1 /* Broadcom NetXtreme-C/E network driver. 2 * 3 * Copyright (c) 2014-2016 Broadcom Corporation 4 * Copyright (c) 2016-2019 Broadcom Limited 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation. 9 */ 10 11 #include <linux/module.h> 12 13 #include <linux/stringify.h> 14 #include <linux/kernel.h> 15 #include <linux/timer.h> 16 #include <linux/errno.h> 17 #include <linux/ioport.h> 18 #include <linux/slab.h> 19 #include <linux/vmalloc.h> 20 #include <linux/interrupt.h> 21 #include <linux/pci.h> 22 #include <linux/netdevice.h> 23 #include <linux/etherdevice.h> 24 #include <linux/skbuff.h> 25 #include <linux/dma-mapping.h> 26 #include <linux/bitops.h> 27 #include <linux/io.h> 28 #include <linux/irq.h> 29 #include <linux/delay.h> 30 #include <asm/byteorder.h> 31 #include <asm/page.h> 32 #include <linux/time.h> 33 #include <linux/mii.h> 34 #include <linux/mdio.h> 35 #include <linux/if.h> 36 #include <linux/if_vlan.h> 37 #include <linux/if_bridge.h> 38 #include <linux/rtc.h> 39 #include <linux/bpf.h> 40 #include <net/ip.h> 41 #include <net/tcp.h> 42 #include <net/udp.h> 43 #include <net/checksum.h> 44 #include <net/ip6_checksum.h> 45 #include <net/udp_tunnel.h> 46 #include <linux/workqueue.h> 47 #include <linux/prefetch.h> 48 #include <linux/cache.h> 49 #include <linux/log2.h> 50 #include <linux/aer.h> 51 #include <linux/bitmap.h> 52 #include <linux/ptp_clock_kernel.h> 53 #include <linux/timecounter.h> 54 #include <linux/cpu_rmap.h> 55 #include <linux/cpumask.h> 56 #include <net/pkt_cls.h> 57 #include <linux/hwmon.h> 58 #include <linux/hwmon-sysfs.h> 59 #include <net/page_pool.h> 60 61 #include "bnxt_hsi.h" 62 #include "bnxt.h" 63 #include "bnxt_hwrm.h" 64 #include "bnxt_ulp.h" 65 #include "bnxt_sriov.h" 66 #include "bnxt_ethtool.h" 67 #include "bnxt_dcb.h" 68 #include "bnxt_xdp.h" 69 #include "bnxt_ptp.h" 70 #include "bnxt_vfr.h" 71 #include "bnxt_tc.h" 72 #include "bnxt_devlink.h" 73 #include "bnxt_debugfs.h" 74 75 #define BNXT_TX_TIMEOUT (5 * HZ) 76 #define BNXT_DEF_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_HW | \ 77 NETIF_MSG_TX_ERR) 78 79 MODULE_LICENSE("GPL"); 80 MODULE_DESCRIPTION("Broadcom BCM573xx network driver"); 81 82 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN) 83 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD 84 #define BNXT_RX_COPY_THRESH 256 85 86 #define BNXT_TX_PUSH_THRESH 164 87 88 enum board_idx { 89 BCM57301, 90 BCM57302, 91 BCM57304, 92 BCM57417_NPAR, 93 BCM58700, 94 BCM57311, 95 BCM57312, 96 BCM57402, 97 BCM57404, 98 BCM57406, 99 BCM57402_NPAR, 100 BCM57407, 101 BCM57412, 102 BCM57414, 103 BCM57416, 104 BCM57417, 105 BCM57412_NPAR, 106 BCM57314, 107 BCM57417_SFP, 108 BCM57416_SFP, 109 BCM57404_NPAR, 110 BCM57406_NPAR, 111 BCM57407_SFP, 112 BCM57407_NPAR, 113 BCM57414_NPAR, 114 BCM57416_NPAR, 115 BCM57452, 116 BCM57454, 117 BCM5745x_NPAR, 118 BCM57508, 119 BCM57504, 120 BCM57502, 121 BCM57508_NPAR, 122 BCM57504_NPAR, 123 BCM57502_NPAR, 124 BCM58802, 125 BCM58804, 126 BCM58808, 127 NETXTREME_E_VF, 128 NETXTREME_C_VF, 129 NETXTREME_S_VF, 130 NETXTREME_C_VF_HV, 131 NETXTREME_E_VF_HV, 132 NETXTREME_E_P5_VF, 133 NETXTREME_E_P5_VF_HV, 134 }; 135 136 /* indexed by enum above */ 137 static const struct { 138 char *name; 139 } board_info[] = { 140 [BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" }, 141 [BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" }, 142 [BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" }, 143 [BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" }, 144 [BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" }, 145 [BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" }, 146 [BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" }, 147 [BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" }, 148 [BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" }, 149 [BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" }, 150 [BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" }, 151 [BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" }, 152 [BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" }, 153 [BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" }, 154 [BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" }, 155 [BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" }, 156 [BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" }, 157 [BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" }, 158 [BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" }, 159 [BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" }, 160 [BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" }, 161 [BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" }, 162 [BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" }, 163 [BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" }, 164 [BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" }, 165 [BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" }, 166 [BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" }, 167 [BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 168 [BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" }, 169 [BCM57508] = { "Broadcom BCM57508 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" }, 170 [BCM57504] = { "Broadcom BCM57504 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" }, 171 [BCM57502] = { "Broadcom BCM57502 NetXtreme-E 10Gb/25Gb/50Gb Ethernet" }, 172 [BCM57508_NPAR] = { "Broadcom BCM57508 NetXtreme-E Ethernet Partition" }, 173 [BCM57504_NPAR] = { "Broadcom BCM57504 NetXtreme-E Ethernet Partition" }, 174 [BCM57502_NPAR] = { "Broadcom BCM57502 NetXtreme-E Ethernet Partition" }, 175 [BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" }, 176 [BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 177 [BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 178 [NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" }, 179 [NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" }, 180 [NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" }, 181 [NETXTREME_C_VF_HV] = { "Broadcom NetXtreme-C Virtual Function for Hyper-V" }, 182 [NETXTREME_E_VF_HV] = { "Broadcom NetXtreme-E Virtual Function for Hyper-V" }, 183 [NETXTREME_E_P5_VF] = { "Broadcom BCM5750X NetXtreme-E Ethernet Virtual Function" }, 184 [NETXTREME_E_P5_VF_HV] = { "Broadcom BCM5750X NetXtreme-E Virtual Function for Hyper-V" }, 185 }; 186 187 static const struct pci_device_id bnxt_pci_tbl[] = { 188 { PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR }, 189 { PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR }, 190 { PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 }, 191 { PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR }, 192 { PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 }, 193 { PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 }, 194 { PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 }, 195 { PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR }, 196 { PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 }, 197 { PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 }, 198 { PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 }, 199 { PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 }, 200 { PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 }, 201 { PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 }, 202 { PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR }, 203 { PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 }, 204 { PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 }, 205 { PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 }, 206 { PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 }, 207 { PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 }, 208 { PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR }, 209 { PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 }, 210 { PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP }, 211 { PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP }, 212 { PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR }, 213 { PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR }, 214 { PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP }, 215 { PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR }, 216 { PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR }, 217 { PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR }, 218 { PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR }, 219 { PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR }, 220 { PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR }, 221 { PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 }, 222 { PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 }, 223 { PCI_VDEVICE(BROADCOM, 0x1750), .driver_data = BCM57508 }, 224 { PCI_VDEVICE(BROADCOM, 0x1751), .driver_data = BCM57504 }, 225 { PCI_VDEVICE(BROADCOM, 0x1752), .driver_data = BCM57502 }, 226 { PCI_VDEVICE(BROADCOM, 0x1800), .driver_data = BCM57508_NPAR }, 227 { PCI_VDEVICE(BROADCOM, 0x1801), .driver_data = BCM57504_NPAR }, 228 { PCI_VDEVICE(BROADCOM, 0x1802), .driver_data = BCM57502_NPAR }, 229 { PCI_VDEVICE(BROADCOM, 0x1803), .driver_data = BCM57508_NPAR }, 230 { PCI_VDEVICE(BROADCOM, 0x1804), .driver_data = BCM57504_NPAR }, 231 { PCI_VDEVICE(BROADCOM, 0x1805), .driver_data = BCM57502_NPAR }, 232 { PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 }, 233 { PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 }, 234 #ifdef CONFIG_BNXT_SRIOV 235 { PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF }, 236 { PCI_VDEVICE(BROADCOM, 0x1607), .driver_data = NETXTREME_E_VF_HV }, 237 { PCI_VDEVICE(BROADCOM, 0x1608), .driver_data = NETXTREME_E_VF_HV }, 238 { PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF }, 239 { PCI_VDEVICE(BROADCOM, 0x16bd), .driver_data = NETXTREME_E_VF_HV }, 240 { PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF }, 241 { PCI_VDEVICE(BROADCOM, 0x16c2), .driver_data = NETXTREME_C_VF_HV }, 242 { PCI_VDEVICE(BROADCOM, 0x16c3), .driver_data = NETXTREME_C_VF_HV }, 243 { PCI_VDEVICE(BROADCOM, 0x16c4), .driver_data = NETXTREME_E_VF_HV }, 244 { PCI_VDEVICE(BROADCOM, 0x16c5), .driver_data = NETXTREME_E_VF_HV }, 245 { PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF }, 246 { PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF }, 247 { PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF }, 248 { PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF }, 249 { PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF }, 250 { PCI_VDEVICE(BROADCOM, 0x16e6), .driver_data = NETXTREME_C_VF_HV }, 251 { PCI_VDEVICE(BROADCOM, 0x1806), .driver_data = NETXTREME_E_P5_VF }, 252 { PCI_VDEVICE(BROADCOM, 0x1807), .driver_data = NETXTREME_E_P5_VF }, 253 { PCI_VDEVICE(BROADCOM, 0x1808), .driver_data = NETXTREME_E_P5_VF_HV }, 254 { PCI_VDEVICE(BROADCOM, 0x1809), .driver_data = NETXTREME_E_P5_VF_HV }, 255 { PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF }, 256 #endif 257 { 0 } 258 }; 259 260 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl); 261 262 static const u16 bnxt_vf_req_snif[] = { 263 HWRM_FUNC_CFG, 264 HWRM_FUNC_VF_CFG, 265 HWRM_PORT_PHY_QCFG, 266 HWRM_CFA_L2_FILTER_ALLOC, 267 }; 268 269 static const u16 bnxt_async_events_arr[] = { 270 ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE, 271 ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE, 272 ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD, 273 ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED, 274 ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE, 275 ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE, 276 ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE, 277 ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY, 278 ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY, 279 ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION, 280 ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE, 281 ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG, 282 ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST, 283 ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP, 284 ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT, 285 }; 286 287 static struct workqueue_struct *bnxt_pf_wq; 288 289 static bool bnxt_vf_pciid(enum board_idx idx) 290 { 291 return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF || 292 idx == NETXTREME_S_VF || idx == NETXTREME_C_VF_HV || 293 idx == NETXTREME_E_VF_HV || idx == NETXTREME_E_P5_VF || 294 idx == NETXTREME_E_P5_VF_HV); 295 } 296 297 #define DB_CP_REARM_FLAGS (DB_KEY_CP | DB_IDX_VALID) 298 #define DB_CP_FLAGS (DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS) 299 #define DB_CP_IRQ_DIS_FLAGS (DB_KEY_CP | DB_IRQ_DIS) 300 301 #define BNXT_CP_DB_IRQ_DIS(db) \ 302 writel(DB_CP_IRQ_DIS_FLAGS, db) 303 304 #define BNXT_DB_CQ(db, idx) \ 305 writel(DB_CP_FLAGS | RING_CMP(idx), (db)->doorbell) 306 307 #define BNXT_DB_NQ_P5(db, idx) \ 308 bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ | RING_CMP(idx), \ 309 (db)->doorbell) 310 311 #define BNXT_DB_CQ_ARM(db, idx) \ 312 writel(DB_CP_REARM_FLAGS | RING_CMP(idx), (db)->doorbell) 313 314 #define BNXT_DB_NQ_ARM_P5(db, idx) \ 315 bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ_ARM | RING_CMP(idx),\ 316 (db)->doorbell) 317 318 static void bnxt_db_nq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 319 { 320 if (bp->flags & BNXT_FLAG_CHIP_P5) 321 BNXT_DB_NQ_P5(db, idx); 322 else 323 BNXT_DB_CQ(db, idx); 324 } 325 326 static void bnxt_db_nq_arm(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 327 { 328 if (bp->flags & BNXT_FLAG_CHIP_P5) 329 BNXT_DB_NQ_ARM_P5(db, idx); 330 else 331 BNXT_DB_CQ_ARM(db, idx); 332 } 333 334 static void bnxt_db_cq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 335 { 336 if (bp->flags & BNXT_FLAG_CHIP_P5) 337 bnxt_writeq(bp, db->db_key64 | DBR_TYPE_CQ_ARMALL | 338 RING_CMP(idx), db->doorbell); 339 else 340 BNXT_DB_CQ(db, idx); 341 } 342 343 const u16 bnxt_lhint_arr[] = { 344 TX_BD_FLAGS_LHINT_512_AND_SMALLER, 345 TX_BD_FLAGS_LHINT_512_TO_1023, 346 TX_BD_FLAGS_LHINT_1024_TO_2047, 347 TX_BD_FLAGS_LHINT_1024_TO_2047, 348 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 349 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 350 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 351 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 352 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 353 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 354 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 355 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 356 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 357 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 358 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 359 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 360 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 361 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 362 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 363 }; 364 365 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb) 366 { 367 struct metadata_dst *md_dst = skb_metadata_dst(skb); 368 369 if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX) 370 return 0; 371 372 return md_dst->u.port_info.port_id; 373 } 374 375 static void bnxt_txr_db_kick(struct bnxt *bp, struct bnxt_tx_ring_info *txr, 376 u16 prod) 377 { 378 bnxt_db_write(bp, &txr->tx_db, prod); 379 txr->kick_pending = 0; 380 } 381 382 static bool bnxt_txr_netif_try_stop_queue(struct bnxt *bp, 383 struct bnxt_tx_ring_info *txr, 384 struct netdev_queue *txq) 385 { 386 netif_tx_stop_queue(txq); 387 388 /* netif_tx_stop_queue() must be done before checking 389 * tx index in bnxt_tx_avail() below, because in 390 * bnxt_tx_int(), we update tx index before checking for 391 * netif_tx_queue_stopped(). 392 */ 393 smp_mb(); 394 if (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh) { 395 netif_tx_wake_queue(txq); 396 return false; 397 } 398 399 return true; 400 } 401 402 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev) 403 { 404 struct bnxt *bp = netdev_priv(dev); 405 struct tx_bd *txbd; 406 struct tx_bd_ext *txbd1; 407 struct netdev_queue *txq; 408 int i; 409 dma_addr_t mapping; 410 unsigned int length, pad = 0; 411 u32 len, free_size, vlan_tag_flags, cfa_action, flags; 412 u16 prod, last_frag; 413 struct pci_dev *pdev = bp->pdev; 414 struct bnxt_tx_ring_info *txr; 415 struct bnxt_sw_tx_bd *tx_buf; 416 __le32 lflags = 0; 417 418 i = skb_get_queue_mapping(skb); 419 if (unlikely(i >= bp->tx_nr_rings)) { 420 dev_kfree_skb_any(skb); 421 atomic_long_inc(&dev->tx_dropped); 422 return NETDEV_TX_OK; 423 } 424 425 txq = netdev_get_tx_queue(dev, i); 426 txr = &bp->tx_ring[bp->tx_ring_map[i]]; 427 prod = txr->tx_prod; 428 429 free_size = bnxt_tx_avail(bp, txr); 430 if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) { 431 /* We must have raced with NAPI cleanup */ 432 if (net_ratelimit() && txr->kick_pending) 433 netif_warn(bp, tx_err, dev, 434 "bnxt: ring busy w/ flush pending!\n"); 435 if (bnxt_txr_netif_try_stop_queue(bp, txr, txq)) 436 return NETDEV_TX_BUSY; 437 } 438 439 length = skb->len; 440 len = skb_headlen(skb); 441 last_frag = skb_shinfo(skb)->nr_frags; 442 443 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; 444 445 txbd->tx_bd_opaque = prod; 446 447 tx_buf = &txr->tx_buf_ring[prod]; 448 tx_buf->skb = skb; 449 tx_buf->nr_frags = last_frag; 450 451 vlan_tag_flags = 0; 452 cfa_action = bnxt_xmit_get_cfa_action(skb); 453 if (skb_vlan_tag_present(skb)) { 454 vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN | 455 skb_vlan_tag_get(skb); 456 /* Currently supports 8021Q, 8021AD vlan offloads 457 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated 458 */ 459 if (skb->vlan_proto == htons(ETH_P_8021Q)) 460 vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT; 461 } 462 463 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) { 464 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 465 466 if (ptp && ptp->tx_tstamp_en && !skb_is_gso(skb) && 467 atomic_dec_if_positive(&ptp->tx_avail) >= 0) { 468 if (!bnxt_ptp_parse(skb, &ptp->tx_seqid, 469 &ptp->tx_hdr_off)) { 470 if (vlan_tag_flags) 471 ptp->tx_hdr_off += VLAN_HLEN; 472 lflags |= cpu_to_le32(TX_BD_FLAGS_STAMP); 473 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 474 } else { 475 atomic_inc(&bp->ptp_cfg->tx_avail); 476 } 477 } 478 } 479 480 if (unlikely(skb->no_fcs)) 481 lflags |= cpu_to_le32(TX_BD_FLAGS_NO_CRC); 482 483 if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh && 484 !lflags) { 485 struct tx_push_buffer *tx_push_buf = txr->tx_push; 486 struct tx_push_bd *tx_push = &tx_push_buf->push_bd; 487 struct tx_bd_ext *tx_push1 = &tx_push->txbd2; 488 void __iomem *db = txr->tx_db.doorbell; 489 void *pdata = tx_push_buf->data; 490 u64 *end; 491 int j, push_len; 492 493 /* Set COAL_NOW to be ready quickly for the next push */ 494 tx_push->tx_bd_len_flags_type = 495 cpu_to_le32((length << TX_BD_LEN_SHIFT) | 496 TX_BD_TYPE_LONG_TX_BD | 497 TX_BD_FLAGS_LHINT_512_AND_SMALLER | 498 TX_BD_FLAGS_COAL_NOW | 499 TX_BD_FLAGS_PACKET_END | 500 (2 << TX_BD_FLAGS_BD_CNT_SHIFT)); 501 502 if (skb->ip_summed == CHECKSUM_PARTIAL) 503 tx_push1->tx_bd_hsize_lflags = 504 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM); 505 else 506 tx_push1->tx_bd_hsize_lflags = 0; 507 508 tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags); 509 tx_push1->tx_bd_cfa_action = 510 cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT); 511 512 end = pdata + length; 513 end = PTR_ALIGN(end, 8) - 1; 514 *end = 0; 515 516 skb_copy_from_linear_data(skb, pdata, len); 517 pdata += len; 518 for (j = 0; j < last_frag; j++) { 519 skb_frag_t *frag = &skb_shinfo(skb)->frags[j]; 520 void *fptr; 521 522 fptr = skb_frag_address_safe(frag); 523 if (!fptr) 524 goto normal_tx; 525 526 memcpy(pdata, fptr, skb_frag_size(frag)); 527 pdata += skb_frag_size(frag); 528 } 529 530 txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type; 531 txbd->tx_bd_haddr = txr->data_mapping; 532 prod = NEXT_TX(prod); 533 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; 534 memcpy(txbd, tx_push1, sizeof(*txbd)); 535 prod = NEXT_TX(prod); 536 tx_push->doorbell = 537 cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod); 538 txr->tx_prod = prod; 539 540 tx_buf->is_push = 1; 541 netdev_tx_sent_queue(txq, skb->len); 542 wmb(); /* Sync is_push and byte queue before pushing data */ 543 544 push_len = (length + sizeof(*tx_push) + 7) / 8; 545 if (push_len > 16) { 546 __iowrite64_copy(db, tx_push_buf, 16); 547 __iowrite32_copy(db + 4, tx_push_buf + 1, 548 (push_len - 16) << 1); 549 } else { 550 __iowrite64_copy(db, tx_push_buf, push_len); 551 } 552 553 goto tx_done; 554 } 555 556 normal_tx: 557 if (length < BNXT_MIN_PKT_SIZE) { 558 pad = BNXT_MIN_PKT_SIZE - length; 559 if (skb_pad(skb, pad)) 560 /* SKB already freed. */ 561 goto tx_kick_pending; 562 length = BNXT_MIN_PKT_SIZE; 563 } 564 565 mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE); 566 567 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) 568 goto tx_free; 569 570 dma_unmap_addr_set(tx_buf, mapping, mapping); 571 flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD | 572 ((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT); 573 574 txbd->tx_bd_haddr = cpu_to_le64(mapping); 575 576 prod = NEXT_TX(prod); 577 txbd1 = (struct tx_bd_ext *) 578 &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; 579 580 txbd1->tx_bd_hsize_lflags = lflags; 581 if (skb_is_gso(skb)) { 582 u32 hdr_len; 583 584 if (skb->encapsulation) 585 hdr_len = skb_inner_network_offset(skb) + 586 skb_inner_network_header_len(skb) + 587 inner_tcp_hdrlen(skb); 588 else 589 hdr_len = skb_transport_offset(skb) + 590 tcp_hdrlen(skb); 591 592 txbd1->tx_bd_hsize_lflags |= cpu_to_le32(TX_BD_FLAGS_LSO | 593 TX_BD_FLAGS_T_IPID | 594 (hdr_len << (TX_BD_HSIZE_SHIFT - 1))); 595 length = skb_shinfo(skb)->gso_size; 596 txbd1->tx_bd_mss = cpu_to_le32(length); 597 length += hdr_len; 598 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 599 txbd1->tx_bd_hsize_lflags |= 600 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM); 601 txbd1->tx_bd_mss = 0; 602 } 603 604 length >>= 9; 605 if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) { 606 dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n", 607 skb->len); 608 i = 0; 609 goto tx_dma_error; 610 } 611 flags |= bnxt_lhint_arr[length]; 612 txbd->tx_bd_len_flags_type = cpu_to_le32(flags); 613 614 txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags); 615 txbd1->tx_bd_cfa_action = 616 cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT); 617 for (i = 0; i < last_frag; i++) { 618 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 619 620 prod = NEXT_TX(prod); 621 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; 622 623 len = skb_frag_size(frag); 624 mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len, 625 DMA_TO_DEVICE); 626 627 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) 628 goto tx_dma_error; 629 630 tx_buf = &txr->tx_buf_ring[prod]; 631 dma_unmap_addr_set(tx_buf, mapping, mapping); 632 633 txbd->tx_bd_haddr = cpu_to_le64(mapping); 634 635 flags = len << TX_BD_LEN_SHIFT; 636 txbd->tx_bd_len_flags_type = cpu_to_le32(flags); 637 } 638 639 flags &= ~TX_BD_LEN; 640 txbd->tx_bd_len_flags_type = 641 cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags | 642 TX_BD_FLAGS_PACKET_END); 643 644 netdev_tx_sent_queue(txq, skb->len); 645 646 skb_tx_timestamp(skb); 647 648 /* Sync BD data before updating doorbell */ 649 wmb(); 650 651 prod = NEXT_TX(prod); 652 txr->tx_prod = prod; 653 654 if (!netdev_xmit_more() || netif_xmit_stopped(txq)) 655 bnxt_txr_db_kick(bp, txr, prod); 656 else 657 txr->kick_pending = 1; 658 659 tx_done: 660 661 if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) { 662 if (netdev_xmit_more() && !tx_buf->is_push) 663 bnxt_txr_db_kick(bp, txr, prod); 664 665 bnxt_txr_netif_try_stop_queue(bp, txr, txq); 666 } 667 return NETDEV_TX_OK; 668 669 tx_dma_error: 670 if (BNXT_TX_PTP_IS_SET(lflags)) 671 atomic_inc(&bp->ptp_cfg->tx_avail); 672 673 last_frag = i; 674 675 /* start back at beginning and unmap skb */ 676 prod = txr->tx_prod; 677 tx_buf = &txr->tx_buf_ring[prod]; 678 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 679 skb_headlen(skb), DMA_TO_DEVICE); 680 prod = NEXT_TX(prod); 681 682 /* unmap remaining mapped pages */ 683 for (i = 0; i < last_frag; i++) { 684 prod = NEXT_TX(prod); 685 tx_buf = &txr->tx_buf_ring[prod]; 686 dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 687 skb_frag_size(&skb_shinfo(skb)->frags[i]), 688 DMA_TO_DEVICE); 689 } 690 691 tx_free: 692 dev_kfree_skb_any(skb); 693 tx_kick_pending: 694 if (txr->kick_pending) 695 bnxt_txr_db_kick(bp, txr, txr->tx_prod); 696 txr->tx_buf_ring[txr->tx_prod].skb = NULL; 697 atomic_long_inc(&dev->tx_dropped); 698 return NETDEV_TX_OK; 699 } 700 701 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts) 702 { 703 struct bnxt_tx_ring_info *txr = bnapi->tx_ring; 704 struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index); 705 u16 cons = txr->tx_cons; 706 struct pci_dev *pdev = bp->pdev; 707 int i; 708 unsigned int tx_bytes = 0; 709 710 for (i = 0; i < nr_pkts; i++) { 711 struct bnxt_sw_tx_bd *tx_buf; 712 bool compl_deferred = false; 713 struct sk_buff *skb; 714 int j, last; 715 716 tx_buf = &txr->tx_buf_ring[cons]; 717 cons = NEXT_TX(cons); 718 skb = tx_buf->skb; 719 tx_buf->skb = NULL; 720 721 if (tx_buf->is_push) { 722 tx_buf->is_push = 0; 723 goto next_tx_int; 724 } 725 726 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 727 skb_headlen(skb), DMA_TO_DEVICE); 728 last = tx_buf->nr_frags; 729 730 for (j = 0; j < last; j++) { 731 cons = NEXT_TX(cons); 732 tx_buf = &txr->tx_buf_ring[cons]; 733 dma_unmap_page( 734 &pdev->dev, 735 dma_unmap_addr(tx_buf, mapping), 736 skb_frag_size(&skb_shinfo(skb)->frags[j]), 737 DMA_TO_DEVICE); 738 } 739 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) { 740 if (bp->flags & BNXT_FLAG_CHIP_P5) { 741 if (!bnxt_get_tx_ts_p5(bp, skb)) 742 compl_deferred = true; 743 else 744 atomic_inc(&bp->ptp_cfg->tx_avail); 745 } 746 } 747 748 next_tx_int: 749 cons = NEXT_TX(cons); 750 751 tx_bytes += skb->len; 752 if (!compl_deferred) 753 dev_kfree_skb_any(skb); 754 } 755 756 netdev_tx_completed_queue(txq, nr_pkts, tx_bytes); 757 txr->tx_cons = cons; 758 759 /* Need to make the tx_cons update visible to bnxt_start_xmit() 760 * before checking for netif_tx_queue_stopped(). Without the 761 * memory barrier, there is a small possibility that bnxt_start_xmit() 762 * will miss it and cause the queue to be stopped forever. 763 */ 764 smp_mb(); 765 766 if (unlikely(netif_tx_queue_stopped(txq)) && 767 bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh && 768 READ_ONCE(txr->dev_state) != BNXT_DEV_STATE_CLOSING) 769 netif_tx_wake_queue(txq); 770 } 771 772 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping, 773 struct bnxt_rx_ring_info *rxr, 774 gfp_t gfp) 775 { 776 struct device *dev = &bp->pdev->dev; 777 struct page *page; 778 779 page = page_pool_dev_alloc_pages(rxr->page_pool); 780 if (!page) 781 return NULL; 782 783 *mapping = dma_map_page_attrs(dev, page, 0, PAGE_SIZE, bp->rx_dir, 784 DMA_ATTR_WEAK_ORDERING); 785 if (dma_mapping_error(dev, *mapping)) { 786 page_pool_recycle_direct(rxr->page_pool, page); 787 return NULL; 788 } 789 *mapping += bp->rx_dma_offset; 790 return page; 791 } 792 793 static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping, 794 gfp_t gfp) 795 { 796 u8 *data; 797 struct pci_dev *pdev = bp->pdev; 798 799 data = kmalloc(bp->rx_buf_size, gfp); 800 if (!data) 801 return NULL; 802 803 *mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset, 804 bp->rx_buf_use_size, bp->rx_dir, 805 DMA_ATTR_WEAK_ORDERING); 806 807 if (dma_mapping_error(&pdev->dev, *mapping)) { 808 kfree(data); 809 data = NULL; 810 } 811 return data; 812 } 813 814 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 815 u16 prod, gfp_t gfp) 816 { 817 struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 818 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod]; 819 dma_addr_t mapping; 820 821 if (BNXT_RX_PAGE_MODE(bp)) { 822 struct page *page = 823 __bnxt_alloc_rx_page(bp, &mapping, rxr, gfp); 824 825 if (!page) 826 return -ENOMEM; 827 828 rx_buf->data = page; 829 rx_buf->data_ptr = page_address(page) + bp->rx_offset; 830 } else { 831 u8 *data = __bnxt_alloc_rx_data(bp, &mapping, gfp); 832 833 if (!data) 834 return -ENOMEM; 835 836 rx_buf->data = data; 837 rx_buf->data_ptr = data + bp->rx_offset; 838 } 839 rx_buf->mapping = mapping; 840 841 rxbd->rx_bd_haddr = cpu_to_le64(mapping); 842 return 0; 843 } 844 845 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data) 846 { 847 u16 prod = rxr->rx_prod; 848 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf; 849 struct rx_bd *cons_bd, *prod_bd; 850 851 prod_rx_buf = &rxr->rx_buf_ring[prod]; 852 cons_rx_buf = &rxr->rx_buf_ring[cons]; 853 854 prod_rx_buf->data = data; 855 prod_rx_buf->data_ptr = cons_rx_buf->data_ptr; 856 857 prod_rx_buf->mapping = cons_rx_buf->mapping; 858 859 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 860 cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)]; 861 862 prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr; 863 } 864 865 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx) 866 { 867 u16 next, max = rxr->rx_agg_bmap_size; 868 869 next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx); 870 if (next >= max) 871 next = find_first_zero_bit(rxr->rx_agg_bmap, max); 872 return next; 873 } 874 875 static inline int bnxt_alloc_rx_page(struct bnxt *bp, 876 struct bnxt_rx_ring_info *rxr, 877 u16 prod, gfp_t gfp) 878 { 879 struct rx_bd *rxbd = 880 &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 881 struct bnxt_sw_rx_agg_bd *rx_agg_buf; 882 struct pci_dev *pdev = bp->pdev; 883 struct page *page; 884 dma_addr_t mapping; 885 u16 sw_prod = rxr->rx_sw_agg_prod; 886 unsigned int offset = 0; 887 888 if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) { 889 page = rxr->rx_page; 890 if (!page) { 891 page = alloc_page(gfp); 892 if (!page) 893 return -ENOMEM; 894 rxr->rx_page = page; 895 rxr->rx_page_offset = 0; 896 } 897 offset = rxr->rx_page_offset; 898 rxr->rx_page_offset += BNXT_RX_PAGE_SIZE; 899 if (rxr->rx_page_offset == PAGE_SIZE) 900 rxr->rx_page = NULL; 901 else 902 get_page(page); 903 } else { 904 page = alloc_page(gfp); 905 if (!page) 906 return -ENOMEM; 907 } 908 909 mapping = dma_map_page_attrs(&pdev->dev, page, offset, 910 BNXT_RX_PAGE_SIZE, DMA_FROM_DEVICE, 911 DMA_ATTR_WEAK_ORDERING); 912 if (dma_mapping_error(&pdev->dev, mapping)) { 913 __free_page(page); 914 return -EIO; 915 } 916 917 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap))) 918 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod); 919 920 __set_bit(sw_prod, rxr->rx_agg_bmap); 921 rx_agg_buf = &rxr->rx_agg_ring[sw_prod]; 922 rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod); 923 924 rx_agg_buf->page = page; 925 rx_agg_buf->offset = offset; 926 rx_agg_buf->mapping = mapping; 927 rxbd->rx_bd_haddr = cpu_to_le64(mapping); 928 rxbd->rx_bd_opaque = sw_prod; 929 return 0; 930 } 931 932 static struct rx_agg_cmp *bnxt_get_agg(struct bnxt *bp, 933 struct bnxt_cp_ring_info *cpr, 934 u16 cp_cons, u16 curr) 935 { 936 struct rx_agg_cmp *agg; 937 938 cp_cons = RING_CMP(ADV_RAW_CMP(cp_cons, curr)); 939 agg = (struct rx_agg_cmp *) 940 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 941 return agg; 942 } 943 944 static struct rx_agg_cmp *bnxt_get_tpa_agg_p5(struct bnxt *bp, 945 struct bnxt_rx_ring_info *rxr, 946 u16 agg_id, u16 curr) 947 { 948 struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[agg_id]; 949 950 return &tpa_info->agg_arr[curr]; 951 } 952 953 static void bnxt_reuse_rx_agg_bufs(struct bnxt_cp_ring_info *cpr, u16 idx, 954 u16 start, u32 agg_bufs, bool tpa) 955 { 956 struct bnxt_napi *bnapi = cpr->bnapi; 957 struct bnxt *bp = bnapi->bp; 958 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 959 u16 prod = rxr->rx_agg_prod; 960 u16 sw_prod = rxr->rx_sw_agg_prod; 961 bool p5_tpa = false; 962 u32 i; 963 964 if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa) 965 p5_tpa = true; 966 967 for (i = 0; i < agg_bufs; i++) { 968 u16 cons; 969 struct rx_agg_cmp *agg; 970 struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf; 971 struct rx_bd *prod_bd; 972 struct page *page; 973 974 if (p5_tpa) 975 agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, start + i); 976 else 977 agg = bnxt_get_agg(bp, cpr, idx, start + i); 978 cons = agg->rx_agg_cmp_opaque; 979 __clear_bit(cons, rxr->rx_agg_bmap); 980 981 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap))) 982 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod); 983 984 __set_bit(sw_prod, rxr->rx_agg_bmap); 985 prod_rx_buf = &rxr->rx_agg_ring[sw_prod]; 986 cons_rx_buf = &rxr->rx_agg_ring[cons]; 987 988 /* It is possible for sw_prod to be equal to cons, so 989 * set cons_rx_buf->page to NULL first. 990 */ 991 page = cons_rx_buf->page; 992 cons_rx_buf->page = NULL; 993 prod_rx_buf->page = page; 994 prod_rx_buf->offset = cons_rx_buf->offset; 995 996 prod_rx_buf->mapping = cons_rx_buf->mapping; 997 998 prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 999 1000 prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping); 1001 prod_bd->rx_bd_opaque = sw_prod; 1002 1003 prod = NEXT_RX_AGG(prod); 1004 sw_prod = NEXT_RX_AGG(sw_prod); 1005 } 1006 rxr->rx_agg_prod = prod; 1007 rxr->rx_sw_agg_prod = sw_prod; 1008 } 1009 1010 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp, 1011 struct bnxt_rx_ring_info *rxr, 1012 u16 cons, void *data, u8 *data_ptr, 1013 dma_addr_t dma_addr, 1014 unsigned int offset_and_len) 1015 { 1016 unsigned int payload = offset_and_len >> 16; 1017 unsigned int len = offset_and_len & 0xffff; 1018 skb_frag_t *frag; 1019 struct page *page = data; 1020 u16 prod = rxr->rx_prod; 1021 struct sk_buff *skb; 1022 int off, err; 1023 1024 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 1025 if (unlikely(err)) { 1026 bnxt_reuse_rx_data(rxr, cons, data); 1027 return NULL; 1028 } 1029 dma_addr -= bp->rx_dma_offset; 1030 dma_unmap_page_attrs(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir, 1031 DMA_ATTR_WEAK_ORDERING); 1032 page_pool_release_page(rxr->page_pool, page); 1033 1034 if (unlikely(!payload)) 1035 payload = eth_get_headlen(bp->dev, data_ptr, len); 1036 1037 skb = napi_alloc_skb(&rxr->bnapi->napi, payload); 1038 if (!skb) { 1039 __free_page(page); 1040 return NULL; 1041 } 1042 1043 off = (void *)data_ptr - page_address(page); 1044 skb_add_rx_frag(skb, 0, page, off, len, PAGE_SIZE); 1045 memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN, 1046 payload + NET_IP_ALIGN); 1047 1048 frag = &skb_shinfo(skb)->frags[0]; 1049 skb_frag_size_sub(frag, payload); 1050 skb_frag_off_add(frag, payload); 1051 skb->data_len -= payload; 1052 skb->tail += payload; 1053 1054 return skb; 1055 } 1056 1057 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp, 1058 struct bnxt_rx_ring_info *rxr, u16 cons, 1059 void *data, u8 *data_ptr, 1060 dma_addr_t dma_addr, 1061 unsigned int offset_and_len) 1062 { 1063 u16 prod = rxr->rx_prod; 1064 struct sk_buff *skb; 1065 int err; 1066 1067 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 1068 if (unlikely(err)) { 1069 bnxt_reuse_rx_data(rxr, cons, data); 1070 return NULL; 1071 } 1072 1073 skb = build_skb(data, 0); 1074 dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size, 1075 bp->rx_dir, DMA_ATTR_WEAK_ORDERING); 1076 if (!skb) { 1077 kfree(data); 1078 return NULL; 1079 } 1080 1081 skb_reserve(skb, bp->rx_offset); 1082 skb_put(skb, offset_and_len & 0xffff); 1083 return skb; 1084 } 1085 1086 static struct sk_buff *bnxt_rx_pages(struct bnxt *bp, 1087 struct bnxt_cp_ring_info *cpr, 1088 struct sk_buff *skb, u16 idx, 1089 u32 agg_bufs, bool tpa) 1090 { 1091 struct bnxt_napi *bnapi = cpr->bnapi; 1092 struct pci_dev *pdev = bp->pdev; 1093 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1094 u16 prod = rxr->rx_agg_prod; 1095 bool p5_tpa = false; 1096 u32 i; 1097 1098 if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa) 1099 p5_tpa = true; 1100 1101 for (i = 0; i < agg_bufs; i++) { 1102 u16 cons, frag_len; 1103 struct rx_agg_cmp *agg; 1104 struct bnxt_sw_rx_agg_bd *cons_rx_buf; 1105 struct page *page; 1106 dma_addr_t mapping; 1107 1108 if (p5_tpa) 1109 agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, i); 1110 else 1111 agg = bnxt_get_agg(bp, cpr, idx, i); 1112 cons = agg->rx_agg_cmp_opaque; 1113 frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) & 1114 RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT; 1115 1116 cons_rx_buf = &rxr->rx_agg_ring[cons]; 1117 skb_fill_page_desc(skb, i, cons_rx_buf->page, 1118 cons_rx_buf->offset, frag_len); 1119 __clear_bit(cons, rxr->rx_agg_bmap); 1120 1121 /* It is possible for bnxt_alloc_rx_page() to allocate 1122 * a sw_prod index that equals the cons index, so we 1123 * need to clear the cons entry now. 1124 */ 1125 mapping = cons_rx_buf->mapping; 1126 page = cons_rx_buf->page; 1127 cons_rx_buf->page = NULL; 1128 1129 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) { 1130 struct skb_shared_info *shinfo; 1131 unsigned int nr_frags; 1132 1133 shinfo = skb_shinfo(skb); 1134 nr_frags = --shinfo->nr_frags; 1135 __skb_frag_set_page(&shinfo->frags[nr_frags], NULL); 1136 1137 dev_kfree_skb(skb); 1138 1139 cons_rx_buf->page = page; 1140 1141 /* Update prod since possibly some pages have been 1142 * allocated already. 1143 */ 1144 rxr->rx_agg_prod = prod; 1145 bnxt_reuse_rx_agg_bufs(cpr, idx, i, agg_bufs - i, tpa); 1146 return NULL; 1147 } 1148 1149 dma_unmap_page_attrs(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE, 1150 DMA_FROM_DEVICE, 1151 DMA_ATTR_WEAK_ORDERING); 1152 1153 skb->data_len += frag_len; 1154 skb->len += frag_len; 1155 skb->truesize += PAGE_SIZE; 1156 1157 prod = NEXT_RX_AGG(prod); 1158 } 1159 rxr->rx_agg_prod = prod; 1160 return skb; 1161 } 1162 1163 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1164 u8 agg_bufs, u32 *raw_cons) 1165 { 1166 u16 last; 1167 struct rx_agg_cmp *agg; 1168 1169 *raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs); 1170 last = RING_CMP(*raw_cons); 1171 agg = (struct rx_agg_cmp *) 1172 &cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)]; 1173 return RX_AGG_CMP_VALID(agg, *raw_cons); 1174 } 1175 1176 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data, 1177 unsigned int len, 1178 dma_addr_t mapping) 1179 { 1180 struct bnxt *bp = bnapi->bp; 1181 struct pci_dev *pdev = bp->pdev; 1182 struct sk_buff *skb; 1183 1184 skb = napi_alloc_skb(&bnapi->napi, len); 1185 if (!skb) 1186 return NULL; 1187 1188 dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh, 1189 bp->rx_dir); 1190 1191 memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN, 1192 len + NET_IP_ALIGN); 1193 1194 dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh, 1195 bp->rx_dir); 1196 1197 skb_put(skb, len); 1198 return skb; 1199 } 1200 1201 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1202 u32 *raw_cons, void *cmp) 1203 { 1204 struct rx_cmp *rxcmp = cmp; 1205 u32 tmp_raw_cons = *raw_cons; 1206 u8 cmp_type, agg_bufs = 0; 1207 1208 cmp_type = RX_CMP_TYPE(rxcmp); 1209 1210 if (cmp_type == CMP_TYPE_RX_L2_CMP) { 1211 agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) & 1212 RX_CMP_AGG_BUFS) >> 1213 RX_CMP_AGG_BUFS_SHIFT; 1214 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 1215 struct rx_tpa_end_cmp *tpa_end = cmp; 1216 1217 if (bp->flags & BNXT_FLAG_CHIP_P5) 1218 return 0; 1219 1220 agg_bufs = TPA_END_AGG_BUFS(tpa_end); 1221 } 1222 1223 if (agg_bufs) { 1224 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons)) 1225 return -EBUSY; 1226 } 1227 *raw_cons = tmp_raw_cons; 1228 return 0; 1229 } 1230 1231 static void bnxt_queue_fw_reset_work(struct bnxt *bp, unsigned long delay) 1232 { 1233 if (!(test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))) 1234 return; 1235 1236 if (BNXT_PF(bp)) 1237 queue_delayed_work(bnxt_pf_wq, &bp->fw_reset_task, delay); 1238 else 1239 schedule_delayed_work(&bp->fw_reset_task, delay); 1240 } 1241 1242 static void bnxt_queue_sp_work(struct bnxt *bp) 1243 { 1244 if (BNXT_PF(bp)) 1245 queue_work(bnxt_pf_wq, &bp->sp_task); 1246 else 1247 schedule_work(&bp->sp_task); 1248 } 1249 1250 static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 1251 { 1252 if (!rxr->bnapi->in_reset) { 1253 rxr->bnapi->in_reset = true; 1254 if (bp->flags & BNXT_FLAG_CHIP_P5) 1255 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event); 1256 else 1257 set_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event); 1258 bnxt_queue_sp_work(bp); 1259 } 1260 rxr->rx_next_cons = 0xffff; 1261 } 1262 1263 static u16 bnxt_alloc_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id) 1264 { 1265 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1266 u16 idx = agg_id & MAX_TPA_P5_MASK; 1267 1268 if (test_bit(idx, map->agg_idx_bmap)) 1269 idx = find_first_zero_bit(map->agg_idx_bmap, 1270 BNXT_AGG_IDX_BMAP_SIZE); 1271 __set_bit(idx, map->agg_idx_bmap); 1272 map->agg_id_tbl[agg_id] = idx; 1273 return idx; 1274 } 1275 1276 static void bnxt_free_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx) 1277 { 1278 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1279 1280 __clear_bit(idx, map->agg_idx_bmap); 1281 } 1282 1283 static u16 bnxt_lookup_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id) 1284 { 1285 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1286 1287 return map->agg_id_tbl[agg_id]; 1288 } 1289 1290 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 1291 struct rx_tpa_start_cmp *tpa_start, 1292 struct rx_tpa_start_cmp_ext *tpa_start1) 1293 { 1294 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf; 1295 struct bnxt_tpa_info *tpa_info; 1296 u16 cons, prod, agg_id; 1297 struct rx_bd *prod_bd; 1298 dma_addr_t mapping; 1299 1300 if (bp->flags & BNXT_FLAG_CHIP_P5) { 1301 agg_id = TPA_START_AGG_ID_P5(tpa_start); 1302 agg_id = bnxt_alloc_agg_idx(rxr, agg_id); 1303 } else { 1304 agg_id = TPA_START_AGG_ID(tpa_start); 1305 } 1306 cons = tpa_start->rx_tpa_start_cmp_opaque; 1307 prod = rxr->rx_prod; 1308 cons_rx_buf = &rxr->rx_buf_ring[cons]; 1309 prod_rx_buf = &rxr->rx_buf_ring[prod]; 1310 tpa_info = &rxr->rx_tpa[agg_id]; 1311 1312 if (unlikely(cons != rxr->rx_next_cons || 1313 TPA_START_ERROR(tpa_start))) { 1314 netdev_warn(bp->dev, "TPA cons %x, expected cons %x, error code %x\n", 1315 cons, rxr->rx_next_cons, 1316 TPA_START_ERROR_CODE(tpa_start1)); 1317 bnxt_sched_reset(bp, rxr); 1318 return; 1319 } 1320 /* Store cfa_code in tpa_info to use in tpa_end 1321 * completion processing. 1322 */ 1323 tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1); 1324 prod_rx_buf->data = tpa_info->data; 1325 prod_rx_buf->data_ptr = tpa_info->data_ptr; 1326 1327 mapping = tpa_info->mapping; 1328 prod_rx_buf->mapping = mapping; 1329 1330 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 1331 1332 prod_bd->rx_bd_haddr = cpu_to_le64(mapping); 1333 1334 tpa_info->data = cons_rx_buf->data; 1335 tpa_info->data_ptr = cons_rx_buf->data_ptr; 1336 cons_rx_buf->data = NULL; 1337 tpa_info->mapping = cons_rx_buf->mapping; 1338 1339 tpa_info->len = 1340 le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >> 1341 RX_TPA_START_CMP_LEN_SHIFT; 1342 if (likely(TPA_START_HASH_VALID(tpa_start))) { 1343 u32 hash_type = TPA_START_HASH_TYPE(tpa_start); 1344 1345 tpa_info->hash_type = PKT_HASH_TYPE_L4; 1346 tpa_info->gso_type = SKB_GSO_TCPV4; 1347 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */ 1348 if (hash_type == 3 || TPA_START_IS_IPV6(tpa_start1)) 1349 tpa_info->gso_type = SKB_GSO_TCPV6; 1350 tpa_info->rss_hash = 1351 le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash); 1352 } else { 1353 tpa_info->hash_type = PKT_HASH_TYPE_NONE; 1354 tpa_info->gso_type = 0; 1355 netif_warn(bp, rx_err, bp->dev, "TPA packet without valid hash\n"); 1356 } 1357 tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2); 1358 tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata); 1359 tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info); 1360 tpa_info->agg_count = 0; 1361 1362 rxr->rx_prod = NEXT_RX(prod); 1363 cons = NEXT_RX(cons); 1364 rxr->rx_next_cons = NEXT_RX(cons); 1365 cons_rx_buf = &rxr->rx_buf_ring[cons]; 1366 1367 bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data); 1368 rxr->rx_prod = NEXT_RX(rxr->rx_prod); 1369 cons_rx_buf->data = NULL; 1370 } 1371 1372 static void bnxt_abort_tpa(struct bnxt_cp_ring_info *cpr, u16 idx, u32 agg_bufs) 1373 { 1374 if (agg_bufs) 1375 bnxt_reuse_rx_agg_bufs(cpr, idx, 0, agg_bufs, true); 1376 } 1377 1378 #ifdef CONFIG_INET 1379 static void bnxt_gro_tunnel(struct sk_buff *skb, __be16 ip_proto) 1380 { 1381 struct udphdr *uh = NULL; 1382 1383 if (ip_proto == htons(ETH_P_IP)) { 1384 struct iphdr *iph = (struct iphdr *)skb->data; 1385 1386 if (iph->protocol == IPPROTO_UDP) 1387 uh = (struct udphdr *)(iph + 1); 1388 } else { 1389 struct ipv6hdr *iph = (struct ipv6hdr *)skb->data; 1390 1391 if (iph->nexthdr == IPPROTO_UDP) 1392 uh = (struct udphdr *)(iph + 1); 1393 } 1394 if (uh) { 1395 if (uh->check) 1396 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL_CSUM; 1397 else 1398 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL; 1399 } 1400 } 1401 #endif 1402 1403 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info, 1404 int payload_off, int tcp_ts, 1405 struct sk_buff *skb) 1406 { 1407 #ifdef CONFIG_INET 1408 struct tcphdr *th; 1409 int len, nw_off; 1410 u16 outer_ip_off, inner_ip_off, inner_mac_off; 1411 u32 hdr_info = tpa_info->hdr_info; 1412 bool loopback = false; 1413 1414 inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info); 1415 inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info); 1416 outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info); 1417 1418 /* If the packet is an internal loopback packet, the offsets will 1419 * have an extra 4 bytes. 1420 */ 1421 if (inner_mac_off == 4) { 1422 loopback = true; 1423 } else if (inner_mac_off > 4) { 1424 __be16 proto = *((__be16 *)(skb->data + inner_ip_off - 1425 ETH_HLEN - 2)); 1426 1427 /* We only support inner iPv4/ipv6. If we don't see the 1428 * correct protocol ID, it must be a loopback packet where 1429 * the offsets are off by 4. 1430 */ 1431 if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6)) 1432 loopback = true; 1433 } 1434 if (loopback) { 1435 /* internal loopback packet, subtract all offsets by 4 */ 1436 inner_ip_off -= 4; 1437 inner_mac_off -= 4; 1438 outer_ip_off -= 4; 1439 } 1440 1441 nw_off = inner_ip_off - ETH_HLEN; 1442 skb_set_network_header(skb, nw_off); 1443 if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) { 1444 struct ipv6hdr *iph = ipv6_hdr(skb); 1445 1446 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr)); 1447 len = skb->len - skb_transport_offset(skb); 1448 th = tcp_hdr(skb); 1449 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0); 1450 } else { 1451 struct iphdr *iph = ip_hdr(skb); 1452 1453 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr)); 1454 len = skb->len - skb_transport_offset(skb); 1455 th = tcp_hdr(skb); 1456 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0); 1457 } 1458 1459 if (inner_mac_off) { /* tunnel */ 1460 __be16 proto = *((__be16 *)(skb->data + outer_ip_off - 1461 ETH_HLEN - 2)); 1462 1463 bnxt_gro_tunnel(skb, proto); 1464 } 1465 #endif 1466 return skb; 1467 } 1468 1469 static struct sk_buff *bnxt_gro_func_5750x(struct bnxt_tpa_info *tpa_info, 1470 int payload_off, int tcp_ts, 1471 struct sk_buff *skb) 1472 { 1473 #ifdef CONFIG_INET 1474 u16 outer_ip_off, inner_ip_off, inner_mac_off; 1475 u32 hdr_info = tpa_info->hdr_info; 1476 int iphdr_len, nw_off; 1477 1478 inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info); 1479 inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info); 1480 outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info); 1481 1482 nw_off = inner_ip_off - ETH_HLEN; 1483 skb_set_network_header(skb, nw_off); 1484 iphdr_len = (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) ? 1485 sizeof(struct ipv6hdr) : sizeof(struct iphdr); 1486 skb_set_transport_header(skb, nw_off + iphdr_len); 1487 1488 if (inner_mac_off) { /* tunnel */ 1489 __be16 proto = *((__be16 *)(skb->data + outer_ip_off - 1490 ETH_HLEN - 2)); 1491 1492 bnxt_gro_tunnel(skb, proto); 1493 } 1494 #endif 1495 return skb; 1496 } 1497 1498 #define BNXT_IPV4_HDR_SIZE (sizeof(struct iphdr) + sizeof(struct tcphdr)) 1499 #define BNXT_IPV6_HDR_SIZE (sizeof(struct ipv6hdr) + sizeof(struct tcphdr)) 1500 1501 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info, 1502 int payload_off, int tcp_ts, 1503 struct sk_buff *skb) 1504 { 1505 #ifdef CONFIG_INET 1506 struct tcphdr *th; 1507 int len, nw_off, tcp_opt_len = 0; 1508 1509 if (tcp_ts) 1510 tcp_opt_len = 12; 1511 1512 if (tpa_info->gso_type == SKB_GSO_TCPV4) { 1513 struct iphdr *iph; 1514 1515 nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len - 1516 ETH_HLEN; 1517 skb_set_network_header(skb, nw_off); 1518 iph = ip_hdr(skb); 1519 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr)); 1520 len = skb->len - skb_transport_offset(skb); 1521 th = tcp_hdr(skb); 1522 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0); 1523 } else if (tpa_info->gso_type == SKB_GSO_TCPV6) { 1524 struct ipv6hdr *iph; 1525 1526 nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len - 1527 ETH_HLEN; 1528 skb_set_network_header(skb, nw_off); 1529 iph = ipv6_hdr(skb); 1530 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr)); 1531 len = skb->len - skb_transport_offset(skb); 1532 th = tcp_hdr(skb); 1533 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0); 1534 } else { 1535 dev_kfree_skb_any(skb); 1536 return NULL; 1537 } 1538 1539 if (nw_off) /* tunnel */ 1540 bnxt_gro_tunnel(skb, skb->protocol); 1541 #endif 1542 return skb; 1543 } 1544 1545 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp, 1546 struct bnxt_tpa_info *tpa_info, 1547 struct rx_tpa_end_cmp *tpa_end, 1548 struct rx_tpa_end_cmp_ext *tpa_end1, 1549 struct sk_buff *skb) 1550 { 1551 #ifdef CONFIG_INET 1552 int payload_off; 1553 u16 segs; 1554 1555 segs = TPA_END_TPA_SEGS(tpa_end); 1556 if (segs == 1) 1557 return skb; 1558 1559 NAPI_GRO_CB(skb)->count = segs; 1560 skb_shinfo(skb)->gso_size = 1561 le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len); 1562 skb_shinfo(skb)->gso_type = tpa_info->gso_type; 1563 if (bp->flags & BNXT_FLAG_CHIP_P5) 1564 payload_off = TPA_END_PAYLOAD_OFF_P5(tpa_end1); 1565 else 1566 payload_off = TPA_END_PAYLOAD_OFF(tpa_end); 1567 skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb); 1568 if (likely(skb)) 1569 tcp_gro_complete(skb); 1570 #endif 1571 return skb; 1572 } 1573 1574 /* Given the cfa_code of a received packet determine which 1575 * netdev (vf-rep or PF) the packet is destined to. 1576 */ 1577 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code) 1578 { 1579 struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code); 1580 1581 /* if vf-rep dev is NULL, the must belongs to the PF */ 1582 return dev ? dev : bp->dev; 1583 } 1584 1585 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp, 1586 struct bnxt_cp_ring_info *cpr, 1587 u32 *raw_cons, 1588 struct rx_tpa_end_cmp *tpa_end, 1589 struct rx_tpa_end_cmp_ext *tpa_end1, 1590 u8 *event) 1591 { 1592 struct bnxt_napi *bnapi = cpr->bnapi; 1593 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1594 u8 *data_ptr, agg_bufs; 1595 unsigned int len; 1596 struct bnxt_tpa_info *tpa_info; 1597 dma_addr_t mapping; 1598 struct sk_buff *skb; 1599 u16 idx = 0, agg_id; 1600 void *data; 1601 bool gro; 1602 1603 if (unlikely(bnapi->in_reset)) { 1604 int rc = bnxt_discard_rx(bp, cpr, raw_cons, tpa_end); 1605 1606 if (rc < 0) 1607 return ERR_PTR(-EBUSY); 1608 return NULL; 1609 } 1610 1611 if (bp->flags & BNXT_FLAG_CHIP_P5) { 1612 agg_id = TPA_END_AGG_ID_P5(tpa_end); 1613 agg_id = bnxt_lookup_agg_idx(rxr, agg_id); 1614 agg_bufs = TPA_END_AGG_BUFS_P5(tpa_end1); 1615 tpa_info = &rxr->rx_tpa[agg_id]; 1616 if (unlikely(agg_bufs != tpa_info->agg_count)) { 1617 netdev_warn(bp->dev, "TPA end agg_buf %d != expected agg_bufs %d\n", 1618 agg_bufs, tpa_info->agg_count); 1619 agg_bufs = tpa_info->agg_count; 1620 } 1621 tpa_info->agg_count = 0; 1622 *event |= BNXT_AGG_EVENT; 1623 bnxt_free_agg_idx(rxr, agg_id); 1624 idx = agg_id; 1625 gro = !!(bp->flags & BNXT_FLAG_GRO); 1626 } else { 1627 agg_id = TPA_END_AGG_ID(tpa_end); 1628 agg_bufs = TPA_END_AGG_BUFS(tpa_end); 1629 tpa_info = &rxr->rx_tpa[agg_id]; 1630 idx = RING_CMP(*raw_cons); 1631 if (agg_bufs) { 1632 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons)) 1633 return ERR_PTR(-EBUSY); 1634 1635 *event |= BNXT_AGG_EVENT; 1636 idx = NEXT_CMP(idx); 1637 } 1638 gro = !!TPA_END_GRO(tpa_end); 1639 } 1640 data = tpa_info->data; 1641 data_ptr = tpa_info->data_ptr; 1642 prefetch(data_ptr); 1643 len = tpa_info->len; 1644 mapping = tpa_info->mapping; 1645 1646 if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) { 1647 bnxt_abort_tpa(cpr, idx, agg_bufs); 1648 if (agg_bufs > MAX_SKB_FRAGS) 1649 netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n", 1650 agg_bufs, (int)MAX_SKB_FRAGS); 1651 return NULL; 1652 } 1653 1654 if (len <= bp->rx_copy_thresh) { 1655 skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping); 1656 if (!skb) { 1657 bnxt_abort_tpa(cpr, idx, agg_bufs); 1658 cpr->sw_stats.rx.rx_oom_discards += 1; 1659 return NULL; 1660 } 1661 } else { 1662 u8 *new_data; 1663 dma_addr_t new_mapping; 1664 1665 new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC); 1666 if (!new_data) { 1667 bnxt_abort_tpa(cpr, idx, agg_bufs); 1668 cpr->sw_stats.rx.rx_oom_discards += 1; 1669 return NULL; 1670 } 1671 1672 tpa_info->data = new_data; 1673 tpa_info->data_ptr = new_data + bp->rx_offset; 1674 tpa_info->mapping = new_mapping; 1675 1676 skb = build_skb(data, 0); 1677 dma_unmap_single_attrs(&bp->pdev->dev, mapping, 1678 bp->rx_buf_use_size, bp->rx_dir, 1679 DMA_ATTR_WEAK_ORDERING); 1680 1681 if (!skb) { 1682 kfree(data); 1683 bnxt_abort_tpa(cpr, idx, agg_bufs); 1684 cpr->sw_stats.rx.rx_oom_discards += 1; 1685 return NULL; 1686 } 1687 skb_reserve(skb, bp->rx_offset); 1688 skb_put(skb, len); 1689 } 1690 1691 if (agg_bufs) { 1692 skb = bnxt_rx_pages(bp, cpr, skb, idx, agg_bufs, true); 1693 if (!skb) { 1694 /* Page reuse already handled by bnxt_rx_pages(). */ 1695 cpr->sw_stats.rx.rx_oom_discards += 1; 1696 return NULL; 1697 } 1698 } 1699 1700 skb->protocol = 1701 eth_type_trans(skb, bnxt_get_pkt_dev(bp, tpa_info->cfa_code)); 1702 1703 if (tpa_info->hash_type != PKT_HASH_TYPE_NONE) 1704 skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type); 1705 1706 if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) && 1707 (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) { 1708 __be16 vlan_proto = htons(tpa_info->metadata >> 1709 RX_CMP_FLAGS2_METADATA_TPID_SFT); 1710 u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK; 1711 1712 if (eth_type_vlan(vlan_proto)) { 1713 __vlan_hwaccel_put_tag(skb, vlan_proto, vtag); 1714 } else { 1715 dev_kfree_skb(skb); 1716 return NULL; 1717 } 1718 } 1719 1720 skb_checksum_none_assert(skb); 1721 if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) { 1722 skb->ip_summed = CHECKSUM_UNNECESSARY; 1723 skb->csum_level = 1724 (tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3; 1725 } 1726 1727 if (gro) 1728 skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb); 1729 1730 return skb; 1731 } 1732 1733 static void bnxt_tpa_agg(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 1734 struct rx_agg_cmp *rx_agg) 1735 { 1736 u16 agg_id = TPA_AGG_AGG_ID(rx_agg); 1737 struct bnxt_tpa_info *tpa_info; 1738 1739 agg_id = bnxt_lookup_agg_idx(rxr, agg_id); 1740 tpa_info = &rxr->rx_tpa[agg_id]; 1741 BUG_ON(tpa_info->agg_count >= MAX_SKB_FRAGS); 1742 tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg; 1743 } 1744 1745 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi, 1746 struct sk_buff *skb) 1747 { 1748 if (skb->dev != bp->dev) { 1749 /* this packet belongs to a vf-rep */ 1750 bnxt_vf_rep_rx(bp, skb); 1751 return; 1752 } 1753 skb_record_rx_queue(skb, bnapi->index); 1754 napi_gro_receive(&bnapi->napi, skb); 1755 } 1756 1757 /* returns the following: 1758 * 1 - 1 packet successfully received 1759 * 0 - successful TPA_START, packet not completed yet 1760 * -EBUSY - completion ring does not have all the agg buffers yet 1761 * -ENOMEM - packet aborted due to out of memory 1762 * -EIO - packet aborted due to hw error indicated in BD 1763 */ 1764 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1765 u32 *raw_cons, u8 *event) 1766 { 1767 struct bnxt_napi *bnapi = cpr->bnapi; 1768 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1769 struct net_device *dev = bp->dev; 1770 struct rx_cmp *rxcmp; 1771 struct rx_cmp_ext *rxcmp1; 1772 u32 tmp_raw_cons = *raw_cons; 1773 u16 cfa_code, cons, prod, cp_cons = RING_CMP(tmp_raw_cons); 1774 struct bnxt_sw_rx_bd *rx_buf; 1775 unsigned int len; 1776 u8 *data_ptr, agg_bufs, cmp_type; 1777 dma_addr_t dma_addr; 1778 struct sk_buff *skb; 1779 u32 flags, misc; 1780 void *data; 1781 int rc = 0; 1782 1783 rxcmp = (struct rx_cmp *) 1784 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 1785 1786 cmp_type = RX_CMP_TYPE(rxcmp); 1787 1788 if (cmp_type == CMP_TYPE_RX_TPA_AGG_CMP) { 1789 bnxt_tpa_agg(bp, rxr, (struct rx_agg_cmp *)rxcmp); 1790 goto next_rx_no_prod_no_len; 1791 } 1792 1793 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons); 1794 cp_cons = RING_CMP(tmp_raw_cons); 1795 rxcmp1 = (struct rx_cmp_ext *) 1796 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 1797 1798 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 1799 return -EBUSY; 1800 1801 /* The valid test of the entry must be done first before 1802 * reading any further. 1803 */ 1804 dma_rmb(); 1805 prod = rxr->rx_prod; 1806 1807 if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) { 1808 bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp, 1809 (struct rx_tpa_start_cmp_ext *)rxcmp1); 1810 1811 *event |= BNXT_RX_EVENT; 1812 goto next_rx_no_prod_no_len; 1813 1814 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 1815 skb = bnxt_tpa_end(bp, cpr, &tmp_raw_cons, 1816 (struct rx_tpa_end_cmp *)rxcmp, 1817 (struct rx_tpa_end_cmp_ext *)rxcmp1, event); 1818 1819 if (IS_ERR(skb)) 1820 return -EBUSY; 1821 1822 rc = -ENOMEM; 1823 if (likely(skb)) { 1824 bnxt_deliver_skb(bp, bnapi, skb); 1825 rc = 1; 1826 } 1827 *event |= BNXT_RX_EVENT; 1828 goto next_rx_no_prod_no_len; 1829 } 1830 1831 cons = rxcmp->rx_cmp_opaque; 1832 if (unlikely(cons != rxr->rx_next_cons)) { 1833 int rc1 = bnxt_discard_rx(bp, cpr, &tmp_raw_cons, rxcmp); 1834 1835 /* 0xffff is forced error, don't print it */ 1836 if (rxr->rx_next_cons != 0xffff) 1837 netdev_warn(bp->dev, "RX cons %x != expected cons %x\n", 1838 cons, rxr->rx_next_cons); 1839 bnxt_sched_reset(bp, rxr); 1840 if (rc1) 1841 return rc1; 1842 goto next_rx_no_prod_no_len; 1843 } 1844 rx_buf = &rxr->rx_buf_ring[cons]; 1845 data = rx_buf->data; 1846 data_ptr = rx_buf->data_ptr; 1847 prefetch(data_ptr); 1848 1849 misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1); 1850 agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT; 1851 1852 if (agg_bufs) { 1853 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons)) 1854 return -EBUSY; 1855 1856 cp_cons = NEXT_CMP(cp_cons); 1857 *event |= BNXT_AGG_EVENT; 1858 } 1859 *event |= BNXT_RX_EVENT; 1860 1861 rx_buf->data = NULL; 1862 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) { 1863 u32 rx_err = le32_to_cpu(rxcmp1->rx_cmp_cfa_code_errors_v2); 1864 1865 bnxt_reuse_rx_data(rxr, cons, data); 1866 if (agg_bufs) 1867 bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, agg_bufs, 1868 false); 1869 1870 rc = -EIO; 1871 if (rx_err & RX_CMPL_ERRORS_BUFFER_ERROR_MASK) { 1872 bnapi->cp_ring.sw_stats.rx.rx_buf_errors++; 1873 if (!(bp->flags & BNXT_FLAG_CHIP_P5) && 1874 !(bp->fw_cap & BNXT_FW_CAP_RING_MONITOR)) { 1875 netdev_warn_once(bp->dev, "RX buffer error %x\n", 1876 rx_err); 1877 bnxt_sched_reset(bp, rxr); 1878 } 1879 } 1880 goto next_rx_no_len; 1881 } 1882 1883 flags = le32_to_cpu(rxcmp->rx_cmp_len_flags_type); 1884 len = flags >> RX_CMP_LEN_SHIFT; 1885 dma_addr = rx_buf->mapping; 1886 1887 if (bnxt_rx_xdp(bp, rxr, cons, data, &data_ptr, &len, event)) { 1888 rc = 1; 1889 goto next_rx; 1890 } 1891 1892 if (len <= bp->rx_copy_thresh) { 1893 skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr); 1894 bnxt_reuse_rx_data(rxr, cons, data); 1895 if (!skb) { 1896 if (agg_bufs) 1897 bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, 1898 agg_bufs, false); 1899 cpr->sw_stats.rx.rx_oom_discards += 1; 1900 rc = -ENOMEM; 1901 goto next_rx; 1902 } 1903 } else { 1904 u32 payload; 1905 1906 if (rx_buf->data_ptr == data_ptr) 1907 payload = misc & RX_CMP_PAYLOAD_OFFSET; 1908 else 1909 payload = 0; 1910 skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr, 1911 payload | len); 1912 if (!skb) { 1913 cpr->sw_stats.rx.rx_oom_discards += 1; 1914 rc = -ENOMEM; 1915 goto next_rx; 1916 } 1917 } 1918 1919 if (agg_bufs) { 1920 skb = bnxt_rx_pages(bp, cpr, skb, cp_cons, agg_bufs, false); 1921 if (!skb) { 1922 cpr->sw_stats.rx.rx_oom_discards += 1; 1923 rc = -ENOMEM; 1924 goto next_rx; 1925 } 1926 } 1927 1928 if (RX_CMP_HASH_VALID(rxcmp)) { 1929 u32 hash_type = RX_CMP_HASH_TYPE(rxcmp); 1930 enum pkt_hash_types type = PKT_HASH_TYPE_L4; 1931 1932 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */ 1933 if (hash_type != 1 && hash_type != 3) 1934 type = PKT_HASH_TYPE_L3; 1935 skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type); 1936 } 1937 1938 cfa_code = RX_CMP_CFA_CODE(rxcmp1); 1939 skb->protocol = eth_type_trans(skb, bnxt_get_pkt_dev(bp, cfa_code)); 1940 1941 if ((rxcmp1->rx_cmp_flags2 & 1942 cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) && 1943 (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) { 1944 u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data); 1945 u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK; 1946 __be16 vlan_proto = htons(meta_data >> 1947 RX_CMP_FLAGS2_METADATA_TPID_SFT); 1948 1949 if (eth_type_vlan(vlan_proto)) { 1950 __vlan_hwaccel_put_tag(skb, vlan_proto, vtag); 1951 } else { 1952 dev_kfree_skb(skb); 1953 goto next_rx; 1954 } 1955 } 1956 1957 skb_checksum_none_assert(skb); 1958 if (RX_CMP_L4_CS_OK(rxcmp1)) { 1959 if (dev->features & NETIF_F_RXCSUM) { 1960 skb->ip_summed = CHECKSUM_UNNECESSARY; 1961 skb->csum_level = RX_CMP_ENCAP(rxcmp1); 1962 } 1963 } else { 1964 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) { 1965 if (dev->features & NETIF_F_RXCSUM) 1966 bnapi->cp_ring.sw_stats.rx.rx_l4_csum_errors++; 1967 } 1968 } 1969 1970 if (unlikely((flags & RX_CMP_FLAGS_ITYPES_MASK) == 1971 RX_CMP_FLAGS_ITYPE_PTP_W_TS)) { 1972 if (bp->flags & BNXT_FLAG_CHIP_P5) { 1973 u32 cmpl_ts = le32_to_cpu(rxcmp1->rx_cmp_timestamp); 1974 u64 ns, ts; 1975 1976 if (!bnxt_get_rx_ts_p5(bp, &ts, cmpl_ts)) { 1977 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 1978 1979 spin_lock_bh(&ptp->ptp_lock); 1980 ns = timecounter_cyc2time(&ptp->tc, ts); 1981 spin_unlock_bh(&ptp->ptp_lock); 1982 memset(skb_hwtstamps(skb), 0, 1983 sizeof(*skb_hwtstamps(skb))); 1984 skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns); 1985 } 1986 } 1987 } 1988 bnxt_deliver_skb(bp, bnapi, skb); 1989 rc = 1; 1990 1991 next_rx: 1992 cpr->rx_packets += 1; 1993 cpr->rx_bytes += len; 1994 1995 next_rx_no_len: 1996 rxr->rx_prod = NEXT_RX(prod); 1997 rxr->rx_next_cons = NEXT_RX(cons); 1998 1999 next_rx_no_prod_no_len: 2000 *raw_cons = tmp_raw_cons; 2001 2002 return rc; 2003 } 2004 2005 /* In netpoll mode, if we are using a combined completion ring, we need to 2006 * discard the rx packets and recycle the buffers. 2007 */ 2008 static int bnxt_force_rx_discard(struct bnxt *bp, 2009 struct bnxt_cp_ring_info *cpr, 2010 u32 *raw_cons, u8 *event) 2011 { 2012 u32 tmp_raw_cons = *raw_cons; 2013 struct rx_cmp_ext *rxcmp1; 2014 struct rx_cmp *rxcmp; 2015 u16 cp_cons; 2016 u8 cmp_type; 2017 int rc; 2018 2019 cp_cons = RING_CMP(tmp_raw_cons); 2020 rxcmp = (struct rx_cmp *) 2021 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2022 2023 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons); 2024 cp_cons = RING_CMP(tmp_raw_cons); 2025 rxcmp1 = (struct rx_cmp_ext *) 2026 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2027 2028 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 2029 return -EBUSY; 2030 2031 /* The valid test of the entry must be done first before 2032 * reading any further. 2033 */ 2034 dma_rmb(); 2035 cmp_type = RX_CMP_TYPE(rxcmp); 2036 if (cmp_type == CMP_TYPE_RX_L2_CMP) { 2037 rxcmp1->rx_cmp_cfa_code_errors_v2 |= 2038 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR); 2039 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 2040 struct rx_tpa_end_cmp_ext *tpa_end1; 2041 2042 tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1; 2043 tpa_end1->rx_tpa_end_cmp_errors_v2 |= 2044 cpu_to_le32(RX_TPA_END_CMP_ERRORS); 2045 } 2046 rc = bnxt_rx_pkt(bp, cpr, raw_cons, event); 2047 if (rc && rc != -EBUSY) 2048 cpr->sw_stats.rx.rx_netpoll_discards += 1; 2049 return rc; 2050 } 2051 2052 u32 bnxt_fw_health_readl(struct bnxt *bp, int reg_idx) 2053 { 2054 struct bnxt_fw_health *fw_health = bp->fw_health; 2055 u32 reg = fw_health->regs[reg_idx]; 2056 u32 reg_type, reg_off, val = 0; 2057 2058 reg_type = BNXT_FW_HEALTH_REG_TYPE(reg); 2059 reg_off = BNXT_FW_HEALTH_REG_OFF(reg); 2060 switch (reg_type) { 2061 case BNXT_FW_HEALTH_REG_TYPE_CFG: 2062 pci_read_config_dword(bp->pdev, reg_off, &val); 2063 break; 2064 case BNXT_FW_HEALTH_REG_TYPE_GRC: 2065 reg_off = fw_health->mapped_regs[reg_idx]; 2066 fallthrough; 2067 case BNXT_FW_HEALTH_REG_TYPE_BAR0: 2068 val = readl(bp->bar0 + reg_off); 2069 break; 2070 case BNXT_FW_HEALTH_REG_TYPE_BAR1: 2071 val = readl(bp->bar1 + reg_off); 2072 break; 2073 } 2074 if (reg_idx == BNXT_FW_RESET_INPROG_REG) 2075 val &= fw_health->fw_reset_inprog_reg_mask; 2076 return val; 2077 } 2078 2079 static u16 bnxt_agg_ring_id_to_grp_idx(struct bnxt *bp, u16 ring_id) 2080 { 2081 int i; 2082 2083 for (i = 0; i < bp->rx_nr_rings; i++) { 2084 u16 grp_idx = bp->rx_ring[i].bnapi->index; 2085 struct bnxt_ring_grp_info *grp_info; 2086 2087 grp_info = &bp->grp_info[grp_idx]; 2088 if (grp_info->agg_fw_ring_id == ring_id) 2089 return grp_idx; 2090 } 2091 return INVALID_HW_RING_ID; 2092 } 2093 2094 static void bnxt_event_error_report(struct bnxt *bp, u32 data1, u32 data2) 2095 { 2096 switch (BNXT_EVENT_ERROR_REPORT_TYPE(data1)) { 2097 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_INVALID_SIGNAL: 2098 netdev_err(bp->dev, "1PPS: Received invalid signal on pin%lu from the external source. Please fix the signal and reconfigure the pin\n", 2099 BNXT_EVENT_INVALID_SIGNAL_DATA(data2)); 2100 break; 2101 default: 2102 netdev_err(bp->dev, "FW reported unknown error type\n"); 2103 break; 2104 } 2105 } 2106 2107 #define BNXT_GET_EVENT_PORT(data) \ 2108 ((data) & \ 2109 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK) 2110 2111 #define BNXT_EVENT_RING_TYPE(data2) \ 2112 ((data2) & \ 2113 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_MASK) 2114 2115 #define BNXT_EVENT_RING_TYPE_RX(data2) \ 2116 (BNXT_EVENT_RING_TYPE(data2) == \ 2117 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_RX) 2118 2119 static int bnxt_async_event_process(struct bnxt *bp, 2120 struct hwrm_async_event_cmpl *cmpl) 2121 { 2122 u16 event_id = le16_to_cpu(cmpl->event_id); 2123 u32 data1 = le32_to_cpu(cmpl->event_data1); 2124 u32 data2 = le32_to_cpu(cmpl->event_data2); 2125 2126 /* TODO CHIMP_FW: Define event id's for link change, error etc */ 2127 switch (event_id) { 2128 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: { 2129 struct bnxt_link_info *link_info = &bp->link_info; 2130 2131 if (BNXT_VF(bp)) 2132 goto async_event_process_exit; 2133 2134 /* print unsupported speed warning in forced speed mode only */ 2135 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) && 2136 (data1 & 0x20000)) { 2137 u16 fw_speed = link_info->force_link_speed; 2138 u32 speed = bnxt_fw_to_ethtool_speed(fw_speed); 2139 2140 if (speed != SPEED_UNKNOWN) 2141 netdev_warn(bp->dev, "Link speed %d no longer supported\n", 2142 speed); 2143 } 2144 set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event); 2145 } 2146 fallthrough; 2147 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE: 2148 case ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE: 2149 set_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, &bp->sp_event); 2150 fallthrough; 2151 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE: 2152 set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event); 2153 break; 2154 case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD: 2155 set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event); 2156 break; 2157 case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: { 2158 u16 port_id = BNXT_GET_EVENT_PORT(data1); 2159 2160 if (BNXT_VF(bp)) 2161 break; 2162 2163 if (bp->pf.port_id != port_id) 2164 break; 2165 2166 set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event); 2167 break; 2168 } 2169 case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE: 2170 if (BNXT_PF(bp)) 2171 goto async_event_process_exit; 2172 set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event); 2173 break; 2174 case ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY: { 2175 char *fatal_str = "non-fatal"; 2176 2177 if (!bp->fw_health) 2178 goto async_event_process_exit; 2179 2180 bp->fw_reset_timestamp = jiffies; 2181 bp->fw_reset_min_dsecs = cmpl->timestamp_lo; 2182 if (!bp->fw_reset_min_dsecs) 2183 bp->fw_reset_min_dsecs = BNXT_DFLT_FW_RST_MIN_DSECS; 2184 bp->fw_reset_max_dsecs = le16_to_cpu(cmpl->timestamp_hi); 2185 if (!bp->fw_reset_max_dsecs) 2186 bp->fw_reset_max_dsecs = BNXT_DFLT_FW_RST_MAX_DSECS; 2187 if (EVENT_DATA1_RESET_NOTIFY_FATAL(data1)) { 2188 fatal_str = "fatal"; 2189 set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 2190 } 2191 netif_warn(bp, hw, bp->dev, 2192 "Firmware %s reset event, data1: 0x%x, data2: 0x%x, min wait %u ms, max wait %u ms\n", 2193 fatal_str, data1, data2, 2194 bp->fw_reset_min_dsecs * 100, 2195 bp->fw_reset_max_dsecs * 100); 2196 set_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event); 2197 break; 2198 } 2199 case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY: { 2200 struct bnxt_fw_health *fw_health = bp->fw_health; 2201 2202 if (!fw_health) 2203 goto async_event_process_exit; 2204 2205 if (!EVENT_DATA1_RECOVERY_ENABLED(data1)) { 2206 fw_health->enabled = false; 2207 netif_info(bp, drv, bp->dev, 2208 "Error recovery info: error recovery[0]\n"); 2209 break; 2210 } 2211 fw_health->master = EVENT_DATA1_RECOVERY_MASTER_FUNC(data1); 2212 fw_health->tmr_multiplier = 2213 DIV_ROUND_UP(fw_health->polling_dsecs * HZ, 2214 bp->current_interval * 10); 2215 fw_health->tmr_counter = fw_health->tmr_multiplier; 2216 if (!fw_health->enabled) 2217 fw_health->last_fw_heartbeat = 2218 bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 2219 fw_health->last_fw_reset_cnt = 2220 bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 2221 netif_info(bp, drv, bp->dev, 2222 "Error recovery info: error recovery[1], master[%d], reset count[%u], health status: 0x%x\n", 2223 fw_health->master, fw_health->last_fw_reset_cnt, 2224 bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG)); 2225 if (!fw_health->enabled) { 2226 /* Make sure tmr_counter is set and visible to 2227 * bnxt_health_check() before setting enabled to true. 2228 */ 2229 smp_wmb(); 2230 fw_health->enabled = true; 2231 } 2232 goto async_event_process_exit; 2233 } 2234 case ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION: 2235 netif_notice(bp, hw, bp->dev, 2236 "Received firmware debug notification, data1: 0x%x, data2: 0x%x\n", 2237 data1, data2); 2238 goto async_event_process_exit; 2239 case ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG: { 2240 struct bnxt_rx_ring_info *rxr; 2241 u16 grp_idx; 2242 2243 if (bp->flags & BNXT_FLAG_CHIP_P5) 2244 goto async_event_process_exit; 2245 2246 netdev_warn(bp->dev, "Ring monitor event, ring type %lu id 0x%x\n", 2247 BNXT_EVENT_RING_TYPE(data2), data1); 2248 if (!BNXT_EVENT_RING_TYPE_RX(data2)) 2249 goto async_event_process_exit; 2250 2251 grp_idx = bnxt_agg_ring_id_to_grp_idx(bp, data1); 2252 if (grp_idx == INVALID_HW_RING_ID) { 2253 netdev_warn(bp->dev, "Unknown RX agg ring id 0x%x\n", 2254 data1); 2255 goto async_event_process_exit; 2256 } 2257 rxr = bp->bnapi[grp_idx]->rx_ring; 2258 bnxt_sched_reset(bp, rxr); 2259 goto async_event_process_exit; 2260 } 2261 case ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST: { 2262 struct bnxt_fw_health *fw_health = bp->fw_health; 2263 2264 netif_notice(bp, hw, bp->dev, 2265 "Received firmware echo request, data1: 0x%x, data2: 0x%x\n", 2266 data1, data2); 2267 if (fw_health) { 2268 fw_health->echo_req_data1 = data1; 2269 fw_health->echo_req_data2 = data2; 2270 set_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event); 2271 break; 2272 } 2273 goto async_event_process_exit; 2274 } 2275 case ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP: { 2276 bnxt_ptp_pps_event(bp, data1, data2); 2277 goto async_event_process_exit; 2278 } 2279 case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT: { 2280 bnxt_event_error_report(bp, data1, data2); 2281 goto async_event_process_exit; 2282 } 2283 case ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE: { 2284 u16 seq_id = le32_to_cpu(cmpl->event_data2) & 0xffff; 2285 2286 hwrm_update_token(bp, seq_id, BNXT_HWRM_DEFERRED); 2287 goto async_event_process_exit; 2288 } 2289 default: 2290 goto async_event_process_exit; 2291 } 2292 bnxt_queue_sp_work(bp); 2293 async_event_process_exit: 2294 bnxt_ulp_async_events(bp, cmpl); 2295 return 0; 2296 } 2297 2298 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp) 2299 { 2300 u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id; 2301 struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp; 2302 struct hwrm_fwd_req_cmpl *fwd_req_cmpl = 2303 (struct hwrm_fwd_req_cmpl *)txcmp; 2304 2305 switch (cmpl_type) { 2306 case CMPL_BASE_TYPE_HWRM_DONE: 2307 seq_id = le16_to_cpu(h_cmpl->sequence_id); 2308 hwrm_update_token(bp, seq_id, BNXT_HWRM_COMPLETE); 2309 break; 2310 2311 case CMPL_BASE_TYPE_HWRM_FWD_REQ: 2312 vf_id = le16_to_cpu(fwd_req_cmpl->source_id); 2313 2314 if ((vf_id < bp->pf.first_vf_id) || 2315 (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) { 2316 netdev_err(bp->dev, "Msg contains invalid VF id %x\n", 2317 vf_id); 2318 return -EINVAL; 2319 } 2320 2321 set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap); 2322 set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event); 2323 bnxt_queue_sp_work(bp); 2324 break; 2325 2326 case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT: 2327 bnxt_async_event_process(bp, 2328 (struct hwrm_async_event_cmpl *)txcmp); 2329 break; 2330 2331 default: 2332 break; 2333 } 2334 2335 return 0; 2336 } 2337 2338 static irqreturn_t bnxt_msix(int irq, void *dev_instance) 2339 { 2340 struct bnxt_napi *bnapi = dev_instance; 2341 struct bnxt *bp = bnapi->bp; 2342 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2343 u32 cons = RING_CMP(cpr->cp_raw_cons); 2344 2345 cpr->event_ctr++; 2346 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]); 2347 napi_schedule(&bnapi->napi); 2348 return IRQ_HANDLED; 2349 } 2350 2351 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr) 2352 { 2353 u32 raw_cons = cpr->cp_raw_cons; 2354 u16 cons = RING_CMP(raw_cons); 2355 struct tx_cmp *txcmp; 2356 2357 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 2358 2359 return TX_CMP_VALID(txcmp, raw_cons); 2360 } 2361 2362 static irqreturn_t bnxt_inta(int irq, void *dev_instance) 2363 { 2364 struct bnxt_napi *bnapi = dev_instance; 2365 struct bnxt *bp = bnapi->bp; 2366 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2367 u32 cons = RING_CMP(cpr->cp_raw_cons); 2368 u32 int_status; 2369 2370 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]); 2371 2372 if (!bnxt_has_work(bp, cpr)) { 2373 int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS); 2374 /* return if erroneous interrupt */ 2375 if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id))) 2376 return IRQ_NONE; 2377 } 2378 2379 /* disable ring IRQ */ 2380 BNXT_CP_DB_IRQ_DIS(cpr->cp_db.doorbell); 2381 2382 /* Return here if interrupt is shared and is disabled. */ 2383 if (unlikely(atomic_read(&bp->intr_sem) != 0)) 2384 return IRQ_HANDLED; 2385 2386 napi_schedule(&bnapi->napi); 2387 return IRQ_HANDLED; 2388 } 2389 2390 static int __bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 2391 int budget) 2392 { 2393 struct bnxt_napi *bnapi = cpr->bnapi; 2394 u32 raw_cons = cpr->cp_raw_cons; 2395 u32 cons; 2396 int tx_pkts = 0; 2397 int rx_pkts = 0; 2398 u8 event = 0; 2399 struct tx_cmp *txcmp; 2400 2401 cpr->has_more_work = 0; 2402 cpr->had_work_done = 1; 2403 while (1) { 2404 int rc; 2405 2406 cons = RING_CMP(raw_cons); 2407 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 2408 2409 if (!TX_CMP_VALID(txcmp, raw_cons)) 2410 break; 2411 2412 /* The valid test of the entry must be done first before 2413 * reading any further. 2414 */ 2415 dma_rmb(); 2416 if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) { 2417 tx_pkts++; 2418 /* return full budget so NAPI will complete. */ 2419 if (unlikely(tx_pkts > bp->tx_wake_thresh)) { 2420 rx_pkts = budget; 2421 raw_cons = NEXT_RAW_CMP(raw_cons); 2422 if (budget) 2423 cpr->has_more_work = 1; 2424 break; 2425 } 2426 } else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) { 2427 if (likely(budget)) 2428 rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event); 2429 else 2430 rc = bnxt_force_rx_discard(bp, cpr, &raw_cons, 2431 &event); 2432 if (likely(rc >= 0)) 2433 rx_pkts += rc; 2434 /* Increment rx_pkts when rc is -ENOMEM to count towards 2435 * the NAPI budget. Otherwise, we may potentially loop 2436 * here forever if we consistently cannot allocate 2437 * buffers. 2438 */ 2439 else if (rc == -ENOMEM && budget) 2440 rx_pkts++; 2441 else if (rc == -EBUSY) /* partial completion */ 2442 break; 2443 } else if (unlikely((TX_CMP_TYPE(txcmp) == 2444 CMPL_BASE_TYPE_HWRM_DONE) || 2445 (TX_CMP_TYPE(txcmp) == 2446 CMPL_BASE_TYPE_HWRM_FWD_REQ) || 2447 (TX_CMP_TYPE(txcmp) == 2448 CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) { 2449 bnxt_hwrm_handler(bp, txcmp); 2450 } 2451 raw_cons = NEXT_RAW_CMP(raw_cons); 2452 2453 if (rx_pkts && rx_pkts == budget) { 2454 cpr->has_more_work = 1; 2455 break; 2456 } 2457 } 2458 2459 if (event & BNXT_REDIRECT_EVENT) 2460 xdp_do_flush_map(); 2461 2462 if (event & BNXT_TX_EVENT) { 2463 struct bnxt_tx_ring_info *txr = bnapi->tx_ring; 2464 u16 prod = txr->tx_prod; 2465 2466 /* Sync BD data before updating doorbell */ 2467 wmb(); 2468 2469 bnxt_db_write_relaxed(bp, &txr->tx_db, prod); 2470 } 2471 2472 cpr->cp_raw_cons = raw_cons; 2473 bnapi->tx_pkts += tx_pkts; 2474 bnapi->events |= event; 2475 return rx_pkts; 2476 } 2477 2478 static void __bnxt_poll_work_done(struct bnxt *bp, struct bnxt_napi *bnapi) 2479 { 2480 if (bnapi->tx_pkts) { 2481 bnapi->tx_int(bp, bnapi, bnapi->tx_pkts); 2482 bnapi->tx_pkts = 0; 2483 } 2484 2485 if ((bnapi->events & BNXT_RX_EVENT) && !(bnapi->in_reset)) { 2486 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 2487 2488 if (bnapi->events & BNXT_AGG_EVENT) 2489 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 2490 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 2491 } 2492 bnapi->events = 0; 2493 } 2494 2495 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 2496 int budget) 2497 { 2498 struct bnxt_napi *bnapi = cpr->bnapi; 2499 int rx_pkts; 2500 2501 rx_pkts = __bnxt_poll_work(bp, cpr, budget); 2502 2503 /* ACK completion ring before freeing tx ring and producing new 2504 * buffers in rx/agg rings to prevent overflowing the completion 2505 * ring. 2506 */ 2507 bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons); 2508 2509 __bnxt_poll_work_done(bp, bnapi); 2510 return rx_pkts; 2511 } 2512 2513 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget) 2514 { 2515 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 2516 struct bnxt *bp = bnapi->bp; 2517 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2518 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 2519 struct tx_cmp *txcmp; 2520 struct rx_cmp_ext *rxcmp1; 2521 u32 cp_cons, tmp_raw_cons; 2522 u32 raw_cons = cpr->cp_raw_cons; 2523 u32 rx_pkts = 0; 2524 u8 event = 0; 2525 2526 while (1) { 2527 int rc; 2528 2529 cp_cons = RING_CMP(raw_cons); 2530 txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2531 2532 if (!TX_CMP_VALID(txcmp, raw_cons)) 2533 break; 2534 2535 /* The valid test of the entry must be done first before 2536 * reading any further. 2537 */ 2538 dma_rmb(); 2539 if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) { 2540 tmp_raw_cons = NEXT_RAW_CMP(raw_cons); 2541 cp_cons = RING_CMP(tmp_raw_cons); 2542 rxcmp1 = (struct rx_cmp_ext *) 2543 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2544 2545 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 2546 break; 2547 2548 /* force an error to recycle the buffer */ 2549 rxcmp1->rx_cmp_cfa_code_errors_v2 |= 2550 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR); 2551 2552 rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event); 2553 if (likely(rc == -EIO) && budget) 2554 rx_pkts++; 2555 else if (rc == -EBUSY) /* partial completion */ 2556 break; 2557 } else if (unlikely(TX_CMP_TYPE(txcmp) == 2558 CMPL_BASE_TYPE_HWRM_DONE)) { 2559 bnxt_hwrm_handler(bp, txcmp); 2560 } else { 2561 netdev_err(bp->dev, 2562 "Invalid completion received on special ring\n"); 2563 } 2564 raw_cons = NEXT_RAW_CMP(raw_cons); 2565 2566 if (rx_pkts == budget) 2567 break; 2568 } 2569 2570 cpr->cp_raw_cons = raw_cons; 2571 BNXT_DB_CQ(&cpr->cp_db, cpr->cp_raw_cons); 2572 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 2573 2574 if (event & BNXT_AGG_EVENT) 2575 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 2576 2577 if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) { 2578 napi_complete_done(napi, rx_pkts); 2579 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 2580 } 2581 return rx_pkts; 2582 } 2583 2584 static int bnxt_poll(struct napi_struct *napi, int budget) 2585 { 2586 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 2587 struct bnxt *bp = bnapi->bp; 2588 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2589 int work_done = 0; 2590 2591 if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) { 2592 napi_complete(napi); 2593 return 0; 2594 } 2595 while (1) { 2596 work_done += bnxt_poll_work(bp, cpr, budget - work_done); 2597 2598 if (work_done >= budget) { 2599 if (!budget) 2600 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 2601 break; 2602 } 2603 2604 if (!bnxt_has_work(bp, cpr)) { 2605 if (napi_complete_done(napi, work_done)) 2606 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 2607 break; 2608 } 2609 } 2610 if (bp->flags & BNXT_FLAG_DIM) { 2611 struct dim_sample dim_sample = {}; 2612 2613 dim_update_sample(cpr->event_ctr, 2614 cpr->rx_packets, 2615 cpr->rx_bytes, 2616 &dim_sample); 2617 net_dim(&cpr->dim, dim_sample); 2618 } 2619 return work_done; 2620 } 2621 2622 static int __bnxt_poll_cqs(struct bnxt *bp, struct bnxt_napi *bnapi, int budget) 2623 { 2624 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2625 int i, work_done = 0; 2626 2627 for (i = 0; i < 2; i++) { 2628 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i]; 2629 2630 if (cpr2) { 2631 work_done += __bnxt_poll_work(bp, cpr2, 2632 budget - work_done); 2633 cpr->has_more_work |= cpr2->has_more_work; 2634 } 2635 } 2636 return work_done; 2637 } 2638 2639 static void __bnxt_poll_cqs_done(struct bnxt *bp, struct bnxt_napi *bnapi, 2640 u64 dbr_type) 2641 { 2642 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2643 int i; 2644 2645 for (i = 0; i < 2; i++) { 2646 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i]; 2647 struct bnxt_db_info *db; 2648 2649 if (cpr2 && cpr2->had_work_done) { 2650 db = &cpr2->cp_db; 2651 bnxt_writeq(bp, db->db_key64 | dbr_type | 2652 RING_CMP(cpr2->cp_raw_cons), db->doorbell); 2653 cpr2->had_work_done = 0; 2654 } 2655 } 2656 __bnxt_poll_work_done(bp, bnapi); 2657 } 2658 2659 static int bnxt_poll_p5(struct napi_struct *napi, int budget) 2660 { 2661 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 2662 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2663 u32 raw_cons = cpr->cp_raw_cons; 2664 struct bnxt *bp = bnapi->bp; 2665 struct nqe_cn *nqcmp; 2666 int work_done = 0; 2667 u32 cons; 2668 2669 if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) { 2670 napi_complete(napi); 2671 return 0; 2672 } 2673 if (cpr->has_more_work) { 2674 cpr->has_more_work = 0; 2675 work_done = __bnxt_poll_cqs(bp, bnapi, budget); 2676 } 2677 while (1) { 2678 cons = RING_CMP(raw_cons); 2679 nqcmp = &cpr->nq_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 2680 2681 if (!NQ_CMP_VALID(nqcmp, raw_cons)) { 2682 if (cpr->has_more_work) 2683 break; 2684 2685 __bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL); 2686 cpr->cp_raw_cons = raw_cons; 2687 if (napi_complete_done(napi, work_done)) 2688 BNXT_DB_NQ_ARM_P5(&cpr->cp_db, 2689 cpr->cp_raw_cons); 2690 return work_done; 2691 } 2692 2693 /* The valid test of the entry must be done first before 2694 * reading any further. 2695 */ 2696 dma_rmb(); 2697 2698 if (nqcmp->type == cpu_to_le16(NQ_CN_TYPE_CQ_NOTIFICATION)) { 2699 u32 idx = le32_to_cpu(nqcmp->cq_handle_low); 2700 struct bnxt_cp_ring_info *cpr2; 2701 2702 cpr2 = cpr->cp_ring_arr[idx]; 2703 work_done += __bnxt_poll_work(bp, cpr2, 2704 budget - work_done); 2705 cpr->has_more_work |= cpr2->has_more_work; 2706 } else { 2707 bnxt_hwrm_handler(bp, (struct tx_cmp *)nqcmp); 2708 } 2709 raw_cons = NEXT_RAW_CMP(raw_cons); 2710 } 2711 __bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ); 2712 if (raw_cons != cpr->cp_raw_cons) { 2713 cpr->cp_raw_cons = raw_cons; 2714 BNXT_DB_NQ_P5(&cpr->cp_db, raw_cons); 2715 } 2716 return work_done; 2717 } 2718 2719 static void bnxt_free_tx_skbs(struct bnxt *bp) 2720 { 2721 int i, max_idx; 2722 struct pci_dev *pdev = bp->pdev; 2723 2724 if (!bp->tx_ring) 2725 return; 2726 2727 max_idx = bp->tx_nr_pages * TX_DESC_CNT; 2728 for (i = 0; i < bp->tx_nr_rings; i++) { 2729 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 2730 int j; 2731 2732 if (!txr->tx_buf_ring) 2733 continue; 2734 2735 for (j = 0; j < max_idx;) { 2736 struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j]; 2737 struct sk_buff *skb; 2738 int k, last; 2739 2740 if (i < bp->tx_nr_rings_xdp && 2741 tx_buf->action == XDP_REDIRECT) { 2742 dma_unmap_single(&pdev->dev, 2743 dma_unmap_addr(tx_buf, mapping), 2744 dma_unmap_len(tx_buf, len), 2745 DMA_TO_DEVICE); 2746 xdp_return_frame(tx_buf->xdpf); 2747 tx_buf->action = 0; 2748 tx_buf->xdpf = NULL; 2749 j++; 2750 continue; 2751 } 2752 2753 skb = tx_buf->skb; 2754 if (!skb) { 2755 j++; 2756 continue; 2757 } 2758 2759 tx_buf->skb = NULL; 2760 2761 if (tx_buf->is_push) { 2762 dev_kfree_skb(skb); 2763 j += 2; 2764 continue; 2765 } 2766 2767 dma_unmap_single(&pdev->dev, 2768 dma_unmap_addr(tx_buf, mapping), 2769 skb_headlen(skb), 2770 DMA_TO_DEVICE); 2771 2772 last = tx_buf->nr_frags; 2773 j += 2; 2774 for (k = 0; k < last; k++, j++) { 2775 int ring_idx = j & bp->tx_ring_mask; 2776 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 2777 2778 tx_buf = &txr->tx_buf_ring[ring_idx]; 2779 dma_unmap_page( 2780 &pdev->dev, 2781 dma_unmap_addr(tx_buf, mapping), 2782 skb_frag_size(frag), DMA_TO_DEVICE); 2783 } 2784 dev_kfree_skb(skb); 2785 } 2786 netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i)); 2787 } 2788 } 2789 2790 static void bnxt_free_one_rx_ring_skbs(struct bnxt *bp, int ring_nr) 2791 { 2792 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 2793 struct pci_dev *pdev = bp->pdev; 2794 struct bnxt_tpa_idx_map *map; 2795 int i, max_idx, max_agg_idx; 2796 2797 max_idx = bp->rx_nr_pages * RX_DESC_CNT; 2798 max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT; 2799 if (!rxr->rx_tpa) 2800 goto skip_rx_tpa_free; 2801 2802 for (i = 0; i < bp->max_tpa; i++) { 2803 struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[i]; 2804 u8 *data = tpa_info->data; 2805 2806 if (!data) 2807 continue; 2808 2809 dma_unmap_single_attrs(&pdev->dev, tpa_info->mapping, 2810 bp->rx_buf_use_size, bp->rx_dir, 2811 DMA_ATTR_WEAK_ORDERING); 2812 2813 tpa_info->data = NULL; 2814 2815 kfree(data); 2816 } 2817 2818 skip_rx_tpa_free: 2819 if (!rxr->rx_buf_ring) 2820 goto skip_rx_buf_free; 2821 2822 for (i = 0; i < max_idx; i++) { 2823 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[i]; 2824 dma_addr_t mapping = rx_buf->mapping; 2825 void *data = rx_buf->data; 2826 2827 if (!data) 2828 continue; 2829 2830 rx_buf->data = NULL; 2831 if (BNXT_RX_PAGE_MODE(bp)) { 2832 mapping -= bp->rx_dma_offset; 2833 dma_unmap_page_attrs(&pdev->dev, mapping, PAGE_SIZE, 2834 bp->rx_dir, 2835 DMA_ATTR_WEAK_ORDERING); 2836 page_pool_recycle_direct(rxr->page_pool, data); 2837 } else { 2838 dma_unmap_single_attrs(&pdev->dev, mapping, 2839 bp->rx_buf_use_size, bp->rx_dir, 2840 DMA_ATTR_WEAK_ORDERING); 2841 kfree(data); 2842 } 2843 } 2844 2845 skip_rx_buf_free: 2846 if (!rxr->rx_agg_ring) 2847 goto skip_rx_agg_free; 2848 2849 for (i = 0; i < max_agg_idx; i++) { 2850 struct bnxt_sw_rx_agg_bd *rx_agg_buf = &rxr->rx_agg_ring[i]; 2851 struct page *page = rx_agg_buf->page; 2852 2853 if (!page) 2854 continue; 2855 2856 dma_unmap_page_attrs(&pdev->dev, rx_agg_buf->mapping, 2857 BNXT_RX_PAGE_SIZE, DMA_FROM_DEVICE, 2858 DMA_ATTR_WEAK_ORDERING); 2859 2860 rx_agg_buf->page = NULL; 2861 __clear_bit(i, rxr->rx_agg_bmap); 2862 2863 __free_page(page); 2864 } 2865 2866 skip_rx_agg_free: 2867 if (rxr->rx_page) { 2868 __free_page(rxr->rx_page); 2869 rxr->rx_page = NULL; 2870 } 2871 map = rxr->rx_tpa_idx_map; 2872 if (map) 2873 memset(map->agg_idx_bmap, 0, sizeof(map->agg_idx_bmap)); 2874 } 2875 2876 static void bnxt_free_rx_skbs(struct bnxt *bp) 2877 { 2878 int i; 2879 2880 if (!bp->rx_ring) 2881 return; 2882 2883 for (i = 0; i < bp->rx_nr_rings; i++) 2884 bnxt_free_one_rx_ring_skbs(bp, i); 2885 } 2886 2887 static void bnxt_free_skbs(struct bnxt *bp) 2888 { 2889 bnxt_free_tx_skbs(bp); 2890 bnxt_free_rx_skbs(bp); 2891 } 2892 2893 static void bnxt_init_ctx_mem(struct bnxt_mem_init *mem_init, void *p, int len) 2894 { 2895 u8 init_val = mem_init->init_val; 2896 u16 offset = mem_init->offset; 2897 u8 *p2 = p; 2898 int i; 2899 2900 if (!init_val) 2901 return; 2902 if (offset == BNXT_MEM_INVALID_OFFSET) { 2903 memset(p, init_val, len); 2904 return; 2905 } 2906 for (i = 0; i < len; i += mem_init->size) 2907 *(p2 + i + offset) = init_val; 2908 } 2909 2910 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem) 2911 { 2912 struct pci_dev *pdev = bp->pdev; 2913 int i; 2914 2915 if (!rmem->pg_arr) 2916 goto skip_pages; 2917 2918 for (i = 0; i < rmem->nr_pages; i++) { 2919 if (!rmem->pg_arr[i]) 2920 continue; 2921 2922 dma_free_coherent(&pdev->dev, rmem->page_size, 2923 rmem->pg_arr[i], rmem->dma_arr[i]); 2924 2925 rmem->pg_arr[i] = NULL; 2926 } 2927 skip_pages: 2928 if (rmem->pg_tbl) { 2929 size_t pg_tbl_size = rmem->nr_pages * 8; 2930 2931 if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG) 2932 pg_tbl_size = rmem->page_size; 2933 dma_free_coherent(&pdev->dev, pg_tbl_size, 2934 rmem->pg_tbl, rmem->pg_tbl_map); 2935 rmem->pg_tbl = NULL; 2936 } 2937 if (rmem->vmem_size && *rmem->vmem) { 2938 vfree(*rmem->vmem); 2939 *rmem->vmem = NULL; 2940 } 2941 } 2942 2943 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem) 2944 { 2945 struct pci_dev *pdev = bp->pdev; 2946 u64 valid_bit = 0; 2947 int i; 2948 2949 if (rmem->flags & (BNXT_RMEM_VALID_PTE_FLAG | BNXT_RMEM_RING_PTE_FLAG)) 2950 valid_bit = PTU_PTE_VALID; 2951 if ((rmem->nr_pages > 1 || rmem->depth > 0) && !rmem->pg_tbl) { 2952 size_t pg_tbl_size = rmem->nr_pages * 8; 2953 2954 if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG) 2955 pg_tbl_size = rmem->page_size; 2956 rmem->pg_tbl = dma_alloc_coherent(&pdev->dev, pg_tbl_size, 2957 &rmem->pg_tbl_map, 2958 GFP_KERNEL); 2959 if (!rmem->pg_tbl) 2960 return -ENOMEM; 2961 } 2962 2963 for (i = 0; i < rmem->nr_pages; i++) { 2964 u64 extra_bits = valid_bit; 2965 2966 rmem->pg_arr[i] = dma_alloc_coherent(&pdev->dev, 2967 rmem->page_size, 2968 &rmem->dma_arr[i], 2969 GFP_KERNEL); 2970 if (!rmem->pg_arr[i]) 2971 return -ENOMEM; 2972 2973 if (rmem->mem_init) 2974 bnxt_init_ctx_mem(rmem->mem_init, rmem->pg_arr[i], 2975 rmem->page_size); 2976 if (rmem->nr_pages > 1 || rmem->depth > 0) { 2977 if (i == rmem->nr_pages - 2 && 2978 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG)) 2979 extra_bits |= PTU_PTE_NEXT_TO_LAST; 2980 else if (i == rmem->nr_pages - 1 && 2981 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG)) 2982 extra_bits |= PTU_PTE_LAST; 2983 rmem->pg_tbl[i] = 2984 cpu_to_le64(rmem->dma_arr[i] | extra_bits); 2985 } 2986 } 2987 2988 if (rmem->vmem_size) { 2989 *rmem->vmem = vzalloc(rmem->vmem_size); 2990 if (!(*rmem->vmem)) 2991 return -ENOMEM; 2992 } 2993 return 0; 2994 } 2995 2996 static void bnxt_free_tpa_info(struct bnxt *bp) 2997 { 2998 int i; 2999 3000 for (i = 0; i < bp->rx_nr_rings; i++) { 3001 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3002 3003 kfree(rxr->rx_tpa_idx_map); 3004 rxr->rx_tpa_idx_map = NULL; 3005 if (rxr->rx_tpa) { 3006 kfree(rxr->rx_tpa[0].agg_arr); 3007 rxr->rx_tpa[0].agg_arr = NULL; 3008 } 3009 kfree(rxr->rx_tpa); 3010 rxr->rx_tpa = NULL; 3011 } 3012 } 3013 3014 static int bnxt_alloc_tpa_info(struct bnxt *bp) 3015 { 3016 int i, j, total_aggs = 0; 3017 3018 bp->max_tpa = MAX_TPA; 3019 if (bp->flags & BNXT_FLAG_CHIP_P5) { 3020 if (!bp->max_tpa_v2) 3021 return 0; 3022 bp->max_tpa = max_t(u16, bp->max_tpa_v2, MAX_TPA_P5); 3023 total_aggs = bp->max_tpa * MAX_SKB_FRAGS; 3024 } 3025 3026 for (i = 0; i < bp->rx_nr_rings; i++) { 3027 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3028 struct rx_agg_cmp *agg; 3029 3030 rxr->rx_tpa = kcalloc(bp->max_tpa, sizeof(struct bnxt_tpa_info), 3031 GFP_KERNEL); 3032 if (!rxr->rx_tpa) 3033 return -ENOMEM; 3034 3035 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 3036 continue; 3037 agg = kcalloc(total_aggs, sizeof(*agg), GFP_KERNEL); 3038 rxr->rx_tpa[0].agg_arr = agg; 3039 if (!agg) 3040 return -ENOMEM; 3041 for (j = 1; j < bp->max_tpa; j++) 3042 rxr->rx_tpa[j].agg_arr = agg + j * MAX_SKB_FRAGS; 3043 rxr->rx_tpa_idx_map = kzalloc(sizeof(*rxr->rx_tpa_idx_map), 3044 GFP_KERNEL); 3045 if (!rxr->rx_tpa_idx_map) 3046 return -ENOMEM; 3047 } 3048 return 0; 3049 } 3050 3051 static void bnxt_free_rx_rings(struct bnxt *bp) 3052 { 3053 int i; 3054 3055 if (!bp->rx_ring) 3056 return; 3057 3058 bnxt_free_tpa_info(bp); 3059 for (i = 0; i < bp->rx_nr_rings; i++) { 3060 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3061 struct bnxt_ring_struct *ring; 3062 3063 if (rxr->xdp_prog) 3064 bpf_prog_put(rxr->xdp_prog); 3065 3066 if (xdp_rxq_info_is_reg(&rxr->xdp_rxq)) 3067 xdp_rxq_info_unreg(&rxr->xdp_rxq); 3068 3069 page_pool_destroy(rxr->page_pool); 3070 rxr->page_pool = NULL; 3071 3072 kfree(rxr->rx_agg_bmap); 3073 rxr->rx_agg_bmap = NULL; 3074 3075 ring = &rxr->rx_ring_struct; 3076 bnxt_free_ring(bp, &ring->ring_mem); 3077 3078 ring = &rxr->rx_agg_ring_struct; 3079 bnxt_free_ring(bp, &ring->ring_mem); 3080 } 3081 } 3082 3083 static int bnxt_alloc_rx_page_pool(struct bnxt *bp, 3084 struct bnxt_rx_ring_info *rxr) 3085 { 3086 struct page_pool_params pp = { 0 }; 3087 3088 pp.pool_size = bp->rx_ring_size; 3089 pp.nid = dev_to_node(&bp->pdev->dev); 3090 pp.dev = &bp->pdev->dev; 3091 pp.dma_dir = DMA_BIDIRECTIONAL; 3092 3093 rxr->page_pool = page_pool_create(&pp); 3094 if (IS_ERR(rxr->page_pool)) { 3095 int err = PTR_ERR(rxr->page_pool); 3096 3097 rxr->page_pool = NULL; 3098 return err; 3099 } 3100 return 0; 3101 } 3102 3103 static int bnxt_alloc_rx_rings(struct bnxt *bp) 3104 { 3105 int i, rc = 0, agg_rings = 0; 3106 3107 if (!bp->rx_ring) 3108 return -ENOMEM; 3109 3110 if (bp->flags & BNXT_FLAG_AGG_RINGS) 3111 agg_rings = 1; 3112 3113 for (i = 0; i < bp->rx_nr_rings; i++) { 3114 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3115 struct bnxt_ring_struct *ring; 3116 3117 ring = &rxr->rx_ring_struct; 3118 3119 rc = bnxt_alloc_rx_page_pool(bp, rxr); 3120 if (rc) 3121 return rc; 3122 3123 rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i, 0); 3124 if (rc < 0) 3125 return rc; 3126 3127 rc = xdp_rxq_info_reg_mem_model(&rxr->xdp_rxq, 3128 MEM_TYPE_PAGE_POOL, 3129 rxr->page_pool); 3130 if (rc) { 3131 xdp_rxq_info_unreg(&rxr->xdp_rxq); 3132 return rc; 3133 } 3134 3135 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3136 if (rc) 3137 return rc; 3138 3139 ring->grp_idx = i; 3140 if (agg_rings) { 3141 u16 mem_size; 3142 3143 ring = &rxr->rx_agg_ring_struct; 3144 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3145 if (rc) 3146 return rc; 3147 3148 ring->grp_idx = i; 3149 rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1; 3150 mem_size = rxr->rx_agg_bmap_size / 8; 3151 rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL); 3152 if (!rxr->rx_agg_bmap) 3153 return -ENOMEM; 3154 } 3155 } 3156 if (bp->flags & BNXT_FLAG_TPA) 3157 rc = bnxt_alloc_tpa_info(bp); 3158 return rc; 3159 } 3160 3161 static void bnxt_free_tx_rings(struct bnxt *bp) 3162 { 3163 int i; 3164 struct pci_dev *pdev = bp->pdev; 3165 3166 if (!bp->tx_ring) 3167 return; 3168 3169 for (i = 0; i < bp->tx_nr_rings; i++) { 3170 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3171 struct bnxt_ring_struct *ring; 3172 3173 if (txr->tx_push) { 3174 dma_free_coherent(&pdev->dev, bp->tx_push_size, 3175 txr->tx_push, txr->tx_push_mapping); 3176 txr->tx_push = NULL; 3177 } 3178 3179 ring = &txr->tx_ring_struct; 3180 3181 bnxt_free_ring(bp, &ring->ring_mem); 3182 } 3183 } 3184 3185 static int bnxt_alloc_tx_rings(struct bnxt *bp) 3186 { 3187 int i, j, rc; 3188 struct pci_dev *pdev = bp->pdev; 3189 3190 bp->tx_push_size = 0; 3191 if (bp->tx_push_thresh) { 3192 int push_size; 3193 3194 push_size = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) + 3195 bp->tx_push_thresh); 3196 3197 if (push_size > 256) { 3198 push_size = 0; 3199 bp->tx_push_thresh = 0; 3200 } 3201 3202 bp->tx_push_size = push_size; 3203 } 3204 3205 for (i = 0, j = 0; i < bp->tx_nr_rings; i++) { 3206 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3207 struct bnxt_ring_struct *ring; 3208 u8 qidx; 3209 3210 ring = &txr->tx_ring_struct; 3211 3212 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3213 if (rc) 3214 return rc; 3215 3216 ring->grp_idx = txr->bnapi->index; 3217 if (bp->tx_push_size) { 3218 dma_addr_t mapping; 3219 3220 /* One pre-allocated DMA buffer to backup 3221 * TX push operation 3222 */ 3223 txr->tx_push = dma_alloc_coherent(&pdev->dev, 3224 bp->tx_push_size, 3225 &txr->tx_push_mapping, 3226 GFP_KERNEL); 3227 3228 if (!txr->tx_push) 3229 return -ENOMEM; 3230 3231 mapping = txr->tx_push_mapping + 3232 sizeof(struct tx_push_bd); 3233 txr->data_mapping = cpu_to_le64(mapping); 3234 } 3235 qidx = bp->tc_to_qidx[j]; 3236 ring->queue_id = bp->q_info[qidx].queue_id; 3237 if (i < bp->tx_nr_rings_xdp) 3238 continue; 3239 if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1)) 3240 j++; 3241 } 3242 return 0; 3243 } 3244 3245 static void bnxt_free_cp_arrays(struct bnxt_cp_ring_info *cpr) 3246 { 3247 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 3248 3249 kfree(cpr->cp_desc_ring); 3250 cpr->cp_desc_ring = NULL; 3251 ring->ring_mem.pg_arr = NULL; 3252 kfree(cpr->cp_desc_mapping); 3253 cpr->cp_desc_mapping = NULL; 3254 ring->ring_mem.dma_arr = NULL; 3255 } 3256 3257 static int bnxt_alloc_cp_arrays(struct bnxt_cp_ring_info *cpr, int n) 3258 { 3259 cpr->cp_desc_ring = kcalloc(n, sizeof(*cpr->cp_desc_ring), GFP_KERNEL); 3260 if (!cpr->cp_desc_ring) 3261 return -ENOMEM; 3262 cpr->cp_desc_mapping = kcalloc(n, sizeof(*cpr->cp_desc_mapping), 3263 GFP_KERNEL); 3264 if (!cpr->cp_desc_mapping) 3265 return -ENOMEM; 3266 return 0; 3267 } 3268 3269 static void bnxt_free_all_cp_arrays(struct bnxt *bp) 3270 { 3271 int i; 3272 3273 if (!bp->bnapi) 3274 return; 3275 for (i = 0; i < bp->cp_nr_rings; i++) { 3276 struct bnxt_napi *bnapi = bp->bnapi[i]; 3277 3278 if (!bnapi) 3279 continue; 3280 bnxt_free_cp_arrays(&bnapi->cp_ring); 3281 } 3282 } 3283 3284 static int bnxt_alloc_all_cp_arrays(struct bnxt *bp) 3285 { 3286 int i, n = bp->cp_nr_pages; 3287 3288 for (i = 0; i < bp->cp_nr_rings; i++) { 3289 struct bnxt_napi *bnapi = bp->bnapi[i]; 3290 int rc; 3291 3292 if (!bnapi) 3293 continue; 3294 rc = bnxt_alloc_cp_arrays(&bnapi->cp_ring, n); 3295 if (rc) 3296 return rc; 3297 } 3298 return 0; 3299 } 3300 3301 static void bnxt_free_cp_rings(struct bnxt *bp) 3302 { 3303 int i; 3304 3305 if (!bp->bnapi) 3306 return; 3307 3308 for (i = 0; i < bp->cp_nr_rings; i++) { 3309 struct bnxt_napi *bnapi = bp->bnapi[i]; 3310 struct bnxt_cp_ring_info *cpr; 3311 struct bnxt_ring_struct *ring; 3312 int j; 3313 3314 if (!bnapi) 3315 continue; 3316 3317 cpr = &bnapi->cp_ring; 3318 ring = &cpr->cp_ring_struct; 3319 3320 bnxt_free_ring(bp, &ring->ring_mem); 3321 3322 for (j = 0; j < 2; j++) { 3323 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j]; 3324 3325 if (cpr2) { 3326 ring = &cpr2->cp_ring_struct; 3327 bnxt_free_ring(bp, &ring->ring_mem); 3328 bnxt_free_cp_arrays(cpr2); 3329 kfree(cpr2); 3330 cpr->cp_ring_arr[j] = NULL; 3331 } 3332 } 3333 } 3334 } 3335 3336 static struct bnxt_cp_ring_info *bnxt_alloc_cp_sub_ring(struct bnxt *bp) 3337 { 3338 struct bnxt_ring_mem_info *rmem; 3339 struct bnxt_ring_struct *ring; 3340 struct bnxt_cp_ring_info *cpr; 3341 int rc; 3342 3343 cpr = kzalloc(sizeof(*cpr), GFP_KERNEL); 3344 if (!cpr) 3345 return NULL; 3346 3347 rc = bnxt_alloc_cp_arrays(cpr, bp->cp_nr_pages); 3348 if (rc) { 3349 bnxt_free_cp_arrays(cpr); 3350 kfree(cpr); 3351 return NULL; 3352 } 3353 ring = &cpr->cp_ring_struct; 3354 rmem = &ring->ring_mem; 3355 rmem->nr_pages = bp->cp_nr_pages; 3356 rmem->page_size = HW_CMPD_RING_SIZE; 3357 rmem->pg_arr = (void **)cpr->cp_desc_ring; 3358 rmem->dma_arr = cpr->cp_desc_mapping; 3359 rmem->flags = BNXT_RMEM_RING_PTE_FLAG; 3360 rc = bnxt_alloc_ring(bp, rmem); 3361 if (rc) { 3362 bnxt_free_ring(bp, rmem); 3363 bnxt_free_cp_arrays(cpr); 3364 kfree(cpr); 3365 cpr = NULL; 3366 } 3367 return cpr; 3368 } 3369 3370 static int bnxt_alloc_cp_rings(struct bnxt *bp) 3371 { 3372 bool sh = !!(bp->flags & BNXT_FLAG_SHARED_RINGS); 3373 int i, rc, ulp_base_vec, ulp_msix; 3374 3375 ulp_msix = bnxt_get_ulp_msix_num(bp); 3376 ulp_base_vec = bnxt_get_ulp_msix_base(bp); 3377 for (i = 0; i < bp->cp_nr_rings; i++) { 3378 struct bnxt_napi *bnapi = bp->bnapi[i]; 3379 struct bnxt_cp_ring_info *cpr; 3380 struct bnxt_ring_struct *ring; 3381 3382 if (!bnapi) 3383 continue; 3384 3385 cpr = &bnapi->cp_ring; 3386 cpr->bnapi = bnapi; 3387 ring = &cpr->cp_ring_struct; 3388 3389 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3390 if (rc) 3391 return rc; 3392 3393 if (ulp_msix && i >= ulp_base_vec) 3394 ring->map_idx = i + ulp_msix; 3395 else 3396 ring->map_idx = i; 3397 3398 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 3399 continue; 3400 3401 if (i < bp->rx_nr_rings) { 3402 struct bnxt_cp_ring_info *cpr2 = 3403 bnxt_alloc_cp_sub_ring(bp); 3404 3405 cpr->cp_ring_arr[BNXT_RX_HDL] = cpr2; 3406 if (!cpr2) 3407 return -ENOMEM; 3408 cpr2->bnapi = bnapi; 3409 } 3410 if ((sh && i < bp->tx_nr_rings) || 3411 (!sh && i >= bp->rx_nr_rings)) { 3412 struct bnxt_cp_ring_info *cpr2 = 3413 bnxt_alloc_cp_sub_ring(bp); 3414 3415 cpr->cp_ring_arr[BNXT_TX_HDL] = cpr2; 3416 if (!cpr2) 3417 return -ENOMEM; 3418 cpr2->bnapi = bnapi; 3419 } 3420 } 3421 return 0; 3422 } 3423 3424 static void bnxt_init_ring_struct(struct bnxt *bp) 3425 { 3426 int i; 3427 3428 for (i = 0; i < bp->cp_nr_rings; i++) { 3429 struct bnxt_napi *bnapi = bp->bnapi[i]; 3430 struct bnxt_ring_mem_info *rmem; 3431 struct bnxt_cp_ring_info *cpr; 3432 struct bnxt_rx_ring_info *rxr; 3433 struct bnxt_tx_ring_info *txr; 3434 struct bnxt_ring_struct *ring; 3435 3436 if (!bnapi) 3437 continue; 3438 3439 cpr = &bnapi->cp_ring; 3440 ring = &cpr->cp_ring_struct; 3441 rmem = &ring->ring_mem; 3442 rmem->nr_pages = bp->cp_nr_pages; 3443 rmem->page_size = HW_CMPD_RING_SIZE; 3444 rmem->pg_arr = (void **)cpr->cp_desc_ring; 3445 rmem->dma_arr = cpr->cp_desc_mapping; 3446 rmem->vmem_size = 0; 3447 3448 rxr = bnapi->rx_ring; 3449 if (!rxr) 3450 goto skip_rx; 3451 3452 ring = &rxr->rx_ring_struct; 3453 rmem = &ring->ring_mem; 3454 rmem->nr_pages = bp->rx_nr_pages; 3455 rmem->page_size = HW_RXBD_RING_SIZE; 3456 rmem->pg_arr = (void **)rxr->rx_desc_ring; 3457 rmem->dma_arr = rxr->rx_desc_mapping; 3458 rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages; 3459 rmem->vmem = (void **)&rxr->rx_buf_ring; 3460 3461 ring = &rxr->rx_agg_ring_struct; 3462 rmem = &ring->ring_mem; 3463 rmem->nr_pages = bp->rx_agg_nr_pages; 3464 rmem->page_size = HW_RXBD_RING_SIZE; 3465 rmem->pg_arr = (void **)rxr->rx_agg_desc_ring; 3466 rmem->dma_arr = rxr->rx_agg_desc_mapping; 3467 rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages; 3468 rmem->vmem = (void **)&rxr->rx_agg_ring; 3469 3470 skip_rx: 3471 txr = bnapi->tx_ring; 3472 if (!txr) 3473 continue; 3474 3475 ring = &txr->tx_ring_struct; 3476 rmem = &ring->ring_mem; 3477 rmem->nr_pages = bp->tx_nr_pages; 3478 rmem->page_size = HW_RXBD_RING_SIZE; 3479 rmem->pg_arr = (void **)txr->tx_desc_ring; 3480 rmem->dma_arr = txr->tx_desc_mapping; 3481 rmem->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages; 3482 rmem->vmem = (void **)&txr->tx_buf_ring; 3483 } 3484 } 3485 3486 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type) 3487 { 3488 int i; 3489 u32 prod; 3490 struct rx_bd **rx_buf_ring; 3491 3492 rx_buf_ring = (struct rx_bd **)ring->ring_mem.pg_arr; 3493 for (i = 0, prod = 0; i < ring->ring_mem.nr_pages; i++) { 3494 int j; 3495 struct rx_bd *rxbd; 3496 3497 rxbd = rx_buf_ring[i]; 3498 if (!rxbd) 3499 continue; 3500 3501 for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) { 3502 rxbd->rx_bd_len_flags_type = cpu_to_le32(type); 3503 rxbd->rx_bd_opaque = prod; 3504 } 3505 } 3506 } 3507 3508 static int bnxt_alloc_one_rx_ring(struct bnxt *bp, int ring_nr) 3509 { 3510 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 3511 struct net_device *dev = bp->dev; 3512 u32 prod; 3513 int i; 3514 3515 prod = rxr->rx_prod; 3516 for (i = 0; i < bp->rx_ring_size; i++) { 3517 if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL)) { 3518 netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n", 3519 ring_nr, i, bp->rx_ring_size); 3520 break; 3521 } 3522 prod = NEXT_RX(prod); 3523 } 3524 rxr->rx_prod = prod; 3525 3526 if (!(bp->flags & BNXT_FLAG_AGG_RINGS)) 3527 return 0; 3528 3529 prod = rxr->rx_agg_prod; 3530 for (i = 0; i < bp->rx_agg_ring_size; i++) { 3531 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL)) { 3532 netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n", 3533 ring_nr, i, bp->rx_ring_size); 3534 break; 3535 } 3536 prod = NEXT_RX_AGG(prod); 3537 } 3538 rxr->rx_agg_prod = prod; 3539 3540 if (rxr->rx_tpa) { 3541 dma_addr_t mapping; 3542 u8 *data; 3543 3544 for (i = 0; i < bp->max_tpa; i++) { 3545 data = __bnxt_alloc_rx_data(bp, &mapping, GFP_KERNEL); 3546 if (!data) 3547 return -ENOMEM; 3548 3549 rxr->rx_tpa[i].data = data; 3550 rxr->rx_tpa[i].data_ptr = data + bp->rx_offset; 3551 rxr->rx_tpa[i].mapping = mapping; 3552 } 3553 } 3554 return 0; 3555 } 3556 3557 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr) 3558 { 3559 struct bnxt_rx_ring_info *rxr; 3560 struct bnxt_ring_struct *ring; 3561 u32 type; 3562 3563 type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) | 3564 RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP; 3565 3566 if (NET_IP_ALIGN == 2) 3567 type |= RX_BD_FLAGS_SOP; 3568 3569 rxr = &bp->rx_ring[ring_nr]; 3570 ring = &rxr->rx_ring_struct; 3571 bnxt_init_rxbd_pages(ring, type); 3572 3573 if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) { 3574 bpf_prog_add(bp->xdp_prog, 1); 3575 rxr->xdp_prog = bp->xdp_prog; 3576 } 3577 ring->fw_ring_id = INVALID_HW_RING_ID; 3578 3579 ring = &rxr->rx_agg_ring_struct; 3580 ring->fw_ring_id = INVALID_HW_RING_ID; 3581 3582 if ((bp->flags & BNXT_FLAG_AGG_RINGS)) { 3583 type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) | 3584 RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP; 3585 3586 bnxt_init_rxbd_pages(ring, type); 3587 } 3588 3589 return bnxt_alloc_one_rx_ring(bp, ring_nr); 3590 } 3591 3592 static void bnxt_init_cp_rings(struct bnxt *bp) 3593 { 3594 int i, j; 3595 3596 for (i = 0; i < bp->cp_nr_rings; i++) { 3597 struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring; 3598 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 3599 3600 ring->fw_ring_id = INVALID_HW_RING_ID; 3601 cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks; 3602 cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs; 3603 for (j = 0; j < 2; j++) { 3604 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j]; 3605 3606 if (!cpr2) 3607 continue; 3608 3609 ring = &cpr2->cp_ring_struct; 3610 ring->fw_ring_id = INVALID_HW_RING_ID; 3611 cpr2->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks; 3612 cpr2->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs; 3613 } 3614 } 3615 } 3616 3617 static int bnxt_init_rx_rings(struct bnxt *bp) 3618 { 3619 int i, rc = 0; 3620 3621 if (BNXT_RX_PAGE_MODE(bp)) { 3622 bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM; 3623 bp->rx_dma_offset = XDP_PACKET_HEADROOM; 3624 } else { 3625 bp->rx_offset = BNXT_RX_OFFSET; 3626 bp->rx_dma_offset = BNXT_RX_DMA_OFFSET; 3627 } 3628 3629 for (i = 0; i < bp->rx_nr_rings; i++) { 3630 rc = bnxt_init_one_rx_ring(bp, i); 3631 if (rc) 3632 break; 3633 } 3634 3635 return rc; 3636 } 3637 3638 static int bnxt_init_tx_rings(struct bnxt *bp) 3639 { 3640 u16 i; 3641 3642 bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2, 3643 MAX_SKB_FRAGS + 1); 3644 3645 for (i = 0; i < bp->tx_nr_rings; i++) { 3646 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3647 struct bnxt_ring_struct *ring = &txr->tx_ring_struct; 3648 3649 ring->fw_ring_id = INVALID_HW_RING_ID; 3650 } 3651 3652 return 0; 3653 } 3654 3655 static void bnxt_free_ring_grps(struct bnxt *bp) 3656 { 3657 kfree(bp->grp_info); 3658 bp->grp_info = NULL; 3659 } 3660 3661 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init) 3662 { 3663 int i; 3664 3665 if (irq_re_init) { 3666 bp->grp_info = kcalloc(bp->cp_nr_rings, 3667 sizeof(struct bnxt_ring_grp_info), 3668 GFP_KERNEL); 3669 if (!bp->grp_info) 3670 return -ENOMEM; 3671 } 3672 for (i = 0; i < bp->cp_nr_rings; i++) { 3673 if (irq_re_init) 3674 bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID; 3675 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID; 3676 bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID; 3677 bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID; 3678 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID; 3679 } 3680 return 0; 3681 } 3682 3683 static void bnxt_free_vnics(struct bnxt *bp) 3684 { 3685 kfree(bp->vnic_info); 3686 bp->vnic_info = NULL; 3687 bp->nr_vnics = 0; 3688 } 3689 3690 static int bnxt_alloc_vnics(struct bnxt *bp) 3691 { 3692 int num_vnics = 1; 3693 3694 #ifdef CONFIG_RFS_ACCEL 3695 if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS) 3696 num_vnics += bp->rx_nr_rings; 3697 #endif 3698 3699 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 3700 num_vnics++; 3701 3702 bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info), 3703 GFP_KERNEL); 3704 if (!bp->vnic_info) 3705 return -ENOMEM; 3706 3707 bp->nr_vnics = num_vnics; 3708 return 0; 3709 } 3710 3711 static void bnxt_init_vnics(struct bnxt *bp) 3712 { 3713 int i; 3714 3715 for (i = 0; i < bp->nr_vnics; i++) { 3716 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 3717 int j; 3718 3719 vnic->fw_vnic_id = INVALID_HW_RING_ID; 3720 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) 3721 vnic->fw_rss_cos_lb_ctx[j] = INVALID_HW_RING_ID; 3722 3723 vnic->fw_l2_ctx_id = INVALID_HW_RING_ID; 3724 3725 if (bp->vnic_info[i].rss_hash_key) { 3726 if (i == 0) 3727 prandom_bytes(vnic->rss_hash_key, 3728 HW_HASH_KEY_SIZE); 3729 else 3730 memcpy(vnic->rss_hash_key, 3731 bp->vnic_info[0].rss_hash_key, 3732 HW_HASH_KEY_SIZE); 3733 } 3734 } 3735 } 3736 3737 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg) 3738 { 3739 int pages; 3740 3741 pages = ring_size / desc_per_pg; 3742 3743 if (!pages) 3744 return 1; 3745 3746 pages++; 3747 3748 while (pages & (pages - 1)) 3749 pages++; 3750 3751 return pages; 3752 } 3753 3754 void bnxt_set_tpa_flags(struct bnxt *bp) 3755 { 3756 bp->flags &= ~BNXT_FLAG_TPA; 3757 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) 3758 return; 3759 if (bp->dev->features & NETIF_F_LRO) 3760 bp->flags |= BNXT_FLAG_LRO; 3761 else if (bp->dev->features & NETIF_F_GRO_HW) 3762 bp->flags |= BNXT_FLAG_GRO; 3763 } 3764 3765 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must 3766 * be set on entry. 3767 */ 3768 void bnxt_set_ring_params(struct bnxt *bp) 3769 { 3770 u32 ring_size, rx_size, rx_space, max_rx_cmpl; 3771 u32 agg_factor = 0, agg_ring_size = 0; 3772 3773 /* 8 for CRC and VLAN */ 3774 rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8); 3775 3776 rx_space = rx_size + NET_SKB_PAD + 3777 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 3778 3779 bp->rx_copy_thresh = BNXT_RX_COPY_THRESH; 3780 ring_size = bp->rx_ring_size; 3781 bp->rx_agg_ring_size = 0; 3782 bp->rx_agg_nr_pages = 0; 3783 3784 if (bp->flags & BNXT_FLAG_TPA) 3785 agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE); 3786 3787 bp->flags &= ~BNXT_FLAG_JUMBO; 3788 if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) { 3789 u32 jumbo_factor; 3790 3791 bp->flags |= BNXT_FLAG_JUMBO; 3792 jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT; 3793 if (jumbo_factor > agg_factor) 3794 agg_factor = jumbo_factor; 3795 } 3796 if (agg_factor) { 3797 if (ring_size > BNXT_MAX_RX_DESC_CNT_JUM_ENA) { 3798 ring_size = BNXT_MAX_RX_DESC_CNT_JUM_ENA; 3799 netdev_warn(bp->dev, "RX ring size reduced from %d to %d because the jumbo ring is now enabled\n", 3800 bp->rx_ring_size, ring_size); 3801 bp->rx_ring_size = ring_size; 3802 } 3803 agg_ring_size = ring_size * agg_factor; 3804 3805 bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size, 3806 RX_DESC_CNT); 3807 if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) { 3808 u32 tmp = agg_ring_size; 3809 3810 bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES; 3811 agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1; 3812 netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n", 3813 tmp, agg_ring_size); 3814 } 3815 bp->rx_agg_ring_size = agg_ring_size; 3816 bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1; 3817 rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN); 3818 rx_space = rx_size + NET_SKB_PAD + 3819 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 3820 } 3821 3822 bp->rx_buf_use_size = rx_size; 3823 bp->rx_buf_size = rx_space; 3824 3825 bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT); 3826 bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1; 3827 3828 ring_size = bp->tx_ring_size; 3829 bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT); 3830 bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1; 3831 3832 max_rx_cmpl = bp->rx_ring_size; 3833 /* MAX TPA needs to be added because TPA_START completions are 3834 * immediately recycled, so the TPA completions are not bound by 3835 * the RX ring size. 3836 */ 3837 if (bp->flags & BNXT_FLAG_TPA) 3838 max_rx_cmpl += bp->max_tpa; 3839 /* RX and TPA completions are 32-byte, all others are 16-byte */ 3840 ring_size = max_rx_cmpl * 2 + agg_ring_size + bp->tx_ring_size; 3841 bp->cp_ring_size = ring_size; 3842 3843 bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT); 3844 if (bp->cp_nr_pages > MAX_CP_PAGES) { 3845 bp->cp_nr_pages = MAX_CP_PAGES; 3846 bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1; 3847 netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n", 3848 ring_size, bp->cp_ring_size); 3849 } 3850 bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT; 3851 bp->cp_ring_mask = bp->cp_bit - 1; 3852 } 3853 3854 /* Changing allocation mode of RX rings. 3855 * TODO: Update when extending xdp_rxq_info to support allocation modes. 3856 */ 3857 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode) 3858 { 3859 if (page_mode) { 3860 if (bp->dev->mtu > BNXT_MAX_PAGE_MODE_MTU) 3861 return -EOPNOTSUPP; 3862 bp->dev->max_mtu = 3863 min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU); 3864 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 3865 bp->flags |= BNXT_FLAG_NO_AGG_RINGS | BNXT_FLAG_RX_PAGE_MODE; 3866 bp->rx_dir = DMA_BIDIRECTIONAL; 3867 bp->rx_skb_func = bnxt_rx_page_skb; 3868 /* Disable LRO or GRO_HW */ 3869 netdev_update_features(bp->dev); 3870 } else { 3871 bp->dev->max_mtu = bp->max_mtu; 3872 bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE; 3873 bp->rx_dir = DMA_FROM_DEVICE; 3874 bp->rx_skb_func = bnxt_rx_skb; 3875 } 3876 return 0; 3877 } 3878 3879 static void bnxt_free_vnic_attributes(struct bnxt *bp) 3880 { 3881 int i; 3882 struct bnxt_vnic_info *vnic; 3883 struct pci_dev *pdev = bp->pdev; 3884 3885 if (!bp->vnic_info) 3886 return; 3887 3888 for (i = 0; i < bp->nr_vnics; i++) { 3889 vnic = &bp->vnic_info[i]; 3890 3891 kfree(vnic->fw_grp_ids); 3892 vnic->fw_grp_ids = NULL; 3893 3894 kfree(vnic->uc_list); 3895 vnic->uc_list = NULL; 3896 3897 if (vnic->mc_list) { 3898 dma_free_coherent(&pdev->dev, vnic->mc_list_size, 3899 vnic->mc_list, vnic->mc_list_mapping); 3900 vnic->mc_list = NULL; 3901 } 3902 3903 if (vnic->rss_table) { 3904 dma_free_coherent(&pdev->dev, vnic->rss_table_size, 3905 vnic->rss_table, 3906 vnic->rss_table_dma_addr); 3907 vnic->rss_table = NULL; 3908 } 3909 3910 vnic->rss_hash_key = NULL; 3911 vnic->flags = 0; 3912 } 3913 } 3914 3915 static int bnxt_alloc_vnic_attributes(struct bnxt *bp) 3916 { 3917 int i, rc = 0, size; 3918 struct bnxt_vnic_info *vnic; 3919 struct pci_dev *pdev = bp->pdev; 3920 int max_rings; 3921 3922 for (i = 0; i < bp->nr_vnics; i++) { 3923 vnic = &bp->vnic_info[i]; 3924 3925 if (vnic->flags & BNXT_VNIC_UCAST_FLAG) { 3926 int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN; 3927 3928 if (mem_size > 0) { 3929 vnic->uc_list = kmalloc(mem_size, GFP_KERNEL); 3930 if (!vnic->uc_list) { 3931 rc = -ENOMEM; 3932 goto out; 3933 } 3934 } 3935 } 3936 3937 if (vnic->flags & BNXT_VNIC_MCAST_FLAG) { 3938 vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN; 3939 vnic->mc_list = 3940 dma_alloc_coherent(&pdev->dev, 3941 vnic->mc_list_size, 3942 &vnic->mc_list_mapping, 3943 GFP_KERNEL); 3944 if (!vnic->mc_list) { 3945 rc = -ENOMEM; 3946 goto out; 3947 } 3948 } 3949 3950 if (bp->flags & BNXT_FLAG_CHIP_P5) 3951 goto vnic_skip_grps; 3952 3953 if (vnic->flags & BNXT_VNIC_RSS_FLAG) 3954 max_rings = bp->rx_nr_rings; 3955 else 3956 max_rings = 1; 3957 3958 vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL); 3959 if (!vnic->fw_grp_ids) { 3960 rc = -ENOMEM; 3961 goto out; 3962 } 3963 vnic_skip_grps: 3964 if ((bp->flags & BNXT_FLAG_NEW_RSS_CAP) && 3965 !(vnic->flags & BNXT_VNIC_RSS_FLAG)) 3966 continue; 3967 3968 /* Allocate rss table and hash key */ 3969 size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16)); 3970 if (bp->flags & BNXT_FLAG_CHIP_P5) 3971 size = L1_CACHE_ALIGN(BNXT_MAX_RSS_TABLE_SIZE_P5); 3972 3973 vnic->rss_table_size = size + HW_HASH_KEY_SIZE; 3974 vnic->rss_table = dma_alloc_coherent(&pdev->dev, 3975 vnic->rss_table_size, 3976 &vnic->rss_table_dma_addr, 3977 GFP_KERNEL); 3978 if (!vnic->rss_table) { 3979 rc = -ENOMEM; 3980 goto out; 3981 } 3982 3983 vnic->rss_hash_key = ((void *)vnic->rss_table) + size; 3984 vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size; 3985 } 3986 return 0; 3987 3988 out: 3989 return rc; 3990 } 3991 3992 static void bnxt_free_hwrm_resources(struct bnxt *bp) 3993 { 3994 struct bnxt_hwrm_wait_token *token; 3995 3996 dma_pool_destroy(bp->hwrm_dma_pool); 3997 bp->hwrm_dma_pool = NULL; 3998 3999 rcu_read_lock(); 4000 hlist_for_each_entry_rcu(token, &bp->hwrm_pending_list, node) 4001 WRITE_ONCE(token->state, BNXT_HWRM_CANCELLED); 4002 rcu_read_unlock(); 4003 } 4004 4005 static int bnxt_alloc_hwrm_resources(struct bnxt *bp) 4006 { 4007 bp->hwrm_dma_pool = dma_pool_create("bnxt_hwrm", &bp->pdev->dev, 4008 BNXT_HWRM_DMA_SIZE, 4009 BNXT_HWRM_DMA_ALIGN, 0); 4010 if (!bp->hwrm_dma_pool) 4011 return -ENOMEM; 4012 4013 INIT_HLIST_HEAD(&bp->hwrm_pending_list); 4014 4015 return 0; 4016 } 4017 4018 static void bnxt_free_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats) 4019 { 4020 kfree(stats->hw_masks); 4021 stats->hw_masks = NULL; 4022 kfree(stats->sw_stats); 4023 stats->sw_stats = NULL; 4024 if (stats->hw_stats) { 4025 dma_free_coherent(&bp->pdev->dev, stats->len, stats->hw_stats, 4026 stats->hw_stats_map); 4027 stats->hw_stats = NULL; 4028 } 4029 } 4030 4031 static int bnxt_alloc_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats, 4032 bool alloc_masks) 4033 { 4034 stats->hw_stats = dma_alloc_coherent(&bp->pdev->dev, stats->len, 4035 &stats->hw_stats_map, GFP_KERNEL); 4036 if (!stats->hw_stats) 4037 return -ENOMEM; 4038 4039 stats->sw_stats = kzalloc(stats->len, GFP_KERNEL); 4040 if (!stats->sw_stats) 4041 goto stats_mem_err; 4042 4043 if (alloc_masks) { 4044 stats->hw_masks = kzalloc(stats->len, GFP_KERNEL); 4045 if (!stats->hw_masks) 4046 goto stats_mem_err; 4047 } 4048 return 0; 4049 4050 stats_mem_err: 4051 bnxt_free_stats_mem(bp, stats); 4052 return -ENOMEM; 4053 } 4054 4055 static void bnxt_fill_masks(u64 *mask_arr, u64 mask, int count) 4056 { 4057 int i; 4058 4059 for (i = 0; i < count; i++) 4060 mask_arr[i] = mask; 4061 } 4062 4063 static void bnxt_copy_hw_masks(u64 *mask_arr, __le64 *hw_mask_arr, int count) 4064 { 4065 int i; 4066 4067 for (i = 0; i < count; i++) 4068 mask_arr[i] = le64_to_cpu(hw_mask_arr[i]); 4069 } 4070 4071 static int bnxt_hwrm_func_qstat_ext(struct bnxt *bp, 4072 struct bnxt_stats_mem *stats) 4073 { 4074 struct hwrm_func_qstats_ext_output *resp; 4075 struct hwrm_func_qstats_ext_input *req; 4076 __le64 *hw_masks; 4077 int rc; 4078 4079 if (!(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED) || 4080 !(bp->flags & BNXT_FLAG_CHIP_P5)) 4081 return -EOPNOTSUPP; 4082 4083 rc = hwrm_req_init(bp, req, HWRM_FUNC_QSTATS_EXT); 4084 if (rc) 4085 return rc; 4086 4087 req->fid = cpu_to_le16(0xffff); 4088 req->flags = FUNC_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK; 4089 4090 resp = hwrm_req_hold(bp, req); 4091 rc = hwrm_req_send(bp, req); 4092 if (!rc) { 4093 hw_masks = &resp->rx_ucast_pkts; 4094 bnxt_copy_hw_masks(stats->hw_masks, hw_masks, stats->len / 8); 4095 } 4096 hwrm_req_drop(bp, req); 4097 return rc; 4098 } 4099 4100 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags); 4101 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags); 4102 4103 static void bnxt_init_stats(struct bnxt *bp) 4104 { 4105 struct bnxt_napi *bnapi = bp->bnapi[0]; 4106 struct bnxt_cp_ring_info *cpr; 4107 struct bnxt_stats_mem *stats; 4108 __le64 *rx_stats, *tx_stats; 4109 int rc, rx_count, tx_count; 4110 u64 *rx_masks, *tx_masks; 4111 u64 mask; 4112 u8 flags; 4113 4114 cpr = &bnapi->cp_ring; 4115 stats = &cpr->stats; 4116 rc = bnxt_hwrm_func_qstat_ext(bp, stats); 4117 if (rc) { 4118 if (bp->flags & BNXT_FLAG_CHIP_P5) 4119 mask = (1ULL << 48) - 1; 4120 else 4121 mask = -1ULL; 4122 bnxt_fill_masks(stats->hw_masks, mask, stats->len / 8); 4123 } 4124 if (bp->flags & BNXT_FLAG_PORT_STATS) { 4125 stats = &bp->port_stats; 4126 rx_stats = stats->hw_stats; 4127 rx_masks = stats->hw_masks; 4128 rx_count = sizeof(struct rx_port_stats) / 8; 4129 tx_stats = rx_stats + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 4130 tx_masks = rx_masks + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 4131 tx_count = sizeof(struct tx_port_stats) / 8; 4132 4133 flags = PORT_QSTATS_REQ_FLAGS_COUNTER_MASK; 4134 rc = bnxt_hwrm_port_qstats(bp, flags); 4135 if (rc) { 4136 mask = (1ULL << 40) - 1; 4137 4138 bnxt_fill_masks(rx_masks, mask, rx_count); 4139 bnxt_fill_masks(tx_masks, mask, tx_count); 4140 } else { 4141 bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count); 4142 bnxt_copy_hw_masks(tx_masks, tx_stats, tx_count); 4143 bnxt_hwrm_port_qstats(bp, 0); 4144 } 4145 } 4146 if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) { 4147 stats = &bp->rx_port_stats_ext; 4148 rx_stats = stats->hw_stats; 4149 rx_masks = stats->hw_masks; 4150 rx_count = sizeof(struct rx_port_stats_ext) / 8; 4151 stats = &bp->tx_port_stats_ext; 4152 tx_stats = stats->hw_stats; 4153 tx_masks = stats->hw_masks; 4154 tx_count = sizeof(struct tx_port_stats_ext) / 8; 4155 4156 flags = PORT_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK; 4157 rc = bnxt_hwrm_port_qstats_ext(bp, flags); 4158 if (rc) { 4159 mask = (1ULL << 40) - 1; 4160 4161 bnxt_fill_masks(rx_masks, mask, rx_count); 4162 if (tx_stats) 4163 bnxt_fill_masks(tx_masks, mask, tx_count); 4164 } else { 4165 bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count); 4166 if (tx_stats) 4167 bnxt_copy_hw_masks(tx_masks, tx_stats, 4168 tx_count); 4169 bnxt_hwrm_port_qstats_ext(bp, 0); 4170 } 4171 } 4172 } 4173 4174 static void bnxt_free_port_stats(struct bnxt *bp) 4175 { 4176 bp->flags &= ~BNXT_FLAG_PORT_STATS; 4177 bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT; 4178 4179 bnxt_free_stats_mem(bp, &bp->port_stats); 4180 bnxt_free_stats_mem(bp, &bp->rx_port_stats_ext); 4181 bnxt_free_stats_mem(bp, &bp->tx_port_stats_ext); 4182 } 4183 4184 static void bnxt_free_ring_stats(struct bnxt *bp) 4185 { 4186 int i; 4187 4188 if (!bp->bnapi) 4189 return; 4190 4191 for (i = 0; i < bp->cp_nr_rings; i++) { 4192 struct bnxt_napi *bnapi = bp->bnapi[i]; 4193 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4194 4195 bnxt_free_stats_mem(bp, &cpr->stats); 4196 } 4197 } 4198 4199 static int bnxt_alloc_stats(struct bnxt *bp) 4200 { 4201 u32 size, i; 4202 int rc; 4203 4204 size = bp->hw_ring_stats_size; 4205 4206 for (i = 0; i < bp->cp_nr_rings; i++) { 4207 struct bnxt_napi *bnapi = bp->bnapi[i]; 4208 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4209 4210 cpr->stats.len = size; 4211 rc = bnxt_alloc_stats_mem(bp, &cpr->stats, !i); 4212 if (rc) 4213 return rc; 4214 4215 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID; 4216 } 4217 4218 if (BNXT_VF(bp) || bp->chip_num == CHIP_NUM_58700) 4219 return 0; 4220 4221 if (bp->port_stats.hw_stats) 4222 goto alloc_ext_stats; 4223 4224 bp->port_stats.len = BNXT_PORT_STATS_SIZE; 4225 rc = bnxt_alloc_stats_mem(bp, &bp->port_stats, true); 4226 if (rc) 4227 return rc; 4228 4229 bp->flags |= BNXT_FLAG_PORT_STATS; 4230 4231 alloc_ext_stats: 4232 /* Display extended statistics only if FW supports it */ 4233 if (bp->hwrm_spec_code < 0x10804 || bp->hwrm_spec_code == 0x10900) 4234 if (!(bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) 4235 return 0; 4236 4237 if (bp->rx_port_stats_ext.hw_stats) 4238 goto alloc_tx_ext_stats; 4239 4240 bp->rx_port_stats_ext.len = sizeof(struct rx_port_stats_ext); 4241 rc = bnxt_alloc_stats_mem(bp, &bp->rx_port_stats_ext, true); 4242 /* Extended stats are optional */ 4243 if (rc) 4244 return 0; 4245 4246 alloc_tx_ext_stats: 4247 if (bp->tx_port_stats_ext.hw_stats) 4248 return 0; 4249 4250 if (bp->hwrm_spec_code >= 0x10902 || 4251 (bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) { 4252 bp->tx_port_stats_ext.len = sizeof(struct tx_port_stats_ext); 4253 rc = bnxt_alloc_stats_mem(bp, &bp->tx_port_stats_ext, true); 4254 /* Extended stats are optional */ 4255 if (rc) 4256 return 0; 4257 } 4258 bp->flags |= BNXT_FLAG_PORT_STATS_EXT; 4259 return 0; 4260 } 4261 4262 static void bnxt_clear_ring_indices(struct bnxt *bp) 4263 { 4264 int i; 4265 4266 if (!bp->bnapi) 4267 return; 4268 4269 for (i = 0; i < bp->cp_nr_rings; i++) { 4270 struct bnxt_napi *bnapi = bp->bnapi[i]; 4271 struct bnxt_cp_ring_info *cpr; 4272 struct bnxt_rx_ring_info *rxr; 4273 struct bnxt_tx_ring_info *txr; 4274 4275 if (!bnapi) 4276 continue; 4277 4278 cpr = &bnapi->cp_ring; 4279 cpr->cp_raw_cons = 0; 4280 4281 txr = bnapi->tx_ring; 4282 if (txr) { 4283 txr->tx_prod = 0; 4284 txr->tx_cons = 0; 4285 } 4286 4287 rxr = bnapi->rx_ring; 4288 if (rxr) { 4289 rxr->rx_prod = 0; 4290 rxr->rx_agg_prod = 0; 4291 rxr->rx_sw_agg_prod = 0; 4292 rxr->rx_next_cons = 0; 4293 } 4294 } 4295 } 4296 4297 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit) 4298 { 4299 #ifdef CONFIG_RFS_ACCEL 4300 int i; 4301 4302 /* Under rtnl_lock and all our NAPIs have been disabled. It's 4303 * safe to delete the hash table. 4304 */ 4305 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) { 4306 struct hlist_head *head; 4307 struct hlist_node *tmp; 4308 struct bnxt_ntuple_filter *fltr; 4309 4310 head = &bp->ntp_fltr_hash_tbl[i]; 4311 hlist_for_each_entry_safe(fltr, tmp, head, hash) { 4312 hlist_del(&fltr->hash); 4313 kfree(fltr); 4314 } 4315 } 4316 if (irq_reinit) { 4317 kfree(bp->ntp_fltr_bmap); 4318 bp->ntp_fltr_bmap = NULL; 4319 } 4320 bp->ntp_fltr_count = 0; 4321 #endif 4322 } 4323 4324 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp) 4325 { 4326 #ifdef CONFIG_RFS_ACCEL 4327 int i, rc = 0; 4328 4329 if (!(bp->flags & BNXT_FLAG_RFS)) 4330 return 0; 4331 4332 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) 4333 INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]); 4334 4335 bp->ntp_fltr_count = 0; 4336 bp->ntp_fltr_bmap = kcalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR), 4337 sizeof(long), 4338 GFP_KERNEL); 4339 4340 if (!bp->ntp_fltr_bmap) 4341 rc = -ENOMEM; 4342 4343 return rc; 4344 #else 4345 return 0; 4346 #endif 4347 } 4348 4349 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init) 4350 { 4351 bnxt_free_vnic_attributes(bp); 4352 bnxt_free_tx_rings(bp); 4353 bnxt_free_rx_rings(bp); 4354 bnxt_free_cp_rings(bp); 4355 bnxt_free_all_cp_arrays(bp); 4356 bnxt_free_ntp_fltrs(bp, irq_re_init); 4357 if (irq_re_init) { 4358 bnxt_free_ring_stats(bp); 4359 if (!(bp->phy_flags & BNXT_PHY_FL_PORT_STATS_NO_RESET) || 4360 test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 4361 bnxt_free_port_stats(bp); 4362 bnxt_free_ring_grps(bp); 4363 bnxt_free_vnics(bp); 4364 kfree(bp->tx_ring_map); 4365 bp->tx_ring_map = NULL; 4366 kfree(bp->tx_ring); 4367 bp->tx_ring = NULL; 4368 kfree(bp->rx_ring); 4369 bp->rx_ring = NULL; 4370 kfree(bp->bnapi); 4371 bp->bnapi = NULL; 4372 } else { 4373 bnxt_clear_ring_indices(bp); 4374 } 4375 } 4376 4377 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init) 4378 { 4379 int i, j, rc, size, arr_size; 4380 void *bnapi; 4381 4382 if (irq_re_init) { 4383 /* Allocate bnapi mem pointer array and mem block for 4384 * all queues 4385 */ 4386 arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) * 4387 bp->cp_nr_rings); 4388 size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi)); 4389 bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL); 4390 if (!bnapi) 4391 return -ENOMEM; 4392 4393 bp->bnapi = bnapi; 4394 bnapi += arr_size; 4395 for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) { 4396 bp->bnapi[i] = bnapi; 4397 bp->bnapi[i]->index = i; 4398 bp->bnapi[i]->bp = bp; 4399 if (bp->flags & BNXT_FLAG_CHIP_P5) { 4400 struct bnxt_cp_ring_info *cpr = 4401 &bp->bnapi[i]->cp_ring; 4402 4403 cpr->cp_ring_struct.ring_mem.flags = 4404 BNXT_RMEM_RING_PTE_FLAG; 4405 } 4406 } 4407 4408 bp->rx_ring = kcalloc(bp->rx_nr_rings, 4409 sizeof(struct bnxt_rx_ring_info), 4410 GFP_KERNEL); 4411 if (!bp->rx_ring) 4412 return -ENOMEM; 4413 4414 for (i = 0; i < bp->rx_nr_rings; i++) { 4415 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 4416 4417 if (bp->flags & BNXT_FLAG_CHIP_P5) { 4418 rxr->rx_ring_struct.ring_mem.flags = 4419 BNXT_RMEM_RING_PTE_FLAG; 4420 rxr->rx_agg_ring_struct.ring_mem.flags = 4421 BNXT_RMEM_RING_PTE_FLAG; 4422 } 4423 rxr->bnapi = bp->bnapi[i]; 4424 bp->bnapi[i]->rx_ring = &bp->rx_ring[i]; 4425 } 4426 4427 bp->tx_ring = kcalloc(bp->tx_nr_rings, 4428 sizeof(struct bnxt_tx_ring_info), 4429 GFP_KERNEL); 4430 if (!bp->tx_ring) 4431 return -ENOMEM; 4432 4433 bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16), 4434 GFP_KERNEL); 4435 4436 if (!bp->tx_ring_map) 4437 return -ENOMEM; 4438 4439 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 4440 j = 0; 4441 else 4442 j = bp->rx_nr_rings; 4443 4444 for (i = 0; i < bp->tx_nr_rings; i++, j++) { 4445 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 4446 4447 if (bp->flags & BNXT_FLAG_CHIP_P5) 4448 txr->tx_ring_struct.ring_mem.flags = 4449 BNXT_RMEM_RING_PTE_FLAG; 4450 txr->bnapi = bp->bnapi[j]; 4451 bp->bnapi[j]->tx_ring = txr; 4452 bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i; 4453 if (i >= bp->tx_nr_rings_xdp) { 4454 txr->txq_index = i - bp->tx_nr_rings_xdp; 4455 bp->bnapi[j]->tx_int = bnxt_tx_int; 4456 } else { 4457 bp->bnapi[j]->flags |= BNXT_NAPI_FLAG_XDP; 4458 bp->bnapi[j]->tx_int = bnxt_tx_int_xdp; 4459 } 4460 } 4461 4462 rc = bnxt_alloc_stats(bp); 4463 if (rc) 4464 goto alloc_mem_err; 4465 bnxt_init_stats(bp); 4466 4467 rc = bnxt_alloc_ntp_fltrs(bp); 4468 if (rc) 4469 goto alloc_mem_err; 4470 4471 rc = bnxt_alloc_vnics(bp); 4472 if (rc) 4473 goto alloc_mem_err; 4474 } 4475 4476 rc = bnxt_alloc_all_cp_arrays(bp); 4477 if (rc) 4478 goto alloc_mem_err; 4479 4480 bnxt_init_ring_struct(bp); 4481 4482 rc = bnxt_alloc_rx_rings(bp); 4483 if (rc) 4484 goto alloc_mem_err; 4485 4486 rc = bnxt_alloc_tx_rings(bp); 4487 if (rc) 4488 goto alloc_mem_err; 4489 4490 rc = bnxt_alloc_cp_rings(bp); 4491 if (rc) 4492 goto alloc_mem_err; 4493 4494 bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG | 4495 BNXT_VNIC_UCAST_FLAG; 4496 rc = bnxt_alloc_vnic_attributes(bp); 4497 if (rc) 4498 goto alloc_mem_err; 4499 return 0; 4500 4501 alloc_mem_err: 4502 bnxt_free_mem(bp, true); 4503 return rc; 4504 } 4505 4506 static void bnxt_disable_int(struct bnxt *bp) 4507 { 4508 int i; 4509 4510 if (!bp->bnapi) 4511 return; 4512 4513 for (i = 0; i < bp->cp_nr_rings; i++) { 4514 struct bnxt_napi *bnapi = bp->bnapi[i]; 4515 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4516 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 4517 4518 if (ring->fw_ring_id != INVALID_HW_RING_ID) 4519 bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons); 4520 } 4521 } 4522 4523 static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n) 4524 { 4525 struct bnxt_napi *bnapi = bp->bnapi[n]; 4526 struct bnxt_cp_ring_info *cpr; 4527 4528 cpr = &bnapi->cp_ring; 4529 return cpr->cp_ring_struct.map_idx; 4530 } 4531 4532 static void bnxt_disable_int_sync(struct bnxt *bp) 4533 { 4534 int i; 4535 4536 if (!bp->irq_tbl) 4537 return; 4538 4539 atomic_inc(&bp->intr_sem); 4540 4541 bnxt_disable_int(bp); 4542 for (i = 0; i < bp->cp_nr_rings; i++) { 4543 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 4544 4545 synchronize_irq(bp->irq_tbl[map_idx].vector); 4546 } 4547 } 4548 4549 static void bnxt_enable_int(struct bnxt *bp) 4550 { 4551 int i; 4552 4553 atomic_set(&bp->intr_sem, 0); 4554 for (i = 0; i < bp->cp_nr_rings; i++) { 4555 struct bnxt_napi *bnapi = bp->bnapi[i]; 4556 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4557 4558 bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons); 4559 } 4560 } 4561 4562 int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp, unsigned long *bmap, int bmap_size, 4563 bool async_only) 4564 { 4565 DECLARE_BITMAP(async_events_bmap, 256); 4566 u32 *events = (u32 *)async_events_bmap; 4567 struct hwrm_func_drv_rgtr_output *resp; 4568 struct hwrm_func_drv_rgtr_input *req; 4569 u32 flags; 4570 int rc, i; 4571 4572 rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_RGTR); 4573 if (rc) 4574 return rc; 4575 4576 req->enables = cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE | 4577 FUNC_DRV_RGTR_REQ_ENABLES_VER | 4578 FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD); 4579 4580 req->os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX); 4581 flags = FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE; 4582 if (bp->fw_cap & BNXT_FW_CAP_HOT_RESET) 4583 flags |= FUNC_DRV_RGTR_REQ_FLAGS_HOT_RESET_SUPPORT; 4584 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) 4585 flags |= FUNC_DRV_RGTR_REQ_FLAGS_ERROR_RECOVERY_SUPPORT | 4586 FUNC_DRV_RGTR_REQ_FLAGS_MASTER_SUPPORT; 4587 req->flags = cpu_to_le32(flags); 4588 req->ver_maj_8b = DRV_VER_MAJ; 4589 req->ver_min_8b = DRV_VER_MIN; 4590 req->ver_upd_8b = DRV_VER_UPD; 4591 req->ver_maj = cpu_to_le16(DRV_VER_MAJ); 4592 req->ver_min = cpu_to_le16(DRV_VER_MIN); 4593 req->ver_upd = cpu_to_le16(DRV_VER_UPD); 4594 4595 if (BNXT_PF(bp)) { 4596 u32 data[8]; 4597 int i; 4598 4599 memset(data, 0, sizeof(data)); 4600 for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) { 4601 u16 cmd = bnxt_vf_req_snif[i]; 4602 unsigned int bit, idx; 4603 4604 idx = cmd / 32; 4605 bit = cmd % 32; 4606 data[idx] |= 1 << bit; 4607 } 4608 4609 for (i = 0; i < 8; i++) 4610 req->vf_req_fwd[i] = cpu_to_le32(data[i]); 4611 4612 req->enables |= 4613 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD); 4614 } 4615 4616 if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE) 4617 req->flags |= cpu_to_le32( 4618 FUNC_DRV_RGTR_REQ_FLAGS_FLOW_HANDLE_64BIT_MODE); 4619 4620 memset(async_events_bmap, 0, sizeof(async_events_bmap)); 4621 for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++) { 4622 u16 event_id = bnxt_async_events_arr[i]; 4623 4624 if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY && 4625 !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 4626 continue; 4627 __set_bit(bnxt_async_events_arr[i], async_events_bmap); 4628 } 4629 if (bmap && bmap_size) { 4630 for (i = 0; i < bmap_size; i++) { 4631 if (test_bit(i, bmap)) 4632 __set_bit(i, async_events_bmap); 4633 } 4634 } 4635 for (i = 0; i < 8; i++) 4636 req->async_event_fwd[i] |= cpu_to_le32(events[i]); 4637 4638 if (async_only) 4639 req->enables = 4640 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD); 4641 4642 resp = hwrm_req_hold(bp, req); 4643 rc = hwrm_req_send(bp, req); 4644 if (!rc) { 4645 set_bit(BNXT_STATE_DRV_REGISTERED, &bp->state); 4646 if (resp->flags & 4647 cpu_to_le32(FUNC_DRV_RGTR_RESP_FLAGS_IF_CHANGE_SUPPORTED)) 4648 bp->fw_cap |= BNXT_FW_CAP_IF_CHANGE; 4649 } 4650 hwrm_req_drop(bp, req); 4651 return rc; 4652 } 4653 4654 static int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp) 4655 { 4656 struct hwrm_func_drv_unrgtr_input *req; 4657 int rc; 4658 4659 if (!test_and_clear_bit(BNXT_STATE_DRV_REGISTERED, &bp->state)) 4660 return 0; 4661 4662 rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_UNRGTR); 4663 if (rc) 4664 return rc; 4665 return hwrm_req_send(bp, req); 4666 } 4667 4668 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type) 4669 { 4670 struct hwrm_tunnel_dst_port_free_input *req; 4671 int rc; 4672 4673 if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN && 4674 bp->vxlan_fw_dst_port_id == INVALID_HW_RING_ID) 4675 return 0; 4676 if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE && 4677 bp->nge_fw_dst_port_id == INVALID_HW_RING_ID) 4678 return 0; 4679 4680 rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_FREE); 4681 if (rc) 4682 return rc; 4683 4684 req->tunnel_type = tunnel_type; 4685 4686 switch (tunnel_type) { 4687 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN: 4688 req->tunnel_dst_port_id = cpu_to_le16(bp->vxlan_fw_dst_port_id); 4689 bp->vxlan_port = 0; 4690 bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID; 4691 break; 4692 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE: 4693 req->tunnel_dst_port_id = cpu_to_le16(bp->nge_fw_dst_port_id); 4694 bp->nge_port = 0; 4695 bp->nge_fw_dst_port_id = INVALID_HW_RING_ID; 4696 break; 4697 default: 4698 break; 4699 } 4700 4701 rc = hwrm_req_send(bp, req); 4702 if (rc) 4703 netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n", 4704 rc); 4705 return rc; 4706 } 4707 4708 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port, 4709 u8 tunnel_type) 4710 { 4711 struct hwrm_tunnel_dst_port_alloc_output *resp; 4712 struct hwrm_tunnel_dst_port_alloc_input *req; 4713 int rc; 4714 4715 rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_ALLOC); 4716 if (rc) 4717 return rc; 4718 4719 req->tunnel_type = tunnel_type; 4720 req->tunnel_dst_port_val = port; 4721 4722 resp = hwrm_req_hold(bp, req); 4723 rc = hwrm_req_send(bp, req); 4724 if (rc) { 4725 netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n", 4726 rc); 4727 goto err_out; 4728 } 4729 4730 switch (tunnel_type) { 4731 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN: 4732 bp->vxlan_port = port; 4733 bp->vxlan_fw_dst_port_id = 4734 le16_to_cpu(resp->tunnel_dst_port_id); 4735 break; 4736 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE: 4737 bp->nge_port = port; 4738 bp->nge_fw_dst_port_id = le16_to_cpu(resp->tunnel_dst_port_id); 4739 break; 4740 default: 4741 break; 4742 } 4743 4744 err_out: 4745 hwrm_req_drop(bp, req); 4746 return rc; 4747 } 4748 4749 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id) 4750 { 4751 struct hwrm_cfa_l2_set_rx_mask_input *req; 4752 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 4753 int rc; 4754 4755 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_SET_RX_MASK); 4756 if (rc) 4757 return rc; 4758 4759 req->vnic_id = cpu_to_le32(vnic->fw_vnic_id); 4760 req->num_mc_entries = cpu_to_le32(vnic->mc_list_count); 4761 req->mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping); 4762 req->mask = cpu_to_le32(vnic->rx_mask); 4763 return hwrm_req_send_silent(bp, req); 4764 } 4765 4766 #ifdef CONFIG_RFS_ACCEL 4767 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp, 4768 struct bnxt_ntuple_filter *fltr) 4769 { 4770 struct hwrm_cfa_ntuple_filter_free_input *req; 4771 int rc; 4772 4773 rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_FREE); 4774 if (rc) 4775 return rc; 4776 4777 req->ntuple_filter_id = fltr->filter_id; 4778 return hwrm_req_send(bp, req); 4779 } 4780 4781 #define BNXT_NTP_FLTR_FLAGS \ 4782 (CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID | \ 4783 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE | \ 4784 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR | \ 4785 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE | \ 4786 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR | \ 4787 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK | \ 4788 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR | \ 4789 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK | \ 4790 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL | \ 4791 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT | \ 4792 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK | \ 4793 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT | \ 4794 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK | \ 4795 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID) 4796 4797 #define BNXT_NTP_TUNNEL_FLTR_FLAG \ 4798 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE 4799 4800 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp, 4801 struct bnxt_ntuple_filter *fltr) 4802 { 4803 struct hwrm_cfa_ntuple_filter_alloc_output *resp; 4804 struct hwrm_cfa_ntuple_filter_alloc_input *req; 4805 struct flow_keys *keys = &fltr->fkeys; 4806 struct bnxt_vnic_info *vnic; 4807 u32 flags = 0; 4808 int rc; 4809 4810 rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_ALLOC); 4811 if (rc) 4812 return rc; 4813 4814 req->l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx]; 4815 4816 if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) { 4817 flags = CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DEST_RFS_RING_IDX; 4818 req->dst_id = cpu_to_le16(fltr->rxq); 4819 } else { 4820 vnic = &bp->vnic_info[fltr->rxq + 1]; 4821 req->dst_id = cpu_to_le16(vnic->fw_vnic_id); 4822 } 4823 req->flags = cpu_to_le32(flags); 4824 req->enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS); 4825 4826 req->ethertype = htons(ETH_P_IP); 4827 memcpy(req->src_macaddr, fltr->src_mac_addr, ETH_ALEN); 4828 req->ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4; 4829 req->ip_protocol = keys->basic.ip_proto; 4830 4831 if (keys->basic.n_proto == htons(ETH_P_IPV6)) { 4832 int i; 4833 4834 req->ethertype = htons(ETH_P_IPV6); 4835 req->ip_addr_type = 4836 CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6; 4837 *(struct in6_addr *)&req->src_ipaddr[0] = 4838 keys->addrs.v6addrs.src; 4839 *(struct in6_addr *)&req->dst_ipaddr[0] = 4840 keys->addrs.v6addrs.dst; 4841 for (i = 0; i < 4; i++) { 4842 req->src_ipaddr_mask[i] = cpu_to_be32(0xffffffff); 4843 req->dst_ipaddr_mask[i] = cpu_to_be32(0xffffffff); 4844 } 4845 } else { 4846 req->src_ipaddr[0] = keys->addrs.v4addrs.src; 4847 req->src_ipaddr_mask[0] = cpu_to_be32(0xffffffff); 4848 req->dst_ipaddr[0] = keys->addrs.v4addrs.dst; 4849 req->dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff); 4850 } 4851 if (keys->control.flags & FLOW_DIS_ENCAPSULATION) { 4852 req->enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG); 4853 req->tunnel_type = 4854 CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL; 4855 } 4856 4857 req->src_port = keys->ports.src; 4858 req->src_port_mask = cpu_to_be16(0xffff); 4859 req->dst_port = keys->ports.dst; 4860 req->dst_port_mask = cpu_to_be16(0xffff); 4861 4862 resp = hwrm_req_hold(bp, req); 4863 rc = hwrm_req_send(bp, req); 4864 if (!rc) 4865 fltr->filter_id = resp->ntuple_filter_id; 4866 hwrm_req_drop(bp, req); 4867 return rc; 4868 } 4869 #endif 4870 4871 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx, 4872 u8 *mac_addr) 4873 { 4874 struct hwrm_cfa_l2_filter_alloc_output *resp; 4875 struct hwrm_cfa_l2_filter_alloc_input *req; 4876 int rc; 4877 4878 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_ALLOC); 4879 if (rc) 4880 return rc; 4881 4882 req->flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX); 4883 if (!BNXT_CHIP_TYPE_NITRO_A0(bp)) 4884 req->flags |= 4885 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST); 4886 req->dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id); 4887 req->enables = 4888 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR | 4889 CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID | 4890 CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK); 4891 memcpy(req->l2_addr, mac_addr, ETH_ALEN); 4892 req->l2_addr_mask[0] = 0xff; 4893 req->l2_addr_mask[1] = 0xff; 4894 req->l2_addr_mask[2] = 0xff; 4895 req->l2_addr_mask[3] = 0xff; 4896 req->l2_addr_mask[4] = 0xff; 4897 req->l2_addr_mask[5] = 0xff; 4898 4899 resp = hwrm_req_hold(bp, req); 4900 rc = hwrm_req_send(bp, req); 4901 if (!rc) 4902 bp->vnic_info[vnic_id].fw_l2_filter_id[idx] = 4903 resp->l2_filter_id; 4904 hwrm_req_drop(bp, req); 4905 return rc; 4906 } 4907 4908 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp) 4909 { 4910 struct hwrm_cfa_l2_filter_free_input *req; 4911 u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */ 4912 int rc; 4913 4914 /* Any associated ntuple filters will also be cleared by firmware. */ 4915 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE); 4916 if (rc) 4917 return rc; 4918 hwrm_req_hold(bp, req); 4919 for (i = 0; i < num_of_vnics; i++) { 4920 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 4921 4922 for (j = 0; j < vnic->uc_filter_count; j++) { 4923 req->l2_filter_id = vnic->fw_l2_filter_id[j]; 4924 4925 rc = hwrm_req_send(bp, req); 4926 } 4927 vnic->uc_filter_count = 0; 4928 } 4929 hwrm_req_drop(bp, req); 4930 return rc; 4931 } 4932 4933 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags) 4934 { 4935 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 4936 u16 max_aggs = VNIC_TPA_CFG_REQ_MAX_AGGS_MAX; 4937 struct hwrm_vnic_tpa_cfg_input *req; 4938 int rc; 4939 4940 if (vnic->fw_vnic_id == INVALID_HW_RING_ID) 4941 return 0; 4942 4943 rc = hwrm_req_init(bp, req, HWRM_VNIC_TPA_CFG); 4944 if (rc) 4945 return rc; 4946 4947 if (tpa_flags) { 4948 u16 mss = bp->dev->mtu - 40; 4949 u32 nsegs, n, segs = 0, flags; 4950 4951 flags = VNIC_TPA_CFG_REQ_FLAGS_TPA | 4952 VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA | 4953 VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE | 4954 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN | 4955 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ; 4956 if (tpa_flags & BNXT_FLAG_GRO) 4957 flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO; 4958 4959 req->flags = cpu_to_le32(flags); 4960 4961 req->enables = 4962 cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS | 4963 VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS | 4964 VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN); 4965 4966 /* Number of segs are log2 units, and first packet is not 4967 * included as part of this units. 4968 */ 4969 if (mss <= BNXT_RX_PAGE_SIZE) { 4970 n = BNXT_RX_PAGE_SIZE / mss; 4971 nsegs = (MAX_SKB_FRAGS - 1) * n; 4972 } else { 4973 n = mss / BNXT_RX_PAGE_SIZE; 4974 if (mss & (BNXT_RX_PAGE_SIZE - 1)) 4975 n++; 4976 nsegs = (MAX_SKB_FRAGS - n) / n; 4977 } 4978 4979 if (bp->flags & BNXT_FLAG_CHIP_P5) { 4980 segs = MAX_TPA_SEGS_P5; 4981 max_aggs = bp->max_tpa; 4982 } else { 4983 segs = ilog2(nsegs); 4984 } 4985 req->max_agg_segs = cpu_to_le16(segs); 4986 req->max_aggs = cpu_to_le16(max_aggs); 4987 4988 req->min_agg_len = cpu_to_le32(512); 4989 } 4990 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 4991 4992 return hwrm_req_send(bp, req); 4993 } 4994 4995 static u16 bnxt_cp_ring_from_grp(struct bnxt *bp, struct bnxt_ring_struct *ring) 4996 { 4997 struct bnxt_ring_grp_info *grp_info; 4998 4999 grp_info = &bp->grp_info[ring->grp_idx]; 5000 return grp_info->cp_fw_ring_id; 5001 } 5002 5003 static u16 bnxt_cp_ring_for_rx(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 5004 { 5005 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5006 struct bnxt_napi *bnapi = rxr->bnapi; 5007 struct bnxt_cp_ring_info *cpr; 5008 5009 cpr = bnapi->cp_ring.cp_ring_arr[BNXT_RX_HDL]; 5010 return cpr->cp_ring_struct.fw_ring_id; 5011 } else { 5012 return bnxt_cp_ring_from_grp(bp, &rxr->rx_ring_struct); 5013 } 5014 } 5015 5016 static u16 bnxt_cp_ring_for_tx(struct bnxt *bp, struct bnxt_tx_ring_info *txr) 5017 { 5018 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5019 struct bnxt_napi *bnapi = txr->bnapi; 5020 struct bnxt_cp_ring_info *cpr; 5021 5022 cpr = bnapi->cp_ring.cp_ring_arr[BNXT_TX_HDL]; 5023 return cpr->cp_ring_struct.fw_ring_id; 5024 } else { 5025 return bnxt_cp_ring_from_grp(bp, &txr->tx_ring_struct); 5026 } 5027 } 5028 5029 static int bnxt_alloc_rss_indir_tbl(struct bnxt *bp) 5030 { 5031 int entries; 5032 5033 if (bp->flags & BNXT_FLAG_CHIP_P5) 5034 entries = BNXT_MAX_RSS_TABLE_ENTRIES_P5; 5035 else 5036 entries = HW_HASH_INDEX_SIZE; 5037 5038 bp->rss_indir_tbl_entries = entries; 5039 bp->rss_indir_tbl = kmalloc_array(entries, sizeof(*bp->rss_indir_tbl), 5040 GFP_KERNEL); 5041 if (!bp->rss_indir_tbl) 5042 return -ENOMEM; 5043 return 0; 5044 } 5045 5046 static void bnxt_set_dflt_rss_indir_tbl(struct bnxt *bp) 5047 { 5048 u16 max_rings, max_entries, pad, i; 5049 5050 if (!bp->rx_nr_rings) 5051 return; 5052 5053 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 5054 max_rings = bp->rx_nr_rings - 1; 5055 else 5056 max_rings = bp->rx_nr_rings; 5057 5058 max_entries = bnxt_get_rxfh_indir_size(bp->dev); 5059 5060 for (i = 0; i < max_entries; i++) 5061 bp->rss_indir_tbl[i] = ethtool_rxfh_indir_default(i, max_rings); 5062 5063 pad = bp->rss_indir_tbl_entries - max_entries; 5064 if (pad) 5065 memset(&bp->rss_indir_tbl[i], 0, pad * sizeof(u16)); 5066 } 5067 5068 static u16 bnxt_get_max_rss_ring(struct bnxt *bp) 5069 { 5070 u16 i, tbl_size, max_ring = 0; 5071 5072 if (!bp->rss_indir_tbl) 5073 return 0; 5074 5075 tbl_size = bnxt_get_rxfh_indir_size(bp->dev); 5076 for (i = 0; i < tbl_size; i++) 5077 max_ring = max(max_ring, bp->rss_indir_tbl[i]); 5078 return max_ring; 5079 } 5080 5081 int bnxt_get_nr_rss_ctxs(struct bnxt *bp, int rx_rings) 5082 { 5083 if (bp->flags & BNXT_FLAG_CHIP_P5) 5084 return DIV_ROUND_UP(rx_rings, BNXT_RSS_TABLE_ENTRIES_P5); 5085 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 5086 return 2; 5087 return 1; 5088 } 5089 5090 static void __bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic) 5091 { 5092 bool no_rss = !(vnic->flags & BNXT_VNIC_RSS_FLAG); 5093 u16 i, j; 5094 5095 /* Fill the RSS indirection table with ring group ids */ 5096 for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++) { 5097 if (!no_rss) 5098 j = bp->rss_indir_tbl[i]; 5099 vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]); 5100 } 5101 } 5102 5103 static void __bnxt_fill_hw_rss_tbl_p5(struct bnxt *bp, 5104 struct bnxt_vnic_info *vnic) 5105 { 5106 __le16 *ring_tbl = vnic->rss_table; 5107 struct bnxt_rx_ring_info *rxr; 5108 u16 tbl_size, i; 5109 5110 tbl_size = bnxt_get_rxfh_indir_size(bp->dev); 5111 5112 for (i = 0; i < tbl_size; i++) { 5113 u16 ring_id, j; 5114 5115 j = bp->rss_indir_tbl[i]; 5116 rxr = &bp->rx_ring[j]; 5117 5118 ring_id = rxr->rx_ring_struct.fw_ring_id; 5119 *ring_tbl++ = cpu_to_le16(ring_id); 5120 ring_id = bnxt_cp_ring_for_rx(bp, rxr); 5121 *ring_tbl++ = cpu_to_le16(ring_id); 5122 } 5123 } 5124 5125 static void bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic) 5126 { 5127 if (bp->flags & BNXT_FLAG_CHIP_P5) 5128 __bnxt_fill_hw_rss_tbl_p5(bp, vnic); 5129 else 5130 __bnxt_fill_hw_rss_tbl(bp, vnic); 5131 } 5132 5133 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss) 5134 { 5135 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5136 struct hwrm_vnic_rss_cfg_input *req; 5137 int rc; 5138 5139 if ((bp->flags & BNXT_FLAG_CHIP_P5) || 5140 vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID) 5141 return 0; 5142 5143 rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG); 5144 if (rc) 5145 return rc; 5146 5147 if (set_rss) { 5148 bnxt_fill_hw_rss_tbl(bp, vnic); 5149 req->hash_type = cpu_to_le32(bp->rss_hash_cfg); 5150 req->hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT; 5151 req->ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr); 5152 req->hash_key_tbl_addr = 5153 cpu_to_le64(vnic->rss_hash_key_dma_addr); 5154 } 5155 req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 5156 return hwrm_req_send(bp, req); 5157 } 5158 5159 static int bnxt_hwrm_vnic_set_rss_p5(struct bnxt *bp, u16 vnic_id, bool set_rss) 5160 { 5161 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5162 struct hwrm_vnic_rss_cfg_input *req; 5163 dma_addr_t ring_tbl_map; 5164 u32 i, nr_ctxs; 5165 int rc; 5166 5167 rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG); 5168 if (rc) 5169 return rc; 5170 5171 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 5172 if (!set_rss) 5173 return hwrm_req_send(bp, req); 5174 5175 bnxt_fill_hw_rss_tbl(bp, vnic); 5176 req->hash_type = cpu_to_le32(bp->rss_hash_cfg); 5177 req->hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT; 5178 req->hash_key_tbl_addr = cpu_to_le64(vnic->rss_hash_key_dma_addr); 5179 ring_tbl_map = vnic->rss_table_dma_addr; 5180 nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings); 5181 5182 hwrm_req_hold(bp, req); 5183 for (i = 0; i < nr_ctxs; ring_tbl_map += BNXT_RSS_TABLE_SIZE_P5, i++) { 5184 req->ring_grp_tbl_addr = cpu_to_le64(ring_tbl_map); 5185 req->ring_table_pair_index = i; 5186 req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[i]); 5187 rc = hwrm_req_send(bp, req); 5188 if (rc) 5189 goto exit; 5190 } 5191 5192 exit: 5193 hwrm_req_drop(bp, req); 5194 return rc; 5195 } 5196 5197 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id) 5198 { 5199 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5200 struct hwrm_vnic_plcmodes_cfg_input *req; 5201 int rc; 5202 5203 rc = hwrm_req_init(bp, req, HWRM_VNIC_PLCMODES_CFG); 5204 if (rc) 5205 return rc; 5206 5207 req->flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT | 5208 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 | 5209 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6); 5210 req->enables = 5211 cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID | 5212 VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID); 5213 /* thresholds not implemented in firmware yet */ 5214 req->jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh); 5215 req->hds_threshold = cpu_to_le16(bp->rx_copy_thresh); 5216 req->vnic_id = cpu_to_le32(vnic->fw_vnic_id); 5217 return hwrm_req_send(bp, req); 5218 } 5219 5220 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id, 5221 u16 ctx_idx) 5222 { 5223 struct hwrm_vnic_rss_cos_lb_ctx_free_input *req; 5224 5225 if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_FREE)) 5226 return; 5227 5228 req->rss_cos_lb_ctx_id = 5229 cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]); 5230 5231 hwrm_req_send(bp, req); 5232 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID; 5233 } 5234 5235 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp) 5236 { 5237 int i, j; 5238 5239 for (i = 0; i < bp->nr_vnics; i++) { 5240 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 5241 5242 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) { 5243 if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID) 5244 bnxt_hwrm_vnic_ctx_free_one(bp, i, j); 5245 } 5246 } 5247 bp->rsscos_nr_ctxs = 0; 5248 } 5249 5250 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx) 5251 { 5252 struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp; 5253 struct hwrm_vnic_rss_cos_lb_ctx_alloc_input *req; 5254 int rc; 5255 5256 rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC); 5257 if (rc) 5258 return rc; 5259 5260 resp = hwrm_req_hold(bp, req); 5261 rc = hwrm_req_send(bp, req); 5262 if (!rc) 5263 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = 5264 le16_to_cpu(resp->rss_cos_lb_ctx_id); 5265 hwrm_req_drop(bp, req); 5266 5267 return rc; 5268 } 5269 5270 static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp) 5271 { 5272 if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP) 5273 return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE; 5274 return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE; 5275 } 5276 5277 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id) 5278 { 5279 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5280 struct hwrm_vnic_cfg_input *req; 5281 unsigned int ring = 0, grp_idx; 5282 u16 def_vlan = 0; 5283 int rc; 5284 5285 rc = hwrm_req_init(bp, req, HWRM_VNIC_CFG); 5286 if (rc) 5287 return rc; 5288 5289 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5290 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0]; 5291 5292 req->default_rx_ring_id = 5293 cpu_to_le16(rxr->rx_ring_struct.fw_ring_id); 5294 req->default_cmpl_ring_id = 5295 cpu_to_le16(bnxt_cp_ring_for_rx(bp, rxr)); 5296 req->enables = 5297 cpu_to_le32(VNIC_CFG_REQ_ENABLES_DEFAULT_RX_RING_ID | 5298 VNIC_CFG_REQ_ENABLES_DEFAULT_CMPL_RING_ID); 5299 goto vnic_mru; 5300 } 5301 req->enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP); 5302 /* Only RSS support for now TBD: COS & LB */ 5303 if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) { 5304 req->rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 5305 req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE | 5306 VNIC_CFG_REQ_ENABLES_MRU); 5307 } else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) { 5308 req->rss_rule = 5309 cpu_to_le16(bp->vnic_info[0].fw_rss_cos_lb_ctx[0]); 5310 req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE | 5311 VNIC_CFG_REQ_ENABLES_MRU); 5312 req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE); 5313 } else { 5314 req->rss_rule = cpu_to_le16(0xffff); 5315 } 5316 5317 if (BNXT_CHIP_TYPE_NITRO_A0(bp) && 5318 (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) { 5319 req->cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]); 5320 req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE); 5321 } else { 5322 req->cos_rule = cpu_to_le16(0xffff); 5323 } 5324 5325 if (vnic->flags & BNXT_VNIC_RSS_FLAG) 5326 ring = 0; 5327 else if (vnic->flags & BNXT_VNIC_RFS_FLAG) 5328 ring = vnic_id - 1; 5329 else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp)) 5330 ring = bp->rx_nr_rings - 1; 5331 5332 grp_idx = bp->rx_ring[ring].bnapi->index; 5333 req->dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id); 5334 req->lb_rule = cpu_to_le16(0xffff); 5335 vnic_mru: 5336 req->mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + VLAN_HLEN); 5337 5338 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 5339 #ifdef CONFIG_BNXT_SRIOV 5340 if (BNXT_VF(bp)) 5341 def_vlan = bp->vf.vlan; 5342 #endif 5343 if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan) 5344 req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE); 5345 if (!vnic_id && bnxt_ulp_registered(bp->edev, BNXT_ROCE_ULP)) 5346 req->flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp)); 5347 5348 return hwrm_req_send(bp, req); 5349 } 5350 5351 static void bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id) 5352 { 5353 if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) { 5354 struct hwrm_vnic_free_input *req; 5355 5356 if (hwrm_req_init(bp, req, HWRM_VNIC_FREE)) 5357 return; 5358 5359 req->vnic_id = 5360 cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id); 5361 5362 hwrm_req_send(bp, req); 5363 bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID; 5364 } 5365 } 5366 5367 static void bnxt_hwrm_vnic_free(struct bnxt *bp) 5368 { 5369 u16 i; 5370 5371 for (i = 0; i < bp->nr_vnics; i++) 5372 bnxt_hwrm_vnic_free_one(bp, i); 5373 } 5374 5375 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id, 5376 unsigned int start_rx_ring_idx, 5377 unsigned int nr_rings) 5378 { 5379 unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings; 5380 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5381 struct hwrm_vnic_alloc_output *resp; 5382 struct hwrm_vnic_alloc_input *req; 5383 int rc; 5384 5385 rc = hwrm_req_init(bp, req, HWRM_VNIC_ALLOC); 5386 if (rc) 5387 return rc; 5388 5389 if (bp->flags & BNXT_FLAG_CHIP_P5) 5390 goto vnic_no_ring_grps; 5391 5392 /* map ring groups to this vnic */ 5393 for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) { 5394 grp_idx = bp->rx_ring[i].bnapi->index; 5395 if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) { 5396 netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n", 5397 j, nr_rings); 5398 break; 5399 } 5400 vnic->fw_grp_ids[j] = bp->grp_info[grp_idx].fw_grp_id; 5401 } 5402 5403 vnic_no_ring_grps: 5404 for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++) 5405 vnic->fw_rss_cos_lb_ctx[i] = INVALID_HW_RING_ID; 5406 if (vnic_id == 0) 5407 req->flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT); 5408 5409 resp = hwrm_req_hold(bp, req); 5410 rc = hwrm_req_send(bp, req); 5411 if (!rc) 5412 vnic->fw_vnic_id = le32_to_cpu(resp->vnic_id); 5413 hwrm_req_drop(bp, req); 5414 return rc; 5415 } 5416 5417 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp) 5418 { 5419 struct hwrm_vnic_qcaps_output *resp; 5420 struct hwrm_vnic_qcaps_input *req; 5421 int rc; 5422 5423 bp->hw_ring_stats_size = sizeof(struct ctx_hw_stats); 5424 bp->flags &= ~(BNXT_FLAG_NEW_RSS_CAP | BNXT_FLAG_ROCE_MIRROR_CAP); 5425 if (bp->hwrm_spec_code < 0x10600) 5426 return 0; 5427 5428 rc = hwrm_req_init(bp, req, HWRM_VNIC_QCAPS); 5429 if (rc) 5430 return rc; 5431 5432 resp = hwrm_req_hold(bp, req); 5433 rc = hwrm_req_send(bp, req); 5434 if (!rc) { 5435 u32 flags = le32_to_cpu(resp->flags); 5436 5437 if (!(bp->flags & BNXT_FLAG_CHIP_P5) && 5438 (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP)) 5439 bp->flags |= BNXT_FLAG_NEW_RSS_CAP; 5440 if (flags & 5441 VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP) 5442 bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP; 5443 5444 /* Older P5 fw before EXT_HW_STATS support did not set 5445 * VLAN_STRIP_CAP properly. 5446 */ 5447 if ((flags & VNIC_QCAPS_RESP_FLAGS_VLAN_STRIP_CAP) || 5448 (BNXT_CHIP_P5_THOR(bp) && 5449 !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))) 5450 bp->fw_cap |= BNXT_FW_CAP_VLAN_RX_STRIP; 5451 bp->max_tpa_v2 = le16_to_cpu(resp->max_aggs_supported); 5452 if (bp->max_tpa_v2) { 5453 if (BNXT_CHIP_P5_THOR(bp)) 5454 bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5; 5455 else 5456 bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5_SR2; 5457 } 5458 } 5459 hwrm_req_drop(bp, req); 5460 return rc; 5461 } 5462 5463 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp) 5464 { 5465 struct hwrm_ring_grp_alloc_output *resp; 5466 struct hwrm_ring_grp_alloc_input *req; 5467 int rc; 5468 u16 i; 5469 5470 if (bp->flags & BNXT_FLAG_CHIP_P5) 5471 return 0; 5472 5473 rc = hwrm_req_init(bp, req, HWRM_RING_GRP_ALLOC); 5474 if (rc) 5475 return rc; 5476 5477 resp = hwrm_req_hold(bp, req); 5478 for (i = 0; i < bp->rx_nr_rings; i++) { 5479 unsigned int grp_idx = bp->rx_ring[i].bnapi->index; 5480 5481 req->cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id); 5482 req->rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id); 5483 req->ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id); 5484 req->sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx); 5485 5486 rc = hwrm_req_send(bp, req); 5487 5488 if (rc) 5489 break; 5490 5491 bp->grp_info[grp_idx].fw_grp_id = 5492 le32_to_cpu(resp->ring_group_id); 5493 } 5494 hwrm_req_drop(bp, req); 5495 return rc; 5496 } 5497 5498 static void bnxt_hwrm_ring_grp_free(struct bnxt *bp) 5499 { 5500 struct hwrm_ring_grp_free_input *req; 5501 u16 i; 5502 5503 if (!bp->grp_info || (bp->flags & BNXT_FLAG_CHIP_P5)) 5504 return; 5505 5506 if (hwrm_req_init(bp, req, HWRM_RING_GRP_FREE)) 5507 return; 5508 5509 hwrm_req_hold(bp, req); 5510 for (i = 0; i < bp->cp_nr_rings; i++) { 5511 if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID) 5512 continue; 5513 req->ring_group_id = 5514 cpu_to_le32(bp->grp_info[i].fw_grp_id); 5515 5516 hwrm_req_send(bp, req); 5517 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID; 5518 } 5519 hwrm_req_drop(bp, req); 5520 } 5521 5522 static int hwrm_ring_alloc_send_msg(struct bnxt *bp, 5523 struct bnxt_ring_struct *ring, 5524 u32 ring_type, u32 map_index) 5525 { 5526 struct hwrm_ring_alloc_output *resp; 5527 struct hwrm_ring_alloc_input *req; 5528 struct bnxt_ring_mem_info *rmem = &ring->ring_mem; 5529 struct bnxt_ring_grp_info *grp_info; 5530 int rc, err = 0; 5531 u16 ring_id; 5532 5533 rc = hwrm_req_init(bp, req, HWRM_RING_ALLOC); 5534 if (rc) 5535 goto exit; 5536 5537 req->enables = 0; 5538 if (rmem->nr_pages > 1) { 5539 req->page_tbl_addr = cpu_to_le64(rmem->pg_tbl_map); 5540 /* Page size is in log2 units */ 5541 req->page_size = BNXT_PAGE_SHIFT; 5542 req->page_tbl_depth = 1; 5543 } else { 5544 req->page_tbl_addr = cpu_to_le64(rmem->dma_arr[0]); 5545 } 5546 req->fbo = 0; 5547 /* Association of ring index with doorbell index and MSIX number */ 5548 req->logical_id = cpu_to_le16(map_index); 5549 5550 switch (ring_type) { 5551 case HWRM_RING_ALLOC_TX: { 5552 struct bnxt_tx_ring_info *txr; 5553 5554 txr = container_of(ring, struct bnxt_tx_ring_info, 5555 tx_ring_struct); 5556 req->ring_type = RING_ALLOC_REQ_RING_TYPE_TX; 5557 /* Association of transmit ring with completion ring */ 5558 grp_info = &bp->grp_info[ring->grp_idx]; 5559 req->cmpl_ring_id = cpu_to_le16(bnxt_cp_ring_for_tx(bp, txr)); 5560 req->length = cpu_to_le32(bp->tx_ring_mask + 1); 5561 req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 5562 req->queue_id = cpu_to_le16(ring->queue_id); 5563 break; 5564 } 5565 case HWRM_RING_ALLOC_RX: 5566 req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX; 5567 req->length = cpu_to_le32(bp->rx_ring_mask + 1); 5568 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5569 u16 flags = 0; 5570 5571 /* Association of rx ring with stats context */ 5572 grp_info = &bp->grp_info[ring->grp_idx]; 5573 req->rx_buf_size = cpu_to_le16(bp->rx_buf_use_size); 5574 req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 5575 req->enables |= cpu_to_le32( 5576 RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID); 5577 if (NET_IP_ALIGN == 2) 5578 flags = RING_ALLOC_REQ_FLAGS_RX_SOP_PAD; 5579 req->flags = cpu_to_le16(flags); 5580 } 5581 break; 5582 case HWRM_RING_ALLOC_AGG: 5583 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5584 req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX_AGG; 5585 /* Association of agg ring with rx ring */ 5586 grp_info = &bp->grp_info[ring->grp_idx]; 5587 req->rx_ring_id = cpu_to_le16(grp_info->rx_fw_ring_id); 5588 req->rx_buf_size = cpu_to_le16(BNXT_RX_PAGE_SIZE); 5589 req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 5590 req->enables |= cpu_to_le32( 5591 RING_ALLOC_REQ_ENABLES_RX_RING_ID_VALID | 5592 RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID); 5593 } else { 5594 req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX; 5595 } 5596 req->length = cpu_to_le32(bp->rx_agg_ring_mask + 1); 5597 break; 5598 case HWRM_RING_ALLOC_CMPL: 5599 req->ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL; 5600 req->length = cpu_to_le32(bp->cp_ring_mask + 1); 5601 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5602 /* Association of cp ring with nq */ 5603 grp_info = &bp->grp_info[map_index]; 5604 req->nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id); 5605 req->cq_handle = cpu_to_le64(ring->handle); 5606 req->enables |= cpu_to_le32( 5607 RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID); 5608 } else if (bp->flags & BNXT_FLAG_USING_MSIX) { 5609 req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX; 5610 } 5611 break; 5612 case HWRM_RING_ALLOC_NQ: 5613 req->ring_type = RING_ALLOC_REQ_RING_TYPE_NQ; 5614 req->length = cpu_to_le32(bp->cp_ring_mask + 1); 5615 if (bp->flags & BNXT_FLAG_USING_MSIX) 5616 req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX; 5617 break; 5618 default: 5619 netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n", 5620 ring_type); 5621 return -1; 5622 } 5623 5624 resp = hwrm_req_hold(bp, req); 5625 rc = hwrm_req_send(bp, req); 5626 err = le16_to_cpu(resp->error_code); 5627 ring_id = le16_to_cpu(resp->ring_id); 5628 hwrm_req_drop(bp, req); 5629 5630 exit: 5631 if (rc || err) { 5632 netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n", 5633 ring_type, rc, err); 5634 return -EIO; 5635 } 5636 ring->fw_ring_id = ring_id; 5637 return rc; 5638 } 5639 5640 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx) 5641 { 5642 int rc; 5643 5644 if (BNXT_PF(bp)) { 5645 struct hwrm_func_cfg_input *req; 5646 5647 rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG); 5648 if (rc) 5649 return rc; 5650 5651 req->fid = cpu_to_le16(0xffff); 5652 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR); 5653 req->async_event_cr = cpu_to_le16(idx); 5654 return hwrm_req_send(bp, req); 5655 } else { 5656 struct hwrm_func_vf_cfg_input *req; 5657 5658 rc = hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG); 5659 if (rc) 5660 return rc; 5661 5662 req->enables = 5663 cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR); 5664 req->async_event_cr = cpu_to_le16(idx); 5665 return hwrm_req_send(bp, req); 5666 } 5667 } 5668 5669 static void bnxt_set_db(struct bnxt *bp, struct bnxt_db_info *db, u32 ring_type, 5670 u32 map_idx, u32 xid) 5671 { 5672 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5673 if (BNXT_PF(bp)) 5674 db->doorbell = bp->bar1 + DB_PF_OFFSET_P5; 5675 else 5676 db->doorbell = bp->bar1 + DB_VF_OFFSET_P5; 5677 switch (ring_type) { 5678 case HWRM_RING_ALLOC_TX: 5679 db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SQ; 5680 break; 5681 case HWRM_RING_ALLOC_RX: 5682 case HWRM_RING_ALLOC_AGG: 5683 db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SRQ; 5684 break; 5685 case HWRM_RING_ALLOC_CMPL: 5686 db->db_key64 = DBR_PATH_L2; 5687 break; 5688 case HWRM_RING_ALLOC_NQ: 5689 db->db_key64 = DBR_PATH_L2; 5690 break; 5691 } 5692 db->db_key64 |= (u64)xid << DBR_XID_SFT; 5693 } else { 5694 db->doorbell = bp->bar1 + map_idx * 0x80; 5695 switch (ring_type) { 5696 case HWRM_RING_ALLOC_TX: 5697 db->db_key32 = DB_KEY_TX; 5698 break; 5699 case HWRM_RING_ALLOC_RX: 5700 case HWRM_RING_ALLOC_AGG: 5701 db->db_key32 = DB_KEY_RX; 5702 break; 5703 case HWRM_RING_ALLOC_CMPL: 5704 db->db_key32 = DB_KEY_CP; 5705 break; 5706 } 5707 } 5708 } 5709 5710 static int bnxt_hwrm_ring_alloc(struct bnxt *bp) 5711 { 5712 bool agg_rings = !!(bp->flags & BNXT_FLAG_AGG_RINGS); 5713 int i, rc = 0; 5714 u32 type; 5715 5716 if (bp->flags & BNXT_FLAG_CHIP_P5) 5717 type = HWRM_RING_ALLOC_NQ; 5718 else 5719 type = HWRM_RING_ALLOC_CMPL; 5720 for (i = 0; i < bp->cp_nr_rings; i++) { 5721 struct bnxt_napi *bnapi = bp->bnapi[i]; 5722 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5723 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 5724 u32 map_idx = ring->map_idx; 5725 unsigned int vector; 5726 5727 vector = bp->irq_tbl[map_idx].vector; 5728 disable_irq_nosync(vector); 5729 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 5730 if (rc) { 5731 enable_irq(vector); 5732 goto err_out; 5733 } 5734 bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id); 5735 bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons); 5736 enable_irq(vector); 5737 bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id; 5738 5739 if (!i) { 5740 rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id); 5741 if (rc) 5742 netdev_warn(bp->dev, "Failed to set async event completion ring.\n"); 5743 } 5744 } 5745 5746 type = HWRM_RING_ALLOC_TX; 5747 for (i = 0; i < bp->tx_nr_rings; i++) { 5748 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 5749 struct bnxt_ring_struct *ring; 5750 u32 map_idx; 5751 5752 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5753 struct bnxt_napi *bnapi = txr->bnapi; 5754 struct bnxt_cp_ring_info *cpr, *cpr2; 5755 u32 type2 = HWRM_RING_ALLOC_CMPL; 5756 5757 cpr = &bnapi->cp_ring; 5758 cpr2 = cpr->cp_ring_arr[BNXT_TX_HDL]; 5759 ring = &cpr2->cp_ring_struct; 5760 ring->handle = BNXT_TX_HDL; 5761 map_idx = bnapi->index; 5762 rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx); 5763 if (rc) 5764 goto err_out; 5765 bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx, 5766 ring->fw_ring_id); 5767 bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons); 5768 } 5769 ring = &txr->tx_ring_struct; 5770 map_idx = i; 5771 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 5772 if (rc) 5773 goto err_out; 5774 bnxt_set_db(bp, &txr->tx_db, type, map_idx, ring->fw_ring_id); 5775 } 5776 5777 type = HWRM_RING_ALLOC_RX; 5778 for (i = 0; i < bp->rx_nr_rings; i++) { 5779 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 5780 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct; 5781 struct bnxt_napi *bnapi = rxr->bnapi; 5782 u32 map_idx = bnapi->index; 5783 5784 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 5785 if (rc) 5786 goto err_out; 5787 bnxt_set_db(bp, &rxr->rx_db, type, map_idx, ring->fw_ring_id); 5788 /* If we have agg rings, post agg buffers first. */ 5789 if (!agg_rings) 5790 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 5791 bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id; 5792 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5793 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5794 u32 type2 = HWRM_RING_ALLOC_CMPL; 5795 struct bnxt_cp_ring_info *cpr2; 5796 5797 cpr2 = cpr->cp_ring_arr[BNXT_RX_HDL]; 5798 ring = &cpr2->cp_ring_struct; 5799 ring->handle = BNXT_RX_HDL; 5800 rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx); 5801 if (rc) 5802 goto err_out; 5803 bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx, 5804 ring->fw_ring_id); 5805 bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons); 5806 } 5807 } 5808 5809 if (agg_rings) { 5810 type = HWRM_RING_ALLOC_AGG; 5811 for (i = 0; i < bp->rx_nr_rings; i++) { 5812 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 5813 struct bnxt_ring_struct *ring = 5814 &rxr->rx_agg_ring_struct; 5815 u32 grp_idx = ring->grp_idx; 5816 u32 map_idx = grp_idx + bp->rx_nr_rings; 5817 5818 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 5819 if (rc) 5820 goto err_out; 5821 5822 bnxt_set_db(bp, &rxr->rx_agg_db, type, map_idx, 5823 ring->fw_ring_id); 5824 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 5825 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 5826 bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id; 5827 } 5828 } 5829 err_out: 5830 return rc; 5831 } 5832 5833 static int hwrm_ring_free_send_msg(struct bnxt *bp, 5834 struct bnxt_ring_struct *ring, 5835 u32 ring_type, int cmpl_ring_id) 5836 { 5837 struct hwrm_ring_free_output *resp; 5838 struct hwrm_ring_free_input *req; 5839 u16 error_code = 0; 5840 int rc; 5841 5842 if (BNXT_NO_FW_ACCESS(bp)) 5843 return 0; 5844 5845 rc = hwrm_req_init(bp, req, HWRM_RING_FREE); 5846 if (rc) 5847 goto exit; 5848 5849 req->cmpl_ring = cpu_to_le16(cmpl_ring_id); 5850 req->ring_type = ring_type; 5851 req->ring_id = cpu_to_le16(ring->fw_ring_id); 5852 5853 resp = hwrm_req_hold(bp, req); 5854 rc = hwrm_req_send(bp, req); 5855 error_code = le16_to_cpu(resp->error_code); 5856 hwrm_req_drop(bp, req); 5857 exit: 5858 if (rc || error_code) { 5859 netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n", 5860 ring_type, rc, error_code); 5861 return -EIO; 5862 } 5863 return 0; 5864 } 5865 5866 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path) 5867 { 5868 u32 type; 5869 int i; 5870 5871 if (!bp->bnapi) 5872 return; 5873 5874 for (i = 0; i < bp->tx_nr_rings; i++) { 5875 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 5876 struct bnxt_ring_struct *ring = &txr->tx_ring_struct; 5877 5878 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 5879 u32 cmpl_ring_id = bnxt_cp_ring_for_tx(bp, txr); 5880 5881 hwrm_ring_free_send_msg(bp, ring, 5882 RING_FREE_REQ_RING_TYPE_TX, 5883 close_path ? cmpl_ring_id : 5884 INVALID_HW_RING_ID); 5885 ring->fw_ring_id = INVALID_HW_RING_ID; 5886 } 5887 } 5888 5889 for (i = 0; i < bp->rx_nr_rings; i++) { 5890 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 5891 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct; 5892 u32 grp_idx = rxr->bnapi->index; 5893 5894 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 5895 u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr); 5896 5897 hwrm_ring_free_send_msg(bp, ring, 5898 RING_FREE_REQ_RING_TYPE_RX, 5899 close_path ? cmpl_ring_id : 5900 INVALID_HW_RING_ID); 5901 ring->fw_ring_id = INVALID_HW_RING_ID; 5902 bp->grp_info[grp_idx].rx_fw_ring_id = 5903 INVALID_HW_RING_ID; 5904 } 5905 } 5906 5907 if (bp->flags & BNXT_FLAG_CHIP_P5) 5908 type = RING_FREE_REQ_RING_TYPE_RX_AGG; 5909 else 5910 type = RING_FREE_REQ_RING_TYPE_RX; 5911 for (i = 0; i < bp->rx_nr_rings; i++) { 5912 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 5913 struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct; 5914 u32 grp_idx = rxr->bnapi->index; 5915 5916 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 5917 u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr); 5918 5919 hwrm_ring_free_send_msg(bp, ring, type, 5920 close_path ? cmpl_ring_id : 5921 INVALID_HW_RING_ID); 5922 ring->fw_ring_id = INVALID_HW_RING_ID; 5923 bp->grp_info[grp_idx].agg_fw_ring_id = 5924 INVALID_HW_RING_ID; 5925 } 5926 } 5927 5928 /* The completion rings are about to be freed. After that the 5929 * IRQ doorbell will not work anymore. So we need to disable 5930 * IRQ here. 5931 */ 5932 bnxt_disable_int_sync(bp); 5933 5934 if (bp->flags & BNXT_FLAG_CHIP_P5) 5935 type = RING_FREE_REQ_RING_TYPE_NQ; 5936 else 5937 type = RING_FREE_REQ_RING_TYPE_L2_CMPL; 5938 for (i = 0; i < bp->cp_nr_rings; i++) { 5939 struct bnxt_napi *bnapi = bp->bnapi[i]; 5940 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5941 struct bnxt_ring_struct *ring; 5942 int j; 5943 5944 for (j = 0; j < 2; j++) { 5945 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j]; 5946 5947 if (cpr2) { 5948 ring = &cpr2->cp_ring_struct; 5949 if (ring->fw_ring_id == INVALID_HW_RING_ID) 5950 continue; 5951 hwrm_ring_free_send_msg(bp, ring, 5952 RING_FREE_REQ_RING_TYPE_L2_CMPL, 5953 INVALID_HW_RING_ID); 5954 ring->fw_ring_id = INVALID_HW_RING_ID; 5955 } 5956 } 5957 ring = &cpr->cp_ring_struct; 5958 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 5959 hwrm_ring_free_send_msg(bp, ring, type, 5960 INVALID_HW_RING_ID); 5961 ring->fw_ring_id = INVALID_HW_RING_ID; 5962 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID; 5963 } 5964 } 5965 } 5966 5967 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 5968 bool shared); 5969 5970 static int bnxt_hwrm_get_rings(struct bnxt *bp) 5971 { 5972 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 5973 struct hwrm_func_qcfg_output *resp; 5974 struct hwrm_func_qcfg_input *req; 5975 int rc; 5976 5977 if (bp->hwrm_spec_code < 0x10601) 5978 return 0; 5979 5980 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); 5981 if (rc) 5982 return rc; 5983 5984 req->fid = cpu_to_le16(0xffff); 5985 resp = hwrm_req_hold(bp, req); 5986 rc = hwrm_req_send(bp, req); 5987 if (rc) { 5988 hwrm_req_drop(bp, req); 5989 return rc; 5990 } 5991 5992 hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings); 5993 if (BNXT_NEW_RM(bp)) { 5994 u16 cp, stats; 5995 5996 hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings); 5997 hw_resc->resv_hw_ring_grps = 5998 le32_to_cpu(resp->alloc_hw_ring_grps); 5999 hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics); 6000 cp = le16_to_cpu(resp->alloc_cmpl_rings); 6001 stats = le16_to_cpu(resp->alloc_stat_ctx); 6002 hw_resc->resv_irqs = cp; 6003 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6004 int rx = hw_resc->resv_rx_rings; 6005 int tx = hw_resc->resv_tx_rings; 6006 6007 if (bp->flags & BNXT_FLAG_AGG_RINGS) 6008 rx >>= 1; 6009 if (cp < (rx + tx)) { 6010 bnxt_trim_rings(bp, &rx, &tx, cp, false); 6011 if (bp->flags & BNXT_FLAG_AGG_RINGS) 6012 rx <<= 1; 6013 hw_resc->resv_rx_rings = rx; 6014 hw_resc->resv_tx_rings = tx; 6015 } 6016 hw_resc->resv_irqs = le16_to_cpu(resp->alloc_msix); 6017 hw_resc->resv_hw_ring_grps = rx; 6018 } 6019 hw_resc->resv_cp_rings = cp; 6020 hw_resc->resv_stat_ctxs = stats; 6021 } 6022 hwrm_req_drop(bp, req); 6023 return 0; 6024 } 6025 6026 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings) 6027 { 6028 struct hwrm_func_qcfg_output *resp; 6029 struct hwrm_func_qcfg_input *req; 6030 int rc; 6031 6032 if (bp->hwrm_spec_code < 0x10601) 6033 return 0; 6034 6035 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); 6036 if (rc) 6037 return rc; 6038 6039 req->fid = cpu_to_le16(fid); 6040 resp = hwrm_req_hold(bp, req); 6041 rc = hwrm_req_send(bp, req); 6042 if (!rc) 6043 *tx_rings = le16_to_cpu(resp->alloc_tx_rings); 6044 6045 hwrm_req_drop(bp, req); 6046 return rc; 6047 } 6048 6049 static bool bnxt_rfs_supported(struct bnxt *bp); 6050 6051 static struct hwrm_func_cfg_input * 6052 __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6053 int ring_grps, int cp_rings, int stats, int vnics) 6054 { 6055 struct hwrm_func_cfg_input *req; 6056 u32 enables = 0; 6057 6058 if (hwrm_req_init(bp, req, HWRM_FUNC_CFG)) 6059 return NULL; 6060 6061 req->fid = cpu_to_le16(0xffff); 6062 enables |= tx_rings ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0; 6063 req->num_tx_rings = cpu_to_le16(tx_rings); 6064 if (BNXT_NEW_RM(bp)) { 6065 enables |= rx_rings ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0; 6066 enables |= stats ? FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0; 6067 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6068 enables |= cp_rings ? FUNC_CFG_REQ_ENABLES_NUM_MSIX : 0; 6069 enables |= tx_rings + ring_grps ? 6070 FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 6071 enables |= rx_rings ? 6072 FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; 6073 } else { 6074 enables |= cp_rings ? 6075 FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 6076 enables |= ring_grps ? 6077 FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS | 6078 FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; 6079 } 6080 enables |= vnics ? FUNC_CFG_REQ_ENABLES_NUM_VNICS : 0; 6081 6082 req->num_rx_rings = cpu_to_le16(rx_rings); 6083 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6084 req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps); 6085 req->num_msix = cpu_to_le16(cp_rings); 6086 req->num_rsscos_ctxs = 6087 cpu_to_le16(DIV_ROUND_UP(ring_grps, 64)); 6088 } else { 6089 req->num_cmpl_rings = cpu_to_le16(cp_rings); 6090 req->num_hw_ring_grps = cpu_to_le16(ring_grps); 6091 req->num_rsscos_ctxs = cpu_to_le16(1); 6092 if (!(bp->flags & BNXT_FLAG_NEW_RSS_CAP) && 6093 bnxt_rfs_supported(bp)) 6094 req->num_rsscos_ctxs = 6095 cpu_to_le16(ring_grps + 1); 6096 } 6097 req->num_stat_ctxs = cpu_to_le16(stats); 6098 req->num_vnics = cpu_to_le16(vnics); 6099 } 6100 req->enables = cpu_to_le32(enables); 6101 return req; 6102 } 6103 6104 static struct hwrm_func_vf_cfg_input * 6105 __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6106 int ring_grps, int cp_rings, int stats, int vnics) 6107 { 6108 struct hwrm_func_vf_cfg_input *req; 6109 u32 enables = 0; 6110 6111 if (hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG)) 6112 return NULL; 6113 6114 enables |= tx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0; 6115 enables |= rx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS | 6116 FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; 6117 enables |= stats ? FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0; 6118 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6119 enables |= tx_rings + ring_grps ? 6120 FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 6121 } else { 6122 enables |= cp_rings ? 6123 FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 6124 enables |= ring_grps ? 6125 FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0; 6126 } 6127 enables |= vnics ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0; 6128 enables |= FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS; 6129 6130 req->num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX); 6131 req->num_tx_rings = cpu_to_le16(tx_rings); 6132 req->num_rx_rings = cpu_to_le16(rx_rings); 6133 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6134 req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps); 6135 req->num_rsscos_ctxs = cpu_to_le16(DIV_ROUND_UP(ring_grps, 64)); 6136 } else { 6137 req->num_cmpl_rings = cpu_to_le16(cp_rings); 6138 req->num_hw_ring_grps = cpu_to_le16(ring_grps); 6139 req->num_rsscos_ctxs = cpu_to_le16(BNXT_VF_MAX_RSS_CTX); 6140 } 6141 req->num_stat_ctxs = cpu_to_le16(stats); 6142 req->num_vnics = cpu_to_le16(vnics); 6143 6144 req->enables = cpu_to_le32(enables); 6145 return req; 6146 } 6147 6148 static int 6149 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6150 int ring_grps, int cp_rings, int stats, int vnics) 6151 { 6152 struct hwrm_func_cfg_input *req; 6153 int rc; 6154 6155 req = __bnxt_hwrm_reserve_pf_rings(bp, tx_rings, rx_rings, ring_grps, 6156 cp_rings, stats, vnics); 6157 if (!req) 6158 return -ENOMEM; 6159 6160 if (!req->enables) { 6161 hwrm_req_drop(bp, req); 6162 return 0; 6163 } 6164 6165 rc = hwrm_req_send(bp, req); 6166 if (rc) 6167 return rc; 6168 6169 if (bp->hwrm_spec_code < 0x10601) 6170 bp->hw_resc.resv_tx_rings = tx_rings; 6171 6172 return bnxt_hwrm_get_rings(bp); 6173 } 6174 6175 static int 6176 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6177 int ring_grps, int cp_rings, int stats, int vnics) 6178 { 6179 struct hwrm_func_vf_cfg_input *req; 6180 int rc; 6181 6182 if (!BNXT_NEW_RM(bp)) { 6183 bp->hw_resc.resv_tx_rings = tx_rings; 6184 return 0; 6185 } 6186 6187 req = __bnxt_hwrm_reserve_vf_rings(bp, tx_rings, rx_rings, ring_grps, 6188 cp_rings, stats, vnics); 6189 if (!req) 6190 return -ENOMEM; 6191 6192 rc = hwrm_req_send(bp, req); 6193 if (rc) 6194 return rc; 6195 6196 return bnxt_hwrm_get_rings(bp); 6197 } 6198 6199 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, int tx, int rx, int grp, 6200 int cp, int stat, int vnic) 6201 { 6202 if (BNXT_PF(bp)) 6203 return bnxt_hwrm_reserve_pf_rings(bp, tx, rx, grp, cp, stat, 6204 vnic); 6205 else 6206 return bnxt_hwrm_reserve_vf_rings(bp, tx, rx, grp, cp, stat, 6207 vnic); 6208 } 6209 6210 int bnxt_nq_rings_in_use(struct bnxt *bp) 6211 { 6212 int cp = bp->cp_nr_rings; 6213 int ulp_msix, ulp_base; 6214 6215 ulp_msix = bnxt_get_ulp_msix_num(bp); 6216 if (ulp_msix) { 6217 ulp_base = bnxt_get_ulp_msix_base(bp); 6218 cp += ulp_msix; 6219 if ((ulp_base + ulp_msix) > cp) 6220 cp = ulp_base + ulp_msix; 6221 } 6222 return cp; 6223 } 6224 6225 static int bnxt_cp_rings_in_use(struct bnxt *bp) 6226 { 6227 int cp; 6228 6229 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 6230 return bnxt_nq_rings_in_use(bp); 6231 6232 cp = bp->tx_nr_rings + bp->rx_nr_rings; 6233 return cp; 6234 } 6235 6236 static int bnxt_get_func_stat_ctxs(struct bnxt *bp) 6237 { 6238 int ulp_stat = bnxt_get_ulp_stat_ctxs(bp); 6239 int cp = bp->cp_nr_rings; 6240 6241 if (!ulp_stat) 6242 return cp; 6243 6244 if (bnxt_nq_rings_in_use(bp) > cp + bnxt_get_ulp_msix_num(bp)) 6245 return bnxt_get_ulp_msix_base(bp) + ulp_stat; 6246 6247 return cp + ulp_stat; 6248 } 6249 6250 /* Check if a default RSS map needs to be setup. This function is only 6251 * used on older firmware that does not require reserving RX rings. 6252 */ 6253 static void bnxt_check_rss_tbl_no_rmgr(struct bnxt *bp) 6254 { 6255 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 6256 6257 /* The RSS map is valid for RX rings set to resv_rx_rings */ 6258 if (hw_resc->resv_rx_rings != bp->rx_nr_rings) { 6259 hw_resc->resv_rx_rings = bp->rx_nr_rings; 6260 if (!netif_is_rxfh_configured(bp->dev)) 6261 bnxt_set_dflt_rss_indir_tbl(bp); 6262 } 6263 } 6264 6265 static bool bnxt_need_reserve_rings(struct bnxt *bp) 6266 { 6267 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 6268 int cp = bnxt_cp_rings_in_use(bp); 6269 int nq = bnxt_nq_rings_in_use(bp); 6270 int rx = bp->rx_nr_rings, stat; 6271 int vnic = 1, grp = rx; 6272 6273 if (hw_resc->resv_tx_rings != bp->tx_nr_rings && 6274 bp->hwrm_spec_code >= 0x10601) 6275 return true; 6276 6277 /* Old firmware does not need RX ring reservations but we still 6278 * need to setup a default RSS map when needed. With new firmware 6279 * we go through RX ring reservations first and then set up the 6280 * RSS map for the successfully reserved RX rings when needed. 6281 */ 6282 if (!BNXT_NEW_RM(bp)) { 6283 bnxt_check_rss_tbl_no_rmgr(bp); 6284 return false; 6285 } 6286 if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5)) 6287 vnic = rx + 1; 6288 if (bp->flags & BNXT_FLAG_AGG_RINGS) 6289 rx <<= 1; 6290 stat = bnxt_get_func_stat_ctxs(bp); 6291 if (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp || 6292 hw_resc->resv_vnics != vnic || hw_resc->resv_stat_ctxs != stat || 6293 (hw_resc->resv_hw_ring_grps != grp && 6294 !(bp->flags & BNXT_FLAG_CHIP_P5))) 6295 return true; 6296 if ((bp->flags & BNXT_FLAG_CHIP_P5) && BNXT_PF(bp) && 6297 hw_resc->resv_irqs != nq) 6298 return true; 6299 return false; 6300 } 6301 6302 static int __bnxt_reserve_rings(struct bnxt *bp) 6303 { 6304 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 6305 int cp = bnxt_nq_rings_in_use(bp); 6306 int tx = bp->tx_nr_rings; 6307 int rx = bp->rx_nr_rings; 6308 int grp, rx_rings, rc; 6309 int vnic = 1, stat; 6310 bool sh = false; 6311 6312 if (!bnxt_need_reserve_rings(bp)) 6313 return 0; 6314 6315 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 6316 sh = true; 6317 if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5)) 6318 vnic = rx + 1; 6319 if (bp->flags & BNXT_FLAG_AGG_RINGS) 6320 rx <<= 1; 6321 grp = bp->rx_nr_rings; 6322 stat = bnxt_get_func_stat_ctxs(bp); 6323 6324 rc = bnxt_hwrm_reserve_rings(bp, tx, rx, grp, cp, stat, vnic); 6325 if (rc) 6326 return rc; 6327 6328 tx = hw_resc->resv_tx_rings; 6329 if (BNXT_NEW_RM(bp)) { 6330 rx = hw_resc->resv_rx_rings; 6331 cp = hw_resc->resv_irqs; 6332 grp = hw_resc->resv_hw_ring_grps; 6333 vnic = hw_resc->resv_vnics; 6334 stat = hw_resc->resv_stat_ctxs; 6335 } 6336 6337 rx_rings = rx; 6338 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 6339 if (rx >= 2) { 6340 rx_rings = rx >> 1; 6341 } else { 6342 if (netif_running(bp->dev)) 6343 return -ENOMEM; 6344 6345 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 6346 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 6347 bp->dev->hw_features &= ~NETIF_F_LRO; 6348 bp->dev->features &= ~NETIF_F_LRO; 6349 bnxt_set_ring_params(bp); 6350 } 6351 } 6352 rx_rings = min_t(int, rx_rings, grp); 6353 cp = min_t(int, cp, bp->cp_nr_rings); 6354 if (stat > bnxt_get_ulp_stat_ctxs(bp)) 6355 stat -= bnxt_get_ulp_stat_ctxs(bp); 6356 cp = min_t(int, cp, stat); 6357 rc = bnxt_trim_rings(bp, &rx_rings, &tx, cp, sh); 6358 if (bp->flags & BNXT_FLAG_AGG_RINGS) 6359 rx = rx_rings << 1; 6360 cp = sh ? max_t(int, tx, rx_rings) : tx + rx_rings; 6361 bp->tx_nr_rings = tx; 6362 6363 /* If we cannot reserve all the RX rings, reset the RSS map only 6364 * if absolutely necessary 6365 */ 6366 if (rx_rings != bp->rx_nr_rings) { 6367 netdev_warn(bp->dev, "Able to reserve only %d out of %d requested RX rings\n", 6368 rx_rings, bp->rx_nr_rings); 6369 if ((bp->dev->priv_flags & IFF_RXFH_CONFIGURED) && 6370 (bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings) != 6371 bnxt_get_nr_rss_ctxs(bp, rx_rings) || 6372 bnxt_get_max_rss_ring(bp) >= rx_rings)) { 6373 netdev_warn(bp->dev, "RSS table entries reverting to default\n"); 6374 bp->dev->priv_flags &= ~IFF_RXFH_CONFIGURED; 6375 } 6376 } 6377 bp->rx_nr_rings = rx_rings; 6378 bp->cp_nr_rings = cp; 6379 6380 if (!tx || !rx || !cp || !grp || !vnic || !stat) 6381 return -ENOMEM; 6382 6383 if (!netif_is_rxfh_configured(bp->dev)) 6384 bnxt_set_dflt_rss_indir_tbl(bp); 6385 6386 return rc; 6387 } 6388 6389 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6390 int ring_grps, int cp_rings, int stats, 6391 int vnics) 6392 { 6393 struct hwrm_func_vf_cfg_input *req; 6394 u32 flags; 6395 6396 if (!BNXT_NEW_RM(bp)) 6397 return 0; 6398 6399 req = __bnxt_hwrm_reserve_vf_rings(bp, tx_rings, rx_rings, ring_grps, 6400 cp_rings, stats, vnics); 6401 flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST | 6402 FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST | 6403 FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST | 6404 FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST | 6405 FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST | 6406 FUNC_VF_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST; 6407 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 6408 flags |= FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST; 6409 6410 req->flags = cpu_to_le32(flags); 6411 return hwrm_req_send_silent(bp, req); 6412 } 6413 6414 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6415 int ring_grps, int cp_rings, int stats, 6416 int vnics) 6417 { 6418 struct hwrm_func_cfg_input *req; 6419 u32 flags; 6420 6421 req = __bnxt_hwrm_reserve_pf_rings(bp, tx_rings, rx_rings, ring_grps, 6422 cp_rings, stats, vnics); 6423 flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST; 6424 if (BNXT_NEW_RM(bp)) { 6425 flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST | 6426 FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST | 6427 FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST | 6428 FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST; 6429 if (bp->flags & BNXT_FLAG_CHIP_P5) 6430 flags |= FUNC_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST | 6431 FUNC_CFG_REQ_FLAGS_NQ_ASSETS_TEST; 6432 else 6433 flags |= FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST; 6434 } 6435 6436 req->flags = cpu_to_le32(flags); 6437 return hwrm_req_send_silent(bp, req); 6438 } 6439 6440 static int bnxt_hwrm_check_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6441 int ring_grps, int cp_rings, int stats, 6442 int vnics) 6443 { 6444 if (bp->hwrm_spec_code < 0x10801) 6445 return 0; 6446 6447 if (BNXT_PF(bp)) 6448 return bnxt_hwrm_check_pf_rings(bp, tx_rings, rx_rings, 6449 ring_grps, cp_rings, stats, 6450 vnics); 6451 6452 return bnxt_hwrm_check_vf_rings(bp, tx_rings, rx_rings, ring_grps, 6453 cp_rings, stats, vnics); 6454 } 6455 6456 static void bnxt_hwrm_coal_params_qcaps(struct bnxt *bp) 6457 { 6458 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 6459 struct hwrm_ring_aggint_qcaps_output *resp; 6460 struct hwrm_ring_aggint_qcaps_input *req; 6461 int rc; 6462 6463 coal_cap->cmpl_params = BNXT_LEGACY_COAL_CMPL_PARAMS; 6464 coal_cap->num_cmpl_dma_aggr_max = 63; 6465 coal_cap->num_cmpl_dma_aggr_during_int_max = 63; 6466 coal_cap->cmpl_aggr_dma_tmr_max = 65535; 6467 coal_cap->cmpl_aggr_dma_tmr_during_int_max = 65535; 6468 coal_cap->int_lat_tmr_min_max = 65535; 6469 coal_cap->int_lat_tmr_max_max = 65535; 6470 coal_cap->num_cmpl_aggr_int_max = 65535; 6471 coal_cap->timer_units = 80; 6472 6473 if (bp->hwrm_spec_code < 0x10902) 6474 return; 6475 6476 if (hwrm_req_init(bp, req, HWRM_RING_AGGINT_QCAPS)) 6477 return; 6478 6479 resp = hwrm_req_hold(bp, req); 6480 rc = hwrm_req_send_silent(bp, req); 6481 if (!rc) { 6482 coal_cap->cmpl_params = le32_to_cpu(resp->cmpl_params); 6483 coal_cap->nq_params = le32_to_cpu(resp->nq_params); 6484 coal_cap->num_cmpl_dma_aggr_max = 6485 le16_to_cpu(resp->num_cmpl_dma_aggr_max); 6486 coal_cap->num_cmpl_dma_aggr_during_int_max = 6487 le16_to_cpu(resp->num_cmpl_dma_aggr_during_int_max); 6488 coal_cap->cmpl_aggr_dma_tmr_max = 6489 le16_to_cpu(resp->cmpl_aggr_dma_tmr_max); 6490 coal_cap->cmpl_aggr_dma_tmr_during_int_max = 6491 le16_to_cpu(resp->cmpl_aggr_dma_tmr_during_int_max); 6492 coal_cap->int_lat_tmr_min_max = 6493 le16_to_cpu(resp->int_lat_tmr_min_max); 6494 coal_cap->int_lat_tmr_max_max = 6495 le16_to_cpu(resp->int_lat_tmr_max_max); 6496 coal_cap->num_cmpl_aggr_int_max = 6497 le16_to_cpu(resp->num_cmpl_aggr_int_max); 6498 coal_cap->timer_units = le16_to_cpu(resp->timer_units); 6499 } 6500 hwrm_req_drop(bp, req); 6501 } 6502 6503 static u16 bnxt_usec_to_coal_tmr(struct bnxt *bp, u16 usec) 6504 { 6505 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 6506 6507 return usec * 1000 / coal_cap->timer_units; 6508 } 6509 6510 static void bnxt_hwrm_set_coal_params(struct bnxt *bp, 6511 struct bnxt_coal *hw_coal, 6512 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req) 6513 { 6514 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 6515 u32 cmpl_params = coal_cap->cmpl_params; 6516 u16 val, tmr, max, flags = 0; 6517 6518 max = hw_coal->bufs_per_record * 128; 6519 if (hw_coal->budget) 6520 max = hw_coal->bufs_per_record * hw_coal->budget; 6521 max = min_t(u16, max, coal_cap->num_cmpl_aggr_int_max); 6522 6523 val = clamp_t(u16, hw_coal->coal_bufs, 1, max); 6524 req->num_cmpl_aggr_int = cpu_to_le16(val); 6525 6526 val = min_t(u16, val, coal_cap->num_cmpl_dma_aggr_max); 6527 req->num_cmpl_dma_aggr = cpu_to_le16(val); 6528 6529 val = clamp_t(u16, hw_coal->coal_bufs_irq, 1, 6530 coal_cap->num_cmpl_dma_aggr_during_int_max); 6531 req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val); 6532 6533 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks); 6534 tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_max_max); 6535 req->int_lat_tmr_max = cpu_to_le16(tmr); 6536 6537 /* min timer set to 1/2 of interrupt timer */ 6538 if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_INT_LAT_TMR_MIN) { 6539 val = tmr / 2; 6540 val = clamp_t(u16, val, 1, coal_cap->int_lat_tmr_min_max); 6541 req->int_lat_tmr_min = cpu_to_le16(val); 6542 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE); 6543 } 6544 6545 /* buf timer set to 1/4 of interrupt timer */ 6546 val = clamp_t(u16, tmr / 4, 1, coal_cap->cmpl_aggr_dma_tmr_max); 6547 req->cmpl_aggr_dma_tmr = cpu_to_le16(val); 6548 6549 if (cmpl_params & 6550 RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_NUM_CMPL_DMA_AGGR_DURING_INT) { 6551 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks_irq); 6552 val = clamp_t(u16, tmr, 1, 6553 coal_cap->cmpl_aggr_dma_tmr_during_int_max); 6554 req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(val); 6555 req->enables |= 6556 cpu_to_le16(BNXT_COAL_CMPL_AGGR_TMR_DURING_INT_ENABLE); 6557 } 6558 6559 if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_TIMER_RESET) 6560 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET; 6561 if ((cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_RING_IDLE) && 6562 hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh) 6563 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE; 6564 req->flags = cpu_to_le16(flags); 6565 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_ENABLES); 6566 } 6567 6568 static int __bnxt_hwrm_set_coal_nq(struct bnxt *bp, struct bnxt_napi *bnapi, 6569 struct bnxt_coal *hw_coal) 6570 { 6571 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req; 6572 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 6573 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 6574 u32 nq_params = coal_cap->nq_params; 6575 u16 tmr; 6576 int rc; 6577 6578 if (!(nq_params & RING_AGGINT_QCAPS_RESP_NQ_PARAMS_INT_LAT_TMR_MIN)) 6579 return 0; 6580 6581 rc = hwrm_req_init(bp, req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 6582 if (rc) 6583 return rc; 6584 6585 req->ring_id = cpu_to_le16(cpr->cp_ring_struct.fw_ring_id); 6586 req->flags = 6587 cpu_to_le16(RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_IS_NQ); 6588 6589 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks) / 2; 6590 tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_min_max); 6591 req->int_lat_tmr_min = cpu_to_le16(tmr); 6592 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE); 6593 return hwrm_req_send(bp, req); 6594 } 6595 6596 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi) 6597 { 6598 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx; 6599 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 6600 struct bnxt_coal coal; 6601 int rc; 6602 6603 /* Tick values in micro seconds. 6604 * 1 coal_buf x bufs_per_record = 1 completion record. 6605 */ 6606 memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal)); 6607 6608 coal.coal_ticks = cpr->rx_ring_coal.coal_ticks; 6609 coal.coal_bufs = cpr->rx_ring_coal.coal_bufs; 6610 6611 if (!bnapi->rx_ring) 6612 return -ENODEV; 6613 6614 rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 6615 if (rc) 6616 return rc; 6617 6618 bnxt_hwrm_set_coal_params(bp, &coal, req_rx); 6619 6620 req_rx->ring_id = cpu_to_le16(bnxt_cp_ring_for_rx(bp, bnapi->rx_ring)); 6621 6622 return hwrm_req_send(bp, req_rx); 6623 } 6624 6625 int bnxt_hwrm_set_coal(struct bnxt *bp) 6626 { 6627 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx, *req_tx, 6628 *req; 6629 int i, rc; 6630 6631 rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 6632 if (rc) 6633 return rc; 6634 6635 rc = hwrm_req_init(bp, req_tx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 6636 if (rc) { 6637 hwrm_req_drop(bp, req_rx); 6638 return rc; 6639 } 6640 6641 bnxt_hwrm_set_coal_params(bp, &bp->rx_coal, req_rx); 6642 bnxt_hwrm_set_coal_params(bp, &bp->tx_coal, req_tx); 6643 6644 hwrm_req_hold(bp, req_rx); 6645 hwrm_req_hold(bp, req_tx); 6646 for (i = 0; i < bp->cp_nr_rings; i++) { 6647 struct bnxt_napi *bnapi = bp->bnapi[i]; 6648 struct bnxt_coal *hw_coal; 6649 u16 ring_id; 6650 6651 req = req_rx; 6652 if (!bnapi->rx_ring) { 6653 ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring); 6654 req = req_tx; 6655 } else { 6656 ring_id = bnxt_cp_ring_for_rx(bp, bnapi->rx_ring); 6657 } 6658 req->ring_id = cpu_to_le16(ring_id); 6659 6660 rc = hwrm_req_send(bp, req); 6661 if (rc) 6662 break; 6663 6664 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 6665 continue; 6666 6667 if (bnapi->rx_ring && bnapi->tx_ring) { 6668 req = req_tx; 6669 ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring); 6670 req->ring_id = cpu_to_le16(ring_id); 6671 rc = hwrm_req_send(bp, req); 6672 if (rc) 6673 break; 6674 } 6675 if (bnapi->rx_ring) 6676 hw_coal = &bp->rx_coal; 6677 else 6678 hw_coal = &bp->tx_coal; 6679 __bnxt_hwrm_set_coal_nq(bp, bnapi, hw_coal); 6680 } 6681 hwrm_req_drop(bp, req_rx); 6682 hwrm_req_drop(bp, req_tx); 6683 return rc; 6684 } 6685 6686 static void bnxt_hwrm_stat_ctx_free(struct bnxt *bp) 6687 { 6688 struct hwrm_stat_ctx_clr_stats_input *req0 = NULL; 6689 struct hwrm_stat_ctx_free_input *req; 6690 int i; 6691 6692 if (!bp->bnapi) 6693 return; 6694 6695 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 6696 return; 6697 6698 if (hwrm_req_init(bp, req, HWRM_STAT_CTX_FREE)) 6699 return; 6700 if (BNXT_FW_MAJ(bp) <= 20) { 6701 if (hwrm_req_init(bp, req0, HWRM_STAT_CTX_CLR_STATS)) { 6702 hwrm_req_drop(bp, req); 6703 return; 6704 } 6705 hwrm_req_hold(bp, req0); 6706 } 6707 hwrm_req_hold(bp, req); 6708 for (i = 0; i < bp->cp_nr_rings; i++) { 6709 struct bnxt_napi *bnapi = bp->bnapi[i]; 6710 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 6711 6712 if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) { 6713 req->stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id); 6714 if (req0) { 6715 req0->stat_ctx_id = req->stat_ctx_id; 6716 hwrm_req_send(bp, req0); 6717 } 6718 hwrm_req_send(bp, req); 6719 6720 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID; 6721 } 6722 } 6723 hwrm_req_drop(bp, req); 6724 if (req0) 6725 hwrm_req_drop(bp, req0); 6726 } 6727 6728 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp) 6729 { 6730 struct hwrm_stat_ctx_alloc_output *resp; 6731 struct hwrm_stat_ctx_alloc_input *req; 6732 int rc, i; 6733 6734 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 6735 return 0; 6736 6737 rc = hwrm_req_init(bp, req, HWRM_STAT_CTX_ALLOC); 6738 if (rc) 6739 return rc; 6740 6741 req->stats_dma_length = cpu_to_le16(bp->hw_ring_stats_size); 6742 req->update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000); 6743 6744 resp = hwrm_req_hold(bp, req); 6745 for (i = 0; i < bp->cp_nr_rings; i++) { 6746 struct bnxt_napi *bnapi = bp->bnapi[i]; 6747 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 6748 6749 req->stats_dma_addr = cpu_to_le64(cpr->stats.hw_stats_map); 6750 6751 rc = hwrm_req_send(bp, req); 6752 if (rc) 6753 break; 6754 6755 cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id); 6756 6757 bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id; 6758 } 6759 hwrm_req_drop(bp, req); 6760 return rc; 6761 } 6762 6763 static int bnxt_hwrm_func_qcfg(struct bnxt *bp) 6764 { 6765 struct hwrm_func_qcfg_output *resp; 6766 struct hwrm_func_qcfg_input *req; 6767 u32 min_db_offset = 0; 6768 u16 flags; 6769 int rc; 6770 6771 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); 6772 if (rc) 6773 return rc; 6774 6775 req->fid = cpu_to_le16(0xffff); 6776 resp = hwrm_req_hold(bp, req); 6777 rc = hwrm_req_send(bp, req); 6778 if (rc) 6779 goto func_qcfg_exit; 6780 6781 #ifdef CONFIG_BNXT_SRIOV 6782 if (BNXT_VF(bp)) { 6783 struct bnxt_vf_info *vf = &bp->vf; 6784 6785 vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK; 6786 } else { 6787 bp->pf.registered_vfs = le16_to_cpu(resp->registered_vfs); 6788 } 6789 #endif 6790 flags = le16_to_cpu(resp->flags); 6791 if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED | 6792 FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) { 6793 bp->fw_cap |= BNXT_FW_CAP_LLDP_AGENT; 6794 if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED) 6795 bp->fw_cap |= BNXT_FW_CAP_DCBX_AGENT; 6796 } 6797 if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST)) 6798 bp->flags |= BNXT_FLAG_MULTI_HOST; 6799 if (flags & FUNC_QCFG_RESP_FLAGS_RING_MONITOR_ENABLED) 6800 bp->fw_cap |= BNXT_FW_CAP_RING_MONITOR; 6801 6802 switch (resp->port_partition_type) { 6803 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0: 6804 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5: 6805 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0: 6806 bp->port_partition_type = resp->port_partition_type; 6807 break; 6808 } 6809 if (bp->hwrm_spec_code < 0x10707 || 6810 resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB) 6811 bp->br_mode = BRIDGE_MODE_VEB; 6812 else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA) 6813 bp->br_mode = BRIDGE_MODE_VEPA; 6814 else 6815 bp->br_mode = BRIDGE_MODE_UNDEF; 6816 6817 bp->max_mtu = le16_to_cpu(resp->max_mtu_configured); 6818 if (!bp->max_mtu) 6819 bp->max_mtu = BNXT_MAX_MTU; 6820 6821 if (bp->db_size) 6822 goto func_qcfg_exit; 6823 6824 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6825 if (BNXT_PF(bp)) 6826 min_db_offset = DB_PF_OFFSET_P5; 6827 else 6828 min_db_offset = DB_VF_OFFSET_P5; 6829 } 6830 bp->db_size = PAGE_ALIGN(le16_to_cpu(resp->l2_doorbell_bar_size_kb) * 6831 1024); 6832 if (!bp->db_size || bp->db_size > pci_resource_len(bp->pdev, 2) || 6833 bp->db_size <= min_db_offset) 6834 bp->db_size = pci_resource_len(bp->pdev, 2); 6835 6836 func_qcfg_exit: 6837 hwrm_req_drop(bp, req); 6838 return rc; 6839 } 6840 6841 static void bnxt_init_ctx_initializer(struct bnxt_ctx_mem_info *ctx, 6842 struct hwrm_func_backing_store_qcaps_output *resp) 6843 { 6844 struct bnxt_mem_init *mem_init; 6845 u16 init_mask; 6846 u8 init_val; 6847 u8 *offset; 6848 int i; 6849 6850 init_val = resp->ctx_kind_initializer; 6851 init_mask = le16_to_cpu(resp->ctx_init_mask); 6852 offset = &resp->qp_init_offset; 6853 mem_init = &ctx->mem_init[BNXT_CTX_MEM_INIT_QP]; 6854 for (i = 0; i < BNXT_CTX_MEM_INIT_MAX; i++, mem_init++, offset++) { 6855 mem_init->init_val = init_val; 6856 mem_init->offset = BNXT_MEM_INVALID_OFFSET; 6857 if (!init_mask) 6858 continue; 6859 if (i == BNXT_CTX_MEM_INIT_STAT) 6860 offset = &resp->stat_init_offset; 6861 if (init_mask & (1 << i)) 6862 mem_init->offset = *offset * 4; 6863 else 6864 mem_init->init_val = 0; 6865 } 6866 ctx->mem_init[BNXT_CTX_MEM_INIT_QP].size = ctx->qp_entry_size; 6867 ctx->mem_init[BNXT_CTX_MEM_INIT_SRQ].size = ctx->srq_entry_size; 6868 ctx->mem_init[BNXT_CTX_MEM_INIT_CQ].size = ctx->cq_entry_size; 6869 ctx->mem_init[BNXT_CTX_MEM_INIT_VNIC].size = ctx->vnic_entry_size; 6870 ctx->mem_init[BNXT_CTX_MEM_INIT_STAT].size = ctx->stat_entry_size; 6871 ctx->mem_init[BNXT_CTX_MEM_INIT_MRAV].size = ctx->mrav_entry_size; 6872 } 6873 6874 static int bnxt_hwrm_func_backing_store_qcaps(struct bnxt *bp) 6875 { 6876 struct hwrm_func_backing_store_qcaps_output *resp; 6877 struct hwrm_func_backing_store_qcaps_input *req; 6878 int rc; 6879 6880 if (bp->hwrm_spec_code < 0x10902 || BNXT_VF(bp) || bp->ctx) 6881 return 0; 6882 6883 rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_QCAPS); 6884 if (rc) 6885 return rc; 6886 6887 resp = hwrm_req_hold(bp, req); 6888 rc = hwrm_req_send_silent(bp, req); 6889 if (!rc) { 6890 struct bnxt_ctx_pg_info *ctx_pg; 6891 struct bnxt_ctx_mem_info *ctx; 6892 int i, tqm_rings; 6893 6894 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 6895 if (!ctx) { 6896 rc = -ENOMEM; 6897 goto ctx_err; 6898 } 6899 ctx->qp_max_entries = le32_to_cpu(resp->qp_max_entries); 6900 ctx->qp_min_qp1_entries = le16_to_cpu(resp->qp_min_qp1_entries); 6901 ctx->qp_max_l2_entries = le16_to_cpu(resp->qp_max_l2_entries); 6902 ctx->qp_entry_size = le16_to_cpu(resp->qp_entry_size); 6903 ctx->srq_max_l2_entries = le16_to_cpu(resp->srq_max_l2_entries); 6904 ctx->srq_max_entries = le32_to_cpu(resp->srq_max_entries); 6905 ctx->srq_entry_size = le16_to_cpu(resp->srq_entry_size); 6906 ctx->cq_max_l2_entries = le16_to_cpu(resp->cq_max_l2_entries); 6907 ctx->cq_max_entries = le32_to_cpu(resp->cq_max_entries); 6908 ctx->cq_entry_size = le16_to_cpu(resp->cq_entry_size); 6909 ctx->vnic_max_vnic_entries = 6910 le16_to_cpu(resp->vnic_max_vnic_entries); 6911 ctx->vnic_max_ring_table_entries = 6912 le16_to_cpu(resp->vnic_max_ring_table_entries); 6913 ctx->vnic_entry_size = le16_to_cpu(resp->vnic_entry_size); 6914 ctx->stat_max_entries = le32_to_cpu(resp->stat_max_entries); 6915 ctx->stat_entry_size = le16_to_cpu(resp->stat_entry_size); 6916 ctx->tqm_entry_size = le16_to_cpu(resp->tqm_entry_size); 6917 ctx->tqm_min_entries_per_ring = 6918 le32_to_cpu(resp->tqm_min_entries_per_ring); 6919 ctx->tqm_max_entries_per_ring = 6920 le32_to_cpu(resp->tqm_max_entries_per_ring); 6921 ctx->tqm_entries_multiple = resp->tqm_entries_multiple; 6922 if (!ctx->tqm_entries_multiple) 6923 ctx->tqm_entries_multiple = 1; 6924 ctx->mrav_max_entries = le32_to_cpu(resp->mrav_max_entries); 6925 ctx->mrav_entry_size = le16_to_cpu(resp->mrav_entry_size); 6926 ctx->mrav_num_entries_units = 6927 le16_to_cpu(resp->mrav_num_entries_units); 6928 ctx->tim_entry_size = le16_to_cpu(resp->tim_entry_size); 6929 ctx->tim_max_entries = le32_to_cpu(resp->tim_max_entries); 6930 6931 bnxt_init_ctx_initializer(ctx, resp); 6932 6933 ctx->tqm_fp_rings_count = resp->tqm_fp_rings_count; 6934 if (!ctx->tqm_fp_rings_count) 6935 ctx->tqm_fp_rings_count = bp->max_q; 6936 else if (ctx->tqm_fp_rings_count > BNXT_MAX_TQM_FP_RINGS) 6937 ctx->tqm_fp_rings_count = BNXT_MAX_TQM_FP_RINGS; 6938 6939 tqm_rings = ctx->tqm_fp_rings_count + BNXT_MAX_TQM_SP_RINGS; 6940 ctx_pg = kcalloc(tqm_rings, sizeof(*ctx_pg), GFP_KERNEL); 6941 if (!ctx_pg) { 6942 kfree(ctx); 6943 rc = -ENOMEM; 6944 goto ctx_err; 6945 } 6946 for (i = 0; i < tqm_rings; i++, ctx_pg++) 6947 ctx->tqm_mem[i] = ctx_pg; 6948 bp->ctx = ctx; 6949 } else { 6950 rc = 0; 6951 } 6952 ctx_err: 6953 hwrm_req_drop(bp, req); 6954 return rc; 6955 } 6956 6957 static void bnxt_hwrm_set_pg_attr(struct bnxt_ring_mem_info *rmem, u8 *pg_attr, 6958 __le64 *pg_dir) 6959 { 6960 if (!rmem->nr_pages) 6961 return; 6962 6963 BNXT_SET_CTX_PAGE_ATTR(*pg_attr); 6964 if (rmem->depth >= 1) { 6965 if (rmem->depth == 2) 6966 *pg_attr |= 2; 6967 else 6968 *pg_attr |= 1; 6969 *pg_dir = cpu_to_le64(rmem->pg_tbl_map); 6970 } else { 6971 *pg_dir = cpu_to_le64(rmem->dma_arr[0]); 6972 } 6973 } 6974 6975 #define FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES \ 6976 (FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP | \ 6977 FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ | \ 6978 FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ | \ 6979 FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC | \ 6980 FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) 6981 6982 static int bnxt_hwrm_func_backing_store_cfg(struct bnxt *bp, u32 enables) 6983 { 6984 struct hwrm_func_backing_store_cfg_input *req; 6985 struct bnxt_ctx_mem_info *ctx = bp->ctx; 6986 struct bnxt_ctx_pg_info *ctx_pg; 6987 void **__req = (void **)&req; 6988 u32 req_len = sizeof(*req); 6989 __le32 *num_entries; 6990 __le64 *pg_dir; 6991 u32 flags = 0; 6992 u8 *pg_attr; 6993 u32 ena; 6994 int rc; 6995 int i; 6996 6997 if (!ctx) 6998 return 0; 6999 7000 if (req_len > bp->hwrm_max_ext_req_len) 7001 req_len = BNXT_BACKING_STORE_CFG_LEGACY_LEN; 7002 rc = __hwrm_req_init(bp, __req, HWRM_FUNC_BACKING_STORE_CFG, req_len); 7003 if (rc) 7004 return rc; 7005 7006 req->enables = cpu_to_le32(enables); 7007 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP) { 7008 ctx_pg = &ctx->qp_mem; 7009 req->qp_num_entries = cpu_to_le32(ctx_pg->entries); 7010 req->qp_num_qp1_entries = cpu_to_le16(ctx->qp_min_qp1_entries); 7011 req->qp_num_l2_entries = cpu_to_le16(ctx->qp_max_l2_entries); 7012 req->qp_entry_size = cpu_to_le16(ctx->qp_entry_size); 7013 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7014 &req->qpc_pg_size_qpc_lvl, 7015 &req->qpc_page_dir); 7016 } 7017 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ) { 7018 ctx_pg = &ctx->srq_mem; 7019 req->srq_num_entries = cpu_to_le32(ctx_pg->entries); 7020 req->srq_num_l2_entries = cpu_to_le16(ctx->srq_max_l2_entries); 7021 req->srq_entry_size = cpu_to_le16(ctx->srq_entry_size); 7022 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7023 &req->srq_pg_size_srq_lvl, 7024 &req->srq_page_dir); 7025 } 7026 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ) { 7027 ctx_pg = &ctx->cq_mem; 7028 req->cq_num_entries = cpu_to_le32(ctx_pg->entries); 7029 req->cq_num_l2_entries = cpu_to_le16(ctx->cq_max_l2_entries); 7030 req->cq_entry_size = cpu_to_le16(ctx->cq_entry_size); 7031 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7032 &req->cq_pg_size_cq_lvl, 7033 &req->cq_page_dir); 7034 } 7035 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC) { 7036 ctx_pg = &ctx->vnic_mem; 7037 req->vnic_num_vnic_entries = 7038 cpu_to_le16(ctx->vnic_max_vnic_entries); 7039 req->vnic_num_ring_table_entries = 7040 cpu_to_le16(ctx->vnic_max_ring_table_entries); 7041 req->vnic_entry_size = cpu_to_le16(ctx->vnic_entry_size); 7042 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7043 &req->vnic_pg_size_vnic_lvl, 7044 &req->vnic_page_dir); 7045 } 7046 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) { 7047 ctx_pg = &ctx->stat_mem; 7048 req->stat_num_entries = cpu_to_le32(ctx->stat_max_entries); 7049 req->stat_entry_size = cpu_to_le16(ctx->stat_entry_size); 7050 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7051 &req->stat_pg_size_stat_lvl, 7052 &req->stat_page_dir); 7053 } 7054 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV) { 7055 ctx_pg = &ctx->mrav_mem; 7056 req->mrav_num_entries = cpu_to_le32(ctx_pg->entries); 7057 if (ctx->mrav_num_entries_units) 7058 flags |= 7059 FUNC_BACKING_STORE_CFG_REQ_FLAGS_MRAV_RESERVATION_SPLIT; 7060 req->mrav_entry_size = cpu_to_le16(ctx->mrav_entry_size); 7061 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7062 &req->mrav_pg_size_mrav_lvl, 7063 &req->mrav_page_dir); 7064 } 7065 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) { 7066 ctx_pg = &ctx->tim_mem; 7067 req->tim_num_entries = cpu_to_le32(ctx_pg->entries); 7068 req->tim_entry_size = cpu_to_le16(ctx->tim_entry_size); 7069 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7070 &req->tim_pg_size_tim_lvl, 7071 &req->tim_page_dir); 7072 } 7073 for (i = 0, num_entries = &req->tqm_sp_num_entries, 7074 pg_attr = &req->tqm_sp_pg_size_tqm_sp_lvl, 7075 pg_dir = &req->tqm_sp_page_dir, 7076 ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP; 7077 i < BNXT_MAX_TQM_RINGS; 7078 i++, num_entries++, pg_attr++, pg_dir++, ena <<= 1) { 7079 if (!(enables & ena)) 7080 continue; 7081 7082 req->tqm_entry_size = cpu_to_le16(ctx->tqm_entry_size); 7083 ctx_pg = ctx->tqm_mem[i]; 7084 *num_entries = cpu_to_le32(ctx_pg->entries); 7085 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, pg_attr, pg_dir); 7086 } 7087 req->flags = cpu_to_le32(flags); 7088 return hwrm_req_send(bp, req); 7089 } 7090 7091 static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp, 7092 struct bnxt_ctx_pg_info *ctx_pg) 7093 { 7094 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 7095 7096 rmem->page_size = BNXT_PAGE_SIZE; 7097 rmem->pg_arr = ctx_pg->ctx_pg_arr; 7098 rmem->dma_arr = ctx_pg->ctx_dma_arr; 7099 rmem->flags = BNXT_RMEM_VALID_PTE_FLAG; 7100 if (rmem->depth >= 1) 7101 rmem->flags |= BNXT_RMEM_USE_FULL_PAGE_FLAG; 7102 return bnxt_alloc_ring(bp, rmem); 7103 } 7104 7105 static int bnxt_alloc_ctx_pg_tbls(struct bnxt *bp, 7106 struct bnxt_ctx_pg_info *ctx_pg, u32 mem_size, 7107 u8 depth, struct bnxt_mem_init *mem_init) 7108 { 7109 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 7110 int rc; 7111 7112 if (!mem_size) 7113 return -EINVAL; 7114 7115 ctx_pg->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE); 7116 if (ctx_pg->nr_pages > MAX_CTX_TOTAL_PAGES) { 7117 ctx_pg->nr_pages = 0; 7118 return -EINVAL; 7119 } 7120 if (ctx_pg->nr_pages > MAX_CTX_PAGES || depth > 1) { 7121 int nr_tbls, i; 7122 7123 rmem->depth = 2; 7124 ctx_pg->ctx_pg_tbl = kcalloc(MAX_CTX_PAGES, sizeof(ctx_pg), 7125 GFP_KERNEL); 7126 if (!ctx_pg->ctx_pg_tbl) 7127 return -ENOMEM; 7128 nr_tbls = DIV_ROUND_UP(ctx_pg->nr_pages, MAX_CTX_PAGES); 7129 rmem->nr_pages = nr_tbls; 7130 rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg); 7131 if (rc) 7132 return rc; 7133 for (i = 0; i < nr_tbls; i++) { 7134 struct bnxt_ctx_pg_info *pg_tbl; 7135 7136 pg_tbl = kzalloc(sizeof(*pg_tbl), GFP_KERNEL); 7137 if (!pg_tbl) 7138 return -ENOMEM; 7139 ctx_pg->ctx_pg_tbl[i] = pg_tbl; 7140 rmem = &pg_tbl->ring_mem; 7141 rmem->pg_tbl = ctx_pg->ctx_pg_arr[i]; 7142 rmem->pg_tbl_map = ctx_pg->ctx_dma_arr[i]; 7143 rmem->depth = 1; 7144 rmem->nr_pages = MAX_CTX_PAGES; 7145 rmem->mem_init = mem_init; 7146 if (i == (nr_tbls - 1)) { 7147 int rem = ctx_pg->nr_pages % MAX_CTX_PAGES; 7148 7149 if (rem) 7150 rmem->nr_pages = rem; 7151 } 7152 rc = bnxt_alloc_ctx_mem_blk(bp, pg_tbl); 7153 if (rc) 7154 break; 7155 } 7156 } else { 7157 rmem->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE); 7158 if (rmem->nr_pages > 1 || depth) 7159 rmem->depth = 1; 7160 rmem->mem_init = mem_init; 7161 rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg); 7162 } 7163 return rc; 7164 } 7165 7166 static void bnxt_free_ctx_pg_tbls(struct bnxt *bp, 7167 struct bnxt_ctx_pg_info *ctx_pg) 7168 { 7169 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 7170 7171 if (rmem->depth > 1 || ctx_pg->nr_pages > MAX_CTX_PAGES || 7172 ctx_pg->ctx_pg_tbl) { 7173 int i, nr_tbls = rmem->nr_pages; 7174 7175 for (i = 0; i < nr_tbls; i++) { 7176 struct bnxt_ctx_pg_info *pg_tbl; 7177 struct bnxt_ring_mem_info *rmem2; 7178 7179 pg_tbl = ctx_pg->ctx_pg_tbl[i]; 7180 if (!pg_tbl) 7181 continue; 7182 rmem2 = &pg_tbl->ring_mem; 7183 bnxt_free_ring(bp, rmem2); 7184 ctx_pg->ctx_pg_arr[i] = NULL; 7185 kfree(pg_tbl); 7186 ctx_pg->ctx_pg_tbl[i] = NULL; 7187 } 7188 kfree(ctx_pg->ctx_pg_tbl); 7189 ctx_pg->ctx_pg_tbl = NULL; 7190 } 7191 bnxt_free_ring(bp, rmem); 7192 ctx_pg->nr_pages = 0; 7193 } 7194 7195 static void bnxt_free_ctx_mem(struct bnxt *bp) 7196 { 7197 struct bnxt_ctx_mem_info *ctx = bp->ctx; 7198 int i; 7199 7200 if (!ctx) 7201 return; 7202 7203 if (ctx->tqm_mem[0]) { 7204 for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++) 7205 bnxt_free_ctx_pg_tbls(bp, ctx->tqm_mem[i]); 7206 kfree(ctx->tqm_mem[0]); 7207 ctx->tqm_mem[0] = NULL; 7208 } 7209 7210 bnxt_free_ctx_pg_tbls(bp, &ctx->tim_mem); 7211 bnxt_free_ctx_pg_tbls(bp, &ctx->mrav_mem); 7212 bnxt_free_ctx_pg_tbls(bp, &ctx->stat_mem); 7213 bnxt_free_ctx_pg_tbls(bp, &ctx->vnic_mem); 7214 bnxt_free_ctx_pg_tbls(bp, &ctx->cq_mem); 7215 bnxt_free_ctx_pg_tbls(bp, &ctx->srq_mem); 7216 bnxt_free_ctx_pg_tbls(bp, &ctx->qp_mem); 7217 ctx->flags &= ~BNXT_CTX_FLAG_INITED; 7218 } 7219 7220 static int bnxt_alloc_ctx_mem(struct bnxt *bp) 7221 { 7222 struct bnxt_ctx_pg_info *ctx_pg; 7223 struct bnxt_ctx_mem_info *ctx; 7224 struct bnxt_mem_init *init; 7225 u32 mem_size, ena, entries; 7226 u32 entries_sp, min; 7227 u32 num_mr, num_ah; 7228 u32 extra_srqs = 0; 7229 u32 extra_qps = 0; 7230 u8 pg_lvl = 1; 7231 int i, rc; 7232 7233 rc = bnxt_hwrm_func_backing_store_qcaps(bp); 7234 if (rc) { 7235 netdev_err(bp->dev, "Failed querying context mem capability, rc = %d.\n", 7236 rc); 7237 return rc; 7238 } 7239 ctx = bp->ctx; 7240 if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED)) 7241 return 0; 7242 7243 if ((bp->flags & BNXT_FLAG_ROCE_CAP) && !is_kdump_kernel()) { 7244 pg_lvl = 2; 7245 extra_qps = 65536; 7246 extra_srqs = 8192; 7247 } 7248 7249 ctx_pg = &ctx->qp_mem; 7250 ctx_pg->entries = ctx->qp_min_qp1_entries + ctx->qp_max_l2_entries + 7251 extra_qps; 7252 if (ctx->qp_entry_size) { 7253 mem_size = ctx->qp_entry_size * ctx_pg->entries; 7254 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_QP]; 7255 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init); 7256 if (rc) 7257 return rc; 7258 } 7259 7260 ctx_pg = &ctx->srq_mem; 7261 ctx_pg->entries = ctx->srq_max_l2_entries + extra_srqs; 7262 if (ctx->srq_entry_size) { 7263 mem_size = ctx->srq_entry_size * ctx_pg->entries; 7264 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_SRQ]; 7265 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init); 7266 if (rc) 7267 return rc; 7268 } 7269 7270 ctx_pg = &ctx->cq_mem; 7271 ctx_pg->entries = ctx->cq_max_l2_entries + extra_qps * 2; 7272 if (ctx->cq_entry_size) { 7273 mem_size = ctx->cq_entry_size * ctx_pg->entries; 7274 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_CQ]; 7275 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init); 7276 if (rc) 7277 return rc; 7278 } 7279 7280 ctx_pg = &ctx->vnic_mem; 7281 ctx_pg->entries = ctx->vnic_max_vnic_entries + 7282 ctx->vnic_max_ring_table_entries; 7283 if (ctx->vnic_entry_size) { 7284 mem_size = ctx->vnic_entry_size * ctx_pg->entries; 7285 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_VNIC]; 7286 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, init); 7287 if (rc) 7288 return rc; 7289 } 7290 7291 ctx_pg = &ctx->stat_mem; 7292 ctx_pg->entries = ctx->stat_max_entries; 7293 if (ctx->stat_entry_size) { 7294 mem_size = ctx->stat_entry_size * ctx_pg->entries; 7295 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_STAT]; 7296 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, init); 7297 if (rc) 7298 return rc; 7299 } 7300 7301 ena = 0; 7302 if (!(bp->flags & BNXT_FLAG_ROCE_CAP)) 7303 goto skip_rdma; 7304 7305 ctx_pg = &ctx->mrav_mem; 7306 /* 128K extra is needed to accommodate static AH context 7307 * allocation by f/w. 7308 */ 7309 num_mr = 1024 * 256; 7310 num_ah = 1024 * 128; 7311 ctx_pg->entries = num_mr + num_ah; 7312 if (ctx->mrav_entry_size) { 7313 mem_size = ctx->mrav_entry_size * ctx_pg->entries; 7314 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_MRAV]; 7315 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 2, init); 7316 if (rc) 7317 return rc; 7318 } 7319 ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV; 7320 if (ctx->mrav_num_entries_units) 7321 ctx_pg->entries = 7322 ((num_mr / ctx->mrav_num_entries_units) << 16) | 7323 (num_ah / ctx->mrav_num_entries_units); 7324 7325 ctx_pg = &ctx->tim_mem; 7326 ctx_pg->entries = ctx->qp_mem.entries; 7327 if (ctx->tim_entry_size) { 7328 mem_size = ctx->tim_entry_size * ctx_pg->entries; 7329 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, NULL); 7330 if (rc) 7331 return rc; 7332 } 7333 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM; 7334 7335 skip_rdma: 7336 min = ctx->tqm_min_entries_per_ring; 7337 entries_sp = ctx->vnic_max_vnic_entries + ctx->qp_max_l2_entries + 7338 2 * (extra_qps + ctx->qp_min_qp1_entries) + min; 7339 entries_sp = roundup(entries_sp, ctx->tqm_entries_multiple); 7340 entries = ctx->qp_max_l2_entries + 2 * (extra_qps + ctx->qp_min_qp1_entries); 7341 entries = roundup(entries, ctx->tqm_entries_multiple); 7342 entries = clamp_t(u32, entries, min, ctx->tqm_max_entries_per_ring); 7343 for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++) { 7344 ctx_pg = ctx->tqm_mem[i]; 7345 ctx_pg->entries = i ? entries : entries_sp; 7346 if (ctx->tqm_entry_size) { 7347 mem_size = ctx->tqm_entry_size * ctx_pg->entries; 7348 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, 7349 NULL); 7350 if (rc) 7351 return rc; 7352 } 7353 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP << i; 7354 } 7355 ena |= FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES; 7356 rc = bnxt_hwrm_func_backing_store_cfg(bp, ena); 7357 if (rc) { 7358 netdev_err(bp->dev, "Failed configuring context mem, rc = %d.\n", 7359 rc); 7360 return rc; 7361 } 7362 ctx->flags |= BNXT_CTX_FLAG_INITED; 7363 return 0; 7364 } 7365 7366 int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all) 7367 { 7368 struct hwrm_func_resource_qcaps_output *resp; 7369 struct hwrm_func_resource_qcaps_input *req; 7370 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7371 int rc; 7372 7373 rc = hwrm_req_init(bp, req, HWRM_FUNC_RESOURCE_QCAPS); 7374 if (rc) 7375 return rc; 7376 7377 req->fid = cpu_to_le16(0xffff); 7378 resp = hwrm_req_hold(bp, req); 7379 rc = hwrm_req_send_silent(bp, req); 7380 if (rc) 7381 goto hwrm_func_resc_qcaps_exit; 7382 7383 hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs); 7384 if (!all) 7385 goto hwrm_func_resc_qcaps_exit; 7386 7387 hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx); 7388 hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx); 7389 hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings); 7390 hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings); 7391 hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings); 7392 hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings); 7393 hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings); 7394 hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings); 7395 hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps); 7396 hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps); 7397 hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs); 7398 hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs); 7399 hw_resc->min_vnics = le16_to_cpu(resp->min_vnics); 7400 hw_resc->max_vnics = le16_to_cpu(resp->max_vnics); 7401 hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx); 7402 hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx); 7403 7404 if (bp->flags & BNXT_FLAG_CHIP_P5) { 7405 u16 max_msix = le16_to_cpu(resp->max_msix); 7406 7407 hw_resc->max_nqs = max_msix; 7408 hw_resc->max_hw_ring_grps = hw_resc->max_rx_rings; 7409 } 7410 7411 if (BNXT_PF(bp)) { 7412 struct bnxt_pf_info *pf = &bp->pf; 7413 7414 pf->vf_resv_strategy = 7415 le16_to_cpu(resp->vf_reservation_strategy); 7416 if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC) 7417 pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL; 7418 } 7419 hwrm_func_resc_qcaps_exit: 7420 hwrm_req_drop(bp, req); 7421 return rc; 7422 } 7423 7424 static int __bnxt_hwrm_ptp_qcfg(struct bnxt *bp) 7425 { 7426 struct hwrm_port_mac_ptp_qcfg_output *resp; 7427 struct hwrm_port_mac_ptp_qcfg_input *req; 7428 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 7429 u8 flags; 7430 int rc; 7431 7432 if (bp->hwrm_spec_code < 0x10801) { 7433 rc = -ENODEV; 7434 goto no_ptp; 7435 } 7436 7437 rc = hwrm_req_init(bp, req, HWRM_PORT_MAC_PTP_QCFG); 7438 if (rc) 7439 goto no_ptp; 7440 7441 req->port_id = cpu_to_le16(bp->pf.port_id); 7442 resp = hwrm_req_hold(bp, req); 7443 rc = hwrm_req_send(bp, req); 7444 if (rc) 7445 goto exit; 7446 7447 flags = resp->flags; 7448 if (!(flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_HWRM_ACCESS)) { 7449 rc = -ENODEV; 7450 goto exit; 7451 } 7452 if (!ptp) { 7453 ptp = kzalloc(sizeof(*ptp), GFP_KERNEL); 7454 if (!ptp) { 7455 rc = -ENOMEM; 7456 goto exit; 7457 } 7458 ptp->bp = bp; 7459 bp->ptp_cfg = ptp; 7460 } 7461 if (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_PARTIAL_DIRECT_ACCESS_REF_CLOCK) { 7462 ptp->refclk_regs[0] = le32_to_cpu(resp->ts_ref_clock_reg_lower); 7463 ptp->refclk_regs[1] = le32_to_cpu(resp->ts_ref_clock_reg_upper); 7464 } else if (bp->flags & BNXT_FLAG_CHIP_P5) { 7465 ptp->refclk_regs[0] = BNXT_TS_REG_TIMESYNC_TS0_LOWER; 7466 ptp->refclk_regs[1] = BNXT_TS_REG_TIMESYNC_TS0_UPPER; 7467 } else { 7468 rc = -ENODEV; 7469 goto exit; 7470 } 7471 rc = bnxt_ptp_init(bp); 7472 if (rc) 7473 netdev_warn(bp->dev, "PTP initialization failed.\n"); 7474 exit: 7475 hwrm_req_drop(bp, req); 7476 if (!rc) 7477 return 0; 7478 7479 no_ptp: 7480 bnxt_ptp_clear(bp); 7481 kfree(ptp); 7482 bp->ptp_cfg = NULL; 7483 return rc; 7484 } 7485 7486 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp) 7487 { 7488 struct hwrm_func_qcaps_output *resp; 7489 struct hwrm_func_qcaps_input *req; 7490 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7491 u32 flags, flags_ext; 7492 int rc; 7493 7494 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCAPS); 7495 if (rc) 7496 return rc; 7497 7498 req->fid = cpu_to_le16(0xffff); 7499 resp = hwrm_req_hold(bp, req); 7500 rc = hwrm_req_send(bp, req); 7501 if (rc) 7502 goto hwrm_func_qcaps_exit; 7503 7504 flags = le32_to_cpu(resp->flags); 7505 if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED) 7506 bp->flags |= BNXT_FLAG_ROCEV1_CAP; 7507 if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED) 7508 bp->flags |= BNXT_FLAG_ROCEV2_CAP; 7509 if (flags & FUNC_QCAPS_RESP_FLAGS_PCIE_STATS_SUPPORTED) 7510 bp->fw_cap |= BNXT_FW_CAP_PCIE_STATS_SUPPORTED; 7511 if (flags & FUNC_QCAPS_RESP_FLAGS_HOT_RESET_CAPABLE) 7512 bp->fw_cap |= BNXT_FW_CAP_HOT_RESET; 7513 if (flags & FUNC_QCAPS_RESP_FLAGS_EXT_STATS_SUPPORTED) 7514 bp->fw_cap |= BNXT_FW_CAP_EXT_STATS_SUPPORTED; 7515 if (flags & FUNC_QCAPS_RESP_FLAGS_ERROR_RECOVERY_CAPABLE) 7516 bp->fw_cap |= BNXT_FW_CAP_ERROR_RECOVERY; 7517 if (flags & FUNC_QCAPS_RESP_FLAGS_ERR_RECOVER_RELOAD) 7518 bp->fw_cap |= BNXT_FW_CAP_ERR_RECOVER_RELOAD; 7519 if (!(flags & FUNC_QCAPS_RESP_FLAGS_VLAN_ACCELERATION_TX_DISABLED)) 7520 bp->fw_cap |= BNXT_FW_CAP_VLAN_TX_INSERT; 7521 7522 flags_ext = le32_to_cpu(resp->flags_ext); 7523 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_EXT_HW_STATS_SUPPORTED) 7524 bp->fw_cap |= BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED; 7525 if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_PPS_SUPPORTED)) 7526 bp->fw_cap |= BNXT_FW_CAP_PTP_PPS; 7527 7528 bp->tx_push_thresh = 0; 7529 if ((flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED) && 7530 BNXT_FW_MAJ(bp) > 217) 7531 bp->tx_push_thresh = BNXT_TX_PUSH_THRESH; 7532 7533 hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx); 7534 hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings); 7535 hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings); 7536 hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings); 7537 hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps); 7538 if (!hw_resc->max_hw_ring_grps) 7539 hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings; 7540 hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs); 7541 hw_resc->max_vnics = le16_to_cpu(resp->max_vnics); 7542 hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx); 7543 7544 if (BNXT_PF(bp)) { 7545 struct bnxt_pf_info *pf = &bp->pf; 7546 7547 pf->fw_fid = le16_to_cpu(resp->fid); 7548 pf->port_id = le16_to_cpu(resp->port_id); 7549 memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN); 7550 pf->first_vf_id = le16_to_cpu(resp->first_vf_id); 7551 pf->max_vfs = le16_to_cpu(resp->max_vfs); 7552 pf->max_encap_records = le32_to_cpu(resp->max_encap_records); 7553 pf->max_decap_records = le32_to_cpu(resp->max_decap_records); 7554 pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows); 7555 pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows); 7556 pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows); 7557 pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows); 7558 bp->flags &= ~BNXT_FLAG_WOL_CAP; 7559 if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED) 7560 bp->flags |= BNXT_FLAG_WOL_CAP; 7561 if (flags & FUNC_QCAPS_RESP_FLAGS_PTP_SUPPORTED) { 7562 __bnxt_hwrm_ptp_qcfg(bp); 7563 } else { 7564 bnxt_ptp_clear(bp); 7565 kfree(bp->ptp_cfg); 7566 bp->ptp_cfg = NULL; 7567 } 7568 } else { 7569 #ifdef CONFIG_BNXT_SRIOV 7570 struct bnxt_vf_info *vf = &bp->vf; 7571 7572 vf->fw_fid = le16_to_cpu(resp->fid); 7573 memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN); 7574 #endif 7575 } 7576 7577 hwrm_func_qcaps_exit: 7578 hwrm_req_drop(bp, req); 7579 return rc; 7580 } 7581 7582 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp); 7583 7584 static int bnxt_hwrm_func_qcaps(struct bnxt *bp) 7585 { 7586 int rc; 7587 7588 rc = __bnxt_hwrm_func_qcaps(bp); 7589 if (rc) 7590 return rc; 7591 rc = bnxt_hwrm_queue_qportcfg(bp); 7592 if (rc) { 7593 netdev_err(bp->dev, "hwrm query qportcfg failure rc: %d\n", rc); 7594 return rc; 7595 } 7596 if (bp->hwrm_spec_code >= 0x10803) { 7597 rc = bnxt_alloc_ctx_mem(bp); 7598 if (rc) 7599 return rc; 7600 rc = bnxt_hwrm_func_resc_qcaps(bp, true); 7601 if (!rc) 7602 bp->fw_cap |= BNXT_FW_CAP_NEW_RM; 7603 } 7604 return 0; 7605 } 7606 7607 static int bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(struct bnxt *bp) 7608 { 7609 struct hwrm_cfa_adv_flow_mgnt_qcaps_output *resp; 7610 struct hwrm_cfa_adv_flow_mgnt_qcaps_input *req; 7611 u32 flags; 7612 int rc; 7613 7614 if (!(bp->fw_cap & BNXT_FW_CAP_CFA_ADV_FLOW)) 7615 return 0; 7616 7617 rc = hwrm_req_init(bp, req, HWRM_CFA_ADV_FLOW_MGNT_QCAPS); 7618 if (rc) 7619 return rc; 7620 7621 resp = hwrm_req_hold(bp, req); 7622 rc = hwrm_req_send(bp, req); 7623 if (rc) 7624 goto hwrm_cfa_adv_qcaps_exit; 7625 7626 flags = le32_to_cpu(resp->flags); 7627 if (flags & 7628 CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V2_SUPPORTED) 7629 bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2; 7630 7631 hwrm_cfa_adv_qcaps_exit: 7632 hwrm_req_drop(bp, req); 7633 return rc; 7634 } 7635 7636 static int __bnxt_alloc_fw_health(struct bnxt *bp) 7637 { 7638 if (bp->fw_health) 7639 return 0; 7640 7641 bp->fw_health = kzalloc(sizeof(*bp->fw_health), GFP_KERNEL); 7642 if (!bp->fw_health) 7643 return -ENOMEM; 7644 7645 return 0; 7646 } 7647 7648 static int bnxt_alloc_fw_health(struct bnxt *bp) 7649 { 7650 int rc; 7651 7652 if (!(bp->fw_cap & BNXT_FW_CAP_HOT_RESET) && 7653 !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 7654 return 0; 7655 7656 rc = __bnxt_alloc_fw_health(bp); 7657 if (rc) { 7658 bp->fw_cap &= ~BNXT_FW_CAP_HOT_RESET; 7659 bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY; 7660 return rc; 7661 } 7662 7663 return 0; 7664 } 7665 7666 static void __bnxt_map_fw_health_reg(struct bnxt *bp, u32 reg) 7667 { 7668 writel(reg & BNXT_GRC_BASE_MASK, bp->bar0 + 7669 BNXT_GRCPF_REG_WINDOW_BASE_OUT + 7670 BNXT_FW_HEALTH_WIN_MAP_OFF); 7671 } 7672 7673 bool bnxt_is_fw_healthy(struct bnxt *bp) 7674 { 7675 if (bp->fw_health && bp->fw_health->status_reliable) { 7676 u32 fw_status; 7677 7678 fw_status = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 7679 if (fw_status && !BNXT_FW_IS_HEALTHY(fw_status)) 7680 return false; 7681 } 7682 7683 return true; 7684 } 7685 7686 static void bnxt_inv_fw_health_reg(struct bnxt *bp) 7687 { 7688 struct bnxt_fw_health *fw_health = bp->fw_health; 7689 u32 reg_type; 7690 7691 if (!fw_health || !fw_health->status_reliable) 7692 return; 7693 7694 reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_HEALTH_REG]); 7695 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) 7696 fw_health->status_reliable = false; 7697 } 7698 7699 static void bnxt_try_map_fw_health_reg(struct bnxt *bp) 7700 { 7701 void __iomem *hs; 7702 u32 status_loc; 7703 u32 reg_type; 7704 u32 sig; 7705 7706 if (bp->fw_health) 7707 bp->fw_health->status_reliable = false; 7708 7709 __bnxt_map_fw_health_reg(bp, HCOMM_STATUS_STRUCT_LOC); 7710 hs = bp->bar0 + BNXT_FW_HEALTH_WIN_OFF(HCOMM_STATUS_STRUCT_LOC); 7711 7712 sig = readl(hs + offsetof(struct hcomm_status, sig_ver)); 7713 if ((sig & HCOMM_STATUS_SIGNATURE_MASK) != HCOMM_STATUS_SIGNATURE_VAL) { 7714 if (!bp->chip_num) { 7715 __bnxt_map_fw_health_reg(bp, BNXT_GRC_REG_BASE); 7716 bp->chip_num = readl(bp->bar0 + 7717 BNXT_FW_HEALTH_WIN_BASE + 7718 BNXT_GRC_REG_CHIP_NUM); 7719 } 7720 if (!BNXT_CHIP_P5(bp)) 7721 return; 7722 7723 status_loc = BNXT_GRC_REG_STATUS_P5 | 7724 BNXT_FW_HEALTH_REG_TYPE_BAR0; 7725 } else { 7726 status_loc = readl(hs + offsetof(struct hcomm_status, 7727 fw_status_loc)); 7728 } 7729 7730 if (__bnxt_alloc_fw_health(bp)) { 7731 netdev_warn(bp->dev, "no memory for firmware status checks\n"); 7732 return; 7733 } 7734 7735 bp->fw_health->regs[BNXT_FW_HEALTH_REG] = status_loc; 7736 reg_type = BNXT_FW_HEALTH_REG_TYPE(status_loc); 7737 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) { 7738 __bnxt_map_fw_health_reg(bp, status_loc); 7739 bp->fw_health->mapped_regs[BNXT_FW_HEALTH_REG] = 7740 BNXT_FW_HEALTH_WIN_OFF(status_loc); 7741 } 7742 7743 bp->fw_health->status_reliable = true; 7744 } 7745 7746 static int bnxt_map_fw_health_regs(struct bnxt *bp) 7747 { 7748 struct bnxt_fw_health *fw_health = bp->fw_health; 7749 u32 reg_base = 0xffffffff; 7750 int i; 7751 7752 bp->fw_health->status_reliable = false; 7753 /* Only pre-map the monitoring GRC registers using window 3 */ 7754 for (i = 0; i < 4; i++) { 7755 u32 reg = fw_health->regs[i]; 7756 7757 if (BNXT_FW_HEALTH_REG_TYPE(reg) != BNXT_FW_HEALTH_REG_TYPE_GRC) 7758 continue; 7759 if (reg_base == 0xffffffff) 7760 reg_base = reg & BNXT_GRC_BASE_MASK; 7761 if ((reg & BNXT_GRC_BASE_MASK) != reg_base) 7762 return -ERANGE; 7763 fw_health->mapped_regs[i] = BNXT_FW_HEALTH_WIN_OFF(reg); 7764 } 7765 bp->fw_health->status_reliable = true; 7766 if (reg_base == 0xffffffff) 7767 return 0; 7768 7769 __bnxt_map_fw_health_reg(bp, reg_base); 7770 return 0; 7771 } 7772 7773 static int bnxt_hwrm_error_recovery_qcfg(struct bnxt *bp) 7774 { 7775 struct bnxt_fw_health *fw_health = bp->fw_health; 7776 struct hwrm_error_recovery_qcfg_output *resp; 7777 struct hwrm_error_recovery_qcfg_input *req; 7778 int rc, i; 7779 7780 if (!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 7781 return 0; 7782 7783 rc = hwrm_req_init(bp, req, HWRM_ERROR_RECOVERY_QCFG); 7784 if (rc) 7785 return rc; 7786 7787 resp = hwrm_req_hold(bp, req); 7788 rc = hwrm_req_send(bp, req); 7789 if (rc) 7790 goto err_recovery_out; 7791 fw_health->flags = le32_to_cpu(resp->flags); 7792 if ((fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) && 7793 !(bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL)) { 7794 rc = -EINVAL; 7795 goto err_recovery_out; 7796 } 7797 fw_health->polling_dsecs = le32_to_cpu(resp->driver_polling_freq); 7798 fw_health->master_func_wait_dsecs = 7799 le32_to_cpu(resp->master_func_wait_period); 7800 fw_health->normal_func_wait_dsecs = 7801 le32_to_cpu(resp->normal_func_wait_period); 7802 fw_health->post_reset_wait_dsecs = 7803 le32_to_cpu(resp->master_func_wait_period_after_reset); 7804 fw_health->post_reset_max_wait_dsecs = 7805 le32_to_cpu(resp->max_bailout_time_after_reset); 7806 fw_health->regs[BNXT_FW_HEALTH_REG] = 7807 le32_to_cpu(resp->fw_health_status_reg); 7808 fw_health->regs[BNXT_FW_HEARTBEAT_REG] = 7809 le32_to_cpu(resp->fw_heartbeat_reg); 7810 fw_health->regs[BNXT_FW_RESET_CNT_REG] = 7811 le32_to_cpu(resp->fw_reset_cnt_reg); 7812 fw_health->regs[BNXT_FW_RESET_INPROG_REG] = 7813 le32_to_cpu(resp->reset_inprogress_reg); 7814 fw_health->fw_reset_inprog_reg_mask = 7815 le32_to_cpu(resp->reset_inprogress_reg_mask); 7816 fw_health->fw_reset_seq_cnt = resp->reg_array_cnt; 7817 if (fw_health->fw_reset_seq_cnt >= 16) { 7818 rc = -EINVAL; 7819 goto err_recovery_out; 7820 } 7821 for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) { 7822 fw_health->fw_reset_seq_regs[i] = 7823 le32_to_cpu(resp->reset_reg[i]); 7824 fw_health->fw_reset_seq_vals[i] = 7825 le32_to_cpu(resp->reset_reg_val[i]); 7826 fw_health->fw_reset_seq_delay_msec[i] = 7827 resp->delay_after_reset[i]; 7828 } 7829 err_recovery_out: 7830 hwrm_req_drop(bp, req); 7831 if (!rc) 7832 rc = bnxt_map_fw_health_regs(bp); 7833 if (rc) 7834 bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY; 7835 return rc; 7836 } 7837 7838 static int bnxt_hwrm_func_reset(struct bnxt *bp) 7839 { 7840 struct hwrm_func_reset_input *req; 7841 int rc; 7842 7843 rc = hwrm_req_init(bp, req, HWRM_FUNC_RESET); 7844 if (rc) 7845 return rc; 7846 7847 req->enables = 0; 7848 hwrm_req_timeout(bp, req, HWRM_RESET_TIMEOUT); 7849 return hwrm_req_send(bp, req); 7850 } 7851 7852 static void bnxt_nvm_cfg_ver_get(struct bnxt *bp) 7853 { 7854 struct hwrm_nvm_get_dev_info_output nvm_info; 7855 7856 if (!bnxt_hwrm_nvm_get_dev_info(bp, &nvm_info)) 7857 snprintf(bp->nvm_cfg_ver, FW_VER_STR_LEN, "%d.%d.%d", 7858 nvm_info.nvm_cfg_ver_maj, nvm_info.nvm_cfg_ver_min, 7859 nvm_info.nvm_cfg_ver_upd); 7860 } 7861 7862 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp) 7863 { 7864 struct hwrm_queue_qportcfg_output *resp; 7865 struct hwrm_queue_qportcfg_input *req; 7866 u8 i, j, *qptr; 7867 bool no_rdma; 7868 int rc = 0; 7869 7870 rc = hwrm_req_init(bp, req, HWRM_QUEUE_QPORTCFG); 7871 if (rc) 7872 return rc; 7873 7874 resp = hwrm_req_hold(bp, req); 7875 rc = hwrm_req_send(bp, req); 7876 if (rc) 7877 goto qportcfg_exit; 7878 7879 if (!resp->max_configurable_queues) { 7880 rc = -EINVAL; 7881 goto qportcfg_exit; 7882 } 7883 bp->max_tc = resp->max_configurable_queues; 7884 bp->max_lltc = resp->max_configurable_lossless_queues; 7885 if (bp->max_tc > BNXT_MAX_QUEUE) 7886 bp->max_tc = BNXT_MAX_QUEUE; 7887 7888 no_rdma = !(bp->flags & BNXT_FLAG_ROCE_CAP); 7889 qptr = &resp->queue_id0; 7890 for (i = 0, j = 0; i < bp->max_tc; i++) { 7891 bp->q_info[j].queue_id = *qptr; 7892 bp->q_ids[i] = *qptr++; 7893 bp->q_info[j].queue_profile = *qptr++; 7894 bp->tc_to_qidx[j] = j; 7895 if (!BNXT_CNPQ(bp->q_info[j].queue_profile) || 7896 (no_rdma && BNXT_PF(bp))) 7897 j++; 7898 } 7899 bp->max_q = bp->max_tc; 7900 bp->max_tc = max_t(u8, j, 1); 7901 7902 if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG) 7903 bp->max_tc = 1; 7904 7905 if (bp->max_lltc > bp->max_tc) 7906 bp->max_lltc = bp->max_tc; 7907 7908 qportcfg_exit: 7909 hwrm_req_drop(bp, req); 7910 return rc; 7911 } 7912 7913 static int bnxt_hwrm_poll(struct bnxt *bp) 7914 { 7915 struct hwrm_ver_get_input *req; 7916 int rc; 7917 7918 rc = hwrm_req_init(bp, req, HWRM_VER_GET); 7919 if (rc) 7920 return rc; 7921 7922 req->hwrm_intf_maj = HWRM_VERSION_MAJOR; 7923 req->hwrm_intf_min = HWRM_VERSION_MINOR; 7924 req->hwrm_intf_upd = HWRM_VERSION_UPDATE; 7925 7926 hwrm_req_flags(bp, req, BNXT_HWRM_CTX_SILENT | BNXT_HWRM_FULL_WAIT); 7927 rc = hwrm_req_send(bp, req); 7928 return rc; 7929 } 7930 7931 static int bnxt_hwrm_ver_get(struct bnxt *bp) 7932 { 7933 struct hwrm_ver_get_output *resp; 7934 struct hwrm_ver_get_input *req; 7935 u16 fw_maj, fw_min, fw_bld, fw_rsv; 7936 u32 dev_caps_cfg, hwrm_ver; 7937 int rc, len; 7938 7939 rc = hwrm_req_init(bp, req, HWRM_VER_GET); 7940 if (rc) 7941 return rc; 7942 7943 hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT); 7944 bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN; 7945 req->hwrm_intf_maj = HWRM_VERSION_MAJOR; 7946 req->hwrm_intf_min = HWRM_VERSION_MINOR; 7947 req->hwrm_intf_upd = HWRM_VERSION_UPDATE; 7948 7949 resp = hwrm_req_hold(bp, req); 7950 rc = hwrm_req_send(bp, req); 7951 if (rc) 7952 goto hwrm_ver_get_exit; 7953 7954 memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output)); 7955 7956 bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 | 7957 resp->hwrm_intf_min_8b << 8 | 7958 resp->hwrm_intf_upd_8b; 7959 if (resp->hwrm_intf_maj_8b < 1) { 7960 netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n", 7961 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b, 7962 resp->hwrm_intf_upd_8b); 7963 netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n"); 7964 } 7965 7966 hwrm_ver = HWRM_VERSION_MAJOR << 16 | HWRM_VERSION_MINOR << 8 | 7967 HWRM_VERSION_UPDATE; 7968 7969 if (bp->hwrm_spec_code > hwrm_ver) 7970 snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d", 7971 HWRM_VERSION_MAJOR, HWRM_VERSION_MINOR, 7972 HWRM_VERSION_UPDATE); 7973 else 7974 snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d", 7975 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b, 7976 resp->hwrm_intf_upd_8b); 7977 7978 fw_maj = le16_to_cpu(resp->hwrm_fw_major); 7979 if (bp->hwrm_spec_code > 0x10803 && fw_maj) { 7980 fw_min = le16_to_cpu(resp->hwrm_fw_minor); 7981 fw_bld = le16_to_cpu(resp->hwrm_fw_build); 7982 fw_rsv = le16_to_cpu(resp->hwrm_fw_patch); 7983 len = FW_VER_STR_LEN; 7984 } else { 7985 fw_maj = resp->hwrm_fw_maj_8b; 7986 fw_min = resp->hwrm_fw_min_8b; 7987 fw_bld = resp->hwrm_fw_bld_8b; 7988 fw_rsv = resp->hwrm_fw_rsvd_8b; 7989 len = BC_HWRM_STR_LEN; 7990 } 7991 bp->fw_ver_code = BNXT_FW_VER_CODE(fw_maj, fw_min, fw_bld, fw_rsv); 7992 snprintf(bp->fw_ver_str, len, "%d.%d.%d.%d", fw_maj, fw_min, fw_bld, 7993 fw_rsv); 7994 7995 if (strlen(resp->active_pkg_name)) { 7996 int fw_ver_len = strlen(bp->fw_ver_str); 7997 7998 snprintf(bp->fw_ver_str + fw_ver_len, 7999 FW_VER_STR_LEN - fw_ver_len - 1, "/pkg %s", 8000 resp->active_pkg_name); 8001 bp->fw_cap |= BNXT_FW_CAP_PKG_VER; 8002 } 8003 8004 bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout); 8005 if (!bp->hwrm_cmd_timeout) 8006 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT; 8007 8008 if (resp->hwrm_intf_maj_8b >= 1) { 8009 bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len); 8010 bp->hwrm_max_ext_req_len = le16_to_cpu(resp->max_ext_req_len); 8011 } 8012 if (bp->hwrm_max_ext_req_len < HWRM_MAX_REQ_LEN) 8013 bp->hwrm_max_ext_req_len = HWRM_MAX_REQ_LEN; 8014 8015 bp->chip_num = le16_to_cpu(resp->chip_num); 8016 bp->chip_rev = resp->chip_rev; 8017 if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev && 8018 !resp->chip_metal) 8019 bp->flags |= BNXT_FLAG_CHIP_NITRO_A0; 8020 8021 dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg); 8022 if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) && 8023 (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED)) 8024 bp->fw_cap |= BNXT_FW_CAP_SHORT_CMD; 8025 8026 if (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_KONG_MB_CHNL_SUPPORTED) 8027 bp->fw_cap |= BNXT_FW_CAP_KONG_MB_CHNL; 8028 8029 if (dev_caps_cfg & 8030 VER_GET_RESP_DEV_CAPS_CFG_FLOW_HANDLE_64BIT_SUPPORTED) 8031 bp->fw_cap |= BNXT_FW_CAP_OVS_64BIT_HANDLE; 8032 8033 if (dev_caps_cfg & 8034 VER_GET_RESP_DEV_CAPS_CFG_TRUSTED_VF_SUPPORTED) 8035 bp->fw_cap |= BNXT_FW_CAP_TRUSTED_VF; 8036 8037 if (dev_caps_cfg & 8038 VER_GET_RESP_DEV_CAPS_CFG_CFA_ADV_FLOW_MGNT_SUPPORTED) 8039 bp->fw_cap |= BNXT_FW_CAP_CFA_ADV_FLOW; 8040 8041 hwrm_ver_get_exit: 8042 hwrm_req_drop(bp, req); 8043 return rc; 8044 } 8045 8046 int bnxt_hwrm_fw_set_time(struct bnxt *bp) 8047 { 8048 struct hwrm_fw_set_time_input *req; 8049 struct tm tm; 8050 time64_t now = ktime_get_real_seconds(); 8051 int rc; 8052 8053 if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) || 8054 bp->hwrm_spec_code < 0x10400) 8055 return -EOPNOTSUPP; 8056 8057 time64_to_tm(now, 0, &tm); 8058 rc = hwrm_req_init(bp, req, HWRM_FW_SET_TIME); 8059 if (rc) 8060 return rc; 8061 8062 req->year = cpu_to_le16(1900 + tm.tm_year); 8063 req->month = 1 + tm.tm_mon; 8064 req->day = tm.tm_mday; 8065 req->hour = tm.tm_hour; 8066 req->minute = tm.tm_min; 8067 req->second = tm.tm_sec; 8068 return hwrm_req_send(bp, req); 8069 } 8070 8071 static void bnxt_add_one_ctr(u64 hw, u64 *sw, u64 mask) 8072 { 8073 u64 sw_tmp; 8074 8075 hw &= mask; 8076 sw_tmp = (*sw & ~mask) | hw; 8077 if (hw < (*sw & mask)) 8078 sw_tmp += mask + 1; 8079 WRITE_ONCE(*sw, sw_tmp); 8080 } 8081 8082 static void __bnxt_accumulate_stats(__le64 *hw_stats, u64 *sw_stats, u64 *masks, 8083 int count, bool ignore_zero) 8084 { 8085 int i; 8086 8087 for (i = 0; i < count; i++) { 8088 u64 hw = le64_to_cpu(READ_ONCE(hw_stats[i])); 8089 8090 if (ignore_zero && !hw) 8091 continue; 8092 8093 if (masks[i] == -1ULL) 8094 sw_stats[i] = hw; 8095 else 8096 bnxt_add_one_ctr(hw, &sw_stats[i], masks[i]); 8097 } 8098 } 8099 8100 static void bnxt_accumulate_stats(struct bnxt_stats_mem *stats) 8101 { 8102 if (!stats->hw_stats) 8103 return; 8104 8105 __bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats, 8106 stats->hw_masks, stats->len / 8, false); 8107 } 8108 8109 static void bnxt_accumulate_all_stats(struct bnxt *bp) 8110 { 8111 struct bnxt_stats_mem *ring0_stats; 8112 bool ignore_zero = false; 8113 int i; 8114 8115 /* Chip bug. Counter intermittently becomes 0. */ 8116 if (bp->flags & BNXT_FLAG_CHIP_P5) 8117 ignore_zero = true; 8118 8119 for (i = 0; i < bp->cp_nr_rings; i++) { 8120 struct bnxt_napi *bnapi = bp->bnapi[i]; 8121 struct bnxt_cp_ring_info *cpr; 8122 struct bnxt_stats_mem *stats; 8123 8124 cpr = &bnapi->cp_ring; 8125 stats = &cpr->stats; 8126 if (!i) 8127 ring0_stats = stats; 8128 __bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats, 8129 ring0_stats->hw_masks, 8130 ring0_stats->len / 8, ignore_zero); 8131 } 8132 if (bp->flags & BNXT_FLAG_PORT_STATS) { 8133 struct bnxt_stats_mem *stats = &bp->port_stats; 8134 __le64 *hw_stats = stats->hw_stats; 8135 u64 *sw_stats = stats->sw_stats; 8136 u64 *masks = stats->hw_masks; 8137 int cnt; 8138 8139 cnt = sizeof(struct rx_port_stats) / 8; 8140 __bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false); 8141 8142 hw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 8143 sw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 8144 masks += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 8145 cnt = sizeof(struct tx_port_stats) / 8; 8146 __bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false); 8147 } 8148 if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) { 8149 bnxt_accumulate_stats(&bp->rx_port_stats_ext); 8150 bnxt_accumulate_stats(&bp->tx_port_stats_ext); 8151 } 8152 } 8153 8154 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags) 8155 { 8156 struct hwrm_port_qstats_input *req; 8157 struct bnxt_pf_info *pf = &bp->pf; 8158 int rc; 8159 8160 if (!(bp->flags & BNXT_FLAG_PORT_STATS)) 8161 return 0; 8162 8163 if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)) 8164 return -EOPNOTSUPP; 8165 8166 rc = hwrm_req_init(bp, req, HWRM_PORT_QSTATS); 8167 if (rc) 8168 return rc; 8169 8170 req->flags = flags; 8171 req->port_id = cpu_to_le16(pf->port_id); 8172 req->tx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map + 8173 BNXT_TX_PORT_STATS_BYTE_OFFSET); 8174 req->rx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map); 8175 return hwrm_req_send(bp, req); 8176 } 8177 8178 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags) 8179 { 8180 struct hwrm_queue_pri2cos_qcfg_output *resp_qc; 8181 struct hwrm_queue_pri2cos_qcfg_input *req_qc; 8182 struct hwrm_port_qstats_ext_output *resp_qs; 8183 struct hwrm_port_qstats_ext_input *req_qs; 8184 struct bnxt_pf_info *pf = &bp->pf; 8185 u32 tx_stat_size; 8186 int rc; 8187 8188 if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT)) 8189 return 0; 8190 8191 if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)) 8192 return -EOPNOTSUPP; 8193 8194 rc = hwrm_req_init(bp, req_qs, HWRM_PORT_QSTATS_EXT); 8195 if (rc) 8196 return rc; 8197 8198 req_qs->flags = flags; 8199 req_qs->port_id = cpu_to_le16(pf->port_id); 8200 req_qs->rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext)); 8201 req_qs->rx_stat_host_addr = cpu_to_le64(bp->rx_port_stats_ext.hw_stats_map); 8202 tx_stat_size = bp->tx_port_stats_ext.hw_stats ? 8203 sizeof(struct tx_port_stats_ext) : 0; 8204 req_qs->tx_stat_size = cpu_to_le16(tx_stat_size); 8205 req_qs->tx_stat_host_addr = cpu_to_le64(bp->tx_port_stats_ext.hw_stats_map); 8206 resp_qs = hwrm_req_hold(bp, req_qs); 8207 rc = hwrm_req_send(bp, req_qs); 8208 if (!rc) { 8209 bp->fw_rx_stats_ext_size = 8210 le16_to_cpu(resp_qs->rx_stat_size) / 8; 8211 bp->fw_tx_stats_ext_size = tx_stat_size ? 8212 le16_to_cpu(resp_qs->tx_stat_size) / 8 : 0; 8213 } else { 8214 bp->fw_rx_stats_ext_size = 0; 8215 bp->fw_tx_stats_ext_size = 0; 8216 } 8217 hwrm_req_drop(bp, req_qs); 8218 8219 if (flags) 8220 return rc; 8221 8222 if (bp->fw_tx_stats_ext_size <= 8223 offsetof(struct tx_port_stats_ext, pfc_pri0_tx_duration_us) / 8) { 8224 bp->pri2cos_valid = 0; 8225 return rc; 8226 } 8227 8228 rc = hwrm_req_init(bp, req_qc, HWRM_QUEUE_PRI2COS_QCFG); 8229 if (rc) 8230 return rc; 8231 8232 req_qc->flags = cpu_to_le32(QUEUE_PRI2COS_QCFG_REQ_FLAGS_IVLAN); 8233 8234 resp_qc = hwrm_req_hold(bp, req_qc); 8235 rc = hwrm_req_send(bp, req_qc); 8236 if (!rc) { 8237 u8 *pri2cos; 8238 int i, j; 8239 8240 pri2cos = &resp_qc->pri0_cos_queue_id; 8241 for (i = 0; i < 8; i++) { 8242 u8 queue_id = pri2cos[i]; 8243 u8 queue_idx; 8244 8245 /* Per port queue IDs start from 0, 10, 20, etc */ 8246 queue_idx = queue_id % 10; 8247 if (queue_idx > BNXT_MAX_QUEUE) { 8248 bp->pri2cos_valid = false; 8249 hwrm_req_drop(bp, req_qc); 8250 return rc; 8251 } 8252 for (j = 0; j < bp->max_q; j++) { 8253 if (bp->q_ids[j] == queue_id) 8254 bp->pri2cos_idx[i] = queue_idx; 8255 } 8256 } 8257 bp->pri2cos_valid = true; 8258 } 8259 hwrm_req_drop(bp, req_qc); 8260 8261 return rc; 8262 } 8263 8264 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp) 8265 { 8266 bnxt_hwrm_tunnel_dst_port_free(bp, 8267 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN); 8268 bnxt_hwrm_tunnel_dst_port_free(bp, 8269 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE); 8270 } 8271 8272 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa) 8273 { 8274 int rc, i; 8275 u32 tpa_flags = 0; 8276 8277 if (set_tpa) 8278 tpa_flags = bp->flags & BNXT_FLAG_TPA; 8279 else if (BNXT_NO_FW_ACCESS(bp)) 8280 return 0; 8281 for (i = 0; i < bp->nr_vnics; i++) { 8282 rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags); 8283 if (rc) { 8284 netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n", 8285 i, rc); 8286 return rc; 8287 } 8288 } 8289 return 0; 8290 } 8291 8292 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp) 8293 { 8294 int i; 8295 8296 for (i = 0; i < bp->nr_vnics; i++) 8297 bnxt_hwrm_vnic_set_rss(bp, i, false); 8298 } 8299 8300 static void bnxt_clear_vnic(struct bnxt *bp) 8301 { 8302 if (!bp->vnic_info) 8303 return; 8304 8305 bnxt_hwrm_clear_vnic_filter(bp); 8306 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) { 8307 /* clear all RSS setting before free vnic ctx */ 8308 bnxt_hwrm_clear_vnic_rss(bp); 8309 bnxt_hwrm_vnic_ctx_free(bp); 8310 } 8311 /* before free the vnic, undo the vnic tpa settings */ 8312 if (bp->flags & BNXT_FLAG_TPA) 8313 bnxt_set_tpa(bp, false); 8314 bnxt_hwrm_vnic_free(bp); 8315 if (bp->flags & BNXT_FLAG_CHIP_P5) 8316 bnxt_hwrm_vnic_ctx_free(bp); 8317 } 8318 8319 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path, 8320 bool irq_re_init) 8321 { 8322 bnxt_clear_vnic(bp); 8323 bnxt_hwrm_ring_free(bp, close_path); 8324 bnxt_hwrm_ring_grp_free(bp); 8325 if (irq_re_init) { 8326 bnxt_hwrm_stat_ctx_free(bp); 8327 bnxt_hwrm_free_tunnel_ports(bp); 8328 } 8329 } 8330 8331 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode) 8332 { 8333 struct hwrm_func_cfg_input *req; 8334 u8 evb_mode; 8335 int rc; 8336 8337 if (br_mode == BRIDGE_MODE_VEB) 8338 evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB; 8339 else if (br_mode == BRIDGE_MODE_VEPA) 8340 evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA; 8341 else 8342 return -EINVAL; 8343 8344 rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG); 8345 if (rc) 8346 return rc; 8347 8348 req->fid = cpu_to_le16(0xffff); 8349 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE); 8350 req->evb_mode = evb_mode; 8351 return hwrm_req_send(bp, req); 8352 } 8353 8354 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size) 8355 { 8356 struct hwrm_func_cfg_input *req; 8357 int rc; 8358 8359 if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803) 8360 return 0; 8361 8362 rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG); 8363 if (rc) 8364 return rc; 8365 8366 req->fid = cpu_to_le16(0xffff); 8367 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE); 8368 req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64; 8369 if (size == 128) 8370 req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128; 8371 8372 return hwrm_req_send(bp, req); 8373 } 8374 8375 static int __bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id) 8376 { 8377 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 8378 int rc; 8379 8380 if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) 8381 goto skip_rss_ctx; 8382 8383 /* allocate context for vnic */ 8384 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0); 8385 if (rc) { 8386 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n", 8387 vnic_id, rc); 8388 goto vnic_setup_err; 8389 } 8390 bp->rsscos_nr_ctxs++; 8391 8392 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 8393 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1); 8394 if (rc) { 8395 netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n", 8396 vnic_id, rc); 8397 goto vnic_setup_err; 8398 } 8399 bp->rsscos_nr_ctxs++; 8400 } 8401 8402 skip_rss_ctx: 8403 /* configure default vnic, ring grp */ 8404 rc = bnxt_hwrm_vnic_cfg(bp, vnic_id); 8405 if (rc) { 8406 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n", 8407 vnic_id, rc); 8408 goto vnic_setup_err; 8409 } 8410 8411 /* Enable RSS hashing on vnic */ 8412 rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true); 8413 if (rc) { 8414 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n", 8415 vnic_id, rc); 8416 goto vnic_setup_err; 8417 } 8418 8419 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 8420 rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id); 8421 if (rc) { 8422 netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n", 8423 vnic_id, rc); 8424 } 8425 } 8426 8427 vnic_setup_err: 8428 return rc; 8429 } 8430 8431 static int __bnxt_setup_vnic_p5(struct bnxt *bp, u16 vnic_id) 8432 { 8433 int rc, i, nr_ctxs; 8434 8435 nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings); 8436 for (i = 0; i < nr_ctxs; i++) { 8437 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, i); 8438 if (rc) { 8439 netdev_err(bp->dev, "hwrm vnic %d ctx %d alloc failure rc: %x\n", 8440 vnic_id, i, rc); 8441 break; 8442 } 8443 bp->rsscos_nr_ctxs++; 8444 } 8445 if (i < nr_ctxs) 8446 return -ENOMEM; 8447 8448 rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic_id, true); 8449 if (rc) { 8450 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n", 8451 vnic_id, rc); 8452 return rc; 8453 } 8454 rc = bnxt_hwrm_vnic_cfg(bp, vnic_id); 8455 if (rc) { 8456 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n", 8457 vnic_id, rc); 8458 return rc; 8459 } 8460 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 8461 rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id); 8462 if (rc) { 8463 netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n", 8464 vnic_id, rc); 8465 } 8466 } 8467 return rc; 8468 } 8469 8470 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id) 8471 { 8472 if (bp->flags & BNXT_FLAG_CHIP_P5) 8473 return __bnxt_setup_vnic_p5(bp, vnic_id); 8474 else 8475 return __bnxt_setup_vnic(bp, vnic_id); 8476 } 8477 8478 static int bnxt_alloc_rfs_vnics(struct bnxt *bp) 8479 { 8480 #ifdef CONFIG_RFS_ACCEL 8481 int i, rc = 0; 8482 8483 if (bp->flags & BNXT_FLAG_CHIP_P5) 8484 return 0; 8485 8486 for (i = 0; i < bp->rx_nr_rings; i++) { 8487 struct bnxt_vnic_info *vnic; 8488 u16 vnic_id = i + 1; 8489 u16 ring_id = i; 8490 8491 if (vnic_id >= bp->nr_vnics) 8492 break; 8493 8494 vnic = &bp->vnic_info[vnic_id]; 8495 vnic->flags |= BNXT_VNIC_RFS_FLAG; 8496 if (bp->flags & BNXT_FLAG_NEW_RSS_CAP) 8497 vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG; 8498 rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1); 8499 if (rc) { 8500 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n", 8501 vnic_id, rc); 8502 break; 8503 } 8504 rc = bnxt_setup_vnic(bp, vnic_id); 8505 if (rc) 8506 break; 8507 } 8508 return rc; 8509 #else 8510 return 0; 8511 #endif 8512 } 8513 8514 /* Allow PF, trusted VFs and VFs with default VLAN to be in promiscuous mode */ 8515 static bool bnxt_promisc_ok(struct bnxt *bp) 8516 { 8517 #ifdef CONFIG_BNXT_SRIOV 8518 if (BNXT_VF(bp) && !bp->vf.vlan && !bnxt_is_trusted_vf(bp, &bp->vf)) 8519 return false; 8520 #endif 8521 return true; 8522 } 8523 8524 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp) 8525 { 8526 unsigned int rc = 0; 8527 8528 rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1); 8529 if (rc) { 8530 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n", 8531 rc); 8532 return rc; 8533 } 8534 8535 rc = bnxt_hwrm_vnic_cfg(bp, 1); 8536 if (rc) { 8537 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n", 8538 rc); 8539 return rc; 8540 } 8541 return rc; 8542 } 8543 8544 static int bnxt_cfg_rx_mode(struct bnxt *); 8545 static bool bnxt_mc_list_updated(struct bnxt *, u32 *); 8546 8547 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init) 8548 { 8549 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 8550 int rc = 0; 8551 unsigned int rx_nr_rings = bp->rx_nr_rings; 8552 8553 if (irq_re_init) { 8554 rc = bnxt_hwrm_stat_ctx_alloc(bp); 8555 if (rc) { 8556 netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n", 8557 rc); 8558 goto err_out; 8559 } 8560 } 8561 8562 rc = bnxt_hwrm_ring_alloc(bp); 8563 if (rc) { 8564 netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc); 8565 goto err_out; 8566 } 8567 8568 rc = bnxt_hwrm_ring_grp_alloc(bp); 8569 if (rc) { 8570 netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc); 8571 goto err_out; 8572 } 8573 8574 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 8575 rx_nr_rings--; 8576 8577 /* default vnic 0 */ 8578 rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings); 8579 if (rc) { 8580 netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc); 8581 goto err_out; 8582 } 8583 8584 rc = bnxt_setup_vnic(bp, 0); 8585 if (rc) 8586 goto err_out; 8587 8588 if (bp->flags & BNXT_FLAG_RFS) { 8589 rc = bnxt_alloc_rfs_vnics(bp); 8590 if (rc) 8591 goto err_out; 8592 } 8593 8594 if (bp->flags & BNXT_FLAG_TPA) { 8595 rc = bnxt_set_tpa(bp, true); 8596 if (rc) 8597 goto err_out; 8598 } 8599 8600 if (BNXT_VF(bp)) 8601 bnxt_update_vf_mac(bp); 8602 8603 /* Filter for default vnic 0 */ 8604 rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr); 8605 if (rc) { 8606 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc); 8607 goto err_out; 8608 } 8609 vnic->uc_filter_count = 1; 8610 8611 vnic->rx_mask = 0; 8612 if (bp->dev->flags & IFF_BROADCAST) 8613 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST; 8614 8615 if (bp->dev->flags & IFF_PROMISC) 8616 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 8617 8618 if (bp->dev->flags & IFF_ALLMULTI) { 8619 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 8620 vnic->mc_list_count = 0; 8621 } else { 8622 u32 mask = 0; 8623 8624 bnxt_mc_list_updated(bp, &mask); 8625 vnic->rx_mask |= mask; 8626 } 8627 8628 rc = bnxt_cfg_rx_mode(bp); 8629 if (rc) 8630 goto err_out; 8631 8632 rc = bnxt_hwrm_set_coal(bp); 8633 if (rc) 8634 netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n", 8635 rc); 8636 8637 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 8638 rc = bnxt_setup_nitroa0_vnic(bp); 8639 if (rc) 8640 netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n", 8641 rc); 8642 } 8643 8644 if (BNXT_VF(bp)) { 8645 bnxt_hwrm_func_qcfg(bp); 8646 netdev_update_features(bp->dev); 8647 } 8648 8649 return 0; 8650 8651 err_out: 8652 bnxt_hwrm_resource_free(bp, 0, true); 8653 8654 return rc; 8655 } 8656 8657 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init) 8658 { 8659 bnxt_hwrm_resource_free(bp, 1, irq_re_init); 8660 return 0; 8661 } 8662 8663 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init) 8664 { 8665 bnxt_init_cp_rings(bp); 8666 bnxt_init_rx_rings(bp); 8667 bnxt_init_tx_rings(bp); 8668 bnxt_init_ring_grps(bp, irq_re_init); 8669 bnxt_init_vnics(bp); 8670 8671 return bnxt_init_chip(bp, irq_re_init); 8672 } 8673 8674 static int bnxt_set_real_num_queues(struct bnxt *bp) 8675 { 8676 int rc; 8677 struct net_device *dev = bp->dev; 8678 8679 rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings - 8680 bp->tx_nr_rings_xdp); 8681 if (rc) 8682 return rc; 8683 8684 rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings); 8685 if (rc) 8686 return rc; 8687 8688 #ifdef CONFIG_RFS_ACCEL 8689 if (bp->flags & BNXT_FLAG_RFS) 8690 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings); 8691 #endif 8692 8693 return rc; 8694 } 8695 8696 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 8697 bool shared) 8698 { 8699 int _rx = *rx, _tx = *tx; 8700 8701 if (shared) { 8702 *rx = min_t(int, _rx, max); 8703 *tx = min_t(int, _tx, max); 8704 } else { 8705 if (max < 2) 8706 return -ENOMEM; 8707 8708 while (_rx + _tx > max) { 8709 if (_rx > _tx && _rx > 1) 8710 _rx--; 8711 else if (_tx > 1) 8712 _tx--; 8713 } 8714 *rx = _rx; 8715 *tx = _tx; 8716 } 8717 return 0; 8718 } 8719 8720 static void bnxt_setup_msix(struct bnxt *bp) 8721 { 8722 const int len = sizeof(bp->irq_tbl[0].name); 8723 struct net_device *dev = bp->dev; 8724 int tcs, i; 8725 8726 tcs = netdev_get_num_tc(dev); 8727 if (tcs) { 8728 int i, off, count; 8729 8730 for (i = 0; i < tcs; i++) { 8731 count = bp->tx_nr_rings_per_tc; 8732 off = i * count; 8733 netdev_set_tc_queue(dev, i, count, off); 8734 } 8735 } 8736 8737 for (i = 0; i < bp->cp_nr_rings; i++) { 8738 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 8739 char *attr; 8740 8741 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 8742 attr = "TxRx"; 8743 else if (i < bp->rx_nr_rings) 8744 attr = "rx"; 8745 else 8746 attr = "tx"; 8747 8748 snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name, 8749 attr, i); 8750 bp->irq_tbl[map_idx].handler = bnxt_msix; 8751 } 8752 } 8753 8754 static void bnxt_setup_inta(struct bnxt *bp) 8755 { 8756 const int len = sizeof(bp->irq_tbl[0].name); 8757 8758 if (netdev_get_num_tc(bp->dev)) 8759 netdev_reset_tc(bp->dev); 8760 8761 snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx", 8762 0); 8763 bp->irq_tbl[0].handler = bnxt_inta; 8764 } 8765 8766 static int bnxt_init_int_mode(struct bnxt *bp); 8767 8768 static int bnxt_setup_int_mode(struct bnxt *bp) 8769 { 8770 int rc; 8771 8772 if (!bp->irq_tbl) { 8773 rc = bnxt_init_int_mode(bp); 8774 if (rc || !bp->irq_tbl) 8775 return rc ?: -ENODEV; 8776 } 8777 8778 if (bp->flags & BNXT_FLAG_USING_MSIX) 8779 bnxt_setup_msix(bp); 8780 else 8781 bnxt_setup_inta(bp); 8782 8783 rc = bnxt_set_real_num_queues(bp); 8784 return rc; 8785 } 8786 8787 #ifdef CONFIG_RFS_ACCEL 8788 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp) 8789 { 8790 return bp->hw_resc.max_rsscos_ctxs; 8791 } 8792 8793 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp) 8794 { 8795 return bp->hw_resc.max_vnics; 8796 } 8797 #endif 8798 8799 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp) 8800 { 8801 return bp->hw_resc.max_stat_ctxs; 8802 } 8803 8804 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp) 8805 { 8806 return bp->hw_resc.max_cp_rings; 8807 } 8808 8809 static unsigned int bnxt_get_max_func_cp_rings_for_en(struct bnxt *bp) 8810 { 8811 unsigned int cp = bp->hw_resc.max_cp_rings; 8812 8813 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 8814 cp -= bnxt_get_ulp_msix_num(bp); 8815 8816 return cp; 8817 } 8818 8819 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp) 8820 { 8821 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 8822 8823 if (bp->flags & BNXT_FLAG_CHIP_P5) 8824 return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_nqs); 8825 8826 return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings); 8827 } 8828 8829 static void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs) 8830 { 8831 bp->hw_resc.max_irqs = max_irqs; 8832 } 8833 8834 unsigned int bnxt_get_avail_cp_rings_for_en(struct bnxt *bp) 8835 { 8836 unsigned int cp; 8837 8838 cp = bnxt_get_max_func_cp_rings_for_en(bp); 8839 if (bp->flags & BNXT_FLAG_CHIP_P5) 8840 return cp - bp->rx_nr_rings - bp->tx_nr_rings; 8841 else 8842 return cp - bp->cp_nr_rings; 8843 } 8844 8845 unsigned int bnxt_get_avail_stat_ctxs_for_en(struct bnxt *bp) 8846 { 8847 return bnxt_get_max_func_stat_ctxs(bp) - bnxt_get_func_stat_ctxs(bp); 8848 } 8849 8850 int bnxt_get_avail_msix(struct bnxt *bp, int num) 8851 { 8852 int max_cp = bnxt_get_max_func_cp_rings(bp); 8853 int max_irq = bnxt_get_max_func_irqs(bp); 8854 int total_req = bp->cp_nr_rings + num; 8855 int max_idx, avail_msix; 8856 8857 max_idx = bp->total_irqs; 8858 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 8859 max_idx = min_t(int, bp->total_irqs, max_cp); 8860 avail_msix = max_idx - bp->cp_nr_rings; 8861 if (!BNXT_NEW_RM(bp) || avail_msix >= num) 8862 return avail_msix; 8863 8864 if (max_irq < total_req) { 8865 num = max_irq - bp->cp_nr_rings; 8866 if (num <= 0) 8867 return 0; 8868 } 8869 return num; 8870 } 8871 8872 static int bnxt_get_num_msix(struct bnxt *bp) 8873 { 8874 if (!BNXT_NEW_RM(bp)) 8875 return bnxt_get_max_func_irqs(bp); 8876 8877 return bnxt_nq_rings_in_use(bp); 8878 } 8879 8880 static int bnxt_init_msix(struct bnxt *bp) 8881 { 8882 int i, total_vecs, max, rc = 0, min = 1, ulp_msix; 8883 struct msix_entry *msix_ent; 8884 8885 total_vecs = bnxt_get_num_msix(bp); 8886 max = bnxt_get_max_func_irqs(bp); 8887 if (total_vecs > max) 8888 total_vecs = max; 8889 8890 if (!total_vecs) 8891 return 0; 8892 8893 msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL); 8894 if (!msix_ent) 8895 return -ENOMEM; 8896 8897 for (i = 0; i < total_vecs; i++) { 8898 msix_ent[i].entry = i; 8899 msix_ent[i].vector = 0; 8900 } 8901 8902 if (!(bp->flags & BNXT_FLAG_SHARED_RINGS)) 8903 min = 2; 8904 8905 total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs); 8906 ulp_msix = bnxt_get_ulp_msix_num(bp); 8907 if (total_vecs < 0 || total_vecs < ulp_msix) { 8908 rc = -ENODEV; 8909 goto msix_setup_exit; 8910 } 8911 8912 bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL); 8913 if (bp->irq_tbl) { 8914 for (i = 0; i < total_vecs; i++) 8915 bp->irq_tbl[i].vector = msix_ent[i].vector; 8916 8917 bp->total_irqs = total_vecs; 8918 /* Trim rings based upon num of vectors allocated */ 8919 rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings, 8920 total_vecs - ulp_msix, min == 1); 8921 if (rc) 8922 goto msix_setup_exit; 8923 8924 bp->cp_nr_rings = (min == 1) ? 8925 max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) : 8926 bp->tx_nr_rings + bp->rx_nr_rings; 8927 8928 } else { 8929 rc = -ENOMEM; 8930 goto msix_setup_exit; 8931 } 8932 bp->flags |= BNXT_FLAG_USING_MSIX; 8933 kfree(msix_ent); 8934 return 0; 8935 8936 msix_setup_exit: 8937 netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc); 8938 kfree(bp->irq_tbl); 8939 bp->irq_tbl = NULL; 8940 pci_disable_msix(bp->pdev); 8941 kfree(msix_ent); 8942 return rc; 8943 } 8944 8945 static int bnxt_init_inta(struct bnxt *bp) 8946 { 8947 bp->irq_tbl = kzalloc(sizeof(struct bnxt_irq), GFP_KERNEL); 8948 if (!bp->irq_tbl) 8949 return -ENOMEM; 8950 8951 bp->total_irqs = 1; 8952 bp->rx_nr_rings = 1; 8953 bp->tx_nr_rings = 1; 8954 bp->cp_nr_rings = 1; 8955 bp->flags |= BNXT_FLAG_SHARED_RINGS; 8956 bp->irq_tbl[0].vector = bp->pdev->irq; 8957 return 0; 8958 } 8959 8960 static int bnxt_init_int_mode(struct bnxt *bp) 8961 { 8962 int rc = -ENODEV; 8963 8964 if (bp->flags & BNXT_FLAG_MSIX_CAP) 8965 rc = bnxt_init_msix(bp); 8966 8967 if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) { 8968 /* fallback to INTA */ 8969 rc = bnxt_init_inta(bp); 8970 } 8971 return rc; 8972 } 8973 8974 static void bnxt_clear_int_mode(struct bnxt *bp) 8975 { 8976 if (bp->flags & BNXT_FLAG_USING_MSIX) 8977 pci_disable_msix(bp->pdev); 8978 8979 kfree(bp->irq_tbl); 8980 bp->irq_tbl = NULL; 8981 bp->flags &= ~BNXT_FLAG_USING_MSIX; 8982 } 8983 8984 int bnxt_reserve_rings(struct bnxt *bp, bool irq_re_init) 8985 { 8986 int tcs = netdev_get_num_tc(bp->dev); 8987 bool irq_cleared = false; 8988 int rc; 8989 8990 if (!bnxt_need_reserve_rings(bp)) 8991 return 0; 8992 8993 if (irq_re_init && BNXT_NEW_RM(bp) && 8994 bnxt_get_num_msix(bp) != bp->total_irqs) { 8995 bnxt_ulp_irq_stop(bp); 8996 bnxt_clear_int_mode(bp); 8997 irq_cleared = true; 8998 } 8999 rc = __bnxt_reserve_rings(bp); 9000 if (irq_cleared) { 9001 if (!rc) 9002 rc = bnxt_init_int_mode(bp); 9003 bnxt_ulp_irq_restart(bp, rc); 9004 } 9005 if (rc) { 9006 netdev_err(bp->dev, "ring reservation/IRQ init failure rc: %d\n", rc); 9007 return rc; 9008 } 9009 if (tcs && (bp->tx_nr_rings_per_tc * tcs != bp->tx_nr_rings)) { 9010 netdev_err(bp->dev, "tx ring reservation failure\n"); 9011 netdev_reset_tc(bp->dev); 9012 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 9013 return -ENOMEM; 9014 } 9015 return 0; 9016 } 9017 9018 static void bnxt_free_irq(struct bnxt *bp) 9019 { 9020 struct bnxt_irq *irq; 9021 int i; 9022 9023 #ifdef CONFIG_RFS_ACCEL 9024 free_irq_cpu_rmap(bp->dev->rx_cpu_rmap); 9025 bp->dev->rx_cpu_rmap = NULL; 9026 #endif 9027 if (!bp->irq_tbl || !bp->bnapi) 9028 return; 9029 9030 for (i = 0; i < bp->cp_nr_rings; i++) { 9031 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 9032 9033 irq = &bp->irq_tbl[map_idx]; 9034 if (irq->requested) { 9035 if (irq->have_cpumask) { 9036 irq_set_affinity_hint(irq->vector, NULL); 9037 free_cpumask_var(irq->cpu_mask); 9038 irq->have_cpumask = 0; 9039 } 9040 free_irq(irq->vector, bp->bnapi[i]); 9041 } 9042 9043 irq->requested = 0; 9044 } 9045 } 9046 9047 static int bnxt_request_irq(struct bnxt *bp) 9048 { 9049 int i, j, rc = 0; 9050 unsigned long flags = 0; 9051 #ifdef CONFIG_RFS_ACCEL 9052 struct cpu_rmap *rmap; 9053 #endif 9054 9055 rc = bnxt_setup_int_mode(bp); 9056 if (rc) { 9057 netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n", 9058 rc); 9059 return rc; 9060 } 9061 #ifdef CONFIG_RFS_ACCEL 9062 rmap = bp->dev->rx_cpu_rmap; 9063 #endif 9064 if (!(bp->flags & BNXT_FLAG_USING_MSIX)) 9065 flags = IRQF_SHARED; 9066 9067 for (i = 0, j = 0; i < bp->cp_nr_rings; i++) { 9068 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 9069 struct bnxt_irq *irq = &bp->irq_tbl[map_idx]; 9070 9071 #ifdef CONFIG_RFS_ACCEL 9072 if (rmap && bp->bnapi[i]->rx_ring) { 9073 rc = irq_cpu_rmap_add(rmap, irq->vector); 9074 if (rc) 9075 netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n", 9076 j); 9077 j++; 9078 } 9079 #endif 9080 rc = request_irq(irq->vector, irq->handler, flags, irq->name, 9081 bp->bnapi[i]); 9082 if (rc) 9083 break; 9084 9085 irq->requested = 1; 9086 9087 if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) { 9088 int numa_node = dev_to_node(&bp->pdev->dev); 9089 9090 irq->have_cpumask = 1; 9091 cpumask_set_cpu(cpumask_local_spread(i, numa_node), 9092 irq->cpu_mask); 9093 rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask); 9094 if (rc) { 9095 netdev_warn(bp->dev, 9096 "Set affinity failed, IRQ = %d\n", 9097 irq->vector); 9098 break; 9099 } 9100 } 9101 } 9102 return rc; 9103 } 9104 9105 static void bnxt_del_napi(struct bnxt *bp) 9106 { 9107 int i; 9108 9109 if (!bp->bnapi) 9110 return; 9111 9112 for (i = 0; i < bp->cp_nr_rings; i++) { 9113 struct bnxt_napi *bnapi = bp->bnapi[i]; 9114 9115 __netif_napi_del(&bnapi->napi); 9116 } 9117 /* We called __netif_napi_del(), we need 9118 * to respect an RCU grace period before freeing napi structures. 9119 */ 9120 synchronize_net(); 9121 } 9122 9123 static void bnxt_init_napi(struct bnxt *bp) 9124 { 9125 int i; 9126 unsigned int cp_nr_rings = bp->cp_nr_rings; 9127 struct bnxt_napi *bnapi; 9128 9129 if (bp->flags & BNXT_FLAG_USING_MSIX) { 9130 int (*poll_fn)(struct napi_struct *, int) = bnxt_poll; 9131 9132 if (bp->flags & BNXT_FLAG_CHIP_P5) 9133 poll_fn = bnxt_poll_p5; 9134 else if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 9135 cp_nr_rings--; 9136 for (i = 0; i < cp_nr_rings; i++) { 9137 bnapi = bp->bnapi[i]; 9138 netif_napi_add(bp->dev, &bnapi->napi, poll_fn, 64); 9139 } 9140 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 9141 bnapi = bp->bnapi[cp_nr_rings]; 9142 netif_napi_add(bp->dev, &bnapi->napi, 9143 bnxt_poll_nitroa0, 64); 9144 } 9145 } else { 9146 bnapi = bp->bnapi[0]; 9147 netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64); 9148 } 9149 } 9150 9151 static void bnxt_disable_napi(struct bnxt *bp) 9152 { 9153 int i; 9154 9155 if (!bp->bnapi || 9156 test_and_set_bit(BNXT_STATE_NAPI_DISABLED, &bp->state)) 9157 return; 9158 9159 for (i = 0; i < bp->cp_nr_rings; i++) { 9160 struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring; 9161 9162 napi_disable(&bp->bnapi[i]->napi); 9163 if (bp->bnapi[i]->rx_ring) 9164 cancel_work_sync(&cpr->dim.work); 9165 } 9166 } 9167 9168 static void bnxt_enable_napi(struct bnxt *bp) 9169 { 9170 int i; 9171 9172 clear_bit(BNXT_STATE_NAPI_DISABLED, &bp->state); 9173 for (i = 0; i < bp->cp_nr_rings; i++) { 9174 struct bnxt_napi *bnapi = bp->bnapi[i]; 9175 struct bnxt_cp_ring_info *cpr; 9176 9177 cpr = &bnapi->cp_ring; 9178 if (bnapi->in_reset) 9179 cpr->sw_stats.rx.rx_resets++; 9180 bnapi->in_reset = false; 9181 9182 if (bnapi->rx_ring) { 9183 INIT_WORK(&cpr->dim.work, bnxt_dim_work); 9184 cpr->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 9185 } 9186 napi_enable(&bnapi->napi); 9187 } 9188 } 9189 9190 void bnxt_tx_disable(struct bnxt *bp) 9191 { 9192 int i; 9193 struct bnxt_tx_ring_info *txr; 9194 9195 if (bp->tx_ring) { 9196 for (i = 0; i < bp->tx_nr_rings; i++) { 9197 txr = &bp->tx_ring[i]; 9198 WRITE_ONCE(txr->dev_state, BNXT_DEV_STATE_CLOSING); 9199 } 9200 } 9201 /* Make sure napi polls see @dev_state change */ 9202 synchronize_net(); 9203 /* Drop carrier first to prevent TX timeout */ 9204 netif_carrier_off(bp->dev); 9205 /* Stop all TX queues */ 9206 netif_tx_disable(bp->dev); 9207 } 9208 9209 void bnxt_tx_enable(struct bnxt *bp) 9210 { 9211 int i; 9212 struct bnxt_tx_ring_info *txr; 9213 9214 for (i = 0; i < bp->tx_nr_rings; i++) { 9215 txr = &bp->tx_ring[i]; 9216 WRITE_ONCE(txr->dev_state, 0); 9217 } 9218 /* Make sure napi polls see @dev_state change */ 9219 synchronize_net(); 9220 netif_tx_wake_all_queues(bp->dev); 9221 if (bp->link_info.link_up) 9222 netif_carrier_on(bp->dev); 9223 } 9224 9225 static char *bnxt_report_fec(struct bnxt_link_info *link_info) 9226 { 9227 u8 active_fec = link_info->active_fec_sig_mode & 9228 PORT_PHY_QCFG_RESP_ACTIVE_FEC_MASK; 9229 9230 switch (active_fec) { 9231 default: 9232 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_NONE_ACTIVE: 9233 return "None"; 9234 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE74_ACTIVE: 9235 return "Clause 74 BaseR"; 9236 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE91_ACTIVE: 9237 return "Clause 91 RS(528,514)"; 9238 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_1XN_ACTIVE: 9239 return "Clause 91 RS544_1XN"; 9240 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_IEEE_ACTIVE: 9241 return "Clause 91 RS(544,514)"; 9242 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_1XN_ACTIVE: 9243 return "Clause 91 RS272_1XN"; 9244 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_IEEE_ACTIVE: 9245 return "Clause 91 RS(272,257)"; 9246 } 9247 } 9248 9249 static void bnxt_report_link(struct bnxt *bp) 9250 { 9251 if (bp->link_info.link_up) { 9252 const char *signal = ""; 9253 const char *flow_ctrl; 9254 const char *duplex; 9255 u32 speed; 9256 u16 fec; 9257 9258 netif_carrier_on(bp->dev); 9259 speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed); 9260 if (speed == SPEED_UNKNOWN) { 9261 netdev_info(bp->dev, "NIC Link is Up, speed unknown\n"); 9262 return; 9263 } 9264 if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL) 9265 duplex = "full"; 9266 else 9267 duplex = "half"; 9268 if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH) 9269 flow_ctrl = "ON - receive & transmit"; 9270 else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX) 9271 flow_ctrl = "ON - transmit"; 9272 else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX) 9273 flow_ctrl = "ON - receive"; 9274 else 9275 flow_ctrl = "none"; 9276 if (bp->link_info.phy_qcfg_resp.option_flags & 9277 PORT_PHY_QCFG_RESP_OPTION_FLAGS_SIGNAL_MODE_KNOWN) { 9278 u8 sig_mode = bp->link_info.active_fec_sig_mode & 9279 PORT_PHY_QCFG_RESP_SIGNAL_MODE_MASK; 9280 switch (sig_mode) { 9281 case PORT_PHY_QCFG_RESP_SIGNAL_MODE_NRZ: 9282 signal = "(NRZ) "; 9283 break; 9284 case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4: 9285 signal = "(PAM4) "; 9286 break; 9287 default: 9288 break; 9289 } 9290 } 9291 netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s%s duplex, Flow control: %s\n", 9292 speed, signal, duplex, flow_ctrl); 9293 if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) 9294 netdev_info(bp->dev, "EEE is %s\n", 9295 bp->eee.eee_active ? "active" : 9296 "not active"); 9297 fec = bp->link_info.fec_cfg; 9298 if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED)) 9299 netdev_info(bp->dev, "FEC autoneg %s encoding: %s\n", 9300 (fec & BNXT_FEC_AUTONEG) ? "on" : "off", 9301 bnxt_report_fec(&bp->link_info)); 9302 } else { 9303 netif_carrier_off(bp->dev); 9304 netdev_err(bp->dev, "NIC Link is Down\n"); 9305 } 9306 } 9307 9308 static bool bnxt_phy_qcaps_no_speed(struct hwrm_port_phy_qcaps_output *resp) 9309 { 9310 if (!resp->supported_speeds_auto_mode && 9311 !resp->supported_speeds_force_mode && 9312 !resp->supported_pam4_speeds_auto_mode && 9313 !resp->supported_pam4_speeds_force_mode) 9314 return true; 9315 return false; 9316 } 9317 9318 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp) 9319 { 9320 struct bnxt_link_info *link_info = &bp->link_info; 9321 struct hwrm_port_phy_qcaps_output *resp; 9322 struct hwrm_port_phy_qcaps_input *req; 9323 int rc = 0; 9324 9325 if (bp->hwrm_spec_code < 0x10201) 9326 return 0; 9327 9328 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCAPS); 9329 if (rc) 9330 return rc; 9331 9332 resp = hwrm_req_hold(bp, req); 9333 rc = hwrm_req_send(bp, req); 9334 if (rc) 9335 goto hwrm_phy_qcaps_exit; 9336 9337 bp->phy_flags = resp->flags; 9338 if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) { 9339 struct ethtool_eee *eee = &bp->eee; 9340 u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode); 9341 9342 eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0); 9343 bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) & 9344 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK; 9345 bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) & 9346 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK; 9347 } 9348 9349 if (bp->hwrm_spec_code >= 0x10a01) { 9350 if (bnxt_phy_qcaps_no_speed(resp)) { 9351 link_info->phy_state = BNXT_PHY_STATE_DISABLED; 9352 netdev_warn(bp->dev, "Ethernet link disabled\n"); 9353 } else if (link_info->phy_state == BNXT_PHY_STATE_DISABLED) { 9354 link_info->phy_state = BNXT_PHY_STATE_ENABLED; 9355 netdev_info(bp->dev, "Ethernet link enabled\n"); 9356 /* Phy re-enabled, reprobe the speeds */ 9357 link_info->support_auto_speeds = 0; 9358 link_info->support_pam4_auto_speeds = 0; 9359 } 9360 } 9361 if (resp->supported_speeds_auto_mode) 9362 link_info->support_auto_speeds = 9363 le16_to_cpu(resp->supported_speeds_auto_mode); 9364 if (resp->supported_pam4_speeds_auto_mode) 9365 link_info->support_pam4_auto_speeds = 9366 le16_to_cpu(resp->supported_pam4_speeds_auto_mode); 9367 9368 bp->port_count = resp->port_cnt; 9369 9370 hwrm_phy_qcaps_exit: 9371 hwrm_req_drop(bp, req); 9372 return rc; 9373 } 9374 9375 static bool bnxt_support_dropped(u16 advertising, u16 supported) 9376 { 9377 u16 diff = advertising ^ supported; 9378 9379 return ((supported | diff) != supported); 9380 } 9381 9382 int bnxt_update_link(struct bnxt *bp, bool chng_link_state) 9383 { 9384 struct bnxt_link_info *link_info = &bp->link_info; 9385 struct hwrm_port_phy_qcfg_output *resp; 9386 struct hwrm_port_phy_qcfg_input *req; 9387 u8 link_up = link_info->link_up; 9388 bool support_changed = false; 9389 int rc; 9390 9391 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCFG); 9392 if (rc) 9393 return rc; 9394 9395 resp = hwrm_req_hold(bp, req); 9396 rc = hwrm_req_send(bp, req); 9397 if (rc) { 9398 hwrm_req_drop(bp, req); 9399 return rc; 9400 } 9401 9402 memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp)); 9403 link_info->phy_link_status = resp->link; 9404 link_info->duplex = resp->duplex_cfg; 9405 if (bp->hwrm_spec_code >= 0x10800) 9406 link_info->duplex = resp->duplex_state; 9407 link_info->pause = resp->pause; 9408 link_info->auto_mode = resp->auto_mode; 9409 link_info->auto_pause_setting = resp->auto_pause; 9410 link_info->lp_pause = resp->link_partner_adv_pause; 9411 link_info->force_pause_setting = resp->force_pause; 9412 link_info->duplex_setting = resp->duplex_cfg; 9413 if (link_info->phy_link_status == BNXT_LINK_LINK) 9414 link_info->link_speed = le16_to_cpu(resp->link_speed); 9415 else 9416 link_info->link_speed = 0; 9417 link_info->force_link_speed = le16_to_cpu(resp->force_link_speed); 9418 link_info->force_pam4_link_speed = 9419 le16_to_cpu(resp->force_pam4_link_speed); 9420 link_info->support_speeds = le16_to_cpu(resp->support_speeds); 9421 link_info->support_pam4_speeds = le16_to_cpu(resp->support_pam4_speeds); 9422 link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask); 9423 link_info->auto_pam4_link_speeds = 9424 le16_to_cpu(resp->auto_pam4_link_speed_mask); 9425 link_info->lp_auto_link_speeds = 9426 le16_to_cpu(resp->link_partner_adv_speeds); 9427 link_info->lp_auto_pam4_link_speeds = 9428 resp->link_partner_pam4_adv_speeds; 9429 link_info->preemphasis = le32_to_cpu(resp->preemphasis); 9430 link_info->phy_ver[0] = resp->phy_maj; 9431 link_info->phy_ver[1] = resp->phy_min; 9432 link_info->phy_ver[2] = resp->phy_bld; 9433 link_info->media_type = resp->media_type; 9434 link_info->phy_type = resp->phy_type; 9435 link_info->transceiver = resp->xcvr_pkg_type; 9436 link_info->phy_addr = resp->eee_config_phy_addr & 9437 PORT_PHY_QCFG_RESP_PHY_ADDR_MASK; 9438 link_info->module_status = resp->module_status; 9439 9440 if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) { 9441 struct ethtool_eee *eee = &bp->eee; 9442 u16 fw_speeds; 9443 9444 eee->eee_active = 0; 9445 if (resp->eee_config_phy_addr & 9446 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) { 9447 eee->eee_active = 1; 9448 fw_speeds = le16_to_cpu( 9449 resp->link_partner_adv_eee_link_speed_mask); 9450 eee->lp_advertised = 9451 _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0); 9452 } 9453 9454 /* Pull initial EEE config */ 9455 if (!chng_link_state) { 9456 if (resp->eee_config_phy_addr & 9457 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED) 9458 eee->eee_enabled = 1; 9459 9460 fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask); 9461 eee->advertised = 9462 _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0); 9463 9464 if (resp->eee_config_phy_addr & 9465 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) { 9466 __le32 tmr; 9467 9468 eee->tx_lpi_enabled = 1; 9469 tmr = resp->xcvr_identifier_type_tx_lpi_timer; 9470 eee->tx_lpi_timer = le32_to_cpu(tmr) & 9471 PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK; 9472 } 9473 } 9474 } 9475 9476 link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED; 9477 if (bp->hwrm_spec_code >= 0x10504) { 9478 link_info->fec_cfg = le16_to_cpu(resp->fec_cfg); 9479 link_info->active_fec_sig_mode = resp->active_fec_signal_mode; 9480 } 9481 /* TODO: need to add more logic to report VF link */ 9482 if (chng_link_state) { 9483 if (link_info->phy_link_status == BNXT_LINK_LINK) 9484 link_info->link_up = 1; 9485 else 9486 link_info->link_up = 0; 9487 if (link_up != link_info->link_up) 9488 bnxt_report_link(bp); 9489 } else { 9490 /* alwasy link down if not require to update link state */ 9491 link_info->link_up = 0; 9492 } 9493 hwrm_req_drop(bp, req); 9494 9495 if (!BNXT_PHY_CFG_ABLE(bp)) 9496 return 0; 9497 9498 /* Check if any advertised speeds are no longer supported. The caller 9499 * holds the link_lock mutex, so we can modify link_info settings. 9500 */ 9501 if (bnxt_support_dropped(link_info->advertising, 9502 link_info->support_auto_speeds)) { 9503 link_info->advertising = link_info->support_auto_speeds; 9504 support_changed = true; 9505 } 9506 if (bnxt_support_dropped(link_info->advertising_pam4, 9507 link_info->support_pam4_auto_speeds)) { 9508 link_info->advertising_pam4 = link_info->support_pam4_auto_speeds; 9509 support_changed = true; 9510 } 9511 if (support_changed && (link_info->autoneg & BNXT_AUTONEG_SPEED)) 9512 bnxt_hwrm_set_link_setting(bp, true, false); 9513 return 0; 9514 } 9515 9516 static void bnxt_get_port_module_status(struct bnxt *bp) 9517 { 9518 struct bnxt_link_info *link_info = &bp->link_info; 9519 struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp; 9520 u8 module_status; 9521 9522 if (bnxt_update_link(bp, true)) 9523 return; 9524 9525 module_status = link_info->module_status; 9526 switch (module_status) { 9527 case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX: 9528 case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN: 9529 case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG: 9530 netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n", 9531 bp->pf.port_id); 9532 if (bp->hwrm_spec_code >= 0x10201) { 9533 netdev_warn(bp->dev, "Module part number %s\n", 9534 resp->phy_vendor_partnumber); 9535 } 9536 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX) 9537 netdev_warn(bp->dev, "TX is disabled\n"); 9538 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN) 9539 netdev_warn(bp->dev, "SFP+ module is shutdown\n"); 9540 } 9541 } 9542 9543 static void 9544 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req) 9545 { 9546 if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) { 9547 if (bp->hwrm_spec_code >= 0x10201) 9548 req->auto_pause = 9549 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE; 9550 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX) 9551 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX; 9552 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX) 9553 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX; 9554 req->enables |= 9555 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE); 9556 } else { 9557 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX) 9558 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX; 9559 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX) 9560 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX; 9561 req->enables |= 9562 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE); 9563 if (bp->hwrm_spec_code >= 0x10201) { 9564 req->auto_pause = req->force_pause; 9565 req->enables |= cpu_to_le32( 9566 PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE); 9567 } 9568 } 9569 } 9570 9571 static void bnxt_hwrm_set_link_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req) 9572 { 9573 if (bp->link_info.autoneg & BNXT_AUTONEG_SPEED) { 9574 req->auto_mode |= PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK; 9575 if (bp->link_info.advertising) { 9576 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK); 9577 req->auto_link_speed_mask = cpu_to_le16(bp->link_info.advertising); 9578 } 9579 if (bp->link_info.advertising_pam4) { 9580 req->enables |= 9581 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAM4_LINK_SPEED_MASK); 9582 req->auto_link_pam4_speed_mask = 9583 cpu_to_le16(bp->link_info.advertising_pam4); 9584 } 9585 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE); 9586 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG); 9587 } else { 9588 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE); 9589 if (bp->link_info.req_signal_mode == BNXT_SIG_MODE_PAM4) { 9590 req->force_pam4_link_speed = cpu_to_le16(bp->link_info.req_link_speed); 9591 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAM4_LINK_SPEED); 9592 } else { 9593 req->force_link_speed = cpu_to_le16(bp->link_info.req_link_speed); 9594 } 9595 } 9596 9597 /* tell chimp that the setting takes effect immediately */ 9598 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY); 9599 } 9600 9601 int bnxt_hwrm_set_pause(struct bnxt *bp) 9602 { 9603 struct hwrm_port_phy_cfg_input *req; 9604 int rc; 9605 9606 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG); 9607 if (rc) 9608 return rc; 9609 9610 bnxt_hwrm_set_pause_common(bp, req); 9611 9612 if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) || 9613 bp->link_info.force_link_chng) 9614 bnxt_hwrm_set_link_common(bp, req); 9615 9616 rc = hwrm_req_send(bp, req); 9617 if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) { 9618 /* since changing of pause setting doesn't trigger any link 9619 * change event, the driver needs to update the current pause 9620 * result upon successfully return of the phy_cfg command 9621 */ 9622 bp->link_info.pause = 9623 bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl; 9624 bp->link_info.auto_pause_setting = 0; 9625 if (!bp->link_info.force_link_chng) 9626 bnxt_report_link(bp); 9627 } 9628 bp->link_info.force_link_chng = false; 9629 return rc; 9630 } 9631 9632 static void bnxt_hwrm_set_eee(struct bnxt *bp, 9633 struct hwrm_port_phy_cfg_input *req) 9634 { 9635 struct ethtool_eee *eee = &bp->eee; 9636 9637 if (eee->eee_enabled) { 9638 u16 eee_speeds; 9639 u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE; 9640 9641 if (eee->tx_lpi_enabled) 9642 flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE; 9643 else 9644 flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE; 9645 9646 req->flags |= cpu_to_le32(flags); 9647 eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised); 9648 req->eee_link_speed_mask = cpu_to_le16(eee_speeds); 9649 req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer); 9650 } else { 9651 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE); 9652 } 9653 } 9654 9655 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee) 9656 { 9657 struct hwrm_port_phy_cfg_input *req; 9658 int rc; 9659 9660 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG); 9661 if (rc) 9662 return rc; 9663 9664 if (set_pause) 9665 bnxt_hwrm_set_pause_common(bp, req); 9666 9667 bnxt_hwrm_set_link_common(bp, req); 9668 9669 if (set_eee) 9670 bnxt_hwrm_set_eee(bp, req); 9671 return hwrm_req_send(bp, req); 9672 } 9673 9674 static int bnxt_hwrm_shutdown_link(struct bnxt *bp) 9675 { 9676 struct hwrm_port_phy_cfg_input *req; 9677 int rc; 9678 9679 if (!BNXT_SINGLE_PF(bp)) 9680 return 0; 9681 9682 if (pci_num_vf(bp->pdev) && 9683 !(bp->phy_flags & BNXT_PHY_FL_FW_MANAGED_LKDN)) 9684 return 0; 9685 9686 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG); 9687 if (rc) 9688 return rc; 9689 9690 req->flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN); 9691 return hwrm_req_send(bp, req); 9692 } 9693 9694 static int bnxt_fw_init_one(struct bnxt *bp); 9695 9696 static int bnxt_fw_reset_via_optee(struct bnxt *bp) 9697 { 9698 #ifdef CONFIG_TEE_BNXT_FW 9699 int rc = tee_bnxt_fw_load(); 9700 9701 if (rc) 9702 netdev_err(bp->dev, "Failed FW reset via OP-TEE, rc=%d\n", rc); 9703 9704 return rc; 9705 #else 9706 netdev_err(bp->dev, "OP-TEE not supported\n"); 9707 return -ENODEV; 9708 #endif 9709 } 9710 9711 static int bnxt_try_recover_fw(struct bnxt *bp) 9712 { 9713 if (bp->fw_health && bp->fw_health->status_reliable) { 9714 int retry = 0, rc; 9715 u32 sts; 9716 9717 do { 9718 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 9719 rc = bnxt_hwrm_poll(bp); 9720 if (!BNXT_FW_IS_BOOTING(sts) && 9721 !BNXT_FW_IS_RECOVERING(sts)) 9722 break; 9723 retry++; 9724 } while (rc == -EBUSY && retry < BNXT_FW_RETRY); 9725 9726 if (!BNXT_FW_IS_HEALTHY(sts)) { 9727 netdev_err(bp->dev, 9728 "Firmware not responding, status: 0x%x\n", 9729 sts); 9730 rc = -ENODEV; 9731 } 9732 if (sts & FW_STATUS_REG_CRASHED_NO_MASTER) { 9733 netdev_warn(bp->dev, "Firmware recover via OP-TEE requested\n"); 9734 return bnxt_fw_reset_via_optee(bp); 9735 } 9736 return rc; 9737 } 9738 9739 return -ENODEV; 9740 } 9741 9742 static int bnxt_hwrm_if_change(struct bnxt *bp, bool up) 9743 { 9744 struct hwrm_func_drv_if_change_output *resp; 9745 struct hwrm_func_drv_if_change_input *req; 9746 bool fw_reset = !bp->irq_tbl; 9747 bool resc_reinit = false; 9748 int rc, retry = 0; 9749 u32 flags = 0; 9750 9751 if (!(bp->fw_cap & BNXT_FW_CAP_IF_CHANGE)) 9752 return 0; 9753 9754 rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_IF_CHANGE); 9755 if (rc) 9756 return rc; 9757 9758 if (up) 9759 req->flags = cpu_to_le32(FUNC_DRV_IF_CHANGE_REQ_FLAGS_UP); 9760 resp = hwrm_req_hold(bp, req); 9761 9762 hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT); 9763 while (retry < BNXT_FW_IF_RETRY) { 9764 rc = hwrm_req_send(bp, req); 9765 if (rc != -EAGAIN) 9766 break; 9767 9768 msleep(50); 9769 retry++; 9770 } 9771 9772 if (rc == -EAGAIN) { 9773 hwrm_req_drop(bp, req); 9774 return rc; 9775 } else if (!rc) { 9776 flags = le32_to_cpu(resp->flags); 9777 } else if (up) { 9778 rc = bnxt_try_recover_fw(bp); 9779 fw_reset = true; 9780 } 9781 hwrm_req_drop(bp, req); 9782 if (rc) 9783 return rc; 9784 9785 if (!up) { 9786 bnxt_inv_fw_health_reg(bp); 9787 return 0; 9788 } 9789 9790 if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_RESC_CHANGE) 9791 resc_reinit = true; 9792 if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_HOT_FW_RESET_DONE) 9793 fw_reset = true; 9794 else if (bp->fw_health && !bp->fw_health->status_reliable) 9795 bnxt_try_map_fw_health_reg(bp); 9796 9797 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state) && !fw_reset) { 9798 netdev_err(bp->dev, "RESET_DONE not set during FW reset.\n"); 9799 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 9800 return -ENODEV; 9801 } 9802 if (resc_reinit || fw_reset) { 9803 if (fw_reset) { 9804 set_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 9805 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 9806 bnxt_ulp_stop(bp); 9807 bnxt_free_ctx_mem(bp); 9808 kfree(bp->ctx); 9809 bp->ctx = NULL; 9810 bnxt_dcb_free(bp); 9811 rc = bnxt_fw_init_one(bp); 9812 if (rc) { 9813 clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 9814 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 9815 return rc; 9816 } 9817 bnxt_clear_int_mode(bp); 9818 rc = bnxt_init_int_mode(bp); 9819 if (rc) { 9820 clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 9821 netdev_err(bp->dev, "init int mode failed\n"); 9822 return rc; 9823 } 9824 } 9825 if (BNXT_NEW_RM(bp)) { 9826 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 9827 9828 rc = bnxt_hwrm_func_resc_qcaps(bp, true); 9829 if (rc) 9830 netdev_err(bp->dev, "resc_qcaps failed\n"); 9831 9832 hw_resc->resv_cp_rings = 0; 9833 hw_resc->resv_stat_ctxs = 0; 9834 hw_resc->resv_irqs = 0; 9835 hw_resc->resv_tx_rings = 0; 9836 hw_resc->resv_rx_rings = 0; 9837 hw_resc->resv_hw_ring_grps = 0; 9838 hw_resc->resv_vnics = 0; 9839 if (!fw_reset) { 9840 bp->tx_nr_rings = 0; 9841 bp->rx_nr_rings = 0; 9842 } 9843 } 9844 } 9845 return rc; 9846 } 9847 9848 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp) 9849 { 9850 struct hwrm_port_led_qcaps_output *resp; 9851 struct hwrm_port_led_qcaps_input *req; 9852 struct bnxt_pf_info *pf = &bp->pf; 9853 int rc; 9854 9855 bp->num_leds = 0; 9856 if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601) 9857 return 0; 9858 9859 rc = hwrm_req_init(bp, req, HWRM_PORT_LED_QCAPS); 9860 if (rc) 9861 return rc; 9862 9863 req->port_id = cpu_to_le16(pf->port_id); 9864 resp = hwrm_req_hold(bp, req); 9865 rc = hwrm_req_send(bp, req); 9866 if (rc) { 9867 hwrm_req_drop(bp, req); 9868 return rc; 9869 } 9870 if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) { 9871 int i; 9872 9873 bp->num_leds = resp->num_leds; 9874 memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) * 9875 bp->num_leds); 9876 for (i = 0; i < bp->num_leds; i++) { 9877 struct bnxt_led_info *led = &bp->leds[i]; 9878 __le16 caps = led->led_state_caps; 9879 9880 if (!led->led_group_id || 9881 !BNXT_LED_ALT_BLINK_CAP(caps)) { 9882 bp->num_leds = 0; 9883 break; 9884 } 9885 } 9886 } 9887 hwrm_req_drop(bp, req); 9888 return 0; 9889 } 9890 9891 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp) 9892 { 9893 struct hwrm_wol_filter_alloc_output *resp; 9894 struct hwrm_wol_filter_alloc_input *req; 9895 int rc; 9896 9897 rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_ALLOC); 9898 if (rc) 9899 return rc; 9900 9901 req->port_id = cpu_to_le16(bp->pf.port_id); 9902 req->wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT; 9903 req->enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS); 9904 memcpy(req->mac_address, bp->dev->dev_addr, ETH_ALEN); 9905 9906 resp = hwrm_req_hold(bp, req); 9907 rc = hwrm_req_send(bp, req); 9908 if (!rc) 9909 bp->wol_filter_id = resp->wol_filter_id; 9910 hwrm_req_drop(bp, req); 9911 return rc; 9912 } 9913 9914 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp) 9915 { 9916 struct hwrm_wol_filter_free_input *req; 9917 int rc; 9918 9919 rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_FREE); 9920 if (rc) 9921 return rc; 9922 9923 req->port_id = cpu_to_le16(bp->pf.port_id); 9924 req->enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID); 9925 req->wol_filter_id = bp->wol_filter_id; 9926 9927 return hwrm_req_send(bp, req); 9928 } 9929 9930 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle) 9931 { 9932 struct hwrm_wol_filter_qcfg_output *resp; 9933 struct hwrm_wol_filter_qcfg_input *req; 9934 u16 next_handle = 0; 9935 int rc; 9936 9937 rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_QCFG); 9938 if (rc) 9939 return rc; 9940 9941 req->port_id = cpu_to_le16(bp->pf.port_id); 9942 req->handle = cpu_to_le16(handle); 9943 resp = hwrm_req_hold(bp, req); 9944 rc = hwrm_req_send(bp, req); 9945 if (!rc) { 9946 next_handle = le16_to_cpu(resp->next_handle); 9947 if (next_handle != 0) { 9948 if (resp->wol_type == 9949 WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) { 9950 bp->wol = 1; 9951 bp->wol_filter_id = resp->wol_filter_id; 9952 } 9953 } 9954 } 9955 hwrm_req_drop(bp, req); 9956 return next_handle; 9957 } 9958 9959 static void bnxt_get_wol_settings(struct bnxt *bp) 9960 { 9961 u16 handle = 0; 9962 9963 bp->wol = 0; 9964 if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP)) 9965 return; 9966 9967 do { 9968 handle = bnxt_hwrm_get_wol_fltrs(bp, handle); 9969 } while (handle && handle != 0xffff); 9970 } 9971 9972 #ifdef CONFIG_BNXT_HWMON 9973 static ssize_t bnxt_show_temp(struct device *dev, 9974 struct device_attribute *devattr, char *buf) 9975 { 9976 struct hwrm_temp_monitor_query_output *resp; 9977 struct hwrm_temp_monitor_query_input *req; 9978 struct bnxt *bp = dev_get_drvdata(dev); 9979 u32 len = 0; 9980 int rc; 9981 9982 rc = hwrm_req_init(bp, req, HWRM_TEMP_MONITOR_QUERY); 9983 if (rc) 9984 return rc; 9985 resp = hwrm_req_hold(bp, req); 9986 rc = hwrm_req_send(bp, req); 9987 if (!rc) 9988 len = sprintf(buf, "%u\n", resp->temp * 1000); /* display millidegree */ 9989 hwrm_req_drop(bp, req); 9990 if (rc) 9991 return rc; 9992 return len; 9993 } 9994 static SENSOR_DEVICE_ATTR(temp1_input, 0444, bnxt_show_temp, NULL, 0); 9995 9996 static struct attribute *bnxt_attrs[] = { 9997 &sensor_dev_attr_temp1_input.dev_attr.attr, 9998 NULL 9999 }; 10000 ATTRIBUTE_GROUPS(bnxt); 10001 10002 static void bnxt_hwmon_close(struct bnxt *bp) 10003 { 10004 if (bp->hwmon_dev) { 10005 hwmon_device_unregister(bp->hwmon_dev); 10006 bp->hwmon_dev = NULL; 10007 } 10008 } 10009 10010 static void bnxt_hwmon_open(struct bnxt *bp) 10011 { 10012 struct hwrm_temp_monitor_query_input *req; 10013 struct pci_dev *pdev = bp->pdev; 10014 int rc; 10015 10016 rc = hwrm_req_init(bp, req, HWRM_TEMP_MONITOR_QUERY); 10017 if (!rc) 10018 rc = hwrm_req_send_silent(bp, req); 10019 if (rc == -EACCES || rc == -EOPNOTSUPP) { 10020 bnxt_hwmon_close(bp); 10021 return; 10022 } 10023 10024 if (bp->hwmon_dev) 10025 return; 10026 10027 bp->hwmon_dev = hwmon_device_register_with_groups(&pdev->dev, 10028 DRV_MODULE_NAME, bp, 10029 bnxt_groups); 10030 if (IS_ERR(bp->hwmon_dev)) { 10031 bp->hwmon_dev = NULL; 10032 dev_warn(&pdev->dev, "Cannot register hwmon device\n"); 10033 } 10034 } 10035 #else 10036 static void bnxt_hwmon_close(struct bnxt *bp) 10037 { 10038 } 10039 10040 static void bnxt_hwmon_open(struct bnxt *bp) 10041 { 10042 } 10043 #endif 10044 10045 static bool bnxt_eee_config_ok(struct bnxt *bp) 10046 { 10047 struct ethtool_eee *eee = &bp->eee; 10048 struct bnxt_link_info *link_info = &bp->link_info; 10049 10050 if (!(bp->phy_flags & BNXT_PHY_FL_EEE_CAP)) 10051 return true; 10052 10053 if (eee->eee_enabled) { 10054 u32 advertising = 10055 _bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0); 10056 10057 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) { 10058 eee->eee_enabled = 0; 10059 return false; 10060 } 10061 if (eee->advertised & ~advertising) { 10062 eee->advertised = advertising & eee->supported; 10063 return false; 10064 } 10065 } 10066 return true; 10067 } 10068 10069 static int bnxt_update_phy_setting(struct bnxt *bp) 10070 { 10071 int rc; 10072 bool update_link = false; 10073 bool update_pause = false; 10074 bool update_eee = false; 10075 struct bnxt_link_info *link_info = &bp->link_info; 10076 10077 rc = bnxt_update_link(bp, true); 10078 if (rc) { 10079 netdev_err(bp->dev, "failed to update link (rc: %x)\n", 10080 rc); 10081 return rc; 10082 } 10083 if (!BNXT_SINGLE_PF(bp)) 10084 return 0; 10085 10086 if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) && 10087 (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) != 10088 link_info->req_flow_ctrl) 10089 update_pause = true; 10090 if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) && 10091 link_info->force_pause_setting != link_info->req_flow_ctrl) 10092 update_pause = true; 10093 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) { 10094 if (BNXT_AUTO_MODE(link_info->auto_mode)) 10095 update_link = true; 10096 if (link_info->req_signal_mode == BNXT_SIG_MODE_NRZ && 10097 link_info->req_link_speed != link_info->force_link_speed) 10098 update_link = true; 10099 else if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4 && 10100 link_info->req_link_speed != link_info->force_pam4_link_speed) 10101 update_link = true; 10102 if (link_info->req_duplex != link_info->duplex_setting) 10103 update_link = true; 10104 } else { 10105 if (link_info->auto_mode == BNXT_LINK_AUTO_NONE) 10106 update_link = true; 10107 if (link_info->advertising != link_info->auto_link_speeds || 10108 link_info->advertising_pam4 != link_info->auto_pam4_link_speeds) 10109 update_link = true; 10110 } 10111 10112 /* The last close may have shutdown the link, so need to call 10113 * PHY_CFG to bring it back up. 10114 */ 10115 if (!bp->link_info.link_up) 10116 update_link = true; 10117 10118 if (!bnxt_eee_config_ok(bp)) 10119 update_eee = true; 10120 10121 if (update_link) 10122 rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee); 10123 else if (update_pause) 10124 rc = bnxt_hwrm_set_pause(bp); 10125 if (rc) { 10126 netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n", 10127 rc); 10128 return rc; 10129 } 10130 10131 return rc; 10132 } 10133 10134 /* Common routine to pre-map certain register block to different GRC window. 10135 * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows 10136 * in PF and 3 windows in VF that can be customized to map in different 10137 * register blocks. 10138 */ 10139 static void bnxt_preset_reg_win(struct bnxt *bp) 10140 { 10141 if (BNXT_PF(bp)) { 10142 /* CAG registers map to GRC window #4 */ 10143 writel(BNXT_CAG_REG_BASE, 10144 bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12); 10145 } 10146 } 10147 10148 static int bnxt_init_dflt_ring_mode(struct bnxt *bp); 10149 10150 static int bnxt_reinit_after_abort(struct bnxt *bp) 10151 { 10152 int rc; 10153 10154 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 10155 return -EBUSY; 10156 10157 if (bp->dev->reg_state == NETREG_UNREGISTERED) 10158 return -ENODEV; 10159 10160 rc = bnxt_fw_init_one(bp); 10161 if (!rc) { 10162 bnxt_clear_int_mode(bp); 10163 rc = bnxt_init_int_mode(bp); 10164 if (!rc) { 10165 clear_bit(BNXT_STATE_ABORT_ERR, &bp->state); 10166 set_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 10167 } 10168 } 10169 return rc; 10170 } 10171 10172 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 10173 { 10174 int rc = 0; 10175 10176 bnxt_preset_reg_win(bp); 10177 netif_carrier_off(bp->dev); 10178 if (irq_re_init) { 10179 /* Reserve rings now if none were reserved at driver probe. */ 10180 rc = bnxt_init_dflt_ring_mode(bp); 10181 if (rc) { 10182 netdev_err(bp->dev, "Failed to reserve default rings at open\n"); 10183 return rc; 10184 } 10185 } 10186 rc = bnxt_reserve_rings(bp, irq_re_init); 10187 if (rc) 10188 return rc; 10189 if ((bp->flags & BNXT_FLAG_RFS) && 10190 !(bp->flags & BNXT_FLAG_USING_MSIX)) { 10191 /* disable RFS if falling back to INTA */ 10192 bp->dev->hw_features &= ~NETIF_F_NTUPLE; 10193 bp->flags &= ~BNXT_FLAG_RFS; 10194 } 10195 10196 rc = bnxt_alloc_mem(bp, irq_re_init); 10197 if (rc) { 10198 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc); 10199 goto open_err_free_mem; 10200 } 10201 10202 if (irq_re_init) { 10203 bnxt_init_napi(bp); 10204 rc = bnxt_request_irq(bp); 10205 if (rc) { 10206 netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc); 10207 goto open_err_irq; 10208 } 10209 } 10210 10211 rc = bnxt_init_nic(bp, irq_re_init); 10212 if (rc) { 10213 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc); 10214 goto open_err_irq; 10215 } 10216 10217 bnxt_enable_napi(bp); 10218 bnxt_debug_dev_init(bp); 10219 10220 if (link_re_init) { 10221 mutex_lock(&bp->link_lock); 10222 rc = bnxt_update_phy_setting(bp); 10223 mutex_unlock(&bp->link_lock); 10224 if (rc) { 10225 netdev_warn(bp->dev, "failed to update phy settings\n"); 10226 if (BNXT_SINGLE_PF(bp)) { 10227 bp->link_info.phy_retry = true; 10228 bp->link_info.phy_retry_expires = 10229 jiffies + 5 * HZ; 10230 } 10231 } 10232 } 10233 10234 if (irq_re_init) 10235 udp_tunnel_nic_reset_ntf(bp->dev); 10236 10237 set_bit(BNXT_STATE_OPEN, &bp->state); 10238 bnxt_enable_int(bp); 10239 /* Enable TX queues */ 10240 bnxt_tx_enable(bp); 10241 mod_timer(&bp->timer, jiffies + bp->current_interval); 10242 /* Poll link status and check for SFP+ module status */ 10243 mutex_lock(&bp->link_lock); 10244 bnxt_get_port_module_status(bp); 10245 mutex_unlock(&bp->link_lock); 10246 10247 /* VF-reps may need to be re-opened after the PF is re-opened */ 10248 if (BNXT_PF(bp)) 10249 bnxt_vf_reps_open(bp); 10250 return 0; 10251 10252 open_err_irq: 10253 bnxt_del_napi(bp); 10254 10255 open_err_free_mem: 10256 bnxt_free_skbs(bp); 10257 bnxt_free_irq(bp); 10258 bnxt_free_mem(bp, true); 10259 return rc; 10260 } 10261 10262 /* rtnl_lock held */ 10263 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 10264 { 10265 int rc = 0; 10266 10267 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) 10268 rc = -EIO; 10269 if (!rc) 10270 rc = __bnxt_open_nic(bp, irq_re_init, link_re_init); 10271 if (rc) { 10272 netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc); 10273 dev_close(bp->dev); 10274 } 10275 return rc; 10276 } 10277 10278 /* rtnl_lock held, open the NIC half way by allocating all resources, but 10279 * NAPI, IRQ, and TX are not enabled. This is mainly used for offline 10280 * self tests. 10281 */ 10282 int bnxt_half_open_nic(struct bnxt *bp) 10283 { 10284 int rc = 0; 10285 10286 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 10287 netdev_err(bp->dev, "A previous firmware reset has not completed, aborting half open\n"); 10288 rc = -ENODEV; 10289 goto half_open_err; 10290 } 10291 10292 rc = bnxt_alloc_mem(bp, false); 10293 if (rc) { 10294 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc); 10295 goto half_open_err; 10296 } 10297 rc = bnxt_init_nic(bp, false); 10298 if (rc) { 10299 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc); 10300 goto half_open_err; 10301 } 10302 return 0; 10303 10304 half_open_err: 10305 bnxt_free_skbs(bp); 10306 bnxt_free_mem(bp, false); 10307 dev_close(bp->dev); 10308 return rc; 10309 } 10310 10311 /* rtnl_lock held, this call can only be made after a previous successful 10312 * call to bnxt_half_open_nic(). 10313 */ 10314 void bnxt_half_close_nic(struct bnxt *bp) 10315 { 10316 bnxt_hwrm_resource_free(bp, false, false); 10317 bnxt_free_skbs(bp); 10318 bnxt_free_mem(bp, false); 10319 } 10320 10321 static void bnxt_reenable_sriov(struct bnxt *bp) 10322 { 10323 if (BNXT_PF(bp)) { 10324 struct bnxt_pf_info *pf = &bp->pf; 10325 int n = pf->active_vfs; 10326 10327 if (n) 10328 bnxt_cfg_hw_sriov(bp, &n, true); 10329 } 10330 } 10331 10332 static int bnxt_open(struct net_device *dev) 10333 { 10334 struct bnxt *bp = netdev_priv(dev); 10335 int rc; 10336 10337 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 10338 rc = bnxt_reinit_after_abort(bp); 10339 if (rc) { 10340 if (rc == -EBUSY) 10341 netdev_err(bp->dev, "A previous firmware reset has not completed, aborting\n"); 10342 else 10343 netdev_err(bp->dev, "Failed to reinitialize after aborted firmware reset\n"); 10344 return -ENODEV; 10345 } 10346 } 10347 10348 rc = bnxt_hwrm_if_change(bp, true); 10349 if (rc) 10350 return rc; 10351 10352 rc = __bnxt_open_nic(bp, true, true); 10353 if (rc) { 10354 bnxt_hwrm_if_change(bp, false); 10355 } else { 10356 if (test_and_clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) { 10357 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 10358 bnxt_ulp_start(bp, 0); 10359 bnxt_reenable_sriov(bp); 10360 } 10361 } 10362 bnxt_hwmon_open(bp); 10363 } 10364 10365 return rc; 10366 } 10367 10368 static bool bnxt_drv_busy(struct bnxt *bp) 10369 { 10370 return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) || 10371 test_bit(BNXT_STATE_READ_STATS, &bp->state)); 10372 } 10373 10374 static void bnxt_get_ring_stats(struct bnxt *bp, 10375 struct rtnl_link_stats64 *stats); 10376 10377 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init, 10378 bool link_re_init) 10379 { 10380 /* Close the VF-reps before closing PF */ 10381 if (BNXT_PF(bp)) 10382 bnxt_vf_reps_close(bp); 10383 10384 /* Change device state to avoid TX queue wake up's */ 10385 bnxt_tx_disable(bp); 10386 10387 clear_bit(BNXT_STATE_OPEN, &bp->state); 10388 smp_mb__after_atomic(); 10389 while (bnxt_drv_busy(bp)) 10390 msleep(20); 10391 10392 /* Flush rings and and disable interrupts */ 10393 bnxt_shutdown_nic(bp, irq_re_init); 10394 10395 /* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */ 10396 10397 bnxt_debug_dev_exit(bp); 10398 bnxt_disable_napi(bp); 10399 del_timer_sync(&bp->timer); 10400 bnxt_free_skbs(bp); 10401 10402 /* Save ring stats before shutdown */ 10403 if (bp->bnapi && irq_re_init) 10404 bnxt_get_ring_stats(bp, &bp->net_stats_prev); 10405 if (irq_re_init) { 10406 bnxt_free_irq(bp); 10407 bnxt_del_napi(bp); 10408 } 10409 bnxt_free_mem(bp, irq_re_init); 10410 } 10411 10412 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 10413 { 10414 int rc = 0; 10415 10416 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 10417 /* If we get here, it means firmware reset is in progress 10418 * while we are trying to close. We can safely proceed with 10419 * the close because we are holding rtnl_lock(). Some firmware 10420 * messages may fail as we proceed to close. We set the 10421 * ABORT_ERR flag here so that the FW reset thread will later 10422 * abort when it gets the rtnl_lock() and sees the flag. 10423 */ 10424 netdev_warn(bp->dev, "FW reset in progress during close, FW reset will be aborted\n"); 10425 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 10426 } 10427 10428 #ifdef CONFIG_BNXT_SRIOV 10429 if (bp->sriov_cfg) { 10430 rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait, 10431 !bp->sriov_cfg, 10432 BNXT_SRIOV_CFG_WAIT_TMO); 10433 if (rc) 10434 netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n"); 10435 } 10436 #endif 10437 __bnxt_close_nic(bp, irq_re_init, link_re_init); 10438 return rc; 10439 } 10440 10441 static int bnxt_close(struct net_device *dev) 10442 { 10443 struct bnxt *bp = netdev_priv(dev); 10444 10445 bnxt_hwmon_close(bp); 10446 bnxt_close_nic(bp, true, true); 10447 bnxt_hwrm_shutdown_link(bp); 10448 bnxt_hwrm_if_change(bp, false); 10449 return 0; 10450 } 10451 10452 static int bnxt_hwrm_port_phy_read(struct bnxt *bp, u16 phy_addr, u16 reg, 10453 u16 *val) 10454 { 10455 struct hwrm_port_phy_mdio_read_output *resp; 10456 struct hwrm_port_phy_mdio_read_input *req; 10457 int rc; 10458 10459 if (bp->hwrm_spec_code < 0x10a00) 10460 return -EOPNOTSUPP; 10461 10462 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_READ); 10463 if (rc) 10464 return rc; 10465 10466 req->port_id = cpu_to_le16(bp->pf.port_id); 10467 req->phy_addr = phy_addr; 10468 req->reg_addr = cpu_to_le16(reg & 0x1f); 10469 if (mdio_phy_id_is_c45(phy_addr)) { 10470 req->cl45_mdio = 1; 10471 req->phy_addr = mdio_phy_id_prtad(phy_addr); 10472 req->dev_addr = mdio_phy_id_devad(phy_addr); 10473 req->reg_addr = cpu_to_le16(reg); 10474 } 10475 10476 resp = hwrm_req_hold(bp, req); 10477 rc = hwrm_req_send(bp, req); 10478 if (!rc) 10479 *val = le16_to_cpu(resp->reg_data); 10480 hwrm_req_drop(bp, req); 10481 return rc; 10482 } 10483 10484 static int bnxt_hwrm_port_phy_write(struct bnxt *bp, u16 phy_addr, u16 reg, 10485 u16 val) 10486 { 10487 struct hwrm_port_phy_mdio_write_input *req; 10488 int rc; 10489 10490 if (bp->hwrm_spec_code < 0x10a00) 10491 return -EOPNOTSUPP; 10492 10493 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_WRITE); 10494 if (rc) 10495 return rc; 10496 10497 req->port_id = cpu_to_le16(bp->pf.port_id); 10498 req->phy_addr = phy_addr; 10499 req->reg_addr = cpu_to_le16(reg & 0x1f); 10500 if (mdio_phy_id_is_c45(phy_addr)) { 10501 req->cl45_mdio = 1; 10502 req->phy_addr = mdio_phy_id_prtad(phy_addr); 10503 req->dev_addr = mdio_phy_id_devad(phy_addr); 10504 req->reg_addr = cpu_to_le16(reg); 10505 } 10506 req->reg_data = cpu_to_le16(val); 10507 10508 return hwrm_req_send(bp, req); 10509 } 10510 10511 /* rtnl_lock held */ 10512 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 10513 { 10514 struct mii_ioctl_data *mdio = if_mii(ifr); 10515 struct bnxt *bp = netdev_priv(dev); 10516 int rc; 10517 10518 switch (cmd) { 10519 case SIOCGMIIPHY: 10520 mdio->phy_id = bp->link_info.phy_addr; 10521 10522 fallthrough; 10523 case SIOCGMIIREG: { 10524 u16 mii_regval = 0; 10525 10526 if (!netif_running(dev)) 10527 return -EAGAIN; 10528 10529 rc = bnxt_hwrm_port_phy_read(bp, mdio->phy_id, mdio->reg_num, 10530 &mii_regval); 10531 mdio->val_out = mii_regval; 10532 return rc; 10533 } 10534 10535 case SIOCSMIIREG: 10536 if (!netif_running(dev)) 10537 return -EAGAIN; 10538 10539 return bnxt_hwrm_port_phy_write(bp, mdio->phy_id, mdio->reg_num, 10540 mdio->val_in); 10541 10542 case SIOCSHWTSTAMP: 10543 return bnxt_hwtstamp_set(dev, ifr); 10544 10545 case SIOCGHWTSTAMP: 10546 return bnxt_hwtstamp_get(dev, ifr); 10547 10548 default: 10549 /* do nothing */ 10550 break; 10551 } 10552 return -EOPNOTSUPP; 10553 } 10554 10555 static void bnxt_get_ring_stats(struct bnxt *bp, 10556 struct rtnl_link_stats64 *stats) 10557 { 10558 int i; 10559 10560 for (i = 0; i < bp->cp_nr_rings; i++) { 10561 struct bnxt_napi *bnapi = bp->bnapi[i]; 10562 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 10563 u64 *sw = cpr->stats.sw_stats; 10564 10565 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts); 10566 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts); 10567 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts); 10568 10569 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts); 10570 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts); 10571 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts); 10572 10573 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes); 10574 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes); 10575 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes); 10576 10577 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes); 10578 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes); 10579 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes); 10580 10581 stats->rx_missed_errors += 10582 BNXT_GET_RING_STATS64(sw, rx_discard_pkts); 10583 10584 stats->multicast += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts); 10585 10586 stats->tx_dropped += BNXT_GET_RING_STATS64(sw, tx_error_pkts); 10587 10588 stats->rx_dropped += 10589 cpr->sw_stats.rx.rx_netpoll_discards + 10590 cpr->sw_stats.rx.rx_oom_discards; 10591 } 10592 } 10593 10594 static void bnxt_add_prev_stats(struct bnxt *bp, 10595 struct rtnl_link_stats64 *stats) 10596 { 10597 struct rtnl_link_stats64 *prev_stats = &bp->net_stats_prev; 10598 10599 stats->rx_packets += prev_stats->rx_packets; 10600 stats->tx_packets += prev_stats->tx_packets; 10601 stats->rx_bytes += prev_stats->rx_bytes; 10602 stats->tx_bytes += prev_stats->tx_bytes; 10603 stats->rx_missed_errors += prev_stats->rx_missed_errors; 10604 stats->multicast += prev_stats->multicast; 10605 stats->rx_dropped += prev_stats->rx_dropped; 10606 stats->tx_dropped += prev_stats->tx_dropped; 10607 } 10608 10609 static void 10610 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) 10611 { 10612 struct bnxt *bp = netdev_priv(dev); 10613 10614 set_bit(BNXT_STATE_READ_STATS, &bp->state); 10615 /* Make sure bnxt_close_nic() sees that we are reading stats before 10616 * we check the BNXT_STATE_OPEN flag. 10617 */ 10618 smp_mb__after_atomic(); 10619 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 10620 clear_bit(BNXT_STATE_READ_STATS, &bp->state); 10621 *stats = bp->net_stats_prev; 10622 return; 10623 } 10624 10625 bnxt_get_ring_stats(bp, stats); 10626 bnxt_add_prev_stats(bp, stats); 10627 10628 if (bp->flags & BNXT_FLAG_PORT_STATS) { 10629 u64 *rx = bp->port_stats.sw_stats; 10630 u64 *tx = bp->port_stats.sw_stats + 10631 BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 10632 10633 stats->rx_crc_errors = 10634 BNXT_GET_RX_PORT_STATS64(rx, rx_fcs_err_frames); 10635 stats->rx_frame_errors = 10636 BNXT_GET_RX_PORT_STATS64(rx, rx_align_err_frames); 10637 stats->rx_length_errors = 10638 BNXT_GET_RX_PORT_STATS64(rx, rx_undrsz_frames) + 10639 BNXT_GET_RX_PORT_STATS64(rx, rx_ovrsz_frames) + 10640 BNXT_GET_RX_PORT_STATS64(rx, rx_runt_frames); 10641 stats->rx_errors = 10642 BNXT_GET_RX_PORT_STATS64(rx, rx_false_carrier_frames) + 10643 BNXT_GET_RX_PORT_STATS64(rx, rx_jbr_frames); 10644 stats->collisions = 10645 BNXT_GET_TX_PORT_STATS64(tx, tx_total_collisions); 10646 stats->tx_fifo_errors = 10647 BNXT_GET_TX_PORT_STATS64(tx, tx_fifo_underruns); 10648 stats->tx_errors = BNXT_GET_TX_PORT_STATS64(tx, tx_err); 10649 } 10650 clear_bit(BNXT_STATE_READ_STATS, &bp->state); 10651 } 10652 10653 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask) 10654 { 10655 struct net_device *dev = bp->dev; 10656 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 10657 struct netdev_hw_addr *ha; 10658 u8 *haddr; 10659 int mc_count = 0; 10660 bool update = false; 10661 int off = 0; 10662 10663 netdev_for_each_mc_addr(ha, dev) { 10664 if (mc_count >= BNXT_MAX_MC_ADDRS) { 10665 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 10666 vnic->mc_list_count = 0; 10667 return false; 10668 } 10669 haddr = ha->addr; 10670 if (!ether_addr_equal(haddr, vnic->mc_list + off)) { 10671 memcpy(vnic->mc_list + off, haddr, ETH_ALEN); 10672 update = true; 10673 } 10674 off += ETH_ALEN; 10675 mc_count++; 10676 } 10677 if (mc_count) 10678 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST; 10679 10680 if (mc_count != vnic->mc_list_count) { 10681 vnic->mc_list_count = mc_count; 10682 update = true; 10683 } 10684 return update; 10685 } 10686 10687 static bool bnxt_uc_list_updated(struct bnxt *bp) 10688 { 10689 struct net_device *dev = bp->dev; 10690 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 10691 struct netdev_hw_addr *ha; 10692 int off = 0; 10693 10694 if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1)) 10695 return true; 10696 10697 netdev_for_each_uc_addr(ha, dev) { 10698 if (!ether_addr_equal(ha->addr, vnic->uc_list + off)) 10699 return true; 10700 10701 off += ETH_ALEN; 10702 } 10703 return false; 10704 } 10705 10706 static void bnxt_set_rx_mode(struct net_device *dev) 10707 { 10708 struct bnxt *bp = netdev_priv(dev); 10709 struct bnxt_vnic_info *vnic; 10710 bool mc_update = false; 10711 bool uc_update; 10712 u32 mask; 10713 10714 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) 10715 return; 10716 10717 vnic = &bp->vnic_info[0]; 10718 mask = vnic->rx_mask; 10719 mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS | 10720 CFA_L2_SET_RX_MASK_REQ_MASK_MCAST | 10721 CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST | 10722 CFA_L2_SET_RX_MASK_REQ_MASK_BCAST); 10723 10724 if (dev->flags & IFF_PROMISC) 10725 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 10726 10727 uc_update = bnxt_uc_list_updated(bp); 10728 10729 if (dev->flags & IFF_BROADCAST) 10730 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST; 10731 if (dev->flags & IFF_ALLMULTI) { 10732 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 10733 vnic->mc_list_count = 0; 10734 } else { 10735 mc_update = bnxt_mc_list_updated(bp, &mask); 10736 } 10737 10738 if (mask != vnic->rx_mask || uc_update || mc_update) { 10739 vnic->rx_mask = mask; 10740 10741 set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event); 10742 bnxt_queue_sp_work(bp); 10743 } 10744 } 10745 10746 static int bnxt_cfg_rx_mode(struct bnxt *bp) 10747 { 10748 struct net_device *dev = bp->dev; 10749 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 10750 struct hwrm_cfa_l2_filter_free_input *req; 10751 struct netdev_hw_addr *ha; 10752 int i, off = 0, rc; 10753 bool uc_update; 10754 10755 netif_addr_lock_bh(dev); 10756 uc_update = bnxt_uc_list_updated(bp); 10757 netif_addr_unlock_bh(dev); 10758 10759 if (!uc_update) 10760 goto skip_uc; 10761 10762 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE); 10763 if (rc) 10764 return rc; 10765 hwrm_req_hold(bp, req); 10766 for (i = 1; i < vnic->uc_filter_count; i++) { 10767 req->l2_filter_id = vnic->fw_l2_filter_id[i]; 10768 10769 rc = hwrm_req_send(bp, req); 10770 } 10771 hwrm_req_drop(bp, req); 10772 10773 vnic->uc_filter_count = 1; 10774 10775 netif_addr_lock_bh(dev); 10776 if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) { 10777 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 10778 } else { 10779 netdev_for_each_uc_addr(ha, dev) { 10780 memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN); 10781 off += ETH_ALEN; 10782 vnic->uc_filter_count++; 10783 } 10784 } 10785 netif_addr_unlock_bh(dev); 10786 10787 for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) { 10788 rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off); 10789 if (rc) { 10790 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", 10791 rc); 10792 vnic->uc_filter_count = i; 10793 return rc; 10794 } 10795 } 10796 10797 skip_uc: 10798 if ((vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS) && 10799 !bnxt_promisc_ok(bp)) 10800 vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 10801 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0); 10802 if (rc && vnic->mc_list_count) { 10803 netdev_info(bp->dev, "Failed setting MC filters rc: %d, turning on ALL_MCAST mode\n", 10804 rc); 10805 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 10806 vnic->mc_list_count = 0; 10807 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0); 10808 } 10809 if (rc) 10810 netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %d\n", 10811 rc); 10812 10813 return rc; 10814 } 10815 10816 static bool bnxt_can_reserve_rings(struct bnxt *bp) 10817 { 10818 #ifdef CONFIG_BNXT_SRIOV 10819 if (BNXT_NEW_RM(bp) && BNXT_VF(bp)) { 10820 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 10821 10822 /* No minimum rings were provisioned by the PF. Don't 10823 * reserve rings by default when device is down. 10824 */ 10825 if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings) 10826 return true; 10827 10828 if (!netif_running(bp->dev)) 10829 return false; 10830 } 10831 #endif 10832 return true; 10833 } 10834 10835 /* If the chip and firmware supports RFS */ 10836 static bool bnxt_rfs_supported(struct bnxt *bp) 10837 { 10838 if (bp->flags & BNXT_FLAG_CHIP_P5) { 10839 if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) 10840 return true; 10841 return false; 10842 } 10843 /* 212 firmware is broken for aRFS */ 10844 if (BNXT_FW_MAJ(bp) == 212) 10845 return false; 10846 if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp)) 10847 return true; 10848 if (bp->flags & BNXT_FLAG_NEW_RSS_CAP) 10849 return true; 10850 return false; 10851 } 10852 10853 /* If runtime conditions support RFS */ 10854 static bool bnxt_rfs_capable(struct bnxt *bp) 10855 { 10856 #ifdef CONFIG_RFS_ACCEL 10857 int vnics, max_vnics, max_rss_ctxs; 10858 10859 if (bp->flags & BNXT_FLAG_CHIP_P5) 10860 return bnxt_rfs_supported(bp); 10861 if (!(bp->flags & BNXT_FLAG_MSIX_CAP) || !bnxt_can_reserve_rings(bp)) 10862 return false; 10863 10864 vnics = 1 + bp->rx_nr_rings; 10865 max_vnics = bnxt_get_max_func_vnics(bp); 10866 max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp); 10867 10868 /* RSS contexts not a limiting factor */ 10869 if (bp->flags & BNXT_FLAG_NEW_RSS_CAP) 10870 max_rss_ctxs = max_vnics; 10871 if (vnics > max_vnics || vnics > max_rss_ctxs) { 10872 if (bp->rx_nr_rings > 1) 10873 netdev_warn(bp->dev, 10874 "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n", 10875 min(max_rss_ctxs - 1, max_vnics - 1)); 10876 return false; 10877 } 10878 10879 if (!BNXT_NEW_RM(bp)) 10880 return true; 10881 10882 if (vnics == bp->hw_resc.resv_vnics) 10883 return true; 10884 10885 bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, vnics); 10886 if (vnics <= bp->hw_resc.resv_vnics) 10887 return true; 10888 10889 netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n"); 10890 bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, 1); 10891 return false; 10892 #else 10893 return false; 10894 #endif 10895 } 10896 10897 static netdev_features_t bnxt_fix_features(struct net_device *dev, 10898 netdev_features_t features) 10899 { 10900 struct bnxt *bp = netdev_priv(dev); 10901 netdev_features_t vlan_features; 10902 10903 if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp)) 10904 features &= ~NETIF_F_NTUPLE; 10905 10906 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) 10907 features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 10908 10909 if (!(features & NETIF_F_GRO)) 10910 features &= ~NETIF_F_GRO_HW; 10911 10912 if (features & NETIF_F_GRO_HW) 10913 features &= ~NETIF_F_LRO; 10914 10915 /* Both CTAG and STAG VLAN accelaration on the RX side have to be 10916 * turned on or off together. 10917 */ 10918 vlan_features = features & BNXT_HW_FEATURE_VLAN_ALL_RX; 10919 if (vlan_features != BNXT_HW_FEATURE_VLAN_ALL_RX) { 10920 if (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX) 10921 features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX; 10922 else if (vlan_features) 10923 features |= BNXT_HW_FEATURE_VLAN_ALL_RX; 10924 } 10925 #ifdef CONFIG_BNXT_SRIOV 10926 if (BNXT_VF(bp) && bp->vf.vlan) 10927 features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX; 10928 #endif 10929 return features; 10930 } 10931 10932 static int bnxt_set_features(struct net_device *dev, netdev_features_t features) 10933 { 10934 struct bnxt *bp = netdev_priv(dev); 10935 u32 flags = bp->flags; 10936 u32 changes; 10937 int rc = 0; 10938 bool re_init = false; 10939 bool update_tpa = false; 10940 10941 flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS; 10942 if (features & NETIF_F_GRO_HW) 10943 flags |= BNXT_FLAG_GRO; 10944 else if (features & NETIF_F_LRO) 10945 flags |= BNXT_FLAG_LRO; 10946 10947 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) 10948 flags &= ~BNXT_FLAG_TPA; 10949 10950 if (features & BNXT_HW_FEATURE_VLAN_ALL_RX) 10951 flags |= BNXT_FLAG_STRIP_VLAN; 10952 10953 if (features & NETIF_F_NTUPLE) 10954 flags |= BNXT_FLAG_RFS; 10955 10956 changes = flags ^ bp->flags; 10957 if (changes & BNXT_FLAG_TPA) { 10958 update_tpa = true; 10959 if ((bp->flags & BNXT_FLAG_TPA) == 0 || 10960 (flags & BNXT_FLAG_TPA) == 0 || 10961 (bp->flags & BNXT_FLAG_CHIP_P5)) 10962 re_init = true; 10963 } 10964 10965 if (changes & ~BNXT_FLAG_TPA) 10966 re_init = true; 10967 10968 if (flags != bp->flags) { 10969 u32 old_flags = bp->flags; 10970 10971 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 10972 bp->flags = flags; 10973 if (update_tpa) 10974 bnxt_set_ring_params(bp); 10975 return rc; 10976 } 10977 10978 if (re_init) { 10979 bnxt_close_nic(bp, false, false); 10980 bp->flags = flags; 10981 if (update_tpa) 10982 bnxt_set_ring_params(bp); 10983 10984 return bnxt_open_nic(bp, false, false); 10985 } 10986 if (update_tpa) { 10987 bp->flags = flags; 10988 rc = bnxt_set_tpa(bp, 10989 (flags & BNXT_FLAG_TPA) ? 10990 true : false); 10991 if (rc) 10992 bp->flags = old_flags; 10993 } 10994 } 10995 return rc; 10996 } 10997 10998 static bool bnxt_exthdr_check(struct bnxt *bp, struct sk_buff *skb, int nw_off, 10999 u8 **nextp) 11000 { 11001 struct ipv6hdr *ip6h = (struct ipv6hdr *)(skb->data + nw_off); 11002 int hdr_count = 0; 11003 u8 *nexthdr; 11004 int start; 11005 11006 /* Check that there are at most 2 IPv6 extension headers, no 11007 * fragment header, and each is <= 64 bytes. 11008 */ 11009 start = nw_off + sizeof(*ip6h); 11010 nexthdr = &ip6h->nexthdr; 11011 while (ipv6_ext_hdr(*nexthdr)) { 11012 struct ipv6_opt_hdr *hp; 11013 int hdrlen; 11014 11015 if (hdr_count >= 3 || *nexthdr == NEXTHDR_NONE || 11016 *nexthdr == NEXTHDR_FRAGMENT) 11017 return false; 11018 hp = __skb_header_pointer(NULL, start, sizeof(*hp), skb->data, 11019 skb_headlen(skb), NULL); 11020 if (!hp) 11021 return false; 11022 if (*nexthdr == NEXTHDR_AUTH) 11023 hdrlen = ipv6_authlen(hp); 11024 else 11025 hdrlen = ipv6_optlen(hp); 11026 11027 if (hdrlen > 64) 11028 return false; 11029 nexthdr = &hp->nexthdr; 11030 start += hdrlen; 11031 hdr_count++; 11032 } 11033 if (nextp) { 11034 /* Caller will check inner protocol */ 11035 if (skb->encapsulation) { 11036 *nextp = nexthdr; 11037 return true; 11038 } 11039 *nextp = NULL; 11040 } 11041 /* Only support TCP/UDP for non-tunneled ipv6 and inner ipv6 */ 11042 return *nexthdr == IPPROTO_TCP || *nexthdr == IPPROTO_UDP; 11043 } 11044 11045 /* For UDP, we can only handle 1 Vxlan port and 1 Geneve port. */ 11046 static bool bnxt_udp_tunl_check(struct bnxt *bp, struct sk_buff *skb) 11047 { 11048 struct udphdr *uh = udp_hdr(skb); 11049 __be16 udp_port = uh->dest; 11050 11051 if (udp_port != bp->vxlan_port && udp_port != bp->nge_port) 11052 return false; 11053 if (skb->inner_protocol_type == ENCAP_TYPE_ETHER) { 11054 struct ethhdr *eh = inner_eth_hdr(skb); 11055 11056 switch (eh->h_proto) { 11057 case htons(ETH_P_IP): 11058 return true; 11059 case htons(ETH_P_IPV6): 11060 return bnxt_exthdr_check(bp, skb, 11061 skb_inner_network_offset(skb), 11062 NULL); 11063 } 11064 } 11065 return false; 11066 } 11067 11068 static bool bnxt_tunl_check(struct bnxt *bp, struct sk_buff *skb, u8 l4_proto) 11069 { 11070 switch (l4_proto) { 11071 case IPPROTO_UDP: 11072 return bnxt_udp_tunl_check(bp, skb); 11073 case IPPROTO_IPIP: 11074 return true; 11075 case IPPROTO_GRE: { 11076 switch (skb->inner_protocol) { 11077 default: 11078 return false; 11079 case htons(ETH_P_IP): 11080 return true; 11081 case htons(ETH_P_IPV6): 11082 fallthrough; 11083 } 11084 } 11085 case IPPROTO_IPV6: 11086 /* Check ext headers of inner ipv6 */ 11087 return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb), 11088 NULL); 11089 } 11090 return false; 11091 } 11092 11093 static netdev_features_t bnxt_features_check(struct sk_buff *skb, 11094 struct net_device *dev, 11095 netdev_features_t features) 11096 { 11097 struct bnxt *bp = netdev_priv(dev); 11098 u8 *l4_proto; 11099 11100 features = vlan_features_check(skb, features); 11101 switch (vlan_get_protocol(skb)) { 11102 case htons(ETH_P_IP): 11103 if (!skb->encapsulation) 11104 return features; 11105 l4_proto = &ip_hdr(skb)->protocol; 11106 if (bnxt_tunl_check(bp, skb, *l4_proto)) 11107 return features; 11108 break; 11109 case htons(ETH_P_IPV6): 11110 if (!bnxt_exthdr_check(bp, skb, skb_network_offset(skb), 11111 &l4_proto)) 11112 break; 11113 if (!l4_proto || bnxt_tunl_check(bp, skb, *l4_proto)) 11114 return features; 11115 break; 11116 } 11117 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 11118 } 11119 11120 int bnxt_dbg_hwrm_rd_reg(struct bnxt *bp, u32 reg_off, u16 num_words, 11121 u32 *reg_buf) 11122 { 11123 struct hwrm_dbg_read_direct_output *resp; 11124 struct hwrm_dbg_read_direct_input *req; 11125 __le32 *dbg_reg_buf; 11126 dma_addr_t mapping; 11127 int rc, i; 11128 11129 rc = hwrm_req_init(bp, req, HWRM_DBG_READ_DIRECT); 11130 if (rc) 11131 return rc; 11132 11133 dbg_reg_buf = hwrm_req_dma_slice(bp, req, num_words * 4, 11134 &mapping); 11135 if (!dbg_reg_buf) { 11136 rc = -ENOMEM; 11137 goto dbg_rd_reg_exit; 11138 } 11139 11140 req->host_dest_addr = cpu_to_le64(mapping); 11141 11142 resp = hwrm_req_hold(bp, req); 11143 req->read_addr = cpu_to_le32(reg_off + CHIMP_REG_VIEW_ADDR); 11144 req->read_len32 = cpu_to_le32(num_words); 11145 11146 rc = hwrm_req_send(bp, req); 11147 if (rc || resp->error_code) { 11148 rc = -EIO; 11149 goto dbg_rd_reg_exit; 11150 } 11151 for (i = 0; i < num_words; i++) 11152 reg_buf[i] = le32_to_cpu(dbg_reg_buf[i]); 11153 11154 dbg_rd_reg_exit: 11155 hwrm_req_drop(bp, req); 11156 return rc; 11157 } 11158 11159 static int bnxt_dbg_hwrm_ring_info_get(struct bnxt *bp, u8 ring_type, 11160 u32 ring_id, u32 *prod, u32 *cons) 11161 { 11162 struct hwrm_dbg_ring_info_get_output *resp; 11163 struct hwrm_dbg_ring_info_get_input *req; 11164 int rc; 11165 11166 rc = hwrm_req_init(bp, req, HWRM_DBG_RING_INFO_GET); 11167 if (rc) 11168 return rc; 11169 11170 req->ring_type = ring_type; 11171 req->fw_ring_id = cpu_to_le32(ring_id); 11172 resp = hwrm_req_hold(bp, req); 11173 rc = hwrm_req_send(bp, req); 11174 if (!rc) { 11175 *prod = le32_to_cpu(resp->producer_index); 11176 *cons = le32_to_cpu(resp->consumer_index); 11177 } 11178 hwrm_req_drop(bp, req); 11179 return rc; 11180 } 11181 11182 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi) 11183 { 11184 struct bnxt_tx_ring_info *txr = bnapi->tx_ring; 11185 int i = bnapi->index; 11186 11187 if (!txr) 11188 return; 11189 11190 netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n", 11191 i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod, 11192 txr->tx_cons); 11193 } 11194 11195 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi) 11196 { 11197 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 11198 int i = bnapi->index; 11199 11200 if (!rxr) 11201 return; 11202 11203 netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n", 11204 i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod, 11205 rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod, 11206 rxr->rx_sw_agg_prod); 11207 } 11208 11209 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi) 11210 { 11211 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 11212 int i = bnapi->index; 11213 11214 netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n", 11215 i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons); 11216 } 11217 11218 static void bnxt_dbg_dump_states(struct bnxt *bp) 11219 { 11220 int i; 11221 struct bnxt_napi *bnapi; 11222 11223 for (i = 0; i < bp->cp_nr_rings; i++) { 11224 bnapi = bp->bnapi[i]; 11225 if (netif_msg_drv(bp)) { 11226 bnxt_dump_tx_sw_state(bnapi); 11227 bnxt_dump_rx_sw_state(bnapi); 11228 bnxt_dump_cp_sw_state(bnapi); 11229 } 11230 } 11231 } 11232 11233 static int bnxt_hwrm_rx_ring_reset(struct bnxt *bp, int ring_nr) 11234 { 11235 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 11236 struct hwrm_ring_reset_input *req; 11237 struct bnxt_napi *bnapi = rxr->bnapi; 11238 struct bnxt_cp_ring_info *cpr; 11239 u16 cp_ring_id; 11240 int rc; 11241 11242 rc = hwrm_req_init(bp, req, HWRM_RING_RESET); 11243 if (rc) 11244 return rc; 11245 11246 cpr = &bnapi->cp_ring; 11247 cp_ring_id = cpr->cp_ring_struct.fw_ring_id; 11248 req->cmpl_ring = cpu_to_le16(cp_ring_id); 11249 req->ring_type = RING_RESET_REQ_RING_TYPE_RX_RING_GRP; 11250 req->ring_id = cpu_to_le16(bp->grp_info[bnapi->index].fw_grp_id); 11251 return hwrm_req_send_silent(bp, req); 11252 } 11253 11254 static void bnxt_reset_task(struct bnxt *bp, bool silent) 11255 { 11256 if (!silent) 11257 bnxt_dbg_dump_states(bp); 11258 if (netif_running(bp->dev)) { 11259 int rc; 11260 11261 if (silent) { 11262 bnxt_close_nic(bp, false, false); 11263 bnxt_open_nic(bp, false, false); 11264 } else { 11265 bnxt_ulp_stop(bp); 11266 bnxt_close_nic(bp, true, false); 11267 rc = bnxt_open_nic(bp, true, false); 11268 bnxt_ulp_start(bp, rc); 11269 } 11270 } 11271 } 11272 11273 static void bnxt_tx_timeout(struct net_device *dev, unsigned int txqueue) 11274 { 11275 struct bnxt *bp = netdev_priv(dev); 11276 11277 netdev_err(bp->dev, "TX timeout detected, starting reset task!\n"); 11278 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event); 11279 bnxt_queue_sp_work(bp); 11280 } 11281 11282 static void bnxt_fw_health_check(struct bnxt *bp) 11283 { 11284 struct bnxt_fw_health *fw_health = bp->fw_health; 11285 u32 val; 11286 11287 if (!fw_health->enabled || test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 11288 return; 11289 11290 /* Make sure it is enabled before checking the tmr_counter. */ 11291 smp_rmb(); 11292 if (fw_health->tmr_counter) { 11293 fw_health->tmr_counter--; 11294 return; 11295 } 11296 11297 val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 11298 if (val == fw_health->last_fw_heartbeat) 11299 goto fw_reset; 11300 11301 fw_health->last_fw_heartbeat = val; 11302 11303 val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 11304 if (val != fw_health->last_fw_reset_cnt) 11305 goto fw_reset; 11306 11307 fw_health->tmr_counter = fw_health->tmr_multiplier; 11308 return; 11309 11310 fw_reset: 11311 set_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event); 11312 bnxt_queue_sp_work(bp); 11313 } 11314 11315 static void bnxt_timer(struct timer_list *t) 11316 { 11317 struct bnxt *bp = from_timer(bp, t, timer); 11318 struct net_device *dev = bp->dev; 11319 11320 if (!netif_running(dev) || !test_bit(BNXT_STATE_OPEN, &bp->state)) 11321 return; 11322 11323 if (atomic_read(&bp->intr_sem) != 0) 11324 goto bnxt_restart_timer; 11325 11326 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) 11327 bnxt_fw_health_check(bp); 11328 11329 if (bp->link_info.link_up && bp->stats_coal_ticks) { 11330 set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event); 11331 bnxt_queue_sp_work(bp); 11332 } 11333 11334 if (bnxt_tc_flower_enabled(bp)) { 11335 set_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event); 11336 bnxt_queue_sp_work(bp); 11337 } 11338 11339 #ifdef CONFIG_RFS_ACCEL 11340 if ((bp->flags & BNXT_FLAG_RFS) && bp->ntp_fltr_count) { 11341 set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event); 11342 bnxt_queue_sp_work(bp); 11343 } 11344 #endif /*CONFIG_RFS_ACCEL*/ 11345 11346 if (bp->link_info.phy_retry) { 11347 if (time_after(jiffies, bp->link_info.phy_retry_expires)) { 11348 bp->link_info.phy_retry = false; 11349 netdev_warn(bp->dev, "failed to update phy settings after maximum retries.\n"); 11350 } else { 11351 set_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event); 11352 bnxt_queue_sp_work(bp); 11353 } 11354 } 11355 11356 if ((bp->flags & BNXT_FLAG_CHIP_P5) && !bp->chip_rev && 11357 netif_carrier_ok(dev)) { 11358 set_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event); 11359 bnxt_queue_sp_work(bp); 11360 } 11361 bnxt_restart_timer: 11362 mod_timer(&bp->timer, jiffies + bp->current_interval); 11363 } 11364 11365 static void bnxt_rtnl_lock_sp(struct bnxt *bp) 11366 { 11367 /* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK 11368 * set. If the device is being closed, bnxt_close() may be holding 11369 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear. So we 11370 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl(). 11371 */ 11372 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 11373 rtnl_lock(); 11374 } 11375 11376 static void bnxt_rtnl_unlock_sp(struct bnxt *bp) 11377 { 11378 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 11379 rtnl_unlock(); 11380 } 11381 11382 /* Only called from bnxt_sp_task() */ 11383 static void bnxt_reset(struct bnxt *bp, bool silent) 11384 { 11385 bnxt_rtnl_lock_sp(bp); 11386 if (test_bit(BNXT_STATE_OPEN, &bp->state)) 11387 bnxt_reset_task(bp, silent); 11388 bnxt_rtnl_unlock_sp(bp); 11389 } 11390 11391 /* Only called from bnxt_sp_task() */ 11392 static void bnxt_rx_ring_reset(struct bnxt *bp) 11393 { 11394 int i; 11395 11396 bnxt_rtnl_lock_sp(bp); 11397 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 11398 bnxt_rtnl_unlock_sp(bp); 11399 return; 11400 } 11401 /* Disable and flush TPA before resetting the RX ring */ 11402 if (bp->flags & BNXT_FLAG_TPA) 11403 bnxt_set_tpa(bp, false); 11404 for (i = 0; i < bp->rx_nr_rings; i++) { 11405 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 11406 struct bnxt_cp_ring_info *cpr; 11407 int rc; 11408 11409 if (!rxr->bnapi->in_reset) 11410 continue; 11411 11412 rc = bnxt_hwrm_rx_ring_reset(bp, i); 11413 if (rc) { 11414 if (rc == -EINVAL || rc == -EOPNOTSUPP) 11415 netdev_info_once(bp->dev, "RX ring reset not supported by firmware, falling back to global reset\n"); 11416 else 11417 netdev_warn(bp->dev, "RX ring reset failed, rc = %d, falling back to global reset\n", 11418 rc); 11419 bnxt_reset_task(bp, true); 11420 break; 11421 } 11422 bnxt_free_one_rx_ring_skbs(bp, i); 11423 rxr->rx_prod = 0; 11424 rxr->rx_agg_prod = 0; 11425 rxr->rx_sw_agg_prod = 0; 11426 rxr->rx_next_cons = 0; 11427 rxr->bnapi->in_reset = false; 11428 bnxt_alloc_one_rx_ring(bp, i); 11429 cpr = &rxr->bnapi->cp_ring; 11430 cpr->sw_stats.rx.rx_resets++; 11431 if (bp->flags & BNXT_FLAG_AGG_RINGS) 11432 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 11433 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 11434 } 11435 if (bp->flags & BNXT_FLAG_TPA) 11436 bnxt_set_tpa(bp, true); 11437 bnxt_rtnl_unlock_sp(bp); 11438 } 11439 11440 static void bnxt_fw_reset_close(struct bnxt *bp) 11441 { 11442 bnxt_ulp_stop(bp); 11443 /* When firmware is in fatal state, quiesce device and disable 11444 * bus master to prevent any potential bad DMAs before freeing 11445 * kernel memory. 11446 */ 11447 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) { 11448 u16 val = 0; 11449 11450 pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val); 11451 if (val == 0xffff) 11452 bp->fw_reset_min_dsecs = 0; 11453 bnxt_tx_disable(bp); 11454 bnxt_disable_napi(bp); 11455 bnxt_disable_int_sync(bp); 11456 bnxt_free_irq(bp); 11457 bnxt_clear_int_mode(bp); 11458 pci_disable_device(bp->pdev); 11459 } 11460 __bnxt_close_nic(bp, true, false); 11461 bnxt_vf_reps_free(bp); 11462 bnxt_clear_int_mode(bp); 11463 bnxt_hwrm_func_drv_unrgtr(bp); 11464 if (pci_is_enabled(bp->pdev)) 11465 pci_disable_device(bp->pdev); 11466 bnxt_free_ctx_mem(bp); 11467 kfree(bp->ctx); 11468 bp->ctx = NULL; 11469 } 11470 11471 static bool is_bnxt_fw_ok(struct bnxt *bp) 11472 { 11473 struct bnxt_fw_health *fw_health = bp->fw_health; 11474 bool no_heartbeat = false, has_reset = false; 11475 u32 val; 11476 11477 val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 11478 if (val == fw_health->last_fw_heartbeat) 11479 no_heartbeat = true; 11480 11481 val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 11482 if (val != fw_health->last_fw_reset_cnt) 11483 has_reset = true; 11484 11485 if (!no_heartbeat && has_reset) 11486 return true; 11487 11488 return false; 11489 } 11490 11491 /* rtnl_lock is acquired before calling this function */ 11492 static void bnxt_force_fw_reset(struct bnxt *bp) 11493 { 11494 struct bnxt_fw_health *fw_health = bp->fw_health; 11495 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 11496 u32 wait_dsecs; 11497 11498 if (!test_bit(BNXT_STATE_OPEN, &bp->state) || 11499 test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 11500 return; 11501 11502 if (ptp) { 11503 spin_lock_bh(&ptp->ptp_lock); 11504 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 11505 spin_unlock_bh(&ptp->ptp_lock); 11506 } else { 11507 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 11508 } 11509 bnxt_fw_reset_close(bp); 11510 wait_dsecs = fw_health->master_func_wait_dsecs; 11511 if (fw_health->master) { 11512 if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) 11513 wait_dsecs = 0; 11514 bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW; 11515 } else { 11516 bp->fw_reset_timestamp = jiffies + wait_dsecs * HZ / 10; 11517 wait_dsecs = fw_health->normal_func_wait_dsecs; 11518 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 11519 } 11520 11521 bp->fw_reset_min_dsecs = fw_health->post_reset_wait_dsecs; 11522 bp->fw_reset_max_dsecs = fw_health->post_reset_max_wait_dsecs; 11523 bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10); 11524 } 11525 11526 void bnxt_fw_exception(struct bnxt *bp) 11527 { 11528 netdev_warn(bp->dev, "Detected firmware fatal condition, initiating reset\n"); 11529 set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 11530 bnxt_rtnl_lock_sp(bp); 11531 bnxt_force_fw_reset(bp); 11532 bnxt_rtnl_unlock_sp(bp); 11533 } 11534 11535 /* Returns the number of registered VFs, or 1 if VF configuration is pending, or 11536 * < 0 on error. 11537 */ 11538 static int bnxt_get_registered_vfs(struct bnxt *bp) 11539 { 11540 #ifdef CONFIG_BNXT_SRIOV 11541 int rc; 11542 11543 if (!BNXT_PF(bp)) 11544 return 0; 11545 11546 rc = bnxt_hwrm_func_qcfg(bp); 11547 if (rc) { 11548 netdev_err(bp->dev, "func_qcfg cmd failed, rc = %d\n", rc); 11549 return rc; 11550 } 11551 if (bp->pf.registered_vfs) 11552 return bp->pf.registered_vfs; 11553 if (bp->sriov_cfg) 11554 return 1; 11555 #endif 11556 return 0; 11557 } 11558 11559 void bnxt_fw_reset(struct bnxt *bp) 11560 { 11561 bnxt_rtnl_lock_sp(bp); 11562 if (test_bit(BNXT_STATE_OPEN, &bp->state) && 11563 !test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 11564 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 11565 int n = 0, tmo; 11566 11567 if (ptp) { 11568 spin_lock_bh(&ptp->ptp_lock); 11569 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 11570 spin_unlock_bh(&ptp->ptp_lock); 11571 } else { 11572 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 11573 } 11574 if (bp->pf.active_vfs && 11575 !test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) 11576 n = bnxt_get_registered_vfs(bp); 11577 if (n < 0) { 11578 netdev_err(bp->dev, "Firmware reset aborted, rc = %d\n", 11579 n); 11580 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 11581 dev_close(bp->dev); 11582 goto fw_reset_exit; 11583 } else if (n > 0) { 11584 u16 vf_tmo_dsecs = n * 10; 11585 11586 if (bp->fw_reset_max_dsecs < vf_tmo_dsecs) 11587 bp->fw_reset_max_dsecs = vf_tmo_dsecs; 11588 bp->fw_reset_state = 11589 BNXT_FW_RESET_STATE_POLL_VF; 11590 bnxt_queue_fw_reset_work(bp, HZ / 10); 11591 goto fw_reset_exit; 11592 } 11593 bnxt_fw_reset_close(bp); 11594 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 11595 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN; 11596 tmo = HZ / 10; 11597 } else { 11598 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 11599 tmo = bp->fw_reset_min_dsecs * HZ / 10; 11600 } 11601 bnxt_queue_fw_reset_work(bp, tmo); 11602 } 11603 fw_reset_exit: 11604 bnxt_rtnl_unlock_sp(bp); 11605 } 11606 11607 static void bnxt_chk_missed_irq(struct bnxt *bp) 11608 { 11609 int i; 11610 11611 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 11612 return; 11613 11614 for (i = 0; i < bp->cp_nr_rings; i++) { 11615 struct bnxt_napi *bnapi = bp->bnapi[i]; 11616 struct bnxt_cp_ring_info *cpr; 11617 u32 fw_ring_id; 11618 int j; 11619 11620 if (!bnapi) 11621 continue; 11622 11623 cpr = &bnapi->cp_ring; 11624 for (j = 0; j < 2; j++) { 11625 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j]; 11626 u32 val[2]; 11627 11628 if (!cpr2 || cpr2->has_more_work || 11629 !bnxt_has_work(bp, cpr2)) 11630 continue; 11631 11632 if (cpr2->cp_raw_cons != cpr2->last_cp_raw_cons) { 11633 cpr2->last_cp_raw_cons = cpr2->cp_raw_cons; 11634 continue; 11635 } 11636 fw_ring_id = cpr2->cp_ring_struct.fw_ring_id; 11637 bnxt_dbg_hwrm_ring_info_get(bp, 11638 DBG_RING_INFO_GET_REQ_RING_TYPE_L2_CMPL, 11639 fw_ring_id, &val[0], &val[1]); 11640 cpr->sw_stats.cmn.missed_irqs++; 11641 } 11642 } 11643 } 11644 11645 static void bnxt_cfg_ntp_filters(struct bnxt *); 11646 11647 static void bnxt_init_ethtool_link_settings(struct bnxt *bp) 11648 { 11649 struct bnxt_link_info *link_info = &bp->link_info; 11650 11651 if (BNXT_AUTO_MODE(link_info->auto_mode)) { 11652 link_info->autoneg = BNXT_AUTONEG_SPEED; 11653 if (bp->hwrm_spec_code >= 0x10201) { 11654 if (link_info->auto_pause_setting & 11655 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE) 11656 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL; 11657 } else { 11658 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL; 11659 } 11660 link_info->advertising = link_info->auto_link_speeds; 11661 link_info->advertising_pam4 = link_info->auto_pam4_link_speeds; 11662 } else { 11663 link_info->req_link_speed = link_info->force_link_speed; 11664 link_info->req_signal_mode = BNXT_SIG_MODE_NRZ; 11665 if (link_info->force_pam4_link_speed) { 11666 link_info->req_link_speed = 11667 link_info->force_pam4_link_speed; 11668 link_info->req_signal_mode = BNXT_SIG_MODE_PAM4; 11669 } 11670 link_info->req_duplex = link_info->duplex_setting; 11671 } 11672 if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) 11673 link_info->req_flow_ctrl = 11674 link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH; 11675 else 11676 link_info->req_flow_ctrl = link_info->force_pause_setting; 11677 } 11678 11679 static void bnxt_fw_echo_reply(struct bnxt *bp) 11680 { 11681 struct bnxt_fw_health *fw_health = bp->fw_health; 11682 struct hwrm_func_echo_response_input *req; 11683 int rc; 11684 11685 rc = hwrm_req_init(bp, req, HWRM_FUNC_ECHO_RESPONSE); 11686 if (rc) 11687 return; 11688 req->event_data1 = cpu_to_le32(fw_health->echo_req_data1); 11689 req->event_data2 = cpu_to_le32(fw_health->echo_req_data2); 11690 hwrm_req_send(bp, req); 11691 } 11692 11693 static void bnxt_sp_task(struct work_struct *work) 11694 { 11695 struct bnxt *bp = container_of(work, struct bnxt, sp_task); 11696 11697 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 11698 smp_mb__after_atomic(); 11699 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 11700 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 11701 return; 11702 } 11703 11704 if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event)) 11705 bnxt_cfg_rx_mode(bp); 11706 11707 if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event)) 11708 bnxt_cfg_ntp_filters(bp); 11709 if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event)) 11710 bnxt_hwrm_exec_fwd_req(bp); 11711 if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) { 11712 bnxt_hwrm_port_qstats(bp, 0); 11713 bnxt_hwrm_port_qstats_ext(bp, 0); 11714 bnxt_accumulate_all_stats(bp); 11715 } 11716 11717 if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) { 11718 int rc; 11719 11720 mutex_lock(&bp->link_lock); 11721 if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, 11722 &bp->sp_event)) 11723 bnxt_hwrm_phy_qcaps(bp); 11724 11725 rc = bnxt_update_link(bp, true); 11726 if (rc) 11727 netdev_err(bp->dev, "SP task can't update link (rc: %x)\n", 11728 rc); 11729 11730 if (test_and_clear_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, 11731 &bp->sp_event)) 11732 bnxt_init_ethtool_link_settings(bp); 11733 mutex_unlock(&bp->link_lock); 11734 } 11735 if (test_and_clear_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event)) { 11736 int rc; 11737 11738 mutex_lock(&bp->link_lock); 11739 rc = bnxt_update_phy_setting(bp); 11740 mutex_unlock(&bp->link_lock); 11741 if (rc) { 11742 netdev_warn(bp->dev, "update phy settings retry failed\n"); 11743 } else { 11744 bp->link_info.phy_retry = false; 11745 netdev_info(bp->dev, "update phy settings retry succeeded\n"); 11746 } 11747 } 11748 if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) { 11749 mutex_lock(&bp->link_lock); 11750 bnxt_get_port_module_status(bp); 11751 mutex_unlock(&bp->link_lock); 11752 } 11753 11754 if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event)) 11755 bnxt_tc_flow_stats_work(bp); 11756 11757 if (test_and_clear_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event)) 11758 bnxt_chk_missed_irq(bp); 11759 11760 if (test_and_clear_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event)) 11761 bnxt_fw_echo_reply(bp); 11762 11763 /* These functions below will clear BNXT_STATE_IN_SP_TASK. They 11764 * must be the last functions to be called before exiting. 11765 */ 11766 if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event)) 11767 bnxt_reset(bp, false); 11768 11769 if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event)) 11770 bnxt_reset(bp, true); 11771 11772 if (test_and_clear_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event)) 11773 bnxt_rx_ring_reset(bp); 11774 11775 if (test_and_clear_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event)) 11776 bnxt_devlink_health_report(bp, BNXT_FW_RESET_NOTIFY_SP_EVENT); 11777 11778 if (test_and_clear_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event)) { 11779 if (!is_bnxt_fw_ok(bp)) 11780 bnxt_devlink_health_report(bp, 11781 BNXT_FW_EXCEPTION_SP_EVENT); 11782 } 11783 11784 smp_mb__before_atomic(); 11785 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 11786 } 11787 11788 /* Under rtnl_lock */ 11789 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs, 11790 int tx_xdp) 11791 { 11792 int max_rx, max_tx, tx_sets = 1; 11793 int tx_rings_needed, stats; 11794 int rx_rings = rx; 11795 int cp, vnics, rc; 11796 11797 if (tcs) 11798 tx_sets = tcs; 11799 11800 rc = bnxt_get_max_rings(bp, &max_rx, &max_tx, sh); 11801 if (rc) 11802 return rc; 11803 11804 if (max_rx < rx) 11805 return -ENOMEM; 11806 11807 tx_rings_needed = tx * tx_sets + tx_xdp; 11808 if (max_tx < tx_rings_needed) 11809 return -ENOMEM; 11810 11811 vnics = 1; 11812 if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS) 11813 vnics += rx_rings; 11814 11815 if (bp->flags & BNXT_FLAG_AGG_RINGS) 11816 rx_rings <<= 1; 11817 cp = sh ? max_t(int, tx_rings_needed, rx) : tx_rings_needed + rx; 11818 stats = cp; 11819 if (BNXT_NEW_RM(bp)) { 11820 cp += bnxt_get_ulp_msix_num(bp); 11821 stats += bnxt_get_ulp_stat_ctxs(bp); 11822 } 11823 return bnxt_hwrm_check_rings(bp, tx_rings_needed, rx_rings, rx, cp, 11824 stats, vnics); 11825 } 11826 11827 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev) 11828 { 11829 if (bp->bar2) { 11830 pci_iounmap(pdev, bp->bar2); 11831 bp->bar2 = NULL; 11832 } 11833 11834 if (bp->bar1) { 11835 pci_iounmap(pdev, bp->bar1); 11836 bp->bar1 = NULL; 11837 } 11838 11839 if (bp->bar0) { 11840 pci_iounmap(pdev, bp->bar0); 11841 bp->bar0 = NULL; 11842 } 11843 } 11844 11845 static void bnxt_cleanup_pci(struct bnxt *bp) 11846 { 11847 bnxt_unmap_bars(bp, bp->pdev); 11848 pci_release_regions(bp->pdev); 11849 if (pci_is_enabled(bp->pdev)) 11850 pci_disable_device(bp->pdev); 11851 } 11852 11853 static void bnxt_init_dflt_coal(struct bnxt *bp) 11854 { 11855 struct bnxt_coal *coal; 11856 11857 /* Tick values in micro seconds. 11858 * 1 coal_buf x bufs_per_record = 1 completion record. 11859 */ 11860 coal = &bp->rx_coal; 11861 coal->coal_ticks = 10; 11862 coal->coal_bufs = 30; 11863 coal->coal_ticks_irq = 1; 11864 coal->coal_bufs_irq = 2; 11865 coal->idle_thresh = 50; 11866 coal->bufs_per_record = 2; 11867 coal->budget = 64; /* NAPI budget */ 11868 11869 coal = &bp->tx_coal; 11870 coal->coal_ticks = 28; 11871 coal->coal_bufs = 30; 11872 coal->coal_ticks_irq = 2; 11873 coal->coal_bufs_irq = 2; 11874 coal->bufs_per_record = 1; 11875 11876 bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS; 11877 } 11878 11879 static int bnxt_fw_init_one_p1(struct bnxt *bp) 11880 { 11881 int rc; 11882 11883 bp->fw_cap = 0; 11884 rc = bnxt_hwrm_ver_get(bp); 11885 bnxt_try_map_fw_health_reg(bp); 11886 if (rc) { 11887 rc = bnxt_try_recover_fw(bp); 11888 if (rc) 11889 return rc; 11890 rc = bnxt_hwrm_ver_get(bp); 11891 if (rc) 11892 return rc; 11893 } 11894 11895 bnxt_nvm_cfg_ver_get(bp); 11896 11897 rc = bnxt_hwrm_func_reset(bp); 11898 if (rc) 11899 return -ENODEV; 11900 11901 bnxt_hwrm_fw_set_time(bp); 11902 return 0; 11903 } 11904 11905 static int bnxt_fw_init_one_p2(struct bnxt *bp) 11906 { 11907 int rc; 11908 11909 /* Get the MAX capabilities for this function */ 11910 rc = bnxt_hwrm_func_qcaps(bp); 11911 if (rc) { 11912 netdev_err(bp->dev, "hwrm query capability failure rc: %x\n", 11913 rc); 11914 return -ENODEV; 11915 } 11916 11917 rc = bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(bp); 11918 if (rc) 11919 netdev_warn(bp->dev, "hwrm query adv flow mgnt failure rc: %d\n", 11920 rc); 11921 11922 if (bnxt_alloc_fw_health(bp)) { 11923 netdev_warn(bp->dev, "no memory for firmware error recovery\n"); 11924 } else { 11925 rc = bnxt_hwrm_error_recovery_qcfg(bp); 11926 if (rc) 11927 netdev_warn(bp->dev, "hwrm query error recovery failure rc: %d\n", 11928 rc); 11929 } 11930 11931 rc = bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false); 11932 if (rc) 11933 return -ENODEV; 11934 11935 bnxt_hwrm_func_qcfg(bp); 11936 bnxt_hwrm_vnic_qcaps(bp); 11937 bnxt_hwrm_port_led_qcaps(bp); 11938 bnxt_ethtool_init(bp); 11939 bnxt_dcb_init(bp); 11940 return 0; 11941 } 11942 11943 static void bnxt_set_dflt_rss_hash_type(struct bnxt *bp) 11944 { 11945 bp->flags &= ~BNXT_FLAG_UDP_RSS_CAP; 11946 bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 | 11947 VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 | 11948 VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 | 11949 VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6; 11950 if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) { 11951 bp->flags |= BNXT_FLAG_UDP_RSS_CAP; 11952 bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 | 11953 VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6; 11954 } 11955 } 11956 11957 static void bnxt_set_dflt_rfs(struct bnxt *bp) 11958 { 11959 struct net_device *dev = bp->dev; 11960 11961 dev->hw_features &= ~NETIF_F_NTUPLE; 11962 dev->features &= ~NETIF_F_NTUPLE; 11963 bp->flags &= ~BNXT_FLAG_RFS; 11964 if (bnxt_rfs_supported(bp)) { 11965 dev->hw_features |= NETIF_F_NTUPLE; 11966 if (bnxt_rfs_capable(bp)) { 11967 bp->flags |= BNXT_FLAG_RFS; 11968 dev->features |= NETIF_F_NTUPLE; 11969 } 11970 } 11971 } 11972 11973 static void bnxt_fw_init_one_p3(struct bnxt *bp) 11974 { 11975 struct pci_dev *pdev = bp->pdev; 11976 11977 bnxt_set_dflt_rss_hash_type(bp); 11978 bnxt_set_dflt_rfs(bp); 11979 11980 bnxt_get_wol_settings(bp); 11981 if (bp->flags & BNXT_FLAG_WOL_CAP) 11982 device_set_wakeup_enable(&pdev->dev, bp->wol); 11983 else 11984 device_set_wakeup_capable(&pdev->dev, false); 11985 11986 bnxt_hwrm_set_cache_line_size(bp, cache_line_size()); 11987 bnxt_hwrm_coal_params_qcaps(bp); 11988 } 11989 11990 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt); 11991 11992 static int bnxt_fw_init_one(struct bnxt *bp) 11993 { 11994 int rc; 11995 11996 rc = bnxt_fw_init_one_p1(bp); 11997 if (rc) { 11998 netdev_err(bp->dev, "Firmware init phase 1 failed\n"); 11999 return rc; 12000 } 12001 rc = bnxt_fw_init_one_p2(bp); 12002 if (rc) { 12003 netdev_err(bp->dev, "Firmware init phase 2 failed\n"); 12004 return rc; 12005 } 12006 rc = bnxt_probe_phy(bp, false); 12007 if (rc) 12008 return rc; 12009 rc = bnxt_approve_mac(bp, bp->dev->dev_addr, false); 12010 if (rc) 12011 return rc; 12012 12013 /* In case fw capabilities have changed, destroy the unneeded 12014 * reporters and create newly capable ones. 12015 */ 12016 bnxt_dl_fw_reporters_destroy(bp, false); 12017 bnxt_dl_fw_reporters_create(bp); 12018 bnxt_fw_init_one_p3(bp); 12019 return 0; 12020 } 12021 12022 static void bnxt_fw_reset_writel(struct bnxt *bp, int reg_idx) 12023 { 12024 struct bnxt_fw_health *fw_health = bp->fw_health; 12025 u32 reg = fw_health->fw_reset_seq_regs[reg_idx]; 12026 u32 val = fw_health->fw_reset_seq_vals[reg_idx]; 12027 u32 reg_type, reg_off, delay_msecs; 12028 12029 delay_msecs = fw_health->fw_reset_seq_delay_msec[reg_idx]; 12030 reg_type = BNXT_FW_HEALTH_REG_TYPE(reg); 12031 reg_off = BNXT_FW_HEALTH_REG_OFF(reg); 12032 switch (reg_type) { 12033 case BNXT_FW_HEALTH_REG_TYPE_CFG: 12034 pci_write_config_dword(bp->pdev, reg_off, val); 12035 break; 12036 case BNXT_FW_HEALTH_REG_TYPE_GRC: 12037 writel(reg_off & BNXT_GRC_BASE_MASK, 12038 bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4); 12039 reg_off = (reg_off & BNXT_GRC_OFFSET_MASK) + 0x2000; 12040 fallthrough; 12041 case BNXT_FW_HEALTH_REG_TYPE_BAR0: 12042 writel(val, bp->bar0 + reg_off); 12043 break; 12044 case BNXT_FW_HEALTH_REG_TYPE_BAR1: 12045 writel(val, bp->bar1 + reg_off); 12046 break; 12047 } 12048 if (delay_msecs) { 12049 pci_read_config_dword(bp->pdev, 0, &val); 12050 msleep(delay_msecs); 12051 } 12052 } 12053 12054 static void bnxt_reset_all(struct bnxt *bp) 12055 { 12056 struct bnxt_fw_health *fw_health = bp->fw_health; 12057 int i, rc; 12058 12059 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 12060 bnxt_fw_reset_via_optee(bp); 12061 bp->fw_reset_timestamp = jiffies; 12062 return; 12063 } 12064 12065 if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_HOST) { 12066 for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) 12067 bnxt_fw_reset_writel(bp, i); 12068 } else if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) { 12069 struct hwrm_fw_reset_input *req; 12070 12071 rc = hwrm_req_init(bp, req, HWRM_FW_RESET); 12072 if (!rc) { 12073 req->target_id = cpu_to_le16(HWRM_TARGET_ID_KONG); 12074 req->embedded_proc_type = FW_RESET_REQ_EMBEDDED_PROC_TYPE_CHIP; 12075 req->selfrst_status = FW_RESET_REQ_SELFRST_STATUS_SELFRSTASAP; 12076 req->flags = FW_RESET_REQ_FLAGS_RESET_GRACEFUL; 12077 rc = hwrm_req_send(bp, req); 12078 } 12079 if (rc != -ENODEV) 12080 netdev_warn(bp->dev, "Unable to reset FW rc=%d\n", rc); 12081 } 12082 bp->fw_reset_timestamp = jiffies; 12083 } 12084 12085 static bool bnxt_fw_reset_timeout(struct bnxt *bp) 12086 { 12087 return time_after(jiffies, bp->fw_reset_timestamp + 12088 (bp->fw_reset_max_dsecs * HZ / 10)); 12089 } 12090 12091 static void bnxt_fw_reset_abort(struct bnxt *bp, int rc) 12092 { 12093 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 12094 if (bp->fw_reset_state != BNXT_FW_RESET_STATE_POLL_VF) { 12095 bnxt_ulp_start(bp, rc); 12096 bnxt_dl_health_status_update(bp, false); 12097 } 12098 bp->fw_reset_state = 0; 12099 dev_close(bp->dev); 12100 } 12101 12102 static void bnxt_fw_reset_task(struct work_struct *work) 12103 { 12104 struct bnxt *bp = container_of(work, struct bnxt, fw_reset_task.work); 12105 int rc = 0; 12106 12107 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 12108 netdev_err(bp->dev, "bnxt_fw_reset_task() called when not in fw reset mode!\n"); 12109 return; 12110 } 12111 12112 switch (bp->fw_reset_state) { 12113 case BNXT_FW_RESET_STATE_POLL_VF: { 12114 int n = bnxt_get_registered_vfs(bp); 12115 int tmo; 12116 12117 if (n < 0) { 12118 netdev_err(bp->dev, "Firmware reset aborted, subsequent func_qcfg cmd failed, rc = %d, %d msecs since reset timestamp\n", 12119 n, jiffies_to_msecs(jiffies - 12120 bp->fw_reset_timestamp)); 12121 goto fw_reset_abort; 12122 } else if (n > 0) { 12123 if (bnxt_fw_reset_timeout(bp)) { 12124 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 12125 bp->fw_reset_state = 0; 12126 netdev_err(bp->dev, "Firmware reset aborted, bnxt_get_registered_vfs() returns %d\n", 12127 n); 12128 return; 12129 } 12130 bnxt_queue_fw_reset_work(bp, HZ / 10); 12131 return; 12132 } 12133 bp->fw_reset_timestamp = jiffies; 12134 rtnl_lock(); 12135 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 12136 bnxt_fw_reset_abort(bp, rc); 12137 rtnl_unlock(); 12138 return; 12139 } 12140 bnxt_fw_reset_close(bp); 12141 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 12142 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN; 12143 tmo = HZ / 10; 12144 } else { 12145 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 12146 tmo = bp->fw_reset_min_dsecs * HZ / 10; 12147 } 12148 rtnl_unlock(); 12149 bnxt_queue_fw_reset_work(bp, tmo); 12150 return; 12151 } 12152 case BNXT_FW_RESET_STATE_POLL_FW_DOWN: { 12153 u32 val; 12154 12155 val = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 12156 if (!(val & BNXT_FW_STATUS_SHUTDOWN) && 12157 !bnxt_fw_reset_timeout(bp)) { 12158 bnxt_queue_fw_reset_work(bp, HZ / 5); 12159 return; 12160 } 12161 12162 if (!bp->fw_health->master) { 12163 u32 wait_dsecs = bp->fw_health->normal_func_wait_dsecs; 12164 12165 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 12166 bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10); 12167 return; 12168 } 12169 bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW; 12170 } 12171 fallthrough; 12172 case BNXT_FW_RESET_STATE_RESET_FW: 12173 bnxt_reset_all(bp); 12174 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 12175 bnxt_queue_fw_reset_work(bp, bp->fw_reset_min_dsecs * HZ / 10); 12176 return; 12177 case BNXT_FW_RESET_STATE_ENABLE_DEV: 12178 bnxt_inv_fw_health_reg(bp); 12179 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) && 12180 !bp->fw_reset_min_dsecs) { 12181 u16 val; 12182 12183 pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val); 12184 if (val == 0xffff) { 12185 if (bnxt_fw_reset_timeout(bp)) { 12186 netdev_err(bp->dev, "Firmware reset aborted, PCI config space invalid\n"); 12187 rc = -ETIMEDOUT; 12188 goto fw_reset_abort; 12189 } 12190 bnxt_queue_fw_reset_work(bp, HZ / 1000); 12191 return; 12192 } 12193 } 12194 clear_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 12195 if (pci_enable_device(bp->pdev)) { 12196 netdev_err(bp->dev, "Cannot re-enable PCI device\n"); 12197 rc = -ENODEV; 12198 goto fw_reset_abort; 12199 } 12200 pci_set_master(bp->pdev); 12201 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW; 12202 fallthrough; 12203 case BNXT_FW_RESET_STATE_POLL_FW: 12204 bp->hwrm_cmd_timeout = SHORT_HWRM_CMD_TIMEOUT; 12205 rc = bnxt_hwrm_poll(bp); 12206 if (rc) { 12207 if (bnxt_fw_reset_timeout(bp)) { 12208 netdev_err(bp->dev, "Firmware reset aborted\n"); 12209 goto fw_reset_abort_status; 12210 } 12211 bnxt_queue_fw_reset_work(bp, HZ / 5); 12212 return; 12213 } 12214 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT; 12215 bp->fw_reset_state = BNXT_FW_RESET_STATE_OPENING; 12216 fallthrough; 12217 case BNXT_FW_RESET_STATE_OPENING: 12218 while (!rtnl_trylock()) { 12219 bnxt_queue_fw_reset_work(bp, HZ / 10); 12220 return; 12221 } 12222 rc = bnxt_open(bp->dev); 12223 if (rc) { 12224 netdev_err(bp->dev, "bnxt_open() failed during FW reset\n"); 12225 bnxt_fw_reset_abort(bp, rc); 12226 rtnl_unlock(); 12227 return; 12228 } 12229 12230 if ((bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) && 12231 bp->fw_health->enabled) { 12232 bp->fw_health->last_fw_reset_cnt = 12233 bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 12234 } 12235 bp->fw_reset_state = 0; 12236 /* Make sure fw_reset_state is 0 before clearing the flag */ 12237 smp_mb__before_atomic(); 12238 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 12239 bnxt_ulp_start(bp, 0); 12240 bnxt_reenable_sriov(bp); 12241 bnxt_vf_reps_alloc(bp); 12242 bnxt_vf_reps_open(bp); 12243 bnxt_ptp_reapply_pps(bp); 12244 bnxt_dl_health_recovery_done(bp); 12245 bnxt_dl_health_status_update(bp, true); 12246 rtnl_unlock(); 12247 break; 12248 } 12249 return; 12250 12251 fw_reset_abort_status: 12252 if (bp->fw_health->status_reliable || 12253 (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) { 12254 u32 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 12255 12256 netdev_err(bp->dev, "fw_health_status 0x%x\n", sts); 12257 } 12258 fw_reset_abort: 12259 rtnl_lock(); 12260 bnxt_fw_reset_abort(bp, rc); 12261 rtnl_unlock(); 12262 } 12263 12264 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev) 12265 { 12266 int rc; 12267 struct bnxt *bp = netdev_priv(dev); 12268 12269 SET_NETDEV_DEV(dev, &pdev->dev); 12270 12271 /* enable device (incl. PCI PM wakeup), and bus-mastering */ 12272 rc = pci_enable_device(pdev); 12273 if (rc) { 12274 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n"); 12275 goto init_err; 12276 } 12277 12278 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { 12279 dev_err(&pdev->dev, 12280 "Cannot find PCI device base address, aborting\n"); 12281 rc = -ENODEV; 12282 goto init_err_disable; 12283 } 12284 12285 rc = pci_request_regions(pdev, DRV_MODULE_NAME); 12286 if (rc) { 12287 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n"); 12288 goto init_err_disable; 12289 } 12290 12291 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 && 12292 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) { 12293 dev_err(&pdev->dev, "System does not support DMA, aborting\n"); 12294 rc = -EIO; 12295 goto init_err_release; 12296 } 12297 12298 pci_set_master(pdev); 12299 12300 bp->dev = dev; 12301 bp->pdev = pdev; 12302 12303 /* Doorbell BAR bp->bar1 is mapped after bnxt_fw_init_one_p2() 12304 * determines the BAR size. 12305 */ 12306 bp->bar0 = pci_ioremap_bar(pdev, 0); 12307 if (!bp->bar0) { 12308 dev_err(&pdev->dev, "Cannot map device registers, aborting\n"); 12309 rc = -ENOMEM; 12310 goto init_err_release; 12311 } 12312 12313 bp->bar2 = pci_ioremap_bar(pdev, 4); 12314 if (!bp->bar2) { 12315 dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n"); 12316 rc = -ENOMEM; 12317 goto init_err_release; 12318 } 12319 12320 pci_enable_pcie_error_reporting(pdev); 12321 12322 INIT_WORK(&bp->sp_task, bnxt_sp_task); 12323 INIT_DELAYED_WORK(&bp->fw_reset_task, bnxt_fw_reset_task); 12324 12325 spin_lock_init(&bp->ntp_fltr_lock); 12326 #if BITS_PER_LONG == 32 12327 spin_lock_init(&bp->db_lock); 12328 #endif 12329 12330 bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE; 12331 bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE; 12332 12333 bnxt_init_dflt_coal(bp); 12334 12335 timer_setup(&bp->timer, bnxt_timer, 0); 12336 bp->current_interval = BNXT_TIMER_INTERVAL; 12337 12338 bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID; 12339 bp->nge_fw_dst_port_id = INVALID_HW_RING_ID; 12340 12341 clear_bit(BNXT_STATE_OPEN, &bp->state); 12342 return 0; 12343 12344 init_err_release: 12345 bnxt_unmap_bars(bp, pdev); 12346 pci_release_regions(pdev); 12347 12348 init_err_disable: 12349 pci_disable_device(pdev); 12350 12351 init_err: 12352 return rc; 12353 } 12354 12355 /* rtnl_lock held */ 12356 static int bnxt_change_mac_addr(struct net_device *dev, void *p) 12357 { 12358 struct sockaddr *addr = p; 12359 struct bnxt *bp = netdev_priv(dev); 12360 int rc = 0; 12361 12362 if (!is_valid_ether_addr(addr->sa_data)) 12363 return -EADDRNOTAVAIL; 12364 12365 if (ether_addr_equal(addr->sa_data, dev->dev_addr)) 12366 return 0; 12367 12368 rc = bnxt_approve_mac(bp, addr->sa_data, true); 12369 if (rc) 12370 return rc; 12371 12372 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 12373 if (netif_running(dev)) { 12374 bnxt_close_nic(bp, false, false); 12375 rc = bnxt_open_nic(bp, false, false); 12376 } 12377 12378 return rc; 12379 } 12380 12381 /* rtnl_lock held */ 12382 static int bnxt_change_mtu(struct net_device *dev, int new_mtu) 12383 { 12384 struct bnxt *bp = netdev_priv(dev); 12385 12386 if (netif_running(dev)) 12387 bnxt_close_nic(bp, true, false); 12388 12389 dev->mtu = new_mtu; 12390 bnxt_set_ring_params(bp); 12391 12392 if (netif_running(dev)) 12393 return bnxt_open_nic(bp, true, false); 12394 12395 return 0; 12396 } 12397 12398 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc) 12399 { 12400 struct bnxt *bp = netdev_priv(dev); 12401 bool sh = false; 12402 int rc; 12403 12404 if (tc > bp->max_tc) { 12405 netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n", 12406 tc, bp->max_tc); 12407 return -EINVAL; 12408 } 12409 12410 if (netdev_get_num_tc(dev) == tc) 12411 return 0; 12412 12413 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 12414 sh = true; 12415 12416 rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings, 12417 sh, tc, bp->tx_nr_rings_xdp); 12418 if (rc) 12419 return rc; 12420 12421 /* Needs to close the device and do hw resource re-allocations */ 12422 if (netif_running(bp->dev)) 12423 bnxt_close_nic(bp, true, false); 12424 12425 if (tc) { 12426 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc; 12427 netdev_set_num_tc(dev, tc); 12428 } else { 12429 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 12430 netdev_reset_tc(dev); 12431 } 12432 bp->tx_nr_rings += bp->tx_nr_rings_xdp; 12433 bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) : 12434 bp->tx_nr_rings + bp->rx_nr_rings; 12435 12436 if (netif_running(bp->dev)) 12437 return bnxt_open_nic(bp, true, false); 12438 12439 return 0; 12440 } 12441 12442 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 12443 void *cb_priv) 12444 { 12445 struct bnxt *bp = cb_priv; 12446 12447 if (!bnxt_tc_flower_enabled(bp) || 12448 !tc_cls_can_offload_and_chain0(bp->dev, type_data)) 12449 return -EOPNOTSUPP; 12450 12451 switch (type) { 12452 case TC_SETUP_CLSFLOWER: 12453 return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data); 12454 default: 12455 return -EOPNOTSUPP; 12456 } 12457 } 12458 12459 LIST_HEAD(bnxt_block_cb_list); 12460 12461 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type, 12462 void *type_data) 12463 { 12464 struct bnxt *bp = netdev_priv(dev); 12465 12466 switch (type) { 12467 case TC_SETUP_BLOCK: 12468 return flow_block_cb_setup_simple(type_data, 12469 &bnxt_block_cb_list, 12470 bnxt_setup_tc_block_cb, 12471 bp, bp, true); 12472 case TC_SETUP_QDISC_MQPRIO: { 12473 struct tc_mqprio_qopt *mqprio = type_data; 12474 12475 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 12476 12477 return bnxt_setup_mq_tc(dev, mqprio->num_tc); 12478 } 12479 default: 12480 return -EOPNOTSUPP; 12481 } 12482 } 12483 12484 #ifdef CONFIG_RFS_ACCEL 12485 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1, 12486 struct bnxt_ntuple_filter *f2) 12487 { 12488 struct flow_keys *keys1 = &f1->fkeys; 12489 struct flow_keys *keys2 = &f2->fkeys; 12490 12491 if (keys1->basic.n_proto != keys2->basic.n_proto || 12492 keys1->basic.ip_proto != keys2->basic.ip_proto) 12493 return false; 12494 12495 if (keys1->basic.n_proto == htons(ETH_P_IP)) { 12496 if (keys1->addrs.v4addrs.src != keys2->addrs.v4addrs.src || 12497 keys1->addrs.v4addrs.dst != keys2->addrs.v4addrs.dst) 12498 return false; 12499 } else { 12500 if (memcmp(&keys1->addrs.v6addrs.src, &keys2->addrs.v6addrs.src, 12501 sizeof(keys1->addrs.v6addrs.src)) || 12502 memcmp(&keys1->addrs.v6addrs.dst, &keys2->addrs.v6addrs.dst, 12503 sizeof(keys1->addrs.v6addrs.dst))) 12504 return false; 12505 } 12506 12507 if (keys1->ports.ports == keys2->ports.ports && 12508 keys1->control.flags == keys2->control.flags && 12509 ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) && 12510 ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr)) 12511 return true; 12512 12513 return false; 12514 } 12515 12516 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb, 12517 u16 rxq_index, u32 flow_id) 12518 { 12519 struct bnxt *bp = netdev_priv(dev); 12520 struct bnxt_ntuple_filter *fltr, *new_fltr; 12521 struct flow_keys *fkeys; 12522 struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb); 12523 int rc = 0, idx, bit_id, l2_idx = 0; 12524 struct hlist_head *head; 12525 u32 flags; 12526 12527 if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) { 12528 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 12529 int off = 0, j; 12530 12531 netif_addr_lock_bh(dev); 12532 for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) { 12533 if (ether_addr_equal(eth->h_dest, 12534 vnic->uc_list + off)) { 12535 l2_idx = j + 1; 12536 break; 12537 } 12538 } 12539 netif_addr_unlock_bh(dev); 12540 if (!l2_idx) 12541 return -EINVAL; 12542 } 12543 new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC); 12544 if (!new_fltr) 12545 return -ENOMEM; 12546 12547 fkeys = &new_fltr->fkeys; 12548 if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) { 12549 rc = -EPROTONOSUPPORT; 12550 goto err_free; 12551 } 12552 12553 if ((fkeys->basic.n_proto != htons(ETH_P_IP) && 12554 fkeys->basic.n_proto != htons(ETH_P_IPV6)) || 12555 ((fkeys->basic.ip_proto != IPPROTO_TCP) && 12556 (fkeys->basic.ip_proto != IPPROTO_UDP))) { 12557 rc = -EPROTONOSUPPORT; 12558 goto err_free; 12559 } 12560 if (fkeys->basic.n_proto == htons(ETH_P_IPV6) && 12561 bp->hwrm_spec_code < 0x10601) { 12562 rc = -EPROTONOSUPPORT; 12563 goto err_free; 12564 } 12565 flags = fkeys->control.flags; 12566 if (((flags & FLOW_DIS_ENCAPSULATION) && 12567 bp->hwrm_spec_code < 0x10601) || (flags & FLOW_DIS_IS_FRAGMENT)) { 12568 rc = -EPROTONOSUPPORT; 12569 goto err_free; 12570 } 12571 12572 memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN); 12573 memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN); 12574 12575 idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK; 12576 head = &bp->ntp_fltr_hash_tbl[idx]; 12577 rcu_read_lock(); 12578 hlist_for_each_entry_rcu(fltr, head, hash) { 12579 if (bnxt_fltr_match(fltr, new_fltr)) { 12580 rcu_read_unlock(); 12581 rc = 0; 12582 goto err_free; 12583 } 12584 } 12585 rcu_read_unlock(); 12586 12587 spin_lock_bh(&bp->ntp_fltr_lock); 12588 bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap, 12589 BNXT_NTP_FLTR_MAX_FLTR, 0); 12590 if (bit_id < 0) { 12591 spin_unlock_bh(&bp->ntp_fltr_lock); 12592 rc = -ENOMEM; 12593 goto err_free; 12594 } 12595 12596 new_fltr->sw_id = (u16)bit_id; 12597 new_fltr->flow_id = flow_id; 12598 new_fltr->l2_fltr_idx = l2_idx; 12599 new_fltr->rxq = rxq_index; 12600 hlist_add_head_rcu(&new_fltr->hash, head); 12601 bp->ntp_fltr_count++; 12602 spin_unlock_bh(&bp->ntp_fltr_lock); 12603 12604 set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event); 12605 bnxt_queue_sp_work(bp); 12606 12607 return new_fltr->sw_id; 12608 12609 err_free: 12610 kfree(new_fltr); 12611 return rc; 12612 } 12613 12614 static void bnxt_cfg_ntp_filters(struct bnxt *bp) 12615 { 12616 int i; 12617 12618 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) { 12619 struct hlist_head *head; 12620 struct hlist_node *tmp; 12621 struct bnxt_ntuple_filter *fltr; 12622 int rc; 12623 12624 head = &bp->ntp_fltr_hash_tbl[i]; 12625 hlist_for_each_entry_safe(fltr, tmp, head, hash) { 12626 bool del = false; 12627 12628 if (test_bit(BNXT_FLTR_VALID, &fltr->state)) { 12629 if (rps_may_expire_flow(bp->dev, fltr->rxq, 12630 fltr->flow_id, 12631 fltr->sw_id)) { 12632 bnxt_hwrm_cfa_ntuple_filter_free(bp, 12633 fltr); 12634 del = true; 12635 } 12636 } else { 12637 rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp, 12638 fltr); 12639 if (rc) 12640 del = true; 12641 else 12642 set_bit(BNXT_FLTR_VALID, &fltr->state); 12643 } 12644 12645 if (del) { 12646 spin_lock_bh(&bp->ntp_fltr_lock); 12647 hlist_del_rcu(&fltr->hash); 12648 bp->ntp_fltr_count--; 12649 spin_unlock_bh(&bp->ntp_fltr_lock); 12650 synchronize_rcu(); 12651 clear_bit(fltr->sw_id, bp->ntp_fltr_bmap); 12652 kfree(fltr); 12653 } 12654 } 12655 } 12656 if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event)) 12657 netdev_info(bp->dev, "Receive PF driver unload event!\n"); 12658 } 12659 12660 #else 12661 12662 static void bnxt_cfg_ntp_filters(struct bnxt *bp) 12663 { 12664 } 12665 12666 #endif /* CONFIG_RFS_ACCEL */ 12667 12668 static int bnxt_udp_tunnel_sync(struct net_device *netdev, unsigned int table) 12669 { 12670 struct bnxt *bp = netdev_priv(netdev); 12671 struct udp_tunnel_info ti; 12672 unsigned int cmd; 12673 12674 udp_tunnel_nic_get_port(netdev, table, 0, &ti); 12675 if (ti.type == UDP_TUNNEL_TYPE_VXLAN) 12676 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN; 12677 else 12678 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE; 12679 12680 if (ti.port) 12681 return bnxt_hwrm_tunnel_dst_port_alloc(bp, ti.port, cmd); 12682 12683 return bnxt_hwrm_tunnel_dst_port_free(bp, cmd); 12684 } 12685 12686 static const struct udp_tunnel_nic_info bnxt_udp_tunnels = { 12687 .sync_table = bnxt_udp_tunnel_sync, 12688 .flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP | 12689 UDP_TUNNEL_NIC_INFO_OPEN_ONLY, 12690 .tables = { 12691 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN, }, 12692 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, }, 12693 }, 12694 }; 12695 12696 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 12697 struct net_device *dev, u32 filter_mask, 12698 int nlflags) 12699 { 12700 struct bnxt *bp = netdev_priv(dev); 12701 12702 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0, 12703 nlflags, filter_mask, NULL); 12704 } 12705 12706 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 12707 u16 flags, struct netlink_ext_ack *extack) 12708 { 12709 struct bnxt *bp = netdev_priv(dev); 12710 struct nlattr *attr, *br_spec; 12711 int rem, rc = 0; 12712 12713 if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp)) 12714 return -EOPNOTSUPP; 12715 12716 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 12717 if (!br_spec) 12718 return -EINVAL; 12719 12720 nla_for_each_nested(attr, br_spec, rem) { 12721 u16 mode; 12722 12723 if (nla_type(attr) != IFLA_BRIDGE_MODE) 12724 continue; 12725 12726 if (nla_len(attr) < sizeof(mode)) 12727 return -EINVAL; 12728 12729 mode = nla_get_u16(attr); 12730 if (mode == bp->br_mode) 12731 break; 12732 12733 rc = bnxt_hwrm_set_br_mode(bp, mode); 12734 if (!rc) 12735 bp->br_mode = mode; 12736 break; 12737 } 12738 return rc; 12739 } 12740 12741 int bnxt_get_port_parent_id(struct net_device *dev, 12742 struct netdev_phys_item_id *ppid) 12743 { 12744 struct bnxt *bp = netdev_priv(dev); 12745 12746 if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV) 12747 return -EOPNOTSUPP; 12748 12749 /* The PF and it's VF-reps only support the switchdev framework */ 12750 if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_DSN_VALID)) 12751 return -EOPNOTSUPP; 12752 12753 ppid->id_len = sizeof(bp->dsn); 12754 memcpy(ppid->id, bp->dsn, ppid->id_len); 12755 12756 return 0; 12757 } 12758 12759 static struct devlink_port *bnxt_get_devlink_port(struct net_device *dev) 12760 { 12761 struct bnxt *bp = netdev_priv(dev); 12762 12763 return &bp->dl_port; 12764 } 12765 12766 static const struct net_device_ops bnxt_netdev_ops = { 12767 .ndo_open = bnxt_open, 12768 .ndo_start_xmit = bnxt_start_xmit, 12769 .ndo_stop = bnxt_close, 12770 .ndo_get_stats64 = bnxt_get_stats64, 12771 .ndo_set_rx_mode = bnxt_set_rx_mode, 12772 .ndo_eth_ioctl = bnxt_ioctl, 12773 .ndo_validate_addr = eth_validate_addr, 12774 .ndo_set_mac_address = bnxt_change_mac_addr, 12775 .ndo_change_mtu = bnxt_change_mtu, 12776 .ndo_fix_features = bnxt_fix_features, 12777 .ndo_set_features = bnxt_set_features, 12778 .ndo_features_check = bnxt_features_check, 12779 .ndo_tx_timeout = bnxt_tx_timeout, 12780 #ifdef CONFIG_BNXT_SRIOV 12781 .ndo_get_vf_config = bnxt_get_vf_config, 12782 .ndo_set_vf_mac = bnxt_set_vf_mac, 12783 .ndo_set_vf_vlan = bnxt_set_vf_vlan, 12784 .ndo_set_vf_rate = bnxt_set_vf_bw, 12785 .ndo_set_vf_link_state = bnxt_set_vf_link_state, 12786 .ndo_set_vf_spoofchk = bnxt_set_vf_spoofchk, 12787 .ndo_set_vf_trust = bnxt_set_vf_trust, 12788 #endif 12789 .ndo_setup_tc = bnxt_setup_tc, 12790 #ifdef CONFIG_RFS_ACCEL 12791 .ndo_rx_flow_steer = bnxt_rx_flow_steer, 12792 #endif 12793 .ndo_bpf = bnxt_xdp, 12794 .ndo_xdp_xmit = bnxt_xdp_xmit, 12795 .ndo_bridge_getlink = bnxt_bridge_getlink, 12796 .ndo_bridge_setlink = bnxt_bridge_setlink, 12797 .ndo_get_devlink_port = bnxt_get_devlink_port, 12798 }; 12799 12800 static void bnxt_remove_one(struct pci_dev *pdev) 12801 { 12802 struct net_device *dev = pci_get_drvdata(pdev); 12803 struct bnxt *bp = netdev_priv(dev); 12804 12805 if (BNXT_PF(bp)) 12806 bnxt_sriov_disable(bp); 12807 12808 if (BNXT_PF(bp)) 12809 devlink_port_type_clear(&bp->dl_port); 12810 12811 bnxt_ptp_clear(bp); 12812 pci_disable_pcie_error_reporting(pdev); 12813 unregister_netdev(dev); 12814 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 12815 /* Flush any pending tasks */ 12816 cancel_work_sync(&bp->sp_task); 12817 cancel_delayed_work_sync(&bp->fw_reset_task); 12818 bp->sp_event = 0; 12819 12820 bnxt_dl_fw_reporters_destroy(bp, true); 12821 bnxt_dl_unregister(bp); 12822 bnxt_shutdown_tc(bp); 12823 12824 bnxt_clear_int_mode(bp); 12825 bnxt_hwrm_func_drv_unrgtr(bp); 12826 bnxt_free_hwrm_resources(bp); 12827 bnxt_ethtool_free(bp); 12828 bnxt_dcb_free(bp); 12829 kfree(bp->edev); 12830 bp->edev = NULL; 12831 kfree(bp->ptp_cfg); 12832 bp->ptp_cfg = NULL; 12833 kfree(bp->fw_health); 12834 bp->fw_health = NULL; 12835 bnxt_cleanup_pci(bp); 12836 bnxt_free_ctx_mem(bp); 12837 kfree(bp->ctx); 12838 bp->ctx = NULL; 12839 kfree(bp->rss_indir_tbl); 12840 bp->rss_indir_tbl = NULL; 12841 bnxt_free_port_stats(bp); 12842 free_netdev(dev); 12843 } 12844 12845 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt) 12846 { 12847 int rc = 0; 12848 struct bnxt_link_info *link_info = &bp->link_info; 12849 12850 bp->phy_flags = 0; 12851 rc = bnxt_hwrm_phy_qcaps(bp); 12852 if (rc) { 12853 netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n", 12854 rc); 12855 return rc; 12856 } 12857 if (bp->phy_flags & BNXT_PHY_FL_NO_FCS) 12858 bp->dev->priv_flags |= IFF_SUPP_NOFCS; 12859 else 12860 bp->dev->priv_flags &= ~IFF_SUPP_NOFCS; 12861 if (!fw_dflt) 12862 return 0; 12863 12864 mutex_lock(&bp->link_lock); 12865 rc = bnxt_update_link(bp, false); 12866 if (rc) { 12867 mutex_unlock(&bp->link_lock); 12868 netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n", 12869 rc); 12870 return rc; 12871 } 12872 12873 /* Older firmware does not have supported_auto_speeds, so assume 12874 * that all supported speeds can be autonegotiated. 12875 */ 12876 if (link_info->auto_link_speeds && !link_info->support_auto_speeds) 12877 link_info->support_auto_speeds = link_info->support_speeds; 12878 12879 bnxt_init_ethtool_link_settings(bp); 12880 mutex_unlock(&bp->link_lock); 12881 return 0; 12882 } 12883 12884 static int bnxt_get_max_irq(struct pci_dev *pdev) 12885 { 12886 u16 ctrl; 12887 12888 if (!pdev->msix_cap) 12889 return 1; 12890 12891 pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl); 12892 return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1; 12893 } 12894 12895 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, 12896 int *max_cp) 12897 { 12898 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 12899 int max_ring_grps = 0, max_irq; 12900 12901 *max_tx = hw_resc->max_tx_rings; 12902 *max_rx = hw_resc->max_rx_rings; 12903 *max_cp = bnxt_get_max_func_cp_rings_for_en(bp); 12904 max_irq = min_t(int, bnxt_get_max_func_irqs(bp) - 12905 bnxt_get_ulp_msix_num(bp), 12906 hw_resc->max_stat_ctxs - bnxt_get_ulp_stat_ctxs(bp)); 12907 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 12908 *max_cp = min_t(int, *max_cp, max_irq); 12909 max_ring_grps = hw_resc->max_hw_ring_grps; 12910 if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) { 12911 *max_cp -= 1; 12912 *max_rx -= 2; 12913 } 12914 if (bp->flags & BNXT_FLAG_AGG_RINGS) 12915 *max_rx >>= 1; 12916 if (bp->flags & BNXT_FLAG_CHIP_P5) { 12917 bnxt_trim_rings(bp, max_rx, max_tx, *max_cp, false); 12918 /* On P5 chips, max_cp output param should be available NQs */ 12919 *max_cp = max_irq; 12920 } 12921 *max_rx = min_t(int, *max_rx, max_ring_grps); 12922 } 12923 12924 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared) 12925 { 12926 int rx, tx, cp; 12927 12928 _bnxt_get_max_rings(bp, &rx, &tx, &cp); 12929 *max_rx = rx; 12930 *max_tx = tx; 12931 if (!rx || !tx || !cp) 12932 return -ENOMEM; 12933 12934 return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared); 12935 } 12936 12937 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx, 12938 bool shared) 12939 { 12940 int rc; 12941 12942 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared); 12943 if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) { 12944 /* Not enough rings, try disabling agg rings. */ 12945 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 12946 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared); 12947 if (rc) { 12948 /* set BNXT_FLAG_AGG_RINGS back for consistency */ 12949 bp->flags |= BNXT_FLAG_AGG_RINGS; 12950 return rc; 12951 } 12952 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 12953 bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 12954 bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 12955 bnxt_set_ring_params(bp); 12956 } 12957 12958 if (bp->flags & BNXT_FLAG_ROCE_CAP) { 12959 int max_cp, max_stat, max_irq; 12960 12961 /* Reserve minimum resources for RoCE */ 12962 max_cp = bnxt_get_max_func_cp_rings(bp); 12963 max_stat = bnxt_get_max_func_stat_ctxs(bp); 12964 max_irq = bnxt_get_max_func_irqs(bp); 12965 if (max_cp <= BNXT_MIN_ROCE_CP_RINGS || 12966 max_irq <= BNXT_MIN_ROCE_CP_RINGS || 12967 max_stat <= BNXT_MIN_ROCE_STAT_CTXS) 12968 return 0; 12969 12970 max_cp -= BNXT_MIN_ROCE_CP_RINGS; 12971 max_irq -= BNXT_MIN_ROCE_CP_RINGS; 12972 max_stat -= BNXT_MIN_ROCE_STAT_CTXS; 12973 max_cp = min_t(int, max_cp, max_irq); 12974 max_cp = min_t(int, max_cp, max_stat); 12975 rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared); 12976 if (rc) 12977 rc = 0; 12978 } 12979 return rc; 12980 } 12981 12982 /* In initial default shared ring setting, each shared ring must have a 12983 * RX/TX ring pair. 12984 */ 12985 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp) 12986 { 12987 bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings); 12988 bp->rx_nr_rings = bp->cp_nr_rings; 12989 bp->tx_nr_rings_per_tc = bp->cp_nr_rings; 12990 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 12991 } 12992 12993 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh) 12994 { 12995 int dflt_rings, max_rx_rings, max_tx_rings, rc; 12996 12997 if (!bnxt_can_reserve_rings(bp)) 12998 return 0; 12999 13000 if (sh) 13001 bp->flags |= BNXT_FLAG_SHARED_RINGS; 13002 dflt_rings = is_kdump_kernel() ? 1 : netif_get_num_default_rss_queues(); 13003 /* Reduce default rings on multi-port cards so that total default 13004 * rings do not exceed CPU count. 13005 */ 13006 if (bp->port_count > 1) { 13007 int max_rings = 13008 max_t(int, num_online_cpus() / bp->port_count, 1); 13009 13010 dflt_rings = min_t(int, dflt_rings, max_rings); 13011 } 13012 rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh); 13013 if (rc) 13014 return rc; 13015 bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings); 13016 bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings); 13017 if (sh) 13018 bnxt_trim_dflt_sh_rings(bp); 13019 else 13020 bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings; 13021 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 13022 13023 rc = __bnxt_reserve_rings(bp); 13024 if (rc) 13025 netdev_warn(bp->dev, "Unable to reserve tx rings\n"); 13026 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 13027 if (sh) 13028 bnxt_trim_dflt_sh_rings(bp); 13029 13030 /* Rings may have been trimmed, re-reserve the trimmed rings. */ 13031 if (bnxt_need_reserve_rings(bp)) { 13032 rc = __bnxt_reserve_rings(bp); 13033 if (rc) 13034 netdev_warn(bp->dev, "2nd rings reservation failed.\n"); 13035 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 13036 } 13037 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 13038 bp->rx_nr_rings++; 13039 bp->cp_nr_rings++; 13040 } 13041 if (rc) { 13042 bp->tx_nr_rings = 0; 13043 bp->rx_nr_rings = 0; 13044 } 13045 return rc; 13046 } 13047 13048 static int bnxt_init_dflt_ring_mode(struct bnxt *bp) 13049 { 13050 int rc; 13051 13052 if (bp->tx_nr_rings) 13053 return 0; 13054 13055 bnxt_ulp_irq_stop(bp); 13056 bnxt_clear_int_mode(bp); 13057 rc = bnxt_set_dflt_rings(bp, true); 13058 if (rc) { 13059 netdev_err(bp->dev, "Not enough rings available.\n"); 13060 goto init_dflt_ring_err; 13061 } 13062 rc = bnxt_init_int_mode(bp); 13063 if (rc) 13064 goto init_dflt_ring_err; 13065 13066 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 13067 if (bnxt_rfs_supported(bp) && bnxt_rfs_capable(bp)) { 13068 bp->flags |= BNXT_FLAG_RFS; 13069 bp->dev->features |= NETIF_F_NTUPLE; 13070 } 13071 init_dflt_ring_err: 13072 bnxt_ulp_irq_restart(bp, rc); 13073 return rc; 13074 } 13075 13076 int bnxt_restore_pf_fw_resources(struct bnxt *bp) 13077 { 13078 int rc; 13079 13080 ASSERT_RTNL(); 13081 bnxt_hwrm_func_qcaps(bp); 13082 13083 if (netif_running(bp->dev)) 13084 __bnxt_close_nic(bp, true, false); 13085 13086 bnxt_ulp_irq_stop(bp); 13087 bnxt_clear_int_mode(bp); 13088 rc = bnxt_init_int_mode(bp); 13089 bnxt_ulp_irq_restart(bp, rc); 13090 13091 if (netif_running(bp->dev)) { 13092 if (rc) 13093 dev_close(bp->dev); 13094 else 13095 rc = bnxt_open_nic(bp, true, false); 13096 } 13097 13098 return rc; 13099 } 13100 13101 static int bnxt_init_mac_addr(struct bnxt *bp) 13102 { 13103 int rc = 0; 13104 13105 if (BNXT_PF(bp)) { 13106 memcpy(bp->dev->dev_addr, bp->pf.mac_addr, ETH_ALEN); 13107 } else { 13108 #ifdef CONFIG_BNXT_SRIOV 13109 struct bnxt_vf_info *vf = &bp->vf; 13110 bool strict_approval = true; 13111 13112 if (is_valid_ether_addr(vf->mac_addr)) { 13113 /* overwrite netdev dev_addr with admin VF MAC */ 13114 memcpy(bp->dev->dev_addr, vf->mac_addr, ETH_ALEN); 13115 /* Older PF driver or firmware may not approve this 13116 * correctly. 13117 */ 13118 strict_approval = false; 13119 } else { 13120 eth_hw_addr_random(bp->dev); 13121 } 13122 rc = bnxt_approve_mac(bp, bp->dev->dev_addr, strict_approval); 13123 #endif 13124 } 13125 return rc; 13126 } 13127 13128 static void bnxt_vpd_read_info(struct bnxt *bp) 13129 { 13130 struct pci_dev *pdev = bp->pdev; 13131 unsigned int vpd_size, kw_len; 13132 int pos, size; 13133 u8 *vpd_data; 13134 13135 vpd_data = pci_vpd_alloc(pdev, &vpd_size); 13136 if (IS_ERR(vpd_data)) { 13137 pci_warn(pdev, "Unable to read VPD\n"); 13138 return; 13139 } 13140 13141 pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size, 13142 PCI_VPD_RO_KEYWORD_PARTNO, &kw_len); 13143 if (pos < 0) 13144 goto read_sn; 13145 13146 size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1); 13147 memcpy(bp->board_partno, &vpd_data[pos], size); 13148 13149 read_sn: 13150 pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size, 13151 PCI_VPD_RO_KEYWORD_SERIALNO, 13152 &kw_len); 13153 if (pos < 0) 13154 goto exit; 13155 13156 size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1); 13157 memcpy(bp->board_serialno, &vpd_data[pos], size); 13158 exit: 13159 kfree(vpd_data); 13160 } 13161 13162 static int bnxt_pcie_dsn_get(struct bnxt *bp, u8 dsn[]) 13163 { 13164 struct pci_dev *pdev = bp->pdev; 13165 u64 qword; 13166 13167 qword = pci_get_dsn(pdev); 13168 if (!qword) { 13169 netdev_info(bp->dev, "Unable to read adapter's DSN\n"); 13170 return -EOPNOTSUPP; 13171 } 13172 13173 put_unaligned_le64(qword, dsn); 13174 13175 bp->flags |= BNXT_FLAG_DSN_VALID; 13176 return 0; 13177 } 13178 13179 static int bnxt_map_db_bar(struct bnxt *bp) 13180 { 13181 if (!bp->db_size) 13182 return -ENODEV; 13183 bp->bar1 = pci_iomap(bp->pdev, 2, bp->db_size); 13184 if (!bp->bar1) 13185 return -ENOMEM; 13186 return 0; 13187 } 13188 13189 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 13190 { 13191 struct net_device *dev; 13192 struct bnxt *bp; 13193 int rc, max_irqs; 13194 13195 if (pci_is_bridge(pdev)) 13196 return -ENODEV; 13197 13198 /* Clear any pending DMA transactions from crash kernel 13199 * while loading driver in capture kernel. 13200 */ 13201 if (is_kdump_kernel()) { 13202 pci_clear_master(pdev); 13203 pcie_flr(pdev); 13204 } 13205 13206 max_irqs = bnxt_get_max_irq(pdev); 13207 dev = alloc_etherdev_mq(sizeof(*bp), max_irqs); 13208 if (!dev) 13209 return -ENOMEM; 13210 13211 bp = netdev_priv(dev); 13212 bp->msg_enable = BNXT_DEF_MSG_ENABLE; 13213 bnxt_set_max_func_irqs(bp, max_irqs); 13214 13215 if (bnxt_vf_pciid(ent->driver_data)) 13216 bp->flags |= BNXT_FLAG_VF; 13217 13218 if (pdev->msix_cap) 13219 bp->flags |= BNXT_FLAG_MSIX_CAP; 13220 13221 rc = bnxt_init_board(pdev, dev); 13222 if (rc < 0) 13223 goto init_err_free; 13224 13225 dev->netdev_ops = &bnxt_netdev_ops; 13226 dev->watchdog_timeo = BNXT_TX_TIMEOUT; 13227 dev->ethtool_ops = &bnxt_ethtool_ops; 13228 pci_set_drvdata(pdev, dev); 13229 13230 rc = bnxt_alloc_hwrm_resources(bp); 13231 if (rc) 13232 goto init_err_pci_clean; 13233 13234 mutex_init(&bp->hwrm_cmd_lock); 13235 mutex_init(&bp->link_lock); 13236 13237 rc = bnxt_fw_init_one_p1(bp); 13238 if (rc) 13239 goto init_err_pci_clean; 13240 13241 if (BNXT_PF(bp)) 13242 bnxt_vpd_read_info(bp); 13243 13244 if (BNXT_CHIP_P5(bp)) { 13245 bp->flags |= BNXT_FLAG_CHIP_P5; 13246 if (BNXT_CHIP_SR2(bp)) 13247 bp->flags |= BNXT_FLAG_CHIP_SR2; 13248 } 13249 13250 rc = bnxt_alloc_rss_indir_tbl(bp); 13251 if (rc) 13252 goto init_err_pci_clean; 13253 13254 rc = bnxt_fw_init_one_p2(bp); 13255 if (rc) 13256 goto init_err_pci_clean; 13257 13258 rc = bnxt_map_db_bar(bp); 13259 if (rc) { 13260 dev_err(&pdev->dev, "Cannot map doorbell BAR rc = %d, aborting\n", 13261 rc); 13262 goto init_err_pci_clean; 13263 } 13264 13265 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 13266 NETIF_F_TSO | NETIF_F_TSO6 | 13267 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | 13268 NETIF_F_GSO_IPXIP4 | 13269 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM | 13270 NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH | 13271 NETIF_F_RXCSUM | NETIF_F_GRO; 13272 13273 if (BNXT_SUPPORTS_TPA(bp)) 13274 dev->hw_features |= NETIF_F_LRO; 13275 13276 dev->hw_enc_features = 13277 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 13278 NETIF_F_TSO | NETIF_F_TSO6 | 13279 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | 13280 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM | 13281 NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL; 13282 dev->udp_tunnel_nic_info = &bnxt_udp_tunnels; 13283 13284 dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM | 13285 NETIF_F_GSO_GRE_CSUM; 13286 dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA; 13287 if (bp->fw_cap & BNXT_FW_CAP_VLAN_RX_STRIP) 13288 dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_RX; 13289 if (bp->fw_cap & BNXT_FW_CAP_VLAN_TX_INSERT) 13290 dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_TX; 13291 if (BNXT_SUPPORTS_TPA(bp)) 13292 dev->hw_features |= NETIF_F_GRO_HW; 13293 dev->features |= dev->hw_features | NETIF_F_HIGHDMA; 13294 if (dev->features & NETIF_F_GRO_HW) 13295 dev->features &= ~NETIF_F_LRO; 13296 dev->priv_flags |= IFF_UNICAST_FLT; 13297 13298 #ifdef CONFIG_BNXT_SRIOV 13299 init_waitqueue_head(&bp->sriov_cfg_wait); 13300 mutex_init(&bp->sriov_lock); 13301 #endif 13302 if (BNXT_SUPPORTS_TPA(bp)) { 13303 bp->gro_func = bnxt_gro_func_5730x; 13304 if (BNXT_CHIP_P4(bp)) 13305 bp->gro_func = bnxt_gro_func_5731x; 13306 else if (BNXT_CHIP_P5(bp)) 13307 bp->gro_func = bnxt_gro_func_5750x; 13308 } 13309 if (!BNXT_CHIP_P4_PLUS(bp)) 13310 bp->flags |= BNXT_FLAG_DOUBLE_DB; 13311 13312 rc = bnxt_init_mac_addr(bp); 13313 if (rc) { 13314 dev_err(&pdev->dev, "Unable to initialize mac address.\n"); 13315 rc = -EADDRNOTAVAIL; 13316 goto init_err_pci_clean; 13317 } 13318 13319 if (BNXT_PF(bp)) { 13320 /* Read the adapter's DSN to use as the eswitch switch_id */ 13321 rc = bnxt_pcie_dsn_get(bp, bp->dsn); 13322 } 13323 13324 /* MTU range: 60 - FW defined max */ 13325 dev->min_mtu = ETH_ZLEN; 13326 dev->max_mtu = bp->max_mtu; 13327 13328 rc = bnxt_probe_phy(bp, true); 13329 if (rc) 13330 goto init_err_pci_clean; 13331 13332 bnxt_set_rx_skb_mode(bp, false); 13333 bnxt_set_tpa_flags(bp); 13334 bnxt_set_ring_params(bp); 13335 rc = bnxt_set_dflt_rings(bp, true); 13336 if (rc) { 13337 netdev_err(bp->dev, "Not enough rings available.\n"); 13338 rc = -ENOMEM; 13339 goto init_err_pci_clean; 13340 } 13341 13342 bnxt_fw_init_one_p3(bp); 13343 13344 if (dev->hw_features & BNXT_HW_FEATURE_VLAN_ALL_RX) 13345 bp->flags |= BNXT_FLAG_STRIP_VLAN; 13346 13347 rc = bnxt_init_int_mode(bp); 13348 if (rc) 13349 goto init_err_pci_clean; 13350 13351 /* No TC has been set yet and rings may have been trimmed due to 13352 * limited MSIX, so we re-initialize the TX rings per TC. 13353 */ 13354 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 13355 13356 if (BNXT_PF(bp)) { 13357 if (!bnxt_pf_wq) { 13358 bnxt_pf_wq = 13359 create_singlethread_workqueue("bnxt_pf_wq"); 13360 if (!bnxt_pf_wq) { 13361 dev_err(&pdev->dev, "Unable to create workqueue.\n"); 13362 rc = -ENOMEM; 13363 goto init_err_pci_clean; 13364 } 13365 } 13366 rc = bnxt_init_tc(bp); 13367 if (rc) 13368 netdev_err(dev, "Failed to initialize TC flower offload, err = %d.\n", 13369 rc); 13370 } 13371 13372 bnxt_inv_fw_health_reg(bp); 13373 bnxt_dl_register(bp); 13374 13375 rc = register_netdev(dev); 13376 if (rc) 13377 goto init_err_cleanup; 13378 13379 if (BNXT_PF(bp)) 13380 devlink_port_type_eth_set(&bp->dl_port, bp->dev); 13381 bnxt_dl_fw_reporters_create(bp); 13382 13383 netdev_info(dev, "%s found at mem %lx, node addr %pM\n", 13384 board_info[ent->driver_data].name, 13385 (long)pci_resource_start(pdev, 0), dev->dev_addr); 13386 pcie_print_link_status(pdev); 13387 13388 pci_save_state(pdev); 13389 return 0; 13390 13391 init_err_cleanup: 13392 bnxt_dl_unregister(bp); 13393 bnxt_shutdown_tc(bp); 13394 bnxt_clear_int_mode(bp); 13395 13396 init_err_pci_clean: 13397 bnxt_hwrm_func_drv_unrgtr(bp); 13398 bnxt_free_hwrm_resources(bp); 13399 bnxt_ethtool_free(bp); 13400 bnxt_ptp_clear(bp); 13401 kfree(bp->ptp_cfg); 13402 bp->ptp_cfg = NULL; 13403 kfree(bp->fw_health); 13404 bp->fw_health = NULL; 13405 bnxt_cleanup_pci(bp); 13406 bnxt_free_ctx_mem(bp); 13407 kfree(bp->ctx); 13408 bp->ctx = NULL; 13409 kfree(bp->rss_indir_tbl); 13410 bp->rss_indir_tbl = NULL; 13411 13412 init_err_free: 13413 free_netdev(dev); 13414 return rc; 13415 } 13416 13417 static void bnxt_shutdown(struct pci_dev *pdev) 13418 { 13419 struct net_device *dev = pci_get_drvdata(pdev); 13420 struct bnxt *bp; 13421 13422 if (!dev) 13423 return; 13424 13425 rtnl_lock(); 13426 bp = netdev_priv(dev); 13427 if (!bp) 13428 goto shutdown_exit; 13429 13430 if (netif_running(dev)) 13431 dev_close(dev); 13432 13433 bnxt_ulp_shutdown(bp); 13434 bnxt_clear_int_mode(bp); 13435 pci_disable_device(pdev); 13436 13437 if (system_state == SYSTEM_POWER_OFF) { 13438 pci_wake_from_d3(pdev, bp->wol); 13439 pci_set_power_state(pdev, PCI_D3hot); 13440 } 13441 13442 shutdown_exit: 13443 rtnl_unlock(); 13444 } 13445 13446 #ifdef CONFIG_PM_SLEEP 13447 static int bnxt_suspend(struct device *device) 13448 { 13449 struct net_device *dev = dev_get_drvdata(device); 13450 struct bnxt *bp = netdev_priv(dev); 13451 int rc = 0; 13452 13453 rtnl_lock(); 13454 bnxt_ulp_stop(bp); 13455 if (netif_running(dev)) { 13456 netif_device_detach(dev); 13457 rc = bnxt_close(dev); 13458 } 13459 bnxt_hwrm_func_drv_unrgtr(bp); 13460 pci_disable_device(bp->pdev); 13461 bnxt_free_ctx_mem(bp); 13462 kfree(bp->ctx); 13463 bp->ctx = NULL; 13464 rtnl_unlock(); 13465 return rc; 13466 } 13467 13468 static int bnxt_resume(struct device *device) 13469 { 13470 struct net_device *dev = dev_get_drvdata(device); 13471 struct bnxt *bp = netdev_priv(dev); 13472 int rc = 0; 13473 13474 rtnl_lock(); 13475 rc = pci_enable_device(bp->pdev); 13476 if (rc) { 13477 netdev_err(dev, "Cannot re-enable PCI device during resume, err = %d\n", 13478 rc); 13479 goto resume_exit; 13480 } 13481 pci_set_master(bp->pdev); 13482 if (bnxt_hwrm_ver_get(bp)) { 13483 rc = -ENODEV; 13484 goto resume_exit; 13485 } 13486 rc = bnxt_hwrm_func_reset(bp); 13487 if (rc) { 13488 rc = -EBUSY; 13489 goto resume_exit; 13490 } 13491 13492 rc = bnxt_hwrm_func_qcaps(bp); 13493 if (rc) 13494 goto resume_exit; 13495 13496 if (bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false)) { 13497 rc = -ENODEV; 13498 goto resume_exit; 13499 } 13500 13501 bnxt_get_wol_settings(bp); 13502 if (netif_running(dev)) { 13503 rc = bnxt_open(dev); 13504 if (!rc) 13505 netif_device_attach(dev); 13506 } 13507 13508 resume_exit: 13509 bnxt_ulp_start(bp, rc); 13510 if (!rc) 13511 bnxt_reenable_sriov(bp); 13512 rtnl_unlock(); 13513 return rc; 13514 } 13515 13516 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume); 13517 #define BNXT_PM_OPS (&bnxt_pm_ops) 13518 13519 #else 13520 13521 #define BNXT_PM_OPS NULL 13522 13523 #endif /* CONFIG_PM_SLEEP */ 13524 13525 /** 13526 * bnxt_io_error_detected - called when PCI error is detected 13527 * @pdev: Pointer to PCI device 13528 * @state: The current pci connection state 13529 * 13530 * This function is called after a PCI bus error affecting 13531 * this device has been detected. 13532 */ 13533 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev, 13534 pci_channel_state_t state) 13535 { 13536 struct net_device *netdev = pci_get_drvdata(pdev); 13537 struct bnxt *bp = netdev_priv(netdev); 13538 13539 netdev_info(netdev, "PCI I/O error detected\n"); 13540 13541 rtnl_lock(); 13542 netif_device_detach(netdev); 13543 13544 bnxt_ulp_stop(bp); 13545 13546 if (state == pci_channel_io_perm_failure) { 13547 rtnl_unlock(); 13548 return PCI_ERS_RESULT_DISCONNECT; 13549 } 13550 13551 if (state == pci_channel_io_frozen) 13552 set_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, &bp->state); 13553 13554 if (netif_running(netdev)) 13555 bnxt_close(netdev); 13556 13557 if (pci_is_enabled(pdev)) 13558 pci_disable_device(pdev); 13559 bnxt_free_ctx_mem(bp); 13560 kfree(bp->ctx); 13561 bp->ctx = NULL; 13562 rtnl_unlock(); 13563 13564 /* Request a slot slot reset. */ 13565 return PCI_ERS_RESULT_NEED_RESET; 13566 } 13567 13568 /** 13569 * bnxt_io_slot_reset - called after the pci bus has been reset. 13570 * @pdev: Pointer to PCI device 13571 * 13572 * Restart the card from scratch, as if from a cold-boot. 13573 * At this point, the card has exprienced a hard reset, 13574 * followed by fixups by BIOS, and has its config space 13575 * set up identically to what it was at cold boot. 13576 */ 13577 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev) 13578 { 13579 pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT; 13580 struct net_device *netdev = pci_get_drvdata(pdev); 13581 struct bnxt *bp = netdev_priv(netdev); 13582 int err = 0, off; 13583 13584 netdev_info(bp->dev, "PCI Slot Reset\n"); 13585 13586 rtnl_lock(); 13587 13588 if (pci_enable_device(pdev)) { 13589 dev_err(&pdev->dev, 13590 "Cannot re-enable PCI device after reset.\n"); 13591 } else { 13592 pci_set_master(pdev); 13593 /* Upon fatal error, our device internal logic that latches to 13594 * BAR value is getting reset and will restore only upon 13595 * rewritting the BARs. 13596 * 13597 * As pci_restore_state() does not re-write the BARs if the 13598 * value is same as saved value earlier, driver needs to 13599 * write the BARs to 0 to force restore, in case of fatal error. 13600 */ 13601 if (test_and_clear_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, 13602 &bp->state)) { 13603 for (off = PCI_BASE_ADDRESS_0; 13604 off <= PCI_BASE_ADDRESS_5; off += 4) 13605 pci_write_config_dword(bp->pdev, off, 0); 13606 } 13607 pci_restore_state(pdev); 13608 pci_save_state(pdev); 13609 13610 err = bnxt_hwrm_func_reset(bp); 13611 if (!err) 13612 result = PCI_ERS_RESULT_RECOVERED; 13613 } 13614 13615 rtnl_unlock(); 13616 13617 return result; 13618 } 13619 13620 /** 13621 * bnxt_io_resume - called when traffic can start flowing again. 13622 * @pdev: Pointer to PCI device 13623 * 13624 * This callback is called when the error recovery driver tells 13625 * us that its OK to resume normal operation. 13626 */ 13627 static void bnxt_io_resume(struct pci_dev *pdev) 13628 { 13629 struct net_device *netdev = pci_get_drvdata(pdev); 13630 struct bnxt *bp = netdev_priv(netdev); 13631 int err; 13632 13633 netdev_info(bp->dev, "PCI Slot Resume\n"); 13634 rtnl_lock(); 13635 13636 err = bnxt_hwrm_func_qcaps(bp); 13637 if (!err && netif_running(netdev)) 13638 err = bnxt_open(netdev); 13639 13640 bnxt_ulp_start(bp, err); 13641 if (!err) { 13642 bnxt_reenable_sriov(bp); 13643 netif_device_attach(netdev); 13644 } 13645 13646 rtnl_unlock(); 13647 } 13648 13649 static const struct pci_error_handlers bnxt_err_handler = { 13650 .error_detected = bnxt_io_error_detected, 13651 .slot_reset = bnxt_io_slot_reset, 13652 .resume = bnxt_io_resume 13653 }; 13654 13655 static struct pci_driver bnxt_pci_driver = { 13656 .name = DRV_MODULE_NAME, 13657 .id_table = bnxt_pci_tbl, 13658 .probe = bnxt_init_one, 13659 .remove = bnxt_remove_one, 13660 .shutdown = bnxt_shutdown, 13661 .driver.pm = BNXT_PM_OPS, 13662 .err_handler = &bnxt_err_handler, 13663 #if defined(CONFIG_BNXT_SRIOV) 13664 .sriov_configure = bnxt_sriov_configure, 13665 #endif 13666 }; 13667 13668 static int __init bnxt_init(void) 13669 { 13670 bnxt_debug_init(); 13671 return pci_register_driver(&bnxt_pci_driver); 13672 } 13673 13674 static void __exit bnxt_exit(void) 13675 { 13676 pci_unregister_driver(&bnxt_pci_driver); 13677 if (bnxt_pf_wq) 13678 destroy_workqueue(bnxt_pf_wq); 13679 bnxt_debug_exit(); 13680 } 13681 13682 module_init(bnxt_init); 13683 module_exit(bnxt_exit); 13684