xref: /openbmc/linux/drivers/net/ethernet/broadcom/bnxt/bnxt.c (revision de8c12110a130337c8e7e7b8250de0580e644dee)
1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2016 Broadcom Corporation
4  * Copyright (c) 2016-2019 Broadcom Limited
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation.
9  */
10 
11 #include <linux/module.h>
12 
13 #include <linux/stringify.h>
14 #include <linux/kernel.h>
15 #include <linux/timer.h>
16 #include <linux/errno.h>
17 #include <linux/ioport.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 #include <linux/interrupt.h>
21 #include <linux/pci.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/skbuff.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/bitops.h>
27 #include <linux/io.h>
28 #include <linux/irq.h>
29 #include <linux/delay.h>
30 #include <asm/byteorder.h>
31 #include <asm/page.h>
32 #include <linux/time.h>
33 #include <linux/mii.h>
34 #include <linux/mdio.h>
35 #include <linux/if.h>
36 #include <linux/if_vlan.h>
37 #include <linux/if_bridge.h>
38 #include <linux/rtc.h>
39 #include <linux/bpf.h>
40 #include <net/ip.h>
41 #include <net/tcp.h>
42 #include <net/udp.h>
43 #include <net/checksum.h>
44 #include <net/ip6_checksum.h>
45 #include <net/udp_tunnel.h>
46 #include <linux/workqueue.h>
47 #include <linux/prefetch.h>
48 #include <linux/cache.h>
49 #include <linux/log2.h>
50 #include <linux/aer.h>
51 #include <linux/bitmap.h>
52 #include <linux/cpu_rmap.h>
53 #include <linux/cpumask.h>
54 #include <net/pkt_cls.h>
55 #include <linux/hwmon.h>
56 #include <linux/hwmon-sysfs.h>
57 #include <net/page_pool.h>
58 
59 #include "bnxt_hsi.h"
60 #include "bnxt.h"
61 #include "bnxt_ulp.h"
62 #include "bnxt_sriov.h"
63 #include "bnxt_ethtool.h"
64 #include "bnxt_dcb.h"
65 #include "bnxt_xdp.h"
66 #include "bnxt_vfr.h"
67 #include "bnxt_tc.h"
68 #include "bnxt_devlink.h"
69 #include "bnxt_debugfs.h"
70 
71 #define BNXT_TX_TIMEOUT		(5 * HZ)
72 #define BNXT_DEF_MSG_ENABLE	(NETIF_MSG_DRV | NETIF_MSG_HW)
73 
74 MODULE_LICENSE("GPL");
75 MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
76 
77 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
78 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
79 #define BNXT_RX_COPY_THRESH 256
80 
81 #define BNXT_TX_PUSH_THRESH 164
82 
83 enum board_idx {
84 	BCM57301,
85 	BCM57302,
86 	BCM57304,
87 	BCM57417_NPAR,
88 	BCM58700,
89 	BCM57311,
90 	BCM57312,
91 	BCM57402,
92 	BCM57404,
93 	BCM57406,
94 	BCM57402_NPAR,
95 	BCM57407,
96 	BCM57412,
97 	BCM57414,
98 	BCM57416,
99 	BCM57417,
100 	BCM57412_NPAR,
101 	BCM57314,
102 	BCM57417_SFP,
103 	BCM57416_SFP,
104 	BCM57404_NPAR,
105 	BCM57406_NPAR,
106 	BCM57407_SFP,
107 	BCM57407_NPAR,
108 	BCM57414_NPAR,
109 	BCM57416_NPAR,
110 	BCM57452,
111 	BCM57454,
112 	BCM5745x_NPAR,
113 	BCM57508,
114 	BCM57504,
115 	BCM57502,
116 	BCM57508_NPAR,
117 	BCM57504_NPAR,
118 	BCM57502_NPAR,
119 	BCM58802,
120 	BCM58804,
121 	BCM58808,
122 	NETXTREME_E_VF,
123 	NETXTREME_C_VF,
124 	NETXTREME_S_VF,
125 	NETXTREME_E_P5_VF,
126 };
127 
128 /* indexed by enum above */
129 static const struct {
130 	char *name;
131 } board_info[] = {
132 	[BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" },
133 	[BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" },
134 	[BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
135 	[BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" },
136 	[BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" },
137 	[BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" },
138 	[BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" },
139 	[BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" },
140 	[BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" },
141 	[BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" },
142 	[BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" },
143 	[BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" },
144 	[BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" },
145 	[BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" },
146 	[BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" },
147 	[BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" },
148 	[BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" },
149 	[BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
150 	[BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" },
151 	[BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" },
152 	[BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" },
153 	[BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" },
154 	[BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" },
155 	[BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" },
156 	[BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" },
157 	[BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" },
158 	[BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" },
159 	[BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
160 	[BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" },
161 	[BCM57508] = { "Broadcom BCM57508 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
162 	[BCM57504] = { "Broadcom BCM57504 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
163 	[BCM57502] = { "Broadcom BCM57502 NetXtreme-E 10Gb/25Gb/50Gb Ethernet" },
164 	[BCM57508_NPAR] = { "Broadcom BCM57508 NetXtreme-E Ethernet Partition" },
165 	[BCM57504_NPAR] = { "Broadcom BCM57504 NetXtreme-E Ethernet Partition" },
166 	[BCM57502_NPAR] = { "Broadcom BCM57502 NetXtreme-E Ethernet Partition" },
167 	[BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" },
168 	[BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
169 	[BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
170 	[NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" },
171 	[NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" },
172 	[NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" },
173 	[NETXTREME_E_P5_VF] = { "Broadcom BCM5750X NetXtreme-E Ethernet Virtual Function" },
174 };
175 
176 static const struct pci_device_id bnxt_pci_tbl[] = {
177 	{ PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR },
178 	{ PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR },
179 	{ PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 },
180 	{ PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR },
181 	{ PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
182 	{ PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
183 	{ PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
184 	{ PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR },
185 	{ PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 },
186 	{ PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 },
187 	{ PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 },
188 	{ PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
189 	{ PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
190 	{ PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
191 	{ PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR },
192 	{ PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 },
193 	{ PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 },
194 	{ PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 },
195 	{ PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 },
196 	{ PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 },
197 	{ PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR },
198 	{ PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 },
199 	{ PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP },
200 	{ PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP },
201 	{ PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR },
202 	{ PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR },
203 	{ PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP },
204 	{ PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR },
205 	{ PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR },
206 	{ PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR },
207 	{ PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR },
208 	{ PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR },
209 	{ PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR },
210 	{ PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 },
211 	{ PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 },
212 	{ PCI_VDEVICE(BROADCOM, 0x1750), .driver_data = BCM57508 },
213 	{ PCI_VDEVICE(BROADCOM, 0x1751), .driver_data = BCM57504 },
214 	{ PCI_VDEVICE(BROADCOM, 0x1752), .driver_data = BCM57502 },
215 	{ PCI_VDEVICE(BROADCOM, 0x1800), .driver_data = BCM57508_NPAR },
216 	{ PCI_VDEVICE(BROADCOM, 0x1801), .driver_data = BCM57504_NPAR },
217 	{ PCI_VDEVICE(BROADCOM, 0x1802), .driver_data = BCM57502_NPAR },
218 	{ PCI_VDEVICE(BROADCOM, 0x1803), .driver_data = BCM57508_NPAR },
219 	{ PCI_VDEVICE(BROADCOM, 0x1804), .driver_data = BCM57504_NPAR },
220 	{ PCI_VDEVICE(BROADCOM, 0x1805), .driver_data = BCM57502_NPAR },
221 	{ PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 },
222 	{ PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 },
223 #ifdef CONFIG_BNXT_SRIOV
224 	{ PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF },
225 	{ PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF },
226 	{ PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF },
227 	{ PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF },
228 	{ PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF },
229 	{ PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF },
230 	{ PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF },
231 	{ PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF },
232 	{ PCI_VDEVICE(BROADCOM, 0x1806), .driver_data = NETXTREME_E_P5_VF },
233 	{ PCI_VDEVICE(BROADCOM, 0x1807), .driver_data = NETXTREME_E_P5_VF },
234 	{ PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF },
235 #endif
236 	{ 0 }
237 };
238 
239 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
240 
241 static const u16 bnxt_vf_req_snif[] = {
242 	HWRM_FUNC_CFG,
243 	HWRM_FUNC_VF_CFG,
244 	HWRM_PORT_PHY_QCFG,
245 	HWRM_CFA_L2_FILTER_ALLOC,
246 };
247 
248 static const u16 bnxt_async_events_arr[] = {
249 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE,
250 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE,
251 	ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD,
252 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED,
253 	ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE,
254 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE,
255 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE,
256 	ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY,
257 	ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY,
258 	ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION,
259 	ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG,
260 	ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST,
261 };
262 
263 static struct workqueue_struct *bnxt_pf_wq;
264 
265 static bool bnxt_vf_pciid(enum board_idx idx)
266 {
267 	return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF ||
268 		idx == NETXTREME_S_VF || idx == NETXTREME_E_P5_VF);
269 }
270 
271 #define DB_CP_REARM_FLAGS	(DB_KEY_CP | DB_IDX_VALID)
272 #define DB_CP_FLAGS		(DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
273 #define DB_CP_IRQ_DIS_FLAGS	(DB_KEY_CP | DB_IRQ_DIS)
274 
275 #define BNXT_CP_DB_IRQ_DIS(db)						\
276 		writel(DB_CP_IRQ_DIS_FLAGS, db)
277 
278 #define BNXT_DB_CQ(db, idx)						\
279 	writel(DB_CP_FLAGS | RING_CMP(idx), (db)->doorbell)
280 
281 #define BNXT_DB_NQ_P5(db, idx)						\
282 	writeq((db)->db_key64 | DBR_TYPE_NQ | RING_CMP(idx), (db)->doorbell)
283 
284 #define BNXT_DB_CQ_ARM(db, idx)						\
285 	writel(DB_CP_REARM_FLAGS | RING_CMP(idx), (db)->doorbell)
286 
287 #define BNXT_DB_NQ_ARM_P5(db, idx)					\
288 	writeq((db)->db_key64 | DBR_TYPE_NQ_ARM | RING_CMP(idx), (db)->doorbell)
289 
290 static void bnxt_db_nq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
291 {
292 	if (bp->flags & BNXT_FLAG_CHIP_P5)
293 		BNXT_DB_NQ_P5(db, idx);
294 	else
295 		BNXT_DB_CQ(db, idx);
296 }
297 
298 static void bnxt_db_nq_arm(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
299 {
300 	if (bp->flags & BNXT_FLAG_CHIP_P5)
301 		BNXT_DB_NQ_ARM_P5(db, idx);
302 	else
303 		BNXT_DB_CQ_ARM(db, idx);
304 }
305 
306 static void bnxt_db_cq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
307 {
308 	if (bp->flags & BNXT_FLAG_CHIP_P5)
309 		writeq(db->db_key64 | DBR_TYPE_CQ_ARMALL | RING_CMP(idx),
310 		       db->doorbell);
311 	else
312 		BNXT_DB_CQ(db, idx);
313 }
314 
315 const u16 bnxt_lhint_arr[] = {
316 	TX_BD_FLAGS_LHINT_512_AND_SMALLER,
317 	TX_BD_FLAGS_LHINT_512_TO_1023,
318 	TX_BD_FLAGS_LHINT_1024_TO_2047,
319 	TX_BD_FLAGS_LHINT_1024_TO_2047,
320 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
321 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
322 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
323 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
324 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
325 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
326 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
327 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
328 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
329 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
330 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
331 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
332 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
333 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
334 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
335 };
336 
337 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb)
338 {
339 	struct metadata_dst *md_dst = skb_metadata_dst(skb);
340 
341 	if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX)
342 		return 0;
343 
344 	return md_dst->u.port_info.port_id;
345 }
346 
347 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
348 {
349 	struct bnxt *bp = netdev_priv(dev);
350 	struct tx_bd *txbd;
351 	struct tx_bd_ext *txbd1;
352 	struct netdev_queue *txq;
353 	int i;
354 	dma_addr_t mapping;
355 	unsigned int length, pad = 0;
356 	u32 len, free_size, vlan_tag_flags, cfa_action, flags;
357 	u16 prod, last_frag;
358 	struct pci_dev *pdev = bp->pdev;
359 	struct bnxt_tx_ring_info *txr;
360 	struct bnxt_sw_tx_bd *tx_buf;
361 
362 	i = skb_get_queue_mapping(skb);
363 	if (unlikely(i >= bp->tx_nr_rings)) {
364 		dev_kfree_skb_any(skb);
365 		return NETDEV_TX_OK;
366 	}
367 
368 	txq = netdev_get_tx_queue(dev, i);
369 	txr = &bp->tx_ring[bp->tx_ring_map[i]];
370 	prod = txr->tx_prod;
371 
372 	free_size = bnxt_tx_avail(bp, txr);
373 	if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
374 		netif_tx_stop_queue(txq);
375 		return NETDEV_TX_BUSY;
376 	}
377 
378 	length = skb->len;
379 	len = skb_headlen(skb);
380 	last_frag = skb_shinfo(skb)->nr_frags;
381 
382 	txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
383 
384 	txbd->tx_bd_opaque = prod;
385 
386 	tx_buf = &txr->tx_buf_ring[prod];
387 	tx_buf->skb = skb;
388 	tx_buf->nr_frags = last_frag;
389 
390 	vlan_tag_flags = 0;
391 	cfa_action = bnxt_xmit_get_cfa_action(skb);
392 	if (skb_vlan_tag_present(skb)) {
393 		vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
394 				 skb_vlan_tag_get(skb);
395 		/* Currently supports 8021Q, 8021AD vlan offloads
396 		 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
397 		 */
398 		if (skb->vlan_proto == htons(ETH_P_8021Q))
399 			vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
400 	}
401 
402 	if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh) {
403 		struct tx_push_buffer *tx_push_buf = txr->tx_push;
404 		struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
405 		struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
406 		void __iomem *db = txr->tx_db.doorbell;
407 		void *pdata = tx_push_buf->data;
408 		u64 *end;
409 		int j, push_len;
410 
411 		/* Set COAL_NOW to be ready quickly for the next push */
412 		tx_push->tx_bd_len_flags_type =
413 			cpu_to_le32((length << TX_BD_LEN_SHIFT) |
414 					TX_BD_TYPE_LONG_TX_BD |
415 					TX_BD_FLAGS_LHINT_512_AND_SMALLER |
416 					TX_BD_FLAGS_COAL_NOW |
417 					TX_BD_FLAGS_PACKET_END |
418 					(2 << TX_BD_FLAGS_BD_CNT_SHIFT));
419 
420 		if (skb->ip_summed == CHECKSUM_PARTIAL)
421 			tx_push1->tx_bd_hsize_lflags =
422 					cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
423 		else
424 			tx_push1->tx_bd_hsize_lflags = 0;
425 
426 		tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
427 		tx_push1->tx_bd_cfa_action =
428 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
429 
430 		end = pdata + length;
431 		end = PTR_ALIGN(end, 8) - 1;
432 		*end = 0;
433 
434 		skb_copy_from_linear_data(skb, pdata, len);
435 		pdata += len;
436 		for (j = 0; j < last_frag; j++) {
437 			skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
438 			void *fptr;
439 
440 			fptr = skb_frag_address_safe(frag);
441 			if (!fptr)
442 				goto normal_tx;
443 
444 			memcpy(pdata, fptr, skb_frag_size(frag));
445 			pdata += skb_frag_size(frag);
446 		}
447 
448 		txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
449 		txbd->tx_bd_haddr = txr->data_mapping;
450 		prod = NEXT_TX(prod);
451 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
452 		memcpy(txbd, tx_push1, sizeof(*txbd));
453 		prod = NEXT_TX(prod);
454 		tx_push->doorbell =
455 			cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod);
456 		txr->tx_prod = prod;
457 
458 		tx_buf->is_push = 1;
459 		netdev_tx_sent_queue(txq, skb->len);
460 		wmb();	/* Sync is_push and byte queue before pushing data */
461 
462 		push_len = (length + sizeof(*tx_push) + 7) / 8;
463 		if (push_len > 16) {
464 			__iowrite64_copy(db, tx_push_buf, 16);
465 			__iowrite32_copy(db + 4, tx_push_buf + 1,
466 					 (push_len - 16) << 1);
467 		} else {
468 			__iowrite64_copy(db, tx_push_buf, push_len);
469 		}
470 
471 		goto tx_done;
472 	}
473 
474 normal_tx:
475 	if (length < BNXT_MIN_PKT_SIZE) {
476 		pad = BNXT_MIN_PKT_SIZE - length;
477 		if (skb_pad(skb, pad)) {
478 			/* SKB already freed. */
479 			tx_buf->skb = NULL;
480 			return NETDEV_TX_OK;
481 		}
482 		length = BNXT_MIN_PKT_SIZE;
483 	}
484 
485 	mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
486 
487 	if (unlikely(dma_mapping_error(&pdev->dev, mapping))) {
488 		dev_kfree_skb_any(skb);
489 		tx_buf->skb = NULL;
490 		return NETDEV_TX_OK;
491 	}
492 
493 	dma_unmap_addr_set(tx_buf, mapping, mapping);
494 	flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
495 		((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
496 
497 	txbd->tx_bd_haddr = cpu_to_le64(mapping);
498 
499 	prod = NEXT_TX(prod);
500 	txbd1 = (struct tx_bd_ext *)
501 		&txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
502 
503 	txbd1->tx_bd_hsize_lflags = 0;
504 	if (skb_is_gso(skb)) {
505 		u32 hdr_len;
506 
507 		if (skb->encapsulation)
508 			hdr_len = skb_inner_network_offset(skb) +
509 				skb_inner_network_header_len(skb) +
510 				inner_tcp_hdrlen(skb);
511 		else
512 			hdr_len = skb_transport_offset(skb) +
513 				tcp_hdrlen(skb);
514 
515 		txbd1->tx_bd_hsize_lflags = cpu_to_le32(TX_BD_FLAGS_LSO |
516 					TX_BD_FLAGS_T_IPID |
517 					(hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
518 		length = skb_shinfo(skb)->gso_size;
519 		txbd1->tx_bd_mss = cpu_to_le32(length);
520 		length += hdr_len;
521 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
522 		txbd1->tx_bd_hsize_lflags =
523 			cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
524 		txbd1->tx_bd_mss = 0;
525 	}
526 
527 	length >>= 9;
528 	if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) {
529 		dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n",
530 				     skb->len);
531 		i = 0;
532 		goto tx_dma_error;
533 	}
534 	flags |= bnxt_lhint_arr[length];
535 	txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
536 
537 	txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
538 	txbd1->tx_bd_cfa_action =
539 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
540 	for (i = 0; i < last_frag; i++) {
541 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
542 
543 		prod = NEXT_TX(prod);
544 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
545 
546 		len = skb_frag_size(frag);
547 		mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
548 					   DMA_TO_DEVICE);
549 
550 		if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
551 			goto tx_dma_error;
552 
553 		tx_buf = &txr->tx_buf_ring[prod];
554 		dma_unmap_addr_set(tx_buf, mapping, mapping);
555 
556 		txbd->tx_bd_haddr = cpu_to_le64(mapping);
557 
558 		flags = len << TX_BD_LEN_SHIFT;
559 		txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
560 	}
561 
562 	flags &= ~TX_BD_LEN;
563 	txbd->tx_bd_len_flags_type =
564 		cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
565 			    TX_BD_FLAGS_PACKET_END);
566 
567 	netdev_tx_sent_queue(txq, skb->len);
568 
569 	/* Sync BD data before updating doorbell */
570 	wmb();
571 
572 	prod = NEXT_TX(prod);
573 	txr->tx_prod = prod;
574 
575 	if (!netdev_xmit_more() || netif_xmit_stopped(txq))
576 		bnxt_db_write(bp, &txr->tx_db, prod);
577 
578 tx_done:
579 
580 	if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
581 		if (netdev_xmit_more() && !tx_buf->is_push)
582 			bnxt_db_write(bp, &txr->tx_db, prod);
583 
584 		netif_tx_stop_queue(txq);
585 
586 		/* netif_tx_stop_queue() must be done before checking
587 		 * tx index in bnxt_tx_avail() below, because in
588 		 * bnxt_tx_int(), we update tx index before checking for
589 		 * netif_tx_queue_stopped().
590 		 */
591 		smp_mb();
592 		if (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)
593 			netif_tx_wake_queue(txq);
594 	}
595 	return NETDEV_TX_OK;
596 
597 tx_dma_error:
598 	last_frag = i;
599 
600 	/* start back at beginning and unmap skb */
601 	prod = txr->tx_prod;
602 	tx_buf = &txr->tx_buf_ring[prod];
603 	tx_buf->skb = NULL;
604 	dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
605 			 skb_headlen(skb), PCI_DMA_TODEVICE);
606 	prod = NEXT_TX(prod);
607 
608 	/* unmap remaining mapped pages */
609 	for (i = 0; i < last_frag; i++) {
610 		prod = NEXT_TX(prod);
611 		tx_buf = &txr->tx_buf_ring[prod];
612 		dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
613 			       skb_frag_size(&skb_shinfo(skb)->frags[i]),
614 			       PCI_DMA_TODEVICE);
615 	}
616 
617 	dev_kfree_skb_any(skb);
618 	return NETDEV_TX_OK;
619 }
620 
621 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts)
622 {
623 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
624 	struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index);
625 	u16 cons = txr->tx_cons;
626 	struct pci_dev *pdev = bp->pdev;
627 	int i;
628 	unsigned int tx_bytes = 0;
629 
630 	for (i = 0; i < nr_pkts; i++) {
631 		struct bnxt_sw_tx_bd *tx_buf;
632 		struct sk_buff *skb;
633 		int j, last;
634 
635 		tx_buf = &txr->tx_buf_ring[cons];
636 		cons = NEXT_TX(cons);
637 		skb = tx_buf->skb;
638 		tx_buf->skb = NULL;
639 
640 		if (tx_buf->is_push) {
641 			tx_buf->is_push = 0;
642 			goto next_tx_int;
643 		}
644 
645 		dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
646 				 skb_headlen(skb), PCI_DMA_TODEVICE);
647 		last = tx_buf->nr_frags;
648 
649 		for (j = 0; j < last; j++) {
650 			cons = NEXT_TX(cons);
651 			tx_buf = &txr->tx_buf_ring[cons];
652 			dma_unmap_page(
653 				&pdev->dev,
654 				dma_unmap_addr(tx_buf, mapping),
655 				skb_frag_size(&skb_shinfo(skb)->frags[j]),
656 				PCI_DMA_TODEVICE);
657 		}
658 
659 next_tx_int:
660 		cons = NEXT_TX(cons);
661 
662 		tx_bytes += skb->len;
663 		dev_kfree_skb_any(skb);
664 	}
665 
666 	netdev_tx_completed_queue(txq, nr_pkts, tx_bytes);
667 	txr->tx_cons = cons;
668 
669 	/* Need to make the tx_cons update visible to bnxt_start_xmit()
670 	 * before checking for netif_tx_queue_stopped().  Without the
671 	 * memory barrier, there is a small possibility that bnxt_start_xmit()
672 	 * will miss it and cause the queue to be stopped forever.
673 	 */
674 	smp_mb();
675 
676 	if (unlikely(netif_tx_queue_stopped(txq)) &&
677 	    (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
678 		__netif_tx_lock(txq, smp_processor_id());
679 		if (netif_tx_queue_stopped(txq) &&
680 		    bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh &&
681 		    txr->dev_state != BNXT_DEV_STATE_CLOSING)
682 			netif_tx_wake_queue(txq);
683 		__netif_tx_unlock(txq);
684 	}
685 }
686 
687 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping,
688 					 struct bnxt_rx_ring_info *rxr,
689 					 gfp_t gfp)
690 {
691 	struct device *dev = &bp->pdev->dev;
692 	struct page *page;
693 
694 	page = page_pool_dev_alloc_pages(rxr->page_pool);
695 	if (!page)
696 		return NULL;
697 
698 	*mapping = dma_map_page_attrs(dev, page, 0, PAGE_SIZE, bp->rx_dir,
699 				      DMA_ATTR_WEAK_ORDERING);
700 	if (dma_mapping_error(dev, *mapping)) {
701 		page_pool_recycle_direct(rxr->page_pool, page);
702 		return NULL;
703 	}
704 	*mapping += bp->rx_dma_offset;
705 	return page;
706 }
707 
708 static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping,
709 				       gfp_t gfp)
710 {
711 	u8 *data;
712 	struct pci_dev *pdev = bp->pdev;
713 
714 	data = kmalloc(bp->rx_buf_size, gfp);
715 	if (!data)
716 		return NULL;
717 
718 	*mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset,
719 					bp->rx_buf_use_size, bp->rx_dir,
720 					DMA_ATTR_WEAK_ORDERING);
721 
722 	if (dma_mapping_error(&pdev->dev, *mapping)) {
723 		kfree(data);
724 		data = NULL;
725 	}
726 	return data;
727 }
728 
729 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
730 		       u16 prod, gfp_t gfp)
731 {
732 	struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
733 	struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
734 	dma_addr_t mapping;
735 
736 	if (BNXT_RX_PAGE_MODE(bp)) {
737 		struct page *page =
738 			__bnxt_alloc_rx_page(bp, &mapping, rxr, gfp);
739 
740 		if (!page)
741 			return -ENOMEM;
742 
743 		rx_buf->data = page;
744 		rx_buf->data_ptr = page_address(page) + bp->rx_offset;
745 	} else {
746 		u8 *data = __bnxt_alloc_rx_data(bp, &mapping, gfp);
747 
748 		if (!data)
749 			return -ENOMEM;
750 
751 		rx_buf->data = data;
752 		rx_buf->data_ptr = data + bp->rx_offset;
753 	}
754 	rx_buf->mapping = mapping;
755 
756 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
757 	return 0;
758 }
759 
760 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data)
761 {
762 	u16 prod = rxr->rx_prod;
763 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
764 	struct rx_bd *cons_bd, *prod_bd;
765 
766 	prod_rx_buf = &rxr->rx_buf_ring[prod];
767 	cons_rx_buf = &rxr->rx_buf_ring[cons];
768 
769 	prod_rx_buf->data = data;
770 	prod_rx_buf->data_ptr = cons_rx_buf->data_ptr;
771 
772 	prod_rx_buf->mapping = cons_rx_buf->mapping;
773 
774 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
775 	cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
776 
777 	prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
778 }
779 
780 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
781 {
782 	u16 next, max = rxr->rx_agg_bmap_size;
783 
784 	next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
785 	if (next >= max)
786 		next = find_first_zero_bit(rxr->rx_agg_bmap, max);
787 	return next;
788 }
789 
790 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
791 				     struct bnxt_rx_ring_info *rxr,
792 				     u16 prod, gfp_t gfp)
793 {
794 	struct rx_bd *rxbd =
795 		&rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
796 	struct bnxt_sw_rx_agg_bd *rx_agg_buf;
797 	struct pci_dev *pdev = bp->pdev;
798 	struct page *page;
799 	dma_addr_t mapping;
800 	u16 sw_prod = rxr->rx_sw_agg_prod;
801 	unsigned int offset = 0;
802 
803 	if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) {
804 		page = rxr->rx_page;
805 		if (!page) {
806 			page = alloc_page(gfp);
807 			if (!page)
808 				return -ENOMEM;
809 			rxr->rx_page = page;
810 			rxr->rx_page_offset = 0;
811 		}
812 		offset = rxr->rx_page_offset;
813 		rxr->rx_page_offset += BNXT_RX_PAGE_SIZE;
814 		if (rxr->rx_page_offset == PAGE_SIZE)
815 			rxr->rx_page = NULL;
816 		else
817 			get_page(page);
818 	} else {
819 		page = alloc_page(gfp);
820 		if (!page)
821 			return -ENOMEM;
822 	}
823 
824 	mapping = dma_map_page_attrs(&pdev->dev, page, offset,
825 				     BNXT_RX_PAGE_SIZE, PCI_DMA_FROMDEVICE,
826 				     DMA_ATTR_WEAK_ORDERING);
827 	if (dma_mapping_error(&pdev->dev, mapping)) {
828 		__free_page(page);
829 		return -EIO;
830 	}
831 
832 	if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
833 		sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
834 
835 	__set_bit(sw_prod, rxr->rx_agg_bmap);
836 	rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
837 	rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod);
838 
839 	rx_agg_buf->page = page;
840 	rx_agg_buf->offset = offset;
841 	rx_agg_buf->mapping = mapping;
842 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
843 	rxbd->rx_bd_opaque = sw_prod;
844 	return 0;
845 }
846 
847 static struct rx_agg_cmp *bnxt_get_agg(struct bnxt *bp,
848 				       struct bnxt_cp_ring_info *cpr,
849 				       u16 cp_cons, u16 curr)
850 {
851 	struct rx_agg_cmp *agg;
852 
853 	cp_cons = RING_CMP(ADV_RAW_CMP(cp_cons, curr));
854 	agg = (struct rx_agg_cmp *)
855 		&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
856 	return agg;
857 }
858 
859 static struct rx_agg_cmp *bnxt_get_tpa_agg_p5(struct bnxt *bp,
860 					      struct bnxt_rx_ring_info *rxr,
861 					      u16 agg_id, u16 curr)
862 {
863 	struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[agg_id];
864 
865 	return &tpa_info->agg_arr[curr];
866 }
867 
868 static void bnxt_reuse_rx_agg_bufs(struct bnxt_cp_ring_info *cpr, u16 idx,
869 				   u16 start, u32 agg_bufs, bool tpa)
870 {
871 	struct bnxt_napi *bnapi = cpr->bnapi;
872 	struct bnxt *bp = bnapi->bp;
873 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
874 	u16 prod = rxr->rx_agg_prod;
875 	u16 sw_prod = rxr->rx_sw_agg_prod;
876 	bool p5_tpa = false;
877 	u32 i;
878 
879 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa)
880 		p5_tpa = true;
881 
882 	for (i = 0; i < agg_bufs; i++) {
883 		u16 cons;
884 		struct rx_agg_cmp *agg;
885 		struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
886 		struct rx_bd *prod_bd;
887 		struct page *page;
888 
889 		if (p5_tpa)
890 			agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, start + i);
891 		else
892 			agg = bnxt_get_agg(bp, cpr, idx, start + i);
893 		cons = agg->rx_agg_cmp_opaque;
894 		__clear_bit(cons, rxr->rx_agg_bmap);
895 
896 		if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
897 			sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
898 
899 		__set_bit(sw_prod, rxr->rx_agg_bmap);
900 		prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
901 		cons_rx_buf = &rxr->rx_agg_ring[cons];
902 
903 		/* It is possible for sw_prod to be equal to cons, so
904 		 * set cons_rx_buf->page to NULL first.
905 		 */
906 		page = cons_rx_buf->page;
907 		cons_rx_buf->page = NULL;
908 		prod_rx_buf->page = page;
909 		prod_rx_buf->offset = cons_rx_buf->offset;
910 
911 		prod_rx_buf->mapping = cons_rx_buf->mapping;
912 
913 		prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
914 
915 		prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
916 		prod_bd->rx_bd_opaque = sw_prod;
917 
918 		prod = NEXT_RX_AGG(prod);
919 		sw_prod = NEXT_RX_AGG(sw_prod);
920 	}
921 	rxr->rx_agg_prod = prod;
922 	rxr->rx_sw_agg_prod = sw_prod;
923 }
924 
925 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp,
926 					struct bnxt_rx_ring_info *rxr,
927 					u16 cons, void *data, u8 *data_ptr,
928 					dma_addr_t dma_addr,
929 					unsigned int offset_and_len)
930 {
931 	unsigned int payload = offset_and_len >> 16;
932 	unsigned int len = offset_and_len & 0xffff;
933 	skb_frag_t *frag;
934 	struct page *page = data;
935 	u16 prod = rxr->rx_prod;
936 	struct sk_buff *skb;
937 	int off, err;
938 
939 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
940 	if (unlikely(err)) {
941 		bnxt_reuse_rx_data(rxr, cons, data);
942 		return NULL;
943 	}
944 	dma_addr -= bp->rx_dma_offset;
945 	dma_unmap_page_attrs(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir,
946 			     DMA_ATTR_WEAK_ORDERING);
947 	page_pool_release_page(rxr->page_pool, page);
948 
949 	if (unlikely(!payload))
950 		payload = eth_get_headlen(bp->dev, data_ptr, len);
951 
952 	skb = napi_alloc_skb(&rxr->bnapi->napi, payload);
953 	if (!skb) {
954 		__free_page(page);
955 		return NULL;
956 	}
957 
958 	off = (void *)data_ptr - page_address(page);
959 	skb_add_rx_frag(skb, 0, page, off, len, PAGE_SIZE);
960 	memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN,
961 	       payload + NET_IP_ALIGN);
962 
963 	frag = &skb_shinfo(skb)->frags[0];
964 	skb_frag_size_sub(frag, payload);
965 	skb_frag_off_add(frag, payload);
966 	skb->data_len -= payload;
967 	skb->tail += payload;
968 
969 	return skb;
970 }
971 
972 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
973 				   struct bnxt_rx_ring_info *rxr, u16 cons,
974 				   void *data, u8 *data_ptr,
975 				   dma_addr_t dma_addr,
976 				   unsigned int offset_and_len)
977 {
978 	u16 prod = rxr->rx_prod;
979 	struct sk_buff *skb;
980 	int err;
981 
982 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
983 	if (unlikely(err)) {
984 		bnxt_reuse_rx_data(rxr, cons, data);
985 		return NULL;
986 	}
987 
988 	skb = build_skb(data, 0);
989 	dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
990 			       bp->rx_dir, DMA_ATTR_WEAK_ORDERING);
991 	if (!skb) {
992 		kfree(data);
993 		return NULL;
994 	}
995 
996 	skb_reserve(skb, bp->rx_offset);
997 	skb_put(skb, offset_and_len & 0xffff);
998 	return skb;
999 }
1000 
1001 static struct sk_buff *bnxt_rx_pages(struct bnxt *bp,
1002 				     struct bnxt_cp_ring_info *cpr,
1003 				     struct sk_buff *skb, u16 idx,
1004 				     u32 agg_bufs, bool tpa)
1005 {
1006 	struct bnxt_napi *bnapi = cpr->bnapi;
1007 	struct pci_dev *pdev = bp->pdev;
1008 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1009 	u16 prod = rxr->rx_agg_prod;
1010 	bool p5_tpa = false;
1011 	u32 i;
1012 
1013 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa)
1014 		p5_tpa = true;
1015 
1016 	for (i = 0; i < agg_bufs; i++) {
1017 		u16 cons, frag_len;
1018 		struct rx_agg_cmp *agg;
1019 		struct bnxt_sw_rx_agg_bd *cons_rx_buf;
1020 		struct page *page;
1021 		dma_addr_t mapping;
1022 
1023 		if (p5_tpa)
1024 			agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, i);
1025 		else
1026 			agg = bnxt_get_agg(bp, cpr, idx, i);
1027 		cons = agg->rx_agg_cmp_opaque;
1028 		frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
1029 			    RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
1030 
1031 		cons_rx_buf = &rxr->rx_agg_ring[cons];
1032 		skb_fill_page_desc(skb, i, cons_rx_buf->page,
1033 				   cons_rx_buf->offset, frag_len);
1034 		__clear_bit(cons, rxr->rx_agg_bmap);
1035 
1036 		/* It is possible for bnxt_alloc_rx_page() to allocate
1037 		 * a sw_prod index that equals the cons index, so we
1038 		 * need to clear the cons entry now.
1039 		 */
1040 		mapping = cons_rx_buf->mapping;
1041 		page = cons_rx_buf->page;
1042 		cons_rx_buf->page = NULL;
1043 
1044 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
1045 			struct skb_shared_info *shinfo;
1046 			unsigned int nr_frags;
1047 
1048 			shinfo = skb_shinfo(skb);
1049 			nr_frags = --shinfo->nr_frags;
1050 			__skb_frag_set_page(&shinfo->frags[nr_frags], NULL);
1051 
1052 			dev_kfree_skb(skb);
1053 
1054 			cons_rx_buf->page = page;
1055 
1056 			/* Update prod since possibly some pages have been
1057 			 * allocated already.
1058 			 */
1059 			rxr->rx_agg_prod = prod;
1060 			bnxt_reuse_rx_agg_bufs(cpr, idx, i, agg_bufs - i, tpa);
1061 			return NULL;
1062 		}
1063 
1064 		dma_unmap_page_attrs(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE,
1065 				     PCI_DMA_FROMDEVICE,
1066 				     DMA_ATTR_WEAK_ORDERING);
1067 
1068 		skb->data_len += frag_len;
1069 		skb->len += frag_len;
1070 		skb->truesize += PAGE_SIZE;
1071 
1072 		prod = NEXT_RX_AGG(prod);
1073 	}
1074 	rxr->rx_agg_prod = prod;
1075 	return skb;
1076 }
1077 
1078 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1079 			       u8 agg_bufs, u32 *raw_cons)
1080 {
1081 	u16 last;
1082 	struct rx_agg_cmp *agg;
1083 
1084 	*raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
1085 	last = RING_CMP(*raw_cons);
1086 	agg = (struct rx_agg_cmp *)
1087 		&cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
1088 	return RX_AGG_CMP_VALID(agg, *raw_cons);
1089 }
1090 
1091 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
1092 					    unsigned int len,
1093 					    dma_addr_t mapping)
1094 {
1095 	struct bnxt *bp = bnapi->bp;
1096 	struct pci_dev *pdev = bp->pdev;
1097 	struct sk_buff *skb;
1098 
1099 	skb = napi_alloc_skb(&bnapi->napi, len);
1100 	if (!skb)
1101 		return NULL;
1102 
1103 	dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh,
1104 				bp->rx_dir);
1105 
1106 	memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN,
1107 	       len + NET_IP_ALIGN);
1108 
1109 	dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh,
1110 				   bp->rx_dir);
1111 
1112 	skb_put(skb, len);
1113 	return skb;
1114 }
1115 
1116 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1117 			   u32 *raw_cons, void *cmp)
1118 {
1119 	struct rx_cmp *rxcmp = cmp;
1120 	u32 tmp_raw_cons = *raw_cons;
1121 	u8 cmp_type, agg_bufs = 0;
1122 
1123 	cmp_type = RX_CMP_TYPE(rxcmp);
1124 
1125 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1126 		agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) &
1127 			    RX_CMP_AGG_BUFS) >>
1128 			   RX_CMP_AGG_BUFS_SHIFT;
1129 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1130 		struct rx_tpa_end_cmp *tpa_end = cmp;
1131 
1132 		if (bp->flags & BNXT_FLAG_CHIP_P5)
1133 			return 0;
1134 
1135 		agg_bufs = TPA_END_AGG_BUFS(tpa_end);
1136 	}
1137 
1138 	if (agg_bufs) {
1139 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1140 			return -EBUSY;
1141 	}
1142 	*raw_cons = tmp_raw_cons;
1143 	return 0;
1144 }
1145 
1146 static void bnxt_queue_fw_reset_work(struct bnxt *bp, unsigned long delay)
1147 {
1148 	if (!(test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)))
1149 		return;
1150 
1151 	if (BNXT_PF(bp))
1152 		queue_delayed_work(bnxt_pf_wq, &bp->fw_reset_task, delay);
1153 	else
1154 		schedule_delayed_work(&bp->fw_reset_task, delay);
1155 }
1156 
1157 static void bnxt_queue_sp_work(struct bnxt *bp)
1158 {
1159 	if (BNXT_PF(bp))
1160 		queue_work(bnxt_pf_wq, &bp->sp_task);
1161 	else
1162 		schedule_work(&bp->sp_task);
1163 }
1164 
1165 static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
1166 {
1167 	if (!rxr->bnapi->in_reset) {
1168 		rxr->bnapi->in_reset = true;
1169 		if (bp->flags & BNXT_FLAG_CHIP_P5)
1170 			set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
1171 		else
1172 			set_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event);
1173 		bnxt_queue_sp_work(bp);
1174 	}
1175 	rxr->rx_next_cons = 0xffff;
1176 }
1177 
1178 static u16 bnxt_alloc_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id)
1179 {
1180 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1181 	u16 idx = agg_id & MAX_TPA_P5_MASK;
1182 
1183 	if (test_bit(idx, map->agg_idx_bmap))
1184 		idx = find_first_zero_bit(map->agg_idx_bmap,
1185 					  BNXT_AGG_IDX_BMAP_SIZE);
1186 	__set_bit(idx, map->agg_idx_bmap);
1187 	map->agg_id_tbl[agg_id] = idx;
1188 	return idx;
1189 }
1190 
1191 static void bnxt_free_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
1192 {
1193 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1194 
1195 	__clear_bit(idx, map->agg_idx_bmap);
1196 }
1197 
1198 static u16 bnxt_lookup_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id)
1199 {
1200 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1201 
1202 	return map->agg_id_tbl[agg_id];
1203 }
1204 
1205 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1206 			   struct rx_tpa_start_cmp *tpa_start,
1207 			   struct rx_tpa_start_cmp_ext *tpa_start1)
1208 {
1209 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
1210 	struct bnxt_tpa_info *tpa_info;
1211 	u16 cons, prod, agg_id;
1212 	struct rx_bd *prod_bd;
1213 	dma_addr_t mapping;
1214 
1215 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
1216 		agg_id = TPA_START_AGG_ID_P5(tpa_start);
1217 		agg_id = bnxt_alloc_agg_idx(rxr, agg_id);
1218 	} else {
1219 		agg_id = TPA_START_AGG_ID(tpa_start);
1220 	}
1221 	cons = tpa_start->rx_tpa_start_cmp_opaque;
1222 	prod = rxr->rx_prod;
1223 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1224 	prod_rx_buf = &rxr->rx_buf_ring[prod];
1225 	tpa_info = &rxr->rx_tpa[agg_id];
1226 
1227 	if (unlikely(cons != rxr->rx_next_cons ||
1228 		     TPA_START_ERROR(tpa_start))) {
1229 		netdev_warn(bp->dev, "TPA cons %x, expected cons %x, error code %x\n",
1230 			    cons, rxr->rx_next_cons,
1231 			    TPA_START_ERROR_CODE(tpa_start1));
1232 		bnxt_sched_reset(bp, rxr);
1233 		return;
1234 	}
1235 	/* Store cfa_code in tpa_info to use in tpa_end
1236 	 * completion processing.
1237 	 */
1238 	tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1);
1239 	prod_rx_buf->data = tpa_info->data;
1240 	prod_rx_buf->data_ptr = tpa_info->data_ptr;
1241 
1242 	mapping = tpa_info->mapping;
1243 	prod_rx_buf->mapping = mapping;
1244 
1245 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
1246 
1247 	prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
1248 
1249 	tpa_info->data = cons_rx_buf->data;
1250 	tpa_info->data_ptr = cons_rx_buf->data_ptr;
1251 	cons_rx_buf->data = NULL;
1252 	tpa_info->mapping = cons_rx_buf->mapping;
1253 
1254 	tpa_info->len =
1255 		le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
1256 				RX_TPA_START_CMP_LEN_SHIFT;
1257 	if (likely(TPA_START_HASH_VALID(tpa_start))) {
1258 		u32 hash_type = TPA_START_HASH_TYPE(tpa_start);
1259 
1260 		tpa_info->hash_type = PKT_HASH_TYPE_L4;
1261 		tpa_info->gso_type = SKB_GSO_TCPV4;
1262 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1263 		if (hash_type == 3 || TPA_START_IS_IPV6(tpa_start1))
1264 			tpa_info->gso_type = SKB_GSO_TCPV6;
1265 		tpa_info->rss_hash =
1266 			le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
1267 	} else {
1268 		tpa_info->hash_type = PKT_HASH_TYPE_NONE;
1269 		tpa_info->gso_type = 0;
1270 		netif_warn(bp, rx_err, bp->dev, "TPA packet without valid hash\n");
1271 	}
1272 	tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
1273 	tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
1274 	tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info);
1275 	tpa_info->agg_count = 0;
1276 
1277 	rxr->rx_prod = NEXT_RX(prod);
1278 	cons = NEXT_RX(cons);
1279 	rxr->rx_next_cons = NEXT_RX(cons);
1280 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1281 
1282 	bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
1283 	rxr->rx_prod = NEXT_RX(rxr->rx_prod);
1284 	cons_rx_buf->data = NULL;
1285 }
1286 
1287 static void bnxt_abort_tpa(struct bnxt_cp_ring_info *cpr, u16 idx, u32 agg_bufs)
1288 {
1289 	if (agg_bufs)
1290 		bnxt_reuse_rx_agg_bufs(cpr, idx, 0, agg_bufs, true);
1291 }
1292 
1293 #ifdef CONFIG_INET
1294 static void bnxt_gro_tunnel(struct sk_buff *skb, __be16 ip_proto)
1295 {
1296 	struct udphdr *uh = NULL;
1297 
1298 	if (ip_proto == htons(ETH_P_IP)) {
1299 		struct iphdr *iph = (struct iphdr *)skb->data;
1300 
1301 		if (iph->protocol == IPPROTO_UDP)
1302 			uh = (struct udphdr *)(iph + 1);
1303 	} else {
1304 		struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1305 
1306 		if (iph->nexthdr == IPPROTO_UDP)
1307 			uh = (struct udphdr *)(iph + 1);
1308 	}
1309 	if (uh) {
1310 		if (uh->check)
1311 			skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL_CSUM;
1312 		else
1313 			skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1314 	}
1315 }
1316 #endif
1317 
1318 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info,
1319 					   int payload_off, int tcp_ts,
1320 					   struct sk_buff *skb)
1321 {
1322 #ifdef CONFIG_INET
1323 	struct tcphdr *th;
1324 	int len, nw_off;
1325 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1326 	u32 hdr_info = tpa_info->hdr_info;
1327 	bool loopback = false;
1328 
1329 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1330 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1331 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1332 
1333 	/* If the packet is an internal loopback packet, the offsets will
1334 	 * have an extra 4 bytes.
1335 	 */
1336 	if (inner_mac_off == 4) {
1337 		loopback = true;
1338 	} else if (inner_mac_off > 4) {
1339 		__be16 proto = *((__be16 *)(skb->data + inner_ip_off -
1340 					    ETH_HLEN - 2));
1341 
1342 		/* We only support inner iPv4/ipv6.  If we don't see the
1343 		 * correct protocol ID, it must be a loopback packet where
1344 		 * the offsets are off by 4.
1345 		 */
1346 		if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6))
1347 			loopback = true;
1348 	}
1349 	if (loopback) {
1350 		/* internal loopback packet, subtract all offsets by 4 */
1351 		inner_ip_off -= 4;
1352 		inner_mac_off -= 4;
1353 		outer_ip_off -= 4;
1354 	}
1355 
1356 	nw_off = inner_ip_off - ETH_HLEN;
1357 	skb_set_network_header(skb, nw_off);
1358 	if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) {
1359 		struct ipv6hdr *iph = ipv6_hdr(skb);
1360 
1361 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1362 		len = skb->len - skb_transport_offset(skb);
1363 		th = tcp_hdr(skb);
1364 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1365 	} else {
1366 		struct iphdr *iph = ip_hdr(skb);
1367 
1368 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1369 		len = skb->len - skb_transport_offset(skb);
1370 		th = tcp_hdr(skb);
1371 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1372 	}
1373 
1374 	if (inner_mac_off) { /* tunnel */
1375 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1376 					    ETH_HLEN - 2));
1377 
1378 		bnxt_gro_tunnel(skb, proto);
1379 	}
1380 #endif
1381 	return skb;
1382 }
1383 
1384 static struct sk_buff *bnxt_gro_func_5750x(struct bnxt_tpa_info *tpa_info,
1385 					   int payload_off, int tcp_ts,
1386 					   struct sk_buff *skb)
1387 {
1388 #ifdef CONFIG_INET
1389 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1390 	u32 hdr_info = tpa_info->hdr_info;
1391 	int iphdr_len, nw_off;
1392 
1393 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1394 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1395 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1396 
1397 	nw_off = inner_ip_off - ETH_HLEN;
1398 	skb_set_network_header(skb, nw_off);
1399 	iphdr_len = (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) ?
1400 		     sizeof(struct ipv6hdr) : sizeof(struct iphdr);
1401 	skb_set_transport_header(skb, nw_off + iphdr_len);
1402 
1403 	if (inner_mac_off) { /* tunnel */
1404 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1405 					    ETH_HLEN - 2));
1406 
1407 		bnxt_gro_tunnel(skb, proto);
1408 	}
1409 #endif
1410 	return skb;
1411 }
1412 
1413 #define BNXT_IPV4_HDR_SIZE	(sizeof(struct iphdr) + sizeof(struct tcphdr))
1414 #define BNXT_IPV6_HDR_SIZE	(sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
1415 
1416 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info,
1417 					   int payload_off, int tcp_ts,
1418 					   struct sk_buff *skb)
1419 {
1420 #ifdef CONFIG_INET
1421 	struct tcphdr *th;
1422 	int len, nw_off, tcp_opt_len = 0;
1423 
1424 	if (tcp_ts)
1425 		tcp_opt_len = 12;
1426 
1427 	if (tpa_info->gso_type == SKB_GSO_TCPV4) {
1428 		struct iphdr *iph;
1429 
1430 		nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
1431 			 ETH_HLEN;
1432 		skb_set_network_header(skb, nw_off);
1433 		iph = ip_hdr(skb);
1434 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1435 		len = skb->len - skb_transport_offset(skb);
1436 		th = tcp_hdr(skb);
1437 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1438 	} else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
1439 		struct ipv6hdr *iph;
1440 
1441 		nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
1442 			 ETH_HLEN;
1443 		skb_set_network_header(skb, nw_off);
1444 		iph = ipv6_hdr(skb);
1445 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1446 		len = skb->len - skb_transport_offset(skb);
1447 		th = tcp_hdr(skb);
1448 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1449 	} else {
1450 		dev_kfree_skb_any(skb);
1451 		return NULL;
1452 	}
1453 
1454 	if (nw_off) /* tunnel */
1455 		bnxt_gro_tunnel(skb, skb->protocol);
1456 #endif
1457 	return skb;
1458 }
1459 
1460 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp,
1461 					   struct bnxt_tpa_info *tpa_info,
1462 					   struct rx_tpa_end_cmp *tpa_end,
1463 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1464 					   struct sk_buff *skb)
1465 {
1466 #ifdef CONFIG_INET
1467 	int payload_off;
1468 	u16 segs;
1469 
1470 	segs = TPA_END_TPA_SEGS(tpa_end);
1471 	if (segs == 1)
1472 		return skb;
1473 
1474 	NAPI_GRO_CB(skb)->count = segs;
1475 	skb_shinfo(skb)->gso_size =
1476 		le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
1477 	skb_shinfo(skb)->gso_type = tpa_info->gso_type;
1478 	if (bp->flags & BNXT_FLAG_CHIP_P5)
1479 		payload_off = TPA_END_PAYLOAD_OFF_P5(tpa_end1);
1480 	else
1481 		payload_off = TPA_END_PAYLOAD_OFF(tpa_end);
1482 	skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb);
1483 	if (likely(skb))
1484 		tcp_gro_complete(skb);
1485 #endif
1486 	return skb;
1487 }
1488 
1489 /* Given the cfa_code of a received packet determine which
1490  * netdev (vf-rep or PF) the packet is destined to.
1491  */
1492 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code)
1493 {
1494 	struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code);
1495 
1496 	/* if vf-rep dev is NULL, the must belongs to the PF */
1497 	return dev ? dev : bp->dev;
1498 }
1499 
1500 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
1501 					   struct bnxt_cp_ring_info *cpr,
1502 					   u32 *raw_cons,
1503 					   struct rx_tpa_end_cmp *tpa_end,
1504 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1505 					   u8 *event)
1506 {
1507 	struct bnxt_napi *bnapi = cpr->bnapi;
1508 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1509 	u8 *data_ptr, agg_bufs;
1510 	unsigned int len;
1511 	struct bnxt_tpa_info *tpa_info;
1512 	dma_addr_t mapping;
1513 	struct sk_buff *skb;
1514 	u16 idx = 0, agg_id;
1515 	void *data;
1516 	bool gro;
1517 
1518 	if (unlikely(bnapi->in_reset)) {
1519 		int rc = bnxt_discard_rx(bp, cpr, raw_cons, tpa_end);
1520 
1521 		if (rc < 0)
1522 			return ERR_PTR(-EBUSY);
1523 		return NULL;
1524 	}
1525 
1526 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
1527 		agg_id = TPA_END_AGG_ID_P5(tpa_end);
1528 		agg_id = bnxt_lookup_agg_idx(rxr, agg_id);
1529 		agg_bufs = TPA_END_AGG_BUFS_P5(tpa_end1);
1530 		tpa_info = &rxr->rx_tpa[agg_id];
1531 		if (unlikely(agg_bufs != tpa_info->agg_count)) {
1532 			netdev_warn(bp->dev, "TPA end agg_buf %d != expected agg_bufs %d\n",
1533 				    agg_bufs, tpa_info->agg_count);
1534 			agg_bufs = tpa_info->agg_count;
1535 		}
1536 		tpa_info->agg_count = 0;
1537 		*event |= BNXT_AGG_EVENT;
1538 		bnxt_free_agg_idx(rxr, agg_id);
1539 		idx = agg_id;
1540 		gro = !!(bp->flags & BNXT_FLAG_GRO);
1541 	} else {
1542 		agg_id = TPA_END_AGG_ID(tpa_end);
1543 		agg_bufs = TPA_END_AGG_BUFS(tpa_end);
1544 		tpa_info = &rxr->rx_tpa[agg_id];
1545 		idx = RING_CMP(*raw_cons);
1546 		if (agg_bufs) {
1547 			if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
1548 				return ERR_PTR(-EBUSY);
1549 
1550 			*event |= BNXT_AGG_EVENT;
1551 			idx = NEXT_CMP(idx);
1552 		}
1553 		gro = !!TPA_END_GRO(tpa_end);
1554 	}
1555 	data = tpa_info->data;
1556 	data_ptr = tpa_info->data_ptr;
1557 	prefetch(data_ptr);
1558 	len = tpa_info->len;
1559 	mapping = tpa_info->mapping;
1560 
1561 	if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) {
1562 		bnxt_abort_tpa(cpr, idx, agg_bufs);
1563 		if (agg_bufs > MAX_SKB_FRAGS)
1564 			netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
1565 				    agg_bufs, (int)MAX_SKB_FRAGS);
1566 		return NULL;
1567 	}
1568 
1569 	if (len <= bp->rx_copy_thresh) {
1570 		skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping);
1571 		if (!skb) {
1572 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1573 			return NULL;
1574 		}
1575 	} else {
1576 		u8 *new_data;
1577 		dma_addr_t new_mapping;
1578 
1579 		new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC);
1580 		if (!new_data) {
1581 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1582 			return NULL;
1583 		}
1584 
1585 		tpa_info->data = new_data;
1586 		tpa_info->data_ptr = new_data + bp->rx_offset;
1587 		tpa_info->mapping = new_mapping;
1588 
1589 		skb = build_skb(data, 0);
1590 		dma_unmap_single_attrs(&bp->pdev->dev, mapping,
1591 				       bp->rx_buf_use_size, bp->rx_dir,
1592 				       DMA_ATTR_WEAK_ORDERING);
1593 
1594 		if (!skb) {
1595 			kfree(data);
1596 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1597 			return NULL;
1598 		}
1599 		skb_reserve(skb, bp->rx_offset);
1600 		skb_put(skb, len);
1601 	}
1602 
1603 	if (agg_bufs) {
1604 		skb = bnxt_rx_pages(bp, cpr, skb, idx, agg_bufs, true);
1605 		if (!skb) {
1606 			/* Page reuse already handled by bnxt_rx_pages(). */
1607 			return NULL;
1608 		}
1609 	}
1610 
1611 	skb->protocol =
1612 		eth_type_trans(skb, bnxt_get_pkt_dev(bp, tpa_info->cfa_code));
1613 
1614 	if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1615 		skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1616 
1617 	if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) &&
1618 	    (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) {
1619 		u16 vlan_proto = tpa_info->metadata >>
1620 			RX_CMP_FLAGS2_METADATA_TPID_SFT;
1621 		u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1622 
1623 		__vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1624 	}
1625 
1626 	skb_checksum_none_assert(skb);
1627 	if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1628 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1629 		skb->csum_level =
1630 			(tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1631 	}
1632 
1633 	if (gro)
1634 		skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb);
1635 
1636 	return skb;
1637 }
1638 
1639 static void bnxt_tpa_agg(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1640 			 struct rx_agg_cmp *rx_agg)
1641 {
1642 	u16 agg_id = TPA_AGG_AGG_ID(rx_agg);
1643 	struct bnxt_tpa_info *tpa_info;
1644 
1645 	agg_id = bnxt_lookup_agg_idx(rxr, agg_id);
1646 	tpa_info = &rxr->rx_tpa[agg_id];
1647 	BUG_ON(tpa_info->agg_count >= MAX_SKB_FRAGS);
1648 	tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg;
1649 }
1650 
1651 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi,
1652 			     struct sk_buff *skb)
1653 {
1654 	if (skb->dev != bp->dev) {
1655 		/* this packet belongs to a vf-rep */
1656 		bnxt_vf_rep_rx(bp, skb);
1657 		return;
1658 	}
1659 	skb_record_rx_queue(skb, bnapi->index);
1660 	napi_gro_receive(&bnapi->napi, skb);
1661 }
1662 
1663 /* returns the following:
1664  * 1       - 1 packet successfully received
1665  * 0       - successful TPA_START, packet not completed yet
1666  * -EBUSY  - completion ring does not have all the agg buffers yet
1667  * -ENOMEM - packet aborted due to out of memory
1668  * -EIO    - packet aborted due to hw error indicated in BD
1669  */
1670 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1671 		       u32 *raw_cons, u8 *event)
1672 {
1673 	struct bnxt_napi *bnapi = cpr->bnapi;
1674 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1675 	struct net_device *dev = bp->dev;
1676 	struct rx_cmp *rxcmp;
1677 	struct rx_cmp_ext *rxcmp1;
1678 	u32 tmp_raw_cons = *raw_cons;
1679 	u16 cfa_code, cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
1680 	struct bnxt_sw_rx_bd *rx_buf;
1681 	unsigned int len;
1682 	u8 *data_ptr, agg_bufs, cmp_type;
1683 	dma_addr_t dma_addr;
1684 	struct sk_buff *skb;
1685 	void *data;
1686 	int rc = 0;
1687 	u32 misc;
1688 
1689 	rxcmp = (struct rx_cmp *)
1690 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1691 
1692 	cmp_type = RX_CMP_TYPE(rxcmp);
1693 
1694 	if (cmp_type == CMP_TYPE_RX_TPA_AGG_CMP) {
1695 		bnxt_tpa_agg(bp, rxr, (struct rx_agg_cmp *)rxcmp);
1696 		goto next_rx_no_prod_no_len;
1697 	}
1698 
1699 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1700 	cp_cons = RING_CMP(tmp_raw_cons);
1701 	rxcmp1 = (struct rx_cmp_ext *)
1702 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1703 
1704 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1705 		return -EBUSY;
1706 
1707 	prod = rxr->rx_prod;
1708 
1709 	if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) {
1710 		bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp,
1711 			       (struct rx_tpa_start_cmp_ext *)rxcmp1);
1712 
1713 		*event |= BNXT_RX_EVENT;
1714 		goto next_rx_no_prod_no_len;
1715 
1716 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1717 		skb = bnxt_tpa_end(bp, cpr, &tmp_raw_cons,
1718 				   (struct rx_tpa_end_cmp *)rxcmp,
1719 				   (struct rx_tpa_end_cmp_ext *)rxcmp1, event);
1720 
1721 		if (IS_ERR(skb))
1722 			return -EBUSY;
1723 
1724 		rc = -ENOMEM;
1725 		if (likely(skb)) {
1726 			bnxt_deliver_skb(bp, bnapi, skb);
1727 			rc = 1;
1728 		}
1729 		*event |= BNXT_RX_EVENT;
1730 		goto next_rx_no_prod_no_len;
1731 	}
1732 
1733 	cons = rxcmp->rx_cmp_opaque;
1734 	if (unlikely(cons != rxr->rx_next_cons)) {
1735 		int rc1 = bnxt_discard_rx(bp, cpr, raw_cons, rxcmp);
1736 
1737 		/* 0xffff is forced error, don't print it */
1738 		if (rxr->rx_next_cons != 0xffff)
1739 			netdev_warn(bp->dev, "RX cons %x != expected cons %x\n",
1740 				    cons, rxr->rx_next_cons);
1741 		bnxt_sched_reset(bp, rxr);
1742 		return rc1;
1743 	}
1744 	rx_buf = &rxr->rx_buf_ring[cons];
1745 	data = rx_buf->data;
1746 	data_ptr = rx_buf->data_ptr;
1747 	prefetch(data_ptr);
1748 
1749 	misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1);
1750 	agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT;
1751 
1752 	if (agg_bufs) {
1753 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1754 			return -EBUSY;
1755 
1756 		cp_cons = NEXT_CMP(cp_cons);
1757 		*event |= BNXT_AGG_EVENT;
1758 	}
1759 	*event |= BNXT_RX_EVENT;
1760 
1761 	rx_buf->data = NULL;
1762 	if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
1763 		u32 rx_err = le32_to_cpu(rxcmp1->rx_cmp_cfa_code_errors_v2);
1764 
1765 		bnxt_reuse_rx_data(rxr, cons, data);
1766 		if (agg_bufs)
1767 			bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, agg_bufs,
1768 					       false);
1769 
1770 		rc = -EIO;
1771 		if (rx_err & RX_CMPL_ERRORS_BUFFER_ERROR_MASK) {
1772 			bnapi->cp_ring.sw_stats.rx.rx_buf_errors++;
1773 			if (!(bp->flags & BNXT_FLAG_CHIP_P5) &&
1774 			    !(bp->fw_cap & BNXT_FW_CAP_RING_MONITOR)) {
1775 				netdev_warn_once(bp->dev, "RX buffer error %x\n",
1776 						 rx_err);
1777 				bnxt_sched_reset(bp, rxr);
1778 			}
1779 		}
1780 		goto next_rx_no_len;
1781 	}
1782 
1783 	len = le32_to_cpu(rxcmp->rx_cmp_len_flags_type) >> RX_CMP_LEN_SHIFT;
1784 	dma_addr = rx_buf->mapping;
1785 
1786 	if (bnxt_rx_xdp(bp, rxr, cons, data, &data_ptr, &len, event)) {
1787 		rc = 1;
1788 		goto next_rx;
1789 	}
1790 
1791 	if (len <= bp->rx_copy_thresh) {
1792 		skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr);
1793 		bnxt_reuse_rx_data(rxr, cons, data);
1794 		if (!skb) {
1795 			if (agg_bufs)
1796 				bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0,
1797 						       agg_bufs, false);
1798 			rc = -ENOMEM;
1799 			goto next_rx;
1800 		}
1801 	} else {
1802 		u32 payload;
1803 
1804 		if (rx_buf->data_ptr == data_ptr)
1805 			payload = misc & RX_CMP_PAYLOAD_OFFSET;
1806 		else
1807 			payload = 0;
1808 		skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr,
1809 				      payload | len);
1810 		if (!skb) {
1811 			rc = -ENOMEM;
1812 			goto next_rx;
1813 		}
1814 	}
1815 
1816 	if (agg_bufs) {
1817 		skb = bnxt_rx_pages(bp, cpr, skb, cp_cons, agg_bufs, false);
1818 		if (!skb) {
1819 			rc = -ENOMEM;
1820 			goto next_rx;
1821 		}
1822 	}
1823 
1824 	if (RX_CMP_HASH_VALID(rxcmp)) {
1825 		u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
1826 		enum pkt_hash_types type = PKT_HASH_TYPE_L4;
1827 
1828 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1829 		if (hash_type != 1 && hash_type != 3)
1830 			type = PKT_HASH_TYPE_L3;
1831 		skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
1832 	}
1833 
1834 	cfa_code = RX_CMP_CFA_CODE(rxcmp1);
1835 	skb->protocol = eth_type_trans(skb, bnxt_get_pkt_dev(bp, cfa_code));
1836 
1837 	if ((rxcmp1->rx_cmp_flags2 &
1838 	     cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) &&
1839 	    (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) {
1840 		u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
1841 		u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1842 		u16 vlan_proto = meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT;
1843 
1844 		__vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1845 	}
1846 
1847 	skb_checksum_none_assert(skb);
1848 	if (RX_CMP_L4_CS_OK(rxcmp1)) {
1849 		if (dev->features & NETIF_F_RXCSUM) {
1850 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1851 			skb->csum_level = RX_CMP_ENCAP(rxcmp1);
1852 		}
1853 	} else {
1854 		if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
1855 			if (dev->features & NETIF_F_RXCSUM)
1856 				bnapi->cp_ring.sw_stats.rx.rx_l4_csum_errors++;
1857 		}
1858 	}
1859 
1860 	bnxt_deliver_skb(bp, bnapi, skb);
1861 	rc = 1;
1862 
1863 next_rx:
1864 	cpr->rx_packets += 1;
1865 	cpr->rx_bytes += len;
1866 
1867 next_rx_no_len:
1868 	rxr->rx_prod = NEXT_RX(prod);
1869 	rxr->rx_next_cons = NEXT_RX(cons);
1870 
1871 next_rx_no_prod_no_len:
1872 	*raw_cons = tmp_raw_cons;
1873 
1874 	return rc;
1875 }
1876 
1877 /* In netpoll mode, if we are using a combined completion ring, we need to
1878  * discard the rx packets and recycle the buffers.
1879  */
1880 static int bnxt_force_rx_discard(struct bnxt *bp,
1881 				 struct bnxt_cp_ring_info *cpr,
1882 				 u32 *raw_cons, u8 *event)
1883 {
1884 	u32 tmp_raw_cons = *raw_cons;
1885 	struct rx_cmp_ext *rxcmp1;
1886 	struct rx_cmp *rxcmp;
1887 	u16 cp_cons;
1888 	u8 cmp_type;
1889 
1890 	cp_cons = RING_CMP(tmp_raw_cons);
1891 	rxcmp = (struct rx_cmp *)
1892 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1893 
1894 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1895 	cp_cons = RING_CMP(tmp_raw_cons);
1896 	rxcmp1 = (struct rx_cmp_ext *)
1897 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1898 
1899 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1900 		return -EBUSY;
1901 
1902 	cmp_type = RX_CMP_TYPE(rxcmp);
1903 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1904 		rxcmp1->rx_cmp_cfa_code_errors_v2 |=
1905 			cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
1906 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1907 		struct rx_tpa_end_cmp_ext *tpa_end1;
1908 
1909 		tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1;
1910 		tpa_end1->rx_tpa_end_cmp_errors_v2 |=
1911 			cpu_to_le32(RX_TPA_END_CMP_ERRORS);
1912 	}
1913 	return bnxt_rx_pkt(bp, cpr, raw_cons, event);
1914 }
1915 
1916 u32 bnxt_fw_health_readl(struct bnxt *bp, int reg_idx)
1917 {
1918 	struct bnxt_fw_health *fw_health = bp->fw_health;
1919 	u32 reg = fw_health->regs[reg_idx];
1920 	u32 reg_type, reg_off, val = 0;
1921 
1922 	reg_type = BNXT_FW_HEALTH_REG_TYPE(reg);
1923 	reg_off = BNXT_FW_HEALTH_REG_OFF(reg);
1924 	switch (reg_type) {
1925 	case BNXT_FW_HEALTH_REG_TYPE_CFG:
1926 		pci_read_config_dword(bp->pdev, reg_off, &val);
1927 		break;
1928 	case BNXT_FW_HEALTH_REG_TYPE_GRC:
1929 		reg_off = fw_health->mapped_regs[reg_idx];
1930 		fallthrough;
1931 	case BNXT_FW_HEALTH_REG_TYPE_BAR0:
1932 		val = readl(bp->bar0 + reg_off);
1933 		break;
1934 	case BNXT_FW_HEALTH_REG_TYPE_BAR1:
1935 		val = readl(bp->bar1 + reg_off);
1936 		break;
1937 	}
1938 	if (reg_idx == BNXT_FW_RESET_INPROG_REG)
1939 		val &= fw_health->fw_reset_inprog_reg_mask;
1940 	return val;
1941 }
1942 
1943 static u16 bnxt_agg_ring_id_to_grp_idx(struct bnxt *bp, u16 ring_id)
1944 {
1945 	int i;
1946 
1947 	for (i = 0; i < bp->rx_nr_rings; i++) {
1948 		u16 grp_idx = bp->rx_ring[i].bnapi->index;
1949 		struct bnxt_ring_grp_info *grp_info;
1950 
1951 		grp_info = &bp->grp_info[grp_idx];
1952 		if (grp_info->agg_fw_ring_id == ring_id)
1953 			return grp_idx;
1954 	}
1955 	return INVALID_HW_RING_ID;
1956 }
1957 
1958 #define BNXT_GET_EVENT_PORT(data)	\
1959 	((data) &			\
1960 	 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK)
1961 
1962 #define BNXT_EVENT_RING_TYPE(data2)	\
1963 	((data2) &			\
1964 	 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_MASK)
1965 
1966 #define BNXT_EVENT_RING_TYPE_RX(data2)	\
1967 	(BNXT_EVENT_RING_TYPE(data2) ==	\
1968 	 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_RX)
1969 
1970 static int bnxt_async_event_process(struct bnxt *bp,
1971 				    struct hwrm_async_event_cmpl *cmpl)
1972 {
1973 	u16 event_id = le16_to_cpu(cmpl->event_id);
1974 	u32 data1 = le32_to_cpu(cmpl->event_data1);
1975 	u32 data2 = le32_to_cpu(cmpl->event_data2);
1976 
1977 	/* TODO CHIMP_FW: Define event id's for link change, error etc */
1978 	switch (event_id) {
1979 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: {
1980 		struct bnxt_link_info *link_info = &bp->link_info;
1981 
1982 		if (BNXT_VF(bp))
1983 			goto async_event_process_exit;
1984 
1985 		/* print unsupported speed warning in forced speed mode only */
1986 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) &&
1987 		    (data1 & 0x20000)) {
1988 			u16 fw_speed = link_info->force_link_speed;
1989 			u32 speed = bnxt_fw_to_ethtool_speed(fw_speed);
1990 
1991 			if (speed != SPEED_UNKNOWN)
1992 				netdev_warn(bp->dev, "Link speed %d no longer supported\n",
1993 					    speed);
1994 		}
1995 		set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event);
1996 	}
1997 		fallthrough;
1998 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE:
1999 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE:
2000 		set_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, &bp->sp_event);
2001 		fallthrough;
2002 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
2003 		set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
2004 		break;
2005 	case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD:
2006 		set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event);
2007 		break;
2008 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: {
2009 		u16 port_id = BNXT_GET_EVENT_PORT(data1);
2010 
2011 		if (BNXT_VF(bp))
2012 			break;
2013 
2014 		if (bp->pf.port_id != port_id)
2015 			break;
2016 
2017 		set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event);
2018 		break;
2019 	}
2020 	case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE:
2021 		if (BNXT_PF(bp))
2022 			goto async_event_process_exit;
2023 		set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event);
2024 		break;
2025 	case ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY: {
2026 		char *fatal_str = "non-fatal";
2027 
2028 		if (!bp->fw_health)
2029 			goto async_event_process_exit;
2030 
2031 		bp->fw_reset_timestamp = jiffies;
2032 		bp->fw_reset_min_dsecs = cmpl->timestamp_lo;
2033 		if (!bp->fw_reset_min_dsecs)
2034 			bp->fw_reset_min_dsecs = BNXT_DFLT_FW_RST_MIN_DSECS;
2035 		bp->fw_reset_max_dsecs = le16_to_cpu(cmpl->timestamp_hi);
2036 		if (!bp->fw_reset_max_dsecs)
2037 			bp->fw_reset_max_dsecs = BNXT_DFLT_FW_RST_MAX_DSECS;
2038 		if (EVENT_DATA1_RESET_NOTIFY_FATAL(data1)) {
2039 			fatal_str = "fatal";
2040 			set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
2041 		}
2042 		netif_warn(bp, hw, bp->dev,
2043 			   "Firmware %s reset event, data1: 0x%x, data2: 0x%x, min wait %u ms, max wait %u ms\n",
2044 			   fatal_str, data1, data2,
2045 			   bp->fw_reset_min_dsecs * 100,
2046 			   bp->fw_reset_max_dsecs * 100);
2047 		set_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event);
2048 		break;
2049 	}
2050 	case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY: {
2051 		struct bnxt_fw_health *fw_health = bp->fw_health;
2052 
2053 		if (!fw_health)
2054 			goto async_event_process_exit;
2055 
2056 		fw_health->enabled = EVENT_DATA1_RECOVERY_ENABLED(data1);
2057 		fw_health->master = EVENT_DATA1_RECOVERY_MASTER_FUNC(data1);
2058 		if (!fw_health->enabled) {
2059 			netif_info(bp, drv, bp->dev,
2060 				   "Error recovery info: error recovery[0]\n");
2061 			break;
2062 		}
2063 		fw_health->tmr_multiplier =
2064 			DIV_ROUND_UP(fw_health->polling_dsecs * HZ,
2065 				     bp->current_interval * 10);
2066 		fw_health->tmr_counter = fw_health->tmr_multiplier;
2067 		fw_health->last_fw_heartbeat =
2068 			bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
2069 		fw_health->last_fw_reset_cnt =
2070 			bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
2071 		netif_info(bp, drv, bp->dev,
2072 			   "Error recovery info: error recovery[1], master[%d], reset count[%u], health status: 0x%x\n",
2073 			   fw_health->master, fw_health->last_fw_reset_cnt,
2074 			   bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG));
2075 		goto async_event_process_exit;
2076 	}
2077 	case ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION:
2078 		netif_notice(bp, hw, bp->dev,
2079 			     "Received firmware debug notification, data1: 0x%x, data2: 0x%x\n",
2080 			     data1, data2);
2081 		goto async_event_process_exit;
2082 	case ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG: {
2083 		struct bnxt_rx_ring_info *rxr;
2084 		u16 grp_idx;
2085 
2086 		if (bp->flags & BNXT_FLAG_CHIP_P5)
2087 			goto async_event_process_exit;
2088 
2089 		netdev_warn(bp->dev, "Ring monitor event, ring type %lu id 0x%x\n",
2090 			    BNXT_EVENT_RING_TYPE(data2), data1);
2091 		if (!BNXT_EVENT_RING_TYPE_RX(data2))
2092 			goto async_event_process_exit;
2093 
2094 		grp_idx = bnxt_agg_ring_id_to_grp_idx(bp, data1);
2095 		if (grp_idx == INVALID_HW_RING_ID) {
2096 			netdev_warn(bp->dev, "Unknown RX agg ring id 0x%x\n",
2097 				    data1);
2098 			goto async_event_process_exit;
2099 		}
2100 		rxr = bp->bnapi[grp_idx]->rx_ring;
2101 		bnxt_sched_reset(bp, rxr);
2102 		goto async_event_process_exit;
2103 	}
2104 	case ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST: {
2105 		struct bnxt_fw_health *fw_health = bp->fw_health;
2106 
2107 		netif_notice(bp, hw, bp->dev,
2108 			     "Received firmware echo request, data1: 0x%x, data2: 0x%x\n",
2109 			     data1, data2);
2110 		if (fw_health) {
2111 			fw_health->echo_req_data1 = data1;
2112 			fw_health->echo_req_data2 = data2;
2113 			set_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event);
2114 			break;
2115 		}
2116 		goto async_event_process_exit;
2117 	}
2118 	default:
2119 		goto async_event_process_exit;
2120 	}
2121 	bnxt_queue_sp_work(bp);
2122 async_event_process_exit:
2123 	bnxt_ulp_async_events(bp, cmpl);
2124 	return 0;
2125 }
2126 
2127 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
2128 {
2129 	u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
2130 	struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
2131 	struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
2132 				(struct hwrm_fwd_req_cmpl *)txcmp;
2133 
2134 	switch (cmpl_type) {
2135 	case CMPL_BASE_TYPE_HWRM_DONE:
2136 		seq_id = le16_to_cpu(h_cmpl->sequence_id);
2137 		if (seq_id == bp->hwrm_intr_seq_id)
2138 			bp->hwrm_intr_seq_id = (u16)~bp->hwrm_intr_seq_id;
2139 		else
2140 			netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id);
2141 		break;
2142 
2143 	case CMPL_BASE_TYPE_HWRM_FWD_REQ:
2144 		vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
2145 
2146 		if ((vf_id < bp->pf.first_vf_id) ||
2147 		    (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
2148 			netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
2149 				   vf_id);
2150 			return -EINVAL;
2151 		}
2152 
2153 		set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
2154 		set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event);
2155 		bnxt_queue_sp_work(bp);
2156 		break;
2157 
2158 	case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
2159 		bnxt_async_event_process(bp,
2160 					 (struct hwrm_async_event_cmpl *)txcmp);
2161 
2162 	default:
2163 		break;
2164 	}
2165 
2166 	return 0;
2167 }
2168 
2169 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
2170 {
2171 	struct bnxt_napi *bnapi = dev_instance;
2172 	struct bnxt *bp = bnapi->bp;
2173 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2174 	u32 cons = RING_CMP(cpr->cp_raw_cons);
2175 
2176 	cpr->event_ctr++;
2177 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
2178 	napi_schedule(&bnapi->napi);
2179 	return IRQ_HANDLED;
2180 }
2181 
2182 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
2183 {
2184 	u32 raw_cons = cpr->cp_raw_cons;
2185 	u16 cons = RING_CMP(raw_cons);
2186 	struct tx_cmp *txcmp;
2187 
2188 	txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2189 
2190 	return TX_CMP_VALID(txcmp, raw_cons);
2191 }
2192 
2193 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
2194 {
2195 	struct bnxt_napi *bnapi = dev_instance;
2196 	struct bnxt *bp = bnapi->bp;
2197 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2198 	u32 cons = RING_CMP(cpr->cp_raw_cons);
2199 	u32 int_status;
2200 
2201 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
2202 
2203 	if (!bnxt_has_work(bp, cpr)) {
2204 		int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
2205 		/* return if erroneous interrupt */
2206 		if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
2207 			return IRQ_NONE;
2208 	}
2209 
2210 	/* disable ring IRQ */
2211 	BNXT_CP_DB_IRQ_DIS(cpr->cp_db.doorbell);
2212 
2213 	/* Return here if interrupt is shared and is disabled. */
2214 	if (unlikely(atomic_read(&bp->intr_sem) != 0))
2215 		return IRQ_HANDLED;
2216 
2217 	napi_schedule(&bnapi->napi);
2218 	return IRQ_HANDLED;
2219 }
2220 
2221 static int __bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2222 			    int budget)
2223 {
2224 	struct bnxt_napi *bnapi = cpr->bnapi;
2225 	u32 raw_cons = cpr->cp_raw_cons;
2226 	u32 cons;
2227 	int tx_pkts = 0;
2228 	int rx_pkts = 0;
2229 	u8 event = 0;
2230 	struct tx_cmp *txcmp;
2231 
2232 	cpr->has_more_work = 0;
2233 	cpr->had_work_done = 1;
2234 	while (1) {
2235 		int rc;
2236 
2237 		cons = RING_CMP(raw_cons);
2238 		txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2239 
2240 		if (!TX_CMP_VALID(txcmp, raw_cons))
2241 			break;
2242 
2243 		/* The valid test of the entry must be done first before
2244 		 * reading any further.
2245 		 */
2246 		dma_rmb();
2247 		if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) {
2248 			tx_pkts++;
2249 			/* return full budget so NAPI will complete. */
2250 			if (unlikely(tx_pkts > bp->tx_wake_thresh)) {
2251 				rx_pkts = budget;
2252 				raw_cons = NEXT_RAW_CMP(raw_cons);
2253 				if (budget)
2254 					cpr->has_more_work = 1;
2255 				break;
2256 			}
2257 		} else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
2258 			if (likely(budget))
2259 				rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
2260 			else
2261 				rc = bnxt_force_rx_discard(bp, cpr, &raw_cons,
2262 							   &event);
2263 			if (likely(rc >= 0))
2264 				rx_pkts += rc;
2265 			/* Increment rx_pkts when rc is -ENOMEM to count towards
2266 			 * the NAPI budget.  Otherwise, we may potentially loop
2267 			 * here forever if we consistently cannot allocate
2268 			 * buffers.
2269 			 */
2270 			else if (rc == -ENOMEM && budget)
2271 				rx_pkts++;
2272 			else if (rc == -EBUSY)	/* partial completion */
2273 				break;
2274 		} else if (unlikely((TX_CMP_TYPE(txcmp) ==
2275 				     CMPL_BASE_TYPE_HWRM_DONE) ||
2276 				    (TX_CMP_TYPE(txcmp) ==
2277 				     CMPL_BASE_TYPE_HWRM_FWD_REQ) ||
2278 				    (TX_CMP_TYPE(txcmp) ==
2279 				     CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) {
2280 			bnxt_hwrm_handler(bp, txcmp);
2281 		}
2282 		raw_cons = NEXT_RAW_CMP(raw_cons);
2283 
2284 		if (rx_pkts && rx_pkts == budget) {
2285 			cpr->has_more_work = 1;
2286 			break;
2287 		}
2288 	}
2289 
2290 	if (event & BNXT_REDIRECT_EVENT)
2291 		xdp_do_flush_map();
2292 
2293 	if (event & BNXT_TX_EVENT) {
2294 		struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
2295 		u16 prod = txr->tx_prod;
2296 
2297 		/* Sync BD data before updating doorbell */
2298 		wmb();
2299 
2300 		bnxt_db_write_relaxed(bp, &txr->tx_db, prod);
2301 	}
2302 
2303 	cpr->cp_raw_cons = raw_cons;
2304 	bnapi->tx_pkts += tx_pkts;
2305 	bnapi->events |= event;
2306 	return rx_pkts;
2307 }
2308 
2309 static void __bnxt_poll_work_done(struct bnxt *bp, struct bnxt_napi *bnapi)
2310 {
2311 	if (bnapi->tx_pkts) {
2312 		bnapi->tx_int(bp, bnapi, bnapi->tx_pkts);
2313 		bnapi->tx_pkts = 0;
2314 	}
2315 
2316 	if ((bnapi->events & BNXT_RX_EVENT) && !(bnapi->in_reset)) {
2317 		struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2318 
2319 		if (bnapi->events & BNXT_AGG_EVENT)
2320 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
2321 		bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
2322 	}
2323 	bnapi->events = 0;
2324 }
2325 
2326 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2327 			  int budget)
2328 {
2329 	struct bnxt_napi *bnapi = cpr->bnapi;
2330 	int rx_pkts;
2331 
2332 	rx_pkts = __bnxt_poll_work(bp, cpr, budget);
2333 
2334 	/* ACK completion ring before freeing tx ring and producing new
2335 	 * buffers in rx/agg rings to prevent overflowing the completion
2336 	 * ring.
2337 	 */
2338 	bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons);
2339 
2340 	__bnxt_poll_work_done(bp, bnapi);
2341 	return rx_pkts;
2342 }
2343 
2344 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget)
2345 {
2346 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2347 	struct bnxt *bp = bnapi->bp;
2348 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2349 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2350 	struct tx_cmp *txcmp;
2351 	struct rx_cmp_ext *rxcmp1;
2352 	u32 cp_cons, tmp_raw_cons;
2353 	u32 raw_cons = cpr->cp_raw_cons;
2354 	u32 rx_pkts = 0;
2355 	u8 event = 0;
2356 
2357 	while (1) {
2358 		int rc;
2359 
2360 		cp_cons = RING_CMP(raw_cons);
2361 		txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2362 
2363 		if (!TX_CMP_VALID(txcmp, raw_cons))
2364 			break;
2365 
2366 		if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
2367 			tmp_raw_cons = NEXT_RAW_CMP(raw_cons);
2368 			cp_cons = RING_CMP(tmp_raw_cons);
2369 			rxcmp1 = (struct rx_cmp_ext *)
2370 			  &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2371 
2372 			if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
2373 				break;
2374 
2375 			/* force an error to recycle the buffer */
2376 			rxcmp1->rx_cmp_cfa_code_errors_v2 |=
2377 				cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
2378 
2379 			rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
2380 			if (likely(rc == -EIO) && budget)
2381 				rx_pkts++;
2382 			else if (rc == -EBUSY)	/* partial completion */
2383 				break;
2384 		} else if (unlikely(TX_CMP_TYPE(txcmp) ==
2385 				    CMPL_BASE_TYPE_HWRM_DONE)) {
2386 			bnxt_hwrm_handler(bp, txcmp);
2387 		} else {
2388 			netdev_err(bp->dev,
2389 				   "Invalid completion received on special ring\n");
2390 		}
2391 		raw_cons = NEXT_RAW_CMP(raw_cons);
2392 
2393 		if (rx_pkts == budget)
2394 			break;
2395 	}
2396 
2397 	cpr->cp_raw_cons = raw_cons;
2398 	BNXT_DB_CQ(&cpr->cp_db, cpr->cp_raw_cons);
2399 	bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
2400 
2401 	if (event & BNXT_AGG_EVENT)
2402 		bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
2403 
2404 	if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) {
2405 		napi_complete_done(napi, rx_pkts);
2406 		BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2407 	}
2408 	return rx_pkts;
2409 }
2410 
2411 static int bnxt_poll(struct napi_struct *napi, int budget)
2412 {
2413 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2414 	struct bnxt *bp = bnapi->bp;
2415 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2416 	int work_done = 0;
2417 
2418 	if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) {
2419 		napi_complete(napi);
2420 		return 0;
2421 	}
2422 	while (1) {
2423 		work_done += bnxt_poll_work(bp, cpr, budget - work_done);
2424 
2425 		if (work_done >= budget) {
2426 			if (!budget)
2427 				BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2428 			break;
2429 		}
2430 
2431 		if (!bnxt_has_work(bp, cpr)) {
2432 			if (napi_complete_done(napi, work_done))
2433 				BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2434 			break;
2435 		}
2436 	}
2437 	if (bp->flags & BNXT_FLAG_DIM) {
2438 		struct dim_sample dim_sample = {};
2439 
2440 		dim_update_sample(cpr->event_ctr,
2441 				  cpr->rx_packets,
2442 				  cpr->rx_bytes,
2443 				  &dim_sample);
2444 		net_dim(&cpr->dim, dim_sample);
2445 	}
2446 	return work_done;
2447 }
2448 
2449 static int __bnxt_poll_cqs(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
2450 {
2451 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2452 	int i, work_done = 0;
2453 
2454 	for (i = 0; i < 2; i++) {
2455 		struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i];
2456 
2457 		if (cpr2) {
2458 			work_done += __bnxt_poll_work(bp, cpr2,
2459 						      budget - work_done);
2460 			cpr->has_more_work |= cpr2->has_more_work;
2461 		}
2462 	}
2463 	return work_done;
2464 }
2465 
2466 static void __bnxt_poll_cqs_done(struct bnxt *bp, struct bnxt_napi *bnapi,
2467 				 u64 dbr_type)
2468 {
2469 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2470 	int i;
2471 
2472 	for (i = 0; i < 2; i++) {
2473 		struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i];
2474 		struct bnxt_db_info *db;
2475 
2476 		if (cpr2 && cpr2->had_work_done) {
2477 			db = &cpr2->cp_db;
2478 			writeq(db->db_key64 | dbr_type |
2479 			       RING_CMP(cpr2->cp_raw_cons), db->doorbell);
2480 			cpr2->had_work_done = 0;
2481 		}
2482 	}
2483 	__bnxt_poll_work_done(bp, bnapi);
2484 }
2485 
2486 static int bnxt_poll_p5(struct napi_struct *napi, int budget)
2487 {
2488 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2489 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2490 	u32 raw_cons = cpr->cp_raw_cons;
2491 	struct bnxt *bp = bnapi->bp;
2492 	struct nqe_cn *nqcmp;
2493 	int work_done = 0;
2494 	u32 cons;
2495 
2496 	if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) {
2497 		napi_complete(napi);
2498 		return 0;
2499 	}
2500 	if (cpr->has_more_work) {
2501 		cpr->has_more_work = 0;
2502 		work_done = __bnxt_poll_cqs(bp, bnapi, budget);
2503 	}
2504 	while (1) {
2505 		cons = RING_CMP(raw_cons);
2506 		nqcmp = &cpr->nq_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2507 
2508 		if (!NQ_CMP_VALID(nqcmp, raw_cons)) {
2509 			if (cpr->has_more_work)
2510 				break;
2511 
2512 			__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL);
2513 			cpr->cp_raw_cons = raw_cons;
2514 			if (napi_complete_done(napi, work_done))
2515 				BNXT_DB_NQ_ARM_P5(&cpr->cp_db,
2516 						  cpr->cp_raw_cons);
2517 			return work_done;
2518 		}
2519 
2520 		/* The valid test of the entry must be done first before
2521 		 * reading any further.
2522 		 */
2523 		dma_rmb();
2524 
2525 		if (nqcmp->type == cpu_to_le16(NQ_CN_TYPE_CQ_NOTIFICATION)) {
2526 			u32 idx = le32_to_cpu(nqcmp->cq_handle_low);
2527 			struct bnxt_cp_ring_info *cpr2;
2528 
2529 			cpr2 = cpr->cp_ring_arr[idx];
2530 			work_done += __bnxt_poll_work(bp, cpr2,
2531 						      budget - work_done);
2532 			cpr->has_more_work |= cpr2->has_more_work;
2533 		} else {
2534 			bnxt_hwrm_handler(bp, (struct tx_cmp *)nqcmp);
2535 		}
2536 		raw_cons = NEXT_RAW_CMP(raw_cons);
2537 	}
2538 	__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ);
2539 	if (raw_cons != cpr->cp_raw_cons) {
2540 		cpr->cp_raw_cons = raw_cons;
2541 		BNXT_DB_NQ_P5(&cpr->cp_db, raw_cons);
2542 	}
2543 	return work_done;
2544 }
2545 
2546 static void bnxt_free_tx_skbs(struct bnxt *bp)
2547 {
2548 	int i, max_idx;
2549 	struct pci_dev *pdev = bp->pdev;
2550 
2551 	if (!bp->tx_ring)
2552 		return;
2553 
2554 	max_idx = bp->tx_nr_pages * TX_DESC_CNT;
2555 	for (i = 0; i < bp->tx_nr_rings; i++) {
2556 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2557 		int j;
2558 
2559 		for (j = 0; j < max_idx;) {
2560 			struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
2561 			struct sk_buff *skb;
2562 			int k, last;
2563 
2564 			if (i < bp->tx_nr_rings_xdp &&
2565 			    tx_buf->action == XDP_REDIRECT) {
2566 				dma_unmap_single(&pdev->dev,
2567 					dma_unmap_addr(tx_buf, mapping),
2568 					dma_unmap_len(tx_buf, len),
2569 					PCI_DMA_TODEVICE);
2570 				xdp_return_frame(tx_buf->xdpf);
2571 				tx_buf->action = 0;
2572 				tx_buf->xdpf = NULL;
2573 				j++;
2574 				continue;
2575 			}
2576 
2577 			skb = tx_buf->skb;
2578 			if (!skb) {
2579 				j++;
2580 				continue;
2581 			}
2582 
2583 			tx_buf->skb = NULL;
2584 
2585 			if (tx_buf->is_push) {
2586 				dev_kfree_skb(skb);
2587 				j += 2;
2588 				continue;
2589 			}
2590 
2591 			dma_unmap_single(&pdev->dev,
2592 					 dma_unmap_addr(tx_buf, mapping),
2593 					 skb_headlen(skb),
2594 					 PCI_DMA_TODEVICE);
2595 
2596 			last = tx_buf->nr_frags;
2597 			j += 2;
2598 			for (k = 0; k < last; k++, j++) {
2599 				int ring_idx = j & bp->tx_ring_mask;
2600 				skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2601 
2602 				tx_buf = &txr->tx_buf_ring[ring_idx];
2603 				dma_unmap_page(
2604 					&pdev->dev,
2605 					dma_unmap_addr(tx_buf, mapping),
2606 					skb_frag_size(frag), PCI_DMA_TODEVICE);
2607 			}
2608 			dev_kfree_skb(skb);
2609 		}
2610 		netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
2611 	}
2612 }
2613 
2614 static void bnxt_free_one_rx_ring_skbs(struct bnxt *bp, int ring_nr)
2615 {
2616 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
2617 	struct pci_dev *pdev = bp->pdev;
2618 	struct bnxt_tpa_idx_map *map;
2619 	int i, max_idx, max_agg_idx;
2620 
2621 	max_idx = bp->rx_nr_pages * RX_DESC_CNT;
2622 	max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
2623 	if (!rxr->rx_tpa)
2624 		goto skip_rx_tpa_free;
2625 
2626 	for (i = 0; i < bp->max_tpa; i++) {
2627 		struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[i];
2628 		u8 *data = tpa_info->data;
2629 
2630 		if (!data)
2631 			continue;
2632 
2633 		dma_unmap_single_attrs(&pdev->dev, tpa_info->mapping,
2634 				       bp->rx_buf_use_size, bp->rx_dir,
2635 				       DMA_ATTR_WEAK_ORDERING);
2636 
2637 		tpa_info->data = NULL;
2638 
2639 		kfree(data);
2640 	}
2641 
2642 skip_rx_tpa_free:
2643 	for (i = 0; i < max_idx; i++) {
2644 		struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[i];
2645 		dma_addr_t mapping = rx_buf->mapping;
2646 		void *data = rx_buf->data;
2647 
2648 		if (!data)
2649 			continue;
2650 
2651 		rx_buf->data = NULL;
2652 		if (BNXT_RX_PAGE_MODE(bp)) {
2653 			mapping -= bp->rx_dma_offset;
2654 			dma_unmap_page_attrs(&pdev->dev, mapping, PAGE_SIZE,
2655 					     bp->rx_dir,
2656 					     DMA_ATTR_WEAK_ORDERING);
2657 			page_pool_recycle_direct(rxr->page_pool, data);
2658 		} else {
2659 			dma_unmap_single_attrs(&pdev->dev, mapping,
2660 					       bp->rx_buf_use_size, bp->rx_dir,
2661 					       DMA_ATTR_WEAK_ORDERING);
2662 			kfree(data);
2663 		}
2664 	}
2665 	for (i = 0; i < max_agg_idx; i++) {
2666 		struct bnxt_sw_rx_agg_bd *rx_agg_buf = &rxr->rx_agg_ring[i];
2667 		struct page *page = rx_agg_buf->page;
2668 
2669 		if (!page)
2670 			continue;
2671 
2672 		dma_unmap_page_attrs(&pdev->dev, rx_agg_buf->mapping,
2673 				     BNXT_RX_PAGE_SIZE, PCI_DMA_FROMDEVICE,
2674 				     DMA_ATTR_WEAK_ORDERING);
2675 
2676 		rx_agg_buf->page = NULL;
2677 		__clear_bit(i, rxr->rx_agg_bmap);
2678 
2679 		__free_page(page);
2680 	}
2681 	if (rxr->rx_page) {
2682 		__free_page(rxr->rx_page);
2683 		rxr->rx_page = NULL;
2684 	}
2685 	map = rxr->rx_tpa_idx_map;
2686 	if (map)
2687 		memset(map->agg_idx_bmap, 0, sizeof(map->agg_idx_bmap));
2688 }
2689 
2690 static void bnxt_free_rx_skbs(struct bnxt *bp)
2691 {
2692 	int i;
2693 
2694 	if (!bp->rx_ring)
2695 		return;
2696 
2697 	for (i = 0; i < bp->rx_nr_rings; i++)
2698 		bnxt_free_one_rx_ring_skbs(bp, i);
2699 }
2700 
2701 static void bnxt_free_skbs(struct bnxt *bp)
2702 {
2703 	bnxt_free_tx_skbs(bp);
2704 	bnxt_free_rx_skbs(bp);
2705 }
2706 
2707 static void bnxt_init_ctx_mem(struct bnxt_mem_init *mem_init, void *p, int len)
2708 {
2709 	u8 init_val = mem_init->init_val;
2710 	u16 offset = mem_init->offset;
2711 	u8 *p2 = p;
2712 	int i;
2713 
2714 	if (!init_val)
2715 		return;
2716 	if (offset == BNXT_MEM_INVALID_OFFSET) {
2717 		memset(p, init_val, len);
2718 		return;
2719 	}
2720 	for (i = 0; i < len; i += mem_init->size)
2721 		*(p2 + i + offset) = init_val;
2722 }
2723 
2724 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
2725 {
2726 	struct pci_dev *pdev = bp->pdev;
2727 	int i;
2728 
2729 	for (i = 0; i < rmem->nr_pages; i++) {
2730 		if (!rmem->pg_arr[i])
2731 			continue;
2732 
2733 		dma_free_coherent(&pdev->dev, rmem->page_size,
2734 				  rmem->pg_arr[i], rmem->dma_arr[i]);
2735 
2736 		rmem->pg_arr[i] = NULL;
2737 	}
2738 	if (rmem->pg_tbl) {
2739 		size_t pg_tbl_size = rmem->nr_pages * 8;
2740 
2741 		if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
2742 			pg_tbl_size = rmem->page_size;
2743 		dma_free_coherent(&pdev->dev, pg_tbl_size,
2744 				  rmem->pg_tbl, rmem->pg_tbl_map);
2745 		rmem->pg_tbl = NULL;
2746 	}
2747 	if (rmem->vmem_size && *rmem->vmem) {
2748 		vfree(*rmem->vmem);
2749 		*rmem->vmem = NULL;
2750 	}
2751 }
2752 
2753 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
2754 {
2755 	struct pci_dev *pdev = bp->pdev;
2756 	u64 valid_bit = 0;
2757 	int i;
2758 
2759 	if (rmem->flags & (BNXT_RMEM_VALID_PTE_FLAG | BNXT_RMEM_RING_PTE_FLAG))
2760 		valid_bit = PTU_PTE_VALID;
2761 	if ((rmem->nr_pages > 1 || rmem->depth > 0) && !rmem->pg_tbl) {
2762 		size_t pg_tbl_size = rmem->nr_pages * 8;
2763 
2764 		if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
2765 			pg_tbl_size = rmem->page_size;
2766 		rmem->pg_tbl = dma_alloc_coherent(&pdev->dev, pg_tbl_size,
2767 						  &rmem->pg_tbl_map,
2768 						  GFP_KERNEL);
2769 		if (!rmem->pg_tbl)
2770 			return -ENOMEM;
2771 	}
2772 
2773 	for (i = 0; i < rmem->nr_pages; i++) {
2774 		u64 extra_bits = valid_bit;
2775 
2776 		rmem->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
2777 						     rmem->page_size,
2778 						     &rmem->dma_arr[i],
2779 						     GFP_KERNEL);
2780 		if (!rmem->pg_arr[i])
2781 			return -ENOMEM;
2782 
2783 		if (rmem->mem_init)
2784 			bnxt_init_ctx_mem(rmem->mem_init, rmem->pg_arr[i],
2785 					  rmem->page_size);
2786 		if (rmem->nr_pages > 1 || rmem->depth > 0) {
2787 			if (i == rmem->nr_pages - 2 &&
2788 			    (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
2789 				extra_bits |= PTU_PTE_NEXT_TO_LAST;
2790 			else if (i == rmem->nr_pages - 1 &&
2791 				 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
2792 				extra_bits |= PTU_PTE_LAST;
2793 			rmem->pg_tbl[i] =
2794 				cpu_to_le64(rmem->dma_arr[i] | extra_bits);
2795 		}
2796 	}
2797 
2798 	if (rmem->vmem_size) {
2799 		*rmem->vmem = vzalloc(rmem->vmem_size);
2800 		if (!(*rmem->vmem))
2801 			return -ENOMEM;
2802 	}
2803 	return 0;
2804 }
2805 
2806 static void bnxt_free_tpa_info(struct bnxt *bp)
2807 {
2808 	int i;
2809 
2810 	for (i = 0; i < bp->rx_nr_rings; i++) {
2811 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2812 
2813 		kfree(rxr->rx_tpa_idx_map);
2814 		rxr->rx_tpa_idx_map = NULL;
2815 		if (rxr->rx_tpa) {
2816 			kfree(rxr->rx_tpa[0].agg_arr);
2817 			rxr->rx_tpa[0].agg_arr = NULL;
2818 		}
2819 		kfree(rxr->rx_tpa);
2820 		rxr->rx_tpa = NULL;
2821 	}
2822 }
2823 
2824 static int bnxt_alloc_tpa_info(struct bnxt *bp)
2825 {
2826 	int i, j, total_aggs = 0;
2827 
2828 	bp->max_tpa = MAX_TPA;
2829 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
2830 		if (!bp->max_tpa_v2)
2831 			return 0;
2832 		bp->max_tpa = max_t(u16, bp->max_tpa_v2, MAX_TPA_P5);
2833 		total_aggs = bp->max_tpa * MAX_SKB_FRAGS;
2834 	}
2835 
2836 	for (i = 0; i < bp->rx_nr_rings; i++) {
2837 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2838 		struct rx_agg_cmp *agg;
2839 
2840 		rxr->rx_tpa = kcalloc(bp->max_tpa, sizeof(struct bnxt_tpa_info),
2841 				      GFP_KERNEL);
2842 		if (!rxr->rx_tpa)
2843 			return -ENOMEM;
2844 
2845 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
2846 			continue;
2847 		agg = kcalloc(total_aggs, sizeof(*agg), GFP_KERNEL);
2848 		rxr->rx_tpa[0].agg_arr = agg;
2849 		if (!agg)
2850 			return -ENOMEM;
2851 		for (j = 1; j < bp->max_tpa; j++)
2852 			rxr->rx_tpa[j].agg_arr = agg + j * MAX_SKB_FRAGS;
2853 		rxr->rx_tpa_idx_map = kzalloc(sizeof(*rxr->rx_tpa_idx_map),
2854 					      GFP_KERNEL);
2855 		if (!rxr->rx_tpa_idx_map)
2856 			return -ENOMEM;
2857 	}
2858 	return 0;
2859 }
2860 
2861 static void bnxt_free_rx_rings(struct bnxt *bp)
2862 {
2863 	int i;
2864 
2865 	if (!bp->rx_ring)
2866 		return;
2867 
2868 	bnxt_free_tpa_info(bp);
2869 	for (i = 0; i < bp->rx_nr_rings; i++) {
2870 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2871 		struct bnxt_ring_struct *ring;
2872 
2873 		if (rxr->xdp_prog)
2874 			bpf_prog_put(rxr->xdp_prog);
2875 
2876 		if (xdp_rxq_info_is_reg(&rxr->xdp_rxq))
2877 			xdp_rxq_info_unreg(&rxr->xdp_rxq);
2878 
2879 		page_pool_destroy(rxr->page_pool);
2880 		rxr->page_pool = NULL;
2881 
2882 		kfree(rxr->rx_agg_bmap);
2883 		rxr->rx_agg_bmap = NULL;
2884 
2885 		ring = &rxr->rx_ring_struct;
2886 		bnxt_free_ring(bp, &ring->ring_mem);
2887 
2888 		ring = &rxr->rx_agg_ring_struct;
2889 		bnxt_free_ring(bp, &ring->ring_mem);
2890 	}
2891 }
2892 
2893 static int bnxt_alloc_rx_page_pool(struct bnxt *bp,
2894 				   struct bnxt_rx_ring_info *rxr)
2895 {
2896 	struct page_pool_params pp = { 0 };
2897 
2898 	pp.pool_size = bp->rx_ring_size;
2899 	pp.nid = dev_to_node(&bp->pdev->dev);
2900 	pp.dev = &bp->pdev->dev;
2901 	pp.dma_dir = DMA_BIDIRECTIONAL;
2902 
2903 	rxr->page_pool = page_pool_create(&pp);
2904 	if (IS_ERR(rxr->page_pool)) {
2905 		int err = PTR_ERR(rxr->page_pool);
2906 
2907 		rxr->page_pool = NULL;
2908 		return err;
2909 	}
2910 	return 0;
2911 }
2912 
2913 static int bnxt_alloc_rx_rings(struct bnxt *bp)
2914 {
2915 	int i, rc = 0, agg_rings = 0;
2916 
2917 	if (!bp->rx_ring)
2918 		return -ENOMEM;
2919 
2920 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
2921 		agg_rings = 1;
2922 
2923 	for (i = 0; i < bp->rx_nr_rings; i++) {
2924 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2925 		struct bnxt_ring_struct *ring;
2926 
2927 		ring = &rxr->rx_ring_struct;
2928 
2929 		rc = bnxt_alloc_rx_page_pool(bp, rxr);
2930 		if (rc)
2931 			return rc;
2932 
2933 		rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i, 0);
2934 		if (rc < 0)
2935 			return rc;
2936 
2937 		rc = xdp_rxq_info_reg_mem_model(&rxr->xdp_rxq,
2938 						MEM_TYPE_PAGE_POOL,
2939 						rxr->page_pool);
2940 		if (rc) {
2941 			xdp_rxq_info_unreg(&rxr->xdp_rxq);
2942 			return rc;
2943 		}
2944 
2945 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
2946 		if (rc)
2947 			return rc;
2948 
2949 		ring->grp_idx = i;
2950 		if (agg_rings) {
2951 			u16 mem_size;
2952 
2953 			ring = &rxr->rx_agg_ring_struct;
2954 			rc = bnxt_alloc_ring(bp, &ring->ring_mem);
2955 			if (rc)
2956 				return rc;
2957 
2958 			ring->grp_idx = i;
2959 			rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
2960 			mem_size = rxr->rx_agg_bmap_size / 8;
2961 			rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
2962 			if (!rxr->rx_agg_bmap)
2963 				return -ENOMEM;
2964 		}
2965 	}
2966 	if (bp->flags & BNXT_FLAG_TPA)
2967 		rc = bnxt_alloc_tpa_info(bp);
2968 	return rc;
2969 }
2970 
2971 static void bnxt_free_tx_rings(struct bnxt *bp)
2972 {
2973 	int i;
2974 	struct pci_dev *pdev = bp->pdev;
2975 
2976 	if (!bp->tx_ring)
2977 		return;
2978 
2979 	for (i = 0; i < bp->tx_nr_rings; i++) {
2980 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2981 		struct bnxt_ring_struct *ring;
2982 
2983 		if (txr->tx_push) {
2984 			dma_free_coherent(&pdev->dev, bp->tx_push_size,
2985 					  txr->tx_push, txr->tx_push_mapping);
2986 			txr->tx_push = NULL;
2987 		}
2988 
2989 		ring = &txr->tx_ring_struct;
2990 
2991 		bnxt_free_ring(bp, &ring->ring_mem);
2992 	}
2993 }
2994 
2995 static int bnxt_alloc_tx_rings(struct bnxt *bp)
2996 {
2997 	int i, j, rc;
2998 	struct pci_dev *pdev = bp->pdev;
2999 
3000 	bp->tx_push_size = 0;
3001 	if (bp->tx_push_thresh) {
3002 		int push_size;
3003 
3004 		push_size  = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
3005 					bp->tx_push_thresh);
3006 
3007 		if (push_size > 256) {
3008 			push_size = 0;
3009 			bp->tx_push_thresh = 0;
3010 		}
3011 
3012 		bp->tx_push_size = push_size;
3013 	}
3014 
3015 	for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
3016 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3017 		struct bnxt_ring_struct *ring;
3018 		u8 qidx;
3019 
3020 		ring = &txr->tx_ring_struct;
3021 
3022 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3023 		if (rc)
3024 			return rc;
3025 
3026 		ring->grp_idx = txr->bnapi->index;
3027 		if (bp->tx_push_size) {
3028 			dma_addr_t mapping;
3029 
3030 			/* One pre-allocated DMA buffer to backup
3031 			 * TX push operation
3032 			 */
3033 			txr->tx_push = dma_alloc_coherent(&pdev->dev,
3034 						bp->tx_push_size,
3035 						&txr->tx_push_mapping,
3036 						GFP_KERNEL);
3037 
3038 			if (!txr->tx_push)
3039 				return -ENOMEM;
3040 
3041 			mapping = txr->tx_push_mapping +
3042 				sizeof(struct tx_push_bd);
3043 			txr->data_mapping = cpu_to_le64(mapping);
3044 		}
3045 		qidx = bp->tc_to_qidx[j];
3046 		ring->queue_id = bp->q_info[qidx].queue_id;
3047 		if (i < bp->tx_nr_rings_xdp)
3048 			continue;
3049 		if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1))
3050 			j++;
3051 	}
3052 	return 0;
3053 }
3054 
3055 static void bnxt_free_cp_rings(struct bnxt *bp)
3056 {
3057 	int i;
3058 
3059 	if (!bp->bnapi)
3060 		return;
3061 
3062 	for (i = 0; i < bp->cp_nr_rings; i++) {
3063 		struct bnxt_napi *bnapi = bp->bnapi[i];
3064 		struct bnxt_cp_ring_info *cpr;
3065 		struct bnxt_ring_struct *ring;
3066 		int j;
3067 
3068 		if (!bnapi)
3069 			continue;
3070 
3071 		cpr = &bnapi->cp_ring;
3072 		ring = &cpr->cp_ring_struct;
3073 
3074 		bnxt_free_ring(bp, &ring->ring_mem);
3075 
3076 		for (j = 0; j < 2; j++) {
3077 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
3078 
3079 			if (cpr2) {
3080 				ring = &cpr2->cp_ring_struct;
3081 				bnxt_free_ring(bp, &ring->ring_mem);
3082 				kfree(cpr2);
3083 				cpr->cp_ring_arr[j] = NULL;
3084 			}
3085 		}
3086 	}
3087 }
3088 
3089 static struct bnxt_cp_ring_info *bnxt_alloc_cp_sub_ring(struct bnxt *bp)
3090 {
3091 	struct bnxt_ring_mem_info *rmem;
3092 	struct bnxt_ring_struct *ring;
3093 	struct bnxt_cp_ring_info *cpr;
3094 	int rc;
3095 
3096 	cpr = kzalloc(sizeof(*cpr), GFP_KERNEL);
3097 	if (!cpr)
3098 		return NULL;
3099 
3100 	ring = &cpr->cp_ring_struct;
3101 	rmem = &ring->ring_mem;
3102 	rmem->nr_pages = bp->cp_nr_pages;
3103 	rmem->page_size = HW_CMPD_RING_SIZE;
3104 	rmem->pg_arr = (void **)cpr->cp_desc_ring;
3105 	rmem->dma_arr = cpr->cp_desc_mapping;
3106 	rmem->flags = BNXT_RMEM_RING_PTE_FLAG;
3107 	rc = bnxt_alloc_ring(bp, rmem);
3108 	if (rc) {
3109 		bnxt_free_ring(bp, rmem);
3110 		kfree(cpr);
3111 		cpr = NULL;
3112 	}
3113 	return cpr;
3114 }
3115 
3116 static int bnxt_alloc_cp_rings(struct bnxt *bp)
3117 {
3118 	bool sh = !!(bp->flags & BNXT_FLAG_SHARED_RINGS);
3119 	int i, rc, ulp_base_vec, ulp_msix;
3120 
3121 	ulp_msix = bnxt_get_ulp_msix_num(bp);
3122 	ulp_base_vec = bnxt_get_ulp_msix_base(bp);
3123 	for (i = 0; i < bp->cp_nr_rings; i++) {
3124 		struct bnxt_napi *bnapi = bp->bnapi[i];
3125 		struct bnxt_cp_ring_info *cpr;
3126 		struct bnxt_ring_struct *ring;
3127 
3128 		if (!bnapi)
3129 			continue;
3130 
3131 		cpr = &bnapi->cp_ring;
3132 		cpr->bnapi = bnapi;
3133 		ring = &cpr->cp_ring_struct;
3134 
3135 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3136 		if (rc)
3137 			return rc;
3138 
3139 		if (ulp_msix && i >= ulp_base_vec)
3140 			ring->map_idx = i + ulp_msix;
3141 		else
3142 			ring->map_idx = i;
3143 
3144 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
3145 			continue;
3146 
3147 		if (i < bp->rx_nr_rings) {
3148 			struct bnxt_cp_ring_info *cpr2 =
3149 				bnxt_alloc_cp_sub_ring(bp);
3150 
3151 			cpr->cp_ring_arr[BNXT_RX_HDL] = cpr2;
3152 			if (!cpr2)
3153 				return -ENOMEM;
3154 			cpr2->bnapi = bnapi;
3155 		}
3156 		if ((sh && i < bp->tx_nr_rings) ||
3157 		    (!sh && i >= bp->rx_nr_rings)) {
3158 			struct bnxt_cp_ring_info *cpr2 =
3159 				bnxt_alloc_cp_sub_ring(bp);
3160 
3161 			cpr->cp_ring_arr[BNXT_TX_HDL] = cpr2;
3162 			if (!cpr2)
3163 				return -ENOMEM;
3164 			cpr2->bnapi = bnapi;
3165 		}
3166 	}
3167 	return 0;
3168 }
3169 
3170 static void bnxt_init_ring_struct(struct bnxt *bp)
3171 {
3172 	int i;
3173 
3174 	for (i = 0; i < bp->cp_nr_rings; i++) {
3175 		struct bnxt_napi *bnapi = bp->bnapi[i];
3176 		struct bnxt_ring_mem_info *rmem;
3177 		struct bnxt_cp_ring_info *cpr;
3178 		struct bnxt_rx_ring_info *rxr;
3179 		struct bnxt_tx_ring_info *txr;
3180 		struct bnxt_ring_struct *ring;
3181 
3182 		if (!bnapi)
3183 			continue;
3184 
3185 		cpr = &bnapi->cp_ring;
3186 		ring = &cpr->cp_ring_struct;
3187 		rmem = &ring->ring_mem;
3188 		rmem->nr_pages = bp->cp_nr_pages;
3189 		rmem->page_size = HW_CMPD_RING_SIZE;
3190 		rmem->pg_arr = (void **)cpr->cp_desc_ring;
3191 		rmem->dma_arr = cpr->cp_desc_mapping;
3192 		rmem->vmem_size = 0;
3193 
3194 		rxr = bnapi->rx_ring;
3195 		if (!rxr)
3196 			goto skip_rx;
3197 
3198 		ring = &rxr->rx_ring_struct;
3199 		rmem = &ring->ring_mem;
3200 		rmem->nr_pages = bp->rx_nr_pages;
3201 		rmem->page_size = HW_RXBD_RING_SIZE;
3202 		rmem->pg_arr = (void **)rxr->rx_desc_ring;
3203 		rmem->dma_arr = rxr->rx_desc_mapping;
3204 		rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
3205 		rmem->vmem = (void **)&rxr->rx_buf_ring;
3206 
3207 		ring = &rxr->rx_agg_ring_struct;
3208 		rmem = &ring->ring_mem;
3209 		rmem->nr_pages = bp->rx_agg_nr_pages;
3210 		rmem->page_size = HW_RXBD_RING_SIZE;
3211 		rmem->pg_arr = (void **)rxr->rx_agg_desc_ring;
3212 		rmem->dma_arr = rxr->rx_agg_desc_mapping;
3213 		rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
3214 		rmem->vmem = (void **)&rxr->rx_agg_ring;
3215 
3216 skip_rx:
3217 		txr = bnapi->tx_ring;
3218 		if (!txr)
3219 			continue;
3220 
3221 		ring = &txr->tx_ring_struct;
3222 		rmem = &ring->ring_mem;
3223 		rmem->nr_pages = bp->tx_nr_pages;
3224 		rmem->page_size = HW_RXBD_RING_SIZE;
3225 		rmem->pg_arr = (void **)txr->tx_desc_ring;
3226 		rmem->dma_arr = txr->tx_desc_mapping;
3227 		rmem->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
3228 		rmem->vmem = (void **)&txr->tx_buf_ring;
3229 	}
3230 }
3231 
3232 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
3233 {
3234 	int i;
3235 	u32 prod;
3236 	struct rx_bd **rx_buf_ring;
3237 
3238 	rx_buf_ring = (struct rx_bd **)ring->ring_mem.pg_arr;
3239 	for (i = 0, prod = 0; i < ring->ring_mem.nr_pages; i++) {
3240 		int j;
3241 		struct rx_bd *rxbd;
3242 
3243 		rxbd = rx_buf_ring[i];
3244 		if (!rxbd)
3245 			continue;
3246 
3247 		for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
3248 			rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
3249 			rxbd->rx_bd_opaque = prod;
3250 		}
3251 	}
3252 }
3253 
3254 static int bnxt_alloc_one_rx_ring(struct bnxt *bp, int ring_nr)
3255 {
3256 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
3257 	struct net_device *dev = bp->dev;
3258 	u32 prod;
3259 	int i;
3260 
3261 	prod = rxr->rx_prod;
3262 	for (i = 0; i < bp->rx_ring_size; i++) {
3263 		if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL)) {
3264 			netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
3265 				    ring_nr, i, bp->rx_ring_size);
3266 			break;
3267 		}
3268 		prod = NEXT_RX(prod);
3269 	}
3270 	rxr->rx_prod = prod;
3271 
3272 	if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
3273 		return 0;
3274 
3275 	prod = rxr->rx_agg_prod;
3276 	for (i = 0; i < bp->rx_agg_ring_size; i++) {
3277 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL)) {
3278 			netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
3279 				    ring_nr, i, bp->rx_ring_size);
3280 			break;
3281 		}
3282 		prod = NEXT_RX_AGG(prod);
3283 	}
3284 	rxr->rx_agg_prod = prod;
3285 
3286 	if (rxr->rx_tpa) {
3287 		dma_addr_t mapping;
3288 		u8 *data;
3289 
3290 		for (i = 0; i < bp->max_tpa; i++) {
3291 			data = __bnxt_alloc_rx_data(bp, &mapping, GFP_KERNEL);
3292 			if (!data)
3293 				return -ENOMEM;
3294 
3295 			rxr->rx_tpa[i].data = data;
3296 			rxr->rx_tpa[i].data_ptr = data + bp->rx_offset;
3297 			rxr->rx_tpa[i].mapping = mapping;
3298 		}
3299 	}
3300 	return 0;
3301 }
3302 
3303 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
3304 {
3305 	struct bnxt_rx_ring_info *rxr;
3306 	struct bnxt_ring_struct *ring;
3307 	u32 type;
3308 
3309 	type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
3310 		RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
3311 
3312 	if (NET_IP_ALIGN == 2)
3313 		type |= RX_BD_FLAGS_SOP;
3314 
3315 	rxr = &bp->rx_ring[ring_nr];
3316 	ring = &rxr->rx_ring_struct;
3317 	bnxt_init_rxbd_pages(ring, type);
3318 
3319 	if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) {
3320 		bpf_prog_add(bp->xdp_prog, 1);
3321 		rxr->xdp_prog = bp->xdp_prog;
3322 	}
3323 	ring->fw_ring_id = INVALID_HW_RING_ID;
3324 
3325 	ring = &rxr->rx_agg_ring_struct;
3326 	ring->fw_ring_id = INVALID_HW_RING_ID;
3327 
3328 	if ((bp->flags & BNXT_FLAG_AGG_RINGS)) {
3329 		type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) |
3330 			RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
3331 
3332 		bnxt_init_rxbd_pages(ring, type);
3333 	}
3334 
3335 	return bnxt_alloc_one_rx_ring(bp, ring_nr);
3336 }
3337 
3338 static void bnxt_init_cp_rings(struct bnxt *bp)
3339 {
3340 	int i, j;
3341 
3342 	for (i = 0; i < bp->cp_nr_rings; i++) {
3343 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
3344 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3345 
3346 		ring->fw_ring_id = INVALID_HW_RING_ID;
3347 		cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
3348 		cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
3349 		for (j = 0; j < 2; j++) {
3350 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
3351 
3352 			if (!cpr2)
3353 				continue;
3354 
3355 			ring = &cpr2->cp_ring_struct;
3356 			ring->fw_ring_id = INVALID_HW_RING_ID;
3357 			cpr2->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
3358 			cpr2->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
3359 		}
3360 	}
3361 }
3362 
3363 static int bnxt_init_rx_rings(struct bnxt *bp)
3364 {
3365 	int i, rc = 0;
3366 
3367 	if (BNXT_RX_PAGE_MODE(bp)) {
3368 		bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM;
3369 		bp->rx_dma_offset = XDP_PACKET_HEADROOM;
3370 	} else {
3371 		bp->rx_offset = BNXT_RX_OFFSET;
3372 		bp->rx_dma_offset = BNXT_RX_DMA_OFFSET;
3373 	}
3374 
3375 	for (i = 0; i < bp->rx_nr_rings; i++) {
3376 		rc = bnxt_init_one_rx_ring(bp, i);
3377 		if (rc)
3378 			break;
3379 	}
3380 
3381 	return rc;
3382 }
3383 
3384 static int bnxt_init_tx_rings(struct bnxt *bp)
3385 {
3386 	u16 i;
3387 
3388 	bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
3389 				   MAX_SKB_FRAGS + 1);
3390 
3391 	for (i = 0; i < bp->tx_nr_rings; i++) {
3392 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3393 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
3394 
3395 		ring->fw_ring_id = INVALID_HW_RING_ID;
3396 	}
3397 
3398 	return 0;
3399 }
3400 
3401 static void bnxt_free_ring_grps(struct bnxt *bp)
3402 {
3403 	kfree(bp->grp_info);
3404 	bp->grp_info = NULL;
3405 }
3406 
3407 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
3408 {
3409 	int i;
3410 
3411 	if (irq_re_init) {
3412 		bp->grp_info = kcalloc(bp->cp_nr_rings,
3413 				       sizeof(struct bnxt_ring_grp_info),
3414 				       GFP_KERNEL);
3415 		if (!bp->grp_info)
3416 			return -ENOMEM;
3417 	}
3418 	for (i = 0; i < bp->cp_nr_rings; i++) {
3419 		if (irq_re_init)
3420 			bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
3421 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
3422 		bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
3423 		bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
3424 		bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
3425 	}
3426 	return 0;
3427 }
3428 
3429 static void bnxt_free_vnics(struct bnxt *bp)
3430 {
3431 	kfree(bp->vnic_info);
3432 	bp->vnic_info = NULL;
3433 	bp->nr_vnics = 0;
3434 }
3435 
3436 static int bnxt_alloc_vnics(struct bnxt *bp)
3437 {
3438 	int num_vnics = 1;
3439 
3440 #ifdef CONFIG_RFS_ACCEL
3441 	if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS)
3442 		num_vnics += bp->rx_nr_rings;
3443 #endif
3444 
3445 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
3446 		num_vnics++;
3447 
3448 	bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
3449 				GFP_KERNEL);
3450 	if (!bp->vnic_info)
3451 		return -ENOMEM;
3452 
3453 	bp->nr_vnics = num_vnics;
3454 	return 0;
3455 }
3456 
3457 static void bnxt_init_vnics(struct bnxt *bp)
3458 {
3459 	int i;
3460 
3461 	for (i = 0; i < bp->nr_vnics; i++) {
3462 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3463 		int j;
3464 
3465 		vnic->fw_vnic_id = INVALID_HW_RING_ID;
3466 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++)
3467 			vnic->fw_rss_cos_lb_ctx[j] = INVALID_HW_RING_ID;
3468 
3469 		vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
3470 
3471 		if (bp->vnic_info[i].rss_hash_key) {
3472 			if (i == 0)
3473 				prandom_bytes(vnic->rss_hash_key,
3474 					      HW_HASH_KEY_SIZE);
3475 			else
3476 				memcpy(vnic->rss_hash_key,
3477 				       bp->vnic_info[0].rss_hash_key,
3478 				       HW_HASH_KEY_SIZE);
3479 		}
3480 	}
3481 }
3482 
3483 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
3484 {
3485 	int pages;
3486 
3487 	pages = ring_size / desc_per_pg;
3488 
3489 	if (!pages)
3490 		return 1;
3491 
3492 	pages++;
3493 
3494 	while (pages & (pages - 1))
3495 		pages++;
3496 
3497 	return pages;
3498 }
3499 
3500 void bnxt_set_tpa_flags(struct bnxt *bp)
3501 {
3502 	bp->flags &= ~BNXT_FLAG_TPA;
3503 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
3504 		return;
3505 	if (bp->dev->features & NETIF_F_LRO)
3506 		bp->flags |= BNXT_FLAG_LRO;
3507 	else if (bp->dev->features & NETIF_F_GRO_HW)
3508 		bp->flags |= BNXT_FLAG_GRO;
3509 }
3510 
3511 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
3512  * be set on entry.
3513  */
3514 void bnxt_set_ring_params(struct bnxt *bp)
3515 {
3516 	u32 ring_size, rx_size, rx_space, max_rx_cmpl;
3517 	u32 agg_factor = 0, agg_ring_size = 0;
3518 
3519 	/* 8 for CRC and VLAN */
3520 	rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
3521 
3522 	rx_space = rx_size + NET_SKB_PAD +
3523 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3524 
3525 	bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
3526 	ring_size = bp->rx_ring_size;
3527 	bp->rx_agg_ring_size = 0;
3528 	bp->rx_agg_nr_pages = 0;
3529 
3530 	if (bp->flags & BNXT_FLAG_TPA)
3531 		agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE);
3532 
3533 	bp->flags &= ~BNXT_FLAG_JUMBO;
3534 	if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) {
3535 		u32 jumbo_factor;
3536 
3537 		bp->flags |= BNXT_FLAG_JUMBO;
3538 		jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
3539 		if (jumbo_factor > agg_factor)
3540 			agg_factor = jumbo_factor;
3541 	}
3542 	agg_ring_size = ring_size * agg_factor;
3543 
3544 	if (agg_ring_size) {
3545 		bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
3546 							RX_DESC_CNT);
3547 		if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
3548 			u32 tmp = agg_ring_size;
3549 
3550 			bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
3551 			agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
3552 			netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
3553 				    tmp, agg_ring_size);
3554 		}
3555 		bp->rx_agg_ring_size = agg_ring_size;
3556 		bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
3557 		rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
3558 		rx_space = rx_size + NET_SKB_PAD +
3559 			SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3560 	}
3561 
3562 	bp->rx_buf_use_size = rx_size;
3563 	bp->rx_buf_size = rx_space;
3564 
3565 	bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
3566 	bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
3567 
3568 	ring_size = bp->tx_ring_size;
3569 	bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
3570 	bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
3571 
3572 	max_rx_cmpl = bp->rx_ring_size;
3573 	/* MAX TPA needs to be added because TPA_START completions are
3574 	 * immediately recycled, so the TPA completions are not bound by
3575 	 * the RX ring size.
3576 	 */
3577 	if (bp->flags & BNXT_FLAG_TPA)
3578 		max_rx_cmpl += bp->max_tpa;
3579 	/* RX and TPA completions are 32-byte, all others are 16-byte */
3580 	ring_size = max_rx_cmpl * 2 + agg_ring_size + bp->tx_ring_size;
3581 	bp->cp_ring_size = ring_size;
3582 
3583 	bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
3584 	if (bp->cp_nr_pages > MAX_CP_PAGES) {
3585 		bp->cp_nr_pages = MAX_CP_PAGES;
3586 		bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
3587 		netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
3588 			    ring_size, bp->cp_ring_size);
3589 	}
3590 	bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
3591 	bp->cp_ring_mask = bp->cp_bit - 1;
3592 }
3593 
3594 /* Changing allocation mode of RX rings.
3595  * TODO: Update when extending xdp_rxq_info to support allocation modes.
3596  */
3597 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode)
3598 {
3599 	if (page_mode) {
3600 		if (bp->dev->mtu > BNXT_MAX_PAGE_MODE_MTU)
3601 			return -EOPNOTSUPP;
3602 		bp->dev->max_mtu =
3603 			min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU);
3604 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
3605 		bp->flags |= BNXT_FLAG_NO_AGG_RINGS | BNXT_FLAG_RX_PAGE_MODE;
3606 		bp->rx_dir = DMA_BIDIRECTIONAL;
3607 		bp->rx_skb_func = bnxt_rx_page_skb;
3608 		/* Disable LRO or GRO_HW */
3609 		netdev_update_features(bp->dev);
3610 	} else {
3611 		bp->dev->max_mtu = bp->max_mtu;
3612 		bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE;
3613 		bp->rx_dir = DMA_FROM_DEVICE;
3614 		bp->rx_skb_func = bnxt_rx_skb;
3615 	}
3616 	return 0;
3617 }
3618 
3619 static void bnxt_free_vnic_attributes(struct bnxt *bp)
3620 {
3621 	int i;
3622 	struct bnxt_vnic_info *vnic;
3623 	struct pci_dev *pdev = bp->pdev;
3624 
3625 	if (!bp->vnic_info)
3626 		return;
3627 
3628 	for (i = 0; i < bp->nr_vnics; i++) {
3629 		vnic = &bp->vnic_info[i];
3630 
3631 		kfree(vnic->fw_grp_ids);
3632 		vnic->fw_grp_ids = NULL;
3633 
3634 		kfree(vnic->uc_list);
3635 		vnic->uc_list = NULL;
3636 
3637 		if (vnic->mc_list) {
3638 			dma_free_coherent(&pdev->dev, vnic->mc_list_size,
3639 					  vnic->mc_list, vnic->mc_list_mapping);
3640 			vnic->mc_list = NULL;
3641 		}
3642 
3643 		if (vnic->rss_table) {
3644 			dma_free_coherent(&pdev->dev, vnic->rss_table_size,
3645 					  vnic->rss_table,
3646 					  vnic->rss_table_dma_addr);
3647 			vnic->rss_table = NULL;
3648 		}
3649 
3650 		vnic->rss_hash_key = NULL;
3651 		vnic->flags = 0;
3652 	}
3653 }
3654 
3655 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
3656 {
3657 	int i, rc = 0, size;
3658 	struct bnxt_vnic_info *vnic;
3659 	struct pci_dev *pdev = bp->pdev;
3660 	int max_rings;
3661 
3662 	for (i = 0; i < bp->nr_vnics; i++) {
3663 		vnic = &bp->vnic_info[i];
3664 
3665 		if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
3666 			int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
3667 
3668 			if (mem_size > 0) {
3669 				vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
3670 				if (!vnic->uc_list) {
3671 					rc = -ENOMEM;
3672 					goto out;
3673 				}
3674 			}
3675 		}
3676 
3677 		if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
3678 			vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
3679 			vnic->mc_list =
3680 				dma_alloc_coherent(&pdev->dev,
3681 						   vnic->mc_list_size,
3682 						   &vnic->mc_list_mapping,
3683 						   GFP_KERNEL);
3684 			if (!vnic->mc_list) {
3685 				rc = -ENOMEM;
3686 				goto out;
3687 			}
3688 		}
3689 
3690 		if (bp->flags & BNXT_FLAG_CHIP_P5)
3691 			goto vnic_skip_grps;
3692 
3693 		if (vnic->flags & BNXT_VNIC_RSS_FLAG)
3694 			max_rings = bp->rx_nr_rings;
3695 		else
3696 			max_rings = 1;
3697 
3698 		vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
3699 		if (!vnic->fw_grp_ids) {
3700 			rc = -ENOMEM;
3701 			goto out;
3702 		}
3703 vnic_skip_grps:
3704 		if ((bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
3705 		    !(vnic->flags & BNXT_VNIC_RSS_FLAG))
3706 			continue;
3707 
3708 		/* Allocate rss table and hash key */
3709 		size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
3710 		if (bp->flags & BNXT_FLAG_CHIP_P5)
3711 			size = L1_CACHE_ALIGN(BNXT_MAX_RSS_TABLE_SIZE_P5);
3712 
3713 		vnic->rss_table_size = size + HW_HASH_KEY_SIZE;
3714 		vnic->rss_table = dma_alloc_coherent(&pdev->dev,
3715 						     vnic->rss_table_size,
3716 						     &vnic->rss_table_dma_addr,
3717 						     GFP_KERNEL);
3718 		if (!vnic->rss_table) {
3719 			rc = -ENOMEM;
3720 			goto out;
3721 		}
3722 
3723 		vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
3724 		vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
3725 	}
3726 	return 0;
3727 
3728 out:
3729 	return rc;
3730 }
3731 
3732 static void bnxt_free_hwrm_resources(struct bnxt *bp)
3733 {
3734 	struct pci_dev *pdev = bp->pdev;
3735 
3736 	if (bp->hwrm_cmd_resp_addr) {
3737 		dma_free_coherent(&pdev->dev, PAGE_SIZE, bp->hwrm_cmd_resp_addr,
3738 				  bp->hwrm_cmd_resp_dma_addr);
3739 		bp->hwrm_cmd_resp_addr = NULL;
3740 	}
3741 
3742 	if (bp->hwrm_cmd_kong_resp_addr) {
3743 		dma_free_coherent(&pdev->dev, PAGE_SIZE,
3744 				  bp->hwrm_cmd_kong_resp_addr,
3745 				  bp->hwrm_cmd_kong_resp_dma_addr);
3746 		bp->hwrm_cmd_kong_resp_addr = NULL;
3747 	}
3748 }
3749 
3750 static int bnxt_alloc_kong_hwrm_resources(struct bnxt *bp)
3751 {
3752 	struct pci_dev *pdev = bp->pdev;
3753 
3754 	if (bp->hwrm_cmd_kong_resp_addr)
3755 		return 0;
3756 
3757 	bp->hwrm_cmd_kong_resp_addr =
3758 		dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
3759 				   &bp->hwrm_cmd_kong_resp_dma_addr,
3760 				   GFP_KERNEL);
3761 	if (!bp->hwrm_cmd_kong_resp_addr)
3762 		return -ENOMEM;
3763 
3764 	return 0;
3765 }
3766 
3767 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
3768 {
3769 	struct pci_dev *pdev = bp->pdev;
3770 
3771 	bp->hwrm_cmd_resp_addr = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
3772 						   &bp->hwrm_cmd_resp_dma_addr,
3773 						   GFP_KERNEL);
3774 	if (!bp->hwrm_cmd_resp_addr)
3775 		return -ENOMEM;
3776 
3777 	return 0;
3778 }
3779 
3780 static void bnxt_free_hwrm_short_cmd_req(struct bnxt *bp)
3781 {
3782 	if (bp->hwrm_short_cmd_req_addr) {
3783 		struct pci_dev *pdev = bp->pdev;
3784 
3785 		dma_free_coherent(&pdev->dev, bp->hwrm_max_ext_req_len,
3786 				  bp->hwrm_short_cmd_req_addr,
3787 				  bp->hwrm_short_cmd_req_dma_addr);
3788 		bp->hwrm_short_cmd_req_addr = NULL;
3789 	}
3790 }
3791 
3792 static int bnxt_alloc_hwrm_short_cmd_req(struct bnxt *bp)
3793 {
3794 	struct pci_dev *pdev = bp->pdev;
3795 
3796 	if (bp->hwrm_short_cmd_req_addr)
3797 		return 0;
3798 
3799 	bp->hwrm_short_cmd_req_addr =
3800 		dma_alloc_coherent(&pdev->dev, bp->hwrm_max_ext_req_len,
3801 				   &bp->hwrm_short_cmd_req_dma_addr,
3802 				   GFP_KERNEL);
3803 	if (!bp->hwrm_short_cmd_req_addr)
3804 		return -ENOMEM;
3805 
3806 	return 0;
3807 }
3808 
3809 static void bnxt_free_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats)
3810 {
3811 	kfree(stats->hw_masks);
3812 	stats->hw_masks = NULL;
3813 	kfree(stats->sw_stats);
3814 	stats->sw_stats = NULL;
3815 	if (stats->hw_stats) {
3816 		dma_free_coherent(&bp->pdev->dev, stats->len, stats->hw_stats,
3817 				  stats->hw_stats_map);
3818 		stats->hw_stats = NULL;
3819 	}
3820 }
3821 
3822 static int bnxt_alloc_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats,
3823 				bool alloc_masks)
3824 {
3825 	stats->hw_stats = dma_alloc_coherent(&bp->pdev->dev, stats->len,
3826 					     &stats->hw_stats_map, GFP_KERNEL);
3827 	if (!stats->hw_stats)
3828 		return -ENOMEM;
3829 
3830 	stats->sw_stats = kzalloc(stats->len, GFP_KERNEL);
3831 	if (!stats->sw_stats)
3832 		goto stats_mem_err;
3833 
3834 	if (alloc_masks) {
3835 		stats->hw_masks = kzalloc(stats->len, GFP_KERNEL);
3836 		if (!stats->hw_masks)
3837 			goto stats_mem_err;
3838 	}
3839 	return 0;
3840 
3841 stats_mem_err:
3842 	bnxt_free_stats_mem(bp, stats);
3843 	return -ENOMEM;
3844 }
3845 
3846 static void bnxt_fill_masks(u64 *mask_arr, u64 mask, int count)
3847 {
3848 	int i;
3849 
3850 	for (i = 0; i < count; i++)
3851 		mask_arr[i] = mask;
3852 }
3853 
3854 static void bnxt_copy_hw_masks(u64 *mask_arr, __le64 *hw_mask_arr, int count)
3855 {
3856 	int i;
3857 
3858 	for (i = 0; i < count; i++)
3859 		mask_arr[i] = le64_to_cpu(hw_mask_arr[i]);
3860 }
3861 
3862 static int bnxt_hwrm_func_qstat_ext(struct bnxt *bp,
3863 				    struct bnxt_stats_mem *stats)
3864 {
3865 	struct hwrm_func_qstats_ext_output *resp = bp->hwrm_cmd_resp_addr;
3866 	struct hwrm_func_qstats_ext_input req = {0};
3867 	__le64 *hw_masks;
3868 	int rc;
3869 
3870 	if (!(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED) ||
3871 	    !(bp->flags & BNXT_FLAG_CHIP_P5))
3872 		return -EOPNOTSUPP;
3873 
3874 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QSTATS_EXT, -1, -1);
3875 	req.fid = cpu_to_le16(0xffff);
3876 	req.flags = FUNC_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK;
3877 	mutex_lock(&bp->hwrm_cmd_lock);
3878 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3879 	if (rc)
3880 		goto qstat_exit;
3881 
3882 	hw_masks = &resp->rx_ucast_pkts;
3883 	bnxt_copy_hw_masks(stats->hw_masks, hw_masks, stats->len / 8);
3884 
3885 qstat_exit:
3886 	mutex_unlock(&bp->hwrm_cmd_lock);
3887 	return rc;
3888 }
3889 
3890 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags);
3891 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags);
3892 
3893 static void bnxt_init_stats(struct bnxt *bp)
3894 {
3895 	struct bnxt_napi *bnapi = bp->bnapi[0];
3896 	struct bnxt_cp_ring_info *cpr;
3897 	struct bnxt_stats_mem *stats;
3898 	__le64 *rx_stats, *tx_stats;
3899 	int rc, rx_count, tx_count;
3900 	u64 *rx_masks, *tx_masks;
3901 	u64 mask;
3902 	u8 flags;
3903 
3904 	cpr = &bnapi->cp_ring;
3905 	stats = &cpr->stats;
3906 	rc = bnxt_hwrm_func_qstat_ext(bp, stats);
3907 	if (rc) {
3908 		if (bp->flags & BNXT_FLAG_CHIP_P5)
3909 			mask = (1ULL << 48) - 1;
3910 		else
3911 			mask = -1ULL;
3912 		bnxt_fill_masks(stats->hw_masks, mask, stats->len / 8);
3913 	}
3914 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
3915 		stats = &bp->port_stats;
3916 		rx_stats = stats->hw_stats;
3917 		rx_masks = stats->hw_masks;
3918 		rx_count = sizeof(struct rx_port_stats) / 8;
3919 		tx_stats = rx_stats + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
3920 		tx_masks = rx_masks + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
3921 		tx_count = sizeof(struct tx_port_stats) / 8;
3922 
3923 		flags = PORT_QSTATS_REQ_FLAGS_COUNTER_MASK;
3924 		rc = bnxt_hwrm_port_qstats(bp, flags);
3925 		if (rc) {
3926 			mask = (1ULL << 40) - 1;
3927 
3928 			bnxt_fill_masks(rx_masks, mask, rx_count);
3929 			bnxt_fill_masks(tx_masks, mask, tx_count);
3930 		} else {
3931 			bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count);
3932 			bnxt_copy_hw_masks(tx_masks, tx_stats, tx_count);
3933 			bnxt_hwrm_port_qstats(bp, 0);
3934 		}
3935 	}
3936 	if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) {
3937 		stats = &bp->rx_port_stats_ext;
3938 		rx_stats = stats->hw_stats;
3939 		rx_masks = stats->hw_masks;
3940 		rx_count = sizeof(struct rx_port_stats_ext) / 8;
3941 		stats = &bp->tx_port_stats_ext;
3942 		tx_stats = stats->hw_stats;
3943 		tx_masks = stats->hw_masks;
3944 		tx_count = sizeof(struct tx_port_stats_ext) / 8;
3945 
3946 		flags = PORT_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK;
3947 		rc = bnxt_hwrm_port_qstats_ext(bp, flags);
3948 		if (rc) {
3949 			mask = (1ULL << 40) - 1;
3950 
3951 			bnxt_fill_masks(rx_masks, mask, rx_count);
3952 			if (tx_stats)
3953 				bnxt_fill_masks(tx_masks, mask, tx_count);
3954 		} else {
3955 			bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count);
3956 			if (tx_stats)
3957 				bnxt_copy_hw_masks(tx_masks, tx_stats,
3958 						   tx_count);
3959 			bnxt_hwrm_port_qstats_ext(bp, 0);
3960 		}
3961 	}
3962 }
3963 
3964 static void bnxt_free_port_stats(struct bnxt *bp)
3965 {
3966 	bp->flags &= ~BNXT_FLAG_PORT_STATS;
3967 	bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT;
3968 
3969 	bnxt_free_stats_mem(bp, &bp->port_stats);
3970 	bnxt_free_stats_mem(bp, &bp->rx_port_stats_ext);
3971 	bnxt_free_stats_mem(bp, &bp->tx_port_stats_ext);
3972 }
3973 
3974 static void bnxt_free_ring_stats(struct bnxt *bp)
3975 {
3976 	int i;
3977 
3978 	if (!bp->bnapi)
3979 		return;
3980 
3981 	for (i = 0; i < bp->cp_nr_rings; i++) {
3982 		struct bnxt_napi *bnapi = bp->bnapi[i];
3983 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3984 
3985 		bnxt_free_stats_mem(bp, &cpr->stats);
3986 	}
3987 }
3988 
3989 static int bnxt_alloc_stats(struct bnxt *bp)
3990 {
3991 	u32 size, i;
3992 	int rc;
3993 
3994 	size = bp->hw_ring_stats_size;
3995 
3996 	for (i = 0; i < bp->cp_nr_rings; i++) {
3997 		struct bnxt_napi *bnapi = bp->bnapi[i];
3998 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3999 
4000 		cpr->stats.len = size;
4001 		rc = bnxt_alloc_stats_mem(bp, &cpr->stats, !i);
4002 		if (rc)
4003 			return rc;
4004 
4005 		cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
4006 	}
4007 
4008 	if (BNXT_VF(bp) || bp->chip_num == CHIP_NUM_58700)
4009 		return 0;
4010 
4011 	if (bp->port_stats.hw_stats)
4012 		goto alloc_ext_stats;
4013 
4014 	bp->port_stats.len = BNXT_PORT_STATS_SIZE;
4015 	rc = bnxt_alloc_stats_mem(bp, &bp->port_stats, true);
4016 	if (rc)
4017 		return rc;
4018 
4019 	bp->flags |= BNXT_FLAG_PORT_STATS;
4020 
4021 alloc_ext_stats:
4022 	/* Display extended statistics only if FW supports it */
4023 	if (bp->hwrm_spec_code < 0x10804 || bp->hwrm_spec_code == 0x10900)
4024 		if (!(bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED))
4025 			return 0;
4026 
4027 	if (bp->rx_port_stats_ext.hw_stats)
4028 		goto alloc_tx_ext_stats;
4029 
4030 	bp->rx_port_stats_ext.len = sizeof(struct rx_port_stats_ext);
4031 	rc = bnxt_alloc_stats_mem(bp, &bp->rx_port_stats_ext, true);
4032 	/* Extended stats are optional */
4033 	if (rc)
4034 		return 0;
4035 
4036 alloc_tx_ext_stats:
4037 	if (bp->tx_port_stats_ext.hw_stats)
4038 		return 0;
4039 
4040 	if (bp->hwrm_spec_code >= 0x10902 ||
4041 	    (bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) {
4042 		bp->tx_port_stats_ext.len = sizeof(struct tx_port_stats_ext);
4043 		rc = bnxt_alloc_stats_mem(bp, &bp->tx_port_stats_ext, true);
4044 		/* Extended stats are optional */
4045 		if (rc)
4046 			return 0;
4047 	}
4048 	bp->flags |= BNXT_FLAG_PORT_STATS_EXT;
4049 	return 0;
4050 }
4051 
4052 static void bnxt_clear_ring_indices(struct bnxt *bp)
4053 {
4054 	int i;
4055 
4056 	if (!bp->bnapi)
4057 		return;
4058 
4059 	for (i = 0; i < bp->cp_nr_rings; i++) {
4060 		struct bnxt_napi *bnapi = bp->bnapi[i];
4061 		struct bnxt_cp_ring_info *cpr;
4062 		struct bnxt_rx_ring_info *rxr;
4063 		struct bnxt_tx_ring_info *txr;
4064 
4065 		if (!bnapi)
4066 			continue;
4067 
4068 		cpr = &bnapi->cp_ring;
4069 		cpr->cp_raw_cons = 0;
4070 
4071 		txr = bnapi->tx_ring;
4072 		if (txr) {
4073 			txr->tx_prod = 0;
4074 			txr->tx_cons = 0;
4075 		}
4076 
4077 		rxr = bnapi->rx_ring;
4078 		if (rxr) {
4079 			rxr->rx_prod = 0;
4080 			rxr->rx_agg_prod = 0;
4081 			rxr->rx_sw_agg_prod = 0;
4082 			rxr->rx_next_cons = 0;
4083 		}
4084 	}
4085 }
4086 
4087 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
4088 {
4089 #ifdef CONFIG_RFS_ACCEL
4090 	int i;
4091 
4092 	/* Under rtnl_lock and all our NAPIs have been disabled.  It's
4093 	 * safe to delete the hash table.
4094 	 */
4095 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
4096 		struct hlist_head *head;
4097 		struct hlist_node *tmp;
4098 		struct bnxt_ntuple_filter *fltr;
4099 
4100 		head = &bp->ntp_fltr_hash_tbl[i];
4101 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
4102 			hlist_del(&fltr->hash);
4103 			kfree(fltr);
4104 		}
4105 	}
4106 	if (irq_reinit) {
4107 		kfree(bp->ntp_fltr_bmap);
4108 		bp->ntp_fltr_bmap = NULL;
4109 	}
4110 	bp->ntp_fltr_count = 0;
4111 #endif
4112 }
4113 
4114 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
4115 {
4116 #ifdef CONFIG_RFS_ACCEL
4117 	int i, rc = 0;
4118 
4119 	if (!(bp->flags & BNXT_FLAG_RFS))
4120 		return 0;
4121 
4122 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
4123 		INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
4124 
4125 	bp->ntp_fltr_count = 0;
4126 	bp->ntp_fltr_bmap = kcalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR),
4127 				    sizeof(long),
4128 				    GFP_KERNEL);
4129 
4130 	if (!bp->ntp_fltr_bmap)
4131 		rc = -ENOMEM;
4132 
4133 	return rc;
4134 #else
4135 	return 0;
4136 #endif
4137 }
4138 
4139 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
4140 {
4141 	bnxt_free_vnic_attributes(bp);
4142 	bnxt_free_tx_rings(bp);
4143 	bnxt_free_rx_rings(bp);
4144 	bnxt_free_cp_rings(bp);
4145 	bnxt_free_ntp_fltrs(bp, irq_re_init);
4146 	if (irq_re_init) {
4147 		bnxt_free_ring_stats(bp);
4148 		if (!(bp->fw_cap & BNXT_FW_CAP_PORT_STATS_NO_RESET) ||
4149 		    test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
4150 			bnxt_free_port_stats(bp);
4151 		bnxt_free_ring_grps(bp);
4152 		bnxt_free_vnics(bp);
4153 		kfree(bp->tx_ring_map);
4154 		bp->tx_ring_map = NULL;
4155 		kfree(bp->tx_ring);
4156 		bp->tx_ring = NULL;
4157 		kfree(bp->rx_ring);
4158 		bp->rx_ring = NULL;
4159 		kfree(bp->bnapi);
4160 		bp->bnapi = NULL;
4161 	} else {
4162 		bnxt_clear_ring_indices(bp);
4163 	}
4164 }
4165 
4166 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
4167 {
4168 	int i, j, rc, size, arr_size;
4169 	void *bnapi;
4170 
4171 	if (irq_re_init) {
4172 		/* Allocate bnapi mem pointer array and mem block for
4173 		 * all queues
4174 		 */
4175 		arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
4176 				bp->cp_nr_rings);
4177 		size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
4178 		bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
4179 		if (!bnapi)
4180 			return -ENOMEM;
4181 
4182 		bp->bnapi = bnapi;
4183 		bnapi += arr_size;
4184 		for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
4185 			bp->bnapi[i] = bnapi;
4186 			bp->bnapi[i]->index = i;
4187 			bp->bnapi[i]->bp = bp;
4188 			if (bp->flags & BNXT_FLAG_CHIP_P5) {
4189 				struct bnxt_cp_ring_info *cpr =
4190 					&bp->bnapi[i]->cp_ring;
4191 
4192 				cpr->cp_ring_struct.ring_mem.flags =
4193 					BNXT_RMEM_RING_PTE_FLAG;
4194 			}
4195 		}
4196 
4197 		bp->rx_ring = kcalloc(bp->rx_nr_rings,
4198 				      sizeof(struct bnxt_rx_ring_info),
4199 				      GFP_KERNEL);
4200 		if (!bp->rx_ring)
4201 			return -ENOMEM;
4202 
4203 		for (i = 0; i < bp->rx_nr_rings; i++) {
4204 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4205 
4206 			if (bp->flags & BNXT_FLAG_CHIP_P5) {
4207 				rxr->rx_ring_struct.ring_mem.flags =
4208 					BNXT_RMEM_RING_PTE_FLAG;
4209 				rxr->rx_agg_ring_struct.ring_mem.flags =
4210 					BNXT_RMEM_RING_PTE_FLAG;
4211 			}
4212 			rxr->bnapi = bp->bnapi[i];
4213 			bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
4214 		}
4215 
4216 		bp->tx_ring = kcalloc(bp->tx_nr_rings,
4217 				      sizeof(struct bnxt_tx_ring_info),
4218 				      GFP_KERNEL);
4219 		if (!bp->tx_ring)
4220 			return -ENOMEM;
4221 
4222 		bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16),
4223 					  GFP_KERNEL);
4224 
4225 		if (!bp->tx_ring_map)
4226 			return -ENOMEM;
4227 
4228 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
4229 			j = 0;
4230 		else
4231 			j = bp->rx_nr_rings;
4232 
4233 		for (i = 0; i < bp->tx_nr_rings; i++, j++) {
4234 			struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
4235 
4236 			if (bp->flags & BNXT_FLAG_CHIP_P5)
4237 				txr->tx_ring_struct.ring_mem.flags =
4238 					BNXT_RMEM_RING_PTE_FLAG;
4239 			txr->bnapi = bp->bnapi[j];
4240 			bp->bnapi[j]->tx_ring = txr;
4241 			bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i;
4242 			if (i >= bp->tx_nr_rings_xdp) {
4243 				txr->txq_index = i - bp->tx_nr_rings_xdp;
4244 				bp->bnapi[j]->tx_int = bnxt_tx_int;
4245 			} else {
4246 				bp->bnapi[j]->flags |= BNXT_NAPI_FLAG_XDP;
4247 				bp->bnapi[j]->tx_int = bnxt_tx_int_xdp;
4248 			}
4249 		}
4250 
4251 		rc = bnxt_alloc_stats(bp);
4252 		if (rc)
4253 			goto alloc_mem_err;
4254 		bnxt_init_stats(bp);
4255 
4256 		rc = bnxt_alloc_ntp_fltrs(bp);
4257 		if (rc)
4258 			goto alloc_mem_err;
4259 
4260 		rc = bnxt_alloc_vnics(bp);
4261 		if (rc)
4262 			goto alloc_mem_err;
4263 	}
4264 
4265 	bnxt_init_ring_struct(bp);
4266 
4267 	rc = bnxt_alloc_rx_rings(bp);
4268 	if (rc)
4269 		goto alloc_mem_err;
4270 
4271 	rc = bnxt_alloc_tx_rings(bp);
4272 	if (rc)
4273 		goto alloc_mem_err;
4274 
4275 	rc = bnxt_alloc_cp_rings(bp);
4276 	if (rc)
4277 		goto alloc_mem_err;
4278 
4279 	bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
4280 				  BNXT_VNIC_UCAST_FLAG;
4281 	rc = bnxt_alloc_vnic_attributes(bp);
4282 	if (rc)
4283 		goto alloc_mem_err;
4284 	return 0;
4285 
4286 alloc_mem_err:
4287 	bnxt_free_mem(bp, true);
4288 	return rc;
4289 }
4290 
4291 static void bnxt_disable_int(struct bnxt *bp)
4292 {
4293 	int i;
4294 
4295 	if (!bp->bnapi)
4296 		return;
4297 
4298 	for (i = 0; i < bp->cp_nr_rings; i++) {
4299 		struct bnxt_napi *bnapi = bp->bnapi[i];
4300 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4301 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
4302 
4303 		if (ring->fw_ring_id != INVALID_HW_RING_ID)
4304 			bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
4305 	}
4306 }
4307 
4308 static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n)
4309 {
4310 	struct bnxt_napi *bnapi = bp->bnapi[n];
4311 	struct bnxt_cp_ring_info *cpr;
4312 
4313 	cpr = &bnapi->cp_ring;
4314 	return cpr->cp_ring_struct.map_idx;
4315 }
4316 
4317 static void bnxt_disable_int_sync(struct bnxt *bp)
4318 {
4319 	int i;
4320 
4321 	if (!bp->irq_tbl)
4322 		return;
4323 
4324 	atomic_inc(&bp->intr_sem);
4325 
4326 	bnxt_disable_int(bp);
4327 	for (i = 0; i < bp->cp_nr_rings; i++) {
4328 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
4329 
4330 		synchronize_irq(bp->irq_tbl[map_idx].vector);
4331 	}
4332 }
4333 
4334 static void bnxt_enable_int(struct bnxt *bp)
4335 {
4336 	int i;
4337 
4338 	atomic_set(&bp->intr_sem, 0);
4339 	for (i = 0; i < bp->cp_nr_rings; i++) {
4340 		struct bnxt_napi *bnapi = bp->bnapi[i];
4341 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4342 
4343 		bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons);
4344 	}
4345 }
4346 
4347 void bnxt_hwrm_cmd_hdr_init(struct bnxt *bp, void *request, u16 req_type,
4348 			    u16 cmpl_ring, u16 target_id)
4349 {
4350 	struct input *req = request;
4351 
4352 	req->req_type = cpu_to_le16(req_type);
4353 	req->cmpl_ring = cpu_to_le16(cmpl_ring);
4354 	req->target_id = cpu_to_le16(target_id);
4355 	if (bnxt_kong_hwrm_message(bp, req))
4356 		req->resp_addr = cpu_to_le64(bp->hwrm_cmd_kong_resp_dma_addr);
4357 	else
4358 		req->resp_addr = cpu_to_le64(bp->hwrm_cmd_resp_dma_addr);
4359 }
4360 
4361 static int bnxt_hwrm_to_stderr(u32 hwrm_err)
4362 {
4363 	switch (hwrm_err) {
4364 	case HWRM_ERR_CODE_SUCCESS:
4365 		return 0;
4366 	case HWRM_ERR_CODE_RESOURCE_LOCKED:
4367 		return -EROFS;
4368 	case HWRM_ERR_CODE_RESOURCE_ACCESS_DENIED:
4369 		return -EACCES;
4370 	case HWRM_ERR_CODE_RESOURCE_ALLOC_ERROR:
4371 		return -ENOSPC;
4372 	case HWRM_ERR_CODE_INVALID_PARAMS:
4373 	case HWRM_ERR_CODE_INVALID_FLAGS:
4374 	case HWRM_ERR_CODE_INVALID_ENABLES:
4375 	case HWRM_ERR_CODE_UNSUPPORTED_TLV:
4376 	case HWRM_ERR_CODE_UNSUPPORTED_OPTION_ERR:
4377 		return -EINVAL;
4378 	case HWRM_ERR_CODE_NO_BUFFER:
4379 		return -ENOMEM;
4380 	case HWRM_ERR_CODE_HOT_RESET_PROGRESS:
4381 	case HWRM_ERR_CODE_BUSY:
4382 		return -EAGAIN;
4383 	case HWRM_ERR_CODE_CMD_NOT_SUPPORTED:
4384 		return -EOPNOTSUPP;
4385 	default:
4386 		return -EIO;
4387 	}
4388 }
4389 
4390 static int bnxt_hwrm_do_send_msg(struct bnxt *bp, void *msg, u32 msg_len,
4391 				 int timeout, bool silent)
4392 {
4393 	int i, intr_process, rc, tmo_count;
4394 	struct input *req = msg;
4395 	u32 *data = msg;
4396 	u8 *valid;
4397 	u16 cp_ring_id, len = 0;
4398 	struct hwrm_err_output *resp = bp->hwrm_cmd_resp_addr;
4399 	u16 max_req_len = BNXT_HWRM_MAX_REQ_LEN;
4400 	struct hwrm_short_input short_input = {0};
4401 	u32 doorbell_offset = BNXT_GRCPF_REG_CHIMP_COMM_TRIGGER;
4402 	u32 bar_offset = BNXT_GRCPF_REG_CHIMP_COMM;
4403 	u16 dst = BNXT_HWRM_CHNL_CHIMP;
4404 
4405 	if (BNXT_NO_FW_ACCESS(bp) &&
4406 	    le16_to_cpu(req->req_type) != HWRM_FUNC_RESET)
4407 		return -EBUSY;
4408 
4409 	if (msg_len > BNXT_HWRM_MAX_REQ_LEN) {
4410 		if (msg_len > bp->hwrm_max_ext_req_len ||
4411 		    !bp->hwrm_short_cmd_req_addr)
4412 			return -EINVAL;
4413 	}
4414 
4415 	if (bnxt_hwrm_kong_chnl(bp, req)) {
4416 		dst = BNXT_HWRM_CHNL_KONG;
4417 		bar_offset = BNXT_GRCPF_REG_KONG_COMM;
4418 		doorbell_offset = BNXT_GRCPF_REG_KONG_COMM_TRIGGER;
4419 		resp = bp->hwrm_cmd_kong_resp_addr;
4420 	}
4421 
4422 	memset(resp, 0, PAGE_SIZE);
4423 	cp_ring_id = le16_to_cpu(req->cmpl_ring);
4424 	intr_process = (cp_ring_id == INVALID_HW_RING_ID) ? 0 : 1;
4425 
4426 	req->seq_id = cpu_to_le16(bnxt_get_hwrm_seq_id(bp, dst));
4427 	/* currently supports only one outstanding message */
4428 	if (intr_process)
4429 		bp->hwrm_intr_seq_id = le16_to_cpu(req->seq_id);
4430 
4431 	if ((bp->fw_cap & BNXT_FW_CAP_SHORT_CMD) ||
4432 	    msg_len > BNXT_HWRM_MAX_REQ_LEN) {
4433 		void *short_cmd_req = bp->hwrm_short_cmd_req_addr;
4434 		u16 max_msg_len;
4435 
4436 		/* Set boundary for maximum extended request length for short
4437 		 * cmd format. If passed up from device use the max supported
4438 		 * internal req length.
4439 		 */
4440 		max_msg_len = bp->hwrm_max_ext_req_len;
4441 
4442 		memcpy(short_cmd_req, req, msg_len);
4443 		if (msg_len < max_msg_len)
4444 			memset(short_cmd_req + msg_len, 0,
4445 			       max_msg_len - msg_len);
4446 
4447 		short_input.req_type = req->req_type;
4448 		short_input.signature =
4449 				cpu_to_le16(SHORT_REQ_SIGNATURE_SHORT_CMD);
4450 		short_input.size = cpu_to_le16(msg_len);
4451 		short_input.req_addr =
4452 			cpu_to_le64(bp->hwrm_short_cmd_req_dma_addr);
4453 
4454 		data = (u32 *)&short_input;
4455 		msg_len = sizeof(short_input);
4456 
4457 		/* Sync memory write before updating doorbell */
4458 		wmb();
4459 
4460 		max_req_len = BNXT_HWRM_SHORT_REQ_LEN;
4461 	}
4462 
4463 	/* Write request msg to hwrm channel */
4464 	__iowrite32_copy(bp->bar0 + bar_offset, data, msg_len / 4);
4465 
4466 	for (i = msg_len; i < max_req_len; i += 4)
4467 		writel(0, bp->bar0 + bar_offset + i);
4468 
4469 	/* Ring channel doorbell */
4470 	writel(1, bp->bar0 + doorbell_offset);
4471 
4472 	if (!pci_is_enabled(bp->pdev))
4473 		return -ENODEV;
4474 
4475 	if (!timeout)
4476 		timeout = DFLT_HWRM_CMD_TIMEOUT;
4477 	/* Limit timeout to an upper limit */
4478 	timeout = min(timeout, HWRM_CMD_MAX_TIMEOUT);
4479 	/* convert timeout to usec */
4480 	timeout *= 1000;
4481 
4482 	i = 0;
4483 	/* Short timeout for the first few iterations:
4484 	 * number of loops = number of loops for short timeout +
4485 	 * number of loops for standard timeout.
4486 	 */
4487 	tmo_count = HWRM_SHORT_TIMEOUT_COUNTER;
4488 	timeout = timeout - HWRM_SHORT_MIN_TIMEOUT * HWRM_SHORT_TIMEOUT_COUNTER;
4489 	tmo_count += DIV_ROUND_UP(timeout, HWRM_MIN_TIMEOUT);
4490 
4491 	if (intr_process) {
4492 		u16 seq_id = bp->hwrm_intr_seq_id;
4493 
4494 		/* Wait until hwrm response cmpl interrupt is processed */
4495 		while (bp->hwrm_intr_seq_id != (u16)~seq_id &&
4496 		       i++ < tmo_count) {
4497 			/* Abort the wait for completion if the FW health
4498 			 * check has failed.
4499 			 */
4500 			if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
4501 				return -EBUSY;
4502 			/* on first few passes, just barely sleep */
4503 			if (i < HWRM_SHORT_TIMEOUT_COUNTER) {
4504 				usleep_range(HWRM_SHORT_MIN_TIMEOUT,
4505 					     HWRM_SHORT_MAX_TIMEOUT);
4506 			} else {
4507 				if (HWRM_WAIT_MUST_ABORT(bp, req))
4508 					break;
4509 				usleep_range(HWRM_MIN_TIMEOUT,
4510 					     HWRM_MAX_TIMEOUT);
4511 			}
4512 		}
4513 
4514 		if (bp->hwrm_intr_seq_id != (u16)~seq_id) {
4515 			if (!silent)
4516 				netdev_err(bp->dev, "Resp cmpl intr err msg: 0x%x\n",
4517 					   le16_to_cpu(req->req_type));
4518 			return -EBUSY;
4519 		}
4520 		len = le16_to_cpu(resp->resp_len);
4521 		valid = ((u8 *)resp) + len - 1;
4522 	} else {
4523 		int j;
4524 
4525 		/* Check if response len is updated */
4526 		for (i = 0; i < tmo_count; i++) {
4527 			/* Abort the wait for completion if the FW health
4528 			 * check has failed.
4529 			 */
4530 			if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
4531 				return -EBUSY;
4532 			len = le16_to_cpu(resp->resp_len);
4533 			if (len)
4534 				break;
4535 			/* on first few passes, just barely sleep */
4536 			if (i < HWRM_SHORT_TIMEOUT_COUNTER) {
4537 				usleep_range(HWRM_SHORT_MIN_TIMEOUT,
4538 					     HWRM_SHORT_MAX_TIMEOUT);
4539 			} else {
4540 				if (HWRM_WAIT_MUST_ABORT(bp, req))
4541 					goto timeout_abort;
4542 				usleep_range(HWRM_MIN_TIMEOUT,
4543 					     HWRM_MAX_TIMEOUT);
4544 			}
4545 		}
4546 
4547 		if (i >= tmo_count) {
4548 timeout_abort:
4549 			if (!silent)
4550 				netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d\n",
4551 					   HWRM_TOTAL_TIMEOUT(i),
4552 					   le16_to_cpu(req->req_type),
4553 					   le16_to_cpu(req->seq_id), len);
4554 			return -EBUSY;
4555 		}
4556 
4557 		/* Last byte of resp contains valid bit */
4558 		valid = ((u8 *)resp) + len - 1;
4559 		for (j = 0; j < HWRM_VALID_BIT_DELAY_USEC; j++) {
4560 			/* make sure we read from updated DMA memory */
4561 			dma_rmb();
4562 			if (*valid)
4563 				break;
4564 			usleep_range(1, 5);
4565 		}
4566 
4567 		if (j >= HWRM_VALID_BIT_DELAY_USEC) {
4568 			if (!silent)
4569 				netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d v:%d\n",
4570 					   HWRM_TOTAL_TIMEOUT(i),
4571 					   le16_to_cpu(req->req_type),
4572 					   le16_to_cpu(req->seq_id), len,
4573 					   *valid);
4574 			return -EBUSY;
4575 		}
4576 	}
4577 
4578 	/* Zero valid bit for compatibility.  Valid bit in an older spec
4579 	 * may become a new field in a newer spec.  We must make sure that
4580 	 * a new field not implemented by old spec will read zero.
4581 	 */
4582 	*valid = 0;
4583 	rc = le16_to_cpu(resp->error_code);
4584 	if (rc && !silent)
4585 		netdev_err(bp->dev, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n",
4586 			   le16_to_cpu(resp->req_type),
4587 			   le16_to_cpu(resp->seq_id), rc);
4588 	return bnxt_hwrm_to_stderr(rc);
4589 }
4590 
4591 int _hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
4592 {
4593 	return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, false);
4594 }
4595 
4596 int _hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len,
4597 			      int timeout)
4598 {
4599 	return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true);
4600 }
4601 
4602 int hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
4603 {
4604 	int rc;
4605 
4606 	mutex_lock(&bp->hwrm_cmd_lock);
4607 	rc = _hwrm_send_message(bp, msg, msg_len, timeout);
4608 	mutex_unlock(&bp->hwrm_cmd_lock);
4609 	return rc;
4610 }
4611 
4612 int hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len,
4613 			     int timeout)
4614 {
4615 	int rc;
4616 
4617 	mutex_lock(&bp->hwrm_cmd_lock);
4618 	rc = bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true);
4619 	mutex_unlock(&bp->hwrm_cmd_lock);
4620 	return rc;
4621 }
4622 
4623 int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp, unsigned long *bmap, int bmap_size,
4624 			    bool async_only)
4625 {
4626 	struct hwrm_func_drv_rgtr_output *resp = bp->hwrm_cmd_resp_addr;
4627 	struct hwrm_func_drv_rgtr_input req = {0};
4628 	DECLARE_BITMAP(async_events_bmap, 256);
4629 	u32 *events = (u32 *)async_events_bmap;
4630 	u32 flags;
4631 	int rc, i;
4632 
4633 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
4634 
4635 	req.enables =
4636 		cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
4637 			    FUNC_DRV_RGTR_REQ_ENABLES_VER |
4638 			    FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
4639 
4640 	req.os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX);
4641 	flags = FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE;
4642 	if (bp->fw_cap & BNXT_FW_CAP_HOT_RESET)
4643 		flags |= FUNC_DRV_RGTR_REQ_FLAGS_HOT_RESET_SUPPORT;
4644 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
4645 		flags |= FUNC_DRV_RGTR_REQ_FLAGS_ERROR_RECOVERY_SUPPORT |
4646 			 FUNC_DRV_RGTR_REQ_FLAGS_MASTER_SUPPORT;
4647 	req.flags = cpu_to_le32(flags);
4648 	req.ver_maj_8b = DRV_VER_MAJ;
4649 	req.ver_min_8b = DRV_VER_MIN;
4650 	req.ver_upd_8b = DRV_VER_UPD;
4651 	req.ver_maj = cpu_to_le16(DRV_VER_MAJ);
4652 	req.ver_min = cpu_to_le16(DRV_VER_MIN);
4653 	req.ver_upd = cpu_to_le16(DRV_VER_UPD);
4654 
4655 	if (BNXT_PF(bp)) {
4656 		u32 data[8];
4657 		int i;
4658 
4659 		memset(data, 0, sizeof(data));
4660 		for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) {
4661 			u16 cmd = bnxt_vf_req_snif[i];
4662 			unsigned int bit, idx;
4663 
4664 			idx = cmd / 32;
4665 			bit = cmd % 32;
4666 			data[idx] |= 1 << bit;
4667 		}
4668 
4669 		for (i = 0; i < 8; i++)
4670 			req.vf_req_fwd[i] = cpu_to_le32(data[i]);
4671 
4672 		req.enables |=
4673 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
4674 	}
4675 
4676 	if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE)
4677 		req.flags |= cpu_to_le32(
4678 			FUNC_DRV_RGTR_REQ_FLAGS_FLOW_HANDLE_64BIT_MODE);
4679 
4680 	memset(async_events_bmap, 0, sizeof(async_events_bmap));
4681 	for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++) {
4682 		u16 event_id = bnxt_async_events_arr[i];
4683 
4684 		if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY &&
4685 		    !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
4686 			continue;
4687 		__set_bit(bnxt_async_events_arr[i], async_events_bmap);
4688 	}
4689 	if (bmap && bmap_size) {
4690 		for (i = 0; i < bmap_size; i++) {
4691 			if (test_bit(i, bmap))
4692 				__set_bit(i, async_events_bmap);
4693 		}
4694 	}
4695 	for (i = 0; i < 8; i++)
4696 		req.async_event_fwd[i] |= cpu_to_le32(events[i]);
4697 
4698 	if (async_only)
4699 		req.enables =
4700 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
4701 
4702 	mutex_lock(&bp->hwrm_cmd_lock);
4703 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4704 	if (!rc) {
4705 		set_bit(BNXT_STATE_DRV_REGISTERED, &bp->state);
4706 		if (resp->flags &
4707 		    cpu_to_le32(FUNC_DRV_RGTR_RESP_FLAGS_IF_CHANGE_SUPPORTED))
4708 			bp->fw_cap |= BNXT_FW_CAP_IF_CHANGE;
4709 	}
4710 	mutex_unlock(&bp->hwrm_cmd_lock);
4711 	return rc;
4712 }
4713 
4714 static int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
4715 {
4716 	struct hwrm_func_drv_unrgtr_input req = {0};
4717 
4718 	if (!test_and_clear_bit(BNXT_STATE_DRV_REGISTERED, &bp->state))
4719 		return 0;
4720 
4721 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_UNRGTR, -1, -1);
4722 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4723 }
4724 
4725 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
4726 {
4727 	u32 rc = 0;
4728 	struct hwrm_tunnel_dst_port_free_input req = {0};
4729 
4730 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_FREE, -1, -1);
4731 	req.tunnel_type = tunnel_type;
4732 
4733 	switch (tunnel_type) {
4734 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
4735 		req.tunnel_dst_port_id = cpu_to_le16(bp->vxlan_fw_dst_port_id);
4736 		bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID;
4737 		break;
4738 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
4739 		req.tunnel_dst_port_id = cpu_to_le16(bp->nge_fw_dst_port_id);
4740 		bp->nge_fw_dst_port_id = INVALID_HW_RING_ID;
4741 		break;
4742 	default:
4743 		break;
4744 	}
4745 
4746 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4747 	if (rc)
4748 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
4749 			   rc);
4750 	return rc;
4751 }
4752 
4753 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
4754 					   u8 tunnel_type)
4755 {
4756 	u32 rc = 0;
4757 	struct hwrm_tunnel_dst_port_alloc_input req = {0};
4758 	struct hwrm_tunnel_dst_port_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4759 
4760 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_ALLOC, -1, -1);
4761 
4762 	req.tunnel_type = tunnel_type;
4763 	req.tunnel_dst_port_val = port;
4764 
4765 	mutex_lock(&bp->hwrm_cmd_lock);
4766 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4767 	if (rc) {
4768 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
4769 			   rc);
4770 		goto err_out;
4771 	}
4772 
4773 	switch (tunnel_type) {
4774 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN:
4775 		bp->vxlan_fw_dst_port_id =
4776 			le16_to_cpu(resp->tunnel_dst_port_id);
4777 		break;
4778 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE:
4779 		bp->nge_fw_dst_port_id = le16_to_cpu(resp->tunnel_dst_port_id);
4780 		break;
4781 	default:
4782 		break;
4783 	}
4784 
4785 err_out:
4786 	mutex_unlock(&bp->hwrm_cmd_lock);
4787 	return rc;
4788 }
4789 
4790 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
4791 {
4792 	struct hwrm_cfa_l2_set_rx_mask_input req = {0};
4793 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4794 
4795 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_SET_RX_MASK, -1, -1);
4796 	req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
4797 
4798 	req.num_mc_entries = cpu_to_le32(vnic->mc_list_count);
4799 	req.mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
4800 	req.mask = cpu_to_le32(vnic->rx_mask);
4801 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4802 }
4803 
4804 #ifdef CONFIG_RFS_ACCEL
4805 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
4806 					    struct bnxt_ntuple_filter *fltr)
4807 {
4808 	struct hwrm_cfa_ntuple_filter_free_input req = {0};
4809 
4810 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_FREE, -1, -1);
4811 	req.ntuple_filter_id = fltr->filter_id;
4812 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4813 }
4814 
4815 #define BNXT_NTP_FLTR_FLAGS					\
4816 	(CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID |	\
4817 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE |	\
4818 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR |	\
4819 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE |	\
4820 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR |	\
4821 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK |	\
4822 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR |	\
4823 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK |	\
4824 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL |	\
4825 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT |		\
4826 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK |	\
4827 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT |		\
4828 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK |	\
4829 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
4830 
4831 #define BNXT_NTP_TUNNEL_FLTR_FLAG				\
4832 		CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE
4833 
4834 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
4835 					     struct bnxt_ntuple_filter *fltr)
4836 {
4837 	struct hwrm_cfa_ntuple_filter_alloc_input req = {0};
4838 	struct hwrm_cfa_ntuple_filter_alloc_output *resp;
4839 	struct flow_keys *keys = &fltr->fkeys;
4840 	struct bnxt_vnic_info *vnic;
4841 	u32 flags = 0;
4842 	int rc = 0;
4843 
4844 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_ALLOC, -1, -1);
4845 	req.l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx];
4846 
4847 	if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) {
4848 		flags = CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DEST_RFS_RING_IDX;
4849 		req.dst_id = cpu_to_le16(fltr->rxq);
4850 	} else {
4851 		vnic = &bp->vnic_info[fltr->rxq + 1];
4852 		req.dst_id = cpu_to_le16(vnic->fw_vnic_id);
4853 	}
4854 	req.flags = cpu_to_le32(flags);
4855 	req.enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
4856 
4857 	req.ethertype = htons(ETH_P_IP);
4858 	memcpy(req.src_macaddr, fltr->src_mac_addr, ETH_ALEN);
4859 	req.ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
4860 	req.ip_protocol = keys->basic.ip_proto;
4861 
4862 	if (keys->basic.n_proto == htons(ETH_P_IPV6)) {
4863 		int i;
4864 
4865 		req.ethertype = htons(ETH_P_IPV6);
4866 		req.ip_addr_type =
4867 			CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6;
4868 		*(struct in6_addr *)&req.src_ipaddr[0] =
4869 			keys->addrs.v6addrs.src;
4870 		*(struct in6_addr *)&req.dst_ipaddr[0] =
4871 			keys->addrs.v6addrs.dst;
4872 		for (i = 0; i < 4; i++) {
4873 			req.src_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
4874 			req.dst_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
4875 		}
4876 	} else {
4877 		req.src_ipaddr[0] = keys->addrs.v4addrs.src;
4878 		req.src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
4879 		req.dst_ipaddr[0] = keys->addrs.v4addrs.dst;
4880 		req.dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
4881 	}
4882 	if (keys->control.flags & FLOW_DIS_ENCAPSULATION) {
4883 		req.enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG);
4884 		req.tunnel_type =
4885 			CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL;
4886 	}
4887 
4888 	req.src_port = keys->ports.src;
4889 	req.src_port_mask = cpu_to_be16(0xffff);
4890 	req.dst_port = keys->ports.dst;
4891 	req.dst_port_mask = cpu_to_be16(0xffff);
4892 
4893 	mutex_lock(&bp->hwrm_cmd_lock);
4894 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4895 	if (!rc) {
4896 		resp = bnxt_get_hwrm_resp_addr(bp, &req);
4897 		fltr->filter_id = resp->ntuple_filter_id;
4898 	}
4899 	mutex_unlock(&bp->hwrm_cmd_lock);
4900 	return rc;
4901 }
4902 #endif
4903 
4904 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
4905 				     u8 *mac_addr)
4906 {
4907 	u32 rc = 0;
4908 	struct hwrm_cfa_l2_filter_alloc_input req = {0};
4909 	struct hwrm_cfa_l2_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4910 
4911 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_ALLOC, -1, -1);
4912 	req.flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX);
4913 	if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
4914 		req.flags |=
4915 			cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
4916 	req.dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
4917 	req.enables =
4918 		cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
4919 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
4920 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
4921 	memcpy(req.l2_addr, mac_addr, ETH_ALEN);
4922 	req.l2_addr_mask[0] = 0xff;
4923 	req.l2_addr_mask[1] = 0xff;
4924 	req.l2_addr_mask[2] = 0xff;
4925 	req.l2_addr_mask[3] = 0xff;
4926 	req.l2_addr_mask[4] = 0xff;
4927 	req.l2_addr_mask[5] = 0xff;
4928 
4929 	mutex_lock(&bp->hwrm_cmd_lock);
4930 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4931 	if (!rc)
4932 		bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
4933 							resp->l2_filter_id;
4934 	mutex_unlock(&bp->hwrm_cmd_lock);
4935 	return rc;
4936 }
4937 
4938 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
4939 {
4940 	u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
4941 	int rc = 0;
4942 
4943 	/* Any associated ntuple filters will also be cleared by firmware. */
4944 	mutex_lock(&bp->hwrm_cmd_lock);
4945 	for (i = 0; i < num_of_vnics; i++) {
4946 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
4947 
4948 		for (j = 0; j < vnic->uc_filter_count; j++) {
4949 			struct hwrm_cfa_l2_filter_free_input req = {0};
4950 
4951 			bnxt_hwrm_cmd_hdr_init(bp, &req,
4952 					       HWRM_CFA_L2_FILTER_FREE, -1, -1);
4953 
4954 			req.l2_filter_id = vnic->fw_l2_filter_id[j];
4955 
4956 			rc = _hwrm_send_message(bp, &req, sizeof(req),
4957 						HWRM_CMD_TIMEOUT);
4958 		}
4959 		vnic->uc_filter_count = 0;
4960 	}
4961 	mutex_unlock(&bp->hwrm_cmd_lock);
4962 
4963 	return rc;
4964 }
4965 
4966 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
4967 {
4968 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4969 	u16 max_aggs = VNIC_TPA_CFG_REQ_MAX_AGGS_MAX;
4970 	struct hwrm_vnic_tpa_cfg_input req = {0};
4971 
4972 	if (vnic->fw_vnic_id == INVALID_HW_RING_ID)
4973 		return 0;
4974 
4975 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_TPA_CFG, -1, -1);
4976 
4977 	if (tpa_flags) {
4978 		u16 mss = bp->dev->mtu - 40;
4979 		u32 nsegs, n, segs = 0, flags;
4980 
4981 		flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
4982 			VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
4983 			VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
4984 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
4985 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
4986 		if (tpa_flags & BNXT_FLAG_GRO)
4987 			flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
4988 
4989 		req.flags = cpu_to_le32(flags);
4990 
4991 		req.enables =
4992 			cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
4993 				    VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
4994 				    VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
4995 
4996 		/* Number of segs are log2 units, and first packet is not
4997 		 * included as part of this units.
4998 		 */
4999 		if (mss <= BNXT_RX_PAGE_SIZE) {
5000 			n = BNXT_RX_PAGE_SIZE / mss;
5001 			nsegs = (MAX_SKB_FRAGS - 1) * n;
5002 		} else {
5003 			n = mss / BNXT_RX_PAGE_SIZE;
5004 			if (mss & (BNXT_RX_PAGE_SIZE - 1))
5005 				n++;
5006 			nsegs = (MAX_SKB_FRAGS - n) / n;
5007 		}
5008 
5009 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5010 			segs = MAX_TPA_SEGS_P5;
5011 			max_aggs = bp->max_tpa;
5012 		} else {
5013 			segs = ilog2(nsegs);
5014 		}
5015 		req.max_agg_segs = cpu_to_le16(segs);
5016 		req.max_aggs = cpu_to_le16(max_aggs);
5017 
5018 		req.min_agg_len = cpu_to_le32(512);
5019 	}
5020 	req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5021 
5022 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5023 }
5024 
5025 static u16 bnxt_cp_ring_from_grp(struct bnxt *bp, struct bnxt_ring_struct *ring)
5026 {
5027 	struct bnxt_ring_grp_info *grp_info;
5028 
5029 	grp_info = &bp->grp_info[ring->grp_idx];
5030 	return grp_info->cp_fw_ring_id;
5031 }
5032 
5033 static u16 bnxt_cp_ring_for_rx(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
5034 {
5035 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5036 		struct bnxt_napi *bnapi = rxr->bnapi;
5037 		struct bnxt_cp_ring_info *cpr;
5038 
5039 		cpr = bnapi->cp_ring.cp_ring_arr[BNXT_RX_HDL];
5040 		return cpr->cp_ring_struct.fw_ring_id;
5041 	} else {
5042 		return bnxt_cp_ring_from_grp(bp, &rxr->rx_ring_struct);
5043 	}
5044 }
5045 
5046 static u16 bnxt_cp_ring_for_tx(struct bnxt *bp, struct bnxt_tx_ring_info *txr)
5047 {
5048 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5049 		struct bnxt_napi *bnapi = txr->bnapi;
5050 		struct bnxt_cp_ring_info *cpr;
5051 
5052 		cpr = bnapi->cp_ring.cp_ring_arr[BNXT_TX_HDL];
5053 		return cpr->cp_ring_struct.fw_ring_id;
5054 	} else {
5055 		return bnxt_cp_ring_from_grp(bp, &txr->tx_ring_struct);
5056 	}
5057 }
5058 
5059 static int bnxt_alloc_rss_indir_tbl(struct bnxt *bp)
5060 {
5061 	int entries;
5062 
5063 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5064 		entries = BNXT_MAX_RSS_TABLE_ENTRIES_P5;
5065 	else
5066 		entries = HW_HASH_INDEX_SIZE;
5067 
5068 	bp->rss_indir_tbl_entries = entries;
5069 	bp->rss_indir_tbl = kmalloc_array(entries, sizeof(*bp->rss_indir_tbl),
5070 					  GFP_KERNEL);
5071 	if (!bp->rss_indir_tbl)
5072 		return -ENOMEM;
5073 	return 0;
5074 }
5075 
5076 static void bnxt_set_dflt_rss_indir_tbl(struct bnxt *bp)
5077 {
5078 	u16 max_rings, max_entries, pad, i;
5079 
5080 	if (!bp->rx_nr_rings)
5081 		return;
5082 
5083 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5084 		max_rings = bp->rx_nr_rings - 1;
5085 	else
5086 		max_rings = bp->rx_nr_rings;
5087 
5088 	max_entries = bnxt_get_rxfh_indir_size(bp->dev);
5089 
5090 	for (i = 0; i < max_entries; i++)
5091 		bp->rss_indir_tbl[i] = ethtool_rxfh_indir_default(i, max_rings);
5092 
5093 	pad = bp->rss_indir_tbl_entries - max_entries;
5094 	if (pad)
5095 		memset(&bp->rss_indir_tbl[i], 0, pad * sizeof(u16));
5096 }
5097 
5098 static u16 bnxt_get_max_rss_ring(struct bnxt *bp)
5099 {
5100 	u16 i, tbl_size, max_ring = 0;
5101 
5102 	if (!bp->rss_indir_tbl)
5103 		return 0;
5104 
5105 	tbl_size = bnxt_get_rxfh_indir_size(bp->dev);
5106 	for (i = 0; i < tbl_size; i++)
5107 		max_ring = max(max_ring, bp->rss_indir_tbl[i]);
5108 	return max_ring;
5109 }
5110 
5111 int bnxt_get_nr_rss_ctxs(struct bnxt *bp, int rx_rings)
5112 {
5113 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5114 		return DIV_ROUND_UP(rx_rings, BNXT_RSS_TABLE_ENTRIES_P5);
5115 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5116 		return 2;
5117 	return 1;
5118 }
5119 
5120 static void __bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic)
5121 {
5122 	bool no_rss = !(vnic->flags & BNXT_VNIC_RSS_FLAG);
5123 	u16 i, j;
5124 
5125 	/* Fill the RSS indirection table with ring group ids */
5126 	for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++) {
5127 		if (!no_rss)
5128 			j = bp->rss_indir_tbl[i];
5129 		vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
5130 	}
5131 }
5132 
5133 static void __bnxt_fill_hw_rss_tbl_p5(struct bnxt *bp,
5134 				      struct bnxt_vnic_info *vnic)
5135 {
5136 	__le16 *ring_tbl = vnic->rss_table;
5137 	struct bnxt_rx_ring_info *rxr;
5138 	u16 tbl_size, i;
5139 
5140 	tbl_size = bnxt_get_rxfh_indir_size(bp->dev);
5141 
5142 	for (i = 0; i < tbl_size; i++) {
5143 		u16 ring_id, j;
5144 
5145 		j = bp->rss_indir_tbl[i];
5146 		rxr = &bp->rx_ring[j];
5147 
5148 		ring_id = rxr->rx_ring_struct.fw_ring_id;
5149 		*ring_tbl++ = cpu_to_le16(ring_id);
5150 		ring_id = bnxt_cp_ring_for_rx(bp, rxr);
5151 		*ring_tbl++ = cpu_to_le16(ring_id);
5152 	}
5153 }
5154 
5155 static void bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic)
5156 {
5157 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5158 		__bnxt_fill_hw_rss_tbl_p5(bp, vnic);
5159 	else
5160 		__bnxt_fill_hw_rss_tbl(bp, vnic);
5161 }
5162 
5163 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
5164 {
5165 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5166 	struct hwrm_vnic_rss_cfg_input req = {0};
5167 
5168 	if ((bp->flags & BNXT_FLAG_CHIP_P5) ||
5169 	    vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID)
5170 		return 0;
5171 
5172 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1);
5173 	if (set_rss) {
5174 		bnxt_fill_hw_rss_tbl(bp, vnic);
5175 		req.hash_type = cpu_to_le32(bp->rss_hash_cfg);
5176 		req.hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT;
5177 		req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
5178 		req.hash_key_tbl_addr =
5179 			cpu_to_le64(vnic->rss_hash_key_dma_addr);
5180 	}
5181 	req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
5182 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5183 }
5184 
5185 static int bnxt_hwrm_vnic_set_rss_p5(struct bnxt *bp, u16 vnic_id, bool set_rss)
5186 {
5187 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5188 	struct hwrm_vnic_rss_cfg_input req = {0};
5189 	dma_addr_t ring_tbl_map;
5190 	u32 i, nr_ctxs;
5191 
5192 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1);
5193 	req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5194 	if (!set_rss) {
5195 		hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5196 		return 0;
5197 	}
5198 	bnxt_fill_hw_rss_tbl(bp, vnic);
5199 	req.hash_type = cpu_to_le32(bp->rss_hash_cfg);
5200 	req.hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT;
5201 	req.hash_key_tbl_addr = cpu_to_le64(vnic->rss_hash_key_dma_addr);
5202 	ring_tbl_map = vnic->rss_table_dma_addr;
5203 	nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings);
5204 	for (i = 0; i < nr_ctxs; ring_tbl_map += BNXT_RSS_TABLE_SIZE_P5, i++) {
5205 		int rc;
5206 
5207 		req.ring_grp_tbl_addr = cpu_to_le64(ring_tbl_map);
5208 		req.ring_table_pair_index = i;
5209 		req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[i]);
5210 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5211 		if (rc)
5212 			return rc;
5213 	}
5214 	return 0;
5215 }
5216 
5217 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
5218 {
5219 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5220 	struct hwrm_vnic_plcmodes_cfg_input req = {0};
5221 
5222 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_PLCMODES_CFG, -1, -1);
5223 	req.flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT |
5224 				VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
5225 				VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
5226 	req.enables =
5227 		cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID |
5228 			    VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
5229 	/* thresholds not implemented in firmware yet */
5230 	req.jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
5231 	req.hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
5232 	req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
5233 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5234 }
5235 
5236 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id,
5237 					u16 ctx_idx)
5238 {
5239 	struct hwrm_vnic_rss_cos_lb_ctx_free_input req = {0};
5240 
5241 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_FREE, -1, -1);
5242 	req.rss_cos_lb_ctx_id =
5243 		cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]);
5244 
5245 	hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5246 	bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID;
5247 }
5248 
5249 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
5250 {
5251 	int i, j;
5252 
5253 	for (i = 0; i < bp->nr_vnics; i++) {
5254 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
5255 
5256 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) {
5257 			if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID)
5258 				bnxt_hwrm_vnic_ctx_free_one(bp, i, j);
5259 		}
5260 	}
5261 	bp->rsscos_nr_ctxs = 0;
5262 }
5263 
5264 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx)
5265 {
5266 	int rc;
5267 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_input req = {0};
5268 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp =
5269 						bp->hwrm_cmd_resp_addr;
5270 
5271 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC, -1,
5272 			       -1);
5273 
5274 	mutex_lock(&bp->hwrm_cmd_lock);
5275 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5276 	if (!rc)
5277 		bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] =
5278 			le16_to_cpu(resp->rss_cos_lb_ctx_id);
5279 	mutex_unlock(&bp->hwrm_cmd_lock);
5280 
5281 	return rc;
5282 }
5283 
5284 static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp)
5285 {
5286 	if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP)
5287 		return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE;
5288 	return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE;
5289 }
5290 
5291 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
5292 {
5293 	unsigned int ring = 0, grp_idx;
5294 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5295 	struct hwrm_vnic_cfg_input req = {0};
5296 	u16 def_vlan = 0;
5297 
5298 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_CFG, -1, -1);
5299 
5300 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5301 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0];
5302 
5303 		req.default_rx_ring_id =
5304 			cpu_to_le16(rxr->rx_ring_struct.fw_ring_id);
5305 		req.default_cmpl_ring_id =
5306 			cpu_to_le16(bnxt_cp_ring_for_rx(bp, rxr));
5307 		req.enables =
5308 			cpu_to_le32(VNIC_CFG_REQ_ENABLES_DEFAULT_RX_RING_ID |
5309 				    VNIC_CFG_REQ_ENABLES_DEFAULT_CMPL_RING_ID);
5310 		goto vnic_mru;
5311 	}
5312 	req.enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP);
5313 	/* Only RSS support for now TBD: COS & LB */
5314 	if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) {
5315 		req.rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
5316 		req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
5317 					   VNIC_CFG_REQ_ENABLES_MRU);
5318 	} else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) {
5319 		req.rss_rule =
5320 			cpu_to_le16(bp->vnic_info[0].fw_rss_cos_lb_ctx[0]);
5321 		req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
5322 					   VNIC_CFG_REQ_ENABLES_MRU);
5323 		req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE);
5324 	} else {
5325 		req.rss_rule = cpu_to_le16(0xffff);
5326 	}
5327 
5328 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) &&
5329 	    (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) {
5330 		req.cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]);
5331 		req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE);
5332 	} else {
5333 		req.cos_rule = cpu_to_le16(0xffff);
5334 	}
5335 
5336 	if (vnic->flags & BNXT_VNIC_RSS_FLAG)
5337 		ring = 0;
5338 	else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
5339 		ring = vnic_id - 1;
5340 	else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp))
5341 		ring = bp->rx_nr_rings - 1;
5342 
5343 	grp_idx = bp->rx_ring[ring].bnapi->index;
5344 	req.dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
5345 	req.lb_rule = cpu_to_le16(0xffff);
5346 vnic_mru:
5347 	req.mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + VLAN_HLEN);
5348 
5349 	req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5350 #ifdef CONFIG_BNXT_SRIOV
5351 	if (BNXT_VF(bp))
5352 		def_vlan = bp->vf.vlan;
5353 #endif
5354 	if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan)
5355 		req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
5356 	if (!vnic_id && bnxt_ulp_registered(bp->edev, BNXT_ROCE_ULP))
5357 		req.flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp));
5358 
5359 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5360 }
5361 
5362 static void bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
5363 {
5364 	if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
5365 		struct hwrm_vnic_free_input req = {0};
5366 
5367 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_FREE, -1, -1);
5368 		req.vnic_id =
5369 			cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
5370 
5371 		hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5372 		bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
5373 	}
5374 }
5375 
5376 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
5377 {
5378 	u16 i;
5379 
5380 	for (i = 0; i < bp->nr_vnics; i++)
5381 		bnxt_hwrm_vnic_free_one(bp, i);
5382 }
5383 
5384 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
5385 				unsigned int start_rx_ring_idx,
5386 				unsigned int nr_rings)
5387 {
5388 	int rc = 0;
5389 	unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
5390 	struct hwrm_vnic_alloc_input req = {0};
5391 	struct hwrm_vnic_alloc_output *resp = bp->hwrm_cmd_resp_addr;
5392 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5393 
5394 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5395 		goto vnic_no_ring_grps;
5396 
5397 	/* map ring groups to this vnic */
5398 	for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
5399 		grp_idx = bp->rx_ring[i].bnapi->index;
5400 		if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
5401 			netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
5402 				   j, nr_rings);
5403 			break;
5404 		}
5405 		vnic->fw_grp_ids[j] = bp->grp_info[grp_idx].fw_grp_id;
5406 	}
5407 
5408 vnic_no_ring_grps:
5409 	for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++)
5410 		vnic->fw_rss_cos_lb_ctx[i] = INVALID_HW_RING_ID;
5411 	if (vnic_id == 0)
5412 		req.flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
5413 
5414 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_ALLOC, -1, -1);
5415 
5416 	mutex_lock(&bp->hwrm_cmd_lock);
5417 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5418 	if (!rc)
5419 		vnic->fw_vnic_id = le32_to_cpu(resp->vnic_id);
5420 	mutex_unlock(&bp->hwrm_cmd_lock);
5421 	return rc;
5422 }
5423 
5424 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp)
5425 {
5426 	struct hwrm_vnic_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
5427 	struct hwrm_vnic_qcaps_input req = {0};
5428 	int rc;
5429 
5430 	bp->hw_ring_stats_size = sizeof(struct ctx_hw_stats);
5431 	bp->flags &= ~(BNXT_FLAG_NEW_RSS_CAP | BNXT_FLAG_ROCE_MIRROR_CAP);
5432 	if (bp->hwrm_spec_code < 0x10600)
5433 		return 0;
5434 
5435 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_QCAPS, -1, -1);
5436 	mutex_lock(&bp->hwrm_cmd_lock);
5437 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5438 	if (!rc) {
5439 		u32 flags = le32_to_cpu(resp->flags);
5440 
5441 		if (!(bp->flags & BNXT_FLAG_CHIP_P5) &&
5442 		    (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP))
5443 			bp->flags |= BNXT_FLAG_NEW_RSS_CAP;
5444 		if (flags &
5445 		    VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP)
5446 			bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP;
5447 
5448 		/* Older P5 fw before EXT_HW_STATS support did not set
5449 		 * VLAN_STRIP_CAP properly.
5450 		 */
5451 		if ((flags & VNIC_QCAPS_RESP_FLAGS_VLAN_STRIP_CAP) ||
5452 		    (BNXT_CHIP_P5_THOR(bp) &&
5453 		     !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)))
5454 			bp->fw_cap |= BNXT_FW_CAP_VLAN_RX_STRIP;
5455 		bp->max_tpa_v2 = le16_to_cpu(resp->max_aggs_supported);
5456 		if (bp->max_tpa_v2) {
5457 			if (BNXT_CHIP_P5_THOR(bp))
5458 				bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5;
5459 			else
5460 				bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5_SR2;
5461 		}
5462 	}
5463 	mutex_unlock(&bp->hwrm_cmd_lock);
5464 	return rc;
5465 }
5466 
5467 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
5468 {
5469 	u16 i;
5470 	u32 rc = 0;
5471 
5472 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5473 		return 0;
5474 
5475 	mutex_lock(&bp->hwrm_cmd_lock);
5476 	for (i = 0; i < bp->rx_nr_rings; i++) {
5477 		struct hwrm_ring_grp_alloc_input req = {0};
5478 		struct hwrm_ring_grp_alloc_output *resp =
5479 					bp->hwrm_cmd_resp_addr;
5480 		unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
5481 
5482 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_ALLOC, -1, -1);
5483 
5484 		req.cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
5485 		req.rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
5486 		req.ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
5487 		req.sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
5488 
5489 		rc = _hwrm_send_message(bp, &req, sizeof(req),
5490 					HWRM_CMD_TIMEOUT);
5491 		if (rc)
5492 			break;
5493 
5494 		bp->grp_info[grp_idx].fw_grp_id =
5495 			le32_to_cpu(resp->ring_group_id);
5496 	}
5497 	mutex_unlock(&bp->hwrm_cmd_lock);
5498 	return rc;
5499 }
5500 
5501 static void bnxt_hwrm_ring_grp_free(struct bnxt *bp)
5502 {
5503 	u16 i;
5504 	struct hwrm_ring_grp_free_input req = {0};
5505 
5506 	if (!bp->grp_info || (bp->flags & BNXT_FLAG_CHIP_P5))
5507 		return;
5508 
5509 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_FREE, -1, -1);
5510 
5511 	mutex_lock(&bp->hwrm_cmd_lock);
5512 	for (i = 0; i < bp->cp_nr_rings; i++) {
5513 		if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
5514 			continue;
5515 		req.ring_group_id =
5516 			cpu_to_le32(bp->grp_info[i].fw_grp_id);
5517 
5518 		_hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5519 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
5520 	}
5521 	mutex_unlock(&bp->hwrm_cmd_lock);
5522 }
5523 
5524 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
5525 				    struct bnxt_ring_struct *ring,
5526 				    u32 ring_type, u32 map_index)
5527 {
5528 	int rc = 0, err = 0;
5529 	struct hwrm_ring_alloc_input req = {0};
5530 	struct hwrm_ring_alloc_output *resp = bp->hwrm_cmd_resp_addr;
5531 	struct bnxt_ring_mem_info *rmem = &ring->ring_mem;
5532 	struct bnxt_ring_grp_info *grp_info;
5533 	u16 ring_id;
5534 
5535 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_ALLOC, -1, -1);
5536 
5537 	req.enables = 0;
5538 	if (rmem->nr_pages > 1) {
5539 		req.page_tbl_addr = cpu_to_le64(rmem->pg_tbl_map);
5540 		/* Page size is in log2 units */
5541 		req.page_size = BNXT_PAGE_SHIFT;
5542 		req.page_tbl_depth = 1;
5543 	} else {
5544 		req.page_tbl_addr =  cpu_to_le64(rmem->dma_arr[0]);
5545 	}
5546 	req.fbo = 0;
5547 	/* Association of ring index with doorbell index and MSIX number */
5548 	req.logical_id = cpu_to_le16(map_index);
5549 
5550 	switch (ring_type) {
5551 	case HWRM_RING_ALLOC_TX: {
5552 		struct bnxt_tx_ring_info *txr;
5553 
5554 		txr = container_of(ring, struct bnxt_tx_ring_info,
5555 				   tx_ring_struct);
5556 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
5557 		/* Association of transmit ring with completion ring */
5558 		grp_info = &bp->grp_info[ring->grp_idx];
5559 		req.cmpl_ring_id = cpu_to_le16(bnxt_cp_ring_for_tx(bp, txr));
5560 		req.length = cpu_to_le32(bp->tx_ring_mask + 1);
5561 		req.stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5562 		req.queue_id = cpu_to_le16(ring->queue_id);
5563 		break;
5564 	}
5565 	case HWRM_RING_ALLOC_RX:
5566 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
5567 		req.length = cpu_to_le32(bp->rx_ring_mask + 1);
5568 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5569 			u16 flags = 0;
5570 
5571 			/* Association of rx ring with stats context */
5572 			grp_info = &bp->grp_info[ring->grp_idx];
5573 			req.rx_buf_size = cpu_to_le16(bp->rx_buf_use_size);
5574 			req.stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5575 			req.enables |= cpu_to_le32(
5576 				RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
5577 			if (NET_IP_ALIGN == 2)
5578 				flags = RING_ALLOC_REQ_FLAGS_RX_SOP_PAD;
5579 			req.flags = cpu_to_le16(flags);
5580 		}
5581 		break;
5582 	case HWRM_RING_ALLOC_AGG:
5583 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5584 			req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX_AGG;
5585 			/* Association of agg ring with rx ring */
5586 			grp_info = &bp->grp_info[ring->grp_idx];
5587 			req.rx_ring_id = cpu_to_le16(grp_info->rx_fw_ring_id);
5588 			req.rx_buf_size = cpu_to_le16(BNXT_RX_PAGE_SIZE);
5589 			req.stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5590 			req.enables |= cpu_to_le32(
5591 				RING_ALLOC_REQ_ENABLES_RX_RING_ID_VALID |
5592 				RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
5593 		} else {
5594 			req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
5595 		}
5596 		req.length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
5597 		break;
5598 	case HWRM_RING_ALLOC_CMPL:
5599 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL;
5600 		req.length = cpu_to_le32(bp->cp_ring_mask + 1);
5601 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5602 			/* Association of cp ring with nq */
5603 			grp_info = &bp->grp_info[map_index];
5604 			req.nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id);
5605 			req.cq_handle = cpu_to_le64(ring->handle);
5606 			req.enables |= cpu_to_le32(
5607 				RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID);
5608 		} else if (bp->flags & BNXT_FLAG_USING_MSIX) {
5609 			req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
5610 		}
5611 		break;
5612 	case HWRM_RING_ALLOC_NQ:
5613 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_NQ;
5614 		req.length = cpu_to_le32(bp->cp_ring_mask + 1);
5615 		if (bp->flags & BNXT_FLAG_USING_MSIX)
5616 			req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
5617 		break;
5618 	default:
5619 		netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
5620 			   ring_type);
5621 		return -1;
5622 	}
5623 
5624 	mutex_lock(&bp->hwrm_cmd_lock);
5625 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5626 	err = le16_to_cpu(resp->error_code);
5627 	ring_id = le16_to_cpu(resp->ring_id);
5628 	mutex_unlock(&bp->hwrm_cmd_lock);
5629 
5630 	if (rc || err) {
5631 		netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n",
5632 			   ring_type, rc, err);
5633 		return -EIO;
5634 	}
5635 	ring->fw_ring_id = ring_id;
5636 	return rc;
5637 }
5638 
5639 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx)
5640 {
5641 	int rc;
5642 
5643 	if (BNXT_PF(bp)) {
5644 		struct hwrm_func_cfg_input req = {0};
5645 
5646 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
5647 		req.fid = cpu_to_le16(0xffff);
5648 		req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
5649 		req.async_event_cr = cpu_to_le16(idx);
5650 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5651 	} else {
5652 		struct hwrm_func_vf_cfg_input req = {0};
5653 
5654 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_CFG, -1, -1);
5655 		req.enables =
5656 			cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
5657 		req.async_event_cr = cpu_to_le16(idx);
5658 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5659 	}
5660 	return rc;
5661 }
5662 
5663 static void bnxt_set_db(struct bnxt *bp, struct bnxt_db_info *db, u32 ring_type,
5664 			u32 map_idx, u32 xid)
5665 {
5666 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5667 		if (BNXT_PF(bp))
5668 			db->doorbell = bp->bar1 + DB_PF_OFFSET_P5;
5669 		else
5670 			db->doorbell = bp->bar1 + DB_VF_OFFSET_P5;
5671 		switch (ring_type) {
5672 		case HWRM_RING_ALLOC_TX:
5673 			db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SQ;
5674 			break;
5675 		case HWRM_RING_ALLOC_RX:
5676 		case HWRM_RING_ALLOC_AGG:
5677 			db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SRQ;
5678 			break;
5679 		case HWRM_RING_ALLOC_CMPL:
5680 			db->db_key64 = DBR_PATH_L2;
5681 			break;
5682 		case HWRM_RING_ALLOC_NQ:
5683 			db->db_key64 = DBR_PATH_L2;
5684 			break;
5685 		}
5686 		db->db_key64 |= (u64)xid << DBR_XID_SFT;
5687 	} else {
5688 		db->doorbell = bp->bar1 + map_idx * 0x80;
5689 		switch (ring_type) {
5690 		case HWRM_RING_ALLOC_TX:
5691 			db->db_key32 = DB_KEY_TX;
5692 			break;
5693 		case HWRM_RING_ALLOC_RX:
5694 		case HWRM_RING_ALLOC_AGG:
5695 			db->db_key32 = DB_KEY_RX;
5696 			break;
5697 		case HWRM_RING_ALLOC_CMPL:
5698 			db->db_key32 = DB_KEY_CP;
5699 			break;
5700 		}
5701 	}
5702 }
5703 
5704 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
5705 {
5706 	bool agg_rings = !!(bp->flags & BNXT_FLAG_AGG_RINGS);
5707 	int i, rc = 0;
5708 	u32 type;
5709 
5710 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5711 		type = HWRM_RING_ALLOC_NQ;
5712 	else
5713 		type = HWRM_RING_ALLOC_CMPL;
5714 	for (i = 0; i < bp->cp_nr_rings; i++) {
5715 		struct bnxt_napi *bnapi = bp->bnapi[i];
5716 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5717 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
5718 		u32 map_idx = ring->map_idx;
5719 		unsigned int vector;
5720 
5721 		vector = bp->irq_tbl[map_idx].vector;
5722 		disable_irq_nosync(vector);
5723 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5724 		if (rc) {
5725 			enable_irq(vector);
5726 			goto err_out;
5727 		}
5728 		bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id);
5729 		bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
5730 		enable_irq(vector);
5731 		bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
5732 
5733 		if (!i) {
5734 			rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id);
5735 			if (rc)
5736 				netdev_warn(bp->dev, "Failed to set async event completion ring.\n");
5737 		}
5738 	}
5739 
5740 	type = HWRM_RING_ALLOC_TX;
5741 	for (i = 0; i < bp->tx_nr_rings; i++) {
5742 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
5743 		struct bnxt_ring_struct *ring;
5744 		u32 map_idx;
5745 
5746 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5747 			struct bnxt_napi *bnapi = txr->bnapi;
5748 			struct bnxt_cp_ring_info *cpr, *cpr2;
5749 			u32 type2 = HWRM_RING_ALLOC_CMPL;
5750 
5751 			cpr = &bnapi->cp_ring;
5752 			cpr2 = cpr->cp_ring_arr[BNXT_TX_HDL];
5753 			ring = &cpr2->cp_ring_struct;
5754 			ring->handle = BNXT_TX_HDL;
5755 			map_idx = bnapi->index;
5756 			rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
5757 			if (rc)
5758 				goto err_out;
5759 			bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
5760 				    ring->fw_ring_id);
5761 			bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
5762 		}
5763 		ring = &txr->tx_ring_struct;
5764 		map_idx = i;
5765 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5766 		if (rc)
5767 			goto err_out;
5768 		bnxt_set_db(bp, &txr->tx_db, type, map_idx, ring->fw_ring_id);
5769 	}
5770 
5771 	type = HWRM_RING_ALLOC_RX;
5772 	for (i = 0; i < bp->rx_nr_rings; i++) {
5773 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5774 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
5775 		struct bnxt_napi *bnapi = rxr->bnapi;
5776 		u32 map_idx = bnapi->index;
5777 
5778 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5779 		if (rc)
5780 			goto err_out;
5781 		bnxt_set_db(bp, &rxr->rx_db, type, map_idx, ring->fw_ring_id);
5782 		/* If we have agg rings, post agg buffers first. */
5783 		if (!agg_rings)
5784 			bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
5785 		bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
5786 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5787 			struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5788 			u32 type2 = HWRM_RING_ALLOC_CMPL;
5789 			struct bnxt_cp_ring_info *cpr2;
5790 
5791 			cpr2 = cpr->cp_ring_arr[BNXT_RX_HDL];
5792 			ring = &cpr2->cp_ring_struct;
5793 			ring->handle = BNXT_RX_HDL;
5794 			rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
5795 			if (rc)
5796 				goto err_out;
5797 			bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
5798 				    ring->fw_ring_id);
5799 			bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
5800 		}
5801 	}
5802 
5803 	if (agg_rings) {
5804 		type = HWRM_RING_ALLOC_AGG;
5805 		for (i = 0; i < bp->rx_nr_rings; i++) {
5806 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5807 			struct bnxt_ring_struct *ring =
5808 						&rxr->rx_agg_ring_struct;
5809 			u32 grp_idx = ring->grp_idx;
5810 			u32 map_idx = grp_idx + bp->rx_nr_rings;
5811 
5812 			rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5813 			if (rc)
5814 				goto err_out;
5815 
5816 			bnxt_set_db(bp, &rxr->rx_agg_db, type, map_idx,
5817 				    ring->fw_ring_id);
5818 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
5819 			bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
5820 			bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
5821 		}
5822 	}
5823 err_out:
5824 	return rc;
5825 }
5826 
5827 static int hwrm_ring_free_send_msg(struct bnxt *bp,
5828 				   struct bnxt_ring_struct *ring,
5829 				   u32 ring_type, int cmpl_ring_id)
5830 {
5831 	int rc;
5832 	struct hwrm_ring_free_input req = {0};
5833 	struct hwrm_ring_free_output *resp = bp->hwrm_cmd_resp_addr;
5834 	u16 error_code;
5835 
5836 	if (BNXT_NO_FW_ACCESS(bp))
5837 		return 0;
5838 
5839 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_FREE, cmpl_ring_id, -1);
5840 	req.ring_type = ring_type;
5841 	req.ring_id = cpu_to_le16(ring->fw_ring_id);
5842 
5843 	mutex_lock(&bp->hwrm_cmd_lock);
5844 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5845 	error_code = le16_to_cpu(resp->error_code);
5846 	mutex_unlock(&bp->hwrm_cmd_lock);
5847 
5848 	if (rc || error_code) {
5849 		netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n",
5850 			   ring_type, rc, error_code);
5851 		return -EIO;
5852 	}
5853 	return 0;
5854 }
5855 
5856 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
5857 {
5858 	u32 type;
5859 	int i;
5860 
5861 	if (!bp->bnapi)
5862 		return;
5863 
5864 	for (i = 0; i < bp->tx_nr_rings; i++) {
5865 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
5866 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
5867 
5868 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5869 			u32 cmpl_ring_id = bnxt_cp_ring_for_tx(bp, txr);
5870 
5871 			hwrm_ring_free_send_msg(bp, ring,
5872 						RING_FREE_REQ_RING_TYPE_TX,
5873 						close_path ? cmpl_ring_id :
5874 						INVALID_HW_RING_ID);
5875 			ring->fw_ring_id = INVALID_HW_RING_ID;
5876 		}
5877 	}
5878 
5879 	for (i = 0; i < bp->rx_nr_rings; i++) {
5880 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5881 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
5882 		u32 grp_idx = rxr->bnapi->index;
5883 
5884 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5885 			u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
5886 
5887 			hwrm_ring_free_send_msg(bp, ring,
5888 						RING_FREE_REQ_RING_TYPE_RX,
5889 						close_path ? cmpl_ring_id :
5890 						INVALID_HW_RING_ID);
5891 			ring->fw_ring_id = INVALID_HW_RING_ID;
5892 			bp->grp_info[grp_idx].rx_fw_ring_id =
5893 				INVALID_HW_RING_ID;
5894 		}
5895 	}
5896 
5897 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5898 		type = RING_FREE_REQ_RING_TYPE_RX_AGG;
5899 	else
5900 		type = RING_FREE_REQ_RING_TYPE_RX;
5901 	for (i = 0; i < bp->rx_nr_rings; i++) {
5902 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5903 		struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
5904 		u32 grp_idx = rxr->bnapi->index;
5905 
5906 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5907 			u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
5908 
5909 			hwrm_ring_free_send_msg(bp, ring, type,
5910 						close_path ? cmpl_ring_id :
5911 						INVALID_HW_RING_ID);
5912 			ring->fw_ring_id = INVALID_HW_RING_ID;
5913 			bp->grp_info[grp_idx].agg_fw_ring_id =
5914 				INVALID_HW_RING_ID;
5915 		}
5916 	}
5917 
5918 	/* The completion rings are about to be freed.  After that the
5919 	 * IRQ doorbell will not work anymore.  So we need to disable
5920 	 * IRQ here.
5921 	 */
5922 	bnxt_disable_int_sync(bp);
5923 
5924 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5925 		type = RING_FREE_REQ_RING_TYPE_NQ;
5926 	else
5927 		type = RING_FREE_REQ_RING_TYPE_L2_CMPL;
5928 	for (i = 0; i < bp->cp_nr_rings; i++) {
5929 		struct bnxt_napi *bnapi = bp->bnapi[i];
5930 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5931 		struct bnxt_ring_struct *ring;
5932 		int j;
5933 
5934 		for (j = 0; j < 2; j++) {
5935 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
5936 
5937 			if (cpr2) {
5938 				ring = &cpr2->cp_ring_struct;
5939 				if (ring->fw_ring_id == INVALID_HW_RING_ID)
5940 					continue;
5941 				hwrm_ring_free_send_msg(bp, ring,
5942 					RING_FREE_REQ_RING_TYPE_L2_CMPL,
5943 					INVALID_HW_RING_ID);
5944 				ring->fw_ring_id = INVALID_HW_RING_ID;
5945 			}
5946 		}
5947 		ring = &cpr->cp_ring_struct;
5948 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5949 			hwrm_ring_free_send_msg(bp, ring, type,
5950 						INVALID_HW_RING_ID);
5951 			ring->fw_ring_id = INVALID_HW_RING_ID;
5952 			bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
5953 		}
5954 	}
5955 }
5956 
5957 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
5958 			   bool shared);
5959 
5960 static int bnxt_hwrm_get_rings(struct bnxt *bp)
5961 {
5962 	struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
5963 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
5964 	struct hwrm_func_qcfg_input req = {0};
5965 	int rc;
5966 
5967 	if (bp->hwrm_spec_code < 0x10601)
5968 		return 0;
5969 
5970 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
5971 	req.fid = cpu_to_le16(0xffff);
5972 	mutex_lock(&bp->hwrm_cmd_lock);
5973 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5974 	if (rc) {
5975 		mutex_unlock(&bp->hwrm_cmd_lock);
5976 		return rc;
5977 	}
5978 
5979 	hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings);
5980 	if (BNXT_NEW_RM(bp)) {
5981 		u16 cp, stats;
5982 
5983 		hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings);
5984 		hw_resc->resv_hw_ring_grps =
5985 			le32_to_cpu(resp->alloc_hw_ring_grps);
5986 		hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics);
5987 		cp = le16_to_cpu(resp->alloc_cmpl_rings);
5988 		stats = le16_to_cpu(resp->alloc_stat_ctx);
5989 		hw_resc->resv_irqs = cp;
5990 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5991 			int rx = hw_resc->resv_rx_rings;
5992 			int tx = hw_resc->resv_tx_rings;
5993 
5994 			if (bp->flags & BNXT_FLAG_AGG_RINGS)
5995 				rx >>= 1;
5996 			if (cp < (rx + tx)) {
5997 				bnxt_trim_rings(bp, &rx, &tx, cp, false);
5998 				if (bp->flags & BNXT_FLAG_AGG_RINGS)
5999 					rx <<= 1;
6000 				hw_resc->resv_rx_rings = rx;
6001 				hw_resc->resv_tx_rings = tx;
6002 			}
6003 			hw_resc->resv_irqs = le16_to_cpu(resp->alloc_msix);
6004 			hw_resc->resv_hw_ring_grps = rx;
6005 		}
6006 		hw_resc->resv_cp_rings = cp;
6007 		hw_resc->resv_stat_ctxs = stats;
6008 	}
6009 	mutex_unlock(&bp->hwrm_cmd_lock);
6010 	return 0;
6011 }
6012 
6013 /* Caller must hold bp->hwrm_cmd_lock */
6014 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings)
6015 {
6016 	struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
6017 	struct hwrm_func_qcfg_input req = {0};
6018 	int rc;
6019 
6020 	if (bp->hwrm_spec_code < 0x10601)
6021 		return 0;
6022 
6023 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
6024 	req.fid = cpu_to_le16(fid);
6025 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6026 	if (!rc)
6027 		*tx_rings = le16_to_cpu(resp->alloc_tx_rings);
6028 
6029 	return rc;
6030 }
6031 
6032 static bool bnxt_rfs_supported(struct bnxt *bp);
6033 
6034 static void
6035 __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, struct hwrm_func_cfg_input *req,
6036 			     int tx_rings, int rx_rings, int ring_grps,
6037 			     int cp_rings, int stats, int vnics)
6038 {
6039 	u32 enables = 0;
6040 
6041 	bnxt_hwrm_cmd_hdr_init(bp, req, HWRM_FUNC_CFG, -1, -1);
6042 	req->fid = cpu_to_le16(0xffff);
6043 	enables |= tx_rings ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
6044 	req->num_tx_rings = cpu_to_le16(tx_rings);
6045 	if (BNXT_NEW_RM(bp)) {
6046 		enables |= rx_rings ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0;
6047 		enables |= stats ? FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
6048 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
6049 			enables |= cp_rings ? FUNC_CFG_REQ_ENABLES_NUM_MSIX : 0;
6050 			enables |= tx_rings + ring_grps ?
6051 				   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6052 			enables |= rx_rings ?
6053 				FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
6054 		} else {
6055 			enables |= cp_rings ?
6056 				   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6057 			enables |= ring_grps ?
6058 				   FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS |
6059 				   FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
6060 		}
6061 		enables |= vnics ? FUNC_CFG_REQ_ENABLES_NUM_VNICS : 0;
6062 
6063 		req->num_rx_rings = cpu_to_le16(rx_rings);
6064 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
6065 			req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps);
6066 			req->num_msix = cpu_to_le16(cp_rings);
6067 			req->num_rsscos_ctxs =
6068 				cpu_to_le16(DIV_ROUND_UP(ring_grps, 64));
6069 		} else {
6070 			req->num_cmpl_rings = cpu_to_le16(cp_rings);
6071 			req->num_hw_ring_grps = cpu_to_le16(ring_grps);
6072 			req->num_rsscos_ctxs = cpu_to_le16(1);
6073 			if (!(bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
6074 			    bnxt_rfs_supported(bp))
6075 				req->num_rsscos_ctxs =
6076 					cpu_to_le16(ring_grps + 1);
6077 		}
6078 		req->num_stat_ctxs = cpu_to_le16(stats);
6079 		req->num_vnics = cpu_to_le16(vnics);
6080 	}
6081 	req->enables = cpu_to_le32(enables);
6082 }
6083 
6084 static void
6085 __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp,
6086 			     struct hwrm_func_vf_cfg_input *req, int tx_rings,
6087 			     int rx_rings, int ring_grps, int cp_rings,
6088 			     int stats, int vnics)
6089 {
6090 	u32 enables = 0;
6091 
6092 	bnxt_hwrm_cmd_hdr_init(bp, req, HWRM_FUNC_VF_CFG, -1, -1);
6093 	enables |= tx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
6094 	enables |= rx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS |
6095 			      FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
6096 	enables |= stats ? FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
6097 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
6098 		enables |= tx_rings + ring_grps ?
6099 			   FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6100 	} else {
6101 		enables |= cp_rings ?
6102 			   FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6103 		enables |= ring_grps ?
6104 			   FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0;
6105 	}
6106 	enables |= vnics ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0;
6107 	enables |= FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS;
6108 
6109 	req->num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX);
6110 	req->num_tx_rings = cpu_to_le16(tx_rings);
6111 	req->num_rx_rings = cpu_to_le16(rx_rings);
6112 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
6113 		req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps);
6114 		req->num_rsscos_ctxs = cpu_to_le16(DIV_ROUND_UP(ring_grps, 64));
6115 	} else {
6116 		req->num_cmpl_rings = cpu_to_le16(cp_rings);
6117 		req->num_hw_ring_grps = cpu_to_le16(ring_grps);
6118 		req->num_rsscos_ctxs = cpu_to_le16(BNXT_VF_MAX_RSS_CTX);
6119 	}
6120 	req->num_stat_ctxs = cpu_to_le16(stats);
6121 	req->num_vnics = cpu_to_le16(vnics);
6122 
6123 	req->enables = cpu_to_le32(enables);
6124 }
6125 
6126 static int
6127 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6128 			   int ring_grps, int cp_rings, int stats, int vnics)
6129 {
6130 	struct hwrm_func_cfg_input req = {0};
6131 	int rc;
6132 
6133 	__bnxt_hwrm_reserve_pf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
6134 				     cp_rings, stats, vnics);
6135 	if (!req.enables)
6136 		return 0;
6137 
6138 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6139 	if (rc)
6140 		return rc;
6141 
6142 	if (bp->hwrm_spec_code < 0x10601)
6143 		bp->hw_resc.resv_tx_rings = tx_rings;
6144 
6145 	return bnxt_hwrm_get_rings(bp);
6146 }
6147 
6148 static int
6149 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6150 			   int ring_grps, int cp_rings, int stats, int vnics)
6151 {
6152 	struct hwrm_func_vf_cfg_input req = {0};
6153 	int rc;
6154 
6155 	if (!BNXT_NEW_RM(bp)) {
6156 		bp->hw_resc.resv_tx_rings = tx_rings;
6157 		return 0;
6158 	}
6159 
6160 	__bnxt_hwrm_reserve_vf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
6161 				     cp_rings, stats, vnics);
6162 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6163 	if (rc)
6164 		return rc;
6165 
6166 	return bnxt_hwrm_get_rings(bp);
6167 }
6168 
6169 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, int tx, int rx, int grp,
6170 				   int cp, int stat, int vnic)
6171 {
6172 	if (BNXT_PF(bp))
6173 		return bnxt_hwrm_reserve_pf_rings(bp, tx, rx, grp, cp, stat,
6174 						  vnic);
6175 	else
6176 		return bnxt_hwrm_reserve_vf_rings(bp, tx, rx, grp, cp, stat,
6177 						  vnic);
6178 }
6179 
6180 int bnxt_nq_rings_in_use(struct bnxt *bp)
6181 {
6182 	int cp = bp->cp_nr_rings;
6183 	int ulp_msix, ulp_base;
6184 
6185 	ulp_msix = bnxt_get_ulp_msix_num(bp);
6186 	if (ulp_msix) {
6187 		ulp_base = bnxt_get_ulp_msix_base(bp);
6188 		cp += ulp_msix;
6189 		if ((ulp_base + ulp_msix) > cp)
6190 			cp = ulp_base + ulp_msix;
6191 	}
6192 	return cp;
6193 }
6194 
6195 static int bnxt_cp_rings_in_use(struct bnxt *bp)
6196 {
6197 	int cp;
6198 
6199 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
6200 		return bnxt_nq_rings_in_use(bp);
6201 
6202 	cp = bp->tx_nr_rings + bp->rx_nr_rings;
6203 	return cp;
6204 }
6205 
6206 static int bnxt_get_func_stat_ctxs(struct bnxt *bp)
6207 {
6208 	int ulp_stat = bnxt_get_ulp_stat_ctxs(bp);
6209 	int cp = bp->cp_nr_rings;
6210 
6211 	if (!ulp_stat)
6212 		return cp;
6213 
6214 	if (bnxt_nq_rings_in_use(bp) > cp + bnxt_get_ulp_msix_num(bp))
6215 		return bnxt_get_ulp_msix_base(bp) + ulp_stat;
6216 
6217 	return cp + ulp_stat;
6218 }
6219 
6220 /* Check if a default RSS map needs to be setup.  This function is only
6221  * used on older firmware that does not require reserving RX rings.
6222  */
6223 static void bnxt_check_rss_tbl_no_rmgr(struct bnxt *bp)
6224 {
6225 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6226 
6227 	/* The RSS map is valid for RX rings set to resv_rx_rings */
6228 	if (hw_resc->resv_rx_rings != bp->rx_nr_rings) {
6229 		hw_resc->resv_rx_rings = bp->rx_nr_rings;
6230 		if (!netif_is_rxfh_configured(bp->dev))
6231 			bnxt_set_dflt_rss_indir_tbl(bp);
6232 	}
6233 }
6234 
6235 static bool bnxt_need_reserve_rings(struct bnxt *bp)
6236 {
6237 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6238 	int cp = bnxt_cp_rings_in_use(bp);
6239 	int nq = bnxt_nq_rings_in_use(bp);
6240 	int rx = bp->rx_nr_rings, stat;
6241 	int vnic = 1, grp = rx;
6242 
6243 	if (hw_resc->resv_tx_rings != bp->tx_nr_rings &&
6244 	    bp->hwrm_spec_code >= 0x10601)
6245 		return true;
6246 
6247 	/* Old firmware does not need RX ring reservations but we still
6248 	 * need to setup a default RSS map when needed.  With new firmware
6249 	 * we go through RX ring reservations first and then set up the
6250 	 * RSS map for the successfully reserved RX rings when needed.
6251 	 */
6252 	if (!BNXT_NEW_RM(bp)) {
6253 		bnxt_check_rss_tbl_no_rmgr(bp);
6254 		return false;
6255 	}
6256 	if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5))
6257 		vnic = rx + 1;
6258 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
6259 		rx <<= 1;
6260 	stat = bnxt_get_func_stat_ctxs(bp);
6261 	if (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp ||
6262 	    hw_resc->resv_vnics != vnic || hw_resc->resv_stat_ctxs != stat ||
6263 	    (hw_resc->resv_hw_ring_grps != grp &&
6264 	     !(bp->flags & BNXT_FLAG_CHIP_P5)))
6265 		return true;
6266 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && BNXT_PF(bp) &&
6267 	    hw_resc->resv_irqs != nq)
6268 		return true;
6269 	return false;
6270 }
6271 
6272 static int __bnxt_reserve_rings(struct bnxt *bp)
6273 {
6274 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6275 	int cp = bnxt_nq_rings_in_use(bp);
6276 	int tx = bp->tx_nr_rings;
6277 	int rx = bp->rx_nr_rings;
6278 	int grp, rx_rings, rc;
6279 	int vnic = 1, stat;
6280 	bool sh = false;
6281 
6282 	if (!bnxt_need_reserve_rings(bp))
6283 		return 0;
6284 
6285 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
6286 		sh = true;
6287 	if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5))
6288 		vnic = rx + 1;
6289 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
6290 		rx <<= 1;
6291 	grp = bp->rx_nr_rings;
6292 	stat = bnxt_get_func_stat_ctxs(bp);
6293 
6294 	rc = bnxt_hwrm_reserve_rings(bp, tx, rx, grp, cp, stat, vnic);
6295 	if (rc)
6296 		return rc;
6297 
6298 	tx = hw_resc->resv_tx_rings;
6299 	if (BNXT_NEW_RM(bp)) {
6300 		rx = hw_resc->resv_rx_rings;
6301 		cp = hw_resc->resv_irqs;
6302 		grp = hw_resc->resv_hw_ring_grps;
6303 		vnic = hw_resc->resv_vnics;
6304 		stat = hw_resc->resv_stat_ctxs;
6305 	}
6306 
6307 	rx_rings = rx;
6308 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
6309 		if (rx >= 2) {
6310 			rx_rings = rx >> 1;
6311 		} else {
6312 			if (netif_running(bp->dev))
6313 				return -ENOMEM;
6314 
6315 			bp->flags &= ~BNXT_FLAG_AGG_RINGS;
6316 			bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
6317 			bp->dev->hw_features &= ~NETIF_F_LRO;
6318 			bp->dev->features &= ~NETIF_F_LRO;
6319 			bnxt_set_ring_params(bp);
6320 		}
6321 	}
6322 	rx_rings = min_t(int, rx_rings, grp);
6323 	cp = min_t(int, cp, bp->cp_nr_rings);
6324 	if (stat > bnxt_get_ulp_stat_ctxs(bp))
6325 		stat -= bnxt_get_ulp_stat_ctxs(bp);
6326 	cp = min_t(int, cp, stat);
6327 	rc = bnxt_trim_rings(bp, &rx_rings, &tx, cp, sh);
6328 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
6329 		rx = rx_rings << 1;
6330 	cp = sh ? max_t(int, tx, rx_rings) : tx + rx_rings;
6331 	bp->tx_nr_rings = tx;
6332 
6333 	/* If we cannot reserve all the RX rings, reset the RSS map only
6334 	 * if absolutely necessary
6335 	 */
6336 	if (rx_rings != bp->rx_nr_rings) {
6337 		netdev_warn(bp->dev, "Able to reserve only %d out of %d requested RX rings\n",
6338 			    rx_rings, bp->rx_nr_rings);
6339 		if ((bp->dev->priv_flags & IFF_RXFH_CONFIGURED) &&
6340 		    (bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings) !=
6341 		     bnxt_get_nr_rss_ctxs(bp, rx_rings) ||
6342 		     bnxt_get_max_rss_ring(bp) >= rx_rings)) {
6343 			netdev_warn(bp->dev, "RSS table entries reverting to default\n");
6344 			bp->dev->priv_flags &= ~IFF_RXFH_CONFIGURED;
6345 		}
6346 	}
6347 	bp->rx_nr_rings = rx_rings;
6348 	bp->cp_nr_rings = cp;
6349 
6350 	if (!tx || !rx || !cp || !grp || !vnic || !stat)
6351 		return -ENOMEM;
6352 
6353 	if (!netif_is_rxfh_configured(bp->dev))
6354 		bnxt_set_dflt_rss_indir_tbl(bp);
6355 
6356 	return rc;
6357 }
6358 
6359 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6360 				    int ring_grps, int cp_rings, int stats,
6361 				    int vnics)
6362 {
6363 	struct hwrm_func_vf_cfg_input req = {0};
6364 	u32 flags;
6365 
6366 	if (!BNXT_NEW_RM(bp))
6367 		return 0;
6368 
6369 	__bnxt_hwrm_reserve_vf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
6370 				     cp_rings, stats, vnics);
6371 	flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST |
6372 		FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST |
6373 		FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
6374 		FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
6375 		FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST |
6376 		FUNC_VF_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST;
6377 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
6378 		flags |= FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
6379 
6380 	req.flags = cpu_to_le32(flags);
6381 	return hwrm_send_message_silent(bp, &req, sizeof(req),
6382 					HWRM_CMD_TIMEOUT);
6383 }
6384 
6385 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6386 				    int ring_grps, int cp_rings, int stats,
6387 				    int vnics)
6388 {
6389 	struct hwrm_func_cfg_input req = {0};
6390 	u32 flags;
6391 
6392 	__bnxt_hwrm_reserve_pf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
6393 				     cp_rings, stats, vnics);
6394 	flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST;
6395 	if (BNXT_NEW_RM(bp)) {
6396 		flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST |
6397 			 FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
6398 			 FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
6399 			 FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST;
6400 		if (bp->flags & BNXT_FLAG_CHIP_P5)
6401 			flags |= FUNC_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST |
6402 				 FUNC_CFG_REQ_FLAGS_NQ_ASSETS_TEST;
6403 		else
6404 			flags |= FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
6405 	}
6406 
6407 	req.flags = cpu_to_le32(flags);
6408 	return hwrm_send_message_silent(bp, &req, sizeof(req),
6409 					HWRM_CMD_TIMEOUT);
6410 }
6411 
6412 static int bnxt_hwrm_check_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6413 				 int ring_grps, int cp_rings, int stats,
6414 				 int vnics)
6415 {
6416 	if (bp->hwrm_spec_code < 0x10801)
6417 		return 0;
6418 
6419 	if (BNXT_PF(bp))
6420 		return bnxt_hwrm_check_pf_rings(bp, tx_rings, rx_rings,
6421 						ring_grps, cp_rings, stats,
6422 						vnics);
6423 
6424 	return bnxt_hwrm_check_vf_rings(bp, tx_rings, rx_rings, ring_grps,
6425 					cp_rings, stats, vnics);
6426 }
6427 
6428 static void bnxt_hwrm_coal_params_qcaps(struct bnxt *bp)
6429 {
6430 	struct hwrm_ring_aggint_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
6431 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6432 	struct hwrm_ring_aggint_qcaps_input req = {0};
6433 	int rc;
6434 
6435 	coal_cap->cmpl_params = BNXT_LEGACY_COAL_CMPL_PARAMS;
6436 	coal_cap->num_cmpl_dma_aggr_max = 63;
6437 	coal_cap->num_cmpl_dma_aggr_during_int_max = 63;
6438 	coal_cap->cmpl_aggr_dma_tmr_max = 65535;
6439 	coal_cap->cmpl_aggr_dma_tmr_during_int_max = 65535;
6440 	coal_cap->int_lat_tmr_min_max = 65535;
6441 	coal_cap->int_lat_tmr_max_max = 65535;
6442 	coal_cap->num_cmpl_aggr_int_max = 65535;
6443 	coal_cap->timer_units = 80;
6444 
6445 	if (bp->hwrm_spec_code < 0x10902)
6446 		return;
6447 
6448 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_AGGINT_QCAPS, -1, -1);
6449 	mutex_lock(&bp->hwrm_cmd_lock);
6450 	rc = _hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6451 	if (!rc) {
6452 		coal_cap->cmpl_params = le32_to_cpu(resp->cmpl_params);
6453 		coal_cap->nq_params = le32_to_cpu(resp->nq_params);
6454 		coal_cap->num_cmpl_dma_aggr_max =
6455 			le16_to_cpu(resp->num_cmpl_dma_aggr_max);
6456 		coal_cap->num_cmpl_dma_aggr_during_int_max =
6457 			le16_to_cpu(resp->num_cmpl_dma_aggr_during_int_max);
6458 		coal_cap->cmpl_aggr_dma_tmr_max =
6459 			le16_to_cpu(resp->cmpl_aggr_dma_tmr_max);
6460 		coal_cap->cmpl_aggr_dma_tmr_during_int_max =
6461 			le16_to_cpu(resp->cmpl_aggr_dma_tmr_during_int_max);
6462 		coal_cap->int_lat_tmr_min_max =
6463 			le16_to_cpu(resp->int_lat_tmr_min_max);
6464 		coal_cap->int_lat_tmr_max_max =
6465 			le16_to_cpu(resp->int_lat_tmr_max_max);
6466 		coal_cap->num_cmpl_aggr_int_max =
6467 			le16_to_cpu(resp->num_cmpl_aggr_int_max);
6468 		coal_cap->timer_units = le16_to_cpu(resp->timer_units);
6469 	}
6470 	mutex_unlock(&bp->hwrm_cmd_lock);
6471 }
6472 
6473 static u16 bnxt_usec_to_coal_tmr(struct bnxt *bp, u16 usec)
6474 {
6475 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6476 
6477 	return usec * 1000 / coal_cap->timer_units;
6478 }
6479 
6480 static void bnxt_hwrm_set_coal_params(struct bnxt *bp,
6481 	struct bnxt_coal *hw_coal,
6482 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
6483 {
6484 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6485 	u32 cmpl_params = coal_cap->cmpl_params;
6486 	u16 val, tmr, max, flags = 0;
6487 
6488 	max = hw_coal->bufs_per_record * 128;
6489 	if (hw_coal->budget)
6490 		max = hw_coal->bufs_per_record * hw_coal->budget;
6491 	max = min_t(u16, max, coal_cap->num_cmpl_aggr_int_max);
6492 
6493 	val = clamp_t(u16, hw_coal->coal_bufs, 1, max);
6494 	req->num_cmpl_aggr_int = cpu_to_le16(val);
6495 
6496 	val = min_t(u16, val, coal_cap->num_cmpl_dma_aggr_max);
6497 	req->num_cmpl_dma_aggr = cpu_to_le16(val);
6498 
6499 	val = clamp_t(u16, hw_coal->coal_bufs_irq, 1,
6500 		      coal_cap->num_cmpl_dma_aggr_during_int_max);
6501 	req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val);
6502 
6503 	tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks);
6504 	tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_max_max);
6505 	req->int_lat_tmr_max = cpu_to_le16(tmr);
6506 
6507 	/* min timer set to 1/2 of interrupt timer */
6508 	if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_INT_LAT_TMR_MIN) {
6509 		val = tmr / 2;
6510 		val = clamp_t(u16, val, 1, coal_cap->int_lat_tmr_min_max);
6511 		req->int_lat_tmr_min = cpu_to_le16(val);
6512 		req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
6513 	}
6514 
6515 	/* buf timer set to 1/4 of interrupt timer */
6516 	val = clamp_t(u16, tmr / 4, 1, coal_cap->cmpl_aggr_dma_tmr_max);
6517 	req->cmpl_aggr_dma_tmr = cpu_to_le16(val);
6518 
6519 	if (cmpl_params &
6520 	    RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_NUM_CMPL_DMA_AGGR_DURING_INT) {
6521 		tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks_irq);
6522 		val = clamp_t(u16, tmr, 1,
6523 			      coal_cap->cmpl_aggr_dma_tmr_during_int_max);
6524 		req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(val);
6525 		req->enables |=
6526 			cpu_to_le16(BNXT_COAL_CMPL_AGGR_TMR_DURING_INT_ENABLE);
6527 	}
6528 
6529 	if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_TIMER_RESET)
6530 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
6531 	if ((cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_RING_IDLE) &&
6532 	    hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh)
6533 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
6534 	req->flags = cpu_to_le16(flags);
6535 	req->enables |= cpu_to_le16(BNXT_COAL_CMPL_ENABLES);
6536 }
6537 
6538 /* Caller holds bp->hwrm_cmd_lock */
6539 static int __bnxt_hwrm_set_coal_nq(struct bnxt *bp, struct bnxt_napi *bnapi,
6540 				   struct bnxt_coal *hw_coal)
6541 {
6542 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req = {0};
6543 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6544 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6545 	u32 nq_params = coal_cap->nq_params;
6546 	u16 tmr;
6547 
6548 	if (!(nq_params & RING_AGGINT_QCAPS_RESP_NQ_PARAMS_INT_LAT_TMR_MIN))
6549 		return 0;
6550 
6551 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS,
6552 			       -1, -1);
6553 	req.ring_id = cpu_to_le16(cpr->cp_ring_struct.fw_ring_id);
6554 	req.flags =
6555 		cpu_to_le16(RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_IS_NQ);
6556 
6557 	tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks) / 2;
6558 	tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_min_max);
6559 	req.int_lat_tmr_min = cpu_to_le16(tmr);
6560 	req.enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
6561 	return _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6562 }
6563 
6564 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi)
6565 {
6566 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0};
6567 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6568 	struct bnxt_coal coal;
6569 
6570 	/* Tick values in micro seconds.
6571 	 * 1 coal_buf x bufs_per_record = 1 completion record.
6572 	 */
6573 	memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal));
6574 
6575 	coal.coal_ticks = cpr->rx_ring_coal.coal_ticks;
6576 	coal.coal_bufs = cpr->rx_ring_coal.coal_bufs;
6577 
6578 	if (!bnapi->rx_ring)
6579 		return -ENODEV;
6580 
6581 	bnxt_hwrm_cmd_hdr_init(bp, &req_rx,
6582 			       HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
6583 
6584 	bnxt_hwrm_set_coal_params(bp, &coal, &req_rx);
6585 
6586 	req_rx.ring_id = cpu_to_le16(bnxt_cp_ring_for_rx(bp, bnapi->rx_ring));
6587 
6588 	return hwrm_send_message(bp, &req_rx, sizeof(req_rx),
6589 				 HWRM_CMD_TIMEOUT);
6590 }
6591 
6592 int bnxt_hwrm_set_coal(struct bnxt *bp)
6593 {
6594 	int i, rc = 0;
6595 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0},
6596 							   req_tx = {0}, *req;
6597 
6598 	bnxt_hwrm_cmd_hdr_init(bp, &req_rx,
6599 			       HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
6600 	bnxt_hwrm_cmd_hdr_init(bp, &req_tx,
6601 			       HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
6602 
6603 	bnxt_hwrm_set_coal_params(bp, &bp->rx_coal, &req_rx);
6604 	bnxt_hwrm_set_coal_params(bp, &bp->tx_coal, &req_tx);
6605 
6606 	mutex_lock(&bp->hwrm_cmd_lock);
6607 	for (i = 0; i < bp->cp_nr_rings; i++) {
6608 		struct bnxt_napi *bnapi = bp->bnapi[i];
6609 		struct bnxt_coal *hw_coal;
6610 		u16 ring_id;
6611 
6612 		req = &req_rx;
6613 		if (!bnapi->rx_ring) {
6614 			ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring);
6615 			req = &req_tx;
6616 		} else {
6617 			ring_id = bnxt_cp_ring_for_rx(bp, bnapi->rx_ring);
6618 		}
6619 		req->ring_id = cpu_to_le16(ring_id);
6620 
6621 		rc = _hwrm_send_message(bp, req, sizeof(*req),
6622 					HWRM_CMD_TIMEOUT);
6623 		if (rc)
6624 			break;
6625 
6626 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
6627 			continue;
6628 
6629 		if (bnapi->rx_ring && bnapi->tx_ring) {
6630 			req = &req_tx;
6631 			ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring);
6632 			req->ring_id = cpu_to_le16(ring_id);
6633 			rc = _hwrm_send_message(bp, req, sizeof(*req),
6634 						HWRM_CMD_TIMEOUT);
6635 			if (rc)
6636 				break;
6637 		}
6638 		if (bnapi->rx_ring)
6639 			hw_coal = &bp->rx_coal;
6640 		else
6641 			hw_coal = &bp->tx_coal;
6642 		__bnxt_hwrm_set_coal_nq(bp, bnapi, hw_coal);
6643 	}
6644 	mutex_unlock(&bp->hwrm_cmd_lock);
6645 	return rc;
6646 }
6647 
6648 static void bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
6649 {
6650 	struct hwrm_stat_ctx_clr_stats_input req0 = {0};
6651 	struct hwrm_stat_ctx_free_input req = {0};
6652 	int i;
6653 
6654 	if (!bp->bnapi)
6655 		return;
6656 
6657 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
6658 		return;
6659 
6660 	bnxt_hwrm_cmd_hdr_init(bp, &req0, HWRM_STAT_CTX_CLR_STATS, -1, -1);
6661 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_FREE, -1, -1);
6662 
6663 	mutex_lock(&bp->hwrm_cmd_lock);
6664 	for (i = 0; i < bp->cp_nr_rings; i++) {
6665 		struct bnxt_napi *bnapi = bp->bnapi[i];
6666 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6667 
6668 		if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
6669 			req.stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
6670 			if (BNXT_FW_MAJ(bp) <= 20) {
6671 				req0.stat_ctx_id = req.stat_ctx_id;
6672 				_hwrm_send_message(bp, &req0, sizeof(req0),
6673 						   HWRM_CMD_TIMEOUT);
6674 			}
6675 			_hwrm_send_message(bp, &req, sizeof(req),
6676 					   HWRM_CMD_TIMEOUT);
6677 
6678 			cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
6679 		}
6680 	}
6681 	mutex_unlock(&bp->hwrm_cmd_lock);
6682 }
6683 
6684 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
6685 {
6686 	int rc = 0, i;
6687 	struct hwrm_stat_ctx_alloc_input req = {0};
6688 	struct hwrm_stat_ctx_alloc_output *resp = bp->hwrm_cmd_resp_addr;
6689 
6690 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
6691 		return 0;
6692 
6693 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_ALLOC, -1, -1);
6694 
6695 	req.stats_dma_length = cpu_to_le16(bp->hw_ring_stats_size);
6696 	req.update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000);
6697 
6698 	mutex_lock(&bp->hwrm_cmd_lock);
6699 	for (i = 0; i < bp->cp_nr_rings; i++) {
6700 		struct bnxt_napi *bnapi = bp->bnapi[i];
6701 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6702 
6703 		req.stats_dma_addr = cpu_to_le64(cpr->stats.hw_stats_map);
6704 
6705 		rc = _hwrm_send_message(bp, &req, sizeof(req),
6706 					HWRM_CMD_TIMEOUT);
6707 		if (rc)
6708 			break;
6709 
6710 		cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
6711 
6712 		bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
6713 	}
6714 	mutex_unlock(&bp->hwrm_cmd_lock);
6715 	return rc;
6716 }
6717 
6718 static int bnxt_hwrm_func_qcfg(struct bnxt *bp)
6719 {
6720 	struct hwrm_func_qcfg_input req = {0};
6721 	struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
6722 	u32 min_db_offset = 0;
6723 	u16 flags;
6724 	int rc;
6725 
6726 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
6727 	req.fid = cpu_to_le16(0xffff);
6728 	mutex_lock(&bp->hwrm_cmd_lock);
6729 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6730 	if (rc)
6731 		goto func_qcfg_exit;
6732 
6733 #ifdef CONFIG_BNXT_SRIOV
6734 	if (BNXT_VF(bp)) {
6735 		struct bnxt_vf_info *vf = &bp->vf;
6736 
6737 		vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK;
6738 	} else {
6739 		bp->pf.registered_vfs = le16_to_cpu(resp->registered_vfs);
6740 	}
6741 #endif
6742 	flags = le16_to_cpu(resp->flags);
6743 	if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED |
6744 		     FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) {
6745 		bp->fw_cap |= BNXT_FW_CAP_LLDP_AGENT;
6746 		if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED)
6747 			bp->fw_cap |= BNXT_FW_CAP_DCBX_AGENT;
6748 	}
6749 	if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST))
6750 		bp->flags |= BNXT_FLAG_MULTI_HOST;
6751 	if (flags & FUNC_QCFG_RESP_FLAGS_RING_MONITOR_ENABLED)
6752 		bp->fw_cap |= BNXT_FW_CAP_RING_MONITOR;
6753 
6754 	switch (resp->port_partition_type) {
6755 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0:
6756 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5:
6757 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0:
6758 		bp->port_partition_type = resp->port_partition_type;
6759 		break;
6760 	}
6761 	if (bp->hwrm_spec_code < 0x10707 ||
6762 	    resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB)
6763 		bp->br_mode = BRIDGE_MODE_VEB;
6764 	else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA)
6765 		bp->br_mode = BRIDGE_MODE_VEPA;
6766 	else
6767 		bp->br_mode = BRIDGE_MODE_UNDEF;
6768 
6769 	bp->max_mtu = le16_to_cpu(resp->max_mtu_configured);
6770 	if (!bp->max_mtu)
6771 		bp->max_mtu = BNXT_MAX_MTU;
6772 
6773 	if (bp->db_size)
6774 		goto func_qcfg_exit;
6775 
6776 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
6777 		if (BNXT_PF(bp))
6778 			min_db_offset = DB_PF_OFFSET_P5;
6779 		else
6780 			min_db_offset = DB_VF_OFFSET_P5;
6781 	}
6782 	bp->db_size = PAGE_ALIGN(le16_to_cpu(resp->l2_doorbell_bar_size_kb) *
6783 				 1024);
6784 	if (!bp->db_size || bp->db_size > pci_resource_len(bp->pdev, 2) ||
6785 	    bp->db_size <= min_db_offset)
6786 		bp->db_size = pci_resource_len(bp->pdev, 2);
6787 
6788 func_qcfg_exit:
6789 	mutex_unlock(&bp->hwrm_cmd_lock);
6790 	return rc;
6791 }
6792 
6793 static void bnxt_init_ctx_initializer(struct bnxt_ctx_mem_info *ctx,
6794 			struct hwrm_func_backing_store_qcaps_output *resp)
6795 {
6796 	struct bnxt_mem_init *mem_init;
6797 	u16 init_mask;
6798 	u8 init_val;
6799 	u8 *offset;
6800 	int i;
6801 
6802 	init_val = resp->ctx_kind_initializer;
6803 	init_mask = le16_to_cpu(resp->ctx_init_mask);
6804 	offset = &resp->qp_init_offset;
6805 	mem_init = &ctx->mem_init[BNXT_CTX_MEM_INIT_QP];
6806 	for (i = 0; i < BNXT_CTX_MEM_INIT_MAX; i++, mem_init++, offset++) {
6807 		mem_init->init_val = init_val;
6808 		mem_init->offset = BNXT_MEM_INVALID_OFFSET;
6809 		if (!init_mask)
6810 			continue;
6811 		if (i == BNXT_CTX_MEM_INIT_STAT)
6812 			offset = &resp->stat_init_offset;
6813 		if (init_mask & (1 << i))
6814 			mem_init->offset = *offset * 4;
6815 		else
6816 			mem_init->init_val = 0;
6817 	}
6818 	ctx->mem_init[BNXT_CTX_MEM_INIT_QP].size = ctx->qp_entry_size;
6819 	ctx->mem_init[BNXT_CTX_MEM_INIT_SRQ].size = ctx->srq_entry_size;
6820 	ctx->mem_init[BNXT_CTX_MEM_INIT_CQ].size = ctx->cq_entry_size;
6821 	ctx->mem_init[BNXT_CTX_MEM_INIT_VNIC].size = ctx->vnic_entry_size;
6822 	ctx->mem_init[BNXT_CTX_MEM_INIT_STAT].size = ctx->stat_entry_size;
6823 	ctx->mem_init[BNXT_CTX_MEM_INIT_MRAV].size = ctx->mrav_entry_size;
6824 }
6825 
6826 static int bnxt_hwrm_func_backing_store_qcaps(struct bnxt *bp)
6827 {
6828 	struct hwrm_func_backing_store_qcaps_input req = {0};
6829 	struct hwrm_func_backing_store_qcaps_output *resp =
6830 		bp->hwrm_cmd_resp_addr;
6831 	int rc;
6832 
6833 	if (bp->hwrm_spec_code < 0x10902 || BNXT_VF(bp) || bp->ctx)
6834 		return 0;
6835 
6836 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_BACKING_STORE_QCAPS, -1, -1);
6837 	mutex_lock(&bp->hwrm_cmd_lock);
6838 	rc = _hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6839 	if (!rc) {
6840 		struct bnxt_ctx_pg_info *ctx_pg;
6841 		struct bnxt_ctx_mem_info *ctx;
6842 		int i, tqm_rings;
6843 
6844 		ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
6845 		if (!ctx) {
6846 			rc = -ENOMEM;
6847 			goto ctx_err;
6848 		}
6849 		ctx->qp_max_entries = le32_to_cpu(resp->qp_max_entries);
6850 		ctx->qp_min_qp1_entries = le16_to_cpu(resp->qp_min_qp1_entries);
6851 		ctx->qp_max_l2_entries = le16_to_cpu(resp->qp_max_l2_entries);
6852 		ctx->qp_entry_size = le16_to_cpu(resp->qp_entry_size);
6853 		ctx->srq_max_l2_entries = le16_to_cpu(resp->srq_max_l2_entries);
6854 		ctx->srq_max_entries = le32_to_cpu(resp->srq_max_entries);
6855 		ctx->srq_entry_size = le16_to_cpu(resp->srq_entry_size);
6856 		ctx->cq_max_l2_entries = le16_to_cpu(resp->cq_max_l2_entries);
6857 		ctx->cq_max_entries = le32_to_cpu(resp->cq_max_entries);
6858 		ctx->cq_entry_size = le16_to_cpu(resp->cq_entry_size);
6859 		ctx->vnic_max_vnic_entries =
6860 			le16_to_cpu(resp->vnic_max_vnic_entries);
6861 		ctx->vnic_max_ring_table_entries =
6862 			le16_to_cpu(resp->vnic_max_ring_table_entries);
6863 		ctx->vnic_entry_size = le16_to_cpu(resp->vnic_entry_size);
6864 		ctx->stat_max_entries = le32_to_cpu(resp->stat_max_entries);
6865 		ctx->stat_entry_size = le16_to_cpu(resp->stat_entry_size);
6866 		ctx->tqm_entry_size = le16_to_cpu(resp->tqm_entry_size);
6867 		ctx->tqm_min_entries_per_ring =
6868 			le32_to_cpu(resp->tqm_min_entries_per_ring);
6869 		ctx->tqm_max_entries_per_ring =
6870 			le32_to_cpu(resp->tqm_max_entries_per_ring);
6871 		ctx->tqm_entries_multiple = resp->tqm_entries_multiple;
6872 		if (!ctx->tqm_entries_multiple)
6873 			ctx->tqm_entries_multiple = 1;
6874 		ctx->mrav_max_entries = le32_to_cpu(resp->mrav_max_entries);
6875 		ctx->mrav_entry_size = le16_to_cpu(resp->mrav_entry_size);
6876 		ctx->mrav_num_entries_units =
6877 			le16_to_cpu(resp->mrav_num_entries_units);
6878 		ctx->tim_entry_size = le16_to_cpu(resp->tim_entry_size);
6879 		ctx->tim_max_entries = le32_to_cpu(resp->tim_max_entries);
6880 
6881 		bnxt_init_ctx_initializer(ctx, resp);
6882 
6883 		ctx->tqm_fp_rings_count = resp->tqm_fp_rings_count;
6884 		if (!ctx->tqm_fp_rings_count)
6885 			ctx->tqm_fp_rings_count = bp->max_q;
6886 		else if (ctx->tqm_fp_rings_count > BNXT_MAX_TQM_FP_RINGS)
6887 			ctx->tqm_fp_rings_count = BNXT_MAX_TQM_FP_RINGS;
6888 
6889 		tqm_rings = ctx->tqm_fp_rings_count + BNXT_MAX_TQM_SP_RINGS;
6890 		ctx_pg = kcalloc(tqm_rings, sizeof(*ctx_pg), GFP_KERNEL);
6891 		if (!ctx_pg) {
6892 			kfree(ctx);
6893 			rc = -ENOMEM;
6894 			goto ctx_err;
6895 		}
6896 		for (i = 0; i < tqm_rings; i++, ctx_pg++)
6897 			ctx->tqm_mem[i] = ctx_pg;
6898 		bp->ctx = ctx;
6899 	} else {
6900 		rc = 0;
6901 	}
6902 ctx_err:
6903 	mutex_unlock(&bp->hwrm_cmd_lock);
6904 	return rc;
6905 }
6906 
6907 static void bnxt_hwrm_set_pg_attr(struct bnxt_ring_mem_info *rmem, u8 *pg_attr,
6908 				  __le64 *pg_dir)
6909 {
6910 	u8 pg_size = 0;
6911 
6912 	if (!rmem->nr_pages)
6913 		return;
6914 
6915 	if (BNXT_PAGE_SHIFT == 13)
6916 		pg_size = 1 << 4;
6917 	else if (BNXT_PAGE_SIZE == 16)
6918 		pg_size = 2 << 4;
6919 
6920 	*pg_attr = pg_size;
6921 	if (rmem->depth >= 1) {
6922 		if (rmem->depth == 2)
6923 			*pg_attr |= 2;
6924 		else
6925 			*pg_attr |= 1;
6926 		*pg_dir = cpu_to_le64(rmem->pg_tbl_map);
6927 	} else {
6928 		*pg_dir = cpu_to_le64(rmem->dma_arr[0]);
6929 	}
6930 }
6931 
6932 #define FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES			\
6933 	(FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP |		\
6934 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ |		\
6935 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ |		\
6936 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC |		\
6937 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT)
6938 
6939 static int bnxt_hwrm_func_backing_store_cfg(struct bnxt *bp, u32 enables)
6940 {
6941 	struct hwrm_func_backing_store_cfg_input req = {0};
6942 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
6943 	struct bnxt_ctx_pg_info *ctx_pg;
6944 	u32 req_len = sizeof(req);
6945 	__le32 *num_entries;
6946 	__le64 *pg_dir;
6947 	u32 flags = 0;
6948 	u8 *pg_attr;
6949 	u32 ena;
6950 	int i;
6951 
6952 	if (!ctx)
6953 		return 0;
6954 
6955 	if (req_len > bp->hwrm_max_ext_req_len)
6956 		req_len = BNXT_BACKING_STORE_CFG_LEGACY_LEN;
6957 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_BACKING_STORE_CFG, -1, -1);
6958 	req.enables = cpu_to_le32(enables);
6959 
6960 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP) {
6961 		ctx_pg = &ctx->qp_mem;
6962 		req.qp_num_entries = cpu_to_le32(ctx_pg->entries);
6963 		req.qp_num_qp1_entries = cpu_to_le16(ctx->qp_min_qp1_entries);
6964 		req.qp_num_l2_entries = cpu_to_le16(ctx->qp_max_l2_entries);
6965 		req.qp_entry_size = cpu_to_le16(ctx->qp_entry_size);
6966 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6967 				      &req.qpc_pg_size_qpc_lvl,
6968 				      &req.qpc_page_dir);
6969 	}
6970 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ) {
6971 		ctx_pg = &ctx->srq_mem;
6972 		req.srq_num_entries = cpu_to_le32(ctx_pg->entries);
6973 		req.srq_num_l2_entries = cpu_to_le16(ctx->srq_max_l2_entries);
6974 		req.srq_entry_size = cpu_to_le16(ctx->srq_entry_size);
6975 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6976 				      &req.srq_pg_size_srq_lvl,
6977 				      &req.srq_page_dir);
6978 	}
6979 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ) {
6980 		ctx_pg = &ctx->cq_mem;
6981 		req.cq_num_entries = cpu_to_le32(ctx_pg->entries);
6982 		req.cq_num_l2_entries = cpu_to_le16(ctx->cq_max_l2_entries);
6983 		req.cq_entry_size = cpu_to_le16(ctx->cq_entry_size);
6984 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, &req.cq_pg_size_cq_lvl,
6985 				      &req.cq_page_dir);
6986 	}
6987 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC) {
6988 		ctx_pg = &ctx->vnic_mem;
6989 		req.vnic_num_vnic_entries =
6990 			cpu_to_le16(ctx->vnic_max_vnic_entries);
6991 		req.vnic_num_ring_table_entries =
6992 			cpu_to_le16(ctx->vnic_max_ring_table_entries);
6993 		req.vnic_entry_size = cpu_to_le16(ctx->vnic_entry_size);
6994 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6995 				      &req.vnic_pg_size_vnic_lvl,
6996 				      &req.vnic_page_dir);
6997 	}
6998 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) {
6999 		ctx_pg = &ctx->stat_mem;
7000 		req.stat_num_entries = cpu_to_le32(ctx->stat_max_entries);
7001 		req.stat_entry_size = cpu_to_le16(ctx->stat_entry_size);
7002 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7003 				      &req.stat_pg_size_stat_lvl,
7004 				      &req.stat_page_dir);
7005 	}
7006 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV) {
7007 		ctx_pg = &ctx->mrav_mem;
7008 		req.mrav_num_entries = cpu_to_le32(ctx_pg->entries);
7009 		if (ctx->mrav_num_entries_units)
7010 			flags |=
7011 			FUNC_BACKING_STORE_CFG_REQ_FLAGS_MRAV_RESERVATION_SPLIT;
7012 		req.mrav_entry_size = cpu_to_le16(ctx->mrav_entry_size);
7013 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7014 				      &req.mrav_pg_size_mrav_lvl,
7015 				      &req.mrav_page_dir);
7016 	}
7017 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) {
7018 		ctx_pg = &ctx->tim_mem;
7019 		req.tim_num_entries = cpu_to_le32(ctx_pg->entries);
7020 		req.tim_entry_size = cpu_to_le16(ctx->tim_entry_size);
7021 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7022 				      &req.tim_pg_size_tim_lvl,
7023 				      &req.tim_page_dir);
7024 	}
7025 	for (i = 0, num_entries = &req.tqm_sp_num_entries,
7026 	     pg_attr = &req.tqm_sp_pg_size_tqm_sp_lvl,
7027 	     pg_dir = &req.tqm_sp_page_dir,
7028 	     ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP;
7029 	     i < BNXT_MAX_TQM_RINGS;
7030 	     i++, num_entries++, pg_attr++, pg_dir++, ena <<= 1) {
7031 		if (!(enables & ena))
7032 			continue;
7033 
7034 		req.tqm_entry_size = cpu_to_le16(ctx->tqm_entry_size);
7035 		ctx_pg = ctx->tqm_mem[i];
7036 		*num_entries = cpu_to_le32(ctx_pg->entries);
7037 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, pg_attr, pg_dir);
7038 	}
7039 	req.flags = cpu_to_le32(flags);
7040 	return hwrm_send_message(bp, &req, req_len, HWRM_CMD_TIMEOUT);
7041 }
7042 
7043 static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp,
7044 				  struct bnxt_ctx_pg_info *ctx_pg)
7045 {
7046 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
7047 
7048 	rmem->page_size = BNXT_PAGE_SIZE;
7049 	rmem->pg_arr = ctx_pg->ctx_pg_arr;
7050 	rmem->dma_arr = ctx_pg->ctx_dma_arr;
7051 	rmem->flags = BNXT_RMEM_VALID_PTE_FLAG;
7052 	if (rmem->depth >= 1)
7053 		rmem->flags |= BNXT_RMEM_USE_FULL_PAGE_FLAG;
7054 	return bnxt_alloc_ring(bp, rmem);
7055 }
7056 
7057 static int bnxt_alloc_ctx_pg_tbls(struct bnxt *bp,
7058 				  struct bnxt_ctx_pg_info *ctx_pg, u32 mem_size,
7059 				  u8 depth, struct bnxt_mem_init *mem_init)
7060 {
7061 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
7062 	int rc;
7063 
7064 	if (!mem_size)
7065 		return -EINVAL;
7066 
7067 	ctx_pg->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
7068 	if (ctx_pg->nr_pages > MAX_CTX_TOTAL_PAGES) {
7069 		ctx_pg->nr_pages = 0;
7070 		return -EINVAL;
7071 	}
7072 	if (ctx_pg->nr_pages > MAX_CTX_PAGES || depth > 1) {
7073 		int nr_tbls, i;
7074 
7075 		rmem->depth = 2;
7076 		ctx_pg->ctx_pg_tbl = kcalloc(MAX_CTX_PAGES, sizeof(ctx_pg),
7077 					     GFP_KERNEL);
7078 		if (!ctx_pg->ctx_pg_tbl)
7079 			return -ENOMEM;
7080 		nr_tbls = DIV_ROUND_UP(ctx_pg->nr_pages, MAX_CTX_PAGES);
7081 		rmem->nr_pages = nr_tbls;
7082 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
7083 		if (rc)
7084 			return rc;
7085 		for (i = 0; i < nr_tbls; i++) {
7086 			struct bnxt_ctx_pg_info *pg_tbl;
7087 
7088 			pg_tbl = kzalloc(sizeof(*pg_tbl), GFP_KERNEL);
7089 			if (!pg_tbl)
7090 				return -ENOMEM;
7091 			ctx_pg->ctx_pg_tbl[i] = pg_tbl;
7092 			rmem = &pg_tbl->ring_mem;
7093 			rmem->pg_tbl = ctx_pg->ctx_pg_arr[i];
7094 			rmem->pg_tbl_map = ctx_pg->ctx_dma_arr[i];
7095 			rmem->depth = 1;
7096 			rmem->nr_pages = MAX_CTX_PAGES;
7097 			rmem->mem_init = mem_init;
7098 			if (i == (nr_tbls - 1)) {
7099 				int rem = ctx_pg->nr_pages % MAX_CTX_PAGES;
7100 
7101 				if (rem)
7102 					rmem->nr_pages = rem;
7103 			}
7104 			rc = bnxt_alloc_ctx_mem_blk(bp, pg_tbl);
7105 			if (rc)
7106 				break;
7107 		}
7108 	} else {
7109 		rmem->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
7110 		if (rmem->nr_pages > 1 || depth)
7111 			rmem->depth = 1;
7112 		rmem->mem_init = mem_init;
7113 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
7114 	}
7115 	return rc;
7116 }
7117 
7118 static void bnxt_free_ctx_pg_tbls(struct bnxt *bp,
7119 				  struct bnxt_ctx_pg_info *ctx_pg)
7120 {
7121 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
7122 
7123 	if (rmem->depth > 1 || ctx_pg->nr_pages > MAX_CTX_PAGES ||
7124 	    ctx_pg->ctx_pg_tbl) {
7125 		int i, nr_tbls = rmem->nr_pages;
7126 
7127 		for (i = 0; i < nr_tbls; i++) {
7128 			struct bnxt_ctx_pg_info *pg_tbl;
7129 			struct bnxt_ring_mem_info *rmem2;
7130 
7131 			pg_tbl = ctx_pg->ctx_pg_tbl[i];
7132 			if (!pg_tbl)
7133 				continue;
7134 			rmem2 = &pg_tbl->ring_mem;
7135 			bnxt_free_ring(bp, rmem2);
7136 			ctx_pg->ctx_pg_arr[i] = NULL;
7137 			kfree(pg_tbl);
7138 			ctx_pg->ctx_pg_tbl[i] = NULL;
7139 		}
7140 		kfree(ctx_pg->ctx_pg_tbl);
7141 		ctx_pg->ctx_pg_tbl = NULL;
7142 	}
7143 	bnxt_free_ring(bp, rmem);
7144 	ctx_pg->nr_pages = 0;
7145 }
7146 
7147 static void bnxt_free_ctx_mem(struct bnxt *bp)
7148 {
7149 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
7150 	int i;
7151 
7152 	if (!ctx)
7153 		return;
7154 
7155 	if (ctx->tqm_mem[0]) {
7156 		for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++)
7157 			bnxt_free_ctx_pg_tbls(bp, ctx->tqm_mem[i]);
7158 		kfree(ctx->tqm_mem[0]);
7159 		ctx->tqm_mem[0] = NULL;
7160 	}
7161 
7162 	bnxt_free_ctx_pg_tbls(bp, &ctx->tim_mem);
7163 	bnxt_free_ctx_pg_tbls(bp, &ctx->mrav_mem);
7164 	bnxt_free_ctx_pg_tbls(bp, &ctx->stat_mem);
7165 	bnxt_free_ctx_pg_tbls(bp, &ctx->vnic_mem);
7166 	bnxt_free_ctx_pg_tbls(bp, &ctx->cq_mem);
7167 	bnxt_free_ctx_pg_tbls(bp, &ctx->srq_mem);
7168 	bnxt_free_ctx_pg_tbls(bp, &ctx->qp_mem);
7169 	ctx->flags &= ~BNXT_CTX_FLAG_INITED;
7170 }
7171 
7172 static int bnxt_alloc_ctx_mem(struct bnxt *bp)
7173 {
7174 	struct bnxt_ctx_pg_info *ctx_pg;
7175 	struct bnxt_ctx_mem_info *ctx;
7176 	struct bnxt_mem_init *init;
7177 	u32 mem_size, ena, entries;
7178 	u32 entries_sp, min;
7179 	u32 num_mr, num_ah;
7180 	u32 extra_srqs = 0;
7181 	u32 extra_qps = 0;
7182 	u8 pg_lvl = 1;
7183 	int i, rc;
7184 
7185 	rc = bnxt_hwrm_func_backing_store_qcaps(bp);
7186 	if (rc) {
7187 		netdev_err(bp->dev, "Failed querying context mem capability, rc = %d.\n",
7188 			   rc);
7189 		return rc;
7190 	}
7191 	ctx = bp->ctx;
7192 	if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED))
7193 		return 0;
7194 
7195 	if ((bp->flags & BNXT_FLAG_ROCE_CAP) && !is_kdump_kernel()) {
7196 		pg_lvl = 2;
7197 		extra_qps = 65536;
7198 		extra_srqs = 8192;
7199 	}
7200 
7201 	ctx_pg = &ctx->qp_mem;
7202 	ctx_pg->entries = ctx->qp_min_qp1_entries + ctx->qp_max_l2_entries +
7203 			  extra_qps;
7204 	if (ctx->qp_entry_size) {
7205 		mem_size = ctx->qp_entry_size * ctx_pg->entries;
7206 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_QP];
7207 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init);
7208 		if (rc)
7209 			return rc;
7210 	}
7211 
7212 	ctx_pg = &ctx->srq_mem;
7213 	ctx_pg->entries = ctx->srq_max_l2_entries + extra_srqs;
7214 	if (ctx->srq_entry_size) {
7215 		mem_size = ctx->srq_entry_size * ctx_pg->entries;
7216 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_SRQ];
7217 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init);
7218 		if (rc)
7219 			return rc;
7220 	}
7221 
7222 	ctx_pg = &ctx->cq_mem;
7223 	ctx_pg->entries = ctx->cq_max_l2_entries + extra_qps * 2;
7224 	if (ctx->cq_entry_size) {
7225 		mem_size = ctx->cq_entry_size * ctx_pg->entries;
7226 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_CQ];
7227 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init);
7228 		if (rc)
7229 			return rc;
7230 	}
7231 
7232 	ctx_pg = &ctx->vnic_mem;
7233 	ctx_pg->entries = ctx->vnic_max_vnic_entries +
7234 			  ctx->vnic_max_ring_table_entries;
7235 	if (ctx->vnic_entry_size) {
7236 		mem_size = ctx->vnic_entry_size * ctx_pg->entries;
7237 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_VNIC];
7238 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, init);
7239 		if (rc)
7240 			return rc;
7241 	}
7242 
7243 	ctx_pg = &ctx->stat_mem;
7244 	ctx_pg->entries = ctx->stat_max_entries;
7245 	if (ctx->stat_entry_size) {
7246 		mem_size = ctx->stat_entry_size * ctx_pg->entries;
7247 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_STAT];
7248 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, init);
7249 		if (rc)
7250 			return rc;
7251 	}
7252 
7253 	ena = 0;
7254 	if (!(bp->flags & BNXT_FLAG_ROCE_CAP))
7255 		goto skip_rdma;
7256 
7257 	ctx_pg = &ctx->mrav_mem;
7258 	/* 128K extra is needed to accommodate static AH context
7259 	 * allocation by f/w.
7260 	 */
7261 	num_mr = 1024 * 256;
7262 	num_ah = 1024 * 128;
7263 	ctx_pg->entries = num_mr + num_ah;
7264 	if (ctx->mrav_entry_size) {
7265 		mem_size = ctx->mrav_entry_size * ctx_pg->entries;
7266 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_MRAV];
7267 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 2, init);
7268 		if (rc)
7269 			return rc;
7270 	}
7271 	ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV;
7272 	if (ctx->mrav_num_entries_units)
7273 		ctx_pg->entries =
7274 			((num_mr / ctx->mrav_num_entries_units) << 16) |
7275 			 (num_ah / ctx->mrav_num_entries_units);
7276 
7277 	ctx_pg = &ctx->tim_mem;
7278 	ctx_pg->entries = ctx->qp_mem.entries;
7279 	if (ctx->tim_entry_size) {
7280 		mem_size = ctx->tim_entry_size * ctx_pg->entries;
7281 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, NULL);
7282 		if (rc)
7283 			return rc;
7284 	}
7285 	ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM;
7286 
7287 skip_rdma:
7288 	min = ctx->tqm_min_entries_per_ring;
7289 	entries_sp = ctx->vnic_max_vnic_entries + ctx->qp_max_l2_entries +
7290 		     2 * (extra_qps + ctx->qp_min_qp1_entries) + min;
7291 	entries_sp = roundup(entries_sp, ctx->tqm_entries_multiple);
7292 	entries = ctx->qp_max_l2_entries + extra_qps + ctx->qp_min_qp1_entries;
7293 	entries = roundup(entries, ctx->tqm_entries_multiple);
7294 	entries = clamp_t(u32, entries, min, ctx->tqm_max_entries_per_ring);
7295 	for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++) {
7296 		ctx_pg = ctx->tqm_mem[i];
7297 		ctx_pg->entries = i ? entries : entries_sp;
7298 		if (ctx->tqm_entry_size) {
7299 			mem_size = ctx->tqm_entry_size * ctx_pg->entries;
7300 			rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1,
7301 						    NULL);
7302 			if (rc)
7303 				return rc;
7304 		}
7305 		ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP << i;
7306 	}
7307 	ena |= FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES;
7308 	rc = bnxt_hwrm_func_backing_store_cfg(bp, ena);
7309 	if (rc) {
7310 		netdev_err(bp->dev, "Failed configuring context mem, rc = %d.\n",
7311 			   rc);
7312 		return rc;
7313 	}
7314 	ctx->flags |= BNXT_CTX_FLAG_INITED;
7315 	return 0;
7316 }
7317 
7318 int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all)
7319 {
7320 	struct hwrm_func_resource_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
7321 	struct hwrm_func_resource_qcaps_input req = {0};
7322 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7323 	int rc;
7324 
7325 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESOURCE_QCAPS, -1, -1);
7326 	req.fid = cpu_to_le16(0xffff);
7327 
7328 	mutex_lock(&bp->hwrm_cmd_lock);
7329 	rc = _hwrm_send_message_silent(bp, &req, sizeof(req),
7330 				       HWRM_CMD_TIMEOUT);
7331 	if (rc)
7332 		goto hwrm_func_resc_qcaps_exit;
7333 
7334 	hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs);
7335 	if (!all)
7336 		goto hwrm_func_resc_qcaps_exit;
7337 
7338 	hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx);
7339 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
7340 	hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings);
7341 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
7342 	hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings);
7343 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
7344 	hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings);
7345 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
7346 	hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps);
7347 	hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps);
7348 	hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs);
7349 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
7350 	hw_resc->min_vnics = le16_to_cpu(resp->min_vnics);
7351 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
7352 	hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx);
7353 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
7354 
7355 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
7356 		u16 max_msix = le16_to_cpu(resp->max_msix);
7357 
7358 		hw_resc->max_nqs = max_msix;
7359 		hw_resc->max_hw_ring_grps = hw_resc->max_rx_rings;
7360 	}
7361 
7362 	if (BNXT_PF(bp)) {
7363 		struct bnxt_pf_info *pf = &bp->pf;
7364 
7365 		pf->vf_resv_strategy =
7366 			le16_to_cpu(resp->vf_reservation_strategy);
7367 		if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC)
7368 			pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL;
7369 	}
7370 hwrm_func_resc_qcaps_exit:
7371 	mutex_unlock(&bp->hwrm_cmd_lock);
7372 	return rc;
7373 }
7374 
7375 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp)
7376 {
7377 	int rc = 0;
7378 	struct hwrm_func_qcaps_input req = {0};
7379 	struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
7380 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7381 	u32 flags, flags_ext;
7382 
7383 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1);
7384 	req.fid = cpu_to_le16(0xffff);
7385 
7386 	mutex_lock(&bp->hwrm_cmd_lock);
7387 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7388 	if (rc)
7389 		goto hwrm_func_qcaps_exit;
7390 
7391 	flags = le32_to_cpu(resp->flags);
7392 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED)
7393 		bp->flags |= BNXT_FLAG_ROCEV1_CAP;
7394 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED)
7395 		bp->flags |= BNXT_FLAG_ROCEV2_CAP;
7396 	if (flags & FUNC_QCAPS_RESP_FLAGS_PCIE_STATS_SUPPORTED)
7397 		bp->fw_cap |= BNXT_FW_CAP_PCIE_STATS_SUPPORTED;
7398 	if (flags & FUNC_QCAPS_RESP_FLAGS_HOT_RESET_CAPABLE)
7399 		bp->fw_cap |= BNXT_FW_CAP_HOT_RESET;
7400 	if (flags & FUNC_QCAPS_RESP_FLAGS_EXT_STATS_SUPPORTED)
7401 		bp->fw_cap |= BNXT_FW_CAP_EXT_STATS_SUPPORTED;
7402 	if (flags &  FUNC_QCAPS_RESP_FLAGS_ERROR_RECOVERY_CAPABLE)
7403 		bp->fw_cap |= BNXT_FW_CAP_ERROR_RECOVERY;
7404 	if (flags & FUNC_QCAPS_RESP_FLAGS_ERR_RECOVER_RELOAD)
7405 		bp->fw_cap |= BNXT_FW_CAP_ERR_RECOVER_RELOAD;
7406 	if (!(flags & FUNC_QCAPS_RESP_FLAGS_VLAN_ACCELERATION_TX_DISABLED))
7407 		bp->fw_cap |= BNXT_FW_CAP_VLAN_TX_INSERT;
7408 
7409 	flags_ext = le32_to_cpu(resp->flags_ext);
7410 	if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_EXT_HW_STATS_SUPPORTED)
7411 		bp->fw_cap |= BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED;
7412 
7413 	bp->tx_push_thresh = 0;
7414 	if ((flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED) &&
7415 	    BNXT_FW_MAJ(bp) > 217)
7416 		bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
7417 
7418 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
7419 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
7420 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
7421 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
7422 	hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
7423 	if (!hw_resc->max_hw_ring_grps)
7424 		hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings;
7425 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
7426 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
7427 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
7428 
7429 	if (BNXT_PF(bp)) {
7430 		struct bnxt_pf_info *pf = &bp->pf;
7431 
7432 		pf->fw_fid = le16_to_cpu(resp->fid);
7433 		pf->port_id = le16_to_cpu(resp->port_id);
7434 		memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN);
7435 		pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
7436 		pf->max_vfs = le16_to_cpu(resp->max_vfs);
7437 		pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
7438 		pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
7439 		pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
7440 		pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
7441 		pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
7442 		pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
7443 		bp->flags &= ~BNXT_FLAG_WOL_CAP;
7444 		if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED)
7445 			bp->flags |= BNXT_FLAG_WOL_CAP;
7446 	} else {
7447 #ifdef CONFIG_BNXT_SRIOV
7448 		struct bnxt_vf_info *vf = &bp->vf;
7449 
7450 		vf->fw_fid = le16_to_cpu(resp->fid);
7451 		memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN);
7452 #endif
7453 	}
7454 
7455 hwrm_func_qcaps_exit:
7456 	mutex_unlock(&bp->hwrm_cmd_lock);
7457 	return rc;
7458 }
7459 
7460 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp);
7461 
7462 static int bnxt_hwrm_func_qcaps(struct bnxt *bp)
7463 {
7464 	int rc;
7465 
7466 	rc = __bnxt_hwrm_func_qcaps(bp);
7467 	if (rc)
7468 		return rc;
7469 	rc = bnxt_hwrm_queue_qportcfg(bp);
7470 	if (rc) {
7471 		netdev_err(bp->dev, "hwrm query qportcfg failure rc: %d\n", rc);
7472 		return rc;
7473 	}
7474 	if (bp->hwrm_spec_code >= 0x10803) {
7475 		rc = bnxt_alloc_ctx_mem(bp);
7476 		if (rc)
7477 			return rc;
7478 		rc = bnxt_hwrm_func_resc_qcaps(bp, true);
7479 		if (!rc)
7480 			bp->fw_cap |= BNXT_FW_CAP_NEW_RM;
7481 	}
7482 	return 0;
7483 }
7484 
7485 static int bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(struct bnxt *bp)
7486 {
7487 	struct hwrm_cfa_adv_flow_mgnt_qcaps_input req = {0};
7488 	struct hwrm_cfa_adv_flow_mgnt_qcaps_output *resp;
7489 	int rc = 0;
7490 	u32 flags;
7491 
7492 	if (!(bp->fw_cap & BNXT_FW_CAP_CFA_ADV_FLOW))
7493 		return 0;
7494 
7495 	resp = bp->hwrm_cmd_resp_addr;
7496 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_ADV_FLOW_MGNT_QCAPS, -1, -1);
7497 
7498 	mutex_lock(&bp->hwrm_cmd_lock);
7499 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7500 	if (rc)
7501 		goto hwrm_cfa_adv_qcaps_exit;
7502 
7503 	flags = le32_to_cpu(resp->flags);
7504 	if (flags &
7505 	    CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V2_SUPPORTED)
7506 		bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2;
7507 
7508 hwrm_cfa_adv_qcaps_exit:
7509 	mutex_unlock(&bp->hwrm_cmd_lock);
7510 	return rc;
7511 }
7512 
7513 static int __bnxt_alloc_fw_health(struct bnxt *bp)
7514 {
7515 	if (bp->fw_health)
7516 		return 0;
7517 
7518 	bp->fw_health = kzalloc(sizeof(*bp->fw_health), GFP_KERNEL);
7519 	if (!bp->fw_health)
7520 		return -ENOMEM;
7521 
7522 	return 0;
7523 }
7524 
7525 static int bnxt_alloc_fw_health(struct bnxt *bp)
7526 {
7527 	int rc;
7528 
7529 	if (!(bp->fw_cap & BNXT_FW_CAP_HOT_RESET) &&
7530 	    !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
7531 		return 0;
7532 
7533 	rc = __bnxt_alloc_fw_health(bp);
7534 	if (rc) {
7535 		bp->fw_cap &= ~BNXT_FW_CAP_HOT_RESET;
7536 		bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
7537 		return rc;
7538 	}
7539 
7540 	return 0;
7541 }
7542 
7543 static void __bnxt_map_fw_health_reg(struct bnxt *bp, u32 reg)
7544 {
7545 	writel(reg & BNXT_GRC_BASE_MASK, bp->bar0 +
7546 					 BNXT_GRCPF_REG_WINDOW_BASE_OUT +
7547 					 BNXT_FW_HEALTH_WIN_MAP_OFF);
7548 }
7549 
7550 bool bnxt_is_fw_healthy(struct bnxt *bp)
7551 {
7552 	if (bp->fw_health && bp->fw_health->status_reliable) {
7553 		u32 fw_status;
7554 
7555 		fw_status = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
7556 		if (fw_status && !BNXT_FW_IS_HEALTHY(fw_status))
7557 			return false;
7558 	}
7559 
7560 	return true;
7561 }
7562 
7563 static void bnxt_inv_fw_health_reg(struct bnxt *bp)
7564 {
7565 	struct bnxt_fw_health *fw_health = bp->fw_health;
7566 	u32 reg_type;
7567 
7568 	if (!fw_health || !fw_health->status_reliable)
7569 		return;
7570 
7571 	reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_HEALTH_REG]);
7572 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC)
7573 		fw_health->status_reliable = false;
7574 }
7575 
7576 static void bnxt_try_map_fw_health_reg(struct bnxt *bp)
7577 {
7578 	void __iomem *hs;
7579 	u32 status_loc;
7580 	u32 reg_type;
7581 	u32 sig;
7582 
7583 	if (bp->fw_health)
7584 		bp->fw_health->status_reliable = false;
7585 
7586 	__bnxt_map_fw_health_reg(bp, HCOMM_STATUS_STRUCT_LOC);
7587 	hs = bp->bar0 + BNXT_FW_HEALTH_WIN_OFF(HCOMM_STATUS_STRUCT_LOC);
7588 
7589 	sig = readl(hs + offsetof(struct hcomm_status, sig_ver));
7590 	if ((sig & HCOMM_STATUS_SIGNATURE_MASK) != HCOMM_STATUS_SIGNATURE_VAL) {
7591 		if (!bp->chip_num) {
7592 			__bnxt_map_fw_health_reg(bp, BNXT_GRC_REG_BASE);
7593 			bp->chip_num = readl(bp->bar0 +
7594 					     BNXT_FW_HEALTH_WIN_BASE +
7595 					     BNXT_GRC_REG_CHIP_NUM);
7596 		}
7597 		if (!BNXT_CHIP_P5(bp))
7598 			return;
7599 
7600 		status_loc = BNXT_GRC_REG_STATUS_P5 |
7601 			     BNXT_FW_HEALTH_REG_TYPE_BAR0;
7602 	} else {
7603 		status_loc = readl(hs + offsetof(struct hcomm_status,
7604 						 fw_status_loc));
7605 	}
7606 
7607 	if (__bnxt_alloc_fw_health(bp)) {
7608 		netdev_warn(bp->dev, "no memory for firmware status checks\n");
7609 		return;
7610 	}
7611 
7612 	bp->fw_health->regs[BNXT_FW_HEALTH_REG] = status_loc;
7613 	reg_type = BNXT_FW_HEALTH_REG_TYPE(status_loc);
7614 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) {
7615 		__bnxt_map_fw_health_reg(bp, status_loc);
7616 		bp->fw_health->mapped_regs[BNXT_FW_HEALTH_REG] =
7617 			BNXT_FW_HEALTH_WIN_OFF(status_loc);
7618 	}
7619 
7620 	bp->fw_health->status_reliable = true;
7621 }
7622 
7623 static int bnxt_map_fw_health_regs(struct bnxt *bp)
7624 {
7625 	struct bnxt_fw_health *fw_health = bp->fw_health;
7626 	u32 reg_base = 0xffffffff;
7627 	int i;
7628 
7629 	bp->fw_health->status_reliable = false;
7630 	/* Only pre-map the monitoring GRC registers using window 3 */
7631 	for (i = 0; i < 4; i++) {
7632 		u32 reg = fw_health->regs[i];
7633 
7634 		if (BNXT_FW_HEALTH_REG_TYPE(reg) != BNXT_FW_HEALTH_REG_TYPE_GRC)
7635 			continue;
7636 		if (reg_base == 0xffffffff)
7637 			reg_base = reg & BNXT_GRC_BASE_MASK;
7638 		if ((reg & BNXT_GRC_BASE_MASK) != reg_base)
7639 			return -ERANGE;
7640 		fw_health->mapped_regs[i] = BNXT_FW_HEALTH_WIN_OFF(reg);
7641 	}
7642 	bp->fw_health->status_reliable = true;
7643 	if (reg_base == 0xffffffff)
7644 		return 0;
7645 
7646 	__bnxt_map_fw_health_reg(bp, reg_base);
7647 	return 0;
7648 }
7649 
7650 static int bnxt_hwrm_error_recovery_qcfg(struct bnxt *bp)
7651 {
7652 	struct hwrm_error_recovery_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
7653 	struct bnxt_fw_health *fw_health = bp->fw_health;
7654 	struct hwrm_error_recovery_qcfg_input req = {0};
7655 	int rc, i;
7656 
7657 	if (!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
7658 		return 0;
7659 
7660 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_ERROR_RECOVERY_QCFG, -1, -1);
7661 	mutex_lock(&bp->hwrm_cmd_lock);
7662 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7663 	if (rc)
7664 		goto err_recovery_out;
7665 	fw_health->flags = le32_to_cpu(resp->flags);
7666 	if ((fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) &&
7667 	    !(bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL)) {
7668 		rc = -EINVAL;
7669 		goto err_recovery_out;
7670 	}
7671 	fw_health->polling_dsecs = le32_to_cpu(resp->driver_polling_freq);
7672 	fw_health->master_func_wait_dsecs =
7673 		le32_to_cpu(resp->master_func_wait_period);
7674 	fw_health->normal_func_wait_dsecs =
7675 		le32_to_cpu(resp->normal_func_wait_period);
7676 	fw_health->post_reset_wait_dsecs =
7677 		le32_to_cpu(resp->master_func_wait_period_after_reset);
7678 	fw_health->post_reset_max_wait_dsecs =
7679 		le32_to_cpu(resp->max_bailout_time_after_reset);
7680 	fw_health->regs[BNXT_FW_HEALTH_REG] =
7681 		le32_to_cpu(resp->fw_health_status_reg);
7682 	fw_health->regs[BNXT_FW_HEARTBEAT_REG] =
7683 		le32_to_cpu(resp->fw_heartbeat_reg);
7684 	fw_health->regs[BNXT_FW_RESET_CNT_REG] =
7685 		le32_to_cpu(resp->fw_reset_cnt_reg);
7686 	fw_health->regs[BNXT_FW_RESET_INPROG_REG] =
7687 		le32_to_cpu(resp->reset_inprogress_reg);
7688 	fw_health->fw_reset_inprog_reg_mask =
7689 		le32_to_cpu(resp->reset_inprogress_reg_mask);
7690 	fw_health->fw_reset_seq_cnt = resp->reg_array_cnt;
7691 	if (fw_health->fw_reset_seq_cnt >= 16) {
7692 		rc = -EINVAL;
7693 		goto err_recovery_out;
7694 	}
7695 	for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) {
7696 		fw_health->fw_reset_seq_regs[i] =
7697 			le32_to_cpu(resp->reset_reg[i]);
7698 		fw_health->fw_reset_seq_vals[i] =
7699 			le32_to_cpu(resp->reset_reg_val[i]);
7700 		fw_health->fw_reset_seq_delay_msec[i] =
7701 			resp->delay_after_reset[i];
7702 	}
7703 err_recovery_out:
7704 	mutex_unlock(&bp->hwrm_cmd_lock);
7705 	if (!rc)
7706 		rc = bnxt_map_fw_health_regs(bp);
7707 	if (rc)
7708 		bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
7709 	return rc;
7710 }
7711 
7712 static int bnxt_hwrm_func_reset(struct bnxt *bp)
7713 {
7714 	struct hwrm_func_reset_input req = {0};
7715 
7716 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESET, -1, -1);
7717 	req.enables = 0;
7718 
7719 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_RESET_TIMEOUT);
7720 }
7721 
7722 static void bnxt_nvm_cfg_ver_get(struct bnxt *bp)
7723 {
7724 	struct hwrm_nvm_get_dev_info_output nvm_info;
7725 
7726 	if (!bnxt_hwrm_nvm_get_dev_info(bp, &nvm_info))
7727 		snprintf(bp->nvm_cfg_ver, FW_VER_STR_LEN, "%d.%d.%d",
7728 			 nvm_info.nvm_cfg_ver_maj, nvm_info.nvm_cfg_ver_min,
7729 			 nvm_info.nvm_cfg_ver_upd);
7730 }
7731 
7732 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
7733 {
7734 	int rc = 0;
7735 	struct hwrm_queue_qportcfg_input req = {0};
7736 	struct hwrm_queue_qportcfg_output *resp = bp->hwrm_cmd_resp_addr;
7737 	u8 i, j, *qptr;
7738 	bool no_rdma;
7739 
7740 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_QUEUE_QPORTCFG, -1, -1);
7741 
7742 	mutex_lock(&bp->hwrm_cmd_lock);
7743 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7744 	if (rc)
7745 		goto qportcfg_exit;
7746 
7747 	if (!resp->max_configurable_queues) {
7748 		rc = -EINVAL;
7749 		goto qportcfg_exit;
7750 	}
7751 	bp->max_tc = resp->max_configurable_queues;
7752 	bp->max_lltc = resp->max_configurable_lossless_queues;
7753 	if (bp->max_tc > BNXT_MAX_QUEUE)
7754 		bp->max_tc = BNXT_MAX_QUEUE;
7755 
7756 	no_rdma = !(bp->flags & BNXT_FLAG_ROCE_CAP);
7757 	qptr = &resp->queue_id0;
7758 	for (i = 0, j = 0; i < bp->max_tc; i++) {
7759 		bp->q_info[j].queue_id = *qptr;
7760 		bp->q_ids[i] = *qptr++;
7761 		bp->q_info[j].queue_profile = *qptr++;
7762 		bp->tc_to_qidx[j] = j;
7763 		if (!BNXT_CNPQ(bp->q_info[j].queue_profile) ||
7764 		    (no_rdma && BNXT_PF(bp)))
7765 			j++;
7766 	}
7767 	bp->max_q = bp->max_tc;
7768 	bp->max_tc = max_t(u8, j, 1);
7769 
7770 	if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG)
7771 		bp->max_tc = 1;
7772 
7773 	if (bp->max_lltc > bp->max_tc)
7774 		bp->max_lltc = bp->max_tc;
7775 
7776 qportcfg_exit:
7777 	mutex_unlock(&bp->hwrm_cmd_lock);
7778 	return rc;
7779 }
7780 
7781 static int __bnxt_hwrm_ver_get(struct bnxt *bp, bool silent)
7782 {
7783 	struct hwrm_ver_get_input req = {0};
7784 	int rc;
7785 
7786 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VER_GET, -1, -1);
7787 	req.hwrm_intf_maj = HWRM_VERSION_MAJOR;
7788 	req.hwrm_intf_min = HWRM_VERSION_MINOR;
7789 	req.hwrm_intf_upd = HWRM_VERSION_UPDATE;
7790 
7791 	rc = bnxt_hwrm_do_send_msg(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT,
7792 				   silent);
7793 	return rc;
7794 }
7795 
7796 static int bnxt_hwrm_ver_get(struct bnxt *bp)
7797 {
7798 	struct hwrm_ver_get_output *resp = bp->hwrm_cmd_resp_addr;
7799 	u16 fw_maj, fw_min, fw_bld, fw_rsv;
7800 	u32 dev_caps_cfg, hwrm_ver;
7801 	int rc, len;
7802 
7803 	bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN;
7804 	mutex_lock(&bp->hwrm_cmd_lock);
7805 	rc = __bnxt_hwrm_ver_get(bp, false);
7806 	if (rc)
7807 		goto hwrm_ver_get_exit;
7808 
7809 	memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
7810 
7811 	bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 |
7812 			     resp->hwrm_intf_min_8b << 8 |
7813 			     resp->hwrm_intf_upd_8b;
7814 	if (resp->hwrm_intf_maj_8b < 1) {
7815 		netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
7816 			    resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
7817 			    resp->hwrm_intf_upd_8b);
7818 		netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
7819 	}
7820 
7821 	hwrm_ver = HWRM_VERSION_MAJOR << 16 | HWRM_VERSION_MINOR << 8 |
7822 			HWRM_VERSION_UPDATE;
7823 
7824 	if (bp->hwrm_spec_code > hwrm_ver)
7825 		snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d",
7826 			 HWRM_VERSION_MAJOR, HWRM_VERSION_MINOR,
7827 			 HWRM_VERSION_UPDATE);
7828 	else
7829 		snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d",
7830 			 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
7831 			 resp->hwrm_intf_upd_8b);
7832 
7833 	fw_maj = le16_to_cpu(resp->hwrm_fw_major);
7834 	if (bp->hwrm_spec_code > 0x10803 && fw_maj) {
7835 		fw_min = le16_to_cpu(resp->hwrm_fw_minor);
7836 		fw_bld = le16_to_cpu(resp->hwrm_fw_build);
7837 		fw_rsv = le16_to_cpu(resp->hwrm_fw_patch);
7838 		len = FW_VER_STR_LEN;
7839 	} else {
7840 		fw_maj = resp->hwrm_fw_maj_8b;
7841 		fw_min = resp->hwrm_fw_min_8b;
7842 		fw_bld = resp->hwrm_fw_bld_8b;
7843 		fw_rsv = resp->hwrm_fw_rsvd_8b;
7844 		len = BC_HWRM_STR_LEN;
7845 	}
7846 	bp->fw_ver_code = BNXT_FW_VER_CODE(fw_maj, fw_min, fw_bld, fw_rsv);
7847 	snprintf(bp->fw_ver_str, len, "%d.%d.%d.%d", fw_maj, fw_min, fw_bld,
7848 		 fw_rsv);
7849 
7850 	if (strlen(resp->active_pkg_name)) {
7851 		int fw_ver_len = strlen(bp->fw_ver_str);
7852 
7853 		snprintf(bp->fw_ver_str + fw_ver_len,
7854 			 FW_VER_STR_LEN - fw_ver_len - 1, "/pkg %s",
7855 			 resp->active_pkg_name);
7856 		bp->fw_cap |= BNXT_FW_CAP_PKG_VER;
7857 	}
7858 
7859 	bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout);
7860 	if (!bp->hwrm_cmd_timeout)
7861 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
7862 
7863 	if (resp->hwrm_intf_maj_8b >= 1) {
7864 		bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len);
7865 		bp->hwrm_max_ext_req_len = le16_to_cpu(resp->max_ext_req_len);
7866 	}
7867 	if (bp->hwrm_max_ext_req_len < HWRM_MAX_REQ_LEN)
7868 		bp->hwrm_max_ext_req_len = HWRM_MAX_REQ_LEN;
7869 
7870 	bp->chip_num = le16_to_cpu(resp->chip_num);
7871 	bp->chip_rev = resp->chip_rev;
7872 	if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev &&
7873 	    !resp->chip_metal)
7874 		bp->flags |= BNXT_FLAG_CHIP_NITRO_A0;
7875 
7876 	dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg);
7877 	if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) &&
7878 	    (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED))
7879 		bp->fw_cap |= BNXT_FW_CAP_SHORT_CMD;
7880 
7881 	if (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_KONG_MB_CHNL_SUPPORTED)
7882 		bp->fw_cap |= BNXT_FW_CAP_KONG_MB_CHNL;
7883 
7884 	if (dev_caps_cfg &
7885 	    VER_GET_RESP_DEV_CAPS_CFG_FLOW_HANDLE_64BIT_SUPPORTED)
7886 		bp->fw_cap |= BNXT_FW_CAP_OVS_64BIT_HANDLE;
7887 
7888 	if (dev_caps_cfg &
7889 	    VER_GET_RESP_DEV_CAPS_CFG_TRUSTED_VF_SUPPORTED)
7890 		bp->fw_cap |= BNXT_FW_CAP_TRUSTED_VF;
7891 
7892 	if (dev_caps_cfg &
7893 	    VER_GET_RESP_DEV_CAPS_CFG_CFA_ADV_FLOW_MGNT_SUPPORTED)
7894 		bp->fw_cap |= BNXT_FW_CAP_CFA_ADV_FLOW;
7895 
7896 hwrm_ver_get_exit:
7897 	mutex_unlock(&bp->hwrm_cmd_lock);
7898 	return rc;
7899 }
7900 
7901 int bnxt_hwrm_fw_set_time(struct bnxt *bp)
7902 {
7903 	struct hwrm_fw_set_time_input req = {0};
7904 	struct tm tm;
7905 	time64_t now = ktime_get_real_seconds();
7906 
7907 	if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) ||
7908 	    bp->hwrm_spec_code < 0x10400)
7909 		return -EOPNOTSUPP;
7910 
7911 	time64_to_tm(now, 0, &tm);
7912 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FW_SET_TIME, -1, -1);
7913 	req.year = cpu_to_le16(1900 + tm.tm_year);
7914 	req.month = 1 + tm.tm_mon;
7915 	req.day = tm.tm_mday;
7916 	req.hour = tm.tm_hour;
7917 	req.minute = tm.tm_min;
7918 	req.second = tm.tm_sec;
7919 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7920 }
7921 
7922 static void bnxt_add_one_ctr(u64 hw, u64 *sw, u64 mask)
7923 {
7924 	u64 sw_tmp;
7925 
7926 	hw &= mask;
7927 	sw_tmp = (*sw & ~mask) | hw;
7928 	if (hw < (*sw & mask))
7929 		sw_tmp += mask + 1;
7930 	WRITE_ONCE(*sw, sw_tmp);
7931 }
7932 
7933 static void __bnxt_accumulate_stats(__le64 *hw_stats, u64 *sw_stats, u64 *masks,
7934 				    int count, bool ignore_zero)
7935 {
7936 	int i;
7937 
7938 	for (i = 0; i < count; i++) {
7939 		u64 hw = le64_to_cpu(READ_ONCE(hw_stats[i]));
7940 
7941 		if (ignore_zero && !hw)
7942 			continue;
7943 
7944 		if (masks[i] == -1ULL)
7945 			sw_stats[i] = hw;
7946 		else
7947 			bnxt_add_one_ctr(hw, &sw_stats[i], masks[i]);
7948 	}
7949 }
7950 
7951 static void bnxt_accumulate_stats(struct bnxt_stats_mem *stats)
7952 {
7953 	if (!stats->hw_stats)
7954 		return;
7955 
7956 	__bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats,
7957 				stats->hw_masks, stats->len / 8, false);
7958 }
7959 
7960 static void bnxt_accumulate_all_stats(struct bnxt *bp)
7961 {
7962 	struct bnxt_stats_mem *ring0_stats;
7963 	bool ignore_zero = false;
7964 	int i;
7965 
7966 	/* Chip bug.  Counter intermittently becomes 0. */
7967 	if (bp->flags & BNXT_FLAG_CHIP_P5)
7968 		ignore_zero = true;
7969 
7970 	for (i = 0; i < bp->cp_nr_rings; i++) {
7971 		struct bnxt_napi *bnapi = bp->bnapi[i];
7972 		struct bnxt_cp_ring_info *cpr;
7973 		struct bnxt_stats_mem *stats;
7974 
7975 		cpr = &bnapi->cp_ring;
7976 		stats = &cpr->stats;
7977 		if (!i)
7978 			ring0_stats = stats;
7979 		__bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats,
7980 					ring0_stats->hw_masks,
7981 					ring0_stats->len / 8, ignore_zero);
7982 	}
7983 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
7984 		struct bnxt_stats_mem *stats = &bp->port_stats;
7985 		__le64 *hw_stats = stats->hw_stats;
7986 		u64 *sw_stats = stats->sw_stats;
7987 		u64 *masks = stats->hw_masks;
7988 		int cnt;
7989 
7990 		cnt = sizeof(struct rx_port_stats) / 8;
7991 		__bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false);
7992 
7993 		hw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
7994 		sw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
7995 		masks += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
7996 		cnt = sizeof(struct tx_port_stats) / 8;
7997 		__bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false);
7998 	}
7999 	if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) {
8000 		bnxt_accumulate_stats(&bp->rx_port_stats_ext);
8001 		bnxt_accumulate_stats(&bp->tx_port_stats_ext);
8002 	}
8003 }
8004 
8005 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags)
8006 {
8007 	struct bnxt_pf_info *pf = &bp->pf;
8008 	struct hwrm_port_qstats_input req = {0};
8009 
8010 	if (!(bp->flags & BNXT_FLAG_PORT_STATS))
8011 		return 0;
8012 
8013 	if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))
8014 		return -EOPNOTSUPP;
8015 
8016 	req.flags = flags;
8017 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS, -1, -1);
8018 	req.port_id = cpu_to_le16(pf->port_id);
8019 	req.tx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map +
8020 					    BNXT_TX_PORT_STATS_BYTE_OFFSET);
8021 	req.rx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map);
8022 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8023 }
8024 
8025 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags)
8026 {
8027 	struct hwrm_port_qstats_ext_output *resp = bp->hwrm_cmd_resp_addr;
8028 	struct hwrm_queue_pri2cos_qcfg_input req2 = {0};
8029 	struct hwrm_port_qstats_ext_input req = {0};
8030 	struct bnxt_pf_info *pf = &bp->pf;
8031 	u32 tx_stat_size;
8032 	int rc;
8033 
8034 	if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT))
8035 		return 0;
8036 
8037 	if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))
8038 		return -EOPNOTSUPP;
8039 
8040 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS_EXT, -1, -1);
8041 	req.flags = flags;
8042 	req.port_id = cpu_to_le16(pf->port_id);
8043 	req.rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext));
8044 	req.rx_stat_host_addr = cpu_to_le64(bp->rx_port_stats_ext.hw_stats_map);
8045 	tx_stat_size = bp->tx_port_stats_ext.hw_stats ?
8046 		       sizeof(struct tx_port_stats_ext) : 0;
8047 	req.tx_stat_size = cpu_to_le16(tx_stat_size);
8048 	req.tx_stat_host_addr = cpu_to_le64(bp->tx_port_stats_ext.hw_stats_map);
8049 	mutex_lock(&bp->hwrm_cmd_lock);
8050 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8051 	if (!rc) {
8052 		bp->fw_rx_stats_ext_size = le16_to_cpu(resp->rx_stat_size) / 8;
8053 		bp->fw_tx_stats_ext_size = tx_stat_size ?
8054 			le16_to_cpu(resp->tx_stat_size) / 8 : 0;
8055 	} else {
8056 		bp->fw_rx_stats_ext_size = 0;
8057 		bp->fw_tx_stats_ext_size = 0;
8058 	}
8059 	if (flags)
8060 		goto qstats_done;
8061 
8062 	if (bp->fw_tx_stats_ext_size <=
8063 	    offsetof(struct tx_port_stats_ext, pfc_pri0_tx_duration_us) / 8) {
8064 		mutex_unlock(&bp->hwrm_cmd_lock);
8065 		bp->pri2cos_valid = 0;
8066 		return rc;
8067 	}
8068 
8069 	bnxt_hwrm_cmd_hdr_init(bp, &req2, HWRM_QUEUE_PRI2COS_QCFG, -1, -1);
8070 	req2.flags = cpu_to_le32(QUEUE_PRI2COS_QCFG_REQ_FLAGS_IVLAN);
8071 
8072 	rc = _hwrm_send_message(bp, &req2, sizeof(req2), HWRM_CMD_TIMEOUT);
8073 	if (!rc) {
8074 		struct hwrm_queue_pri2cos_qcfg_output *resp2;
8075 		u8 *pri2cos;
8076 		int i, j;
8077 
8078 		resp2 = bp->hwrm_cmd_resp_addr;
8079 		pri2cos = &resp2->pri0_cos_queue_id;
8080 		for (i = 0; i < 8; i++) {
8081 			u8 queue_id = pri2cos[i];
8082 			u8 queue_idx;
8083 
8084 			/* Per port queue IDs start from 0, 10, 20, etc */
8085 			queue_idx = queue_id % 10;
8086 			if (queue_idx > BNXT_MAX_QUEUE) {
8087 				bp->pri2cos_valid = false;
8088 				goto qstats_done;
8089 			}
8090 			for (j = 0; j < bp->max_q; j++) {
8091 				if (bp->q_ids[j] == queue_id)
8092 					bp->pri2cos_idx[i] = queue_idx;
8093 			}
8094 		}
8095 		bp->pri2cos_valid = 1;
8096 	}
8097 qstats_done:
8098 	mutex_unlock(&bp->hwrm_cmd_lock);
8099 	return rc;
8100 }
8101 
8102 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
8103 {
8104 	if (bp->vxlan_fw_dst_port_id != INVALID_HW_RING_ID)
8105 		bnxt_hwrm_tunnel_dst_port_free(
8106 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
8107 	if (bp->nge_fw_dst_port_id != INVALID_HW_RING_ID)
8108 		bnxt_hwrm_tunnel_dst_port_free(
8109 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
8110 }
8111 
8112 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
8113 {
8114 	int rc, i;
8115 	u32 tpa_flags = 0;
8116 
8117 	if (set_tpa)
8118 		tpa_flags = bp->flags & BNXT_FLAG_TPA;
8119 	else if (BNXT_NO_FW_ACCESS(bp))
8120 		return 0;
8121 	for (i = 0; i < bp->nr_vnics; i++) {
8122 		rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
8123 		if (rc) {
8124 			netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
8125 				   i, rc);
8126 			return rc;
8127 		}
8128 	}
8129 	return 0;
8130 }
8131 
8132 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
8133 {
8134 	int i;
8135 
8136 	for (i = 0; i < bp->nr_vnics; i++)
8137 		bnxt_hwrm_vnic_set_rss(bp, i, false);
8138 }
8139 
8140 static void bnxt_clear_vnic(struct bnxt *bp)
8141 {
8142 	if (!bp->vnic_info)
8143 		return;
8144 
8145 	bnxt_hwrm_clear_vnic_filter(bp);
8146 	if (!(bp->flags & BNXT_FLAG_CHIP_P5)) {
8147 		/* clear all RSS setting before free vnic ctx */
8148 		bnxt_hwrm_clear_vnic_rss(bp);
8149 		bnxt_hwrm_vnic_ctx_free(bp);
8150 	}
8151 	/* before free the vnic, undo the vnic tpa settings */
8152 	if (bp->flags & BNXT_FLAG_TPA)
8153 		bnxt_set_tpa(bp, false);
8154 	bnxt_hwrm_vnic_free(bp);
8155 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8156 		bnxt_hwrm_vnic_ctx_free(bp);
8157 }
8158 
8159 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
8160 				    bool irq_re_init)
8161 {
8162 	bnxt_clear_vnic(bp);
8163 	bnxt_hwrm_ring_free(bp, close_path);
8164 	bnxt_hwrm_ring_grp_free(bp);
8165 	if (irq_re_init) {
8166 		bnxt_hwrm_stat_ctx_free(bp);
8167 		bnxt_hwrm_free_tunnel_ports(bp);
8168 	}
8169 }
8170 
8171 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode)
8172 {
8173 	struct hwrm_func_cfg_input req = {0};
8174 
8175 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
8176 	req.fid = cpu_to_le16(0xffff);
8177 	req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE);
8178 	if (br_mode == BRIDGE_MODE_VEB)
8179 		req.evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB;
8180 	else if (br_mode == BRIDGE_MODE_VEPA)
8181 		req.evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA;
8182 	else
8183 		return -EINVAL;
8184 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8185 }
8186 
8187 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size)
8188 {
8189 	struct hwrm_func_cfg_input req = {0};
8190 
8191 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803)
8192 		return 0;
8193 
8194 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
8195 	req.fid = cpu_to_le16(0xffff);
8196 	req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE);
8197 	req.options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64;
8198 	if (size == 128)
8199 		req.options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128;
8200 
8201 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8202 }
8203 
8204 static int __bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
8205 {
8206 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
8207 	int rc;
8208 
8209 	if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG)
8210 		goto skip_rss_ctx;
8211 
8212 	/* allocate context for vnic */
8213 	rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0);
8214 	if (rc) {
8215 		netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
8216 			   vnic_id, rc);
8217 		goto vnic_setup_err;
8218 	}
8219 	bp->rsscos_nr_ctxs++;
8220 
8221 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
8222 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1);
8223 		if (rc) {
8224 			netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n",
8225 				   vnic_id, rc);
8226 			goto vnic_setup_err;
8227 		}
8228 		bp->rsscos_nr_ctxs++;
8229 	}
8230 
8231 skip_rss_ctx:
8232 	/* configure default vnic, ring grp */
8233 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
8234 	if (rc) {
8235 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
8236 			   vnic_id, rc);
8237 		goto vnic_setup_err;
8238 	}
8239 
8240 	/* Enable RSS hashing on vnic */
8241 	rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
8242 	if (rc) {
8243 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
8244 			   vnic_id, rc);
8245 		goto vnic_setup_err;
8246 	}
8247 
8248 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
8249 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
8250 		if (rc) {
8251 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
8252 				   vnic_id, rc);
8253 		}
8254 	}
8255 
8256 vnic_setup_err:
8257 	return rc;
8258 }
8259 
8260 static int __bnxt_setup_vnic_p5(struct bnxt *bp, u16 vnic_id)
8261 {
8262 	int rc, i, nr_ctxs;
8263 
8264 	nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings);
8265 	for (i = 0; i < nr_ctxs; i++) {
8266 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, i);
8267 		if (rc) {
8268 			netdev_err(bp->dev, "hwrm vnic %d ctx %d alloc failure rc: %x\n",
8269 				   vnic_id, i, rc);
8270 			break;
8271 		}
8272 		bp->rsscos_nr_ctxs++;
8273 	}
8274 	if (i < nr_ctxs)
8275 		return -ENOMEM;
8276 
8277 	rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic_id, true);
8278 	if (rc) {
8279 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n",
8280 			   vnic_id, rc);
8281 		return rc;
8282 	}
8283 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
8284 	if (rc) {
8285 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
8286 			   vnic_id, rc);
8287 		return rc;
8288 	}
8289 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
8290 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
8291 		if (rc) {
8292 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
8293 				   vnic_id, rc);
8294 		}
8295 	}
8296 	return rc;
8297 }
8298 
8299 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
8300 {
8301 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8302 		return __bnxt_setup_vnic_p5(bp, vnic_id);
8303 	else
8304 		return __bnxt_setup_vnic(bp, vnic_id);
8305 }
8306 
8307 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
8308 {
8309 #ifdef CONFIG_RFS_ACCEL
8310 	int i, rc = 0;
8311 
8312 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8313 		return 0;
8314 
8315 	for (i = 0; i < bp->rx_nr_rings; i++) {
8316 		struct bnxt_vnic_info *vnic;
8317 		u16 vnic_id = i + 1;
8318 		u16 ring_id = i;
8319 
8320 		if (vnic_id >= bp->nr_vnics)
8321 			break;
8322 
8323 		vnic = &bp->vnic_info[vnic_id];
8324 		vnic->flags |= BNXT_VNIC_RFS_FLAG;
8325 		if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
8326 			vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG;
8327 		rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1);
8328 		if (rc) {
8329 			netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
8330 				   vnic_id, rc);
8331 			break;
8332 		}
8333 		rc = bnxt_setup_vnic(bp, vnic_id);
8334 		if (rc)
8335 			break;
8336 	}
8337 	return rc;
8338 #else
8339 	return 0;
8340 #endif
8341 }
8342 
8343 /* Allow PF and VF with default VLAN to be in promiscuous mode */
8344 static bool bnxt_promisc_ok(struct bnxt *bp)
8345 {
8346 #ifdef CONFIG_BNXT_SRIOV
8347 	if (BNXT_VF(bp) && !bp->vf.vlan)
8348 		return false;
8349 #endif
8350 	return true;
8351 }
8352 
8353 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp)
8354 {
8355 	unsigned int rc = 0;
8356 
8357 	rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1);
8358 	if (rc) {
8359 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
8360 			   rc);
8361 		return rc;
8362 	}
8363 
8364 	rc = bnxt_hwrm_vnic_cfg(bp, 1);
8365 	if (rc) {
8366 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
8367 			   rc);
8368 		return rc;
8369 	}
8370 	return rc;
8371 }
8372 
8373 static int bnxt_cfg_rx_mode(struct bnxt *);
8374 static bool bnxt_mc_list_updated(struct bnxt *, u32 *);
8375 
8376 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
8377 {
8378 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
8379 	int rc = 0;
8380 	unsigned int rx_nr_rings = bp->rx_nr_rings;
8381 
8382 	if (irq_re_init) {
8383 		rc = bnxt_hwrm_stat_ctx_alloc(bp);
8384 		if (rc) {
8385 			netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
8386 				   rc);
8387 			goto err_out;
8388 		}
8389 	}
8390 
8391 	rc = bnxt_hwrm_ring_alloc(bp);
8392 	if (rc) {
8393 		netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
8394 		goto err_out;
8395 	}
8396 
8397 	rc = bnxt_hwrm_ring_grp_alloc(bp);
8398 	if (rc) {
8399 		netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
8400 		goto err_out;
8401 	}
8402 
8403 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
8404 		rx_nr_rings--;
8405 
8406 	/* default vnic 0 */
8407 	rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings);
8408 	if (rc) {
8409 		netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
8410 		goto err_out;
8411 	}
8412 
8413 	rc = bnxt_setup_vnic(bp, 0);
8414 	if (rc)
8415 		goto err_out;
8416 
8417 	if (bp->flags & BNXT_FLAG_RFS) {
8418 		rc = bnxt_alloc_rfs_vnics(bp);
8419 		if (rc)
8420 			goto err_out;
8421 	}
8422 
8423 	if (bp->flags & BNXT_FLAG_TPA) {
8424 		rc = bnxt_set_tpa(bp, true);
8425 		if (rc)
8426 			goto err_out;
8427 	}
8428 
8429 	if (BNXT_VF(bp))
8430 		bnxt_update_vf_mac(bp);
8431 
8432 	/* Filter for default vnic 0 */
8433 	rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
8434 	if (rc) {
8435 		netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
8436 		goto err_out;
8437 	}
8438 	vnic->uc_filter_count = 1;
8439 
8440 	vnic->rx_mask = 0;
8441 	if (bp->dev->flags & IFF_BROADCAST)
8442 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
8443 
8444 	if ((bp->dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
8445 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
8446 
8447 	if (bp->dev->flags & IFF_ALLMULTI) {
8448 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
8449 		vnic->mc_list_count = 0;
8450 	} else {
8451 		u32 mask = 0;
8452 
8453 		bnxt_mc_list_updated(bp, &mask);
8454 		vnic->rx_mask |= mask;
8455 	}
8456 
8457 	rc = bnxt_cfg_rx_mode(bp);
8458 	if (rc)
8459 		goto err_out;
8460 
8461 	rc = bnxt_hwrm_set_coal(bp);
8462 	if (rc)
8463 		netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
8464 				rc);
8465 
8466 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
8467 		rc = bnxt_setup_nitroa0_vnic(bp);
8468 		if (rc)
8469 			netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n",
8470 				   rc);
8471 	}
8472 
8473 	if (BNXT_VF(bp)) {
8474 		bnxt_hwrm_func_qcfg(bp);
8475 		netdev_update_features(bp->dev);
8476 	}
8477 
8478 	return 0;
8479 
8480 err_out:
8481 	bnxt_hwrm_resource_free(bp, 0, true);
8482 
8483 	return rc;
8484 }
8485 
8486 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
8487 {
8488 	bnxt_hwrm_resource_free(bp, 1, irq_re_init);
8489 	return 0;
8490 }
8491 
8492 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
8493 {
8494 	bnxt_init_cp_rings(bp);
8495 	bnxt_init_rx_rings(bp);
8496 	bnxt_init_tx_rings(bp);
8497 	bnxt_init_ring_grps(bp, irq_re_init);
8498 	bnxt_init_vnics(bp);
8499 
8500 	return bnxt_init_chip(bp, irq_re_init);
8501 }
8502 
8503 static int bnxt_set_real_num_queues(struct bnxt *bp)
8504 {
8505 	int rc;
8506 	struct net_device *dev = bp->dev;
8507 
8508 	rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings -
8509 					  bp->tx_nr_rings_xdp);
8510 	if (rc)
8511 		return rc;
8512 
8513 	rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
8514 	if (rc)
8515 		return rc;
8516 
8517 #ifdef CONFIG_RFS_ACCEL
8518 	if (bp->flags & BNXT_FLAG_RFS)
8519 		dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
8520 #endif
8521 
8522 	return rc;
8523 }
8524 
8525 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
8526 			   bool shared)
8527 {
8528 	int _rx = *rx, _tx = *tx;
8529 
8530 	if (shared) {
8531 		*rx = min_t(int, _rx, max);
8532 		*tx = min_t(int, _tx, max);
8533 	} else {
8534 		if (max < 2)
8535 			return -ENOMEM;
8536 
8537 		while (_rx + _tx > max) {
8538 			if (_rx > _tx && _rx > 1)
8539 				_rx--;
8540 			else if (_tx > 1)
8541 				_tx--;
8542 		}
8543 		*rx = _rx;
8544 		*tx = _tx;
8545 	}
8546 	return 0;
8547 }
8548 
8549 static void bnxt_setup_msix(struct bnxt *bp)
8550 {
8551 	const int len = sizeof(bp->irq_tbl[0].name);
8552 	struct net_device *dev = bp->dev;
8553 	int tcs, i;
8554 
8555 	tcs = netdev_get_num_tc(dev);
8556 	if (tcs) {
8557 		int i, off, count;
8558 
8559 		for (i = 0; i < tcs; i++) {
8560 			count = bp->tx_nr_rings_per_tc;
8561 			off = i * count;
8562 			netdev_set_tc_queue(dev, i, count, off);
8563 		}
8564 	}
8565 
8566 	for (i = 0; i < bp->cp_nr_rings; i++) {
8567 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
8568 		char *attr;
8569 
8570 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
8571 			attr = "TxRx";
8572 		else if (i < bp->rx_nr_rings)
8573 			attr = "rx";
8574 		else
8575 			attr = "tx";
8576 
8577 		snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name,
8578 			 attr, i);
8579 		bp->irq_tbl[map_idx].handler = bnxt_msix;
8580 	}
8581 }
8582 
8583 static void bnxt_setup_inta(struct bnxt *bp)
8584 {
8585 	const int len = sizeof(bp->irq_tbl[0].name);
8586 
8587 	if (netdev_get_num_tc(bp->dev))
8588 		netdev_reset_tc(bp->dev);
8589 
8590 	snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx",
8591 		 0);
8592 	bp->irq_tbl[0].handler = bnxt_inta;
8593 }
8594 
8595 static int bnxt_init_int_mode(struct bnxt *bp);
8596 
8597 static int bnxt_setup_int_mode(struct bnxt *bp)
8598 {
8599 	int rc;
8600 
8601 	if (!bp->irq_tbl) {
8602 		rc = bnxt_init_int_mode(bp);
8603 		if (rc || !bp->irq_tbl)
8604 			return rc ?: -ENODEV;
8605 	}
8606 
8607 	if (bp->flags & BNXT_FLAG_USING_MSIX)
8608 		bnxt_setup_msix(bp);
8609 	else
8610 		bnxt_setup_inta(bp);
8611 
8612 	rc = bnxt_set_real_num_queues(bp);
8613 	return rc;
8614 }
8615 
8616 #ifdef CONFIG_RFS_ACCEL
8617 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp)
8618 {
8619 	return bp->hw_resc.max_rsscos_ctxs;
8620 }
8621 
8622 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp)
8623 {
8624 	return bp->hw_resc.max_vnics;
8625 }
8626 #endif
8627 
8628 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp)
8629 {
8630 	return bp->hw_resc.max_stat_ctxs;
8631 }
8632 
8633 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp)
8634 {
8635 	return bp->hw_resc.max_cp_rings;
8636 }
8637 
8638 static unsigned int bnxt_get_max_func_cp_rings_for_en(struct bnxt *bp)
8639 {
8640 	unsigned int cp = bp->hw_resc.max_cp_rings;
8641 
8642 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
8643 		cp -= bnxt_get_ulp_msix_num(bp);
8644 
8645 	return cp;
8646 }
8647 
8648 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp)
8649 {
8650 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
8651 
8652 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8653 		return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_nqs);
8654 
8655 	return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings);
8656 }
8657 
8658 static void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs)
8659 {
8660 	bp->hw_resc.max_irqs = max_irqs;
8661 }
8662 
8663 unsigned int bnxt_get_avail_cp_rings_for_en(struct bnxt *bp)
8664 {
8665 	unsigned int cp;
8666 
8667 	cp = bnxt_get_max_func_cp_rings_for_en(bp);
8668 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8669 		return cp - bp->rx_nr_rings - bp->tx_nr_rings;
8670 	else
8671 		return cp - bp->cp_nr_rings;
8672 }
8673 
8674 unsigned int bnxt_get_avail_stat_ctxs_for_en(struct bnxt *bp)
8675 {
8676 	return bnxt_get_max_func_stat_ctxs(bp) - bnxt_get_func_stat_ctxs(bp);
8677 }
8678 
8679 int bnxt_get_avail_msix(struct bnxt *bp, int num)
8680 {
8681 	int max_cp = bnxt_get_max_func_cp_rings(bp);
8682 	int max_irq = bnxt_get_max_func_irqs(bp);
8683 	int total_req = bp->cp_nr_rings + num;
8684 	int max_idx, avail_msix;
8685 
8686 	max_idx = bp->total_irqs;
8687 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
8688 		max_idx = min_t(int, bp->total_irqs, max_cp);
8689 	avail_msix = max_idx - bp->cp_nr_rings;
8690 	if (!BNXT_NEW_RM(bp) || avail_msix >= num)
8691 		return avail_msix;
8692 
8693 	if (max_irq < total_req) {
8694 		num = max_irq - bp->cp_nr_rings;
8695 		if (num <= 0)
8696 			return 0;
8697 	}
8698 	return num;
8699 }
8700 
8701 static int bnxt_get_num_msix(struct bnxt *bp)
8702 {
8703 	if (!BNXT_NEW_RM(bp))
8704 		return bnxt_get_max_func_irqs(bp);
8705 
8706 	return bnxt_nq_rings_in_use(bp);
8707 }
8708 
8709 static int bnxt_init_msix(struct bnxt *bp)
8710 {
8711 	int i, total_vecs, max, rc = 0, min = 1, ulp_msix;
8712 	struct msix_entry *msix_ent;
8713 
8714 	total_vecs = bnxt_get_num_msix(bp);
8715 	max = bnxt_get_max_func_irqs(bp);
8716 	if (total_vecs > max)
8717 		total_vecs = max;
8718 
8719 	if (!total_vecs)
8720 		return 0;
8721 
8722 	msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
8723 	if (!msix_ent)
8724 		return -ENOMEM;
8725 
8726 	for (i = 0; i < total_vecs; i++) {
8727 		msix_ent[i].entry = i;
8728 		msix_ent[i].vector = 0;
8729 	}
8730 
8731 	if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
8732 		min = 2;
8733 
8734 	total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
8735 	ulp_msix = bnxt_get_ulp_msix_num(bp);
8736 	if (total_vecs < 0 || total_vecs < ulp_msix) {
8737 		rc = -ENODEV;
8738 		goto msix_setup_exit;
8739 	}
8740 
8741 	bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
8742 	if (bp->irq_tbl) {
8743 		for (i = 0; i < total_vecs; i++)
8744 			bp->irq_tbl[i].vector = msix_ent[i].vector;
8745 
8746 		bp->total_irqs = total_vecs;
8747 		/* Trim rings based upon num of vectors allocated */
8748 		rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
8749 				     total_vecs - ulp_msix, min == 1);
8750 		if (rc)
8751 			goto msix_setup_exit;
8752 
8753 		bp->cp_nr_rings = (min == 1) ?
8754 				  max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
8755 				  bp->tx_nr_rings + bp->rx_nr_rings;
8756 
8757 	} else {
8758 		rc = -ENOMEM;
8759 		goto msix_setup_exit;
8760 	}
8761 	bp->flags |= BNXT_FLAG_USING_MSIX;
8762 	kfree(msix_ent);
8763 	return 0;
8764 
8765 msix_setup_exit:
8766 	netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc);
8767 	kfree(bp->irq_tbl);
8768 	bp->irq_tbl = NULL;
8769 	pci_disable_msix(bp->pdev);
8770 	kfree(msix_ent);
8771 	return rc;
8772 }
8773 
8774 static int bnxt_init_inta(struct bnxt *bp)
8775 {
8776 	bp->irq_tbl = kzalloc(sizeof(struct bnxt_irq), GFP_KERNEL);
8777 	if (!bp->irq_tbl)
8778 		return -ENOMEM;
8779 
8780 	bp->total_irqs = 1;
8781 	bp->rx_nr_rings = 1;
8782 	bp->tx_nr_rings = 1;
8783 	bp->cp_nr_rings = 1;
8784 	bp->flags |= BNXT_FLAG_SHARED_RINGS;
8785 	bp->irq_tbl[0].vector = bp->pdev->irq;
8786 	return 0;
8787 }
8788 
8789 static int bnxt_init_int_mode(struct bnxt *bp)
8790 {
8791 	int rc = -ENODEV;
8792 
8793 	if (bp->flags & BNXT_FLAG_MSIX_CAP)
8794 		rc = bnxt_init_msix(bp);
8795 
8796 	if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) {
8797 		/* fallback to INTA */
8798 		rc = bnxt_init_inta(bp);
8799 	}
8800 	return rc;
8801 }
8802 
8803 static void bnxt_clear_int_mode(struct bnxt *bp)
8804 {
8805 	if (bp->flags & BNXT_FLAG_USING_MSIX)
8806 		pci_disable_msix(bp->pdev);
8807 
8808 	kfree(bp->irq_tbl);
8809 	bp->irq_tbl = NULL;
8810 	bp->flags &= ~BNXT_FLAG_USING_MSIX;
8811 }
8812 
8813 int bnxt_reserve_rings(struct bnxt *bp, bool irq_re_init)
8814 {
8815 	int tcs = netdev_get_num_tc(bp->dev);
8816 	bool irq_cleared = false;
8817 	int rc;
8818 
8819 	if (!bnxt_need_reserve_rings(bp))
8820 		return 0;
8821 
8822 	if (irq_re_init && BNXT_NEW_RM(bp) &&
8823 	    bnxt_get_num_msix(bp) != bp->total_irqs) {
8824 		bnxt_ulp_irq_stop(bp);
8825 		bnxt_clear_int_mode(bp);
8826 		irq_cleared = true;
8827 	}
8828 	rc = __bnxt_reserve_rings(bp);
8829 	if (irq_cleared) {
8830 		if (!rc)
8831 			rc = bnxt_init_int_mode(bp);
8832 		bnxt_ulp_irq_restart(bp, rc);
8833 	}
8834 	if (rc) {
8835 		netdev_err(bp->dev, "ring reservation/IRQ init failure rc: %d\n", rc);
8836 		return rc;
8837 	}
8838 	if (tcs && (bp->tx_nr_rings_per_tc * tcs != bp->tx_nr_rings)) {
8839 		netdev_err(bp->dev, "tx ring reservation failure\n");
8840 		netdev_reset_tc(bp->dev);
8841 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
8842 		return -ENOMEM;
8843 	}
8844 	return 0;
8845 }
8846 
8847 static void bnxt_free_irq(struct bnxt *bp)
8848 {
8849 	struct bnxt_irq *irq;
8850 	int i;
8851 
8852 #ifdef CONFIG_RFS_ACCEL
8853 	free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
8854 	bp->dev->rx_cpu_rmap = NULL;
8855 #endif
8856 	if (!bp->irq_tbl || !bp->bnapi)
8857 		return;
8858 
8859 	for (i = 0; i < bp->cp_nr_rings; i++) {
8860 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
8861 
8862 		irq = &bp->irq_tbl[map_idx];
8863 		if (irq->requested) {
8864 			if (irq->have_cpumask) {
8865 				irq_set_affinity_hint(irq->vector, NULL);
8866 				free_cpumask_var(irq->cpu_mask);
8867 				irq->have_cpumask = 0;
8868 			}
8869 			free_irq(irq->vector, bp->bnapi[i]);
8870 		}
8871 
8872 		irq->requested = 0;
8873 	}
8874 }
8875 
8876 static int bnxt_request_irq(struct bnxt *bp)
8877 {
8878 	int i, j, rc = 0;
8879 	unsigned long flags = 0;
8880 #ifdef CONFIG_RFS_ACCEL
8881 	struct cpu_rmap *rmap;
8882 #endif
8883 
8884 	rc = bnxt_setup_int_mode(bp);
8885 	if (rc) {
8886 		netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
8887 			   rc);
8888 		return rc;
8889 	}
8890 #ifdef CONFIG_RFS_ACCEL
8891 	rmap = bp->dev->rx_cpu_rmap;
8892 #endif
8893 	if (!(bp->flags & BNXT_FLAG_USING_MSIX))
8894 		flags = IRQF_SHARED;
8895 
8896 	for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
8897 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
8898 		struct bnxt_irq *irq = &bp->irq_tbl[map_idx];
8899 
8900 #ifdef CONFIG_RFS_ACCEL
8901 		if (rmap && bp->bnapi[i]->rx_ring) {
8902 			rc = irq_cpu_rmap_add(rmap, irq->vector);
8903 			if (rc)
8904 				netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
8905 					    j);
8906 			j++;
8907 		}
8908 #endif
8909 		rc = request_irq(irq->vector, irq->handler, flags, irq->name,
8910 				 bp->bnapi[i]);
8911 		if (rc)
8912 			break;
8913 
8914 		irq->requested = 1;
8915 
8916 		if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) {
8917 			int numa_node = dev_to_node(&bp->pdev->dev);
8918 
8919 			irq->have_cpumask = 1;
8920 			cpumask_set_cpu(cpumask_local_spread(i, numa_node),
8921 					irq->cpu_mask);
8922 			rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask);
8923 			if (rc) {
8924 				netdev_warn(bp->dev,
8925 					    "Set affinity failed, IRQ = %d\n",
8926 					    irq->vector);
8927 				break;
8928 			}
8929 		}
8930 	}
8931 	return rc;
8932 }
8933 
8934 static void bnxt_del_napi(struct bnxt *bp)
8935 {
8936 	int i;
8937 
8938 	if (!bp->bnapi)
8939 		return;
8940 
8941 	for (i = 0; i < bp->cp_nr_rings; i++) {
8942 		struct bnxt_napi *bnapi = bp->bnapi[i];
8943 
8944 		__netif_napi_del(&bnapi->napi);
8945 	}
8946 	/* We called __netif_napi_del(), we need
8947 	 * to respect an RCU grace period before freeing napi structures.
8948 	 */
8949 	synchronize_net();
8950 }
8951 
8952 static void bnxt_init_napi(struct bnxt *bp)
8953 {
8954 	int i;
8955 	unsigned int cp_nr_rings = bp->cp_nr_rings;
8956 	struct bnxt_napi *bnapi;
8957 
8958 	if (bp->flags & BNXT_FLAG_USING_MSIX) {
8959 		int (*poll_fn)(struct napi_struct *, int) = bnxt_poll;
8960 
8961 		if (bp->flags & BNXT_FLAG_CHIP_P5)
8962 			poll_fn = bnxt_poll_p5;
8963 		else if (BNXT_CHIP_TYPE_NITRO_A0(bp))
8964 			cp_nr_rings--;
8965 		for (i = 0; i < cp_nr_rings; i++) {
8966 			bnapi = bp->bnapi[i];
8967 			netif_napi_add(bp->dev, &bnapi->napi, poll_fn, 64);
8968 		}
8969 		if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
8970 			bnapi = bp->bnapi[cp_nr_rings];
8971 			netif_napi_add(bp->dev, &bnapi->napi,
8972 				       bnxt_poll_nitroa0, 64);
8973 		}
8974 	} else {
8975 		bnapi = bp->bnapi[0];
8976 		netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64);
8977 	}
8978 }
8979 
8980 static void bnxt_disable_napi(struct bnxt *bp)
8981 {
8982 	int i;
8983 
8984 	if (!bp->bnapi ||
8985 	    test_and_set_bit(BNXT_STATE_NAPI_DISABLED, &bp->state))
8986 		return;
8987 
8988 	for (i = 0; i < bp->cp_nr_rings; i++) {
8989 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
8990 
8991 		if (bp->bnapi[i]->rx_ring)
8992 			cancel_work_sync(&cpr->dim.work);
8993 
8994 		napi_disable(&bp->bnapi[i]->napi);
8995 	}
8996 }
8997 
8998 static void bnxt_enable_napi(struct bnxt *bp)
8999 {
9000 	int i;
9001 
9002 	clear_bit(BNXT_STATE_NAPI_DISABLED, &bp->state);
9003 	for (i = 0; i < bp->cp_nr_rings; i++) {
9004 		struct bnxt_napi *bnapi = bp->bnapi[i];
9005 		struct bnxt_cp_ring_info *cpr;
9006 
9007 		cpr = &bnapi->cp_ring;
9008 		if (bnapi->in_reset)
9009 			cpr->sw_stats.rx.rx_resets++;
9010 		bnapi->in_reset = false;
9011 
9012 		if (bnapi->rx_ring) {
9013 			INIT_WORK(&cpr->dim.work, bnxt_dim_work);
9014 			cpr->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
9015 		}
9016 		napi_enable(&bnapi->napi);
9017 	}
9018 }
9019 
9020 void bnxt_tx_disable(struct bnxt *bp)
9021 {
9022 	int i;
9023 	struct bnxt_tx_ring_info *txr;
9024 
9025 	if (bp->tx_ring) {
9026 		for (i = 0; i < bp->tx_nr_rings; i++) {
9027 			txr = &bp->tx_ring[i];
9028 			txr->dev_state = BNXT_DEV_STATE_CLOSING;
9029 		}
9030 	}
9031 	/* Drop carrier first to prevent TX timeout */
9032 	netif_carrier_off(bp->dev);
9033 	/* Stop all TX queues */
9034 	netif_tx_disable(bp->dev);
9035 }
9036 
9037 void bnxt_tx_enable(struct bnxt *bp)
9038 {
9039 	int i;
9040 	struct bnxt_tx_ring_info *txr;
9041 
9042 	for (i = 0; i < bp->tx_nr_rings; i++) {
9043 		txr = &bp->tx_ring[i];
9044 		txr->dev_state = 0;
9045 	}
9046 	netif_tx_wake_all_queues(bp->dev);
9047 	if (bp->link_info.link_up)
9048 		netif_carrier_on(bp->dev);
9049 }
9050 
9051 static char *bnxt_report_fec(struct bnxt_link_info *link_info)
9052 {
9053 	u8 active_fec = link_info->active_fec_sig_mode &
9054 			PORT_PHY_QCFG_RESP_ACTIVE_FEC_MASK;
9055 
9056 	switch (active_fec) {
9057 	default:
9058 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_NONE_ACTIVE:
9059 		return "None";
9060 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE74_ACTIVE:
9061 		return "Clause 74 BaseR";
9062 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE91_ACTIVE:
9063 		return "Clause 91 RS(528,514)";
9064 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_1XN_ACTIVE:
9065 		return "Clause 91 RS544_1XN";
9066 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_IEEE_ACTIVE:
9067 		return "Clause 91 RS(544,514)";
9068 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_1XN_ACTIVE:
9069 		return "Clause 91 RS272_1XN";
9070 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_IEEE_ACTIVE:
9071 		return "Clause 91 RS(272,257)";
9072 	}
9073 }
9074 
9075 static void bnxt_report_link(struct bnxt *bp)
9076 {
9077 	if (bp->link_info.link_up) {
9078 		const char *duplex;
9079 		const char *flow_ctrl;
9080 		u32 speed;
9081 		u16 fec;
9082 
9083 		netif_carrier_on(bp->dev);
9084 		speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
9085 		if (speed == SPEED_UNKNOWN) {
9086 			netdev_info(bp->dev, "NIC Link is Up, speed unknown\n");
9087 			return;
9088 		}
9089 		if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
9090 			duplex = "full";
9091 		else
9092 			duplex = "half";
9093 		if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
9094 			flow_ctrl = "ON - receive & transmit";
9095 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
9096 			flow_ctrl = "ON - transmit";
9097 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
9098 			flow_ctrl = "ON - receive";
9099 		else
9100 			flow_ctrl = "none";
9101 		netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s duplex, Flow control: %s\n",
9102 			    speed, duplex, flow_ctrl);
9103 		if (bp->flags & BNXT_FLAG_EEE_CAP)
9104 			netdev_info(bp->dev, "EEE is %s\n",
9105 				    bp->eee.eee_active ? "active" :
9106 							 "not active");
9107 		fec = bp->link_info.fec_cfg;
9108 		if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED))
9109 			netdev_info(bp->dev, "FEC autoneg %s encoding: %s\n",
9110 				    (fec & BNXT_FEC_AUTONEG) ? "on" : "off",
9111 				    bnxt_report_fec(&bp->link_info));
9112 	} else {
9113 		netif_carrier_off(bp->dev);
9114 		netdev_err(bp->dev, "NIC Link is Down\n");
9115 	}
9116 }
9117 
9118 static bool bnxt_phy_qcaps_no_speed(struct hwrm_port_phy_qcaps_output *resp)
9119 {
9120 	if (!resp->supported_speeds_auto_mode &&
9121 	    !resp->supported_speeds_force_mode &&
9122 	    !resp->supported_pam4_speeds_auto_mode &&
9123 	    !resp->supported_pam4_speeds_force_mode)
9124 		return true;
9125 	return false;
9126 }
9127 
9128 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp)
9129 {
9130 	int rc = 0;
9131 	struct hwrm_port_phy_qcaps_input req = {0};
9132 	struct hwrm_port_phy_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
9133 	struct bnxt_link_info *link_info = &bp->link_info;
9134 
9135 	bp->flags &= ~BNXT_FLAG_EEE_CAP;
9136 	if (bp->test_info)
9137 		bp->test_info->flags &= ~(BNXT_TEST_FL_EXT_LPBK |
9138 					  BNXT_TEST_FL_AN_PHY_LPBK);
9139 	if (bp->hwrm_spec_code < 0x10201)
9140 		return 0;
9141 
9142 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCAPS, -1, -1);
9143 
9144 	mutex_lock(&bp->hwrm_cmd_lock);
9145 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9146 	if (rc)
9147 		goto hwrm_phy_qcaps_exit;
9148 
9149 	if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) {
9150 		struct ethtool_eee *eee = &bp->eee;
9151 		u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode);
9152 
9153 		bp->flags |= BNXT_FLAG_EEE_CAP;
9154 		eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
9155 		bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) &
9156 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK;
9157 		bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) &
9158 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK;
9159 	}
9160 	if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EXTERNAL_LPBK_SUPPORTED) {
9161 		if (bp->test_info)
9162 			bp->test_info->flags |= BNXT_TEST_FL_EXT_LPBK;
9163 	}
9164 	if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_AUTONEG_LPBK_SUPPORTED) {
9165 		if (bp->test_info)
9166 			bp->test_info->flags |= BNXT_TEST_FL_AN_PHY_LPBK;
9167 	}
9168 	if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_SHARED_PHY_CFG_SUPPORTED) {
9169 		if (BNXT_PF(bp))
9170 			bp->fw_cap |= BNXT_FW_CAP_SHARED_PORT_CFG;
9171 	}
9172 	if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_CUMULATIVE_COUNTERS_ON_RESET)
9173 		bp->fw_cap |= BNXT_FW_CAP_PORT_STATS_NO_RESET;
9174 
9175 	if (bp->hwrm_spec_code >= 0x10a01) {
9176 		if (bnxt_phy_qcaps_no_speed(resp)) {
9177 			link_info->phy_state = BNXT_PHY_STATE_DISABLED;
9178 			netdev_warn(bp->dev, "Ethernet link disabled\n");
9179 		} else if (link_info->phy_state == BNXT_PHY_STATE_DISABLED) {
9180 			link_info->phy_state = BNXT_PHY_STATE_ENABLED;
9181 			netdev_info(bp->dev, "Ethernet link enabled\n");
9182 			/* Phy re-enabled, reprobe the speeds */
9183 			link_info->support_auto_speeds = 0;
9184 			link_info->support_pam4_auto_speeds = 0;
9185 		}
9186 	}
9187 	if (resp->supported_speeds_auto_mode)
9188 		link_info->support_auto_speeds =
9189 			le16_to_cpu(resp->supported_speeds_auto_mode);
9190 	if (resp->supported_pam4_speeds_auto_mode)
9191 		link_info->support_pam4_auto_speeds =
9192 			le16_to_cpu(resp->supported_pam4_speeds_auto_mode);
9193 
9194 	bp->port_count = resp->port_cnt;
9195 
9196 hwrm_phy_qcaps_exit:
9197 	mutex_unlock(&bp->hwrm_cmd_lock);
9198 	return rc;
9199 }
9200 
9201 static bool bnxt_support_dropped(u16 advertising, u16 supported)
9202 {
9203 	u16 diff = advertising ^ supported;
9204 
9205 	return ((supported | diff) != supported);
9206 }
9207 
9208 int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
9209 {
9210 	int rc = 0;
9211 	struct bnxt_link_info *link_info = &bp->link_info;
9212 	struct hwrm_port_phy_qcfg_input req = {0};
9213 	struct hwrm_port_phy_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
9214 	u8 link_up = link_info->link_up;
9215 	bool support_changed = false;
9216 
9217 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCFG, -1, -1);
9218 
9219 	mutex_lock(&bp->hwrm_cmd_lock);
9220 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9221 	if (rc) {
9222 		mutex_unlock(&bp->hwrm_cmd_lock);
9223 		return rc;
9224 	}
9225 
9226 	memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
9227 	link_info->phy_link_status = resp->link;
9228 	link_info->duplex = resp->duplex_cfg;
9229 	if (bp->hwrm_spec_code >= 0x10800)
9230 		link_info->duplex = resp->duplex_state;
9231 	link_info->pause = resp->pause;
9232 	link_info->auto_mode = resp->auto_mode;
9233 	link_info->auto_pause_setting = resp->auto_pause;
9234 	link_info->lp_pause = resp->link_partner_adv_pause;
9235 	link_info->force_pause_setting = resp->force_pause;
9236 	link_info->duplex_setting = resp->duplex_cfg;
9237 	if (link_info->phy_link_status == BNXT_LINK_LINK)
9238 		link_info->link_speed = le16_to_cpu(resp->link_speed);
9239 	else
9240 		link_info->link_speed = 0;
9241 	link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
9242 	link_info->force_pam4_link_speed =
9243 		le16_to_cpu(resp->force_pam4_link_speed);
9244 	link_info->support_speeds = le16_to_cpu(resp->support_speeds);
9245 	link_info->support_pam4_speeds = le16_to_cpu(resp->support_pam4_speeds);
9246 	link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
9247 	link_info->auto_pam4_link_speeds =
9248 		le16_to_cpu(resp->auto_pam4_link_speed_mask);
9249 	link_info->lp_auto_link_speeds =
9250 		le16_to_cpu(resp->link_partner_adv_speeds);
9251 	link_info->lp_auto_pam4_link_speeds =
9252 		resp->link_partner_pam4_adv_speeds;
9253 	link_info->preemphasis = le32_to_cpu(resp->preemphasis);
9254 	link_info->phy_ver[0] = resp->phy_maj;
9255 	link_info->phy_ver[1] = resp->phy_min;
9256 	link_info->phy_ver[2] = resp->phy_bld;
9257 	link_info->media_type = resp->media_type;
9258 	link_info->phy_type = resp->phy_type;
9259 	link_info->transceiver = resp->xcvr_pkg_type;
9260 	link_info->phy_addr = resp->eee_config_phy_addr &
9261 			      PORT_PHY_QCFG_RESP_PHY_ADDR_MASK;
9262 	link_info->module_status = resp->module_status;
9263 
9264 	if (bp->flags & BNXT_FLAG_EEE_CAP) {
9265 		struct ethtool_eee *eee = &bp->eee;
9266 		u16 fw_speeds;
9267 
9268 		eee->eee_active = 0;
9269 		if (resp->eee_config_phy_addr &
9270 		    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) {
9271 			eee->eee_active = 1;
9272 			fw_speeds = le16_to_cpu(
9273 				resp->link_partner_adv_eee_link_speed_mask);
9274 			eee->lp_advertised =
9275 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
9276 		}
9277 
9278 		/* Pull initial EEE config */
9279 		if (!chng_link_state) {
9280 			if (resp->eee_config_phy_addr &
9281 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED)
9282 				eee->eee_enabled = 1;
9283 
9284 			fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask);
9285 			eee->advertised =
9286 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
9287 
9288 			if (resp->eee_config_phy_addr &
9289 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) {
9290 				__le32 tmr;
9291 
9292 				eee->tx_lpi_enabled = 1;
9293 				tmr = resp->xcvr_identifier_type_tx_lpi_timer;
9294 				eee->tx_lpi_timer = le32_to_cpu(tmr) &
9295 					PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK;
9296 			}
9297 		}
9298 	}
9299 
9300 	link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED;
9301 	if (bp->hwrm_spec_code >= 0x10504) {
9302 		link_info->fec_cfg = le16_to_cpu(resp->fec_cfg);
9303 		link_info->active_fec_sig_mode = resp->active_fec_signal_mode;
9304 	}
9305 	/* TODO: need to add more logic to report VF link */
9306 	if (chng_link_state) {
9307 		if (link_info->phy_link_status == BNXT_LINK_LINK)
9308 			link_info->link_up = 1;
9309 		else
9310 			link_info->link_up = 0;
9311 		if (link_up != link_info->link_up)
9312 			bnxt_report_link(bp);
9313 	} else {
9314 		/* alwasy link down if not require to update link state */
9315 		link_info->link_up = 0;
9316 	}
9317 	mutex_unlock(&bp->hwrm_cmd_lock);
9318 
9319 	if (!BNXT_PHY_CFG_ABLE(bp))
9320 		return 0;
9321 
9322 	/* Check if any advertised speeds are no longer supported. The caller
9323 	 * holds the link_lock mutex, so we can modify link_info settings.
9324 	 */
9325 	if (bnxt_support_dropped(link_info->advertising,
9326 				 link_info->support_auto_speeds)) {
9327 		link_info->advertising = link_info->support_auto_speeds;
9328 		support_changed = true;
9329 	}
9330 	if (bnxt_support_dropped(link_info->advertising_pam4,
9331 				 link_info->support_pam4_auto_speeds)) {
9332 		link_info->advertising_pam4 = link_info->support_pam4_auto_speeds;
9333 		support_changed = true;
9334 	}
9335 	if (support_changed && (link_info->autoneg & BNXT_AUTONEG_SPEED))
9336 		bnxt_hwrm_set_link_setting(bp, true, false);
9337 	return 0;
9338 }
9339 
9340 static void bnxt_get_port_module_status(struct bnxt *bp)
9341 {
9342 	struct bnxt_link_info *link_info = &bp->link_info;
9343 	struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp;
9344 	u8 module_status;
9345 
9346 	if (bnxt_update_link(bp, true))
9347 		return;
9348 
9349 	module_status = link_info->module_status;
9350 	switch (module_status) {
9351 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX:
9352 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN:
9353 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG:
9354 		netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n",
9355 			    bp->pf.port_id);
9356 		if (bp->hwrm_spec_code >= 0x10201) {
9357 			netdev_warn(bp->dev, "Module part number %s\n",
9358 				    resp->phy_vendor_partnumber);
9359 		}
9360 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX)
9361 			netdev_warn(bp->dev, "TX is disabled\n");
9362 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN)
9363 			netdev_warn(bp->dev, "SFP+ module is shutdown\n");
9364 	}
9365 }
9366 
9367 static void
9368 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
9369 {
9370 	if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
9371 		if (bp->hwrm_spec_code >= 0x10201)
9372 			req->auto_pause =
9373 				PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE;
9374 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
9375 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
9376 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
9377 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX;
9378 		req->enables |=
9379 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
9380 	} else {
9381 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
9382 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
9383 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
9384 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
9385 		req->enables |=
9386 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
9387 		if (bp->hwrm_spec_code >= 0x10201) {
9388 			req->auto_pause = req->force_pause;
9389 			req->enables |= cpu_to_le32(
9390 				PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
9391 		}
9392 	}
9393 }
9394 
9395 static void bnxt_hwrm_set_link_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
9396 {
9397 	if (bp->link_info.autoneg & BNXT_AUTONEG_SPEED) {
9398 		req->auto_mode |= PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK;
9399 		if (bp->link_info.advertising) {
9400 			req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
9401 			req->auto_link_speed_mask = cpu_to_le16(bp->link_info.advertising);
9402 		}
9403 		if (bp->link_info.advertising_pam4) {
9404 			req->enables |=
9405 				cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAM4_LINK_SPEED_MASK);
9406 			req->auto_link_pam4_speed_mask =
9407 				cpu_to_le16(bp->link_info.advertising_pam4);
9408 		}
9409 		req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
9410 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
9411 	} else {
9412 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
9413 		if (bp->link_info.req_signal_mode == BNXT_SIG_MODE_PAM4) {
9414 			req->force_pam4_link_speed = cpu_to_le16(bp->link_info.req_link_speed);
9415 			req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAM4_LINK_SPEED);
9416 		} else {
9417 			req->force_link_speed = cpu_to_le16(bp->link_info.req_link_speed);
9418 		}
9419 	}
9420 
9421 	/* tell chimp that the setting takes effect immediately */
9422 	req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
9423 }
9424 
9425 int bnxt_hwrm_set_pause(struct bnxt *bp)
9426 {
9427 	struct hwrm_port_phy_cfg_input req = {0};
9428 	int rc;
9429 
9430 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
9431 	bnxt_hwrm_set_pause_common(bp, &req);
9432 
9433 	if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
9434 	    bp->link_info.force_link_chng)
9435 		bnxt_hwrm_set_link_common(bp, &req);
9436 
9437 	mutex_lock(&bp->hwrm_cmd_lock);
9438 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9439 	if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
9440 		/* since changing of pause setting doesn't trigger any link
9441 		 * change event, the driver needs to update the current pause
9442 		 * result upon successfully return of the phy_cfg command
9443 		 */
9444 		bp->link_info.pause =
9445 		bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
9446 		bp->link_info.auto_pause_setting = 0;
9447 		if (!bp->link_info.force_link_chng)
9448 			bnxt_report_link(bp);
9449 	}
9450 	bp->link_info.force_link_chng = false;
9451 	mutex_unlock(&bp->hwrm_cmd_lock);
9452 	return rc;
9453 }
9454 
9455 static void bnxt_hwrm_set_eee(struct bnxt *bp,
9456 			      struct hwrm_port_phy_cfg_input *req)
9457 {
9458 	struct ethtool_eee *eee = &bp->eee;
9459 
9460 	if (eee->eee_enabled) {
9461 		u16 eee_speeds;
9462 		u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE;
9463 
9464 		if (eee->tx_lpi_enabled)
9465 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE;
9466 		else
9467 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE;
9468 
9469 		req->flags |= cpu_to_le32(flags);
9470 		eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised);
9471 		req->eee_link_speed_mask = cpu_to_le16(eee_speeds);
9472 		req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer);
9473 	} else {
9474 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE);
9475 	}
9476 }
9477 
9478 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee)
9479 {
9480 	struct hwrm_port_phy_cfg_input req = {0};
9481 
9482 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
9483 	if (set_pause)
9484 		bnxt_hwrm_set_pause_common(bp, &req);
9485 
9486 	bnxt_hwrm_set_link_common(bp, &req);
9487 
9488 	if (set_eee)
9489 		bnxt_hwrm_set_eee(bp, &req);
9490 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9491 }
9492 
9493 static int bnxt_hwrm_shutdown_link(struct bnxt *bp)
9494 {
9495 	struct hwrm_port_phy_cfg_input req = {0};
9496 
9497 	if (!BNXT_SINGLE_PF(bp))
9498 		return 0;
9499 
9500 	if (pci_num_vf(bp->pdev))
9501 		return 0;
9502 
9503 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
9504 	req.flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN);
9505 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9506 }
9507 
9508 static int bnxt_fw_init_one(struct bnxt *bp);
9509 
9510 static int bnxt_fw_reset_via_optee(struct bnxt *bp)
9511 {
9512 #ifdef CONFIG_TEE_BNXT_FW
9513 	int rc = tee_bnxt_fw_load();
9514 
9515 	if (rc)
9516 		netdev_err(bp->dev, "Failed FW reset via OP-TEE, rc=%d\n", rc);
9517 
9518 	return rc;
9519 #else
9520 	netdev_err(bp->dev, "OP-TEE not supported\n");
9521 	return -ENODEV;
9522 #endif
9523 }
9524 
9525 static int bnxt_try_recover_fw(struct bnxt *bp)
9526 {
9527 	if (bp->fw_health && bp->fw_health->status_reliable) {
9528 		int retry = 0, rc;
9529 		u32 sts;
9530 
9531 		mutex_lock(&bp->hwrm_cmd_lock);
9532 		do {
9533 			sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
9534 			rc = __bnxt_hwrm_ver_get(bp, true);
9535 			if (!BNXT_FW_IS_BOOTING(sts) &&
9536 			    !BNXT_FW_IS_RECOVERING(sts))
9537 				break;
9538 			retry++;
9539 		} while (rc == -EBUSY && retry < BNXT_FW_RETRY);
9540 		mutex_unlock(&bp->hwrm_cmd_lock);
9541 
9542 		if (!BNXT_FW_IS_HEALTHY(sts)) {
9543 			netdev_err(bp->dev,
9544 				   "Firmware not responding, status: 0x%x\n",
9545 				   sts);
9546 			rc = -ENODEV;
9547 		}
9548 		if (sts & FW_STATUS_REG_CRASHED_NO_MASTER) {
9549 			netdev_warn(bp->dev, "Firmware recover via OP-TEE requested\n");
9550 			return bnxt_fw_reset_via_optee(bp);
9551 		}
9552 		return rc;
9553 	}
9554 
9555 	return -ENODEV;
9556 }
9557 
9558 static int bnxt_hwrm_if_change(struct bnxt *bp, bool up)
9559 {
9560 	struct hwrm_func_drv_if_change_output *resp = bp->hwrm_cmd_resp_addr;
9561 	struct hwrm_func_drv_if_change_input req = {0};
9562 	bool fw_reset = !bp->irq_tbl;
9563 	bool resc_reinit = false;
9564 	int rc, retry = 0;
9565 	u32 flags = 0;
9566 
9567 	if (!(bp->fw_cap & BNXT_FW_CAP_IF_CHANGE))
9568 		return 0;
9569 
9570 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_IF_CHANGE, -1, -1);
9571 	if (up)
9572 		req.flags = cpu_to_le32(FUNC_DRV_IF_CHANGE_REQ_FLAGS_UP);
9573 	mutex_lock(&bp->hwrm_cmd_lock);
9574 	while (retry < BNXT_FW_IF_RETRY) {
9575 		rc = _hwrm_send_message(bp, &req, sizeof(req),
9576 					HWRM_CMD_TIMEOUT);
9577 		if (rc != -EAGAIN)
9578 			break;
9579 
9580 		msleep(50);
9581 		retry++;
9582 	}
9583 	if (!rc)
9584 		flags = le32_to_cpu(resp->flags);
9585 	mutex_unlock(&bp->hwrm_cmd_lock);
9586 
9587 	if (rc == -EAGAIN)
9588 		return rc;
9589 	if (rc && up) {
9590 		rc = bnxt_try_recover_fw(bp);
9591 		fw_reset = true;
9592 	}
9593 	if (rc)
9594 		return rc;
9595 
9596 	if (!up) {
9597 		bnxt_inv_fw_health_reg(bp);
9598 		return 0;
9599 	}
9600 
9601 	if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_RESC_CHANGE)
9602 		resc_reinit = true;
9603 	if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_HOT_FW_RESET_DONE)
9604 		fw_reset = true;
9605 	else if (bp->fw_health && !bp->fw_health->status_reliable)
9606 		bnxt_try_map_fw_health_reg(bp);
9607 
9608 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state) && !fw_reset) {
9609 		netdev_err(bp->dev, "RESET_DONE not set during FW reset.\n");
9610 		set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
9611 		return -ENODEV;
9612 	}
9613 	if (resc_reinit || fw_reset) {
9614 		if (fw_reset) {
9615 			set_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
9616 			if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
9617 				bnxt_ulp_stop(bp);
9618 			bnxt_free_ctx_mem(bp);
9619 			kfree(bp->ctx);
9620 			bp->ctx = NULL;
9621 			bnxt_dcb_free(bp);
9622 			rc = bnxt_fw_init_one(bp);
9623 			if (rc) {
9624 				clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
9625 				set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
9626 				return rc;
9627 			}
9628 			bnxt_clear_int_mode(bp);
9629 			rc = bnxt_init_int_mode(bp);
9630 			if (rc) {
9631 				clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
9632 				netdev_err(bp->dev, "init int mode failed\n");
9633 				return rc;
9634 			}
9635 		}
9636 		if (BNXT_NEW_RM(bp)) {
9637 			struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
9638 
9639 			rc = bnxt_hwrm_func_resc_qcaps(bp, true);
9640 			if (rc)
9641 				netdev_err(bp->dev, "resc_qcaps failed\n");
9642 
9643 			hw_resc->resv_cp_rings = 0;
9644 			hw_resc->resv_stat_ctxs = 0;
9645 			hw_resc->resv_irqs = 0;
9646 			hw_resc->resv_tx_rings = 0;
9647 			hw_resc->resv_rx_rings = 0;
9648 			hw_resc->resv_hw_ring_grps = 0;
9649 			hw_resc->resv_vnics = 0;
9650 			if (!fw_reset) {
9651 				bp->tx_nr_rings = 0;
9652 				bp->rx_nr_rings = 0;
9653 			}
9654 		}
9655 	}
9656 	return rc;
9657 }
9658 
9659 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp)
9660 {
9661 	struct hwrm_port_led_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
9662 	struct hwrm_port_led_qcaps_input req = {0};
9663 	struct bnxt_pf_info *pf = &bp->pf;
9664 	int rc;
9665 
9666 	bp->num_leds = 0;
9667 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601)
9668 		return 0;
9669 
9670 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_LED_QCAPS, -1, -1);
9671 	req.port_id = cpu_to_le16(pf->port_id);
9672 	mutex_lock(&bp->hwrm_cmd_lock);
9673 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9674 	if (rc) {
9675 		mutex_unlock(&bp->hwrm_cmd_lock);
9676 		return rc;
9677 	}
9678 	if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) {
9679 		int i;
9680 
9681 		bp->num_leds = resp->num_leds;
9682 		memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) *
9683 						 bp->num_leds);
9684 		for (i = 0; i < bp->num_leds; i++) {
9685 			struct bnxt_led_info *led = &bp->leds[i];
9686 			__le16 caps = led->led_state_caps;
9687 
9688 			if (!led->led_group_id ||
9689 			    !BNXT_LED_ALT_BLINK_CAP(caps)) {
9690 				bp->num_leds = 0;
9691 				break;
9692 			}
9693 		}
9694 	}
9695 	mutex_unlock(&bp->hwrm_cmd_lock);
9696 	return 0;
9697 }
9698 
9699 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp)
9700 {
9701 	struct hwrm_wol_filter_alloc_input req = {0};
9702 	struct hwrm_wol_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
9703 	int rc;
9704 
9705 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_ALLOC, -1, -1);
9706 	req.port_id = cpu_to_le16(bp->pf.port_id);
9707 	req.wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT;
9708 	req.enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS);
9709 	memcpy(req.mac_address, bp->dev->dev_addr, ETH_ALEN);
9710 	mutex_lock(&bp->hwrm_cmd_lock);
9711 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9712 	if (!rc)
9713 		bp->wol_filter_id = resp->wol_filter_id;
9714 	mutex_unlock(&bp->hwrm_cmd_lock);
9715 	return rc;
9716 }
9717 
9718 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp)
9719 {
9720 	struct hwrm_wol_filter_free_input req = {0};
9721 
9722 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_FREE, -1, -1);
9723 	req.port_id = cpu_to_le16(bp->pf.port_id);
9724 	req.enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID);
9725 	req.wol_filter_id = bp->wol_filter_id;
9726 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9727 }
9728 
9729 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle)
9730 {
9731 	struct hwrm_wol_filter_qcfg_input req = {0};
9732 	struct hwrm_wol_filter_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
9733 	u16 next_handle = 0;
9734 	int rc;
9735 
9736 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_QCFG, -1, -1);
9737 	req.port_id = cpu_to_le16(bp->pf.port_id);
9738 	req.handle = cpu_to_le16(handle);
9739 	mutex_lock(&bp->hwrm_cmd_lock);
9740 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9741 	if (!rc) {
9742 		next_handle = le16_to_cpu(resp->next_handle);
9743 		if (next_handle != 0) {
9744 			if (resp->wol_type ==
9745 			    WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) {
9746 				bp->wol = 1;
9747 				bp->wol_filter_id = resp->wol_filter_id;
9748 			}
9749 		}
9750 	}
9751 	mutex_unlock(&bp->hwrm_cmd_lock);
9752 	return next_handle;
9753 }
9754 
9755 static void bnxt_get_wol_settings(struct bnxt *bp)
9756 {
9757 	u16 handle = 0;
9758 
9759 	bp->wol = 0;
9760 	if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP))
9761 		return;
9762 
9763 	do {
9764 		handle = bnxt_hwrm_get_wol_fltrs(bp, handle);
9765 	} while (handle && handle != 0xffff);
9766 }
9767 
9768 #ifdef CONFIG_BNXT_HWMON
9769 static ssize_t bnxt_show_temp(struct device *dev,
9770 			      struct device_attribute *devattr, char *buf)
9771 {
9772 	struct hwrm_temp_monitor_query_input req = {0};
9773 	struct hwrm_temp_monitor_query_output *resp;
9774 	struct bnxt *bp = dev_get_drvdata(dev);
9775 	u32 len = 0;
9776 	int rc;
9777 
9778 	resp = bp->hwrm_cmd_resp_addr;
9779 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TEMP_MONITOR_QUERY, -1, -1);
9780 	mutex_lock(&bp->hwrm_cmd_lock);
9781 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9782 	if (!rc)
9783 		len = sprintf(buf, "%u\n", resp->temp * 1000); /* display millidegree */
9784 	mutex_unlock(&bp->hwrm_cmd_lock);
9785 	return rc ?: len;
9786 }
9787 static SENSOR_DEVICE_ATTR(temp1_input, 0444, bnxt_show_temp, NULL, 0);
9788 
9789 static struct attribute *bnxt_attrs[] = {
9790 	&sensor_dev_attr_temp1_input.dev_attr.attr,
9791 	NULL
9792 };
9793 ATTRIBUTE_GROUPS(bnxt);
9794 
9795 static void bnxt_hwmon_close(struct bnxt *bp)
9796 {
9797 	if (bp->hwmon_dev) {
9798 		hwmon_device_unregister(bp->hwmon_dev);
9799 		bp->hwmon_dev = NULL;
9800 	}
9801 }
9802 
9803 static void bnxt_hwmon_open(struct bnxt *bp)
9804 {
9805 	struct hwrm_temp_monitor_query_input req = {0};
9806 	struct pci_dev *pdev = bp->pdev;
9807 	int rc;
9808 
9809 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TEMP_MONITOR_QUERY, -1, -1);
9810 	rc = hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9811 	if (rc == -EACCES || rc == -EOPNOTSUPP) {
9812 		bnxt_hwmon_close(bp);
9813 		return;
9814 	}
9815 
9816 	if (bp->hwmon_dev)
9817 		return;
9818 
9819 	bp->hwmon_dev = hwmon_device_register_with_groups(&pdev->dev,
9820 							  DRV_MODULE_NAME, bp,
9821 							  bnxt_groups);
9822 	if (IS_ERR(bp->hwmon_dev)) {
9823 		bp->hwmon_dev = NULL;
9824 		dev_warn(&pdev->dev, "Cannot register hwmon device\n");
9825 	}
9826 }
9827 #else
9828 static void bnxt_hwmon_close(struct bnxt *bp)
9829 {
9830 }
9831 
9832 static void bnxt_hwmon_open(struct bnxt *bp)
9833 {
9834 }
9835 #endif
9836 
9837 static bool bnxt_eee_config_ok(struct bnxt *bp)
9838 {
9839 	struct ethtool_eee *eee = &bp->eee;
9840 	struct bnxt_link_info *link_info = &bp->link_info;
9841 
9842 	if (!(bp->flags & BNXT_FLAG_EEE_CAP))
9843 		return true;
9844 
9845 	if (eee->eee_enabled) {
9846 		u32 advertising =
9847 			_bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0);
9848 
9849 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
9850 			eee->eee_enabled = 0;
9851 			return false;
9852 		}
9853 		if (eee->advertised & ~advertising) {
9854 			eee->advertised = advertising & eee->supported;
9855 			return false;
9856 		}
9857 	}
9858 	return true;
9859 }
9860 
9861 static int bnxt_update_phy_setting(struct bnxt *bp)
9862 {
9863 	int rc;
9864 	bool update_link = false;
9865 	bool update_pause = false;
9866 	bool update_eee = false;
9867 	struct bnxt_link_info *link_info = &bp->link_info;
9868 
9869 	rc = bnxt_update_link(bp, true);
9870 	if (rc) {
9871 		netdev_err(bp->dev, "failed to update link (rc: %x)\n",
9872 			   rc);
9873 		return rc;
9874 	}
9875 	if (!BNXT_SINGLE_PF(bp))
9876 		return 0;
9877 
9878 	if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
9879 	    (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) !=
9880 	    link_info->req_flow_ctrl)
9881 		update_pause = true;
9882 	if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
9883 	    link_info->force_pause_setting != link_info->req_flow_ctrl)
9884 		update_pause = true;
9885 	if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
9886 		if (BNXT_AUTO_MODE(link_info->auto_mode))
9887 			update_link = true;
9888 		if (link_info->req_signal_mode == BNXT_SIG_MODE_NRZ &&
9889 		    link_info->req_link_speed != link_info->force_link_speed)
9890 			update_link = true;
9891 		else if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4 &&
9892 			 link_info->req_link_speed != link_info->force_pam4_link_speed)
9893 			update_link = true;
9894 		if (link_info->req_duplex != link_info->duplex_setting)
9895 			update_link = true;
9896 	} else {
9897 		if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
9898 			update_link = true;
9899 		if (link_info->advertising != link_info->auto_link_speeds ||
9900 		    link_info->advertising_pam4 != link_info->auto_pam4_link_speeds)
9901 			update_link = true;
9902 	}
9903 
9904 	/* The last close may have shutdown the link, so need to call
9905 	 * PHY_CFG to bring it back up.
9906 	 */
9907 	if (!bp->link_info.link_up)
9908 		update_link = true;
9909 
9910 	if (!bnxt_eee_config_ok(bp))
9911 		update_eee = true;
9912 
9913 	if (update_link)
9914 		rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee);
9915 	else if (update_pause)
9916 		rc = bnxt_hwrm_set_pause(bp);
9917 	if (rc) {
9918 		netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
9919 			   rc);
9920 		return rc;
9921 	}
9922 
9923 	return rc;
9924 }
9925 
9926 /* Common routine to pre-map certain register block to different GRC window.
9927  * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
9928  * in PF and 3 windows in VF that can be customized to map in different
9929  * register blocks.
9930  */
9931 static void bnxt_preset_reg_win(struct bnxt *bp)
9932 {
9933 	if (BNXT_PF(bp)) {
9934 		/* CAG registers map to GRC window #4 */
9935 		writel(BNXT_CAG_REG_BASE,
9936 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
9937 	}
9938 }
9939 
9940 static int bnxt_init_dflt_ring_mode(struct bnxt *bp);
9941 
9942 static int bnxt_reinit_after_abort(struct bnxt *bp)
9943 {
9944 	int rc;
9945 
9946 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
9947 		return -EBUSY;
9948 
9949 	if (bp->dev->reg_state == NETREG_UNREGISTERED)
9950 		return -ENODEV;
9951 
9952 	rc = bnxt_fw_init_one(bp);
9953 	if (!rc) {
9954 		bnxt_clear_int_mode(bp);
9955 		rc = bnxt_init_int_mode(bp);
9956 		if (!rc) {
9957 			clear_bit(BNXT_STATE_ABORT_ERR, &bp->state);
9958 			set_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
9959 		}
9960 	}
9961 	return rc;
9962 }
9963 
9964 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
9965 {
9966 	int rc = 0;
9967 
9968 	bnxt_preset_reg_win(bp);
9969 	netif_carrier_off(bp->dev);
9970 	if (irq_re_init) {
9971 		/* Reserve rings now if none were reserved at driver probe. */
9972 		rc = bnxt_init_dflt_ring_mode(bp);
9973 		if (rc) {
9974 			netdev_err(bp->dev, "Failed to reserve default rings at open\n");
9975 			return rc;
9976 		}
9977 	}
9978 	rc = bnxt_reserve_rings(bp, irq_re_init);
9979 	if (rc)
9980 		return rc;
9981 	if ((bp->flags & BNXT_FLAG_RFS) &&
9982 	    !(bp->flags & BNXT_FLAG_USING_MSIX)) {
9983 		/* disable RFS if falling back to INTA */
9984 		bp->dev->hw_features &= ~NETIF_F_NTUPLE;
9985 		bp->flags &= ~BNXT_FLAG_RFS;
9986 	}
9987 
9988 	rc = bnxt_alloc_mem(bp, irq_re_init);
9989 	if (rc) {
9990 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
9991 		goto open_err_free_mem;
9992 	}
9993 
9994 	if (irq_re_init) {
9995 		bnxt_init_napi(bp);
9996 		rc = bnxt_request_irq(bp);
9997 		if (rc) {
9998 			netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
9999 			goto open_err_irq;
10000 		}
10001 	}
10002 
10003 	rc = bnxt_init_nic(bp, irq_re_init);
10004 	if (rc) {
10005 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
10006 		goto open_err_irq;
10007 	}
10008 
10009 	bnxt_enable_napi(bp);
10010 	bnxt_debug_dev_init(bp);
10011 
10012 	if (link_re_init) {
10013 		mutex_lock(&bp->link_lock);
10014 		rc = bnxt_update_phy_setting(bp);
10015 		mutex_unlock(&bp->link_lock);
10016 		if (rc) {
10017 			netdev_warn(bp->dev, "failed to update phy settings\n");
10018 			if (BNXT_SINGLE_PF(bp)) {
10019 				bp->link_info.phy_retry = true;
10020 				bp->link_info.phy_retry_expires =
10021 					jiffies + 5 * HZ;
10022 			}
10023 		}
10024 	}
10025 
10026 	if (irq_re_init)
10027 		udp_tunnel_nic_reset_ntf(bp->dev);
10028 
10029 	set_bit(BNXT_STATE_OPEN, &bp->state);
10030 	bnxt_enable_int(bp);
10031 	/* Enable TX queues */
10032 	bnxt_tx_enable(bp);
10033 	mod_timer(&bp->timer, jiffies + bp->current_interval);
10034 	/* Poll link status and check for SFP+ module status */
10035 	bnxt_get_port_module_status(bp);
10036 
10037 	/* VF-reps may need to be re-opened after the PF is re-opened */
10038 	if (BNXT_PF(bp))
10039 		bnxt_vf_reps_open(bp);
10040 	return 0;
10041 
10042 open_err_irq:
10043 	bnxt_del_napi(bp);
10044 
10045 open_err_free_mem:
10046 	bnxt_free_skbs(bp);
10047 	bnxt_free_irq(bp);
10048 	bnxt_free_mem(bp, true);
10049 	return rc;
10050 }
10051 
10052 /* rtnl_lock held */
10053 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
10054 {
10055 	int rc = 0;
10056 
10057 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state))
10058 		rc = -EIO;
10059 	if (!rc)
10060 		rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
10061 	if (rc) {
10062 		netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
10063 		dev_close(bp->dev);
10064 	}
10065 	return rc;
10066 }
10067 
10068 /* rtnl_lock held, open the NIC half way by allocating all resources, but
10069  * NAPI, IRQ, and TX are not enabled.  This is mainly used for offline
10070  * self tests.
10071  */
10072 int bnxt_half_open_nic(struct bnxt *bp)
10073 {
10074 	int rc = 0;
10075 
10076 	rc = bnxt_alloc_mem(bp, false);
10077 	if (rc) {
10078 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
10079 		goto half_open_err;
10080 	}
10081 	rc = bnxt_init_nic(bp, false);
10082 	if (rc) {
10083 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
10084 		goto half_open_err;
10085 	}
10086 	return 0;
10087 
10088 half_open_err:
10089 	bnxt_free_skbs(bp);
10090 	bnxt_free_mem(bp, false);
10091 	dev_close(bp->dev);
10092 	return rc;
10093 }
10094 
10095 /* rtnl_lock held, this call can only be made after a previous successful
10096  * call to bnxt_half_open_nic().
10097  */
10098 void bnxt_half_close_nic(struct bnxt *bp)
10099 {
10100 	bnxt_hwrm_resource_free(bp, false, false);
10101 	bnxt_free_skbs(bp);
10102 	bnxt_free_mem(bp, false);
10103 }
10104 
10105 static void bnxt_reenable_sriov(struct bnxt *bp)
10106 {
10107 	if (BNXT_PF(bp)) {
10108 		struct bnxt_pf_info *pf = &bp->pf;
10109 		int n = pf->active_vfs;
10110 
10111 		if (n)
10112 			bnxt_cfg_hw_sriov(bp, &n, true);
10113 	}
10114 }
10115 
10116 static int bnxt_open(struct net_device *dev)
10117 {
10118 	struct bnxt *bp = netdev_priv(dev);
10119 	int rc;
10120 
10121 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
10122 		rc = bnxt_reinit_after_abort(bp);
10123 		if (rc) {
10124 			if (rc == -EBUSY)
10125 				netdev_err(bp->dev, "A previous firmware reset has not completed, aborting\n");
10126 			else
10127 				netdev_err(bp->dev, "Failed to reinitialize after aborted firmware reset\n");
10128 			return -ENODEV;
10129 		}
10130 	}
10131 
10132 	rc = bnxt_hwrm_if_change(bp, true);
10133 	if (rc)
10134 		return rc;
10135 	rc = __bnxt_open_nic(bp, true, true);
10136 	if (rc) {
10137 		bnxt_hwrm_if_change(bp, false);
10138 	} else {
10139 		if (test_and_clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) {
10140 			if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
10141 				bnxt_ulp_start(bp, 0);
10142 				bnxt_reenable_sriov(bp);
10143 			}
10144 		}
10145 		bnxt_hwmon_open(bp);
10146 	}
10147 
10148 	return rc;
10149 }
10150 
10151 static bool bnxt_drv_busy(struct bnxt *bp)
10152 {
10153 	return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) ||
10154 		test_bit(BNXT_STATE_READ_STATS, &bp->state));
10155 }
10156 
10157 static void bnxt_get_ring_stats(struct bnxt *bp,
10158 				struct rtnl_link_stats64 *stats);
10159 
10160 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init,
10161 			     bool link_re_init)
10162 {
10163 	/* Close the VF-reps before closing PF */
10164 	if (BNXT_PF(bp))
10165 		bnxt_vf_reps_close(bp);
10166 
10167 	/* Change device state to avoid TX queue wake up's */
10168 	bnxt_tx_disable(bp);
10169 
10170 	clear_bit(BNXT_STATE_OPEN, &bp->state);
10171 	smp_mb__after_atomic();
10172 	while (bnxt_drv_busy(bp))
10173 		msleep(20);
10174 
10175 	/* Flush rings and and disable interrupts */
10176 	bnxt_shutdown_nic(bp, irq_re_init);
10177 
10178 	/* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
10179 
10180 	bnxt_debug_dev_exit(bp);
10181 	bnxt_disable_napi(bp);
10182 	del_timer_sync(&bp->timer);
10183 	bnxt_free_skbs(bp);
10184 
10185 	/* Save ring stats before shutdown */
10186 	if (bp->bnapi && irq_re_init)
10187 		bnxt_get_ring_stats(bp, &bp->net_stats_prev);
10188 	if (irq_re_init) {
10189 		bnxt_free_irq(bp);
10190 		bnxt_del_napi(bp);
10191 	}
10192 	bnxt_free_mem(bp, irq_re_init);
10193 }
10194 
10195 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
10196 {
10197 	int rc = 0;
10198 
10199 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
10200 		/* If we get here, it means firmware reset is in progress
10201 		 * while we are trying to close.  We can safely proceed with
10202 		 * the close because we are holding rtnl_lock().  Some firmware
10203 		 * messages may fail as we proceed to close.  We set the
10204 		 * ABORT_ERR flag here so that the FW reset thread will later
10205 		 * abort when it gets the rtnl_lock() and sees the flag.
10206 		 */
10207 		netdev_warn(bp->dev, "FW reset in progress during close, FW reset will be aborted\n");
10208 		set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
10209 	}
10210 
10211 #ifdef CONFIG_BNXT_SRIOV
10212 	if (bp->sriov_cfg) {
10213 		rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
10214 						      !bp->sriov_cfg,
10215 						      BNXT_SRIOV_CFG_WAIT_TMO);
10216 		if (rc)
10217 			netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
10218 	}
10219 #endif
10220 	__bnxt_close_nic(bp, irq_re_init, link_re_init);
10221 	return rc;
10222 }
10223 
10224 static int bnxt_close(struct net_device *dev)
10225 {
10226 	struct bnxt *bp = netdev_priv(dev);
10227 
10228 	bnxt_hwmon_close(bp);
10229 	bnxt_close_nic(bp, true, true);
10230 	bnxt_hwrm_shutdown_link(bp);
10231 	bnxt_hwrm_if_change(bp, false);
10232 	return 0;
10233 }
10234 
10235 static int bnxt_hwrm_port_phy_read(struct bnxt *bp, u16 phy_addr, u16 reg,
10236 				   u16 *val)
10237 {
10238 	struct hwrm_port_phy_mdio_read_output *resp = bp->hwrm_cmd_resp_addr;
10239 	struct hwrm_port_phy_mdio_read_input req = {0};
10240 	int rc;
10241 
10242 	if (bp->hwrm_spec_code < 0x10a00)
10243 		return -EOPNOTSUPP;
10244 
10245 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_MDIO_READ, -1, -1);
10246 	req.port_id = cpu_to_le16(bp->pf.port_id);
10247 	req.phy_addr = phy_addr;
10248 	req.reg_addr = cpu_to_le16(reg & 0x1f);
10249 	if (mdio_phy_id_is_c45(phy_addr)) {
10250 		req.cl45_mdio = 1;
10251 		req.phy_addr = mdio_phy_id_prtad(phy_addr);
10252 		req.dev_addr = mdio_phy_id_devad(phy_addr);
10253 		req.reg_addr = cpu_to_le16(reg);
10254 	}
10255 
10256 	mutex_lock(&bp->hwrm_cmd_lock);
10257 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
10258 	if (!rc)
10259 		*val = le16_to_cpu(resp->reg_data);
10260 	mutex_unlock(&bp->hwrm_cmd_lock);
10261 	return rc;
10262 }
10263 
10264 static int bnxt_hwrm_port_phy_write(struct bnxt *bp, u16 phy_addr, u16 reg,
10265 				    u16 val)
10266 {
10267 	struct hwrm_port_phy_mdio_write_input req = {0};
10268 
10269 	if (bp->hwrm_spec_code < 0x10a00)
10270 		return -EOPNOTSUPP;
10271 
10272 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_MDIO_WRITE, -1, -1);
10273 	req.port_id = cpu_to_le16(bp->pf.port_id);
10274 	req.phy_addr = phy_addr;
10275 	req.reg_addr = cpu_to_le16(reg & 0x1f);
10276 	if (mdio_phy_id_is_c45(phy_addr)) {
10277 		req.cl45_mdio = 1;
10278 		req.phy_addr = mdio_phy_id_prtad(phy_addr);
10279 		req.dev_addr = mdio_phy_id_devad(phy_addr);
10280 		req.reg_addr = cpu_to_le16(reg);
10281 	}
10282 	req.reg_data = cpu_to_le16(val);
10283 
10284 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
10285 }
10286 
10287 /* rtnl_lock held */
10288 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
10289 {
10290 	struct mii_ioctl_data *mdio = if_mii(ifr);
10291 	struct bnxt *bp = netdev_priv(dev);
10292 	int rc;
10293 
10294 	switch (cmd) {
10295 	case SIOCGMIIPHY:
10296 		mdio->phy_id = bp->link_info.phy_addr;
10297 
10298 		fallthrough;
10299 	case SIOCGMIIREG: {
10300 		u16 mii_regval = 0;
10301 
10302 		if (!netif_running(dev))
10303 			return -EAGAIN;
10304 
10305 		rc = bnxt_hwrm_port_phy_read(bp, mdio->phy_id, mdio->reg_num,
10306 					     &mii_regval);
10307 		mdio->val_out = mii_regval;
10308 		return rc;
10309 	}
10310 
10311 	case SIOCSMIIREG:
10312 		if (!netif_running(dev))
10313 			return -EAGAIN;
10314 
10315 		return bnxt_hwrm_port_phy_write(bp, mdio->phy_id, mdio->reg_num,
10316 						mdio->val_in);
10317 
10318 	default:
10319 		/* do nothing */
10320 		break;
10321 	}
10322 	return -EOPNOTSUPP;
10323 }
10324 
10325 static void bnxt_get_ring_stats(struct bnxt *bp,
10326 				struct rtnl_link_stats64 *stats)
10327 {
10328 	int i;
10329 
10330 	for (i = 0; i < bp->cp_nr_rings; i++) {
10331 		struct bnxt_napi *bnapi = bp->bnapi[i];
10332 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
10333 		u64 *sw = cpr->stats.sw_stats;
10334 
10335 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts);
10336 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts);
10337 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts);
10338 
10339 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts);
10340 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts);
10341 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts);
10342 
10343 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes);
10344 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes);
10345 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes);
10346 
10347 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes);
10348 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes);
10349 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes);
10350 
10351 		stats->rx_missed_errors +=
10352 			BNXT_GET_RING_STATS64(sw, rx_discard_pkts);
10353 
10354 		stats->multicast += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts);
10355 
10356 		stats->tx_dropped += BNXT_GET_RING_STATS64(sw, tx_error_pkts);
10357 	}
10358 }
10359 
10360 static void bnxt_add_prev_stats(struct bnxt *bp,
10361 				struct rtnl_link_stats64 *stats)
10362 {
10363 	struct rtnl_link_stats64 *prev_stats = &bp->net_stats_prev;
10364 
10365 	stats->rx_packets += prev_stats->rx_packets;
10366 	stats->tx_packets += prev_stats->tx_packets;
10367 	stats->rx_bytes += prev_stats->rx_bytes;
10368 	stats->tx_bytes += prev_stats->tx_bytes;
10369 	stats->rx_missed_errors += prev_stats->rx_missed_errors;
10370 	stats->multicast += prev_stats->multicast;
10371 	stats->tx_dropped += prev_stats->tx_dropped;
10372 }
10373 
10374 static void
10375 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
10376 {
10377 	struct bnxt *bp = netdev_priv(dev);
10378 
10379 	set_bit(BNXT_STATE_READ_STATS, &bp->state);
10380 	/* Make sure bnxt_close_nic() sees that we are reading stats before
10381 	 * we check the BNXT_STATE_OPEN flag.
10382 	 */
10383 	smp_mb__after_atomic();
10384 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
10385 		clear_bit(BNXT_STATE_READ_STATS, &bp->state);
10386 		*stats = bp->net_stats_prev;
10387 		return;
10388 	}
10389 
10390 	bnxt_get_ring_stats(bp, stats);
10391 	bnxt_add_prev_stats(bp, stats);
10392 
10393 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
10394 		u64 *rx = bp->port_stats.sw_stats;
10395 		u64 *tx = bp->port_stats.sw_stats +
10396 			  BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
10397 
10398 		stats->rx_crc_errors =
10399 			BNXT_GET_RX_PORT_STATS64(rx, rx_fcs_err_frames);
10400 		stats->rx_frame_errors =
10401 			BNXT_GET_RX_PORT_STATS64(rx, rx_align_err_frames);
10402 		stats->rx_length_errors =
10403 			BNXT_GET_RX_PORT_STATS64(rx, rx_undrsz_frames) +
10404 			BNXT_GET_RX_PORT_STATS64(rx, rx_ovrsz_frames) +
10405 			BNXT_GET_RX_PORT_STATS64(rx, rx_runt_frames);
10406 		stats->rx_errors =
10407 			BNXT_GET_RX_PORT_STATS64(rx, rx_false_carrier_frames) +
10408 			BNXT_GET_RX_PORT_STATS64(rx, rx_jbr_frames);
10409 		stats->collisions =
10410 			BNXT_GET_TX_PORT_STATS64(tx, tx_total_collisions);
10411 		stats->tx_fifo_errors =
10412 			BNXT_GET_TX_PORT_STATS64(tx, tx_fifo_underruns);
10413 		stats->tx_errors = BNXT_GET_TX_PORT_STATS64(tx, tx_err);
10414 	}
10415 	clear_bit(BNXT_STATE_READ_STATS, &bp->state);
10416 }
10417 
10418 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
10419 {
10420 	struct net_device *dev = bp->dev;
10421 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
10422 	struct netdev_hw_addr *ha;
10423 	u8 *haddr;
10424 	int mc_count = 0;
10425 	bool update = false;
10426 	int off = 0;
10427 
10428 	netdev_for_each_mc_addr(ha, dev) {
10429 		if (mc_count >= BNXT_MAX_MC_ADDRS) {
10430 			*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
10431 			vnic->mc_list_count = 0;
10432 			return false;
10433 		}
10434 		haddr = ha->addr;
10435 		if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
10436 			memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
10437 			update = true;
10438 		}
10439 		off += ETH_ALEN;
10440 		mc_count++;
10441 	}
10442 	if (mc_count)
10443 		*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
10444 
10445 	if (mc_count != vnic->mc_list_count) {
10446 		vnic->mc_list_count = mc_count;
10447 		update = true;
10448 	}
10449 	return update;
10450 }
10451 
10452 static bool bnxt_uc_list_updated(struct bnxt *bp)
10453 {
10454 	struct net_device *dev = bp->dev;
10455 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
10456 	struct netdev_hw_addr *ha;
10457 	int off = 0;
10458 
10459 	if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
10460 		return true;
10461 
10462 	netdev_for_each_uc_addr(ha, dev) {
10463 		if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
10464 			return true;
10465 
10466 		off += ETH_ALEN;
10467 	}
10468 	return false;
10469 }
10470 
10471 static void bnxt_set_rx_mode(struct net_device *dev)
10472 {
10473 	struct bnxt *bp = netdev_priv(dev);
10474 	struct bnxt_vnic_info *vnic;
10475 	bool mc_update = false;
10476 	bool uc_update;
10477 	u32 mask;
10478 
10479 	if (!test_bit(BNXT_STATE_OPEN, &bp->state))
10480 		return;
10481 
10482 	vnic = &bp->vnic_info[0];
10483 	mask = vnic->rx_mask;
10484 	mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
10485 		  CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
10486 		  CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST |
10487 		  CFA_L2_SET_RX_MASK_REQ_MASK_BCAST);
10488 
10489 	if ((dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
10490 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
10491 
10492 	uc_update = bnxt_uc_list_updated(bp);
10493 
10494 	if (dev->flags & IFF_BROADCAST)
10495 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
10496 	if (dev->flags & IFF_ALLMULTI) {
10497 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
10498 		vnic->mc_list_count = 0;
10499 	} else {
10500 		mc_update = bnxt_mc_list_updated(bp, &mask);
10501 	}
10502 
10503 	if (mask != vnic->rx_mask || uc_update || mc_update) {
10504 		vnic->rx_mask = mask;
10505 
10506 		set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
10507 		bnxt_queue_sp_work(bp);
10508 	}
10509 }
10510 
10511 static int bnxt_cfg_rx_mode(struct bnxt *bp)
10512 {
10513 	struct net_device *dev = bp->dev;
10514 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
10515 	struct netdev_hw_addr *ha;
10516 	int i, off = 0, rc;
10517 	bool uc_update;
10518 
10519 	netif_addr_lock_bh(dev);
10520 	uc_update = bnxt_uc_list_updated(bp);
10521 	netif_addr_unlock_bh(dev);
10522 
10523 	if (!uc_update)
10524 		goto skip_uc;
10525 
10526 	mutex_lock(&bp->hwrm_cmd_lock);
10527 	for (i = 1; i < vnic->uc_filter_count; i++) {
10528 		struct hwrm_cfa_l2_filter_free_input req = {0};
10529 
10530 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_FREE, -1,
10531 				       -1);
10532 
10533 		req.l2_filter_id = vnic->fw_l2_filter_id[i];
10534 
10535 		rc = _hwrm_send_message(bp, &req, sizeof(req),
10536 					HWRM_CMD_TIMEOUT);
10537 	}
10538 	mutex_unlock(&bp->hwrm_cmd_lock);
10539 
10540 	vnic->uc_filter_count = 1;
10541 
10542 	netif_addr_lock_bh(dev);
10543 	if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
10544 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
10545 	} else {
10546 		netdev_for_each_uc_addr(ha, dev) {
10547 			memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
10548 			off += ETH_ALEN;
10549 			vnic->uc_filter_count++;
10550 		}
10551 	}
10552 	netif_addr_unlock_bh(dev);
10553 
10554 	for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
10555 		rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
10556 		if (rc) {
10557 			netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n",
10558 				   rc);
10559 			vnic->uc_filter_count = i;
10560 			return rc;
10561 		}
10562 	}
10563 
10564 skip_uc:
10565 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
10566 	if (rc && vnic->mc_list_count) {
10567 		netdev_info(bp->dev, "Failed setting MC filters rc: %d, turning on ALL_MCAST mode\n",
10568 			    rc);
10569 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
10570 		vnic->mc_list_count = 0;
10571 		rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
10572 	}
10573 	if (rc)
10574 		netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %d\n",
10575 			   rc);
10576 
10577 	return rc;
10578 }
10579 
10580 static bool bnxt_can_reserve_rings(struct bnxt *bp)
10581 {
10582 #ifdef CONFIG_BNXT_SRIOV
10583 	if (BNXT_NEW_RM(bp) && BNXT_VF(bp)) {
10584 		struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
10585 
10586 		/* No minimum rings were provisioned by the PF.  Don't
10587 		 * reserve rings by default when device is down.
10588 		 */
10589 		if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings)
10590 			return true;
10591 
10592 		if (!netif_running(bp->dev))
10593 			return false;
10594 	}
10595 #endif
10596 	return true;
10597 }
10598 
10599 /* If the chip and firmware supports RFS */
10600 static bool bnxt_rfs_supported(struct bnxt *bp)
10601 {
10602 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
10603 		if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2)
10604 			return true;
10605 		return false;
10606 	}
10607 	if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
10608 		return true;
10609 	if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
10610 		return true;
10611 	return false;
10612 }
10613 
10614 /* If runtime conditions support RFS */
10615 static bool bnxt_rfs_capable(struct bnxt *bp)
10616 {
10617 #ifdef CONFIG_RFS_ACCEL
10618 	int vnics, max_vnics, max_rss_ctxs;
10619 
10620 	if (bp->flags & BNXT_FLAG_CHIP_P5)
10621 		return bnxt_rfs_supported(bp);
10622 	if (!(bp->flags & BNXT_FLAG_MSIX_CAP) || !bnxt_can_reserve_rings(bp))
10623 		return false;
10624 
10625 	vnics = 1 + bp->rx_nr_rings;
10626 	max_vnics = bnxt_get_max_func_vnics(bp);
10627 	max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp);
10628 
10629 	/* RSS contexts not a limiting factor */
10630 	if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
10631 		max_rss_ctxs = max_vnics;
10632 	if (vnics > max_vnics || vnics > max_rss_ctxs) {
10633 		if (bp->rx_nr_rings > 1)
10634 			netdev_warn(bp->dev,
10635 				    "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n",
10636 				    min(max_rss_ctxs - 1, max_vnics - 1));
10637 		return false;
10638 	}
10639 
10640 	if (!BNXT_NEW_RM(bp))
10641 		return true;
10642 
10643 	if (vnics == bp->hw_resc.resv_vnics)
10644 		return true;
10645 
10646 	bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, vnics);
10647 	if (vnics <= bp->hw_resc.resv_vnics)
10648 		return true;
10649 
10650 	netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n");
10651 	bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, 1);
10652 	return false;
10653 #else
10654 	return false;
10655 #endif
10656 }
10657 
10658 static netdev_features_t bnxt_fix_features(struct net_device *dev,
10659 					   netdev_features_t features)
10660 {
10661 	struct bnxt *bp = netdev_priv(dev);
10662 	netdev_features_t vlan_features;
10663 
10664 	if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp))
10665 		features &= ~NETIF_F_NTUPLE;
10666 
10667 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
10668 		features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
10669 
10670 	if (!(features & NETIF_F_GRO))
10671 		features &= ~NETIF_F_GRO_HW;
10672 
10673 	if (features & NETIF_F_GRO_HW)
10674 		features &= ~NETIF_F_LRO;
10675 
10676 	/* Both CTAG and STAG VLAN accelaration on the RX side have to be
10677 	 * turned on or off together.
10678 	 */
10679 	vlan_features = features & BNXT_HW_FEATURE_VLAN_ALL_RX;
10680 	if (vlan_features != BNXT_HW_FEATURE_VLAN_ALL_RX) {
10681 		if (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)
10682 			features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX;
10683 		else if (vlan_features)
10684 			features |= BNXT_HW_FEATURE_VLAN_ALL_RX;
10685 	}
10686 #ifdef CONFIG_BNXT_SRIOV
10687 	if (BNXT_VF(bp) && bp->vf.vlan)
10688 		features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX;
10689 #endif
10690 	return features;
10691 }
10692 
10693 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
10694 {
10695 	struct bnxt *bp = netdev_priv(dev);
10696 	u32 flags = bp->flags;
10697 	u32 changes;
10698 	int rc = 0;
10699 	bool re_init = false;
10700 	bool update_tpa = false;
10701 
10702 	flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
10703 	if (features & NETIF_F_GRO_HW)
10704 		flags |= BNXT_FLAG_GRO;
10705 	else if (features & NETIF_F_LRO)
10706 		flags |= BNXT_FLAG_LRO;
10707 
10708 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
10709 		flags &= ~BNXT_FLAG_TPA;
10710 
10711 	if (features & BNXT_HW_FEATURE_VLAN_ALL_RX)
10712 		flags |= BNXT_FLAG_STRIP_VLAN;
10713 
10714 	if (features & NETIF_F_NTUPLE)
10715 		flags |= BNXT_FLAG_RFS;
10716 
10717 	changes = flags ^ bp->flags;
10718 	if (changes & BNXT_FLAG_TPA) {
10719 		update_tpa = true;
10720 		if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
10721 		    (flags & BNXT_FLAG_TPA) == 0 ||
10722 		    (bp->flags & BNXT_FLAG_CHIP_P5))
10723 			re_init = true;
10724 	}
10725 
10726 	if (changes & ~BNXT_FLAG_TPA)
10727 		re_init = true;
10728 
10729 	if (flags != bp->flags) {
10730 		u32 old_flags = bp->flags;
10731 
10732 		if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
10733 			bp->flags = flags;
10734 			if (update_tpa)
10735 				bnxt_set_ring_params(bp);
10736 			return rc;
10737 		}
10738 
10739 		if (re_init) {
10740 			bnxt_close_nic(bp, false, false);
10741 			bp->flags = flags;
10742 			if (update_tpa)
10743 				bnxt_set_ring_params(bp);
10744 
10745 			return bnxt_open_nic(bp, false, false);
10746 		}
10747 		if (update_tpa) {
10748 			bp->flags = flags;
10749 			rc = bnxt_set_tpa(bp,
10750 					  (flags & BNXT_FLAG_TPA) ?
10751 					  true : false);
10752 			if (rc)
10753 				bp->flags = old_flags;
10754 		}
10755 	}
10756 	return rc;
10757 }
10758 
10759 int bnxt_dbg_hwrm_rd_reg(struct bnxt *bp, u32 reg_off, u16 num_words,
10760 			 u32 *reg_buf)
10761 {
10762 	struct hwrm_dbg_read_direct_output *resp = bp->hwrm_cmd_resp_addr;
10763 	struct hwrm_dbg_read_direct_input req = {0};
10764 	__le32 *dbg_reg_buf;
10765 	dma_addr_t mapping;
10766 	int rc, i;
10767 
10768 	dbg_reg_buf = dma_alloc_coherent(&bp->pdev->dev, num_words * 4,
10769 					 &mapping, GFP_KERNEL);
10770 	if (!dbg_reg_buf)
10771 		return -ENOMEM;
10772 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_DBG_READ_DIRECT, -1, -1);
10773 	req.host_dest_addr = cpu_to_le64(mapping);
10774 	req.read_addr = cpu_to_le32(reg_off + CHIMP_REG_VIEW_ADDR);
10775 	req.read_len32 = cpu_to_le32(num_words);
10776 	mutex_lock(&bp->hwrm_cmd_lock);
10777 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
10778 	if (rc || resp->error_code) {
10779 		rc = -EIO;
10780 		goto dbg_rd_reg_exit;
10781 	}
10782 	for (i = 0; i < num_words; i++)
10783 		reg_buf[i] = le32_to_cpu(dbg_reg_buf[i]);
10784 
10785 dbg_rd_reg_exit:
10786 	mutex_unlock(&bp->hwrm_cmd_lock);
10787 	dma_free_coherent(&bp->pdev->dev, num_words * 4, dbg_reg_buf, mapping);
10788 	return rc;
10789 }
10790 
10791 static int bnxt_dbg_hwrm_ring_info_get(struct bnxt *bp, u8 ring_type,
10792 				       u32 ring_id, u32 *prod, u32 *cons)
10793 {
10794 	struct hwrm_dbg_ring_info_get_output *resp = bp->hwrm_cmd_resp_addr;
10795 	struct hwrm_dbg_ring_info_get_input req = {0};
10796 	int rc;
10797 
10798 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_DBG_RING_INFO_GET, -1, -1);
10799 	req.ring_type = ring_type;
10800 	req.fw_ring_id = cpu_to_le32(ring_id);
10801 	mutex_lock(&bp->hwrm_cmd_lock);
10802 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
10803 	if (!rc) {
10804 		*prod = le32_to_cpu(resp->producer_index);
10805 		*cons = le32_to_cpu(resp->consumer_index);
10806 	}
10807 	mutex_unlock(&bp->hwrm_cmd_lock);
10808 	return rc;
10809 }
10810 
10811 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
10812 {
10813 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
10814 	int i = bnapi->index;
10815 
10816 	if (!txr)
10817 		return;
10818 
10819 	netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
10820 		    i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
10821 		    txr->tx_cons);
10822 }
10823 
10824 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
10825 {
10826 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
10827 	int i = bnapi->index;
10828 
10829 	if (!rxr)
10830 		return;
10831 
10832 	netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
10833 		    i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
10834 		    rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
10835 		    rxr->rx_sw_agg_prod);
10836 }
10837 
10838 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
10839 {
10840 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
10841 	int i = bnapi->index;
10842 
10843 	netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
10844 		    i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
10845 }
10846 
10847 static void bnxt_dbg_dump_states(struct bnxt *bp)
10848 {
10849 	int i;
10850 	struct bnxt_napi *bnapi;
10851 
10852 	for (i = 0; i < bp->cp_nr_rings; i++) {
10853 		bnapi = bp->bnapi[i];
10854 		if (netif_msg_drv(bp)) {
10855 			bnxt_dump_tx_sw_state(bnapi);
10856 			bnxt_dump_rx_sw_state(bnapi);
10857 			bnxt_dump_cp_sw_state(bnapi);
10858 		}
10859 	}
10860 }
10861 
10862 static int bnxt_hwrm_rx_ring_reset(struct bnxt *bp, int ring_nr)
10863 {
10864 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
10865 	struct hwrm_ring_reset_input req = {0};
10866 	struct bnxt_napi *bnapi = rxr->bnapi;
10867 	struct bnxt_cp_ring_info *cpr;
10868 	u16 cp_ring_id;
10869 
10870 	cpr = &bnapi->cp_ring;
10871 	cp_ring_id = cpr->cp_ring_struct.fw_ring_id;
10872 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_RESET, cp_ring_id, -1);
10873 	req.ring_type = RING_RESET_REQ_RING_TYPE_RX_RING_GRP;
10874 	req.ring_id = cpu_to_le16(bp->grp_info[bnapi->index].fw_grp_id);
10875 	return hwrm_send_message_silent(bp, &req, sizeof(req),
10876 					HWRM_CMD_TIMEOUT);
10877 }
10878 
10879 static void bnxt_reset_task(struct bnxt *bp, bool silent)
10880 {
10881 	if (!silent)
10882 		bnxt_dbg_dump_states(bp);
10883 	if (netif_running(bp->dev)) {
10884 		int rc;
10885 
10886 		if (silent) {
10887 			bnxt_close_nic(bp, false, false);
10888 			bnxt_open_nic(bp, false, false);
10889 		} else {
10890 			bnxt_ulp_stop(bp);
10891 			bnxt_close_nic(bp, true, false);
10892 			rc = bnxt_open_nic(bp, true, false);
10893 			bnxt_ulp_start(bp, rc);
10894 		}
10895 	}
10896 }
10897 
10898 static void bnxt_tx_timeout(struct net_device *dev, unsigned int txqueue)
10899 {
10900 	struct bnxt *bp = netdev_priv(dev);
10901 
10902 	netdev_err(bp->dev,  "TX timeout detected, starting reset task!\n");
10903 	set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
10904 	bnxt_queue_sp_work(bp);
10905 }
10906 
10907 static void bnxt_fw_health_check(struct bnxt *bp)
10908 {
10909 	struct bnxt_fw_health *fw_health = bp->fw_health;
10910 	u32 val;
10911 
10912 	if (!fw_health->enabled || test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
10913 		return;
10914 
10915 	if (fw_health->tmr_counter) {
10916 		fw_health->tmr_counter--;
10917 		return;
10918 	}
10919 
10920 	val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
10921 	if (val == fw_health->last_fw_heartbeat)
10922 		goto fw_reset;
10923 
10924 	fw_health->last_fw_heartbeat = val;
10925 
10926 	val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
10927 	if (val != fw_health->last_fw_reset_cnt)
10928 		goto fw_reset;
10929 
10930 	fw_health->tmr_counter = fw_health->tmr_multiplier;
10931 	return;
10932 
10933 fw_reset:
10934 	set_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event);
10935 	bnxt_queue_sp_work(bp);
10936 }
10937 
10938 static void bnxt_timer(struct timer_list *t)
10939 {
10940 	struct bnxt *bp = from_timer(bp, t, timer);
10941 	struct net_device *dev = bp->dev;
10942 
10943 	if (!netif_running(dev) || !test_bit(BNXT_STATE_OPEN, &bp->state))
10944 		return;
10945 
10946 	if (atomic_read(&bp->intr_sem) != 0)
10947 		goto bnxt_restart_timer;
10948 
10949 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
10950 		bnxt_fw_health_check(bp);
10951 
10952 	if (bp->link_info.link_up && bp->stats_coal_ticks) {
10953 		set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event);
10954 		bnxt_queue_sp_work(bp);
10955 	}
10956 
10957 	if (bnxt_tc_flower_enabled(bp)) {
10958 		set_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event);
10959 		bnxt_queue_sp_work(bp);
10960 	}
10961 
10962 #ifdef CONFIG_RFS_ACCEL
10963 	if ((bp->flags & BNXT_FLAG_RFS) && bp->ntp_fltr_count) {
10964 		set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
10965 		bnxt_queue_sp_work(bp);
10966 	}
10967 #endif /*CONFIG_RFS_ACCEL*/
10968 
10969 	if (bp->link_info.phy_retry) {
10970 		if (time_after(jiffies, bp->link_info.phy_retry_expires)) {
10971 			bp->link_info.phy_retry = false;
10972 			netdev_warn(bp->dev, "failed to update phy settings after maximum retries.\n");
10973 		} else {
10974 			set_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event);
10975 			bnxt_queue_sp_work(bp);
10976 		}
10977 	}
10978 
10979 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && !bp->chip_rev &&
10980 	    netif_carrier_ok(dev)) {
10981 		set_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event);
10982 		bnxt_queue_sp_work(bp);
10983 	}
10984 bnxt_restart_timer:
10985 	mod_timer(&bp->timer, jiffies + bp->current_interval);
10986 }
10987 
10988 static void bnxt_rtnl_lock_sp(struct bnxt *bp)
10989 {
10990 	/* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK
10991 	 * set.  If the device is being closed, bnxt_close() may be holding
10992 	 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear.  So we
10993 	 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl().
10994 	 */
10995 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
10996 	rtnl_lock();
10997 }
10998 
10999 static void bnxt_rtnl_unlock_sp(struct bnxt *bp)
11000 {
11001 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
11002 	rtnl_unlock();
11003 }
11004 
11005 /* Only called from bnxt_sp_task() */
11006 static void bnxt_reset(struct bnxt *bp, bool silent)
11007 {
11008 	bnxt_rtnl_lock_sp(bp);
11009 	if (test_bit(BNXT_STATE_OPEN, &bp->state))
11010 		bnxt_reset_task(bp, silent);
11011 	bnxt_rtnl_unlock_sp(bp);
11012 }
11013 
11014 /* Only called from bnxt_sp_task() */
11015 static void bnxt_rx_ring_reset(struct bnxt *bp)
11016 {
11017 	int i;
11018 
11019 	bnxt_rtnl_lock_sp(bp);
11020 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
11021 		bnxt_rtnl_unlock_sp(bp);
11022 		return;
11023 	}
11024 	/* Disable and flush TPA before resetting the RX ring */
11025 	if (bp->flags & BNXT_FLAG_TPA)
11026 		bnxt_set_tpa(bp, false);
11027 	for (i = 0; i < bp->rx_nr_rings; i++) {
11028 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
11029 		struct bnxt_cp_ring_info *cpr;
11030 		int rc;
11031 
11032 		if (!rxr->bnapi->in_reset)
11033 			continue;
11034 
11035 		rc = bnxt_hwrm_rx_ring_reset(bp, i);
11036 		if (rc) {
11037 			if (rc == -EINVAL || rc == -EOPNOTSUPP)
11038 				netdev_info_once(bp->dev, "RX ring reset not supported by firmware, falling back to global reset\n");
11039 			else
11040 				netdev_warn(bp->dev, "RX ring reset failed, rc = %d, falling back to global reset\n",
11041 					    rc);
11042 			bnxt_reset_task(bp, true);
11043 			break;
11044 		}
11045 		bnxt_free_one_rx_ring_skbs(bp, i);
11046 		rxr->rx_prod = 0;
11047 		rxr->rx_agg_prod = 0;
11048 		rxr->rx_sw_agg_prod = 0;
11049 		rxr->rx_next_cons = 0;
11050 		rxr->bnapi->in_reset = false;
11051 		bnxt_alloc_one_rx_ring(bp, i);
11052 		cpr = &rxr->bnapi->cp_ring;
11053 		cpr->sw_stats.rx.rx_resets++;
11054 		if (bp->flags & BNXT_FLAG_AGG_RINGS)
11055 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
11056 		bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
11057 	}
11058 	if (bp->flags & BNXT_FLAG_TPA)
11059 		bnxt_set_tpa(bp, true);
11060 	bnxt_rtnl_unlock_sp(bp);
11061 }
11062 
11063 static void bnxt_fw_reset_close(struct bnxt *bp)
11064 {
11065 	bnxt_ulp_stop(bp);
11066 	/* When firmware is in fatal state, quiesce device and disable
11067 	 * bus master to prevent any potential bad DMAs before freeing
11068 	 * kernel memory.
11069 	 */
11070 	if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) {
11071 		u16 val = 0;
11072 
11073 		pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val);
11074 		if (val == 0xffff)
11075 			bp->fw_reset_min_dsecs = 0;
11076 		bnxt_tx_disable(bp);
11077 		bnxt_disable_napi(bp);
11078 		bnxt_disable_int_sync(bp);
11079 		bnxt_free_irq(bp);
11080 		bnxt_clear_int_mode(bp);
11081 		pci_disable_device(bp->pdev);
11082 	}
11083 	__bnxt_close_nic(bp, true, false);
11084 	bnxt_vf_reps_free(bp);
11085 	bnxt_clear_int_mode(bp);
11086 	bnxt_hwrm_func_drv_unrgtr(bp);
11087 	if (pci_is_enabled(bp->pdev))
11088 		pci_disable_device(bp->pdev);
11089 	bnxt_free_ctx_mem(bp);
11090 	kfree(bp->ctx);
11091 	bp->ctx = NULL;
11092 }
11093 
11094 static bool is_bnxt_fw_ok(struct bnxt *bp)
11095 {
11096 	struct bnxt_fw_health *fw_health = bp->fw_health;
11097 	bool no_heartbeat = false, has_reset = false;
11098 	u32 val;
11099 
11100 	val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
11101 	if (val == fw_health->last_fw_heartbeat)
11102 		no_heartbeat = true;
11103 
11104 	val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
11105 	if (val != fw_health->last_fw_reset_cnt)
11106 		has_reset = true;
11107 
11108 	if (!no_heartbeat && has_reset)
11109 		return true;
11110 
11111 	return false;
11112 }
11113 
11114 /* rtnl_lock is acquired before calling this function */
11115 static void bnxt_force_fw_reset(struct bnxt *bp)
11116 {
11117 	struct bnxt_fw_health *fw_health = bp->fw_health;
11118 	u32 wait_dsecs;
11119 
11120 	if (!test_bit(BNXT_STATE_OPEN, &bp->state) ||
11121 	    test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
11122 		return;
11123 
11124 	set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11125 	bnxt_fw_reset_close(bp);
11126 	wait_dsecs = fw_health->master_func_wait_dsecs;
11127 	if (fw_health->master) {
11128 		if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU)
11129 			wait_dsecs = 0;
11130 		bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW;
11131 	} else {
11132 		bp->fw_reset_timestamp = jiffies + wait_dsecs * HZ / 10;
11133 		wait_dsecs = fw_health->normal_func_wait_dsecs;
11134 		bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
11135 	}
11136 
11137 	bp->fw_reset_min_dsecs = fw_health->post_reset_wait_dsecs;
11138 	bp->fw_reset_max_dsecs = fw_health->post_reset_max_wait_dsecs;
11139 	bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10);
11140 }
11141 
11142 void bnxt_fw_exception(struct bnxt *bp)
11143 {
11144 	netdev_warn(bp->dev, "Detected firmware fatal condition, initiating reset\n");
11145 	set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
11146 	bnxt_rtnl_lock_sp(bp);
11147 	bnxt_force_fw_reset(bp);
11148 	bnxt_rtnl_unlock_sp(bp);
11149 }
11150 
11151 /* Returns the number of registered VFs, or 1 if VF configuration is pending, or
11152  * < 0 on error.
11153  */
11154 static int bnxt_get_registered_vfs(struct bnxt *bp)
11155 {
11156 #ifdef CONFIG_BNXT_SRIOV
11157 	int rc;
11158 
11159 	if (!BNXT_PF(bp))
11160 		return 0;
11161 
11162 	rc = bnxt_hwrm_func_qcfg(bp);
11163 	if (rc) {
11164 		netdev_err(bp->dev, "func_qcfg cmd failed, rc = %d\n", rc);
11165 		return rc;
11166 	}
11167 	if (bp->pf.registered_vfs)
11168 		return bp->pf.registered_vfs;
11169 	if (bp->sriov_cfg)
11170 		return 1;
11171 #endif
11172 	return 0;
11173 }
11174 
11175 void bnxt_fw_reset(struct bnxt *bp)
11176 {
11177 	bnxt_rtnl_lock_sp(bp);
11178 	if (test_bit(BNXT_STATE_OPEN, &bp->state) &&
11179 	    !test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
11180 		int n = 0, tmo;
11181 
11182 		set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11183 		if (bp->pf.active_vfs &&
11184 		    !test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
11185 			n = bnxt_get_registered_vfs(bp);
11186 		if (n < 0) {
11187 			netdev_err(bp->dev, "Firmware reset aborted, rc = %d\n",
11188 				   n);
11189 			clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11190 			dev_close(bp->dev);
11191 			goto fw_reset_exit;
11192 		} else if (n > 0) {
11193 			u16 vf_tmo_dsecs = n * 10;
11194 
11195 			if (bp->fw_reset_max_dsecs < vf_tmo_dsecs)
11196 				bp->fw_reset_max_dsecs = vf_tmo_dsecs;
11197 			bp->fw_reset_state =
11198 				BNXT_FW_RESET_STATE_POLL_VF;
11199 			bnxt_queue_fw_reset_work(bp, HZ / 10);
11200 			goto fw_reset_exit;
11201 		}
11202 		bnxt_fw_reset_close(bp);
11203 		if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
11204 			bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN;
11205 			tmo = HZ / 10;
11206 		} else {
11207 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
11208 			tmo = bp->fw_reset_min_dsecs * HZ / 10;
11209 		}
11210 		bnxt_queue_fw_reset_work(bp, tmo);
11211 	}
11212 fw_reset_exit:
11213 	bnxt_rtnl_unlock_sp(bp);
11214 }
11215 
11216 static void bnxt_chk_missed_irq(struct bnxt *bp)
11217 {
11218 	int i;
11219 
11220 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
11221 		return;
11222 
11223 	for (i = 0; i < bp->cp_nr_rings; i++) {
11224 		struct bnxt_napi *bnapi = bp->bnapi[i];
11225 		struct bnxt_cp_ring_info *cpr;
11226 		u32 fw_ring_id;
11227 		int j;
11228 
11229 		if (!bnapi)
11230 			continue;
11231 
11232 		cpr = &bnapi->cp_ring;
11233 		for (j = 0; j < 2; j++) {
11234 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
11235 			u32 val[2];
11236 
11237 			if (!cpr2 || cpr2->has_more_work ||
11238 			    !bnxt_has_work(bp, cpr2))
11239 				continue;
11240 
11241 			if (cpr2->cp_raw_cons != cpr2->last_cp_raw_cons) {
11242 				cpr2->last_cp_raw_cons = cpr2->cp_raw_cons;
11243 				continue;
11244 			}
11245 			fw_ring_id = cpr2->cp_ring_struct.fw_ring_id;
11246 			bnxt_dbg_hwrm_ring_info_get(bp,
11247 				DBG_RING_INFO_GET_REQ_RING_TYPE_L2_CMPL,
11248 				fw_ring_id, &val[0], &val[1]);
11249 			cpr->sw_stats.cmn.missed_irqs++;
11250 		}
11251 	}
11252 }
11253 
11254 static void bnxt_cfg_ntp_filters(struct bnxt *);
11255 
11256 static void bnxt_init_ethtool_link_settings(struct bnxt *bp)
11257 {
11258 	struct bnxt_link_info *link_info = &bp->link_info;
11259 
11260 	if (BNXT_AUTO_MODE(link_info->auto_mode)) {
11261 		link_info->autoneg = BNXT_AUTONEG_SPEED;
11262 		if (bp->hwrm_spec_code >= 0x10201) {
11263 			if (link_info->auto_pause_setting &
11264 			    PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE)
11265 				link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
11266 		} else {
11267 			link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
11268 		}
11269 		link_info->advertising = link_info->auto_link_speeds;
11270 		link_info->advertising_pam4 = link_info->auto_pam4_link_speeds;
11271 	} else {
11272 		link_info->req_link_speed = link_info->force_link_speed;
11273 		link_info->req_signal_mode = BNXT_SIG_MODE_NRZ;
11274 		if (link_info->force_pam4_link_speed) {
11275 			link_info->req_link_speed =
11276 				link_info->force_pam4_link_speed;
11277 			link_info->req_signal_mode = BNXT_SIG_MODE_PAM4;
11278 		}
11279 		link_info->req_duplex = link_info->duplex_setting;
11280 	}
11281 	if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL)
11282 		link_info->req_flow_ctrl =
11283 			link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH;
11284 	else
11285 		link_info->req_flow_ctrl = link_info->force_pause_setting;
11286 }
11287 
11288 static void bnxt_fw_echo_reply(struct bnxt *bp)
11289 {
11290 	struct bnxt_fw_health *fw_health = bp->fw_health;
11291 	struct hwrm_func_echo_response_input req = {0};
11292 
11293 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_ECHO_RESPONSE, -1, -1);
11294 	req.event_data1 = cpu_to_le32(fw_health->echo_req_data1);
11295 	req.event_data2 = cpu_to_le32(fw_health->echo_req_data2);
11296 	hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
11297 }
11298 
11299 static void bnxt_sp_task(struct work_struct *work)
11300 {
11301 	struct bnxt *bp = container_of(work, struct bnxt, sp_task);
11302 
11303 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
11304 	smp_mb__after_atomic();
11305 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
11306 		clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
11307 		return;
11308 	}
11309 
11310 	if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
11311 		bnxt_cfg_rx_mode(bp);
11312 
11313 	if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
11314 		bnxt_cfg_ntp_filters(bp);
11315 	if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
11316 		bnxt_hwrm_exec_fwd_req(bp);
11317 	if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) {
11318 		bnxt_hwrm_port_qstats(bp, 0);
11319 		bnxt_hwrm_port_qstats_ext(bp, 0);
11320 		bnxt_accumulate_all_stats(bp);
11321 	}
11322 
11323 	if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
11324 		int rc;
11325 
11326 		mutex_lock(&bp->link_lock);
11327 		if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT,
11328 				       &bp->sp_event))
11329 			bnxt_hwrm_phy_qcaps(bp);
11330 
11331 		rc = bnxt_update_link(bp, true);
11332 		if (rc)
11333 			netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
11334 				   rc);
11335 
11336 		if (test_and_clear_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT,
11337 				       &bp->sp_event))
11338 			bnxt_init_ethtool_link_settings(bp);
11339 		mutex_unlock(&bp->link_lock);
11340 	}
11341 	if (test_and_clear_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event)) {
11342 		int rc;
11343 
11344 		mutex_lock(&bp->link_lock);
11345 		rc = bnxt_update_phy_setting(bp);
11346 		mutex_unlock(&bp->link_lock);
11347 		if (rc) {
11348 			netdev_warn(bp->dev, "update phy settings retry failed\n");
11349 		} else {
11350 			bp->link_info.phy_retry = false;
11351 			netdev_info(bp->dev, "update phy settings retry succeeded\n");
11352 		}
11353 	}
11354 	if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) {
11355 		mutex_lock(&bp->link_lock);
11356 		bnxt_get_port_module_status(bp);
11357 		mutex_unlock(&bp->link_lock);
11358 	}
11359 
11360 	if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event))
11361 		bnxt_tc_flow_stats_work(bp);
11362 
11363 	if (test_and_clear_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event))
11364 		bnxt_chk_missed_irq(bp);
11365 
11366 	if (test_and_clear_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event))
11367 		bnxt_fw_echo_reply(bp);
11368 
11369 	/* These functions below will clear BNXT_STATE_IN_SP_TASK.  They
11370 	 * must be the last functions to be called before exiting.
11371 	 */
11372 	if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event))
11373 		bnxt_reset(bp, false);
11374 
11375 	if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event))
11376 		bnxt_reset(bp, true);
11377 
11378 	if (test_and_clear_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event))
11379 		bnxt_rx_ring_reset(bp);
11380 
11381 	if (test_and_clear_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event))
11382 		bnxt_devlink_health_report(bp, BNXT_FW_RESET_NOTIFY_SP_EVENT);
11383 
11384 	if (test_and_clear_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event)) {
11385 		if (!is_bnxt_fw_ok(bp))
11386 			bnxt_devlink_health_report(bp,
11387 						   BNXT_FW_EXCEPTION_SP_EVENT);
11388 	}
11389 
11390 	smp_mb__before_atomic();
11391 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
11392 }
11393 
11394 /* Under rtnl_lock */
11395 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs,
11396 		     int tx_xdp)
11397 {
11398 	int max_rx, max_tx, tx_sets = 1;
11399 	int tx_rings_needed, stats;
11400 	int rx_rings = rx;
11401 	int cp, vnics, rc;
11402 
11403 	if (tcs)
11404 		tx_sets = tcs;
11405 
11406 	rc = bnxt_get_max_rings(bp, &max_rx, &max_tx, sh);
11407 	if (rc)
11408 		return rc;
11409 
11410 	if (max_rx < rx)
11411 		return -ENOMEM;
11412 
11413 	tx_rings_needed = tx * tx_sets + tx_xdp;
11414 	if (max_tx < tx_rings_needed)
11415 		return -ENOMEM;
11416 
11417 	vnics = 1;
11418 	if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS)
11419 		vnics += rx_rings;
11420 
11421 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
11422 		rx_rings <<= 1;
11423 	cp = sh ? max_t(int, tx_rings_needed, rx) : tx_rings_needed + rx;
11424 	stats = cp;
11425 	if (BNXT_NEW_RM(bp)) {
11426 		cp += bnxt_get_ulp_msix_num(bp);
11427 		stats += bnxt_get_ulp_stat_ctxs(bp);
11428 	}
11429 	return bnxt_hwrm_check_rings(bp, tx_rings_needed, rx_rings, rx, cp,
11430 				     stats, vnics);
11431 }
11432 
11433 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev)
11434 {
11435 	if (bp->bar2) {
11436 		pci_iounmap(pdev, bp->bar2);
11437 		bp->bar2 = NULL;
11438 	}
11439 
11440 	if (bp->bar1) {
11441 		pci_iounmap(pdev, bp->bar1);
11442 		bp->bar1 = NULL;
11443 	}
11444 
11445 	if (bp->bar0) {
11446 		pci_iounmap(pdev, bp->bar0);
11447 		bp->bar0 = NULL;
11448 	}
11449 }
11450 
11451 static void bnxt_cleanup_pci(struct bnxt *bp)
11452 {
11453 	bnxt_unmap_bars(bp, bp->pdev);
11454 	pci_release_regions(bp->pdev);
11455 	if (pci_is_enabled(bp->pdev))
11456 		pci_disable_device(bp->pdev);
11457 }
11458 
11459 static void bnxt_init_dflt_coal(struct bnxt *bp)
11460 {
11461 	struct bnxt_coal *coal;
11462 
11463 	/* Tick values in micro seconds.
11464 	 * 1 coal_buf x bufs_per_record = 1 completion record.
11465 	 */
11466 	coal = &bp->rx_coal;
11467 	coal->coal_ticks = 10;
11468 	coal->coal_bufs = 30;
11469 	coal->coal_ticks_irq = 1;
11470 	coal->coal_bufs_irq = 2;
11471 	coal->idle_thresh = 50;
11472 	coal->bufs_per_record = 2;
11473 	coal->budget = 64;		/* NAPI budget */
11474 
11475 	coal = &bp->tx_coal;
11476 	coal->coal_ticks = 28;
11477 	coal->coal_bufs = 30;
11478 	coal->coal_ticks_irq = 2;
11479 	coal->coal_bufs_irq = 2;
11480 	coal->bufs_per_record = 1;
11481 
11482 	bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS;
11483 }
11484 
11485 static int bnxt_fw_init_one_p1(struct bnxt *bp)
11486 {
11487 	int rc;
11488 
11489 	bp->fw_cap = 0;
11490 	rc = bnxt_hwrm_ver_get(bp);
11491 	bnxt_try_map_fw_health_reg(bp);
11492 	if (rc) {
11493 		rc = bnxt_try_recover_fw(bp);
11494 		if (rc)
11495 			return rc;
11496 		rc = bnxt_hwrm_ver_get(bp);
11497 		if (rc)
11498 			return rc;
11499 	}
11500 
11501 	if (bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL) {
11502 		rc = bnxt_alloc_kong_hwrm_resources(bp);
11503 		if (rc)
11504 			bp->fw_cap &= ~BNXT_FW_CAP_KONG_MB_CHNL;
11505 	}
11506 
11507 	if ((bp->fw_cap & BNXT_FW_CAP_SHORT_CMD) ||
11508 	    bp->hwrm_max_ext_req_len > BNXT_HWRM_MAX_REQ_LEN) {
11509 		rc = bnxt_alloc_hwrm_short_cmd_req(bp);
11510 		if (rc)
11511 			return rc;
11512 	}
11513 	bnxt_nvm_cfg_ver_get(bp);
11514 
11515 	rc = bnxt_hwrm_func_reset(bp);
11516 	if (rc)
11517 		return -ENODEV;
11518 
11519 	bnxt_hwrm_fw_set_time(bp);
11520 	return 0;
11521 }
11522 
11523 static int bnxt_fw_init_one_p2(struct bnxt *bp)
11524 {
11525 	int rc;
11526 
11527 	/* Get the MAX capabilities for this function */
11528 	rc = bnxt_hwrm_func_qcaps(bp);
11529 	if (rc) {
11530 		netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
11531 			   rc);
11532 		return -ENODEV;
11533 	}
11534 
11535 	rc = bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(bp);
11536 	if (rc)
11537 		netdev_warn(bp->dev, "hwrm query adv flow mgnt failure rc: %d\n",
11538 			    rc);
11539 
11540 	if (bnxt_alloc_fw_health(bp)) {
11541 		netdev_warn(bp->dev, "no memory for firmware error recovery\n");
11542 	} else {
11543 		rc = bnxt_hwrm_error_recovery_qcfg(bp);
11544 		if (rc)
11545 			netdev_warn(bp->dev, "hwrm query error recovery failure rc: %d\n",
11546 				    rc);
11547 	}
11548 
11549 	rc = bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false);
11550 	if (rc)
11551 		return -ENODEV;
11552 
11553 	bnxt_hwrm_func_qcfg(bp);
11554 	bnxt_hwrm_vnic_qcaps(bp);
11555 	bnxt_hwrm_port_led_qcaps(bp);
11556 	bnxt_ethtool_init(bp);
11557 	bnxt_dcb_init(bp);
11558 	return 0;
11559 }
11560 
11561 static void bnxt_set_dflt_rss_hash_type(struct bnxt *bp)
11562 {
11563 	bp->flags &= ~BNXT_FLAG_UDP_RSS_CAP;
11564 	bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 |
11565 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 |
11566 			   VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 |
11567 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6;
11568 	if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) {
11569 		bp->flags |= BNXT_FLAG_UDP_RSS_CAP;
11570 		bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 |
11571 				    VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6;
11572 	}
11573 }
11574 
11575 static void bnxt_set_dflt_rfs(struct bnxt *bp)
11576 {
11577 	struct net_device *dev = bp->dev;
11578 
11579 	dev->hw_features &= ~NETIF_F_NTUPLE;
11580 	dev->features &= ~NETIF_F_NTUPLE;
11581 	bp->flags &= ~BNXT_FLAG_RFS;
11582 	if (bnxt_rfs_supported(bp)) {
11583 		dev->hw_features |= NETIF_F_NTUPLE;
11584 		if (bnxt_rfs_capable(bp)) {
11585 			bp->flags |= BNXT_FLAG_RFS;
11586 			dev->features |= NETIF_F_NTUPLE;
11587 		}
11588 	}
11589 }
11590 
11591 static void bnxt_fw_init_one_p3(struct bnxt *bp)
11592 {
11593 	struct pci_dev *pdev = bp->pdev;
11594 
11595 	bnxt_set_dflt_rss_hash_type(bp);
11596 	bnxt_set_dflt_rfs(bp);
11597 
11598 	bnxt_get_wol_settings(bp);
11599 	if (bp->flags & BNXT_FLAG_WOL_CAP)
11600 		device_set_wakeup_enable(&pdev->dev, bp->wol);
11601 	else
11602 		device_set_wakeup_capable(&pdev->dev, false);
11603 
11604 	bnxt_hwrm_set_cache_line_size(bp, cache_line_size());
11605 	bnxt_hwrm_coal_params_qcaps(bp);
11606 }
11607 
11608 static int bnxt_fw_init_one(struct bnxt *bp)
11609 {
11610 	int rc;
11611 
11612 	rc = bnxt_fw_init_one_p1(bp);
11613 	if (rc) {
11614 		netdev_err(bp->dev, "Firmware init phase 1 failed\n");
11615 		return rc;
11616 	}
11617 	rc = bnxt_fw_init_one_p2(bp);
11618 	if (rc) {
11619 		netdev_err(bp->dev, "Firmware init phase 2 failed\n");
11620 		return rc;
11621 	}
11622 	rc = bnxt_approve_mac(bp, bp->dev->dev_addr, false);
11623 	if (rc)
11624 		return rc;
11625 
11626 	/* In case fw capabilities have changed, destroy the unneeded
11627 	 * reporters and create newly capable ones.
11628 	 */
11629 	bnxt_dl_fw_reporters_destroy(bp, false);
11630 	bnxt_dl_fw_reporters_create(bp);
11631 	bnxt_fw_init_one_p3(bp);
11632 	return 0;
11633 }
11634 
11635 static void bnxt_fw_reset_writel(struct bnxt *bp, int reg_idx)
11636 {
11637 	struct bnxt_fw_health *fw_health = bp->fw_health;
11638 	u32 reg = fw_health->fw_reset_seq_regs[reg_idx];
11639 	u32 val = fw_health->fw_reset_seq_vals[reg_idx];
11640 	u32 reg_type, reg_off, delay_msecs;
11641 
11642 	delay_msecs = fw_health->fw_reset_seq_delay_msec[reg_idx];
11643 	reg_type = BNXT_FW_HEALTH_REG_TYPE(reg);
11644 	reg_off = BNXT_FW_HEALTH_REG_OFF(reg);
11645 	switch (reg_type) {
11646 	case BNXT_FW_HEALTH_REG_TYPE_CFG:
11647 		pci_write_config_dword(bp->pdev, reg_off, val);
11648 		break;
11649 	case BNXT_FW_HEALTH_REG_TYPE_GRC:
11650 		writel(reg_off & BNXT_GRC_BASE_MASK,
11651 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4);
11652 		reg_off = (reg_off & BNXT_GRC_OFFSET_MASK) + 0x2000;
11653 		fallthrough;
11654 	case BNXT_FW_HEALTH_REG_TYPE_BAR0:
11655 		writel(val, bp->bar0 + reg_off);
11656 		break;
11657 	case BNXT_FW_HEALTH_REG_TYPE_BAR1:
11658 		writel(val, bp->bar1 + reg_off);
11659 		break;
11660 	}
11661 	if (delay_msecs) {
11662 		pci_read_config_dword(bp->pdev, 0, &val);
11663 		msleep(delay_msecs);
11664 	}
11665 }
11666 
11667 static void bnxt_reset_all(struct bnxt *bp)
11668 {
11669 	struct bnxt_fw_health *fw_health = bp->fw_health;
11670 	int i, rc;
11671 
11672 	if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
11673 		bnxt_fw_reset_via_optee(bp);
11674 		bp->fw_reset_timestamp = jiffies;
11675 		return;
11676 	}
11677 
11678 	if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_HOST) {
11679 		for (i = 0; i < fw_health->fw_reset_seq_cnt; i++)
11680 			bnxt_fw_reset_writel(bp, i);
11681 	} else if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) {
11682 		struct hwrm_fw_reset_input req = {0};
11683 
11684 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FW_RESET, -1, -1);
11685 		req.resp_addr = cpu_to_le64(bp->hwrm_cmd_kong_resp_dma_addr);
11686 		req.embedded_proc_type = FW_RESET_REQ_EMBEDDED_PROC_TYPE_CHIP;
11687 		req.selfrst_status = FW_RESET_REQ_SELFRST_STATUS_SELFRSTASAP;
11688 		req.flags = FW_RESET_REQ_FLAGS_RESET_GRACEFUL;
11689 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
11690 		if (rc != -ENODEV)
11691 			netdev_warn(bp->dev, "Unable to reset FW rc=%d\n", rc);
11692 	}
11693 	bp->fw_reset_timestamp = jiffies;
11694 }
11695 
11696 static bool bnxt_fw_reset_timeout(struct bnxt *bp)
11697 {
11698 	return time_after(jiffies, bp->fw_reset_timestamp +
11699 			  (bp->fw_reset_max_dsecs * HZ / 10));
11700 }
11701 
11702 static void bnxt_fw_reset_task(struct work_struct *work)
11703 {
11704 	struct bnxt *bp = container_of(work, struct bnxt, fw_reset_task.work);
11705 	int rc;
11706 
11707 	if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
11708 		netdev_err(bp->dev, "bnxt_fw_reset_task() called when not in fw reset mode!\n");
11709 		return;
11710 	}
11711 
11712 	switch (bp->fw_reset_state) {
11713 	case BNXT_FW_RESET_STATE_POLL_VF: {
11714 		int n = bnxt_get_registered_vfs(bp);
11715 		int tmo;
11716 
11717 		if (n < 0) {
11718 			netdev_err(bp->dev, "Firmware reset aborted, subsequent func_qcfg cmd failed, rc = %d, %d msecs since reset timestamp\n",
11719 				   n, jiffies_to_msecs(jiffies -
11720 				   bp->fw_reset_timestamp));
11721 			goto fw_reset_abort;
11722 		} else if (n > 0) {
11723 			if (bnxt_fw_reset_timeout(bp)) {
11724 				clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11725 				bp->fw_reset_state = 0;
11726 				netdev_err(bp->dev, "Firmware reset aborted, bnxt_get_registered_vfs() returns %d\n",
11727 					   n);
11728 				return;
11729 			}
11730 			bnxt_queue_fw_reset_work(bp, HZ / 10);
11731 			return;
11732 		}
11733 		bp->fw_reset_timestamp = jiffies;
11734 		rtnl_lock();
11735 		bnxt_fw_reset_close(bp);
11736 		if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
11737 			bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN;
11738 			tmo = HZ / 10;
11739 		} else {
11740 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
11741 			tmo = bp->fw_reset_min_dsecs * HZ / 10;
11742 		}
11743 		rtnl_unlock();
11744 		bnxt_queue_fw_reset_work(bp, tmo);
11745 		return;
11746 	}
11747 	case BNXT_FW_RESET_STATE_POLL_FW_DOWN: {
11748 		u32 val;
11749 
11750 		val = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
11751 		if (!(val & BNXT_FW_STATUS_SHUTDOWN) &&
11752 		    !bnxt_fw_reset_timeout(bp)) {
11753 			bnxt_queue_fw_reset_work(bp, HZ / 5);
11754 			return;
11755 		}
11756 
11757 		if (!bp->fw_health->master) {
11758 			u32 wait_dsecs = bp->fw_health->normal_func_wait_dsecs;
11759 
11760 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
11761 			bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10);
11762 			return;
11763 		}
11764 		bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW;
11765 	}
11766 		fallthrough;
11767 	case BNXT_FW_RESET_STATE_RESET_FW:
11768 		bnxt_reset_all(bp);
11769 		bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
11770 		bnxt_queue_fw_reset_work(bp, bp->fw_reset_min_dsecs * HZ / 10);
11771 		return;
11772 	case BNXT_FW_RESET_STATE_ENABLE_DEV:
11773 		bnxt_inv_fw_health_reg(bp);
11774 		if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) &&
11775 		    !bp->fw_reset_min_dsecs) {
11776 			u16 val;
11777 
11778 			pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val);
11779 			if (val == 0xffff) {
11780 				if (bnxt_fw_reset_timeout(bp)) {
11781 					netdev_err(bp->dev, "Firmware reset aborted, PCI config space invalid\n");
11782 					goto fw_reset_abort;
11783 				}
11784 				bnxt_queue_fw_reset_work(bp, HZ / 1000);
11785 				return;
11786 			}
11787 		}
11788 		clear_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
11789 		if (pci_enable_device(bp->pdev)) {
11790 			netdev_err(bp->dev, "Cannot re-enable PCI device\n");
11791 			goto fw_reset_abort;
11792 		}
11793 		pci_set_master(bp->pdev);
11794 		bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW;
11795 		fallthrough;
11796 	case BNXT_FW_RESET_STATE_POLL_FW:
11797 		bp->hwrm_cmd_timeout = SHORT_HWRM_CMD_TIMEOUT;
11798 		rc = __bnxt_hwrm_ver_get(bp, true);
11799 		if (rc) {
11800 			if (bnxt_fw_reset_timeout(bp)) {
11801 				netdev_err(bp->dev, "Firmware reset aborted\n");
11802 				goto fw_reset_abort_status;
11803 			}
11804 			bnxt_queue_fw_reset_work(bp, HZ / 5);
11805 			return;
11806 		}
11807 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
11808 		bp->fw_reset_state = BNXT_FW_RESET_STATE_OPENING;
11809 		fallthrough;
11810 	case BNXT_FW_RESET_STATE_OPENING:
11811 		while (!rtnl_trylock()) {
11812 			bnxt_queue_fw_reset_work(bp, HZ / 10);
11813 			return;
11814 		}
11815 		rc = bnxt_open(bp->dev);
11816 		if (rc) {
11817 			netdev_err(bp->dev, "bnxt_open_nic() failed\n");
11818 			clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11819 			dev_close(bp->dev);
11820 		}
11821 
11822 		bp->fw_reset_state = 0;
11823 		/* Make sure fw_reset_state is 0 before clearing the flag */
11824 		smp_mb__before_atomic();
11825 		clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11826 		bnxt_ulp_start(bp, rc);
11827 		if (!rc)
11828 			bnxt_reenable_sriov(bp);
11829 		bnxt_vf_reps_alloc(bp);
11830 		bnxt_vf_reps_open(bp);
11831 		bnxt_dl_health_recovery_done(bp);
11832 		bnxt_dl_health_status_update(bp, true);
11833 		rtnl_unlock();
11834 		break;
11835 	}
11836 	return;
11837 
11838 fw_reset_abort_status:
11839 	if (bp->fw_health->status_reliable ||
11840 	    (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) {
11841 		u32 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
11842 
11843 		netdev_err(bp->dev, "fw_health_status 0x%x\n", sts);
11844 	}
11845 fw_reset_abort:
11846 	clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11847 	if (bp->fw_reset_state != BNXT_FW_RESET_STATE_POLL_VF)
11848 		bnxt_dl_health_status_update(bp, false);
11849 	bp->fw_reset_state = 0;
11850 	rtnl_lock();
11851 	dev_close(bp->dev);
11852 	rtnl_unlock();
11853 }
11854 
11855 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
11856 {
11857 	int rc;
11858 	struct bnxt *bp = netdev_priv(dev);
11859 
11860 	SET_NETDEV_DEV(dev, &pdev->dev);
11861 
11862 	/* enable device (incl. PCI PM wakeup), and bus-mastering */
11863 	rc = pci_enable_device(pdev);
11864 	if (rc) {
11865 		dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
11866 		goto init_err;
11867 	}
11868 
11869 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
11870 		dev_err(&pdev->dev,
11871 			"Cannot find PCI device base address, aborting\n");
11872 		rc = -ENODEV;
11873 		goto init_err_disable;
11874 	}
11875 
11876 	rc = pci_request_regions(pdev, DRV_MODULE_NAME);
11877 	if (rc) {
11878 		dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
11879 		goto init_err_disable;
11880 	}
11881 
11882 	if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
11883 	    dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
11884 		dev_err(&pdev->dev, "System does not support DMA, aborting\n");
11885 		rc = -EIO;
11886 		goto init_err_release;
11887 	}
11888 
11889 	pci_set_master(pdev);
11890 
11891 	bp->dev = dev;
11892 	bp->pdev = pdev;
11893 
11894 	/* Doorbell BAR bp->bar1 is mapped after bnxt_fw_init_one_p2()
11895 	 * determines the BAR size.
11896 	 */
11897 	bp->bar0 = pci_ioremap_bar(pdev, 0);
11898 	if (!bp->bar0) {
11899 		dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
11900 		rc = -ENOMEM;
11901 		goto init_err_release;
11902 	}
11903 
11904 	bp->bar2 = pci_ioremap_bar(pdev, 4);
11905 	if (!bp->bar2) {
11906 		dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
11907 		rc = -ENOMEM;
11908 		goto init_err_release;
11909 	}
11910 
11911 	pci_enable_pcie_error_reporting(pdev);
11912 
11913 	INIT_WORK(&bp->sp_task, bnxt_sp_task);
11914 	INIT_DELAYED_WORK(&bp->fw_reset_task, bnxt_fw_reset_task);
11915 
11916 	spin_lock_init(&bp->ntp_fltr_lock);
11917 #if BITS_PER_LONG == 32
11918 	spin_lock_init(&bp->db_lock);
11919 #endif
11920 
11921 	bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
11922 	bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
11923 
11924 	bnxt_init_dflt_coal(bp);
11925 
11926 	timer_setup(&bp->timer, bnxt_timer, 0);
11927 	bp->current_interval = BNXT_TIMER_INTERVAL;
11928 
11929 	bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID;
11930 	bp->nge_fw_dst_port_id = INVALID_HW_RING_ID;
11931 
11932 	clear_bit(BNXT_STATE_OPEN, &bp->state);
11933 	return 0;
11934 
11935 init_err_release:
11936 	bnxt_unmap_bars(bp, pdev);
11937 	pci_release_regions(pdev);
11938 
11939 init_err_disable:
11940 	pci_disable_device(pdev);
11941 
11942 init_err:
11943 	return rc;
11944 }
11945 
11946 /* rtnl_lock held */
11947 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
11948 {
11949 	struct sockaddr *addr = p;
11950 	struct bnxt *bp = netdev_priv(dev);
11951 	int rc = 0;
11952 
11953 	if (!is_valid_ether_addr(addr->sa_data))
11954 		return -EADDRNOTAVAIL;
11955 
11956 	if (ether_addr_equal(addr->sa_data, dev->dev_addr))
11957 		return 0;
11958 
11959 	rc = bnxt_approve_mac(bp, addr->sa_data, true);
11960 	if (rc)
11961 		return rc;
11962 
11963 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
11964 	if (netif_running(dev)) {
11965 		bnxt_close_nic(bp, false, false);
11966 		rc = bnxt_open_nic(bp, false, false);
11967 	}
11968 
11969 	return rc;
11970 }
11971 
11972 /* rtnl_lock held */
11973 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
11974 {
11975 	struct bnxt *bp = netdev_priv(dev);
11976 
11977 	if (netif_running(dev))
11978 		bnxt_close_nic(bp, true, false);
11979 
11980 	dev->mtu = new_mtu;
11981 	bnxt_set_ring_params(bp);
11982 
11983 	if (netif_running(dev))
11984 		return bnxt_open_nic(bp, true, false);
11985 
11986 	return 0;
11987 }
11988 
11989 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc)
11990 {
11991 	struct bnxt *bp = netdev_priv(dev);
11992 	bool sh = false;
11993 	int rc;
11994 
11995 	if (tc > bp->max_tc) {
11996 		netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n",
11997 			   tc, bp->max_tc);
11998 		return -EINVAL;
11999 	}
12000 
12001 	if (netdev_get_num_tc(dev) == tc)
12002 		return 0;
12003 
12004 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
12005 		sh = true;
12006 
12007 	rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings,
12008 			      sh, tc, bp->tx_nr_rings_xdp);
12009 	if (rc)
12010 		return rc;
12011 
12012 	/* Needs to close the device and do hw resource re-allocations */
12013 	if (netif_running(bp->dev))
12014 		bnxt_close_nic(bp, true, false);
12015 
12016 	if (tc) {
12017 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
12018 		netdev_set_num_tc(dev, tc);
12019 	} else {
12020 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
12021 		netdev_reset_tc(dev);
12022 	}
12023 	bp->tx_nr_rings += bp->tx_nr_rings_xdp;
12024 	bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
12025 			       bp->tx_nr_rings + bp->rx_nr_rings;
12026 
12027 	if (netif_running(bp->dev))
12028 		return bnxt_open_nic(bp, true, false);
12029 
12030 	return 0;
12031 }
12032 
12033 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
12034 				  void *cb_priv)
12035 {
12036 	struct bnxt *bp = cb_priv;
12037 
12038 	if (!bnxt_tc_flower_enabled(bp) ||
12039 	    !tc_cls_can_offload_and_chain0(bp->dev, type_data))
12040 		return -EOPNOTSUPP;
12041 
12042 	switch (type) {
12043 	case TC_SETUP_CLSFLOWER:
12044 		return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data);
12045 	default:
12046 		return -EOPNOTSUPP;
12047 	}
12048 }
12049 
12050 LIST_HEAD(bnxt_block_cb_list);
12051 
12052 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type,
12053 			 void *type_data)
12054 {
12055 	struct bnxt *bp = netdev_priv(dev);
12056 
12057 	switch (type) {
12058 	case TC_SETUP_BLOCK:
12059 		return flow_block_cb_setup_simple(type_data,
12060 						  &bnxt_block_cb_list,
12061 						  bnxt_setup_tc_block_cb,
12062 						  bp, bp, true);
12063 	case TC_SETUP_QDISC_MQPRIO: {
12064 		struct tc_mqprio_qopt *mqprio = type_data;
12065 
12066 		mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
12067 
12068 		return bnxt_setup_mq_tc(dev, mqprio->num_tc);
12069 	}
12070 	default:
12071 		return -EOPNOTSUPP;
12072 	}
12073 }
12074 
12075 #ifdef CONFIG_RFS_ACCEL
12076 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
12077 			    struct bnxt_ntuple_filter *f2)
12078 {
12079 	struct flow_keys *keys1 = &f1->fkeys;
12080 	struct flow_keys *keys2 = &f2->fkeys;
12081 
12082 	if (keys1->basic.n_proto != keys2->basic.n_proto ||
12083 	    keys1->basic.ip_proto != keys2->basic.ip_proto)
12084 		return false;
12085 
12086 	if (keys1->basic.n_proto == htons(ETH_P_IP)) {
12087 		if (keys1->addrs.v4addrs.src != keys2->addrs.v4addrs.src ||
12088 		    keys1->addrs.v4addrs.dst != keys2->addrs.v4addrs.dst)
12089 			return false;
12090 	} else {
12091 		if (memcmp(&keys1->addrs.v6addrs.src, &keys2->addrs.v6addrs.src,
12092 			   sizeof(keys1->addrs.v6addrs.src)) ||
12093 		    memcmp(&keys1->addrs.v6addrs.dst, &keys2->addrs.v6addrs.dst,
12094 			   sizeof(keys1->addrs.v6addrs.dst)))
12095 			return false;
12096 	}
12097 
12098 	if (keys1->ports.ports == keys2->ports.ports &&
12099 	    keys1->control.flags == keys2->control.flags &&
12100 	    ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) &&
12101 	    ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr))
12102 		return true;
12103 
12104 	return false;
12105 }
12106 
12107 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
12108 			      u16 rxq_index, u32 flow_id)
12109 {
12110 	struct bnxt *bp = netdev_priv(dev);
12111 	struct bnxt_ntuple_filter *fltr, *new_fltr;
12112 	struct flow_keys *fkeys;
12113 	struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
12114 	int rc = 0, idx, bit_id, l2_idx = 0;
12115 	struct hlist_head *head;
12116 	u32 flags;
12117 
12118 	if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) {
12119 		struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
12120 		int off = 0, j;
12121 
12122 		netif_addr_lock_bh(dev);
12123 		for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) {
12124 			if (ether_addr_equal(eth->h_dest,
12125 					     vnic->uc_list + off)) {
12126 				l2_idx = j + 1;
12127 				break;
12128 			}
12129 		}
12130 		netif_addr_unlock_bh(dev);
12131 		if (!l2_idx)
12132 			return -EINVAL;
12133 	}
12134 	new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
12135 	if (!new_fltr)
12136 		return -ENOMEM;
12137 
12138 	fkeys = &new_fltr->fkeys;
12139 	if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
12140 		rc = -EPROTONOSUPPORT;
12141 		goto err_free;
12142 	}
12143 
12144 	if ((fkeys->basic.n_proto != htons(ETH_P_IP) &&
12145 	     fkeys->basic.n_proto != htons(ETH_P_IPV6)) ||
12146 	    ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
12147 	     (fkeys->basic.ip_proto != IPPROTO_UDP))) {
12148 		rc = -EPROTONOSUPPORT;
12149 		goto err_free;
12150 	}
12151 	if (fkeys->basic.n_proto == htons(ETH_P_IPV6) &&
12152 	    bp->hwrm_spec_code < 0x10601) {
12153 		rc = -EPROTONOSUPPORT;
12154 		goto err_free;
12155 	}
12156 	flags = fkeys->control.flags;
12157 	if (((flags & FLOW_DIS_ENCAPSULATION) &&
12158 	     bp->hwrm_spec_code < 0x10601) || (flags & FLOW_DIS_IS_FRAGMENT)) {
12159 		rc = -EPROTONOSUPPORT;
12160 		goto err_free;
12161 	}
12162 
12163 	memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN);
12164 	memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
12165 
12166 	idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
12167 	head = &bp->ntp_fltr_hash_tbl[idx];
12168 	rcu_read_lock();
12169 	hlist_for_each_entry_rcu(fltr, head, hash) {
12170 		if (bnxt_fltr_match(fltr, new_fltr)) {
12171 			rcu_read_unlock();
12172 			rc = 0;
12173 			goto err_free;
12174 		}
12175 	}
12176 	rcu_read_unlock();
12177 
12178 	spin_lock_bh(&bp->ntp_fltr_lock);
12179 	bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
12180 					 BNXT_NTP_FLTR_MAX_FLTR, 0);
12181 	if (bit_id < 0) {
12182 		spin_unlock_bh(&bp->ntp_fltr_lock);
12183 		rc = -ENOMEM;
12184 		goto err_free;
12185 	}
12186 
12187 	new_fltr->sw_id = (u16)bit_id;
12188 	new_fltr->flow_id = flow_id;
12189 	new_fltr->l2_fltr_idx = l2_idx;
12190 	new_fltr->rxq = rxq_index;
12191 	hlist_add_head_rcu(&new_fltr->hash, head);
12192 	bp->ntp_fltr_count++;
12193 	spin_unlock_bh(&bp->ntp_fltr_lock);
12194 
12195 	set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
12196 	bnxt_queue_sp_work(bp);
12197 
12198 	return new_fltr->sw_id;
12199 
12200 err_free:
12201 	kfree(new_fltr);
12202 	return rc;
12203 }
12204 
12205 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
12206 {
12207 	int i;
12208 
12209 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
12210 		struct hlist_head *head;
12211 		struct hlist_node *tmp;
12212 		struct bnxt_ntuple_filter *fltr;
12213 		int rc;
12214 
12215 		head = &bp->ntp_fltr_hash_tbl[i];
12216 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
12217 			bool del = false;
12218 
12219 			if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
12220 				if (rps_may_expire_flow(bp->dev, fltr->rxq,
12221 							fltr->flow_id,
12222 							fltr->sw_id)) {
12223 					bnxt_hwrm_cfa_ntuple_filter_free(bp,
12224 									 fltr);
12225 					del = true;
12226 				}
12227 			} else {
12228 				rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
12229 								       fltr);
12230 				if (rc)
12231 					del = true;
12232 				else
12233 					set_bit(BNXT_FLTR_VALID, &fltr->state);
12234 			}
12235 
12236 			if (del) {
12237 				spin_lock_bh(&bp->ntp_fltr_lock);
12238 				hlist_del_rcu(&fltr->hash);
12239 				bp->ntp_fltr_count--;
12240 				spin_unlock_bh(&bp->ntp_fltr_lock);
12241 				synchronize_rcu();
12242 				clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
12243 				kfree(fltr);
12244 			}
12245 		}
12246 	}
12247 	if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event))
12248 		netdev_info(bp->dev, "Receive PF driver unload event!\n");
12249 }
12250 
12251 #else
12252 
12253 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
12254 {
12255 }
12256 
12257 #endif /* CONFIG_RFS_ACCEL */
12258 
12259 static int bnxt_udp_tunnel_sync(struct net_device *netdev, unsigned int table)
12260 {
12261 	struct bnxt *bp = netdev_priv(netdev);
12262 	struct udp_tunnel_info ti;
12263 	unsigned int cmd;
12264 
12265 	udp_tunnel_nic_get_port(netdev, table, 0, &ti);
12266 	if (ti.type == UDP_TUNNEL_TYPE_VXLAN)
12267 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN;
12268 	else
12269 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE;
12270 
12271 	if (ti.port)
12272 		return bnxt_hwrm_tunnel_dst_port_alloc(bp, ti.port, cmd);
12273 
12274 	return bnxt_hwrm_tunnel_dst_port_free(bp, cmd);
12275 }
12276 
12277 static const struct udp_tunnel_nic_info bnxt_udp_tunnels = {
12278 	.sync_table	= bnxt_udp_tunnel_sync,
12279 	.flags		= UDP_TUNNEL_NIC_INFO_MAY_SLEEP |
12280 			  UDP_TUNNEL_NIC_INFO_OPEN_ONLY,
12281 	.tables		= {
12282 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN,  },
12283 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
12284 	},
12285 };
12286 
12287 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
12288 			       struct net_device *dev, u32 filter_mask,
12289 			       int nlflags)
12290 {
12291 	struct bnxt *bp = netdev_priv(dev);
12292 
12293 	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0,
12294 				       nlflags, filter_mask, NULL);
12295 }
12296 
12297 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
12298 			       u16 flags, struct netlink_ext_ack *extack)
12299 {
12300 	struct bnxt *bp = netdev_priv(dev);
12301 	struct nlattr *attr, *br_spec;
12302 	int rem, rc = 0;
12303 
12304 	if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp))
12305 		return -EOPNOTSUPP;
12306 
12307 	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
12308 	if (!br_spec)
12309 		return -EINVAL;
12310 
12311 	nla_for_each_nested(attr, br_spec, rem) {
12312 		u16 mode;
12313 
12314 		if (nla_type(attr) != IFLA_BRIDGE_MODE)
12315 			continue;
12316 
12317 		if (nla_len(attr) < sizeof(mode))
12318 			return -EINVAL;
12319 
12320 		mode = nla_get_u16(attr);
12321 		if (mode == bp->br_mode)
12322 			break;
12323 
12324 		rc = bnxt_hwrm_set_br_mode(bp, mode);
12325 		if (!rc)
12326 			bp->br_mode = mode;
12327 		break;
12328 	}
12329 	return rc;
12330 }
12331 
12332 int bnxt_get_port_parent_id(struct net_device *dev,
12333 			    struct netdev_phys_item_id *ppid)
12334 {
12335 	struct bnxt *bp = netdev_priv(dev);
12336 
12337 	if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV)
12338 		return -EOPNOTSUPP;
12339 
12340 	/* The PF and it's VF-reps only support the switchdev framework */
12341 	if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_DSN_VALID))
12342 		return -EOPNOTSUPP;
12343 
12344 	ppid->id_len = sizeof(bp->dsn);
12345 	memcpy(ppid->id, bp->dsn, ppid->id_len);
12346 
12347 	return 0;
12348 }
12349 
12350 static struct devlink_port *bnxt_get_devlink_port(struct net_device *dev)
12351 {
12352 	struct bnxt *bp = netdev_priv(dev);
12353 
12354 	return &bp->dl_port;
12355 }
12356 
12357 static const struct net_device_ops bnxt_netdev_ops = {
12358 	.ndo_open		= bnxt_open,
12359 	.ndo_start_xmit		= bnxt_start_xmit,
12360 	.ndo_stop		= bnxt_close,
12361 	.ndo_get_stats64	= bnxt_get_stats64,
12362 	.ndo_set_rx_mode	= bnxt_set_rx_mode,
12363 	.ndo_do_ioctl		= bnxt_ioctl,
12364 	.ndo_validate_addr	= eth_validate_addr,
12365 	.ndo_set_mac_address	= bnxt_change_mac_addr,
12366 	.ndo_change_mtu		= bnxt_change_mtu,
12367 	.ndo_fix_features	= bnxt_fix_features,
12368 	.ndo_set_features	= bnxt_set_features,
12369 	.ndo_tx_timeout		= bnxt_tx_timeout,
12370 #ifdef CONFIG_BNXT_SRIOV
12371 	.ndo_get_vf_config	= bnxt_get_vf_config,
12372 	.ndo_set_vf_mac		= bnxt_set_vf_mac,
12373 	.ndo_set_vf_vlan	= bnxt_set_vf_vlan,
12374 	.ndo_set_vf_rate	= bnxt_set_vf_bw,
12375 	.ndo_set_vf_link_state	= bnxt_set_vf_link_state,
12376 	.ndo_set_vf_spoofchk	= bnxt_set_vf_spoofchk,
12377 	.ndo_set_vf_trust	= bnxt_set_vf_trust,
12378 #endif
12379 	.ndo_setup_tc           = bnxt_setup_tc,
12380 #ifdef CONFIG_RFS_ACCEL
12381 	.ndo_rx_flow_steer	= bnxt_rx_flow_steer,
12382 #endif
12383 	.ndo_bpf		= bnxt_xdp,
12384 	.ndo_xdp_xmit		= bnxt_xdp_xmit,
12385 	.ndo_bridge_getlink	= bnxt_bridge_getlink,
12386 	.ndo_bridge_setlink	= bnxt_bridge_setlink,
12387 	.ndo_get_devlink_port	= bnxt_get_devlink_port,
12388 };
12389 
12390 static void bnxt_remove_one(struct pci_dev *pdev)
12391 {
12392 	struct net_device *dev = pci_get_drvdata(pdev);
12393 	struct bnxt *bp = netdev_priv(dev);
12394 
12395 	if (BNXT_PF(bp))
12396 		bnxt_sriov_disable(bp);
12397 
12398 	if (BNXT_PF(bp))
12399 		devlink_port_type_clear(&bp->dl_port);
12400 	pci_disable_pcie_error_reporting(pdev);
12401 	unregister_netdev(dev);
12402 	clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12403 	/* Flush any pending tasks */
12404 	cancel_work_sync(&bp->sp_task);
12405 	cancel_delayed_work_sync(&bp->fw_reset_task);
12406 	bp->sp_event = 0;
12407 
12408 	bnxt_dl_fw_reporters_destroy(bp, true);
12409 	bnxt_dl_unregister(bp);
12410 	bnxt_shutdown_tc(bp);
12411 
12412 	bnxt_clear_int_mode(bp);
12413 	bnxt_hwrm_func_drv_unrgtr(bp);
12414 	bnxt_free_hwrm_resources(bp);
12415 	bnxt_free_hwrm_short_cmd_req(bp);
12416 	bnxt_ethtool_free(bp);
12417 	bnxt_dcb_free(bp);
12418 	kfree(bp->edev);
12419 	bp->edev = NULL;
12420 	kfree(bp->fw_health);
12421 	bp->fw_health = NULL;
12422 	bnxt_cleanup_pci(bp);
12423 	bnxt_free_ctx_mem(bp);
12424 	kfree(bp->ctx);
12425 	bp->ctx = NULL;
12426 	kfree(bp->rss_indir_tbl);
12427 	bp->rss_indir_tbl = NULL;
12428 	bnxt_free_port_stats(bp);
12429 	free_netdev(dev);
12430 }
12431 
12432 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt)
12433 {
12434 	int rc = 0;
12435 	struct bnxt_link_info *link_info = &bp->link_info;
12436 
12437 	rc = bnxt_hwrm_phy_qcaps(bp);
12438 	if (rc) {
12439 		netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n",
12440 			   rc);
12441 		return rc;
12442 	}
12443 	if (!fw_dflt)
12444 		return 0;
12445 
12446 	rc = bnxt_update_link(bp, false);
12447 	if (rc) {
12448 		netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
12449 			   rc);
12450 		return rc;
12451 	}
12452 
12453 	/* Older firmware does not have supported_auto_speeds, so assume
12454 	 * that all supported speeds can be autonegotiated.
12455 	 */
12456 	if (link_info->auto_link_speeds && !link_info->support_auto_speeds)
12457 		link_info->support_auto_speeds = link_info->support_speeds;
12458 
12459 	bnxt_init_ethtool_link_settings(bp);
12460 	return 0;
12461 }
12462 
12463 static int bnxt_get_max_irq(struct pci_dev *pdev)
12464 {
12465 	u16 ctrl;
12466 
12467 	if (!pdev->msix_cap)
12468 		return 1;
12469 
12470 	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
12471 	return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
12472 }
12473 
12474 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
12475 				int *max_cp)
12476 {
12477 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
12478 	int max_ring_grps = 0, max_irq;
12479 
12480 	*max_tx = hw_resc->max_tx_rings;
12481 	*max_rx = hw_resc->max_rx_rings;
12482 	*max_cp = bnxt_get_max_func_cp_rings_for_en(bp);
12483 	max_irq = min_t(int, bnxt_get_max_func_irqs(bp) -
12484 			bnxt_get_ulp_msix_num(bp),
12485 			hw_resc->max_stat_ctxs - bnxt_get_ulp_stat_ctxs(bp));
12486 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
12487 		*max_cp = min_t(int, *max_cp, max_irq);
12488 	max_ring_grps = hw_resc->max_hw_ring_grps;
12489 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) {
12490 		*max_cp -= 1;
12491 		*max_rx -= 2;
12492 	}
12493 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
12494 		*max_rx >>= 1;
12495 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
12496 		bnxt_trim_rings(bp, max_rx, max_tx, *max_cp, false);
12497 		/* On P5 chips, max_cp output param should be available NQs */
12498 		*max_cp = max_irq;
12499 	}
12500 	*max_rx = min_t(int, *max_rx, max_ring_grps);
12501 }
12502 
12503 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
12504 {
12505 	int rx, tx, cp;
12506 
12507 	_bnxt_get_max_rings(bp, &rx, &tx, &cp);
12508 	*max_rx = rx;
12509 	*max_tx = tx;
12510 	if (!rx || !tx || !cp)
12511 		return -ENOMEM;
12512 
12513 	return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
12514 }
12515 
12516 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx,
12517 			       bool shared)
12518 {
12519 	int rc;
12520 
12521 	rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
12522 	if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) {
12523 		/* Not enough rings, try disabling agg rings. */
12524 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
12525 		rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
12526 		if (rc) {
12527 			/* set BNXT_FLAG_AGG_RINGS back for consistency */
12528 			bp->flags |= BNXT_FLAG_AGG_RINGS;
12529 			return rc;
12530 		}
12531 		bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
12532 		bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
12533 		bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
12534 		bnxt_set_ring_params(bp);
12535 	}
12536 
12537 	if (bp->flags & BNXT_FLAG_ROCE_CAP) {
12538 		int max_cp, max_stat, max_irq;
12539 
12540 		/* Reserve minimum resources for RoCE */
12541 		max_cp = bnxt_get_max_func_cp_rings(bp);
12542 		max_stat = bnxt_get_max_func_stat_ctxs(bp);
12543 		max_irq = bnxt_get_max_func_irqs(bp);
12544 		if (max_cp <= BNXT_MIN_ROCE_CP_RINGS ||
12545 		    max_irq <= BNXT_MIN_ROCE_CP_RINGS ||
12546 		    max_stat <= BNXT_MIN_ROCE_STAT_CTXS)
12547 			return 0;
12548 
12549 		max_cp -= BNXT_MIN_ROCE_CP_RINGS;
12550 		max_irq -= BNXT_MIN_ROCE_CP_RINGS;
12551 		max_stat -= BNXT_MIN_ROCE_STAT_CTXS;
12552 		max_cp = min_t(int, max_cp, max_irq);
12553 		max_cp = min_t(int, max_cp, max_stat);
12554 		rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared);
12555 		if (rc)
12556 			rc = 0;
12557 	}
12558 	return rc;
12559 }
12560 
12561 /* In initial default shared ring setting, each shared ring must have a
12562  * RX/TX ring pair.
12563  */
12564 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp)
12565 {
12566 	bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings);
12567 	bp->rx_nr_rings = bp->cp_nr_rings;
12568 	bp->tx_nr_rings_per_tc = bp->cp_nr_rings;
12569 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
12570 }
12571 
12572 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh)
12573 {
12574 	int dflt_rings, max_rx_rings, max_tx_rings, rc;
12575 
12576 	if (!bnxt_can_reserve_rings(bp))
12577 		return 0;
12578 
12579 	if (sh)
12580 		bp->flags |= BNXT_FLAG_SHARED_RINGS;
12581 	dflt_rings = is_kdump_kernel() ? 1 : netif_get_num_default_rss_queues();
12582 	/* Reduce default rings on multi-port cards so that total default
12583 	 * rings do not exceed CPU count.
12584 	 */
12585 	if (bp->port_count > 1) {
12586 		int max_rings =
12587 			max_t(int, num_online_cpus() / bp->port_count, 1);
12588 
12589 		dflt_rings = min_t(int, dflt_rings, max_rings);
12590 	}
12591 	rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh);
12592 	if (rc)
12593 		return rc;
12594 	bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
12595 	bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
12596 	if (sh)
12597 		bnxt_trim_dflt_sh_rings(bp);
12598 	else
12599 		bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings;
12600 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
12601 
12602 	rc = __bnxt_reserve_rings(bp);
12603 	if (rc)
12604 		netdev_warn(bp->dev, "Unable to reserve tx rings\n");
12605 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
12606 	if (sh)
12607 		bnxt_trim_dflt_sh_rings(bp);
12608 
12609 	/* Rings may have been trimmed, re-reserve the trimmed rings. */
12610 	if (bnxt_need_reserve_rings(bp)) {
12611 		rc = __bnxt_reserve_rings(bp);
12612 		if (rc)
12613 			netdev_warn(bp->dev, "2nd rings reservation failed.\n");
12614 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
12615 	}
12616 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
12617 		bp->rx_nr_rings++;
12618 		bp->cp_nr_rings++;
12619 	}
12620 	if (rc) {
12621 		bp->tx_nr_rings = 0;
12622 		bp->rx_nr_rings = 0;
12623 	}
12624 	return rc;
12625 }
12626 
12627 static int bnxt_init_dflt_ring_mode(struct bnxt *bp)
12628 {
12629 	int rc;
12630 
12631 	if (bp->tx_nr_rings)
12632 		return 0;
12633 
12634 	bnxt_ulp_irq_stop(bp);
12635 	bnxt_clear_int_mode(bp);
12636 	rc = bnxt_set_dflt_rings(bp, true);
12637 	if (rc) {
12638 		netdev_err(bp->dev, "Not enough rings available.\n");
12639 		goto init_dflt_ring_err;
12640 	}
12641 	rc = bnxt_init_int_mode(bp);
12642 	if (rc)
12643 		goto init_dflt_ring_err;
12644 
12645 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
12646 	if (bnxt_rfs_supported(bp) && bnxt_rfs_capable(bp)) {
12647 		bp->flags |= BNXT_FLAG_RFS;
12648 		bp->dev->features |= NETIF_F_NTUPLE;
12649 	}
12650 init_dflt_ring_err:
12651 	bnxt_ulp_irq_restart(bp, rc);
12652 	return rc;
12653 }
12654 
12655 int bnxt_restore_pf_fw_resources(struct bnxt *bp)
12656 {
12657 	int rc;
12658 
12659 	ASSERT_RTNL();
12660 	bnxt_hwrm_func_qcaps(bp);
12661 
12662 	if (netif_running(bp->dev))
12663 		__bnxt_close_nic(bp, true, false);
12664 
12665 	bnxt_ulp_irq_stop(bp);
12666 	bnxt_clear_int_mode(bp);
12667 	rc = bnxt_init_int_mode(bp);
12668 	bnxt_ulp_irq_restart(bp, rc);
12669 
12670 	if (netif_running(bp->dev)) {
12671 		if (rc)
12672 			dev_close(bp->dev);
12673 		else
12674 			rc = bnxt_open_nic(bp, true, false);
12675 	}
12676 
12677 	return rc;
12678 }
12679 
12680 static int bnxt_init_mac_addr(struct bnxt *bp)
12681 {
12682 	int rc = 0;
12683 
12684 	if (BNXT_PF(bp)) {
12685 		memcpy(bp->dev->dev_addr, bp->pf.mac_addr, ETH_ALEN);
12686 	} else {
12687 #ifdef CONFIG_BNXT_SRIOV
12688 		struct bnxt_vf_info *vf = &bp->vf;
12689 		bool strict_approval = true;
12690 
12691 		if (is_valid_ether_addr(vf->mac_addr)) {
12692 			/* overwrite netdev dev_addr with admin VF MAC */
12693 			memcpy(bp->dev->dev_addr, vf->mac_addr, ETH_ALEN);
12694 			/* Older PF driver or firmware may not approve this
12695 			 * correctly.
12696 			 */
12697 			strict_approval = false;
12698 		} else {
12699 			eth_hw_addr_random(bp->dev);
12700 		}
12701 		rc = bnxt_approve_mac(bp, bp->dev->dev_addr, strict_approval);
12702 #endif
12703 	}
12704 	return rc;
12705 }
12706 
12707 #define BNXT_VPD_LEN	512
12708 static void bnxt_vpd_read_info(struct bnxt *bp)
12709 {
12710 	struct pci_dev *pdev = bp->pdev;
12711 	int i, len, pos, ro_size, size;
12712 	ssize_t vpd_size;
12713 	u8 *vpd_data;
12714 
12715 	vpd_data = kmalloc(BNXT_VPD_LEN, GFP_KERNEL);
12716 	if (!vpd_data)
12717 		return;
12718 
12719 	vpd_size = pci_read_vpd(pdev, 0, BNXT_VPD_LEN, vpd_data);
12720 	if (vpd_size <= 0) {
12721 		netdev_err(bp->dev, "Unable to read VPD\n");
12722 		goto exit;
12723 	}
12724 
12725 	i = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
12726 	if (i < 0) {
12727 		netdev_err(bp->dev, "VPD READ-Only not found\n");
12728 		goto exit;
12729 	}
12730 
12731 	ro_size = pci_vpd_lrdt_size(&vpd_data[i]);
12732 	i += PCI_VPD_LRDT_TAG_SIZE;
12733 	if (i + ro_size > vpd_size)
12734 		goto exit;
12735 
12736 	pos = pci_vpd_find_info_keyword(vpd_data, i, ro_size,
12737 					PCI_VPD_RO_KEYWORD_PARTNO);
12738 	if (pos < 0)
12739 		goto read_sn;
12740 
12741 	len = pci_vpd_info_field_size(&vpd_data[pos]);
12742 	pos += PCI_VPD_INFO_FLD_HDR_SIZE;
12743 	if (len + pos > vpd_size)
12744 		goto read_sn;
12745 
12746 	size = min(len, BNXT_VPD_FLD_LEN - 1);
12747 	memcpy(bp->board_partno, &vpd_data[pos], size);
12748 
12749 read_sn:
12750 	pos = pci_vpd_find_info_keyword(vpd_data, i, ro_size,
12751 					PCI_VPD_RO_KEYWORD_SERIALNO);
12752 	if (pos < 0)
12753 		goto exit;
12754 
12755 	len = pci_vpd_info_field_size(&vpd_data[pos]);
12756 	pos += PCI_VPD_INFO_FLD_HDR_SIZE;
12757 	if (len + pos > vpd_size)
12758 		goto exit;
12759 
12760 	size = min(len, BNXT_VPD_FLD_LEN - 1);
12761 	memcpy(bp->board_serialno, &vpd_data[pos], size);
12762 exit:
12763 	kfree(vpd_data);
12764 }
12765 
12766 static int bnxt_pcie_dsn_get(struct bnxt *bp, u8 dsn[])
12767 {
12768 	struct pci_dev *pdev = bp->pdev;
12769 	u64 qword;
12770 
12771 	qword = pci_get_dsn(pdev);
12772 	if (!qword) {
12773 		netdev_info(bp->dev, "Unable to read adapter's DSN\n");
12774 		return -EOPNOTSUPP;
12775 	}
12776 
12777 	put_unaligned_le64(qword, dsn);
12778 
12779 	bp->flags |= BNXT_FLAG_DSN_VALID;
12780 	return 0;
12781 }
12782 
12783 static int bnxt_map_db_bar(struct bnxt *bp)
12784 {
12785 	if (!bp->db_size)
12786 		return -ENODEV;
12787 	bp->bar1 = pci_iomap(bp->pdev, 2, bp->db_size);
12788 	if (!bp->bar1)
12789 		return -ENOMEM;
12790 	return 0;
12791 }
12792 
12793 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
12794 {
12795 	struct net_device *dev;
12796 	struct bnxt *bp;
12797 	int rc, max_irqs;
12798 
12799 	if (pci_is_bridge(pdev))
12800 		return -ENODEV;
12801 
12802 	/* Clear any pending DMA transactions from crash kernel
12803 	 * while loading driver in capture kernel.
12804 	 */
12805 	if (is_kdump_kernel()) {
12806 		pci_clear_master(pdev);
12807 		pcie_flr(pdev);
12808 	}
12809 
12810 	max_irqs = bnxt_get_max_irq(pdev);
12811 	dev = alloc_etherdev_mq(sizeof(*bp), max_irqs);
12812 	if (!dev)
12813 		return -ENOMEM;
12814 
12815 	bp = netdev_priv(dev);
12816 	bp->msg_enable = BNXT_DEF_MSG_ENABLE;
12817 	bnxt_set_max_func_irqs(bp, max_irqs);
12818 
12819 	if (bnxt_vf_pciid(ent->driver_data))
12820 		bp->flags |= BNXT_FLAG_VF;
12821 
12822 	if (pdev->msix_cap)
12823 		bp->flags |= BNXT_FLAG_MSIX_CAP;
12824 
12825 	rc = bnxt_init_board(pdev, dev);
12826 	if (rc < 0)
12827 		goto init_err_free;
12828 
12829 	dev->netdev_ops = &bnxt_netdev_ops;
12830 	dev->watchdog_timeo = BNXT_TX_TIMEOUT;
12831 	dev->ethtool_ops = &bnxt_ethtool_ops;
12832 	pci_set_drvdata(pdev, dev);
12833 
12834 	rc = bnxt_alloc_hwrm_resources(bp);
12835 	if (rc)
12836 		goto init_err_pci_clean;
12837 
12838 	mutex_init(&bp->hwrm_cmd_lock);
12839 	mutex_init(&bp->link_lock);
12840 
12841 	rc = bnxt_fw_init_one_p1(bp);
12842 	if (rc)
12843 		goto init_err_pci_clean;
12844 
12845 	if (BNXT_PF(bp))
12846 		bnxt_vpd_read_info(bp);
12847 
12848 	if (BNXT_CHIP_P5(bp)) {
12849 		bp->flags |= BNXT_FLAG_CHIP_P5;
12850 		if (BNXT_CHIP_SR2(bp))
12851 			bp->flags |= BNXT_FLAG_CHIP_SR2;
12852 	}
12853 
12854 	rc = bnxt_alloc_rss_indir_tbl(bp);
12855 	if (rc)
12856 		goto init_err_pci_clean;
12857 
12858 	rc = bnxt_fw_init_one_p2(bp);
12859 	if (rc)
12860 		goto init_err_pci_clean;
12861 
12862 	rc = bnxt_map_db_bar(bp);
12863 	if (rc) {
12864 		dev_err(&pdev->dev, "Cannot map doorbell BAR rc = %d, aborting\n",
12865 			rc);
12866 		goto init_err_pci_clean;
12867 	}
12868 
12869 	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
12870 			   NETIF_F_TSO | NETIF_F_TSO6 |
12871 			   NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
12872 			   NETIF_F_GSO_IPXIP4 |
12873 			   NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
12874 			   NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH |
12875 			   NETIF_F_RXCSUM | NETIF_F_GRO;
12876 
12877 	if (BNXT_SUPPORTS_TPA(bp))
12878 		dev->hw_features |= NETIF_F_LRO;
12879 
12880 	dev->hw_enc_features =
12881 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
12882 			NETIF_F_TSO | NETIF_F_TSO6 |
12883 			NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
12884 			NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
12885 			NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL;
12886 	dev->udp_tunnel_nic_info = &bnxt_udp_tunnels;
12887 
12888 	dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM |
12889 				    NETIF_F_GSO_GRE_CSUM;
12890 	dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
12891 	if (bp->fw_cap & BNXT_FW_CAP_VLAN_RX_STRIP)
12892 		dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_RX;
12893 	if (bp->fw_cap & BNXT_FW_CAP_VLAN_TX_INSERT)
12894 		dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_TX;
12895 	if (BNXT_SUPPORTS_TPA(bp))
12896 		dev->hw_features |= NETIF_F_GRO_HW;
12897 	dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
12898 	if (dev->features & NETIF_F_GRO_HW)
12899 		dev->features &= ~NETIF_F_LRO;
12900 	dev->priv_flags |= IFF_UNICAST_FLT;
12901 
12902 #ifdef CONFIG_BNXT_SRIOV
12903 	init_waitqueue_head(&bp->sriov_cfg_wait);
12904 	mutex_init(&bp->sriov_lock);
12905 #endif
12906 	if (BNXT_SUPPORTS_TPA(bp)) {
12907 		bp->gro_func = bnxt_gro_func_5730x;
12908 		if (BNXT_CHIP_P4(bp))
12909 			bp->gro_func = bnxt_gro_func_5731x;
12910 		else if (BNXT_CHIP_P5(bp))
12911 			bp->gro_func = bnxt_gro_func_5750x;
12912 	}
12913 	if (!BNXT_CHIP_P4_PLUS(bp))
12914 		bp->flags |= BNXT_FLAG_DOUBLE_DB;
12915 
12916 	bp->ulp_probe = bnxt_ulp_probe;
12917 
12918 	rc = bnxt_init_mac_addr(bp);
12919 	if (rc) {
12920 		dev_err(&pdev->dev, "Unable to initialize mac address.\n");
12921 		rc = -EADDRNOTAVAIL;
12922 		goto init_err_pci_clean;
12923 	}
12924 
12925 	if (BNXT_PF(bp)) {
12926 		/* Read the adapter's DSN to use as the eswitch switch_id */
12927 		rc = bnxt_pcie_dsn_get(bp, bp->dsn);
12928 	}
12929 
12930 	/* MTU range: 60 - FW defined max */
12931 	dev->min_mtu = ETH_ZLEN;
12932 	dev->max_mtu = bp->max_mtu;
12933 
12934 	rc = bnxt_probe_phy(bp, true);
12935 	if (rc)
12936 		goto init_err_pci_clean;
12937 
12938 	bnxt_set_rx_skb_mode(bp, false);
12939 	bnxt_set_tpa_flags(bp);
12940 	bnxt_set_ring_params(bp);
12941 	rc = bnxt_set_dflt_rings(bp, true);
12942 	if (rc) {
12943 		netdev_err(bp->dev, "Not enough rings available.\n");
12944 		rc = -ENOMEM;
12945 		goto init_err_pci_clean;
12946 	}
12947 
12948 	bnxt_fw_init_one_p3(bp);
12949 
12950 	if (dev->hw_features & BNXT_HW_FEATURE_VLAN_ALL_RX)
12951 		bp->flags |= BNXT_FLAG_STRIP_VLAN;
12952 
12953 	rc = bnxt_init_int_mode(bp);
12954 	if (rc)
12955 		goto init_err_pci_clean;
12956 
12957 	/* No TC has been set yet and rings may have been trimmed due to
12958 	 * limited MSIX, so we re-initialize the TX rings per TC.
12959 	 */
12960 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
12961 
12962 	if (BNXT_PF(bp)) {
12963 		if (!bnxt_pf_wq) {
12964 			bnxt_pf_wq =
12965 				create_singlethread_workqueue("bnxt_pf_wq");
12966 			if (!bnxt_pf_wq) {
12967 				dev_err(&pdev->dev, "Unable to create workqueue.\n");
12968 				rc = -ENOMEM;
12969 				goto init_err_pci_clean;
12970 			}
12971 		}
12972 		rc = bnxt_init_tc(bp);
12973 		if (rc)
12974 			netdev_err(dev, "Failed to initialize TC flower offload, err = %d.\n",
12975 				   rc);
12976 	}
12977 
12978 	bnxt_inv_fw_health_reg(bp);
12979 	bnxt_dl_register(bp);
12980 
12981 	rc = register_netdev(dev);
12982 	if (rc)
12983 		goto init_err_cleanup;
12984 
12985 	if (BNXT_PF(bp))
12986 		devlink_port_type_eth_set(&bp->dl_port, bp->dev);
12987 	bnxt_dl_fw_reporters_create(bp);
12988 
12989 	netdev_info(dev, "%s found at mem %lx, node addr %pM\n",
12990 		    board_info[ent->driver_data].name,
12991 		    (long)pci_resource_start(pdev, 0), dev->dev_addr);
12992 	pcie_print_link_status(pdev);
12993 
12994 	pci_save_state(pdev);
12995 	return 0;
12996 
12997 init_err_cleanup:
12998 	bnxt_dl_unregister(bp);
12999 	bnxt_shutdown_tc(bp);
13000 	bnxt_clear_int_mode(bp);
13001 
13002 init_err_pci_clean:
13003 	bnxt_hwrm_func_drv_unrgtr(bp);
13004 	bnxt_free_hwrm_short_cmd_req(bp);
13005 	bnxt_free_hwrm_resources(bp);
13006 	kfree(bp->fw_health);
13007 	bp->fw_health = NULL;
13008 	bnxt_cleanup_pci(bp);
13009 	bnxt_free_ctx_mem(bp);
13010 	kfree(bp->ctx);
13011 	bp->ctx = NULL;
13012 	kfree(bp->rss_indir_tbl);
13013 	bp->rss_indir_tbl = NULL;
13014 
13015 init_err_free:
13016 	free_netdev(dev);
13017 	return rc;
13018 }
13019 
13020 static void bnxt_shutdown(struct pci_dev *pdev)
13021 {
13022 	struct net_device *dev = pci_get_drvdata(pdev);
13023 	struct bnxt *bp;
13024 
13025 	if (!dev)
13026 		return;
13027 
13028 	rtnl_lock();
13029 	bp = netdev_priv(dev);
13030 	if (!bp)
13031 		goto shutdown_exit;
13032 
13033 	if (netif_running(dev))
13034 		dev_close(dev);
13035 
13036 	bnxt_ulp_shutdown(bp);
13037 	bnxt_clear_int_mode(bp);
13038 	pci_disable_device(pdev);
13039 
13040 	if (system_state == SYSTEM_POWER_OFF) {
13041 		pci_wake_from_d3(pdev, bp->wol);
13042 		pci_set_power_state(pdev, PCI_D3hot);
13043 	}
13044 
13045 shutdown_exit:
13046 	rtnl_unlock();
13047 }
13048 
13049 #ifdef CONFIG_PM_SLEEP
13050 static int bnxt_suspend(struct device *device)
13051 {
13052 	struct net_device *dev = dev_get_drvdata(device);
13053 	struct bnxt *bp = netdev_priv(dev);
13054 	int rc = 0;
13055 
13056 	rtnl_lock();
13057 	bnxt_ulp_stop(bp);
13058 	if (netif_running(dev)) {
13059 		netif_device_detach(dev);
13060 		rc = bnxt_close(dev);
13061 	}
13062 	bnxt_hwrm_func_drv_unrgtr(bp);
13063 	pci_disable_device(bp->pdev);
13064 	bnxt_free_ctx_mem(bp);
13065 	kfree(bp->ctx);
13066 	bp->ctx = NULL;
13067 	rtnl_unlock();
13068 	return rc;
13069 }
13070 
13071 static int bnxt_resume(struct device *device)
13072 {
13073 	struct net_device *dev = dev_get_drvdata(device);
13074 	struct bnxt *bp = netdev_priv(dev);
13075 	int rc = 0;
13076 
13077 	rtnl_lock();
13078 	rc = pci_enable_device(bp->pdev);
13079 	if (rc) {
13080 		netdev_err(dev, "Cannot re-enable PCI device during resume, err = %d\n",
13081 			   rc);
13082 		goto resume_exit;
13083 	}
13084 	pci_set_master(bp->pdev);
13085 	if (bnxt_hwrm_ver_get(bp)) {
13086 		rc = -ENODEV;
13087 		goto resume_exit;
13088 	}
13089 	rc = bnxt_hwrm_func_reset(bp);
13090 	if (rc) {
13091 		rc = -EBUSY;
13092 		goto resume_exit;
13093 	}
13094 
13095 	rc = bnxt_hwrm_func_qcaps(bp);
13096 	if (rc)
13097 		goto resume_exit;
13098 
13099 	if (bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false)) {
13100 		rc = -ENODEV;
13101 		goto resume_exit;
13102 	}
13103 
13104 	bnxt_get_wol_settings(bp);
13105 	if (netif_running(dev)) {
13106 		rc = bnxt_open(dev);
13107 		if (!rc)
13108 			netif_device_attach(dev);
13109 	}
13110 
13111 resume_exit:
13112 	bnxt_ulp_start(bp, rc);
13113 	if (!rc)
13114 		bnxt_reenable_sriov(bp);
13115 	rtnl_unlock();
13116 	return rc;
13117 }
13118 
13119 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume);
13120 #define BNXT_PM_OPS (&bnxt_pm_ops)
13121 
13122 #else
13123 
13124 #define BNXT_PM_OPS NULL
13125 
13126 #endif /* CONFIG_PM_SLEEP */
13127 
13128 /**
13129  * bnxt_io_error_detected - called when PCI error is detected
13130  * @pdev: Pointer to PCI device
13131  * @state: The current pci connection state
13132  *
13133  * This function is called after a PCI bus error affecting
13134  * this device has been detected.
13135  */
13136 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev,
13137 					       pci_channel_state_t state)
13138 {
13139 	struct net_device *netdev = pci_get_drvdata(pdev);
13140 	struct bnxt *bp = netdev_priv(netdev);
13141 
13142 	netdev_info(netdev, "PCI I/O error detected\n");
13143 
13144 	rtnl_lock();
13145 	netif_device_detach(netdev);
13146 
13147 	bnxt_ulp_stop(bp);
13148 
13149 	if (state == pci_channel_io_perm_failure) {
13150 		rtnl_unlock();
13151 		return PCI_ERS_RESULT_DISCONNECT;
13152 	}
13153 
13154 	if (state == pci_channel_io_frozen)
13155 		set_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, &bp->state);
13156 
13157 	if (netif_running(netdev))
13158 		bnxt_close(netdev);
13159 
13160 	pci_disable_device(pdev);
13161 	bnxt_free_ctx_mem(bp);
13162 	kfree(bp->ctx);
13163 	bp->ctx = NULL;
13164 	rtnl_unlock();
13165 
13166 	/* Request a slot slot reset. */
13167 	return PCI_ERS_RESULT_NEED_RESET;
13168 }
13169 
13170 /**
13171  * bnxt_io_slot_reset - called after the pci bus has been reset.
13172  * @pdev: Pointer to PCI device
13173  *
13174  * Restart the card from scratch, as if from a cold-boot.
13175  * At this point, the card has exprienced a hard reset,
13176  * followed by fixups by BIOS, and has its config space
13177  * set up identically to what it was at cold boot.
13178  */
13179 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev)
13180 {
13181 	pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
13182 	struct net_device *netdev = pci_get_drvdata(pdev);
13183 	struct bnxt *bp = netdev_priv(netdev);
13184 	int err = 0, off;
13185 
13186 	netdev_info(bp->dev, "PCI Slot Reset\n");
13187 
13188 	rtnl_lock();
13189 
13190 	if (pci_enable_device(pdev)) {
13191 		dev_err(&pdev->dev,
13192 			"Cannot re-enable PCI device after reset.\n");
13193 	} else {
13194 		pci_set_master(pdev);
13195 		/* Upon fatal error, our device internal logic that latches to
13196 		 * BAR value is getting reset and will restore only upon
13197 		 * rewritting the BARs.
13198 		 *
13199 		 * As pci_restore_state() does not re-write the BARs if the
13200 		 * value is same as saved value earlier, driver needs to
13201 		 * write the BARs to 0 to force restore, in case of fatal error.
13202 		 */
13203 		if (test_and_clear_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN,
13204 				       &bp->state)) {
13205 			for (off = PCI_BASE_ADDRESS_0;
13206 			     off <= PCI_BASE_ADDRESS_5; off += 4)
13207 				pci_write_config_dword(bp->pdev, off, 0);
13208 		}
13209 		pci_restore_state(pdev);
13210 		pci_save_state(pdev);
13211 
13212 		err = bnxt_hwrm_func_reset(bp);
13213 		if (!err)
13214 			result = PCI_ERS_RESULT_RECOVERED;
13215 	}
13216 
13217 	rtnl_unlock();
13218 
13219 	return result;
13220 }
13221 
13222 /**
13223  * bnxt_io_resume - called when traffic can start flowing again.
13224  * @pdev: Pointer to PCI device
13225  *
13226  * This callback is called when the error recovery driver tells
13227  * us that its OK to resume normal operation.
13228  */
13229 static void bnxt_io_resume(struct pci_dev *pdev)
13230 {
13231 	struct net_device *netdev = pci_get_drvdata(pdev);
13232 	struct bnxt *bp = netdev_priv(netdev);
13233 	int err;
13234 
13235 	netdev_info(bp->dev, "PCI Slot Resume\n");
13236 	rtnl_lock();
13237 
13238 	err = bnxt_hwrm_func_qcaps(bp);
13239 	if (!err && netif_running(netdev))
13240 		err = bnxt_open(netdev);
13241 
13242 	bnxt_ulp_start(bp, err);
13243 	if (!err) {
13244 		bnxt_reenable_sriov(bp);
13245 		netif_device_attach(netdev);
13246 	}
13247 
13248 	rtnl_unlock();
13249 }
13250 
13251 static const struct pci_error_handlers bnxt_err_handler = {
13252 	.error_detected	= bnxt_io_error_detected,
13253 	.slot_reset	= bnxt_io_slot_reset,
13254 	.resume		= bnxt_io_resume
13255 };
13256 
13257 static struct pci_driver bnxt_pci_driver = {
13258 	.name		= DRV_MODULE_NAME,
13259 	.id_table	= bnxt_pci_tbl,
13260 	.probe		= bnxt_init_one,
13261 	.remove		= bnxt_remove_one,
13262 	.shutdown	= bnxt_shutdown,
13263 	.driver.pm	= BNXT_PM_OPS,
13264 	.err_handler	= &bnxt_err_handler,
13265 #if defined(CONFIG_BNXT_SRIOV)
13266 	.sriov_configure = bnxt_sriov_configure,
13267 #endif
13268 };
13269 
13270 static int __init bnxt_init(void)
13271 {
13272 	bnxt_debug_init();
13273 	return pci_register_driver(&bnxt_pci_driver);
13274 }
13275 
13276 static void __exit bnxt_exit(void)
13277 {
13278 	pci_unregister_driver(&bnxt_pci_driver);
13279 	if (bnxt_pf_wq)
13280 		destroy_workqueue(bnxt_pf_wq);
13281 	bnxt_debug_exit();
13282 }
13283 
13284 module_init(bnxt_init);
13285 module_exit(bnxt_exit);
13286