777 
778 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
779 {
780 	u16 next, max = rxr->rx_agg_bmap_size;
781 
782 	next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
783 	if (next >= max)
784 		next = find_first_zero_bit(rxr->rx_agg_bmap, max);
785 	return next;
786 }
787 
788 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
789 				     struct bnxt_rx_ring_info *rxr,
790 				     u16 prod, gfp_t gfp)
791 {
792 	struct rx_bd *rxbd =
793 		&rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
794 	struct bnxt_sw_rx_agg_bd *rx_agg_buf;
795 	struct pci_dev *pdev = bp->pdev;
796 	struct page *page;
797 	dma_addr_t mapping;
798 	u16 sw_prod = rxr->rx_sw_agg_prod;
799 	unsigned int offset = 0;
800 
801 	if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) {
802 		page = rxr->rx_page;
803 		if (!page) {
804 			page = alloc_page(gfp);
805 			if (!page)
806 				return -ENOMEM;
807 			rxr->rx_page = page;
808 			rxr->rx_page_offset = 0;
809 		}
810 		offset = rxr->rx_page_offset;
811 		rxr->rx_page_offset += BNXT_RX_PAGE_SIZE;
812 		if (rxr->rx_page_offset == PAGE_SIZE)
813 			rxr->rx_page = NULL;
814 		else
815 			get_page(page);
816 	} else {
817 		page = alloc_page(gfp);
818 		if (!page)
819 			return -ENOMEM;
820 	}
821 
822 	mapping = dma_map_page_attrs(&pdev->dev, page, offset,
823 				     BNXT_RX_PAGE_SIZE, PCI_DMA_FROMDEVICE,
824 				     DMA_ATTR_WEAK_ORDERING);
825 	if (dma_mapping_error(&pdev->dev, mapping)) {
826 		__free_page(page);
827 		return -EIO;
828 	}
829 
830 	if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
831 		sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
832 
833 	__set_bit(sw_prod, rxr->rx_agg_bmap);
834 	rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
835 	rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod);
836 
837 	rx_agg_buf->page = page;
838 	rx_agg_buf->offset = offset;
839 	rx_agg_buf->mapping = mapping;
840 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
841 	rxbd->rx_bd_opaque = sw_prod;
842 	return 0;
843 }
844 
845 static struct rx_agg_cmp *bnxt_get_agg(struct bnxt *bp,
846 				       struct bnxt_cp_ring_info *cpr,
847 				       u16 cp_cons, u16 curr)
848 {
849 	struct rx_agg_cmp *agg;
850 
851 	cp_cons = RING_CMP(ADV_RAW_CMP(cp_cons, curr));
852 	agg = (struct rx_agg_cmp *)
853 		&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
854 	return agg;
855 }
856 
857 static struct rx_agg_cmp *bnxt_get_tpa_agg_p5(struct bnxt *bp,
858 					      struct bnxt_rx_ring_info *rxr,
859 					      u16 agg_id, u16 curr)
860 {
861 	struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[agg_id];
862 
863 	return &tpa_info->agg_arr[curr];
864 }
865 
866 static void bnxt_reuse_rx_agg_bufs(struct bnxt_cp_ring_info *cpr, u16 idx,
867 				   u16 start, u32 agg_bufs, bool tpa)
868 {
869 	struct bnxt_napi *bnapi = cpr->bnapi;
870 	struct bnxt *bp = bnapi->bp;
871 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
872 	u16 prod = rxr->rx_agg_prod;
873 	u16 sw_prod = rxr->rx_sw_agg_prod;
874 	bool p5_tpa = false;
875 	u32 i;
876 
877 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa)
878 		p5_tpa = true;
879 
880 	for (i = 0; i < agg_bufs; i++) {
881 		u16 cons;
882 		struct rx_agg_cmp *agg;
883 		struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
884 		struct rx_bd *prod_bd;
885 		struct page *page;
886 
887 		if (p5_tpa)
888 			agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, start + i);
889 		else
890 			agg = bnxt_get_agg(bp, cpr, idx, start + i);
891 		cons = agg->rx_agg_cmp_opaque;
892 		__clear_bit(cons, rxr->rx_agg_bmap);
893 
894 		if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
895 			sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
896 
897 		__set_bit(sw_prod, rxr->rx_agg_bmap);
898 		prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
899 		cons_rx_buf = &rxr->rx_agg_ring[cons];
900 
901 		/* It is possible for sw_prod to be equal to cons, so
902 		 * set cons_rx_buf->page to NULL first.
903 		 */
904 		page = cons_rx_buf->page;
905 		cons_rx_buf->page = NULL;
906 		prod_rx_buf->page = page;
907 		prod_rx_buf->offset = cons_rx_buf->offset;
908 
909 		prod_rx_buf->mapping = cons_rx_buf->mapping;
910 
911 		prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
912 
913 		prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
914 		prod_bd->rx_bd_opaque = sw_prod;
915 
916 		prod = NEXT_RX_AGG(prod);
917 		sw_prod = NEXT_RX_AGG(sw_prod);
918 	}
919 	rxr->rx_agg_prod = prod;
920 	rxr->rx_sw_agg_prod = sw_prod;
921 }
922 
923 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp,
924 					struct bnxt_rx_ring_info *rxr,
925 					u16 cons, void *data, u8 *data_ptr,
926 					dma_addr_t dma_addr,
927 					unsigned int offset_and_len)
928 {
929 	unsigned int payload = offset_and_len >> 16;
930 	unsigned int len = offset_and_len & 0xffff;
931 	skb_frag_t *frag;
932 	struct page *page = data;
933 	u16 prod = rxr->rx_prod;
934 	struct sk_buff *skb;
935 	int off, err;
936 
937 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
938 	if (unlikely(err)) {
939 		bnxt_reuse_rx_data(rxr, cons, data);
940 		return NULL;
941 	}
942 	dma_addr -= bp->rx_dma_offset;
943 	dma_unmap_page_attrs(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir,
944 			     DMA_ATTR_WEAK_ORDERING);
945 	page_pool_release_page(rxr->page_pool, page);
946 
947 	if (unlikely(!payload))
948 		payload = eth_get_headlen(bp->dev, data_ptr, len);
949 
950 	skb = napi_alloc_skb(&rxr->bnapi->napi, payload);
951 	if (!skb) {
952 		__free_page(page);
953 		return NULL;
954 	}
955 
956 	off = (void *)data_ptr - page_address(page);
957 	skb_add_rx_frag(skb, 0, page, off, len, PAGE_SIZE);
958 	memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN,
959 	       payload + NET_IP_ALIGN);
960 
961 	frag = &skb_shinfo(skb)->frags[0];
962 	skb_frag_size_sub(frag, payload);
963 	skb_frag_off_add(frag, payload);
964 	skb->data_len -= payload;
965 	skb->tail += payload;
966 
967 	return skb;
968 }
969 
970 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
971 				   struct bnxt_rx_ring_info *rxr, u16 cons,
972 				   void *data, u8 *data_ptr,
973 				   dma_addr_t dma_addr,
974 				   unsigned int offset_and_len)
975 {
976 	u16 prod = rxr->rx_prod;
977 	struct sk_buff *skb;
978 	int err;
979 
980 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
981 	if (unlikely(err)) {
982 		bnxt_reuse_rx_data(rxr, cons, data);
983 		return NULL;
984 	}
985 
986 	skb = build_skb(data, 0);
987 	dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
988 			       bp->rx_dir, DMA_ATTR_WEAK_ORDERING);
989 	if (!skb) {
990 		kfree(data);
991 		return NULL;
992 	}
993 
994 	skb_reserve(skb, bp->rx_offset);
995 	skb_put(skb, offset_and_len & 0xffff);
996 	return skb;
997 }
998 
999 static struct sk_buff *bnxt_rx_pages(struct bnxt *bp,
1000 				     struct bnxt_cp_ring_info *cpr,
1001 				     struct sk_buff *skb, u16 idx,
1002 				     u32 agg_bufs, bool tpa)
1003 {
1004 	struct bnxt_napi *bnapi = cpr->bnapi;
1005 	struct pci_dev *pdev = bp->pdev;
1006 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1007 	u16 prod = rxr->rx_agg_prod;
1008 	bool p5_tpa = false;
1009 	u32 i;
1010 
1011 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa)
1012 		p5_tpa = true;
1013 
1014 	for (i = 0; i < agg_bufs; i++) {
1015 		u16 cons, frag_len;
1016 		struct rx_agg_cmp *agg;
1017 		struct bnxt_sw_rx_agg_bd *cons_rx_buf;
1018 		struct page *page;
1019 		dma_addr_t mapping;
1020 
1021 		if (p5_tpa)
1022 			agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, i);
1023 		else
1024 			agg = bnxt_get_agg(bp, cpr, idx, i);
1025 		cons = agg->rx_agg_cmp_opaque;
1026 		frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
1027 			    RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
1028 
1029 		cons_rx_buf = &rxr->rx_agg_ring[cons];
1030 		skb_fill_page_desc(skb, i, cons_rx_buf->page,
1031 				   cons_rx_buf->offset, frag_len);
1032 		__clear_bit(cons, rxr->rx_agg_bmap);
1033 
1034 		/* It is possible for bnxt_alloc_rx_page() to allocate
1035 		 * a sw_prod index that equals the cons index, so we
1036 		 * need to clear the cons entry now.
1037 		 */
1038 		mapping = cons_rx_buf->mapping;
1039 		page = cons_rx_buf->page;
1040 		cons_rx_buf->page = NULL;
1041 
1042 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
1043 			struct skb_shared_info *shinfo;
1044 			unsigned int nr_frags;
1045 
1046 			shinfo = skb_shinfo(skb);
1047 			nr_frags = --shinfo->nr_frags;
1048 			__skb_frag_set_page(&shinfo->frags[nr_frags], NULL);
1049 
1050 			dev_kfree_skb(skb);
1051 
1052 			cons_rx_buf->page = page;
1053 
1054 			/* Update prod since possibly some pages have been
1055 			 * allocated already.
1056 			 */
1057 			rxr->rx_agg_prod = prod;
1058 			bnxt_reuse_rx_agg_bufs(cpr, idx, i, agg_bufs - i, tpa);
1059 			return NULL;
1060 		}
1061 
1062 		dma_unmap_page_attrs(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE,
1063 				     PCI_DMA_FROMDEVICE,
1064 				     DMA_ATTR_WEAK_ORDERING);
1065 
1066 		skb->data_len += frag_len;
1067 		skb->len += frag_len;
1068 		skb->truesize += PAGE_SIZE;
1069 
1070 		prod = NEXT_RX_AGG(prod);
1071 	}
1072 	rxr->rx_agg_prod = prod;
1073 	return skb;
1074 }
1075 
1076 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1077 			       u8 agg_bufs, u32 *raw_cons)
1078 {
1079 	u16 last;
1080 	struct rx_agg_cmp *agg;
1081 
1082 	*raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
1083 	last = RING_CMP(*raw_cons);
1084 	agg = (struct rx_agg_cmp *)
1085 		&cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
1086 	return RX_AGG_CMP_VALID(agg, *raw_cons);
1087 }
1088 
1089 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
1090 					    unsigned int len,
1091 					    dma_addr_t mapping)
1092 {
1093 	struct bnxt *bp = bnapi->bp;
1094 	struct pci_dev *pdev = bp->pdev;
1095 	struct sk_buff *skb;
1096 
1097 	skb = napi_alloc_skb(&bnapi->napi, len);
1098 	if (!skb)
1099 		return NULL;
1100 
1101 	dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh,
1102 				bp->rx_dir);
1103 
1104 	memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN,
1105 	       len + NET_IP_ALIGN);
1106 
1107 	dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh,
1108 				   bp->rx_dir);
1109 
1110 	skb_put(skb, len);
1111 	return skb;
1112 }
1113 
1114 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1115 			   u32 *raw_cons, void *cmp)
1116 {
1117 	struct rx_cmp *rxcmp = cmp;
1118 	u32 tmp_raw_cons = *raw_cons;
1119 	u8 cmp_type, agg_bufs = 0;
1120 
1121 	cmp_type = RX_CMP_TYPE(rxcmp);
1122 
1123 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1124 		agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) &
1125 			    RX_CMP_AGG_BUFS) >>
1126 			   RX_CMP_AGG_BUFS_SHIFT;
1127 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1128 		struct rx_tpa_end_cmp *tpa_end = cmp;
1129 
1130 		if (bp->flags & BNXT_FLAG_CHIP_P5)
1131 			return 0;
1132 
1133 		agg_bufs = TPA_END_AGG_BUFS(tpa_end);
1134 	}
1135 
1136 	if (agg_bufs) {
1137 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1138 			return -EBUSY;
1139 	}
1140 	*raw_cons = tmp_raw_cons;
1141 	return 0;
1142 }
1143 
1144 static void bnxt_queue_fw_reset_work(struct bnxt *bp, unsigned long delay)
1145 {
1146 	if (!(test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)))
1147 		return;
1148 
1149 	if (BNXT_PF(bp))
1150 		queue_delayed_work(bnxt_pf_wq, &bp->fw_reset_task, delay);
1151 	else
1152 		schedule_delayed_work(&bp->fw_reset_task, delay);
1153 }
1154 
1155 static void bnxt_queue_sp_work(struct bnxt *bp)
1156 {
1157 	if (BNXT_PF(bp))
1158 		queue_work(bnxt_pf_wq, &bp->sp_task);
1159 	else
1160 		schedule_work(&bp->sp_task);
1161 }
1162 
1163 static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
1164 {
1165 	if (!rxr->bnapi->in_reset) {
1166 		rxr->bnapi->in_reset = true;
1167 		if (bp->flags & BNXT_FLAG_CHIP_P5)
1168 			set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
1169 		else
1170 			set_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event);
1171 		bnxt_queue_sp_work(bp);
1172 	}
1173 	rxr->rx_next_cons = 0xffff;
1174 }
1175 
1176 static u16 bnxt_alloc_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id)
1177 {
1178 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1179 	u16 idx = agg_id & MAX_TPA_P5_MASK;
1180 
1181 	if (test_bit(idx, map->agg_idx_bmap))
1182 		idx = find_first_zero_bit(map->agg_idx_bmap,
1183 					  BNXT_AGG_IDX_BMAP_SIZE);
1184 	__set_bit(idx, map->agg_idx_bmap);
1185 	map->agg_id_tbl[agg_id] = idx;
1186 	return idx;
1187 }
1188 
1189 static void bnxt_free_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
1190 {
1191 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1192 
1193 	__clear_bit(idx, map->agg_idx_bmap);
1194 }
1195 
1196 static u16 bnxt_lookup_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id)
1197 {
1198 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1199 
1200 	return map->agg_id_tbl[agg_id];
1201 }
1202 
1203 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1204 			   struct rx_tpa_start_cmp *tpa_start,
1205 			   struct rx_tpa_start_cmp_ext *tpa_start1)
1206 {
1207 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
1208 	struct bnxt_tpa_info *tpa_info;
1209 	u16 cons, prod, agg_id;
1210 	struct rx_bd *prod_bd;
1211 	dma_addr_t mapping;
1212 
1213 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
1214 		agg_id = TPA_START_AGG_ID_P5(tpa_start);
1215 		agg_id = bnxt_alloc_agg_idx(rxr, agg_id);
1216 	} else {
1217 		agg_id = TPA_START_AGG_ID(tpa_start);
1218 	}
1219 	cons = tpa_start->rx_tpa_start_cmp_opaque;
1220 	prod = rxr->rx_prod;
1221 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1222 	prod_rx_buf = &rxr->rx_buf_ring[prod];
1223 	tpa_info = &rxr->rx_tpa[agg_id];
1224 
1225 	if (unlikely(cons != rxr->rx_next_cons ||
1226 		     TPA_START_ERROR(tpa_start))) {
1227 		netdev_warn(bp->dev, "TPA cons %x, expected cons %x, error code %x\n",
1228 			    cons, rxr->rx_next_cons,
1229 			    TPA_START_ERROR_CODE(tpa_start1));
1230 		bnxt_sched_reset(bp, rxr);
1231 		return;
1232 	}
1233 	/* Store cfa_code in tpa_info to use in tpa_end
1234 	 * completion processing.
1235 	 */
1236 	tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1);
1237 	prod_rx_buf->data = tpa_info->data;
1238 	prod_rx_buf->data_ptr = tpa_info->data_ptr;
1239 
1240 	mapping = tpa_info->mapping;
1241 	prod_rx_buf->mapping = mapping;
1242 
1243 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
1244 
1245 	prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
1246 
1247 	tpa_info->data = cons_rx_buf->data;
1248 	tpa_info->data_ptr = cons_rx_buf->data_ptr;
1249 	cons_rx_buf->data = NULL;
1250 	tpa_info->mapping = cons_rx_buf->mapping;
1251 
1252 	tpa_info->len =
1253 		le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
1254 				RX_TPA_START_CMP_LEN_SHIFT;
1255 	if (likely(TPA_START_HASH_VALID(tpa_start))) {
1256 		u32 hash_type = TPA_START_HASH_TYPE(tpa_start);
1257 
1258 		tpa_info->hash_type = PKT_HASH_TYPE_L4;
1259 		tpa_info->gso_type = SKB_GSO_TCPV4;
1260 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1261 		if (hash_type == 3 || TPA_START_IS_IPV6(tpa_start1))
1262 			tpa_info->gso_type = SKB_GSO_TCPV6;
1263 		tpa_info->rss_hash =
1264 			le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
1265 	} else {
1266 		tpa_info->hash_type = PKT_HASH_TYPE_NONE;
1267 		tpa_info->gso_type = 0;
1268 		if (netif_msg_rx_err(bp))
1269 			netdev_warn(bp->dev, "TPA packet without valid hash\n");
1270 	}
1271 	tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
1272 	tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
1273 	tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info);
1274 	tpa_info->agg_count = 0;
1275 
1276 	rxr->rx_prod = NEXT_RX(prod);
1277 	cons = NEXT_RX(cons);
1278 	rxr->rx_next_cons = NEXT_RX(cons);
1279 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1280 
1281 	bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
1282 	rxr->rx_prod = NEXT_RX(rxr->rx_prod);
1283 	cons_rx_buf->data = NULL;
1284 }
1285 
1286 static void bnxt_abort_tpa(struct bnxt_cp_ring_info *cpr, u16 idx, u32 agg_bufs)
1287 {
1288 	if (agg_bufs)
1289 		bnxt_reuse_rx_agg_bufs(cpr, idx, 0, agg_bufs, true);
1290 }
1291 
1292 #ifdef CONFIG_INET
1293 static void bnxt_gro_tunnel(struct sk_buff *skb, __be16 ip_proto)
1294 {
1295 	struct udphdr *uh = NULL;
1296 
1297 	if (ip_proto == htons(ETH_P_IP)) {
1298 		struct iphdr *iph = (struct iphdr *)skb->data;
1299 
1300 		if (iph->protocol == IPPROTO_UDP)
1301 			uh = (struct udphdr *)(iph + 1);
1302 	} else {
1303 		struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1304 
1305 		if (iph->nexthdr == IPPROTO_UDP)
1306 			uh = (struct udphdr *)(iph + 1);
1307 	}
1308 	if (uh) {
1309 		if (uh->check)
1310 			skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL_CSUM;
1311 		else
1312 			skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1313 	}
1314 }
1315 #endif
1316 
1317 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info,
1318 					   int payload_off, int tcp_ts,
1319 					   struct sk_buff *skb)
1320 {
1321 #ifdef CONFIG_INET
1322 	struct tcphdr *th;
1323 	int len, nw_off;
1324 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1325 	u32 hdr_info = tpa_info->hdr_info;
1326 	bool loopback = false;
1327 
1328 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1329 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1330 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1331 
1332 	/* If the packet is an internal loopback packet, the offsets will
1333 	 * have an extra 4 bytes.
1334 	 */
1335 	if (inner_mac_off == 4) {
1336 		loopback = true;
1337 	} else if (inner_mac_off > 4) {
1338 		__be16 proto = *((__be16 *)(skb->data + inner_ip_off -
1339 					    ETH_HLEN - 2));
1340 
1341 		/* We only support inner iPv4/ipv6.  If we don't see the
1342 		 * correct protocol ID, it must be a loopback packet where
1343 		 * the offsets are off by 4.
1344 		 */
1345 		if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6))
1346 			loopback = true;
1347 	}
1348 	if (loopback) {
1349 		/* internal loopback packet, subtract all offsets by 4 */
1350 		inner_ip_off -= 4;
1351 		inner_mac_off -= 4;
1352 		outer_ip_off -= 4;
1353 	}
1354 
1355 	nw_off = inner_ip_off - ETH_HLEN;
1356 	skb_set_network_header(skb, nw_off);
1357 	if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) {
1358 		struct ipv6hdr *iph = ipv6_hdr(skb);
1359 
1360 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1361 		len = skb->len - skb_transport_offset(skb);
1362 		th = tcp_hdr(skb);
1363 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1364 	} else {
1365 		struct iphdr *iph = ip_hdr(skb);
1366 
1367 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1368 		len = skb->len - skb_transport_offset(skb);
1369 		th = tcp_hdr(skb);
1370 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1371 	}
1372 
1373 	if (inner_mac_off) { /* tunnel */
1374 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1375 					    ETH_HLEN - 2));
1376 
1377 		bnxt_gro_tunnel(skb, proto);
1378 	}
1379 #endif
1380 	return skb;
1381 }
1382 
1383 static struct sk_buff *bnxt_gro_func_5750x(struct bnxt_tpa_info *tpa_info,
1384 					   int payload_off, int tcp_ts,
1385 					   struct sk_buff *skb)
1386 {
1387 #ifdef CONFIG_INET
1388 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1389 	u32 hdr_info = tpa_info->hdr_info;
1390 	int iphdr_len, nw_off;
1391 
1392 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1393 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1394 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1395 
1396 	nw_off = inner_ip_off - ETH_HLEN;
1397 	skb_set_network_header(skb, nw_off);
1398 	iphdr_len = (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) ?
1399 		     sizeof(struct ipv6hdr) : sizeof(struct iphdr);
1400 	skb_set_transport_header(skb, nw_off + iphdr_len);
1401 
1402 	if (inner_mac_off) { /* tunnel */
1403 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1404 					    ETH_HLEN - 2));
1405 
1406 		bnxt_gro_tunnel(skb, proto);
1407 	}
1408 #endif
1409 	return skb;
1410 }
1411 
1412 #define BNXT_IPV4_HDR_SIZE	(sizeof(struct iphdr) + sizeof(struct tcphdr))
1413 #define BNXT_IPV6_HDR_SIZE	(sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
1414 
1415 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info,
1416 					   int payload_off, int tcp_ts,
1417 					   struct sk_buff *skb)
1418 {
1419 #ifdef CONFIG_INET
1420 	struct tcphdr *th;
1421 	int len, nw_off, tcp_opt_len = 0;
1422 
1423 	if (tcp_ts)
1424 		tcp_opt_len = 12;
1425 
1426 	if (tpa_info->gso_type == SKB_GSO_TCPV4) {
1427 		struct iphdr *iph;
1428 
1429 		nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
1430 			 ETH_HLEN;
1431 		skb_set_network_header(skb, nw_off);
1432 		iph = ip_hdr(skb);
1433 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1434 		len = skb->len - skb_transport_offset(skb);
1435 		th = tcp_hdr(skb);
1436 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1437 	} else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
1438 		struct ipv6hdr *iph;
1439 
1440 		nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
1441 			 ETH_HLEN;
1442 		skb_set_network_header(skb, nw_off);
1443 		iph = ipv6_hdr(skb);
1444 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1445 		len = skb->len - skb_transport_offset(skb);
1446 		th = tcp_hdr(skb);
1447 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1448 	} else {
1449 		dev_kfree_skb_any(skb);
1450 		return NULL;
1451 	}
1452 
1453 	if (nw_off) /* tunnel */
1454 		bnxt_gro_tunnel(skb, skb->protocol);
1455 #endif
1456 	return skb;
1457 }
1458 
1459 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp,
1460 					   struct bnxt_tpa_info *tpa_info,
1461 					   struct rx_tpa_end_cmp *tpa_end,
1462 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1463 					   struct sk_buff *skb)
1464 {
1465 #ifdef CONFIG_INET
1466 	int payload_off;
1467 	u16 segs;
1468 
1469 	segs = TPA_END_TPA_SEGS(tpa_end);
1470 	if (segs == 1)
1471 		return skb;
1472 
1473 	NAPI_GRO_CB(skb)->count = segs;
1474 	skb_shinfo(skb)->gso_size =
1475 		le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
1476 	skb_shinfo(skb)->gso_type = tpa_info->gso_type;
1477 	if (bp->flags & BNXT_FLAG_CHIP_P5)
1478 		payload_off = TPA_END_PAYLOAD_OFF_P5(tpa_end1);
1479 	else
1480 		payload_off = TPA_END_PAYLOAD_OFF(tpa_end);
1481 	skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb);
1482 	if (likely(skb))
1483 		tcp_gro_complete(skb);
1484 #endif
1485 	return skb;
1486 }
1487 
1488 /* Given the cfa_code of a received packet determine which
1489  * netdev (vf-rep or PF) the packet is destined to.
1490  */
1491 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code)
1492 {
1493 	struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code);
1494 
1495 	/* if vf-rep dev is NULL, the must belongs to the PF */
1496 	return dev ? dev : bp->dev;
1497 }
1498 
1499 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
1500 					   struct bnxt_cp_ring_info *cpr,
1501 					   u32 *raw_cons,
1502 					   struct rx_tpa_end_cmp *tpa_end,
1503 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1504 					   u8 *event)
1505 {
1506 	struct bnxt_napi *bnapi = cpr->bnapi;
1507 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1508 	u8 *data_ptr, agg_bufs;
1509 	unsigned int len;
1510 	struct bnxt_tpa_info *tpa_info;
1511 	dma_addr_t mapping;
1512 	struct sk_buff *skb;
1513 	u16 idx = 0, agg_id;
1514 	void *data;
1515 	bool gro;
1516 
1517 	if (unlikely(bnapi->in_reset)) {
1518 		int rc = bnxt_discard_rx(bp, cpr, raw_cons, tpa_end);
1519 
1520 		if (rc < 0)
1521 			return ERR_PTR(-EBUSY);
1522 		return NULL;
1523 	}
1524 
1525 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
1526 		agg_id = TPA_END_AGG_ID_P5(tpa_end);
1527 		agg_id = bnxt_lookup_agg_idx(rxr, agg_id);
1528 		agg_bufs = TPA_END_AGG_BUFS_P5(tpa_end1);
1529 		tpa_info = &rxr->rx_tpa[agg_id];
1530 		if (unlikely(agg_bufs != tpa_info->agg_count)) {
1531 			netdev_warn(bp->dev, "TPA end agg_buf %d != expected agg_bufs %d\n",
1532 				    agg_bufs, tpa_info->agg_count);
1533 			agg_bufs = tpa_info->agg_count;
1534 		}
1535 		tpa_info->agg_count = 0;
1536 		*event |= BNXT_AGG_EVENT;
1537 		bnxt_free_agg_idx(rxr, agg_id);
1538 		idx = agg_id;
1539 		gro = !!(bp->flags & BNXT_FLAG_GRO);
1540 	} else {
1541 		agg_id = TPA_END_AGG_ID(tpa_end);
1542 		agg_bufs = TPA_END_AGG_BUFS(tpa_end);
1543 		tpa_info = &rxr->rx_tpa[agg_id];
1544 		idx = RING_CMP(*raw_cons);
1545 		if (agg_bufs) {
1546 			if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
1547 				return ERR_PTR(-EBUSY);
1548 
1549 			*event |= BNXT_AGG_EVENT;
1550 			idx = NEXT_CMP(idx);
1551 		}
1552 		gro = !!TPA_END_GRO(tpa_end);
1553 	}
1554 	data = tpa_info->data;
1555 	data_ptr = tpa_info->data_ptr;
1556 	prefetch(data_ptr);
1557 	len = tpa_info->len;
1558 	mapping = tpa_info->mapping;
1559 
1560 	if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) {
1561 		bnxt_abort_tpa(cpr, idx, agg_bufs);
1562 		if (agg_bufs > MAX_SKB_FRAGS)
1563 			netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
1564 				    agg_bufs, (int)MAX_SKB_FRAGS);
1565 		return NULL;
1566 	}
1567 
1568 	if (len <= bp->rx_copy_thresh) {
1569 		skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping);
1570 		if (!skb) {
1571 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1572 			return NULL;
1573 		}
1574 	} else {
1575 		u8 *new_data;
1576 		dma_addr_t new_mapping;
1577 
1578 		new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC);
1579 		if (!new_data) {
1580 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1581 			return NULL;
1582 		}
1583 
1584 		tpa_info->data = new_data;
1585 		tpa_info->data_ptr = new_data + bp->rx_offset;
1586 		tpa_info->mapping = new_mapping;
1587 
1588 		skb = build_skb(data, 0);
1589 		dma_unmap_single_attrs(&bp->pdev->dev, mapping,
1590 				       bp->rx_buf_use_size, bp->rx_dir,
1591 				       DMA_ATTR_WEAK_ORDERING);
1592 
1593 		if (!skb) {
1594 			kfree(data);
1595 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1596 			return NULL;
1597 		}
1598 		skb_reserve(skb, bp->rx_offset);
1599 		skb_put(skb, len);
1600 	}
1601 
1602 	if (agg_bufs) {
1603 		skb = bnxt_rx_pages(bp, cpr, skb, idx, agg_bufs, true);
1604 		if (!skb) {
1605 			/* Page reuse already handled by bnxt_rx_pages(). */
1606 			return NULL;
1607 		}
1608 	}
1609 
1610 	skb->protocol =
1611 		eth_type_trans(skb, bnxt_get_pkt_dev(bp, tpa_info->cfa_code));
1612 
1613 	if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1614 		skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1615 
1616 	if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) &&
1617 	    (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) {
1618 		u16 vlan_proto = tpa_info->metadata >>
1619 			RX_CMP_FLAGS2_METADATA_TPID_SFT;
1620 		u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1621 
1622 		__vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1623 	}
1624 
1625 	skb_checksum_none_assert(skb);
1626 	if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1627 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1628 		skb->csum_level =
1629 			(tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1630 	}
1631 
1632 	if (gro)
1633 		skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb);
1634 
1635 	return skb;
1636 }
1637 
1638 static void bnxt_tpa_agg(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1639 			 struct rx_agg_cmp *rx_agg)
1640 {
1641 	u16 agg_id = TPA_AGG_AGG_ID(rx_agg);
1642 	struct bnxt_tpa_info *tpa_info;
1643 
1644 	agg_id = bnxt_lookup_agg_idx(rxr, agg_id);
1645 	tpa_info = &rxr->rx_tpa[agg_id];
1646 	BUG_ON(tpa_info->agg_count >= MAX_SKB_FRAGS);
1647 	tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg;
1648 }
1649 
1650 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi,
1651 			     struct sk_buff *skb)
1652 {
1653 	if (skb->dev != bp->dev) {
1654 		/* this packet belongs to a vf-rep */
1655 		bnxt_vf_rep_rx(bp, skb);
1656 		return;
1657 	}
1658 	skb_record_rx_queue(skb, bnapi->index);
1659 	napi_gro_receive(&bnapi->napi, skb);
1660 }
1661 
1662 /* returns the following:
1663  * 1       - 1 packet successfully received
1664  * 0       - successful TPA_START, packet not completed yet
1665  * -EBUSY  - completion ring does not have all the agg buffers yet
1666  * -ENOMEM - packet aborted due to out of memory
1667  * -EIO    - packet aborted due to hw error indicated in BD
1668  */
1669 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1670 		       u32 *raw_cons, u8 *event)
1671 {
1672 	struct bnxt_napi *bnapi = cpr->bnapi;
1673 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1674 	struct net_device *dev = bp->dev;
1675 	struct rx_cmp *rxcmp;
1676 	struct rx_cmp_ext *rxcmp1;
1677 	u32 tmp_raw_cons = *raw_cons;
1678 	u16 cfa_code, cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
1679 	struct bnxt_sw_rx_bd *rx_buf;
1680 	unsigned int len;
1681 	u8 *data_ptr, agg_bufs, cmp_type;
1682 	dma_addr_t dma_addr;
1683 	struct sk_buff *skb;
1684 	void *data;
1685 	int rc = 0;
1686 	u32 misc;
1687 
1688 	rxcmp = (struct rx_cmp *)
1689 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1690 
1691 	cmp_type = RX_CMP_TYPE(rxcmp);
1692 
1693 	if (cmp_type == CMP_TYPE_RX_TPA_AGG_CMP) {
1694 		bnxt_tpa_agg(bp, rxr, (struct rx_agg_cmp *)rxcmp);
1695 		goto next_rx_no_prod_no_len;
1696 	}
1697 
1698 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1699 	cp_cons = RING_CMP(tmp_raw_cons);
1700 	rxcmp1 = (struct rx_cmp_ext *)
1701 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1702 
1703 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1704 		return -EBUSY;
1705 
1706 	prod = rxr->rx_prod;
1707 
1708 	if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) {
1709 		bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp,
1710 			       (struct rx_tpa_start_cmp_ext *)rxcmp1);
1711 
1712 		*event |= BNXT_RX_EVENT;
1713 		goto next_rx_no_prod_no_len;
1714 
1715 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1716 		skb = bnxt_tpa_end(bp, cpr, &tmp_raw_cons,
1717 				   (struct rx_tpa_end_cmp *)rxcmp,
1718 				   (struct rx_tpa_end_cmp_ext *)rxcmp1, event);
1719 
1720 		if (IS_ERR(skb))
1721 			return -EBUSY;
1722 
1723 		rc = -ENOMEM;
1724 		if (likely(skb)) {
1725 			bnxt_deliver_skb(bp, bnapi, skb);
1726 			rc = 1;
1727 		}
1728 		*event |= BNXT_RX_EVENT;
1729 		goto next_rx_no_prod_no_len;
1730 	}
1731 
1732 	cons = rxcmp->rx_cmp_opaque;
1733 	if (unlikely(cons != rxr->rx_next_cons)) {
1734 		int rc1 = bnxt_discard_rx(bp, cpr, raw_cons, rxcmp);
1735 
1736 		/* 0xffff is forced error, don't print it */
1737 		if (rxr->rx_next_cons != 0xffff)
1738 			netdev_warn(bp->dev, "RX cons %x != expected cons %x\n",
1739 				    cons, rxr->rx_next_cons);
1740 		bnxt_sched_reset(bp, rxr);
1741 		return rc1;
1742 	}
1743 	rx_buf = &rxr->rx_buf_ring[cons];
1744 	data = rx_buf->data;
1745 	data_ptr = rx_buf->data_ptr;
1746 	prefetch(data_ptr);
1747 
1748 	misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1);
1749 	agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT;
1750 
1751 	if (agg_bufs) {
1752 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1753 			return -EBUSY;
1754 
1755 		cp_cons = NEXT_CMP(cp_cons);
1756 		*event |= BNXT_AGG_EVENT;
1757 	}
1758 	*event |= BNXT_RX_EVENT;
1759 
1760 	rx_buf->data = NULL;
1761 	if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
1762 		u32 rx_err = le32_to_cpu(rxcmp1->rx_cmp_cfa_code_errors_v2);
1763 
1764 		bnxt_reuse_rx_data(rxr, cons, data);
1765 		if (agg_bufs)
1766 			bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, agg_bufs,
1767 					       false);
1768 
1769 		rc = -EIO;
1770 		if (rx_err & RX_CMPL_ERRORS_BUFFER_ERROR_MASK) {
1771 			bnapi->cp_ring.sw_stats.rx.rx_buf_errors++;
1772 			if (!(bp->flags & BNXT_FLAG_CHIP_P5) &&
1773 			    !(bp->fw_cap & BNXT_FW_CAP_RING_MONITOR)) {
1774 				netdev_warn_once(bp->dev, "RX buffer error %x\n",
1775 						 rx_err);
1776 				bnxt_sched_reset(bp, rxr);
1777 			}
1778 		}
1779 		goto next_rx_no_len;
1780 	}
1781 
1782 	len = le32_to_cpu(rxcmp->rx_cmp_len_flags_type) >> RX_CMP_LEN_SHIFT;
1783 	dma_addr = rx_buf->mapping;
1784 
1785 	if (bnxt_rx_xdp(bp, rxr, cons, data, &data_ptr, &len, event)) {
1786 		rc = 1;
1787 		goto next_rx;
1788 	}
1789 
1790 	if (len <= bp->rx_copy_thresh) {
1791 		skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr);
1792 		bnxt_reuse_rx_data(rxr, cons, data);
1793 		if (!skb) {
1794 			if (agg_bufs)
1795 				bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0,
1796 						       agg_bufs, false);
1797 			rc = -ENOMEM;
1798 			goto next_rx;
1799 		}
1800 	} else {
1801 		u32 payload;
1802 
1803 		if (rx_buf->data_ptr == data_ptr)
1804 			payload = misc & RX_CMP_PAYLOAD_OFFSET;
1805 		else
1806 			payload = 0;
1807 		skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr,
1808 				      payload | len);
1809 		if (!skb) {
1810 			rc = -ENOMEM;
1811 			goto next_rx;
1812 		}
1813 	}
1814 
1815 	if (agg_bufs) {
1816 		skb = bnxt_rx_pages(bp, cpr, skb, cp_cons, agg_bufs, false);
1817 		if (!skb) {
1818 			rc = -ENOMEM;
1819 			goto next_rx;
1820 		}
1821 	}
1822 
1823 	if (RX_CMP_HASH_VALID(rxcmp)) {
1824 		u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
1825 		enum pkt_hash_types type = PKT_HASH_TYPE_L4;
1826 
1827 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1828 		if (hash_type != 1 && hash_type != 3)
1829 			type = PKT_HASH_TYPE_L3;
1830 		skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
1831 	}
1832 
1833 	cfa_code = RX_CMP_CFA_CODE(rxcmp1);
1834 	skb->protocol = eth_type_trans(skb, bnxt_get_pkt_dev(bp, cfa_code));
1835 
1836 	if ((rxcmp1->rx_cmp_flags2 &
1837 	     cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) &&
1838 	    (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) {
1839 		u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
1840 		u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1841 		u16 vlan_proto = meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT;
1842 
1843 		__vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1844 	}
1845 
1846 	skb_checksum_none_assert(skb);
1847 	if (RX_CMP_L4_CS_OK(rxcmp1)) {
1848 		if (dev->features & NETIF_F_RXCSUM) {
1849 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1850 			skb->csum_level = RX_CMP_ENCAP(rxcmp1);
1851 		}
1852 	} else {
1853 		if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
1854 			if (dev->features & NETIF_F_RXCSUM)
1855 				bnapi->cp_ring.sw_stats.rx.rx_l4_csum_errors++;
1856 		}
1857 	}
1858 
1859 	bnxt_deliver_skb(bp, bnapi, skb);
1860 	rc = 1;
1861 
1862 next_rx:
1863 	cpr->rx_packets += 1;
1864 	cpr->rx_bytes += len;
1865 
1866 next_rx_no_len:
1867 	rxr->rx_prod = NEXT_RX(prod);
1868 	rxr->rx_next_cons = NEXT_RX(cons);
1869 
1870 next_rx_no_prod_no_len:
1871 	*raw_cons = tmp_raw_cons;
1872 
1873 	return rc;
1874 }
1875 
1876 /* In netpoll mode, if we are using a combined completion ring, we need to
1877  * discard the rx packets and recycle the buffers.
1878  */
1879 static int bnxt_force_rx_discard(struct bnxt *bp,
1880 				 struct bnxt_cp_ring_info *cpr,
1881 				 u32 *raw_cons, u8 *event)
1882 {
1883 	u32 tmp_raw_cons = *raw_cons;
1884 	struct rx_cmp_ext *rxcmp1;
1885 	struct rx_cmp *rxcmp;
1886 	u16 cp_cons;
1887 	u8 cmp_type;
1888 
1889 	cp_cons = RING_CMP(tmp_raw_cons);
1890 	rxcmp = (struct rx_cmp *)
1891 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1892 
1893 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1894 	cp_cons = RING_CMP(tmp_raw_cons);
1895 	rxcmp1 = (struct rx_cmp_ext *)
1896 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1897 
1898 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1899 		return -EBUSY;
1900 
1901 	cmp_type = RX_CMP_TYPE(rxcmp);
1902 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1903 		rxcmp1->rx_cmp_cfa_code_errors_v2 |=
1904 			cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
1905 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1906 		struct rx_tpa_end_cmp_ext *tpa_end1;
1907 
1908 		tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1;
1909 		tpa_end1->rx_tpa_end_cmp_errors_v2 |=
1910 			cpu_to_le32(RX_TPA_END_CMP_ERRORS);
1911 	}
1912 	return bnxt_rx_pkt(bp, cpr, raw_cons, event);
1913 }
1914 
1915 u32 bnxt_fw_health_readl(struct bnxt *bp, int reg_idx)
1916 {
1917 	struct bnxt_fw_health *fw_health = bp->fw_health;
1918 	u32 reg = fw_health->regs[reg_idx];
1919 	u32 reg_type, reg_off, val = 0;
1920 
1921 	reg_type = BNXT_FW_HEALTH_REG_TYPE(reg);
1922 	reg_off = BNXT_FW_HEALTH_REG_OFF(reg);
1923 	switch (reg_type) {
1924 	case BNXT_FW_HEALTH_REG_TYPE_CFG:
1925 		pci_read_config_dword(bp->pdev, reg_off, &val);
1926 		break;
1927 	case BNXT_FW_HEALTH_REG_TYPE_GRC:
1928 		reg_off = fw_health->mapped_regs[reg_idx];
1929 		fallthrough;
1930 	case BNXT_FW_HEALTH_REG_TYPE_BAR0:
1931 		val = readl(bp->bar0 + reg_off);
1932 		break;
1933 	case BNXT_FW_HEALTH_REG_TYPE_BAR1:
1934 		val = readl(bp->bar1 + reg_off);
1935 		break;
1936 	}
1937 	if (reg_idx == BNXT_FW_RESET_INPROG_REG)
1938 		val &= fw_health->fw_reset_inprog_reg_mask;
1939 	return val;
1940 }
1941 
1942 static u16 bnxt_agg_ring_id_to_grp_idx(struct bnxt *bp, u16 ring_id)
1943 {
1944 	int i;
1945 
1946 	for (i = 0; i < bp->rx_nr_rings; i++) {
1947 		u16 grp_idx = bp->rx_ring[i].bnapi->index;
1948 		struct bnxt_ring_grp_info *grp_info;
1949 
1950 		grp_info = &bp->grp_info[grp_idx];
1951 		if (grp_info->agg_fw_ring_id == ring_id)
1952 			return grp_idx;
1953 	}
1954 	return INVALID_HW_RING_ID;
1955 }
1956 
1957 #define BNXT_GET_EVENT_PORT(data)	\
1958 	((data) &			\
1959 	 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK)
1960 
1961 #define BNXT_EVENT_RING_TYPE(data2)	\
1962 	((data2) &			\
1963 	 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_MASK)
1964 
1965 #define BNXT_EVENT_RING_TYPE_RX(data2)	\
1966 	(BNXT_EVENT_RING_TYPE(data2) ==	\
1967 	 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_RX)
1968 
1969 static int bnxt_async_event_process(struct bnxt *bp,
1970 				    struct hwrm_async_event_cmpl *cmpl)
1971 {
1972 	u16 event_id = le16_to_cpu(cmpl->event_id);
1973 	u32 data1 = le32_to_cpu(cmpl->event_data1);
1974 	u32 data2 = le32_to_cpu(cmpl->event_data2);
1975 
1976 	/* TODO CHIMP_FW: Define event id's for link change, error etc */
1977 	switch (event_id) {
1978 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: {
1979 		struct bnxt_link_info *link_info = &bp->link_info;
1980 
1981 		if (BNXT_VF(bp))
1982 			goto async_event_process_exit;
1983 
1984 		/* print unsupported speed warning in forced speed mode only */
1985 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) &&
1986 		    (data1 & 0x20000)) {
1987 			u16 fw_speed = link_info->force_link_speed;
1988 			u32 speed = bnxt_fw_to_ethtool_speed(fw_speed);
1989 
1990 			if (speed != SPEED_UNKNOWN)
1991 				netdev_warn(bp->dev, "Link speed %d no longer supported\n",
1992 					    speed);
1993 		}
1994 		set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event);
1995 	}
1996 		fallthrough;
1997 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE:
1998 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE:
1999 		set_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, &bp->sp_event);
2000 		fallthrough;
2001 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
2002 		set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
2003 		break;
2004 	case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD:
2005 		set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event);
2006 		break;
2007 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: {
2008 		u16 port_id = BNXT_GET_EVENT_PORT(data1);
2009 
2010 		if (BNXT_VF(bp))
2011 			break;
2012 
2013 		if (bp->pf.port_id != port_id)
2014 			break;
2015 
2016 		set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event);
2017 		break;
2018 	}
2019 	case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE:
2020 		if (BNXT_PF(bp))
2021 			goto async_event_process_exit;
2022 		set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event);
2023 		break;
2024 	case ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY:
2025 		if (netif_msg_hw(bp))
2026 			netdev_warn(bp->dev, "Received RESET_NOTIFY event, data1: 0x%x, data2: 0x%x\n",
2027 				    data1, data2);
2028 		if (!bp->fw_health)
2029 			goto async_event_process_exit;
2030 
2031 		bp->fw_reset_timestamp = jiffies;
2032 		bp->fw_reset_min_dsecs = cmpl->timestamp_lo;
2033 		if (!bp->fw_reset_min_dsecs)
2034 			bp->fw_reset_min_dsecs = BNXT_DFLT_FW_RST_MIN_DSECS;
2035 		bp->fw_reset_max_dsecs = le16_to_cpu(cmpl->timestamp_hi);
2036 		if (!bp->fw_reset_max_dsecs)
2037 			bp->fw_reset_max_dsecs = BNXT_DFLT_FW_RST_MAX_DSECS;
2038 		if (EVENT_DATA1_RESET_NOTIFY_FATAL(data1)) {
2039 			netdev_warn(bp->dev, "Firmware fatal reset event received\n");
2040 			set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
2041 		} else {
2042 			netdev_warn(bp->dev, "Firmware non-fatal reset event received, max wait time %d msec\n",
2043 				    bp->fw_reset_max_dsecs * 100);
2044 		}
2045 		set_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event);
2046 		break;
2047 	case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY: {
2048 		struct bnxt_fw_health *fw_health = bp->fw_health;
2049 
2050 		if (!fw_health)
2051 			goto async_event_process_exit;
2052 
2053 		fw_health->enabled = EVENT_DATA1_RECOVERY_ENABLED(data1);
2054 		fw_health->master = EVENT_DATA1_RECOVERY_MASTER_FUNC(data1);
2055 		if (!fw_health->enabled)
2056 			break;
2057 
2058 		if (netif_msg_drv(bp))
2059 			netdev_info(bp->dev, "Error recovery info: error recovery[%d], master[%d], reset count[0x%x], health status: 0x%x\n",
2060 				    fw_health->enabled, fw_health->master,
2061 				    bnxt_fw_health_readl(bp,
2062 							 BNXT_FW_RESET_CNT_REG),
2063 				    bnxt_fw_health_readl(bp,
2064 							 BNXT_FW_HEALTH_REG));
2065 		fw_health->tmr_multiplier =
2066 			DIV_ROUND_UP(fw_health->polling_dsecs * HZ,
2067 				     bp->current_interval * 10);
2068 		fw_health->tmr_counter = fw_health->tmr_multiplier;
2069 		fw_health->last_fw_heartbeat =
2070 			bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
2071 		fw_health->last_fw_reset_cnt =
2072 			bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
2073 		goto async_event_process_exit;
2074 	}
2075 	case ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG: {
2076 		struct bnxt_rx_ring_info *rxr;
2077 		u16 grp_idx;
2078 
2079 		if (bp->flags & BNXT_FLAG_CHIP_P5)
2080 			goto async_event_process_exit;
2081 
2082 		netdev_warn(bp->dev, "Ring monitor event, ring type %lu id 0x%x\n",
2083 			    BNXT_EVENT_RING_TYPE(data2), data1);
2084 		if (!BNXT_EVENT_RING_TYPE_RX(data2))
2085 			goto async_event_process_exit;
2086 
2087 		grp_idx = bnxt_agg_ring_id_to_grp_idx(bp, data1);
2088 		if (grp_idx == INVALID_HW_RING_ID) {
2089 			netdev_warn(bp->dev, "Unknown RX agg ring id 0x%x\n",
2090 				    data1);
2091 			goto async_event_process_exit;
2092 		}
2093 		rxr = bp->bnapi[grp_idx]->rx_ring;
2094 		bnxt_sched_reset(bp, rxr);
2095 		goto async_event_process_exit;
2096 	}
2097 	default:
2098 		goto async_event_process_exit;
2099 	}
2100 	bnxt_queue_sp_work(bp);
2101 async_event_process_exit:
2102 	bnxt_ulp_async_events(bp, cmpl);
2103 	return 0;
2104 }
2105 
2106 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
2107 {
2108 	u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
2109 	struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
2110 	struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
2111 				(struct hwrm_fwd_req_cmpl *)txcmp;
2112 
2113 	switch (cmpl_type) {
2114 	case CMPL_BASE_TYPE_HWRM_DONE:
2115 		seq_id = le16_to_cpu(h_cmpl->sequence_id);
2116 		if (seq_id == bp->hwrm_intr_seq_id)
2117 			bp->hwrm_intr_seq_id = (u16)~bp->hwrm_intr_seq_id;
2118 		else
2119 			netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id);
2120 		break;
2121 
2122 	case CMPL_BASE_TYPE_HWRM_FWD_REQ:
2123 		vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
2124 
2125 		if ((vf_id < bp->pf.first_vf_id) ||
2126 		    (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
2127 			netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
2128 				   vf_id);
2129 			return -EINVAL;
2130 		}
2131 
2132 		set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
2133 		set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event);
2134 		bnxt_queue_sp_work(bp);
2135 		break;
2136 
2137 	case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
2138 		bnxt_async_event_process(bp,
2139 					 (struct hwrm_async_event_cmpl *)txcmp);
2140 
2141 	default:
2142 		break;
2143 	}
2144 
2145 	return 0;
2146 }
2147 
2148 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
2149 {
2150 	struct bnxt_napi *bnapi = dev_instance;
2151 	struct bnxt *bp = bnapi->bp;
2152 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2153 	u32 cons = RING_CMP(cpr->cp_raw_cons);
2154 
2155 	cpr->event_ctr++;
2156 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
2157 	napi_schedule(&bnapi->napi);
2158 	return IRQ_HANDLED;
2159 }
2160 
2161 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
2162 {
2163 	u32 raw_cons = cpr->cp_raw_cons;
2164 	u16 cons = RING_CMP(raw_cons);
2165 	struct tx_cmp *txcmp;
2166 
2167 	txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2168 
2169 	return TX_CMP_VALID(txcmp, raw_cons);
2170 }
2171 
2172 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
2173 {
2174 	struct bnxt_napi *bnapi = dev_instance;
2175 	struct bnxt *bp = bnapi->bp;
2176 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2177 	u32 cons = RING_CMP(cpr->cp_raw_cons);
2178 	u32 int_status;
2179 
2180 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
2181 
2182 	if (!bnxt_has_work(bp, cpr)) {
2183 		int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
2184 		/* return if erroneous interrupt */
2185 		if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
2186 			return IRQ_NONE;
2187 	}
2188 
2189 	/* disable ring IRQ */
2190 	BNXT_CP_DB_IRQ_DIS(cpr->cp_db.doorbell);
2191 
2192 	/* Return here if interrupt is shared and is disabled. */
2193 	if (unlikely(atomic_read(&bp->intr_sem) != 0))
2194 		return IRQ_HANDLED;
2195 
2196 	napi_schedule(&bnapi->napi);
2197 	return IRQ_HANDLED;
2198 }
2199 
2200 static int __bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2201 			    int budget)
2202 {
2203 	struct bnxt_napi *bnapi = cpr->bnapi;
2204 	u32 raw_cons = cpr->cp_raw_cons;
2205 	u32 cons;
2206 	int tx_pkts = 0;
2207 	int rx_pkts = 0;
2208 	u8 event = 0;
2209 	struct tx_cmp *txcmp;
2210 
2211 	cpr->has_more_work = 0;
2212 	cpr->had_work_done = 1;
2213 	while (1) {
2214 		int rc;
2215 
2216 		cons = RING_CMP(raw_cons);
2217 		txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2218 
2219 		if (!TX_CMP_VALID(txcmp, raw_cons))
2220 			break;
2221 
2222 		/* The valid test of the entry must be done first before
2223 		 * reading any further.
2224 		 */
2225 		dma_rmb();
2226 		if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) {
2227 			tx_pkts++;
2228 			/* return full budget so NAPI will complete. */
2229 			if (unlikely(tx_pkts > bp->tx_wake_thresh)) {
2230 				rx_pkts = budget;
2231 				raw_cons = NEXT_RAW_CMP(raw_cons);
2232 				if (budget)
2233 					cpr->has_more_work = 1;
2234 				break;
2235 			}
2236 		} else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
2237 			if (likely(budget))
2238 				rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
2239 			else
2240 				rc = bnxt_force_rx_discard(bp, cpr, &raw_cons,
2241 							   &event);
2242 			if (likely(rc >= 0))
2243 				rx_pkts += rc;
2244 			/* Increment rx_pkts when rc is -ENOMEM to count towards
2245 			 * the NAPI budget.  Otherwise, we may potentially loop
2246 			 * here forever if we consistently cannot allocate
2247 			 * buffers.
2248 			 */
2249 			else if (rc == -ENOMEM && budget)
2250 				rx_pkts++;
2251 			else if (rc == -EBUSY)	/* partial completion */
2252 				break;
2253 		} else if (unlikely((TX_CMP_TYPE(txcmp) ==
2254 				     CMPL_BASE_TYPE_HWRM_DONE) ||
2255 				    (TX_CMP_TYPE(txcmp) ==
2256 				     CMPL_BASE_TYPE_HWRM_FWD_REQ) ||
2257 				    (TX_CMP_TYPE(txcmp) ==
2258 				     CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) {
2259 			bnxt_hwrm_handler(bp, txcmp);
2260 		}
2261 		raw_cons = NEXT_RAW_CMP(raw_cons);
2262 
2263 		if (rx_pkts && rx_pkts == budget) {
2264 			cpr->has_more_work = 1;
2265 			break;
2266 		}
2267 	}
2268 
2269 	if (event & BNXT_REDIRECT_EVENT)
2270 		xdp_do_flush_map();
2271 
2272 	if (event & BNXT_TX_EVENT) {
2273 		struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
2274 		u16 prod = txr->tx_prod;
2275 
2276 		/* Sync BD data before updating doorbell */
2277 		wmb();
2278 
2279 		bnxt_db_write_relaxed(bp, &txr->tx_db, prod);
2280 	}
2281 
2282 	cpr->cp_raw_cons = raw_cons;
2283 	bnapi->tx_pkts += tx_pkts;
2284 	bnapi->events |= event;
2285 	return rx_pkts;
2286 }
2287 
2288 static void __bnxt_poll_work_done(struct bnxt *bp, struct bnxt_napi *bnapi)
2289 {
2290 	if (bnapi->tx_pkts) {
2291 		bnapi->tx_int(bp, bnapi, bnapi->tx_pkts);
2292 		bnapi->tx_pkts = 0;
2293 	}
2294 
2295 	if ((bnapi->events & BNXT_RX_EVENT) && !(bnapi->in_reset)) {
2296 		struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2297 
2298 		if (bnapi->events & BNXT_AGG_EVENT)
2299 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
2300 		bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
2301 	}
2302 	bnapi->events = 0;
2303 }
2304 
2305 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2306 			  int budget)
2307 {
2308 	struct bnxt_napi *bnapi = cpr->bnapi;
2309 	int rx_pkts;
2310 
2311 	rx_pkts = __bnxt_poll_work(bp, cpr, budget);
2312 
2313 	/* ACK completion ring before freeing tx ring and producing new
2314 	 * buffers in rx/agg rings to prevent overflowing the completion
2315 	 * ring.
2316 	 */
2317 	bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons);
2318 
2319 	__bnxt_poll_work_done(bp, bnapi);
2320 	return rx_pkts;
2321 }
2322 
2323 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget)
2324 {
2325 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2326 	struct bnxt *bp = bnapi->bp;
2327 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2328 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2329 	struct tx_cmp *txcmp;
2330 	struct rx_cmp_ext *rxcmp1;
2331 	u32 cp_cons, tmp_raw_cons;
2332 	u32 raw_cons = cpr->cp_raw_cons;
2333 	u32 rx_pkts = 0;
2334 	u8 event = 0;
2335 
2336 	while (1) {
2337 		int rc;
2338 
2339 		cp_cons = RING_CMP(raw_cons);
2340 		txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2341 
2342 		if (!TX_CMP_VALID(txcmp, raw_cons))
2343 			break;
2344 
2345 		if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
2346 			tmp_raw_cons = NEXT_RAW_CMP(raw_cons);
2347 			cp_cons = RING_CMP(tmp_raw_cons);
2348 			rxcmp1 = (struct rx_cmp_ext *)
2349 			  &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2350 
2351 			if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
2352 				break;
2353 
2354 			/* force an error to recycle the buffer */
2355 			rxcmp1->rx_cmp_cfa_code_errors_v2 |=
2356 				cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
2357 
2358 			rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
2359 			if (likely(rc == -EIO) && budget)
2360 				rx_pkts++;
2361 			else if (rc == -EBUSY)	/* partial completion */
2362 				break;
2363 		} else if (unlikely(TX_CMP_TYPE(txcmp) ==
2364 				    CMPL_BASE_TYPE_HWRM_DONE)) {
2365 			bnxt_hwrm_handler(bp, txcmp);
2366 		} else {
2367 			netdev_err(bp->dev,
2368 				   "Invalid completion received on special ring\n");
2369 		}
2370 		raw_cons = NEXT_RAW_CMP(raw_cons);
2371 
2372 		if (rx_pkts == budget)
2373 			break;
2374 	}
2375 
2376 	cpr->cp_raw_cons = raw_cons;
2377 	BNXT_DB_CQ(&cpr->cp_db, cpr->cp_raw_cons);
2378 	bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
2379 
2380 	if (event & BNXT_AGG_EVENT)
2381 		bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
2382 
2383 	if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) {
2384 		napi_complete_done(napi, rx_pkts);
2385 		BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2386 	}
2387 	return rx_pkts;
2388 }
2389 
2390 static int bnxt_poll(struct napi_struct *napi, int budget)
2391 {
2392 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2393 	struct bnxt *bp = bnapi->bp;
2394 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2395 	int work_done = 0;
2396 
2397 	while (1) {
2398 		work_done += bnxt_poll_work(bp, cpr, budget - work_done);
2399 
2400 		if (work_done >= budget) {
2401 			if (!budget)
2402 				BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2403 			break;
2404 		}
2405 
2406 		if (!bnxt_has_work(bp, cpr)) {
2407 			if (napi_complete_done(napi, work_done))
2408 				BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2409 			break;
2410 		}
2411 	}
2412 	if (bp->flags & BNXT_FLAG_DIM) {
2413 		struct dim_sample dim_sample = {};
2414 
2415 		dim_update_sample(cpr->event_ctr,
2416 				  cpr->rx_packets,
2417 				  cpr->rx_bytes,
2418 				  &dim_sample);
2419 		net_dim(&cpr->dim, dim_sample);
2420 	}
2421 	return work_done;
2422 }
2423 
2424 static int __bnxt_poll_cqs(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
2425 {
2426 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2427 	int i, work_done = 0;
2428 
2429 	for (i = 0; i < 2; i++) {
2430 		struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i];
2431 
2432 		if (cpr2) {
2433 			work_done += __bnxt_poll_work(bp, cpr2,
2434 						      budget - work_done);
2435 			cpr->has_more_work |= cpr2->has_more_work;
2436 		}
2437 	}
2438 	return work_done;
2439 }
2440 
2441 static void __bnxt_poll_cqs_done(struct bnxt *bp, struct bnxt_napi *bnapi,
2442 				 u64 dbr_type)
2443 {
2444 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2445 	int i;
2446 
2447 	for (i = 0; i < 2; i++) {
2448 		struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i];
2449 		struct bnxt_db_info *db;
2450 
2451 		if (cpr2 && cpr2->had_work_done) {
2452 			db = &cpr2->cp_db;
2453 			writeq(db->db_key64 | dbr_type |
2454 			       RING_CMP(cpr2->cp_raw_cons), db->doorbell);
2455 			cpr2->had_work_done = 0;
2456 		}
2457 	}
2458 	__bnxt_poll_work_done(bp, bnapi);
2459 }
2460 
2461 static int bnxt_poll_p5(struct napi_struct *napi, int budget)
2462 {
2463 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2464 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2465 	u32 raw_cons = cpr->cp_raw_cons;
2466 	struct bnxt *bp = bnapi->bp;
2467 	struct nqe_cn *nqcmp;
2468 	int work_done = 0;
2469 	u32 cons;
2470 
2471 	if (cpr->has_more_work) {
2472 		cpr->has_more_work = 0;
2473 		work_done = __bnxt_poll_cqs(bp, bnapi, budget);
2474 	}
2475 	while (1) {
2476 		cons = RING_CMP(raw_cons);
2477 		nqcmp = &cpr->nq_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2478 
2479 		if (!NQ_CMP_VALID(nqcmp, raw_cons)) {
2480 			if (cpr->has_more_work)
2481 				break;
2482 
2483 			__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL);
2484 			cpr->cp_raw_cons = raw_cons;
2485 			if (napi_complete_done(napi, work_done))
2486 				BNXT_DB_NQ_ARM_P5(&cpr->cp_db,
2487 						  cpr->cp_raw_cons);
2488 			return work_done;
2489 		}
2490 
2491 		/* The valid test of the entry must be done first before
2492 		 * reading any further.
2493 		 */
2494 		dma_rmb();
2495 
2496 		if (nqcmp->type == cpu_to_le16(NQ_CN_TYPE_CQ_NOTIFICATION)) {
2497 			u32 idx = le32_to_cpu(nqcmp->cq_handle_low);
2498 			struct bnxt_cp_ring_info *cpr2;
2499 
2500 			cpr2 = cpr->cp_ring_arr[idx];
2501 			work_done += __bnxt_poll_work(bp, cpr2,
2502 						      budget - work_done);
2503 			cpr->has_more_work |= cpr2->has_more_work;
2504 		} else {
2505 			bnxt_hwrm_handler(bp, (struct tx_cmp *)nqcmp);
2506 		}
2507 		raw_cons = NEXT_RAW_CMP(raw_cons);
2508 	}
2509 	__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ);
2510 	if (raw_cons != cpr->cp_raw_cons) {
2511 		cpr->cp_raw_cons = raw_cons;
2512 		BNXT_DB_NQ_P5(&cpr->cp_db, raw_cons);
2513 	}
2514 	return work_done;
2515 }
2516 
2517 static void bnxt_free_tx_skbs(struct bnxt *bp)
2518 {
2519 	int i, max_idx;
2520 	struct pci_dev *pdev = bp->pdev;
2521 
2522 	if (!bp->tx_ring)
2523 		return;
2524 
2525 	max_idx = bp->tx_nr_pages * TX_DESC_CNT;
2526 	for (i = 0; i < bp->tx_nr_rings; i++) {
2527 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2528 		int j;
2529 
2530 		for (j = 0; j < max_idx;) {
2531 			struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
2532 			struct sk_buff *skb;
2533 			int k, last;
2534 
2535 			if (i < bp->tx_nr_rings_xdp &&
2536 			    tx_buf->action == XDP_REDIRECT) {
2537 				dma_unmap_single(&pdev->dev,
2538 					dma_unmap_addr(tx_buf, mapping),
2539 					dma_unmap_len(tx_buf, len),
2540 					PCI_DMA_TODEVICE);
2541 				xdp_return_frame(tx_buf->xdpf);
2542 				tx_buf->action = 0;
2543 				tx_buf->xdpf = NULL;
2544 				j++;
2545 				continue;
2546 			}
2547 
2548 			skb = tx_buf->skb;
2549 			if (!skb) {
2550 				j++;
2551 				continue;
2552 			}
2553 
2554 			tx_buf->skb = NULL;
2555 
2556 			if (tx_buf->is_push) {
2557 				dev_kfree_skb(skb);
2558 				j += 2;
2559 				continue;
2560 			}
2561 
2562 			dma_unmap_single(&pdev->dev,
2563 					 dma_unmap_addr(tx_buf, mapping),
2564 					 skb_headlen(skb),
2565 					 PCI_DMA_TODEVICE);
2566 
2567 			last = tx_buf->nr_frags;
2568 			j += 2;
2569 			for (k = 0; k < last; k++, j++) {
2570 				int ring_idx = j & bp->tx_ring_mask;
2571 				skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2572 
2573 				tx_buf = &txr->tx_buf_ring[ring_idx];
2574 				dma_unmap_page(
2575 					&pdev->dev,
2576 					dma_unmap_addr(tx_buf, mapping),
2577 					skb_frag_size(frag), PCI_DMA_TODEVICE);
2578 			}
2579 			dev_kfree_skb(skb);
2580 		}
2581 		netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
2582 	}
2583 }
2584 
2585 static void bnxt_free_one_rx_ring_skbs(struct bnxt *bp, int ring_nr)
2586 {
2587 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
2588 	struct pci_dev *pdev = bp->pdev;
2589 	struct bnxt_tpa_idx_map *map;
2590 	int i, max_idx, max_agg_idx;
2591 
2592 	max_idx = bp->rx_nr_pages * RX_DESC_CNT;
2593 	max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
2594 	if (!rxr->rx_tpa)
2595 		goto skip_rx_tpa_free;
2596 
2597 	for (i = 0; i < bp->max_tpa; i++) {
2598 		struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[i];
2599 		u8 *data = tpa_info->data;
2600 
2601 		if (!data)
2602 			continue;
2603 
2604 		dma_unmap_single_attrs(&pdev->dev, tpa_info->mapping,
2605 				       bp->rx_buf_use_size, bp->rx_dir,
2606 				       DMA_ATTR_WEAK_ORDERING);
2607 
2608 		tpa_info->data = NULL;
2609 
2610 		kfree(data);
2611 	}
2612 
2613 skip_rx_tpa_free:
2614 	for (i = 0; i < max_idx; i++) {
2615 		struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[i];
2616 		dma_addr_t mapping = rx_buf->mapping;
2617 		void *data = rx_buf->data;
2618 
2619 		if (!data)
2620 			continue;
2621 
2622 		rx_buf->data = NULL;
2623 		if (BNXT_RX_PAGE_MODE(bp)) {
2624 			mapping -= bp->rx_dma_offset;
2625 			dma_unmap_page_attrs(&pdev->dev, mapping, PAGE_SIZE,
2626 					     bp->rx_dir,
2627 					     DMA_ATTR_WEAK_ORDERING);
2628 			page_pool_recycle_direct(rxr->page_pool, data);
2629 		} else {
2630 			dma_unmap_single_attrs(&pdev->dev, mapping,
2631 					       bp->rx_buf_use_size, bp->rx_dir,
2632 					       DMA_ATTR_WEAK_ORDERING);
2633 			kfree(data);
2634 		}
2635 	}
2636 	for (i = 0; i < max_agg_idx; i++) {
2637 		struct bnxt_sw_rx_agg_bd *rx_agg_buf = &rxr->rx_agg_ring[i];
2638 		struct page *page = rx_agg_buf->page;
2639 
2640 		if (!page)
2641 			continue;
2642 
2643 		dma_unmap_page_attrs(&pdev->dev, rx_agg_buf->mapping,
2644 				     BNXT_RX_PAGE_SIZE, PCI_DMA_FROMDEVICE,
2645 				     DMA_ATTR_WEAK_ORDERING);
2646 
2647 		rx_agg_buf->page = NULL;
2648 		__clear_bit(i, rxr->rx_agg_bmap);
2649 
2650 		__free_page(page);
2651 	}
2652 	if (rxr->rx_page) {
2653 		__free_page(rxr->rx_page);
2654 		rxr->rx_page = NULL;
2655 	}
2656 	map = rxr->rx_tpa_idx_map;
2657 	if (map)
2658 		memset(map->agg_idx_bmap, 0, sizeof(map->agg_idx_bmap));
2659 }
2660 
2661 static void bnxt_free_rx_skbs(struct bnxt *bp)
2662 {
2663 	int i;
2664 
2665 	if (!bp->rx_ring)
2666 		return;
2667 
2668 	for (i = 0; i < bp->rx_nr_rings; i++)
2669 		bnxt_free_one_rx_ring_skbs(bp, i);
2670 }
2671 
2672 static void bnxt_free_skbs(struct bnxt *bp)
2673 {
2674 	bnxt_free_tx_skbs(bp);
2675 	bnxt_free_rx_skbs(bp);
2676 }
2677 
2678 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
2679 {
2680 	struct pci_dev *pdev = bp->pdev;
2681 	int i;
2682 
2683 	for (i = 0; i < rmem->nr_pages; i++) {
2684 		if (!rmem->pg_arr[i])
2685 			continue;
2686 
2687 		dma_free_coherent(&pdev->dev, rmem->page_size,
2688 				  rmem->pg_arr[i], rmem->dma_arr[i]);
2689 
2690 		rmem->pg_arr[i] = NULL;
2691 	}
2692 	if (rmem->pg_tbl) {
2693 		size_t pg_tbl_size = rmem->nr_pages * 8;
2694 
2695 		if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
2696 			pg_tbl_size = rmem->page_size;
2697 		dma_free_coherent(&pdev->dev, pg_tbl_size,
2698 				  rmem->pg_tbl, rmem->pg_tbl_map);
2699 		rmem->pg_tbl = NULL;
2700 	}
2701 	if (rmem->vmem_size && *rmem->vmem) {
2702 		vfree(*rmem->vmem);
2703 		*rmem->vmem = NULL;
2704 	}
2705 }
2706 
2707 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
2708 {
2709 	struct pci_dev *pdev = bp->pdev;
2710 	u64 valid_bit = 0;
2711 	int i;
2712 
2713 	if (rmem->flags & (BNXT_RMEM_VALID_PTE_FLAG | BNXT_RMEM_RING_PTE_FLAG))
2714 		valid_bit = PTU_PTE_VALID;
2715 	if ((rmem->nr_pages > 1 || rmem->depth > 0) && !rmem->pg_tbl) {
2716 		size_t pg_tbl_size = rmem->nr_pages * 8;
2717 
2718 		if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
2719 			pg_tbl_size = rmem->page_size;
2720 		rmem->pg_tbl = dma_alloc_coherent(&pdev->dev, pg_tbl_size,
2721 						  &rmem->pg_tbl_map,
2722 						  GFP_KERNEL);
2723 		if (!rmem->pg_tbl)
2724 			return -ENOMEM;
2725 	}
2726 
2727 	for (i = 0; i < rmem->nr_pages; i++) {
2728 		u64 extra_bits = valid_bit;
2729 
2730 		rmem->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
2731 						     rmem->page_size,
2732 						     &rmem->dma_arr[i],
2733 						     GFP_KERNEL);
2734 		if (!rmem->pg_arr[i])
2735 			return -ENOMEM;
2736 
2737 		if (rmem->init_val)
2738 			memset(rmem->pg_arr[i], rmem->init_val,
2739 			       rmem->page_size);
2740 		if (rmem->nr_pages > 1 || rmem->depth > 0) {
2741 			if (i == rmem->nr_pages - 2 &&
2742 			    (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
2743 				extra_bits |= PTU_PTE_NEXT_TO_LAST;
2744 			else if (i == rmem->nr_pages - 1 &&
2745 				 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
2746 				extra_bits |= PTU_PTE_LAST;
2747 			rmem->pg_tbl[i] =
2748 				cpu_to_le64(rmem->dma_arr[i] | extra_bits);
2749 		}
2750 	}
2751 
2752 	if (rmem->vmem_size) {
2753 		*rmem->vmem = vzalloc(rmem->vmem_size);
2754 		if (!(*rmem->vmem))
2755 			return -ENOMEM;
2756 	}
2757 	return 0;
2758 }
2759 
2760 static void bnxt_free_tpa_info(struct bnxt *bp)
2761 {
2762 	int i;
2763 
2764 	for (i = 0; i < bp->rx_nr_rings; i++) {
2765 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2766 
2767 		kfree(rxr->rx_tpa_idx_map);
2768 		rxr->rx_tpa_idx_map = NULL;
2769 		if (rxr->rx_tpa) {
2770 			kfree(rxr->rx_tpa[0].agg_arr);
2771 			rxr->rx_tpa[0].agg_arr = NULL;
2772 		}
2773 		kfree(rxr->rx_tpa);
2774 		rxr->rx_tpa = NULL;
2775 	}
2776 }
2777 
2778 static int bnxt_alloc_tpa_info(struct bnxt *bp)
2779 {
2780 	int i, j, total_aggs = 0;
2781 
2782 	bp->max_tpa = MAX_TPA;
2783 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
2784 		if (!bp->max_tpa_v2)
2785 			return 0;
2786 		bp->max_tpa = max_t(u16, bp->max_tpa_v2, MAX_TPA_P5);
2787 		total_aggs = bp->max_tpa * MAX_SKB_FRAGS;
2788 	}
2789 
2790 	for (i = 0; i < bp->rx_nr_rings; i++) {
2791 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2792 		struct rx_agg_cmp *agg;
2793 
2794 		rxr->rx_tpa = kcalloc(bp->max_tpa, sizeof(struct bnxt_tpa_info),
2795 				      GFP_KERNEL);
2796 		if (!rxr->rx_tpa)
2797 			return -ENOMEM;
2798 
2799 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
2800 			continue;
2801 		agg = kcalloc(total_aggs, sizeof(*agg), GFP_KERNEL);
2802 		rxr->rx_tpa[0].agg_arr = agg;
2803 		if (!agg)
2804 			return -ENOMEM;
2805 		for (j = 1; j < bp->max_tpa; j++)
2806 			rxr->rx_tpa[j].agg_arr = agg + j * MAX_SKB_FRAGS;
2807 		rxr->rx_tpa_idx_map = kzalloc(sizeof(*rxr->rx_tpa_idx_map),
2808 					      GFP_KERNEL);
2809 		if (!rxr->rx_tpa_idx_map)
2810 			return -ENOMEM;
2811 	}
2812 	return 0;
2813 }
2814 
2815 static void bnxt_free_rx_rings(struct bnxt *bp)
2816 {
2817 	int i;
2818 
2819 	if (!bp->rx_ring)
2820 		return;
2821 
2822 	bnxt_free_tpa_info(bp);
2823 	for (i = 0; i < bp->rx_nr_rings; i++) {
2824 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2825 		struct bnxt_ring_struct *ring;
2826 
2827 		if (rxr->xdp_prog)
2828 			bpf_prog_put(rxr->xdp_prog);
2829 
2830 		if (xdp_rxq_info_is_reg(&rxr->xdp_rxq))
2831 			xdp_rxq_info_unreg(&rxr->xdp_rxq);
2832 
2833 		page_pool_destroy(rxr->page_pool);
2834 		rxr->page_pool = NULL;
2835 
2836 		kfree(rxr->rx_agg_bmap);
2837 		rxr->rx_agg_bmap = NULL;
2838 
2839 		ring = &rxr->rx_ring_struct;
2840 		bnxt_free_ring(bp, &ring->ring_mem);
2841 
2842 		ring = &rxr->rx_agg_ring_struct;
2843 		bnxt_free_ring(bp, &ring->ring_mem);
2844 	}
2845 }
2846 
2847 static int bnxt_alloc_rx_page_pool(struct bnxt *bp,
2848 				   struct bnxt_rx_ring_info *rxr)
2849 {
2850 	struct page_pool_params pp = { 0 };
2851 
2852 	pp.pool_size = bp->rx_ring_size;
2853 	pp.nid = dev_to_node(&bp->pdev->dev);
2854 	pp.dev = &bp->pdev->dev;
2855 	pp.dma_dir = DMA_BIDIRECTIONAL;
2856 
2857 	rxr->page_pool = page_pool_create(&pp);
2858 	if (IS_ERR(rxr->page_pool)) {
2859 		int err = PTR_ERR(rxr->page_pool);
2860 
2861 		rxr->page_pool = NULL;
2862 		return err;
2863 	}
2864 	return 0;
2865 }
2866 
2867 static int bnxt_alloc_rx_rings(struct bnxt *bp)
2868 {
2869 	int i, rc = 0, agg_rings = 0;
2870 
2871 	if (!bp->rx_ring)
2872 		return -ENOMEM;
2873 
2874 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
2875 		agg_rings = 1;
2876 
2877 	for (i = 0; i < bp->rx_nr_rings; i++) {
2878 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2879 		struct bnxt_ring_struct *ring;
2880 
2881 		ring = &rxr->rx_ring_struct;
2882 
2883 		rc = bnxt_alloc_rx_page_pool(bp, rxr);
2884 		if (rc)
2885 			return rc;
2886 
2887 		rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i);
2888 		if (rc < 0)
2889 			return rc;
2890 
2891 		rc = xdp_rxq_info_reg_mem_model(&rxr->xdp_rxq,
2892 						MEM_TYPE_PAGE_POOL,
2893 						rxr->page_pool);
2894 		if (rc) {
2895 			xdp_rxq_info_unreg(&rxr->xdp_rxq);
2896 			return rc;
2897 		}
2898 
2899 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
2900 		if (rc)
2901 			return rc;
2902 
2903 		ring->grp_idx = i;
2904 		if (agg_rings) {
2905 			u16 mem_size;
2906 
2907 			ring = &rxr->rx_agg_ring_struct;
2908 			rc = bnxt_alloc_ring(bp, &ring->ring_mem);
2909 			if (rc)
2910 				return rc;
2911 
2912 			ring->grp_idx = i;
2913 			rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
2914 			mem_size = rxr->rx_agg_bmap_size / 8;
2915 			rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
2916 			if (!rxr->rx_agg_bmap)
2917 				return -ENOMEM;
2918 		}
2919 	}
2920 	if (bp->flags & BNXT_FLAG_TPA)
2921 		rc = bnxt_alloc_tpa_info(bp);
2922 	return rc;
2923 }
2924 
2925 static void bnxt_free_tx_rings(struct bnxt *bp)
2926 {
2927 	int i;
2928 	struct pci_dev *pdev = bp->pdev;
2929 
2930 	if (!bp->tx_ring)
2931 		return;
2932 
2933 	for (i = 0; i < bp->tx_nr_rings; i++) {
2934 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2935 		struct bnxt_ring_struct *ring;
2936 
2937 		if (txr->tx_push) {
2938 			dma_free_coherent(&pdev->dev, bp->tx_push_size,
2939 					  txr->tx_push, txr->tx_push_mapping);
2940 			txr->tx_push = NULL;
2941 		}
2942 
2943 		ring = &txr->tx_ring_struct;
2944 
2945 		bnxt_free_ring(bp, &ring->ring_mem);
2946 	}
2947 }
2948 
2949 static int bnxt_alloc_tx_rings(struct bnxt *bp)
2950 {
2951 	int i, j, rc;
2952 	struct pci_dev *pdev = bp->pdev;
2953 
2954 	bp->tx_push_size = 0;
2955 	if (bp->tx_push_thresh) {
2956 		int push_size;
2957 
2958 		push_size  = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
2959 					bp->tx_push_thresh);
2960 
2961 		if (push_size > 256) {
2962 			push_size = 0;
2963 			bp->tx_push_thresh = 0;
2964 		}
2965 
2966 		bp->tx_push_size = push_size;
2967 	}
2968 
2969 	for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
2970 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2971 		struct bnxt_ring_struct *ring;
2972 		u8 qidx;
2973 
2974 		ring = &txr->tx_ring_struct;
2975 
2976 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
2977 		if (rc)
2978 			return rc;
2979 
2980 		ring->grp_idx = txr->bnapi->index;
2981 		if (bp->tx_push_size) {
2982 			dma_addr_t mapping;
2983 
2984 			/* One pre-allocated DMA buffer to backup
2985 			 * TX push operation
2986 			 */
2987 			txr->tx_push = dma_alloc_coherent(&pdev->dev,
2988 						bp->tx_push_size,
2989 						&txr->tx_push_mapping,
2990 						GFP_KERNEL);
2991 
2992 			if (!txr->tx_push)
2993 				return -ENOMEM;
2994 
2995 			mapping = txr->tx_push_mapping +
2996 				sizeof(struct tx_push_bd);
2997 			txr->data_mapping = cpu_to_le64(mapping);
2998 		}
2999 		qidx = bp->tc_to_qidx[j];
3000 		ring->queue_id = bp->q_info[qidx].queue_id;
3001 		if (i < bp->tx_nr_rings_xdp)
3002 			continue;
3003 		if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1))
3004 			j++;
3005 	}
3006 	return 0;
3007 }
3008 
3009 static void bnxt_free_cp_rings(struct bnxt *bp)
3010 {
3011 	int i;
3012 
3013 	if (!bp->bnapi)
3014 		return;
3015 
3016 	for (i = 0; i < bp->cp_nr_rings; i++) {
3017 		struct bnxt_napi *bnapi = bp->bnapi[i];
3018 		struct bnxt_cp_ring_info *cpr;
3019 		struct bnxt_ring_struct *ring;
3020 		int j;
3021 
3022 		if (!bnapi)
3023 			continue;
3024 
3025 		cpr = &bnapi->cp_ring;
3026 		ring = &cpr->cp_ring_struct;
3027 
3028 		bnxt_free_ring(bp, &ring->ring_mem);
3029 
3030 		for (j = 0; j < 2; j++) {
3031 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
3032 
3033 			if (cpr2) {
3034 				ring = &cpr2->cp_ring_struct;
3035 				bnxt_free_ring(bp, &ring->ring_mem);
3036 				kfree(cpr2);
3037 				cpr->cp_ring_arr[j] = NULL;
3038 			}
3039 		}
3040 	}
3041 }
3042 
3043 static struct bnxt_cp_ring_info *bnxt_alloc_cp_sub_ring(struct bnxt *bp)
3044 {
3045 	struct bnxt_ring_mem_info *rmem;
3046 	struct bnxt_ring_struct *ring;
3047 	struct bnxt_cp_ring_info *cpr;
3048 	int rc;
3049 
3050 	cpr = kzalloc(sizeof(*cpr), GFP_KERNEL);
3051 	if (!cpr)
3052 		return NULL;
3053 
3054 	ring = &cpr->cp_ring_struct;
3055 	rmem = &ring->ring_mem;
3056 	rmem->nr_pages = bp->cp_nr_pages;
3057 	rmem->page_size = HW_CMPD_RING_SIZE;
3058 	rmem->pg_arr = (void **)cpr->cp_desc_ring;
3059 	rmem->dma_arr = cpr->cp_desc_mapping;
3060 	rmem->flags = BNXT_RMEM_RING_PTE_FLAG;
3061 	rc = bnxt_alloc_ring(bp, rmem);
3062 	if (rc) {
3063 		bnxt_free_ring(bp, rmem);
3064 		kfree(cpr);
3065 		cpr = NULL;
3066 	}
3067 	return cpr;
3068 }
3069 
3070 static int bnxt_alloc_cp_rings(struct bnxt *bp)
3071 {
3072 	bool sh = !!(bp->flags & BNXT_FLAG_SHARED_RINGS);
3073 	int i, rc, ulp_base_vec, ulp_msix;
3074 
3075 	ulp_msix = bnxt_get_ulp_msix_num(bp);
3076 	ulp_base_vec = bnxt_get_ulp_msix_base(bp);
3077 	for (i = 0; i < bp->cp_nr_rings; i++) {
3078 		struct bnxt_napi *bnapi = bp->bnapi[i];
3079 		struct bnxt_cp_ring_info *cpr;
3080 		struct bnxt_ring_struct *ring;
3081 
3082 		if (!bnapi)
3083 			continue;
3084 
3085 		cpr = &bnapi->cp_ring;
3086 		cpr->bnapi = bnapi;
3087 		ring = &cpr->cp_ring_struct;
3088 
3089 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3090 		if (rc)
3091 			return rc;
3092 
3093 		if (ulp_msix && i >= ulp_base_vec)
3094 			ring->map_idx = i + ulp_msix;
3095 		else
3096 			ring->map_idx = i;
3097 
3098 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
3099 			continue;
3100 
3101 		if (i < bp->rx_nr_rings) {
3102 			struct bnxt_cp_ring_info *cpr2 =
3103 				bnxt_alloc_cp_sub_ring(bp);
3104 
3105 			cpr->cp_ring_arr[BNXT_RX_HDL] = cpr2;
3106 			if (!cpr2)
3107 				return -ENOMEM;
3108 			cpr2->bnapi = bnapi;
3109 		}
3110 		if ((sh && i < bp->tx_nr_rings) ||
3111 		    (!sh && i >= bp->rx_nr_rings)) {
3112 			struct bnxt_cp_ring_info *cpr2 =
3113 				bnxt_alloc_cp_sub_ring(bp);
3114 
3115 			cpr->cp_ring_arr[BNXT_TX_HDL] = cpr2;
3116 			if (!cpr2)
3117 				return -ENOMEM;
3118 			cpr2->bnapi = bnapi;
3119 		}
3120 	}
3121 	return 0;
3122 }
3123 
3124 static void bnxt_init_ring_struct(struct bnxt *bp)
3125 {
3126 	int i;
3127 
3128 	for (i = 0; i < bp->cp_nr_rings; i++) {
3129 		struct bnxt_napi *bnapi = bp->bnapi[i];
3130 		struct bnxt_ring_mem_info *rmem;
3131 		struct bnxt_cp_ring_info *cpr;
3132 		struct bnxt_rx_ring_info *rxr;
3133 		struct bnxt_tx_ring_info *txr;
3134 		struct bnxt_ring_struct *ring;
3135 
3136 		if (!bnapi)
3137 			continue;
3138 
3139 		cpr = &bnapi->cp_ring;
3140 		ring = &cpr->cp_ring_struct;
3141 		rmem = &ring->ring_mem;
3142 		rmem->nr_pages = bp->cp_nr_pages;
3143 		rmem->page_size = HW_CMPD_RING_SIZE;
3144 		rmem->pg_arr = (void **)cpr->cp_desc_ring;
3145 		rmem->dma_arr = cpr->cp_desc_mapping;
3146 		rmem->vmem_size = 0;
3147 
3148 		rxr = bnapi->rx_ring;
3149 		if (!rxr)
3150 			goto skip_rx;
3151 
3152 		ring = &rxr->rx_ring_struct;
3153 		rmem = &ring->ring_mem;
3154 		rmem->nr_pages = bp->rx_nr_pages;
3155 		rmem->page_size = HW_RXBD_RING_SIZE;
3156 		rmem->pg_arr = (void **)rxr->rx_desc_ring;
3157 		rmem->dma_arr = rxr->rx_desc_mapping;
3158 		rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
3159 		rmem->vmem = (void **)&rxr->rx_buf_ring;
3160 
3161 		ring = &rxr->rx_agg_ring_struct;
3162 		rmem = &ring->ring_mem;
3163 		rmem->nr_pages = bp->rx_agg_nr_pages;
3164 		rmem->page_size = HW_RXBD_RING_SIZE;
3165 		rmem->pg_arr = (void **)rxr->rx_agg_desc_ring;
3166 		rmem->dma_arr = rxr->rx_agg_desc_mapping;
3167 		rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
3168 		rmem->vmem = (void **)&rxr->rx_agg_ring;
3169 
3170 skip_rx:
3171 		txr = bnapi->tx_ring;
3172 		if (!txr)
3173 			continue;
3174 
3175 		ring = &txr->tx_ring_struct;
3176 		rmem = &ring->ring_mem;
3177 		rmem->nr_pages = bp->tx_nr_pages;
3178 		rmem->page_size = HW_RXBD_RING_SIZE;
3179 		rmem->pg_arr = (void **)txr->tx_desc_ring;
3180 		rmem->dma_arr = txr->tx_desc_mapping;
3181 		rmem->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
3182 		rmem->vmem = (void **)&txr->tx_buf_ring;
3183 	}
3184 }
3185 
3186 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
3187 {
3188 	int i;
3189 	u32 prod;
3190 	struct rx_bd **rx_buf_ring;
3191 
3192 	rx_buf_ring = (struct rx_bd **)ring->ring_mem.pg_arr;
3193 	for (i = 0, prod = 0; i < ring->ring_mem.nr_pages; i++) {
3194 		int j;
3195 		struct rx_bd *rxbd;
3196 
3197 		rxbd = rx_buf_ring[i];
3198 		if (!rxbd)
3199 			continue;
3200 
3201 		for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
3202 			rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
3203 			rxbd->rx_bd_opaque = prod;
3204 		}
3205 	}
3206 }
3207 
3208 static int bnxt_alloc_one_rx_ring(struct bnxt *bp, int ring_nr)
3209 {
3210 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
3211 	struct net_device *dev = bp->dev;
3212 	u32 prod;
3213 	int i;
3214 
3215 	prod = rxr->rx_prod;
3216 	for (i = 0; i < bp->rx_ring_size; i++) {
3217 		if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL)) {
3218 			netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
3219 				    ring_nr, i, bp->rx_ring_size);
3220 			break;
3221 		}
3222 		prod = NEXT_RX(prod);
3223 	}
3224 	rxr->rx_prod = prod;
3225 
3226 	if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
3227 		return 0;
3228 
3229 	prod = rxr->rx_agg_prod;
3230 	for (i = 0; i < bp->rx_agg_ring_size; i++) {
3231 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL)) {
3232 			netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
3233 				    ring_nr, i, bp->rx_ring_size);
3234 			break;
3235 		}
3236 		prod = NEXT_RX_AGG(prod);
3237 	}
3238 	rxr->rx_agg_prod = prod;
3239 
3240 	if (rxr->rx_tpa) {
3241 		dma_addr_t mapping;
3242 		u8 *data;
3243 
3244 		for (i = 0; i < bp->max_tpa; i++) {
3245 			data = __bnxt_alloc_rx_data(bp, &mapping, GFP_KERNEL);
3246 			if (!data)
3247 				return -ENOMEM;
3248 
3249 			rxr->rx_tpa[i].data = data;
3250 			rxr->rx_tpa[i].data_ptr = data + bp->rx_offset;
3251 			rxr->rx_tpa[i].mapping = mapping;
3252 		}
3253 	}
3254 	return 0;
3255 }
3256 
3257 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
3258 {
3259 	struct bnxt_rx_ring_info *rxr;
3260 	struct bnxt_ring_struct *ring;
3261 	u32 type;
3262 
3263 	type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
3264 		RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
3265 
3266 	if (NET_IP_ALIGN == 2)
3267 		type |= RX_BD_FLAGS_SOP;
3268 
3269 	rxr = &bp->rx_ring[ring_nr];
3270 	ring = &rxr->rx_ring_struct;
3271 	bnxt_init_rxbd_pages(ring, type);
3272 
3273 	if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) {
3274 		bpf_prog_add(bp->xdp_prog, 1);
3275 		rxr->xdp_prog = bp->xdp_prog;
3276 	}
3277 	ring->fw_ring_id = INVALID_HW_RING_ID;
3278 
3279 	ring = &rxr->rx_agg_ring_struct;
3280 	ring->fw_ring_id = INVALID_HW_RING_ID;
3281 
3282 	if ((bp->flags & BNXT_FLAG_AGG_RINGS)) {
3283 		type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) |
3284 			RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
3285 
3286 		bnxt_init_rxbd_pages(ring, type);
3287 	}
3288 
3289 	return bnxt_alloc_one_rx_ring(bp, ring_nr);
3290 }
3291 
3292 static void bnxt_init_cp_rings(struct bnxt *bp)
3293 {
3294 	int i, j;
3295 
3296 	for (i = 0; i < bp->cp_nr_rings; i++) {
3297 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
3298 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3299 
3300 		ring->fw_ring_id = INVALID_HW_RING_ID;
3301 		cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
3302 		cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
3303 		for (j = 0; j < 2; j++) {
3304 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
3305 
3306 			if (!cpr2)
3307 				continue;
3308 
3309 			ring = &cpr2->cp_ring_struct;
3310 			ring->fw_ring_id = INVALID_HW_RING_ID;
3311 			cpr2->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
3312 			cpr2->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
3313 		}
3314 	}
3315 }
3316 
3317 static int bnxt_init_rx_rings(struct bnxt *bp)
3318 {
3319 	int i, rc = 0;
3320 
3321 	if (BNXT_RX_PAGE_MODE(bp)) {
3322 		bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM;
3323 		bp->rx_dma_offset = XDP_PACKET_HEADROOM;
3324 	} else {
3325 		bp->rx_offset = BNXT_RX_OFFSET;
3326 		bp->rx_dma_offset = BNXT_RX_DMA_OFFSET;
3327 	}
3328 
3329 	for (i = 0; i < bp->rx_nr_rings; i++) {
3330 		rc = bnxt_init_one_rx_ring(bp, i);
3331 		if (rc)
3332 			break;
3333 	}
3334 
3335 	return rc;
3336 }
3337 
3338 static int bnxt_init_tx_rings(struct bnxt *bp)
3339 {
3340 	u16 i;
3341 
3342 	bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
3343 				   MAX_SKB_FRAGS + 1);
3344 
3345 	for (i = 0; i < bp->tx_nr_rings; i++) {
3346 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3347 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
3348 
3349 		ring->fw_ring_id = INVALID_HW_RING_ID;
3350 	}
3351 
3352 	return 0;
3353 }
3354 
3355 static void bnxt_free_ring_grps(struct bnxt *bp)
3356 {
3357 	kfree(bp->grp_info);
3358 	bp->grp_info = NULL;
3359 }
3360 
3361 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
3362 {
3363 	int i;
3364 
3365 	if (irq_re_init) {
3366 		bp->grp_info = kcalloc(bp->cp_nr_rings,
3367 				       sizeof(struct bnxt_ring_grp_info),
3368 				       GFP_KERNEL);
3369 		if (!bp->grp_info)
3370 			return -ENOMEM;
3371 	}
3372 	for (i = 0; i < bp->cp_nr_rings; i++) {
3373 		if (irq_re_init)
3374 			bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
3375 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
3376 		bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
3377 		bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
3378 		bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
3379 	}
3380 	return 0;
3381 }
3382 
3383 static void bnxt_free_vnics(struct bnxt *bp)
3384 {
3385 	kfree(bp->vnic_info);
3386 	bp->vnic_info = NULL;
3387 	bp->nr_vnics = 0;
3388 }
3389 
3390 static int bnxt_alloc_vnics(struct bnxt *bp)
3391 {
3392 	int num_vnics = 1;
3393 
3394 #ifdef CONFIG_RFS_ACCEL
3395 	if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS)
3396 		num_vnics += bp->rx_nr_rings;
3397 #endif
3398 
3399 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
3400 		num_vnics++;
3401 
3402 	bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
3403 				GFP_KERNEL);
3404 	if (!bp->vnic_info)
3405 		return -ENOMEM;
3406 
3407 	bp->nr_vnics = num_vnics;
3408 	return 0;
3409 }
3410 
3411 static void bnxt_init_vnics(struct bnxt *bp)
3412 {
3413 	int i;
3414 
3415 	for (i = 0; i < bp->nr_vnics; i++) {
3416 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3417 		int j;
3418 
3419 		vnic->fw_vnic_id = INVALID_HW_RING_ID;
3420 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++)
3421 			vnic->fw_rss_cos_lb_ctx[j] = INVALID_HW_RING_ID;
3422 
3423 		vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
3424 
3425 		if (bp->vnic_info[i].rss_hash_key) {
3426 			if (i == 0)
3427 				prandom_bytes(vnic->rss_hash_key,
3428 					      HW_HASH_KEY_SIZE);
3429 			else
3430 				memcpy(vnic->rss_hash_key,
3431 				       bp->vnic_info[0].rss_hash_key,
3432 				       HW_HASH_KEY_SIZE);
3433 		}
3434 	}
3435 }
3436 
3437 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
3438 {
3439 	int pages;
3440 
3441 	pages = ring_size / desc_per_pg;
3442 
3443 	if (!pages)
3444 		return 1;
3445 
3446 	pages++;
3447 
3448 	while (pages & (pages - 1))
3449 		pages++;
3450 
3451 	return pages;
3452 }
3453 
3454 void bnxt_set_tpa_flags(struct bnxt *bp)
3455 {
3456 	bp->flags &= ~BNXT_FLAG_TPA;
3457 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
3458 		return;
3459 	if (bp->dev->features & NETIF_F_LRO)
3460 		bp->flags |= BNXT_FLAG_LRO;
3461 	else if (bp->dev->features & NETIF_F_GRO_HW)
3462 		bp->flags |= BNXT_FLAG_GRO;
3463 }
3464 
3465 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
3466  * be set on entry.
3467  */
3468 void bnxt_set_ring_params(struct bnxt *bp)
3469 {
3470 	u32 ring_size, rx_size, rx_space, max_rx_cmpl;
3471 	u32 agg_factor = 0, agg_ring_size = 0;
3472 
3473 	/* 8 for CRC and VLAN */
3474 	rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
3475 
3476 	rx_space = rx_size + NET_SKB_PAD +
3477 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3478 
3479 	bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
3480 	ring_size = bp->rx_ring_size;
3481 	bp->rx_agg_ring_size = 0;
3482 	bp->rx_agg_nr_pages = 0;
3483 
3484 	if (bp->flags & BNXT_FLAG_TPA)
3485 		agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE);
3486 
3487 	bp->flags &= ~BNXT_FLAG_JUMBO;
3488 	if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) {
3489 		u32 jumbo_factor;
3490 
3491 		bp->flags |= BNXT_FLAG_JUMBO;
3492 		jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
3493 		if (jumbo_factor > agg_factor)
3494 			agg_factor = jumbo_factor;
3495 	}
3496 	agg_ring_size = ring_size * agg_factor;
3497 
3498 	if (agg_ring_size) {
3499 		bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
3500 							RX_DESC_CNT);
3501 		if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
3502 			u32 tmp = agg_ring_size;
3503 
3504 			bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
3505 			agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
3506 			netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
3507 				    tmp, agg_ring_size);
3508 		}
3509 		bp->rx_agg_ring_size = agg_ring_size;
3510 		bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
3511 		rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
3512 		rx_space = rx_size + NET_SKB_PAD +
3513 			SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3514 	}
3515 
3516 	bp->rx_buf_use_size = rx_size;
3517 	bp->rx_buf_size = rx_space;
3518 
3519 	bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
3520 	bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
3521 
3522 	ring_size = bp->tx_ring_size;
3523 	bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
3524 	bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
3525 
3526 	max_rx_cmpl = bp->rx_ring_size;
3527 	/* MAX TPA needs to be added because TPA_START completions are
3528 	 * immediately recycled, so the TPA completions are not bound by
3529 	 * the RX ring size.
3530 	 */
3531 	if (bp->flags & BNXT_FLAG_TPA)
3532 		max_rx_cmpl += bp->max_tpa;
3533 	/* RX and TPA completions are 32-byte, all others are 16-byte */
3534 	ring_size = max_rx_cmpl * 2 + agg_ring_size + bp->tx_ring_size;
3535 	bp->cp_ring_size = ring_size;
3536 
3537 	bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
3538 	if (bp->cp_nr_pages > MAX_CP_PAGES) {
3539 		bp->cp_nr_pages = MAX_CP_PAGES;
3540 		bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
3541 		netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
3542 			    ring_size, bp->cp_ring_size);
3543 	}
3544 	bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
3545 	bp->cp_ring_mask = bp->cp_bit - 1;
3546 }
3547 
3548 /* Changing allocation mode of RX rings.
3549  * TODO: Update when extending xdp_rxq_info to support allocation modes.
3550  */
3551 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode)
3552 {
3553 	if (page_mode) {
3554 		if (bp->dev->mtu > BNXT_MAX_PAGE_MODE_MTU)
3555 			return -EOPNOTSUPP;
3556 		bp->dev->max_mtu =
3557 			min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU);
3558 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
3559 		bp->flags |= BNXT_FLAG_NO_AGG_RINGS | BNXT_FLAG_RX_PAGE_MODE;
3560 		bp->rx_dir = DMA_BIDIRECTIONAL;
3561 		bp->rx_skb_func = bnxt_rx_page_skb;
3562 		/* Disable LRO or GRO_HW */
3563 		netdev_update_features(bp->dev);
3564 	} else {
3565 		bp->dev->max_mtu = bp->max_mtu;
3566 		bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE;
3567 		bp->rx_dir = DMA_FROM_DEVICE;
3568 		bp->rx_skb_func = bnxt_rx_skb;
3569 	}
3570 	return 0;
3571 }
3572 
3573 static void bnxt_free_vnic_attributes(struct bnxt *bp)
3574 {
3575 	int i;
3576 	struct bnxt_vnic_info *vnic;
3577 	struct pci_dev *pdev = bp->pdev;
3578 
3579 	if (!bp->vnic_info)
3580 		return;
3581 
3582 	for (i = 0; i < bp->nr_vnics; i++) {
3583 		vnic = &bp->vnic_info[i];
3584 
3585 		kfree(vnic->fw_grp_ids);
3586 		vnic->fw_grp_ids = NULL;
3587 
3588 		kfree(vnic->uc_list);
3589 		vnic->uc_list = NULL;
3590 
3591 		if (vnic->mc_list) {
3592 			dma_free_coherent(&pdev->dev, vnic->mc_list_size,
3593 					  vnic->mc_list, vnic->mc_list_mapping);
3594 			vnic->mc_list = NULL;
3595 		}
3596 
3597 		if (vnic->rss_table) {
3598 			dma_free_coherent(&pdev->dev, vnic->rss_table_size,
3599 					  vnic->rss_table,
3600 					  vnic->rss_table_dma_addr);
3601 			vnic->rss_table = NULL;
3602 		}
3603 
3604 		vnic->rss_hash_key = NULL;
3605 		vnic->flags = 0;
3606 	}
3607 }
3608 
3609 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
3610 {
3611 	int i, rc = 0, size;
3612 	struct bnxt_vnic_info *vnic;
3613 	struct pci_dev *pdev = bp->pdev;
3614 	int max_rings;
3615 
3616 	for (i = 0; i < bp->nr_vnics; i++) {
3617 		vnic = &bp->vnic_info[i];
3618 
3619 		if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
3620 			int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
3621 
3622 			if (mem_size > 0) {
3623 				vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
3624 				if (!vnic->uc_list) {
3625 					rc = -ENOMEM;
3626 					goto out;
3627 				}
3628 			}
3629 		}
3630 
3631 		if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
3632 			vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
3633 			vnic->mc_list =
3634 				dma_alloc_coherent(&pdev->dev,
3635 						   vnic->mc_list_size,
3636 						   &vnic->mc_list_mapping,
3637 						   GFP_KERNEL);
3638 			if (!vnic->mc_list) {
3639 				rc = -ENOMEM;
3640 				goto out;
3641 			}
3642 		}
3643 
3644 		if (bp->flags & BNXT_FLAG_CHIP_P5)
3645 			goto vnic_skip_grps;
3646 
3647 		if (vnic->flags & BNXT_VNIC_RSS_FLAG)
3648 			max_rings = bp->rx_nr_rings;
3649 		else
3650 			max_rings = 1;
3651 
3652 		vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
3653 		if (!vnic->fw_grp_ids) {
3654 			rc = -ENOMEM;
3655 			goto out;
3656 		}
3657 vnic_skip_grps:
3658 		if ((bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
3659 		    !(vnic->flags & BNXT_VNIC_RSS_FLAG))
3660 			continue;
3661 
3662 		/* Allocate rss table and hash key */
3663 		size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
3664 		if (bp->flags & BNXT_FLAG_CHIP_P5)
3665 			size = L1_CACHE_ALIGN(BNXT_MAX_RSS_TABLE_SIZE_P5);
3666 
3667 		vnic->rss_table_size = size + HW_HASH_KEY_SIZE;
3668 		vnic->rss_table = dma_alloc_coherent(&pdev->dev,
3669 						     vnic->rss_table_size,
3670 						     &vnic->rss_table_dma_addr,
3671 						     GFP_KERNEL);
3672 		if (!vnic->rss_table) {
3673 			rc = -ENOMEM;
3674 			goto out;
3675 		}
3676 
3677 		vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
3678 		vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
3679 	}
3680 	return 0;
3681 
3682 out:
3683 	return rc;
3684 }
3685 
3686 static void bnxt_free_hwrm_resources(struct bnxt *bp)
3687 {
3688 	struct pci_dev *pdev = bp->pdev;
3689 
3690 	if (bp->hwrm_cmd_resp_addr) {
3691 		dma_free_coherent(&pdev->dev, PAGE_SIZE, bp->hwrm_cmd_resp_addr,
3692 				  bp->hwrm_cmd_resp_dma_addr);
3693 		bp->hwrm_cmd_resp_addr = NULL;
3694 	}
3695 
3696 	if (bp->hwrm_cmd_kong_resp_addr) {
3697 		dma_free_coherent(&pdev->dev, PAGE_SIZE,
3698 				  bp->hwrm_cmd_kong_resp_addr,
3699 				  bp->hwrm_cmd_kong_resp_dma_addr);
3700 		bp->hwrm_cmd_kong_resp_addr = NULL;
3701 	}
3702 }
3703 
3704 static int bnxt_alloc_kong_hwrm_resources(struct bnxt *bp)
3705 {
3706 	struct pci_dev *pdev = bp->pdev;
3707 
3708 	if (bp->hwrm_cmd_kong_resp_addr)
3709 		return 0;
3710 
3711 	bp->hwrm_cmd_kong_resp_addr =
3712 		dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
3713 				   &bp->hwrm_cmd_kong_resp_dma_addr,
3714 				   GFP_KERNEL);
3715 	if (!bp->hwrm_cmd_kong_resp_addr)
3716 		return -ENOMEM;
3717 
3718 	return 0;
3719 }
3720 
3721 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
3722 {
3723 	struct pci_dev *pdev = bp->pdev;
3724 
3725 	bp->hwrm_cmd_resp_addr = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
3726 						   &bp->hwrm_cmd_resp_dma_addr,
3727 						   GFP_KERNEL);
3728 	if (!bp->hwrm_cmd_resp_addr)
3729 		return -ENOMEM;
3730 
3731 	return 0;
3732 }
3733 
3734 static void bnxt_free_hwrm_short_cmd_req(struct bnxt *bp)
3735 {
3736 	if (bp->hwrm_short_cmd_req_addr) {
3737 		struct pci_dev *pdev = bp->pdev;
3738 
3739 		dma_free_coherent(&pdev->dev, bp->hwrm_max_ext_req_len,
3740 				  bp->hwrm_short_cmd_req_addr,
3741 				  bp->hwrm_short_cmd_req_dma_addr);
3742 		bp->hwrm_short_cmd_req_addr = NULL;
3743 	}
3744 }
3745 
3746 static int bnxt_alloc_hwrm_short_cmd_req(struct bnxt *bp)
3747 {
3748 	struct pci_dev *pdev = bp->pdev;
3749 
3750 	if (bp->hwrm_short_cmd_req_addr)
3751 		return 0;
3752 
3753 	bp->hwrm_short_cmd_req_addr =
3754 		dma_alloc_coherent(&pdev->dev, bp->hwrm_max_ext_req_len,
3755 				   &bp->hwrm_short_cmd_req_dma_addr,
3756 				   GFP_KERNEL);
3757 	if (!bp->hwrm_short_cmd_req_addr)
3758 		return -ENOMEM;
3759 
3760 	return 0;
3761 }
3762 
3763 static void bnxt_free_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats)
3764 {
3765 	kfree(stats->hw_masks);
3766 	stats->hw_masks = NULL;
3767 	kfree(stats->sw_stats);
3768 	stats->sw_stats = NULL;
3769 	if (stats->hw_stats) {
3770 		dma_free_coherent(&bp->pdev->dev, stats->len, stats->hw_stats,
3771 				  stats->hw_stats_map);
3772 		stats->hw_stats = NULL;
3773 	}
3774 }
3775 
3776 static int bnxt_alloc_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats,
3777 				bool alloc_masks)
3778 {
3779 	stats->hw_stats = dma_alloc_coherent(&bp->pdev->dev, stats->len,
3780 					     &stats->hw_stats_map, GFP_KERNEL);
3781 	if (!stats->hw_stats)
3782 		return -ENOMEM;
3783 
3784 	stats->sw_stats = kzalloc(stats->len, GFP_KERNEL);
3785 	if (!stats->sw_stats)
3786 		goto stats_mem_err;
3787 
3788 	if (alloc_masks) {
3789 		stats->hw_masks = kzalloc(stats->len, GFP_KERNEL);
3790 		if (!stats->hw_masks)
3791 			goto stats_mem_err;
3792 	}
3793 	return 0;
3794 
3795 stats_mem_err:
3796 	bnxt_free_stats_mem(bp, stats);
3797 	return -ENOMEM;
3798 }
3799 
3800 static void bnxt_fill_masks(u64 *mask_arr, u64 mask, int count)
3801 {
3802 	int i;
3803 
3804 	for (i = 0; i < count; i++)
3805 		mask_arr[i] = mask;
3806 }
3807 
3808 static void bnxt_copy_hw_masks(u64 *mask_arr, __le64 *hw_mask_arr, int count)
3809 {
3810 	int i;
3811 
3812 	for (i = 0; i < count; i++)
3813 		mask_arr[i] = le64_to_cpu(hw_mask_arr[i]);
3814 }
3815 
3816 static int bnxt_hwrm_func_qstat_ext(struct bnxt *bp,
3817 				    struct bnxt_stats_mem *stats)
3818 {
3819 	struct hwrm_func_qstats_ext_output *resp = bp->hwrm_cmd_resp_addr;
3820 	struct hwrm_func_qstats_ext_input req = {0};
3821 	__le64 *hw_masks;
3822 	int rc;
3823 
3824 	if (!(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED) ||
3825 	    !(bp->flags & BNXT_FLAG_CHIP_P5))
3826 		return -EOPNOTSUPP;
3827 
3828 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QSTATS_EXT, -1, -1);
3829 	req.fid = cpu_to_le16(0xffff);
3830 	req.flags = FUNC_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK;
3831 	mutex_lock(&bp->hwrm_cmd_lock);
3832 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3833 	if (rc)
3834 		goto qstat_exit;
3835 
3836 	hw_masks = &resp->rx_ucast_pkts;
3837 	bnxt_copy_hw_masks(stats->hw_masks, hw_masks, stats->len / 8);
3838 
3839 qstat_exit:
3840 	mutex_unlock(&bp->hwrm_cmd_lock);
3841 	return rc;
3842 }
3843 
3844 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags);
3845 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags);
3846 
3847 static void bnxt_init_stats(struct bnxt *bp)
3848 {
3849 	struct bnxt_napi *bnapi = bp->bnapi[0];
3850 	struct bnxt_cp_ring_info *cpr;
3851 	struct bnxt_stats_mem *stats;
3852 	__le64 *rx_stats, *tx_stats;
3853 	int rc, rx_count, tx_count;
3854 	u64 *rx_masks, *tx_masks;
3855 	u64 mask;
3856 	u8 flags;
3857 
3858 	cpr = &bnapi->cp_ring;
3859 	stats = &cpr->stats;
3860 	rc = bnxt_hwrm_func_qstat_ext(bp, stats);
3861 	if (rc) {
3862 		if (bp->flags & BNXT_FLAG_CHIP_P5)
3863 			mask = (1ULL << 48) - 1;
3864 		else
3865 			mask = -1ULL;
3866 		bnxt_fill_masks(stats->hw_masks, mask, stats->len / 8);
3867 	}
3868 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
3869 		stats = &bp->port_stats;
3870 		rx_stats = stats->hw_stats;
3871 		rx_masks = stats->hw_masks;
3872 		rx_count = sizeof(struct rx_port_stats) / 8;
3873 		tx_stats = rx_stats + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
3874 		tx_masks = rx_masks + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
3875 		tx_count = sizeof(struct tx_port_stats) / 8;
3876 
3877 		flags = PORT_QSTATS_REQ_FLAGS_COUNTER_MASK;
3878 		rc = bnxt_hwrm_port_qstats(bp, flags);
3879 		if (rc) {
3880 			mask = (1ULL << 40) - 1;
3881 
3882 			bnxt_fill_masks(rx_masks, mask, rx_count);
3883 			bnxt_fill_masks(tx_masks, mask, tx_count);
3884 		} else {
3885 			bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count);
3886 			bnxt_copy_hw_masks(tx_masks, tx_stats, tx_count);
3887 			bnxt_hwrm_port_qstats(bp, 0);
3888 		}
3889 	}
3890 	if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) {
3891 		stats = &bp->rx_port_stats_ext;
3892 		rx_stats = stats->hw_stats;
3893 		rx_masks = stats->hw_masks;
3894 		rx_count = sizeof(struct rx_port_stats_ext) / 8;
3895 		stats = &bp->tx_port_stats_ext;
3896 		tx_stats = stats->hw_stats;
3897 		tx_masks = stats->hw_masks;
3898 		tx_count = sizeof(struct tx_port_stats_ext) / 8;
3899 
3900 		flags = PORT_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK;
3901 		rc = bnxt_hwrm_port_qstats_ext(bp, flags);
3902 		if (rc) {
3903 			mask = (1ULL << 40) - 1;
3904 
3905 			bnxt_fill_masks(rx_masks, mask, rx_count);
3906 			if (tx_stats)
3907 				bnxt_fill_masks(tx_masks, mask, tx_count);
3908 		} else {
3909 			bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count);
3910 			if (tx_stats)
3911 				bnxt_copy_hw_masks(tx_masks, tx_stats,
3912 						   tx_count);
3913 			bnxt_hwrm_port_qstats_ext(bp, 0);
3914 		}
3915 	}
3916 }
3917 
3918 static void bnxt_free_port_stats(struct bnxt *bp)
3919 {
3920 	bp->flags &= ~BNXT_FLAG_PORT_STATS;
3921 	bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT;
3922 
3923 	bnxt_free_stats_mem(bp, &bp->port_stats);
3924 	bnxt_free_stats_mem(bp, &bp->rx_port_stats_ext);
3925 	bnxt_free_stats_mem(bp, &bp->tx_port_stats_ext);
3926 }
3927 
3928 static void bnxt_free_ring_stats(struct bnxt *bp)
3929 {
3930 	int i;
3931 
3932 	if (!bp->bnapi)
3933 		return;
3934 
3935 	for (i = 0; i < bp->cp_nr_rings; i++) {
3936 		struct bnxt_napi *bnapi = bp->bnapi[i];
3937 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3938 
3939 		bnxt_free_stats_mem(bp, &cpr->stats);
3940 	}
3941 }
3942 
3943 static int bnxt_alloc_stats(struct bnxt *bp)
3944 {
3945 	u32 size, i;
3946 	int rc;
3947 
3948 	size = bp->hw_ring_stats_size;
3949 
3950 	for (i = 0; i < bp->cp_nr_rings; i++) {
3951 		struct bnxt_napi *bnapi = bp->bnapi[i];
3952 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3953 
3954 		cpr->stats.len = size;
3955 		rc = bnxt_alloc_stats_mem(bp, &cpr->stats, !i);
3956 		if (rc)
3957 			return rc;
3958 
3959 		cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
3960 	}
3961 
3962 	if (BNXT_VF(bp) || bp->chip_num == CHIP_NUM_58700)
3963 		return 0;
3964 
3965 	if (bp->port_stats.hw_stats)
3966 		goto alloc_ext_stats;
3967 
3968 	bp->port_stats.len = BNXT_PORT_STATS_SIZE;
3969 	rc = bnxt_alloc_stats_mem(bp, &bp->port_stats, true);
3970 	if (rc)
3971 		return rc;
3972 
3973 	bp->flags |= BNXT_FLAG_PORT_STATS;
3974 
3975 alloc_ext_stats:
3976 	/* Display extended statistics only if FW supports it */
3977 	if (bp->hwrm_spec_code < 0x10804 || bp->hwrm_spec_code == 0x10900)
3978 		if (!(bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED))
3979 			return 0;
3980 
3981 	if (bp->rx_port_stats_ext.hw_stats)
3982 		goto alloc_tx_ext_stats;
3983 
3984 	bp->rx_port_stats_ext.len = sizeof(struct rx_port_stats_ext);
3985 	rc = bnxt_alloc_stats_mem(bp, &bp->rx_port_stats_ext, true);
3986 	/* Extended stats are optional */
3987 	if (rc)
3988 		return 0;
3989 
3990 alloc_tx_ext_stats:
3991 	if (bp->tx_port_stats_ext.hw_stats)
3992 		return 0;
3993 
3994 	if (bp->hwrm_spec_code >= 0x10902 ||
3995 	    (bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) {
3996 		bp->tx_port_stats_ext.len = sizeof(struct tx_port_stats_ext);
3997 		rc = bnxt_alloc_stats_mem(bp, &bp->tx_port_stats_ext, true);
3998 		/* Extended stats are optional */
3999 		if (rc)
4000 			return 0;
4001 	}
4002 	bp->flags |= BNXT_FLAG_PORT_STATS_EXT;
4003 	return 0;
4004 }
4005 
4006 static void bnxt_clear_ring_indices(struct bnxt *bp)
4007 {
4008 	int i;
4009 
4010 	if (!bp->bnapi)
4011 		return;
4012 
4013 	for (i = 0; i < bp->cp_nr_rings; i++) {
4014 		struct bnxt_napi *bnapi = bp->bnapi[i];
4015 		struct bnxt_cp_ring_info *cpr;
4016 		struct bnxt_rx_ring_info *rxr;
4017 		struct bnxt_tx_ring_info *txr;
4018 
4019 		if (!bnapi)
4020 			continue;
4021 
4022 		cpr = &bnapi->cp_ring;
4023 		cpr->cp_raw_cons = 0;
4024 
4025 		txr = bnapi->tx_ring;
4026 		if (txr) {
4027 			txr->tx_prod = 0;
4028 			txr->tx_cons = 0;
4029 		}
4030 
4031 		rxr = bnapi->rx_ring;
4032 		if (rxr) {
4033 			rxr->rx_prod = 0;
4034 			rxr->rx_agg_prod = 0;
4035 			rxr->rx_sw_agg_prod = 0;
4036 			rxr->rx_next_cons = 0;
4037 		}
4038 	}
4039 }
4040 
4041 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
4042 {
4043 #ifdef CONFIG_RFS_ACCEL
4044 	int i;
4045 
4046 	/* Under rtnl_lock and all our NAPIs have been disabled.  It's
4047 	 * safe to delete the hash table.
4048 	 */
4049 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
4050 		struct hlist_head *head;
4051 		struct hlist_node *tmp;
4052 		struct bnxt_ntuple_filter *fltr;
4053 
4054 		head = &bp->ntp_fltr_hash_tbl[i];
4055 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
4056 			hlist_del(&fltr->hash);
4057 			kfree(fltr);
4058 		}
4059 	}
4060 	if (irq_reinit) {
4061 		kfree(bp->ntp_fltr_bmap);
4062 		bp->ntp_fltr_bmap = NULL;
4063 	}
4064 	bp->ntp_fltr_count = 0;
4065 #endif
4066 }
4067 
4068 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
4069 {
4070 #ifdef CONFIG_RFS_ACCEL
4071 	int i, rc = 0;
4072 
4073 	if (!(bp->flags & BNXT_FLAG_RFS))
4074 		return 0;
4075 
4076 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
4077 		INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
4078 
4079 	bp->ntp_fltr_count = 0;
4080 	bp->ntp_fltr_bmap = kcalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR),
4081 				    sizeof(long),
4082 				    GFP_KERNEL);
4083 
4084 	if (!bp->ntp_fltr_bmap)
4085 		rc = -ENOMEM;
4086 
4087 	return rc;
4088 #else
4089 	return 0;
4090 #endif
4091 }
4092 
4093 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
4094 {
4095 	bnxt_free_vnic_attributes(bp);
4096 	bnxt_free_tx_rings(bp);
4097 	bnxt_free_rx_rings(bp);
4098 	bnxt_free_cp_rings(bp);
4099 	bnxt_free_ntp_fltrs(bp, irq_re_init);
4100 	if (irq_re_init) {
4101 		bnxt_free_ring_stats(bp);
4102 		if (!(bp->fw_cap & BNXT_FW_CAP_PORT_STATS_NO_RESET) ||
4103 		    test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
4104 			bnxt_free_port_stats(bp);
4105 		bnxt_free_ring_grps(bp);
4106 		bnxt_free_vnics(bp);
4107 		kfree(bp->tx_ring_map);
4108 		bp->tx_ring_map = NULL;
4109 		kfree(bp->tx_ring);
4110 		bp->tx_ring = NULL;
4111 		kfree(bp->rx_ring);
4112 		bp->rx_ring = NULL;
4113 		kfree(bp->bnapi);
4114 		bp->bnapi = NULL;
4115 	} else {
4116 		bnxt_clear_ring_indices(bp);
4117 	}
4118 }
4119 
4120 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
4121 {
4122 	int i, j, rc, size, arr_size;
4123 	void *bnapi;
4124 
4125 	if (irq_re_init) {
4126 		/* Allocate bnapi mem pointer array and mem block for
4127 		 * all queues
4128 		 */
4129 		arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
4130 				bp->cp_nr_rings);
4131 		size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
4132 		bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
4133 		if (!bnapi)
4134 			return -ENOMEM;
4135 
4136 		bp->bnapi = bnapi;
4137 		bnapi += arr_size;
4138 		for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
4139 			bp->bnapi[i] = bnapi;
4140 			bp->bnapi[i]->index = i;
4141 			bp->bnapi[i]->bp = bp;
4142 			if (bp->flags & BNXT_FLAG_CHIP_P5) {
4143 				struct bnxt_cp_ring_info *cpr =
4144 					&bp->bnapi[i]->cp_ring;
4145 
4146 				cpr->cp_ring_struct.ring_mem.flags =
4147 					BNXT_RMEM_RING_PTE_FLAG;
4148 			}
4149 		}
4150 
4151 		bp->rx_ring = kcalloc(bp->rx_nr_rings,
4152 				      sizeof(struct bnxt_rx_ring_info),
4153 				      GFP_KERNEL);
4154 		if (!bp->rx_ring)
4155 			return -ENOMEM;
4156 
4157 		for (i = 0; i < bp->rx_nr_rings; i++) {
4158 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4159 
4160 			if (bp->flags & BNXT_FLAG_CHIP_P5) {
4161 				rxr->rx_ring_struct.ring_mem.flags =
4162 					BNXT_RMEM_RING_PTE_FLAG;
4163 				rxr->rx_agg_ring_struct.ring_mem.flags =
4164 					BNXT_RMEM_RING_PTE_FLAG;
4165 			}
4166 			rxr->bnapi = bp->bnapi[i];
4167 			bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
4168 		}
4169 
4170 		bp->tx_ring = kcalloc(bp->tx_nr_rings,
4171 				      sizeof(struct bnxt_tx_ring_info),
4172 				      GFP_KERNEL);
4173 		if (!bp->tx_ring)
4174 			return -ENOMEM;
4175 
4176 		bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16),
4177 					  GFP_KERNEL);
4178 
4179 		if (!bp->tx_ring_map)
4180 			return -ENOMEM;
4181 
4182 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
4183 			j = 0;
4184 		else
4185 			j = bp->rx_nr_rings;
4186 
4187 		for (i = 0; i < bp->tx_nr_rings; i++, j++) {
4188 			struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
4189 
4190 			if (bp->flags & BNXT_FLAG_CHIP_P5)
4191 				txr->tx_ring_struct.ring_mem.flags =
4192 					BNXT_RMEM_RING_PTE_FLAG;
4193 			txr->bnapi = bp->bnapi[j];
4194 			bp->bnapi[j]->tx_ring = txr;
4195 			bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i;
4196 			if (i >= bp->tx_nr_rings_xdp) {
4197 				txr->txq_index = i - bp->tx_nr_rings_xdp;
4198 				bp->bnapi[j]->tx_int = bnxt_tx_int;
4199 			} else {
4200 				bp->bnapi[j]->flags |= BNXT_NAPI_FLAG_XDP;
4201 				bp->bnapi[j]->tx_int = bnxt_tx_int_xdp;
4202 			}
4203 		}
4204 
4205 		rc = bnxt_alloc_stats(bp);
4206 		if (rc)
4207 			goto alloc_mem_err;
4208 		bnxt_init_stats(bp);
4209 
4210 		rc = bnxt_alloc_ntp_fltrs(bp);
4211 		if (rc)
4212 			goto alloc_mem_err;
4213 
4214 		rc = bnxt_alloc_vnics(bp);
4215 		if (rc)
4216 			goto alloc_mem_err;
4217 	}
4218 
4219 	bnxt_init_ring_struct(bp);
4220 
4221 	rc = bnxt_alloc_rx_rings(bp);
4222 	if (rc)
4223 		goto alloc_mem_err;
4224 
4225 	rc = bnxt_alloc_tx_rings(bp);
4226 	if (rc)
4227 		goto alloc_mem_err;
4228 
4229 	rc = bnxt_alloc_cp_rings(bp);
4230 	if (rc)
4231 		goto alloc_mem_err;
4232 
4233 	bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
4234 				  BNXT_VNIC_UCAST_FLAG;
4235 	rc = bnxt_alloc_vnic_attributes(bp);
4236 	if (rc)
4237 		goto alloc_mem_err;
4238 	return 0;
4239 
4240 alloc_mem_err:
4241 	bnxt_free_mem(bp, true);
4242 	return rc;
4243 }
4244 
4245 static void bnxt_disable_int(struct bnxt *bp)
4246 {
4247 	int i;
4248 
4249 	if (!bp->bnapi)
4250 		return;
4251 
4252 	for (i = 0; i < bp->cp_nr_rings; i++) {
4253 		struct bnxt_napi *bnapi = bp->bnapi[i];
4254 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4255 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
4256 
4257 		if (ring->fw_ring_id != INVALID_HW_RING_ID)
4258 			bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
4259 	}
4260 }
4261 
4262 static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n)
4263 {
4264 	struct bnxt_napi *bnapi = bp->bnapi[n];
4265 	struct bnxt_cp_ring_info *cpr;
4266 
4267 	cpr = &bnapi->cp_ring;
4268 	return cpr->cp_ring_struct.map_idx;
4269 }
4270 
4271 static void bnxt_disable_int_sync(struct bnxt *bp)
4272 {
4273 	int i;
4274 
4275 	atomic_inc(&bp->intr_sem);
4276 
4277 	bnxt_disable_int(bp);
4278 	for (i = 0; i < bp->cp_nr_rings; i++) {
4279 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
4280 
4281 		synchronize_irq(bp->irq_tbl[map_idx].vector);
4282 	}
4283 }
4284 
4285 static void bnxt_enable_int(struct bnxt *bp)
4286 {
4287 	int i;
4288 
4289 	atomic_set(&bp->intr_sem, 0);
4290 	for (i = 0; i < bp->cp_nr_rings; i++) {
4291 		struct bnxt_napi *bnapi = bp->bnapi[i];
4292 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4293 
4294 		bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons);
4295 	}
4296 }
4297 
4298 void bnxt_hwrm_cmd_hdr_init(struct bnxt *bp, void *request, u16 req_type,
4299 			    u16 cmpl_ring, u16 target_id)
4300 {
4301 	struct input *req = request;
4302 
4303 	req->req_type = cpu_to_le16(req_type);
4304 	req->cmpl_ring = cpu_to_le16(cmpl_ring);
4305 	req->target_id = cpu_to_le16(target_id);
4306 	if (bnxt_kong_hwrm_message(bp, req))
4307 		req->resp_addr = cpu_to_le64(bp->hwrm_cmd_kong_resp_dma_addr);
4308 	else
4309 		req->resp_addr = cpu_to_le64(bp->hwrm_cmd_resp_dma_addr);
4310 }
4311 
4312 static int bnxt_hwrm_to_stderr(u32 hwrm_err)
4313 {
4314 	switch (hwrm_err) {
4315 	case HWRM_ERR_CODE_SUCCESS:
4316 		return 0;
4317 	case HWRM_ERR_CODE_RESOURCE_LOCKED:
4318 		return -EROFS;
4319 	case HWRM_ERR_CODE_RESOURCE_ACCESS_DENIED:
4320 		return -EACCES;
4321 	case HWRM_ERR_CODE_RESOURCE_ALLOC_ERROR:
4322 		return -ENOSPC;
4323 	case HWRM_ERR_CODE_INVALID_PARAMS:
4324 	case HWRM_ERR_CODE_INVALID_FLAGS:
4325 	case HWRM_ERR_CODE_INVALID_ENABLES:
4326 	case HWRM_ERR_CODE_UNSUPPORTED_TLV:
4327 	case HWRM_ERR_CODE_UNSUPPORTED_OPTION_ERR:
4328 		return -EINVAL;
4329 	case HWRM_ERR_CODE_NO_BUFFER:
4330 		return -ENOMEM;
4331 	case HWRM_ERR_CODE_HOT_RESET_PROGRESS:
4332 	case HWRM_ERR_CODE_BUSY:
4333 		return -EAGAIN;
4334 	case HWRM_ERR_CODE_CMD_NOT_SUPPORTED:
4335 		return -EOPNOTSUPP;
4336 	default:
4337 		return -EIO;
4338 	}
4339 }
4340 
4341 static int bnxt_hwrm_do_send_msg(struct bnxt *bp, void *msg, u32 msg_len,
4342 				 int timeout, bool silent)
4343 {
4344 	int i, intr_process, rc, tmo_count;
4345 	struct input *req = msg;
4346 	u32 *data = msg;
4347 	u8 *valid;
4348 	u16 cp_ring_id, len = 0;
4349 	struct hwrm_err_output *resp = bp->hwrm_cmd_resp_addr;
4350 	u16 max_req_len = BNXT_HWRM_MAX_REQ_LEN;
4351 	struct hwrm_short_input short_input = {0};
4352 	u32 doorbell_offset = BNXT_GRCPF_REG_CHIMP_COMM_TRIGGER;
4353 	u32 bar_offset = BNXT_GRCPF_REG_CHIMP_COMM;
4354 	u16 dst = BNXT_HWRM_CHNL_CHIMP;
4355 
4356 	if (BNXT_NO_FW_ACCESS(bp) &&
4357 	    le16_to_cpu(req->req_type) != HWRM_FUNC_RESET)
4358 		return -EBUSY;
4359 
4360 	if (msg_len > BNXT_HWRM_MAX_REQ_LEN) {
4361 		if (msg_len > bp->hwrm_max_ext_req_len ||
4362 		    !bp->hwrm_short_cmd_req_addr)
4363 			return -EINVAL;
4364 	}
4365 
4366 	if (bnxt_hwrm_kong_chnl(bp, req)) {
4367 		dst = BNXT_HWRM_CHNL_KONG;
4368 		bar_offset = BNXT_GRCPF_REG_KONG_COMM;
4369 		doorbell_offset = BNXT_GRCPF_REG_KONG_COMM_TRIGGER;
4370 		resp = bp->hwrm_cmd_kong_resp_addr;
4371 	}
4372 
4373 	memset(resp, 0, PAGE_SIZE);
4374 	cp_ring_id = le16_to_cpu(req->cmpl_ring);
4375 	intr_process = (cp_ring_id == INVALID_HW_RING_ID) ? 0 : 1;
4376 
4377 	req->seq_id = cpu_to_le16(bnxt_get_hwrm_seq_id(bp, dst));
4378 	/* currently supports only one outstanding message */
4379 	if (intr_process)
4380 		bp->hwrm_intr_seq_id = le16_to_cpu(req->seq_id);
4381 
4382 	if ((bp->fw_cap & BNXT_FW_CAP_SHORT_CMD) ||
4383 	    msg_len > BNXT_HWRM_MAX_REQ_LEN) {
4384 		void *short_cmd_req = bp->hwrm_short_cmd_req_addr;
4385 		u16 max_msg_len;
4386 
4387 		/* Set boundary for maximum extended request length for short
4388 		 * cmd format. If passed up from device use the max supported
4389 		 * internal req length.
4390 		 */
4391 		max_msg_len = bp->hwrm_max_ext_req_len;
4392 
4393 		memcpy(short_cmd_req, req, msg_len);
4394 		if (msg_len < max_msg_len)
4395 			memset(short_cmd_req + msg_len, 0,
4396 			       max_msg_len - msg_len);
4397 
4398 		short_input.req_type = req->req_type;
4399 		short_input.signature =
4400 				cpu_to_le16(SHORT_REQ_SIGNATURE_SHORT_CMD);
4401 		short_input.size = cpu_to_le16(msg_len);
4402 		short_input.req_addr =
4403 			cpu_to_le64(bp->hwrm_short_cmd_req_dma_addr);
4404 
4405 		data = (u32 *)&short_input;
4406 		msg_len = sizeof(short_input);
4407 
4408 		/* Sync memory write before updating doorbell */
4409 		wmb();
4410 
4411 		max_req_len = BNXT_HWRM_SHORT_REQ_LEN;
4412 	}
4413 
4414 	/* Write request msg to hwrm channel */
4415 	__iowrite32_copy(bp->bar0 + bar_offset, data, msg_len / 4);
4416 
4417 	for (i = msg_len; i < max_req_len; i += 4)
4418 		writel(0, bp->bar0 + bar_offset + i);
4419 
4420 	/* Ring channel doorbell */
4421 	writel(1, bp->bar0 + doorbell_offset);
4422 
4423 	if (!pci_is_enabled(bp->pdev))
4424 		return 0;
4425 
4426 	if (!timeout)
4427 		timeout = DFLT_HWRM_CMD_TIMEOUT;
4428 	/* convert timeout to usec */
4429 	timeout *= 1000;
4430 
4431 	i = 0;
4432 	/* Short timeout for the first few iterations:
4433 	 * number of loops = number of loops for short timeout +
4434 	 * number of loops for standard timeout.
4435 	 */
4436 	tmo_count = HWRM_SHORT_TIMEOUT_COUNTER;
4437 	timeout = timeout - HWRM_SHORT_MIN_TIMEOUT * HWRM_SHORT_TIMEOUT_COUNTER;
4438 	tmo_count += DIV_ROUND_UP(timeout, HWRM_MIN_TIMEOUT);
4439 
4440 	if (intr_process) {
4441 		u16 seq_id = bp->hwrm_intr_seq_id;
4442 
4443 		/* Wait until hwrm response cmpl interrupt is processed */
4444 		while (bp->hwrm_intr_seq_id != (u16)~seq_id &&
4445 		       i++ < tmo_count) {
4446 			/* Abort the wait for completion if the FW health
4447 			 * check has failed.
4448 			 */
4449 			if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
4450 				return -EBUSY;
4451 			/* on first few passes, just barely sleep */
4452 			if (i < HWRM_SHORT_TIMEOUT_COUNTER)
4453 				usleep_range(HWRM_SHORT_MIN_TIMEOUT,
4454 					     HWRM_SHORT_MAX_TIMEOUT);
4455 			else
4456 				usleep_range(HWRM_MIN_TIMEOUT,
4457 					     HWRM_MAX_TIMEOUT);
4458 		}
4459 
4460 		if (bp->hwrm_intr_seq_id != (u16)~seq_id) {
4461 			if (!silent)
4462 				netdev_err(bp->dev, "Resp cmpl intr err msg: 0x%x\n",
4463 					   le16_to_cpu(req->req_type));
4464 			return -EBUSY;
4465 		}
4466 		len = le16_to_cpu(resp->resp_len);
4467 		valid = ((u8 *)resp) + len - 1;
4468 	} else {
4469 		int j;
4470 
4471 		/* Check if response len is updated */
4472 		for (i = 0; i < tmo_count; i++) {
4473 			/* Abort the wait for completion if the FW health
4474 			 * check has failed.
4475 			 */
4476 			if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
4477 				return -EBUSY;
4478 			len = le16_to_cpu(resp->resp_len);
4479 			if (len)
4480 				break;
4481 			/* on first few passes, just barely sleep */
4482 			if (i < HWRM_SHORT_TIMEOUT_COUNTER)
4483 				usleep_range(HWRM_SHORT_MIN_TIMEOUT,
4484 					     HWRM_SHORT_MAX_TIMEOUT);
4485 			else
4486 				usleep_range(HWRM_MIN_TIMEOUT,
4487 					     HWRM_MAX_TIMEOUT);
4488 		}
4489 
4490 		if (i >= tmo_count) {
4491 			if (!silent)
4492 				netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d\n",
4493 					   HWRM_TOTAL_TIMEOUT(i),
4494 					   le16_to_cpu(req->req_type),
4495 					   le16_to_cpu(req->seq_id), len);
4496 			return -EBUSY;
4497 		}
4498 
4499 		/* Last byte of resp contains valid bit */
4500 		valid = ((u8 *)resp) + len - 1;
4501 		for (j = 0; j < HWRM_VALID_BIT_DELAY_USEC; j++) {
4502 			/* make sure we read from updated DMA memory */
4503 			dma_rmb();
4504 			if (*valid)
4505 				break;
4506 			usleep_range(1, 5);
4507 		}
4508 
4509 		if (j >= HWRM_VALID_BIT_DELAY_USEC) {
4510 			if (!silent)
4511 				netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d v:%d\n",
4512 					   HWRM_TOTAL_TIMEOUT(i),
4513 					   le16_to_cpu(req->req_type),
4514 					   le16_to_cpu(req->seq_id), len,
4515 					   *valid);
4516 			return -EBUSY;
4517 		}
4518 	}
4519 
4520 	/* Zero valid bit for compatibility.  Valid bit in an older spec
4521 	 * may become a new field in a newer spec.  We must make sure that
4522 	 * a new field not implemented by old spec will read zero.
4523 	 */
4524 	*valid = 0;
4525 	rc = le16_to_cpu(resp->error_code);
4526 	if (rc && !silent)
4527 		netdev_err(bp->dev, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n",
4528 			   le16_to_cpu(resp->req_type),
4529 			   le16_to_cpu(resp->seq_id), rc);
4530 	return bnxt_hwrm_to_stderr(rc);
4531 }
4532 
4533 int _hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
4534 {
4535 	return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, false);
4536 }
4537 
4538 int _hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len,
4539 			      int timeout)
4540 {
4541 	return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true);
4542 }
4543 
4544 int hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
4545 {
4546 	int rc;
4547 
4548 	mutex_lock(&bp->hwrm_cmd_lock);
4549 	rc = _hwrm_send_message(bp, msg, msg_len, timeout);
4550 	mutex_unlock(&bp->hwrm_cmd_lock);
4551 	return rc;
4552 }
4553 
4554 int hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len,
4555 			     int timeout)
4556 {
4557 	int rc;
4558 
4559 	mutex_lock(&bp->hwrm_cmd_lock);
4560 	rc = bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true);
4561 	mutex_unlock(&bp->hwrm_cmd_lock);
4562 	return rc;
4563 }
4564 
4565 int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp, unsigned long *bmap, int bmap_size,
4566 			    bool async_only)
4567 {
4568 	struct hwrm_func_drv_rgtr_output *resp = bp->hwrm_cmd_resp_addr;
4569 	struct hwrm_func_drv_rgtr_input req = {0};
4570 	DECLARE_BITMAP(async_events_bmap, 256);
4571 	u32 *events = (u32 *)async_events_bmap;
4572 	u32 flags;
4573 	int rc, i;
4574 
4575 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
4576 
4577 	req.enables =
4578 		cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
4579 			    FUNC_DRV_RGTR_REQ_ENABLES_VER |
4580 			    FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
4581 
4582 	req.os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX);
4583 	flags = FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE;
4584 	if (bp->fw_cap & BNXT_FW_CAP_HOT_RESET)
4585 		flags |= FUNC_DRV_RGTR_REQ_FLAGS_HOT_RESET_SUPPORT;
4586 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
4587 		flags |= FUNC_DRV_RGTR_REQ_FLAGS_ERROR_RECOVERY_SUPPORT |
4588 			 FUNC_DRV_RGTR_REQ_FLAGS_MASTER_SUPPORT;
4589 	req.flags = cpu_to_le32(flags);
4590 	req.ver_maj_8b = DRV_VER_MAJ;
4591 	req.ver_min_8b = DRV_VER_MIN;
4592 	req.ver_upd_8b = DRV_VER_UPD;
4593 	req.ver_maj = cpu_to_le16(DRV_VER_MAJ);
4594 	req.ver_min = cpu_to_le16(DRV_VER_MIN);
4595 	req.ver_upd = cpu_to_le16(DRV_VER_UPD);
4596 
4597 	if (BNXT_PF(bp)) {
4598 		u32 data[8];
4599 		int i;
4600 
4601 		memset(data, 0, sizeof(data));
4602 		for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) {
4603 			u16 cmd = bnxt_vf_req_snif[i];
4604 			unsigned int bit, idx;
4605 
4606 			idx = cmd / 32;
4607 			bit = cmd % 32;
4608 			data[idx] |= 1 << bit;
4609 		}
4610 
4611 		for (i = 0; i < 8; i++)
4612 			req.vf_req_fwd[i] = cpu_to_le32(data[i]);
4613 
4614 		req.enables |=
4615 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
4616 	}
4617 
4618 	if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE)
4619 		req.flags |= cpu_to_le32(
4620 			FUNC_DRV_RGTR_REQ_FLAGS_FLOW_HANDLE_64BIT_MODE);
4621 
4622 	memset(async_events_bmap, 0, sizeof(async_events_bmap));
4623 	for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++) {
4624 		u16 event_id = bnxt_async_events_arr[i];
4625 
4626 		if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY &&
4627 		    !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
4628 			continue;
4629 		__set_bit(bnxt_async_events_arr[i], async_events_bmap);
4630 	}
4631 	if (bmap && bmap_size) {
4632 		for (i = 0; i < bmap_size; i++) {
4633 			if (test_bit(i, bmap))
4634 				__set_bit(i, async_events_bmap);
4635 		}
4636 	}
4637 	for (i = 0; i < 8; i++)
4638 		req.async_event_fwd[i] |= cpu_to_le32(events[i]);
4639 
4640 	if (async_only)
4641 		req.enables =
4642 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
4643 
4644 	mutex_lock(&bp->hwrm_cmd_lock);
4645 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4646 	if (!rc) {
4647 		set_bit(BNXT_STATE_DRV_REGISTERED, &bp->state);
4648 		if (resp->flags &
4649 		    cpu_to_le32(FUNC_DRV_RGTR_RESP_FLAGS_IF_CHANGE_SUPPORTED))
4650 			bp->fw_cap |= BNXT_FW_CAP_IF_CHANGE;
4651 	}
4652 	mutex_unlock(&bp->hwrm_cmd_lock);
4653 	return rc;
4654 }
4655 
4656 static int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
4657 {
4658 	struct hwrm_func_drv_unrgtr_input req = {0};
4659 
4660 	if (!test_and_clear_bit(BNXT_STATE_DRV_REGISTERED, &bp->state))
4661 		return 0;
4662 
4663 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_UNRGTR, -1, -1);
4664 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4665 }
4666 
4667 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
4668 {
4669 	u32 rc = 0;
4670 	struct hwrm_tunnel_dst_port_free_input req = {0};
4671 
4672 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_FREE, -1, -1);
4673 	req.tunnel_type = tunnel_type;
4674 
4675 	switch (tunnel_type) {
4676 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
4677 		req.tunnel_dst_port_id = cpu_to_le16(bp->vxlan_fw_dst_port_id);
4678 		bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID;
4679 		break;
4680 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
4681 		req.tunnel_dst_port_id = cpu_to_le16(bp->nge_fw_dst_port_id);
4682 		bp->nge_fw_dst_port_id = INVALID_HW_RING_ID;
4683 		break;
4684 	default:
4685 		break;
4686 	}
4687 
4688 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4689 	if (rc)
4690 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
4691 			   rc);
4692 	return rc;
4693 }
4694 
4695 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
4696 					   u8 tunnel_type)
4697 {
4698 	u32 rc = 0;
4699 	struct hwrm_tunnel_dst_port_alloc_input req = {0};
4700 	struct hwrm_tunnel_dst_port_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4701 
4702 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_ALLOC, -1, -1);
4703 
4704 	req.tunnel_type = tunnel_type;
4705 	req.tunnel_dst_port_val = port;
4706 
4707 	mutex_lock(&bp->hwrm_cmd_lock);
4708 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4709 	if (rc) {
4710 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
4711 			   rc);
4712 		goto err_out;
4713 	}
4714 
4715 	switch (tunnel_type) {
4716 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN:
4717 		bp->vxlan_fw_dst_port_id =
4718 			le16_to_cpu(resp->tunnel_dst_port_id);
4719 		break;
4720 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE:
4721 		bp->nge_fw_dst_port_id = le16_to_cpu(resp->tunnel_dst_port_id);
4722 		break;
4723 	default:
4724 		break;
4725 	}
4726 
4727 err_out:
4728 	mutex_unlock(&bp->hwrm_cmd_lock);
4729 	return rc;
4730 }
4731 
4732 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
4733 {
4734 	struct hwrm_cfa_l2_set_rx_mask_input req = {0};
4735 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4736 
4737 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_SET_RX_MASK, -1, -1);
4738 	req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
4739 
4740 	req.num_mc_entries = cpu_to_le32(vnic->mc_list_count);
4741 	req.mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
4742 	req.mask = cpu_to_le32(vnic->rx_mask);
4743 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4744 }
4745 
4746 #ifdef CONFIG_RFS_ACCEL
4747 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
4748 					    struct bnxt_ntuple_filter *fltr)
4749 {
4750 	struct hwrm_cfa_ntuple_filter_free_input req = {0};
4751 
4752 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_FREE, -1, -1);
4753 	req.ntuple_filter_id = fltr->filter_id;
4754 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4755 }
4756 
4757 #define BNXT_NTP_FLTR_FLAGS					\
4758 	(CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID |	\
4759 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE |	\
4760 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR |	\
4761 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE |	\
4762 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR |	\
4763 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK |	\
4764 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR |	\
4765 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK |	\
4766 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL |	\
4767 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT |		\
4768 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK |	\
4769 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT |		\
4770 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK |	\
4771 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
4772 
4773 #define BNXT_NTP_TUNNEL_FLTR_FLAG				\
4774 		CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE
4775 
4776 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
4777 					     struct bnxt_ntuple_filter *fltr)
4778 {
4779 	struct hwrm_cfa_ntuple_filter_alloc_input req = {0};
4780 	struct hwrm_cfa_ntuple_filter_alloc_output *resp;
4781 	struct flow_keys *keys = &fltr->fkeys;
4782 	struct bnxt_vnic_info *vnic;
4783 	u32 flags = 0;
4784 	int rc = 0;
4785 
4786 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_ALLOC, -1, -1);
4787 	req.l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx];
4788 
4789 	if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) {
4790 		flags = CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DEST_RFS_RING_IDX;
4791 		req.dst_id = cpu_to_le16(fltr->rxq);
4792 	} else {
4793 		vnic = &bp->vnic_info[fltr->rxq + 1];
4794 		req.dst_id = cpu_to_le16(vnic->fw_vnic_id);
4795 	}
4796 	req.flags = cpu_to_le32(flags);
4797 	req.enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
4798 
4799 	req.ethertype = htons(ETH_P_IP);
4800 	memcpy(req.src_macaddr, fltr->src_mac_addr, ETH_ALEN);
4801 	req.ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
4802 	req.ip_protocol = keys->basic.ip_proto;
4803 
4804 	if (keys->basic.n_proto == htons(ETH_P_IPV6)) {
4805 		int i;
4806 
4807 		req.ethertype = htons(ETH_P_IPV6);
4808 		req.ip_addr_type =
4809 			CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6;
4810 		*(struct in6_addr *)&req.src_ipaddr[0] =
4811 			keys->addrs.v6addrs.src;
4812 		*(struct in6_addr *)&req.dst_ipaddr[0] =
4813 			keys->addrs.v6addrs.dst;
4814 		for (i = 0; i < 4; i++) {
4815 			req.src_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
4816 			req.dst_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
4817 		}
4818 	} else {
4819 		req.src_ipaddr[0] = keys->addrs.v4addrs.src;
4820 		req.src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
4821 		req.dst_ipaddr[0] = keys->addrs.v4addrs.dst;
4822 		req.dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
4823 	}
4824 	if (keys->control.flags & FLOW_DIS_ENCAPSULATION) {
4825 		req.enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG);
4826 		req.tunnel_type =
4827 			CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL;
4828 	}
4829 
4830 	req.src_port = keys->ports.src;
4831 	req.src_port_mask = cpu_to_be16(0xffff);
4832 	req.dst_port = keys->ports.dst;
4833 	req.dst_port_mask = cpu_to_be16(0xffff);
4834 
4835 	mutex_lock(&bp->hwrm_cmd_lock);
4836 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4837 	if (!rc) {
4838 		resp = bnxt_get_hwrm_resp_addr(bp, &req);
4839 		fltr->filter_id = resp->ntuple_filter_id;
4840 	}
4841 	mutex_unlock(&bp->hwrm_cmd_lock);
4842 	return rc;
4843 }
4844 #endif
4845 
4846 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
4847 				     u8 *mac_addr)
4848 {
4849 	u32 rc = 0;
4850 	struct hwrm_cfa_l2_filter_alloc_input req = {0};
4851 	struct hwrm_cfa_l2_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4852 
4853 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_ALLOC, -1, -1);
4854 	req.flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX);
4855 	if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
4856 		req.flags |=
4857 			cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
4858 	req.dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
4859 	req.enables =
4860 		cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
4861 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
4862 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
4863 	memcpy(req.l2_addr, mac_addr, ETH_ALEN);
4864 	req.l2_addr_mask[0] = 0xff;
4865 	req.l2_addr_mask[1] = 0xff;
4866 	req.l2_addr_mask[2] = 0xff;
4867 	req.l2_addr_mask[3] = 0xff;
4868 	req.l2_addr_mask[4] = 0xff;
4869 	req.l2_addr_mask[5] = 0xff;
4870 
4871 	mutex_lock(&bp->hwrm_cmd_lock);
4872 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4873 	if (!rc)
4874 		bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
4875 							resp->l2_filter_id;
4876 	mutex_unlock(&bp->hwrm_cmd_lock);
4877 	return rc;
4878 }
4879 
4880 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
4881 {
4882 	u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
4883 	int rc = 0;
4884 
4885 	/* Any associated ntuple filters will also be cleared by firmware. */
4886 	mutex_lock(&bp->hwrm_cmd_lock);
4887 	for (i = 0; i < num_of_vnics; i++) {
4888 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
4889 
4890 		for (j = 0; j < vnic->uc_filter_count; j++) {
4891 			struct hwrm_cfa_l2_filter_free_input req = {0};
4892 
4893 			bnxt_hwrm_cmd_hdr_init(bp, &req,
4894 					       HWRM_CFA_L2_FILTER_FREE, -1, -1);
4895 
4896 			req.l2_filter_id = vnic->fw_l2_filter_id[j];
4897 
4898 			rc = _hwrm_send_message(bp, &req, sizeof(req),
4899 						HWRM_CMD_TIMEOUT);
4900 		}
4901 		vnic->uc_filter_count = 0;
4902 	}
4903 	mutex_unlock(&bp->hwrm_cmd_lock);
4904 
4905 	return rc;
4906 }
4907 
4908 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
4909 {
4910 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4911 	u16 max_aggs = VNIC_TPA_CFG_REQ_MAX_AGGS_MAX;
4912 	struct hwrm_vnic_tpa_cfg_input req = {0};
4913 
4914 	if (vnic->fw_vnic_id == INVALID_HW_RING_ID)
4915 		return 0;
4916 
4917 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_TPA_CFG, -1, -1);
4918 
4919 	if (tpa_flags) {
4920 		u16 mss = bp->dev->mtu - 40;
4921 		u32 nsegs, n, segs = 0, flags;
4922 
4923 		flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
4924 			VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
4925 			VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
4926 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
4927 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
4928 		if (tpa_flags & BNXT_FLAG_GRO)
4929 			flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
4930 
4931 		req.flags = cpu_to_le32(flags);
4932 
4933 		req.enables =
4934 			cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
4935 				    VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
4936 				    VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
4937 
4938 		/* Number of segs are log2 units, and first packet is not
4939 		 * included as part of this units.
4940 		 */
4941 		if (mss <= BNXT_RX_PAGE_SIZE) {
4942 			n = BNXT_RX_PAGE_SIZE / mss;
4943 			nsegs = (MAX_SKB_FRAGS - 1) * n;
4944 		} else {
4945 			n = mss / BNXT_RX_PAGE_SIZE;
4946 			if (mss & (BNXT_RX_PAGE_SIZE - 1))
4947 				n++;
4948 			nsegs = (MAX_SKB_FRAGS - n) / n;
4949 		}
4950 
4951 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
4952 			segs = MAX_TPA_SEGS_P5;
4953 			max_aggs = bp->max_tpa;
4954 		} else {
4955 			segs = ilog2(nsegs);
4956 		}
4957 		req.max_agg_segs = cpu_to_le16(segs);
4958 		req.max_aggs = cpu_to_le16(max_aggs);
4959 
4960 		req.min_agg_len = cpu_to_le32(512);
4961 	}
4962 	req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
4963 
4964 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4965 }
4966 
4967 static u16 bnxt_cp_ring_from_grp(struct bnxt *bp, struct bnxt_ring_struct *ring)
4968 {
4969 	struct bnxt_ring_grp_info *grp_info;
4970 
4971 	grp_info = &bp->grp_info[ring->grp_idx];
4972 	return grp_info->cp_fw_ring_id;
4973 }
4974 
4975 static u16 bnxt_cp_ring_for_rx(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
4976 {
4977 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
4978 		struct bnxt_napi *bnapi = rxr->bnapi;
4979 		struct bnxt_cp_ring_info *cpr;
4980 
4981 		cpr = bnapi->cp_ring.cp_ring_arr[BNXT_RX_HDL];
4982 		return cpr->cp_ring_struct.fw_ring_id;
4983 	} else {
4984 		return bnxt_cp_ring_from_grp(bp, &rxr->rx_ring_struct);
4985 	}
4986 }
4987 
4988 static u16 bnxt_cp_ring_for_tx(struct bnxt *bp, struct bnxt_tx_ring_info *txr)
4989 {
4990 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
4991 		struct bnxt_napi *bnapi = txr->bnapi;
4992 		struct bnxt_cp_ring_info *cpr;
4993 
4994 		cpr = bnapi->cp_ring.cp_ring_arr[BNXT_TX_HDL];
4995 		return cpr->cp_ring_struct.fw_ring_id;
4996 	} else {
4997 		return bnxt_cp_ring_from_grp(bp, &txr->tx_ring_struct);
4998 	}
4999 }
5000 
5001 static int bnxt_alloc_rss_indir_tbl(struct bnxt *bp)
5002 {
5003 	int entries;
5004 
5005 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5006 		entries = BNXT_MAX_RSS_TABLE_ENTRIES_P5;
5007 	else
5008 		entries = HW_HASH_INDEX_SIZE;
5009 
5010 	bp->rss_indir_tbl_entries = entries;
5011 	bp->rss_indir_tbl = kmalloc_array(entries, sizeof(*bp->rss_indir_tbl),
5012 					  GFP_KERNEL);
5013 	if (!bp->rss_indir_tbl)
5014 		return -ENOMEM;
5015 	return 0;
5016 }
5017 
5018 static void bnxt_set_dflt_rss_indir_tbl(struct bnxt *bp)
5019 {
5020 	u16 max_rings, max_entries, pad, i;
5021 
5022 	if (!bp->rx_nr_rings)
5023 		return;
5024 
5025 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5026 		max_rings = bp->rx_nr_rings - 1;
5027 	else
5028 		max_rings = bp->rx_nr_rings;
5029 
5030 	max_entries = bnxt_get_rxfh_indir_size(bp->dev);
5031 
5032 	for (i = 0; i < max_entries; i++)
5033 		bp->rss_indir_tbl[i] = ethtool_rxfh_indir_default(i, max_rings);
5034 
5035 	pad = bp->rss_indir_tbl_entries - max_entries;
5036 	if (pad)
5037 		memset(&bp->rss_indir_tbl[i], 0, pad * sizeof(u16));
5038 }
5039 
5040 static u16 bnxt_get_max_rss_ring(struct bnxt *bp)
5041 {
5042 	u16 i, tbl_size, max_ring = 0;
5043 
5044 	if (!bp->rss_indir_tbl)
5045 		return 0;
5046 
5047 	tbl_size = bnxt_get_rxfh_indir_size(bp->dev);
5048 	for (i = 0; i < tbl_size; i++)
5049 		max_ring = max(max_ring, bp->rss_indir_tbl[i]);
5050 	return max_ring;
5051 }
5052 
5053 int bnxt_get_nr_rss_ctxs(struct bnxt *bp, int rx_rings)
5054 {
5055 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5056 		return DIV_ROUND_UP(rx_rings, BNXT_RSS_TABLE_ENTRIES_P5);
5057 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5058 		return 2;
5059 	return 1;
5060 }
5061 
5062 static void __bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic)
5063 {
5064 	bool no_rss = !(vnic->flags & BNXT_VNIC_RSS_FLAG);
5065 	u16 i, j;
5066 
5067 	/* Fill the RSS indirection table with ring group ids */
5068 	for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++) {
5069 		if (!no_rss)
5070 			j = bp->rss_indir_tbl[i];
5071 		vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
5072 	}
5073 }
5074 
5075 static void __bnxt_fill_hw_rss_tbl_p5(struct bnxt *bp,
5076 				      struct bnxt_vnic_info *vnic)
5077 {
5078 	__le16 *ring_tbl = vnic->rss_table;
5079 	struct bnxt_rx_ring_info *rxr;
5080 	u16 tbl_size, i;
5081 
5082 	tbl_size = bnxt_get_rxfh_indir_size(bp->dev);
5083 
5084 	for (i = 0; i < tbl_size; i++) {
5085 		u16 ring_id, j;
5086 
5087 		j = bp->rss_indir_tbl[i];
5088 		rxr = &bp->rx_ring[j];
5089 
5090 		ring_id = rxr->rx_ring_struct.fw_ring_id;
5091 		*ring_tbl++ = cpu_to_le16(ring_id);
5092 		ring_id = bnxt_cp_ring_for_rx(bp, rxr);
5093 		*ring_tbl++ = cpu_to_le16(ring_id);
5094 	}
5095 }
5096 
5097 static void bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic)
5098 {
5099 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5100 		__bnxt_fill_hw_rss_tbl_p5(bp, vnic);
5101 	else
5102 		__bnxt_fill_hw_rss_tbl(bp, vnic);
5103 }
5104 
5105 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
5106 {
5107 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5108 	struct hwrm_vnic_rss_cfg_input req = {0};
5109 
5110 	if ((bp->flags & BNXT_FLAG_CHIP_P5) ||
5111 	    vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID)
5112 		return 0;
5113 
5114 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1);
5115 	if (set_rss) {
5116 		bnxt_fill_hw_rss_tbl(bp, vnic);
5117 		req.hash_type = cpu_to_le32(bp->rss_hash_cfg);
5118 		req.hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT;
5119 		req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
5120 		req.hash_key_tbl_addr =
5121 			cpu_to_le64(vnic->rss_hash_key_dma_addr);
5122 	}
5123 	req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
5124 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5125 }
5126 
5127 static int bnxt_hwrm_vnic_set_rss_p5(struct bnxt *bp, u16 vnic_id, bool set_rss)
5128 {
5129 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5130 	struct hwrm_vnic_rss_cfg_input req = {0};
5131 	dma_addr_t ring_tbl_map;
5132 	u32 i, nr_ctxs;
5133 
5134 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1);
5135 	req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5136 	if (!set_rss) {
5137 		hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5138 		return 0;
5139 	}
5140 	bnxt_fill_hw_rss_tbl(bp, vnic);
5141 	req.hash_type = cpu_to_le32(bp->rss_hash_cfg);
5142 	req.hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT;
5143 	req.hash_key_tbl_addr = cpu_to_le64(vnic->rss_hash_key_dma_addr);
5144 	ring_tbl_map = vnic->rss_table_dma_addr;
5145 	nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings);
5146 	for (i = 0; i < nr_ctxs; ring_tbl_map += BNXT_RSS_TABLE_SIZE_P5, i++) {
5147 		int rc;
5148 
5149 		req.ring_grp_tbl_addr = cpu_to_le64(ring_tbl_map);
5150 		req.ring_table_pair_index = i;
5151 		req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[i]);
5152 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5153 		if (rc)
5154 			return rc;
5155 	}
5156 	return 0;
5157 }
5158 
5159 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
5160 {
5161 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5162 	struct hwrm_vnic_plcmodes_cfg_input req = {0};
5163 
5164 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_PLCMODES_CFG, -1, -1);
5165 	req.flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT |
5166 				VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
5167 				VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
5168 	req.enables =
5169 		cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID |
5170 			    VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
5171 	/* thresholds not implemented in firmware yet */
5172 	req.jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
5173 	req.hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
5174 	req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
5175 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5176 }
5177 
5178 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id,
5179 					u16 ctx_idx)
5180 {
5181 	struct hwrm_vnic_rss_cos_lb_ctx_free_input req = {0};
5182 
5183 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_FREE, -1, -1);
5184 	req.rss_cos_lb_ctx_id =
5185 		cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]);
5186 
5187 	hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5188 	bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID;
5189 }
5190 
5191 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
5192 {
5193 	int i, j;
5194 
5195 	for (i = 0; i < bp->nr_vnics; i++) {
5196 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
5197 
5198 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) {
5199 			if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID)
5200 				bnxt_hwrm_vnic_ctx_free_one(bp, i, j);
5201 		}
5202 	}
5203 	bp->rsscos_nr_ctxs = 0;
5204 }
5205 
5206 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx)
5207 {
5208 	int rc;
5209 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_input req = {0};
5210 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp =
5211 						bp->hwrm_cmd_resp_addr;
5212 
5213 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC, -1,
5214 			       -1);
5215 
5216 	mutex_lock(&bp->hwrm_cmd_lock);
5217 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5218 	if (!rc)
5219 		bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] =
5220 			le16_to_cpu(resp->rss_cos_lb_ctx_id);
5221 	mutex_unlock(&bp->hwrm_cmd_lock);
5222 
5223 	return rc;
5224 }
5225 
5226 static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp)
5227 {
5228 	if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP)
5229 		return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE;
5230 	return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE;
5231 }
5232 
5233 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
5234 {
5235 	unsigned int ring = 0, grp_idx;
5236 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5237 	struct hwrm_vnic_cfg_input req = {0};
5238 	u16 def_vlan = 0;
5239 
5240 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_CFG, -1, -1);
5241 
5242 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5243 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0];
5244 
5245 		req.default_rx_ring_id =
5246 			cpu_to_le16(rxr->rx_ring_struct.fw_ring_id);
5247 		req.default_cmpl_ring_id =
5248 			cpu_to_le16(bnxt_cp_ring_for_rx(bp, rxr));
5249 		req.enables =
5250 			cpu_to_le32(VNIC_CFG_REQ_ENABLES_DEFAULT_RX_RING_ID |
5251 				    VNIC_CFG_REQ_ENABLES_DEFAULT_CMPL_RING_ID);
5252 		goto vnic_mru;
5253 	}
5254 	req.enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP);
5255 	/* Only RSS support for now TBD: COS & LB */
5256 	if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) {
5257 		req.rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
5258 		req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
5259 					   VNIC_CFG_REQ_ENABLES_MRU);
5260 	} else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) {
5261 		req.rss_rule =
5262 			cpu_to_le16(bp->vnic_info[0].fw_rss_cos_lb_ctx[0]);
5263 		req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
5264 					   VNIC_CFG_REQ_ENABLES_MRU);
5265 		req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE);
5266 	} else {
5267 		req.rss_rule = cpu_to_le16(0xffff);
5268 	}
5269 
5270 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) &&
5271 	    (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) {
5272 		req.cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]);
5273 		req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE);
5274 	} else {
5275 		req.cos_rule = cpu_to_le16(0xffff);
5276 	}
5277 
5278 	if (vnic->flags & BNXT_VNIC_RSS_FLAG)
5279 		ring = 0;
5280 	else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
5281 		ring = vnic_id - 1;
5282 	else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp))
5283 		ring = bp->rx_nr_rings - 1;
5284 
5285 	grp_idx = bp->rx_ring[ring].bnapi->index;
5286 	req.dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
5287 	req.lb_rule = cpu_to_le16(0xffff);
5288 vnic_mru:
5289 	req.mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + VLAN_HLEN);
5290 
5291 	req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5292 #ifdef CONFIG_BNXT_SRIOV
5293 	if (BNXT_VF(bp))
5294 		def_vlan = bp->vf.vlan;
5295 #endif
5296 	if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan)
5297 		req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
5298 	if (!vnic_id && bnxt_ulp_registered(bp->edev, BNXT_ROCE_ULP))
5299 		req.flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp));
5300 
5301 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5302 }
5303 
5304 static void bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
5305 {
5306 	if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
5307 		struct hwrm_vnic_free_input req = {0};
5308 
5309 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_FREE, -1, -1);
5310 		req.vnic_id =
5311 			cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
5312 
5313 		hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5314 		bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
5315 	}
5316 }
5317 
5318 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
5319 {
5320 	u16 i;
5321 
5322 	for (i = 0; i < bp->nr_vnics; i++)
5323 		bnxt_hwrm_vnic_free_one(bp, i);
5324 }
5325 
5326 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
5327 				unsigned int start_rx_ring_idx,
5328 				unsigned int nr_rings)
5329 {
5330 	int rc = 0;
5331 	unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
5332 	struct hwrm_vnic_alloc_input req = {0};
5333 	struct hwrm_vnic_alloc_output *resp = bp->hwrm_cmd_resp_addr;
5334 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5335 
5336 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5337 		goto vnic_no_ring_grps;
5338 
5339 	/* map ring groups to this vnic */
5340 	for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
5341 		grp_idx = bp->rx_ring[i].bnapi->index;
5342 		if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
5343 			netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
5344 				   j, nr_rings);
5345 			break;
5346 		}
5347 		vnic->fw_grp_ids[j] = bp->grp_info[grp_idx].fw_grp_id;
5348 	}
5349 
5350 vnic_no_ring_grps:
5351 	for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++)
5352 		vnic->fw_rss_cos_lb_ctx[i] = INVALID_HW_RING_ID;
5353 	if (vnic_id == 0)
5354 		req.flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
5355 
5356 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_ALLOC, -1, -1);
5357 
5358 	mutex_lock(&bp->hwrm_cmd_lock);
5359 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5360 	if (!rc)
5361 		vnic->fw_vnic_id = le32_to_cpu(resp->vnic_id);
5362 	mutex_unlock(&bp->hwrm_cmd_lock);
5363 	return rc;
5364 }
5365 
5366 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp)
5367 {
5368 	struct hwrm_vnic_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
5369 	struct hwrm_vnic_qcaps_input req = {0};
5370 	int rc;
5371 
5372 	bp->hw_ring_stats_size = sizeof(struct ctx_hw_stats);
5373 	bp->flags &= ~(BNXT_FLAG_NEW_RSS_CAP | BNXT_FLAG_ROCE_MIRROR_CAP);
5374 	if (bp->hwrm_spec_code < 0x10600)
5375 		return 0;
5376 
5377 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_QCAPS, -1, -1);
5378 	mutex_lock(&bp->hwrm_cmd_lock);
5379 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5380 	if (!rc) {
5381 		u32 flags = le32_to_cpu(resp->flags);
5382 
5383 		if (!(bp->flags & BNXT_FLAG_CHIP_P5) &&
5384 		    (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP))
5385 			bp->flags |= BNXT_FLAG_NEW_RSS_CAP;
5386 		if (flags &
5387 		    VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP)
5388 			bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP;
5389 
5390 		/* Older P5 fw before EXT_HW_STATS support did not set
5391 		 * VLAN_STRIP_CAP properly.
5392 		 */
5393 		if ((flags & VNIC_QCAPS_RESP_FLAGS_VLAN_STRIP_CAP) ||
5394 		    (BNXT_CHIP_P5_THOR(bp) &&
5395 		     !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)))
5396 			bp->fw_cap |= BNXT_FW_CAP_VLAN_RX_STRIP;
5397 		bp->max_tpa_v2 = le16_to_cpu(resp->max_aggs_supported);
5398 		if (bp->max_tpa_v2) {
5399 			if (BNXT_CHIP_P5_THOR(bp))
5400 				bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5;
5401 			else
5402 				bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5_SR2;
5403 		}
5404 	}
5405 	mutex_unlock(&bp->hwrm_cmd_lock);
5406 	return rc;
5407 }
5408 
5409 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
5410 {
5411 	u16 i;
5412 	u32 rc = 0;
5413 
5414 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5415 		return 0;
5416 
5417 	mutex_lock(&bp->hwrm_cmd_lock);
5418 	for (i = 0; i < bp->rx_nr_rings; i++) {
5419 		struct hwrm_ring_grp_alloc_input req = {0};
5420 		struct hwrm_ring_grp_alloc_output *resp =
5421 					bp->hwrm_cmd_resp_addr;
5422 		unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
5423 
5424 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_ALLOC, -1, -1);
5425 
5426 		req.cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
5427 		req.rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
5428 		req.ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
5429 		req.sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
5430 
5431 		rc = _hwrm_send_message(bp, &req, sizeof(req),
5432 					HWRM_CMD_TIMEOUT);
5433 		if (rc)
5434 			break;
5435 
5436 		bp->grp_info[grp_idx].fw_grp_id =
5437 			le32_to_cpu(resp->ring_group_id);
5438 	}
5439 	mutex_unlock(&bp->hwrm_cmd_lock);
5440 	return rc;
5441 }
5442 
5443 static void bnxt_hwrm_ring_grp_free(struct bnxt *bp)
5444 {
5445 	u16 i;
5446 	struct hwrm_ring_grp_free_input req = {0};
5447 
5448 	if (!bp->grp_info || (bp->flags & BNXT_FLAG_CHIP_P5))
5449 		return;
5450 
5451 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_FREE, -1, -1);
5452 
5453 	mutex_lock(&bp->hwrm_cmd_lock);
5454 	for (i = 0; i < bp->cp_nr_rings; i++) {
5455 		if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
5456 			continue;
5457 		req.ring_group_id =
5458 			cpu_to_le32(bp->grp_info[i].fw_grp_id);
5459 
5460 		_hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5461 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
5462 	}
5463 	mutex_unlock(&bp->hwrm_cmd_lock);
5464 }
5465 
5466 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
5467 				    struct bnxt_ring_struct *ring,
5468 				    u32 ring_type, u32 map_index)
5469 {
5470 	int rc = 0, err = 0;
5471 	struct hwrm_ring_alloc_input req = {0};
5472 	struct hwrm_ring_alloc_output *resp = bp->hwrm_cmd_resp_addr;
5473 	struct bnxt_ring_mem_info *rmem = &ring->ring_mem;
5474 	struct bnxt_ring_grp_info *grp_info;
5475 	u16 ring_id;
5476 
5477 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_ALLOC, -1, -1);
5478 
5479 	req.enables = 0;
5480 	if (rmem->nr_pages > 1) {
5481 		req.page_tbl_addr = cpu_to_le64(rmem->pg_tbl_map);
5482 		/* Page size is in log2 units */
5483 		req.page_size = BNXT_PAGE_SHIFT;
5484 		req.page_tbl_depth = 1;
5485 	} else {
5486 		req.page_tbl_addr =  cpu_to_le64(rmem->dma_arr[0]);
5487 	}
5488 	req.fbo = 0;
5489 	/* Association of ring index with doorbell index and MSIX number */
5490 	req.logical_id = cpu_to_le16(map_index);
5491 
5492 	switch (ring_type) {
5493 	case HWRM_RING_ALLOC_TX: {
5494 		struct bnxt_tx_ring_info *txr;
5495 
5496 		txr = container_of(ring, struct bnxt_tx_ring_info,
5497 				   tx_ring_struct);
5498 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
5499 		/* Association of transmit ring with completion ring */
5500 		grp_info = &bp->grp_info[ring->grp_idx];
5501 		req.cmpl_ring_id = cpu_to_le16(bnxt_cp_ring_for_tx(bp, txr));
5502 		req.length = cpu_to_le32(bp->tx_ring_mask + 1);
5503 		req.stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5504 		req.queue_id = cpu_to_le16(ring->queue_id);
5505 		break;
5506 	}
5507 	case HWRM_RING_ALLOC_RX:
5508 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
5509 		req.length = cpu_to_le32(bp->rx_ring_mask + 1);
5510 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5511 			u16 flags = 0;
5512 
5513 			/* Association of rx ring with stats context */
5514 			grp_info = &bp->grp_info[ring->grp_idx];
5515 			req.rx_buf_size = cpu_to_le16(bp->rx_buf_use_size);
5516 			req.stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5517 			req.enables |= cpu_to_le32(
5518 				RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
5519 			if (NET_IP_ALIGN == 2)
5520 				flags = RING_ALLOC_REQ_FLAGS_RX_SOP_PAD;
5521 			req.flags = cpu_to_le16(flags);
5522 		}
5523 		break;
5524 	case HWRM_RING_ALLOC_AGG:
5525 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5526 			req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX_AGG;
5527 			/* Association of agg ring with rx ring */
5528 			grp_info = &bp->grp_info[ring->grp_idx];
5529 			req.rx_ring_id = cpu_to_le16(grp_info->rx_fw_ring_id);
5530 			req.rx_buf_size = cpu_to_le16(BNXT_RX_PAGE_SIZE);
5531 			req.stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5532 			req.enables |= cpu_to_le32(
5533 				RING_ALLOC_REQ_ENABLES_RX_RING_ID_VALID |
5534 				RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
5535 		} else {
5536 			req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
5537 		}
5538 		req.length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
5539 		break;
5540 	case HWRM_RING_ALLOC_CMPL:
5541 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL;
5542 		req.length = cpu_to_le32(bp->cp_ring_mask + 1);
5543 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5544 			/* Association of cp ring with nq */
5545 			grp_info = &bp->grp_info[map_index];
5546 			req.nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id);
5547 			req.cq_handle = cpu_to_le64(ring->handle);
5548 			req.enables |= cpu_to_le32(
5549 				RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID);
5550 		} else if (bp->flags & BNXT_FLAG_USING_MSIX) {
5551 			req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
5552 		}
5553 		break;
5554 	case HWRM_RING_ALLOC_NQ:
5555 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_NQ;
5556 		req.length = cpu_to_le32(bp->cp_ring_mask + 1);
5557 		if (bp->flags & BNXT_FLAG_USING_MSIX)
5558 			req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
5559 		break;
5560 	default:
5561 		netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
5562 			   ring_type);
5563 		return -1;
5564 	}
5565 
5566 	mutex_lock(&bp->hwrm_cmd_lock);
5567 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5568 	err = le16_to_cpu(resp->error_code);
5569 	ring_id = le16_to_cpu(resp->ring_id);
5570 	mutex_unlock(&bp->hwrm_cmd_lock);
5571 
5572 	if (rc || err) {
5573 		netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n",
5574 			   ring_type, rc, err);
5575 		return -EIO;
5576 	}
5577 	ring->fw_ring_id = ring_id;
5578 	return rc;
5579 }
5580 
5581 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx)
5582 {
5583 	int rc;
5584 
5585 	if (BNXT_PF(bp)) {
5586 		struct hwrm_func_cfg_input req = {0};
5587 
5588 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
5589 		req.fid = cpu_to_le16(0xffff);
5590 		req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
5591 		req.async_event_cr = cpu_to_le16(idx);
5592 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5593 	} else {
5594 		struct hwrm_func_vf_cfg_input req = {0};
5595 
5596 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_CFG, -1, -1);
5597 		req.enables =
5598 			cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
5599 		req.async_event_cr = cpu_to_le16(idx);
5600 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5601 	}
5602 	return rc;
5603 }
5604 
5605 static void bnxt_set_db(struct bnxt *bp, struct bnxt_db_info *db, u32 ring_type,
5606 			u32 map_idx, u32 xid)
5607 {
5608 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5609 		if (BNXT_PF(bp))
5610 			db->doorbell = bp->bar1 + DB_PF_OFFSET_P5;
5611 		else
5612 			db->doorbell = bp->bar1 + DB_VF_OFFSET_P5;
5613 		switch (ring_type) {
5614 		case HWRM_RING_ALLOC_TX:
5615 			db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SQ;
5616 			break;
5617 		case HWRM_RING_ALLOC_RX:
5618 		case HWRM_RING_ALLOC_AGG:
5619 			db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SRQ;
5620 			break;
5621 		case HWRM_RING_ALLOC_CMPL:
5622 			db->db_key64 = DBR_PATH_L2;
5623 			break;
5624 		case HWRM_RING_ALLOC_NQ:
5625 			db->db_key64 = DBR_PATH_L2;
5626 			break;
5627 		}
5628 		db->db_key64 |= (u64)xid << DBR_XID_SFT;
5629 	} else {
5630 		db->doorbell = bp->bar1 + map_idx * 0x80;
5631 		switch (ring_type) {
5632 		case HWRM_RING_ALLOC_TX:
5633 			db->db_key32 = DB_KEY_TX;
5634 			break;
5635 		case HWRM_RING_ALLOC_RX:
5636 		case HWRM_RING_ALLOC_AGG:
5637 			db->db_key32 = DB_KEY_RX;
5638 			break;
5639 		case HWRM_RING_ALLOC_CMPL:
5640 			db->db_key32 = DB_KEY_CP;
5641 			break;
5642 		}
5643 	}
5644 }
5645 
5646 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
5647 {
5648 	bool agg_rings = !!(bp->flags & BNXT_FLAG_AGG_RINGS);
5649 	int i, rc = 0;
5650 	u32 type;
5651 
5652 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5653 		type = HWRM_RING_ALLOC_NQ;
5654 	else
5655 		type = HWRM_RING_ALLOC_CMPL;
5656 	for (i = 0; i < bp->cp_nr_rings; i++) {
5657 		struct bnxt_napi *bnapi = bp->bnapi[i];
5658 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5659 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
5660 		u32 map_idx = ring->map_idx;
5661 		unsigned int vector;
5662 
5663 		vector = bp->irq_tbl[map_idx].vector;
5664 		disable_irq_nosync(vector);
5665 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5666 		if (rc) {
5667 			enable_irq(vector);
5668 			goto err_out;
5669 		}
5670 		bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id);
5671 		bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
5672 		enable_irq(vector);
5673 		bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
5674 
5675 		if (!i) {
5676 			rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id);
5677 			if (rc)
5678 				netdev_warn(bp->dev, "Failed to set async event completion ring.\n");
5679 		}
5680 	}
5681 
5682 	type = HWRM_RING_ALLOC_TX;
5683 	for (i = 0; i < bp->tx_nr_rings; i++) {
5684 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
5685 		struct bnxt_ring_struct *ring;
5686 		u32 map_idx;
5687 
5688 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5689 			struct bnxt_napi *bnapi = txr->bnapi;
5690 			struct bnxt_cp_ring_info *cpr, *cpr2;
5691 			u32 type2 = HWRM_RING_ALLOC_CMPL;
5692 
5693 			cpr = &bnapi->cp_ring;
5694 			cpr2 = cpr->cp_ring_arr[BNXT_TX_HDL];
5695 			ring = &cpr2->cp_ring_struct;
5696 			ring->handle = BNXT_TX_HDL;
5697 			map_idx = bnapi->index;
5698 			rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
5699 			if (rc)
5700 				goto err_out;
5701 			bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
5702 				    ring->fw_ring_id);
5703 			bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
5704 		}
5705 		ring = &txr->tx_ring_struct;
5706 		map_idx = i;
5707 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5708 		if (rc)
5709 			goto err_out;
5710 		bnxt_set_db(bp, &txr->tx_db, type, map_idx, ring->fw_ring_id);
5711 	}
5712 
5713 	type = HWRM_RING_ALLOC_RX;
5714 	for (i = 0; i < bp->rx_nr_rings; i++) {
5715 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5716 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
5717 		struct bnxt_napi *bnapi = rxr->bnapi;
5718 		u32 map_idx = bnapi->index;
5719 
5720 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5721 		if (rc)
5722 			goto err_out;
5723 		bnxt_set_db(bp, &rxr->rx_db, type, map_idx, ring->fw_ring_id);
5724 		/* If we have agg rings, post agg buffers first. */
5725 		if (!agg_rings)
5726 			bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
5727 		bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
5728 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5729 			struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5730 			u32 type2 = HWRM_RING_ALLOC_CMPL;
5731 			struct bnxt_cp_ring_info *cpr2;
5732 
5733 			cpr2 = cpr->cp_ring_arr[BNXT_RX_HDL];
5734 			ring = &cpr2->cp_ring_struct;
5735 			ring->handle = BNXT_RX_HDL;
5736 			rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
5737 			if (rc)
5738 				goto err_out;
5739 			bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
5740 				    ring->fw_ring_id);
5741 			bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
5742 		}
5743 	}
5744 
5745 	if (agg_rings) {
5746 		type = HWRM_RING_ALLOC_AGG;
5747 		for (i = 0; i < bp->rx_nr_rings; i++) {
5748 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5749 			struct bnxt_ring_struct *ring =
5750 						&rxr->rx_agg_ring_struct;
5751 			u32 grp_idx = ring->grp_idx;
5752 			u32 map_idx = grp_idx + bp->rx_nr_rings;
5753 
5754 			rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5755 			if (rc)
5756 				goto err_out;
5757 
5758 			bnxt_set_db(bp, &rxr->rx_agg_db, type, map_idx,
5759 				    ring->fw_ring_id);
5760 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
5761 			bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
5762 			bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
5763 		}
5764 	}
5765 err_out:
5766 	return rc;
5767 }
5768 
5769 static int hwrm_ring_free_send_msg(struct bnxt *bp,
5770 				   struct bnxt_ring_struct *ring,
5771 				   u32 ring_type, int cmpl_ring_id)
5772 {
5773 	int rc;
5774 	struct hwrm_ring_free_input req = {0};
5775 	struct hwrm_ring_free_output *resp = bp->hwrm_cmd_resp_addr;
5776 	u16 error_code;
5777 
5778 	if (BNXT_NO_FW_ACCESS(bp))
5779 		return 0;
5780 
5781 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_FREE, cmpl_ring_id, -1);
5782 	req.ring_type = ring_type;
5783 	req.ring_id = cpu_to_le16(ring->fw_ring_id);
5784 
5785 	mutex_lock(&bp->hwrm_cmd_lock);
5786 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5787 	error_code = le16_to_cpu(resp->error_code);
5788 	mutex_unlock(&bp->hwrm_cmd_lock);
5789 
5790 	if (rc || error_code) {
5791 		netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n",
5792 			   ring_type, rc, error_code);
5793 		return -EIO;
5794 	}
5795 	return 0;
5796 }
5797 
5798 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
5799 {
5800 	u32 type;
5801 	int i;
5802 
5803 	if (!bp->bnapi)
5804 		return;
5805 
5806 	for (i = 0; i < bp->tx_nr_rings; i++) {
5807 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
5808 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
5809 
5810 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5811 			u32 cmpl_ring_id = bnxt_cp_ring_for_tx(bp, txr);
5812 
5813 			hwrm_ring_free_send_msg(bp, ring,
5814 						RING_FREE_REQ_RING_TYPE_TX,
5815 						close_path ? cmpl_ring_id :
5816 						INVALID_HW_RING_ID);
5817 			ring->fw_ring_id = INVALID_HW_RING_ID;
5818 		}
5819 	}
5820 
5821 	for (i = 0; i < bp->rx_nr_rings; i++) {
5822 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5823 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
5824 		u32 grp_idx = rxr->bnapi->index;
5825 
5826 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5827 			u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
5828 
5829 			hwrm_ring_free_send_msg(bp, ring,
5830 						RING_FREE_REQ_RING_TYPE_RX,
5831 						close_path ? cmpl_ring_id :
5832 						INVALID_HW_RING_ID);
5833 			ring->fw_ring_id = INVALID_HW_RING_ID;
5834 			bp->grp_info[grp_idx].rx_fw_ring_id =
5835 				INVALID_HW_RING_ID;
5836 		}
5837 	}
5838 
5839 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5840 		type = RING_FREE_REQ_RING_TYPE_RX_AGG;
5841 	else
5842 		type = RING_FREE_REQ_RING_TYPE_RX;
5843 	for (i = 0; i < bp->rx_nr_rings; i++) {
5844 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5845 		struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
5846 		u32 grp_idx = rxr->bnapi->index;
5847 
5848 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5849 			u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
5850 
5851 			hwrm_ring_free_send_msg(bp, ring, type,
5852 						close_path ? cmpl_ring_id :
5853 						INVALID_HW_RING_ID);
5854 			ring->fw_ring_id = INVALID_HW_RING_ID;
5855 			bp->grp_info[grp_idx].agg_fw_ring_id =
5856 				INVALID_HW_RING_ID;
5857 		}
5858 	}
5859 
5860 	/* The completion rings are about to be freed.  After that the
5861 	 * IRQ doorbell will not work anymore.  So we need to disable
5862 	 * IRQ here.
5863 	 */
5864 	bnxt_disable_int_sync(bp);
5865 
5866 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5867 		type = RING_FREE_REQ_RING_TYPE_NQ;
5868 	else
5869 		type = RING_FREE_REQ_RING_TYPE_L2_CMPL;
5870 	for (i = 0; i < bp->cp_nr_rings; i++) {
5871 		struct bnxt_napi *bnapi = bp->bnapi[i];
5872 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5873 		struct bnxt_ring_struct *ring;
5874 		int j;
5875 
5876 		for (j = 0; j < 2; j++) {
5877 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
5878 
5879 			if (cpr2) {
5880 				ring = &cpr2->cp_ring_struct;
5881 				if (ring->fw_ring_id == INVALID_HW_RING_ID)
5882 					continue;
5883 				hwrm_ring_free_send_msg(bp, ring,
5884 					RING_FREE_REQ_RING_TYPE_L2_CMPL,
5885 					INVALID_HW_RING_ID);
5886 				ring->fw_ring_id = INVALID_HW_RING_ID;
5887 			}
5888 		}
5889 		ring = &cpr->cp_ring_struct;
5890 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5891 			hwrm_ring_free_send_msg(bp, ring, type,
5892 						INVALID_HW_RING_ID);
5893 			ring->fw_ring_id = INVALID_HW_RING_ID;
5894 			bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
5895 		}
5896 	}
5897 }
5898 
5899 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
5900 			   bool shared);
5901 
5902 static int bnxt_hwrm_get_rings(struct bnxt *bp)
5903 {
5904 	struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
5905 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
5906 	struct hwrm_func_qcfg_input req = {0};
5907 	int rc;
5908 
5909 	if (bp->hwrm_spec_code < 0x10601)
5910 		return 0;
5911 
5912 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
5913 	req.fid = cpu_to_le16(0xffff);
5914 	mutex_lock(&bp->hwrm_cmd_lock);
5915 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5916 	if (rc) {
5917 		mutex_unlock(&bp->hwrm_cmd_lock);
5918 		return rc;
5919 	}
5920 
5921 	hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings);
5922 	if (BNXT_NEW_RM(bp)) {
5923 		u16 cp, stats;
5924 
5925 		hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings);
5926 		hw_resc->resv_hw_ring_grps =
5927 			le32_to_cpu(resp->alloc_hw_ring_grps);
5928 		hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics);
5929 		cp = le16_to_cpu(resp->alloc_cmpl_rings);
5930 		stats = le16_to_cpu(resp->alloc_stat_ctx);
5931 		hw_resc->resv_irqs = cp;
5932 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5933 			int rx = hw_resc->resv_rx_rings;
5934 			int tx = hw_resc->resv_tx_rings;
5935 
5936 			if (bp->flags & BNXT_FLAG_AGG_RINGS)
5937 				rx >>= 1;
5938 			if (cp < (rx + tx)) {
5939 				bnxt_trim_rings(bp, &rx, &tx, cp, false);
5940 				if (bp->flags & BNXT_FLAG_AGG_RINGS)
5941 					rx <<= 1;
5942 				hw_resc->resv_rx_rings = rx;
5943 				hw_resc->resv_tx_rings = tx;
5944 			}
5945 			hw_resc->resv_irqs = le16_to_cpu(resp->alloc_msix);
5946 			hw_resc->resv_hw_ring_grps = rx;
5947 		}
5948 		hw_resc->resv_cp_rings = cp;
5949 		hw_resc->resv_stat_ctxs = stats;
5950 	}
5951 	mutex_unlock(&bp->hwrm_cmd_lock);
5952 	return 0;
5953 }
5954 
5955 /* Caller must hold bp->hwrm_cmd_lock */
5956 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings)
5957 {
5958 	struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
5959 	struct hwrm_func_qcfg_input req = {0};
5960 	int rc;
5961 
5962 	if (bp->hwrm_spec_code < 0x10601)
5963 		return 0;
5964 
5965 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
5966 	req.fid = cpu_to_le16(fid);
5967 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5968 	if (!rc)
5969 		*tx_rings = le16_to_cpu(resp->alloc_tx_rings);
5970 
5971 	return rc;
5972 }
5973 
5974 static bool bnxt_rfs_supported(struct bnxt *bp);
5975 
5976 static void
5977 __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, struct hwrm_func_cfg_input *req,
5978 			     int tx_rings, int rx_rings, int ring_grps,
5979 			     int cp_rings, int stats, int vnics)
5980 {
5981 	u32 enables = 0;
5982 
5983 	bnxt_hwrm_cmd_hdr_init(bp, req, HWRM_FUNC_CFG, -1, -1);
5984 	req->fid = cpu_to_le16(0xffff);
5985 	enables |= tx_rings ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
5986 	req->num_tx_rings = cpu_to_le16(tx_rings);
5987 	if (BNXT_NEW_RM(bp)) {
5988 		enables |= rx_rings ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0;
5989 		enables |= stats ? FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
5990 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5991 			enables |= cp_rings ? FUNC_CFG_REQ_ENABLES_NUM_MSIX : 0;
5992 			enables |= tx_rings + ring_grps ?
5993 				   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
5994 			enables |= rx_rings ?
5995 				FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
5996 		} else {
5997 			enables |= cp_rings ?
5998 				   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
5999 			enables |= ring_grps ?
6000 				   FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS |
6001 				   FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
6002 		}
6003 		enables |= vnics ? FUNC_CFG_REQ_ENABLES_NUM_VNICS : 0;
6004 
6005 		req->num_rx_rings = cpu_to_le16(rx_rings);
6006 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
6007 			req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps);
6008 			req->num_msix = cpu_to_le16(cp_rings);
6009 			req->num_rsscos_ctxs =
6010 				cpu_to_le16(DIV_ROUND_UP(ring_grps, 64));
6011 		} else {
6012 			req->num_cmpl_rings = cpu_to_le16(cp_rings);
6013 			req->num_hw_ring_grps = cpu_to_le16(ring_grps);
6014 			req->num_rsscos_ctxs = cpu_to_le16(1);
6015 			if (!(bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
6016 			    bnxt_rfs_supported(bp))
6017 				req->num_rsscos_ctxs =
6018 					cpu_to_le16(ring_grps + 1);
6019 		}
6020 		req->num_stat_ctxs = cpu_to_le16(stats);
6021 		req->num_vnics = cpu_to_le16(vnics);
6022 	}
6023 	req->enables = cpu_to_le32(enables);
6024 }
6025 
6026 static void
6027 __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp,
6028 			     struct hwrm_func_vf_cfg_input *req, int tx_rings,
6029 			     int rx_rings, int ring_grps, int cp_rings,
6030 			     int stats, int vnics)
6031 {
6032 	u32 enables = 0;
6033 
6034 	bnxt_hwrm_cmd_hdr_init(bp, req, HWRM_FUNC_VF_CFG, -1, -1);
6035 	enables |= tx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
6036 	enables |= rx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS |
6037 			      FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
6038 	enables |= stats ? FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
6039 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
6040 		enables |= tx_rings + ring_grps ?
6041 			   FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6042 	} else {
6043 		enables |= cp_rings ?
6044 			   FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6045 		enables |= ring_grps ?
6046 			   FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0;
6047 	}
6048 	enables |= vnics ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0;
6049 	enables |= FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS;
6050 
6051 	req->num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX);
6052 	req->num_tx_rings = cpu_to_le16(tx_rings);
6053 	req->num_rx_rings = cpu_to_le16(rx_rings);
6054 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
6055 		req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps);
6056 		req->num_rsscos_ctxs = cpu_to_le16(DIV_ROUND_UP(ring_grps, 64));
6057 	} else {
6058 		req->num_cmpl_rings = cpu_to_le16(cp_rings);
6059 		req->num_hw_ring_grps = cpu_to_le16(ring_grps);
6060 		req->num_rsscos_ctxs = cpu_to_le16(BNXT_VF_MAX_RSS_CTX);
6061 	}
6062 	req->num_stat_ctxs = cpu_to_le16(stats);
6063 	req->num_vnics = cpu_to_le16(vnics);
6064 
6065 	req->enables = cpu_to_le32(enables);
6066 }
6067 
6068 static int
6069 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6070 			   int ring_grps, int cp_rings, int stats, int vnics)
6071 {
6072 	struct hwrm_func_cfg_input req = {0};
6073 	int rc;
6074 
6075 	__bnxt_hwrm_reserve_pf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
6076 				     cp_rings, stats, vnics);
6077 	if (!req.enables)
6078 		return 0;
6079 
6080 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6081 	if (rc)
6082 		return rc;
6083 
6084 	if (bp->hwrm_spec_code < 0x10601)
6085 		bp->hw_resc.resv_tx_rings = tx_rings;
6086 
6087 	return bnxt_hwrm_get_rings(bp);
6088 }
6089 
6090 static int
6091 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6092 			   int ring_grps, int cp_rings, int stats, int vnics)
6093 {
6094 	struct hwrm_func_vf_cfg_input req = {0};
6095 	int rc;
6096 
6097 	if (!BNXT_NEW_RM(bp)) {
6098 		bp->hw_resc.resv_tx_rings = tx_rings;
6099 		return 0;
6100 	}
6101 
6102 	__bnxt_hwrm_reserve_vf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
6103 				     cp_rings, stats, vnics);
6104 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6105 	if (rc)
6106 		return rc;
6107 
6108 	return bnxt_hwrm_get_rings(bp);
6109 }
6110 
6111 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, int tx, int rx, int grp,
6112 				   int cp, int stat, int vnic)
6113 {
6114 	if (BNXT_PF(bp))
6115 		return bnxt_hwrm_reserve_pf_rings(bp, tx, rx, grp, cp, stat,
6116 						  vnic);
6117 	else
6118 		return bnxt_hwrm_reserve_vf_rings(bp, tx, rx, grp, cp, stat,
6119 						  vnic);
6120 }
6121 
6122 int bnxt_nq_rings_in_use(struct bnxt *bp)
6123 {
6124 	int cp = bp->cp_nr_rings;
6125 	int ulp_msix, ulp_base;
6126 
6127 	ulp_msix = bnxt_get_ulp_msix_num(bp);
6128 	if (ulp_msix) {
6129 		ulp_base = bnxt_get_ulp_msix_base(bp);
6130 		cp += ulp_msix;
6131 		if ((ulp_base + ulp_msix) > cp)
6132 			cp = ulp_base + ulp_msix;
6133 	}
6134 	return cp;
6135 }
6136 
6137 static int bnxt_cp_rings_in_use(struct bnxt *bp)
6138 {
6139 	int cp;
6140 
6141 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
6142 		return bnxt_nq_rings_in_use(bp);
6143 
6144 	cp = bp->tx_nr_rings + bp->rx_nr_rings;
6145 	return cp;
6146 }
6147 
6148 static int bnxt_get_func_stat_ctxs(struct bnxt *bp)
6149 {
6150 	int ulp_stat = bnxt_get_ulp_stat_ctxs(bp);
6151 	int cp = bp->cp_nr_rings;
6152 
6153 	if (!ulp_stat)
6154 		return cp;
6155 
6156 	if (bnxt_nq_rings_in_use(bp) > cp + bnxt_get_ulp_msix_num(bp))
6157 		return bnxt_get_ulp_msix_base(bp) + ulp_stat;
6158 
6159 	return cp + ulp_stat;
6160 }
6161 
6162 /* Check if a default RSS map needs to be setup.  This function is only
6163  * used on older firmware that does not require reserving RX rings.
6164  */
6165 static void bnxt_check_rss_tbl_no_rmgr(struct bnxt *bp)
6166 {
6167 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6168 
6169 	/* The RSS map is valid for RX rings set to resv_rx_rings */
6170 	if (hw_resc->resv_rx_rings != bp->rx_nr_rings) {
6171 		hw_resc->resv_rx_rings = bp->rx_nr_rings;
6172 		if (!netif_is_rxfh_configured(bp->dev))
6173 			bnxt_set_dflt_rss_indir_tbl(bp);
6174 	}
6175 }
6176 
6177 static bool bnxt_need_reserve_rings(struct bnxt *bp)
6178 {
6179 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6180 	int cp = bnxt_cp_rings_in_use(bp);
6181 	int nq = bnxt_nq_rings_in_use(bp);
6182 	int rx = bp->rx_nr_rings, stat;
6183 	int vnic = 1, grp = rx;
6184 
6185 	if (hw_resc->resv_tx_rings != bp->tx_nr_rings &&
6186 	    bp->hwrm_spec_code >= 0x10601)
6187 		return true;
6188 
6189 	/* Old firmware does not need RX ring reservations but we still
6190 	 * need to setup a default RSS map when needed.  With new firmware
6191 	 * we go through RX ring reservations first and then set up the
6192 	 * RSS map for the successfully reserved RX rings when needed.
6193 	 */
6194 	if (!BNXT_NEW_RM(bp)) {
6195 		bnxt_check_rss_tbl_no_rmgr(bp);
6196 		return false;
6197 	}
6198 	if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5))
6199 		vnic = rx + 1;
6200 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
6201 		rx <<= 1;
6202 	stat = bnxt_get_func_stat_ctxs(bp);
6203 	if (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp ||
6204 	    hw_resc->resv_vnics != vnic || hw_resc->resv_stat_ctxs != stat ||
6205 	    (hw_resc->resv_hw_ring_grps != grp &&
6206 	     !(bp->flags & BNXT_FLAG_CHIP_P5)))
6207 		return true;
6208 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && BNXT_PF(bp) &&
6209 	    hw_resc->resv_irqs != nq)
6210 		return true;
6211 	return false;
6212 }
6213 
6214 static int __bnxt_reserve_rings(struct bnxt *bp)
6215 {
6216 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6217 	int cp = bnxt_nq_rings_in_use(bp);
6218 	int tx = bp->tx_nr_rings;
6219 	int rx = bp->rx_nr_rings;
6220 	int grp, rx_rings, rc;
6221 	int vnic = 1, stat;
6222 	bool sh = false;
6223 
6224 	if (!bnxt_need_reserve_rings(bp))
6225 		return 0;
6226 
6227 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
6228 		sh = true;
6229 	if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5))
6230 		vnic = rx + 1;
6231 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
6232 		rx <<= 1;
6233 	grp = bp->rx_nr_rings;
6234 	stat = bnxt_get_func_stat_ctxs(bp);
6235 
6236 	rc = bnxt_hwrm_reserve_rings(bp, tx, rx, grp, cp, stat, vnic);
6237 	if (rc)
6238 		return rc;
6239 
6240 	tx = hw_resc->resv_tx_rings;
6241 	if (BNXT_NEW_RM(bp)) {
6242 		rx = hw_resc->resv_rx_rings;
6243 		cp = hw_resc->resv_irqs;
6244 		grp = hw_resc->resv_hw_ring_grps;
6245 		vnic = hw_resc->resv_vnics;
6246 		stat = hw_resc->resv_stat_ctxs;
6247 	}
6248 
6249 	rx_rings = rx;
6250 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
6251 		if (rx >= 2) {
6252 			rx_rings = rx >> 1;
6253 		} else {
6254 			if (netif_running(bp->dev))
6255 				return -ENOMEM;
6256 
6257 			bp->flags &= ~BNXT_FLAG_AGG_RINGS;
6258 			bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
6259 			bp->dev->hw_features &= ~NETIF_F_LRO;
6260 			bp->dev->features &= ~NETIF_F_LRO;
6261 			bnxt_set_ring_params(bp);
6262 		}
6263 	}
6264 	rx_rings = min_t(int, rx_rings, grp);
6265 	cp = min_t(int, cp, bp->cp_nr_rings);
6266 	if (stat > bnxt_get_ulp_stat_ctxs(bp))
6267 		stat -= bnxt_get_ulp_stat_ctxs(bp);
6268 	cp = min_t(int, cp, stat);
6269 	rc = bnxt_trim_rings(bp, &rx_rings, &tx, cp, sh);
6270 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
6271 		rx = rx_rings << 1;
6272 	cp = sh ? max_t(int, tx, rx_rings) : tx + rx_rings;
6273 	bp->tx_nr_rings = tx;
6274 
6275 	/* If we cannot reserve all the RX rings, reset the RSS map only
6276 	 * if absolutely necessary
6277 	 */
6278 	if (rx_rings != bp->rx_nr_rings) {
6279 		netdev_warn(bp->dev, "Able to reserve only %d out of %d requested RX rings\n",
6280 			    rx_rings, bp->rx_nr_rings);
6281 		if ((bp->dev->priv_flags & IFF_RXFH_CONFIGURED) &&
6282 		    (bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings) !=
6283 		     bnxt_get_nr_rss_ctxs(bp, rx_rings) ||
6284 		     bnxt_get_max_rss_ring(bp) >= rx_rings)) {
6285 			netdev_warn(bp->dev, "RSS table entries reverting to default\n");
6286 			bp->dev->priv_flags &= ~IFF_RXFH_CONFIGURED;
6287 		}
6288 	}
6289 	bp->rx_nr_rings = rx_rings;
6290 	bp->cp_nr_rings = cp;
6291 
6292 	if (!tx || !rx || !cp || !grp || !vnic || !stat)
6293 		return -ENOMEM;
6294 
6295 	if (!netif_is_rxfh_configured(bp->dev))
6296 		bnxt_set_dflt_rss_indir_tbl(bp);
6297 
6298 	return rc;
6299 }
6300 
6301 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6302 				    int ring_grps, int cp_rings, int stats,
6303 				    int vnics)
6304 {
6305 	struct hwrm_func_vf_cfg_input req = {0};
6306 	u32 flags;
6307 
6308 	if (!BNXT_NEW_RM(bp))
6309 		return 0;
6310 
6311 	__bnxt_hwrm_reserve_vf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
6312 				     cp_rings, stats, vnics);
6313 	flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST |
6314 		FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST |
6315 		FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
6316 		FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
6317 		FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST |
6318 		FUNC_VF_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST;
6319 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
6320 		flags |= FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
6321 
6322 	req.flags = cpu_to_le32(flags);
6323 	return hwrm_send_message_silent(bp, &req, sizeof(req),
6324 					HWRM_CMD_TIMEOUT);
6325 }
6326 
6327 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6328 				    int ring_grps, int cp_rings, int stats,
6329 				    int vnics)
6330 {
6331 	struct hwrm_func_cfg_input req = {0};
6332 	u32 flags;
6333 
6334 	__bnxt_hwrm_reserve_pf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
6335 				     cp_rings, stats, vnics);
6336 	flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST;
6337 	if (BNXT_NEW_RM(bp)) {
6338 		flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST |
6339 			 FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
6340 			 FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
6341 			 FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST;
6342 		if (bp->flags & BNXT_FLAG_CHIP_P5)
6343 			flags |= FUNC_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST |
6344 				 FUNC_CFG_REQ_FLAGS_NQ_ASSETS_TEST;
6345 		else
6346 			flags |= FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
6347 	}
6348 
6349 	req.flags = cpu_to_le32(flags);
6350 	return hwrm_send_message_silent(bp, &req, sizeof(req),
6351 					HWRM_CMD_TIMEOUT);
6352 }
6353 
6354 static int bnxt_hwrm_check_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6355 				 int ring_grps, int cp_rings, int stats,
6356 				 int vnics)
6357 {
6358 	if (bp->hwrm_spec_code < 0x10801)
6359 		return 0;
6360 
6361 	if (BNXT_PF(bp))
6362 		return bnxt_hwrm_check_pf_rings(bp, tx_rings, rx_rings,
6363 						ring_grps, cp_rings, stats,
6364 						vnics);
6365 
6366 	return bnxt_hwrm_check_vf_rings(bp, tx_rings, rx_rings, ring_grps,
6367 					cp_rings, stats, vnics);
6368 }
6369 
6370 static void bnxt_hwrm_coal_params_qcaps(struct bnxt *bp)
6371 {
6372 	struct hwrm_ring_aggint_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
6373 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6374 	struct hwrm_ring_aggint_qcaps_input req = {0};
6375 	int rc;
6376 
6377 	coal_cap->cmpl_params = BNXT_LEGACY_COAL_CMPL_PARAMS;
6378 	coal_cap->num_cmpl_dma_aggr_max = 63;
6379 	coal_cap->num_cmpl_dma_aggr_during_int_max = 63;
6380 	coal_cap->cmpl_aggr_dma_tmr_max = 65535;
6381 	coal_cap->cmpl_aggr_dma_tmr_during_int_max = 65535;
6382 	coal_cap->int_lat_tmr_min_max = 65535;
6383 	coal_cap->int_lat_tmr_max_max = 65535;
6384 	coal_cap->num_cmpl_aggr_int_max = 65535;
6385 	coal_cap->timer_units = 80;
6386 
6387 	if (bp->hwrm_spec_code < 0x10902)
6388 		return;
6389 
6390 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_AGGINT_QCAPS, -1, -1);
6391 	mutex_lock(&bp->hwrm_cmd_lock);
6392 	rc = _hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6393 	if (!rc) {
6394 		coal_cap->cmpl_params = le32_to_cpu(resp->cmpl_params);
6395 		coal_cap->nq_params = le32_to_cpu(resp->nq_params);
6396 		coal_cap->num_cmpl_dma_aggr_max =
6397 			le16_to_cpu(resp->num_cmpl_dma_aggr_max);
6398 		coal_cap->num_cmpl_dma_aggr_during_int_max =
6399 			le16_to_cpu(resp->num_cmpl_dma_aggr_during_int_max);
6400 		coal_cap->cmpl_aggr_dma_tmr_max =
6401 			le16_to_cpu(resp->cmpl_aggr_dma_tmr_max);
6402 		coal_cap->cmpl_aggr_dma_tmr_during_int_max =
6403 			le16_to_cpu(resp->cmpl_aggr_dma_tmr_during_int_max);
6404 		coal_cap->int_lat_tmr_min_max =
6405 			le16_to_cpu(resp->int_lat_tmr_min_max);
6406 		coal_cap->int_lat_tmr_max_max =
6407 			le16_to_cpu(resp->int_lat_tmr_max_max);
6408 		coal_cap->num_cmpl_aggr_int_max =
6409 			le16_to_cpu(resp->num_cmpl_aggr_int_max);
6410 		coal_cap->timer_units = le16_to_cpu(resp->timer_units);
6411 	}
6412 	mutex_unlock(&bp->hwrm_cmd_lock);
6413 }
6414 
6415 static u16 bnxt_usec_to_coal_tmr(struct bnxt *bp, u16 usec)
6416 {
6417 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6418 
6419 	return usec * 1000 / coal_cap->timer_units;
6420 }
6421 
6422 static void bnxt_hwrm_set_coal_params(struct bnxt *bp,
6423 	struct bnxt_coal *hw_coal,
6424 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
6425 {
6426 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6427 	u32 cmpl_params = coal_cap->cmpl_params;
6428 	u16 val, tmr, max, flags = 0;
6429 
6430 	max = hw_coal->bufs_per_record * 128;
6431 	if (hw_coal->budget)
6432 		max = hw_coal->bufs_per_record * hw_coal->budget;
6433 	max = min_t(u16, max, coal_cap->num_cmpl_aggr_int_max);
6434 
6435 	val = clamp_t(u16, hw_coal->coal_bufs, 1, max);
6436 	req->num_cmpl_aggr_int = cpu_to_le16(val);
6437 
6438 	val = min_t(u16, val, coal_cap->num_cmpl_dma_aggr_max);
6439 	req->num_cmpl_dma_aggr = cpu_to_le16(val);
6440 
6441 	val = clamp_t(u16, hw_coal->coal_bufs_irq, 1,
6442 		      coal_cap->num_cmpl_dma_aggr_during_int_max);
6443 	req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val);
6444 
6445 	tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks);
6446 	tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_max_max);
6447 	req->int_lat_tmr_max = cpu_to_le16(tmr);
6448 
6449 	/* min timer set to 1/2 of interrupt timer */
6450 	if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_INT_LAT_TMR_MIN) {
6451 		val = tmr / 2;
6452 		val = clamp_t(u16, val, 1, coal_cap->int_lat_tmr_min_max);
6453 		req->int_lat_tmr_min = cpu_to_le16(val);
6454 		req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
6455 	}
6456 
6457 	/* buf timer set to 1/4 of interrupt timer */
6458 	val = clamp_t(u16, tmr / 4, 1, coal_cap->cmpl_aggr_dma_tmr_max);
6459 	req->cmpl_aggr_dma_tmr = cpu_to_le16(val);
6460 
6461 	if (cmpl_params &
6462 	    RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_NUM_CMPL_DMA_AGGR_DURING_INT) {
6463 		tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks_irq);
6464 		val = clamp_t(u16, tmr, 1,
6465 			      coal_cap->cmpl_aggr_dma_tmr_during_int_max);
6466 		req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(val);
6467 		req->enables |=
6468 			cpu_to_le16(BNXT_COAL_CMPL_AGGR_TMR_DURING_INT_ENABLE);
6469 	}
6470 
6471 	if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_TIMER_RESET)
6472 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
6473 	if ((cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_RING_IDLE) &&
6474 	    hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh)
6475 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
6476 	req->flags = cpu_to_le16(flags);
6477 	req->enables |= cpu_to_le16(BNXT_COAL_CMPL_ENABLES);
6478 }
6479 
6480 /* Caller holds bp->hwrm_cmd_lock */
6481 static int __bnxt_hwrm_set_coal_nq(struct bnxt *bp, struct bnxt_napi *bnapi,
6482 				   struct bnxt_coal *hw_coal)
6483 {
6484 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req = {0};
6485 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6486 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6487 	u32 nq_params = coal_cap->nq_params;
6488 	u16 tmr;
6489 
6490 	if (!(nq_params & RING_AGGINT_QCAPS_RESP_NQ_PARAMS_INT_LAT_TMR_MIN))
6491 		return 0;
6492 
6493 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS,
6494 			       -1, -1);
6495 	req.ring_id = cpu_to_le16(cpr->cp_ring_struct.fw_ring_id);
6496 	req.flags =
6497 		cpu_to_le16(RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_IS_NQ);
6498 
6499 	tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks) / 2;
6500 	tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_min_max);
6501 	req.int_lat_tmr_min = cpu_to_le16(tmr);
6502 	req.enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
6503 	return _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6504 }
6505 
6506 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi)
6507 {
6508 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0};
6509 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6510 	struct bnxt_coal coal;
6511 
6512 	/* Tick values in micro seconds.
6513 	 * 1 coal_buf x bufs_per_record = 1 completion record.
6514 	 */
6515 	memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal));
6516 
6517 	coal.coal_ticks = cpr->rx_ring_coal.coal_ticks;
6518 	coal.coal_bufs = cpr->rx_ring_coal.coal_bufs;
6519 
6520 	if (!bnapi->rx_ring)
6521 		return -ENODEV;
6522 
6523 	bnxt_hwrm_cmd_hdr_init(bp, &req_rx,
6524 			       HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
6525 
6526 	bnxt_hwrm_set_coal_params(bp, &coal, &req_rx);
6527 
6528 	req_rx.ring_id = cpu_to_le16(bnxt_cp_ring_for_rx(bp, bnapi->rx_ring));
6529 
6530 	return hwrm_send_message(bp, &req_rx, sizeof(req_rx),
6531 				 HWRM_CMD_TIMEOUT);
6532 }
6533 
6534 int bnxt_hwrm_set_coal(struct bnxt *bp)
6535 {
6536 	int i, rc = 0;
6537 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0},
6538 							   req_tx = {0}, *req;
6539 
6540 	bnxt_hwrm_cmd_hdr_init(bp, &req_rx,
6541 			       HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
6542 	bnxt_hwrm_cmd_hdr_init(bp, &req_tx,
6543 			       HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
6544 
6545 	bnxt_hwrm_set_coal_params(bp, &bp->rx_coal, &req_rx);
6546 	bnxt_hwrm_set_coal_params(bp, &bp->tx_coal, &req_tx);
6547 
6548 	mutex_lock(&bp->hwrm_cmd_lock);
6549 	for (i = 0; i < bp->cp_nr_rings; i++) {
6550 		struct bnxt_napi *bnapi = bp->bnapi[i];
6551 		struct bnxt_coal *hw_coal;
6552 		u16 ring_id;
6553 
6554 		req = &req_rx;
6555 		if (!bnapi->rx_ring) {
6556 			ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring);
6557 			req = &req_tx;
6558 		} else {
6559 			ring_id = bnxt_cp_ring_for_rx(bp, bnapi->rx_ring);
6560 		}
6561 		req->ring_id = cpu_to_le16(ring_id);
6562 
6563 		rc = _hwrm_send_message(bp, req, sizeof(*req),
6564 					HWRM_CMD_TIMEOUT);
6565 		if (rc)
6566 			break;
6567 
6568 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
6569 			continue;
6570 
6571 		if (bnapi->rx_ring && bnapi->tx_ring) {
6572 			req = &req_tx;
6573 			ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring);
6574 			req->ring_id = cpu_to_le16(ring_id);
6575 			rc = _hwrm_send_message(bp, req, sizeof(*req),
6576 						HWRM_CMD_TIMEOUT);
6577 			if (rc)
6578 				break;
6579 		}
6580 		if (bnapi->rx_ring)
6581 			hw_coal = &bp->rx_coal;
6582 		else
6583 			hw_coal = &bp->tx_coal;
6584 		__bnxt_hwrm_set_coal_nq(bp, bnapi, hw_coal);
6585 	}
6586 	mutex_unlock(&bp->hwrm_cmd_lock);
6587 	return rc;
6588 }
6589 
6590 static void bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
6591 {
6592 	struct hwrm_stat_ctx_clr_stats_input req0 = {0};
6593 	struct hwrm_stat_ctx_free_input req = {0};
6594 	int i;
6595 
6596 	if (!bp->bnapi)
6597 		return;
6598 
6599 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
6600 		return;
6601 
6602 	bnxt_hwrm_cmd_hdr_init(bp, &req0, HWRM_STAT_CTX_CLR_STATS, -1, -1);
6603 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_FREE, -1, -1);
6604 
6605 	mutex_lock(&bp->hwrm_cmd_lock);
6606 	for (i = 0; i < bp->cp_nr_rings; i++) {
6607 		struct bnxt_napi *bnapi = bp->bnapi[i];
6608 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6609 
6610 		if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
6611 			req.stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
6612 			if (BNXT_FW_MAJ(bp) <= 20) {
6613 				req0.stat_ctx_id = req.stat_ctx_id;
6614 				_hwrm_send_message(bp, &req0, sizeof(req0),
6615 						   HWRM_CMD_TIMEOUT);
6616 			}
6617 			_hwrm_send_message(bp, &req, sizeof(req),
6618 					   HWRM_CMD_TIMEOUT);
6619 
6620 			cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
6621 		}
6622 	}
6623 	mutex_unlock(&bp->hwrm_cmd_lock);
6624 }
6625 
6626 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
6627 {
6628 	int rc = 0, i;
6629 	struct hwrm_stat_ctx_alloc_input req = {0};
6630 	struct hwrm_stat_ctx_alloc_output *resp = bp->hwrm_cmd_resp_addr;
6631 
6632 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
6633 		return 0;
6634 
6635 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_ALLOC, -1, -1);
6636 
6637 	req.stats_dma_length = cpu_to_le16(bp->hw_ring_stats_size);
6638 	req.update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000);
6639 
6640 	mutex_lock(&bp->hwrm_cmd_lock);
6641 	for (i = 0; i < bp->cp_nr_rings; i++) {
6642 		struct bnxt_napi *bnapi = bp->bnapi[i];
6643 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6644 
6645 		req.stats_dma_addr = cpu_to_le64(cpr->stats.hw_stats_map);
6646 
6647 		rc = _hwrm_send_message(bp, &req, sizeof(req),
6648 					HWRM_CMD_TIMEOUT);
6649 		if (rc)
6650 			break;
6651 
6652 		cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
6653 
6654 		bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
6655 	}
6656 	mutex_unlock(&bp->hwrm_cmd_lock);
6657 	return rc;
6658 }
6659 
6660 static int bnxt_hwrm_func_qcfg(struct bnxt *bp)
6661 {
6662 	struct hwrm_func_qcfg_input req = {0};
6663 	struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
6664 	u32 min_db_offset = 0;
6665 	u16 flags;
6666 	int rc;
6667 
6668 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
6669 	req.fid = cpu_to_le16(0xffff);
6670 	mutex_lock(&bp->hwrm_cmd_lock);
6671 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6672 	if (rc)
6673 		goto func_qcfg_exit;
6674 
6675 #ifdef CONFIG_BNXT_SRIOV
6676 	if (BNXT_VF(bp)) {
6677 		struct bnxt_vf_info *vf = &bp->vf;
6678 
6679 		vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK;
6680 	} else {
6681 		bp->pf.registered_vfs = le16_to_cpu(resp->registered_vfs);
6682 	}
6683 #endif
6684 	flags = le16_to_cpu(resp->flags);
6685 	if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED |
6686 		     FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) {
6687 		bp->fw_cap |= BNXT_FW_CAP_LLDP_AGENT;
6688 		if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED)
6689 			bp->fw_cap |= BNXT_FW_CAP_DCBX_AGENT;
6690 	}
6691 	if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST))
6692 		bp->flags |= BNXT_FLAG_MULTI_HOST;
6693 	if (flags & FUNC_QCFG_RESP_FLAGS_RING_MONITOR_ENABLED)
6694 		bp->fw_cap |= BNXT_FW_CAP_RING_MONITOR;
6695 
6696 	switch (resp->port_partition_type) {
6697 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0:
6698 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5:
6699 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0:
6700 		bp->port_partition_type = resp->port_partition_type;
6701 		break;
6702 	}
6703 	if (bp->hwrm_spec_code < 0x10707 ||
6704 	    resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB)
6705 		bp->br_mode = BRIDGE_MODE_VEB;
6706 	else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA)
6707 		bp->br_mode = BRIDGE_MODE_VEPA;
6708 	else
6709 		bp->br_mode = BRIDGE_MODE_UNDEF;
6710 
6711 	bp->max_mtu = le16_to_cpu(resp->max_mtu_configured);
6712 	if (!bp->max_mtu)
6713 		bp->max_mtu = BNXT_MAX_MTU;
6714 
6715 	if (bp->db_size)
6716 		goto func_qcfg_exit;
6717 
6718 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
6719 		if (BNXT_PF(bp))
6720 			min_db_offset = DB_PF_OFFSET_P5;
6721 		else
6722 			min_db_offset = DB_VF_OFFSET_P5;
6723 	}
6724 	bp->db_size = PAGE_ALIGN(le16_to_cpu(resp->l2_doorbell_bar_size_kb) *
6725 				 1024);
6726 	if (!bp->db_size || bp->db_size > pci_resource_len(bp->pdev, 2) ||
6727 	    bp->db_size <= min_db_offset)
6728 		bp->db_size = pci_resource_len(bp->pdev, 2);
6729 
6730 func_qcfg_exit:
6731 	mutex_unlock(&bp->hwrm_cmd_lock);
6732 	return rc;
6733 }
6734 
6735 static int bnxt_hwrm_func_backing_store_qcaps(struct bnxt *bp)
6736 {
6737 	struct hwrm_func_backing_store_qcaps_input req = {0};
6738 	struct hwrm_func_backing_store_qcaps_output *resp =
6739 		bp->hwrm_cmd_resp_addr;
6740 	int rc;
6741 
6742 	if (bp->hwrm_spec_code < 0x10902 || BNXT_VF(bp) || bp->ctx)
6743 		return 0;
6744 
6745 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_BACKING_STORE_QCAPS, -1, -1);
6746 	mutex_lock(&bp->hwrm_cmd_lock);
6747 	rc = _hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6748 	if (!rc) {
6749 		struct bnxt_ctx_pg_info *ctx_pg;
6750 		struct bnxt_ctx_mem_info *ctx;
6751 		int i, tqm_rings;
6752 
6753 		ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
6754 		if (!ctx) {
6755 			rc = -ENOMEM;
6756 			goto ctx_err;
6757 		}
6758 		ctx->qp_max_entries = le32_to_cpu(resp->qp_max_entries);
6759 		ctx->qp_min_qp1_entries = le16_to_cpu(resp->qp_min_qp1_entries);
6760 		ctx->qp_max_l2_entries = le16_to_cpu(resp->qp_max_l2_entries);
6761 		ctx->qp_entry_size = le16_to_cpu(resp->qp_entry_size);
6762 		ctx->srq_max_l2_entries = le16_to_cpu(resp->srq_max_l2_entries);
6763 		ctx->srq_max_entries = le32_to_cpu(resp->srq_max_entries);
6764 		ctx->srq_entry_size = le16_to_cpu(resp->srq_entry_size);
6765 		ctx->cq_max_l2_entries = le16_to_cpu(resp->cq_max_l2_entries);
6766 		ctx->cq_max_entries = le32_to_cpu(resp->cq_max_entries);
6767 		ctx->cq_entry_size = le16_to_cpu(resp->cq_entry_size);
6768 		ctx->vnic_max_vnic_entries =
6769 			le16_to_cpu(resp->vnic_max_vnic_entries);
6770 		ctx->vnic_max_ring_table_entries =
6771 			le16_to_cpu(resp->vnic_max_ring_table_entries);
6772 		ctx->vnic_entry_size = le16_to_cpu(resp->vnic_entry_size);
6773 		ctx->stat_max_entries = le32_to_cpu(resp->stat_max_entries);
6774 		ctx->stat_entry_size = le16_to_cpu(resp->stat_entry_size);
6775 		ctx->tqm_entry_size = le16_to_cpu(resp->tqm_entry_size);
6776 		ctx->tqm_min_entries_per_ring =
6777 			le32_to_cpu(resp->tqm_min_entries_per_ring);
6778 		ctx->tqm_max_entries_per_ring =
6779 			le32_to_cpu(resp->tqm_max_entries_per_ring);
6780 		ctx->tqm_entries_multiple = resp->tqm_entries_multiple;
6781 		if (!ctx->tqm_entries_multiple)
6782 			ctx->tqm_entries_multiple = 1;
6783 		ctx->mrav_max_entries = le32_to_cpu(resp->mrav_max_entries);
6784 		ctx->mrav_entry_size = le16_to_cpu(resp->mrav_entry_size);
6785 		ctx->mrav_num_entries_units =
6786 			le16_to_cpu(resp->mrav_num_entries_units);
6787 		ctx->tim_entry_size = le16_to_cpu(resp->tim_entry_size);
6788 		ctx->tim_max_entries = le32_to_cpu(resp->tim_max_entries);
6789 		ctx->ctx_kind_initializer = resp->ctx_kind_initializer;
6790 		ctx->tqm_fp_rings_count = resp->tqm_fp_rings_count;
6791 		if (!ctx->tqm_fp_rings_count)
6792 			ctx->tqm_fp_rings_count = bp->max_q;
6793 
6794 		tqm_rings = ctx->tqm_fp_rings_count + 1;
6795 		ctx_pg = kcalloc(tqm_rings, sizeof(*ctx_pg), GFP_KERNEL);
6796 		if (!ctx_pg) {
6797 			kfree(ctx);
6798 			rc = -ENOMEM;
6799 			goto ctx_err;
6800 		}
6801 		for (i = 0; i < tqm_rings; i++, ctx_pg++)
6802 			ctx->tqm_mem[i] = ctx_pg;
6803 		bp->ctx = ctx;
6804 	} else {
6805 		rc = 0;
6806 	}
6807 ctx_err:
6808 	mutex_unlock(&bp->hwrm_cmd_lock);
6809 	return rc;
6810 }
6811 
6812 static void bnxt_hwrm_set_pg_attr(struct bnxt_ring_mem_info *rmem, u8 *pg_attr,
6813 				  __le64 *pg_dir)
6814 {
6815 	u8 pg_size = 0;
6816 
6817 	if (BNXT_PAGE_SHIFT == 13)
6818 		pg_size = 1 << 4;
6819 	else if (BNXT_PAGE_SIZE == 16)
6820 		pg_size = 2 << 4;
6821 
6822 	*pg_attr = pg_size;
6823 	if (rmem->depth >= 1) {
6824 		if (rmem->depth == 2)
6825 			*pg_attr |= 2;
6826 		else
6827 			*pg_attr |= 1;
6828 		*pg_dir = cpu_to_le64(rmem->pg_tbl_map);
6829 	} else {
6830 		*pg_dir = cpu_to_le64(rmem->dma_arr[0]);
6831 	}
6832 }
6833 
6834 #define FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES			\
6835 	(FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP |		\
6836 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ |		\
6837 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ |		\
6838 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC |		\
6839 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT)
6840 
6841 static int bnxt_hwrm_func_backing_store_cfg(struct bnxt *bp, u32 enables)
6842 {
6843 	struct hwrm_func_backing_store_cfg_input req = {0};
6844 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
6845 	struct bnxt_ctx_pg_info *ctx_pg;
6846 	__le32 *num_entries;
6847 	__le64 *pg_dir;
6848 	u32 flags = 0;
6849 	u8 *pg_attr;
6850 	u32 ena;
6851 	int i;
6852 
6853 	if (!ctx)
6854 		return 0;
6855 
6856 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_BACKING_STORE_CFG, -1, -1);
6857 	req.enables = cpu_to_le32(enables);
6858 
6859 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP) {
6860 		ctx_pg = &ctx->qp_mem;
6861 		req.qp_num_entries = cpu_to_le32(ctx_pg->entries);
6862 		req.qp_num_qp1_entries = cpu_to_le16(ctx->qp_min_qp1_entries);
6863 		req.qp_num_l2_entries = cpu_to_le16(ctx->qp_max_l2_entries);
6864 		req.qp_entry_size = cpu_to_le16(ctx->qp_entry_size);
6865 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6866 				      &req.qpc_pg_size_qpc_lvl,
6867 				      &req.qpc_page_dir);
6868 	}
6869 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ) {
6870 		ctx_pg = &ctx->srq_mem;
6871 		req.srq_num_entries = cpu_to_le32(ctx_pg->entries);
6872 		req.srq_num_l2_entries = cpu_to_le16(ctx->srq_max_l2_entries);
6873 		req.srq_entry_size = cpu_to_le16(ctx->srq_entry_size);
6874 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6875 				      &req.srq_pg_size_srq_lvl,
6876 				      &req.srq_page_dir);
6877 	}
6878 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ) {
6879 		ctx_pg = &ctx->cq_mem;
6880 		req.cq_num_entries = cpu_to_le32(ctx_pg->entries);
6881 		req.cq_num_l2_entries = cpu_to_le16(ctx->cq_max_l2_entries);
6882 		req.cq_entry_size = cpu_to_le16(ctx->cq_entry_size);
6883 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, &req.cq_pg_size_cq_lvl,
6884 				      &req.cq_page_dir);
6885 	}
6886 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC) {
6887 		ctx_pg = &ctx->vnic_mem;
6888 		req.vnic_num_vnic_entries =
6889 			cpu_to_le16(ctx->vnic_max_vnic_entries);
6890 		req.vnic_num_ring_table_entries =
6891 			cpu_to_le16(ctx->vnic_max_ring_table_entries);
6892 		req.vnic_entry_size = cpu_to_le16(ctx->vnic_entry_size);
6893 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6894 				      &req.vnic_pg_size_vnic_lvl,
6895 				      &req.vnic_page_dir);
6896 	}
6897 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) {
6898 		ctx_pg = &ctx->stat_mem;
6899 		req.stat_num_entries = cpu_to_le32(ctx->stat_max_entries);
6900 		req.stat_entry_size = cpu_to_le16(ctx->stat_entry_size);
6901 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6902 				      &req.stat_pg_size_stat_lvl,
6903 				      &req.stat_page_dir);
6904 	}
6905 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV) {
6906 		ctx_pg = &ctx->mrav_mem;
6907 		req.mrav_num_entries = cpu_to_le32(ctx_pg->entries);
6908 		if (ctx->mrav_num_entries_units)
6909 			flags |=
6910 			FUNC_BACKING_STORE_CFG_REQ_FLAGS_MRAV_RESERVATION_SPLIT;
6911 		req.mrav_entry_size = cpu_to_le16(ctx->mrav_entry_size);
6912 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6913 				      &req.mrav_pg_size_mrav_lvl,
6914 				      &req.mrav_page_dir);
6915 	}
6916 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) {
6917 		ctx_pg = &ctx->tim_mem;
6918 		req.tim_num_entries = cpu_to_le32(ctx_pg->entries);
6919 		req.tim_entry_size = cpu_to_le16(ctx->tim_entry_size);
6920 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6921 				      &req.tim_pg_size_tim_lvl,
6922 				      &req.tim_page_dir);
6923 	}
6924 	for (i = 0, num_entries = &req.tqm_sp_num_entries,
6925 	     pg_attr = &req.tqm_sp_pg_size_tqm_sp_lvl,
6926 	     pg_dir = &req.tqm_sp_page_dir,
6927 	     ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP;
6928 	     i < 9; i++, num_entries++, pg_attr++, pg_dir++, ena <<= 1) {
6929 		if (!(enables & ena))
6930 			continue;
6931 
6932 		req.tqm_entry_size = cpu_to_le16(ctx->tqm_entry_size);
6933 		ctx_pg = ctx->tqm_mem[i];
6934 		*num_entries = cpu_to_le32(ctx_pg->entries);
6935 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, pg_attr, pg_dir);
6936 	}
6937 	req.flags = cpu_to_le32(flags);
6938 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6939 }
6940 
6941 static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp,
6942 				  struct bnxt_ctx_pg_info *ctx_pg)
6943 {
6944 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
6945 
6946 	rmem->page_size = BNXT_PAGE_SIZE;
6947 	rmem->pg_arr = ctx_pg->ctx_pg_arr;
6948 	rmem->dma_arr = ctx_pg->ctx_dma_arr;
6949 	rmem->flags = BNXT_RMEM_VALID_PTE_FLAG;
6950 	if (rmem->depth >= 1)
6951 		rmem->flags |= BNXT_RMEM_USE_FULL_PAGE_FLAG;
6952 	return bnxt_alloc_ring(bp, rmem);
6953 }
6954 
6955 static int bnxt_alloc_ctx_pg_tbls(struct bnxt *bp,
6956 				  struct bnxt_ctx_pg_info *ctx_pg, u32 mem_size,
6957 				  u8 depth, bool use_init_val)
6958 {
6959 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
6960 	int rc;
6961 
6962 	if (!mem_size)
6963 		return -EINVAL;
6964 
6965 	ctx_pg->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
6966 	if (ctx_pg->nr_pages > MAX_CTX_TOTAL_PAGES) {
6967 		ctx_pg->nr_pages = 0;
6968 		return -EINVAL;
6969 	}
6970 	if (ctx_pg->nr_pages > MAX_CTX_PAGES || depth > 1) {
6971 		int nr_tbls, i;
6972 
6973 		rmem->depth = 2;
6974 		ctx_pg->ctx_pg_tbl = kcalloc(MAX_CTX_PAGES, sizeof(ctx_pg),
6975 					     GFP_KERNEL);
6976 		if (!ctx_pg->ctx_pg_tbl)
6977 			return -ENOMEM;
6978 		nr_tbls = DIV_ROUND_UP(ctx_pg->nr_pages, MAX_CTX_PAGES);
6979 		rmem->nr_pages = nr_tbls;
6980 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
6981 		if (rc)
6982 			return rc;
6983 		for (i = 0; i < nr_tbls; i++) {
6984 			struct bnxt_ctx_pg_info *pg_tbl;
6985 
6986 			pg_tbl = kzalloc(sizeof(*pg_tbl), GFP_KERNEL);
6987 			if (!pg_tbl)
6988 				return -ENOMEM;
6989 			ctx_pg->ctx_pg_tbl[i] = pg_tbl;
6990 			rmem = &pg_tbl->ring_mem;
6991 			rmem->pg_tbl = ctx_pg->ctx_pg_arr[i];
6992 			rmem->pg_tbl_map = ctx_pg->ctx_dma_arr[i];
6993 			rmem->depth = 1;
6994 			rmem->nr_pages = MAX_CTX_PAGES;
6995 			if (use_init_val)
6996 				rmem->init_val = bp->ctx->ctx_kind_initializer;
6997 			if (i == (nr_tbls - 1)) {
6998 				int rem = ctx_pg->nr_pages % MAX_CTX_PAGES;
6999 
7000 				if (rem)
7001 					rmem->nr_pages = rem;
7002 			}
7003 			rc = bnxt_alloc_ctx_mem_blk(bp, pg_tbl);
7004 			if (rc)
7005 				break;
7006 		}
7007 	} else {
7008 		rmem->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
7009 		if (rmem->nr_pages > 1 || depth)
7010 			rmem->depth = 1;
7011 		if (use_init_val)
7012 			rmem->init_val = bp->ctx->ctx_kind_initializer;
7013 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
7014 	}
7015 	return rc;
7016 }
7017 
7018 static void bnxt_free_ctx_pg_tbls(struct bnxt *bp,
7019 				  struct bnxt_ctx_pg_info *ctx_pg)
7020 {
7021 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
7022 
7023 	if (rmem->depth > 1 || ctx_pg->nr_pages > MAX_CTX_PAGES ||
7024 	    ctx_pg->ctx_pg_tbl) {
7025 		int i, nr_tbls = rmem->nr_pages;
7026 
7027 		for (i = 0; i < nr_tbls; i++) {
7028 			struct bnxt_ctx_pg_info *pg_tbl;
7029 			struct bnxt_ring_mem_info *rmem2;
7030 
7031 			pg_tbl = ctx_pg->ctx_pg_tbl[i];
7032 			if (!pg_tbl)
7033 				continue;
7034 			rmem2 = &pg_tbl->ring_mem;
7035 			bnxt_free_ring(bp, rmem2);
7036 			ctx_pg->ctx_pg_arr[i] = NULL;
7037 			kfree(pg_tbl);
7038 			ctx_pg->ctx_pg_tbl[i] = NULL;
7039 		}
7040 		kfree(ctx_pg->ctx_pg_tbl);
7041 		ctx_pg->ctx_pg_tbl = NULL;
7042 	}
7043 	bnxt_free_ring(bp, rmem);
7044 	ctx_pg->nr_pages = 0;
7045 }
7046 
7047 static void bnxt_free_ctx_mem(struct bnxt *bp)
7048 {
7049 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
7050 	int i;
7051 
7052 	if (!ctx)
7053 		return;
7054 
7055 	if (ctx->tqm_mem[0]) {
7056 		for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++)
7057 			bnxt_free_ctx_pg_tbls(bp, ctx->tqm_mem[i]);
7058 		kfree(ctx->tqm_mem[0]);
7059 		ctx->tqm_mem[0] = NULL;
7060 	}
7061 
7062 	bnxt_free_ctx_pg_tbls(bp, &ctx->tim_mem);
7063 	bnxt_free_ctx_pg_tbls(bp, &ctx->mrav_mem);
7064 	bnxt_free_ctx_pg_tbls(bp, &ctx->stat_mem);
7065 	bnxt_free_ctx_pg_tbls(bp, &ctx->vnic_mem);
7066 	bnxt_free_ctx_pg_tbls(bp, &ctx->cq_mem);
7067 	bnxt_free_ctx_pg_tbls(bp, &ctx->srq_mem);
7068 	bnxt_free_ctx_pg_tbls(bp, &ctx->qp_mem);
7069 	ctx->flags &= ~BNXT_CTX_FLAG_INITED;
7070 }
7071 
7072 static int bnxt_alloc_ctx_mem(struct bnxt *bp)
7073 {
7074 	struct bnxt_ctx_pg_info *ctx_pg;
7075 	struct bnxt_ctx_mem_info *ctx;
7076 	u32 mem_size, ena, entries;
7077 	u32 entries_sp, min;
7078 	u32 num_mr, num_ah;
7079 	u32 extra_srqs = 0;
7080 	u32 extra_qps = 0;
7081 	u8 pg_lvl = 1;
7082 	int i, rc;
7083 
7084 	rc = bnxt_hwrm_func_backing_store_qcaps(bp);
7085 	if (rc) {
7086 		netdev_err(bp->dev, "Failed querying context mem capability, rc = %d.\n",
7087 			   rc);
7088 		return rc;
7089 	}
7090 	ctx = bp->ctx;
7091 	if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED))
7092 		return 0;
7093 
7094 	if ((bp->flags & BNXT_FLAG_ROCE_CAP) && !is_kdump_kernel()) {
7095 		pg_lvl = 2;
7096 		extra_qps = 65536;
7097 		extra_srqs = 8192;
7098 	}
7099 
7100 	ctx_pg = &ctx->qp_mem;
7101 	ctx_pg->entries = ctx->qp_min_qp1_entries + ctx->qp_max_l2_entries +
7102 			  extra_qps;
7103 	mem_size = ctx->qp_entry_size * ctx_pg->entries;
7104 	rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, true);
7105 	if (rc)
7106 		return rc;
7107 
7108 	ctx_pg = &ctx->srq_mem;
7109 	ctx_pg->entries = ctx->srq_max_l2_entries + extra_srqs;
7110 	mem_size = ctx->srq_entry_size * ctx_pg->entries;
7111 	rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, true);
7112 	if (rc)
7113 		return rc;
7114 
7115 	ctx_pg = &ctx->cq_mem;
7116 	ctx_pg->entries = ctx->cq_max_l2_entries + extra_qps * 2;
7117 	mem_size = ctx->cq_entry_size * ctx_pg->entries;
7118 	rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, true);
7119 	if (rc)
7120 		return rc;
7121 
7122 	ctx_pg = &ctx->vnic_mem;
7123 	ctx_pg->entries = ctx->vnic_max_vnic_entries +
7124 			  ctx->vnic_max_ring_table_entries;
7125 	mem_size = ctx->vnic_entry_size * ctx_pg->entries;
7126 	rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, true);
7127 	if (rc)
7128 		return rc;
7129 
7130 	ctx_pg = &ctx->stat_mem;
7131 	ctx_pg->entries = ctx->stat_max_entries;
7132 	mem_size = ctx->stat_entry_size * ctx_pg->entries;
7133 	rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, true);
7134 	if (rc)
7135 		return rc;
7136 
7137 	ena = 0;
7138 	if (!(bp->flags & BNXT_FLAG_ROCE_CAP))
7139 		goto skip_rdma;
7140 
7141 	ctx_pg = &ctx->mrav_mem;
7142 	/* 128K extra is needed to accommodate static AH context
7143 	 * allocation by f/w.
7144 	 */
7145 	num_mr = 1024 * 256;
7146 	num_ah = 1024 * 128;
7147 	ctx_pg->entries = num_mr + num_ah;
7148 	mem_size = ctx->mrav_entry_size * ctx_pg->entries;
7149 	rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 2, true);
7150 	if (rc)
7151 		return rc;
7152 	ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV;
7153 	if (ctx->mrav_num_entries_units)
7154 		ctx_pg->entries =
7155 			((num_mr / ctx->mrav_num_entries_units) << 16) |
7156 			 (num_ah / ctx->mrav_num_entries_units);
7157 
7158 	ctx_pg = &ctx->tim_mem;
7159 	ctx_pg->entries = ctx->qp_mem.entries;
7160 	mem_size = ctx->tim_entry_size * ctx_pg->entries;
7161 	rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, false);
7162 	if (rc)
7163 		return rc;
7164 	ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM;
7165 
7166 skip_rdma:
7167 	min = ctx->tqm_min_entries_per_ring;
7168 	entries_sp = ctx->vnic_max_vnic_entries + ctx->qp_max_l2_entries +
7169 		     2 * (extra_qps + ctx->qp_min_qp1_entries) + min;
7170 	entries_sp = roundup(entries_sp, ctx->tqm_entries_multiple);
7171 	entries = ctx->qp_max_l2_entries + extra_qps + ctx->qp_min_qp1_entries;
7172 	entries = roundup(entries, ctx->tqm_entries_multiple);
7173 	entries = clamp_t(u32, entries, min, ctx->tqm_max_entries_per_ring);
7174 	for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++) {
7175 		ctx_pg = ctx->tqm_mem[i];
7176 		ctx_pg->entries = i ? entries : entries_sp;
7177 		mem_size = ctx->tqm_entry_size * ctx_pg->entries;
7178 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, false);
7179 		if (rc)
7180 			return rc;
7181 		ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP << i;
7182 	}
7183 	ena |= FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES;
7184 	rc = bnxt_hwrm_func_backing_store_cfg(bp, ena);
7185 	if (rc) {
7186 		netdev_err(bp->dev, "Failed configuring context mem, rc = %d.\n",
7187 			   rc);
7188 		return rc;
7189 	}
7190 	ctx->flags |= BNXT_CTX_FLAG_INITED;
7191 	return 0;
7192 }
7193 
7194 int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all)
7195 {
7196 	struct hwrm_func_resource_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
7197 	struct hwrm_func_resource_qcaps_input req = {0};
7198 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7199 	int rc;
7200 
7201 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESOURCE_QCAPS, -1, -1);
7202 	req.fid = cpu_to_le16(0xffff);
7203 
7204 	mutex_lock(&bp->hwrm_cmd_lock);
7205 	rc = _hwrm_send_message_silent(bp, &req, sizeof(req),
7206 				       HWRM_CMD_TIMEOUT);
7207 	if (rc)
7208 		goto hwrm_func_resc_qcaps_exit;
7209 
7210 	hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs);
7211 	if (!all)
7212 		goto hwrm_func_resc_qcaps_exit;
7213 
7214 	hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx);
7215 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
7216 	hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings);
7217 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
7218 	hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings);
7219 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
7220 	hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings);
7221 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
7222 	hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps);
7223 	hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps);
7224 	hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs);
7225 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
7226 	hw_resc->min_vnics = le16_to_cpu(resp->min_vnics);
7227 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
7228 	hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx);
7229 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
7230 
7231 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
7232 		u16 max_msix = le16_to_cpu(resp->max_msix);
7233 
7234 		hw_resc->max_nqs = max_msix;
7235 		hw_resc->max_hw_ring_grps = hw_resc->max_rx_rings;
7236 	}
7237 
7238 	if (BNXT_PF(bp)) {
7239 		struct bnxt_pf_info *pf = &bp->pf;
7240 
7241 		pf->vf_resv_strategy =
7242 			le16_to_cpu(resp->vf_reservation_strategy);
7243 		if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC)
7244 			pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL;
7245 	}
7246 hwrm_func_resc_qcaps_exit:
7247 	mutex_unlock(&bp->hwrm_cmd_lock);
7248 	return rc;
7249 }
7250 
7251 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp)
7252 {
7253 	int rc = 0;
7254 	struct hwrm_func_qcaps_input req = {0};
7255 	struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
7256 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7257 	u32 flags, flags_ext;
7258 
7259 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1);
7260 	req.fid = cpu_to_le16(0xffff);
7261 
7262 	mutex_lock(&bp->hwrm_cmd_lock);
7263 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7264 	if (rc)
7265 		goto hwrm_func_qcaps_exit;
7266 
7267 	flags = le32_to_cpu(resp->flags);
7268 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED)
7269 		bp->flags |= BNXT_FLAG_ROCEV1_CAP;
7270 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED)
7271 		bp->flags |= BNXT_FLAG_ROCEV2_CAP;
7272 	if (flags & FUNC_QCAPS_RESP_FLAGS_PCIE_STATS_SUPPORTED)
7273 		bp->fw_cap |= BNXT_FW_CAP_PCIE_STATS_SUPPORTED;
7274 	if (flags & FUNC_QCAPS_RESP_FLAGS_HOT_RESET_CAPABLE)
7275 		bp->fw_cap |= BNXT_FW_CAP_HOT_RESET;
7276 	if (flags & FUNC_QCAPS_RESP_FLAGS_EXT_STATS_SUPPORTED)
7277 		bp->fw_cap |= BNXT_FW_CAP_EXT_STATS_SUPPORTED;
7278 	if (flags &  FUNC_QCAPS_RESP_FLAGS_ERROR_RECOVERY_CAPABLE)
7279 		bp->fw_cap |= BNXT_FW_CAP_ERROR_RECOVERY;
7280 	if (flags & FUNC_QCAPS_RESP_FLAGS_ERR_RECOVER_RELOAD)
7281 		bp->fw_cap |= BNXT_FW_CAP_ERR_RECOVER_RELOAD;
7282 	if (!(flags & FUNC_QCAPS_RESP_FLAGS_VLAN_ACCELERATION_TX_DISABLED))
7283 		bp->fw_cap |= BNXT_FW_CAP_VLAN_TX_INSERT;
7284 
7285 	flags_ext = le32_to_cpu(resp->flags_ext);
7286 	if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_EXT_HW_STATS_SUPPORTED)
7287 		bp->fw_cap |= BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED;
7288 
7289 	bp->tx_push_thresh = 0;
7290 	if ((flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED) &&
7291 	    BNXT_FW_MAJ(bp) > 217)
7292 		bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
7293 
7294 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
7295 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
7296 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
7297 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
7298 	hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
7299 	if (!hw_resc->max_hw_ring_grps)
7300 		hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings;
7301 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
7302 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
7303 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
7304 
7305 	if (BNXT_PF(bp)) {
7306 		struct bnxt_pf_info *pf = &bp->pf;
7307 
7308 		pf->fw_fid = le16_to_cpu(resp->fid);
7309 		pf->port_id = le16_to_cpu(resp->port_id);
7310 		memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN);
7311 		pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
7312 		pf->max_vfs = le16_to_cpu(resp->max_vfs);
7313 		pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
7314 		pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
7315 		pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
7316 		pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
7317 		pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
7318 		pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
7319 		bp->flags &= ~BNXT_FLAG_WOL_CAP;
7320 		if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED)
7321 			bp->flags |= BNXT_FLAG_WOL_CAP;
7322 	} else {
7323 #ifdef CONFIG_BNXT_SRIOV
7324 		struct bnxt_vf_info *vf = &bp->vf;
7325 
7326 		vf->fw_fid = le16_to_cpu(resp->fid);
7327 		memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN);
7328 #endif
7329 	}
7330 
7331 hwrm_func_qcaps_exit:
7332 	mutex_unlock(&bp->hwrm_cmd_lock);
7333 	return rc;
7334 }
7335 
7336 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp);
7337 
7338 static int bnxt_hwrm_func_qcaps(struct bnxt *bp)
7339 {
7340 	int rc;
7341 
7342 	rc = __bnxt_hwrm_func_qcaps(bp);
7343 	if (rc)
7344 		return rc;
7345 	rc = bnxt_hwrm_queue_qportcfg(bp);
7346 	if (rc) {
7347 		netdev_err(bp->dev, "hwrm query qportcfg failure rc: %d\n", rc);
7348 		return rc;
7349 	}
7350 	if (bp->hwrm_spec_code >= 0x10803) {
7351 		rc = bnxt_alloc_ctx_mem(bp);
7352 		if (rc)
7353 			return rc;
7354 		rc = bnxt_hwrm_func_resc_qcaps(bp, true);
7355 		if (!rc)
7356 			bp->fw_cap |= BNXT_FW_CAP_NEW_RM;
7357 	}
7358 	return 0;
7359 }
7360 
7361 static int bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(struct bnxt *bp)
7362 {
7363 	struct hwrm_cfa_adv_flow_mgnt_qcaps_input req = {0};
7364 	struct hwrm_cfa_adv_flow_mgnt_qcaps_output *resp;
7365 	int rc = 0;
7366 	u32 flags;
7367 
7368 	if (!(bp->fw_cap & BNXT_FW_CAP_CFA_ADV_FLOW))
7369 		return 0;
7370 
7371 	resp = bp->hwrm_cmd_resp_addr;
7372 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_ADV_FLOW_MGNT_QCAPS, -1, -1);
7373 
7374 	mutex_lock(&bp->hwrm_cmd_lock);
7375 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7376 	if (rc)
7377 		goto hwrm_cfa_adv_qcaps_exit;
7378 
7379 	flags = le32_to_cpu(resp->flags);
7380 	if (flags &
7381 	    CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V2_SUPPORTED)
7382 		bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2;
7383 
7384 hwrm_cfa_adv_qcaps_exit:
7385 	mutex_unlock(&bp->hwrm_cmd_lock);
7386 	return rc;
7387 }
7388 
7389 static int __bnxt_alloc_fw_health(struct bnxt *bp)
7390 {
7391 	if (bp->fw_health)
7392 		return 0;
7393 
7394 	bp->fw_health = kzalloc(sizeof(*bp->fw_health), GFP_KERNEL);
7395 	if (!bp->fw_health)
7396 		return -ENOMEM;
7397 
7398 	return 0;
7399 }
7400 
7401 static int bnxt_alloc_fw_health(struct bnxt *bp)
7402 {
7403 	int rc;
7404 
7405 	if (!(bp->fw_cap & BNXT_FW_CAP_HOT_RESET) &&
7406 	    !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
7407 		return 0;
7408 
7409 	rc = __bnxt_alloc_fw_health(bp);
7410 	if (rc) {
7411 		bp->fw_cap &= ~BNXT_FW_CAP_HOT_RESET;
7412 		bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
7413 		return rc;
7414 	}
7415 
7416 	return 0;
7417 }
7418 
7419 static void __bnxt_map_fw_health_reg(struct bnxt *bp, u32 reg)
7420 {
7421 	writel(reg & BNXT_GRC_BASE_MASK, bp->bar0 +
7422 					 BNXT_GRCPF_REG_WINDOW_BASE_OUT +
7423 					 BNXT_FW_HEALTH_WIN_MAP_OFF);
7424 }
7425 
7426 static void bnxt_try_map_fw_health_reg(struct bnxt *bp)
7427 {
7428 	void __iomem *hs;
7429 	u32 status_loc;
7430 	u32 reg_type;
7431 	u32 sig;
7432 
7433 	__bnxt_map_fw_health_reg(bp, HCOMM_STATUS_STRUCT_LOC);
7434 	hs = bp->bar0 + BNXT_FW_HEALTH_WIN_OFF(HCOMM_STATUS_STRUCT_LOC);
7435 
7436 	sig = readl(hs + offsetof(struct hcomm_status, sig_ver));
7437 	if ((sig & HCOMM_STATUS_SIGNATURE_MASK) != HCOMM_STATUS_SIGNATURE_VAL) {
7438 		if (bp->fw_health)
7439 			bp->fw_health->status_reliable = false;
7440 		return;
7441 	}
7442 
7443 	if (__bnxt_alloc_fw_health(bp)) {
7444 		netdev_warn(bp->dev, "no memory for firmware status checks\n");
7445 		return;
7446 	}
7447 
7448 	status_loc = readl(hs + offsetof(struct hcomm_status, fw_status_loc));
7449 	bp->fw_health->regs[BNXT_FW_HEALTH_REG] = status_loc;
7450 	reg_type = BNXT_FW_HEALTH_REG_TYPE(status_loc);
7451 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) {
7452 		__bnxt_map_fw_health_reg(bp, status_loc);
7453 		bp->fw_health->mapped_regs[BNXT_FW_HEALTH_REG] =
7454 			BNXT_FW_HEALTH_WIN_OFF(status_loc);
7455 	}
7456 
7457 	bp->fw_health->status_reliable = true;
7458 }
7459 
7460 static int bnxt_map_fw_health_regs(struct bnxt *bp)
7461 {
7462 	struct bnxt_fw_health *fw_health = bp->fw_health;
7463 	u32 reg_base = 0xffffffff;
7464 	int i;
7465 
7466 	/* Only pre-map the monitoring GRC registers using window 3 */
7467 	for (i = 0; i < 4; i++) {
7468 		u32 reg = fw_health->regs[i];
7469 
7470 		if (BNXT_FW_HEALTH_REG_TYPE(reg) != BNXT_FW_HEALTH_REG_TYPE_GRC)
7471 			continue;
7472 		if (reg_base == 0xffffffff)
7473 			reg_base = reg & BNXT_GRC_BASE_MASK;
7474 		if ((reg & BNXT_GRC_BASE_MASK) != reg_base)
7475 			return -ERANGE;
7476 		fw_health->mapped_regs[i] = BNXT_FW_HEALTH_WIN_OFF(reg);
7477 	}
7478 	if (reg_base == 0xffffffff)
7479 		return 0;
7480 
7481 	__bnxt_map_fw_health_reg(bp, reg_base);
7482 	return 0;
7483 }
7484 
7485 static int bnxt_hwrm_error_recovery_qcfg(struct bnxt *bp)
7486 {
7487 	struct hwrm_error_recovery_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
7488 	struct bnxt_fw_health *fw_health = bp->fw_health;
7489 	struct hwrm_error_recovery_qcfg_input req = {0};
7490 	int rc, i;
7491 
7492 	if (!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
7493 		return 0;
7494 
7495 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_ERROR_RECOVERY_QCFG, -1, -1);
7496 	mutex_lock(&bp->hwrm_cmd_lock);
7497 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7498 	if (rc)
7499 		goto err_recovery_out;
7500 	fw_health->flags = le32_to_cpu(resp->flags);
7501 	if ((fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) &&
7502 	    !(bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL)) {
7503 		rc = -EINVAL;
7504 		goto err_recovery_out;
7505 	}
7506 	fw_health->polling_dsecs = le32_to_cpu(resp->driver_polling_freq);
7507 	fw_health->master_func_wait_dsecs =
7508 		le32_to_cpu(resp->master_func_wait_period);
7509 	fw_health->normal_func_wait_dsecs =
7510 		le32_to_cpu(resp->normal_func_wait_period);
7511 	fw_health->post_reset_wait_dsecs =
7512 		le32_to_cpu(resp->master_func_wait_period_after_reset);
7513 	fw_health->post_reset_max_wait_dsecs =
7514 		le32_to_cpu(resp->max_bailout_time_after_reset);
7515 	fw_health->regs[BNXT_FW_HEALTH_REG] =
7516 		le32_to_cpu(resp->fw_health_status_reg);
7517 	fw_health->regs[BNXT_FW_HEARTBEAT_REG] =
7518 		le32_to_cpu(resp->fw_heartbeat_reg);
7519 	fw_health->regs[BNXT_FW_RESET_CNT_REG] =
7520 		le32_to_cpu(resp->fw_reset_cnt_reg);
7521 	fw_health->regs[BNXT_FW_RESET_INPROG_REG] =
7522 		le32_to_cpu(resp->reset_inprogress_reg);
7523 	fw_health->fw_reset_inprog_reg_mask =
7524 		le32_to_cpu(resp->reset_inprogress_reg_mask);
7525 	fw_health->fw_reset_seq_cnt = resp->reg_array_cnt;
7526 	if (fw_health->fw_reset_seq_cnt >= 16) {
7527 		rc = -EINVAL;
7528 		goto err_recovery_out;
7529 	}
7530 	for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) {
7531 		fw_health->fw_reset_seq_regs[i] =
7532 			le32_to_cpu(resp->reset_reg[i]);
7533 		fw_health->fw_reset_seq_vals[i] =
7534 			le32_to_cpu(resp->reset_reg_val[i]);
7535 		fw_health->fw_reset_seq_delay_msec[i] =
7536 			resp->delay_after_reset[i];
7537 	}
7538 err_recovery_out:
7539 	mutex_unlock(&bp->hwrm_cmd_lock);
7540 	if (!rc)
7541 		rc = bnxt_map_fw_health_regs(bp);
7542 	if (rc)
7543 		bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
7544 	return rc;
7545 }
7546 
7547 static int bnxt_hwrm_func_reset(struct bnxt *bp)
7548 {
7549 	struct hwrm_func_reset_input req = {0};
7550 
7551 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESET, -1, -1);
7552 	req.enables = 0;
7553 
7554 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_RESET_TIMEOUT);
7555 }
7556 
7557 static void bnxt_nvm_cfg_ver_get(struct bnxt *bp)
7558 {
7559 	struct hwrm_nvm_get_dev_info_output nvm_info;
7560 
7561 	if (!bnxt_hwrm_nvm_get_dev_info(bp, &nvm_info))
7562 		snprintf(bp->nvm_cfg_ver, FW_VER_STR_LEN, "%d.%d.%d",
7563 			 nvm_info.nvm_cfg_ver_maj, nvm_info.nvm_cfg_ver_min,
7564 			 nvm_info.nvm_cfg_ver_upd);
7565 }
7566 
7567 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
7568 {
7569 	int rc = 0;
7570 	struct hwrm_queue_qportcfg_input req = {0};
7571 	struct hwrm_queue_qportcfg_output *resp = bp->hwrm_cmd_resp_addr;
7572 	u8 i, j, *qptr;
7573 	bool no_rdma;
7574 
7575 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_QUEUE_QPORTCFG, -1, -1);
7576 
7577 	mutex_lock(&bp->hwrm_cmd_lock);
7578 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7579 	if (rc)
7580 		goto qportcfg_exit;
7581 
7582 	if (!resp->max_configurable_queues) {
7583 		rc = -EINVAL;
7584 		goto qportcfg_exit;
7585 	}
7586 	bp->max_tc = resp->max_configurable_queues;
7587 	bp->max_lltc = resp->max_configurable_lossless_queues;
7588 	if (bp->max_tc > BNXT_MAX_QUEUE)
7589 		bp->max_tc = BNXT_MAX_QUEUE;
7590 
7591 	no_rdma = !(bp->flags & BNXT_FLAG_ROCE_CAP);
7592 	qptr = &resp->queue_id0;
7593 	for (i = 0, j = 0; i < bp->max_tc; i++) {
7594 		bp->q_info[j].queue_id = *qptr;
7595 		bp->q_ids[i] = *qptr++;
7596 		bp->q_info[j].queue_profile = *qptr++;
7597 		bp->tc_to_qidx[j] = j;
7598 		if (!BNXT_CNPQ(bp->q_info[j].queue_profile) ||
7599 		    (no_rdma && BNXT_PF(bp)))
7600 			j++;
7601 	}
7602 	bp->max_q = bp->max_tc;
7603 	bp->max_tc = max_t(u8, j, 1);
7604 
7605 	if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG)
7606 		bp->max_tc = 1;
7607 
7608 	if (bp->max_lltc > bp->max_tc)
7609 		bp->max_lltc = bp->max_tc;
7610 
7611 qportcfg_exit:
7612 	mutex_unlock(&bp->hwrm_cmd_lock);
7613 	return rc;
7614 }
7615 
7616 static int __bnxt_hwrm_ver_get(struct bnxt *bp, bool silent)
7617 {
7618 	struct hwrm_ver_get_input req = {0};
7619 	int rc;
7620 
7621 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VER_GET, -1, -1);
7622 	req.hwrm_intf_maj = HWRM_VERSION_MAJOR;
7623 	req.hwrm_intf_min = HWRM_VERSION_MINOR;
7624 	req.hwrm_intf_upd = HWRM_VERSION_UPDATE;
7625 
7626 	rc = bnxt_hwrm_do_send_msg(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT,
7627 				   silent);
7628 	return rc;
7629 }
7630 
7631 static int bnxt_hwrm_ver_get(struct bnxt *bp)
7632 {
7633 	struct hwrm_ver_get_output *resp = bp->hwrm_cmd_resp_addr;
7634 	u16 fw_maj, fw_min, fw_bld, fw_rsv;
7635 	u32 dev_caps_cfg, hwrm_ver;
7636 	int rc, len;
7637 
7638 	bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN;
7639 	mutex_lock(&bp->hwrm_cmd_lock);
7640 	rc = __bnxt_hwrm_ver_get(bp, false);
7641 	if (rc)
7642 		goto hwrm_ver_get_exit;
7643 
7644 	memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
7645 
7646 	bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 |
7647 			     resp->hwrm_intf_min_8b << 8 |
7648 			     resp->hwrm_intf_upd_8b;
7649 	if (resp->hwrm_intf_maj_8b < 1) {
7650 		netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
7651 			    resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
7652 			    resp->hwrm_intf_upd_8b);
7653 		netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
7654 	}
7655 
7656 	hwrm_ver = HWRM_VERSION_MAJOR << 16 | HWRM_VERSION_MINOR << 8 |
7657 			HWRM_VERSION_UPDATE;
7658 
7659 	if (bp->hwrm_spec_code > hwrm_ver)
7660 		snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d",
7661 			 HWRM_VERSION_MAJOR, HWRM_VERSION_MINOR,
7662 			 HWRM_VERSION_UPDATE);
7663 	else
7664 		snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d",
7665 			 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
7666 			 resp->hwrm_intf_upd_8b);
7667 
7668 	fw_maj = le16_to_cpu(resp->hwrm_fw_major);
7669 	if (bp->hwrm_spec_code > 0x10803 && fw_maj) {
7670 		fw_min = le16_to_cpu(resp->hwrm_fw_minor);
7671 		fw_bld = le16_to_cpu(resp->hwrm_fw_build);
7672 		fw_rsv = le16_to_cpu(resp->hwrm_fw_patch);
7673 		len = FW_VER_STR_LEN;
7674 	} else {
7675 		fw_maj = resp->hwrm_fw_maj_8b;
7676 		fw_min = resp->hwrm_fw_min_8b;
7677 		fw_bld = resp->hwrm_fw_bld_8b;
7678 		fw_rsv = resp->hwrm_fw_rsvd_8b;
7679 		len = BC_HWRM_STR_LEN;
7680 	}
7681 	bp->fw_ver_code = BNXT_FW_VER_CODE(fw_maj, fw_min, fw_bld, fw_rsv);
7682 	snprintf(bp->fw_ver_str, len, "%d.%d.%d.%d", fw_maj, fw_min, fw_bld,
7683 		 fw_rsv);
7684 
7685 	if (strlen(resp->active_pkg_name)) {
7686 		int fw_ver_len = strlen(bp->fw_ver_str);
7687 
7688 		snprintf(bp->fw_ver_str + fw_ver_len,
7689 			 FW_VER_STR_LEN - fw_ver_len - 1, "/pkg %s",
7690 			 resp->active_pkg_name);
7691 		bp->fw_cap |= BNXT_FW_CAP_PKG_VER;
7692 	}
7693 
7694 	bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout);
7695 	if (!bp->hwrm_cmd_timeout)
7696 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
7697 
7698 	if (resp->hwrm_intf_maj_8b >= 1) {
7699 		bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len);
7700 		bp->hwrm_max_ext_req_len = le16_to_cpu(resp->max_ext_req_len);
7701 	}
7702 	if (bp->hwrm_max_ext_req_len < HWRM_MAX_REQ_LEN)
7703 		bp->hwrm_max_ext_req_len = HWRM_MAX_REQ_LEN;
7704 
7705 	bp->chip_num = le16_to_cpu(resp->chip_num);
7706 	bp->chip_rev = resp->chip_rev;
7707 	if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev &&
7708 	    !resp->chip_metal)
7709 		bp->flags |= BNXT_FLAG_CHIP_NITRO_A0;
7710 
7711 	dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg);
7712 	if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) &&
7713 	    (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED))
7714 		bp->fw_cap |= BNXT_FW_CAP_SHORT_CMD;
7715 
7716 	if (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_KONG_MB_CHNL_SUPPORTED)
7717 		bp->fw_cap |= BNXT_FW_CAP_KONG_MB_CHNL;
7718 
7719 	if (dev_caps_cfg &
7720 	    VER_GET_RESP_DEV_CAPS_CFG_FLOW_HANDLE_64BIT_SUPPORTED)
7721 		bp->fw_cap |= BNXT_FW_CAP_OVS_64BIT_HANDLE;
7722 
7723 	if (dev_caps_cfg &
7724 	    VER_GET_RESP_DEV_CAPS_CFG_TRUSTED_VF_SUPPORTED)
7725 		bp->fw_cap |= BNXT_FW_CAP_TRUSTED_VF;
7726 
7727 	if (dev_caps_cfg &
7728 	    VER_GET_RESP_DEV_CAPS_CFG_CFA_ADV_FLOW_MGNT_SUPPORTED)
7729 		bp->fw_cap |= BNXT_FW_CAP_CFA_ADV_FLOW;
7730 
7731 hwrm_ver_get_exit:
7732 	mutex_unlock(&bp->hwrm_cmd_lock);
7733 	return rc;
7734 }
7735 
7736 int bnxt_hwrm_fw_set_time(struct bnxt *bp)
7737 {
7738 	struct hwrm_fw_set_time_input req = {0};
7739 	struct tm tm;
7740 	time64_t now = ktime_get_real_seconds();
7741 
7742 	if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) ||
7743 	    bp->hwrm_spec_code < 0x10400)
7744 		return -EOPNOTSUPP;
7745 
7746 	time64_to_tm(now, 0, &tm);
7747 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FW_SET_TIME, -1, -1);
7748 	req.year = cpu_to_le16(1900 + tm.tm_year);
7749 	req.month = 1 + tm.tm_mon;
7750 	req.day = tm.tm_mday;
7751 	req.hour = tm.tm_hour;
7752 	req.minute = tm.tm_min;
7753 	req.second = tm.tm_sec;
7754 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7755 }
7756 
7757 static void bnxt_add_one_ctr(u64 hw, u64 *sw, u64 mask)
7758 {
7759 	u64 sw_tmp;
7760 
7761 	hw &= mask;
7762 	sw_tmp = (*sw & ~mask) | hw;
7763 	if (hw < (*sw & mask))
7764 		sw_tmp += mask + 1;
7765 	WRITE_ONCE(*sw, sw_tmp);
7766 }
7767 
7768 static void __bnxt_accumulate_stats(__le64 *hw_stats, u64 *sw_stats, u64 *masks,
7769 				    int count, bool ignore_zero)
7770 {
7771 	int i;
7772 
7773 	for (i = 0; i < count; i++) {
7774 		u64 hw = le64_to_cpu(READ_ONCE(hw_stats[i]));
7775 
7776 		if (ignore_zero && !hw)
7777 			continue;
7778 
7779 		if (masks[i] == -1ULL)
7780 			sw_stats[i] = hw;
7781 		else
7782 			bnxt_add_one_ctr(hw, &sw_stats[i], masks[i]);
7783 	}
7784 }
7785 
7786 static void bnxt_accumulate_stats(struct bnxt_stats_mem *stats)
7787 {
7788 	if (!stats->hw_stats)
7789 		return;
7790 
7791 	__bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats,
7792 				stats->hw_masks, stats->len / 8, false);
7793 }
7794 
7795 static void bnxt_accumulate_all_stats(struct bnxt *bp)
7796 {
7797 	struct bnxt_stats_mem *ring0_stats;
7798 	bool ignore_zero = false;
7799 	int i;
7800 
7801 	/* Chip bug.  Counter intermittently becomes 0. */
7802 	if (bp->flags & BNXT_FLAG_CHIP_P5)
7803 		ignore_zero = true;
7804 
7805 	for (i = 0; i < bp->cp_nr_rings; i++) {
7806 		struct bnxt_napi *bnapi = bp->bnapi[i];
7807 		struct bnxt_cp_ring_info *cpr;
7808 		struct bnxt_stats_mem *stats;
7809 
7810 		cpr = &bnapi->cp_ring;
7811 		stats = &cpr->stats;
7812 		if (!i)
7813 			ring0_stats = stats;
7814 		__bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats,
7815 					ring0_stats->hw_masks,
7816 					ring0_stats->len / 8, ignore_zero);
7817 	}
7818 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
7819 		struct bnxt_stats_mem *stats = &bp->port_stats;
7820 		__le64 *hw_stats = stats->hw_stats;
7821 		u64 *sw_stats = stats->sw_stats;
7822 		u64 *masks = stats->hw_masks;
7823 		int cnt;
7824 
7825 		cnt = sizeof(struct rx_port_stats) / 8;
7826 		__bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false);
7827 
7828 		hw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
7829 		sw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
7830 		masks += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
7831 		cnt = sizeof(struct tx_port_stats) / 8;
7832 		__bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false);
7833 	}
7834 	if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) {
7835 		bnxt_accumulate_stats(&bp->rx_port_stats_ext);
7836 		bnxt_accumulate_stats(&bp->tx_port_stats_ext);
7837 	}
7838 }
7839 
7840 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags)
7841 {
7842 	struct bnxt_pf_info *pf = &bp->pf;
7843 	struct hwrm_port_qstats_input req = {0};
7844 
7845 	if (!(bp->flags & BNXT_FLAG_PORT_STATS))
7846 		return 0;
7847 
7848 	if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))
7849 		return -EOPNOTSUPP;
7850 
7851 	req.flags = flags;
7852 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS, -1, -1);
7853 	req.port_id = cpu_to_le16(pf->port_id);
7854 	req.tx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map +
7855 					    BNXT_TX_PORT_STATS_BYTE_OFFSET);
7856 	req.rx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map);
7857 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7858 }
7859 
7860 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags)
7861 {
7862 	struct hwrm_port_qstats_ext_output *resp = bp->hwrm_cmd_resp_addr;
7863 	struct hwrm_queue_pri2cos_qcfg_input req2 = {0};
7864 	struct hwrm_port_qstats_ext_input req = {0};
7865 	struct bnxt_pf_info *pf = &bp->pf;
7866 	u32 tx_stat_size;
7867 	int rc;
7868 
7869 	if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT))
7870 		return 0;
7871 
7872 	if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))
7873 		return -EOPNOTSUPP;
7874 
7875 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS_EXT, -1, -1);
7876 	req.flags = flags;
7877 	req.port_id = cpu_to_le16(pf->port_id);
7878 	req.rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext));
7879 	req.rx_stat_host_addr = cpu_to_le64(bp->rx_port_stats_ext.hw_stats_map);
7880 	tx_stat_size = bp->tx_port_stats_ext.hw_stats ?
7881 		       sizeof(struct tx_port_stats_ext) : 0;
7882 	req.tx_stat_size = cpu_to_le16(tx_stat_size);
7883 	req.tx_stat_host_addr = cpu_to_le64(bp->tx_port_stats_ext.hw_stats_map);
7884 	mutex_lock(&bp->hwrm_cmd_lock);
7885 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7886 	if (!rc) {
7887 		bp->fw_rx_stats_ext_size = le16_to_cpu(resp->rx_stat_size) / 8;
7888 		bp->fw_tx_stats_ext_size = tx_stat_size ?
7889 			le16_to_cpu(resp->tx_stat_size) / 8 : 0;
7890 	} else {
7891 		bp->fw_rx_stats_ext_size = 0;
7892 		bp->fw_tx_stats_ext_size = 0;
7893 	}
7894 	if (flags)
7895 		goto qstats_done;
7896 
7897 	if (bp->fw_tx_stats_ext_size <=
7898 	    offsetof(struct tx_port_stats_ext, pfc_pri0_tx_duration_us) / 8) {
7899 		mutex_unlock(&bp->hwrm_cmd_lock);
7900 		bp->pri2cos_valid = 0;
7901 		return rc;
7902 	}
7903 
7904 	bnxt_hwrm_cmd_hdr_init(bp, &req2, HWRM_QUEUE_PRI2COS_QCFG, -1, -1);
7905 	req2.flags = cpu_to_le32(QUEUE_PRI2COS_QCFG_REQ_FLAGS_IVLAN);
7906 
7907 	rc = _hwrm_send_message(bp, &req2, sizeof(req2), HWRM_CMD_TIMEOUT);
7908 	if (!rc) {
7909 		struct hwrm_queue_pri2cos_qcfg_output *resp2;
7910 		u8 *pri2cos;
7911 		int i, j;
7912 
7913 		resp2 = bp->hwrm_cmd_resp_addr;
7914 		pri2cos = &resp2->pri0_cos_queue_id;
7915 		for (i = 0; i < 8; i++) {
7916 			u8 queue_id = pri2cos[i];
7917 			u8 queue_idx;
7918 
7919 			/* Per port queue IDs start from 0, 10, 20, etc */
7920 			queue_idx = queue_id % 10;
7921 			if (queue_idx > BNXT_MAX_QUEUE) {
7922 				bp->pri2cos_valid = false;
7923 				goto qstats_done;
7924 			}
7925 			for (j = 0; j < bp->max_q; j++) {
7926 				if (bp->q_ids[j] == queue_id)
7927 					bp->pri2cos_idx[i] = queue_idx;
7928 			}
7929 		}
7930 		bp->pri2cos_valid = 1;
7931 	}
7932 qstats_done:
7933 	mutex_unlock(&bp->hwrm_cmd_lock);
7934 	return rc;
7935 }
7936 
7937 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
7938 {
7939 	if (bp->vxlan_fw_dst_port_id != INVALID_HW_RING_ID)
7940 		bnxt_hwrm_tunnel_dst_port_free(
7941 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
7942 	if (bp->nge_fw_dst_port_id != INVALID_HW_RING_ID)
7943 		bnxt_hwrm_tunnel_dst_port_free(
7944 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
7945 }
7946 
7947 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
7948 {
7949 	int rc, i;
7950 	u32 tpa_flags = 0;
7951 
7952 	if (set_tpa)
7953 		tpa_flags = bp->flags & BNXT_FLAG_TPA;
7954 	else if (BNXT_NO_FW_ACCESS(bp))
7955 		return 0;
7956 	for (i = 0; i < bp->nr_vnics; i++) {
7957 		rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
7958 		if (rc) {
7959 			netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
7960 				   i, rc);
7961 			return rc;
7962 		}
7963 	}
7964 	return 0;
7965 }
7966 
7967 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
7968 {
7969 	int i;
7970 
7971 	for (i = 0; i < bp->nr_vnics; i++)
7972 		bnxt_hwrm_vnic_set_rss(bp, i, false);
7973 }
7974 
7975 static void bnxt_clear_vnic(struct bnxt *bp)
7976 {
7977 	if (!bp->vnic_info)
7978 		return;
7979 
7980 	bnxt_hwrm_clear_vnic_filter(bp);
7981 	if (!(bp->flags & BNXT_FLAG_CHIP_P5)) {
7982 		/* clear all RSS setting before free vnic ctx */
7983 		bnxt_hwrm_clear_vnic_rss(bp);
7984 		bnxt_hwrm_vnic_ctx_free(bp);
7985 	}
7986 	/* before free the vnic, undo the vnic tpa settings */
7987 	if (bp->flags & BNXT_FLAG_TPA)
7988 		bnxt_set_tpa(bp, false);
7989 	bnxt_hwrm_vnic_free(bp);
7990 	if (bp->flags & BNXT_FLAG_CHIP_P5)
7991 		bnxt_hwrm_vnic_ctx_free(bp);
7992 }
7993 
7994 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
7995 				    bool irq_re_init)
7996 {
7997 	bnxt_clear_vnic(bp);
7998 	bnxt_hwrm_ring_free(bp, close_path);
7999 	bnxt_hwrm_ring_grp_free(bp);
8000 	if (irq_re_init) {
8001 		bnxt_hwrm_stat_ctx_free(bp);
8002 		bnxt_hwrm_free_tunnel_ports(bp);
8003 	}
8004 }
8005 
8006 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode)
8007 {
8008 	struct hwrm_func_cfg_input req = {0};
8009 
8010 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
8011 	req.fid = cpu_to_le16(0xffff);
8012 	req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE);
8013 	if (br_mode == BRIDGE_MODE_VEB)
8014 		req.evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB;
8015 	else if (br_mode == BRIDGE_MODE_VEPA)
8016 		req.evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA;
8017 	else
8018 		return -EINVAL;
8019 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8020 }
8021 
8022 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size)
8023 {
8024 	struct hwrm_func_cfg_input req = {0};
8025 
8026 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803)
8027 		return 0;
8028 
8029 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
8030 	req.fid = cpu_to_le16(0xffff);
8031 	req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE);
8032 	req.options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64;
8033 	if (size == 128)
8034 		req.options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128;
8035 
8036 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8037 }
8038 
8039 static int __bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
8040 {
8041 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
8042 	int rc;
8043 
8044 	if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG)
8045 		goto skip_rss_ctx;
8046 
8047 	/* allocate context for vnic */
8048 	rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0);
8049 	if (rc) {
8050 		netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
8051 			   vnic_id, rc);
8052 		goto vnic_setup_err;
8053 	}
8054 	bp->rsscos_nr_ctxs++;
8055 
8056 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
8057 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1);
8058 		if (rc) {
8059 			netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n",
8060 				   vnic_id, rc);
8061 			goto vnic_setup_err;
8062 		}
8063 		bp->rsscos_nr_ctxs++;
8064 	}
8065 
8066 skip_rss_ctx:
8067 	/* configure default vnic, ring grp */
8068 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
8069 	if (rc) {
8070 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
8071 			   vnic_id, rc);
8072 		goto vnic_setup_err;
8073 	}
8074 
8075 	/* Enable RSS hashing on vnic */
8076 	rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
8077 	if (rc) {
8078 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
8079 			   vnic_id, rc);
8080 		goto vnic_setup_err;
8081 	}
8082 
8083 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
8084 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
8085 		if (rc) {
8086 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
8087 				   vnic_id, rc);
8088 		}
8089 	}
8090 
8091 vnic_setup_err:
8092 	return rc;
8093 }
8094 
8095 static int __bnxt_setup_vnic_p5(struct bnxt *bp, u16 vnic_id)
8096 {
8097 	int rc, i, nr_ctxs;
8098 
8099 	nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings);
8100 	for (i = 0; i < nr_ctxs; i++) {
8101 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, i);
8102 		if (rc) {
8103 			netdev_err(bp->dev, "hwrm vnic %d ctx %d alloc failure rc: %x\n",
8104 				   vnic_id, i, rc);
8105 			break;
8106 		}
8107 		bp->rsscos_nr_ctxs++;
8108 	}
8109 	if (i < nr_ctxs)
8110 		return -ENOMEM;
8111 
8112 	rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic_id, true);
8113 	if (rc) {
8114 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n",
8115 			   vnic_id, rc);
8116 		return rc;
8117 	}
8118 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
8119 	if (rc) {
8120 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
8121 			   vnic_id, rc);
8122 		return rc;
8123 	}
8124 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
8125 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
8126 		if (rc) {
8127 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
8128 				   vnic_id, rc);
8129 		}
8130 	}
8131 	return rc;
8132 }
8133 
8134 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
8135 {
8136 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8137 		return __bnxt_setup_vnic_p5(bp, vnic_id);
8138 	else
8139 		return __bnxt_setup_vnic(bp, vnic_id);
8140 }
8141 
8142 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
8143 {
8144 #ifdef CONFIG_RFS_ACCEL
8145 	int i, rc = 0;
8146 
8147 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8148 		return 0;
8149 
8150 	for (i = 0; i < bp->rx_nr_rings; i++) {
8151 		struct bnxt_vnic_info *vnic;
8152 		u16 vnic_id = i + 1;
8153 		u16 ring_id = i;
8154 
8155 		if (vnic_id >= bp->nr_vnics)
8156 			break;
8157 
8158 		vnic = &bp->vnic_info[vnic_id];
8159 		vnic->flags |= BNXT_VNIC_RFS_FLAG;
8160 		if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
8161 			vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG;
8162 		rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1);
8163 		if (rc) {
8164 			netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
8165 				   vnic_id, rc);
8166 			break;
8167 		}
8168 		rc = bnxt_setup_vnic(bp, vnic_id);
8169 		if (rc)
8170 			break;
8171 	}
8172 	return rc;
8173 #else
8174 	return 0;
8175 #endif
8176 }
8177 
8178 /* Allow PF and VF with default VLAN to be in promiscuous mode */
8179 static bool bnxt_promisc_ok(struct bnxt *bp)
8180 {
8181 #ifdef CONFIG_BNXT_SRIOV
8182 	if (BNXT_VF(bp) && !bp->vf.vlan)
8183 		return false;
8184 #endif
8185 	return true;
8186 }
8187 
8188 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp)
8189 {
8190 	unsigned int rc = 0;
8191 
8192 	rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1);
8193 	if (rc) {
8194 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
8195 			   rc);
8196 		return rc;
8197 	}
8198 
8199 	rc = bnxt_hwrm_vnic_cfg(bp, 1);
8200 	if (rc) {
8201 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
8202 			   rc);
8203 		return rc;
8204 	}
8205 	return rc;
8206 }
8207 
8208 static int bnxt_cfg_rx_mode(struct bnxt *);
8209 static bool bnxt_mc_list_updated(struct bnxt *, u32 *);
8210 
8211 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
8212 {
8213 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
8214 	int rc = 0;
8215 	unsigned int rx_nr_rings = bp->rx_nr_rings;
8216 
8217 	if (irq_re_init) {
8218 		rc = bnxt_hwrm_stat_ctx_alloc(bp);
8219 		if (rc) {
8220 			netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
8221 				   rc);
8222 			goto err_out;
8223 		}
8224 	}
8225 
8226 	rc = bnxt_hwrm_ring_alloc(bp);
8227 	if (rc) {
8228 		netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
8229 		goto err_out;
8230 	}
8231 
8232 	rc = bnxt_hwrm_ring_grp_alloc(bp);
8233 	if (rc) {
8234 		netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
8235 		goto err_out;
8236 	}
8237 
8238 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
8239 		rx_nr_rings--;
8240 
8241 	/* default vnic 0 */
8242 	rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings);
8243 	if (rc) {
8244 		netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
8245 		goto err_out;
8246 	}
8247 
8248 	rc = bnxt_setup_vnic(bp, 0);
8249 	if (rc)
8250 		goto err_out;
8251 
8252 	if (bp->flags & BNXT_FLAG_RFS) {
8253 		rc = bnxt_alloc_rfs_vnics(bp);
8254 		if (rc)
8255 			goto err_out;
8256 	}
8257 
8258 	if (bp->flags & BNXT_FLAG_TPA) {
8259 		rc = bnxt_set_tpa(bp, true);
8260 		if (rc)
8261 			goto err_out;
8262 	}
8263 
8264 	if (BNXT_VF(bp))
8265 		bnxt_update_vf_mac(bp);
8266 
8267 	/* Filter for default vnic 0 */
8268 	rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
8269 	if (rc) {
8270 		netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
8271 		goto err_out;
8272 	}
8273 	vnic->uc_filter_count = 1;
8274 
8275 	vnic->rx_mask = 0;
8276 	if (bp->dev->flags & IFF_BROADCAST)
8277 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
8278 
8279 	if ((bp->dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
8280 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
8281 
8282 	if (bp->dev->flags & IFF_ALLMULTI) {
8283 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
8284 		vnic->mc_list_count = 0;
8285 	} else {
8286 		u32 mask = 0;
8287 
8288 		bnxt_mc_list_updated(bp, &mask);
8289 		vnic->rx_mask |= mask;
8290 	}
8291 
8292 	rc = bnxt_cfg_rx_mode(bp);
8293 	if (rc)
8294 		goto err_out;
8295 
8296 	rc = bnxt_hwrm_set_coal(bp);
8297 	if (rc)
8298 		netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
8299 				rc);
8300 
8301 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
8302 		rc = bnxt_setup_nitroa0_vnic(bp);
8303 		if (rc)
8304 			netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n",
8305 				   rc);
8306 	}
8307 
8308 	if (BNXT_VF(bp)) {
8309 		bnxt_hwrm_func_qcfg(bp);
8310 		netdev_update_features(bp->dev);
8311 	}
8312 
8313 	return 0;
8314 
8315 err_out:
8316 	bnxt_hwrm_resource_free(bp, 0, true);
8317 
8318 	return rc;
8319 }
8320 
8321 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
8322 {
8323 	bnxt_hwrm_resource_free(bp, 1, irq_re_init);
8324 	return 0;
8325 }
8326 
8327 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
8328 {
8329 	bnxt_init_cp_rings(bp);
8330 	bnxt_init_rx_rings(bp);
8331 	bnxt_init_tx_rings(bp);
8332 	bnxt_init_ring_grps(bp, irq_re_init);
8333 	bnxt_init_vnics(bp);
8334 
8335 	return bnxt_init_chip(bp, irq_re_init);
8336 }
8337 
8338 static int bnxt_set_real_num_queues(struct bnxt *bp)
8339 {
8340 	int rc;
8341 	struct net_device *dev = bp->dev;
8342 
8343 	rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings -
8344 					  bp->tx_nr_rings_xdp);
8345 	if (rc)
8346 		return rc;
8347 
8348 	rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
8349 	if (rc)
8350 		return rc;
8351 
8352 #ifdef CONFIG_RFS_ACCEL
8353 	if (bp->flags & BNXT_FLAG_RFS)
8354 		dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
8355 #endif
8356 
8357 	return rc;
8358 }
8359 
8360 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
8361 			   bool shared)
8362 {
8363 	int _rx = *rx, _tx = *tx;
8364 
8365 	if (shared) {
8366 		*rx = min_t(int, _rx, max);
8367 		*tx = min_t(int, _tx, max);
8368 	} else {
8369 		if (max < 2)
8370 			return -ENOMEM;
8371 
8372 		while (_rx + _tx > max) {
8373 			if (_rx > _tx && _rx > 1)
8374 				_rx--;
8375 			else if (_tx > 1)
8376 				_tx--;
8377 		}
8378 		*rx = _rx;
8379 		*tx = _tx;
8380 	}
8381 	return 0;
8382 }
8383 
8384 static void bnxt_setup_msix(struct bnxt *bp)
8385 {
8386 	const int len = sizeof(bp->irq_tbl[0].name);
8387 	struct net_device *dev = bp->dev;
8388 	int tcs, i;
8389 
8390 	tcs = netdev_get_num_tc(dev);
8391 	if (tcs) {
8392 		int i, off, count;
8393 
8394 		for (i = 0; i < tcs; i++) {
8395 			count = bp->tx_nr_rings_per_tc;
8396 			off = i * count;
8397 			netdev_set_tc_queue(dev, i, count, off);
8398 		}
8399 	}
8400 
8401 	for (i = 0; i < bp->cp_nr_rings; i++) {
8402 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
8403 		char *attr;
8404 
8405 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
8406 			attr = "TxRx";
8407 		else if (i < bp->rx_nr_rings)
8408 			attr = "rx";
8409 		else
8410 			attr = "tx";
8411 
8412 		snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name,
8413 			 attr, i);
8414 		bp->irq_tbl[map_idx].handler = bnxt_msix;
8415 	}
8416 }
8417 
8418 static void bnxt_setup_inta(struct bnxt *bp)
8419 {
8420 	const int len = sizeof(bp->irq_tbl[0].name);
8421 
8422 	if (netdev_get_num_tc(bp->dev))
8423 		netdev_reset_tc(bp->dev);
8424 
8425 	snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx",
8426 		 0);
8427 	bp->irq_tbl[0].handler = bnxt_inta;
8428 }
8429 
8430 static int bnxt_setup_int_mode(struct bnxt *bp)
8431 {
8432 	int rc;
8433 
8434 	if (bp->flags & BNXT_FLAG_USING_MSIX)
8435 		bnxt_setup_msix(bp);
8436 	else
8437 		bnxt_setup_inta(bp);
8438 
8439 	rc = bnxt_set_real_num_queues(bp);
8440 	return rc;
8441 }
8442 
8443 #ifdef CONFIG_RFS_ACCEL
8444 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp)
8445 {
8446 	return bp->hw_resc.max_rsscos_ctxs;
8447 }
8448 
8449 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp)
8450 {
8451 	return bp->hw_resc.max_vnics;
8452 }
8453 #endif
8454 
8455 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp)
8456 {
8457 	return bp->hw_resc.max_stat_ctxs;
8458 }
8459 
8460 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp)
8461 {
8462 	return bp->hw_resc.max_cp_rings;
8463 }
8464 
8465 static unsigned int bnxt_get_max_func_cp_rings_for_en(struct bnxt *bp)
8466 {
8467 	unsigned int cp = bp->hw_resc.max_cp_rings;
8468 
8469 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
8470 		cp -= bnxt_get_ulp_msix_num(bp);
8471 
8472 	return cp;
8473 }
8474 
8475 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp)
8476 {
8477 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
8478 
8479 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8480 		return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_nqs);
8481 
8482 	return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings);
8483 }
8484 
8485 static void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs)
8486 {
8487 	bp->hw_resc.max_irqs = max_irqs;
8488 }
8489 
8490 unsigned int bnxt_get_avail_cp_rings_for_en(struct bnxt *bp)
8491 {
8492 	unsigned int cp;
8493 
8494 	cp = bnxt_get_max_func_cp_rings_for_en(bp);
8495 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8496 		return cp - bp->rx_nr_rings - bp->tx_nr_rings;
8497 	else
8498 		return cp - bp->cp_nr_rings;
8499 }
8500 
8501 unsigned int bnxt_get_avail_stat_ctxs_for_en(struct bnxt *bp)
8502 {
8503 	return bnxt_get_max_func_stat_ctxs(bp) - bnxt_get_func_stat_ctxs(bp);
8504 }
8505 
8506 int bnxt_get_avail_msix(struct bnxt *bp, int num)
8507 {
8508 	int max_cp = bnxt_get_max_func_cp_rings(bp);
8509 	int max_irq = bnxt_get_max_func_irqs(bp);
8510 	int total_req = bp->cp_nr_rings + num;
8511 	int max_idx, avail_msix;
8512 
8513 	max_idx = bp->total_irqs;
8514 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
8515 		max_idx = min_t(int, bp->total_irqs, max_cp);
8516 	avail_msix = max_idx - bp->cp_nr_rings;
8517 	if (!BNXT_NEW_RM(bp) || avail_msix >= num)
8518 		return avail_msix;
8519 
8520 	if (max_irq < total_req) {
8521 		num = max_irq - bp->cp_nr_rings;
8522 		if (num <= 0)
8523 			return 0;
8524 	}
8525 	return num;
8526 }
8527 
8528 static int bnxt_get_num_msix(struct bnxt *bp)
8529 {
8530 	if (!BNXT_NEW_RM(bp))
8531 		return bnxt_get_max_func_irqs(bp);
8532 
8533 	return bnxt_nq_rings_in_use(bp);
8534 }
8535 
8536 static int bnxt_init_msix(struct bnxt *bp)
8537 {
8538 	int i, total_vecs, max, rc = 0, min = 1, ulp_msix;
8539 	struct msix_entry *msix_ent;
8540 
8541 	total_vecs = bnxt_get_num_msix(bp);
8542 	max = bnxt_get_max_func_irqs(bp);
8543 	if (total_vecs > max)
8544 		total_vecs = max;
8545 
8546 	if (!total_vecs)
8547 		return 0;
8548 
8549 	msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
8550 	if (!msix_ent)
8551 		return -ENOMEM;
8552 
8553 	for (i = 0; i < total_vecs; i++) {
8554 		msix_ent[i].entry = i;
8555 		msix_ent[i].vector = 0;
8556 	}
8557 
8558 	if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
8559 		min = 2;
8560 
8561 	total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
8562 	ulp_msix = bnxt_get_ulp_msix_num(bp);
8563 	if (total_vecs < 0 || total_vecs < ulp_msix) {
8564 		rc = -ENODEV;
8565 		goto msix_setup_exit;
8566 	}
8567 
8568 	bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
8569 	if (bp->irq_tbl) {
8570 		for (i = 0; i < total_vecs; i++)
8571 			bp->irq_tbl[i].vector = msix_ent[i].vector;
8572 
8573 		bp->total_irqs = total_vecs;
8574 		/* Trim rings based upon num of vectors allocated */
8575 		rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
8576 				     total_vecs - ulp_msix, min == 1);
8577 		if (rc)
8578 			goto msix_setup_exit;
8579 
8580 		bp->cp_nr_rings = (min == 1) ?
8581 				  max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
8582 				  bp->tx_nr_rings + bp->rx_nr_rings;
8583 
8584 	} else {
8585 		rc = -ENOMEM;
8586 		goto msix_setup_exit;
8587 	}
8588 	bp->flags |= BNXT_FLAG_USING_MSIX;
8589 	kfree(msix_ent);
8590 	return 0;
8591 
8592 msix_setup_exit:
8593 	netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc);
8594 	kfree(bp->irq_tbl);
8595 	bp->irq_tbl = NULL;
8596 	pci_disable_msix(bp->pdev);
8597 	kfree(msix_ent);
8598 	return rc;
8599 }
8600 
8601 static int bnxt_init_inta(struct bnxt *bp)
8602 {
8603 	bp->irq_tbl = kcalloc(1, sizeof(struct bnxt_irq), GFP_KERNEL);
8604 	if (!bp->irq_tbl)
8605 		return -ENOMEM;
8606 
8607 	bp->total_irqs = 1;
8608 	bp->rx_nr_rings = 1;
8609 	bp->tx_nr_rings = 1;
8610 	bp->cp_nr_rings = 1;
8611 	bp->flags |= BNXT_FLAG_SHARED_RINGS;
8612 	bp->irq_tbl[0].vector = bp->pdev->irq;
8613 	return 0;
8614 }
8615 
8616 static int bnxt_init_int_mode(struct bnxt *bp)
8617 {
8618 	int rc = 0;
8619 
8620 	if (bp->flags & BNXT_FLAG_MSIX_CAP)
8621 		rc = bnxt_init_msix(bp);
8622 
8623 	if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) {
8624 		/* fallback to INTA */
8625 		rc = bnxt_init_inta(bp);
8626 	}
8627 	return rc;
8628 }
8629 
8630 static void bnxt_clear_int_mode(struct bnxt *bp)
8631 {
8632 	if (bp->flags & BNXT_FLAG_USING_MSIX)
8633 		pci_disable_msix(bp->pdev);
8634 
8635 	kfree(bp->irq_tbl);
8636 	bp->irq_tbl = NULL;
8637 	bp->flags &= ~BNXT_FLAG_USING_MSIX;
8638 }
8639 
8640 int bnxt_reserve_rings(struct bnxt *bp, bool irq_re_init)
8641 {
8642 	int tcs = netdev_get_num_tc(bp->dev);
8643 	bool irq_cleared = false;
8644 	int rc;
8645 
8646 	if (!bnxt_need_reserve_rings(bp))
8647 		return 0;
8648 
8649 	if (irq_re_init && BNXT_NEW_RM(bp) &&
8650 	    bnxt_get_num_msix(bp) != bp->total_irqs) {
8651 		bnxt_ulp_irq_stop(bp);
8652 		bnxt_clear_int_mode(bp);
8653 		irq_cleared = true;
8654 	}
8655 	rc = __bnxt_reserve_rings(bp);
8656 	if (irq_cleared) {
8657 		if (!rc)
8658 			rc = bnxt_init_int_mode(bp);
8659 		bnxt_ulp_irq_restart(bp, rc);
8660 	}
8661 	if (rc) {
8662 		netdev_err(bp->dev, "ring reservation/IRQ init failure rc: %d\n", rc);
8663 		return rc;
8664 	}
8665 	if (tcs && (bp->tx_nr_rings_per_tc * tcs != bp->tx_nr_rings)) {
8666 		netdev_err(bp->dev, "tx ring reservation failure\n");
8667 		netdev_reset_tc(bp->dev);
8668 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
8669 		return -ENOMEM;
8670 	}
8671 	return 0;
8672 }
8673 
8674 static void bnxt_free_irq(struct bnxt *bp)
8675 {
8676 	struct bnxt_irq *irq;
8677 	int i;
8678 
8679 #ifdef CONFIG_RFS_ACCEL
8680 	free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
8681 	bp->dev->rx_cpu_rmap = NULL;
8682 #endif
8683 	if (!bp->irq_tbl || !bp->bnapi)
8684 		return;
8685 
8686 	for (i = 0; i < bp->cp_nr_rings; i++) {
8687 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
8688 
8689 		irq = &bp->irq_tbl[map_idx];
8690 		if (irq->requested) {
8691 			if (irq->have_cpumask) {
8692 				irq_set_affinity_hint(irq->vector, NULL);
8693 				free_cpumask_var(irq->cpu_mask);
8694 				irq->have_cpumask = 0;
8695 			}
8696 			free_irq(irq->vector, bp->bnapi[i]);
8697 		}
8698 
8699 		irq->requested = 0;
8700 	}
8701 }
8702 
8703 static int bnxt_request_irq(struct bnxt *bp)
8704 {
8705 	int i, j, rc = 0;
8706 	unsigned long flags = 0;
8707 #ifdef CONFIG_RFS_ACCEL
8708 	struct cpu_rmap *rmap;
8709 #endif
8710 
8711 	rc = bnxt_setup_int_mode(bp);
8712 	if (rc) {
8713 		netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
8714 			   rc);
8715 		return rc;
8716 	}
8717 #ifdef CONFIG_RFS_ACCEL
8718 	rmap = bp->dev->rx_cpu_rmap;
8719 #endif
8720 	if (!(bp->flags & BNXT_FLAG_USING_MSIX))
8721 		flags = IRQF_SHARED;
8722 
8723 	for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
8724 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
8725 		struct bnxt_irq *irq = &bp->irq_tbl[map_idx];
8726 
8727 #ifdef CONFIG_RFS_ACCEL
8728 		if (rmap && bp->bnapi[i]->rx_ring) {
8729 			rc = irq_cpu_rmap_add(rmap, irq->vector);
8730 			if (rc)
8731 				netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
8732 					    j);
8733 			j++;
8734 		}
8735 #endif
8736 		rc = request_irq(irq->vector, irq->handler, flags, irq->name,
8737 				 bp->bnapi[i]);
8738 		if (rc)
8739 			break;
8740 
8741 		irq->requested = 1;
8742 
8743 		if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) {
8744 			int numa_node = dev_to_node(&bp->pdev->dev);
8745 
8746 			irq->have_cpumask = 1;
8747 			cpumask_set_cpu(cpumask_local_spread(i, numa_node),
8748 					irq->cpu_mask);
8749 			rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask);
8750 			if (rc) {
8751 				netdev_warn(bp->dev,
8752 					    "Set affinity failed, IRQ = %d\n",
8753 					    irq->vector);
8754 				break;
8755 			}
8756 		}
8757 	}
8758 	return rc;
8759 }
8760 
8761 static void bnxt_del_napi(struct bnxt *bp)
8762 {
8763 	int i;
8764 
8765 	if (!bp->bnapi)
8766 		return;
8767 
8768 	for (i = 0; i < bp->cp_nr_rings; i++) {
8769 		struct bnxt_napi *bnapi = bp->bnapi[i];
8770 
8771 		__netif_napi_del(&bnapi->napi);
8772 	}
8773 	/* We called __netif_napi_del(), we need
8774 	 * to respect an RCU grace period before freeing napi structures.
8775 	 */
8776 	synchronize_net();
8777 }
8778 
8779 static void bnxt_init_napi(struct bnxt *bp)
8780 {
8781 	int i;
8782 	unsigned int cp_nr_rings = bp->cp_nr_rings;
8783 	struct bnxt_napi *bnapi;
8784 
8785 	if (bp->flags & BNXT_FLAG_USING_MSIX) {
8786 		int (*poll_fn)(struct napi_struct *, int) = bnxt_poll;
8787 
8788 		if (bp->flags & BNXT_FLAG_CHIP_P5)
8789 			poll_fn = bnxt_poll_p5;
8790 		else if (BNXT_CHIP_TYPE_NITRO_A0(bp))
8791 			cp_nr_rings--;
8792 		for (i = 0; i < cp_nr_rings; i++) {
8793 			bnapi = bp->bnapi[i];
8794 			netif_napi_add(bp->dev, &bnapi->napi, poll_fn, 64);
8795 		}
8796 		if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
8797 			bnapi = bp->bnapi[cp_nr_rings];
8798 			netif_napi_add(bp->dev, &bnapi->napi,
8799 				       bnxt_poll_nitroa0, 64);
8800 		}
8801 	} else {
8802 		bnapi = bp->bnapi[0];
8803 		netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64);
8804 	}
8805 }
8806 
8807 static void bnxt_disable_napi(struct bnxt *bp)
8808 {
8809 	int i;
8810 
8811 	if (!bp->bnapi)
8812 		return;
8813 
8814 	for (i = 0; i < bp->cp_nr_rings; i++) {
8815 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
8816 
8817 		if (bp->bnapi[i]->rx_ring)
8818 			cancel_work_sync(&cpr->dim.work);
8819 
8820 		napi_disable(&bp->bnapi[i]->napi);
8821 	}
8822 }
8823 
8824 static void bnxt_enable_napi(struct bnxt *bp)
8825 {
8826 	int i;
8827 
8828 	for (i = 0; i < bp->cp_nr_rings; i++) {
8829 		struct bnxt_napi *bnapi = bp->bnapi[i];
8830 		struct bnxt_cp_ring_info *cpr;
8831 
8832 		cpr = &bnapi->cp_ring;
8833 		if (bnapi->in_reset)
8834 			cpr->sw_stats.rx.rx_resets++;
8835 		bnapi->in_reset = false;
8836 
8837 		if (bnapi->rx_ring) {
8838 			INIT_WORK(&cpr->dim.work, bnxt_dim_work);
8839 			cpr->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
8840 		}
8841 		napi_enable(&bnapi->napi);
8842 	}
8843 }
8844 
8845 void bnxt_tx_disable(struct bnxt *bp)
8846 {
8847 	int i;
8848 	struct bnxt_tx_ring_info *txr;
8849 
8850 	if (bp->tx_ring) {
8851 		for (i = 0; i < bp->tx_nr_rings; i++) {
8852 			txr = &bp->tx_ring[i];
8853 			txr->dev_state = BNXT_DEV_STATE_CLOSING;
8854 		}
8855 	}
8856 	/* Stop all TX queues */
8857 	netif_tx_disable(bp->dev);
8858 	netif_carrier_off(bp->dev);
8859 }
8860 
8861 void bnxt_tx_enable(struct bnxt *bp)
8862 {
8863 	int i;
8864 	struct bnxt_tx_ring_info *txr;
8865 
8866 	for (i = 0; i < bp->tx_nr_rings; i++) {
8867 		txr = &bp->tx_ring[i];
8868 		txr->dev_state = 0;
8869 	}
8870 	netif_tx_wake_all_queues(bp->dev);
8871 	if (bp->link_info.link_up)
8872 		netif_carrier_on(bp->dev);
8873 }
8874 
8875 static char *bnxt_report_fec(struct bnxt_link_info *link_info)
8876 {
8877 	u8 active_fec = link_info->active_fec_sig_mode &
8878 			PORT_PHY_QCFG_RESP_ACTIVE_FEC_MASK;
8879 
8880 	switch (active_fec) {
8881 	default:
8882 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_NONE_ACTIVE:
8883 		return "None";
8884 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE74_ACTIVE:
8885 		return "Clause 74 BaseR";
8886 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE91_ACTIVE:
8887 		return "Clause 91 RS(528,514)";
8888 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_1XN_ACTIVE:
8889 		return "Clause 91 RS544_1XN";
8890 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_IEEE_ACTIVE:
8891 		return "Clause 91 RS(544,514)";
8892 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_1XN_ACTIVE:
8893 		return "Clause 91 RS272_1XN";
8894 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_IEEE_ACTIVE:
8895 		return "Clause 91 RS(272,257)";
8896 	}
8897 }
8898 
8899 static void bnxt_report_link(struct bnxt *bp)
8900 {
8901 	if (bp->link_info.link_up) {
8902 		const char *duplex;
8903 		const char *flow_ctrl;
8904 		u32 speed;
8905 		u16 fec;
8906 
8907 		netif_carrier_on(bp->dev);
8908 		speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
8909 		if (speed == SPEED_UNKNOWN) {
8910 			netdev_info(bp->dev, "NIC Link is Up, speed unknown\n");
8911 			return;
8912 		}
8913 		if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
8914 			duplex = "full";
8915 		else
8916 			duplex = "half";
8917 		if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
8918 			flow_ctrl = "ON - receive & transmit";
8919 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
8920 			flow_ctrl = "ON - transmit";
8921 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
8922 			flow_ctrl = "ON - receive";
8923 		else
8924 			flow_ctrl = "none";
8925 		netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s duplex, Flow control: %s\n",
8926 			    speed, duplex, flow_ctrl);
8927 		if (bp->flags & BNXT_FLAG_EEE_CAP)
8928 			netdev_info(bp->dev, "EEE is %s\n",
8929 				    bp->eee.eee_active ? "active" :
8930 							 "not active");
8931 		fec = bp->link_info.fec_cfg;
8932 		if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED))
8933 			netdev_info(bp->dev, "FEC autoneg %s encoding: %s\n",
8934 				    (fec & BNXT_FEC_AUTONEG) ? "on" : "off",
8935 				    bnxt_report_fec(&bp->link_info));
8936 	} else {
8937 		netif_carrier_off(bp->dev);
8938 		netdev_err(bp->dev, "NIC Link is Down\n");
8939 	}
8940 }
8941 
8942 static bool bnxt_phy_qcaps_no_speed(struct hwrm_port_phy_qcaps_output *resp)
8943 {
8944 	if (!resp->supported_speeds_auto_mode &&
8945 	    !resp->supported_speeds_force_mode &&
8946 	    !resp->supported_pam4_speeds_auto_mode &&
8947 	    !resp->supported_pam4_speeds_force_mode)
8948 		return true;
8949 	return false;
8950 }
8951 
8952 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp)
8953 {
8954 	int rc = 0;
8955 	struct hwrm_port_phy_qcaps_input req = {0};
8956 	struct hwrm_port_phy_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
8957 	struct bnxt_link_info *link_info = &bp->link_info;
8958 
8959 	bp->flags &= ~BNXT_FLAG_EEE_CAP;
8960 	if (bp->test_info)
8961 		bp->test_info->flags &= ~(BNXT_TEST_FL_EXT_LPBK |
8962 					  BNXT_TEST_FL_AN_PHY_LPBK);
8963 	if (bp->hwrm_spec_code < 0x10201)
8964 		return 0;
8965 
8966 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCAPS, -1, -1);
8967 
8968 	mutex_lock(&bp->hwrm_cmd_lock);
8969 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8970 	if (rc)
8971 		goto hwrm_phy_qcaps_exit;
8972 
8973 	if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) {
8974 		struct ethtool_eee *eee = &bp->eee;
8975 		u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode);
8976 
8977 		bp->flags |= BNXT_FLAG_EEE_CAP;
8978 		eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
8979 		bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) &
8980 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK;
8981 		bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) &
8982 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK;
8983 	}
8984 	if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EXTERNAL_LPBK_SUPPORTED) {
8985 		if (bp->test_info)
8986 			bp->test_info->flags |= BNXT_TEST_FL_EXT_LPBK;
8987 	}
8988 	if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_AUTONEG_LPBK_SUPPORTED) {
8989 		if (bp->test_info)
8990 			bp->test_info->flags |= BNXT_TEST_FL_AN_PHY_LPBK;
8991 	}
8992 	if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_SHARED_PHY_CFG_SUPPORTED) {
8993 		if (BNXT_PF(bp))
8994 			bp->fw_cap |= BNXT_FW_CAP_SHARED_PORT_CFG;
8995 	}
8996 	if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_CUMULATIVE_COUNTERS_ON_RESET)
8997 		bp->fw_cap |= BNXT_FW_CAP_PORT_STATS_NO_RESET;
8998 
8999 	if (bp->hwrm_spec_code >= 0x10a01) {
9000 		if (bnxt_phy_qcaps_no_speed(resp)) {
9001 			link_info->phy_state = BNXT_PHY_STATE_DISABLED;
9002 			netdev_warn(bp->dev, "Ethernet link disabled\n");
9003 		} else if (link_info->phy_state == BNXT_PHY_STATE_DISABLED) {
9004 			link_info->phy_state = BNXT_PHY_STATE_ENABLED;
9005 			netdev_info(bp->dev, "Ethernet link enabled\n");
9006 			/* Phy re-enabled, reprobe the speeds */
9007 			link_info->support_auto_speeds = 0;
9008 			link_info->support_pam4_auto_speeds = 0;
9009 		}
9010 	}
9011 	if (resp->supported_speeds_auto_mode)
9012 		link_info->support_auto_speeds =
9013 			le16_to_cpu(resp->supported_speeds_auto_mode);
9014 	if (resp->supported_pam4_speeds_auto_mode)
9015 		link_info->support_pam4_auto_speeds =
9016 			le16_to_cpu(resp->supported_pam4_speeds_auto_mode);
9017 
9018 	bp->port_count = resp->port_cnt;
9019 
9020 hwrm_phy_qcaps_exit:
9021 	mutex_unlock(&bp->hwrm_cmd_lock);
9022 	return rc;
9023 }
9024 
9025 static bool bnxt_support_dropped(u16 advertising, u16 supported)
9026 {
9027 	u16 diff = advertising ^ supported;
9028 
9029 	return ((supported | diff) != supported);
9030 }
9031 
9032 int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
9033 {
9034 	int rc = 0;
9035 	struct bnxt_link_info *link_info = &bp->link_info;
9036 	struct hwrm_port_phy_qcfg_input req = {0};
9037 	struct hwrm_port_phy_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
9038 	u8 link_up = link_info->link_up;
9039 	bool support_changed = false;
9040 
9041 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCFG, -1, -1);
9042 
9043 	mutex_lock(&bp->hwrm_cmd_lock);
9044 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9045 	if (rc) {
9046 		mutex_unlock(&bp->hwrm_cmd_lock);
9047 		return rc;
9048 	}
9049 
9050 	memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
9051 	link_info->phy_link_status = resp->link;
9052 	link_info->duplex = resp->duplex_cfg;
9053 	if (bp->hwrm_spec_code >= 0x10800)
9054 		link_info->duplex = resp->duplex_state;
9055 	link_info->pause = resp->pause;
9056 	link_info->auto_mode = resp->auto_mode;
9057 	link_info->auto_pause_setting = resp->auto_pause;
9058 	link_info->lp_pause = resp->link_partner_adv_pause;
9059 	link_info->force_pause_setting = resp->force_pause;
9060 	link_info->duplex_setting = resp->duplex_cfg;
9061 	if (link_info->phy_link_status == BNXT_LINK_LINK)
9062 		link_info->link_speed = le16_to_cpu(resp->link_speed);
9063 	else
9064 		link_info->link_speed = 0;
9065 	link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
9066 	link_info->force_pam4_link_speed =
9067 		le16_to_cpu(resp->force_pam4_link_speed);
9068 	link_info->support_speeds = le16_to_cpu(resp->support_speeds);
9069 	link_info->support_pam4_speeds = le16_to_cpu(resp->support_pam4_speeds);
9070 	link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
9071 	link_info->auto_pam4_link_speeds =
9072 		le16_to_cpu(resp->auto_pam4_link_speed_mask);
9073 	link_info->lp_auto_link_speeds =
9074 		le16_to_cpu(resp->link_partner_adv_speeds);
9075 	link_info->lp_auto_pam4_link_speeds =
9076 		resp->link_partner_pam4_adv_speeds;
9077 	link_info->preemphasis = le32_to_cpu(resp->preemphasis);
9078 	link_info->phy_ver[0] = resp->phy_maj;
9079 	link_info->phy_ver[1] = resp->phy_min;
9080 	link_info->phy_ver[2] = resp->phy_bld;
9081 	link_info->media_type = resp->media_type;
9082 	link_info->phy_type = resp->phy_type;
9083 	link_info->transceiver = resp->xcvr_pkg_type;
9084 	link_info->phy_addr = resp->eee_config_phy_addr &
9085 			      PORT_PHY_QCFG_RESP_PHY_ADDR_MASK;
9086 	link_info->module_status = resp->module_status;
9087 
9088 	if (bp->flags & BNXT_FLAG_EEE_CAP) {
9089 		struct ethtool_eee *eee = &bp->eee;
9090 		u16 fw_speeds;
9091 
9092 		eee->eee_active = 0;
9093 		if (resp->eee_config_phy_addr &
9094 		    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) {
9095 			eee->eee_active = 1;
9096 			fw_speeds = le16_to_cpu(
9097 				resp->link_partner_adv_eee_link_speed_mask);
9098 			eee->lp_advertised =
9099 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
9100 		}
9101 
9102 		/* Pull initial EEE config */
9103 		if (!chng_link_state) {
9104 			if (resp->eee_config_phy_addr &
9105 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED)
9106 				eee->eee_enabled = 1;
9107 
9108 			fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask);
9109 			eee->advertised =
9110 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
9111 
9112 			if (resp->eee_config_phy_addr &
9113 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) {
9114 				__le32 tmr;
9115 
9116 				eee->tx_lpi_enabled = 1;
9117 				tmr = resp->xcvr_identifier_type_tx_lpi_timer;
9118 				eee->tx_lpi_timer = le32_to_cpu(tmr) &
9119 					PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK;
9120 			}
9121 		}
9122 	}
9123 
9124 	link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED;
9125 	if (bp->hwrm_spec_code >= 0x10504) {
9126 		link_info->fec_cfg = le16_to_cpu(resp->fec_cfg);
9127 		link_info->active_fec_sig_mode = resp->active_fec_signal_mode;
9128 	}
9129 	/* TODO: need to add more logic to report VF link */
9130 	if (chng_link_state) {
9131 		if (link_info->phy_link_status == BNXT_LINK_LINK)
9132 			link_info->link_up = 1;
9133 		else
9134 			link_info->link_up = 0;
9135 		if (link_up != link_info->link_up)
9136 			bnxt_report_link(bp);
9137 	} else {
9138 		/* alwasy link down if not require to update link state */
9139 		link_info->link_up = 0;
9140 	}
9141 	mutex_unlock(&bp->hwrm_cmd_lock);
9142 
9143 	if (!BNXT_PHY_CFG_ABLE(bp))
9144 		return 0;
9145 
9146 	/* Check if any advertised speeds are no longer supported. The caller
9147 	 * holds the link_lock mutex, so we can modify link_info settings.
9148 	 */
9149 	if (bnxt_support_dropped(link_info->advertising,
9150 				 link_info->support_auto_speeds)) {
9151 		link_info->advertising = link_info->support_auto_speeds;
9152 		support_changed = true;
9153 	}
9154 	if (bnxt_support_dropped(link_info->advertising_pam4,
9155 				 link_info->support_pam4_auto_speeds)) {
9156 		link_info->advertising_pam4 = link_info->support_pam4_auto_speeds;
9157 		support_changed = true;
9158 	}
9159 	if (support_changed && (link_info->autoneg & BNXT_AUTONEG_SPEED))
9160 		bnxt_hwrm_set_link_setting(bp, true, false);
9161 	return 0;
9162 }
9163 
9164 static void bnxt_get_port_module_status(struct bnxt *bp)
9165 {
9166 	struct bnxt_link_info *link_info = &bp->link_info;
9167 	struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp;
9168 	u8 module_status;
9169 
9170 	if (bnxt_update_link(bp, true))
9171 		return;
9172 
9173 	module_status = link_info->module_status;
9174 	switch (module_status) {
9175 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX:
9176 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN:
9177 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG:
9178 		netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n",
9179 			    bp->pf.port_id);
9180 		if (bp->hwrm_spec_code >= 0x10201) {
9181 			netdev_warn(bp->dev, "Module part number %s\n",
9182 				    resp->phy_vendor_partnumber);
9183 		}
9184 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX)
9185 			netdev_warn(bp->dev, "TX is disabled\n");
9186 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN)
9187 			netdev_warn(bp->dev, "SFP+ module is shutdown\n");
9188 	}
9189 }
9190 
9191 static void
9192 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
9193 {
9194 	if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
9195 		if (bp->hwrm_spec_code >= 0x10201)
9196 			req->auto_pause =
9197 				PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE;
9198 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
9199 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
9200 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
9201 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX;
9202 		req->enables |=
9203 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
9204 	} else {
9205 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
9206 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
9207 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
9208 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
9209 		req->enables |=
9210 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
9211 		if (bp->hwrm_spec_code >= 0x10201) {
9212 			req->auto_pause = req->force_pause;
9213 			req->enables |= cpu_to_le32(
9214 				PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
9215 		}
9216 	}
9217 }
9218 
9219 static void bnxt_hwrm_set_link_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
9220 {
9221 	if (bp->link_info.autoneg & BNXT_AUTONEG_SPEED) {
9222 		req->auto_mode |= PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK;
9223 		if (bp->link_info.advertising) {
9224 			req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
9225 			req->auto_link_speed_mask = cpu_to_le16(bp->link_info.advertising);
9226 		}
9227 		if (bp->link_info.advertising_pam4) {
9228 			req->enables |=
9229 				cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAM4_LINK_SPEED_MASK);
9230 			req->auto_link_pam4_speed_mask =
9231 				cpu_to_le16(bp->link_info.advertising_pam4);
9232 		}
9233 		req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
9234 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
9235 	} else {
9236 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
9237 		if (bp->link_info.req_signal_mode == BNXT_SIG_MODE_PAM4) {
9238 			req->force_pam4_link_speed = cpu_to_le16(bp->link_info.req_link_speed);
9239 			req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAM4_LINK_SPEED);
9240 		} else {
9241 			req->force_link_speed = cpu_to_le16(bp->link_info.req_link_speed);
9242 		}
9243 	}
9244 
9245 	/* tell chimp that the setting takes effect immediately */
9246 	req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
9247 }
9248 
9249 int bnxt_hwrm_set_pause(struct bnxt *bp)
9250 {
9251 	struct hwrm_port_phy_cfg_input req = {0};
9252 	int rc;
9253 
9254 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
9255 	bnxt_hwrm_set_pause_common(bp, &req);
9256 
9257 	if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
9258 	    bp->link_info.force_link_chng)
9259 		bnxt_hwrm_set_link_common(bp, &req);
9260 
9261 	mutex_lock(&bp->hwrm_cmd_lock);
9262 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9263 	if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
9264 		/* since changing of pause setting doesn't trigger any link
9265 		 * change event, the driver needs to update the current pause
9266 		 * result upon successfully return of the phy_cfg command
9267 		 */
9268 		bp->link_info.pause =
9269 		bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
9270 		bp->link_info.auto_pause_setting = 0;
9271 		if (!bp->link_info.force_link_chng)
9272 			bnxt_report_link(bp);
9273 	}
9274 	bp->link_info.force_link_chng = false;
9275 	mutex_unlock(&bp->hwrm_cmd_lock);
9276 	return rc;
9277 }
9278 
9279 static void bnxt_hwrm_set_eee(struct bnxt *bp,
9280 			      struct hwrm_port_phy_cfg_input *req)
9281 {
9282 	struct ethtool_eee *eee = &bp->eee;
9283 
9284 	if (eee->eee_enabled) {
9285 		u16 eee_speeds;
9286 		u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE;
9287 
9288 		if (eee->tx_lpi_enabled)
9289 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE;
9290 		else
9291 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE;
9292 
9293 		req->flags |= cpu_to_le32(flags);
9294 		eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised);
9295 		req->eee_link_speed_mask = cpu_to_le16(eee_speeds);
9296 		req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer);
9297 	} else {
9298 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE);
9299 	}
9300 }
9301 
9302 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee)
9303 {
9304 	struct hwrm_port_phy_cfg_input req = {0};
9305 
9306 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
9307 	if (set_pause)
9308 		bnxt_hwrm_set_pause_common(bp, &req);
9309 
9310 	bnxt_hwrm_set_link_common(bp, &req);
9311 
9312 	if (set_eee)
9313 		bnxt_hwrm_set_eee(bp, &req);
9314 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9315 }
9316 
9317 static int bnxt_hwrm_shutdown_link(struct bnxt *bp)
9318 {
9319 	struct hwrm_port_phy_cfg_input req = {0};
9320 
9321 	if (!BNXT_SINGLE_PF(bp))
9322 		return 0;
9323 
9324 	if (pci_num_vf(bp->pdev))
9325 		return 0;
9326 
9327 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
9328 	req.flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN);
9329 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9330 }
9331 
9332 static int bnxt_fw_init_one(struct bnxt *bp);
9333 
9334 static int bnxt_hwrm_if_change(struct bnxt *bp, bool up)
9335 {
9336 	struct hwrm_func_drv_if_change_output *resp = bp->hwrm_cmd_resp_addr;
9337 	struct hwrm_func_drv_if_change_input req = {0};
9338 	bool resc_reinit = false, fw_reset = false;
9339 	u32 flags = 0;
9340 	int rc;
9341 
9342 	if (!(bp->fw_cap & BNXT_FW_CAP_IF_CHANGE))
9343 		return 0;
9344 
9345 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_IF_CHANGE, -1, -1);
9346 	if (up)
9347 		req.flags = cpu_to_le32(FUNC_DRV_IF_CHANGE_REQ_FLAGS_UP);
9348 	mutex_lock(&bp->hwrm_cmd_lock);
9349 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9350 	if (!rc)
9351 		flags = le32_to_cpu(resp->flags);
9352 	mutex_unlock(&bp->hwrm_cmd_lock);
9353 	if (rc)
9354 		return rc;
9355 
9356 	if (!up)
9357 		return 0;
9358 
9359 	if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_RESC_CHANGE)
9360 		resc_reinit = true;
9361 	if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_HOT_FW_RESET_DONE)
9362 		fw_reset = true;
9363 
9364 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state) && !fw_reset) {
9365 		netdev_err(bp->dev, "RESET_DONE not set during FW reset.\n");
9366 		return -ENODEV;
9367 	}
9368 	if (resc_reinit || fw_reset) {
9369 		if (fw_reset) {
9370 			if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
9371 				bnxt_ulp_stop(bp);
9372 			bnxt_free_ctx_mem(bp);
9373 			kfree(bp->ctx);
9374 			bp->ctx = NULL;
9375 			bnxt_dcb_free(bp);
9376 			rc = bnxt_fw_init_one(bp);
9377 			if (rc) {
9378 				set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
9379 				return rc;
9380 			}
9381 			bnxt_clear_int_mode(bp);
9382 			rc = bnxt_init_int_mode(bp);
9383 			if (rc) {
9384 				netdev_err(bp->dev, "init int mode failed\n");
9385 				return rc;
9386 			}
9387 			set_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
9388 		}
9389 		if (BNXT_NEW_RM(bp)) {
9390 			struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
9391 
9392 			rc = bnxt_hwrm_func_resc_qcaps(bp, true);
9393 			hw_resc->resv_cp_rings = 0;
9394 			hw_resc->resv_stat_ctxs = 0;
9395 			hw_resc->resv_irqs = 0;
9396 			hw_resc->resv_tx_rings = 0;
9397 			hw_resc->resv_rx_rings = 0;
9398 			hw_resc->resv_hw_ring_grps = 0;
9399 			hw_resc->resv_vnics = 0;
9400 			if (!fw_reset) {
9401 				bp->tx_nr_rings = 0;
9402 				bp->rx_nr_rings = 0;
9403 			}
9404 		}
9405 	}
9406 	return 0;
9407 }
9408 
9409 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp)
9410 {
9411 	struct hwrm_port_led_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
9412 	struct hwrm_port_led_qcaps_input req = {0};
9413 	struct bnxt_pf_info *pf = &bp->pf;
9414 	int rc;
9415 
9416 	bp->num_leds = 0;
9417 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601)
9418 		return 0;
9419 
9420 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_LED_QCAPS, -1, -1);
9421 	req.port_id = cpu_to_le16(pf->port_id);
9422 	mutex_lock(&bp->hwrm_cmd_lock);
9423 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9424 	if (rc) {
9425 		mutex_unlock(&bp->hwrm_cmd_lock);
9426 		return rc;
9427 	}
9428 	if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) {
9429 		int i;
9430 
9431 		bp->num_leds = resp->num_leds;
9432 		memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) *
9433 						 bp->num_leds);
9434 		for (i = 0; i < bp->num_leds; i++) {
9435 			struct bnxt_led_info *led = &bp->leds[i];
9436 			__le16 caps = led->led_state_caps;
9437 
9438 			if (!led->led_group_id ||
9439 			    !BNXT_LED_ALT_BLINK_CAP(caps)) {
9440 				bp->num_leds = 0;
9441 				break;
9442 			}
9443 		}
9444 	}
9445 	mutex_unlock(&bp->hwrm_cmd_lock);
9446 	return 0;
9447 }
9448 
9449 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp)
9450 {
9451 	struct hwrm_wol_filter_alloc_input req = {0};
9452 	struct hwrm_wol_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
9453 	int rc;
9454 
9455 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_ALLOC, -1, -1);
9456 	req.port_id = cpu_to_le16(bp->pf.port_id);
9457 	req.wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT;
9458 	req.enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS);
9459 	memcpy(req.mac_address, bp->dev->dev_addr, ETH_ALEN);
9460 	mutex_lock(&bp->hwrm_cmd_lock);
9461 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9462 	if (!rc)
9463 		bp->wol_filter_id = resp->wol_filter_id;
9464 	mutex_unlock(&bp->hwrm_cmd_lock);
9465 	return rc;
9466 }
9467 
9468 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp)
9469 {
9470 	struct hwrm_wol_filter_free_input req = {0};
9471 
9472 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_FREE, -1, -1);
9473 	req.port_id = cpu_to_le16(bp->pf.port_id);
9474 	req.enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID);
9475 	req.wol_filter_id = bp->wol_filter_id;
9476 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9477 }
9478 
9479 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle)
9480 {
9481 	struct hwrm_wol_filter_qcfg_input req = {0};
9482 	struct hwrm_wol_filter_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
9483 	u16 next_handle = 0;
9484 	int rc;
9485 
9486 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_QCFG, -1, -1);
9487 	req.port_id = cpu_to_le16(bp->pf.port_id);
9488 	req.handle = cpu_to_le16(handle);
9489 	mutex_lock(&bp->hwrm_cmd_lock);
9490 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9491 	if (!rc) {
9492 		next_handle = le16_to_cpu(resp->next_handle);
9493 		if (next_handle != 0) {
9494 			if (resp->wol_type ==
9495 			    WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) {
9496 				bp->wol = 1;
9497 				bp->wol_filter_id = resp->wol_filter_id;
9498 			}
9499 		}
9500 	}
9501 	mutex_unlock(&bp->hwrm_cmd_lock);
9502 	return next_handle;
9503 }
9504 
9505 static void bnxt_get_wol_settings(struct bnxt *bp)
9506 {
9507 	u16 handle = 0;
9508 
9509 	bp->wol = 0;
9510 	if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP))
9511 		return;
9512 
9513 	do {
9514 		handle = bnxt_hwrm_get_wol_fltrs(bp, handle);
9515 	} while (handle && handle != 0xffff);
9516 }
9517 
9518 #ifdef CONFIG_BNXT_HWMON
9519 static ssize_t bnxt_show_temp(struct device *dev,
9520 			      struct device_attribute *devattr, char *buf)
9521 {
9522 	struct hwrm_temp_monitor_query_input req = {0};
9523 	struct hwrm_temp_monitor_query_output *resp;
9524 	struct bnxt *bp = dev_get_drvdata(dev);
9525 	u32 len = 0;
9526 	int rc;
9527 
9528 	resp = bp->hwrm_cmd_resp_addr;
9529 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TEMP_MONITOR_QUERY, -1, -1);
9530 	mutex_lock(&bp->hwrm_cmd_lock);
9531 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9532 	if (!rc)
9533 		len = sprintf(buf, "%u\n", resp->temp * 1000); /* display millidegree */
9534 	mutex_unlock(&bp->hwrm_cmd_lock);
9535 	return rc ?: len;
9536 }
9537 static SENSOR_DEVICE_ATTR(temp1_input, 0444, bnxt_show_temp, NULL, 0);
9538 
9539 static struct attribute *bnxt_attrs[] = {
9540 	&sensor_dev_attr_temp1_input.dev_attr.attr,
9541 	NULL
9542 };
9543 ATTRIBUTE_GROUPS(bnxt);
9544 
9545 static void bnxt_hwmon_close(struct bnxt *bp)
9546 {
9547 	if (bp->hwmon_dev) {
9548 		hwmon_device_unregister(bp->hwmon_dev);
9549 		bp->hwmon_dev = NULL;
9550 	}
9551 }
9552 
9553 static void bnxt_hwmon_open(struct bnxt *bp)
9554 {
9555 	struct hwrm_temp_monitor_query_input req = {0};
9556 	struct pci_dev *pdev = bp->pdev;
9557 	int rc;
9558 
9559 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TEMP_MONITOR_QUERY, -1, -1);
9560 	rc = hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9561 	if (rc == -EACCES || rc == -EOPNOTSUPP) {
9562 		bnxt_hwmon_close(bp);
9563 		return;
9564 	}
9565 
9566 	if (bp->hwmon_dev)
9567 		return;
9568 
9569 	bp->hwmon_dev = hwmon_device_register_with_groups(&pdev->dev,
9570 							  DRV_MODULE_NAME, bp,
9571 							  bnxt_groups);
9572 	if (IS_ERR(bp->hwmon_dev)) {
9573 		bp->hwmon_dev = NULL;
9574 		dev_warn(&pdev->dev, "Cannot register hwmon device\n");
9575 	}
9576 }
9577 #else
9578 static void bnxt_hwmon_close(struct bnxt *bp)
9579 {
9580 }
9581 
9582 static void bnxt_hwmon_open(struct bnxt *bp)
9583 {
9584 }
9585 #endif
9586 
9587 static bool bnxt_eee_config_ok(struct bnxt *bp)
9588 {
9589 	struct ethtool_eee *eee = &bp->eee;
9590 	struct bnxt_link_info *link_info = &bp->link_info;
9591 
9592 	if (!(bp->flags & BNXT_FLAG_EEE_CAP))
9593 		return true;
9594 
9595 	if (eee->eee_enabled) {
9596 		u32 advertising =
9597 			_bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0);
9598 
9599 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
9600 			eee->eee_enabled = 0;
9601 			return false;
9602 		}
9603 		if (eee->advertised & ~advertising) {
9604 			eee->advertised = advertising & eee->supported;
9605 			return false;
9606 		}
9607 	}
9608 	return true;
9609 }
9610 
9611 static int bnxt_update_phy_setting(struct bnxt *bp)
9612 {
9613 	int rc;
9614 	bool update_link = false;
9615 	bool update_pause = false;
9616 	bool update_eee = false;
9617 	struct bnxt_link_info *link_info = &bp->link_info;
9618 
9619 	rc = bnxt_update_link(bp, true);
9620 	if (rc) {
9621 		netdev_err(bp->dev, "failed to update link (rc: %x)\n",
9622 			   rc);
9623 		return rc;
9624 	}
9625 	if (!BNXT_SINGLE_PF(bp))
9626 		return 0;
9627 
9628 	if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
9629 	    (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) !=
9630 	    link_info->req_flow_ctrl)
9631 		update_pause = true;
9632 	if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
9633 	    link_info->force_pause_setting != link_info->req_flow_ctrl)
9634 		update_pause = true;
9635 	if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
9636 		if (BNXT_AUTO_MODE(link_info->auto_mode))
9637 			update_link = true;
9638 		if (link_info->req_signal_mode == BNXT_SIG_MODE_NRZ &&
9639 		    link_info->req_link_speed != link_info->force_link_speed)
9640 			update_link = true;
9641 		else if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4 &&
9642 			 link_info->req_link_speed != link_info->force_pam4_link_speed)
9643 			update_link = true;
9644 		if (link_info->req_duplex != link_info->duplex_setting)
9645 			update_link = true;
9646 	} else {
9647 		if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
9648 			update_link = true;
9649 		if (link_info->advertising != link_info->auto_link_speeds ||
9650 		    link_info->advertising_pam4 != link_info->auto_pam4_link_speeds)
9651 			update_link = true;
9652 	}
9653 
9654 	/* The last close may have shutdown the link, so need to call
9655 	 * PHY_CFG to bring it back up.
9656 	 */
9657 	if (!bp->link_info.link_up)
9658 		update_link = true;
9659 
9660 	if (!bnxt_eee_config_ok(bp))
9661 		update_eee = true;
9662 
9663 	if (update_link)
9664 		rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee);
9665 	else if (update_pause)
9666 		rc = bnxt_hwrm_set_pause(bp);
9667 	if (rc) {
9668 		netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
9669 			   rc);
9670 		return rc;
9671 	}
9672 
9673 	return rc;
9674 }
9675 
9676 /* Common routine to pre-map certain register block to different GRC window.
9677  * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
9678  * in PF and 3 windows in VF that can be customized to map in different
9679  * register blocks.
9680  */
9681 static void bnxt_preset_reg_win(struct bnxt *bp)
9682 {
9683 	if (BNXT_PF(bp)) {
9684 		/* CAG registers map to GRC window #4 */
9685 		writel(BNXT_CAG_REG_BASE,
9686 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
9687 	}
9688 }
9689 
9690 static int bnxt_init_dflt_ring_mode(struct bnxt *bp);
9691 
9692 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
9693 {
9694 	int rc = 0;
9695 
9696 	bnxt_preset_reg_win(bp);
9697 	netif_carrier_off(bp->dev);
9698 	if (irq_re_init) {
9699 		/* Reserve rings now if none were reserved at driver probe. */
9700 		rc = bnxt_init_dflt_ring_mode(bp);
9701 		if (rc) {
9702 			netdev_err(bp->dev, "Failed to reserve default rings at open\n");
9703 			return rc;
9704 		}
9705 	}
9706 	rc = bnxt_reserve_rings(bp, irq_re_init);
9707 	if (rc)
9708 		return rc;
9709 	if ((bp->flags & BNXT_FLAG_RFS) &&
9710 	    !(bp->flags & BNXT_FLAG_USING_MSIX)) {
9711 		/* disable RFS if falling back to INTA */
9712 		bp->dev->hw_features &= ~NETIF_F_NTUPLE;
9713 		bp->flags &= ~BNXT_FLAG_RFS;
9714 	}
9715 
9716 	rc = bnxt_alloc_mem(bp, irq_re_init);
9717 	if (rc) {
9718 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
9719 		goto open_err_free_mem;
9720 	}
9721 
9722 	if (irq_re_init) {
9723 		bnxt_init_napi(bp);
9724 		rc = bnxt_request_irq(bp);
9725 		if (rc) {
9726 			netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
9727 			goto open_err_irq;
9728 		}
9729 	}
9730 
9731 	rc = bnxt_init_nic(bp, irq_re_init);
9732 	if (rc) {
9733 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
9734 		goto open_err_irq;
9735 	}
9736 
9737 	bnxt_enable_napi(bp);
9738 	bnxt_debug_dev_init(bp);
9739 
9740 	if (link_re_init) {
9741 		mutex_lock(&bp->link_lock);
9742 		rc = bnxt_update_phy_setting(bp);
9743 		mutex_unlock(&bp->link_lock);
9744 		if (rc) {
9745 			netdev_warn(bp->dev, "failed to update phy settings\n");
9746 			if (BNXT_SINGLE_PF(bp)) {
9747 				bp->link_info.phy_retry = true;
9748 				bp->link_info.phy_retry_expires =
9749 					jiffies + 5 * HZ;
9750 			}
9751 		}
9752 	}
9753 
9754 	if (irq_re_init)
9755 		udp_tunnel_nic_reset_ntf(bp->dev);
9756 
9757 	set_bit(BNXT_STATE_OPEN, &bp->state);
9758 	bnxt_enable_int(bp);
9759 	/* Enable TX queues */
9760 	bnxt_tx_enable(bp);
9761 	mod_timer(&bp->timer, jiffies + bp->current_interval);
9762 	/* Poll link status and check for SFP+ module status */
9763 	bnxt_get_port_module_status(bp);
9764 
9765 	/* VF-reps may need to be re-opened after the PF is re-opened */
9766 	if (BNXT_PF(bp))
9767 		bnxt_vf_reps_open(bp);
9768 	return 0;
9769 
9770 open_err_irq:
9771 	bnxt_del_napi(bp);
9772 
9773 open_err_free_mem:
9774 	bnxt_free_skbs(bp);
9775 	bnxt_free_irq(bp);
9776 	bnxt_free_mem(bp, true);
9777 	return rc;
9778 }
9779 
9780 /* rtnl_lock held */
9781 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
9782 {
9783 	int rc = 0;
9784 
9785 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state))
9786 		rc = -EIO;
9787 	if (!rc)
9788 		rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
9789 	if (rc) {
9790 		netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
9791 		dev_close(bp->dev);
9792 	}
9793 	return rc;
9794 }
9795 
9796 /* rtnl_lock held, open the NIC half way by allocating all resources, but
9797  * NAPI, IRQ, and TX are not enabled.  This is mainly used for offline
9798  * self tests.
9799  */
9800 int bnxt_half_open_nic(struct bnxt *bp)
9801 {
9802 	int rc = 0;
9803 
9804 	rc = bnxt_alloc_mem(bp, false);
9805 	if (rc) {
9806 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
9807 		goto half_open_err;
9808 	}
9809 	rc = bnxt_init_nic(bp, false);
9810 	if (rc) {
9811 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
9812 		goto half_open_err;
9813 	}
9814 	return 0;
9815 
9816 half_open_err:
9817 	bnxt_free_skbs(bp);
9818 	bnxt_free_mem(bp, false);
9819 	dev_close(bp->dev);
9820 	return rc;
9821 }
9822 
9823 /* rtnl_lock held, this call can only be made after a previous successful
9824  * call to bnxt_half_open_nic().
9825  */
9826 void bnxt_half_close_nic(struct bnxt *bp)
9827 {
9828 	bnxt_hwrm_resource_free(bp, false, false);
9829 	bnxt_free_skbs(bp);
9830 	bnxt_free_mem(bp, false);
9831 }
9832 
9833 static void bnxt_reenable_sriov(struct bnxt *bp)
9834 {
9835 	if (BNXT_PF(bp)) {
9836 		struct bnxt_pf_info *pf = &bp->pf;
9837 		int n = pf->active_vfs;
9838 
9839 		if (n)
9840 			bnxt_cfg_hw_sriov(bp, &n, true);
9841 	}
9842 }
9843 
9844 static int bnxt_open(struct net_device *dev)
9845 {
9846 	struct bnxt *bp = netdev_priv(dev);
9847 	int rc;
9848 
9849 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
9850 		netdev_err(bp->dev, "A previous firmware reset did not complete, aborting\n");
9851 		return -ENODEV;
9852 	}
9853 
9854 	rc = bnxt_hwrm_if_change(bp, true);
9855 	if (rc)
9856 		return rc;
9857 	rc = __bnxt_open_nic(bp, true, true);
9858 	if (rc) {
9859 		bnxt_hwrm_if_change(bp, false);
9860 	} else {
9861 		if (test_and_clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) {
9862 			if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
9863 				bnxt_ulp_start(bp, 0);
9864 				bnxt_reenable_sriov(bp);
9865 			}
9866 		}
9867 		bnxt_hwmon_open(bp);
9868 	}
9869 
9870 	return rc;
9871 }
9872 
9873 static bool bnxt_drv_busy(struct bnxt *bp)
9874 {
9875 	return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) ||
9876 		test_bit(BNXT_STATE_READ_STATS, &bp->state));
9877 }
9878 
9879 static void bnxt_get_ring_stats(struct bnxt *bp,
9880 				struct rtnl_link_stats64 *stats);
9881 
9882 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init,
9883 			     bool link_re_init)
9884 {
9885 	/* Close the VF-reps before closing PF */
9886 	if (BNXT_PF(bp))
9887 		bnxt_vf_reps_close(bp);
9888 
9889 	/* Change device state to avoid TX queue wake up's */
9890 	bnxt_tx_disable(bp);
9891 
9892 	clear_bit(BNXT_STATE_OPEN, &bp->state);
9893 	smp_mb__after_atomic();
9894 	while (bnxt_drv_busy(bp))
9895 		msleep(20);
9896 
9897 	/* Flush rings and and disable interrupts */
9898 	bnxt_shutdown_nic(bp, irq_re_init);
9899 
9900 	/* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
9901 
9902 	bnxt_debug_dev_exit(bp);
9903 	bnxt_disable_napi(bp);
9904 	del_timer_sync(&bp->timer);
9905 	bnxt_free_skbs(bp);
9906 
9907 	/* Save ring stats before shutdown */
9908 	if (bp->bnapi && irq_re_init)
9909 		bnxt_get_ring_stats(bp, &bp->net_stats_prev);
9910 	if (irq_re_init) {
9911 		bnxt_free_irq(bp);
9912 		bnxt_del_napi(bp);
9913 	}
9914 	bnxt_free_mem(bp, irq_re_init);
9915 }
9916 
9917 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
9918 {
9919 	int rc = 0;
9920 
9921 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
9922 		/* If we get here, it means firmware reset is in progress
9923 		 * while we are trying to close.  We can safely proceed with
9924 		 * the close because we are holding rtnl_lock().  Some firmware
9925 		 * messages may fail as we proceed to close.  We set the
9926 		 * ABORT_ERR flag here so that the FW reset thread will later
9927 		 * abort when it gets the rtnl_lock() and sees the flag.
9928 		 */
9929 		netdev_warn(bp->dev, "FW reset in progress during close, FW reset will be aborted\n");
9930 		set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
9931 	}
9932 
9933 #ifdef CONFIG_BNXT_SRIOV
9934 	if (bp->sriov_cfg) {
9935 		rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
9936 						      !bp->sriov_cfg,
9937 						      BNXT_SRIOV_CFG_WAIT_TMO);
9938 		if (rc)
9939 			netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
9940 	}
9941 #endif
9942 	__bnxt_close_nic(bp, irq_re_init, link_re_init);
9943 	return rc;
9944 }
9945 
9946 static int bnxt_close(struct net_device *dev)
9947 {
9948 	struct bnxt *bp = netdev_priv(dev);
9949 
9950 	bnxt_hwmon_close(bp);
9951 	bnxt_close_nic(bp, true, true);
9952 	bnxt_hwrm_shutdown_link(bp);
9953 	bnxt_hwrm_if_change(bp, false);
9954 	return 0;
9955 }
9956 
9957 static int bnxt_hwrm_port_phy_read(struct bnxt *bp, u16 phy_addr, u16 reg,
9958 				   u16 *val)
9959 {
9960 	struct hwrm_port_phy_mdio_read_output *resp = bp->hwrm_cmd_resp_addr;
9961 	struct hwrm_port_phy_mdio_read_input req = {0};
9962 	int rc;
9963 
9964 	if (bp->hwrm_spec_code < 0x10a00)
9965 		return -EOPNOTSUPP;
9966 
9967 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_MDIO_READ, -1, -1);
9968 	req.port_id = cpu_to_le16(bp->pf.port_id);
9969 	req.phy_addr = phy_addr;
9970 	req.reg_addr = cpu_to_le16(reg & 0x1f);
9971 	if (mdio_phy_id_is_c45(phy_addr)) {
9972 		req.cl45_mdio = 1;
9973 		req.phy_addr = mdio_phy_id_prtad(phy_addr);
9974 		req.dev_addr = mdio_phy_id_devad(phy_addr);
9975 		req.reg_addr = cpu_to_le16(reg);
9976 	}
9977 
9978 	mutex_lock(&bp->hwrm_cmd_lock);
9979 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9980 	if (!rc)
9981 		*val = le16_to_cpu(resp->reg_data);
9982 	mutex_unlock(&bp->hwrm_cmd_lock);
9983 	return rc;
9984 }
9985 
9986 static int bnxt_hwrm_port_phy_write(struct bnxt *bp, u16 phy_addr, u16 reg,
9987 				    u16 val)
9988 {
9989 	struct hwrm_port_phy_mdio_write_input req = {0};
9990 
9991 	if (bp->hwrm_spec_code < 0x10a00)
9992 		return -EOPNOTSUPP;
9993 
9994 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_MDIO_WRITE, -1, -1);
9995 	req.port_id = cpu_to_le16(bp->pf.port_id);
9996 	req.phy_addr = phy_addr;
9997 	req.reg_addr = cpu_to_le16(reg & 0x1f);
9998 	if (mdio_phy_id_is_c45(phy_addr)) {
9999 		req.cl45_mdio = 1;
10000 		req.phy_addr = mdio_phy_id_prtad(phy_addr);
10001 		req.dev_addr = mdio_phy_id_devad(phy_addr);
10002 		req.reg_addr = cpu_to_le16(reg);
10003 	}
10004 	req.reg_data = cpu_to_le16(val);
10005 
10006 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
10007 }
10008 
10009 /* rtnl_lock held */
10010 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
10011 {
10012 	struct mii_ioctl_data *mdio = if_mii(ifr);
10013 	struct bnxt *bp = netdev_priv(dev);
10014 	int rc;
10015 
10016 	switch (cmd) {
10017 	case SIOCGMIIPHY:
10018 		mdio->phy_id = bp->link_info.phy_addr;
10019 
10020 		fallthrough;
10021 	case SIOCGMIIREG: {
10022 		u16 mii_regval = 0;
10023 
10024 		if (!netif_running(dev))
10025 			return -EAGAIN;
10026 
10027 		rc = bnxt_hwrm_port_phy_read(bp, mdio->phy_id, mdio->reg_num,
10028 					     &mii_regval);
10029 		mdio->val_out = mii_regval;
10030 		return rc;
10031 	}
10032 
10033 	case SIOCSMIIREG:
10034 		if (!netif_running(dev))
10035 			return -EAGAIN;
10036 
10037 		return bnxt_hwrm_port_phy_write(bp, mdio->phy_id, mdio->reg_num,
10038 						mdio->val_in);
10039 
10040 	default:
10041 		/* do nothing */
10042 		break;
10043 	}
10044 	return -EOPNOTSUPP;
10045 }
10046 
10047 static void bnxt_get_ring_stats(struct bnxt *bp,
10048 				struct rtnl_link_stats64 *stats)
10049 {
10050 	int i;
10051 
10052 	for (i = 0; i < bp->cp_nr_rings; i++) {
10053 		struct bnxt_napi *bnapi = bp->bnapi[i];
10054 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
10055 		u64 *sw = cpr->stats.sw_stats;
10056 
10057 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts);
10058 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts);
10059 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts);
10060 
10061 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts);
10062 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts);
10063 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts);
10064 
10065 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes);
10066 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes);
10067 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes);
10068 
10069 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes);
10070 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes);
10071 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes);
10072 
10073 		stats->rx_missed_errors +=
10074 			BNXT_GET_RING_STATS64(sw, rx_discard_pkts);
10075 
10076 		stats->multicast += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts);
10077 
10078 		stats->tx_dropped += BNXT_GET_RING_STATS64(sw, tx_error_pkts);
10079 	}
10080 }
10081 
10082 static void bnxt_add_prev_stats(struct bnxt *bp,
10083 				struct rtnl_link_stats64 *stats)
10084 {
10085 	struct rtnl_link_stats64 *prev_stats = &bp->net_stats_prev;
10086 
10087 	stats->rx_packets += prev_stats->rx_packets;
10088 	stats->tx_packets += prev_stats->tx_packets;
10089 	stats->rx_bytes += prev_stats->rx_bytes;
10090 	stats->tx_bytes += prev_stats->tx_bytes;
10091 	stats->rx_missed_errors += prev_stats->rx_missed_errors;
10092 	stats->multicast += prev_stats->multicast;
10093 	stats->tx_dropped += prev_stats->tx_dropped;
10094 }
10095 
10096 static void
10097 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
10098 {
10099 	struct bnxt *bp = netdev_priv(dev);
10100 
10101 	set_bit(BNXT_STATE_READ_STATS, &bp->state);
10102 	/* Make sure bnxt_close_nic() sees that we are reading stats before
10103 	 * we check the BNXT_STATE_OPEN flag.
10104 	 */
10105 	smp_mb__after_atomic();
10106 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
10107 		clear_bit(BNXT_STATE_READ_STATS, &bp->state);
10108 		*stats = bp->net_stats_prev;
10109 		return;
10110 	}
10111 
10112 	bnxt_get_ring_stats(bp, stats);
10113 	bnxt_add_prev_stats(bp, stats);
10114 
10115 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
10116 		u64 *rx = bp->port_stats.sw_stats;
10117 		u64 *tx = bp->port_stats.sw_stats +
10118 			  BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
10119 
10120 		stats->rx_crc_errors =
10121 			BNXT_GET_RX_PORT_STATS64(rx, rx_fcs_err_frames);
10122 		stats->rx_frame_errors =
10123 			BNXT_GET_RX_PORT_STATS64(rx, rx_align_err_frames);
10124 		stats->rx_length_errors =
10125 			BNXT_GET_RX_PORT_STATS64(rx, rx_undrsz_frames) +
10126 			BNXT_GET_RX_PORT_STATS64(rx, rx_ovrsz_frames) +
10127 			BNXT_GET_RX_PORT_STATS64(rx, rx_runt_frames);
10128 		stats->rx_errors =
10129 			BNXT_GET_RX_PORT_STATS64(rx, rx_false_carrier_frames) +
10130 			BNXT_GET_RX_PORT_STATS64(rx, rx_jbr_frames);
10131 		stats->collisions =
10132 			BNXT_GET_TX_PORT_STATS64(tx, tx_total_collisions);
10133 		stats->tx_fifo_errors =
10134 			BNXT_GET_TX_PORT_STATS64(tx, tx_fifo_underruns);
10135 		stats->tx_errors = BNXT_GET_TX_PORT_STATS64(tx, tx_err);
10136 	}
10137 	clear_bit(BNXT_STATE_READ_STATS, &bp->state);
10138 }
10139 
10140 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
10141 {
10142 	struct net_device *dev = bp->dev;
10143 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
10144 	struct netdev_hw_addr *ha;
10145 	u8 *haddr;
10146 	int mc_count = 0;
10147 	bool update = false;
10148 	int off = 0;
10149 
10150 	netdev_for_each_mc_addr(ha, dev) {
10151 		if (mc_count >= BNXT_MAX_MC_ADDRS) {
10152 			*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
10153 			vnic->mc_list_count = 0;
10154 			return false;
10155 		}
10156 		haddr = ha->addr;
10157 		if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
10158 			memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
10159 			update = true;
10160 		}
10161 		off += ETH_ALEN;
10162 		mc_count++;
10163 	}
10164 	if (mc_count)
10165 		*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
10166 
10167 	if (mc_count != vnic->mc_list_count) {
10168 		vnic->mc_list_count = mc_count;
10169 		update = true;
10170 	}
10171 	return update;
10172 }
10173 
10174 static bool bnxt_uc_list_updated(struct bnxt *bp)
10175 {
10176 	struct net_device *dev = bp->dev;
10177 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
10178 	struct netdev_hw_addr *ha;
10179 	int off = 0;
10180 
10181 	if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
10182 		return true;
10183 
10184 	netdev_for_each_uc_addr(ha, dev) {
10185 		if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
10186 			return true;
10187 
10188 		off += ETH_ALEN;
10189 	}
10190 	return false;
10191 }
10192 
10193 static void bnxt_set_rx_mode(struct net_device *dev)
10194 {
10195 	struct bnxt *bp = netdev_priv(dev);
10196 	struct bnxt_vnic_info *vnic;
10197 	bool mc_update = false;
10198 	bool uc_update;
10199 	u32 mask;
10200 
10201 	if (!test_bit(BNXT_STATE_OPEN, &bp->state))
10202 		return;
10203 
10204 	vnic = &bp->vnic_info[0];
10205 	mask = vnic->rx_mask;
10206 	mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
10207 		  CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
10208 		  CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST |
10209 		  CFA_L2_SET_RX_MASK_REQ_MASK_BCAST);
10210 
10211 	if ((dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
10212 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
10213 
10214 	uc_update = bnxt_uc_list_updated(bp);
10215 
10216 	if (dev->flags & IFF_BROADCAST)
10217 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
10218 	if (dev->flags & IFF_ALLMULTI) {
10219 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
10220 		vnic->mc_list_count = 0;
10221 	} else {
10222 		mc_update = bnxt_mc_list_updated(bp, &mask);
10223 	}
10224 
10225 	if (mask != vnic->rx_mask || uc_update || mc_update) {
10226 		vnic->rx_mask = mask;
10227 
10228 		set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
10229 		bnxt_queue_sp_work(bp);
10230 	}
10231 }
10232 
10233 static int bnxt_cfg_rx_mode(struct bnxt *bp)
10234 {
10235 	struct net_device *dev = bp->dev;
10236 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
10237 	struct netdev_hw_addr *ha;
10238 	int i, off = 0, rc;
10239 	bool uc_update;
10240 
10241 	netif_addr_lock_bh(dev);
10242 	uc_update = bnxt_uc_list_updated(bp);
10243 	netif_addr_unlock_bh(dev);
10244 
10245 	if (!uc_update)
10246 		goto skip_uc;
10247 
10248 	mutex_lock(&bp->hwrm_cmd_lock);
10249 	for (i = 1; i < vnic->uc_filter_count; i++) {
10250 		struct hwrm_cfa_l2_filter_free_input req = {0};
10251 
10252 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_FREE, -1,
10253 				       -1);
10254 
10255 		req.l2_filter_id = vnic->fw_l2_filter_id[i];
10256 
10257 		rc = _hwrm_send_message(bp, &req, sizeof(req),
10258 					HWRM_CMD_TIMEOUT);
10259 	}
10260 	mutex_unlock(&bp->hwrm_cmd_lock);
10261 
10262 	vnic->uc_filter_count = 1;
10263 
10264 	netif_addr_lock_bh(dev);
10265 	if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
10266 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
10267 	} else {
10268 		netdev_for_each_uc_addr(ha, dev) {
10269 			memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
10270 			off += ETH_ALEN;
10271 			vnic->uc_filter_count++;
10272 		}
10273 	}
10274 	netif_addr_unlock_bh(dev);
10275 
10276 	for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
10277 		rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
10278 		if (rc) {
10279 			netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n",
10280 				   rc);
10281 			vnic->uc_filter_count = i;
10282 			return rc;
10283 		}
10284 	}
10285 
10286 skip_uc:
10287 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
10288 	if (rc && vnic->mc_list_count) {
10289 		netdev_info(bp->dev, "Failed setting MC filters rc: %d, turning on ALL_MCAST mode\n",
10290 			    rc);
10291 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
10292 		vnic->mc_list_count = 0;
10293 		rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
10294 	}
10295 	if (rc)
10296 		netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %d\n",
10297 			   rc);
10298 
10299 	return rc;
10300 }
10301 
10302 static bool bnxt_can_reserve_rings(struct bnxt *bp)
10303 {
10304 #ifdef CONFIG_BNXT_SRIOV
10305 	if (BNXT_NEW_RM(bp) && BNXT_VF(bp)) {
10306 		struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
10307 
10308 		/* No minimum rings were provisioned by the PF.  Don't
10309 		 * reserve rings by default when device is down.
10310 		 */
10311 		if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings)
10312 			return true;
10313 
10314 		if (!netif_running(bp->dev))
10315 			return false;
10316 	}
10317 #endif
10318 	return true;
10319 }
10320 
10321 /* If the chip and firmware supports RFS */
10322 static bool bnxt_rfs_supported(struct bnxt *bp)
10323 {
10324 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
10325 		if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2)
10326 			return true;
10327 		return false;
10328 	}
10329 	if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
10330 		return true;
10331 	if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
10332 		return true;
10333 	return false;
10334 }
10335 
10336 /* If runtime conditions support RFS */
10337 static bool bnxt_rfs_capable(struct bnxt *bp)
10338 {
10339 #ifdef CONFIG_RFS_ACCEL
10340 	int vnics, max_vnics, max_rss_ctxs;
10341 
10342 	if (bp->flags & BNXT_FLAG_CHIP_P5)
10343 		return bnxt_rfs_supported(bp);
10344 	if (!(bp->flags & BNXT_FLAG_MSIX_CAP) || !bnxt_can_reserve_rings(bp))
10345 		return false;
10346 
10347 	vnics = 1 + bp->rx_nr_rings;
10348 	max_vnics = bnxt_get_max_func_vnics(bp);
10349 	max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp);
10350 
10351 	/* RSS contexts not a limiting factor */
10352 	if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
10353 		max_rss_ctxs = max_vnics;
10354 	if (vnics > max_vnics || vnics > max_rss_ctxs) {
10355 		if (bp->rx_nr_rings > 1)
10356 			netdev_warn(bp->dev,
10357 				    "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n",
10358 				    min(max_rss_ctxs - 1, max_vnics - 1));
10359 		return false;
10360 	}
10361 
10362 	if (!BNXT_NEW_RM(bp))
10363 		return true;
10364 
10365 	if (vnics == bp->hw_resc.resv_vnics)
10366 		return true;
10367 
10368 	bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, vnics);
10369 	if (vnics <= bp->hw_resc.resv_vnics)
10370 		return true;
10371 
10372 	netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n");
10373 	bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, 1);
10374 	return false;
10375 #else
10376 	return false;
10377 #endif
10378 }
10379 
10380 static netdev_features_t bnxt_fix_features(struct net_device *dev,
10381 					   netdev_features_t features)
10382 {
10383 	struct bnxt *bp = netdev_priv(dev);
10384 	netdev_features_t vlan_features;
10385 
10386 	if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp))
10387 		features &= ~NETIF_F_NTUPLE;
10388 
10389 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
10390 		features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
10391 
10392 	if (!(features & NETIF_F_GRO))
10393 		features &= ~NETIF_F_GRO_HW;
10394 
10395 	if (features & NETIF_F_GRO_HW)
10396 		features &= ~NETIF_F_LRO;
10397 
10398 	/* Both CTAG and STAG VLAN accelaration on the RX side have to be
10399 	 * turned on or off together.
10400 	 */
10401 	vlan_features = features & BNXT_HW_FEATURE_VLAN_ALL_RX;
10402 	if (vlan_features != BNXT_HW_FEATURE_VLAN_ALL_RX) {
10403 		if (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)
10404 			features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX;
10405 		else if (vlan_features)
10406 			features |= BNXT_HW_FEATURE_VLAN_ALL_RX;
10407 	}
10408 #ifdef CONFIG_BNXT_SRIOV
10409 	if (BNXT_VF(bp) && bp->vf.vlan)
10410 		features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX;
10411 #endif
10412 	return features;
10413 }
10414 
10415 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
10416 {
10417 	struct bnxt *bp = netdev_priv(dev);
10418 	u32 flags = bp->flags;
10419 	u32 changes;
10420 	int rc = 0;
10421 	bool re_init = false;
10422 	bool update_tpa = false;
10423 
10424 	flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
10425 	if (features & NETIF_F_GRO_HW)
10426 		flags |= BNXT_FLAG_GRO;
10427 	else if (features & NETIF_F_LRO)
10428 		flags |= BNXT_FLAG_LRO;
10429 
10430 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
10431 		flags &= ~BNXT_FLAG_TPA;
10432 
10433 	if (features & BNXT_HW_FEATURE_VLAN_ALL_RX)
10434 		flags |= BNXT_FLAG_STRIP_VLAN;
10435 
10436 	if (features & NETIF_F_NTUPLE)
10437 		flags |= BNXT_FLAG_RFS;
10438 
10439 	changes = flags ^ bp->flags;
10440 	if (changes & BNXT_FLAG_TPA) {
10441 		update_tpa = true;
10442 		if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
10443 		    (flags & BNXT_FLAG_TPA) == 0 ||
10444 		    (bp->flags & BNXT_FLAG_CHIP_P5))
10445 			re_init = true;
10446 	}
10447 
10448 	if (changes & ~BNXT_FLAG_TPA)
10449 		re_init = true;
10450 
10451 	if (flags != bp->flags) {
10452 		u32 old_flags = bp->flags;
10453 
10454 		if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
10455 			bp->flags = flags;
10456 			if (update_tpa)
10457 				bnxt_set_ring_params(bp);
10458 			return rc;
10459 		}
10460 
10461 		if (re_init) {
10462 			bnxt_close_nic(bp, false, false);
10463 			bp->flags = flags;
10464 			if (update_tpa)
10465 				bnxt_set_ring_params(bp);
10466 
10467 			return bnxt_open_nic(bp, false, false);
10468 		}
10469 		if (update_tpa) {
10470 			bp->flags = flags;
10471 			rc = bnxt_set_tpa(bp,
10472 					  (flags & BNXT_FLAG_TPA) ?
10473 					  true : false);
10474 			if (rc)
10475 				bp->flags = old_flags;
10476 		}
10477 	}
10478 	return rc;
10479 }
10480 
10481 int bnxt_dbg_hwrm_rd_reg(struct bnxt *bp, u32 reg_off, u16 num_words,
10482 			 u32 *reg_buf)
10483 {
10484 	struct hwrm_dbg_read_direct_output *resp = bp->hwrm_cmd_resp_addr;
10485 	struct hwrm_dbg_read_direct_input req = {0};
10486 	__le32 *dbg_reg_buf;
10487 	dma_addr_t mapping;
10488 	int rc, i;
10489 
10490 	dbg_reg_buf = dma_alloc_coherent(&bp->pdev->dev, num_words * 4,
10491 					 &mapping, GFP_KERNEL);
10492 	if (!dbg_reg_buf)
10493 		return -ENOMEM;
10494 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_DBG_READ_DIRECT, -1, -1);
10495 	req.host_dest_addr = cpu_to_le64(mapping);
10496 	req.read_addr = cpu_to_le32(reg_off + CHIMP_REG_VIEW_ADDR);
10497 	req.read_len32 = cpu_to_le32(num_words);
10498 	mutex_lock(&bp->hwrm_cmd_lock);
10499 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
10500 	if (rc || resp->error_code) {
10501 		rc = -EIO;
10502 		goto dbg_rd_reg_exit;
10503 	}
10504 	for (i = 0; i < num_words; i++)
10505 		reg_buf[i] = le32_to_cpu(dbg_reg_buf[i]);
10506 
10507 dbg_rd_reg_exit:
10508 	mutex_unlock(&bp->hwrm_cmd_lock);
10509 	dma_free_coherent(&bp->pdev->dev, num_words * 4, dbg_reg_buf, mapping);
10510 	return rc;
10511 }
10512 
10513 static int bnxt_dbg_hwrm_ring_info_get(struct bnxt *bp, u8 ring_type,
10514 				       u32 ring_id, u32 *prod, u32 *cons)
10515 {
10516 	struct hwrm_dbg_ring_info_get_output *resp = bp->hwrm_cmd_resp_addr;
10517 	struct hwrm_dbg_ring_info_get_input req = {0};
10518 	int rc;
10519 
10520 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_DBG_RING_INFO_GET, -1, -1);
10521 	req.ring_type = ring_type;
10522 	req.fw_ring_id = cpu_to_le32(ring_id);
10523 	mutex_lock(&bp->hwrm_cmd_lock);
10524 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
10525 	if (!rc) {
10526 		*prod = le32_to_cpu(resp->producer_index);
10527 		*cons = le32_to_cpu(resp->consumer_index);
10528 	}
10529 	mutex_unlock(&bp->hwrm_cmd_lock);
10530 	return rc;
10531 }
10532 
10533 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
10534 {
10535 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
10536 	int i = bnapi->index;
10537 
10538 	if (!txr)
10539 		return;
10540 
10541 	netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
10542 		    i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
10543 		    txr->tx_cons);
10544 }
10545 
10546 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
10547 {
10548 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
10549 	int i = bnapi->index;
10550 
10551 	if (!rxr)
10552 		return;
10553 
10554 	netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
10555 		    i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
10556 		    rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
10557 		    rxr->rx_sw_agg_prod);
10558 }
10559 
10560 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
10561 {
10562 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
10563 	int i = bnapi->index;
10564 
10565 	netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
10566 		    i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
10567 }
10568 
10569 static void bnxt_dbg_dump_states(struct bnxt *bp)
10570 {
10571 	int i;
10572 	struct bnxt_napi *bnapi;
10573 
10574 	for (i = 0; i < bp->cp_nr_rings; i++) {
10575 		bnapi = bp->bnapi[i];
10576 		if (netif_msg_drv(bp)) {
10577 			bnxt_dump_tx_sw_state(bnapi);
10578 			bnxt_dump_rx_sw_state(bnapi);
10579 			bnxt_dump_cp_sw_state(bnapi);
10580 		}
10581 	}
10582 }
10583 
10584 static int bnxt_hwrm_rx_ring_reset(struct bnxt *bp, int ring_nr)
10585 {
10586 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
10587 	struct hwrm_ring_reset_input req = {0};
10588 	struct bnxt_napi *bnapi = rxr->bnapi;
10589 	struct bnxt_cp_ring_info *cpr;
10590 	u16 cp_ring_id;
10591 
10592 	cpr = &bnapi->cp_ring;
10593 	cp_ring_id = cpr->cp_ring_struct.fw_ring_id;
10594 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_RESET, cp_ring_id, -1);
10595 	req.ring_type = RING_RESET_REQ_RING_TYPE_RX_RING_GRP;
10596 	req.ring_id = cpu_to_le16(bp->grp_info[bnapi->index].fw_grp_id);
10597 	return hwrm_send_message_silent(bp, &req, sizeof(req),
10598 					HWRM_CMD_TIMEOUT);
10599 }
10600 
10601 static void bnxt_reset_task(struct bnxt *bp, bool silent)
10602 {
10603 	if (!silent)
10604 		bnxt_dbg_dump_states(bp);
10605 	if (netif_running(bp->dev)) {
10606 		int rc;
10607 
10608 		if (silent) {
10609 			bnxt_close_nic(bp, false, false);
10610 			bnxt_open_nic(bp, false, false);
10611 		} else {
10612 			bnxt_ulp_stop(bp);
10613 			bnxt_close_nic(bp, true, false);
10614 			rc = bnxt_open_nic(bp, true, false);
10615 			bnxt_ulp_start(bp, rc);
10616 		}
10617 	}
10618 }
10619 
10620 static void bnxt_tx_timeout(struct net_device *dev, unsigned int txqueue)
10621 {
10622 	struct bnxt *bp = netdev_priv(dev);
10623 
10624 	netdev_err(bp->dev,  "TX timeout detected, starting reset task!\n");
10625 	set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
10626 	bnxt_queue_sp_work(bp);
10627 }
10628 
10629 static void bnxt_fw_health_check(struct bnxt *bp)
10630 {
10631 	struct bnxt_fw_health *fw_health = bp->fw_health;
10632 	u32 val;
10633 
10634 	if (!fw_health->enabled || test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
10635 		return;
10636 
10637 	if (fw_health->tmr_counter) {
10638 		fw_health->tmr_counter--;
10639 		return;
10640 	}
10641 
10642 	val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
10643 	if (val == fw_health->last_fw_heartbeat)
10644 		goto fw_reset;
10645 
10646 	fw_health->last_fw_heartbeat = val;
10647 
10648 	val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
10649 	if (val != fw_health->last_fw_reset_cnt)
10650 		goto fw_reset;
10651 
10652 	fw_health->tmr_counter = fw_health->tmr_multiplier;
10653 	return;
10654 
10655 fw_reset:
10656 	set_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event);
10657 	bnxt_queue_sp_work(bp);
10658 }
10659 
10660 static void bnxt_timer(struct timer_list *t)
10661 {
10662 	struct bnxt *bp = from_timer(bp, t, timer);
10663 	struct net_device *dev = bp->dev;
10664 
10665 	if (!netif_running(dev) || !test_bit(BNXT_STATE_OPEN, &bp->state))
10666 		return;
10667 
10668 	if (atomic_read(&bp->intr_sem) != 0)
10669 		goto bnxt_restart_timer;
10670 
10671 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
10672 		bnxt_fw_health_check(bp);
10673 
10674 	if (bp->link_info.link_up && bp->stats_coal_ticks) {
10675 		set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event);
10676 		bnxt_queue_sp_work(bp);
10677 	}
10678 
10679 	if (bnxt_tc_flower_enabled(bp)) {
10680 		set_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event);
10681 		bnxt_queue_sp_work(bp);
10682 	}
10683 
10684 #ifdef CONFIG_RFS_ACCEL
10685 	if ((bp->flags & BNXT_FLAG_RFS) && bp->ntp_fltr_count) {
10686 		set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
10687 		bnxt_queue_sp_work(bp);
10688 	}
10689 #endif /*CONFIG_RFS_ACCEL*/
10690 
10691 	if (bp->link_info.phy_retry) {
10692 		if (time_after(jiffies, bp->link_info.phy_retry_expires)) {
10693 			bp->link_info.phy_retry = false;
10694 			netdev_warn(bp->dev, "failed to update phy settings after maximum retries.\n");
10695 		} else {
10696 			set_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event);
10697 			bnxt_queue_sp_work(bp);
10698 		}
10699 	}
10700 
10701 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && !bp->chip_rev &&
10702 	    netif_carrier_ok(dev)) {
10703 		set_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event);
10704 		bnxt_queue_sp_work(bp);
10705 	}
10706 bnxt_restart_timer:
10707 	mod_timer(&bp->timer, jiffies + bp->current_interval);
10708 }
10709 
10710 static void bnxt_rtnl_lock_sp(struct bnxt *bp)
10711 {
10712 	/* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK
10713 	 * set.  If the device is being closed, bnxt_close() may be holding
10714 	 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear.  So we
10715 	 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl().
10716 	 */
10717 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
10718 	rtnl_lock();
10719 }
10720 
10721 static void bnxt_rtnl_unlock_sp(struct bnxt *bp)
10722 {
10723 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
10724 	rtnl_unlock();
10725 }
10726 
10727 /* Only called from bnxt_sp_task() */
10728 static void bnxt_reset(struct bnxt *bp, bool silent)
10729 {
10730 	bnxt_rtnl_lock_sp(bp);
10731 	if (test_bit(BNXT_STATE_OPEN, &bp->state))
10732 		bnxt_reset_task(bp, silent);
10733 	bnxt_rtnl_unlock_sp(bp);
10734 }
10735 
10736 /* Only called from bnxt_sp_task() */
10737 static void bnxt_rx_ring_reset(struct bnxt *bp)
10738 {
10739 	int i;
10740 
10741 	bnxt_rtnl_lock_sp(bp);
10742 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
10743 		bnxt_rtnl_unlock_sp(bp);
10744 		return;
10745 	}
10746 	/* Disable and flush TPA before resetting the RX ring */
10747 	if (bp->flags & BNXT_FLAG_TPA)
10748 		bnxt_set_tpa(bp, false);
10749 	for (i = 0; i < bp->rx_nr_rings; i++) {
10750 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
10751 		struct bnxt_cp_ring_info *cpr;
10752 		int rc;
10753 
10754 		if (!rxr->bnapi->in_reset)
10755 			continue;
10756 
10757 		rc = bnxt_hwrm_rx_ring_reset(bp, i);
10758 		if (rc) {
10759 			if (rc == -EINVAL || rc == -EOPNOTSUPP)
10760 				netdev_info_once(bp->dev, "RX ring reset not supported by firmware, falling back to global reset\n");
10761 			else
10762 				netdev_warn(bp->dev, "RX ring reset failed, rc = %d, falling back to global reset\n",
10763 					    rc);
10764 			bnxt_reset_task(bp, true);
10765 			break;
10766 		}
10767 		bnxt_free_one_rx_ring_skbs(bp, i);
10768 		rxr->rx_prod = 0;
10769 		rxr->rx_agg_prod = 0;
10770 		rxr->rx_sw_agg_prod = 0;
10771 		rxr->rx_next_cons = 0;
10772 		rxr->bnapi->in_reset = false;
10773 		bnxt_alloc_one_rx_ring(bp, i);
10774 		cpr = &rxr->bnapi->cp_ring;
10775 		cpr->sw_stats.rx.rx_resets++;
10776 		if (bp->flags & BNXT_FLAG_AGG_RINGS)
10777 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
10778 		bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
10779 	}
10780 	if (bp->flags & BNXT_FLAG_TPA)
10781 		bnxt_set_tpa(bp, true);
10782 	bnxt_rtnl_unlock_sp(bp);
10783 }
10784 
10785 static void bnxt_fw_reset_close(struct bnxt *bp)
10786 {
10787 	bnxt_ulp_stop(bp);
10788 	/* When firmware is fatal state, disable PCI device to prevent
10789 	 * any potential bad DMAs before freeing kernel memory.
10790 	 */
10791 	if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
10792 		pci_disable_device(bp->pdev);
10793 	__bnxt_close_nic(bp, true, false);
10794 	bnxt_clear_int_mode(bp);
10795 	bnxt_hwrm_func_drv_unrgtr(bp);
10796 	if (pci_is_enabled(bp->pdev))
10797 		pci_disable_device(bp->pdev);
10798 	bnxt_free_ctx_mem(bp);
10799 	kfree(bp->ctx);
10800 	bp->ctx = NULL;
10801 }
10802 
10803 static bool is_bnxt_fw_ok(struct bnxt *bp)
10804 {
10805 	struct bnxt_fw_health *fw_health = bp->fw_health;
10806 	bool no_heartbeat = false, has_reset = false;
10807 	u32 val;
10808 
10809 	val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
10810 	if (val == fw_health->last_fw_heartbeat)
10811 		no_heartbeat = true;
10812 
10813 	val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
10814 	if (val != fw_health->last_fw_reset_cnt)
10815 		has_reset = true;
10816 
10817 	if (!no_heartbeat && has_reset)
10818 		return true;
10819 
10820 	return false;
10821 }
10822 
10823 /* rtnl_lock is acquired before calling this function */
10824 static void bnxt_force_fw_reset(struct bnxt *bp)
10825 {
10826 	struct bnxt_fw_health *fw_health = bp->fw_health;
10827 	u32 wait_dsecs;
10828 
10829 	if (!test_bit(BNXT_STATE_OPEN, &bp->state) ||
10830 	    test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
10831 		return;
10832 
10833 	set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
10834 	bnxt_fw_reset_close(bp);
10835 	wait_dsecs = fw_health->master_func_wait_dsecs;
10836 	if (fw_health->master) {
10837 		if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU)
10838 			wait_dsecs = 0;
10839 		bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW;
10840 	} else {
10841 		bp->fw_reset_timestamp = jiffies + wait_dsecs * HZ / 10;
10842 		wait_dsecs = fw_health->normal_func_wait_dsecs;
10843 		bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
10844 	}
10845 
10846 	bp->fw_reset_min_dsecs = fw_health->post_reset_wait_dsecs;
10847 	bp->fw_reset_max_dsecs = fw_health->post_reset_max_wait_dsecs;
10848 	bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10);
10849 }
10850 
10851 void bnxt_fw_exception(struct bnxt *bp)
10852 {
10853 	netdev_warn(bp->dev, "Detected firmware fatal condition, initiating reset\n");
10854 	set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
10855 	bnxt_rtnl_lock_sp(bp);
10856 	bnxt_force_fw_reset(bp);
10857 	bnxt_rtnl_unlock_sp(bp);
10858 }
10859 
10860 /* Returns the number of registered VFs, or 1 if VF configuration is pending, or
10861  * < 0 on error.
10862  */
10863 static int bnxt_get_registered_vfs(struct bnxt *bp)
10864 {
10865 #ifdef CONFIG_BNXT_SRIOV
10866 	int rc;
10867 
10868 	if (!BNXT_PF(bp))
10869 		return 0;
10870 
10871 	rc = bnxt_hwrm_func_qcfg(bp);
10872 	if (rc) {
10873 		netdev_err(bp->dev, "func_qcfg cmd failed, rc = %d\n", rc);
10874 		return rc;
10875 	}
10876 	if (bp->pf.registered_vfs)
10877 		return bp->pf.registered_vfs;
10878 	if (bp->sriov_cfg)
10879 		return 1;
10880 #endif
10881 	return 0;
10882 }
10883 
10884 void bnxt_fw_reset(struct bnxt *bp)
10885 {
10886 	bnxt_rtnl_lock_sp(bp);
10887 	if (test_bit(BNXT_STATE_OPEN, &bp->state) &&
10888 	    !test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
10889 		int n = 0, tmo;
10890 
10891 		set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
10892 		if (bp->pf.active_vfs &&
10893 		    !test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
10894 			n = bnxt_get_registered_vfs(bp);
10895 		if (n < 0) {
10896 			netdev_err(bp->dev, "Firmware reset aborted, rc = %d\n",
10897 				   n);
10898 			clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
10899 			dev_close(bp->dev);
10900 			goto fw_reset_exit;
10901 		} else if (n > 0) {
10902 			u16 vf_tmo_dsecs = n * 10;
10903 
10904 			if (bp->fw_reset_max_dsecs < vf_tmo_dsecs)
10905 				bp->fw_reset_max_dsecs = vf_tmo_dsecs;
10906 			bp->fw_reset_state =
10907 				BNXT_FW_RESET_STATE_POLL_VF;
10908 			bnxt_queue_fw_reset_work(bp, HZ / 10);
10909 			goto fw_reset_exit;
10910 		}
10911 		bnxt_fw_reset_close(bp);
10912 		if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
10913 			bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN;
10914 			tmo = HZ / 10;
10915 		} else {
10916 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
10917 			tmo = bp->fw_reset_min_dsecs * HZ / 10;
10918 		}
10919 		bnxt_queue_fw_reset_work(bp, tmo);
10920 	}
10921 fw_reset_exit:
10922 	bnxt_rtnl_unlock_sp(bp);
10923 }
10924 
10925 static void bnxt_chk_missed_irq(struct bnxt *bp)
10926 {
10927 	int i;
10928 
10929 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
10930 		return;
10931 
10932 	for (i = 0; i < bp->cp_nr_rings; i++) {
10933 		struct bnxt_napi *bnapi = bp->bnapi[i];
10934 		struct bnxt_cp_ring_info *cpr;
10935 		u32 fw_ring_id;
10936 		int j;
10937 
10938 		if (!bnapi)
10939 			continue;
10940 
10941 		cpr = &bnapi->cp_ring;
10942 		for (j = 0; j < 2; j++) {
10943 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
10944 			u32 val[2];
10945 
10946 			if (!cpr2 || cpr2->has_more_work ||
10947 			    !bnxt_has_work(bp, cpr2))
10948 				continue;
10949 
10950 			if (cpr2->cp_raw_cons != cpr2->last_cp_raw_cons) {
10951 				cpr2->last_cp_raw_cons = cpr2->cp_raw_cons;
10952 				continue;
10953 			}
10954 			fw_ring_id = cpr2->cp_ring_struct.fw_ring_id;
10955 			bnxt_dbg_hwrm_ring_info_get(bp,
10956 				DBG_RING_INFO_GET_REQ_RING_TYPE_L2_CMPL,
10957 				fw_ring_id, &val[0], &val[1]);
10958 			cpr->sw_stats.cmn.missed_irqs++;
10959 		}
10960 	}
10961 }
10962 
10963 static void bnxt_cfg_ntp_filters(struct bnxt *);
10964 
10965 static void bnxt_init_ethtool_link_settings(struct bnxt *bp)
10966 {
10967 	struct bnxt_link_info *link_info = &bp->link_info;
10968 
10969 	if (BNXT_AUTO_MODE(link_info->auto_mode)) {
10970 		link_info->autoneg = BNXT_AUTONEG_SPEED;
10971 		if (bp->hwrm_spec_code >= 0x10201) {
10972 			if (link_info->auto_pause_setting &
10973 			    PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE)
10974 				link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
10975 		} else {
10976 			link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
10977 		}
10978 		link_info->advertising = link_info->auto_link_speeds;
10979 		link_info->advertising_pam4 = link_info->auto_pam4_link_speeds;
10980 	} else {
10981 		link_info->req_link_speed = link_info->force_link_speed;
10982 		link_info->req_signal_mode = BNXT_SIG_MODE_NRZ;
10983 		if (link_info->force_pam4_link_speed) {
10984 			link_info->req_link_speed =
10985 				link_info->force_pam4_link_speed;
10986 			link_info->req_signal_mode = BNXT_SIG_MODE_PAM4;
10987 		}
10988 		link_info->req_duplex = link_info->duplex_setting;
10989 	}
10990 	if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL)
10991 		link_info->req_flow_ctrl =
10992 			link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH;
10993 	else
10994 		link_info->req_flow_ctrl = link_info->force_pause_setting;
10995 }
10996 
10997 static void bnxt_sp_task(struct work_struct *work)
10998 {
10999 	struct bnxt *bp = container_of(work, struct bnxt, sp_task);
11000 
11001 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
11002 	smp_mb__after_atomic();
11003 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
11004 		clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
11005 		return;
11006 	}
11007 
11008 	if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
11009 		bnxt_cfg_rx_mode(bp);
11010 
11011 	if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
11012 		bnxt_cfg_ntp_filters(bp);
11013 	if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
11014 		bnxt_hwrm_exec_fwd_req(bp);
11015 	if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) {
11016 		bnxt_hwrm_port_qstats(bp, 0);
11017 		bnxt_hwrm_port_qstats_ext(bp, 0);
11018 		bnxt_accumulate_all_stats(bp);
11019 	}
11020 
11021 	if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
11022 		int rc;
11023 
11024 		mutex_lock(&bp->link_lock);
11025 		if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT,
11026 				       &bp->sp_event))
11027 			bnxt_hwrm_phy_qcaps(bp);
11028 
11029 		rc = bnxt_update_link(bp, true);
11030 		if (rc)
11031 			netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
11032 				   rc);
11033 
11034 		if (test_and_clear_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT,
11035 				       &bp->sp_event))
11036 			bnxt_init_ethtool_link_settings(bp);
11037 		mutex_unlock(&bp->link_lock);
11038 	}
11039 	if (test_and_clear_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event)) {
11040 		int rc;
11041 
11042 		mutex_lock(&bp->link_lock);
11043 		rc = bnxt_update_phy_setting(bp);
11044 		mutex_unlock(&bp->link_lock);
11045 		if (rc) {
11046 			netdev_warn(bp->dev, "update phy settings retry failed\n");
11047 		} else {
11048 			bp->link_info.phy_retry = false;
11049 			netdev_info(bp->dev, "update phy settings retry succeeded\n");
11050 		}
11051 	}
11052 	if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) {
11053 		mutex_lock(&bp->link_lock);
11054 		bnxt_get_port_module_status(bp);
11055 		mutex_unlock(&bp->link_lock);
11056 	}
11057 
11058 	if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event))
11059 		bnxt_tc_flow_stats_work(bp);
11060 
11061 	if (test_and_clear_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event))
11062 		bnxt_chk_missed_irq(bp);
11063 
11064 	/* These functions below will clear BNXT_STATE_IN_SP_TASK.  They
11065 	 * must be the last functions to be called before exiting.
11066 	 */
11067 	if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event))
11068 		bnxt_reset(bp, false);
11069 
11070 	if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event))
11071 		bnxt_reset(bp, true);
11072 
11073 	if (test_and_clear_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event))
11074 		bnxt_rx_ring_reset(bp);
11075 
11076 	if (test_and_clear_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event))
11077 		bnxt_devlink_health_report(bp, BNXT_FW_RESET_NOTIFY_SP_EVENT);
11078 
11079 	if (test_and_clear_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event)) {
11080 		if (!is_bnxt_fw_ok(bp))
11081 			bnxt_devlink_health_report(bp,
11082 						   BNXT_FW_EXCEPTION_SP_EVENT);
11083 	}
11084 
11085 	smp_mb__before_atomic();
11086 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
11087 }
11088 
11089 /* Under rtnl_lock */
11090 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs,
11091 		     int tx_xdp)
11092 {
11093 	int max_rx, max_tx, tx_sets = 1;
11094 	int tx_rings_needed, stats;
11095 	int rx_rings = rx;
11096 	int cp, vnics, rc;
11097 
11098 	if (tcs)
11099 		tx_sets = tcs;
11100 
11101 	rc = bnxt_get_max_rings(bp, &max_rx, &max_tx, sh);
11102 	if (rc)
11103 		return rc;
11104 
11105 	if (max_rx < rx)
11106 		return -ENOMEM;
11107 
11108 	tx_rings_needed = tx * tx_sets + tx_xdp;
11109 	if (max_tx < tx_rings_needed)
11110 		return -ENOMEM;
11111 
11112 	vnics = 1;
11113 	if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS)
11114 		vnics += rx_rings;
11115 
11116 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
11117 		rx_rings <<= 1;
11118 	cp = sh ? max_t(int, tx_rings_needed, rx) : tx_rings_needed + rx;
11119 	stats = cp;
11120 	if (BNXT_NEW_RM(bp)) {
11121 		cp += bnxt_get_ulp_msix_num(bp);
11122 		stats += bnxt_get_ulp_stat_ctxs(bp);
11123 	}
11124 	return bnxt_hwrm_check_rings(bp, tx_rings_needed, rx_rings, rx, cp,
11125 				     stats, vnics);
11126 }
11127 
11128 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev)
11129 {
11130 	if (bp->bar2) {
11131 		pci_iounmap(pdev, bp->bar2);
11132 		bp->bar2 = NULL;
11133 	}
11134 
11135 	if (bp->bar1) {
11136 		pci_iounmap(pdev, bp->bar1);
11137 		bp->bar1 = NULL;
11138 	}
11139 
11140 	if (bp->bar0) {
11141 		pci_iounmap(pdev, bp->bar0);
11142 		bp->bar0 = NULL;
11143 	}
11144 }
11145 
11146 static void bnxt_cleanup_pci(struct bnxt *bp)
11147 {
11148 	bnxt_unmap_bars(bp, bp->pdev);
11149 	pci_release_regions(bp->pdev);
11150 	if (pci_is_enabled(bp->pdev))
11151 		pci_disable_device(bp->pdev);
11152 }
11153 
11154 static void bnxt_init_dflt_coal(struct bnxt *bp)
11155 {
11156 	struct bnxt_coal *coal;
11157 
11158 	/* Tick values in micro seconds.
11159 	 * 1 coal_buf x bufs_per_record = 1 completion record.
11160 	 */
11161 	coal = &bp->rx_coal;
11162 	coal->coal_ticks = 10;
11163 	coal->coal_bufs = 30;
11164 	coal->coal_ticks_irq = 1;
11165 	coal->coal_bufs_irq = 2;
11166 	coal->idle_thresh = 50;
11167 	coal->bufs_per_record = 2;
11168 	coal->budget = 64;		/* NAPI budget */
11169 
11170 	coal = &bp->tx_coal;
11171 	coal->coal_ticks = 28;
11172 	coal->coal_bufs = 30;
11173 	coal->coal_ticks_irq = 2;
11174 	coal->coal_bufs_irq = 2;
11175 	coal->bufs_per_record = 1;
11176 
11177 	bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS;
11178 }
11179 
11180 static int bnxt_fw_reset_via_optee(struct bnxt *bp)
11181 {
11182 #ifdef CONFIG_TEE_BNXT_FW
11183 	int rc = tee_bnxt_fw_load();
11184 
11185 	if (rc)
11186 		netdev_err(bp->dev, "Failed FW reset via OP-TEE, rc=%d\n", rc);
11187 
11188 	return rc;
11189 #else
11190 	netdev_err(bp->dev, "OP-TEE not supported\n");
11191 	return -ENODEV;
11192 #endif
11193 }
11194 
11195 static int bnxt_fw_init_one_p1(struct bnxt *bp)
11196 {
11197 	int rc;
11198 
11199 	bp->fw_cap = 0;
11200 	rc = bnxt_hwrm_ver_get(bp);
11201 	bnxt_try_map_fw_health_reg(bp);
11202 	if (rc) {
11203 		if (bp->fw_health && bp->fw_health->status_reliable) {
11204 			u32 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
11205 
11206 			netdev_err(bp->dev,
11207 				   "Firmware not responding, status: 0x%x\n",
11208 				   sts);
11209 			if (sts & FW_STATUS_REG_CRASHED_NO_MASTER) {
11210 				netdev_warn(bp->dev, "Firmware recover via OP-TEE requested\n");
11211 				rc = bnxt_fw_reset_via_optee(bp);
11212 				if (!rc)
11213 					rc = bnxt_hwrm_ver_get(bp);
11214 			}
11215 		}
11216 		if (rc)
11217 			return rc;
11218 	}
11219 
11220 	if (bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL) {
11221 		rc = bnxt_alloc_kong_hwrm_resources(bp);
11222 		if (rc)
11223 			bp->fw_cap &= ~BNXT_FW_CAP_KONG_MB_CHNL;
11224 	}
11225 
11226 	if ((bp->fw_cap & BNXT_FW_CAP_SHORT_CMD) ||
11227 	    bp->hwrm_max_ext_req_len > BNXT_HWRM_MAX_REQ_LEN) {
11228 		rc = bnxt_alloc_hwrm_short_cmd_req(bp);
11229 		if (rc)
11230 			return rc;
11231 	}
11232 	bnxt_nvm_cfg_ver_get(bp);
11233 
11234 	rc = bnxt_hwrm_func_reset(bp);
11235 	if (rc)
11236 		return -ENODEV;
11237 
11238 	bnxt_hwrm_fw_set_time(bp);
11239 	return 0;
11240 }
11241 
11242 static int bnxt_fw_init_one_p2(struct bnxt *bp)
11243 {
11244 	int rc;
11245 
11246 	/* Get the MAX capabilities for this function */
11247 	rc = bnxt_hwrm_func_qcaps(bp);
11248 	if (rc) {
11249 		netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
11250 			   rc);
11251 		return -ENODEV;
11252 	}
11253 
11254 	rc = bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(bp);
11255 	if (rc)
11256 		netdev_warn(bp->dev, "hwrm query adv flow mgnt failure rc: %d\n",
11257 			    rc);
11258 
11259 	if (bnxt_alloc_fw_health(bp)) {
11260 		netdev_warn(bp->dev, "no memory for firmware error recovery\n");
11261 	} else {
11262 		rc = bnxt_hwrm_error_recovery_qcfg(bp);
11263 		if (rc)
11264 			netdev_warn(bp->dev, "hwrm query error recovery failure rc: %d\n",
11265 				    rc);
11266 	}
11267 
11268 	rc = bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false);
11269 	if (rc)
11270 		return -ENODEV;
11271 
11272 	bnxt_hwrm_func_qcfg(bp);
11273 	bnxt_hwrm_vnic_qcaps(bp);
11274 	bnxt_hwrm_port_led_qcaps(bp);
11275 	bnxt_ethtool_init(bp);
11276 	bnxt_dcb_init(bp);
11277 	return 0;
11278 }
11279 
11280 static void bnxt_set_dflt_rss_hash_type(struct bnxt *bp)
11281 {
11282 	bp->flags &= ~BNXT_FLAG_UDP_RSS_CAP;
11283 	bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 |
11284 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 |
11285 			   VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 |
11286 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6;
11287 	if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) {
11288 		bp->flags |= BNXT_FLAG_UDP_RSS_CAP;
11289 		bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 |
11290 				    VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6;
11291 	}
11292 }
11293 
11294 static void bnxt_set_dflt_rfs(struct bnxt *bp)
11295 {
11296 	struct net_device *dev = bp->dev;
11297 
11298 	dev->hw_features &= ~NETIF_F_NTUPLE;
11299 	dev->features &= ~NETIF_F_NTUPLE;
11300 	bp->flags &= ~BNXT_FLAG_RFS;
11301 	if (bnxt_rfs_supported(bp)) {
11302 		dev->hw_features |= NETIF_F_NTUPLE;
11303 		if (bnxt_rfs_capable(bp)) {
11304 			bp->flags |= BNXT_FLAG_RFS;
11305 			dev->features |= NETIF_F_NTUPLE;
11306 		}
11307 	}
11308 }
11309 
11310 static void bnxt_fw_init_one_p3(struct bnxt *bp)
11311 {
11312 	struct pci_dev *pdev = bp->pdev;
11313 
11314 	bnxt_set_dflt_rss_hash_type(bp);
11315 	bnxt_set_dflt_rfs(bp);
11316 
11317 	bnxt_get_wol_settings(bp);
11318 	if (bp->flags & BNXT_FLAG_WOL_CAP)
11319 		device_set_wakeup_enable(&pdev->dev, bp->wol);
11320 	else
11321 		device_set_wakeup_capable(&pdev->dev, false);
11322 
11323 	bnxt_hwrm_set_cache_line_size(bp, cache_line_size());
11324 	bnxt_hwrm_coal_params_qcaps(bp);
11325 }
11326 
11327 static int bnxt_fw_init_one(struct bnxt *bp)
11328 {
11329 	int rc;
11330 
11331 	rc = bnxt_fw_init_one_p1(bp);
11332 	if (rc) {
11333 		netdev_err(bp->dev, "Firmware init phase 1 failed\n");
11334 		return rc;
11335 	}
11336 	rc = bnxt_fw_init_one_p2(bp);
11337 	if (rc) {
11338 		netdev_err(bp->dev, "Firmware init phase 2 failed\n");
11339 		return rc;
11340 	}
11341 	rc = bnxt_approve_mac(bp, bp->dev->dev_addr, false);
11342 	if (rc)
11343 		return rc;
11344 
11345 	/* In case fw capabilities have changed, destroy the unneeded
11346 	 * reporters and create newly capable ones.
11347 	 */
11348 	bnxt_dl_fw_reporters_destroy(bp, false);
11349 	bnxt_dl_fw_reporters_create(bp);
11350 	bnxt_fw_init_one_p3(bp);
11351 	return 0;
11352 }
11353 
11354 static void bnxt_fw_reset_writel(struct bnxt *bp, int reg_idx)
11355 {
11356 	struct bnxt_fw_health *fw_health = bp->fw_health;
11357 	u32 reg = fw_health->fw_reset_seq_regs[reg_idx];
11358 	u32 val = fw_health->fw_reset_seq_vals[reg_idx];
11359 	u32 reg_type, reg_off, delay_msecs;
11360 
11361 	delay_msecs = fw_health->fw_reset_seq_delay_msec[reg_idx];
11362 	reg_type = BNXT_FW_HEALTH_REG_TYPE(reg);
11363 	reg_off = BNXT_FW_HEALTH_REG_OFF(reg);
11364 	switch (reg_type) {
11365 	case BNXT_FW_HEALTH_REG_TYPE_CFG:
11366 		pci_write_config_dword(bp->pdev, reg_off, val);
11367 		break;
11368 	case BNXT_FW_HEALTH_REG_TYPE_GRC:
11369 		writel(reg_off & BNXT_GRC_BASE_MASK,
11370 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4);
11371 		reg_off = (reg_off & BNXT_GRC_OFFSET_MASK) + 0x2000;
11372 		fallthrough;
11373 	case BNXT_FW_HEALTH_REG_TYPE_BAR0:
11374 		writel(val, bp->bar0 + reg_off);
11375 		break;
11376 	case BNXT_FW_HEALTH_REG_TYPE_BAR1:
11377 		writel(val, bp->bar1 + reg_off);
11378 		break;
11379 	}
11380 	if (delay_msecs) {
11381 		pci_read_config_dword(bp->pdev, 0, &val);
11382 		msleep(delay_msecs);
11383 	}
11384 }
11385 
11386 static void bnxt_reset_all(struct bnxt *bp)
11387 {
11388 	struct bnxt_fw_health *fw_health = bp->fw_health;
11389 	int i, rc;
11390 
11391 	if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
11392 		bnxt_fw_reset_via_optee(bp);
11393 		bp->fw_reset_timestamp = jiffies;
11394 		return;
11395 	}
11396 
11397 	if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_HOST) {
11398 		for (i = 0; i < fw_health->fw_reset_seq_cnt; i++)
11399 			bnxt_fw_reset_writel(bp, i);
11400 	} else if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) {
11401 		struct hwrm_fw_reset_input req = {0};
11402 
11403 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FW_RESET, -1, -1);
11404 		req.resp_addr = cpu_to_le64(bp->hwrm_cmd_kong_resp_dma_addr);
11405 		req.embedded_proc_type = FW_RESET_REQ_EMBEDDED_PROC_TYPE_CHIP;
11406 		req.selfrst_status = FW_RESET_REQ_SELFRST_STATUS_SELFRSTASAP;
11407 		req.flags = FW_RESET_REQ_FLAGS_RESET_GRACEFUL;
11408 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
11409 		if (rc)
11410 			netdev_warn(bp->dev, "Unable to reset FW rc=%d\n", rc);
11411 	}
11412 	bp->fw_reset_timestamp = jiffies;
11413 }
11414 
11415 static void bnxt_fw_reset_task(struct work_struct *work)
11416 {
11417 	struct bnxt *bp = container_of(work, struct bnxt, fw_reset_task.work);
11418 	int rc;
11419 
11420 	if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
11421 		netdev_err(bp->dev, "bnxt_fw_reset_task() called when not in fw reset mode!\n");
11422 		return;
11423 	}
11424 
11425 	switch (bp->fw_reset_state) {
11426 	case BNXT_FW_RESET_STATE_POLL_VF: {
11427 		int n = bnxt_get_registered_vfs(bp);
11428 		int tmo;
11429 
11430 		if (n < 0) {
11431 			netdev_err(bp->dev, "Firmware reset aborted, subsequent func_qcfg cmd failed, rc = %d, %d msecs since reset timestamp\n",
11432 				   n, jiffies_to_msecs(jiffies -
11433 				   bp->fw_reset_timestamp));
11434 			goto fw_reset_abort;
11435 		} else if (n > 0) {
11436 			if (time_after(jiffies, bp->fw_reset_timestamp +
11437 				       (bp->fw_reset_max_dsecs * HZ / 10))) {
11438 				clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11439 				bp->fw_reset_state = 0;
11440 				netdev_err(bp->dev, "Firmware reset aborted, bnxt_get_registered_vfs() returns %d\n",
11441 					   n);
11442 				return;
11443 			}
11444 			bnxt_queue_fw_reset_work(bp, HZ / 10);
11445 			return;
11446 		}
11447 		bp->fw_reset_timestamp = jiffies;
11448 		rtnl_lock();
11449 		bnxt_fw_reset_close(bp);
11450 		if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
11451 			bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN;
11452 			tmo = HZ / 10;
11453 		} else {
11454 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
11455 			tmo = bp->fw_reset_min_dsecs * HZ / 10;
11456 		}
11457 		rtnl_unlock();
11458 		bnxt_queue_fw_reset_work(bp, tmo);
11459 		return;
11460 	}
11461 	case BNXT_FW_RESET_STATE_POLL_FW_DOWN: {
11462 		u32 val;
11463 
11464 		val = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
11465 		if (!(val & BNXT_FW_STATUS_SHUTDOWN) &&
11466 		    !time_after(jiffies, bp->fw_reset_timestamp +
11467 		    (bp->fw_reset_max_dsecs * HZ / 10))) {
11468 			bnxt_queue_fw_reset_work(bp, HZ / 5);
11469 			return;
11470 		}
11471 
11472 		if (!bp->fw_health->master) {
11473 			u32 wait_dsecs = bp->fw_health->normal_func_wait_dsecs;
11474 
11475 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
11476 			bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10);
11477 			return;
11478 		}
11479 		bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW;
11480 	}
11481 		fallthrough;
11482 	case BNXT_FW_RESET_STATE_RESET_FW:
11483 		bnxt_reset_all(bp);
11484 		bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
11485 		bnxt_queue_fw_reset_work(bp, bp->fw_reset_min_dsecs * HZ / 10);
11486 		return;
11487 	case BNXT_FW_RESET_STATE_ENABLE_DEV:
11488 		if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) {
11489 			u32 val;
11490 
11491 			val = bnxt_fw_health_readl(bp,
11492 						   BNXT_FW_RESET_INPROG_REG);
11493 			if (val)
11494 				netdev_warn(bp->dev, "FW reset inprog %x after min wait time.\n",
11495 					    val);
11496 		}
11497 		clear_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
11498 		if (pci_enable_device(bp->pdev)) {
11499 			netdev_err(bp->dev, "Cannot re-enable PCI device\n");
11500 			goto fw_reset_abort;
11501 		}
11502 		pci_set_master(bp->pdev);
11503 		bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW;
11504 		fallthrough;
11505 	case BNXT_FW_RESET_STATE_POLL_FW:
11506 		bp->hwrm_cmd_timeout = SHORT_HWRM_CMD_TIMEOUT;
11507 		rc = __bnxt_hwrm_ver_get(bp, true);
11508 		if (rc) {
11509 			if (time_after(jiffies, bp->fw_reset_timestamp +
11510 				       (bp->fw_reset_max_dsecs * HZ / 10))) {
11511 				netdev_err(bp->dev, "Firmware reset aborted\n");
11512 				goto fw_reset_abort_status;
11513 			}
11514 			bnxt_queue_fw_reset_work(bp, HZ / 5);
11515 			return;
11516 		}
11517 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
11518 		bp->fw_reset_state = BNXT_FW_RESET_STATE_OPENING;
11519 		fallthrough;
11520 	case BNXT_FW_RESET_STATE_OPENING:
11521 		while (!rtnl_trylock()) {
11522 			bnxt_queue_fw_reset_work(bp, HZ / 10);
11523 			return;
11524 		}
11525 		rc = bnxt_open(bp->dev);
11526 		if (rc) {
11527 			netdev_err(bp->dev, "bnxt_open_nic() failed\n");
11528 			clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11529 			dev_close(bp->dev);
11530 		}
11531 
11532 		bp->fw_reset_state = 0;
11533 		/* Make sure fw_reset_state is 0 before clearing the flag */
11534 		smp_mb__before_atomic();
11535 		clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11536 		bnxt_ulp_start(bp, rc);
11537 		if (!rc)
11538 			bnxt_reenable_sriov(bp);
11539 		bnxt_dl_health_recovery_done(bp);
11540 		bnxt_dl_health_status_update(bp, true);
11541 		rtnl_unlock();
11542 		break;
11543 	}
11544 	return;
11545 
11546 fw_reset_abort_status:
11547 	if (bp->fw_health->status_reliable ||
11548 	    (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) {
11549 		u32 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
11550 
11551 		netdev_err(bp->dev, "fw_health_status 0x%x\n", sts);
11552 	}
11553 fw_reset_abort:
11554 	clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11555 	if (bp->fw_reset_state != BNXT_FW_RESET_STATE_POLL_VF)
11556 		bnxt_dl_health_status_update(bp, false);
11557 	bp->fw_reset_state = 0;
11558 	rtnl_lock();
11559 	dev_close(bp->dev);
11560 	rtnl_unlock();
11561 }
11562 
11563 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
11564 {
11565 	int rc;
11566 	struct bnxt *bp = netdev_priv(dev);
11567 
11568 	SET_NETDEV_DEV(dev, &pdev->dev);
11569 
11570 	/* enable device (incl. PCI PM wakeup), and bus-mastering */
11571 	rc = pci_enable_device(pdev);
11572 	if (rc) {
11573 		dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
11574 		goto init_err;
11575 	}
11576 
11577 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
11578 		dev_err(&pdev->dev,
11579 			"Cannot find PCI device base address, aborting\n");
11580 		rc = -ENODEV;
11581 		goto init_err_disable;
11582 	}
11583 
11584 	rc = pci_request_regions(pdev, DRV_MODULE_NAME);
11585 	if (rc) {
11586 		dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
11587 		goto init_err_disable;
11588 	}
11589 
11590 	if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
11591 	    dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
11592 		dev_err(&pdev->dev, "System does not support DMA, aborting\n");
11593 		rc = -EIO;
11594 		goto init_err_release;
11595 	}
11596 
11597 	pci_set_master(pdev);
11598 
11599 	bp->dev = dev;
11600 	bp->pdev = pdev;
11601 
11602 	/* Doorbell BAR bp->bar1 is mapped after bnxt_fw_init_one_p2()
11603 	 * determines the BAR size.
11604 	 */
11605 	bp->bar0 = pci_ioremap_bar(pdev, 0);
11606 	if (!bp->bar0) {
11607 		dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
11608 		rc = -ENOMEM;
11609 		goto init_err_release;
11610 	}
11611 
11612 	bp->bar2 = pci_ioremap_bar(pdev, 4);
11613 	if (!bp->bar2) {
11614 		dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
11615 		rc = -ENOMEM;
11616 		goto init_err_release;
11617 	}
11618 
11619 	pci_enable_pcie_error_reporting(pdev);
11620 
11621 	INIT_WORK(&bp->sp_task, bnxt_sp_task);
11622 	INIT_DELAYED_WORK(&bp->fw_reset_task, bnxt_fw_reset_task);
11623 
11624 	spin_lock_init(&bp->ntp_fltr_lock);
11625 #if BITS_PER_LONG == 32
11626 	spin_lock_init(&bp->db_lock);
11627 #endif
11628 
11629 	bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
11630 	bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
11631 
11632 	bnxt_init_dflt_coal(bp);
11633 
11634 	timer_setup(&bp->timer, bnxt_timer, 0);
11635 	bp->current_interval = BNXT_TIMER_INTERVAL;
11636 
11637 	bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID;
11638 	bp->nge_fw_dst_port_id = INVALID_HW_RING_ID;
11639 
11640 	clear_bit(BNXT_STATE_OPEN, &bp->state);
11641 	return 0;
11642 
11643 init_err_release:
11644 	bnxt_unmap_bars(bp, pdev);
11645 	pci_release_regions(pdev);
11646 
11647 init_err_disable:
11648 	pci_disable_device(pdev);
11649 
11650 init_err:
11651 	return rc;
11652 }
11653 
11654 /* rtnl_lock held */
11655 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
11656 {
11657 	struct sockaddr *addr = p;
11658 	struct bnxt *bp = netdev_priv(dev);
11659 	int rc = 0;
11660 
11661 	if (!is_valid_ether_addr(addr->sa_data))
11662 		return -EADDRNOTAVAIL;
11663 
11664 	if (ether_addr_equal(addr->sa_data, dev->dev_addr))
11665 		return 0;
11666 
11667 	rc = bnxt_approve_mac(bp, addr->sa_data, true);
11668 	if (rc)
11669 		return rc;
11670 
11671 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
11672 	if (netif_running(dev)) {
11673 		bnxt_close_nic(bp, false, false);
11674 		rc = bnxt_open_nic(bp, false, false);
11675 	}
11676 
11677 	return rc;
11678 }
11679 
11680 /* rtnl_lock held */
11681 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
11682 {
11683 	struct bnxt *bp = netdev_priv(dev);
11684 
11685 	if (netif_running(dev))
11686 		bnxt_close_nic(bp, true, false);
11687 
11688 	dev->mtu = new_mtu;
11689 	bnxt_set_ring_params(bp);
11690 
11691 	if (netif_running(dev))
11692 		return bnxt_open_nic(bp, true, false);
11693 
11694 	return 0;
11695 }
11696 
11697 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc)
11698 {
11699 	struct bnxt *bp = netdev_priv(dev);
11700 	bool sh = false;
11701 	int rc;
11702 
11703 	if (tc > bp->max_tc) {
11704 		netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n",
11705 			   tc, bp->max_tc);
11706 		return -EINVAL;
11707 	}
11708 
11709 	if (netdev_get_num_tc(dev) == tc)
11710 		return 0;
11711 
11712 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
11713 		sh = true;
11714 
11715 	rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings,
11716 			      sh, tc, bp->tx_nr_rings_xdp);
11717 	if (rc)
11718 		return rc;
11719 
11720 	/* Needs to close the device and do hw resource re-allocations */
11721 	if (netif_running(bp->dev))
11722 		bnxt_close_nic(bp, true, false);
11723 
11724 	if (tc) {
11725 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
11726 		netdev_set_num_tc(dev, tc);
11727 	} else {
11728 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
11729 		netdev_reset_tc(dev);
11730 	}
11731 	bp->tx_nr_rings += bp->tx_nr_rings_xdp;
11732 	bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
11733 			       bp->tx_nr_rings + bp->rx_nr_rings;
11734 
11735 	if (netif_running(bp->dev))
11736 		return bnxt_open_nic(bp, true, false);
11737 
11738 	return 0;
11739 }
11740 
11741 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
11742 				  void *cb_priv)
11743 {
11744 	struct bnxt *bp = cb_priv;
11745 
11746 	if (!bnxt_tc_flower_enabled(bp) ||
11747 	    !tc_cls_can_offload_and_chain0(bp->dev, type_data))
11748 		return -EOPNOTSUPP;
11749 
11750 	switch (type) {
11751 	case TC_SETUP_CLSFLOWER:
11752 		return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data);
11753 	default:
11754 		return -EOPNOTSUPP;
11755 	}
11756 }
11757 
11758 LIST_HEAD(bnxt_block_cb_list);
11759 
11760 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type,
11761 			 void *type_data)
11762 {
11763 	struct bnxt *bp = netdev_priv(dev);
11764 
11765 	switch (type) {
11766 	case TC_SETUP_BLOCK:
11767 		return flow_block_cb_setup_simple(type_data,
11768 						  &bnxt_block_cb_list,
11769 						  bnxt_setup_tc_block_cb,
11770 						  bp, bp, true);
11771 	case TC_SETUP_QDISC_MQPRIO: {
11772 		struct tc_mqprio_qopt *mqprio = type_data;
11773 
11774 		mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
11775 
11776 		return bnxt_setup_mq_tc(dev, mqprio->num_tc);
11777 	}
11778 	default:
11779 		return -EOPNOTSUPP;
11780 	}
11781 }
11782 
11783 #ifdef CONFIG_RFS_ACCEL
11784 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
11785 			    struct bnxt_ntuple_filter *f2)
11786 {
11787 	struct flow_keys *keys1 = &f1->fkeys;
11788 	struct flow_keys *keys2 = &f2->fkeys;
11789 
11790 	if (keys1->basic.n_proto != keys2->basic.n_proto ||
11791 	    keys1->basic.ip_proto != keys2->basic.ip_proto)
11792 		return false;
11793 
11794 	if (keys1->basic.n_proto == htons(ETH_P_IP)) {
11795 		if (keys1->addrs.v4addrs.src != keys2->addrs.v4addrs.src ||
11796 		    keys1->addrs.v4addrs.dst != keys2->addrs.v4addrs.dst)
11797 			return false;
11798 	} else {
11799 		if (memcmp(&keys1->addrs.v6addrs.src, &keys2->addrs.v6addrs.src,
11800 			   sizeof(keys1->addrs.v6addrs.src)) ||
11801 		    memcmp(&keys1->addrs.v6addrs.dst, &keys2->addrs.v6addrs.dst,
11802 			   sizeof(keys1->addrs.v6addrs.dst)))
11803 			return false;
11804 	}
11805 
11806 	if (keys1->ports.ports == keys2->ports.ports &&
11807 	    keys1->control.flags == keys2->control.flags &&
11808 	    ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) &&
11809 	    ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr))
11810 		return true;
11811 
11812 	return false;
11813 }
11814 
11815 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
11816 			      u16 rxq_index, u32 flow_id)
11817 {
11818 	struct bnxt *bp = netdev_priv(dev);
11819 	struct bnxt_ntuple_filter *fltr, *new_fltr;
11820 	struct flow_keys *fkeys;
11821 	struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
11822 	int rc = 0, idx, bit_id, l2_idx = 0;
11823 	struct hlist_head *head;
11824 	u32 flags;
11825 
11826 	if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) {
11827 		struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
11828 		int off = 0, j;
11829 
11830 		netif_addr_lock_bh(dev);
11831 		for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) {
11832 			if (ether_addr_equal(eth->h_dest,
11833 					     vnic->uc_list + off)) {
11834 				l2_idx = j + 1;
11835 				break;
11836 			}
11837 		}
11838 		netif_addr_unlock_bh(dev);
11839 		if (!l2_idx)
11840 			return -EINVAL;
11841 	}
11842 	new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
11843 	if (!new_fltr)
11844 		return -ENOMEM;
11845 
11846 	fkeys = &new_fltr->fkeys;
11847 	if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
11848 		rc = -EPROTONOSUPPORT;
11849 		goto err_free;
11850 	}
11851 
11852 	if ((fkeys->basic.n_proto != htons(ETH_P_IP) &&
11853 	     fkeys->basic.n_proto != htons(ETH_P_IPV6)) ||
11854 	    ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
11855 	     (fkeys->basic.ip_proto != IPPROTO_UDP))) {
11856 		rc = -EPROTONOSUPPORT;
11857 		goto err_free;
11858 	}
11859 	if (fkeys->basic.n_proto == htons(ETH_P_IPV6) &&
11860 	    bp->hwrm_spec_code < 0x10601) {
11861 		rc = -EPROTONOSUPPORT;
11862 		goto err_free;
11863 	}
11864 	flags = fkeys->control.flags;
11865 	if (((flags & FLOW_DIS_ENCAPSULATION) &&
11866 	     bp->hwrm_spec_code < 0x10601) || (flags & FLOW_DIS_IS_FRAGMENT)) {
11867 		rc = -EPROTONOSUPPORT;
11868 		goto err_free;
11869 	}
11870 
11871 	memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN);
11872 	memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
11873 
11874 	idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
11875 	head = &bp->ntp_fltr_hash_tbl[idx];
11876 	rcu_read_lock();
11877 	hlist_for_each_entry_rcu(fltr, head, hash) {
11878 		if (bnxt_fltr_match(fltr, new_fltr)) {
11879 			rcu_read_unlock();
11880 			rc = 0;
11881 			goto err_free;
11882 		}
11883 	}
11884 	rcu_read_unlock();
11885 
11886 	spin_lock_bh(&bp->ntp_fltr_lock);
11887 	bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
11888 					 BNXT_NTP_FLTR_MAX_FLTR, 0);
11889 	if (bit_id < 0) {
11890 		spin_unlock_bh(&bp->ntp_fltr_lock);
11891 		rc = -ENOMEM;
11892 		goto err_free;
11893 	}
11894 
11895 	new_fltr->sw_id = (u16)bit_id;
11896 	new_fltr->flow_id = flow_id;
11897 	new_fltr->l2_fltr_idx = l2_idx;
11898 	new_fltr->rxq = rxq_index;
11899 	hlist_add_head_rcu(&new_fltr->hash, head);
11900 	bp->ntp_fltr_count++;
11901 	spin_unlock_bh(&bp->ntp_fltr_lock);
11902 
11903 	set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
11904 	bnxt_queue_sp_work(bp);
11905 
11906 	return new_fltr->sw_id;
11907 
11908 err_free:
11909 	kfree(new_fltr);
11910 	return rc;
11911 }
11912 
11913 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
11914 {
11915 	int i;
11916 
11917 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
11918 		struct hlist_head *head;
11919 		struct hlist_node *tmp;
11920 		struct bnxt_ntuple_filter *fltr;
11921 		int rc;
11922 
11923 		head = &bp->ntp_fltr_hash_tbl[i];
11924 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
11925 			bool del = false;
11926 
11927 			if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
11928 				if (rps_may_expire_flow(bp->dev, fltr->rxq,
11929 							fltr->flow_id,
11930 							fltr->sw_id)) {
11931 					bnxt_hwrm_cfa_ntuple_filter_free(bp,
11932 									 fltr);
11933 					del = true;
11934 				}
11935 			} else {
11936 				rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
11937 								       fltr);
11938 				if (rc)
11939 					del = true;
11940 				else
11941 					set_bit(BNXT_FLTR_VALID, &fltr->state);
11942 			}
11943 
11944 			if (del) {
11945 				spin_lock_bh(&bp->ntp_fltr_lock);
11946 				hlist_del_rcu(&fltr->hash);
11947 				bp->ntp_fltr_count--;
11948 				spin_unlock_bh(&bp->ntp_fltr_lock);
11949 				synchronize_rcu();
11950 				clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
11951 				kfree(fltr);
11952 			}
11953 		}
11954 	}
11955 	if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event))
11956 		netdev_info(bp->dev, "Receive PF driver unload event!\n");
11957 }
11958 
11959 #else
11960 
11961 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
11962 {
11963 }
11964 
11965 #endif /* CONFIG_RFS_ACCEL */
11966 
11967 static int bnxt_udp_tunnel_sync(struct net_device *netdev, unsigned int table)
11968 {
11969 	struct bnxt *bp = netdev_priv(netdev);
11970 	struct udp_tunnel_info ti;
11971 	unsigned int cmd;
11972 
11973 	udp_tunnel_nic_get_port(netdev, table, 0, &ti);
11974 	if (ti.type == UDP_TUNNEL_TYPE_VXLAN)
11975 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN;
11976 	else
11977 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE;
11978 
11979 	if (ti.port)
11980 		return bnxt_hwrm_tunnel_dst_port_alloc(bp, ti.port, cmd);
11981 
11982 	return bnxt_hwrm_tunnel_dst_port_free(bp, cmd);
11983 }
11984 
11985 static const struct udp_tunnel_nic_info bnxt_udp_tunnels = {
11986 	.sync_table	= bnxt_udp_tunnel_sync,
11987 	.flags		= UDP_TUNNEL_NIC_INFO_MAY_SLEEP |
11988 			  UDP_TUNNEL_NIC_INFO_OPEN_ONLY,
11989 	.tables		= {
11990 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN,  },
11991 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
11992 	},
11993 };
11994 
11995 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
11996 			       struct net_device *dev, u32 filter_mask,
11997 			       int nlflags)
11998 {
11999 	struct bnxt *bp = netdev_priv(dev);
12000 
12001 	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0,
12002 				       nlflags, filter_mask, NULL);
12003 }
12004 
12005 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
12006 			       u16 flags, struct netlink_ext_ack *extack)
12007 {
12008 	struct bnxt *bp = netdev_priv(dev);
12009 	struct nlattr *attr, *br_spec;
12010 	int rem, rc = 0;
12011 
12012 	if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp))
12013 		return -EOPNOTSUPP;
12014 
12015 	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
12016 	if (!br_spec)
12017 		return -EINVAL;
12018 
12019 	nla_for_each_nested(attr, br_spec, rem) {
12020 		u16 mode;
12021 
12022 		if (nla_type(attr) != IFLA_BRIDGE_MODE)
12023 			continue;
12024 
12025 		if (nla_len(attr) < sizeof(mode))
12026 			return -EINVAL;
12027 
12028 		mode = nla_get_u16(attr);
12029 		if (mode == bp->br_mode)
12030 			break;
12031 
12032 		rc = bnxt_hwrm_set_br_mode(bp, mode);
12033 		if (!rc)
12034 			bp->br_mode = mode;
12035 		break;
12036 	}
12037 	return rc;
12038 }
12039 
12040 int bnxt_get_port_parent_id(struct net_device *dev,
12041 			    struct netdev_phys_item_id *ppid)
12042 {
12043 	struct bnxt *bp = netdev_priv(dev);
12044 
12045 	if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV)
12046 		return -EOPNOTSUPP;
12047 
12048 	/* The PF and it's VF-reps only support the switchdev framework */
12049 	if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_DSN_VALID))
12050 		return -EOPNOTSUPP;
12051 
12052 	ppid->id_len = sizeof(bp->dsn);
12053 	memcpy(ppid->id, bp->dsn, ppid->id_len);
12054 
12055 	return 0;
12056 }
12057 
12058 static struct devlink_port *bnxt_get_devlink_port(struct net_device *dev)
12059 {
12060 	struct bnxt *bp = netdev_priv(dev);
12061 
12062 	return &bp->dl_port;
12063 }
12064 
12065 static const struct net_device_ops bnxt_netdev_ops = {
12066 	.ndo_open		= bnxt_open,
12067 	.ndo_start_xmit		= bnxt_start_xmit,
12068 	.ndo_stop		= bnxt_close,
12069 	.ndo_get_stats64	= bnxt_get_stats64,
12070 	.ndo_set_rx_mode	= bnxt_set_rx_mode,
12071 	.ndo_do_ioctl		= bnxt_ioctl,
12072 	.ndo_validate_addr	= eth_validate_addr,
12073 	.ndo_set_mac_address	= bnxt_change_mac_addr,
12074 	.ndo_change_mtu		= bnxt_change_mtu,
12075 	.ndo_fix_features	= bnxt_fix_features,
12076 	.ndo_set_features	= bnxt_set_features,
12077 	.ndo_tx_timeout		= bnxt_tx_timeout,
12078 #ifdef CONFIG_BNXT_SRIOV
12079 	.ndo_get_vf_config	= bnxt_get_vf_config,
12080 	.ndo_set_vf_mac		= bnxt_set_vf_mac,
12081 	.ndo_set_vf_vlan	= bnxt_set_vf_vlan,
12082 	.ndo_set_vf_rate	= bnxt_set_vf_bw,
12083 	.ndo_set_vf_link_state	= bnxt_set_vf_link_state,
12084 	.ndo_set_vf_spoofchk	= bnxt_set_vf_spoofchk,
12085 	.ndo_set_vf_trust	= bnxt_set_vf_trust,
12086 #endif
12087 	.ndo_setup_tc           = bnxt_setup_tc,
12088 #ifdef CONFIG_RFS_ACCEL
12089 	.ndo_rx_flow_steer	= bnxt_rx_flow_steer,
12090 #endif
12091 	.ndo_udp_tunnel_add	= udp_tunnel_nic_add_port,
12092 	.ndo_udp_tunnel_del	= udp_tunnel_nic_del_port,
12093 	.ndo_bpf		= bnxt_xdp,
12094 	.ndo_xdp_xmit		= bnxt_xdp_xmit,
12095 	.ndo_bridge_getlink	= bnxt_bridge_getlink,
12096 	.ndo_bridge_setlink	= bnxt_bridge_setlink,
12097 	.ndo_get_devlink_port	= bnxt_get_devlink_port,
12098 };
12099 
12100 static void bnxt_remove_one(struct pci_dev *pdev)
12101 {
12102 	struct net_device *dev = pci_get_drvdata(pdev);
12103 	struct bnxt *bp = netdev_priv(dev);
12104 
12105 	if (BNXT_PF(bp))
12106 		bnxt_sriov_disable(bp);
12107 
12108 	if (BNXT_PF(bp))
12109 		devlink_port_type_clear(&bp->dl_port);
12110 	pci_disable_pcie_error_reporting(pdev);
12111 	unregister_netdev(dev);
12112 	clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12113 	/* Flush any pending tasks */
12114 	cancel_work_sync(&bp->sp_task);
12115 	cancel_delayed_work_sync(&bp->fw_reset_task);
12116 	bp->sp_event = 0;
12117 
12118 	bnxt_dl_fw_reporters_destroy(bp, true);
12119 	bnxt_dl_unregister(bp);
12120 	bnxt_shutdown_tc(bp);
12121 
12122 	bnxt_clear_int_mode(bp);
12123 	bnxt_hwrm_func_drv_unrgtr(bp);
12124 	bnxt_free_hwrm_resources(bp);
12125 	bnxt_free_hwrm_short_cmd_req(bp);
12126 	bnxt_ethtool_free(bp);
12127 	bnxt_dcb_free(bp);
12128 	kfree(bp->edev);
12129 	bp->edev = NULL;
12130 	kfree(bp->fw_health);
12131 	bp->fw_health = NULL;
12132 	bnxt_cleanup_pci(bp);
12133 	bnxt_free_ctx_mem(bp);
12134 	kfree(bp->ctx);
12135 	bp->ctx = NULL;
12136 	kfree(bp->rss_indir_tbl);
12137 	bp->rss_indir_tbl = NULL;
12138 	bnxt_free_port_stats(bp);
12139 	free_netdev(dev);
12140 }
12141 
12142 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt)
12143 {
12144 	int rc = 0;
12145 	struct bnxt_link_info *link_info = &bp->link_info;
12146 
12147 	rc = bnxt_hwrm_phy_qcaps(bp);
12148 	if (rc) {
12149 		netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n",
12150 			   rc);
12151 		return rc;
12152 	}
12153 	if (!fw_dflt)
12154 		return 0;
12155 
12156 	rc = bnxt_update_link(bp, false);
12157 	if (rc) {
12158 		netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
12159 			   rc);
12160 		return rc;
12161 	}
12162 
12163 	/* Older firmware does not have supported_auto_speeds, so assume
12164 	 * that all supported speeds can be autonegotiated.
12165 	 */
12166 	if (link_info->auto_link_speeds && !link_info->support_auto_speeds)
12167 		link_info->support_auto_speeds = link_info->support_speeds;
12168 
12169 	bnxt_init_ethtool_link_settings(bp);
12170 	return 0;
12171 }
12172 
12173 static int bnxt_get_max_irq(struct pci_dev *pdev)
12174 {
12175 	u16 ctrl;
12176 
12177 	if (!pdev->msix_cap)
12178 		return 1;
12179 
12180 	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
12181 	return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
12182 }
12183 
12184 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
12185 				int *max_cp)
12186 {
12187 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
12188 	int max_ring_grps = 0, max_irq;
12189 
12190 	*max_tx = hw_resc->max_tx_rings;
12191 	*max_rx = hw_resc->max_rx_rings;
12192 	*max_cp = bnxt_get_max_func_cp_rings_for_en(bp);
12193 	max_irq = min_t(int, bnxt_get_max_func_irqs(bp) -
12194 			bnxt_get_ulp_msix_num(bp),
12195 			hw_resc->max_stat_ctxs - bnxt_get_ulp_stat_ctxs(bp));
12196 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
12197 		*max_cp = min_t(int, *max_cp, max_irq);
12198 	max_ring_grps = hw_resc->max_hw_ring_grps;
12199 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) {
12200 		*max_cp -= 1;
12201 		*max_rx -= 2;
12202 	}
12203 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
12204 		*max_rx >>= 1;
12205 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
12206 		bnxt_trim_rings(bp, max_rx, max_tx, *max_cp, false);
12207 		/* On P5 chips, max_cp output param should be available NQs */
12208 		*max_cp = max_irq;
12209 	}
12210 	*max_rx = min_t(int, *max_rx, max_ring_grps);
12211 }
12212 
12213 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
12214 {
12215 	int rx, tx, cp;
12216 
12217 	_bnxt_get_max_rings(bp, &rx, &tx, &cp);
12218 	*max_rx = rx;
12219 	*max_tx = tx;
12220 	if (!rx || !tx || !cp)
12221 		return -ENOMEM;
12222 
12223 	return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
12224 }
12225 
12226 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx,
12227 			       bool shared)
12228 {
12229 	int rc;
12230 
12231 	rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
12232 	if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) {
12233 		/* Not enough rings, try disabling agg rings. */
12234 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
12235 		rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
12236 		if (rc) {
12237 			/* set BNXT_FLAG_AGG_RINGS back for consistency */
12238 			bp->flags |= BNXT_FLAG_AGG_RINGS;
12239 			return rc;
12240 		}
12241 		bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
12242 		bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
12243 		bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
12244 		bnxt_set_ring_params(bp);
12245 	}
12246 
12247 	if (bp->flags & BNXT_FLAG_ROCE_CAP) {
12248 		int max_cp, max_stat, max_irq;
12249 
12250 		/* Reserve minimum resources for RoCE */
12251 		max_cp = bnxt_get_max_func_cp_rings(bp);
12252 		max_stat = bnxt_get_max_func_stat_ctxs(bp);
12253 		max_irq = bnxt_get_max_func_irqs(bp);
12254 		if (max_cp <= BNXT_MIN_ROCE_CP_RINGS ||
12255 		    max_irq <= BNXT_MIN_ROCE_CP_RINGS ||
12256 		    max_stat <= BNXT_MIN_ROCE_STAT_CTXS)
12257 			return 0;
12258 
12259 		max_cp -= BNXT_MIN_ROCE_CP_RINGS;
12260 		max_irq -= BNXT_MIN_ROCE_CP_RINGS;
12261 		max_stat -= BNXT_MIN_ROCE_STAT_CTXS;
12262 		max_cp = min_t(int, max_cp, max_irq);
12263 		max_cp = min_t(int, max_cp, max_stat);
12264 		rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared);
12265 		if (rc)
12266 			rc = 0;
12267 	}
12268 	return rc;
12269 }
12270 
12271 /* In initial default shared ring setting, each shared ring must have a
12272  * RX/TX ring pair.
12273  */
12274 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp)
12275 {
12276 	bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings);
12277 	bp->rx_nr_rings = bp->cp_nr_rings;
12278 	bp->tx_nr_rings_per_tc = bp->cp_nr_rings;
12279 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
12280 }
12281 
12282 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh)
12283 {
12284 	int dflt_rings, max_rx_rings, max_tx_rings, rc;
12285 
12286 	if (!bnxt_can_reserve_rings(bp))
12287 		return 0;
12288 
12289 	if (sh)
12290 		bp->flags |= BNXT_FLAG_SHARED_RINGS;
12291 	dflt_rings = is_kdump_kernel() ? 1 : netif_get_num_default_rss_queues();
12292 	/* Reduce default rings on multi-port cards so that total default
12293 	 * rings do not exceed CPU count.
12294 	 */
12295 	if (bp->port_count > 1) {
12296 		int max_rings =
12297 			max_t(int, num_online_cpus() / bp->port_count, 1);
12298 
12299 		dflt_rings = min_t(int, dflt_rings, max_rings);
12300 	}
12301 	rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh);
12302 	if (rc)
12303 		return rc;
12304 	bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
12305 	bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
12306 	if (sh)
12307 		bnxt_trim_dflt_sh_rings(bp);
12308 	else
12309 		bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings;
12310 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
12311 
12312 	rc = __bnxt_reserve_rings(bp);
12313 	if (rc)
12314 		netdev_warn(bp->dev, "Unable to reserve tx rings\n");
12315 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
12316 	if (sh)
12317 		bnxt_trim_dflt_sh_rings(bp);
12318 
12319 	/* Rings may have been trimmed, re-reserve the trimmed rings. */
12320 	if (bnxt_need_reserve_rings(bp)) {
12321 		rc = __bnxt_reserve_rings(bp);
12322 		if (rc)
12323 			netdev_warn(bp->dev, "2nd rings reservation failed.\n");
12324 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
12325 	}
12326 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
12327 		bp->rx_nr_rings++;
12328 		bp->cp_nr_rings++;
12329 	}
12330 	if (rc) {
12331 		bp->tx_nr_rings = 0;
12332 		bp->rx_nr_rings = 0;
12333 	}
12334 	return rc;
12335 }
12336 
12337 static int bnxt_init_dflt_ring_mode(struct bnxt *bp)
12338 {
12339 	int rc;
12340 
12341 	if (bp->tx_nr_rings)
12342 		return 0;
12343 
12344 	bnxt_ulp_irq_stop(bp);
12345 	bnxt_clear_int_mode(bp);
12346 	rc = bnxt_set_dflt_rings(bp, true);
12347 	if (rc) {
12348 		netdev_err(bp->dev, "Not enough rings available.\n");
12349 		goto init_dflt_ring_err;
12350 	}
12351 	rc = bnxt_init_int_mode(bp);
12352 	if (rc)
12353 		goto init_dflt_ring_err;
12354 
12355 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
12356 	if (bnxt_rfs_supported(bp) && bnxt_rfs_capable(bp)) {
12357 		bp->flags |= BNXT_FLAG_RFS;
12358 		bp->dev->features |= NETIF_F_NTUPLE;
12359 	}
12360 init_dflt_ring_err:
12361 	bnxt_ulp_irq_restart(bp, rc);
12362 	return rc;
12363 }
12364 
12365 int bnxt_restore_pf_fw_resources(struct bnxt *bp)
12366 {
12367 	int rc;
12368 
12369 	ASSERT_RTNL();
12370 	bnxt_hwrm_func_qcaps(bp);
12371 
12372 	if (netif_running(bp->dev))
12373 		__bnxt_close_nic(bp, true, false);
12374 
12375 	bnxt_ulp_irq_stop(bp);
12376 	bnxt_clear_int_mode(bp);
12377 	rc = bnxt_init_int_mode(bp);
12378 	bnxt_ulp_irq_restart(bp, rc);
12379 
12380 	if (netif_running(bp->dev)) {
12381 		if (rc)
12382 			dev_close(bp->dev);
12383 		else
12384 			rc = bnxt_open_nic(bp, true, false);
12385 	}
12386 
12387 	return rc;
12388 }
12389 
12390 static int bnxt_init_mac_addr(struct bnxt *bp)
12391 {
12392 	int rc = 0;
12393 
12394 	if (BNXT_PF(bp)) {
12395 		memcpy(bp->dev->dev_addr, bp->pf.mac_addr, ETH_ALEN);
12396 	} else {
12397 #ifdef CONFIG_BNXT_SRIOV
12398 		struct bnxt_vf_info *vf = &bp->vf;
12399 		bool strict_approval = true;
12400 
12401 		if (is_valid_ether_addr(vf->mac_addr)) {
12402 			/* overwrite netdev dev_addr with admin VF MAC */
12403 			memcpy(bp->dev->dev_addr, vf->mac_addr, ETH_ALEN);
12404 			/* Older PF driver or firmware may not approve this
12405 			 * correctly.
12406 			 */
12407 			strict_approval = false;
12408 		} else {
12409 			eth_hw_addr_random(bp->dev);
12410 		}
12411 		rc = bnxt_approve_mac(bp, bp->dev->dev_addr, strict_approval);
12412 #endif
12413 	}
12414 	return rc;
12415 }
12416 
12417 #define BNXT_VPD_LEN	512
12418 static void bnxt_vpd_read_info(struct bnxt *bp)
12419 {
12420 	struct pci_dev *pdev = bp->pdev;
12421 	int i, len, pos, ro_size, size;
12422 	ssize_t vpd_size;
12423 	u8 *vpd_data;
12424 
12425 	vpd_data = kmalloc(BNXT_VPD_LEN, GFP_KERNEL);
12426 	if (!vpd_data)
12427 		return;
12428 
12429 	vpd_size = pci_read_vpd(pdev, 0, BNXT_VPD_LEN, vpd_data);
12430 	if (vpd_size <= 0) {
12431 		netdev_err(bp->dev, "Unable to read VPD\n");
12432 		goto exit;
12433 	}
12434 
12435 	i = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
12436 	if (i < 0) {
12437 		netdev_err(bp->dev, "VPD READ-Only not found\n");
12438 		goto exit;
12439 	}
12440 
12441 	ro_size = pci_vpd_lrdt_size(&vpd_data[i]);
12442 	i += PCI_VPD_LRDT_TAG_SIZE;
12443 	if (i + ro_size > vpd_size)
12444 		goto exit;
12445 
12446 	pos = pci_vpd_find_info_keyword(vpd_data, i, ro_size,
12447 					PCI_VPD_RO_KEYWORD_PARTNO);
12448 	if (pos < 0)
12449 		goto read_sn;
12450 
12451 	len = pci_vpd_info_field_size(&vpd_data[pos]);
12452 	pos += PCI_VPD_INFO_FLD_HDR_SIZE;
12453 	if (len + pos > vpd_size)
12454 		goto read_sn;
12455 
12456 	size = min(len, BNXT_VPD_FLD_LEN - 1);
12457 	memcpy(bp->board_partno, &vpd_data[pos], size);
12458 
12459 read_sn:
12460 	pos = pci_vpd_find_info_keyword(vpd_data, i, ro_size,
12461 					PCI_VPD_RO_KEYWORD_SERIALNO);
12462 	if (pos < 0)
12463 		goto exit;
12464 
12465 	len = pci_vpd_info_field_size(&vpd_data[pos]);
12466 	pos += PCI_VPD_INFO_FLD_HDR_SIZE;
12467 	if (len + pos > vpd_size)
12468 		goto exit;
12469 
12470 	size = min(len, BNXT_VPD_FLD_LEN - 1);
12471 	memcpy(bp->board_serialno, &vpd_data[pos], size);
12472 exit:
12473 	kfree(vpd_data);
12474 }
12475 
12476 static int bnxt_pcie_dsn_get(struct bnxt *bp, u8 dsn[])
12477 {
12478 	struct pci_dev *pdev = bp->pdev;
12479 	u64 qword;
12480 
12481 	qword = pci_get_dsn(pdev);
12482 	if (!qword) {
12483 		netdev_info(bp->dev, "Unable to read adapter's DSN\n");
12484 		return -EOPNOTSUPP;
12485 	}
12486 
12487 	put_unaligned_le64(qword, dsn);
12488 
12489 	bp->flags |= BNXT_FLAG_DSN_VALID;
12490 	return 0;
12491 }
12492 
12493 static int bnxt_map_db_bar(struct bnxt *bp)
12494 {
12495 	if (!bp->db_size)
12496 		return -ENODEV;
12497 	bp->bar1 = pci_iomap(bp->pdev, 2, bp->db_size);
12498 	if (!bp->bar1)
12499 		return -ENOMEM;
12500 	return 0;
12501 }
12502 
12503 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
12504 {
12505 	struct net_device *dev;
12506 	struct bnxt *bp;
12507 	int rc, max_irqs;
12508 
12509 	if (pci_is_bridge(pdev))
12510 		return -ENODEV;
12511 
12512 	/* Clear any pending DMA transactions from crash kernel
12513 	 * while loading driver in capture kernel.
12514 	 */
12515 	if (is_kdump_kernel()) {
12516 		pci_clear_master(pdev);
12517 		pcie_flr(pdev);
12518 	}
12519 
12520 	max_irqs = bnxt_get_max_irq(pdev);
12521 	dev = alloc_etherdev_mq(sizeof(*bp), max_irqs);
12522 	if (!dev)
12523 		return -ENOMEM;
12524 
12525 	bp = netdev_priv(dev);
12526 	bp->msg_enable = BNXT_DEF_MSG_ENABLE;
12527 	bnxt_set_max_func_irqs(bp, max_irqs);
12528 
12529 	if (bnxt_vf_pciid(ent->driver_data))
12530 		bp->flags |= BNXT_FLAG_VF;
12531 
12532 	if (pdev->msix_cap)
12533 		bp->flags |= BNXT_FLAG_MSIX_CAP;
12534 
12535 	rc = bnxt_init_board(pdev, dev);
12536 	if (rc < 0)
12537 		goto init_err_free;
12538 
12539 	dev->netdev_ops = &bnxt_netdev_ops;
12540 	dev->watchdog_timeo = BNXT_TX_TIMEOUT;
12541 	dev->ethtool_ops = &bnxt_ethtool_ops;
12542 	pci_set_drvdata(pdev, dev);
12543 
12544 	if (BNXT_PF(bp))
12545 		bnxt_vpd_read_info(bp);
12546 
12547 	rc = bnxt_alloc_hwrm_resources(bp);
12548 	if (rc)
12549 		goto init_err_pci_clean;
12550 
12551 	mutex_init(&bp->hwrm_cmd_lock);
12552 	mutex_init(&bp->link_lock);
12553 
12554 	rc = bnxt_fw_init_one_p1(bp);
12555 	if (rc)
12556 		goto init_err_pci_clean;
12557 
12558 	if (BNXT_CHIP_P5(bp)) {
12559 		bp->flags |= BNXT_FLAG_CHIP_P5;
12560 		if (BNXT_CHIP_SR2(bp))
12561 			bp->flags |= BNXT_FLAG_CHIP_SR2;
12562 	}
12563 
12564 	rc = bnxt_alloc_rss_indir_tbl(bp);
12565 	if (rc)
12566 		goto init_err_pci_clean;
12567 
12568 	rc = bnxt_fw_init_one_p2(bp);
12569 	if (rc)
12570 		goto init_err_pci_clean;
12571 
12572 	rc = bnxt_map_db_bar(bp);
12573 	if (rc) {
12574 		dev_err(&pdev->dev, "Cannot map doorbell BAR rc = %d, aborting\n",
12575 			rc);
12576 		goto init_err_pci_clean;
12577 	}
12578 
12579 	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
12580 			   NETIF_F_TSO | NETIF_F_TSO6 |
12581 			   NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
12582 			   NETIF_F_GSO_IPXIP4 |
12583 			   NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
12584 			   NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH |
12585 			   NETIF_F_RXCSUM | NETIF_F_GRO;
12586 
12587 	if (BNXT_SUPPORTS_TPA(bp))
12588 		dev->hw_features |= NETIF_F_LRO;
12589 
12590 	dev->hw_enc_features =
12591 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
12592 			NETIF_F_TSO | NETIF_F_TSO6 |
12593 			NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
12594 			NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
12595 			NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL;
12596 	dev->udp_tunnel_nic_info = &bnxt_udp_tunnels;
12597 
12598 	dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM |
12599 				    NETIF_F_GSO_GRE_CSUM;
12600 	dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
12601 	if (bp->fw_cap & BNXT_FW_CAP_VLAN_RX_STRIP)
12602 		dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_RX;
12603 	if (bp->fw_cap & BNXT_FW_CAP_VLAN_TX_INSERT)
12604 		dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_TX;
12605 	if (BNXT_SUPPORTS_TPA(bp))
12606 		dev->hw_features |= NETIF_F_GRO_HW;
12607 	dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
12608 	if (dev->features & NETIF_F_GRO_HW)
12609 		dev->features &= ~NETIF_F_LRO;
12610 	dev->priv_flags |= IFF_UNICAST_FLT;
12611 
12612 #ifdef CONFIG_BNXT_SRIOV
12613 	init_waitqueue_head(&bp->sriov_cfg_wait);
12614 	mutex_init(&bp->sriov_lock);
12615 #endif
12616 	if (BNXT_SUPPORTS_TPA(bp)) {
12617 		bp->gro_func = bnxt_gro_func_5730x;
12618 		if (BNXT_CHIP_P4(bp))
12619 			bp->gro_func = bnxt_gro_func_5731x;
12620 		else if (BNXT_CHIP_P5(bp))
12621 			bp->gro_func = bnxt_gro_func_5750x;
12622 	}
12623 	if (!BNXT_CHIP_P4_PLUS(bp))
12624 		bp->flags |= BNXT_FLAG_DOUBLE_DB;
12625 
12626 	bp->ulp_probe = bnxt_ulp_probe;
12627 
12628 	rc = bnxt_init_mac_addr(bp);
12629 	if (rc) {
12630 		dev_err(&pdev->dev, "Unable to initialize mac address.\n");
12631 		rc = -EADDRNOTAVAIL;
12632 		goto init_err_pci_clean;
12633 	}
12634 
12635 	if (BNXT_PF(bp)) {
12636 		/* Read the adapter's DSN to use as the eswitch switch_id */
12637 		rc = bnxt_pcie_dsn_get(bp, bp->dsn);
12638 	}
12639 
12640 	/* MTU range: 60 - FW defined max */
12641 	dev->min_mtu = ETH_ZLEN;
12642 	dev->max_mtu = bp->max_mtu;
12643 
12644 	rc = bnxt_probe_phy(bp, true);
12645 	if (rc)
12646 		goto init_err_pci_clean;
12647 
12648 	bnxt_set_rx_skb_mode(bp, false);
12649 	bnxt_set_tpa_flags(bp);
12650 	bnxt_set_ring_params(bp);
12651 	rc = bnxt_set_dflt_rings(bp, true);
12652 	if (rc) {
12653 		netdev_err(bp->dev, "Not enough rings available.\n");
12654 		rc = -ENOMEM;
12655 		goto init_err_pci_clean;
12656 	}
12657 
12658 	bnxt_fw_init_one_p3(bp);
12659 
12660 	if (dev->hw_features & BNXT_HW_FEATURE_VLAN_ALL_RX)
12661 		bp->flags |= BNXT_FLAG_STRIP_VLAN;
12662 
12663 	rc = bnxt_init_int_mode(bp);
12664 	if (rc)
12665 		goto init_err_pci_clean;
12666 
12667 	/* No TC has been set yet and rings may have been trimmed due to
12668 	 * limited MSIX, so we re-initialize the TX rings per TC.
12669 	 */
12670 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
12671 
12672 	if (BNXT_PF(bp)) {
12673 		if (!bnxt_pf_wq) {
12674 			bnxt_pf_wq =
12675 				create_singlethread_workqueue("bnxt_pf_wq");
12676 			if (!bnxt_pf_wq) {
12677 				dev_err(&pdev->dev, "Unable to create workqueue.\n");
12678 				rc = -ENOMEM;
12679 				goto init_err_pci_clean;
12680 			}
12681 		}
12682 		rc = bnxt_init_tc(bp);
12683 		if (rc)
12684 			netdev_err(dev, "Failed to initialize TC flower offload, err = %d.\n",
12685 				   rc);
12686 	}
12687 
12688 	bnxt_dl_register(bp);
12689 
12690 	rc = register_netdev(dev);
12691 	if (rc)
12692 		goto init_err_cleanup;
12693 
12694 	if (BNXT_PF(bp))
12695 		devlink_port_type_eth_set(&bp->dl_port, bp->dev);
12696 	bnxt_dl_fw_reporters_create(bp);
12697 
12698 	netdev_info(dev, "%s found at mem %lx, node addr %pM\n",
12699 		    board_info[ent->driver_data].name,
12700 		    (long)pci_resource_start(pdev, 0), dev->dev_addr);
12701 	pcie_print_link_status(pdev);
12702 
12703 	pci_save_state(pdev);
12704 	return 0;
12705 
12706 init_err_cleanup:
12707 	bnxt_dl_unregister(bp);
12708 	bnxt_shutdown_tc(bp);
12709 	bnxt_clear_int_mode(bp);
12710 
12711 init_err_pci_clean:
12712 	bnxt_hwrm_func_drv_unrgtr(bp);
12713 	bnxt_free_hwrm_short_cmd_req(bp);
12714 	bnxt_free_hwrm_resources(bp);
12715 	kfree(bp->fw_health);
12716 	bp->fw_health = NULL;
12717 	bnxt_cleanup_pci(bp);
12718 	bnxt_free_ctx_mem(bp);
12719 	kfree(bp->ctx);
12720 	bp->ctx = NULL;
12721 	kfree(bp->rss_indir_tbl);
12722 	bp->rss_indir_tbl = NULL;
12723 
12724 init_err_free:
12725 	free_netdev(dev);
12726 	return rc;
12727 }
12728 
12729 static void bnxt_shutdown(struct pci_dev *pdev)
12730 {
12731 	struct net_device *dev = pci_get_drvdata(pdev);
12732 	struct bnxt *bp;
12733 
12734 	if (!dev)
12735 		return;
12736 
12737 	rtnl_lock();
12738 	bp = netdev_priv(dev);
12739 	if (!bp)
12740 		goto shutdown_exit;
12741 
12742 	if (netif_running(dev))
12743 		dev_close(dev);
12744 
12745 	bnxt_ulp_shutdown(bp);
12746 	bnxt_clear_int_mode(bp);
12747 	pci_disable_device(pdev);
12748 
12749 	if (system_state == SYSTEM_POWER_OFF) {
12750 		pci_wake_from_d3(pdev, bp->wol);
12751 		pci_set_power_state(pdev, PCI_D3hot);
12752 	}
12753 
12754 shutdown_exit:
12755 	rtnl_unlock();
12756 }
12757 
12758 #ifdef CONFIG_PM_SLEEP
12759 static int bnxt_suspend(struct device *device)
12760 {
12761 	struct net_device *dev = dev_get_drvdata(device);
12762 	struct bnxt *bp = netdev_priv(dev);
12763 	int rc = 0;
12764 
12765 	rtnl_lock();
12766 	bnxt_ulp_stop(bp);
12767 	if (netif_running(dev)) {
12768 		netif_device_detach(dev);
12769 		rc = bnxt_close(dev);
12770 	}
12771 	bnxt_hwrm_func_drv_unrgtr(bp);
12772 	pci_disable_device(bp->pdev);
12773 	bnxt_free_ctx_mem(bp);
12774 	kfree(bp->ctx);
12775 	bp->ctx = NULL;
12776 	rtnl_unlock();
12777 	return rc;
12778 }
12779 
12780 static int bnxt_resume(struct device *device)
12781 {
12782 	struct net_device *dev = dev_get_drvdata(device);
12783 	struct bnxt *bp = netdev_priv(dev);
12784 	int rc = 0;
12785 
12786 	rtnl_lock();
12787 	rc = pci_enable_device(bp->pdev);
12788 	if (rc) {
12789 		netdev_err(dev, "Cannot re-enable PCI device during resume, err = %d\n",
12790 			   rc);
12791 		goto resume_exit;
12792 	}
12793 	pci_set_master(bp->pdev);
12794 	if (bnxt_hwrm_ver_get(bp)) {
12795 		rc = -ENODEV;
12796 		goto resume_exit;
12797 	}
12798 	rc = bnxt_hwrm_func_reset(bp);
12799 	if (rc) {
12800 		rc = -EBUSY;
12801 		goto resume_exit;
12802 	}
12803 
12804 	rc = bnxt_hwrm_func_qcaps(bp);
12805 	if (rc)
12806 		goto resume_exit;
12807 
12808 	if (bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false)) {
12809 		rc = -ENODEV;
12810 		goto resume_exit;
12811 	}
12812 
12813 	bnxt_get_wol_settings(bp);
12814 	if (netif_running(dev)) {
12815 		rc = bnxt_open(dev);
12816 		if (!rc)
12817 			netif_device_attach(dev);
12818 	}
12819 
12820 resume_exit:
12821 	bnxt_ulp_start(bp, rc);
12822 	if (!rc)
12823 		bnxt_reenable_sriov(bp);
12824 	rtnl_unlock();
12825 	return rc;
12826 }
12827 
12828 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume);
12829 #define BNXT_PM_OPS (&bnxt_pm_ops)
12830 
12831 #else
12832 
12833 #define BNXT_PM_OPS NULL
12834 
12835 #endif /* CONFIG_PM_SLEEP */
12836 
12837 /**
12838  * bnxt_io_error_detected - called when PCI error is detected
12839  * @pdev: Pointer to PCI device
12840  * @state: The current pci connection state
12841  *
12842  * This function is called after a PCI bus error affecting
12843  * this device has been detected.
12844  */
12845 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev,
12846 					       pci_channel_state_t state)
12847 {
12848 	struct net_device *netdev = pci_get_drvdata(pdev);
12849 	struct bnxt *bp = netdev_priv(netdev);
12850 
12851 	netdev_info(netdev, "PCI I/O error detected\n");
12852 
12853 	rtnl_lock();
12854 	netif_device_detach(netdev);
12855 
12856 	bnxt_ulp_stop(bp);
12857 
12858 	if (state == pci_channel_io_perm_failure) {
12859 		rtnl_unlock();
12860 		return PCI_ERS_RESULT_DISCONNECT;
12861 	}
12862 
12863 	if (state == pci_channel_io_frozen)
12864 		set_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, &bp->state);
12865 
12866 	if (netif_running(netdev))
12867 		bnxt_close(netdev);
12868 
12869 	pci_disable_device(pdev);
12870 	bnxt_free_ctx_mem(bp);
12871 	kfree(bp->ctx);
12872 	bp->ctx = NULL;
12873 	rtnl_unlock();
12874 
12875 	/* Request a slot slot reset. */
12876 	return PCI_ERS_RESULT_NEED_RESET;
12877 }
12878 
12879 /**
12880  * bnxt_io_slot_reset - called after the pci bus has been reset.
12881  * @pdev: Pointer to PCI device
12882  *
12883  * Restart the card from scratch, as if from a cold-boot.
12884  * At this point, the card has exprienced a hard reset,
12885  * followed by fixups by BIOS, and has its config space
12886  * set up identically to what it was at cold boot.
12887  */
12888 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev)
12889 {
12890 	struct net_device *netdev = pci_get_drvdata(pdev);
12891 	struct bnxt *bp = netdev_priv(netdev);
12892 	int err = 0, off;
12893 	pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
12894 
12895 	netdev_info(bp->dev, "PCI Slot Reset\n");
12896 
12897 	rtnl_lock();
12898 
12899 	if (pci_enable_device(pdev)) {
12900 		dev_err(&pdev->dev,
12901 			"Cannot re-enable PCI device after reset.\n");
12902 	} else {
12903 		pci_set_master(pdev);
12904 		/* Upon fatal error, our device internal logic that latches to
12905 		 * BAR value is getting reset and will restore only upon
12906 		 * rewritting the BARs.
12907 		 *
12908 		 * As pci_restore_state() does not re-write the BARs if the
12909 		 * value is same as saved value earlier, driver needs to
12910 		 * write the BARs to 0 to force restore, in case of fatal error.
12911 		 */
12912 		if (test_and_clear_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN,
12913 				       &bp->state)) {
12914 			for (off = PCI_BASE_ADDRESS_0;
12915 			     off <= PCI_BASE_ADDRESS_5; off += 4)
12916 				pci_write_config_dword(bp->pdev, off, 0);
12917 		}
12918 		pci_restore_state(pdev);
12919 		pci_save_state(pdev);
12920 
12921 		err = bnxt_hwrm_func_reset(bp);
12922 		if (!err) {
12923 			err = bnxt_hwrm_func_qcaps(bp);
12924 			if (!err && netif_running(netdev))
12925 				err = bnxt_open(netdev);
12926 		}
12927 		bnxt_ulp_start(bp, err);
12928 		if (!err) {
12929 			bnxt_reenable_sriov(bp);
12930 			result = PCI_ERS_RESULT_RECOVERED;
12931 		}
12932 	}
12933 
12934 	if (result != PCI_ERS_RESULT_RECOVERED) {
12935 		if (netif_running(netdev))
12936 			dev_close(netdev);
12937 		pci_disable_device(pdev);
12938 	}
12939 
12940 	rtnl_unlock();
12941 
12942 	return result;
12943 }
12944 
12945 /**
12946  * bnxt_io_resume - called when traffic can start flowing again.
12947  * @pdev: Pointer to PCI device
12948  *
12949  * This callback is called when the error recovery driver tells
12950  * us that its OK to resume normal operation.
12951  */
12952 static void bnxt_io_resume(struct pci_dev *pdev)
12953 {
12954 	struct net_device *netdev = pci_get_drvdata(pdev);
12955 
12956 	rtnl_lock();
12957 
12958 	netif_device_attach(netdev);
12959 
12960 	rtnl_unlock();
12961 }
12962 
12963 static const struct pci_error_handlers bnxt_err_handler = {
12964 	.error_detected	= bnxt_io_error_detected,
12965 	.slot_reset	= bnxt_io_slot_reset,
12966 	.resume		= bnxt_io_resume
12967 };
12968 
12969 static struct pci_driver bnxt_pci_driver = {
12970 	.name		= DRV_MODULE_NAME,
12971 	.id_table	= bnxt_pci_tbl,
12972 	.probe		= bnxt_init_one,
12973 	.remove		= bnxt_remove_one,
12974 	.shutdown	= bnxt_shutdown,
12975 	.driver.pm	= BNXT_PM_OPS,
12976 	.err_handler	= &bnxt_err_handler,
12977 #if defined(CONFIG_BNXT_SRIOV)
12978 	.sriov_configure = bnxt_sriov_configure,
12979 #endif
12980 };
12981 
12982 static int __init bnxt_init(void)
12983 {
12984 	bnxt_debug_init();
12985 	return pci_register_driver(&bnxt_pci_driver);
12986 }
12987 
12988 static void __exit bnxt_exit(void)
12989 {
12990 	pci_unregister_driver(&bnxt_pci_driver);
12991 	if (bnxt_pf_wq)
12992 		destroy_workqueue(bnxt_pf_wq);
12993 	bnxt_debug_exit();
12994 }
12995 
12996 module_init(bnxt_init);
12997 module_exit(bnxt_exit);
12998