xref: /openbmc/linux/drivers/net/ethernet/broadcom/bnxt/bnxt.c (revision bd329f028f1cd51c7623c326147af07c6d832193)
1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2016 Broadcom Corporation
4  * Copyright (c) 2016-2018 Broadcom Limited
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation.
9  */
10 
11 #include <linux/module.h>
12 
13 #include <linux/stringify.h>
14 #include <linux/kernel.h>
15 #include <linux/timer.h>
16 #include <linux/errno.h>
17 #include <linux/ioport.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 #include <linux/interrupt.h>
21 #include <linux/pci.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/skbuff.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/bitops.h>
27 #include <linux/io.h>
28 #include <linux/irq.h>
29 #include <linux/delay.h>
30 #include <asm/byteorder.h>
31 #include <asm/page.h>
32 #include <linux/time.h>
33 #include <linux/mii.h>
34 #include <linux/if.h>
35 #include <linux/if_vlan.h>
36 #include <linux/if_bridge.h>
37 #include <linux/rtc.h>
38 #include <linux/bpf.h>
39 #include <net/ip.h>
40 #include <net/tcp.h>
41 #include <net/udp.h>
42 #include <net/checksum.h>
43 #include <net/ip6_checksum.h>
44 #include <net/udp_tunnel.h>
45 #include <linux/workqueue.h>
46 #include <linux/prefetch.h>
47 #include <linux/cache.h>
48 #include <linux/log2.h>
49 #include <linux/aer.h>
50 #include <linux/bitmap.h>
51 #include <linux/cpu_rmap.h>
52 #include <linux/cpumask.h>
53 #include <net/pkt_cls.h>
54 
55 #include "bnxt_hsi.h"
56 #include "bnxt.h"
57 #include "bnxt_ulp.h"
58 #include "bnxt_sriov.h"
59 #include "bnxt_ethtool.h"
60 #include "bnxt_dcb.h"
61 #include "bnxt_xdp.h"
62 #include "bnxt_vfr.h"
63 #include "bnxt_tc.h"
64 #include "bnxt_devlink.h"
65 
66 #define BNXT_TX_TIMEOUT		(5 * HZ)
67 
68 static const char version[] =
69 	"Broadcom NetXtreme-C/E driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION "\n";
70 
71 MODULE_LICENSE("GPL");
72 MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
73 MODULE_VERSION(DRV_MODULE_VERSION);
74 
75 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
76 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
77 #define BNXT_RX_COPY_THRESH 256
78 
79 #define BNXT_TX_PUSH_THRESH 164
80 
81 enum board_idx {
82 	BCM57301,
83 	BCM57302,
84 	BCM57304,
85 	BCM57417_NPAR,
86 	BCM58700,
87 	BCM57311,
88 	BCM57312,
89 	BCM57402,
90 	BCM57404,
91 	BCM57406,
92 	BCM57402_NPAR,
93 	BCM57407,
94 	BCM57412,
95 	BCM57414,
96 	BCM57416,
97 	BCM57417,
98 	BCM57412_NPAR,
99 	BCM57314,
100 	BCM57417_SFP,
101 	BCM57416_SFP,
102 	BCM57404_NPAR,
103 	BCM57406_NPAR,
104 	BCM57407_SFP,
105 	BCM57407_NPAR,
106 	BCM57414_NPAR,
107 	BCM57416_NPAR,
108 	BCM57452,
109 	BCM57454,
110 	BCM5745x_NPAR,
111 	BCM58802,
112 	BCM58804,
113 	BCM58808,
114 	NETXTREME_E_VF,
115 	NETXTREME_C_VF,
116 	NETXTREME_S_VF,
117 };
118 
119 /* indexed by enum above */
120 static const struct {
121 	char *name;
122 } board_info[] = {
123 	[BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" },
124 	[BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" },
125 	[BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
126 	[BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" },
127 	[BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" },
128 	[BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" },
129 	[BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" },
130 	[BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" },
131 	[BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" },
132 	[BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" },
133 	[BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" },
134 	[BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" },
135 	[BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" },
136 	[BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" },
137 	[BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" },
138 	[BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" },
139 	[BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" },
140 	[BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
141 	[BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" },
142 	[BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" },
143 	[BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" },
144 	[BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" },
145 	[BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" },
146 	[BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" },
147 	[BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" },
148 	[BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" },
149 	[BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" },
150 	[BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
151 	[BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" },
152 	[BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" },
153 	[BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
154 	[BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
155 	[NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" },
156 	[NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" },
157 	[NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" },
158 };
159 
160 static const struct pci_device_id bnxt_pci_tbl[] = {
161 	{ PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR },
162 	{ PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR },
163 	{ PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 },
164 	{ PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR },
165 	{ PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
166 	{ PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
167 	{ PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
168 	{ PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR },
169 	{ PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 },
170 	{ PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 },
171 	{ PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 },
172 	{ PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
173 	{ PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
174 	{ PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
175 	{ PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR },
176 	{ PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 },
177 	{ PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 },
178 	{ PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 },
179 	{ PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 },
180 	{ PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 },
181 	{ PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR },
182 	{ PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 },
183 	{ PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP },
184 	{ PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP },
185 	{ PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR },
186 	{ PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR },
187 	{ PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP },
188 	{ PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR },
189 	{ PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR },
190 	{ PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR },
191 	{ PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR },
192 	{ PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR },
193 	{ PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR },
194 	{ PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 },
195 	{ PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 },
196 	{ PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 },
197 	{ PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 },
198 #ifdef CONFIG_BNXT_SRIOV
199 	{ PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF },
200 	{ PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF },
201 	{ PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF },
202 	{ PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF },
203 	{ PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF },
204 	{ PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF },
205 	{ PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF },
206 	{ PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF },
207 	{ PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF },
208 #endif
209 	{ 0 }
210 };
211 
212 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
213 
214 static const u16 bnxt_vf_req_snif[] = {
215 	HWRM_FUNC_CFG,
216 	HWRM_FUNC_VF_CFG,
217 	HWRM_PORT_PHY_QCFG,
218 	HWRM_CFA_L2_FILTER_ALLOC,
219 };
220 
221 static const u16 bnxt_async_events_arr[] = {
222 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE,
223 	ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD,
224 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED,
225 	ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE,
226 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE,
227 };
228 
229 static struct workqueue_struct *bnxt_pf_wq;
230 
231 static bool bnxt_vf_pciid(enum board_idx idx)
232 {
233 	return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF ||
234 		idx == NETXTREME_S_VF);
235 }
236 
237 #define DB_CP_REARM_FLAGS	(DB_KEY_CP | DB_IDX_VALID)
238 #define DB_CP_FLAGS		(DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
239 #define DB_CP_IRQ_DIS_FLAGS	(DB_KEY_CP | DB_IRQ_DIS)
240 
241 #define BNXT_CP_DB_REARM(db, raw_cons)					\
242 		writel(DB_CP_REARM_FLAGS | RING_CMP(raw_cons), db)
243 
244 #define BNXT_CP_DB(db, raw_cons)					\
245 		writel(DB_CP_FLAGS | RING_CMP(raw_cons), db)
246 
247 #define BNXT_CP_DB_IRQ_DIS(db)						\
248 		writel(DB_CP_IRQ_DIS_FLAGS, db)
249 
250 const u16 bnxt_lhint_arr[] = {
251 	TX_BD_FLAGS_LHINT_512_AND_SMALLER,
252 	TX_BD_FLAGS_LHINT_512_TO_1023,
253 	TX_BD_FLAGS_LHINT_1024_TO_2047,
254 	TX_BD_FLAGS_LHINT_1024_TO_2047,
255 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
256 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
257 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
258 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
259 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
260 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
261 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
262 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
263 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
264 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
265 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
266 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
267 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
268 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
269 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
270 };
271 
272 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb)
273 {
274 	struct metadata_dst *md_dst = skb_metadata_dst(skb);
275 
276 	if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX)
277 		return 0;
278 
279 	return md_dst->u.port_info.port_id;
280 }
281 
282 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
283 {
284 	struct bnxt *bp = netdev_priv(dev);
285 	struct tx_bd *txbd;
286 	struct tx_bd_ext *txbd1;
287 	struct netdev_queue *txq;
288 	int i;
289 	dma_addr_t mapping;
290 	unsigned int length, pad = 0;
291 	u32 len, free_size, vlan_tag_flags, cfa_action, flags;
292 	u16 prod, last_frag;
293 	struct pci_dev *pdev = bp->pdev;
294 	struct bnxt_tx_ring_info *txr;
295 	struct bnxt_sw_tx_bd *tx_buf;
296 
297 	i = skb_get_queue_mapping(skb);
298 	if (unlikely(i >= bp->tx_nr_rings)) {
299 		dev_kfree_skb_any(skb);
300 		return NETDEV_TX_OK;
301 	}
302 
303 	txq = netdev_get_tx_queue(dev, i);
304 	txr = &bp->tx_ring[bp->tx_ring_map[i]];
305 	prod = txr->tx_prod;
306 
307 	free_size = bnxt_tx_avail(bp, txr);
308 	if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
309 		netif_tx_stop_queue(txq);
310 		return NETDEV_TX_BUSY;
311 	}
312 
313 	length = skb->len;
314 	len = skb_headlen(skb);
315 	last_frag = skb_shinfo(skb)->nr_frags;
316 
317 	txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
318 
319 	txbd->tx_bd_opaque = prod;
320 
321 	tx_buf = &txr->tx_buf_ring[prod];
322 	tx_buf->skb = skb;
323 	tx_buf->nr_frags = last_frag;
324 
325 	vlan_tag_flags = 0;
326 	cfa_action = bnxt_xmit_get_cfa_action(skb);
327 	if (skb_vlan_tag_present(skb)) {
328 		vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
329 				 skb_vlan_tag_get(skb);
330 		/* Currently supports 8021Q, 8021AD vlan offloads
331 		 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
332 		 */
333 		if (skb->vlan_proto == htons(ETH_P_8021Q))
334 			vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
335 	}
336 
337 	if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh) {
338 		struct tx_push_buffer *tx_push_buf = txr->tx_push;
339 		struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
340 		struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
341 		void *pdata = tx_push_buf->data;
342 		u64 *end;
343 		int j, push_len;
344 
345 		/* Set COAL_NOW to be ready quickly for the next push */
346 		tx_push->tx_bd_len_flags_type =
347 			cpu_to_le32((length << TX_BD_LEN_SHIFT) |
348 					TX_BD_TYPE_LONG_TX_BD |
349 					TX_BD_FLAGS_LHINT_512_AND_SMALLER |
350 					TX_BD_FLAGS_COAL_NOW |
351 					TX_BD_FLAGS_PACKET_END |
352 					(2 << TX_BD_FLAGS_BD_CNT_SHIFT));
353 
354 		if (skb->ip_summed == CHECKSUM_PARTIAL)
355 			tx_push1->tx_bd_hsize_lflags =
356 					cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
357 		else
358 			tx_push1->tx_bd_hsize_lflags = 0;
359 
360 		tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
361 		tx_push1->tx_bd_cfa_action =
362 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
363 
364 		end = pdata + length;
365 		end = PTR_ALIGN(end, 8) - 1;
366 		*end = 0;
367 
368 		skb_copy_from_linear_data(skb, pdata, len);
369 		pdata += len;
370 		for (j = 0; j < last_frag; j++) {
371 			skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
372 			void *fptr;
373 
374 			fptr = skb_frag_address_safe(frag);
375 			if (!fptr)
376 				goto normal_tx;
377 
378 			memcpy(pdata, fptr, skb_frag_size(frag));
379 			pdata += skb_frag_size(frag);
380 		}
381 
382 		txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
383 		txbd->tx_bd_haddr = txr->data_mapping;
384 		prod = NEXT_TX(prod);
385 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
386 		memcpy(txbd, tx_push1, sizeof(*txbd));
387 		prod = NEXT_TX(prod);
388 		tx_push->doorbell =
389 			cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod);
390 		txr->tx_prod = prod;
391 
392 		tx_buf->is_push = 1;
393 		netdev_tx_sent_queue(txq, skb->len);
394 		wmb();	/* Sync is_push and byte queue before pushing data */
395 
396 		push_len = (length + sizeof(*tx_push) + 7) / 8;
397 		if (push_len > 16) {
398 			__iowrite64_copy(txr->tx_doorbell, tx_push_buf, 16);
399 			__iowrite32_copy(txr->tx_doorbell + 4, tx_push_buf + 1,
400 					 (push_len - 16) << 1);
401 		} else {
402 			__iowrite64_copy(txr->tx_doorbell, tx_push_buf,
403 					 push_len);
404 		}
405 
406 		goto tx_done;
407 	}
408 
409 normal_tx:
410 	if (length < BNXT_MIN_PKT_SIZE) {
411 		pad = BNXT_MIN_PKT_SIZE - length;
412 		if (skb_pad(skb, pad)) {
413 			/* SKB already freed. */
414 			tx_buf->skb = NULL;
415 			return NETDEV_TX_OK;
416 		}
417 		length = BNXT_MIN_PKT_SIZE;
418 	}
419 
420 	mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
421 
422 	if (unlikely(dma_mapping_error(&pdev->dev, mapping))) {
423 		dev_kfree_skb_any(skb);
424 		tx_buf->skb = NULL;
425 		return NETDEV_TX_OK;
426 	}
427 
428 	dma_unmap_addr_set(tx_buf, mapping, mapping);
429 	flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
430 		((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
431 
432 	txbd->tx_bd_haddr = cpu_to_le64(mapping);
433 
434 	prod = NEXT_TX(prod);
435 	txbd1 = (struct tx_bd_ext *)
436 		&txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
437 
438 	txbd1->tx_bd_hsize_lflags = 0;
439 	if (skb_is_gso(skb)) {
440 		u32 hdr_len;
441 
442 		if (skb->encapsulation)
443 			hdr_len = skb_inner_network_offset(skb) +
444 				skb_inner_network_header_len(skb) +
445 				inner_tcp_hdrlen(skb);
446 		else
447 			hdr_len = skb_transport_offset(skb) +
448 				tcp_hdrlen(skb);
449 
450 		txbd1->tx_bd_hsize_lflags = cpu_to_le32(TX_BD_FLAGS_LSO |
451 					TX_BD_FLAGS_T_IPID |
452 					(hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
453 		length = skb_shinfo(skb)->gso_size;
454 		txbd1->tx_bd_mss = cpu_to_le32(length);
455 		length += hdr_len;
456 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
457 		txbd1->tx_bd_hsize_lflags =
458 			cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
459 		txbd1->tx_bd_mss = 0;
460 	}
461 
462 	length >>= 9;
463 	flags |= bnxt_lhint_arr[length];
464 	txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
465 
466 	txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
467 	txbd1->tx_bd_cfa_action =
468 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
469 	for (i = 0; i < last_frag; i++) {
470 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
471 
472 		prod = NEXT_TX(prod);
473 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
474 
475 		len = skb_frag_size(frag);
476 		mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
477 					   DMA_TO_DEVICE);
478 
479 		if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
480 			goto tx_dma_error;
481 
482 		tx_buf = &txr->tx_buf_ring[prod];
483 		dma_unmap_addr_set(tx_buf, mapping, mapping);
484 
485 		txbd->tx_bd_haddr = cpu_to_le64(mapping);
486 
487 		flags = len << TX_BD_LEN_SHIFT;
488 		txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
489 	}
490 
491 	flags &= ~TX_BD_LEN;
492 	txbd->tx_bd_len_flags_type =
493 		cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
494 			    TX_BD_FLAGS_PACKET_END);
495 
496 	netdev_tx_sent_queue(txq, skb->len);
497 
498 	/* Sync BD data before updating doorbell */
499 	wmb();
500 
501 	prod = NEXT_TX(prod);
502 	txr->tx_prod = prod;
503 
504 	if (!skb->xmit_more || netif_xmit_stopped(txq))
505 		bnxt_db_write(bp, txr->tx_doorbell, DB_KEY_TX | prod);
506 
507 tx_done:
508 
509 	mmiowb();
510 
511 	if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
512 		if (skb->xmit_more && !tx_buf->is_push)
513 			bnxt_db_write(bp, txr->tx_doorbell, DB_KEY_TX | prod);
514 
515 		netif_tx_stop_queue(txq);
516 
517 		/* netif_tx_stop_queue() must be done before checking
518 		 * tx index in bnxt_tx_avail() below, because in
519 		 * bnxt_tx_int(), we update tx index before checking for
520 		 * netif_tx_queue_stopped().
521 		 */
522 		smp_mb();
523 		if (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)
524 			netif_tx_wake_queue(txq);
525 	}
526 	return NETDEV_TX_OK;
527 
528 tx_dma_error:
529 	last_frag = i;
530 
531 	/* start back at beginning and unmap skb */
532 	prod = txr->tx_prod;
533 	tx_buf = &txr->tx_buf_ring[prod];
534 	tx_buf->skb = NULL;
535 	dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
536 			 skb_headlen(skb), PCI_DMA_TODEVICE);
537 	prod = NEXT_TX(prod);
538 
539 	/* unmap remaining mapped pages */
540 	for (i = 0; i < last_frag; i++) {
541 		prod = NEXT_TX(prod);
542 		tx_buf = &txr->tx_buf_ring[prod];
543 		dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
544 			       skb_frag_size(&skb_shinfo(skb)->frags[i]),
545 			       PCI_DMA_TODEVICE);
546 	}
547 
548 	dev_kfree_skb_any(skb);
549 	return NETDEV_TX_OK;
550 }
551 
552 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts)
553 {
554 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
555 	struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index);
556 	u16 cons = txr->tx_cons;
557 	struct pci_dev *pdev = bp->pdev;
558 	int i;
559 	unsigned int tx_bytes = 0;
560 
561 	for (i = 0; i < nr_pkts; i++) {
562 		struct bnxt_sw_tx_bd *tx_buf;
563 		struct sk_buff *skb;
564 		int j, last;
565 
566 		tx_buf = &txr->tx_buf_ring[cons];
567 		cons = NEXT_TX(cons);
568 		skb = tx_buf->skb;
569 		tx_buf->skb = NULL;
570 
571 		if (tx_buf->is_push) {
572 			tx_buf->is_push = 0;
573 			goto next_tx_int;
574 		}
575 
576 		dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
577 				 skb_headlen(skb), PCI_DMA_TODEVICE);
578 		last = tx_buf->nr_frags;
579 
580 		for (j = 0; j < last; j++) {
581 			cons = NEXT_TX(cons);
582 			tx_buf = &txr->tx_buf_ring[cons];
583 			dma_unmap_page(
584 				&pdev->dev,
585 				dma_unmap_addr(tx_buf, mapping),
586 				skb_frag_size(&skb_shinfo(skb)->frags[j]),
587 				PCI_DMA_TODEVICE);
588 		}
589 
590 next_tx_int:
591 		cons = NEXT_TX(cons);
592 
593 		tx_bytes += skb->len;
594 		dev_kfree_skb_any(skb);
595 	}
596 
597 	netdev_tx_completed_queue(txq, nr_pkts, tx_bytes);
598 	txr->tx_cons = cons;
599 
600 	/* Need to make the tx_cons update visible to bnxt_start_xmit()
601 	 * before checking for netif_tx_queue_stopped().  Without the
602 	 * memory barrier, there is a small possibility that bnxt_start_xmit()
603 	 * will miss it and cause the queue to be stopped forever.
604 	 */
605 	smp_mb();
606 
607 	if (unlikely(netif_tx_queue_stopped(txq)) &&
608 	    (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
609 		__netif_tx_lock(txq, smp_processor_id());
610 		if (netif_tx_queue_stopped(txq) &&
611 		    bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh &&
612 		    txr->dev_state != BNXT_DEV_STATE_CLOSING)
613 			netif_tx_wake_queue(txq);
614 		__netif_tx_unlock(txq);
615 	}
616 }
617 
618 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping,
619 					 gfp_t gfp)
620 {
621 	struct device *dev = &bp->pdev->dev;
622 	struct page *page;
623 
624 	page = alloc_page(gfp);
625 	if (!page)
626 		return NULL;
627 
628 	*mapping = dma_map_page_attrs(dev, page, 0, PAGE_SIZE, bp->rx_dir,
629 				      DMA_ATTR_WEAK_ORDERING);
630 	if (dma_mapping_error(dev, *mapping)) {
631 		__free_page(page);
632 		return NULL;
633 	}
634 	*mapping += bp->rx_dma_offset;
635 	return page;
636 }
637 
638 static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping,
639 				       gfp_t gfp)
640 {
641 	u8 *data;
642 	struct pci_dev *pdev = bp->pdev;
643 
644 	data = kmalloc(bp->rx_buf_size, gfp);
645 	if (!data)
646 		return NULL;
647 
648 	*mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset,
649 					bp->rx_buf_use_size, bp->rx_dir,
650 					DMA_ATTR_WEAK_ORDERING);
651 
652 	if (dma_mapping_error(&pdev->dev, *mapping)) {
653 		kfree(data);
654 		data = NULL;
655 	}
656 	return data;
657 }
658 
659 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
660 		       u16 prod, gfp_t gfp)
661 {
662 	struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
663 	struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
664 	dma_addr_t mapping;
665 
666 	if (BNXT_RX_PAGE_MODE(bp)) {
667 		struct page *page = __bnxt_alloc_rx_page(bp, &mapping, gfp);
668 
669 		if (!page)
670 			return -ENOMEM;
671 
672 		rx_buf->data = page;
673 		rx_buf->data_ptr = page_address(page) + bp->rx_offset;
674 	} else {
675 		u8 *data = __bnxt_alloc_rx_data(bp, &mapping, gfp);
676 
677 		if (!data)
678 			return -ENOMEM;
679 
680 		rx_buf->data = data;
681 		rx_buf->data_ptr = data + bp->rx_offset;
682 	}
683 	rx_buf->mapping = mapping;
684 
685 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
686 	return 0;
687 }
688 
689 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data)
690 {
691 	u16 prod = rxr->rx_prod;
692 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
693 	struct rx_bd *cons_bd, *prod_bd;
694 
695 	prod_rx_buf = &rxr->rx_buf_ring[prod];
696 	cons_rx_buf = &rxr->rx_buf_ring[cons];
697 
698 	prod_rx_buf->data = data;
699 	prod_rx_buf->data_ptr = cons_rx_buf->data_ptr;
700 
701 	prod_rx_buf->mapping = cons_rx_buf->mapping;
702 
703 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
704 	cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
705 
706 	prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
707 }
708 
709 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
710 {
711 	u16 next, max = rxr->rx_agg_bmap_size;
712 
713 	next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
714 	if (next >= max)
715 		next = find_first_zero_bit(rxr->rx_agg_bmap, max);
716 	return next;
717 }
718 
719 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
720 				     struct bnxt_rx_ring_info *rxr,
721 				     u16 prod, gfp_t gfp)
722 {
723 	struct rx_bd *rxbd =
724 		&rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
725 	struct bnxt_sw_rx_agg_bd *rx_agg_buf;
726 	struct pci_dev *pdev = bp->pdev;
727 	struct page *page;
728 	dma_addr_t mapping;
729 	u16 sw_prod = rxr->rx_sw_agg_prod;
730 	unsigned int offset = 0;
731 
732 	if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) {
733 		page = rxr->rx_page;
734 		if (!page) {
735 			page = alloc_page(gfp);
736 			if (!page)
737 				return -ENOMEM;
738 			rxr->rx_page = page;
739 			rxr->rx_page_offset = 0;
740 		}
741 		offset = rxr->rx_page_offset;
742 		rxr->rx_page_offset += BNXT_RX_PAGE_SIZE;
743 		if (rxr->rx_page_offset == PAGE_SIZE)
744 			rxr->rx_page = NULL;
745 		else
746 			get_page(page);
747 	} else {
748 		page = alloc_page(gfp);
749 		if (!page)
750 			return -ENOMEM;
751 	}
752 
753 	mapping = dma_map_page_attrs(&pdev->dev, page, offset,
754 				     BNXT_RX_PAGE_SIZE, PCI_DMA_FROMDEVICE,
755 				     DMA_ATTR_WEAK_ORDERING);
756 	if (dma_mapping_error(&pdev->dev, mapping)) {
757 		__free_page(page);
758 		return -EIO;
759 	}
760 
761 	if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
762 		sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
763 
764 	__set_bit(sw_prod, rxr->rx_agg_bmap);
765 	rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
766 	rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod);
767 
768 	rx_agg_buf->page = page;
769 	rx_agg_buf->offset = offset;
770 	rx_agg_buf->mapping = mapping;
771 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
772 	rxbd->rx_bd_opaque = sw_prod;
773 	return 0;
774 }
775 
776 static void bnxt_reuse_rx_agg_bufs(struct bnxt_napi *bnapi, u16 cp_cons,
777 				   u32 agg_bufs)
778 {
779 	struct bnxt *bp = bnapi->bp;
780 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
781 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
782 	u16 prod = rxr->rx_agg_prod;
783 	u16 sw_prod = rxr->rx_sw_agg_prod;
784 	u32 i;
785 
786 	for (i = 0; i < agg_bufs; i++) {
787 		u16 cons;
788 		struct rx_agg_cmp *agg;
789 		struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
790 		struct rx_bd *prod_bd;
791 		struct page *page;
792 
793 		agg = (struct rx_agg_cmp *)
794 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
795 		cons = agg->rx_agg_cmp_opaque;
796 		__clear_bit(cons, rxr->rx_agg_bmap);
797 
798 		if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
799 			sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
800 
801 		__set_bit(sw_prod, rxr->rx_agg_bmap);
802 		prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
803 		cons_rx_buf = &rxr->rx_agg_ring[cons];
804 
805 		/* It is possible for sw_prod to be equal to cons, so
806 		 * set cons_rx_buf->page to NULL first.
807 		 */
808 		page = cons_rx_buf->page;
809 		cons_rx_buf->page = NULL;
810 		prod_rx_buf->page = page;
811 		prod_rx_buf->offset = cons_rx_buf->offset;
812 
813 		prod_rx_buf->mapping = cons_rx_buf->mapping;
814 
815 		prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
816 
817 		prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
818 		prod_bd->rx_bd_opaque = sw_prod;
819 
820 		prod = NEXT_RX_AGG(prod);
821 		sw_prod = NEXT_RX_AGG(sw_prod);
822 		cp_cons = NEXT_CMP(cp_cons);
823 	}
824 	rxr->rx_agg_prod = prod;
825 	rxr->rx_sw_agg_prod = sw_prod;
826 }
827 
828 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp,
829 					struct bnxt_rx_ring_info *rxr,
830 					u16 cons, void *data, u8 *data_ptr,
831 					dma_addr_t dma_addr,
832 					unsigned int offset_and_len)
833 {
834 	unsigned int payload = offset_and_len >> 16;
835 	unsigned int len = offset_and_len & 0xffff;
836 	struct skb_frag_struct *frag;
837 	struct page *page = data;
838 	u16 prod = rxr->rx_prod;
839 	struct sk_buff *skb;
840 	int off, err;
841 
842 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
843 	if (unlikely(err)) {
844 		bnxt_reuse_rx_data(rxr, cons, data);
845 		return NULL;
846 	}
847 	dma_addr -= bp->rx_dma_offset;
848 	dma_unmap_page_attrs(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir,
849 			     DMA_ATTR_WEAK_ORDERING);
850 
851 	if (unlikely(!payload))
852 		payload = eth_get_headlen(data_ptr, len);
853 
854 	skb = napi_alloc_skb(&rxr->bnapi->napi, payload);
855 	if (!skb) {
856 		__free_page(page);
857 		return NULL;
858 	}
859 
860 	off = (void *)data_ptr - page_address(page);
861 	skb_add_rx_frag(skb, 0, page, off, len, PAGE_SIZE);
862 	memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN,
863 	       payload + NET_IP_ALIGN);
864 
865 	frag = &skb_shinfo(skb)->frags[0];
866 	skb_frag_size_sub(frag, payload);
867 	frag->page_offset += payload;
868 	skb->data_len -= payload;
869 	skb->tail += payload;
870 
871 	return skb;
872 }
873 
874 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
875 				   struct bnxt_rx_ring_info *rxr, u16 cons,
876 				   void *data, u8 *data_ptr,
877 				   dma_addr_t dma_addr,
878 				   unsigned int offset_and_len)
879 {
880 	u16 prod = rxr->rx_prod;
881 	struct sk_buff *skb;
882 	int err;
883 
884 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
885 	if (unlikely(err)) {
886 		bnxt_reuse_rx_data(rxr, cons, data);
887 		return NULL;
888 	}
889 
890 	skb = build_skb(data, 0);
891 	dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
892 			       bp->rx_dir, DMA_ATTR_WEAK_ORDERING);
893 	if (!skb) {
894 		kfree(data);
895 		return NULL;
896 	}
897 
898 	skb_reserve(skb, bp->rx_offset);
899 	skb_put(skb, offset_and_len & 0xffff);
900 	return skb;
901 }
902 
903 static struct sk_buff *bnxt_rx_pages(struct bnxt *bp, struct bnxt_napi *bnapi,
904 				     struct sk_buff *skb, u16 cp_cons,
905 				     u32 agg_bufs)
906 {
907 	struct pci_dev *pdev = bp->pdev;
908 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
909 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
910 	u16 prod = rxr->rx_agg_prod;
911 	u32 i;
912 
913 	for (i = 0; i < agg_bufs; i++) {
914 		u16 cons, frag_len;
915 		struct rx_agg_cmp *agg;
916 		struct bnxt_sw_rx_agg_bd *cons_rx_buf;
917 		struct page *page;
918 		dma_addr_t mapping;
919 
920 		agg = (struct rx_agg_cmp *)
921 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
922 		cons = agg->rx_agg_cmp_opaque;
923 		frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
924 			    RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
925 
926 		cons_rx_buf = &rxr->rx_agg_ring[cons];
927 		skb_fill_page_desc(skb, i, cons_rx_buf->page,
928 				   cons_rx_buf->offset, frag_len);
929 		__clear_bit(cons, rxr->rx_agg_bmap);
930 
931 		/* It is possible for bnxt_alloc_rx_page() to allocate
932 		 * a sw_prod index that equals the cons index, so we
933 		 * need to clear the cons entry now.
934 		 */
935 		mapping = cons_rx_buf->mapping;
936 		page = cons_rx_buf->page;
937 		cons_rx_buf->page = NULL;
938 
939 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
940 			struct skb_shared_info *shinfo;
941 			unsigned int nr_frags;
942 
943 			shinfo = skb_shinfo(skb);
944 			nr_frags = --shinfo->nr_frags;
945 			__skb_frag_set_page(&shinfo->frags[nr_frags], NULL);
946 
947 			dev_kfree_skb(skb);
948 
949 			cons_rx_buf->page = page;
950 
951 			/* Update prod since possibly some pages have been
952 			 * allocated already.
953 			 */
954 			rxr->rx_agg_prod = prod;
955 			bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs - i);
956 			return NULL;
957 		}
958 
959 		dma_unmap_page_attrs(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE,
960 				     PCI_DMA_FROMDEVICE,
961 				     DMA_ATTR_WEAK_ORDERING);
962 
963 		skb->data_len += frag_len;
964 		skb->len += frag_len;
965 		skb->truesize += PAGE_SIZE;
966 
967 		prod = NEXT_RX_AGG(prod);
968 		cp_cons = NEXT_CMP(cp_cons);
969 	}
970 	rxr->rx_agg_prod = prod;
971 	return skb;
972 }
973 
974 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
975 			       u8 agg_bufs, u32 *raw_cons)
976 {
977 	u16 last;
978 	struct rx_agg_cmp *agg;
979 
980 	*raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
981 	last = RING_CMP(*raw_cons);
982 	agg = (struct rx_agg_cmp *)
983 		&cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
984 	return RX_AGG_CMP_VALID(agg, *raw_cons);
985 }
986 
987 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
988 					    unsigned int len,
989 					    dma_addr_t mapping)
990 {
991 	struct bnxt *bp = bnapi->bp;
992 	struct pci_dev *pdev = bp->pdev;
993 	struct sk_buff *skb;
994 
995 	skb = napi_alloc_skb(&bnapi->napi, len);
996 	if (!skb)
997 		return NULL;
998 
999 	dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh,
1000 				bp->rx_dir);
1001 
1002 	memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN,
1003 	       len + NET_IP_ALIGN);
1004 
1005 	dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh,
1006 				   bp->rx_dir);
1007 
1008 	skb_put(skb, len);
1009 	return skb;
1010 }
1011 
1012 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_napi *bnapi,
1013 			   u32 *raw_cons, void *cmp)
1014 {
1015 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1016 	struct rx_cmp *rxcmp = cmp;
1017 	u32 tmp_raw_cons = *raw_cons;
1018 	u8 cmp_type, agg_bufs = 0;
1019 
1020 	cmp_type = RX_CMP_TYPE(rxcmp);
1021 
1022 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1023 		agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) &
1024 			    RX_CMP_AGG_BUFS) >>
1025 			   RX_CMP_AGG_BUFS_SHIFT;
1026 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1027 		struct rx_tpa_end_cmp *tpa_end = cmp;
1028 
1029 		agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
1030 			    RX_TPA_END_CMP_AGG_BUFS) >>
1031 			   RX_TPA_END_CMP_AGG_BUFS_SHIFT;
1032 	}
1033 
1034 	if (agg_bufs) {
1035 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1036 			return -EBUSY;
1037 	}
1038 	*raw_cons = tmp_raw_cons;
1039 	return 0;
1040 }
1041 
1042 static void bnxt_queue_sp_work(struct bnxt *bp)
1043 {
1044 	if (BNXT_PF(bp))
1045 		queue_work(bnxt_pf_wq, &bp->sp_task);
1046 	else
1047 		schedule_work(&bp->sp_task);
1048 }
1049 
1050 static void bnxt_cancel_sp_work(struct bnxt *bp)
1051 {
1052 	if (BNXT_PF(bp))
1053 		flush_workqueue(bnxt_pf_wq);
1054 	else
1055 		cancel_work_sync(&bp->sp_task);
1056 }
1057 
1058 static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
1059 {
1060 	if (!rxr->bnapi->in_reset) {
1061 		rxr->bnapi->in_reset = true;
1062 		set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
1063 		bnxt_queue_sp_work(bp);
1064 	}
1065 	rxr->rx_next_cons = 0xffff;
1066 }
1067 
1068 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1069 			   struct rx_tpa_start_cmp *tpa_start,
1070 			   struct rx_tpa_start_cmp_ext *tpa_start1)
1071 {
1072 	u8 agg_id = TPA_START_AGG_ID(tpa_start);
1073 	u16 cons, prod;
1074 	struct bnxt_tpa_info *tpa_info;
1075 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
1076 	struct rx_bd *prod_bd;
1077 	dma_addr_t mapping;
1078 
1079 	cons = tpa_start->rx_tpa_start_cmp_opaque;
1080 	prod = rxr->rx_prod;
1081 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1082 	prod_rx_buf = &rxr->rx_buf_ring[prod];
1083 	tpa_info = &rxr->rx_tpa[agg_id];
1084 
1085 	if (unlikely(cons != rxr->rx_next_cons)) {
1086 		bnxt_sched_reset(bp, rxr);
1087 		return;
1088 	}
1089 	/* Store cfa_code in tpa_info to use in tpa_end
1090 	 * completion processing.
1091 	 */
1092 	tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1);
1093 	prod_rx_buf->data = tpa_info->data;
1094 	prod_rx_buf->data_ptr = tpa_info->data_ptr;
1095 
1096 	mapping = tpa_info->mapping;
1097 	prod_rx_buf->mapping = mapping;
1098 
1099 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
1100 
1101 	prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
1102 
1103 	tpa_info->data = cons_rx_buf->data;
1104 	tpa_info->data_ptr = cons_rx_buf->data_ptr;
1105 	cons_rx_buf->data = NULL;
1106 	tpa_info->mapping = cons_rx_buf->mapping;
1107 
1108 	tpa_info->len =
1109 		le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
1110 				RX_TPA_START_CMP_LEN_SHIFT;
1111 	if (likely(TPA_START_HASH_VALID(tpa_start))) {
1112 		u32 hash_type = TPA_START_HASH_TYPE(tpa_start);
1113 
1114 		tpa_info->hash_type = PKT_HASH_TYPE_L4;
1115 		tpa_info->gso_type = SKB_GSO_TCPV4;
1116 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1117 		if (hash_type == 3)
1118 			tpa_info->gso_type = SKB_GSO_TCPV6;
1119 		tpa_info->rss_hash =
1120 			le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
1121 	} else {
1122 		tpa_info->hash_type = PKT_HASH_TYPE_NONE;
1123 		tpa_info->gso_type = 0;
1124 		if (netif_msg_rx_err(bp))
1125 			netdev_warn(bp->dev, "TPA packet without valid hash\n");
1126 	}
1127 	tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
1128 	tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
1129 	tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info);
1130 
1131 	rxr->rx_prod = NEXT_RX(prod);
1132 	cons = NEXT_RX(cons);
1133 	rxr->rx_next_cons = NEXT_RX(cons);
1134 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1135 
1136 	bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
1137 	rxr->rx_prod = NEXT_RX(rxr->rx_prod);
1138 	cons_rx_buf->data = NULL;
1139 }
1140 
1141 static void bnxt_abort_tpa(struct bnxt *bp, struct bnxt_napi *bnapi,
1142 			   u16 cp_cons, u32 agg_bufs)
1143 {
1144 	if (agg_bufs)
1145 		bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
1146 }
1147 
1148 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info,
1149 					   int payload_off, int tcp_ts,
1150 					   struct sk_buff *skb)
1151 {
1152 #ifdef CONFIG_INET
1153 	struct tcphdr *th;
1154 	int len, nw_off;
1155 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1156 	u32 hdr_info = tpa_info->hdr_info;
1157 	bool loopback = false;
1158 
1159 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1160 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1161 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1162 
1163 	/* If the packet is an internal loopback packet, the offsets will
1164 	 * have an extra 4 bytes.
1165 	 */
1166 	if (inner_mac_off == 4) {
1167 		loopback = true;
1168 	} else if (inner_mac_off > 4) {
1169 		__be16 proto = *((__be16 *)(skb->data + inner_ip_off -
1170 					    ETH_HLEN - 2));
1171 
1172 		/* We only support inner iPv4/ipv6.  If we don't see the
1173 		 * correct protocol ID, it must be a loopback packet where
1174 		 * the offsets are off by 4.
1175 		 */
1176 		if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6))
1177 			loopback = true;
1178 	}
1179 	if (loopback) {
1180 		/* internal loopback packet, subtract all offsets by 4 */
1181 		inner_ip_off -= 4;
1182 		inner_mac_off -= 4;
1183 		outer_ip_off -= 4;
1184 	}
1185 
1186 	nw_off = inner_ip_off - ETH_HLEN;
1187 	skb_set_network_header(skb, nw_off);
1188 	if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) {
1189 		struct ipv6hdr *iph = ipv6_hdr(skb);
1190 
1191 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1192 		len = skb->len - skb_transport_offset(skb);
1193 		th = tcp_hdr(skb);
1194 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1195 	} else {
1196 		struct iphdr *iph = ip_hdr(skb);
1197 
1198 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1199 		len = skb->len - skb_transport_offset(skb);
1200 		th = tcp_hdr(skb);
1201 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1202 	}
1203 
1204 	if (inner_mac_off) { /* tunnel */
1205 		struct udphdr *uh = NULL;
1206 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1207 					    ETH_HLEN - 2));
1208 
1209 		if (proto == htons(ETH_P_IP)) {
1210 			struct iphdr *iph = (struct iphdr *)skb->data;
1211 
1212 			if (iph->protocol == IPPROTO_UDP)
1213 				uh = (struct udphdr *)(iph + 1);
1214 		} else {
1215 			struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1216 
1217 			if (iph->nexthdr == IPPROTO_UDP)
1218 				uh = (struct udphdr *)(iph + 1);
1219 		}
1220 		if (uh) {
1221 			if (uh->check)
1222 				skb_shinfo(skb)->gso_type |=
1223 					SKB_GSO_UDP_TUNNEL_CSUM;
1224 			else
1225 				skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1226 		}
1227 	}
1228 #endif
1229 	return skb;
1230 }
1231 
1232 #define BNXT_IPV4_HDR_SIZE	(sizeof(struct iphdr) + sizeof(struct tcphdr))
1233 #define BNXT_IPV6_HDR_SIZE	(sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
1234 
1235 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info,
1236 					   int payload_off, int tcp_ts,
1237 					   struct sk_buff *skb)
1238 {
1239 #ifdef CONFIG_INET
1240 	struct tcphdr *th;
1241 	int len, nw_off, tcp_opt_len = 0;
1242 
1243 	if (tcp_ts)
1244 		tcp_opt_len = 12;
1245 
1246 	if (tpa_info->gso_type == SKB_GSO_TCPV4) {
1247 		struct iphdr *iph;
1248 
1249 		nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
1250 			 ETH_HLEN;
1251 		skb_set_network_header(skb, nw_off);
1252 		iph = ip_hdr(skb);
1253 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1254 		len = skb->len - skb_transport_offset(skb);
1255 		th = tcp_hdr(skb);
1256 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1257 	} else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
1258 		struct ipv6hdr *iph;
1259 
1260 		nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
1261 			 ETH_HLEN;
1262 		skb_set_network_header(skb, nw_off);
1263 		iph = ipv6_hdr(skb);
1264 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1265 		len = skb->len - skb_transport_offset(skb);
1266 		th = tcp_hdr(skb);
1267 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1268 	} else {
1269 		dev_kfree_skb_any(skb);
1270 		return NULL;
1271 	}
1272 
1273 	if (nw_off) { /* tunnel */
1274 		struct udphdr *uh = NULL;
1275 
1276 		if (skb->protocol == htons(ETH_P_IP)) {
1277 			struct iphdr *iph = (struct iphdr *)skb->data;
1278 
1279 			if (iph->protocol == IPPROTO_UDP)
1280 				uh = (struct udphdr *)(iph + 1);
1281 		} else {
1282 			struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1283 
1284 			if (iph->nexthdr == IPPROTO_UDP)
1285 				uh = (struct udphdr *)(iph + 1);
1286 		}
1287 		if (uh) {
1288 			if (uh->check)
1289 				skb_shinfo(skb)->gso_type |=
1290 					SKB_GSO_UDP_TUNNEL_CSUM;
1291 			else
1292 				skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1293 		}
1294 	}
1295 #endif
1296 	return skb;
1297 }
1298 
1299 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp,
1300 					   struct bnxt_tpa_info *tpa_info,
1301 					   struct rx_tpa_end_cmp *tpa_end,
1302 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1303 					   struct sk_buff *skb)
1304 {
1305 #ifdef CONFIG_INET
1306 	int payload_off;
1307 	u16 segs;
1308 
1309 	segs = TPA_END_TPA_SEGS(tpa_end);
1310 	if (segs == 1)
1311 		return skb;
1312 
1313 	NAPI_GRO_CB(skb)->count = segs;
1314 	skb_shinfo(skb)->gso_size =
1315 		le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
1316 	skb_shinfo(skb)->gso_type = tpa_info->gso_type;
1317 	payload_off = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
1318 		       RX_TPA_END_CMP_PAYLOAD_OFFSET) >>
1319 		      RX_TPA_END_CMP_PAYLOAD_OFFSET_SHIFT;
1320 	skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb);
1321 	if (likely(skb))
1322 		tcp_gro_complete(skb);
1323 #endif
1324 	return skb;
1325 }
1326 
1327 /* Given the cfa_code of a received packet determine which
1328  * netdev (vf-rep or PF) the packet is destined to.
1329  */
1330 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code)
1331 {
1332 	struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code);
1333 
1334 	/* if vf-rep dev is NULL, the must belongs to the PF */
1335 	return dev ? dev : bp->dev;
1336 }
1337 
1338 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
1339 					   struct bnxt_napi *bnapi,
1340 					   u32 *raw_cons,
1341 					   struct rx_tpa_end_cmp *tpa_end,
1342 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1343 					   u8 *event)
1344 {
1345 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1346 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1347 	u8 agg_id = TPA_END_AGG_ID(tpa_end);
1348 	u8 *data_ptr, agg_bufs;
1349 	u16 cp_cons = RING_CMP(*raw_cons);
1350 	unsigned int len;
1351 	struct bnxt_tpa_info *tpa_info;
1352 	dma_addr_t mapping;
1353 	struct sk_buff *skb;
1354 	void *data;
1355 
1356 	if (unlikely(bnapi->in_reset)) {
1357 		int rc = bnxt_discard_rx(bp, bnapi, raw_cons, tpa_end);
1358 
1359 		if (rc < 0)
1360 			return ERR_PTR(-EBUSY);
1361 		return NULL;
1362 	}
1363 
1364 	tpa_info = &rxr->rx_tpa[agg_id];
1365 	data = tpa_info->data;
1366 	data_ptr = tpa_info->data_ptr;
1367 	prefetch(data_ptr);
1368 	len = tpa_info->len;
1369 	mapping = tpa_info->mapping;
1370 
1371 	agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
1372 		    RX_TPA_END_CMP_AGG_BUFS) >> RX_TPA_END_CMP_AGG_BUFS_SHIFT;
1373 
1374 	if (agg_bufs) {
1375 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
1376 			return ERR_PTR(-EBUSY);
1377 
1378 		*event |= BNXT_AGG_EVENT;
1379 		cp_cons = NEXT_CMP(cp_cons);
1380 	}
1381 
1382 	if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) {
1383 		bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1384 		if (agg_bufs > MAX_SKB_FRAGS)
1385 			netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
1386 				    agg_bufs, (int)MAX_SKB_FRAGS);
1387 		return NULL;
1388 	}
1389 
1390 	if (len <= bp->rx_copy_thresh) {
1391 		skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping);
1392 		if (!skb) {
1393 			bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1394 			return NULL;
1395 		}
1396 	} else {
1397 		u8 *new_data;
1398 		dma_addr_t new_mapping;
1399 
1400 		new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC);
1401 		if (!new_data) {
1402 			bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1403 			return NULL;
1404 		}
1405 
1406 		tpa_info->data = new_data;
1407 		tpa_info->data_ptr = new_data + bp->rx_offset;
1408 		tpa_info->mapping = new_mapping;
1409 
1410 		skb = build_skb(data, 0);
1411 		dma_unmap_single_attrs(&bp->pdev->dev, mapping,
1412 				       bp->rx_buf_use_size, bp->rx_dir,
1413 				       DMA_ATTR_WEAK_ORDERING);
1414 
1415 		if (!skb) {
1416 			kfree(data);
1417 			bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1418 			return NULL;
1419 		}
1420 		skb_reserve(skb, bp->rx_offset);
1421 		skb_put(skb, len);
1422 	}
1423 
1424 	if (agg_bufs) {
1425 		skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
1426 		if (!skb) {
1427 			/* Page reuse already handled by bnxt_rx_pages(). */
1428 			return NULL;
1429 		}
1430 	}
1431 
1432 	skb->protocol =
1433 		eth_type_trans(skb, bnxt_get_pkt_dev(bp, tpa_info->cfa_code));
1434 
1435 	if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1436 		skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1437 
1438 	if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) &&
1439 	    (skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
1440 		u16 vlan_proto = tpa_info->metadata >>
1441 			RX_CMP_FLAGS2_METADATA_TPID_SFT;
1442 		u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_VID_MASK;
1443 
1444 		__vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1445 	}
1446 
1447 	skb_checksum_none_assert(skb);
1448 	if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1449 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1450 		skb->csum_level =
1451 			(tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1452 	}
1453 
1454 	if (TPA_END_GRO(tpa_end))
1455 		skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb);
1456 
1457 	return skb;
1458 }
1459 
1460 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi,
1461 			     struct sk_buff *skb)
1462 {
1463 	if (skb->dev != bp->dev) {
1464 		/* this packet belongs to a vf-rep */
1465 		bnxt_vf_rep_rx(bp, skb);
1466 		return;
1467 	}
1468 	skb_record_rx_queue(skb, bnapi->index);
1469 	napi_gro_receive(&bnapi->napi, skb);
1470 }
1471 
1472 /* returns the following:
1473  * 1       - 1 packet successfully received
1474  * 0       - successful TPA_START, packet not completed yet
1475  * -EBUSY  - completion ring does not have all the agg buffers yet
1476  * -ENOMEM - packet aborted due to out of memory
1477  * -EIO    - packet aborted due to hw error indicated in BD
1478  */
1479 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_napi *bnapi, u32 *raw_cons,
1480 		       u8 *event)
1481 {
1482 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1483 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1484 	struct net_device *dev = bp->dev;
1485 	struct rx_cmp *rxcmp;
1486 	struct rx_cmp_ext *rxcmp1;
1487 	u32 tmp_raw_cons = *raw_cons;
1488 	u16 cfa_code, cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
1489 	struct bnxt_sw_rx_bd *rx_buf;
1490 	unsigned int len;
1491 	u8 *data_ptr, agg_bufs, cmp_type;
1492 	dma_addr_t dma_addr;
1493 	struct sk_buff *skb;
1494 	void *data;
1495 	int rc = 0;
1496 	u32 misc;
1497 
1498 	rxcmp = (struct rx_cmp *)
1499 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1500 
1501 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1502 	cp_cons = RING_CMP(tmp_raw_cons);
1503 	rxcmp1 = (struct rx_cmp_ext *)
1504 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1505 
1506 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1507 		return -EBUSY;
1508 
1509 	cmp_type = RX_CMP_TYPE(rxcmp);
1510 
1511 	prod = rxr->rx_prod;
1512 
1513 	if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) {
1514 		bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp,
1515 			       (struct rx_tpa_start_cmp_ext *)rxcmp1);
1516 
1517 		*event |= BNXT_RX_EVENT;
1518 		goto next_rx_no_prod_no_len;
1519 
1520 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1521 		skb = bnxt_tpa_end(bp, bnapi, &tmp_raw_cons,
1522 				   (struct rx_tpa_end_cmp *)rxcmp,
1523 				   (struct rx_tpa_end_cmp_ext *)rxcmp1, event);
1524 
1525 		if (IS_ERR(skb))
1526 			return -EBUSY;
1527 
1528 		rc = -ENOMEM;
1529 		if (likely(skb)) {
1530 			bnxt_deliver_skb(bp, bnapi, skb);
1531 			rc = 1;
1532 		}
1533 		*event |= BNXT_RX_EVENT;
1534 		goto next_rx_no_prod_no_len;
1535 	}
1536 
1537 	cons = rxcmp->rx_cmp_opaque;
1538 	rx_buf = &rxr->rx_buf_ring[cons];
1539 	data = rx_buf->data;
1540 	data_ptr = rx_buf->data_ptr;
1541 	if (unlikely(cons != rxr->rx_next_cons)) {
1542 		int rc1 = bnxt_discard_rx(bp, bnapi, raw_cons, rxcmp);
1543 
1544 		bnxt_sched_reset(bp, rxr);
1545 		return rc1;
1546 	}
1547 	prefetch(data_ptr);
1548 
1549 	misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1);
1550 	agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT;
1551 
1552 	if (agg_bufs) {
1553 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1554 			return -EBUSY;
1555 
1556 		cp_cons = NEXT_CMP(cp_cons);
1557 		*event |= BNXT_AGG_EVENT;
1558 	}
1559 	*event |= BNXT_RX_EVENT;
1560 
1561 	rx_buf->data = NULL;
1562 	if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
1563 		bnxt_reuse_rx_data(rxr, cons, data);
1564 		if (agg_bufs)
1565 			bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
1566 
1567 		rc = -EIO;
1568 		goto next_rx;
1569 	}
1570 
1571 	len = le32_to_cpu(rxcmp->rx_cmp_len_flags_type) >> RX_CMP_LEN_SHIFT;
1572 	dma_addr = rx_buf->mapping;
1573 
1574 	if (bnxt_rx_xdp(bp, rxr, cons, data, &data_ptr, &len, event)) {
1575 		rc = 1;
1576 		goto next_rx;
1577 	}
1578 
1579 	if (len <= bp->rx_copy_thresh) {
1580 		skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr);
1581 		bnxt_reuse_rx_data(rxr, cons, data);
1582 		if (!skb) {
1583 			rc = -ENOMEM;
1584 			goto next_rx;
1585 		}
1586 	} else {
1587 		u32 payload;
1588 
1589 		if (rx_buf->data_ptr == data_ptr)
1590 			payload = misc & RX_CMP_PAYLOAD_OFFSET;
1591 		else
1592 			payload = 0;
1593 		skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr,
1594 				      payload | len);
1595 		if (!skb) {
1596 			rc = -ENOMEM;
1597 			goto next_rx;
1598 		}
1599 	}
1600 
1601 	if (agg_bufs) {
1602 		skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
1603 		if (!skb) {
1604 			rc = -ENOMEM;
1605 			goto next_rx;
1606 		}
1607 	}
1608 
1609 	if (RX_CMP_HASH_VALID(rxcmp)) {
1610 		u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
1611 		enum pkt_hash_types type = PKT_HASH_TYPE_L4;
1612 
1613 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1614 		if (hash_type != 1 && hash_type != 3)
1615 			type = PKT_HASH_TYPE_L3;
1616 		skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
1617 	}
1618 
1619 	cfa_code = RX_CMP_CFA_CODE(rxcmp1);
1620 	skb->protocol = eth_type_trans(skb, bnxt_get_pkt_dev(bp, cfa_code));
1621 
1622 	if ((rxcmp1->rx_cmp_flags2 &
1623 	     cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) &&
1624 	    (skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
1625 		u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
1626 		u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_VID_MASK;
1627 		u16 vlan_proto = meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT;
1628 
1629 		__vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1630 	}
1631 
1632 	skb_checksum_none_assert(skb);
1633 	if (RX_CMP_L4_CS_OK(rxcmp1)) {
1634 		if (dev->features & NETIF_F_RXCSUM) {
1635 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1636 			skb->csum_level = RX_CMP_ENCAP(rxcmp1);
1637 		}
1638 	} else {
1639 		if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
1640 			if (dev->features & NETIF_F_RXCSUM)
1641 				cpr->rx_l4_csum_errors++;
1642 		}
1643 	}
1644 
1645 	bnxt_deliver_skb(bp, bnapi, skb);
1646 	rc = 1;
1647 
1648 next_rx:
1649 	rxr->rx_prod = NEXT_RX(prod);
1650 	rxr->rx_next_cons = NEXT_RX(cons);
1651 
1652 	cpr->rx_packets += 1;
1653 	cpr->rx_bytes += len;
1654 
1655 next_rx_no_prod_no_len:
1656 	*raw_cons = tmp_raw_cons;
1657 
1658 	return rc;
1659 }
1660 
1661 /* In netpoll mode, if we are using a combined completion ring, we need to
1662  * discard the rx packets and recycle the buffers.
1663  */
1664 static int bnxt_force_rx_discard(struct bnxt *bp, struct bnxt_napi *bnapi,
1665 				 u32 *raw_cons, u8 *event)
1666 {
1667 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1668 	u32 tmp_raw_cons = *raw_cons;
1669 	struct rx_cmp_ext *rxcmp1;
1670 	struct rx_cmp *rxcmp;
1671 	u16 cp_cons;
1672 	u8 cmp_type;
1673 
1674 	cp_cons = RING_CMP(tmp_raw_cons);
1675 	rxcmp = (struct rx_cmp *)
1676 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1677 
1678 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1679 	cp_cons = RING_CMP(tmp_raw_cons);
1680 	rxcmp1 = (struct rx_cmp_ext *)
1681 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1682 
1683 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1684 		return -EBUSY;
1685 
1686 	cmp_type = RX_CMP_TYPE(rxcmp);
1687 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1688 		rxcmp1->rx_cmp_cfa_code_errors_v2 |=
1689 			cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
1690 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1691 		struct rx_tpa_end_cmp_ext *tpa_end1;
1692 
1693 		tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1;
1694 		tpa_end1->rx_tpa_end_cmp_errors_v2 |=
1695 			cpu_to_le32(RX_TPA_END_CMP_ERRORS);
1696 	}
1697 	return bnxt_rx_pkt(bp, bnapi, raw_cons, event);
1698 }
1699 
1700 #define BNXT_GET_EVENT_PORT(data)	\
1701 	((data) &			\
1702 	 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK)
1703 
1704 static int bnxt_async_event_process(struct bnxt *bp,
1705 				    struct hwrm_async_event_cmpl *cmpl)
1706 {
1707 	u16 event_id = le16_to_cpu(cmpl->event_id);
1708 
1709 	/* TODO CHIMP_FW: Define event id's for link change, error etc */
1710 	switch (event_id) {
1711 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: {
1712 		u32 data1 = le32_to_cpu(cmpl->event_data1);
1713 		struct bnxt_link_info *link_info = &bp->link_info;
1714 
1715 		if (BNXT_VF(bp))
1716 			goto async_event_process_exit;
1717 
1718 		/* print unsupported speed warning in forced speed mode only */
1719 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) &&
1720 		    (data1 & 0x20000)) {
1721 			u16 fw_speed = link_info->force_link_speed;
1722 			u32 speed = bnxt_fw_to_ethtool_speed(fw_speed);
1723 
1724 			if (speed != SPEED_UNKNOWN)
1725 				netdev_warn(bp->dev, "Link speed %d no longer supported\n",
1726 					    speed);
1727 		}
1728 		set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event);
1729 		/* fall thru */
1730 	}
1731 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
1732 		set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
1733 		break;
1734 	case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD:
1735 		set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event);
1736 		break;
1737 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: {
1738 		u32 data1 = le32_to_cpu(cmpl->event_data1);
1739 		u16 port_id = BNXT_GET_EVENT_PORT(data1);
1740 
1741 		if (BNXT_VF(bp))
1742 			break;
1743 
1744 		if (bp->pf.port_id != port_id)
1745 			break;
1746 
1747 		set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event);
1748 		break;
1749 	}
1750 	case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE:
1751 		if (BNXT_PF(bp))
1752 			goto async_event_process_exit;
1753 		set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event);
1754 		break;
1755 	default:
1756 		goto async_event_process_exit;
1757 	}
1758 	bnxt_queue_sp_work(bp);
1759 async_event_process_exit:
1760 	bnxt_ulp_async_events(bp, cmpl);
1761 	return 0;
1762 }
1763 
1764 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
1765 {
1766 	u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
1767 	struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
1768 	struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
1769 				(struct hwrm_fwd_req_cmpl *)txcmp;
1770 
1771 	switch (cmpl_type) {
1772 	case CMPL_BASE_TYPE_HWRM_DONE:
1773 		seq_id = le16_to_cpu(h_cmpl->sequence_id);
1774 		if (seq_id == bp->hwrm_intr_seq_id)
1775 			bp->hwrm_intr_seq_id = HWRM_SEQ_ID_INVALID;
1776 		else
1777 			netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id);
1778 		break;
1779 
1780 	case CMPL_BASE_TYPE_HWRM_FWD_REQ:
1781 		vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
1782 
1783 		if ((vf_id < bp->pf.first_vf_id) ||
1784 		    (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
1785 			netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
1786 				   vf_id);
1787 			return -EINVAL;
1788 		}
1789 
1790 		set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
1791 		set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event);
1792 		bnxt_queue_sp_work(bp);
1793 		break;
1794 
1795 	case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
1796 		bnxt_async_event_process(bp,
1797 					 (struct hwrm_async_event_cmpl *)txcmp);
1798 
1799 	default:
1800 		break;
1801 	}
1802 
1803 	return 0;
1804 }
1805 
1806 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
1807 {
1808 	struct bnxt_napi *bnapi = dev_instance;
1809 	struct bnxt *bp = bnapi->bp;
1810 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1811 	u32 cons = RING_CMP(cpr->cp_raw_cons);
1812 
1813 	cpr->event_ctr++;
1814 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1815 	napi_schedule(&bnapi->napi);
1816 	return IRQ_HANDLED;
1817 }
1818 
1819 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
1820 {
1821 	u32 raw_cons = cpr->cp_raw_cons;
1822 	u16 cons = RING_CMP(raw_cons);
1823 	struct tx_cmp *txcmp;
1824 
1825 	txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1826 
1827 	return TX_CMP_VALID(txcmp, raw_cons);
1828 }
1829 
1830 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
1831 {
1832 	struct bnxt_napi *bnapi = dev_instance;
1833 	struct bnxt *bp = bnapi->bp;
1834 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1835 	u32 cons = RING_CMP(cpr->cp_raw_cons);
1836 	u32 int_status;
1837 
1838 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1839 
1840 	if (!bnxt_has_work(bp, cpr)) {
1841 		int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
1842 		/* return if erroneous interrupt */
1843 		if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
1844 			return IRQ_NONE;
1845 	}
1846 
1847 	/* disable ring IRQ */
1848 	BNXT_CP_DB_IRQ_DIS(cpr->cp_doorbell);
1849 
1850 	/* Return here if interrupt is shared and is disabled. */
1851 	if (unlikely(atomic_read(&bp->intr_sem) != 0))
1852 		return IRQ_HANDLED;
1853 
1854 	napi_schedule(&bnapi->napi);
1855 	return IRQ_HANDLED;
1856 }
1857 
1858 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
1859 {
1860 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1861 	u32 raw_cons = cpr->cp_raw_cons;
1862 	u32 cons;
1863 	int tx_pkts = 0;
1864 	int rx_pkts = 0;
1865 	u8 event = 0;
1866 	struct tx_cmp *txcmp;
1867 
1868 	while (1) {
1869 		int rc;
1870 
1871 		cons = RING_CMP(raw_cons);
1872 		txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1873 
1874 		if (!TX_CMP_VALID(txcmp, raw_cons))
1875 			break;
1876 
1877 		/* The valid test of the entry must be done first before
1878 		 * reading any further.
1879 		 */
1880 		dma_rmb();
1881 		if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) {
1882 			tx_pkts++;
1883 			/* return full budget so NAPI will complete. */
1884 			if (unlikely(tx_pkts > bp->tx_wake_thresh))
1885 				rx_pkts = budget;
1886 		} else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
1887 			if (likely(budget))
1888 				rc = bnxt_rx_pkt(bp, bnapi, &raw_cons, &event);
1889 			else
1890 				rc = bnxt_force_rx_discard(bp, bnapi, &raw_cons,
1891 							   &event);
1892 			if (likely(rc >= 0))
1893 				rx_pkts += rc;
1894 			/* Increment rx_pkts when rc is -ENOMEM to count towards
1895 			 * the NAPI budget.  Otherwise, we may potentially loop
1896 			 * here forever if we consistently cannot allocate
1897 			 * buffers.
1898 			 */
1899 			else if (rc == -ENOMEM && budget)
1900 				rx_pkts++;
1901 			else if (rc == -EBUSY)	/* partial completion */
1902 				break;
1903 		} else if (unlikely((TX_CMP_TYPE(txcmp) ==
1904 				     CMPL_BASE_TYPE_HWRM_DONE) ||
1905 				    (TX_CMP_TYPE(txcmp) ==
1906 				     CMPL_BASE_TYPE_HWRM_FWD_REQ) ||
1907 				    (TX_CMP_TYPE(txcmp) ==
1908 				     CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) {
1909 			bnxt_hwrm_handler(bp, txcmp);
1910 		}
1911 		raw_cons = NEXT_RAW_CMP(raw_cons);
1912 
1913 		if (rx_pkts == budget)
1914 			break;
1915 	}
1916 
1917 	if (event & BNXT_TX_EVENT) {
1918 		struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
1919 		void __iomem *db = txr->tx_doorbell;
1920 		u16 prod = txr->tx_prod;
1921 
1922 		/* Sync BD data before updating doorbell */
1923 		wmb();
1924 
1925 		bnxt_db_write(bp, db, DB_KEY_TX | prod);
1926 	}
1927 
1928 	cpr->cp_raw_cons = raw_cons;
1929 	/* ACK completion ring before freeing tx ring and producing new
1930 	 * buffers in rx/agg rings to prevent overflowing the completion
1931 	 * ring.
1932 	 */
1933 	BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
1934 
1935 	if (tx_pkts)
1936 		bnapi->tx_int(bp, bnapi, tx_pkts);
1937 
1938 	if (event & BNXT_RX_EVENT) {
1939 		struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1940 
1941 		bnxt_db_write(bp, rxr->rx_doorbell, DB_KEY_RX | rxr->rx_prod);
1942 		if (event & BNXT_AGG_EVENT)
1943 			bnxt_db_write(bp, rxr->rx_agg_doorbell,
1944 				      DB_KEY_RX | rxr->rx_agg_prod);
1945 	}
1946 	return rx_pkts;
1947 }
1948 
1949 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget)
1950 {
1951 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
1952 	struct bnxt *bp = bnapi->bp;
1953 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1954 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1955 	struct tx_cmp *txcmp;
1956 	struct rx_cmp_ext *rxcmp1;
1957 	u32 cp_cons, tmp_raw_cons;
1958 	u32 raw_cons = cpr->cp_raw_cons;
1959 	u32 rx_pkts = 0;
1960 	u8 event = 0;
1961 
1962 	while (1) {
1963 		int rc;
1964 
1965 		cp_cons = RING_CMP(raw_cons);
1966 		txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1967 
1968 		if (!TX_CMP_VALID(txcmp, raw_cons))
1969 			break;
1970 
1971 		if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
1972 			tmp_raw_cons = NEXT_RAW_CMP(raw_cons);
1973 			cp_cons = RING_CMP(tmp_raw_cons);
1974 			rxcmp1 = (struct rx_cmp_ext *)
1975 			  &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1976 
1977 			if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1978 				break;
1979 
1980 			/* force an error to recycle the buffer */
1981 			rxcmp1->rx_cmp_cfa_code_errors_v2 |=
1982 				cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
1983 
1984 			rc = bnxt_rx_pkt(bp, bnapi, &raw_cons, &event);
1985 			if (likely(rc == -EIO) && budget)
1986 				rx_pkts++;
1987 			else if (rc == -EBUSY)	/* partial completion */
1988 				break;
1989 		} else if (unlikely(TX_CMP_TYPE(txcmp) ==
1990 				    CMPL_BASE_TYPE_HWRM_DONE)) {
1991 			bnxt_hwrm_handler(bp, txcmp);
1992 		} else {
1993 			netdev_err(bp->dev,
1994 				   "Invalid completion received on special ring\n");
1995 		}
1996 		raw_cons = NEXT_RAW_CMP(raw_cons);
1997 
1998 		if (rx_pkts == budget)
1999 			break;
2000 	}
2001 
2002 	cpr->cp_raw_cons = raw_cons;
2003 	BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
2004 	bnxt_db_write(bp, rxr->rx_doorbell, DB_KEY_RX | rxr->rx_prod);
2005 
2006 	if (event & BNXT_AGG_EVENT)
2007 		bnxt_db_write(bp, rxr->rx_agg_doorbell,
2008 			      DB_KEY_RX | rxr->rx_agg_prod);
2009 
2010 	if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) {
2011 		napi_complete_done(napi, rx_pkts);
2012 		BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
2013 	}
2014 	return rx_pkts;
2015 }
2016 
2017 static int bnxt_poll(struct napi_struct *napi, int budget)
2018 {
2019 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2020 	struct bnxt *bp = bnapi->bp;
2021 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2022 	int work_done = 0;
2023 
2024 	while (1) {
2025 		work_done += bnxt_poll_work(bp, bnapi, budget - work_done);
2026 
2027 		if (work_done >= budget)
2028 			break;
2029 
2030 		if (!bnxt_has_work(bp, cpr)) {
2031 			if (napi_complete_done(napi, work_done))
2032 				BNXT_CP_DB_REARM(cpr->cp_doorbell,
2033 						 cpr->cp_raw_cons);
2034 			break;
2035 		}
2036 	}
2037 	if (bp->flags & BNXT_FLAG_DIM) {
2038 		struct net_dim_sample dim_sample;
2039 
2040 		net_dim_sample(cpr->event_ctr,
2041 			       cpr->rx_packets,
2042 			       cpr->rx_bytes,
2043 			       &dim_sample);
2044 		net_dim(&cpr->dim, dim_sample);
2045 	}
2046 	mmiowb();
2047 	return work_done;
2048 }
2049 
2050 static void bnxt_free_tx_skbs(struct bnxt *bp)
2051 {
2052 	int i, max_idx;
2053 	struct pci_dev *pdev = bp->pdev;
2054 
2055 	if (!bp->tx_ring)
2056 		return;
2057 
2058 	max_idx = bp->tx_nr_pages * TX_DESC_CNT;
2059 	for (i = 0; i < bp->tx_nr_rings; i++) {
2060 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2061 		int j;
2062 
2063 		for (j = 0; j < max_idx;) {
2064 			struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
2065 			struct sk_buff *skb = tx_buf->skb;
2066 			int k, last;
2067 
2068 			if (!skb) {
2069 				j++;
2070 				continue;
2071 			}
2072 
2073 			tx_buf->skb = NULL;
2074 
2075 			if (tx_buf->is_push) {
2076 				dev_kfree_skb(skb);
2077 				j += 2;
2078 				continue;
2079 			}
2080 
2081 			dma_unmap_single(&pdev->dev,
2082 					 dma_unmap_addr(tx_buf, mapping),
2083 					 skb_headlen(skb),
2084 					 PCI_DMA_TODEVICE);
2085 
2086 			last = tx_buf->nr_frags;
2087 			j += 2;
2088 			for (k = 0; k < last; k++, j++) {
2089 				int ring_idx = j & bp->tx_ring_mask;
2090 				skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2091 
2092 				tx_buf = &txr->tx_buf_ring[ring_idx];
2093 				dma_unmap_page(
2094 					&pdev->dev,
2095 					dma_unmap_addr(tx_buf, mapping),
2096 					skb_frag_size(frag), PCI_DMA_TODEVICE);
2097 			}
2098 			dev_kfree_skb(skb);
2099 		}
2100 		netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
2101 	}
2102 }
2103 
2104 static void bnxt_free_rx_skbs(struct bnxt *bp)
2105 {
2106 	int i, max_idx, max_agg_idx;
2107 	struct pci_dev *pdev = bp->pdev;
2108 
2109 	if (!bp->rx_ring)
2110 		return;
2111 
2112 	max_idx = bp->rx_nr_pages * RX_DESC_CNT;
2113 	max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
2114 	for (i = 0; i < bp->rx_nr_rings; i++) {
2115 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2116 		int j;
2117 
2118 		if (rxr->rx_tpa) {
2119 			for (j = 0; j < MAX_TPA; j++) {
2120 				struct bnxt_tpa_info *tpa_info =
2121 							&rxr->rx_tpa[j];
2122 				u8 *data = tpa_info->data;
2123 
2124 				if (!data)
2125 					continue;
2126 
2127 				dma_unmap_single_attrs(&pdev->dev,
2128 						       tpa_info->mapping,
2129 						       bp->rx_buf_use_size,
2130 						       bp->rx_dir,
2131 						       DMA_ATTR_WEAK_ORDERING);
2132 
2133 				tpa_info->data = NULL;
2134 
2135 				kfree(data);
2136 			}
2137 		}
2138 
2139 		for (j = 0; j < max_idx; j++) {
2140 			struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[j];
2141 			dma_addr_t mapping = rx_buf->mapping;
2142 			void *data = rx_buf->data;
2143 
2144 			if (!data)
2145 				continue;
2146 
2147 			rx_buf->data = NULL;
2148 
2149 			if (BNXT_RX_PAGE_MODE(bp)) {
2150 				mapping -= bp->rx_dma_offset;
2151 				dma_unmap_page_attrs(&pdev->dev, mapping,
2152 						     PAGE_SIZE, bp->rx_dir,
2153 						     DMA_ATTR_WEAK_ORDERING);
2154 				__free_page(data);
2155 			} else {
2156 				dma_unmap_single_attrs(&pdev->dev, mapping,
2157 						       bp->rx_buf_use_size,
2158 						       bp->rx_dir,
2159 						       DMA_ATTR_WEAK_ORDERING);
2160 				kfree(data);
2161 			}
2162 		}
2163 
2164 		for (j = 0; j < max_agg_idx; j++) {
2165 			struct bnxt_sw_rx_agg_bd *rx_agg_buf =
2166 				&rxr->rx_agg_ring[j];
2167 			struct page *page = rx_agg_buf->page;
2168 
2169 			if (!page)
2170 				continue;
2171 
2172 			dma_unmap_page_attrs(&pdev->dev, rx_agg_buf->mapping,
2173 					     BNXT_RX_PAGE_SIZE,
2174 					     PCI_DMA_FROMDEVICE,
2175 					     DMA_ATTR_WEAK_ORDERING);
2176 
2177 			rx_agg_buf->page = NULL;
2178 			__clear_bit(j, rxr->rx_agg_bmap);
2179 
2180 			__free_page(page);
2181 		}
2182 		if (rxr->rx_page) {
2183 			__free_page(rxr->rx_page);
2184 			rxr->rx_page = NULL;
2185 		}
2186 	}
2187 }
2188 
2189 static void bnxt_free_skbs(struct bnxt *bp)
2190 {
2191 	bnxt_free_tx_skbs(bp);
2192 	bnxt_free_rx_skbs(bp);
2193 }
2194 
2195 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
2196 {
2197 	struct pci_dev *pdev = bp->pdev;
2198 	int i;
2199 
2200 	for (i = 0; i < ring->nr_pages; i++) {
2201 		if (!ring->pg_arr[i])
2202 			continue;
2203 
2204 		dma_free_coherent(&pdev->dev, ring->page_size,
2205 				  ring->pg_arr[i], ring->dma_arr[i]);
2206 
2207 		ring->pg_arr[i] = NULL;
2208 	}
2209 	if (ring->pg_tbl) {
2210 		dma_free_coherent(&pdev->dev, ring->nr_pages * 8,
2211 				  ring->pg_tbl, ring->pg_tbl_map);
2212 		ring->pg_tbl = NULL;
2213 	}
2214 	if (ring->vmem_size && *ring->vmem) {
2215 		vfree(*ring->vmem);
2216 		*ring->vmem = NULL;
2217 	}
2218 }
2219 
2220 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
2221 {
2222 	int i;
2223 	struct pci_dev *pdev = bp->pdev;
2224 
2225 	if (ring->nr_pages > 1) {
2226 		ring->pg_tbl = dma_alloc_coherent(&pdev->dev,
2227 						  ring->nr_pages * 8,
2228 						  &ring->pg_tbl_map,
2229 						  GFP_KERNEL);
2230 		if (!ring->pg_tbl)
2231 			return -ENOMEM;
2232 	}
2233 
2234 	for (i = 0; i < ring->nr_pages; i++) {
2235 		ring->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
2236 						     ring->page_size,
2237 						     &ring->dma_arr[i],
2238 						     GFP_KERNEL);
2239 		if (!ring->pg_arr[i])
2240 			return -ENOMEM;
2241 
2242 		if (ring->nr_pages > 1)
2243 			ring->pg_tbl[i] = cpu_to_le64(ring->dma_arr[i]);
2244 	}
2245 
2246 	if (ring->vmem_size) {
2247 		*ring->vmem = vzalloc(ring->vmem_size);
2248 		if (!(*ring->vmem))
2249 			return -ENOMEM;
2250 	}
2251 	return 0;
2252 }
2253 
2254 static void bnxt_free_rx_rings(struct bnxt *bp)
2255 {
2256 	int i;
2257 
2258 	if (!bp->rx_ring)
2259 		return;
2260 
2261 	for (i = 0; i < bp->rx_nr_rings; i++) {
2262 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2263 		struct bnxt_ring_struct *ring;
2264 
2265 		if (rxr->xdp_prog)
2266 			bpf_prog_put(rxr->xdp_prog);
2267 
2268 		if (xdp_rxq_info_is_reg(&rxr->xdp_rxq))
2269 			xdp_rxq_info_unreg(&rxr->xdp_rxq);
2270 
2271 		kfree(rxr->rx_tpa);
2272 		rxr->rx_tpa = NULL;
2273 
2274 		kfree(rxr->rx_agg_bmap);
2275 		rxr->rx_agg_bmap = NULL;
2276 
2277 		ring = &rxr->rx_ring_struct;
2278 		bnxt_free_ring(bp, ring);
2279 
2280 		ring = &rxr->rx_agg_ring_struct;
2281 		bnxt_free_ring(bp, ring);
2282 	}
2283 }
2284 
2285 static int bnxt_alloc_rx_rings(struct bnxt *bp)
2286 {
2287 	int i, rc, agg_rings = 0, tpa_rings = 0;
2288 
2289 	if (!bp->rx_ring)
2290 		return -ENOMEM;
2291 
2292 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
2293 		agg_rings = 1;
2294 
2295 	if (bp->flags & BNXT_FLAG_TPA)
2296 		tpa_rings = 1;
2297 
2298 	for (i = 0; i < bp->rx_nr_rings; i++) {
2299 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2300 		struct bnxt_ring_struct *ring;
2301 
2302 		ring = &rxr->rx_ring_struct;
2303 
2304 		rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i);
2305 		if (rc < 0)
2306 			return rc;
2307 
2308 		rc = bnxt_alloc_ring(bp, ring);
2309 		if (rc)
2310 			return rc;
2311 
2312 		if (agg_rings) {
2313 			u16 mem_size;
2314 
2315 			ring = &rxr->rx_agg_ring_struct;
2316 			rc = bnxt_alloc_ring(bp, ring);
2317 			if (rc)
2318 				return rc;
2319 
2320 			rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
2321 			mem_size = rxr->rx_agg_bmap_size / 8;
2322 			rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
2323 			if (!rxr->rx_agg_bmap)
2324 				return -ENOMEM;
2325 
2326 			if (tpa_rings) {
2327 				rxr->rx_tpa = kcalloc(MAX_TPA,
2328 						sizeof(struct bnxt_tpa_info),
2329 						GFP_KERNEL);
2330 				if (!rxr->rx_tpa)
2331 					return -ENOMEM;
2332 			}
2333 		}
2334 	}
2335 	return 0;
2336 }
2337 
2338 static void bnxt_free_tx_rings(struct bnxt *bp)
2339 {
2340 	int i;
2341 	struct pci_dev *pdev = bp->pdev;
2342 
2343 	if (!bp->tx_ring)
2344 		return;
2345 
2346 	for (i = 0; i < bp->tx_nr_rings; i++) {
2347 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2348 		struct bnxt_ring_struct *ring;
2349 
2350 		if (txr->tx_push) {
2351 			dma_free_coherent(&pdev->dev, bp->tx_push_size,
2352 					  txr->tx_push, txr->tx_push_mapping);
2353 			txr->tx_push = NULL;
2354 		}
2355 
2356 		ring = &txr->tx_ring_struct;
2357 
2358 		bnxt_free_ring(bp, ring);
2359 	}
2360 }
2361 
2362 static int bnxt_alloc_tx_rings(struct bnxt *bp)
2363 {
2364 	int i, j, rc;
2365 	struct pci_dev *pdev = bp->pdev;
2366 
2367 	bp->tx_push_size = 0;
2368 	if (bp->tx_push_thresh) {
2369 		int push_size;
2370 
2371 		push_size  = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
2372 					bp->tx_push_thresh);
2373 
2374 		if (push_size > 256) {
2375 			push_size = 0;
2376 			bp->tx_push_thresh = 0;
2377 		}
2378 
2379 		bp->tx_push_size = push_size;
2380 	}
2381 
2382 	for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
2383 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2384 		struct bnxt_ring_struct *ring;
2385 
2386 		ring = &txr->tx_ring_struct;
2387 
2388 		rc = bnxt_alloc_ring(bp, ring);
2389 		if (rc)
2390 			return rc;
2391 
2392 		if (bp->tx_push_size) {
2393 			dma_addr_t mapping;
2394 
2395 			/* One pre-allocated DMA buffer to backup
2396 			 * TX push operation
2397 			 */
2398 			txr->tx_push = dma_alloc_coherent(&pdev->dev,
2399 						bp->tx_push_size,
2400 						&txr->tx_push_mapping,
2401 						GFP_KERNEL);
2402 
2403 			if (!txr->tx_push)
2404 				return -ENOMEM;
2405 
2406 			mapping = txr->tx_push_mapping +
2407 				sizeof(struct tx_push_bd);
2408 			txr->data_mapping = cpu_to_le64(mapping);
2409 
2410 			memset(txr->tx_push, 0, sizeof(struct tx_push_bd));
2411 		}
2412 		ring->queue_id = bp->q_info[j].queue_id;
2413 		if (i < bp->tx_nr_rings_xdp)
2414 			continue;
2415 		if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1))
2416 			j++;
2417 	}
2418 	return 0;
2419 }
2420 
2421 static void bnxt_free_cp_rings(struct bnxt *bp)
2422 {
2423 	int i;
2424 
2425 	if (!bp->bnapi)
2426 		return;
2427 
2428 	for (i = 0; i < bp->cp_nr_rings; i++) {
2429 		struct bnxt_napi *bnapi = bp->bnapi[i];
2430 		struct bnxt_cp_ring_info *cpr;
2431 		struct bnxt_ring_struct *ring;
2432 
2433 		if (!bnapi)
2434 			continue;
2435 
2436 		cpr = &bnapi->cp_ring;
2437 		ring = &cpr->cp_ring_struct;
2438 
2439 		bnxt_free_ring(bp, ring);
2440 	}
2441 }
2442 
2443 static int bnxt_alloc_cp_rings(struct bnxt *bp)
2444 {
2445 	int i, rc;
2446 
2447 	for (i = 0; i < bp->cp_nr_rings; i++) {
2448 		struct bnxt_napi *bnapi = bp->bnapi[i];
2449 		struct bnxt_cp_ring_info *cpr;
2450 		struct bnxt_ring_struct *ring;
2451 
2452 		if (!bnapi)
2453 			continue;
2454 
2455 		cpr = &bnapi->cp_ring;
2456 		ring = &cpr->cp_ring_struct;
2457 
2458 		rc = bnxt_alloc_ring(bp, ring);
2459 		if (rc)
2460 			return rc;
2461 	}
2462 	return 0;
2463 }
2464 
2465 static void bnxt_init_ring_struct(struct bnxt *bp)
2466 {
2467 	int i;
2468 
2469 	for (i = 0; i < bp->cp_nr_rings; i++) {
2470 		struct bnxt_napi *bnapi = bp->bnapi[i];
2471 		struct bnxt_cp_ring_info *cpr;
2472 		struct bnxt_rx_ring_info *rxr;
2473 		struct bnxt_tx_ring_info *txr;
2474 		struct bnxt_ring_struct *ring;
2475 
2476 		if (!bnapi)
2477 			continue;
2478 
2479 		cpr = &bnapi->cp_ring;
2480 		ring = &cpr->cp_ring_struct;
2481 		ring->nr_pages = bp->cp_nr_pages;
2482 		ring->page_size = HW_CMPD_RING_SIZE;
2483 		ring->pg_arr = (void **)cpr->cp_desc_ring;
2484 		ring->dma_arr = cpr->cp_desc_mapping;
2485 		ring->vmem_size = 0;
2486 
2487 		rxr = bnapi->rx_ring;
2488 		if (!rxr)
2489 			goto skip_rx;
2490 
2491 		ring = &rxr->rx_ring_struct;
2492 		ring->nr_pages = bp->rx_nr_pages;
2493 		ring->page_size = HW_RXBD_RING_SIZE;
2494 		ring->pg_arr = (void **)rxr->rx_desc_ring;
2495 		ring->dma_arr = rxr->rx_desc_mapping;
2496 		ring->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
2497 		ring->vmem = (void **)&rxr->rx_buf_ring;
2498 
2499 		ring = &rxr->rx_agg_ring_struct;
2500 		ring->nr_pages = bp->rx_agg_nr_pages;
2501 		ring->page_size = HW_RXBD_RING_SIZE;
2502 		ring->pg_arr = (void **)rxr->rx_agg_desc_ring;
2503 		ring->dma_arr = rxr->rx_agg_desc_mapping;
2504 		ring->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
2505 		ring->vmem = (void **)&rxr->rx_agg_ring;
2506 
2507 skip_rx:
2508 		txr = bnapi->tx_ring;
2509 		if (!txr)
2510 			continue;
2511 
2512 		ring = &txr->tx_ring_struct;
2513 		ring->nr_pages = bp->tx_nr_pages;
2514 		ring->page_size = HW_RXBD_RING_SIZE;
2515 		ring->pg_arr = (void **)txr->tx_desc_ring;
2516 		ring->dma_arr = txr->tx_desc_mapping;
2517 		ring->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
2518 		ring->vmem = (void **)&txr->tx_buf_ring;
2519 	}
2520 }
2521 
2522 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
2523 {
2524 	int i;
2525 	u32 prod;
2526 	struct rx_bd **rx_buf_ring;
2527 
2528 	rx_buf_ring = (struct rx_bd **)ring->pg_arr;
2529 	for (i = 0, prod = 0; i < ring->nr_pages; i++) {
2530 		int j;
2531 		struct rx_bd *rxbd;
2532 
2533 		rxbd = rx_buf_ring[i];
2534 		if (!rxbd)
2535 			continue;
2536 
2537 		for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
2538 			rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
2539 			rxbd->rx_bd_opaque = prod;
2540 		}
2541 	}
2542 }
2543 
2544 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
2545 {
2546 	struct net_device *dev = bp->dev;
2547 	struct bnxt_rx_ring_info *rxr;
2548 	struct bnxt_ring_struct *ring;
2549 	u32 prod, type;
2550 	int i;
2551 
2552 	type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
2553 		RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
2554 
2555 	if (NET_IP_ALIGN == 2)
2556 		type |= RX_BD_FLAGS_SOP;
2557 
2558 	rxr = &bp->rx_ring[ring_nr];
2559 	ring = &rxr->rx_ring_struct;
2560 	bnxt_init_rxbd_pages(ring, type);
2561 
2562 	if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) {
2563 		rxr->xdp_prog = bpf_prog_add(bp->xdp_prog, 1);
2564 		if (IS_ERR(rxr->xdp_prog)) {
2565 			int rc = PTR_ERR(rxr->xdp_prog);
2566 
2567 			rxr->xdp_prog = NULL;
2568 			return rc;
2569 		}
2570 	}
2571 	prod = rxr->rx_prod;
2572 	for (i = 0; i < bp->rx_ring_size; i++) {
2573 		if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL) != 0) {
2574 			netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
2575 				    ring_nr, i, bp->rx_ring_size);
2576 			break;
2577 		}
2578 		prod = NEXT_RX(prod);
2579 	}
2580 	rxr->rx_prod = prod;
2581 	ring->fw_ring_id = INVALID_HW_RING_ID;
2582 
2583 	ring = &rxr->rx_agg_ring_struct;
2584 	ring->fw_ring_id = INVALID_HW_RING_ID;
2585 
2586 	if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
2587 		return 0;
2588 
2589 	type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) |
2590 		RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
2591 
2592 	bnxt_init_rxbd_pages(ring, type);
2593 
2594 	prod = rxr->rx_agg_prod;
2595 	for (i = 0; i < bp->rx_agg_ring_size; i++) {
2596 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL) != 0) {
2597 			netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
2598 				    ring_nr, i, bp->rx_ring_size);
2599 			break;
2600 		}
2601 		prod = NEXT_RX_AGG(prod);
2602 	}
2603 	rxr->rx_agg_prod = prod;
2604 
2605 	if (bp->flags & BNXT_FLAG_TPA) {
2606 		if (rxr->rx_tpa) {
2607 			u8 *data;
2608 			dma_addr_t mapping;
2609 
2610 			for (i = 0; i < MAX_TPA; i++) {
2611 				data = __bnxt_alloc_rx_data(bp, &mapping,
2612 							    GFP_KERNEL);
2613 				if (!data)
2614 					return -ENOMEM;
2615 
2616 				rxr->rx_tpa[i].data = data;
2617 				rxr->rx_tpa[i].data_ptr = data + bp->rx_offset;
2618 				rxr->rx_tpa[i].mapping = mapping;
2619 			}
2620 		} else {
2621 			netdev_err(bp->dev, "No resource allocated for LRO/GRO\n");
2622 			return -ENOMEM;
2623 		}
2624 	}
2625 
2626 	return 0;
2627 }
2628 
2629 static void bnxt_init_cp_rings(struct bnxt *bp)
2630 {
2631 	int i;
2632 
2633 	for (i = 0; i < bp->cp_nr_rings; i++) {
2634 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
2635 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
2636 
2637 		ring->fw_ring_id = INVALID_HW_RING_ID;
2638 		cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
2639 		cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
2640 	}
2641 }
2642 
2643 static int bnxt_init_rx_rings(struct bnxt *bp)
2644 {
2645 	int i, rc = 0;
2646 
2647 	if (BNXT_RX_PAGE_MODE(bp)) {
2648 		bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM;
2649 		bp->rx_dma_offset = XDP_PACKET_HEADROOM;
2650 	} else {
2651 		bp->rx_offset = BNXT_RX_OFFSET;
2652 		bp->rx_dma_offset = BNXT_RX_DMA_OFFSET;
2653 	}
2654 
2655 	for (i = 0; i < bp->rx_nr_rings; i++) {
2656 		rc = bnxt_init_one_rx_ring(bp, i);
2657 		if (rc)
2658 			break;
2659 	}
2660 
2661 	return rc;
2662 }
2663 
2664 static int bnxt_init_tx_rings(struct bnxt *bp)
2665 {
2666 	u16 i;
2667 
2668 	bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
2669 				   MAX_SKB_FRAGS + 1);
2670 
2671 	for (i = 0; i < bp->tx_nr_rings; i++) {
2672 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2673 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
2674 
2675 		ring->fw_ring_id = INVALID_HW_RING_ID;
2676 	}
2677 
2678 	return 0;
2679 }
2680 
2681 static void bnxt_free_ring_grps(struct bnxt *bp)
2682 {
2683 	kfree(bp->grp_info);
2684 	bp->grp_info = NULL;
2685 }
2686 
2687 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
2688 {
2689 	int i;
2690 
2691 	if (irq_re_init) {
2692 		bp->grp_info = kcalloc(bp->cp_nr_rings,
2693 				       sizeof(struct bnxt_ring_grp_info),
2694 				       GFP_KERNEL);
2695 		if (!bp->grp_info)
2696 			return -ENOMEM;
2697 	}
2698 	for (i = 0; i < bp->cp_nr_rings; i++) {
2699 		if (irq_re_init)
2700 			bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
2701 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
2702 		bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
2703 		bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
2704 		bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
2705 	}
2706 	return 0;
2707 }
2708 
2709 static void bnxt_free_vnics(struct bnxt *bp)
2710 {
2711 	kfree(bp->vnic_info);
2712 	bp->vnic_info = NULL;
2713 	bp->nr_vnics = 0;
2714 }
2715 
2716 static int bnxt_alloc_vnics(struct bnxt *bp)
2717 {
2718 	int num_vnics = 1;
2719 
2720 #ifdef CONFIG_RFS_ACCEL
2721 	if (bp->flags & BNXT_FLAG_RFS)
2722 		num_vnics += bp->rx_nr_rings;
2723 #endif
2724 
2725 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
2726 		num_vnics++;
2727 
2728 	bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
2729 				GFP_KERNEL);
2730 	if (!bp->vnic_info)
2731 		return -ENOMEM;
2732 
2733 	bp->nr_vnics = num_vnics;
2734 	return 0;
2735 }
2736 
2737 static void bnxt_init_vnics(struct bnxt *bp)
2738 {
2739 	int i;
2740 
2741 	for (i = 0; i < bp->nr_vnics; i++) {
2742 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2743 
2744 		vnic->fw_vnic_id = INVALID_HW_RING_ID;
2745 		vnic->fw_rss_cos_lb_ctx[0] = INVALID_HW_RING_ID;
2746 		vnic->fw_rss_cos_lb_ctx[1] = INVALID_HW_RING_ID;
2747 		vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
2748 
2749 		if (bp->vnic_info[i].rss_hash_key) {
2750 			if (i == 0)
2751 				prandom_bytes(vnic->rss_hash_key,
2752 					      HW_HASH_KEY_SIZE);
2753 			else
2754 				memcpy(vnic->rss_hash_key,
2755 				       bp->vnic_info[0].rss_hash_key,
2756 				       HW_HASH_KEY_SIZE);
2757 		}
2758 	}
2759 }
2760 
2761 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
2762 {
2763 	int pages;
2764 
2765 	pages = ring_size / desc_per_pg;
2766 
2767 	if (!pages)
2768 		return 1;
2769 
2770 	pages++;
2771 
2772 	while (pages & (pages - 1))
2773 		pages++;
2774 
2775 	return pages;
2776 }
2777 
2778 void bnxt_set_tpa_flags(struct bnxt *bp)
2779 {
2780 	bp->flags &= ~BNXT_FLAG_TPA;
2781 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
2782 		return;
2783 	if (bp->dev->features & NETIF_F_LRO)
2784 		bp->flags |= BNXT_FLAG_LRO;
2785 	else if (bp->dev->features & NETIF_F_GRO_HW)
2786 		bp->flags |= BNXT_FLAG_GRO;
2787 }
2788 
2789 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
2790  * be set on entry.
2791  */
2792 void bnxt_set_ring_params(struct bnxt *bp)
2793 {
2794 	u32 ring_size, rx_size, rx_space;
2795 	u32 agg_factor = 0, agg_ring_size = 0;
2796 
2797 	/* 8 for CRC and VLAN */
2798 	rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
2799 
2800 	rx_space = rx_size + NET_SKB_PAD +
2801 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2802 
2803 	bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
2804 	ring_size = bp->rx_ring_size;
2805 	bp->rx_agg_ring_size = 0;
2806 	bp->rx_agg_nr_pages = 0;
2807 
2808 	if (bp->flags & BNXT_FLAG_TPA)
2809 		agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE);
2810 
2811 	bp->flags &= ~BNXT_FLAG_JUMBO;
2812 	if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) {
2813 		u32 jumbo_factor;
2814 
2815 		bp->flags |= BNXT_FLAG_JUMBO;
2816 		jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
2817 		if (jumbo_factor > agg_factor)
2818 			agg_factor = jumbo_factor;
2819 	}
2820 	agg_ring_size = ring_size * agg_factor;
2821 
2822 	if (agg_ring_size) {
2823 		bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
2824 							RX_DESC_CNT);
2825 		if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
2826 			u32 tmp = agg_ring_size;
2827 
2828 			bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
2829 			agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
2830 			netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
2831 				    tmp, agg_ring_size);
2832 		}
2833 		bp->rx_agg_ring_size = agg_ring_size;
2834 		bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
2835 		rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
2836 		rx_space = rx_size + NET_SKB_PAD +
2837 			SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2838 	}
2839 
2840 	bp->rx_buf_use_size = rx_size;
2841 	bp->rx_buf_size = rx_space;
2842 
2843 	bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
2844 	bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
2845 
2846 	ring_size = bp->tx_ring_size;
2847 	bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
2848 	bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
2849 
2850 	ring_size = bp->rx_ring_size * (2 + agg_factor) + bp->tx_ring_size;
2851 	bp->cp_ring_size = ring_size;
2852 
2853 	bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
2854 	if (bp->cp_nr_pages > MAX_CP_PAGES) {
2855 		bp->cp_nr_pages = MAX_CP_PAGES;
2856 		bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
2857 		netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
2858 			    ring_size, bp->cp_ring_size);
2859 	}
2860 	bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
2861 	bp->cp_ring_mask = bp->cp_bit - 1;
2862 }
2863 
2864 /* Changing allocation mode of RX rings.
2865  * TODO: Update when extending xdp_rxq_info to support allocation modes.
2866  */
2867 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode)
2868 {
2869 	if (page_mode) {
2870 		if (bp->dev->mtu > BNXT_MAX_PAGE_MODE_MTU)
2871 			return -EOPNOTSUPP;
2872 		bp->dev->max_mtu =
2873 			min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU);
2874 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
2875 		bp->flags |= BNXT_FLAG_NO_AGG_RINGS | BNXT_FLAG_RX_PAGE_MODE;
2876 		bp->rx_dir = DMA_BIDIRECTIONAL;
2877 		bp->rx_skb_func = bnxt_rx_page_skb;
2878 		/* Disable LRO or GRO_HW */
2879 		netdev_update_features(bp->dev);
2880 	} else {
2881 		bp->dev->max_mtu = bp->max_mtu;
2882 		bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE;
2883 		bp->rx_dir = DMA_FROM_DEVICE;
2884 		bp->rx_skb_func = bnxt_rx_skb;
2885 	}
2886 	return 0;
2887 }
2888 
2889 static void bnxt_free_vnic_attributes(struct bnxt *bp)
2890 {
2891 	int i;
2892 	struct bnxt_vnic_info *vnic;
2893 	struct pci_dev *pdev = bp->pdev;
2894 
2895 	if (!bp->vnic_info)
2896 		return;
2897 
2898 	for (i = 0; i < bp->nr_vnics; i++) {
2899 		vnic = &bp->vnic_info[i];
2900 
2901 		kfree(vnic->fw_grp_ids);
2902 		vnic->fw_grp_ids = NULL;
2903 
2904 		kfree(vnic->uc_list);
2905 		vnic->uc_list = NULL;
2906 
2907 		if (vnic->mc_list) {
2908 			dma_free_coherent(&pdev->dev, vnic->mc_list_size,
2909 					  vnic->mc_list, vnic->mc_list_mapping);
2910 			vnic->mc_list = NULL;
2911 		}
2912 
2913 		if (vnic->rss_table) {
2914 			dma_free_coherent(&pdev->dev, PAGE_SIZE,
2915 					  vnic->rss_table,
2916 					  vnic->rss_table_dma_addr);
2917 			vnic->rss_table = NULL;
2918 		}
2919 
2920 		vnic->rss_hash_key = NULL;
2921 		vnic->flags = 0;
2922 	}
2923 }
2924 
2925 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
2926 {
2927 	int i, rc = 0, size;
2928 	struct bnxt_vnic_info *vnic;
2929 	struct pci_dev *pdev = bp->pdev;
2930 	int max_rings;
2931 
2932 	for (i = 0; i < bp->nr_vnics; i++) {
2933 		vnic = &bp->vnic_info[i];
2934 
2935 		if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
2936 			int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
2937 
2938 			if (mem_size > 0) {
2939 				vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
2940 				if (!vnic->uc_list) {
2941 					rc = -ENOMEM;
2942 					goto out;
2943 				}
2944 			}
2945 		}
2946 
2947 		if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
2948 			vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
2949 			vnic->mc_list =
2950 				dma_alloc_coherent(&pdev->dev,
2951 						   vnic->mc_list_size,
2952 						   &vnic->mc_list_mapping,
2953 						   GFP_KERNEL);
2954 			if (!vnic->mc_list) {
2955 				rc = -ENOMEM;
2956 				goto out;
2957 			}
2958 		}
2959 
2960 		if (vnic->flags & BNXT_VNIC_RSS_FLAG)
2961 			max_rings = bp->rx_nr_rings;
2962 		else
2963 			max_rings = 1;
2964 
2965 		vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
2966 		if (!vnic->fw_grp_ids) {
2967 			rc = -ENOMEM;
2968 			goto out;
2969 		}
2970 
2971 		if ((bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
2972 		    !(vnic->flags & BNXT_VNIC_RSS_FLAG))
2973 			continue;
2974 
2975 		/* Allocate rss table and hash key */
2976 		vnic->rss_table = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
2977 						     &vnic->rss_table_dma_addr,
2978 						     GFP_KERNEL);
2979 		if (!vnic->rss_table) {
2980 			rc = -ENOMEM;
2981 			goto out;
2982 		}
2983 
2984 		size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
2985 
2986 		vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
2987 		vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
2988 	}
2989 	return 0;
2990 
2991 out:
2992 	return rc;
2993 }
2994 
2995 static void bnxt_free_hwrm_resources(struct bnxt *bp)
2996 {
2997 	struct pci_dev *pdev = bp->pdev;
2998 
2999 	dma_free_coherent(&pdev->dev, PAGE_SIZE, bp->hwrm_cmd_resp_addr,
3000 			  bp->hwrm_cmd_resp_dma_addr);
3001 
3002 	bp->hwrm_cmd_resp_addr = NULL;
3003 	if (bp->hwrm_dbg_resp_addr) {
3004 		dma_free_coherent(&pdev->dev, HWRM_DBG_REG_BUF_SIZE,
3005 				  bp->hwrm_dbg_resp_addr,
3006 				  bp->hwrm_dbg_resp_dma_addr);
3007 
3008 		bp->hwrm_dbg_resp_addr = NULL;
3009 	}
3010 }
3011 
3012 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
3013 {
3014 	struct pci_dev *pdev = bp->pdev;
3015 
3016 	bp->hwrm_cmd_resp_addr = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
3017 						   &bp->hwrm_cmd_resp_dma_addr,
3018 						   GFP_KERNEL);
3019 	if (!bp->hwrm_cmd_resp_addr)
3020 		return -ENOMEM;
3021 	bp->hwrm_dbg_resp_addr = dma_alloc_coherent(&pdev->dev,
3022 						    HWRM_DBG_REG_BUF_SIZE,
3023 						    &bp->hwrm_dbg_resp_dma_addr,
3024 						    GFP_KERNEL);
3025 	if (!bp->hwrm_dbg_resp_addr)
3026 		netdev_warn(bp->dev, "fail to alloc debug register dma mem\n");
3027 
3028 	return 0;
3029 }
3030 
3031 static void bnxt_free_hwrm_short_cmd_req(struct bnxt *bp)
3032 {
3033 	if (bp->hwrm_short_cmd_req_addr) {
3034 		struct pci_dev *pdev = bp->pdev;
3035 
3036 		dma_free_coherent(&pdev->dev, BNXT_HWRM_MAX_REQ_LEN,
3037 				  bp->hwrm_short_cmd_req_addr,
3038 				  bp->hwrm_short_cmd_req_dma_addr);
3039 		bp->hwrm_short_cmd_req_addr = NULL;
3040 	}
3041 }
3042 
3043 static int bnxt_alloc_hwrm_short_cmd_req(struct bnxt *bp)
3044 {
3045 	struct pci_dev *pdev = bp->pdev;
3046 
3047 	bp->hwrm_short_cmd_req_addr =
3048 		dma_alloc_coherent(&pdev->dev, BNXT_HWRM_MAX_REQ_LEN,
3049 				   &bp->hwrm_short_cmd_req_dma_addr,
3050 				   GFP_KERNEL);
3051 	if (!bp->hwrm_short_cmd_req_addr)
3052 		return -ENOMEM;
3053 
3054 	return 0;
3055 }
3056 
3057 static void bnxt_free_stats(struct bnxt *bp)
3058 {
3059 	u32 size, i;
3060 	struct pci_dev *pdev = bp->pdev;
3061 
3062 	if (bp->hw_rx_port_stats) {
3063 		dma_free_coherent(&pdev->dev, bp->hw_port_stats_size,
3064 				  bp->hw_rx_port_stats,
3065 				  bp->hw_rx_port_stats_map);
3066 		bp->hw_rx_port_stats = NULL;
3067 		bp->flags &= ~BNXT_FLAG_PORT_STATS;
3068 	}
3069 
3070 	if (!bp->bnapi)
3071 		return;
3072 
3073 	size = sizeof(struct ctx_hw_stats);
3074 
3075 	for (i = 0; i < bp->cp_nr_rings; i++) {
3076 		struct bnxt_napi *bnapi = bp->bnapi[i];
3077 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3078 
3079 		if (cpr->hw_stats) {
3080 			dma_free_coherent(&pdev->dev, size, cpr->hw_stats,
3081 					  cpr->hw_stats_map);
3082 			cpr->hw_stats = NULL;
3083 		}
3084 	}
3085 }
3086 
3087 static int bnxt_alloc_stats(struct bnxt *bp)
3088 {
3089 	u32 size, i;
3090 	struct pci_dev *pdev = bp->pdev;
3091 
3092 	size = sizeof(struct ctx_hw_stats);
3093 
3094 	for (i = 0; i < bp->cp_nr_rings; i++) {
3095 		struct bnxt_napi *bnapi = bp->bnapi[i];
3096 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3097 
3098 		cpr->hw_stats = dma_alloc_coherent(&pdev->dev, size,
3099 						   &cpr->hw_stats_map,
3100 						   GFP_KERNEL);
3101 		if (!cpr->hw_stats)
3102 			return -ENOMEM;
3103 
3104 		cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
3105 	}
3106 
3107 	if (BNXT_PF(bp) && bp->chip_num != CHIP_NUM_58700) {
3108 		bp->hw_port_stats_size = sizeof(struct rx_port_stats) +
3109 					 sizeof(struct tx_port_stats) + 1024;
3110 
3111 		bp->hw_rx_port_stats =
3112 			dma_alloc_coherent(&pdev->dev, bp->hw_port_stats_size,
3113 					   &bp->hw_rx_port_stats_map,
3114 					   GFP_KERNEL);
3115 		if (!bp->hw_rx_port_stats)
3116 			return -ENOMEM;
3117 
3118 		bp->hw_tx_port_stats = (void *)(bp->hw_rx_port_stats + 1) +
3119 				       512;
3120 		bp->hw_tx_port_stats_map = bp->hw_rx_port_stats_map +
3121 					   sizeof(struct rx_port_stats) + 512;
3122 		bp->flags |= BNXT_FLAG_PORT_STATS;
3123 	}
3124 	return 0;
3125 }
3126 
3127 static void bnxt_clear_ring_indices(struct bnxt *bp)
3128 {
3129 	int i;
3130 
3131 	if (!bp->bnapi)
3132 		return;
3133 
3134 	for (i = 0; i < bp->cp_nr_rings; i++) {
3135 		struct bnxt_napi *bnapi = bp->bnapi[i];
3136 		struct bnxt_cp_ring_info *cpr;
3137 		struct bnxt_rx_ring_info *rxr;
3138 		struct bnxt_tx_ring_info *txr;
3139 
3140 		if (!bnapi)
3141 			continue;
3142 
3143 		cpr = &bnapi->cp_ring;
3144 		cpr->cp_raw_cons = 0;
3145 
3146 		txr = bnapi->tx_ring;
3147 		if (txr) {
3148 			txr->tx_prod = 0;
3149 			txr->tx_cons = 0;
3150 		}
3151 
3152 		rxr = bnapi->rx_ring;
3153 		if (rxr) {
3154 			rxr->rx_prod = 0;
3155 			rxr->rx_agg_prod = 0;
3156 			rxr->rx_sw_agg_prod = 0;
3157 			rxr->rx_next_cons = 0;
3158 		}
3159 	}
3160 }
3161 
3162 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
3163 {
3164 #ifdef CONFIG_RFS_ACCEL
3165 	int i;
3166 
3167 	/* Under rtnl_lock and all our NAPIs have been disabled.  It's
3168 	 * safe to delete the hash table.
3169 	 */
3170 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
3171 		struct hlist_head *head;
3172 		struct hlist_node *tmp;
3173 		struct bnxt_ntuple_filter *fltr;
3174 
3175 		head = &bp->ntp_fltr_hash_tbl[i];
3176 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
3177 			hlist_del(&fltr->hash);
3178 			kfree(fltr);
3179 		}
3180 	}
3181 	if (irq_reinit) {
3182 		kfree(bp->ntp_fltr_bmap);
3183 		bp->ntp_fltr_bmap = NULL;
3184 	}
3185 	bp->ntp_fltr_count = 0;
3186 #endif
3187 }
3188 
3189 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
3190 {
3191 #ifdef CONFIG_RFS_ACCEL
3192 	int i, rc = 0;
3193 
3194 	if (!(bp->flags & BNXT_FLAG_RFS))
3195 		return 0;
3196 
3197 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
3198 		INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
3199 
3200 	bp->ntp_fltr_count = 0;
3201 	bp->ntp_fltr_bmap = kcalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR),
3202 				    sizeof(long),
3203 				    GFP_KERNEL);
3204 
3205 	if (!bp->ntp_fltr_bmap)
3206 		rc = -ENOMEM;
3207 
3208 	return rc;
3209 #else
3210 	return 0;
3211 #endif
3212 }
3213 
3214 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
3215 {
3216 	bnxt_free_vnic_attributes(bp);
3217 	bnxt_free_tx_rings(bp);
3218 	bnxt_free_rx_rings(bp);
3219 	bnxt_free_cp_rings(bp);
3220 	bnxt_free_ntp_fltrs(bp, irq_re_init);
3221 	if (irq_re_init) {
3222 		bnxt_free_stats(bp);
3223 		bnxt_free_ring_grps(bp);
3224 		bnxt_free_vnics(bp);
3225 		kfree(bp->tx_ring_map);
3226 		bp->tx_ring_map = NULL;
3227 		kfree(bp->tx_ring);
3228 		bp->tx_ring = NULL;
3229 		kfree(bp->rx_ring);
3230 		bp->rx_ring = NULL;
3231 		kfree(bp->bnapi);
3232 		bp->bnapi = NULL;
3233 	} else {
3234 		bnxt_clear_ring_indices(bp);
3235 	}
3236 }
3237 
3238 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
3239 {
3240 	int i, j, rc, size, arr_size;
3241 	void *bnapi;
3242 
3243 	if (irq_re_init) {
3244 		/* Allocate bnapi mem pointer array and mem block for
3245 		 * all queues
3246 		 */
3247 		arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
3248 				bp->cp_nr_rings);
3249 		size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
3250 		bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
3251 		if (!bnapi)
3252 			return -ENOMEM;
3253 
3254 		bp->bnapi = bnapi;
3255 		bnapi += arr_size;
3256 		for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
3257 			bp->bnapi[i] = bnapi;
3258 			bp->bnapi[i]->index = i;
3259 			bp->bnapi[i]->bp = bp;
3260 		}
3261 
3262 		bp->rx_ring = kcalloc(bp->rx_nr_rings,
3263 				      sizeof(struct bnxt_rx_ring_info),
3264 				      GFP_KERNEL);
3265 		if (!bp->rx_ring)
3266 			return -ENOMEM;
3267 
3268 		for (i = 0; i < bp->rx_nr_rings; i++) {
3269 			bp->rx_ring[i].bnapi = bp->bnapi[i];
3270 			bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
3271 		}
3272 
3273 		bp->tx_ring = kcalloc(bp->tx_nr_rings,
3274 				      sizeof(struct bnxt_tx_ring_info),
3275 				      GFP_KERNEL);
3276 		if (!bp->tx_ring)
3277 			return -ENOMEM;
3278 
3279 		bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16),
3280 					  GFP_KERNEL);
3281 
3282 		if (!bp->tx_ring_map)
3283 			return -ENOMEM;
3284 
3285 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
3286 			j = 0;
3287 		else
3288 			j = bp->rx_nr_rings;
3289 
3290 		for (i = 0; i < bp->tx_nr_rings; i++, j++) {
3291 			bp->tx_ring[i].bnapi = bp->bnapi[j];
3292 			bp->bnapi[j]->tx_ring = &bp->tx_ring[i];
3293 			bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i;
3294 			if (i >= bp->tx_nr_rings_xdp) {
3295 				bp->tx_ring[i].txq_index = i -
3296 					bp->tx_nr_rings_xdp;
3297 				bp->bnapi[j]->tx_int = bnxt_tx_int;
3298 			} else {
3299 				bp->bnapi[j]->flags |= BNXT_NAPI_FLAG_XDP;
3300 				bp->bnapi[j]->tx_int = bnxt_tx_int_xdp;
3301 			}
3302 		}
3303 
3304 		rc = bnxt_alloc_stats(bp);
3305 		if (rc)
3306 			goto alloc_mem_err;
3307 
3308 		rc = bnxt_alloc_ntp_fltrs(bp);
3309 		if (rc)
3310 			goto alloc_mem_err;
3311 
3312 		rc = bnxt_alloc_vnics(bp);
3313 		if (rc)
3314 			goto alloc_mem_err;
3315 	}
3316 
3317 	bnxt_init_ring_struct(bp);
3318 
3319 	rc = bnxt_alloc_rx_rings(bp);
3320 	if (rc)
3321 		goto alloc_mem_err;
3322 
3323 	rc = bnxt_alloc_tx_rings(bp);
3324 	if (rc)
3325 		goto alloc_mem_err;
3326 
3327 	rc = bnxt_alloc_cp_rings(bp);
3328 	if (rc)
3329 		goto alloc_mem_err;
3330 
3331 	bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
3332 				  BNXT_VNIC_UCAST_FLAG;
3333 	rc = bnxt_alloc_vnic_attributes(bp);
3334 	if (rc)
3335 		goto alloc_mem_err;
3336 	return 0;
3337 
3338 alloc_mem_err:
3339 	bnxt_free_mem(bp, true);
3340 	return rc;
3341 }
3342 
3343 static void bnxt_disable_int(struct bnxt *bp)
3344 {
3345 	int i;
3346 
3347 	if (!bp->bnapi)
3348 		return;
3349 
3350 	for (i = 0; i < bp->cp_nr_rings; i++) {
3351 		struct bnxt_napi *bnapi = bp->bnapi[i];
3352 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3353 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3354 
3355 		if (ring->fw_ring_id != INVALID_HW_RING_ID)
3356 			BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
3357 	}
3358 }
3359 
3360 static void bnxt_disable_int_sync(struct bnxt *bp)
3361 {
3362 	int i;
3363 
3364 	atomic_inc(&bp->intr_sem);
3365 
3366 	bnxt_disable_int(bp);
3367 	for (i = 0; i < bp->cp_nr_rings; i++)
3368 		synchronize_irq(bp->irq_tbl[i].vector);
3369 }
3370 
3371 static void bnxt_enable_int(struct bnxt *bp)
3372 {
3373 	int i;
3374 
3375 	atomic_set(&bp->intr_sem, 0);
3376 	for (i = 0; i < bp->cp_nr_rings; i++) {
3377 		struct bnxt_napi *bnapi = bp->bnapi[i];
3378 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3379 
3380 		BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
3381 	}
3382 }
3383 
3384 void bnxt_hwrm_cmd_hdr_init(struct bnxt *bp, void *request, u16 req_type,
3385 			    u16 cmpl_ring, u16 target_id)
3386 {
3387 	struct input *req = request;
3388 
3389 	req->req_type = cpu_to_le16(req_type);
3390 	req->cmpl_ring = cpu_to_le16(cmpl_ring);
3391 	req->target_id = cpu_to_le16(target_id);
3392 	req->resp_addr = cpu_to_le64(bp->hwrm_cmd_resp_dma_addr);
3393 }
3394 
3395 static int bnxt_hwrm_do_send_msg(struct bnxt *bp, void *msg, u32 msg_len,
3396 				 int timeout, bool silent)
3397 {
3398 	int i, intr_process, rc, tmo_count;
3399 	struct input *req = msg;
3400 	u32 *data = msg;
3401 	__le32 *resp_len, *valid;
3402 	u16 cp_ring_id, len = 0;
3403 	struct hwrm_err_output *resp = bp->hwrm_cmd_resp_addr;
3404 	u16 max_req_len = BNXT_HWRM_MAX_REQ_LEN;
3405 	struct hwrm_short_input short_input = {0};
3406 
3407 	req->seq_id = cpu_to_le16(bp->hwrm_cmd_seq++);
3408 	memset(resp, 0, PAGE_SIZE);
3409 	cp_ring_id = le16_to_cpu(req->cmpl_ring);
3410 	intr_process = (cp_ring_id == INVALID_HW_RING_ID) ? 0 : 1;
3411 
3412 	if (bp->flags & BNXT_FLAG_SHORT_CMD) {
3413 		void *short_cmd_req = bp->hwrm_short_cmd_req_addr;
3414 
3415 		memcpy(short_cmd_req, req, msg_len);
3416 		memset(short_cmd_req + msg_len, 0, BNXT_HWRM_MAX_REQ_LEN -
3417 						   msg_len);
3418 
3419 		short_input.req_type = req->req_type;
3420 		short_input.signature =
3421 				cpu_to_le16(SHORT_REQ_SIGNATURE_SHORT_CMD);
3422 		short_input.size = cpu_to_le16(msg_len);
3423 		short_input.req_addr =
3424 			cpu_to_le64(bp->hwrm_short_cmd_req_dma_addr);
3425 
3426 		data = (u32 *)&short_input;
3427 		msg_len = sizeof(short_input);
3428 
3429 		/* Sync memory write before updating doorbell */
3430 		wmb();
3431 
3432 		max_req_len = BNXT_HWRM_SHORT_REQ_LEN;
3433 	}
3434 
3435 	/* Write request msg to hwrm channel */
3436 	__iowrite32_copy(bp->bar0, data, msg_len / 4);
3437 
3438 	for (i = msg_len; i < max_req_len; i += 4)
3439 		writel(0, bp->bar0 + i);
3440 
3441 	/* currently supports only one outstanding message */
3442 	if (intr_process)
3443 		bp->hwrm_intr_seq_id = le16_to_cpu(req->seq_id);
3444 
3445 	/* Ring channel doorbell */
3446 	writel(1, bp->bar0 + 0x100);
3447 
3448 	if (!timeout)
3449 		timeout = DFLT_HWRM_CMD_TIMEOUT;
3450 
3451 	i = 0;
3452 	tmo_count = timeout * 40;
3453 	if (intr_process) {
3454 		/* Wait until hwrm response cmpl interrupt is processed */
3455 		while (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID &&
3456 		       i++ < tmo_count) {
3457 			usleep_range(25, 40);
3458 		}
3459 
3460 		if (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID) {
3461 			netdev_err(bp->dev, "Resp cmpl intr err msg: 0x%x\n",
3462 				   le16_to_cpu(req->req_type));
3463 			return -1;
3464 		}
3465 	} else {
3466 		/* Check if response len is updated */
3467 		resp_len = bp->hwrm_cmd_resp_addr + HWRM_RESP_LEN_OFFSET;
3468 		for (i = 0; i < tmo_count; i++) {
3469 			len = (le32_to_cpu(*resp_len) & HWRM_RESP_LEN_MASK) >>
3470 			      HWRM_RESP_LEN_SFT;
3471 			if (len)
3472 				break;
3473 			usleep_range(25, 40);
3474 		}
3475 
3476 		if (i >= tmo_count) {
3477 			netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d\n",
3478 				   timeout, le16_to_cpu(req->req_type),
3479 				   le16_to_cpu(req->seq_id), len);
3480 			return -1;
3481 		}
3482 
3483 		/* Last word of resp contains valid bit */
3484 		valid = bp->hwrm_cmd_resp_addr + len - 4;
3485 		for (i = 0; i < 5; i++) {
3486 			if (le32_to_cpu(*valid) & HWRM_RESP_VALID_MASK)
3487 				break;
3488 			udelay(1);
3489 		}
3490 
3491 		if (i >= 5) {
3492 			netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d v:%d\n",
3493 				   timeout, le16_to_cpu(req->req_type),
3494 				   le16_to_cpu(req->seq_id), len, *valid);
3495 			return -1;
3496 		}
3497 	}
3498 
3499 	rc = le16_to_cpu(resp->error_code);
3500 	if (rc && !silent)
3501 		netdev_err(bp->dev, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n",
3502 			   le16_to_cpu(resp->req_type),
3503 			   le16_to_cpu(resp->seq_id), rc);
3504 	return rc;
3505 }
3506 
3507 int _hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
3508 {
3509 	return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, false);
3510 }
3511 
3512 int _hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len,
3513 			      int timeout)
3514 {
3515 	return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true);
3516 }
3517 
3518 int hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
3519 {
3520 	int rc;
3521 
3522 	mutex_lock(&bp->hwrm_cmd_lock);
3523 	rc = _hwrm_send_message(bp, msg, msg_len, timeout);
3524 	mutex_unlock(&bp->hwrm_cmd_lock);
3525 	return rc;
3526 }
3527 
3528 int hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len,
3529 			     int timeout)
3530 {
3531 	int rc;
3532 
3533 	mutex_lock(&bp->hwrm_cmd_lock);
3534 	rc = bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true);
3535 	mutex_unlock(&bp->hwrm_cmd_lock);
3536 	return rc;
3537 }
3538 
3539 int bnxt_hwrm_func_rgtr_async_events(struct bnxt *bp, unsigned long *bmap,
3540 				     int bmap_size)
3541 {
3542 	struct hwrm_func_drv_rgtr_input req = {0};
3543 	DECLARE_BITMAP(async_events_bmap, 256);
3544 	u32 *events = (u32 *)async_events_bmap;
3545 	int i;
3546 
3547 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
3548 
3549 	req.enables =
3550 		cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
3551 
3552 	memset(async_events_bmap, 0, sizeof(async_events_bmap));
3553 	for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++)
3554 		__set_bit(bnxt_async_events_arr[i], async_events_bmap);
3555 
3556 	if (bmap && bmap_size) {
3557 		for (i = 0; i < bmap_size; i++) {
3558 			if (test_bit(i, bmap))
3559 				__set_bit(i, async_events_bmap);
3560 		}
3561 	}
3562 
3563 	for (i = 0; i < 8; i++)
3564 		req.async_event_fwd[i] |= cpu_to_le32(events[i]);
3565 
3566 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3567 }
3568 
3569 static int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp)
3570 {
3571 	struct hwrm_func_drv_rgtr_input req = {0};
3572 
3573 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
3574 
3575 	req.enables =
3576 		cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
3577 			    FUNC_DRV_RGTR_REQ_ENABLES_VER);
3578 
3579 	req.os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX);
3580 	req.ver_maj = DRV_VER_MAJ;
3581 	req.ver_min = DRV_VER_MIN;
3582 	req.ver_upd = DRV_VER_UPD;
3583 
3584 	if (BNXT_PF(bp)) {
3585 		u32 data[8];
3586 		int i;
3587 
3588 		memset(data, 0, sizeof(data));
3589 		for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) {
3590 			u16 cmd = bnxt_vf_req_snif[i];
3591 			unsigned int bit, idx;
3592 
3593 			idx = cmd / 32;
3594 			bit = cmd % 32;
3595 			data[idx] |= 1 << bit;
3596 		}
3597 
3598 		for (i = 0; i < 8; i++)
3599 			req.vf_req_fwd[i] = cpu_to_le32(data[i]);
3600 
3601 		req.enables |=
3602 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
3603 	}
3604 
3605 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3606 }
3607 
3608 static int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
3609 {
3610 	struct hwrm_func_drv_unrgtr_input req = {0};
3611 
3612 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_UNRGTR, -1, -1);
3613 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3614 }
3615 
3616 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
3617 {
3618 	u32 rc = 0;
3619 	struct hwrm_tunnel_dst_port_free_input req = {0};
3620 
3621 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_FREE, -1, -1);
3622 	req.tunnel_type = tunnel_type;
3623 
3624 	switch (tunnel_type) {
3625 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
3626 		req.tunnel_dst_port_id = bp->vxlan_fw_dst_port_id;
3627 		break;
3628 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
3629 		req.tunnel_dst_port_id = bp->nge_fw_dst_port_id;
3630 		break;
3631 	default:
3632 		break;
3633 	}
3634 
3635 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3636 	if (rc)
3637 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
3638 			   rc);
3639 	return rc;
3640 }
3641 
3642 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
3643 					   u8 tunnel_type)
3644 {
3645 	u32 rc = 0;
3646 	struct hwrm_tunnel_dst_port_alloc_input req = {0};
3647 	struct hwrm_tunnel_dst_port_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3648 
3649 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_ALLOC, -1, -1);
3650 
3651 	req.tunnel_type = tunnel_type;
3652 	req.tunnel_dst_port_val = port;
3653 
3654 	mutex_lock(&bp->hwrm_cmd_lock);
3655 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3656 	if (rc) {
3657 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
3658 			   rc);
3659 		goto err_out;
3660 	}
3661 
3662 	switch (tunnel_type) {
3663 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN:
3664 		bp->vxlan_fw_dst_port_id = resp->tunnel_dst_port_id;
3665 		break;
3666 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE:
3667 		bp->nge_fw_dst_port_id = resp->tunnel_dst_port_id;
3668 		break;
3669 	default:
3670 		break;
3671 	}
3672 
3673 err_out:
3674 	mutex_unlock(&bp->hwrm_cmd_lock);
3675 	return rc;
3676 }
3677 
3678 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
3679 {
3680 	struct hwrm_cfa_l2_set_rx_mask_input req = {0};
3681 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3682 
3683 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_SET_RX_MASK, -1, -1);
3684 	req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
3685 
3686 	req.num_mc_entries = cpu_to_le32(vnic->mc_list_count);
3687 	req.mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
3688 	req.mask = cpu_to_le32(vnic->rx_mask);
3689 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3690 }
3691 
3692 #ifdef CONFIG_RFS_ACCEL
3693 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
3694 					    struct bnxt_ntuple_filter *fltr)
3695 {
3696 	struct hwrm_cfa_ntuple_filter_free_input req = {0};
3697 
3698 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_FREE, -1, -1);
3699 	req.ntuple_filter_id = fltr->filter_id;
3700 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3701 }
3702 
3703 #define BNXT_NTP_FLTR_FLAGS					\
3704 	(CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID |	\
3705 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE |	\
3706 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR |	\
3707 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE |	\
3708 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR |	\
3709 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK |	\
3710 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR |	\
3711 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK |	\
3712 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL |	\
3713 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT |		\
3714 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK |	\
3715 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT |		\
3716 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK |	\
3717 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
3718 
3719 #define BNXT_NTP_TUNNEL_FLTR_FLAG				\
3720 		CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE
3721 
3722 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
3723 					     struct bnxt_ntuple_filter *fltr)
3724 {
3725 	int rc = 0;
3726 	struct hwrm_cfa_ntuple_filter_alloc_input req = {0};
3727 	struct hwrm_cfa_ntuple_filter_alloc_output *resp =
3728 		bp->hwrm_cmd_resp_addr;
3729 	struct flow_keys *keys = &fltr->fkeys;
3730 	struct bnxt_vnic_info *vnic = &bp->vnic_info[fltr->rxq + 1];
3731 
3732 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_ALLOC, -1, -1);
3733 	req.l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx];
3734 
3735 	req.enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
3736 
3737 	req.ethertype = htons(ETH_P_IP);
3738 	memcpy(req.src_macaddr, fltr->src_mac_addr, ETH_ALEN);
3739 	req.ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
3740 	req.ip_protocol = keys->basic.ip_proto;
3741 
3742 	if (keys->basic.n_proto == htons(ETH_P_IPV6)) {
3743 		int i;
3744 
3745 		req.ethertype = htons(ETH_P_IPV6);
3746 		req.ip_addr_type =
3747 			CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6;
3748 		*(struct in6_addr *)&req.src_ipaddr[0] =
3749 			keys->addrs.v6addrs.src;
3750 		*(struct in6_addr *)&req.dst_ipaddr[0] =
3751 			keys->addrs.v6addrs.dst;
3752 		for (i = 0; i < 4; i++) {
3753 			req.src_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
3754 			req.dst_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
3755 		}
3756 	} else {
3757 		req.src_ipaddr[0] = keys->addrs.v4addrs.src;
3758 		req.src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
3759 		req.dst_ipaddr[0] = keys->addrs.v4addrs.dst;
3760 		req.dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
3761 	}
3762 	if (keys->control.flags & FLOW_DIS_ENCAPSULATION) {
3763 		req.enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG);
3764 		req.tunnel_type =
3765 			CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL;
3766 	}
3767 
3768 	req.src_port = keys->ports.src;
3769 	req.src_port_mask = cpu_to_be16(0xffff);
3770 	req.dst_port = keys->ports.dst;
3771 	req.dst_port_mask = cpu_to_be16(0xffff);
3772 
3773 	req.dst_id = cpu_to_le16(vnic->fw_vnic_id);
3774 	mutex_lock(&bp->hwrm_cmd_lock);
3775 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3776 	if (!rc)
3777 		fltr->filter_id = resp->ntuple_filter_id;
3778 	mutex_unlock(&bp->hwrm_cmd_lock);
3779 	return rc;
3780 }
3781 #endif
3782 
3783 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
3784 				     u8 *mac_addr)
3785 {
3786 	u32 rc = 0;
3787 	struct hwrm_cfa_l2_filter_alloc_input req = {0};
3788 	struct hwrm_cfa_l2_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3789 
3790 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_ALLOC, -1, -1);
3791 	req.flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX);
3792 	if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
3793 		req.flags |=
3794 			cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
3795 	req.dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
3796 	req.enables =
3797 		cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
3798 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
3799 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
3800 	memcpy(req.l2_addr, mac_addr, ETH_ALEN);
3801 	req.l2_addr_mask[0] = 0xff;
3802 	req.l2_addr_mask[1] = 0xff;
3803 	req.l2_addr_mask[2] = 0xff;
3804 	req.l2_addr_mask[3] = 0xff;
3805 	req.l2_addr_mask[4] = 0xff;
3806 	req.l2_addr_mask[5] = 0xff;
3807 
3808 	mutex_lock(&bp->hwrm_cmd_lock);
3809 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3810 	if (!rc)
3811 		bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
3812 							resp->l2_filter_id;
3813 	mutex_unlock(&bp->hwrm_cmd_lock);
3814 	return rc;
3815 }
3816 
3817 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
3818 {
3819 	u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
3820 	int rc = 0;
3821 
3822 	/* Any associated ntuple filters will also be cleared by firmware. */
3823 	mutex_lock(&bp->hwrm_cmd_lock);
3824 	for (i = 0; i < num_of_vnics; i++) {
3825 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3826 
3827 		for (j = 0; j < vnic->uc_filter_count; j++) {
3828 			struct hwrm_cfa_l2_filter_free_input req = {0};
3829 
3830 			bnxt_hwrm_cmd_hdr_init(bp, &req,
3831 					       HWRM_CFA_L2_FILTER_FREE, -1, -1);
3832 
3833 			req.l2_filter_id = vnic->fw_l2_filter_id[j];
3834 
3835 			rc = _hwrm_send_message(bp, &req, sizeof(req),
3836 						HWRM_CMD_TIMEOUT);
3837 		}
3838 		vnic->uc_filter_count = 0;
3839 	}
3840 	mutex_unlock(&bp->hwrm_cmd_lock);
3841 
3842 	return rc;
3843 }
3844 
3845 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
3846 {
3847 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3848 	struct hwrm_vnic_tpa_cfg_input req = {0};
3849 
3850 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_TPA_CFG, -1, -1);
3851 
3852 	if (tpa_flags) {
3853 		u16 mss = bp->dev->mtu - 40;
3854 		u32 nsegs, n, segs = 0, flags;
3855 
3856 		flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
3857 			VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
3858 			VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
3859 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
3860 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
3861 		if (tpa_flags & BNXT_FLAG_GRO)
3862 			flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
3863 
3864 		req.flags = cpu_to_le32(flags);
3865 
3866 		req.enables =
3867 			cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
3868 				    VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
3869 				    VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
3870 
3871 		/* Number of segs are log2 units, and first packet is not
3872 		 * included as part of this units.
3873 		 */
3874 		if (mss <= BNXT_RX_PAGE_SIZE) {
3875 			n = BNXT_RX_PAGE_SIZE / mss;
3876 			nsegs = (MAX_SKB_FRAGS - 1) * n;
3877 		} else {
3878 			n = mss / BNXT_RX_PAGE_SIZE;
3879 			if (mss & (BNXT_RX_PAGE_SIZE - 1))
3880 				n++;
3881 			nsegs = (MAX_SKB_FRAGS - n) / n;
3882 		}
3883 
3884 		segs = ilog2(nsegs);
3885 		req.max_agg_segs = cpu_to_le16(segs);
3886 		req.max_aggs = cpu_to_le16(VNIC_TPA_CFG_REQ_MAX_AGGS_MAX);
3887 
3888 		req.min_agg_len = cpu_to_le32(512);
3889 	}
3890 	req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
3891 
3892 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3893 }
3894 
3895 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
3896 {
3897 	u32 i, j, max_rings;
3898 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3899 	struct hwrm_vnic_rss_cfg_input req = {0};
3900 
3901 	if (vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID)
3902 		return 0;
3903 
3904 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1);
3905 	if (set_rss) {
3906 		req.hash_type = cpu_to_le32(bp->rss_hash_cfg);
3907 		if (vnic->flags & BNXT_VNIC_RSS_FLAG) {
3908 			if (BNXT_CHIP_TYPE_NITRO_A0(bp))
3909 				max_rings = bp->rx_nr_rings - 1;
3910 			else
3911 				max_rings = bp->rx_nr_rings;
3912 		} else {
3913 			max_rings = 1;
3914 		}
3915 
3916 		/* Fill the RSS indirection table with ring group ids */
3917 		for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++, j++) {
3918 			if (j == max_rings)
3919 				j = 0;
3920 			vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
3921 		}
3922 
3923 		req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
3924 		req.hash_key_tbl_addr =
3925 			cpu_to_le64(vnic->rss_hash_key_dma_addr);
3926 	}
3927 	req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
3928 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3929 }
3930 
3931 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
3932 {
3933 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3934 	struct hwrm_vnic_plcmodes_cfg_input req = {0};
3935 
3936 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_PLCMODES_CFG, -1, -1);
3937 	req.flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT |
3938 				VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
3939 				VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
3940 	req.enables =
3941 		cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID |
3942 			    VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
3943 	/* thresholds not implemented in firmware yet */
3944 	req.jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
3945 	req.hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
3946 	req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
3947 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3948 }
3949 
3950 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id,
3951 					u16 ctx_idx)
3952 {
3953 	struct hwrm_vnic_rss_cos_lb_ctx_free_input req = {0};
3954 
3955 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_FREE, -1, -1);
3956 	req.rss_cos_lb_ctx_id =
3957 		cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]);
3958 
3959 	hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3960 	bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID;
3961 }
3962 
3963 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
3964 {
3965 	int i, j;
3966 
3967 	for (i = 0; i < bp->nr_vnics; i++) {
3968 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3969 
3970 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) {
3971 			if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID)
3972 				bnxt_hwrm_vnic_ctx_free_one(bp, i, j);
3973 		}
3974 	}
3975 	bp->rsscos_nr_ctxs = 0;
3976 }
3977 
3978 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx)
3979 {
3980 	int rc;
3981 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_input req = {0};
3982 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp =
3983 						bp->hwrm_cmd_resp_addr;
3984 
3985 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC, -1,
3986 			       -1);
3987 
3988 	mutex_lock(&bp->hwrm_cmd_lock);
3989 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3990 	if (!rc)
3991 		bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] =
3992 			le16_to_cpu(resp->rss_cos_lb_ctx_id);
3993 	mutex_unlock(&bp->hwrm_cmd_lock);
3994 
3995 	return rc;
3996 }
3997 
3998 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
3999 {
4000 	unsigned int ring = 0, grp_idx;
4001 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4002 	struct hwrm_vnic_cfg_input req = {0};
4003 	u16 def_vlan = 0;
4004 
4005 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_CFG, -1, -1);
4006 
4007 	req.enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP);
4008 	/* Only RSS support for now TBD: COS & LB */
4009 	if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) {
4010 		req.rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
4011 		req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
4012 					   VNIC_CFG_REQ_ENABLES_MRU);
4013 	} else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) {
4014 		req.rss_rule =
4015 			cpu_to_le16(bp->vnic_info[0].fw_rss_cos_lb_ctx[0]);
4016 		req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
4017 					   VNIC_CFG_REQ_ENABLES_MRU);
4018 		req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE);
4019 	} else {
4020 		req.rss_rule = cpu_to_le16(0xffff);
4021 	}
4022 
4023 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) &&
4024 	    (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) {
4025 		req.cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]);
4026 		req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE);
4027 	} else {
4028 		req.cos_rule = cpu_to_le16(0xffff);
4029 	}
4030 
4031 	if (vnic->flags & BNXT_VNIC_RSS_FLAG)
4032 		ring = 0;
4033 	else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
4034 		ring = vnic_id - 1;
4035 	else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp))
4036 		ring = bp->rx_nr_rings - 1;
4037 
4038 	grp_idx = bp->rx_ring[ring].bnapi->index;
4039 	req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
4040 	req.dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
4041 
4042 	req.lb_rule = cpu_to_le16(0xffff);
4043 	req.mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + ETH_FCS_LEN +
4044 			      VLAN_HLEN);
4045 
4046 #ifdef CONFIG_BNXT_SRIOV
4047 	if (BNXT_VF(bp))
4048 		def_vlan = bp->vf.vlan;
4049 #endif
4050 	if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan)
4051 		req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
4052 	if (!vnic_id && bnxt_ulp_registered(bp->edev, BNXT_ROCE_ULP))
4053 		req.flags |=
4054 			cpu_to_le32(VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE);
4055 
4056 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4057 }
4058 
4059 static int bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
4060 {
4061 	u32 rc = 0;
4062 
4063 	if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
4064 		struct hwrm_vnic_free_input req = {0};
4065 
4066 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_FREE, -1, -1);
4067 		req.vnic_id =
4068 			cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
4069 
4070 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4071 		if (rc)
4072 			return rc;
4073 		bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
4074 	}
4075 	return rc;
4076 }
4077 
4078 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
4079 {
4080 	u16 i;
4081 
4082 	for (i = 0; i < bp->nr_vnics; i++)
4083 		bnxt_hwrm_vnic_free_one(bp, i);
4084 }
4085 
4086 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
4087 				unsigned int start_rx_ring_idx,
4088 				unsigned int nr_rings)
4089 {
4090 	int rc = 0;
4091 	unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
4092 	struct hwrm_vnic_alloc_input req = {0};
4093 	struct hwrm_vnic_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4094 
4095 	/* map ring groups to this vnic */
4096 	for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
4097 		grp_idx = bp->rx_ring[i].bnapi->index;
4098 		if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
4099 			netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
4100 				   j, nr_rings);
4101 			break;
4102 		}
4103 		bp->vnic_info[vnic_id].fw_grp_ids[j] =
4104 					bp->grp_info[grp_idx].fw_grp_id;
4105 	}
4106 
4107 	bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[0] = INVALID_HW_RING_ID;
4108 	bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[1] = INVALID_HW_RING_ID;
4109 	if (vnic_id == 0)
4110 		req.flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
4111 
4112 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_ALLOC, -1, -1);
4113 
4114 	mutex_lock(&bp->hwrm_cmd_lock);
4115 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4116 	if (!rc)
4117 		bp->vnic_info[vnic_id].fw_vnic_id = le32_to_cpu(resp->vnic_id);
4118 	mutex_unlock(&bp->hwrm_cmd_lock);
4119 	return rc;
4120 }
4121 
4122 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp)
4123 {
4124 	struct hwrm_vnic_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
4125 	struct hwrm_vnic_qcaps_input req = {0};
4126 	int rc;
4127 
4128 	if (bp->hwrm_spec_code < 0x10600)
4129 		return 0;
4130 
4131 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_QCAPS, -1, -1);
4132 	mutex_lock(&bp->hwrm_cmd_lock);
4133 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4134 	if (!rc) {
4135 		if (resp->flags &
4136 		    cpu_to_le32(VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP))
4137 			bp->flags |= BNXT_FLAG_NEW_RSS_CAP;
4138 	}
4139 	mutex_unlock(&bp->hwrm_cmd_lock);
4140 	return rc;
4141 }
4142 
4143 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
4144 {
4145 	u16 i;
4146 	u32 rc = 0;
4147 
4148 	mutex_lock(&bp->hwrm_cmd_lock);
4149 	for (i = 0; i < bp->rx_nr_rings; i++) {
4150 		struct hwrm_ring_grp_alloc_input req = {0};
4151 		struct hwrm_ring_grp_alloc_output *resp =
4152 					bp->hwrm_cmd_resp_addr;
4153 		unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
4154 
4155 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_ALLOC, -1, -1);
4156 
4157 		req.cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
4158 		req.rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
4159 		req.ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
4160 		req.sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
4161 
4162 		rc = _hwrm_send_message(bp, &req, sizeof(req),
4163 					HWRM_CMD_TIMEOUT);
4164 		if (rc)
4165 			break;
4166 
4167 		bp->grp_info[grp_idx].fw_grp_id =
4168 			le32_to_cpu(resp->ring_group_id);
4169 	}
4170 	mutex_unlock(&bp->hwrm_cmd_lock);
4171 	return rc;
4172 }
4173 
4174 static int bnxt_hwrm_ring_grp_free(struct bnxt *bp)
4175 {
4176 	u16 i;
4177 	u32 rc = 0;
4178 	struct hwrm_ring_grp_free_input req = {0};
4179 
4180 	if (!bp->grp_info)
4181 		return 0;
4182 
4183 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_FREE, -1, -1);
4184 
4185 	mutex_lock(&bp->hwrm_cmd_lock);
4186 	for (i = 0; i < bp->cp_nr_rings; i++) {
4187 		if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
4188 			continue;
4189 		req.ring_group_id =
4190 			cpu_to_le32(bp->grp_info[i].fw_grp_id);
4191 
4192 		rc = _hwrm_send_message(bp, &req, sizeof(req),
4193 					HWRM_CMD_TIMEOUT);
4194 		if (rc)
4195 			break;
4196 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
4197 	}
4198 	mutex_unlock(&bp->hwrm_cmd_lock);
4199 	return rc;
4200 }
4201 
4202 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
4203 				    struct bnxt_ring_struct *ring,
4204 				    u32 ring_type, u32 map_index,
4205 				    u32 stats_ctx_id)
4206 {
4207 	int rc = 0, err = 0;
4208 	struct hwrm_ring_alloc_input req = {0};
4209 	struct hwrm_ring_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4210 	u16 ring_id;
4211 
4212 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_ALLOC, -1, -1);
4213 
4214 	req.enables = 0;
4215 	if (ring->nr_pages > 1) {
4216 		req.page_tbl_addr = cpu_to_le64(ring->pg_tbl_map);
4217 		/* Page size is in log2 units */
4218 		req.page_size = BNXT_PAGE_SHIFT;
4219 		req.page_tbl_depth = 1;
4220 	} else {
4221 		req.page_tbl_addr =  cpu_to_le64(ring->dma_arr[0]);
4222 	}
4223 	req.fbo = 0;
4224 	/* Association of ring index with doorbell index and MSIX number */
4225 	req.logical_id = cpu_to_le16(map_index);
4226 
4227 	switch (ring_type) {
4228 	case HWRM_RING_ALLOC_TX:
4229 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
4230 		/* Association of transmit ring with completion ring */
4231 		req.cmpl_ring_id =
4232 			cpu_to_le16(bp->grp_info[map_index].cp_fw_ring_id);
4233 		req.length = cpu_to_le32(bp->tx_ring_mask + 1);
4234 		req.stat_ctx_id = cpu_to_le32(stats_ctx_id);
4235 		req.queue_id = cpu_to_le16(ring->queue_id);
4236 		break;
4237 	case HWRM_RING_ALLOC_RX:
4238 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
4239 		req.length = cpu_to_le32(bp->rx_ring_mask + 1);
4240 		break;
4241 	case HWRM_RING_ALLOC_AGG:
4242 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
4243 		req.length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
4244 		break;
4245 	case HWRM_RING_ALLOC_CMPL:
4246 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL;
4247 		req.length = cpu_to_le32(bp->cp_ring_mask + 1);
4248 		if (bp->flags & BNXT_FLAG_USING_MSIX)
4249 			req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
4250 		break;
4251 	default:
4252 		netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
4253 			   ring_type);
4254 		return -1;
4255 	}
4256 
4257 	mutex_lock(&bp->hwrm_cmd_lock);
4258 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4259 	err = le16_to_cpu(resp->error_code);
4260 	ring_id = le16_to_cpu(resp->ring_id);
4261 	mutex_unlock(&bp->hwrm_cmd_lock);
4262 
4263 	if (rc || err) {
4264 		switch (ring_type) {
4265 		case RING_FREE_REQ_RING_TYPE_L2_CMPL:
4266 			netdev_err(bp->dev, "hwrm_ring_alloc cp failed. rc:%x err:%x\n",
4267 				   rc, err);
4268 			return -1;
4269 
4270 		case RING_FREE_REQ_RING_TYPE_RX:
4271 			netdev_err(bp->dev, "hwrm_ring_alloc rx failed. rc:%x err:%x\n",
4272 				   rc, err);
4273 			return -1;
4274 
4275 		case RING_FREE_REQ_RING_TYPE_TX:
4276 			netdev_err(bp->dev, "hwrm_ring_alloc tx failed. rc:%x err:%x\n",
4277 				   rc, err);
4278 			return -1;
4279 
4280 		default:
4281 			netdev_err(bp->dev, "Invalid ring\n");
4282 			return -1;
4283 		}
4284 	}
4285 	ring->fw_ring_id = ring_id;
4286 	return rc;
4287 }
4288 
4289 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx)
4290 {
4291 	int rc;
4292 
4293 	if (BNXT_PF(bp)) {
4294 		struct hwrm_func_cfg_input req = {0};
4295 
4296 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
4297 		req.fid = cpu_to_le16(0xffff);
4298 		req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
4299 		req.async_event_cr = cpu_to_le16(idx);
4300 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4301 	} else {
4302 		struct hwrm_func_vf_cfg_input req = {0};
4303 
4304 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_CFG, -1, -1);
4305 		req.enables =
4306 			cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
4307 		req.async_event_cr = cpu_to_le16(idx);
4308 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4309 	}
4310 	return rc;
4311 }
4312 
4313 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
4314 {
4315 	int i, rc = 0;
4316 
4317 	for (i = 0; i < bp->cp_nr_rings; i++) {
4318 		struct bnxt_napi *bnapi = bp->bnapi[i];
4319 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4320 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
4321 
4322 		cpr->cp_doorbell = bp->bar1 + i * 0x80;
4323 		rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_CMPL, i,
4324 					      INVALID_STATS_CTX_ID);
4325 		if (rc)
4326 			goto err_out;
4327 		BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
4328 		bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
4329 
4330 		if (!i) {
4331 			rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id);
4332 			if (rc)
4333 				netdev_warn(bp->dev, "Failed to set async event completion ring.\n");
4334 		}
4335 	}
4336 
4337 	for (i = 0; i < bp->tx_nr_rings; i++) {
4338 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
4339 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
4340 		u32 map_idx = txr->bnapi->index;
4341 		u16 fw_stats_ctx = bp->grp_info[map_idx].fw_stats_ctx;
4342 
4343 		rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_TX,
4344 					      map_idx, fw_stats_ctx);
4345 		if (rc)
4346 			goto err_out;
4347 		txr->tx_doorbell = bp->bar1 + map_idx * 0x80;
4348 	}
4349 
4350 	for (i = 0; i < bp->rx_nr_rings; i++) {
4351 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4352 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
4353 		u32 map_idx = rxr->bnapi->index;
4354 
4355 		rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_RX,
4356 					      map_idx, INVALID_STATS_CTX_ID);
4357 		if (rc)
4358 			goto err_out;
4359 		rxr->rx_doorbell = bp->bar1 + map_idx * 0x80;
4360 		writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
4361 		bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
4362 	}
4363 
4364 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
4365 		for (i = 0; i < bp->rx_nr_rings; i++) {
4366 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4367 			struct bnxt_ring_struct *ring =
4368 						&rxr->rx_agg_ring_struct;
4369 			u32 grp_idx = rxr->bnapi->index;
4370 			u32 map_idx = grp_idx + bp->rx_nr_rings;
4371 
4372 			rc = hwrm_ring_alloc_send_msg(bp, ring,
4373 						      HWRM_RING_ALLOC_AGG,
4374 						      map_idx,
4375 						      INVALID_STATS_CTX_ID);
4376 			if (rc)
4377 				goto err_out;
4378 
4379 			rxr->rx_agg_doorbell = bp->bar1 + map_idx * 0x80;
4380 			writel(DB_KEY_RX | rxr->rx_agg_prod,
4381 			       rxr->rx_agg_doorbell);
4382 			bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
4383 		}
4384 	}
4385 err_out:
4386 	return rc;
4387 }
4388 
4389 static int hwrm_ring_free_send_msg(struct bnxt *bp,
4390 				   struct bnxt_ring_struct *ring,
4391 				   u32 ring_type, int cmpl_ring_id)
4392 {
4393 	int rc;
4394 	struct hwrm_ring_free_input req = {0};
4395 	struct hwrm_ring_free_output *resp = bp->hwrm_cmd_resp_addr;
4396 	u16 error_code;
4397 
4398 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_FREE, cmpl_ring_id, -1);
4399 	req.ring_type = ring_type;
4400 	req.ring_id = cpu_to_le16(ring->fw_ring_id);
4401 
4402 	mutex_lock(&bp->hwrm_cmd_lock);
4403 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4404 	error_code = le16_to_cpu(resp->error_code);
4405 	mutex_unlock(&bp->hwrm_cmd_lock);
4406 
4407 	if (rc || error_code) {
4408 		switch (ring_type) {
4409 		case RING_FREE_REQ_RING_TYPE_L2_CMPL:
4410 			netdev_err(bp->dev, "hwrm_ring_free cp failed. rc:%d\n",
4411 				   rc);
4412 			return rc;
4413 		case RING_FREE_REQ_RING_TYPE_RX:
4414 			netdev_err(bp->dev, "hwrm_ring_free rx failed. rc:%d\n",
4415 				   rc);
4416 			return rc;
4417 		case RING_FREE_REQ_RING_TYPE_TX:
4418 			netdev_err(bp->dev, "hwrm_ring_free tx failed. rc:%d\n",
4419 				   rc);
4420 			return rc;
4421 		default:
4422 			netdev_err(bp->dev, "Invalid ring\n");
4423 			return -1;
4424 		}
4425 	}
4426 	return 0;
4427 }
4428 
4429 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
4430 {
4431 	int i;
4432 
4433 	if (!bp->bnapi)
4434 		return;
4435 
4436 	for (i = 0; i < bp->tx_nr_rings; i++) {
4437 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
4438 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
4439 		u32 grp_idx = txr->bnapi->index;
4440 		u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
4441 
4442 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
4443 			hwrm_ring_free_send_msg(bp, ring,
4444 						RING_FREE_REQ_RING_TYPE_TX,
4445 						close_path ? cmpl_ring_id :
4446 						INVALID_HW_RING_ID);
4447 			ring->fw_ring_id = INVALID_HW_RING_ID;
4448 		}
4449 	}
4450 
4451 	for (i = 0; i < bp->rx_nr_rings; i++) {
4452 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4453 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
4454 		u32 grp_idx = rxr->bnapi->index;
4455 		u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
4456 
4457 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
4458 			hwrm_ring_free_send_msg(bp, ring,
4459 						RING_FREE_REQ_RING_TYPE_RX,
4460 						close_path ? cmpl_ring_id :
4461 						INVALID_HW_RING_ID);
4462 			ring->fw_ring_id = INVALID_HW_RING_ID;
4463 			bp->grp_info[grp_idx].rx_fw_ring_id =
4464 				INVALID_HW_RING_ID;
4465 		}
4466 	}
4467 
4468 	for (i = 0; i < bp->rx_nr_rings; i++) {
4469 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4470 		struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
4471 		u32 grp_idx = rxr->bnapi->index;
4472 		u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
4473 
4474 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
4475 			hwrm_ring_free_send_msg(bp, ring,
4476 						RING_FREE_REQ_RING_TYPE_RX,
4477 						close_path ? cmpl_ring_id :
4478 						INVALID_HW_RING_ID);
4479 			ring->fw_ring_id = INVALID_HW_RING_ID;
4480 			bp->grp_info[grp_idx].agg_fw_ring_id =
4481 				INVALID_HW_RING_ID;
4482 		}
4483 	}
4484 
4485 	/* The completion rings are about to be freed.  After that the
4486 	 * IRQ doorbell will not work anymore.  So we need to disable
4487 	 * IRQ here.
4488 	 */
4489 	bnxt_disable_int_sync(bp);
4490 
4491 	for (i = 0; i < bp->cp_nr_rings; i++) {
4492 		struct bnxt_napi *bnapi = bp->bnapi[i];
4493 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4494 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
4495 
4496 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
4497 			hwrm_ring_free_send_msg(bp, ring,
4498 						RING_FREE_REQ_RING_TYPE_L2_CMPL,
4499 						INVALID_HW_RING_ID);
4500 			ring->fw_ring_id = INVALID_HW_RING_ID;
4501 			bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
4502 		}
4503 	}
4504 }
4505 
4506 static int bnxt_hwrm_get_rings(struct bnxt *bp)
4507 {
4508 	struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
4509 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
4510 	struct hwrm_func_qcfg_input req = {0};
4511 	int rc;
4512 
4513 	if (bp->hwrm_spec_code < 0x10601)
4514 		return 0;
4515 
4516 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
4517 	req.fid = cpu_to_le16(0xffff);
4518 	mutex_lock(&bp->hwrm_cmd_lock);
4519 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4520 	if (rc) {
4521 		mutex_unlock(&bp->hwrm_cmd_lock);
4522 		return -EIO;
4523 	}
4524 
4525 	hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings);
4526 	if (bp->flags & BNXT_FLAG_NEW_RM) {
4527 		u16 cp, stats;
4528 
4529 		hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings);
4530 		hw_resc->resv_hw_ring_grps =
4531 			le32_to_cpu(resp->alloc_hw_ring_grps);
4532 		hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics);
4533 		cp = le16_to_cpu(resp->alloc_cmpl_rings);
4534 		stats = le16_to_cpu(resp->alloc_stat_ctx);
4535 		cp = min_t(u16, cp, stats);
4536 		hw_resc->resv_cp_rings = cp;
4537 	}
4538 	mutex_unlock(&bp->hwrm_cmd_lock);
4539 	return 0;
4540 }
4541 
4542 /* Caller must hold bp->hwrm_cmd_lock */
4543 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings)
4544 {
4545 	struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
4546 	struct hwrm_func_qcfg_input req = {0};
4547 	int rc;
4548 
4549 	if (bp->hwrm_spec_code < 0x10601)
4550 		return 0;
4551 
4552 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
4553 	req.fid = cpu_to_le16(fid);
4554 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4555 	if (!rc)
4556 		*tx_rings = le16_to_cpu(resp->alloc_tx_rings);
4557 
4558 	return rc;
4559 }
4560 
4561 static int
4562 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
4563 			   int ring_grps, int cp_rings, int vnics)
4564 {
4565 	struct hwrm_func_cfg_input req = {0};
4566 	u32 enables = 0;
4567 	int rc;
4568 
4569 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
4570 	req.fid = cpu_to_le16(0xffff);
4571 	enables |= tx_rings ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
4572 	req.num_tx_rings = cpu_to_le16(tx_rings);
4573 	if (bp->flags & BNXT_FLAG_NEW_RM) {
4574 		enables |= rx_rings ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0;
4575 		enables |= cp_rings ? FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS |
4576 				      FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
4577 		enables |= ring_grps ?
4578 			   FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0;
4579 		enables |= vnics ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0;
4580 
4581 		req.num_rx_rings = cpu_to_le16(rx_rings);
4582 		req.num_hw_ring_grps = cpu_to_le16(ring_grps);
4583 		req.num_cmpl_rings = cpu_to_le16(cp_rings);
4584 		req.num_stat_ctxs = req.num_cmpl_rings;
4585 		req.num_vnics = cpu_to_le16(vnics);
4586 	}
4587 	if (!enables)
4588 		return 0;
4589 
4590 	req.enables = cpu_to_le32(enables);
4591 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4592 	if (rc)
4593 		return -ENOMEM;
4594 
4595 	if (bp->hwrm_spec_code < 0x10601)
4596 		bp->hw_resc.resv_tx_rings = tx_rings;
4597 
4598 	rc = bnxt_hwrm_get_rings(bp);
4599 	return rc;
4600 }
4601 
4602 static int
4603 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
4604 			   int ring_grps, int cp_rings, int vnics)
4605 {
4606 	struct hwrm_func_vf_cfg_input req = {0};
4607 	u32 enables = 0;
4608 	int rc;
4609 
4610 	if (!(bp->flags & BNXT_FLAG_NEW_RM)) {
4611 		bp->hw_resc.resv_tx_rings = tx_rings;
4612 		return 0;
4613 	}
4614 
4615 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_CFG, -1, -1);
4616 	enables |= tx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
4617 	enables |= rx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS : 0;
4618 	enables |= cp_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS |
4619 			      FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
4620 	enables |= ring_grps ? FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0;
4621 	enables |= vnics ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0;
4622 
4623 	req.num_tx_rings = cpu_to_le16(tx_rings);
4624 	req.num_rx_rings = cpu_to_le16(rx_rings);
4625 	req.num_hw_ring_grps = cpu_to_le16(ring_grps);
4626 	req.num_cmpl_rings = cpu_to_le16(cp_rings);
4627 	req.num_stat_ctxs = req.num_cmpl_rings;
4628 	req.num_vnics = cpu_to_le16(vnics);
4629 
4630 	req.enables = cpu_to_le32(enables);
4631 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4632 	if (rc)
4633 		return -ENOMEM;
4634 
4635 	rc = bnxt_hwrm_get_rings(bp);
4636 	return rc;
4637 }
4638 
4639 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, int tx, int rx, int grp,
4640 				   int cp, int vnic)
4641 {
4642 	if (BNXT_PF(bp))
4643 		return bnxt_hwrm_reserve_pf_rings(bp, tx, rx, grp, cp, vnic);
4644 	else
4645 		return bnxt_hwrm_reserve_vf_rings(bp, tx, rx, grp, cp, vnic);
4646 }
4647 
4648 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
4649 			   bool shared);
4650 
4651 static int __bnxt_reserve_rings(struct bnxt *bp)
4652 {
4653 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
4654 	int tx = bp->tx_nr_rings;
4655 	int rx = bp->rx_nr_rings;
4656 	int cp = bp->cp_nr_rings;
4657 	int grp, rx_rings, rc;
4658 	bool sh = false;
4659 	int vnic = 1;
4660 
4661 	if (bp->hwrm_spec_code < 0x10601)
4662 		return 0;
4663 
4664 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
4665 		sh = true;
4666 	if (bp->flags & BNXT_FLAG_RFS)
4667 		vnic = rx + 1;
4668 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
4669 		rx <<= 1;
4670 
4671 	grp = bp->rx_nr_rings;
4672 	if (tx == hw_resc->resv_tx_rings &&
4673 	    (!(bp->flags & BNXT_FLAG_NEW_RM) ||
4674 	      (rx == hw_resc->resv_rx_rings &&
4675 	       grp == hw_resc->resv_hw_ring_grps &&
4676 	       cp == hw_resc->resv_cp_rings && vnic == hw_resc->resv_vnics)))
4677 		return 0;
4678 
4679 	rc = bnxt_hwrm_reserve_rings(bp, tx, rx, grp, cp, vnic);
4680 	if (rc)
4681 		return rc;
4682 
4683 	tx = hw_resc->resv_tx_rings;
4684 	if (bp->flags & BNXT_FLAG_NEW_RM) {
4685 		rx = hw_resc->resv_rx_rings;
4686 		cp = hw_resc->resv_cp_rings;
4687 		grp = hw_resc->resv_hw_ring_grps;
4688 		vnic = hw_resc->resv_vnics;
4689 	}
4690 
4691 	rx_rings = rx;
4692 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
4693 		if (rx >= 2) {
4694 			rx_rings = rx >> 1;
4695 		} else {
4696 			if (netif_running(bp->dev))
4697 				return -ENOMEM;
4698 
4699 			bp->flags &= ~BNXT_FLAG_AGG_RINGS;
4700 			bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
4701 			bp->dev->hw_features &= ~NETIF_F_LRO;
4702 			bp->dev->features &= ~NETIF_F_LRO;
4703 			bnxt_set_ring_params(bp);
4704 		}
4705 	}
4706 	rx_rings = min_t(int, rx_rings, grp);
4707 	rc = bnxt_trim_rings(bp, &rx_rings, &tx, cp, sh);
4708 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
4709 		rx = rx_rings << 1;
4710 	cp = sh ? max_t(int, tx, rx_rings) : tx + rx_rings;
4711 	bp->tx_nr_rings = tx;
4712 	bp->rx_nr_rings = rx_rings;
4713 	bp->cp_nr_rings = cp;
4714 
4715 	if (!tx || !rx || !cp || !grp || !vnic)
4716 		return -ENOMEM;
4717 
4718 	return rc;
4719 }
4720 
4721 static bool bnxt_need_reserve_rings(struct bnxt *bp)
4722 {
4723 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
4724 	int rx = bp->rx_nr_rings;
4725 	int vnic = 1;
4726 
4727 	if (bp->hwrm_spec_code < 0x10601)
4728 		return false;
4729 
4730 	if (hw_resc->resv_tx_rings != bp->tx_nr_rings)
4731 		return true;
4732 
4733 	if (bp->flags & BNXT_FLAG_RFS)
4734 		vnic = rx + 1;
4735 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
4736 		rx <<= 1;
4737 	if ((bp->flags & BNXT_FLAG_NEW_RM) &&
4738 	    (hw_resc->resv_rx_rings != rx ||
4739 	     hw_resc->resv_cp_rings != bp->cp_nr_rings ||
4740 	     hw_resc->resv_vnics != vnic))
4741 		return true;
4742 	return false;
4743 }
4744 
4745 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
4746 				    int ring_grps, int cp_rings)
4747 {
4748 	struct hwrm_func_vf_cfg_input req = {0};
4749 	u32 flags, enables;
4750 	int rc;
4751 
4752 	if (!(bp->flags & BNXT_FLAG_NEW_RM))
4753 		return 0;
4754 
4755 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_CFG, -1, -1);
4756 	flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST |
4757 		FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST |
4758 		FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
4759 		FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST |
4760 		FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
4761 		FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST;
4762 	enables = FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS |
4763 		  FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS |
4764 		  FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS |
4765 		  FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS |
4766 		  FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS |
4767 		  FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS;
4768 
4769 	req.flags = cpu_to_le32(flags);
4770 	req.enables = cpu_to_le32(enables);
4771 	req.num_tx_rings = cpu_to_le16(tx_rings);
4772 	req.num_rx_rings = cpu_to_le16(rx_rings);
4773 	req.num_cmpl_rings = cpu_to_le16(cp_rings);
4774 	req.num_hw_ring_grps = cpu_to_le16(ring_grps);
4775 	req.num_stat_ctxs = cpu_to_le16(cp_rings);
4776 	req.num_vnics = cpu_to_le16(1);
4777 	if (bp->flags & BNXT_FLAG_RFS)
4778 		req.num_vnics = cpu_to_le16(rx_rings + 1);
4779 	rc = hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4780 	if (rc)
4781 		return -ENOMEM;
4782 	return 0;
4783 }
4784 
4785 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
4786 				    int ring_grps, int cp_rings)
4787 {
4788 	struct hwrm_func_cfg_input req = {0};
4789 	u32 flags, enables;
4790 	int rc;
4791 
4792 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
4793 	req.fid = cpu_to_le16(0xffff);
4794 	flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST;
4795 	enables = FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS;
4796 	req.num_tx_rings = cpu_to_le16(tx_rings);
4797 	if (bp->flags & BNXT_FLAG_NEW_RM) {
4798 		flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST |
4799 			 FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
4800 			 FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST |
4801 			 FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
4802 			 FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST;
4803 		enables |= FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS |
4804 			   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS |
4805 			   FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS |
4806 			   FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS |
4807 			   FUNC_CFG_REQ_ENABLES_NUM_VNICS;
4808 		req.num_rx_rings = cpu_to_le16(rx_rings);
4809 		req.num_cmpl_rings = cpu_to_le16(cp_rings);
4810 		req.num_hw_ring_grps = cpu_to_le16(ring_grps);
4811 		req.num_stat_ctxs = cpu_to_le16(cp_rings);
4812 		req.num_vnics = cpu_to_le16(1);
4813 		if (bp->flags & BNXT_FLAG_RFS)
4814 			req.num_vnics = cpu_to_le16(rx_rings + 1);
4815 	}
4816 	req.flags = cpu_to_le32(flags);
4817 	req.enables = cpu_to_le32(enables);
4818 	rc = hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4819 	if (rc)
4820 		return -ENOMEM;
4821 	return 0;
4822 }
4823 
4824 static int bnxt_hwrm_check_rings(struct bnxt *bp, int tx_rings, int rx_rings,
4825 				 int ring_grps, int cp_rings)
4826 {
4827 	if (bp->hwrm_spec_code < 0x10801)
4828 		return 0;
4829 
4830 	if (BNXT_PF(bp))
4831 		return bnxt_hwrm_check_pf_rings(bp, tx_rings, rx_rings,
4832 						ring_grps, cp_rings);
4833 
4834 	return bnxt_hwrm_check_vf_rings(bp, tx_rings, rx_rings, ring_grps,
4835 					cp_rings);
4836 }
4837 
4838 static void bnxt_hwrm_set_coal_params(struct bnxt_coal *hw_coal,
4839 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
4840 {
4841 	u16 val, tmr, max, flags;
4842 
4843 	max = hw_coal->bufs_per_record * 128;
4844 	if (hw_coal->budget)
4845 		max = hw_coal->bufs_per_record * hw_coal->budget;
4846 
4847 	val = clamp_t(u16, hw_coal->coal_bufs, 1, max);
4848 	req->num_cmpl_aggr_int = cpu_to_le16(val);
4849 
4850 	/* This is a 6-bit value and must not be 0, or we'll get non stop IRQ */
4851 	val = min_t(u16, val, 63);
4852 	req->num_cmpl_dma_aggr = cpu_to_le16(val);
4853 
4854 	/* This is a 6-bit value and must not be 0, or we'll get non stop IRQ */
4855 	val = clamp_t(u16, hw_coal->coal_bufs_irq, 1, 63);
4856 	req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val);
4857 
4858 	tmr = BNXT_USEC_TO_COAL_TIMER(hw_coal->coal_ticks);
4859 	tmr = max_t(u16, tmr, 1);
4860 	req->int_lat_tmr_max = cpu_to_le16(tmr);
4861 
4862 	/* min timer set to 1/2 of interrupt timer */
4863 	val = tmr / 2;
4864 	req->int_lat_tmr_min = cpu_to_le16(val);
4865 
4866 	/* buf timer set to 1/4 of interrupt timer */
4867 	val = max_t(u16, tmr / 4, 1);
4868 	req->cmpl_aggr_dma_tmr = cpu_to_le16(val);
4869 
4870 	tmr = BNXT_USEC_TO_COAL_TIMER(hw_coal->coal_ticks_irq);
4871 	tmr = max_t(u16, tmr, 1);
4872 	req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(tmr);
4873 
4874 	flags = RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
4875 	if (hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh)
4876 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
4877 	req->flags = cpu_to_le16(flags);
4878 }
4879 
4880 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi)
4881 {
4882 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0};
4883 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4884 	struct bnxt_coal coal;
4885 	unsigned int grp_idx;
4886 
4887 	/* Tick values in micro seconds.
4888 	 * 1 coal_buf x bufs_per_record = 1 completion record.
4889 	 */
4890 	memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal));
4891 
4892 	coal.coal_ticks = cpr->rx_ring_coal.coal_ticks;
4893 	coal.coal_bufs = cpr->rx_ring_coal.coal_bufs;
4894 
4895 	if (!bnapi->rx_ring)
4896 		return -ENODEV;
4897 
4898 	bnxt_hwrm_cmd_hdr_init(bp, &req_rx,
4899 			       HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
4900 
4901 	bnxt_hwrm_set_coal_params(&coal, &req_rx);
4902 
4903 	grp_idx = bnapi->index;
4904 	req_rx.ring_id = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
4905 
4906 	return hwrm_send_message(bp, &req_rx, sizeof(req_rx),
4907 				 HWRM_CMD_TIMEOUT);
4908 }
4909 
4910 int bnxt_hwrm_set_coal(struct bnxt *bp)
4911 {
4912 	int i, rc = 0;
4913 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0},
4914 							   req_tx = {0}, *req;
4915 
4916 	bnxt_hwrm_cmd_hdr_init(bp, &req_rx,
4917 			       HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
4918 	bnxt_hwrm_cmd_hdr_init(bp, &req_tx,
4919 			       HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
4920 
4921 	bnxt_hwrm_set_coal_params(&bp->rx_coal, &req_rx);
4922 	bnxt_hwrm_set_coal_params(&bp->tx_coal, &req_tx);
4923 
4924 	mutex_lock(&bp->hwrm_cmd_lock);
4925 	for (i = 0; i < bp->cp_nr_rings; i++) {
4926 		struct bnxt_napi *bnapi = bp->bnapi[i];
4927 
4928 		req = &req_rx;
4929 		if (!bnapi->rx_ring)
4930 			req = &req_tx;
4931 		req->ring_id = cpu_to_le16(bp->grp_info[i].cp_fw_ring_id);
4932 
4933 		rc = _hwrm_send_message(bp, req, sizeof(*req),
4934 					HWRM_CMD_TIMEOUT);
4935 		if (rc)
4936 			break;
4937 	}
4938 	mutex_unlock(&bp->hwrm_cmd_lock);
4939 	return rc;
4940 }
4941 
4942 static int bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
4943 {
4944 	int rc = 0, i;
4945 	struct hwrm_stat_ctx_free_input req = {0};
4946 
4947 	if (!bp->bnapi)
4948 		return 0;
4949 
4950 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
4951 		return 0;
4952 
4953 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_FREE, -1, -1);
4954 
4955 	mutex_lock(&bp->hwrm_cmd_lock);
4956 	for (i = 0; i < bp->cp_nr_rings; i++) {
4957 		struct bnxt_napi *bnapi = bp->bnapi[i];
4958 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4959 
4960 		if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
4961 			req.stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
4962 
4963 			rc = _hwrm_send_message(bp, &req, sizeof(req),
4964 						HWRM_CMD_TIMEOUT);
4965 			if (rc)
4966 				break;
4967 
4968 			cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
4969 		}
4970 	}
4971 	mutex_unlock(&bp->hwrm_cmd_lock);
4972 	return rc;
4973 }
4974 
4975 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
4976 {
4977 	int rc = 0, i;
4978 	struct hwrm_stat_ctx_alloc_input req = {0};
4979 	struct hwrm_stat_ctx_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4980 
4981 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
4982 		return 0;
4983 
4984 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_ALLOC, -1, -1);
4985 
4986 	req.update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000);
4987 
4988 	mutex_lock(&bp->hwrm_cmd_lock);
4989 	for (i = 0; i < bp->cp_nr_rings; i++) {
4990 		struct bnxt_napi *bnapi = bp->bnapi[i];
4991 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4992 
4993 		req.stats_dma_addr = cpu_to_le64(cpr->hw_stats_map);
4994 
4995 		rc = _hwrm_send_message(bp, &req, sizeof(req),
4996 					HWRM_CMD_TIMEOUT);
4997 		if (rc)
4998 			break;
4999 
5000 		cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
5001 
5002 		bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
5003 	}
5004 	mutex_unlock(&bp->hwrm_cmd_lock);
5005 	return rc;
5006 }
5007 
5008 static int bnxt_hwrm_func_qcfg(struct bnxt *bp)
5009 {
5010 	struct hwrm_func_qcfg_input req = {0};
5011 	struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
5012 	u16 flags;
5013 	int rc;
5014 
5015 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
5016 	req.fid = cpu_to_le16(0xffff);
5017 	mutex_lock(&bp->hwrm_cmd_lock);
5018 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5019 	if (rc)
5020 		goto func_qcfg_exit;
5021 
5022 #ifdef CONFIG_BNXT_SRIOV
5023 	if (BNXT_VF(bp)) {
5024 		struct bnxt_vf_info *vf = &bp->vf;
5025 
5026 		vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK;
5027 	}
5028 #endif
5029 	flags = le16_to_cpu(resp->flags);
5030 	if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED |
5031 		     FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) {
5032 		bp->flags |= BNXT_FLAG_FW_LLDP_AGENT;
5033 		if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED)
5034 			bp->flags |= BNXT_FLAG_FW_DCBX_AGENT;
5035 	}
5036 	if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST))
5037 		bp->flags |= BNXT_FLAG_MULTI_HOST;
5038 
5039 	switch (resp->port_partition_type) {
5040 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0:
5041 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5:
5042 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0:
5043 		bp->port_partition_type = resp->port_partition_type;
5044 		break;
5045 	}
5046 	if (bp->hwrm_spec_code < 0x10707 ||
5047 	    resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB)
5048 		bp->br_mode = BRIDGE_MODE_VEB;
5049 	else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA)
5050 		bp->br_mode = BRIDGE_MODE_VEPA;
5051 	else
5052 		bp->br_mode = BRIDGE_MODE_UNDEF;
5053 
5054 	bp->max_mtu = le16_to_cpu(resp->max_mtu_configured);
5055 	if (!bp->max_mtu)
5056 		bp->max_mtu = BNXT_MAX_MTU;
5057 
5058 func_qcfg_exit:
5059 	mutex_unlock(&bp->hwrm_cmd_lock);
5060 	return rc;
5061 }
5062 
5063 static int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp)
5064 {
5065 	struct hwrm_func_resource_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
5066 	struct hwrm_func_resource_qcaps_input req = {0};
5067 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
5068 	int rc;
5069 
5070 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESOURCE_QCAPS, -1, -1);
5071 	req.fid = cpu_to_le16(0xffff);
5072 
5073 	mutex_lock(&bp->hwrm_cmd_lock);
5074 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5075 	if (rc) {
5076 		rc = -EIO;
5077 		goto hwrm_func_resc_qcaps_exit;
5078 	}
5079 
5080 	hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx);
5081 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
5082 	hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings);
5083 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
5084 	hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings);
5085 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
5086 	hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings);
5087 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
5088 	hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps);
5089 	hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps);
5090 	hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs);
5091 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
5092 	hw_resc->min_vnics = le16_to_cpu(resp->min_vnics);
5093 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
5094 	hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx);
5095 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
5096 
5097 	if (BNXT_PF(bp)) {
5098 		struct bnxt_pf_info *pf = &bp->pf;
5099 
5100 		pf->vf_resv_strategy =
5101 			le16_to_cpu(resp->vf_reservation_strategy);
5102 		if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL)
5103 			pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL;
5104 	}
5105 hwrm_func_resc_qcaps_exit:
5106 	mutex_unlock(&bp->hwrm_cmd_lock);
5107 	return rc;
5108 }
5109 
5110 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp)
5111 {
5112 	int rc = 0;
5113 	struct hwrm_func_qcaps_input req = {0};
5114 	struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
5115 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
5116 	u32 flags;
5117 
5118 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1);
5119 	req.fid = cpu_to_le16(0xffff);
5120 
5121 	mutex_lock(&bp->hwrm_cmd_lock);
5122 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5123 	if (rc)
5124 		goto hwrm_func_qcaps_exit;
5125 
5126 	flags = le32_to_cpu(resp->flags);
5127 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED)
5128 		bp->flags |= BNXT_FLAG_ROCEV1_CAP;
5129 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED)
5130 		bp->flags |= BNXT_FLAG_ROCEV2_CAP;
5131 
5132 	bp->tx_push_thresh = 0;
5133 	if (flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED)
5134 		bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
5135 
5136 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
5137 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
5138 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
5139 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
5140 	hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
5141 	if (!hw_resc->max_hw_ring_grps)
5142 		hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings;
5143 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
5144 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
5145 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
5146 
5147 	if (BNXT_PF(bp)) {
5148 		struct bnxt_pf_info *pf = &bp->pf;
5149 
5150 		pf->fw_fid = le16_to_cpu(resp->fid);
5151 		pf->port_id = le16_to_cpu(resp->port_id);
5152 		bp->dev->dev_port = pf->port_id;
5153 		memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN);
5154 		pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
5155 		pf->max_vfs = le16_to_cpu(resp->max_vfs);
5156 		pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
5157 		pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
5158 		pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
5159 		pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
5160 		pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
5161 		pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
5162 		if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED)
5163 			bp->flags |= BNXT_FLAG_WOL_CAP;
5164 	} else {
5165 #ifdef CONFIG_BNXT_SRIOV
5166 		struct bnxt_vf_info *vf = &bp->vf;
5167 
5168 		vf->fw_fid = le16_to_cpu(resp->fid);
5169 		memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN);
5170 #endif
5171 	}
5172 
5173 hwrm_func_qcaps_exit:
5174 	mutex_unlock(&bp->hwrm_cmd_lock);
5175 	return rc;
5176 }
5177 
5178 static int bnxt_hwrm_func_qcaps(struct bnxt *bp)
5179 {
5180 	int rc;
5181 
5182 	rc = __bnxt_hwrm_func_qcaps(bp);
5183 	if (rc)
5184 		return rc;
5185 	if (bp->hwrm_spec_code >= 0x10803) {
5186 		rc = bnxt_hwrm_func_resc_qcaps(bp);
5187 		if (!rc)
5188 			bp->flags |= BNXT_FLAG_NEW_RM;
5189 	}
5190 	return 0;
5191 }
5192 
5193 static int bnxt_hwrm_func_reset(struct bnxt *bp)
5194 {
5195 	struct hwrm_func_reset_input req = {0};
5196 
5197 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESET, -1, -1);
5198 	req.enables = 0;
5199 
5200 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_RESET_TIMEOUT);
5201 }
5202 
5203 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
5204 {
5205 	int rc = 0;
5206 	struct hwrm_queue_qportcfg_input req = {0};
5207 	struct hwrm_queue_qportcfg_output *resp = bp->hwrm_cmd_resp_addr;
5208 	u8 i, *qptr;
5209 
5210 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_QUEUE_QPORTCFG, -1, -1);
5211 
5212 	mutex_lock(&bp->hwrm_cmd_lock);
5213 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5214 	if (rc)
5215 		goto qportcfg_exit;
5216 
5217 	if (!resp->max_configurable_queues) {
5218 		rc = -EINVAL;
5219 		goto qportcfg_exit;
5220 	}
5221 	bp->max_tc = resp->max_configurable_queues;
5222 	bp->max_lltc = resp->max_configurable_lossless_queues;
5223 	if (bp->max_tc > BNXT_MAX_QUEUE)
5224 		bp->max_tc = BNXT_MAX_QUEUE;
5225 
5226 	if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG)
5227 		bp->max_tc = 1;
5228 
5229 	if (bp->max_lltc > bp->max_tc)
5230 		bp->max_lltc = bp->max_tc;
5231 
5232 	qptr = &resp->queue_id0;
5233 	for (i = 0; i < bp->max_tc; i++) {
5234 		bp->q_info[i].queue_id = *qptr++;
5235 		bp->q_info[i].queue_profile = *qptr++;
5236 	}
5237 
5238 qportcfg_exit:
5239 	mutex_unlock(&bp->hwrm_cmd_lock);
5240 	return rc;
5241 }
5242 
5243 static int bnxt_hwrm_ver_get(struct bnxt *bp)
5244 {
5245 	int rc;
5246 	struct hwrm_ver_get_input req = {0};
5247 	struct hwrm_ver_get_output *resp = bp->hwrm_cmd_resp_addr;
5248 	u32 dev_caps_cfg;
5249 
5250 	bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN;
5251 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VER_GET, -1, -1);
5252 	req.hwrm_intf_maj = HWRM_VERSION_MAJOR;
5253 	req.hwrm_intf_min = HWRM_VERSION_MINOR;
5254 	req.hwrm_intf_upd = HWRM_VERSION_UPDATE;
5255 	mutex_lock(&bp->hwrm_cmd_lock);
5256 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5257 	if (rc)
5258 		goto hwrm_ver_get_exit;
5259 
5260 	memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
5261 
5262 	bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 |
5263 			     resp->hwrm_intf_min_8b << 8 |
5264 			     resp->hwrm_intf_upd_8b;
5265 	if (resp->hwrm_intf_maj_8b < 1) {
5266 		netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
5267 			    resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
5268 			    resp->hwrm_intf_upd_8b);
5269 		netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
5270 	}
5271 	snprintf(bp->fw_ver_str, BC_HWRM_STR_LEN, "%d.%d.%d.%d",
5272 		 resp->hwrm_fw_maj_8b, resp->hwrm_fw_min_8b,
5273 		 resp->hwrm_fw_bld_8b, resp->hwrm_fw_rsvd_8b);
5274 
5275 	bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout);
5276 	if (!bp->hwrm_cmd_timeout)
5277 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
5278 
5279 	if (resp->hwrm_intf_maj_8b >= 1)
5280 		bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len);
5281 
5282 	bp->chip_num = le16_to_cpu(resp->chip_num);
5283 	if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev &&
5284 	    !resp->chip_metal)
5285 		bp->flags |= BNXT_FLAG_CHIP_NITRO_A0;
5286 
5287 	dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg);
5288 	if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) &&
5289 	    (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED))
5290 		bp->flags |= BNXT_FLAG_SHORT_CMD;
5291 
5292 hwrm_ver_get_exit:
5293 	mutex_unlock(&bp->hwrm_cmd_lock);
5294 	return rc;
5295 }
5296 
5297 int bnxt_hwrm_fw_set_time(struct bnxt *bp)
5298 {
5299 	struct hwrm_fw_set_time_input req = {0};
5300 	struct tm tm;
5301 	time64_t now = ktime_get_real_seconds();
5302 
5303 	if (bp->hwrm_spec_code < 0x10400)
5304 		return -EOPNOTSUPP;
5305 
5306 	time64_to_tm(now, 0, &tm);
5307 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FW_SET_TIME, -1, -1);
5308 	req.year = cpu_to_le16(1900 + tm.tm_year);
5309 	req.month = 1 + tm.tm_mon;
5310 	req.day = tm.tm_mday;
5311 	req.hour = tm.tm_hour;
5312 	req.minute = tm.tm_min;
5313 	req.second = tm.tm_sec;
5314 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5315 }
5316 
5317 static int bnxt_hwrm_port_qstats(struct bnxt *bp)
5318 {
5319 	int rc;
5320 	struct bnxt_pf_info *pf = &bp->pf;
5321 	struct hwrm_port_qstats_input req = {0};
5322 
5323 	if (!(bp->flags & BNXT_FLAG_PORT_STATS))
5324 		return 0;
5325 
5326 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS, -1, -1);
5327 	req.port_id = cpu_to_le16(pf->port_id);
5328 	req.tx_stat_host_addr = cpu_to_le64(bp->hw_tx_port_stats_map);
5329 	req.rx_stat_host_addr = cpu_to_le64(bp->hw_rx_port_stats_map);
5330 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5331 	return rc;
5332 }
5333 
5334 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
5335 {
5336 	if (bp->vxlan_port_cnt) {
5337 		bnxt_hwrm_tunnel_dst_port_free(
5338 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
5339 	}
5340 	bp->vxlan_port_cnt = 0;
5341 	if (bp->nge_port_cnt) {
5342 		bnxt_hwrm_tunnel_dst_port_free(
5343 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
5344 	}
5345 	bp->nge_port_cnt = 0;
5346 }
5347 
5348 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
5349 {
5350 	int rc, i;
5351 	u32 tpa_flags = 0;
5352 
5353 	if (set_tpa)
5354 		tpa_flags = bp->flags & BNXT_FLAG_TPA;
5355 	for (i = 0; i < bp->nr_vnics; i++) {
5356 		rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
5357 		if (rc) {
5358 			netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
5359 				   i, rc);
5360 			return rc;
5361 		}
5362 	}
5363 	return 0;
5364 }
5365 
5366 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
5367 {
5368 	int i;
5369 
5370 	for (i = 0; i < bp->nr_vnics; i++)
5371 		bnxt_hwrm_vnic_set_rss(bp, i, false);
5372 }
5373 
5374 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
5375 				    bool irq_re_init)
5376 {
5377 	if (bp->vnic_info) {
5378 		bnxt_hwrm_clear_vnic_filter(bp);
5379 		/* clear all RSS setting before free vnic ctx */
5380 		bnxt_hwrm_clear_vnic_rss(bp);
5381 		bnxt_hwrm_vnic_ctx_free(bp);
5382 		/* before free the vnic, undo the vnic tpa settings */
5383 		if (bp->flags & BNXT_FLAG_TPA)
5384 			bnxt_set_tpa(bp, false);
5385 		bnxt_hwrm_vnic_free(bp);
5386 	}
5387 	bnxt_hwrm_ring_free(bp, close_path);
5388 	bnxt_hwrm_ring_grp_free(bp);
5389 	if (irq_re_init) {
5390 		bnxt_hwrm_stat_ctx_free(bp);
5391 		bnxt_hwrm_free_tunnel_ports(bp);
5392 	}
5393 }
5394 
5395 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode)
5396 {
5397 	struct hwrm_func_cfg_input req = {0};
5398 	int rc;
5399 
5400 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
5401 	req.fid = cpu_to_le16(0xffff);
5402 	req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE);
5403 	if (br_mode == BRIDGE_MODE_VEB)
5404 		req.evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB;
5405 	else if (br_mode == BRIDGE_MODE_VEPA)
5406 		req.evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA;
5407 	else
5408 		return -EINVAL;
5409 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5410 	if (rc)
5411 		rc = -EIO;
5412 	return rc;
5413 }
5414 
5415 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size)
5416 {
5417 	struct hwrm_func_cfg_input req = {0};
5418 	int rc;
5419 
5420 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803)
5421 		return 0;
5422 
5423 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
5424 	req.fid = cpu_to_le16(0xffff);
5425 	req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE);
5426 	req.cache_linesize = FUNC_QCFG_RESP_CACHE_LINESIZE_CACHE_LINESIZE_64;
5427 	if (size == 128)
5428 		req.cache_linesize =
5429 			FUNC_QCFG_RESP_CACHE_LINESIZE_CACHE_LINESIZE_128;
5430 
5431 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5432 	if (rc)
5433 		rc = -EIO;
5434 	return rc;
5435 }
5436 
5437 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
5438 {
5439 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5440 	int rc;
5441 
5442 	if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG)
5443 		goto skip_rss_ctx;
5444 
5445 	/* allocate context for vnic */
5446 	rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0);
5447 	if (rc) {
5448 		netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
5449 			   vnic_id, rc);
5450 		goto vnic_setup_err;
5451 	}
5452 	bp->rsscos_nr_ctxs++;
5453 
5454 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
5455 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1);
5456 		if (rc) {
5457 			netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n",
5458 				   vnic_id, rc);
5459 			goto vnic_setup_err;
5460 		}
5461 		bp->rsscos_nr_ctxs++;
5462 	}
5463 
5464 skip_rss_ctx:
5465 	/* configure default vnic, ring grp */
5466 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
5467 	if (rc) {
5468 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
5469 			   vnic_id, rc);
5470 		goto vnic_setup_err;
5471 	}
5472 
5473 	/* Enable RSS hashing on vnic */
5474 	rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
5475 	if (rc) {
5476 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
5477 			   vnic_id, rc);
5478 		goto vnic_setup_err;
5479 	}
5480 
5481 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
5482 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
5483 		if (rc) {
5484 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
5485 				   vnic_id, rc);
5486 		}
5487 	}
5488 
5489 vnic_setup_err:
5490 	return rc;
5491 }
5492 
5493 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
5494 {
5495 #ifdef CONFIG_RFS_ACCEL
5496 	int i, rc = 0;
5497 
5498 	for (i = 0; i < bp->rx_nr_rings; i++) {
5499 		struct bnxt_vnic_info *vnic;
5500 		u16 vnic_id = i + 1;
5501 		u16 ring_id = i;
5502 
5503 		if (vnic_id >= bp->nr_vnics)
5504 			break;
5505 
5506 		vnic = &bp->vnic_info[vnic_id];
5507 		vnic->flags |= BNXT_VNIC_RFS_FLAG;
5508 		if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
5509 			vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG;
5510 		rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1);
5511 		if (rc) {
5512 			netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
5513 				   vnic_id, rc);
5514 			break;
5515 		}
5516 		rc = bnxt_setup_vnic(bp, vnic_id);
5517 		if (rc)
5518 			break;
5519 	}
5520 	return rc;
5521 #else
5522 	return 0;
5523 #endif
5524 }
5525 
5526 /* Allow PF and VF with default VLAN to be in promiscuous mode */
5527 static bool bnxt_promisc_ok(struct bnxt *bp)
5528 {
5529 #ifdef CONFIG_BNXT_SRIOV
5530 	if (BNXT_VF(bp) && !bp->vf.vlan)
5531 		return false;
5532 #endif
5533 	return true;
5534 }
5535 
5536 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp)
5537 {
5538 	unsigned int rc = 0;
5539 
5540 	rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1);
5541 	if (rc) {
5542 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
5543 			   rc);
5544 		return rc;
5545 	}
5546 
5547 	rc = bnxt_hwrm_vnic_cfg(bp, 1);
5548 	if (rc) {
5549 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
5550 			   rc);
5551 		return rc;
5552 	}
5553 	return rc;
5554 }
5555 
5556 static int bnxt_cfg_rx_mode(struct bnxt *);
5557 static bool bnxt_mc_list_updated(struct bnxt *, u32 *);
5558 
5559 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
5560 {
5561 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
5562 	int rc = 0;
5563 	unsigned int rx_nr_rings = bp->rx_nr_rings;
5564 
5565 	if (irq_re_init) {
5566 		rc = bnxt_hwrm_stat_ctx_alloc(bp);
5567 		if (rc) {
5568 			netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
5569 				   rc);
5570 			goto err_out;
5571 		}
5572 	}
5573 
5574 	rc = bnxt_hwrm_ring_alloc(bp);
5575 	if (rc) {
5576 		netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
5577 		goto err_out;
5578 	}
5579 
5580 	rc = bnxt_hwrm_ring_grp_alloc(bp);
5581 	if (rc) {
5582 		netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
5583 		goto err_out;
5584 	}
5585 
5586 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5587 		rx_nr_rings--;
5588 
5589 	/* default vnic 0 */
5590 	rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings);
5591 	if (rc) {
5592 		netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
5593 		goto err_out;
5594 	}
5595 
5596 	rc = bnxt_setup_vnic(bp, 0);
5597 	if (rc)
5598 		goto err_out;
5599 
5600 	if (bp->flags & BNXT_FLAG_RFS) {
5601 		rc = bnxt_alloc_rfs_vnics(bp);
5602 		if (rc)
5603 			goto err_out;
5604 	}
5605 
5606 	if (bp->flags & BNXT_FLAG_TPA) {
5607 		rc = bnxt_set_tpa(bp, true);
5608 		if (rc)
5609 			goto err_out;
5610 	}
5611 
5612 	if (BNXT_VF(bp))
5613 		bnxt_update_vf_mac(bp);
5614 
5615 	/* Filter for default vnic 0 */
5616 	rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
5617 	if (rc) {
5618 		netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
5619 		goto err_out;
5620 	}
5621 	vnic->uc_filter_count = 1;
5622 
5623 	vnic->rx_mask = CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
5624 
5625 	if ((bp->dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
5626 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
5627 
5628 	if (bp->dev->flags & IFF_ALLMULTI) {
5629 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
5630 		vnic->mc_list_count = 0;
5631 	} else {
5632 		u32 mask = 0;
5633 
5634 		bnxt_mc_list_updated(bp, &mask);
5635 		vnic->rx_mask |= mask;
5636 	}
5637 
5638 	rc = bnxt_cfg_rx_mode(bp);
5639 	if (rc)
5640 		goto err_out;
5641 
5642 	rc = bnxt_hwrm_set_coal(bp);
5643 	if (rc)
5644 		netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
5645 				rc);
5646 
5647 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
5648 		rc = bnxt_setup_nitroa0_vnic(bp);
5649 		if (rc)
5650 			netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n",
5651 				   rc);
5652 	}
5653 
5654 	if (BNXT_VF(bp)) {
5655 		bnxt_hwrm_func_qcfg(bp);
5656 		netdev_update_features(bp->dev);
5657 	}
5658 
5659 	return 0;
5660 
5661 err_out:
5662 	bnxt_hwrm_resource_free(bp, 0, true);
5663 
5664 	return rc;
5665 }
5666 
5667 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
5668 {
5669 	bnxt_hwrm_resource_free(bp, 1, irq_re_init);
5670 	return 0;
5671 }
5672 
5673 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
5674 {
5675 	bnxt_init_cp_rings(bp);
5676 	bnxt_init_rx_rings(bp);
5677 	bnxt_init_tx_rings(bp);
5678 	bnxt_init_ring_grps(bp, irq_re_init);
5679 	bnxt_init_vnics(bp);
5680 
5681 	return bnxt_init_chip(bp, irq_re_init);
5682 }
5683 
5684 static int bnxt_set_real_num_queues(struct bnxt *bp)
5685 {
5686 	int rc;
5687 	struct net_device *dev = bp->dev;
5688 
5689 	rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings -
5690 					  bp->tx_nr_rings_xdp);
5691 	if (rc)
5692 		return rc;
5693 
5694 	rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
5695 	if (rc)
5696 		return rc;
5697 
5698 #ifdef CONFIG_RFS_ACCEL
5699 	if (bp->flags & BNXT_FLAG_RFS)
5700 		dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
5701 #endif
5702 
5703 	return rc;
5704 }
5705 
5706 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
5707 			   bool shared)
5708 {
5709 	int _rx = *rx, _tx = *tx;
5710 
5711 	if (shared) {
5712 		*rx = min_t(int, _rx, max);
5713 		*tx = min_t(int, _tx, max);
5714 	} else {
5715 		if (max < 2)
5716 			return -ENOMEM;
5717 
5718 		while (_rx + _tx > max) {
5719 			if (_rx > _tx && _rx > 1)
5720 				_rx--;
5721 			else if (_tx > 1)
5722 				_tx--;
5723 		}
5724 		*rx = _rx;
5725 		*tx = _tx;
5726 	}
5727 	return 0;
5728 }
5729 
5730 static void bnxt_setup_msix(struct bnxt *bp)
5731 {
5732 	const int len = sizeof(bp->irq_tbl[0].name);
5733 	struct net_device *dev = bp->dev;
5734 	int tcs, i;
5735 
5736 	tcs = netdev_get_num_tc(dev);
5737 	if (tcs > 1) {
5738 		int i, off, count;
5739 
5740 		for (i = 0; i < tcs; i++) {
5741 			count = bp->tx_nr_rings_per_tc;
5742 			off = i * count;
5743 			netdev_set_tc_queue(dev, i, count, off);
5744 		}
5745 	}
5746 
5747 	for (i = 0; i < bp->cp_nr_rings; i++) {
5748 		char *attr;
5749 
5750 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
5751 			attr = "TxRx";
5752 		else if (i < bp->rx_nr_rings)
5753 			attr = "rx";
5754 		else
5755 			attr = "tx";
5756 
5757 		snprintf(bp->irq_tbl[i].name, len, "%s-%s-%d", dev->name, attr,
5758 			 i);
5759 		bp->irq_tbl[i].handler = bnxt_msix;
5760 	}
5761 }
5762 
5763 static void bnxt_setup_inta(struct bnxt *bp)
5764 {
5765 	const int len = sizeof(bp->irq_tbl[0].name);
5766 
5767 	if (netdev_get_num_tc(bp->dev))
5768 		netdev_reset_tc(bp->dev);
5769 
5770 	snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx",
5771 		 0);
5772 	bp->irq_tbl[0].handler = bnxt_inta;
5773 }
5774 
5775 static int bnxt_setup_int_mode(struct bnxt *bp)
5776 {
5777 	int rc;
5778 
5779 	if (bp->flags & BNXT_FLAG_USING_MSIX)
5780 		bnxt_setup_msix(bp);
5781 	else
5782 		bnxt_setup_inta(bp);
5783 
5784 	rc = bnxt_set_real_num_queues(bp);
5785 	return rc;
5786 }
5787 
5788 #ifdef CONFIG_RFS_ACCEL
5789 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp)
5790 {
5791 	return bp->hw_resc.max_rsscos_ctxs;
5792 }
5793 
5794 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp)
5795 {
5796 	return bp->hw_resc.max_vnics;
5797 }
5798 #endif
5799 
5800 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp)
5801 {
5802 	return bp->hw_resc.max_stat_ctxs;
5803 }
5804 
5805 void bnxt_set_max_func_stat_ctxs(struct bnxt *bp, unsigned int max)
5806 {
5807 	bp->hw_resc.max_stat_ctxs = max;
5808 }
5809 
5810 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp)
5811 {
5812 	return bp->hw_resc.max_cp_rings;
5813 }
5814 
5815 void bnxt_set_max_func_cp_rings(struct bnxt *bp, unsigned int max)
5816 {
5817 	bp->hw_resc.max_cp_rings = max;
5818 }
5819 
5820 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp)
5821 {
5822 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
5823 
5824 	return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings);
5825 }
5826 
5827 void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs)
5828 {
5829 	bp->hw_resc.max_irqs = max_irqs;
5830 }
5831 
5832 static int bnxt_init_msix(struct bnxt *bp)
5833 {
5834 	int i, total_vecs, rc = 0, min = 1;
5835 	struct msix_entry *msix_ent;
5836 
5837 	total_vecs = bnxt_get_max_func_irqs(bp);
5838 	msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
5839 	if (!msix_ent)
5840 		return -ENOMEM;
5841 
5842 	for (i = 0; i < total_vecs; i++) {
5843 		msix_ent[i].entry = i;
5844 		msix_ent[i].vector = 0;
5845 	}
5846 
5847 	if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
5848 		min = 2;
5849 
5850 	total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
5851 	if (total_vecs < 0) {
5852 		rc = -ENODEV;
5853 		goto msix_setup_exit;
5854 	}
5855 
5856 	bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
5857 	if (bp->irq_tbl) {
5858 		for (i = 0; i < total_vecs; i++)
5859 			bp->irq_tbl[i].vector = msix_ent[i].vector;
5860 
5861 		bp->total_irqs = total_vecs;
5862 		/* Trim rings based upon num of vectors allocated */
5863 		rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
5864 				     total_vecs, min == 1);
5865 		if (rc)
5866 			goto msix_setup_exit;
5867 
5868 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
5869 		bp->cp_nr_rings = (min == 1) ?
5870 				  max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
5871 				  bp->tx_nr_rings + bp->rx_nr_rings;
5872 
5873 	} else {
5874 		rc = -ENOMEM;
5875 		goto msix_setup_exit;
5876 	}
5877 	bp->flags |= BNXT_FLAG_USING_MSIX;
5878 	kfree(msix_ent);
5879 	return 0;
5880 
5881 msix_setup_exit:
5882 	netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc);
5883 	kfree(bp->irq_tbl);
5884 	bp->irq_tbl = NULL;
5885 	pci_disable_msix(bp->pdev);
5886 	kfree(msix_ent);
5887 	return rc;
5888 }
5889 
5890 static int bnxt_init_inta(struct bnxt *bp)
5891 {
5892 	bp->irq_tbl = kcalloc(1, sizeof(struct bnxt_irq), GFP_KERNEL);
5893 	if (!bp->irq_tbl)
5894 		return -ENOMEM;
5895 
5896 	bp->total_irqs = 1;
5897 	bp->rx_nr_rings = 1;
5898 	bp->tx_nr_rings = 1;
5899 	bp->cp_nr_rings = 1;
5900 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
5901 	bp->flags |= BNXT_FLAG_SHARED_RINGS;
5902 	bp->irq_tbl[0].vector = bp->pdev->irq;
5903 	return 0;
5904 }
5905 
5906 static int bnxt_init_int_mode(struct bnxt *bp)
5907 {
5908 	int rc = 0;
5909 
5910 	if (bp->flags & BNXT_FLAG_MSIX_CAP)
5911 		rc = bnxt_init_msix(bp);
5912 
5913 	if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) {
5914 		/* fallback to INTA */
5915 		rc = bnxt_init_inta(bp);
5916 	}
5917 	return rc;
5918 }
5919 
5920 static void bnxt_clear_int_mode(struct bnxt *bp)
5921 {
5922 	if (bp->flags & BNXT_FLAG_USING_MSIX)
5923 		pci_disable_msix(bp->pdev);
5924 
5925 	kfree(bp->irq_tbl);
5926 	bp->irq_tbl = NULL;
5927 	bp->flags &= ~BNXT_FLAG_USING_MSIX;
5928 }
5929 
5930 static int bnxt_reserve_rings(struct bnxt *bp)
5931 {
5932 	int orig_cp = bp->hw_resc.resv_cp_rings;
5933 	int tcs = netdev_get_num_tc(bp->dev);
5934 	int rc;
5935 
5936 	if (!bnxt_need_reserve_rings(bp))
5937 		return 0;
5938 
5939 	rc = __bnxt_reserve_rings(bp);
5940 	if (rc) {
5941 		netdev_err(bp->dev, "ring reservation failure rc: %d\n", rc);
5942 		return rc;
5943 	}
5944 	if ((bp->flags & BNXT_FLAG_NEW_RM) && bp->cp_nr_rings > orig_cp) {
5945 		bnxt_clear_int_mode(bp);
5946 		rc = bnxt_init_int_mode(bp);
5947 		if (rc)
5948 			return rc;
5949 	}
5950 	if (tcs && (bp->tx_nr_rings_per_tc * tcs != bp->tx_nr_rings)) {
5951 		netdev_err(bp->dev, "tx ring reservation failure\n");
5952 		netdev_reset_tc(bp->dev);
5953 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
5954 		return -ENOMEM;
5955 	}
5956 	bp->num_stat_ctxs = bp->cp_nr_rings;
5957 	return 0;
5958 }
5959 
5960 static void bnxt_free_irq(struct bnxt *bp)
5961 {
5962 	struct bnxt_irq *irq;
5963 	int i;
5964 
5965 #ifdef CONFIG_RFS_ACCEL
5966 	free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
5967 	bp->dev->rx_cpu_rmap = NULL;
5968 #endif
5969 	if (!bp->irq_tbl)
5970 		return;
5971 
5972 	for (i = 0; i < bp->cp_nr_rings; i++) {
5973 		irq = &bp->irq_tbl[i];
5974 		if (irq->requested) {
5975 			if (irq->have_cpumask) {
5976 				irq_set_affinity_hint(irq->vector, NULL);
5977 				free_cpumask_var(irq->cpu_mask);
5978 				irq->have_cpumask = 0;
5979 			}
5980 			free_irq(irq->vector, bp->bnapi[i]);
5981 		}
5982 
5983 		irq->requested = 0;
5984 	}
5985 }
5986 
5987 static int bnxt_request_irq(struct bnxt *bp)
5988 {
5989 	int i, j, rc = 0;
5990 	unsigned long flags = 0;
5991 #ifdef CONFIG_RFS_ACCEL
5992 	struct cpu_rmap *rmap = bp->dev->rx_cpu_rmap;
5993 #endif
5994 
5995 	if (!(bp->flags & BNXT_FLAG_USING_MSIX))
5996 		flags = IRQF_SHARED;
5997 
5998 	for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
5999 		struct bnxt_irq *irq = &bp->irq_tbl[i];
6000 #ifdef CONFIG_RFS_ACCEL
6001 		if (rmap && bp->bnapi[i]->rx_ring) {
6002 			rc = irq_cpu_rmap_add(rmap, irq->vector);
6003 			if (rc)
6004 				netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
6005 					    j);
6006 			j++;
6007 		}
6008 #endif
6009 		rc = request_irq(irq->vector, irq->handler, flags, irq->name,
6010 				 bp->bnapi[i]);
6011 		if (rc)
6012 			break;
6013 
6014 		irq->requested = 1;
6015 
6016 		if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) {
6017 			int numa_node = dev_to_node(&bp->pdev->dev);
6018 
6019 			irq->have_cpumask = 1;
6020 			cpumask_set_cpu(cpumask_local_spread(i, numa_node),
6021 					irq->cpu_mask);
6022 			rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask);
6023 			if (rc) {
6024 				netdev_warn(bp->dev,
6025 					    "Set affinity failed, IRQ = %d\n",
6026 					    irq->vector);
6027 				break;
6028 			}
6029 		}
6030 	}
6031 	return rc;
6032 }
6033 
6034 static void bnxt_del_napi(struct bnxt *bp)
6035 {
6036 	int i;
6037 
6038 	if (!bp->bnapi)
6039 		return;
6040 
6041 	for (i = 0; i < bp->cp_nr_rings; i++) {
6042 		struct bnxt_napi *bnapi = bp->bnapi[i];
6043 
6044 		napi_hash_del(&bnapi->napi);
6045 		netif_napi_del(&bnapi->napi);
6046 	}
6047 	/* We called napi_hash_del() before netif_napi_del(), we need
6048 	 * to respect an RCU grace period before freeing napi structures.
6049 	 */
6050 	synchronize_net();
6051 }
6052 
6053 static void bnxt_init_napi(struct bnxt *bp)
6054 {
6055 	int i;
6056 	unsigned int cp_nr_rings = bp->cp_nr_rings;
6057 	struct bnxt_napi *bnapi;
6058 
6059 	if (bp->flags & BNXT_FLAG_USING_MSIX) {
6060 		if (BNXT_CHIP_TYPE_NITRO_A0(bp))
6061 			cp_nr_rings--;
6062 		for (i = 0; i < cp_nr_rings; i++) {
6063 			bnapi = bp->bnapi[i];
6064 			netif_napi_add(bp->dev, &bnapi->napi,
6065 				       bnxt_poll, 64);
6066 		}
6067 		if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
6068 			bnapi = bp->bnapi[cp_nr_rings];
6069 			netif_napi_add(bp->dev, &bnapi->napi,
6070 				       bnxt_poll_nitroa0, 64);
6071 		}
6072 	} else {
6073 		bnapi = bp->bnapi[0];
6074 		netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64);
6075 	}
6076 }
6077 
6078 static void bnxt_disable_napi(struct bnxt *bp)
6079 {
6080 	int i;
6081 
6082 	if (!bp->bnapi)
6083 		return;
6084 
6085 	for (i = 0; i < bp->cp_nr_rings; i++) {
6086 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
6087 
6088 		if (bp->bnapi[i]->rx_ring)
6089 			cancel_work_sync(&cpr->dim.work);
6090 
6091 		napi_disable(&bp->bnapi[i]->napi);
6092 	}
6093 }
6094 
6095 static void bnxt_enable_napi(struct bnxt *bp)
6096 {
6097 	int i;
6098 
6099 	for (i = 0; i < bp->cp_nr_rings; i++) {
6100 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
6101 		bp->bnapi[i]->in_reset = false;
6102 
6103 		if (bp->bnapi[i]->rx_ring) {
6104 			INIT_WORK(&cpr->dim.work, bnxt_dim_work);
6105 			cpr->dim.mode = NET_DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6106 		}
6107 		napi_enable(&bp->bnapi[i]->napi);
6108 	}
6109 }
6110 
6111 void bnxt_tx_disable(struct bnxt *bp)
6112 {
6113 	int i;
6114 	struct bnxt_tx_ring_info *txr;
6115 
6116 	if (bp->tx_ring) {
6117 		for (i = 0; i < bp->tx_nr_rings; i++) {
6118 			txr = &bp->tx_ring[i];
6119 			txr->dev_state = BNXT_DEV_STATE_CLOSING;
6120 		}
6121 	}
6122 	/* Stop all TX queues */
6123 	netif_tx_disable(bp->dev);
6124 	netif_carrier_off(bp->dev);
6125 }
6126 
6127 void bnxt_tx_enable(struct bnxt *bp)
6128 {
6129 	int i;
6130 	struct bnxt_tx_ring_info *txr;
6131 
6132 	for (i = 0; i < bp->tx_nr_rings; i++) {
6133 		txr = &bp->tx_ring[i];
6134 		txr->dev_state = 0;
6135 	}
6136 	netif_tx_wake_all_queues(bp->dev);
6137 	if (bp->link_info.link_up)
6138 		netif_carrier_on(bp->dev);
6139 }
6140 
6141 static void bnxt_report_link(struct bnxt *bp)
6142 {
6143 	if (bp->link_info.link_up) {
6144 		const char *duplex;
6145 		const char *flow_ctrl;
6146 		u32 speed;
6147 		u16 fec;
6148 
6149 		netif_carrier_on(bp->dev);
6150 		if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
6151 			duplex = "full";
6152 		else
6153 			duplex = "half";
6154 		if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
6155 			flow_ctrl = "ON - receive & transmit";
6156 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
6157 			flow_ctrl = "ON - transmit";
6158 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
6159 			flow_ctrl = "ON - receive";
6160 		else
6161 			flow_ctrl = "none";
6162 		speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
6163 		netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s duplex, Flow control: %s\n",
6164 			    speed, duplex, flow_ctrl);
6165 		if (bp->flags & BNXT_FLAG_EEE_CAP)
6166 			netdev_info(bp->dev, "EEE is %s\n",
6167 				    bp->eee.eee_active ? "active" :
6168 							 "not active");
6169 		fec = bp->link_info.fec_cfg;
6170 		if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED))
6171 			netdev_info(bp->dev, "FEC autoneg %s encodings: %s\n",
6172 				    (fec & BNXT_FEC_AUTONEG) ? "on" : "off",
6173 				    (fec & BNXT_FEC_ENC_BASE_R) ? "BaseR" :
6174 				     (fec & BNXT_FEC_ENC_RS) ? "RS" : "None");
6175 	} else {
6176 		netif_carrier_off(bp->dev);
6177 		netdev_err(bp->dev, "NIC Link is Down\n");
6178 	}
6179 }
6180 
6181 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp)
6182 {
6183 	int rc = 0;
6184 	struct hwrm_port_phy_qcaps_input req = {0};
6185 	struct hwrm_port_phy_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
6186 	struct bnxt_link_info *link_info = &bp->link_info;
6187 
6188 	if (bp->hwrm_spec_code < 0x10201)
6189 		return 0;
6190 
6191 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCAPS, -1, -1);
6192 
6193 	mutex_lock(&bp->hwrm_cmd_lock);
6194 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6195 	if (rc)
6196 		goto hwrm_phy_qcaps_exit;
6197 
6198 	if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) {
6199 		struct ethtool_eee *eee = &bp->eee;
6200 		u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode);
6201 
6202 		bp->flags |= BNXT_FLAG_EEE_CAP;
6203 		eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
6204 		bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) &
6205 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK;
6206 		bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) &
6207 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK;
6208 	}
6209 	if (resp->supported_speeds_auto_mode)
6210 		link_info->support_auto_speeds =
6211 			le16_to_cpu(resp->supported_speeds_auto_mode);
6212 
6213 	bp->port_count = resp->port_cnt;
6214 
6215 hwrm_phy_qcaps_exit:
6216 	mutex_unlock(&bp->hwrm_cmd_lock);
6217 	return rc;
6218 }
6219 
6220 static int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
6221 {
6222 	int rc = 0;
6223 	struct bnxt_link_info *link_info = &bp->link_info;
6224 	struct hwrm_port_phy_qcfg_input req = {0};
6225 	struct hwrm_port_phy_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
6226 	u8 link_up = link_info->link_up;
6227 	u16 diff;
6228 
6229 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCFG, -1, -1);
6230 
6231 	mutex_lock(&bp->hwrm_cmd_lock);
6232 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6233 	if (rc) {
6234 		mutex_unlock(&bp->hwrm_cmd_lock);
6235 		return rc;
6236 	}
6237 
6238 	memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
6239 	link_info->phy_link_status = resp->link;
6240 	link_info->duplex = resp->duplex_cfg;
6241 	if (bp->hwrm_spec_code >= 0x10800)
6242 		link_info->duplex = resp->duplex_state;
6243 	link_info->pause = resp->pause;
6244 	link_info->auto_mode = resp->auto_mode;
6245 	link_info->auto_pause_setting = resp->auto_pause;
6246 	link_info->lp_pause = resp->link_partner_adv_pause;
6247 	link_info->force_pause_setting = resp->force_pause;
6248 	link_info->duplex_setting = resp->duplex_cfg;
6249 	if (link_info->phy_link_status == BNXT_LINK_LINK)
6250 		link_info->link_speed = le16_to_cpu(resp->link_speed);
6251 	else
6252 		link_info->link_speed = 0;
6253 	link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
6254 	link_info->support_speeds = le16_to_cpu(resp->support_speeds);
6255 	link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
6256 	link_info->lp_auto_link_speeds =
6257 		le16_to_cpu(resp->link_partner_adv_speeds);
6258 	link_info->preemphasis = le32_to_cpu(resp->preemphasis);
6259 	link_info->phy_ver[0] = resp->phy_maj;
6260 	link_info->phy_ver[1] = resp->phy_min;
6261 	link_info->phy_ver[2] = resp->phy_bld;
6262 	link_info->media_type = resp->media_type;
6263 	link_info->phy_type = resp->phy_type;
6264 	link_info->transceiver = resp->xcvr_pkg_type;
6265 	link_info->phy_addr = resp->eee_config_phy_addr &
6266 			      PORT_PHY_QCFG_RESP_PHY_ADDR_MASK;
6267 	link_info->module_status = resp->module_status;
6268 
6269 	if (bp->flags & BNXT_FLAG_EEE_CAP) {
6270 		struct ethtool_eee *eee = &bp->eee;
6271 		u16 fw_speeds;
6272 
6273 		eee->eee_active = 0;
6274 		if (resp->eee_config_phy_addr &
6275 		    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) {
6276 			eee->eee_active = 1;
6277 			fw_speeds = le16_to_cpu(
6278 				resp->link_partner_adv_eee_link_speed_mask);
6279 			eee->lp_advertised =
6280 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
6281 		}
6282 
6283 		/* Pull initial EEE config */
6284 		if (!chng_link_state) {
6285 			if (resp->eee_config_phy_addr &
6286 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED)
6287 				eee->eee_enabled = 1;
6288 
6289 			fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask);
6290 			eee->advertised =
6291 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
6292 
6293 			if (resp->eee_config_phy_addr &
6294 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) {
6295 				__le32 tmr;
6296 
6297 				eee->tx_lpi_enabled = 1;
6298 				tmr = resp->xcvr_identifier_type_tx_lpi_timer;
6299 				eee->tx_lpi_timer = le32_to_cpu(tmr) &
6300 					PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK;
6301 			}
6302 		}
6303 	}
6304 
6305 	link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED;
6306 	if (bp->hwrm_spec_code >= 0x10504)
6307 		link_info->fec_cfg = le16_to_cpu(resp->fec_cfg);
6308 
6309 	/* TODO: need to add more logic to report VF link */
6310 	if (chng_link_state) {
6311 		if (link_info->phy_link_status == BNXT_LINK_LINK)
6312 			link_info->link_up = 1;
6313 		else
6314 			link_info->link_up = 0;
6315 		if (link_up != link_info->link_up)
6316 			bnxt_report_link(bp);
6317 	} else {
6318 		/* alwasy link down if not require to update link state */
6319 		link_info->link_up = 0;
6320 	}
6321 	mutex_unlock(&bp->hwrm_cmd_lock);
6322 
6323 	diff = link_info->support_auto_speeds ^ link_info->advertising;
6324 	if ((link_info->support_auto_speeds | diff) !=
6325 	    link_info->support_auto_speeds) {
6326 		/* An advertised speed is no longer supported, so we need to
6327 		 * update the advertisement settings.  Caller holds RTNL
6328 		 * so we can modify link settings.
6329 		 */
6330 		link_info->advertising = link_info->support_auto_speeds;
6331 		if (link_info->autoneg & BNXT_AUTONEG_SPEED)
6332 			bnxt_hwrm_set_link_setting(bp, true, false);
6333 	}
6334 	return 0;
6335 }
6336 
6337 static void bnxt_get_port_module_status(struct bnxt *bp)
6338 {
6339 	struct bnxt_link_info *link_info = &bp->link_info;
6340 	struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp;
6341 	u8 module_status;
6342 
6343 	if (bnxt_update_link(bp, true))
6344 		return;
6345 
6346 	module_status = link_info->module_status;
6347 	switch (module_status) {
6348 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX:
6349 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN:
6350 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG:
6351 		netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n",
6352 			    bp->pf.port_id);
6353 		if (bp->hwrm_spec_code >= 0x10201) {
6354 			netdev_warn(bp->dev, "Module part number %s\n",
6355 				    resp->phy_vendor_partnumber);
6356 		}
6357 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX)
6358 			netdev_warn(bp->dev, "TX is disabled\n");
6359 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN)
6360 			netdev_warn(bp->dev, "SFP+ module is shutdown\n");
6361 	}
6362 }
6363 
6364 static void
6365 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
6366 {
6367 	if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
6368 		if (bp->hwrm_spec_code >= 0x10201)
6369 			req->auto_pause =
6370 				PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE;
6371 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
6372 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
6373 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
6374 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX;
6375 		req->enables |=
6376 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
6377 	} else {
6378 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
6379 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
6380 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
6381 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
6382 		req->enables |=
6383 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
6384 		if (bp->hwrm_spec_code >= 0x10201) {
6385 			req->auto_pause = req->force_pause;
6386 			req->enables |= cpu_to_le32(
6387 				PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
6388 		}
6389 	}
6390 }
6391 
6392 static void bnxt_hwrm_set_link_common(struct bnxt *bp,
6393 				      struct hwrm_port_phy_cfg_input *req)
6394 {
6395 	u8 autoneg = bp->link_info.autoneg;
6396 	u16 fw_link_speed = bp->link_info.req_link_speed;
6397 	u16 advertising = bp->link_info.advertising;
6398 
6399 	if (autoneg & BNXT_AUTONEG_SPEED) {
6400 		req->auto_mode |=
6401 			PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK;
6402 
6403 		req->enables |= cpu_to_le32(
6404 			PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
6405 		req->auto_link_speed_mask = cpu_to_le16(advertising);
6406 
6407 		req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
6408 		req->flags |=
6409 			cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
6410 	} else {
6411 		req->force_link_speed = cpu_to_le16(fw_link_speed);
6412 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
6413 	}
6414 
6415 	/* tell chimp that the setting takes effect immediately */
6416 	req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
6417 }
6418 
6419 int bnxt_hwrm_set_pause(struct bnxt *bp)
6420 {
6421 	struct hwrm_port_phy_cfg_input req = {0};
6422 	int rc;
6423 
6424 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
6425 	bnxt_hwrm_set_pause_common(bp, &req);
6426 
6427 	if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
6428 	    bp->link_info.force_link_chng)
6429 		bnxt_hwrm_set_link_common(bp, &req);
6430 
6431 	mutex_lock(&bp->hwrm_cmd_lock);
6432 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6433 	if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
6434 		/* since changing of pause setting doesn't trigger any link
6435 		 * change event, the driver needs to update the current pause
6436 		 * result upon successfully return of the phy_cfg command
6437 		 */
6438 		bp->link_info.pause =
6439 		bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
6440 		bp->link_info.auto_pause_setting = 0;
6441 		if (!bp->link_info.force_link_chng)
6442 			bnxt_report_link(bp);
6443 	}
6444 	bp->link_info.force_link_chng = false;
6445 	mutex_unlock(&bp->hwrm_cmd_lock);
6446 	return rc;
6447 }
6448 
6449 static void bnxt_hwrm_set_eee(struct bnxt *bp,
6450 			      struct hwrm_port_phy_cfg_input *req)
6451 {
6452 	struct ethtool_eee *eee = &bp->eee;
6453 
6454 	if (eee->eee_enabled) {
6455 		u16 eee_speeds;
6456 		u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE;
6457 
6458 		if (eee->tx_lpi_enabled)
6459 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE;
6460 		else
6461 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE;
6462 
6463 		req->flags |= cpu_to_le32(flags);
6464 		eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised);
6465 		req->eee_link_speed_mask = cpu_to_le16(eee_speeds);
6466 		req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer);
6467 	} else {
6468 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE);
6469 	}
6470 }
6471 
6472 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee)
6473 {
6474 	struct hwrm_port_phy_cfg_input req = {0};
6475 
6476 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
6477 	if (set_pause)
6478 		bnxt_hwrm_set_pause_common(bp, &req);
6479 
6480 	bnxt_hwrm_set_link_common(bp, &req);
6481 
6482 	if (set_eee)
6483 		bnxt_hwrm_set_eee(bp, &req);
6484 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6485 }
6486 
6487 static int bnxt_hwrm_shutdown_link(struct bnxt *bp)
6488 {
6489 	struct hwrm_port_phy_cfg_input req = {0};
6490 
6491 	if (!BNXT_SINGLE_PF(bp))
6492 		return 0;
6493 
6494 	if (pci_num_vf(bp->pdev))
6495 		return 0;
6496 
6497 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
6498 	req.flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN);
6499 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6500 }
6501 
6502 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp)
6503 {
6504 	struct hwrm_port_led_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
6505 	struct hwrm_port_led_qcaps_input req = {0};
6506 	struct bnxt_pf_info *pf = &bp->pf;
6507 	int rc;
6508 
6509 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601)
6510 		return 0;
6511 
6512 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_LED_QCAPS, -1, -1);
6513 	req.port_id = cpu_to_le16(pf->port_id);
6514 	mutex_lock(&bp->hwrm_cmd_lock);
6515 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6516 	if (rc) {
6517 		mutex_unlock(&bp->hwrm_cmd_lock);
6518 		return rc;
6519 	}
6520 	if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) {
6521 		int i;
6522 
6523 		bp->num_leds = resp->num_leds;
6524 		memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) *
6525 						 bp->num_leds);
6526 		for (i = 0; i < bp->num_leds; i++) {
6527 			struct bnxt_led_info *led = &bp->leds[i];
6528 			__le16 caps = led->led_state_caps;
6529 
6530 			if (!led->led_group_id ||
6531 			    !BNXT_LED_ALT_BLINK_CAP(caps)) {
6532 				bp->num_leds = 0;
6533 				break;
6534 			}
6535 		}
6536 	}
6537 	mutex_unlock(&bp->hwrm_cmd_lock);
6538 	return 0;
6539 }
6540 
6541 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp)
6542 {
6543 	struct hwrm_wol_filter_alloc_input req = {0};
6544 	struct hwrm_wol_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
6545 	int rc;
6546 
6547 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_ALLOC, -1, -1);
6548 	req.port_id = cpu_to_le16(bp->pf.port_id);
6549 	req.wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT;
6550 	req.enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS);
6551 	memcpy(req.mac_address, bp->dev->dev_addr, ETH_ALEN);
6552 	mutex_lock(&bp->hwrm_cmd_lock);
6553 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6554 	if (!rc)
6555 		bp->wol_filter_id = resp->wol_filter_id;
6556 	mutex_unlock(&bp->hwrm_cmd_lock);
6557 	return rc;
6558 }
6559 
6560 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp)
6561 {
6562 	struct hwrm_wol_filter_free_input req = {0};
6563 	int rc;
6564 
6565 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_FREE, -1, -1);
6566 	req.port_id = cpu_to_le16(bp->pf.port_id);
6567 	req.enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID);
6568 	req.wol_filter_id = bp->wol_filter_id;
6569 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6570 	return rc;
6571 }
6572 
6573 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle)
6574 {
6575 	struct hwrm_wol_filter_qcfg_input req = {0};
6576 	struct hwrm_wol_filter_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
6577 	u16 next_handle = 0;
6578 	int rc;
6579 
6580 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_QCFG, -1, -1);
6581 	req.port_id = cpu_to_le16(bp->pf.port_id);
6582 	req.handle = cpu_to_le16(handle);
6583 	mutex_lock(&bp->hwrm_cmd_lock);
6584 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6585 	if (!rc) {
6586 		next_handle = le16_to_cpu(resp->next_handle);
6587 		if (next_handle != 0) {
6588 			if (resp->wol_type ==
6589 			    WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) {
6590 				bp->wol = 1;
6591 				bp->wol_filter_id = resp->wol_filter_id;
6592 			}
6593 		}
6594 	}
6595 	mutex_unlock(&bp->hwrm_cmd_lock);
6596 	return next_handle;
6597 }
6598 
6599 static void bnxt_get_wol_settings(struct bnxt *bp)
6600 {
6601 	u16 handle = 0;
6602 
6603 	if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP))
6604 		return;
6605 
6606 	do {
6607 		handle = bnxt_hwrm_get_wol_fltrs(bp, handle);
6608 	} while (handle && handle != 0xffff);
6609 }
6610 
6611 static bool bnxt_eee_config_ok(struct bnxt *bp)
6612 {
6613 	struct ethtool_eee *eee = &bp->eee;
6614 	struct bnxt_link_info *link_info = &bp->link_info;
6615 
6616 	if (!(bp->flags & BNXT_FLAG_EEE_CAP))
6617 		return true;
6618 
6619 	if (eee->eee_enabled) {
6620 		u32 advertising =
6621 			_bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0);
6622 
6623 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
6624 			eee->eee_enabled = 0;
6625 			return false;
6626 		}
6627 		if (eee->advertised & ~advertising) {
6628 			eee->advertised = advertising & eee->supported;
6629 			return false;
6630 		}
6631 	}
6632 	return true;
6633 }
6634 
6635 static int bnxt_update_phy_setting(struct bnxt *bp)
6636 {
6637 	int rc;
6638 	bool update_link = false;
6639 	bool update_pause = false;
6640 	bool update_eee = false;
6641 	struct bnxt_link_info *link_info = &bp->link_info;
6642 
6643 	rc = bnxt_update_link(bp, true);
6644 	if (rc) {
6645 		netdev_err(bp->dev, "failed to update link (rc: %x)\n",
6646 			   rc);
6647 		return rc;
6648 	}
6649 	if (!BNXT_SINGLE_PF(bp))
6650 		return 0;
6651 
6652 	if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
6653 	    (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) !=
6654 	    link_info->req_flow_ctrl)
6655 		update_pause = true;
6656 	if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
6657 	    link_info->force_pause_setting != link_info->req_flow_ctrl)
6658 		update_pause = true;
6659 	if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
6660 		if (BNXT_AUTO_MODE(link_info->auto_mode))
6661 			update_link = true;
6662 		if (link_info->req_link_speed != link_info->force_link_speed)
6663 			update_link = true;
6664 		if (link_info->req_duplex != link_info->duplex_setting)
6665 			update_link = true;
6666 	} else {
6667 		if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
6668 			update_link = true;
6669 		if (link_info->advertising != link_info->auto_link_speeds)
6670 			update_link = true;
6671 	}
6672 
6673 	/* The last close may have shutdown the link, so need to call
6674 	 * PHY_CFG to bring it back up.
6675 	 */
6676 	if (!netif_carrier_ok(bp->dev))
6677 		update_link = true;
6678 
6679 	if (!bnxt_eee_config_ok(bp))
6680 		update_eee = true;
6681 
6682 	if (update_link)
6683 		rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee);
6684 	else if (update_pause)
6685 		rc = bnxt_hwrm_set_pause(bp);
6686 	if (rc) {
6687 		netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
6688 			   rc);
6689 		return rc;
6690 	}
6691 
6692 	return rc;
6693 }
6694 
6695 /* Common routine to pre-map certain register block to different GRC window.
6696  * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
6697  * in PF and 3 windows in VF that can be customized to map in different
6698  * register blocks.
6699  */
6700 static void bnxt_preset_reg_win(struct bnxt *bp)
6701 {
6702 	if (BNXT_PF(bp)) {
6703 		/* CAG registers map to GRC window #4 */
6704 		writel(BNXT_CAG_REG_BASE,
6705 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
6706 	}
6707 }
6708 
6709 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
6710 {
6711 	int rc = 0;
6712 
6713 	bnxt_preset_reg_win(bp);
6714 	netif_carrier_off(bp->dev);
6715 	if (irq_re_init) {
6716 		rc = bnxt_reserve_rings(bp);
6717 		if (rc)
6718 			return rc;
6719 
6720 		rc = bnxt_setup_int_mode(bp);
6721 		if (rc) {
6722 			netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
6723 				   rc);
6724 			return rc;
6725 		}
6726 	}
6727 	if ((bp->flags & BNXT_FLAG_RFS) &&
6728 	    !(bp->flags & BNXT_FLAG_USING_MSIX)) {
6729 		/* disable RFS if falling back to INTA */
6730 		bp->dev->hw_features &= ~NETIF_F_NTUPLE;
6731 		bp->flags &= ~BNXT_FLAG_RFS;
6732 	}
6733 
6734 	rc = bnxt_alloc_mem(bp, irq_re_init);
6735 	if (rc) {
6736 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
6737 		goto open_err_free_mem;
6738 	}
6739 
6740 	if (irq_re_init) {
6741 		bnxt_init_napi(bp);
6742 		rc = bnxt_request_irq(bp);
6743 		if (rc) {
6744 			netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
6745 			goto open_err;
6746 		}
6747 	}
6748 
6749 	bnxt_enable_napi(bp);
6750 
6751 	rc = bnxt_init_nic(bp, irq_re_init);
6752 	if (rc) {
6753 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
6754 		goto open_err;
6755 	}
6756 
6757 	if (link_re_init) {
6758 		mutex_lock(&bp->link_lock);
6759 		rc = bnxt_update_phy_setting(bp);
6760 		mutex_unlock(&bp->link_lock);
6761 		if (rc)
6762 			netdev_warn(bp->dev, "failed to update phy settings\n");
6763 	}
6764 
6765 	if (irq_re_init)
6766 		udp_tunnel_get_rx_info(bp->dev);
6767 
6768 	set_bit(BNXT_STATE_OPEN, &bp->state);
6769 	bnxt_enable_int(bp);
6770 	/* Enable TX queues */
6771 	bnxt_tx_enable(bp);
6772 	mod_timer(&bp->timer, jiffies + bp->current_interval);
6773 	/* Poll link status and check for SFP+ module status */
6774 	bnxt_get_port_module_status(bp);
6775 
6776 	/* VF-reps may need to be re-opened after the PF is re-opened */
6777 	if (BNXT_PF(bp))
6778 		bnxt_vf_reps_open(bp);
6779 	return 0;
6780 
6781 open_err:
6782 	bnxt_disable_napi(bp);
6783 	bnxt_del_napi(bp);
6784 
6785 open_err_free_mem:
6786 	bnxt_free_skbs(bp);
6787 	bnxt_free_irq(bp);
6788 	bnxt_free_mem(bp, true);
6789 	return rc;
6790 }
6791 
6792 /* rtnl_lock held */
6793 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
6794 {
6795 	int rc = 0;
6796 
6797 	rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
6798 	if (rc) {
6799 		netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
6800 		dev_close(bp->dev);
6801 	}
6802 	return rc;
6803 }
6804 
6805 /* rtnl_lock held, open the NIC half way by allocating all resources, but
6806  * NAPI, IRQ, and TX are not enabled.  This is mainly used for offline
6807  * self tests.
6808  */
6809 int bnxt_half_open_nic(struct bnxt *bp)
6810 {
6811 	int rc = 0;
6812 
6813 	rc = bnxt_alloc_mem(bp, false);
6814 	if (rc) {
6815 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
6816 		goto half_open_err;
6817 	}
6818 	rc = bnxt_init_nic(bp, false);
6819 	if (rc) {
6820 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
6821 		goto half_open_err;
6822 	}
6823 	return 0;
6824 
6825 half_open_err:
6826 	bnxt_free_skbs(bp);
6827 	bnxt_free_mem(bp, false);
6828 	dev_close(bp->dev);
6829 	return rc;
6830 }
6831 
6832 /* rtnl_lock held, this call can only be made after a previous successful
6833  * call to bnxt_half_open_nic().
6834  */
6835 void bnxt_half_close_nic(struct bnxt *bp)
6836 {
6837 	bnxt_hwrm_resource_free(bp, false, false);
6838 	bnxt_free_skbs(bp);
6839 	bnxt_free_mem(bp, false);
6840 }
6841 
6842 static int bnxt_open(struct net_device *dev)
6843 {
6844 	struct bnxt *bp = netdev_priv(dev);
6845 
6846 	return __bnxt_open_nic(bp, true, true);
6847 }
6848 
6849 static bool bnxt_drv_busy(struct bnxt *bp)
6850 {
6851 	return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) ||
6852 		test_bit(BNXT_STATE_READ_STATS, &bp->state));
6853 }
6854 
6855 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init,
6856 			     bool link_re_init)
6857 {
6858 	/* Close the VF-reps before closing PF */
6859 	if (BNXT_PF(bp))
6860 		bnxt_vf_reps_close(bp);
6861 
6862 	/* Change device state to avoid TX queue wake up's */
6863 	bnxt_tx_disable(bp);
6864 
6865 	clear_bit(BNXT_STATE_OPEN, &bp->state);
6866 	smp_mb__after_atomic();
6867 	while (bnxt_drv_busy(bp))
6868 		msleep(20);
6869 
6870 	/* Flush rings and and disable interrupts */
6871 	bnxt_shutdown_nic(bp, irq_re_init);
6872 
6873 	/* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
6874 
6875 	bnxt_disable_napi(bp);
6876 	del_timer_sync(&bp->timer);
6877 	bnxt_free_skbs(bp);
6878 
6879 	if (irq_re_init) {
6880 		bnxt_free_irq(bp);
6881 		bnxt_del_napi(bp);
6882 	}
6883 	bnxt_free_mem(bp, irq_re_init);
6884 }
6885 
6886 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
6887 {
6888 	int rc = 0;
6889 
6890 #ifdef CONFIG_BNXT_SRIOV
6891 	if (bp->sriov_cfg) {
6892 		rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
6893 						      !bp->sriov_cfg,
6894 						      BNXT_SRIOV_CFG_WAIT_TMO);
6895 		if (rc)
6896 			netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
6897 	}
6898 #endif
6899 	__bnxt_close_nic(bp, irq_re_init, link_re_init);
6900 	return rc;
6901 }
6902 
6903 static int bnxt_close(struct net_device *dev)
6904 {
6905 	struct bnxt *bp = netdev_priv(dev);
6906 
6907 	bnxt_close_nic(bp, true, true);
6908 	bnxt_hwrm_shutdown_link(bp);
6909 	return 0;
6910 }
6911 
6912 /* rtnl_lock held */
6913 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
6914 {
6915 	switch (cmd) {
6916 	case SIOCGMIIPHY:
6917 		/* fallthru */
6918 	case SIOCGMIIREG: {
6919 		if (!netif_running(dev))
6920 			return -EAGAIN;
6921 
6922 		return 0;
6923 	}
6924 
6925 	case SIOCSMIIREG:
6926 		if (!netif_running(dev))
6927 			return -EAGAIN;
6928 
6929 		return 0;
6930 
6931 	default:
6932 		/* do nothing */
6933 		break;
6934 	}
6935 	return -EOPNOTSUPP;
6936 }
6937 
6938 static void
6939 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
6940 {
6941 	u32 i;
6942 	struct bnxt *bp = netdev_priv(dev);
6943 
6944 	set_bit(BNXT_STATE_READ_STATS, &bp->state);
6945 	/* Make sure bnxt_close_nic() sees that we are reading stats before
6946 	 * we check the BNXT_STATE_OPEN flag.
6947 	 */
6948 	smp_mb__after_atomic();
6949 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
6950 		clear_bit(BNXT_STATE_READ_STATS, &bp->state);
6951 		return;
6952 	}
6953 
6954 	/* TODO check if we need to synchronize with bnxt_close path */
6955 	for (i = 0; i < bp->cp_nr_rings; i++) {
6956 		struct bnxt_napi *bnapi = bp->bnapi[i];
6957 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6958 		struct ctx_hw_stats *hw_stats = cpr->hw_stats;
6959 
6960 		stats->rx_packets += le64_to_cpu(hw_stats->rx_ucast_pkts);
6961 		stats->rx_packets += le64_to_cpu(hw_stats->rx_mcast_pkts);
6962 		stats->rx_packets += le64_to_cpu(hw_stats->rx_bcast_pkts);
6963 
6964 		stats->tx_packets += le64_to_cpu(hw_stats->tx_ucast_pkts);
6965 		stats->tx_packets += le64_to_cpu(hw_stats->tx_mcast_pkts);
6966 		stats->tx_packets += le64_to_cpu(hw_stats->tx_bcast_pkts);
6967 
6968 		stats->rx_bytes += le64_to_cpu(hw_stats->rx_ucast_bytes);
6969 		stats->rx_bytes += le64_to_cpu(hw_stats->rx_mcast_bytes);
6970 		stats->rx_bytes += le64_to_cpu(hw_stats->rx_bcast_bytes);
6971 
6972 		stats->tx_bytes += le64_to_cpu(hw_stats->tx_ucast_bytes);
6973 		stats->tx_bytes += le64_to_cpu(hw_stats->tx_mcast_bytes);
6974 		stats->tx_bytes += le64_to_cpu(hw_stats->tx_bcast_bytes);
6975 
6976 		stats->rx_missed_errors +=
6977 			le64_to_cpu(hw_stats->rx_discard_pkts);
6978 
6979 		stats->multicast += le64_to_cpu(hw_stats->rx_mcast_pkts);
6980 
6981 		stats->tx_dropped += le64_to_cpu(hw_stats->tx_drop_pkts);
6982 	}
6983 
6984 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
6985 		struct rx_port_stats *rx = bp->hw_rx_port_stats;
6986 		struct tx_port_stats *tx = bp->hw_tx_port_stats;
6987 
6988 		stats->rx_crc_errors = le64_to_cpu(rx->rx_fcs_err_frames);
6989 		stats->rx_frame_errors = le64_to_cpu(rx->rx_align_err_frames);
6990 		stats->rx_length_errors = le64_to_cpu(rx->rx_undrsz_frames) +
6991 					  le64_to_cpu(rx->rx_ovrsz_frames) +
6992 					  le64_to_cpu(rx->rx_runt_frames);
6993 		stats->rx_errors = le64_to_cpu(rx->rx_false_carrier_frames) +
6994 				   le64_to_cpu(rx->rx_jbr_frames);
6995 		stats->collisions = le64_to_cpu(tx->tx_total_collisions);
6996 		stats->tx_fifo_errors = le64_to_cpu(tx->tx_fifo_underruns);
6997 		stats->tx_errors = le64_to_cpu(tx->tx_err);
6998 	}
6999 	clear_bit(BNXT_STATE_READ_STATS, &bp->state);
7000 }
7001 
7002 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
7003 {
7004 	struct net_device *dev = bp->dev;
7005 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
7006 	struct netdev_hw_addr *ha;
7007 	u8 *haddr;
7008 	int mc_count = 0;
7009 	bool update = false;
7010 	int off = 0;
7011 
7012 	netdev_for_each_mc_addr(ha, dev) {
7013 		if (mc_count >= BNXT_MAX_MC_ADDRS) {
7014 			*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
7015 			vnic->mc_list_count = 0;
7016 			return false;
7017 		}
7018 		haddr = ha->addr;
7019 		if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
7020 			memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
7021 			update = true;
7022 		}
7023 		off += ETH_ALEN;
7024 		mc_count++;
7025 	}
7026 	if (mc_count)
7027 		*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
7028 
7029 	if (mc_count != vnic->mc_list_count) {
7030 		vnic->mc_list_count = mc_count;
7031 		update = true;
7032 	}
7033 	return update;
7034 }
7035 
7036 static bool bnxt_uc_list_updated(struct bnxt *bp)
7037 {
7038 	struct net_device *dev = bp->dev;
7039 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
7040 	struct netdev_hw_addr *ha;
7041 	int off = 0;
7042 
7043 	if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
7044 		return true;
7045 
7046 	netdev_for_each_uc_addr(ha, dev) {
7047 		if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
7048 			return true;
7049 
7050 		off += ETH_ALEN;
7051 	}
7052 	return false;
7053 }
7054 
7055 static void bnxt_set_rx_mode(struct net_device *dev)
7056 {
7057 	struct bnxt *bp = netdev_priv(dev);
7058 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
7059 	u32 mask = vnic->rx_mask;
7060 	bool mc_update = false;
7061 	bool uc_update;
7062 
7063 	if (!netif_running(dev))
7064 		return;
7065 
7066 	mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
7067 		  CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
7068 		  CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST);
7069 
7070 	if ((dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
7071 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
7072 
7073 	uc_update = bnxt_uc_list_updated(bp);
7074 
7075 	if (dev->flags & IFF_ALLMULTI) {
7076 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
7077 		vnic->mc_list_count = 0;
7078 	} else {
7079 		mc_update = bnxt_mc_list_updated(bp, &mask);
7080 	}
7081 
7082 	if (mask != vnic->rx_mask || uc_update || mc_update) {
7083 		vnic->rx_mask = mask;
7084 
7085 		set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
7086 		bnxt_queue_sp_work(bp);
7087 	}
7088 }
7089 
7090 static int bnxt_cfg_rx_mode(struct bnxt *bp)
7091 {
7092 	struct net_device *dev = bp->dev;
7093 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
7094 	struct netdev_hw_addr *ha;
7095 	int i, off = 0, rc;
7096 	bool uc_update;
7097 
7098 	netif_addr_lock_bh(dev);
7099 	uc_update = bnxt_uc_list_updated(bp);
7100 	netif_addr_unlock_bh(dev);
7101 
7102 	if (!uc_update)
7103 		goto skip_uc;
7104 
7105 	mutex_lock(&bp->hwrm_cmd_lock);
7106 	for (i = 1; i < vnic->uc_filter_count; i++) {
7107 		struct hwrm_cfa_l2_filter_free_input req = {0};
7108 
7109 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_FREE, -1,
7110 				       -1);
7111 
7112 		req.l2_filter_id = vnic->fw_l2_filter_id[i];
7113 
7114 		rc = _hwrm_send_message(bp, &req, sizeof(req),
7115 					HWRM_CMD_TIMEOUT);
7116 	}
7117 	mutex_unlock(&bp->hwrm_cmd_lock);
7118 
7119 	vnic->uc_filter_count = 1;
7120 
7121 	netif_addr_lock_bh(dev);
7122 	if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
7123 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
7124 	} else {
7125 		netdev_for_each_uc_addr(ha, dev) {
7126 			memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
7127 			off += ETH_ALEN;
7128 			vnic->uc_filter_count++;
7129 		}
7130 	}
7131 	netif_addr_unlock_bh(dev);
7132 
7133 	for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
7134 		rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
7135 		if (rc) {
7136 			netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n",
7137 				   rc);
7138 			vnic->uc_filter_count = i;
7139 			return rc;
7140 		}
7141 	}
7142 
7143 skip_uc:
7144 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
7145 	if (rc)
7146 		netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %x\n",
7147 			   rc);
7148 
7149 	return rc;
7150 }
7151 
7152 /* If the chip and firmware supports RFS */
7153 static bool bnxt_rfs_supported(struct bnxt *bp)
7154 {
7155 	if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
7156 		return true;
7157 	if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
7158 		return true;
7159 	return false;
7160 }
7161 
7162 /* If runtime conditions support RFS */
7163 static bool bnxt_rfs_capable(struct bnxt *bp)
7164 {
7165 #ifdef CONFIG_RFS_ACCEL
7166 	int vnics, max_vnics, max_rss_ctxs;
7167 
7168 	if (!(bp->flags & BNXT_FLAG_MSIX_CAP))
7169 		return false;
7170 
7171 	vnics = 1 + bp->rx_nr_rings;
7172 	max_vnics = bnxt_get_max_func_vnics(bp);
7173 	max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp);
7174 
7175 	/* RSS contexts not a limiting factor */
7176 	if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
7177 		max_rss_ctxs = max_vnics;
7178 	if (vnics > max_vnics || vnics > max_rss_ctxs) {
7179 		if (bp->rx_nr_rings > 1)
7180 			netdev_warn(bp->dev,
7181 				    "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n",
7182 				    min(max_rss_ctxs - 1, max_vnics - 1));
7183 		return false;
7184 	}
7185 
7186 	if (!(bp->flags & BNXT_FLAG_NEW_RM))
7187 		return true;
7188 
7189 	if (vnics == bp->hw_resc.resv_vnics)
7190 		return true;
7191 
7192 	bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, vnics);
7193 	if (vnics <= bp->hw_resc.resv_vnics)
7194 		return true;
7195 
7196 	netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n");
7197 	bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 1);
7198 	return false;
7199 #else
7200 	return false;
7201 #endif
7202 }
7203 
7204 static netdev_features_t bnxt_fix_features(struct net_device *dev,
7205 					   netdev_features_t features)
7206 {
7207 	struct bnxt *bp = netdev_priv(dev);
7208 
7209 	if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp))
7210 		features &= ~NETIF_F_NTUPLE;
7211 
7212 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
7213 		features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
7214 
7215 	if (!(features & NETIF_F_GRO))
7216 		features &= ~NETIF_F_GRO_HW;
7217 
7218 	if (features & NETIF_F_GRO_HW)
7219 		features &= ~NETIF_F_LRO;
7220 
7221 	/* Both CTAG and STAG VLAN accelaration on the RX side have to be
7222 	 * turned on or off together.
7223 	 */
7224 	if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) !=
7225 	    (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) {
7226 		if (dev->features & NETIF_F_HW_VLAN_CTAG_RX)
7227 			features &= ~(NETIF_F_HW_VLAN_CTAG_RX |
7228 				      NETIF_F_HW_VLAN_STAG_RX);
7229 		else
7230 			features |= NETIF_F_HW_VLAN_CTAG_RX |
7231 				    NETIF_F_HW_VLAN_STAG_RX;
7232 	}
7233 #ifdef CONFIG_BNXT_SRIOV
7234 	if (BNXT_VF(bp)) {
7235 		if (bp->vf.vlan) {
7236 			features &= ~(NETIF_F_HW_VLAN_CTAG_RX |
7237 				      NETIF_F_HW_VLAN_STAG_RX);
7238 		}
7239 	}
7240 #endif
7241 	return features;
7242 }
7243 
7244 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
7245 {
7246 	struct bnxt *bp = netdev_priv(dev);
7247 	u32 flags = bp->flags;
7248 	u32 changes;
7249 	int rc = 0;
7250 	bool re_init = false;
7251 	bool update_tpa = false;
7252 
7253 	flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
7254 	if (features & NETIF_F_GRO_HW)
7255 		flags |= BNXT_FLAG_GRO;
7256 	else if (features & NETIF_F_LRO)
7257 		flags |= BNXT_FLAG_LRO;
7258 
7259 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
7260 		flags &= ~BNXT_FLAG_TPA;
7261 
7262 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
7263 		flags |= BNXT_FLAG_STRIP_VLAN;
7264 
7265 	if (features & NETIF_F_NTUPLE)
7266 		flags |= BNXT_FLAG_RFS;
7267 
7268 	changes = flags ^ bp->flags;
7269 	if (changes & BNXT_FLAG_TPA) {
7270 		update_tpa = true;
7271 		if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
7272 		    (flags & BNXT_FLAG_TPA) == 0)
7273 			re_init = true;
7274 	}
7275 
7276 	if (changes & ~BNXT_FLAG_TPA)
7277 		re_init = true;
7278 
7279 	if (flags != bp->flags) {
7280 		u32 old_flags = bp->flags;
7281 
7282 		bp->flags = flags;
7283 
7284 		if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
7285 			if (update_tpa)
7286 				bnxt_set_ring_params(bp);
7287 			return rc;
7288 		}
7289 
7290 		if (re_init) {
7291 			bnxt_close_nic(bp, false, false);
7292 			if (update_tpa)
7293 				bnxt_set_ring_params(bp);
7294 
7295 			return bnxt_open_nic(bp, false, false);
7296 		}
7297 		if (update_tpa) {
7298 			rc = bnxt_set_tpa(bp,
7299 					  (flags & BNXT_FLAG_TPA) ?
7300 					  true : false);
7301 			if (rc)
7302 				bp->flags = old_flags;
7303 		}
7304 	}
7305 	return rc;
7306 }
7307 
7308 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
7309 {
7310 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
7311 	int i = bnapi->index;
7312 
7313 	if (!txr)
7314 		return;
7315 
7316 	netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
7317 		    i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
7318 		    txr->tx_cons);
7319 }
7320 
7321 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
7322 {
7323 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
7324 	int i = bnapi->index;
7325 
7326 	if (!rxr)
7327 		return;
7328 
7329 	netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
7330 		    i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
7331 		    rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
7332 		    rxr->rx_sw_agg_prod);
7333 }
7334 
7335 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
7336 {
7337 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
7338 	int i = bnapi->index;
7339 
7340 	netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
7341 		    i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
7342 }
7343 
7344 static void bnxt_dbg_dump_states(struct bnxt *bp)
7345 {
7346 	int i;
7347 	struct bnxt_napi *bnapi;
7348 
7349 	for (i = 0; i < bp->cp_nr_rings; i++) {
7350 		bnapi = bp->bnapi[i];
7351 		if (netif_msg_drv(bp)) {
7352 			bnxt_dump_tx_sw_state(bnapi);
7353 			bnxt_dump_rx_sw_state(bnapi);
7354 			bnxt_dump_cp_sw_state(bnapi);
7355 		}
7356 	}
7357 }
7358 
7359 static void bnxt_reset_task(struct bnxt *bp, bool silent)
7360 {
7361 	if (!silent)
7362 		bnxt_dbg_dump_states(bp);
7363 	if (netif_running(bp->dev)) {
7364 		int rc;
7365 
7366 		if (!silent)
7367 			bnxt_ulp_stop(bp);
7368 		bnxt_close_nic(bp, false, false);
7369 		rc = bnxt_open_nic(bp, false, false);
7370 		if (!silent && !rc)
7371 			bnxt_ulp_start(bp);
7372 	}
7373 }
7374 
7375 static void bnxt_tx_timeout(struct net_device *dev)
7376 {
7377 	struct bnxt *bp = netdev_priv(dev);
7378 
7379 	netdev_err(bp->dev,  "TX timeout detected, starting reset task!\n");
7380 	set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
7381 	bnxt_queue_sp_work(bp);
7382 }
7383 
7384 #ifdef CONFIG_NET_POLL_CONTROLLER
7385 static void bnxt_poll_controller(struct net_device *dev)
7386 {
7387 	struct bnxt *bp = netdev_priv(dev);
7388 	int i;
7389 
7390 	/* Only process tx rings/combined rings in netpoll mode. */
7391 	for (i = 0; i < bp->tx_nr_rings; i++) {
7392 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
7393 
7394 		napi_schedule(&txr->bnapi->napi);
7395 	}
7396 }
7397 #endif
7398 
7399 static void bnxt_timer(struct timer_list *t)
7400 {
7401 	struct bnxt *bp = from_timer(bp, t, timer);
7402 	struct net_device *dev = bp->dev;
7403 
7404 	if (!netif_running(dev))
7405 		return;
7406 
7407 	if (atomic_read(&bp->intr_sem) != 0)
7408 		goto bnxt_restart_timer;
7409 
7410 	if (bp->link_info.link_up && (bp->flags & BNXT_FLAG_PORT_STATS) &&
7411 	    bp->stats_coal_ticks) {
7412 		set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event);
7413 		bnxt_queue_sp_work(bp);
7414 	}
7415 
7416 	if (bnxt_tc_flower_enabled(bp)) {
7417 		set_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event);
7418 		bnxt_queue_sp_work(bp);
7419 	}
7420 bnxt_restart_timer:
7421 	mod_timer(&bp->timer, jiffies + bp->current_interval);
7422 }
7423 
7424 static void bnxt_rtnl_lock_sp(struct bnxt *bp)
7425 {
7426 	/* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK
7427 	 * set.  If the device is being closed, bnxt_close() may be holding
7428 	 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear.  So we
7429 	 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl().
7430 	 */
7431 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
7432 	rtnl_lock();
7433 }
7434 
7435 static void bnxt_rtnl_unlock_sp(struct bnxt *bp)
7436 {
7437 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
7438 	rtnl_unlock();
7439 }
7440 
7441 /* Only called from bnxt_sp_task() */
7442 static void bnxt_reset(struct bnxt *bp, bool silent)
7443 {
7444 	bnxt_rtnl_lock_sp(bp);
7445 	if (test_bit(BNXT_STATE_OPEN, &bp->state))
7446 		bnxt_reset_task(bp, silent);
7447 	bnxt_rtnl_unlock_sp(bp);
7448 }
7449 
7450 static void bnxt_cfg_ntp_filters(struct bnxt *);
7451 
7452 static void bnxt_sp_task(struct work_struct *work)
7453 {
7454 	struct bnxt *bp = container_of(work, struct bnxt, sp_task);
7455 
7456 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
7457 	smp_mb__after_atomic();
7458 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
7459 		clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
7460 		return;
7461 	}
7462 
7463 	if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
7464 		bnxt_cfg_rx_mode(bp);
7465 
7466 	if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
7467 		bnxt_cfg_ntp_filters(bp);
7468 	if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
7469 		bnxt_hwrm_exec_fwd_req(bp);
7470 	if (test_and_clear_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event)) {
7471 		bnxt_hwrm_tunnel_dst_port_alloc(
7472 			bp, bp->vxlan_port,
7473 			TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
7474 	}
7475 	if (test_and_clear_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event)) {
7476 		bnxt_hwrm_tunnel_dst_port_free(
7477 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
7478 	}
7479 	if (test_and_clear_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event)) {
7480 		bnxt_hwrm_tunnel_dst_port_alloc(
7481 			bp, bp->nge_port,
7482 			TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
7483 	}
7484 	if (test_and_clear_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event)) {
7485 		bnxt_hwrm_tunnel_dst_port_free(
7486 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
7487 	}
7488 	if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event))
7489 		bnxt_hwrm_port_qstats(bp);
7490 
7491 	if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
7492 		int rc;
7493 
7494 		mutex_lock(&bp->link_lock);
7495 		if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT,
7496 				       &bp->sp_event))
7497 			bnxt_hwrm_phy_qcaps(bp);
7498 
7499 		rc = bnxt_update_link(bp, true);
7500 		mutex_unlock(&bp->link_lock);
7501 		if (rc)
7502 			netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
7503 				   rc);
7504 	}
7505 	if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) {
7506 		mutex_lock(&bp->link_lock);
7507 		bnxt_get_port_module_status(bp);
7508 		mutex_unlock(&bp->link_lock);
7509 	}
7510 
7511 	if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event))
7512 		bnxt_tc_flow_stats_work(bp);
7513 
7514 	/* These functions below will clear BNXT_STATE_IN_SP_TASK.  They
7515 	 * must be the last functions to be called before exiting.
7516 	 */
7517 	if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event))
7518 		bnxt_reset(bp, false);
7519 
7520 	if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event))
7521 		bnxt_reset(bp, true);
7522 
7523 	smp_mb__before_atomic();
7524 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
7525 }
7526 
7527 /* Under rtnl_lock */
7528 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs,
7529 		     int tx_xdp)
7530 {
7531 	int max_rx, max_tx, tx_sets = 1;
7532 	int tx_rings_needed;
7533 	int rx_rings = rx;
7534 	int cp, rc;
7535 
7536 	if (tcs)
7537 		tx_sets = tcs;
7538 
7539 	rc = bnxt_get_max_rings(bp, &max_rx, &max_tx, sh);
7540 	if (rc)
7541 		return rc;
7542 
7543 	if (max_rx < rx)
7544 		return -ENOMEM;
7545 
7546 	tx_rings_needed = tx * tx_sets + tx_xdp;
7547 	if (max_tx < tx_rings_needed)
7548 		return -ENOMEM;
7549 
7550 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
7551 		rx_rings <<= 1;
7552 	cp = sh ? max_t(int, tx_rings_needed, rx) : tx_rings_needed + rx;
7553 	return bnxt_hwrm_check_rings(bp, tx_rings_needed, rx_rings, rx, cp);
7554 }
7555 
7556 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev)
7557 {
7558 	if (bp->bar2) {
7559 		pci_iounmap(pdev, bp->bar2);
7560 		bp->bar2 = NULL;
7561 	}
7562 
7563 	if (bp->bar1) {
7564 		pci_iounmap(pdev, bp->bar1);
7565 		bp->bar1 = NULL;
7566 	}
7567 
7568 	if (bp->bar0) {
7569 		pci_iounmap(pdev, bp->bar0);
7570 		bp->bar0 = NULL;
7571 	}
7572 }
7573 
7574 static void bnxt_cleanup_pci(struct bnxt *bp)
7575 {
7576 	bnxt_unmap_bars(bp, bp->pdev);
7577 	pci_release_regions(bp->pdev);
7578 	pci_disable_device(bp->pdev);
7579 }
7580 
7581 static void bnxt_init_dflt_coal(struct bnxt *bp)
7582 {
7583 	struct bnxt_coal *coal;
7584 
7585 	/* Tick values in micro seconds.
7586 	 * 1 coal_buf x bufs_per_record = 1 completion record.
7587 	 */
7588 	coal = &bp->rx_coal;
7589 	coal->coal_ticks = 14;
7590 	coal->coal_bufs = 30;
7591 	coal->coal_ticks_irq = 1;
7592 	coal->coal_bufs_irq = 2;
7593 	coal->idle_thresh = 25;
7594 	coal->bufs_per_record = 2;
7595 	coal->budget = 64;		/* NAPI budget */
7596 
7597 	coal = &bp->tx_coal;
7598 	coal->coal_ticks = 28;
7599 	coal->coal_bufs = 30;
7600 	coal->coal_ticks_irq = 2;
7601 	coal->coal_bufs_irq = 2;
7602 	coal->bufs_per_record = 1;
7603 
7604 	bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS;
7605 }
7606 
7607 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
7608 {
7609 	int rc;
7610 	struct bnxt *bp = netdev_priv(dev);
7611 
7612 	SET_NETDEV_DEV(dev, &pdev->dev);
7613 
7614 	/* enable device (incl. PCI PM wakeup), and bus-mastering */
7615 	rc = pci_enable_device(pdev);
7616 	if (rc) {
7617 		dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
7618 		goto init_err;
7619 	}
7620 
7621 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
7622 		dev_err(&pdev->dev,
7623 			"Cannot find PCI device base address, aborting\n");
7624 		rc = -ENODEV;
7625 		goto init_err_disable;
7626 	}
7627 
7628 	rc = pci_request_regions(pdev, DRV_MODULE_NAME);
7629 	if (rc) {
7630 		dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
7631 		goto init_err_disable;
7632 	}
7633 
7634 	if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
7635 	    dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
7636 		dev_err(&pdev->dev, "System does not support DMA, aborting\n");
7637 		goto init_err_disable;
7638 	}
7639 
7640 	pci_set_master(pdev);
7641 
7642 	bp->dev = dev;
7643 	bp->pdev = pdev;
7644 
7645 	bp->bar0 = pci_ioremap_bar(pdev, 0);
7646 	if (!bp->bar0) {
7647 		dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
7648 		rc = -ENOMEM;
7649 		goto init_err_release;
7650 	}
7651 
7652 	bp->bar1 = pci_ioremap_bar(pdev, 2);
7653 	if (!bp->bar1) {
7654 		dev_err(&pdev->dev, "Cannot map doorbell registers, aborting\n");
7655 		rc = -ENOMEM;
7656 		goto init_err_release;
7657 	}
7658 
7659 	bp->bar2 = pci_ioremap_bar(pdev, 4);
7660 	if (!bp->bar2) {
7661 		dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
7662 		rc = -ENOMEM;
7663 		goto init_err_release;
7664 	}
7665 
7666 	pci_enable_pcie_error_reporting(pdev);
7667 
7668 	INIT_WORK(&bp->sp_task, bnxt_sp_task);
7669 
7670 	spin_lock_init(&bp->ntp_fltr_lock);
7671 
7672 	bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
7673 	bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
7674 
7675 	bnxt_init_dflt_coal(bp);
7676 
7677 	timer_setup(&bp->timer, bnxt_timer, 0);
7678 	bp->current_interval = BNXT_TIMER_INTERVAL;
7679 
7680 	clear_bit(BNXT_STATE_OPEN, &bp->state);
7681 	return 0;
7682 
7683 init_err_release:
7684 	bnxt_unmap_bars(bp, pdev);
7685 	pci_release_regions(pdev);
7686 
7687 init_err_disable:
7688 	pci_disable_device(pdev);
7689 
7690 init_err:
7691 	return rc;
7692 }
7693 
7694 /* rtnl_lock held */
7695 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
7696 {
7697 	struct sockaddr *addr = p;
7698 	struct bnxt *bp = netdev_priv(dev);
7699 	int rc = 0;
7700 
7701 	if (!is_valid_ether_addr(addr->sa_data))
7702 		return -EADDRNOTAVAIL;
7703 
7704 	if (ether_addr_equal(addr->sa_data, dev->dev_addr))
7705 		return 0;
7706 
7707 	rc = bnxt_approve_mac(bp, addr->sa_data);
7708 	if (rc)
7709 		return rc;
7710 
7711 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
7712 	if (netif_running(dev)) {
7713 		bnxt_close_nic(bp, false, false);
7714 		rc = bnxt_open_nic(bp, false, false);
7715 	}
7716 
7717 	return rc;
7718 }
7719 
7720 /* rtnl_lock held */
7721 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
7722 {
7723 	struct bnxt *bp = netdev_priv(dev);
7724 
7725 	if (netif_running(dev))
7726 		bnxt_close_nic(bp, false, false);
7727 
7728 	dev->mtu = new_mtu;
7729 	bnxt_set_ring_params(bp);
7730 
7731 	if (netif_running(dev))
7732 		return bnxt_open_nic(bp, false, false);
7733 
7734 	return 0;
7735 }
7736 
7737 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc)
7738 {
7739 	struct bnxt *bp = netdev_priv(dev);
7740 	bool sh = false;
7741 	int rc;
7742 
7743 	if (tc > bp->max_tc) {
7744 		netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n",
7745 			   tc, bp->max_tc);
7746 		return -EINVAL;
7747 	}
7748 
7749 	if (netdev_get_num_tc(dev) == tc)
7750 		return 0;
7751 
7752 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
7753 		sh = true;
7754 
7755 	rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings,
7756 			      sh, tc, bp->tx_nr_rings_xdp);
7757 	if (rc)
7758 		return rc;
7759 
7760 	/* Needs to close the device and do hw resource re-allocations */
7761 	if (netif_running(bp->dev))
7762 		bnxt_close_nic(bp, true, false);
7763 
7764 	if (tc) {
7765 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
7766 		netdev_set_num_tc(dev, tc);
7767 	} else {
7768 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
7769 		netdev_reset_tc(dev);
7770 	}
7771 	bp->tx_nr_rings += bp->tx_nr_rings_xdp;
7772 	bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
7773 			       bp->tx_nr_rings + bp->rx_nr_rings;
7774 	bp->num_stat_ctxs = bp->cp_nr_rings;
7775 
7776 	if (netif_running(bp->dev))
7777 		return bnxt_open_nic(bp, true, false);
7778 
7779 	return 0;
7780 }
7781 
7782 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
7783 				  void *cb_priv)
7784 {
7785 	struct bnxt *bp = cb_priv;
7786 
7787 	if (!bnxt_tc_flower_enabled(bp) ||
7788 	    !tc_cls_can_offload_and_chain0(bp->dev, type_data))
7789 		return -EOPNOTSUPP;
7790 
7791 	switch (type) {
7792 	case TC_SETUP_CLSFLOWER:
7793 		return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data);
7794 	default:
7795 		return -EOPNOTSUPP;
7796 	}
7797 }
7798 
7799 static int bnxt_setup_tc_block(struct net_device *dev,
7800 			       struct tc_block_offload *f)
7801 {
7802 	struct bnxt *bp = netdev_priv(dev);
7803 
7804 	if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
7805 		return -EOPNOTSUPP;
7806 
7807 	switch (f->command) {
7808 	case TC_BLOCK_BIND:
7809 		return tcf_block_cb_register(f->block, bnxt_setup_tc_block_cb,
7810 					     bp, bp);
7811 	case TC_BLOCK_UNBIND:
7812 		tcf_block_cb_unregister(f->block, bnxt_setup_tc_block_cb, bp);
7813 		return 0;
7814 	default:
7815 		return -EOPNOTSUPP;
7816 	}
7817 }
7818 
7819 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type,
7820 			 void *type_data)
7821 {
7822 	switch (type) {
7823 	case TC_SETUP_BLOCK:
7824 		return bnxt_setup_tc_block(dev, type_data);
7825 	case TC_SETUP_QDISC_MQPRIO: {
7826 		struct tc_mqprio_qopt *mqprio = type_data;
7827 
7828 		mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
7829 
7830 		return bnxt_setup_mq_tc(dev, mqprio->num_tc);
7831 	}
7832 	default:
7833 		return -EOPNOTSUPP;
7834 	}
7835 }
7836 
7837 #ifdef CONFIG_RFS_ACCEL
7838 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
7839 			    struct bnxt_ntuple_filter *f2)
7840 {
7841 	struct flow_keys *keys1 = &f1->fkeys;
7842 	struct flow_keys *keys2 = &f2->fkeys;
7843 
7844 	if (keys1->addrs.v4addrs.src == keys2->addrs.v4addrs.src &&
7845 	    keys1->addrs.v4addrs.dst == keys2->addrs.v4addrs.dst &&
7846 	    keys1->ports.ports == keys2->ports.ports &&
7847 	    keys1->basic.ip_proto == keys2->basic.ip_proto &&
7848 	    keys1->basic.n_proto == keys2->basic.n_proto &&
7849 	    keys1->control.flags == keys2->control.flags &&
7850 	    ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) &&
7851 	    ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr))
7852 		return true;
7853 
7854 	return false;
7855 }
7856 
7857 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
7858 			      u16 rxq_index, u32 flow_id)
7859 {
7860 	struct bnxt *bp = netdev_priv(dev);
7861 	struct bnxt_ntuple_filter *fltr, *new_fltr;
7862 	struct flow_keys *fkeys;
7863 	struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
7864 	int rc = 0, idx, bit_id, l2_idx = 0;
7865 	struct hlist_head *head;
7866 
7867 	if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) {
7868 		struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
7869 		int off = 0, j;
7870 
7871 		netif_addr_lock_bh(dev);
7872 		for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) {
7873 			if (ether_addr_equal(eth->h_dest,
7874 					     vnic->uc_list + off)) {
7875 				l2_idx = j + 1;
7876 				break;
7877 			}
7878 		}
7879 		netif_addr_unlock_bh(dev);
7880 		if (!l2_idx)
7881 			return -EINVAL;
7882 	}
7883 	new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
7884 	if (!new_fltr)
7885 		return -ENOMEM;
7886 
7887 	fkeys = &new_fltr->fkeys;
7888 	if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
7889 		rc = -EPROTONOSUPPORT;
7890 		goto err_free;
7891 	}
7892 
7893 	if ((fkeys->basic.n_proto != htons(ETH_P_IP) &&
7894 	     fkeys->basic.n_proto != htons(ETH_P_IPV6)) ||
7895 	    ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
7896 	     (fkeys->basic.ip_proto != IPPROTO_UDP))) {
7897 		rc = -EPROTONOSUPPORT;
7898 		goto err_free;
7899 	}
7900 	if (fkeys->basic.n_proto == htons(ETH_P_IPV6) &&
7901 	    bp->hwrm_spec_code < 0x10601) {
7902 		rc = -EPROTONOSUPPORT;
7903 		goto err_free;
7904 	}
7905 	if ((fkeys->control.flags & FLOW_DIS_ENCAPSULATION) &&
7906 	    bp->hwrm_spec_code < 0x10601) {
7907 		rc = -EPROTONOSUPPORT;
7908 		goto err_free;
7909 	}
7910 
7911 	memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN);
7912 	memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
7913 
7914 	idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
7915 	head = &bp->ntp_fltr_hash_tbl[idx];
7916 	rcu_read_lock();
7917 	hlist_for_each_entry_rcu(fltr, head, hash) {
7918 		if (bnxt_fltr_match(fltr, new_fltr)) {
7919 			rcu_read_unlock();
7920 			rc = 0;
7921 			goto err_free;
7922 		}
7923 	}
7924 	rcu_read_unlock();
7925 
7926 	spin_lock_bh(&bp->ntp_fltr_lock);
7927 	bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
7928 					 BNXT_NTP_FLTR_MAX_FLTR, 0);
7929 	if (bit_id < 0) {
7930 		spin_unlock_bh(&bp->ntp_fltr_lock);
7931 		rc = -ENOMEM;
7932 		goto err_free;
7933 	}
7934 
7935 	new_fltr->sw_id = (u16)bit_id;
7936 	new_fltr->flow_id = flow_id;
7937 	new_fltr->l2_fltr_idx = l2_idx;
7938 	new_fltr->rxq = rxq_index;
7939 	hlist_add_head_rcu(&new_fltr->hash, head);
7940 	bp->ntp_fltr_count++;
7941 	spin_unlock_bh(&bp->ntp_fltr_lock);
7942 
7943 	set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
7944 	bnxt_queue_sp_work(bp);
7945 
7946 	return new_fltr->sw_id;
7947 
7948 err_free:
7949 	kfree(new_fltr);
7950 	return rc;
7951 }
7952 
7953 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
7954 {
7955 	int i;
7956 
7957 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
7958 		struct hlist_head *head;
7959 		struct hlist_node *tmp;
7960 		struct bnxt_ntuple_filter *fltr;
7961 		int rc;
7962 
7963 		head = &bp->ntp_fltr_hash_tbl[i];
7964 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
7965 			bool del = false;
7966 
7967 			if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
7968 				if (rps_may_expire_flow(bp->dev, fltr->rxq,
7969 							fltr->flow_id,
7970 							fltr->sw_id)) {
7971 					bnxt_hwrm_cfa_ntuple_filter_free(bp,
7972 									 fltr);
7973 					del = true;
7974 				}
7975 			} else {
7976 				rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
7977 								       fltr);
7978 				if (rc)
7979 					del = true;
7980 				else
7981 					set_bit(BNXT_FLTR_VALID, &fltr->state);
7982 			}
7983 
7984 			if (del) {
7985 				spin_lock_bh(&bp->ntp_fltr_lock);
7986 				hlist_del_rcu(&fltr->hash);
7987 				bp->ntp_fltr_count--;
7988 				spin_unlock_bh(&bp->ntp_fltr_lock);
7989 				synchronize_rcu();
7990 				clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
7991 				kfree(fltr);
7992 			}
7993 		}
7994 	}
7995 	if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event))
7996 		netdev_info(bp->dev, "Receive PF driver unload event!");
7997 }
7998 
7999 #else
8000 
8001 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
8002 {
8003 }
8004 
8005 #endif /* CONFIG_RFS_ACCEL */
8006 
8007 static void bnxt_udp_tunnel_add(struct net_device *dev,
8008 				struct udp_tunnel_info *ti)
8009 {
8010 	struct bnxt *bp = netdev_priv(dev);
8011 
8012 	if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET)
8013 		return;
8014 
8015 	if (!netif_running(dev))
8016 		return;
8017 
8018 	switch (ti->type) {
8019 	case UDP_TUNNEL_TYPE_VXLAN:
8020 		if (bp->vxlan_port_cnt && bp->vxlan_port != ti->port)
8021 			return;
8022 
8023 		bp->vxlan_port_cnt++;
8024 		if (bp->vxlan_port_cnt == 1) {
8025 			bp->vxlan_port = ti->port;
8026 			set_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event);
8027 			bnxt_queue_sp_work(bp);
8028 		}
8029 		break;
8030 	case UDP_TUNNEL_TYPE_GENEVE:
8031 		if (bp->nge_port_cnt && bp->nge_port != ti->port)
8032 			return;
8033 
8034 		bp->nge_port_cnt++;
8035 		if (bp->nge_port_cnt == 1) {
8036 			bp->nge_port = ti->port;
8037 			set_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event);
8038 		}
8039 		break;
8040 	default:
8041 		return;
8042 	}
8043 
8044 	bnxt_queue_sp_work(bp);
8045 }
8046 
8047 static void bnxt_udp_tunnel_del(struct net_device *dev,
8048 				struct udp_tunnel_info *ti)
8049 {
8050 	struct bnxt *bp = netdev_priv(dev);
8051 
8052 	if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET)
8053 		return;
8054 
8055 	if (!netif_running(dev))
8056 		return;
8057 
8058 	switch (ti->type) {
8059 	case UDP_TUNNEL_TYPE_VXLAN:
8060 		if (!bp->vxlan_port_cnt || bp->vxlan_port != ti->port)
8061 			return;
8062 		bp->vxlan_port_cnt--;
8063 
8064 		if (bp->vxlan_port_cnt != 0)
8065 			return;
8066 
8067 		set_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event);
8068 		break;
8069 	case UDP_TUNNEL_TYPE_GENEVE:
8070 		if (!bp->nge_port_cnt || bp->nge_port != ti->port)
8071 			return;
8072 		bp->nge_port_cnt--;
8073 
8074 		if (bp->nge_port_cnt != 0)
8075 			return;
8076 
8077 		set_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event);
8078 		break;
8079 	default:
8080 		return;
8081 	}
8082 
8083 	bnxt_queue_sp_work(bp);
8084 }
8085 
8086 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
8087 			       struct net_device *dev, u32 filter_mask,
8088 			       int nlflags)
8089 {
8090 	struct bnxt *bp = netdev_priv(dev);
8091 
8092 	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0,
8093 				       nlflags, filter_mask, NULL);
8094 }
8095 
8096 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
8097 			       u16 flags)
8098 {
8099 	struct bnxt *bp = netdev_priv(dev);
8100 	struct nlattr *attr, *br_spec;
8101 	int rem, rc = 0;
8102 
8103 	if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp))
8104 		return -EOPNOTSUPP;
8105 
8106 	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
8107 	if (!br_spec)
8108 		return -EINVAL;
8109 
8110 	nla_for_each_nested(attr, br_spec, rem) {
8111 		u16 mode;
8112 
8113 		if (nla_type(attr) != IFLA_BRIDGE_MODE)
8114 			continue;
8115 
8116 		if (nla_len(attr) < sizeof(mode))
8117 			return -EINVAL;
8118 
8119 		mode = nla_get_u16(attr);
8120 		if (mode == bp->br_mode)
8121 			break;
8122 
8123 		rc = bnxt_hwrm_set_br_mode(bp, mode);
8124 		if (!rc)
8125 			bp->br_mode = mode;
8126 		break;
8127 	}
8128 	return rc;
8129 }
8130 
8131 static int bnxt_get_phys_port_name(struct net_device *dev, char *buf,
8132 				   size_t len)
8133 {
8134 	struct bnxt *bp = netdev_priv(dev);
8135 	int rc;
8136 
8137 	/* The PF and it's VF-reps only support the switchdev framework */
8138 	if (!BNXT_PF(bp))
8139 		return -EOPNOTSUPP;
8140 
8141 	rc = snprintf(buf, len, "p%d", bp->pf.port_id);
8142 
8143 	if (rc >= len)
8144 		return -EOPNOTSUPP;
8145 	return 0;
8146 }
8147 
8148 int bnxt_port_attr_get(struct bnxt *bp, struct switchdev_attr *attr)
8149 {
8150 	if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV)
8151 		return -EOPNOTSUPP;
8152 
8153 	/* The PF and it's VF-reps only support the switchdev framework */
8154 	if (!BNXT_PF(bp))
8155 		return -EOPNOTSUPP;
8156 
8157 	switch (attr->id) {
8158 	case SWITCHDEV_ATTR_ID_PORT_PARENT_ID:
8159 		attr->u.ppid.id_len = sizeof(bp->switch_id);
8160 		memcpy(attr->u.ppid.id, bp->switch_id, attr->u.ppid.id_len);
8161 		break;
8162 	default:
8163 		return -EOPNOTSUPP;
8164 	}
8165 	return 0;
8166 }
8167 
8168 static int bnxt_swdev_port_attr_get(struct net_device *dev,
8169 				    struct switchdev_attr *attr)
8170 {
8171 	return bnxt_port_attr_get(netdev_priv(dev), attr);
8172 }
8173 
8174 static const struct switchdev_ops bnxt_switchdev_ops = {
8175 	.switchdev_port_attr_get	= bnxt_swdev_port_attr_get
8176 };
8177 
8178 static const struct net_device_ops bnxt_netdev_ops = {
8179 	.ndo_open		= bnxt_open,
8180 	.ndo_start_xmit		= bnxt_start_xmit,
8181 	.ndo_stop		= bnxt_close,
8182 	.ndo_get_stats64	= bnxt_get_stats64,
8183 	.ndo_set_rx_mode	= bnxt_set_rx_mode,
8184 	.ndo_do_ioctl		= bnxt_ioctl,
8185 	.ndo_validate_addr	= eth_validate_addr,
8186 	.ndo_set_mac_address	= bnxt_change_mac_addr,
8187 	.ndo_change_mtu		= bnxt_change_mtu,
8188 	.ndo_fix_features	= bnxt_fix_features,
8189 	.ndo_set_features	= bnxt_set_features,
8190 	.ndo_tx_timeout		= bnxt_tx_timeout,
8191 #ifdef CONFIG_BNXT_SRIOV
8192 	.ndo_get_vf_config	= bnxt_get_vf_config,
8193 	.ndo_set_vf_mac		= bnxt_set_vf_mac,
8194 	.ndo_set_vf_vlan	= bnxt_set_vf_vlan,
8195 	.ndo_set_vf_rate	= bnxt_set_vf_bw,
8196 	.ndo_set_vf_link_state	= bnxt_set_vf_link_state,
8197 	.ndo_set_vf_spoofchk	= bnxt_set_vf_spoofchk,
8198 #endif
8199 #ifdef CONFIG_NET_POLL_CONTROLLER
8200 	.ndo_poll_controller	= bnxt_poll_controller,
8201 #endif
8202 	.ndo_setup_tc           = bnxt_setup_tc,
8203 #ifdef CONFIG_RFS_ACCEL
8204 	.ndo_rx_flow_steer	= bnxt_rx_flow_steer,
8205 #endif
8206 	.ndo_udp_tunnel_add	= bnxt_udp_tunnel_add,
8207 	.ndo_udp_tunnel_del	= bnxt_udp_tunnel_del,
8208 	.ndo_bpf		= bnxt_xdp,
8209 	.ndo_bridge_getlink	= bnxt_bridge_getlink,
8210 	.ndo_bridge_setlink	= bnxt_bridge_setlink,
8211 	.ndo_get_phys_port_name = bnxt_get_phys_port_name
8212 };
8213 
8214 static void bnxt_remove_one(struct pci_dev *pdev)
8215 {
8216 	struct net_device *dev = pci_get_drvdata(pdev);
8217 	struct bnxt *bp = netdev_priv(dev);
8218 
8219 	if (BNXT_PF(bp)) {
8220 		bnxt_sriov_disable(bp);
8221 		bnxt_dl_unregister(bp);
8222 	}
8223 
8224 	pci_disable_pcie_error_reporting(pdev);
8225 	unregister_netdev(dev);
8226 	bnxt_shutdown_tc(bp);
8227 	bnxt_cancel_sp_work(bp);
8228 	bp->sp_event = 0;
8229 
8230 	bnxt_clear_int_mode(bp);
8231 	bnxt_hwrm_func_drv_unrgtr(bp);
8232 	bnxt_free_hwrm_resources(bp);
8233 	bnxt_free_hwrm_short_cmd_req(bp);
8234 	bnxt_ethtool_free(bp);
8235 	bnxt_dcb_free(bp);
8236 	kfree(bp->edev);
8237 	bp->edev = NULL;
8238 	bnxt_cleanup_pci(bp);
8239 	free_netdev(dev);
8240 }
8241 
8242 static int bnxt_probe_phy(struct bnxt *bp)
8243 {
8244 	int rc = 0;
8245 	struct bnxt_link_info *link_info = &bp->link_info;
8246 
8247 	rc = bnxt_hwrm_phy_qcaps(bp);
8248 	if (rc) {
8249 		netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n",
8250 			   rc);
8251 		return rc;
8252 	}
8253 	mutex_init(&bp->link_lock);
8254 
8255 	rc = bnxt_update_link(bp, false);
8256 	if (rc) {
8257 		netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
8258 			   rc);
8259 		return rc;
8260 	}
8261 
8262 	/* Older firmware does not have supported_auto_speeds, so assume
8263 	 * that all supported speeds can be autonegotiated.
8264 	 */
8265 	if (link_info->auto_link_speeds && !link_info->support_auto_speeds)
8266 		link_info->support_auto_speeds = link_info->support_speeds;
8267 
8268 	/*initialize the ethool setting copy with NVM settings */
8269 	if (BNXT_AUTO_MODE(link_info->auto_mode)) {
8270 		link_info->autoneg = BNXT_AUTONEG_SPEED;
8271 		if (bp->hwrm_spec_code >= 0x10201) {
8272 			if (link_info->auto_pause_setting &
8273 			    PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE)
8274 				link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
8275 		} else {
8276 			link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
8277 		}
8278 		link_info->advertising = link_info->auto_link_speeds;
8279 	} else {
8280 		link_info->req_link_speed = link_info->force_link_speed;
8281 		link_info->req_duplex = link_info->duplex_setting;
8282 	}
8283 	if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL)
8284 		link_info->req_flow_ctrl =
8285 			link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH;
8286 	else
8287 		link_info->req_flow_ctrl = link_info->force_pause_setting;
8288 	return rc;
8289 }
8290 
8291 static int bnxt_get_max_irq(struct pci_dev *pdev)
8292 {
8293 	u16 ctrl;
8294 
8295 	if (!pdev->msix_cap)
8296 		return 1;
8297 
8298 	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
8299 	return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
8300 }
8301 
8302 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
8303 				int *max_cp)
8304 {
8305 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
8306 	int max_ring_grps = 0;
8307 
8308 	*max_tx = hw_resc->max_tx_rings;
8309 	*max_rx = hw_resc->max_rx_rings;
8310 	*max_cp = min_t(int, hw_resc->max_irqs, hw_resc->max_cp_rings);
8311 	*max_cp = min_t(int, *max_cp, hw_resc->max_stat_ctxs);
8312 	max_ring_grps = hw_resc->max_hw_ring_grps;
8313 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) {
8314 		*max_cp -= 1;
8315 		*max_rx -= 2;
8316 	}
8317 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
8318 		*max_rx >>= 1;
8319 	*max_rx = min_t(int, *max_rx, max_ring_grps);
8320 }
8321 
8322 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
8323 {
8324 	int rx, tx, cp;
8325 
8326 	_bnxt_get_max_rings(bp, &rx, &tx, &cp);
8327 	if (!rx || !tx || !cp)
8328 		return -ENOMEM;
8329 
8330 	*max_rx = rx;
8331 	*max_tx = tx;
8332 	return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
8333 }
8334 
8335 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx,
8336 			       bool shared)
8337 {
8338 	int rc;
8339 
8340 	rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
8341 	if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) {
8342 		/* Not enough rings, try disabling agg rings. */
8343 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
8344 		rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
8345 		if (rc)
8346 			return rc;
8347 		bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
8348 		bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
8349 		bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
8350 		bnxt_set_ring_params(bp);
8351 	}
8352 
8353 	if (bp->flags & BNXT_FLAG_ROCE_CAP) {
8354 		int max_cp, max_stat, max_irq;
8355 
8356 		/* Reserve minimum resources for RoCE */
8357 		max_cp = bnxt_get_max_func_cp_rings(bp);
8358 		max_stat = bnxt_get_max_func_stat_ctxs(bp);
8359 		max_irq = bnxt_get_max_func_irqs(bp);
8360 		if (max_cp <= BNXT_MIN_ROCE_CP_RINGS ||
8361 		    max_irq <= BNXT_MIN_ROCE_CP_RINGS ||
8362 		    max_stat <= BNXT_MIN_ROCE_STAT_CTXS)
8363 			return 0;
8364 
8365 		max_cp -= BNXT_MIN_ROCE_CP_RINGS;
8366 		max_irq -= BNXT_MIN_ROCE_CP_RINGS;
8367 		max_stat -= BNXT_MIN_ROCE_STAT_CTXS;
8368 		max_cp = min_t(int, max_cp, max_irq);
8369 		max_cp = min_t(int, max_cp, max_stat);
8370 		rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared);
8371 		if (rc)
8372 			rc = 0;
8373 	}
8374 	return rc;
8375 }
8376 
8377 /* In initial default shared ring setting, each shared ring must have a
8378  * RX/TX ring pair.
8379  */
8380 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp)
8381 {
8382 	bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings);
8383 	bp->rx_nr_rings = bp->cp_nr_rings;
8384 	bp->tx_nr_rings_per_tc = bp->cp_nr_rings;
8385 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
8386 }
8387 
8388 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh)
8389 {
8390 	int dflt_rings, max_rx_rings, max_tx_rings, rc;
8391 
8392 	if (sh)
8393 		bp->flags |= BNXT_FLAG_SHARED_RINGS;
8394 	dflt_rings = netif_get_num_default_rss_queues();
8395 	/* Reduce default rings to reduce memory usage on multi-port cards */
8396 	if (bp->port_count > 1)
8397 		dflt_rings = min_t(int, dflt_rings, 4);
8398 	rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh);
8399 	if (rc)
8400 		return rc;
8401 	bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
8402 	bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
8403 	if (sh)
8404 		bnxt_trim_dflt_sh_rings(bp);
8405 	else
8406 		bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings;
8407 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
8408 
8409 	rc = __bnxt_reserve_rings(bp);
8410 	if (rc)
8411 		netdev_warn(bp->dev, "Unable to reserve tx rings\n");
8412 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
8413 	if (sh)
8414 		bnxt_trim_dflt_sh_rings(bp);
8415 
8416 	/* Rings may have been trimmed, re-reserve the trimmed rings. */
8417 	if (bnxt_need_reserve_rings(bp)) {
8418 		rc = __bnxt_reserve_rings(bp);
8419 		if (rc)
8420 			netdev_warn(bp->dev, "2nd rings reservation failed.\n");
8421 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
8422 	}
8423 	bp->num_stat_ctxs = bp->cp_nr_rings;
8424 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
8425 		bp->rx_nr_rings++;
8426 		bp->cp_nr_rings++;
8427 	}
8428 	return rc;
8429 }
8430 
8431 int bnxt_restore_pf_fw_resources(struct bnxt *bp)
8432 {
8433 	int rc;
8434 
8435 	ASSERT_RTNL();
8436 	if (bnxt_ulp_registered(bp->edev, BNXT_ROCE_ULP))
8437 		return 0;
8438 
8439 	bnxt_hwrm_func_qcaps(bp);
8440 	__bnxt_close_nic(bp, true, false);
8441 	bnxt_clear_int_mode(bp);
8442 	rc = bnxt_init_int_mode(bp);
8443 	if (rc)
8444 		dev_close(bp->dev);
8445 	else
8446 		rc = bnxt_open_nic(bp, true, false);
8447 	return rc;
8448 }
8449 
8450 static int bnxt_init_mac_addr(struct bnxt *bp)
8451 {
8452 	int rc = 0;
8453 
8454 	if (BNXT_PF(bp)) {
8455 		memcpy(bp->dev->dev_addr, bp->pf.mac_addr, ETH_ALEN);
8456 	} else {
8457 #ifdef CONFIG_BNXT_SRIOV
8458 		struct bnxt_vf_info *vf = &bp->vf;
8459 
8460 		if (is_valid_ether_addr(vf->mac_addr)) {
8461 			/* overwrite netdev dev_addr with admin VF MAC */
8462 			memcpy(bp->dev->dev_addr, vf->mac_addr, ETH_ALEN);
8463 		} else {
8464 			eth_hw_addr_random(bp->dev);
8465 			rc = bnxt_approve_mac(bp, bp->dev->dev_addr);
8466 		}
8467 #endif
8468 	}
8469 	return rc;
8470 }
8471 
8472 static void bnxt_parse_log_pcie_link(struct bnxt *bp)
8473 {
8474 	enum pcie_link_width width = PCIE_LNK_WIDTH_UNKNOWN;
8475 	enum pci_bus_speed speed = PCI_SPEED_UNKNOWN;
8476 
8477 	if (pcie_get_minimum_link(pci_physfn(bp->pdev), &speed, &width) ||
8478 	    speed == PCI_SPEED_UNKNOWN || width == PCIE_LNK_WIDTH_UNKNOWN)
8479 		netdev_info(bp->dev, "Failed to determine PCIe Link Info\n");
8480 	else
8481 		netdev_info(bp->dev, "PCIe: Speed %s Width x%d\n",
8482 			    speed == PCIE_SPEED_2_5GT ? "2.5GT/s" :
8483 			    speed == PCIE_SPEED_5_0GT ? "5.0GT/s" :
8484 			    speed == PCIE_SPEED_8_0GT ? "8.0GT/s" :
8485 			    "Unknown", width);
8486 }
8487 
8488 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8489 {
8490 	static int version_printed;
8491 	struct net_device *dev;
8492 	struct bnxt *bp;
8493 	int rc, max_irqs;
8494 
8495 	if (pci_is_bridge(pdev))
8496 		return -ENODEV;
8497 
8498 	if (version_printed++ == 0)
8499 		pr_info("%s", version);
8500 
8501 	max_irqs = bnxt_get_max_irq(pdev);
8502 	dev = alloc_etherdev_mq(sizeof(*bp), max_irqs);
8503 	if (!dev)
8504 		return -ENOMEM;
8505 
8506 	bp = netdev_priv(dev);
8507 
8508 	if (bnxt_vf_pciid(ent->driver_data))
8509 		bp->flags |= BNXT_FLAG_VF;
8510 
8511 	if (pdev->msix_cap)
8512 		bp->flags |= BNXT_FLAG_MSIX_CAP;
8513 
8514 	rc = bnxt_init_board(pdev, dev);
8515 	if (rc < 0)
8516 		goto init_err_free;
8517 
8518 	dev->netdev_ops = &bnxt_netdev_ops;
8519 	dev->watchdog_timeo = BNXT_TX_TIMEOUT;
8520 	dev->ethtool_ops = &bnxt_ethtool_ops;
8521 	SWITCHDEV_SET_OPS(dev, &bnxt_switchdev_ops);
8522 	pci_set_drvdata(pdev, dev);
8523 
8524 	rc = bnxt_alloc_hwrm_resources(bp);
8525 	if (rc)
8526 		goto init_err_pci_clean;
8527 
8528 	mutex_init(&bp->hwrm_cmd_lock);
8529 	rc = bnxt_hwrm_ver_get(bp);
8530 	if (rc)
8531 		goto init_err_pci_clean;
8532 
8533 	if (bp->flags & BNXT_FLAG_SHORT_CMD) {
8534 		rc = bnxt_alloc_hwrm_short_cmd_req(bp);
8535 		if (rc)
8536 			goto init_err_pci_clean;
8537 	}
8538 
8539 	rc = bnxt_hwrm_func_reset(bp);
8540 	if (rc)
8541 		goto init_err_pci_clean;
8542 
8543 	bnxt_hwrm_fw_set_time(bp);
8544 
8545 	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
8546 			   NETIF_F_TSO | NETIF_F_TSO6 |
8547 			   NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
8548 			   NETIF_F_GSO_IPXIP4 |
8549 			   NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
8550 			   NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH |
8551 			   NETIF_F_RXCSUM | NETIF_F_GRO;
8552 
8553 	if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
8554 		dev->hw_features |= NETIF_F_LRO;
8555 
8556 	dev->hw_enc_features =
8557 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
8558 			NETIF_F_TSO | NETIF_F_TSO6 |
8559 			NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
8560 			NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
8561 			NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL;
8562 	dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM |
8563 				    NETIF_F_GSO_GRE_CSUM;
8564 	dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
8565 	dev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
8566 			    NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX;
8567 	if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
8568 		dev->hw_features |= NETIF_F_GRO_HW;
8569 	dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
8570 	if (dev->features & NETIF_F_GRO_HW)
8571 		dev->features &= ~NETIF_F_LRO;
8572 	dev->priv_flags |= IFF_UNICAST_FLT;
8573 
8574 #ifdef CONFIG_BNXT_SRIOV
8575 	init_waitqueue_head(&bp->sriov_cfg_wait);
8576 	mutex_init(&bp->sriov_lock);
8577 #endif
8578 	bp->gro_func = bnxt_gro_func_5730x;
8579 	if (BNXT_CHIP_P4_PLUS(bp))
8580 		bp->gro_func = bnxt_gro_func_5731x;
8581 	else
8582 		bp->flags |= BNXT_FLAG_DOUBLE_DB;
8583 
8584 	rc = bnxt_hwrm_func_drv_rgtr(bp);
8585 	if (rc)
8586 		goto init_err_pci_clean;
8587 
8588 	rc = bnxt_hwrm_func_rgtr_async_events(bp, NULL, 0);
8589 	if (rc)
8590 		goto init_err_pci_clean;
8591 
8592 	bp->ulp_probe = bnxt_ulp_probe;
8593 
8594 	/* Get the MAX capabilities for this function */
8595 	rc = bnxt_hwrm_func_qcaps(bp);
8596 	if (rc) {
8597 		netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
8598 			   rc);
8599 		rc = -1;
8600 		goto init_err_pci_clean;
8601 	}
8602 	rc = bnxt_init_mac_addr(bp);
8603 	if (rc) {
8604 		dev_err(&pdev->dev, "Unable to initialize mac address.\n");
8605 		rc = -EADDRNOTAVAIL;
8606 		goto init_err_pci_clean;
8607 	}
8608 	rc = bnxt_hwrm_queue_qportcfg(bp);
8609 	if (rc) {
8610 		netdev_err(bp->dev, "hwrm query qportcfg failure rc: %x\n",
8611 			   rc);
8612 		rc = -1;
8613 		goto init_err_pci_clean;
8614 	}
8615 
8616 	bnxt_hwrm_func_qcfg(bp);
8617 	bnxt_hwrm_port_led_qcaps(bp);
8618 	bnxt_ethtool_init(bp);
8619 	bnxt_dcb_init(bp);
8620 
8621 	/* MTU range: 60 - FW defined max */
8622 	dev->min_mtu = ETH_ZLEN;
8623 	dev->max_mtu = bp->max_mtu;
8624 
8625 	rc = bnxt_probe_phy(bp);
8626 	if (rc)
8627 		goto init_err_pci_clean;
8628 
8629 	bnxt_set_rx_skb_mode(bp, false);
8630 	bnxt_set_tpa_flags(bp);
8631 	bnxt_set_ring_params(bp);
8632 	bnxt_set_max_func_irqs(bp, max_irqs);
8633 	rc = bnxt_set_dflt_rings(bp, true);
8634 	if (rc) {
8635 		netdev_err(bp->dev, "Not enough rings available.\n");
8636 		rc = -ENOMEM;
8637 		goto init_err_pci_clean;
8638 	}
8639 
8640 	/* Default RSS hash cfg. */
8641 	bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 |
8642 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 |
8643 			   VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 |
8644 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6;
8645 	if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) {
8646 		bp->flags |= BNXT_FLAG_UDP_RSS_CAP;
8647 		bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 |
8648 				    VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6;
8649 	}
8650 
8651 	bnxt_hwrm_vnic_qcaps(bp);
8652 	if (bnxt_rfs_supported(bp)) {
8653 		dev->hw_features |= NETIF_F_NTUPLE;
8654 		if (bnxt_rfs_capable(bp)) {
8655 			bp->flags |= BNXT_FLAG_RFS;
8656 			dev->features |= NETIF_F_NTUPLE;
8657 		}
8658 	}
8659 
8660 	if (dev->hw_features & NETIF_F_HW_VLAN_CTAG_RX)
8661 		bp->flags |= BNXT_FLAG_STRIP_VLAN;
8662 
8663 	rc = bnxt_init_int_mode(bp);
8664 	if (rc)
8665 		goto init_err_pci_clean;
8666 
8667 	bnxt_get_wol_settings(bp);
8668 	if (bp->flags & BNXT_FLAG_WOL_CAP)
8669 		device_set_wakeup_enable(&pdev->dev, bp->wol);
8670 	else
8671 		device_set_wakeup_capable(&pdev->dev, false);
8672 
8673 	bnxt_hwrm_set_cache_line_size(bp, cache_line_size());
8674 
8675 	if (BNXT_PF(bp)) {
8676 		if (!bnxt_pf_wq) {
8677 			bnxt_pf_wq =
8678 				create_singlethread_workqueue("bnxt_pf_wq");
8679 			if (!bnxt_pf_wq) {
8680 				dev_err(&pdev->dev, "Unable to create workqueue.\n");
8681 				goto init_err_pci_clean;
8682 			}
8683 		}
8684 		bnxt_init_tc(bp);
8685 	}
8686 
8687 	rc = register_netdev(dev);
8688 	if (rc)
8689 		goto init_err_cleanup_tc;
8690 
8691 	if (BNXT_PF(bp))
8692 		bnxt_dl_register(bp);
8693 
8694 	netdev_info(dev, "%s found at mem %lx, node addr %pM\n",
8695 		    board_info[ent->driver_data].name,
8696 		    (long)pci_resource_start(pdev, 0), dev->dev_addr);
8697 
8698 	bnxt_parse_log_pcie_link(bp);
8699 
8700 	return 0;
8701 
8702 init_err_cleanup_tc:
8703 	bnxt_shutdown_tc(bp);
8704 	bnxt_clear_int_mode(bp);
8705 
8706 init_err_pci_clean:
8707 	bnxt_cleanup_pci(bp);
8708 
8709 init_err_free:
8710 	free_netdev(dev);
8711 	return rc;
8712 }
8713 
8714 static void bnxt_shutdown(struct pci_dev *pdev)
8715 {
8716 	struct net_device *dev = pci_get_drvdata(pdev);
8717 	struct bnxt *bp;
8718 
8719 	if (!dev)
8720 		return;
8721 
8722 	rtnl_lock();
8723 	bp = netdev_priv(dev);
8724 	if (!bp)
8725 		goto shutdown_exit;
8726 
8727 	if (netif_running(dev))
8728 		dev_close(dev);
8729 
8730 	bnxt_ulp_shutdown(bp);
8731 
8732 	if (system_state == SYSTEM_POWER_OFF) {
8733 		bnxt_clear_int_mode(bp);
8734 		pci_wake_from_d3(pdev, bp->wol);
8735 		pci_set_power_state(pdev, PCI_D3hot);
8736 	}
8737 
8738 shutdown_exit:
8739 	rtnl_unlock();
8740 }
8741 
8742 #ifdef CONFIG_PM_SLEEP
8743 static int bnxt_suspend(struct device *device)
8744 {
8745 	struct pci_dev *pdev = to_pci_dev(device);
8746 	struct net_device *dev = pci_get_drvdata(pdev);
8747 	struct bnxt *bp = netdev_priv(dev);
8748 	int rc = 0;
8749 
8750 	rtnl_lock();
8751 	if (netif_running(dev)) {
8752 		netif_device_detach(dev);
8753 		rc = bnxt_close(dev);
8754 	}
8755 	bnxt_hwrm_func_drv_unrgtr(bp);
8756 	rtnl_unlock();
8757 	return rc;
8758 }
8759 
8760 static int bnxt_resume(struct device *device)
8761 {
8762 	struct pci_dev *pdev = to_pci_dev(device);
8763 	struct net_device *dev = pci_get_drvdata(pdev);
8764 	struct bnxt *bp = netdev_priv(dev);
8765 	int rc = 0;
8766 
8767 	rtnl_lock();
8768 	if (bnxt_hwrm_ver_get(bp) || bnxt_hwrm_func_drv_rgtr(bp)) {
8769 		rc = -ENODEV;
8770 		goto resume_exit;
8771 	}
8772 	rc = bnxt_hwrm_func_reset(bp);
8773 	if (rc) {
8774 		rc = -EBUSY;
8775 		goto resume_exit;
8776 	}
8777 	bnxt_get_wol_settings(bp);
8778 	if (netif_running(dev)) {
8779 		rc = bnxt_open(dev);
8780 		if (!rc)
8781 			netif_device_attach(dev);
8782 	}
8783 
8784 resume_exit:
8785 	rtnl_unlock();
8786 	return rc;
8787 }
8788 
8789 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume);
8790 #define BNXT_PM_OPS (&bnxt_pm_ops)
8791 
8792 #else
8793 
8794 #define BNXT_PM_OPS NULL
8795 
8796 #endif /* CONFIG_PM_SLEEP */
8797 
8798 /**
8799  * bnxt_io_error_detected - called when PCI error is detected
8800  * @pdev: Pointer to PCI device
8801  * @state: The current pci connection state
8802  *
8803  * This function is called after a PCI bus error affecting
8804  * this device has been detected.
8805  */
8806 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev,
8807 					       pci_channel_state_t state)
8808 {
8809 	struct net_device *netdev = pci_get_drvdata(pdev);
8810 	struct bnxt *bp = netdev_priv(netdev);
8811 
8812 	netdev_info(netdev, "PCI I/O error detected\n");
8813 
8814 	rtnl_lock();
8815 	netif_device_detach(netdev);
8816 
8817 	bnxt_ulp_stop(bp);
8818 
8819 	if (state == pci_channel_io_perm_failure) {
8820 		rtnl_unlock();
8821 		return PCI_ERS_RESULT_DISCONNECT;
8822 	}
8823 
8824 	if (netif_running(netdev))
8825 		bnxt_close(netdev);
8826 
8827 	pci_disable_device(pdev);
8828 	rtnl_unlock();
8829 
8830 	/* Request a slot slot reset. */
8831 	return PCI_ERS_RESULT_NEED_RESET;
8832 }
8833 
8834 /**
8835  * bnxt_io_slot_reset - called after the pci bus has been reset.
8836  * @pdev: Pointer to PCI device
8837  *
8838  * Restart the card from scratch, as if from a cold-boot.
8839  * At this point, the card has exprienced a hard reset,
8840  * followed by fixups by BIOS, and has its config space
8841  * set up identically to what it was at cold boot.
8842  */
8843 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev)
8844 {
8845 	struct net_device *netdev = pci_get_drvdata(pdev);
8846 	struct bnxt *bp = netdev_priv(netdev);
8847 	int err = 0;
8848 	pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
8849 
8850 	netdev_info(bp->dev, "PCI Slot Reset\n");
8851 
8852 	rtnl_lock();
8853 
8854 	if (pci_enable_device(pdev)) {
8855 		dev_err(&pdev->dev,
8856 			"Cannot re-enable PCI device after reset.\n");
8857 	} else {
8858 		pci_set_master(pdev);
8859 
8860 		err = bnxt_hwrm_func_reset(bp);
8861 		if (!err && netif_running(netdev))
8862 			err = bnxt_open(netdev);
8863 
8864 		if (!err) {
8865 			result = PCI_ERS_RESULT_RECOVERED;
8866 			bnxt_ulp_start(bp);
8867 		}
8868 	}
8869 
8870 	if (result != PCI_ERS_RESULT_RECOVERED && netif_running(netdev))
8871 		dev_close(netdev);
8872 
8873 	rtnl_unlock();
8874 
8875 	err = pci_cleanup_aer_uncorrect_error_status(pdev);
8876 	if (err) {
8877 		dev_err(&pdev->dev,
8878 			"pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
8879 			 err); /* non-fatal, continue */
8880 	}
8881 
8882 	return PCI_ERS_RESULT_RECOVERED;
8883 }
8884 
8885 /**
8886  * bnxt_io_resume - called when traffic can start flowing again.
8887  * @pdev: Pointer to PCI device
8888  *
8889  * This callback is called when the error recovery driver tells
8890  * us that its OK to resume normal operation.
8891  */
8892 static void bnxt_io_resume(struct pci_dev *pdev)
8893 {
8894 	struct net_device *netdev = pci_get_drvdata(pdev);
8895 
8896 	rtnl_lock();
8897 
8898 	netif_device_attach(netdev);
8899 
8900 	rtnl_unlock();
8901 }
8902 
8903 static const struct pci_error_handlers bnxt_err_handler = {
8904 	.error_detected	= bnxt_io_error_detected,
8905 	.slot_reset	= bnxt_io_slot_reset,
8906 	.resume		= bnxt_io_resume
8907 };
8908 
8909 static struct pci_driver bnxt_pci_driver = {
8910 	.name		= DRV_MODULE_NAME,
8911 	.id_table	= bnxt_pci_tbl,
8912 	.probe		= bnxt_init_one,
8913 	.remove		= bnxt_remove_one,
8914 	.shutdown	= bnxt_shutdown,
8915 	.driver.pm	= BNXT_PM_OPS,
8916 	.err_handler	= &bnxt_err_handler,
8917 #if defined(CONFIG_BNXT_SRIOV)
8918 	.sriov_configure = bnxt_sriov_configure,
8919 #endif
8920 };
8921 
8922 static int __init bnxt_init(void)
8923 {
8924 	return pci_register_driver(&bnxt_pci_driver);
8925 }
8926 
8927 static void __exit bnxt_exit(void)
8928 {
8929 	pci_unregister_driver(&bnxt_pci_driver);
8930 	if (bnxt_pf_wq)
8931 		destroy_workqueue(bnxt_pf_wq);
8932 }
8933 
8934 module_init(bnxt_init);
8935 module_exit(bnxt_exit);
8936