1 /* Broadcom NetXtreme-C/E network driver. 2 * 3 * Copyright (c) 2014-2016 Broadcom Corporation 4 * Copyright (c) 2016-2019 Broadcom Limited 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation. 9 */ 10 11 #include <linux/module.h> 12 13 #include <linux/stringify.h> 14 #include <linux/kernel.h> 15 #include <linux/timer.h> 16 #include <linux/errno.h> 17 #include <linux/ioport.h> 18 #include <linux/slab.h> 19 #include <linux/vmalloc.h> 20 #include <linux/interrupt.h> 21 #include <linux/pci.h> 22 #include <linux/netdevice.h> 23 #include <linux/etherdevice.h> 24 #include <linux/skbuff.h> 25 #include <linux/dma-mapping.h> 26 #include <linux/bitops.h> 27 #include <linux/io.h> 28 #include <linux/irq.h> 29 #include <linux/delay.h> 30 #include <asm/byteorder.h> 31 #include <asm/page.h> 32 #include <linux/time.h> 33 #include <linux/mii.h> 34 #include <linux/mdio.h> 35 #include <linux/if.h> 36 #include <linux/if_vlan.h> 37 #include <linux/if_bridge.h> 38 #include <linux/rtc.h> 39 #include <linux/bpf.h> 40 #include <net/ip.h> 41 #include <net/tcp.h> 42 #include <net/udp.h> 43 #include <net/checksum.h> 44 #include <net/ip6_checksum.h> 45 #include <net/udp_tunnel.h> 46 #include <linux/workqueue.h> 47 #include <linux/prefetch.h> 48 #include <linux/cache.h> 49 #include <linux/log2.h> 50 #include <linux/aer.h> 51 #include <linux/bitmap.h> 52 #include <linux/ptp_clock_kernel.h> 53 #include <linux/timecounter.h> 54 #include <linux/cpu_rmap.h> 55 #include <linux/cpumask.h> 56 #include <net/pkt_cls.h> 57 #include <linux/hwmon.h> 58 #include <linux/hwmon-sysfs.h> 59 #include <net/page_pool.h> 60 61 #include "bnxt_hsi.h" 62 #include "bnxt.h" 63 #include "bnxt_hwrm.h" 64 #include "bnxt_ulp.h" 65 #include "bnxt_sriov.h" 66 #include "bnxt_ethtool.h" 67 #include "bnxt_dcb.h" 68 #include "bnxt_xdp.h" 69 #include "bnxt_ptp.h" 70 #include "bnxt_vfr.h" 71 #include "bnxt_tc.h" 72 #include "bnxt_devlink.h" 73 #include "bnxt_debugfs.h" 74 75 #define BNXT_TX_TIMEOUT (5 * HZ) 76 #define BNXT_DEF_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_HW | \ 77 NETIF_MSG_TX_ERR) 78 79 MODULE_LICENSE("GPL"); 80 MODULE_DESCRIPTION("Broadcom BCM573xx network driver"); 81 82 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN) 83 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD 84 #define BNXT_RX_COPY_THRESH 256 85 86 #define BNXT_TX_PUSH_THRESH 164 87 88 enum board_idx { 89 BCM57301, 90 BCM57302, 91 BCM57304, 92 BCM57417_NPAR, 93 BCM58700, 94 BCM57311, 95 BCM57312, 96 BCM57402, 97 BCM57404, 98 BCM57406, 99 BCM57402_NPAR, 100 BCM57407, 101 BCM57412, 102 BCM57414, 103 BCM57416, 104 BCM57417, 105 BCM57412_NPAR, 106 BCM57314, 107 BCM57417_SFP, 108 BCM57416_SFP, 109 BCM57404_NPAR, 110 BCM57406_NPAR, 111 BCM57407_SFP, 112 BCM57407_NPAR, 113 BCM57414_NPAR, 114 BCM57416_NPAR, 115 BCM57452, 116 BCM57454, 117 BCM5745x_NPAR, 118 BCM57508, 119 BCM57504, 120 BCM57502, 121 BCM57508_NPAR, 122 BCM57504_NPAR, 123 BCM57502_NPAR, 124 BCM58802, 125 BCM58804, 126 BCM58808, 127 NETXTREME_E_VF, 128 NETXTREME_C_VF, 129 NETXTREME_S_VF, 130 NETXTREME_C_VF_HV, 131 NETXTREME_E_VF_HV, 132 NETXTREME_E_P5_VF, 133 NETXTREME_E_P5_VF_HV, 134 }; 135 136 /* indexed by enum above */ 137 static const struct { 138 char *name; 139 } board_info[] = { 140 [BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" }, 141 [BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" }, 142 [BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" }, 143 [BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" }, 144 [BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" }, 145 [BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" }, 146 [BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" }, 147 [BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" }, 148 [BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" }, 149 [BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" }, 150 [BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" }, 151 [BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" }, 152 [BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" }, 153 [BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" }, 154 [BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" }, 155 [BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" }, 156 [BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" }, 157 [BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" }, 158 [BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" }, 159 [BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" }, 160 [BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" }, 161 [BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" }, 162 [BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" }, 163 [BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" }, 164 [BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" }, 165 [BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" }, 166 [BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" }, 167 [BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 168 [BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" }, 169 [BCM57508] = { "Broadcom BCM57508 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" }, 170 [BCM57504] = { "Broadcom BCM57504 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" }, 171 [BCM57502] = { "Broadcom BCM57502 NetXtreme-E 10Gb/25Gb/50Gb Ethernet" }, 172 [BCM57508_NPAR] = { "Broadcom BCM57508 NetXtreme-E Ethernet Partition" }, 173 [BCM57504_NPAR] = { "Broadcom BCM57504 NetXtreme-E Ethernet Partition" }, 174 [BCM57502_NPAR] = { "Broadcom BCM57502 NetXtreme-E Ethernet Partition" }, 175 [BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" }, 176 [BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 177 [BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 178 [NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" }, 179 [NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" }, 180 [NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" }, 181 [NETXTREME_C_VF_HV] = { "Broadcom NetXtreme-C Virtual Function for Hyper-V" }, 182 [NETXTREME_E_VF_HV] = { "Broadcom NetXtreme-E Virtual Function for Hyper-V" }, 183 [NETXTREME_E_P5_VF] = { "Broadcom BCM5750X NetXtreme-E Ethernet Virtual Function" }, 184 [NETXTREME_E_P5_VF_HV] = { "Broadcom BCM5750X NetXtreme-E Virtual Function for Hyper-V" }, 185 }; 186 187 static const struct pci_device_id bnxt_pci_tbl[] = { 188 { PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR }, 189 { PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR }, 190 { PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 }, 191 { PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR }, 192 { PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 }, 193 { PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 }, 194 { PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 }, 195 { PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR }, 196 { PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 }, 197 { PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 }, 198 { PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 }, 199 { PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 }, 200 { PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 }, 201 { PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 }, 202 { PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR }, 203 { PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 }, 204 { PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 }, 205 { PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 }, 206 { PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 }, 207 { PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 }, 208 { PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR }, 209 { PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 }, 210 { PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP }, 211 { PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP }, 212 { PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR }, 213 { PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR }, 214 { PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP }, 215 { PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR }, 216 { PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR }, 217 { PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR }, 218 { PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR }, 219 { PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR }, 220 { PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR }, 221 { PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 }, 222 { PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 }, 223 { PCI_VDEVICE(BROADCOM, 0x1750), .driver_data = BCM57508 }, 224 { PCI_VDEVICE(BROADCOM, 0x1751), .driver_data = BCM57504 }, 225 { PCI_VDEVICE(BROADCOM, 0x1752), .driver_data = BCM57502 }, 226 { PCI_VDEVICE(BROADCOM, 0x1800), .driver_data = BCM57508_NPAR }, 227 { PCI_VDEVICE(BROADCOM, 0x1801), .driver_data = BCM57504_NPAR }, 228 { PCI_VDEVICE(BROADCOM, 0x1802), .driver_data = BCM57502_NPAR }, 229 { PCI_VDEVICE(BROADCOM, 0x1803), .driver_data = BCM57508_NPAR }, 230 { PCI_VDEVICE(BROADCOM, 0x1804), .driver_data = BCM57504_NPAR }, 231 { PCI_VDEVICE(BROADCOM, 0x1805), .driver_data = BCM57502_NPAR }, 232 { PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 }, 233 { PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 }, 234 #ifdef CONFIG_BNXT_SRIOV 235 { PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF }, 236 { PCI_VDEVICE(BROADCOM, 0x1607), .driver_data = NETXTREME_E_VF_HV }, 237 { PCI_VDEVICE(BROADCOM, 0x1608), .driver_data = NETXTREME_E_VF_HV }, 238 { PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF }, 239 { PCI_VDEVICE(BROADCOM, 0x16bd), .driver_data = NETXTREME_E_VF_HV }, 240 { PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF }, 241 { PCI_VDEVICE(BROADCOM, 0x16c2), .driver_data = NETXTREME_C_VF_HV }, 242 { PCI_VDEVICE(BROADCOM, 0x16c3), .driver_data = NETXTREME_C_VF_HV }, 243 { PCI_VDEVICE(BROADCOM, 0x16c4), .driver_data = NETXTREME_E_VF_HV }, 244 { PCI_VDEVICE(BROADCOM, 0x16c5), .driver_data = NETXTREME_E_VF_HV }, 245 { PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF }, 246 { PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF }, 247 { PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF }, 248 { PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF }, 249 { PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF }, 250 { PCI_VDEVICE(BROADCOM, 0x16e6), .driver_data = NETXTREME_C_VF_HV }, 251 { PCI_VDEVICE(BROADCOM, 0x1806), .driver_data = NETXTREME_E_P5_VF }, 252 { PCI_VDEVICE(BROADCOM, 0x1807), .driver_data = NETXTREME_E_P5_VF }, 253 { PCI_VDEVICE(BROADCOM, 0x1808), .driver_data = NETXTREME_E_P5_VF_HV }, 254 { PCI_VDEVICE(BROADCOM, 0x1809), .driver_data = NETXTREME_E_P5_VF_HV }, 255 { PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF }, 256 #endif 257 { 0 } 258 }; 259 260 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl); 261 262 static const u16 bnxt_vf_req_snif[] = { 263 HWRM_FUNC_CFG, 264 HWRM_FUNC_VF_CFG, 265 HWRM_PORT_PHY_QCFG, 266 HWRM_CFA_L2_FILTER_ALLOC, 267 }; 268 269 static const u16 bnxt_async_events_arr[] = { 270 ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE, 271 ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE, 272 ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD, 273 ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED, 274 ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE, 275 ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE, 276 ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE, 277 ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY, 278 ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY, 279 ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION, 280 ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE, 281 ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG, 282 ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST, 283 ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP, 284 ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT, 285 }; 286 287 static struct workqueue_struct *bnxt_pf_wq; 288 289 static bool bnxt_vf_pciid(enum board_idx idx) 290 { 291 return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF || 292 idx == NETXTREME_S_VF || idx == NETXTREME_C_VF_HV || 293 idx == NETXTREME_E_VF_HV || idx == NETXTREME_E_P5_VF || 294 idx == NETXTREME_E_P5_VF_HV); 295 } 296 297 #define DB_CP_REARM_FLAGS (DB_KEY_CP | DB_IDX_VALID) 298 #define DB_CP_FLAGS (DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS) 299 #define DB_CP_IRQ_DIS_FLAGS (DB_KEY_CP | DB_IRQ_DIS) 300 301 #define BNXT_CP_DB_IRQ_DIS(db) \ 302 writel(DB_CP_IRQ_DIS_FLAGS, db) 303 304 #define BNXT_DB_CQ(db, idx) \ 305 writel(DB_CP_FLAGS | RING_CMP(idx), (db)->doorbell) 306 307 #define BNXT_DB_NQ_P5(db, idx) \ 308 bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ | RING_CMP(idx), \ 309 (db)->doorbell) 310 311 #define BNXT_DB_CQ_ARM(db, idx) \ 312 writel(DB_CP_REARM_FLAGS | RING_CMP(idx), (db)->doorbell) 313 314 #define BNXT_DB_NQ_ARM_P5(db, idx) \ 315 bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ_ARM | RING_CMP(idx),\ 316 (db)->doorbell) 317 318 static void bnxt_db_nq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 319 { 320 if (bp->flags & BNXT_FLAG_CHIP_P5) 321 BNXT_DB_NQ_P5(db, idx); 322 else 323 BNXT_DB_CQ(db, idx); 324 } 325 326 static void bnxt_db_nq_arm(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 327 { 328 if (bp->flags & BNXT_FLAG_CHIP_P5) 329 BNXT_DB_NQ_ARM_P5(db, idx); 330 else 331 BNXT_DB_CQ_ARM(db, idx); 332 } 333 334 static void bnxt_db_cq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 335 { 336 if (bp->flags & BNXT_FLAG_CHIP_P5) 337 bnxt_writeq(bp, db->db_key64 | DBR_TYPE_CQ_ARMALL | 338 RING_CMP(idx), db->doorbell); 339 else 340 BNXT_DB_CQ(db, idx); 341 } 342 343 const u16 bnxt_lhint_arr[] = { 344 TX_BD_FLAGS_LHINT_512_AND_SMALLER, 345 TX_BD_FLAGS_LHINT_512_TO_1023, 346 TX_BD_FLAGS_LHINT_1024_TO_2047, 347 TX_BD_FLAGS_LHINT_1024_TO_2047, 348 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 349 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 350 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 351 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 352 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 353 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 354 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 355 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 356 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 357 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 358 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 359 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 360 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 361 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 362 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 363 }; 364 365 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb) 366 { 367 struct metadata_dst *md_dst = skb_metadata_dst(skb); 368 369 if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX) 370 return 0; 371 372 return md_dst->u.port_info.port_id; 373 } 374 375 static void bnxt_txr_db_kick(struct bnxt *bp, struct bnxt_tx_ring_info *txr, 376 u16 prod) 377 { 378 bnxt_db_write(bp, &txr->tx_db, prod); 379 txr->kick_pending = 0; 380 } 381 382 static bool bnxt_txr_netif_try_stop_queue(struct bnxt *bp, 383 struct bnxt_tx_ring_info *txr, 384 struct netdev_queue *txq) 385 { 386 netif_tx_stop_queue(txq); 387 388 /* netif_tx_stop_queue() must be done before checking 389 * tx index in bnxt_tx_avail() below, because in 390 * bnxt_tx_int(), we update tx index before checking for 391 * netif_tx_queue_stopped(). 392 */ 393 smp_mb(); 394 if (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh) { 395 netif_tx_wake_queue(txq); 396 return false; 397 } 398 399 return true; 400 } 401 402 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev) 403 { 404 struct bnxt *bp = netdev_priv(dev); 405 struct tx_bd *txbd; 406 struct tx_bd_ext *txbd1; 407 struct netdev_queue *txq; 408 int i; 409 dma_addr_t mapping; 410 unsigned int length, pad = 0; 411 u32 len, free_size, vlan_tag_flags, cfa_action, flags; 412 u16 prod, last_frag; 413 struct pci_dev *pdev = bp->pdev; 414 struct bnxt_tx_ring_info *txr; 415 struct bnxt_sw_tx_bd *tx_buf; 416 __le32 lflags = 0; 417 418 i = skb_get_queue_mapping(skb); 419 if (unlikely(i >= bp->tx_nr_rings)) { 420 dev_kfree_skb_any(skb); 421 atomic_long_inc(&dev->tx_dropped); 422 return NETDEV_TX_OK; 423 } 424 425 txq = netdev_get_tx_queue(dev, i); 426 txr = &bp->tx_ring[bp->tx_ring_map[i]]; 427 prod = txr->tx_prod; 428 429 free_size = bnxt_tx_avail(bp, txr); 430 if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) { 431 /* We must have raced with NAPI cleanup */ 432 if (net_ratelimit() && txr->kick_pending) 433 netif_warn(bp, tx_err, dev, 434 "bnxt: ring busy w/ flush pending!\n"); 435 if (bnxt_txr_netif_try_stop_queue(bp, txr, txq)) 436 return NETDEV_TX_BUSY; 437 } 438 439 length = skb->len; 440 len = skb_headlen(skb); 441 last_frag = skb_shinfo(skb)->nr_frags; 442 443 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; 444 445 txbd->tx_bd_opaque = prod; 446 447 tx_buf = &txr->tx_buf_ring[prod]; 448 tx_buf->skb = skb; 449 tx_buf->nr_frags = last_frag; 450 451 vlan_tag_flags = 0; 452 cfa_action = bnxt_xmit_get_cfa_action(skb); 453 if (skb_vlan_tag_present(skb)) { 454 vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN | 455 skb_vlan_tag_get(skb); 456 /* Currently supports 8021Q, 8021AD vlan offloads 457 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated 458 */ 459 if (skb->vlan_proto == htons(ETH_P_8021Q)) 460 vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT; 461 } 462 463 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) { 464 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 465 466 if (ptp && ptp->tx_tstamp_en && !skb_is_gso(skb) && 467 atomic_dec_if_positive(&ptp->tx_avail) >= 0) { 468 if (!bnxt_ptp_parse(skb, &ptp->tx_seqid, 469 &ptp->tx_hdr_off)) { 470 if (vlan_tag_flags) 471 ptp->tx_hdr_off += VLAN_HLEN; 472 lflags |= cpu_to_le32(TX_BD_FLAGS_STAMP); 473 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 474 } else { 475 atomic_inc(&bp->ptp_cfg->tx_avail); 476 } 477 } 478 } 479 480 if (unlikely(skb->no_fcs)) 481 lflags |= cpu_to_le32(TX_BD_FLAGS_NO_CRC); 482 483 if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh && 484 !lflags) { 485 struct tx_push_buffer *tx_push_buf = txr->tx_push; 486 struct tx_push_bd *tx_push = &tx_push_buf->push_bd; 487 struct tx_bd_ext *tx_push1 = &tx_push->txbd2; 488 void __iomem *db = txr->tx_db.doorbell; 489 void *pdata = tx_push_buf->data; 490 u64 *end; 491 int j, push_len; 492 493 /* Set COAL_NOW to be ready quickly for the next push */ 494 tx_push->tx_bd_len_flags_type = 495 cpu_to_le32((length << TX_BD_LEN_SHIFT) | 496 TX_BD_TYPE_LONG_TX_BD | 497 TX_BD_FLAGS_LHINT_512_AND_SMALLER | 498 TX_BD_FLAGS_COAL_NOW | 499 TX_BD_FLAGS_PACKET_END | 500 (2 << TX_BD_FLAGS_BD_CNT_SHIFT)); 501 502 if (skb->ip_summed == CHECKSUM_PARTIAL) 503 tx_push1->tx_bd_hsize_lflags = 504 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM); 505 else 506 tx_push1->tx_bd_hsize_lflags = 0; 507 508 tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags); 509 tx_push1->tx_bd_cfa_action = 510 cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT); 511 512 end = pdata + length; 513 end = PTR_ALIGN(end, 8) - 1; 514 *end = 0; 515 516 skb_copy_from_linear_data(skb, pdata, len); 517 pdata += len; 518 for (j = 0; j < last_frag; j++) { 519 skb_frag_t *frag = &skb_shinfo(skb)->frags[j]; 520 void *fptr; 521 522 fptr = skb_frag_address_safe(frag); 523 if (!fptr) 524 goto normal_tx; 525 526 memcpy(pdata, fptr, skb_frag_size(frag)); 527 pdata += skb_frag_size(frag); 528 } 529 530 txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type; 531 txbd->tx_bd_haddr = txr->data_mapping; 532 prod = NEXT_TX(prod); 533 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; 534 memcpy(txbd, tx_push1, sizeof(*txbd)); 535 prod = NEXT_TX(prod); 536 tx_push->doorbell = 537 cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod); 538 txr->tx_prod = prod; 539 540 tx_buf->is_push = 1; 541 netdev_tx_sent_queue(txq, skb->len); 542 wmb(); /* Sync is_push and byte queue before pushing data */ 543 544 push_len = (length + sizeof(*tx_push) + 7) / 8; 545 if (push_len > 16) { 546 __iowrite64_copy(db, tx_push_buf, 16); 547 __iowrite32_copy(db + 4, tx_push_buf + 1, 548 (push_len - 16) << 1); 549 } else { 550 __iowrite64_copy(db, tx_push_buf, push_len); 551 } 552 553 goto tx_done; 554 } 555 556 normal_tx: 557 if (length < BNXT_MIN_PKT_SIZE) { 558 pad = BNXT_MIN_PKT_SIZE - length; 559 if (skb_pad(skb, pad)) 560 /* SKB already freed. */ 561 goto tx_kick_pending; 562 length = BNXT_MIN_PKT_SIZE; 563 } 564 565 mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE); 566 567 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) 568 goto tx_free; 569 570 dma_unmap_addr_set(tx_buf, mapping, mapping); 571 flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD | 572 ((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT); 573 574 txbd->tx_bd_haddr = cpu_to_le64(mapping); 575 576 prod = NEXT_TX(prod); 577 txbd1 = (struct tx_bd_ext *) 578 &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; 579 580 txbd1->tx_bd_hsize_lflags = lflags; 581 if (skb_is_gso(skb)) { 582 u32 hdr_len; 583 584 if (skb->encapsulation) 585 hdr_len = skb_inner_network_offset(skb) + 586 skb_inner_network_header_len(skb) + 587 inner_tcp_hdrlen(skb); 588 else 589 hdr_len = skb_transport_offset(skb) + 590 tcp_hdrlen(skb); 591 592 txbd1->tx_bd_hsize_lflags |= cpu_to_le32(TX_BD_FLAGS_LSO | 593 TX_BD_FLAGS_T_IPID | 594 (hdr_len << (TX_BD_HSIZE_SHIFT - 1))); 595 length = skb_shinfo(skb)->gso_size; 596 txbd1->tx_bd_mss = cpu_to_le32(length); 597 length += hdr_len; 598 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 599 txbd1->tx_bd_hsize_lflags |= 600 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM); 601 txbd1->tx_bd_mss = 0; 602 } 603 604 length >>= 9; 605 if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) { 606 dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n", 607 skb->len); 608 i = 0; 609 goto tx_dma_error; 610 } 611 flags |= bnxt_lhint_arr[length]; 612 txbd->tx_bd_len_flags_type = cpu_to_le32(flags); 613 614 txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags); 615 txbd1->tx_bd_cfa_action = 616 cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT); 617 for (i = 0; i < last_frag; i++) { 618 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 619 620 prod = NEXT_TX(prod); 621 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; 622 623 len = skb_frag_size(frag); 624 mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len, 625 DMA_TO_DEVICE); 626 627 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) 628 goto tx_dma_error; 629 630 tx_buf = &txr->tx_buf_ring[prod]; 631 dma_unmap_addr_set(tx_buf, mapping, mapping); 632 633 txbd->tx_bd_haddr = cpu_to_le64(mapping); 634 635 flags = len << TX_BD_LEN_SHIFT; 636 txbd->tx_bd_len_flags_type = cpu_to_le32(flags); 637 } 638 639 flags &= ~TX_BD_LEN; 640 txbd->tx_bd_len_flags_type = 641 cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags | 642 TX_BD_FLAGS_PACKET_END); 643 644 netdev_tx_sent_queue(txq, skb->len); 645 646 skb_tx_timestamp(skb); 647 648 /* Sync BD data before updating doorbell */ 649 wmb(); 650 651 prod = NEXT_TX(prod); 652 txr->tx_prod = prod; 653 654 if (!netdev_xmit_more() || netif_xmit_stopped(txq)) 655 bnxt_txr_db_kick(bp, txr, prod); 656 else 657 txr->kick_pending = 1; 658 659 tx_done: 660 661 if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) { 662 if (netdev_xmit_more() && !tx_buf->is_push) 663 bnxt_txr_db_kick(bp, txr, prod); 664 665 bnxt_txr_netif_try_stop_queue(bp, txr, txq); 666 } 667 return NETDEV_TX_OK; 668 669 tx_dma_error: 670 if (BNXT_TX_PTP_IS_SET(lflags)) 671 atomic_inc(&bp->ptp_cfg->tx_avail); 672 673 last_frag = i; 674 675 /* start back at beginning and unmap skb */ 676 prod = txr->tx_prod; 677 tx_buf = &txr->tx_buf_ring[prod]; 678 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 679 skb_headlen(skb), DMA_TO_DEVICE); 680 prod = NEXT_TX(prod); 681 682 /* unmap remaining mapped pages */ 683 for (i = 0; i < last_frag; i++) { 684 prod = NEXT_TX(prod); 685 tx_buf = &txr->tx_buf_ring[prod]; 686 dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 687 skb_frag_size(&skb_shinfo(skb)->frags[i]), 688 DMA_TO_DEVICE); 689 } 690 691 tx_free: 692 dev_kfree_skb_any(skb); 693 tx_kick_pending: 694 if (txr->kick_pending) 695 bnxt_txr_db_kick(bp, txr, txr->tx_prod); 696 txr->tx_buf_ring[txr->tx_prod].skb = NULL; 697 atomic_long_inc(&dev->tx_dropped); 698 return NETDEV_TX_OK; 699 } 700 701 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts) 702 { 703 struct bnxt_tx_ring_info *txr = bnapi->tx_ring; 704 struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index); 705 u16 cons = txr->tx_cons; 706 struct pci_dev *pdev = bp->pdev; 707 int i; 708 unsigned int tx_bytes = 0; 709 710 for (i = 0; i < nr_pkts; i++) { 711 struct bnxt_sw_tx_bd *tx_buf; 712 bool compl_deferred = false; 713 struct sk_buff *skb; 714 int j, last; 715 716 tx_buf = &txr->tx_buf_ring[cons]; 717 cons = NEXT_TX(cons); 718 skb = tx_buf->skb; 719 tx_buf->skb = NULL; 720 721 if (tx_buf->is_push) { 722 tx_buf->is_push = 0; 723 goto next_tx_int; 724 } 725 726 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 727 skb_headlen(skb), DMA_TO_DEVICE); 728 last = tx_buf->nr_frags; 729 730 for (j = 0; j < last; j++) { 731 cons = NEXT_TX(cons); 732 tx_buf = &txr->tx_buf_ring[cons]; 733 dma_unmap_page( 734 &pdev->dev, 735 dma_unmap_addr(tx_buf, mapping), 736 skb_frag_size(&skb_shinfo(skb)->frags[j]), 737 DMA_TO_DEVICE); 738 } 739 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) { 740 if (bp->flags & BNXT_FLAG_CHIP_P5) { 741 if (!bnxt_get_tx_ts_p5(bp, skb)) 742 compl_deferred = true; 743 else 744 atomic_inc(&bp->ptp_cfg->tx_avail); 745 } 746 } 747 748 next_tx_int: 749 cons = NEXT_TX(cons); 750 751 tx_bytes += skb->len; 752 if (!compl_deferred) 753 dev_kfree_skb_any(skb); 754 } 755 756 netdev_tx_completed_queue(txq, nr_pkts, tx_bytes); 757 txr->tx_cons = cons; 758 759 /* Need to make the tx_cons update visible to bnxt_start_xmit() 760 * before checking for netif_tx_queue_stopped(). Without the 761 * memory barrier, there is a small possibility that bnxt_start_xmit() 762 * will miss it and cause the queue to be stopped forever. 763 */ 764 smp_mb(); 765 766 if (unlikely(netif_tx_queue_stopped(txq)) && 767 bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh && 768 READ_ONCE(txr->dev_state) != BNXT_DEV_STATE_CLOSING) 769 netif_tx_wake_queue(txq); 770 } 771 772 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping, 773 struct bnxt_rx_ring_info *rxr, 774 gfp_t gfp) 775 { 776 struct device *dev = &bp->pdev->dev; 777 struct page *page; 778 779 page = page_pool_dev_alloc_pages(rxr->page_pool); 780 if (!page) 781 return NULL; 782 783 *mapping = dma_map_page_attrs(dev, page, 0, PAGE_SIZE, bp->rx_dir, 784 DMA_ATTR_WEAK_ORDERING); 785 if (dma_mapping_error(dev, *mapping)) { 786 page_pool_recycle_direct(rxr->page_pool, page); 787 return NULL; 788 } 789 *mapping += bp->rx_dma_offset; 790 return page; 791 } 792 793 static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping, 794 gfp_t gfp) 795 { 796 u8 *data; 797 struct pci_dev *pdev = bp->pdev; 798 799 data = kmalloc(bp->rx_buf_size, gfp); 800 if (!data) 801 return NULL; 802 803 *mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset, 804 bp->rx_buf_use_size, bp->rx_dir, 805 DMA_ATTR_WEAK_ORDERING); 806 807 if (dma_mapping_error(&pdev->dev, *mapping)) { 808 kfree(data); 809 data = NULL; 810 } 811 return data; 812 } 813 814 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 815 u16 prod, gfp_t gfp) 816 { 817 struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 818 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod]; 819 dma_addr_t mapping; 820 821 if (BNXT_RX_PAGE_MODE(bp)) { 822 struct page *page = 823 __bnxt_alloc_rx_page(bp, &mapping, rxr, gfp); 824 825 if (!page) 826 return -ENOMEM; 827 828 rx_buf->data = page; 829 rx_buf->data_ptr = page_address(page) + bp->rx_offset; 830 } else { 831 u8 *data = __bnxt_alloc_rx_data(bp, &mapping, gfp); 832 833 if (!data) 834 return -ENOMEM; 835 836 rx_buf->data = data; 837 rx_buf->data_ptr = data + bp->rx_offset; 838 } 839 rx_buf->mapping = mapping; 840 841 rxbd->rx_bd_haddr = cpu_to_le64(mapping); 842 return 0; 843 } 844 845 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data) 846 { 847 u16 prod = rxr->rx_prod; 848 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf; 849 struct rx_bd *cons_bd, *prod_bd; 850 851 prod_rx_buf = &rxr->rx_buf_ring[prod]; 852 cons_rx_buf = &rxr->rx_buf_ring[cons]; 853 854 prod_rx_buf->data = data; 855 prod_rx_buf->data_ptr = cons_rx_buf->data_ptr; 856 857 prod_rx_buf->mapping = cons_rx_buf->mapping; 858 859 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 860 cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)]; 861 862 prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr; 863 } 864 865 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx) 866 { 867 u16 next, max = rxr->rx_agg_bmap_size; 868 869 next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx); 870 if (next >= max) 871 next = find_first_zero_bit(rxr->rx_agg_bmap, max); 872 return next; 873 } 874 875 static inline int bnxt_alloc_rx_page(struct bnxt *bp, 876 struct bnxt_rx_ring_info *rxr, 877 u16 prod, gfp_t gfp) 878 { 879 struct rx_bd *rxbd = 880 &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 881 struct bnxt_sw_rx_agg_bd *rx_agg_buf; 882 struct pci_dev *pdev = bp->pdev; 883 struct page *page; 884 dma_addr_t mapping; 885 u16 sw_prod = rxr->rx_sw_agg_prod; 886 unsigned int offset = 0; 887 888 if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) { 889 page = rxr->rx_page; 890 if (!page) { 891 page = alloc_page(gfp); 892 if (!page) 893 return -ENOMEM; 894 rxr->rx_page = page; 895 rxr->rx_page_offset = 0; 896 } 897 offset = rxr->rx_page_offset; 898 rxr->rx_page_offset += BNXT_RX_PAGE_SIZE; 899 if (rxr->rx_page_offset == PAGE_SIZE) 900 rxr->rx_page = NULL; 901 else 902 get_page(page); 903 } else { 904 page = alloc_page(gfp); 905 if (!page) 906 return -ENOMEM; 907 } 908 909 mapping = dma_map_page_attrs(&pdev->dev, page, offset, 910 BNXT_RX_PAGE_SIZE, DMA_FROM_DEVICE, 911 DMA_ATTR_WEAK_ORDERING); 912 if (dma_mapping_error(&pdev->dev, mapping)) { 913 __free_page(page); 914 return -EIO; 915 } 916 917 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap))) 918 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod); 919 920 __set_bit(sw_prod, rxr->rx_agg_bmap); 921 rx_agg_buf = &rxr->rx_agg_ring[sw_prod]; 922 rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod); 923 924 rx_agg_buf->page = page; 925 rx_agg_buf->offset = offset; 926 rx_agg_buf->mapping = mapping; 927 rxbd->rx_bd_haddr = cpu_to_le64(mapping); 928 rxbd->rx_bd_opaque = sw_prod; 929 return 0; 930 } 931 932 static struct rx_agg_cmp *bnxt_get_agg(struct bnxt *bp, 933 struct bnxt_cp_ring_info *cpr, 934 u16 cp_cons, u16 curr) 935 { 936 struct rx_agg_cmp *agg; 937 938 cp_cons = RING_CMP(ADV_RAW_CMP(cp_cons, curr)); 939 agg = (struct rx_agg_cmp *) 940 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 941 return agg; 942 } 943 944 static struct rx_agg_cmp *bnxt_get_tpa_agg_p5(struct bnxt *bp, 945 struct bnxt_rx_ring_info *rxr, 946 u16 agg_id, u16 curr) 947 { 948 struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[agg_id]; 949 950 return &tpa_info->agg_arr[curr]; 951 } 952 953 static void bnxt_reuse_rx_agg_bufs(struct bnxt_cp_ring_info *cpr, u16 idx, 954 u16 start, u32 agg_bufs, bool tpa) 955 { 956 struct bnxt_napi *bnapi = cpr->bnapi; 957 struct bnxt *bp = bnapi->bp; 958 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 959 u16 prod = rxr->rx_agg_prod; 960 u16 sw_prod = rxr->rx_sw_agg_prod; 961 bool p5_tpa = false; 962 u32 i; 963 964 if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa) 965 p5_tpa = true; 966 967 for (i = 0; i < agg_bufs; i++) { 968 u16 cons; 969 struct rx_agg_cmp *agg; 970 struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf; 971 struct rx_bd *prod_bd; 972 struct page *page; 973 974 if (p5_tpa) 975 agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, start + i); 976 else 977 agg = bnxt_get_agg(bp, cpr, idx, start + i); 978 cons = agg->rx_agg_cmp_opaque; 979 __clear_bit(cons, rxr->rx_agg_bmap); 980 981 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap))) 982 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod); 983 984 __set_bit(sw_prod, rxr->rx_agg_bmap); 985 prod_rx_buf = &rxr->rx_agg_ring[sw_prod]; 986 cons_rx_buf = &rxr->rx_agg_ring[cons]; 987 988 /* It is possible for sw_prod to be equal to cons, so 989 * set cons_rx_buf->page to NULL first. 990 */ 991 page = cons_rx_buf->page; 992 cons_rx_buf->page = NULL; 993 prod_rx_buf->page = page; 994 prod_rx_buf->offset = cons_rx_buf->offset; 995 996 prod_rx_buf->mapping = cons_rx_buf->mapping; 997 998 prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 999 1000 prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping); 1001 prod_bd->rx_bd_opaque = sw_prod; 1002 1003 prod = NEXT_RX_AGG(prod); 1004 sw_prod = NEXT_RX_AGG(sw_prod); 1005 } 1006 rxr->rx_agg_prod = prod; 1007 rxr->rx_sw_agg_prod = sw_prod; 1008 } 1009 1010 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp, 1011 struct bnxt_rx_ring_info *rxr, 1012 u16 cons, void *data, u8 *data_ptr, 1013 dma_addr_t dma_addr, 1014 unsigned int offset_and_len) 1015 { 1016 unsigned int payload = offset_and_len >> 16; 1017 unsigned int len = offset_and_len & 0xffff; 1018 skb_frag_t *frag; 1019 struct page *page = data; 1020 u16 prod = rxr->rx_prod; 1021 struct sk_buff *skb; 1022 int off, err; 1023 1024 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 1025 if (unlikely(err)) { 1026 bnxt_reuse_rx_data(rxr, cons, data); 1027 return NULL; 1028 } 1029 dma_addr -= bp->rx_dma_offset; 1030 dma_unmap_page_attrs(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir, 1031 DMA_ATTR_WEAK_ORDERING); 1032 page_pool_release_page(rxr->page_pool, page); 1033 1034 if (unlikely(!payload)) 1035 payload = eth_get_headlen(bp->dev, data_ptr, len); 1036 1037 skb = napi_alloc_skb(&rxr->bnapi->napi, payload); 1038 if (!skb) { 1039 __free_page(page); 1040 return NULL; 1041 } 1042 1043 off = (void *)data_ptr - page_address(page); 1044 skb_add_rx_frag(skb, 0, page, off, len, PAGE_SIZE); 1045 memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN, 1046 payload + NET_IP_ALIGN); 1047 1048 frag = &skb_shinfo(skb)->frags[0]; 1049 skb_frag_size_sub(frag, payload); 1050 skb_frag_off_add(frag, payload); 1051 skb->data_len -= payload; 1052 skb->tail += payload; 1053 1054 return skb; 1055 } 1056 1057 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp, 1058 struct bnxt_rx_ring_info *rxr, u16 cons, 1059 void *data, u8 *data_ptr, 1060 dma_addr_t dma_addr, 1061 unsigned int offset_and_len) 1062 { 1063 u16 prod = rxr->rx_prod; 1064 struct sk_buff *skb; 1065 int err; 1066 1067 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 1068 if (unlikely(err)) { 1069 bnxt_reuse_rx_data(rxr, cons, data); 1070 return NULL; 1071 } 1072 1073 skb = build_skb(data, 0); 1074 dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size, 1075 bp->rx_dir, DMA_ATTR_WEAK_ORDERING); 1076 if (!skb) { 1077 kfree(data); 1078 return NULL; 1079 } 1080 1081 skb_reserve(skb, bp->rx_offset); 1082 skb_put(skb, offset_and_len & 0xffff); 1083 return skb; 1084 } 1085 1086 static struct sk_buff *bnxt_rx_pages(struct bnxt *bp, 1087 struct bnxt_cp_ring_info *cpr, 1088 struct sk_buff *skb, u16 idx, 1089 u32 agg_bufs, bool tpa) 1090 { 1091 struct bnxt_napi *bnapi = cpr->bnapi; 1092 struct pci_dev *pdev = bp->pdev; 1093 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1094 u16 prod = rxr->rx_agg_prod; 1095 bool p5_tpa = false; 1096 u32 i; 1097 1098 if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa) 1099 p5_tpa = true; 1100 1101 for (i = 0; i < agg_bufs; i++) { 1102 u16 cons, frag_len; 1103 struct rx_agg_cmp *agg; 1104 struct bnxt_sw_rx_agg_bd *cons_rx_buf; 1105 struct page *page; 1106 dma_addr_t mapping; 1107 1108 if (p5_tpa) 1109 agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, i); 1110 else 1111 agg = bnxt_get_agg(bp, cpr, idx, i); 1112 cons = agg->rx_agg_cmp_opaque; 1113 frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) & 1114 RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT; 1115 1116 cons_rx_buf = &rxr->rx_agg_ring[cons]; 1117 skb_fill_page_desc(skb, i, cons_rx_buf->page, 1118 cons_rx_buf->offset, frag_len); 1119 __clear_bit(cons, rxr->rx_agg_bmap); 1120 1121 /* It is possible for bnxt_alloc_rx_page() to allocate 1122 * a sw_prod index that equals the cons index, so we 1123 * need to clear the cons entry now. 1124 */ 1125 mapping = cons_rx_buf->mapping; 1126 page = cons_rx_buf->page; 1127 cons_rx_buf->page = NULL; 1128 1129 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) { 1130 struct skb_shared_info *shinfo; 1131 unsigned int nr_frags; 1132 1133 shinfo = skb_shinfo(skb); 1134 nr_frags = --shinfo->nr_frags; 1135 __skb_frag_set_page(&shinfo->frags[nr_frags], NULL); 1136 1137 dev_kfree_skb(skb); 1138 1139 cons_rx_buf->page = page; 1140 1141 /* Update prod since possibly some pages have been 1142 * allocated already. 1143 */ 1144 rxr->rx_agg_prod = prod; 1145 bnxt_reuse_rx_agg_bufs(cpr, idx, i, agg_bufs - i, tpa); 1146 return NULL; 1147 } 1148 1149 dma_unmap_page_attrs(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE, 1150 DMA_FROM_DEVICE, 1151 DMA_ATTR_WEAK_ORDERING); 1152 1153 skb->data_len += frag_len; 1154 skb->len += frag_len; 1155 skb->truesize += PAGE_SIZE; 1156 1157 prod = NEXT_RX_AGG(prod); 1158 } 1159 rxr->rx_agg_prod = prod; 1160 return skb; 1161 } 1162 1163 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1164 u8 agg_bufs, u32 *raw_cons) 1165 { 1166 u16 last; 1167 struct rx_agg_cmp *agg; 1168 1169 *raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs); 1170 last = RING_CMP(*raw_cons); 1171 agg = (struct rx_agg_cmp *) 1172 &cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)]; 1173 return RX_AGG_CMP_VALID(agg, *raw_cons); 1174 } 1175 1176 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data, 1177 unsigned int len, 1178 dma_addr_t mapping) 1179 { 1180 struct bnxt *bp = bnapi->bp; 1181 struct pci_dev *pdev = bp->pdev; 1182 struct sk_buff *skb; 1183 1184 skb = napi_alloc_skb(&bnapi->napi, len); 1185 if (!skb) 1186 return NULL; 1187 1188 dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh, 1189 bp->rx_dir); 1190 1191 memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN, 1192 len + NET_IP_ALIGN); 1193 1194 dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh, 1195 bp->rx_dir); 1196 1197 skb_put(skb, len); 1198 return skb; 1199 } 1200 1201 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1202 u32 *raw_cons, void *cmp) 1203 { 1204 struct rx_cmp *rxcmp = cmp; 1205 u32 tmp_raw_cons = *raw_cons; 1206 u8 cmp_type, agg_bufs = 0; 1207 1208 cmp_type = RX_CMP_TYPE(rxcmp); 1209 1210 if (cmp_type == CMP_TYPE_RX_L2_CMP) { 1211 agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) & 1212 RX_CMP_AGG_BUFS) >> 1213 RX_CMP_AGG_BUFS_SHIFT; 1214 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 1215 struct rx_tpa_end_cmp *tpa_end = cmp; 1216 1217 if (bp->flags & BNXT_FLAG_CHIP_P5) 1218 return 0; 1219 1220 agg_bufs = TPA_END_AGG_BUFS(tpa_end); 1221 } 1222 1223 if (agg_bufs) { 1224 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons)) 1225 return -EBUSY; 1226 } 1227 *raw_cons = tmp_raw_cons; 1228 return 0; 1229 } 1230 1231 static void bnxt_queue_fw_reset_work(struct bnxt *bp, unsigned long delay) 1232 { 1233 if (!(test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))) 1234 return; 1235 1236 if (BNXT_PF(bp)) 1237 queue_delayed_work(bnxt_pf_wq, &bp->fw_reset_task, delay); 1238 else 1239 schedule_delayed_work(&bp->fw_reset_task, delay); 1240 } 1241 1242 static void bnxt_queue_sp_work(struct bnxt *bp) 1243 { 1244 if (BNXT_PF(bp)) 1245 queue_work(bnxt_pf_wq, &bp->sp_task); 1246 else 1247 schedule_work(&bp->sp_task); 1248 } 1249 1250 static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 1251 { 1252 if (!rxr->bnapi->in_reset) { 1253 rxr->bnapi->in_reset = true; 1254 if (bp->flags & BNXT_FLAG_CHIP_P5) 1255 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event); 1256 else 1257 set_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event); 1258 bnxt_queue_sp_work(bp); 1259 } 1260 rxr->rx_next_cons = 0xffff; 1261 } 1262 1263 static u16 bnxt_alloc_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id) 1264 { 1265 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1266 u16 idx = agg_id & MAX_TPA_P5_MASK; 1267 1268 if (test_bit(idx, map->agg_idx_bmap)) 1269 idx = find_first_zero_bit(map->agg_idx_bmap, 1270 BNXT_AGG_IDX_BMAP_SIZE); 1271 __set_bit(idx, map->agg_idx_bmap); 1272 map->agg_id_tbl[agg_id] = idx; 1273 return idx; 1274 } 1275 1276 static void bnxt_free_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx) 1277 { 1278 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1279 1280 __clear_bit(idx, map->agg_idx_bmap); 1281 } 1282 1283 static u16 bnxt_lookup_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id) 1284 { 1285 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1286 1287 return map->agg_id_tbl[agg_id]; 1288 } 1289 1290 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 1291 struct rx_tpa_start_cmp *tpa_start, 1292 struct rx_tpa_start_cmp_ext *tpa_start1) 1293 { 1294 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf; 1295 struct bnxt_tpa_info *tpa_info; 1296 u16 cons, prod, agg_id; 1297 struct rx_bd *prod_bd; 1298 dma_addr_t mapping; 1299 1300 if (bp->flags & BNXT_FLAG_CHIP_P5) { 1301 agg_id = TPA_START_AGG_ID_P5(tpa_start); 1302 agg_id = bnxt_alloc_agg_idx(rxr, agg_id); 1303 } else { 1304 agg_id = TPA_START_AGG_ID(tpa_start); 1305 } 1306 cons = tpa_start->rx_tpa_start_cmp_opaque; 1307 prod = rxr->rx_prod; 1308 cons_rx_buf = &rxr->rx_buf_ring[cons]; 1309 prod_rx_buf = &rxr->rx_buf_ring[prod]; 1310 tpa_info = &rxr->rx_tpa[agg_id]; 1311 1312 if (unlikely(cons != rxr->rx_next_cons || 1313 TPA_START_ERROR(tpa_start))) { 1314 netdev_warn(bp->dev, "TPA cons %x, expected cons %x, error code %x\n", 1315 cons, rxr->rx_next_cons, 1316 TPA_START_ERROR_CODE(tpa_start1)); 1317 bnxt_sched_reset(bp, rxr); 1318 return; 1319 } 1320 /* Store cfa_code in tpa_info to use in tpa_end 1321 * completion processing. 1322 */ 1323 tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1); 1324 prod_rx_buf->data = tpa_info->data; 1325 prod_rx_buf->data_ptr = tpa_info->data_ptr; 1326 1327 mapping = tpa_info->mapping; 1328 prod_rx_buf->mapping = mapping; 1329 1330 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 1331 1332 prod_bd->rx_bd_haddr = cpu_to_le64(mapping); 1333 1334 tpa_info->data = cons_rx_buf->data; 1335 tpa_info->data_ptr = cons_rx_buf->data_ptr; 1336 cons_rx_buf->data = NULL; 1337 tpa_info->mapping = cons_rx_buf->mapping; 1338 1339 tpa_info->len = 1340 le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >> 1341 RX_TPA_START_CMP_LEN_SHIFT; 1342 if (likely(TPA_START_HASH_VALID(tpa_start))) { 1343 u32 hash_type = TPA_START_HASH_TYPE(tpa_start); 1344 1345 tpa_info->hash_type = PKT_HASH_TYPE_L4; 1346 tpa_info->gso_type = SKB_GSO_TCPV4; 1347 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */ 1348 if (hash_type == 3 || TPA_START_IS_IPV6(tpa_start1)) 1349 tpa_info->gso_type = SKB_GSO_TCPV6; 1350 tpa_info->rss_hash = 1351 le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash); 1352 } else { 1353 tpa_info->hash_type = PKT_HASH_TYPE_NONE; 1354 tpa_info->gso_type = 0; 1355 netif_warn(bp, rx_err, bp->dev, "TPA packet without valid hash\n"); 1356 } 1357 tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2); 1358 tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata); 1359 tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info); 1360 tpa_info->agg_count = 0; 1361 1362 rxr->rx_prod = NEXT_RX(prod); 1363 cons = NEXT_RX(cons); 1364 rxr->rx_next_cons = NEXT_RX(cons); 1365 cons_rx_buf = &rxr->rx_buf_ring[cons]; 1366 1367 bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data); 1368 rxr->rx_prod = NEXT_RX(rxr->rx_prod); 1369 cons_rx_buf->data = NULL; 1370 } 1371 1372 static void bnxt_abort_tpa(struct bnxt_cp_ring_info *cpr, u16 idx, u32 agg_bufs) 1373 { 1374 if (agg_bufs) 1375 bnxt_reuse_rx_agg_bufs(cpr, idx, 0, agg_bufs, true); 1376 } 1377 1378 #ifdef CONFIG_INET 1379 static void bnxt_gro_tunnel(struct sk_buff *skb, __be16 ip_proto) 1380 { 1381 struct udphdr *uh = NULL; 1382 1383 if (ip_proto == htons(ETH_P_IP)) { 1384 struct iphdr *iph = (struct iphdr *)skb->data; 1385 1386 if (iph->protocol == IPPROTO_UDP) 1387 uh = (struct udphdr *)(iph + 1); 1388 } else { 1389 struct ipv6hdr *iph = (struct ipv6hdr *)skb->data; 1390 1391 if (iph->nexthdr == IPPROTO_UDP) 1392 uh = (struct udphdr *)(iph + 1); 1393 } 1394 if (uh) { 1395 if (uh->check) 1396 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL_CSUM; 1397 else 1398 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL; 1399 } 1400 } 1401 #endif 1402 1403 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info, 1404 int payload_off, int tcp_ts, 1405 struct sk_buff *skb) 1406 { 1407 #ifdef CONFIG_INET 1408 struct tcphdr *th; 1409 int len, nw_off; 1410 u16 outer_ip_off, inner_ip_off, inner_mac_off; 1411 u32 hdr_info = tpa_info->hdr_info; 1412 bool loopback = false; 1413 1414 inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info); 1415 inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info); 1416 outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info); 1417 1418 /* If the packet is an internal loopback packet, the offsets will 1419 * have an extra 4 bytes. 1420 */ 1421 if (inner_mac_off == 4) { 1422 loopback = true; 1423 } else if (inner_mac_off > 4) { 1424 __be16 proto = *((__be16 *)(skb->data + inner_ip_off - 1425 ETH_HLEN - 2)); 1426 1427 /* We only support inner iPv4/ipv6. If we don't see the 1428 * correct protocol ID, it must be a loopback packet where 1429 * the offsets are off by 4. 1430 */ 1431 if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6)) 1432 loopback = true; 1433 } 1434 if (loopback) { 1435 /* internal loopback packet, subtract all offsets by 4 */ 1436 inner_ip_off -= 4; 1437 inner_mac_off -= 4; 1438 outer_ip_off -= 4; 1439 } 1440 1441 nw_off = inner_ip_off - ETH_HLEN; 1442 skb_set_network_header(skb, nw_off); 1443 if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) { 1444 struct ipv6hdr *iph = ipv6_hdr(skb); 1445 1446 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr)); 1447 len = skb->len - skb_transport_offset(skb); 1448 th = tcp_hdr(skb); 1449 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0); 1450 } else { 1451 struct iphdr *iph = ip_hdr(skb); 1452 1453 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr)); 1454 len = skb->len - skb_transport_offset(skb); 1455 th = tcp_hdr(skb); 1456 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0); 1457 } 1458 1459 if (inner_mac_off) { /* tunnel */ 1460 __be16 proto = *((__be16 *)(skb->data + outer_ip_off - 1461 ETH_HLEN - 2)); 1462 1463 bnxt_gro_tunnel(skb, proto); 1464 } 1465 #endif 1466 return skb; 1467 } 1468 1469 static struct sk_buff *bnxt_gro_func_5750x(struct bnxt_tpa_info *tpa_info, 1470 int payload_off, int tcp_ts, 1471 struct sk_buff *skb) 1472 { 1473 #ifdef CONFIG_INET 1474 u16 outer_ip_off, inner_ip_off, inner_mac_off; 1475 u32 hdr_info = tpa_info->hdr_info; 1476 int iphdr_len, nw_off; 1477 1478 inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info); 1479 inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info); 1480 outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info); 1481 1482 nw_off = inner_ip_off - ETH_HLEN; 1483 skb_set_network_header(skb, nw_off); 1484 iphdr_len = (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) ? 1485 sizeof(struct ipv6hdr) : sizeof(struct iphdr); 1486 skb_set_transport_header(skb, nw_off + iphdr_len); 1487 1488 if (inner_mac_off) { /* tunnel */ 1489 __be16 proto = *((__be16 *)(skb->data + outer_ip_off - 1490 ETH_HLEN - 2)); 1491 1492 bnxt_gro_tunnel(skb, proto); 1493 } 1494 #endif 1495 return skb; 1496 } 1497 1498 #define BNXT_IPV4_HDR_SIZE (sizeof(struct iphdr) + sizeof(struct tcphdr)) 1499 #define BNXT_IPV6_HDR_SIZE (sizeof(struct ipv6hdr) + sizeof(struct tcphdr)) 1500 1501 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info, 1502 int payload_off, int tcp_ts, 1503 struct sk_buff *skb) 1504 { 1505 #ifdef CONFIG_INET 1506 struct tcphdr *th; 1507 int len, nw_off, tcp_opt_len = 0; 1508 1509 if (tcp_ts) 1510 tcp_opt_len = 12; 1511 1512 if (tpa_info->gso_type == SKB_GSO_TCPV4) { 1513 struct iphdr *iph; 1514 1515 nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len - 1516 ETH_HLEN; 1517 skb_set_network_header(skb, nw_off); 1518 iph = ip_hdr(skb); 1519 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr)); 1520 len = skb->len - skb_transport_offset(skb); 1521 th = tcp_hdr(skb); 1522 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0); 1523 } else if (tpa_info->gso_type == SKB_GSO_TCPV6) { 1524 struct ipv6hdr *iph; 1525 1526 nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len - 1527 ETH_HLEN; 1528 skb_set_network_header(skb, nw_off); 1529 iph = ipv6_hdr(skb); 1530 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr)); 1531 len = skb->len - skb_transport_offset(skb); 1532 th = tcp_hdr(skb); 1533 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0); 1534 } else { 1535 dev_kfree_skb_any(skb); 1536 return NULL; 1537 } 1538 1539 if (nw_off) /* tunnel */ 1540 bnxt_gro_tunnel(skb, skb->protocol); 1541 #endif 1542 return skb; 1543 } 1544 1545 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp, 1546 struct bnxt_tpa_info *tpa_info, 1547 struct rx_tpa_end_cmp *tpa_end, 1548 struct rx_tpa_end_cmp_ext *tpa_end1, 1549 struct sk_buff *skb) 1550 { 1551 #ifdef CONFIG_INET 1552 int payload_off; 1553 u16 segs; 1554 1555 segs = TPA_END_TPA_SEGS(tpa_end); 1556 if (segs == 1) 1557 return skb; 1558 1559 NAPI_GRO_CB(skb)->count = segs; 1560 skb_shinfo(skb)->gso_size = 1561 le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len); 1562 skb_shinfo(skb)->gso_type = tpa_info->gso_type; 1563 if (bp->flags & BNXT_FLAG_CHIP_P5) 1564 payload_off = TPA_END_PAYLOAD_OFF_P5(tpa_end1); 1565 else 1566 payload_off = TPA_END_PAYLOAD_OFF(tpa_end); 1567 skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb); 1568 if (likely(skb)) 1569 tcp_gro_complete(skb); 1570 #endif 1571 return skb; 1572 } 1573 1574 /* Given the cfa_code of a received packet determine which 1575 * netdev (vf-rep or PF) the packet is destined to. 1576 */ 1577 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code) 1578 { 1579 struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code); 1580 1581 /* if vf-rep dev is NULL, the must belongs to the PF */ 1582 return dev ? dev : bp->dev; 1583 } 1584 1585 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp, 1586 struct bnxt_cp_ring_info *cpr, 1587 u32 *raw_cons, 1588 struct rx_tpa_end_cmp *tpa_end, 1589 struct rx_tpa_end_cmp_ext *tpa_end1, 1590 u8 *event) 1591 { 1592 struct bnxt_napi *bnapi = cpr->bnapi; 1593 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1594 u8 *data_ptr, agg_bufs; 1595 unsigned int len; 1596 struct bnxt_tpa_info *tpa_info; 1597 dma_addr_t mapping; 1598 struct sk_buff *skb; 1599 u16 idx = 0, agg_id; 1600 void *data; 1601 bool gro; 1602 1603 if (unlikely(bnapi->in_reset)) { 1604 int rc = bnxt_discard_rx(bp, cpr, raw_cons, tpa_end); 1605 1606 if (rc < 0) 1607 return ERR_PTR(-EBUSY); 1608 return NULL; 1609 } 1610 1611 if (bp->flags & BNXT_FLAG_CHIP_P5) { 1612 agg_id = TPA_END_AGG_ID_P5(tpa_end); 1613 agg_id = bnxt_lookup_agg_idx(rxr, agg_id); 1614 agg_bufs = TPA_END_AGG_BUFS_P5(tpa_end1); 1615 tpa_info = &rxr->rx_tpa[agg_id]; 1616 if (unlikely(agg_bufs != tpa_info->agg_count)) { 1617 netdev_warn(bp->dev, "TPA end agg_buf %d != expected agg_bufs %d\n", 1618 agg_bufs, tpa_info->agg_count); 1619 agg_bufs = tpa_info->agg_count; 1620 } 1621 tpa_info->agg_count = 0; 1622 *event |= BNXT_AGG_EVENT; 1623 bnxt_free_agg_idx(rxr, agg_id); 1624 idx = agg_id; 1625 gro = !!(bp->flags & BNXT_FLAG_GRO); 1626 } else { 1627 agg_id = TPA_END_AGG_ID(tpa_end); 1628 agg_bufs = TPA_END_AGG_BUFS(tpa_end); 1629 tpa_info = &rxr->rx_tpa[agg_id]; 1630 idx = RING_CMP(*raw_cons); 1631 if (agg_bufs) { 1632 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons)) 1633 return ERR_PTR(-EBUSY); 1634 1635 *event |= BNXT_AGG_EVENT; 1636 idx = NEXT_CMP(idx); 1637 } 1638 gro = !!TPA_END_GRO(tpa_end); 1639 } 1640 data = tpa_info->data; 1641 data_ptr = tpa_info->data_ptr; 1642 prefetch(data_ptr); 1643 len = tpa_info->len; 1644 mapping = tpa_info->mapping; 1645 1646 if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) { 1647 bnxt_abort_tpa(cpr, idx, agg_bufs); 1648 if (agg_bufs > MAX_SKB_FRAGS) 1649 netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n", 1650 agg_bufs, (int)MAX_SKB_FRAGS); 1651 return NULL; 1652 } 1653 1654 if (len <= bp->rx_copy_thresh) { 1655 skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping); 1656 if (!skb) { 1657 bnxt_abort_tpa(cpr, idx, agg_bufs); 1658 cpr->sw_stats.rx.rx_oom_discards += 1; 1659 return NULL; 1660 } 1661 } else { 1662 u8 *new_data; 1663 dma_addr_t new_mapping; 1664 1665 new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC); 1666 if (!new_data) { 1667 bnxt_abort_tpa(cpr, idx, agg_bufs); 1668 cpr->sw_stats.rx.rx_oom_discards += 1; 1669 return NULL; 1670 } 1671 1672 tpa_info->data = new_data; 1673 tpa_info->data_ptr = new_data + bp->rx_offset; 1674 tpa_info->mapping = new_mapping; 1675 1676 skb = build_skb(data, 0); 1677 dma_unmap_single_attrs(&bp->pdev->dev, mapping, 1678 bp->rx_buf_use_size, bp->rx_dir, 1679 DMA_ATTR_WEAK_ORDERING); 1680 1681 if (!skb) { 1682 kfree(data); 1683 bnxt_abort_tpa(cpr, idx, agg_bufs); 1684 cpr->sw_stats.rx.rx_oom_discards += 1; 1685 return NULL; 1686 } 1687 skb_reserve(skb, bp->rx_offset); 1688 skb_put(skb, len); 1689 } 1690 1691 if (agg_bufs) { 1692 skb = bnxt_rx_pages(bp, cpr, skb, idx, agg_bufs, true); 1693 if (!skb) { 1694 /* Page reuse already handled by bnxt_rx_pages(). */ 1695 cpr->sw_stats.rx.rx_oom_discards += 1; 1696 return NULL; 1697 } 1698 } 1699 1700 skb->protocol = 1701 eth_type_trans(skb, bnxt_get_pkt_dev(bp, tpa_info->cfa_code)); 1702 1703 if (tpa_info->hash_type != PKT_HASH_TYPE_NONE) 1704 skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type); 1705 1706 if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) && 1707 (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) { 1708 __be16 vlan_proto = htons(tpa_info->metadata >> 1709 RX_CMP_FLAGS2_METADATA_TPID_SFT); 1710 u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK; 1711 1712 if (eth_type_vlan(vlan_proto)) { 1713 __vlan_hwaccel_put_tag(skb, vlan_proto, vtag); 1714 } else { 1715 dev_kfree_skb(skb); 1716 return NULL; 1717 } 1718 } 1719 1720 skb_checksum_none_assert(skb); 1721 if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) { 1722 skb->ip_summed = CHECKSUM_UNNECESSARY; 1723 skb->csum_level = 1724 (tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3; 1725 } 1726 1727 if (gro) 1728 skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb); 1729 1730 return skb; 1731 } 1732 1733 static void bnxt_tpa_agg(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 1734 struct rx_agg_cmp *rx_agg) 1735 { 1736 u16 agg_id = TPA_AGG_AGG_ID(rx_agg); 1737 struct bnxt_tpa_info *tpa_info; 1738 1739 agg_id = bnxt_lookup_agg_idx(rxr, agg_id); 1740 tpa_info = &rxr->rx_tpa[agg_id]; 1741 BUG_ON(tpa_info->agg_count >= MAX_SKB_FRAGS); 1742 tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg; 1743 } 1744 1745 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi, 1746 struct sk_buff *skb) 1747 { 1748 if (skb->dev != bp->dev) { 1749 /* this packet belongs to a vf-rep */ 1750 bnxt_vf_rep_rx(bp, skb); 1751 return; 1752 } 1753 skb_record_rx_queue(skb, bnapi->index); 1754 napi_gro_receive(&bnapi->napi, skb); 1755 } 1756 1757 /* returns the following: 1758 * 1 - 1 packet successfully received 1759 * 0 - successful TPA_START, packet not completed yet 1760 * -EBUSY - completion ring does not have all the agg buffers yet 1761 * -ENOMEM - packet aborted due to out of memory 1762 * -EIO - packet aborted due to hw error indicated in BD 1763 */ 1764 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1765 u32 *raw_cons, u8 *event) 1766 { 1767 struct bnxt_napi *bnapi = cpr->bnapi; 1768 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1769 struct net_device *dev = bp->dev; 1770 struct rx_cmp *rxcmp; 1771 struct rx_cmp_ext *rxcmp1; 1772 u32 tmp_raw_cons = *raw_cons; 1773 u16 cfa_code, cons, prod, cp_cons = RING_CMP(tmp_raw_cons); 1774 struct bnxt_sw_rx_bd *rx_buf; 1775 unsigned int len; 1776 u8 *data_ptr, agg_bufs, cmp_type; 1777 dma_addr_t dma_addr; 1778 struct sk_buff *skb; 1779 u32 flags, misc; 1780 void *data; 1781 int rc = 0; 1782 1783 rxcmp = (struct rx_cmp *) 1784 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 1785 1786 cmp_type = RX_CMP_TYPE(rxcmp); 1787 1788 if (cmp_type == CMP_TYPE_RX_TPA_AGG_CMP) { 1789 bnxt_tpa_agg(bp, rxr, (struct rx_agg_cmp *)rxcmp); 1790 goto next_rx_no_prod_no_len; 1791 } 1792 1793 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons); 1794 cp_cons = RING_CMP(tmp_raw_cons); 1795 rxcmp1 = (struct rx_cmp_ext *) 1796 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 1797 1798 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 1799 return -EBUSY; 1800 1801 /* The valid test of the entry must be done first before 1802 * reading any further. 1803 */ 1804 dma_rmb(); 1805 prod = rxr->rx_prod; 1806 1807 if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) { 1808 bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp, 1809 (struct rx_tpa_start_cmp_ext *)rxcmp1); 1810 1811 *event |= BNXT_RX_EVENT; 1812 goto next_rx_no_prod_no_len; 1813 1814 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 1815 skb = bnxt_tpa_end(bp, cpr, &tmp_raw_cons, 1816 (struct rx_tpa_end_cmp *)rxcmp, 1817 (struct rx_tpa_end_cmp_ext *)rxcmp1, event); 1818 1819 if (IS_ERR(skb)) 1820 return -EBUSY; 1821 1822 rc = -ENOMEM; 1823 if (likely(skb)) { 1824 bnxt_deliver_skb(bp, bnapi, skb); 1825 rc = 1; 1826 } 1827 *event |= BNXT_RX_EVENT; 1828 goto next_rx_no_prod_no_len; 1829 } 1830 1831 cons = rxcmp->rx_cmp_opaque; 1832 if (unlikely(cons != rxr->rx_next_cons)) { 1833 int rc1 = bnxt_discard_rx(bp, cpr, &tmp_raw_cons, rxcmp); 1834 1835 /* 0xffff is forced error, don't print it */ 1836 if (rxr->rx_next_cons != 0xffff) 1837 netdev_warn(bp->dev, "RX cons %x != expected cons %x\n", 1838 cons, rxr->rx_next_cons); 1839 bnxt_sched_reset(bp, rxr); 1840 if (rc1) 1841 return rc1; 1842 goto next_rx_no_prod_no_len; 1843 } 1844 rx_buf = &rxr->rx_buf_ring[cons]; 1845 data = rx_buf->data; 1846 data_ptr = rx_buf->data_ptr; 1847 prefetch(data_ptr); 1848 1849 misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1); 1850 agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT; 1851 1852 if (agg_bufs) { 1853 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons)) 1854 return -EBUSY; 1855 1856 cp_cons = NEXT_CMP(cp_cons); 1857 *event |= BNXT_AGG_EVENT; 1858 } 1859 *event |= BNXT_RX_EVENT; 1860 1861 rx_buf->data = NULL; 1862 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) { 1863 u32 rx_err = le32_to_cpu(rxcmp1->rx_cmp_cfa_code_errors_v2); 1864 1865 bnxt_reuse_rx_data(rxr, cons, data); 1866 if (agg_bufs) 1867 bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, agg_bufs, 1868 false); 1869 1870 rc = -EIO; 1871 if (rx_err & RX_CMPL_ERRORS_BUFFER_ERROR_MASK) { 1872 bnapi->cp_ring.sw_stats.rx.rx_buf_errors++; 1873 if (!(bp->flags & BNXT_FLAG_CHIP_P5) && 1874 !(bp->fw_cap & BNXT_FW_CAP_RING_MONITOR)) { 1875 netdev_warn_once(bp->dev, "RX buffer error %x\n", 1876 rx_err); 1877 bnxt_sched_reset(bp, rxr); 1878 } 1879 } 1880 goto next_rx_no_len; 1881 } 1882 1883 flags = le32_to_cpu(rxcmp->rx_cmp_len_flags_type); 1884 len = flags >> RX_CMP_LEN_SHIFT; 1885 dma_addr = rx_buf->mapping; 1886 1887 if (bnxt_rx_xdp(bp, rxr, cons, data, &data_ptr, &len, event)) { 1888 rc = 1; 1889 goto next_rx; 1890 } 1891 1892 if (len <= bp->rx_copy_thresh) { 1893 skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr); 1894 bnxt_reuse_rx_data(rxr, cons, data); 1895 if (!skb) { 1896 if (agg_bufs) 1897 bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, 1898 agg_bufs, false); 1899 cpr->sw_stats.rx.rx_oom_discards += 1; 1900 rc = -ENOMEM; 1901 goto next_rx; 1902 } 1903 } else { 1904 u32 payload; 1905 1906 if (rx_buf->data_ptr == data_ptr) 1907 payload = misc & RX_CMP_PAYLOAD_OFFSET; 1908 else 1909 payload = 0; 1910 skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr, 1911 payload | len); 1912 if (!skb) { 1913 cpr->sw_stats.rx.rx_oom_discards += 1; 1914 rc = -ENOMEM; 1915 goto next_rx; 1916 } 1917 } 1918 1919 if (agg_bufs) { 1920 skb = bnxt_rx_pages(bp, cpr, skb, cp_cons, agg_bufs, false); 1921 if (!skb) { 1922 cpr->sw_stats.rx.rx_oom_discards += 1; 1923 rc = -ENOMEM; 1924 goto next_rx; 1925 } 1926 } 1927 1928 if (RX_CMP_HASH_VALID(rxcmp)) { 1929 u32 hash_type = RX_CMP_HASH_TYPE(rxcmp); 1930 enum pkt_hash_types type = PKT_HASH_TYPE_L4; 1931 1932 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */ 1933 if (hash_type != 1 && hash_type != 3) 1934 type = PKT_HASH_TYPE_L3; 1935 skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type); 1936 } 1937 1938 cfa_code = RX_CMP_CFA_CODE(rxcmp1); 1939 skb->protocol = eth_type_trans(skb, bnxt_get_pkt_dev(bp, cfa_code)); 1940 1941 if ((rxcmp1->rx_cmp_flags2 & 1942 cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) && 1943 (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) { 1944 u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data); 1945 u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK; 1946 __be16 vlan_proto = htons(meta_data >> 1947 RX_CMP_FLAGS2_METADATA_TPID_SFT); 1948 1949 if (eth_type_vlan(vlan_proto)) { 1950 __vlan_hwaccel_put_tag(skb, vlan_proto, vtag); 1951 } else { 1952 dev_kfree_skb(skb); 1953 goto next_rx; 1954 } 1955 } 1956 1957 skb_checksum_none_assert(skb); 1958 if (RX_CMP_L4_CS_OK(rxcmp1)) { 1959 if (dev->features & NETIF_F_RXCSUM) { 1960 skb->ip_summed = CHECKSUM_UNNECESSARY; 1961 skb->csum_level = RX_CMP_ENCAP(rxcmp1); 1962 } 1963 } else { 1964 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) { 1965 if (dev->features & NETIF_F_RXCSUM) 1966 bnapi->cp_ring.sw_stats.rx.rx_l4_csum_errors++; 1967 } 1968 } 1969 1970 if (unlikely((flags & RX_CMP_FLAGS_ITYPES_MASK) == 1971 RX_CMP_FLAGS_ITYPE_PTP_W_TS)) { 1972 if (bp->flags & BNXT_FLAG_CHIP_P5) { 1973 u32 cmpl_ts = le32_to_cpu(rxcmp1->rx_cmp_timestamp); 1974 u64 ns, ts; 1975 1976 if (!bnxt_get_rx_ts_p5(bp, &ts, cmpl_ts)) { 1977 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 1978 1979 spin_lock_bh(&ptp->ptp_lock); 1980 ns = timecounter_cyc2time(&ptp->tc, ts); 1981 spin_unlock_bh(&ptp->ptp_lock); 1982 memset(skb_hwtstamps(skb), 0, 1983 sizeof(*skb_hwtstamps(skb))); 1984 skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns); 1985 } 1986 } 1987 } 1988 bnxt_deliver_skb(bp, bnapi, skb); 1989 rc = 1; 1990 1991 next_rx: 1992 cpr->rx_packets += 1; 1993 cpr->rx_bytes += len; 1994 1995 next_rx_no_len: 1996 rxr->rx_prod = NEXT_RX(prod); 1997 rxr->rx_next_cons = NEXT_RX(cons); 1998 1999 next_rx_no_prod_no_len: 2000 *raw_cons = tmp_raw_cons; 2001 2002 return rc; 2003 } 2004 2005 /* In netpoll mode, if we are using a combined completion ring, we need to 2006 * discard the rx packets and recycle the buffers. 2007 */ 2008 static int bnxt_force_rx_discard(struct bnxt *bp, 2009 struct bnxt_cp_ring_info *cpr, 2010 u32 *raw_cons, u8 *event) 2011 { 2012 u32 tmp_raw_cons = *raw_cons; 2013 struct rx_cmp_ext *rxcmp1; 2014 struct rx_cmp *rxcmp; 2015 u16 cp_cons; 2016 u8 cmp_type; 2017 int rc; 2018 2019 cp_cons = RING_CMP(tmp_raw_cons); 2020 rxcmp = (struct rx_cmp *) 2021 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2022 2023 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons); 2024 cp_cons = RING_CMP(tmp_raw_cons); 2025 rxcmp1 = (struct rx_cmp_ext *) 2026 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2027 2028 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 2029 return -EBUSY; 2030 2031 /* The valid test of the entry must be done first before 2032 * reading any further. 2033 */ 2034 dma_rmb(); 2035 cmp_type = RX_CMP_TYPE(rxcmp); 2036 if (cmp_type == CMP_TYPE_RX_L2_CMP) { 2037 rxcmp1->rx_cmp_cfa_code_errors_v2 |= 2038 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR); 2039 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 2040 struct rx_tpa_end_cmp_ext *tpa_end1; 2041 2042 tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1; 2043 tpa_end1->rx_tpa_end_cmp_errors_v2 |= 2044 cpu_to_le32(RX_TPA_END_CMP_ERRORS); 2045 } 2046 rc = bnxt_rx_pkt(bp, cpr, raw_cons, event); 2047 if (rc && rc != -EBUSY) 2048 cpr->sw_stats.rx.rx_netpoll_discards += 1; 2049 return rc; 2050 } 2051 2052 u32 bnxt_fw_health_readl(struct bnxt *bp, int reg_idx) 2053 { 2054 struct bnxt_fw_health *fw_health = bp->fw_health; 2055 u32 reg = fw_health->regs[reg_idx]; 2056 u32 reg_type, reg_off, val = 0; 2057 2058 reg_type = BNXT_FW_HEALTH_REG_TYPE(reg); 2059 reg_off = BNXT_FW_HEALTH_REG_OFF(reg); 2060 switch (reg_type) { 2061 case BNXT_FW_HEALTH_REG_TYPE_CFG: 2062 pci_read_config_dword(bp->pdev, reg_off, &val); 2063 break; 2064 case BNXT_FW_HEALTH_REG_TYPE_GRC: 2065 reg_off = fw_health->mapped_regs[reg_idx]; 2066 fallthrough; 2067 case BNXT_FW_HEALTH_REG_TYPE_BAR0: 2068 val = readl(bp->bar0 + reg_off); 2069 break; 2070 case BNXT_FW_HEALTH_REG_TYPE_BAR1: 2071 val = readl(bp->bar1 + reg_off); 2072 break; 2073 } 2074 if (reg_idx == BNXT_FW_RESET_INPROG_REG) 2075 val &= fw_health->fw_reset_inprog_reg_mask; 2076 return val; 2077 } 2078 2079 static u16 bnxt_agg_ring_id_to_grp_idx(struct bnxt *bp, u16 ring_id) 2080 { 2081 int i; 2082 2083 for (i = 0; i < bp->rx_nr_rings; i++) { 2084 u16 grp_idx = bp->rx_ring[i].bnapi->index; 2085 struct bnxt_ring_grp_info *grp_info; 2086 2087 grp_info = &bp->grp_info[grp_idx]; 2088 if (grp_info->agg_fw_ring_id == ring_id) 2089 return grp_idx; 2090 } 2091 return INVALID_HW_RING_ID; 2092 } 2093 2094 static void bnxt_event_error_report(struct bnxt *bp, u32 data1, u32 data2) 2095 { 2096 switch (BNXT_EVENT_ERROR_REPORT_TYPE(data1)) { 2097 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_INVALID_SIGNAL: 2098 netdev_err(bp->dev, "1PPS: Received invalid signal on pin%lu from the external source. Please fix the signal and reconfigure the pin\n", 2099 BNXT_EVENT_INVALID_SIGNAL_DATA(data2)); 2100 break; 2101 default: 2102 netdev_err(bp->dev, "FW reported unknown error type\n"); 2103 break; 2104 } 2105 } 2106 2107 #define BNXT_GET_EVENT_PORT(data) \ 2108 ((data) & \ 2109 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK) 2110 2111 #define BNXT_EVENT_RING_TYPE(data2) \ 2112 ((data2) & \ 2113 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_MASK) 2114 2115 #define BNXT_EVENT_RING_TYPE_RX(data2) \ 2116 (BNXT_EVENT_RING_TYPE(data2) == \ 2117 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_RX) 2118 2119 static int bnxt_async_event_process(struct bnxt *bp, 2120 struct hwrm_async_event_cmpl *cmpl) 2121 { 2122 u16 event_id = le16_to_cpu(cmpl->event_id); 2123 u32 data1 = le32_to_cpu(cmpl->event_data1); 2124 u32 data2 = le32_to_cpu(cmpl->event_data2); 2125 2126 /* TODO CHIMP_FW: Define event id's for link change, error etc */ 2127 switch (event_id) { 2128 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: { 2129 struct bnxt_link_info *link_info = &bp->link_info; 2130 2131 if (BNXT_VF(bp)) 2132 goto async_event_process_exit; 2133 2134 /* print unsupported speed warning in forced speed mode only */ 2135 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) && 2136 (data1 & 0x20000)) { 2137 u16 fw_speed = link_info->force_link_speed; 2138 u32 speed = bnxt_fw_to_ethtool_speed(fw_speed); 2139 2140 if (speed != SPEED_UNKNOWN) 2141 netdev_warn(bp->dev, "Link speed %d no longer supported\n", 2142 speed); 2143 } 2144 set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event); 2145 } 2146 fallthrough; 2147 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE: 2148 case ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE: 2149 set_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, &bp->sp_event); 2150 fallthrough; 2151 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE: 2152 set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event); 2153 break; 2154 case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD: 2155 set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event); 2156 break; 2157 case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: { 2158 u16 port_id = BNXT_GET_EVENT_PORT(data1); 2159 2160 if (BNXT_VF(bp)) 2161 break; 2162 2163 if (bp->pf.port_id != port_id) 2164 break; 2165 2166 set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event); 2167 break; 2168 } 2169 case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE: 2170 if (BNXT_PF(bp)) 2171 goto async_event_process_exit; 2172 set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event); 2173 break; 2174 case ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY: { 2175 char *fatal_str = "non-fatal"; 2176 2177 if (!bp->fw_health) 2178 goto async_event_process_exit; 2179 2180 bp->fw_reset_timestamp = jiffies; 2181 bp->fw_reset_min_dsecs = cmpl->timestamp_lo; 2182 if (!bp->fw_reset_min_dsecs) 2183 bp->fw_reset_min_dsecs = BNXT_DFLT_FW_RST_MIN_DSECS; 2184 bp->fw_reset_max_dsecs = le16_to_cpu(cmpl->timestamp_hi); 2185 if (!bp->fw_reset_max_dsecs) 2186 bp->fw_reset_max_dsecs = BNXT_DFLT_FW_RST_MAX_DSECS; 2187 if (EVENT_DATA1_RESET_NOTIFY_FATAL(data1)) { 2188 fatal_str = "fatal"; 2189 set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 2190 } 2191 netif_warn(bp, hw, bp->dev, 2192 "Firmware %s reset event, data1: 0x%x, data2: 0x%x, min wait %u ms, max wait %u ms\n", 2193 fatal_str, data1, data2, 2194 bp->fw_reset_min_dsecs * 100, 2195 bp->fw_reset_max_dsecs * 100); 2196 set_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event); 2197 break; 2198 } 2199 case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY: { 2200 struct bnxt_fw_health *fw_health = bp->fw_health; 2201 2202 if (!fw_health) 2203 goto async_event_process_exit; 2204 2205 if (!EVENT_DATA1_RECOVERY_ENABLED(data1)) { 2206 fw_health->enabled = false; 2207 netif_info(bp, drv, bp->dev, 2208 "Error recovery info: error recovery[0]\n"); 2209 break; 2210 } 2211 fw_health->master = EVENT_DATA1_RECOVERY_MASTER_FUNC(data1); 2212 fw_health->tmr_multiplier = 2213 DIV_ROUND_UP(fw_health->polling_dsecs * HZ, 2214 bp->current_interval * 10); 2215 fw_health->tmr_counter = fw_health->tmr_multiplier; 2216 if (!fw_health->enabled) { 2217 fw_health->last_fw_heartbeat = 2218 bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 2219 fw_health->last_fw_reset_cnt = 2220 bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 2221 } 2222 netif_info(bp, drv, bp->dev, 2223 "Error recovery info: error recovery[1], master[%d], reset count[%u], health status: 0x%x\n", 2224 fw_health->master, fw_health->last_fw_reset_cnt, 2225 bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG)); 2226 if (!fw_health->enabled) { 2227 /* Make sure tmr_counter is set and visible to 2228 * bnxt_health_check() before setting enabled to true. 2229 */ 2230 smp_wmb(); 2231 fw_health->enabled = true; 2232 } 2233 goto async_event_process_exit; 2234 } 2235 case ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION: 2236 netif_notice(bp, hw, bp->dev, 2237 "Received firmware debug notification, data1: 0x%x, data2: 0x%x\n", 2238 data1, data2); 2239 goto async_event_process_exit; 2240 case ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG: { 2241 struct bnxt_rx_ring_info *rxr; 2242 u16 grp_idx; 2243 2244 if (bp->flags & BNXT_FLAG_CHIP_P5) 2245 goto async_event_process_exit; 2246 2247 netdev_warn(bp->dev, "Ring monitor event, ring type %lu id 0x%x\n", 2248 BNXT_EVENT_RING_TYPE(data2), data1); 2249 if (!BNXT_EVENT_RING_TYPE_RX(data2)) 2250 goto async_event_process_exit; 2251 2252 grp_idx = bnxt_agg_ring_id_to_grp_idx(bp, data1); 2253 if (grp_idx == INVALID_HW_RING_ID) { 2254 netdev_warn(bp->dev, "Unknown RX agg ring id 0x%x\n", 2255 data1); 2256 goto async_event_process_exit; 2257 } 2258 rxr = bp->bnapi[grp_idx]->rx_ring; 2259 bnxt_sched_reset(bp, rxr); 2260 goto async_event_process_exit; 2261 } 2262 case ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST: { 2263 struct bnxt_fw_health *fw_health = bp->fw_health; 2264 2265 netif_notice(bp, hw, bp->dev, 2266 "Received firmware echo request, data1: 0x%x, data2: 0x%x\n", 2267 data1, data2); 2268 if (fw_health) { 2269 fw_health->echo_req_data1 = data1; 2270 fw_health->echo_req_data2 = data2; 2271 set_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event); 2272 break; 2273 } 2274 goto async_event_process_exit; 2275 } 2276 case ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP: { 2277 bnxt_ptp_pps_event(bp, data1, data2); 2278 goto async_event_process_exit; 2279 } 2280 case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT: { 2281 bnxt_event_error_report(bp, data1, data2); 2282 goto async_event_process_exit; 2283 } 2284 case ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE: { 2285 u16 seq_id = le32_to_cpu(cmpl->event_data2) & 0xffff; 2286 2287 hwrm_update_token(bp, seq_id, BNXT_HWRM_DEFERRED); 2288 goto async_event_process_exit; 2289 } 2290 default: 2291 goto async_event_process_exit; 2292 } 2293 bnxt_queue_sp_work(bp); 2294 async_event_process_exit: 2295 bnxt_ulp_async_events(bp, cmpl); 2296 return 0; 2297 } 2298 2299 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp) 2300 { 2301 u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id; 2302 struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp; 2303 struct hwrm_fwd_req_cmpl *fwd_req_cmpl = 2304 (struct hwrm_fwd_req_cmpl *)txcmp; 2305 2306 switch (cmpl_type) { 2307 case CMPL_BASE_TYPE_HWRM_DONE: 2308 seq_id = le16_to_cpu(h_cmpl->sequence_id); 2309 hwrm_update_token(bp, seq_id, BNXT_HWRM_COMPLETE); 2310 break; 2311 2312 case CMPL_BASE_TYPE_HWRM_FWD_REQ: 2313 vf_id = le16_to_cpu(fwd_req_cmpl->source_id); 2314 2315 if ((vf_id < bp->pf.first_vf_id) || 2316 (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) { 2317 netdev_err(bp->dev, "Msg contains invalid VF id %x\n", 2318 vf_id); 2319 return -EINVAL; 2320 } 2321 2322 set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap); 2323 set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event); 2324 bnxt_queue_sp_work(bp); 2325 break; 2326 2327 case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT: 2328 bnxt_async_event_process(bp, 2329 (struct hwrm_async_event_cmpl *)txcmp); 2330 break; 2331 2332 default: 2333 break; 2334 } 2335 2336 return 0; 2337 } 2338 2339 static irqreturn_t bnxt_msix(int irq, void *dev_instance) 2340 { 2341 struct bnxt_napi *bnapi = dev_instance; 2342 struct bnxt *bp = bnapi->bp; 2343 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2344 u32 cons = RING_CMP(cpr->cp_raw_cons); 2345 2346 cpr->event_ctr++; 2347 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]); 2348 napi_schedule(&bnapi->napi); 2349 return IRQ_HANDLED; 2350 } 2351 2352 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr) 2353 { 2354 u32 raw_cons = cpr->cp_raw_cons; 2355 u16 cons = RING_CMP(raw_cons); 2356 struct tx_cmp *txcmp; 2357 2358 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 2359 2360 return TX_CMP_VALID(txcmp, raw_cons); 2361 } 2362 2363 static irqreturn_t bnxt_inta(int irq, void *dev_instance) 2364 { 2365 struct bnxt_napi *bnapi = dev_instance; 2366 struct bnxt *bp = bnapi->bp; 2367 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2368 u32 cons = RING_CMP(cpr->cp_raw_cons); 2369 u32 int_status; 2370 2371 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]); 2372 2373 if (!bnxt_has_work(bp, cpr)) { 2374 int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS); 2375 /* return if erroneous interrupt */ 2376 if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id))) 2377 return IRQ_NONE; 2378 } 2379 2380 /* disable ring IRQ */ 2381 BNXT_CP_DB_IRQ_DIS(cpr->cp_db.doorbell); 2382 2383 /* Return here if interrupt is shared and is disabled. */ 2384 if (unlikely(atomic_read(&bp->intr_sem) != 0)) 2385 return IRQ_HANDLED; 2386 2387 napi_schedule(&bnapi->napi); 2388 return IRQ_HANDLED; 2389 } 2390 2391 static int __bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 2392 int budget) 2393 { 2394 struct bnxt_napi *bnapi = cpr->bnapi; 2395 u32 raw_cons = cpr->cp_raw_cons; 2396 u32 cons; 2397 int tx_pkts = 0; 2398 int rx_pkts = 0; 2399 u8 event = 0; 2400 struct tx_cmp *txcmp; 2401 2402 cpr->has_more_work = 0; 2403 cpr->had_work_done = 1; 2404 while (1) { 2405 int rc; 2406 2407 cons = RING_CMP(raw_cons); 2408 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 2409 2410 if (!TX_CMP_VALID(txcmp, raw_cons)) 2411 break; 2412 2413 /* The valid test of the entry must be done first before 2414 * reading any further. 2415 */ 2416 dma_rmb(); 2417 if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) { 2418 tx_pkts++; 2419 /* return full budget so NAPI will complete. */ 2420 if (unlikely(tx_pkts > bp->tx_wake_thresh)) { 2421 rx_pkts = budget; 2422 raw_cons = NEXT_RAW_CMP(raw_cons); 2423 if (budget) 2424 cpr->has_more_work = 1; 2425 break; 2426 } 2427 } else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) { 2428 if (likely(budget)) 2429 rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event); 2430 else 2431 rc = bnxt_force_rx_discard(bp, cpr, &raw_cons, 2432 &event); 2433 if (likely(rc >= 0)) 2434 rx_pkts += rc; 2435 /* Increment rx_pkts when rc is -ENOMEM to count towards 2436 * the NAPI budget. Otherwise, we may potentially loop 2437 * here forever if we consistently cannot allocate 2438 * buffers. 2439 */ 2440 else if (rc == -ENOMEM && budget) 2441 rx_pkts++; 2442 else if (rc == -EBUSY) /* partial completion */ 2443 break; 2444 } else if (unlikely((TX_CMP_TYPE(txcmp) == 2445 CMPL_BASE_TYPE_HWRM_DONE) || 2446 (TX_CMP_TYPE(txcmp) == 2447 CMPL_BASE_TYPE_HWRM_FWD_REQ) || 2448 (TX_CMP_TYPE(txcmp) == 2449 CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) { 2450 bnxt_hwrm_handler(bp, txcmp); 2451 } 2452 raw_cons = NEXT_RAW_CMP(raw_cons); 2453 2454 if (rx_pkts && rx_pkts == budget) { 2455 cpr->has_more_work = 1; 2456 break; 2457 } 2458 } 2459 2460 if (event & BNXT_REDIRECT_EVENT) 2461 xdp_do_flush_map(); 2462 2463 if (event & BNXT_TX_EVENT) { 2464 struct bnxt_tx_ring_info *txr = bnapi->tx_ring; 2465 u16 prod = txr->tx_prod; 2466 2467 /* Sync BD data before updating doorbell */ 2468 wmb(); 2469 2470 bnxt_db_write_relaxed(bp, &txr->tx_db, prod); 2471 } 2472 2473 cpr->cp_raw_cons = raw_cons; 2474 bnapi->tx_pkts += tx_pkts; 2475 bnapi->events |= event; 2476 return rx_pkts; 2477 } 2478 2479 static void __bnxt_poll_work_done(struct bnxt *bp, struct bnxt_napi *bnapi) 2480 { 2481 if (bnapi->tx_pkts) { 2482 bnapi->tx_int(bp, bnapi, bnapi->tx_pkts); 2483 bnapi->tx_pkts = 0; 2484 } 2485 2486 if ((bnapi->events & BNXT_RX_EVENT) && !(bnapi->in_reset)) { 2487 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 2488 2489 if (bnapi->events & BNXT_AGG_EVENT) 2490 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 2491 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 2492 } 2493 bnapi->events = 0; 2494 } 2495 2496 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 2497 int budget) 2498 { 2499 struct bnxt_napi *bnapi = cpr->bnapi; 2500 int rx_pkts; 2501 2502 rx_pkts = __bnxt_poll_work(bp, cpr, budget); 2503 2504 /* ACK completion ring before freeing tx ring and producing new 2505 * buffers in rx/agg rings to prevent overflowing the completion 2506 * ring. 2507 */ 2508 bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons); 2509 2510 __bnxt_poll_work_done(bp, bnapi); 2511 return rx_pkts; 2512 } 2513 2514 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget) 2515 { 2516 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 2517 struct bnxt *bp = bnapi->bp; 2518 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2519 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 2520 struct tx_cmp *txcmp; 2521 struct rx_cmp_ext *rxcmp1; 2522 u32 cp_cons, tmp_raw_cons; 2523 u32 raw_cons = cpr->cp_raw_cons; 2524 u32 rx_pkts = 0; 2525 u8 event = 0; 2526 2527 while (1) { 2528 int rc; 2529 2530 cp_cons = RING_CMP(raw_cons); 2531 txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2532 2533 if (!TX_CMP_VALID(txcmp, raw_cons)) 2534 break; 2535 2536 /* The valid test of the entry must be done first before 2537 * reading any further. 2538 */ 2539 dma_rmb(); 2540 if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) { 2541 tmp_raw_cons = NEXT_RAW_CMP(raw_cons); 2542 cp_cons = RING_CMP(tmp_raw_cons); 2543 rxcmp1 = (struct rx_cmp_ext *) 2544 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2545 2546 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 2547 break; 2548 2549 /* force an error to recycle the buffer */ 2550 rxcmp1->rx_cmp_cfa_code_errors_v2 |= 2551 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR); 2552 2553 rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event); 2554 if (likely(rc == -EIO) && budget) 2555 rx_pkts++; 2556 else if (rc == -EBUSY) /* partial completion */ 2557 break; 2558 } else if (unlikely(TX_CMP_TYPE(txcmp) == 2559 CMPL_BASE_TYPE_HWRM_DONE)) { 2560 bnxt_hwrm_handler(bp, txcmp); 2561 } else { 2562 netdev_err(bp->dev, 2563 "Invalid completion received on special ring\n"); 2564 } 2565 raw_cons = NEXT_RAW_CMP(raw_cons); 2566 2567 if (rx_pkts == budget) 2568 break; 2569 } 2570 2571 cpr->cp_raw_cons = raw_cons; 2572 BNXT_DB_CQ(&cpr->cp_db, cpr->cp_raw_cons); 2573 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 2574 2575 if (event & BNXT_AGG_EVENT) 2576 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 2577 2578 if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) { 2579 napi_complete_done(napi, rx_pkts); 2580 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 2581 } 2582 return rx_pkts; 2583 } 2584 2585 static int bnxt_poll(struct napi_struct *napi, int budget) 2586 { 2587 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 2588 struct bnxt *bp = bnapi->bp; 2589 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2590 int work_done = 0; 2591 2592 if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) { 2593 napi_complete(napi); 2594 return 0; 2595 } 2596 while (1) { 2597 work_done += bnxt_poll_work(bp, cpr, budget - work_done); 2598 2599 if (work_done >= budget) { 2600 if (!budget) 2601 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 2602 break; 2603 } 2604 2605 if (!bnxt_has_work(bp, cpr)) { 2606 if (napi_complete_done(napi, work_done)) 2607 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 2608 break; 2609 } 2610 } 2611 if (bp->flags & BNXT_FLAG_DIM) { 2612 struct dim_sample dim_sample = {}; 2613 2614 dim_update_sample(cpr->event_ctr, 2615 cpr->rx_packets, 2616 cpr->rx_bytes, 2617 &dim_sample); 2618 net_dim(&cpr->dim, dim_sample); 2619 } 2620 return work_done; 2621 } 2622 2623 static int __bnxt_poll_cqs(struct bnxt *bp, struct bnxt_napi *bnapi, int budget) 2624 { 2625 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2626 int i, work_done = 0; 2627 2628 for (i = 0; i < 2; i++) { 2629 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i]; 2630 2631 if (cpr2) { 2632 work_done += __bnxt_poll_work(bp, cpr2, 2633 budget - work_done); 2634 cpr->has_more_work |= cpr2->has_more_work; 2635 } 2636 } 2637 return work_done; 2638 } 2639 2640 static void __bnxt_poll_cqs_done(struct bnxt *bp, struct bnxt_napi *bnapi, 2641 u64 dbr_type) 2642 { 2643 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2644 int i; 2645 2646 for (i = 0; i < 2; i++) { 2647 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i]; 2648 struct bnxt_db_info *db; 2649 2650 if (cpr2 && cpr2->had_work_done) { 2651 db = &cpr2->cp_db; 2652 bnxt_writeq(bp, db->db_key64 | dbr_type | 2653 RING_CMP(cpr2->cp_raw_cons), db->doorbell); 2654 cpr2->had_work_done = 0; 2655 } 2656 } 2657 __bnxt_poll_work_done(bp, bnapi); 2658 } 2659 2660 static int bnxt_poll_p5(struct napi_struct *napi, int budget) 2661 { 2662 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 2663 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2664 u32 raw_cons = cpr->cp_raw_cons; 2665 struct bnxt *bp = bnapi->bp; 2666 struct nqe_cn *nqcmp; 2667 int work_done = 0; 2668 u32 cons; 2669 2670 if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) { 2671 napi_complete(napi); 2672 return 0; 2673 } 2674 if (cpr->has_more_work) { 2675 cpr->has_more_work = 0; 2676 work_done = __bnxt_poll_cqs(bp, bnapi, budget); 2677 } 2678 while (1) { 2679 cons = RING_CMP(raw_cons); 2680 nqcmp = &cpr->nq_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 2681 2682 if (!NQ_CMP_VALID(nqcmp, raw_cons)) { 2683 if (cpr->has_more_work) 2684 break; 2685 2686 __bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL); 2687 cpr->cp_raw_cons = raw_cons; 2688 if (napi_complete_done(napi, work_done)) 2689 BNXT_DB_NQ_ARM_P5(&cpr->cp_db, 2690 cpr->cp_raw_cons); 2691 return work_done; 2692 } 2693 2694 /* The valid test of the entry must be done first before 2695 * reading any further. 2696 */ 2697 dma_rmb(); 2698 2699 if (nqcmp->type == cpu_to_le16(NQ_CN_TYPE_CQ_NOTIFICATION)) { 2700 u32 idx = le32_to_cpu(nqcmp->cq_handle_low); 2701 struct bnxt_cp_ring_info *cpr2; 2702 2703 cpr2 = cpr->cp_ring_arr[idx]; 2704 work_done += __bnxt_poll_work(bp, cpr2, 2705 budget - work_done); 2706 cpr->has_more_work |= cpr2->has_more_work; 2707 } else { 2708 bnxt_hwrm_handler(bp, (struct tx_cmp *)nqcmp); 2709 } 2710 raw_cons = NEXT_RAW_CMP(raw_cons); 2711 } 2712 __bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ); 2713 if (raw_cons != cpr->cp_raw_cons) { 2714 cpr->cp_raw_cons = raw_cons; 2715 BNXT_DB_NQ_P5(&cpr->cp_db, raw_cons); 2716 } 2717 return work_done; 2718 } 2719 2720 static void bnxt_free_tx_skbs(struct bnxt *bp) 2721 { 2722 int i, max_idx; 2723 struct pci_dev *pdev = bp->pdev; 2724 2725 if (!bp->tx_ring) 2726 return; 2727 2728 max_idx = bp->tx_nr_pages * TX_DESC_CNT; 2729 for (i = 0; i < bp->tx_nr_rings; i++) { 2730 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 2731 int j; 2732 2733 for (j = 0; j < max_idx;) { 2734 struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j]; 2735 struct sk_buff *skb; 2736 int k, last; 2737 2738 if (i < bp->tx_nr_rings_xdp && 2739 tx_buf->action == XDP_REDIRECT) { 2740 dma_unmap_single(&pdev->dev, 2741 dma_unmap_addr(tx_buf, mapping), 2742 dma_unmap_len(tx_buf, len), 2743 DMA_TO_DEVICE); 2744 xdp_return_frame(tx_buf->xdpf); 2745 tx_buf->action = 0; 2746 tx_buf->xdpf = NULL; 2747 j++; 2748 continue; 2749 } 2750 2751 skb = tx_buf->skb; 2752 if (!skb) { 2753 j++; 2754 continue; 2755 } 2756 2757 tx_buf->skb = NULL; 2758 2759 if (tx_buf->is_push) { 2760 dev_kfree_skb(skb); 2761 j += 2; 2762 continue; 2763 } 2764 2765 dma_unmap_single(&pdev->dev, 2766 dma_unmap_addr(tx_buf, mapping), 2767 skb_headlen(skb), 2768 DMA_TO_DEVICE); 2769 2770 last = tx_buf->nr_frags; 2771 j += 2; 2772 for (k = 0; k < last; k++, j++) { 2773 int ring_idx = j & bp->tx_ring_mask; 2774 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 2775 2776 tx_buf = &txr->tx_buf_ring[ring_idx]; 2777 dma_unmap_page( 2778 &pdev->dev, 2779 dma_unmap_addr(tx_buf, mapping), 2780 skb_frag_size(frag), DMA_TO_DEVICE); 2781 } 2782 dev_kfree_skb(skb); 2783 } 2784 netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i)); 2785 } 2786 } 2787 2788 static void bnxt_free_one_rx_ring_skbs(struct bnxt *bp, int ring_nr) 2789 { 2790 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 2791 struct pci_dev *pdev = bp->pdev; 2792 struct bnxt_tpa_idx_map *map; 2793 int i, max_idx, max_agg_idx; 2794 2795 max_idx = bp->rx_nr_pages * RX_DESC_CNT; 2796 max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT; 2797 if (!rxr->rx_tpa) 2798 goto skip_rx_tpa_free; 2799 2800 for (i = 0; i < bp->max_tpa; i++) { 2801 struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[i]; 2802 u8 *data = tpa_info->data; 2803 2804 if (!data) 2805 continue; 2806 2807 dma_unmap_single_attrs(&pdev->dev, tpa_info->mapping, 2808 bp->rx_buf_use_size, bp->rx_dir, 2809 DMA_ATTR_WEAK_ORDERING); 2810 2811 tpa_info->data = NULL; 2812 2813 kfree(data); 2814 } 2815 2816 skip_rx_tpa_free: 2817 for (i = 0; i < max_idx; i++) { 2818 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[i]; 2819 dma_addr_t mapping = rx_buf->mapping; 2820 void *data = rx_buf->data; 2821 2822 if (!data) 2823 continue; 2824 2825 rx_buf->data = NULL; 2826 if (BNXT_RX_PAGE_MODE(bp)) { 2827 mapping -= bp->rx_dma_offset; 2828 dma_unmap_page_attrs(&pdev->dev, mapping, PAGE_SIZE, 2829 bp->rx_dir, 2830 DMA_ATTR_WEAK_ORDERING); 2831 page_pool_recycle_direct(rxr->page_pool, data); 2832 } else { 2833 dma_unmap_single_attrs(&pdev->dev, mapping, 2834 bp->rx_buf_use_size, bp->rx_dir, 2835 DMA_ATTR_WEAK_ORDERING); 2836 kfree(data); 2837 } 2838 } 2839 for (i = 0; i < max_agg_idx; i++) { 2840 struct bnxt_sw_rx_agg_bd *rx_agg_buf = &rxr->rx_agg_ring[i]; 2841 struct page *page = rx_agg_buf->page; 2842 2843 if (!page) 2844 continue; 2845 2846 dma_unmap_page_attrs(&pdev->dev, rx_agg_buf->mapping, 2847 BNXT_RX_PAGE_SIZE, DMA_FROM_DEVICE, 2848 DMA_ATTR_WEAK_ORDERING); 2849 2850 rx_agg_buf->page = NULL; 2851 __clear_bit(i, rxr->rx_agg_bmap); 2852 2853 __free_page(page); 2854 } 2855 if (rxr->rx_page) { 2856 __free_page(rxr->rx_page); 2857 rxr->rx_page = NULL; 2858 } 2859 map = rxr->rx_tpa_idx_map; 2860 if (map) 2861 memset(map->agg_idx_bmap, 0, sizeof(map->agg_idx_bmap)); 2862 } 2863 2864 static void bnxt_free_rx_skbs(struct bnxt *bp) 2865 { 2866 int i; 2867 2868 if (!bp->rx_ring) 2869 return; 2870 2871 for (i = 0; i < bp->rx_nr_rings; i++) 2872 bnxt_free_one_rx_ring_skbs(bp, i); 2873 } 2874 2875 static void bnxt_free_skbs(struct bnxt *bp) 2876 { 2877 bnxt_free_tx_skbs(bp); 2878 bnxt_free_rx_skbs(bp); 2879 } 2880 2881 static void bnxt_init_ctx_mem(struct bnxt_mem_init *mem_init, void *p, int len) 2882 { 2883 u8 init_val = mem_init->init_val; 2884 u16 offset = mem_init->offset; 2885 u8 *p2 = p; 2886 int i; 2887 2888 if (!init_val) 2889 return; 2890 if (offset == BNXT_MEM_INVALID_OFFSET) { 2891 memset(p, init_val, len); 2892 return; 2893 } 2894 for (i = 0; i < len; i += mem_init->size) 2895 *(p2 + i + offset) = init_val; 2896 } 2897 2898 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem) 2899 { 2900 struct pci_dev *pdev = bp->pdev; 2901 int i; 2902 2903 for (i = 0; i < rmem->nr_pages; i++) { 2904 if (!rmem->pg_arr[i]) 2905 continue; 2906 2907 dma_free_coherent(&pdev->dev, rmem->page_size, 2908 rmem->pg_arr[i], rmem->dma_arr[i]); 2909 2910 rmem->pg_arr[i] = NULL; 2911 } 2912 if (rmem->pg_tbl) { 2913 size_t pg_tbl_size = rmem->nr_pages * 8; 2914 2915 if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG) 2916 pg_tbl_size = rmem->page_size; 2917 dma_free_coherent(&pdev->dev, pg_tbl_size, 2918 rmem->pg_tbl, rmem->pg_tbl_map); 2919 rmem->pg_tbl = NULL; 2920 } 2921 if (rmem->vmem_size && *rmem->vmem) { 2922 vfree(*rmem->vmem); 2923 *rmem->vmem = NULL; 2924 } 2925 } 2926 2927 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem) 2928 { 2929 struct pci_dev *pdev = bp->pdev; 2930 u64 valid_bit = 0; 2931 int i; 2932 2933 if (rmem->flags & (BNXT_RMEM_VALID_PTE_FLAG | BNXT_RMEM_RING_PTE_FLAG)) 2934 valid_bit = PTU_PTE_VALID; 2935 if ((rmem->nr_pages > 1 || rmem->depth > 0) && !rmem->pg_tbl) { 2936 size_t pg_tbl_size = rmem->nr_pages * 8; 2937 2938 if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG) 2939 pg_tbl_size = rmem->page_size; 2940 rmem->pg_tbl = dma_alloc_coherent(&pdev->dev, pg_tbl_size, 2941 &rmem->pg_tbl_map, 2942 GFP_KERNEL); 2943 if (!rmem->pg_tbl) 2944 return -ENOMEM; 2945 } 2946 2947 for (i = 0; i < rmem->nr_pages; i++) { 2948 u64 extra_bits = valid_bit; 2949 2950 rmem->pg_arr[i] = dma_alloc_coherent(&pdev->dev, 2951 rmem->page_size, 2952 &rmem->dma_arr[i], 2953 GFP_KERNEL); 2954 if (!rmem->pg_arr[i]) 2955 return -ENOMEM; 2956 2957 if (rmem->mem_init) 2958 bnxt_init_ctx_mem(rmem->mem_init, rmem->pg_arr[i], 2959 rmem->page_size); 2960 if (rmem->nr_pages > 1 || rmem->depth > 0) { 2961 if (i == rmem->nr_pages - 2 && 2962 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG)) 2963 extra_bits |= PTU_PTE_NEXT_TO_LAST; 2964 else if (i == rmem->nr_pages - 1 && 2965 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG)) 2966 extra_bits |= PTU_PTE_LAST; 2967 rmem->pg_tbl[i] = 2968 cpu_to_le64(rmem->dma_arr[i] | extra_bits); 2969 } 2970 } 2971 2972 if (rmem->vmem_size) { 2973 *rmem->vmem = vzalloc(rmem->vmem_size); 2974 if (!(*rmem->vmem)) 2975 return -ENOMEM; 2976 } 2977 return 0; 2978 } 2979 2980 static void bnxt_free_tpa_info(struct bnxt *bp) 2981 { 2982 int i; 2983 2984 for (i = 0; i < bp->rx_nr_rings; i++) { 2985 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 2986 2987 kfree(rxr->rx_tpa_idx_map); 2988 rxr->rx_tpa_idx_map = NULL; 2989 if (rxr->rx_tpa) { 2990 kfree(rxr->rx_tpa[0].agg_arr); 2991 rxr->rx_tpa[0].agg_arr = NULL; 2992 } 2993 kfree(rxr->rx_tpa); 2994 rxr->rx_tpa = NULL; 2995 } 2996 } 2997 2998 static int bnxt_alloc_tpa_info(struct bnxt *bp) 2999 { 3000 int i, j, total_aggs = 0; 3001 3002 bp->max_tpa = MAX_TPA; 3003 if (bp->flags & BNXT_FLAG_CHIP_P5) { 3004 if (!bp->max_tpa_v2) 3005 return 0; 3006 bp->max_tpa = max_t(u16, bp->max_tpa_v2, MAX_TPA_P5); 3007 total_aggs = bp->max_tpa * MAX_SKB_FRAGS; 3008 } 3009 3010 for (i = 0; i < bp->rx_nr_rings; i++) { 3011 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3012 struct rx_agg_cmp *agg; 3013 3014 rxr->rx_tpa = kcalloc(bp->max_tpa, sizeof(struct bnxt_tpa_info), 3015 GFP_KERNEL); 3016 if (!rxr->rx_tpa) 3017 return -ENOMEM; 3018 3019 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 3020 continue; 3021 agg = kcalloc(total_aggs, sizeof(*agg), GFP_KERNEL); 3022 rxr->rx_tpa[0].agg_arr = agg; 3023 if (!agg) 3024 return -ENOMEM; 3025 for (j = 1; j < bp->max_tpa; j++) 3026 rxr->rx_tpa[j].agg_arr = agg + j * MAX_SKB_FRAGS; 3027 rxr->rx_tpa_idx_map = kzalloc(sizeof(*rxr->rx_tpa_idx_map), 3028 GFP_KERNEL); 3029 if (!rxr->rx_tpa_idx_map) 3030 return -ENOMEM; 3031 } 3032 return 0; 3033 } 3034 3035 static void bnxt_free_rx_rings(struct bnxt *bp) 3036 { 3037 int i; 3038 3039 if (!bp->rx_ring) 3040 return; 3041 3042 bnxt_free_tpa_info(bp); 3043 for (i = 0; i < bp->rx_nr_rings; i++) { 3044 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3045 struct bnxt_ring_struct *ring; 3046 3047 if (rxr->xdp_prog) 3048 bpf_prog_put(rxr->xdp_prog); 3049 3050 if (xdp_rxq_info_is_reg(&rxr->xdp_rxq)) 3051 xdp_rxq_info_unreg(&rxr->xdp_rxq); 3052 3053 page_pool_destroy(rxr->page_pool); 3054 rxr->page_pool = NULL; 3055 3056 kfree(rxr->rx_agg_bmap); 3057 rxr->rx_agg_bmap = NULL; 3058 3059 ring = &rxr->rx_ring_struct; 3060 bnxt_free_ring(bp, &ring->ring_mem); 3061 3062 ring = &rxr->rx_agg_ring_struct; 3063 bnxt_free_ring(bp, &ring->ring_mem); 3064 } 3065 } 3066 3067 static int bnxt_alloc_rx_page_pool(struct bnxt *bp, 3068 struct bnxt_rx_ring_info *rxr) 3069 { 3070 struct page_pool_params pp = { 0 }; 3071 3072 pp.pool_size = bp->rx_ring_size; 3073 pp.nid = dev_to_node(&bp->pdev->dev); 3074 pp.dev = &bp->pdev->dev; 3075 pp.dma_dir = DMA_BIDIRECTIONAL; 3076 3077 rxr->page_pool = page_pool_create(&pp); 3078 if (IS_ERR(rxr->page_pool)) { 3079 int err = PTR_ERR(rxr->page_pool); 3080 3081 rxr->page_pool = NULL; 3082 return err; 3083 } 3084 return 0; 3085 } 3086 3087 static int bnxt_alloc_rx_rings(struct bnxt *bp) 3088 { 3089 int i, rc = 0, agg_rings = 0; 3090 3091 if (!bp->rx_ring) 3092 return -ENOMEM; 3093 3094 if (bp->flags & BNXT_FLAG_AGG_RINGS) 3095 agg_rings = 1; 3096 3097 for (i = 0; i < bp->rx_nr_rings; i++) { 3098 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3099 struct bnxt_ring_struct *ring; 3100 3101 ring = &rxr->rx_ring_struct; 3102 3103 rc = bnxt_alloc_rx_page_pool(bp, rxr); 3104 if (rc) 3105 return rc; 3106 3107 rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i, 0); 3108 if (rc < 0) 3109 return rc; 3110 3111 rc = xdp_rxq_info_reg_mem_model(&rxr->xdp_rxq, 3112 MEM_TYPE_PAGE_POOL, 3113 rxr->page_pool); 3114 if (rc) { 3115 xdp_rxq_info_unreg(&rxr->xdp_rxq); 3116 return rc; 3117 } 3118 3119 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3120 if (rc) 3121 return rc; 3122 3123 ring->grp_idx = i; 3124 if (agg_rings) { 3125 u16 mem_size; 3126 3127 ring = &rxr->rx_agg_ring_struct; 3128 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3129 if (rc) 3130 return rc; 3131 3132 ring->grp_idx = i; 3133 rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1; 3134 mem_size = rxr->rx_agg_bmap_size / 8; 3135 rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL); 3136 if (!rxr->rx_agg_bmap) 3137 return -ENOMEM; 3138 } 3139 } 3140 if (bp->flags & BNXT_FLAG_TPA) 3141 rc = bnxt_alloc_tpa_info(bp); 3142 return rc; 3143 } 3144 3145 static void bnxt_free_tx_rings(struct bnxt *bp) 3146 { 3147 int i; 3148 struct pci_dev *pdev = bp->pdev; 3149 3150 if (!bp->tx_ring) 3151 return; 3152 3153 for (i = 0; i < bp->tx_nr_rings; i++) { 3154 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3155 struct bnxt_ring_struct *ring; 3156 3157 if (txr->tx_push) { 3158 dma_free_coherent(&pdev->dev, bp->tx_push_size, 3159 txr->tx_push, txr->tx_push_mapping); 3160 txr->tx_push = NULL; 3161 } 3162 3163 ring = &txr->tx_ring_struct; 3164 3165 bnxt_free_ring(bp, &ring->ring_mem); 3166 } 3167 } 3168 3169 static int bnxt_alloc_tx_rings(struct bnxt *bp) 3170 { 3171 int i, j, rc; 3172 struct pci_dev *pdev = bp->pdev; 3173 3174 bp->tx_push_size = 0; 3175 if (bp->tx_push_thresh) { 3176 int push_size; 3177 3178 push_size = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) + 3179 bp->tx_push_thresh); 3180 3181 if (push_size > 256) { 3182 push_size = 0; 3183 bp->tx_push_thresh = 0; 3184 } 3185 3186 bp->tx_push_size = push_size; 3187 } 3188 3189 for (i = 0, j = 0; i < bp->tx_nr_rings; i++) { 3190 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3191 struct bnxt_ring_struct *ring; 3192 u8 qidx; 3193 3194 ring = &txr->tx_ring_struct; 3195 3196 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3197 if (rc) 3198 return rc; 3199 3200 ring->grp_idx = txr->bnapi->index; 3201 if (bp->tx_push_size) { 3202 dma_addr_t mapping; 3203 3204 /* One pre-allocated DMA buffer to backup 3205 * TX push operation 3206 */ 3207 txr->tx_push = dma_alloc_coherent(&pdev->dev, 3208 bp->tx_push_size, 3209 &txr->tx_push_mapping, 3210 GFP_KERNEL); 3211 3212 if (!txr->tx_push) 3213 return -ENOMEM; 3214 3215 mapping = txr->tx_push_mapping + 3216 sizeof(struct tx_push_bd); 3217 txr->data_mapping = cpu_to_le64(mapping); 3218 } 3219 qidx = bp->tc_to_qidx[j]; 3220 ring->queue_id = bp->q_info[qidx].queue_id; 3221 if (i < bp->tx_nr_rings_xdp) 3222 continue; 3223 if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1)) 3224 j++; 3225 } 3226 return 0; 3227 } 3228 3229 static void bnxt_free_cp_arrays(struct bnxt_cp_ring_info *cpr) 3230 { 3231 kfree(cpr->cp_desc_ring); 3232 cpr->cp_desc_ring = NULL; 3233 kfree(cpr->cp_desc_mapping); 3234 cpr->cp_desc_mapping = NULL; 3235 } 3236 3237 static int bnxt_alloc_cp_arrays(struct bnxt_cp_ring_info *cpr, int n) 3238 { 3239 cpr->cp_desc_ring = kcalloc(n, sizeof(*cpr->cp_desc_ring), GFP_KERNEL); 3240 if (!cpr->cp_desc_ring) 3241 return -ENOMEM; 3242 cpr->cp_desc_mapping = kcalloc(n, sizeof(*cpr->cp_desc_mapping), 3243 GFP_KERNEL); 3244 if (!cpr->cp_desc_mapping) 3245 return -ENOMEM; 3246 return 0; 3247 } 3248 3249 static void bnxt_free_all_cp_arrays(struct bnxt *bp) 3250 { 3251 int i; 3252 3253 if (!bp->bnapi) 3254 return; 3255 for (i = 0; i < bp->cp_nr_rings; i++) { 3256 struct bnxt_napi *bnapi = bp->bnapi[i]; 3257 3258 if (!bnapi) 3259 continue; 3260 bnxt_free_cp_arrays(&bnapi->cp_ring); 3261 } 3262 } 3263 3264 static int bnxt_alloc_all_cp_arrays(struct bnxt *bp) 3265 { 3266 int i, n = bp->cp_nr_pages; 3267 3268 for (i = 0; i < bp->cp_nr_rings; i++) { 3269 struct bnxt_napi *bnapi = bp->bnapi[i]; 3270 int rc; 3271 3272 if (!bnapi) 3273 continue; 3274 rc = bnxt_alloc_cp_arrays(&bnapi->cp_ring, n); 3275 if (rc) 3276 return rc; 3277 } 3278 return 0; 3279 } 3280 3281 static void bnxt_free_cp_rings(struct bnxt *bp) 3282 { 3283 int i; 3284 3285 if (!bp->bnapi) 3286 return; 3287 3288 for (i = 0; i < bp->cp_nr_rings; i++) { 3289 struct bnxt_napi *bnapi = bp->bnapi[i]; 3290 struct bnxt_cp_ring_info *cpr; 3291 struct bnxt_ring_struct *ring; 3292 int j; 3293 3294 if (!bnapi) 3295 continue; 3296 3297 cpr = &bnapi->cp_ring; 3298 ring = &cpr->cp_ring_struct; 3299 3300 bnxt_free_ring(bp, &ring->ring_mem); 3301 3302 for (j = 0; j < 2; j++) { 3303 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j]; 3304 3305 if (cpr2) { 3306 ring = &cpr2->cp_ring_struct; 3307 bnxt_free_ring(bp, &ring->ring_mem); 3308 bnxt_free_cp_arrays(cpr2); 3309 kfree(cpr2); 3310 cpr->cp_ring_arr[j] = NULL; 3311 } 3312 } 3313 } 3314 } 3315 3316 static struct bnxt_cp_ring_info *bnxt_alloc_cp_sub_ring(struct bnxt *bp) 3317 { 3318 struct bnxt_ring_mem_info *rmem; 3319 struct bnxt_ring_struct *ring; 3320 struct bnxt_cp_ring_info *cpr; 3321 int rc; 3322 3323 cpr = kzalloc(sizeof(*cpr), GFP_KERNEL); 3324 if (!cpr) 3325 return NULL; 3326 3327 rc = bnxt_alloc_cp_arrays(cpr, bp->cp_nr_pages); 3328 if (rc) { 3329 bnxt_free_cp_arrays(cpr); 3330 kfree(cpr); 3331 return NULL; 3332 } 3333 ring = &cpr->cp_ring_struct; 3334 rmem = &ring->ring_mem; 3335 rmem->nr_pages = bp->cp_nr_pages; 3336 rmem->page_size = HW_CMPD_RING_SIZE; 3337 rmem->pg_arr = (void **)cpr->cp_desc_ring; 3338 rmem->dma_arr = cpr->cp_desc_mapping; 3339 rmem->flags = BNXT_RMEM_RING_PTE_FLAG; 3340 rc = bnxt_alloc_ring(bp, rmem); 3341 if (rc) { 3342 bnxt_free_ring(bp, rmem); 3343 bnxt_free_cp_arrays(cpr); 3344 kfree(cpr); 3345 cpr = NULL; 3346 } 3347 return cpr; 3348 } 3349 3350 static int bnxt_alloc_cp_rings(struct bnxt *bp) 3351 { 3352 bool sh = !!(bp->flags & BNXT_FLAG_SHARED_RINGS); 3353 int i, rc, ulp_base_vec, ulp_msix; 3354 3355 ulp_msix = bnxt_get_ulp_msix_num(bp); 3356 ulp_base_vec = bnxt_get_ulp_msix_base(bp); 3357 for (i = 0; i < bp->cp_nr_rings; i++) { 3358 struct bnxt_napi *bnapi = bp->bnapi[i]; 3359 struct bnxt_cp_ring_info *cpr; 3360 struct bnxt_ring_struct *ring; 3361 3362 if (!bnapi) 3363 continue; 3364 3365 cpr = &bnapi->cp_ring; 3366 cpr->bnapi = bnapi; 3367 ring = &cpr->cp_ring_struct; 3368 3369 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3370 if (rc) 3371 return rc; 3372 3373 if (ulp_msix && i >= ulp_base_vec) 3374 ring->map_idx = i + ulp_msix; 3375 else 3376 ring->map_idx = i; 3377 3378 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 3379 continue; 3380 3381 if (i < bp->rx_nr_rings) { 3382 struct bnxt_cp_ring_info *cpr2 = 3383 bnxt_alloc_cp_sub_ring(bp); 3384 3385 cpr->cp_ring_arr[BNXT_RX_HDL] = cpr2; 3386 if (!cpr2) 3387 return -ENOMEM; 3388 cpr2->bnapi = bnapi; 3389 } 3390 if ((sh && i < bp->tx_nr_rings) || 3391 (!sh && i >= bp->rx_nr_rings)) { 3392 struct bnxt_cp_ring_info *cpr2 = 3393 bnxt_alloc_cp_sub_ring(bp); 3394 3395 cpr->cp_ring_arr[BNXT_TX_HDL] = cpr2; 3396 if (!cpr2) 3397 return -ENOMEM; 3398 cpr2->bnapi = bnapi; 3399 } 3400 } 3401 return 0; 3402 } 3403 3404 static void bnxt_init_ring_struct(struct bnxt *bp) 3405 { 3406 int i; 3407 3408 for (i = 0; i < bp->cp_nr_rings; i++) { 3409 struct bnxt_napi *bnapi = bp->bnapi[i]; 3410 struct bnxt_ring_mem_info *rmem; 3411 struct bnxt_cp_ring_info *cpr; 3412 struct bnxt_rx_ring_info *rxr; 3413 struct bnxt_tx_ring_info *txr; 3414 struct bnxt_ring_struct *ring; 3415 3416 if (!bnapi) 3417 continue; 3418 3419 cpr = &bnapi->cp_ring; 3420 ring = &cpr->cp_ring_struct; 3421 rmem = &ring->ring_mem; 3422 rmem->nr_pages = bp->cp_nr_pages; 3423 rmem->page_size = HW_CMPD_RING_SIZE; 3424 rmem->pg_arr = (void **)cpr->cp_desc_ring; 3425 rmem->dma_arr = cpr->cp_desc_mapping; 3426 rmem->vmem_size = 0; 3427 3428 rxr = bnapi->rx_ring; 3429 if (!rxr) 3430 goto skip_rx; 3431 3432 ring = &rxr->rx_ring_struct; 3433 rmem = &ring->ring_mem; 3434 rmem->nr_pages = bp->rx_nr_pages; 3435 rmem->page_size = HW_RXBD_RING_SIZE; 3436 rmem->pg_arr = (void **)rxr->rx_desc_ring; 3437 rmem->dma_arr = rxr->rx_desc_mapping; 3438 rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages; 3439 rmem->vmem = (void **)&rxr->rx_buf_ring; 3440 3441 ring = &rxr->rx_agg_ring_struct; 3442 rmem = &ring->ring_mem; 3443 rmem->nr_pages = bp->rx_agg_nr_pages; 3444 rmem->page_size = HW_RXBD_RING_SIZE; 3445 rmem->pg_arr = (void **)rxr->rx_agg_desc_ring; 3446 rmem->dma_arr = rxr->rx_agg_desc_mapping; 3447 rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages; 3448 rmem->vmem = (void **)&rxr->rx_agg_ring; 3449 3450 skip_rx: 3451 txr = bnapi->tx_ring; 3452 if (!txr) 3453 continue; 3454 3455 ring = &txr->tx_ring_struct; 3456 rmem = &ring->ring_mem; 3457 rmem->nr_pages = bp->tx_nr_pages; 3458 rmem->page_size = HW_RXBD_RING_SIZE; 3459 rmem->pg_arr = (void **)txr->tx_desc_ring; 3460 rmem->dma_arr = txr->tx_desc_mapping; 3461 rmem->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages; 3462 rmem->vmem = (void **)&txr->tx_buf_ring; 3463 } 3464 } 3465 3466 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type) 3467 { 3468 int i; 3469 u32 prod; 3470 struct rx_bd **rx_buf_ring; 3471 3472 rx_buf_ring = (struct rx_bd **)ring->ring_mem.pg_arr; 3473 for (i = 0, prod = 0; i < ring->ring_mem.nr_pages; i++) { 3474 int j; 3475 struct rx_bd *rxbd; 3476 3477 rxbd = rx_buf_ring[i]; 3478 if (!rxbd) 3479 continue; 3480 3481 for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) { 3482 rxbd->rx_bd_len_flags_type = cpu_to_le32(type); 3483 rxbd->rx_bd_opaque = prod; 3484 } 3485 } 3486 } 3487 3488 static int bnxt_alloc_one_rx_ring(struct bnxt *bp, int ring_nr) 3489 { 3490 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 3491 struct net_device *dev = bp->dev; 3492 u32 prod; 3493 int i; 3494 3495 prod = rxr->rx_prod; 3496 for (i = 0; i < bp->rx_ring_size; i++) { 3497 if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL)) { 3498 netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n", 3499 ring_nr, i, bp->rx_ring_size); 3500 break; 3501 } 3502 prod = NEXT_RX(prod); 3503 } 3504 rxr->rx_prod = prod; 3505 3506 if (!(bp->flags & BNXT_FLAG_AGG_RINGS)) 3507 return 0; 3508 3509 prod = rxr->rx_agg_prod; 3510 for (i = 0; i < bp->rx_agg_ring_size; i++) { 3511 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL)) { 3512 netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n", 3513 ring_nr, i, bp->rx_ring_size); 3514 break; 3515 } 3516 prod = NEXT_RX_AGG(prod); 3517 } 3518 rxr->rx_agg_prod = prod; 3519 3520 if (rxr->rx_tpa) { 3521 dma_addr_t mapping; 3522 u8 *data; 3523 3524 for (i = 0; i < bp->max_tpa; i++) { 3525 data = __bnxt_alloc_rx_data(bp, &mapping, GFP_KERNEL); 3526 if (!data) 3527 return -ENOMEM; 3528 3529 rxr->rx_tpa[i].data = data; 3530 rxr->rx_tpa[i].data_ptr = data + bp->rx_offset; 3531 rxr->rx_tpa[i].mapping = mapping; 3532 } 3533 } 3534 return 0; 3535 } 3536 3537 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr) 3538 { 3539 struct bnxt_rx_ring_info *rxr; 3540 struct bnxt_ring_struct *ring; 3541 u32 type; 3542 3543 type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) | 3544 RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP; 3545 3546 if (NET_IP_ALIGN == 2) 3547 type |= RX_BD_FLAGS_SOP; 3548 3549 rxr = &bp->rx_ring[ring_nr]; 3550 ring = &rxr->rx_ring_struct; 3551 bnxt_init_rxbd_pages(ring, type); 3552 3553 if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) { 3554 bpf_prog_add(bp->xdp_prog, 1); 3555 rxr->xdp_prog = bp->xdp_prog; 3556 } 3557 ring->fw_ring_id = INVALID_HW_RING_ID; 3558 3559 ring = &rxr->rx_agg_ring_struct; 3560 ring->fw_ring_id = INVALID_HW_RING_ID; 3561 3562 if ((bp->flags & BNXT_FLAG_AGG_RINGS)) { 3563 type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) | 3564 RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP; 3565 3566 bnxt_init_rxbd_pages(ring, type); 3567 } 3568 3569 return bnxt_alloc_one_rx_ring(bp, ring_nr); 3570 } 3571 3572 static void bnxt_init_cp_rings(struct bnxt *bp) 3573 { 3574 int i, j; 3575 3576 for (i = 0; i < bp->cp_nr_rings; i++) { 3577 struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring; 3578 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 3579 3580 ring->fw_ring_id = INVALID_HW_RING_ID; 3581 cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks; 3582 cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs; 3583 for (j = 0; j < 2; j++) { 3584 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j]; 3585 3586 if (!cpr2) 3587 continue; 3588 3589 ring = &cpr2->cp_ring_struct; 3590 ring->fw_ring_id = INVALID_HW_RING_ID; 3591 cpr2->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks; 3592 cpr2->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs; 3593 } 3594 } 3595 } 3596 3597 static int bnxt_init_rx_rings(struct bnxt *bp) 3598 { 3599 int i, rc = 0; 3600 3601 if (BNXT_RX_PAGE_MODE(bp)) { 3602 bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM; 3603 bp->rx_dma_offset = XDP_PACKET_HEADROOM; 3604 } else { 3605 bp->rx_offset = BNXT_RX_OFFSET; 3606 bp->rx_dma_offset = BNXT_RX_DMA_OFFSET; 3607 } 3608 3609 for (i = 0; i < bp->rx_nr_rings; i++) { 3610 rc = bnxt_init_one_rx_ring(bp, i); 3611 if (rc) 3612 break; 3613 } 3614 3615 return rc; 3616 } 3617 3618 static int bnxt_init_tx_rings(struct bnxt *bp) 3619 { 3620 u16 i; 3621 3622 bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2, 3623 MAX_SKB_FRAGS + 1); 3624 3625 for (i = 0; i < bp->tx_nr_rings; i++) { 3626 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3627 struct bnxt_ring_struct *ring = &txr->tx_ring_struct; 3628 3629 ring->fw_ring_id = INVALID_HW_RING_ID; 3630 } 3631 3632 return 0; 3633 } 3634 3635 static void bnxt_free_ring_grps(struct bnxt *bp) 3636 { 3637 kfree(bp->grp_info); 3638 bp->grp_info = NULL; 3639 } 3640 3641 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init) 3642 { 3643 int i; 3644 3645 if (irq_re_init) { 3646 bp->grp_info = kcalloc(bp->cp_nr_rings, 3647 sizeof(struct bnxt_ring_grp_info), 3648 GFP_KERNEL); 3649 if (!bp->grp_info) 3650 return -ENOMEM; 3651 } 3652 for (i = 0; i < bp->cp_nr_rings; i++) { 3653 if (irq_re_init) 3654 bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID; 3655 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID; 3656 bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID; 3657 bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID; 3658 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID; 3659 } 3660 return 0; 3661 } 3662 3663 static void bnxt_free_vnics(struct bnxt *bp) 3664 { 3665 kfree(bp->vnic_info); 3666 bp->vnic_info = NULL; 3667 bp->nr_vnics = 0; 3668 } 3669 3670 static int bnxt_alloc_vnics(struct bnxt *bp) 3671 { 3672 int num_vnics = 1; 3673 3674 #ifdef CONFIG_RFS_ACCEL 3675 if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS) 3676 num_vnics += bp->rx_nr_rings; 3677 #endif 3678 3679 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 3680 num_vnics++; 3681 3682 bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info), 3683 GFP_KERNEL); 3684 if (!bp->vnic_info) 3685 return -ENOMEM; 3686 3687 bp->nr_vnics = num_vnics; 3688 return 0; 3689 } 3690 3691 static void bnxt_init_vnics(struct bnxt *bp) 3692 { 3693 int i; 3694 3695 for (i = 0; i < bp->nr_vnics; i++) { 3696 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 3697 int j; 3698 3699 vnic->fw_vnic_id = INVALID_HW_RING_ID; 3700 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) 3701 vnic->fw_rss_cos_lb_ctx[j] = INVALID_HW_RING_ID; 3702 3703 vnic->fw_l2_ctx_id = INVALID_HW_RING_ID; 3704 3705 if (bp->vnic_info[i].rss_hash_key) { 3706 if (i == 0) 3707 prandom_bytes(vnic->rss_hash_key, 3708 HW_HASH_KEY_SIZE); 3709 else 3710 memcpy(vnic->rss_hash_key, 3711 bp->vnic_info[0].rss_hash_key, 3712 HW_HASH_KEY_SIZE); 3713 } 3714 } 3715 } 3716 3717 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg) 3718 { 3719 int pages; 3720 3721 pages = ring_size / desc_per_pg; 3722 3723 if (!pages) 3724 return 1; 3725 3726 pages++; 3727 3728 while (pages & (pages - 1)) 3729 pages++; 3730 3731 return pages; 3732 } 3733 3734 void bnxt_set_tpa_flags(struct bnxt *bp) 3735 { 3736 bp->flags &= ~BNXT_FLAG_TPA; 3737 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) 3738 return; 3739 if (bp->dev->features & NETIF_F_LRO) 3740 bp->flags |= BNXT_FLAG_LRO; 3741 else if (bp->dev->features & NETIF_F_GRO_HW) 3742 bp->flags |= BNXT_FLAG_GRO; 3743 } 3744 3745 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must 3746 * be set on entry. 3747 */ 3748 void bnxt_set_ring_params(struct bnxt *bp) 3749 { 3750 u32 ring_size, rx_size, rx_space, max_rx_cmpl; 3751 u32 agg_factor = 0, agg_ring_size = 0; 3752 3753 /* 8 for CRC and VLAN */ 3754 rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8); 3755 3756 rx_space = rx_size + NET_SKB_PAD + 3757 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 3758 3759 bp->rx_copy_thresh = BNXT_RX_COPY_THRESH; 3760 ring_size = bp->rx_ring_size; 3761 bp->rx_agg_ring_size = 0; 3762 bp->rx_agg_nr_pages = 0; 3763 3764 if (bp->flags & BNXT_FLAG_TPA) 3765 agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE); 3766 3767 bp->flags &= ~BNXT_FLAG_JUMBO; 3768 if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) { 3769 u32 jumbo_factor; 3770 3771 bp->flags |= BNXT_FLAG_JUMBO; 3772 jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT; 3773 if (jumbo_factor > agg_factor) 3774 agg_factor = jumbo_factor; 3775 } 3776 if (agg_factor) { 3777 if (ring_size > BNXT_MAX_RX_DESC_CNT_JUM_ENA) { 3778 ring_size = BNXT_MAX_RX_DESC_CNT_JUM_ENA; 3779 netdev_warn(bp->dev, "RX ring size reduced from %d to %d because the jumbo ring is now enabled\n", 3780 bp->rx_ring_size, ring_size); 3781 bp->rx_ring_size = ring_size; 3782 } 3783 agg_ring_size = ring_size * agg_factor; 3784 3785 bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size, 3786 RX_DESC_CNT); 3787 if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) { 3788 u32 tmp = agg_ring_size; 3789 3790 bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES; 3791 agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1; 3792 netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n", 3793 tmp, agg_ring_size); 3794 } 3795 bp->rx_agg_ring_size = agg_ring_size; 3796 bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1; 3797 rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN); 3798 rx_space = rx_size + NET_SKB_PAD + 3799 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 3800 } 3801 3802 bp->rx_buf_use_size = rx_size; 3803 bp->rx_buf_size = rx_space; 3804 3805 bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT); 3806 bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1; 3807 3808 ring_size = bp->tx_ring_size; 3809 bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT); 3810 bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1; 3811 3812 max_rx_cmpl = bp->rx_ring_size; 3813 /* MAX TPA needs to be added because TPA_START completions are 3814 * immediately recycled, so the TPA completions are not bound by 3815 * the RX ring size. 3816 */ 3817 if (bp->flags & BNXT_FLAG_TPA) 3818 max_rx_cmpl += bp->max_tpa; 3819 /* RX and TPA completions are 32-byte, all others are 16-byte */ 3820 ring_size = max_rx_cmpl * 2 + agg_ring_size + bp->tx_ring_size; 3821 bp->cp_ring_size = ring_size; 3822 3823 bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT); 3824 if (bp->cp_nr_pages > MAX_CP_PAGES) { 3825 bp->cp_nr_pages = MAX_CP_PAGES; 3826 bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1; 3827 netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n", 3828 ring_size, bp->cp_ring_size); 3829 } 3830 bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT; 3831 bp->cp_ring_mask = bp->cp_bit - 1; 3832 } 3833 3834 /* Changing allocation mode of RX rings. 3835 * TODO: Update when extending xdp_rxq_info to support allocation modes. 3836 */ 3837 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode) 3838 { 3839 if (page_mode) { 3840 if (bp->dev->mtu > BNXT_MAX_PAGE_MODE_MTU) 3841 return -EOPNOTSUPP; 3842 bp->dev->max_mtu = 3843 min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU); 3844 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 3845 bp->flags |= BNXT_FLAG_NO_AGG_RINGS | BNXT_FLAG_RX_PAGE_MODE; 3846 bp->rx_dir = DMA_BIDIRECTIONAL; 3847 bp->rx_skb_func = bnxt_rx_page_skb; 3848 /* Disable LRO or GRO_HW */ 3849 netdev_update_features(bp->dev); 3850 } else { 3851 bp->dev->max_mtu = bp->max_mtu; 3852 bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE; 3853 bp->rx_dir = DMA_FROM_DEVICE; 3854 bp->rx_skb_func = bnxt_rx_skb; 3855 } 3856 return 0; 3857 } 3858 3859 static void bnxt_free_vnic_attributes(struct bnxt *bp) 3860 { 3861 int i; 3862 struct bnxt_vnic_info *vnic; 3863 struct pci_dev *pdev = bp->pdev; 3864 3865 if (!bp->vnic_info) 3866 return; 3867 3868 for (i = 0; i < bp->nr_vnics; i++) { 3869 vnic = &bp->vnic_info[i]; 3870 3871 kfree(vnic->fw_grp_ids); 3872 vnic->fw_grp_ids = NULL; 3873 3874 kfree(vnic->uc_list); 3875 vnic->uc_list = NULL; 3876 3877 if (vnic->mc_list) { 3878 dma_free_coherent(&pdev->dev, vnic->mc_list_size, 3879 vnic->mc_list, vnic->mc_list_mapping); 3880 vnic->mc_list = NULL; 3881 } 3882 3883 if (vnic->rss_table) { 3884 dma_free_coherent(&pdev->dev, vnic->rss_table_size, 3885 vnic->rss_table, 3886 vnic->rss_table_dma_addr); 3887 vnic->rss_table = NULL; 3888 } 3889 3890 vnic->rss_hash_key = NULL; 3891 vnic->flags = 0; 3892 } 3893 } 3894 3895 static int bnxt_alloc_vnic_attributes(struct bnxt *bp) 3896 { 3897 int i, rc = 0, size; 3898 struct bnxt_vnic_info *vnic; 3899 struct pci_dev *pdev = bp->pdev; 3900 int max_rings; 3901 3902 for (i = 0; i < bp->nr_vnics; i++) { 3903 vnic = &bp->vnic_info[i]; 3904 3905 if (vnic->flags & BNXT_VNIC_UCAST_FLAG) { 3906 int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN; 3907 3908 if (mem_size > 0) { 3909 vnic->uc_list = kmalloc(mem_size, GFP_KERNEL); 3910 if (!vnic->uc_list) { 3911 rc = -ENOMEM; 3912 goto out; 3913 } 3914 } 3915 } 3916 3917 if (vnic->flags & BNXT_VNIC_MCAST_FLAG) { 3918 vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN; 3919 vnic->mc_list = 3920 dma_alloc_coherent(&pdev->dev, 3921 vnic->mc_list_size, 3922 &vnic->mc_list_mapping, 3923 GFP_KERNEL); 3924 if (!vnic->mc_list) { 3925 rc = -ENOMEM; 3926 goto out; 3927 } 3928 } 3929 3930 if (bp->flags & BNXT_FLAG_CHIP_P5) 3931 goto vnic_skip_grps; 3932 3933 if (vnic->flags & BNXT_VNIC_RSS_FLAG) 3934 max_rings = bp->rx_nr_rings; 3935 else 3936 max_rings = 1; 3937 3938 vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL); 3939 if (!vnic->fw_grp_ids) { 3940 rc = -ENOMEM; 3941 goto out; 3942 } 3943 vnic_skip_grps: 3944 if ((bp->flags & BNXT_FLAG_NEW_RSS_CAP) && 3945 !(vnic->flags & BNXT_VNIC_RSS_FLAG)) 3946 continue; 3947 3948 /* Allocate rss table and hash key */ 3949 size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16)); 3950 if (bp->flags & BNXT_FLAG_CHIP_P5) 3951 size = L1_CACHE_ALIGN(BNXT_MAX_RSS_TABLE_SIZE_P5); 3952 3953 vnic->rss_table_size = size + HW_HASH_KEY_SIZE; 3954 vnic->rss_table = dma_alloc_coherent(&pdev->dev, 3955 vnic->rss_table_size, 3956 &vnic->rss_table_dma_addr, 3957 GFP_KERNEL); 3958 if (!vnic->rss_table) { 3959 rc = -ENOMEM; 3960 goto out; 3961 } 3962 3963 vnic->rss_hash_key = ((void *)vnic->rss_table) + size; 3964 vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size; 3965 } 3966 return 0; 3967 3968 out: 3969 return rc; 3970 } 3971 3972 static void bnxt_free_hwrm_resources(struct bnxt *bp) 3973 { 3974 struct bnxt_hwrm_wait_token *token; 3975 3976 dma_pool_destroy(bp->hwrm_dma_pool); 3977 bp->hwrm_dma_pool = NULL; 3978 3979 rcu_read_lock(); 3980 hlist_for_each_entry_rcu(token, &bp->hwrm_pending_list, node) 3981 WRITE_ONCE(token->state, BNXT_HWRM_CANCELLED); 3982 rcu_read_unlock(); 3983 } 3984 3985 static int bnxt_alloc_hwrm_resources(struct bnxt *bp) 3986 { 3987 bp->hwrm_dma_pool = dma_pool_create("bnxt_hwrm", &bp->pdev->dev, 3988 BNXT_HWRM_DMA_SIZE, 3989 BNXT_HWRM_DMA_ALIGN, 0); 3990 if (!bp->hwrm_dma_pool) 3991 return -ENOMEM; 3992 3993 INIT_HLIST_HEAD(&bp->hwrm_pending_list); 3994 3995 return 0; 3996 } 3997 3998 static void bnxt_free_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats) 3999 { 4000 kfree(stats->hw_masks); 4001 stats->hw_masks = NULL; 4002 kfree(stats->sw_stats); 4003 stats->sw_stats = NULL; 4004 if (stats->hw_stats) { 4005 dma_free_coherent(&bp->pdev->dev, stats->len, stats->hw_stats, 4006 stats->hw_stats_map); 4007 stats->hw_stats = NULL; 4008 } 4009 } 4010 4011 static int bnxt_alloc_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats, 4012 bool alloc_masks) 4013 { 4014 stats->hw_stats = dma_alloc_coherent(&bp->pdev->dev, stats->len, 4015 &stats->hw_stats_map, GFP_KERNEL); 4016 if (!stats->hw_stats) 4017 return -ENOMEM; 4018 4019 stats->sw_stats = kzalloc(stats->len, GFP_KERNEL); 4020 if (!stats->sw_stats) 4021 goto stats_mem_err; 4022 4023 if (alloc_masks) { 4024 stats->hw_masks = kzalloc(stats->len, GFP_KERNEL); 4025 if (!stats->hw_masks) 4026 goto stats_mem_err; 4027 } 4028 return 0; 4029 4030 stats_mem_err: 4031 bnxt_free_stats_mem(bp, stats); 4032 return -ENOMEM; 4033 } 4034 4035 static void bnxt_fill_masks(u64 *mask_arr, u64 mask, int count) 4036 { 4037 int i; 4038 4039 for (i = 0; i < count; i++) 4040 mask_arr[i] = mask; 4041 } 4042 4043 static void bnxt_copy_hw_masks(u64 *mask_arr, __le64 *hw_mask_arr, int count) 4044 { 4045 int i; 4046 4047 for (i = 0; i < count; i++) 4048 mask_arr[i] = le64_to_cpu(hw_mask_arr[i]); 4049 } 4050 4051 static int bnxt_hwrm_func_qstat_ext(struct bnxt *bp, 4052 struct bnxt_stats_mem *stats) 4053 { 4054 struct hwrm_func_qstats_ext_output *resp; 4055 struct hwrm_func_qstats_ext_input *req; 4056 __le64 *hw_masks; 4057 int rc; 4058 4059 if (!(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED) || 4060 !(bp->flags & BNXT_FLAG_CHIP_P5)) 4061 return -EOPNOTSUPP; 4062 4063 rc = hwrm_req_init(bp, req, HWRM_FUNC_QSTATS_EXT); 4064 if (rc) 4065 return rc; 4066 4067 req->fid = cpu_to_le16(0xffff); 4068 req->flags = FUNC_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK; 4069 4070 resp = hwrm_req_hold(bp, req); 4071 rc = hwrm_req_send(bp, req); 4072 if (!rc) { 4073 hw_masks = &resp->rx_ucast_pkts; 4074 bnxt_copy_hw_masks(stats->hw_masks, hw_masks, stats->len / 8); 4075 } 4076 hwrm_req_drop(bp, req); 4077 return rc; 4078 } 4079 4080 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags); 4081 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags); 4082 4083 static void bnxt_init_stats(struct bnxt *bp) 4084 { 4085 struct bnxt_napi *bnapi = bp->bnapi[0]; 4086 struct bnxt_cp_ring_info *cpr; 4087 struct bnxt_stats_mem *stats; 4088 __le64 *rx_stats, *tx_stats; 4089 int rc, rx_count, tx_count; 4090 u64 *rx_masks, *tx_masks; 4091 u64 mask; 4092 u8 flags; 4093 4094 cpr = &bnapi->cp_ring; 4095 stats = &cpr->stats; 4096 rc = bnxt_hwrm_func_qstat_ext(bp, stats); 4097 if (rc) { 4098 if (bp->flags & BNXT_FLAG_CHIP_P5) 4099 mask = (1ULL << 48) - 1; 4100 else 4101 mask = -1ULL; 4102 bnxt_fill_masks(stats->hw_masks, mask, stats->len / 8); 4103 } 4104 if (bp->flags & BNXT_FLAG_PORT_STATS) { 4105 stats = &bp->port_stats; 4106 rx_stats = stats->hw_stats; 4107 rx_masks = stats->hw_masks; 4108 rx_count = sizeof(struct rx_port_stats) / 8; 4109 tx_stats = rx_stats + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 4110 tx_masks = rx_masks + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 4111 tx_count = sizeof(struct tx_port_stats) / 8; 4112 4113 flags = PORT_QSTATS_REQ_FLAGS_COUNTER_MASK; 4114 rc = bnxt_hwrm_port_qstats(bp, flags); 4115 if (rc) { 4116 mask = (1ULL << 40) - 1; 4117 4118 bnxt_fill_masks(rx_masks, mask, rx_count); 4119 bnxt_fill_masks(tx_masks, mask, tx_count); 4120 } else { 4121 bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count); 4122 bnxt_copy_hw_masks(tx_masks, tx_stats, tx_count); 4123 bnxt_hwrm_port_qstats(bp, 0); 4124 } 4125 } 4126 if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) { 4127 stats = &bp->rx_port_stats_ext; 4128 rx_stats = stats->hw_stats; 4129 rx_masks = stats->hw_masks; 4130 rx_count = sizeof(struct rx_port_stats_ext) / 8; 4131 stats = &bp->tx_port_stats_ext; 4132 tx_stats = stats->hw_stats; 4133 tx_masks = stats->hw_masks; 4134 tx_count = sizeof(struct tx_port_stats_ext) / 8; 4135 4136 flags = PORT_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK; 4137 rc = bnxt_hwrm_port_qstats_ext(bp, flags); 4138 if (rc) { 4139 mask = (1ULL << 40) - 1; 4140 4141 bnxt_fill_masks(rx_masks, mask, rx_count); 4142 if (tx_stats) 4143 bnxt_fill_masks(tx_masks, mask, tx_count); 4144 } else { 4145 bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count); 4146 if (tx_stats) 4147 bnxt_copy_hw_masks(tx_masks, tx_stats, 4148 tx_count); 4149 bnxt_hwrm_port_qstats_ext(bp, 0); 4150 } 4151 } 4152 } 4153 4154 static void bnxt_free_port_stats(struct bnxt *bp) 4155 { 4156 bp->flags &= ~BNXT_FLAG_PORT_STATS; 4157 bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT; 4158 4159 bnxt_free_stats_mem(bp, &bp->port_stats); 4160 bnxt_free_stats_mem(bp, &bp->rx_port_stats_ext); 4161 bnxt_free_stats_mem(bp, &bp->tx_port_stats_ext); 4162 } 4163 4164 static void bnxt_free_ring_stats(struct bnxt *bp) 4165 { 4166 int i; 4167 4168 if (!bp->bnapi) 4169 return; 4170 4171 for (i = 0; i < bp->cp_nr_rings; i++) { 4172 struct bnxt_napi *bnapi = bp->bnapi[i]; 4173 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4174 4175 bnxt_free_stats_mem(bp, &cpr->stats); 4176 } 4177 } 4178 4179 static int bnxt_alloc_stats(struct bnxt *bp) 4180 { 4181 u32 size, i; 4182 int rc; 4183 4184 size = bp->hw_ring_stats_size; 4185 4186 for (i = 0; i < bp->cp_nr_rings; i++) { 4187 struct bnxt_napi *bnapi = bp->bnapi[i]; 4188 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4189 4190 cpr->stats.len = size; 4191 rc = bnxt_alloc_stats_mem(bp, &cpr->stats, !i); 4192 if (rc) 4193 return rc; 4194 4195 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID; 4196 } 4197 4198 if (BNXT_VF(bp) || bp->chip_num == CHIP_NUM_58700) 4199 return 0; 4200 4201 if (bp->port_stats.hw_stats) 4202 goto alloc_ext_stats; 4203 4204 bp->port_stats.len = BNXT_PORT_STATS_SIZE; 4205 rc = bnxt_alloc_stats_mem(bp, &bp->port_stats, true); 4206 if (rc) 4207 return rc; 4208 4209 bp->flags |= BNXT_FLAG_PORT_STATS; 4210 4211 alloc_ext_stats: 4212 /* Display extended statistics only if FW supports it */ 4213 if (bp->hwrm_spec_code < 0x10804 || bp->hwrm_spec_code == 0x10900) 4214 if (!(bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) 4215 return 0; 4216 4217 if (bp->rx_port_stats_ext.hw_stats) 4218 goto alloc_tx_ext_stats; 4219 4220 bp->rx_port_stats_ext.len = sizeof(struct rx_port_stats_ext); 4221 rc = bnxt_alloc_stats_mem(bp, &bp->rx_port_stats_ext, true); 4222 /* Extended stats are optional */ 4223 if (rc) 4224 return 0; 4225 4226 alloc_tx_ext_stats: 4227 if (bp->tx_port_stats_ext.hw_stats) 4228 return 0; 4229 4230 if (bp->hwrm_spec_code >= 0x10902 || 4231 (bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) { 4232 bp->tx_port_stats_ext.len = sizeof(struct tx_port_stats_ext); 4233 rc = bnxt_alloc_stats_mem(bp, &bp->tx_port_stats_ext, true); 4234 /* Extended stats are optional */ 4235 if (rc) 4236 return 0; 4237 } 4238 bp->flags |= BNXT_FLAG_PORT_STATS_EXT; 4239 return 0; 4240 } 4241 4242 static void bnxt_clear_ring_indices(struct bnxt *bp) 4243 { 4244 int i; 4245 4246 if (!bp->bnapi) 4247 return; 4248 4249 for (i = 0; i < bp->cp_nr_rings; i++) { 4250 struct bnxt_napi *bnapi = bp->bnapi[i]; 4251 struct bnxt_cp_ring_info *cpr; 4252 struct bnxt_rx_ring_info *rxr; 4253 struct bnxt_tx_ring_info *txr; 4254 4255 if (!bnapi) 4256 continue; 4257 4258 cpr = &bnapi->cp_ring; 4259 cpr->cp_raw_cons = 0; 4260 4261 txr = bnapi->tx_ring; 4262 if (txr) { 4263 txr->tx_prod = 0; 4264 txr->tx_cons = 0; 4265 } 4266 4267 rxr = bnapi->rx_ring; 4268 if (rxr) { 4269 rxr->rx_prod = 0; 4270 rxr->rx_agg_prod = 0; 4271 rxr->rx_sw_agg_prod = 0; 4272 rxr->rx_next_cons = 0; 4273 } 4274 } 4275 } 4276 4277 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit) 4278 { 4279 #ifdef CONFIG_RFS_ACCEL 4280 int i; 4281 4282 /* Under rtnl_lock and all our NAPIs have been disabled. It's 4283 * safe to delete the hash table. 4284 */ 4285 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) { 4286 struct hlist_head *head; 4287 struct hlist_node *tmp; 4288 struct bnxt_ntuple_filter *fltr; 4289 4290 head = &bp->ntp_fltr_hash_tbl[i]; 4291 hlist_for_each_entry_safe(fltr, tmp, head, hash) { 4292 hlist_del(&fltr->hash); 4293 kfree(fltr); 4294 } 4295 } 4296 if (irq_reinit) { 4297 kfree(bp->ntp_fltr_bmap); 4298 bp->ntp_fltr_bmap = NULL; 4299 } 4300 bp->ntp_fltr_count = 0; 4301 #endif 4302 } 4303 4304 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp) 4305 { 4306 #ifdef CONFIG_RFS_ACCEL 4307 int i, rc = 0; 4308 4309 if (!(bp->flags & BNXT_FLAG_RFS)) 4310 return 0; 4311 4312 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) 4313 INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]); 4314 4315 bp->ntp_fltr_count = 0; 4316 bp->ntp_fltr_bmap = kcalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR), 4317 sizeof(long), 4318 GFP_KERNEL); 4319 4320 if (!bp->ntp_fltr_bmap) 4321 rc = -ENOMEM; 4322 4323 return rc; 4324 #else 4325 return 0; 4326 #endif 4327 } 4328 4329 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init) 4330 { 4331 bnxt_free_vnic_attributes(bp); 4332 bnxt_free_tx_rings(bp); 4333 bnxt_free_rx_rings(bp); 4334 bnxt_free_cp_rings(bp); 4335 bnxt_free_all_cp_arrays(bp); 4336 bnxt_free_ntp_fltrs(bp, irq_re_init); 4337 if (irq_re_init) { 4338 bnxt_free_ring_stats(bp); 4339 if (!(bp->phy_flags & BNXT_PHY_FL_PORT_STATS_NO_RESET) || 4340 test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 4341 bnxt_free_port_stats(bp); 4342 bnxt_free_ring_grps(bp); 4343 bnxt_free_vnics(bp); 4344 kfree(bp->tx_ring_map); 4345 bp->tx_ring_map = NULL; 4346 kfree(bp->tx_ring); 4347 bp->tx_ring = NULL; 4348 kfree(bp->rx_ring); 4349 bp->rx_ring = NULL; 4350 kfree(bp->bnapi); 4351 bp->bnapi = NULL; 4352 } else { 4353 bnxt_clear_ring_indices(bp); 4354 } 4355 } 4356 4357 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init) 4358 { 4359 int i, j, rc, size, arr_size; 4360 void *bnapi; 4361 4362 if (irq_re_init) { 4363 /* Allocate bnapi mem pointer array and mem block for 4364 * all queues 4365 */ 4366 arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) * 4367 bp->cp_nr_rings); 4368 size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi)); 4369 bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL); 4370 if (!bnapi) 4371 return -ENOMEM; 4372 4373 bp->bnapi = bnapi; 4374 bnapi += arr_size; 4375 for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) { 4376 bp->bnapi[i] = bnapi; 4377 bp->bnapi[i]->index = i; 4378 bp->bnapi[i]->bp = bp; 4379 if (bp->flags & BNXT_FLAG_CHIP_P5) { 4380 struct bnxt_cp_ring_info *cpr = 4381 &bp->bnapi[i]->cp_ring; 4382 4383 cpr->cp_ring_struct.ring_mem.flags = 4384 BNXT_RMEM_RING_PTE_FLAG; 4385 } 4386 } 4387 4388 bp->rx_ring = kcalloc(bp->rx_nr_rings, 4389 sizeof(struct bnxt_rx_ring_info), 4390 GFP_KERNEL); 4391 if (!bp->rx_ring) 4392 return -ENOMEM; 4393 4394 for (i = 0; i < bp->rx_nr_rings; i++) { 4395 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 4396 4397 if (bp->flags & BNXT_FLAG_CHIP_P5) { 4398 rxr->rx_ring_struct.ring_mem.flags = 4399 BNXT_RMEM_RING_PTE_FLAG; 4400 rxr->rx_agg_ring_struct.ring_mem.flags = 4401 BNXT_RMEM_RING_PTE_FLAG; 4402 } 4403 rxr->bnapi = bp->bnapi[i]; 4404 bp->bnapi[i]->rx_ring = &bp->rx_ring[i]; 4405 } 4406 4407 bp->tx_ring = kcalloc(bp->tx_nr_rings, 4408 sizeof(struct bnxt_tx_ring_info), 4409 GFP_KERNEL); 4410 if (!bp->tx_ring) 4411 return -ENOMEM; 4412 4413 bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16), 4414 GFP_KERNEL); 4415 4416 if (!bp->tx_ring_map) 4417 return -ENOMEM; 4418 4419 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 4420 j = 0; 4421 else 4422 j = bp->rx_nr_rings; 4423 4424 for (i = 0; i < bp->tx_nr_rings; i++, j++) { 4425 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 4426 4427 if (bp->flags & BNXT_FLAG_CHIP_P5) 4428 txr->tx_ring_struct.ring_mem.flags = 4429 BNXT_RMEM_RING_PTE_FLAG; 4430 txr->bnapi = bp->bnapi[j]; 4431 bp->bnapi[j]->tx_ring = txr; 4432 bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i; 4433 if (i >= bp->tx_nr_rings_xdp) { 4434 txr->txq_index = i - bp->tx_nr_rings_xdp; 4435 bp->bnapi[j]->tx_int = bnxt_tx_int; 4436 } else { 4437 bp->bnapi[j]->flags |= BNXT_NAPI_FLAG_XDP; 4438 bp->bnapi[j]->tx_int = bnxt_tx_int_xdp; 4439 } 4440 } 4441 4442 rc = bnxt_alloc_stats(bp); 4443 if (rc) 4444 goto alloc_mem_err; 4445 bnxt_init_stats(bp); 4446 4447 rc = bnxt_alloc_ntp_fltrs(bp); 4448 if (rc) 4449 goto alloc_mem_err; 4450 4451 rc = bnxt_alloc_vnics(bp); 4452 if (rc) 4453 goto alloc_mem_err; 4454 } 4455 4456 rc = bnxt_alloc_all_cp_arrays(bp); 4457 if (rc) 4458 goto alloc_mem_err; 4459 4460 bnxt_init_ring_struct(bp); 4461 4462 rc = bnxt_alloc_rx_rings(bp); 4463 if (rc) 4464 goto alloc_mem_err; 4465 4466 rc = bnxt_alloc_tx_rings(bp); 4467 if (rc) 4468 goto alloc_mem_err; 4469 4470 rc = bnxt_alloc_cp_rings(bp); 4471 if (rc) 4472 goto alloc_mem_err; 4473 4474 bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG | 4475 BNXT_VNIC_UCAST_FLAG; 4476 rc = bnxt_alloc_vnic_attributes(bp); 4477 if (rc) 4478 goto alloc_mem_err; 4479 return 0; 4480 4481 alloc_mem_err: 4482 bnxt_free_mem(bp, true); 4483 return rc; 4484 } 4485 4486 static void bnxt_disable_int(struct bnxt *bp) 4487 { 4488 int i; 4489 4490 if (!bp->bnapi) 4491 return; 4492 4493 for (i = 0; i < bp->cp_nr_rings; i++) { 4494 struct bnxt_napi *bnapi = bp->bnapi[i]; 4495 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4496 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 4497 4498 if (ring->fw_ring_id != INVALID_HW_RING_ID) 4499 bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons); 4500 } 4501 } 4502 4503 static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n) 4504 { 4505 struct bnxt_napi *bnapi = bp->bnapi[n]; 4506 struct bnxt_cp_ring_info *cpr; 4507 4508 cpr = &bnapi->cp_ring; 4509 return cpr->cp_ring_struct.map_idx; 4510 } 4511 4512 static void bnxt_disable_int_sync(struct bnxt *bp) 4513 { 4514 int i; 4515 4516 if (!bp->irq_tbl) 4517 return; 4518 4519 atomic_inc(&bp->intr_sem); 4520 4521 bnxt_disable_int(bp); 4522 for (i = 0; i < bp->cp_nr_rings; i++) { 4523 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 4524 4525 synchronize_irq(bp->irq_tbl[map_idx].vector); 4526 } 4527 } 4528 4529 static void bnxt_enable_int(struct bnxt *bp) 4530 { 4531 int i; 4532 4533 atomic_set(&bp->intr_sem, 0); 4534 for (i = 0; i < bp->cp_nr_rings; i++) { 4535 struct bnxt_napi *bnapi = bp->bnapi[i]; 4536 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4537 4538 bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons); 4539 } 4540 } 4541 4542 int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp, unsigned long *bmap, int bmap_size, 4543 bool async_only) 4544 { 4545 DECLARE_BITMAP(async_events_bmap, 256); 4546 u32 *events = (u32 *)async_events_bmap; 4547 struct hwrm_func_drv_rgtr_output *resp; 4548 struct hwrm_func_drv_rgtr_input *req; 4549 u32 flags; 4550 int rc, i; 4551 4552 rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_RGTR); 4553 if (rc) 4554 return rc; 4555 4556 req->enables = cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE | 4557 FUNC_DRV_RGTR_REQ_ENABLES_VER | 4558 FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD); 4559 4560 req->os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX); 4561 flags = FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE; 4562 if (bp->fw_cap & BNXT_FW_CAP_HOT_RESET) 4563 flags |= FUNC_DRV_RGTR_REQ_FLAGS_HOT_RESET_SUPPORT; 4564 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) 4565 flags |= FUNC_DRV_RGTR_REQ_FLAGS_ERROR_RECOVERY_SUPPORT | 4566 FUNC_DRV_RGTR_REQ_FLAGS_MASTER_SUPPORT; 4567 req->flags = cpu_to_le32(flags); 4568 req->ver_maj_8b = DRV_VER_MAJ; 4569 req->ver_min_8b = DRV_VER_MIN; 4570 req->ver_upd_8b = DRV_VER_UPD; 4571 req->ver_maj = cpu_to_le16(DRV_VER_MAJ); 4572 req->ver_min = cpu_to_le16(DRV_VER_MIN); 4573 req->ver_upd = cpu_to_le16(DRV_VER_UPD); 4574 4575 if (BNXT_PF(bp)) { 4576 u32 data[8]; 4577 int i; 4578 4579 memset(data, 0, sizeof(data)); 4580 for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) { 4581 u16 cmd = bnxt_vf_req_snif[i]; 4582 unsigned int bit, idx; 4583 4584 idx = cmd / 32; 4585 bit = cmd % 32; 4586 data[idx] |= 1 << bit; 4587 } 4588 4589 for (i = 0; i < 8; i++) 4590 req->vf_req_fwd[i] = cpu_to_le32(data[i]); 4591 4592 req->enables |= 4593 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD); 4594 } 4595 4596 if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE) 4597 req->flags |= cpu_to_le32( 4598 FUNC_DRV_RGTR_REQ_FLAGS_FLOW_HANDLE_64BIT_MODE); 4599 4600 memset(async_events_bmap, 0, sizeof(async_events_bmap)); 4601 for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++) { 4602 u16 event_id = bnxt_async_events_arr[i]; 4603 4604 if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY && 4605 !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 4606 continue; 4607 __set_bit(bnxt_async_events_arr[i], async_events_bmap); 4608 } 4609 if (bmap && bmap_size) { 4610 for (i = 0; i < bmap_size; i++) { 4611 if (test_bit(i, bmap)) 4612 __set_bit(i, async_events_bmap); 4613 } 4614 } 4615 for (i = 0; i < 8; i++) 4616 req->async_event_fwd[i] |= cpu_to_le32(events[i]); 4617 4618 if (async_only) 4619 req->enables = 4620 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD); 4621 4622 resp = hwrm_req_hold(bp, req); 4623 rc = hwrm_req_send(bp, req); 4624 if (!rc) { 4625 set_bit(BNXT_STATE_DRV_REGISTERED, &bp->state); 4626 if (resp->flags & 4627 cpu_to_le32(FUNC_DRV_RGTR_RESP_FLAGS_IF_CHANGE_SUPPORTED)) 4628 bp->fw_cap |= BNXT_FW_CAP_IF_CHANGE; 4629 } 4630 hwrm_req_drop(bp, req); 4631 return rc; 4632 } 4633 4634 static int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp) 4635 { 4636 struct hwrm_func_drv_unrgtr_input *req; 4637 int rc; 4638 4639 if (!test_and_clear_bit(BNXT_STATE_DRV_REGISTERED, &bp->state)) 4640 return 0; 4641 4642 rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_UNRGTR); 4643 if (rc) 4644 return rc; 4645 return hwrm_req_send(bp, req); 4646 } 4647 4648 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type) 4649 { 4650 struct hwrm_tunnel_dst_port_free_input *req; 4651 int rc; 4652 4653 if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN && 4654 bp->vxlan_fw_dst_port_id == INVALID_HW_RING_ID) 4655 return 0; 4656 if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE && 4657 bp->nge_fw_dst_port_id == INVALID_HW_RING_ID) 4658 return 0; 4659 4660 rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_FREE); 4661 if (rc) 4662 return rc; 4663 4664 req->tunnel_type = tunnel_type; 4665 4666 switch (tunnel_type) { 4667 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN: 4668 req->tunnel_dst_port_id = cpu_to_le16(bp->vxlan_fw_dst_port_id); 4669 bp->vxlan_port = 0; 4670 bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID; 4671 break; 4672 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE: 4673 req->tunnel_dst_port_id = cpu_to_le16(bp->nge_fw_dst_port_id); 4674 bp->nge_port = 0; 4675 bp->nge_fw_dst_port_id = INVALID_HW_RING_ID; 4676 break; 4677 default: 4678 break; 4679 } 4680 4681 rc = hwrm_req_send(bp, req); 4682 if (rc) 4683 netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n", 4684 rc); 4685 return rc; 4686 } 4687 4688 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port, 4689 u8 tunnel_type) 4690 { 4691 struct hwrm_tunnel_dst_port_alloc_output *resp; 4692 struct hwrm_tunnel_dst_port_alloc_input *req; 4693 int rc; 4694 4695 rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_ALLOC); 4696 if (rc) 4697 return rc; 4698 4699 req->tunnel_type = tunnel_type; 4700 req->tunnel_dst_port_val = port; 4701 4702 resp = hwrm_req_hold(bp, req); 4703 rc = hwrm_req_send(bp, req); 4704 if (rc) { 4705 netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n", 4706 rc); 4707 goto err_out; 4708 } 4709 4710 switch (tunnel_type) { 4711 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN: 4712 bp->vxlan_port = port; 4713 bp->vxlan_fw_dst_port_id = 4714 le16_to_cpu(resp->tunnel_dst_port_id); 4715 break; 4716 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE: 4717 bp->nge_port = port; 4718 bp->nge_fw_dst_port_id = le16_to_cpu(resp->tunnel_dst_port_id); 4719 break; 4720 default: 4721 break; 4722 } 4723 4724 err_out: 4725 hwrm_req_drop(bp, req); 4726 return rc; 4727 } 4728 4729 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id) 4730 { 4731 struct hwrm_cfa_l2_set_rx_mask_input *req; 4732 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 4733 int rc; 4734 4735 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_SET_RX_MASK); 4736 if (rc) 4737 return rc; 4738 4739 req->vnic_id = cpu_to_le32(vnic->fw_vnic_id); 4740 req->num_mc_entries = cpu_to_le32(vnic->mc_list_count); 4741 req->mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping); 4742 req->mask = cpu_to_le32(vnic->rx_mask); 4743 return hwrm_req_send_silent(bp, req); 4744 } 4745 4746 #ifdef CONFIG_RFS_ACCEL 4747 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp, 4748 struct bnxt_ntuple_filter *fltr) 4749 { 4750 struct hwrm_cfa_ntuple_filter_free_input *req; 4751 int rc; 4752 4753 rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_FREE); 4754 if (rc) 4755 return rc; 4756 4757 req->ntuple_filter_id = fltr->filter_id; 4758 return hwrm_req_send(bp, req); 4759 } 4760 4761 #define BNXT_NTP_FLTR_FLAGS \ 4762 (CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID | \ 4763 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE | \ 4764 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR | \ 4765 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE | \ 4766 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR | \ 4767 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK | \ 4768 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR | \ 4769 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK | \ 4770 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL | \ 4771 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT | \ 4772 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK | \ 4773 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT | \ 4774 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK | \ 4775 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID) 4776 4777 #define BNXT_NTP_TUNNEL_FLTR_FLAG \ 4778 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE 4779 4780 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp, 4781 struct bnxt_ntuple_filter *fltr) 4782 { 4783 struct hwrm_cfa_ntuple_filter_alloc_output *resp; 4784 struct hwrm_cfa_ntuple_filter_alloc_input *req; 4785 struct flow_keys *keys = &fltr->fkeys; 4786 struct bnxt_vnic_info *vnic; 4787 u32 flags = 0; 4788 int rc; 4789 4790 rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_ALLOC); 4791 if (rc) 4792 return rc; 4793 4794 req->l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx]; 4795 4796 if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) { 4797 flags = CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DEST_RFS_RING_IDX; 4798 req->dst_id = cpu_to_le16(fltr->rxq); 4799 } else { 4800 vnic = &bp->vnic_info[fltr->rxq + 1]; 4801 req->dst_id = cpu_to_le16(vnic->fw_vnic_id); 4802 } 4803 req->flags = cpu_to_le32(flags); 4804 req->enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS); 4805 4806 req->ethertype = htons(ETH_P_IP); 4807 memcpy(req->src_macaddr, fltr->src_mac_addr, ETH_ALEN); 4808 req->ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4; 4809 req->ip_protocol = keys->basic.ip_proto; 4810 4811 if (keys->basic.n_proto == htons(ETH_P_IPV6)) { 4812 int i; 4813 4814 req->ethertype = htons(ETH_P_IPV6); 4815 req->ip_addr_type = 4816 CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6; 4817 *(struct in6_addr *)&req->src_ipaddr[0] = 4818 keys->addrs.v6addrs.src; 4819 *(struct in6_addr *)&req->dst_ipaddr[0] = 4820 keys->addrs.v6addrs.dst; 4821 for (i = 0; i < 4; i++) { 4822 req->src_ipaddr_mask[i] = cpu_to_be32(0xffffffff); 4823 req->dst_ipaddr_mask[i] = cpu_to_be32(0xffffffff); 4824 } 4825 } else { 4826 req->src_ipaddr[0] = keys->addrs.v4addrs.src; 4827 req->src_ipaddr_mask[0] = cpu_to_be32(0xffffffff); 4828 req->dst_ipaddr[0] = keys->addrs.v4addrs.dst; 4829 req->dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff); 4830 } 4831 if (keys->control.flags & FLOW_DIS_ENCAPSULATION) { 4832 req->enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG); 4833 req->tunnel_type = 4834 CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL; 4835 } 4836 4837 req->src_port = keys->ports.src; 4838 req->src_port_mask = cpu_to_be16(0xffff); 4839 req->dst_port = keys->ports.dst; 4840 req->dst_port_mask = cpu_to_be16(0xffff); 4841 4842 resp = hwrm_req_hold(bp, req); 4843 rc = hwrm_req_send(bp, req); 4844 if (!rc) 4845 fltr->filter_id = resp->ntuple_filter_id; 4846 hwrm_req_drop(bp, req); 4847 return rc; 4848 } 4849 #endif 4850 4851 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx, 4852 u8 *mac_addr) 4853 { 4854 struct hwrm_cfa_l2_filter_alloc_output *resp; 4855 struct hwrm_cfa_l2_filter_alloc_input *req; 4856 int rc; 4857 4858 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_ALLOC); 4859 if (rc) 4860 return rc; 4861 4862 req->flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX); 4863 if (!BNXT_CHIP_TYPE_NITRO_A0(bp)) 4864 req->flags |= 4865 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST); 4866 req->dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id); 4867 req->enables = 4868 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR | 4869 CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID | 4870 CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK); 4871 memcpy(req->l2_addr, mac_addr, ETH_ALEN); 4872 req->l2_addr_mask[0] = 0xff; 4873 req->l2_addr_mask[1] = 0xff; 4874 req->l2_addr_mask[2] = 0xff; 4875 req->l2_addr_mask[3] = 0xff; 4876 req->l2_addr_mask[4] = 0xff; 4877 req->l2_addr_mask[5] = 0xff; 4878 4879 resp = hwrm_req_hold(bp, req); 4880 rc = hwrm_req_send(bp, req); 4881 if (!rc) 4882 bp->vnic_info[vnic_id].fw_l2_filter_id[idx] = 4883 resp->l2_filter_id; 4884 hwrm_req_drop(bp, req); 4885 return rc; 4886 } 4887 4888 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp) 4889 { 4890 struct hwrm_cfa_l2_filter_free_input *req; 4891 u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */ 4892 int rc; 4893 4894 /* Any associated ntuple filters will also be cleared by firmware. */ 4895 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE); 4896 if (rc) 4897 return rc; 4898 hwrm_req_hold(bp, req); 4899 for (i = 0; i < num_of_vnics; i++) { 4900 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 4901 4902 for (j = 0; j < vnic->uc_filter_count; j++) { 4903 req->l2_filter_id = vnic->fw_l2_filter_id[j]; 4904 4905 rc = hwrm_req_send(bp, req); 4906 } 4907 vnic->uc_filter_count = 0; 4908 } 4909 hwrm_req_drop(bp, req); 4910 return rc; 4911 } 4912 4913 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags) 4914 { 4915 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 4916 u16 max_aggs = VNIC_TPA_CFG_REQ_MAX_AGGS_MAX; 4917 struct hwrm_vnic_tpa_cfg_input *req; 4918 int rc; 4919 4920 if (vnic->fw_vnic_id == INVALID_HW_RING_ID) 4921 return 0; 4922 4923 rc = hwrm_req_init(bp, req, HWRM_VNIC_TPA_CFG); 4924 if (rc) 4925 return rc; 4926 4927 if (tpa_flags) { 4928 u16 mss = bp->dev->mtu - 40; 4929 u32 nsegs, n, segs = 0, flags; 4930 4931 flags = VNIC_TPA_CFG_REQ_FLAGS_TPA | 4932 VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA | 4933 VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE | 4934 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN | 4935 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ; 4936 if (tpa_flags & BNXT_FLAG_GRO) 4937 flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO; 4938 4939 req->flags = cpu_to_le32(flags); 4940 4941 req->enables = 4942 cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS | 4943 VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS | 4944 VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN); 4945 4946 /* Number of segs are log2 units, and first packet is not 4947 * included as part of this units. 4948 */ 4949 if (mss <= BNXT_RX_PAGE_SIZE) { 4950 n = BNXT_RX_PAGE_SIZE / mss; 4951 nsegs = (MAX_SKB_FRAGS - 1) * n; 4952 } else { 4953 n = mss / BNXT_RX_PAGE_SIZE; 4954 if (mss & (BNXT_RX_PAGE_SIZE - 1)) 4955 n++; 4956 nsegs = (MAX_SKB_FRAGS - n) / n; 4957 } 4958 4959 if (bp->flags & BNXT_FLAG_CHIP_P5) { 4960 segs = MAX_TPA_SEGS_P5; 4961 max_aggs = bp->max_tpa; 4962 } else { 4963 segs = ilog2(nsegs); 4964 } 4965 req->max_agg_segs = cpu_to_le16(segs); 4966 req->max_aggs = cpu_to_le16(max_aggs); 4967 4968 req->min_agg_len = cpu_to_le32(512); 4969 } 4970 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 4971 4972 return hwrm_req_send(bp, req); 4973 } 4974 4975 static u16 bnxt_cp_ring_from_grp(struct bnxt *bp, struct bnxt_ring_struct *ring) 4976 { 4977 struct bnxt_ring_grp_info *grp_info; 4978 4979 grp_info = &bp->grp_info[ring->grp_idx]; 4980 return grp_info->cp_fw_ring_id; 4981 } 4982 4983 static u16 bnxt_cp_ring_for_rx(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 4984 { 4985 if (bp->flags & BNXT_FLAG_CHIP_P5) { 4986 struct bnxt_napi *bnapi = rxr->bnapi; 4987 struct bnxt_cp_ring_info *cpr; 4988 4989 cpr = bnapi->cp_ring.cp_ring_arr[BNXT_RX_HDL]; 4990 return cpr->cp_ring_struct.fw_ring_id; 4991 } else { 4992 return bnxt_cp_ring_from_grp(bp, &rxr->rx_ring_struct); 4993 } 4994 } 4995 4996 static u16 bnxt_cp_ring_for_tx(struct bnxt *bp, struct bnxt_tx_ring_info *txr) 4997 { 4998 if (bp->flags & BNXT_FLAG_CHIP_P5) { 4999 struct bnxt_napi *bnapi = txr->bnapi; 5000 struct bnxt_cp_ring_info *cpr; 5001 5002 cpr = bnapi->cp_ring.cp_ring_arr[BNXT_TX_HDL]; 5003 return cpr->cp_ring_struct.fw_ring_id; 5004 } else { 5005 return bnxt_cp_ring_from_grp(bp, &txr->tx_ring_struct); 5006 } 5007 } 5008 5009 static int bnxt_alloc_rss_indir_tbl(struct bnxt *bp) 5010 { 5011 int entries; 5012 5013 if (bp->flags & BNXT_FLAG_CHIP_P5) 5014 entries = BNXT_MAX_RSS_TABLE_ENTRIES_P5; 5015 else 5016 entries = HW_HASH_INDEX_SIZE; 5017 5018 bp->rss_indir_tbl_entries = entries; 5019 bp->rss_indir_tbl = kmalloc_array(entries, sizeof(*bp->rss_indir_tbl), 5020 GFP_KERNEL); 5021 if (!bp->rss_indir_tbl) 5022 return -ENOMEM; 5023 return 0; 5024 } 5025 5026 static void bnxt_set_dflt_rss_indir_tbl(struct bnxt *bp) 5027 { 5028 u16 max_rings, max_entries, pad, i; 5029 5030 if (!bp->rx_nr_rings) 5031 return; 5032 5033 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 5034 max_rings = bp->rx_nr_rings - 1; 5035 else 5036 max_rings = bp->rx_nr_rings; 5037 5038 max_entries = bnxt_get_rxfh_indir_size(bp->dev); 5039 5040 for (i = 0; i < max_entries; i++) 5041 bp->rss_indir_tbl[i] = ethtool_rxfh_indir_default(i, max_rings); 5042 5043 pad = bp->rss_indir_tbl_entries - max_entries; 5044 if (pad) 5045 memset(&bp->rss_indir_tbl[i], 0, pad * sizeof(u16)); 5046 } 5047 5048 static u16 bnxt_get_max_rss_ring(struct bnxt *bp) 5049 { 5050 u16 i, tbl_size, max_ring = 0; 5051 5052 if (!bp->rss_indir_tbl) 5053 return 0; 5054 5055 tbl_size = bnxt_get_rxfh_indir_size(bp->dev); 5056 for (i = 0; i < tbl_size; i++) 5057 max_ring = max(max_ring, bp->rss_indir_tbl[i]); 5058 return max_ring; 5059 } 5060 5061 int bnxt_get_nr_rss_ctxs(struct bnxt *bp, int rx_rings) 5062 { 5063 if (bp->flags & BNXT_FLAG_CHIP_P5) 5064 return DIV_ROUND_UP(rx_rings, BNXT_RSS_TABLE_ENTRIES_P5); 5065 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 5066 return 2; 5067 return 1; 5068 } 5069 5070 static void __bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic) 5071 { 5072 bool no_rss = !(vnic->flags & BNXT_VNIC_RSS_FLAG); 5073 u16 i, j; 5074 5075 /* Fill the RSS indirection table with ring group ids */ 5076 for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++) { 5077 if (!no_rss) 5078 j = bp->rss_indir_tbl[i]; 5079 vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]); 5080 } 5081 } 5082 5083 static void __bnxt_fill_hw_rss_tbl_p5(struct bnxt *bp, 5084 struct bnxt_vnic_info *vnic) 5085 { 5086 __le16 *ring_tbl = vnic->rss_table; 5087 struct bnxt_rx_ring_info *rxr; 5088 u16 tbl_size, i; 5089 5090 tbl_size = bnxt_get_rxfh_indir_size(bp->dev); 5091 5092 for (i = 0; i < tbl_size; i++) { 5093 u16 ring_id, j; 5094 5095 j = bp->rss_indir_tbl[i]; 5096 rxr = &bp->rx_ring[j]; 5097 5098 ring_id = rxr->rx_ring_struct.fw_ring_id; 5099 *ring_tbl++ = cpu_to_le16(ring_id); 5100 ring_id = bnxt_cp_ring_for_rx(bp, rxr); 5101 *ring_tbl++ = cpu_to_le16(ring_id); 5102 } 5103 } 5104 5105 static void bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic) 5106 { 5107 if (bp->flags & BNXT_FLAG_CHIP_P5) 5108 __bnxt_fill_hw_rss_tbl_p5(bp, vnic); 5109 else 5110 __bnxt_fill_hw_rss_tbl(bp, vnic); 5111 } 5112 5113 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss) 5114 { 5115 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5116 struct hwrm_vnic_rss_cfg_input *req; 5117 int rc; 5118 5119 if ((bp->flags & BNXT_FLAG_CHIP_P5) || 5120 vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID) 5121 return 0; 5122 5123 rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG); 5124 if (rc) 5125 return rc; 5126 5127 if (set_rss) { 5128 bnxt_fill_hw_rss_tbl(bp, vnic); 5129 req->hash_type = cpu_to_le32(bp->rss_hash_cfg); 5130 req->hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT; 5131 req->ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr); 5132 req->hash_key_tbl_addr = 5133 cpu_to_le64(vnic->rss_hash_key_dma_addr); 5134 } 5135 req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 5136 return hwrm_req_send(bp, req); 5137 } 5138 5139 static int bnxt_hwrm_vnic_set_rss_p5(struct bnxt *bp, u16 vnic_id, bool set_rss) 5140 { 5141 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5142 struct hwrm_vnic_rss_cfg_input *req; 5143 dma_addr_t ring_tbl_map; 5144 u32 i, nr_ctxs; 5145 int rc; 5146 5147 rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG); 5148 if (rc) 5149 return rc; 5150 5151 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 5152 if (!set_rss) 5153 return hwrm_req_send(bp, req); 5154 5155 bnxt_fill_hw_rss_tbl(bp, vnic); 5156 req->hash_type = cpu_to_le32(bp->rss_hash_cfg); 5157 req->hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT; 5158 req->hash_key_tbl_addr = cpu_to_le64(vnic->rss_hash_key_dma_addr); 5159 ring_tbl_map = vnic->rss_table_dma_addr; 5160 nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings); 5161 5162 hwrm_req_hold(bp, req); 5163 for (i = 0; i < nr_ctxs; ring_tbl_map += BNXT_RSS_TABLE_SIZE_P5, i++) { 5164 req->ring_grp_tbl_addr = cpu_to_le64(ring_tbl_map); 5165 req->ring_table_pair_index = i; 5166 req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[i]); 5167 rc = hwrm_req_send(bp, req); 5168 if (rc) 5169 goto exit; 5170 } 5171 5172 exit: 5173 hwrm_req_drop(bp, req); 5174 return rc; 5175 } 5176 5177 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id) 5178 { 5179 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5180 struct hwrm_vnic_plcmodes_cfg_input *req; 5181 int rc; 5182 5183 rc = hwrm_req_init(bp, req, HWRM_VNIC_PLCMODES_CFG); 5184 if (rc) 5185 return rc; 5186 5187 req->flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT | 5188 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 | 5189 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6); 5190 req->enables = 5191 cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID | 5192 VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID); 5193 /* thresholds not implemented in firmware yet */ 5194 req->jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh); 5195 req->hds_threshold = cpu_to_le16(bp->rx_copy_thresh); 5196 req->vnic_id = cpu_to_le32(vnic->fw_vnic_id); 5197 return hwrm_req_send(bp, req); 5198 } 5199 5200 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id, 5201 u16 ctx_idx) 5202 { 5203 struct hwrm_vnic_rss_cos_lb_ctx_free_input *req; 5204 5205 if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_FREE)) 5206 return; 5207 5208 req->rss_cos_lb_ctx_id = 5209 cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]); 5210 5211 hwrm_req_send(bp, req); 5212 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID; 5213 } 5214 5215 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp) 5216 { 5217 int i, j; 5218 5219 for (i = 0; i < bp->nr_vnics; i++) { 5220 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 5221 5222 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) { 5223 if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID) 5224 bnxt_hwrm_vnic_ctx_free_one(bp, i, j); 5225 } 5226 } 5227 bp->rsscos_nr_ctxs = 0; 5228 } 5229 5230 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx) 5231 { 5232 struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp; 5233 struct hwrm_vnic_rss_cos_lb_ctx_alloc_input *req; 5234 int rc; 5235 5236 rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC); 5237 if (rc) 5238 return rc; 5239 5240 resp = hwrm_req_hold(bp, req); 5241 rc = hwrm_req_send(bp, req); 5242 if (!rc) 5243 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = 5244 le16_to_cpu(resp->rss_cos_lb_ctx_id); 5245 hwrm_req_drop(bp, req); 5246 5247 return rc; 5248 } 5249 5250 static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp) 5251 { 5252 if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP) 5253 return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE; 5254 return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE; 5255 } 5256 5257 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id) 5258 { 5259 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5260 struct hwrm_vnic_cfg_input *req; 5261 unsigned int ring = 0, grp_idx; 5262 u16 def_vlan = 0; 5263 int rc; 5264 5265 rc = hwrm_req_init(bp, req, HWRM_VNIC_CFG); 5266 if (rc) 5267 return rc; 5268 5269 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5270 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0]; 5271 5272 req->default_rx_ring_id = 5273 cpu_to_le16(rxr->rx_ring_struct.fw_ring_id); 5274 req->default_cmpl_ring_id = 5275 cpu_to_le16(bnxt_cp_ring_for_rx(bp, rxr)); 5276 req->enables = 5277 cpu_to_le32(VNIC_CFG_REQ_ENABLES_DEFAULT_RX_RING_ID | 5278 VNIC_CFG_REQ_ENABLES_DEFAULT_CMPL_RING_ID); 5279 goto vnic_mru; 5280 } 5281 req->enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP); 5282 /* Only RSS support for now TBD: COS & LB */ 5283 if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) { 5284 req->rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 5285 req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE | 5286 VNIC_CFG_REQ_ENABLES_MRU); 5287 } else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) { 5288 req->rss_rule = 5289 cpu_to_le16(bp->vnic_info[0].fw_rss_cos_lb_ctx[0]); 5290 req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE | 5291 VNIC_CFG_REQ_ENABLES_MRU); 5292 req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE); 5293 } else { 5294 req->rss_rule = cpu_to_le16(0xffff); 5295 } 5296 5297 if (BNXT_CHIP_TYPE_NITRO_A0(bp) && 5298 (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) { 5299 req->cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]); 5300 req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE); 5301 } else { 5302 req->cos_rule = cpu_to_le16(0xffff); 5303 } 5304 5305 if (vnic->flags & BNXT_VNIC_RSS_FLAG) 5306 ring = 0; 5307 else if (vnic->flags & BNXT_VNIC_RFS_FLAG) 5308 ring = vnic_id - 1; 5309 else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp)) 5310 ring = bp->rx_nr_rings - 1; 5311 5312 grp_idx = bp->rx_ring[ring].bnapi->index; 5313 req->dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id); 5314 req->lb_rule = cpu_to_le16(0xffff); 5315 vnic_mru: 5316 req->mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + VLAN_HLEN); 5317 5318 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 5319 #ifdef CONFIG_BNXT_SRIOV 5320 if (BNXT_VF(bp)) 5321 def_vlan = bp->vf.vlan; 5322 #endif 5323 if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan) 5324 req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE); 5325 if (!vnic_id && bnxt_ulp_registered(bp->edev, BNXT_ROCE_ULP)) 5326 req->flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp)); 5327 5328 return hwrm_req_send(bp, req); 5329 } 5330 5331 static void bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id) 5332 { 5333 if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) { 5334 struct hwrm_vnic_free_input *req; 5335 5336 if (hwrm_req_init(bp, req, HWRM_VNIC_FREE)) 5337 return; 5338 5339 req->vnic_id = 5340 cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id); 5341 5342 hwrm_req_send(bp, req); 5343 bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID; 5344 } 5345 } 5346 5347 static void bnxt_hwrm_vnic_free(struct bnxt *bp) 5348 { 5349 u16 i; 5350 5351 for (i = 0; i < bp->nr_vnics; i++) 5352 bnxt_hwrm_vnic_free_one(bp, i); 5353 } 5354 5355 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id, 5356 unsigned int start_rx_ring_idx, 5357 unsigned int nr_rings) 5358 { 5359 unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings; 5360 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5361 struct hwrm_vnic_alloc_output *resp; 5362 struct hwrm_vnic_alloc_input *req; 5363 int rc; 5364 5365 rc = hwrm_req_init(bp, req, HWRM_VNIC_ALLOC); 5366 if (rc) 5367 return rc; 5368 5369 if (bp->flags & BNXT_FLAG_CHIP_P5) 5370 goto vnic_no_ring_grps; 5371 5372 /* map ring groups to this vnic */ 5373 for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) { 5374 grp_idx = bp->rx_ring[i].bnapi->index; 5375 if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) { 5376 netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n", 5377 j, nr_rings); 5378 break; 5379 } 5380 vnic->fw_grp_ids[j] = bp->grp_info[grp_idx].fw_grp_id; 5381 } 5382 5383 vnic_no_ring_grps: 5384 for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++) 5385 vnic->fw_rss_cos_lb_ctx[i] = INVALID_HW_RING_ID; 5386 if (vnic_id == 0) 5387 req->flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT); 5388 5389 resp = hwrm_req_hold(bp, req); 5390 rc = hwrm_req_send(bp, req); 5391 if (!rc) 5392 vnic->fw_vnic_id = le32_to_cpu(resp->vnic_id); 5393 hwrm_req_drop(bp, req); 5394 return rc; 5395 } 5396 5397 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp) 5398 { 5399 struct hwrm_vnic_qcaps_output *resp; 5400 struct hwrm_vnic_qcaps_input *req; 5401 int rc; 5402 5403 bp->hw_ring_stats_size = sizeof(struct ctx_hw_stats); 5404 bp->flags &= ~(BNXT_FLAG_NEW_RSS_CAP | BNXT_FLAG_ROCE_MIRROR_CAP); 5405 if (bp->hwrm_spec_code < 0x10600) 5406 return 0; 5407 5408 rc = hwrm_req_init(bp, req, HWRM_VNIC_QCAPS); 5409 if (rc) 5410 return rc; 5411 5412 resp = hwrm_req_hold(bp, req); 5413 rc = hwrm_req_send(bp, req); 5414 if (!rc) { 5415 u32 flags = le32_to_cpu(resp->flags); 5416 5417 if (!(bp->flags & BNXT_FLAG_CHIP_P5) && 5418 (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP)) 5419 bp->flags |= BNXT_FLAG_NEW_RSS_CAP; 5420 if (flags & 5421 VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP) 5422 bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP; 5423 5424 /* Older P5 fw before EXT_HW_STATS support did not set 5425 * VLAN_STRIP_CAP properly. 5426 */ 5427 if ((flags & VNIC_QCAPS_RESP_FLAGS_VLAN_STRIP_CAP) || 5428 (BNXT_CHIP_P5_THOR(bp) && 5429 !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))) 5430 bp->fw_cap |= BNXT_FW_CAP_VLAN_RX_STRIP; 5431 bp->max_tpa_v2 = le16_to_cpu(resp->max_aggs_supported); 5432 if (bp->max_tpa_v2) { 5433 if (BNXT_CHIP_P5_THOR(bp)) 5434 bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5; 5435 else 5436 bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5_SR2; 5437 } 5438 } 5439 hwrm_req_drop(bp, req); 5440 return rc; 5441 } 5442 5443 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp) 5444 { 5445 struct hwrm_ring_grp_alloc_output *resp; 5446 struct hwrm_ring_grp_alloc_input *req; 5447 int rc; 5448 u16 i; 5449 5450 if (bp->flags & BNXT_FLAG_CHIP_P5) 5451 return 0; 5452 5453 rc = hwrm_req_init(bp, req, HWRM_RING_GRP_ALLOC); 5454 if (rc) 5455 return rc; 5456 5457 resp = hwrm_req_hold(bp, req); 5458 for (i = 0; i < bp->rx_nr_rings; i++) { 5459 unsigned int grp_idx = bp->rx_ring[i].bnapi->index; 5460 5461 req->cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id); 5462 req->rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id); 5463 req->ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id); 5464 req->sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx); 5465 5466 rc = hwrm_req_send(bp, req); 5467 5468 if (rc) 5469 break; 5470 5471 bp->grp_info[grp_idx].fw_grp_id = 5472 le32_to_cpu(resp->ring_group_id); 5473 } 5474 hwrm_req_drop(bp, req); 5475 return rc; 5476 } 5477 5478 static void bnxt_hwrm_ring_grp_free(struct bnxt *bp) 5479 { 5480 struct hwrm_ring_grp_free_input *req; 5481 u16 i; 5482 5483 if (!bp->grp_info || (bp->flags & BNXT_FLAG_CHIP_P5)) 5484 return; 5485 5486 if (hwrm_req_init(bp, req, HWRM_RING_GRP_FREE)) 5487 return; 5488 5489 hwrm_req_hold(bp, req); 5490 for (i = 0; i < bp->cp_nr_rings; i++) { 5491 if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID) 5492 continue; 5493 req->ring_group_id = 5494 cpu_to_le32(bp->grp_info[i].fw_grp_id); 5495 5496 hwrm_req_send(bp, req); 5497 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID; 5498 } 5499 hwrm_req_drop(bp, req); 5500 } 5501 5502 static int hwrm_ring_alloc_send_msg(struct bnxt *bp, 5503 struct bnxt_ring_struct *ring, 5504 u32 ring_type, u32 map_index) 5505 { 5506 struct hwrm_ring_alloc_output *resp; 5507 struct hwrm_ring_alloc_input *req; 5508 struct bnxt_ring_mem_info *rmem = &ring->ring_mem; 5509 struct bnxt_ring_grp_info *grp_info; 5510 int rc, err = 0; 5511 u16 ring_id; 5512 5513 rc = hwrm_req_init(bp, req, HWRM_RING_ALLOC); 5514 if (rc) 5515 goto exit; 5516 5517 req->enables = 0; 5518 if (rmem->nr_pages > 1) { 5519 req->page_tbl_addr = cpu_to_le64(rmem->pg_tbl_map); 5520 /* Page size is in log2 units */ 5521 req->page_size = BNXT_PAGE_SHIFT; 5522 req->page_tbl_depth = 1; 5523 } else { 5524 req->page_tbl_addr = cpu_to_le64(rmem->dma_arr[0]); 5525 } 5526 req->fbo = 0; 5527 /* Association of ring index with doorbell index and MSIX number */ 5528 req->logical_id = cpu_to_le16(map_index); 5529 5530 switch (ring_type) { 5531 case HWRM_RING_ALLOC_TX: { 5532 struct bnxt_tx_ring_info *txr; 5533 5534 txr = container_of(ring, struct bnxt_tx_ring_info, 5535 tx_ring_struct); 5536 req->ring_type = RING_ALLOC_REQ_RING_TYPE_TX; 5537 /* Association of transmit ring with completion ring */ 5538 grp_info = &bp->grp_info[ring->grp_idx]; 5539 req->cmpl_ring_id = cpu_to_le16(bnxt_cp_ring_for_tx(bp, txr)); 5540 req->length = cpu_to_le32(bp->tx_ring_mask + 1); 5541 req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 5542 req->queue_id = cpu_to_le16(ring->queue_id); 5543 break; 5544 } 5545 case HWRM_RING_ALLOC_RX: 5546 req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX; 5547 req->length = cpu_to_le32(bp->rx_ring_mask + 1); 5548 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5549 u16 flags = 0; 5550 5551 /* Association of rx ring with stats context */ 5552 grp_info = &bp->grp_info[ring->grp_idx]; 5553 req->rx_buf_size = cpu_to_le16(bp->rx_buf_use_size); 5554 req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 5555 req->enables |= cpu_to_le32( 5556 RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID); 5557 if (NET_IP_ALIGN == 2) 5558 flags = RING_ALLOC_REQ_FLAGS_RX_SOP_PAD; 5559 req->flags = cpu_to_le16(flags); 5560 } 5561 break; 5562 case HWRM_RING_ALLOC_AGG: 5563 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5564 req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX_AGG; 5565 /* Association of agg ring with rx ring */ 5566 grp_info = &bp->grp_info[ring->grp_idx]; 5567 req->rx_ring_id = cpu_to_le16(grp_info->rx_fw_ring_id); 5568 req->rx_buf_size = cpu_to_le16(BNXT_RX_PAGE_SIZE); 5569 req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 5570 req->enables |= cpu_to_le32( 5571 RING_ALLOC_REQ_ENABLES_RX_RING_ID_VALID | 5572 RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID); 5573 } else { 5574 req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX; 5575 } 5576 req->length = cpu_to_le32(bp->rx_agg_ring_mask + 1); 5577 break; 5578 case HWRM_RING_ALLOC_CMPL: 5579 req->ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL; 5580 req->length = cpu_to_le32(bp->cp_ring_mask + 1); 5581 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5582 /* Association of cp ring with nq */ 5583 grp_info = &bp->grp_info[map_index]; 5584 req->nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id); 5585 req->cq_handle = cpu_to_le64(ring->handle); 5586 req->enables |= cpu_to_le32( 5587 RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID); 5588 } else if (bp->flags & BNXT_FLAG_USING_MSIX) { 5589 req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX; 5590 } 5591 break; 5592 case HWRM_RING_ALLOC_NQ: 5593 req->ring_type = RING_ALLOC_REQ_RING_TYPE_NQ; 5594 req->length = cpu_to_le32(bp->cp_ring_mask + 1); 5595 if (bp->flags & BNXT_FLAG_USING_MSIX) 5596 req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX; 5597 break; 5598 default: 5599 netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n", 5600 ring_type); 5601 return -1; 5602 } 5603 5604 resp = hwrm_req_hold(bp, req); 5605 rc = hwrm_req_send(bp, req); 5606 err = le16_to_cpu(resp->error_code); 5607 ring_id = le16_to_cpu(resp->ring_id); 5608 hwrm_req_drop(bp, req); 5609 5610 exit: 5611 if (rc || err) { 5612 netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n", 5613 ring_type, rc, err); 5614 return -EIO; 5615 } 5616 ring->fw_ring_id = ring_id; 5617 return rc; 5618 } 5619 5620 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx) 5621 { 5622 int rc; 5623 5624 if (BNXT_PF(bp)) { 5625 struct hwrm_func_cfg_input *req; 5626 5627 rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG); 5628 if (rc) 5629 return rc; 5630 5631 req->fid = cpu_to_le16(0xffff); 5632 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR); 5633 req->async_event_cr = cpu_to_le16(idx); 5634 return hwrm_req_send(bp, req); 5635 } else { 5636 struct hwrm_func_vf_cfg_input *req; 5637 5638 rc = hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG); 5639 if (rc) 5640 return rc; 5641 5642 req->enables = 5643 cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR); 5644 req->async_event_cr = cpu_to_le16(idx); 5645 return hwrm_req_send(bp, req); 5646 } 5647 } 5648 5649 static void bnxt_set_db(struct bnxt *bp, struct bnxt_db_info *db, u32 ring_type, 5650 u32 map_idx, u32 xid) 5651 { 5652 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5653 if (BNXT_PF(bp)) 5654 db->doorbell = bp->bar1 + DB_PF_OFFSET_P5; 5655 else 5656 db->doorbell = bp->bar1 + DB_VF_OFFSET_P5; 5657 switch (ring_type) { 5658 case HWRM_RING_ALLOC_TX: 5659 db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SQ; 5660 break; 5661 case HWRM_RING_ALLOC_RX: 5662 case HWRM_RING_ALLOC_AGG: 5663 db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SRQ; 5664 break; 5665 case HWRM_RING_ALLOC_CMPL: 5666 db->db_key64 = DBR_PATH_L2; 5667 break; 5668 case HWRM_RING_ALLOC_NQ: 5669 db->db_key64 = DBR_PATH_L2; 5670 break; 5671 } 5672 db->db_key64 |= (u64)xid << DBR_XID_SFT; 5673 } else { 5674 db->doorbell = bp->bar1 + map_idx * 0x80; 5675 switch (ring_type) { 5676 case HWRM_RING_ALLOC_TX: 5677 db->db_key32 = DB_KEY_TX; 5678 break; 5679 case HWRM_RING_ALLOC_RX: 5680 case HWRM_RING_ALLOC_AGG: 5681 db->db_key32 = DB_KEY_RX; 5682 break; 5683 case HWRM_RING_ALLOC_CMPL: 5684 db->db_key32 = DB_KEY_CP; 5685 break; 5686 } 5687 } 5688 } 5689 5690 static int bnxt_hwrm_ring_alloc(struct bnxt *bp) 5691 { 5692 bool agg_rings = !!(bp->flags & BNXT_FLAG_AGG_RINGS); 5693 int i, rc = 0; 5694 u32 type; 5695 5696 if (bp->flags & BNXT_FLAG_CHIP_P5) 5697 type = HWRM_RING_ALLOC_NQ; 5698 else 5699 type = HWRM_RING_ALLOC_CMPL; 5700 for (i = 0; i < bp->cp_nr_rings; i++) { 5701 struct bnxt_napi *bnapi = bp->bnapi[i]; 5702 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5703 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 5704 u32 map_idx = ring->map_idx; 5705 unsigned int vector; 5706 5707 vector = bp->irq_tbl[map_idx].vector; 5708 disable_irq_nosync(vector); 5709 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 5710 if (rc) { 5711 enable_irq(vector); 5712 goto err_out; 5713 } 5714 bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id); 5715 bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons); 5716 enable_irq(vector); 5717 bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id; 5718 5719 if (!i) { 5720 rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id); 5721 if (rc) 5722 netdev_warn(bp->dev, "Failed to set async event completion ring.\n"); 5723 } 5724 } 5725 5726 type = HWRM_RING_ALLOC_TX; 5727 for (i = 0; i < bp->tx_nr_rings; i++) { 5728 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 5729 struct bnxt_ring_struct *ring; 5730 u32 map_idx; 5731 5732 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5733 struct bnxt_napi *bnapi = txr->bnapi; 5734 struct bnxt_cp_ring_info *cpr, *cpr2; 5735 u32 type2 = HWRM_RING_ALLOC_CMPL; 5736 5737 cpr = &bnapi->cp_ring; 5738 cpr2 = cpr->cp_ring_arr[BNXT_TX_HDL]; 5739 ring = &cpr2->cp_ring_struct; 5740 ring->handle = BNXT_TX_HDL; 5741 map_idx = bnapi->index; 5742 rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx); 5743 if (rc) 5744 goto err_out; 5745 bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx, 5746 ring->fw_ring_id); 5747 bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons); 5748 } 5749 ring = &txr->tx_ring_struct; 5750 map_idx = i; 5751 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 5752 if (rc) 5753 goto err_out; 5754 bnxt_set_db(bp, &txr->tx_db, type, map_idx, ring->fw_ring_id); 5755 } 5756 5757 type = HWRM_RING_ALLOC_RX; 5758 for (i = 0; i < bp->rx_nr_rings; i++) { 5759 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 5760 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct; 5761 struct bnxt_napi *bnapi = rxr->bnapi; 5762 u32 map_idx = bnapi->index; 5763 5764 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 5765 if (rc) 5766 goto err_out; 5767 bnxt_set_db(bp, &rxr->rx_db, type, map_idx, ring->fw_ring_id); 5768 /* If we have agg rings, post agg buffers first. */ 5769 if (!agg_rings) 5770 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 5771 bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id; 5772 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5773 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5774 u32 type2 = HWRM_RING_ALLOC_CMPL; 5775 struct bnxt_cp_ring_info *cpr2; 5776 5777 cpr2 = cpr->cp_ring_arr[BNXT_RX_HDL]; 5778 ring = &cpr2->cp_ring_struct; 5779 ring->handle = BNXT_RX_HDL; 5780 rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx); 5781 if (rc) 5782 goto err_out; 5783 bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx, 5784 ring->fw_ring_id); 5785 bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons); 5786 } 5787 } 5788 5789 if (agg_rings) { 5790 type = HWRM_RING_ALLOC_AGG; 5791 for (i = 0; i < bp->rx_nr_rings; i++) { 5792 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 5793 struct bnxt_ring_struct *ring = 5794 &rxr->rx_agg_ring_struct; 5795 u32 grp_idx = ring->grp_idx; 5796 u32 map_idx = grp_idx + bp->rx_nr_rings; 5797 5798 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 5799 if (rc) 5800 goto err_out; 5801 5802 bnxt_set_db(bp, &rxr->rx_agg_db, type, map_idx, 5803 ring->fw_ring_id); 5804 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 5805 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 5806 bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id; 5807 } 5808 } 5809 err_out: 5810 return rc; 5811 } 5812 5813 static int hwrm_ring_free_send_msg(struct bnxt *bp, 5814 struct bnxt_ring_struct *ring, 5815 u32 ring_type, int cmpl_ring_id) 5816 { 5817 struct hwrm_ring_free_output *resp; 5818 struct hwrm_ring_free_input *req; 5819 u16 error_code = 0; 5820 int rc; 5821 5822 if (BNXT_NO_FW_ACCESS(bp)) 5823 return 0; 5824 5825 rc = hwrm_req_init(bp, req, HWRM_RING_FREE); 5826 if (rc) 5827 goto exit; 5828 5829 req->cmpl_ring = cpu_to_le16(cmpl_ring_id); 5830 req->ring_type = ring_type; 5831 req->ring_id = cpu_to_le16(ring->fw_ring_id); 5832 5833 resp = hwrm_req_hold(bp, req); 5834 rc = hwrm_req_send(bp, req); 5835 error_code = le16_to_cpu(resp->error_code); 5836 hwrm_req_drop(bp, req); 5837 exit: 5838 if (rc || error_code) { 5839 netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n", 5840 ring_type, rc, error_code); 5841 return -EIO; 5842 } 5843 return 0; 5844 } 5845 5846 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path) 5847 { 5848 u32 type; 5849 int i; 5850 5851 if (!bp->bnapi) 5852 return; 5853 5854 for (i = 0; i < bp->tx_nr_rings; i++) { 5855 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 5856 struct bnxt_ring_struct *ring = &txr->tx_ring_struct; 5857 5858 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 5859 u32 cmpl_ring_id = bnxt_cp_ring_for_tx(bp, txr); 5860 5861 hwrm_ring_free_send_msg(bp, ring, 5862 RING_FREE_REQ_RING_TYPE_TX, 5863 close_path ? cmpl_ring_id : 5864 INVALID_HW_RING_ID); 5865 ring->fw_ring_id = INVALID_HW_RING_ID; 5866 } 5867 } 5868 5869 for (i = 0; i < bp->rx_nr_rings; i++) { 5870 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 5871 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct; 5872 u32 grp_idx = rxr->bnapi->index; 5873 5874 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 5875 u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr); 5876 5877 hwrm_ring_free_send_msg(bp, ring, 5878 RING_FREE_REQ_RING_TYPE_RX, 5879 close_path ? cmpl_ring_id : 5880 INVALID_HW_RING_ID); 5881 ring->fw_ring_id = INVALID_HW_RING_ID; 5882 bp->grp_info[grp_idx].rx_fw_ring_id = 5883 INVALID_HW_RING_ID; 5884 } 5885 } 5886 5887 if (bp->flags & BNXT_FLAG_CHIP_P5) 5888 type = RING_FREE_REQ_RING_TYPE_RX_AGG; 5889 else 5890 type = RING_FREE_REQ_RING_TYPE_RX; 5891 for (i = 0; i < bp->rx_nr_rings; i++) { 5892 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 5893 struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct; 5894 u32 grp_idx = rxr->bnapi->index; 5895 5896 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 5897 u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr); 5898 5899 hwrm_ring_free_send_msg(bp, ring, type, 5900 close_path ? cmpl_ring_id : 5901 INVALID_HW_RING_ID); 5902 ring->fw_ring_id = INVALID_HW_RING_ID; 5903 bp->grp_info[grp_idx].agg_fw_ring_id = 5904 INVALID_HW_RING_ID; 5905 } 5906 } 5907 5908 /* The completion rings are about to be freed. After that the 5909 * IRQ doorbell will not work anymore. So we need to disable 5910 * IRQ here. 5911 */ 5912 bnxt_disable_int_sync(bp); 5913 5914 if (bp->flags & BNXT_FLAG_CHIP_P5) 5915 type = RING_FREE_REQ_RING_TYPE_NQ; 5916 else 5917 type = RING_FREE_REQ_RING_TYPE_L2_CMPL; 5918 for (i = 0; i < bp->cp_nr_rings; i++) { 5919 struct bnxt_napi *bnapi = bp->bnapi[i]; 5920 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5921 struct bnxt_ring_struct *ring; 5922 int j; 5923 5924 for (j = 0; j < 2; j++) { 5925 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j]; 5926 5927 if (cpr2) { 5928 ring = &cpr2->cp_ring_struct; 5929 if (ring->fw_ring_id == INVALID_HW_RING_ID) 5930 continue; 5931 hwrm_ring_free_send_msg(bp, ring, 5932 RING_FREE_REQ_RING_TYPE_L2_CMPL, 5933 INVALID_HW_RING_ID); 5934 ring->fw_ring_id = INVALID_HW_RING_ID; 5935 } 5936 } 5937 ring = &cpr->cp_ring_struct; 5938 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 5939 hwrm_ring_free_send_msg(bp, ring, type, 5940 INVALID_HW_RING_ID); 5941 ring->fw_ring_id = INVALID_HW_RING_ID; 5942 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID; 5943 } 5944 } 5945 } 5946 5947 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 5948 bool shared); 5949 5950 static int bnxt_hwrm_get_rings(struct bnxt *bp) 5951 { 5952 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 5953 struct hwrm_func_qcfg_output *resp; 5954 struct hwrm_func_qcfg_input *req; 5955 int rc; 5956 5957 if (bp->hwrm_spec_code < 0x10601) 5958 return 0; 5959 5960 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); 5961 if (rc) 5962 return rc; 5963 5964 req->fid = cpu_to_le16(0xffff); 5965 resp = hwrm_req_hold(bp, req); 5966 rc = hwrm_req_send(bp, req); 5967 if (rc) { 5968 hwrm_req_drop(bp, req); 5969 return rc; 5970 } 5971 5972 hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings); 5973 if (BNXT_NEW_RM(bp)) { 5974 u16 cp, stats; 5975 5976 hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings); 5977 hw_resc->resv_hw_ring_grps = 5978 le32_to_cpu(resp->alloc_hw_ring_grps); 5979 hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics); 5980 cp = le16_to_cpu(resp->alloc_cmpl_rings); 5981 stats = le16_to_cpu(resp->alloc_stat_ctx); 5982 hw_resc->resv_irqs = cp; 5983 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5984 int rx = hw_resc->resv_rx_rings; 5985 int tx = hw_resc->resv_tx_rings; 5986 5987 if (bp->flags & BNXT_FLAG_AGG_RINGS) 5988 rx >>= 1; 5989 if (cp < (rx + tx)) { 5990 bnxt_trim_rings(bp, &rx, &tx, cp, false); 5991 if (bp->flags & BNXT_FLAG_AGG_RINGS) 5992 rx <<= 1; 5993 hw_resc->resv_rx_rings = rx; 5994 hw_resc->resv_tx_rings = tx; 5995 } 5996 hw_resc->resv_irqs = le16_to_cpu(resp->alloc_msix); 5997 hw_resc->resv_hw_ring_grps = rx; 5998 } 5999 hw_resc->resv_cp_rings = cp; 6000 hw_resc->resv_stat_ctxs = stats; 6001 } 6002 hwrm_req_drop(bp, req); 6003 return 0; 6004 } 6005 6006 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings) 6007 { 6008 struct hwrm_func_qcfg_output *resp; 6009 struct hwrm_func_qcfg_input *req; 6010 int rc; 6011 6012 if (bp->hwrm_spec_code < 0x10601) 6013 return 0; 6014 6015 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); 6016 if (rc) 6017 return rc; 6018 6019 req->fid = cpu_to_le16(fid); 6020 resp = hwrm_req_hold(bp, req); 6021 rc = hwrm_req_send(bp, req); 6022 if (!rc) 6023 *tx_rings = le16_to_cpu(resp->alloc_tx_rings); 6024 6025 hwrm_req_drop(bp, req); 6026 return rc; 6027 } 6028 6029 static bool bnxt_rfs_supported(struct bnxt *bp); 6030 6031 static struct hwrm_func_cfg_input * 6032 __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6033 int ring_grps, int cp_rings, int stats, int vnics) 6034 { 6035 struct hwrm_func_cfg_input *req; 6036 u32 enables = 0; 6037 6038 if (hwrm_req_init(bp, req, HWRM_FUNC_CFG)) 6039 return NULL; 6040 6041 req->fid = cpu_to_le16(0xffff); 6042 enables |= tx_rings ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0; 6043 req->num_tx_rings = cpu_to_le16(tx_rings); 6044 if (BNXT_NEW_RM(bp)) { 6045 enables |= rx_rings ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0; 6046 enables |= stats ? FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0; 6047 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6048 enables |= cp_rings ? FUNC_CFG_REQ_ENABLES_NUM_MSIX : 0; 6049 enables |= tx_rings + ring_grps ? 6050 FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 6051 enables |= rx_rings ? 6052 FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; 6053 } else { 6054 enables |= cp_rings ? 6055 FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 6056 enables |= ring_grps ? 6057 FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS | 6058 FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; 6059 } 6060 enables |= vnics ? FUNC_CFG_REQ_ENABLES_NUM_VNICS : 0; 6061 6062 req->num_rx_rings = cpu_to_le16(rx_rings); 6063 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6064 req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps); 6065 req->num_msix = cpu_to_le16(cp_rings); 6066 req->num_rsscos_ctxs = 6067 cpu_to_le16(DIV_ROUND_UP(ring_grps, 64)); 6068 } else { 6069 req->num_cmpl_rings = cpu_to_le16(cp_rings); 6070 req->num_hw_ring_grps = cpu_to_le16(ring_grps); 6071 req->num_rsscos_ctxs = cpu_to_le16(1); 6072 if (!(bp->flags & BNXT_FLAG_NEW_RSS_CAP) && 6073 bnxt_rfs_supported(bp)) 6074 req->num_rsscos_ctxs = 6075 cpu_to_le16(ring_grps + 1); 6076 } 6077 req->num_stat_ctxs = cpu_to_le16(stats); 6078 req->num_vnics = cpu_to_le16(vnics); 6079 } 6080 req->enables = cpu_to_le32(enables); 6081 return req; 6082 } 6083 6084 static struct hwrm_func_vf_cfg_input * 6085 __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6086 int ring_grps, int cp_rings, int stats, int vnics) 6087 { 6088 struct hwrm_func_vf_cfg_input *req; 6089 u32 enables = 0; 6090 6091 if (hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG)) 6092 return NULL; 6093 6094 enables |= tx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0; 6095 enables |= rx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS | 6096 FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; 6097 enables |= stats ? FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0; 6098 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6099 enables |= tx_rings + ring_grps ? 6100 FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 6101 } else { 6102 enables |= cp_rings ? 6103 FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 6104 enables |= ring_grps ? 6105 FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0; 6106 } 6107 enables |= vnics ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0; 6108 enables |= FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS; 6109 6110 req->num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX); 6111 req->num_tx_rings = cpu_to_le16(tx_rings); 6112 req->num_rx_rings = cpu_to_le16(rx_rings); 6113 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6114 req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps); 6115 req->num_rsscos_ctxs = cpu_to_le16(DIV_ROUND_UP(ring_grps, 64)); 6116 } else { 6117 req->num_cmpl_rings = cpu_to_le16(cp_rings); 6118 req->num_hw_ring_grps = cpu_to_le16(ring_grps); 6119 req->num_rsscos_ctxs = cpu_to_le16(BNXT_VF_MAX_RSS_CTX); 6120 } 6121 req->num_stat_ctxs = cpu_to_le16(stats); 6122 req->num_vnics = cpu_to_le16(vnics); 6123 6124 req->enables = cpu_to_le32(enables); 6125 return req; 6126 } 6127 6128 static int 6129 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6130 int ring_grps, int cp_rings, int stats, int vnics) 6131 { 6132 struct hwrm_func_cfg_input *req; 6133 int rc; 6134 6135 req = __bnxt_hwrm_reserve_pf_rings(bp, tx_rings, rx_rings, ring_grps, 6136 cp_rings, stats, vnics); 6137 if (!req) 6138 return -ENOMEM; 6139 6140 if (!req->enables) { 6141 hwrm_req_drop(bp, req); 6142 return 0; 6143 } 6144 6145 rc = hwrm_req_send(bp, req); 6146 if (rc) 6147 return rc; 6148 6149 if (bp->hwrm_spec_code < 0x10601) 6150 bp->hw_resc.resv_tx_rings = tx_rings; 6151 6152 return bnxt_hwrm_get_rings(bp); 6153 } 6154 6155 static int 6156 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6157 int ring_grps, int cp_rings, int stats, int vnics) 6158 { 6159 struct hwrm_func_vf_cfg_input *req; 6160 int rc; 6161 6162 if (!BNXT_NEW_RM(bp)) { 6163 bp->hw_resc.resv_tx_rings = tx_rings; 6164 return 0; 6165 } 6166 6167 req = __bnxt_hwrm_reserve_vf_rings(bp, tx_rings, rx_rings, ring_grps, 6168 cp_rings, stats, vnics); 6169 if (!req) 6170 return -ENOMEM; 6171 6172 rc = hwrm_req_send(bp, req); 6173 if (rc) 6174 return rc; 6175 6176 return bnxt_hwrm_get_rings(bp); 6177 } 6178 6179 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, int tx, int rx, int grp, 6180 int cp, int stat, int vnic) 6181 { 6182 if (BNXT_PF(bp)) 6183 return bnxt_hwrm_reserve_pf_rings(bp, tx, rx, grp, cp, stat, 6184 vnic); 6185 else 6186 return bnxt_hwrm_reserve_vf_rings(bp, tx, rx, grp, cp, stat, 6187 vnic); 6188 } 6189 6190 int bnxt_nq_rings_in_use(struct bnxt *bp) 6191 { 6192 int cp = bp->cp_nr_rings; 6193 int ulp_msix, ulp_base; 6194 6195 ulp_msix = bnxt_get_ulp_msix_num(bp); 6196 if (ulp_msix) { 6197 ulp_base = bnxt_get_ulp_msix_base(bp); 6198 cp += ulp_msix; 6199 if ((ulp_base + ulp_msix) > cp) 6200 cp = ulp_base + ulp_msix; 6201 } 6202 return cp; 6203 } 6204 6205 static int bnxt_cp_rings_in_use(struct bnxt *bp) 6206 { 6207 int cp; 6208 6209 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 6210 return bnxt_nq_rings_in_use(bp); 6211 6212 cp = bp->tx_nr_rings + bp->rx_nr_rings; 6213 return cp; 6214 } 6215 6216 static int bnxt_get_func_stat_ctxs(struct bnxt *bp) 6217 { 6218 int ulp_stat = bnxt_get_ulp_stat_ctxs(bp); 6219 int cp = bp->cp_nr_rings; 6220 6221 if (!ulp_stat) 6222 return cp; 6223 6224 if (bnxt_nq_rings_in_use(bp) > cp + bnxt_get_ulp_msix_num(bp)) 6225 return bnxt_get_ulp_msix_base(bp) + ulp_stat; 6226 6227 return cp + ulp_stat; 6228 } 6229 6230 /* Check if a default RSS map needs to be setup. This function is only 6231 * used on older firmware that does not require reserving RX rings. 6232 */ 6233 static void bnxt_check_rss_tbl_no_rmgr(struct bnxt *bp) 6234 { 6235 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 6236 6237 /* The RSS map is valid for RX rings set to resv_rx_rings */ 6238 if (hw_resc->resv_rx_rings != bp->rx_nr_rings) { 6239 hw_resc->resv_rx_rings = bp->rx_nr_rings; 6240 if (!netif_is_rxfh_configured(bp->dev)) 6241 bnxt_set_dflt_rss_indir_tbl(bp); 6242 } 6243 } 6244 6245 static bool bnxt_need_reserve_rings(struct bnxt *bp) 6246 { 6247 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 6248 int cp = bnxt_cp_rings_in_use(bp); 6249 int nq = bnxt_nq_rings_in_use(bp); 6250 int rx = bp->rx_nr_rings, stat; 6251 int vnic = 1, grp = rx; 6252 6253 if (hw_resc->resv_tx_rings != bp->tx_nr_rings && 6254 bp->hwrm_spec_code >= 0x10601) 6255 return true; 6256 6257 /* Old firmware does not need RX ring reservations but we still 6258 * need to setup a default RSS map when needed. With new firmware 6259 * we go through RX ring reservations first and then set up the 6260 * RSS map for the successfully reserved RX rings when needed. 6261 */ 6262 if (!BNXT_NEW_RM(bp)) { 6263 bnxt_check_rss_tbl_no_rmgr(bp); 6264 return false; 6265 } 6266 if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5)) 6267 vnic = rx + 1; 6268 if (bp->flags & BNXT_FLAG_AGG_RINGS) 6269 rx <<= 1; 6270 stat = bnxt_get_func_stat_ctxs(bp); 6271 if (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp || 6272 hw_resc->resv_vnics != vnic || hw_resc->resv_stat_ctxs != stat || 6273 (hw_resc->resv_hw_ring_grps != grp && 6274 !(bp->flags & BNXT_FLAG_CHIP_P5))) 6275 return true; 6276 if ((bp->flags & BNXT_FLAG_CHIP_P5) && BNXT_PF(bp) && 6277 hw_resc->resv_irqs != nq) 6278 return true; 6279 return false; 6280 } 6281 6282 static int __bnxt_reserve_rings(struct bnxt *bp) 6283 { 6284 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 6285 int cp = bnxt_nq_rings_in_use(bp); 6286 int tx = bp->tx_nr_rings; 6287 int rx = bp->rx_nr_rings; 6288 int grp, rx_rings, rc; 6289 int vnic = 1, stat; 6290 bool sh = false; 6291 6292 if (!bnxt_need_reserve_rings(bp)) 6293 return 0; 6294 6295 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 6296 sh = true; 6297 if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5)) 6298 vnic = rx + 1; 6299 if (bp->flags & BNXT_FLAG_AGG_RINGS) 6300 rx <<= 1; 6301 grp = bp->rx_nr_rings; 6302 stat = bnxt_get_func_stat_ctxs(bp); 6303 6304 rc = bnxt_hwrm_reserve_rings(bp, tx, rx, grp, cp, stat, vnic); 6305 if (rc) 6306 return rc; 6307 6308 tx = hw_resc->resv_tx_rings; 6309 if (BNXT_NEW_RM(bp)) { 6310 rx = hw_resc->resv_rx_rings; 6311 cp = hw_resc->resv_irqs; 6312 grp = hw_resc->resv_hw_ring_grps; 6313 vnic = hw_resc->resv_vnics; 6314 stat = hw_resc->resv_stat_ctxs; 6315 } 6316 6317 rx_rings = rx; 6318 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 6319 if (rx >= 2) { 6320 rx_rings = rx >> 1; 6321 } else { 6322 if (netif_running(bp->dev)) 6323 return -ENOMEM; 6324 6325 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 6326 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 6327 bp->dev->hw_features &= ~NETIF_F_LRO; 6328 bp->dev->features &= ~NETIF_F_LRO; 6329 bnxt_set_ring_params(bp); 6330 } 6331 } 6332 rx_rings = min_t(int, rx_rings, grp); 6333 cp = min_t(int, cp, bp->cp_nr_rings); 6334 if (stat > bnxt_get_ulp_stat_ctxs(bp)) 6335 stat -= bnxt_get_ulp_stat_ctxs(bp); 6336 cp = min_t(int, cp, stat); 6337 rc = bnxt_trim_rings(bp, &rx_rings, &tx, cp, sh); 6338 if (bp->flags & BNXT_FLAG_AGG_RINGS) 6339 rx = rx_rings << 1; 6340 cp = sh ? max_t(int, tx, rx_rings) : tx + rx_rings; 6341 bp->tx_nr_rings = tx; 6342 6343 /* If we cannot reserve all the RX rings, reset the RSS map only 6344 * if absolutely necessary 6345 */ 6346 if (rx_rings != bp->rx_nr_rings) { 6347 netdev_warn(bp->dev, "Able to reserve only %d out of %d requested RX rings\n", 6348 rx_rings, bp->rx_nr_rings); 6349 if ((bp->dev->priv_flags & IFF_RXFH_CONFIGURED) && 6350 (bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings) != 6351 bnxt_get_nr_rss_ctxs(bp, rx_rings) || 6352 bnxt_get_max_rss_ring(bp) >= rx_rings)) { 6353 netdev_warn(bp->dev, "RSS table entries reverting to default\n"); 6354 bp->dev->priv_flags &= ~IFF_RXFH_CONFIGURED; 6355 } 6356 } 6357 bp->rx_nr_rings = rx_rings; 6358 bp->cp_nr_rings = cp; 6359 6360 if (!tx || !rx || !cp || !grp || !vnic || !stat) 6361 return -ENOMEM; 6362 6363 if (!netif_is_rxfh_configured(bp->dev)) 6364 bnxt_set_dflt_rss_indir_tbl(bp); 6365 6366 return rc; 6367 } 6368 6369 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6370 int ring_grps, int cp_rings, int stats, 6371 int vnics) 6372 { 6373 struct hwrm_func_vf_cfg_input *req; 6374 u32 flags; 6375 6376 if (!BNXT_NEW_RM(bp)) 6377 return 0; 6378 6379 req = __bnxt_hwrm_reserve_vf_rings(bp, tx_rings, rx_rings, ring_grps, 6380 cp_rings, stats, vnics); 6381 flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST | 6382 FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST | 6383 FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST | 6384 FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST | 6385 FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST | 6386 FUNC_VF_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST; 6387 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 6388 flags |= FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST; 6389 6390 req->flags = cpu_to_le32(flags); 6391 return hwrm_req_send_silent(bp, req); 6392 } 6393 6394 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6395 int ring_grps, int cp_rings, int stats, 6396 int vnics) 6397 { 6398 struct hwrm_func_cfg_input *req; 6399 u32 flags; 6400 6401 req = __bnxt_hwrm_reserve_pf_rings(bp, tx_rings, rx_rings, ring_grps, 6402 cp_rings, stats, vnics); 6403 flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST; 6404 if (BNXT_NEW_RM(bp)) { 6405 flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST | 6406 FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST | 6407 FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST | 6408 FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST; 6409 if (bp->flags & BNXT_FLAG_CHIP_P5) 6410 flags |= FUNC_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST | 6411 FUNC_CFG_REQ_FLAGS_NQ_ASSETS_TEST; 6412 else 6413 flags |= FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST; 6414 } 6415 6416 req->flags = cpu_to_le32(flags); 6417 return hwrm_req_send_silent(bp, req); 6418 } 6419 6420 static int bnxt_hwrm_check_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6421 int ring_grps, int cp_rings, int stats, 6422 int vnics) 6423 { 6424 if (bp->hwrm_spec_code < 0x10801) 6425 return 0; 6426 6427 if (BNXT_PF(bp)) 6428 return bnxt_hwrm_check_pf_rings(bp, tx_rings, rx_rings, 6429 ring_grps, cp_rings, stats, 6430 vnics); 6431 6432 return bnxt_hwrm_check_vf_rings(bp, tx_rings, rx_rings, ring_grps, 6433 cp_rings, stats, vnics); 6434 } 6435 6436 static void bnxt_hwrm_coal_params_qcaps(struct bnxt *bp) 6437 { 6438 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 6439 struct hwrm_ring_aggint_qcaps_output *resp; 6440 struct hwrm_ring_aggint_qcaps_input *req; 6441 int rc; 6442 6443 coal_cap->cmpl_params = BNXT_LEGACY_COAL_CMPL_PARAMS; 6444 coal_cap->num_cmpl_dma_aggr_max = 63; 6445 coal_cap->num_cmpl_dma_aggr_during_int_max = 63; 6446 coal_cap->cmpl_aggr_dma_tmr_max = 65535; 6447 coal_cap->cmpl_aggr_dma_tmr_during_int_max = 65535; 6448 coal_cap->int_lat_tmr_min_max = 65535; 6449 coal_cap->int_lat_tmr_max_max = 65535; 6450 coal_cap->num_cmpl_aggr_int_max = 65535; 6451 coal_cap->timer_units = 80; 6452 6453 if (bp->hwrm_spec_code < 0x10902) 6454 return; 6455 6456 if (hwrm_req_init(bp, req, HWRM_RING_AGGINT_QCAPS)) 6457 return; 6458 6459 resp = hwrm_req_hold(bp, req); 6460 rc = hwrm_req_send_silent(bp, req); 6461 if (!rc) { 6462 coal_cap->cmpl_params = le32_to_cpu(resp->cmpl_params); 6463 coal_cap->nq_params = le32_to_cpu(resp->nq_params); 6464 coal_cap->num_cmpl_dma_aggr_max = 6465 le16_to_cpu(resp->num_cmpl_dma_aggr_max); 6466 coal_cap->num_cmpl_dma_aggr_during_int_max = 6467 le16_to_cpu(resp->num_cmpl_dma_aggr_during_int_max); 6468 coal_cap->cmpl_aggr_dma_tmr_max = 6469 le16_to_cpu(resp->cmpl_aggr_dma_tmr_max); 6470 coal_cap->cmpl_aggr_dma_tmr_during_int_max = 6471 le16_to_cpu(resp->cmpl_aggr_dma_tmr_during_int_max); 6472 coal_cap->int_lat_tmr_min_max = 6473 le16_to_cpu(resp->int_lat_tmr_min_max); 6474 coal_cap->int_lat_tmr_max_max = 6475 le16_to_cpu(resp->int_lat_tmr_max_max); 6476 coal_cap->num_cmpl_aggr_int_max = 6477 le16_to_cpu(resp->num_cmpl_aggr_int_max); 6478 coal_cap->timer_units = le16_to_cpu(resp->timer_units); 6479 } 6480 hwrm_req_drop(bp, req); 6481 } 6482 6483 static u16 bnxt_usec_to_coal_tmr(struct bnxt *bp, u16 usec) 6484 { 6485 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 6486 6487 return usec * 1000 / coal_cap->timer_units; 6488 } 6489 6490 static void bnxt_hwrm_set_coal_params(struct bnxt *bp, 6491 struct bnxt_coal *hw_coal, 6492 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req) 6493 { 6494 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 6495 u32 cmpl_params = coal_cap->cmpl_params; 6496 u16 val, tmr, max, flags = 0; 6497 6498 max = hw_coal->bufs_per_record * 128; 6499 if (hw_coal->budget) 6500 max = hw_coal->bufs_per_record * hw_coal->budget; 6501 max = min_t(u16, max, coal_cap->num_cmpl_aggr_int_max); 6502 6503 val = clamp_t(u16, hw_coal->coal_bufs, 1, max); 6504 req->num_cmpl_aggr_int = cpu_to_le16(val); 6505 6506 val = min_t(u16, val, coal_cap->num_cmpl_dma_aggr_max); 6507 req->num_cmpl_dma_aggr = cpu_to_le16(val); 6508 6509 val = clamp_t(u16, hw_coal->coal_bufs_irq, 1, 6510 coal_cap->num_cmpl_dma_aggr_during_int_max); 6511 req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val); 6512 6513 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks); 6514 tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_max_max); 6515 req->int_lat_tmr_max = cpu_to_le16(tmr); 6516 6517 /* min timer set to 1/2 of interrupt timer */ 6518 if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_INT_LAT_TMR_MIN) { 6519 val = tmr / 2; 6520 val = clamp_t(u16, val, 1, coal_cap->int_lat_tmr_min_max); 6521 req->int_lat_tmr_min = cpu_to_le16(val); 6522 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE); 6523 } 6524 6525 /* buf timer set to 1/4 of interrupt timer */ 6526 val = clamp_t(u16, tmr / 4, 1, coal_cap->cmpl_aggr_dma_tmr_max); 6527 req->cmpl_aggr_dma_tmr = cpu_to_le16(val); 6528 6529 if (cmpl_params & 6530 RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_NUM_CMPL_DMA_AGGR_DURING_INT) { 6531 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks_irq); 6532 val = clamp_t(u16, tmr, 1, 6533 coal_cap->cmpl_aggr_dma_tmr_during_int_max); 6534 req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(val); 6535 req->enables |= 6536 cpu_to_le16(BNXT_COAL_CMPL_AGGR_TMR_DURING_INT_ENABLE); 6537 } 6538 6539 if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_TIMER_RESET) 6540 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET; 6541 if ((cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_RING_IDLE) && 6542 hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh) 6543 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE; 6544 req->flags = cpu_to_le16(flags); 6545 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_ENABLES); 6546 } 6547 6548 static int __bnxt_hwrm_set_coal_nq(struct bnxt *bp, struct bnxt_napi *bnapi, 6549 struct bnxt_coal *hw_coal) 6550 { 6551 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req; 6552 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 6553 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 6554 u32 nq_params = coal_cap->nq_params; 6555 u16 tmr; 6556 int rc; 6557 6558 if (!(nq_params & RING_AGGINT_QCAPS_RESP_NQ_PARAMS_INT_LAT_TMR_MIN)) 6559 return 0; 6560 6561 rc = hwrm_req_init(bp, req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 6562 if (rc) 6563 return rc; 6564 6565 req->ring_id = cpu_to_le16(cpr->cp_ring_struct.fw_ring_id); 6566 req->flags = 6567 cpu_to_le16(RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_IS_NQ); 6568 6569 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks) / 2; 6570 tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_min_max); 6571 req->int_lat_tmr_min = cpu_to_le16(tmr); 6572 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE); 6573 return hwrm_req_send(bp, req); 6574 } 6575 6576 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi) 6577 { 6578 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx; 6579 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 6580 struct bnxt_coal coal; 6581 int rc; 6582 6583 /* Tick values in micro seconds. 6584 * 1 coal_buf x bufs_per_record = 1 completion record. 6585 */ 6586 memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal)); 6587 6588 coal.coal_ticks = cpr->rx_ring_coal.coal_ticks; 6589 coal.coal_bufs = cpr->rx_ring_coal.coal_bufs; 6590 6591 if (!bnapi->rx_ring) 6592 return -ENODEV; 6593 6594 rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 6595 if (rc) 6596 return rc; 6597 6598 bnxt_hwrm_set_coal_params(bp, &coal, req_rx); 6599 6600 req_rx->ring_id = cpu_to_le16(bnxt_cp_ring_for_rx(bp, bnapi->rx_ring)); 6601 6602 return hwrm_req_send(bp, req_rx); 6603 } 6604 6605 int bnxt_hwrm_set_coal(struct bnxt *bp) 6606 { 6607 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx, *req_tx, 6608 *req; 6609 int i, rc; 6610 6611 rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 6612 if (rc) 6613 return rc; 6614 6615 rc = hwrm_req_init(bp, req_tx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 6616 if (rc) { 6617 hwrm_req_drop(bp, req_rx); 6618 return rc; 6619 } 6620 6621 bnxt_hwrm_set_coal_params(bp, &bp->rx_coal, req_rx); 6622 bnxt_hwrm_set_coal_params(bp, &bp->tx_coal, req_tx); 6623 6624 hwrm_req_hold(bp, req_rx); 6625 hwrm_req_hold(bp, req_tx); 6626 for (i = 0; i < bp->cp_nr_rings; i++) { 6627 struct bnxt_napi *bnapi = bp->bnapi[i]; 6628 struct bnxt_coal *hw_coal; 6629 u16 ring_id; 6630 6631 req = req_rx; 6632 if (!bnapi->rx_ring) { 6633 ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring); 6634 req = req_tx; 6635 } else { 6636 ring_id = bnxt_cp_ring_for_rx(bp, bnapi->rx_ring); 6637 } 6638 req->ring_id = cpu_to_le16(ring_id); 6639 6640 rc = hwrm_req_send(bp, req); 6641 if (rc) 6642 break; 6643 6644 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 6645 continue; 6646 6647 if (bnapi->rx_ring && bnapi->tx_ring) { 6648 req = req_tx; 6649 ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring); 6650 req->ring_id = cpu_to_le16(ring_id); 6651 rc = hwrm_req_send(bp, req); 6652 if (rc) 6653 break; 6654 } 6655 if (bnapi->rx_ring) 6656 hw_coal = &bp->rx_coal; 6657 else 6658 hw_coal = &bp->tx_coal; 6659 __bnxt_hwrm_set_coal_nq(bp, bnapi, hw_coal); 6660 } 6661 hwrm_req_drop(bp, req_rx); 6662 hwrm_req_drop(bp, req_tx); 6663 return rc; 6664 } 6665 6666 static void bnxt_hwrm_stat_ctx_free(struct bnxt *bp) 6667 { 6668 struct hwrm_stat_ctx_clr_stats_input *req0 = NULL; 6669 struct hwrm_stat_ctx_free_input *req; 6670 int i; 6671 6672 if (!bp->bnapi) 6673 return; 6674 6675 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 6676 return; 6677 6678 if (hwrm_req_init(bp, req, HWRM_STAT_CTX_FREE)) 6679 return; 6680 if (BNXT_FW_MAJ(bp) <= 20) { 6681 if (hwrm_req_init(bp, req0, HWRM_STAT_CTX_CLR_STATS)) { 6682 hwrm_req_drop(bp, req); 6683 return; 6684 } 6685 hwrm_req_hold(bp, req0); 6686 } 6687 hwrm_req_hold(bp, req); 6688 for (i = 0; i < bp->cp_nr_rings; i++) { 6689 struct bnxt_napi *bnapi = bp->bnapi[i]; 6690 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 6691 6692 if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) { 6693 req->stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id); 6694 if (req0) { 6695 req0->stat_ctx_id = req->stat_ctx_id; 6696 hwrm_req_send(bp, req0); 6697 } 6698 hwrm_req_send(bp, req); 6699 6700 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID; 6701 } 6702 } 6703 hwrm_req_drop(bp, req); 6704 if (req0) 6705 hwrm_req_drop(bp, req0); 6706 } 6707 6708 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp) 6709 { 6710 struct hwrm_stat_ctx_alloc_output *resp; 6711 struct hwrm_stat_ctx_alloc_input *req; 6712 int rc, i; 6713 6714 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 6715 return 0; 6716 6717 rc = hwrm_req_init(bp, req, HWRM_STAT_CTX_ALLOC); 6718 if (rc) 6719 return rc; 6720 6721 req->stats_dma_length = cpu_to_le16(bp->hw_ring_stats_size); 6722 req->update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000); 6723 6724 resp = hwrm_req_hold(bp, req); 6725 for (i = 0; i < bp->cp_nr_rings; i++) { 6726 struct bnxt_napi *bnapi = bp->bnapi[i]; 6727 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 6728 6729 req->stats_dma_addr = cpu_to_le64(cpr->stats.hw_stats_map); 6730 6731 rc = hwrm_req_send(bp, req); 6732 if (rc) 6733 break; 6734 6735 cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id); 6736 6737 bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id; 6738 } 6739 hwrm_req_drop(bp, req); 6740 return rc; 6741 } 6742 6743 static int bnxt_hwrm_func_qcfg(struct bnxt *bp) 6744 { 6745 struct hwrm_func_qcfg_output *resp; 6746 struct hwrm_func_qcfg_input *req; 6747 u32 min_db_offset = 0; 6748 u16 flags; 6749 int rc; 6750 6751 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); 6752 if (rc) 6753 return rc; 6754 6755 req->fid = cpu_to_le16(0xffff); 6756 resp = hwrm_req_hold(bp, req); 6757 rc = hwrm_req_send(bp, req); 6758 if (rc) 6759 goto func_qcfg_exit; 6760 6761 #ifdef CONFIG_BNXT_SRIOV 6762 if (BNXT_VF(bp)) { 6763 struct bnxt_vf_info *vf = &bp->vf; 6764 6765 vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK; 6766 } else { 6767 bp->pf.registered_vfs = le16_to_cpu(resp->registered_vfs); 6768 } 6769 #endif 6770 flags = le16_to_cpu(resp->flags); 6771 if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED | 6772 FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) { 6773 bp->fw_cap |= BNXT_FW_CAP_LLDP_AGENT; 6774 if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED) 6775 bp->fw_cap |= BNXT_FW_CAP_DCBX_AGENT; 6776 } 6777 if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST)) 6778 bp->flags |= BNXT_FLAG_MULTI_HOST; 6779 if (flags & FUNC_QCFG_RESP_FLAGS_RING_MONITOR_ENABLED) 6780 bp->fw_cap |= BNXT_FW_CAP_RING_MONITOR; 6781 6782 switch (resp->port_partition_type) { 6783 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0: 6784 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5: 6785 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0: 6786 bp->port_partition_type = resp->port_partition_type; 6787 break; 6788 } 6789 if (bp->hwrm_spec_code < 0x10707 || 6790 resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB) 6791 bp->br_mode = BRIDGE_MODE_VEB; 6792 else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA) 6793 bp->br_mode = BRIDGE_MODE_VEPA; 6794 else 6795 bp->br_mode = BRIDGE_MODE_UNDEF; 6796 6797 bp->max_mtu = le16_to_cpu(resp->max_mtu_configured); 6798 if (!bp->max_mtu) 6799 bp->max_mtu = BNXT_MAX_MTU; 6800 6801 if (bp->db_size) 6802 goto func_qcfg_exit; 6803 6804 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6805 if (BNXT_PF(bp)) 6806 min_db_offset = DB_PF_OFFSET_P5; 6807 else 6808 min_db_offset = DB_VF_OFFSET_P5; 6809 } 6810 bp->db_size = PAGE_ALIGN(le16_to_cpu(resp->l2_doorbell_bar_size_kb) * 6811 1024); 6812 if (!bp->db_size || bp->db_size > pci_resource_len(bp->pdev, 2) || 6813 bp->db_size <= min_db_offset) 6814 bp->db_size = pci_resource_len(bp->pdev, 2); 6815 6816 func_qcfg_exit: 6817 hwrm_req_drop(bp, req); 6818 return rc; 6819 } 6820 6821 static void bnxt_init_ctx_initializer(struct bnxt_ctx_mem_info *ctx, 6822 struct hwrm_func_backing_store_qcaps_output *resp) 6823 { 6824 struct bnxt_mem_init *mem_init; 6825 u16 init_mask; 6826 u8 init_val; 6827 u8 *offset; 6828 int i; 6829 6830 init_val = resp->ctx_kind_initializer; 6831 init_mask = le16_to_cpu(resp->ctx_init_mask); 6832 offset = &resp->qp_init_offset; 6833 mem_init = &ctx->mem_init[BNXT_CTX_MEM_INIT_QP]; 6834 for (i = 0; i < BNXT_CTX_MEM_INIT_MAX; i++, mem_init++, offset++) { 6835 mem_init->init_val = init_val; 6836 mem_init->offset = BNXT_MEM_INVALID_OFFSET; 6837 if (!init_mask) 6838 continue; 6839 if (i == BNXT_CTX_MEM_INIT_STAT) 6840 offset = &resp->stat_init_offset; 6841 if (init_mask & (1 << i)) 6842 mem_init->offset = *offset * 4; 6843 else 6844 mem_init->init_val = 0; 6845 } 6846 ctx->mem_init[BNXT_CTX_MEM_INIT_QP].size = ctx->qp_entry_size; 6847 ctx->mem_init[BNXT_CTX_MEM_INIT_SRQ].size = ctx->srq_entry_size; 6848 ctx->mem_init[BNXT_CTX_MEM_INIT_CQ].size = ctx->cq_entry_size; 6849 ctx->mem_init[BNXT_CTX_MEM_INIT_VNIC].size = ctx->vnic_entry_size; 6850 ctx->mem_init[BNXT_CTX_MEM_INIT_STAT].size = ctx->stat_entry_size; 6851 ctx->mem_init[BNXT_CTX_MEM_INIT_MRAV].size = ctx->mrav_entry_size; 6852 } 6853 6854 static int bnxt_hwrm_func_backing_store_qcaps(struct bnxt *bp) 6855 { 6856 struct hwrm_func_backing_store_qcaps_output *resp; 6857 struct hwrm_func_backing_store_qcaps_input *req; 6858 int rc; 6859 6860 if (bp->hwrm_spec_code < 0x10902 || BNXT_VF(bp) || bp->ctx) 6861 return 0; 6862 6863 rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_QCAPS); 6864 if (rc) 6865 return rc; 6866 6867 resp = hwrm_req_hold(bp, req); 6868 rc = hwrm_req_send_silent(bp, req); 6869 if (!rc) { 6870 struct bnxt_ctx_pg_info *ctx_pg; 6871 struct bnxt_ctx_mem_info *ctx; 6872 int i, tqm_rings; 6873 6874 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 6875 if (!ctx) { 6876 rc = -ENOMEM; 6877 goto ctx_err; 6878 } 6879 ctx->qp_max_entries = le32_to_cpu(resp->qp_max_entries); 6880 ctx->qp_min_qp1_entries = le16_to_cpu(resp->qp_min_qp1_entries); 6881 ctx->qp_max_l2_entries = le16_to_cpu(resp->qp_max_l2_entries); 6882 ctx->qp_entry_size = le16_to_cpu(resp->qp_entry_size); 6883 ctx->srq_max_l2_entries = le16_to_cpu(resp->srq_max_l2_entries); 6884 ctx->srq_max_entries = le32_to_cpu(resp->srq_max_entries); 6885 ctx->srq_entry_size = le16_to_cpu(resp->srq_entry_size); 6886 ctx->cq_max_l2_entries = le16_to_cpu(resp->cq_max_l2_entries); 6887 ctx->cq_max_entries = le32_to_cpu(resp->cq_max_entries); 6888 ctx->cq_entry_size = le16_to_cpu(resp->cq_entry_size); 6889 ctx->vnic_max_vnic_entries = 6890 le16_to_cpu(resp->vnic_max_vnic_entries); 6891 ctx->vnic_max_ring_table_entries = 6892 le16_to_cpu(resp->vnic_max_ring_table_entries); 6893 ctx->vnic_entry_size = le16_to_cpu(resp->vnic_entry_size); 6894 ctx->stat_max_entries = le32_to_cpu(resp->stat_max_entries); 6895 ctx->stat_entry_size = le16_to_cpu(resp->stat_entry_size); 6896 ctx->tqm_entry_size = le16_to_cpu(resp->tqm_entry_size); 6897 ctx->tqm_min_entries_per_ring = 6898 le32_to_cpu(resp->tqm_min_entries_per_ring); 6899 ctx->tqm_max_entries_per_ring = 6900 le32_to_cpu(resp->tqm_max_entries_per_ring); 6901 ctx->tqm_entries_multiple = resp->tqm_entries_multiple; 6902 if (!ctx->tqm_entries_multiple) 6903 ctx->tqm_entries_multiple = 1; 6904 ctx->mrav_max_entries = le32_to_cpu(resp->mrav_max_entries); 6905 ctx->mrav_entry_size = le16_to_cpu(resp->mrav_entry_size); 6906 ctx->mrav_num_entries_units = 6907 le16_to_cpu(resp->mrav_num_entries_units); 6908 ctx->tim_entry_size = le16_to_cpu(resp->tim_entry_size); 6909 ctx->tim_max_entries = le32_to_cpu(resp->tim_max_entries); 6910 6911 bnxt_init_ctx_initializer(ctx, resp); 6912 6913 ctx->tqm_fp_rings_count = resp->tqm_fp_rings_count; 6914 if (!ctx->tqm_fp_rings_count) 6915 ctx->tqm_fp_rings_count = bp->max_q; 6916 else if (ctx->tqm_fp_rings_count > BNXT_MAX_TQM_FP_RINGS) 6917 ctx->tqm_fp_rings_count = BNXT_MAX_TQM_FP_RINGS; 6918 6919 tqm_rings = ctx->tqm_fp_rings_count + BNXT_MAX_TQM_SP_RINGS; 6920 ctx_pg = kcalloc(tqm_rings, sizeof(*ctx_pg), GFP_KERNEL); 6921 if (!ctx_pg) { 6922 kfree(ctx); 6923 rc = -ENOMEM; 6924 goto ctx_err; 6925 } 6926 for (i = 0; i < tqm_rings; i++, ctx_pg++) 6927 ctx->tqm_mem[i] = ctx_pg; 6928 bp->ctx = ctx; 6929 } else { 6930 rc = 0; 6931 } 6932 ctx_err: 6933 hwrm_req_drop(bp, req); 6934 return rc; 6935 } 6936 6937 static void bnxt_hwrm_set_pg_attr(struct bnxt_ring_mem_info *rmem, u8 *pg_attr, 6938 __le64 *pg_dir) 6939 { 6940 if (!rmem->nr_pages) 6941 return; 6942 6943 BNXT_SET_CTX_PAGE_ATTR(*pg_attr); 6944 if (rmem->depth >= 1) { 6945 if (rmem->depth == 2) 6946 *pg_attr |= 2; 6947 else 6948 *pg_attr |= 1; 6949 *pg_dir = cpu_to_le64(rmem->pg_tbl_map); 6950 } else { 6951 *pg_dir = cpu_to_le64(rmem->dma_arr[0]); 6952 } 6953 } 6954 6955 #define FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES \ 6956 (FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP | \ 6957 FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ | \ 6958 FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ | \ 6959 FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC | \ 6960 FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) 6961 6962 static int bnxt_hwrm_func_backing_store_cfg(struct bnxt *bp, u32 enables) 6963 { 6964 struct hwrm_func_backing_store_cfg_input *req; 6965 struct bnxt_ctx_mem_info *ctx = bp->ctx; 6966 struct bnxt_ctx_pg_info *ctx_pg; 6967 void **__req = (void **)&req; 6968 u32 req_len = sizeof(*req); 6969 __le32 *num_entries; 6970 __le64 *pg_dir; 6971 u32 flags = 0; 6972 u8 *pg_attr; 6973 u32 ena; 6974 int rc; 6975 int i; 6976 6977 if (!ctx) 6978 return 0; 6979 6980 if (req_len > bp->hwrm_max_ext_req_len) 6981 req_len = BNXT_BACKING_STORE_CFG_LEGACY_LEN; 6982 rc = __hwrm_req_init(bp, __req, HWRM_FUNC_BACKING_STORE_CFG, req_len); 6983 if (rc) 6984 return rc; 6985 6986 req->enables = cpu_to_le32(enables); 6987 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP) { 6988 ctx_pg = &ctx->qp_mem; 6989 req->qp_num_entries = cpu_to_le32(ctx_pg->entries); 6990 req->qp_num_qp1_entries = cpu_to_le16(ctx->qp_min_qp1_entries); 6991 req->qp_num_l2_entries = cpu_to_le16(ctx->qp_max_l2_entries); 6992 req->qp_entry_size = cpu_to_le16(ctx->qp_entry_size); 6993 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 6994 &req->qpc_pg_size_qpc_lvl, 6995 &req->qpc_page_dir); 6996 } 6997 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ) { 6998 ctx_pg = &ctx->srq_mem; 6999 req->srq_num_entries = cpu_to_le32(ctx_pg->entries); 7000 req->srq_num_l2_entries = cpu_to_le16(ctx->srq_max_l2_entries); 7001 req->srq_entry_size = cpu_to_le16(ctx->srq_entry_size); 7002 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7003 &req->srq_pg_size_srq_lvl, 7004 &req->srq_page_dir); 7005 } 7006 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ) { 7007 ctx_pg = &ctx->cq_mem; 7008 req->cq_num_entries = cpu_to_le32(ctx_pg->entries); 7009 req->cq_num_l2_entries = cpu_to_le16(ctx->cq_max_l2_entries); 7010 req->cq_entry_size = cpu_to_le16(ctx->cq_entry_size); 7011 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7012 &req->cq_pg_size_cq_lvl, 7013 &req->cq_page_dir); 7014 } 7015 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC) { 7016 ctx_pg = &ctx->vnic_mem; 7017 req->vnic_num_vnic_entries = 7018 cpu_to_le16(ctx->vnic_max_vnic_entries); 7019 req->vnic_num_ring_table_entries = 7020 cpu_to_le16(ctx->vnic_max_ring_table_entries); 7021 req->vnic_entry_size = cpu_to_le16(ctx->vnic_entry_size); 7022 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7023 &req->vnic_pg_size_vnic_lvl, 7024 &req->vnic_page_dir); 7025 } 7026 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) { 7027 ctx_pg = &ctx->stat_mem; 7028 req->stat_num_entries = cpu_to_le32(ctx->stat_max_entries); 7029 req->stat_entry_size = cpu_to_le16(ctx->stat_entry_size); 7030 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7031 &req->stat_pg_size_stat_lvl, 7032 &req->stat_page_dir); 7033 } 7034 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV) { 7035 ctx_pg = &ctx->mrav_mem; 7036 req->mrav_num_entries = cpu_to_le32(ctx_pg->entries); 7037 if (ctx->mrav_num_entries_units) 7038 flags |= 7039 FUNC_BACKING_STORE_CFG_REQ_FLAGS_MRAV_RESERVATION_SPLIT; 7040 req->mrav_entry_size = cpu_to_le16(ctx->mrav_entry_size); 7041 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7042 &req->mrav_pg_size_mrav_lvl, 7043 &req->mrav_page_dir); 7044 } 7045 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) { 7046 ctx_pg = &ctx->tim_mem; 7047 req->tim_num_entries = cpu_to_le32(ctx_pg->entries); 7048 req->tim_entry_size = cpu_to_le16(ctx->tim_entry_size); 7049 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7050 &req->tim_pg_size_tim_lvl, 7051 &req->tim_page_dir); 7052 } 7053 for (i = 0, num_entries = &req->tqm_sp_num_entries, 7054 pg_attr = &req->tqm_sp_pg_size_tqm_sp_lvl, 7055 pg_dir = &req->tqm_sp_page_dir, 7056 ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP; 7057 i < BNXT_MAX_TQM_RINGS; 7058 i++, num_entries++, pg_attr++, pg_dir++, ena <<= 1) { 7059 if (!(enables & ena)) 7060 continue; 7061 7062 req->tqm_entry_size = cpu_to_le16(ctx->tqm_entry_size); 7063 ctx_pg = ctx->tqm_mem[i]; 7064 *num_entries = cpu_to_le32(ctx_pg->entries); 7065 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, pg_attr, pg_dir); 7066 } 7067 req->flags = cpu_to_le32(flags); 7068 return hwrm_req_send(bp, req); 7069 } 7070 7071 static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp, 7072 struct bnxt_ctx_pg_info *ctx_pg) 7073 { 7074 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 7075 7076 rmem->page_size = BNXT_PAGE_SIZE; 7077 rmem->pg_arr = ctx_pg->ctx_pg_arr; 7078 rmem->dma_arr = ctx_pg->ctx_dma_arr; 7079 rmem->flags = BNXT_RMEM_VALID_PTE_FLAG; 7080 if (rmem->depth >= 1) 7081 rmem->flags |= BNXT_RMEM_USE_FULL_PAGE_FLAG; 7082 return bnxt_alloc_ring(bp, rmem); 7083 } 7084 7085 static int bnxt_alloc_ctx_pg_tbls(struct bnxt *bp, 7086 struct bnxt_ctx_pg_info *ctx_pg, u32 mem_size, 7087 u8 depth, struct bnxt_mem_init *mem_init) 7088 { 7089 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 7090 int rc; 7091 7092 if (!mem_size) 7093 return -EINVAL; 7094 7095 ctx_pg->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE); 7096 if (ctx_pg->nr_pages > MAX_CTX_TOTAL_PAGES) { 7097 ctx_pg->nr_pages = 0; 7098 return -EINVAL; 7099 } 7100 if (ctx_pg->nr_pages > MAX_CTX_PAGES || depth > 1) { 7101 int nr_tbls, i; 7102 7103 rmem->depth = 2; 7104 ctx_pg->ctx_pg_tbl = kcalloc(MAX_CTX_PAGES, sizeof(ctx_pg), 7105 GFP_KERNEL); 7106 if (!ctx_pg->ctx_pg_tbl) 7107 return -ENOMEM; 7108 nr_tbls = DIV_ROUND_UP(ctx_pg->nr_pages, MAX_CTX_PAGES); 7109 rmem->nr_pages = nr_tbls; 7110 rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg); 7111 if (rc) 7112 return rc; 7113 for (i = 0; i < nr_tbls; i++) { 7114 struct bnxt_ctx_pg_info *pg_tbl; 7115 7116 pg_tbl = kzalloc(sizeof(*pg_tbl), GFP_KERNEL); 7117 if (!pg_tbl) 7118 return -ENOMEM; 7119 ctx_pg->ctx_pg_tbl[i] = pg_tbl; 7120 rmem = &pg_tbl->ring_mem; 7121 rmem->pg_tbl = ctx_pg->ctx_pg_arr[i]; 7122 rmem->pg_tbl_map = ctx_pg->ctx_dma_arr[i]; 7123 rmem->depth = 1; 7124 rmem->nr_pages = MAX_CTX_PAGES; 7125 rmem->mem_init = mem_init; 7126 if (i == (nr_tbls - 1)) { 7127 int rem = ctx_pg->nr_pages % MAX_CTX_PAGES; 7128 7129 if (rem) 7130 rmem->nr_pages = rem; 7131 } 7132 rc = bnxt_alloc_ctx_mem_blk(bp, pg_tbl); 7133 if (rc) 7134 break; 7135 } 7136 } else { 7137 rmem->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE); 7138 if (rmem->nr_pages > 1 || depth) 7139 rmem->depth = 1; 7140 rmem->mem_init = mem_init; 7141 rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg); 7142 } 7143 return rc; 7144 } 7145 7146 static void bnxt_free_ctx_pg_tbls(struct bnxt *bp, 7147 struct bnxt_ctx_pg_info *ctx_pg) 7148 { 7149 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 7150 7151 if (rmem->depth > 1 || ctx_pg->nr_pages > MAX_CTX_PAGES || 7152 ctx_pg->ctx_pg_tbl) { 7153 int i, nr_tbls = rmem->nr_pages; 7154 7155 for (i = 0; i < nr_tbls; i++) { 7156 struct bnxt_ctx_pg_info *pg_tbl; 7157 struct bnxt_ring_mem_info *rmem2; 7158 7159 pg_tbl = ctx_pg->ctx_pg_tbl[i]; 7160 if (!pg_tbl) 7161 continue; 7162 rmem2 = &pg_tbl->ring_mem; 7163 bnxt_free_ring(bp, rmem2); 7164 ctx_pg->ctx_pg_arr[i] = NULL; 7165 kfree(pg_tbl); 7166 ctx_pg->ctx_pg_tbl[i] = NULL; 7167 } 7168 kfree(ctx_pg->ctx_pg_tbl); 7169 ctx_pg->ctx_pg_tbl = NULL; 7170 } 7171 bnxt_free_ring(bp, rmem); 7172 ctx_pg->nr_pages = 0; 7173 } 7174 7175 static void bnxt_free_ctx_mem(struct bnxt *bp) 7176 { 7177 struct bnxt_ctx_mem_info *ctx = bp->ctx; 7178 int i; 7179 7180 if (!ctx) 7181 return; 7182 7183 if (ctx->tqm_mem[0]) { 7184 for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++) 7185 bnxt_free_ctx_pg_tbls(bp, ctx->tqm_mem[i]); 7186 kfree(ctx->tqm_mem[0]); 7187 ctx->tqm_mem[0] = NULL; 7188 } 7189 7190 bnxt_free_ctx_pg_tbls(bp, &ctx->tim_mem); 7191 bnxt_free_ctx_pg_tbls(bp, &ctx->mrav_mem); 7192 bnxt_free_ctx_pg_tbls(bp, &ctx->stat_mem); 7193 bnxt_free_ctx_pg_tbls(bp, &ctx->vnic_mem); 7194 bnxt_free_ctx_pg_tbls(bp, &ctx->cq_mem); 7195 bnxt_free_ctx_pg_tbls(bp, &ctx->srq_mem); 7196 bnxt_free_ctx_pg_tbls(bp, &ctx->qp_mem); 7197 ctx->flags &= ~BNXT_CTX_FLAG_INITED; 7198 } 7199 7200 static int bnxt_alloc_ctx_mem(struct bnxt *bp) 7201 { 7202 struct bnxt_ctx_pg_info *ctx_pg; 7203 struct bnxt_ctx_mem_info *ctx; 7204 struct bnxt_mem_init *init; 7205 u32 mem_size, ena, entries; 7206 u32 entries_sp, min; 7207 u32 num_mr, num_ah; 7208 u32 extra_srqs = 0; 7209 u32 extra_qps = 0; 7210 u8 pg_lvl = 1; 7211 int i, rc; 7212 7213 rc = bnxt_hwrm_func_backing_store_qcaps(bp); 7214 if (rc) { 7215 netdev_err(bp->dev, "Failed querying context mem capability, rc = %d.\n", 7216 rc); 7217 return rc; 7218 } 7219 ctx = bp->ctx; 7220 if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED)) 7221 return 0; 7222 7223 if ((bp->flags & BNXT_FLAG_ROCE_CAP) && !is_kdump_kernel()) { 7224 pg_lvl = 2; 7225 extra_qps = 65536; 7226 extra_srqs = 8192; 7227 } 7228 7229 ctx_pg = &ctx->qp_mem; 7230 ctx_pg->entries = ctx->qp_min_qp1_entries + ctx->qp_max_l2_entries + 7231 extra_qps; 7232 if (ctx->qp_entry_size) { 7233 mem_size = ctx->qp_entry_size * ctx_pg->entries; 7234 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_QP]; 7235 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init); 7236 if (rc) 7237 return rc; 7238 } 7239 7240 ctx_pg = &ctx->srq_mem; 7241 ctx_pg->entries = ctx->srq_max_l2_entries + extra_srqs; 7242 if (ctx->srq_entry_size) { 7243 mem_size = ctx->srq_entry_size * ctx_pg->entries; 7244 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_SRQ]; 7245 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init); 7246 if (rc) 7247 return rc; 7248 } 7249 7250 ctx_pg = &ctx->cq_mem; 7251 ctx_pg->entries = ctx->cq_max_l2_entries + extra_qps * 2; 7252 if (ctx->cq_entry_size) { 7253 mem_size = ctx->cq_entry_size * ctx_pg->entries; 7254 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_CQ]; 7255 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init); 7256 if (rc) 7257 return rc; 7258 } 7259 7260 ctx_pg = &ctx->vnic_mem; 7261 ctx_pg->entries = ctx->vnic_max_vnic_entries + 7262 ctx->vnic_max_ring_table_entries; 7263 if (ctx->vnic_entry_size) { 7264 mem_size = ctx->vnic_entry_size * ctx_pg->entries; 7265 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_VNIC]; 7266 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, init); 7267 if (rc) 7268 return rc; 7269 } 7270 7271 ctx_pg = &ctx->stat_mem; 7272 ctx_pg->entries = ctx->stat_max_entries; 7273 if (ctx->stat_entry_size) { 7274 mem_size = ctx->stat_entry_size * ctx_pg->entries; 7275 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_STAT]; 7276 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, init); 7277 if (rc) 7278 return rc; 7279 } 7280 7281 ena = 0; 7282 if (!(bp->flags & BNXT_FLAG_ROCE_CAP)) 7283 goto skip_rdma; 7284 7285 ctx_pg = &ctx->mrav_mem; 7286 /* 128K extra is needed to accommodate static AH context 7287 * allocation by f/w. 7288 */ 7289 num_mr = 1024 * 256; 7290 num_ah = 1024 * 128; 7291 ctx_pg->entries = num_mr + num_ah; 7292 if (ctx->mrav_entry_size) { 7293 mem_size = ctx->mrav_entry_size * ctx_pg->entries; 7294 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_MRAV]; 7295 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 2, init); 7296 if (rc) 7297 return rc; 7298 } 7299 ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV; 7300 if (ctx->mrav_num_entries_units) 7301 ctx_pg->entries = 7302 ((num_mr / ctx->mrav_num_entries_units) << 16) | 7303 (num_ah / ctx->mrav_num_entries_units); 7304 7305 ctx_pg = &ctx->tim_mem; 7306 ctx_pg->entries = ctx->qp_mem.entries; 7307 if (ctx->tim_entry_size) { 7308 mem_size = ctx->tim_entry_size * ctx_pg->entries; 7309 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, NULL); 7310 if (rc) 7311 return rc; 7312 } 7313 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM; 7314 7315 skip_rdma: 7316 min = ctx->tqm_min_entries_per_ring; 7317 entries_sp = ctx->vnic_max_vnic_entries + ctx->qp_max_l2_entries + 7318 2 * (extra_qps + ctx->qp_min_qp1_entries) + min; 7319 entries_sp = roundup(entries_sp, ctx->tqm_entries_multiple); 7320 entries = ctx->qp_max_l2_entries + 2 * (extra_qps + ctx->qp_min_qp1_entries); 7321 entries = roundup(entries, ctx->tqm_entries_multiple); 7322 entries = clamp_t(u32, entries, min, ctx->tqm_max_entries_per_ring); 7323 for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++) { 7324 ctx_pg = ctx->tqm_mem[i]; 7325 ctx_pg->entries = i ? entries : entries_sp; 7326 if (ctx->tqm_entry_size) { 7327 mem_size = ctx->tqm_entry_size * ctx_pg->entries; 7328 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, 7329 NULL); 7330 if (rc) 7331 return rc; 7332 } 7333 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP << i; 7334 } 7335 ena |= FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES; 7336 rc = bnxt_hwrm_func_backing_store_cfg(bp, ena); 7337 if (rc) { 7338 netdev_err(bp->dev, "Failed configuring context mem, rc = %d.\n", 7339 rc); 7340 return rc; 7341 } 7342 ctx->flags |= BNXT_CTX_FLAG_INITED; 7343 return 0; 7344 } 7345 7346 int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all) 7347 { 7348 struct hwrm_func_resource_qcaps_output *resp; 7349 struct hwrm_func_resource_qcaps_input *req; 7350 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7351 int rc; 7352 7353 rc = hwrm_req_init(bp, req, HWRM_FUNC_RESOURCE_QCAPS); 7354 if (rc) 7355 return rc; 7356 7357 req->fid = cpu_to_le16(0xffff); 7358 resp = hwrm_req_hold(bp, req); 7359 rc = hwrm_req_send_silent(bp, req); 7360 if (rc) 7361 goto hwrm_func_resc_qcaps_exit; 7362 7363 hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs); 7364 if (!all) 7365 goto hwrm_func_resc_qcaps_exit; 7366 7367 hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx); 7368 hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx); 7369 hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings); 7370 hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings); 7371 hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings); 7372 hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings); 7373 hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings); 7374 hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings); 7375 hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps); 7376 hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps); 7377 hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs); 7378 hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs); 7379 hw_resc->min_vnics = le16_to_cpu(resp->min_vnics); 7380 hw_resc->max_vnics = le16_to_cpu(resp->max_vnics); 7381 hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx); 7382 hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx); 7383 7384 if (bp->flags & BNXT_FLAG_CHIP_P5) { 7385 u16 max_msix = le16_to_cpu(resp->max_msix); 7386 7387 hw_resc->max_nqs = max_msix; 7388 hw_resc->max_hw_ring_grps = hw_resc->max_rx_rings; 7389 } 7390 7391 if (BNXT_PF(bp)) { 7392 struct bnxt_pf_info *pf = &bp->pf; 7393 7394 pf->vf_resv_strategy = 7395 le16_to_cpu(resp->vf_reservation_strategy); 7396 if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC) 7397 pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL; 7398 } 7399 hwrm_func_resc_qcaps_exit: 7400 hwrm_req_drop(bp, req); 7401 return rc; 7402 } 7403 7404 static int __bnxt_hwrm_ptp_qcfg(struct bnxt *bp) 7405 { 7406 struct hwrm_port_mac_ptp_qcfg_output *resp; 7407 struct hwrm_port_mac_ptp_qcfg_input *req; 7408 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 7409 u8 flags; 7410 int rc; 7411 7412 if (bp->hwrm_spec_code < 0x10801) { 7413 rc = -ENODEV; 7414 goto no_ptp; 7415 } 7416 7417 rc = hwrm_req_init(bp, req, HWRM_PORT_MAC_PTP_QCFG); 7418 if (rc) 7419 goto no_ptp; 7420 7421 req->port_id = cpu_to_le16(bp->pf.port_id); 7422 resp = hwrm_req_hold(bp, req); 7423 rc = hwrm_req_send(bp, req); 7424 if (rc) 7425 goto exit; 7426 7427 flags = resp->flags; 7428 if (!(flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_HWRM_ACCESS)) { 7429 rc = -ENODEV; 7430 goto exit; 7431 } 7432 if (!ptp) { 7433 ptp = kzalloc(sizeof(*ptp), GFP_KERNEL); 7434 if (!ptp) { 7435 rc = -ENOMEM; 7436 goto exit; 7437 } 7438 ptp->bp = bp; 7439 bp->ptp_cfg = ptp; 7440 } 7441 if (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_PARTIAL_DIRECT_ACCESS_REF_CLOCK) { 7442 ptp->refclk_regs[0] = le32_to_cpu(resp->ts_ref_clock_reg_lower); 7443 ptp->refclk_regs[1] = le32_to_cpu(resp->ts_ref_clock_reg_upper); 7444 } else if (bp->flags & BNXT_FLAG_CHIP_P5) { 7445 ptp->refclk_regs[0] = BNXT_TS_REG_TIMESYNC_TS0_LOWER; 7446 ptp->refclk_regs[1] = BNXT_TS_REG_TIMESYNC_TS0_UPPER; 7447 } else { 7448 rc = -ENODEV; 7449 goto exit; 7450 } 7451 rc = bnxt_ptp_init(bp); 7452 if (rc) 7453 netdev_warn(bp->dev, "PTP initialization failed.\n"); 7454 exit: 7455 hwrm_req_drop(bp, req); 7456 if (!rc) 7457 return 0; 7458 7459 no_ptp: 7460 bnxt_ptp_clear(bp); 7461 kfree(ptp); 7462 bp->ptp_cfg = NULL; 7463 return rc; 7464 } 7465 7466 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp) 7467 { 7468 struct hwrm_func_qcaps_output *resp; 7469 struct hwrm_func_qcaps_input *req; 7470 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7471 u32 flags, flags_ext; 7472 int rc; 7473 7474 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCAPS); 7475 if (rc) 7476 return rc; 7477 7478 req->fid = cpu_to_le16(0xffff); 7479 resp = hwrm_req_hold(bp, req); 7480 rc = hwrm_req_send(bp, req); 7481 if (rc) 7482 goto hwrm_func_qcaps_exit; 7483 7484 flags = le32_to_cpu(resp->flags); 7485 if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED) 7486 bp->flags |= BNXT_FLAG_ROCEV1_CAP; 7487 if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED) 7488 bp->flags |= BNXT_FLAG_ROCEV2_CAP; 7489 if (flags & FUNC_QCAPS_RESP_FLAGS_PCIE_STATS_SUPPORTED) 7490 bp->fw_cap |= BNXT_FW_CAP_PCIE_STATS_SUPPORTED; 7491 if (flags & FUNC_QCAPS_RESP_FLAGS_HOT_RESET_CAPABLE) 7492 bp->fw_cap |= BNXT_FW_CAP_HOT_RESET; 7493 if (flags & FUNC_QCAPS_RESP_FLAGS_EXT_STATS_SUPPORTED) 7494 bp->fw_cap |= BNXT_FW_CAP_EXT_STATS_SUPPORTED; 7495 if (flags & FUNC_QCAPS_RESP_FLAGS_ERROR_RECOVERY_CAPABLE) 7496 bp->fw_cap |= BNXT_FW_CAP_ERROR_RECOVERY; 7497 if (flags & FUNC_QCAPS_RESP_FLAGS_ERR_RECOVER_RELOAD) 7498 bp->fw_cap |= BNXT_FW_CAP_ERR_RECOVER_RELOAD; 7499 if (!(flags & FUNC_QCAPS_RESP_FLAGS_VLAN_ACCELERATION_TX_DISABLED)) 7500 bp->fw_cap |= BNXT_FW_CAP_VLAN_TX_INSERT; 7501 7502 flags_ext = le32_to_cpu(resp->flags_ext); 7503 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_EXT_HW_STATS_SUPPORTED) 7504 bp->fw_cap |= BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED; 7505 if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_PPS_SUPPORTED)) 7506 bp->fw_cap |= BNXT_FW_CAP_PTP_PPS; 7507 7508 bp->tx_push_thresh = 0; 7509 if ((flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED) && 7510 BNXT_FW_MAJ(bp) > 217) 7511 bp->tx_push_thresh = BNXT_TX_PUSH_THRESH; 7512 7513 hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx); 7514 hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings); 7515 hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings); 7516 hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings); 7517 hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps); 7518 if (!hw_resc->max_hw_ring_grps) 7519 hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings; 7520 hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs); 7521 hw_resc->max_vnics = le16_to_cpu(resp->max_vnics); 7522 hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx); 7523 7524 if (BNXT_PF(bp)) { 7525 struct bnxt_pf_info *pf = &bp->pf; 7526 7527 pf->fw_fid = le16_to_cpu(resp->fid); 7528 pf->port_id = le16_to_cpu(resp->port_id); 7529 memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN); 7530 pf->first_vf_id = le16_to_cpu(resp->first_vf_id); 7531 pf->max_vfs = le16_to_cpu(resp->max_vfs); 7532 pf->max_encap_records = le32_to_cpu(resp->max_encap_records); 7533 pf->max_decap_records = le32_to_cpu(resp->max_decap_records); 7534 pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows); 7535 pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows); 7536 pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows); 7537 pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows); 7538 bp->flags &= ~BNXT_FLAG_WOL_CAP; 7539 if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED) 7540 bp->flags |= BNXT_FLAG_WOL_CAP; 7541 if (flags & FUNC_QCAPS_RESP_FLAGS_PTP_SUPPORTED) { 7542 __bnxt_hwrm_ptp_qcfg(bp); 7543 } else { 7544 bnxt_ptp_clear(bp); 7545 kfree(bp->ptp_cfg); 7546 bp->ptp_cfg = NULL; 7547 } 7548 } else { 7549 #ifdef CONFIG_BNXT_SRIOV 7550 struct bnxt_vf_info *vf = &bp->vf; 7551 7552 vf->fw_fid = le16_to_cpu(resp->fid); 7553 memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN); 7554 #endif 7555 } 7556 7557 hwrm_func_qcaps_exit: 7558 hwrm_req_drop(bp, req); 7559 return rc; 7560 } 7561 7562 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp); 7563 7564 static int bnxt_hwrm_func_qcaps(struct bnxt *bp) 7565 { 7566 int rc; 7567 7568 rc = __bnxt_hwrm_func_qcaps(bp); 7569 if (rc) 7570 return rc; 7571 rc = bnxt_hwrm_queue_qportcfg(bp); 7572 if (rc) { 7573 netdev_err(bp->dev, "hwrm query qportcfg failure rc: %d\n", rc); 7574 return rc; 7575 } 7576 if (bp->hwrm_spec_code >= 0x10803) { 7577 rc = bnxt_alloc_ctx_mem(bp); 7578 if (rc) 7579 return rc; 7580 rc = bnxt_hwrm_func_resc_qcaps(bp, true); 7581 if (!rc) 7582 bp->fw_cap |= BNXT_FW_CAP_NEW_RM; 7583 } 7584 return 0; 7585 } 7586 7587 static int bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(struct bnxt *bp) 7588 { 7589 struct hwrm_cfa_adv_flow_mgnt_qcaps_output *resp; 7590 struct hwrm_cfa_adv_flow_mgnt_qcaps_input *req; 7591 u32 flags; 7592 int rc; 7593 7594 if (!(bp->fw_cap & BNXT_FW_CAP_CFA_ADV_FLOW)) 7595 return 0; 7596 7597 rc = hwrm_req_init(bp, req, HWRM_CFA_ADV_FLOW_MGNT_QCAPS); 7598 if (rc) 7599 return rc; 7600 7601 resp = hwrm_req_hold(bp, req); 7602 rc = hwrm_req_send(bp, req); 7603 if (rc) 7604 goto hwrm_cfa_adv_qcaps_exit; 7605 7606 flags = le32_to_cpu(resp->flags); 7607 if (flags & 7608 CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V2_SUPPORTED) 7609 bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2; 7610 7611 hwrm_cfa_adv_qcaps_exit: 7612 hwrm_req_drop(bp, req); 7613 return rc; 7614 } 7615 7616 static int __bnxt_alloc_fw_health(struct bnxt *bp) 7617 { 7618 if (bp->fw_health) 7619 return 0; 7620 7621 bp->fw_health = kzalloc(sizeof(*bp->fw_health), GFP_KERNEL); 7622 if (!bp->fw_health) 7623 return -ENOMEM; 7624 7625 return 0; 7626 } 7627 7628 static int bnxt_alloc_fw_health(struct bnxt *bp) 7629 { 7630 int rc; 7631 7632 if (!(bp->fw_cap & BNXT_FW_CAP_HOT_RESET) && 7633 !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 7634 return 0; 7635 7636 rc = __bnxt_alloc_fw_health(bp); 7637 if (rc) { 7638 bp->fw_cap &= ~BNXT_FW_CAP_HOT_RESET; 7639 bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY; 7640 return rc; 7641 } 7642 7643 return 0; 7644 } 7645 7646 static void __bnxt_map_fw_health_reg(struct bnxt *bp, u32 reg) 7647 { 7648 writel(reg & BNXT_GRC_BASE_MASK, bp->bar0 + 7649 BNXT_GRCPF_REG_WINDOW_BASE_OUT + 7650 BNXT_FW_HEALTH_WIN_MAP_OFF); 7651 } 7652 7653 bool bnxt_is_fw_healthy(struct bnxt *bp) 7654 { 7655 if (bp->fw_health && bp->fw_health->status_reliable) { 7656 u32 fw_status; 7657 7658 fw_status = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 7659 if (fw_status && !BNXT_FW_IS_HEALTHY(fw_status)) 7660 return false; 7661 } 7662 7663 return true; 7664 } 7665 7666 static void bnxt_inv_fw_health_reg(struct bnxt *bp) 7667 { 7668 struct bnxt_fw_health *fw_health = bp->fw_health; 7669 u32 reg_type; 7670 7671 if (!fw_health || !fw_health->status_reliable) 7672 return; 7673 7674 reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_HEALTH_REG]); 7675 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) 7676 fw_health->status_reliable = false; 7677 } 7678 7679 static void bnxt_try_map_fw_health_reg(struct bnxt *bp) 7680 { 7681 void __iomem *hs; 7682 u32 status_loc; 7683 u32 reg_type; 7684 u32 sig; 7685 7686 if (bp->fw_health) 7687 bp->fw_health->status_reliable = false; 7688 7689 __bnxt_map_fw_health_reg(bp, HCOMM_STATUS_STRUCT_LOC); 7690 hs = bp->bar0 + BNXT_FW_HEALTH_WIN_OFF(HCOMM_STATUS_STRUCT_LOC); 7691 7692 sig = readl(hs + offsetof(struct hcomm_status, sig_ver)); 7693 if ((sig & HCOMM_STATUS_SIGNATURE_MASK) != HCOMM_STATUS_SIGNATURE_VAL) { 7694 if (!bp->chip_num) { 7695 __bnxt_map_fw_health_reg(bp, BNXT_GRC_REG_BASE); 7696 bp->chip_num = readl(bp->bar0 + 7697 BNXT_FW_HEALTH_WIN_BASE + 7698 BNXT_GRC_REG_CHIP_NUM); 7699 } 7700 if (!BNXT_CHIP_P5(bp)) 7701 return; 7702 7703 status_loc = BNXT_GRC_REG_STATUS_P5 | 7704 BNXT_FW_HEALTH_REG_TYPE_BAR0; 7705 } else { 7706 status_loc = readl(hs + offsetof(struct hcomm_status, 7707 fw_status_loc)); 7708 } 7709 7710 if (__bnxt_alloc_fw_health(bp)) { 7711 netdev_warn(bp->dev, "no memory for firmware status checks\n"); 7712 return; 7713 } 7714 7715 bp->fw_health->regs[BNXT_FW_HEALTH_REG] = status_loc; 7716 reg_type = BNXT_FW_HEALTH_REG_TYPE(status_loc); 7717 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) { 7718 __bnxt_map_fw_health_reg(bp, status_loc); 7719 bp->fw_health->mapped_regs[BNXT_FW_HEALTH_REG] = 7720 BNXT_FW_HEALTH_WIN_OFF(status_loc); 7721 } 7722 7723 bp->fw_health->status_reliable = true; 7724 } 7725 7726 static int bnxt_map_fw_health_regs(struct bnxt *bp) 7727 { 7728 struct bnxt_fw_health *fw_health = bp->fw_health; 7729 u32 reg_base = 0xffffffff; 7730 int i; 7731 7732 bp->fw_health->status_reliable = false; 7733 /* Only pre-map the monitoring GRC registers using window 3 */ 7734 for (i = 0; i < 4; i++) { 7735 u32 reg = fw_health->regs[i]; 7736 7737 if (BNXT_FW_HEALTH_REG_TYPE(reg) != BNXT_FW_HEALTH_REG_TYPE_GRC) 7738 continue; 7739 if (reg_base == 0xffffffff) 7740 reg_base = reg & BNXT_GRC_BASE_MASK; 7741 if ((reg & BNXT_GRC_BASE_MASK) != reg_base) 7742 return -ERANGE; 7743 fw_health->mapped_regs[i] = BNXT_FW_HEALTH_WIN_OFF(reg); 7744 } 7745 bp->fw_health->status_reliable = true; 7746 if (reg_base == 0xffffffff) 7747 return 0; 7748 7749 __bnxt_map_fw_health_reg(bp, reg_base); 7750 return 0; 7751 } 7752 7753 static int bnxt_hwrm_error_recovery_qcfg(struct bnxt *bp) 7754 { 7755 struct bnxt_fw_health *fw_health = bp->fw_health; 7756 struct hwrm_error_recovery_qcfg_output *resp; 7757 struct hwrm_error_recovery_qcfg_input *req; 7758 int rc, i; 7759 7760 if (!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 7761 return 0; 7762 7763 rc = hwrm_req_init(bp, req, HWRM_ERROR_RECOVERY_QCFG); 7764 if (rc) 7765 return rc; 7766 7767 resp = hwrm_req_hold(bp, req); 7768 rc = hwrm_req_send(bp, req); 7769 if (rc) 7770 goto err_recovery_out; 7771 fw_health->flags = le32_to_cpu(resp->flags); 7772 if ((fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) && 7773 !(bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL)) { 7774 rc = -EINVAL; 7775 goto err_recovery_out; 7776 } 7777 fw_health->polling_dsecs = le32_to_cpu(resp->driver_polling_freq); 7778 fw_health->master_func_wait_dsecs = 7779 le32_to_cpu(resp->master_func_wait_period); 7780 fw_health->normal_func_wait_dsecs = 7781 le32_to_cpu(resp->normal_func_wait_period); 7782 fw_health->post_reset_wait_dsecs = 7783 le32_to_cpu(resp->master_func_wait_period_after_reset); 7784 fw_health->post_reset_max_wait_dsecs = 7785 le32_to_cpu(resp->max_bailout_time_after_reset); 7786 fw_health->regs[BNXT_FW_HEALTH_REG] = 7787 le32_to_cpu(resp->fw_health_status_reg); 7788 fw_health->regs[BNXT_FW_HEARTBEAT_REG] = 7789 le32_to_cpu(resp->fw_heartbeat_reg); 7790 fw_health->regs[BNXT_FW_RESET_CNT_REG] = 7791 le32_to_cpu(resp->fw_reset_cnt_reg); 7792 fw_health->regs[BNXT_FW_RESET_INPROG_REG] = 7793 le32_to_cpu(resp->reset_inprogress_reg); 7794 fw_health->fw_reset_inprog_reg_mask = 7795 le32_to_cpu(resp->reset_inprogress_reg_mask); 7796 fw_health->fw_reset_seq_cnt = resp->reg_array_cnt; 7797 if (fw_health->fw_reset_seq_cnt >= 16) { 7798 rc = -EINVAL; 7799 goto err_recovery_out; 7800 } 7801 for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) { 7802 fw_health->fw_reset_seq_regs[i] = 7803 le32_to_cpu(resp->reset_reg[i]); 7804 fw_health->fw_reset_seq_vals[i] = 7805 le32_to_cpu(resp->reset_reg_val[i]); 7806 fw_health->fw_reset_seq_delay_msec[i] = 7807 resp->delay_after_reset[i]; 7808 } 7809 err_recovery_out: 7810 hwrm_req_drop(bp, req); 7811 if (!rc) 7812 rc = bnxt_map_fw_health_regs(bp); 7813 if (rc) 7814 bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY; 7815 return rc; 7816 } 7817 7818 static int bnxt_hwrm_func_reset(struct bnxt *bp) 7819 { 7820 struct hwrm_func_reset_input *req; 7821 int rc; 7822 7823 rc = hwrm_req_init(bp, req, HWRM_FUNC_RESET); 7824 if (rc) 7825 return rc; 7826 7827 req->enables = 0; 7828 hwrm_req_timeout(bp, req, HWRM_RESET_TIMEOUT); 7829 return hwrm_req_send(bp, req); 7830 } 7831 7832 static void bnxt_nvm_cfg_ver_get(struct bnxt *bp) 7833 { 7834 struct hwrm_nvm_get_dev_info_output nvm_info; 7835 7836 if (!bnxt_hwrm_nvm_get_dev_info(bp, &nvm_info)) 7837 snprintf(bp->nvm_cfg_ver, FW_VER_STR_LEN, "%d.%d.%d", 7838 nvm_info.nvm_cfg_ver_maj, nvm_info.nvm_cfg_ver_min, 7839 nvm_info.nvm_cfg_ver_upd); 7840 } 7841 7842 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp) 7843 { 7844 struct hwrm_queue_qportcfg_output *resp; 7845 struct hwrm_queue_qportcfg_input *req; 7846 u8 i, j, *qptr; 7847 bool no_rdma; 7848 int rc = 0; 7849 7850 rc = hwrm_req_init(bp, req, HWRM_QUEUE_QPORTCFG); 7851 if (rc) 7852 return rc; 7853 7854 resp = hwrm_req_hold(bp, req); 7855 rc = hwrm_req_send(bp, req); 7856 if (rc) 7857 goto qportcfg_exit; 7858 7859 if (!resp->max_configurable_queues) { 7860 rc = -EINVAL; 7861 goto qportcfg_exit; 7862 } 7863 bp->max_tc = resp->max_configurable_queues; 7864 bp->max_lltc = resp->max_configurable_lossless_queues; 7865 if (bp->max_tc > BNXT_MAX_QUEUE) 7866 bp->max_tc = BNXT_MAX_QUEUE; 7867 7868 no_rdma = !(bp->flags & BNXT_FLAG_ROCE_CAP); 7869 qptr = &resp->queue_id0; 7870 for (i = 0, j = 0; i < bp->max_tc; i++) { 7871 bp->q_info[j].queue_id = *qptr; 7872 bp->q_ids[i] = *qptr++; 7873 bp->q_info[j].queue_profile = *qptr++; 7874 bp->tc_to_qidx[j] = j; 7875 if (!BNXT_CNPQ(bp->q_info[j].queue_profile) || 7876 (no_rdma && BNXT_PF(bp))) 7877 j++; 7878 } 7879 bp->max_q = bp->max_tc; 7880 bp->max_tc = max_t(u8, j, 1); 7881 7882 if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG) 7883 bp->max_tc = 1; 7884 7885 if (bp->max_lltc > bp->max_tc) 7886 bp->max_lltc = bp->max_tc; 7887 7888 qportcfg_exit: 7889 hwrm_req_drop(bp, req); 7890 return rc; 7891 } 7892 7893 static int bnxt_hwrm_poll(struct bnxt *bp) 7894 { 7895 struct hwrm_ver_get_input *req; 7896 int rc; 7897 7898 rc = hwrm_req_init(bp, req, HWRM_VER_GET); 7899 if (rc) 7900 return rc; 7901 7902 req->hwrm_intf_maj = HWRM_VERSION_MAJOR; 7903 req->hwrm_intf_min = HWRM_VERSION_MINOR; 7904 req->hwrm_intf_upd = HWRM_VERSION_UPDATE; 7905 7906 hwrm_req_flags(bp, req, BNXT_HWRM_CTX_SILENT | BNXT_HWRM_FULL_WAIT); 7907 rc = hwrm_req_send(bp, req); 7908 return rc; 7909 } 7910 7911 static int bnxt_hwrm_ver_get(struct bnxt *bp) 7912 { 7913 struct hwrm_ver_get_output *resp; 7914 struct hwrm_ver_get_input *req; 7915 u16 fw_maj, fw_min, fw_bld, fw_rsv; 7916 u32 dev_caps_cfg, hwrm_ver; 7917 int rc, len; 7918 7919 rc = hwrm_req_init(bp, req, HWRM_VER_GET); 7920 if (rc) 7921 return rc; 7922 7923 hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT); 7924 bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN; 7925 req->hwrm_intf_maj = HWRM_VERSION_MAJOR; 7926 req->hwrm_intf_min = HWRM_VERSION_MINOR; 7927 req->hwrm_intf_upd = HWRM_VERSION_UPDATE; 7928 7929 resp = hwrm_req_hold(bp, req); 7930 rc = hwrm_req_send(bp, req); 7931 if (rc) 7932 goto hwrm_ver_get_exit; 7933 7934 memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output)); 7935 7936 bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 | 7937 resp->hwrm_intf_min_8b << 8 | 7938 resp->hwrm_intf_upd_8b; 7939 if (resp->hwrm_intf_maj_8b < 1) { 7940 netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n", 7941 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b, 7942 resp->hwrm_intf_upd_8b); 7943 netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n"); 7944 } 7945 7946 hwrm_ver = HWRM_VERSION_MAJOR << 16 | HWRM_VERSION_MINOR << 8 | 7947 HWRM_VERSION_UPDATE; 7948 7949 if (bp->hwrm_spec_code > hwrm_ver) 7950 snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d", 7951 HWRM_VERSION_MAJOR, HWRM_VERSION_MINOR, 7952 HWRM_VERSION_UPDATE); 7953 else 7954 snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d", 7955 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b, 7956 resp->hwrm_intf_upd_8b); 7957 7958 fw_maj = le16_to_cpu(resp->hwrm_fw_major); 7959 if (bp->hwrm_spec_code > 0x10803 && fw_maj) { 7960 fw_min = le16_to_cpu(resp->hwrm_fw_minor); 7961 fw_bld = le16_to_cpu(resp->hwrm_fw_build); 7962 fw_rsv = le16_to_cpu(resp->hwrm_fw_patch); 7963 len = FW_VER_STR_LEN; 7964 } else { 7965 fw_maj = resp->hwrm_fw_maj_8b; 7966 fw_min = resp->hwrm_fw_min_8b; 7967 fw_bld = resp->hwrm_fw_bld_8b; 7968 fw_rsv = resp->hwrm_fw_rsvd_8b; 7969 len = BC_HWRM_STR_LEN; 7970 } 7971 bp->fw_ver_code = BNXT_FW_VER_CODE(fw_maj, fw_min, fw_bld, fw_rsv); 7972 snprintf(bp->fw_ver_str, len, "%d.%d.%d.%d", fw_maj, fw_min, fw_bld, 7973 fw_rsv); 7974 7975 if (strlen(resp->active_pkg_name)) { 7976 int fw_ver_len = strlen(bp->fw_ver_str); 7977 7978 snprintf(bp->fw_ver_str + fw_ver_len, 7979 FW_VER_STR_LEN - fw_ver_len - 1, "/pkg %s", 7980 resp->active_pkg_name); 7981 bp->fw_cap |= BNXT_FW_CAP_PKG_VER; 7982 } 7983 7984 bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout); 7985 if (!bp->hwrm_cmd_timeout) 7986 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT; 7987 7988 if (resp->hwrm_intf_maj_8b >= 1) { 7989 bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len); 7990 bp->hwrm_max_ext_req_len = le16_to_cpu(resp->max_ext_req_len); 7991 } 7992 if (bp->hwrm_max_ext_req_len < HWRM_MAX_REQ_LEN) 7993 bp->hwrm_max_ext_req_len = HWRM_MAX_REQ_LEN; 7994 7995 bp->chip_num = le16_to_cpu(resp->chip_num); 7996 bp->chip_rev = resp->chip_rev; 7997 if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev && 7998 !resp->chip_metal) 7999 bp->flags |= BNXT_FLAG_CHIP_NITRO_A0; 8000 8001 dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg); 8002 if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) && 8003 (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED)) 8004 bp->fw_cap |= BNXT_FW_CAP_SHORT_CMD; 8005 8006 if (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_KONG_MB_CHNL_SUPPORTED) 8007 bp->fw_cap |= BNXT_FW_CAP_KONG_MB_CHNL; 8008 8009 if (dev_caps_cfg & 8010 VER_GET_RESP_DEV_CAPS_CFG_FLOW_HANDLE_64BIT_SUPPORTED) 8011 bp->fw_cap |= BNXT_FW_CAP_OVS_64BIT_HANDLE; 8012 8013 if (dev_caps_cfg & 8014 VER_GET_RESP_DEV_CAPS_CFG_TRUSTED_VF_SUPPORTED) 8015 bp->fw_cap |= BNXT_FW_CAP_TRUSTED_VF; 8016 8017 if (dev_caps_cfg & 8018 VER_GET_RESP_DEV_CAPS_CFG_CFA_ADV_FLOW_MGNT_SUPPORTED) 8019 bp->fw_cap |= BNXT_FW_CAP_CFA_ADV_FLOW; 8020 8021 hwrm_ver_get_exit: 8022 hwrm_req_drop(bp, req); 8023 return rc; 8024 } 8025 8026 int bnxt_hwrm_fw_set_time(struct bnxt *bp) 8027 { 8028 struct hwrm_fw_set_time_input *req; 8029 struct tm tm; 8030 time64_t now = ktime_get_real_seconds(); 8031 int rc; 8032 8033 if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) || 8034 bp->hwrm_spec_code < 0x10400) 8035 return -EOPNOTSUPP; 8036 8037 time64_to_tm(now, 0, &tm); 8038 rc = hwrm_req_init(bp, req, HWRM_FW_SET_TIME); 8039 if (rc) 8040 return rc; 8041 8042 req->year = cpu_to_le16(1900 + tm.tm_year); 8043 req->month = 1 + tm.tm_mon; 8044 req->day = tm.tm_mday; 8045 req->hour = tm.tm_hour; 8046 req->minute = tm.tm_min; 8047 req->second = tm.tm_sec; 8048 return hwrm_req_send(bp, req); 8049 } 8050 8051 static void bnxt_add_one_ctr(u64 hw, u64 *sw, u64 mask) 8052 { 8053 u64 sw_tmp; 8054 8055 hw &= mask; 8056 sw_tmp = (*sw & ~mask) | hw; 8057 if (hw < (*sw & mask)) 8058 sw_tmp += mask + 1; 8059 WRITE_ONCE(*sw, sw_tmp); 8060 } 8061 8062 static void __bnxt_accumulate_stats(__le64 *hw_stats, u64 *sw_stats, u64 *masks, 8063 int count, bool ignore_zero) 8064 { 8065 int i; 8066 8067 for (i = 0; i < count; i++) { 8068 u64 hw = le64_to_cpu(READ_ONCE(hw_stats[i])); 8069 8070 if (ignore_zero && !hw) 8071 continue; 8072 8073 if (masks[i] == -1ULL) 8074 sw_stats[i] = hw; 8075 else 8076 bnxt_add_one_ctr(hw, &sw_stats[i], masks[i]); 8077 } 8078 } 8079 8080 static void bnxt_accumulate_stats(struct bnxt_stats_mem *stats) 8081 { 8082 if (!stats->hw_stats) 8083 return; 8084 8085 __bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats, 8086 stats->hw_masks, stats->len / 8, false); 8087 } 8088 8089 static void bnxt_accumulate_all_stats(struct bnxt *bp) 8090 { 8091 struct bnxt_stats_mem *ring0_stats; 8092 bool ignore_zero = false; 8093 int i; 8094 8095 /* Chip bug. Counter intermittently becomes 0. */ 8096 if (bp->flags & BNXT_FLAG_CHIP_P5) 8097 ignore_zero = true; 8098 8099 for (i = 0; i < bp->cp_nr_rings; i++) { 8100 struct bnxt_napi *bnapi = bp->bnapi[i]; 8101 struct bnxt_cp_ring_info *cpr; 8102 struct bnxt_stats_mem *stats; 8103 8104 cpr = &bnapi->cp_ring; 8105 stats = &cpr->stats; 8106 if (!i) 8107 ring0_stats = stats; 8108 __bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats, 8109 ring0_stats->hw_masks, 8110 ring0_stats->len / 8, ignore_zero); 8111 } 8112 if (bp->flags & BNXT_FLAG_PORT_STATS) { 8113 struct bnxt_stats_mem *stats = &bp->port_stats; 8114 __le64 *hw_stats = stats->hw_stats; 8115 u64 *sw_stats = stats->sw_stats; 8116 u64 *masks = stats->hw_masks; 8117 int cnt; 8118 8119 cnt = sizeof(struct rx_port_stats) / 8; 8120 __bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false); 8121 8122 hw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 8123 sw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 8124 masks += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 8125 cnt = sizeof(struct tx_port_stats) / 8; 8126 __bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false); 8127 } 8128 if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) { 8129 bnxt_accumulate_stats(&bp->rx_port_stats_ext); 8130 bnxt_accumulate_stats(&bp->tx_port_stats_ext); 8131 } 8132 } 8133 8134 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags) 8135 { 8136 struct hwrm_port_qstats_input *req; 8137 struct bnxt_pf_info *pf = &bp->pf; 8138 int rc; 8139 8140 if (!(bp->flags & BNXT_FLAG_PORT_STATS)) 8141 return 0; 8142 8143 if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)) 8144 return -EOPNOTSUPP; 8145 8146 rc = hwrm_req_init(bp, req, HWRM_PORT_QSTATS); 8147 if (rc) 8148 return rc; 8149 8150 req->flags = flags; 8151 req->port_id = cpu_to_le16(pf->port_id); 8152 req->tx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map + 8153 BNXT_TX_PORT_STATS_BYTE_OFFSET); 8154 req->rx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map); 8155 return hwrm_req_send(bp, req); 8156 } 8157 8158 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags) 8159 { 8160 struct hwrm_queue_pri2cos_qcfg_output *resp_qc; 8161 struct hwrm_queue_pri2cos_qcfg_input *req_qc; 8162 struct hwrm_port_qstats_ext_output *resp_qs; 8163 struct hwrm_port_qstats_ext_input *req_qs; 8164 struct bnxt_pf_info *pf = &bp->pf; 8165 u32 tx_stat_size; 8166 int rc; 8167 8168 if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT)) 8169 return 0; 8170 8171 if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)) 8172 return -EOPNOTSUPP; 8173 8174 rc = hwrm_req_init(bp, req_qs, HWRM_PORT_QSTATS_EXT); 8175 if (rc) 8176 return rc; 8177 8178 req_qs->flags = flags; 8179 req_qs->port_id = cpu_to_le16(pf->port_id); 8180 req_qs->rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext)); 8181 req_qs->rx_stat_host_addr = cpu_to_le64(bp->rx_port_stats_ext.hw_stats_map); 8182 tx_stat_size = bp->tx_port_stats_ext.hw_stats ? 8183 sizeof(struct tx_port_stats_ext) : 0; 8184 req_qs->tx_stat_size = cpu_to_le16(tx_stat_size); 8185 req_qs->tx_stat_host_addr = cpu_to_le64(bp->tx_port_stats_ext.hw_stats_map); 8186 resp_qs = hwrm_req_hold(bp, req_qs); 8187 rc = hwrm_req_send(bp, req_qs); 8188 if (!rc) { 8189 bp->fw_rx_stats_ext_size = 8190 le16_to_cpu(resp_qs->rx_stat_size) / 8; 8191 bp->fw_tx_stats_ext_size = tx_stat_size ? 8192 le16_to_cpu(resp_qs->tx_stat_size) / 8 : 0; 8193 } else { 8194 bp->fw_rx_stats_ext_size = 0; 8195 bp->fw_tx_stats_ext_size = 0; 8196 } 8197 hwrm_req_drop(bp, req_qs); 8198 8199 if (flags) 8200 return rc; 8201 8202 if (bp->fw_tx_stats_ext_size <= 8203 offsetof(struct tx_port_stats_ext, pfc_pri0_tx_duration_us) / 8) { 8204 bp->pri2cos_valid = 0; 8205 return rc; 8206 } 8207 8208 rc = hwrm_req_init(bp, req_qc, HWRM_QUEUE_PRI2COS_QCFG); 8209 if (rc) 8210 return rc; 8211 8212 req_qc->flags = cpu_to_le32(QUEUE_PRI2COS_QCFG_REQ_FLAGS_IVLAN); 8213 8214 resp_qc = hwrm_req_hold(bp, req_qc); 8215 rc = hwrm_req_send(bp, req_qc); 8216 if (!rc) { 8217 u8 *pri2cos; 8218 int i, j; 8219 8220 pri2cos = &resp_qc->pri0_cos_queue_id; 8221 for (i = 0; i < 8; i++) { 8222 u8 queue_id = pri2cos[i]; 8223 u8 queue_idx; 8224 8225 /* Per port queue IDs start from 0, 10, 20, etc */ 8226 queue_idx = queue_id % 10; 8227 if (queue_idx > BNXT_MAX_QUEUE) { 8228 bp->pri2cos_valid = false; 8229 hwrm_req_drop(bp, req_qc); 8230 return rc; 8231 } 8232 for (j = 0; j < bp->max_q; j++) { 8233 if (bp->q_ids[j] == queue_id) 8234 bp->pri2cos_idx[i] = queue_idx; 8235 } 8236 } 8237 bp->pri2cos_valid = true; 8238 } 8239 hwrm_req_drop(bp, req_qc); 8240 8241 return rc; 8242 } 8243 8244 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp) 8245 { 8246 bnxt_hwrm_tunnel_dst_port_free(bp, 8247 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN); 8248 bnxt_hwrm_tunnel_dst_port_free(bp, 8249 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE); 8250 } 8251 8252 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa) 8253 { 8254 int rc, i; 8255 u32 tpa_flags = 0; 8256 8257 if (set_tpa) 8258 tpa_flags = bp->flags & BNXT_FLAG_TPA; 8259 else if (BNXT_NO_FW_ACCESS(bp)) 8260 return 0; 8261 for (i = 0; i < bp->nr_vnics; i++) { 8262 rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags); 8263 if (rc) { 8264 netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n", 8265 i, rc); 8266 return rc; 8267 } 8268 } 8269 return 0; 8270 } 8271 8272 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp) 8273 { 8274 int i; 8275 8276 for (i = 0; i < bp->nr_vnics; i++) 8277 bnxt_hwrm_vnic_set_rss(bp, i, false); 8278 } 8279 8280 static void bnxt_clear_vnic(struct bnxt *bp) 8281 { 8282 if (!bp->vnic_info) 8283 return; 8284 8285 bnxt_hwrm_clear_vnic_filter(bp); 8286 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) { 8287 /* clear all RSS setting before free vnic ctx */ 8288 bnxt_hwrm_clear_vnic_rss(bp); 8289 bnxt_hwrm_vnic_ctx_free(bp); 8290 } 8291 /* before free the vnic, undo the vnic tpa settings */ 8292 if (bp->flags & BNXT_FLAG_TPA) 8293 bnxt_set_tpa(bp, false); 8294 bnxt_hwrm_vnic_free(bp); 8295 if (bp->flags & BNXT_FLAG_CHIP_P5) 8296 bnxt_hwrm_vnic_ctx_free(bp); 8297 } 8298 8299 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path, 8300 bool irq_re_init) 8301 { 8302 bnxt_clear_vnic(bp); 8303 bnxt_hwrm_ring_free(bp, close_path); 8304 bnxt_hwrm_ring_grp_free(bp); 8305 if (irq_re_init) { 8306 bnxt_hwrm_stat_ctx_free(bp); 8307 bnxt_hwrm_free_tunnel_ports(bp); 8308 } 8309 } 8310 8311 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode) 8312 { 8313 struct hwrm_func_cfg_input *req; 8314 u8 evb_mode; 8315 int rc; 8316 8317 if (br_mode == BRIDGE_MODE_VEB) 8318 evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB; 8319 else if (br_mode == BRIDGE_MODE_VEPA) 8320 evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA; 8321 else 8322 return -EINVAL; 8323 8324 rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG); 8325 if (rc) 8326 return rc; 8327 8328 req->fid = cpu_to_le16(0xffff); 8329 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE); 8330 req->evb_mode = evb_mode; 8331 return hwrm_req_send(bp, req); 8332 } 8333 8334 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size) 8335 { 8336 struct hwrm_func_cfg_input *req; 8337 int rc; 8338 8339 if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803) 8340 return 0; 8341 8342 rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG); 8343 if (rc) 8344 return rc; 8345 8346 req->fid = cpu_to_le16(0xffff); 8347 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE); 8348 req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64; 8349 if (size == 128) 8350 req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128; 8351 8352 return hwrm_req_send(bp, req); 8353 } 8354 8355 static int __bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id) 8356 { 8357 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 8358 int rc; 8359 8360 if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) 8361 goto skip_rss_ctx; 8362 8363 /* allocate context for vnic */ 8364 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0); 8365 if (rc) { 8366 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n", 8367 vnic_id, rc); 8368 goto vnic_setup_err; 8369 } 8370 bp->rsscos_nr_ctxs++; 8371 8372 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 8373 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1); 8374 if (rc) { 8375 netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n", 8376 vnic_id, rc); 8377 goto vnic_setup_err; 8378 } 8379 bp->rsscos_nr_ctxs++; 8380 } 8381 8382 skip_rss_ctx: 8383 /* configure default vnic, ring grp */ 8384 rc = bnxt_hwrm_vnic_cfg(bp, vnic_id); 8385 if (rc) { 8386 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n", 8387 vnic_id, rc); 8388 goto vnic_setup_err; 8389 } 8390 8391 /* Enable RSS hashing on vnic */ 8392 rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true); 8393 if (rc) { 8394 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n", 8395 vnic_id, rc); 8396 goto vnic_setup_err; 8397 } 8398 8399 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 8400 rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id); 8401 if (rc) { 8402 netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n", 8403 vnic_id, rc); 8404 } 8405 } 8406 8407 vnic_setup_err: 8408 return rc; 8409 } 8410 8411 static int __bnxt_setup_vnic_p5(struct bnxt *bp, u16 vnic_id) 8412 { 8413 int rc, i, nr_ctxs; 8414 8415 nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings); 8416 for (i = 0; i < nr_ctxs; i++) { 8417 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, i); 8418 if (rc) { 8419 netdev_err(bp->dev, "hwrm vnic %d ctx %d alloc failure rc: %x\n", 8420 vnic_id, i, rc); 8421 break; 8422 } 8423 bp->rsscos_nr_ctxs++; 8424 } 8425 if (i < nr_ctxs) 8426 return -ENOMEM; 8427 8428 rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic_id, true); 8429 if (rc) { 8430 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n", 8431 vnic_id, rc); 8432 return rc; 8433 } 8434 rc = bnxt_hwrm_vnic_cfg(bp, vnic_id); 8435 if (rc) { 8436 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n", 8437 vnic_id, rc); 8438 return rc; 8439 } 8440 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 8441 rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id); 8442 if (rc) { 8443 netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n", 8444 vnic_id, rc); 8445 } 8446 } 8447 return rc; 8448 } 8449 8450 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id) 8451 { 8452 if (bp->flags & BNXT_FLAG_CHIP_P5) 8453 return __bnxt_setup_vnic_p5(bp, vnic_id); 8454 else 8455 return __bnxt_setup_vnic(bp, vnic_id); 8456 } 8457 8458 static int bnxt_alloc_rfs_vnics(struct bnxt *bp) 8459 { 8460 #ifdef CONFIG_RFS_ACCEL 8461 int i, rc = 0; 8462 8463 if (bp->flags & BNXT_FLAG_CHIP_P5) 8464 return 0; 8465 8466 for (i = 0; i < bp->rx_nr_rings; i++) { 8467 struct bnxt_vnic_info *vnic; 8468 u16 vnic_id = i + 1; 8469 u16 ring_id = i; 8470 8471 if (vnic_id >= bp->nr_vnics) 8472 break; 8473 8474 vnic = &bp->vnic_info[vnic_id]; 8475 vnic->flags |= BNXT_VNIC_RFS_FLAG; 8476 if (bp->flags & BNXT_FLAG_NEW_RSS_CAP) 8477 vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG; 8478 rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1); 8479 if (rc) { 8480 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n", 8481 vnic_id, rc); 8482 break; 8483 } 8484 rc = bnxt_setup_vnic(bp, vnic_id); 8485 if (rc) 8486 break; 8487 } 8488 return rc; 8489 #else 8490 return 0; 8491 #endif 8492 } 8493 8494 /* Allow PF, trusted VFs and VFs with default VLAN to be in promiscuous mode */ 8495 static bool bnxt_promisc_ok(struct bnxt *bp) 8496 { 8497 #ifdef CONFIG_BNXT_SRIOV 8498 if (BNXT_VF(bp) && !bp->vf.vlan && !bnxt_is_trusted_vf(bp, &bp->vf)) 8499 return false; 8500 #endif 8501 return true; 8502 } 8503 8504 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp) 8505 { 8506 unsigned int rc = 0; 8507 8508 rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1); 8509 if (rc) { 8510 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n", 8511 rc); 8512 return rc; 8513 } 8514 8515 rc = bnxt_hwrm_vnic_cfg(bp, 1); 8516 if (rc) { 8517 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n", 8518 rc); 8519 return rc; 8520 } 8521 return rc; 8522 } 8523 8524 static int bnxt_cfg_rx_mode(struct bnxt *); 8525 static bool bnxt_mc_list_updated(struct bnxt *, u32 *); 8526 8527 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init) 8528 { 8529 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 8530 int rc = 0; 8531 unsigned int rx_nr_rings = bp->rx_nr_rings; 8532 8533 if (irq_re_init) { 8534 rc = bnxt_hwrm_stat_ctx_alloc(bp); 8535 if (rc) { 8536 netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n", 8537 rc); 8538 goto err_out; 8539 } 8540 } 8541 8542 rc = bnxt_hwrm_ring_alloc(bp); 8543 if (rc) { 8544 netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc); 8545 goto err_out; 8546 } 8547 8548 rc = bnxt_hwrm_ring_grp_alloc(bp); 8549 if (rc) { 8550 netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc); 8551 goto err_out; 8552 } 8553 8554 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 8555 rx_nr_rings--; 8556 8557 /* default vnic 0 */ 8558 rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings); 8559 if (rc) { 8560 netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc); 8561 goto err_out; 8562 } 8563 8564 rc = bnxt_setup_vnic(bp, 0); 8565 if (rc) 8566 goto err_out; 8567 8568 if (bp->flags & BNXT_FLAG_RFS) { 8569 rc = bnxt_alloc_rfs_vnics(bp); 8570 if (rc) 8571 goto err_out; 8572 } 8573 8574 if (bp->flags & BNXT_FLAG_TPA) { 8575 rc = bnxt_set_tpa(bp, true); 8576 if (rc) 8577 goto err_out; 8578 } 8579 8580 if (BNXT_VF(bp)) 8581 bnxt_update_vf_mac(bp); 8582 8583 /* Filter for default vnic 0 */ 8584 rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr); 8585 if (rc) { 8586 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc); 8587 goto err_out; 8588 } 8589 vnic->uc_filter_count = 1; 8590 8591 vnic->rx_mask = 0; 8592 if (bp->dev->flags & IFF_BROADCAST) 8593 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST; 8594 8595 if (bp->dev->flags & IFF_PROMISC) 8596 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 8597 8598 if (bp->dev->flags & IFF_ALLMULTI) { 8599 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 8600 vnic->mc_list_count = 0; 8601 } else { 8602 u32 mask = 0; 8603 8604 bnxt_mc_list_updated(bp, &mask); 8605 vnic->rx_mask |= mask; 8606 } 8607 8608 rc = bnxt_cfg_rx_mode(bp); 8609 if (rc) 8610 goto err_out; 8611 8612 rc = bnxt_hwrm_set_coal(bp); 8613 if (rc) 8614 netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n", 8615 rc); 8616 8617 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 8618 rc = bnxt_setup_nitroa0_vnic(bp); 8619 if (rc) 8620 netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n", 8621 rc); 8622 } 8623 8624 if (BNXT_VF(bp)) { 8625 bnxt_hwrm_func_qcfg(bp); 8626 netdev_update_features(bp->dev); 8627 } 8628 8629 return 0; 8630 8631 err_out: 8632 bnxt_hwrm_resource_free(bp, 0, true); 8633 8634 return rc; 8635 } 8636 8637 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init) 8638 { 8639 bnxt_hwrm_resource_free(bp, 1, irq_re_init); 8640 return 0; 8641 } 8642 8643 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init) 8644 { 8645 bnxt_init_cp_rings(bp); 8646 bnxt_init_rx_rings(bp); 8647 bnxt_init_tx_rings(bp); 8648 bnxt_init_ring_grps(bp, irq_re_init); 8649 bnxt_init_vnics(bp); 8650 8651 return bnxt_init_chip(bp, irq_re_init); 8652 } 8653 8654 static int bnxt_set_real_num_queues(struct bnxt *bp) 8655 { 8656 int rc; 8657 struct net_device *dev = bp->dev; 8658 8659 rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings - 8660 bp->tx_nr_rings_xdp); 8661 if (rc) 8662 return rc; 8663 8664 rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings); 8665 if (rc) 8666 return rc; 8667 8668 #ifdef CONFIG_RFS_ACCEL 8669 if (bp->flags & BNXT_FLAG_RFS) 8670 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings); 8671 #endif 8672 8673 return rc; 8674 } 8675 8676 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 8677 bool shared) 8678 { 8679 int _rx = *rx, _tx = *tx; 8680 8681 if (shared) { 8682 *rx = min_t(int, _rx, max); 8683 *tx = min_t(int, _tx, max); 8684 } else { 8685 if (max < 2) 8686 return -ENOMEM; 8687 8688 while (_rx + _tx > max) { 8689 if (_rx > _tx && _rx > 1) 8690 _rx--; 8691 else if (_tx > 1) 8692 _tx--; 8693 } 8694 *rx = _rx; 8695 *tx = _tx; 8696 } 8697 return 0; 8698 } 8699 8700 static void bnxt_setup_msix(struct bnxt *bp) 8701 { 8702 const int len = sizeof(bp->irq_tbl[0].name); 8703 struct net_device *dev = bp->dev; 8704 int tcs, i; 8705 8706 tcs = netdev_get_num_tc(dev); 8707 if (tcs) { 8708 int i, off, count; 8709 8710 for (i = 0; i < tcs; i++) { 8711 count = bp->tx_nr_rings_per_tc; 8712 off = i * count; 8713 netdev_set_tc_queue(dev, i, count, off); 8714 } 8715 } 8716 8717 for (i = 0; i < bp->cp_nr_rings; i++) { 8718 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 8719 char *attr; 8720 8721 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 8722 attr = "TxRx"; 8723 else if (i < bp->rx_nr_rings) 8724 attr = "rx"; 8725 else 8726 attr = "tx"; 8727 8728 snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name, 8729 attr, i); 8730 bp->irq_tbl[map_idx].handler = bnxt_msix; 8731 } 8732 } 8733 8734 static void bnxt_setup_inta(struct bnxt *bp) 8735 { 8736 const int len = sizeof(bp->irq_tbl[0].name); 8737 8738 if (netdev_get_num_tc(bp->dev)) 8739 netdev_reset_tc(bp->dev); 8740 8741 snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx", 8742 0); 8743 bp->irq_tbl[0].handler = bnxt_inta; 8744 } 8745 8746 static int bnxt_init_int_mode(struct bnxt *bp); 8747 8748 static int bnxt_setup_int_mode(struct bnxt *bp) 8749 { 8750 int rc; 8751 8752 if (!bp->irq_tbl) { 8753 rc = bnxt_init_int_mode(bp); 8754 if (rc || !bp->irq_tbl) 8755 return rc ?: -ENODEV; 8756 } 8757 8758 if (bp->flags & BNXT_FLAG_USING_MSIX) 8759 bnxt_setup_msix(bp); 8760 else 8761 bnxt_setup_inta(bp); 8762 8763 rc = bnxt_set_real_num_queues(bp); 8764 return rc; 8765 } 8766 8767 #ifdef CONFIG_RFS_ACCEL 8768 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp) 8769 { 8770 return bp->hw_resc.max_rsscos_ctxs; 8771 } 8772 8773 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp) 8774 { 8775 return bp->hw_resc.max_vnics; 8776 } 8777 #endif 8778 8779 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp) 8780 { 8781 return bp->hw_resc.max_stat_ctxs; 8782 } 8783 8784 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp) 8785 { 8786 return bp->hw_resc.max_cp_rings; 8787 } 8788 8789 static unsigned int bnxt_get_max_func_cp_rings_for_en(struct bnxt *bp) 8790 { 8791 unsigned int cp = bp->hw_resc.max_cp_rings; 8792 8793 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 8794 cp -= bnxt_get_ulp_msix_num(bp); 8795 8796 return cp; 8797 } 8798 8799 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp) 8800 { 8801 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 8802 8803 if (bp->flags & BNXT_FLAG_CHIP_P5) 8804 return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_nqs); 8805 8806 return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings); 8807 } 8808 8809 static void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs) 8810 { 8811 bp->hw_resc.max_irqs = max_irqs; 8812 } 8813 8814 unsigned int bnxt_get_avail_cp_rings_for_en(struct bnxt *bp) 8815 { 8816 unsigned int cp; 8817 8818 cp = bnxt_get_max_func_cp_rings_for_en(bp); 8819 if (bp->flags & BNXT_FLAG_CHIP_P5) 8820 return cp - bp->rx_nr_rings - bp->tx_nr_rings; 8821 else 8822 return cp - bp->cp_nr_rings; 8823 } 8824 8825 unsigned int bnxt_get_avail_stat_ctxs_for_en(struct bnxt *bp) 8826 { 8827 return bnxt_get_max_func_stat_ctxs(bp) - bnxt_get_func_stat_ctxs(bp); 8828 } 8829 8830 int bnxt_get_avail_msix(struct bnxt *bp, int num) 8831 { 8832 int max_cp = bnxt_get_max_func_cp_rings(bp); 8833 int max_irq = bnxt_get_max_func_irqs(bp); 8834 int total_req = bp->cp_nr_rings + num; 8835 int max_idx, avail_msix; 8836 8837 max_idx = bp->total_irqs; 8838 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 8839 max_idx = min_t(int, bp->total_irqs, max_cp); 8840 avail_msix = max_idx - bp->cp_nr_rings; 8841 if (!BNXT_NEW_RM(bp) || avail_msix >= num) 8842 return avail_msix; 8843 8844 if (max_irq < total_req) { 8845 num = max_irq - bp->cp_nr_rings; 8846 if (num <= 0) 8847 return 0; 8848 } 8849 return num; 8850 } 8851 8852 static int bnxt_get_num_msix(struct bnxt *bp) 8853 { 8854 if (!BNXT_NEW_RM(bp)) 8855 return bnxt_get_max_func_irqs(bp); 8856 8857 return bnxt_nq_rings_in_use(bp); 8858 } 8859 8860 static int bnxt_init_msix(struct bnxt *bp) 8861 { 8862 int i, total_vecs, max, rc = 0, min = 1, ulp_msix; 8863 struct msix_entry *msix_ent; 8864 8865 total_vecs = bnxt_get_num_msix(bp); 8866 max = bnxt_get_max_func_irqs(bp); 8867 if (total_vecs > max) 8868 total_vecs = max; 8869 8870 if (!total_vecs) 8871 return 0; 8872 8873 msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL); 8874 if (!msix_ent) 8875 return -ENOMEM; 8876 8877 for (i = 0; i < total_vecs; i++) { 8878 msix_ent[i].entry = i; 8879 msix_ent[i].vector = 0; 8880 } 8881 8882 if (!(bp->flags & BNXT_FLAG_SHARED_RINGS)) 8883 min = 2; 8884 8885 total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs); 8886 ulp_msix = bnxt_get_ulp_msix_num(bp); 8887 if (total_vecs < 0 || total_vecs < ulp_msix) { 8888 rc = -ENODEV; 8889 goto msix_setup_exit; 8890 } 8891 8892 bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL); 8893 if (bp->irq_tbl) { 8894 for (i = 0; i < total_vecs; i++) 8895 bp->irq_tbl[i].vector = msix_ent[i].vector; 8896 8897 bp->total_irqs = total_vecs; 8898 /* Trim rings based upon num of vectors allocated */ 8899 rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings, 8900 total_vecs - ulp_msix, min == 1); 8901 if (rc) 8902 goto msix_setup_exit; 8903 8904 bp->cp_nr_rings = (min == 1) ? 8905 max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) : 8906 bp->tx_nr_rings + bp->rx_nr_rings; 8907 8908 } else { 8909 rc = -ENOMEM; 8910 goto msix_setup_exit; 8911 } 8912 bp->flags |= BNXT_FLAG_USING_MSIX; 8913 kfree(msix_ent); 8914 return 0; 8915 8916 msix_setup_exit: 8917 netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc); 8918 kfree(bp->irq_tbl); 8919 bp->irq_tbl = NULL; 8920 pci_disable_msix(bp->pdev); 8921 kfree(msix_ent); 8922 return rc; 8923 } 8924 8925 static int bnxt_init_inta(struct bnxt *bp) 8926 { 8927 bp->irq_tbl = kzalloc(sizeof(struct bnxt_irq), GFP_KERNEL); 8928 if (!bp->irq_tbl) 8929 return -ENOMEM; 8930 8931 bp->total_irqs = 1; 8932 bp->rx_nr_rings = 1; 8933 bp->tx_nr_rings = 1; 8934 bp->cp_nr_rings = 1; 8935 bp->flags |= BNXT_FLAG_SHARED_RINGS; 8936 bp->irq_tbl[0].vector = bp->pdev->irq; 8937 return 0; 8938 } 8939 8940 static int bnxt_init_int_mode(struct bnxt *bp) 8941 { 8942 int rc = -ENODEV; 8943 8944 if (bp->flags & BNXT_FLAG_MSIX_CAP) 8945 rc = bnxt_init_msix(bp); 8946 8947 if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) { 8948 /* fallback to INTA */ 8949 rc = bnxt_init_inta(bp); 8950 } 8951 return rc; 8952 } 8953 8954 static void bnxt_clear_int_mode(struct bnxt *bp) 8955 { 8956 if (bp->flags & BNXT_FLAG_USING_MSIX) 8957 pci_disable_msix(bp->pdev); 8958 8959 kfree(bp->irq_tbl); 8960 bp->irq_tbl = NULL; 8961 bp->flags &= ~BNXT_FLAG_USING_MSIX; 8962 } 8963 8964 int bnxt_reserve_rings(struct bnxt *bp, bool irq_re_init) 8965 { 8966 int tcs = netdev_get_num_tc(bp->dev); 8967 bool irq_cleared = false; 8968 int rc; 8969 8970 if (!bnxt_need_reserve_rings(bp)) 8971 return 0; 8972 8973 if (irq_re_init && BNXT_NEW_RM(bp) && 8974 bnxt_get_num_msix(bp) != bp->total_irqs) { 8975 bnxt_ulp_irq_stop(bp); 8976 bnxt_clear_int_mode(bp); 8977 irq_cleared = true; 8978 } 8979 rc = __bnxt_reserve_rings(bp); 8980 if (irq_cleared) { 8981 if (!rc) 8982 rc = bnxt_init_int_mode(bp); 8983 bnxt_ulp_irq_restart(bp, rc); 8984 } 8985 if (rc) { 8986 netdev_err(bp->dev, "ring reservation/IRQ init failure rc: %d\n", rc); 8987 return rc; 8988 } 8989 if (tcs && (bp->tx_nr_rings_per_tc * tcs != bp->tx_nr_rings)) { 8990 netdev_err(bp->dev, "tx ring reservation failure\n"); 8991 netdev_reset_tc(bp->dev); 8992 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 8993 return -ENOMEM; 8994 } 8995 return 0; 8996 } 8997 8998 static void bnxt_free_irq(struct bnxt *bp) 8999 { 9000 struct bnxt_irq *irq; 9001 int i; 9002 9003 #ifdef CONFIG_RFS_ACCEL 9004 free_irq_cpu_rmap(bp->dev->rx_cpu_rmap); 9005 bp->dev->rx_cpu_rmap = NULL; 9006 #endif 9007 if (!bp->irq_tbl || !bp->bnapi) 9008 return; 9009 9010 for (i = 0; i < bp->cp_nr_rings; i++) { 9011 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 9012 9013 irq = &bp->irq_tbl[map_idx]; 9014 if (irq->requested) { 9015 if (irq->have_cpumask) { 9016 irq_set_affinity_hint(irq->vector, NULL); 9017 free_cpumask_var(irq->cpu_mask); 9018 irq->have_cpumask = 0; 9019 } 9020 free_irq(irq->vector, bp->bnapi[i]); 9021 } 9022 9023 irq->requested = 0; 9024 } 9025 } 9026 9027 static int bnxt_request_irq(struct bnxt *bp) 9028 { 9029 int i, j, rc = 0; 9030 unsigned long flags = 0; 9031 #ifdef CONFIG_RFS_ACCEL 9032 struct cpu_rmap *rmap; 9033 #endif 9034 9035 rc = bnxt_setup_int_mode(bp); 9036 if (rc) { 9037 netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n", 9038 rc); 9039 return rc; 9040 } 9041 #ifdef CONFIG_RFS_ACCEL 9042 rmap = bp->dev->rx_cpu_rmap; 9043 #endif 9044 if (!(bp->flags & BNXT_FLAG_USING_MSIX)) 9045 flags = IRQF_SHARED; 9046 9047 for (i = 0, j = 0; i < bp->cp_nr_rings; i++) { 9048 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 9049 struct bnxt_irq *irq = &bp->irq_tbl[map_idx]; 9050 9051 #ifdef CONFIG_RFS_ACCEL 9052 if (rmap && bp->bnapi[i]->rx_ring) { 9053 rc = irq_cpu_rmap_add(rmap, irq->vector); 9054 if (rc) 9055 netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n", 9056 j); 9057 j++; 9058 } 9059 #endif 9060 rc = request_irq(irq->vector, irq->handler, flags, irq->name, 9061 bp->bnapi[i]); 9062 if (rc) 9063 break; 9064 9065 irq->requested = 1; 9066 9067 if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) { 9068 int numa_node = dev_to_node(&bp->pdev->dev); 9069 9070 irq->have_cpumask = 1; 9071 cpumask_set_cpu(cpumask_local_spread(i, numa_node), 9072 irq->cpu_mask); 9073 rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask); 9074 if (rc) { 9075 netdev_warn(bp->dev, 9076 "Set affinity failed, IRQ = %d\n", 9077 irq->vector); 9078 break; 9079 } 9080 } 9081 } 9082 return rc; 9083 } 9084 9085 static void bnxt_del_napi(struct bnxt *bp) 9086 { 9087 int i; 9088 9089 if (!bp->bnapi) 9090 return; 9091 9092 for (i = 0; i < bp->cp_nr_rings; i++) { 9093 struct bnxt_napi *bnapi = bp->bnapi[i]; 9094 9095 __netif_napi_del(&bnapi->napi); 9096 } 9097 /* We called __netif_napi_del(), we need 9098 * to respect an RCU grace period before freeing napi structures. 9099 */ 9100 synchronize_net(); 9101 } 9102 9103 static void bnxt_init_napi(struct bnxt *bp) 9104 { 9105 int i; 9106 unsigned int cp_nr_rings = bp->cp_nr_rings; 9107 struct bnxt_napi *bnapi; 9108 9109 if (bp->flags & BNXT_FLAG_USING_MSIX) { 9110 int (*poll_fn)(struct napi_struct *, int) = bnxt_poll; 9111 9112 if (bp->flags & BNXT_FLAG_CHIP_P5) 9113 poll_fn = bnxt_poll_p5; 9114 else if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 9115 cp_nr_rings--; 9116 for (i = 0; i < cp_nr_rings; i++) { 9117 bnapi = bp->bnapi[i]; 9118 netif_napi_add(bp->dev, &bnapi->napi, poll_fn, 64); 9119 } 9120 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 9121 bnapi = bp->bnapi[cp_nr_rings]; 9122 netif_napi_add(bp->dev, &bnapi->napi, 9123 bnxt_poll_nitroa0, 64); 9124 } 9125 } else { 9126 bnapi = bp->bnapi[0]; 9127 netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64); 9128 } 9129 } 9130 9131 static void bnxt_disable_napi(struct bnxt *bp) 9132 { 9133 int i; 9134 9135 if (!bp->bnapi || 9136 test_and_set_bit(BNXT_STATE_NAPI_DISABLED, &bp->state)) 9137 return; 9138 9139 for (i = 0; i < bp->cp_nr_rings; i++) { 9140 struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring; 9141 9142 napi_disable(&bp->bnapi[i]->napi); 9143 if (bp->bnapi[i]->rx_ring) 9144 cancel_work_sync(&cpr->dim.work); 9145 } 9146 } 9147 9148 static void bnxt_enable_napi(struct bnxt *bp) 9149 { 9150 int i; 9151 9152 clear_bit(BNXT_STATE_NAPI_DISABLED, &bp->state); 9153 for (i = 0; i < bp->cp_nr_rings; i++) { 9154 struct bnxt_napi *bnapi = bp->bnapi[i]; 9155 struct bnxt_cp_ring_info *cpr; 9156 9157 cpr = &bnapi->cp_ring; 9158 if (bnapi->in_reset) 9159 cpr->sw_stats.rx.rx_resets++; 9160 bnapi->in_reset = false; 9161 9162 if (bnapi->rx_ring) { 9163 INIT_WORK(&cpr->dim.work, bnxt_dim_work); 9164 cpr->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 9165 } 9166 napi_enable(&bnapi->napi); 9167 } 9168 } 9169 9170 void bnxt_tx_disable(struct bnxt *bp) 9171 { 9172 int i; 9173 struct bnxt_tx_ring_info *txr; 9174 9175 if (bp->tx_ring) { 9176 for (i = 0; i < bp->tx_nr_rings; i++) { 9177 txr = &bp->tx_ring[i]; 9178 WRITE_ONCE(txr->dev_state, BNXT_DEV_STATE_CLOSING); 9179 } 9180 } 9181 /* Make sure napi polls see @dev_state change */ 9182 synchronize_net(); 9183 /* Drop carrier first to prevent TX timeout */ 9184 netif_carrier_off(bp->dev); 9185 /* Stop all TX queues */ 9186 netif_tx_disable(bp->dev); 9187 } 9188 9189 void bnxt_tx_enable(struct bnxt *bp) 9190 { 9191 int i; 9192 struct bnxt_tx_ring_info *txr; 9193 9194 for (i = 0; i < bp->tx_nr_rings; i++) { 9195 txr = &bp->tx_ring[i]; 9196 WRITE_ONCE(txr->dev_state, 0); 9197 } 9198 /* Make sure napi polls see @dev_state change */ 9199 synchronize_net(); 9200 netif_tx_wake_all_queues(bp->dev); 9201 if (bp->link_info.link_up) 9202 netif_carrier_on(bp->dev); 9203 } 9204 9205 static char *bnxt_report_fec(struct bnxt_link_info *link_info) 9206 { 9207 u8 active_fec = link_info->active_fec_sig_mode & 9208 PORT_PHY_QCFG_RESP_ACTIVE_FEC_MASK; 9209 9210 switch (active_fec) { 9211 default: 9212 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_NONE_ACTIVE: 9213 return "None"; 9214 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE74_ACTIVE: 9215 return "Clause 74 BaseR"; 9216 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE91_ACTIVE: 9217 return "Clause 91 RS(528,514)"; 9218 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_1XN_ACTIVE: 9219 return "Clause 91 RS544_1XN"; 9220 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_IEEE_ACTIVE: 9221 return "Clause 91 RS(544,514)"; 9222 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_1XN_ACTIVE: 9223 return "Clause 91 RS272_1XN"; 9224 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_IEEE_ACTIVE: 9225 return "Clause 91 RS(272,257)"; 9226 } 9227 } 9228 9229 static void bnxt_report_link(struct bnxt *bp) 9230 { 9231 if (bp->link_info.link_up) { 9232 const char *signal = ""; 9233 const char *flow_ctrl; 9234 const char *duplex; 9235 u32 speed; 9236 u16 fec; 9237 9238 netif_carrier_on(bp->dev); 9239 speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed); 9240 if (speed == SPEED_UNKNOWN) { 9241 netdev_info(bp->dev, "NIC Link is Up, speed unknown\n"); 9242 return; 9243 } 9244 if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL) 9245 duplex = "full"; 9246 else 9247 duplex = "half"; 9248 if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH) 9249 flow_ctrl = "ON - receive & transmit"; 9250 else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX) 9251 flow_ctrl = "ON - transmit"; 9252 else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX) 9253 flow_ctrl = "ON - receive"; 9254 else 9255 flow_ctrl = "none"; 9256 if (bp->link_info.phy_qcfg_resp.option_flags & 9257 PORT_PHY_QCFG_RESP_OPTION_FLAGS_SIGNAL_MODE_KNOWN) { 9258 u8 sig_mode = bp->link_info.active_fec_sig_mode & 9259 PORT_PHY_QCFG_RESP_SIGNAL_MODE_MASK; 9260 switch (sig_mode) { 9261 case PORT_PHY_QCFG_RESP_SIGNAL_MODE_NRZ: 9262 signal = "(NRZ) "; 9263 break; 9264 case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4: 9265 signal = "(PAM4) "; 9266 break; 9267 default: 9268 break; 9269 } 9270 } 9271 netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s%s duplex, Flow control: %s\n", 9272 speed, signal, duplex, flow_ctrl); 9273 if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) 9274 netdev_info(bp->dev, "EEE is %s\n", 9275 bp->eee.eee_active ? "active" : 9276 "not active"); 9277 fec = bp->link_info.fec_cfg; 9278 if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED)) 9279 netdev_info(bp->dev, "FEC autoneg %s encoding: %s\n", 9280 (fec & BNXT_FEC_AUTONEG) ? "on" : "off", 9281 bnxt_report_fec(&bp->link_info)); 9282 } else { 9283 netif_carrier_off(bp->dev); 9284 netdev_err(bp->dev, "NIC Link is Down\n"); 9285 } 9286 } 9287 9288 static bool bnxt_phy_qcaps_no_speed(struct hwrm_port_phy_qcaps_output *resp) 9289 { 9290 if (!resp->supported_speeds_auto_mode && 9291 !resp->supported_speeds_force_mode && 9292 !resp->supported_pam4_speeds_auto_mode && 9293 !resp->supported_pam4_speeds_force_mode) 9294 return true; 9295 return false; 9296 } 9297 9298 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp) 9299 { 9300 struct bnxt_link_info *link_info = &bp->link_info; 9301 struct hwrm_port_phy_qcaps_output *resp; 9302 struct hwrm_port_phy_qcaps_input *req; 9303 int rc = 0; 9304 9305 if (bp->hwrm_spec_code < 0x10201) 9306 return 0; 9307 9308 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCAPS); 9309 if (rc) 9310 return rc; 9311 9312 resp = hwrm_req_hold(bp, req); 9313 rc = hwrm_req_send(bp, req); 9314 if (rc) 9315 goto hwrm_phy_qcaps_exit; 9316 9317 bp->phy_flags = resp->flags; 9318 if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) { 9319 struct ethtool_eee *eee = &bp->eee; 9320 u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode); 9321 9322 eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0); 9323 bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) & 9324 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK; 9325 bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) & 9326 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK; 9327 } 9328 9329 if (bp->hwrm_spec_code >= 0x10a01) { 9330 if (bnxt_phy_qcaps_no_speed(resp)) { 9331 link_info->phy_state = BNXT_PHY_STATE_DISABLED; 9332 netdev_warn(bp->dev, "Ethernet link disabled\n"); 9333 } else if (link_info->phy_state == BNXT_PHY_STATE_DISABLED) { 9334 link_info->phy_state = BNXT_PHY_STATE_ENABLED; 9335 netdev_info(bp->dev, "Ethernet link enabled\n"); 9336 /* Phy re-enabled, reprobe the speeds */ 9337 link_info->support_auto_speeds = 0; 9338 link_info->support_pam4_auto_speeds = 0; 9339 } 9340 } 9341 if (resp->supported_speeds_auto_mode) 9342 link_info->support_auto_speeds = 9343 le16_to_cpu(resp->supported_speeds_auto_mode); 9344 if (resp->supported_pam4_speeds_auto_mode) 9345 link_info->support_pam4_auto_speeds = 9346 le16_to_cpu(resp->supported_pam4_speeds_auto_mode); 9347 9348 bp->port_count = resp->port_cnt; 9349 9350 hwrm_phy_qcaps_exit: 9351 hwrm_req_drop(bp, req); 9352 return rc; 9353 } 9354 9355 static bool bnxt_support_dropped(u16 advertising, u16 supported) 9356 { 9357 u16 diff = advertising ^ supported; 9358 9359 return ((supported | diff) != supported); 9360 } 9361 9362 int bnxt_update_link(struct bnxt *bp, bool chng_link_state) 9363 { 9364 struct bnxt_link_info *link_info = &bp->link_info; 9365 struct hwrm_port_phy_qcfg_output *resp; 9366 struct hwrm_port_phy_qcfg_input *req; 9367 u8 link_up = link_info->link_up; 9368 bool support_changed = false; 9369 int rc; 9370 9371 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCFG); 9372 if (rc) 9373 return rc; 9374 9375 resp = hwrm_req_hold(bp, req); 9376 rc = hwrm_req_send(bp, req); 9377 if (rc) { 9378 hwrm_req_drop(bp, req); 9379 return rc; 9380 } 9381 9382 memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp)); 9383 link_info->phy_link_status = resp->link; 9384 link_info->duplex = resp->duplex_cfg; 9385 if (bp->hwrm_spec_code >= 0x10800) 9386 link_info->duplex = resp->duplex_state; 9387 link_info->pause = resp->pause; 9388 link_info->auto_mode = resp->auto_mode; 9389 link_info->auto_pause_setting = resp->auto_pause; 9390 link_info->lp_pause = resp->link_partner_adv_pause; 9391 link_info->force_pause_setting = resp->force_pause; 9392 link_info->duplex_setting = resp->duplex_cfg; 9393 if (link_info->phy_link_status == BNXT_LINK_LINK) 9394 link_info->link_speed = le16_to_cpu(resp->link_speed); 9395 else 9396 link_info->link_speed = 0; 9397 link_info->force_link_speed = le16_to_cpu(resp->force_link_speed); 9398 link_info->force_pam4_link_speed = 9399 le16_to_cpu(resp->force_pam4_link_speed); 9400 link_info->support_speeds = le16_to_cpu(resp->support_speeds); 9401 link_info->support_pam4_speeds = le16_to_cpu(resp->support_pam4_speeds); 9402 link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask); 9403 link_info->auto_pam4_link_speeds = 9404 le16_to_cpu(resp->auto_pam4_link_speed_mask); 9405 link_info->lp_auto_link_speeds = 9406 le16_to_cpu(resp->link_partner_adv_speeds); 9407 link_info->lp_auto_pam4_link_speeds = 9408 resp->link_partner_pam4_adv_speeds; 9409 link_info->preemphasis = le32_to_cpu(resp->preemphasis); 9410 link_info->phy_ver[0] = resp->phy_maj; 9411 link_info->phy_ver[1] = resp->phy_min; 9412 link_info->phy_ver[2] = resp->phy_bld; 9413 link_info->media_type = resp->media_type; 9414 link_info->phy_type = resp->phy_type; 9415 link_info->transceiver = resp->xcvr_pkg_type; 9416 link_info->phy_addr = resp->eee_config_phy_addr & 9417 PORT_PHY_QCFG_RESP_PHY_ADDR_MASK; 9418 link_info->module_status = resp->module_status; 9419 9420 if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) { 9421 struct ethtool_eee *eee = &bp->eee; 9422 u16 fw_speeds; 9423 9424 eee->eee_active = 0; 9425 if (resp->eee_config_phy_addr & 9426 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) { 9427 eee->eee_active = 1; 9428 fw_speeds = le16_to_cpu( 9429 resp->link_partner_adv_eee_link_speed_mask); 9430 eee->lp_advertised = 9431 _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0); 9432 } 9433 9434 /* Pull initial EEE config */ 9435 if (!chng_link_state) { 9436 if (resp->eee_config_phy_addr & 9437 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED) 9438 eee->eee_enabled = 1; 9439 9440 fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask); 9441 eee->advertised = 9442 _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0); 9443 9444 if (resp->eee_config_phy_addr & 9445 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) { 9446 __le32 tmr; 9447 9448 eee->tx_lpi_enabled = 1; 9449 tmr = resp->xcvr_identifier_type_tx_lpi_timer; 9450 eee->tx_lpi_timer = le32_to_cpu(tmr) & 9451 PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK; 9452 } 9453 } 9454 } 9455 9456 link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED; 9457 if (bp->hwrm_spec_code >= 0x10504) { 9458 link_info->fec_cfg = le16_to_cpu(resp->fec_cfg); 9459 link_info->active_fec_sig_mode = resp->active_fec_signal_mode; 9460 } 9461 /* TODO: need to add more logic to report VF link */ 9462 if (chng_link_state) { 9463 if (link_info->phy_link_status == BNXT_LINK_LINK) 9464 link_info->link_up = 1; 9465 else 9466 link_info->link_up = 0; 9467 if (link_up != link_info->link_up) 9468 bnxt_report_link(bp); 9469 } else { 9470 /* alwasy link down if not require to update link state */ 9471 link_info->link_up = 0; 9472 } 9473 hwrm_req_drop(bp, req); 9474 9475 if (!BNXT_PHY_CFG_ABLE(bp)) 9476 return 0; 9477 9478 /* Check if any advertised speeds are no longer supported. The caller 9479 * holds the link_lock mutex, so we can modify link_info settings. 9480 */ 9481 if (bnxt_support_dropped(link_info->advertising, 9482 link_info->support_auto_speeds)) { 9483 link_info->advertising = link_info->support_auto_speeds; 9484 support_changed = true; 9485 } 9486 if (bnxt_support_dropped(link_info->advertising_pam4, 9487 link_info->support_pam4_auto_speeds)) { 9488 link_info->advertising_pam4 = link_info->support_pam4_auto_speeds; 9489 support_changed = true; 9490 } 9491 if (support_changed && (link_info->autoneg & BNXT_AUTONEG_SPEED)) 9492 bnxt_hwrm_set_link_setting(bp, true, false); 9493 return 0; 9494 } 9495 9496 static void bnxt_get_port_module_status(struct bnxt *bp) 9497 { 9498 struct bnxt_link_info *link_info = &bp->link_info; 9499 struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp; 9500 u8 module_status; 9501 9502 if (bnxt_update_link(bp, true)) 9503 return; 9504 9505 module_status = link_info->module_status; 9506 switch (module_status) { 9507 case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX: 9508 case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN: 9509 case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG: 9510 netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n", 9511 bp->pf.port_id); 9512 if (bp->hwrm_spec_code >= 0x10201) { 9513 netdev_warn(bp->dev, "Module part number %s\n", 9514 resp->phy_vendor_partnumber); 9515 } 9516 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX) 9517 netdev_warn(bp->dev, "TX is disabled\n"); 9518 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN) 9519 netdev_warn(bp->dev, "SFP+ module is shutdown\n"); 9520 } 9521 } 9522 9523 static void 9524 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req) 9525 { 9526 if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) { 9527 if (bp->hwrm_spec_code >= 0x10201) 9528 req->auto_pause = 9529 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE; 9530 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX) 9531 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX; 9532 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX) 9533 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX; 9534 req->enables |= 9535 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE); 9536 } else { 9537 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX) 9538 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX; 9539 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX) 9540 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX; 9541 req->enables |= 9542 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE); 9543 if (bp->hwrm_spec_code >= 0x10201) { 9544 req->auto_pause = req->force_pause; 9545 req->enables |= cpu_to_le32( 9546 PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE); 9547 } 9548 } 9549 } 9550 9551 static void bnxt_hwrm_set_link_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req) 9552 { 9553 if (bp->link_info.autoneg & BNXT_AUTONEG_SPEED) { 9554 req->auto_mode |= PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK; 9555 if (bp->link_info.advertising) { 9556 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK); 9557 req->auto_link_speed_mask = cpu_to_le16(bp->link_info.advertising); 9558 } 9559 if (bp->link_info.advertising_pam4) { 9560 req->enables |= 9561 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAM4_LINK_SPEED_MASK); 9562 req->auto_link_pam4_speed_mask = 9563 cpu_to_le16(bp->link_info.advertising_pam4); 9564 } 9565 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE); 9566 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG); 9567 } else { 9568 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE); 9569 if (bp->link_info.req_signal_mode == BNXT_SIG_MODE_PAM4) { 9570 req->force_pam4_link_speed = cpu_to_le16(bp->link_info.req_link_speed); 9571 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAM4_LINK_SPEED); 9572 } else { 9573 req->force_link_speed = cpu_to_le16(bp->link_info.req_link_speed); 9574 } 9575 } 9576 9577 /* tell chimp that the setting takes effect immediately */ 9578 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY); 9579 } 9580 9581 int bnxt_hwrm_set_pause(struct bnxt *bp) 9582 { 9583 struct hwrm_port_phy_cfg_input *req; 9584 int rc; 9585 9586 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG); 9587 if (rc) 9588 return rc; 9589 9590 bnxt_hwrm_set_pause_common(bp, req); 9591 9592 if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) || 9593 bp->link_info.force_link_chng) 9594 bnxt_hwrm_set_link_common(bp, req); 9595 9596 rc = hwrm_req_send(bp, req); 9597 if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) { 9598 /* since changing of pause setting doesn't trigger any link 9599 * change event, the driver needs to update the current pause 9600 * result upon successfully return of the phy_cfg command 9601 */ 9602 bp->link_info.pause = 9603 bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl; 9604 bp->link_info.auto_pause_setting = 0; 9605 if (!bp->link_info.force_link_chng) 9606 bnxt_report_link(bp); 9607 } 9608 bp->link_info.force_link_chng = false; 9609 return rc; 9610 } 9611 9612 static void bnxt_hwrm_set_eee(struct bnxt *bp, 9613 struct hwrm_port_phy_cfg_input *req) 9614 { 9615 struct ethtool_eee *eee = &bp->eee; 9616 9617 if (eee->eee_enabled) { 9618 u16 eee_speeds; 9619 u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE; 9620 9621 if (eee->tx_lpi_enabled) 9622 flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE; 9623 else 9624 flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE; 9625 9626 req->flags |= cpu_to_le32(flags); 9627 eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised); 9628 req->eee_link_speed_mask = cpu_to_le16(eee_speeds); 9629 req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer); 9630 } else { 9631 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE); 9632 } 9633 } 9634 9635 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee) 9636 { 9637 struct hwrm_port_phy_cfg_input *req; 9638 int rc; 9639 9640 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG); 9641 if (rc) 9642 return rc; 9643 9644 if (set_pause) 9645 bnxt_hwrm_set_pause_common(bp, req); 9646 9647 bnxt_hwrm_set_link_common(bp, req); 9648 9649 if (set_eee) 9650 bnxt_hwrm_set_eee(bp, req); 9651 return hwrm_req_send(bp, req); 9652 } 9653 9654 static int bnxt_hwrm_shutdown_link(struct bnxt *bp) 9655 { 9656 struct hwrm_port_phy_cfg_input *req; 9657 int rc; 9658 9659 if (!BNXT_SINGLE_PF(bp)) 9660 return 0; 9661 9662 if (pci_num_vf(bp->pdev) && 9663 !(bp->phy_flags & BNXT_PHY_FL_FW_MANAGED_LKDN)) 9664 return 0; 9665 9666 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG); 9667 if (rc) 9668 return rc; 9669 9670 req->flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN); 9671 return hwrm_req_send(bp, req); 9672 } 9673 9674 static int bnxt_fw_init_one(struct bnxt *bp); 9675 9676 static int bnxt_fw_reset_via_optee(struct bnxt *bp) 9677 { 9678 #ifdef CONFIG_TEE_BNXT_FW 9679 int rc = tee_bnxt_fw_load(); 9680 9681 if (rc) 9682 netdev_err(bp->dev, "Failed FW reset via OP-TEE, rc=%d\n", rc); 9683 9684 return rc; 9685 #else 9686 netdev_err(bp->dev, "OP-TEE not supported\n"); 9687 return -ENODEV; 9688 #endif 9689 } 9690 9691 static int bnxt_try_recover_fw(struct bnxt *bp) 9692 { 9693 if (bp->fw_health && bp->fw_health->status_reliable) { 9694 int retry = 0, rc; 9695 u32 sts; 9696 9697 do { 9698 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 9699 rc = bnxt_hwrm_poll(bp); 9700 if (!BNXT_FW_IS_BOOTING(sts) && 9701 !BNXT_FW_IS_RECOVERING(sts)) 9702 break; 9703 retry++; 9704 } while (rc == -EBUSY && retry < BNXT_FW_RETRY); 9705 9706 if (!BNXT_FW_IS_HEALTHY(sts)) { 9707 netdev_err(bp->dev, 9708 "Firmware not responding, status: 0x%x\n", 9709 sts); 9710 rc = -ENODEV; 9711 } 9712 if (sts & FW_STATUS_REG_CRASHED_NO_MASTER) { 9713 netdev_warn(bp->dev, "Firmware recover via OP-TEE requested\n"); 9714 return bnxt_fw_reset_via_optee(bp); 9715 } 9716 return rc; 9717 } 9718 9719 return -ENODEV; 9720 } 9721 9722 static int bnxt_hwrm_if_change(struct bnxt *bp, bool up) 9723 { 9724 struct hwrm_func_drv_if_change_output *resp; 9725 struct hwrm_func_drv_if_change_input *req; 9726 bool fw_reset = !bp->irq_tbl; 9727 bool resc_reinit = false; 9728 int rc, retry = 0; 9729 u32 flags = 0; 9730 9731 if (!(bp->fw_cap & BNXT_FW_CAP_IF_CHANGE)) 9732 return 0; 9733 9734 rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_IF_CHANGE); 9735 if (rc) 9736 return rc; 9737 9738 if (up) 9739 req->flags = cpu_to_le32(FUNC_DRV_IF_CHANGE_REQ_FLAGS_UP); 9740 resp = hwrm_req_hold(bp, req); 9741 9742 hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT); 9743 while (retry < BNXT_FW_IF_RETRY) { 9744 rc = hwrm_req_send(bp, req); 9745 if (rc != -EAGAIN) 9746 break; 9747 9748 msleep(50); 9749 retry++; 9750 } 9751 9752 if (rc == -EAGAIN) { 9753 hwrm_req_drop(bp, req); 9754 return rc; 9755 } else if (!rc) { 9756 flags = le32_to_cpu(resp->flags); 9757 } else if (up) { 9758 rc = bnxt_try_recover_fw(bp); 9759 fw_reset = true; 9760 } 9761 hwrm_req_drop(bp, req); 9762 if (rc) 9763 return rc; 9764 9765 if (!up) { 9766 bnxt_inv_fw_health_reg(bp); 9767 return 0; 9768 } 9769 9770 if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_RESC_CHANGE) 9771 resc_reinit = true; 9772 if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_HOT_FW_RESET_DONE) 9773 fw_reset = true; 9774 else if (bp->fw_health && !bp->fw_health->status_reliable) 9775 bnxt_try_map_fw_health_reg(bp); 9776 9777 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state) && !fw_reset) { 9778 netdev_err(bp->dev, "RESET_DONE not set during FW reset.\n"); 9779 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 9780 return -ENODEV; 9781 } 9782 if (resc_reinit || fw_reset) { 9783 if (fw_reset) { 9784 set_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 9785 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 9786 bnxt_ulp_stop(bp); 9787 bnxt_free_ctx_mem(bp); 9788 kfree(bp->ctx); 9789 bp->ctx = NULL; 9790 bnxt_dcb_free(bp); 9791 rc = bnxt_fw_init_one(bp); 9792 if (rc) { 9793 clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 9794 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 9795 return rc; 9796 } 9797 bnxt_clear_int_mode(bp); 9798 rc = bnxt_init_int_mode(bp); 9799 if (rc) { 9800 clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 9801 netdev_err(bp->dev, "init int mode failed\n"); 9802 return rc; 9803 } 9804 } 9805 if (BNXT_NEW_RM(bp)) { 9806 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 9807 9808 rc = bnxt_hwrm_func_resc_qcaps(bp, true); 9809 if (rc) 9810 netdev_err(bp->dev, "resc_qcaps failed\n"); 9811 9812 hw_resc->resv_cp_rings = 0; 9813 hw_resc->resv_stat_ctxs = 0; 9814 hw_resc->resv_irqs = 0; 9815 hw_resc->resv_tx_rings = 0; 9816 hw_resc->resv_rx_rings = 0; 9817 hw_resc->resv_hw_ring_grps = 0; 9818 hw_resc->resv_vnics = 0; 9819 if (!fw_reset) { 9820 bp->tx_nr_rings = 0; 9821 bp->rx_nr_rings = 0; 9822 } 9823 } 9824 } 9825 return rc; 9826 } 9827 9828 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp) 9829 { 9830 struct hwrm_port_led_qcaps_output *resp; 9831 struct hwrm_port_led_qcaps_input *req; 9832 struct bnxt_pf_info *pf = &bp->pf; 9833 int rc; 9834 9835 bp->num_leds = 0; 9836 if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601) 9837 return 0; 9838 9839 rc = hwrm_req_init(bp, req, HWRM_PORT_LED_QCAPS); 9840 if (rc) 9841 return rc; 9842 9843 req->port_id = cpu_to_le16(pf->port_id); 9844 resp = hwrm_req_hold(bp, req); 9845 rc = hwrm_req_send(bp, req); 9846 if (rc) { 9847 hwrm_req_drop(bp, req); 9848 return rc; 9849 } 9850 if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) { 9851 int i; 9852 9853 bp->num_leds = resp->num_leds; 9854 memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) * 9855 bp->num_leds); 9856 for (i = 0; i < bp->num_leds; i++) { 9857 struct bnxt_led_info *led = &bp->leds[i]; 9858 __le16 caps = led->led_state_caps; 9859 9860 if (!led->led_group_id || 9861 !BNXT_LED_ALT_BLINK_CAP(caps)) { 9862 bp->num_leds = 0; 9863 break; 9864 } 9865 } 9866 } 9867 hwrm_req_drop(bp, req); 9868 return 0; 9869 } 9870 9871 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp) 9872 { 9873 struct hwrm_wol_filter_alloc_output *resp; 9874 struct hwrm_wol_filter_alloc_input *req; 9875 int rc; 9876 9877 rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_ALLOC); 9878 if (rc) 9879 return rc; 9880 9881 req->port_id = cpu_to_le16(bp->pf.port_id); 9882 req->wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT; 9883 req->enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS); 9884 memcpy(req->mac_address, bp->dev->dev_addr, ETH_ALEN); 9885 9886 resp = hwrm_req_hold(bp, req); 9887 rc = hwrm_req_send(bp, req); 9888 if (!rc) 9889 bp->wol_filter_id = resp->wol_filter_id; 9890 hwrm_req_drop(bp, req); 9891 return rc; 9892 } 9893 9894 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp) 9895 { 9896 struct hwrm_wol_filter_free_input *req; 9897 int rc; 9898 9899 rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_FREE); 9900 if (rc) 9901 return rc; 9902 9903 req->port_id = cpu_to_le16(bp->pf.port_id); 9904 req->enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID); 9905 req->wol_filter_id = bp->wol_filter_id; 9906 9907 return hwrm_req_send(bp, req); 9908 } 9909 9910 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle) 9911 { 9912 struct hwrm_wol_filter_qcfg_output *resp; 9913 struct hwrm_wol_filter_qcfg_input *req; 9914 u16 next_handle = 0; 9915 int rc; 9916 9917 rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_QCFG); 9918 if (rc) 9919 return rc; 9920 9921 req->port_id = cpu_to_le16(bp->pf.port_id); 9922 req->handle = cpu_to_le16(handle); 9923 resp = hwrm_req_hold(bp, req); 9924 rc = hwrm_req_send(bp, req); 9925 if (!rc) { 9926 next_handle = le16_to_cpu(resp->next_handle); 9927 if (next_handle != 0) { 9928 if (resp->wol_type == 9929 WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) { 9930 bp->wol = 1; 9931 bp->wol_filter_id = resp->wol_filter_id; 9932 } 9933 } 9934 } 9935 hwrm_req_drop(bp, req); 9936 return next_handle; 9937 } 9938 9939 static void bnxt_get_wol_settings(struct bnxt *bp) 9940 { 9941 u16 handle = 0; 9942 9943 bp->wol = 0; 9944 if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP)) 9945 return; 9946 9947 do { 9948 handle = bnxt_hwrm_get_wol_fltrs(bp, handle); 9949 } while (handle && handle != 0xffff); 9950 } 9951 9952 #ifdef CONFIG_BNXT_HWMON 9953 static ssize_t bnxt_show_temp(struct device *dev, 9954 struct device_attribute *devattr, char *buf) 9955 { 9956 struct hwrm_temp_monitor_query_output *resp; 9957 struct hwrm_temp_monitor_query_input *req; 9958 struct bnxt *bp = dev_get_drvdata(dev); 9959 u32 len = 0; 9960 int rc; 9961 9962 rc = hwrm_req_init(bp, req, HWRM_TEMP_MONITOR_QUERY); 9963 if (rc) 9964 return rc; 9965 resp = hwrm_req_hold(bp, req); 9966 rc = hwrm_req_send(bp, req); 9967 if (!rc) 9968 len = sprintf(buf, "%u\n", resp->temp * 1000); /* display millidegree */ 9969 hwrm_req_drop(bp, req); 9970 if (rc) 9971 return rc; 9972 return len; 9973 } 9974 static SENSOR_DEVICE_ATTR(temp1_input, 0444, bnxt_show_temp, NULL, 0); 9975 9976 static struct attribute *bnxt_attrs[] = { 9977 &sensor_dev_attr_temp1_input.dev_attr.attr, 9978 NULL 9979 }; 9980 ATTRIBUTE_GROUPS(bnxt); 9981 9982 static void bnxt_hwmon_close(struct bnxt *bp) 9983 { 9984 if (bp->hwmon_dev) { 9985 hwmon_device_unregister(bp->hwmon_dev); 9986 bp->hwmon_dev = NULL; 9987 } 9988 } 9989 9990 static void bnxt_hwmon_open(struct bnxt *bp) 9991 { 9992 struct hwrm_temp_monitor_query_input *req; 9993 struct pci_dev *pdev = bp->pdev; 9994 int rc; 9995 9996 rc = hwrm_req_init(bp, req, HWRM_TEMP_MONITOR_QUERY); 9997 if (!rc) 9998 rc = hwrm_req_send_silent(bp, req); 9999 if (rc == -EACCES || rc == -EOPNOTSUPP) { 10000 bnxt_hwmon_close(bp); 10001 return; 10002 } 10003 10004 if (bp->hwmon_dev) 10005 return; 10006 10007 bp->hwmon_dev = hwmon_device_register_with_groups(&pdev->dev, 10008 DRV_MODULE_NAME, bp, 10009 bnxt_groups); 10010 if (IS_ERR(bp->hwmon_dev)) { 10011 bp->hwmon_dev = NULL; 10012 dev_warn(&pdev->dev, "Cannot register hwmon device\n"); 10013 } 10014 } 10015 #else 10016 static void bnxt_hwmon_close(struct bnxt *bp) 10017 { 10018 } 10019 10020 static void bnxt_hwmon_open(struct bnxt *bp) 10021 { 10022 } 10023 #endif 10024 10025 static bool bnxt_eee_config_ok(struct bnxt *bp) 10026 { 10027 struct ethtool_eee *eee = &bp->eee; 10028 struct bnxt_link_info *link_info = &bp->link_info; 10029 10030 if (!(bp->phy_flags & BNXT_PHY_FL_EEE_CAP)) 10031 return true; 10032 10033 if (eee->eee_enabled) { 10034 u32 advertising = 10035 _bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0); 10036 10037 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) { 10038 eee->eee_enabled = 0; 10039 return false; 10040 } 10041 if (eee->advertised & ~advertising) { 10042 eee->advertised = advertising & eee->supported; 10043 return false; 10044 } 10045 } 10046 return true; 10047 } 10048 10049 static int bnxt_update_phy_setting(struct bnxt *bp) 10050 { 10051 int rc; 10052 bool update_link = false; 10053 bool update_pause = false; 10054 bool update_eee = false; 10055 struct bnxt_link_info *link_info = &bp->link_info; 10056 10057 rc = bnxt_update_link(bp, true); 10058 if (rc) { 10059 netdev_err(bp->dev, "failed to update link (rc: %x)\n", 10060 rc); 10061 return rc; 10062 } 10063 if (!BNXT_SINGLE_PF(bp)) 10064 return 0; 10065 10066 if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) && 10067 (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) != 10068 link_info->req_flow_ctrl) 10069 update_pause = true; 10070 if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) && 10071 link_info->force_pause_setting != link_info->req_flow_ctrl) 10072 update_pause = true; 10073 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) { 10074 if (BNXT_AUTO_MODE(link_info->auto_mode)) 10075 update_link = true; 10076 if (link_info->req_signal_mode == BNXT_SIG_MODE_NRZ && 10077 link_info->req_link_speed != link_info->force_link_speed) 10078 update_link = true; 10079 else if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4 && 10080 link_info->req_link_speed != link_info->force_pam4_link_speed) 10081 update_link = true; 10082 if (link_info->req_duplex != link_info->duplex_setting) 10083 update_link = true; 10084 } else { 10085 if (link_info->auto_mode == BNXT_LINK_AUTO_NONE) 10086 update_link = true; 10087 if (link_info->advertising != link_info->auto_link_speeds || 10088 link_info->advertising_pam4 != link_info->auto_pam4_link_speeds) 10089 update_link = true; 10090 } 10091 10092 /* The last close may have shutdown the link, so need to call 10093 * PHY_CFG to bring it back up. 10094 */ 10095 if (!bp->link_info.link_up) 10096 update_link = true; 10097 10098 if (!bnxt_eee_config_ok(bp)) 10099 update_eee = true; 10100 10101 if (update_link) 10102 rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee); 10103 else if (update_pause) 10104 rc = bnxt_hwrm_set_pause(bp); 10105 if (rc) { 10106 netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n", 10107 rc); 10108 return rc; 10109 } 10110 10111 return rc; 10112 } 10113 10114 /* Common routine to pre-map certain register block to different GRC window. 10115 * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows 10116 * in PF and 3 windows in VF that can be customized to map in different 10117 * register blocks. 10118 */ 10119 static void bnxt_preset_reg_win(struct bnxt *bp) 10120 { 10121 if (BNXT_PF(bp)) { 10122 /* CAG registers map to GRC window #4 */ 10123 writel(BNXT_CAG_REG_BASE, 10124 bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12); 10125 } 10126 } 10127 10128 static int bnxt_init_dflt_ring_mode(struct bnxt *bp); 10129 10130 static int bnxt_reinit_after_abort(struct bnxt *bp) 10131 { 10132 int rc; 10133 10134 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 10135 return -EBUSY; 10136 10137 if (bp->dev->reg_state == NETREG_UNREGISTERED) 10138 return -ENODEV; 10139 10140 rc = bnxt_fw_init_one(bp); 10141 if (!rc) { 10142 bnxt_clear_int_mode(bp); 10143 rc = bnxt_init_int_mode(bp); 10144 if (!rc) { 10145 clear_bit(BNXT_STATE_ABORT_ERR, &bp->state); 10146 set_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 10147 } 10148 } 10149 return rc; 10150 } 10151 10152 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 10153 { 10154 int rc = 0; 10155 10156 bnxt_preset_reg_win(bp); 10157 netif_carrier_off(bp->dev); 10158 if (irq_re_init) { 10159 /* Reserve rings now if none were reserved at driver probe. */ 10160 rc = bnxt_init_dflt_ring_mode(bp); 10161 if (rc) { 10162 netdev_err(bp->dev, "Failed to reserve default rings at open\n"); 10163 return rc; 10164 } 10165 } 10166 rc = bnxt_reserve_rings(bp, irq_re_init); 10167 if (rc) 10168 return rc; 10169 if ((bp->flags & BNXT_FLAG_RFS) && 10170 !(bp->flags & BNXT_FLAG_USING_MSIX)) { 10171 /* disable RFS if falling back to INTA */ 10172 bp->dev->hw_features &= ~NETIF_F_NTUPLE; 10173 bp->flags &= ~BNXT_FLAG_RFS; 10174 } 10175 10176 rc = bnxt_alloc_mem(bp, irq_re_init); 10177 if (rc) { 10178 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc); 10179 goto open_err_free_mem; 10180 } 10181 10182 if (irq_re_init) { 10183 bnxt_init_napi(bp); 10184 rc = bnxt_request_irq(bp); 10185 if (rc) { 10186 netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc); 10187 goto open_err_irq; 10188 } 10189 } 10190 10191 rc = bnxt_init_nic(bp, irq_re_init); 10192 if (rc) { 10193 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc); 10194 goto open_err_irq; 10195 } 10196 10197 bnxt_enable_napi(bp); 10198 bnxt_debug_dev_init(bp); 10199 10200 if (link_re_init) { 10201 mutex_lock(&bp->link_lock); 10202 rc = bnxt_update_phy_setting(bp); 10203 mutex_unlock(&bp->link_lock); 10204 if (rc) { 10205 netdev_warn(bp->dev, "failed to update phy settings\n"); 10206 if (BNXT_SINGLE_PF(bp)) { 10207 bp->link_info.phy_retry = true; 10208 bp->link_info.phy_retry_expires = 10209 jiffies + 5 * HZ; 10210 } 10211 } 10212 } 10213 10214 if (irq_re_init) 10215 udp_tunnel_nic_reset_ntf(bp->dev); 10216 10217 set_bit(BNXT_STATE_OPEN, &bp->state); 10218 bnxt_enable_int(bp); 10219 /* Enable TX queues */ 10220 bnxt_tx_enable(bp); 10221 mod_timer(&bp->timer, jiffies + bp->current_interval); 10222 /* Poll link status and check for SFP+ module status */ 10223 mutex_lock(&bp->link_lock); 10224 bnxt_get_port_module_status(bp); 10225 mutex_unlock(&bp->link_lock); 10226 10227 /* VF-reps may need to be re-opened after the PF is re-opened */ 10228 if (BNXT_PF(bp)) 10229 bnxt_vf_reps_open(bp); 10230 return 0; 10231 10232 open_err_irq: 10233 bnxt_del_napi(bp); 10234 10235 open_err_free_mem: 10236 bnxt_free_skbs(bp); 10237 bnxt_free_irq(bp); 10238 bnxt_free_mem(bp, true); 10239 return rc; 10240 } 10241 10242 /* rtnl_lock held */ 10243 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 10244 { 10245 int rc = 0; 10246 10247 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) 10248 rc = -EIO; 10249 if (!rc) 10250 rc = __bnxt_open_nic(bp, irq_re_init, link_re_init); 10251 if (rc) { 10252 netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc); 10253 dev_close(bp->dev); 10254 } 10255 return rc; 10256 } 10257 10258 /* rtnl_lock held, open the NIC half way by allocating all resources, but 10259 * NAPI, IRQ, and TX are not enabled. This is mainly used for offline 10260 * self tests. 10261 */ 10262 int bnxt_half_open_nic(struct bnxt *bp) 10263 { 10264 int rc = 0; 10265 10266 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 10267 netdev_err(bp->dev, "A previous firmware reset has not completed, aborting half open\n"); 10268 rc = -ENODEV; 10269 goto half_open_err; 10270 } 10271 10272 rc = bnxt_alloc_mem(bp, false); 10273 if (rc) { 10274 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc); 10275 goto half_open_err; 10276 } 10277 rc = bnxt_init_nic(bp, false); 10278 if (rc) { 10279 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc); 10280 goto half_open_err; 10281 } 10282 return 0; 10283 10284 half_open_err: 10285 bnxt_free_skbs(bp); 10286 bnxt_free_mem(bp, false); 10287 dev_close(bp->dev); 10288 return rc; 10289 } 10290 10291 /* rtnl_lock held, this call can only be made after a previous successful 10292 * call to bnxt_half_open_nic(). 10293 */ 10294 void bnxt_half_close_nic(struct bnxt *bp) 10295 { 10296 bnxt_hwrm_resource_free(bp, false, false); 10297 bnxt_free_skbs(bp); 10298 bnxt_free_mem(bp, false); 10299 } 10300 10301 static void bnxt_reenable_sriov(struct bnxt *bp) 10302 { 10303 if (BNXT_PF(bp)) { 10304 struct bnxt_pf_info *pf = &bp->pf; 10305 int n = pf->active_vfs; 10306 10307 if (n) 10308 bnxt_cfg_hw_sriov(bp, &n, true); 10309 } 10310 } 10311 10312 static int bnxt_open(struct net_device *dev) 10313 { 10314 struct bnxt *bp = netdev_priv(dev); 10315 int rc; 10316 10317 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 10318 rc = bnxt_reinit_after_abort(bp); 10319 if (rc) { 10320 if (rc == -EBUSY) 10321 netdev_err(bp->dev, "A previous firmware reset has not completed, aborting\n"); 10322 else 10323 netdev_err(bp->dev, "Failed to reinitialize after aborted firmware reset\n"); 10324 return -ENODEV; 10325 } 10326 } 10327 10328 rc = bnxt_hwrm_if_change(bp, true); 10329 if (rc) 10330 return rc; 10331 10332 rc = __bnxt_open_nic(bp, true, true); 10333 if (rc) { 10334 bnxt_hwrm_if_change(bp, false); 10335 } else { 10336 if (test_and_clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) { 10337 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 10338 bnxt_ulp_start(bp, 0); 10339 bnxt_reenable_sriov(bp); 10340 } 10341 } 10342 bnxt_hwmon_open(bp); 10343 } 10344 10345 return rc; 10346 } 10347 10348 static bool bnxt_drv_busy(struct bnxt *bp) 10349 { 10350 return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) || 10351 test_bit(BNXT_STATE_READ_STATS, &bp->state)); 10352 } 10353 10354 static void bnxt_get_ring_stats(struct bnxt *bp, 10355 struct rtnl_link_stats64 *stats); 10356 10357 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init, 10358 bool link_re_init) 10359 { 10360 /* Close the VF-reps before closing PF */ 10361 if (BNXT_PF(bp)) 10362 bnxt_vf_reps_close(bp); 10363 10364 /* Change device state to avoid TX queue wake up's */ 10365 bnxt_tx_disable(bp); 10366 10367 clear_bit(BNXT_STATE_OPEN, &bp->state); 10368 smp_mb__after_atomic(); 10369 while (bnxt_drv_busy(bp)) 10370 msleep(20); 10371 10372 /* Flush rings and and disable interrupts */ 10373 bnxt_shutdown_nic(bp, irq_re_init); 10374 10375 /* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */ 10376 10377 bnxt_debug_dev_exit(bp); 10378 bnxt_disable_napi(bp); 10379 del_timer_sync(&bp->timer); 10380 bnxt_free_skbs(bp); 10381 10382 /* Save ring stats before shutdown */ 10383 if (bp->bnapi && irq_re_init) 10384 bnxt_get_ring_stats(bp, &bp->net_stats_prev); 10385 if (irq_re_init) { 10386 bnxt_free_irq(bp); 10387 bnxt_del_napi(bp); 10388 } 10389 bnxt_free_mem(bp, irq_re_init); 10390 } 10391 10392 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 10393 { 10394 int rc = 0; 10395 10396 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 10397 /* If we get here, it means firmware reset is in progress 10398 * while we are trying to close. We can safely proceed with 10399 * the close because we are holding rtnl_lock(). Some firmware 10400 * messages may fail as we proceed to close. We set the 10401 * ABORT_ERR flag here so that the FW reset thread will later 10402 * abort when it gets the rtnl_lock() and sees the flag. 10403 */ 10404 netdev_warn(bp->dev, "FW reset in progress during close, FW reset will be aborted\n"); 10405 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 10406 } 10407 10408 #ifdef CONFIG_BNXT_SRIOV 10409 if (bp->sriov_cfg) { 10410 rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait, 10411 !bp->sriov_cfg, 10412 BNXT_SRIOV_CFG_WAIT_TMO); 10413 if (rc) 10414 netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n"); 10415 } 10416 #endif 10417 __bnxt_close_nic(bp, irq_re_init, link_re_init); 10418 return rc; 10419 } 10420 10421 static int bnxt_close(struct net_device *dev) 10422 { 10423 struct bnxt *bp = netdev_priv(dev); 10424 10425 bnxt_hwmon_close(bp); 10426 bnxt_close_nic(bp, true, true); 10427 bnxt_hwrm_shutdown_link(bp); 10428 bnxt_hwrm_if_change(bp, false); 10429 return 0; 10430 } 10431 10432 static int bnxt_hwrm_port_phy_read(struct bnxt *bp, u16 phy_addr, u16 reg, 10433 u16 *val) 10434 { 10435 struct hwrm_port_phy_mdio_read_output *resp; 10436 struct hwrm_port_phy_mdio_read_input *req; 10437 int rc; 10438 10439 if (bp->hwrm_spec_code < 0x10a00) 10440 return -EOPNOTSUPP; 10441 10442 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_READ); 10443 if (rc) 10444 return rc; 10445 10446 req->port_id = cpu_to_le16(bp->pf.port_id); 10447 req->phy_addr = phy_addr; 10448 req->reg_addr = cpu_to_le16(reg & 0x1f); 10449 if (mdio_phy_id_is_c45(phy_addr)) { 10450 req->cl45_mdio = 1; 10451 req->phy_addr = mdio_phy_id_prtad(phy_addr); 10452 req->dev_addr = mdio_phy_id_devad(phy_addr); 10453 req->reg_addr = cpu_to_le16(reg); 10454 } 10455 10456 resp = hwrm_req_hold(bp, req); 10457 rc = hwrm_req_send(bp, req); 10458 if (!rc) 10459 *val = le16_to_cpu(resp->reg_data); 10460 hwrm_req_drop(bp, req); 10461 return rc; 10462 } 10463 10464 static int bnxt_hwrm_port_phy_write(struct bnxt *bp, u16 phy_addr, u16 reg, 10465 u16 val) 10466 { 10467 struct hwrm_port_phy_mdio_write_input *req; 10468 int rc; 10469 10470 if (bp->hwrm_spec_code < 0x10a00) 10471 return -EOPNOTSUPP; 10472 10473 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_WRITE); 10474 if (rc) 10475 return rc; 10476 10477 req->port_id = cpu_to_le16(bp->pf.port_id); 10478 req->phy_addr = phy_addr; 10479 req->reg_addr = cpu_to_le16(reg & 0x1f); 10480 if (mdio_phy_id_is_c45(phy_addr)) { 10481 req->cl45_mdio = 1; 10482 req->phy_addr = mdio_phy_id_prtad(phy_addr); 10483 req->dev_addr = mdio_phy_id_devad(phy_addr); 10484 req->reg_addr = cpu_to_le16(reg); 10485 } 10486 req->reg_data = cpu_to_le16(val); 10487 10488 return hwrm_req_send(bp, req); 10489 } 10490 10491 /* rtnl_lock held */ 10492 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 10493 { 10494 struct mii_ioctl_data *mdio = if_mii(ifr); 10495 struct bnxt *bp = netdev_priv(dev); 10496 int rc; 10497 10498 switch (cmd) { 10499 case SIOCGMIIPHY: 10500 mdio->phy_id = bp->link_info.phy_addr; 10501 10502 fallthrough; 10503 case SIOCGMIIREG: { 10504 u16 mii_regval = 0; 10505 10506 if (!netif_running(dev)) 10507 return -EAGAIN; 10508 10509 rc = bnxt_hwrm_port_phy_read(bp, mdio->phy_id, mdio->reg_num, 10510 &mii_regval); 10511 mdio->val_out = mii_regval; 10512 return rc; 10513 } 10514 10515 case SIOCSMIIREG: 10516 if (!netif_running(dev)) 10517 return -EAGAIN; 10518 10519 return bnxt_hwrm_port_phy_write(bp, mdio->phy_id, mdio->reg_num, 10520 mdio->val_in); 10521 10522 case SIOCSHWTSTAMP: 10523 return bnxt_hwtstamp_set(dev, ifr); 10524 10525 case SIOCGHWTSTAMP: 10526 return bnxt_hwtstamp_get(dev, ifr); 10527 10528 default: 10529 /* do nothing */ 10530 break; 10531 } 10532 return -EOPNOTSUPP; 10533 } 10534 10535 static void bnxt_get_ring_stats(struct bnxt *bp, 10536 struct rtnl_link_stats64 *stats) 10537 { 10538 int i; 10539 10540 for (i = 0; i < bp->cp_nr_rings; i++) { 10541 struct bnxt_napi *bnapi = bp->bnapi[i]; 10542 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 10543 u64 *sw = cpr->stats.sw_stats; 10544 10545 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts); 10546 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts); 10547 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts); 10548 10549 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts); 10550 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts); 10551 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts); 10552 10553 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes); 10554 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes); 10555 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes); 10556 10557 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes); 10558 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes); 10559 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes); 10560 10561 stats->rx_missed_errors += 10562 BNXT_GET_RING_STATS64(sw, rx_discard_pkts); 10563 10564 stats->multicast += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts); 10565 10566 stats->tx_dropped += BNXT_GET_RING_STATS64(sw, tx_error_pkts); 10567 10568 stats->rx_dropped += 10569 cpr->sw_stats.rx.rx_netpoll_discards + 10570 cpr->sw_stats.rx.rx_oom_discards; 10571 } 10572 } 10573 10574 static void bnxt_add_prev_stats(struct bnxt *bp, 10575 struct rtnl_link_stats64 *stats) 10576 { 10577 struct rtnl_link_stats64 *prev_stats = &bp->net_stats_prev; 10578 10579 stats->rx_packets += prev_stats->rx_packets; 10580 stats->tx_packets += prev_stats->tx_packets; 10581 stats->rx_bytes += prev_stats->rx_bytes; 10582 stats->tx_bytes += prev_stats->tx_bytes; 10583 stats->rx_missed_errors += prev_stats->rx_missed_errors; 10584 stats->multicast += prev_stats->multicast; 10585 stats->rx_dropped += prev_stats->rx_dropped; 10586 stats->tx_dropped += prev_stats->tx_dropped; 10587 } 10588 10589 static void 10590 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) 10591 { 10592 struct bnxt *bp = netdev_priv(dev); 10593 10594 set_bit(BNXT_STATE_READ_STATS, &bp->state); 10595 /* Make sure bnxt_close_nic() sees that we are reading stats before 10596 * we check the BNXT_STATE_OPEN flag. 10597 */ 10598 smp_mb__after_atomic(); 10599 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 10600 clear_bit(BNXT_STATE_READ_STATS, &bp->state); 10601 *stats = bp->net_stats_prev; 10602 return; 10603 } 10604 10605 bnxt_get_ring_stats(bp, stats); 10606 bnxt_add_prev_stats(bp, stats); 10607 10608 if (bp->flags & BNXT_FLAG_PORT_STATS) { 10609 u64 *rx = bp->port_stats.sw_stats; 10610 u64 *tx = bp->port_stats.sw_stats + 10611 BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 10612 10613 stats->rx_crc_errors = 10614 BNXT_GET_RX_PORT_STATS64(rx, rx_fcs_err_frames); 10615 stats->rx_frame_errors = 10616 BNXT_GET_RX_PORT_STATS64(rx, rx_align_err_frames); 10617 stats->rx_length_errors = 10618 BNXT_GET_RX_PORT_STATS64(rx, rx_undrsz_frames) + 10619 BNXT_GET_RX_PORT_STATS64(rx, rx_ovrsz_frames) + 10620 BNXT_GET_RX_PORT_STATS64(rx, rx_runt_frames); 10621 stats->rx_errors = 10622 BNXT_GET_RX_PORT_STATS64(rx, rx_false_carrier_frames) + 10623 BNXT_GET_RX_PORT_STATS64(rx, rx_jbr_frames); 10624 stats->collisions = 10625 BNXT_GET_TX_PORT_STATS64(tx, tx_total_collisions); 10626 stats->tx_fifo_errors = 10627 BNXT_GET_TX_PORT_STATS64(tx, tx_fifo_underruns); 10628 stats->tx_errors = BNXT_GET_TX_PORT_STATS64(tx, tx_err); 10629 } 10630 clear_bit(BNXT_STATE_READ_STATS, &bp->state); 10631 } 10632 10633 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask) 10634 { 10635 struct net_device *dev = bp->dev; 10636 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 10637 struct netdev_hw_addr *ha; 10638 u8 *haddr; 10639 int mc_count = 0; 10640 bool update = false; 10641 int off = 0; 10642 10643 netdev_for_each_mc_addr(ha, dev) { 10644 if (mc_count >= BNXT_MAX_MC_ADDRS) { 10645 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 10646 vnic->mc_list_count = 0; 10647 return false; 10648 } 10649 haddr = ha->addr; 10650 if (!ether_addr_equal(haddr, vnic->mc_list + off)) { 10651 memcpy(vnic->mc_list + off, haddr, ETH_ALEN); 10652 update = true; 10653 } 10654 off += ETH_ALEN; 10655 mc_count++; 10656 } 10657 if (mc_count) 10658 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST; 10659 10660 if (mc_count != vnic->mc_list_count) { 10661 vnic->mc_list_count = mc_count; 10662 update = true; 10663 } 10664 return update; 10665 } 10666 10667 static bool bnxt_uc_list_updated(struct bnxt *bp) 10668 { 10669 struct net_device *dev = bp->dev; 10670 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 10671 struct netdev_hw_addr *ha; 10672 int off = 0; 10673 10674 if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1)) 10675 return true; 10676 10677 netdev_for_each_uc_addr(ha, dev) { 10678 if (!ether_addr_equal(ha->addr, vnic->uc_list + off)) 10679 return true; 10680 10681 off += ETH_ALEN; 10682 } 10683 return false; 10684 } 10685 10686 static void bnxt_set_rx_mode(struct net_device *dev) 10687 { 10688 struct bnxt *bp = netdev_priv(dev); 10689 struct bnxt_vnic_info *vnic; 10690 bool mc_update = false; 10691 bool uc_update; 10692 u32 mask; 10693 10694 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) 10695 return; 10696 10697 vnic = &bp->vnic_info[0]; 10698 mask = vnic->rx_mask; 10699 mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS | 10700 CFA_L2_SET_RX_MASK_REQ_MASK_MCAST | 10701 CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST | 10702 CFA_L2_SET_RX_MASK_REQ_MASK_BCAST); 10703 10704 if (dev->flags & IFF_PROMISC) 10705 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 10706 10707 uc_update = bnxt_uc_list_updated(bp); 10708 10709 if (dev->flags & IFF_BROADCAST) 10710 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST; 10711 if (dev->flags & IFF_ALLMULTI) { 10712 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 10713 vnic->mc_list_count = 0; 10714 } else { 10715 mc_update = bnxt_mc_list_updated(bp, &mask); 10716 } 10717 10718 if (mask != vnic->rx_mask || uc_update || mc_update) { 10719 vnic->rx_mask = mask; 10720 10721 set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event); 10722 bnxt_queue_sp_work(bp); 10723 } 10724 } 10725 10726 static int bnxt_cfg_rx_mode(struct bnxt *bp) 10727 { 10728 struct net_device *dev = bp->dev; 10729 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 10730 struct hwrm_cfa_l2_filter_free_input *req; 10731 struct netdev_hw_addr *ha; 10732 int i, off = 0, rc; 10733 bool uc_update; 10734 10735 netif_addr_lock_bh(dev); 10736 uc_update = bnxt_uc_list_updated(bp); 10737 netif_addr_unlock_bh(dev); 10738 10739 if (!uc_update) 10740 goto skip_uc; 10741 10742 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE); 10743 if (rc) 10744 return rc; 10745 hwrm_req_hold(bp, req); 10746 for (i = 1; i < vnic->uc_filter_count; i++) { 10747 req->l2_filter_id = vnic->fw_l2_filter_id[i]; 10748 10749 rc = hwrm_req_send(bp, req); 10750 } 10751 hwrm_req_drop(bp, req); 10752 10753 vnic->uc_filter_count = 1; 10754 10755 netif_addr_lock_bh(dev); 10756 if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) { 10757 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 10758 } else { 10759 netdev_for_each_uc_addr(ha, dev) { 10760 memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN); 10761 off += ETH_ALEN; 10762 vnic->uc_filter_count++; 10763 } 10764 } 10765 netif_addr_unlock_bh(dev); 10766 10767 for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) { 10768 rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off); 10769 if (rc) { 10770 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", 10771 rc); 10772 vnic->uc_filter_count = i; 10773 return rc; 10774 } 10775 } 10776 10777 skip_uc: 10778 if ((vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS) && 10779 !bnxt_promisc_ok(bp)) 10780 vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 10781 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0); 10782 if (rc && vnic->mc_list_count) { 10783 netdev_info(bp->dev, "Failed setting MC filters rc: %d, turning on ALL_MCAST mode\n", 10784 rc); 10785 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 10786 vnic->mc_list_count = 0; 10787 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0); 10788 } 10789 if (rc) 10790 netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %d\n", 10791 rc); 10792 10793 return rc; 10794 } 10795 10796 static bool bnxt_can_reserve_rings(struct bnxt *bp) 10797 { 10798 #ifdef CONFIG_BNXT_SRIOV 10799 if (BNXT_NEW_RM(bp) && BNXT_VF(bp)) { 10800 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 10801 10802 /* No minimum rings were provisioned by the PF. Don't 10803 * reserve rings by default when device is down. 10804 */ 10805 if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings) 10806 return true; 10807 10808 if (!netif_running(bp->dev)) 10809 return false; 10810 } 10811 #endif 10812 return true; 10813 } 10814 10815 /* If the chip and firmware supports RFS */ 10816 static bool bnxt_rfs_supported(struct bnxt *bp) 10817 { 10818 if (bp->flags & BNXT_FLAG_CHIP_P5) { 10819 if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) 10820 return true; 10821 return false; 10822 } 10823 /* 212 firmware is broken for aRFS */ 10824 if (BNXT_FW_MAJ(bp) == 212) 10825 return false; 10826 if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp)) 10827 return true; 10828 if (bp->flags & BNXT_FLAG_NEW_RSS_CAP) 10829 return true; 10830 return false; 10831 } 10832 10833 /* If runtime conditions support RFS */ 10834 static bool bnxt_rfs_capable(struct bnxt *bp) 10835 { 10836 #ifdef CONFIG_RFS_ACCEL 10837 int vnics, max_vnics, max_rss_ctxs; 10838 10839 if (bp->flags & BNXT_FLAG_CHIP_P5) 10840 return bnxt_rfs_supported(bp); 10841 if (!(bp->flags & BNXT_FLAG_MSIX_CAP) || !bnxt_can_reserve_rings(bp)) 10842 return false; 10843 10844 vnics = 1 + bp->rx_nr_rings; 10845 max_vnics = bnxt_get_max_func_vnics(bp); 10846 max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp); 10847 10848 /* RSS contexts not a limiting factor */ 10849 if (bp->flags & BNXT_FLAG_NEW_RSS_CAP) 10850 max_rss_ctxs = max_vnics; 10851 if (vnics > max_vnics || vnics > max_rss_ctxs) { 10852 if (bp->rx_nr_rings > 1) 10853 netdev_warn(bp->dev, 10854 "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n", 10855 min(max_rss_ctxs - 1, max_vnics - 1)); 10856 return false; 10857 } 10858 10859 if (!BNXT_NEW_RM(bp)) 10860 return true; 10861 10862 if (vnics == bp->hw_resc.resv_vnics) 10863 return true; 10864 10865 bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, vnics); 10866 if (vnics <= bp->hw_resc.resv_vnics) 10867 return true; 10868 10869 netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n"); 10870 bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, 1); 10871 return false; 10872 #else 10873 return false; 10874 #endif 10875 } 10876 10877 static netdev_features_t bnxt_fix_features(struct net_device *dev, 10878 netdev_features_t features) 10879 { 10880 struct bnxt *bp = netdev_priv(dev); 10881 netdev_features_t vlan_features; 10882 10883 if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp)) 10884 features &= ~NETIF_F_NTUPLE; 10885 10886 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) 10887 features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 10888 10889 if (!(features & NETIF_F_GRO)) 10890 features &= ~NETIF_F_GRO_HW; 10891 10892 if (features & NETIF_F_GRO_HW) 10893 features &= ~NETIF_F_LRO; 10894 10895 /* Both CTAG and STAG VLAN accelaration on the RX side have to be 10896 * turned on or off together. 10897 */ 10898 vlan_features = features & BNXT_HW_FEATURE_VLAN_ALL_RX; 10899 if (vlan_features != BNXT_HW_FEATURE_VLAN_ALL_RX) { 10900 if (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX) 10901 features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX; 10902 else if (vlan_features) 10903 features |= BNXT_HW_FEATURE_VLAN_ALL_RX; 10904 } 10905 #ifdef CONFIG_BNXT_SRIOV 10906 if (BNXT_VF(bp) && bp->vf.vlan) 10907 features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX; 10908 #endif 10909 return features; 10910 } 10911 10912 static int bnxt_set_features(struct net_device *dev, netdev_features_t features) 10913 { 10914 struct bnxt *bp = netdev_priv(dev); 10915 u32 flags = bp->flags; 10916 u32 changes; 10917 int rc = 0; 10918 bool re_init = false; 10919 bool update_tpa = false; 10920 10921 flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS; 10922 if (features & NETIF_F_GRO_HW) 10923 flags |= BNXT_FLAG_GRO; 10924 else if (features & NETIF_F_LRO) 10925 flags |= BNXT_FLAG_LRO; 10926 10927 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) 10928 flags &= ~BNXT_FLAG_TPA; 10929 10930 if (features & BNXT_HW_FEATURE_VLAN_ALL_RX) 10931 flags |= BNXT_FLAG_STRIP_VLAN; 10932 10933 if (features & NETIF_F_NTUPLE) 10934 flags |= BNXT_FLAG_RFS; 10935 10936 changes = flags ^ bp->flags; 10937 if (changes & BNXT_FLAG_TPA) { 10938 update_tpa = true; 10939 if ((bp->flags & BNXT_FLAG_TPA) == 0 || 10940 (flags & BNXT_FLAG_TPA) == 0 || 10941 (bp->flags & BNXT_FLAG_CHIP_P5)) 10942 re_init = true; 10943 } 10944 10945 if (changes & ~BNXT_FLAG_TPA) 10946 re_init = true; 10947 10948 if (flags != bp->flags) { 10949 u32 old_flags = bp->flags; 10950 10951 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 10952 bp->flags = flags; 10953 if (update_tpa) 10954 bnxt_set_ring_params(bp); 10955 return rc; 10956 } 10957 10958 if (re_init) { 10959 bnxt_close_nic(bp, false, false); 10960 bp->flags = flags; 10961 if (update_tpa) 10962 bnxt_set_ring_params(bp); 10963 10964 return bnxt_open_nic(bp, false, false); 10965 } 10966 if (update_tpa) { 10967 bp->flags = flags; 10968 rc = bnxt_set_tpa(bp, 10969 (flags & BNXT_FLAG_TPA) ? 10970 true : false); 10971 if (rc) 10972 bp->flags = old_flags; 10973 } 10974 } 10975 return rc; 10976 } 10977 10978 static bool bnxt_exthdr_check(struct bnxt *bp, struct sk_buff *skb, int nw_off, 10979 u8 **nextp) 10980 { 10981 struct ipv6hdr *ip6h = (struct ipv6hdr *)(skb->data + nw_off); 10982 int hdr_count = 0; 10983 u8 *nexthdr; 10984 int start; 10985 10986 /* Check that there are at most 2 IPv6 extension headers, no 10987 * fragment header, and each is <= 64 bytes. 10988 */ 10989 start = nw_off + sizeof(*ip6h); 10990 nexthdr = &ip6h->nexthdr; 10991 while (ipv6_ext_hdr(*nexthdr)) { 10992 struct ipv6_opt_hdr *hp; 10993 int hdrlen; 10994 10995 if (hdr_count >= 3 || *nexthdr == NEXTHDR_NONE || 10996 *nexthdr == NEXTHDR_FRAGMENT) 10997 return false; 10998 hp = __skb_header_pointer(NULL, start, sizeof(*hp), skb->data, 10999 skb_headlen(skb), NULL); 11000 if (!hp) 11001 return false; 11002 if (*nexthdr == NEXTHDR_AUTH) 11003 hdrlen = ipv6_authlen(hp); 11004 else 11005 hdrlen = ipv6_optlen(hp); 11006 11007 if (hdrlen > 64) 11008 return false; 11009 nexthdr = &hp->nexthdr; 11010 start += hdrlen; 11011 hdr_count++; 11012 } 11013 if (nextp) { 11014 /* Caller will check inner protocol */ 11015 if (skb->encapsulation) { 11016 *nextp = nexthdr; 11017 return true; 11018 } 11019 *nextp = NULL; 11020 } 11021 /* Only support TCP/UDP for non-tunneled ipv6 and inner ipv6 */ 11022 return *nexthdr == IPPROTO_TCP || *nexthdr == IPPROTO_UDP; 11023 } 11024 11025 /* For UDP, we can only handle 1 Vxlan port and 1 Geneve port. */ 11026 static bool bnxt_udp_tunl_check(struct bnxt *bp, struct sk_buff *skb) 11027 { 11028 struct udphdr *uh = udp_hdr(skb); 11029 __be16 udp_port = uh->dest; 11030 11031 if (udp_port != bp->vxlan_port && udp_port != bp->nge_port) 11032 return false; 11033 if (skb->inner_protocol_type == ENCAP_TYPE_ETHER) { 11034 struct ethhdr *eh = inner_eth_hdr(skb); 11035 11036 switch (eh->h_proto) { 11037 case htons(ETH_P_IP): 11038 return true; 11039 case htons(ETH_P_IPV6): 11040 return bnxt_exthdr_check(bp, skb, 11041 skb_inner_network_offset(skb), 11042 NULL); 11043 } 11044 } 11045 return false; 11046 } 11047 11048 static bool bnxt_tunl_check(struct bnxt *bp, struct sk_buff *skb, u8 l4_proto) 11049 { 11050 switch (l4_proto) { 11051 case IPPROTO_UDP: 11052 return bnxt_udp_tunl_check(bp, skb); 11053 case IPPROTO_IPIP: 11054 return true; 11055 case IPPROTO_GRE: { 11056 switch (skb->inner_protocol) { 11057 default: 11058 return false; 11059 case htons(ETH_P_IP): 11060 return true; 11061 case htons(ETH_P_IPV6): 11062 fallthrough; 11063 } 11064 } 11065 case IPPROTO_IPV6: 11066 /* Check ext headers of inner ipv6 */ 11067 return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb), 11068 NULL); 11069 } 11070 return false; 11071 } 11072 11073 static netdev_features_t bnxt_features_check(struct sk_buff *skb, 11074 struct net_device *dev, 11075 netdev_features_t features) 11076 { 11077 struct bnxt *bp = netdev_priv(dev); 11078 u8 *l4_proto; 11079 11080 features = vlan_features_check(skb, features); 11081 switch (vlan_get_protocol(skb)) { 11082 case htons(ETH_P_IP): 11083 if (!skb->encapsulation) 11084 return features; 11085 l4_proto = &ip_hdr(skb)->protocol; 11086 if (bnxt_tunl_check(bp, skb, *l4_proto)) 11087 return features; 11088 break; 11089 case htons(ETH_P_IPV6): 11090 if (!bnxt_exthdr_check(bp, skb, skb_network_offset(skb), 11091 &l4_proto)) 11092 break; 11093 if (!l4_proto || bnxt_tunl_check(bp, skb, *l4_proto)) 11094 return features; 11095 break; 11096 } 11097 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 11098 } 11099 11100 int bnxt_dbg_hwrm_rd_reg(struct bnxt *bp, u32 reg_off, u16 num_words, 11101 u32 *reg_buf) 11102 { 11103 struct hwrm_dbg_read_direct_output *resp; 11104 struct hwrm_dbg_read_direct_input *req; 11105 __le32 *dbg_reg_buf; 11106 dma_addr_t mapping; 11107 int rc, i; 11108 11109 rc = hwrm_req_init(bp, req, HWRM_DBG_READ_DIRECT); 11110 if (rc) 11111 return rc; 11112 11113 dbg_reg_buf = hwrm_req_dma_slice(bp, req, num_words * 4, 11114 &mapping); 11115 if (!dbg_reg_buf) { 11116 rc = -ENOMEM; 11117 goto dbg_rd_reg_exit; 11118 } 11119 11120 req->host_dest_addr = cpu_to_le64(mapping); 11121 11122 resp = hwrm_req_hold(bp, req); 11123 req->read_addr = cpu_to_le32(reg_off + CHIMP_REG_VIEW_ADDR); 11124 req->read_len32 = cpu_to_le32(num_words); 11125 11126 rc = hwrm_req_send(bp, req); 11127 if (rc || resp->error_code) { 11128 rc = -EIO; 11129 goto dbg_rd_reg_exit; 11130 } 11131 for (i = 0; i < num_words; i++) 11132 reg_buf[i] = le32_to_cpu(dbg_reg_buf[i]); 11133 11134 dbg_rd_reg_exit: 11135 hwrm_req_drop(bp, req); 11136 return rc; 11137 } 11138 11139 static int bnxt_dbg_hwrm_ring_info_get(struct bnxt *bp, u8 ring_type, 11140 u32 ring_id, u32 *prod, u32 *cons) 11141 { 11142 struct hwrm_dbg_ring_info_get_output *resp; 11143 struct hwrm_dbg_ring_info_get_input *req; 11144 int rc; 11145 11146 rc = hwrm_req_init(bp, req, HWRM_DBG_RING_INFO_GET); 11147 if (rc) 11148 return rc; 11149 11150 req->ring_type = ring_type; 11151 req->fw_ring_id = cpu_to_le32(ring_id); 11152 resp = hwrm_req_hold(bp, req); 11153 rc = hwrm_req_send(bp, req); 11154 if (!rc) { 11155 *prod = le32_to_cpu(resp->producer_index); 11156 *cons = le32_to_cpu(resp->consumer_index); 11157 } 11158 hwrm_req_drop(bp, req); 11159 return rc; 11160 } 11161 11162 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi) 11163 { 11164 struct bnxt_tx_ring_info *txr = bnapi->tx_ring; 11165 int i = bnapi->index; 11166 11167 if (!txr) 11168 return; 11169 11170 netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n", 11171 i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod, 11172 txr->tx_cons); 11173 } 11174 11175 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi) 11176 { 11177 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 11178 int i = bnapi->index; 11179 11180 if (!rxr) 11181 return; 11182 11183 netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n", 11184 i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod, 11185 rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod, 11186 rxr->rx_sw_agg_prod); 11187 } 11188 11189 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi) 11190 { 11191 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 11192 int i = bnapi->index; 11193 11194 netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n", 11195 i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons); 11196 } 11197 11198 static void bnxt_dbg_dump_states(struct bnxt *bp) 11199 { 11200 int i; 11201 struct bnxt_napi *bnapi; 11202 11203 for (i = 0; i < bp->cp_nr_rings; i++) { 11204 bnapi = bp->bnapi[i]; 11205 if (netif_msg_drv(bp)) { 11206 bnxt_dump_tx_sw_state(bnapi); 11207 bnxt_dump_rx_sw_state(bnapi); 11208 bnxt_dump_cp_sw_state(bnapi); 11209 } 11210 } 11211 } 11212 11213 static int bnxt_hwrm_rx_ring_reset(struct bnxt *bp, int ring_nr) 11214 { 11215 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 11216 struct hwrm_ring_reset_input *req; 11217 struct bnxt_napi *bnapi = rxr->bnapi; 11218 struct bnxt_cp_ring_info *cpr; 11219 u16 cp_ring_id; 11220 int rc; 11221 11222 rc = hwrm_req_init(bp, req, HWRM_RING_RESET); 11223 if (rc) 11224 return rc; 11225 11226 cpr = &bnapi->cp_ring; 11227 cp_ring_id = cpr->cp_ring_struct.fw_ring_id; 11228 req->cmpl_ring = cpu_to_le16(cp_ring_id); 11229 req->ring_type = RING_RESET_REQ_RING_TYPE_RX_RING_GRP; 11230 req->ring_id = cpu_to_le16(bp->grp_info[bnapi->index].fw_grp_id); 11231 return hwrm_req_send_silent(bp, req); 11232 } 11233 11234 static void bnxt_reset_task(struct bnxt *bp, bool silent) 11235 { 11236 if (!silent) 11237 bnxt_dbg_dump_states(bp); 11238 if (netif_running(bp->dev)) { 11239 int rc; 11240 11241 if (silent) { 11242 bnxt_close_nic(bp, false, false); 11243 bnxt_open_nic(bp, false, false); 11244 } else { 11245 bnxt_ulp_stop(bp); 11246 bnxt_close_nic(bp, true, false); 11247 rc = bnxt_open_nic(bp, true, false); 11248 bnxt_ulp_start(bp, rc); 11249 } 11250 } 11251 } 11252 11253 static void bnxt_tx_timeout(struct net_device *dev, unsigned int txqueue) 11254 { 11255 struct bnxt *bp = netdev_priv(dev); 11256 11257 netdev_err(bp->dev, "TX timeout detected, starting reset task!\n"); 11258 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event); 11259 bnxt_queue_sp_work(bp); 11260 } 11261 11262 static void bnxt_fw_health_check(struct bnxt *bp) 11263 { 11264 struct bnxt_fw_health *fw_health = bp->fw_health; 11265 u32 val; 11266 11267 if (!fw_health->enabled || test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 11268 return; 11269 11270 /* Make sure it is enabled before checking the tmr_counter. */ 11271 smp_rmb(); 11272 if (fw_health->tmr_counter) { 11273 fw_health->tmr_counter--; 11274 return; 11275 } 11276 11277 val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 11278 if (val == fw_health->last_fw_heartbeat) 11279 goto fw_reset; 11280 11281 fw_health->last_fw_heartbeat = val; 11282 11283 val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 11284 if (val != fw_health->last_fw_reset_cnt) 11285 goto fw_reset; 11286 11287 fw_health->tmr_counter = fw_health->tmr_multiplier; 11288 return; 11289 11290 fw_reset: 11291 set_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event); 11292 bnxt_queue_sp_work(bp); 11293 } 11294 11295 static void bnxt_timer(struct timer_list *t) 11296 { 11297 struct bnxt *bp = from_timer(bp, t, timer); 11298 struct net_device *dev = bp->dev; 11299 11300 if (!netif_running(dev) || !test_bit(BNXT_STATE_OPEN, &bp->state)) 11301 return; 11302 11303 if (atomic_read(&bp->intr_sem) != 0) 11304 goto bnxt_restart_timer; 11305 11306 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) 11307 bnxt_fw_health_check(bp); 11308 11309 if (bp->link_info.link_up && bp->stats_coal_ticks) { 11310 set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event); 11311 bnxt_queue_sp_work(bp); 11312 } 11313 11314 if (bnxt_tc_flower_enabled(bp)) { 11315 set_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event); 11316 bnxt_queue_sp_work(bp); 11317 } 11318 11319 #ifdef CONFIG_RFS_ACCEL 11320 if ((bp->flags & BNXT_FLAG_RFS) && bp->ntp_fltr_count) { 11321 set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event); 11322 bnxt_queue_sp_work(bp); 11323 } 11324 #endif /*CONFIG_RFS_ACCEL*/ 11325 11326 if (bp->link_info.phy_retry) { 11327 if (time_after(jiffies, bp->link_info.phy_retry_expires)) { 11328 bp->link_info.phy_retry = false; 11329 netdev_warn(bp->dev, "failed to update phy settings after maximum retries.\n"); 11330 } else { 11331 set_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event); 11332 bnxt_queue_sp_work(bp); 11333 } 11334 } 11335 11336 if ((bp->flags & BNXT_FLAG_CHIP_P5) && !bp->chip_rev && 11337 netif_carrier_ok(dev)) { 11338 set_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event); 11339 bnxt_queue_sp_work(bp); 11340 } 11341 bnxt_restart_timer: 11342 mod_timer(&bp->timer, jiffies + bp->current_interval); 11343 } 11344 11345 static void bnxt_rtnl_lock_sp(struct bnxt *bp) 11346 { 11347 /* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK 11348 * set. If the device is being closed, bnxt_close() may be holding 11349 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear. So we 11350 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl(). 11351 */ 11352 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 11353 rtnl_lock(); 11354 } 11355 11356 static void bnxt_rtnl_unlock_sp(struct bnxt *bp) 11357 { 11358 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 11359 rtnl_unlock(); 11360 } 11361 11362 /* Only called from bnxt_sp_task() */ 11363 static void bnxt_reset(struct bnxt *bp, bool silent) 11364 { 11365 bnxt_rtnl_lock_sp(bp); 11366 if (test_bit(BNXT_STATE_OPEN, &bp->state)) 11367 bnxt_reset_task(bp, silent); 11368 bnxt_rtnl_unlock_sp(bp); 11369 } 11370 11371 /* Only called from bnxt_sp_task() */ 11372 static void bnxt_rx_ring_reset(struct bnxt *bp) 11373 { 11374 int i; 11375 11376 bnxt_rtnl_lock_sp(bp); 11377 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 11378 bnxt_rtnl_unlock_sp(bp); 11379 return; 11380 } 11381 /* Disable and flush TPA before resetting the RX ring */ 11382 if (bp->flags & BNXT_FLAG_TPA) 11383 bnxt_set_tpa(bp, false); 11384 for (i = 0; i < bp->rx_nr_rings; i++) { 11385 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 11386 struct bnxt_cp_ring_info *cpr; 11387 int rc; 11388 11389 if (!rxr->bnapi->in_reset) 11390 continue; 11391 11392 rc = bnxt_hwrm_rx_ring_reset(bp, i); 11393 if (rc) { 11394 if (rc == -EINVAL || rc == -EOPNOTSUPP) 11395 netdev_info_once(bp->dev, "RX ring reset not supported by firmware, falling back to global reset\n"); 11396 else 11397 netdev_warn(bp->dev, "RX ring reset failed, rc = %d, falling back to global reset\n", 11398 rc); 11399 bnxt_reset_task(bp, true); 11400 break; 11401 } 11402 bnxt_free_one_rx_ring_skbs(bp, i); 11403 rxr->rx_prod = 0; 11404 rxr->rx_agg_prod = 0; 11405 rxr->rx_sw_agg_prod = 0; 11406 rxr->rx_next_cons = 0; 11407 rxr->bnapi->in_reset = false; 11408 bnxt_alloc_one_rx_ring(bp, i); 11409 cpr = &rxr->bnapi->cp_ring; 11410 cpr->sw_stats.rx.rx_resets++; 11411 if (bp->flags & BNXT_FLAG_AGG_RINGS) 11412 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 11413 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 11414 } 11415 if (bp->flags & BNXT_FLAG_TPA) 11416 bnxt_set_tpa(bp, true); 11417 bnxt_rtnl_unlock_sp(bp); 11418 } 11419 11420 static void bnxt_fw_reset_close(struct bnxt *bp) 11421 { 11422 bnxt_ulp_stop(bp); 11423 /* When firmware is in fatal state, quiesce device and disable 11424 * bus master to prevent any potential bad DMAs before freeing 11425 * kernel memory. 11426 */ 11427 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) { 11428 u16 val = 0; 11429 11430 pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val); 11431 if (val == 0xffff) 11432 bp->fw_reset_min_dsecs = 0; 11433 bnxt_tx_disable(bp); 11434 bnxt_disable_napi(bp); 11435 bnxt_disable_int_sync(bp); 11436 bnxt_free_irq(bp); 11437 bnxt_clear_int_mode(bp); 11438 pci_disable_device(bp->pdev); 11439 } 11440 __bnxt_close_nic(bp, true, false); 11441 bnxt_vf_reps_free(bp); 11442 bnxt_clear_int_mode(bp); 11443 bnxt_hwrm_func_drv_unrgtr(bp); 11444 if (pci_is_enabled(bp->pdev)) 11445 pci_disable_device(bp->pdev); 11446 bnxt_free_ctx_mem(bp); 11447 kfree(bp->ctx); 11448 bp->ctx = NULL; 11449 } 11450 11451 static bool is_bnxt_fw_ok(struct bnxt *bp) 11452 { 11453 struct bnxt_fw_health *fw_health = bp->fw_health; 11454 bool no_heartbeat = false, has_reset = false; 11455 u32 val; 11456 11457 val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 11458 if (val == fw_health->last_fw_heartbeat) 11459 no_heartbeat = true; 11460 11461 val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 11462 if (val != fw_health->last_fw_reset_cnt) 11463 has_reset = true; 11464 11465 if (!no_heartbeat && has_reset) 11466 return true; 11467 11468 return false; 11469 } 11470 11471 /* rtnl_lock is acquired before calling this function */ 11472 static void bnxt_force_fw_reset(struct bnxt *bp) 11473 { 11474 struct bnxt_fw_health *fw_health = bp->fw_health; 11475 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 11476 u32 wait_dsecs; 11477 11478 if (!test_bit(BNXT_STATE_OPEN, &bp->state) || 11479 test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 11480 return; 11481 11482 if (ptp) { 11483 spin_lock_bh(&ptp->ptp_lock); 11484 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 11485 spin_unlock_bh(&ptp->ptp_lock); 11486 } else { 11487 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 11488 } 11489 bnxt_fw_reset_close(bp); 11490 wait_dsecs = fw_health->master_func_wait_dsecs; 11491 if (fw_health->master) { 11492 if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) 11493 wait_dsecs = 0; 11494 bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW; 11495 } else { 11496 bp->fw_reset_timestamp = jiffies + wait_dsecs * HZ / 10; 11497 wait_dsecs = fw_health->normal_func_wait_dsecs; 11498 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 11499 } 11500 11501 bp->fw_reset_min_dsecs = fw_health->post_reset_wait_dsecs; 11502 bp->fw_reset_max_dsecs = fw_health->post_reset_max_wait_dsecs; 11503 bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10); 11504 } 11505 11506 void bnxt_fw_exception(struct bnxt *bp) 11507 { 11508 netdev_warn(bp->dev, "Detected firmware fatal condition, initiating reset\n"); 11509 set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 11510 bnxt_rtnl_lock_sp(bp); 11511 bnxt_force_fw_reset(bp); 11512 bnxt_rtnl_unlock_sp(bp); 11513 } 11514 11515 /* Returns the number of registered VFs, or 1 if VF configuration is pending, or 11516 * < 0 on error. 11517 */ 11518 static int bnxt_get_registered_vfs(struct bnxt *bp) 11519 { 11520 #ifdef CONFIG_BNXT_SRIOV 11521 int rc; 11522 11523 if (!BNXT_PF(bp)) 11524 return 0; 11525 11526 rc = bnxt_hwrm_func_qcfg(bp); 11527 if (rc) { 11528 netdev_err(bp->dev, "func_qcfg cmd failed, rc = %d\n", rc); 11529 return rc; 11530 } 11531 if (bp->pf.registered_vfs) 11532 return bp->pf.registered_vfs; 11533 if (bp->sriov_cfg) 11534 return 1; 11535 #endif 11536 return 0; 11537 } 11538 11539 void bnxt_fw_reset(struct bnxt *bp) 11540 { 11541 bnxt_rtnl_lock_sp(bp); 11542 if (test_bit(BNXT_STATE_OPEN, &bp->state) && 11543 !test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 11544 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 11545 int n = 0, tmo; 11546 11547 if (ptp) { 11548 spin_lock_bh(&ptp->ptp_lock); 11549 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 11550 spin_unlock_bh(&ptp->ptp_lock); 11551 } else { 11552 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 11553 } 11554 if (bp->pf.active_vfs && 11555 !test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) 11556 n = bnxt_get_registered_vfs(bp); 11557 if (n < 0) { 11558 netdev_err(bp->dev, "Firmware reset aborted, rc = %d\n", 11559 n); 11560 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 11561 dev_close(bp->dev); 11562 goto fw_reset_exit; 11563 } else if (n > 0) { 11564 u16 vf_tmo_dsecs = n * 10; 11565 11566 if (bp->fw_reset_max_dsecs < vf_tmo_dsecs) 11567 bp->fw_reset_max_dsecs = vf_tmo_dsecs; 11568 bp->fw_reset_state = 11569 BNXT_FW_RESET_STATE_POLL_VF; 11570 bnxt_queue_fw_reset_work(bp, HZ / 10); 11571 goto fw_reset_exit; 11572 } 11573 bnxt_fw_reset_close(bp); 11574 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 11575 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN; 11576 tmo = HZ / 10; 11577 } else { 11578 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 11579 tmo = bp->fw_reset_min_dsecs * HZ / 10; 11580 } 11581 bnxt_queue_fw_reset_work(bp, tmo); 11582 } 11583 fw_reset_exit: 11584 bnxt_rtnl_unlock_sp(bp); 11585 } 11586 11587 static void bnxt_chk_missed_irq(struct bnxt *bp) 11588 { 11589 int i; 11590 11591 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 11592 return; 11593 11594 for (i = 0; i < bp->cp_nr_rings; i++) { 11595 struct bnxt_napi *bnapi = bp->bnapi[i]; 11596 struct bnxt_cp_ring_info *cpr; 11597 u32 fw_ring_id; 11598 int j; 11599 11600 if (!bnapi) 11601 continue; 11602 11603 cpr = &bnapi->cp_ring; 11604 for (j = 0; j < 2; j++) { 11605 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j]; 11606 u32 val[2]; 11607 11608 if (!cpr2 || cpr2->has_more_work || 11609 !bnxt_has_work(bp, cpr2)) 11610 continue; 11611 11612 if (cpr2->cp_raw_cons != cpr2->last_cp_raw_cons) { 11613 cpr2->last_cp_raw_cons = cpr2->cp_raw_cons; 11614 continue; 11615 } 11616 fw_ring_id = cpr2->cp_ring_struct.fw_ring_id; 11617 bnxt_dbg_hwrm_ring_info_get(bp, 11618 DBG_RING_INFO_GET_REQ_RING_TYPE_L2_CMPL, 11619 fw_ring_id, &val[0], &val[1]); 11620 cpr->sw_stats.cmn.missed_irqs++; 11621 } 11622 } 11623 } 11624 11625 static void bnxt_cfg_ntp_filters(struct bnxt *); 11626 11627 static void bnxt_init_ethtool_link_settings(struct bnxt *bp) 11628 { 11629 struct bnxt_link_info *link_info = &bp->link_info; 11630 11631 if (BNXT_AUTO_MODE(link_info->auto_mode)) { 11632 link_info->autoneg = BNXT_AUTONEG_SPEED; 11633 if (bp->hwrm_spec_code >= 0x10201) { 11634 if (link_info->auto_pause_setting & 11635 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE) 11636 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL; 11637 } else { 11638 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL; 11639 } 11640 link_info->advertising = link_info->auto_link_speeds; 11641 link_info->advertising_pam4 = link_info->auto_pam4_link_speeds; 11642 } else { 11643 link_info->req_link_speed = link_info->force_link_speed; 11644 link_info->req_signal_mode = BNXT_SIG_MODE_NRZ; 11645 if (link_info->force_pam4_link_speed) { 11646 link_info->req_link_speed = 11647 link_info->force_pam4_link_speed; 11648 link_info->req_signal_mode = BNXT_SIG_MODE_PAM4; 11649 } 11650 link_info->req_duplex = link_info->duplex_setting; 11651 } 11652 if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) 11653 link_info->req_flow_ctrl = 11654 link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH; 11655 else 11656 link_info->req_flow_ctrl = link_info->force_pause_setting; 11657 } 11658 11659 static void bnxt_fw_echo_reply(struct bnxt *bp) 11660 { 11661 struct bnxt_fw_health *fw_health = bp->fw_health; 11662 struct hwrm_func_echo_response_input *req; 11663 int rc; 11664 11665 rc = hwrm_req_init(bp, req, HWRM_FUNC_ECHO_RESPONSE); 11666 if (rc) 11667 return; 11668 req->event_data1 = cpu_to_le32(fw_health->echo_req_data1); 11669 req->event_data2 = cpu_to_le32(fw_health->echo_req_data2); 11670 hwrm_req_send(bp, req); 11671 } 11672 11673 static void bnxt_sp_task(struct work_struct *work) 11674 { 11675 struct bnxt *bp = container_of(work, struct bnxt, sp_task); 11676 11677 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 11678 smp_mb__after_atomic(); 11679 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 11680 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 11681 return; 11682 } 11683 11684 if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event)) 11685 bnxt_cfg_rx_mode(bp); 11686 11687 if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event)) 11688 bnxt_cfg_ntp_filters(bp); 11689 if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event)) 11690 bnxt_hwrm_exec_fwd_req(bp); 11691 if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) { 11692 bnxt_hwrm_port_qstats(bp, 0); 11693 bnxt_hwrm_port_qstats_ext(bp, 0); 11694 bnxt_accumulate_all_stats(bp); 11695 } 11696 11697 if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) { 11698 int rc; 11699 11700 mutex_lock(&bp->link_lock); 11701 if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, 11702 &bp->sp_event)) 11703 bnxt_hwrm_phy_qcaps(bp); 11704 11705 rc = bnxt_update_link(bp, true); 11706 if (rc) 11707 netdev_err(bp->dev, "SP task can't update link (rc: %x)\n", 11708 rc); 11709 11710 if (test_and_clear_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, 11711 &bp->sp_event)) 11712 bnxt_init_ethtool_link_settings(bp); 11713 mutex_unlock(&bp->link_lock); 11714 } 11715 if (test_and_clear_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event)) { 11716 int rc; 11717 11718 mutex_lock(&bp->link_lock); 11719 rc = bnxt_update_phy_setting(bp); 11720 mutex_unlock(&bp->link_lock); 11721 if (rc) { 11722 netdev_warn(bp->dev, "update phy settings retry failed\n"); 11723 } else { 11724 bp->link_info.phy_retry = false; 11725 netdev_info(bp->dev, "update phy settings retry succeeded\n"); 11726 } 11727 } 11728 if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) { 11729 mutex_lock(&bp->link_lock); 11730 bnxt_get_port_module_status(bp); 11731 mutex_unlock(&bp->link_lock); 11732 } 11733 11734 if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event)) 11735 bnxt_tc_flow_stats_work(bp); 11736 11737 if (test_and_clear_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event)) 11738 bnxt_chk_missed_irq(bp); 11739 11740 if (test_and_clear_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event)) 11741 bnxt_fw_echo_reply(bp); 11742 11743 /* These functions below will clear BNXT_STATE_IN_SP_TASK. They 11744 * must be the last functions to be called before exiting. 11745 */ 11746 if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event)) 11747 bnxt_reset(bp, false); 11748 11749 if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event)) 11750 bnxt_reset(bp, true); 11751 11752 if (test_and_clear_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event)) 11753 bnxt_rx_ring_reset(bp); 11754 11755 if (test_and_clear_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event)) 11756 bnxt_devlink_health_report(bp, BNXT_FW_RESET_NOTIFY_SP_EVENT); 11757 11758 if (test_and_clear_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event)) { 11759 if (!is_bnxt_fw_ok(bp)) 11760 bnxt_devlink_health_report(bp, 11761 BNXT_FW_EXCEPTION_SP_EVENT); 11762 } 11763 11764 smp_mb__before_atomic(); 11765 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 11766 } 11767 11768 /* Under rtnl_lock */ 11769 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs, 11770 int tx_xdp) 11771 { 11772 int max_rx, max_tx, tx_sets = 1; 11773 int tx_rings_needed, stats; 11774 int rx_rings = rx; 11775 int cp, vnics, rc; 11776 11777 if (tcs) 11778 tx_sets = tcs; 11779 11780 rc = bnxt_get_max_rings(bp, &max_rx, &max_tx, sh); 11781 if (rc) 11782 return rc; 11783 11784 if (max_rx < rx) 11785 return -ENOMEM; 11786 11787 tx_rings_needed = tx * tx_sets + tx_xdp; 11788 if (max_tx < tx_rings_needed) 11789 return -ENOMEM; 11790 11791 vnics = 1; 11792 if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS) 11793 vnics += rx_rings; 11794 11795 if (bp->flags & BNXT_FLAG_AGG_RINGS) 11796 rx_rings <<= 1; 11797 cp = sh ? max_t(int, tx_rings_needed, rx) : tx_rings_needed + rx; 11798 stats = cp; 11799 if (BNXT_NEW_RM(bp)) { 11800 cp += bnxt_get_ulp_msix_num(bp); 11801 stats += bnxt_get_ulp_stat_ctxs(bp); 11802 } 11803 return bnxt_hwrm_check_rings(bp, tx_rings_needed, rx_rings, rx, cp, 11804 stats, vnics); 11805 } 11806 11807 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev) 11808 { 11809 if (bp->bar2) { 11810 pci_iounmap(pdev, bp->bar2); 11811 bp->bar2 = NULL; 11812 } 11813 11814 if (bp->bar1) { 11815 pci_iounmap(pdev, bp->bar1); 11816 bp->bar1 = NULL; 11817 } 11818 11819 if (bp->bar0) { 11820 pci_iounmap(pdev, bp->bar0); 11821 bp->bar0 = NULL; 11822 } 11823 } 11824 11825 static void bnxt_cleanup_pci(struct bnxt *bp) 11826 { 11827 bnxt_unmap_bars(bp, bp->pdev); 11828 pci_release_regions(bp->pdev); 11829 if (pci_is_enabled(bp->pdev)) 11830 pci_disable_device(bp->pdev); 11831 } 11832 11833 static void bnxt_init_dflt_coal(struct bnxt *bp) 11834 { 11835 struct bnxt_coal *coal; 11836 11837 /* Tick values in micro seconds. 11838 * 1 coal_buf x bufs_per_record = 1 completion record. 11839 */ 11840 coal = &bp->rx_coal; 11841 coal->coal_ticks = 10; 11842 coal->coal_bufs = 30; 11843 coal->coal_ticks_irq = 1; 11844 coal->coal_bufs_irq = 2; 11845 coal->idle_thresh = 50; 11846 coal->bufs_per_record = 2; 11847 coal->budget = 64; /* NAPI budget */ 11848 11849 coal = &bp->tx_coal; 11850 coal->coal_ticks = 28; 11851 coal->coal_bufs = 30; 11852 coal->coal_ticks_irq = 2; 11853 coal->coal_bufs_irq = 2; 11854 coal->bufs_per_record = 1; 11855 11856 bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS; 11857 } 11858 11859 static int bnxt_fw_init_one_p1(struct bnxt *bp) 11860 { 11861 int rc; 11862 11863 bp->fw_cap = 0; 11864 rc = bnxt_hwrm_ver_get(bp); 11865 bnxt_try_map_fw_health_reg(bp); 11866 if (rc) { 11867 rc = bnxt_try_recover_fw(bp); 11868 if (rc) 11869 return rc; 11870 rc = bnxt_hwrm_ver_get(bp); 11871 if (rc) 11872 return rc; 11873 } 11874 11875 bnxt_nvm_cfg_ver_get(bp); 11876 11877 rc = bnxt_hwrm_func_reset(bp); 11878 if (rc) 11879 return -ENODEV; 11880 11881 bnxt_hwrm_fw_set_time(bp); 11882 return 0; 11883 } 11884 11885 static int bnxt_fw_init_one_p2(struct bnxt *bp) 11886 { 11887 int rc; 11888 11889 /* Get the MAX capabilities for this function */ 11890 rc = bnxt_hwrm_func_qcaps(bp); 11891 if (rc) { 11892 netdev_err(bp->dev, "hwrm query capability failure rc: %x\n", 11893 rc); 11894 return -ENODEV; 11895 } 11896 11897 rc = bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(bp); 11898 if (rc) 11899 netdev_warn(bp->dev, "hwrm query adv flow mgnt failure rc: %d\n", 11900 rc); 11901 11902 if (bnxt_alloc_fw_health(bp)) { 11903 netdev_warn(bp->dev, "no memory for firmware error recovery\n"); 11904 } else { 11905 rc = bnxt_hwrm_error_recovery_qcfg(bp); 11906 if (rc) 11907 netdev_warn(bp->dev, "hwrm query error recovery failure rc: %d\n", 11908 rc); 11909 } 11910 11911 rc = bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false); 11912 if (rc) 11913 return -ENODEV; 11914 11915 bnxt_hwrm_func_qcfg(bp); 11916 bnxt_hwrm_vnic_qcaps(bp); 11917 bnxt_hwrm_port_led_qcaps(bp); 11918 bnxt_ethtool_init(bp); 11919 bnxt_dcb_init(bp); 11920 return 0; 11921 } 11922 11923 static void bnxt_set_dflt_rss_hash_type(struct bnxt *bp) 11924 { 11925 bp->flags &= ~BNXT_FLAG_UDP_RSS_CAP; 11926 bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 | 11927 VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 | 11928 VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 | 11929 VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6; 11930 if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) { 11931 bp->flags |= BNXT_FLAG_UDP_RSS_CAP; 11932 bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 | 11933 VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6; 11934 } 11935 } 11936 11937 static void bnxt_set_dflt_rfs(struct bnxt *bp) 11938 { 11939 struct net_device *dev = bp->dev; 11940 11941 dev->hw_features &= ~NETIF_F_NTUPLE; 11942 dev->features &= ~NETIF_F_NTUPLE; 11943 bp->flags &= ~BNXT_FLAG_RFS; 11944 if (bnxt_rfs_supported(bp)) { 11945 dev->hw_features |= NETIF_F_NTUPLE; 11946 if (bnxt_rfs_capable(bp)) { 11947 bp->flags |= BNXT_FLAG_RFS; 11948 dev->features |= NETIF_F_NTUPLE; 11949 } 11950 } 11951 } 11952 11953 static void bnxt_fw_init_one_p3(struct bnxt *bp) 11954 { 11955 struct pci_dev *pdev = bp->pdev; 11956 11957 bnxt_set_dflt_rss_hash_type(bp); 11958 bnxt_set_dflt_rfs(bp); 11959 11960 bnxt_get_wol_settings(bp); 11961 if (bp->flags & BNXT_FLAG_WOL_CAP) 11962 device_set_wakeup_enable(&pdev->dev, bp->wol); 11963 else 11964 device_set_wakeup_capable(&pdev->dev, false); 11965 11966 bnxt_hwrm_set_cache_line_size(bp, cache_line_size()); 11967 bnxt_hwrm_coal_params_qcaps(bp); 11968 } 11969 11970 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt); 11971 11972 static int bnxt_fw_init_one(struct bnxt *bp) 11973 { 11974 int rc; 11975 11976 rc = bnxt_fw_init_one_p1(bp); 11977 if (rc) { 11978 netdev_err(bp->dev, "Firmware init phase 1 failed\n"); 11979 return rc; 11980 } 11981 rc = bnxt_fw_init_one_p2(bp); 11982 if (rc) { 11983 netdev_err(bp->dev, "Firmware init phase 2 failed\n"); 11984 return rc; 11985 } 11986 rc = bnxt_probe_phy(bp, false); 11987 if (rc) 11988 return rc; 11989 rc = bnxt_approve_mac(bp, bp->dev->dev_addr, false); 11990 if (rc) 11991 return rc; 11992 11993 /* In case fw capabilities have changed, destroy the unneeded 11994 * reporters and create newly capable ones. 11995 */ 11996 bnxt_dl_fw_reporters_destroy(bp, false); 11997 bnxt_dl_fw_reporters_create(bp); 11998 bnxt_fw_init_one_p3(bp); 11999 return 0; 12000 } 12001 12002 static void bnxt_fw_reset_writel(struct bnxt *bp, int reg_idx) 12003 { 12004 struct bnxt_fw_health *fw_health = bp->fw_health; 12005 u32 reg = fw_health->fw_reset_seq_regs[reg_idx]; 12006 u32 val = fw_health->fw_reset_seq_vals[reg_idx]; 12007 u32 reg_type, reg_off, delay_msecs; 12008 12009 delay_msecs = fw_health->fw_reset_seq_delay_msec[reg_idx]; 12010 reg_type = BNXT_FW_HEALTH_REG_TYPE(reg); 12011 reg_off = BNXT_FW_HEALTH_REG_OFF(reg); 12012 switch (reg_type) { 12013 case BNXT_FW_HEALTH_REG_TYPE_CFG: 12014 pci_write_config_dword(bp->pdev, reg_off, val); 12015 break; 12016 case BNXT_FW_HEALTH_REG_TYPE_GRC: 12017 writel(reg_off & BNXT_GRC_BASE_MASK, 12018 bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4); 12019 reg_off = (reg_off & BNXT_GRC_OFFSET_MASK) + 0x2000; 12020 fallthrough; 12021 case BNXT_FW_HEALTH_REG_TYPE_BAR0: 12022 writel(val, bp->bar0 + reg_off); 12023 break; 12024 case BNXT_FW_HEALTH_REG_TYPE_BAR1: 12025 writel(val, bp->bar1 + reg_off); 12026 break; 12027 } 12028 if (delay_msecs) { 12029 pci_read_config_dword(bp->pdev, 0, &val); 12030 msleep(delay_msecs); 12031 } 12032 } 12033 12034 static void bnxt_reset_all(struct bnxt *bp) 12035 { 12036 struct bnxt_fw_health *fw_health = bp->fw_health; 12037 int i, rc; 12038 12039 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 12040 bnxt_fw_reset_via_optee(bp); 12041 bp->fw_reset_timestamp = jiffies; 12042 return; 12043 } 12044 12045 if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_HOST) { 12046 for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) 12047 bnxt_fw_reset_writel(bp, i); 12048 } else if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) { 12049 struct hwrm_fw_reset_input *req; 12050 12051 rc = hwrm_req_init(bp, req, HWRM_FW_RESET); 12052 if (!rc) { 12053 req->target_id = cpu_to_le16(HWRM_TARGET_ID_KONG); 12054 req->embedded_proc_type = FW_RESET_REQ_EMBEDDED_PROC_TYPE_CHIP; 12055 req->selfrst_status = FW_RESET_REQ_SELFRST_STATUS_SELFRSTASAP; 12056 req->flags = FW_RESET_REQ_FLAGS_RESET_GRACEFUL; 12057 rc = hwrm_req_send(bp, req); 12058 } 12059 if (rc != -ENODEV) 12060 netdev_warn(bp->dev, "Unable to reset FW rc=%d\n", rc); 12061 } 12062 bp->fw_reset_timestamp = jiffies; 12063 } 12064 12065 static bool bnxt_fw_reset_timeout(struct bnxt *bp) 12066 { 12067 return time_after(jiffies, bp->fw_reset_timestamp + 12068 (bp->fw_reset_max_dsecs * HZ / 10)); 12069 } 12070 12071 static void bnxt_fw_reset_abort(struct bnxt *bp, int rc) 12072 { 12073 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 12074 if (bp->fw_reset_state != BNXT_FW_RESET_STATE_POLL_VF) { 12075 bnxt_ulp_start(bp, rc); 12076 bnxt_dl_health_status_update(bp, false); 12077 } 12078 bp->fw_reset_state = 0; 12079 dev_close(bp->dev); 12080 } 12081 12082 static void bnxt_fw_reset_task(struct work_struct *work) 12083 { 12084 struct bnxt *bp = container_of(work, struct bnxt, fw_reset_task.work); 12085 int rc = 0; 12086 12087 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 12088 netdev_err(bp->dev, "bnxt_fw_reset_task() called when not in fw reset mode!\n"); 12089 return; 12090 } 12091 12092 switch (bp->fw_reset_state) { 12093 case BNXT_FW_RESET_STATE_POLL_VF: { 12094 int n = bnxt_get_registered_vfs(bp); 12095 int tmo; 12096 12097 if (n < 0) { 12098 netdev_err(bp->dev, "Firmware reset aborted, subsequent func_qcfg cmd failed, rc = %d, %d msecs since reset timestamp\n", 12099 n, jiffies_to_msecs(jiffies - 12100 bp->fw_reset_timestamp)); 12101 goto fw_reset_abort; 12102 } else if (n > 0) { 12103 if (bnxt_fw_reset_timeout(bp)) { 12104 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 12105 bp->fw_reset_state = 0; 12106 netdev_err(bp->dev, "Firmware reset aborted, bnxt_get_registered_vfs() returns %d\n", 12107 n); 12108 return; 12109 } 12110 bnxt_queue_fw_reset_work(bp, HZ / 10); 12111 return; 12112 } 12113 bp->fw_reset_timestamp = jiffies; 12114 rtnl_lock(); 12115 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 12116 bnxt_fw_reset_abort(bp, rc); 12117 rtnl_unlock(); 12118 return; 12119 } 12120 bnxt_fw_reset_close(bp); 12121 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 12122 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN; 12123 tmo = HZ / 10; 12124 } else { 12125 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 12126 tmo = bp->fw_reset_min_dsecs * HZ / 10; 12127 } 12128 rtnl_unlock(); 12129 bnxt_queue_fw_reset_work(bp, tmo); 12130 return; 12131 } 12132 case BNXT_FW_RESET_STATE_POLL_FW_DOWN: { 12133 u32 val; 12134 12135 val = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 12136 if (!(val & BNXT_FW_STATUS_SHUTDOWN) && 12137 !bnxt_fw_reset_timeout(bp)) { 12138 bnxt_queue_fw_reset_work(bp, HZ / 5); 12139 return; 12140 } 12141 12142 if (!bp->fw_health->master) { 12143 u32 wait_dsecs = bp->fw_health->normal_func_wait_dsecs; 12144 12145 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 12146 bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10); 12147 return; 12148 } 12149 bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW; 12150 } 12151 fallthrough; 12152 case BNXT_FW_RESET_STATE_RESET_FW: 12153 bnxt_reset_all(bp); 12154 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 12155 bnxt_queue_fw_reset_work(bp, bp->fw_reset_min_dsecs * HZ / 10); 12156 return; 12157 case BNXT_FW_RESET_STATE_ENABLE_DEV: 12158 bnxt_inv_fw_health_reg(bp); 12159 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) && 12160 !bp->fw_reset_min_dsecs) { 12161 u16 val; 12162 12163 pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val); 12164 if (val == 0xffff) { 12165 if (bnxt_fw_reset_timeout(bp)) { 12166 netdev_err(bp->dev, "Firmware reset aborted, PCI config space invalid\n"); 12167 rc = -ETIMEDOUT; 12168 goto fw_reset_abort; 12169 } 12170 bnxt_queue_fw_reset_work(bp, HZ / 1000); 12171 return; 12172 } 12173 } 12174 clear_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 12175 if (pci_enable_device(bp->pdev)) { 12176 netdev_err(bp->dev, "Cannot re-enable PCI device\n"); 12177 rc = -ENODEV; 12178 goto fw_reset_abort; 12179 } 12180 pci_set_master(bp->pdev); 12181 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW; 12182 fallthrough; 12183 case BNXT_FW_RESET_STATE_POLL_FW: 12184 bp->hwrm_cmd_timeout = SHORT_HWRM_CMD_TIMEOUT; 12185 rc = bnxt_hwrm_poll(bp); 12186 if (rc) { 12187 if (bnxt_fw_reset_timeout(bp)) { 12188 netdev_err(bp->dev, "Firmware reset aborted\n"); 12189 goto fw_reset_abort_status; 12190 } 12191 bnxt_queue_fw_reset_work(bp, HZ / 5); 12192 return; 12193 } 12194 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT; 12195 bp->fw_reset_state = BNXT_FW_RESET_STATE_OPENING; 12196 fallthrough; 12197 case BNXT_FW_RESET_STATE_OPENING: 12198 while (!rtnl_trylock()) { 12199 bnxt_queue_fw_reset_work(bp, HZ / 10); 12200 return; 12201 } 12202 rc = bnxt_open(bp->dev); 12203 if (rc) { 12204 netdev_err(bp->dev, "bnxt_open() failed during FW reset\n"); 12205 bnxt_fw_reset_abort(bp, rc); 12206 rtnl_unlock(); 12207 return; 12208 } 12209 12210 bp->fw_reset_state = 0; 12211 /* Make sure fw_reset_state is 0 before clearing the flag */ 12212 smp_mb__before_atomic(); 12213 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 12214 bnxt_ulp_start(bp, 0); 12215 bnxt_reenable_sriov(bp); 12216 bnxt_vf_reps_alloc(bp); 12217 bnxt_vf_reps_open(bp); 12218 bnxt_ptp_reapply_pps(bp); 12219 bnxt_dl_health_recovery_done(bp); 12220 bnxt_dl_health_status_update(bp, true); 12221 rtnl_unlock(); 12222 break; 12223 } 12224 return; 12225 12226 fw_reset_abort_status: 12227 if (bp->fw_health->status_reliable || 12228 (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) { 12229 u32 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 12230 12231 netdev_err(bp->dev, "fw_health_status 0x%x\n", sts); 12232 } 12233 fw_reset_abort: 12234 rtnl_lock(); 12235 bnxt_fw_reset_abort(bp, rc); 12236 rtnl_unlock(); 12237 } 12238 12239 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev) 12240 { 12241 int rc; 12242 struct bnxt *bp = netdev_priv(dev); 12243 12244 SET_NETDEV_DEV(dev, &pdev->dev); 12245 12246 /* enable device (incl. PCI PM wakeup), and bus-mastering */ 12247 rc = pci_enable_device(pdev); 12248 if (rc) { 12249 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n"); 12250 goto init_err; 12251 } 12252 12253 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { 12254 dev_err(&pdev->dev, 12255 "Cannot find PCI device base address, aborting\n"); 12256 rc = -ENODEV; 12257 goto init_err_disable; 12258 } 12259 12260 rc = pci_request_regions(pdev, DRV_MODULE_NAME); 12261 if (rc) { 12262 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n"); 12263 goto init_err_disable; 12264 } 12265 12266 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 && 12267 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) { 12268 dev_err(&pdev->dev, "System does not support DMA, aborting\n"); 12269 rc = -EIO; 12270 goto init_err_release; 12271 } 12272 12273 pci_set_master(pdev); 12274 12275 bp->dev = dev; 12276 bp->pdev = pdev; 12277 12278 /* Doorbell BAR bp->bar1 is mapped after bnxt_fw_init_one_p2() 12279 * determines the BAR size. 12280 */ 12281 bp->bar0 = pci_ioremap_bar(pdev, 0); 12282 if (!bp->bar0) { 12283 dev_err(&pdev->dev, "Cannot map device registers, aborting\n"); 12284 rc = -ENOMEM; 12285 goto init_err_release; 12286 } 12287 12288 bp->bar2 = pci_ioremap_bar(pdev, 4); 12289 if (!bp->bar2) { 12290 dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n"); 12291 rc = -ENOMEM; 12292 goto init_err_release; 12293 } 12294 12295 pci_enable_pcie_error_reporting(pdev); 12296 12297 INIT_WORK(&bp->sp_task, bnxt_sp_task); 12298 INIT_DELAYED_WORK(&bp->fw_reset_task, bnxt_fw_reset_task); 12299 12300 spin_lock_init(&bp->ntp_fltr_lock); 12301 #if BITS_PER_LONG == 32 12302 spin_lock_init(&bp->db_lock); 12303 #endif 12304 12305 bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE; 12306 bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE; 12307 12308 bnxt_init_dflt_coal(bp); 12309 12310 timer_setup(&bp->timer, bnxt_timer, 0); 12311 bp->current_interval = BNXT_TIMER_INTERVAL; 12312 12313 bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID; 12314 bp->nge_fw_dst_port_id = INVALID_HW_RING_ID; 12315 12316 clear_bit(BNXT_STATE_OPEN, &bp->state); 12317 return 0; 12318 12319 init_err_release: 12320 bnxt_unmap_bars(bp, pdev); 12321 pci_release_regions(pdev); 12322 12323 init_err_disable: 12324 pci_disable_device(pdev); 12325 12326 init_err: 12327 return rc; 12328 } 12329 12330 /* rtnl_lock held */ 12331 static int bnxt_change_mac_addr(struct net_device *dev, void *p) 12332 { 12333 struct sockaddr *addr = p; 12334 struct bnxt *bp = netdev_priv(dev); 12335 int rc = 0; 12336 12337 if (!is_valid_ether_addr(addr->sa_data)) 12338 return -EADDRNOTAVAIL; 12339 12340 if (ether_addr_equal(addr->sa_data, dev->dev_addr)) 12341 return 0; 12342 12343 rc = bnxt_approve_mac(bp, addr->sa_data, true); 12344 if (rc) 12345 return rc; 12346 12347 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 12348 if (netif_running(dev)) { 12349 bnxt_close_nic(bp, false, false); 12350 rc = bnxt_open_nic(bp, false, false); 12351 } 12352 12353 return rc; 12354 } 12355 12356 /* rtnl_lock held */ 12357 static int bnxt_change_mtu(struct net_device *dev, int new_mtu) 12358 { 12359 struct bnxt *bp = netdev_priv(dev); 12360 12361 if (netif_running(dev)) 12362 bnxt_close_nic(bp, true, false); 12363 12364 dev->mtu = new_mtu; 12365 bnxt_set_ring_params(bp); 12366 12367 if (netif_running(dev)) 12368 return bnxt_open_nic(bp, true, false); 12369 12370 return 0; 12371 } 12372 12373 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc) 12374 { 12375 struct bnxt *bp = netdev_priv(dev); 12376 bool sh = false; 12377 int rc; 12378 12379 if (tc > bp->max_tc) { 12380 netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n", 12381 tc, bp->max_tc); 12382 return -EINVAL; 12383 } 12384 12385 if (netdev_get_num_tc(dev) == tc) 12386 return 0; 12387 12388 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 12389 sh = true; 12390 12391 rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings, 12392 sh, tc, bp->tx_nr_rings_xdp); 12393 if (rc) 12394 return rc; 12395 12396 /* Needs to close the device and do hw resource re-allocations */ 12397 if (netif_running(bp->dev)) 12398 bnxt_close_nic(bp, true, false); 12399 12400 if (tc) { 12401 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc; 12402 netdev_set_num_tc(dev, tc); 12403 } else { 12404 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 12405 netdev_reset_tc(dev); 12406 } 12407 bp->tx_nr_rings += bp->tx_nr_rings_xdp; 12408 bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) : 12409 bp->tx_nr_rings + bp->rx_nr_rings; 12410 12411 if (netif_running(bp->dev)) 12412 return bnxt_open_nic(bp, true, false); 12413 12414 return 0; 12415 } 12416 12417 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 12418 void *cb_priv) 12419 { 12420 struct bnxt *bp = cb_priv; 12421 12422 if (!bnxt_tc_flower_enabled(bp) || 12423 !tc_cls_can_offload_and_chain0(bp->dev, type_data)) 12424 return -EOPNOTSUPP; 12425 12426 switch (type) { 12427 case TC_SETUP_CLSFLOWER: 12428 return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data); 12429 default: 12430 return -EOPNOTSUPP; 12431 } 12432 } 12433 12434 LIST_HEAD(bnxt_block_cb_list); 12435 12436 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type, 12437 void *type_data) 12438 { 12439 struct bnxt *bp = netdev_priv(dev); 12440 12441 switch (type) { 12442 case TC_SETUP_BLOCK: 12443 return flow_block_cb_setup_simple(type_data, 12444 &bnxt_block_cb_list, 12445 bnxt_setup_tc_block_cb, 12446 bp, bp, true); 12447 case TC_SETUP_QDISC_MQPRIO: { 12448 struct tc_mqprio_qopt *mqprio = type_data; 12449 12450 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 12451 12452 return bnxt_setup_mq_tc(dev, mqprio->num_tc); 12453 } 12454 default: 12455 return -EOPNOTSUPP; 12456 } 12457 } 12458 12459 #ifdef CONFIG_RFS_ACCEL 12460 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1, 12461 struct bnxt_ntuple_filter *f2) 12462 { 12463 struct flow_keys *keys1 = &f1->fkeys; 12464 struct flow_keys *keys2 = &f2->fkeys; 12465 12466 if (keys1->basic.n_proto != keys2->basic.n_proto || 12467 keys1->basic.ip_proto != keys2->basic.ip_proto) 12468 return false; 12469 12470 if (keys1->basic.n_proto == htons(ETH_P_IP)) { 12471 if (keys1->addrs.v4addrs.src != keys2->addrs.v4addrs.src || 12472 keys1->addrs.v4addrs.dst != keys2->addrs.v4addrs.dst) 12473 return false; 12474 } else { 12475 if (memcmp(&keys1->addrs.v6addrs.src, &keys2->addrs.v6addrs.src, 12476 sizeof(keys1->addrs.v6addrs.src)) || 12477 memcmp(&keys1->addrs.v6addrs.dst, &keys2->addrs.v6addrs.dst, 12478 sizeof(keys1->addrs.v6addrs.dst))) 12479 return false; 12480 } 12481 12482 if (keys1->ports.ports == keys2->ports.ports && 12483 keys1->control.flags == keys2->control.flags && 12484 ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) && 12485 ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr)) 12486 return true; 12487 12488 return false; 12489 } 12490 12491 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb, 12492 u16 rxq_index, u32 flow_id) 12493 { 12494 struct bnxt *bp = netdev_priv(dev); 12495 struct bnxt_ntuple_filter *fltr, *new_fltr; 12496 struct flow_keys *fkeys; 12497 struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb); 12498 int rc = 0, idx, bit_id, l2_idx = 0; 12499 struct hlist_head *head; 12500 u32 flags; 12501 12502 if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) { 12503 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 12504 int off = 0, j; 12505 12506 netif_addr_lock_bh(dev); 12507 for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) { 12508 if (ether_addr_equal(eth->h_dest, 12509 vnic->uc_list + off)) { 12510 l2_idx = j + 1; 12511 break; 12512 } 12513 } 12514 netif_addr_unlock_bh(dev); 12515 if (!l2_idx) 12516 return -EINVAL; 12517 } 12518 new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC); 12519 if (!new_fltr) 12520 return -ENOMEM; 12521 12522 fkeys = &new_fltr->fkeys; 12523 if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) { 12524 rc = -EPROTONOSUPPORT; 12525 goto err_free; 12526 } 12527 12528 if ((fkeys->basic.n_proto != htons(ETH_P_IP) && 12529 fkeys->basic.n_proto != htons(ETH_P_IPV6)) || 12530 ((fkeys->basic.ip_proto != IPPROTO_TCP) && 12531 (fkeys->basic.ip_proto != IPPROTO_UDP))) { 12532 rc = -EPROTONOSUPPORT; 12533 goto err_free; 12534 } 12535 if (fkeys->basic.n_proto == htons(ETH_P_IPV6) && 12536 bp->hwrm_spec_code < 0x10601) { 12537 rc = -EPROTONOSUPPORT; 12538 goto err_free; 12539 } 12540 flags = fkeys->control.flags; 12541 if (((flags & FLOW_DIS_ENCAPSULATION) && 12542 bp->hwrm_spec_code < 0x10601) || (flags & FLOW_DIS_IS_FRAGMENT)) { 12543 rc = -EPROTONOSUPPORT; 12544 goto err_free; 12545 } 12546 12547 memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN); 12548 memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN); 12549 12550 idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK; 12551 head = &bp->ntp_fltr_hash_tbl[idx]; 12552 rcu_read_lock(); 12553 hlist_for_each_entry_rcu(fltr, head, hash) { 12554 if (bnxt_fltr_match(fltr, new_fltr)) { 12555 rcu_read_unlock(); 12556 rc = 0; 12557 goto err_free; 12558 } 12559 } 12560 rcu_read_unlock(); 12561 12562 spin_lock_bh(&bp->ntp_fltr_lock); 12563 bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap, 12564 BNXT_NTP_FLTR_MAX_FLTR, 0); 12565 if (bit_id < 0) { 12566 spin_unlock_bh(&bp->ntp_fltr_lock); 12567 rc = -ENOMEM; 12568 goto err_free; 12569 } 12570 12571 new_fltr->sw_id = (u16)bit_id; 12572 new_fltr->flow_id = flow_id; 12573 new_fltr->l2_fltr_idx = l2_idx; 12574 new_fltr->rxq = rxq_index; 12575 hlist_add_head_rcu(&new_fltr->hash, head); 12576 bp->ntp_fltr_count++; 12577 spin_unlock_bh(&bp->ntp_fltr_lock); 12578 12579 set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event); 12580 bnxt_queue_sp_work(bp); 12581 12582 return new_fltr->sw_id; 12583 12584 err_free: 12585 kfree(new_fltr); 12586 return rc; 12587 } 12588 12589 static void bnxt_cfg_ntp_filters(struct bnxt *bp) 12590 { 12591 int i; 12592 12593 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) { 12594 struct hlist_head *head; 12595 struct hlist_node *tmp; 12596 struct bnxt_ntuple_filter *fltr; 12597 int rc; 12598 12599 head = &bp->ntp_fltr_hash_tbl[i]; 12600 hlist_for_each_entry_safe(fltr, tmp, head, hash) { 12601 bool del = false; 12602 12603 if (test_bit(BNXT_FLTR_VALID, &fltr->state)) { 12604 if (rps_may_expire_flow(bp->dev, fltr->rxq, 12605 fltr->flow_id, 12606 fltr->sw_id)) { 12607 bnxt_hwrm_cfa_ntuple_filter_free(bp, 12608 fltr); 12609 del = true; 12610 } 12611 } else { 12612 rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp, 12613 fltr); 12614 if (rc) 12615 del = true; 12616 else 12617 set_bit(BNXT_FLTR_VALID, &fltr->state); 12618 } 12619 12620 if (del) { 12621 spin_lock_bh(&bp->ntp_fltr_lock); 12622 hlist_del_rcu(&fltr->hash); 12623 bp->ntp_fltr_count--; 12624 spin_unlock_bh(&bp->ntp_fltr_lock); 12625 synchronize_rcu(); 12626 clear_bit(fltr->sw_id, bp->ntp_fltr_bmap); 12627 kfree(fltr); 12628 } 12629 } 12630 } 12631 if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event)) 12632 netdev_info(bp->dev, "Receive PF driver unload event!\n"); 12633 } 12634 12635 #else 12636 12637 static void bnxt_cfg_ntp_filters(struct bnxt *bp) 12638 { 12639 } 12640 12641 #endif /* CONFIG_RFS_ACCEL */ 12642 12643 static int bnxt_udp_tunnel_sync(struct net_device *netdev, unsigned int table) 12644 { 12645 struct bnxt *bp = netdev_priv(netdev); 12646 struct udp_tunnel_info ti; 12647 unsigned int cmd; 12648 12649 udp_tunnel_nic_get_port(netdev, table, 0, &ti); 12650 if (ti.type == UDP_TUNNEL_TYPE_VXLAN) 12651 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN; 12652 else 12653 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE; 12654 12655 if (ti.port) 12656 return bnxt_hwrm_tunnel_dst_port_alloc(bp, ti.port, cmd); 12657 12658 return bnxt_hwrm_tunnel_dst_port_free(bp, cmd); 12659 } 12660 12661 static const struct udp_tunnel_nic_info bnxt_udp_tunnels = { 12662 .sync_table = bnxt_udp_tunnel_sync, 12663 .flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP | 12664 UDP_TUNNEL_NIC_INFO_OPEN_ONLY, 12665 .tables = { 12666 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN, }, 12667 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, }, 12668 }, 12669 }; 12670 12671 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 12672 struct net_device *dev, u32 filter_mask, 12673 int nlflags) 12674 { 12675 struct bnxt *bp = netdev_priv(dev); 12676 12677 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0, 12678 nlflags, filter_mask, NULL); 12679 } 12680 12681 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 12682 u16 flags, struct netlink_ext_ack *extack) 12683 { 12684 struct bnxt *bp = netdev_priv(dev); 12685 struct nlattr *attr, *br_spec; 12686 int rem, rc = 0; 12687 12688 if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp)) 12689 return -EOPNOTSUPP; 12690 12691 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 12692 if (!br_spec) 12693 return -EINVAL; 12694 12695 nla_for_each_nested(attr, br_spec, rem) { 12696 u16 mode; 12697 12698 if (nla_type(attr) != IFLA_BRIDGE_MODE) 12699 continue; 12700 12701 if (nla_len(attr) < sizeof(mode)) 12702 return -EINVAL; 12703 12704 mode = nla_get_u16(attr); 12705 if (mode == bp->br_mode) 12706 break; 12707 12708 rc = bnxt_hwrm_set_br_mode(bp, mode); 12709 if (!rc) 12710 bp->br_mode = mode; 12711 break; 12712 } 12713 return rc; 12714 } 12715 12716 int bnxt_get_port_parent_id(struct net_device *dev, 12717 struct netdev_phys_item_id *ppid) 12718 { 12719 struct bnxt *bp = netdev_priv(dev); 12720 12721 if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV) 12722 return -EOPNOTSUPP; 12723 12724 /* The PF and it's VF-reps only support the switchdev framework */ 12725 if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_DSN_VALID)) 12726 return -EOPNOTSUPP; 12727 12728 ppid->id_len = sizeof(bp->dsn); 12729 memcpy(ppid->id, bp->dsn, ppid->id_len); 12730 12731 return 0; 12732 } 12733 12734 static struct devlink_port *bnxt_get_devlink_port(struct net_device *dev) 12735 { 12736 struct bnxt *bp = netdev_priv(dev); 12737 12738 return &bp->dl_port; 12739 } 12740 12741 static const struct net_device_ops bnxt_netdev_ops = { 12742 .ndo_open = bnxt_open, 12743 .ndo_start_xmit = bnxt_start_xmit, 12744 .ndo_stop = bnxt_close, 12745 .ndo_get_stats64 = bnxt_get_stats64, 12746 .ndo_set_rx_mode = bnxt_set_rx_mode, 12747 .ndo_eth_ioctl = bnxt_ioctl, 12748 .ndo_validate_addr = eth_validate_addr, 12749 .ndo_set_mac_address = bnxt_change_mac_addr, 12750 .ndo_change_mtu = bnxt_change_mtu, 12751 .ndo_fix_features = bnxt_fix_features, 12752 .ndo_set_features = bnxt_set_features, 12753 .ndo_features_check = bnxt_features_check, 12754 .ndo_tx_timeout = bnxt_tx_timeout, 12755 #ifdef CONFIG_BNXT_SRIOV 12756 .ndo_get_vf_config = bnxt_get_vf_config, 12757 .ndo_set_vf_mac = bnxt_set_vf_mac, 12758 .ndo_set_vf_vlan = bnxt_set_vf_vlan, 12759 .ndo_set_vf_rate = bnxt_set_vf_bw, 12760 .ndo_set_vf_link_state = bnxt_set_vf_link_state, 12761 .ndo_set_vf_spoofchk = bnxt_set_vf_spoofchk, 12762 .ndo_set_vf_trust = bnxt_set_vf_trust, 12763 #endif 12764 .ndo_setup_tc = bnxt_setup_tc, 12765 #ifdef CONFIG_RFS_ACCEL 12766 .ndo_rx_flow_steer = bnxt_rx_flow_steer, 12767 #endif 12768 .ndo_bpf = bnxt_xdp, 12769 .ndo_xdp_xmit = bnxt_xdp_xmit, 12770 .ndo_bridge_getlink = bnxt_bridge_getlink, 12771 .ndo_bridge_setlink = bnxt_bridge_setlink, 12772 .ndo_get_devlink_port = bnxt_get_devlink_port, 12773 }; 12774 12775 static void bnxt_remove_one(struct pci_dev *pdev) 12776 { 12777 struct net_device *dev = pci_get_drvdata(pdev); 12778 struct bnxt *bp = netdev_priv(dev); 12779 12780 if (BNXT_PF(bp)) 12781 bnxt_sriov_disable(bp); 12782 12783 if (BNXT_PF(bp)) 12784 devlink_port_type_clear(&bp->dl_port); 12785 12786 bnxt_ptp_clear(bp); 12787 pci_disable_pcie_error_reporting(pdev); 12788 unregister_netdev(dev); 12789 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 12790 /* Flush any pending tasks */ 12791 cancel_work_sync(&bp->sp_task); 12792 cancel_delayed_work_sync(&bp->fw_reset_task); 12793 bp->sp_event = 0; 12794 12795 bnxt_dl_fw_reporters_destroy(bp, true); 12796 bnxt_dl_unregister(bp); 12797 bnxt_shutdown_tc(bp); 12798 12799 bnxt_clear_int_mode(bp); 12800 bnxt_hwrm_func_drv_unrgtr(bp); 12801 bnxt_free_hwrm_resources(bp); 12802 bnxt_ethtool_free(bp); 12803 bnxt_dcb_free(bp); 12804 kfree(bp->edev); 12805 bp->edev = NULL; 12806 kfree(bp->ptp_cfg); 12807 bp->ptp_cfg = NULL; 12808 kfree(bp->fw_health); 12809 bp->fw_health = NULL; 12810 bnxt_cleanup_pci(bp); 12811 bnxt_free_ctx_mem(bp); 12812 kfree(bp->ctx); 12813 bp->ctx = NULL; 12814 kfree(bp->rss_indir_tbl); 12815 bp->rss_indir_tbl = NULL; 12816 bnxt_free_port_stats(bp); 12817 free_netdev(dev); 12818 } 12819 12820 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt) 12821 { 12822 int rc = 0; 12823 struct bnxt_link_info *link_info = &bp->link_info; 12824 12825 bp->phy_flags = 0; 12826 rc = bnxt_hwrm_phy_qcaps(bp); 12827 if (rc) { 12828 netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n", 12829 rc); 12830 return rc; 12831 } 12832 if (bp->phy_flags & BNXT_PHY_FL_NO_FCS) 12833 bp->dev->priv_flags |= IFF_SUPP_NOFCS; 12834 else 12835 bp->dev->priv_flags &= ~IFF_SUPP_NOFCS; 12836 if (!fw_dflt) 12837 return 0; 12838 12839 mutex_lock(&bp->link_lock); 12840 rc = bnxt_update_link(bp, false); 12841 if (rc) { 12842 mutex_unlock(&bp->link_lock); 12843 netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n", 12844 rc); 12845 return rc; 12846 } 12847 12848 /* Older firmware does not have supported_auto_speeds, so assume 12849 * that all supported speeds can be autonegotiated. 12850 */ 12851 if (link_info->auto_link_speeds && !link_info->support_auto_speeds) 12852 link_info->support_auto_speeds = link_info->support_speeds; 12853 12854 bnxt_init_ethtool_link_settings(bp); 12855 mutex_unlock(&bp->link_lock); 12856 return 0; 12857 } 12858 12859 static int bnxt_get_max_irq(struct pci_dev *pdev) 12860 { 12861 u16 ctrl; 12862 12863 if (!pdev->msix_cap) 12864 return 1; 12865 12866 pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl); 12867 return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1; 12868 } 12869 12870 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, 12871 int *max_cp) 12872 { 12873 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 12874 int max_ring_grps = 0, max_irq; 12875 12876 *max_tx = hw_resc->max_tx_rings; 12877 *max_rx = hw_resc->max_rx_rings; 12878 *max_cp = bnxt_get_max_func_cp_rings_for_en(bp); 12879 max_irq = min_t(int, bnxt_get_max_func_irqs(bp) - 12880 bnxt_get_ulp_msix_num(bp), 12881 hw_resc->max_stat_ctxs - bnxt_get_ulp_stat_ctxs(bp)); 12882 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 12883 *max_cp = min_t(int, *max_cp, max_irq); 12884 max_ring_grps = hw_resc->max_hw_ring_grps; 12885 if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) { 12886 *max_cp -= 1; 12887 *max_rx -= 2; 12888 } 12889 if (bp->flags & BNXT_FLAG_AGG_RINGS) 12890 *max_rx >>= 1; 12891 if (bp->flags & BNXT_FLAG_CHIP_P5) { 12892 bnxt_trim_rings(bp, max_rx, max_tx, *max_cp, false); 12893 /* On P5 chips, max_cp output param should be available NQs */ 12894 *max_cp = max_irq; 12895 } 12896 *max_rx = min_t(int, *max_rx, max_ring_grps); 12897 } 12898 12899 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared) 12900 { 12901 int rx, tx, cp; 12902 12903 _bnxt_get_max_rings(bp, &rx, &tx, &cp); 12904 *max_rx = rx; 12905 *max_tx = tx; 12906 if (!rx || !tx || !cp) 12907 return -ENOMEM; 12908 12909 return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared); 12910 } 12911 12912 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx, 12913 bool shared) 12914 { 12915 int rc; 12916 12917 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared); 12918 if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) { 12919 /* Not enough rings, try disabling agg rings. */ 12920 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 12921 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared); 12922 if (rc) { 12923 /* set BNXT_FLAG_AGG_RINGS back for consistency */ 12924 bp->flags |= BNXT_FLAG_AGG_RINGS; 12925 return rc; 12926 } 12927 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 12928 bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 12929 bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 12930 bnxt_set_ring_params(bp); 12931 } 12932 12933 if (bp->flags & BNXT_FLAG_ROCE_CAP) { 12934 int max_cp, max_stat, max_irq; 12935 12936 /* Reserve minimum resources for RoCE */ 12937 max_cp = bnxt_get_max_func_cp_rings(bp); 12938 max_stat = bnxt_get_max_func_stat_ctxs(bp); 12939 max_irq = bnxt_get_max_func_irqs(bp); 12940 if (max_cp <= BNXT_MIN_ROCE_CP_RINGS || 12941 max_irq <= BNXT_MIN_ROCE_CP_RINGS || 12942 max_stat <= BNXT_MIN_ROCE_STAT_CTXS) 12943 return 0; 12944 12945 max_cp -= BNXT_MIN_ROCE_CP_RINGS; 12946 max_irq -= BNXT_MIN_ROCE_CP_RINGS; 12947 max_stat -= BNXT_MIN_ROCE_STAT_CTXS; 12948 max_cp = min_t(int, max_cp, max_irq); 12949 max_cp = min_t(int, max_cp, max_stat); 12950 rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared); 12951 if (rc) 12952 rc = 0; 12953 } 12954 return rc; 12955 } 12956 12957 /* In initial default shared ring setting, each shared ring must have a 12958 * RX/TX ring pair. 12959 */ 12960 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp) 12961 { 12962 bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings); 12963 bp->rx_nr_rings = bp->cp_nr_rings; 12964 bp->tx_nr_rings_per_tc = bp->cp_nr_rings; 12965 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 12966 } 12967 12968 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh) 12969 { 12970 int dflt_rings, max_rx_rings, max_tx_rings, rc; 12971 12972 if (!bnxt_can_reserve_rings(bp)) 12973 return 0; 12974 12975 if (sh) 12976 bp->flags |= BNXT_FLAG_SHARED_RINGS; 12977 dflt_rings = is_kdump_kernel() ? 1 : netif_get_num_default_rss_queues(); 12978 /* Reduce default rings on multi-port cards so that total default 12979 * rings do not exceed CPU count. 12980 */ 12981 if (bp->port_count > 1) { 12982 int max_rings = 12983 max_t(int, num_online_cpus() / bp->port_count, 1); 12984 12985 dflt_rings = min_t(int, dflt_rings, max_rings); 12986 } 12987 rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh); 12988 if (rc) 12989 return rc; 12990 bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings); 12991 bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings); 12992 if (sh) 12993 bnxt_trim_dflt_sh_rings(bp); 12994 else 12995 bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings; 12996 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 12997 12998 rc = __bnxt_reserve_rings(bp); 12999 if (rc) 13000 netdev_warn(bp->dev, "Unable to reserve tx rings\n"); 13001 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 13002 if (sh) 13003 bnxt_trim_dflt_sh_rings(bp); 13004 13005 /* Rings may have been trimmed, re-reserve the trimmed rings. */ 13006 if (bnxt_need_reserve_rings(bp)) { 13007 rc = __bnxt_reserve_rings(bp); 13008 if (rc) 13009 netdev_warn(bp->dev, "2nd rings reservation failed.\n"); 13010 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 13011 } 13012 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 13013 bp->rx_nr_rings++; 13014 bp->cp_nr_rings++; 13015 } 13016 if (rc) { 13017 bp->tx_nr_rings = 0; 13018 bp->rx_nr_rings = 0; 13019 } 13020 return rc; 13021 } 13022 13023 static int bnxt_init_dflt_ring_mode(struct bnxt *bp) 13024 { 13025 int rc; 13026 13027 if (bp->tx_nr_rings) 13028 return 0; 13029 13030 bnxt_ulp_irq_stop(bp); 13031 bnxt_clear_int_mode(bp); 13032 rc = bnxt_set_dflt_rings(bp, true); 13033 if (rc) { 13034 netdev_err(bp->dev, "Not enough rings available.\n"); 13035 goto init_dflt_ring_err; 13036 } 13037 rc = bnxt_init_int_mode(bp); 13038 if (rc) 13039 goto init_dflt_ring_err; 13040 13041 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 13042 if (bnxt_rfs_supported(bp) && bnxt_rfs_capable(bp)) { 13043 bp->flags |= BNXT_FLAG_RFS; 13044 bp->dev->features |= NETIF_F_NTUPLE; 13045 } 13046 init_dflt_ring_err: 13047 bnxt_ulp_irq_restart(bp, rc); 13048 return rc; 13049 } 13050 13051 int bnxt_restore_pf_fw_resources(struct bnxt *bp) 13052 { 13053 int rc; 13054 13055 ASSERT_RTNL(); 13056 bnxt_hwrm_func_qcaps(bp); 13057 13058 if (netif_running(bp->dev)) 13059 __bnxt_close_nic(bp, true, false); 13060 13061 bnxt_ulp_irq_stop(bp); 13062 bnxt_clear_int_mode(bp); 13063 rc = bnxt_init_int_mode(bp); 13064 bnxt_ulp_irq_restart(bp, rc); 13065 13066 if (netif_running(bp->dev)) { 13067 if (rc) 13068 dev_close(bp->dev); 13069 else 13070 rc = bnxt_open_nic(bp, true, false); 13071 } 13072 13073 return rc; 13074 } 13075 13076 static int bnxt_init_mac_addr(struct bnxt *bp) 13077 { 13078 int rc = 0; 13079 13080 if (BNXT_PF(bp)) { 13081 memcpy(bp->dev->dev_addr, bp->pf.mac_addr, ETH_ALEN); 13082 } else { 13083 #ifdef CONFIG_BNXT_SRIOV 13084 struct bnxt_vf_info *vf = &bp->vf; 13085 bool strict_approval = true; 13086 13087 if (is_valid_ether_addr(vf->mac_addr)) { 13088 /* overwrite netdev dev_addr with admin VF MAC */ 13089 memcpy(bp->dev->dev_addr, vf->mac_addr, ETH_ALEN); 13090 /* Older PF driver or firmware may not approve this 13091 * correctly. 13092 */ 13093 strict_approval = false; 13094 } else { 13095 eth_hw_addr_random(bp->dev); 13096 } 13097 rc = bnxt_approve_mac(bp, bp->dev->dev_addr, strict_approval); 13098 #endif 13099 } 13100 return rc; 13101 } 13102 13103 static void bnxt_vpd_read_info(struct bnxt *bp) 13104 { 13105 struct pci_dev *pdev = bp->pdev; 13106 unsigned int vpd_size, kw_len; 13107 int pos, size; 13108 u8 *vpd_data; 13109 13110 vpd_data = pci_vpd_alloc(pdev, &vpd_size); 13111 if (IS_ERR(vpd_data)) { 13112 pci_warn(pdev, "Unable to read VPD\n"); 13113 return; 13114 } 13115 13116 pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size, 13117 PCI_VPD_RO_KEYWORD_PARTNO, &kw_len); 13118 if (pos < 0) 13119 goto read_sn; 13120 13121 size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1); 13122 memcpy(bp->board_partno, &vpd_data[pos], size); 13123 13124 read_sn: 13125 pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size, 13126 PCI_VPD_RO_KEYWORD_SERIALNO, 13127 &kw_len); 13128 if (pos < 0) 13129 goto exit; 13130 13131 size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1); 13132 memcpy(bp->board_serialno, &vpd_data[pos], size); 13133 exit: 13134 kfree(vpd_data); 13135 } 13136 13137 static int bnxt_pcie_dsn_get(struct bnxt *bp, u8 dsn[]) 13138 { 13139 struct pci_dev *pdev = bp->pdev; 13140 u64 qword; 13141 13142 qword = pci_get_dsn(pdev); 13143 if (!qword) { 13144 netdev_info(bp->dev, "Unable to read adapter's DSN\n"); 13145 return -EOPNOTSUPP; 13146 } 13147 13148 put_unaligned_le64(qword, dsn); 13149 13150 bp->flags |= BNXT_FLAG_DSN_VALID; 13151 return 0; 13152 } 13153 13154 static int bnxt_map_db_bar(struct bnxt *bp) 13155 { 13156 if (!bp->db_size) 13157 return -ENODEV; 13158 bp->bar1 = pci_iomap(bp->pdev, 2, bp->db_size); 13159 if (!bp->bar1) 13160 return -ENOMEM; 13161 return 0; 13162 } 13163 13164 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 13165 { 13166 struct net_device *dev; 13167 struct bnxt *bp; 13168 int rc, max_irqs; 13169 13170 if (pci_is_bridge(pdev)) 13171 return -ENODEV; 13172 13173 /* Clear any pending DMA transactions from crash kernel 13174 * while loading driver in capture kernel. 13175 */ 13176 if (is_kdump_kernel()) { 13177 pci_clear_master(pdev); 13178 pcie_flr(pdev); 13179 } 13180 13181 max_irqs = bnxt_get_max_irq(pdev); 13182 dev = alloc_etherdev_mq(sizeof(*bp), max_irqs); 13183 if (!dev) 13184 return -ENOMEM; 13185 13186 bp = netdev_priv(dev); 13187 bp->msg_enable = BNXT_DEF_MSG_ENABLE; 13188 bnxt_set_max_func_irqs(bp, max_irqs); 13189 13190 if (bnxt_vf_pciid(ent->driver_data)) 13191 bp->flags |= BNXT_FLAG_VF; 13192 13193 if (pdev->msix_cap) 13194 bp->flags |= BNXT_FLAG_MSIX_CAP; 13195 13196 rc = bnxt_init_board(pdev, dev); 13197 if (rc < 0) 13198 goto init_err_free; 13199 13200 dev->netdev_ops = &bnxt_netdev_ops; 13201 dev->watchdog_timeo = BNXT_TX_TIMEOUT; 13202 dev->ethtool_ops = &bnxt_ethtool_ops; 13203 pci_set_drvdata(pdev, dev); 13204 13205 rc = bnxt_alloc_hwrm_resources(bp); 13206 if (rc) 13207 goto init_err_pci_clean; 13208 13209 mutex_init(&bp->hwrm_cmd_lock); 13210 mutex_init(&bp->link_lock); 13211 13212 rc = bnxt_fw_init_one_p1(bp); 13213 if (rc) 13214 goto init_err_pci_clean; 13215 13216 if (BNXT_PF(bp)) 13217 bnxt_vpd_read_info(bp); 13218 13219 if (BNXT_CHIP_P5(bp)) { 13220 bp->flags |= BNXT_FLAG_CHIP_P5; 13221 if (BNXT_CHIP_SR2(bp)) 13222 bp->flags |= BNXT_FLAG_CHIP_SR2; 13223 } 13224 13225 rc = bnxt_alloc_rss_indir_tbl(bp); 13226 if (rc) 13227 goto init_err_pci_clean; 13228 13229 rc = bnxt_fw_init_one_p2(bp); 13230 if (rc) 13231 goto init_err_pci_clean; 13232 13233 rc = bnxt_map_db_bar(bp); 13234 if (rc) { 13235 dev_err(&pdev->dev, "Cannot map doorbell BAR rc = %d, aborting\n", 13236 rc); 13237 goto init_err_pci_clean; 13238 } 13239 13240 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 13241 NETIF_F_TSO | NETIF_F_TSO6 | 13242 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | 13243 NETIF_F_GSO_IPXIP4 | 13244 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM | 13245 NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH | 13246 NETIF_F_RXCSUM | NETIF_F_GRO; 13247 13248 if (BNXT_SUPPORTS_TPA(bp)) 13249 dev->hw_features |= NETIF_F_LRO; 13250 13251 dev->hw_enc_features = 13252 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 13253 NETIF_F_TSO | NETIF_F_TSO6 | 13254 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | 13255 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM | 13256 NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL; 13257 dev->udp_tunnel_nic_info = &bnxt_udp_tunnels; 13258 13259 dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM | 13260 NETIF_F_GSO_GRE_CSUM; 13261 dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA; 13262 if (bp->fw_cap & BNXT_FW_CAP_VLAN_RX_STRIP) 13263 dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_RX; 13264 if (bp->fw_cap & BNXT_FW_CAP_VLAN_TX_INSERT) 13265 dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_TX; 13266 if (BNXT_SUPPORTS_TPA(bp)) 13267 dev->hw_features |= NETIF_F_GRO_HW; 13268 dev->features |= dev->hw_features | NETIF_F_HIGHDMA; 13269 if (dev->features & NETIF_F_GRO_HW) 13270 dev->features &= ~NETIF_F_LRO; 13271 dev->priv_flags |= IFF_UNICAST_FLT; 13272 13273 #ifdef CONFIG_BNXT_SRIOV 13274 init_waitqueue_head(&bp->sriov_cfg_wait); 13275 mutex_init(&bp->sriov_lock); 13276 #endif 13277 if (BNXT_SUPPORTS_TPA(bp)) { 13278 bp->gro_func = bnxt_gro_func_5730x; 13279 if (BNXT_CHIP_P4(bp)) 13280 bp->gro_func = bnxt_gro_func_5731x; 13281 else if (BNXT_CHIP_P5(bp)) 13282 bp->gro_func = bnxt_gro_func_5750x; 13283 } 13284 if (!BNXT_CHIP_P4_PLUS(bp)) 13285 bp->flags |= BNXT_FLAG_DOUBLE_DB; 13286 13287 rc = bnxt_init_mac_addr(bp); 13288 if (rc) { 13289 dev_err(&pdev->dev, "Unable to initialize mac address.\n"); 13290 rc = -EADDRNOTAVAIL; 13291 goto init_err_pci_clean; 13292 } 13293 13294 if (BNXT_PF(bp)) { 13295 /* Read the adapter's DSN to use as the eswitch switch_id */ 13296 rc = bnxt_pcie_dsn_get(bp, bp->dsn); 13297 } 13298 13299 /* MTU range: 60 - FW defined max */ 13300 dev->min_mtu = ETH_ZLEN; 13301 dev->max_mtu = bp->max_mtu; 13302 13303 rc = bnxt_probe_phy(bp, true); 13304 if (rc) 13305 goto init_err_pci_clean; 13306 13307 bnxt_set_rx_skb_mode(bp, false); 13308 bnxt_set_tpa_flags(bp); 13309 bnxt_set_ring_params(bp); 13310 rc = bnxt_set_dflt_rings(bp, true); 13311 if (rc) { 13312 netdev_err(bp->dev, "Not enough rings available.\n"); 13313 rc = -ENOMEM; 13314 goto init_err_pci_clean; 13315 } 13316 13317 bnxt_fw_init_one_p3(bp); 13318 13319 if (dev->hw_features & BNXT_HW_FEATURE_VLAN_ALL_RX) 13320 bp->flags |= BNXT_FLAG_STRIP_VLAN; 13321 13322 rc = bnxt_init_int_mode(bp); 13323 if (rc) 13324 goto init_err_pci_clean; 13325 13326 /* No TC has been set yet and rings may have been trimmed due to 13327 * limited MSIX, so we re-initialize the TX rings per TC. 13328 */ 13329 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 13330 13331 if (BNXT_PF(bp)) { 13332 if (!bnxt_pf_wq) { 13333 bnxt_pf_wq = 13334 create_singlethread_workqueue("bnxt_pf_wq"); 13335 if (!bnxt_pf_wq) { 13336 dev_err(&pdev->dev, "Unable to create workqueue.\n"); 13337 rc = -ENOMEM; 13338 goto init_err_pci_clean; 13339 } 13340 } 13341 rc = bnxt_init_tc(bp); 13342 if (rc) 13343 netdev_err(dev, "Failed to initialize TC flower offload, err = %d.\n", 13344 rc); 13345 } 13346 13347 bnxt_inv_fw_health_reg(bp); 13348 bnxt_dl_register(bp); 13349 13350 rc = register_netdev(dev); 13351 if (rc) 13352 goto init_err_cleanup; 13353 13354 if (BNXT_PF(bp)) 13355 devlink_port_type_eth_set(&bp->dl_port, bp->dev); 13356 bnxt_dl_fw_reporters_create(bp); 13357 13358 netdev_info(dev, "%s found at mem %lx, node addr %pM\n", 13359 board_info[ent->driver_data].name, 13360 (long)pci_resource_start(pdev, 0), dev->dev_addr); 13361 pcie_print_link_status(pdev); 13362 13363 pci_save_state(pdev); 13364 return 0; 13365 13366 init_err_cleanup: 13367 bnxt_dl_unregister(bp); 13368 bnxt_shutdown_tc(bp); 13369 bnxt_clear_int_mode(bp); 13370 13371 init_err_pci_clean: 13372 bnxt_hwrm_func_drv_unrgtr(bp); 13373 bnxt_free_hwrm_resources(bp); 13374 bnxt_ethtool_free(bp); 13375 bnxt_ptp_clear(bp); 13376 kfree(bp->ptp_cfg); 13377 bp->ptp_cfg = NULL; 13378 kfree(bp->fw_health); 13379 bp->fw_health = NULL; 13380 bnxt_cleanup_pci(bp); 13381 bnxt_free_ctx_mem(bp); 13382 kfree(bp->ctx); 13383 bp->ctx = NULL; 13384 kfree(bp->rss_indir_tbl); 13385 bp->rss_indir_tbl = NULL; 13386 13387 init_err_free: 13388 free_netdev(dev); 13389 return rc; 13390 } 13391 13392 static void bnxt_shutdown(struct pci_dev *pdev) 13393 { 13394 struct net_device *dev = pci_get_drvdata(pdev); 13395 struct bnxt *bp; 13396 13397 if (!dev) 13398 return; 13399 13400 rtnl_lock(); 13401 bp = netdev_priv(dev); 13402 if (!bp) 13403 goto shutdown_exit; 13404 13405 if (netif_running(dev)) 13406 dev_close(dev); 13407 13408 bnxt_ulp_shutdown(bp); 13409 bnxt_clear_int_mode(bp); 13410 pci_disable_device(pdev); 13411 13412 if (system_state == SYSTEM_POWER_OFF) { 13413 pci_wake_from_d3(pdev, bp->wol); 13414 pci_set_power_state(pdev, PCI_D3hot); 13415 } 13416 13417 shutdown_exit: 13418 rtnl_unlock(); 13419 } 13420 13421 #ifdef CONFIG_PM_SLEEP 13422 static int bnxt_suspend(struct device *device) 13423 { 13424 struct net_device *dev = dev_get_drvdata(device); 13425 struct bnxt *bp = netdev_priv(dev); 13426 int rc = 0; 13427 13428 rtnl_lock(); 13429 bnxt_ulp_stop(bp); 13430 if (netif_running(dev)) { 13431 netif_device_detach(dev); 13432 rc = bnxt_close(dev); 13433 } 13434 bnxt_hwrm_func_drv_unrgtr(bp); 13435 pci_disable_device(bp->pdev); 13436 bnxt_free_ctx_mem(bp); 13437 kfree(bp->ctx); 13438 bp->ctx = NULL; 13439 rtnl_unlock(); 13440 return rc; 13441 } 13442 13443 static int bnxt_resume(struct device *device) 13444 { 13445 struct net_device *dev = dev_get_drvdata(device); 13446 struct bnxt *bp = netdev_priv(dev); 13447 int rc = 0; 13448 13449 rtnl_lock(); 13450 rc = pci_enable_device(bp->pdev); 13451 if (rc) { 13452 netdev_err(dev, "Cannot re-enable PCI device during resume, err = %d\n", 13453 rc); 13454 goto resume_exit; 13455 } 13456 pci_set_master(bp->pdev); 13457 if (bnxt_hwrm_ver_get(bp)) { 13458 rc = -ENODEV; 13459 goto resume_exit; 13460 } 13461 rc = bnxt_hwrm_func_reset(bp); 13462 if (rc) { 13463 rc = -EBUSY; 13464 goto resume_exit; 13465 } 13466 13467 rc = bnxt_hwrm_func_qcaps(bp); 13468 if (rc) 13469 goto resume_exit; 13470 13471 if (bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false)) { 13472 rc = -ENODEV; 13473 goto resume_exit; 13474 } 13475 13476 bnxt_get_wol_settings(bp); 13477 if (netif_running(dev)) { 13478 rc = bnxt_open(dev); 13479 if (!rc) 13480 netif_device_attach(dev); 13481 } 13482 13483 resume_exit: 13484 bnxt_ulp_start(bp, rc); 13485 if (!rc) 13486 bnxt_reenable_sriov(bp); 13487 rtnl_unlock(); 13488 return rc; 13489 } 13490 13491 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume); 13492 #define BNXT_PM_OPS (&bnxt_pm_ops) 13493 13494 #else 13495 13496 #define BNXT_PM_OPS NULL 13497 13498 #endif /* CONFIG_PM_SLEEP */ 13499 13500 /** 13501 * bnxt_io_error_detected - called when PCI error is detected 13502 * @pdev: Pointer to PCI device 13503 * @state: The current pci connection state 13504 * 13505 * This function is called after a PCI bus error affecting 13506 * this device has been detected. 13507 */ 13508 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev, 13509 pci_channel_state_t state) 13510 { 13511 struct net_device *netdev = pci_get_drvdata(pdev); 13512 struct bnxt *bp = netdev_priv(netdev); 13513 13514 netdev_info(netdev, "PCI I/O error detected\n"); 13515 13516 rtnl_lock(); 13517 netif_device_detach(netdev); 13518 13519 bnxt_ulp_stop(bp); 13520 13521 if (state == pci_channel_io_perm_failure) { 13522 rtnl_unlock(); 13523 return PCI_ERS_RESULT_DISCONNECT; 13524 } 13525 13526 if (state == pci_channel_io_frozen) 13527 set_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, &bp->state); 13528 13529 if (netif_running(netdev)) 13530 bnxt_close(netdev); 13531 13532 if (pci_is_enabled(pdev)) 13533 pci_disable_device(pdev); 13534 bnxt_free_ctx_mem(bp); 13535 kfree(bp->ctx); 13536 bp->ctx = NULL; 13537 rtnl_unlock(); 13538 13539 /* Request a slot slot reset. */ 13540 return PCI_ERS_RESULT_NEED_RESET; 13541 } 13542 13543 /** 13544 * bnxt_io_slot_reset - called after the pci bus has been reset. 13545 * @pdev: Pointer to PCI device 13546 * 13547 * Restart the card from scratch, as if from a cold-boot. 13548 * At this point, the card has exprienced a hard reset, 13549 * followed by fixups by BIOS, and has its config space 13550 * set up identically to what it was at cold boot. 13551 */ 13552 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev) 13553 { 13554 pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT; 13555 struct net_device *netdev = pci_get_drvdata(pdev); 13556 struct bnxt *bp = netdev_priv(netdev); 13557 int err = 0, off; 13558 13559 netdev_info(bp->dev, "PCI Slot Reset\n"); 13560 13561 rtnl_lock(); 13562 13563 if (pci_enable_device(pdev)) { 13564 dev_err(&pdev->dev, 13565 "Cannot re-enable PCI device after reset.\n"); 13566 } else { 13567 pci_set_master(pdev); 13568 /* Upon fatal error, our device internal logic that latches to 13569 * BAR value is getting reset and will restore only upon 13570 * rewritting the BARs. 13571 * 13572 * As pci_restore_state() does not re-write the BARs if the 13573 * value is same as saved value earlier, driver needs to 13574 * write the BARs to 0 to force restore, in case of fatal error. 13575 */ 13576 if (test_and_clear_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, 13577 &bp->state)) { 13578 for (off = PCI_BASE_ADDRESS_0; 13579 off <= PCI_BASE_ADDRESS_5; off += 4) 13580 pci_write_config_dword(bp->pdev, off, 0); 13581 } 13582 pci_restore_state(pdev); 13583 pci_save_state(pdev); 13584 13585 err = bnxt_hwrm_func_reset(bp); 13586 if (!err) 13587 result = PCI_ERS_RESULT_RECOVERED; 13588 } 13589 13590 rtnl_unlock(); 13591 13592 return result; 13593 } 13594 13595 /** 13596 * bnxt_io_resume - called when traffic can start flowing again. 13597 * @pdev: Pointer to PCI device 13598 * 13599 * This callback is called when the error recovery driver tells 13600 * us that its OK to resume normal operation. 13601 */ 13602 static void bnxt_io_resume(struct pci_dev *pdev) 13603 { 13604 struct net_device *netdev = pci_get_drvdata(pdev); 13605 struct bnxt *bp = netdev_priv(netdev); 13606 int err; 13607 13608 netdev_info(bp->dev, "PCI Slot Resume\n"); 13609 rtnl_lock(); 13610 13611 err = bnxt_hwrm_func_qcaps(bp); 13612 if (!err && netif_running(netdev)) 13613 err = bnxt_open(netdev); 13614 13615 bnxt_ulp_start(bp, err); 13616 if (!err) { 13617 bnxt_reenable_sriov(bp); 13618 netif_device_attach(netdev); 13619 } 13620 13621 rtnl_unlock(); 13622 } 13623 13624 static const struct pci_error_handlers bnxt_err_handler = { 13625 .error_detected = bnxt_io_error_detected, 13626 .slot_reset = bnxt_io_slot_reset, 13627 .resume = bnxt_io_resume 13628 }; 13629 13630 static struct pci_driver bnxt_pci_driver = { 13631 .name = DRV_MODULE_NAME, 13632 .id_table = bnxt_pci_tbl, 13633 .probe = bnxt_init_one, 13634 .remove = bnxt_remove_one, 13635 .shutdown = bnxt_shutdown, 13636 .driver.pm = BNXT_PM_OPS, 13637 .err_handler = &bnxt_err_handler, 13638 #if defined(CONFIG_BNXT_SRIOV) 13639 .sriov_configure = bnxt_sriov_configure, 13640 #endif 13641 }; 13642 13643 static int __init bnxt_init(void) 13644 { 13645 bnxt_debug_init(); 13646 return pci_register_driver(&bnxt_pci_driver); 13647 } 13648 13649 static void __exit bnxt_exit(void) 13650 { 13651 pci_unregister_driver(&bnxt_pci_driver); 13652 if (bnxt_pf_wq) 13653 destroy_workqueue(bnxt_pf_wq); 13654 bnxt_debug_exit(); 13655 } 13656 13657 module_init(bnxt_init); 13658 module_exit(bnxt_exit); 13659