xref: /openbmc/linux/drivers/net/ethernet/broadcom/bnxt/bnxt.c (revision c0ecca6604b80e438b032578634c6e133c7028f6)
1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2016 Broadcom Corporation
4  * Copyright (c) 2016-2019 Broadcom Limited
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation.
9  */
10 
11 #include <linux/module.h>
12 
13 #include <linux/stringify.h>
14 #include <linux/kernel.h>
15 #include <linux/timer.h>
16 #include <linux/errno.h>
17 #include <linux/ioport.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 #include <linux/interrupt.h>
21 #include <linux/pci.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/skbuff.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/bitops.h>
27 #include <linux/io.h>
28 #include <linux/irq.h>
29 #include <linux/delay.h>
30 #include <asm/byteorder.h>
31 #include <asm/page.h>
32 #include <linux/time.h>
33 #include <linux/mii.h>
34 #include <linux/mdio.h>
35 #include <linux/if.h>
36 #include <linux/if_vlan.h>
37 #include <linux/if_bridge.h>
38 #include <linux/rtc.h>
39 #include <linux/bpf.h>
40 #include <net/ip.h>
41 #include <net/tcp.h>
42 #include <net/udp.h>
43 #include <net/checksum.h>
44 #include <net/ip6_checksum.h>
45 #include <net/udp_tunnel.h>
46 #include <linux/workqueue.h>
47 #include <linux/prefetch.h>
48 #include <linux/cache.h>
49 #include <linux/log2.h>
50 #include <linux/aer.h>
51 #include <linux/bitmap.h>
52 #include <linux/cpu_rmap.h>
53 #include <linux/cpumask.h>
54 #include <net/pkt_cls.h>
55 #include <linux/hwmon.h>
56 #include <linux/hwmon-sysfs.h>
57 #include <net/page_pool.h>
58 
59 #include "bnxt_hsi.h"
60 #include "bnxt.h"
61 #include "bnxt_ulp.h"
62 #include "bnxt_sriov.h"
63 #include "bnxt_ethtool.h"
64 #include "bnxt_dcb.h"
65 #include "bnxt_xdp.h"
66 #include "bnxt_vfr.h"
67 #include "bnxt_tc.h"
68 #include "bnxt_devlink.h"
69 #include "bnxt_debugfs.h"
70 
71 #define BNXT_TX_TIMEOUT		(5 * HZ)
72 #define BNXT_DEF_MSG_ENABLE	(NETIF_MSG_DRV | NETIF_MSG_HW)
73 
74 MODULE_LICENSE("GPL");
75 MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
76 
77 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
78 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
79 #define BNXT_RX_COPY_THRESH 256
80 
81 #define BNXT_TX_PUSH_THRESH 164
82 
83 enum board_idx {
84 	BCM57301,
85 	BCM57302,
86 	BCM57304,
87 	BCM57417_NPAR,
88 	BCM58700,
89 	BCM57311,
90 	BCM57312,
91 	BCM57402,
92 	BCM57404,
93 	BCM57406,
94 	BCM57402_NPAR,
95 	BCM57407,
96 	BCM57412,
97 	BCM57414,
98 	BCM57416,
99 	BCM57417,
100 	BCM57412_NPAR,
101 	BCM57314,
102 	BCM57417_SFP,
103 	BCM57416_SFP,
104 	BCM57404_NPAR,
105 	BCM57406_NPAR,
106 	BCM57407_SFP,
107 	BCM57407_NPAR,
108 	BCM57414_NPAR,
109 	BCM57416_NPAR,
110 	BCM57452,
111 	BCM57454,
112 	BCM5745x_NPAR,
113 	BCM57508,
114 	BCM57504,
115 	BCM57502,
116 	BCM57508_NPAR,
117 	BCM57504_NPAR,
118 	BCM57502_NPAR,
119 	BCM58802,
120 	BCM58804,
121 	BCM58808,
122 	NETXTREME_E_VF,
123 	NETXTREME_C_VF,
124 	NETXTREME_S_VF,
125 	NETXTREME_C_VF_HV,
126 	NETXTREME_E_VF_HV,
127 	NETXTREME_E_P5_VF,
128 	NETXTREME_E_P5_VF_HV,
129 };
130 
131 /* indexed by enum above */
132 static const struct {
133 	char *name;
134 } board_info[] = {
135 	[BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" },
136 	[BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" },
137 	[BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
138 	[BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" },
139 	[BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" },
140 	[BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" },
141 	[BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" },
142 	[BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" },
143 	[BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" },
144 	[BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" },
145 	[BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" },
146 	[BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" },
147 	[BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" },
148 	[BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" },
149 	[BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" },
150 	[BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" },
151 	[BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" },
152 	[BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
153 	[BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" },
154 	[BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" },
155 	[BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" },
156 	[BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" },
157 	[BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" },
158 	[BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" },
159 	[BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" },
160 	[BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" },
161 	[BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" },
162 	[BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
163 	[BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" },
164 	[BCM57508] = { "Broadcom BCM57508 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
165 	[BCM57504] = { "Broadcom BCM57504 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
166 	[BCM57502] = { "Broadcom BCM57502 NetXtreme-E 10Gb/25Gb/50Gb Ethernet" },
167 	[BCM57508_NPAR] = { "Broadcom BCM57508 NetXtreme-E Ethernet Partition" },
168 	[BCM57504_NPAR] = { "Broadcom BCM57504 NetXtreme-E Ethernet Partition" },
169 	[BCM57502_NPAR] = { "Broadcom BCM57502 NetXtreme-E Ethernet Partition" },
170 	[BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" },
171 	[BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
172 	[BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
173 	[NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" },
174 	[NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" },
175 	[NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" },
176 	[NETXTREME_C_VF_HV] = { "Broadcom NetXtreme-C Virtual Function for Hyper-V" },
177 	[NETXTREME_E_VF_HV] = { "Broadcom NetXtreme-E Virtual Function for Hyper-V" },
178 	[NETXTREME_E_P5_VF] = { "Broadcom BCM5750X NetXtreme-E Ethernet Virtual Function" },
179 	[NETXTREME_E_P5_VF_HV] = { "Broadcom BCM5750X NetXtreme-E Virtual Function for Hyper-V" },
180 };
181 
182 static const struct pci_device_id bnxt_pci_tbl[] = {
183 	{ PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR },
184 	{ PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR },
185 	{ PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 },
186 	{ PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR },
187 	{ PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
188 	{ PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
189 	{ PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
190 	{ PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR },
191 	{ PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 },
192 	{ PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 },
193 	{ PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 },
194 	{ PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
195 	{ PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
196 	{ PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
197 	{ PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR },
198 	{ PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 },
199 	{ PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 },
200 	{ PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 },
201 	{ PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 },
202 	{ PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 },
203 	{ PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR },
204 	{ PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 },
205 	{ PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP },
206 	{ PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP },
207 	{ PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR },
208 	{ PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR },
209 	{ PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP },
210 	{ PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR },
211 	{ PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR },
212 	{ PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR },
213 	{ PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR },
214 	{ PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR },
215 	{ PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR },
216 	{ PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 },
217 	{ PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 },
218 	{ PCI_VDEVICE(BROADCOM, 0x1750), .driver_data = BCM57508 },
219 	{ PCI_VDEVICE(BROADCOM, 0x1751), .driver_data = BCM57504 },
220 	{ PCI_VDEVICE(BROADCOM, 0x1752), .driver_data = BCM57502 },
221 	{ PCI_VDEVICE(BROADCOM, 0x1800), .driver_data = BCM57508_NPAR },
222 	{ PCI_VDEVICE(BROADCOM, 0x1801), .driver_data = BCM57504_NPAR },
223 	{ PCI_VDEVICE(BROADCOM, 0x1802), .driver_data = BCM57502_NPAR },
224 	{ PCI_VDEVICE(BROADCOM, 0x1803), .driver_data = BCM57508_NPAR },
225 	{ PCI_VDEVICE(BROADCOM, 0x1804), .driver_data = BCM57504_NPAR },
226 	{ PCI_VDEVICE(BROADCOM, 0x1805), .driver_data = BCM57502_NPAR },
227 	{ PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 },
228 	{ PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 },
229 #ifdef CONFIG_BNXT_SRIOV
230 	{ PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF },
231 	{ PCI_VDEVICE(BROADCOM, 0x1607), .driver_data = NETXTREME_E_VF_HV },
232 	{ PCI_VDEVICE(BROADCOM, 0x1608), .driver_data = NETXTREME_E_VF_HV },
233 	{ PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF },
234 	{ PCI_VDEVICE(BROADCOM, 0x16bd), .driver_data = NETXTREME_E_VF_HV },
235 	{ PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF },
236 	{ PCI_VDEVICE(BROADCOM, 0x16c2), .driver_data = NETXTREME_C_VF_HV },
237 	{ PCI_VDEVICE(BROADCOM, 0x16c3), .driver_data = NETXTREME_C_VF_HV },
238 	{ PCI_VDEVICE(BROADCOM, 0x16c4), .driver_data = NETXTREME_E_VF_HV },
239 	{ PCI_VDEVICE(BROADCOM, 0x16c5), .driver_data = NETXTREME_E_VF_HV },
240 	{ PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF },
241 	{ PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF },
242 	{ PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF },
243 	{ PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF },
244 	{ PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF },
245 	{ PCI_VDEVICE(BROADCOM, 0x16e6), .driver_data = NETXTREME_C_VF_HV },
246 	{ PCI_VDEVICE(BROADCOM, 0x1806), .driver_data = NETXTREME_E_P5_VF },
247 	{ PCI_VDEVICE(BROADCOM, 0x1807), .driver_data = NETXTREME_E_P5_VF },
248 	{ PCI_VDEVICE(BROADCOM, 0x1808), .driver_data = NETXTREME_E_P5_VF_HV },
249 	{ PCI_VDEVICE(BROADCOM, 0x1809), .driver_data = NETXTREME_E_P5_VF_HV },
250 	{ PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF },
251 #endif
252 	{ 0 }
253 };
254 
255 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
256 
257 static const u16 bnxt_vf_req_snif[] = {
258 	HWRM_FUNC_CFG,
259 	HWRM_FUNC_VF_CFG,
260 	HWRM_PORT_PHY_QCFG,
261 	HWRM_CFA_L2_FILTER_ALLOC,
262 };
263 
264 static const u16 bnxt_async_events_arr[] = {
265 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE,
266 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE,
267 	ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD,
268 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED,
269 	ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE,
270 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE,
271 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE,
272 	ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY,
273 	ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY,
274 	ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION,
275 	ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG,
276 	ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST,
277 };
278 
279 static struct workqueue_struct *bnxt_pf_wq;
280 
281 static bool bnxt_vf_pciid(enum board_idx idx)
282 {
283 	return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF ||
284 		idx == NETXTREME_S_VF || idx == NETXTREME_C_VF_HV ||
285 		idx == NETXTREME_E_VF_HV || idx == NETXTREME_E_P5_VF ||
286 		idx == NETXTREME_E_P5_VF_HV);
287 }
288 
289 #define DB_CP_REARM_FLAGS	(DB_KEY_CP | DB_IDX_VALID)
290 #define DB_CP_FLAGS		(DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
291 #define DB_CP_IRQ_DIS_FLAGS	(DB_KEY_CP | DB_IRQ_DIS)
292 
293 #define BNXT_CP_DB_IRQ_DIS(db)						\
294 		writel(DB_CP_IRQ_DIS_FLAGS, db)
295 
296 #define BNXT_DB_CQ(db, idx)						\
297 	writel(DB_CP_FLAGS | RING_CMP(idx), (db)->doorbell)
298 
299 #define BNXT_DB_NQ_P5(db, idx)						\
300 	writeq((db)->db_key64 | DBR_TYPE_NQ | RING_CMP(idx), (db)->doorbell)
301 
302 #define BNXT_DB_CQ_ARM(db, idx)						\
303 	writel(DB_CP_REARM_FLAGS | RING_CMP(idx), (db)->doorbell)
304 
305 #define BNXT_DB_NQ_ARM_P5(db, idx)					\
306 	writeq((db)->db_key64 | DBR_TYPE_NQ_ARM | RING_CMP(idx), (db)->doorbell)
307 
308 static void bnxt_db_nq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
309 {
310 	if (bp->flags & BNXT_FLAG_CHIP_P5)
311 		BNXT_DB_NQ_P5(db, idx);
312 	else
313 		BNXT_DB_CQ(db, idx);
314 }
315 
316 static void bnxt_db_nq_arm(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
317 {
318 	if (bp->flags & BNXT_FLAG_CHIP_P5)
319 		BNXT_DB_NQ_ARM_P5(db, idx);
320 	else
321 		BNXT_DB_CQ_ARM(db, idx);
322 }
323 
324 static void bnxt_db_cq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
325 {
326 	if (bp->flags & BNXT_FLAG_CHIP_P5)
327 		writeq(db->db_key64 | DBR_TYPE_CQ_ARMALL | RING_CMP(idx),
328 		       db->doorbell);
329 	else
330 		BNXT_DB_CQ(db, idx);
331 }
332 
333 const u16 bnxt_lhint_arr[] = {
334 	TX_BD_FLAGS_LHINT_512_AND_SMALLER,
335 	TX_BD_FLAGS_LHINT_512_TO_1023,
336 	TX_BD_FLAGS_LHINT_1024_TO_2047,
337 	TX_BD_FLAGS_LHINT_1024_TO_2047,
338 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
339 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
340 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
341 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
342 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
343 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
344 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
345 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
346 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
347 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
348 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
349 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
350 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
351 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
352 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
353 };
354 
355 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb)
356 {
357 	struct metadata_dst *md_dst = skb_metadata_dst(skb);
358 
359 	if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX)
360 		return 0;
361 
362 	return md_dst->u.port_info.port_id;
363 }
364 
365 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
366 {
367 	struct bnxt *bp = netdev_priv(dev);
368 	struct tx_bd *txbd;
369 	struct tx_bd_ext *txbd1;
370 	struct netdev_queue *txq;
371 	int i;
372 	dma_addr_t mapping;
373 	unsigned int length, pad = 0;
374 	u32 len, free_size, vlan_tag_flags, cfa_action, flags;
375 	u16 prod, last_frag;
376 	struct pci_dev *pdev = bp->pdev;
377 	struct bnxt_tx_ring_info *txr;
378 	struct bnxt_sw_tx_bd *tx_buf;
379 	__le32 lflags = 0;
380 
381 	i = skb_get_queue_mapping(skb);
382 	if (unlikely(i >= bp->tx_nr_rings)) {
383 		dev_kfree_skb_any(skb);
384 		return NETDEV_TX_OK;
385 	}
386 
387 	txq = netdev_get_tx_queue(dev, i);
388 	txr = &bp->tx_ring[bp->tx_ring_map[i]];
389 	prod = txr->tx_prod;
390 
391 	free_size = bnxt_tx_avail(bp, txr);
392 	if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
393 		netif_tx_stop_queue(txq);
394 		return NETDEV_TX_BUSY;
395 	}
396 
397 	length = skb->len;
398 	len = skb_headlen(skb);
399 	last_frag = skb_shinfo(skb)->nr_frags;
400 
401 	txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
402 
403 	txbd->tx_bd_opaque = prod;
404 
405 	tx_buf = &txr->tx_buf_ring[prod];
406 	tx_buf->skb = skb;
407 	tx_buf->nr_frags = last_frag;
408 
409 	vlan_tag_flags = 0;
410 	cfa_action = bnxt_xmit_get_cfa_action(skb);
411 	if (skb_vlan_tag_present(skb)) {
412 		vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
413 				 skb_vlan_tag_get(skb);
414 		/* Currently supports 8021Q, 8021AD vlan offloads
415 		 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
416 		 */
417 		if (skb->vlan_proto == htons(ETH_P_8021Q))
418 			vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
419 	}
420 
421 	if (unlikely(skb->no_fcs)) {
422 		lflags |= cpu_to_le32(TX_BD_FLAGS_NO_CRC);
423 		goto normal_tx;
424 	}
425 
426 	if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh) {
427 		struct tx_push_buffer *tx_push_buf = txr->tx_push;
428 		struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
429 		struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
430 		void __iomem *db = txr->tx_db.doorbell;
431 		void *pdata = tx_push_buf->data;
432 		u64 *end;
433 		int j, push_len;
434 
435 		/* Set COAL_NOW to be ready quickly for the next push */
436 		tx_push->tx_bd_len_flags_type =
437 			cpu_to_le32((length << TX_BD_LEN_SHIFT) |
438 					TX_BD_TYPE_LONG_TX_BD |
439 					TX_BD_FLAGS_LHINT_512_AND_SMALLER |
440 					TX_BD_FLAGS_COAL_NOW |
441 					TX_BD_FLAGS_PACKET_END |
442 					(2 << TX_BD_FLAGS_BD_CNT_SHIFT));
443 
444 		if (skb->ip_summed == CHECKSUM_PARTIAL)
445 			tx_push1->tx_bd_hsize_lflags =
446 					cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
447 		else
448 			tx_push1->tx_bd_hsize_lflags = 0;
449 
450 		tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
451 		tx_push1->tx_bd_cfa_action =
452 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
453 
454 		end = pdata + length;
455 		end = PTR_ALIGN(end, 8) - 1;
456 		*end = 0;
457 
458 		skb_copy_from_linear_data(skb, pdata, len);
459 		pdata += len;
460 		for (j = 0; j < last_frag; j++) {
461 			skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
462 			void *fptr;
463 
464 			fptr = skb_frag_address_safe(frag);
465 			if (!fptr)
466 				goto normal_tx;
467 
468 			memcpy(pdata, fptr, skb_frag_size(frag));
469 			pdata += skb_frag_size(frag);
470 		}
471 
472 		txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
473 		txbd->tx_bd_haddr = txr->data_mapping;
474 		prod = NEXT_TX(prod);
475 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
476 		memcpy(txbd, tx_push1, sizeof(*txbd));
477 		prod = NEXT_TX(prod);
478 		tx_push->doorbell =
479 			cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod);
480 		txr->tx_prod = prod;
481 
482 		tx_buf->is_push = 1;
483 		netdev_tx_sent_queue(txq, skb->len);
484 		wmb();	/* Sync is_push and byte queue before pushing data */
485 
486 		push_len = (length + sizeof(*tx_push) + 7) / 8;
487 		if (push_len > 16) {
488 			__iowrite64_copy(db, tx_push_buf, 16);
489 			__iowrite32_copy(db + 4, tx_push_buf + 1,
490 					 (push_len - 16) << 1);
491 		} else {
492 			__iowrite64_copy(db, tx_push_buf, push_len);
493 		}
494 
495 		goto tx_done;
496 	}
497 
498 normal_tx:
499 	if (length < BNXT_MIN_PKT_SIZE) {
500 		pad = BNXT_MIN_PKT_SIZE - length;
501 		if (skb_pad(skb, pad)) {
502 			/* SKB already freed. */
503 			tx_buf->skb = NULL;
504 			return NETDEV_TX_OK;
505 		}
506 		length = BNXT_MIN_PKT_SIZE;
507 	}
508 
509 	mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
510 
511 	if (unlikely(dma_mapping_error(&pdev->dev, mapping))) {
512 		dev_kfree_skb_any(skb);
513 		tx_buf->skb = NULL;
514 		return NETDEV_TX_OK;
515 	}
516 
517 	dma_unmap_addr_set(tx_buf, mapping, mapping);
518 	flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
519 		((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
520 
521 	txbd->tx_bd_haddr = cpu_to_le64(mapping);
522 
523 	prod = NEXT_TX(prod);
524 	txbd1 = (struct tx_bd_ext *)
525 		&txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
526 
527 	txbd1->tx_bd_hsize_lflags = lflags;
528 	if (skb_is_gso(skb)) {
529 		u32 hdr_len;
530 
531 		if (skb->encapsulation)
532 			hdr_len = skb_inner_network_offset(skb) +
533 				skb_inner_network_header_len(skb) +
534 				inner_tcp_hdrlen(skb);
535 		else
536 			hdr_len = skb_transport_offset(skb) +
537 				tcp_hdrlen(skb);
538 
539 		txbd1->tx_bd_hsize_lflags |= cpu_to_le32(TX_BD_FLAGS_LSO |
540 					TX_BD_FLAGS_T_IPID |
541 					(hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
542 		length = skb_shinfo(skb)->gso_size;
543 		txbd1->tx_bd_mss = cpu_to_le32(length);
544 		length += hdr_len;
545 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
546 		txbd1->tx_bd_hsize_lflags |=
547 			cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
548 		txbd1->tx_bd_mss = 0;
549 	}
550 
551 	length >>= 9;
552 	if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) {
553 		dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n",
554 				     skb->len);
555 		i = 0;
556 		goto tx_dma_error;
557 	}
558 	flags |= bnxt_lhint_arr[length];
559 	txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
560 
561 	txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
562 	txbd1->tx_bd_cfa_action =
563 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
564 	for (i = 0; i < last_frag; i++) {
565 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
566 
567 		prod = NEXT_TX(prod);
568 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
569 
570 		len = skb_frag_size(frag);
571 		mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
572 					   DMA_TO_DEVICE);
573 
574 		if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
575 			goto tx_dma_error;
576 
577 		tx_buf = &txr->tx_buf_ring[prod];
578 		dma_unmap_addr_set(tx_buf, mapping, mapping);
579 
580 		txbd->tx_bd_haddr = cpu_to_le64(mapping);
581 
582 		flags = len << TX_BD_LEN_SHIFT;
583 		txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
584 	}
585 
586 	flags &= ~TX_BD_LEN;
587 	txbd->tx_bd_len_flags_type =
588 		cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
589 			    TX_BD_FLAGS_PACKET_END);
590 
591 	netdev_tx_sent_queue(txq, skb->len);
592 
593 	/* Sync BD data before updating doorbell */
594 	wmb();
595 
596 	prod = NEXT_TX(prod);
597 	txr->tx_prod = prod;
598 
599 	if (!netdev_xmit_more() || netif_xmit_stopped(txq))
600 		bnxt_db_write(bp, &txr->tx_db, prod);
601 
602 tx_done:
603 
604 	if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
605 		if (netdev_xmit_more() && !tx_buf->is_push)
606 			bnxt_db_write(bp, &txr->tx_db, prod);
607 
608 		netif_tx_stop_queue(txq);
609 
610 		/* netif_tx_stop_queue() must be done before checking
611 		 * tx index in bnxt_tx_avail() below, because in
612 		 * bnxt_tx_int(), we update tx index before checking for
613 		 * netif_tx_queue_stopped().
614 		 */
615 		smp_mb();
616 		if (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)
617 			netif_tx_wake_queue(txq);
618 	}
619 	return NETDEV_TX_OK;
620 
621 tx_dma_error:
622 	last_frag = i;
623 
624 	/* start back at beginning and unmap skb */
625 	prod = txr->tx_prod;
626 	tx_buf = &txr->tx_buf_ring[prod];
627 	tx_buf->skb = NULL;
628 	dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
629 			 skb_headlen(skb), PCI_DMA_TODEVICE);
630 	prod = NEXT_TX(prod);
631 
632 	/* unmap remaining mapped pages */
633 	for (i = 0; i < last_frag; i++) {
634 		prod = NEXT_TX(prod);
635 		tx_buf = &txr->tx_buf_ring[prod];
636 		dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
637 			       skb_frag_size(&skb_shinfo(skb)->frags[i]),
638 			       PCI_DMA_TODEVICE);
639 	}
640 
641 	dev_kfree_skb_any(skb);
642 	return NETDEV_TX_OK;
643 }
644 
645 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts)
646 {
647 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
648 	struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index);
649 	u16 cons = txr->tx_cons;
650 	struct pci_dev *pdev = bp->pdev;
651 	int i;
652 	unsigned int tx_bytes = 0;
653 
654 	for (i = 0; i < nr_pkts; i++) {
655 		struct bnxt_sw_tx_bd *tx_buf;
656 		struct sk_buff *skb;
657 		int j, last;
658 
659 		tx_buf = &txr->tx_buf_ring[cons];
660 		cons = NEXT_TX(cons);
661 		skb = tx_buf->skb;
662 		tx_buf->skb = NULL;
663 
664 		if (tx_buf->is_push) {
665 			tx_buf->is_push = 0;
666 			goto next_tx_int;
667 		}
668 
669 		dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
670 				 skb_headlen(skb), PCI_DMA_TODEVICE);
671 		last = tx_buf->nr_frags;
672 
673 		for (j = 0; j < last; j++) {
674 			cons = NEXT_TX(cons);
675 			tx_buf = &txr->tx_buf_ring[cons];
676 			dma_unmap_page(
677 				&pdev->dev,
678 				dma_unmap_addr(tx_buf, mapping),
679 				skb_frag_size(&skb_shinfo(skb)->frags[j]),
680 				PCI_DMA_TODEVICE);
681 		}
682 
683 next_tx_int:
684 		cons = NEXT_TX(cons);
685 
686 		tx_bytes += skb->len;
687 		dev_kfree_skb_any(skb);
688 	}
689 
690 	netdev_tx_completed_queue(txq, nr_pkts, tx_bytes);
691 	txr->tx_cons = cons;
692 
693 	/* Need to make the tx_cons update visible to bnxt_start_xmit()
694 	 * before checking for netif_tx_queue_stopped().  Without the
695 	 * memory barrier, there is a small possibility that bnxt_start_xmit()
696 	 * will miss it and cause the queue to be stopped forever.
697 	 */
698 	smp_mb();
699 
700 	if (unlikely(netif_tx_queue_stopped(txq)) &&
701 	    (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
702 		__netif_tx_lock(txq, smp_processor_id());
703 		if (netif_tx_queue_stopped(txq) &&
704 		    bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh &&
705 		    txr->dev_state != BNXT_DEV_STATE_CLOSING)
706 			netif_tx_wake_queue(txq);
707 		__netif_tx_unlock(txq);
708 	}
709 }
710 
711 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping,
712 					 struct bnxt_rx_ring_info *rxr,
713 					 gfp_t gfp)
714 {
715 	struct device *dev = &bp->pdev->dev;
716 	struct page *page;
717 
718 	page = page_pool_dev_alloc_pages(rxr->page_pool);
719 	if (!page)
720 		return NULL;
721 
722 	*mapping = dma_map_page_attrs(dev, page, 0, PAGE_SIZE, bp->rx_dir,
723 				      DMA_ATTR_WEAK_ORDERING);
724 	if (dma_mapping_error(dev, *mapping)) {
725 		page_pool_recycle_direct(rxr->page_pool, page);
726 		return NULL;
727 	}
728 	*mapping += bp->rx_dma_offset;
729 	return page;
730 }
731 
732 static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping,
733 				       gfp_t gfp)
734 {
735 	u8 *data;
736 	struct pci_dev *pdev = bp->pdev;
737 
738 	data = kmalloc(bp->rx_buf_size, gfp);
739 	if (!data)
740 		return NULL;
741 
742 	*mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset,
743 					bp->rx_buf_use_size, bp->rx_dir,
744 					DMA_ATTR_WEAK_ORDERING);
745 
746 	if (dma_mapping_error(&pdev->dev, *mapping)) {
747 		kfree(data);
748 		data = NULL;
749 	}
750 	return data;
751 }
752 
753 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
754 		       u16 prod, gfp_t gfp)
755 {
756 	struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
757 	struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
758 	dma_addr_t mapping;
759 
760 	if (BNXT_RX_PAGE_MODE(bp)) {
761 		struct page *page =
762 			__bnxt_alloc_rx_page(bp, &mapping, rxr, gfp);
763 
764 		if (!page)
765 			return -ENOMEM;
766 
767 		rx_buf->data = page;
768 		rx_buf->data_ptr = page_address(page) + bp->rx_offset;
769 	} else {
770 		u8 *data = __bnxt_alloc_rx_data(bp, &mapping, gfp);
771 
772 		if (!data)
773 			return -ENOMEM;
774 
775 		rx_buf->data = data;
776 		rx_buf->data_ptr = data + bp->rx_offset;
777 	}
778 	rx_buf->mapping = mapping;
779 
780 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
781 	return 0;
782 }
783 
784 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data)
785 {
786 	u16 prod = rxr->rx_prod;
787 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
788 	struct rx_bd *cons_bd, *prod_bd;
789 
790 	prod_rx_buf = &rxr->rx_buf_ring[prod];
791 	cons_rx_buf = &rxr->rx_buf_ring[cons];
792 
793 	prod_rx_buf->data = data;
794 	prod_rx_buf->data_ptr = cons_rx_buf->data_ptr;
795 
796 	prod_rx_buf->mapping = cons_rx_buf->mapping;
797 
798 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
799 	cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
800 
801 	prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
802 }
803 
804 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
805 {
806 	u16 next, max = rxr->rx_agg_bmap_size;
807 
808 	next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
809 	if (next >= max)
810 		next = find_first_zero_bit(rxr->rx_agg_bmap, max);
811 	return next;
812 }
813 
814 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
815 				     struct bnxt_rx_ring_info *rxr,
816 				     u16 prod, gfp_t gfp)
817 {
818 	struct rx_bd *rxbd =
819 		&rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
820 	struct bnxt_sw_rx_agg_bd *rx_agg_buf;
821 	struct pci_dev *pdev = bp->pdev;
822 	struct page *page;
823 	dma_addr_t mapping;
824 	u16 sw_prod = rxr->rx_sw_agg_prod;
825 	unsigned int offset = 0;
826 
827 	if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) {
828 		page = rxr->rx_page;
829 		if (!page) {
830 			page = alloc_page(gfp);
831 			if (!page)
832 				return -ENOMEM;
833 			rxr->rx_page = page;
834 			rxr->rx_page_offset = 0;
835 		}
836 		offset = rxr->rx_page_offset;
837 		rxr->rx_page_offset += BNXT_RX_PAGE_SIZE;
838 		if (rxr->rx_page_offset == PAGE_SIZE)
839 			rxr->rx_page = NULL;
840 		else
841 			get_page(page);
842 	} else {
843 		page = alloc_page(gfp);
844 		if (!page)
845 			return -ENOMEM;
846 	}
847 
848 	mapping = dma_map_page_attrs(&pdev->dev, page, offset,
849 				     BNXT_RX_PAGE_SIZE, PCI_DMA_FROMDEVICE,
850 				     DMA_ATTR_WEAK_ORDERING);
851 	if (dma_mapping_error(&pdev->dev, mapping)) {
852 		__free_page(page);
853 		return -EIO;
854 	}
855 
856 	if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
857 		sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
858 
859 	__set_bit(sw_prod, rxr->rx_agg_bmap);
860 	rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
861 	rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod);
862 
863 	rx_agg_buf->page = page;
864 	rx_agg_buf->offset = offset;
865 	rx_agg_buf->mapping = mapping;
866 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
867 	rxbd->rx_bd_opaque = sw_prod;
868 	return 0;
869 }
870 
871 static struct rx_agg_cmp *bnxt_get_agg(struct bnxt *bp,
872 				       struct bnxt_cp_ring_info *cpr,
873 				       u16 cp_cons, u16 curr)
874 {
875 	struct rx_agg_cmp *agg;
876 
877 	cp_cons = RING_CMP(ADV_RAW_CMP(cp_cons, curr));
878 	agg = (struct rx_agg_cmp *)
879 		&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
880 	return agg;
881 }
882 
883 static struct rx_agg_cmp *bnxt_get_tpa_agg_p5(struct bnxt *bp,
884 					      struct bnxt_rx_ring_info *rxr,
885 					      u16 agg_id, u16 curr)
886 {
887 	struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[agg_id];
888 
889 	return &tpa_info->agg_arr[curr];
890 }
891 
892 static void bnxt_reuse_rx_agg_bufs(struct bnxt_cp_ring_info *cpr, u16 idx,
893 				   u16 start, u32 agg_bufs, bool tpa)
894 {
895 	struct bnxt_napi *bnapi = cpr->bnapi;
896 	struct bnxt *bp = bnapi->bp;
897 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
898 	u16 prod = rxr->rx_agg_prod;
899 	u16 sw_prod = rxr->rx_sw_agg_prod;
900 	bool p5_tpa = false;
901 	u32 i;
902 
903 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa)
904 		p5_tpa = true;
905 
906 	for (i = 0; i < agg_bufs; i++) {
907 		u16 cons;
908 		struct rx_agg_cmp *agg;
909 		struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
910 		struct rx_bd *prod_bd;
911 		struct page *page;
912 
913 		if (p5_tpa)
914 			agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, start + i);
915 		else
916 			agg = bnxt_get_agg(bp, cpr, idx, start + i);
917 		cons = agg->rx_agg_cmp_opaque;
918 		__clear_bit(cons, rxr->rx_agg_bmap);
919 
920 		if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
921 			sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
922 
923 		__set_bit(sw_prod, rxr->rx_agg_bmap);
924 		prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
925 		cons_rx_buf = &rxr->rx_agg_ring[cons];
926 
927 		/* It is possible for sw_prod to be equal to cons, so
928 		 * set cons_rx_buf->page to NULL first.
929 		 */
930 		page = cons_rx_buf->page;
931 		cons_rx_buf->page = NULL;
932 		prod_rx_buf->page = page;
933 		prod_rx_buf->offset = cons_rx_buf->offset;
934 
935 		prod_rx_buf->mapping = cons_rx_buf->mapping;
936 
937 		prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
938 
939 		prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
940 		prod_bd->rx_bd_opaque = sw_prod;
941 
942 		prod = NEXT_RX_AGG(prod);
943 		sw_prod = NEXT_RX_AGG(sw_prod);
944 	}
945 	rxr->rx_agg_prod = prod;
946 	rxr->rx_sw_agg_prod = sw_prod;
947 }
948 
949 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp,
950 					struct bnxt_rx_ring_info *rxr,
951 					u16 cons, void *data, u8 *data_ptr,
952 					dma_addr_t dma_addr,
953 					unsigned int offset_and_len)
954 {
955 	unsigned int payload = offset_and_len >> 16;
956 	unsigned int len = offset_and_len & 0xffff;
957 	skb_frag_t *frag;
958 	struct page *page = data;
959 	u16 prod = rxr->rx_prod;
960 	struct sk_buff *skb;
961 	int off, err;
962 
963 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
964 	if (unlikely(err)) {
965 		bnxt_reuse_rx_data(rxr, cons, data);
966 		return NULL;
967 	}
968 	dma_addr -= bp->rx_dma_offset;
969 	dma_unmap_page_attrs(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir,
970 			     DMA_ATTR_WEAK_ORDERING);
971 	page_pool_release_page(rxr->page_pool, page);
972 
973 	if (unlikely(!payload))
974 		payload = eth_get_headlen(bp->dev, data_ptr, len);
975 
976 	skb = napi_alloc_skb(&rxr->bnapi->napi, payload);
977 	if (!skb) {
978 		__free_page(page);
979 		return NULL;
980 	}
981 
982 	off = (void *)data_ptr - page_address(page);
983 	skb_add_rx_frag(skb, 0, page, off, len, PAGE_SIZE);
984 	memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN,
985 	       payload + NET_IP_ALIGN);
986 
987 	frag = &skb_shinfo(skb)->frags[0];
988 	skb_frag_size_sub(frag, payload);
989 	skb_frag_off_add(frag, payload);
990 	skb->data_len -= payload;
991 	skb->tail += payload;
992 
993 	return skb;
994 }
995 
996 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
997 				   struct bnxt_rx_ring_info *rxr, u16 cons,
998 				   void *data, u8 *data_ptr,
999 				   dma_addr_t dma_addr,
1000 				   unsigned int offset_and_len)
1001 {
1002 	u16 prod = rxr->rx_prod;
1003 	struct sk_buff *skb;
1004 	int err;
1005 
1006 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
1007 	if (unlikely(err)) {
1008 		bnxt_reuse_rx_data(rxr, cons, data);
1009 		return NULL;
1010 	}
1011 
1012 	skb = build_skb(data, 0);
1013 	dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
1014 			       bp->rx_dir, DMA_ATTR_WEAK_ORDERING);
1015 	if (!skb) {
1016 		kfree(data);
1017 		return NULL;
1018 	}
1019 
1020 	skb_reserve(skb, bp->rx_offset);
1021 	skb_put(skb, offset_and_len & 0xffff);
1022 	return skb;
1023 }
1024 
1025 static struct sk_buff *bnxt_rx_pages(struct bnxt *bp,
1026 				     struct bnxt_cp_ring_info *cpr,
1027 				     struct sk_buff *skb, u16 idx,
1028 				     u32 agg_bufs, bool tpa)
1029 {
1030 	struct bnxt_napi *bnapi = cpr->bnapi;
1031 	struct pci_dev *pdev = bp->pdev;
1032 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1033 	u16 prod = rxr->rx_agg_prod;
1034 	bool p5_tpa = false;
1035 	u32 i;
1036 
1037 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa)
1038 		p5_tpa = true;
1039 
1040 	for (i = 0; i < agg_bufs; i++) {
1041 		u16 cons, frag_len;
1042 		struct rx_agg_cmp *agg;
1043 		struct bnxt_sw_rx_agg_bd *cons_rx_buf;
1044 		struct page *page;
1045 		dma_addr_t mapping;
1046 
1047 		if (p5_tpa)
1048 			agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, i);
1049 		else
1050 			agg = bnxt_get_agg(bp, cpr, idx, i);
1051 		cons = agg->rx_agg_cmp_opaque;
1052 		frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
1053 			    RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
1054 
1055 		cons_rx_buf = &rxr->rx_agg_ring[cons];
1056 		skb_fill_page_desc(skb, i, cons_rx_buf->page,
1057 				   cons_rx_buf->offset, frag_len);
1058 		__clear_bit(cons, rxr->rx_agg_bmap);
1059 
1060 		/* It is possible for bnxt_alloc_rx_page() to allocate
1061 		 * a sw_prod index that equals the cons index, so we
1062 		 * need to clear the cons entry now.
1063 		 */
1064 		mapping = cons_rx_buf->mapping;
1065 		page = cons_rx_buf->page;
1066 		cons_rx_buf->page = NULL;
1067 
1068 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
1069 			struct skb_shared_info *shinfo;
1070 			unsigned int nr_frags;
1071 
1072 			shinfo = skb_shinfo(skb);
1073 			nr_frags = --shinfo->nr_frags;
1074 			__skb_frag_set_page(&shinfo->frags[nr_frags], NULL);
1075 
1076 			dev_kfree_skb(skb);
1077 
1078 			cons_rx_buf->page = page;
1079 
1080 			/* Update prod since possibly some pages have been
1081 			 * allocated already.
1082 			 */
1083 			rxr->rx_agg_prod = prod;
1084 			bnxt_reuse_rx_agg_bufs(cpr, idx, i, agg_bufs - i, tpa);
1085 			return NULL;
1086 		}
1087 
1088 		dma_unmap_page_attrs(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE,
1089 				     PCI_DMA_FROMDEVICE,
1090 				     DMA_ATTR_WEAK_ORDERING);
1091 
1092 		skb->data_len += frag_len;
1093 		skb->len += frag_len;
1094 		skb->truesize += PAGE_SIZE;
1095 
1096 		prod = NEXT_RX_AGG(prod);
1097 	}
1098 	rxr->rx_agg_prod = prod;
1099 	return skb;
1100 }
1101 
1102 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1103 			       u8 agg_bufs, u32 *raw_cons)
1104 {
1105 	u16 last;
1106 	struct rx_agg_cmp *agg;
1107 
1108 	*raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
1109 	last = RING_CMP(*raw_cons);
1110 	agg = (struct rx_agg_cmp *)
1111 		&cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
1112 	return RX_AGG_CMP_VALID(agg, *raw_cons);
1113 }
1114 
1115 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
1116 					    unsigned int len,
1117 					    dma_addr_t mapping)
1118 {
1119 	struct bnxt *bp = bnapi->bp;
1120 	struct pci_dev *pdev = bp->pdev;
1121 	struct sk_buff *skb;
1122 
1123 	skb = napi_alloc_skb(&bnapi->napi, len);
1124 	if (!skb)
1125 		return NULL;
1126 
1127 	dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh,
1128 				bp->rx_dir);
1129 
1130 	memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN,
1131 	       len + NET_IP_ALIGN);
1132 
1133 	dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh,
1134 				   bp->rx_dir);
1135 
1136 	skb_put(skb, len);
1137 	return skb;
1138 }
1139 
1140 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1141 			   u32 *raw_cons, void *cmp)
1142 {
1143 	struct rx_cmp *rxcmp = cmp;
1144 	u32 tmp_raw_cons = *raw_cons;
1145 	u8 cmp_type, agg_bufs = 0;
1146 
1147 	cmp_type = RX_CMP_TYPE(rxcmp);
1148 
1149 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1150 		agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) &
1151 			    RX_CMP_AGG_BUFS) >>
1152 			   RX_CMP_AGG_BUFS_SHIFT;
1153 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1154 		struct rx_tpa_end_cmp *tpa_end = cmp;
1155 
1156 		if (bp->flags & BNXT_FLAG_CHIP_P5)
1157 			return 0;
1158 
1159 		agg_bufs = TPA_END_AGG_BUFS(tpa_end);
1160 	}
1161 
1162 	if (agg_bufs) {
1163 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1164 			return -EBUSY;
1165 	}
1166 	*raw_cons = tmp_raw_cons;
1167 	return 0;
1168 }
1169 
1170 static void bnxt_queue_fw_reset_work(struct bnxt *bp, unsigned long delay)
1171 {
1172 	if (!(test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)))
1173 		return;
1174 
1175 	if (BNXT_PF(bp))
1176 		queue_delayed_work(bnxt_pf_wq, &bp->fw_reset_task, delay);
1177 	else
1178 		schedule_delayed_work(&bp->fw_reset_task, delay);
1179 }
1180 
1181 static void bnxt_queue_sp_work(struct bnxt *bp)
1182 {
1183 	if (BNXT_PF(bp))
1184 		queue_work(bnxt_pf_wq, &bp->sp_task);
1185 	else
1186 		schedule_work(&bp->sp_task);
1187 }
1188 
1189 static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
1190 {
1191 	if (!rxr->bnapi->in_reset) {
1192 		rxr->bnapi->in_reset = true;
1193 		if (bp->flags & BNXT_FLAG_CHIP_P5)
1194 			set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
1195 		else
1196 			set_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event);
1197 		bnxt_queue_sp_work(bp);
1198 	}
1199 	rxr->rx_next_cons = 0xffff;
1200 }
1201 
1202 static u16 bnxt_alloc_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id)
1203 {
1204 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1205 	u16 idx = agg_id & MAX_TPA_P5_MASK;
1206 
1207 	if (test_bit(idx, map->agg_idx_bmap))
1208 		idx = find_first_zero_bit(map->agg_idx_bmap,
1209 					  BNXT_AGG_IDX_BMAP_SIZE);
1210 	__set_bit(idx, map->agg_idx_bmap);
1211 	map->agg_id_tbl[agg_id] = idx;
1212 	return idx;
1213 }
1214 
1215 static void bnxt_free_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
1216 {
1217 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1218 
1219 	__clear_bit(idx, map->agg_idx_bmap);
1220 }
1221 
1222 static u16 bnxt_lookup_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id)
1223 {
1224 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1225 
1226 	return map->agg_id_tbl[agg_id];
1227 }
1228 
1229 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1230 			   struct rx_tpa_start_cmp *tpa_start,
1231 			   struct rx_tpa_start_cmp_ext *tpa_start1)
1232 {
1233 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
1234 	struct bnxt_tpa_info *tpa_info;
1235 	u16 cons, prod, agg_id;
1236 	struct rx_bd *prod_bd;
1237 	dma_addr_t mapping;
1238 
1239 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
1240 		agg_id = TPA_START_AGG_ID_P5(tpa_start);
1241 		agg_id = bnxt_alloc_agg_idx(rxr, agg_id);
1242 	} else {
1243 		agg_id = TPA_START_AGG_ID(tpa_start);
1244 	}
1245 	cons = tpa_start->rx_tpa_start_cmp_opaque;
1246 	prod = rxr->rx_prod;
1247 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1248 	prod_rx_buf = &rxr->rx_buf_ring[prod];
1249 	tpa_info = &rxr->rx_tpa[agg_id];
1250 
1251 	if (unlikely(cons != rxr->rx_next_cons ||
1252 		     TPA_START_ERROR(tpa_start))) {
1253 		netdev_warn(bp->dev, "TPA cons %x, expected cons %x, error code %x\n",
1254 			    cons, rxr->rx_next_cons,
1255 			    TPA_START_ERROR_CODE(tpa_start1));
1256 		bnxt_sched_reset(bp, rxr);
1257 		return;
1258 	}
1259 	/* Store cfa_code in tpa_info to use in tpa_end
1260 	 * completion processing.
1261 	 */
1262 	tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1);
1263 	prod_rx_buf->data = tpa_info->data;
1264 	prod_rx_buf->data_ptr = tpa_info->data_ptr;
1265 
1266 	mapping = tpa_info->mapping;
1267 	prod_rx_buf->mapping = mapping;
1268 
1269 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
1270 
1271 	prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
1272 
1273 	tpa_info->data = cons_rx_buf->data;
1274 	tpa_info->data_ptr = cons_rx_buf->data_ptr;
1275 	cons_rx_buf->data = NULL;
1276 	tpa_info->mapping = cons_rx_buf->mapping;
1277 
1278 	tpa_info->len =
1279 		le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
1280 				RX_TPA_START_CMP_LEN_SHIFT;
1281 	if (likely(TPA_START_HASH_VALID(tpa_start))) {
1282 		u32 hash_type = TPA_START_HASH_TYPE(tpa_start);
1283 
1284 		tpa_info->hash_type = PKT_HASH_TYPE_L4;
1285 		tpa_info->gso_type = SKB_GSO_TCPV4;
1286 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1287 		if (hash_type == 3 || TPA_START_IS_IPV6(tpa_start1))
1288 			tpa_info->gso_type = SKB_GSO_TCPV6;
1289 		tpa_info->rss_hash =
1290 			le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
1291 	} else {
1292 		tpa_info->hash_type = PKT_HASH_TYPE_NONE;
1293 		tpa_info->gso_type = 0;
1294 		netif_warn(bp, rx_err, bp->dev, "TPA packet without valid hash\n");
1295 	}
1296 	tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
1297 	tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
1298 	tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info);
1299 	tpa_info->agg_count = 0;
1300 
1301 	rxr->rx_prod = NEXT_RX(prod);
1302 	cons = NEXT_RX(cons);
1303 	rxr->rx_next_cons = NEXT_RX(cons);
1304 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1305 
1306 	bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
1307 	rxr->rx_prod = NEXT_RX(rxr->rx_prod);
1308 	cons_rx_buf->data = NULL;
1309 }
1310 
1311 static void bnxt_abort_tpa(struct bnxt_cp_ring_info *cpr, u16 idx, u32 agg_bufs)
1312 {
1313 	if (agg_bufs)
1314 		bnxt_reuse_rx_agg_bufs(cpr, idx, 0, agg_bufs, true);
1315 }
1316 
1317 #ifdef CONFIG_INET
1318 static void bnxt_gro_tunnel(struct sk_buff *skb, __be16 ip_proto)
1319 {
1320 	struct udphdr *uh = NULL;
1321 
1322 	if (ip_proto == htons(ETH_P_IP)) {
1323 		struct iphdr *iph = (struct iphdr *)skb->data;
1324 
1325 		if (iph->protocol == IPPROTO_UDP)
1326 			uh = (struct udphdr *)(iph + 1);
1327 	} else {
1328 		struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1329 
1330 		if (iph->nexthdr == IPPROTO_UDP)
1331 			uh = (struct udphdr *)(iph + 1);
1332 	}
1333 	if (uh) {
1334 		if (uh->check)
1335 			skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL_CSUM;
1336 		else
1337 			skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1338 	}
1339 }
1340 #endif
1341 
1342 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info,
1343 					   int payload_off, int tcp_ts,
1344 					   struct sk_buff *skb)
1345 {
1346 #ifdef CONFIG_INET
1347 	struct tcphdr *th;
1348 	int len, nw_off;
1349 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1350 	u32 hdr_info = tpa_info->hdr_info;
1351 	bool loopback = false;
1352 
1353 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1354 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1355 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1356 
1357 	/* If the packet is an internal loopback packet, the offsets will
1358 	 * have an extra 4 bytes.
1359 	 */
1360 	if (inner_mac_off == 4) {
1361 		loopback = true;
1362 	} else if (inner_mac_off > 4) {
1363 		__be16 proto = *((__be16 *)(skb->data + inner_ip_off -
1364 					    ETH_HLEN - 2));
1365 
1366 		/* We only support inner iPv4/ipv6.  If we don't see the
1367 		 * correct protocol ID, it must be a loopback packet where
1368 		 * the offsets are off by 4.
1369 		 */
1370 		if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6))
1371 			loopback = true;
1372 	}
1373 	if (loopback) {
1374 		/* internal loopback packet, subtract all offsets by 4 */
1375 		inner_ip_off -= 4;
1376 		inner_mac_off -= 4;
1377 		outer_ip_off -= 4;
1378 	}
1379 
1380 	nw_off = inner_ip_off - ETH_HLEN;
1381 	skb_set_network_header(skb, nw_off);
1382 	if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) {
1383 		struct ipv6hdr *iph = ipv6_hdr(skb);
1384 
1385 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1386 		len = skb->len - skb_transport_offset(skb);
1387 		th = tcp_hdr(skb);
1388 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1389 	} else {
1390 		struct iphdr *iph = ip_hdr(skb);
1391 
1392 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1393 		len = skb->len - skb_transport_offset(skb);
1394 		th = tcp_hdr(skb);
1395 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1396 	}
1397 
1398 	if (inner_mac_off) { /* tunnel */
1399 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1400 					    ETH_HLEN - 2));
1401 
1402 		bnxt_gro_tunnel(skb, proto);
1403 	}
1404 #endif
1405 	return skb;
1406 }
1407 
1408 static struct sk_buff *bnxt_gro_func_5750x(struct bnxt_tpa_info *tpa_info,
1409 					   int payload_off, int tcp_ts,
1410 					   struct sk_buff *skb)
1411 {
1412 #ifdef CONFIG_INET
1413 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1414 	u32 hdr_info = tpa_info->hdr_info;
1415 	int iphdr_len, nw_off;
1416 
1417 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1418 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1419 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1420 
1421 	nw_off = inner_ip_off - ETH_HLEN;
1422 	skb_set_network_header(skb, nw_off);
1423 	iphdr_len = (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) ?
1424 		     sizeof(struct ipv6hdr) : sizeof(struct iphdr);
1425 	skb_set_transport_header(skb, nw_off + iphdr_len);
1426 
1427 	if (inner_mac_off) { /* tunnel */
1428 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1429 					    ETH_HLEN - 2));
1430 
1431 		bnxt_gro_tunnel(skb, proto);
1432 	}
1433 #endif
1434 	return skb;
1435 }
1436 
1437 #define BNXT_IPV4_HDR_SIZE	(sizeof(struct iphdr) + sizeof(struct tcphdr))
1438 #define BNXT_IPV6_HDR_SIZE	(sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
1439 
1440 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info,
1441 					   int payload_off, int tcp_ts,
1442 					   struct sk_buff *skb)
1443 {
1444 #ifdef CONFIG_INET
1445 	struct tcphdr *th;
1446 	int len, nw_off, tcp_opt_len = 0;
1447 
1448 	if (tcp_ts)
1449 		tcp_opt_len = 12;
1450 
1451 	if (tpa_info->gso_type == SKB_GSO_TCPV4) {
1452 		struct iphdr *iph;
1453 
1454 		nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
1455 			 ETH_HLEN;
1456 		skb_set_network_header(skb, nw_off);
1457 		iph = ip_hdr(skb);
1458 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1459 		len = skb->len - skb_transport_offset(skb);
1460 		th = tcp_hdr(skb);
1461 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1462 	} else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
1463 		struct ipv6hdr *iph;
1464 
1465 		nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
1466 			 ETH_HLEN;
1467 		skb_set_network_header(skb, nw_off);
1468 		iph = ipv6_hdr(skb);
1469 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1470 		len = skb->len - skb_transport_offset(skb);
1471 		th = tcp_hdr(skb);
1472 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1473 	} else {
1474 		dev_kfree_skb_any(skb);
1475 		return NULL;
1476 	}
1477 
1478 	if (nw_off) /* tunnel */
1479 		bnxt_gro_tunnel(skb, skb->protocol);
1480 #endif
1481 	return skb;
1482 }
1483 
1484 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp,
1485 					   struct bnxt_tpa_info *tpa_info,
1486 					   struct rx_tpa_end_cmp *tpa_end,
1487 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1488 					   struct sk_buff *skb)
1489 {
1490 #ifdef CONFIG_INET
1491 	int payload_off;
1492 	u16 segs;
1493 
1494 	segs = TPA_END_TPA_SEGS(tpa_end);
1495 	if (segs == 1)
1496 		return skb;
1497 
1498 	NAPI_GRO_CB(skb)->count = segs;
1499 	skb_shinfo(skb)->gso_size =
1500 		le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
1501 	skb_shinfo(skb)->gso_type = tpa_info->gso_type;
1502 	if (bp->flags & BNXT_FLAG_CHIP_P5)
1503 		payload_off = TPA_END_PAYLOAD_OFF_P5(tpa_end1);
1504 	else
1505 		payload_off = TPA_END_PAYLOAD_OFF(tpa_end);
1506 	skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb);
1507 	if (likely(skb))
1508 		tcp_gro_complete(skb);
1509 #endif
1510 	return skb;
1511 }
1512 
1513 /* Given the cfa_code of a received packet determine which
1514  * netdev (vf-rep or PF) the packet is destined to.
1515  */
1516 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code)
1517 {
1518 	struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code);
1519 
1520 	/* if vf-rep dev is NULL, the must belongs to the PF */
1521 	return dev ? dev : bp->dev;
1522 }
1523 
1524 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
1525 					   struct bnxt_cp_ring_info *cpr,
1526 					   u32 *raw_cons,
1527 					   struct rx_tpa_end_cmp *tpa_end,
1528 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1529 					   u8 *event)
1530 {
1531 	struct bnxt_napi *bnapi = cpr->bnapi;
1532 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1533 	u8 *data_ptr, agg_bufs;
1534 	unsigned int len;
1535 	struct bnxt_tpa_info *tpa_info;
1536 	dma_addr_t mapping;
1537 	struct sk_buff *skb;
1538 	u16 idx = 0, agg_id;
1539 	void *data;
1540 	bool gro;
1541 
1542 	if (unlikely(bnapi->in_reset)) {
1543 		int rc = bnxt_discard_rx(bp, cpr, raw_cons, tpa_end);
1544 
1545 		if (rc < 0)
1546 			return ERR_PTR(-EBUSY);
1547 		return NULL;
1548 	}
1549 
1550 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
1551 		agg_id = TPA_END_AGG_ID_P5(tpa_end);
1552 		agg_id = bnxt_lookup_agg_idx(rxr, agg_id);
1553 		agg_bufs = TPA_END_AGG_BUFS_P5(tpa_end1);
1554 		tpa_info = &rxr->rx_tpa[agg_id];
1555 		if (unlikely(agg_bufs != tpa_info->agg_count)) {
1556 			netdev_warn(bp->dev, "TPA end agg_buf %d != expected agg_bufs %d\n",
1557 				    agg_bufs, tpa_info->agg_count);
1558 			agg_bufs = tpa_info->agg_count;
1559 		}
1560 		tpa_info->agg_count = 0;
1561 		*event |= BNXT_AGG_EVENT;
1562 		bnxt_free_agg_idx(rxr, agg_id);
1563 		idx = agg_id;
1564 		gro = !!(bp->flags & BNXT_FLAG_GRO);
1565 	} else {
1566 		agg_id = TPA_END_AGG_ID(tpa_end);
1567 		agg_bufs = TPA_END_AGG_BUFS(tpa_end);
1568 		tpa_info = &rxr->rx_tpa[agg_id];
1569 		idx = RING_CMP(*raw_cons);
1570 		if (agg_bufs) {
1571 			if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
1572 				return ERR_PTR(-EBUSY);
1573 
1574 			*event |= BNXT_AGG_EVENT;
1575 			idx = NEXT_CMP(idx);
1576 		}
1577 		gro = !!TPA_END_GRO(tpa_end);
1578 	}
1579 	data = tpa_info->data;
1580 	data_ptr = tpa_info->data_ptr;
1581 	prefetch(data_ptr);
1582 	len = tpa_info->len;
1583 	mapping = tpa_info->mapping;
1584 
1585 	if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) {
1586 		bnxt_abort_tpa(cpr, idx, agg_bufs);
1587 		if (agg_bufs > MAX_SKB_FRAGS)
1588 			netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
1589 				    agg_bufs, (int)MAX_SKB_FRAGS);
1590 		return NULL;
1591 	}
1592 
1593 	if (len <= bp->rx_copy_thresh) {
1594 		skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping);
1595 		if (!skb) {
1596 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1597 			return NULL;
1598 		}
1599 	} else {
1600 		u8 *new_data;
1601 		dma_addr_t new_mapping;
1602 
1603 		new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC);
1604 		if (!new_data) {
1605 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1606 			return NULL;
1607 		}
1608 
1609 		tpa_info->data = new_data;
1610 		tpa_info->data_ptr = new_data + bp->rx_offset;
1611 		tpa_info->mapping = new_mapping;
1612 
1613 		skb = build_skb(data, 0);
1614 		dma_unmap_single_attrs(&bp->pdev->dev, mapping,
1615 				       bp->rx_buf_use_size, bp->rx_dir,
1616 				       DMA_ATTR_WEAK_ORDERING);
1617 
1618 		if (!skb) {
1619 			kfree(data);
1620 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1621 			return NULL;
1622 		}
1623 		skb_reserve(skb, bp->rx_offset);
1624 		skb_put(skb, len);
1625 	}
1626 
1627 	if (agg_bufs) {
1628 		skb = bnxt_rx_pages(bp, cpr, skb, idx, agg_bufs, true);
1629 		if (!skb) {
1630 			/* Page reuse already handled by bnxt_rx_pages(). */
1631 			return NULL;
1632 		}
1633 	}
1634 
1635 	skb->protocol =
1636 		eth_type_trans(skb, bnxt_get_pkt_dev(bp, tpa_info->cfa_code));
1637 
1638 	if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1639 		skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1640 
1641 	if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) &&
1642 	    (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) {
1643 		u16 vlan_proto = tpa_info->metadata >>
1644 			RX_CMP_FLAGS2_METADATA_TPID_SFT;
1645 		u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1646 
1647 		__vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1648 	}
1649 
1650 	skb_checksum_none_assert(skb);
1651 	if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1652 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1653 		skb->csum_level =
1654 			(tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1655 	}
1656 
1657 	if (gro)
1658 		skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb);
1659 
1660 	return skb;
1661 }
1662 
1663 static void bnxt_tpa_agg(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1664 			 struct rx_agg_cmp *rx_agg)
1665 {
1666 	u16 agg_id = TPA_AGG_AGG_ID(rx_agg);
1667 	struct bnxt_tpa_info *tpa_info;
1668 
1669 	agg_id = bnxt_lookup_agg_idx(rxr, agg_id);
1670 	tpa_info = &rxr->rx_tpa[agg_id];
1671 	BUG_ON(tpa_info->agg_count >= MAX_SKB_FRAGS);
1672 	tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg;
1673 }
1674 
1675 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi,
1676 			     struct sk_buff *skb)
1677 {
1678 	if (skb->dev != bp->dev) {
1679 		/* this packet belongs to a vf-rep */
1680 		bnxt_vf_rep_rx(bp, skb);
1681 		return;
1682 	}
1683 	skb_record_rx_queue(skb, bnapi->index);
1684 	napi_gro_receive(&bnapi->napi, skb);
1685 }
1686 
1687 /* returns the following:
1688  * 1       - 1 packet successfully received
1689  * 0       - successful TPA_START, packet not completed yet
1690  * -EBUSY  - completion ring does not have all the agg buffers yet
1691  * -ENOMEM - packet aborted due to out of memory
1692  * -EIO    - packet aborted due to hw error indicated in BD
1693  */
1694 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1695 		       u32 *raw_cons, u8 *event)
1696 {
1697 	struct bnxt_napi *bnapi = cpr->bnapi;
1698 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1699 	struct net_device *dev = bp->dev;
1700 	struct rx_cmp *rxcmp;
1701 	struct rx_cmp_ext *rxcmp1;
1702 	u32 tmp_raw_cons = *raw_cons;
1703 	u16 cfa_code, cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
1704 	struct bnxt_sw_rx_bd *rx_buf;
1705 	unsigned int len;
1706 	u8 *data_ptr, agg_bufs, cmp_type;
1707 	dma_addr_t dma_addr;
1708 	struct sk_buff *skb;
1709 	void *data;
1710 	int rc = 0;
1711 	u32 misc;
1712 
1713 	rxcmp = (struct rx_cmp *)
1714 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1715 
1716 	cmp_type = RX_CMP_TYPE(rxcmp);
1717 
1718 	if (cmp_type == CMP_TYPE_RX_TPA_AGG_CMP) {
1719 		bnxt_tpa_agg(bp, rxr, (struct rx_agg_cmp *)rxcmp);
1720 		goto next_rx_no_prod_no_len;
1721 	}
1722 
1723 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1724 	cp_cons = RING_CMP(tmp_raw_cons);
1725 	rxcmp1 = (struct rx_cmp_ext *)
1726 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1727 
1728 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1729 		return -EBUSY;
1730 
1731 	prod = rxr->rx_prod;
1732 
1733 	if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) {
1734 		bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp,
1735 			       (struct rx_tpa_start_cmp_ext *)rxcmp1);
1736 
1737 		*event |= BNXT_RX_EVENT;
1738 		goto next_rx_no_prod_no_len;
1739 
1740 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1741 		skb = bnxt_tpa_end(bp, cpr, &tmp_raw_cons,
1742 				   (struct rx_tpa_end_cmp *)rxcmp,
1743 				   (struct rx_tpa_end_cmp_ext *)rxcmp1, event);
1744 
1745 		if (IS_ERR(skb))
1746 			return -EBUSY;
1747 
1748 		rc = -ENOMEM;
1749 		if (likely(skb)) {
1750 			bnxt_deliver_skb(bp, bnapi, skb);
1751 			rc = 1;
1752 		}
1753 		*event |= BNXT_RX_EVENT;
1754 		goto next_rx_no_prod_no_len;
1755 	}
1756 
1757 	cons = rxcmp->rx_cmp_opaque;
1758 	if (unlikely(cons != rxr->rx_next_cons)) {
1759 		int rc1 = bnxt_discard_rx(bp, cpr, &tmp_raw_cons, rxcmp);
1760 
1761 		/* 0xffff is forced error, don't print it */
1762 		if (rxr->rx_next_cons != 0xffff)
1763 			netdev_warn(bp->dev, "RX cons %x != expected cons %x\n",
1764 				    cons, rxr->rx_next_cons);
1765 		bnxt_sched_reset(bp, rxr);
1766 		if (rc1)
1767 			return rc1;
1768 		goto next_rx_no_prod_no_len;
1769 	}
1770 	rx_buf = &rxr->rx_buf_ring[cons];
1771 	data = rx_buf->data;
1772 	data_ptr = rx_buf->data_ptr;
1773 	prefetch(data_ptr);
1774 
1775 	misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1);
1776 	agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT;
1777 
1778 	if (agg_bufs) {
1779 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1780 			return -EBUSY;
1781 
1782 		cp_cons = NEXT_CMP(cp_cons);
1783 		*event |= BNXT_AGG_EVENT;
1784 	}
1785 	*event |= BNXT_RX_EVENT;
1786 
1787 	rx_buf->data = NULL;
1788 	if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
1789 		u32 rx_err = le32_to_cpu(rxcmp1->rx_cmp_cfa_code_errors_v2);
1790 
1791 		bnxt_reuse_rx_data(rxr, cons, data);
1792 		if (agg_bufs)
1793 			bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, agg_bufs,
1794 					       false);
1795 
1796 		rc = -EIO;
1797 		if (rx_err & RX_CMPL_ERRORS_BUFFER_ERROR_MASK) {
1798 			bnapi->cp_ring.sw_stats.rx.rx_buf_errors++;
1799 			if (!(bp->flags & BNXT_FLAG_CHIP_P5) &&
1800 			    !(bp->fw_cap & BNXT_FW_CAP_RING_MONITOR)) {
1801 				netdev_warn_once(bp->dev, "RX buffer error %x\n",
1802 						 rx_err);
1803 				bnxt_sched_reset(bp, rxr);
1804 			}
1805 		}
1806 		goto next_rx_no_len;
1807 	}
1808 
1809 	len = le32_to_cpu(rxcmp->rx_cmp_len_flags_type) >> RX_CMP_LEN_SHIFT;
1810 	dma_addr = rx_buf->mapping;
1811 
1812 	if (bnxt_rx_xdp(bp, rxr, cons, data, &data_ptr, &len, event)) {
1813 		rc = 1;
1814 		goto next_rx;
1815 	}
1816 
1817 	if (len <= bp->rx_copy_thresh) {
1818 		skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr);
1819 		bnxt_reuse_rx_data(rxr, cons, data);
1820 		if (!skb) {
1821 			if (agg_bufs)
1822 				bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0,
1823 						       agg_bufs, false);
1824 			rc = -ENOMEM;
1825 			goto next_rx;
1826 		}
1827 	} else {
1828 		u32 payload;
1829 
1830 		if (rx_buf->data_ptr == data_ptr)
1831 			payload = misc & RX_CMP_PAYLOAD_OFFSET;
1832 		else
1833 			payload = 0;
1834 		skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr,
1835 				      payload | len);
1836 		if (!skb) {
1837 			rc = -ENOMEM;
1838 			goto next_rx;
1839 		}
1840 	}
1841 
1842 	if (agg_bufs) {
1843 		skb = bnxt_rx_pages(bp, cpr, skb, cp_cons, agg_bufs, false);
1844 		if (!skb) {
1845 			rc = -ENOMEM;
1846 			goto next_rx;
1847 		}
1848 	}
1849 
1850 	if (RX_CMP_HASH_VALID(rxcmp)) {
1851 		u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
1852 		enum pkt_hash_types type = PKT_HASH_TYPE_L4;
1853 
1854 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1855 		if (hash_type != 1 && hash_type != 3)
1856 			type = PKT_HASH_TYPE_L3;
1857 		skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
1858 	}
1859 
1860 	cfa_code = RX_CMP_CFA_CODE(rxcmp1);
1861 	skb->protocol = eth_type_trans(skb, bnxt_get_pkt_dev(bp, cfa_code));
1862 
1863 	if ((rxcmp1->rx_cmp_flags2 &
1864 	     cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) &&
1865 	    (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) {
1866 		u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
1867 		u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1868 		u16 vlan_proto = meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT;
1869 
1870 		__vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1871 	}
1872 
1873 	skb_checksum_none_assert(skb);
1874 	if (RX_CMP_L4_CS_OK(rxcmp1)) {
1875 		if (dev->features & NETIF_F_RXCSUM) {
1876 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1877 			skb->csum_level = RX_CMP_ENCAP(rxcmp1);
1878 		}
1879 	} else {
1880 		if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
1881 			if (dev->features & NETIF_F_RXCSUM)
1882 				bnapi->cp_ring.sw_stats.rx.rx_l4_csum_errors++;
1883 		}
1884 	}
1885 
1886 	bnxt_deliver_skb(bp, bnapi, skb);
1887 	rc = 1;
1888 
1889 next_rx:
1890 	cpr->rx_packets += 1;
1891 	cpr->rx_bytes += len;
1892 
1893 next_rx_no_len:
1894 	rxr->rx_prod = NEXT_RX(prod);
1895 	rxr->rx_next_cons = NEXT_RX(cons);
1896 
1897 next_rx_no_prod_no_len:
1898 	*raw_cons = tmp_raw_cons;
1899 
1900 	return rc;
1901 }
1902 
1903 /* In netpoll mode, if we are using a combined completion ring, we need to
1904  * discard the rx packets and recycle the buffers.
1905  */
1906 static int bnxt_force_rx_discard(struct bnxt *bp,
1907 				 struct bnxt_cp_ring_info *cpr,
1908 				 u32 *raw_cons, u8 *event)
1909 {
1910 	u32 tmp_raw_cons = *raw_cons;
1911 	struct rx_cmp_ext *rxcmp1;
1912 	struct rx_cmp *rxcmp;
1913 	u16 cp_cons;
1914 	u8 cmp_type;
1915 
1916 	cp_cons = RING_CMP(tmp_raw_cons);
1917 	rxcmp = (struct rx_cmp *)
1918 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1919 
1920 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1921 	cp_cons = RING_CMP(tmp_raw_cons);
1922 	rxcmp1 = (struct rx_cmp_ext *)
1923 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1924 
1925 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1926 		return -EBUSY;
1927 
1928 	cmp_type = RX_CMP_TYPE(rxcmp);
1929 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1930 		rxcmp1->rx_cmp_cfa_code_errors_v2 |=
1931 			cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
1932 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1933 		struct rx_tpa_end_cmp_ext *tpa_end1;
1934 
1935 		tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1;
1936 		tpa_end1->rx_tpa_end_cmp_errors_v2 |=
1937 			cpu_to_le32(RX_TPA_END_CMP_ERRORS);
1938 	}
1939 	return bnxt_rx_pkt(bp, cpr, raw_cons, event);
1940 }
1941 
1942 u32 bnxt_fw_health_readl(struct bnxt *bp, int reg_idx)
1943 {
1944 	struct bnxt_fw_health *fw_health = bp->fw_health;
1945 	u32 reg = fw_health->regs[reg_idx];
1946 	u32 reg_type, reg_off, val = 0;
1947 
1948 	reg_type = BNXT_FW_HEALTH_REG_TYPE(reg);
1949 	reg_off = BNXT_FW_HEALTH_REG_OFF(reg);
1950 	switch (reg_type) {
1951 	case BNXT_FW_HEALTH_REG_TYPE_CFG:
1952 		pci_read_config_dword(bp->pdev, reg_off, &val);
1953 		break;
1954 	case BNXT_FW_HEALTH_REG_TYPE_GRC:
1955 		reg_off = fw_health->mapped_regs[reg_idx];
1956 		fallthrough;
1957 	case BNXT_FW_HEALTH_REG_TYPE_BAR0:
1958 		val = readl(bp->bar0 + reg_off);
1959 		break;
1960 	case BNXT_FW_HEALTH_REG_TYPE_BAR1:
1961 		val = readl(bp->bar1 + reg_off);
1962 		break;
1963 	}
1964 	if (reg_idx == BNXT_FW_RESET_INPROG_REG)
1965 		val &= fw_health->fw_reset_inprog_reg_mask;
1966 	return val;
1967 }
1968 
1969 static u16 bnxt_agg_ring_id_to_grp_idx(struct bnxt *bp, u16 ring_id)
1970 {
1971 	int i;
1972 
1973 	for (i = 0; i < bp->rx_nr_rings; i++) {
1974 		u16 grp_idx = bp->rx_ring[i].bnapi->index;
1975 		struct bnxt_ring_grp_info *grp_info;
1976 
1977 		grp_info = &bp->grp_info[grp_idx];
1978 		if (grp_info->agg_fw_ring_id == ring_id)
1979 			return grp_idx;
1980 	}
1981 	return INVALID_HW_RING_ID;
1982 }
1983 
1984 #define BNXT_GET_EVENT_PORT(data)	\
1985 	((data) &			\
1986 	 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK)
1987 
1988 #define BNXT_EVENT_RING_TYPE(data2)	\
1989 	((data2) &			\
1990 	 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_MASK)
1991 
1992 #define BNXT_EVENT_RING_TYPE_RX(data2)	\
1993 	(BNXT_EVENT_RING_TYPE(data2) ==	\
1994 	 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_RX)
1995 
1996 static int bnxt_async_event_process(struct bnxt *bp,
1997 				    struct hwrm_async_event_cmpl *cmpl)
1998 {
1999 	u16 event_id = le16_to_cpu(cmpl->event_id);
2000 	u32 data1 = le32_to_cpu(cmpl->event_data1);
2001 	u32 data2 = le32_to_cpu(cmpl->event_data2);
2002 
2003 	/* TODO CHIMP_FW: Define event id's for link change, error etc */
2004 	switch (event_id) {
2005 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: {
2006 		struct bnxt_link_info *link_info = &bp->link_info;
2007 
2008 		if (BNXT_VF(bp))
2009 			goto async_event_process_exit;
2010 
2011 		/* print unsupported speed warning in forced speed mode only */
2012 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) &&
2013 		    (data1 & 0x20000)) {
2014 			u16 fw_speed = link_info->force_link_speed;
2015 			u32 speed = bnxt_fw_to_ethtool_speed(fw_speed);
2016 
2017 			if (speed != SPEED_UNKNOWN)
2018 				netdev_warn(bp->dev, "Link speed %d no longer supported\n",
2019 					    speed);
2020 		}
2021 		set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event);
2022 	}
2023 		fallthrough;
2024 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE:
2025 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE:
2026 		set_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, &bp->sp_event);
2027 		fallthrough;
2028 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
2029 		set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
2030 		break;
2031 	case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD:
2032 		set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event);
2033 		break;
2034 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: {
2035 		u16 port_id = BNXT_GET_EVENT_PORT(data1);
2036 
2037 		if (BNXT_VF(bp))
2038 			break;
2039 
2040 		if (bp->pf.port_id != port_id)
2041 			break;
2042 
2043 		set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event);
2044 		break;
2045 	}
2046 	case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE:
2047 		if (BNXT_PF(bp))
2048 			goto async_event_process_exit;
2049 		set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event);
2050 		break;
2051 	case ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY: {
2052 		char *fatal_str = "non-fatal";
2053 
2054 		if (!bp->fw_health)
2055 			goto async_event_process_exit;
2056 
2057 		bp->fw_reset_timestamp = jiffies;
2058 		bp->fw_reset_min_dsecs = cmpl->timestamp_lo;
2059 		if (!bp->fw_reset_min_dsecs)
2060 			bp->fw_reset_min_dsecs = BNXT_DFLT_FW_RST_MIN_DSECS;
2061 		bp->fw_reset_max_dsecs = le16_to_cpu(cmpl->timestamp_hi);
2062 		if (!bp->fw_reset_max_dsecs)
2063 			bp->fw_reset_max_dsecs = BNXT_DFLT_FW_RST_MAX_DSECS;
2064 		if (EVENT_DATA1_RESET_NOTIFY_FATAL(data1)) {
2065 			fatal_str = "fatal";
2066 			set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
2067 		}
2068 		netif_warn(bp, hw, bp->dev,
2069 			   "Firmware %s reset event, data1: 0x%x, data2: 0x%x, min wait %u ms, max wait %u ms\n",
2070 			   fatal_str, data1, data2,
2071 			   bp->fw_reset_min_dsecs * 100,
2072 			   bp->fw_reset_max_dsecs * 100);
2073 		set_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event);
2074 		break;
2075 	}
2076 	case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY: {
2077 		struct bnxt_fw_health *fw_health = bp->fw_health;
2078 
2079 		if (!fw_health)
2080 			goto async_event_process_exit;
2081 
2082 		fw_health->enabled = EVENT_DATA1_RECOVERY_ENABLED(data1);
2083 		fw_health->master = EVENT_DATA1_RECOVERY_MASTER_FUNC(data1);
2084 		if (!fw_health->enabled) {
2085 			netif_info(bp, drv, bp->dev,
2086 				   "Error recovery info: error recovery[0]\n");
2087 			break;
2088 		}
2089 		fw_health->tmr_multiplier =
2090 			DIV_ROUND_UP(fw_health->polling_dsecs * HZ,
2091 				     bp->current_interval * 10);
2092 		fw_health->tmr_counter = fw_health->tmr_multiplier;
2093 		fw_health->last_fw_heartbeat =
2094 			bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
2095 		fw_health->last_fw_reset_cnt =
2096 			bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
2097 		netif_info(bp, drv, bp->dev,
2098 			   "Error recovery info: error recovery[1], master[%d], reset count[%u], health status: 0x%x\n",
2099 			   fw_health->master, fw_health->last_fw_reset_cnt,
2100 			   bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG));
2101 		goto async_event_process_exit;
2102 	}
2103 	case ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION:
2104 		netif_notice(bp, hw, bp->dev,
2105 			     "Received firmware debug notification, data1: 0x%x, data2: 0x%x\n",
2106 			     data1, data2);
2107 		goto async_event_process_exit;
2108 	case ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG: {
2109 		struct bnxt_rx_ring_info *rxr;
2110 		u16 grp_idx;
2111 
2112 		if (bp->flags & BNXT_FLAG_CHIP_P5)
2113 			goto async_event_process_exit;
2114 
2115 		netdev_warn(bp->dev, "Ring monitor event, ring type %lu id 0x%x\n",
2116 			    BNXT_EVENT_RING_TYPE(data2), data1);
2117 		if (!BNXT_EVENT_RING_TYPE_RX(data2))
2118 			goto async_event_process_exit;
2119 
2120 		grp_idx = bnxt_agg_ring_id_to_grp_idx(bp, data1);
2121 		if (grp_idx == INVALID_HW_RING_ID) {
2122 			netdev_warn(bp->dev, "Unknown RX agg ring id 0x%x\n",
2123 				    data1);
2124 			goto async_event_process_exit;
2125 		}
2126 		rxr = bp->bnapi[grp_idx]->rx_ring;
2127 		bnxt_sched_reset(bp, rxr);
2128 		goto async_event_process_exit;
2129 	}
2130 	case ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST: {
2131 		struct bnxt_fw_health *fw_health = bp->fw_health;
2132 
2133 		netif_notice(bp, hw, bp->dev,
2134 			     "Received firmware echo request, data1: 0x%x, data2: 0x%x\n",
2135 			     data1, data2);
2136 		if (fw_health) {
2137 			fw_health->echo_req_data1 = data1;
2138 			fw_health->echo_req_data2 = data2;
2139 			set_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event);
2140 			break;
2141 		}
2142 		goto async_event_process_exit;
2143 	}
2144 	default:
2145 		goto async_event_process_exit;
2146 	}
2147 	bnxt_queue_sp_work(bp);
2148 async_event_process_exit:
2149 	bnxt_ulp_async_events(bp, cmpl);
2150 	return 0;
2151 }
2152 
2153 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
2154 {
2155 	u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
2156 	struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
2157 	struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
2158 				(struct hwrm_fwd_req_cmpl *)txcmp;
2159 
2160 	switch (cmpl_type) {
2161 	case CMPL_BASE_TYPE_HWRM_DONE:
2162 		seq_id = le16_to_cpu(h_cmpl->sequence_id);
2163 		if (seq_id == bp->hwrm_intr_seq_id)
2164 			bp->hwrm_intr_seq_id = (u16)~bp->hwrm_intr_seq_id;
2165 		else
2166 			netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id);
2167 		break;
2168 
2169 	case CMPL_BASE_TYPE_HWRM_FWD_REQ:
2170 		vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
2171 
2172 		if ((vf_id < bp->pf.first_vf_id) ||
2173 		    (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
2174 			netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
2175 				   vf_id);
2176 			return -EINVAL;
2177 		}
2178 
2179 		set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
2180 		set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event);
2181 		bnxt_queue_sp_work(bp);
2182 		break;
2183 
2184 	case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
2185 		bnxt_async_event_process(bp,
2186 					 (struct hwrm_async_event_cmpl *)txcmp);
2187 
2188 	default:
2189 		break;
2190 	}
2191 
2192 	return 0;
2193 }
2194 
2195 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
2196 {
2197 	struct bnxt_napi *bnapi = dev_instance;
2198 	struct bnxt *bp = bnapi->bp;
2199 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2200 	u32 cons = RING_CMP(cpr->cp_raw_cons);
2201 
2202 	cpr->event_ctr++;
2203 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
2204 	napi_schedule(&bnapi->napi);
2205 	return IRQ_HANDLED;
2206 }
2207 
2208 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
2209 {
2210 	u32 raw_cons = cpr->cp_raw_cons;
2211 	u16 cons = RING_CMP(raw_cons);
2212 	struct tx_cmp *txcmp;
2213 
2214 	txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2215 
2216 	return TX_CMP_VALID(txcmp, raw_cons);
2217 }
2218 
2219 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
2220 {
2221 	struct bnxt_napi *bnapi = dev_instance;
2222 	struct bnxt *bp = bnapi->bp;
2223 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2224 	u32 cons = RING_CMP(cpr->cp_raw_cons);
2225 	u32 int_status;
2226 
2227 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
2228 
2229 	if (!bnxt_has_work(bp, cpr)) {
2230 		int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
2231 		/* return if erroneous interrupt */
2232 		if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
2233 			return IRQ_NONE;
2234 	}
2235 
2236 	/* disable ring IRQ */
2237 	BNXT_CP_DB_IRQ_DIS(cpr->cp_db.doorbell);
2238 
2239 	/* Return here if interrupt is shared and is disabled. */
2240 	if (unlikely(atomic_read(&bp->intr_sem) != 0))
2241 		return IRQ_HANDLED;
2242 
2243 	napi_schedule(&bnapi->napi);
2244 	return IRQ_HANDLED;
2245 }
2246 
2247 static int __bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2248 			    int budget)
2249 {
2250 	struct bnxt_napi *bnapi = cpr->bnapi;
2251 	u32 raw_cons = cpr->cp_raw_cons;
2252 	u32 cons;
2253 	int tx_pkts = 0;
2254 	int rx_pkts = 0;
2255 	u8 event = 0;
2256 	struct tx_cmp *txcmp;
2257 
2258 	cpr->has_more_work = 0;
2259 	cpr->had_work_done = 1;
2260 	while (1) {
2261 		int rc;
2262 
2263 		cons = RING_CMP(raw_cons);
2264 		txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2265 
2266 		if (!TX_CMP_VALID(txcmp, raw_cons))
2267 			break;
2268 
2269 		/* The valid test of the entry must be done first before
2270 		 * reading any further.
2271 		 */
2272 		dma_rmb();
2273 		if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) {
2274 			tx_pkts++;
2275 			/* return full budget so NAPI will complete. */
2276 			if (unlikely(tx_pkts > bp->tx_wake_thresh)) {
2277 				rx_pkts = budget;
2278 				raw_cons = NEXT_RAW_CMP(raw_cons);
2279 				if (budget)
2280 					cpr->has_more_work = 1;
2281 				break;
2282 			}
2283 		} else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
2284 			if (likely(budget))
2285 				rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
2286 			else
2287 				rc = bnxt_force_rx_discard(bp, cpr, &raw_cons,
2288 							   &event);
2289 			if (likely(rc >= 0))
2290 				rx_pkts += rc;
2291 			/* Increment rx_pkts when rc is -ENOMEM to count towards
2292 			 * the NAPI budget.  Otherwise, we may potentially loop
2293 			 * here forever if we consistently cannot allocate
2294 			 * buffers.
2295 			 */
2296 			else if (rc == -ENOMEM && budget)
2297 				rx_pkts++;
2298 			else if (rc == -EBUSY)	/* partial completion */
2299 				break;
2300 		} else if (unlikely((TX_CMP_TYPE(txcmp) ==
2301 				     CMPL_BASE_TYPE_HWRM_DONE) ||
2302 				    (TX_CMP_TYPE(txcmp) ==
2303 				     CMPL_BASE_TYPE_HWRM_FWD_REQ) ||
2304 				    (TX_CMP_TYPE(txcmp) ==
2305 				     CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) {
2306 			bnxt_hwrm_handler(bp, txcmp);
2307 		}
2308 		raw_cons = NEXT_RAW_CMP(raw_cons);
2309 
2310 		if (rx_pkts && rx_pkts == budget) {
2311 			cpr->has_more_work = 1;
2312 			break;
2313 		}
2314 	}
2315 
2316 	if (event & BNXT_REDIRECT_EVENT)
2317 		xdp_do_flush_map();
2318 
2319 	if (event & BNXT_TX_EVENT) {
2320 		struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
2321 		u16 prod = txr->tx_prod;
2322 
2323 		/* Sync BD data before updating doorbell */
2324 		wmb();
2325 
2326 		bnxt_db_write_relaxed(bp, &txr->tx_db, prod);
2327 	}
2328 
2329 	cpr->cp_raw_cons = raw_cons;
2330 	bnapi->tx_pkts += tx_pkts;
2331 	bnapi->events |= event;
2332 	return rx_pkts;
2333 }
2334 
2335 static void __bnxt_poll_work_done(struct bnxt *bp, struct bnxt_napi *bnapi)
2336 {
2337 	if (bnapi->tx_pkts) {
2338 		bnapi->tx_int(bp, bnapi, bnapi->tx_pkts);
2339 		bnapi->tx_pkts = 0;
2340 	}
2341 
2342 	if ((bnapi->events & BNXT_RX_EVENT) && !(bnapi->in_reset)) {
2343 		struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2344 
2345 		if (bnapi->events & BNXT_AGG_EVENT)
2346 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
2347 		bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
2348 	}
2349 	bnapi->events = 0;
2350 }
2351 
2352 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2353 			  int budget)
2354 {
2355 	struct bnxt_napi *bnapi = cpr->bnapi;
2356 	int rx_pkts;
2357 
2358 	rx_pkts = __bnxt_poll_work(bp, cpr, budget);
2359 
2360 	/* ACK completion ring before freeing tx ring and producing new
2361 	 * buffers in rx/agg rings to prevent overflowing the completion
2362 	 * ring.
2363 	 */
2364 	bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons);
2365 
2366 	__bnxt_poll_work_done(bp, bnapi);
2367 	return rx_pkts;
2368 }
2369 
2370 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget)
2371 {
2372 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2373 	struct bnxt *bp = bnapi->bp;
2374 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2375 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2376 	struct tx_cmp *txcmp;
2377 	struct rx_cmp_ext *rxcmp1;
2378 	u32 cp_cons, tmp_raw_cons;
2379 	u32 raw_cons = cpr->cp_raw_cons;
2380 	u32 rx_pkts = 0;
2381 	u8 event = 0;
2382 
2383 	while (1) {
2384 		int rc;
2385 
2386 		cp_cons = RING_CMP(raw_cons);
2387 		txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2388 
2389 		if (!TX_CMP_VALID(txcmp, raw_cons))
2390 			break;
2391 
2392 		if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
2393 			tmp_raw_cons = NEXT_RAW_CMP(raw_cons);
2394 			cp_cons = RING_CMP(tmp_raw_cons);
2395 			rxcmp1 = (struct rx_cmp_ext *)
2396 			  &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2397 
2398 			if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
2399 				break;
2400 
2401 			/* force an error to recycle the buffer */
2402 			rxcmp1->rx_cmp_cfa_code_errors_v2 |=
2403 				cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
2404 
2405 			rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
2406 			if (likely(rc == -EIO) && budget)
2407 				rx_pkts++;
2408 			else if (rc == -EBUSY)	/* partial completion */
2409 				break;
2410 		} else if (unlikely(TX_CMP_TYPE(txcmp) ==
2411 				    CMPL_BASE_TYPE_HWRM_DONE)) {
2412 			bnxt_hwrm_handler(bp, txcmp);
2413 		} else {
2414 			netdev_err(bp->dev,
2415 				   "Invalid completion received on special ring\n");
2416 		}
2417 		raw_cons = NEXT_RAW_CMP(raw_cons);
2418 
2419 		if (rx_pkts == budget)
2420 			break;
2421 	}
2422 
2423 	cpr->cp_raw_cons = raw_cons;
2424 	BNXT_DB_CQ(&cpr->cp_db, cpr->cp_raw_cons);
2425 	bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
2426 
2427 	if (event & BNXT_AGG_EVENT)
2428 		bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
2429 
2430 	if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) {
2431 		napi_complete_done(napi, rx_pkts);
2432 		BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2433 	}
2434 	return rx_pkts;
2435 }
2436 
2437 static int bnxt_poll(struct napi_struct *napi, int budget)
2438 {
2439 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2440 	struct bnxt *bp = bnapi->bp;
2441 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2442 	int work_done = 0;
2443 
2444 	if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) {
2445 		napi_complete(napi);
2446 		return 0;
2447 	}
2448 	while (1) {
2449 		work_done += bnxt_poll_work(bp, cpr, budget - work_done);
2450 
2451 		if (work_done >= budget) {
2452 			if (!budget)
2453 				BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2454 			break;
2455 		}
2456 
2457 		if (!bnxt_has_work(bp, cpr)) {
2458 			if (napi_complete_done(napi, work_done))
2459 				BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2460 			break;
2461 		}
2462 	}
2463 	if (bp->flags & BNXT_FLAG_DIM) {
2464 		struct dim_sample dim_sample = {};
2465 
2466 		dim_update_sample(cpr->event_ctr,
2467 				  cpr->rx_packets,
2468 				  cpr->rx_bytes,
2469 				  &dim_sample);
2470 		net_dim(&cpr->dim, dim_sample);
2471 	}
2472 	return work_done;
2473 }
2474 
2475 static int __bnxt_poll_cqs(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
2476 {
2477 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2478 	int i, work_done = 0;
2479 
2480 	for (i = 0; i < 2; i++) {
2481 		struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i];
2482 
2483 		if (cpr2) {
2484 			work_done += __bnxt_poll_work(bp, cpr2,
2485 						      budget - work_done);
2486 			cpr->has_more_work |= cpr2->has_more_work;
2487 		}
2488 	}
2489 	return work_done;
2490 }
2491 
2492 static void __bnxt_poll_cqs_done(struct bnxt *bp, struct bnxt_napi *bnapi,
2493 				 u64 dbr_type)
2494 {
2495 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2496 	int i;
2497 
2498 	for (i = 0; i < 2; i++) {
2499 		struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i];
2500 		struct bnxt_db_info *db;
2501 
2502 		if (cpr2 && cpr2->had_work_done) {
2503 			db = &cpr2->cp_db;
2504 			writeq(db->db_key64 | dbr_type |
2505 			       RING_CMP(cpr2->cp_raw_cons), db->doorbell);
2506 			cpr2->had_work_done = 0;
2507 		}
2508 	}
2509 	__bnxt_poll_work_done(bp, bnapi);
2510 }
2511 
2512 static int bnxt_poll_p5(struct napi_struct *napi, int budget)
2513 {
2514 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2515 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2516 	u32 raw_cons = cpr->cp_raw_cons;
2517 	struct bnxt *bp = bnapi->bp;
2518 	struct nqe_cn *nqcmp;
2519 	int work_done = 0;
2520 	u32 cons;
2521 
2522 	if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) {
2523 		napi_complete(napi);
2524 		return 0;
2525 	}
2526 	if (cpr->has_more_work) {
2527 		cpr->has_more_work = 0;
2528 		work_done = __bnxt_poll_cqs(bp, bnapi, budget);
2529 	}
2530 	while (1) {
2531 		cons = RING_CMP(raw_cons);
2532 		nqcmp = &cpr->nq_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2533 
2534 		if (!NQ_CMP_VALID(nqcmp, raw_cons)) {
2535 			if (cpr->has_more_work)
2536 				break;
2537 
2538 			__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL);
2539 			cpr->cp_raw_cons = raw_cons;
2540 			if (napi_complete_done(napi, work_done))
2541 				BNXT_DB_NQ_ARM_P5(&cpr->cp_db,
2542 						  cpr->cp_raw_cons);
2543 			return work_done;
2544 		}
2545 
2546 		/* The valid test of the entry must be done first before
2547 		 * reading any further.
2548 		 */
2549 		dma_rmb();
2550 
2551 		if (nqcmp->type == cpu_to_le16(NQ_CN_TYPE_CQ_NOTIFICATION)) {
2552 			u32 idx = le32_to_cpu(nqcmp->cq_handle_low);
2553 			struct bnxt_cp_ring_info *cpr2;
2554 
2555 			cpr2 = cpr->cp_ring_arr[idx];
2556 			work_done += __bnxt_poll_work(bp, cpr2,
2557 						      budget - work_done);
2558 			cpr->has_more_work |= cpr2->has_more_work;
2559 		} else {
2560 			bnxt_hwrm_handler(bp, (struct tx_cmp *)nqcmp);
2561 		}
2562 		raw_cons = NEXT_RAW_CMP(raw_cons);
2563 	}
2564 	__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ);
2565 	if (raw_cons != cpr->cp_raw_cons) {
2566 		cpr->cp_raw_cons = raw_cons;
2567 		BNXT_DB_NQ_P5(&cpr->cp_db, raw_cons);
2568 	}
2569 	return work_done;
2570 }
2571 
2572 static void bnxt_free_tx_skbs(struct bnxt *bp)
2573 {
2574 	int i, max_idx;
2575 	struct pci_dev *pdev = bp->pdev;
2576 
2577 	if (!bp->tx_ring)
2578 		return;
2579 
2580 	max_idx = bp->tx_nr_pages * TX_DESC_CNT;
2581 	for (i = 0; i < bp->tx_nr_rings; i++) {
2582 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2583 		int j;
2584 
2585 		for (j = 0; j < max_idx;) {
2586 			struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
2587 			struct sk_buff *skb;
2588 			int k, last;
2589 
2590 			if (i < bp->tx_nr_rings_xdp &&
2591 			    tx_buf->action == XDP_REDIRECT) {
2592 				dma_unmap_single(&pdev->dev,
2593 					dma_unmap_addr(tx_buf, mapping),
2594 					dma_unmap_len(tx_buf, len),
2595 					PCI_DMA_TODEVICE);
2596 				xdp_return_frame(tx_buf->xdpf);
2597 				tx_buf->action = 0;
2598 				tx_buf->xdpf = NULL;
2599 				j++;
2600 				continue;
2601 			}
2602 
2603 			skb = tx_buf->skb;
2604 			if (!skb) {
2605 				j++;
2606 				continue;
2607 			}
2608 
2609 			tx_buf->skb = NULL;
2610 
2611 			if (tx_buf->is_push) {
2612 				dev_kfree_skb(skb);
2613 				j += 2;
2614 				continue;
2615 			}
2616 
2617 			dma_unmap_single(&pdev->dev,
2618 					 dma_unmap_addr(tx_buf, mapping),
2619 					 skb_headlen(skb),
2620 					 PCI_DMA_TODEVICE);
2621 
2622 			last = tx_buf->nr_frags;
2623 			j += 2;
2624 			for (k = 0; k < last; k++, j++) {
2625 				int ring_idx = j & bp->tx_ring_mask;
2626 				skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2627 
2628 				tx_buf = &txr->tx_buf_ring[ring_idx];
2629 				dma_unmap_page(
2630 					&pdev->dev,
2631 					dma_unmap_addr(tx_buf, mapping),
2632 					skb_frag_size(frag), PCI_DMA_TODEVICE);
2633 			}
2634 			dev_kfree_skb(skb);
2635 		}
2636 		netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
2637 	}
2638 }
2639 
2640 static void bnxt_free_one_rx_ring_skbs(struct bnxt *bp, int ring_nr)
2641 {
2642 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
2643 	struct pci_dev *pdev = bp->pdev;
2644 	struct bnxt_tpa_idx_map *map;
2645 	int i, max_idx, max_agg_idx;
2646 
2647 	max_idx = bp->rx_nr_pages * RX_DESC_CNT;
2648 	max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
2649 	if (!rxr->rx_tpa)
2650 		goto skip_rx_tpa_free;
2651 
2652 	for (i = 0; i < bp->max_tpa; i++) {
2653 		struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[i];
2654 		u8 *data = tpa_info->data;
2655 
2656 		if (!data)
2657 			continue;
2658 
2659 		dma_unmap_single_attrs(&pdev->dev, tpa_info->mapping,
2660 				       bp->rx_buf_use_size, bp->rx_dir,
2661 				       DMA_ATTR_WEAK_ORDERING);
2662 
2663 		tpa_info->data = NULL;
2664 
2665 		kfree(data);
2666 	}
2667 
2668 skip_rx_tpa_free:
2669 	for (i = 0; i < max_idx; i++) {
2670 		struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[i];
2671 		dma_addr_t mapping = rx_buf->mapping;
2672 		void *data = rx_buf->data;
2673 
2674 		if (!data)
2675 			continue;
2676 
2677 		rx_buf->data = NULL;
2678 		if (BNXT_RX_PAGE_MODE(bp)) {
2679 			mapping -= bp->rx_dma_offset;
2680 			dma_unmap_page_attrs(&pdev->dev, mapping, PAGE_SIZE,
2681 					     bp->rx_dir,
2682 					     DMA_ATTR_WEAK_ORDERING);
2683 			page_pool_recycle_direct(rxr->page_pool, data);
2684 		} else {
2685 			dma_unmap_single_attrs(&pdev->dev, mapping,
2686 					       bp->rx_buf_use_size, bp->rx_dir,
2687 					       DMA_ATTR_WEAK_ORDERING);
2688 			kfree(data);
2689 		}
2690 	}
2691 	for (i = 0; i < max_agg_idx; i++) {
2692 		struct bnxt_sw_rx_agg_bd *rx_agg_buf = &rxr->rx_agg_ring[i];
2693 		struct page *page = rx_agg_buf->page;
2694 
2695 		if (!page)
2696 			continue;
2697 
2698 		dma_unmap_page_attrs(&pdev->dev, rx_agg_buf->mapping,
2699 				     BNXT_RX_PAGE_SIZE, PCI_DMA_FROMDEVICE,
2700 				     DMA_ATTR_WEAK_ORDERING);
2701 
2702 		rx_agg_buf->page = NULL;
2703 		__clear_bit(i, rxr->rx_agg_bmap);
2704 
2705 		__free_page(page);
2706 	}
2707 	if (rxr->rx_page) {
2708 		__free_page(rxr->rx_page);
2709 		rxr->rx_page = NULL;
2710 	}
2711 	map = rxr->rx_tpa_idx_map;
2712 	if (map)
2713 		memset(map->agg_idx_bmap, 0, sizeof(map->agg_idx_bmap));
2714 }
2715 
2716 static void bnxt_free_rx_skbs(struct bnxt *bp)
2717 {
2718 	int i;
2719 
2720 	if (!bp->rx_ring)
2721 		return;
2722 
2723 	for (i = 0; i < bp->rx_nr_rings; i++)
2724 		bnxt_free_one_rx_ring_skbs(bp, i);
2725 }
2726 
2727 static void bnxt_free_skbs(struct bnxt *bp)
2728 {
2729 	bnxt_free_tx_skbs(bp);
2730 	bnxt_free_rx_skbs(bp);
2731 }
2732 
2733 static void bnxt_init_ctx_mem(struct bnxt_mem_init *mem_init, void *p, int len)
2734 {
2735 	u8 init_val = mem_init->init_val;
2736 	u16 offset = mem_init->offset;
2737 	u8 *p2 = p;
2738 	int i;
2739 
2740 	if (!init_val)
2741 		return;
2742 	if (offset == BNXT_MEM_INVALID_OFFSET) {
2743 		memset(p, init_val, len);
2744 		return;
2745 	}
2746 	for (i = 0; i < len; i += mem_init->size)
2747 		*(p2 + i + offset) = init_val;
2748 }
2749 
2750 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
2751 {
2752 	struct pci_dev *pdev = bp->pdev;
2753 	int i;
2754 
2755 	for (i = 0; i < rmem->nr_pages; i++) {
2756 		if (!rmem->pg_arr[i])
2757 			continue;
2758 
2759 		dma_free_coherent(&pdev->dev, rmem->page_size,
2760 				  rmem->pg_arr[i], rmem->dma_arr[i]);
2761 
2762 		rmem->pg_arr[i] = NULL;
2763 	}
2764 	if (rmem->pg_tbl) {
2765 		size_t pg_tbl_size = rmem->nr_pages * 8;
2766 
2767 		if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
2768 			pg_tbl_size = rmem->page_size;
2769 		dma_free_coherent(&pdev->dev, pg_tbl_size,
2770 				  rmem->pg_tbl, rmem->pg_tbl_map);
2771 		rmem->pg_tbl = NULL;
2772 	}
2773 	if (rmem->vmem_size && *rmem->vmem) {
2774 		vfree(*rmem->vmem);
2775 		*rmem->vmem = NULL;
2776 	}
2777 }
2778 
2779 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
2780 {
2781 	struct pci_dev *pdev = bp->pdev;
2782 	u64 valid_bit = 0;
2783 	int i;
2784 
2785 	if (rmem->flags & (BNXT_RMEM_VALID_PTE_FLAG | BNXT_RMEM_RING_PTE_FLAG))
2786 		valid_bit = PTU_PTE_VALID;
2787 	if ((rmem->nr_pages > 1 || rmem->depth > 0) && !rmem->pg_tbl) {
2788 		size_t pg_tbl_size = rmem->nr_pages * 8;
2789 
2790 		if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
2791 			pg_tbl_size = rmem->page_size;
2792 		rmem->pg_tbl = dma_alloc_coherent(&pdev->dev, pg_tbl_size,
2793 						  &rmem->pg_tbl_map,
2794 						  GFP_KERNEL);
2795 		if (!rmem->pg_tbl)
2796 			return -ENOMEM;
2797 	}
2798 
2799 	for (i = 0; i < rmem->nr_pages; i++) {
2800 		u64 extra_bits = valid_bit;
2801 
2802 		rmem->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
2803 						     rmem->page_size,
2804 						     &rmem->dma_arr[i],
2805 						     GFP_KERNEL);
2806 		if (!rmem->pg_arr[i])
2807 			return -ENOMEM;
2808 
2809 		if (rmem->mem_init)
2810 			bnxt_init_ctx_mem(rmem->mem_init, rmem->pg_arr[i],
2811 					  rmem->page_size);
2812 		if (rmem->nr_pages > 1 || rmem->depth > 0) {
2813 			if (i == rmem->nr_pages - 2 &&
2814 			    (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
2815 				extra_bits |= PTU_PTE_NEXT_TO_LAST;
2816 			else if (i == rmem->nr_pages - 1 &&
2817 				 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
2818 				extra_bits |= PTU_PTE_LAST;
2819 			rmem->pg_tbl[i] =
2820 				cpu_to_le64(rmem->dma_arr[i] | extra_bits);
2821 		}
2822 	}
2823 
2824 	if (rmem->vmem_size) {
2825 		*rmem->vmem = vzalloc(rmem->vmem_size);
2826 		if (!(*rmem->vmem))
2827 			return -ENOMEM;
2828 	}
2829 	return 0;
2830 }
2831 
2832 static void bnxt_free_tpa_info(struct bnxt *bp)
2833 {
2834 	int i;
2835 
2836 	for (i = 0; i < bp->rx_nr_rings; i++) {
2837 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2838 
2839 		kfree(rxr->rx_tpa_idx_map);
2840 		rxr->rx_tpa_idx_map = NULL;
2841 		if (rxr->rx_tpa) {
2842 			kfree(rxr->rx_tpa[0].agg_arr);
2843 			rxr->rx_tpa[0].agg_arr = NULL;
2844 		}
2845 		kfree(rxr->rx_tpa);
2846 		rxr->rx_tpa = NULL;
2847 	}
2848 }
2849 
2850 static int bnxt_alloc_tpa_info(struct bnxt *bp)
2851 {
2852 	int i, j, total_aggs = 0;
2853 
2854 	bp->max_tpa = MAX_TPA;
2855 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
2856 		if (!bp->max_tpa_v2)
2857 			return 0;
2858 		bp->max_tpa = max_t(u16, bp->max_tpa_v2, MAX_TPA_P5);
2859 		total_aggs = bp->max_tpa * MAX_SKB_FRAGS;
2860 	}
2861 
2862 	for (i = 0; i < bp->rx_nr_rings; i++) {
2863 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2864 		struct rx_agg_cmp *agg;
2865 
2866 		rxr->rx_tpa = kcalloc(bp->max_tpa, sizeof(struct bnxt_tpa_info),
2867 				      GFP_KERNEL);
2868 		if (!rxr->rx_tpa)
2869 			return -ENOMEM;
2870 
2871 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
2872 			continue;
2873 		agg = kcalloc(total_aggs, sizeof(*agg), GFP_KERNEL);
2874 		rxr->rx_tpa[0].agg_arr = agg;
2875 		if (!agg)
2876 			return -ENOMEM;
2877 		for (j = 1; j < bp->max_tpa; j++)
2878 			rxr->rx_tpa[j].agg_arr = agg + j * MAX_SKB_FRAGS;
2879 		rxr->rx_tpa_idx_map = kzalloc(sizeof(*rxr->rx_tpa_idx_map),
2880 					      GFP_KERNEL);
2881 		if (!rxr->rx_tpa_idx_map)
2882 			return -ENOMEM;
2883 	}
2884 	return 0;
2885 }
2886 
2887 static void bnxt_free_rx_rings(struct bnxt *bp)
2888 {
2889 	int i;
2890 
2891 	if (!bp->rx_ring)
2892 		return;
2893 
2894 	bnxt_free_tpa_info(bp);
2895 	for (i = 0; i < bp->rx_nr_rings; i++) {
2896 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2897 		struct bnxt_ring_struct *ring;
2898 
2899 		if (rxr->xdp_prog)
2900 			bpf_prog_put(rxr->xdp_prog);
2901 
2902 		if (xdp_rxq_info_is_reg(&rxr->xdp_rxq))
2903 			xdp_rxq_info_unreg(&rxr->xdp_rxq);
2904 
2905 		page_pool_destroy(rxr->page_pool);
2906 		rxr->page_pool = NULL;
2907 
2908 		kfree(rxr->rx_agg_bmap);
2909 		rxr->rx_agg_bmap = NULL;
2910 
2911 		ring = &rxr->rx_ring_struct;
2912 		bnxt_free_ring(bp, &ring->ring_mem);
2913 
2914 		ring = &rxr->rx_agg_ring_struct;
2915 		bnxt_free_ring(bp, &ring->ring_mem);
2916 	}
2917 }
2918 
2919 static int bnxt_alloc_rx_page_pool(struct bnxt *bp,
2920 				   struct bnxt_rx_ring_info *rxr)
2921 {
2922 	struct page_pool_params pp = { 0 };
2923 
2924 	pp.pool_size = bp->rx_ring_size;
2925 	pp.nid = dev_to_node(&bp->pdev->dev);
2926 	pp.dev = &bp->pdev->dev;
2927 	pp.dma_dir = DMA_BIDIRECTIONAL;
2928 
2929 	rxr->page_pool = page_pool_create(&pp);
2930 	if (IS_ERR(rxr->page_pool)) {
2931 		int err = PTR_ERR(rxr->page_pool);
2932 
2933 		rxr->page_pool = NULL;
2934 		return err;
2935 	}
2936 	return 0;
2937 }
2938 
2939 static int bnxt_alloc_rx_rings(struct bnxt *bp)
2940 {
2941 	int i, rc = 0, agg_rings = 0;
2942 
2943 	if (!bp->rx_ring)
2944 		return -ENOMEM;
2945 
2946 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
2947 		agg_rings = 1;
2948 
2949 	for (i = 0; i < bp->rx_nr_rings; i++) {
2950 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2951 		struct bnxt_ring_struct *ring;
2952 
2953 		ring = &rxr->rx_ring_struct;
2954 
2955 		rc = bnxt_alloc_rx_page_pool(bp, rxr);
2956 		if (rc)
2957 			return rc;
2958 
2959 		rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i, 0);
2960 		if (rc < 0)
2961 			return rc;
2962 
2963 		rc = xdp_rxq_info_reg_mem_model(&rxr->xdp_rxq,
2964 						MEM_TYPE_PAGE_POOL,
2965 						rxr->page_pool);
2966 		if (rc) {
2967 			xdp_rxq_info_unreg(&rxr->xdp_rxq);
2968 			return rc;
2969 		}
2970 
2971 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
2972 		if (rc)
2973 			return rc;
2974 
2975 		ring->grp_idx = i;
2976 		if (agg_rings) {
2977 			u16 mem_size;
2978 
2979 			ring = &rxr->rx_agg_ring_struct;
2980 			rc = bnxt_alloc_ring(bp, &ring->ring_mem);
2981 			if (rc)
2982 				return rc;
2983 
2984 			ring->grp_idx = i;
2985 			rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
2986 			mem_size = rxr->rx_agg_bmap_size / 8;
2987 			rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
2988 			if (!rxr->rx_agg_bmap)
2989 				return -ENOMEM;
2990 		}
2991 	}
2992 	if (bp->flags & BNXT_FLAG_TPA)
2993 		rc = bnxt_alloc_tpa_info(bp);
2994 	return rc;
2995 }
2996 
2997 static void bnxt_free_tx_rings(struct bnxt *bp)
2998 {
2999 	int i;
3000 	struct pci_dev *pdev = bp->pdev;
3001 
3002 	if (!bp->tx_ring)
3003 		return;
3004 
3005 	for (i = 0; i < bp->tx_nr_rings; i++) {
3006 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3007 		struct bnxt_ring_struct *ring;
3008 
3009 		if (txr->tx_push) {
3010 			dma_free_coherent(&pdev->dev, bp->tx_push_size,
3011 					  txr->tx_push, txr->tx_push_mapping);
3012 			txr->tx_push = NULL;
3013 		}
3014 
3015 		ring = &txr->tx_ring_struct;
3016 
3017 		bnxt_free_ring(bp, &ring->ring_mem);
3018 	}
3019 }
3020 
3021 static int bnxt_alloc_tx_rings(struct bnxt *bp)
3022 {
3023 	int i, j, rc;
3024 	struct pci_dev *pdev = bp->pdev;
3025 
3026 	bp->tx_push_size = 0;
3027 	if (bp->tx_push_thresh) {
3028 		int push_size;
3029 
3030 		push_size  = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
3031 					bp->tx_push_thresh);
3032 
3033 		if (push_size > 256) {
3034 			push_size = 0;
3035 			bp->tx_push_thresh = 0;
3036 		}
3037 
3038 		bp->tx_push_size = push_size;
3039 	}
3040 
3041 	for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
3042 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3043 		struct bnxt_ring_struct *ring;
3044 		u8 qidx;
3045 
3046 		ring = &txr->tx_ring_struct;
3047 
3048 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3049 		if (rc)
3050 			return rc;
3051 
3052 		ring->grp_idx = txr->bnapi->index;
3053 		if (bp->tx_push_size) {
3054 			dma_addr_t mapping;
3055 
3056 			/* One pre-allocated DMA buffer to backup
3057 			 * TX push operation
3058 			 */
3059 			txr->tx_push = dma_alloc_coherent(&pdev->dev,
3060 						bp->tx_push_size,
3061 						&txr->tx_push_mapping,
3062 						GFP_KERNEL);
3063 
3064 			if (!txr->tx_push)
3065 				return -ENOMEM;
3066 
3067 			mapping = txr->tx_push_mapping +
3068 				sizeof(struct tx_push_bd);
3069 			txr->data_mapping = cpu_to_le64(mapping);
3070 		}
3071 		qidx = bp->tc_to_qidx[j];
3072 		ring->queue_id = bp->q_info[qidx].queue_id;
3073 		if (i < bp->tx_nr_rings_xdp)
3074 			continue;
3075 		if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1))
3076 			j++;
3077 	}
3078 	return 0;
3079 }
3080 
3081 static void bnxt_free_cp_rings(struct bnxt *bp)
3082 {
3083 	int i;
3084 
3085 	if (!bp->bnapi)
3086 		return;
3087 
3088 	for (i = 0; i < bp->cp_nr_rings; i++) {
3089 		struct bnxt_napi *bnapi = bp->bnapi[i];
3090 		struct bnxt_cp_ring_info *cpr;
3091 		struct bnxt_ring_struct *ring;
3092 		int j;
3093 
3094 		if (!bnapi)
3095 			continue;
3096 
3097 		cpr = &bnapi->cp_ring;
3098 		ring = &cpr->cp_ring_struct;
3099 
3100 		bnxt_free_ring(bp, &ring->ring_mem);
3101 
3102 		for (j = 0; j < 2; j++) {
3103 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
3104 
3105 			if (cpr2) {
3106 				ring = &cpr2->cp_ring_struct;
3107 				bnxt_free_ring(bp, &ring->ring_mem);
3108 				kfree(cpr2);
3109 				cpr->cp_ring_arr[j] = NULL;
3110 			}
3111 		}
3112 	}
3113 }
3114 
3115 static struct bnxt_cp_ring_info *bnxt_alloc_cp_sub_ring(struct bnxt *bp)
3116 {
3117 	struct bnxt_ring_mem_info *rmem;
3118 	struct bnxt_ring_struct *ring;
3119 	struct bnxt_cp_ring_info *cpr;
3120 	int rc;
3121 
3122 	cpr = kzalloc(sizeof(*cpr), GFP_KERNEL);
3123 	if (!cpr)
3124 		return NULL;
3125 
3126 	ring = &cpr->cp_ring_struct;
3127 	rmem = &ring->ring_mem;
3128 	rmem->nr_pages = bp->cp_nr_pages;
3129 	rmem->page_size = HW_CMPD_RING_SIZE;
3130 	rmem->pg_arr = (void **)cpr->cp_desc_ring;
3131 	rmem->dma_arr = cpr->cp_desc_mapping;
3132 	rmem->flags = BNXT_RMEM_RING_PTE_FLAG;
3133 	rc = bnxt_alloc_ring(bp, rmem);
3134 	if (rc) {
3135 		bnxt_free_ring(bp, rmem);
3136 		kfree(cpr);
3137 		cpr = NULL;
3138 	}
3139 	return cpr;
3140 }
3141 
3142 static int bnxt_alloc_cp_rings(struct bnxt *bp)
3143 {
3144 	bool sh = !!(bp->flags & BNXT_FLAG_SHARED_RINGS);
3145 	int i, rc, ulp_base_vec, ulp_msix;
3146 
3147 	ulp_msix = bnxt_get_ulp_msix_num(bp);
3148 	ulp_base_vec = bnxt_get_ulp_msix_base(bp);
3149 	for (i = 0; i < bp->cp_nr_rings; i++) {
3150 		struct bnxt_napi *bnapi = bp->bnapi[i];
3151 		struct bnxt_cp_ring_info *cpr;
3152 		struct bnxt_ring_struct *ring;
3153 
3154 		if (!bnapi)
3155 			continue;
3156 
3157 		cpr = &bnapi->cp_ring;
3158 		cpr->bnapi = bnapi;
3159 		ring = &cpr->cp_ring_struct;
3160 
3161 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3162 		if (rc)
3163 			return rc;
3164 
3165 		if (ulp_msix && i >= ulp_base_vec)
3166 			ring->map_idx = i + ulp_msix;
3167 		else
3168 			ring->map_idx = i;
3169 
3170 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
3171 			continue;
3172 
3173 		if (i < bp->rx_nr_rings) {
3174 			struct bnxt_cp_ring_info *cpr2 =
3175 				bnxt_alloc_cp_sub_ring(bp);
3176 
3177 			cpr->cp_ring_arr[BNXT_RX_HDL] = cpr2;
3178 			if (!cpr2)
3179 				return -ENOMEM;
3180 			cpr2->bnapi = bnapi;
3181 		}
3182 		if ((sh && i < bp->tx_nr_rings) ||
3183 		    (!sh && i >= bp->rx_nr_rings)) {
3184 			struct bnxt_cp_ring_info *cpr2 =
3185 				bnxt_alloc_cp_sub_ring(bp);
3186 
3187 			cpr->cp_ring_arr[BNXT_TX_HDL] = cpr2;
3188 			if (!cpr2)
3189 				return -ENOMEM;
3190 			cpr2->bnapi = bnapi;
3191 		}
3192 	}
3193 	return 0;
3194 }
3195 
3196 static void bnxt_init_ring_struct(struct bnxt *bp)
3197 {
3198 	int i;
3199 
3200 	for (i = 0; i < bp->cp_nr_rings; i++) {
3201 		struct bnxt_napi *bnapi = bp->bnapi[i];
3202 		struct bnxt_ring_mem_info *rmem;
3203 		struct bnxt_cp_ring_info *cpr;
3204 		struct bnxt_rx_ring_info *rxr;
3205 		struct bnxt_tx_ring_info *txr;
3206 		struct bnxt_ring_struct *ring;
3207 
3208 		if (!bnapi)
3209 			continue;
3210 
3211 		cpr = &bnapi->cp_ring;
3212 		ring = &cpr->cp_ring_struct;
3213 		rmem = &ring->ring_mem;
3214 		rmem->nr_pages = bp->cp_nr_pages;
3215 		rmem->page_size = HW_CMPD_RING_SIZE;
3216 		rmem->pg_arr = (void **)cpr->cp_desc_ring;
3217 		rmem->dma_arr = cpr->cp_desc_mapping;
3218 		rmem->vmem_size = 0;
3219 
3220 		rxr = bnapi->rx_ring;
3221 		if (!rxr)
3222 			goto skip_rx;
3223 
3224 		ring = &rxr->rx_ring_struct;
3225 		rmem = &ring->ring_mem;
3226 		rmem->nr_pages = bp->rx_nr_pages;
3227 		rmem->page_size = HW_RXBD_RING_SIZE;
3228 		rmem->pg_arr = (void **)rxr->rx_desc_ring;
3229 		rmem->dma_arr = rxr->rx_desc_mapping;
3230 		rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
3231 		rmem->vmem = (void **)&rxr->rx_buf_ring;
3232 
3233 		ring = &rxr->rx_agg_ring_struct;
3234 		rmem = &ring->ring_mem;
3235 		rmem->nr_pages = bp->rx_agg_nr_pages;
3236 		rmem->page_size = HW_RXBD_RING_SIZE;
3237 		rmem->pg_arr = (void **)rxr->rx_agg_desc_ring;
3238 		rmem->dma_arr = rxr->rx_agg_desc_mapping;
3239 		rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
3240 		rmem->vmem = (void **)&rxr->rx_agg_ring;
3241 
3242 skip_rx:
3243 		txr = bnapi->tx_ring;
3244 		if (!txr)
3245 			continue;
3246 
3247 		ring = &txr->tx_ring_struct;
3248 		rmem = &ring->ring_mem;
3249 		rmem->nr_pages = bp->tx_nr_pages;
3250 		rmem->page_size = HW_RXBD_RING_SIZE;
3251 		rmem->pg_arr = (void **)txr->tx_desc_ring;
3252 		rmem->dma_arr = txr->tx_desc_mapping;
3253 		rmem->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
3254 		rmem->vmem = (void **)&txr->tx_buf_ring;
3255 	}
3256 }
3257 
3258 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
3259 {
3260 	int i;
3261 	u32 prod;
3262 	struct rx_bd **rx_buf_ring;
3263 
3264 	rx_buf_ring = (struct rx_bd **)ring->ring_mem.pg_arr;
3265 	for (i = 0, prod = 0; i < ring->ring_mem.nr_pages; i++) {
3266 		int j;
3267 		struct rx_bd *rxbd;
3268 
3269 		rxbd = rx_buf_ring[i];
3270 		if (!rxbd)
3271 			continue;
3272 
3273 		for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
3274 			rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
3275 			rxbd->rx_bd_opaque = prod;
3276 		}
3277 	}
3278 }
3279 
3280 static int bnxt_alloc_one_rx_ring(struct bnxt *bp, int ring_nr)
3281 {
3282 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
3283 	struct net_device *dev = bp->dev;
3284 	u32 prod;
3285 	int i;
3286 
3287 	prod = rxr->rx_prod;
3288 	for (i = 0; i < bp->rx_ring_size; i++) {
3289 		if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL)) {
3290 			netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
3291 				    ring_nr, i, bp->rx_ring_size);
3292 			break;
3293 		}
3294 		prod = NEXT_RX(prod);
3295 	}
3296 	rxr->rx_prod = prod;
3297 
3298 	if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
3299 		return 0;
3300 
3301 	prod = rxr->rx_agg_prod;
3302 	for (i = 0; i < bp->rx_agg_ring_size; i++) {
3303 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL)) {
3304 			netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
3305 				    ring_nr, i, bp->rx_ring_size);
3306 			break;
3307 		}
3308 		prod = NEXT_RX_AGG(prod);
3309 	}
3310 	rxr->rx_agg_prod = prod;
3311 
3312 	if (rxr->rx_tpa) {
3313 		dma_addr_t mapping;
3314 		u8 *data;
3315 
3316 		for (i = 0; i < bp->max_tpa; i++) {
3317 			data = __bnxt_alloc_rx_data(bp, &mapping, GFP_KERNEL);
3318 			if (!data)
3319 				return -ENOMEM;
3320 
3321 			rxr->rx_tpa[i].data = data;
3322 			rxr->rx_tpa[i].data_ptr = data + bp->rx_offset;
3323 			rxr->rx_tpa[i].mapping = mapping;
3324 		}
3325 	}
3326 	return 0;
3327 }
3328 
3329 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
3330 {
3331 	struct bnxt_rx_ring_info *rxr;
3332 	struct bnxt_ring_struct *ring;
3333 	u32 type;
3334 
3335 	type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
3336 		RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
3337 
3338 	if (NET_IP_ALIGN == 2)
3339 		type |= RX_BD_FLAGS_SOP;
3340 
3341 	rxr = &bp->rx_ring[ring_nr];
3342 	ring = &rxr->rx_ring_struct;
3343 	bnxt_init_rxbd_pages(ring, type);
3344 
3345 	if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) {
3346 		bpf_prog_add(bp->xdp_prog, 1);
3347 		rxr->xdp_prog = bp->xdp_prog;
3348 	}
3349 	ring->fw_ring_id = INVALID_HW_RING_ID;
3350 
3351 	ring = &rxr->rx_agg_ring_struct;
3352 	ring->fw_ring_id = INVALID_HW_RING_ID;
3353 
3354 	if ((bp->flags & BNXT_FLAG_AGG_RINGS)) {
3355 		type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) |
3356 			RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
3357 
3358 		bnxt_init_rxbd_pages(ring, type);
3359 	}
3360 
3361 	return bnxt_alloc_one_rx_ring(bp, ring_nr);
3362 }
3363 
3364 static void bnxt_init_cp_rings(struct bnxt *bp)
3365 {
3366 	int i, j;
3367 
3368 	for (i = 0; i < bp->cp_nr_rings; i++) {
3369 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
3370 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3371 
3372 		ring->fw_ring_id = INVALID_HW_RING_ID;
3373 		cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
3374 		cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
3375 		for (j = 0; j < 2; j++) {
3376 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
3377 
3378 			if (!cpr2)
3379 				continue;
3380 
3381 			ring = &cpr2->cp_ring_struct;
3382 			ring->fw_ring_id = INVALID_HW_RING_ID;
3383 			cpr2->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
3384 			cpr2->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
3385 		}
3386 	}
3387 }
3388 
3389 static int bnxt_init_rx_rings(struct bnxt *bp)
3390 {
3391 	int i, rc = 0;
3392 
3393 	if (BNXT_RX_PAGE_MODE(bp)) {
3394 		bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM;
3395 		bp->rx_dma_offset = XDP_PACKET_HEADROOM;
3396 	} else {
3397 		bp->rx_offset = BNXT_RX_OFFSET;
3398 		bp->rx_dma_offset = BNXT_RX_DMA_OFFSET;
3399 	}
3400 
3401 	for (i = 0; i < bp->rx_nr_rings; i++) {
3402 		rc = bnxt_init_one_rx_ring(bp, i);
3403 		if (rc)
3404 			break;
3405 	}
3406 
3407 	return rc;
3408 }
3409 
3410 static int bnxt_init_tx_rings(struct bnxt *bp)
3411 {
3412 	u16 i;
3413 
3414 	bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
3415 				   MAX_SKB_FRAGS + 1);
3416 
3417 	for (i = 0; i < bp->tx_nr_rings; i++) {
3418 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3419 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
3420 
3421 		ring->fw_ring_id = INVALID_HW_RING_ID;
3422 	}
3423 
3424 	return 0;
3425 }
3426 
3427 static void bnxt_free_ring_grps(struct bnxt *bp)
3428 {
3429 	kfree(bp->grp_info);
3430 	bp->grp_info = NULL;
3431 }
3432 
3433 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
3434 {
3435 	int i;
3436 
3437 	if (irq_re_init) {
3438 		bp->grp_info = kcalloc(bp->cp_nr_rings,
3439 				       sizeof(struct bnxt_ring_grp_info),
3440 				       GFP_KERNEL);
3441 		if (!bp->grp_info)
3442 			return -ENOMEM;
3443 	}
3444 	for (i = 0; i < bp->cp_nr_rings; i++) {
3445 		if (irq_re_init)
3446 			bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
3447 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
3448 		bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
3449 		bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
3450 		bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
3451 	}
3452 	return 0;
3453 }
3454 
3455 static void bnxt_free_vnics(struct bnxt *bp)
3456 {
3457 	kfree(bp->vnic_info);
3458 	bp->vnic_info = NULL;
3459 	bp->nr_vnics = 0;
3460 }
3461 
3462 static int bnxt_alloc_vnics(struct bnxt *bp)
3463 {
3464 	int num_vnics = 1;
3465 
3466 #ifdef CONFIG_RFS_ACCEL
3467 	if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS)
3468 		num_vnics += bp->rx_nr_rings;
3469 #endif
3470 
3471 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
3472 		num_vnics++;
3473 
3474 	bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
3475 				GFP_KERNEL);
3476 	if (!bp->vnic_info)
3477 		return -ENOMEM;
3478 
3479 	bp->nr_vnics = num_vnics;
3480 	return 0;
3481 }
3482 
3483 static void bnxt_init_vnics(struct bnxt *bp)
3484 {
3485 	int i;
3486 
3487 	for (i = 0; i < bp->nr_vnics; i++) {
3488 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3489 		int j;
3490 
3491 		vnic->fw_vnic_id = INVALID_HW_RING_ID;
3492 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++)
3493 			vnic->fw_rss_cos_lb_ctx[j] = INVALID_HW_RING_ID;
3494 
3495 		vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
3496 
3497 		if (bp->vnic_info[i].rss_hash_key) {
3498 			if (i == 0)
3499 				prandom_bytes(vnic->rss_hash_key,
3500 					      HW_HASH_KEY_SIZE);
3501 			else
3502 				memcpy(vnic->rss_hash_key,
3503 				       bp->vnic_info[0].rss_hash_key,
3504 				       HW_HASH_KEY_SIZE);
3505 		}
3506 	}
3507 }
3508 
3509 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
3510 {
3511 	int pages;
3512 
3513 	pages = ring_size / desc_per_pg;
3514 
3515 	if (!pages)
3516 		return 1;
3517 
3518 	pages++;
3519 
3520 	while (pages & (pages - 1))
3521 		pages++;
3522 
3523 	return pages;
3524 }
3525 
3526 void bnxt_set_tpa_flags(struct bnxt *bp)
3527 {
3528 	bp->flags &= ~BNXT_FLAG_TPA;
3529 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
3530 		return;
3531 	if (bp->dev->features & NETIF_F_LRO)
3532 		bp->flags |= BNXT_FLAG_LRO;
3533 	else if (bp->dev->features & NETIF_F_GRO_HW)
3534 		bp->flags |= BNXT_FLAG_GRO;
3535 }
3536 
3537 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
3538  * be set on entry.
3539  */
3540 void bnxt_set_ring_params(struct bnxt *bp)
3541 {
3542 	u32 ring_size, rx_size, rx_space, max_rx_cmpl;
3543 	u32 agg_factor = 0, agg_ring_size = 0;
3544 
3545 	/* 8 for CRC and VLAN */
3546 	rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
3547 
3548 	rx_space = rx_size + NET_SKB_PAD +
3549 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3550 
3551 	bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
3552 	ring_size = bp->rx_ring_size;
3553 	bp->rx_agg_ring_size = 0;
3554 	bp->rx_agg_nr_pages = 0;
3555 
3556 	if (bp->flags & BNXT_FLAG_TPA)
3557 		agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE);
3558 
3559 	bp->flags &= ~BNXT_FLAG_JUMBO;
3560 	if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) {
3561 		u32 jumbo_factor;
3562 
3563 		bp->flags |= BNXT_FLAG_JUMBO;
3564 		jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
3565 		if (jumbo_factor > agg_factor)
3566 			agg_factor = jumbo_factor;
3567 	}
3568 	agg_ring_size = ring_size * agg_factor;
3569 
3570 	if (agg_ring_size) {
3571 		bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
3572 							RX_DESC_CNT);
3573 		if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
3574 			u32 tmp = agg_ring_size;
3575 
3576 			bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
3577 			agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
3578 			netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
3579 				    tmp, agg_ring_size);
3580 		}
3581 		bp->rx_agg_ring_size = agg_ring_size;
3582 		bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
3583 		rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
3584 		rx_space = rx_size + NET_SKB_PAD +
3585 			SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3586 	}
3587 
3588 	bp->rx_buf_use_size = rx_size;
3589 	bp->rx_buf_size = rx_space;
3590 
3591 	bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
3592 	bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
3593 
3594 	ring_size = bp->tx_ring_size;
3595 	bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
3596 	bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
3597 
3598 	max_rx_cmpl = bp->rx_ring_size;
3599 	/* MAX TPA needs to be added because TPA_START completions are
3600 	 * immediately recycled, so the TPA completions are not bound by
3601 	 * the RX ring size.
3602 	 */
3603 	if (bp->flags & BNXT_FLAG_TPA)
3604 		max_rx_cmpl += bp->max_tpa;
3605 	/* RX and TPA completions are 32-byte, all others are 16-byte */
3606 	ring_size = max_rx_cmpl * 2 + agg_ring_size + bp->tx_ring_size;
3607 	bp->cp_ring_size = ring_size;
3608 
3609 	bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
3610 	if (bp->cp_nr_pages > MAX_CP_PAGES) {
3611 		bp->cp_nr_pages = MAX_CP_PAGES;
3612 		bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
3613 		netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
3614 			    ring_size, bp->cp_ring_size);
3615 	}
3616 	bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
3617 	bp->cp_ring_mask = bp->cp_bit - 1;
3618 }
3619 
3620 /* Changing allocation mode of RX rings.
3621  * TODO: Update when extending xdp_rxq_info to support allocation modes.
3622  */
3623 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode)
3624 {
3625 	if (page_mode) {
3626 		if (bp->dev->mtu > BNXT_MAX_PAGE_MODE_MTU)
3627 			return -EOPNOTSUPP;
3628 		bp->dev->max_mtu =
3629 			min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU);
3630 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
3631 		bp->flags |= BNXT_FLAG_NO_AGG_RINGS | BNXT_FLAG_RX_PAGE_MODE;
3632 		bp->rx_dir = DMA_BIDIRECTIONAL;
3633 		bp->rx_skb_func = bnxt_rx_page_skb;
3634 		/* Disable LRO or GRO_HW */
3635 		netdev_update_features(bp->dev);
3636 	} else {
3637 		bp->dev->max_mtu = bp->max_mtu;
3638 		bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE;
3639 		bp->rx_dir = DMA_FROM_DEVICE;
3640 		bp->rx_skb_func = bnxt_rx_skb;
3641 	}
3642 	return 0;
3643 }
3644 
3645 static void bnxt_free_vnic_attributes(struct bnxt *bp)
3646 {
3647 	int i;
3648 	struct bnxt_vnic_info *vnic;
3649 	struct pci_dev *pdev = bp->pdev;
3650 
3651 	if (!bp->vnic_info)
3652 		return;
3653 
3654 	for (i = 0; i < bp->nr_vnics; i++) {
3655 		vnic = &bp->vnic_info[i];
3656 
3657 		kfree(vnic->fw_grp_ids);
3658 		vnic->fw_grp_ids = NULL;
3659 
3660 		kfree(vnic->uc_list);
3661 		vnic->uc_list = NULL;
3662 
3663 		if (vnic->mc_list) {
3664 			dma_free_coherent(&pdev->dev, vnic->mc_list_size,
3665 					  vnic->mc_list, vnic->mc_list_mapping);
3666 			vnic->mc_list = NULL;
3667 		}
3668 
3669 		if (vnic->rss_table) {
3670 			dma_free_coherent(&pdev->dev, vnic->rss_table_size,
3671 					  vnic->rss_table,
3672 					  vnic->rss_table_dma_addr);
3673 			vnic->rss_table = NULL;
3674 		}
3675 
3676 		vnic->rss_hash_key = NULL;
3677 		vnic->flags = 0;
3678 	}
3679 }
3680 
3681 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
3682 {
3683 	int i, rc = 0, size;
3684 	struct bnxt_vnic_info *vnic;
3685 	struct pci_dev *pdev = bp->pdev;
3686 	int max_rings;
3687 
3688 	for (i = 0; i < bp->nr_vnics; i++) {
3689 		vnic = &bp->vnic_info[i];
3690 
3691 		if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
3692 			int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
3693 
3694 			if (mem_size > 0) {
3695 				vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
3696 				if (!vnic->uc_list) {
3697 					rc = -ENOMEM;
3698 					goto out;
3699 				}
3700 			}
3701 		}
3702 
3703 		if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
3704 			vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
3705 			vnic->mc_list =
3706 				dma_alloc_coherent(&pdev->dev,
3707 						   vnic->mc_list_size,
3708 						   &vnic->mc_list_mapping,
3709 						   GFP_KERNEL);
3710 			if (!vnic->mc_list) {
3711 				rc = -ENOMEM;
3712 				goto out;
3713 			}
3714 		}
3715 
3716 		if (bp->flags & BNXT_FLAG_CHIP_P5)
3717 			goto vnic_skip_grps;
3718 
3719 		if (vnic->flags & BNXT_VNIC_RSS_FLAG)
3720 			max_rings = bp->rx_nr_rings;
3721 		else
3722 			max_rings = 1;
3723 
3724 		vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
3725 		if (!vnic->fw_grp_ids) {
3726 			rc = -ENOMEM;
3727 			goto out;
3728 		}
3729 vnic_skip_grps:
3730 		if ((bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
3731 		    !(vnic->flags & BNXT_VNIC_RSS_FLAG))
3732 			continue;
3733 
3734 		/* Allocate rss table and hash key */
3735 		size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
3736 		if (bp->flags & BNXT_FLAG_CHIP_P5)
3737 			size = L1_CACHE_ALIGN(BNXT_MAX_RSS_TABLE_SIZE_P5);
3738 
3739 		vnic->rss_table_size = size + HW_HASH_KEY_SIZE;
3740 		vnic->rss_table = dma_alloc_coherent(&pdev->dev,
3741 						     vnic->rss_table_size,
3742 						     &vnic->rss_table_dma_addr,
3743 						     GFP_KERNEL);
3744 		if (!vnic->rss_table) {
3745 			rc = -ENOMEM;
3746 			goto out;
3747 		}
3748 
3749 		vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
3750 		vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
3751 	}
3752 	return 0;
3753 
3754 out:
3755 	return rc;
3756 }
3757 
3758 static void bnxt_free_hwrm_resources(struct bnxt *bp)
3759 {
3760 	struct pci_dev *pdev = bp->pdev;
3761 
3762 	if (bp->hwrm_cmd_resp_addr) {
3763 		dma_free_coherent(&pdev->dev, PAGE_SIZE, bp->hwrm_cmd_resp_addr,
3764 				  bp->hwrm_cmd_resp_dma_addr);
3765 		bp->hwrm_cmd_resp_addr = NULL;
3766 	}
3767 
3768 	if (bp->hwrm_cmd_kong_resp_addr) {
3769 		dma_free_coherent(&pdev->dev, PAGE_SIZE,
3770 				  bp->hwrm_cmd_kong_resp_addr,
3771 				  bp->hwrm_cmd_kong_resp_dma_addr);
3772 		bp->hwrm_cmd_kong_resp_addr = NULL;
3773 	}
3774 }
3775 
3776 static int bnxt_alloc_kong_hwrm_resources(struct bnxt *bp)
3777 {
3778 	struct pci_dev *pdev = bp->pdev;
3779 
3780 	if (bp->hwrm_cmd_kong_resp_addr)
3781 		return 0;
3782 
3783 	bp->hwrm_cmd_kong_resp_addr =
3784 		dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
3785 				   &bp->hwrm_cmd_kong_resp_dma_addr,
3786 				   GFP_KERNEL);
3787 	if (!bp->hwrm_cmd_kong_resp_addr)
3788 		return -ENOMEM;
3789 
3790 	return 0;
3791 }
3792 
3793 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
3794 {
3795 	struct pci_dev *pdev = bp->pdev;
3796 
3797 	bp->hwrm_cmd_resp_addr = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
3798 						   &bp->hwrm_cmd_resp_dma_addr,
3799 						   GFP_KERNEL);
3800 	if (!bp->hwrm_cmd_resp_addr)
3801 		return -ENOMEM;
3802 
3803 	return 0;
3804 }
3805 
3806 static void bnxt_free_hwrm_short_cmd_req(struct bnxt *bp)
3807 {
3808 	if (bp->hwrm_short_cmd_req_addr) {
3809 		struct pci_dev *pdev = bp->pdev;
3810 
3811 		dma_free_coherent(&pdev->dev, bp->hwrm_max_ext_req_len,
3812 				  bp->hwrm_short_cmd_req_addr,
3813 				  bp->hwrm_short_cmd_req_dma_addr);
3814 		bp->hwrm_short_cmd_req_addr = NULL;
3815 	}
3816 }
3817 
3818 static int bnxt_alloc_hwrm_short_cmd_req(struct bnxt *bp)
3819 {
3820 	struct pci_dev *pdev = bp->pdev;
3821 
3822 	if (bp->hwrm_short_cmd_req_addr)
3823 		return 0;
3824 
3825 	bp->hwrm_short_cmd_req_addr =
3826 		dma_alloc_coherent(&pdev->dev, bp->hwrm_max_ext_req_len,
3827 				   &bp->hwrm_short_cmd_req_dma_addr,
3828 				   GFP_KERNEL);
3829 	if (!bp->hwrm_short_cmd_req_addr)
3830 		return -ENOMEM;
3831 
3832 	return 0;
3833 }
3834 
3835 static void bnxt_free_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats)
3836 {
3837 	kfree(stats->hw_masks);
3838 	stats->hw_masks = NULL;
3839 	kfree(stats->sw_stats);
3840 	stats->sw_stats = NULL;
3841 	if (stats->hw_stats) {
3842 		dma_free_coherent(&bp->pdev->dev, stats->len, stats->hw_stats,
3843 				  stats->hw_stats_map);
3844 		stats->hw_stats = NULL;
3845 	}
3846 }
3847 
3848 static int bnxt_alloc_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats,
3849 				bool alloc_masks)
3850 {
3851 	stats->hw_stats = dma_alloc_coherent(&bp->pdev->dev, stats->len,
3852 					     &stats->hw_stats_map, GFP_KERNEL);
3853 	if (!stats->hw_stats)
3854 		return -ENOMEM;
3855 
3856 	stats->sw_stats = kzalloc(stats->len, GFP_KERNEL);
3857 	if (!stats->sw_stats)
3858 		goto stats_mem_err;
3859 
3860 	if (alloc_masks) {
3861 		stats->hw_masks = kzalloc(stats->len, GFP_KERNEL);
3862 		if (!stats->hw_masks)
3863 			goto stats_mem_err;
3864 	}
3865 	return 0;
3866 
3867 stats_mem_err:
3868 	bnxt_free_stats_mem(bp, stats);
3869 	return -ENOMEM;
3870 }
3871 
3872 static void bnxt_fill_masks(u64 *mask_arr, u64 mask, int count)
3873 {
3874 	int i;
3875 
3876 	for (i = 0; i < count; i++)
3877 		mask_arr[i] = mask;
3878 }
3879 
3880 static void bnxt_copy_hw_masks(u64 *mask_arr, __le64 *hw_mask_arr, int count)
3881 {
3882 	int i;
3883 
3884 	for (i = 0; i < count; i++)
3885 		mask_arr[i] = le64_to_cpu(hw_mask_arr[i]);
3886 }
3887 
3888 static int bnxt_hwrm_func_qstat_ext(struct bnxt *bp,
3889 				    struct bnxt_stats_mem *stats)
3890 {
3891 	struct hwrm_func_qstats_ext_output *resp = bp->hwrm_cmd_resp_addr;
3892 	struct hwrm_func_qstats_ext_input req = {0};
3893 	__le64 *hw_masks;
3894 	int rc;
3895 
3896 	if (!(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED) ||
3897 	    !(bp->flags & BNXT_FLAG_CHIP_P5))
3898 		return -EOPNOTSUPP;
3899 
3900 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QSTATS_EXT, -1, -1);
3901 	req.fid = cpu_to_le16(0xffff);
3902 	req.flags = FUNC_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK;
3903 	mutex_lock(&bp->hwrm_cmd_lock);
3904 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3905 	if (rc)
3906 		goto qstat_exit;
3907 
3908 	hw_masks = &resp->rx_ucast_pkts;
3909 	bnxt_copy_hw_masks(stats->hw_masks, hw_masks, stats->len / 8);
3910 
3911 qstat_exit:
3912 	mutex_unlock(&bp->hwrm_cmd_lock);
3913 	return rc;
3914 }
3915 
3916 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags);
3917 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags);
3918 
3919 static void bnxt_init_stats(struct bnxt *bp)
3920 {
3921 	struct bnxt_napi *bnapi = bp->bnapi[0];
3922 	struct bnxt_cp_ring_info *cpr;
3923 	struct bnxt_stats_mem *stats;
3924 	__le64 *rx_stats, *tx_stats;
3925 	int rc, rx_count, tx_count;
3926 	u64 *rx_masks, *tx_masks;
3927 	u64 mask;
3928 	u8 flags;
3929 
3930 	cpr = &bnapi->cp_ring;
3931 	stats = &cpr->stats;
3932 	rc = bnxt_hwrm_func_qstat_ext(bp, stats);
3933 	if (rc) {
3934 		if (bp->flags & BNXT_FLAG_CHIP_P5)
3935 			mask = (1ULL << 48) - 1;
3936 		else
3937 			mask = -1ULL;
3938 		bnxt_fill_masks(stats->hw_masks, mask, stats->len / 8);
3939 	}
3940 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
3941 		stats = &bp->port_stats;
3942 		rx_stats = stats->hw_stats;
3943 		rx_masks = stats->hw_masks;
3944 		rx_count = sizeof(struct rx_port_stats) / 8;
3945 		tx_stats = rx_stats + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
3946 		tx_masks = rx_masks + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
3947 		tx_count = sizeof(struct tx_port_stats) / 8;
3948 
3949 		flags = PORT_QSTATS_REQ_FLAGS_COUNTER_MASK;
3950 		rc = bnxt_hwrm_port_qstats(bp, flags);
3951 		if (rc) {
3952 			mask = (1ULL << 40) - 1;
3953 
3954 			bnxt_fill_masks(rx_masks, mask, rx_count);
3955 			bnxt_fill_masks(tx_masks, mask, tx_count);
3956 		} else {
3957 			bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count);
3958 			bnxt_copy_hw_masks(tx_masks, tx_stats, tx_count);
3959 			bnxt_hwrm_port_qstats(bp, 0);
3960 		}
3961 	}
3962 	if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) {
3963 		stats = &bp->rx_port_stats_ext;
3964 		rx_stats = stats->hw_stats;
3965 		rx_masks = stats->hw_masks;
3966 		rx_count = sizeof(struct rx_port_stats_ext) / 8;
3967 		stats = &bp->tx_port_stats_ext;
3968 		tx_stats = stats->hw_stats;
3969 		tx_masks = stats->hw_masks;
3970 		tx_count = sizeof(struct tx_port_stats_ext) / 8;
3971 
3972 		flags = PORT_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK;
3973 		rc = bnxt_hwrm_port_qstats_ext(bp, flags);
3974 		if (rc) {
3975 			mask = (1ULL << 40) - 1;
3976 
3977 			bnxt_fill_masks(rx_masks, mask, rx_count);
3978 			if (tx_stats)
3979 				bnxt_fill_masks(tx_masks, mask, tx_count);
3980 		} else {
3981 			bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count);
3982 			if (tx_stats)
3983 				bnxt_copy_hw_masks(tx_masks, tx_stats,
3984 						   tx_count);
3985 			bnxt_hwrm_port_qstats_ext(bp, 0);
3986 		}
3987 	}
3988 }
3989 
3990 static void bnxt_free_port_stats(struct bnxt *bp)
3991 {
3992 	bp->flags &= ~BNXT_FLAG_PORT_STATS;
3993 	bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT;
3994 
3995 	bnxt_free_stats_mem(bp, &bp->port_stats);
3996 	bnxt_free_stats_mem(bp, &bp->rx_port_stats_ext);
3997 	bnxt_free_stats_mem(bp, &bp->tx_port_stats_ext);
3998 }
3999 
4000 static void bnxt_free_ring_stats(struct bnxt *bp)
4001 {
4002 	int i;
4003 
4004 	if (!bp->bnapi)
4005 		return;
4006 
4007 	for (i = 0; i < bp->cp_nr_rings; i++) {
4008 		struct bnxt_napi *bnapi = bp->bnapi[i];
4009 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4010 
4011 		bnxt_free_stats_mem(bp, &cpr->stats);
4012 	}
4013 }
4014 
4015 static int bnxt_alloc_stats(struct bnxt *bp)
4016 {
4017 	u32 size, i;
4018 	int rc;
4019 
4020 	size = bp->hw_ring_stats_size;
4021 
4022 	for (i = 0; i < bp->cp_nr_rings; i++) {
4023 		struct bnxt_napi *bnapi = bp->bnapi[i];
4024 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4025 
4026 		cpr->stats.len = size;
4027 		rc = bnxt_alloc_stats_mem(bp, &cpr->stats, !i);
4028 		if (rc)
4029 			return rc;
4030 
4031 		cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
4032 	}
4033 
4034 	if (BNXT_VF(bp) || bp->chip_num == CHIP_NUM_58700)
4035 		return 0;
4036 
4037 	if (bp->port_stats.hw_stats)
4038 		goto alloc_ext_stats;
4039 
4040 	bp->port_stats.len = BNXT_PORT_STATS_SIZE;
4041 	rc = bnxt_alloc_stats_mem(bp, &bp->port_stats, true);
4042 	if (rc)
4043 		return rc;
4044 
4045 	bp->flags |= BNXT_FLAG_PORT_STATS;
4046 
4047 alloc_ext_stats:
4048 	/* Display extended statistics only if FW supports it */
4049 	if (bp->hwrm_spec_code < 0x10804 || bp->hwrm_spec_code == 0x10900)
4050 		if (!(bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED))
4051 			return 0;
4052 
4053 	if (bp->rx_port_stats_ext.hw_stats)
4054 		goto alloc_tx_ext_stats;
4055 
4056 	bp->rx_port_stats_ext.len = sizeof(struct rx_port_stats_ext);
4057 	rc = bnxt_alloc_stats_mem(bp, &bp->rx_port_stats_ext, true);
4058 	/* Extended stats are optional */
4059 	if (rc)
4060 		return 0;
4061 
4062 alloc_tx_ext_stats:
4063 	if (bp->tx_port_stats_ext.hw_stats)
4064 		return 0;
4065 
4066 	if (bp->hwrm_spec_code >= 0x10902 ||
4067 	    (bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) {
4068 		bp->tx_port_stats_ext.len = sizeof(struct tx_port_stats_ext);
4069 		rc = bnxt_alloc_stats_mem(bp, &bp->tx_port_stats_ext, true);
4070 		/* Extended stats are optional */
4071 		if (rc)
4072 			return 0;
4073 	}
4074 	bp->flags |= BNXT_FLAG_PORT_STATS_EXT;
4075 	return 0;
4076 }
4077 
4078 static void bnxt_clear_ring_indices(struct bnxt *bp)
4079 {
4080 	int i;
4081 
4082 	if (!bp->bnapi)
4083 		return;
4084 
4085 	for (i = 0; i < bp->cp_nr_rings; i++) {
4086 		struct bnxt_napi *bnapi = bp->bnapi[i];
4087 		struct bnxt_cp_ring_info *cpr;
4088 		struct bnxt_rx_ring_info *rxr;
4089 		struct bnxt_tx_ring_info *txr;
4090 
4091 		if (!bnapi)
4092 			continue;
4093 
4094 		cpr = &bnapi->cp_ring;
4095 		cpr->cp_raw_cons = 0;
4096 
4097 		txr = bnapi->tx_ring;
4098 		if (txr) {
4099 			txr->tx_prod = 0;
4100 			txr->tx_cons = 0;
4101 		}
4102 
4103 		rxr = bnapi->rx_ring;
4104 		if (rxr) {
4105 			rxr->rx_prod = 0;
4106 			rxr->rx_agg_prod = 0;
4107 			rxr->rx_sw_agg_prod = 0;
4108 			rxr->rx_next_cons = 0;
4109 		}
4110 	}
4111 }
4112 
4113 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
4114 {
4115 #ifdef CONFIG_RFS_ACCEL
4116 	int i;
4117 
4118 	/* Under rtnl_lock and all our NAPIs have been disabled.  It's
4119 	 * safe to delete the hash table.
4120 	 */
4121 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
4122 		struct hlist_head *head;
4123 		struct hlist_node *tmp;
4124 		struct bnxt_ntuple_filter *fltr;
4125 
4126 		head = &bp->ntp_fltr_hash_tbl[i];
4127 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
4128 			hlist_del(&fltr->hash);
4129 			kfree(fltr);
4130 		}
4131 	}
4132 	if (irq_reinit) {
4133 		kfree(bp->ntp_fltr_bmap);
4134 		bp->ntp_fltr_bmap = NULL;
4135 	}
4136 	bp->ntp_fltr_count = 0;
4137 #endif
4138 }
4139 
4140 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
4141 {
4142 #ifdef CONFIG_RFS_ACCEL
4143 	int i, rc = 0;
4144 
4145 	if (!(bp->flags & BNXT_FLAG_RFS))
4146 		return 0;
4147 
4148 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
4149 		INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
4150 
4151 	bp->ntp_fltr_count = 0;
4152 	bp->ntp_fltr_bmap = kcalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR),
4153 				    sizeof(long),
4154 				    GFP_KERNEL);
4155 
4156 	if (!bp->ntp_fltr_bmap)
4157 		rc = -ENOMEM;
4158 
4159 	return rc;
4160 #else
4161 	return 0;
4162 #endif
4163 }
4164 
4165 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
4166 {
4167 	bnxt_free_vnic_attributes(bp);
4168 	bnxt_free_tx_rings(bp);
4169 	bnxt_free_rx_rings(bp);
4170 	bnxt_free_cp_rings(bp);
4171 	bnxt_free_ntp_fltrs(bp, irq_re_init);
4172 	if (irq_re_init) {
4173 		bnxt_free_ring_stats(bp);
4174 		if (!(bp->phy_flags & BNXT_PHY_FL_PORT_STATS_NO_RESET) ||
4175 		    test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
4176 			bnxt_free_port_stats(bp);
4177 		bnxt_free_ring_grps(bp);
4178 		bnxt_free_vnics(bp);
4179 		kfree(bp->tx_ring_map);
4180 		bp->tx_ring_map = NULL;
4181 		kfree(bp->tx_ring);
4182 		bp->tx_ring = NULL;
4183 		kfree(bp->rx_ring);
4184 		bp->rx_ring = NULL;
4185 		kfree(bp->bnapi);
4186 		bp->bnapi = NULL;
4187 	} else {
4188 		bnxt_clear_ring_indices(bp);
4189 	}
4190 }
4191 
4192 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
4193 {
4194 	int i, j, rc, size, arr_size;
4195 	void *bnapi;
4196 
4197 	if (irq_re_init) {
4198 		/* Allocate bnapi mem pointer array and mem block for
4199 		 * all queues
4200 		 */
4201 		arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
4202 				bp->cp_nr_rings);
4203 		size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
4204 		bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
4205 		if (!bnapi)
4206 			return -ENOMEM;
4207 
4208 		bp->bnapi = bnapi;
4209 		bnapi += arr_size;
4210 		for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
4211 			bp->bnapi[i] = bnapi;
4212 			bp->bnapi[i]->index = i;
4213 			bp->bnapi[i]->bp = bp;
4214 			if (bp->flags & BNXT_FLAG_CHIP_P5) {
4215 				struct bnxt_cp_ring_info *cpr =
4216 					&bp->bnapi[i]->cp_ring;
4217 
4218 				cpr->cp_ring_struct.ring_mem.flags =
4219 					BNXT_RMEM_RING_PTE_FLAG;
4220 			}
4221 		}
4222 
4223 		bp->rx_ring = kcalloc(bp->rx_nr_rings,
4224 				      sizeof(struct bnxt_rx_ring_info),
4225 				      GFP_KERNEL);
4226 		if (!bp->rx_ring)
4227 			return -ENOMEM;
4228 
4229 		for (i = 0; i < bp->rx_nr_rings; i++) {
4230 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4231 
4232 			if (bp->flags & BNXT_FLAG_CHIP_P5) {
4233 				rxr->rx_ring_struct.ring_mem.flags =
4234 					BNXT_RMEM_RING_PTE_FLAG;
4235 				rxr->rx_agg_ring_struct.ring_mem.flags =
4236 					BNXT_RMEM_RING_PTE_FLAG;
4237 			}
4238 			rxr->bnapi = bp->bnapi[i];
4239 			bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
4240 		}
4241 
4242 		bp->tx_ring = kcalloc(bp->tx_nr_rings,
4243 				      sizeof(struct bnxt_tx_ring_info),
4244 				      GFP_KERNEL);
4245 		if (!bp->tx_ring)
4246 			return -ENOMEM;
4247 
4248 		bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16),
4249 					  GFP_KERNEL);
4250 
4251 		if (!bp->tx_ring_map)
4252 			return -ENOMEM;
4253 
4254 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
4255 			j = 0;
4256 		else
4257 			j = bp->rx_nr_rings;
4258 
4259 		for (i = 0; i < bp->tx_nr_rings; i++, j++) {
4260 			struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
4261 
4262 			if (bp->flags & BNXT_FLAG_CHIP_P5)
4263 				txr->tx_ring_struct.ring_mem.flags =
4264 					BNXT_RMEM_RING_PTE_FLAG;
4265 			txr->bnapi = bp->bnapi[j];
4266 			bp->bnapi[j]->tx_ring = txr;
4267 			bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i;
4268 			if (i >= bp->tx_nr_rings_xdp) {
4269 				txr->txq_index = i - bp->tx_nr_rings_xdp;
4270 				bp->bnapi[j]->tx_int = bnxt_tx_int;
4271 			} else {
4272 				bp->bnapi[j]->flags |= BNXT_NAPI_FLAG_XDP;
4273 				bp->bnapi[j]->tx_int = bnxt_tx_int_xdp;
4274 			}
4275 		}
4276 
4277 		rc = bnxt_alloc_stats(bp);
4278 		if (rc)
4279 			goto alloc_mem_err;
4280 		bnxt_init_stats(bp);
4281 
4282 		rc = bnxt_alloc_ntp_fltrs(bp);
4283 		if (rc)
4284 			goto alloc_mem_err;
4285 
4286 		rc = bnxt_alloc_vnics(bp);
4287 		if (rc)
4288 			goto alloc_mem_err;
4289 	}
4290 
4291 	bnxt_init_ring_struct(bp);
4292 
4293 	rc = bnxt_alloc_rx_rings(bp);
4294 	if (rc)
4295 		goto alloc_mem_err;
4296 
4297 	rc = bnxt_alloc_tx_rings(bp);
4298 	if (rc)
4299 		goto alloc_mem_err;
4300 
4301 	rc = bnxt_alloc_cp_rings(bp);
4302 	if (rc)
4303 		goto alloc_mem_err;
4304 
4305 	bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
4306 				  BNXT_VNIC_UCAST_FLAG;
4307 	rc = bnxt_alloc_vnic_attributes(bp);
4308 	if (rc)
4309 		goto alloc_mem_err;
4310 	return 0;
4311 
4312 alloc_mem_err:
4313 	bnxt_free_mem(bp, true);
4314 	return rc;
4315 }
4316 
4317 static void bnxt_disable_int(struct bnxt *bp)
4318 {
4319 	int i;
4320 
4321 	if (!bp->bnapi)
4322 		return;
4323 
4324 	for (i = 0; i < bp->cp_nr_rings; i++) {
4325 		struct bnxt_napi *bnapi = bp->bnapi[i];
4326 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4327 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
4328 
4329 		if (ring->fw_ring_id != INVALID_HW_RING_ID)
4330 			bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
4331 	}
4332 }
4333 
4334 static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n)
4335 {
4336 	struct bnxt_napi *bnapi = bp->bnapi[n];
4337 	struct bnxt_cp_ring_info *cpr;
4338 
4339 	cpr = &bnapi->cp_ring;
4340 	return cpr->cp_ring_struct.map_idx;
4341 }
4342 
4343 static void bnxt_disable_int_sync(struct bnxt *bp)
4344 {
4345 	int i;
4346 
4347 	if (!bp->irq_tbl)
4348 		return;
4349 
4350 	atomic_inc(&bp->intr_sem);
4351 
4352 	bnxt_disable_int(bp);
4353 	for (i = 0; i < bp->cp_nr_rings; i++) {
4354 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
4355 
4356 		synchronize_irq(bp->irq_tbl[map_idx].vector);
4357 	}
4358 }
4359 
4360 static void bnxt_enable_int(struct bnxt *bp)
4361 {
4362 	int i;
4363 
4364 	atomic_set(&bp->intr_sem, 0);
4365 	for (i = 0; i < bp->cp_nr_rings; i++) {
4366 		struct bnxt_napi *bnapi = bp->bnapi[i];
4367 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4368 
4369 		bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons);
4370 	}
4371 }
4372 
4373 void bnxt_hwrm_cmd_hdr_init(struct bnxt *bp, void *request, u16 req_type,
4374 			    u16 cmpl_ring, u16 target_id)
4375 {
4376 	struct input *req = request;
4377 
4378 	req->req_type = cpu_to_le16(req_type);
4379 	req->cmpl_ring = cpu_to_le16(cmpl_ring);
4380 	req->target_id = cpu_to_le16(target_id);
4381 	if (bnxt_kong_hwrm_message(bp, req))
4382 		req->resp_addr = cpu_to_le64(bp->hwrm_cmd_kong_resp_dma_addr);
4383 	else
4384 		req->resp_addr = cpu_to_le64(bp->hwrm_cmd_resp_dma_addr);
4385 }
4386 
4387 static int bnxt_hwrm_to_stderr(u32 hwrm_err)
4388 {
4389 	switch (hwrm_err) {
4390 	case HWRM_ERR_CODE_SUCCESS:
4391 		return 0;
4392 	case HWRM_ERR_CODE_RESOURCE_LOCKED:
4393 		return -EROFS;
4394 	case HWRM_ERR_CODE_RESOURCE_ACCESS_DENIED:
4395 		return -EACCES;
4396 	case HWRM_ERR_CODE_RESOURCE_ALLOC_ERROR:
4397 		return -ENOSPC;
4398 	case HWRM_ERR_CODE_INVALID_PARAMS:
4399 	case HWRM_ERR_CODE_INVALID_FLAGS:
4400 	case HWRM_ERR_CODE_INVALID_ENABLES:
4401 	case HWRM_ERR_CODE_UNSUPPORTED_TLV:
4402 	case HWRM_ERR_CODE_UNSUPPORTED_OPTION_ERR:
4403 		return -EINVAL;
4404 	case HWRM_ERR_CODE_NO_BUFFER:
4405 		return -ENOMEM;
4406 	case HWRM_ERR_CODE_HOT_RESET_PROGRESS:
4407 	case HWRM_ERR_CODE_BUSY:
4408 		return -EAGAIN;
4409 	case HWRM_ERR_CODE_CMD_NOT_SUPPORTED:
4410 		return -EOPNOTSUPP;
4411 	default:
4412 		return -EIO;
4413 	}
4414 }
4415 
4416 static int bnxt_hwrm_do_send_msg(struct bnxt *bp, void *msg, u32 msg_len,
4417 				 int timeout, bool silent)
4418 {
4419 	int i, intr_process, rc, tmo_count;
4420 	struct input *req = msg;
4421 	u32 *data = msg;
4422 	u8 *valid;
4423 	u16 cp_ring_id, len = 0;
4424 	struct hwrm_err_output *resp = bp->hwrm_cmd_resp_addr;
4425 	u16 max_req_len = BNXT_HWRM_MAX_REQ_LEN;
4426 	struct hwrm_short_input short_input = {0};
4427 	u32 doorbell_offset = BNXT_GRCPF_REG_CHIMP_COMM_TRIGGER;
4428 	u32 bar_offset = BNXT_GRCPF_REG_CHIMP_COMM;
4429 	u16 dst = BNXT_HWRM_CHNL_CHIMP;
4430 
4431 	if (BNXT_NO_FW_ACCESS(bp) &&
4432 	    le16_to_cpu(req->req_type) != HWRM_FUNC_RESET)
4433 		return -EBUSY;
4434 
4435 	if (msg_len > BNXT_HWRM_MAX_REQ_LEN) {
4436 		if (msg_len > bp->hwrm_max_ext_req_len ||
4437 		    !bp->hwrm_short_cmd_req_addr)
4438 			return -EINVAL;
4439 	}
4440 
4441 	if (bnxt_hwrm_kong_chnl(bp, req)) {
4442 		dst = BNXT_HWRM_CHNL_KONG;
4443 		bar_offset = BNXT_GRCPF_REG_KONG_COMM;
4444 		doorbell_offset = BNXT_GRCPF_REG_KONG_COMM_TRIGGER;
4445 		resp = bp->hwrm_cmd_kong_resp_addr;
4446 	}
4447 
4448 	memset(resp, 0, PAGE_SIZE);
4449 	cp_ring_id = le16_to_cpu(req->cmpl_ring);
4450 	intr_process = (cp_ring_id == INVALID_HW_RING_ID) ? 0 : 1;
4451 
4452 	req->seq_id = cpu_to_le16(bnxt_get_hwrm_seq_id(bp, dst));
4453 	/* currently supports only one outstanding message */
4454 	if (intr_process)
4455 		bp->hwrm_intr_seq_id = le16_to_cpu(req->seq_id);
4456 
4457 	if ((bp->fw_cap & BNXT_FW_CAP_SHORT_CMD) ||
4458 	    msg_len > BNXT_HWRM_MAX_REQ_LEN) {
4459 		void *short_cmd_req = bp->hwrm_short_cmd_req_addr;
4460 		u16 max_msg_len;
4461 
4462 		/* Set boundary for maximum extended request length for short
4463 		 * cmd format. If passed up from device use the max supported
4464 		 * internal req length.
4465 		 */
4466 		max_msg_len = bp->hwrm_max_ext_req_len;
4467 
4468 		memcpy(short_cmd_req, req, msg_len);
4469 		if (msg_len < max_msg_len)
4470 			memset(short_cmd_req + msg_len, 0,
4471 			       max_msg_len - msg_len);
4472 
4473 		short_input.req_type = req->req_type;
4474 		short_input.signature =
4475 				cpu_to_le16(SHORT_REQ_SIGNATURE_SHORT_CMD);
4476 		short_input.size = cpu_to_le16(msg_len);
4477 		short_input.req_addr =
4478 			cpu_to_le64(bp->hwrm_short_cmd_req_dma_addr);
4479 
4480 		data = (u32 *)&short_input;
4481 		msg_len = sizeof(short_input);
4482 
4483 		/* Sync memory write before updating doorbell */
4484 		wmb();
4485 
4486 		max_req_len = BNXT_HWRM_SHORT_REQ_LEN;
4487 	}
4488 
4489 	/* Write request msg to hwrm channel */
4490 	__iowrite32_copy(bp->bar0 + bar_offset, data, msg_len / 4);
4491 
4492 	for (i = msg_len; i < max_req_len; i += 4)
4493 		writel(0, bp->bar0 + bar_offset + i);
4494 
4495 	/* Ring channel doorbell */
4496 	writel(1, bp->bar0 + doorbell_offset);
4497 
4498 	if (!pci_is_enabled(bp->pdev))
4499 		return -ENODEV;
4500 
4501 	if (!timeout)
4502 		timeout = DFLT_HWRM_CMD_TIMEOUT;
4503 	/* Limit timeout to an upper limit */
4504 	timeout = min(timeout, HWRM_CMD_MAX_TIMEOUT);
4505 	/* convert timeout to usec */
4506 	timeout *= 1000;
4507 
4508 	i = 0;
4509 	/* Short timeout for the first few iterations:
4510 	 * number of loops = number of loops for short timeout +
4511 	 * number of loops for standard timeout.
4512 	 */
4513 	tmo_count = HWRM_SHORT_TIMEOUT_COUNTER;
4514 	timeout = timeout - HWRM_SHORT_MIN_TIMEOUT * HWRM_SHORT_TIMEOUT_COUNTER;
4515 	tmo_count += DIV_ROUND_UP(timeout, HWRM_MIN_TIMEOUT);
4516 
4517 	if (intr_process) {
4518 		u16 seq_id = bp->hwrm_intr_seq_id;
4519 
4520 		/* Wait until hwrm response cmpl interrupt is processed */
4521 		while (bp->hwrm_intr_seq_id != (u16)~seq_id &&
4522 		       i++ < tmo_count) {
4523 			/* Abort the wait for completion if the FW health
4524 			 * check has failed.
4525 			 */
4526 			if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
4527 				return -EBUSY;
4528 			/* on first few passes, just barely sleep */
4529 			if (i < HWRM_SHORT_TIMEOUT_COUNTER) {
4530 				usleep_range(HWRM_SHORT_MIN_TIMEOUT,
4531 					     HWRM_SHORT_MAX_TIMEOUT);
4532 			} else {
4533 				if (HWRM_WAIT_MUST_ABORT(bp, req))
4534 					break;
4535 				usleep_range(HWRM_MIN_TIMEOUT,
4536 					     HWRM_MAX_TIMEOUT);
4537 			}
4538 		}
4539 
4540 		if (bp->hwrm_intr_seq_id != (u16)~seq_id) {
4541 			if (!silent)
4542 				netdev_err(bp->dev, "Resp cmpl intr err msg: 0x%x\n",
4543 					   le16_to_cpu(req->req_type));
4544 			return -EBUSY;
4545 		}
4546 		len = le16_to_cpu(resp->resp_len);
4547 		valid = ((u8 *)resp) + len - 1;
4548 	} else {
4549 		int j;
4550 
4551 		/* Check if response len is updated */
4552 		for (i = 0; i < tmo_count; i++) {
4553 			/* Abort the wait for completion if the FW health
4554 			 * check has failed.
4555 			 */
4556 			if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
4557 				return -EBUSY;
4558 			len = le16_to_cpu(resp->resp_len);
4559 			if (len)
4560 				break;
4561 			/* on first few passes, just barely sleep */
4562 			if (i < HWRM_SHORT_TIMEOUT_COUNTER) {
4563 				usleep_range(HWRM_SHORT_MIN_TIMEOUT,
4564 					     HWRM_SHORT_MAX_TIMEOUT);
4565 			} else {
4566 				if (HWRM_WAIT_MUST_ABORT(bp, req))
4567 					goto timeout_abort;
4568 				usleep_range(HWRM_MIN_TIMEOUT,
4569 					     HWRM_MAX_TIMEOUT);
4570 			}
4571 		}
4572 
4573 		if (i >= tmo_count) {
4574 timeout_abort:
4575 			if (!silent)
4576 				netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d\n",
4577 					   HWRM_TOTAL_TIMEOUT(i),
4578 					   le16_to_cpu(req->req_type),
4579 					   le16_to_cpu(req->seq_id), len);
4580 			return -EBUSY;
4581 		}
4582 
4583 		/* Last byte of resp contains valid bit */
4584 		valid = ((u8 *)resp) + len - 1;
4585 		for (j = 0; j < HWRM_VALID_BIT_DELAY_USEC; j++) {
4586 			/* make sure we read from updated DMA memory */
4587 			dma_rmb();
4588 			if (*valid)
4589 				break;
4590 			usleep_range(1, 5);
4591 		}
4592 
4593 		if (j >= HWRM_VALID_BIT_DELAY_USEC) {
4594 			if (!silent)
4595 				netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d v:%d\n",
4596 					   HWRM_TOTAL_TIMEOUT(i),
4597 					   le16_to_cpu(req->req_type),
4598 					   le16_to_cpu(req->seq_id), len,
4599 					   *valid);
4600 			return -EBUSY;
4601 		}
4602 	}
4603 
4604 	/* Zero valid bit for compatibility.  Valid bit in an older spec
4605 	 * may become a new field in a newer spec.  We must make sure that
4606 	 * a new field not implemented by old spec will read zero.
4607 	 */
4608 	*valid = 0;
4609 	rc = le16_to_cpu(resp->error_code);
4610 	if (rc && !silent)
4611 		netdev_err(bp->dev, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n",
4612 			   le16_to_cpu(resp->req_type),
4613 			   le16_to_cpu(resp->seq_id), rc);
4614 	return bnxt_hwrm_to_stderr(rc);
4615 }
4616 
4617 int _hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
4618 {
4619 	return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, false);
4620 }
4621 
4622 int _hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len,
4623 			      int timeout)
4624 {
4625 	return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true);
4626 }
4627 
4628 int hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
4629 {
4630 	int rc;
4631 
4632 	mutex_lock(&bp->hwrm_cmd_lock);
4633 	rc = _hwrm_send_message(bp, msg, msg_len, timeout);
4634 	mutex_unlock(&bp->hwrm_cmd_lock);
4635 	return rc;
4636 }
4637 
4638 int hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len,
4639 			     int timeout)
4640 {
4641 	int rc;
4642 
4643 	mutex_lock(&bp->hwrm_cmd_lock);
4644 	rc = bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true);
4645 	mutex_unlock(&bp->hwrm_cmd_lock);
4646 	return rc;
4647 }
4648 
4649 int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp, unsigned long *bmap, int bmap_size,
4650 			    bool async_only)
4651 {
4652 	struct hwrm_func_drv_rgtr_output *resp = bp->hwrm_cmd_resp_addr;
4653 	struct hwrm_func_drv_rgtr_input req = {0};
4654 	DECLARE_BITMAP(async_events_bmap, 256);
4655 	u32 *events = (u32 *)async_events_bmap;
4656 	u32 flags;
4657 	int rc, i;
4658 
4659 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
4660 
4661 	req.enables =
4662 		cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
4663 			    FUNC_DRV_RGTR_REQ_ENABLES_VER |
4664 			    FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
4665 
4666 	req.os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX);
4667 	flags = FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE;
4668 	if (bp->fw_cap & BNXT_FW_CAP_HOT_RESET)
4669 		flags |= FUNC_DRV_RGTR_REQ_FLAGS_HOT_RESET_SUPPORT;
4670 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
4671 		flags |= FUNC_DRV_RGTR_REQ_FLAGS_ERROR_RECOVERY_SUPPORT |
4672 			 FUNC_DRV_RGTR_REQ_FLAGS_MASTER_SUPPORT;
4673 	req.flags = cpu_to_le32(flags);
4674 	req.ver_maj_8b = DRV_VER_MAJ;
4675 	req.ver_min_8b = DRV_VER_MIN;
4676 	req.ver_upd_8b = DRV_VER_UPD;
4677 	req.ver_maj = cpu_to_le16(DRV_VER_MAJ);
4678 	req.ver_min = cpu_to_le16(DRV_VER_MIN);
4679 	req.ver_upd = cpu_to_le16(DRV_VER_UPD);
4680 
4681 	if (BNXT_PF(bp)) {
4682 		u32 data[8];
4683 		int i;
4684 
4685 		memset(data, 0, sizeof(data));
4686 		for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) {
4687 			u16 cmd = bnxt_vf_req_snif[i];
4688 			unsigned int bit, idx;
4689 
4690 			idx = cmd / 32;
4691 			bit = cmd % 32;
4692 			data[idx] |= 1 << bit;
4693 		}
4694 
4695 		for (i = 0; i < 8; i++)
4696 			req.vf_req_fwd[i] = cpu_to_le32(data[i]);
4697 
4698 		req.enables |=
4699 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
4700 	}
4701 
4702 	if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE)
4703 		req.flags |= cpu_to_le32(
4704 			FUNC_DRV_RGTR_REQ_FLAGS_FLOW_HANDLE_64BIT_MODE);
4705 
4706 	memset(async_events_bmap, 0, sizeof(async_events_bmap));
4707 	for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++) {
4708 		u16 event_id = bnxt_async_events_arr[i];
4709 
4710 		if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY &&
4711 		    !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
4712 			continue;
4713 		__set_bit(bnxt_async_events_arr[i], async_events_bmap);
4714 	}
4715 	if (bmap && bmap_size) {
4716 		for (i = 0; i < bmap_size; i++) {
4717 			if (test_bit(i, bmap))
4718 				__set_bit(i, async_events_bmap);
4719 		}
4720 	}
4721 	for (i = 0; i < 8; i++)
4722 		req.async_event_fwd[i] |= cpu_to_le32(events[i]);
4723 
4724 	if (async_only)
4725 		req.enables =
4726 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
4727 
4728 	mutex_lock(&bp->hwrm_cmd_lock);
4729 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4730 	if (!rc) {
4731 		set_bit(BNXT_STATE_DRV_REGISTERED, &bp->state);
4732 		if (resp->flags &
4733 		    cpu_to_le32(FUNC_DRV_RGTR_RESP_FLAGS_IF_CHANGE_SUPPORTED))
4734 			bp->fw_cap |= BNXT_FW_CAP_IF_CHANGE;
4735 	}
4736 	mutex_unlock(&bp->hwrm_cmd_lock);
4737 	return rc;
4738 }
4739 
4740 static int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
4741 {
4742 	struct hwrm_func_drv_unrgtr_input req = {0};
4743 
4744 	if (!test_and_clear_bit(BNXT_STATE_DRV_REGISTERED, &bp->state))
4745 		return 0;
4746 
4747 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_UNRGTR, -1, -1);
4748 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4749 }
4750 
4751 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
4752 {
4753 	u32 rc = 0;
4754 	struct hwrm_tunnel_dst_port_free_input req = {0};
4755 
4756 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_FREE, -1, -1);
4757 	req.tunnel_type = tunnel_type;
4758 
4759 	switch (tunnel_type) {
4760 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
4761 		req.tunnel_dst_port_id = cpu_to_le16(bp->vxlan_fw_dst_port_id);
4762 		bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID;
4763 		break;
4764 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
4765 		req.tunnel_dst_port_id = cpu_to_le16(bp->nge_fw_dst_port_id);
4766 		bp->nge_fw_dst_port_id = INVALID_HW_RING_ID;
4767 		break;
4768 	default:
4769 		break;
4770 	}
4771 
4772 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4773 	if (rc)
4774 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
4775 			   rc);
4776 	return rc;
4777 }
4778 
4779 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
4780 					   u8 tunnel_type)
4781 {
4782 	u32 rc = 0;
4783 	struct hwrm_tunnel_dst_port_alloc_input req = {0};
4784 	struct hwrm_tunnel_dst_port_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4785 
4786 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_ALLOC, -1, -1);
4787 
4788 	req.tunnel_type = tunnel_type;
4789 	req.tunnel_dst_port_val = port;
4790 
4791 	mutex_lock(&bp->hwrm_cmd_lock);
4792 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4793 	if (rc) {
4794 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
4795 			   rc);
4796 		goto err_out;
4797 	}
4798 
4799 	switch (tunnel_type) {
4800 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN:
4801 		bp->vxlan_fw_dst_port_id =
4802 			le16_to_cpu(resp->tunnel_dst_port_id);
4803 		break;
4804 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE:
4805 		bp->nge_fw_dst_port_id = le16_to_cpu(resp->tunnel_dst_port_id);
4806 		break;
4807 	default:
4808 		break;
4809 	}
4810 
4811 err_out:
4812 	mutex_unlock(&bp->hwrm_cmd_lock);
4813 	return rc;
4814 }
4815 
4816 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
4817 {
4818 	struct hwrm_cfa_l2_set_rx_mask_input req = {0};
4819 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4820 
4821 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_SET_RX_MASK, -1, -1);
4822 	req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
4823 
4824 	req.num_mc_entries = cpu_to_le32(vnic->mc_list_count);
4825 	req.mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
4826 	req.mask = cpu_to_le32(vnic->rx_mask);
4827 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4828 }
4829 
4830 #ifdef CONFIG_RFS_ACCEL
4831 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
4832 					    struct bnxt_ntuple_filter *fltr)
4833 {
4834 	struct hwrm_cfa_ntuple_filter_free_input req = {0};
4835 
4836 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_FREE, -1, -1);
4837 	req.ntuple_filter_id = fltr->filter_id;
4838 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4839 }
4840 
4841 #define BNXT_NTP_FLTR_FLAGS					\
4842 	(CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID |	\
4843 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE |	\
4844 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR |	\
4845 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE |	\
4846 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR |	\
4847 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK |	\
4848 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR |	\
4849 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK |	\
4850 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL |	\
4851 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT |		\
4852 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK |	\
4853 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT |		\
4854 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK |	\
4855 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
4856 
4857 #define BNXT_NTP_TUNNEL_FLTR_FLAG				\
4858 		CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE
4859 
4860 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
4861 					     struct bnxt_ntuple_filter *fltr)
4862 {
4863 	struct hwrm_cfa_ntuple_filter_alloc_input req = {0};
4864 	struct hwrm_cfa_ntuple_filter_alloc_output *resp;
4865 	struct flow_keys *keys = &fltr->fkeys;
4866 	struct bnxt_vnic_info *vnic;
4867 	u32 flags = 0;
4868 	int rc = 0;
4869 
4870 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_ALLOC, -1, -1);
4871 	req.l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx];
4872 
4873 	if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) {
4874 		flags = CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DEST_RFS_RING_IDX;
4875 		req.dst_id = cpu_to_le16(fltr->rxq);
4876 	} else {
4877 		vnic = &bp->vnic_info[fltr->rxq + 1];
4878 		req.dst_id = cpu_to_le16(vnic->fw_vnic_id);
4879 	}
4880 	req.flags = cpu_to_le32(flags);
4881 	req.enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
4882 
4883 	req.ethertype = htons(ETH_P_IP);
4884 	memcpy(req.src_macaddr, fltr->src_mac_addr, ETH_ALEN);
4885 	req.ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
4886 	req.ip_protocol = keys->basic.ip_proto;
4887 
4888 	if (keys->basic.n_proto == htons(ETH_P_IPV6)) {
4889 		int i;
4890 
4891 		req.ethertype = htons(ETH_P_IPV6);
4892 		req.ip_addr_type =
4893 			CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6;
4894 		*(struct in6_addr *)&req.src_ipaddr[0] =
4895 			keys->addrs.v6addrs.src;
4896 		*(struct in6_addr *)&req.dst_ipaddr[0] =
4897 			keys->addrs.v6addrs.dst;
4898 		for (i = 0; i < 4; i++) {
4899 			req.src_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
4900 			req.dst_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
4901 		}
4902 	} else {
4903 		req.src_ipaddr[0] = keys->addrs.v4addrs.src;
4904 		req.src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
4905 		req.dst_ipaddr[0] = keys->addrs.v4addrs.dst;
4906 		req.dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
4907 	}
4908 	if (keys->control.flags & FLOW_DIS_ENCAPSULATION) {
4909 		req.enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG);
4910 		req.tunnel_type =
4911 			CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL;
4912 	}
4913 
4914 	req.src_port = keys->ports.src;
4915 	req.src_port_mask = cpu_to_be16(0xffff);
4916 	req.dst_port = keys->ports.dst;
4917 	req.dst_port_mask = cpu_to_be16(0xffff);
4918 
4919 	mutex_lock(&bp->hwrm_cmd_lock);
4920 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4921 	if (!rc) {
4922 		resp = bnxt_get_hwrm_resp_addr(bp, &req);
4923 		fltr->filter_id = resp->ntuple_filter_id;
4924 	}
4925 	mutex_unlock(&bp->hwrm_cmd_lock);
4926 	return rc;
4927 }
4928 #endif
4929 
4930 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
4931 				     u8 *mac_addr)
4932 {
4933 	u32 rc = 0;
4934 	struct hwrm_cfa_l2_filter_alloc_input req = {0};
4935 	struct hwrm_cfa_l2_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4936 
4937 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_ALLOC, -1, -1);
4938 	req.flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX);
4939 	if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
4940 		req.flags |=
4941 			cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
4942 	req.dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
4943 	req.enables =
4944 		cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
4945 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
4946 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
4947 	memcpy(req.l2_addr, mac_addr, ETH_ALEN);
4948 	req.l2_addr_mask[0] = 0xff;
4949 	req.l2_addr_mask[1] = 0xff;
4950 	req.l2_addr_mask[2] = 0xff;
4951 	req.l2_addr_mask[3] = 0xff;
4952 	req.l2_addr_mask[4] = 0xff;
4953 	req.l2_addr_mask[5] = 0xff;
4954 
4955 	mutex_lock(&bp->hwrm_cmd_lock);
4956 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4957 	if (!rc)
4958 		bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
4959 							resp->l2_filter_id;
4960 	mutex_unlock(&bp->hwrm_cmd_lock);
4961 	return rc;
4962 }
4963 
4964 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
4965 {
4966 	u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
4967 	int rc = 0;
4968 
4969 	/* Any associated ntuple filters will also be cleared by firmware. */
4970 	mutex_lock(&bp->hwrm_cmd_lock);
4971 	for (i = 0; i < num_of_vnics; i++) {
4972 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
4973 
4974 		for (j = 0; j < vnic->uc_filter_count; j++) {
4975 			struct hwrm_cfa_l2_filter_free_input req = {0};
4976 
4977 			bnxt_hwrm_cmd_hdr_init(bp, &req,
4978 					       HWRM_CFA_L2_FILTER_FREE, -1, -1);
4979 
4980 			req.l2_filter_id = vnic->fw_l2_filter_id[j];
4981 
4982 			rc = _hwrm_send_message(bp, &req, sizeof(req),
4983 						HWRM_CMD_TIMEOUT);
4984 		}
4985 		vnic->uc_filter_count = 0;
4986 	}
4987 	mutex_unlock(&bp->hwrm_cmd_lock);
4988 
4989 	return rc;
4990 }
4991 
4992 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
4993 {
4994 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4995 	u16 max_aggs = VNIC_TPA_CFG_REQ_MAX_AGGS_MAX;
4996 	struct hwrm_vnic_tpa_cfg_input req = {0};
4997 
4998 	if (vnic->fw_vnic_id == INVALID_HW_RING_ID)
4999 		return 0;
5000 
5001 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_TPA_CFG, -1, -1);
5002 
5003 	if (tpa_flags) {
5004 		u16 mss = bp->dev->mtu - 40;
5005 		u32 nsegs, n, segs = 0, flags;
5006 
5007 		flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
5008 			VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
5009 			VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
5010 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
5011 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
5012 		if (tpa_flags & BNXT_FLAG_GRO)
5013 			flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
5014 
5015 		req.flags = cpu_to_le32(flags);
5016 
5017 		req.enables =
5018 			cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
5019 				    VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
5020 				    VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
5021 
5022 		/* Number of segs are log2 units, and first packet is not
5023 		 * included as part of this units.
5024 		 */
5025 		if (mss <= BNXT_RX_PAGE_SIZE) {
5026 			n = BNXT_RX_PAGE_SIZE / mss;
5027 			nsegs = (MAX_SKB_FRAGS - 1) * n;
5028 		} else {
5029 			n = mss / BNXT_RX_PAGE_SIZE;
5030 			if (mss & (BNXT_RX_PAGE_SIZE - 1))
5031 				n++;
5032 			nsegs = (MAX_SKB_FRAGS - n) / n;
5033 		}
5034 
5035 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5036 			segs = MAX_TPA_SEGS_P5;
5037 			max_aggs = bp->max_tpa;
5038 		} else {
5039 			segs = ilog2(nsegs);
5040 		}
5041 		req.max_agg_segs = cpu_to_le16(segs);
5042 		req.max_aggs = cpu_to_le16(max_aggs);
5043 
5044 		req.min_agg_len = cpu_to_le32(512);
5045 	}
5046 	req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5047 
5048 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5049 }
5050 
5051 static u16 bnxt_cp_ring_from_grp(struct bnxt *bp, struct bnxt_ring_struct *ring)
5052 {
5053 	struct bnxt_ring_grp_info *grp_info;
5054 
5055 	grp_info = &bp->grp_info[ring->grp_idx];
5056 	return grp_info->cp_fw_ring_id;
5057 }
5058 
5059 static u16 bnxt_cp_ring_for_rx(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
5060 {
5061 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5062 		struct bnxt_napi *bnapi = rxr->bnapi;
5063 		struct bnxt_cp_ring_info *cpr;
5064 
5065 		cpr = bnapi->cp_ring.cp_ring_arr[BNXT_RX_HDL];
5066 		return cpr->cp_ring_struct.fw_ring_id;
5067 	} else {
5068 		return bnxt_cp_ring_from_grp(bp, &rxr->rx_ring_struct);
5069 	}
5070 }
5071 
5072 static u16 bnxt_cp_ring_for_tx(struct bnxt *bp, struct bnxt_tx_ring_info *txr)
5073 {
5074 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5075 		struct bnxt_napi *bnapi = txr->bnapi;
5076 		struct bnxt_cp_ring_info *cpr;
5077 
5078 		cpr = bnapi->cp_ring.cp_ring_arr[BNXT_TX_HDL];
5079 		return cpr->cp_ring_struct.fw_ring_id;
5080 	} else {
5081 		return bnxt_cp_ring_from_grp(bp, &txr->tx_ring_struct);
5082 	}
5083 }
5084 
5085 static int bnxt_alloc_rss_indir_tbl(struct bnxt *bp)
5086 {
5087 	int entries;
5088 
5089 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5090 		entries = BNXT_MAX_RSS_TABLE_ENTRIES_P5;
5091 	else
5092 		entries = HW_HASH_INDEX_SIZE;
5093 
5094 	bp->rss_indir_tbl_entries = entries;
5095 	bp->rss_indir_tbl = kmalloc_array(entries, sizeof(*bp->rss_indir_tbl),
5096 					  GFP_KERNEL);
5097 	if (!bp->rss_indir_tbl)
5098 		return -ENOMEM;
5099 	return 0;
5100 }
5101 
5102 static void bnxt_set_dflt_rss_indir_tbl(struct bnxt *bp)
5103 {
5104 	u16 max_rings, max_entries, pad, i;
5105 
5106 	if (!bp->rx_nr_rings)
5107 		return;
5108 
5109 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5110 		max_rings = bp->rx_nr_rings - 1;
5111 	else
5112 		max_rings = bp->rx_nr_rings;
5113 
5114 	max_entries = bnxt_get_rxfh_indir_size(bp->dev);
5115 
5116 	for (i = 0; i < max_entries; i++)
5117 		bp->rss_indir_tbl[i] = ethtool_rxfh_indir_default(i, max_rings);
5118 
5119 	pad = bp->rss_indir_tbl_entries - max_entries;
5120 	if (pad)
5121 		memset(&bp->rss_indir_tbl[i], 0, pad * sizeof(u16));
5122 }
5123 
5124 static u16 bnxt_get_max_rss_ring(struct bnxt *bp)
5125 {
5126 	u16 i, tbl_size, max_ring = 0;
5127 
5128 	if (!bp->rss_indir_tbl)
5129 		return 0;
5130 
5131 	tbl_size = bnxt_get_rxfh_indir_size(bp->dev);
5132 	for (i = 0; i < tbl_size; i++)
5133 		max_ring = max(max_ring, bp->rss_indir_tbl[i]);
5134 	return max_ring;
5135 }
5136 
5137 int bnxt_get_nr_rss_ctxs(struct bnxt *bp, int rx_rings)
5138 {
5139 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5140 		return DIV_ROUND_UP(rx_rings, BNXT_RSS_TABLE_ENTRIES_P5);
5141 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5142 		return 2;
5143 	return 1;
5144 }
5145 
5146 static void __bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic)
5147 {
5148 	bool no_rss = !(vnic->flags & BNXT_VNIC_RSS_FLAG);
5149 	u16 i, j;
5150 
5151 	/* Fill the RSS indirection table with ring group ids */
5152 	for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++) {
5153 		if (!no_rss)
5154 			j = bp->rss_indir_tbl[i];
5155 		vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
5156 	}
5157 }
5158 
5159 static void __bnxt_fill_hw_rss_tbl_p5(struct bnxt *bp,
5160 				      struct bnxt_vnic_info *vnic)
5161 {
5162 	__le16 *ring_tbl = vnic->rss_table;
5163 	struct bnxt_rx_ring_info *rxr;
5164 	u16 tbl_size, i;
5165 
5166 	tbl_size = bnxt_get_rxfh_indir_size(bp->dev);
5167 
5168 	for (i = 0; i < tbl_size; i++) {
5169 		u16 ring_id, j;
5170 
5171 		j = bp->rss_indir_tbl[i];
5172 		rxr = &bp->rx_ring[j];
5173 
5174 		ring_id = rxr->rx_ring_struct.fw_ring_id;
5175 		*ring_tbl++ = cpu_to_le16(ring_id);
5176 		ring_id = bnxt_cp_ring_for_rx(bp, rxr);
5177 		*ring_tbl++ = cpu_to_le16(ring_id);
5178 	}
5179 }
5180 
5181 static void bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic)
5182 {
5183 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5184 		__bnxt_fill_hw_rss_tbl_p5(bp, vnic);
5185 	else
5186 		__bnxt_fill_hw_rss_tbl(bp, vnic);
5187 }
5188 
5189 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
5190 {
5191 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5192 	struct hwrm_vnic_rss_cfg_input req = {0};
5193 
5194 	if ((bp->flags & BNXT_FLAG_CHIP_P5) ||
5195 	    vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID)
5196 		return 0;
5197 
5198 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1);
5199 	if (set_rss) {
5200 		bnxt_fill_hw_rss_tbl(bp, vnic);
5201 		req.hash_type = cpu_to_le32(bp->rss_hash_cfg);
5202 		req.hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT;
5203 		req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
5204 		req.hash_key_tbl_addr =
5205 			cpu_to_le64(vnic->rss_hash_key_dma_addr);
5206 	}
5207 	req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
5208 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5209 }
5210 
5211 static int bnxt_hwrm_vnic_set_rss_p5(struct bnxt *bp, u16 vnic_id, bool set_rss)
5212 {
5213 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5214 	struct hwrm_vnic_rss_cfg_input req = {0};
5215 	dma_addr_t ring_tbl_map;
5216 	u32 i, nr_ctxs;
5217 
5218 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1);
5219 	req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5220 	if (!set_rss) {
5221 		hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5222 		return 0;
5223 	}
5224 	bnxt_fill_hw_rss_tbl(bp, vnic);
5225 	req.hash_type = cpu_to_le32(bp->rss_hash_cfg);
5226 	req.hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT;
5227 	req.hash_key_tbl_addr = cpu_to_le64(vnic->rss_hash_key_dma_addr);
5228 	ring_tbl_map = vnic->rss_table_dma_addr;
5229 	nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings);
5230 	for (i = 0; i < nr_ctxs; ring_tbl_map += BNXT_RSS_TABLE_SIZE_P5, i++) {
5231 		int rc;
5232 
5233 		req.ring_grp_tbl_addr = cpu_to_le64(ring_tbl_map);
5234 		req.ring_table_pair_index = i;
5235 		req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[i]);
5236 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5237 		if (rc)
5238 			return rc;
5239 	}
5240 	return 0;
5241 }
5242 
5243 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
5244 {
5245 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5246 	struct hwrm_vnic_plcmodes_cfg_input req = {0};
5247 
5248 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_PLCMODES_CFG, -1, -1);
5249 	req.flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT |
5250 				VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
5251 				VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
5252 	req.enables =
5253 		cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID |
5254 			    VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
5255 	/* thresholds not implemented in firmware yet */
5256 	req.jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
5257 	req.hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
5258 	req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
5259 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5260 }
5261 
5262 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id,
5263 					u16 ctx_idx)
5264 {
5265 	struct hwrm_vnic_rss_cos_lb_ctx_free_input req = {0};
5266 
5267 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_FREE, -1, -1);
5268 	req.rss_cos_lb_ctx_id =
5269 		cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]);
5270 
5271 	hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5272 	bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID;
5273 }
5274 
5275 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
5276 {
5277 	int i, j;
5278 
5279 	for (i = 0; i < bp->nr_vnics; i++) {
5280 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
5281 
5282 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) {
5283 			if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID)
5284 				bnxt_hwrm_vnic_ctx_free_one(bp, i, j);
5285 		}
5286 	}
5287 	bp->rsscos_nr_ctxs = 0;
5288 }
5289 
5290 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx)
5291 {
5292 	int rc;
5293 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_input req = {0};
5294 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp =
5295 						bp->hwrm_cmd_resp_addr;
5296 
5297 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC, -1,
5298 			       -1);
5299 
5300 	mutex_lock(&bp->hwrm_cmd_lock);
5301 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5302 	if (!rc)
5303 		bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] =
5304 			le16_to_cpu(resp->rss_cos_lb_ctx_id);
5305 	mutex_unlock(&bp->hwrm_cmd_lock);
5306 
5307 	return rc;
5308 }
5309 
5310 static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp)
5311 {
5312 	if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP)
5313 		return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE;
5314 	return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE;
5315 }
5316 
5317 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
5318 {
5319 	unsigned int ring = 0, grp_idx;
5320 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5321 	struct hwrm_vnic_cfg_input req = {0};
5322 	u16 def_vlan = 0;
5323 
5324 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_CFG, -1, -1);
5325 
5326 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5327 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0];
5328 
5329 		req.default_rx_ring_id =
5330 			cpu_to_le16(rxr->rx_ring_struct.fw_ring_id);
5331 		req.default_cmpl_ring_id =
5332 			cpu_to_le16(bnxt_cp_ring_for_rx(bp, rxr));
5333 		req.enables =
5334 			cpu_to_le32(VNIC_CFG_REQ_ENABLES_DEFAULT_RX_RING_ID |
5335 				    VNIC_CFG_REQ_ENABLES_DEFAULT_CMPL_RING_ID);
5336 		goto vnic_mru;
5337 	}
5338 	req.enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP);
5339 	/* Only RSS support for now TBD: COS & LB */
5340 	if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) {
5341 		req.rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
5342 		req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
5343 					   VNIC_CFG_REQ_ENABLES_MRU);
5344 	} else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) {
5345 		req.rss_rule =
5346 			cpu_to_le16(bp->vnic_info[0].fw_rss_cos_lb_ctx[0]);
5347 		req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
5348 					   VNIC_CFG_REQ_ENABLES_MRU);
5349 		req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE);
5350 	} else {
5351 		req.rss_rule = cpu_to_le16(0xffff);
5352 	}
5353 
5354 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) &&
5355 	    (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) {
5356 		req.cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]);
5357 		req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE);
5358 	} else {
5359 		req.cos_rule = cpu_to_le16(0xffff);
5360 	}
5361 
5362 	if (vnic->flags & BNXT_VNIC_RSS_FLAG)
5363 		ring = 0;
5364 	else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
5365 		ring = vnic_id - 1;
5366 	else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp))
5367 		ring = bp->rx_nr_rings - 1;
5368 
5369 	grp_idx = bp->rx_ring[ring].bnapi->index;
5370 	req.dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
5371 	req.lb_rule = cpu_to_le16(0xffff);
5372 vnic_mru:
5373 	req.mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + VLAN_HLEN);
5374 
5375 	req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5376 #ifdef CONFIG_BNXT_SRIOV
5377 	if (BNXT_VF(bp))
5378 		def_vlan = bp->vf.vlan;
5379 #endif
5380 	if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan)
5381 		req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
5382 	if (!vnic_id && bnxt_ulp_registered(bp->edev, BNXT_ROCE_ULP))
5383 		req.flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp));
5384 
5385 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5386 }
5387 
5388 static void bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
5389 {
5390 	if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
5391 		struct hwrm_vnic_free_input req = {0};
5392 
5393 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_FREE, -1, -1);
5394 		req.vnic_id =
5395 			cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
5396 
5397 		hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5398 		bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
5399 	}
5400 }
5401 
5402 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
5403 {
5404 	u16 i;
5405 
5406 	for (i = 0; i < bp->nr_vnics; i++)
5407 		bnxt_hwrm_vnic_free_one(bp, i);
5408 }
5409 
5410 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
5411 				unsigned int start_rx_ring_idx,
5412 				unsigned int nr_rings)
5413 {
5414 	int rc = 0;
5415 	unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
5416 	struct hwrm_vnic_alloc_input req = {0};
5417 	struct hwrm_vnic_alloc_output *resp = bp->hwrm_cmd_resp_addr;
5418 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5419 
5420 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5421 		goto vnic_no_ring_grps;
5422 
5423 	/* map ring groups to this vnic */
5424 	for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
5425 		grp_idx = bp->rx_ring[i].bnapi->index;
5426 		if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
5427 			netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
5428 				   j, nr_rings);
5429 			break;
5430 		}
5431 		vnic->fw_grp_ids[j] = bp->grp_info[grp_idx].fw_grp_id;
5432 	}
5433 
5434 vnic_no_ring_grps:
5435 	for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++)
5436 		vnic->fw_rss_cos_lb_ctx[i] = INVALID_HW_RING_ID;
5437 	if (vnic_id == 0)
5438 		req.flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
5439 
5440 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_ALLOC, -1, -1);
5441 
5442 	mutex_lock(&bp->hwrm_cmd_lock);
5443 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5444 	if (!rc)
5445 		vnic->fw_vnic_id = le32_to_cpu(resp->vnic_id);
5446 	mutex_unlock(&bp->hwrm_cmd_lock);
5447 	return rc;
5448 }
5449 
5450 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp)
5451 {
5452 	struct hwrm_vnic_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
5453 	struct hwrm_vnic_qcaps_input req = {0};
5454 	int rc;
5455 
5456 	bp->hw_ring_stats_size = sizeof(struct ctx_hw_stats);
5457 	bp->flags &= ~(BNXT_FLAG_NEW_RSS_CAP | BNXT_FLAG_ROCE_MIRROR_CAP);
5458 	if (bp->hwrm_spec_code < 0x10600)
5459 		return 0;
5460 
5461 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_QCAPS, -1, -1);
5462 	mutex_lock(&bp->hwrm_cmd_lock);
5463 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5464 	if (!rc) {
5465 		u32 flags = le32_to_cpu(resp->flags);
5466 
5467 		if (!(bp->flags & BNXT_FLAG_CHIP_P5) &&
5468 		    (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP))
5469 			bp->flags |= BNXT_FLAG_NEW_RSS_CAP;
5470 		if (flags &
5471 		    VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP)
5472 			bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP;
5473 
5474 		/* Older P5 fw before EXT_HW_STATS support did not set
5475 		 * VLAN_STRIP_CAP properly.
5476 		 */
5477 		if ((flags & VNIC_QCAPS_RESP_FLAGS_VLAN_STRIP_CAP) ||
5478 		    (BNXT_CHIP_P5_THOR(bp) &&
5479 		     !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)))
5480 			bp->fw_cap |= BNXT_FW_CAP_VLAN_RX_STRIP;
5481 		bp->max_tpa_v2 = le16_to_cpu(resp->max_aggs_supported);
5482 		if (bp->max_tpa_v2) {
5483 			if (BNXT_CHIP_P5_THOR(bp))
5484 				bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5;
5485 			else
5486 				bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5_SR2;
5487 		}
5488 	}
5489 	mutex_unlock(&bp->hwrm_cmd_lock);
5490 	return rc;
5491 }
5492 
5493 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
5494 {
5495 	u16 i;
5496 	u32 rc = 0;
5497 
5498 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5499 		return 0;
5500 
5501 	mutex_lock(&bp->hwrm_cmd_lock);
5502 	for (i = 0; i < bp->rx_nr_rings; i++) {
5503 		struct hwrm_ring_grp_alloc_input req = {0};
5504 		struct hwrm_ring_grp_alloc_output *resp =
5505 					bp->hwrm_cmd_resp_addr;
5506 		unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
5507 
5508 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_ALLOC, -1, -1);
5509 
5510 		req.cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
5511 		req.rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
5512 		req.ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
5513 		req.sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
5514 
5515 		rc = _hwrm_send_message(bp, &req, sizeof(req),
5516 					HWRM_CMD_TIMEOUT);
5517 		if (rc)
5518 			break;
5519 
5520 		bp->grp_info[grp_idx].fw_grp_id =
5521 			le32_to_cpu(resp->ring_group_id);
5522 	}
5523 	mutex_unlock(&bp->hwrm_cmd_lock);
5524 	return rc;
5525 }
5526 
5527 static void bnxt_hwrm_ring_grp_free(struct bnxt *bp)
5528 {
5529 	u16 i;
5530 	struct hwrm_ring_grp_free_input req = {0};
5531 
5532 	if (!bp->grp_info || (bp->flags & BNXT_FLAG_CHIP_P5))
5533 		return;
5534 
5535 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_FREE, -1, -1);
5536 
5537 	mutex_lock(&bp->hwrm_cmd_lock);
5538 	for (i = 0; i < bp->cp_nr_rings; i++) {
5539 		if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
5540 			continue;
5541 		req.ring_group_id =
5542 			cpu_to_le32(bp->grp_info[i].fw_grp_id);
5543 
5544 		_hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5545 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
5546 	}
5547 	mutex_unlock(&bp->hwrm_cmd_lock);
5548 }
5549 
5550 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
5551 				    struct bnxt_ring_struct *ring,
5552 				    u32 ring_type, u32 map_index)
5553 {
5554 	int rc = 0, err = 0;
5555 	struct hwrm_ring_alloc_input req = {0};
5556 	struct hwrm_ring_alloc_output *resp = bp->hwrm_cmd_resp_addr;
5557 	struct bnxt_ring_mem_info *rmem = &ring->ring_mem;
5558 	struct bnxt_ring_grp_info *grp_info;
5559 	u16 ring_id;
5560 
5561 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_ALLOC, -1, -1);
5562 
5563 	req.enables = 0;
5564 	if (rmem->nr_pages > 1) {
5565 		req.page_tbl_addr = cpu_to_le64(rmem->pg_tbl_map);
5566 		/* Page size is in log2 units */
5567 		req.page_size = BNXT_PAGE_SHIFT;
5568 		req.page_tbl_depth = 1;
5569 	} else {
5570 		req.page_tbl_addr =  cpu_to_le64(rmem->dma_arr[0]);
5571 	}
5572 	req.fbo = 0;
5573 	/* Association of ring index with doorbell index and MSIX number */
5574 	req.logical_id = cpu_to_le16(map_index);
5575 
5576 	switch (ring_type) {
5577 	case HWRM_RING_ALLOC_TX: {
5578 		struct bnxt_tx_ring_info *txr;
5579 
5580 		txr = container_of(ring, struct bnxt_tx_ring_info,
5581 				   tx_ring_struct);
5582 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
5583 		/* Association of transmit ring with completion ring */
5584 		grp_info = &bp->grp_info[ring->grp_idx];
5585 		req.cmpl_ring_id = cpu_to_le16(bnxt_cp_ring_for_tx(bp, txr));
5586 		req.length = cpu_to_le32(bp->tx_ring_mask + 1);
5587 		req.stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5588 		req.queue_id = cpu_to_le16(ring->queue_id);
5589 		break;
5590 	}
5591 	case HWRM_RING_ALLOC_RX:
5592 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
5593 		req.length = cpu_to_le32(bp->rx_ring_mask + 1);
5594 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5595 			u16 flags = 0;
5596 
5597 			/* Association of rx ring with stats context */
5598 			grp_info = &bp->grp_info[ring->grp_idx];
5599 			req.rx_buf_size = cpu_to_le16(bp->rx_buf_use_size);
5600 			req.stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5601 			req.enables |= cpu_to_le32(
5602 				RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
5603 			if (NET_IP_ALIGN == 2)
5604 				flags = RING_ALLOC_REQ_FLAGS_RX_SOP_PAD;
5605 			req.flags = cpu_to_le16(flags);
5606 		}
5607 		break;
5608 	case HWRM_RING_ALLOC_AGG:
5609 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5610 			req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX_AGG;
5611 			/* Association of agg ring with rx ring */
5612 			grp_info = &bp->grp_info[ring->grp_idx];
5613 			req.rx_ring_id = cpu_to_le16(grp_info->rx_fw_ring_id);
5614 			req.rx_buf_size = cpu_to_le16(BNXT_RX_PAGE_SIZE);
5615 			req.stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5616 			req.enables |= cpu_to_le32(
5617 				RING_ALLOC_REQ_ENABLES_RX_RING_ID_VALID |
5618 				RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
5619 		} else {
5620 			req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
5621 		}
5622 		req.length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
5623 		break;
5624 	case HWRM_RING_ALLOC_CMPL:
5625 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL;
5626 		req.length = cpu_to_le32(bp->cp_ring_mask + 1);
5627 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5628 			/* Association of cp ring with nq */
5629 			grp_info = &bp->grp_info[map_index];
5630 			req.nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id);
5631 			req.cq_handle = cpu_to_le64(ring->handle);
5632 			req.enables |= cpu_to_le32(
5633 				RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID);
5634 		} else if (bp->flags & BNXT_FLAG_USING_MSIX) {
5635 			req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
5636 		}
5637 		break;
5638 	case HWRM_RING_ALLOC_NQ:
5639 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_NQ;
5640 		req.length = cpu_to_le32(bp->cp_ring_mask + 1);
5641 		if (bp->flags & BNXT_FLAG_USING_MSIX)
5642 			req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
5643 		break;
5644 	default:
5645 		netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
5646 			   ring_type);
5647 		return -1;
5648 	}
5649 
5650 	mutex_lock(&bp->hwrm_cmd_lock);
5651 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5652 	err = le16_to_cpu(resp->error_code);
5653 	ring_id = le16_to_cpu(resp->ring_id);
5654 	mutex_unlock(&bp->hwrm_cmd_lock);
5655 
5656 	if (rc || err) {
5657 		netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n",
5658 			   ring_type, rc, err);
5659 		return -EIO;
5660 	}
5661 	ring->fw_ring_id = ring_id;
5662 	return rc;
5663 }
5664 
5665 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx)
5666 {
5667 	int rc;
5668 
5669 	if (BNXT_PF(bp)) {
5670 		struct hwrm_func_cfg_input req = {0};
5671 
5672 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
5673 		req.fid = cpu_to_le16(0xffff);
5674 		req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
5675 		req.async_event_cr = cpu_to_le16(idx);
5676 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5677 	} else {
5678 		struct hwrm_func_vf_cfg_input req = {0};
5679 
5680 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_CFG, -1, -1);
5681 		req.enables =
5682 			cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
5683 		req.async_event_cr = cpu_to_le16(idx);
5684 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5685 	}
5686 	return rc;
5687 }
5688 
5689 static void bnxt_set_db(struct bnxt *bp, struct bnxt_db_info *db, u32 ring_type,
5690 			u32 map_idx, u32 xid)
5691 {
5692 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5693 		if (BNXT_PF(bp))
5694 			db->doorbell = bp->bar1 + DB_PF_OFFSET_P5;
5695 		else
5696 			db->doorbell = bp->bar1 + DB_VF_OFFSET_P5;
5697 		switch (ring_type) {
5698 		case HWRM_RING_ALLOC_TX:
5699 			db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SQ;
5700 			break;
5701 		case HWRM_RING_ALLOC_RX:
5702 		case HWRM_RING_ALLOC_AGG:
5703 			db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SRQ;
5704 			break;
5705 		case HWRM_RING_ALLOC_CMPL:
5706 			db->db_key64 = DBR_PATH_L2;
5707 			break;
5708 		case HWRM_RING_ALLOC_NQ:
5709 			db->db_key64 = DBR_PATH_L2;
5710 			break;
5711 		}
5712 		db->db_key64 |= (u64)xid << DBR_XID_SFT;
5713 	} else {
5714 		db->doorbell = bp->bar1 + map_idx * 0x80;
5715 		switch (ring_type) {
5716 		case HWRM_RING_ALLOC_TX:
5717 			db->db_key32 = DB_KEY_TX;
5718 			break;
5719 		case HWRM_RING_ALLOC_RX:
5720 		case HWRM_RING_ALLOC_AGG:
5721 			db->db_key32 = DB_KEY_RX;
5722 			break;
5723 		case HWRM_RING_ALLOC_CMPL:
5724 			db->db_key32 = DB_KEY_CP;
5725 			break;
5726 		}
5727 	}
5728 }
5729 
5730 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
5731 {
5732 	bool agg_rings = !!(bp->flags & BNXT_FLAG_AGG_RINGS);
5733 	int i, rc = 0;
5734 	u32 type;
5735 
5736 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5737 		type = HWRM_RING_ALLOC_NQ;
5738 	else
5739 		type = HWRM_RING_ALLOC_CMPL;
5740 	for (i = 0; i < bp->cp_nr_rings; i++) {
5741 		struct bnxt_napi *bnapi = bp->bnapi[i];
5742 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5743 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
5744 		u32 map_idx = ring->map_idx;
5745 		unsigned int vector;
5746 
5747 		vector = bp->irq_tbl[map_idx].vector;
5748 		disable_irq_nosync(vector);
5749 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5750 		if (rc) {
5751 			enable_irq(vector);
5752 			goto err_out;
5753 		}
5754 		bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id);
5755 		bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
5756 		enable_irq(vector);
5757 		bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
5758 
5759 		if (!i) {
5760 			rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id);
5761 			if (rc)
5762 				netdev_warn(bp->dev, "Failed to set async event completion ring.\n");
5763 		}
5764 	}
5765 
5766 	type = HWRM_RING_ALLOC_TX;
5767 	for (i = 0; i < bp->tx_nr_rings; i++) {
5768 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
5769 		struct bnxt_ring_struct *ring;
5770 		u32 map_idx;
5771 
5772 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5773 			struct bnxt_napi *bnapi = txr->bnapi;
5774 			struct bnxt_cp_ring_info *cpr, *cpr2;
5775 			u32 type2 = HWRM_RING_ALLOC_CMPL;
5776 
5777 			cpr = &bnapi->cp_ring;
5778 			cpr2 = cpr->cp_ring_arr[BNXT_TX_HDL];
5779 			ring = &cpr2->cp_ring_struct;
5780 			ring->handle = BNXT_TX_HDL;
5781 			map_idx = bnapi->index;
5782 			rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
5783 			if (rc)
5784 				goto err_out;
5785 			bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
5786 				    ring->fw_ring_id);
5787 			bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
5788 		}
5789 		ring = &txr->tx_ring_struct;
5790 		map_idx = i;
5791 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5792 		if (rc)
5793 			goto err_out;
5794 		bnxt_set_db(bp, &txr->tx_db, type, map_idx, ring->fw_ring_id);
5795 	}
5796 
5797 	type = HWRM_RING_ALLOC_RX;
5798 	for (i = 0; i < bp->rx_nr_rings; i++) {
5799 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5800 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
5801 		struct bnxt_napi *bnapi = rxr->bnapi;
5802 		u32 map_idx = bnapi->index;
5803 
5804 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5805 		if (rc)
5806 			goto err_out;
5807 		bnxt_set_db(bp, &rxr->rx_db, type, map_idx, ring->fw_ring_id);
5808 		/* If we have agg rings, post agg buffers first. */
5809 		if (!agg_rings)
5810 			bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
5811 		bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
5812 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5813 			struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5814 			u32 type2 = HWRM_RING_ALLOC_CMPL;
5815 			struct bnxt_cp_ring_info *cpr2;
5816 
5817 			cpr2 = cpr->cp_ring_arr[BNXT_RX_HDL];
5818 			ring = &cpr2->cp_ring_struct;
5819 			ring->handle = BNXT_RX_HDL;
5820 			rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
5821 			if (rc)
5822 				goto err_out;
5823 			bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
5824 				    ring->fw_ring_id);
5825 			bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
5826 		}
5827 	}
5828 
5829 	if (agg_rings) {
5830 		type = HWRM_RING_ALLOC_AGG;
5831 		for (i = 0; i < bp->rx_nr_rings; i++) {
5832 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5833 			struct bnxt_ring_struct *ring =
5834 						&rxr->rx_agg_ring_struct;
5835 			u32 grp_idx = ring->grp_idx;
5836 			u32 map_idx = grp_idx + bp->rx_nr_rings;
5837 
5838 			rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5839 			if (rc)
5840 				goto err_out;
5841 
5842 			bnxt_set_db(bp, &rxr->rx_agg_db, type, map_idx,
5843 				    ring->fw_ring_id);
5844 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
5845 			bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
5846 			bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
5847 		}
5848 	}
5849 err_out:
5850 	return rc;
5851 }
5852 
5853 static int hwrm_ring_free_send_msg(struct bnxt *bp,
5854 				   struct bnxt_ring_struct *ring,
5855 				   u32 ring_type, int cmpl_ring_id)
5856 {
5857 	int rc;
5858 	struct hwrm_ring_free_input req = {0};
5859 	struct hwrm_ring_free_output *resp = bp->hwrm_cmd_resp_addr;
5860 	u16 error_code;
5861 
5862 	if (BNXT_NO_FW_ACCESS(bp))
5863 		return 0;
5864 
5865 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_FREE, cmpl_ring_id, -1);
5866 	req.ring_type = ring_type;
5867 	req.ring_id = cpu_to_le16(ring->fw_ring_id);
5868 
5869 	mutex_lock(&bp->hwrm_cmd_lock);
5870 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5871 	error_code = le16_to_cpu(resp->error_code);
5872 	mutex_unlock(&bp->hwrm_cmd_lock);
5873 
5874 	if (rc || error_code) {
5875 		netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n",
5876 			   ring_type, rc, error_code);
5877 		return -EIO;
5878 	}
5879 	return 0;
5880 }
5881 
5882 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
5883 {
5884 	u32 type;
5885 	int i;
5886 
5887 	if (!bp->bnapi)
5888 		return;
5889 
5890 	for (i = 0; i < bp->tx_nr_rings; i++) {
5891 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
5892 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
5893 
5894 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5895 			u32 cmpl_ring_id = bnxt_cp_ring_for_tx(bp, txr);
5896 
5897 			hwrm_ring_free_send_msg(bp, ring,
5898 						RING_FREE_REQ_RING_TYPE_TX,
5899 						close_path ? cmpl_ring_id :
5900 						INVALID_HW_RING_ID);
5901 			ring->fw_ring_id = INVALID_HW_RING_ID;
5902 		}
5903 	}
5904 
5905 	for (i = 0; i < bp->rx_nr_rings; i++) {
5906 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5907 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
5908 		u32 grp_idx = rxr->bnapi->index;
5909 
5910 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5911 			u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
5912 
5913 			hwrm_ring_free_send_msg(bp, ring,
5914 						RING_FREE_REQ_RING_TYPE_RX,
5915 						close_path ? cmpl_ring_id :
5916 						INVALID_HW_RING_ID);
5917 			ring->fw_ring_id = INVALID_HW_RING_ID;
5918 			bp->grp_info[grp_idx].rx_fw_ring_id =
5919 				INVALID_HW_RING_ID;
5920 		}
5921 	}
5922 
5923 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5924 		type = RING_FREE_REQ_RING_TYPE_RX_AGG;
5925 	else
5926 		type = RING_FREE_REQ_RING_TYPE_RX;
5927 	for (i = 0; i < bp->rx_nr_rings; i++) {
5928 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5929 		struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
5930 		u32 grp_idx = rxr->bnapi->index;
5931 
5932 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5933 			u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
5934 
5935 			hwrm_ring_free_send_msg(bp, ring, type,
5936 						close_path ? cmpl_ring_id :
5937 						INVALID_HW_RING_ID);
5938 			ring->fw_ring_id = INVALID_HW_RING_ID;
5939 			bp->grp_info[grp_idx].agg_fw_ring_id =
5940 				INVALID_HW_RING_ID;
5941 		}
5942 	}
5943 
5944 	/* The completion rings are about to be freed.  After that the
5945 	 * IRQ doorbell will not work anymore.  So we need to disable
5946 	 * IRQ here.
5947 	 */
5948 	bnxt_disable_int_sync(bp);
5949 
5950 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5951 		type = RING_FREE_REQ_RING_TYPE_NQ;
5952 	else
5953 		type = RING_FREE_REQ_RING_TYPE_L2_CMPL;
5954 	for (i = 0; i < bp->cp_nr_rings; i++) {
5955 		struct bnxt_napi *bnapi = bp->bnapi[i];
5956 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5957 		struct bnxt_ring_struct *ring;
5958 		int j;
5959 
5960 		for (j = 0; j < 2; j++) {
5961 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
5962 
5963 			if (cpr2) {
5964 				ring = &cpr2->cp_ring_struct;
5965 				if (ring->fw_ring_id == INVALID_HW_RING_ID)
5966 					continue;
5967 				hwrm_ring_free_send_msg(bp, ring,
5968 					RING_FREE_REQ_RING_TYPE_L2_CMPL,
5969 					INVALID_HW_RING_ID);
5970 				ring->fw_ring_id = INVALID_HW_RING_ID;
5971 			}
5972 		}
5973 		ring = &cpr->cp_ring_struct;
5974 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5975 			hwrm_ring_free_send_msg(bp, ring, type,
5976 						INVALID_HW_RING_ID);
5977 			ring->fw_ring_id = INVALID_HW_RING_ID;
5978 			bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
5979 		}
5980 	}
5981 }
5982 
5983 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
5984 			   bool shared);
5985 
5986 static int bnxt_hwrm_get_rings(struct bnxt *bp)
5987 {
5988 	struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
5989 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
5990 	struct hwrm_func_qcfg_input req = {0};
5991 	int rc;
5992 
5993 	if (bp->hwrm_spec_code < 0x10601)
5994 		return 0;
5995 
5996 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
5997 	req.fid = cpu_to_le16(0xffff);
5998 	mutex_lock(&bp->hwrm_cmd_lock);
5999 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6000 	if (rc) {
6001 		mutex_unlock(&bp->hwrm_cmd_lock);
6002 		return rc;
6003 	}
6004 
6005 	hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings);
6006 	if (BNXT_NEW_RM(bp)) {
6007 		u16 cp, stats;
6008 
6009 		hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings);
6010 		hw_resc->resv_hw_ring_grps =
6011 			le32_to_cpu(resp->alloc_hw_ring_grps);
6012 		hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics);
6013 		cp = le16_to_cpu(resp->alloc_cmpl_rings);
6014 		stats = le16_to_cpu(resp->alloc_stat_ctx);
6015 		hw_resc->resv_irqs = cp;
6016 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
6017 			int rx = hw_resc->resv_rx_rings;
6018 			int tx = hw_resc->resv_tx_rings;
6019 
6020 			if (bp->flags & BNXT_FLAG_AGG_RINGS)
6021 				rx >>= 1;
6022 			if (cp < (rx + tx)) {
6023 				bnxt_trim_rings(bp, &rx, &tx, cp, false);
6024 				if (bp->flags & BNXT_FLAG_AGG_RINGS)
6025 					rx <<= 1;
6026 				hw_resc->resv_rx_rings = rx;
6027 				hw_resc->resv_tx_rings = tx;
6028 			}
6029 			hw_resc->resv_irqs = le16_to_cpu(resp->alloc_msix);
6030 			hw_resc->resv_hw_ring_grps = rx;
6031 		}
6032 		hw_resc->resv_cp_rings = cp;
6033 		hw_resc->resv_stat_ctxs = stats;
6034 	}
6035 	mutex_unlock(&bp->hwrm_cmd_lock);
6036 	return 0;
6037 }
6038 
6039 /* Caller must hold bp->hwrm_cmd_lock */
6040 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings)
6041 {
6042 	struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
6043 	struct hwrm_func_qcfg_input req = {0};
6044 	int rc;
6045 
6046 	if (bp->hwrm_spec_code < 0x10601)
6047 		return 0;
6048 
6049 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
6050 	req.fid = cpu_to_le16(fid);
6051 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6052 	if (!rc)
6053 		*tx_rings = le16_to_cpu(resp->alloc_tx_rings);
6054 
6055 	return rc;
6056 }
6057 
6058 static bool bnxt_rfs_supported(struct bnxt *bp);
6059 
6060 static void
6061 __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, struct hwrm_func_cfg_input *req,
6062 			     int tx_rings, int rx_rings, int ring_grps,
6063 			     int cp_rings, int stats, int vnics)
6064 {
6065 	u32 enables = 0;
6066 
6067 	bnxt_hwrm_cmd_hdr_init(bp, req, HWRM_FUNC_CFG, -1, -1);
6068 	req->fid = cpu_to_le16(0xffff);
6069 	enables |= tx_rings ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
6070 	req->num_tx_rings = cpu_to_le16(tx_rings);
6071 	if (BNXT_NEW_RM(bp)) {
6072 		enables |= rx_rings ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0;
6073 		enables |= stats ? FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
6074 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
6075 			enables |= cp_rings ? FUNC_CFG_REQ_ENABLES_NUM_MSIX : 0;
6076 			enables |= tx_rings + ring_grps ?
6077 				   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6078 			enables |= rx_rings ?
6079 				FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
6080 		} else {
6081 			enables |= cp_rings ?
6082 				   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6083 			enables |= ring_grps ?
6084 				   FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS |
6085 				   FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
6086 		}
6087 		enables |= vnics ? FUNC_CFG_REQ_ENABLES_NUM_VNICS : 0;
6088 
6089 		req->num_rx_rings = cpu_to_le16(rx_rings);
6090 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
6091 			req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps);
6092 			req->num_msix = cpu_to_le16(cp_rings);
6093 			req->num_rsscos_ctxs =
6094 				cpu_to_le16(DIV_ROUND_UP(ring_grps, 64));
6095 		} else {
6096 			req->num_cmpl_rings = cpu_to_le16(cp_rings);
6097 			req->num_hw_ring_grps = cpu_to_le16(ring_grps);
6098 			req->num_rsscos_ctxs = cpu_to_le16(1);
6099 			if (!(bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
6100 			    bnxt_rfs_supported(bp))
6101 				req->num_rsscos_ctxs =
6102 					cpu_to_le16(ring_grps + 1);
6103 		}
6104 		req->num_stat_ctxs = cpu_to_le16(stats);
6105 		req->num_vnics = cpu_to_le16(vnics);
6106 	}
6107 	req->enables = cpu_to_le32(enables);
6108 }
6109 
6110 static void
6111 __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp,
6112 			     struct hwrm_func_vf_cfg_input *req, int tx_rings,
6113 			     int rx_rings, int ring_grps, int cp_rings,
6114 			     int stats, int vnics)
6115 {
6116 	u32 enables = 0;
6117 
6118 	bnxt_hwrm_cmd_hdr_init(bp, req, HWRM_FUNC_VF_CFG, -1, -1);
6119 	enables |= tx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
6120 	enables |= rx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS |
6121 			      FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
6122 	enables |= stats ? FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
6123 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
6124 		enables |= tx_rings + ring_grps ?
6125 			   FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6126 	} else {
6127 		enables |= cp_rings ?
6128 			   FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6129 		enables |= ring_grps ?
6130 			   FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0;
6131 	}
6132 	enables |= vnics ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0;
6133 	enables |= FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS;
6134 
6135 	req->num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX);
6136 	req->num_tx_rings = cpu_to_le16(tx_rings);
6137 	req->num_rx_rings = cpu_to_le16(rx_rings);
6138 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
6139 		req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps);
6140 		req->num_rsscos_ctxs = cpu_to_le16(DIV_ROUND_UP(ring_grps, 64));
6141 	} else {
6142 		req->num_cmpl_rings = cpu_to_le16(cp_rings);
6143 		req->num_hw_ring_grps = cpu_to_le16(ring_grps);
6144 		req->num_rsscos_ctxs = cpu_to_le16(BNXT_VF_MAX_RSS_CTX);
6145 	}
6146 	req->num_stat_ctxs = cpu_to_le16(stats);
6147 	req->num_vnics = cpu_to_le16(vnics);
6148 
6149 	req->enables = cpu_to_le32(enables);
6150 }
6151 
6152 static int
6153 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6154 			   int ring_grps, int cp_rings, int stats, int vnics)
6155 {
6156 	struct hwrm_func_cfg_input req = {0};
6157 	int rc;
6158 
6159 	__bnxt_hwrm_reserve_pf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
6160 				     cp_rings, stats, vnics);
6161 	if (!req.enables)
6162 		return 0;
6163 
6164 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6165 	if (rc)
6166 		return rc;
6167 
6168 	if (bp->hwrm_spec_code < 0x10601)
6169 		bp->hw_resc.resv_tx_rings = tx_rings;
6170 
6171 	return bnxt_hwrm_get_rings(bp);
6172 }
6173 
6174 static int
6175 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6176 			   int ring_grps, int cp_rings, int stats, int vnics)
6177 {
6178 	struct hwrm_func_vf_cfg_input req = {0};
6179 	int rc;
6180 
6181 	if (!BNXT_NEW_RM(bp)) {
6182 		bp->hw_resc.resv_tx_rings = tx_rings;
6183 		return 0;
6184 	}
6185 
6186 	__bnxt_hwrm_reserve_vf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
6187 				     cp_rings, stats, vnics);
6188 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6189 	if (rc)
6190 		return rc;
6191 
6192 	return bnxt_hwrm_get_rings(bp);
6193 }
6194 
6195 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, int tx, int rx, int grp,
6196 				   int cp, int stat, int vnic)
6197 {
6198 	if (BNXT_PF(bp))
6199 		return bnxt_hwrm_reserve_pf_rings(bp, tx, rx, grp, cp, stat,
6200 						  vnic);
6201 	else
6202 		return bnxt_hwrm_reserve_vf_rings(bp, tx, rx, grp, cp, stat,
6203 						  vnic);
6204 }
6205 
6206 int bnxt_nq_rings_in_use(struct bnxt *bp)
6207 {
6208 	int cp = bp->cp_nr_rings;
6209 	int ulp_msix, ulp_base;
6210 
6211 	ulp_msix = bnxt_get_ulp_msix_num(bp);
6212 	if (ulp_msix) {
6213 		ulp_base = bnxt_get_ulp_msix_base(bp);
6214 		cp += ulp_msix;
6215 		if ((ulp_base + ulp_msix) > cp)
6216 			cp = ulp_base + ulp_msix;
6217 	}
6218 	return cp;
6219 }
6220 
6221 static int bnxt_cp_rings_in_use(struct bnxt *bp)
6222 {
6223 	int cp;
6224 
6225 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
6226 		return bnxt_nq_rings_in_use(bp);
6227 
6228 	cp = bp->tx_nr_rings + bp->rx_nr_rings;
6229 	return cp;
6230 }
6231 
6232 static int bnxt_get_func_stat_ctxs(struct bnxt *bp)
6233 {
6234 	int ulp_stat = bnxt_get_ulp_stat_ctxs(bp);
6235 	int cp = bp->cp_nr_rings;
6236 
6237 	if (!ulp_stat)
6238 		return cp;
6239 
6240 	if (bnxt_nq_rings_in_use(bp) > cp + bnxt_get_ulp_msix_num(bp))
6241 		return bnxt_get_ulp_msix_base(bp) + ulp_stat;
6242 
6243 	return cp + ulp_stat;
6244 }
6245 
6246 /* Check if a default RSS map needs to be setup.  This function is only
6247  * used on older firmware that does not require reserving RX rings.
6248  */
6249 static void bnxt_check_rss_tbl_no_rmgr(struct bnxt *bp)
6250 {
6251 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6252 
6253 	/* The RSS map is valid for RX rings set to resv_rx_rings */
6254 	if (hw_resc->resv_rx_rings != bp->rx_nr_rings) {
6255 		hw_resc->resv_rx_rings = bp->rx_nr_rings;
6256 		if (!netif_is_rxfh_configured(bp->dev))
6257 			bnxt_set_dflt_rss_indir_tbl(bp);
6258 	}
6259 }
6260 
6261 static bool bnxt_need_reserve_rings(struct bnxt *bp)
6262 {
6263 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6264 	int cp = bnxt_cp_rings_in_use(bp);
6265 	int nq = bnxt_nq_rings_in_use(bp);
6266 	int rx = bp->rx_nr_rings, stat;
6267 	int vnic = 1, grp = rx;
6268 
6269 	if (hw_resc->resv_tx_rings != bp->tx_nr_rings &&
6270 	    bp->hwrm_spec_code >= 0x10601)
6271 		return true;
6272 
6273 	/* Old firmware does not need RX ring reservations but we still
6274 	 * need to setup a default RSS map when needed.  With new firmware
6275 	 * we go through RX ring reservations first and then set up the
6276 	 * RSS map for the successfully reserved RX rings when needed.
6277 	 */
6278 	if (!BNXT_NEW_RM(bp)) {
6279 		bnxt_check_rss_tbl_no_rmgr(bp);
6280 		return false;
6281 	}
6282 	if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5))
6283 		vnic = rx + 1;
6284 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
6285 		rx <<= 1;
6286 	stat = bnxt_get_func_stat_ctxs(bp);
6287 	if (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp ||
6288 	    hw_resc->resv_vnics != vnic || hw_resc->resv_stat_ctxs != stat ||
6289 	    (hw_resc->resv_hw_ring_grps != grp &&
6290 	     !(bp->flags & BNXT_FLAG_CHIP_P5)))
6291 		return true;
6292 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && BNXT_PF(bp) &&
6293 	    hw_resc->resv_irqs != nq)
6294 		return true;
6295 	return false;
6296 }
6297 
6298 static int __bnxt_reserve_rings(struct bnxt *bp)
6299 {
6300 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6301 	int cp = bnxt_nq_rings_in_use(bp);
6302 	int tx = bp->tx_nr_rings;
6303 	int rx = bp->rx_nr_rings;
6304 	int grp, rx_rings, rc;
6305 	int vnic = 1, stat;
6306 	bool sh = false;
6307 
6308 	if (!bnxt_need_reserve_rings(bp))
6309 		return 0;
6310 
6311 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
6312 		sh = true;
6313 	if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5))
6314 		vnic = rx + 1;
6315 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
6316 		rx <<= 1;
6317 	grp = bp->rx_nr_rings;
6318 	stat = bnxt_get_func_stat_ctxs(bp);
6319 
6320 	rc = bnxt_hwrm_reserve_rings(bp, tx, rx, grp, cp, stat, vnic);
6321 	if (rc)
6322 		return rc;
6323 
6324 	tx = hw_resc->resv_tx_rings;
6325 	if (BNXT_NEW_RM(bp)) {
6326 		rx = hw_resc->resv_rx_rings;
6327 		cp = hw_resc->resv_irqs;
6328 		grp = hw_resc->resv_hw_ring_grps;
6329 		vnic = hw_resc->resv_vnics;
6330 		stat = hw_resc->resv_stat_ctxs;
6331 	}
6332 
6333 	rx_rings = rx;
6334 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
6335 		if (rx >= 2) {
6336 			rx_rings = rx >> 1;
6337 		} else {
6338 			if (netif_running(bp->dev))
6339 				return -ENOMEM;
6340 
6341 			bp->flags &= ~BNXT_FLAG_AGG_RINGS;
6342 			bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
6343 			bp->dev->hw_features &= ~NETIF_F_LRO;
6344 			bp->dev->features &= ~NETIF_F_LRO;
6345 			bnxt_set_ring_params(bp);
6346 		}
6347 	}
6348 	rx_rings = min_t(int, rx_rings, grp);
6349 	cp = min_t(int, cp, bp->cp_nr_rings);
6350 	if (stat > bnxt_get_ulp_stat_ctxs(bp))
6351 		stat -= bnxt_get_ulp_stat_ctxs(bp);
6352 	cp = min_t(int, cp, stat);
6353 	rc = bnxt_trim_rings(bp, &rx_rings, &tx, cp, sh);
6354 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
6355 		rx = rx_rings << 1;
6356 	cp = sh ? max_t(int, tx, rx_rings) : tx + rx_rings;
6357 	bp->tx_nr_rings = tx;
6358 
6359 	/* If we cannot reserve all the RX rings, reset the RSS map only
6360 	 * if absolutely necessary
6361 	 */
6362 	if (rx_rings != bp->rx_nr_rings) {
6363 		netdev_warn(bp->dev, "Able to reserve only %d out of %d requested RX rings\n",
6364 			    rx_rings, bp->rx_nr_rings);
6365 		if ((bp->dev->priv_flags & IFF_RXFH_CONFIGURED) &&
6366 		    (bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings) !=
6367 		     bnxt_get_nr_rss_ctxs(bp, rx_rings) ||
6368 		     bnxt_get_max_rss_ring(bp) >= rx_rings)) {
6369 			netdev_warn(bp->dev, "RSS table entries reverting to default\n");
6370 			bp->dev->priv_flags &= ~IFF_RXFH_CONFIGURED;
6371 		}
6372 	}
6373 	bp->rx_nr_rings = rx_rings;
6374 	bp->cp_nr_rings = cp;
6375 
6376 	if (!tx || !rx || !cp || !grp || !vnic || !stat)
6377 		return -ENOMEM;
6378 
6379 	if (!netif_is_rxfh_configured(bp->dev))
6380 		bnxt_set_dflt_rss_indir_tbl(bp);
6381 
6382 	return rc;
6383 }
6384 
6385 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6386 				    int ring_grps, int cp_rings, int stats,
6387 				    int vnics)
6388 {
6389 	struct hwrm_func_vf_cfg_input req = {0};
6390 	u32 flags;
6391 
6392 	if (!BNXT_NEW_RM(bp))
6393 		return 0;
6394 
6395 	__bnxt_hwrm_reserve_vf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
6396 				     cp_rings, stats, vnics);
6397 	flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST |
6398 		FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST |
6399 		FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
6400 		FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
6401 		FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST |
6402 		FUNC_VF_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST;
6403 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
6404 		flags |= FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
6405 
6406 	req.flags = cpu_to_le32(flags);
6407 	return hwrm_send_message_silent(bp, &req, sizeof(req),
6408 					HWRM_CMD_TIMEOUT);
6409 }
6410 
6411 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6412 				    int ring_grps, int cp_rings, int stats,
6413 				    int vnics)
6414 {
6415 	struct hwrm_func_cfg_input req = {0};
6416 	u32 flags;
6417 
6418 	__bnxt_hwrm_reserve_pf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
6419 				     cp_rings, stats, vnics);
6420 	flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST;
6421 	if (BNXT_NEW_RM(bp)) {
6422 		flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST |
6423 			 FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
6424 			 FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
6425 			 FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST;
6426 		if (bp->flags & BNXT_FLAG_CHIP_P5)
6427 			flags |= FUNC_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST |
6428 				 FUNC_CFG_REQ_FLAGS_NQ_ASSETS_TEST;
6429 		else
6430 			flags |= FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
6431 	}
6432 
6433 	req.flags = cpu_to_le32(flags);
6434 	return hwrm_send_message_silent(bp, &req, sizeof(req),
6435 					HWRM_CMD_TIMEOUT);
6436 }
6437 
6438 static int bnxt_hwrm_check_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6439 				 int ring_grps, int cp_rings, int stats,
6440 				 int vnics)
6441 {
6442 	if (bp->hwrm_spec_code < 0x10801)
6443 		return 0;
6444 
6445 	if (BNXT_PF(bp))
6446 		return bnxt_hwrm_check_pf_rings(bp, tx_rings, rx_rings,
6447 						ring_grps, cp_rings, stats,
6448 						vnics);
6449 
6450 	return bnxt_hwrm_check_vf_rings(bp, tx_rings, rx_rings, ring_grps,
6451 					cp_rings, stats, vnics);
6452 }
6453 
6454 static void bnxt_hwrm_coal_params_qcaps(struct bnxt *bp)
6455 {
6456 	struct hwrm_ring_aggint_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
6457 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6458 	struct hwrm_ring_aggint_qcaps_input req = {0};
6459 	int rc;
6460 
6461 	coal_cap->cmpl_params = BNXT_LEGACY_COAL_CMPL_PARAMS;
6462 	coal_cap->num_cmpl_dma_aggr_max = 63;
6463 	coal_cap->num_cmpl_dma_aggr_during_int_max = 63;
6464 	coal_cap->cmpl_aggr_dma_tmr_max = 65535;
6465 	coal_cap->cmpl_aggr_dma_tmr_during_int_max = 65535;
6466 	coal_cap->int_lat_tmr_min_max = 65535;
6467 	coal_cap->int_lat_tmr_max_max = 65535;
6468 	coal_cap->num_cmpl_aggr_int_max = 65535;
6469 	coal_cap->timer_units = 80;
6470 
6471 	if (bp->hwrm_spec_code < 0x10902)
6472 		return;
6473 
6474 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_AGGINT_QCAPS, -1, -1);
6475 	mutex_lock(&bp->hwrm_cmd_lock);
6476 	rc = _hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6477 	if (!rc) {
6478 		coal_cap->cmpl_params = le32_to_cpu(resp->cmpl_params);
6479 		coal_cap->nq_params = le32_to_cpu(resp->nq_params);
6480 		coal_cap->num_cmpl_dma_aggr_max =
6481 			le16_to_cpu(resp->num_cmpl_dma_aggr_max);
6482 		coal_cap->num_cmpl_dma_aggr_during_int_max =
6483 			le16_to_cpu(resp->num_cmpl_dma_aggr_during_int_max);
6484 		coal_cap->cmpl_aggr_dma_tmr_max =
6485 			le16_to_cpu(resp->cmpl_aggr_dma_tmr_max);
6486 		coal_cap->cmpl_aggr_dma_tmr_during_int_max =
6487 			le16_to_cpu(resp->cmpl_aggr_dma_tmr_during_int_max);
6488 		coal_cap->int_lat_tmr_min_max =
6489 			le16_to_cpu(resp->int_lat_tmr_min_max);
6490 		coal_cap->int_lat_tmr_max_max =
6491 			le16_to_cpu(resp->int_lat_tmr_max_max);
6492 		coal_cap->num_cmpl_aggr_int_max =
6493 			le16_to_cpu(resp->num_cmpl_aggr_int_max);
6494 		coal_cap->timer_units = le16_to_cpu(resp->timer_units);
6495 	}
6496 	mutex_unlock(&bp->hwrm_cmd_lock);
6497 }
6498 
6499 static u16 bnxt_usec_to_coal_tmr(struct bnxt *bp, u16 usec)
6500 {
6501 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6502 
6503 	return usec * 1000 / coal_cap->timer_units;
6504 }
6505 
6506 static void bnxt_hwrm_set_coal_params(struct bnxt *bp,
6507 	struct bnxt_coal *hw_coal,
6508 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
6509 {
6510 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6511 	u32 cmpl_params = coal_cap->cmpl_params;
6512 	u16 val, tmr, max, flags = 0;
6513 
6514 	max = hw_coal->bufs_per_record * 128;
6515 	if (hw_coal->budget)
6516 		max = hw_coal->bufs_per_record * hw_coal->budget;
6517 	max = min_t(u16, max, coal_cap->num_cmpl_aggr_int_max);
6518 
6519 	val = clamp_t(u16, hw_coal->coal_bufs, 1, max);
6520 	req->num_cmpl_aggr_int = cpu_to_le16(val);
6521 
6522 	val = min_t(u16, val, coal_cap->num_cmpl_dma_aggr_max);
6523 	req->num_cmpl_dma_aggr = cpu_to_le16(val);
6524 
6525 	val = clamp_t(u16, hw_coal->coal_bufs_irq, 1,
6526 		      coal_cap->num_cmpl_dma_aggr_during_int_max);
6527 	req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val);
6528 
6529 	tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks);
6530 	tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_max_max);
6531 	req->int_lat_tmr_max = cpu_to_le16(tmr);
6532 
6533 	/* min timer set to 1/2 of interrupt timer */
6534 	if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_INT_LAT_TMR_MIN) {
6535 		val = tmr / 2;
6536 		val = clamp_t(u16, val, 1, coal_cap->int_lat_tmr_min_max);
6537 		req->int_lat_tmr_min = cpu_to_le16(val);
6538 		req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
6539 	}
6540 
6541 	/* buf timer set to 1/4 of interrupt timer */
6542 	val = clamp_t(u16, tmr / 4, 1, coal_cap->cmpl_aggr_dma_tmr_max);
6543 	req->cmpl_aggr_dma_tmr = cpu_to_le16(val);
6544 
6545 	if (cmpl_params &
6546 	    RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_NUM_CMPL_DMA_AGGR_DURING_INT) {
6547 		tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks_irq);
6548 		val = clamp_t(u16, tmr, 1,
6549 			      coal_cap->cmpl_aggr_dma_tmr_during_int_max);
6550 		req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(val);
6551 		req->enables |=
6552 			cpu_to_le16(BNXT_COAL_CMPL_AGGR_TMR_DURING_INT_ENABLE);
6553 	}
6554 
6555 	if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_TIMER_RESET)
6556 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
6557 	if ((cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_RING_IDLE) &&
6558 	    hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh)
6559 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
6560 	req->flags = cpu_to_le16(flags);
6561 	req->enables |= cpu_to_le16(BNXT_COAL_CMPL_ENABLES);
6562 }
6563 
6564 /* Caller holds bp->hwrm_cmd_lock */
6565 static int __bnxt_hwrm_set_coal_nq(struct bnxt *bp, struct bnxt_napi *bnapi,
6566 				   struct bnxt_coal *hw_coal)
6567 {
6568 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req = {0};
6569 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6570 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6571 	u32 nq_params = coal_cap->nq_params;
6572 	u16 tmr;
6573 
6574 	if (!(nq_params & RING_AGGINT_QCAPS_RESP_NQ_PARAMS_INT_LAT_TMR_MIN))
6575 		return 0;
6576 
6577 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS,
6578 			       -1, -1);
6579 	req.ring_id = cpu_to_le16(cpr->cp_ring_struct.fw_ring_id);
6580 	req.flags =
6581 		cpu_to_le16(RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_IS_NQ);
6582 
6583 	tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks) / 2;
6584 	tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_min_max);
6585 	req.int_lat_tmr_min = cpu_to_le16(tmr);
6586 	req.enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
6587 	return _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6588 }
6589 
6590 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi)
6591 {
6592 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0};
6593 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6594 	struct bnxt_coal coal;
6595 
6596 	/* Tick values in micro seconds.
6597 	 * 1 coal_buf x bufs_per_record = 1 completion record.
6598 	 */
6599 	memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal));
6600 
6601 	coal.coal_ticks = cpr->rx_ring_coal.coal_ticks;
6602 	coal.coal_bufs = cpr->rx_ring_coal.coal_bufs;
6603 
6604 	if (!bnapi->rx_ring)
6605 		return -ENODEV;
6606 
6607 	bnxt_hwrm_cmd_hdr_init(bp, &req_rx,
6608 			       HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
6609 
6610 	bnxt_hwrm_set_coal_params(bp, &coal, &req_rx);
6611 
6612 	req_rx.ring_id = cpu_to_le16(bnxt_cp_ring_for_rx(bp, bnapi->rx_ring));
6613 
6614 	return hwrm_send_message(bp, &req_rx, sizeof(req_rx),
6615 				 HWRM_CMD_TIMEOUT);
6616 }
6617 
6618 int bnxt_hwrm_set_coal(struct bnxt *bp)
6619 {
6620 	int i, rc = 0;
6621 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0},
6622 							   req_tx = {0}, *req;
6623 
6624 	bnxt_hwrm_cmd_hdr_init(bp, &req_rx,
6625 			       HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
6626 	bnxt_hwrm_cmd_hdr_init(bp, &req_tx,
6627 			       HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
6628 
6629 	bnxt_hwrm_set_coal_params(bp, &bp->rx_coal, &req_rx);
6630 	bnxt_hwrm_set_coal_params(bp, &bp->tx_coal, &req_tx);
6631 
6632 	mutex_lock(&bp->hwrm_cmd_lock);
6633 	for (i = 0; i < bp->cp_nr_rings; i++) {
6634 		struct bnxt_napi *bnapi = bp->bnapi[i];
6635 		struct bnxt_coal *hw_coal;
6636 		u16 ring_id;
6637 
6638 		req = &req_rx;
6639 		if (!bnapi->rx_ring) {
6640 			ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring);
6641 			req = &req_tx;
6642 		} else {
6643 			ring_id = bnxt_cp_ring_for_rx(bp, bnapi->rx_ring);
6644 		}
6645 		req->ring_id = cpu_to_le16(ring_id);
6646 
6647 		rc = _hwrm_send_message(bp, req, sizeof(*req),
6648 					HWRM_CMD_TIMEOUT);
6649 		if (rc)
6650 			break;
6651 
6652 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
6653 			continue;
6654 
6655 		if (bnapi->rx_ring && bnapi->tx_ring) {
6656 			req = &req_tx;
6657 			ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring);
6658 			req->ring_id = cpu_to_le16(ring_id);
6659 			rc = _hwrm_send_message(bp, req, sizeof(*req),
6660 						HWRM_CMD_TIMEOUT);
6661 			if (rc)
6662 				break;
6663 		}
6664 		if (bnapi->rx_ring)
6665 			hw_coal = &bp->rx_coal;
6666 		else
6667 			hw_coal = &bp->tx_coal;
6668 		__bnxt_hwrm_set_coal_nq(bp, bnapi, hw_coal);
6669 	}
6670 	mutex_unlock(&bp->hwrm_cmd_lock);
6671 	return rc;
6672 }
6673 
6674 static void bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
6675 {
6676 	struct hwrm_stat_ctx_clr_stats_input req0 = {0};
6677 	struct hwrm_stat_ctx_free_input req = {0};
6678 	int i;
6679 
6680 	if (!bp->bnapi)
6681 		return;
6682 
6683 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
6684 		return;
6685 
6686 	bnxt_hwrm_cmd_hdr_init(bp, &req0, HWRM_STAT_CTX_CLR_STATS, -1, -1);
6687 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_FREE, -1, -1);
6688 
6689 	mutex_lock(&bp->hwrm_cmd_lock);
6690 	for (i = 0; i < bp->cp_nr_rings; i++) {
6691 		struct bnxt_napi *bnapi = bp->bnapi[i];
6692 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6693 
6694 		if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
6695 			req.stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
6696 			if (BNXT_FW_MAJ(bp) <= 20) {
6697 				req0.stat_ctx_id = req.stat_ctx_id;
6698 				_hwrm_send_message(bp, &req0, sizeof(req0),
6699 						   HWRM_CMD_TIMEOUT);
6700 			}
6701 			_hwrm_send_message(bp, &req, sizeof(req),
6702 					   HWRM_CMD_TIMEOUT);
6703 
6704 			cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
6705 		}
6706 	}
6707 	mutex_unlock(&bp->hwrm_cmd_lock);
6708 }
6709 
6710 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
6711 {
6712 	int rc = 0, i;
6713 	struct hwrm_stat_ctx_alloc_input req = {0};
6714 	struct hwrm_stat_ctx_alloc_output *resp = bp->hwrm_cmd_resp_addr;
6715 
6716 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
6717 		return 0;
6718 
6719 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_ALLOC, -1, -1);
6720 
6721 	req.stats_dma_length = cpu_to_le16(bp->hw_ring_stats_size);
6722 	req.update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000);
6723 
6724 	mutex_lock(&bp->hwrm_cmd_lock);
6725 	for (i = 0; i < bp->cp_nr_rings; i++) {
6726 		struct bnxt_napi *bnapi = bp->bnapi[i];
6727 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6728 
6729 		req.stats_dma_addr = cpu_to_le64(cpr->stats.hw_stats_map);
6730 
6731 		rc = _hwrm_send_message(bp, &req, sizeof(req),
6732 					HWRM_CMD_TIMEOUT);
6733 		if (rc)
6734 			break;
6735 
6736 		cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
6737 
6738 		bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
6739 	}
6740 	mutex_unlock(&bp->hwrm_cmd_lock);
6741 	return rc;
6742 }
6743 
6744 static int bnxt_hwrm_func_qcfg(struct bnxt *bp)
6745 {
6746 	struct hwrm_func_qcfg_input req = {0};
6747 	struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
6748 	u32 min_db_offset = 0;
6749 	u16 flags;
6750 	int rc;
6751 
6752 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
6753 	req.fid = cpu_to_le16(0xffff);
6754 	mutex_lock(&bp->hwrm_cmd_lock);
6755 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6756 	if (rc)
6757 		goto func_qcfg_exit;
6758 
6759 #ifdef CONFIG_BNXT_SRIOV
6760 	if (BNXT_VF(bp)) {
6761 		struct bnxt_vf_info *vf = &bp->vf;
6762 
6763 		vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK;
6764 	} else {
6765 		bp->pf.registered_vfs = le16_to_cpu(resp->registered_vfs);
6766 	}
6767 #endif
6768 	flags = le16_to_cpu(resp->flags);
6769 	if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED |
6770 		     FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) {
6771 		bp->fw_cap |= BNXT_FW_CAP_LLDP_AGENT;
6772 		if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED)
6773 			bp->fw_cap |= BNXT_FW_CAP_DCBX_AGENT;
6774 	}
6775 	if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST))
6776 		bp->flags |= BNXT_FLAG_MULTI_HOST;
6777 	if (flags & FUNC_QCFG_RESP_FLAGS_RING_MONITOR_ENABLED)
6778 		bp->fw_cap |= BNXT_FW_CAP_RING_MONITOR;
6779 
6780 	switch (resp->port_partition_type) {
6781 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0:
6782 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5:
6783 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0:
6784 		bp->port_partition_type = resp->port_partition_type;
6785 		break;
6786 	}
6787 	if (bp->hwrm_spec_code < 0x10707 ||
6788 	    resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB)
6789 		bp->br_mode = BRIDGE_MODE_VEB;
6790 	else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA)
6791 		bp->br_mode = BRIDGE_MODE_VEPA;
6792 	else
6793 		bp->br_mode = BRIDGE_MODE_UNDEF;
6794 
6795 	bp->max_mtu = le16_to_cpu(resp->max_mtu_configured);
6796 	if (!bp->max_mtu)
6797 		bp->max_mtu = BNXT_MAX_MTU;
6798 
6799 	if (bp->db_size)
6800 		goto func_qcfg_exit;
6801 
6802 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
6803 		if (BNXT_PF(bp))
6804 			min_db_offset = DB_PF_OFFSET_P5;
6805 		else
6806 			min_db_offset = DB_VF_OFFSET_P5;
6807 	}
6808 	bp->db_size = PAGE_ALIGN(le16_to_cpu(resp->l2_doorbell_bar_size_kb) *
6809 				 1024);
6810 	if (!bp->db_size || bp->db_size > pci_resource_len(bp->pdev, 2) ||
6811 	    bp->db_size <= min_db_offset)
6812 		bp->db_size = pci_resource_len(bp->pdev, 2);
6813 
6814 func_qcfg_exit:
6815 	mutex_unlock(&bp->hwrm_cmd_lock);
6816 	return rc;
6817 }
6818 
6819 static void bnxt_init_ctx_initializer(struct bnxt_ctx_mem_info *ctx,
6820 			struct hwrm_func_backing_store_qcaps_output *resp)
6821 {
6822 	struct bnxt_mem_init *mem_init;
6823 	u16 init_mask;
6824 	u8 init_val;
6825 	u8 *offset;
6826 	int i;
6827 
6828 	init_val = resp->ctx_kind_initializer;
6829 	init_mask = le16_to_cpu(resp->ctx_init_mask);
6830 	offset = &resp->qp_init_offset;
6831 	mem_init = &ctx->mem_init[BNXT_CTX_MEM_INIT_QP];
6832 	for (i = 0; i < BNXT_CTX_MEM_INIT_MAX; i++, mem_init++, offset++) {
6833 		mem_init->init_val = init_val;
6834 		mem_init->offset = BNXT_MEM_INVALID_OFFSET;
6835 		if (!init_mask)
6836 			continue;
6837 		if (i == BNXT_CTX_MEM_INIT_STAT)
6838 			offset = &resp->stat_init_offset;
6839 		if (init_mask & (1 << i))
6840 			mem_init->offset = *offset * 4;
6841 		else
6842 			mem_init->init_val = 0;
6843 	}
6844 	ctx->mem_init[BNXT_CTX_MEM_INIT_QP].size = ctx->qp_entry_size;
6845 	ctx->mem_init[BNXT_CTX_MEM_INIT_SRQ].size = ctx->srq_entry_size;
6846 	ctx->mem_init[BNXT_CTX_MEM_INIT_CQ].size = ctx->cq_entry_size;
6847 	ctx->mem_init[BNXT_CTX_MEM_INIT_VNIC].size = ctx->vnic_entry_size;
6848 	ctx->mem_init[BNXT_CTX_MEM_INIT_STAT].size = ctx->stat_entry_size;
6849 	ctx->mem_init[BNXT_CTX_MEM_INIT_MRAV].size = ctx->mrav_entry_size;
6850 }
6851 
6852 static int bnxt_hwrm_func_backing_store_qcaps(struct bnxt *bp)
6853 {
6854 	struct hwrm_func_backing_store_qcaps_input req = {0};
6855 	struct hwrm_func_backing_store_qcaps_output *resp =
6856 		bp->hwrm_cmd_resp_addr;
6857 	int rc;
6858 
6859 	if (bp->hwrm_spec_code < 0x10902 || BNXT_VF(bp) || bp->ctx)
6860 		return 0;
6861 
6862 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_BACKING_STORE_QCAPS, -1, -1);
6863 	mutex_lock(&bp->hwrm_cmd_lock);
6864 	rc = _hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6865 	if (!rc) {
6866 		struct bnxt_ctx_pg_info *ctx_pg;
6867 		struct bnxt_ctx_mem_info *ctx;
6868 		int i, tqm_rings;
6869 
6870 		ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
6871 		if (!ctx) {
6872 			rc = -ENOMEM;
6873 			goto ctx_err;
6874 		}
6875 		ctx->qp_max_entries = le32_to_cpu(resp->qp_max_entries);
6876 		ctx->qp_min_qp1_entries = le16_to_cpu(resp->qp_min_qp1_entries);
6877 		ctx->qp_max_l2_entries = le16_to_cpu(resp->qp_max_l2_entries);
6878 		ctx->qp_entry_size = le16_to_cpu(resp->qp_entry_size);
6879 		ctx->srq_max_l2_entries = le16_to_cpu(resp->srq_max_l2_entries);
6880 		ctx->srq_max_entries = le32_to_cpu(resp->srq_max_entries);
6881 		ctx->srq_entry_size = le16_to_cpu(resp->srq_entry_size);
6882 		ctx->cq_max_l2_entries = le16_to_cpu(resp->cq_max_l2_entries);
6883 		ctx->cq_max_entries = le32_to_cpu(resp->cq_max_entries);
6884 		ctx->cq_entry_size = le16_to_cpu(resp->cq_entry_size);
6885 		ctx->vnic_max_vnic_entries =
6886 			le16_to_cpu(resp->vnic_max_vnic_entries);
6887 		ctx->vnic_max_ring_table_entries =
6888 			le16_to_cpu(resp->vnic_max_ring_table_entries);
6889 		ctx->vnic_entry_size = le16_to_cpu(resp->vnic_entry_size);
6890 		ctx->stat_max_entries = le32_to_cpu(resp->stat_max_entries);
6891 		ctx->stat_entry_size = le16_to_cpu(resp->stat_entry_size);
6892 		ctx->tqm_entry_size = le16_to_cpu(resp->tqm_entry_size);
6893 		ctx->tqm_min_entries_per_ring =
6894 			le32_to_cpu(resp->tqm_min_entries_per_ring);
6895 		ctx->tqm_max_entries_per_ring =
6896 			le32_to_cpu(resp->tqm_max_entries_per_ring);
6897 		ctx->tqm_entries_multiple = resp->tqm_entries_multiple;
6898 		if (!ctx->tqm_entries_multiple)
6899 			ctx->tqm_entries_multiple = 1;
6900 		ctx->mrav_max_entries = le32_to_cpu(resp->mrav_max_entries);
6901 		ctx->mrav_entry_size = le16_to_cpu(resp->mrav_entry_size);
6902 		ctx->mrav_num_entries_units =
6903 			le16_to_cpu(resp->mrav_num_entries_units);
6904 		ctx->tim_entry_size = le16_to_cpu(resp->tim_entry_size);
6905 		ctx->tim_max_entries = le32_to_cpu(resp->tim_max_entries);
6906 
6907 		bnxt_init_ctx_initializer(ctx, resp);
6908 
6909 		ctx->tqm_fp_rings_count = resp->tqm_fp_rings_count;
6910 		if (!ctx->tqm_fp_rings_count)
6911 			ctx->tqm_fp_rings_count = bp->max_q;
6912 		else if (ctx->tqm_fp_rings_count > BNXT_MAX_TQM_FP_RINGS)
6913 			ctx->tqm_fp_rings_count = BNXT_MAX_TQM_FP_RINGS;
6914 
6915 		tqm_rings = ctx->tqm_fp_rings_count + BNXT_MAX_TQM_SP_RINGS;
6916 		ctx_pg = kcalloc(tqm_rings, sizeof(*ctx_pg), GFP_KERNEL);
6917 		if (!ctx_pg) {
6918 			kfree(ctx);
6919 			rc = -ENOMEM;
6920 			goto ctx_err;
6921 		}
6922 		for (i = 0; i < tqm_rings; i++, ctx_pg++)
6923 			ctx->tqm_mem[i] = ctx_pg;
6924 		bp->ctx = ctx;
6925 	} else {
6926 		rc = 0;
6927 	}
6928 ctx_err:
6929 	mutex_unlock(&bp->hwrm_cmd_lock);
6930 	return rc;
6931 }
6932 
6933 static void bnxt_hwrm_set_pg_attr(struct bnxt_ring_mem_info *rmem, u8 *pg_attr,
6934 				  __le64 *pg_dir)
6935 {
6936 	if (!rmem->nr_pages)
6937 		return;
6938 
6939 	BNXT_SET_CTX_PAGE_ATTR(*pg_attr);
6940 	if (rmem->depth >= 1) {
6941 		if (rmem->depth == 2)
6942 			*pg_attr |= 2;
6943 		else
6944 			*pg_attr |= 1;
6945 		*pg_dir = cpu_to_le64(rmem->pg_tbl_map);
6946 	} else {
6947 		*pg_dir = cpu_to_le64(rmem->dma_arr[0]);
6948 	}
6949 }
6950 
6951 #define FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES			\
6952 	(FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP |		\
6953 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ |		\
6954 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ |		\
6955 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC |		\
6956 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT)
6957 
6958 static int bnxt_hwrm_func_backing_store_cfg(struct bnxt *bp, u32 enables)
6959 {
6960 	struct hwrm_func_backing_store_cfg_input req = {0};
6961 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
6962 	struct bnxt_ctx_pg_info *ctx_pg;
6963 	u32 req_len = sizeof(req);
6964 	__le32 *num_entries;
6965 	__le64 *pg_dir;
6966 	u32 flags = 0;
6967 	u8 *pg_attr;
6968 	u32 ena;
6969 	int i;
6970 
6971 	if (!ctx)
6972 		return 0;
6973 
6974 	if (req_len > bp->hwrm_max_ext_req_len)
6975 		req_len = BNXT_BACKING_STORE_CFG_LEGACY_LEN;
6976 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_BACKING_STORE_CFG, -1, -1);
6977 	req.enables = cpu_to_le32(enables);
6978 
6979 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP) {
6980 		ctx_pg = &ctx->qp_mem;
6981 		req.qp_num_entries = cpu_to_le32(ctx_pg->entries);
6982 		req.qp_num_qp1_entries = cpu_to_le16(ctx->qp_min_qp1_entries);
6983 		req.qp_num_l2_entries = cpu_to_le16(ctx->qp_max_l2_entries);
6984 		req.qp_entry_size = cpu_to_le16(ctx->qp_entry_size);
6985 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6986 				      &req.qpc_pg_size_qpc_lvl,
6987 				      &req.qpc_page_dir);
6988 	}
6989 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ) {
6990 		ctx_pg = &ctx->srq_mem;
6991 		req.srq_num_entries = cpu_to_le32(ctx_pg->entries);
6992 		req.srq_num_l2_entries = cpu_to_le16(ctx->srq_max_l2_entries);
6993 		req.srq_entry_size = cpu_to_le16(ctx->srq_entry_size);
6994 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6995 				      &req.srq_pg_size_srq_lvl,
6996 				      &req.srq_page_dir);
6997 	}
6998 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ) {
6999 		ctx_pg = &ctx->cq_mem;
7000 		req.cq_num_entries = cpu_to_le32(ctx_pg->entries);
7001 		req.cq_num_l2_entries = cpu_to_le16(ctx->cq_max_l2_entries);
7002 		req.cq_entry_size = cpu_to_le16(ctx->cq_entry_size);
7003 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, &req.cq_pg_size_cq_lvl,
7004 				      &req.cq_page_dir);
7005 	}
7006 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC) {
7007 		ctx_pg = &ctx->vnic_mem;
7008 		req.vnic_num_vnic_entries =
7009 			cpu_to_le16(ctx->vnic_max_vnic_entries);
7010 		req.vnic_num_ring_table_entries =
7011 			cpu_to_le16(ctx->vnic_max_ring_table_entries);
7012 		req.vnic_entry_size = cpu_to_le16(ctx->vnic_entry_size);
7013 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7014 				      &req.vnic_pg_size_vnic_lvl,
7015 				      &req.vnic_page_dir);
7016 	}
7017 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) {
7018 		ctx_pg = &ctx->stat_mem;
7019 		req.stat_num_entries = cpu_to_le32(ctx->stat_max_entries);
7020 		req.stat_entry_size = cpu_to_le16(ctx->stat_entry_size);
7021 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7022 				      &req.stat_pg_size_stat_lvl,
7023 				      &req.stat_page_dir);
7024 	}
7025 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV) {
7026 		ctx_pg = &ctx->mrav_mem;
7027 		req.mrav_num_entries = cpu_to_le32(ctx_pg->entries);
7028 		if (ctx->mrav_num_entries_units)
7029 			flags |=
7030 			FUNC_BACKING_STORE_CFG_REQ_FLAGS_MRAV_RESERVATION_SPLIT;
7031 		req.mrav_entry_size = cpu_to_le16(ctx->mrav_entry_size);
7032 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7033 				      &req.mrav_pg_size_mrav_lvl,
7034 				      &req.mrav_page_dir);
7035 	}
7036 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) {
7037 		ctx_pg = &ctx->tim_mem;
7038 		req.tim_num_entries = cpu_to_le32(ctx_pg->entries);
7039 		req.tim_entry_size = cpu_to_le16(ctx->tim_entry_size);
7040 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7041 				      &req.tim_pg_size_tim_lvl,
7042 				      &req.tim_page_dir);
7043 	}
7044 	for (i = 0, num_entries = &req.tqm_sp_num_entries,
7045 	     pg_attr = &req.tqm_sp_pg_size_tqm_sp_lvl,
7046 	     pg_dir = &req.tqm_sp_page_dir,
7047 	     ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP;
7048 	     i < BNXT_MAX_TQM_RINGS;
7049 	     i++, num_entries++, pg_attr++, pg_dir++, ena <<= 1) {
7050 		if (!(enables & ena))
7051 			continue;
7052 
7053 		req.tqm_entry_size = cpu_to_le16(ctx->tqm_entry_size);
7054 		ctx_pg = ctx->tqm_mem[i];
7055 		*num_entries = cpu_to_le32(ctx_pg->entries);
7056 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, pg_attr, pg_dir);
7057 	}
7058 	req.flags = cpu_to_le32(flags);
7059 	return hwrm_send_message(bp, &req, req_len, HWRM_CMD_TIMEOUT);
7060 }
7061 
7062 static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp,
7063 				  struct bnxt_ctx_pg_info *ctx_pg)
7064 {
7065 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
7066 
7067 	rmem->page_size = BNXT_PAGE_SIZE;
7068 	rmem->pg_arr = ctx_pg->ctx_pg_arr;
7069 	rmem->dma_arr = ctx_pg->ctx_dma_arr;
7070 	rmem->flags = BNXT_RMEM_VALID_PTE_FLAG;
7071 	if (rmem->depth >= 1)
7072 		rmem->flags |= BNXT_RMEM_USE_FULL_PAGE_FLAG;
7073 	return bnxt_alloc_ring(bp, rmem);
7074 }
7075 
7076 static int bnxt_alloc_ctx_pg_tbls(struct bnxt *bp,
7077 				  struct bnxt_ctx_pg_info *ctx_pg, u32 mem_size,
7078 				  u8 depth, struct bnxt_mem_init *mem_init)
7079 {
7080 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
7081 	int rc;
7082 
7083 	if (!mem_size)
7084 		return -EINVAL;
7085 
7086 	ctx_pg->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
7087 	if (ctx_pg->nr_pages > MAX_CTX_TOTAL_PAGES) {
7088 		ctx_pg->nr_pages = 0;
7089 		return -EINVAL;
7090 	}
7091 	if (ctx_pg->nr_pages > MAX_CTX_PAGES || depth > 1) {
7092 		int nr_tbls, i;
7093 
7094 		rmem->depth = 2;
7095 		ctx_pg->ctx_pg_tbl = kcalloc(MAX_CTX_PAGES, sizeof(ctx_pg),
7096 					     GFP_KERNEL);
7097 		if (!ctx_pg->ctx_pg_tbl)
7098 			return -ENOMEM;
7099 		nr_tbls = DIV_ROUND_UP(ctx_pg->nr_pages, MAX_CTX_PAGES);
7100 		rmem->nr_pages = nr_tbls;
7101 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
7102 		if (rc)
7103 			return rc;
7104 		for (i = 0; i < nr_tbls; i++) {
7105 			struct bnxt_ctx_pg_info *pg_tbl;
7106 
7107 			pg_tbl = kzalloc(sizeof(*pg_tbl), GFP_KERNEL);
7108 			if (!pg_tbl)
7109 				return -ENOMEM;
7110 			ctx_pg->ctx_pg_tbl[i] = pg_tbl;
7111 			rmem = &pg_tbl->ring_mem;
7112 			rmem->pg_tbl = ctx_pg->ctx_pg_arr[i];
7113 			rmem->pg_tbl_map = ctx_pg->ctx_dma_arr[i];
7114 			rmem->depth = 1;
7115 			rmem->nr_pages = MAX_CTX_PAGES;
7116 			rmem->mem_init = mem_init;
7117 			if (i == (nr_tbls - 1)) {
7118 				int rem = ctx_pg->nr_pages % MAX_CTX_PAGES;
7119 
7120 				if (rem)
7121 					rmem->nr_pages = rem;
7122 			}
7123 			rc = bnxt_alloc_ctx_mem_blk(bp, pg_tbl);
7124 			if (rc)
7125 				break;
7126 		}
7127 	} else {
7128 		rmem->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
7129 		if (rmem->nr_pages > 1 || depth)
7130 			rmem->depth = 1;
7131 		rmem->mem_init = mem_init;
7132 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
7133 	}
7134 	return rc;
7135 }
7136 
7137 static void bnxt_free_ctx_pg_tbls(struct bnxt *bp,
7138 				  struct bnxt_ctx_pg_info *ctx_pg)
7139 {
7140 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
7141 
7142 	if (rmem->depth > 1 || ctx_pg->nr_pages > MAX_CTX_PAGES ||
7143 	    ctx_pg->ctx_pg_tbl) {
7144 		int i, nr_tbls = rmem->nr_pages;
7145 
7146 		for (i = 0; i < nr_tbls; i++) {
7147 			struct bnxt_ctx_pg_info *pg_tbl;
7148 			struct bnxt_ring_mem_info *rmem2;
7149 
7150 			pg_tbl = ctx_pg->ctx_pg_tbl[i];
7151 			if (!pg_tbl)
7152 				continue;
7153 			rmem2 = &pg_tbl->ring_mem;
7154 			bnxt_free_ring(bp, rmem2);
7155 			ctx_pg->ctx_pg_arr[i] = NULL;
7156 			kfree(pg_tbl);
7157 			ctx_pg->ctx_pg_tbl[i] = NULL;
7158 		}
7159 		kfree(ctx_pg->ctx_pg_tbl);
7160 		ctx_pg->ctx_pg_tbl = NULL;
7161 	}
7162 	bnxt_free_ring(bp, rmem);
7163 	ctx_pg->nr_pages = 0;
7164 }
7165 
7166 static void bnxt_free_ctx_mem(struct bnxt *bp)
7167 {
7168 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
7169 	int i;
7170 
7171 	if (!ctx)
7172 		return;
7173 
7174 	if (ctx->tqm_mem[0]) {
7175 		for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++)
7176 			bnxt_free_ctx_pg_tbls(bp, ctx->tqm_mem[i]);
7177 		kfree(ctx->tqm_mem[0]);
7178 		ctx->tqm_mem[0] = NULL;
7179 	}
7180 
7181 	bnxt_free_ctx_pg_tbls(bp, &ctx->tim_mem);
7182 	bnxt_free_ctx_pg_tbls(bp, &ctx->mrav_mem);
7183 	bnxt_free_ctx_pg_tbls(bp, &ctx->stat_mem);
7184 	bnxt_free_ctx_pg_tbls(bp, &ctx->vnic_mem);
7185 	bnxt_free_ctx_pg_tbls(bp, &ctx->cq_mem);
7186 	bnxt_free_ctx_pg_tbls(bp, &ctx->srq_mem);
7187 	bnxt_free_ctx_pg_tbls(bp, &ctx->qp_mem);
7188 	ctx->flags &= ~BNXT_CTX_FLAG_INITED;
7189 }
7190 
7191 static int bnxt_alloc_ctx_mem(struct bnxt *bp)
7192 {
7193 	struct bnxt_ctx_pg_info *ctx_pg;
7194 	struct bnxt_ctx_mem_info *ctx;
7195 	struct bnxt_mem_init *init;
7196 	u32 mem_size, ena, entries;
7197 	u32 entries_sp, min;
7198 	u32 num_mr, num_ah;
7199 	u32 extra_srqs = 0;
7200 	u32 extra_qps = 0;
7201 	u8 pg_lvl = 1;
7202 	int i, rc;
7203 
7204 	rc = bnxt_hwrm_func_backing_store_qcaps(bp);
7205 	if (rc) {
7206 		netdev_err(bp->dev, "Failed querying context mem capability, rc = %d.\n",
7207 			   rc);
7208 		return rc;
7209 	}
7210 	ctx = bp->ctx;
7211 	if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED))
7212 		return 0;
7213 
7214 	if ((bp->flags & BNXT_FLAG_ROCE_CAP) && !is_kdump_kernel()) {
7215 		pg_lvl = 2;
7216 		extra_qps = 65536;
7217 		extra_srqs = 8192;
7218 	}
7219 
7220 	ctx_pg = &ctx->qp_mem;
7221 	ctx_pg->entries = ctx->qp_min_qp1_entries + ctx->qp_max_l2_entries +
7222 			  extra_qps;
7223 	if (ctx->qp_entry_size) {
7224 		mem_size = ctx->qp_entry_size * ctx_pg->entries;
7225 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_QP];
7226 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init);
7227 		if (rc)
7228 			return rc;
7229 	}
7230 
7231 	ctx_pg = &ctx->srq_mem;
7232 	ctx_pg->entries = ctx->srq_max_l2_entries + extra_srqs;
7233 	if (ctx->srq_entry_size) {
7234 		mem_size = ctx->srq_entry_size * ctx_pg->entries;
7235 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_SRQ];
7236 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init);
7237 		if (rc)
7238 			return rc;
7239 	}
7240 
7241 	ctx_pg = &ctx->cq_mem;
7242 	ctx_pg->entries = ctx->cq_max_l2_entries + extra_qps * 2;
7243 	if (ctx->cq_entry_size) {
7244 		mem_size = ctx->cq_entry_size * ctx_pg->entries;
7245 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_CQ];
7246 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init);
7247 		if (rc)
7248 			return rc;
7249 	}
7250 
7251 	ctx_pg = &ctx->vnic_mem;
7252 	ctx_pg->entries = ctx->vnic_max_vnic_entries +
7253 			  ctx->vnic_max_ring_table_entries;
7254 	if (ctx->vnic_entry_size) {
7255 		mem_size = ctx->vnic_entry_size * ctx_pg->entries;
7256 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_VNIC];
7257 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, init);
7258 		if (rc)
7259 			return rc;
7260 	}
7261 
7262 	ctx_pg = &ctx->stat_mem;
7263 	ctx_pg->entries = ctx->stat_max_entries;
7264 	if (ctx->stat_entry_size) {
7265 		mem_size = ctx->stat_entry_size * ctx_pg->entries;
7266 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_STAT];
7267 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, init);
7268 		if (rc)
7269 			return rc;
7270 	}
7271 
7272 	ena = 0;
7273 	if (!(bp->flags & BNXT_FLAG_ROCE_CAP))
7274 		goto skip_rdma;
7275 
7276 	ctx_pg = &ctx->mrav_mem;
7277 	/* 128K extra is needed to accommodate static AH context
7278 	 * allocation by f/w.
7279 	 */
7280 	num_mr = 1024 * 256;
7281 	num_ah = 1024 * 128;
7282 	ctx_pg->entries = num_mr + num_ah;
7283 	if (ctx->mrav_entry_size) {
7284 		mem_size = ctx->mrav_entry_size * ctx_pg->entries;
7285 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_MRAV];
7286 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 2, init);
7287 		if (rc)
7288 			return rc;
7289 	}
7290 	ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV;
7291 	if (ctx->mrav_num_entries_units)
7292 		ctx_pg->entries =
7293 			((num_mr / ctx->mrav_num_entries_units) << 16) |
7294 			 (num_ah / ctx->mrav_num_entries_units);
7295 
7296 	ctx_pg = &ctx->tim_mem;
7297 	ctx_pg->entries = ctx->qp_mem.entries;
7298 	if (ctx->tim_entry_size) {
7299 		mem_size = ctx->tim_entry_size * ctx_pg->entries;
7300 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, NULL);
7301 		if (rc)
7302 			return rc;
7303 	}
7304 	ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM;
7305 
7306 skip_rdma:
7307 	min = ctx->tqm_min_entries_per_ring;
7308 	entries_sp = ctx->vnic_max_vnic_entries + ctx->qp_max_l2_entries +
7309 		     2 * (extra_qps + ctx->qp_min_qp1_entries) + min;
7310 	entries_sp = roundup(entries_sp, ctx->tqm_entries_multiple);
7311 	entries = ctx->qp_max_l2_entries + extra_qps + ctx->qp_min_qp1_entries;
7312 	entries = roundup(entries, ctx->tqm_entries_multiple);
7313 	entries = clamp_t(u32, entries, min, ctx->tqm_max_entries_per_ring);
7314 	for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++) {
7315 		ctx_pg = ctx->tqm_mem[i];
7316 		ctx_pg->entries = i ? entries : entries_sp;
7317 		if (ctx->tqm_entry_size) {
7318 			mem_size = ctx->tqm_entry_size * ctx_pg->entries;
7319 			rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1,
7320 						    NULL);
7321 			if (rc)
7322 				return rc;
7323 		}
7324 		ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP << i;
7325 	}
7326 	ena |= FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES;
7327 	rc = bnxt_hwrm_func_backing_store_cfg(bp, ena);
7328 	if (rc) {
7329 		netdev_err(bp->dev, "Failed configuring context mem, rc = %d.\n",
7330 			   rc);
7331 		return rc;
7332 	}
7333 	ctx->flags |= BNXT_CTX_FLAG_INITED;
7334 	return 0;
7335 }
7336 
7337 int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all)
7338 {
7339 	struct hwrm_func_resource_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
7340 	struct hwrm_func_resource_qcaps_input req = {0};
7341 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7342 	int rc;
7343 
7344 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESOURCE_QCAPS, -1, -1);
7345 	req.fid = cpu_to_le16(0xffff);
7346 
7347 	mutex_lock(&bp->hwrm_cmd_lock);
7348 	rc = _hwrm_send_message_silent(bp, &req, sizeof(req),
7349 				       HWRM_CMD_TIMEOUT);
7350 	if (rc)
7351 		goto hwrm_func_resc_qcaps_exit;
7352 
7353 	hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs);
7354 	if (!all)
7355 		goto hwrm_func_resc_qcaps_exit;
7356 
7357 	hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx);
7358 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
7359 	hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings);
7360 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
7361 	hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings);
7362 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
7363 	hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings);
7364 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
7365 	hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps);
7366 	hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps);
7367 	hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs);
7368 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
7369 	hw_resc->min_vnics = le16_to_cpu(resp->min_vnics);
7370 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
7371 	hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx);
7372 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
7373 
7374 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
7375 		u16 max_msix = le16_to_cpu(resp->max_msix);
7376 
7377 		hw_resc->max_nqs = max_msix;
7378 		hw_resc->max_hw_ring_grps = hw_resc->max_rx_rings;
7379 	}
7380 
7381 	if (BNXT_PF(bp)) {
7382 		struct bnxt_pf_info *pf = &bp->pf;
7383 
7384 		pf->vf_resv_strategy =
7385 			le16_to_cpu(resp->vf_reservation_strategy);
7386 		if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC)
7387 			pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL;
7388 	}
7389 hwrm_func_resc_qcaps_exit:
7390 	mutex_unlock(&bp->hwrm_cmd_lock);
7391 	return rc;
7392 }
7393 
7394 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp)
7395 {
7396 	int rc = 0;
7397 	struct hwrm_func_qcaps_input req = {0};
7398 	struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
7399 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7400 	u32 flags, flags_ext;
7401 
7402 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1);
7403 	req.fid = cpu_to_le16(0xffff);
7404 
7405 	mutex_lock(&bp->hwrm_cmd_lock);
7406 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7407 	if (rc)
7408 		goto hwrm_func_qcaps_exit;
7409 
7410 	flags = le32_to_cpu(resp->flags);
7411 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED)
7412 		bp->flags |= BNXT_FLAG_ROCEV1_CAP;
7413 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED)
7414 		bp->flags |= BNXT_FLAG_ROCEV2_CAP;
7415 	if (flags & FUNC_QCAPS_RESP_FLAGS_PCIE_STATS_SUPPORTED)
7416 		bp->fw_cap |= BNXT_FW_CAP_PCIE_STATS_SUPPORTED;
7417 	if (flags & FUNC_QCAPS_RESP_FLAGS_HOT_RESET_CAPABLE)
7418 		bp->fw_cap |= BNXT_FW_CAP_HOT_RESET;
7419 	if (flags & FUNC_QCAPS_RESP_FLAGS_EXT_STATS_SUPPORTED)
7420 		bp->fw_cap |= BNXT_FW_CAP_EXT_STATS_SUPPORTED;
7421 	if (flags &  FUNC_QCAPS_RESP_FLAGS_ERROR_RECOVERY_CAPABLE)
7422 		bp->fw_cap |= BNXT_FW_CAP_ERROR_RECOVERY;
7423 	if (flags & FUNC_QCAPS_RESP_FLAGS_ERR_RECOVER_RELOAD)
7424 		bp->fw_cap |= BNXT_FW_CAP_ERR_RECOVER_RELOAD;
7425 	if (!(flags & FUNC_QCAPS_RESP_FLAGS_VLAN_ACCELERATION_TX_DISABLED))
7426 		bp->fw_cap |= BNXT_FW_CAP_VLAN_TX_INSERT;
7427 
7428 	flags_ext = le32_to_cpu(resp->flags_ext);
7429 	if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_EXT_HW_STATS_SUPPORTED)
7430 		bp->fw_cap |= BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED;
7431 
7432 	bp->tx_push_thresh = 0;
7433 	if ((flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED) &&
7434 	    BNXT_FW_MAJ(bp) > 217)
7435 		bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
7436 
7437 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
7438 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
7439 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
7440 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
7441 	hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
7442 	if (!hw_resc->max_hw_ring_grps)
7443 		hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings;
7444 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
7445 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
7446 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
7447 
7448 	if (BNXT_PF(bp)) {
7449 		struct bnxt_pf_info *pf = &bp->pf;
7450 
7451 		pf->fw_fid = le16_to_cpu(resp->fid);
7452 		pf->port_id = le16_to_cpu(resp->port_id);
7453 		memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN);
7454 		pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
7455 		pf->max_vfs = le16_to_cpu(resp->max_vfs);
7456 		pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
7457 		pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
7458 		pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
7459 		pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
7460 		pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
7461 		pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
7462 		bp->flags &= ~BNXT_FLAG_WOL_CAP;
7463 		if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED)
7464 			bp->flags |= BNXT_FLAG_WOL_CAP;
7465 	} else {
7466 #ifdef CONFIG_BNXT_SRIOV
7467 		struct bnxt_vf_info *vf = &bp->vf;
7468 
7469 		vf->fw_fid = le16_to_cpu(resp->fid);
7470 		memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN);
7471 #endif
7472 	}
7473 
7474 hwrm_func_qcaps_exit:
7475 	mutex_unlock(&bp->hwrm_cmd_lock);
7476 	return rc;
7477 }
7478 
7479 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp);
7480 
7481 static int bnxt_hwrm_func_qcaps(struct bnxt *bp)
7482 {
7483 	int rc;
7484 
7485 	rc = __bnxt_hwrm_func_qcaps(bp);
7486 	if (rc)
7487 		return rc;
7488 	rc = bnxt_hwrm_queue_qportcfg(bp);
7489 	if (rc) {
7490 		netdev_err(bp->dev, "hwrm query qportcfg failure rc: %d\n", rc);
7491 		return rc;
7492 	}
7493 	if (bp->hwrm_spec_code >= 0x10803) {
7494 		rc = bnxt_alloc_ctx_mem(bp);
7495 		if (rc)
7496 			return rc;
7497 		rc = bnxt_hwrm_func_resc_qcaps(bp, true);
7498 		if (!rc)
7499 			bp->fw_cap |= BNXT_FW_CAP_NEW_RM;
7500 	}
7501 	return 0;
7502 }
7503 
7504 static int bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(struct bnxt *bp)
7505 {
7506 	struct hwrm_cfa_adv_flow_mgnt_qcaps_input req = {0};
7507 	struct hwrm_cfa_adv_flow_mgnt_qcaps_output *resp;
7508 	int rc = 0;
7509 	u32 flags;
7510 
7511 	if (!(bp->fw_cap & BNXT_FW_CAP_CFA_ADV_FLOW))
7512 		return 0;
7513 
7514 	resp = bp->hwrm_cmd_resp_addr;
7515 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_ADV_FLOW_MGNT_QCAPS, -1, -1);
7516 
7517 	mutex_lock(&bp->hwrm_cmd_lock);
7518 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7519 	if (rc)
7520 		goto hwrm_cfa_adv_qcaps_exit;
7521 
7522 	flags = le32_to_cpu(resp->flags);
7523 	if (flags &
7524 	    CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V2_SUPPORTED)
7525 		bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2;
7526 
7527 hwrm_cfa_adv_qcaps_exit:
7528 	mutex_unlock(&bp->hwrm_cmd_lock);
7529 	return rc;
7530 }
7531 
7532 static int __bnxt_alloc_fw_health(struct bnxt *bp)
7533 {
7534 	if (bp->fw_health)
7535 		return 0;
7536 
7537 	bp->fw_health = kzalloc(sizeof(*bp->fw_health), GFP_KERNEL);
7538 	if (!bp->fw_health)
7539 		return -ENOMEM;
7540 
7541 	return 0;
7542 }
7543 
7544 static int bnxt_alloc_fw_health(struct bnxt *bp)
7545 {
7546 	int rc;
7547 
7548 	if (!(bp->fw_cap & BNXT_FW_CAP_HOT_RESET) &&
7549 	    !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
7550 		return 0;
7551 
7552 	rc = __bnxt_alloc_fw_health(bp);
7553 	if (rc) {
7554 		bp->fw_cap &= ~BNXT_FW_CAP_HOT_RESET;
7555 		bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
7556 		return rc;
7557 	}
7558 
7559 	return 0;
7560 }
7561 
7562 static void __bnxt_map_fw_health_reg(struct bnxt *bp, u32 reg)
7563 {
7564 	writel(reg & BNXT_GRC_BASE_MASK, bp->bar0 +
7565 					 BNXT_GRCPF_REG_WINDOW_BASE_OUT +
7566 					 BNXT_FW_HEALTH_WIN_MAP_OFF);
7567 }
7568 
7569 bool bnxt_is_fw_healthy(struct bnxt *bp)
7570 {
7571 	if (bp->fw_health && bp->fw_health->status_reliable) {
7572 		u32 fw_status;
7573 
7574 		fw_status = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
7575 		if (fw_status && !BNXT_FW_IS_HEALTHY(fw_status))
7576 			return false;
7577 	}
7578 
7579 	return true;
7580 }
7581 
7582 static void bnxt_inv_fw_health_reg(struct bnxt *bp)
7583 {
7584 	struct bnxt_fw_health *fw_health = bp->fw_health;
7585 	u32 reg_type;
7586 
7587 	if (!fw_health || !fw_health->status_reliable)
7588 		return;
7589 
7590 	reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_HEALTH_REG]);
7591 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC)
7592 		fw_health->status_reliable = false;
7593 }
7594 
7595 static void bnxt_try_map_fw_health_reg(struct bnxt *bp)
7596 {
7597 	void __iomem *hs;
7598 	u32 status_loc;
7599 	u32 reg_type;
7600 	u32 sig;
7601 
7602 	if (bp->fw_health)
7603 		bp->fw_health->status_reliable = false;
7604 
7605 	__bnxt_map_fw_health_reg(bp, HCOMM_STATUS_STRUCT_LOC);
7606 	hs = bp->bar0 + BNXT_FW_HEALTH_WIN_OFF(HCOMM_STATUS_STRUCT_LOC);
7607 
7608 	sig = readl(hs + offsetof(struct hcomm_status, sig_ver));
7609 	if ((sig & HCOMM_STATUS_SIGNATURE_MASK) != HCOMM_STATUS_SIGNATURE_VAL) {
7610 		if (!bp->chip_num) {
7611 			__bnxt_map_fw_health_reg(bp, BNXT_GRC_REG_BASE);
7612 			bp->chip_num = readl(bp->bar0 +
7613 					     BNXT_FW_HEALTH_WIN_BASE +
7614 					     BNXT_GRC_REG_CHIP_NUM);
7615 		}
7616 		if (!BNXT_CHIP_P5(bp))
7617 			return;
7618 
7619 		status_loc = BNXT_GRC_REG_STATUS_P5 |
7620 			     BNXT_FW_HEALTH_REG_TYPE_BAR0;
7621 	} else {
7622 		status_loc = readl(hs + offsetof(struct hcomm_status,
7623 						 fw_status_loc));
7624 	}
7625 
7626 	if (__bnxt_alloc_fw_health(bp)) {
7627 		netdev_warn(bp->dev, "no memory for firmware status checks\n");
7628 		return;
7629 	}
7630 
7631 	bp->fw_health->regs[BNXT_FW_HEALTH_REG] = status_loc;
7632 	reg_type = BNXT_FW_HEALTH_REG_TYPE(status_loc);
7633 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) {
7634 		__bnxt_map_fw_health_reg(bp, status_loc);
7635 		bp->fw_health->mapped_regs[BNXT_FW_HEALTH_REG] =
7636 			BNXT_FW_HEALTH_WIN_OFF(status_loc);
7637 	}
7638 
7639 	bp->fw_health->status_reliable = true;
7640 }
7641 
7642 static int bnxt_map_fw_health_regs(struct bnxt *bp)
7643 {
7644 	struct bnxt_fw_health *fw_health = bp->fw_health;
7645 	u32 reg_base = 0xffffffff;
7646 	int i;
7647 
7648 	bp->fw_health->status_reliable = false;
7649 	/* Only pre-map the monitoring GRC registers using window 3 */
7650 	for (i = 0; i < 4; i++) {
7651 		u32 reg = fw_health->regs[i];
7652 
7653 		if (BNXT_FW_HEALTH_REG_TYPE(reg) != BNXT_FW_HEALTH_REG_TYPE_GRC)
7654 			continue;
7655 		if (reg_base == 0xffffffff)
7656 			reg_base = reg & BNXT_GRC_BASE_MASK;
7657 		if ((reg & BNXT_GRC_BASE_MASK) != reg_base)
7658 			return -ERANGE;
7659 		fw_health->mapped_regs[i] = BNXT_FW_HEALTH_WIN_OFF(reg);
7660 	}
7661 	bp->fw_health->status_reliable = true;
7662 	if (reg_base == 0xffffffff)
7663 		return 0;
7664 
7665 	__bnxt_map_fw_health_reg(bp, reg_base);
7666 	return 0;
7667 }
7668 
7669 static int bnxt_hwrm_error_recovery_qcfg(struct bnxt *bp)
7670 {
7671 	struct hwrm_error_recovery_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
7672 	struct bnxt_fw_health *fw_health = bp->fw_health;
7673 	struct hwrm_error_recovery_qcfg_input req = {0};
7674 	int rc, i;
7675 
7676 	if (!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
7677 		return 0;
7678 
7679 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_ERROR_RECOVERY_QCFG, -1, -1);
7680 	mutex_lock(&bp->hwrm_cmd_lock);
7681 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7682 	if (rc)
7683 		goto err_recovery_out;
7684 	fw_health->flags = le32_to_cpu(resp->flags);
7685 	if ((fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) &&
7686 	    !(bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL)) {
7687 		rc = -EINVAL;
7688 		goto err_recovery_out;
7689 	}
7690 	fw_health->polling_dsecs = le32_to_cpu(resp->driver_polling_freq);
7691 	fw_health->master_func_wait_dsecs =
7692 		le32_to_cpu(resp->master_func_wait_period);
7693 	fw_health->normal_func_wait_dsecs =
7694 		le32_to_cpu(resp->normal_func_wait_period);
7695 	fw_health->post_reset_wait_dsecs =
7696 		le32_to_cpu(resp->master_func_wait_period_after_reset);
7697 	fw_health->post_reset_max_wait_dsecs =
7698 		le32_to_cpu(resp->max_bailout_time_after_reset);
7699 	fw_health->regs[BNXT_FW_HEALTH_REG] =
7700 		le32_to_cpu(resp->fw_health_status_reg);
7701 	fw_health->regs[BNXT_FW_HEARTBEAT_REG] =
7702 		le32_to_cpu(resp->fw_heartbeat_reg);
7703 	fw_health->regs[BNXT_FW_RESET_CNT_REG] =
7704 		le32_to_cpu(resp->fw_reset_cnt_reg);
7705 	fw_health->regs[BNXT_FW_RESET_INPROG_REG] =
7706 		le32_to_cpu(resp->reset_inprogress_reg);
7707 	fw_health->fw_reset_inprog_reg_mask =
7708 		le32_to_cpu(resp->reset_inprogress_reg_mask);
7709 	fw_health->fw_reset_seq_cnt = resp->reg_array_cnt;
7710 	if (fw_health->fw_reset_seq_cnt >= 16) {
7711 		rc = -EINVAL;
7712 		goto err_recovery_out;
7713 	}
7714 	for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) {
7715 		fw_health->fw_reset_seq_regs[i] =
7716 			le32_to_cpu(resp->reset_reg[i]);
7717 		fw_health->fw_reset_seq_vals[i] =
7718 			le32_to_cpu(resp->reset_reg_val[i]);
7719 		fw_health->fw_reset_seq_delay_msec[i] =
7720 			resp->delay_after_reset[i];
7721 	}
7722 err_recovery_out:
7723 	mutex_unlock(&bp->hwrm_cmd_lock);
7724 	if (!rc)
7725 		rc = bnxt_map_fw_health_regs(bp);
7726 	if (rc)
7727 		bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
7728 	return rc;
7729 }
7730 
7731 static int bnxt_hwrm_func_reset(struct bnxt *bp)
7732 {
7733 	struct hwrm_func_reset_input req = {0};
7734 
7735 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESET, -1, -1);
7736 	req.enables = 0;
7737 
7738 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_RESET_TIMEOUT);
7739 }
7740 
7741 static void bnxt_nvm_cfg_ver_get(struct bnxt *bp)
7742 {
7743 	struct hwrm_nvm_get_dev_info_output nvm_info;
7744 
7745 	if (!bnxt_hwrm_nvm_get_dev_info(bp, &nvm_info))
7746 		snprintf(bp->nvm_cfg_ver, FW_VER_STR_LEN, "%d.%d.%d",
7747 			 nvm_info.nvm_cfg_ver_maj, nvm_info.nvm_cfg_ver_min,
7748 			 nvm_info.nvm_cfg_ver_upd);
7749 }
7750 
7751 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
7752 {
7753 	int rc = 0;
7754 	struct hwrm_queue_qportcfg_input req = {0};
7755 	struct hwrm_queue_qportcfg_output *resp = bp->hwrm_cmd_resp_addr;
7756 	u8 i, j, *qptr;
7757 	bool no_rdma;
7758 
7759 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_QUEUE_QPORTCFG, -1, -1);
7760 
7761 	mutex_lock(&bp->hwrm_cmd_lock);
7762 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7763 	if (rc)
7764 		goto qportcfg_exit;
7765 
7766 	if (!resp->max_configurable_queues) {
7767 		rc = -EINVAL;
7768 		goto qportcfg_exit;
7769 	}
7770 	bp->max_tc = resp->max_configurable_queues;
7771 	bp->max_lltc = resp->max_configurable_lossless_queues;
7772 	if (bp->max_tc > BNXT_MAX_QUEUE)
7773 		bp->max_tc = BNXT_MAX_QUEUE;
7774 
7775 	no_rdma = !(bp->flags & BNXT_FLAG_ROCE_CAP);
7776 	qptr = &resp->queue_id0;
7777 	for (i = 0, j = 0; i < bp->max_tc; i++) {
7778 		bp->q_info[j].queue_id = *qptr;
7779 		bp->q_ids[i] = *qptr++;
7780 		bp->q_info[j].queue_profile = *qptr++;
7781 		bp->tc_to_qidx[j] = j;
7782 		if (!BNXT_CNPQ(bp->q_info[j].queue_profile) ||
7783 		    (no_rdma && BNXT_PF(bp)))
7784 			j++;
7785 	}
7786 	bp->max_q = bp->max_tc;
7787 	bp->max_tc = max_t(u8, j, 1);
7788 
7789 	if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG)
7790 		bp->max_tc = 1;
7791 
7792 	if (bp->max_lltc > bp->max_tc)
7793 		bp->max_lltc = bp->max_tc;
7794 
7795 qportcfg_exit:
7796 	mutex_unlock(&bp->hwrm_cmd_lock);
7797 	return rc;
7798 }
7799 
7800 static int __bnxt_hwrm_ver_get(struct bnxt *bp, bool silent)
7801 {
7802 	struct hwrm_ver_get_input req = {0};
7803 	int rc;
7804 
7805 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VER_GET, -1, -1);
7806 	req.hwrm_intf_maj = HWRM_VERSION_MAJOR;
7807 	req.hwrm_intf_min = HWRM_VERSION_MINOR;
7808 	req.hwrm_intf_upd = HWRM_VERSION_UPDATE;
7809 
7810 	rc = bnxt_hwrm_do_send_msg(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT,
7811 				   silent);
7812 	return rc;
7813 }
7814 
7815 static int bnxt_hwrm_ver_get(struct bnxt *bp)
7816 {
7817 	struct hwrm_ver_get_output *resp = bp->hwrm_cmd_resp_addr;
7818 	u16 fw_maj, fw_min, fw_bld, fw_rsv;
7819 	u32 dev_caps_cfg, hwrm_ver;
7820 	int rc, len;
7821 
7822 	bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN;
7823 	mutex_lock(&bp->hwrm_cmd_lock);
7824 	rc = __bnxt_hwrm_ver_get(bp, false);
7825 	if (rc)
7826 		goto hwrm_ver_get_exit;
7827 
7828 	memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
7829 
7830 	bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 |
7831 			     resp->hwrm_intf_min_8b << 8 |
7832 			     resp->hwrm_intf_upd_8b;
7833 	if (resp->hwrm_intf_maj_8b < 1) {
7834 		netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
7835 			    resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
7836 			    resp->hwrm_intf_upd_8b);
7837 		netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
7838 	}
7839 
7840 	hwrm_ver = HWRM_VERSION_MAJOR << 16 | HWRM_VERSION_MINOR << 8 |
7841 			HWRM_VERSION_UPDATE;
7842 
7843 	if (bp->hwrm_spec_code > hwrm_ver)
7844 		snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d",
7845 			 HWRM_VERSION_MAJOR, HWRM_VERSION_MINOR,
7846 			 HWRM_VERSION_UPDATE);
7847 	else
7848 		snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d",
7849 			 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
7850 			 resp->hwrm_intf_upd_8b);
7851 
7852 	fw_maj = le16_to_cpu(resp->hwrm_fw_major);
7853 	if (bp->hwrm_spec_code > 0x10803 && fw_maj) {
7854 		fw_min = le16_to_cpu(resp->hwrm_fw_minor);
7855 		fw_bld = le16_to_cpu(resp->hwrm_fw_build);
7856 		fw_rsv = le16_to_cpu(resp->hwrm_fw_patch);
7857 		len = FW_VER_STR_LEN;
7858 	} else {
7859 		fw_maj = resp->hwrm_fw_maj_8b;
7860 		fw_min = resp->hwrm_fw_min_8b;
7861 		fw_bld = resp->hwrm_fw_bld_8b;
7862 		fw_rsv = resp->hwrm_fw_rsvd_8b;
7863 		len = BC_HWRM_STR_LEN;
7864 	}
7865 	bp->fw_ver_code = BNXT_FW_VER_CODE(fw_maj, fw_min, fw_bld, fw_rsv);
7866 	snprintf(bp->fw_ver_str, len, "%d.%d.%d.%d", fw_maj, fw_min, fw_bld,
7867 		 fw_rsv);
7868 
7869 	if (strlen(resp->active_pkg_name)) {
7870 		int fw_ver_len = strlen(bp->fw_ver_str);
7871 
7872 		snprintf(bp->fw_ver_str + fw_ver_len,
7873 			 FW_VER_STR_LEN - fw_ver_len - 1, "/pkg %s",
7874 			 resp->active_pkg_name);
7875 		bp->fw_cap |= BNXT_FW_CAP_PKG_VER;
7876 	}
7877 
7878 	bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout);
7879 	if (!bp->hwrm_cmd_timeout)
7880 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
7881 
7882 	if (resp->hwrm_intf_maj_8b >= 1) {
7883 		bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len);
7884 		bp->hwrm_max_ext_req_len = le16_to_cpu(resp->max_ext_req_len);
7885 	}
7886 	if (bp->hwrm_max_ext_req_len < HWRM_MAX_REQ_LEN)
7887 		bp->hwrm_max_ext_req_len = HWRM_MAX_REQ_LEN;
7888 
7889 	bp->chip_num = le16_to_cpu(resp->chip_num);
7890 	bp->chip_rev = resp->chip_rev;
7891 	if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev &&
7892 	    !resp->chip_metal)
7893 		bp->flags |= BNXT_FLAG_CHIP_NITRO_A0;
7894 
7895 	dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg);
7896 	if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) &&
7897 	    (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED))
7898 		bp->fw_cap |= BNXT_FW_CAP_SHORT_CMD;
7899 
7900 	if (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_KONG_MB_CHNL_SUPPORTED)
7901 		bp->fw_cap |= BNXT_FW_CAP_KONG_MB_CHNL;
7902 
7903 	if (dev_caps_cfg &
7904 	    VER_GET_RESP_DEV_CAPS_CFG_FLOW_HANDLE_64BIT_SUPPORTED)
7905 		bp->fw_cap |= BNXT_FW_CAP_OVS_64BIT_HANDLE;
7906 
7907 	if (dev_caps_cfg &
7908 	    VER_GET_RESP_DEV_CAPS_CFG_TRUSTED_VF_SUPPORTED)
7909 		bp->fw_cap |= BNXT_FW_CAP_TRUSTED_VF;
7910 
7911 	if (dev_caps_cfg &
7912 	    VER_GET_RESP_DEV_CAPS_CFG_CFA_ADV_FLOW_MGNT_SUPPORTED)
7913 		bp->fw_cap |= BNXT_FW_CAP_CFA_ADV_FLOW;
7914 
7915 hwrm_ver_get_exit:
7916 	mutex_unlock(&bp->hwrm_cmd_lock);
7917 	return rc;
7918 }
7919 
7920 int bnxt_hwrm_fw_set_time(struct bnxt *bp)
7921 {
7922 	struct hwrm_fw_set_time_input req = {0};
7923 	struct tm tm;
7924 	time64_t now = ktime_get_real_seconds();
7925 
7926 	if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) ||
7927 	    bp->hwrm_spec_code < 0x10400)
7928 		return -EOPNOTSUPP;
7929 
7930 	time64_to_tm(now, 0, &tm);
7931 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FW_SET_TIME, -1, -1);
7932 	req.year = cpu_to_le16(1900 + tm.tm_year);
7933 	req.month = 1 + tm.tm_mon;
7934 	req.day = tm.tm_mday;
7935 	req.hour = tm.tm_hour;
7936 	req.minute = tm.tm_min;
7937 	req.second = tm.tm_sec;
7938 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7939 }
7940 
7941 static void bnxt_add_one_ctr(u64 hw, u64 *sw, u64 mask)
7942 {
7943 	u64 sw_tmp;
7944 
7945 	hw &= mask;
7946 	sw_tmp = (*sw & ~mask) | hw;
7947 	if (hw < (*sw & mask))
7948 		sw_tmp += mask + 1;
7949 	WRITE_ONCE(*sw, sw_tmp);
7950 }
7951 
7952 static void __bnxt_accumulate_stats(__le64 *hw_stats, u64 *sw_stats, u64 *masks,
7953 				    int count, bool ignore_zero)
7954 {
7955 	int i;
7956 
7957 	for (i = 0; i < count; i++) {
7958 		u64 hw = le64_to_cpu(READ_ONCE(hw_stats[i]));
7959 
7960 		if (ignore_zero && !hw)
7961 			continue;
7962 
7963 		if (masks[i] == -1ULL)
7964 			sw_stats[i] = hw;
7965 		else
7966 			bnxt_add_one_ctr(hw, &sw_stats[i], masks[i]);
7967 	}
7968 }
7969 
7970 static void bnxt_accumulate_stats(struct bnxt_stats_mem *stats)
7971 {
7972 	if (!stats->hw_stats)
7973 		return;
7974 
7975 	__bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats,
7976 				stats->hw_masks, stats->len / 8, false);
7977 }
7978 
7979 static void bnxt_accumulate_all_stats(struct bnxt *bp)
7980 {
7981 	struct bnxt_stats_mem *ring0_stats;
7982 	bool ignore_zero = false;
7983 	int i;
7984 
7985 	/* Chip bug.  Counter intermittently becomes 0. */
7986 	if (bp->flags & BNXT_FLAG_CHIP_P5)
7987 		ignore_zero = true;
7988 
7989 	for (i = 0; i < bp->cp_nr_rings; i++) {
7990 		struct bnxt_napi *bnapi = bp->bnapi[i];
7991 		struct bnxt_cp_ring_info *cpr;
7992 		struct bnxt_stats_mem *stats;
7993 
7994 		cpr = &bnapi->cp_ring;
7995 		stats = &cpr->stats;
7996 		if (!i)
7997 			ring0_stats = stats;
7998 		__bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats,
7999 					ring0_stats->hw_masks,
8000 					ring0_stats->len / 8, ignore_zero);
8001 	}
8002 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
8003 		struct bnxt_stats_mem *stats = &bp->port_stats;
8004 		__le64 *hw_stats = stats->hw_stats;
8005 		u64 *sw_stats = stats->sw_stats;
8006 		u64 *masks = stats->hw_masks;
8007 		int cnt;
8008 
8009 		cnt = sizeof(struct rx_port_stats) / 8;
8010 		__bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false);
8011 
8012 		hw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
8013 		sw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
8014 		masks += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
8015 		cnt = sizeof(struct tx_port_stats) / 8;
8016 		__bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false);
8017 	}
8018 	if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) {
8019 		bnxt_accumulate_stats(&bp->rx_port_stats_ext);
8020 		bnxt_accumulate_stats(&bp->tx_port_stats_ext);
8021 	}
8022 }
8023 
8024 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags)
8025 {
8026 	struct bnxt_pf_info *pf = &bp->pf;
8027 	struct hwrm_port_qstats_input req = {0};
8028 
8029 	if (!(bp->flags & BNXT_FLAG_PORT_STATS))
8030 		return 0;
8031 
8032 	if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))
8033 		return -EOPNOTSUPP;
8034 
8035 	req.flags = flags;
8036 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS, -1, -1);
8037 	req.port_id = cpu_to_le16(pf->port_id);
8038 	req.tx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map +
8039 					    BNXT_TX_PORT_STATS_BYTE_OFFSET);
8040 	req.rx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map);
8041 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8042 }
8043 
8044 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags)
8045 {
8046 	struct hwrm_port_qstats_ext_output *resp = bp->hwrm_cmd_resp_addr;
8047 	struct hwrm_queue_pri2cos_qcfg_input req2 = {0};
8048 	struct hwrm_port_qstats_ext_input req = {0};
8049 	struct bnxt_pf_info *pf = &bp->pf;
8050 	u32 tx_stat_size;
8051 	int rc;
8052 
8053 	if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT))
8054 		return 0;
8055 
8056 	if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))
8057 		return -EOPNOTSUPP;
8058 
8059 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS_EXT, -1, -1);
8060 	req.flags = flags;
8061 	req.port_id = cpu_to_le16(pf->port_id);
8062 	req.rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext));
8063 	req.rx_stat_host_addr = cpu_to_le64(bp->rx_port_stats_ext.hw_stats_map);
8064 	tx_stat_size = bp->tx_port_stats_ext.hw_stats ?
8065 		       sizeof(struct tx_port_stats_ext) : 0;
8066 	req.tx_stat_size = cpu_to_le16(tx_stat_size);
8067 	req.tx_stat_host_addr = cpu_to_le64(bp->tx_port_stats_ext.hw_stats_map);
8068 	mutex_lock(&bp->hwrm_cmd_lock);
8069 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8070 	if (!rc) {
8071 		bp->fw_rx_stats_ext_size = le16_to_cpu(resp->rx_stat_size) / 8;
8072 		bp->fw_tx_stats_ext_size = tx_stat_size ?
8073 			le16_to_cpu(resp->tx_stat_size) / 8 : 0;
8074 	} else {
8075 		bp->fw_rx_stats_ext_size = 0;
8076 		bp->fw_tx_stats_ext_size = 0;
8077 	}
8078 	if (flags)
8079 		goto qstats_done;
8080 
8081 	if (bp->fw_tx_stats_ext_size <=
8082 	    offsetof(struct tx_port_stats_ext, pfc_pri0_tx_duration_us) / 8) {
8083 		mutex_unlock(&bp->hwrm_cmd_lock);
8084 		bp->pri2cos_valid = 0;
8085 		return rc;
8086 	}
8087 
8088 	bnxt_hwrm_cmd_hdr_init(bp, &req2, HWRM_QUEUE_PRI2COS_QCFG, -1, -1);
8089 	req2.flags = cpu_to_le32(QUEUE_PRI2COS_QCFG_REQ_FLAGS_IVLAN);
8090 
8091 	rc = _hwrm_send_message(bp, &req2, sizeof(req2), HWRM_CMD_TIMEOUT);
8092 	if (!rc) {
8093 		struct hwrm_queue_pri2cos_qcfg_output *resp2;
8094 		u8 *pri2cos;
8095 		int i, j;
8096 
8097 		resp2 = bp->hwrm_cmd_resp_addr;
8098 		pri2cos = &resp2->pri0_cos_queue_id;
8099 		for (i = 0; i < 8; i++) {
8100 			u8 queue_id = pri2cos[i];
8101 			u8 queue_idx;
8102 
8103 			/* Per port queue IDs start from 0, 10, 20, etc */
8104 			queue_idx = queue_id % 10;
8105 			if (queue_idx > BNXT_MAX_QUEUE) {
8106 				bp->pri2cos_valid = false;
8107 				goto qstats_done;
8108 			}
8109 			for (j = 0; j < bp->max_q; j++) {
8110 				if (bp->q_ids[j] == queue_id)
8111 					bp->pri2cos_idx[i] = queue_idx;
8112 			}
8113 		}
8114 		bp->pri2cos_valid = 1;
8115 	}
8116 qstats_done:
8117 	mutex_unlock(&bp->hwrm_cmd_lock);
8118 	return rc;
8119 }
8120 
8121 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
8122 {
8123 	if (bp->vxlan_fw_dst_port_id != INVALID_HW_RING_ID)
8124 		bnxt_hwrm_tunnel_dst_port_free(
8125 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
8126 	if (bp->nge_fw_dst_port_id != INVALID_HW_RING_ID)
8127 		bnxt_hwrm_tunnel_dst_port_free(
8128 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
8129 }
8130 
8131 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
8132 {
8133 	int rc, i;
8134 	u32 tpa_flags = 0;
8135 
8136 	if (set_tpa)
8137 		tpa_flags = bp->flags & BNXT_FLAG_TPA;
8138 	else if (BNXT_NO_FW_ACCESS(bp))
8139 		return 0;
8140 	for (i = 0; i < bp->nr_vnics; i++) {
8141 		rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
8142 		if (rc) {
8143 			netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
8144 				   i, rc);
8145 			return rc;
8146 		}
8147 	}
8148 	return 0;
8149 }
8150 
8151 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
8152 {
8153 	int i;
8154 
8155 	for (i = 0; i < bp->nr_vnics; i++)
8156 		bnxt_hwrm_vnic_set_rss(bp, i, false);
8157 }
8158 
8159 static void bnxt_clear_vnic(struct bnxt *bp)
8160 {
8161 	if (!bp->vnic_info)
8162 		return;
8163 
8164 	bnxt_hwrm_clear_vnic_filter(bp);
8165 	if (!(bp->flags & BNXT_FLAG_CHIP_P5)) {
8166 		/* clear all RSS setting before free vnic ctx */
8167 		bnxt_hwrm_clear_vnic_rss(bp);
8168 		bnxt_hwrm_vnic_ctx_free(bp);
8169 	}
8170 	/* before free the vnic, undo the vnic tpa settings */
8171 	if (bp->flags & BNXT_FLAG_TPA)
8172 		bnxt_set_tpa(bp, false);
8173 	bnxt_hwrm_vnic_free(bp);
8174 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8175 		bnxt_hwrm_vnic_ctx_free(bp);
8176 }
8177 
8178 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
8179 				    bool irq_re_init)
8180 {
8181 	bnxt_clear_vnic(bp);
8182 	bnxt_hwrm_ring_free(bp, close_path);
8183 	bnxt_hwrm_ring_grp_free(bp);
8184 	if (irq_re_init) {
8185 		bnxt_hwrm_stat_ctx_free(bp);
8186 		bnxt_hwrm_free_tunnel_ports(bp);
8187 	}
8188 }
8189 
8190 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode)
8191 {
8192 	struct hwrm_func_cfg_input req = {0};
8193 
8194 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
8195 	req.fid = cpu_to_le16(0xffff);
8196 	req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE);
8197 	if (br_mode == BRIDGE_MODE_VEB)
8198 		req.evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB;
8199 	else if (br_mode == BRIDGE_MODE_VEPA)
8200 		req.evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA;
8201 	else
8202 		return -EINVAL;
8203 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8204 }
8205 
8206 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size)
8207 {
8208 	struct hwrm_func_cfg_input req = {0};
8209 
8210 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803)
8211 		return 0;
8212 
8213 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
8214 	req.fid = cpu_to_le16(0xffff);
8215 	req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE);
8216 	req.options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64;
8217 	if (size == 128)
8218 		req.options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128;
8219 
8220 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8221 }
8222 
8223 static int __bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
8224 {
8225 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
8226 	int rc;
8227 
8228 	if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG)
8229 		goto skip_rss_ctx;
8230 
8231 	/* allocate context for vnic */
8232 	rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0);
8233 	if (rc) {
8234 		netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
8235 			   vnic_id, rc);
8236 		goto vnic_setup_err;
8237 	}
8238 	bp->rsscos_nr_ctxs++;
8239 
8240 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
8241 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1);
8242 		if (rc) {
8243 			netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n",
8244 				   vnic_id, rc);
8245 			goto vnic_setup_err;
8246 		}
8247 		bp->rsscos_nr_ctxs++;
8248 	}
8249 
8250 skip_rss_ctx:
8251 	/* configure default vnic, ring grp */
8252 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
8253 	if (rc) {
8254 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
8255 			   vnic_id, rc);
8256 		goto vnic_setup_err;
8257 	}
8258 
8259 	/* Enable RSS hashing on vnic */
8260 	rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
8261 	if (rc) {
8262 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
8263 			   vnic_id, rc);
8264 		goto vnic_setup_err;
8265 	}
8266 
8267 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
8268 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
8269 		if (rc) {
8270 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
8271 				   vnic_id, rc);
8272 		}
8273 	}
8274 
8275 vnic_setup_err:
8276 	return rc;
8277 }
8278 
8279 static int __bnxt_setup_vnic_p5(struct bnxt *bp, u16 vnic_id)
8280 {
8281 	int rc, i, nr_ctxs;
8282 
8283 	nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings);
8284 	for (i = 0; i < nr_ctxs; i++) {
8285 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, i);
8286 		if (rc) {
8287 			netdev_err(bp->dev, "hwrm vnic %d ctx %d alloc failure rc: %x\n",
8288 				   vnic_id, i, rc);
8289 			break;
8290 		}
8291 		bp->rsscos_nr_ctxs++;
8292 	}
8293 	if (i < nr_ctxs)
8294 		return -ENOMEM;
8295 
8296 	rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic_id, true);
8297 	if (rc) {
8298 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n",
8299 			   vnic_id, rc);
8300 		return rc;
8301 	}
8302 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
8303 	if (rc) {
8304 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
8305 			   vnic_id, rc);
8306 		return rc;
8307 	}
8308 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
8309 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
8310 		if (rc) {
8311 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
8312 				   vnic_id, rc);
8313 		}
8314 	}
8315 	return rc;
8316 }
8317 
8318 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
8319 {
8320 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8321 		return __bnxt_setup_vnic_p5(bp, vnic_id);
8322 	else
8323 		return __bnxt_setup_vnic(bp, vnic_id);
8324 }
8325 
8326 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
8327 {
8328 #ifdef CONFIG_RFS_ACCEL
8329 	int i, rc = 0;
8330 
8331 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8332 		return 0;
8333 
8334 	for (i = 0; i < bp->rx_nr_rings; i++) {
8335 		struct bnxt_vnic_info *vnic;
8336 		u16 vnic_id = i + 1;
8337 		u16 ring_id = i;
8338 
8339 		if (vnic_id >= bp->nr_vnics)
8340 			break;
8341 
8342 		vnic = &bp->vnic_info[vnic_id];
8343 		vnic->flags |= BNXT_VNIC_RFS_FLAG;
8344 		if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
8345 			vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG;
8346 		rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1);
8347 		if (rc) {
8348 			netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
8349 				   vnic_id, rc);
8350 			break;
8351 		}
8352 		rc = bnxt_setup_vnic(bp, vnic_id);
8353 		if (rc)
8354 			break;
8355 	}
8356 	return rc;
8357 #else
8358 	return 0;
8359 #endif
8360 }
8361 
8362 /* Allow PF, trusted VFs and VFs with default VLAN to be in promiscuous mode */
8363 static bool bnxt_promisc_ok(struct bnxt *bp)
8364 {
8365 #ifdef CONFIG_BNXT_SRIOV
8366 	if (BNXT_VF(bp) && !bp->vf.vlan && !bnxt_is_trusted_vf(bp, &bp->vf))
8367 		return false;
8368 #endif
8369 	return true;
8370 }
8371 
8372 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp)
8373 {
8374 	unsigned int rc = 0;
8375 
8376 	rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1);
8377 	if (rc) {
8378 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
8379 			   rc);
8380 		return rc;
8381 	}
8382 
8383 	rc = bnxt_hwrm_vnic_cfg(bp, 1);
8384 	if (rc) {
8385 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
8386 			   rc);
8387 		return rc;
8388 	}
8389 	return rc;
8390 }
8391 
8392 static int bnxt_cfg_rx_mode(struct bnxt *);
8393 static bool bnxt_mc_list_updated(struct bnxt *, u32 *);
8394 
8395 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
8396 {
8397 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
8398 	int rc = 0;
8399 	unsigned int rx_nr_rings = bp->rx_nr_rings;
8400 
8401 	if (irq_re_init) {
8402 		rc = bnxt_hwrm_stat_ctx_alloc(bp);
8403 		if (rc) {
8404 			netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
8405 				   rc);
8406 			goto err_out;
8407 		}
8408 	}
8409 
8410 	rc = bnxt_hwrm_ring_alloc(bp);
8411 	if (rc) {
8412 		netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
8413 		goto err_out;
8414 	}
8415 
8416 	rc = bnxt_hwrm_ring_grp_alloc(bp);
8417 	if (rc) {
8418 		netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
8419 		goto err_out;
8420 	}
8421 
8422 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
8423 		rx_nr_rings--;
8424 
8425 	/* default vnic 0 */
8426 	rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings);
8427 	if (rc) {
8428 		netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
8429 		goto err_out;
8430 	}
8431 
8432 	rc = bnxt_setup_vnic(bp, 0);
8433 	if (rc)
8434 		goto err_out;
8435 
8436 	if (bp->flags & BNXT_FLAG_RFS) {
8437 		rc = bnxt_alloc_rfs_vnics(bp);
8438 		if (rc)
8439 			goto err_out;
8440 	}
8441 
8442 	if (bp->flags & BNXT_FLAG_TPA) {
8443 		rc = bnxt_set_tpa(bp, true);
8444 		if (rc)
8445 			goto err_out;
8446 	}
8447 
8448 	if (BNXT_VF(bp))
8449 		bnxt_update_vf_mac(bp);
8450 
8451 	/* Filter for default vnic 0 */
8452 	rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
8453 	if (rc) {
8454 		netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
8455 		goto err_out;
8456 	}
8457 	vnic->uc_filter_count = 1;
8458 
8459 	vnic->rx_mask = 0;
8460 	if (bp->dev->flags & IFF_BROADCAST)
8461 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
8462 
8463 	if (bp->dev->flags & IFF_PROMISC)
8464 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
8465 
8466 	if (bp->dev->flags & IFF_ALLMULTI) {
8467 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
8468 		vnic->mc_list_count = 0;
8469 	} else {
8470 		u32 mask = 0;
8471 
8472 		bnxt_mc_list_updated(bp, &mask);
8473 		vnic->rx_mask |= mask;
8474 	}
8475 
8476 	rc = bnxt_cfg_rx_mode(bp);
8477 	if (rc)
8478 		goto err_out;
8479 
8480 	rc = bnxt_hwrm_set_coal(bp);
8481 	if (rc)
8482 		netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
8483 				rc);
8484 
8485 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
8486 		rc = bnxt_setup_nitroa0_vnic(bp);
8487 		if (rc)
8488 			netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n",
8489 				   rc);
8490 	}
8491 
8492 	if (BNXT_VF(bp)) {
8493 		bnxt_hwrm_func_qcfg(bp);
8494 		netdev_update_features(bp->dev);
8495 	}
8496 
8497 	return 0;
8498 
8499 err_out:
8500 	bnxt_hwrm_resource_free(bp, 0, true);
8501 
8502 	return rc;
8503 }
8504 
8505 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
8506 {
8507 	bnxt_hwrm_resource_free(bp, 1, irq_re_init);
8508 	return 0;
8509 }
8510 
8511 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
8512 {
8513 	bnxt_init_cp_rings(bp);
8514 	bnxt_init_rx_rings(bp);
8515 	bnxt_init_tx_rings(bp);
8516 	bnxt_init_ring_grps(bp, irq_re_init);
8517 	bnxt_init_vnics(bp);
8518 
8519 	return bnxt_init_chip(bp, irq_re_init);
8520 }
8521 
8522 static int bnxt_set_real_num_queues(struct bnxt *bp)
8523 {
8524 	int rc;
8525 	struct net_device *dev = bp->dev;
8526 
8527 	rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings -
8528 					  bp->tx_nr_rings_xdp);
8529 	if (rc)
8530 		return rc;
8531 
8532 	rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
8533 	if (rc)
8534 		return rc;
8535 
8536 #ifdef CONFIG_RFS_ACCEL
8537 	if (bp->flags & BNXT_FLAG_RFS)
8538 		dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
8539 #endif
8540 
8541 	return rc;
8542 }
8543 
8544 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
8545 			   bool shared)
8546 {
8547 	int _rx = *rx, _tx = *tx;
8548 
8549 	if (shared) {
8550 		*rx = min_t(int, _rx, max);
8551 		*tx = min_t(int, _tx, max);
8552 	} else {
8553 		if (max < 2)
8554 			return -ENOMEM;
8555 
8556 		while (_rx + _tx > max) {
8557 			if (_rx > _tx && _rx > 1)
8558 				_rx--;
8559 			else if (_tx > 1)
8560 				_tx--;
8561 		}
8562 		*rx = _rx;
8563 		*tx = _tx;
8564 	}
8565 	return 0;
8566 }
8567 
8568 static void bnxt_setup_msix(struct bnxt *bp)
8569 {
8570 	const int len = sizeof(bp->irq_tbl[0].name);
8571 	struct net_device *dev = bp->dev;
8572 	int tcs, i;
8573 
8574 	tcs = netdev_get_num_tc(dev);
8575 	if (tcs) {
8576 		int i, off, count;
8577 
8578 		for (i = 0; i < tcs; i++) {
8579 			count = bp->tx_nr_rings_per_tc;
8580 			off = i * count;
8581 			netdev_set_tc_queue(dev, i, count, off);
8582 		}
8583 	}
8584 
8585 	for (i = 0; i < bp->cp_nr_rings; i++) {
8586 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
8587 		char *attr;
8588 
8589 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
8590 			attr = "TxRx";
8591 		else if (i < bp->rx_nr_rings)
8592 			attr = "rx";
8593 		else
8594 			attr = "tx";
8595 
8596 		snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name,
8597 			 attr, i);
8598 		bp->irq_tbl[map_idx].handler = bnxt_msix;
8599 	}
8600 }
8601 
8602 static void bnxt_setup_inta(struct bnxt *bp)
8603 {
8604 	const int len = sizeof(bp->irq_tbl[0].name);
8605 
8606 	if (netdev_get_num_tc(bp->dev))
8607 		netdev_reset_tc(bp->dev);
8608 
8609 	snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx",
8610 		 0);
8611 	bp->irq_tbl[0].handler = bnxt_inta;
8612 }
8613 
8614 static int bnxt_init_int_mode(struct bnxt *bp);
8615 
8616 static int bnxt_setup_int_mode(struct bnxt *bp)
8617 {
8618 	int rc;
8619 
8620 	if (!bp->irq_tbl) {
8621 		rc = bnxt_init_int_mode(bp);
8622 		if (rc || !bp->irq_tbl)
8623 			return rc ?: -ENODEV;
8624 	}
8625 
8626 	if (bp->flags & BNXT_FLAG_USING_MSIX)
8627 		bnxt_setup_msix(bp);
8628 	else
8629 		bnxt_setup_inta(bp);
8630 
8631 	rc = bnxt_set_real_num_queues(bp);
8632 	return rc;
8633 }
8634 
8635 #ifdef CONFIG_RFS_ACCEL
8636 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp)
8637 {
8638 	return bp->hw_resc.max_rsscos_ctxs;
8639 }
8640 
8641 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp)
8642 {
8643 	return bp->hw_resc.max_vnics;
8644 }
8645 #endif
8646 
8647 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp)
8648 {
8649 	return bp->hw_resc.max_stat_ctxs;
8650 }
8651 
8652 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp)
8653 {
8654 	return bp->hw_resc.max_cp_rings;
8655 }
8656 
8657 static unsigned int bnxt_get_max_func_cp_rings_for_en(struct bnxt *bp)
8658 {
8659 	unsigned int cp = bp->hw_resc.max_cp_rings;
8660 
8661 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
8662 		cp -= bnxt_get_ulp_msix_num(bp);
8663 
8664 	return cp;
8665 }
8666 
8667 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp)
8668 {
8669 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
8670 
8671 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8672 		return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_nqs);
8673 
8674 	return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings);
8675 }
8676 
8677 static void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs)
8678 {
8679 	bp->hw_resc.max_irqs = max_irqs;
8680 }
8681 
8682 unsigned int bnxt_get_avail_cp_rings_for_en(struct bnxt *bp)
8683 {
8684 	unsigned int cp;
8685 
8686 	cp = bnxt_get_max_func_cp_rings_for_en(bp);
8687 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8688 		return cp - bp->rx_nr_rings - bp->tx_nr_rings;
8689 	else
8690 		return cp - bp->cp_nr_rings;
8691 }
8692 
8693 unsigned int bnxt_get_avail_stat_ctxs_for_en(struct bnxt *bp)
8694 {
8695 	return bnxt_get_max_func_stat_ctxs(bp) - bnxt_get_func_stat_ctxs(bp);
8696 }
8697 
8698 int bnxt_get_avail_msix(struct bnxt *bp, int num)
8699 {
8700 	int max_cp = bnxt_get_max_func_cp_rings(bp);
8701 	int max_irq = bnxt_get_max_func_irqs(bp);
8702 	int total_req = bp->cp_nr_rings + num;
8703 	int max_idx, avail_msix;
8704 
8705 	max_idx = bp->total_irqs;
8706 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
8707 		max_idx = min_t(int, bp->total_irqs, max_cp);
8708 	avail_msix = max_idx - bp->cp_nr_rings;
8709 	if (!BNXT_NEW_RM(bp) || avail_msix >= num)
8710 		return avail_msix;
8711 
8712 	if (max_irq < total_req) {
8713 		num = max_irq - bp->cp_nr_rings;
8714 		if (num <= 0)
8715 			return 0;
8716 	}
8717 	return num;
8718 }
8719 
8720 static int bnxt_get_num_msix(struct bnxt *bp)
8721 {
8722 	if (!BNXT_NEW_RM(bp))
8723 		return bnxt_get_max_func_irqs(bp);
8724 
8725 	return bnxt_nq_rings_in_use(bp);
8726 }
8727 
8728 static int bnxt_init_msix(struct bnxt *bp)
8729 {
8730 	int i, total_vecs, max, rc = 0, min = 1, ulp_msix;
8731 	struct msix_entry *msix_ent;
8732 
8733 	total_vecs = bnxt_get_num_msix(bp);
8734 	max = bnxt_get_max_func_irqs(bp);
8735 	if (total_vecs > max)
8736 		total_vecs = max;
8737 
8738 	if (!total_vecs)
8739 		return 0;
8740 
8741 	msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
8742 	if (!msix_ent)
8743 		return -ENOMEM;
8744 
8745 	for (i = 0; i < total_vecs; i++) {
8746 		msix_ent[i].entry = i;
8747 		msix_ent[i].vector = 0;
8748 	}
8749 
8750 	if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
8751 		min = 2;
8752 
8753 	total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
8754 	ulp_msix = bnxt_get_ulp_msix_num(bp);
8755 	if (total_vecs < 0 || total_vecs < ulp_msix) {
8756 		rc = -ENODEV;
8757 		goto msix_setup_exit;
8758 	}
8759 
8760 	bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
8761 	if (bp->irq_tbl) {
8762 		for (i = 0; i < total_vecs; i++)
8763 			bp->irq_tbl[i].vector = msix_ent[i].vector;
8764 
8765 		bp->total_irqs = total_vecs;
8766 		/* Trim rings based upon num of vectors allocated */
8767 		rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
8768 				     total_vecs - ulp_msix, min == 1);
8769 		if (rc)
8770 			goto msix_setup_exit;
8771 
8772 		bp->cp_nr_rings = (min == 1) ?
8773 				  max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
8774 				  bp->tx_nr_rings + bp->rx_nr_rings;
8775 
8776 	} else {
8777 		rc = -ENOMEM;
8778 		goto msix_setup_exit;
8779 	}
8780 	bp->flags |= BNXT_FLAG_USING_MSIX;
8781 	kfree(msix_ent);
8782 	return 0;
8783 
8784 msix_setup_exit:
8785 	netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc);
8786 	kfree(bp->irq_tbl);
8787 	bp->irq_tbl = NULL;
8788 	pci_disable_msix(bp->pdev);
8789 	kfree(msix_ent);
8790 	return rc;
8791 }
8792 
8793 static int bnxt_init_inta(struct bnxt *bp)
8794 {
8795 	bp->irq_tbl = kzalloc(sizeof(struct bnxt_irq), GFP_KERNEL);
8796 	if (!bp->irq_tbl)
8797 		return -ENOMEM;
8798 
8799 	bp->total_irqs = 1;
8800 	bp->rx_nr_rings = 1;
8801 	bp->tx_nr_rings = 1;
8802 	bp->cp_nr_rings = 1;
8803 	bp->flags |= BNXT_FLAG_SHARED_RINGS;
8804 	bp->irq_tbl[0].vector = bp->pdev->irq;
8805 	return 0;
8806 }
8807 
8808 static int bnxt_init_int_mode(struct bnxt *bp)
8809 {
8810 	int rc = -ENODEV;
8811 
8812 	if (bp->flags & BNXT_FLAG_MSIX_CAP)
8813 		rc = bnxt_init_msix(bp);
8814 
8815 	if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) {
8816 		/* fallback to INTA */
8817 		rc = bnxt_init_inta(bp);
8818 	}
8819 	return rc;
8820 }
8821 
8822 static void bnxt_clear_int_mode(struct bnxt *bp)
8823 {
8824 	if (bp->flags & BNXT_FLAG_USING_MSIX)
8825 		pci_disable_msix(bp->pdev);
8826 
8827 	kfree(bp->irq_tbl);
8828 	bp->irq_tbl = NULL;
8829 	bp->flags &= ~BNXT_FLAG_USING_MSIX;
8830 }
8831 
8832 int bnxt_reserve_rings(struct bnxt *bp, bool irq_re_init)
8833 {
8834 	int tcs = netdev_get_num_tc(bp->dev);
8835 	bool irq_cleared = false;
8836 	int rc;
8837 
8838 	if (!bnxt_need_reserve_rings(bp))
8839 		return 0;
8840 
8841 	if (irq_re_init && BNXT_NEW_RM(bp) &&
8842 	    bnxt_get_num_msix(bp) != bp->total_irqs) {
8843 		bnxt_ulp_irq_stop(bp);
8844 		bnxt_clear_int_mode(bp);
8845 		irq_cleared = true;
8846 	}
8847 	rc = __bnxt_reserve_rings(bp);
8848 	if (irq_cleared) {
8849 		if (!rc)
8850 			rc = bnxt_init_int_mode(bp);
8851 		bnxt_ulp_irq_restart(bp, rc);
8852 	}
8853 	if (rc) {
8854 		netdev_err(bp->dev, "ring reservation/IRQ init failure rc: %d\n", rc);
8855 		return rc;
8856 	}
8857 	if (tcs && (bp->tx_nr_rings_per_tc * tcs != bp->tx_nr_rings)) {
8858 		netdev_err(bp->dev, "tx ring reservation failure\n");
8859 		netdev_reset_tc(bp->dev);
8860 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
8861 		return -ENOMEM;
8862 	}
8863 	return 0;
8864 }
8865 
8866 static void bnxt_free_irq(struct bnxt *bp)
8867 {
8868 	struct bnxt_irq *irq;
8869 	int i;
8870 
8871 #ifdef CONFIG_RFS_ACCEL
8872 	free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
8873 	bp->dev->rx_cpu_rmap = NULL;
8874 #endif
8875 	if (!bp->irq_tbl || !bp->bnapi)
8876 		return;
8877 
8878 	for (i = 0; i < bp->cp_nr_rings; i++) {
8879 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
8880 
8881 		irq = &bp->irq_tbl[map_idx];
8882 		if (irq->requested) {
8883 			if (irq->have_cpumask) {
8884 				irq_set_affinity_hint(irq->vector, NULL);
8885 				free_cpumask_var(irq->cpu_mask);
8886 				irq->have_cpumask = 0;
8887 			}
8888 			free_irq(irq->vector, bp->bnapi[i]);
8889 		}
8890 
8891 		irq->requested = 0;
8892 	}
8893 }
8894 
8895 static int bnxt_request_irq(struct bnxt *bp)
8896 {
8897 	int i, j, rc = 0;
8898 	unsigned long flags = 0;
8899 #ifdef CONFIG_RFS_ACCEL
8900 	struct cpu_rmap *rmap;
8901 #endif
8902 
8903 	rc = bnxt_setup_int_mode(bp);
8904 	if (rc) {
8905 		netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
8906 			   rc);
8907 		return rc;
8908 	}
8909 #ifdef CONFIG_RFS_ACCEL
8910 	rmap = bp->dev->rx_cpu_rmap;
8911 #endif
8912 	if (!(bp->flags & BNXT_FLAG_USING_MSIX))
8913 		flags = IRQF_SHARED;
8914 
8915 	for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
8916 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
8917 		struct bnxt_irq *irq = &bp->irq_tbl[map_idx];
8918 
8919 #ifdef CONFIG_RFS_ACCEL
8920 		if (rmap && bp->bnapi[i]->rx_ring) {
8921 			rc = irq_cpu_rmap_add(rmap, irq->vector);
8922 			if (rc)
8923 				netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
8924 					    j);
8925 			j++;
8926 		}
8927 #endif
8928 		rc = request_irq(irq->vector, irq->handler, flags, irq->name,
8929 				 bp->bnapi[i]);
8930 		if (rc)
8931 			break;
8932 
8933 		irq->requested = 1;
8934 
8935 		if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) {
8936 			int numa_node = dev_to_node(&bp->pdev->dev);
8937 
8938 			irq->have_cpumask = 1;
8939 			cpumask_set_cpu(cpumask_local_spread(i, numa_node),
8940 					irq->cpu_mask);
8941 			rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask);
8942 			if (rc) {
8943 				netdev_warn(bp->dev,
8944 					    "Set affinity failed, IRQ = %d\n",
8945 					    irq->vector);
8946 				break;
8947 			}
8948 		}
8949 	}
8950 	return rc;
8951 }
8952 
8953 static void bnxt_del_napi(struct bnxt *bp)
8954 {
8955 	int i;
8956 
8957 	if (!bp->bnapi)
8958 		return;
8959 
8960 	for (i = 0; i < bp->cp_nr_rings; i++) {
8961 		struct bnxt_napi *bnapi = bp->bnapi[i];
8962 
8963 		__netif_napi_del(&bnapi->napi);
8964 	}
8965 	/* We called __netif_napi_del(), we need
8966 	 * to respect an RCU grace period before freeing napi structures.
8967 	 */
8968 	synchronize_net();
8969 }
8970 
8971 static void bnxt_init_napi(struct bnxt *bp)
8972 {
8973 	int i;
8974 	unsigned int cp_nr_rings = bp->cp_nr_rings;
8975 	struct bnxt_napi *bnapi;
8976 
8977 	if (bp->flags & BNXT_FLAG_USING_MSIX) {
8978 		int (*poll_fn)(struct napi_struct *, int) = bnxt_poll;
8979 
8980 		if (bp->flags & BNXT_FLAG_CHIP_P5)
8981 			poll_fn = bnxt_poll_p5;
8982 		else if (BNXT_CHIP_TYPE_NITRO_A0(bp))
8983 			cp_nr_rings--;
8984 		for (i = 0; i < cp_nr_rings; i++) {
8985 			bnapi = bp->bnapi[i];
8986 			netif_napi_add(bp->dev, &bnapi->napi, poll_fn, 64);
8987 		}
8988 		if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
8989 			bnapi = bp->bnapi[cp_nr_rings];
8990 			netif_napi_add(bp->dev, &bnapi->napi,
8991 				       bnxt_poll_nitroa0, 64);
8992 		}
8993 	} else {
8994 		bnapi = bp->bnapi[0];
8995 		netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64);
8996 	}
8997 }
8998 
8999 static void bnxt_disable_napi(struct bnxt *bp)
9000 {
9001 	int i;
9002 
9003 	if (!bp->bnapi ||
9004 	    test_and_set_bit(BNXT_STATE_NAPI_DISABLED, &bp->state))
9005 		return;
9006 
9007 	for (i = 0; i < bp->cp_nr_rings; i++) {
9008 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
9009 
9010 		if (bp->bnapi[i]->rx_ring)
9011 			cancel_work_sync(&cpr->dim.work);
9012 
9013 		napi_disable(&bp->bnapi[i]->napi);
9014 	}
9015 }
9016 
9017 static void bnxt_enable_napi(struct bnxt *bp)
9018 {
9019 	int i;
9020 
9021 	clear_bit(BNXT_STATE_NAPI_DISABLED, &bp->state);
9022 	for (i = 0; i < bp->cp_nr_rings; i++) {
9023 		struct bnxt_napi *bnapi = bp->bnapi[i];
9024 		struct bnxt_cp_ring_info *cpr;
9025 
9026 		cpr = &bnapi->cp_ring;
9027 		if (bnapi->in_reset)
9028 			cpr->sw_stats.rx.rx_resets++;
9029 		bnapi->in_reset = false;
9030 
9031 		if (bnapi->rx_ring) {
9032 			INIT_WORK(&cpr->dim.work, bnxt_dim_work);
9033 			cpr->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
9034 		}
9035 		napi_enable(&bnapi->napi);
9036 	}
9037 }
9038 
9039 void bnxt_tx_disable(struct bnxt *bp)
9040 {
9041 	int i;
9042 	struct bnxt_tx_ring_info *txr;
9043 
9044 	if (bp->tx_ring) {
9045 		for (i = 0; i < bp->tx_nr_rings; i++) {
9046 			txr = &bp->tx_ring[i];
9047 			txr->dev_state = BNXT_DEV_STATE_CLOSING;
9048 		}
9049 	}
9050 	/* Drop carrier first to prevent TX timeout */
9051 	netif_carrier_off(bp->dev);
9052 	/* Stop all TX queues */
9053 	netif_tx_disable(bp->dev);
9054 }
9055 
9056 void bnxt_tx_enable(struct bnxt *bp)
9057 {
9058 	int i;
9059 	struct bnxt_tx_ring_info *txr;
9060 
9061 	for (i = 0; i < bp->tx_nr_rings; i++) {
9062 		txr = &bp->tx_ring[i];
9063 		txr->dev_state = 0;
9064 	}
9065 	netif_tx_wake_all_queues(bp->dev);
9066 	if (bp->link_info.link_up)
9067 		netif_carrier_on(bp->dev);
9068 }
9069 
9070 static char *bnxt_report_fec(struct bnxt_link_info *link_info)
9071 {
9072 	u8 active_fec = link_info->active_fec_sig_mode &
9073 			PORT_PHY_QCFG_RESP_ACTIVE_FEC_MASK;
9074 
9075 	switch (active_fec) {
9076 	default:
9077 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_NONE_ACTIVE:
9078 		return "None";
9079 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE74_ACTIVE:
9080 		return "Clause 74 BaseR";
9081 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE91_ACTIVE:
9082 		return "Clause 91 RS(528,514)";
9083 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_1XN_ACTIVE:
9084 		return "Clause 91 RS544_1XN";
9085 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_IEEE_ACTIVE:
9086 		return "Clause 91 RS(544,514)";
9087 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_1XN_ACTIVE:
9088 		return "Clause 91 RS272_1XN";
9089 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_IEEE_ACTIVE:
9090 		return "Clause 91 RS(272,257)";
9091 	}
9092 }
9093 
9094 static void bnxt_report_link(struct bnxt *bp)
9095 {
9096 	if (bp->link_info.link_up) {
9097 		const char *signal = "";
9098 		const char *flow_ctrl;
9099 		const char *duplex;
9100 		u32 speed;
9101 		u16 fec;
9102 
9103 		netif_carrier_on(bp->dev);
9104 		speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
9105 		if (speed == SPEED_UNKNOWN) {
9106 			netdev_info(bp->dev, "NIC Link is Up, speed unknown\n");
9107 			return;
9108 		}
9109 		if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
9110 			duplex = "full";
9111 		else
9112 			duplex = "half";
9113 		if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
9114 			flow_ctrl = "ON - receive & transmit";
9115 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
9116 			flow_ctrl = "ON - transmit";
9117 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
9118 			flow_ctrl = "ON - receive";
9119 		else
9120 			flow_ctrl = "none";
9121 		if (bp->link_info.phy_qcfg_resp.option_flags &
9122 		    PORT_PHY_QCFG_RESP_OPTION_FLAGS_SIGNAL_MODE_KNOWN) {
9123 			u8 sig_mode = bp->link_info.active_fec_sig_mode &
9124 				      PORT_PHY_QCFG_RESP_SIGNAL_MODE_MASK;
9125 			switch (sig_mode) {
9126 			case PORT_PHY_QCFG_RESP_SIGNAL_MODE_NRZ:
9127 				signal = "(NRZ) ";
9128 				break;
9129 			case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4:
9130 				signal = "(PAM4) ";
9131 				break;
9132 			default:
9133 				break;
9134 			}
9135 		}
9136 		netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s%s duplex, Flow control: %s\n",
9137 			    speed, signal, duplex, flow_ctrl);
9138 		if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP)
9139 			netdev_info(bp->dev, "EEE is %s\n",
9140 				    bp->eee.eee_active ? "active" :
9141 							 "not active");
9142 		fec = bp->link_info.fec_cfg;
9143 		if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED))
9144 			netdev_info(bp->dev, "FEC autoneg %s encoding: %s\n",
9145 				    (fec & BNXT_FEC_AUTONEG) ? "on" : "off",
9146 				    bnxt_report_fec(&bp->link_info));
9147 	} else {
9148 		netif_carrier_off(bp->dev);
9149 		netdev_err(bp->dev, "NIC Link is Down\n");
9150 	}
9151 }
9152 
9153 static bool bnxt_phy_qcaps_no_speed(struct hwrm_port_phy_qcaps_output *resp)
9154 {
9155 	if (!resp->supported_speeds_auto_mode &&
9156 	    !resp->supported_speeds_force_mode &&
9157 	    !resp->supported_pam4_speeds_auto_mode &&
9158 	    !resp->supported_pam4_speeds_force_mode)
9159 		return true;
9160 	return false;
9161 }
9162 
9163 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp)
9164 {
9165 	int rc = 0;
9166 	struct hwrm_port_phy_qcaps_input req = {0};
9167 	struct hwrm_port_phy_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
9168 	struct bnxt_link_info *link_info = &bp->link_info;
9169 
9170 	if (bp->hwrm_spec_code < 0x10201)
9171 		return 0;
9172 
9173 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCAPS, -1, -1);
9174 
9175 	mutex_lock(&bp->hwrm_cmd_lock);
9176 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9177 	if (rc)
9178 		goto hwrm_phy_qcaps_exit;
9179 
9180 	bp->phy_flags = resp->flags;
9181 	if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) {
9182 		struct ethtool_eee *eee = &bp->eee;
9183 		u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode);
9184 
9185 		eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
9186 		bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) &
9187 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK;
9188 		bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) &
9189 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK;
9190 	}
9191 
9192 	if (bp->hwrm_spec_code >= 0x10a01) {
9193 		if (bnxt_phy_qcaps_no_speed(resp)) {
9194 			link_info->phy_state = BNXT_PHY_STATE_DISABLED;
9195 			netdev_warn(bp->dev, "Ethernet link disabled\n");
9196 		} else if (link_info->phy_state == BNXT_PHY_STATE_DISABLED) {
9197 			link_info->phy_state = BNXT_PHY_STATE_ENABLED;
9198 			netdev_info(bp->dev, "Ethernet link enabled\n");
9199 			/* Phy re-enabled, reprobe the speeds */
9200 			link_info->support_auto_speeds = 0;
9201 			link_info->support_pam4_auto_speeds = 0;
9202 		}
9203 	}
9204 	if (resp->supported_speeds_auto_mode)
9205 		link_info->support_auto_speeds =
9206 			le16_to_cpu(resp->supported_speeds_auto_mode);
9207 	if (resp->supported_pam4_speeds_auto_mode)
9208 		link_info->support_pam4_auto_speeds =
9209 			le16_to_cpu(resp->supported_pam4_speeds_auto_mode);
9210 
9211 	bp->port_count = resp->port_cnt;
9212 
9213 hwrm_phy_qcaps_exit:
9214 	mutex_unlock(&bp->hwrm_cmd_lock);
9215 	return rc;
9216 }
9217 
9218 static bool bnxt_support_dropped(u16 advertising, u16 supported)
9219 {
9220 	u16 diff = advertising ^ supported;
9221 
9222 	return ((supported | diff) != supported);
9223 }
9224 
9225 int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
9226 {
9227 	int rc = 0;
9228 	struct bnxt_link_info *link_info = &bp->link_info;
9229 	struct hwrm_port_phy_qcfg_input req = {0};
9230 	struct hwrm_port_phy_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
9231 	u8 link_up = link_info->link_up;
9232 	bool support_changed = false;
9233 
9234 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCFG, -1, -1);
9235 
9236 	mutex_lock(&bp->hwrm_cmd_lock);
9237 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9238 	if (rc) {
9239 		mutex_unlock(&bp->hwrm_cmd_lock);
9240 		return rc;
9241 	}
9242 
9243 	memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
9244 	link_info->phy_link_status = resp->link;
9245 	link_info->duplex = resp->duplex_cfg;
9246 	if (bp->hwrm_spec_code >= 0x10800)
9247 		link_info->duplex = resp->duplex_state;
9248 	link_info->pause = resp->pause;
9249 	link_info->auto_mode = resp->auto_mode;
9250 	link_info->auto_pause_setting = resp->auto_pause;
9251 	link_info->lp_pause = resp->link_partner_adv_pause;
9252 	link_info->force_pause_setting = resp->force_pause;
9253 	link_info->duplex_setting = resp->duplex_cfg;
9254 	if (link_info->phy_link_status == BNXT_LINK_LINK)
9255 		link_info->link_speed = le16_to_cpu(resp->link_speed);
9256 	else
9257 		link_info->link_speed = 0;
9258 	link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
9259 	link_info->force_pam4_link_speed =
9260 		le16_to_cpu(resp->force_pam4_link_speed);
9261 	link_info->support_speeds = le16_to_cpu(resp->support_speeds);
9262 	link_info->support_pam4_speeds = le16_to_cpu(resp->support_pam4_speeds);
9263 	link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
9264 	link_info->auto_pam4_link_speeds =
9265 		le16_to_cpu(resp->auto_pam4_link_speed_mask);
9266 	link_info->lp_auto_link_speeds =
9267 		le16_to_cpu(resp->link_partner_adv_speeds);
9268 	link_info->lp_auto_pam4_link_speeds =
9269 		resp->link_partner_pam4_adv_speeds;
9270 	link_info->preemphasis = le32_to_cpu(resp->preemphasis);
9271 	link_info->phy_ver[0] = resp->phy_maj;
9272 	link_info->phy_ver[1] = resp->phy_min;
9273 	link_info->phy_ver[2] = resp->phy_bld;
9274 	link_info->media_type = resp->media_type;
9275 	link_info->phy_type = resp->phy_type;
9276 	link_info->transceiver = resp->xcvr_pkg_type;
9277 	link_info->phy_addr = resp->eee_config_phy_addr &
9278 			      PORT_PHY_QCFG_RESP_PHY_ADDR_MASK;
9279 	link_info->module_status = resp->module_status;
9280 
9281 	if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) {
9282 		struct ethtool_eee *eee = &bp->eee;
9283 		u16 fw_speeds;
9284 
9285 		eee->eee_active = 0;
9286 		if (resp->eee_config_phy_addr &
9287 		    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) {
9288 			eee->eee_active = 1;
9289 			fw_speeds = le16_to_cpu(
9290 				resp->link_partner_adv_eee_link_speed_mask);
9291 			eee->lp_advertised =
9292 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
9293 		}
9294 
9295 		/* Pull initial EEE config */
9296 		if (!chng_link_state) {
9297 			if (resp->eee_config_phy_addr &
9298 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED)
9299 				eee->eee_enabled = 1;
9300 
9301 			fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask);
9302 			eee->advertised =
9303 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
9304 
9305 			if (resp->eee_config_phy_addr &
9306 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) {
9307 				__le32 tmr;
9308 
9309 				eee->tx_lpi_enabled = 1;
9310 				tmr = resp->xcvr_identifier_type_tx_lpi_timer;
9311 				eee->tx_lpi_timer = le32_to_cpu(tmr) &
9312 					PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK;
9313 			}
9314 		}
9315 	}
9316 
9317 	link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED;
9318 	if (bp->hwrm_spec_code >= 0x10504) {
9319 		link_info->fec_cfg = le16_to_cpu(resp->fec_cfg);
9320 		link_info->active_fec_sig_mode = resp->active_fec_signal_mode;
9321 	}
9322 	/* TODO: need to add more logic to report VF link */
9323 	if (chng_link_state) {
9324 		if (link_info->phy_link_status == BNXT_LINK_LINK)
9325 			link_info->link_up = 1;
9326 		else
9327 			link_info->link_up = 0;
9328 		if (link_up != link_info->link_up)
9329 			bnxt_report_link(bp);
9330 	} else {
9331 		/* alwasy link down if not require to update link state */
9332 		link_info->link_up = 0;
9333 	}
9334 	mutex_unlock(&bp->hwrm_cmd_lock);
9335 
9336 	if (!BNXT_PHY_CFG_ABLE(bp))
9337 		return 0;
9338 
9339 	/* Check if any advertised speeds are no longer supported. The caller
9340 	 * holds the link_lock mutex, so we can modify link_info settings.
9341 	 */
9342 	if (bnxt_support_dropped(link_info->advertising,
9343 				 link_info->support_auto_speeds)) {
9344 		link_info->advertising = link_info->support_auto_speeds;
9345 		support_changed = true;
9346 	}
9347 	if (bnxt_support_dropped(link_info->advertising_pam4,
9348 				 link_info->support_pam4_auto_speeds)) {
9349 		link_info->advertising_pam4 = link_info->support_pam4_auto_speeds;
9350 		support_changed = true;
9351 	}
9352 	if (support_changed && (link_info->autoneg & BNXT_AUTONEG_SPEED))
9353 		bnxt_hwrm_set_link_setting(bp, true, false);
9354 	return 0;
9355 }
9356 
9357 static void bnxt_get_port_module_status(struct bnxt *bp)
9358 {
9359 	struct bnxt_link_info *link_info = &bp->link_info;
9360 	struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp;
9361 	u8 module_status;
9362 
9363 	if (bnxt_update_link(bp, true))
9364 		return;
9365 
9366 	module_status = link_info->module_status;
9367 	switch (module_status) {
9368 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX:
9369 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN:
9370 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG:
9371 		netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n",
9372 			    bp->pf.port_id);
9373 		if (bp->hwrm_spec_code >= 0x10201) {
9374 			netdev_warn(bp->dev, "Module part number %s\n",
9375 				    resp->phy_vendor_partnumber);
9376 		}
9377 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX)
9378 			netdev_warn(bp->dev, "TX is disabled\n");
9379 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN)
9380 			netdev_warn(bp->dev, "SFP+ module is shutdown\n");
9381 	}
9382 }
9383 
9384 static void
9385 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
9386 {
9387 	if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
9388 		if (bp->hwrm_spec_code >= 0x10201)
9389 			req->auto_pause =
9390 				PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE;
9391 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
9392 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
9393 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
9394 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX;
9395 		req->enables |=
9396 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
9397 	} else {
9398 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
9399 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
9400 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
9401 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
9402 		req->enables |=
9403 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
9404 		if (bp->hwrm_spec_code >= 0x10201) {
9405 			req->auto_pause = req->force_pause;
9406 			req->enables |= cpu_to_le32(
9407 				PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
9408 		}
9409 	}
9410 }
9411 
9412 static void bnxt_hwrm_set_link_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
9413 {
9414 	if (bp->link_info.autoneg & BNXT_AUTONEG_SPEED) {
9415 		req->auto_mode |= PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK;
9416 		if (bp->link_info.advertising) {
9417 			req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
9418 			req->auto_link_speed_mask = cpu_to_le16(bp->link_info.advertising);
9419 		}
9420 		if (bp->link_info.advertising_pam4) {
9421 			req->enables |=
9422 				cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAM4_LINK_SPEED_MASK);
9423 			req->auto_link_pam4_speed_mask =
9424 				cpu_to_le16(bp->link_info.advertising_pam4);
9425 		}
9426 		req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
9427 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
9428 	} else {
9429 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
9430 		if (bp->link_info.req_signal_mode == BNXT_SIG_MODE_PAM4) {
9431 			req->force_pam4_link_speed = cpu_to_le16(bp->link_info.req_link_speed);
9432 			req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAM4_LINK_SPEED);
9433 		} else {
9434 			req->force_link_speed = cpu_to_le16(bp->link_info.req_link_speed);
9435 		}
9436 	}
9437 
9438 	/* tell chimp that the setting takes effect immediately */
9439 	req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
9440 }
9441 
9442 int bnxt_hwrm_set_pause(struct bnxt *bp)
9443 {
9444 	struct hwrm_port_phy_cfg_input req = {0};
9445 	int rc;
9446 
9447 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
9448 	bnxt_hwrm_set_pause_common(bp, &req);
9449 
9450 	if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
9451 	    bp->link_info.force_link_chng)
9452 		bnxt_hwrm_set_link_common(bp, &req);
9453 
9454 	mutex_lock(&bp->hwrm_cmd_lock);
9455 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9456 	if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
9457 		/* since changing of pause setting doesn't trigger any link
9458 		 * change event, the driver needs to update the current pause
9459 		 * result upon successfully return of the phy_cfg command
9460 		 */
9461 		bp->link_info.pause =
9462 		bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
9463 		bp->link_info.auto_pause_setting = 0;
9464 		if (!bp->link_info.force_link_chng)
9465 			bnxt_report_link(bp);
9466 	}
9467 	bp->link_info.force_link_chng = false;
9468 	mutex_unlock(&bp->hwrm_cmd_lock);
9469 	return rc;
9470 }
9471 
9472 static void bnxt_hwrm_set_eee(struct bnxt *bp,
9473 			      struct hwrm_port_phy_cfg_input *req)
9474 {
9475 	struct ethtool_eee *eee = &bp->eee;
9476 
9477 	if (eee->eee_enabled) {
9478 		u16 eee_speeds;
9479 		u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE;
9480 
9481 		if (eee->tx_lpi_enabled)
9482 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE;
9483 		else
9484 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE;
9485 
9486 		req->flags |= cpu_to_le32(flags);
9487 		eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised);
9488 		req->eee_link_speed_mask = cpu_to_le16(eee_speeds);
9489 		req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer);
9490 	} else {
9491 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE);
9492 	}
9493 }
9494 
9495 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee)
9496 {
9497 	struct hwrm_port_phy_cfg_input req = {0};
9498 
9499 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
9500 	if (set_pause)
9501 		bnxt_hwrm_set_pause_common(bp, &req);
9502 
9503 	bnxt_hwrm_set_link_common(bp, &req);
9504 
9505 	if (set_eee)
9506 		bnxt_hwrm_set_eee(bp, &req);
9507 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9508 }
9509 
9510 static int bnxt_hwrm_shutdown_link(struct bnxt *bp)
9511 {
9512 	struct hwrm_port_phy_cfg_input req = {0};
9513 
9514 	if (!BNXT_SINGLE_PF(bp))
9515 		return 0;
9516 
9517 	if (pci_num_vf(bp->pdev) &&
9518 	    !(bp->phy_flags & BNXT_PHY_FL_FW_MANAGED_LKDN))
9519 		return 0;
9520 
9521 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
9522 	req.flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN);
9523 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9524 }
9525 
9526 static int bnxt_fw_init_one(struct bnxt *bp);
9527 
9528 static int bnxt_fw_reset_via_optee(struct bnxt *bp)
9529 {
9530 #ifdef CONFIG_TEE_BNXT_FW
9531 	int rc = tee_bnxt_fw_load();
9532 
9533 	if (rc)
9534 		netdev_err(bp->dev, "Failed FW reset via OP-TEE, rc=%d\n", rc);
9535 
9536 	return rc;
9537 #else
9538 	netdev_err(bp->dev, "OP-TEE not supported\n");
9539 	return -ENODEV;
9540 #endif
9541 }
9542 
9543 static int bnxt_try_recover_fw(struct bnxt *bp)
9544 {
9545 	if (bp->fw_health && bp->fw_health->status_reliable) {
9546 		int retry = 0, rc;
9547 		u32 sts;
9548 
9549 		mutex_lock(&bp->hwrm_cmd_lock);
9550 		do {
9551 			sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
9552 			rc = __bnxt_hwrm_ver_get(bp, true);
9553 			if (!BNXT_FW_IS_BOOTING(sts) &&
9554 			    !BNXT_FW_IS_RECOVERING(sts))
9555 				break;
9556 			retry++;
9557 		} while (rc == -EBUSY && retry < BNXT_FW_RETRY);
9558 		mutex_unlock(&bp->hwrm_cmd_lock);
9559 
9560 		if (!BNXT_FW_IS_HEALTHY(sts)) {
9561 			netdev_err(bp->dev,
9562 				   "Firmware not responding, status: 0x%x\n",
9563 				   sts);
9564 			rc = -ENODEV;
9565 		}
9566 		if (sts & FW_STATUS_REG_CRASHED_NO_MASTER) {
9567 			netdev_warn(bp->dev, "Firmware recover via OP-TEE requested\n");
9568 			return bnxt_fw_reset_via_optee(bp);
9569 		}
9570 		return rc;
9571 	}
9572 
9573 	return -ENODEV;
9574 }
9575 
9576 static int bnxt_hwrm_if_change(struct bnxt *bp, bool up)
9577 {
9578 	struct hwrm_func_drv_if_change_output *resp = bp->hwrm_cmd_resp_addr;
9579 	struct hwrm_func_drv_if_change_input req = {0};
9580 	bool fw_reset = !bp->irq_tbl;
9581 	bool resc_reinit = false;
9582 	int rc, retry = 0;
9583 	u32 flags = 0;
9584 
9585 	if (!(bp->fw_cap & BNXT_FW_CAP_IF_CHANGE))
9586 		return 0;
9587 
9588 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_IF_CHANGE, -1, -1);
9589 	if (up)
9590 		req.flags = cpu_to_le32(FUNC_DRV_IF_CHANGE_REQ_FLAGS_UP);
9591 	mutex_lock(&bp->hwrm_cmd_lock);
9592 	while (retry < BNXT_FW_IF_RETRY) {
9593 		rc = _hwrm_send_message(bp, &req, sizeof(req),
9594 					HWRM_CMD_TIMEOUT);
9595 		if (rc != -EAGAIN)
9596 			break;
9597 
9598 		msleep(50);
9599 		retry++;
9600 	}
9601 	if (!rc)
9602 		flags = le32_to_cpu(resp->flags);
9603 	mutex_unlock(&bp->hwrm_cmd_lock);
9604 
9605 	if (rc == -EAGAIN)
9606 		return rc;
9607 	if (rc && up) {
9608 		rc = bnxt_try_recover_fw(bp);
9609 		fw_reset = true;
9610 	}
9611 	if (rc)
9612 		return rc;
9613 
9614 	if (!up) {
9615 		bnxt_inv_fw_health_reg(bp);
9616 		return 0;
9617 	}
9618 
9619 	if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_RESC_CHANGE)
9620 		resc_reinit = true;
9621 	if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_HOT_FW_RESET_DONE)
9622 		fw_reset = true;
9623 	else if (bp->fw_health && !bp->fw_health->status_reliable)
9624 		bnxt_try_map_fw_health_reg(bp);
9625 
9626 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state) && !fw_reset) {
9627 		netdev_err(bp->dev, "RESET_DONE not set during FW reset.\n");
9628 		set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
9629 		return -ENODEV;
9630 	}
9631 	if (resc_reinit || fw_reset) {
9632 		if (fw_reset) {
9633 			set_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
9634 			if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
9635 				bnxt_ulp_stop(bp);
9636 			bnxt_free_ctx_mem(bp);
9637 			kfree(bp->ctx);
9638 			bp->ctx = NULL;
9639 			bnxt_dcb_free(bp);
9640 			rc = bnxt_fw_init_one(bp);
9641 			if (rc) {
9642 				clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
9643 				set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
9644 				return rc;
9645 			}
9646 			bnxt_clear_int_mode(bp);
9647 			rc = bnxt_init_int_mode(bp);
9648 			if (rc) {
9649 				clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
9650 				netdev_err(bp->dev, "init int mode failed\n");
9651 				return rc;
9652 			}
9653 		}
9654 		if (BNXT_NEW_RM(bp)) {
9655 			struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
9656 
9657 			rc = bnxt_hwrm_func_resc_qcaps(bp, true);
9658 			if (rc)
9659 				netdev_err(bp->dev, "resc_qcaps failed\n");
9660 
9661 			hw_resc->resv_cp_rings = 0;
9662 			hw_resc->resv_stat_ctxs = 0;
9663 			hw_resc->resv_irqs = 0;
9664 			hw_resc->resv_tx_rings = 0;
9665 			hw_resc->resv_rx_rings = 0;
9666 			hw_resc->resv_hw_ring_grps = 0;
9667 			hw_resc->resv_vnics = 0;
9668 			if (!fw_reset) {
9669 				bp->tx_nr_rings = 0;
9670 				bp->rx_nr_rings = 0;
9671 			}
9672 		}
9673 	}
9674 	return rc;
9675 }
9676 
9677 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp)
9678 {
9679 	struct hwrm_port_led_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
9680 	struct hwrm_port_led_qcaps_input req = {0};
9681 	struct bnxt_pf_info *pf = &bp->pf;
9682 	int rc;
9683 
9684 	bp->num_leds = 0;
9685 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601)
9686 		return 0;
9687 
9688 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_LED_QCAPS, -1, -1);
9689 	req.port_id = cpu_to_le16(pf->port_id);
9690 	mutex_lock(&bp->hwrm_cmd_lock);
9691 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9692 	if (rc) {
9693 		mutex_unlock(&bp->hwrm_cmd_lock);
9694 		return rc;
9695 	}
9696 	if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) {
9697 		int i;
9698 
9699 		bp->num_leds = resp->num_leds;
9700 		memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) *
9701 						 bp->num_leds);
9702 		for (i = 0; i < bp->num_leds; i++) {
9703 			struct bnxt_led_info *led = &bp->leds[i];
9704 			__le16 caps = led->led_state_caps;
9705 
9706 			if (!led->led_group_id ||
9707 			    !BNXT_LED_ALT_BLINK_CAP(caps)) {
9708 				bp->num_leds = 0;
9709 				break;
9710 			}
9711 		}
9712 	}
9713 	mutex_unlock(&bp->hwrm_cmd_lock);
9714 	return 0;
9715 }
9716 
9717 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp)
9718 {
9719 	struct hwrm_wol_filter_alloc_input req = {0};
9720 	struct hwrm_wol_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
9721 	int rc;
9722 
9723 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_ALLOC, -1, -1);
9724 	req.port_id = cpu_to_le16(bp->pf.port_id);
9725 	req.wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT;
9726 	req.enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS);
9727 	memcpy(req.mac_address, bp->dev->dev_addr, ETH_ALEN);
9728 	mutex_lock(&bp->hwrm_cmd_lock);
9729 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9730 	if (!rc)
9731 		bp->wol_filter_id = resp->wol_filter_id;
9732 	mutex_unlock(&bp->hwrm_cmd_lock);
9733 	return rc;
9734 }
9735 
9736 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp)
9737 {
9738 	struct hwrm_wol_filter_free_input req = {0};
9739 
9740 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_FREE, -1, -1);
9741 	req.port_id = cpu_to_le16(bp->pf.port_id);
9742 	req.enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID);
9743 	req.wol_filter_id = bp->wol_filter_id;
9744 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9745 }
9746 
9747 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle)
9748 {
9749 	struct hwrm_wol_filter_qcfg_input req = {0};
9750 	struct hwrm_wol_filter_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
9751 	u16 next_handle = 0;
9752 	int rc;
9753 
9754 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_QCFG, -1, -1);
9755 	req.port_id = cpu_to_le16(bp->pf.port_id);
9756 	req.handle = cpu_to_le16(handle);
9757 	mutex_lock(&bp->hwrm_cmd_lock);
9758 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9759 	if (!rc) {
9760 		next_handle = le16_to_cpu(resp->next_handle);
9761 		if (next_handle != 0) {
9762 			if (resp->wol_type ==
9763 			    WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) {
9764 				bp->wol = 1;
9765 				bp->wol_filter_id = resp->wol_filter_id;
9766 			}
9767 		}
9768 	}
9769 	mutex_unlock(&bp->hwrm_cmd_lock);
9770 	return next_handle;
9771 }
9772 
9773 static void bnxt_get_wol_settings(struct bnxt *bp)
9774 {
9775 	u16 handle = 0;
9776 
9777 	bp->wol = 0;
9778 	if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP))
9779 		return;
9780 
9781 	do {
9782 		handle = bnxt_hwrm_get_wol_fltrs(bp, handle);
9783 	} while (handle && handle != 0xffff);
9784 }
9785 
9786 #ifdef CONFIG_BNXT_HWMON
9787 static ssize_t bnxt_show_temp(struct device *dev,
9788 			      struct device_attribute *devattr, char *buf)
9789 {
9790 	struct hwrm_temp_monitor_query_input req = {0};
9791 	struct hwrm_temp_monitor_query_output *resp;
9792 	struct bnxt *bp = dev_get_drvdata(dev);
9793 	u32 len = 0;
9794 	int rc;
9795 
9796 	resp = bp->hwrm_cmd_resp_addr;
9797 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TEMP_MONITOR_QUERY, -1, -1);
9798 	mutex_lock(&bp->hwrm_cmd_lock);
9799 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9800 	if (!rc)
9801 		len = sprintf(buf, "%u\n", resp->temp * 1000); /* display millidegree */
9802 	mutex_unlock(&bp->hwrm_cmd_lock);
9803 	if (rc)
9804 		return rc;
9805 	return len;
9806 }
9807 static SENSOR_DEVICE_ATTR(temp1_input, 0444, bnxt_show_temp, NULL, 0);
9808 
9809 static struct attribute *bnxt_attrs[] = {
9810 	&sensor_dev_attr_temp1_input.dev_attr.attr,
9811 	NULL
9812 };
9813 ATTRIBUTE_GROUPS(bnxt);
9814 
9815 static void bnxt_hwmon_close(struct bnxt *bp)
9816 {
9817 	if (bp->hwmon_dev) {
9818 		hwmon_device_unregister(bp->hwmon_dev);
9819 		bp->hwmon_dev = NULL;
9820 	}
9821 }
9822 
9823 static void bnxt_hwmon_open(struct bnxt *bp)
9824 {
9825 	struct hwrm_temp_monitor_query_input req = {0};
9826 	struct pci_dev *pdev = bp->pdev;
9827 	int rc;
9828 
9829 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TEMP_MONITOR_QUERY, -1, -1);
9830 	rc = hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9831 	if (rc == -EACCES || rc == -EOPNOTSUPP) {
9832 		bnxt_hwmon_close(bp);
9833 		return;
9834 	}
9835 
9836 	if (bp->hwmon_dev)
9837 		return;
9838 
9839 	bp->hwmon_dev = hwmon_device_register_with_groups(&pdev->dev,
9840 							  DRV_MODULE_NAME, bp,
9841 							  bnxt_groups);
9842 	if (IS_ERR(bp->hwmon_dev)) {
9843 		bp->hwmon_dev = NULL;
9844 		dev_warn(&pdev->dev, "Cannot register hwmon device\n");
9845 	}
9846 }
9847 #else
9848 static void bnxt_hwmon_close(struct bnxt *bp)
9849 {
9850 }
9851 
9852 static void bnxt_hwmon_open(struct bnxt *bp)
9853 {
9854 }
9855 #endif
9856 
9857 static bool bnxt_eee_config_ok(struct bnxt *bp)
9858 {
9859 	struct ethtool_eee *eee = &bp->eee;
9860 	struct bnxt_link_info *link_info = &bp->link_info;
9861 
9862 	if (!(bp->phy_flags & BNXT_PHY_FL_EEE_CAP))
9863 		return true;
9864 
9865 	if (eee->eee_enabled) {
9866 		u32 advertising =
9867 			_bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0);
9868 
9869 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
9870 			eee->eee_enabled = 0;
9871 			return false;
9872 		}
9873 		if (eee->advertised & ~advertising) {
9874 			eee->advertised = advertising & eee->supported;
9875 			return false;
9876 		}
9877 	}
9878 	return true;
9879 }
9880 
9881 static int bnxt_update_phy_setting(struct bnxt *bp)
9882 {
9883 	int rc;
9884 	bool update_link = false;
9885 	bool update_pause = false;
9886 	bool update_eee = false;
9887 	struct bnxt_link_info *link_info = &bp->link_info;
9888 
9889 	rc = bnxt_update_link(bp, true);
9890 	if (rc) {
9891 		netdev_err(bp->dev, "failed to update link (rc: %x)\n",
9892 			   rc);
9893 		return rc;
9894 	}
9895 	if (!BNXT_SINGLE_PF(bp))
9896 		return 0;
9897 
9898 	if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
9899 	    (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) !=
9900 	    link_info->req_flow_ctrl)
9901 		update_pause = true;
9902 	if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
9903 	    link_info->force_pause_setting != link_info->req_flow_ctrl)
9904 		update_pause = true;
9905 	if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
9906 		if (BNXT_AUTO_MODE(link_info->auto_mode))
9907 			update_link = true;
9908 		if (link_info->req_signal_mode == BNXT_SIG_MODE_NRZ &&
9909 		    link_info->req_link_speed != link_info->force_link_speed)
9910 			update_link = true;
9911 		else if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4 &&
9912 			 link_info->req_link_speed != link_info->force_pam4_link_speed)
9913 			update_link = true;
9914 		if (link_info->req_duplex != link_info->duplex_setting)
9915 			update_link = true;
9916 	} else {
9917 		if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
9918 			update_link = true;
9919 		if (link_info->advertising != link_info->auto_link_speeds ||
9920 		    link_info->advertising_pam4 != link_info->auto_pam4_link_speeds)
9921 			update_link = true;
9922 	}
9923 
9924 	/* The last close may have shutdown the link, so need to call
9925 	 * PHY_CFG to bring it back up.
9926 	 */
9927 	if (!bp->link_info.link_up)
9928 		update_link = true;
9929 
9930 	if (!bnxt_eee_config_ok(bp))
9931 		update_eee = true;
9932 
9933 	if (update_link)
9934 		rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee);
9935 	else if (update_pause)
9936 		rc = bnxt_hwrm_set_pause(bp);
9937 	if (rc) {
9938 		netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
9939 			   rc);
9940 		return rc;
9941 	}
9942 
9943 	return rc;
9944 }
9945 
9946 /* Common routine to pre-map certain register block to different GRC window.
9947  * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
9948  * in PF and 3 windows in VF that can be customized to map in different
9949  * register blocks.
9950  */
9951 static void bnxt_preset_reg_win(struct bnxt *bp)
9952 {
9953 	if (BNXT_PF(bp)) {
9954 		/* CAG registers map to GRC window #4 */
9955 		writel(BNXT_CAG_REG_BASE,
9956 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
9957 	}
9958 }
9959 
9960 static int bnxt_init_dflt_ring_mode(struct bnxt *bp);
9961 
9962 static int bnxt_reinit_after_abort(struct bnxt *bp)
9963 {
9964 	int rc;
9965 
9966 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
9967 		return -EBUSY;
9968 
9969 	if (bp->dev->reg_state == NETREG_UNREGISTERED)
9970 		return -ENODEV;
9971 
9972 	rc = bnxt_fw_init_one(bp);
9973 	if (!rc) {
9974 		bnxt_clear_int_mode(bp);
9975 		rc = bnxt_init_int_mode(bp);
9976 		if (!rc) {
9977 			clear_bit(BNXT_STATE_ABORT_ERR, &bp->state);
9978 			set_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
9979 		}
9980 	}
9981 	return rc;
9982 }
9983 
9984 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
9985 {
9986 	int rc = 0;
9987 
9988 	bnxt_preset_reg_win(bp);
9989 	netif_carrier_off(bp->dev);
9990 	if (irq_re_init) {
9991 		/* Reserve rings now if none were reserved at driver probe. */
9992 		rc = bnxt_init_dflt_ring_mode(bp);
9993 		if (rc) {
9994 			netdev_err(bp->dev, "Failed to reserve default rings at open\n");
9995 			return rc;
9996 		}
9997 	}
9998 	rc = bnxt_reserve_rings(bp, irq_re_init);
9999 	if (rc)
10000 		return rc;
10001 	if ((bp->flags & BNXT_FLAG_RFS) &&
10002 	    !(bp->flags & BNXT_FLAG_USING_MSIX)) {
10003 		/* disable RFS if falling back to INTA */
10004 		bp->dev->hw_features &= ~NETIF_F_NTUPLE;
10005 		bp->flags &= ~BNXT_FLAG_RFS;
10006 	}
10007 
10008 	rc = bnxt_alloc_mem(bp, irq_re_init);
10009 	if (rc) {
10010 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
10011 		goto open_err_free_mem;
10012 	}
10013 
10014 	if (irq_re_init) {
10015 		bnxt_init_napi(bp);
10016 		rc = bnxt_request_irq(bp);
10017 		if (rc) {
10018 			netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
10019 			goto open_err_irq;
10020 		}
10021 	}
10022 
10023 	rc = bnxt_init_nic(bp, irq_re_init);
10024 	if (rc) {
10025 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
10026 		goto open_err_irq;
10027 	}
10028 
10029 	bnxt_enable_napi(bp);
10030 	bnxt_debug_dev_init(bp);
10031 
10032 	if (link_re_init) {
10033 		mutex_lock(&bp->link_lock);
10034 		rc = bnxt_update_phy_setting(bp);
10035 		mutex_unlock(&bp->link_lock);
10036 		if (rc) {
10037 			netdev_warn(bp->dev, "failed to update phy settings\n");
10038 			if (BNXT_SINGLE_PF(bp)) {
10039 				bp->link_info.phy_retry = true;
10040 				bp->link_info.phy_retry_expires =
10041 					jiffies + 5 * HZ;
10042 			}
10043 		}
10044 	}
10045 
10046 	if (irq_re_init)
10047 		udp_tunnel_nic_reset_ntf(bp->dev);
10048 
10049 	set_bit(BNXT_STATE_OPEN, &bp->state);
10050 	bnxt_enable_int(bp);
10051 	/* Enable TX queues */
10052 	bnxt_tx_enable(bp);
10053 	mod_timer(&bp->timer, jiffies + bp->current_interval);
10054 	/* Poll link status and check for SFP+ module status */
10055 	bnxt_get_port_module_status(bp);
10056 
10057 	/* VF-reps may need to be re-opened after the PF is re-opened */
10058 	if (BNXT_PF(bp))
10059 		bnxt_vf_reps_open(bp);
10060 	return 0;
10061 
10062 open_err_irq:
10063 	bnxt_del_napi(bp);
10064 
10065 open_err_free_mem:
10066 	bnxt_free_skbs(bp);
10067 	bnxt_free_irq(bp);
10068 	bnxt_free_mem(bp, true);
10069 	return rc;
10070 }
10071 
10072 /* rtnl_lock held */
10073 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
10074 {
10075 	int rc = 0;
10076 
10077 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state))
10078 		rc = -EIO;
10079 	if (!rc)
10080 		rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
10081 	if (rc) {
10082 		netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
10083 		dev_close(bp->dev);
10084 	}
10085 	return rc;
10086 }
10087 
10088 /* rtnl_lock held, open the NIC half way by allocating all resources, but
10089  * NAPI, IRQ, and TX are not enabled.  This is mainly used for offline
10090  * self tests.
10091  */
10092 int bnxt_half_open_nic(struct bnxt *bp)
10093 {
10094 	int rc = 0;
10095 
10096 	rc = bnxt_alloc_mem(bp, false);
10097 	if (rc) {
10098 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
10099 		goto half_open_err;
10100 	}
10101 	rc = bnxt_init_nic(bp, false);
10102 	if (rc) {
10103 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
10104 		goto half_open_err;
10105 	}
10106 	return 0;
10107 
10108 half_open_err:
10109 	bnxt_free_skbs(bp);
10110 	bnxt_free_mem(bp, false);
10111 	dev_close(bp->dev);
10112 	return rc;
10113 }
10114 
10115 /* rtnl_lock held, this call can only be made after a previous successful
10116  * call to bnxt_half_open_nic().
10117  */
10118 void bnxt_half_close_nic(struct bnxt *bp)
10119 {
10120 	bnxt_hwrm_resource_free(bp, false, false);
10121 	bnxt_free_skbs(bp);
10122 	bnxt_free_mem(bp, false);
10123 }
10124 
10125 static void bnxt_reenable_sriov(struct bnxt *bp)
10126 {
10127 	if (BNXT_PF(bp)) {
10128 		struct bnxt_pf_info *pf = &bp->pf;
10129 		int n = pf->active_vfs;
10130 
10131 		if (n)
10132 			bnxt_cfg_hw_sriov(bp, &n, true);
10133 	}
10134 }
10135 
10136 static int bnxt_open(struct net_device *dev)
10137 {
10138 	struct bnxt *bp = netdev_priv(dev);
10139 	int rc;
10140 
10141 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
10142 		rc = bnxt_reinit_after_abort(bp);
10143 		if (rc) {
10144 			if (rc == -EBUSY)
10145 				netdev_err(bp->dev, "A previous firmware reset has not completed, aborting\n");
10146 			else
10147 				netdev_err(bp->dev, "Failed to reinitialize after aborted firmware reset\n");
10148 			return -ENODEV;
10149 		}
10150 	}
10151 
10152 	rc = bnxt_hwrm_if_change(bp, true);
10153 	if (rc)
10154 		return rc;
10155 	rc = __bnxt_open_nic(bp, true, true);
10156 	if (rc) {
10157 		bnxt_hwrm_if_change(bp, false);
10158 	} else {
10159 		if (test_and_clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) {
10160 			if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
10161 				bnxt_ulp_start(bp, 0);
10162 				bnxt_reenable_sriov(bp);
10163 			}
10164 		}
10165 		bnxt_hwmon_open(bp);
10166 	}
10167 
10168 	return rc;
10169 }
10170 
10171 static bool bnxt_drv_busy(struct bnxt *bp)
10172 {
10173 	return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) ||
10174 		test_bit(BNXT_STATE_READ_STATS, &bp->state));
10175 }
10176 
10177 static void bnxt_get_ring_stats(struct bnxt *bp,
10178 				struct rtnl_link_stats64 *stats);
10179 
10180 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init,
10181 			     bool link_re_init)
10182 {
10183 	/* Close the VF-reps before closing PF */
10184 	if (BNXT_PF(bp))
10185 		bnxt_vf_reps_close(bp);
10186 
10187 	/* Change device state to avoid TX queue wake up's */
10188 	bnxt_tx_disable(bp);
10189 
10190 	clear_bit(BNXT_STATE_OPEN, &bp->state);
10191 	smp_mb__after_atomic();
10192 	while (bnxt_drv_busy(bp))
10193 		msleep(20);
10194 
10195 	/* Flush rings and and disable interrupts */
10196 	bnxt_shutdown_nic(bp, irq_re_init);
10197 
10198 	/* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
10199 
10200 	bnxt_debug_dev_exit(bp);
10201 	bnxt_disable_napi(bp);
10202 	del_timer_sync(&bp->timer);
10203 	bnxt_free_skbs(bp);
10204 
10205 	/* Save ring stats before shutdown */
10206 	if (bp->bnapi && irq_re_init)
10207 		bnxt_get_ring_stats(bp, &bp->net_stats_prev);
10208 	if (irq_re_init) {
10209 		bnxt_free_irq(bp);
10210 		bnxt_del_napi(bp);
10211 	}
10212 	bnxt_free_mem(bp, irq_re_init);
10213 }
10214 
10215 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
10216 {
10217 	int rc = 0;
10218 
10219 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
10220 		/* If we get here, it means firmware reset is in progress
10221 		 * while we are trying to close.  We can safely proceed with
10222 		 * the close because we are holding rtnl_lock().  Some firmware
10223 		 * messages may fail as we proceed to close.  We set the
10224 		 * ABORT_ERR flag here so that the FW reset thread will later
10225 		 * abort when it gets the rtnl_lock() and sees the flag.
10226 		 */
10227 		netdev_warn(bp->dev, "FW reset in progress during close, FW reset will be aborted\n");
10228 		set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
10229 	}
10230 
10231 #ifdef CONFIG_BNXT_SRIOV
10232 	if (bp->sriov_cfg) {
10233 		rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
10234 						      !bp->sriov_cfg,
10235 						      BNXT_SRIOV_CFG_WAIT_TMO);
10236 		if (rc)
10237 			netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
10238 	}
10239 #endif
10240 	__bnxt_close_nic(bp, irq_re_init, link_re_init);
10241 	return rc;
10242 }
10243 
10244 static int bnxt_close(struct net_device *dev)
10245 {
10246 	struct bnxt *bp = netdev_priv(dev);
10247 
10248 	bnxt_hwmon_close(bp);
10249 	bnxt_close_nic(bp, true, true);
10250 	bnxt_hwrm_shutdown_link(bp);
10251 	bnxt_hwrm_if_change(bp, false);
10252 	return 0;
10253 }
10254 
10255 static int bnxt_hwrm_port_phy_read(struct bnxt *bp, u16 phy_addr, u16 reg,
10256 				   u16 *val)
10257 {
10258 	struct hwrm_port_phy_mdio_read_output *resp = bp->hwrm_cmd_resp_addr;
10259 	struct hwrm_port_phy_mdio_read_input req = {0};
10260 	int rc;
10261 
10262 	if (bp->hwrm_spec_code < 0x10a00)
10263 		return -EOPNOTSUPP;
10264 
10265 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_MDIO_READ, -1, -1);
10266 	req.port_id = cpu_to_le16(bp->pf.port_id);
10267 	req.phy_addr = phy_addr;
10268 	req.reg_addr = cpu_to_le16(reg & 0x1f);
10269 	if (mdio_phy_id_is_c45(phy_addr)) {
10270 		req.cl45_mdio = 1;
10271 		req.phy_addr = mdio_phy_id_prtad(phy_addr);
10272 		req.dev_addr = mdio_phy_id_devad(phy_addr);
10273 		req.reg_addr = cpu_to_le16(reg);
10274 	}
10275 
10276 	mutex_lock(&bp->hwrm_cmd_lock);
10277 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
10278 	if (!rc)
10279 		*val = le16_to_cpu(resp->reg_data);
10280 	mutex_unlock(&bp->hwrm_cmd_lock);
10281 	return rc;
10282 }
10283 
10284 static int bnxt_hwrm_port_phy_write(struct bnxt *bp, u16 phy_addr, u16 reg,
10285 				    u16 val)
10286 {
10287 	struct hwrm_port_phy_mdio_write_input req = {0};
10288 
10289 	if (bp->hwrm_spec_code < 0x10a00)
10290 		return -EOPNOTSUPP;
10291 
10292 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_MDIO_WRITE, -1, -1);
10293 	req.port_id = cpu_to_le16(bp->pf.port_id);
10294 	req.phy_addr = phy_addr;
10295 	req.reg_addr = cpu_to_le16(reg & 0x1f);
10296 	if (mdio_phy_id_is_c45(phy_addr)) {
10297 		req.cl45_mdio = 1;
10298 		req.phy_addr = mdio_phy_id_prtad(phy_addr);
10299 		req.dev_addr = mdio_phy_id_devad(phy_addr);
10300 		req.reg_addr = cpu_to_le16(reg);
10301 	}
10302 	req.reg_data = cpu_to_le16(val);
10303 
10304 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
10305 }
10306 
10307 /* rtnl_lock held */
10308 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
10309 {
10310 	struct mii_ioctl_data *mdio = if_mii(ifr);
10311 	struct bnxt *bp = netdev_priv(dev);
10312 	int rc;
10313 
10314 	switch (cmd) {
10315 	case SIOCGMIIPHY:
10316 		mdio->phy_id = bp->link_info.phy_addr;
10317 
10318 		fallthrough;
10319 	case SIOCGMIIREG: {
10320 		u16 mii_regval = 0;
10321 
10322 		if (!netif_running(dev))
10323 			return -EAGAIN;
10324 
10325 		rc = bnxt_hwrm_port_phy_read(bp, mdio->phy_id, mdio->reg_num,
10326 					     &mii_regval);
10327 		mdio->val_out = mii_regval;
10328 		return rc;
10329 	}
10330 
10331 	case SIOCSMIIREG:
10332 		if (!netif_running(dev))
10333 			return -EAGAIN;
10334 
10335 		return bnxt_hwrm_port_phy_write(bp, mdio->phy_id, mdio->reg_num,
10336 						mdio->val_in);
10337 
10338 	default:
10339 		/* do nothing */
10340 		break;
10341 	}
10342 	return -EOPNOTSUPP;
10343 }
10344 
10345 static void bnxt_get_ring_stats(struct bnxt *bp,
10346 				struct rtnl_link_stats64 *stats)
10347 {
10348 	int i;
10349 
10350 	for (i = 0; i < bp->cp_nr_rings; i++) {
10351 		struct bnxt_napi *bnapi = bp->bnapi[i];
10352 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
10353 		u64 *sw = cpr->stats.sw_stats;
10354 
10355 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts);
10356 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts);
10357 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts);
10358 
10359 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts);
10360 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts);
10361 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts);
10362 
10363 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes);
10364 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes);
10365 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes);
10366 
10367 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes);
10368 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes);
10369 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes);
10370 
10371 		stats->rx_missed_errors +=
10372 			BNXT_GET_RING_STATS64(sw, rx_discard_pkts);
10373 
10374 		stats->multicast += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts);
10375 
10376 		stats->tx_dropped += BNXT_GET_RING_STATS64(sw, tx_error_pkts);
10377 	}
10378 }
10379 
10380 static void bnxt_add_prev_stats(struct bnxt *bp,
10381 				struct rtnl_link_stats64 *stats)
10382 {
10383 	struct rtnl_link_stats64 *prev_stats = &bp->net_stats_prev;
10384 
10385 	stats->rx_packets += prev_stats->rx_packets;
10386 	stats->tx_packets += prev_stats->tx_packets;
10387 	stats->rx_bytes += prev_stats->rx_bytes;
10388 	stats->tx_bytes += prev_stats->tx_bytes;
10389 	stats->rx_missed_errors += prev_stats->rx_missed_errors;
10390 	stats->multicast += prev_stats->multicast;
10391 	stats->tx_dropped += prev_stats->tx_dropped;
10392 }
10393 
10394 static void
10395 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
10396 {
10397 	struct bnxt *bp = netdev_priv(dev);
10398 
10399 	set_bit(BNXT_STATE_READ_STATS, &bp->state);
10400 	/* Make sure bnxt_close_nic() sees that we are reading stats before
10401 	 * we check the BNXT_STATE_OPEN flag.
10402 	 */
10403 	smp_mb__after_atomic();
10404 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
10405 		clear_bit(BNXT_STATE_READ_STATS, &bp->state);
10406 		*stats = bp->net_stats_prev;
10407 		return;
10408 	}
10409 
10410 	bnxt_get_ring_stats(bp, stats);
10411 	bnxt_add_prev_stats(bp, stats);
10412 
10413 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
10414 		u64 *rx = bp->port_stats.sw_stats;
10415 		u64 *tx = bp->port_stats.sw_stats +
10416 			  BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
10417 
10418 		stats->rx_crc_errors =
10419 			BNXT_GET_RX_PORT_STATS64(rx, rx_fcs_err_frames);
10420 		stats->rx_frame_errors =
10421 			BNXT_GET_RX_PORT_STATS64(rx, rx_align_err_frames);
10422 		stats->rx_length_errors =
10423 			BNXT_GET_RX_PORT_STATS64(rx, rx_undrsz_frames) +
10424 			BNXT_GET_RX_PORT_STATS64(rx, rx_ovrsz_frames) +
10425 			BNXT_GET_RX_PORT_STATS64(rx, rx_runt_frames);
10426 		stats->rx_errors =
10427 			BNXT_GET_RX_PORT_STATS64(rx, rx_false_carrier_frames) +
10428 			BNXT_GET_RX_PORT_STATS64(rx, rx_jbr_frames);
10429 		stats->collisions =
10430 			BNXT_GET_TX_PORT_STATS64(tx, tx_total_collisions);
10431 		stats->tx_fifo_errors =
10432 			BNXT_GET_TX_PORT_STATS64(tx, tx_fifo_underruns);
10433 		stats->tx_errors = BNXT_GET_TX_PORT_STATS64(tx, tx_err);
10434 	}
10435 	clear_bit(BNXT_STATE_READ_STATS, &bp->state);
10436 }
10437 
10438 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
10439 {
10440 	struct net_device *dev = bp->dev;
10441 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
10442 	struct netdev_hw_addr *ha;
10443 	u8 *haddr;
10444 	int mc_count = 0;
10445 	bool update = false;
10446 	int off = 0;
10447 
10448 	netdev_for_each_mc_addr(ha, dev) {
10449 		if (mc_count >= BNXT_MAX_MC_ADDRS) {
10450 			*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
10451 			vnic->mc_list_count = 0;
10452 			return false;
10453 		}
10454 		haddr = ha->addr;
10455 		if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
10456 			memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
10457 			update = true;
10458 		}
10459 		off += ETH_ALEN;
10460 		mc_count++;
10461 	}
10462 	if (mc_count)
10463 		*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
10464 
10465 	if (mc_count != vnic->mc_list_count) {
10466 		vnic->mc_list_count = mc_count;
10467 		update = true;
10468 	}
10469 	return update;
10470 }
10471 
10472 static bool bnxt_uc_list_updated(struct bnxt *bp)
10473 {
10474 	struct net_device *dev = bp->dev;
10475 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
10476 	struct netdev_hw_addr *ha;
10477 	int off = 0;
10478 
10479 	if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
10480 		return true;
10481 
10482 	netdev_for_each_uc_addr(ha, dev) {
10483 		if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
10484 			return true;
10485 
10486 		off += ETH_ALEN;
10487 	}
10488 	return false;
10489 }
10490 
10491 static void bnxt_set_rx_mode(struct net_device *dev)
10492 {
10493 	struct bnxt *bp = netdev_priv(dev);
10494 	struct bnxt_vnic_info *vnic;
10495 	bool mc_update = false;
10496 	bool uc_update;
10497 	u32 mask;
10498 
10499 	if (!test_bit(BNXT_STATE_OPEN, &bp->state))
10500 		return;
10501 
10502 	vnic = &bp->vnic_info[0];
10503 	mask = vnic->rx_mask;
10504 	mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
10505 		  CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
10506 		  CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST |
10507 		  CFA_L2_SET_RX_MASK_REQ_MASK_BCAST);
10508 
10509 	if (dev->flags & IFF_PROMISC)
10510 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
10511 
10512 	uc_update = bnxt_uc_list_updated(bp);
10513 
10514 	if (dev->flags & IFF_BROADCAST)
10515 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
10516 	if (dev->flags & IFF_ALLMULTI) {
10517 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
10518 		vnic->mc_list_count = 0;
10519 	} else {
10520 		mc_update = bnxt_mc_list_updated(bp, &mask);
10521 	}
10522 
10523 	if (mask != vnic->rx_mask || uc_update || mc_update) {
10524 		vnic->rx_mask = mask;
10525 
10526 		set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
10527 		bnxt_queue_sp_work(bp);
10528 	}
10529 }
10530 
10531 static int bnxt_cfg_rx_mode(struct bnxt *bp)
10532 {
10533 	struct net_device *dev = bp->dev;
10534 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
10535 	struct netdev_hw_addr *ha;
10536 	int i, off = 0, rc;
10537 	bool uc_update;
10538 
10539 	netif_addr_lock_bh(dev);
10540 	uc_update = bnxt_uc_list_updated(bp);
10541 	netif_addr_unlock_bh(dev);
10542 
10543 	if (!uc_update)
10544 		goto skip_uc;
10545 
10546 	mutex_lock(&bp->hwrm_cmd_lock);
10547 	for (i = 1; i < vnic->uc_filter_count; i++) {
10548 		struct hwrm_cfa_l2_filter_free_input req = {0};
10549 
10550 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_FREE, -1,
10551 				       -1);
10552 
10553 		req.l2_filter_id = vnic->fw_l2_filter_id[i];
10554 
10555 		rc = _hwrm_send_message(bp, &req, sizeof(req),
10556 					HWRM_CMD_TIMEOUT);
10557 	}
10558 	mutex_unlock(&bp->hwrm_cmd_lock);
10559 
10560 	vnic->uc_filter_count = 1;
10561 
10562 	netif_addr_lock_bh(dev);
10563 	if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
10564 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
10565 	} else {
10566 		netdev_for_each_uc_addr(ha, dev) {
10567 			memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
10568 			off += ETH_ALEN;
10569 			vnic->uc_filter_count++;
10570 		}
10571 	}
10572 	netif_addr_unlock_bh(dev);
10573 
10574 	for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
10575 		rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
10576 		if (rc) {
10577 			netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n",
10578 				   rc);
10579 			vnic->uc_filter_count = i;
10580 			return rc;
10581 		}
10582 	}
10583 
10584 skip_uc:
10585 	if ((vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS) &&
10586 	    !bnxt_promisc_ok(bp))
10587 		vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
10588 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
10589 	if (rc && vnic->mc_list_count) {
10590 		netdev_info(bp->dev, "Failed setting MC filters rc: %d, turning on ALL_MCAST mode\n",
10591 			    rc);
10592 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
10593 		vnic->mc_list_count = 0;
10594 		rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
10595 	}
10596 	if (rc)
10597 		netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %d\n",
10598 			   rc);
10599 
10600 	return rc;
10601 }
10602 
10603 static bool bnxt_can_reserve_rings(struct bnxt *bp)
10604 {
10605 #ifdef CONFIG_BNXT_SRIOV
10606 	if (BNXT_NEW_RM(bp) && BNXT_VF(bp)) {
10607 		struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
10608 
10609 		/* No minimum rings were provisioned by the PF.  Don't
10610 		 * reserve rings by default when device is down.
10611 		 */
10612 		if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings)
10613 			return true;
10614 
10615 		if (!netif_running(bp->dev))
10616 			return false;
10617 	}
10618 #endif
10619 	return true;
10620 }
10621 
10622 /* If the chip and firmware supports RFS */
10623 static bool bnxt_rfs_supported(struct bnxt *bp)
10624 {
10625 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
10626 		if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2)
10627 			return true;
10628 		return false;
10629 	}
10630 	if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
10631 		return true;
10632 	if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
10633 		return true;
10634 	return false;
10635 }
10636 
10637 /* If runtime conditions support RFS */
10638 static bool bnxt_rfs_capable(struct bnxt *bp)
10639 {
10640 #ifdef CONFIG_RFS_ACCEL
10641 	int vnics, max_vnics, max_rss_ctxs;
10642 
10643 	if (bp->flags & BNXT_FLAG_CHIP_P5)
10644 		return bnxt_rfs_supported(bp);
10645 	if (!(bp->flags & BNXT_FLAG_MSIX_CAP) || !bnxt_can_reserve_rings(bp))
10646 		return false;
10647 
10648 	vnics = 1 + bp->rx_nr_rings;
10649 	max_vnics = bnxt_get_max_func_vnics(bp);
10650 	max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp);
10651 
10652 	/* RSS contexts not a limiting factor */
10653 	if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
10654 		max_rss_ctxs = max_vnics;
10655 	if (vnics > max_vnics || vnics > max_rss_ctxs) {
10656 		if (bp->rx_nr_rings > 1)
10657 			netdev_warn(bp->dev,
10658 				    "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n",
10659 				    min(max_rss_ctxs - 1, max_vnics - 1));
10660 		return false;
10661 	}
10662 
10663 	if (!BNXT_NEW_RM(bp))
10664 		return true;
10665 
10666 	if (vnics == bp->hw_resc.resv_vnics)
10667 		return true;
10668 
10669 	bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, vnics);
10670 	if (vnics <= bp->hw_resc.resv_vnics)
10671 		return true;
10672 
10673 	netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n");
10674 	bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, 1);
10675 	return false;
10676 #else
10677 	return false;
10678 #endif
10679 }
10680 
10681 static netdev_features_t bnxt_fix_features(struct net_device *dev,
10682 					   netdev_features_t features)
10683 {
10684 	struct bnxt *bp = netdev_priv(dev);
10685 	netdev_features_t vlan_features;
10686 
10687 	if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp))
10688 		features &= ~NETIF_F_NTUPLE;
10689 
10690 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
10691 		features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
10692 
10693 	if (!(features & NETIF_F_GRO))
10694 		features &= ~NETIF_F_GRO_HW;
10695 
10696 	if (features & NETIF_F_GRO_HW)
10697 		features &= ~NETIF_F_LRO;
10698 
10699 	/* Both CTAG and STAG VLAN accelaration on the RX side have to be
10700 	 * turned on or off together.
10701 	 */
10702 	vlan_features = features & BNXT_HW_FEATURE_VLAN_ALL_RX;
10703 	if (vlan_features != BNXT_HW_FEATURE_VLAN_ALL_RX) {
10704 		if (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)
10705 			features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX;
10706 		else if (vlan_features)
10707 			features |= BNXT_HW_FEATURE_VLAN_ALL_RX;
10708 	}
10709 #ifdef CONFIG_BNXT_SRIOV
10710 	if (BNXT_VF(bp) && bp->vf.vlan)
10711 		features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX;
10712 #endif
10713 	return features;
10714 }
10715 
10716 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
10717 {
10718 	struct bnxt *bp = netdev_priv(dev);
10719 	u32 flags = bp->flags;
10720 	u32 changes;
10721 	int rc = 0;
10722 	bool re_init = false;
10723 	bool update_tpa = false;
10724 
10725 	flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
10726 	if (features & NETIF_F_GRO_HW)
10727 		flags |= BNXT_FLAG_GRO;
10728 	else if (features & NETIF_F_LRO)
10729 		flags |= BNXT_FLAG_LRO;
10730 
10731 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
10732 		flags &= ~BNXT_FLAG_TPA;
10733 
10734 	if (features & BNXT_HW_FEATURE_VLAN_ALL_RX)
10735 		flags |= BNXT_FLAG_STRIP_VLAN;
10736 
10737 	if (features & NETIF_F_NTUPLE)
10738 		flags |= BNXT_FLAG_RFS;
10739 
10740 	changes = flags ^ bp->flags;
10741 	if (changes & BNXT_FLAG_TPA) {
10742 		update_tpa = true;
10743 		if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
10744 		    (flags & BNXT_FLAG_TPA) == 0 ||
10745 		    (bp->flags & BNXT_FLAG_CHIP_P5))
10746 			re_init = true;
10747 	}
10748 
10749 	if (changes & ~BNXT_FLAG_TPA)
10750 		re_init = true;
10751 
10752 	if (flags != bp->flags) {
10753 		u32 old_flags = bp->flags;
10754 
10755 		if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
10756 			bp->flags = flags;
10757 			if (update_tpa)
10758 				bnxt_set_ring_params(bp);
10759 			return rc;
10760 		}
10761 
10762 		if (re_init) {
10763 			bnxt_close_nic(bp, false, false);
10764 			bp->flags = flags;
10765 			if (update_tpa)
10766 				bnxt_set_ring_params(bp);
10767 
10768 			return bnxt_open_nic(bp, false, false);
10769 		}
10770 		if (update_tpa) {
10771 			bp->flags = flags;
10772 			rc = bnxt_set_tpa(bp,
10773 					  (flags & BNXT_FLAG_TPA) ?
10774 					  true : false);
10775 			if (rc)
10776 				bp->flags = old_flags;
10777 		}
10778 	}
10779 	return rc;
10780 }
10781 
10782 static bool bnxt_exthdr_check(struct bnxt *bp, struct sk_buff *skb, int nw_off,
10783 			      u8 **nextp)
10784 {
10785 	struct ipv6hdr *ip6h = (struct ipv6hdr *)(skb->data + nw_off);
10786 	int hdr_count = 0;
10787 	u8 *nexthdr;
10788 	int start;
10789 
10790 	/* Check that there are at most 2 IPv6 extension headers, no
10791 	 * fragment header, and each is <= 64 bytes.
10792 	 */
10793 	start = nw_off + sizeof(*ip6h);
10794 	nexthdr = &ip6h->nexthdr;
10795 	while (ipv6_ext_hdr(*nexthdr)) {
10796 		struct ipv6_opt_hdr *hp;
10797 		int hdrlen;
10798 
10799 		if (hdr_count >= 3 || *nexthdr == NEXTHDR_NONE ||
10800 		    *nexthdr == NEXTHDR_FRAGMENT)
10801 			return false;
10802 		hp = __skb_header_pointer(NULL, start, sizeof(*hp), skb->data,
10803 					  skb_headlen(skb), NULL);
10804 		if (!hp)
10805 			return false;
10806 		if (*nexthdr == NEXTHDR_AUTH)
10807 			hdrlen = ipv6_authlen(hp);
10808 		else
10809 			hdrlen = ipv6_optlen(hp);
10810 
10811 		if (hdrlen > 64)
10812 			return false;
10813 		nexthdr = &hp->nexthdr;
10814 		start += hdrlen;
10815 		hdr_count++;
10816 	}
10817 	if (nextp) {
10818 		/* Caller will check inner protocol */
10819 		if (skb->encapsulation) {
10820 			*nextp = nexthdr;
10821 			return true;
10822 		}
10823 		*nextp = NULL;
10824 	}
10825 	/* Only support TCP/UDP for non-tunneled ipv6 and inner ipv6 */
10826 	return *nexthdr == IPPROTO_TCP || *nexthdr == IPPROTO_UDP;
10827 }
10828 
10829 /* For UDP, we can only handle 1 Vxlan port and 1 Geneve port. */
10830 static bool bnxt_udp_tunl_check(struct bnxt *bp, struct sk_buff *skb)
10831 {
10832 	struct udphdr *uh = udp_hdr(skb);
10833 	__be16 udp_port = uh->dest;
10834 
10835 	if (udp_port != bp->vxlan_port && udp_port != bp->nge_port)
10836 		return false;
10837 	if (skb->inner_protocol_type == ENCAP_TYPE_ETHER) {
10838 		struct ethhdr *eh = inner_eth_hdr(skb);
10839 
10840 		switch (eh->h_proto) {
10841 		case htons(ETH_P_IP):
10842 			return true;
10843 		case htons(ETH_P_IPV6):
10844 			return bnxt_exthdr_check(bp, skb,
10845 						 skb_inner_network_offset(skb),
10846 						 NULL);
10847 		}
10848 	}
10849 	return false;
10850 }
10851 
10852 static bool bnxt_tunl_check(struct bnxt *bp, struct sk_buff *skb, u8 l4_proto)
10853 {
10854 	switch (l4_proto) {
10855 	case IPPROTO_UDP:
10856 		return bnxt_udp_tunl_check(bp, skb);
10857 	case IPPROTO_IPIP:
10858 		return true;
10859 	case IPPROTO_GRE: {
10860 		switch (skb->inner_protocol) {
10861 		default:
10862 			return false;
10863 		case htons(ETH_P_IP):
10864 			return true;
10865 		case htons(ETH_P_IPV6):
10866 			fallthrough;
10867 		}
10868 	}
10869 	case IPPROTO_IPV6:
10870 		/* Check ext headers of inner ipv6 */
10871 		return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb),
10872 					 NULL);
10873 	}
10874 	return false;
10875 }
10876 
10877 static netdev_features_t bnxt_features_check(struct sk_buff *skb,
10878 					     struct net_device *dev,
10879 					     netdev_features_t features)
10880 {
10881 	struct bnxt *bp = netdev_priv(dev);
10882 	u8 *l4_proto;
10883 
10884 	features = vlan_features_check(skb, features);
10885 	switch (vlan_get_protocol(skb)) {
10886 	case htons(ETH_P_IP):
10887 		if (!skb->encapsulation)
10888 			return features;
10889 		l4_proto = &ip_hdr(skb)->protocol;
10890 		if (bnxt_tunl_check(bp, skb, *l4_proto))
10891 			return features;
10892 		break;
10893 	case htons(ETH_P_IPV6):
10894 		if (!bnxt_exthdr_check(bp, skb, skb_network_offset(skb),
10895 				       &l4_proto))
10896 			break;
10897 		if (!l4_proto || bnxt_tunl_check(bp, skb, *l4_proto))
10898 			return features;
10899 		break;
10900 	}
10901 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
10902 }
10903 
10904 int bnxt_dbg_hwrm_rd_reg(struct bnxt *bp, u32 reg_off, u16 num_words,
10905 			 u32 *reg_buf)
10906 {
10907 	struct hwrm_dbg_read_direct_output *resp = bp->hwrm_cmd_resp_addr;
10908 	struct hwrm_dbg_read_direct_input req = {0};
10909 	__le32 *dbg_reg_buf;
10910 	dma_addr_t mapping;
10911 	int rc, i;
10912 
10913 	dbg_reg_buf = dma_alloc_coherent(&bp->pdev->dev, num_words * 4,
10914 					 &mapping, GFP_KERNEL);
10915 	if (!dbg_reg_buf)
10916 		return -ENOMEM;
10917 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_DBG_READ_DIRECT, -1, -1);
10918 	req.host_dest_addr = cpu_to_le64(mapping);
10919 	req.read_addr = cpu_to_le32(reg_off + CHIMP_REG_VIEW_ADDR);
10920 	req.read_len32 = cpu_to_le32(num_words);
10921 	mutex_lock(&bp->hwrm_cmd_lock);
10922 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
10923 	if (rc || resp->error_code) {
10924 		rc = -EIO;
10925 		goto dbg_rd_reg_exit;
10926 	}
10927 	for (i = 0; i < num_words; i++)
10928 		reg_buf[i] = le32_to_cpu(dbg_reg_buf[i]);
10929 
10930 dbg_rd_reg_exit:
10931 	mutex_unlock(&bp->hwrm_cmd_lock);
10932 	dma_free_coherent(&bp->pdev->dev, num_words * 4, dbg_reg_buf, mapping);
10933 	return rc;
10934 }
10935 
10936 static int bnxt_dbg_hwrm_ring_info_get(struct bnxt *bp, u8 ring_type,
10937 				       u32 ring_id, u32 *prod, u32 *cons)
10938 {
10939 	struct hwrm_dbg_ring_info_get_output *resp = bp->hwrm_cmd_resp_addr;
10940 	struct hwrm_dbg_ring_info_get_input req = {0};
10941 	int rc;
10942 
10943 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_DBG_RING_INFO_GET, -1, -1);
10944 	req.ring_type = ring_type;
10945 	req.fw_ring_id = cpu_to_le32(ring_id);
10946 	mutex_lock(&bp->hwrm_cmd_lock);
10947 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
10948 	if (!rc) {
10949 		*prod = le32_to_cpu(resp->producer_index);
10950 		*cons = le32_to_cpu(resp->consumer_index);
10951 	}
10952 	mutex_unlock(&bp->hwrm_cmd_lock);
10953 	return rc;
10954 }
10955 
10956 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
10957 {
10958 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
10959 	int i = bnapi->index;
10960 
10961 	if (!txr)
10962 		return;
10963 
10964 	netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
10965 		    i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
10966 		    txr->tx_cons);
10967 }
10968 
10969 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
10970 {
10971 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
10972 	int i = bnapi->index;
10973 
10974 	if (!rxr)
10975 		return;
10976 
10977 	netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
10978 		    i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
10979 		    rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
10980 		    rxr->rx_sw_agg_prod);
10981 }
10982 
10983 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
10984 {
10985 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
10986 	int i = bnapi->index;
10987 
10988 	netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
10989 		    i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
10990 }
10991 
10992 static void bnxt_dbg_dump_states(struct bnxt *bp)
10993 {
10994 	int i;
10995 	struct bnxt_napi *bnapi;
10996 
10997 	for (i = 0; i < bp->cp_nr_rings; i++) {
10998 		bnapi = bp->bnapi[i];
10999 		if (netif_msg_drv(bp)) {
11000 			bnxt_dump_tx_sw_state(bnapi);
11001 			bnxt_dump_rx_sw_state(bnapi);
11002 			bnxt_dump_cp_sw_state(bnapi);
11003 		}
11004 	}
11005 }
11006 
11007 static int bnxt_hwrm_rx_ring_reset(struct bnxt *bp, int ring_nr)
11008 {
11009 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
11010 	struct hwrm_ring_reset_input req = {0};
11011 	struct bnxt_napi *bnapi = rxr->bnapi;
11012 	struct bnxt_cp_ring_info *cpr;
11013 	u16 cp_ring_id;
11014 
11015 	cpr = &bnapi->cp_ring;
11016 	cp_ring_id = cpr->cp_ring_struct.fw_ring_id;
11017 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_RESET, cp_ring_id, -1);
11018 	req.ring_type = RING_RESET_REQ_RING_TYPE_RX_RING_GRP;
11019 	req.ring_id = cpu_to_le16(bp->grp_info[bnapi->index].fw_grp_id);
11020 	return hwrm_send_message_silent(bp, &req, sizeof(req),
11021 					HWRM_CMD_TIMEOUT);
11022 }
11023 
11024 static void bnxt_reset_task(struct bnxt *bp, bool silent)
11025 {
11026 	if (!silent)
11027 		bnxt_dbg_dump_states(bp);
11028 	if (netif_running(bp->dev)) {
11029 		int rc;
11030 
11031 		if (silent) {
11032 			bnxt_close_nic(bp, false, false);
11033 			bnxt_open_nic(bp, false, false);
11034 		} else {
11035 			bnxt_ulp_stop(bp);
11036 			bnxt_close_nic(bp, true, false);
11037 			rc = bnxt_open_nic(bp, true, false);
11038 			bnxt_ulp_start(bp, rc);
11039 		}
11040 	}
11041 }
11042 
11043 static void bnxt_tx_timeout(struct net_device *dev, unsigned int txqueue)
11044 {
11045 	struct bnxt *bp = netdev_priv(dev);
11046 
11047 	netdev_err(bp->dev,  "TX timeout detected, starting reset task!\n");
11048 	set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
11049 	bnxt_queue_sp_work(bp);
11050 }
11051 
11052 static void bnxt_fw_health_check(struct bnxt *bp)
11053 {
11054 	struct bnxt_fw_health *fw_health = bp->fw_health;
11055 	u32 val;
11056 
11057 	if (!fw_health->enabled || test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
11058 		return;
11059 
11060 	if (fw_health->tmr_counter) {
11061 		fw_health->tmr_counter--;
11062 		return;
11063 	}
11064 
11065 	val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
11066 	if (val == fw_health->last_fw_heartbeat)
11067 		goto fw_reset;
11068 
11069 	fw_health->last_fw_heartbeat = val;
11070 
11071 	val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
11072 	if (val != fw_health->last_fw_reset_cnt)
11073 		goto fw_reset;
11074 
11075 	fw_health->tmr_counter = fw_health->tmr_multiplier;
11076 	return;
11077 
11078 fw_reset:
11079 	set_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event);
11080 	bnxt_queue_sp_work(bp);
11081 }
11082 
11083 static void bnxt_timer(struct timer_list *t)
11084 {
11085 	struct bnxt *bp = from_timer(bp, t, timer);
11086 	struct net_device *dev = bp->dev;
11087 
11088 	if (!netif_running(dev) || !test_bit(BNXT_STATE_OPEN, &bp->state))
11089 		return;
11090 
11091 	if (atomic_read(&bp->intr_sem) != 0)
11092 		goto bnxt_restart_timer;
11093 
11094 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
11095 		bnxt_fw_health_check(bp);
11096 
11097 	if (bp->link_info.link_up && bp->stats_coal_ticks) {
11098 		set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event);
11099 		bnxt_queue_sp_work(bp);
11100 	}
11101 
11102 	if (bnxt_tc_flower_enabled(bp)) {
11103 		set_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event);
11104 		bnxt_queue_sp_work(bp);
11105 	}
11106 
11107 #ifdef CONFIG_RFS_ACCEL
11108 	if ((bp->flags & BNXT_FLAG_RFS) && bp->ntp_fltr_count) {
11109 		set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
11110 		bnxt_queue_sp_work(bp);
11111 	}
11112 #endif /*CONFIG_RFS_ACCEL*/
11113 
11114 	if (bp->link_info.phy_retry) {
11115 		if (time_after(jiffies, bp->link_info.phy_retry_expires)) {
11116 			bp->link_info.phy_retry = false;
11117 			netdev_warn(bp->dev, "failed to update phy settings after maximum retries.\n");
11118 		} else {
11119 			set_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event);
11120 			bnxt_queue_sp_work(bp);
11121 		}
11122 	}
11123 
11124 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && !bp->chip_rev &&
11125 	    netif_carrier_ok(dev)) {
11126 		set_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event);
11127 		bnxt_queue_sp_work(bp);
11128 	}
11129 bnxt_restart_timer:
11130 	mod_timer(&bp->timer, jiffies + bp->current_interval);
11131 }
11132 
11133 static void bnxt_rtnl_lock_sp(struct bnxt *bp)
11134 {
11135 	/* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK
11136 	 * set.  If the device is being closed, bnxt_close() may be holding
11137 	 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear.  So we
11138 	 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl().
11139 	 */
11140 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
11141 	rtnl_lock();
11142 }
11143 
11144 static void bnxt_rtnl_unlock_sp(struct bnxt *bp)
11145 {
11146 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
11147 	rtnl_unlock();
11148 }
11149 
11150 /* Only called from bnxt_sp_task() */
11151 static void bnxt_reset(struct bnxt *bp, bool silent)
11152 {
11153 	bnxt_rtnl_lock_sp(bp);
11154 	if (test_bit(BNXT_STATE_OPEN, &bp->state))
11155 		bnxt_reset_task(bp, silent);
11156 	bnxt_rtnl_unlock_sp(bp);
11157 }
11158 
11159 /* Only called from bnxt_sp_task() */
11160 static void bnxt_rx_ring_reset(struct bnxt *bp)
11161 {
11162 	int i;
11163 
11164 	bnxt_rtnl_lock_sp(bp);
11165 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
11166 		bnxt_rtnl_unlock_sp(bp);
11167 		return;
11168 	}
11169 	/* Disable and flush TPA before resetting the RX ring */
11170 	if (bp->flags & BNXT_FLAG_TPA)
11171 		bnxt_set_tpa(bp, false);
11172 	for (i = 0; i < bp->rx_nr_rings; i++) {
11173 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
11174 		struct bnxt_cp_ring_info *cpr;
11175 		int rc;
11176 
11177 		if (!rxr->bnapi->in_reset)
11178 			continue;
11179 
11180 		rc = bnxt_hwrm_rx_ring_reset(bp, i);
11181 		if (rc) {
11182 			if (rc == -EINVAL || rc == -EOPNOTSUPP)
11183 				netdev_info_once(bp->dev, "RX ring reset not supported by firmware, falling back to global reset\n");
11184 			else
11185 				netdev_warn(bp->dev, "RX ring reset failed, rc = %d, falling back to global reset\n",
11186 					    rc);
11187 			bnxt_reset_task(bp, true);
11188 			break;
11189 		}
11190 		bnxt_free_one_rx_ring_skbs(bp, i);
11191 		rxr->rx_prod = 0;
11192 		rxr->rx_agg_prod = 0;
11193 		rxr->rx_sw_agg_prod = 0;
11194 		rxr->rx_next_cons = 0;
11195 		rxr->bnapi->in_reset = false;
11196 		bnxt_alloc_one_rx_ring(bp, i);
11197 		cpr = &rxr->bnapi->cp_ring;
11198 		cpr->sw_stats.rx.rx_resets++;
11199 		if (bp->flags & BNXT_FLAG_AGG_RINGS)
11200 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
11201 		bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
11202 	}
11203 	if (bp->flags & BNXT_FLAG_TPA)
11204 		bnxt_set_tpa(bp, true);
11205 	bnxt_rtnl_unlock_sp(bp);
11206 }
11207 
11208 static void bnxt_fw_reset_close(struct bnxt *bp)
11209 {
11210 	bnxt_ulp_stop(bp);
11211 	/* When firmware is in fatal state, quiesce device and disable
11212 	 * bus master to prevent any potential bad DMAs before freeing
11213 	 * kernel memory.
11214 	 */
11215 	if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) {
11216 		u16 val = 0;
11217 
11218 		pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val);
11219 		if (val == 0xffff)
11220 			bp->fw_reset_min_dsecs = 0;
11221 		bnxt_tx_disable(bp);
11222 		bnxt_disable_napi(bp);
11223 		bnxt_disable_int_sync(bp);
11224 		bnxt_free_irq(bp);
11225 		bnxt_clear_int_mode(bp);
11226 		pci_disable_device(bp->pdev);
11227 	}
11228 	__bnxt_close_nic(bp, true, false);
11229 	bnxt_vf_reps_free(bp);
11230 	bnxt_clear_int_mode(bp);
11231 	bnxt_hwrm_func_drv_unrgtr(bp);
11232 	if (pci_is_enabled(bp->pdev))
11233 		pci_disable_device(bp->pdev);
11234 	bnxt_free_ctx_mem(bp);
11235 	kfree(bp->ctx);
11236 	bp->ctx = NULL;
11237 }
11238 
11239 static bool is_bnxt_fw_ok(struct bnxt *bp)
11240 {
11241 	struct bnxt_fw_health *fw_health = bp->fw_health;
11242 	bool no_heartbeat = false, has_reset = false;
11243 	u32 val;
11244 
11245 	val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
11246 	if (val == fw_health->last_fw_heartbeat)
11247 		no_heartbeat = true;
11248 
11249 	val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
11250 	if (val != fw_health->last_fw_reset_cnt)
11251 		has_reset = true;
11252 
11253 	if (!no_heartbeat && has_reset)
11254 		return true;
11255 
11256 	return false;
11257 }
11258 
11259 /* rtnl_lock is acquired before calling this function */
11260 static void bnxt_force_fw_reset(struct bnxt *bp)
11261 {
11262 	struct bnxt_fw_health *fw_health = bp->fw_health;
11263 	u32 wait_dsecs;
11264 
11265 	if (!test_bit(BNXT_STATE_OPEN, &bp->state) ||
11266 	    test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
11267 		return;
11268 
11269 	set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11270 	bnxt_fw_reset_close(bp);
11271 	wait_dsecs = fw_health->master_func_wait_dsecs;
11272 	if (fw_health->master) {
11273 		if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU)
11274 			wait_dsecs = 0;
11275 		bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW;
11276 	} else {
11277 		bp->fw_reset_timestamp = jiffies + wait_dsecs * HZ / 10;
11278 		wait_dsecs = fw_health->normal_func_wait_dsecs;
11279 		bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
11280 	}
11281 
11282 	bp->fw_reset_min_dsecs = fw_health->post_reset_wait_dsecs;
11283 	bp->fw_reset_max_dsecs = fw_health->post_reset_max_wait_dsecs;
11284 	bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10);
11285 }
11286 
11287 void bnxt_fw_exception(struct bnxt *bp)
11288 {
11289 	netdev_warn(bp->dev, "Detected firmware fatal condition, initiating reset\n");
11290 	set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
11291 	bnxt_rtnl_lock_sp(bp);
11292 	bnxt_force_fw_reset(bp);
11293 	bnxt_rtnl_unlock_sp(bp);
11294 }
11295 
11296 /* Returns the number of registered VFs, or 1 if VF configuration is pending, or
11297  * < 0 on error.
11298  */
11299 static int bnxt_get_registered_vfs(struct bnxt *bp)
11300 {
11301 #ifdef CONFIG_BNXT_SRIOV
11302 	int rc;
11303 
11304 	if (!BNXT_PF(bp))
11305 		return 0;
11306 
11307 	rc = bnxt_hwrm_func_qcfg(bp);
11308 	if (rc) {
11309 		netdev_err(bp->dev, "func_qcfg cmd failed, rc = %d\n", rc);
11310 		return rc;
11311 	}
11312 	if (bp->pf.registered_vfs)
11313 		return bp->pf.registered_vfs;
11314 	if (bp->sriov_cfg)
11315 		return 1;
11316 #endif
11317 	return 0;
11318 }
11319 
11320 void bnxt_fw_reset(struct bnxt *bp)
11321 {
11322 	bnxt_rtnl_lock_sp(bp);
11323 	if (test_bit(BNXT_STATE_OPEN, &bp->state) &&
11324 	    !test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
11325 		int n = 0, tmo;
11326 
11327 		set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11328 		if (bp->pf.active_vfs &&
11329 		    !test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
11330 			n = bnxt_get_registered_vfs(bp);
11331 		if (n < 0) {
11332 			netdev_err(bp->dev, "Firmware reset aborted, rc = %d\n",
11333 				   n);
11334 			clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11335 			dev_close(bp->dev);
11336 			goto fw_reset_exit;
11337 		} else if (n > 0) {
11338 			u16 vf_tmo_dsecs = n * 10;
11339 
11340 			if (bp->fw_reset_max_dsecs < vf_tmo_dsecs)
11341 				bp->fw_reset_max_dsecs = vf_tmo_dsecs;
11342 			bp->fw_reset_state =
11343 				BNXT_FW_RESET_STATE_POLL_VF;
11344 			bnxt_queue_fw_reset_work(bp, HZ / 10);
11345 			goto fw_reset_exit;
11346 		}
11347 		bnxt_fw_reset_close(bp);
11348 		if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
11349 			bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN;
11350 			tmo = HZ / 10;
11351 		} else {
11352 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
11353 			tmo = bp->fw_reset_min_dsecs * HZ / 10;
11354 		}
11355 		bnxt_queue_fw_reset_work(bp, tmo);
11356 	}
11357 fw_reset_exit:
11358 	bnxt_rtnl_unlock_sp(bp);
11359 }
11360 
11361 static void bnxt_chk_missed_irq(struct bnxt *bp)
11362 {
11363 	int i;
11364 
11365 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
11366 		return;
11367 
11368 	for (i = 0; i < bp->cp_nr_rings; i++) {
11369 		struct bnxt_napi *bnapi = bp->bnapi[i];
11370 		struct bnxt_cp_ring_info *cpr;
11371 		u32 fw_ring_id;
11372 		int j;
11373 
11374 		if (!bnapi)
11375 			continue;
11376 
11377 		cpr = &bnapi->cp_ring;
11378 		for (j = 0; j < 2; j++) {
11379 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
11380 			u32 val[2];
11381 
11382 			if (!cpr2 || cpr2->has_more_work ||
11383 			    !bnxt_has_work(bp, cpr2))
11384 				continue;
11385 
11386 			if (cpr2->cp_raw_cons != cpr2->last_cp_raw_cons) {
11387 				cpr2->last_cp_raw_cons = cpr2->cp_raw_cons;
11388 				continue;
11389 			}
11390 			fw_ring_id = cpr2->cp_ring_struct.fw_ring_id;
11391 			bnxt_dbg_hwrm_ring_info_get(bp,
11392 				DBG_RING_INFO_GET_REQ_RING_TYPE_L2_CMPL,
11393 				fw_ring_id, &val[0], &val[1]);
11394 			cpr->sw_stats.cmn.missed_irqs++;
11395 		}
11396 	}
11397 }
11398 
11399 static void bnxt_cfg_ntp_filters(struct bnxt *);
11400 
11401 static void bnxt_init_ethtool_link_settings(struct bnxt *bp)
11402 {
11403 	struct bnxt_link_info *link_info = &bp->link_info;
11404 
11405 	if (BNXT_AUTO_MODE(link_info->auto_mode)) {
11406 		link_info->autoneg = BNXT_AUTONEG_SPEED;
11407 		if (bp->hwrm_spec_code >= 0x10201) {
11408 			if (link_info->auto_pause_setting &
11409 			    PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE)
11410 				link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
11411 		} else {
11412 			link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
11413 		}
11414 		link_info->advertising = link_info->auto_link_speeds;
11415 		link_info->advertising_pam4 = link_info->auto_pam4_link_speeds;
11416 	} else {
11417 		link_info->req_link_speed = link_info->force_link_speed;
11418 		link_info->req_signal_mode = BNXT_SIG_MODE_NRZ;
11419 		if (link_info->force_pam4_link_speed) {
11420 			link_info->req_link_speed =
11421 				link_info->force_pam4_link_speed;
11422 			link_info->req_signal_mode = BNXT_SIG_MODE_PAM4;
11423 		}
11424 		link_info->req_duplex = link_info->duplex_setting;
11425 	}
11426 	if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL)
11427 		link_info->req_flow_ctrl =
11428 			link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH;
11429 	else
11430 		link_info->req_flow_ctrl = link_info->force_pause_setting;
11431 }
11432 
11433 static void bnxt_fw_echo_reply(struct bnxt *bp)
11434 {
11435 	struct bnxt_fw_health *fw_health = bp->fw_health;
11436 	struct hwrm_func_echo_response_input req = {0};
11437 
11438 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_ECHO_RESPONSE, -1, -1);
11439 	req.event_data1 = cpu_to_le32(fw_health->echo_req_data1);
11440 	req.event_data2 = cpu_to_le32(fw_health->echo_req_data2);
11441 	hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
11442 }
11443 
11444 static void bnxt_sp_task(struct work_struct *work)
11445 {
11446 	struct bnxt *bp = container_of(work, struct bnxt, sp_task);
11447 
11448 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
11449 	smp_mb__after_atomic();
11450 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
11451 		clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
11452 		return;
11453 	}
11454 
11455 	if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
11456 		bnxt_cfg_rx_mode(bp);
11457 
11458 	if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
11459 		bnxt_cfg_ntp_filters(bp);
11460 	if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
11461 		bnxt_hwrm_exec_fwd_req(bp);
11462 	if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) {
11463 		bnxt_hwrm_port_qstats(bp, 0);
11464 		bnxt_hwrm_port_qstats_ext(bp, 0);
11465 		bnxt_accumulate_all_stats(bp);
11466 	}
11467 
11468 	if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
11469 		int rc;
11470 
11471 		mutex_lock(&bp->link_lock);
11472 		if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT,
11473 				       &bp->sp_event))
11474 			bnxt_hwrm_phy_qcaps(bp);
11475 
11476 		rc = bnxt_update_link(bp, true);
11477 		if (rc)
11478 			netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
11479 				   rc);
11480 
11481 		if (test_and_clear_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT,
11482 				       &bp->sp_event))
11483 			bnxt_init_ethtool_link_settings(bp);
11484 		mutex_unlock(&bp->link_lock);
11485 	}
11486 	if (test_and_clear_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event)) {
11487 		int rc;
11488 
11489 		mutex_lock(&bp->link_lock);
11490 		rc = bnxt_update_phy_setting(bp);
11491 		mutex_unlock(&bp->link_lock);
11492 		if (rc) {
11493 			netdev_warn(bp->dev, "update phy settings retry failed\n");
11494 		} else {
11495 			bp->link_info.phy_retry = false;
11496 			netdev_info(bp->dev, "update phy settings retry succeeded\n");
11497 		}
11498 	}
11499 	if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) {
11500 		mutex_lock(&bp->link_lock);
11501 		bnxt_get_port_module_status(bp);
11502 		mutex_unlock(&bp->link_lock);
11503 	}
11504 
11505 	if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event))
11506 		bnxt_tc_flow_stats_work(bp);
11507 
11508 	if (test_and_clear_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event))
11509 		bnxt_chk_missed_irq(bp);
11510 
11511 	if (test_and_clear_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event))
11512 		bnxt_fw_echo_reply(bp);
11513 
11514 	/* These functions below will clear BNXT_STATE_IN_SP_TASK.  They
11515 	 * must be the last functions to be called before exiting.
11516 	 */
11517 	if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event))
11518 		bnxt_reset(bp, false);
11519 
11520 	if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event))
11521 		bnxt_reset(bp, true);
11522 
11523 	if (test_and_clear_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event))
11524 		bnxt_rx_ring_reset(bp);
11525 
11526 	if (test_and_clear_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event))
11527 		bnxt_devlink_health_report(bp, BNXT_FW_RESET_NOTIFY_SP_EVENT);
11528 
11529 	if (test_and_clear_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event)) {
11530 		if (!is_bnxt_fw_ok(bp))
11531 			bnxt_devlink_health_report(bp,
11532 						   BNXT_FW_EXCEPTION_SP_EVENT);
11533 	}
11534 
11535 	smp_mb__before_atomic();
11536 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
11537 }
11538 
11539 /* Under rtnl_lock */
11540 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs,
11541 		     int tx_xdp)
11542 {
11543 	int max_rx, max_tx, tx_sets = 1;
11544 	int tx_rings_needed, stats;
11545 	int rx_rings = rx;
11546 	int cp, vnics, rc;
11547 
11548 	if (tcs)
11549 		tx_sets = tcs;
11550 
11551 	rc = bnxt_get_max_rings(bp, &max_rx, &max_tx, sh);
11552 	if (rc)
11553 		return rc;
11554 
11555 	if (max_rx < rx)
11556 		return -ENOMEM;
11557 
11558 	tx_rings_needed = tx * tx_sets + tx_xdp;
11559 	if (max_tx < tx_rings_needed)
11560 		return -ENOMEM;
11561 
11562 	vnics = 1;
11563 	if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS)
11564 		vnics += rx_rings;
11565 
11566 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
11567 		rx_rings <<= 1;
11568 	cp = sh ? max_t(int, tx_rings_needed, rx) : tx_rings_needed + rx;
11569 	stats = cp;
11570 	if (BNXT_NEW_RM(bp)) {
11571 		cp += bnxt_get_ulp_msix_num(bp);
11572 		stats += bnxt_get_ulp_stat_ctxs(bp);
11573 	}
11574 	return bnxt_hwrm_check_rings(bp, tx_rings_needed, rx_rings, rx, cp,
11575 				     stats, vnics);
11576 }
11577 
11578 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev)
11579 {
11580 	if (bp->bar2) {
11581 		pci_iounmap(pdev, bp->bar2);
11582 		bp->bar2 = NULL;
11583 	}
11584 
11585 	if (bp->bar1) {
11586 		pci_iounmap(pdev, bp->bar1);
11587 		bp->bar1 = NULL;
11588 	}
11589 
11590 	if (bp->bar0) {
11591 		pci_iounmap(pdev, bp->bar0);
11592 		bp->bar0 = NULL;
11593 	}
11594 }
11595 
11596 static void bnxt_cleanup_pci(struct bnxt *bp)
11597 {
11598 	bnxt_unmap_bars(bp, bp->pdev);
11599 	pci_release_regions(bp->pdev);
11600 	if (pci_is_enabled(bp->pdev))
11601 		pci_disable_device(bp->pdev);
11602 }
11603 
11604 static void bnxt_init_dflt_coal(struct bnxt *bp)
11605 {
11606 	struct bnxt_coal *coal;
11607 
11608 	/* Tick values in micro seconds.
11609 	 * 1 coal_buf x bufs_per_record = 1 completion record.
11610 	 */
11611 	coal = &bp->rx_coal;
11612 	coal->coal_ticks = 10;
11613 	coal->coal_bufs = 30;
11614 	coal->coal_ticks_irq = 1;
11615 	coal->coal_bufs_irq = 2;
11616 	coal->idle_thresh = 50;
11617 	coal->bufs_per_record = 2;
11618 	coal->budget = 64;		/* NAPI budget */
11619 
11620 	coal = &bp->tx_coal;
11621 	coal->coal_ticks = 28;
11622 	coal->coal_bufs = 30;
11623 	coal->coal_ticks_irq = 2;
11624 	coal->coal_bufs_irq = 2;
11625 	coal->bufs_per_record = 1;
11626 
11627 	bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS;
11628 }
11629 
11630 static int bnxt_fw_init_one_p1(struct bnxt *bp)
11631 {
11632 	int rc;
11633 
11634 	bp->fw_cap = 0;
11635 	rc = bnxt_hwrm_ver_get(bp);
11636 	bnxt_try_map_fw_health_reg(bp);
11637 	if (rc) {
11638 		rc = bnxt_try_recover_fw(bp);
11639 		if (rc)
11640 			return rc;
11641 		rc = bnxt_hwrm_ver_get(bp);
11642 		if (rc)
11643 			return rc;
11644 	}
11645 
11646 	if (bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL) {
11647 		rc = bnxt_alloc_kong_hwrm_resources(bp);
11648 		if (rc)
11649 			bp->fw_cap &= ~BNXT_FW_CAP_KONG_MB_CHNL;
11650 	}
11651 
11652 	if ((bp->fw_cap & BNXT_FW_CAP_SHORT_CMD) ||
11653 	    bp->hwrm_max_ext_req_len > BNXT_HWRM_MAX_REQ_LEN) {
11654 		rc = bnxt_alloc_hwrm_short_cmd_req(bp);
11655 		if (rc)
11656 			return rc;
11657 	}
11658 	bnxt_nvm_cfg_ver_get(bp);
11659 
11660 	rc = bnxt_hwrm_func_reset(bp);
11661 	if (rc)
11662 		return -ENODEV;
11663 
11664 	bnxt_hwrm_fw_set_time(bp);
11665 	return 0;
11666 }
11667 
11668 static int bnxt_fw_init_one_p2(struct bnxt *bp)
11669 {
11670 	int rc;
11671 
11672 	/* Get the MAX capabilities for this function */
11673 	rc = bnxt_hwrm_func_qcaps(bp);
11674 	if (rc) {
11675 		netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
11676 			   rc);
11677 		return -ENODEV;
11678 	}
11679 
11680 	rc = bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(bp);
11681 	if (rc)
11682 		netdev_warn(bp->dev, "hwrm query adv flow mgnt failure rc: %d\n",
11683 			    rc);
11684 
11685 	if (bnxt_alloc_fw_health(bp)) {
11686 		netdev_warn(bp->dev, "no memory for firmware error recovery\n");
11687 	} else {
11688 		rc = bnxt_hwrm_error_recovery_qcfg(bp);
11689 		if (rc)
11690 			netdev_warn(bp->dev, "hwrm query error recovery failure rc: %d\n",
11691 				    rc);
11692 	}
11693 
11694 	rc = bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false);
11695 	if (rc)
11696 		return -ENODEV;
11697 
11698 	bnxt_hwrm_func_qcfg(bp);
11699 	bnxt_hwrm_vnic_qcaps(bp);
11700 	bnxt_hwrm_port_led_qcaps(bp);
11701 	bnxt_ethtool_init(bp);
11702 	bnxt_dcb_init(bp);
11703 	return 0;
11704 }
11705 
11706 static void bnxt_set_dflt_rss_hash_type(struct bnxt *bp)
11707 {
11708 	bp->flags &= ~BNXT_FLAG_UDP_RSS_CAP;
11709 	bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 |
11710 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 |
11711 			   VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 |
11712 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6;
11713 	if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) {
11714 		bp->flags |= BNXT_FLAG_UDP_RSS_CAP;
11715 		bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 |
11716 				    VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6;
11717 	}
11718 }
11719 
11720 static void bnxt_set_dflt_rfs(struct bnxt *bp)
11721 {
11722 	struct net_device *dev = bp->dev;
11723 
11724 	dev->hw_features &= ~NETIF_F_NTUPLE;
11725 	dev->features &= ~NETIF_F_NTUPLE;
11726 	bp->flags &= ~BNXT_FLAG_RFS;
11727 	if (bnxt_rfs_supported(bp)) {
11728 		dev->hw_features |= NETIF_F_NTUPLE;
11729 		if (bnxt_rfs_capable(bp)) {
11730 			bp->flags |= BNXT_FLAG_RFS;
11731 			dev->features |= NETIF_F_NTUPLE;
11732 		}
11733 	}
11734 }
11735 
11736 static void bnxt_fw_init_one_p3(struct bnxt *bp)
11737 {
11738 	struct pci_dev *pdev = bp->pdev;
11739 
11740 	bnxt_set_dflt_rss_hash_type(bp);
11741 	bnxt_set_dflt_rfs(bp);
11742 
11743 	bnxt_get_wol_settings(bp);
11744 	if (bp->flags & BNXT_FLAG_WOL_CAP)
11745 		device_set_wakeup_enable(&pdev->dev, bp->wol);
11746 	else
11747 		device_set_wakeup_capable(&pdev->dev, false);
11748 
11749 	bnxt_hwrm_set_cache_line_size(bp, cache_line_size());
11750 	bnxt_hwrm_coal_params_qcaps(bp);
11751 }
11752 
11753 static int bnxt_fw_init_one(struct bnxt *bp)
11754 {
11755 	int rc;
11756 
11757 	rc = bnxt_fw_init_one_p1(bp);
11758 	if (rc) {
11759 		netdev_err(bp->dev, "Firmware init phase 1 failed\n");
11760 		return rc;
11761 	}
11762 	rc = bnxt_fw_init_one_p2(bp);
11763 	if (rc) {
11764 		netdev_err(bp->dev, "Firmware init phase 2 failed\n");
11765 		return rc;
11766 	}
11767 	rc = bnxt_approve_mac(bp, bp->dev->dev_addr, false);
11768 	if (rc)
11769 		return rc;
11770 
11771 	/* In case fw capabilities have changed, destroy the unneeded
11772 	 * reporters and create newly capable ones.
11773 	 */
11774 	bnxt_dl_fw_reporters_destroy(bp, false);
11775 	bnxt_dl_fw_reporters_create(bp);
11776 	bnxt_fw_init_one_p3(bp);
11777 	return 0;
11778 }
11779 
11780 static void bnxt_fw_reset_writel(struct bnxt *bp, int reg_idx)
11781 {
11782 	struct bnxt_fw_health *fw_health = bp->fw_health;
11783 	u32 reg = fw_health->fw_reset_seq_regs[reg_idx];
11784 	u32 val = fw_health->fw_reset_seq_vals[reg_idx];
11785 	u32 reg_type, reg_off, delay_msecs;
11786 
11787 	delay_msecs = fw_health->fw_reset_seq_delay_msec[reg_idx];
11788 	reg_type = BNXT_FW_HEALTH_REG_TYPE(reg);
11789 	reg_off = BNXT_FW_HEALTH_REG_OFF(reg);
11790 	switch (reg_type) {
11791 	case BNXT_FW_HEALTH_REG_TYPE_CFG:
11792 		pci_write_config_dword(bp->pdev, reg_off, val);
11793 		break;
11794 	case BNXT_FW_HEALTH_REG_TYPE_GRC:
11795 		writel(reg_off & BNXT_GRC_BASE_MASK,
11796 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4);
11797 		reg_off = (reg_off & BNXT_GRC_OFFSET_MASK) + 0x2000;
11798 		fallthrough;
11799 	case BNXT_FW_HEALTH_REG_TYPE_BAR0:
11800 		writel(val, bp->bar0 + reg_off);
11801 		break;
11802 	case BNXT_FW_HEALTH_REG_TYPE_BAR1:
11803 		writel(val, bp->bar1 + reg_off);
11804 		break;
11805 	}
11806 	if (delay_msecs) {
11807 		pci_read_config_dword(bp->pdev, 0, &val);
11808 		msleep(delay_msecs);
11809 	}
11810 }
11811 
11812 static void bnxt_reset_all(struct bnxt *bp)
11813 {
11814 	struct bnxt_fw_health *fw_health = bp->fw_health;
11815 	int i, rc;
11816 
11817 	if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
11818 		bnxt_fw_reset_via_optee(bp);
11819 		bp->fw_reset_timestamp = jiffies;
11820 		return;
11821 	}
11822 
11823 	if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_HOST) {
11824 		for (i = 0; i < fw_health->fw_reset_seq_cnt; i++)
11825 			bnxt_fw_reset_writel(bp, i);
11826 	} else if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) {
11827 		struct hwrm_fw_reset_input req = {0};
11828 
11829 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FW_RESET, -1, -1);
11830 		req.resp_addr = cpu_to_le64(bp->hwrm_cmd_kong_resp_dma_addr);
11831 		req.embedded_proc_type = FW_RESET_REQ_EMBEDDED_PROC_TYPE_CHIP;
11832 		req.selfrst_status = FW_RESET_REQ_SELFRST_STATUS_SELFRSTASAP;
11833 		req.flags = FW_RESET_REQ_FLAGS_RESET_GRACEFUL;
11834 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
11835 		if (rc != -ENODEV)
11836 			netdev_warn(bp->dev, "Unable to reset FW rc=%d\n", rc);
11837 	}
11838 	bp->fw_reset_timestamp = jiffies;
11839 }
11840 
11841 static bool bnxt_fw_reset_timeout(struct bnxt *bp)
11842 {
11843 	return time_after(jiffies, bp->fw_reset_timestamp +
11844 			  (bp->fw_reset_max_dsecs * HZ / 10));
11845 }
11846 
11847 static void bnxt_fw_reset_task(struct work_struct *work)
11848 {
11849 	struct bnxt *bp = container_of(work, struct bnxt, fw_reset_task.work);
11850 	int rc;
11851 
11852 	if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
11853 		netdev_err(bp->dev, "bnxt_fw_reset_task() called when not in fw reset mode!\n");
11854 		return;
11855 	}
11856 
11857 	switch (bp->fw_reset_state) {
11858 	case BNXT_FW_RESET_STATE_POLL_VF: {
11859 		int n = bnxt_get_registered_vfs(bp);
11860 		int tmo;
11861 
11862 		if (n < 0) {
11863 			netdev_err(bp->dev, "Firmware reset aborted, subsequent func_qcfg cmd failed, rc = %d, %d msecs since reset timestamp\n",
11864 				   n, jiffies_to_msecs(jiffies -
11865 				   bp->fw_reset_timestamp));
11866 			goto fw_reset_abort;
11867 		} else if (n > 0) {
11868 			if (bnxt_fw_reset_timeout(bp)) {
11869 				clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11870 				bp->fw_reset_state = 0;
11871 				netdev_err(bp->dev, "Firmware reset aborted, bnxt_get_registered_vfs() returns %d\n",
11872 					   n);
11873 				return;
11874 			}
11875 			bnxt_queue_fw_reset_work(bp, HZ / 10);
11876 			return;
11877 		}
11878 		bp->fw_reset_timestamp = jiffies;
11879 		rtnl_lock();
11880 		bnxt_fw_reset_close(bp);
11881 		if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
11882 			bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN;
11883 			tmo = HZ / 10;
11884 		} else {
11885 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
11886 			tmo = bp->fw_reset_min_dsecs * HZ / 10;
11887 		}
11888 		rtnl_unlock();
11889 		bnxt_queue_fw_reset_work(bp, tmo);
11890 		return;
11891 	}
11892 	case BNXT_FW_RESET_STATE_POLL_FW_DOWN: {
11893 		u32 val;
11894 
11895 		val = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
11896 		if (!(val & BNXT_FW_STATUS_SHUTDOWN) &&
11897 		    !bnxt_fw_reset_timeout(bp)) {
11898 			bnxt_queue_fw_reset_work(bp, HZ / 5);
11899 			return;
11900 		}
11901 
11902 		if (!bp->fw_health->master) {
11903 			u32 wait_dsecs = bp->fw_health->normal_func_wait_dsecs;
11904 
11905 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
11906 			bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10);
11907 			return;
11908 		}
11909 		bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW;
11910 	}
11911 		fallthrough;
11912 	case BNXT_FW_RESET_STATE_RESET_FW:
11913 		bnxt_reset_all(bp);
11914 		bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
11915 		bnxt_queue_fw_reset_work(bp, bp->fw_reset_min_dsecs * HZ / 10);
11916 		return;
11917 	case BNXT_FW_RESET_STATE_ENABLE_DEV:
11918 		bnxt_inv_fw_health_reg(bp);
11919 		if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) &&
11920 		    !bp->fw_reset_min_dsecs) {
11921 			u16 val;
11922 
11923 			pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val);
11924 			if (val == 0xffff) {
11925 				if (bnxt_fw_reset_timeout(bp)) {
11926 					netdev_err(bp->dev, "Firmware reset aborted, PCI config space invalid\n");
11927 					goto fw_reset_abort;
11928 				}
11929 				bnxt_queue_fw_reset_work(bp, HZ / 1000);
11930 				return;
11931 			}
11932 		}
11933 		clear_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
11934 		if (pci_enable_device(bp->pdev)) {
11935 			netdev_err(bp->dev, "Cannot re-enable PCI device\n");
11936 			goto fw_reset_abort;
11937 		}
11938 		pci_set_master(bp->pdev);
11939 		bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW;
11940 		fallthrough;
11941 	case BNXT_FW_RESET_STATE_POLL_FW:
11942 		bp->hwrm_cmd_timeout = SHORT_HWRM_CMD_TIMEOUT;
11943 		rc = __bnxt_hwrm_ver_get(bp, true);
11944 		if (rc) {
11945 			if (bnxt_fw_reset_timeout(bp)) {
11946 				netdev_err(bp->dev, "Firmware reset aborted\n");
11947 				goto fw_reset_abort_status;
11948 			}
11949 			bnxt_queue_fw_reset_work(bp, HZ / 5);
11950 			return;
11951 		}
11952 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
11953 		bp->fw_reset_state = BNXT_FW_RESET_STATE_OPENING;
11954 		fallthrough;
11955 	case BNXT_FW_RESET_STATE_OPENING:
11956 		while (!rtnl_trylock()) {
11957 			bnxt_queue_fw_reset_work(bp, HZ / 10);
11958 			return;
11959 		}
11960 		rc = bnxt_open(bp->dev);
11961 		if (rc) {
11962 			netdev_err(bp->dev, "bnxt_open_nic() failed\n");
11963 			clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11964 			dev_close(bp->dev);
11965 		}
11966 
11967 		bp->fw_reset_state = 0;
11968 		/* Make sure fw_reset_state is 0 before clearing the flag */
11969 		smp_mb__before_atomic();
11970 		clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11971 		bnxt_ulp_start(bp, rc);
11972 		if (!rc)
11973 			bnxt_reenable_sriov(bp);
11974 		bnxt_vf_reps_alloc(bp);
11975 		bnxt_vf_reps_open(bp);
11976 		bnxt_dl_health_recovery_done(bp);
11977 		bnxt_dl_health_status_update(bp, true);
11978 		rtnl_unlock();
11979 		break;
11980 	}
11981 	return;
11982 
11983 fw_reset_abort_status:
11984 	if (bp->fw_health->status_reliable ||
11985 	    (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) {
11986 		u32 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
11987 
11988 		netdev_err(bp->dev, "fw_health_status 0x%x\n", sts);
11989 	}
11990 fw_reset_abort:
11991 	clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11992 	if (bp->fw_reset_state != BNXT_FW_RESET_STATE_POLL_VF)
11993 		bnxt_dl_health_status_update(bp, false);
11994 	bp->fw_reset_state = 0;
11995 	rtnl_lock();
11996 	dev_close(bp->dev);
11997 	rtnl_unlock();
11998 }
11999 
12000 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
12001 {
12002 	int rc;
12003 	struct bnxt *bp = netdev_priv(dev);
12004 
12005 	SET_NETDEV_DEV(dev, &pdev->dev);
12006 
12007 	/* enable device (incl. PCI PM wakeup), and bus-mastering */
12008 	rc = pci_enable_device(pdev);
12009 	if (rc) {
12010 		dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
12011 		goto init_err;
12012 	}
12013 
12014 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
12015 		dev_err(&pdev->dev,
12016 			"Cannot find PCI device base address, aborting\n");
12017 		rc = -ENODEV;
12018 		goto init_err_disable;
12019 	}
12020 
12021 	rc = pci_request_regions(pdev, DRV_MODULE_NAME);
12022 	if (rc) {
12023 		dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
12024 		goto init_err_disable;
12025 	}
12026 
12027 	if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
12028 	    dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
12029 		dev_err(&pdev->dev, "System does not support DMA, aborting\n");
12030 		rc = -EIO;
12031 		goto init_err_release;
12032 	}
12033 
12034 	pci_set_master(pdev);
12035 
12036 	bp->dev = dev;
12037 	bp->pdev = pdev;
12038 
12039 	/* Doorbell BAR bp->bar1 is mapped after bnxt_fw_init_one_p2()
12040 	 * determines the BAR size.
12041 	 */
12042 	bp->bar0 = pci_ioremap_bar(pdev, 0);
12043 	if (!bp->bar0) {
12044 		dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
12045 		rc = -ENOMEM;
12046 		goto init_err_release;
12047 	}
12048 
12049 	bp->bar2 = pci_ioremap_bar(pdev, 4);
12050 	if (!bp->bar2) {
12051 		dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
12052 		rc = -ENOMEM;
12053 		goto init_err_release;
12054 	}
12055 
12056 	pci_enable_pcie_error_reporting(pdev);
12057 
12058 	INIT_WORK(&bp->sp_task, bnxt_sp_task);
12059 	INIT_DELAYED_WORK(&bp->fw_reset_task, bnxt_fw_reset_task);
12060 
12061 	spin_lock_init(&bp->ntp_fltr_lock);
12062 #if BITS_PER_LONG == 32
12063 	spin_lock_init(&bp->db_lock);
12064 #endif
12065 
12066 	bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
12067 	bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
12068 
12069 	bnxt_init_dflt_coal(bp);
12070 
12071 	timer_setup(&bp->timer, bnxt_timer, 0);
12072 	bp->current_interval = BNXT_TIMER_INTERVAL;
12073 
12074 	bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID;
12075 	bp->nge_fw_dst_port_id = INVALID_HW_RING_ID;
12076 
12077 	clear_bit(BNXT_STATE_OPEN, &bp->state);
12078 	return 0;
12079 
12080 init_err_release:
12081 	bnxt_unmap_bars(bp, pdev);
12082 	pci_release_regions(pdev);
12083 
12084 init_err_disable:
12085 	pci_disable_device(pdev);
12086 
12087 init_err:
12088 	return rc;
12089 }
12090 
12091 /* rtnl_lock held */
12092 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
12093 {
12094 	struct sockaddr *addr = p;
12095 	struct bnxt *bp = netdev_priv(dev);
12096 	int rc = 0;
12097 
12098 	if (!is_valid_ether_addr(addr->sa_data))
12099 		return -EADDRNOTAVAIL;
12100 
12101 	if (ether_addr_equal(addr->sa_data, dev->dev_addr))
12102 		return 0;
12103 
12104 	rc = bnxt_approve_mac(bp, addr->sa_data, true);
12105 	if (rc)
12106 		return rc;
12107 
12108 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
12109 	if (netif_running(dev)) {
12110 		bnxt_close_nic(bp, false, false);
12111 		rc = bnxt_open_nic(bp, false, false);
12112 	}
12113 
12114 	return rc;
12115 }
12116 
12117 /* rtnl_lock held */
12118 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
12119 {
12120 	struct bnxt *bp = netdev_priv(dev);
12121 
12122 	if (netif_running(dev))
12123 		bnxt_close_nic(bp, true, false);
12124 
12125 	dev->mtu = new_mtu;
12126 	bnxt_set_ring_params(bp);
12127 
12128 	if (netif_running(dev))
12129 		return bnxt_open_nic(bp, true, false);
12130 
12131 	return 0;
12132 }
12133 
12134 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc)
12135 {
12136 	struct bnxt *bp = netdev_priv(dev);
12137 	bool sh = false;
12138 	int rc;
12139 
12140 	if (tc > bp->max_tc) {
12141 		netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n",
12142 			   tc, bp->max_tc);
12143 		return -EINVAL;
12144 	}
12145 
12146 	if (netdev_get_num_tc(dev) == tc)
12147 		return 0;
12148 
12149 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
12150 		sh = true;
12151 
12152 	rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings,
12153 			      sh, tc, bp->tx_nr_rings_xdp);
12154 	if (rc)
12155 		return rc;
12156 
12157 	/* Needs to close the device and do hw resource re-allocations */
12158 	if (netif_running(bp->dev))
12159 		bnxt_close_nic(bp, true, false);
12160 
12161 	if (tc) {
12162 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
12163 		netdev_set_num_tc(dev, tc);
12164 	} else {
12165 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
12166 		netdev_reset_tc(dev);
12167 	}
12168 	bp->tx_nr_rings += bp->tx_nr_rings_xdp;
12169 	bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
12170 			       bp->tx_nr_rings + bp->rx_nr_rings;
12171 
12172 	if (netif_running(bp->dev))
12173 		return bnxt_open_nic(bp, true, false);
12174 
12175 	return 0;
12176 }
12177 
12178 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
12179 				  void *cb_priv)
12180 {
12181 	struct bnxt *bp = cb_priv;
12182 
12183 	if (!bnxt_tc_flower_enabled(bp) ||
12184 	    !tc_cls_can_offload_and_chain0(bp->dev, type_data))
12185 		return -EOPNOTSUPP;
12186 
12187 	switch (type) {
12188 	case TC_SETUP_CLSFLOWER:
12189 		return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data);
12190 	default:
12191 		return -EOPNOTSUPP;
12192 	}
12193 }
12194 
12195 LIST_HEAD(bnxt_block_cb_list);
12196 
12197 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type,
12198 			 void *type_data)
12199 {
12200 	struct bnxt *bp = netdev_priv(dev);
12201 
12202 	switch (type) {
12203 	case TC_SETUP_BLOCK:
12204 		return flow_block_cb_setup_simple(type_data,
12205 						  &bnxt_block_cb_list,
12206 						  bnxt_setup_tc_block_cb,
12207 						  bp, bp, true);
12208 	case TC_SETUP_QDISC_MQPRIO: {
12209 		struct tc_mqprio_qopt *mqprio = type_data;
12210 
12211 		mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
12212 
12213 		return bnxt_setup_mq_tc(dev, mqprio->num_tc);
12214 	}
12215 	default:
12216 		return -EOPNOTSUPP;
12217 	}
12218 }
12219 
12220 #ifdef CONFIG_RFS_ACCEL
12221 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
12222 			    struct bnxt_ntuple_filter *f2)
12223 {
12224 	struct flow_keys *keys1 = &f1->fkeys;
12225 	struct flow_keys *keys2 = &f2->fkeys;
12226 
12227 	if (keys1->basic.n_proto != keys2->basic.n_proto ||
12228 	    keys1->basic.ip_proto != keys2->basic.ip_proto)
12229 		return false;
12230 
12231 	if (keys1->basic.n_proto == htons(ETH_P_IP)) {
12232 		if (keys1->addrs.v4addrs.src != keys2->addrs.v4addrs.src ||
12233 		    keys1->addrs.v4addrs.dst != keys2->addrs.v4addrs.dst)
12234 			return false;
12235 	} else {
12236 		if (memcmp(&keys1->addrs.v6addrs.src, &keys2->addrs.v6addrs.src,
12237 			   sizeof(keys1->addrs.v6addrs.src)) ||
12238 		    memcmp(&keys1->addrs.v6addrs.dst, &keys2->addrs.v6addrs.dst,
12239 			   sizeof(keys1->addrs.v6addrs.dst)))
12240 			return false;
12241 	}
12242 
12243 	if (keys1->ports.ports == keys2->ports.ports &&
12244 	    keys1->control.flags == keys2->control.flags &&
12245 	    ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) &&
12246 	    ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr))
12247 		return true;
12248 
12249 	return false;
12250 }
12251 
12252 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
12253 			      u16 rxq_index, u32 flow_id)
12254 {
12255 	struct bnxt *bp = netdev_priv(dev);
12256 	struct bnxt_ntuple_filter *fltr, *new_fltr;
12257 	struct flow_keys *fkeys;
12258 	struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
12259 	int rc = 0, idx, bit_id, l2_idx = 0;
12260 	struct hlist_head *head;
12261 	u32 flags;
12262 
12263 	if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) {
12264 		struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
12265 		int off = 0, j;
12266 
12267 		netif_addr_lock_bh(dev);
12268 		for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) {
12269 			if (ether_addr_equal(eth->h_dest,
12270 					     vnic->uc_list + off)) {
12271 				l2_idx = j + 1;
12272 				break;
12273 			}
12274 		}
12275 		netif_addr_unlock_bh(dev);
12276 		if (!l2_idx)
12277 			return -EINVAL;
12278 	}
12279 	new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
12280 	if (!new_fltr)
12281 		return -ENOMEM;
12282 
12283 	fkeys = &new_fltr->fkeys;
12284 	if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
12285 		rc = -EPROTONOSUPPORT;
12286 		goto err_free;
12287 	}
12288 
12289 	if ((fkeys->basic.n_proto != htons(ETH_P_IP) &&
12290 	     fkeys->basic.n_proto != htons(ETH_P_IPV6)) ||
12291 	    ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
12292 	     (fkeys->basic.ip_proto != IPPROTO_UDP))) {
12293 		rc = -EPROTONOSUPPORT;
12294 		goto err_free;
12295 	}
12296 	if (fkeys->basic.n_proto == htons(ETH_P_IPV6) &&
12297 	    bp->hwrm_spec_code < 0x10601) {
12298 		rc = -EPROTONOSUPPORT;
12299 		goto err_free;
12300 	}
12301 	flags = fkeys->control.flags;
12302 	if (((flags & FLOW_DIS_ENCAPSULATION) &&
12303 	     bp->hwrm_spec_code < 0x10601) || (flags & FLOW_DIS_IS_FRAGMENT)) {
12304 		rc = -EPROTONOSUPPORT;
12305 		goto err_free;
12306 	}
12307 
12308 	memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN);
12309 	memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
12310 
12311 	idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
12312 	head = &bp->ntp_fltr_hash_tbl[idx];
12313 	rcu_read_lock();
12314 	hlist_for_each_entry_rcu(fltr, head, hash) {
12315 		if (bnxt_fltr_match(fltr, new_fltr)) {
12316 			rcu_read_unlock();
12317 			rc = 0;
12318 			goto err_free;
12319 		}
12320 	}
12321 	rcu_read_unlock();
12322 
12323 	spin_lock_bh(&bp->ntp_fltr_lock);
12324 	bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
12325 					 BNXT_NTP_FLTR_MAX_FLTR, 0);
12326 	if (bit_id < 0) {
12327 		spin_unlock_bh(&bp->ntp_fltr_lock);
12328 		rc = -ENOMEM;
12329 		goto err_free;
12330 	}
12331 
12332 	new_fltr->sw_id = (u16)bit_id;
12333 	new_fltr->flow_id = flow_id;
12334 	new_fltr->l2_fltr_idx = l2_idx;
12335 	new_fltr->rxq = rxq_index;
12336 	hlist_add_head_rcu(&new_fltr->hash, head);
12337 	bp->ntp_fltr_count++;
12338 	spin_unlock_bh(&bp->ntp_fltr_lock);
12339 
12340 	set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
12341 	bnxt_queue_sp_work(bp);
12342 
12343 	return new_fltr->sw_id;
12344 
12345 err_free:
12346 	kfree(new_fltr);
12347 	return rc;
12348 }
12349 
12350 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
12351 {
12352 	int i;
12353 
12354 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
12355 		struct hlist_head *head;
12356 		struct hlist_node *tmp;
12357 		struct bnxt_ntuple_filter *fltr;
12358 		int rc;
12359 
12360 		head = &bp->ntp_fltr_hash_tbl[i];
12361 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
12362 			bool del = false;
12363 
12364 			if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
12365 				if (rps_may_expire_flow(bp->dev, fltr->rxq,
12366 							fltr->flow_id,
12367 							fltr->sw_id)) {
12368 					bnxt_hwrm_cfa_ntuple_filter_free(bp,
12369 									 fltr);
12370 					del = true;
12371 				}
12372 			} else {
12373 				rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
12374 								       fltr);
12375 				if (rc)
12376 					del = true;
12377 				else
12378 					set_bit(BNXT_FLTR_VALID, &fltr->state);
12379 			}
12380 
12381 			if (del) {
12382 				spin_lock_bh(&bp->ntp_fltr_lock);
12383 				hlist_del_rcu(&fltr->hash);
12384 				bp->ntp_fltr_count--;
12385 				spin_unlock_bh(&bp->ntp_fltr_lock);
12386 				synchronize_rcu();
12387 				clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
12388 				kfree(fltr);
12389 			}
12390 		}
12391 	}
12392 	if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event))
12393 		netdev_info(bp->dev, "Receive PF driver unload event!\n");
12394 }
12395 
12396 #else
12397 
12398 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
12399 {
12400 }
12401 
12402 #endif /* CONFIG_RFS_ACCEL */
12403 
12404 static int bnxt_udp_tunnel_sync(struct net_device *netdev, unsigned int table)
12405 {
12406 	struct bnxt *bp = netdev_priv(netdev);
12407 	struct udp_tunnel_info ti;
12408 	unsigned int cmd;
12409 
12410 	udp_tunnel_nic_get_port(netdev, table, 0, &ti);
12411 	if (ti.type == UDP_TUNNEL_TYPE_VXLAN) {
12412 		bp->vxlan_port = ti.port;
12413 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN;
12414 	} else {
12415 		bp->nge_port = ti.port;
12416 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE;
12417 	}
12418 
12419 	if (ti.port)
12420 		return bnxt_hwrm_tunnel_dst_port_alloc(bp, ti.port, cmd);
12421 
12422 	return bnxt_hwrm_tunnel_dst_port_free(bp, cmd);
12423 }
12424 
12425 static const struct udp_tunnel_nic_info bnxt_udp_tunnels = {
12426 	.sync_table	= bnxt_udp_tunnel_sync,
12427 	.flags		= UDP_TUNNEL_NIC_INFO_MAY_SLEEP |
12428 			  UDP_TUNNEL_NIC_INFO_OPEN_ONLY,
12429 	.tables		= {
12430 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN,  },
12431 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
12432 	},
12433 };
12434 
12435 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
12436 			       struct net_device *dev, u32 filter_mask,
12437 			       int nlflags)
12438 {
12439 	struct bnxt *bp = netdev_priv(dev);
12440 
12441 	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0,
12442 				       nlflags, filter_mask, NULL);
12443 }
12444 
12445 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
12446 			       u16 flags, struct netlink_ext_ack *extack)
12447 {
12448 	struct bnxt *bp = netdev_priv(dev);
12449 	struct nlattr *attr, *br_spec;
12450 	int rem, rc = 0;
12451 
12452 	if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp))
12453 		return -EOPNOTSUPP;
12454 
12455 	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
12456 	if (!br_spec)
12457 		return -EINVAL;
12458 
12459 	nla_for_each_nested(attr, br_spec, rem) {
12460 		u16 mode;
12461 
12462 		if (nla_type(attr) != IFLA_BRIDGE_MODE)
12463 			continue;
12464 
12465 		if (nla_len(attr) < sizeof(mode))
12466 			return -EINVAL;
12467 
12468 		mode = nla_get_u16(attr);
12469 		if (mode == bp->br_mode)
12470 			break;
12471 
12472 		rc = bnxt_hwrm_set_br_mode(bp, mode);
12473 		if (!rc)
12474 			bp->br_mode = mode;
12475 		break;
12476 	}
12477 	return rc;
12478 }
12479 
12480 int bnxt_get_port_parent_id(struct net_device *dev,
12481 			    struct netdev_phys_item_id *ppid)
12482 {
12483 	struct bnxt *bp = netdev_priv(dev);
12484 
12485 	if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV)
12486 		return -EOPNOTSUPP;
12487 
12488 	/* The PF and it's VF-reps only support the switchdev framework */
12489 	if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_DSN_VALID))
12490 		return -EOPNOTSUPP;
12491 
12492 	ppid->id_len = sizeof(bp->dsn);
12493 	memcpy(ppid->id, bp->dsn, ppid->id_len);
12494 
12495 	return 0;
12496 }
12497 
12498 static struct devlink_port *bnxt_get_devlink_port(struct net_device *dev)
12499 {
12500 	struct bnxt *bp = netdev_priv(dev);
12501 
12502 	return &bp->dl_port;
12503 }
12504 
12505 static const struct net_device_ops bnxt_netdev_ops = {
12506 	.ndo_open		= bnxt_open,
12507 	.ndo_start_xmit		= bnxt_start_xmit,
12508 	.ndo_stop		= bnxt_close,
12509 	.ndo_get_stats64	= bnxt_get_stats64,
12510 	.ndo_set_rx_mode	= bnxt_set_rx_mode,
12511 	.ndo_do_ioctl		= bnxt_ioctl,
12512 	.ndo_validate_addr	= eth_validate_addr,
12513 	.ndo_set_mac_address	= bnxt_change_mac_addr,
12514 	.ndo_change_mtu		= bnxt_change_mtu,
12515 	.ndo_fix_features	= bnxt_fix_features,
12516 	.ndo_set_features	= bnxt_set_features,
12517 	.ndo_features_check	= bnxt_features_check,
12518 	.ndo_tx_timeout		= bnxt_tx_timeout,
12519 #ifdef CONFIG_BNXT_SRIOV
12520 	.ndo_get_vf_config	= bnxt_get_vf_config,
12521 	.ndo_set_vf_mac		= bnxt_set_vf_mac,
12522 	.ndo_set_vf_vlan	= bnxt_set_vf_vlan,
12523 	.ndo_set_vf_rate	= bnxt_set_vf_bw,
12524 	.ndo_set_vf_link_state	= bnxt_set_vf_link_state,
12525 	.ndo_set_vf_spoofchk	= bnxt_set_vf_spoofchk,
12526 	.ndo_set_vf_trust	= bnxt_set_vf_trust,
12527 #endif
12528 	.ndo_setup_tc           = bnxt_setup_tc,
12529 #ifdef CONFIG_RFS_ACCEL
12530 	.ndo_rx_flow_steer	= bnxt_rx_flow_steer,
12531 #endif
12532 	.ndo_bpf		= bnxt_xdp,
12533 	.ndo_xdp_xmit		= bnxt_xdp_xmit,
12534 	.ndo_bridge_getlink	= bnxt_bridge_getlink,
12535 	.ndo_bridge_setlink	= bnxt_bridge_setlink,
12536 	.ndo_get_devlink_port	= bnxt_get_devlink_port,
12537 };
12538 
12539 static void bnxt_remove_one(struct pci_dev *pdev)
12540 {
12541 	struct net_device *dev = pci_get_drvdata(pdev);
12542 	struct bnxt *bp = netdev_priv(dev);
12543 
12544 	if (BNXT_PF(bp))
12545 		bnxt_sriov_disable(bp);
12546 
12547 	if (BNXT_PF(bp))
12548 		devlink_port_type_clear(&bp->dl_port);
12549 	pci_disable_pcie_error_reporting(pdev);
12550 	unregister_netdev(dev);
12551 	clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12552 	/* Flush any pending tasks */
12553 	cancel_work_sync(&bp->sp_task);
12554 	cancel_delayed_work_sync(&bp->fw_reset_task);
12555 	bp->sp_event = 0;
12556 
12557 	bnxt_dl_fw_reporters_destroy(bp, true);
12558 	bnxt_dl_unregister(bp);
12559 	bnxt_shutdown_tc(bp);
12560 
12561 	bnxt_clear_int_mode(bp);
12562 	bnxt_hwrm_func_drv_unrgtr(bp);
12563 	bnxt_free_hwrm_resources(bp);
12564 	bnxt_free_hwrm_short_cmd_req(bp);
12565 	bnxt_ethtool_free(bp);
12566 	bnxt_dcb_free(bp);
12567 	kfree(bp->edev);
12568 	bp->edev = NULL;
12569 	kfree(bp->fw_health);
12570 	bp->fw_health = NULL;
12571 	bnxt_cleanup_pci(bp);
12572 	bnxt_free_ctx_mem(bp);
12573 	kfree(bp->ctx);
12574 	bp->ctx = NULL;
12575 	kfree(bp->rss_indir_tbl);
12576 	bp->rss_indir_tbl = NULL;
12577 	bnxt_free_port_stats(bp);
12578 	free_netdev(dev);
12579 }
12580 
12581 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt)
12582 {
12583 	int rc = 0;
12584 	struct bnxt_link_info *link_info = &bp->link_info;
12585 
12586 	bp->phy_flags = 0;
12587 	rc = bnxt_hwrm_phy_qcaps(bp);
12588 	if (rc) {
12589 		netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n",
12590 			   rc);
12591 		return rc;
12592 	}
12593 	if (bp->phy_flags & BNXT_PHY_FL_NO_FCS)
12594 		bp->dev->priv_flags |= IFF_SUPP_NOFCS;
12595 	else
12596 		bp->dev->priv_flags &= ~IFF_SUPP_NOFCS;
12597 	if (!fw_dflt)
12598 		return 0;
12599 
12600 	rc = bnxt_update_link(bp, false);
12601 	if (rc) {
12602 		netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
12603 			   rc);
12604 		return rc;
12605 	}
12606 
12607 	/* Older firmware does not have supported_auto_speeds, so assume
12608 	 * that all supported speeds can be autonegotiated.
12609 	 */
12610 	if (link_info->auto_link_speeds && !link_info->support_auto_speeds)
12611 		link_info->support_auto_speeds = link_info->support_speeds;
12612 
12613 	bnxt_init_ethtool_link_settings(bp);
12614 	return 0;
12615 }
12616 
12617 static int bnxt_get_max_irq(struct pci_dev *pdev)
12618 {
12619 	u16 ctrl;
12620 
12621 	if (!pdev->msix_cap)
12622 		return 1;
12623 
12624 	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
12625 	return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
12626 }
12627 
12628 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
12629 				int *max_cp)
12630 {
12631 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
12632 	int max_ring_grps = 0, max_irq;
12633 
12634 	*max_tx = hw_resc->max_tx_rings;
12635 	*max_rx = hw_resc->max_rx_rings;
12636 	*max_cp = bnxt_get_max_func_cp_rings_for_en(bp);
12637 	max_irq = min_t(int, bnxt_get_max_func_irqs(bp) -
12638 			bnxt_get_ulp_msix_num(bp),
12639 			hw_resc->max_stat_ctxs - bnxt_get_ulp_stat_ctxs(bp));
12640 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
12641 		*max_cp = min_t(int, *max_cp, max_irq);
12642 	max_ring_grps = hw_resc->max_hw_ring_grps;
12643 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) {
12644 		*max_cp -= 1;
12645 		*max_rx -= 2;
12646 	}
12647 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
12648 		*max_rx >>= 1;
12649 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
12650 		bnxt_trim_rings(bp, max_rx, max_tx, *max_cp, false);
12651 		/* On P5 chips, max_cp output param should be available NQs */
12652 		*max_cp = max_irq;
12653 	}
12654 	*max_rx = min_t(int, *max_rx, max_ring_grps);
12655 }
12656 
12657 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
12658 {
12659 	int rx, tx, cp;
12660 
12661 	_bnxt_get_max_rings(bp, &rx, &tx, &cp);
12662 	*max_rx = rx;
12663 	*max_tx = tx;
12664 	if (!rx || !tx || !cp)
12665 		return -ENOMEM;
12666 
12667 	return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
12668 }
12669 
12670 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx,
12671 			       bool shared)
12672 {
12673 	int rc;
12674 
12675 	rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
12676 	if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) {
12677 		/* Not enough rings, try disabling agg rings. */
12678 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
12679 		rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
12680 		if (rc) {
12681 			/* set BNXT_FLAG_AGG_RINGS back for consistency */
12682 			bp->flags |= BNXT_FLAG_AGG_RINGS;
12683 			return rc;
12684 		}
12685 		bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
12686 		bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
12687 		bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
12688 		bnxt_set_ring_params(bp);
12689 	}
12690 
12691 	if (bp->flags & BNXT_FLAG_ROCE_CAP) {
12692 		int max_cp, max_stat, max_irq;
12693 
12694 		/* Reserve minimum resources for RoCE */
12695 		max_cp = bnxt_get_max_func_cp_rings(bp);
12696 		max_stat = bnxt_get_max_func_stat_ctxs(bp);
12697 		max_irq = bnxt_get_max_func_irqs(bp);
12698 		if (max_cp <= BNXT_MIN_ROCE_CP_RINGS ||
12699 		    max_irq <= BNXT_MIN_ROCE_CP_RINGS ||
12700 		    max_stat <= BNXT_MIN_ROCE_STAT_CTXS)
12701 			return 0;
12702 
12703 		max_cp -= BNXT_MIN_ROCE_CP_RINGS;
12704 		max_irq -= BNXT_MIN_ROCE_CP_RINGS;
12705 		max_stat -= BNXT_MIN_ROCE_STAT_CTXS;
12706 		max_cp = min_t(int, max_cp, max_irq);
12707 		max_cp = min_t(int, max_cp, max_stat);
12708 		rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared);
12709 		if (rc)
12710 			rc = 0;
12711 	}
12712 	return rc;
12713 }
12714 
12715 /* In initial default shared ring setting, each shared ring must have a
12716  * RX/TX ring pair.
12717  */
12718 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp)
12719 {
12720 	bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings);
12721 	bp->rx_nr_rings = bp->cp_nr_rings;
12722 	bp->tx_nr_rings_per_tc = bp->cp_nr_rings;
12723 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
12724 }
12725 
12726 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh)
12727 {
12728 	int dflt_rings, max_rx_rings, max_tx_rings, rc;
12729 
12730 	if (!bnxt_can_reserve_rings(bp))
12731 		return 0;
12732 
12733 	if (sh)
12734 		bp->flags |= BNXT_FLAG_SHARED_RINGS;
12735 	dflt_rings = is_kdump_kernel() ? 1 : netif_get_num_default_rss_queues();
12736 	/* Reduce default rings on multi-port cards so that total default
12737 	 * rings do not exceed CPU count.
12738 	 */
12739 	if (bp->port_count > 1) {
12740 		int max_rings =
12741 			max_t(int, num_online_cpus() / bp->port_count, 1);
12742 
12743 		dflt_rings = min_t(int, dflt_rings, max_rings);
12744 	}
12745 	rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh);
12746 	if (rc)
12747 		return rc;
12748 	bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
12749 	bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
12750 	if (sh)
12751 		bnxt_trim_dflt_sh_rings(bp);
12752 	else
12753 		bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings;
12754 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
12755 
12756 	rc = __bnxt_reserve_rings(bp);
12757 	if (rc)
12758 		netdev_warn(bp->dev, "Unable to reserve tx rings\n");
12759 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
12760 	if (sh)
12761 		bnxt_trim_dflt_sh_rings(bp);
12762 
12763 	/* Rings may have been trimmed, re-reserve the trimmed rings. */
12764 	if (bnxt_need_reserve_rings(bp)) {
12765 		rc = __bnxt_reserve_rings(bp);
12766 		if (rc)
12767 			netdev_warn(bp->dev, "2nd rings reservation failed.\n");
12768 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
12769 	}
12770 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
12771 		bp->rx_nr_rings++;
12772 		bp->cp_nr_rings++;
12773 	}
12774 	if (rc) {
12775 		bp->tx_nr_rings = 0;
12776 		bp->rx_nr_rings = 0;
12777 	}
12778 	return rc;
12779 }
12780 
12781 static int bnxt_init_dflt_ring_mode(struct bnxt *bp)
12782 {
12783 	int rc;
12784 
12785 	if (bp->tx_nr_rings)
12786 		return 0;
12787 
12788 	bnxt_ulp_irq_stop(bp);
12789 	bnxt_clear_int_mode(bp);
12790 	rc = bnxt_set_dflt_rings(bp, true);
12791 	if (rc) {
12792 		netdev_err(bp->dev, "Not enough rings available.\n");
12793 		goto init_dflt_ring_err;
12794 	}
12795 	rc = bnxt_init_int_mode(bp);
12796 	if (rc)
12797 		goto init_dflt_ring_err;
12798 
12799 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
12800 	if (bnxt_rfs_supported(bp) && bnxt_rfs_capable(bp)) {
12801 		bp->flags |= BNXT_FLAG_RFS;
12802 		bp->dev->features |= NETIF_F_NTUPLE;
12803 	}
12804 init_dflt_ring_err:
12805 	bnxt_ulp_irq_restart(bp, rc);
12806 	return rc;
12807 }
12808 
12809 int bnxt_restore_pf_fw_resources(struct bnxt *bp)
12810 {
12811 	int rc;
12812 
12813 	ASSERT_RTNL();
12814 	bnxt_hwrm_func_qcaps(bp);
12815 
12816 	if (netif_running(bp->dev))
12817 		__bnxt_close_nic(bp, true, false);
12818 
12819 	bnxt_ulp_irq_stop(bp);
12820 	bnxt_clear_int_mode(bp);
12821 	rc = bnxt_init_int_mode(bp);
12822 	bnxt_ulp_irq_restart(bp, rc);
12823 
12824 	if (netif_running(bp->dev)) {
12825 		if (rc)
12826 			dev_close(bp->dev);
12827 		else
12828 			rc = bnxt_open_nic(bp, true, false);
12829 	}
12830 
12831 	return rc;
12832 }
12833 
12834 static int bnxt_init_mac_addr(struct bnxt *bp)
12835 {
12836 	int rc = 0;
12837 
12838 	if (BNXT_PF(bp)) {
12839 		memcpy(bp->dev->dev_addr, bp->pf.mac_addr, ETH_ALEN);
12840 	} else {
12841 #ifdef CONFIG_BNXT_SRIOV
12842 		struct bnxt_vf_info *vf = &bp->vf;
12843 		bool strict_approval = true;
12844 
12845 		if (is_valid_ether_addr(vf->mac_addr)) {
12846 			/* overwrite netdev dev_addr with admin VF MAC */
12847 			memcpy(bp->dev->dev_addr, vf->mac_addr, ETH_ALEN);
12848 			/* Older PF driver or firmware may not approve this
12849 			 * correctly.
12850 			 */
12851 			strict_approval = false;
12852 		} else {
12853 			eth_hw_addr_random(bp->dev);
12854 		}
12855 		rc = bnxt_approve_mac(bp, bp->dev->dev_addr, strict_approval);
12856 #endif
12857 	}
12858 	return rc;
12859 }
12860 
12861 #define BNXT_VPD_LEN	512
12862 static void bnxt_vpd_read_info(struct bnxt *bp)
12863 {
12864 	struct pci_dev *pdev = bp->pdev;
12865 	int i, len, pos, ro_size, size;
12866 	ssize_t vpd_size;
12867 	u8 *vpd_data;
12868 
12869 	vpd_data = kmalloc(BNXT_VPD_LEN, GFP_KERNEL);
12870 	if (!vpd_data)
12871 		return;
12872 
12873 	vpd_size = pci_read_vpd(pdev, 0, BNXT_VPD_LEN, vpd_data);
12874 	if (vpd_size <= 0) {
12875 		netdev_err(bp->dev, "Unable to read VPD\n");
12876 		goto exit;
12877 	}
12878 
12879 	i = pci_vpd_find_tag(vpd_data, vpd_size, PCI_VPD_LRDT_RO_DATA);
12880 	if (i < 0) {
12881 		netdev_err(bp->dev, "VPD READ-Only not found\n");
12882 		goto exit;
12883 	}
12884 
12885 	ro_size = pci_vpd_lrdt_size(&vpd_data[i]);
12886 	i += PCI_VPD_LRDT_TAG_SIZE;
12887 	if (i + ro_size > vpd_size)
12888 		goto exit;
12889 
12890 	pos = pci_vpd_find_info_keyword(vpd_data, i, ro_size,
12891 					PCI_VPD_RO_KEYWORD_PARTNO);
12892 	if (pos < 0)
12893 		goto read_sn;
12894 
12895 	len = pci_vpd_info_field_size(&vpd_data[pos]);
12896 	pos += PCI_VPD_INFO_FLD_HDR_SIZE;
12897 	if (len + pos > vpd_size)
12898 		goto read_sn;
12899 
12900 	size = min(len, BNXT_VPD_FLD_LEN - 1);
12901 	memcpy(bp->board_partno, &vpd_data[pos], size);
12902 
12903 read_sn:
12904 	pos = pci_vpd_find_info_keyword(vpd_data, i, ro_size,
12905 					PCI_VPD_RO_KEYWORD_SERIALNO);
12906 	if (pos < 0)
12907 		goto exit;
12908 
12909 	len = pci_vpd_info_field_size(&vpd_data[pos]);
12910 	pos += PCI_VPD_INFO_FLD_HDR_SIZE;
12911 	if (len + pos > vpd_size)
12912 		goto exit;
12913 
12914 	size = min(len, BNXT_VPD_FLD_LEN - 1);
12915 	memcpy(bp->board_serialno, &vpd_data[pos], size);
12916 exit:
12917 	kfree(vpd_data);
12918 }
12919 
12920 static int bnxt_pcie_dsn_get(struct bnxt *bp, u8 dsn[])
12921 {
12922 	struct pci_dev *pdev = bp->pdev;
12923 	u64 qword;
12924 
12925 	qword = pci_get_dsn(pdev);
12926 	if (!qword) {
12927 		netdev_info(bp->dev, "Unable to read adapter's DSN\n");
12928 		return -EOPNOTSUPP;
12929 	}
12930 
12931 	put_unaligned_le64(qword, dsn);
12932 
12933 	bp->flags |= BNXT_FLAG_DSN_VALID;
12934 	return 0;
12935 }
12936 
12937 static int bnxt_map_db_bar(struct bnxt *bp)
12938 {
12939 	if (!bp->db_size)
12940 		return -ENODEV;
12941 	bp->bar1 = pci_iomap(bp->pdev, 2, bp->db_size);
12942 	if (!bp->bar1)
12943 		return -ENOMEM;
12944 	return 0;
12945 }
12946 
12947 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
12948 {
12949 	struct net_device *dev;
12950 	struct bnxt *bp;
12951 	int rc, max_irqs;
12952 
12953 	if (pci_is_bridge(pdev))
12954 		return -ENODEV;
12955 
12956 	/* Clear any pending DMA transactions from crash kernel
12957 	 * while loading driver in capture kernel.
12958 	 */
12959 	if (is_kdump_kernel()) {
12960 		pci_clear_master(pdev);
12961 		pcie_flr(pdev);
12962 	}
12963 
12964 	max_irqs = bnxt_get_max_irq(pdev);
12965 	dev = alloc_etherdev_mq(sizeof(*bp), max_irqs);
12966 	if (!dev)
12967 		return -ENOMEM;
12968 
12969 	bp = netdev_priv(dev);
12970 	bp->msg_enable = BNXT_DEF_MSG_ENABLE;
12971 	bnxt_set_max_func_irqs(bp, max_irqs);
12972 
12973 	if (bnxt_vf_pciid(ent->driver_data))
12974 		bp->flags |= BNXT_FLAG_VF;
12975 
12976 	if (pdev->msix_cap)
12977 		bp->flags |= BNXT_FLAG_MSIX_CAP;
12978 
12979 	rc = bnxt_init_board(pdev, dev);
12980 	if (rc < 0)
12981 		goto init_err_free;
12982 
12983 	dev->netdev_ops = &bnxt_netdev_ops;
12984 	dev->watchdog_timeo = BNXT_TX_TIMEOUT;
12985 	dev->ethtool_ops = &bnxt_ethtool_ops;
12986 	pci_set_drvdata(pdev, dev);
12987 
12988 	rc = bnxt_alloc_hwrm_resources(bp);
12989 	if (rc)
12990 		goto init_err_pci_clean;
12991 
12992 	mutex_init(&bp->hwrm_cmd_lock);
12993 	mutex_init(&bp->link_lock);
12994 
12995 	rc = bnxt_fw_init_one_p1(bp);
12996 	if (rc)
12997 		goto init_err_pci_clean;
12998 
12999 	if (BNXT_PF(bp))
13000 		bnxt_vpd_read_info(bp);
13001 
13002 	if (BNXT_CHIP_P5(bp)) {
13003 		bp->flags |= BNXT_FLAG_CHIP_P5;
13004 		if (BNXT_CHIP_SR2(bp))
13005 			bp->flags |= BNXT_FLAG_CHIP_SR2;
13006 	}
13007 
13008 	rc = bnxt_alloc_rss_indir_tbl(bp);
13009 	if (rc)
13010 		goto init_err_pci_clean;
13011 
13012 	rc = bnxt_fw_init_one_p2(bp);
13013 	if (rc)
13014 		goto init_err_pci_clean;
13015 
13016 	rc = bnxt_map_db_bar(bp);
13017 	if (rc) {
13018 		dev_err(&pdev->dev, "Cannot map doorbell BAR rc = %d, aborting\n",
13019 			rc);
13020 		goto init_err_pci_clean;
13021 	}
13022 
13023 	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
13024 			   NETIF_F_TSO | NETIF_F_TSO6 |
13025 			   NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
13026 			   NETIF_F_GSO_IPXIP4 |
13027 			   NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
13028 			   NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH |
13029 			   NETIF_F_RXCSUM | NETIF_F_GRO;
13030 
13031 	if (BNXT_SUPPORTS_TPA(bp))
13032 		dev->hw_features |= NETIF_F_LRO;
13033 
13034 	dev->hw_enc_features =
13035 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
13036 			NETIF_F_TSO | NETIF_F_TSO6 |
13037 			NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
13038 			NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
13039 			NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL;
13040 	dev->udp_tunnel_nic_info = &bnxt_udp_tunnels;
13041 
13042 	dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM |
13043 				    NETIF_F_GSO_GRE_CSUM;
13044 	dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
13045 	if (bp->fw_cap & BNXT_FW_CAP_VLAN_RX_STRIP)
13046 		dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_RX;
13047 	if (bp->fw_cap & BNXT_FW_CAP_VLAN_TX_INSERT)
13048 		dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_TX;
13049 	if (BNXT_SUPPORTS_TPA(bp))
13050 		dev->hw_features |= NETIF_F_GRO_HW;
13051 	dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
13052 	if (dev->features & NETIF_F_GRO_HW)
13053 		dev->features &= ~NETIF_F_LRO;
13054 	dev->priv_flags |= IFF_UNICAST_FLT;
13055 
13056 #ifdef CONFIG_BNXT_SRIOV
13057 	init_waitqueue_head(&bp->sriov_cfg_wait);
13058 	mutex_init(&bp->sriov_lock);
13059 #endif
13060 	if (BNXT_SUPPORTS_TPA(bp)) {
13061 		bp->gro_func = bnxt_gro_func_5730x;
13062 		if (BNXT_CHIP_P4(bp))
13063 			bp->gro_func = bnxt_gro_func_5731x;
13064 		else if (BNXT_CHIP_P5(bp))
13065 			bp->gro_func = bnxt_gro_func_5750x;
13066 	}
13067 	if (!BNXT_CHIP_P4_PLUS(bp))
13068 		bp->flags |= BNXT_FLAG_DOUBLE_DB;
13069 
13070 	rc = bnxt_init_mac_addr(bp);
13071 	if (rc) {
13072 		dev_err(&pdev->dev, "Unable to initialize mac address.\n");
13073 		rc = -EADDRNOTAVAIL;
13074 		goto init_err_pci_clean;
13075 	}
13076 
13077 	if (BNXT_PF(bp)) {
13078 		/* Read the adapter's DSN to use as the eswitch switch_id */
13079 		rc = bnxt_pcie_dsn_get(bp, bp->dsn);
13080 	}
13081 
13082 	/* MTU range: 60 - FW defined max */
13083 	dev->min_mtu = ETH_ZLEN;
13084 	dev->max_mtu = bp->max_mtu;
13085 
13086 	rc = bnxt_probe_phy(bp, true);
13087 	if (rc)
13088 		goto init_err_pci_clean;
13089 
13090 	bnxt_set_rx_skb_mode(bp, false);
13091 	bnxt_set_tpa_flags(bp);
13092 	bnxt_set_ring_params(bp);
13093 	rc = bnxt_set_dflt_rings(bp, true);
13094 	if (rc) {
13095 		netdev_err(bp->dev, "Not enough rings available.\n");
13096 		rc = -ENOMEM;
13097 		goto init_err_pci_clean;
13098 	}
13099 
13100 	bnxt_fw_init_one_p3(bp);
13101 
13102 	if (dev->hw_features & BNXT_HW_FEATURE_VLAN_ALL_RX)
13103 		bp->flags |= BNXT_FLAG_STRIP_VLAN;
13104 
13105 	rc = bnxt_init_int_mode(bp);
13106 	if (rc)
13107 		goto init_err_pci_clean;
13108 
13109 	/* No TC has been set yet and rings may have been trimmed due to
13110 	 * limited MSIX, so we re-initialize the TX rings per TC.
13111 	 */
13112 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
13113 
13114 	if (BNXT_PF(bp)) {
13115 		if (!bnxt_pf_wq) {
13116 			bnxt_pf_wq =
13117 				create_singlethread_workqueue("bnxt_pf_wq");
13118 			if (!bnxt_pf_wq) {
13119 				dev_err(&pdev->dev, "Unable to create workqueue.\n");
13120 				rc = -ENOMEM;
13121 				goto init_err_pci_clean;
13122 			}
13123 		}
13124 		rc = bnxt_init_tc(bp);
13125 		if (rc)
13126 			netdev_err(dev, "Failed to initialize TC flower offload, err = %d.\n",
13127 				   rc);
13128 	}
13129 
13130 	bnxt_inv_fw_health_reg(bp);
13131 	bnxt_dl_register(bp);
13132 
13133 	rc = register_netdev(dev);
13134 	if (rc)
13135 		goto init_err_cleanup;
13136 
13137 	if (BNXT_PF(bp))
13138 		devlink_port_type_eth_set(&bp->dl_port, bp->dev);
13139 	bnxt_dl_fw_reporters_create(bp);
13140 
13141 	netdev_info(dev, "%s found at mem %lx, node addr %pM\n",
13142 		    board_info[ent->driver_data].name,
13143 		    (long)pci_resource_start(pdev, 0), dev->dev_addr);
13144 	pcie_print_link_status(pdev);
13145 
13146 	pci_save_state(pdev);
13147 	return 0;
13148 
13149 init_err_cleanup:
13150 	bnxt_dl_unregister(bp);
13151 	bnxt_shutdown_tc(bp);
13152 	bnxt_clear_int_mode(bp);
13153 
13154 init_err_pci_clean:
13155 	bnxt_hwrm_func_drv_unrgtr(bp);
13156 	bnxt_free_hwrm_short_cmd_req(bp);
13157 	bnxt_free_hwrm_resources(bp);
13158 	kfree(bp->fw_health);
13159 	bp->fw_health = NULL;
13160 	bnxt_cleanup_pci(bp);
13161 	bnxt_free_ctx_mem(bp);
13162 	kfree(bp->ctx);
13163 	bp->ctx = NULL;
13164 	kfree(bp->rss_indir_tbl);
13165 	bp->rss_indir_tbl = NULL;
13166 
13167 init_err_free:
13168 	free_netdev(dev);
13169 	return rc;
13170 }
13171 
13172 static void bnxt_shutdown(struct pci_dev *pdev)
13173 {
13174 	struct net_device *dev = pci_get_drvdata(pdev);
13175 	struct bnxt *bp;
13176 
13177 	if (!dev)
13178 		return;
13179 
13180 	rtnl_lock();
13181 	bp = netdev_priv(dev);
13182 	if (!bp)
13183 		goto shutdown_exit;
13184 
13185 	if (netif_running(dev))
13186 		dev_close(dev);
13187 
13188 	bnxt_ulp_shutdown(bp);
13189 	bnxt_clear_int_mode(bp);
13190 	pci_disable_device(pdev);
13191 
13192 	if (system_state == SYSTEM_POWER_OFF) {
13193 		pci_wake_from_d3(pdev, bp->wol);
13194 		pci_set_power_state(pdev, PCI_D3hot);
13195 	}
13196 
13197 shutdown_exit:
13198 	rtnl_unlock();
13199 }
13200 
13201 #ifdef CONFIG_PM_SLEEP
13202 static int bnxt_suspend(struct device *device)
13203 {
13204 	struct net_device *dev = dev_get_drvdata(device);
13205 	struct bnxt *bp = netdev_priv(dev);
13206 	int rc = 0;
13207 
13208 	rtnl_lock();
13209 	bnxt_ulp_stop(bp);
13210 	if (netif_running(dev)) {
13211 		netif_device_detach(dev);
13212 		rc = bnxt_close(dev);
13213 	}
13214 	bnxt_hwrm_func_drv_unrgtr(bp);
13215 	pci_disable_device(bp->pdev);
13216 	bnxt_free_ctx_mem(bp);
13217 	kfree(bp->ctx);
13218 	bp->ctx = NULL;
13219 	rtnl_unlock();
13220 	return rc;
13221 }
13222 
13223 static int bnxt_resume(struct device *device)
13224 {
13225 	struct net_device *dev = dev_get_drvdata(device);
13226 	struct bnxt *bp = netdev_priv(dev);
13227 	int rc = 0;
13228 
13229 	rtnl_lock();
13230 	rc = pci_enable_device(bp->pdev);
13231 	if (rc) {
13232 		netdev_err(dev, "Cannot re-enable PCI device during resume, err = %d\n",
13233 			   rc);
13234 		goto resume_exit;
13235 	}
13236 	pci_set_master(bp->pdev);
13237 	if (bnxt_hwrm_ver_get(bp)) {
13238 		rc = -ENODEV;
13239 		goto resume_exit;
13240 	}
13241 	rc = bnxt_hwrm_func_reset(bp);
13242 	if (rc) {
13243 		rc = -EBUSY;
13244 		goto resume_exit;
13245 	}
13246 
13247 	rc = bnxt_hwrm_func_qcaps(bp);
13248 	if (rc)
13249 		goto resume_exit;
13250 
13251 	if (bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false)) {
13252 		rc = -ENODEV;
13253 		goto resume_exit;
13254 	}
13255 
13256 	bnxt_get_wol_settings(bp);
13257 	if (netif_running(dev)) {
13258 		rc = bnxt_open(dev);
13259 		if (!rc)
13260 			netif_device_attach(dev);
13261 	}
13262 
13263 resume_exit:
13264 	bnxt_ulp_start(bp, rc);
13265 	if (!rc)
13266 		bnxt_reenable_sriov(bp);
13267 	rtnl_unlock();
13268 	return rc;
13269 }
13270 
13271 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume);
13272 #define BNXT_PM_OPS (&bnxt_pm_ops)
13273 
13274 #else
13275 
13276 #define BNXT_PM_OPS NULL
13277 
13278 #endif /* CONFIG_PM_SLEEP */
13279 
13280 /**
13281  * bnxt_io_error_detected - called when PCI error is detected
13282  * @pdev: Pointer to PCI device
13283  * @state: The current pci connection state
13284  *
13285  * This function is called after a PCI bus error affecting
13286  * this device has been detected.
13287  */
13288 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev,
13289 					       pci_channel_state_t state)
13290 {
13291 	struct net_device *netdev = pci_get_drvdata(pdev);
13292 	struct bnxt *bp = netdev_priv(netdev);
13293 
13294 	netdev_info(netdev, "PCI I/O error detected\n");
13295 
13296 	rtnl_lock();
13297 	netif_device_detach(netdev);
13298 
13299 	bnxt_ulp_stop(bp);
13300 
13301 	if (state == pci_channel_io_perm_failure) {
13302 		rtnl_unlock();
13303 		return PCI_ERS_RESULT_DISCONNECT;
13304 	}
13305 
13306 	if (state == pci_channel_io_frozen)
13307 		set_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, &bp->state);
13308 
13309 	if (netif_running(netdev))
13310 		bnxt_close(netdev);
13311 
13312 	pci_disable_device(pdev);
13313 	bnxt_free_ctx_mem(bp);
13314 	kfree(bp->ctx);
13315 	bp->ctx = NULL;
13316 	rtnl_unlock();
13317 
13318 	/* Request a slot slot reset. */
13319 	return PCI_ERS_RESULT_NEED_RESET;
13320 }
13321 
13322 /**
13323  * bnxt_io_slot_reset - called after the pci bus has been reset.
13324  * @pdev: Pointer to PCI device
13325  *
13326  * Restart the card from scratch, as if from a cold-boot.
13327  * At this point, the card has exprienced a hard reset,
13328  * followed by fixups by BIOS, and has its config space
13329  * set up identically to what it was at cold boot.
13330  */
13331 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev)
13332 {
13333 	pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
13334 	struct net_device *netdev = pci_get_drvdata(pdev);
13335 	struct bnxt *bp = netdev_priv(netdev);
13336 	int err = 0, off;
13337 
13338 	netdev_info(bp->dev, "PCI Slot Reset\n");
13339 
13340 	rtnl_lock();
13341 
13342 	if (pci_enable_device(pdev)) {
13343 		dev_err(&pdev->dev,
13344 			"Cannot re-enable PCI device after reset.\n");
13345 	} else {
13346 		pci_set_master(pdev);
13347 		/* Upon fatal error, our device internal logic that latches to
13348 		 * BAR value is getting reset and will restore only upon
13349 		 * rewritting the BARs.
13350 		 *
13351 		 * As pci_restore_state() does not re-write the BARs if the
13352 		 * value is same as saved value earlier, driver needs to
13353 		 * write the BARs to 0 to force restore, in case of fatal error.
13354 		 */
13355 		if (test_and_clear_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN,
13356 				       &bp->state)) {
13357 			for (off = PCI_BASE_ADDRESS_0;
13358 			     off <= PCI_BASE_ADDRESS_5; off += 4)
13359 				pci_write_config_dword(bp->pdev, off, 0);
13360 		}
13361 		pci_restore_state(pdev);
13362 		pci_save_state(pdev);
13363 
13364 		err = bnxt_hwrm_func_reset(bp);
13365 		if (!err)
13366 			result = PCI_ERS_RESULT_RECOVERED;
13367 	}
13368 
13369 	rtnl_unlock();
13370 
13371 	return result;
13372 }
13373 
13374 /**
13375  * bnxt_io_resume - called when traffic can start flowing again.
13376  * @pdev: Pointer to PCI device
13377  *
13378  * This callback is called when the error recovery driver tells
13379  * us that its OK to resume normal operation.
13380  */
13381 static void bnxt_io_resume(struct pci_dev *pdev)
13382 {
13383 	struct net_device *netdev = pci_get_drvdata(pdev);
13384 	struct bnxt *bp = netdev_priv(netdev);
13385 	int err;
13386 
13387 	netdev_info(bp->dev, "PCI Slot Resume\n");
13388 	rtnl_lock();
13389 
13390 	err = bnxt_hwrm_func_qcaps(bp);
13391 	if (!err && netif_running(netdev))
13392 		err = bnxt_open(netdev);
13393 
13394 	bnxt_ulp_start(bp, err);
13395 	if (!err) {
13396 		bnxt_reenable_sriov(bp);
13397 		netif_device_attach(netdev);
13398 	}
13399 
13400 	rtnl_unlock();
13401 }
13402 
13403 static const struct pci_error_handlers bnxt_err_handler = {
13404 	.error_detected	= bnxt_io_error_detected,
13405 	.slot_reset	= bnxt_io_slot_reset,
13406 	.resume		= bnxt_io_resume
13407 };
13408 
13409 static struct pci_driver bnxt_pci_driver = {
13410 	.name		= DRV_MODULE_NAME,
13411 	.id_table	= bnxt_pci_tbl,
13412 	.probe		= bnxt_init_one,
13413 	.remove		= bnxt_remove_one,
13414 	.shutdown	= bnxt_shutdown,
13415 	.driver.pm	= BNXT_PM_OPS,
13416 	.err_handler	= &bnxt_err_handler,
13417 #if defined(CONFIG_BNXT_SRIOV)
13418 	.sriov_configure = bnxt_sriov_configure,
13419 #endif
13420 };
13421 
13422 static int __init bnxt_init(void)
13423 {
13424 	bnxt_debug_init();
13425 	return pci_register_driver(&bnxt_pci_driver);
13426 }
13427 
13428 static void __exit bnxt_exit(void)
13429 {
13430 	pci_unregister_driver(&bnxt_pci_driver);
13431 	if (bnxt_pf_wq)
13432 		destroy_workqueue(bnxt_pf_wq);
13433 	bnxt_debug_exit();
13434 }
13435 
13436 module_init(bnxt_init);
13437 module_exit(bnxt_exit);
13438