1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2016 Broadcom Corporation
4  * Copyright (c) 2016-2019 Broadcom Limited
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation.
9  */
10 
11 #include <linux/module.h>
12 
13 #include <linux/stringify.h>
14 #include <linux/kernel.h>
15 #include <linux/timer.h>
16 #include <linux/errno.h>
17 #include <linux/ioport.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 #include <linux/interrupt.h>
21 #include <linux/pci.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/skbuff.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/bitops.h>
27 #include <linux/io.h>
28 #include <linux/irq.h>
29 #include <linux/delay.h>
30 #include <asm/byteorder.h>
31 #include <asm/page.h>
32 #include <linux/time.h>
33 #include <linux/mii.h>
34 #include <linux/mdio.h>
35 #include <linux/if.h>
36 #include <linux/if_vlan.h>
37 #include <linux/if_bridge.h>
38 #include <linux/rtc.h>
39 #include <linux/bpf.h>
40 #include <net/gro.h>
41 #include <net/ip.h>
42 #include <net/tcp.h>
43 #include <net/udp.h>
44 #include <net/checksum.h>
45 #include <net/ip6_checksum.h>
46 #include <net/udp_tunnel.h>
47 #include <linux/workqueue.h>
48 #include <linux/prefetch.h>
49 #include <linux/cache.h>
50 #include <linux/log2.h>
51 #include <linux/bitmap.h>
52 #include <linux/cpu_rmap.h>
53 #include <linux/cpumask.h>
54 #include <net/pkt_cls.h>
55 #include <linux/hwmon.h>
56 #include <linux/hwmon-sysfs.h>
57 #include <net/page_pool.h>
58 #include <linux/align.h>
59 #include <net/netdev_queues.h>
60 
61 #include "bnxt_hsi.h"
62 #include "bnxt.h"
63 #include "bnxt_hwrm.h"
64 #include "bnxt_ulp.h"
65 #include "bnxt_sriov.h"
66 #include "bnxt_ethtool.h"
67 #include "bnxt_dcb.h"
68 #include "bnxt_xdp.h"
69 #include "bnxt_ptp.h"
70 #include "bnxt_vfr.h"
71 #include "bnxt_tc.h"
72 #include "bnxt_devlink.h"
73 #include "bnxt_debugfs.h"
74 
75 #define BNXT_TX_TIMEOUT		(5 * HZ)
76 #define BNXT_DEF_MSG_ENABLE	(NETIF_MSG_DRV | NETIF_MSG_HW | \
77 				 NETIF_MSG_TX_ERR)
78 
79 MODULE_LICENSE("GPL");
80 MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
81 
82 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
83 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
84 #define BNXT_RX_COPY_THRESH 256
85 
86 #define BNXT_TX_PUSH_THRESH 164
87 
88 /* indexed by enum board_idx */
89 static const struct {
90 	char *name;
91 } board_info[] = {
92 	[BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" },
93 	[BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" },
94 	[BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
95 	[BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" },
96 	[BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" },
97 	[BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" },
98 	[BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" },
99 	[BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" },
100 	[BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" },
101 	[BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" },
102 	[BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" },
103 	[BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" },
104 	[BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" },
105 	[BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" },
106 	[BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" },
107 	[BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" },
108 	[BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" },
109 	[BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
110 	[BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" },
111 	[BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" },
112 	[BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" },
113 	[BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" },
114 	[BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" },
115 	[BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" },
116 	[BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" },
117 	[BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" },
118 	[BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" },
119 	[BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
120 	[BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" },
121 	[BCM57508] = { "Broadcom BCM57508 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
122 	[BCM57504] = { "Broadcom BCM57504 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
123 	[BCM57502] = { "Broadcom BCM57502 NetXtreme-E 10Gb/25Gb/50Gb Ethernet" },
124 	[BCM57508_NPAR] = { "Broadcom BCM57508 NetXtreme-E Ethernet Partition" },
125 	[BCM57504_NPAR] = { "Broadcom BCM57504 NetXtreme-E Ethernet Partition" },
126 	[BCM57502_NPAR] = { "Broadcom BCM57502 NetXtreme-E Ethernet Partition" },
127 	[BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" },
128 	[BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
129 	[BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
130 	[NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" },
131 	[NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" },
132 	[NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" },
133 	[NETXTREME_C_VF_HV] = { "Broadcom NetXtreme-C Virtual Function for Hyper-V" },
134 	[NETXTREME_E_VF_HV] = { "Broadcom NetXtreme-E Virtual Function for Hyper-V" },
135 	[NETXTREME_E_P5_VF] = { "Broadcom BCM5750X NetXtreme-E Ethernet Virtual Function" },
136 	[NETXTREME_E_P5_VF_HV] = { "Broadcom BCM5750X NetXtreme-E Virtual Function for Hyper-V" },
137 };
138 
139 static const struct pci_device_id bnxt_pci_tbl[] = {
140 	{ PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR },
141 	{ PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR },
142 	{ PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 },
143 	{ PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR },
144 	{ PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
145 	{ PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
146 	{ PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
147 	{ PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR },
148 	{ PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 },
149 	{ PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 },
150 	{ PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 },
151 	{ PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
152 	{ PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
153 	{ PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
154 	{ PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR },
155 	{ PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 },
156 	{ PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 },
157 	{ PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 },
158 	{ PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 },
159 	{ PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 },
160 	{ PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR },
161 	{ PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 },
162 	{ PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP },
163 	{ PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP },
164 	{ PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR },
165 	{ PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR },
166 	{ PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP },
167 	{ PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR },
168 	{ PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR },
169 	{ PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR },
170 	{ PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR },
171 	{ PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR },
172 	{ PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR },
173 	{ PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 },
174 	{ PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 },
175 	{ PCI_VDEVICE(BROADCOM, 0x1750), .driver_data = BCM57508 },
176 	{ PCI_VDEVICE(BROADCOM, 0x1751), .driver_data = BCM57504 },
177 	{ PCI_VDEVICE(BROADCOM, 0x1752), .driver_data = BCM57502 },
178 	{ PCI_VDEVICE(BROADCOM, 0x1800), .driver_data = BCM57502_NPAR },
179 	{ PCI_VDEVICE(BROADCOM, 0x1801), .driver_data = BCM57504_NPAR },
180 	{ PCI_VDEVICE(BROADCOM, 0x1802), .driver_data = BCM57508_NPAR },
181 	{ PCI_VDEVICE(BROADCOM, 0x1803), .driver_data = BCM57502_NPAR },
182 	{ PCI_VDEVICE(BROADCOM, 0x1804), .driver_data = BCM57504_NPAR },
183 	{ PCI_VDEVICE(BROADCOM, 0x1805), .driver_data = BCM57508_NPAR },
184 	{ PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 },
185 	{ PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 },
186 #ifdef CONFIG_BNXT_SRIOV
187 	{ PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF },
188 	{ PCI_VDEVICE(BROADCOM, 0x1607), .driver_data = NETXTREME_E_VF_HV },
189 	{ PCI_VDEVICE(BROADCOM, 0x1608), .driver_data = NETXTREME_E_VF_HV },
190 	{ PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF },
191 	{ PCI_VDEVICE(BROADCOM, 0x16bd), .driver_data = NETXTREME_E_VF_HV },
192 	{ PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF },
193 	{ PCI_VDEVICE(BROADCOM, 0x16c2), .driver_data = NETXTREME_C_VF_HV },
194 	{ PCI_VDEVICE(BROADCOM, 0x16c3), .driver_data = NETXTREME_C_VF_HV },
195 	{ PCI_VDEVICE(BROADCOM, 0x16c4), .driver_data = NETXTREME_E_VF_HV },
196 	{ PCI_VDEVICE(BROADCOM, 0x16c5), .driver_data = NETXTREME_E_VF_HV },
197 	{ PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF },
198 	{ PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF },
199 	{ PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF },
200 	{ PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF },
201 	{ PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF },
202 	{ PCI_VDEVICE(BROADCOM, 0x16e6), .driver_data = NETXTREME_C_VF_HV },
203 	{ PCI_VDEVICE(BROADCOM, 0x1806), .driver_data = NETXTREME_E_P5_VF },
204 	{ PCI_VDEVICE(BROADCOM, 0x1807), .driver_data = NETXTREME_E_P5_VF },
205 	{ PCI_VDEVICE(BROADCOM, 0x1808), .driver_data = NETXTREME_E_P5_VF_HV },
206 	{ PCI_VDEVICE(BROADCOM, 0x1809), .driver_data = NETXTREME_E_P5_VF_HV },
207 	{ PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF },
208 #endif
209 	{ 0 }
210 };
211 
212 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
213 
214 static const u16 bnxt_vf_req_snif[] = {
215 	HWRM_FUNC_CFG,
216 	HWRM_FUNC_VF_CFG,
217 	HWRM_PORT_PHY_QCFG,
218 	HWRM_CFA_L2_FILTER_ALLOC,
219 };
220 
221 static const u16 bnxt_async_events_arr[] = {
222 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE,
223 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE,
224 	ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD,
225 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED,
226 	ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE,
227 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE,
228 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE,
229 	ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY,
230 	ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY,
231 	ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION,
232 	ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE,
233 	ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG,
234 	ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST,
235 	ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP,
236 	ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT,
237 	ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE,
238 };
239 
240 static struct workqueue_struct *bnxt_pf_wq;
241 
242 static bool bnxt_vf_pciid(enum board_idx idx)
243 {
244 	return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF ||
245 		idx == NETXTREME_S_VF || idx == NETXTREME_C_VF_HV ||
246 		idx == NETXTREME_E_VF_HV || idx == NETXTREME_E_P5_VF ||
247 		idx == NETXTREME_E_P5_VF_HV);
248 }
249 
250 #define DB_CP_REARM_FLAGS	(DB_KEY_CP | DB_IDX_VALID)
251 #define DB_CP_FLAGS		(DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
252 #define DB_CP_IRQ_DIS_FLAGS	(DB_KEY_CP | DB_IRQ_DIS)
253 
254 #define BNXT_CP_DB_IRQ_DIS(db)						\
255 		writel(DB_CP_IRQ_DIS_FLAGS, db)
256 
257 #define BNXT_DB_CQ(db, idx)						\
258 	writel(DB_CP_FLAGS | RING_CMP(idx), (db)->doorbell)
259 
260 #define BNXT_DB_NQ_P5(db, idx)						\
261 	bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ | RING_CMP(idx),	\
262 		    (db)->doorbell)
263 
264 #define BNXT_DB_CQ_ARM(db, idx)						\
265 	writel(DB_CP_REARM_FLAGS | RING_CMP(idx), (db)->doorbell)
266 
267 #define BNXT_DB_NQ_ARM_P5(db, idx)					\
268 	bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ_ARM | RING_CMP(idx),\
269 		    (db)->doorbell)
270 
271 static void bnxt_db_nq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
272 {
273 	if (bp->flags & BNXT_FLAG_CHIP_P5)
274 		BNXT_DB_NQ_P5(db, idx);
275 	else
276 		BNXT_DB_CQ(db, idx);
277 }
278 
279 static void bnxt_db_nq_arm(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
280 {
281 	if (bp->flags & BNXT_FLAG_CHIP_P5)
282 		BNXT_DB_NQ_ARM_P5(db, idx);
283 	else
284 		BNXT_DB_CQ_ARM(db, idx);
285 }
286 
287 static void bnxt_db_cq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
288 {
289 	if (bp->flags & BNXT_FLAG_CHIP_P5)
290 		bnxt_writeq(bp, db->db_key64 | DBR_TYPE_CQ_ARMALL |
291 			    RING_CMP(idx), db->doorbell);
292 	else
293 		BNXT_DB_CQ(db, idx);
294 }
295 
296 const u16 bnxt_lhint_arr[] = {
297 	TX_BD_FLAGS_LHINT_512_AND_SMALLER,
298 	TX_BD_FLAGS_LHINT_512_TO_1023,
299 	TX_BD_FLAGS_LHINT_1024_TO_2047,
300 	TX_BD_FLAGS_LHINT_1024_TO_2047,
301 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
302 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
303 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
304 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
305 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
306 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
307 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
308 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
309 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
310 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
311 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
312 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
313 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
314 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
315 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
316 };
317 
318 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb)
319 {
320 	struct metadata_dst *md_dst = skb_metadata_dst(skb);
321 
322 	if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX)
323 		return 0;
324 
325 	return md_dst->u.port_info.port_id;
326 }
327 
328 static void bnxt_txr_db_kick(struct bnxt *bp, struct bnxt_tx_ring_info *txr,
329 			     u16 prod)
330 {
331 	bnxt_db_write(bp, &txr->tx_db, prod);
332 	txr->kick_pending = 0;
333 }
334 
335 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
336 {
337 	struct bnxt *bp = netdev_priv(dev);
338 	struct tx_bd *txbd;
339 	struct tx_bd_ext *txbd1;
340 	struct netdev_queue *txq;
341 	int i;
342 	dma_addr_t mapping;
343 	unsigned int length, pad = 0;
344 	u32 len, free_size, vlan_tag_flags, cfa_action, flags;
345 	u16 prod, last_frag;
346 	struct pci_dev *pdev = bp->pdev;
347 	struct bnxt_tx_ring_info *txr;
348 	struct bnxt_sw_tx_bd *tx_buf;
349 	__le32 lflags = 0;
350 
351 	i = skb_get_queue_mapping(skb);
352 	if (unlikely(i >= bp->tx_nr_rings)) {
353 		dev_kfree_skb_any(skb);
354 		dev_core_stats_tx_dropped_inc(dev);
355 		return NETDEV_TX_OK;
356 	}
357 
358 	txq = netdev_get_tx_queue(dev, i);
359 	txr = &bp->tx_ring[bp->tx_ring_map[i]];
360 	prod = txr->tx_prod;
361 
362 	free_size = bnxt_tx_avail(bp, txr);
363 	if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
364 		/* We must have raced with NAPI cleanup */
365 		if (net_ratelimit() && txr->kick_pending)
366 			netif_warn(bp, tx_err, dev,
367 				   "bnxt: ring busy w/ flush pending!\n");
368 		if (!netif_txq_try_stop(txq, bnxt_tx_avail(bp, txr),
369 					bp->tx_wake_thresh))
370 			return NETDEV_TX_BUSY;
371 	}
372 
373 	if (unlikely(ipv6_hopopt_jumbo_remove(skb)))
374 		goto tx_free;
375 
376 	length = skb->len;
377 	len = skb_headlen(skb);
378 	last_frag = skb_shinfo(skb)->nr_frags;
379 
380 	txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
381 
382 	txbd->tx_bd_opaque = prod;
383 
384 	tx_buf = &txr->tx_buf_ring[prod];
385 	tx_buf->skb = skb;
386 	tx_buf->nr_frags = last_frag;
387 
388 	vlan_tag_flags = 0;
389 	cfa_action = bnxt_xmit_get_cfa_action(skb);
390 	if (skb_vlan_tag_present(skb)) {
391 		vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
392 				 skb_vlan_tag_get(skb);
393 		/* Currently supports 8021Q, 8021AD vlan offloads
394 		 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
395 		 */
396 		if (skb->vlan_proto == htons(ETH_P_8021Q))
397 			vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
398 	}
399 
400 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
401 		struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
402 
403 		if (ptp && ptp->tx_tstamp_en && !skb_is_gso(skb) &&
404 		    atomic_dec_if_positive(&ptp->tx_avail) >= 0) {
405 			if (!bnxt_ptp_parse(skb, &ptp->tx_seqid,
406 					    &ptp->tx_hdr_off)) {
407 				if (vlan_tag_flags)
408 					ptp->tx_hdr_off += VLAN_HLEN;
409 				lflags |= cpu_to_le32(TX_BD_FLAGS_STAMP);
410 				skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
411 			} else {
412 				atomic_inc(&bp->ptp_cfg->tx_avail);
413 			}
414 		}
415 	}
416 
417 	if (unlikely(skb->no_fcs))
418 		lflags |= cpu_to_le32(TX_BD_FLAGS_NO_CRC);
419 
420 	if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh &&
421 	    !lflags) {
422 		struct tx_push_buffer *tx_push_buf = txr->tx_push;
423 		struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
424 		struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
425 		void __iomem *db = txr->tx_db.doorbell;
426 		void *pdata = tx_push_buf->data;
427 		u64 *end;
428 		int j, push_len;
429 
430 		/* Set COAL_NOW to be ready quickly for the next push */
431 		tx_push->tx_bd_len_flags_type =
432 			cpu_to_le32((length << TX_BD_LEN_SHIFT) |
433 					TX_BD_TYPE_LONG_TX_BD |
434 					TX_BD_FLAGS_LHINT_512_AND_SMALLER |
435 					TX_BD_FLAGS_COAL_NOW |
436 					TX_BD_FLAGS_PACKET_END |
437 					(2 << TX_BD_FLAGS_BD_CNT_SHIFT));
438 
439 		if (skb->ip_summed == CHECKSUM_PARTIAL)
440 			tx_push1->tx_bd_hsize_lflags =
441 					cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
442 		else
443 			tx_push1->tx_bd_hsize_lflags = 0;
444 
445 		tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
446 		tx_push1->tx_bd_cfa_action =
447 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
448 
449 		end = pdata + length;
450 		end = PTR_ALIGN(end, 8) - 1;
451 		*end = 0;
452 
453 		skb_copy_from_linear_data(skb, pdata, len);
454 		pdata += len;
455 		for (j = 0; j < last_frag; j++) {
456 			skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
457 			void *fptr;
458 
459 			fptr = skb_frag_address_safe(frag);
460 			if (!fptr)
461 				goto normal_tx;
462 
463 			memcpy(pdata, fptr, skb_frag_size(frag));
464 			pdata += skb_frag_size(frag);
465 		}
466 
467 		txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
468 		txbd->tx_bd_haddr = txr->data_mapping;
469 		prod = NEXT_TX(prod);
470 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
471 		memcpy(txbd, tx_push1, sizeof(*txbd));
472 		prod = NEXT_TX(prod);
473 		tx_push->doorbell =
474 			cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod);
475 		WRITE_ONCE(txr->tx_prod, prod);
476 
477 		tx_buf->is_push = 1;
478 		netdev_tx_sent_queue(txq, skb->len);
479 		wmb();	/* Sync is_push and byte queue before pushing data */
480 
481 		push_len = (length + sizeof(*tx_push) + 7) / 8;
482 		if (push_len > 16) {
483 			__iowrite64_copy(db, tx_push_buf, 16);
484 			__iowrite32_copy(db + 4, tx_push_buf + 1,
485 					 (push_len - 16) << 1);
486 		} else {
487 			__iowrite64_copy(db, tx_push_buf, push_len);
488 		}
489 
490 		goto tx_done;
491 	}
492 
493 normal_tx:
494 	if (length < BNXT_MIN_PKT_SIZE) {
495 		pad = BNXT_MIN_PKT_SIZE - length;
496 		if (skb_pad(skb, pad))
497 			/* SKB already freed. */
498 			goto tx_kick_pending;
499 		length = BNXT_MIN_PKT_SIZE;
500 	}
501 
502 	mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
503 
504 	if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
505 		goto tx_free;
506 
507 	dma_unmap_addr_set(tx_buf, mapping, mapping);
508 	flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
509 		((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
510 
511 	txbd->tx_bd_haddr = cpu_to_le64(mapping);
512 
513 	prod = NEXT_TX(prod);
514 	txbd1 = (struct tx_bd_ext *)
515 		&txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
516 
517 	txbd1->tx_bd_hsize_lflags = lflags;
518 	if (skb_is_gso(skb)) {
519 		u32 hdr_len;
520 
521 		if (skb->encapsulation)
522 			hdr_len = skb_inner_tcp_all_headers(skb);
523 		else
524 			hdr_len = skb_tcp_all_headers(skb);
525 
526 		txbd1->tx_bd_hsize_lflags |= cpu_to_le32(TX_BD_FLAGS_LSO |
527 					TX_BD_FLAGS_T_IPID |
528 					(hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
529 		length = skb_shinfo(skb)->gso_size;
530 		txbd1->tx_bd_mss = cpu_to_le32(length);
531 		length += hdr_len;
532 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
533 		txbd1->tx_bd_hsize_lflags |=
534 			cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
535 		txbd1->tx_bd_mss = 0;
536 	}
537 
538 	length >>= 9;
539 	if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) {
540 		dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n",
541 				     skb->len);
542 		i = 0;
543 		goto tx_dma_error;
544 	}
545 	flags |= bnxt_lhint_arr[length];
546 	txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
547 
548 	txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
549 	txbd1->tx_bd_cfa_action =
550 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
551 	for (i = 0; i < last_frag; i++) {
552 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
553 
554 		prod = NEXT_TX(prod);
555 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
556 
557 		len = skb_frag_size(frag);
558 		mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
559 					   DMA_TO_DEVICE);
560 
561 		if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
562 			goto tx_dma_error;
563 
564 		tx_buf = &txr->tx_buf_ring[prod];
565 		dma_unmap_addr_set(tx_buf, mapping, mapping);
566 
567 		txbd->tx_bd_haddr = cpu_to_le64(mapping);
568 
569 		flags = len << TX_BD_LEN_SHIFT;
570 		txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
571 	}
572 
573 	flags &= ~TX_BD_LEN;
574 	txbd->tx_bd_len_flags_type =
575 		cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
576 			    TX_BD_FLAGS_PACKET_END);
577 
578 	netdev_tx_sent_queue(txq, skb->len);
579 
580 	skb_tx_timestamp(skb);
581 
582 	/* Sync BD data before updating doorbell */
583 	wmb();
584 
585 	prod = NEXT_TX(prod);
586 	WRITE_ONCE(txr->tx_prod, prod);
587 
588 	if (!netdev_xmit_more() || netif_xmit_stopped(txq))
589 		bnxt_txr_db_kick(bp, txr, prod);
590 	else
591 		txr->kick_pending = 1;
592 
593 tx_done:
594 
595 	if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
596 		if (netdev_xmit_more() && !tx_buf->is_push)
597 			bnxt_txr_db_kick(bp, txr, prod);
598 
599 		netif_txq_try_stop(txq, bnxt_tx_avail(bp, txr),
600 				   bp->tx_wake_thresh);
601 	}
602 	return NETDEV_TX_OK;
603 
604 tx_dma_error:
605 	if (BNXT_TX_PTP_IS_SET(lflags))
606 		atomic_inc(&bp->ptp_cfg->tx_avail);
607 
608 	last_frag = i;
609 
610 	/* start back at beginning and unmap skb */
611 	prod = txr->tx_prod;
612 	tx_buf = &txr->tx_buf_ring[prod];
613 	dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
614 			 skb_headlen(skb), DMA_TO_DEVICE);
615 	prod = NEXT_TX(prod);
616 
617 	/* unmap remaining mapped pages */
618 	for (i = 0; i < last_frag; i++) {
619 		prod = NEXT_TX(prod);
620 		tx_buf = &txr->tx_buf_ring[prod];
621 		dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
622 			       skb_frag_size(&skb_shinfo(skb)->frags[i]),
623 			       DMA_TO_DEVICE);
624 	}
625 
626 tx_free:
627 	dev_kfree_skb_any(skb);
628 tx_kick_pending:
629 	if (txr->kick_pending)
630 		bnxt_txr_db_kick(bp, txr, txr->tx_prod);
631 	txr->tx_buf_ring[txr->tx_prod].skb = NULL;
632 	dev_core_stats_tx_dropped_inc(dev);
633 	return NETDEV_TX_OK;
634 }
635 
636 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
637 {
638 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
639 	struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index);
640 	u16 cons = txr->tx_cons;
641 	struct pci_dev *pdev = bp->pdev;
642 	int nr_pkts = bnapi->tx_pkts;
643 	int i;
644 	unsigned int tx_bytes = 0;
645 
646 	for (i = 0; i < nr_pkts; i++) {
647 		struct bnxt_sw_tx_bd *tx_buf;
648 		struct sk_buff *skb;
649 		int j, last;
650 
651 		tx_buf = &txr->tx_buf_ring[cons];
652 		cons = NEXT_TX(cons);
653 		skb = tx_buf->skb;
654 		tx_buf->skb = NULL;
655 
656 		tx_bytes += skb->len;
657 
658 		if (tx_buf->is_push) {
659 			tx_buf->is_push = 0;
660 			goto next_tx_int;
661 		}
662 
663 		dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
664 				 skb_headlen(skb), DMA_TO_DEVICE);
665 		last = tx_buf->nr_frags;
666 
667 		for (j = 0; j < last; j++) {
668 			cons = NEXT_TX(cons);
669 			tx_buf = &txr->tx_buf_ring[cons];
670 			dma_unmap_page(
671 				&pdev->dev,
672 				dma_unmap_addr(tx_buf, mapping),
673 				skb_frag_size(&skb_shinfo(skb)->frags[j]),
674 				DMA_TO_DEVICE);
675 		}
676 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
677 			if (bp->flags & BNXT_FLAG_CHIP_P5) {
678 				/* PTP worker takes ownership of the skb */
679 				if (!bnxt_get_tx_ts_p5(bp, skb))
680 					skb = NULL;
681 				else
682 					atomic_inc(&bp->ptp_cfg->tx_avail);
683 			}
684 		}
685 
686 next_tx_int:
687 		cons = NEXT_TX(cons);
688 
689 		dev_kfree_skb_any(skb);
690 	}
691 
692 	bnapi->tx_pkts = 0;
693 	WRITE_ONCE(txr->tx_cons, cons);
694 
695 	__netif_txq_completed_wake(txq, nr_pkts, tx_bytes,
696 				   bnxt_tx_avail(bp, txr), bp->tx_wake_thresh,
697 				   READ_ONCE(txr->dev_state) == BNXT_DEV_STATE_CLOSING);
698 }
699 
700 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping,
701 					 struct bnxt_rx_ring_info *rxr,
702 					 unsigned int *offset,
703 					 gfp_t gfp)
704 {
705 	struct device *dev = &bp->pdev->dev;
706 	struct page *page;
707 
708 	if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) {
709 		page = page_pool_dev_alloc_frag(rxr->page_pool, offset,
710 						BNXT_RX_PAGE_SIZE);
711 	} else {
712 		page = page_pool_dev_alloc_pages(rxr->page_pool);
713 		*offset = 0;
714 	}
715 	if (!page)
716 		return NULL;
717 
718 	*mapping = dma_map_page_attrs(dev, page, *offset, BNXT_RX_PAGE_SIZE,
719 				      bp->rx_dir, DMA_ATTR_WEAK_ORDERING);
720 	if (dma_mapping_error(dev, *mapping)) {
721 		page_pool_recycle_direct(rxr->page_pool, page);
722 		return NULL;
723 	}
724 	return page;
725 }
726 
727 static inline u8 *__bnxt_alloc_rx_frag(struct bnxt *bp, dma_addr_t *mapping,
728 				       gfp_t gfp)
729 {
730 	u8 *data;
731 	struct pci_dev *pdev = bp->pdev;
732 
733 	if (gfp == GFP_ATOMIC)
734 		data = napi_alloc_frag(bp->rx_buf_size);
735 	else
736 		data = netdev_alloc_frag(bp->rx_buf_size);
737 	if (!data)
738 		return NULL;
739 
740 	*mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset,
741 					bp->rx_buf_use_size, bp->rx_dir,
742 					DMA_ATTR_WEAK_ORDERING);
743 
744 	if (dma_mapping_error(&pdev->dev, *mapping)) {
745 		skb_free_frag(data);
746 		data = NULL;
747 	}
748 	return data;
749 }
750 
751 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
752 		       u16 prod, gfp_t gfp)
753 {
754 	struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
755 	struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
756 	dma_addr_t mapping;
757 
758 	if (BNXT_RX_PAGE_MODE(bp)) {
759 		unsigned int offset;
760 		struct page *page =
761 			__bnxt_alloc_rx_page(bp, &mapping, rxr, &offset, gfp);
762 
763 		if (!page)
764 			return -ENOMEM;
765 
766 		mapping += bp->rx_dma_offset;
767 		rx_buf->data = page;
768 		rx_buf->data_ptr = page_address(page) + offset + bp->rx_offset;
769 	} else {
770 		u8 *data = __bnxt_alloc_rx_frag(bp, &mapping, gfp);
771 
772 		if (!data)
773 			return -ENOMEM;
774 
775 		rx_buf->data = data;
776 		rx_buf->data_ptr = data + bp->rx_offset;
777 	}
778 	rx_buf->mapping = mapping;
779 
780 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
781 	return 0;
782 }
783 
784 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data)
785 {
786 	u16 prod = rxr->rx_prod;
787 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
788 	struct rx_bd *cons_bd, *prod_bd;
789 
790 	prod_rx_buf = &rxr->rx_buf_ring[prod];
791 	cons_rx_buf = &rxr->rx_buf_ring[cons];
792 
793 	prod_rx_buf->data = data;
794 	prod_rx_buf->data_ptr = cons_rx_buf->data_ptr;
795 
796 	prod_rx_buf->mapping = cons_rx_buf->mapping;
797 
798 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
799 	cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
800 
801 	prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
802 }
803 
804 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
805 {
806 	u16 next, max = rxr->rx_agg_bmap_size;
807 
808 	next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
809 	if (next >= max)
810 		next = find_first_zero_bit(rxr->rx_agg_bmap, max);
811 	return next;
812 }
813 
814 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
815 				     struct bnxt_rx_ring_info *rxr,
816 				     u16 prod, gfp_t gfp)
817 {
818 	struct rx_bd *rxbd =
819 		&rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
820 	struct bnxt_sw_rx_agg_bd *rx_agg_buf;
821 	struct pci_dev *pdev = bp->pdev;
822 	struct page *page;
823 	dma_addr_t mapping;
824 	u16 sw_prod = rxr->rx_sw_agg_prod;
825 	unsigned int offset = 0;
826 
827 	if (BNXT_RX_PAGE_MODE(bp)) {
828 		page = __bnxt_alloc_rx_page(bp, &mapping, rxr, &offset, gfp);
829 
830 		if (!page)
831 			return -ENOMEM;
832 
833 	} else {
834 		if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) {
835 			page = rxr->rx_page;
836 			if (!page) {
837 				page = alloc_page(gfp);
838 				if (!page)
839 					return -ENOMEM;
840 				rxr->rx_page = page;
841 				rxr->rx_page_offset = 0;
842 			}
843 			offset = rxr->rx_page_offset;
844 			rxr->rx_page_offset += BNXT_RX_PAGE_SIZE;
845 			if (rxr->rx_page_offset == PAGE_SIZE)
846 				rxr->rx_page = NULL;
847 			else
848 				get_page(page);
849 		} else {
850 			page = alloc_page(gfp);
851 			if (!page)
852 				return -ENOMEM;
853 		}
854 
855 		mapping = dma_map_page_attrs(&pdev->dev, page, offset,
856 					     BNXT_RX_PAGE_SIZE, DMA_FROM_DEVICE,
857 					     DMA_ATTR_WEAK_ORDERING);
858 		if (dma_mapping_error(&pdev->dev, mapping)) {
859 			__free_page(page);
860 			return -EIO;
861 		}
862 	}
863 
864 	if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
865 		sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
866 
867 	__set_bit(sw_prod, rxr->rx_agg_bmap);
868 	rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
869 	rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod);
870 
871 	rx_agg_buf->page = page;
872 	rx_agg_buf->offset = offset;
873 	rx_agg_buf->mapping = mapping;
874 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
875 	rxbd->rx_bd_opaque = sw_prod;
876 	return 0;
877 }
878 
879 static struct rx_agg_cmp *bnxt_get_agg(struct bnxt *bp,
880 				       struct bnxt_cp_ring_info *cpr,
881 				       u16 cp_cons, u16 curr)
882 {
883 	struct rx_agg_cmp *agg;
884 
885 	cp_cons = RING_CMP(ADV_RAW_CMP(cp_cons, curr));
886 	agg = (struct rx_agg_cmp *)
887 		&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
888 	return agg;
889 }
890 
891 static struct rx_agg_cmp *bnxt_get_tpa_agg_p5(struct bnxt *bp,
892 					      struct bnxt_rx_ring_info *rxr,
893 					      u16 agg_id, u16 curr)
894 {
895 	struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[agg_id];
896 
897 	return &tpa_info->agg_arr[curr];
898 }
899 
900 static void bnxt_reuse_rx_agg_bufs(struct bnxt_cp_ring_info *cpr, u16 idx,
901 				   u16 start, u32 agg_bufs, bool tpa)
902 {
903 	struct bnxt_napi *bnapi = cpr->bnapi;
904 	struct bnxt *bp = bnapi->bp;
905 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
906 	u16 prod = rxr->rx_agg_prod;
907 	u16 sw_prod = rxr->rx_sw_agg_prod;
908 	bool p5_tpa = false;
909 	u32 i;
910 
911 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa)
912 		p5_tpa = true;
913 
914 	for (i = 0; i < agg_bufs; i++) {
915 		u16 cons;
916 		struct rx_agg_cmp *agg;
917 		struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
918 		struct rx_bd *prod_bd;
919 		struct page *page;
920 
921 		if (p5_tpa)
922 			agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, start + i);
923 		else
924 			agg = bnxt_get_agg(bp, cpr, idx, start + i);
925 		cons = agg->rx_agg_cmp_opaque;
926 		__clear_bit(cons, rxr->rx_agg_bmap);
927 
928 		if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
929 			sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
930 
931 		__set_bit(sw_prod, rxr->rx_agg_bmap);
932 		prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
933 		cons_rx_buf = &rxr->rx_agg_ring[cons];
934 
935 		/* It is possible for sw_prod to be equal to cons, so
936 		 * set cons_rx_buf->page to NULL first.
937 		 */
938 		page = cons_rx_buf->page;
939 		cons_rx_buf->page = NULL;
940 		prod_rx_buf->page = page;
941 		prod_rx_buf->offset = cons_rx_buf->offset;
942 
943 		prod_rx_buf->mapping = cons_rx_buf->mapping;
944 
945 		prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
946 
947 		prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
948 		prod_bd->rx_bd_opaque = sw_prod;
949 
950 		prod = NEXT_RX_AGG(prod);
951 		sw_prod = NEXT_RX_AGG(sw_prod);
952 	}
953 	rxr->rx_agg_prod = prod;
954 	rxr->rx_sw_agg_prod = sw_prod;
955 }
956 
957 static struct sk_buff *bnxt_rx_multi_page_skb(struct bnxt *bp,
958 					      struct bnxt_rx_ring_info *rxr,
959 					      u16 cons, void *data, u8 *data_ptr,
960 					      dma_addr_t dma_addr,
961 					      unsigned int offset_and_len)
962 {
963 	unsigned int len = offset_and_len & 0xffff;
964 	struct page *page = data;
965 	u16 prod = rxr->rx_prod;
966 	struct sk_buff *skb;
967 	int err;
968 
969 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
970 	if (unlikely(err)) {
971 		bnxt_reuse_rx_data(rxr, cons, data);
972 		return NULL;
973 	}
974 	dma_addr -= bp->rx_dma_offset;
975 	dma_unmap_page_attrs(&bp->pdev->dev, dma_addr, BNXT_RX_PAGE_SIZE,
976 			     bp->rx_dir, DMA_ATTR_WEAK_ORDERING);
977 	skb = build_skb(data_ptr - bp->rx_offset, BNXT_RX_PAGE_SIZE);
978 	if (!skb) {
979 		page_pool_recycle_direct(rxr->page_pool, page);
980 		return NULL;
981 	}
982 	skb_mark_for_recycle(skb);
983 	skb_reserve(skb, bp->rx_offset);
984 	__skb_put(skb, len);
985 
986 	return skb;
987 }
988 
989 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp,
990 					struct bnxt_rx_ring_info *rxr,
991 					u16 cons, void *data, u8 *data_ptr,
992 					dma_addr_t dma_addr,
993 					unsigned int offset_and_len)
994 {
995 	unsigned int payload = offset_and_len >> 16;
996 	unsigned int len = offset_and_len & 0xffff;
997 	skb_frag_t *frag;
998 	struct page *page = data;
999 	u16 prod = rxr->rx_prod;
1000 	struct sk_buff *skb;
1001 	int off, err;
1002 
1003 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
1004 	if (unlikely(err)) {
1005 		bnxt_reuse_rx_data(rxr, cons, data);
1006 		return NULL;
1007 	}
1008 	dma_addr -= bp->rx_dma_offset;
1009 	dma_unmap_page_attrs(&bp->pdev->dev, dma_addr, BNXT_RX_PAGE_SIZE,
1010 			     bp->rx_dir, DMA_ATTR_WEAK_ORDERING);
1011 
1012 	if (unlikely(!payload))
1013 		payload = eth_get_headlen(bp->dev, data_ptr, len);
1014 
1015 	skb = napi_alloc_skb(&rxr->bnapi->napi, payload);
1016 	if (!skb) {
1017 		page_pool_recycle_direct(rxr->page_pool, page);
1018 		return NULL;
1019 	}
1020 
1021 	skb_mark_for_recycle(skb);
1022 	off = (void *)data_ptr - page_address(page);
1023 	skb_add_rx_frag(skb, 0, page, off, len, BNXT_RX_PAGE_SIZE);
1024 	memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN,
1025 	       payload + NET_IP_ALIGN);
1026 
1027 	frag = &skb_shinfo(skb)->frags[0];
1028 	skb_frag_size_sub(frag, payload);
1029 	skb_frag_off_add(frag, payload);
1030 	skb->data_len -= payload;
1031 	skb->tail += payload;
1032 
1033 	return skb;
1034 }
1035 
1036 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
1037 				   struct bnxt_rx_ring_info *rxr, u16 cons,
1038 				   void *data, u8 *data_ptr,
1039 				   dma_addr_t dma_addr,
1040 				   unsigned int offset_and_len)
1041 {
1042 	u16 prod = rxr->rx_prod;
1043 	struct sk_buff *skb;
1044 	int err;
1045 
1046 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
1047 	if (unlikely(err)) {
1048 		bnxt_reuse_rx_data(rxr, cons, data);
1049 		return NULL;
1050 	}
1051 
1052 	skb = build_skb(data, bp->rx_buf_size);
1053 	dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
1054 			       bp->rx_dir, DMA_ATTR_WEAK_ORDERING);
1055 	if (!skb) {
1056 		skb_free_frag(data);
1057 		return NULL;
1058 	}
1059 
1060 	skb_reserve(skb, bp->rx_offset);
1061 	skb_put(skb, offset_and_len & 0xffff);
1062 	return skb;
1063 }
1064 
1065 static u32 __bnxt_rx_agg_pages(struct bnxt *bp,
1066 			       struct bnxt_cp_ring_info *cpr,
1067 			       struct skb_shared_info *shinfo,
1068 			       u16 idx, u32 agg_bufs, bool tpa,
1069 			       struct xdp_buff *xdp)
1070 {
1071 	struct bnxt_napi *bnapi = cpr->bnapi;
1072 	struct pci_dev *pdev = bp->pdev;
1073 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1074 	u16 prod = rxr->rx_agg_prod;
1075 	u32 i, total_frag_len = 0;
1076 	bool p5_tpa = false;
1077 
1078 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa)
1079 		p5_tpa = true;
1080 
1081 	for (i = 0; i < agg_bufs; i++) {
1082 		skb_frag_t *frag = &shinfo->frags[i];
1083 		u16 cons, frag_len;
1084 		struct rx_agg_cmp *agg;
1085 		struct bnxt_sw_rx_agg_bd *cons_rx_buf;
1086 		struct page *page;
1087 		dma_addr_t mapping;
1088 
1089 		if (p5_tpa)
1090 			agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, i);
1091 		else
1092 			agg = bnxt_get_agg(bp, cpr, idx, i);
1093 		cons = agg->rx_agg_cmp_opaque;
1094 		frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
1095 			    RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
1096 
1097 		cons_rx_buf = &rxr->rx_agg_ring[cons];
1098 		skb_frag_fill_page_desc(frag, cons_rx_buf->page,
1099 					cons_rx_buf->offset, frag_len);
1100 		shinfo->nr_frags = i + 1;
1101 		__clear_bit(cons, rxr->rx_agg_bmap);
1102 
1103 		/* It is possible for bnxt_alloc_rx_page() to allocate
1104 		 * a sw_prod index that equals the cons index, so we
1105 		 * need to clear the cons entry now.
1106 		 */
1107 		mapping = cons_rx_buf->mapping;
1108 		page = cons_rx_buf->page;
1109 		cons_rx_buf->page = NULL;
1110 
1111 		if (xdp && page_is_pfmemalloc(page))
1112 			xdp_buff_set_frag_pfmemalloc(xdp);
1113 
1114 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
1115 			--shinfo->nr_frags;
1116 			cons_rx_buf->page = page;
1117 
1118 			/* Update prod since possibly some pages have been
1119 			 * allocated already.
1120 			 */
1121 			rxr->rx_agg_prod = prod;
1122 			bnxt_reuse_rx_agg_bufs(cpr, idx, i, agg_bufs - i, tpa);
1123 			return 0;
1124 		}
1125 
1126 		dma_unmap_page_attrs(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE,
1127 				     bp->rx_dir,
1128 				     DMA_ATTR_WEAK_ORDERING);
1129 
1130 		total_frag_len += frag_len;
1131 		prod = NEXT_RX_AGG(prod);
1132 	}
1133 	rxr->rx_agg_prod = prod;
1134 	return total_frag_len;
1135 }
1136 
1137 static struct sk_buff *bnxt_rx_agg_pages_skb(struct bnxt *bp,
1138 					     struct bnxt_cp_ring_info *cpr,
1139 					     struct sk_buff *skb, u16 idx,
1140 					     u32 agg_bufs, bool tpa)
1141 {
1142 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1143 	u32 total_frag_len = 0;
1144 
1145 	total_frag_len = __bnxt_rx_agg_pages(bp, cpr, shinfo, idx,
1146 					     agg_bufs, tpa, NULL);
1147 	if (!total_frag_len) {
1148 		dev_kfree_skb(skb);
1149 		return NULL;
1150 	}
1151 
1152 	skb->data_len += total_frag_len;
1153 	skb->len += total_frag_len;
1154 	skb->truesize += BNXT_RX_PAGE_SIZE * agg_bufs;
1155 	return skb;
1156 }
1157 
1158 static u32 bnxt_rx_agg_pages_xdp(struct bnxt *bp,
1159 				 struct bnxt_cp_ring_info *cpr,
1160 				 struct xdp_buff *xdp, u16 idx,
1161 				 u32 agg_bufs, bool tpa)
1162 {
1163 	struct skb_shared_info *shinfo = xdp_get_shared_info_from_buff(xdp);
1164 	u32 total_frag_len = 0;
1165 
1166 	if (!xdp_buff_has_frags(xdp))
1167 		shinfo->nr_frags = 0;
1168 
1169 	total_frag_len = __bnxt_rx_agg_pages(bp, cpr, shinfo,
1170 					     idx, agg_bufs, tpa, xdp);
1171 	if (total_frag_len) {
1172 		xdp_buff_set_frags_flag(xdp);
1173 		shinfo->nr_frags = agg_bufs;
1174 		shinfo->xdp_frags_size = total_frag_len;
1175 	}
1176 	return total_frag_len;
1177 }
1178 
1179 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1180 			       u8 agg_bufs, u32 *raw_cons)
1181 {
1182 	u16 last;
1183 	struct rx_agg_cmp *agg;
1184 
1185 	*raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
1186 	last = RING_CMP(*raw_cons);
1187 	agg = (struct rx_agg_cmp *)
1188 		&cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
1189 	return RX_AGG_CMP_VALID(agg, *raw_cons);
1190 }
1191 
1192 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
1193 					    unsigned int len,
1194 					    dma_addr_t mapping)
1195 {
1196 	struct bnxt *bp = bnapi->bp;
1197 	struct pci_dev *pdev = bp->pdev;
1198 	struct sk_buff *skb;
1199 
1200 	skb = napi_alloc_skb(&bnapi->napi, len);
1201 	if (!skb)
1202 		return NULL;
1203 
1204 	dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh,
1205 				bp->rx_dir);
1206 
1207 	memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN,
1208 	       len + NET_IP_ALIGN);
1209 
1210 	dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh,
1211 				   bp->rx_dir);
1212 
1213 	skb_put(skb, len);
1214 	return skb;
1215 }
1216 
1217 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1218 			   u32 *raw_cons, void *cmp)
1219 {
1220 	struct rx_cmp *rxcmp = cmp;
1221 	u32 tmp_raw_cons = *raw_cons;
1222 	u8 cmp_type, agg_bufs = 0;
1223 
1224 	cmp_type = RX_CMP_TYPE(rxcmp);
1225 
1226 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1227 		agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) &
1228 			    RX_CMP_AGG_BUFS) >>
1229 			   RX_CMP_AGG_BUFS_SHIFT;
1230 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1231 		struct rx_tpa_end_cmp *tpa_end = cmp;
1232 
1233 		if (bp->flags & BNXT_FLAG_CHIP_P5)
1234 			return 0;
1235 
1236 		agg_bufs = TPA_END_AGG_BUFS(tpa_end);
1237 	}
1238 
1239 	if (agg_bufs) {
1240 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1241 			return -EBUSY;
1242 	}
1243 	*raw_cons = tmp_raw_cons;
1244 	return 0;
1245 }
1246 
1247 static void bnxt_queue_fw_reset_work(struct bnxt *bp, unsigned long delay)
1248 {
1249 	if (!(test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)))
1250 		return;
1251 
1252 	if (BNXT_PF(bp))
1253 		queue_delayed_work(bnxt_pf_wq, &bp->fw_reset_task, delay);
1254 	else
1255 		schedule_delayed_work(&bp->fw_reset_task, delay);
1256 }
1257 
1258 static void bnxt_queue_sp_work(struct bnxt *bp)
1259 {
1260 	if (BNXT_PF(bp))
1261 		queue_work(bnxt_pf_wq, &bp->sp_task);
1262 	else
1263 		schedule_work(&bp->sp_task);
1264 }
1265 
1266 static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
1267 {
1268 	if (!rxr->bnapi->in_reset) {
1269 		rxr->bnapi->in_reset = true;
1270 		if (bp->flags & BNXT_FLAG_CHIP_P5)
1271 			set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
1272 		else
1273 			set_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event);
1274 		bnxt_queue_sp_work(bp);
1275 	}
1276 	rxr->rx_next_cons = 0xffff;
1277 }
1278 
1279 static u16 bnxt_alloc_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id)
1280 {
1281 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1282 	u16 idx = agg_id & MAX_TPA_P5_MASK;
1283 
1284 	if (test_bit(idx, map->agg_idx_bmap))
1285 		idx = find_first_zero_bit(map->agg_idx_bmap,
1286 					  BNXT_AGG_IDX_BMAP_SIZE);
1287 	__set_bit(idx, map->agg_idx_bmap);
1288 	map->agg_id_tbl[agg_id] = idx;
1289 	return idx;
1290 }
1291 
1292 static void bnxt_free_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
1293 {
1294 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1295 
1296 	__clear_bit(idx, map->agg_idx_bmap);
1297 }
1298 
1299 static u16 bnxt_lookup_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id)
1300 {
1301 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1302 
1303 	return map->agg_id_tbl[agg_id];
1304 }
1305 
1306 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1307 			   struct rx_tpa_start_cmp *tpa_start,
1308 			   struct rx_tpa_start_cmp_ext *tpa_start1)
1309 {
1310 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
1311 	struct bnxt_tpa_info *tpa_info;
1312 	u16 cons, prod, agg_id;
1313 	struct rx_bd *prod_bd;
1314 	dma_addr_t mapping;
1315 
1316 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
1317 		agg_id = TPA_START_AGG_ID_P5(tpa_start);
1318 		agg_id = bnxt_alloc_agg_idx(rxr, agg_id);
1319 	} else {
1320 		agg_id = TPA_START_AGG_ID(tpa_start);
1321 	}
1322 	cons = tpa_start->rx_tpa_start_cmp_opaque;
1323 	prod = rxr->rx_prod;
1324 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1325 	prod_rx_buf = &rxr->rx_buf_ring[prod];
1326 	tpa_info = &rxr->rx_tpa[agg_id];
1327 
1328 	if (unlikely(cons != rxr->rx_next_cons ||
1329 		     TPA_START_ERROR(tpa_start))) {
1330 		netdev_warn(bp->dev, "TPA cons %x, expected cons %x, error code %x\n",
1331 			    cons, rxr->rx_next_cons,
1332 			    TPA_START_ERROR_CODE(tpa_start1));
1333 		bnxt_sched_reset(bp, rxr);
1334 		return;
1335 	}
1336 	/* Store cfa_code in tpa_info to use in tpa_end
1337 	 * completion processing.
1338 	 */
1339 	tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1);
1340 	prod_rx_buf->data = tpa_info->data;
1341 	prod_rx_buf->data_ptr = tpa_info->data_ptr;
1342 
1343 	mapping = tpa_info->mapping;
1344 	prod_rx_buf->mapping = mapping;
1345 
1346 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
1347 
1348 	prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
1349 
1350 	tpa_info->data = cons_rx_buf->data;
1351 	tpa_info->data_ptr = cons_rx_buf->data_ptr;
1352 	cons_rx_buf->data = NULL;
1353 	tpa_info->mapping = cons_rx_buf->mapping;
1354 
1355 	tpa_info->len =
1356 		le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
1357 				RX_TPA_START_CMP_LEN_SHIFT;
1358 	if (likely(TPA_START_HASH_VALID(tpa_start))) {
1359 		u32 hash_type = TPA_START_HASH_TYPE(tpa_start);
1360 
1361 		tpa_info->hash_type = PKT_HASH_TYPE_L4;
1362 		tpa_info->gso_type = SKB_GSO_TCPV4;
1363 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1364 		if (hash_type == 3 || TPA_START_IS_IPV6(tpa_start1))
1365 			tpa_info->gso_type = SKB_GSO_TCPV6;
1366 		tpa_info->rss_hash =
1367 			le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
1368 	} else {
1369 		tpa_info->hash_type = PKT_HASH_TYPE_NONE;
1370 		tpa_info->gso_type = 0;
1371 		netif_warn(bp, rx_err, bp->dev, "TPA packet without valid hash\n");
1372 	}
1373 	tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
1374 	tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
1375 	tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info);
1376 	tpa_info->agg_count = 0;
1377 
1378 	rxr->rx_prod = NEXT_RX(prod);
1379 	cons = NEXT_RX(cons);
1380 	rxr->rx_next_cons = NEXT_RX(cons);
1381 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1382 
1383 	bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
1384 	rxr->rx_prod = NEXT_RX(rxr->rx_prod);
1385 	cons_rx_buf->data = NULL;
1386 }
1387 
1388 static void bnxt_abort_tpa(struct bnxt_cp_ring_info *cpr, u16 idx, u32 agg_bufs)
1389 {
1390 	if (agg_bufs)
1391 		bnxt_reuse_rx_agg_bufs(cpr, idx, 0, agg_bufs, true);
1392 }
1393 
1394 #ifdef CONFIG_INET
1395 static void bnxt_gro_tunnel(struct sk_buff *skb, __be16 ip_proto)
1396 {
1397 	struct udphdr *uh = NULL;
1398 
1399 	if (ip_proto == htons(ETH_P_IP)) {
1400 		struct iphdr *iph = (struct iphdr *)skb->data;
1401 
1402 		if (iph->protocol == IPPROTO_UDP)
1403 			uh = (struct udphdr *)(iph + 1);
1404 	} else {
1405 		struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1406 
1407 		if (iph->nexthdr == IPPROTO_UDP)
1408 			uh = (struct udphdr *)(iph + 1);
1409 	}
1410 	if (uh) {
1411 		if (uh->check)
1412 			skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL_CSUM;
1413 		else
1414 			skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1415 	}
1416 }
1417 #endif
1418 
1419 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info,
1420 					   int payload_off, int tcp_ts,
1421 					   struct sk_buff *skb)
1422 {
1423 #ifdef CONFIG_INET
1424 	struct tcphdr *th;
1425 	int len, nw_off;
1426 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1427 	u32 hdr_info = tpa_info->hdr_info;
1428 	bool loopback = false;
1429 
1430 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1431 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1432 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1433 
1434 	/* If the packet is an internal loopback packet, the offsets will
1435 	 * have an extra 4 bytes.
1436 	 */
1437 	if (inner_mac_off == 4) {
1438 		loopback = true;
1439 	} else if (inner_mac_off > 4) {
1440 		__be16 proto = *((__be16 *)(skb->data + inner_ip_off -
1441 					    ETH_HLEN - 2));
1442 
1443 		/* We only support inner iPv4/ipv6.  If we don't see the
1444 		 * correct protocol ID, it must be a loopback packet where
1445 		 * the offsets are off by 4.
1446 		 */
1447 		if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6))
1448 			loopback = true;
1449 	}
1450 	if (loopback) {
1451 		/* internal loopback packet, subtract all offsets by 4 */
1452 		inner_ip_off -= 4;
1453 		inner_mac_off -= 4;
1454 		outer_ip_off -= 4;
1455 	}
1456 
1457 	nw_off = inner_ip_off - ETH_HLEN;
1458 	skb_set_network_header(skb, nw_off);
1459 	if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) {
1460 		struct ipv6hdr *iph = ipv6_hdr(skb);
1461 
1462 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1463 		len = skb->len - skb_transport_offset(skb);
1464 		th = tcp_hdr(skb);
1465 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1466 	} else {
1467 		struct iphdr *iph = ip_hdr(skb);
1468 
1469 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1470 		len = skb->len - skb_transport_offset(skb);
1471 		th = tcp_hdr(skb);
1472 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1473 	}
1474 
1475 	if (inner_mac_off) { /* tunnel */
1476 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1477 					    ETH_HLEN - 2));
1478 
1479 		bnxt_gro_tunnel(skb, proto);
1480 	}
1481 #endif
1482 	return skb;
1483 }
1484 
1485 static struct sk_buff *bnxt_gro_func_5750x(struct bnxt_tpa_info *tpa_info,
1486 					   int payload_off, int tcp_ts,
1487 					   struct sk_buff *skb)
1488 {
1489 #ifdef CONFIG_INET
1490 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1491 	u32 hdr_info = tpa_info->hdr_info;
1492 	int iphdr_len, nw_off;
1493 
1494 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1495 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1496 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1497 
1498 	nw_off = inner_ip_off - ETH_HLEN;
1499 	skb_set_network_header(skb, nw_off);
1500 	iphdr_len = (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) ?
1501 		     sizeof(struct ipv6hdr) : sizeof(struct iphdr);
1502 	skb_set_transport_header(skb, nw_off + iphdr_len);
1503 
1504 	if (inner_mac_off) { /* tunnel */
1505 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1506 					    ETH_HLEN - 2));
1507 
1508 		bnxt_gro_tunnel(skb, proto);
1509 	}
1510 #endif
1511 	return skb;
1512 }
1513 
1514 #define BNXT_IPV4_HDR_SIZE	(sizeof(struct iphdr) + sizeof(struct tcphdr))
1515 #define BNXT_IPV6_HDR_SIZE	(sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
1516 
1517 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info,
1518 					   int payload_off, int tcp_ts,
1519 					   struct sk_buff *skb)
1520 {
1521 #ifdef CONFIG_INET
1522 	struct tcphdr *th;
1523 	int len, nw_off, tcp_opt_len = 0;
1524 
1525 	if (tcp_ts)
1526 		tcp_opt_len = 12;
1527 
1528 	if (tpa_info->gso_type == SKB_GSO_TCPV4) {
1529 		struct iphdr *iph;
1530 
1531 		nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
1532 			 ETH_HLEN;
1533 		skb_set_network_header(skb, nw_off);
1534 		iph = ip_hdr(skb);
1535 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1536 		len = skb->len - skb_transport_offset(skb);
1537 		th = tcp_hdr(skb);
1538 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1539 	} else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
1540 		struct ipv6hdr *iph;
1541 
1542 		nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
1543 			 ETH_HLEN;
1544 		skb_set_network_header(skb, nw_off);
1545 		iph = ipv6_hdr(skb);
1546 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1547 		len = skb->len - skb_transport_offset(skb);
1548 		th = tcp_hdr(skb);
1549 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1550 	} else {
1551 		dev_kfree_skb_any(skb);
1552 		return NULL;
1553 	}
1554 
1555 	if (nw_off) /* tunnel */
1556 		bnxt_gro_tunnel(skb, skb->protocol);
1557 #endif
1558 	return skb;
1559 }
1560 
1561 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp,
1562 					   struct bnxt_tpa_info *tpa_info,
1563 					   struct rx_tpa_end_cmp *tpa_end,
1564 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1565 					   struct sk_buff *skb)
1566 {
1567 #ifdef CONFIG_INET
1568 	int payload_off;
1569 	u16 segs;
1570 
1571 	segs = TPA_END_TPA_SEGS(tpa_end);
1572 	if (segs == 1)
1573 		return skb;
1574 
1575 	NAPI_GRO_CB(skb)->count = segs;
1576 	skb_shinfo(skb)->gso_size =
1577 		le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
1578 	skb_shinfo(skb)->gso_type = tpa_info->gso_type;
1579 	if (bp->flags & BNXT_FLAG_CHIP_P5)
1580 		payload_off = TPA_END_PAYLOAD_OFF_P5(tpa_end1);
1581 	else
1582 		payload_off = TPA_END_PAYLOAD_OFF(tpa_end);
1583 	skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb);
1584 	if (likely(skb))
1585 		tcp_gro_complete(skb);
1586 #endif
1587 	return skb;
1588 }
1589 
1590 /* Given the cfa_code of a received packet determine which
1591  * netdev (vf-rep or PF) the packet is destined to.
1592  */
1593 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code)
1594 {
1595 	struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code);
1596 
1597 	/* if vf-rep dev is NULL, the must belongs to the PF */
1598 	return dev ? dev : bp->dev;
1599 }
1600 
1601 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
1602 					   struct bnxt_cp_ring_info *cpr,
1603 					   u32 *raw_cons,
1604 					   struct rx_tpa_end_cmp *tpa_end,
1605 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1606 					   u8 *event)
1607 {
1608 	struct bnxt_napi *bnapi = cpr->bnapi;
1609 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1610 	u8 *data_ptr, agg_bufs;
1611 	unsigned int len;
1612 	struct bnxt_tpa_info *tpa_info;
1613 	dma_addr_t mapping;
1614 	struct sk_buff *skb;
1615 	u16 idx = 0, agg_id;
1616 	void *data;
1617 	bool gro;
1618 
1619 	if (unlikely(bnapi->in_reset)) {
1620 		int rc = bnxt_discard_rx(bp, cpr, raw_cons, tpa_end);
1621 
1622 		if (rc < 0)
1623 			return ERR_PTR(-EBUSY);
1624 		return NULL;
1625 	}
1626 
1627 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
1628 		agg_id = TPA_END_AGG_ID_P5(tpa_end);
1629 		agg_id = bnxt_lookup_agg_idx(rxr, agg_id);
1630 		agg_bufs = TPA_END_AGG_BUFS_P5(tpa_end1);
1631 		tpa_info = &rxr->rx_tpa[agg_id];
1632 		if (unlikely(agg_bufs != tpa_info->agg_count)) {
1633 			netdev_warn(bp->dev, "TPA end agg_buf %d != expected agg_bufs %d\n",
1634 				    agg_bufs, tpa_info->agg_count);
1635 			agg_bufs = tpa_info->agg_count;
1636 		}
1637 		tpa_info->agg_count = 0;
1638 		*event |= BNXT_AGG_EVENT;
1639 		bnxt_free_agg_idx(rxr, agg_id);
1640 		idx = agg_id;
1641 		gro = !!(bp->flags & BNXT_FLAG_GRO);
1642 	} else {
1643 		agg_id = TPA_END_AGG_ID(tpa_end);
1644 		agg_bufs = TPA_END_AGG_BUFS(tpa_end);
1645 		tpa_info = &rxr->rx_tpa[agg_id];
1646 		idx = RING_CMP(*raw_cons);
1647 		if (agg_bufs) {
1648 			if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
1649 				return ERR_PTR(-EBUSY);
1650 
1651 			*event |= BNXT_AGG_EVENT;
1652 			idx = NEXT_CMP(idx);
1653 		}
1654 		gro = !!TPA_END_GRO(tpa_end);
1655 	}
1656 	data = tpa_info->data;
1657 	data_ptr = tpa_info->data_ptr;
1658 	prefetch(data_ptr);
1659 	len = tpa_info->len;
1660 	mapping = tpa_info->mapping;
1661 
1662 	if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) {
1663 		bnxt_abort_tpa(cpr, idx, agg_bufs);
1664 		if (agg_bufs > MAX_SKB_FRAGS)
1665 			netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
1666 				    agg_bufs, (int)MAX_SKB_FRAGS);
1667 		return NULL;
1668 	}
1669 
1670 	if (len <= bp->rx_copy_thresh) {
1671 		skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping);
1672 		if (!skb) {
1673 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1674 			cpr->sw_stats.rx.rx_oom_discards += 1;
1675 			return NULL;
1676 		}
1677 	} else {
1678 		u8 *new_data;
1679 		dma_addr_t new_mapping;
1680 
1681 		new_data = __bnxt_alloc_rx_frag(bp, &new_mapping, GFP_ATOMIC);
1682 		if (!new_data) {
1683 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1684 			cpr->sw_stats.rx.rx_oom_discards += 1;
1685 			return NULL;
1686 		}
1687 
1688 		tpa_info->data = new_data;
1689 		tpa_info->data_ptr = new_data + bp->rx_offset;
1690 		tpa_info->mapping = new_mapping;
1691 
1692 		skb = build_skb(data, bp->rx_buf_size);
1693 		dma_unmap_single_attrs(&bp->pdev->dev, mapping,
1694 				       bp->rx_buf_use_size, bp->rx_dir,
1695 				       DMA_ATTR_WEAK_ORDERING);
1696 
1697 		if (!skb) {
1698 			skb_free_frag(data);
1699 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1700 			cpr->sw_stats.rx.rx_oom_discards += 1;
1701 			return NULL;
1702 		}
1703 		skb_reserve(skb, bp->rx_offset);
1704 		skb_put(skb, len);
1705 	}
1706 
1707 	if (agg_bufs) {
1708 		skb = bnxt_rx_agg_pages_skb(bp, cpr, skb, idx, agg_bufs, true);
1709 		if (!skb) {
1710 			/* Page reuse already handled by bnxt_rx_pages(). */
1711 			cpr->sw_stats.rx.rx_oom_discards += 1;
1712 			return NULL;
1713 		}
1714 	}
1715 
1716 	skb->protocol =
1717 		eth_type_trans(skb, bnxt_get_pkt_dev(bp, tpa_info->cfa_code));
1718 
1719 	if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1720 		skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1721 
1722 	if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) &&
1723 	    (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) {
1724 		__be16 vlan_proto = htons(tpa_info->metadata >>
1725 					  RX_CMP_FLAGS2_METADATA_TPID_SFT);
1726 		u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1727 
1728 		if (eth_type_vlan(vlan_proto)) {
1729 			__vlan_hwaccel_put_tag(skb, vlan_proto, vtag);
1730 		} else {
1731 			dev_kfree_skb(skb);
1732 			return NULL;
1733 		}
1734 	}
1735 
1736 	skb_checksum_none_assert(skb);
1737 	if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1738 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1739 		skb->csum_level =
1740 			(tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1741 	}
1742 
1743 	if (gro)
1744 		skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb);
1745 
1746 	return skb;
1747 }
1748 
1749 static void bnxt_tpa_agg(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1750 			 struct rx_agg_cmp *rx_agg)
1751 {
1752 	u16 agg_id = TPA_AGG_AGG_ID(rx_agg);
1753 	struct bnxt_tpa_info *tpa_info;
1754 
1755 	agg_id = bnxt_lookup_agg_idx(rxr, agg_id);
1756 	tpa_info = &rxr->rx_tpa[agg_id];
1757 	BUG_ON(tpa_info->agg_count >= MAX_SKB_FRAGS);
1758 	tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg;
1759 }
1760 
1761 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi,
1762 			     struct sk_buff *skb)
1763 {
1764 	if (skb->dev != bp->dev) {
1765 		/* this packet belongs to a vf-rep */
1766 		bnxt_vf_rep_rx(bp, skb);
1767 		return;
1768 	}
1769 	skb_record_rx_queue(skb, bnapi->index);
1770 	napi_gro_receive(&bnapi->napi, skb);
1771 }
1772 
1773 /* returns the following:
1774  * 1       - 1 packet successfully received
1775  * 0       - successful TPA_START, packet not completed yet
1776  * -EBUSY  - completion ring does not have all the agg buffers yet
1777  * -ENOMEM - packet aborted due to out of memory
1778  * -EIO    - packet aborted due to hw error indicated in BD
1779  */
1780 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1781 		       u32 *raw_cons, u8 *event)
1782 {
1783 	struct bnxt_napi *bnapi = cpr->bnapi;
1784 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1785 	struct net_device *dev = bp->dev;
1786 	struct rx_cmp *rxcmp;
1787 	struct rx_cmp_ext *rxcmp1;
1788 	u32 tmp_raw_cons = *raw_cons;
1789 	u16 cfa_code, cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
1790 	struct bnxt_sw_rx_bd *rx_buf;
1791 	unsigned int len;
1792 	u8 *data_ptr, agg_bufs, cmp_type;
1793 	bool xdp_active = false;
1794 	dma_addr_t dma_addr;
1795 	struct sk_buff *skb;
1796 	struct xdp_buff xdp;
1797 	u32 flags, misc;
1798 	void *data;
1799 	int rc = 0;
1800 
1801 	rxcmp = (struct rx_cmp *)
1802 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1803 
1804 	cmp_type = RX_CMP_TYPE(rxcmp);
1805 
1806 	if (cmp_type == CMP_TYPE_RX_TPA_AGG_CMP) {
1807 		bnxt_tpa_agg(bp, rxr, (struct rx_agg_cmp *)rxcmp);
1808 		goto next_rx_no_prod_no_len;
1809 	}
1810 
1811 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1812 	cp_cons = RING_CMP(tmp_raw_cons);
1813 	rxcmp1 = (struct rx_cmp_ext *)
1814 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1815 
1816 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1817 		return -EBUSY;
1818 
1819 	/* The valid test of the entry must be done first before
1820 	 * reading any further.
1821 	 */
1822 	dma_rmb();
1823 	prod = rxr->rx_prod;
1824 
1825 	if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) {
1826 		bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp,
1827 			       (struct rx_tpa_start_cmp_ext *)rxcmp1);
1828 
1829 		*event |= BNXT_RX_EVENT;
1830 		goto next_rx_no_prod_no_len;
1831 
1832 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1833 		skb = bnxt_tpa_end(bp, cpr, &tmp_raw_cons,
1834 				   (struct rx_tpa_end_cmp *)rxcmp,
1835 				   (struct rx_tpa_end_cmp_ext *)rxcmp1, event);
1836 
1837 		if (IS_ERR(skb))
1838 			return -EBUSY;
1839 
1840 		rc = -ENOMEM;
1841 		if (likely(skb)) {
1842 			bnxt_deliver_skb(bp, bnapi, skb);
1843 			rc = 1;
1844 		}
1845 		*event |= BNXT_RX_EVENT;
1846 		goto next_rx_no_prod_no_len;
1847 	}
1848 
1849 	cons = rxcmp->rx_cmp_opaque;
1850 	if (unlikely(cons != rxr->rx_next_cons)) {
1851 		int rc1 = bnxt_discard_rx(bp, cpr, &tmp_raw_cons, rxcmp);
1852 
1853 		/* 0xffff is forced error, don't print it */
1854 		if (rxr->rx_next_cons != 0xffff)
1855 			netdev_warn(bp->dev, "RX cons %x != expected cons %x\n",
1856 				    cons, rxr->rx_next_cons);
1857 		bnxt_sched_reset(bp, rxr);
1858 		if (rc1)
1859 			return rc1;
1860 		goto next_rx_no_prod_no_len;
1861 	}
1862 	rx_buf = &rxr->rx_buf_ring[cons];
1863 	data = rx_buf->data;
1864 	data_ptr = rx_buf->data_ptr;
1865 	prefetch(data_ptr);
1866 
1867 	misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1);
1868 	agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT;
1869 
1870 	if (agg_bufs) {
1871 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1872 			return -EBUSY;
1873 
1874 		cp_cons = NEXT_CMP(cp_cons);
1875 		*event |= BNXT_AGG_EVENT;
1876 	}
1877 	*event |= BNXT_RX_EVENT;
1878 
1879 	rx_buf->data = NULL;
1880 	if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
1881 		u32 rx_err = le32_to_cpu(rxcmp1->rx_cmp_cfa_code_errors_v2);
1882 
1883 		bnxt_reuse_rx_data(rxr, cons, data);
1884 		if (agg_bufs)
1885 			bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, agg_bufs,
1886 					       false);
1887 
1888 		rc = -EIO;
1889 		if (rx_err & RX_CMPL_ERRORS_BUFFER_ERROR_MASK) {
1890 			bnapi->cp_ring.sw_stats.rx.rx_buf_errors++;
1891 			if (!(bp->flags & BNXT_FLAG_CHIP_P5) &&
1892 			    !(bp->fw_cap & BNXT_FW_CAP_RING_MONITOR)) {
1893 				netdev_warn_once(bp->dev, "RX buffer error %x\n",
1894 						 rx_err);
1895 				bnxt_sched_reset(bp, rxr);
1896 			}
1897 		}
1898 		goto next_rx_no_len;
1899 	}
1900 
1901 	flags = le32_to_cpu(rxcmp->rx_cmp_len_flags_type);
1902 	len = flags >> RX_CMP_LEN_SHIFT;
1903 	dma_addr = rx_buf->mapping;
1904 
1905 	if (bnxt_xdp_attached(bp, rxr)) {
1906 		bnxt_xdp_buff_init(bp, rxr, cons, data_ptr, len, &xdp);
1907 		if (agg_bufs) {
1908 			u32 frag_len = bnxt_rx_agg_pages_xdp(bp, cpr, &xdp,
1909 							     cp_cons, agg_bufs,
1910 							     false);
1911 			if (!frag_len) {
1912 				cpr->sw_stats.rx.rx_oom_discards += 1;
1913 				rc = -ENOMEM;
1914 				goto next_rx;
1915 			}
1916 		}
1917 		xdp_active = true;
1918 	}
1919 
1920 	if (xdp_active) {
1921 		if (bnxt_rx_xdp(bp, rxr, cons, xdp, data, &data_ptr, &len, event)) {
1922 			rc = 1;
1923 			goto next_rx;
1924 		}
1925 	}
1926 
1927 	if (len <= bp->rx_copy_thresh) {
1928 		skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr);
1929 		bnxt_reuse_rx_data(rxr, cons, data);
1930 		if (!skb) {
1931 			if (agg_bufs) {
1932 				if (!xdp_active)
1933 					bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0,
1934 							       agg_bufs, false);
1935 				else
1936 					bnxt_xdp_buff_frags_free(rxr, &xdp);
1937 			}
1938 			cpr->sw_stats.rx.rx_oom_discards += 1;
1939 			rc = -ENOMEM;
1940 			goto next_rx;
1941 		}
1942 	} else {
1943 		u32 payload;
1944 
1945 		if (rx_buf->data_ptr == data_ptr)
1946 			payload = misc & RX_CMP_PAYLOAD_OFFSET;
1947 		else
1948 			payload = 0;
1949 		skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr,
1950 				      payload | len);
1951 		if (!skb) {
1952 			cpr->sw_stats.rx.rx_oom_discards += 1;
1953 			rc = -ENOMEM;
1954 			goto next_rx;
1955 		}
1956 	}
1957 
1958 	if (agg_bufs) {
1959 		if (!xdp_active) {
1960 			skb = bnxt_rx_agg_pages_skb(bp, cpr, skb, cp_cons, agg_bufs, false);
1961 			if (!skb) {
1962 				cpr->sw_stats.rx.rx_oom_discards += 1;
1963 				rc = -ENOMEM;
1964 				goto next_rx;
1965 			}
1966 		} else {
1967 			skb = bnxt_xdp_build_skb(bp, skb, agg_bufs, rxr->page_pool, &xdp, rxcmp1);
1968 			if (!skb) {
1969 				/* we should be able to free the old skb here */
1970 				bnxt_xdp_buff_frags_free(rxr, &xdp);
1971 				cpr->sw_stats.rx.rx_oom_discards += 1;
1972 				rc = -ENOMEM;
1973 				goto next_rx;
1974 			}
1975 		}
1976 	}
1977 
1978 	if (RX_CMP_HASH_VALID(rxcmp)) {
1979 		u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
1980 		enum pkt_hash_types type = PKT_HASH_TYPE_L4;
1981 
1982 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1983 		if (hash_type != 1 && hash_type != 3)
1984 			type = PKT_HASH_TYPE_L3;
1985 		skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
1986 	}
1987 
1988 	cfa_code = RX_CMP_CFA_CODE(rxcmp1);
1989 	skb->protocol = eth_type_trans(skb, bnxt_get_pkt_dev(bp, cfa_code));
1990 
1991 	if ((rxcmp1->rx_cmp_flags2 &
1992 	     cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) &&
1993 	    (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) {
1994 		u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
1995 		u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1996 		__be16 vlan_proto = htons(meta_data >>
1997 					  RX_CMP_FLAGS2_METADATA_TPID_SFT);
1998 
1999 		if (eth_type_vlan(vlan_proto)) {
2000 			__vlan_hwaccel_put_tag(skb, vlan_proto, vtag);
2001 		} else {
2002 			dev_kfree_skb(skb);
2003 			goto next_rx;
2004 		}
2005 	}
2006 
2007 	skb_checksum_none_assert(skb);
2008 	if (RX_CMP_L4_CS_OK(rxcmp1)) {
2009 		if (dev->features & NETIF_F_RXCSUM) {
2010 			skb->ip_summed = CHECKSUM_UNNECESSARY;
2011 			skb->csum_level = RX_CMP_ENCAP(rxcmp1);
2012 		}
2013 	} else {
2014 		if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
2015 			if (dev->features & NETIF_F_RXCSUM)
2016 				bnapi->cp_ring.sw_stats.rx.rx_l4_csum_errors++;
2017 		}
2018 	}
2019 
2020 	if (unlikely((flags & RX_CMP_FLAGS_ITYPES_MASK) ==
2021 		     RX_CMP_FLAGS_ITYPE_PTP_W_TS) || bp->ptp_all_rx_tstamp) {
2022 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
2023 			u32 cmpl_ts = le32_to_cpu(rxcmp1->rx_cmp_timestamp);
2024 			u64 ns, ts;
2025 
2026 			if (!bnxt_get_rx_ts_p5(bp, &ts, cmpl_ts)) {
2027 				struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2028 
2029 				spin_lock_bh(&ptp->ptp_lock);
2030 				ns = timecounter_cyc2time(&ptp->tc, ts);
2031 				spin_unlock_bh(&ptp->ptp_lock);
2032 				memset(skb_hwtstamps(skb), 0,
2033 				       sizeof(*skb_hwtstamps(skb)));
2034 				skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
2035 			}
2036 		}
2037 	}
2038 	bnxt_deliver_skb(bp, bnapi, skb);
2039 	rc = 1;
2040 
2041 next_rx:
2042 	cpr->rx_packets += 1;
2043 	cpr->rx_bytes += len;
2044 
2045 next_rx_no_len:
2046 	rxr->rx_prod = NEXT_RX(prod);
2047 	rxr->rx_next_cons = NEXT_RX(cons);
2048 
2049 next_rx_no_prod_no_len:
2050 	*raw_cons = tmp_raw_cons;
2051 
2052 	return rc;
2053 }
2054 
2055 /* In netpoll mode, if we are using a combined completion ring, we need to
2056  * discard the rx packets and recycle the buffers.
2057  */
2058 static int bnxt_force_rx_discard(struct bnxt *bp,
2059 				 struct bnxt_cp_ring_info *cpr,
2060 				 u32 *raw_cons, u8 *event)
2061 {
2062 	u32 tmp_raw_cons = *raw_cons;
2063 	struct rx_cmp_ext *rxcmp1;
2064 	struct rx_cmp *rxcmp;
2065 	u16 cp_cons;
2066 	u8 cmp_type;
2067 	int rc;
2068 
2069 	cp_cons = RING_CMP(tmp_raw_cons);
2070 	rxcmp = (struct rx_cmp *)
2071 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2072 
2073 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
2074 	cp_cons = RING_CMP(tmp_raw_cons);
2075 	rxcmp1 = (struct rx_cmp_ext *)
2076 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2077 
2078 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
2079 		return -EBUSY;
2080 
2081 	/* The valid test of the entry must be done first before
2082 	 * reading any further.
2083 	 */
2084 	dma_rmb();
2085 	cmp_type = RX_CMP_TYPE(rxcmp);
2086 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
2087 		rxcmp1->rx_cmp_cfa_code_errors_v2 |=
2088 			cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
2089 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
2090 		struct rx_tpa_end_cmp_ext *tpa_end1;
2091 
2092 		tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1;
2093 		tpa_end1->rx_tpa_end_cmp_errors_v2 |=
2094 			cpu_to_le32(RX_TPA_END_CMP_ERRORS);
2095 	}
2096 	rc = bnxt_rx_pkt(bp, cpr, raw_cons, event);
2097 	if (rc && rc != -EBUSY)
2098 		cpr->sw_stats.rx.rx_netpoll_discards += 1;
2099 	return rc;
2100 }
2101 
2102 u32 bnxt_fw_health_readl(struct bnxt *bp, int reg_idx)
2103 {
2104 	struct bnxt_fw_health *fw_health = bp->fw_health;
2105 	u32 reg = fw_health->regs[reg_idx];
2106 	u32 reg_type, reg_off, val = 0;
2107 
2108 	reg_type = BNXT_FW_HEALTH_REG_TYPE(reg);
2109 	reg_off = BNXT_FW_HEALTH_REG_OFF(reg);
2110 	switch (reg_type) {
2111 	case BNXT_FW_HEALTH_REG_TYPE_CFG:
2112 		pci_read_config_dword(bp->pdev, reg_off, &val);
2113 		break;
2114 	case BNXT_FW_HEALTH_REG_TYPE_GRC:
2115 		reg_off = fw_health->mapped_regs[reg_idx];
2116 		fallthrough;
2117 	case BNXT_FW_HEALTH_REG_TYPE_BAR0:
2118 		val = readl(bp->bar0 + reg_off);
2119 		break;
2120 	case BNXT_FW_HEALTH_REG_TYPE_BAR1:
2121 		val = readl(bp->bar1 + reg_off);
2122 		break;
2123 	}
2124 	if (reg_idx == BNXT_FW_RESET_INPROG_REG)
2125 		val &= fw_health->fw_reset_inprog_reg_mask;
2126 	return val;
2127 }
2128 
2129 static u16 bnxt_agg_ring_id_to_grp_idx(struct bnxt *bp, u16 ring_id)
2130 {
2131 	int i;
2132 
2133 	for (i = 0; i < bp->rx_nr_rings; i++) {
2134 		u16 grp_idx = bp->rx_ring[i].bnapi->index;
2135 		struct bnxt_ring_grp_info *grp_info;
2136 
2137 		grp_info = &bp->grp_info[grp_idx];
2138 		if (grp_info->agg_fw_ring_id == ring_id)
2139 			return grp_idx;
2140 	}
2141 	return INVALID_HW_RING_ID;
2142 }
2143 
2144 static void bnxt_event_error_report(struct bnxt *bp, u32 data1, u32 data2)
2145 {
2146 	u32 err_type = BNXT_EVENT_ERROR_REPORT_TYPE(data1);
2147 
2148 	switch (err_type) {
2149 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_INVALID_SIGNAL:
2150 		netdev_err(bp->dev, "1PPS: Received invalid signal on pin%lu from the external source. Please fix the signal and reconfigure the pin\n",
2151 			   BNXT_EVENT_INVALID_SIGNAL_DATA(data2));
2152 		break;
2153 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_PAUSE_STORM:
2154 		netdev_warn(bp->dev, "Pause Storm detected!\n");
2155 		break;
2156 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_DOORBELL_DROP_THRESHOLD:
2157 		netdev_warn(bp->dev, "One or more MMIO doorbells dropped by the device!\n");
2158 		break;
2159 	default:
2160 		netdev_err(bp->dev, "FW reported unknown error type %u\n",
2161 			   err_type);
2162 		break;
2163 	}
2164 }
2165 
2166 #define BNXT_GET_EVENT_PORT(data)	\
2167 	((data) &			\
2168 	 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK)
2169 
2170 #define BNXT_EVENT_RING_TYPE(data2)	\
2171 	((data2) &			\
2172 	 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_MASK)
2173 
2174 #define BNXT_EVENT_RING_TYPE_RX(data2)	\
2175 	(BNXT_EVENT_RING_TYPE(data2) ==	\
2176 	 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_RX)
2177 
2178 #define BNXT_EVENT_PHC_EVENT_TYPE(data1)	\
2179 	(((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_MASK) >>\
2180 	 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_SFT)
2181 
2182 #define BNXT_EVENT_PHC_RTC_UPDATE(data1)	\
2183 	(((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_MASK) >>\
2184 	 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_SFT)
2185 
2186 #define BNXT_PHC_BITS	48
2187 
2188 static int bnxt_async_event_process(struct bnxt *bp,
2189 				    struct hwrm_async_event_cmpl *cmpl)
2190 {
2191 	u16 event_id = le16_to_cpu(cmpl->event_id);
2192 	u32 data1 = le32_to_cpu(cmpl->event_data1);
2193 	u32 data2 = le32_to_cpu(cmpl->event_data2);
2194 
2195 	netdev_dbg(bp->dev, "hwrm event 0x%x {0x%x, 0x%x}\n",
2196 		   event_id, data1, data2);
2197 
2198 	/* TODO CHIMP_FW: Define event id's for link change, error etc */
2199 	switch (event_id) {
2200 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: {
2201 		struct bnxt_link_info *link_info = &bp->link_info;
2202 
2203 		if (BNXT_VF(bp))
2204 			goto async_event_process_exit;
2205 
2206 		/* print unsupported speed warning in forced speed mode only */
2207 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) &&
2208 		    (data1 & 0x20000)) {
2209 			u16 fw_speed = link_info->force_link_speed;
2210 			u32 speed = bnxt_fw_to_ethtool_speed(fw_speed);
2211 
2212 			if (speed != SPEED_UNKNOWN)
2213 				netdev_warn(bp->dev, "Link speed %d no longer supported\n",
2214 					    speed);
2215 		}
2216 		set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event);
2217 	}
2218 		fallthrough;
2219 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE:
2220 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE:
2221 		set_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, &bp->sp_event);
2222 		fallthrough;
2223 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
2224 		set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
2225 		break;
2226 	case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD:
2227 		set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event);
2228 		break;
2229 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: {
2230 		u16 port_id = BNXT_GET_EVENT_PORT(data1);
2231 
2232 		if (BNXT_VF(bp))
2233 			break;
2234 
2235 		if (bp->pf.port_id != port_id)
2236 			break;
2237 
2238 		set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event);
2239 		break;
2240 	}
2241 	case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE:
2242 		if (BNXT_PF(bp))
2243 			goto async_event_process_exit;
2244 		set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event);
2245 		break;
2246 	case ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY: {
2247 		char *type_str = "Solicited";
2248 
2249 		if (!bp->fw_health)
2250 			goto async_event_process_exit;
2251 
2252 		bp->fw_reset_timestamp = jiffies;
2253 		bp->fw_reset_min_dsecs = cmpl->timestamp_lo;
2254 		if (!bp->fw_reset_min_dsecs)
2255 			bp->fw_reset_min_dsecs = BNXT_DFLT_FW_RST_MIN_DSECS;
2256 		bp->fw_reset_max_dsecs = le16_to_cpu(cmpl->timestamp_hi);
2257 		if (!bp->fw_reset_max_dsecs)
2258 			bp->fw_reset_max_dsecs = BNXT_DFLT_FW_RST_MAX_DSECS;
2259 		if (EVENT_DATA1_RESET_NOTIFY_FW_ACTIVATION(data1)) {
2260 			set_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state);
2261 		} else if (EVENT_DATA1_RESET_NOTIFY_FATAL(data1)) {
2262 			type_str = "Fatal";
2263 			bp->fw_health->fatalities++;
2264 			set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
2265 		} else if (data2 && BNXT_FW_STATUS_HEALTHY !=
2266 			   EVENT_DATA2_RESET_NOTIFY_FW_STATUS_CODE(data2)) {
2267 			type_str = "Non-fatal";
2268 			bp->fw_health->survivals++;
2269 			set_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state);
2270 		}
2271 		netif_warn(bp, hw, bp->dev,
2272 			   "%s firmware reset event, data1: 0x%x, data2: 0x%x, min wait %u ms, max wait %u ms\n",
2273 			   type_str, data1, data2,
2274 			   bp->fw_reset_min_dsecs * 100,
2275 			   bp->fw_reset_max_dsecs * 100);
2276 		set_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event);
2277 		break;
2278 	}
2279 	case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY: {
2280 		struct bnxt_fw_health *fw_health = bp->fw_health;
2281 		char *status_desc = "healthy";
2282 		u32 status;
2283 
2284 		if (!fw_health)
2285 			goto async_event_process_exit;
2286 
2287 		if (!EVENT_DATA1_RECOVERY_ENABLED(data1)) {
2288 			fw_health->enabled = false;
2289 			netif_info(bp, drv, bp->dev, "Driver recovery watchdog is disabled\n");
2290 			break;
2291 		}
2292 		fw_health->primary = EVENT_DATA1_RECOVERY_MASTER_FUNC(data1);
2293 		fw_health->tmr_multiplier =
2294 			DIV_ROUND_UP(fw_health->polling_dsecs * HZ,
2295 				     bp->current_interval * 10);
2296 		fw_health->tmr_counter = fw_health->tmr_multiplier;
2297 		if (!fw_health->enabled)
2298 			fw_health->last_fw_heartbeat =
2299 				bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
2300 		fw_health->last_fw_reset_cnt =
2301 			bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
2302 		status = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
2303 		if (status != BNXT_FW_STATUS_HEALTHY)
2304 			status_desc = "unhealthy";
2305 		netif_info(bp, drv, bp->dev,
2306 			   "Driver recovery watchdog, role: %s, firmware status: 0x%x (%s), resets: %u\n",
2307 			   fw_health->primary ? "primary" : "backup", status,
2308 			   status_desc, fw_health->last_fw_reset_cnt);
2309 		if (!fw_health->enabled) {
2310 			/* Make sure tmr_counter is set and visible to
2311 			 * bnxt_health_check() before setting enabled to true.
2312 			 */
2313 			smp_wmb();
2314 			fw_health->enabled = true;
2315 		}
2316 		goto async_event_process_exit;
2317 	}
2318 	case ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION:
2319 		netif_notice(bp, hw, bp->dev,
2320 			     "Received firmware debug notification, data1: 0x%x, data2: 0x%x\n",
2321 			     data1, data2);
2322 		goto async_event_process_exit;
2323 	case ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG: {
2324 		struct bnxt_rx_ring_info *rxr;
2325 		u16 grp_idx;
2326 
2327 		if (bp->flags & BNXT_FLAG_CHIP_P5)
2328 			goto async_event_process_exit;
2329 
2330 		netdev_warn(bp->dev, "Ring monitor event, ring type %lu id 0x%x\n",
2331 			    BNXT_EVENT_RING_TYPE(data2), data1);
2332 		if (!BNXT_EVENT_RING_TYPE_RX(data2))
2333 			goto async_event_process_exit;
2334 
2335 		grp_idx = bnxt_agg_ring_id_to_grp_idx(bp, data1);
2336 		if (grp_idx == INVALID_HW_RING_ID) {
2337 			netdev_warn(bp->dev, "Unknown RX agg ring id 0x%x\n",
2338 				    data1);
2339 			goto async_event_process_exit;
2340 		}
2341 		rxr = bp->bnapi[grp_idx]->rx_ring;
2342 		bnxt_sched_reset(bp, rxr);
2343 		goto async_event_process_exit;
2344 	}
2345 	case ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST: {
2346 		struct bnxt_fw_health *fw_health = bp->fw_health;
2347 
2348 		netif_notice(bp, hw, bp->dev,
2349 			     "Received firmware echo request, data1: 0x%x, data2: 0x%x\n",
2350 			     data1, data2);
2351 		if (fw_health) {
2352 			fw_health->echo_req_data1 = data1;
2353 			fw_health->echo_req_data2 = data2;
2354 			set_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event);
2355 			break;
2356 		}
2357 		goto async_event_process_exit;
2358 	}
2359 	case ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP: {
2360 		bnxt_ptp_pps_event(bp, data1, data2);
2361 		goto async_event_process_exit;
2362 	}
2363 	case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT: {
2364 		bnxt_event_error_report(bp, data1, data2);
2365 		goto async_event_process_exit;
2366 	}
2367 	case ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE: {
2368 		switch (BNXT_EVENT_PHC_EVENT_TYPE(data1)) {
2369 		case ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_PHC_RTC_UPDATE:
2370 			if (BNXT_PTP_USE_RTC(bp)) {
2371 				struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2372 				u64 ns;
2373 
2374 				if (!ptp)
2375 					goto async_event_process_exit;
2376 
2377 				spin_lock_bh(&ptp->ptp_lock);
2378 				bnxt_ptp_update_current_time(bp);
2379 				ns = (((u64)BNXT_EVENT_PHC_RTC_UPDATE(data1) <<
2380 				       BNXT_PHC_BITS) | ptp->current_time);
2381 				bnxt_ptp_rtc_timecounter_init(ptp, ns);
2382 				spin_unlock_bh(&ptp->ptp_lock);
2383 			}
2384 			break;
2385 		}
2386 		goto async_event_process_exit;
2387 	}
2388 	case ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE: {
2389 		u16 seq_id = le32_to_cpu(cmpl->event_data2) & 0xffff;
2390 
2391 		hwrm_update_token(bp, seq_id, BNXT_HWRM_DEFERRED);
2392 		goto async_event_process_exit;
2393 	}
2394 	default:
2395 		goto async_event_process_exit;
2396 	}
2397 	bnxt_queue_sp_work(bp);
2398 async_event_process_exit:
2399 	return 0;
2400 }
2401 
2402 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
2403 {
2404 	u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
2405 	struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
2406 	struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
2407 				(struct hwrm_fwd_req_cmpl *)txcmp;
2408 
2409 	switch (cmpl_type) {
2410 	case CMPL_BASE_TYPE_HWRM_DONE:
2411 		seq_id = le16_to_cpu(h_cmpl->sequence_id);
2412 		hwrm_update_token(bp, seq_id, BNXT_HWRM_COMPLETE);
2413 		break;
2414 
2415 	case CMPL_BASE_TYPE_HWRM_FWD_REQ:
2416 		vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
2417 
2418 		if ((vf_id < bp->pf.first_vf_id) ||
2419 		    (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
2420 			netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
2421 				   vf_id);
2422 			return -EINVAL;
2423 		}
2424 
2425 		set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
2426 		set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event);
2427 		bnxt_queue_sp_work(bp);
2428 		break;
2429 
2430 	case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
2431 		bnxt_async_event_process(bp,
2432 					 (struct hwrm_async_event_cmpl *)txcmp);
2433 		break;
2434 
2435 	default:
2436 		break;
2437 	}
2438 
2439 	return 0;
2440 }
2441 
2442 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
2443 {
2444 	struct bnxt_napi *bnapi = dev_instance;
2445 	struct bnxt *bp = bnapi->bp;
2446 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2447 	u32 cons = RING_CMP(cpr->cp_raw_cons);
2448 
2449 	cpr->event_ctr++;
2450 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
2451 	napi_schedule(&bnapi->napi);
2452 	return IRQ_HANDLED;
2453 }
2454 
2455 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
2456 {
2457 	u32 raw_cons = cpr->cp_raw_cons;
2458 	u16 cons = RING_CMP(raw_cons);
2459 	struct tx_cmp *txcmp;
2460 
2461 	txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2462 
2463 	return TX_CMP_VALID(txcmp, raw_cons);
2464 }
2465 
2466 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
2467 {
2468 	struct bnxt_napi *bnapi = dev_instance;
2469 	struct bnxt *bp = bnapi->bp;
2470 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2471 	u32 cons = RING_CMP(cpr->cp_raw_cons);
2472 	u32 int_status;
2473 
2474 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
2475 
2476 	if (!bnxt_has_work(bp, cpr)) {
2477 		int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
2478 		/* return if erroneous interrupt */
2479 		if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
2480 			return IRQ_NONE;
2481 	}
2482 
2483 	/* disable ring IRQ */
2484 	BNXT_CP_DB_IRQ_DIS(cpr->cp_db.doorbell);
2485 
2486 	/* Return here if interrupt is shared and is disabled. */
2487 	if (unlikely(atomic_read(&bp->intr_sem) != 0))
2488 		return IRQ_HANDLED;
2489 
2490 	napi_schedule(&bnapi->napi);
2491 	return IRQ_HANDLED;
2492 }
2493 
2494 static int __bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2495 			    int budget)
2496 {
2497 	struct bnxt_napi *bnapi = cpr->bnapi;
2498 	u32 raw_cons = cpr->cp_raw_cons;
2499 	u32 cons;
2500 	int tx_pkts = 0;
2501 	int rx_pkts = 0;
2502 	u8 event = 0;
2503 	struct tx_cmp *txcmp;
2504 
2505 	cpr->has_more_work = 0;
2506 	cpr->had_work_done = 1;
2507 	while (1) {
2508 		int rc;
2509 
2510 		cons = RING_CMP(raw_cons);
2511 		txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2512 
2513 		if (!TX_CMP_VALID(txcmp, raw_cons))
2514 			break;
2515 
2516 		/* The valid test of the entry must be done first before
2517 		 * reading any further.
2518 		 */
2519 		dma_rmb();
2520 		if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) {
2521 			tx_pkts++;
2522 			/* return full budget so NAPI will complete. */
2523 			if (unlikely(tx_pkts >= bp->tx_wake_thresh)) {
2524 				rx_pkts = budget;
2525 				raw_cons = NEXT_RAW_CMP(raw_cons);
2526 				if (budget)
2527 					cpr->has_more_work = 1;
2528 				break;
2529 			}
2530 		} else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
2531 			if (likely(budget))
2532 				rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
2533 			else
2534 				rc = bnxt_force_rx_discard(bp, cpr, &raw_cons,
2535 							   &event);
2536 			if (likely(rc >= 0))
2537 				rx_pkts += rc;
2538 			/* Increment rx_pkts when rc is -ENOMEM to count towards
2539 			 * the NAPI budget.  Otherwise, we may potentially loop
2540 			 * here forever if we consistently cannot allocate
2541 			 * buffers.
2542 			 */
2543 			else if (rc == -ENOMEM && budget)
2544 				rx_pkts++;
2545 			else if (rc == -EBUSY)	/* partial completion */
2546 				break;
2547 		} else if (unlikely((TX_CMP_TYPE(txcmp) ==
2548 				     CMPL_BASE_TYPE_HWRM_DONE) ||
2549 				    (TX_CMP_TYPE(txcmp) ==
2550 				     CMPL_BASE_TYPE_HWRM_FWD_REQ) ||
2551 				    (TX_CMP_TYPE(txcmp) ==
2552 				     CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) {
2553 			bnxt_hwrm_handler(bp, txcmp);
2554 		}
2555 		raw_cons = NEXT_RAW_CMP(raw_cons);
2556 
2557 		if (rx_pkts && rx_pkts == budget) {
2558 			cpr->has_more_work = 1;
2559 			break;
2560 		}
2561 	}
2562 
2563 	if (event & BNXT_REDIRECT_EVENT)
2564 		xdp_do_flush();
2565 
2566 	if (event & BNXT_TX_EVENT) {
2567 		struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
2568 		u16 prod = txr->tx_prod;
2569 
2570 		/* Sync BD data before updating doorbell */
2571 		wmb();
2572 
2573 		bnxt_db_write_relaxed(bp, &txr->tx_db, prod);
2574 	}
2575 
2576 	cpr->cp_raw_cons = raw_cons;
2577 	bnapi->tx_pkts += tx_pkts;
2578 	bnapi->events |= event;
2579 	return rx_pkts;
2580 }
2581 
2582 static void __bnxt_poll_work_done(struct bnxt *bp, struct bnxt_napi *bnapi,
2583 				  int budget)
2584 {
2585 	if (bnapi->tx_pkts)
2586 		bnapi->tx_int(bp, bnapi, budget);
2587 
2588 	if ((bnapi->events & BNXT_RX_EVENT) && !(bnapi->in_reset)) {
2589 		struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2590 
2591 		bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
2592 	}
2593 	if (bnapi->events & BNXT_AGG_EVENT) {
2594 		struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2595 
2596 		bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
2597 	}
2598 	bnapi->events = 0;
2599 }
2600 
2601 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2602 			  int budget)
2603 {
2604 	struct bnxt_napi *bnapi = cpr->bnapi;
2605 	int rx_pkts;
2606 
2607 	rx_pkts = __bnxt_poll_work(bp, cpr, budget);
2608 
2609 	/* ACK completion ring before freeing tx ring and producing new
2610 	 * buffers in rx/agg rings to prevent overflowing the completion
2611 	 * ring.
2612 	 */
2613 	bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons);
2614 
2615 	__bnxt_poll_work_done(bp, bnapi, budget);
2616 	return rx_pkts;
2617 }
2618 
2619 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget)
2620 {
2621 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2622 	struct bnxt *bp = bnapi->bp;
2623 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2624 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2625 	struct tx_cmp *txcmp;
2626 	struct rx_cmp_ext *rxcmp1;
2627 	u32 cp_cons, tmp_raw_cons;
2628 	u32 raw_cons = cpr->cp_raw_cons;
2629 	u32 rx_pkts = 0;
2630 	u8 event = 0;
2631 
2632 	while (1) {
2633 		int rc;
2634 
2635 		cp_cons = RING_CMP(raw_cons);
2636 		txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2637 
2638 		if (!TX_CMP_VALID(txcmp, raw_cons))
2639 			break;
2640 
2641 		/* The valid test of the entry must be done first before
2642 		 * reading any further.
2643 		 */
2644 		dma_rmb();
2645 		if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
2646 			tmp_raw_cons = NEXT_RAW_CMP(raw_cons);
2647 			cp_cons = RING_CMP(tmp_raw_cons);
2648 			rxcmp1 = (struct rx_cmp_ext *)
2649 			  &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2650 
2651 			if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
2652 				break;
2653 
2654 			/* force an error to recycle the buffer */
2655 			rxcmp1->rx_cmp_cfa_code_errors_v2 |=
2656 				cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
2657 
2658 			rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
2659 			if (likely(rc == -EIO) && budget)
2660 				rx_pkts++;
2661 			else if (rc == -EBUSY)	/* partial completion */
2662 				break;
2663 		} else if (unlikely(TX_CMP_TYPE(txcmp) ==
2664 				    CMPL_BASE_TYPE_HWRM_DONE)) {
2665 			bnxt_hwrm_handler(bp, txcmp);
2666 		} else {
2667 			netdev_err(bp->dev,
2668 				   "Invalid completion received on special ring\n");
2669 		}
2670 		raw_cons = NEXT_RAW_CMP(raw_cons);
2671 
2672 		if (rx_pkts == budget)
2673 			break;
2674 	}
2675 
2676 	cpr->cp_raw_cons = raw_cons;
2677 	BNXT_DB_CQ(&cpr->cp_db, cpr->cp_raw_cons);
2678 	bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
2679 
2680 	if (event & BNXT_AGG_EVENT)
2681 		bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
2682 
2683 	if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) {
2684 		napi_complete_done(napi, rx_pkts);
2685 		BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2686 	}
2687 	return rx_pkts;
2688 }
2689 
2690 static int bnxt_poll(struct napi_struct *napi, int budget)
2691 {
2692 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2693 	struct bnxt *bp = bnapi->bp;
2694 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2695 	int work_done = 0;
2696 
2697 	if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) {
2698 		napi_complete(napi);
2699 		return 0;
2700 	}
2701 	while (1) {
2702 		work_done += bnxt_poll_work(bp, cpr, budget - work_done);
2703 
2704 		if (work_done >= budget) {
2705 			if (!budget)
2706 				BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2707 			break;
2708 		}
2709 
2710 		if (!bnxt_has_work(bp, cpr)) {
2711 			if (napi_complete_done(napi, work_done))
2712 				BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2713 			break;
2714 		}
2715 	}
2716 	if (bp->flags & BNXT_FLAG_DIM) {
2717 		struct dim_sample dim_sample = {};
2718 
2719 		dim_update_sample(cpr->event_ctr,
2720 				  cpr->rx_packets,
2721 				  cpr->rx_bytes,
2722 				  &dim_sample);
2723 		net_dim(&cpr->dim, dim_sample);
2724 	}
2725 	return work_done;
2726 }
2727 
2728 static int __bnxt_poll_cqs(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
2729 {
2730 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2731 	int i, work_done = 0;
2732 
2733 	for (i = 0; i < 2; i++) {
2734 		struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i];
2735 
2736 		if (cpr2) {
2737 			work_done += __bnxt_poll_work(bp, cpr2,
2738 						      budget - work_done);
2739 			cpr->has_more_work |= cpr2->has_more_work;
2740 		}
2741 	}
2742 	return work_done;
2743 }
2744 
2745 static void __bnxt_poll_cqs_done(struct bnxt *bp, struct bnxt_napi *bnapi,
2746 				 u64 dbr_type, int budget)
2747 {
2748 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2749 	int i;
2750 
2751 	for (i = 0; i < 2; i++) {
2752 		struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i];
2753 		struct bnxt_db_info *db;
2754 
2755 		if (cpr2 && cpr2->had_work_done) {
2756 			db = &cpr2->cp_db;
2757 			bnxt_writeq(bp, db->db_key64 | dbr_type |
2758 				    RING_CMP(cpr2->cp_raw_cons), db->doorbell);
2759 			cpr2->had_work_done = 0;
2760 		}
2761 	}
2762 	__bnxt_poll_work_done(bp, bnapi, budget);
2763 }
2764 
2765 static int bnxt_poll_p5(struct napi_struct *napi, int budget)
2766 {
2767 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2768 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2769 	struct bnxt_cp_ring_info *cpr_rx;
2770 	u32 raw_cons = cpr->cp_raw_cons;
2771 	struct bnxt *bp = bnapi->bp;
2772 	struct nqe_cn *nqcmp;
2773 	int work_done = 0;
2774 	u32 cons;
2775 
2776 	if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) {
2777 		napi_complete(napi);
2778 		return 0;
2779 	}
2780 	if (cpr->has_more_work) {
2781 		cpr->has_more_work = 0;
2782 		work_done = __bnxt_poll_cqs(bp, bnapi, budget);
2783 	}
2784 	while (1) {
2785 		cons = RING_CMP(raw_cons);
2786 		nqcmp = &cpr->nq_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2787 
2788 		if (!NQ_CMP_VALID(nqcmp, raw_cons)) {
2789 			if (cpr->has_more_work)
2790 				break;
2791 
2792 			__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL,
2793 					     budget);
2794 			cpr->cp_raw_cons = raw_cons;
2795 			if (napi_complete_done(napi, work_done))
2796 				BNXT_DB_NQ_ARM_P5(&cpr->cp_db,
2797 						  cpr->cp_raw_cons);
2798 			goto poll_done;
2799 		}
2800 
2801 		/* The valid test of the entry must be done first before
2802 		 * reading any further.
2803 		 */
2804 		dma_rmb();
2805 
2806 		if (nqcmp->type == cpu_to_le16(NQ_CN_TYPE_CQ_NOTIFICATION)) {
2807 			u32 idx = le32_to_cpu(nqcmp->cq_handle_low);
2808 			struct bnxt_cp_ring_info *cpr2;
2809 
2810 			/* No more budget for RX work */
2811 			if (budget && work_done >= budget && idx == BNXT_RX_HDL)
2812 				break;
2813 
2814 			cpr2 = cpr->cp_ring_arr[idx];
2815 			work_done += __bnxt_poll_work(bp, cpr2,
2816 						      budget - work_done);
2817 			cpr->has_more_work |= cpr2->has_more_work;
2818 		} else {
2819 			bnxt_hwrm_handler(bp, (struct tx_cmp *)nqcmp);
2820 		}
2821 		raw_cons = NEXT_RAW_CMP(raw_cons);
2822 	}
2823 	__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ, budget);
2824 	if (raw_cons != cpr->cp_raw_cons) {
2825 		cpr->cp_raw_cons = raw_cons;
2826 		BNXT_DB_NQ_P5(&cpr->cp_db, raw_cons);
2827 	}
2828 poll_done:
2829 	cpr_rx = cpr->cp_ring_arr[BNXT_RX_HDL];
2830 	if (cpr_rx && (bp->flags & BNXT_FLAG_DIM)) {
2831 		struct dim_sample dim_sample = {};
2832 
2833 		dim_update_sample(cpr->event_ctr,
2834 				  cpr_rx->rx_packets,
2835 				  cpr_rx->rx_bytes,
2836 				  &dim_sample);
2837 		net_dim(&cpr->dim, dim_sample);
2838 	}
2839 	return work_done;
2840 }
2841 
2842 static void bnxt_free_tx_skbs(struct bnxt *bp)
2843 {
2844 	int i, max_idx;
2845 	struct pci_dev *pdev = bp->pdev;
2846 
2847 	if (!bp->tx_ring)
2848 		return;
2849 
2850 	max_idx = bp->tx_nr_pages * TX_DESC_CNT;
2851 	for (i = 0; i < bp->tx_nr_rings; i++) {
2852 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2853 		int j;
2854 
2855 		if (!txr->tx_buf_ring)
2856 			continue;
2857 
2858 		for (j = 0; j < max_idx;) {
2859 			struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
2860 			struct sk_buff *skb;
2861 			int k, last;
2862 
2863 			if (i < bp->tx_nr_rings_xdp &&
2864 			    tx_buf->action == XDP_REDIRECT) {
2865 				dma_unmap_single(&pdev->dev,
2866 					dma_unmap_addr(tx_buf, mapping),
2867 					dma_unmap_len(tx_buf, len),
2868 					DMA_TO_DEVICE);
2869 				xdp_return_frame(tx_buf->xdpf);
2870 				tx_buf->action = 0;
2871 				tx_buf->xdpf = NULL;
2872 				j++;
2873 				continue;
2874 			}
2875 
2876 			skb = tx_buf->skb;
2877 			if (!skb) {
2878 				j++;
2879 				continue;
2880 			}
2881 
2882 			tx_buf->skb = NULL;
2883 
2884 			if (tx_buf->is_push) {
2885 				dev_kfree_skb(skb);
2886 				j += 2;
2887 				continue;
2888 			}
2889 
2890 			dma_unmap_single(&pdev->dev,
2891 					 dma_unmap_addr(tx_buf, mapping),
2892 					 skb_headlen(skb),
2893 					 DMA_TO_DEVICE);
2894 
2895 			last = tx_buf->nr_frags;
2896 			j += 2;
2897 			for (k = 0; k < last; k++, j++) {
2898 				int ring_idx = j & bp->tx_ring_mask;
2899 				skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2900 
2901 				tx_buf = &txr->tx_buf_ring[ring_idx];
2902 				dma_unmap_page(
2903 					&pdev->dev,
2904 					dma_unmap_addr(tx_buf, mapping),
2905 					skb_frag_size(frag), DMA_TO_DEVICE);
2906 			}
2907 			dev_kfree_skb(skb);
2908 		}
2909 		netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
2910 	}
2911 }
2912 
2913 static void bnxt_free_one_rx_ring_skbs(struct bnxt *bp, int ring_nr)
2914 {
2915 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
2916 	struct pci_dev *pdev = bp->pdev;
2917 	struct bnxt_tpa_idx_map *map;
2918 	int i, max_idx, max_agg_idx;
2919 
2920 	max_idx = bp->rx_nr_pages * RX_DESC_CNT;
2921 	max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
2922 	if (!rxr->rx_tpa)
2923 		goto skip_rx_tpa_free;
2924 
2925 	for (i = 0; i < bp->max_tpa; i++) {
2926 		struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[i];
2927 		u8 *data = tpa_info->data;
2928 
2929 		if (!data)
2930 			continue;
2931 
2932 		dma_unmap_single_attrs(&pdev->dev, tpa_info->mapping,
2933 				       bp->rx_buf_use_size, bp->rx_dir,
2934 				       DMA_ATTR_WEAK_ORDERING);
2935 
2936 		tpa_info->data = NULL;
2937 
2938 		skb_free_frag(data);
2939 	}
2940 
2941 skip_rx_tpa_free:
2942 	if (!rxr->rx_buf_ring)
2943 		goto skip_rx_buf_free;
2944 
2945 	for (i = 0; i < max_idx; i++) {
2946 		struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[i];
2947 		dma_addr_t mapping = rx_buf->mapping;
2948 		void *data = rx_buf->data;
2949 
2950 		if (!data)
2951 			continue;
2952 
2953 		rx_buf->data = NULL;
2954 		if (BNXT_RX_PAGE_MODE(bp)) {
2955 			mapping -= bp->rx_dma_offset;
2956 			dma_unmap_page_attrs(&pdev->dev, mapping,
2957 					     BNXT_RX_PAGE_SIZE, bp->rx_dir,
2958 					     DMA_ATTR_WEAK_ORDERING);
2959 			page_pool_recycle_direct(rxr->page_pool, data);
2960 		} else {
2961 			dma_unmap_single_attrs(&pdev->dev, mapping,
2962 					       bp->rx_buf_use_size, bp->rx_dir,
2963 					       DMA_ATTR_WEAK_ORDERING);
2964 			skb_free_frag(data);
2965 		}
2966 	}
2967 
2968 skip_rx_buf_free:
2969 	if (!rxr->rx_agg_ring)
2970 		goto skip_rx_agg_free;
2971 
2972 	for (i = 0; i < max_agg_idx; i++) {
2973 		struct bnxt_sw_rx_agg_bd *rx_agg_buf = &rxr->rx_agg_ring[i];
2974 		struct page *page = rx_agg_buf->page;
2975 
2976 		if (!page)
2977 			continue;
2978 
2979 		if (BNXT_RX_PAGE_MODE(bp)) {
2980 			dma_unmap_page_attrs(&pdev->dev, rx_agg_buf->mapping,
2981 					     BNXT_RX_PAGE_SIZE, bp->rx_dir,
2982 					     DMA_ATTR_WEAK_ORDERING);
2983 			rx_agg_buf->page = NULL;
2984 			__clear_bit(i, rxr->rx_agg_bmap);
2985 
2986 			page_pool_recycle_direct(rxr->page_pool, page);
2987 		} else {
2988 			dma_unmap_page_attrs(&pdev->dev, rx_agg_buf->mapping,
2989 					     BNXT_RX_PAGE_SIZE, DMA_FROM_DEVICE,
2990 					     DMA_ATTR_WEAK_ORDERING);
2991 			rx_agg_buf->page = NULL;
2992 			__clear_bit(i, rxr->rx_agg_bmap);
2993 
2994 			__free_page(page);
2995 		}
2996 	}
2997 
2998 skip_rx_agg_free:
2999 	if (rxr->rx_page) {
3000 		__free_page(rxr->rx_page);
3001 		rxr->rx_page = NULL;
3002 	}
3003 	map = rxr->rx_tpa_idx_map;
3004 	if (map)
3005 		memset(map->agg_idx_bmap, 0, sizeof(map->agg_idx_bmap));
3006 }
3007 
3008 static void bnxt_free_rx_skbs(struct bnxt *bp)
3009 {
3010 	int i;
3011 
3012 	if (!bp->rx_ring)
3013 		return;
3014 
3015 	for (i = 0; i < bp->rx_nr_rings; i++)
3016 		bnxt_free_one_rx_ring_skbs(bp, i);
3017 }
3018 
3019 static void bnxt_free_skbs(struct bnxt *bp)
3020 {
3021 	bnxt_free_tx_skbs(bp);
3022 	bnxt_free_rx_skbs(bp);
3023 }
3024 
3025 static void bnxt_init_ctx_mem(struct bnxt_mem_init *mem_init, void *p, int len)
3026 {
3027 	u8 init_val = mem_init->init_val;
3028 	u16 offset = mem_init->offset;
3029 	u8 *p2 = p;
3030 	int i;
3031 
3032 	if (!init_val)
3033 		return;
3034 	if (offset == BNXT_MEM_INVALID_OFFSET) {
3035 		memset(p, init_val, len);
3036 		return;
3037 	}
3038 	for (i = 0; i < len; i += mem_init->size)
3039 		*(p2 + i + offset) = init_val;
3040 }
3041 
3042 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
3043 {
3044 	struct pci_dev *pdev = bp->pdev;
3045 	int i;
3046 
3047 	if (!rmem->pg_arr)
3048 		goto skip_pages;
3049 
3050 	for (i = 0; i < rmem->nr_pages; i++) {
3051 		if (!rmem->pg_arr[i])
3052 			continue;
3053 
3054 		dma_free_coherent(&pdev->dev, rmem->page_size,
3055 				  rmem->pg_arr[i], rmem->dma_arr[i]);
3056 
3057 		rmem->pg_arr[i] = NULL;
3058 	}
3059 skip_pages:
3060 	if (rmem->pg_tbl) {
3061 		size_t pg_tbl_size = rmem->nr_pages * 8;
3062 
3063 		if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
3064 			pg_tbl_size = rmem->page_size;
3065 		dma_free_coherent(&pdev->dev, pg_tbl_size,
3066 				  rmem->pg_tbl, rmem->pg_tbl_map);
3067 		rmem->pg_tbl = NULL;
3068 	}
3069 	if (rmem->vmem_size && *rmem->vmem) {
3070 		vfree(*rmem->vmem);
3071 		*rmem->vmem = NULL;
3072 	}
3073 }
3074 
3075 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
3076 {
3077 	struct pci_dev *pdev = bp->pdev;
3078 	u64 valid_bit = 0;
3079 	int i;
3080 
3081 	if (rmem->flags & (BNXT_RMEM_VALID_PTE_FLAG | BNXT_RMEM_RING_PTE_FLAG))
3082 		valid_bit = PTU_PTE_VALID;
3083 	if ((rmem->nr_pages > 1 || rmem->depth > 0) && !rmem->pg_tbl) {
3084 		size_t pg_tbl_size = rmem->nr_pages * 8;
3085 
3086 		if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
3087 			pg_tbl_size = rmem->page_size;
3088 		rmem->pg_tbl = dma_alloc_coherent(&pdev->dev, pg_tbl_size,
3089 						  &rmem->pg_tbl_map,
3090 						  GFP_KERNEL);
3091 		if (!rmem->pg_tbl)
3092 			return -ENOMEM;
3093 	}
3094 
3095 	for (i = 0; i < rmem->nr_pages; i++) {
3096 		u64 extra_bits = valid_bit;
3097 
3098 		rmem->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
3099 						     rmem->page_size,
3100 						     &rmem->dma_arr[i],
3101 						     GFP_KERNEL);
3102 		if (!rmem->pg_arr[i])
3103 			return -ENOMEM;
3104 
3105 		if (rmem->mem_init)
3106 			bnxt_init_ctx_mem(rmem->mem_init, rmem->pg_arr[i],
3107 					  rmem->page_size);
3108 		if (rmem->nr_pages > 1 || rmem->depth > 0) {
3109 			if (i == rmem->nr_pages - 2 &&
3110 			    (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
3111 				extra_bits |= PTU_PTE_NEXT_TO_LAST;
3112 			else if (i == rmem->nr_pages - 1 &&
3113 				 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
3114 				extra_bits |= PTU_PTE_LAST;
3115 			rmem->pg_tbl[i] =
3116 				cpu_to_le64(rmem->dma_arr[i] | extra_bits);
3117 		}
3118 	}
3119 
3120 	if (rmem->vmem_size) {
3121 		*rmem->vmem = vzalloc(rmem->vmem_size);
3122 		if (!(*rmem->vmem))
3123 			return -ENOMEM;
3124 	}
3125 	return 0;
3126 }
3127 
3128 static void bnxt_free_tpa_info(struct bnxt *bp)
3129 {
3130 	int i, j;
3131 
3132 	for (i = 0; i < bp->rx_nr_rings; i++) {
3133 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3134 
3135 		kfree(rxr->rx_tpa_idx_map);
3136 		rxr->rx_tpa_idx_map = NULL;
3137 		if (rxr->rx_tpa) {
3138 			for (j = 0; j < bp->max_tpa; j++) {
3139 				kfree(rxr->rx_tpa[j].agg_arr);
3140 				rxr->rx_tpa[j].agg_arr = NULL;
3141 			}
3142 		}
3143 		kfree(rxr->rx_tpa);
3144 		rxr->rx_tpa = NULL;
3145 	}
3146 }
3147 
3148 static int bnxt_alloc_tpa_info(struct bnxt *bp)
3149 {
3150 	int i, j;
3151 
3152 	bp->max_tpa = MAX_TPA;
3153 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
3154 		if (!bp->max_tpa_v2)
3155 			return 0;
3156 		bp->max_tpa = max_t(u16, bp->max_tpa_v2, MAX_TPA_P5);
3157 	}
3158 
3159 	for (i = 0; i < bp->rx_nr_rings; i++) {
3160 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3161 		struct rx_agg_cmp *agg;
3162 
3163 		rxr->rx_tpa = kcalloc(bp->max_tpa, sizeof(struct bnxt_tpa_info),
3164 				      GFP_KERNEL);
3165 		if (!rxr->rx_tpa)
3166 			return -ENOMEM;
3167 
3168 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
3169 			continue;
3170 		for (j = 0; j < bp->max_tpa; j++) {
3171 			agg = kcalloc(MAX_SKB_FRAGS, sizeof(*agg), GFP_KERNEL);
3172 			if (!agg)
3173 				return -ENOMEM;
3174 			rxr->rx_tpa[j].agg_arr = agg;
3175 		}
3176 		rxr->rx_tpa_idx_map = kzalloc(sizeof(*rxr->rx_tpa_idx_map),
3177 					      GFP_KERNEL);
3178 		if (!rxr->rx_tpa_idx_map)
3179 			return -ENOMEM;
3180 	}
3181 	return 0;
3182 }
3183 
3184 static void bnxt_free_rx_rings(struct bnxt *bp)
3185 {
3186 	int i;
3187 
3188 	if (!bp->rx_ring)
3189 		return;
3190 
3191 	bnxt_free_tpa_info(bp);
3192 	for (i = 0; i < bp->rx_nr_rings; i++) {
3193 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3194 		struct bnxt_ring_struct *ring;
3195 
3196 		if (rxr->xdp_prog)
3197 			bpf_prog_put(rxr->xdp_prog);
3198 
3199 		if (xdp_rxq_info_is_reg(&rxr->xdp_rxq))
3200 			xdp_rxq_info_unreg(&rxr->xdp_rxq);
3201 
3202 		page_pool_destroy(rxr->page_pool);
3203 		rxr->page_pool = NULL;
3204 
3205 		kfree(rxr->rx_agg_bmap);
3206 		rxr->rx_agg_bmap = NULL;
3207 
3208 		ring = &rxr->rx_ring_struct;
3209 		bnxt_free_ring(bp, &ring->ring_mem);
3210 
3211 		ring = &rxr->rx_agg_ring_struct;
3212 		bnxt_free_ring(bp, &ring->ring_mem);
3213 	}
3214 }
3215 
3216 static int bnxt_alloc_rx_page_pool(struct bnxt *bp,
3217 				   struct bnxt_rx_ring_info *rxr)
3218 {
3219 	struct page_pool_params pp = { 0 };
3220 
3221 	pp.pool_size = bp->rx_ring_size;
3222 	pp.nid = dev_to_node(&bp->pdev->dev);
3223 	pp.napi = &rxr->bnapi->napi;
3224 	pp.dev = &bp->pdev->dev;
3225 	pp.dma_dir = DMA_BIDIRECTIONAL;
3226 	if (PAGE_SIZE > BNXT_RX_PAGE_SIZE)
3227 		pp.flags |= PP_FLAG_PAGE_FRAG;
3228 
3229 	rxr->page_pool = page_pool_create(&pp);
3230 	if (IS_ERR(rxr->page_pool)) {
3231 		int err = PTR_ERR(rxr->page_pool);
3232 
3233 		rxr->page_pool = NULL;
3234 		return err;
3235 	}
3236 	return 0;
3237 }
3238 
3239 static int bnxt_alloc_rx_rings(struct bnxt *bp)
3240 {
3241 	int i, rc = 0, agg_rings = 0;
3242 
3243 	if (!bp->rx_ring)
3244 		return -ENOMEM;
3245 
3246 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
3247 		agg_rings = 1;
3248 
3249 	for (i = 0; i < bp->rx_nr_rings; i++) {
3250 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3251 		struct bnxt_ring_struct *ring;
3252 
3253 		ring = &rxr->rx_ring_struct;
3254 
3255 		rc = bnxt_alloc_rx_page_pool(bp, rxr);
3256 		if (rc)
3257 			return rc;
3258 
3259 		rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i, 0);
3260 		if (rc < 0)
3261 			return rc;
3262 
3263 		rc = xdp_rxq_info_reg_mem_model(&rxr->xdp_rxq,
3264 						MEM_TYPE_PAGE_POOL,
3265 						rxr->page_pool);
3266 		if (rc) {
3267 			xdp_rxq_info_unreg(&rxr->xdp_rxq);
3268 			return rc;
3269 		}
3270 
3271 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3272 		if (rc)
3273 			return rc;
3274 
3275 		ring->grp_idx = i;
3276 		if (agg_rings) {
3277 			u16 mem_size;
3278 
3279 			ring = &rxr->rx_agg_ring_struct;
3280 			rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3281 			if (rc)
3282 				return rc;
3283 
3284 			ring->grp_idx = i;
3285 			rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
3286 			mem_size = rxr->rx_agg_bmap_size / 8;
3287 			rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
3288 			if (!rxr->rx_agg_bmap)
3289 				return -ENOMEM;
3290 		}
3291 	}
3292 	if (bp->flags & BNXT_FLAG_TPA)
3293 		rc = bnxt_alloc_tpa_info(bp);
3294 	return rc;
3295 }
3296 
3297 static void bnxt_free_tx_rings(struct bnxt *bp)
3298 {
3299 	int i;
3300 	struct pci_dev *pdev = bp->pdev;
3301 
3302 	if (!bp->tx_ring)
3303 		return;
3304 
3305 	for (i = 0; i < bp->tx_nr_rings; i++) {
3306 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3307 		struct bnxt_ring_struct *ring;
3308 
3309 		if (txr->tx_push) {
3310 			dma_free_coherent(&pdev->dev, bp->tx_push_size,
3311 					  txr->tx_push, txr->tx_push_mapping);
3312 			txr->tx_push = NULL;
3313 		}
3314 
3315 		ring = &txr->tx_ring_struct;
3316 
3317 		bnxt_free_ring(bp, &ring->ring_mem);
3318 	}
3319 }
3320 
3321 static int bnxt_alloc_tx_rings(struct bnxt *bp)
3322 {
3323 	int i, j, rc;
3324 	struct pci_dev *pdev = bp->pdev;
3325 
3326 	bp->tx_push_size = 0;
3327 	if (bp->tx_push_thresh) {
3328 		int push_size;
3329 
3330 		push_size  = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
3331 					bp->tx_push_thresh);
3332 
3333 		if (push_size > 256) {
3334 			push_size = 0;
3335 			bp->tx_push_thresh = 0;
3336 		}
3337 
3338 		bp->tx_push_size = push_size;
3339 	}
3340 
3341 	for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
3342 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3343 		struct bnxt_ring_struct *ring;
3344 		u8 qidx;
3345 
3346 		ring = &txr->tx_ring_struct;
3347 
3348 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3349 		if (rc)
3350 			return rc;
3351 
3352 		ring->grp_idx = txr->bnapi->index;
3353 		if (bp->tx_push_size) {
3354 			dma_addr_t mapping;
3355 
3356 			/* One pre-allocated DMA buffer to backup
3357 			 * TX push operation
3358 			 */
3359 			txr->tx_push = dma_alloc_coherent(&pdev->dev,
3360 						bp->tx_push_size,
3361 						&txr->tx_push_mapping,
3362 						GFP_KERNEL);
3363 
3364 			if (!txr->tx_push)
3365 				return -ENOMEM;
3366 
3367 			mapping = txr->tx_push_mapping +
3368 				sizeof(struct tx_push_bd);
3369 			txr->data_mapping = cpu_to_le64(mapping);
3370 		}
3371 		qidx = bp->tc_to_qidx[j];
3372 		ring->queue_id = bp->q_info[qidx].queue_id;
3373 		spin_lock_init(&txr->xdp_tx_lock);
3374 		if (i < bp->tx_nr_rings_xdp)
3375 			continue;
3376 		if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1))
3377 			j++;
3378 	}
3379 	return 0;
3380 }
3381 
3382 static void bnxt_free_cp_arrays(struct bnxt_cp_ring_info *cpr)
3383 {
3384 	struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3385 
3386 	kfree(cpr->cp_desc_ring);
3387 	cpr->cp_desc_ring = NULL;
3388 	ring->ring_mem.pg_arr = NULL;
3389 	kfree(cpr->cp_desc_mapping);
3390 	cpr->cp_desc_mapping = NULL;
3391 	ring->ring_mem.dma_arr = NULL;
3392 }
3393 
3394 static int bnxt_alloc_cp_arrays(struct bnxt_cp_ring_info *cpr, int n)
3395 {
3396 	cpr->cp_desc_ring = kcalloc(n, sizeof(*cpr->cp_desc_ring), GFP_KERNEL);
3397 	if (!cpr->cp_desc_ring)
3398 		return -ENOMEM;
3399 	cpr->cp_desc_mapping = kcalloc(n, sizeof(*cpr->cp_desc_mapping),
3400 				       GFP_KERNEL);
3401 	if (!cpr->cp_desc_mapping)
3402 		return -ENOMEM;
3403 	return 0;
3404 }
3405 
3406 static void bnxt_free_all_cp_arrays(struct bnxt *bp)
3407 {
3408 	int i;
3409 
3410 	if (!bp->bnapi)
3411 		return;
3412 	for (i = 0; i < bp->cp_nr_rings; i++) {
3413 		struct bnxt_napi *bnapi = bp->bnapi[i];
3414 
3415 		if (!bnapi)
3416 			continue;
3417 		bnxt_free_cp_arrays(&bnapi->cp_ring);
3418 	}
3419 }
3420 
3421 static int bnxt_alloc_all_cp_arrays(struct bnxt *bp)
3422 {
3423 	int i, n = bp->cp_nr_pages;
3424 
3425 	for (i = 0; i < bp->cp_nr_rings; i++) {
3426 		struct bnxt_napi *bnapi = bp->bnapi[i];
3427 		int rc;
3428 
3429 		if (!bnapi)
3430 			continue;
3431 		rc = bnxt_alloc_cp_arrays(&bnapi->cp_ring, n);
3432 		if (rc)
3433 			return rc;
3434 	}
3435 	return 0;
3436 }
3437 
3438 static void bnxt_free_cp_rings(struct bnxt *bp)
3439 {
3440 	int i;
3441 
3442 	if (!bp->bnapi)
3443 		return;
3444 
3445 	for (i = 0; i < bp->cp_nr_rings; i++) {
3446 		struct bnxt_napi *bnapi = bp->bnapi[i];
3447 		struct bnxt_cp_ring_info *cpr;
3448 		struct bnxt_ring_struct *ring;
3449 		int j;
3450 
3451 		if (!bnapi)
3452 			continue;
3453 
3454 		cpr = &bnapi->cp_ring;
3455 		ring = &cpr->cp_ring_struct;
3456 
3457 		bnxt_free_ring(bp, &ring->ring_mem);
3458 
3459 		for (j = 0; j < 2; j++) {
3460 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
3461 
3462 			if (cpr2) {
3463 				ring = &cpr2->cp_ring_struct;
3464 				bnxt_free_ring(bp, &ring->ring_mem);
3465 				bnxt_free_cp_arrays(cpr2);
3466 				kfree(cpr2);
3467 				cpr->cp_ring_arr[j] = NULL;
3468 			}
3469 		}
3470 	}
3471 }
3472 
3473 static struct bnxt_cp_ring_info *bnxt_alloc_cp_sub_ring(struct bnxt *bp)
3474 {
3475 	struct bnxt_ring_mem_info *rmem;
3476 	struct bnxt_ring_struct *ring;
3477 	struct bnxt_cp_ring_info *cpr;
3478 	int rc;
3479 
3480 	cpr = kzalloc(sizeof(*cpr), GFP_KERNEL);
3481 	if (!cpr)
3482 		return NULL;
3483 
3484 	rc = bnxt_alloc_cp_arrays(cpr, bp->cp_nr_pages);
3485 	if (rc) {
3486 		bnxt_free_cp_arrays(cpr);
3487 		kfree(cpr);
3488 		return NULL;
3489 	}
3490 	ring = &cpr->cp_ring_struct;
3491 	rmem = &ring->ring_mem;
3492 	rmem->nr_pages = bp->cp_nr_pages;
3493 	rmem->page_size = HW_CMPD_RING_SIZE;
3494 	rmem->pg_arr = (void **)cpr->cp_desc_ring;
3495 	rmem->dma_arr = cpr->cp_desc_mapping;
3496 	rmem->flags = BNXT_RMEM_RING_PTE_FLAG;
3497 	rc = bnxt_alloc_ring(bp, rmem);
3498 	if (rc) {
3499 		bnxt_free_ring(bp, rmem);
3500 		bnxt_free_cp_arrays(cpr);
3501 		kfree(cpr);
3502 		cpr = NULL;
3503 	}
3504 	return cpr;
3505 }
3506 
3507 static int bnxt_alloc_cp_rings(struct bnxt *bp)
3508 {
3509 	bool sh = !!(bp->flags & BNXT_FLAG_SHARED_RINGS);
3510 	int i, rc, ulp_base_vec, ulp_msix;
3511 
3512 	ulp_msix = bnxt_get_ulp_msix_num(bp);
3513 	ulp_base_vec = bnxt_get_ulp_msix_base(bp);
3514 	for (i = 0; i < bp->cp_nr_rings; i++) {
3515 		struct bnxt_napi *bnapi = bp->bnapi[i];
3516 		struct bnxt_cp_ring_info *cpr;
3517 		struct bnxt_ring_struct *ring;
3518 
3519 		if (!bnapi)
3520 			continue;
3521 
3522 		cpr = &bnapi->cp_ring;
3523 		cpr->bnapi = bnapi;
3524 		ring = &cpr->cp_ring_struct;
3525 
3526 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3527 		if (rc)
3528 			return rc;
3529 
3530 		if (ulp_msix && i >= ulp_base_vec)
3531 			ring->map_idx = i + ulp_msix;
3532 		else
3533 			ring->map_idx = i;
3534 
3535 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
3536 			continue;
3537 
3538 		if (i < bp->rx_nr_rings) {
3539 			struct bnxt_cp_ring_info *cpr2 =
3540 				bnxt_alloc_cp_sub_ring(bp);
3541 
3542 			cpr->cp_ring_arr[BNXT_RX_HDL] = cpr2;
3543 			if (!cpr2)
3544 				return -ENOMEM;
3545 			cpr2->bnapi = bnapi;
3546 		}
3547 		if ((sh && i < bp->tx_nr_rings) ||
3548 		    (!sh && i >= bp->rx_nr_rings)) {
3549 			struct bnxt_cp_ring_info *cpr2 =
3550 				bnxt_alloc_cp_sub_ring(bp);
3551 
3552 			cpr->cp_ring_arr[BNXT_TX_HDL] = cpr2;
3553 			if (!cpr2)
3554 				return -ENOMEM;
3555 			cpr2->bnapi = bnapi;
3556 		}
3557 	}
3558 	return 0;
3559 }
3560 
3561 static void bnxt_init_ring_struct(struct bnxt *bp)
3562 {
3563 	int i;
3564 
3565 	for (i = 0; i < bp->cp_nr_rings; i++) {
3566 		struct bnxt_napi *bnapi = bp->bnapi[i];
3567 		struct bnxt_ring_mem_info *rmem;
3568 		struct bnxt_cp_ring_info *cpr;
3569 		struct bnxt_rx_ring_info *rxr;
3570 		struct bnxt_tx_ring_info *txr;
3571 		struct bnxt_ring_struct *ring;
3572 
3573 		if (!bnapi)
3574 			continue;
3575 
3576 		cpr = &bnapi->cp_ring;
3577 		ring = &cpr->cp_ring_struct;
3578 		rmem = &ring->ring_mem;
3579 		rmem->nr_pages = bp->cp_nr_pages;
3580 		rmem->page_size = HW_CMPD_RING_SIZE;
3581 		rmem->pg_arr = (void **)cpr->cp_desc_ring;
3582 		rmem->dma_arr = cpr->cp_desc_mapping;
3583 		rmem->vmem_size = 0;
3584 
3585 		rxr = bnapi->rx_ring;
3586 		if (!rxr)
3587 			goto skip_rx;
3588 
3589 		ring = &rxr->rx_ring_struct;
3590 		rmem = &ring->ring_mem;
3591 		rmem->nr_pages = bp->rx_nr_pages;
3592 		rmem->page_size = HW_RXBD_RING_SIZE;
3593 		rmem->pg_arr = (void **)rxr->rx_desc_ring;
3594 		rmem->dma_arr = rxr->rx_desc_mapping;
3595 		rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
3596 		rmem->vmem = (void **)&rxr->rx_buf_ring;
3597 
3598 		ring = &rxr->rx_agg_ring_struct;
3599 		rmem = &ring->ring_mem;
3600 		rmem->nr_pages = bp->rx_agg_nr_pages;
3601 		rmem->page_size = HW_RXBD_RING_SIZE;
3602 		rmem->pg_arr = (void **)rxr->rx_agg_desc_ring;
3603 		rmem->dma_arr = rxr->rx_agg_desc_mapping;
3604 		rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
3605 		rmem->vmem = (void **)&rxr->rx_agg_ring;
3606 
3607 skip_rx:
3608 		txr = bnapi->tx_ring;
3609 		if (!txr)
3610 			continue;
3611 
3612 		ring = &txr->tx_ring_struct;
3613 		rmem = &ring->ring_mem;
3614 		rmem->nr_pages = bp->tx_nr_pages;
3615 		rmem->page_size = HW_RXBD_RING_SIZE;
3616 		rmem->pg_arr = (void **)txr->tx_desc_ring;
3617 		rmem->dma_arr = txr->tx_desc_mapping;
3618 		rmem->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
3619 		rmem->vmem = (void **)&txr->tx_buf_ring;
3620 	}
3621 }
3622 
3623 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
3624 {
3625 	int i;
3626 	u32 prod;
3627 	struct rx_bd **rx_buf_ring;
3628 
3629 	rx_buf_ring = (struct rx_bd **)ring->ring_mem.pg_arr;
3630 	for (i = 0, prod = 0; i < ring->ring_mem.nr_pages; i++) {
3631 		int j;
3632 		struct rx_bd *rxbd;
3633 
3634 		rxbd = rx_buf_ring[i];
3635 		if (!rxbd)
3636 			continue;
3637 
3638 		for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
3639 			rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
3640 			rxbd->rx_bd_opaque = prod;
3641 		}
3642 	}
3643 }
3644 
3645 static int bnxt_alloc_one_rx_ring(struct bnxt *bp, int ring_nr)
3646 {
3647 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
3648 	struct net_device *dev = bp->dev;
3649 	u32 prod;
3650 	int i;
3651 
3652 	prod = rxr->rx_prod;
3653 	for (i = 0; i < bp->rx_ring_size; i++) {
3654 		if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL)) {
3655 			netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
3656 				    ring_nr, i, bp->rx_ring_size);
3657 			break;
3658 		}
3659 		prod = NEXT_RX(prod);
3660 	}
3661 	rxr->rx_prod = prod;
3662 
3663 	if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
3664 		return 0;
3665 
3666 	prod = rxr->rx_agg_prod;
3667 	for (i = 0; i < bp->rx_agg_ring_size; i++) {
3668 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL)) {
3669 			netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
3670 				    ring_nr, i, bp->rx_ring_size);
3671 			break;
3672 		}
3673 		prod = NEXT_RX_AGG(prod);
3674 	}
3675 	rxr->rx_agg_prod = prod;
3676 
3677 	if (rxr->rx_tpa) {
3678 		dma_addr_t mapping;
3679 		u8 *data;
3680 
3681 		for (i = 0; i < bp->max_tpa; i++) {
3682 			data = __bnxt_alloc_rx_frag(bp, &mapping, GFP_KERNEL);
3683 			if (!data)
3684 				return -ENOMEM;
3685 
3686 			rxr->rx_tpa[i].data = data;
3687 			rxr->rx_tpa[i].data_ptr = data + bp->rx_offset;
3688 			rxr->rx_tpa[i].mapping = mapping;
3689 		}
3690 	}
3691 	return 0;
3692 }
3693 
3694 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
3695 {
3696 	struct bnxt_rx_ring_info *rxr;
3697 	struct bnxt_ring_struct *ring;
3698 	u32 type;
3699 
3700 	type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
3701 		RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
3702 
3703 	if (NET_IP_ALIGN == 2)
3704 		type |= RX_BD_FLAGS_SOP;
3705 
3706 	rxr = &bp->rx_ring[ring_nr];
3707 	ring = &rxr->rx_ring_struct;
3708 	bnxt_init_rxbd_pages(ring, type);
3709 
3710 	if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) {
3711 		bpf_prog_add(bp->xdp_prog, 1);
3712 		rxr->xdp_prog = bp->xdp_prog;
3713 	}
3714 	ring->fw_ring_id = INVALID_HW_RING_ID;
3715 
3716 	ring = &rxr->rx_agg_ring_struct;
3717 	ring->fw_ring_id = INVALID_HW_RING_ID;
3718 
3719 	if ((bp->flags & BNXT_FLAG_AGG_RINGS)) {
3720 		type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) |
3721 			RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
3722 
3723 		bnxt_init_rxbd_pages(ring, type);
3724 	}
3725 
3726 	return bnxt_alloc_one_rx_ring(bp, ring_nr);
3727 }
3728 
3729 static void bnxt_init_cp_rings(struct bnxt *bp)
3730 {
3731 	int i, j;
3732 
3733 	for (i = 0; i < bp->cp_nr_rings; i++) {
3734 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
3735 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3736 
3737 		ring->fw_ring_id = INVALID_HW_RING_ID;
3738 		cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
3739 		cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
3740 		for (j = 0; j < 2; j++) {
3741 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
3742 
3743 			if (!cpr2)
3744 				continue;
3745 
3746 			ring = &cpr2->cp_ring_struct;
3747 			ring->fw_ring_id = INVALID_HW_RING_ID;
3748 			cpr2->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
3749 			cpr2->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
3750 		}
3751 	}
3752 }
3753 
3754 static int bnxt_init_rx_rings(struct bnxt *bp)
3755 {
3756 	int i, rc = 0;
3757 
3758 	if (BNXT_RX_PAGE_MODE(bp)) {
3759 		bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM;
3760 		bp->rx_dma_offset = XDP_PACKET_HEADROOM;
3761 	} else {
3762 		bp->rx_offset = BNXT_RX_OFFSET;
3763 		bp->rx_dma_offset = BNXT_RX_DMA_OFFSET;
3764 	}
3765 
3766 	for (i = 0; i < bp->rx_nr_rings; i++) {
3767 		rc = bnxt_init_one_rx_ring(bp, i);
3768 		if (rc)
3769 			break;
3770 	}
3771 
3772 	return rc;
3773 }
3774 
3775 static int bnxt_init_tx_rings(struct bnxt *bp)
3776 {
3777 	u16 i;
3778 
3779 	bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
3780 				   BNXT_MIN_TX_DESC_CNT);
3781 
3782 	for (i = 0; i < bp->tx_nr_rings; i++) {
3783 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3784 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
3785 
3786 		ring->fw_ring_id = INVALID_HW_RING_ID;
3787 	}
3788 
3789 	return 0;
3790 }
3791 
3792 static void bnxt_free_ring_grps(struct bnxt *bp)
3793 {
3794 	kfree(bp->grp_info);
3795 	bp->grp_info = NULL;
3796 }
3797 
3798 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
3799 {
3800 	int i;
3801 
3802 	if (irq_re_init) {
3803 		bp->grp_info = kcalloc(bp->cp_nr_rings,
3804 				       sizeof(struct bnxt_ring_grp_info),
3805 				       GFP_KERNEL);
3806 		if (!bp->grp_info)
3807 			return -ENOMEM;
3808 	}
3809 	for (i = 0; i < bp->cp_nr_rings; i++) {
3810 		if (irq_re_init)
3811 			bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
3812 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
3813 		bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
3814 		bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
3815 		bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
3816 	}
3817 	return 0;
3818 }
3819 
3820 static void bnxt_free_vnics(struct bnxt *bp)
3821 {
3822 	kfree(bp->vnic_info);
3823 	bp->vnic_info = NULL;
3824 	bp->nr_vnics = 0;
3825 }
3826 
3827 static int bnxt_alloc_vnics(struct bnxt *bp)
3828 {
3829 	int num_vnics = 1;
3830 
3831 #ifdef CONFIG_RFS_ACCEL
3832 	if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS)
3833 		num_vnics += bp->rx_nr_rings;
3834 #endif
3835 
3836 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
3837 		num_vnics++;
3838 
3839 	bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
3840 				GFP_KERNEL);
3841 	if (!bp->vnic_info)
3842 		return -ENOMEM;
3843 
3844 	bp->nr_vnics = num_vnics;
3845 	return 0;
3846 }
3847 
3848 static void bnxt_init_vnics(struct bnxt *bp)
3849 {
3850 	int i;
3851 
3852 	for (i = 0; i < bp->nr_vnics; i++) {
3853 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3854 		int j;
3855 
3856 		vnic->fw_vnic_id = INVALID_HW_RING_ID;
3857 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++)
3858 			vnic->fw_rss_cos_lb_ctx[j] = INVALID_HW_RING_ID;
3859 
3860 		vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
3861 
3862 		if (bp->vnic_info[i].rss_hash_key) {
3863 			if (i == 0)
3864 				get_random_bytes(vnic->rss_hash_key,
3865 					      HW_HASH_KEY_SIZE);
3866 			else
3867 				memcpy(vnic->rss_hash_key,
3868 				       bp->vnic_info[0].rss_hash_key,
3869 				       HW_HASH_KEY_SIZE);
3870 		}
3871 	}
3872 }
3873 
3874 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
3875 {
3876 	int pages;
3877 
3878 	pages = ring_size / desc_per_pg;
3879 
3880 	if (!pages)
3881 		return 1;
3882 
3883 	pages++;
3884 
3885 	while (pages & (pages - 1))
3886 		pages++;
3887 
3888 	return pages;
3889 }
3890 
3891 void bnxt_set_tpa_flags(struct bnxt *bp)
3892 {
3893 	bp->flags &= ~BNXT_FLAG_TPA;
3894 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
3895 		return;
3896 	if (bp->dev->features & NETIF_F_LRO)
3897 		bp->flags |= BNXT_FLAG_LRO;
3898 	else if (bp->dev->features & NETIF_F_GRO_HW)
3899 		bp->flags |= BNXT_FLAG_GRO;
3900 }
3901 
3902 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
3903  * be set on entry.
3904  */
3905 void bnxt_set_ring_params(struct bnxt *bp)
3906 {
3907 	u32 ring_size, rx_size, rx_space, max_rx_cmpl;
3908 	u32 agg_factor = 0, agg_ring_size = 0;
3909 
3910 	/* 8 for CRC and VLAN */
3911 	rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
3912 
3913 	rx_space = rx_size + ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) +
3914 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3915 
3916 	bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
3917 	ring_size = bp->rx_ring_size;
3918 	bp->rx_agg_ring_size = 0;
3919 	bp->rx_agg_nr_pages = 0;
3920 
3921 	if (bp->flags & BNXT_FLAG_TPA)
3922 		agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE);
3923 
3924 	bp->flags &= ~BNXT_FLAG_JUMBO;
3925 	if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) {
3926 		u32 jumbo_factor;
3927 
3928 		bp->flags |= BNXT_FLAG_JUMBO;
3929 		jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
3930 		if (jumbo_factor > agg_factor)
3931 			agg_factor = jumbo_factor;
3932 	}
3933 	if (agg_factor) {
3934 		if (ring_size > BNXT_MAX_RX_DESC_CNT_JUM_ENA) {
3935 			ring_size = BNXT_MAX_RX_DESC_CNT_JUM_ENA;
3936 			netdev_warn(bp->dev, "RX ring size reduced from %d to %d because the jumbo ring is now enabled\n",
3937 				    bp->rx_ring_size, ring_size);
3938 			bp->rx_ring_size = ring_size;
3939 		}
3940 		agg_ring_size = ring_size * agg_factor;
3941 
3942 		bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
3943 							RX_DESC_CNT);
3944 		if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
3945 			u32 tmp = agg_ring_size;
3946 
3947 			bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
3948 			agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
3949 			netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
3950 				    tmp, agg_ring_size);
3951 		}
3952 		bp->rx_agg_ring_size = agg_ring_size;
3953 		bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
3954 
3955 		if (BNXT_RX_PAGE_MODE(bp)) {
3956 			rx_space = PAGE_SIZE;
3957 			rx_size = PAGE_SIZE -
3958 				  ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) -
3959 				  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3960 		} else {
3961 			rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
3962 			rx_space = rx_size + NET_SKB_PAD +
3963 				SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3964 		}
3965 	}
3966 
3967 	bp->rx_buf_use_size = rx_size;
3968 	bp->rx_buf_size = rx_space;
3969 
3970 	bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
3971 	bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
3972 
3973 	ring_size = bp->tx_ring_size;
3974 	bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
3975 	bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
3976 
3977 	max_rx_cmpl = bp->rx_ring_size;
3978 	/* MAX TPA needs to be added because TPA_START completions are
3979 	 * immediately recycled, so the TPA completions are not bound by
3980 	 * the RX ring size.
3981 	 */
3982 	if (bp->flags & BNXT_FLAG_TPA)
3983 		max_rx_cmpl += bp->max_tpa;
3984 	/* RX and TPA completions are 32-byte, all others are 16-byte */
3985 	ring_size = max_rx_cmpl * 2 + agg_ring_size + bp->tx_ring_size;
3986 	bp->cp_ring_size = ring_size;
3987 
3988 	bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
3989 	if (bp->cp_nr_pages > MAX_CP_PAGES) {
3990 		bp->cp_nr_pages = MAX_CP_PAGES;
3991 		bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
3992 		netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
3993 			    ring_size, bp->cp_ring_size);
3994 	}
3995 	bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
3996 	bp->cp_ring_mask = bp->cp_bit - 1;
3997 }
3998 
3999 /* Changing allocation mode of RX rings.
4000  * TODO: Update when extending xdp_rxq_info to support allocation modes.
4001  */
4002 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode)
4003 {
4004 	struct net_device *dev = bp->dev;
4005 
4006 	if (page_mode) {
4007 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
4008 		bp->flags |= BNXT_FLAG_RX_PAGE_MODE;
4009 
4010 		if (bp->xdp_prog->aux->xdp_has_frags)
4011 			dev->max_mtu = min_t(u16, bp->max_mtu, BNXT_MAX_MTU);
4012 		else
4013 			dev->max_mtu =
4014 				min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU);
4015 		if (dev->mtu > BNXT_MAX_PAGE_MODE_MTU) {
4016 			bp->flags |= BNXT_FLAG_JUMBO;
4017 			bp->rx_skb_func = bnxt_rx_multi_page_skb;
4018 		} else {
4019 			bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
4020 			bp->rx_skb_func = bnxt_rx_page_skb;
4021 		}
4022 		bp->rx_dir = DMA_BIDIRECTIONAL;
4023 		/* Disable LRO or GRO_HW */
4024 		netdev_update_features(dev);
4025 	} else {
4026 		dev->max_mtu = bp->max_mtu;
4027 		bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE;
4028 		bp->rx_dir = DMA_FROM_DEVICE;
4029 		bp->rx_skb_func = bnxt_rx_skb;
4030 	}
4031 	return 0;
4032 }
4033 
4034 static void bnxt_free_vnic_attributes(struct bnxt *bp)
4035 {
4036 	int i;
4037 	struct bnxt_vnic_info *vnic;
4038 	struct pci_dev *pdev = bp->pdev;
4039 
4040 	if (!bp->vnic_info)
4041 		return;
4042 
4043 	for (i = 0; i < bp->nr_vnics; i++) {
4044 		vnic = &bp->vnic_info[i];
4045 
4046 		kfree(vnic->fw_grp_ids);
4047 		vnic->fw_grp_ids = NULL;
4048 
4049 		kfree(vnic->uc_list);
4050 		vnic->uc_list = NULL;
4051 
4052 		if (vnic->mc_list) {
4053 			dma_free_coherent(&pdev->dev, vnic->mc_list_size,
4054 					  vnic->mc_list, vnic->mc_list_mapping);
4055 			vnic->mc_list = NULL;
4056 		}
4057 
4058 		if (vnic->rss_table) {
4059 			dma_free_coherent(&pdev->dev, vnic->rss_table_size,
4060 					  vnic->rss_table,
4061 					  vnic->rss_table_dma_addr);
4062 			vnic->rss_table = NULL;
4063 		}
4064 
4065 		vnic->rss_hash_key = NULL;
4066 		vnic->flags = 0;
4067 	}
4068 }
4069 
4070 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
4071 {
4072 	int i, rc = 0, size;
4073 	struct bnxt_vnic_info *vnic;
4074 	struct pci_dev *pdev = bp->pdev;
4075 	int max_rings;
4076 
4077 	for (i = 0; i < bp->nr_vnics; i++) {
4078 		vnic = &bp->vnic_info[i];
4079 
4080 		if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
4081 			int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
4082 
4083 			if (mem_size > 0) {
4084 				vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
4085 				if (!vnic->uc_list) {
4086 					rc = -ENOMEM;
4087 					goto out;
4088 				}
4089 			}
4090 		}
4091 
4092 		if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
4093 			vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
4094 			vnic->mc_list =
4095 				dma_alloc_coherent(&pdev->dev,
4096 						   vnic->mc_list_size,
4097 						   &vnic->mc_list_mapping,
4098 						   GFP_KERNEL);
4099 			if (!vnic->mc_list) {
4100 				rc = -ENOMEM;
4101 				goto out;
4102 			}
4103 		}
4104 
4105 		if (bp->flags & BNXT_FLAG_CHIP_P5)
4106 			goto vnic_skip_grps;
4107 
4108 		if (vnic->flags & BNXT_VNIC_RSS_FLAG)
4109 			max_rings = bp->rx_nr_rings;
4110 		else
4111 			max_rings = 1;
4112 
4113 		vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
4114 		if (!vnic->fw_grp_ids) {
4115 			rc = -ENOMEM;
4116 			goto out;
4117 		}
4118 vnic_skip_grps:
4119 		if ((bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
4120 		    !(vnic->flags & BNXT_VNIC_RSS_FLAG))
4121 			continue;
4122 
4123 		/* Allocate rss table and hash key */
4124 		size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
4125 		if (bp->flags & BNXT_FLAG_CHIP_P5)
4126 			size = L1_CACHE_ALIGN(BNXT_MAX_RSS_TABLE_SIZE_P5);
4127 
4128 		vnic->rss_table_size = size + HW_HASH_KEY_SIZE;
4129 		vnic->rss_table = dma_alloc_coherent(&pdev->dev,
4130 						     vnic->rss_table_size,
4131 						     &vnic->rss_table_dma_addr,
4132 						     GFP_KERNEL);
4133 		if (!vnic->rss_table) {
4134 			rc = -ENOMEM;
4135 			goto out;
4136 		}
4137 
4138 		vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
4139 		vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
4140 	}
4141 	return 0;
4142 
4143 out:
4144 	return rc;
4145 }
4146 
4147 static void bnxt_free_hwrm_resources(struct bnxt *bp)
4148 {
4149 	struct bnxt_hwrm_wait_token *token;
4150 
4151 	dma_pool_destroy(bp->hwrm_dma_pool);
4152 	bp->hwrm_dma_pool = NULL;
4153 
4154 	rcu_read_lock();
4155 	hlist_for_each_entry_rcu(token, &bp->hwrm_pending_list, node)
4156 		WRITE_ONCE(token->state, BNXT_HWRM_CANCELLED);
4157 	rcu_read_unlock();
4158 }
4159 
4160 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
4161 {
4162 	bp->hwrm_dma_pool = dma_pool_create("bnxt_hwrm", &bp->pdev->dev,
4163 					    BNXT_HWRM_DMA_SIZE,
4164 					    BNXT_HWRM_DMA_ALIGN, 0);
4165 	if (!bp->hwrm_dma_pool)
4166 		return -ENOMEM;
4167 
4168 	INIT_HLIST_HEAD(&bp->hwrm_pending_list);
4169 
4170 	return 0;
4171 }
4172 
4173 static void bnxt_free_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats)
4174 {
4175 	kfree(stats->hw_masks);
4176 	stats->hw_masks = NULL;
4177 	kfree(stats->sw_stats);
4178 	stats->sw_stats = NULL;
4179 	if (stats->hw_stats) {
4180 		dma_free_coherent(&bp->pdev->dev, stats->len, stats->hw_stats,
4181 				  stats->hw_stats_map);
4182 		stats->hw_stats = NULL;
4183 	}
4184 }
4185 
4186 static int bnxt_alloc_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats,
4187 				bool alloc_masks)
4188 {
4189 	stats->hw_stats = dma_alloc_coherent(&bp->pdev->dev, stats->len,
4190 					     &stats->hw_stats_map, GFP_KERNEL);
4191 	if (!stats->hw_stats)
4192 		return -ENOMEM;
4193 
4194 	stats->sw_stats = kzalloc(stats->len, GFP_KERNEL);
4195 	if (!stats->sw_stats)
4196 		goto stats_mem_err;
4197 
4198 	if (alloc_masks) {
4199 		stats->hw_masks = kzalloc(stats->len, GFP_KERNEL);
4200 		if (!stats->hw_masks)
4201 			goto stats_mem_err;
4202 	}
4203 	return 0;
4204 
4205 stats_mem_err:
4206 	bnxt_free_stats_mem(bp, stats);
4207 	return -ENOMEM;
4208 }
4209 
4210 static void bnxt_fill_masks(u64 *mask_arr, u64 mask, int count)
4211 {
4212 	int i;
4213 
4214 	for (i = 0; i < count; i++)
4215 		mask_arr[i] = mask;
4216 }
4217 
4218 static void bnxt_copy_hw_masks(u64 *mask_arr, __le64 *hw_mask_arr, int count)
4219 {
4220 	int i;
4221 
4222 	for (i = 0; i < count; i++)
4223 		mask_arr[i] = le64_to_cpu(hw_mask_arr[i]);
4224 }
4225 
4226 static int bnxt_hwrm_func_qstat_ext(struct bnxt *bp,
4227 				    struct bnxt_stats_mem *stats)
4228 {
4229 	struct hwrm_func_qstats_ext_output *resp;
4230 	struct hwrm_func_qstats_ext_input *req;
4231 	__le64 *hw_masks;
4232 	int rc;
4233 
4234 	if (!(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED) ||
4235 	    !(bp->flags & BNXT_FLAG_CHIP_P5))
4236 		return -EOPNOTSUPP;
4237 
4238 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QSTATS_EXT);
4239 	if (rc)
4240 		return rc;
4241 
4242 	req->fid = cpu_to_le16(0xffff);
4243 	req->flags = FUNC_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK;
4244 
4245 	resp = hwrm_req_hold(bp, req);
4246 	rc = hwrm_req_send(bp, req);
4247 	if (!rc) {
4248 		hw_masks = &resp->rx_ucast_pkts;
4249 		bnxt_copy_hw_masks(stats->hw_masks, hw_masks, stats->len / 8);
4250 	}
4251 	hwrm_req_drop(bp, req);
4252 	return rc;
4253 }
4254 
4255 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags);
4256 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags);
4257 
4258 static void bnxt_init_stats(struct bnxt *bp)
4259 {
4260 	struct bnxt_napi *bnapi = bp->bnapi[0];
4261 	struct bnxt_cp_ring_info *cpr;
4262 	struct bnxt_stats_mem *stats;
4263 	__le64 *rx_stats, *tx_stats;
4264 	int rc, rx_count, tx_count;
4265 	u64 *rx_masks, *tx_masks;
4266 	u64 mask;
4267 	u8 flags;
4268 
4269 	cpr = &bnapi->cp_ring;
4270 	stats = &cpr->stats;
4271 	rc = bnxt_hwrm_func_qstat_ext(bp, stats);
4272 	if (rc) {
4273 		if (bp->flags & BNXT_FLAG_CHIP_P5)
4274 			mask = (1ULL << 48) - 1;
4275 		else
4276 			mask = -1ULL;
4277 		bnxt_fill_masks(stats->hw_masks, mask, stats->len / 8);
4278 	}
4279 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
4280 		stats = &bp->port_stats;
4281 		rx_stats = stats->hw_stats;
4282 		rx_masks = stats->hw_masks;
4283 		rx_count = sizeof(struct rx_port_stats) / 8;
4284 		tx_stats = rx_stats + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
4285 		tx_masks = rx_masks + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
4286 		tx_count = sizeof(struct tx_port_stats) / 8;
4287 
4288 		flags = PORT_QSTATS_REQ_FLAGS_COUNTER_MASK;
4289 		rc = bnxt_hwrm_port_qstats(bp, flags);
4290 		if (rc) {
4291 			mask = (1ULL << 40) - 1;
4292 
4293 			bnxt_fill_masks(rx_masks, mask, rx_count);
4294 			bnxt_fill_masks(tx_masks, mask, tx_count);
4295 		} else {
4296 			bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count);
4297 			bnxt_copy_hw_masks(tx_masks, tx_stats, tx_count);
4298 			bnxt_hwrm_port_qstats(bp, 0);
4299 		}
4300 	}
4301 	if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) {
4302 		stats = &bp->rx_port_stats_ext;
4303 		rx_stats = stats->hw_stats;
4304 		rx_masks = stats->hw_masks;
4305 		rx_count = sizeof(struct rx_port_stats_ext) / 8;
4306 		stats = &bp->tx_port_stats_ext;
4307 		tx_stats = stats->hw_stats;
4308 		tx_masks = stats->hw_masks;
4309 		tx_count = sizeof(struct tx_port_stats_ext) / 8;
4310 
4311 		flags = PORT_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK;
4312 		rc = bnxt_hwrm_port_qstats_ext(bp, flags);
4313 		if (rc) {
4314 			mask = (1ULL << 40) - 1;
4315 
4316 			bnxt_fill_masks(rx_masks, mask, rx_count);
4317 			if (tx_stats)
4318 				bnxt_fill_masks(tx_masks, mask, tx_count);
4319 		} else {
4320 			bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count);
4321 			if (tx_stats)
4322 				bnxt_copy_hw_masks(tx_masks, tx_stats,
4323 						   tx_count);
4324 			bnxt_hwrm_port_qstats_ext(bp, 0);
4325 		}
4326 	}
4327 }
4328 
4329 static void bnxt_free_port_stats(struct bnxt *bp)
4330 {
4331 	bp->flags &= ~BNXT_FLAG_PORT_STATS;
4332 	bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT;
4333 
4334 	bnxt_free_stats_mem(bp, &bp->port_stats);
4335 	bnxt_free_stats_mem(bp, &bp->rx_port_stats_ext);
4336 	bnxt_free_stats_mem(bp, &bp->tx_port_stats_ext);
4337 }
4338 
4339 static void bnxt_free_ring_stats(struct bnxt *bp)
4340 {
4341 	int i;
4342 
4343 	if (!bp->bnapi)
4344 		return;
4345 
4346 	for (i = 0; i < bp->cp_nr_rings; i++) {
4347 		struct bnxt_napi *bnapi = bp->bnapi[i];
4348 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4349 
4350 		bnxt_free_stats_mem(bp, &cpr->stats);
4351 	}
4352 }
4353 
4354 static int bnxt_alloc_stats(struct bnxt *bp)
4355 {
4356 	u32 size, i;
4357 	int rc;
4358 
4359 	size = bp->hw_ring_stats_size;
4360 
4361 	for (i = 0; i < bp->cp_nr_rings; i++) {
4362 		struct bnxt_napi *bnapi = bp->bnapi[i];
4363 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4364 
4365 		cpr->stats.len = size;
4366 		rc = bnxt_alloc_stats_mem(bp, &cpr->stats, !i);
4367 		if (rc)
4368 			return rc;
4369 
4370 		cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
4371 	}
4372 
4373 	if (BNXT_VF(bp) || bp->chip_num == CHIP_NUM_58700)
4374 		return 0;
4375 
4376 	if (bp->port_stats.hw_stats)
4377 		goto alloc_ext_stats;
4378 
4379 	bp->port_stats.len = BNXT_PORT_STATS_SIZE;
4380 	rc = bnxt_alloc_stats_mem(bp, &bp->port_stats, true);
4381 	if (rc)
4382 		return rc;
4383 
4384 	bp->flags |= BNXT_FLAG_PORT_STATS;
4385 
4386 alloc_ext_stats:
4387 	/* Display extended statistics only if FW supports it */
4388 	if (bp->hwrm_spec_code < 0x10804 || bp->hwrm_spec_code == 0x10900)
4389 		if (!(bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED))
4390 			return 0;
4391 
4392 	if (bp->rx_port_stats_ext.hw_stats)
4393 		goto alloc_tx_ext_stats;
4394 
4395 	bp->rx_port_stats_ext.len = sizeof(struct rx_port_stats_ext);
4396 	rc = bnxt_alloc_stats_mem(bp, &bp->rx_port_stats_ext, true);
4397 	/* Extended stats are optional */
4398 	if (rc)
4399 		return 0;
4400 
4401 alloc_tx_ext_stats:
4402 	if (bp->tx_port_stats_ext.hw_stats)
4403 		return 0;
4404 
4405 	if (bp->hwrm_spec_code >= 0x10902 ||
4406 	    (bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) {
4407 		bp->tx_port_stats_ext.len = sizeof(struct tx_port_stats_ext);
4408 		rc = bnxt_alloc_stats_mem(bp, &bp->tx_port_stats_ext, true);
4409 		/* Extended stats are optional */
4410 		if (rc)
4411 			return 0;
4412 	}
4413 	bp->flags |= BNXT_FLAG_PORT_STATS_EXT;
4414 	return 0;
4415 }
4416 
4417 static void bnxt_clear_ring_indices(struct bnxt *bp)
4418 {
4419 	int i;
4420 
4421 	if (!bp->bnapi)
4422 		return;
4423 
4424 	for (i = 0; i < bp->cp_nr_rings; i++) {
4425 		struct bnxt_napi *bnapi = bp->bnapi[i];
4426 		struct bnxt_cp_ring_info *cpr;
4427 		struct bnxt_rx_ring_info *rxr;
4428 		struct bnxt_tx_ring_info *txr;
4429 
4430 		if (!bnapi)
4431 			continue;
4432 
4433 		cpr = &bnapi->cp_ring;
4434 		cpr->cp_raw_cons = 0;
4435 
4436 		txr = bnapi->tx_ring;
4437 		if (txr) {
4438 			txr->tx_prod = 0;
4439 			txr->tx_cons = 0;
4440 		}
4441 
4442 		rxr = bnapi->rx_ring;
4443 		if (rxr) {
4444 			rxr->rx_prod = 0;
4445 			rxr->rx_agg_prod = 0;
4446 			rxr->rx_sw_agg_prod = 0;
4447 			rxr->rx_next_cons = 0;
4448 		}
4449 	}
4450 }
4451 
4452 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
4453 {
4454 #ifdef CONFIG_RFS_ACCEL
4455 	int i;
4456 
4457 	/* Under rtnl_lock and all our NAPIs have been disabled.  It's
4458 	 * safe to delete the hash table.
4459 	 */
4460 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
4461 		struct hlist_head *head;
4462 		struct hlist_node *tmp;
4463 		struct bnxt_ntuple_filter *fltr;
4464 
4465 		head = &bp->ntp_fltr_hash_tbl[i];
4466 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
4467 			hlist_del(&fltr->hash);
4468 			kfree(fltr);
4469 		}
4470 	}
4471 	if (irq_reinit) {
4472 		bitmap_free(bp->ntp_fltr_bmap);
4473 		bp->ntp_fltr_bmap = NULL;
4474 	}
4475 	bp->ntp_fltr_count = 0;
4476 #endif
4477 }
4478 
4479 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
4480 {
4481 #ifdef CONFIG_RFS_ACCEL
4482 	int i, rc = 0;
4483 
4484 	if (!(bp->flags & BNXT_FLAG_RFS))
4485 		return 0;
4486 
4487 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
4488 		INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
4489 
4490 	bp->ntp_fltr_count = 0;
4491 	bp->ntp_fltr_bmap = bitmap_zalloc(BNXT_NTP_FLTR_MAX_FLTR, GFP_KERNEL);
4492 
4493 	if (!bp->ntp_fltr_bmap)
4494 		rc = -ENOMEM;
4495 
4496 	return rc;
4497 #else
4498 	return 0;
4499 #endif
4500 }
4501 
4502 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
4503 {
4504 	bnxt_free_vnic_attributes(bp);
4505 	bnxt_free_tx_rings(bp);
4506 	bnxt_free_rx_rings(bp);
4507 	bnxt_free_cp_rings(bp);
4508 	bnxt_free_all_cp_arrays(bp);
4509 	bnxt_free_ntp_fltrs(bp, irq_re_init);
4510 	if (irq_re_init) {
4511 		bnxt_free_ring_stats(bp);
4512 		if (!(bp->phy_flags & BNXT_PHY_FL_PORT_STATS_NO_RESET) ||
4513 		    test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
4514 			bnxt_free_port_stats(bp);
4515 		bnxt_free_ring_grps(bp);
4516 		bnxt_free_vnics(bp);
4517 		kfree(bp->tx_ring_map);
4518 		bp->tx_ring_map = NULL;
4519 		kfree(bp->tx_ring);
4520 		bp->tx_ring = NULL;
4521 		kfree(bp->rx_ring);
4522 		bp->rx_ring = NULL;
4523 		kfree(bp->bnapi);
4524 		bp->bnapi = NULL;
4525 	} else {
4526 		bnxt_clear_ring_indices(bp);
4527 	}
4528 }
4529 
4530 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
4531 {
4532 	int i, j, rc, size, arr_size;
4533 	void *bnapi;
4534 
4535 	if (irq_re_init) {
4536 		/* Allocate bnapi mem pointer array and mem block for
4537 		 * all queues
4538 		 */
4539 		arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
4540 				bp->cp_nr_rings);
4541 		size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
4542 		bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
4543 		if (!bnapi)
4544 			return -ENOMEM;
4545 
4546 		bp->bnapi = bnapi;
4547 		bnapi += arr_size;
4548 		for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
4549 			bp->bnapi[i] = bnapi;
4550 			bp->bnapi[i]->index = i;
4551 			bp->bnapi[i]->bp = bp;
4552 			if (bp->flags & BNXT_FLAG_CHIP_P5) {
4553 				struct bnxt_cp_ring_info *cpr =
4554 					&bp->bnapi[i]->cp_ring;
4555 
4556 				cpr->cp_ring_struct.ring_mem.flags =
4557 					BNXT_RMEM_RING_PTE_FLAG;
4558 			}
4559 		}
4560 
4561 		bp->rx_ring = kcalloc(bp->rx_nr_rings,
4562 				      sizeof(struct bnxt_rx_ring_info),
4563 				      GFP_KERNEL);
4564 		if (!bp->rx_ring)
4565 			return -ENOMEM;
4566 
4567 		for (i = 0; i < bp->rx_nr_rings; i++) {
4568 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4569 
4570 			if (bp->flags & BNXT_FLAG_CHIP_P5) {
4571 				rxr->rx_ring_struct.ring_mem.flags =
4572 					BNXT_RMEM_RING_PTE_FLAG;
4573 				rxr->rx_agg_ring_struct.ring_mem.flags =
4574 					BNXT_RMEM_RING_PTE_FLAG;
4575 			}
4576 			rxr->bnapi = bp->bnapi[i];
4577 			bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
4578 		}
4579 
4580 		bp->tx_ring = kcalloc(bp->tx_nr_rings,
4581 				      sizeof(struct bnxt_tx_ring_info),
4582 				      GFP_KERNEL);
4583 		if (!bp->tx_ring)
4584 			return -ENOMEM;
4585 
4586 		bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16),
4587 					  GFP_KERNEL);
4588 
4589 		if (!bp->tx_ring_map)
4590 			return -ENOMEM;
4591 
4592 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
4593 			j = 0;
4594 		else
4595 			j = bp->rx_nr_rings;
4596 
4597 		for (i = 0; i < bp->tx_nr_rings; i++, j++) {
4598 			struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
4599 
4600 			if (bp->flags & BNXT_FLAG_CHIP_P5)
4601 				txr->tx_ring_struct.ring_mem.flags =
4602 					BNXT_RMEM_RING_PTE_FLAG;
4603 			txr->bnapi = bp->bnapi[j];
4604 			bp->bnapi[j]->tx_ring = txr;
4605 			bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i;
4606 			if (i >= bp->tx_nr_rings_xdp) {
4607 				txr->txq_index = i - bp->tx_nr_rings_xdp;
4608 				bp->bnapi[j]->tx_int = bnxt_tx_int;
4609 			} else {
4610 				bp->bnapi[j]->flags |= BNXT_NAPI_FLAG_XDP;
4611 				bp->bnapi[j]->tx_int = bnxt_tx_int_xdp;
4612 			}
4613 		}
4614 
4615 		rc = bnxt_alloc_stats(bp);
4616 		if (rc)
4617 			goto alloc_mem_err;
4618 		bnxt_init_stats(bp);
4619 
4620 		rc = bnxt_alloc_ntp_fltrs(bp);
4621 		if (rc)
4622 			goto alloc_mem_err;
4623 
4624 		rc = bnxt_alloc_vnics(bp);
4625 		if (rc)
4626 			goto alloc_mem_err;
4627 	}
4628 
4629 	rc = bnxt_alloc_all_cp_arrays(bp);
4630 	if (rc)
4631 		goto alloc_mem_err;
4632 
4633 	bnxt_init_ring_struct(bp);
4634 
4635 	rc = bnxt_alloc_rx_rings(bp);
4636 	if (rc)
4637 		goto alloc_mem_err;
4638 
4639 	rc = bnxt_alloc_tx_rings(bp);
4640 	if (rc)
4641 		goto alloc_mem_err;
4642 
4643 	rc = bnxt_alloc_cp_rings(bp);
4644 	if (rc)
4645 		goto alloc_mem_err;
4646 
4647 	bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
4648 				  BNXT_VNIC_UCAST_FLAG;
4649 	rc = bnxt_alloc_vnic_attributes(bp);
4650 	if (rc)
4651 		goto alloc_mem_err;
4652 	return 0;
4653 
4654 alloc_mem_err:
4655 	bnxt_free_mem(bp, true);
4656 	return rc;
4657 }
4658 
4659 static void bnxt_disable_int(struct bnxt *bp)
4660 {
4661 	int i;
4662 
4663 	if (!bp->bnapi)
4664 		return;
4665 
4666 	for (i = 0; i < bp->cp_nr_rings; i++) {
4667 		struct bnxt_napi *bnapi = bp->bnapi[i];
4668 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4669 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
4670 
4671 		if (ring->fw_ring_id != INVALID_HW_RING_ID)
4672 			bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
4673 	}
4674 }
4675 
4676 static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n)
4677 {
4678 	struct bnxt_napi *bnapi = bp->bnapi[n];
4679 	struct bnxt_cp_ring_info *cpr;
4680 
4681 	cpr = &bnapi->cp_ring;
4682 	return cpr->cp_ring_struct.map_idx;
4683 }
4684 
4685 static void bnxt_disable_int_sync(struct bnxt *bp)
4686 {
4687 	int i;
4688 
4689 	if (!bp->irq_tbl)
4690 		return;
4691 
4692 	atomic_inc(&bp->intr_sem);
4693 
4694 	bnxt_disable_int(bp);
4695 	for (i = 0; i < bp->cp_nr_rings; i++) {
4696 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
4697 
4698 		synchronize_irq(bp->irq_tbl[map_idx].vector);
4699 	}
4700 }
4701 
4702 static void bnxt_enable_int(struct bnxt *bp)
4703 {
4704 	int i;
4705 
4706 	atomic_set(&bp->intr_sem, 0);
4707 	for (i = 0; i < bp->cp_nr_rings; i++) {
4708 		struct bnxt_napi *bnapi = bp->bnapi[i];
4709 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4710 
4711 		bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons);
4712 	}
4713 }
4714 
4715 int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp, unsigned long *bmap, int bmap_size,
4716 			    bool async_only)
4717 {
4718 	DECLARE_BITMAP(async_events_bmap, 256);
4719 	u32 *events = (u32 *)async_events_bmap;
4720 	struct hwrm_func_drv_rgtr_output *resp;
4721 	struct hwrm_func_drv_rgtr_input *req;
4722 	u32 flags;
4723 	int rc, i;
4724 
4725 	rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_RGTR);
4726 	if (rc)
4727 		return rc;
4728 
4729 	req->enables = cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
4730 				   FUNC_DRV_RGTR_REQ_ENABLES_VER |
4731 				   FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
4732 
4733 	req->os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX);
4734 	flags = FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE;
4735 	if (bp->fw_cap & BNXT_FW_CAP_HOT_RESET)
4736 		flags |= FUNC_DRV_RGTR_REQ_FLAGS_HOT_RESET_SUPPORT;
4737 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
4738 		flags |= FUNC_DRV_RGTR_REQ_FLAGS_ERROR_RECOVERY_SUPPORT |
4739 			 FUNC_DRV_RGTR_REQ_FLAGS_MASTER_SUPPORT;
4740 	req->flags = cpu_to_le32(flags);
4741 	req->ver_maj_8b = DRV_VER_MAJ;
4742 	req->ver_min_8b = DRV_VER_MIN;
4743 	req->ver_upd_8b = DRV_VER_UPD;
4744 	req->ver_maj = cpu_to_le16(DRV_VER_MAJ);
4745 	req->ver_min = cpu_to_le16(DRV_VER_MIN);
4746 	req->ver_upd = cpu_to_le16(DRV_VER_UPD);
4747 
4748 	if (BNXT_PF(bp)) {
4749 		u32 data[8];
4750 		int i;
4751 
4752 		memset(data, 0, sizeof(data));
4753 		for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) {
4754 			u16 cmd = bnxt_vf_req_snif[i];
4755 			unsigned int bit, idx;
4756 
4757 			idx = cmd / 32;
4758 			bit = cmd % 32;
4759 			data[idx] |= 1 << bit;
4760 		}
4761 
4762 		for (i = 0; i < 8; i++)
4763 			req->vf_req_fwd[i] = cpu_to_le32(data[i]);
4764 
4765 		req->enables |=
4766 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
4767 	}
4768 
4769 	if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE)
4770 		req->flags |= cpu_to_le32(
4771 			FUNC_DRV_RGTR_REQ_FLAGS_FLOW_HANDLE_64BIT_MODE);
4772 
4773 	memset(async_events_bmap, 0, sizeof(async_events_bmap));
4774 	for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++) {
4775 		u16 event_id = bnxt_async_events_arr[i];
4776 
4777 		if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY &&
4778 		    !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
4779 			continue;
4780 		if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE &&
4781 		    !bp->ptp_cfg)
4782 			continue;
4783 		__set_bit(bnxt_async_events_arr[i], async_events_bmap);
4784 	}
4785 	if (bmap && bmap_size) {
4786 		for (i = 0; i < bmap_size; i++) {
4787 			if (test_bit(i, bmap))
4788 				__set_bit(i, async_events_bmap);
4789 		}
4790 	}
4791 	for (i = 0; i < 8; i++)
4792 		req->async_event_fwd[i] |= cpu_to_le32(events[i]);
4793 
4794 	if (async_only)
4795 		req->enables =
4796 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
4797 
4798 	resp = hwrm_req_hold(bp, req);
4799 	rc = hwrm_req_send(bp, req);
4800 	if (!rc) {
4801 		set_bit(BNXT_STATE_DRV_REGISTERED, &bp->state);
4802 		if (resp->flags &
4803 		    cpu_to_le32(FUNC_DRV_RGTR_RESP_FLAGS_IF_CHANGE_SUPPORTED))
4804 			bp->fw_cap |= BNXT_FW_CAP_IF_CHANGE;
4805 	}
4806 	hwrm_req_drop(bp, req);
4807 	return rc;
4808 }
4809 
4810 int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
4811 {
4812 	struct hwrm_func_drv_unrgtr_input *req;
4813 	int rc;
4814 
4815 	if (!test_and_clear_bit(BNXT_STATE_DRV_REGISTERED, &bp->state))
4816 		return 0;
4817 
4818 	rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_UNRGTR);
4819 	if (rc)
4820 		return rc;
4821 	return hwrm_req_send(bp, req);
4822 }
4823 
4824 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
4825 {
4826 	struct hwrm_tunnel_dst_port_free_input *req;
4827 	int rc;
4828 
4829 	if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN &&
4830 	    bp->vxlan_fw_dst_port_id == INVALID_HW_RING_ID)
4831 		return 0;
4832 	if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE &&
4833 	    bp->nge_fw_dst_port_id == INVALID_HW_RING_ID)
4834 		return 0;
4835 
4836 	rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_FREE);
4837 	if (rc)
4838 		return rc;
4839 
4840 	req->tunnel_type = tunnel_type;
4841 
4842 	switch (tunnel_type) {
4843 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
4844 		req->tunnel_dst_port_id = cpu_to_le16(bp->vxlan_fw_dst_port_id);
4845 		bp->vxlan_port = 0;
4846 		bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID;
4847 		break;
4848 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
4849 		req->tunnel_dst_port_id = cpu_to_le16(bp->nge_fw_dst_port_id);
4850 		bp->nge_port = 0;
4851 		bp->nge_fw_dst_port_id = INVALID_HW_RING_ID;
4852 		break;
4853 	default:
4854 		break;
4855 	}
4856 
4857 	rc = hwrm_req_send(bp, req);
4858 	if (rc)
4859 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
4860 			   rc);
4861 	return rc;
4862 }
4863 
4864 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
4865 					   u8 tunnel_type)
4866 {
4867 	struct hwrm_tunnel_dst_port_alloc_output *resp;
4868 	struct hwrm_tunnel_dst_port_alloc_input *req;
4869 	int rc;
4870 
4871 	rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_ALLOC);
4872 	if (rc)
4873 		return rc;
4874 
4875 	req->tunnel_type = tunnel_type;
4876 	req->tunnel_dst_port_val = port;
4877 
4878 	resp = hwrm_req_hold(bp, req);
4879 	rc = hwrm_req_send(bp, req);
4880 	if (rc) {
4881 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
4882 			   rc);
4883 		goto err_out;
4884 	}
4885 
4886 	switch (tunnel_type) {
4887 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN:
4888 		bp->vxlan_port = port;
4889 		bp->vxlan_fw_dst_port_id =
4890 			le16_to_cpu(resp->tunnel_dst_port_id);
4891 		break;
4892 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE:
4893 		bp->nge_port = port;
4894 		bp->nge_fw_dst_port_id = le16_to_cpu(resp->tunnel_dst_port_id);
4895 		break;
4896 	default:
4897 		break;
4898 	}
4899 
4900 err_out:
4901 	hwrm_req_drop(bp, req);
4902 	return rc;
4903 }
4904 
4905 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
4906 {
4907 	struct hwrm_cfa_l2_set_rx_mask_input *req;
4908 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4909 	int rc;
4910 
4911 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_SET_RX_MASK);
4912 	if (rc)
4913 		return rc;
4914 
4915 	req->vnic_id = cpu_to_le32(vnic->fw_vnic_id);
4916 	if (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST) {
4917 		req->num_mc_entries = cpu_to_le32(vnic->mc_list_count);
4918 		req->mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
4919 	}
4920 	req->mask = cpu_to_le32(vnic->rx_mask);
4921 	return hwrm_req_send_silent(bp, req);
4922 }
4923 
4924 #ifdef CONFIG_RFS_ACCEL
4925 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
4926 					    struct bnxt_ntuple_filter *fltr)
4927 {
4928 	struct hwrm_cfa_ntuple_filter_free_input *req;
4929 	int rc;
4930 
4931 	rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_FREE);
4932 	if (rc)
4933 		return rc;
4934 
4935 	req->ntuple_filter_id = fltr->filter_id;
4936 	return hwrm_req_send(bp, req);
4937 }
4938 
4939 #define BNXT_NTP_FLTR_FLAGS					\
4940 	(CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID |	\
4941 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE |	\
4942 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR |	\
4943 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE |	\
4944 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR |	\
4945 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK |	\
4946 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR |	\
4947 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK |	\
4948 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL |	\
4949 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT |		\
4950 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK |	\
4951 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT |		\
4952 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK |	\
4953 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
4954 
4955 #define BNXT_NTP_TUNNEL_FLTR_FLAG				\
4956 		CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE
4957 
4958 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
4959 					     struct bnxt_ntuple_filter *fltr)
4960 {
4961 	struct hwrm_cfa_ntuple_filter_alloc_output *resp;
4962 	struct hwrm_cfa_ntuple_filter_alloc_input *req;
4963 	struct flow_keys *keys = &fltr->fkeys;
4964 	struct bnxt_vnic_info *vnic;
4965 	u32 flags = 0;
4966 	int rc;
4967 
4968 	rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_ALLOC);
4969 	if (rc)
4970 		return rc;
4971 
4972 	req->l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx];
4973 
4974 	if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) {
4975 		flags = CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DEST_RFS_RING_IDX;
4976 		req->dst_id = cpu_to_le16(fltr->rxq);
4977 	} else {
4978 		vnic = &bp->vnic_info[fltr->rxq + 1];
4979 		req->dst_id = cpu_to_le16(vnic->fw_vnic_id);
4980 	}
4981 	req->flags = cpu_to_le32(flags);
4982 	req->enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
4983 
4984 	req->ethertype = htons(ETH_P_IP);
4985 	memcpy(req->src_macaddr, fltr->src_mac_addr, ETH_ALEN);
4986 	req->ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
4987 	req->ip_protocol = keys->basic.ip_proto;
4988 
4989 	if (keys->basic.n_proto == htons(ETH_P_IPV6)) {
4990 		int i;
4991 
4992 		req->ethertype = htons(ETH_P_IPV6);
4993 		req->ip_addr_type =
4994 			CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6;
4995 		*(struct in6_addr *)&req->src_ipaddr[0] =
4996 			keys->addrs.v6addrs.src;
4997 		*(struct in6_addr *)&req->dst_ipaddr[0] =
4998 			keys->addrs.v6addrs.dst;
4999 		for (i = 0; i < 4; i++) {
5000 			req->src_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
5001 			req->dst_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
5002 		}
5003 	} else {
5004 		req->src_ipaddr[0] = keys->addrs.v4addrs.src;
5005 		req->src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
5006 		req->dst_ipaddr[0] = keys->addrs.v4addrs.dst;
5007 		req->dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
5008 	}
5009 	if (keys->control.flags & FLOW_DIS_ENCAPSULATION) {
5010 		req->enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG);
5011 		req->tunnel_type =
5012 			CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL;
5013 	}
5014 
5015 	req->src_port = keys->ports.src;
5016 	req->src_port_mask = cpu_to_be16(0xffff);
5017 	req->dst_port = keys->ports.dst;
5018 	req->dst_port_mask = cpu_to_be16(0xffff);
5019 
5020 	resp = hwrm_req_hold(bp, req);
5021 	rc = hwrm_req_send(bp, req);
5022 	if (!rc)
5023 		fltr->filter_id = resp->ntuple_filter_id;
5024 	hwrm_req_drop(bp, req);
5025 	return rc;
5026 }
5027 #endif
5028 
5029 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
5030 				     const u8 *mac_addr)
5031 {
5032 	struct hwrm_cfa_l2_filter_alloc_output *resp;
5033 	struct hwrm_cfa_l2_filter_alloc_input *req;
5034 	int rc;
5035 
5036 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_ALLOC);
5037 	if (rc)
5038 		return rc;
5039 
5040 	req->flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX);
5041 	if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
5042 		req->flags |=
5043 			cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
5044 	req->dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
5045 	req->enables =
5046 		cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
5047 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
5048 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
5049 	memcpy(req->l2_addr, mac_addr, ETH_ALEN);
5050 	req->l2_addr_mask[0] = 0xff;
5051 	req->l2_addr_mask[1] = 0xff;
5052 	req->l2_addr_mask[2] = 0xff;
5053 	req->l2_addr_mask[3] = 0xff;
5054 	req->l2_addr_mask[4] = 0xff;
5055 	req->l2_addr_mask[5] = 0xff;
5056 
5057 	resp = hwrm_req_hold(bp, req);
5058 	rc = hwrm_req_send(bp, req);
5059 	if (!rc)
5060 		bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
5061 							resp->l2_filter_id;
5062 	hwrm_req_drop(bp, req);
5063 	return rc;
5064 }
5065 
5066 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
5067 {
5068 	struct hwrm_cfa_l2_filter_free_input *req;
5069 	u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
5070 	int rc;
5071 
5072 	/* Any associated ntuple filters will also be cleared by firmware. */
5073 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE);
5074 	if (rc)
5075 		return rc;
5076 	hwrm_req_hold(bp, req);
5077 	for (i = 0; i < num_of_vnics; i++) {
5078 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
5079 
5080 		for (j = 0; j < vnic->uc_filter_count; j++) {
5081 			req->l2_filter_id = vnic->fw_l2_filter_id[j];
5082 
5083 			rc = hwrm_req_send(bp, req);
5084 		}
5085 		vnic->uc_filter_count = 0;
5086 	}
5087 	hwrm_req_drop(bp, req);
5088 	return rc;
5089 }
5090 
5091 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
5092 {
5093 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5094 	u16 max_aggs = VNIC_TPA_CFG_REQ_MAX_AGGS_MAX;
5095 	struct hwrm_vnic_tpa_cfg_input *req;
5096 	int rc;
5097 
5098 	if (vnic->fw_vnic_id == INVALID_HW_RING_ID)
5099 		return 0;
5100 
5101 	rc = hwrm_req_init(bp, req, HWRM_VNIC_TPA_CFG);
5102 	if (rc)
5103 		return rc;
5104 
5105 	if (tpa_flags) {
5106 		u16 mss = bp->dev->mtu - 40;
5107 		u32 nsegs, n, segs = 0, flags;
5108 
5109 		flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
5110 			VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
5111 			VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
5112 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
5113 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
5114 		if (tpa_flags & BNXT_FLAG_GRO)
5115 			flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
5116 
5117 		req->flags = cpu_to_le32(flags);
5118 
5119 		req->enables =
5120 			cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
5121 				    VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
5122 				    VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
5123 
5124 		/* Number of segs are log2 units, and first packet is not
5125 		 * included as part of this units.
5126 		 */
5127 		if (mss <= BNXT_RX_PAGE_SIZE) {
5128 			n = BNXT_RX_PAGE_SIZE / mss;
5129 			nsegs = (MAX_SKB_FRAGS - 1) * n;
5130 		} else {
5131 			n = mss / BNXT_RX_PAGE_SIZE;
5132 			if (mss & (BNXT_RX_PAGE_SIZE - 1))
5133 				n++;
5134 			nsegs = (MAX_SKB_FRAGS - n) / n;
5135 		}
5136 
5137 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5138 			segs = MAX_TPA_SEGS_P5;
5139 			max_aggs = bp->max_tpa;
5140 		} else {
5141 			segs = ilog2(nsegs);
5142 		}
5143 		req->max_agg_segs = cpu_to_le16(segs);
5144 		req->max_aggs = cpu_to_le16(max_aggs);
5145 
5146 		req->min_agg_len = cpu_to_le32(512);
5147 	}
5148 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5149 
5150 	return hwrm_req_send(bp, req);
5151 }
5152 
5153 static u16 bnxt_cp_ring_from_grp(struct bnxt *bp, struct bnxt_ring_struct *ring)
5154 {
5155 	struct bnxt_ring_grp_info *grp_info;
5156 
5157 	grp_info = &bp->grp_info[ring->grp_idx];
5158 	return grp_info->cp_fw_ring_id;
5159 }
5160 
5161 static u16 bnxt_cp_ring_for_rx(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
5162 {
5163 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5164 		struct bnxt_napi *bnapi = rxr->bnapi;
5165 		struct bnxt_cp_ring_info *cpr;
5166 
5167 		cpr = bnapi->cp_ring.cp_ring_arr[BNXT_RX_HDL];
5168 		return cpr->cp_ring_struct.fw_ring_id;
5169 	} else {
5170 		return bnxt_cp_ring_from_grp(bp, &rxr->rx_ring_struct);
5171 	}
5172 }
5173 
5174 static u16 bnxt_cp_ring_for_tx(struct bnxt *bp, struct bnxt_tx_ring_info *txr)
5175 {
5176 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5177 		struct bnxt_napi *bnapi = txr->bnapi;
5178 		struct bnxt_cp_ring_info *cpr;
5179 
5180 		cpr = bnapi->cp_ring.cp_ring_arr[BNXT_TX_HDL];
5181 		return cpr->cp_ring_struct.fw_ring_id;
5182 	} else {
5183 		return bnxt_cp_ring_from_grp(bp, &txr->tx_ring_struct);
5184 	}
5185 }
5186 
5187 static int bnxt_alloc_rss_indir_tbl(struct bnxt *bp)
5188 {
5189 	int entries;
5190 
5191 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5192 		entries = BNXT_MAX_RSS_TABLE_ENTRIES_P5;
5193 	else
5194 		entries = HW_HASH_INDEX_SIZE;
5195 
5196 	bp->rss_indir_tbl_entries = entries;
5197 	bp->rss_indir_tbl = kmalloc_array(entries, sizeof(*bp->rss_indir_tbl),
5198 					  GFP_KERNEL);
5199 	if (!bp->rss_indir_tbl)
5200 		return -ENOMEM;
5201 	return 0;
5202 }
5203 
5204 static void bnxt_set_dflt_rss_indir_tbl(struct bnxt *bp)
5205 {
5206 	u16 max_rings, max_entries, pad, i;
5207 
5208 	if (!bp->rx_nr_rings)
5209 		return;
5210 
5211 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5212 		max_rings = bp->rx_nr_rings - 1;
5213 	else
5214 		max_rings = bp->rx_nr_rings;
5215 
5216 	max_entries = bnxt_get_rxfh_indir_size(bp->dev);
5217 
5218 	for (i = 0; i < max_entries; i++)
5219 		bp->rss_indir_tbl[i] = ethtool_rxfh_indir_default(i, max_rings);
5220 
5221 	pad = bp->rss_indir_tbl_entries - max_entries;
5222 	if (pad)
5223 		memset(&bp->rss_indir_tbl[i], 0, pad * sizeof(u16));
5224 }
5225 
5226 static u16 bnxt_get_max_rss_ring(struct bnxt *bp)
5227 {
5228 	u16 i, tbl_size, max_ring = 0;
5229 
5230 	if (!bp->rss_indir_tbl)
5231 		return 0;
5232 
5233 	tbl_size = bnxt_get_rxfh_indir_size(bp->dev);
5234 	for (i = 0; i < tbl_size; i++)
5235 		max_ring = max(max_ring, bp->rss_indir_tbl[i]);
5236 	return max_ring;
5237 }
5238 
5239 int bnxt_get_nr_rss_ctxs(struct bnxt *bp, int rx_rings)
5240 {
5241 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5242 		return DIV_ROUND_UP(rx_rings, BNXT_RSS_TABLE_ENTRIES_P5);
5243 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5244 		return 2;
5245 	return 1;
5246 }
5247 
5248 static void bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic)
5249 {
5250 	bool no_rss = !(vnic->flags & BNXT_VNIC_RSS_FLAG);
5251 	u16 i, j;
5252 
5253 	/* Fill the RSS indirection table with ring group ids */
5254 	for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++) {
5255 		if (!no_rss)
5256 			j = bp->rss_indir_tbl[i];
5257 		vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
5258 	}
5259 }
5260 
5261 static void bnxt_fill_hw_rss_tbl_p5(struct bnxt *bp,
5262 				    struct bnxt_vnic_info *vnic)
5263 {
5264 	__le16 *ring_tbl = vnic->rss_table;
5265 	struct bnxt_rx_ring_info *rxr;
5266 	u16 tbl_size, i;
5267 
5268 	tbl_size = bnxt_get_rxfh_indir_size(bp->dev);
5269 
5270 	for (i = 0; i < tbl_size; i++) {
5271 		u16 ring_id, j;
5272 
5273 		j = bp->rss_indir_tbl[i];
5274 		rxr = &bp->rx_ring[j];
5275 
5276 		ring_id = rxr->rx_ring_struct.fw_ring_id;
5277 		*ring_tbl++ = cpu_to_le16(ring_id);
5278 		ring_id = bnxt_cp_ring_for_rx(bp, rxr);
5279 		*ring_tbl++ = cpu_to_le16(ring_id);
5280 	}
5281 }
5282 
5283 static void
5284 __bnxt_hwrm_vnic_set_rss(struct bnxt *bp, struct hwrm_vnic_rss_cfg_input *req,
5285 			 struct bnxt_vnic_info *vnic)
5286 {
5287 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5288 		bnxt_fill_hw_rss_tbl_p5(bp, vnic);
5289 	else
5290 		bnxt_fill_hw_rss_tbl(bp, vnic);
5291 
5292 	if (bp->rss_hash_delta) {
5293 		req->hash_type = cpu_to_le32(bp->rss_hash_delta);
5294 		if (bp->rss_hash_cfg & bp->rss_hash_delta)
5295 			req->flags |= VNIC_RSS_CFG_REQ_FLAGS_HASH_TYPE_INCLUDE;
5296 		else
5297 			req->flags |= VNIC_RSS_CFG_REQ_FLAGS_HASH_TYPE_EXCLUDE;
5298 	} else {
5299 		req->hash_type = cpu_to_le32(bp->rss_hash_cfg);
5300 	}
5301 	req->hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT;
5302 	req->ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
5303 	req->hash_key_tbl_addr = cpu_to_le64(vnic->rss_hash_key_dma_addr);
5304 }
5305 
5306 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
5307 {
5308 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5309 	struct hwrm_vnic_rss_cfg_input *req;
5310 	int rc;
5311 
5312 	if ((bp->flags & BNXT_FLAG_CHIP_P5) ||
5313 	    vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID)
5314 		return 0;
5315 
5316 	rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG);
5317 	if (rc)
5318 		return rc;
5319 
5320 	if (set_rss)
5321 		__bnxt_hwrm_vnic_set_rss(bp, req, vnic);
5322 	req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
5323 	return hwrm_req_send(bp, req);
5324 }
5325 
5326 static int bnxt_hwrm_vnic_set_rss_p5(struct bnxt *bp, u16 vnic_id, bool set_rss)
5327 {
5328 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5329 	struct hwrm_vnic_rss_cfg_input *req;
5330 	dma_addr_t ring_tbl_map;
5331 	u32 i, nr_ctxs;
5332 	int rc;
5333 
5334 	rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG);
5335 	if (rc)
5336 		return rc;
5337 
5338 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5339 	if (!set_rss)
5340 		return hwrm_req_send(bp, req);
5341 
5342 	__bnxt_hwrm_vnic_set_rss(bp, req, vnic);
5343 	ring_tbl_map = vnic->rss_table_dma_addr;
5344 	nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings);
5345 
5346 	hwrm_req_hold(bp, req);
5347 	for (i = 0; i < nr_ctxs; ring_tbl_map += BNXT_RSS_TABLE_SIZE_P5, i++) {
5348 		req->ring_grp_tbl_addr = cpu_to_le64(ring_tbl_map);
5349 		req->ring_table_pair_index = i;
5350 		req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[i]);
5351 		rc = hwrm_req_send(bp, req);
5352 		if (rc)
5353 			goto exit;
5354 	}
5355 
5356 exit:
5357 	hwrm_req_drop(bp, req);
5358 	return rc;
5359 }
5360 
5361 static void bnxt_hwrm_update_rss_hash_cfg(struct bnxt *bp)
5362 {
5363 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
5364 	struct hwrm_vnic_rss_qcfg_output *resp;
5365 	struct hwrm_vnic_rss_qcfg_input *req;
5366 
5367 	if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_QCFG))
5368 		return;
5369 
5370 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5371 	/* all contexts configured to same hash_type, zero always exists */
5372 	req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
5373 	resp = hwrm_req_hold(bp, req);
5374 	if (!hwrm_req_send(bp, req)) {
5375 		bp->rss_hash_cfg = le32_to_cpu(resp->hash_type) ?: bp->rss_hash_cfg;
5376 		bp->rss_hash_delta = 0;
5377 	}
5378 	hwrm_req_drop(bp, req);
5379 }
5380 
5381 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
5382 {
5383 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5384 	struct hwrm_vnic_plcmodes_cfg_input *req;
5385 	int rc;
5386 
5387 	rc = hwrm_req_init(bp, req, HWRM_VNIC_PLCMODES_CFG);
5388 	if (rc)
5389 		return rc;
5390 
5391 	req->flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT);
5392 	req->enables = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID);
5393 
5394 	if (BNXT_RX_PAGE_MODE(bp)) {
5395 		req->jumbo_thresh = cpu_to_le16(bp->rx_buf_use_size);
5396 	} else {
5397 		req->flags |= cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
5398 					  VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
5399 		req->enables |=
5400 			cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
5401 		req->jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
5402 		req->hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
5403 	}
5404 	req->vnic_id = cpu_to_le32(vnic->fw_vnic_id);
5405 	return hwrm_req_send(bp, req);
5406 }
5407 
5408 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id,
5409 					u16 ctx_idx)
5410 {
5411 	struct hwrm_vnic_rss_cos_lb_ctx_free_input *req;
5412 
5413 	if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_FREE))
5414 		return;
5415 
5416 	req->rss_cos_lb_ctx_id =
5417 		cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]);
5418 
5419 	hwrm_req_send(bp, req);
5420 	bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID;
5421 }
5422 
5423 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
5424 {
5425 	int i, j;
5426 
5427 	for (i = 0; i < bp->nr_vnics; i++) {
5428 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
5429 
5430 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) {
5431 			if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID)
5432 				bnxt_hwrm_vnic_ctx_free_one(bp, i, j);
5433 		}
5434 	}
5435 	bp->rsscos_nr_ctxs = 0;
5436 }
5437 
5438 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx)
5439 {
5440 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp;
5441 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_input *req;
5442 	int rc;
5443 
5444 	rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC);
5445 	if (rc)
5446 		return rc;
5447 
5448 	resp = hwrm_req_hold(bp, req);
5449 	rc = hwrm_req_send(bp, req);
5450 	if (!rc)
5451 		bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] =
5452 			le16_to_cpu(resp->rss_cos_lb_ctx_id);
5453 	hwrm_req_drop(bp, req);
5454 
5455 	return rc;
5456 }
5457 
5458 static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp)
5459 {
5460 	if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP)
5461 		return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE;
5462 	return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE;
5463 }
5464 
5465 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
5466 {
5467 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5468 	struct hwrm_vnic_cfg_input *req;
5469 	unsigned int ring = 0, grp_idx;
5470 	u16 def_vlan = 0;
5471 	int rc;
5472 
5473 	rc = hwrm_req_init(bp, req, HWRM_VNIC_CFG);
5474 	if (rc)
5475 		return rc;
5476 
5477 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5478 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0];
5479 
5480 		req->default_rx_ring_id =
5481 			cpu_to_le16(rxr->rx_ring_struct.fw_ring_id);
5482 		req->default_cmpl_ring_id =
5483 			cpu_to_le16(bnxt_cp_ring_for_rx(bp, rxr));
5484 		req->enables =
5485 			cpu_to_le32(VNIC_CFG_REQ_ENABLES_DEFAULT_RX_RING_ID |
5486 				    VNIC_CFG_REQ_ENABLES_DEFAULT_CMPL_RING_ID);
5487 		goto vnic_mru;
5488 	}
5489 	req->enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP);
5490 	/* Only RSS support for now TBD: COS & LB */
5491 	if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) {
5492 		req->rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
5493 		req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
5494 					   VNIC_CFG_REQ_ENABLES_MRU);
5495 	} else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) {
5496 		req->rss_rule =
5497 			cpu_to_le16(bp->vnic_info[0].fw_rss_cos_lb_ctx[0]);
5498 		req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
5499 					   VNIC_CFG_REQ_ENABLES_MRU);
5500 		req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE);
5501 	} else {
5502 		req->rss_rule = cpu_to_le16(0xffff);
5503 	}
5504 
5505 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) &&
5506 	    (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) {
5507 		req->cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]);
5508 		req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE);
5509 	} else {
5510 		req->cos_rule = cpu_to_le16(0xffff);
5511 	}
5512 
5513 	if (vnic->flags & BNXT_VNIC_RSS_FLAG)
5514 		ring = 0;
5515 	else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
5516 		ring = vnic_id - 1;
5517 	else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp))
5518 		ring = bp->rx_nr_rings - 1;
5519 
5520 	grp_idx = bp->rx_ring[ring].bnapi->index;
5521 	req->dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
5522 	req->lb_rule = cpu_to_le16(0xffff);
5523 vnic_mru:
5524 	req->mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + VLAN_HLEN);
5525 
5526 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5527 #ifdef CONFIG_BNXT_SRIOV
5528 	if (BNXT_VF(bp))
5529 		def_vlan = bp->vf.vlan;
5530 #endif
5531 	if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan)
5532 		req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
5533 	if (!vnic_id && bnxt_ulp_registered(bp->edev))
5534 		req->flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp));
5535 
5536 	return hwrm_req_send(bp, req);
5537 }
5538 
5539 static void bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
5540 {
5541 	if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
5542 		struct hwrm_vnic_free_input *req;
5543 
5544 		if (hwrm_req_init(bp, req, HWRM_VNIC_FREE))
5545 			return;
5546 
5547 		req->vnic_id =
5548 			cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
5549 
5550 		hwrm_req_send(bp, req);
5551 		bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
5552 	}
5553 }
5554 
5555 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
5556 {
5557 	u16 i;
5558 
5559 	for (i = 0; i < bp->nr_vnics; i++)
5560 		bnxt_hwrm_vnic_free_one(bp, i);
5561 }
5562 
5563 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
5564 				unsigned int start_rx_ring_idx,
5565 				unsigned int nr_rings)
5566 {
5567 	unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
5568 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5569 	struct hwrm_vnic_alloc_output *resp;
5570 	struct hwrm_vnic_alloc_input *req;
5571 	int rc;
5572 
5573 	rc = hwrm_req_init(bp, req, HWRM_VNIC_ALLOC);
5574 	if (rc)
5575 		return rc;
5576 
5577 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5578 		goto vnic_no_ring_grps;
5579 
5580 	/* map ring groups to this vnic */
5581 	for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
5582 		grp_idx = bp->rx_ring[i].bnapi->index;
5583 		if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
5584 			netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
5585 				   j, nr_rings);
5586 			break;
5587 		}
5588 		vnic->fw_grp_ids[j] = bp->grp_info[grp_idx].fw_grp_id;
5589 	}
5590 
5591 vnic_no_ring_grps:
5592 	for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++)
5593 		vnic->fw_rss_cos_lb_ctx[i] = INVALID_HW_RING_ID;
5594 	if (vnic_id == 0)
5595 		req->flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
5596 
5597 	resp = hwrm_req_hold(bp, req);
5598 	rc = hwrm_req_send(bp, req);
5599 	if (!rc)
5600 		vnic->fw_vnic_id = le32_to_cpu(resp->vnic_id);
5601 	hwrm_req_drop(bp, req);
5602 	return rc;
5603 }
5604 
5605 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp)
5606 {
5607 	struct hwrm_vnic_qcaps_output *resp;
5608 	struct hwrm_vnic_qcaps_input *req;
5609 	int rc;
5610 
5611 	bp->hw_ring_stats_size = sizeof(struct ctx_hw_stats);
5612 	bp->flags &= ~(BNXT_FLAG_NEW_RSS_CAP | BNXT_FLAG_ROCE_MIRROR_CAP);
5613 	if (bp->hwrm_spec_code < 0x10600)
5614 		return 0;
5615 
5616 	rc = hwrm_req_init(bp, req, HWRM_VNIC_QCAPS);
5617 	if (rc)
5618 		return rc;
5619 
5620 	resp = hwrm_req_hold(bp, req);
5621 	rc = hwrm_req_send(bp, req);
5622 	if (!rc) {
5623 		u32 flags = le32_to_cpu(resp->flags);
5624 
5625 		if (!(bp->flags & BNXT_FLAG_CHIP_P5) &&
5626 		    (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP))
5627 			bp->flags |= BNXT_FLAG_NEW_RSS_CAP;
5628 		if (flags &
5629 		    VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP)
5630 			bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP;
5631 
5632 		/* Older P5 fw before EXT_HW_STATS support did not set
5633 		 * VLAN_STRIP_CAP properly.
5634 		 */
5635 		if ((flags & VNIC_QCAPS_RESP_FLAGS_VLAN_STRIP_CAP) ||
5636 		    (BNXT_CHIP_P5_THOR(bp) &&
5637 		     !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)))
5638 			bp->fw_cap |= BNXT_FW_CAP_VLAN_RX_STRIP;
5639 		if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_HASH_TYPE_DELTA_CAP)
5640 			bp->fw_cap |= BNXT_FW_CAP_RSS_HASH_TYPE_DELTA;
5641 		bp->max_tpa_v2 = le16_to_cpu(resp->max_aggs_supported);
5642 		if (bp->max_tpa_v2) {
5643 			if (BNXT_CHIP_P5_THOR(bp))
5644 				bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5;
5645 			else
5646 				bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5_SR2;
5647 		}
5648 	}
5649 	hwrm_req_drop(bp, req);
5650 	return rc;
5651 }
5652 
5653 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
5654 {
5655 	struct hwrm_ring_grp_alloc_output *resp;
5656 	struct hwrm_ring_grp_alloc_input *req;
5657 	int rc;
5658 	u16 i;
5659 
5660 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5661 		return 0;
5662 
5663 	rc = hwrm_req_init(bp, req, HWRM_RING_GRP_ALLOC);
5664 	if (rc)
5665 		return rc;
5666 
5667 	resp = hwrm_req_hold(bp, req);
5668 	for (i = 0; i < bp->rx_nr_rings; i++) {
5669 		unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
5670 
5671 		req->cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
5672 		req->rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
5673 		req->ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
5674 		req->sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
5675 
5676 		rc = hwrm_req_send(bp, req);
5677 
5678 		if (rc)
5679 			break;
5680 
5681 		bp->grp_info[grp_idx].fw_grp_id =
5682 			le32_to_cpu(resp->ring_group_id);
5683 	}
5684 	hwrm_req_drop(bp, req);
5685 	return rc;
5686 }
5687 
5688 static void bnxt_hwrm_ring_grp_free(struct bnxt *bp)
5689 {
5690 	struct hwrm_ring_grp_free_input *req;
5691 	u16 i;
5692 
5693 	if (!bp->grp_info || (bp->flags & BNXT_FLAG_CHIP_P5))
5694 		return;
5695 
5696 	if (hwrm_req_init(bp, req, HWRM_RING_GRP_FREE))
5697 		return;
5698 
5699 	hwrm_req_hold(bp, req);
5700 	for (i = 0; i < bp->cp_nr_rings; i++) {
5701 		if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
5702 			continue;
5703 		req->ring_group_id =
5704 			cpu_to_le32(bp->grp_info[i].fw_grp_id);
5705 
5706 		hwrm_req_send(bp, req);
5707 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
5708 	}
5709 	hwrm_req_drop(bp, req);
5710 }
5711 
5712 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
5713 				    struct bnxt_ring_struct *ring,
5714 				    u32 ring_type, u32 map_index)
5715 {
5716 	struct hwrm_ring_alloc_output *resp;
5717 	struct hwrm_ring_alloc_input *req;
5718 	struct bnxt_ring_mem_info *rmem = &ring->ring_mem;
5719 	struct bnxt_ring_grp_info *grp_info;
5720 	int rc, err = 0;
5721 	u16 ring_id;
5722 
5723 	rc = hwrm_req_init(bp, req, HWRM_RING_ALLOC);
5724 	if (rc)
5725 		goto exit;
5726 
5727 	req->enables = 0;
5728 	if (rmem->nr_pages > 1) {
5729 		req->page_tbl_addr = cpu_to_le64(rmem->pg_tbl_map);
5730 		/* Page size is in log2 units */
5731 		req->page_size = BNXT_PAGE_SHIFT;
5732 		req->page_tbl_depth = 1;
5733 	} else {
5734 		req->page_tbl_addr =  cpu_to_le64(rmem->dma_arr[0]);
5735 	}
5736 	req->fbo = 0;
5737 	/* Association of ring index with doorbell index and MSIX number */
5738 	req->logical_id = cpu_to_le16(map_index);
5739 
5740 	switch (ring_type) {
5741 	case HWRM_RING_ALLOC_TX: {
5742 		struct bnxt_tx_ring_info *txr;
5743 
5744 		txr = container_of(ring, struct bnxt_tx_ring_info,
5745 				   tx_ring_struct);
5746 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
5747 		/* Association of transmit ring with completion ring */
5748 		grp_info = &bp->grp_info[ring->grp_idx];
5749 		req->cmpl_ring_id = cpu_to_le16(bnxt_cp_ring_for_tx(bp, txr));
5750 		req->length = cpu_to_le32(bp->tx_ring_mask + 1);
5751 		req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5752 		req->queue_id = cpu_to_le16(ring->queue_id);
5753 		break;
5754 	}
5755 	case HWRM_RING_ALLOC_RX:
5756 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
5757 		req->length = cpu_to_le32(bp->rx_ring_mask + 1);
5758 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5759 			u16 flags = 0;
5760 
5761 			/* Association of rx ring with stats context */
5762 			grp_info = &bp->grp_info[ring->grp_idx];
5763 			req->rx_buf_size = cpu_to_le16(bp->rx_buf_use_size);
5764 			req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5765 			req->enables |= cpu_to_le32(
5766 				RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
5767 			if (NET_IP_ALIGN == 2)
5768 				flags = RING_ALLOC_REQ_FLAGS_RX_SOP_PAD;
5769 			req->flags = cpu_to_le16(flags);
5770 		}
5771 		break;
5772 	case HWRM_RING_ALLOC_AGG:
5773 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5774 			req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX_AGG;
5775 			/* Association of agg ring with rx ring */
5776 			grp_info = &bp->grp_info[ring->grp_idx];
5777 			req->rx_ring_id = cpu_to_le16(grp_info->rx_fw_ring_id);
5778 			req->rx_buf_size = cpu_to_le16(BNXT_RX_PAGE_SIZE);
5779 			req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5780 			req->enables |= cpu_to_le32(
5781 				RING_ALLOC_REQ_ENABLES_RX_RING_ID_VALID |
5782 				RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
5783 		} else {
5784 			req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
5785 		}
5786 		req->length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
5787 		break;
5788 	case HWRM_RING_ALLOC_CMPL:
5789 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL;
5790 		req->length = cpu_to_le32(bp->cp_ring_mask + 1);
5791 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5792 			/* Association of cp ring with nq */
5793 			grp_info = &bp->grp_info[map_index];
5794 			req->nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id);
5795 			req->cq_handle = cpu_to_le64(ring->handle);
5796 			req->enables |= cpu_to_le32(
5797 				RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID);
5798 		} else if (bp->flags & BNXT_FLAG_USING_MSIX) {
5799 			req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
5800 		}
5801 		break;
5802 	case HWRM_RING_ALLOC_NQ:
5803 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_NQ;
5804 		req->length = cpu_to_le32(bp->cp_ring_mask + 1);
5805 		if (bp->flags & BNXT_FLAG_USING_MSIX)
5806 			req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
5807 		break;
5808 	default:
5809 		netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
5810 			   ring_type);
5811 		return -1;
5812 	}
5813 
5814 	resp = hwrm_req_hold(bp, req);
5815 	rc = hwrm_req_send(bp, req);
5816 	err = le16_to_cpu(resp->error_code);
5817 	ring_id = le16_to_cpu(resp->ring_id);
5818 	hwrm_req_drop(bp, req);
5819 
5820 exit:
5821 	if (rc || err) {
5822 		netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n",
5823 			   ring_type, rc, err);
5824 		return -EIO;
5825 	}
5826 	ring->fw_ring_id = ring_id;
5827 	return rc;
5828 }
5829 
5830 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx)
5831 {
5832 	int rc;
5833 
5834 	if (BNXT_PF(bp)) {
5835 		struct hwrm_func_cfg_input *req;
5836 
5837 		rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG);
5838 		if (rc)
5839 			return rc;
5840 
5841 		req->fid = cpu_to_le16(0xffff);
5842 		req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
5843 		req->async_event_cr = cpu_to_le16(idx);
5844 		return hwrm_req_send(bp, req);
5845 	} else {
5846 		struct hwrm_func_vf_cfg_input *req;
5847 
5848 		rc = hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG);
5849 		if (rc)
5850 			return rc;
5851 
5852 		req->enables =
5853 			cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
5854 		req->async_event_cr = cpu_to_le16(idx);
5855 		return hwrm_req_send(bp, req);
5856 	}
5857 }
5858 
5859 static void bnxt_set_db(struct bnxt *bp, struct bnxt_db_info *db, u32 ring_type,
5860 			u32 map_idx, u32 xid)
5861 {
5862 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5863 		if (BNXT_PF(bp))
5864 			db->doorbell = bp->bar1 + DB_PF_OFFSET_P5;
5865 		else
5866 			db->doorbell = bp->bar1 + DB_VF_OFFSET_P5;
5867 		switch (ring_type) {
5868 		case HWRM_RING_ALLOC_TX:
5869 			db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SQ;
5870 			break;
5871 		case HWRM_RING_ALLOC_RX:
5872 		case HWRM_RING_ALLOC_AGG:
5873 			db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SRQ;
5874 			break;
5875 		case HWRM_RING_ALLOC_CMPL:
5876 			db->db_key64 = DBR_PATH_L2;
5877 			break;
5878 		case HWRM_RING_ALLOC_NQ:
5879 			db->db_key64 = DBR_PATH_L2;
5880 			break;
5881 		}
5882 		db->db_key64 |= (u64)xid << DBR_XID_SFT;
5883 	} else {
5884 		db->doorbell = bp->bar1 + map_idx * 0x80;
5885 		switch (ring_type) {
5886 		case HWRM_RING_ALLOC_TX:
5887 			db->db_key32 = DB_KEY_TX;
5888 			break;
5889 		case HWRM_RING_ALLOC_RX:
5890 		case HWRM_RING_ALLOC_AGG:
5891 			db->db_key32 = DB_KEY_RX;
5892 			break;
5893 		case HWRM_RING_ALLOC_CMPL:
5894 			db->db_key32 = DB_KEY_CP;
5895 			break;
5896 		}
5897 	}
5898 }
5899 
5900 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
5901 {
5902 	bool agg_rings = !!(bp->flags & BNXT_FLAG_AGG_RINGS);
5903 	int i, rc = 0;
5904 	u32 type;
5905 
5906 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5907 		type = HWRM_RING_ALLOC_NQ;
5908 	else
5909 		type = HWRM_RING_ALLOC_CMPL;
5910 	for (i = 0; i < bp->cp_nr_rings; i++) {
5911 		struct bnxt_napi *bnapi = bp->bnapi[i];
5912 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5913 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
5914 		u32 map_idx = ring->map_idx;
5915 		unsigned int vector;
5916 
5917 		vector = bp->irq_tbl[map_idx].vector;
5918 		disable_irq_nosync(vector);
5919 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5920 		if (rc) {
5921 			enable_irq(vector);
5922 			goto err_out;
5923 		}
5924 		bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id);
5925 		bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
5926 		enable_irq(vector);
5927 		bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
5928 
5929 		if (!i) {
5930 			rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id);
5931 			if (rc)
5932 				netdev_warn(bp->dev, "Failed to set async event completion ring.\n");
5933 		}
5934 	}
5935 
5936 	type = HWRM_RING_ALLOC_TX;
5937 	for (i = 0; i < bp->tx_nr_rings; i++) {
5938 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
5939 		struct bnxt_ring_struct *ring;
5940 		u32 map_idx;
5941 
5942 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5943 			struct bnxt_napi *bnapi = txr->bnapi;
5944 			struct bnxt_cp_ring_info *cpr, *cpr2;
5945 			u32 type2 = HWRM_RING_ALLOC_CMPL;
5946 
5947 			cpr = &bnapi->cp_ring;
5948 			cpr2 = cpr->cp_ring_arr[BNXT_TX_HDL];
5949 			ring = &cpr2->cp_ring_struct;
5950 			ring->handle = BNXT_TX_HDL;
5951 			map_idx = bnapi->index;
5952 			rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
5953 			if (rc)
5954 				goto err_out;
5955 			bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
5956 				    ring->fw_ring_id);
5957 			bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
5958 		}
5959 		ring = &txr->tx_ring_struct;
5960 		map_idx = i;
5961 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5962 		if (rc)
5963 			goto err_out;
5964 		bnxt_set_db(bp, &txr->tx_db, type, map_idx, ring->fw_ring_id);
5965 	}
5966 
5967 	type = HWRM_RING_ALLOC_RX;
5968 	for (i = 0; i < bp->rx_nr_rings; i++) {
5969 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5970 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
5971 		struct bnxt_napi *bnapi = rxr->bnapi;
5972 		u32 map_idx = bnapi->index;
5973 
5974 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5975 		if (rc)
5976 			goto err_out;
5977 		bnxt_set_db(bp, &rxr->rx_db, type, map_idx, ring->fw_ring_id);
5978 		/* If we have agg rings, post agg buffers first. */
5979 		if (!agg_rings)
5980 			bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
5981 		bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
5982 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5983 			struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5984 			u32 type2 = HWRM_RING_ALLOC_CMPL;
5985 			struct bnxt_cp_ring_info *cpr2;
5986 
5987 			cpr2 = cpr->cp_ring_arr[BNXT_RX_HDL];
5988 			ring = &cpr2->cp_ring_struct;
5989 			ring->handle = BNXT_RX_HDL;
5990 			rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
5991 			if (rc)
5992 				goto err_out;
5993 			bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
5994 				    ring->fw_ring_id);
5995 			bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
5996 		}
5997 	}
5998 
5999 	if (agg_rings) {
6000 		type = HWRM_RING_ALLOC_AGG;
6001 		for (i = 0; i < bp->rx_nr_rings; i++) {
6002 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
6003 			struct bnxt_ring_struct *ring =
6004 						&rxr->rx_agg_ring_struct;
6005 			u32 grp_idx = ring->grp_idx;
6006 			u32 map_idx = grp_idx + bp->rx_nr_rings;
6007 
6008 			rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
6009 			if (rc)
6010 				goto err_out;
6011 
6012 			bnxt_set_db(bp, &rxr->rx_agg_db, type, map_idx,
6013 				    ring->fw_ring_id);
6014 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
6015 			bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
6016 			bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
6017 		}
6018 	}
6019 err_out:
6020 	return rc;
6021 }
6022 
6023 static int hwrm_ring_free_send_msg(struct bnxt *bp,
6024 				   struct bnxt_ring_struct *ring,
6025 				   u32 ring_type, int cmpl_ring_id)
6026 {
6027 	struct hwrm_ring_free_output *resp;
6028 	struct hwrm_ring_free_input *req;
6029 	u16 error_code = 0;
6030 	int rc;
6031 
6032 	if (BNXT_NO_FW_ACCESS(bp))
6033 		return 0;
6034 
6035 	rc = hwrm_req_init(bp, req, HWRM_RING_FREE);
6036 	if (rc)
6037 		goto exit;
6038 
6039 	req->cmpl_ring = cpu_to_le16(cmpl_ring_id);
6040 	req->ring_type = ring_type;
6041 	req->ring_id = cpu_to_le16(ring->fw_ring_id);
6042 
6043 	resp = hwrm_req_hold(bp, req);
6044 	rc = hwrm_req_send(bp, req);
6045 	error_code = le16_to_cpu(resp->error_code);
6046 	hwrm_req_drop(bp, req);
6047 exit:
6048 	if (rc || error_code) {
6049 		netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n",
6050 			   ring_type, rc, error_code);
6051 		return -EIO;
6052 	}
6053 	return 0;
6054 }
6055 
6056 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
6057 {
6058 	u32 type;
6059 	int i;
6060 
6061 	if (!bp->bnapi)
6062 		return;
6063 
6064 	for (i = 0; i < bp->tx_nr_rings; i++) {
6065 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
6066 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
6067 
6068 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
6069 			u32 cmpl_ring_id = bnxt_cp_ring_for_tx(bp, txr);
6070 
6071 			hwrm_ring_free_send_msg(bp, ring,
6072 						RING_FREE_REQ_RING_TYPE_TX,
6073 						close_path ? cmpl_ring_id :
6074 						INVALID_HW_RING_ID);
6075 			ring->fw_ring_id = INVALID_HW_RING_ID;
6076 		}
6077 	}
6078 
6079 	for (i = 0; i < bp->rx_nr_rings; i++) {
6080 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
6081 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
6082 		u32 grp_idx = rxr->bnapi->index;
6083 
6084 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
6085 			u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
6086 
6087 			hwrm_ring_free_send_msg(bp, ring,
6088 						RING_FREE_REQ_RING_TYPE_RX,
6089 						close_path ? cmpl_ring_id :
6090 						INVALID_HW_RING_ID);
6091 			ring->fw_ring_id = INVALID_HW_RING_ID;
6092 			bp->grp_info[grp_idx].rx_fw_ring_id =
6093 				INVALID_HW_RING_ID;
6094 		}
6095 	}
6096 
6097 	if (bp->flags & BNXT_FLAG_CHIP_P5)
6098 		type = RING_FREE_REQ_RING_TYPE_RX_AGG;
6099 	else
6100 		type = RING_FREE_REQ_RING_TYPE_RX;
6101 	for (i = 0; i < bp->rx_nr_rings; i++) {
6102 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
6103 		struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
6104 		u32 grp_idx = rxr->bnapi->index;
6105 
6106 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
6107 			u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
6108 
6109 			hwrm_ring_free_send_msg(bp, ring, type,
6110 						close_path ? cmpl_ring_id :
6111 						INVALID_HW_RING_ID);
6112 			ring->fw_ring_id = INVALID_HW_RING_ID;
6113 			bp->grp_info[grp_idx].agg_fw_ring_id =
6114 				INVALID_HW_RING_ID;
6115 		}
6116 	}
6117 
6118 	/* The completion rings are about to be freed.  After that the
6119 	 * IRQ doorbell will not work anymore.  So we need to disable
6120 	 * IRQ here.
6121 	 */
6122 	bnxt_disable_int_sync(bp);
6123 
6124 	if (bp->flags & BNXT_FLAG_CHIP_P5)
6125 		type = RING_FREE_REQ_RING_TYPE_NQ;
6126 	else
6127 		type = RING_FREE_REQ_RING_TYPE_L2_CMPL;
6128 	for (i = 0; i < bp->cp_nr_rings; i++) {
6129 		struct bnxt_napi *bnapi = bp->bnapi[i];
6130 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6131 		struct bnxt_ring_struct *ring;
6132 		int j;
6133 
6134 		for (j = 0; j < 2; j++) {
6135 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
6136 
6137 			if (cpr2) {
6138 				ring = &cpr2->cp_ring_struct;
6139 				if (ring->fw_ring_id == INVALID_HW_RING_ID)
6140 					continue;
6141 				hwrm_ring_free_send_msg(bp, ring,
6142 					RING_FREE_REQ_RING_TYPE_L2_CMPL,
6143 					INVALID_HW_RING_ID);
6144 				ring->fw_ring_id = INVALID_HW_RING_ID;
6145 			}
6146 		}
6147 		ring = &cpr->cp_ring_struct;
6148 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
6149 			hwrm_ring_free_send_msg(bp, ring, type,
6150 						INVALID_HW_RING_ID);
6151 			ring->fw_ring_id = INVALID_HW_RING_ID;
6152 			bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
6153 		}
6154 	}
6155 }
6156 
6157 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
6158 			   bool shared);
6159 
6160 static int bnxt_hwrm_get_rings(struct bnxt *bp)
6161 {
6162 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6163 	struct hwrm_func_qcfg_output *resp;
6164 	struct hwrm_func_qcfg_input *req;
6165 	int rc;
6166 
6167 	if (bp->hwrm_spec_code < 0x10601)
6168 		return 0;
6169 
6170 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
6171 	if (rc)
6172 		return rc;
6173 
6174 	req->fid = cpu_to_le16(0xffff);
6175 	resp = hwrm_req_hold(bp, req);
6176 	rc = hwrm_req_send(bp, req);
6177 	if (rc) {
6178 		hwrm_req_drop(bp, req);
6179 		return rc;
6180 	}
6181 
6182 	hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings);
6183 	if (BNXT_NEW_RM(bp)) {
6184 		u16 cp, stats;
6185 
6186 		hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings);
6187 		hw_resc->resv_hw_ring_grps =
6188 			le32_to_cpu(resp->alloc_hw_ring_grps);
6189 		hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics);
6190 		cp = le16_to_cpu(resp->alloc_cmpl_rings);
6191 		stats = le16_to_cpu(resp->alloc_stat_ctx);
6192 		hw_resc->resv_irqs = cp;
6193 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
6194 			int rx = hw_resc->resv_rx_rings;
6195 			int tx = hw_resc->resv_tx_rings;
6196 
6197 			if (bp->flags & BNXT_FLAG_AGG_RINGS)
6198 				rx >>= 1;
6199 			if (cp < (rx + tx)) {
6200 				bnxt_trim_rings(bp, &rx, &tx, cp, false);
6201 				if (bp->flags & BNXT_FLAG_AGG_RINGS)
6202 					rx <<= 1;
6203 				hw_resc->resv_rx_rings = rx;
6204 				hw_resc->resv_tx_rings = tx;
6205 			}
6206 			hw_resc->resv_irqs = le16_to_cpu(resp->alloc_msix);
6207 			hw_resc->resv_hw_ring_grps = rx;
6208 		}
6209 		hw_resc->resv_cp_rings = cp;
6210 		hw_resc->resv_stat_ctxs = stats;
6211 	}
6212 	hwrm_req_drop(bp, req);
6213 	return 0;
6214 }
6215 
6216 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings)
6217 {
6218 	struct hwrm_func_qcfg_output *resp;
6219 	struct hwrm_func_qcfg_input *req;
6220 	int rc;
6221 
6222 	if (bp->hwrm_spec_code < 0x10601)
6223 		return 0;
6224 
6225 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
6226 	if (rc)
6227 		return rc;
6228 
6229 	req->fid = cpu_to_le16(fid);
6230 	resp = hwrm_req_hold(bp, req);
6231 	rc = hwrm_req_send(bp, req);
6232 	if (!rc)
6233 		*tx_rings = le16_to_cpu(resp->alloc_tx_rings);
6234 
6235 	hwrm_req_drop(bp, req);
6236 	return rc;
6237 }
6238 
6239 static bool bnxt_rfs_supported(struct bnxt *bp);
6240 
6241 static struct hwrm_func_cfg_input *
6242 __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6243 			     int ring_grps, int cp_rings, int stats, int vnics)
6244 {
6245 	struct hwrm_func_cfg_input *req;
6246 	u32 enables = 0;
6247 
6248 	if (hwrm_req_init(bp, req, HWRM_FUNC_CFG))
6249 		return NULL;
6250 
6251 	req->fid = cpu_to_le16(0xffff);
6252 	enables |= tx_rings ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
6253 	req->num_tx_rings = cpu_to_le16(tx_rings);
6254 	if (BNXT_NEW_RM(bp)) {
6255 		enables |= rx_rings ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0;
6256 		enables |= stats ? FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
6257 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
6258 			enables |= cp_rings ? FUNC_CFG_REQ_ENABLES_NUM_MSIX : 0;
6259 			enables |= tx_rings + ring_grps ?
6260 				   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6261 			enables |= rx_rings ?
6262 				FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
6263 		} else {
6264 			enables |= cp_rings ?
6265 				   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6266 			enables |= ring_grps ?
6267 				   FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS |
6268 				   FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
6269 		}
6270 		enables |= vnics ? FUNC_CFG_REQ_ENABLES_NUM_VNICS : 0;
6271 
6272 		req->num_rx_rings = cpu_to_le16(rx_rings);
6273 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
6274 			req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps);
6275 			req->num_msix = cpu_to_le16(cp_rings);
6276 			req->num_rsscos_ctxs =
6277 				cpu_to_le16(DIV_ROUND_UP(ring_grps, 64));
6278 		} else {
6279 			req->num_cmpl_rings = cpu_to_le16(cp_rings);
6280 			req->num_hw_ring_grps = cpu_to_le16(ring_grps);
6281 			req->num_rsscos_ctxs = cpu_to_le16(1);
6282 			if (!(bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
6283 			    bnxt_rfs_supported(bp))
6284 				req->num_rsscos_ctxs =
6285 					cpu_to_le16(ring_grps + 1);
6286 		}
6287 		req->num_stat_ctxs = cpu_to_le16(stats);
6288 		req->num_vnics = cpu_to_le16(vnics);
6289 	}
6290 	req->enables = cpu_to_le32(enables);
6291 	return req;
6292 }
6293 
6294 static struct hwrm_func_vf_cfg_input *
6295 __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6296 			     int ring_grps, int cp_rings, int stats, int vnics)
6297 {
6298 	struct hwrm_func_vf_cfg_input *req;
6299 	u32 enables = 0;
6300 
6301 	if (hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG))
6302 		return NULL;
6303 
6304 	enables |= tx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
6305 	enables |= rx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS |
6306 			      FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
6307 	enables |= stats ? FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
6308 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
6309 		enables |= tx_rings + ring_grps ?
6310 			   FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6311 	} else {
6312 		enables |= cp_rings ?
6313 			   FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6314 		enables |= ring_grps ?
6315 			   FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0;
6316 	}
6317 	enables |= vnics ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0;
6318 	enables |= FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS;
6319 
6320 	req->num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX);
6321 	req->num_tx_rings = cpu_to_le16(tx_rings);
6322 	req->num_rx_rings = cpu_to_le16(rx_rings);
6323 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
6324 		req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps);
6325 		req->num_rsscos_ctxs = cpu_to_le16(DIV_ROUND_UP(ring_grps, 64));
6326 	} else {
6327 		req->num_cmpl_rings = cpu_to_le16(cp_rings);
6328 		req->num_hw_ring_grps = cpu_to_le16(ring_grps);
6329 		req->num_rsscos_ctxs = cpu_to_le16(BNXT_VF_MAX_RSS_CTX);
6330 	}
6331 	req->num_stat_ctxs = cpu_to_le16(stats);
6332 	req->num_vnics = cpu_to_le16(vnics);
6333 
6334 	req->enables = cpu_to_le32(enables);
6335 	return req;
6336 }
6337 
6338 static int
6339 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6340 			   int ring_grps, int cp_rings, int stats, int vnics)
6341 {
6342 	struct hwrm_func_cfg_input *req;
6343 	int rc;
6344 
6345 	req = __bnxt_hwrm_reserve_pf_rings(bp, tx_rings, rx_rings, ring_grps,
6346 					   cp_rings, stats, vnics);
6347 	if (!req)
6348 		return -ENOMEM;
6349 
6350 	if (!req->enables) {
6351 		hwrm_req_drop(bp, req);
6352 		return 0;
6353 	}
6354 
6355 	rc = hwrm_req_send(bp, req);
6356 	if (rc)
6357 		return rc;
6358 
6359 	if (bp->hwrm_spec_code < 0x10601)
6360 		bp->hw_resc.resv_tx_rings = tx_rings;
6361 
6362 	return bnxt_hwrm_get_rings(bp);
6363 }
6364 
6365 static int
6366 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6367 			   int ring_grps, int cp_rings, int stats, int vnics)
6368 {
6369 	struct hwrm_func_vf_cfg_input *req;
6370 	int rc;
6371 
6372 	if (!BNXT_NEW_RM(bp)) {
6373 		bp->hw_resc.resv_tx_rings = tx_rings;
6374 		return 0;
6375 	}
6376 
6377 	req = __bnxt_hwrm_reserve_vf_rings(bp, tx_rings, rx_rings, ring_grps,
6378 					   cp_rings, stats, vnics);
6379 	if (!req)
6380 		return -ENOMEM;
6381 
6382 	rc = hwrm_req_send(bp, req);
6383 	if (rc)
6384 		return rc;
6385 
6386 	return bnxt_hwrm_get_rings(bp);
6387 }
6388 
6389 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, int tx, int rx, int grp,
6390 				   int cp, int stat, int vnic)
6391 {
6392 	if (BNXT_PF(bp))
6393 		return bnxt_hwrm_reserve_pf_rings(bp, tx, rx, grp, cp, stat,
6394 						  vnic);
6395 	else
6396 		return bnxt_hwrm_reserve_vf_rings(bp, tx, rx, grp, cp, stat,
6397 						  vnic);
6398 }
6399 
6400 int bnxt_nq_rings_in_use(struct bnxt *bp)
6401 {
6402 	int cp = bp->cp_nr_rings;
6403 	int ulp_msix, ulp_base;
6404 
6405 	ulp_msix = bnxt_get_ulp_msix_num(bp);
6406 	if (ulp_msix) {
6407 		ulp_base = bnxt_get_ulp_msix_base(bp);
6408 		cp += ulp_msix;
6409 		if ((ulp_base + ulp_msix) > cp)
6410 			cp = ulp_base + ulp_msix;
6411 	}
6412 	return cp;
6413 }
6414 
6415 static int bnxt_cp_rings_in_use(struct bnxt *bp)
6416 {
6417 	int cp;
6418 
6419 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
6420 		return bnxt_nq_rings_in_use(bp);
6421 
6422 	cp = bp->tx_nr_rings + bp->rx_nr_rings;
6423 	return cp;
6424 }
6425 
6426 static int bnxt_get_func_stat_ctxs(struct bnxt *bp)
6427 {
6428 	int ulp_stat = bnxt_get_ulp_stat_ctxs(bp);
6429 	int cp = bp->cp_nr_rings;
6430 
6431 	if (!ulp_stat)
6432 		return cp;
6433 
6434 	if (bnxt_nq_rings_in_use(bp) > cp + bnxt_get_ulp_msix_num(bp))
6435 		return bnxt_get_ulp_msix_base(bp) + ulp_stat;
6436 
6437 	return cp + ulp_stat;
6438 }
6439 
6440 /* Check if a default RSS map needs to be setup.  This function is only
6441  * used on older firmware that does not require reserving RX rings.
6442  */
6443 static void bnxt_check_rss_tbl_no_rmgr(struct bnxt *bp)
6444 {
6445 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6446 
6447 	/* The RSS map is valid for RX rings set to resv_rx_rings */
6448 	if (hw_resc->resv_rx_rings != bp->rx_nr_rings) {
6449 		hw_resc->resv_rx_rings = bp->rx_nr_rings;
6450 		if (!netif_is_rxfh_configured(bp->dev))
6451 			bnxt_set_dflt_rss_indir_tbl(bp);
6452 	}
6453 }
6454 
6455 static bool bnxt_need_reserve_rings(struct bnxt *bp)
6456 {
6457 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6458 	int cp = bnxt_cp_rings_in_use(bp);
6459 	int nq = bnxt_nq_rings_in_use(bp);
6460 	int rx = bp->rx_nr_rings, stat;
6461 	int vnic = 1, grp = rx;
6462 
6463 	if (hw_resc->resv_tx_rings != bp->tx_nr_rings &&
6464 	    bp->hwrm_spec_code >= 0x10601)
6465 		return true;
6466 
6467 	/* Old firmware does not need RX ring reservations but we still
6468 	 * need to setup a default RSS map when needed.  With new firmware
6469 	 * we go through RX ring reservations first and then set up the
6470 	 * RSS map for the successfully reserved RX rings when needed.
6471 	 */
6472 	if (!BNXT_NEW_RM(bp)) {
6473 		bnxt_check_rss_tbl_no_rmgr(bp);
6474 		return false;
6475 	}
6476 	if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5))
6477 		vnic = rx + 1;
6478 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
6479 		rx <<= 1;
6480 	stat = bnxt_get_func_stat_ctxs(bp);
6481 	if (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp ||
6482 	    hw_resc->resv_vnics != vnic || hw_resc->resv_stat_ctxs != stat ||
6483 	    (hw_resc->resv_hw_ring_grps != grp &&
6484 	     !(bp->flags & BNXT_FLAG_CHIP_P5)))
6485 		return true;
6486 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && BNXT_PF(bp) &&
6487 	    hw_resc->resv_irqs != nq)
6488 		return true;
6489 	return false;
6490 }
6491 
6492 static int __bnxt_reserve_rings(struct bnxt *bp)
6493 {
6494 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6495 	int cp = bnxt_nq_rings_in_use(bp);
6496 	int tx = bp->tx_nr_rings;
6497 	int rx = bp->rx_nr_rings;
6498 	int grp, rx_rings, rc;
6499 	int vnic = 1, stat;
6500 	bool sh = false;
6501 
6502 	if (!bnxt_need_reserve_rings(bp))
6503 		return 0;
6504 
6505 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
6506 		sh = true;
6507 	if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5))
6508 		vnic = rx + 1;
6509 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
6510 		rx <<= 1;
6511 	grp = bp->rx_nr_rings;
6512 	stat = bnxt_get_func_stat_ctxs(bp);
6513 
6514 	rc = bnxt_hwrm_reserve_rings(bp, tx, rx, grp, cp, stat, vnic);
6515 	if (rc)
6516 		return rc;
6517 
6518 	tx = hw_resc->resv_tx_rings;
6519 	if (BNXT_NEW_RM(bp)) {
6520 		rx = hw_resc->resv_rx_rings;
6521 		cp = hw_resc->resv_irqs;
6522 		grp = hw_resc->resv_hw_ring_grps;
6523 		vnic = hw_resc->resv_vnics;
6524 		stat = hw_resc->resv_stat_ctxs;
6525 	}
6526 
6527 	rx_rings = rx;
6528 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
6529 		if (rx >= 2) {
6530 			rx_rings = rx >> 1;
6531 		} else {
6532 			if (netif_running(bp->dev))
6533 				return -ENOMEM;
6534 
6535 			bp->flags &= ~BNXT_FLAG_AGG_RINGS;
6536 			bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
6537 			bp->dev->hw_features &= ~NETIF_F_LRO;
6538 			bp->dev->features &= ~NETIF_F_LRO;
6539 			bnxt_set_ring_params(bp);
6540 		}
6541 	}
6542 	rx_rings = min_t(int, rx_rings, grp);
6543 	cp = min_t(int, cp, bp->cp_nr_rings);
6544 	if (stat > bnxt_get_ulp_stat_ctxs(bp))
6545 		stat -= bnxt_get_ulp_stat_ctxs(bp);
6546 	cp = min_t(int, cp, stat);
6547 	rc = bnxt_trim_rings(bp, &rx_rings, &tx, cp, sh);
6548 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
6549 		rx = rx_rings << 1;
6550 	cp = sh ? max_t(int, tx, rx_rings) : tx + rx_rings;
6551 	bp->tx_nr_rings = tx;
6552 
6553 	/* If we cannot reserve all the RX rings, reset the RSS map only
6554 	 * if absolutely necessary
6555 	 */
6556 	if (rx_rings != bp->rx_nr_rings) {
6557 		netdev_warn(bp->dev, "Able to reserve only %d out of %d requested RX rings\n",
6558 			    rx_rings, bp->rx_nr_rings);
6559 		if (netif_is_rxfh_configured(bp->dev) &&
6560 		    (bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings) !=
6561 		     bnxt_get_nr_rss_ctxs(bp, rx_rings) ||
6562 		     bnxt_get_max_rss_ring(bp) >= rx_rings)) {
6563 			netdev_warn(bp->dev, "RSS table entries reverting to default\n");
6564 			bp->dev->priv_flags &= ~IFF_RXFH_CONFIGURED;
6565 		}
6566 	}
6567 	bp->rx_nr_rings = rx_rings;
6568 	bp->cp_nr_rings = cp;
6569 
6570 	if (!tx || !rx || !cp || !grp || !vnic || !stat)
6571 		return -ENOMEM;
6572 
6573 	if (!netif_is_rxfh_configured(bp->dev))
6574 		bnxt_set_dflt_rss_indir_tbl(bp);
6575 
6576 	return rc;
6577 }
6578 
6579 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6580 				    int ring_grps, int cp_rings, int stats,
6581 				    int vnics)
6582 {
6583 	struct hwrm_func_vf_cfg_input *req;
6584 	u32 flags;
6585 
6586 	if (!BNXT_NEW_RM(bp))
6587 		return 0;
6588 
6589 	req = __bnxt_hwrm_reserve_vf_rings(bp, tx_rings, rx_rings, ring_grps,
6590 					   cp_rings, stats, vnics);
6591 	flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST |
6592 		FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST |
6593 		FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
6594 		FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
6595 		FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST |
6596 		FUNC_VF_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST;
6597 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
6598 		flags |= FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
6599 
6600 	req->flags = cpu_to_le32(flags);
6601 	return hwrm_req_send_silent(bp, req);
6602 }
6603 
6604 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6605 				    int ring_grps, int cp_rings, int stats,
6606 				    int vnics)
6607 {
6608 	struct hwrm_func_cfg_input *req;
6609 	u32 flags;
6610 
6611 	req = __bnxt_hwrm_reserve_pf_rings(bp, tx_rings, rx_rings, ring_grps,
6612 					   cp_rings, stats, vnics);
6613 	flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST;
6614 	if (BNXT_NEW_RM(bp)) {
6615 		flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST |
6616 			 FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
6617 			 FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
6618 			 FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST;
6619 		if (bp->flags & BNXT_FLAG_CHIP_P5)
6620 			flags |= FUNC_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST |
6621 				 FUNC_CFG_REQ_FLAGS_NQ_ASSETS_TEST;
6622 		else
6623 			flags |= FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
6624 	}
6625 
6626 	req->flags = cpu_to_le32(flags);
6627 	return hwrm_req_send_silent(bp, req);
6628 }
6629 
6630 static int bnxt_hwrm_check_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6631 				 int ring_grps, int cp_rings, int stats,
6632 				 int vnics)
6633 {
6634 	if (bp->hwrm_spec_code < 0x10801)
6635 		return 0;
6636 
6637 	if (BNXT_PF(bp))
6638 		return bnxt_hwrm_check_pf_rings(bp, tx_rings, rx_rings,
6639 						ring_grps, cp_rings, stats,
6640 						vnics);
6641 
6642 	return bnxt_hwrm_check_vf_rings(bp, tx_rings, rx_rings, ring_grps,
6643 					cp_rings, stats, vnics);
6644 }
6645 
6646 static void bnxt_hwrm_coal_params_qcaps(struct bnxt *bp)
6647 {
6648 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6649 	struct hwrm_ring_aggint_qcaps_output *resp;
6650 	struct hwrm_ring_aggint_qcaps_input *req;
6651 	int rc;
6652 
6653 	coal_cap->cmpl_params = BNXT_LEGACY_COAL_CMPL_PARAMS;
6654 	coal_cap->num_cmpl_dma_aggr_max = 63;
6655 	coal_cap->num_cmpl_dma_aggr_during_int_max = 63;
6656 	coal_cap->cmpl_aggr_dma_tmr_max = 65535;
6657 	coal_cap->cmpl_aggr_dma_tmr_during_int_max = 65535;
6658 	coal_cap->int_lat_tmr_min_max = 65535;
6659 	coal_cap->int_lat_tmr_max_max = 65535;
6660 	coal_cap->num_cmpl_aggr_int_max = 65535;
6661 	coal_cap->timer_units = 80;
6662 
6663 	if (bp->hwrm_spec_code < 0x10902)
6664 		return;
6665 
6666 	if (hwrm_req_init(bp, req, HWRM_RING_AGGINT_QCAPS))
6667 		return;
6668 
6669 	resp = hwrm_req_hold(bp, req);
6670 	rc = hwrm_req_send_silent(bp, req);
6671 	if (!rc) {
6672 		coal_cap->cmpl_params = le32_to_cpu(resp->cmpl_params);
6673 		coal_cap->nq_params = le32_to_cpu(resp->nq_params);
6674 		coal_cap->num_cmpl_dma_aggr_max =
6675 			le16_to_cpu(resp->num_cmpl_dma_aggr_max);
6676 		coal_cap->num_cmpl_dma_aggr_during_int_max =
6677 			le16_to_cpu(resp->num_cmpl_dma_aggr_during_int_max);
6678 		coal_cap->cmpl_aggr_dma_tmr_max =
6679 			le16_to_cpu(resp->cmpl_aggr_dma_tmr_max);
6680 		coal_cap->cmpl_aggr_dma_tmr_during_int_max =
6681 			le16_to_cpu(resp->cmpl_aggr_dma_tmr_during_int_max);
6682 		coal_cap->int_lat_tmr_min_max =
6683 			le16_to_cpu(resp->int_lat_tmr_min_max);
6684 		coal_cap->int_lat_tmr_max_max =
6685 			le16_to_cpu(resp->int_lat_tmr_max_max);
6686 		coal_cap->num_cmpl_aggr_int_max =
6687 			le16_to_cpu(resp->num_cmpl_aggr_int_max);
6688 		coal_cap->timer_units = le16_to_cpu(resp->timer_units);
6689 	}
6690 	hwrm_req_drop(bp, req);
6691 }
6692 
6693 static u16 bnxt_usec_to_coal_tmr(struct bnxt *bp, u16 usec)
6694 {
6695 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6696 
6697 	return usec * 1000 / coal_cap->timer_units;
6698 }
6699 
6700 static void bnxt_hwrm_set_coal_params(struct bnxt *bp,
6701 	struct bnxt_coal *hw_coal,
6702 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
6703 {
6704 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6705 	u16 val, tmr, max, flags = hw_coal->flags;
6706 	u32 cmpl_params = coal_cap->cmpl_params;
6707 
6708 	max = hw_coal->bufs_per_record * 128;
6709 	if (hw_coal->budget)
6710 		max = hw_coal->bufs_per_record * hw_coal->budget;
6711 	max = min_t(u16, max, coal_cap->num_cmpl_aggr_int_max);
6712 
6713 	val = clamp_t(u16, hw_coal->coal_bufs, 1, max);
6714 	req->num_cmpl_aggr_int = cpu_to_le16(val);
6715 
6716 	val = min_t(u16, val, coal_cap->num_cmpl_dma_aggr_max);
6717 	req->num_cmpl_dma_aggr = cpu_to_le16(val);
6718 
6719 	val = clamp_t(u16, hw_coal->coal_bufs_irq, 1,
6720 		      coal_cap->num_cmpl_dma_aggr_during_int_max);
6721 	req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val);
6722 
6723 	tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks);
6724 	tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_max_max);
6725 	req->int_lat_tmr_max = cpu_to_le16(tmr);
6726 
6727 	/* min timer set to 1/2 of interrupt timer */
6728 	if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_INT_LAT_TMR_MIN) {
6729 		val = tmr / 2;
6730 		val = clamp_t(u16, val, 1, coal_cap->int_lat_tmr_min_max);
6731 		req->int_lat_tmr_min = cpu_to_le16(val);
6732 		req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
6733 	}
6734 
6735 	/* buf timer set to 1/4 of interrupt timer */
6736 	val = clamp_t(u16, tmr / 4, 1, coal_cap->cmpl_aggr_dma_tmr_max);
6737 	req->cmpl_aggr_dma_tmr = cpu_to_le16(val);
6738 
6739 	if (cmpl_params &
6740 	    RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_NUM_CMPL_DMA_AGGR_DURING_INT) {
6741 		tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks_irq);
6742 		val = clamp_t(u16, tmr, 1,
6743 			      coal_cap->cmpl_aggr_dma_tmr_during_int_max);
6744 		req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(val);
6745 		req->enables |=
6746 			cpu_to_le16(BNXT_COAL_CMPL_AGGR_TMR_DURING_INT_ENABLE);
6747 	}
6748 
6749 	if ((cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_RING_IDLE) &&
6750 	    hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh)
6751 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
6752 	req->flags = cpu_to_le16(flags);
6753 	req->enables |= cpu_to_le16(BNXT_COAL_CMPL_ENABLES);
6754 }
6755 
6756 static int __bnxt_hwrm_set_coal_nq(struct bnxt *bp, struct bnxt_napi *bnapi,
6757 				   struct bnxt_coal *hw_coal)
6758 {
6759 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req;
6760 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6761 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6762 	u32 nq_params = coal_cap->nq_params;
6763 	u16 tmr;
6764 	int rc;
6765 
6766 	if (!(nq_params & RING_AGGINT_QCAPS_RESP_NQ_PARAMS_INT_LAT_TMR_MIN))
6767 		return 0;
6768 
6769 	rc = hwrm_req_init(bp, req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
6770 	if (rc)
6771 		return rc;
6772 
6773 	req->ring_id = cpu_to_le16(cpr->cp_ring_struct.fw_ring_id);
6774 	req->flags =
6775 		cpu_to_le16(RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_IS_NQ);
6776 
6777 	tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks) / 2;
6778 	tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_min_max);
6779 	req->int_lat_tmr_min = cpu_to_le16(tmr);
6780 	req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
6781 	return hwrm_req_send(bp, req);
6782 }
6783 
6784 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi)
6785 {
6786 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx;
6787 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6788 	struct bnxt_coal coal;
6789 	int rc;
6790 
6791 	/* Tick values in micro seconds.
6792 	 * 1 coal_buf x bufs_per_record = 1 completion record.
6793 	 */
6794 	memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal));
6795 
6796 	coal.coal_ticks = cpr->rx_ring_coal.coal_ticks;
6797 	coal.coal_bufs = cpr->rx_ring_coal.coal_bufs;
6798 
6799 	if (!bnapi->rx_ring)
6800 		return -ENODEV;
6801 
6802 	rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
6803 	if (rc)
6804 		return rc;
6805 
6806 	bnxt_hwrm_set_coal_params(bp, &coal, req_rx);
6807 
6808 	req_rx->ring_id = cpu_to_le16(bnxt_cp_ring_for_rx(bp, bnapi->rx_ring));
6809 
6810 	return hwrm_req_send(bp, req_rx);
6811 }
6812 
6813 int bnxt_hwrm_set_coal(struct bnxt *bp)
6814 {
6815 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx, *req_tx,
6816 							   *req;
6817 	int i, rc;
6818 
6819 	rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
6820 	if (rc)
6821 		return rc;
6822 
6823 	rc = hwrm_req_init(bp, req_tx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
6824 	if (rc) {
6825 		hwrm_req_drop(bp, req_rx);
6826 		return rc;
6827 	}
6828 
6829 	bnxt_hwrm_set_coal_params(bp, &bp->rx_coal, req_rx);
6830 	bnxt_hwrm_set_coal_params(bp, &bp->tx_coal, req_tx);
6831 
6832 	hwrm_req_hold(bp, req_rx);
6833 	hwrm_req_hold(bp, req_tx);
6834 	for (i = 0; i < bp->cp_nr_rings; i++) {
6835 		struct bnxt_napi *bnapi = bp->bnapi[i];
6836 		struct bnxt_coal *hw_coal;
6837 		u16 ring_id;
6838 
6839 		req = req_rx;
6840 		if (!bnapi->rx_ring) {
6841 			ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring);
6842 			req = req_tx;
6843 		} else {
6844 			ring_id = bnxt_cp_ring_for_rx(bp, bnapi->rx_ring);
6845 		}
6846 		req->ring_id = cpu_to_le16(ring_id);
6847 
6848 		rc = hwrm_req_send(bp, req);
6849 		if (rc)
6850 			break;
6851 
6852 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
6853 			continue;
6854 
6855 		if (bnapi->rx_ring && bnapi->tx_ring) {
6856 			req = req_tx;
6857 			ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring);
6858 			req->ring_id = cpu_to_le16(ring_id);
6859 			rc = hwrm_req_send(bp, req);
6860 			if (rc)
6861 				break;
6862 		}
6863 		if (bnapi->rx_ring)
6864 			hw_coal = &bp->rx_coal;
6865 		else
6866 			hw_coal = &bp->tx_coal;
6867 		__bnxt_hwrm_set_coal_nq(bp, bnapi, hw_coal);
6868 	}
6869 	hwrm_req_drop(bp, req_rx);
6870 	hwrm_req_drop(bp, req_tx);
6871 	return rc;
6872 }
6873 
6874 static void bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
6875 {
6876 	struct hwrm_stat_ctx_clr_stats_input *req0 = NULL;
6877 	struct hwrm_stat_ctx_free_input *req;
6878 	int i;
6879 
6880 	if (!bp->bnapi)
6881 		return;
6882 
6883 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
6884 		return;
6885 
6886 	if (hwrm_req_init(bp, req, HWRM_STAT_CTX_FREE))
6887 		return;
6888 	if (BNXT_FW_MAJ(bp) <= 20) {
6889 		if (hwrm_req_init(bp, req0, HWRM_STAT_CTX_CLR_STATS)) {
6890 			hwrm_req_drop(bp, req);
6891 			return;
6892 		}
6893 		hwrm_req_hold(bp, req0);
6894 	}
6895 	hwrm_req_hold(bp, req);
6896 	for (i = 0; i < bp->cp_nr_rings; i++) {
6897 		struct bnxt_napi *bnapi = bp->bnapi[i];
6898 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6899 
6900 		if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
6901 			req->stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
6902 			if (req0) {
6903 				req0->stat_ctx_id = req->stat_ctx_id;
6904 				hwrm_req_send(bp, req0);
6905 			}
6906 			hwrm_req_send(bp, req);
6907 
6908 			cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
6909 		}
6910 	}
6911 	hwrm_req_drop(bp, req);
6912 	if (req0)
6913 		hwrm_req_drop(bp, req0);
6914 }
6915 
6916 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
6917 {
6918 	struct hwrm_stat_ctx_alloc_output *resp;
6919 	struct hwrm_stat_ctx_alloc_input *req;
6920 	int rc, i;
6921 
6922 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
6923 		return 0;
6924 
6925 	rc = hwrm_req_init(bp, req, HWRM_STAT_CTX_ALLOC);
6926 	if (rc)
6927 		return rc;
6928 
6929 	req->stats_dma_length = cpu_to_le16(bp->hw_ring_stats_size);
6930 	req->update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000);
6931 
6932 	resp = hwrm_req_hold(bp, req);
6933 	for (i = 0; i < bp->cp_nr_rings; i++) {
6934 		struct bnxt_napi *bnapi = bp->bnapi[i];
6935 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6936 
6937 		req->stats_dma_addr = cpu_to_le64(cpr->stats.hw_stats_map);
6938 
6939 		rc = hwrm_req_send(bp, req);
6940 		if (rc)
6941 			break;
6942 
6943 		cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
6944 
6945 		bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
6946 	}
6947 	hwrm_req_drop(bp, req);
6948 	return rc;
6949 }
6950 
6951 static int bnxt_hwrm_func_qcfg(struct bnxt *bp)
6952 {
6953 	struct hwrm_func_qcfg_output *resp;
6954 	struct hwrm_func_qcfg_input *req;
6955 	u32 min_db_offset = 0;
6956 	u16 flags;
6957 	int rc;
6958 
6959 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
6960 	if (rc)
6961 		return rc;
6962 
6963 	req->fid = cpu_to_le16(0xffff);
6964 	resp = hwrm_req_hold(bp, req);
6965 	rc = hwrm_req_send(bp, req);
6966 	if (rc)
6967 		goto func_qcfg_exit;
6968 
6969 #ifdef CONFIG_BNXT_SRIOV
6970 	if (BNXT_VF(bp)) {
6971 		struct bnxt_vf_info *vf = &bp->vf;
6972 
6973 		vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK;
6974 	} else {
6975 		bp->pf.registered_vfs = le16_to_cpu(resp->registered_vfs);
6976 	}
6977 #endif
6978 	flags = le16_to_cpu(resp->flags);
6979 	if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED |
6980 		     FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) {
6981 		bp->fw_cap |= BNXT_FW_CAP_LLDP_AGENT;
6982 		if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED)
6983 			bp->fw_cap |= BNXT_FW_CAP_DCBX_AGENT;
6984 	}
6985 	if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST))
6986 		bp->flags |= BNXT_FLAG_MULTI_HOST;
6987 
6988 	if (flags & FUNC_QCFG_RESP_FLAGS_RING_MONITOR_ENABLED)
6989 		bp->fw_cap |= BNXT_FW_CAP_RING_MONITOR;
6990 
6991 	switch (resp->port_partition_type) {
6992 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0:
6993 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5:
6994 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0:
6995 		bp->port_partition_type = resp->port_partition_type;
6996 		break;
6997 	}
6998 	if (bp->hwrm_spec_code < 0x10707 ||
6999 	    resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB)
7000 		bp->br_mode = BRIDGE_MODE_VEB;
7001 	else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA)
7002 		bp->br_mode = BRIDGE_MODE_VEPA;
7003 	else
7004 		bp->br_mode = BRIDGE_MODE_UNDEF;
7005 
7006 	bp->max_mtu = le16_to_cpu(resp->max_mtu_configured);
7007 	if (!bp->max_mtu)
7008 		bp->max_mtu = BNXT_MAX_MTU;
7009 
7010 	if (bp->db_size)
7011 		goto func_qcfg_exit;
7012 
7013 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
7014 		if (BNXT_PF(bp))
7015 			min_db_offset = DB_PF_OFFSET_P5;
7016 		else
7017 			min_db_offset = DB_VF_OFFSET_P5;
7018 	}
7019 	bp->db_size = PAGE_ALIGN(le16_to_cpu(resp->l2_doorbell_bar_size_kb) *
7020 				 1024);
7021 	if (!bp->db_size || bp->db_size > pci_resource_len(bp->pdev, 2) ||
7022 	    bp->db_size <= min_db_offset)
7023 		bp->db_size = pci_resource_len(bp->pdev, 2);
7024 
7025 func_qcfg_exit:
7026 	hwrm_req_drop(bp, req);
7027 	return rc;
7028 }
7029 
7030 static void bnxt_init_ctx_initializer(struct bnxt_ctx_mem_info *ctx,
7031 			struct hwrm_func_backing_store_qcaps_output *resp)
7032 {
7033 	struct bnxt_mem_init *mem_init;
7034 	u16 init_mask;
7035 	u8 init_val;
7036 	u8 *offset;
7037 	int i;
7038 
7039 	init_val = resp->ctx_kind_initializer;
7040 	init_mask = le16_to_cpu(resp->ctx_init_mask);
7041 	offset = &resp->qp_init_offset;
7042 	mem_init = &ctx->mem_init[BNXT_CTX_MEM_INIT_QP];
7043 	for (i = 0; i < BNXT_CTX_MEM_INIT_MAX; i++, mem_init++, offset++) {
7044 		mem_init->init_val = init_val;
7045 		mem_init->offset = BNXT_MEM_INVALID_OFFSET;
7046 		if (!init_mask)
7047 			continue;
7048 		if (i == BNXT_CTX_MEM_INIT_STAT)
7049 			offset = &resp->stat_init_offset;
7050 		if (init_mask & (1 << i))
7051 			mem_init->offset = *offset * 4;
7052 		else
7053 			mem_init->init_val = 0;
7054 	}
7055 	ctx->mem_init[BNXT_CTX_MEM_INIT_QP].size = ctx->qp_entry_size;
7056 	ctx->mem_init[BNXT_CTX_MEM_INIT_SRQ].size = ctx->srq_entry_size;
7057 	ctx->mem_init[BNXT_CTX_MEM_INIT_CQ].size = ctx->cq_entry_size;
7058 	ctx->mem_init[BNXT_CTX_MEM_INIT_VNIC].size = ctx->vnic_entry_size;
7059 	ctx->mem_init[BNXT_CTX_MEM_INIT_STAT].size = ctx->stat_entry_size;
7060 	ctx->mem_init[BNXT_CTX_MEM_INIT_MRAV].size = ctx->mrav_entry_size;
7061 }
7062 
7063 static int bnxt_hwrm_func_backing_store_qcaps(struct bnxt *bp)
7064 {
7065 	struct hwrm_func_backing_store_qcaps_output *resp;
7066 	struct hwrm_func_backing_store_qcaps_input *req;
7067 	int rc;
7068 
7069 	if (bp->hwrm_spec_code < 0x10902 || BNXT_VF(bp) || bp->ctx)
7070 		return 0;
7071 
7072 	rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_QCAPS);
7073 	if (rc)
7074 		return rc;
7075 
7076 	resp = hwrm_req_hold(bp, req);
7077 	rc = hwrm_req_send_silent(bp, req);
7078 	if (!rc) {
7079 		struct bnxt_ctx_pg_info *ctx_pg;
7080 		struct bnxt_ctx_mem_info *ctx;
7081 		int i, tqm_rings;
7082 
7083 		ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
7084 		if (!ctx) {
7085 			rc = -ENOMEM;
7086 			goto ctx_err;
7087 		}
7088 		ctx->qp_max_entries = le32_to_cpu(resp->qp_max_entries);
7089 		ctx->qp_min_qp1_entries = le16_to_cpu(resp->qp_min_qp1_entries);
7090 		ctx->qp_max_l2_entries = le16_to_cpu(resp->qp_max_l2_entries);
7091 		ctx->qp_entry_size = le16_to_cpu(resp->qp_entry_size);
7092 		ctx->srq_max_l2_entries = le16_to_cpu(resp->srq_max_l2_entries);
7093 		ctx->srq_max_entries = le32_to_cpu(resp->srq_max_entries);
7094 		ctx->srq_entry_size = le16_to_cpu(resp->srq_entry_size);
7095 		ctx->cq_max_l2_entries = le16_to_cpu(resp->cq_max_l2_entries);
7096 		ctx->cq_max_entries = le32_to_cpu(resp->cq_max_entries);
7097 		ctx->cq_entry_size = le16_to_cpu(resp->cq_entry_size);
7098 		ctx->vnic_max_vnic_entries =
7099 			le16_to_cpu(resp->vnic_max_vnic_entries);
7100 		ctx->vnic_max_ring_table_entries =
7101 			le16_to_cpu(resp->vnic_max_ring_table_entries);
7102 		ctx->vnic_entry_size = le16_to_cpu(resp->vnic_entry_size);
7103 		ctx->stat_max_entries = le32_to_cpu(resp->stat_max_entries);
7104 		ctx->stat_entry_size = le16_to_cpu(resp->stat_entry_size);
7105 		ctx->tqm_entry_size = le16_to_cpu(resp->tqm_entry_size);
7106 		ctx->tqm_min_entries_per_ring =
7107 			le32_to_cpu(resp->tqm_min_entries_per_ring);
7108 		ctx->tqm_max_entries_per_ring =
7109 			le32_to_cpu(resp->tqm_max_entries_per_ring);
7110 		ctx->tqm_entries_multiple = resp->tqm_entries_multiple;
7111 		if (!ctx->tqm_entries_multiple)
7112 			ctx->tqm_entries_multiple = 1;
7113 		ctx->mrav_max_entries = le32_to_cpu(resp->mrav_max_entries);
7114 		ctx->mrav_entry_size = le16_to_cpu(resp->mrav_entry_size);
7115 		ctx->mrav_num_entries_units =
7116 			le16_to_cpu(resp->mrav_num_entries_units);
7117 		ctx->tim_entry_size = le16_to_cpu(resp->tim_entry_size);
7118 		ctx->tim_max_entries = le32_to_cpu(resp->tim_max_entries);
7119 
7120 		bnxt_init_ctx_initializer(ctx, resp);
7121 
7122 		ctx->tqm_fp_rings_count = resp->tqm_fp_rings_count;
7123 		if (!ctx->tqm_fp_rings_count)
7124 			ctx->tqm_fp_rings_count = bp->max_q;
7125 		else if (ctx->tqm_fp_rings_count > BNXT_MAX_TQM_FP_RINGS)
7126 			ctx->tqm_fp_rings_count = BNXT_MAX_TQM_FP_RINGS;
7127 
7128 		tqm_rings = ctx->tqm_fp_rings_count + BNXT_MAX_TQM_SP_RINGS;
7129 		ctx_pg = kcalloc(tqm_rings, sizeof(*ctx_pg), GFP_KERNEL);
7130 		if (!ctx_pg) {
7131 			kfree(ctx);
7132 			rc = -ENOMEM;
7133 			goto ctx_err;
7134 		}
7135 		for (i = 0; i < tqm_rings; i++, ctx_pg++)
7136 			ctx->tqm_mem[i] = ctx_pg;
7137 		bp->ctx = ctx;
7138 	} else {
7139 		rc = 0;
7140 	}
7141 ctx_err:
7142 	hwrm_req_drop(bp, req);
7143 	return rc;
7144 }
7145 
7146 static void bnxt_hwrm_set_pg_attr(struct bnxt_ring_mem_info *rmem, u8 *pg_attr,
7147 				  __le64 *pg_dir)
7148 {
7149 	if (!rmem->nr_pages)
7150 		return;
7151 
7152 	BNXT_SET_CTX_PAGE_ATTR(*pg_attr);
7153 	if (rmem->depth >= 1) {
7154 		if (rmem->depth == 2)
7155 			*pg_attr |= 2;
7156 		else
7157 			*pg_attr |= 1;
7158 		*pg_dir = cpu_to_le64(rmem->pg_tbl_map);
7159 	} else {
7160 		*pg_dir = cpu_to_le64(rmem->dma_arr[0]);
7161 	}
7162 }
7163 
7164 #define FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES			\
7165 	(FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP |		\
7166 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ |		\
7167 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ |		\
7168 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC |		\
7169 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT)
7170 
7171 static int bnxt_hwrm_func_backing_store_cfg(struct bnxt *bp, u32 enables)
7172 {
7173 	struct hwrm_func_backing_store_cfg_input *req;
7174 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
7175 	struct bnxt_ctx_pg_info *ctx_pg;
7176 	void **__req = (void **)&req;
7177 	u32 req_len = sizeof(*req);
7178 	__le32 *num_entries;
7179 	__le64 *pg_dir;
7180 	u32 flags = 0;
7181 	u8 *pg_attr;
7182 	u32 ena;
7183 	int rc;
7184 	int i;
7185 
7186 	if (!ctx)
7187 		return 0;
7188 
7189 	if (req_len > bp->hwrm_max_ext_req_len)
7190 		req_len = BNXT_BACKING_STORE_CFG_LEGACY_LEN;
7191 	rc = __hwrm_req_init(bp, __req, HWRM_FUNC_BACKING_STORE_CFG, req_len);
7192 	if (rc)
7193 		return rc;
7194 
7195 	req->enables = cpu_to_le32(enables);
7196 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP) {
7197 		ctx_pg = &ctx->qp_mem;
7198 		req->qp_num_entries = cpu_to_le32(ctx_pg->entries);
7199 		req->qp_num_qp1_entries = cpu_to_le16(ctx->qp_min_qp1_entries);
7200 		req->qp_num_l2_entries = cpu_to_le16(ctx->qp_max_l2_entries);
7201 		req->qp_entry_size = cpu_to_le16(ctx->qp_entry_size);
7202 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7203 				      &req->qpc_pg_size_qpc_lvl,
7204 				      &req->qpc_page_dir);
7205 	}
7206 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ) {
7207 		ctx_pg = &ctx->srq_mem;
7208 		req->srq_num_entries = cpu_to_le32(ctx_pg->entries);
7209 		req->srq_num_l2_entries = cpu_to_le16(ctx->srq_max_l2_entries);
7210 		req->srq_entry_size = cpu_to_le16(ctx->srq_entry_size);
7211 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7212 				      &req->srq_pg_size_srq_lvl,
7213 				      &req->srq_page_dir);
7214 	}
7215 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ) {
7216 		ctx_pg = &ctx->cq_mem;
7217 		req->cq_num_entries = cpu_to_le32(ctx_pg->entries);
7218 		req->cq_num_l2_entries = cpu_to_le16(ctx->cq_max_l2_entries);
7219 		req->cq_entry_size = cpu_to_le16(ctx->cq_entry_size);
7220 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7221 				      &req->cq_pg_size_cq_lvl,
7222 				      &req->cq_page_dir);
7223 	}
7224 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC) {
7225 		ctx_pg = &ctx->vnic_mem;
7226 		req->vnic_num_vnic_entries =
7227 			cpu_to_le16(ctx->vnic_max_vnic_entries);
7228 		req->vnic_num_ring_table_entries =
7229 			cpu_to_le16(ctx->vnic_max_ring_table_entries);
7230 		req->vnic_entry_size = cpu_to_le16(ctx->vnic_entry_size);
7231 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7232 				      &req->vnic_pg_size_vnic_lvl,
7233 				      &req->vnic_page_dir);
7234 	}
7235 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) {
7236 		ctx_pg = &ctx->stat_mem;
7237 		req->stat_num_entries = cpu_to_le32(ctx->stat_max_entries);
7238 		req->stat_entry_size = cpu_to_le16(ctx->stat_entry_size);
7239 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7240 				      &req->stat_pg_size_stat_lvl,
7241 				      &req->stat_page_dir);
7242 	}
7243 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV) {
7244 		ctx_pg = &ctx->mrav_mem;
7245 		req->mrav_num_entries = cpu_to_le32(ctx_pg->entries);
7246 		if (ctx->mrav_num_entries_units)
7247 			flags |=
7248 			FUNC_BACKING_STORE_CFG_REQ_FLAGS_MRAV_RESERVATION_SPLIT;
7249 		req->mrav_entry_size = cpu_to_le16(ctx->mrav_entry_size);
7250 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7251 				      &req->mrav_pg_size_mrav_lvl,
7252 				      &req->mrav_page_dir);
7253 	}
7254 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) {
7255 		ctx_pg = &ctx->tim_mem;
7256 		req->tim_num_entries = cpu_to_le32(ctx_pg->entries);
7257 		req->tim_entry_size = cpu_to_le16(ctx->tim_entry_size);
7258 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7259 				      &req->tim_pg_size_tim_lvl,
7260 				      &req->tim_page_dir);
7261 	}
7262 	for (i = 0, num_entries = &req->tqm_sp_num_entries,
7263 	     pg_attr = &req->tqm_sp_pg_size_tqm_sp_lvl,
7264 	     pg_dir = &req->tqm_sp_page_dir,
7265 	     ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP;
7266 	     i < BNXT_MAX_TQM_RINGS;
7267 	     i++, num_entries++, pg_attr++, pg_dir++, ena <<= 1) {
7268 		if (!(enables & ena))
7269 			continue;
7270 
7271 		req->tqm_entry_size = cpu_to_le16(ctx->tqm_entry_size);
7272 		ctx_pg = ctx->tqm_mem[i];
7273 		*num_entries = cpu_to_le32(ctx_pg->entries);
7274 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, pg_attr, pg_dir);
7275 	}
7276 	req->flags = cpu_to_le32(flags);
7277 	return hwrm_req_send(bp, req);
7278 }
7279 
7280 static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp,
7281 				  struct bnxt_ctx_pg_info *ctx_pg)
7282 {
7283 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
7284 
7285 	rmem->page_size = BNXT_PAGE_SIZE;
7286 	rmem->pg_arr = ctx_pg->ctx_pg_arr;
7287 	rmem->dma_arr = ctx_pg->ctx_dma_arr;
7288 	rmem->flags = BNXT_RMEM_VALID_PTE_FLAG;
7289 	if (rmem->depth >= 1)
7290 		rmem->flags |= BNXT_RMEM_USE_FULL_PAGE_FLAG;
7291 	return bnxt_alloc_ring(bp, rmem);
7292 }
7293 
7294 static int bnxt_alloc_ctx_pg_tbls(struct bnxt *bp,
7295 				  struct bnxt_ctx_pg_info *ctx_pg, u32 mem_size,
7296 				  u8 depth, struct bnxt_mem_init *mem_init)
7297 {
7298 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
7299 	int rc;
7300 
7301 	if (!mem_size)
7302 		return -EINVAL;
7303 
7304 	ctx_pg->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
7305 	if (ctx_pg->nr_pages > MAX_CTX_TOTAL_PAGES) {
7306 		ctx_pg->nr_pages = 0;
7307 		return -EINVAL;
7308 	}
7309 	if (ctx_pg->nr_pages > MAX_CTX_PAGES || depth > 1) {
7310 		int nr_tbls, i;
7311 
7312 		rmem->depth = 2;
7313 		ctx_pg->ctx_pg_tbl = kcalloc(MAX_CTX_PAGES, sizeof(ctx_pg),
7314 					     GFP_KERNEL);
7315 		if (!ctx_pg->ctx_pg_tbl)
7316 			return -ENOMEM;
7317 		nr_tbls = DIV_ROUND_UP(ctx_pg->nr_pages, MAX_CTX_PAGES);
7318 		rmem->nr_pages = nr_tbls;
7319 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
7320 		if (rc)
7321 			return rc;
7322 		for (i = 0; i < nr_tbls; i++) {
7323 			struct bnxt_ctx_pg_info *pg_tbl;
7324 
7325 			pg_tbl = kzalloc(sizeof(*pg_tbl), GFP_KERNEL);
7326 			if (!pg_tbl)
7327 				return -ENOMEM;
7328 			ctx_pg->ctx_pg_tbl[i] = pg_tbl;
7329 			rmem = &pg_tbl->ring_mem;
7330 			rmem->pg_tbl = ctx_pg->ctx_pg_arr[i];
7331 			rmem->pg_tbl_map = ctx_pg->ctx_dma_arr[i];
7332 			rmem->depth = 1;
7333 			rmem->nr_pages = MAX_CTX_PAGES;
7334 			rmem->mem_init = mem_init;
7335 			if (i == (nr_tbls - 1)) {
7336 				int rem = ctx_pg->nr_pages % MAX_CTX_PAGES;
7337 
7338 				if (rem)
7339 					rmem->nr_pages = rem;
7340 			}
7341 			rc = bnxt_alloc_ctx_mem_blk(bp, pg_tbl);
7342 			if (rc)
7343 				break;
7344 		}
7345 	} else {
7346 		rmem->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
7347 		if (rmem->nr_pages > 1 || depth)
7348 			rmem->depth = 1;
7349 		rmem->mem_init = mem_init;
7350 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
7351 	}
7352 	return rc;
7353 }
7354 
7355 static void bnxt_free_ctx_pg_tbls(struct bnxt *bp,
7356 				  struct bnxt_ctx_pg_info *ctx_pg)
7357 {
7358 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
7359 
7360 	if (rmem->depth > 1 || ctx_pg->nr_pages > MAX_CTX_PAGES ||
7361 	    ctx_pg->ctx_pg_tbl) {
7362 		int i, nr_tbls = rmem->nr_pages;
7363 
7364 		for (i = 0; i < nr_tbls; i++) {
7365 			struct bnxt_ctx_pg_info *pg_tbl;
7366 			struct bnxt_ring_mem_info *rmem2;
7367 
7368 			pg_tbl = ctx_pg->ctx_pg_tbl[i];
7369 			if (!pg_tbl)
7370 				continue;
7371 			rmem2 = &pg_tbl->ring_mem;
7372 			bnxt_free_ring(bp, rmem2);
7373 			ctx_pg->ctx_pg_arr[i] = NULL;
7374 			kfree(pg_tbl);
7375 			ctx_pg->ctx_pg_tbl[i] = NULL;
7376 		}
7377 		kfree(ctx_pg->ctx_pg_tbl);
7378 		ctx_pg->ctx_pg_tbl = NULL;
7379 	}
7380 	bnxt_free_ring(bp, rmem);
7381 	ctx_pg->nr_pages = 0;
7382 }
7383 
7384 void bnxt_free_ctx_mem(struct bnxt *bp)
7385 {
7386 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
7387 	int i;
7388 
7389 	if (!ctx)
7390 		return;
7391 
7392 	if (ctx->tqm_mem[0]) {
7393 		for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++)
7394 			bnxt_free_ctx_pg_tbls(bp, ctx->tqm_mem[i]);
7395 		kfree(ctx->tqm_mem[0]);
7396 		ctx->tqm_mem[0] = NULL;
7397 	}
7398 
7399 	bnxt_free_ctx_pg_tbls(bp, &ctx->tim_mem);
7400 	bnxt_free_ctx_pg_tbls(bp, &ctx->mrav_mem);
7401 	bnxt_free_ctx_pg_tbls(bp, &ctx->stat_mem);
7402 	bnxt_free_ctx_pg_tbls(bp, &ctx->vnic_mem);
7403 	bnxt_free_ctx_pg_tbls(bp, &ctx->cq_mem);
7404 	bnxt_free_ctx_pg_tbls(bp, &ctx->srq_mem);
7405 	bnxt_free_ctx_pg_tbls(bp, &ctx->qp_mem);
7406 	ctx->flags &= ~BNXT_CTX_FLAG_INITED;
7407 }
7408 
7409 static int bnxt_alloc_ctx_mem(struct bnxt *bp)
7410 {
7411 	struct bnxt_ctx_pg_info *ctx_pg;
7412 	struct bnxt_ctx_mem_info *ctx;
7413 	struct bnxt_mem_init *init;
7414 	u32 mem_size, ena, entries;
7415 	u32 entries_sp, min;
7416 	u32 num_mr, num_ah;
7417 	u32 extra_srqs = 0;
7418 	u32 extra_qps = 0;
7419 	u8 pg_lvl = 1;
7420 	int i, rc;
7421 
7422 	rc = bnxt_hwrm_func_backing_store_qcaps(bp);
7423 	if (rc) {
7424 		netdev_err(bp->dev, "Failed querying context mem capability, rc = %d.\n",
7425 			   rc);
7426 		return rc;
7427 	}
7428 	ctx = bp->ctx;
7429 	if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED))
7430 		return 0;
7431 
7432 	if ((bp->flags & BNXT_FLAG_ROCE_CAP) && !is_kdump_kernel()) {
7433 		pg_lvl = 2;
7434 		extra_qps = 65536;
7435 		extra_srqs = 8192;
7436 	}
7437 
7438 	ctx_pg = &ctx->qp_mem;
7439 	ctx_pg->entries = ctx->qp_min_qp1_entries + ctx->qp_max_l2_entries +
7440 			  extra_qps;
7441 	if (ctx->qp_entry_size) {
7442 		mem_size = ctx->qp_entry_size * ctx_pg->entries;
7443 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_QP];
7444 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init);
7445 		if (rc)
7446 			return rc;
7447 	}
7448 
7449 	ctx_pg = &ctx->srq_mem;
7450 	ctx_pg->entries = ctx->srq_max_l2_entries + extra_srqs;
7451 	if (ctx->srq_entry_size) {
7452 		mem_size = ctx->srq_entry_size * ctx_pg->entries;
7453 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_SRQ];
7454 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init);
7455 		if (rc)
7456 			return rc;
7457 	}
7458 
7459 	ctx_pg = &ctx->cq_mem;
7460 	ctx_pg->entries = ctx->cq_max_l2_entries + extra_qps * 2;
7461 	if (ctx->cq_entry_size) {
7462 		mem_size = ctx->cq_entry_size * ctx_pg->entries;
7463 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_CQ];
7464 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init);
7465 		if (rc)
7466 			return rc;
7467 	}
7468 
7469 	ctx_pg = &ctx->vnic_mem;
7470 	ctx_pg->entries = ctx->vnic_max_vnic_entries +
7471 			  ctx->vnic_max_ring_table_entries;
7472 	if (ctx->vnic_entry_size) {
7473 		mem_size = ctx->vnic_entry_size * ctx_pg->entries;
7474 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_VNIC];
7475 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, init);
7476 		if (rc)
7477 			return rc;
7478 	}
7479 
7480 	ctx_pg = &ctx->stat_mem;
7481 	ctx_pg->entries = ctx->stat_max_entries;
7482 	if (ctx->stat_entry_size) {
7483 		mem_size = ctx->stat_entry_size * ctx_pg->entries;
7484 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_STAT];
7485 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, init);
7486 		if (rc)
7487 			return rc;
7488 	}
7489 
7490 	ena = 0;
7491 	if (!(bp->flags & BNXT_FLAG_ROCE_CAP))
7492 		goto skip_rdma;
7493 
7494 	ctx_pg = &ctx->mrav_mem;
7495 	/* 128K extra is needed to accommodate static AH context
7496 	 * allocation by f/w.
7497 	 */
7498 	num_mr = 1024 * 256;
7499 	num_ah = 1024 * 128;
7500 	ctx_pg->entries = num_mr + num_ah;
7501 	if (ctx->mrav_entry_size) {
7502 		mem_size = ctx->mrav_entry_size * ctx_pg->entries;
7503 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_MRAV];
7504 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 2, init);
7505 		if (rc)
7506 			return rc;
7507 	}
7508 	ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV;
7509 	if (ctx->mrav_num_entries_units)
7510 		ctx_pg->entries =
7511 			((num_mr / ctx->mrav_num_entries_units) << 16) |
7512 			 (num_ah / ctx->mrav_num_entries_units);
7513 
7514 	ctx_pg = &ctx->tim_mem;
7515 	ctx_pg->entries = ctx->qp_mem.entries;
7516 	if (ctx->tim_entry_size) {
7517 		mem_size = ctx->tim_entry_size * ctx_pg->entries;
7518 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, NULL);
7519 		if (rc)
7520 			return rc;
7521 	}
7522 	ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM;
7523 
7524 skip_rdma:
7525 	min = ctx->tqm_min_entries_per_ring;
7526 	entries_sp = ctx->vnic_max_vnic_entries + ctx->qp_max_l2_entries +
7527 		     2 * (extra_qps + ctx->qp_min_qp1_entries) + min;
7528 	entries_sp = roundup(entries_sp, ctx->tqm_entries_multiple);
7529 	entries = ctx->qp_max_l2_entries + 2 * (extra_qps + ctx->qp_min_qp1_entries);
7530 	entries = roundup(entries, ctx->tqm_entries_multiple);
7531 	entries = clamp_t(u32, entries, min, ctx->tqm_max_entries_per_ring);
7532 	for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++) {
7533 		ctx_pg = ctx->tqm_mem[i];
7534 		ctx_pg->entries = i ? entries : entries_sp;
7535 		if (ctx->tqm_entry_size) {
7536 			mem_size = ctx->tqm_entry_size * ctx_pg->entries;
7537 			rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1,
7538 						    NULL);
7539 			if (rc)
7540 				return rc;
7541 		}
7542 		ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP << i;
7543 	}
7544 	ena |= FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES;
7545 	rc = bnxt_hwrm_func_backing_store_cfg(bp, ena);
7546 	if (rc) {
7547 		netdev_err(bp->dev, "Failed configuring context mem, rc = %d.\n",
7548 			   rc);
7549 		return rc;
7550 	}
7551 	ctx->flags |= BNXT_CTX_FLAG_INITED;
7552 	return 0;
7553 }
7554 
7555 int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all)
7556 {
7557 	struct hwrm_func_resource_qcaps_output *resp;
7558 	struct hwrm_func_resource_qcaps_input *req;
7559 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7560 	int rc;
7561 
7562 	rc = hwrm_req_init(bp, req, HWRM_FUNC_RESOURCE_QCAPS);
7563 	if (rc)
7564 		return rc;
7565 
7566 	req->fid = cpu_to_le16(0xffff);
7567 	resp = hwrm_req_hold(bp, req);
7568 	rc = hwrm_req_send_silent(bp, req);
7569 	if (rc)
7570 		goto hwrm_func_resc_qcaps_exit;
7571 
7572 	hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs);
7573 	if (!all)
7574 		goto hwrm_func_resc_qcaps_exit;
7575 
7576 	hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx);
7577 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
7578 	hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings);
7579 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
7580 	hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings);
7581 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
7582 	hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings);
7583 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
7584 	hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps);
7585 	hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps);
7586 	hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs);
7587 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
7588 	hw_resc->min_vnics = le16_to_cpu(resp->min_vnics);
7589 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
7590 	hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx);
7591 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
7592 
7593 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
7594 		u16 max_msix = le16_to_cpu(resp->max_msix);
7595 
7596 		hw_resc->max_nqs = max_msix;
7597 		hw_resc->max_hw_ring_grps = hw_resc->max_rx_rings;
7598 	}
7599 
7600 	if (BNXT_PF(bp)) {
7601 		struct bnxt_pf_info *pf = &bp->pf;
7602 
7603 		pf->vf_resv_strategy =
7604 			le16_to_cpu(resp->vf_reservation_strategy);
7605 		if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC)
7606 			pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL;
7607 	}
7608 hwrm_func_resc_qcaps_exit:
7609 	hwrm_req_drop(bp, req);
7610 	return rc;
7611 }
7612 
7613 static int __bnxt_hwrm_ptp_qcfg(struct bnxt *bp)
7614 {
7615 	struct hwrm_port_mac_ptp_qcfg_output *resp;
7616 	struct hwrm_port_mac_ptp_qcfg_input *req;
7617 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
7618 	bool phc_cfg;
7619 	u8 flags;
7620 	int rc;
7621 
7622 	if (bp->hwrm_spec_code < 0x10801 || !BNXT_CHIP_P5_THOR(bp)) {
7623 		rc = -ENODEV;
7624 		goto no_ptp;
7625 	}
7626 
7627 	rc = hwrm_req_init(bp, req, HWRM_PORT_MAC_PTP_QCFG);
7628 	if (rc)
7629 		goto no_ptp;
7630 
7631 	req->port_id = cpu_to_le16(bp->pf.port_id);
7632 	resp = hwrm_req_hold(bp, req);
7633 	rc = hwrm_req_send(bp, req);
7634 	if (rc)
7635 		goto exit;
7636 
7637 	flags = resp->flags;
7638 	if (!(flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_HWRM_ACCESS)) {
7639 		rc = -ENODEV;
7640 		goto exit;
7641 	}
7642 	if (!ptp) {
7643 		ptp = kzalloc(sizeof(*ptp), GFP_KERNEL);
7644 		if (!ptp) {
7645 			rc = -ENOMEM;
7646 			goto exit;
7647 		}
7648 		ptp->bp = bp;
7649 		bp->ptp_cfg = ptp;
7650 	}
7651 	if (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_PARTIAL_DIRECT_ACCESS_REF_CLOCK) {
7652 		ptp->refclk_regs[0] = le32_to_cpu(resp->ts_ref_clock_reg_lower);
7653 		ptp->refclk_regs[1] = le32_to_cpu(resp->ts_ref_clock_reg_upper);
7654 	} else if (bp->flags & BNXT_FLAG_CHIP_P5) {
7655 		ptp->refclk_regs[0] = BNXT_TS_REG_TIMESYNC_TS0_LOWER;
7656 		ptp->refclk_regs[1] = BNXT_TS_REG_TIMESYNC_TS0_UPPER;
7657 	} else {
7658 		rc = -ENODEV;
7659 		goto exit;
7660 	}
7661 	phc_cfg = (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_RTC_CONFIGURED) != 0;
7662 	rc = bnxt_ptp_init(bp, phc_cfg);
7663 	if (rc)
7664 		netdev_warn(bp->dev, "PTP initialization failed.\n");
7665 exit:
7666 	hwrm_req_drop(bp, req);
7667 	if (!rc)
7668 		return 0;
7669 
7670 no_ptp:
7671 	bnxt_ptp_clear(bp);
7672 	kfree(ptp);
7673 	bp->ptp_cfg = NULL;
7674 	return rc;
7675 }
7676 
7677 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp)
7678 {
7679 	struct hwrm_func_qcaps_output *resp;
7680 	struct hwrm_func_qcaps_input *req;
7681 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7682 	u32 flags, flags_ext, flags_ext2;
7683 	int rc;
7684 
7685 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCAPS);
7686 	if (rc)
7687 		return rc;
7688 
7689 	req->fid = cpu_to_le16(0xffff);
7690 	resp = hwrm_req_hold(bp, req);
7691 	rc = hwrm_req_send(bp, req);
7692 	if (rc)
7693 		goto hwrm_func_qcaps_exit;
7694 
7695 	flags = le32_to_cpu(resp->flags);
7696 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED)
7697 		bp->flags |= BNXT_FLAG_ROCEV1_CAP;
7698 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED)
7699 		bp->flags |= BNXT_FLAG_ROCEV2_CAP;
7700 	if (flags & FUNC_QCAPS_RESP_FLAGS_PCIE_STATS_SUPPORTED)
7701 		bp->fw_cap |= BNXT_FW_CAP_PCIE_STATS_SUPPORTED;
7702 	if (flags & FUNC_QCAPS_RESP_FLAGS_HOT_RESET_CAPABLE)
7703 		bp->fw_cap |= BNXT_FW_CAP_HOT_RESET;
7704 	if (flags & FUNC_QCAPS_RESP_FLAGS_EXT_STATS_SUPPORTED)
7705 		bp->fw_cap |= BNXT_FW_CAP_EXT_STATS_SUPPORTED;
7706 	if (flags &  FUNC_QCAPS_RESP_FLAGS_ERROR_RECOVERY_CAPABLE)
7707 		bp->fw_cap |= BNXT_FW_CAP_ERROR_RECOVERY;
7708 	if (flags & FUNC_QCAPS_RESP_FLAGS_ERR_RECOVER_RELOAD)
7709 		bp->fw_cap |= BNXT_FW_CAP_ERR_RECOVER_RELOAD;
7710 	if (!(flags & FUNC_QCAPS_RESP_FLAGS_VLAN_ACCELERATION_TX_DISABLED))
7711 		bp->fw_cap |= BNXT_FW_CAP_VLAN_TX_INSERT;
7712 	if (flags & FUNC_QCAPS_RESP_FLAGS_DBG_QCAPS_CMD_SUPPORTED)
7713 		bp->fw_cap |= BNXT_FW_CAP_DBG_QCAPS;
7714 
7715 	flags_ext = le32_to_cpu(resp->flags_ext);
7716 	if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_EXT_HW_STATS_SUPPORTED)
7717 		bp->fw_cap |= BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED;
7718 	if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_PPS_SUPPORTED))
7719 		bp->fw_cap |= BNXT_FW_CAP_PTP_PPS;
7720 	if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_64BIT_RTC_SUPPORTED)
7721 		bp->fw_cap |= BNXT_FW_CAP_PTP_RTC;
7722 	if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_HOT_RESET_IF_SUPPORT))
7723 		bp->fw_cap |= BNXT_FW_CAP_HOT_RESET_IF;
7724 	if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_FW_LIVEPATCH_SUPPORTED))
7725 		bp->fw_cap |= BNXT_FW_CAP_LIVEPATCH;
7726 
7727 	flags_ext2 = le32_to_cpu(resp->flags_ext2);
7728 	if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_RX_ALL_PKTS_TIMESTAMPS_SUPPORTED)
7729 		bp->fw_cap |= BNXT_FW_CAP_RX_ALL_PKT_TS;
7730 
7731 	bp->tx_push_thresh = 0;
7732 	if ((flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED) &&
7733 	    BNXT_FW_MAJ(bp) > 217)
7734 		bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
7735 
7736 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
7737 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
7738 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
7739 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
7740 	hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
7741 	if (!hw_resc->max_hw_ring_grps)
7742 		hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings;
7743 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
7744 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
7745 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
7746 
7747 	if (BNXT_PF(bp)) {
7748 		struct bnxt_pf_info *pf = &bp->pf;
7749 
7750 		pf->fw_fid = le16_to_cpu(resp->fid);
7751 		pf->port_id = le16_to_cpu(resp->port_id);
7752 		memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN);
7753 		pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
7754 		pf->max_vfs = le16_to_cpu(resp->max_vfs);
7755 		pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
7756 		pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
7757 		pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
7758 		pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
7759 		pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
7760 		pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
7761 		bp->flags &= ~BNXT_FLAG_WOL_CAP;
7762 		if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED)
7763 			bp->flags |= BNXT_FLAG_WOL_CAP;
7764 		if (flags & FUNC_QCAPS_RESP_FLAGS_PTP_SUPPORTED) {
7765 			bp->fw_cap |= BNXT_FW_CAP_PTP;
7766 		} else {
7767 			bnxt_ptp_clear(bp);
7768 			kfree(bp->ptp_cfg);
7769 			bp->ptp_cfg = NULL;
7770 		}
7771 	} else {
7772 #ifdef CONFIG_BNXT_SRIOV
7773 		struct bnxt_vf_info *vf = &bp->vf;
7774 
7775 		vf->fw_fid = le16_to_cpu(resp->fid);
7776 		memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN);
7777 #endif
7778 	}
7779 
7780 hwrm_func_qcaps_exit:
7781 	hwrm_req_drop(bp, req);
7782 	return rc;
7783 }
7784 
7785 static void bnxt_hwrm_dbg_qcaps(struct bnxt *bp)
7786 {
7787 	struct hwrm_dbg_qcaps_output *resp;
7788 	struct hwrm_dbg_qcaps_input *req;
7789 	int rc;
7790 
7791 	bp->fw_dbg_cap = 0;
7792 	if (!(bp->fw_cap & BNXT_FW_CAP_DBG_QCAPS))
7793 		return;
7794 
7795 	rc = hwrm_req_init(bp, req, HWRM_DBG_QCAPS);
7796 	if (rc)
7797 		return;
7798 
7799 	req->fid = cpu_to_le16(0xffff);
7800 	resp = hwrm_req_hold(bp, req);
7801 	rc = hwrm_req_send(bp, req);
7802 	if (rc)
7803 		goto hwrm_dbg_qcaps_exit;
7804 
7805 	bp->fw_dbg_cap = le32_to_cpu(resp->flags);
7806 
7807 hwrm_dbg_qcaps_exit:
7808 	hwrm_req_drop(bp, req);
7809 }
7810 
7811 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp);
7812 
7813 int bnxt_hwrm_func_qcaps(struct bnxt *bp)
7814 {
7815 	int rc;
7816 
7817 	rc = __bnxt_hwrm_func_qcaps(bp);
7818 	if (rc)
7819 		return rc;
7820 
7821 	bnxt_hwrm_dbg_qcaps(bp);
7822 
7823 	rc = bnxt_hwrm_queue_qportcfg(bp);
7824 	if (rc) {
7825 		netdev_err(bp->dev, "hwrm query qportcfg failure rc: %d\n", rc);
7826 		return rc;
7827 	}
7828 	if (bp->hwrm_spec_code >= 0x10803) {
7829 		rc = bnxt_alloc_ctx_mem(bp);
7830 		if (rc)
7831 			return rc;
7832 		rc = bnxt_hwrm_func_resc_qcaps(bp, true);
7833 		if (!rc)
7834 			bp->fw_cap |= BNXT_FW_CAP_NEW_RM;
7835 	}
7836 	return 0;
7837 }
7838 
7839 static int bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(struct bnxt *bp)
7840 {
7841 	struct hwrm_cfa_adv_flow_mgnt_qcaps_output *resp;
7842 	struct hwrm_cfa_adv_flow_mgnt_qcaps_input *req;
7843 	u32 flags;
7844 	int rc;
7845 
7846 	if (!(bp->fw_cap & BNXT_FW_CAP_CFA_ADV_FLOW))
7847 		return 0;
7848 
7849 	rc = hwrm_req_init(bp, req, HWRM_CFA_ADV_FLOW_MGNT_QCAPS);
7850 	if (rc)
7851 		return rc;
7852 
7853 	resp = hwrm_req_hold(bp, req);
7854 	rc = hwrm_req_send(bp, req);
7855 	if (rc)
7856 		goto hwrm_cfa_adv_qcaps_exit;
7857 
7858 	flags = le32_to_cpu(resp->flags);
7859 	if (flags &
7860 	    CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V2_SUPPORTED)
7861 		bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2;
7862 
7863 hwrm_cfa_adv_qcaps_exit:
7864 	hwrm_req_drop(bp, req);
7865 	return rc;
7866 }
7867 
7868 static int __bnxt_alloc_fw_health(struct bnxt *bp)
7869 {
7870 	if (bp->fw_health)
7871 		return 0;
7872 
7873 	bp->fw_health = kzalloc(sizeof(*bp->fw_health), GFP_KERNEL);
7874 	if (!bp->fw_health)
7875 		return -ENOMEM;
7876 
7877 	mutex_init(&bp->fw_health->lock);
7878 	return 0;
7879 }
7880 
7881 static int bnxt_alloc_fw_health(struct bnxt *bp)
7882 {
7883 	int rc;
7884 
7885 	if (!(bp->fw_cap & BNXT_FW_CAP_HOT_RESET) &&
7886 	    !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
7887 		return 0;
7888 
7889 	rc = __bnxt_alloc_fw_health(bp);
7890 	if (rc) {
7891 		bp->fw_cap &= ~BNXT_FW_CAP_HOT_RESET;
7892 		bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
7893 		return rc;
7894 	}
7895 
7896 	return 0;
7897 }
7898 
7899 static void __bnxt_map_fw_health_reg(struct bnxt *bp, u32 reg)
7900 {
7901 	writel(reg & BNXT_GRC_BASE_MASK, bp->bar0 +
7902 					 BNXT_GRCPF_REG_WINDOW_BASE_OUT +
7903 					 BNXT_FW_HEALTH_WIN_MAP_OFF);
7904 }
7905 
7906 static void bnxt_inv_fw_health_reg(struct bnxt *bp)
7907 {
7908 	struct bnxt_fw_health *fw_health = bp->fw_health;
7909 	u32 reg_type;
7910 
7911 	if (!fw_health)
7912 		return;
7913 
7914 	reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_HEALTH_REG]);
7915 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC)
7916 		fw_health->status_reliable = false;
7917 
7918 	reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_RESET_CNT_REG]);
7919 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC)
7920 		fw_health->resets_reliable = false;
7921 }
7922 
7923 static void bnxt_try_map_fw_health_reg(struct bnxt *bp)
7924 {
7925 	void __iomem *hs;
7926 	u32 status_loc;
7927 	u32 reg_type;
7928 	u32 sig;
7929 
7930 	if (bp->fw_health)
7931 		bp->fw_health->status_reliable = false;
7932 
7933 	__bnxt_map_fw_health_reg(bp, HCOMM_STATUS_STRUCT_LOC);
7934 	hs = bp->bar0 + BNXT_FW_HEALTH_WIN_OFF(HCOMM_STATUS_STRUCT_LOC);
7935 
7936 	sig = readl(hs + offsetof(struct hcomm_status, sig_ver));
7937 	if ((sig & HCOMM_STATUS_SIGNATURE_MASK) != HCOMM_STATUS_SIGNATURE_VAL) {
7938 		if (!bp->chip_num) {
7939 			__bnxt_map_fw_health_reg(bp, BNXT_GRC_REG_BASE);
7940 			bp->chip_num = readl(bp->bar0 +
7941 					     BNXT_FW_HEALTH_WIN_BASE +
7942 					     BNXT_GRC_REG_CHIP_NUM);
7943 		}
7944 		if (!BNXT_CHIP_P5(bp))
7945 			return;
7946 
7947 		status_loc = BNXT_GRC_REG_STATUS_P5 |
7948 			     BNXT_FW_HEALTH_REG_TYPE_BAR0;
7949 	} else {
7950 		status_loc = readl(hs + offsetof(struct hcomm_status,
7951 						 fw_status_loc));
7952 	}
7953 
7954 	if (__bnxt_alloc_fw_health(bp)) {
7955 		netdev_warn(bp->dev, "no memory for firmware status checks\n");
7956 		return;
7957 	}
7958 
7959 	bp->fw_health->regs[BNXT_FW_HEALTH_REG] = status_loc;
7960 	reg_type = BNXT_FW_HEALTH_REG_TYPE(status_loc);
7961 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) {
7962 		__bnxt_map_fw_health_reg(bp, status_loc);
7963 		bp->fw_health->mapped_regs[BNXT_FW_HEALTH_REG] =
7964 			BNXT_FW_HEALTH_WIN_OFF(status_loc);
7965 	}
7966 
7967 	bp->fw_health->status_reliable = true;
7968 }
7969 
7970 static int bnxt_map_fw_health_regs(struct bnxt *bp)
7971 {
7972 	struct bnxt_fw_health *fw_health = bp->fw_health;
7973 	u32 reg_base = 0xffffffff;
7974 	int i;
7975 
7976 	bp->fw_health->status_reliable = false;
7977 	bp->fw_health->resets_reliable = false;
7978 	/* Only pre-map the monitoring GRC registers using window 3 */
7979 	for (i = 0; i < 4; i++) {
7980 		u32 reg = fw_health->regs[i];
7981 
7982 		if (BNXT_FW_HEALTH_REG_TYPE(reg) != BNXT_FW_HEALTH_REG_TYPE_GRC)
7983 			continue;
7984 		if (reg_base == 0xffffffff)
7985 			reg_base = reg & BNXT_GRC_BASE_MASK;
7986 		if ((reg & BNXT_GRC_BASE_MASK) != reg_base)
7987 			return -ERANGE;
7988 		fw_health->mapped_regs[i] = BNXT_FW_HEALTH_WIN_OFF(reg);
7989 	}
7990 	bp->fw_health->status_reliable = true;
7991 	bp->fw_health->resets_reliable = true;
7992 	if (reg_base == 0xffffffff)
7993 		return 0;
7994 
7995 	__bnxt_map_fw_health_reg(bp, reg_base);
7996 	return 0;
7997 }
7998 
7999 static void bnxt_remap_fw_health_regs(struct bnxt *bp)
8000 {
8001 	if (!bp->fw_health)
8002 		return;
8003 
8004 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) {
8005 		bp->fw_health->status_reliable = true;
8006 		bp->fw_health->resets_reliable = true;
8007 	} else {
8008 		bnxt_try_map_fw_health_reg(bp);
8009 	}
8010 }
8011 
8012 static int bnxt_hwrm_error_recovery_qcfg(struct bnxt *bp)
8013 {
8014 	struct bnxt_fw_health *fw_health = bp->fw_health;
8015 	struct hwrm_error_recovery_qcfg_output *resp;
8016 	struct hwrm_error_recovery_qcfg_input *req;
8017 	int rc, i;
8018 
8019 	if (!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
8020 		return 0;
8021 
8022 	rc = hwrm_req_init(bp, req, HWRM_ERROR_RECOVERY_QCFG);
8023 	if (rc)
8024 		return rc;
8025 
8026 	resp = hwrm_req_hold(bp, req);
8027 	rc = hwrm_req_send(bp, req);
8028 	if (rc)
8029 		goto err_recovery_out;
8030 	fw_health->flags = le32_to_cpu(resp->flags);
8031 	if ((fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) &&
8032 	    !(bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL)) {
8033 		rc = -EINVAL;
8034 		goto err_recovery_out;
8035 	}
8036 	fw_health->polling_dsecs = le32_to_cpu(resp->driver_polling_freq);
8037 	fw_health->master_func_wait_dsecs =
8038 		le32_to_cpu(resp->master_func_wait_period);
8039 	fw_health->normal_func_wait_dsecs =
8040 		le32_to_cpu(resp->normal_func_wait_period);
8041 	fw_health->post_reset_wait_dsecs =
8042 		le32_to_cpu(resp->master_func_wait_period_after_reset);
8043 	fw_health->post_reset_max_wait_dsecs =
8044 		le32_to_cpu(resp->max_bailout_time_after_reset);
8045 	fw_health->regs[BNXT_FW_HEALTH_REG] =
8046 		le32_to_cpu(resp->fw_health_status_reg);
8047 	fw_health->regs[BNXT_FW_HEARTBEAT_REG] =
8048 		le32_to_cpu(resp->fw_heartbeat_reg);
8049 	fw_health->regs[BNXT_FW_RESET_CNT_REG] =
8050 		le32_to_cpu(resp->fw_reset_cnt_reg);
8051 	fw_health->regs[BNXT_FW_RESET_INPROG_REG] =
8052 		le32_to_cpu(resp->reset_inprogress_reg);
8053 	fw_health->fw_reset_inprog_reg_mask =
8054 		le32_to_cpu(resp->reset_inprogress_reg_mask);
8055 	fw_health->fw_reset_seq_cnt = resp->reg_array_cnt;
8056 	if (fw_health->fw_reset_seq_cnt >= 16) {
8057 		rc = -EINVAL;
8058 		goto err_recovery_out;
8059 	}
8060 	for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) {
8061 		fw_health->fw_reset_seq_regs[i] =
8062 			le32_to_cpu(resp->reset_reg[i]);
8063 		fw_health->fw_reset_seq_vals[i] =
8064 			le32_to_cpu(resp->reset_reg_val[i]);
8065 		fw_health->fw_reset_seq_delay_msec[i] =
8066 			resp->delay_after_reset[i];
8067 	}
8068 err_recovery_out:
8069 	hwrm_req_drop(bp, req);
8070 	if (!rc)
8071 		rc = bnxt_map_fw_health_regs(bp);
8072 	if (rc)
8073 		bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
8074 	return rc;
8075 }
8076 
8077 static int bnxt_hwrm_func_reset(struct bnxt *bp)
8078 {
8079 	struct hwrm_func_reset_input *req;
8080 	int rc;
8081 
8082 	rc = hwrm_req_init(bp, req, HWRM_FUNC_RESET);
8083 	if (rc)
8084 		return rc;
8085 
8086 	req->enables = 0;
8087 	hwrm_req_timeout(bp, req, HWRM_RESET_TIMEOUT);
8088 	return hwrm_req_send(bp, req);
8089 }
8090 
8091 static void bnxt_nvm_cfg_ver_get(struct bnxt *bp)
8092 {
8093 	struct hwrm_nvm_get_dev_info_output nvm_info;
8094 
8095 	if (!bnxt_hwrm_nvm_get_dev_info(bp, &nvm_info))
8096 		snprintf(bp->nvm_cfg_ver, FW_VER_STR_LEN, "%d.%d.%d",
8097 			 nvm_info.nvm_cfg_ver_maj, nvm_info.nvm_cfg_ver_min,
8098 			 nvm_info.nvm_cfg_ver_upd);
8099 }
8100 
8101 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
8102 {
8103 	struct hwrm_queue_qportcfg_output *resp;
8104 	struct hwrm_queue_qportcfg_input *req;
8105 	u8 i, j, *qptr;
8106 	bool no_rdma;
8107 	int rc = 0;
8108 
8109 	rc = hwrm_req_init(bp, req, HWRM_QUEUE_QPORTCFG);
8110 	if (rc)
8111 		return rc;
8112 
8113 	resp = hwrm_req_hold(bp, req);
8114 	rc = hwrm_req_send(bp, req);
8115 	if (rc)
8116 		goto qportcfg_exit;
8117 
8118 	if (!resp->max_configurable_queues) {
8119 		rc = -EINVAL;
8120 		goto qportcfg_exit;
8121 	}
8122 	bp->max_tc = resp->max_configurable_queues;
8123 	bp->max_lltc = resp->max_configurable_lossless_queues;
8124 	if (bp->max_tc > BNXT_MAX_QUEUE)
8125 		bp->max_tc = BNXT_MAX_QUEUE;
8126 
8127 	no_rdma = !(bp->flags & BNXT_FLAG_ROCE_CAP);
8128 	qptr = &resp->queue_id0;
8129 	for (i = 0, j = 0; i < bp->max_tc; i++) {
8130 		bp->q_info[j].queue_id = *qptr;
8131 		bp->q_ids[i] = *qptr++;
8132 		bp->q_info[j].queue_profile = *qptr++;
8133 		bp->tc_to_qidx[j] = j;
8134 		if (!BNXT_CNPQ(bp->q_info[j].queue_profile) ||
8135 		    (no_rdma && BNXT_PF(bp)))
8136 			j++;
8137 	}
8138 	bp->max_q = bp->max_tc;
8139 	bp->max_tc = max_t(u8, j, 1);
8140 
8141 	if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG)
8142 		bp->max_tc = 1;
8143 
8144 	if (bp->max_lltc > bp->max_tc)
8145 		bp->max_lltc = bp->max_tc;
8146 
8147 qportcfg_exit:
8148 	hwrm_req_drop(bp, req);
8149 	return rc;
8150 }
8151 
8152 static int bnxt_hwrm_poll(struct bnxt *bp)
8153 {
8154 	struct hwrm_ver_get_input *req;
8155 	int rc;
8156 
8157 	rc = hwrm_req_init(bp, req, HWRM_VER_GET);
8158 	if (rc)
8159 		return rc;
8160 
8161 	req->hwrm_intf_maj = HWRM_VERSION_MAJOR;
8162 	req->hwrm_intf_min = HWRM_VERSION_MINOR;
8163 	req->hwrm_intf_upd = HWRM_VERSION_UPDATE;
8164 
8165 	hwrm_req_flags(bp, req, BNXT_HWRM_CTX_SILENT | BNXT_HWRM_FULL_WAIT);
8166 	rc = hwrm_req_send(bp, req);
8167 	return rc;
8168 }
8169 
8170 static int bnxt_hwrm_ver_get(struct bnxt *bp)
8171 {
8172 	struct hwrm_ver_get_output *resp;
8173 	struct hwrm_ver_get_input *req;
8174 	u16 fw_maj, fw_min, fw_bld, fw_rsv;
8175 	u32 dev_caps_cfg, hwrm_ver;
8176 	int rc, len;
8177 
8178 	rc = hwrm_req_init(bp, req, HWRM_VER_GET);
8179 	if (rc)
8180 		return rc;
8181 
8182 	hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT);
8183 	bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN;
8184 	req->hwrm_intf_maj = HWRM_VERSION_MAJOR;
8185 	req->hwrm_intf_min = HWRM_VERSION_MINOR;
8186 	req->hwrm_intf_upd = HWRM_VERSION_UPDATE;
8187 
8188 	resp = hwrm_req_hold(bp, req);
8189 	rc = hwrm_req_send(bp, req);
8190 	if (rc)
8191 		goto hwrm_ver_get_exit;
8192 
8193 	memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
8194 
8195 	bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 |
8196 			     resp->hwrm_intf_min_8b << 8 |
8197 			     resp->hwrm_intf_upd_8b;
8198 	if (resp->hwrm_intf_maj_8b < 1) {
8199 		netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
8200 			    resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
8201 			    resp->hwrm_intf_upd_8b);
8202 		netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
8203 	}
8204 
8205 	hwrm_ver = HWRM_VERSION_MAJOR << 16 | HWRM_VERSION_MINOR << 8 |
8206 			HWRM_VERSION_UPDATE;
8207 
8208 	if (bp->hwrm_spec_code > hwrm_ver)
8209 		snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d",
8210 			 HWRM_VERSION_MAJOR, HWRM_VERSION_MINOR,
8211 			 HWRM_VERSION_UPDATE);
8212 	else
8213 		snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d",
8214 			 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
8215 			 resp->hwrm_intf_upd_8b);
8216 
8217 	fw_maj = le16_to_cpu(resp->hwrm_fw_major);
8218 	if (bp->hwrm_spec_code > 0x10803 && fw_maj) {
8219 		fw_min = le16_to_cpu(resp->hwrm_fw_minor);
8220 		fw_bld = le16_to_cpu(resp->hwrm_fw_build);
8221 		fw_rsv = le16_to_cpu(resp->hwrm_fw_patch);
8222 		len = FW_VER_STR_LEN;
8223 	} else {
8224 		fw_maj = resp->hwrm_fw_maj_8b;
8225 		fw_min = resp->hwrm_fw_min_8b;
8226 		fw_bld = resp->hwrm_fw_bld_8b;
8227 		fw_rsv = resp->hwrm_fw_rsvd_8b;
8228 		len = BC_HWRM_STR_LEN;
8229 	}
8230 	bp->fw_ver_code = BNXT_FW_VER_CODE(fw_maj, fw_min, fw_bld, fw_rsv);
8231 	snprintf(bp->fw_ver_str, len, "%d.%d.%d.%d", fw_maj, fw_min, fw_bld,
8232 		 fw_rsv);
8233 
8234 	if (strlen(resp->active_pkg_name)) {
8235 		int fw_ver_len = strlen(bp->fw_ver_str);
8236 
8237 		snprintf(bp->fw_ver_str + fw_ver_len,
8238 			 FW_VER_STR_LEN - fw_ver_len - 1, "/pkg %s",
8239 			 resp->active_pkg_name);
8240 		bp->fw_cap |= BNXT_FW_CAP_PKG_VER;
8241 	}
8242 
8243 	bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout);
8244 	if (!bp->hwrm_cmd_timeout)
8245 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
8246 	bp->hwrm_cmd_max_timeout = le16_to_cpu(resp->max_req_timeout) * 1000;
8247 	if (!bp->hwrm_cmd_max_timeout)
8248 		bp->hwrm_cmd_max_timeout = HWRM_CMD_MAX_TIMEOUT;
8249 	else if (bp->hwrm_cmd_max_timeout > HWRM_CMD_MAX_TIMEOUT)
8250 		netdev_warn(bp->dev, "Device requests max timeout of %d seconds, may trigger hung task watchdog\n",
8251 			    bp->hwrm_cmd_max_timeout / 1000);
8252 
8253 	if (resp->hwrm_intf_maj_8b >= 1) {
8254 		bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len);
8255 		bp->hwrm_max_ext_req_len = le16_to_cpu(resp->max_ext_req_len);
8256 	}
8257 	if (bp->hwrm_max_ext_req_len < HWRM_MAX_REQ_LEN)
8258 		bp->hwrm_max_ext_req_len = HWRM_MAX_REQ_LEN;
8259 
8260 	bp->chip_num = le16_to_cpu(resp->chip_num);
8261 	bp->chip_rev = resp->chip_rev;
8262 	if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev &&
8263 	    !resp->chip_metal)
8264 		bp->flags |= BNXT_FLAG_CHIP_NITRO_A0;
8265 
8266 	dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg);
8267 	if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) &&
8268 	    (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED))
8269 		bp->fw_cap |= BNXT_FW_CAP_SHORT_CMD;
8270 
8271 	if (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_KONG_MB_CHNL_SUPPORTED)
8272 		bp->fw_cap |= BNXT_FW_CAP_KONG_MB_CHNL;
8273 
8274 	if (dev_caps_cfg &
8275 	    VER_GET_RESP_DEV_CAPS_CFG_FLOW_HANDLE_64BIT_SUPPORTED)
8276 		bp->fw_cap |= BNXT_FW_CAP_OVS_64BIT_HANDLE;
8277 
8278 	if (dev_caps_cfg &
8279 	    VER_GET_RESP_DEV_CAPS_CFG_TRUSTED_VF_SUPPORTED)
8280 		bp->fw_cap |= BNXT_FW_CAP_TRUSTED_VF;
8281 
8282 	if (dev_caps_cfg &
8283 	    VER_GET_RESP_DEV_CAPS_CFG_CFA_ADV_FLOW_MGNT_SUPPORTED)
8284 		bp->fw_cap |= BNXT_FW_CAP_CFA_ADV_FLOW;
8285 
8286 hwrm_ver_get_exit:
8287 	hwrm_req_drop(bp, req);
8288 	return rc;
8289 }
8290 
8291 int bnxt_hwrm_fw_set_time(struct bnxt *bp)
8292 {
8293 	struct hwrm_fw_set_time_input *req;
8294 	struct tm tm;
8295 	time64_t now = ktime_get_real_seconds();
8296 	int rc;
8297 
8298 	if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) ||
8299 	    bp->hwrm_spec_code < 0x10400)
8300 		return -EOPNOTSUPP;
8301 
8302 	time64_to_tm(now, 0, &tm);
8303 	rc = hwrm_req_init(bp, req, HWRM_FW_SET_TIME);
8304 	if (rc)
8305 		return rc;
8306 
8307 	req->year = cpu_to_le16(1900 + tm.tm_year);
8308 	req->month = 1 + tm.tm_mon;
8309 	req->day = tm.tm_mday;
8310 	req->hour = tm.tm_hour;
8311 	req->minute = tm.tm_min;
8312 	req->second = tm.tm_sec;
8313 	return hwrm_req_send(bp, req);
8314 }
8315 
8316 static void bnxt_add_one_ctr(u64 hw, u64 *sw, u64 mask)
8317 {
8318 	u64 sw_tmp;
8319 
8320 	hw &= mask;
8321 	sw_tmp = (*sw & ~mask) | hw;
8322 	if (hw < (*sw & mask))
8323 		sw_tmp += mask + 1;
8324 	WRITE_ONCE(*sw, sw_tmp);
8325 }
8326 
8327 static void __bnxt_accumulate_stats(__le64 *hw_stats, u64 *sw_stats, u64 *masks,
8328 				    int count, bool ignore_zero)
8329 {
8330 	int i;
8331 
8332 	for (i = 0; i < count; i++) {
8333 		u64 hw = le64_to_cpu(READ_ONCE(hw_stats[i]));
8334 
8335 		if (ignore_zero && !hw)
8336 			continue;
8337 
8338 		if (masks[i] == -1ULL)
8339 			sw_stats[i] = hw;
8340 		else
8341 			bnxt_add_one_ctr(hw, &sw_stats[i], masks[i]);
8342 	}
8343 }
8344 
8345 static void bnxt_accumulate_stats(struct bnxt_stats_mem *stats)
8346 {
8347 	if (!stats->hw_stats)
8348 		return;
8349 
8350 	__bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats,
8351 				stats->hw_masks, stats->len / 8, false);
8352 }
8353 
8354 static void bnxt_accumulate_all_stats(struct bnxt *bp)
8355 {
8356 	struct bnxt_stats_mem *ring0_stats;
8357 	bool ignore_zero = false;
8358 	int i;
8359 
8360 	/* Chip bug.  Counter intermittently becomes 0. */
8361 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8362 		ignore_zero = true;
8363 
8364 	for (i = 0; i < bp->cp_nr_rings; i++) {
8365 		struct bnxt_napi *bnapi = bp->bnapi[i];
8366 		struct bnxt_cp_ring_info *cpr;
8367 		struct bnxt_stats_mem *stats;
8368 
8369 		cpr = &bnapi->cp_ring;
8370 		stats = &cpr->stats;
8371 		if (!i)
8372 			ring0_stats = stats;
8373 		__bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats,
8374 					ring0_stats->hw_masks,
8375 					ring0_stats->len / 8, ignore_zero);
8376 	}
8377 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
8378 		struct bnxt_stats_mem *stats = &bp->port_stats;
8379 		__le64 *hw_stats = stats->hw_stats;
8380 		u64 *sw_stats = stats->sw_stats;
8381 		u64 *masks = stats->hw_masks;
8382 		int cnt;
8383 
8384 		cnt = sizeof(struct rx_port_stats) / 8;
8385 		__bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false);
8386 
8387 		hw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
8388 		sw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
8389 		masks += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
8390 		cnt = sizeof(struct tx_port_stats) / 8;
8391 		__bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false);
8392 	}
8393 	if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) {
8394 		bnxt_accumulate_stats(&bp->rx_port_stats_ext);
8395 		bnxt_accumulate_stats(&bp->tx_port_stats_ext);
8396 	}
8397 }
8398 
8399 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags)
8400 {
8401 	struct hwrm_port_qstats_input *req;
8402 	struct bnxt_pf_info *pf = &bp->pf;
8403 	int rc;
8404 
8405 	if (!(bp->flags & BNXT_FLAG_PORT_STATS))
8406 		return 0;
8407 
8408 	if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))
8409 		return -EOPNOTSUPP;
8410 
8411 	rc = hwrm_req_init(bp, req, HWRM_PORT_QSTATS);
8412 	if (rc)
8413 		return rc;
8414 
8415 	req->flags = flags;
8416 	req->port_id = cpu_to_le16(pf->port_id);
8417 	req->tx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map +
8418 					    BNXT_TX_PORT_STATS_BYTE_OFFSET);
8419 	req->rx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map);
8420 	return hwrm_req_send(bp, req);
8421 }
8422 
8423 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags)
8424 {
8425 	struct hwrm_queue_pri2cos_qcfg_output *resp_qc;
8426 	struct hwrm_queue_pri2cos_qcfg_input *req_qc;
8427 	struct hwrm_port_qstats_ext_output *resp_qs;
8428 	struct hwrm_port_qstats_ext_input *req_qs;
8429 	struct bnxt_pf_info *pf = &bp->pf;
8430 	u32 tx_stat_size;
8431 	int rc;
8432 
8433 	if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT))
8434 		return 0;
8435 
8436 	if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))
8437 		return -EOPNOTSUPP;
8438 
8439 	rc = hwrm_req_init(bp, req_qs, HWRM_PORT_QSTATS_EXT);
8440 	if (rc)
8441 		return rc;
8442 
8443 	req_qs->flags = flags;
8444 	req_qs->port_id = cpu_to_le16(pf->port_id);
8445 	req_qs->rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext));
8446 	req_qs->rx_stat_host_addr = cpu_to_le64(bp->rx_port_stats_ext.hw_stats_map);
8447 	tx_stat_size = bp->tx_port_stats_ext.hw_stats ?
8448 		       sizeof(struct tx_port_stats_ext) : 0;
8449 	req_qs->tx_stat_size = cpu_to_le16(tx_stat_size);
8450 	req_qs->tx_stat_host_addr = cpu_to_le64(bp->tx_port_stats_ext.hw_stats_map);
8451 	resp_qs = hwrm_req_hold(bp, req_qs);
8452 	rc = hwrm_req_send(bp, req_qs);
8453 	if (!rc) {
8454 		bp->fw_rx_stats_ext_size =
8455 			le16_to_cpu(resp_qs->rx_stat_size) / 8;
8456 		if (BNXT_FW_MAJ(bp) < 220 &&
8457 		    bp->fw_rx_stats_ext_size > BNXT_RX_STATS_EXT_NUM_LEGACY)
8458 			bp->fw_rx_stats_ext_size = BNXT_RX_STATS_EXT_NUM_LEGACY;
8459 
8460 		bp->fw_tx_stats_ext_size = tx_stat_size ?
8461 			le16_to_cpu(resp_qs->tx_stat_size) / 8 : 0;
8462 	} else {
8463 		bp->fw_rx_stats_ext_size = 0;
8464 		bp->fw_tx_stats_ext_size = 0;
8465 	}
8466 	hwrm_req_drop(bp, req_qs);
8467 
8468 	if (flags)
8469 		return rc;
8470 
8471 	if (bp->fw_tx_stats_ext_size <=
8472 	    offsetof(struct tx_port_stats_ext, pfc_pri0_tx_duration_us) / 8) {
8473 		bp->pri2cos_valid = 0;
8474 		return rc;
8475 	}
8476 
8477 	rc = hwrm_req_init(bp, req_qc, HWRM_QUEUE_PRI2COS_QCFG);
8478 	if (rc)
8479 		return rc;
8480 
8481 	req_qc->flags = cpu_to_le32(QUEUE_PRI2COS_QCFG_REQ_FLAGS_IVLAN);
8482 
8483 	resp_qc = hwrm_req_hold(bp, req_qc);
8484 	rc = hwrm_req_send(bp, req_qc);
8485 	if (!rc) {
8486 		u8 *pri2cos;
8487 		int i, j;
8488 
8489 		pri2cos = &resp_qc->pri0_cos_queue_id;
8490 		for (i = 0; i < 8; i++) {
8491 			u8 queue_id = pri2cos[i];
8492 			u8 queue_idx;
8493 
8494 			/* Per port queue IDs start from 0, 10, 20, etc */
8495 			queue_idx = queue_id % 10;
8496 			if (queue_idx > BNXT_MAX_QUEUE) {
8497 				bp->pri2cos_valid = false;
8498 				hwrm_req_drop(bp, req_qc);
8499 				return rc;
8500 			}
8501 			for (j = 0; j < bp->max_q; j++) {
8502 				if (bp->q_ids[j] == queue_id)
8503 					bp->pri2cos_idx[i] = queue_idx;
8504 			}
8505 		}
8506 		bp->pri2cos_valid = true;
8507 	}
8508 	hwrm_req_drop(bp, req_qc);
8509 
8510 	return rc;
8511 }
8512 
8513 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
8514 {
8515 	bnxt_hwrm_tunnel_dst_port_free(bp,
8516 		TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
8517 	bnxt_hwrm_tunnel_dst_port_free(bp,
8518 		TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
8519 }
8520 
8521 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
8522 {
8523 	int rc, i;
8524 	u32 tpa_flags = 0;
8525 
8526 	if (set_tpa)
8527 		tpa_flags = bp->flags & BNXT_FLAG_TPA;
8528 	else if (BNXT_NO_FW_ACCESS(bp))
8529 		return 0;
8530 	for (i = 0; i < bp->nr_vnics; i++) {
8531 		rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
8532 		if (rc) {
8533 			netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
8534 				   i, rc);
8535 			return rc;
8536 		}
8537 	}
8538 	return 0;
8539 }
8540 
8541 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
8542 {
8543 	int i;
8544 
8545 	for (i = 0; i < bp->nr_vnics; i++)
8546 		bnxt_hwrm_vnic_set_rss(bp, i, false);
8547 }
8548 
8549 static void bnxt_clear_vnic(struct bnxt *bp)
8550 {
8551 	if (!bp->vnic_info)
8552 		return;
8553 
8554 	bnxt_hwrm_clear_vnic_filter(bp);
8555 	if (!(bp->flags & BNXT_FLAG_CHIP_P5)) {
8556 		/* clear all RSS setting before free vnic ctx */
8557 		bnxt_hwrm_clear_vnic_rss(bp);
8558 		bnxt_hwrm_vnic_ctx_free(bp);
8559 	}
8560 	/* before free the vnic, undo the vnic tpa settings */
8561 	if (bp->flags & BNXT_FLAG_TPA)
8562 		bnxt_set_tpa(bp, false);
8563 	bnxt_hwrm_vnic_free(bp);
8564 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8565 		bnxt_hwrm_vnic_ctx_free(bp);
8566 }
8567 
8568 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
8569 				    bool irq_re_init)
8570 {
8571 	bnxt_clear_vnic(bp);
8572 	bnxt_hwrm_ring_free(bp, close_path);
8573 	bnxt_hwrm_ring_grp_free(bp);
8574 	if (irq_re_init) {
8575 		bnxt_hwrm_stat_ctx_free(bp);
8576 		bnxt_hwrm_free_tunnel_ports(bp);
8577 	}
8578 }
8579 
8580 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode)
8581 {
8582 	struct hwrm_func_cfg_input *req;
8583 	u8 evb_mode;
8584 	int rc;
8585 
8586 	if (br_mode == BRIDGE_MODE_VEB)
8587 		evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB;
8588 	else if (br_mode == BRIDGE_MODE_VEPA)
8589 		evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA;
8590 	else
8591 		return -EINVAL;
8592 
8593 	rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG);
8594 	if (rc)
8595 		return rc;
8596 
8597 	req->fid = cpu_to_le16(0xffff);
8598 	req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE);
8599 	req->evb_mode = evb_mode;
8600 	return hwrm_req_send(bp, req);
8601 }
8602 
8603 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size)
8604 {
8605 	struct hwrm_func_cfg_input *req;
8606 	int rc;
8607 
8608 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803)
8609 		return 0;
8610 
8611 	rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG);
8612 	if (rc)
8613 		return rc;
8614 
8615 	req->fid = cpu_to_le16(0xffff);
8616 	req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE);
8617 	req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64;
8618 	if (size == 128)
8619 		req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128;
8620 
8621 	return hwrm_req_send(bp, req);
8622 }
8623 
8624 static int __bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
8625 {
8626 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
8627 	int rc;
8628 
8629 	if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG)
8630 		goto skip_rss_ctx;
8631 
8632 	/* allocate context for vnic */
8633 	rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0);
8634 	if (rc) {
8635 		netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
8636 			   vnic_id, rc);
8637 		goto vnic_setup_err;
8638 	}
8639 	bp->rsscos_nr_ctxs++;
8640 
8641 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
8642 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1);
8643 		if (rc) {
8644 			netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n",
8645 				   vnic_id, rc);
8646 			goto vnic_setup_err;
8647 		}
8648 		bp->rsscos_nr_ctxs++;
8649 	}
8650 
8651 skip_rss_ctx:
8652 	/* configure default vnic, ring grp */
8653 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
8654 	if (rc) {
8655 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
8656 			   vnic_id, rc);
8657 		goto vnic_setup_err;
8658 	}
8659 
8660 	/* Enable RSS hashing on vnic */
8661 	rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
8662 	if (rc) {
8663 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
8664 			   vnic_id, rc);
8665 		goto vnic_setup_err;
8666 	}
8667 
8668 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
8669 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
8670 		if (rc) {
8671 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
8672 				   vnic_id, rc);
8673 		}
8674 	}
8675 
8676 vnic_setup_err:
8677 	return rc;
8678 }
8679 
8680 static int __bnxt_setup_vnic_p5(struct bnxt *bp, u16 vnic_id)
8681 {
8682 	int rc, i, nr_ctxs;
8683 
8684 	nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings);
8685 	for (i = 0; i < nr_ctxs; i++) {
8686 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, i);
8687 		if (rc) {
8688 			netdev_err(bp->dev, "hwrm vnic %d ctx %d alloc failure rc: %x\n",
8689 				   vnic_id, i, rc);
8690 			break;
8691 		}
8692 		bp->rsscos_nr_ctxs++;
8693 	}
8694 	if (i < nr_ctxs)
8695 		return -ENOMEM;
8696 
8697 	rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic_id, true);
8698 	if (rc) {
8699 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n",
8700 			   vnic_id, rc);
8701 		return rc;
8702 	}
8703 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
8704 	if (rc) {
8705 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
8706 			   vnic_id, rc);
8707 		return rc;
8708 	}
8709 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
8710 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
8711 		if (rc) {
8712 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
8713 				   vnic_id, rc);
8714 		}
8715 	}
8716 	return rc;
8717 }
8718 
8719 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
8720 {
8721 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8722 		return __bnxt_setup_vnic_p5(bp, vnic_id);
8723 	else
8724 		return __bnxt_setup_vnic(bp, vnic_id);
8725 }
8726 
8727 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
8728 {
8729 #ifdef CONFIG_RFS_ACCEL
8730 	int i, rc = 0;
8731 
8732 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8733 		return 0;
8734 
8735 	for (i = 0; i < bp->rx_nr_rings; i++) {
8736 		struct bnxt_vnic_info *vnic;
8737 		u16 vnic_id = i + 1;
8738 		u16 ring_id = i;
8739 
8740 		if (vnic_id >= bp->nr_vnics)
8741 			break;
8742 
8743 		vnic = &bp->vnic_info[vnic_id];
8744 		vnic->flags |= BNXT_VNIC_RFS_FLAG;
8745 		if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
8746 			vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG;
8747 		rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1);
8748 		if (rc) {
8749 			netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
8750 				   vnic_id, rc);
8751 			break;
8752 		}
8753 		rc = bnxt_setup_vnic(bp, vnic_id);
8754 		if (rc)
8755 			break;
8756 	}
8757 	return rc;
8758 #else
8759 	return 0;
8760 #endif
8761 }
8762 
8763 /* Allow PF, trusted VFs and VFs with default VLAN to be in promiscuous mode */
8764 static bool bnxt_promisc_ok(struct bnxt *bp)
8765 {
8766 #ifdef CONFIG_BNXT_SRIOV
8767 	if (BNXT_VF(bp) && !bp->vf.vlan && !bnxt_is_trusted_vf(bp, &bp->vf))
8768 		return false;
8769 #endif
8770 	return true;
8771 }
8772 
8773 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp)
8774 {
8775 	unsigned int rc = 0;
8776 
8777 	rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1);
8778 	if (rc) {
8779 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
8780 			   rc);
8781 		return rc;
8782 	}
8783 
8784 	rc = bnxt_hwrm_vnic_cfg(bp, 1);
8785 	if (rc) {
8786 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
8787 			   rc);
8788 		return rc;
8789 	}
8790 	return rc;
8791 }
8792 
8793 static int bnxt_cfg_rx_mode(struct bnxt *);
8794 static bool bnxt_mc_list_updated(struct bnxt *, u32 *);
8795 
8796 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
8797 {
8798 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
8799 	int rc = 0;
8800 	unsigned int rx_nr_rings = bp->rx_nr_rings;
8801 
8802 	if (irq_re_init) {
8803 		rc = bnxt_hwrm_stat_ctx_alloc(bp);
8804 		if (rc) {
8805 			netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
8806 				   rc);
8807 			goto err_out;
8808 		}
8809 	}
8810 
8811 	rc = bnxt_hwrm_ring_alloc(bp);
8812 	if (rc) {
8813 		netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
8814 		goto err_out;
8815 	}
8816 
8817 	rc = bnxt_hwrm_ring_grp_alloc(bp);
8818 	if (rc) {
8819 		netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
8820 		goto err_out;
8821 	}
8822 
8823 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
8824 		rx_nr_rings--;
8825 
8826 	/* default vnic 0 */
8827 	rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings);
8828 	if (rc) {
8829 		netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
8830 		goto err_out;
8831 	}
8832 
8833 	if (BNXT_VF(bp))
8834 		bnxt_hwrm_func_qcfg(bp);
8835 
8836 	rc = bnxt_setup_vnic(bp, 0);
8837 	if (rc)
8838 		goto err_out;
8839 	if (bp->fw_cap & BNXT_FW_CAP_RSS_HASH_TYPE_DELTA)
8840 		bnxt_hwrm_update_rss_hash_cfg(bp);
8841 
8842 	if (bp->flags & BNXT_FLAG_RFS) {
8843 		rc = bnxt_alloc_rfs_vnics(bp);
8844 		if (rc)
8845 			goto err_out;
8846 	}
8847 
8848 	if (bp->flags & BNXT_FLAG_TPA) {
8849 		rc = bnxt_set_tpa(bp, true);
8850 		if (rc)
8851 			goto err_out;
8852 	}
8853 
8854 	if (BNXT_VF(bp))
8855 		bnxt_update_vf_mac(bp);
8856 
8857 	/* Filter for default vnic 0 */
8858 	rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
8859 	if (rc) {
8860 		if (BNXT_VF(bp) && rc == -ENODEV)
8861 			netdev_err(bp->dev, "Cannot configure L2 filter while PF is unavailable\n");
8862 		else
8863 			netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
8864 		goto err_out;
8865 	}
8866 	vnic->uc_filter_count = 1;
8867 
8868 	vnic->rx_mask = 0;
8869 	if (test_bit(BNXT_STATE_HALF_OPEN, &bp->state))
8870 		goto skip_rx_mask;
8871 
8872 	if (bp->dev->flags & IFF_BROADCAST)
8873 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
8874 
8875 	if (bp->dev->flags & IFF_PROMISC)
8876 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
8877 
8878 	if (bp->dev->flags & IFF_ALLMULTI) {
8879 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
8880 		vnic->mc_list_count = 0;
8881 	} else if (bp->dev->flags & IFF_MULTICAST) {
8882 		u32 mask = 0;
8883 
8884 		bnxt_mc_list_updated(bp, &mask);
8885 		vnic->rx_mask |= mask;
8886 	}
8887 
8888 	rc = bnxt_cfg_rx_mode(bp);
8889 	if (rc)
8890 		goto err_out;
8891 
8892 skip_rx_mask:
8893 	rc = bnxt_hwrm_set_coal(bp);
8894 	if (rc)
8895 		netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
8896 				rc);
8897 
8898 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
8899 		rc = bnxt_setup_nitroa0_vnic(bp);
8900 		if (rc)
8901 			netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n",
8902 				   rc);
8903 	}
8904 
8905 	if (BNXT_VF(bp)) {
8906 		bnxt_hwrm_func_qcfg(bp);
8907 		netdev_update_features(bp->dev);
8908 	}
8909 
8910 	return 0;
8911 
8912 err_out:
8913 	bnxt_hwrm_resource_free(bp, 0, true);
8914 
8915 	return rc;
8916 }
8917 
8918 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
8919 {
8920 	bnxt_hwrm_resource_free(bp, 1, irq_re_init);
8921 	return 0;
8922 }
8923 
8924 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
8925 {
8926 	bnxt_init_cp_rings(bp);
8927 	bnxt_init_rx_rings(bp);
8928 	bnxt_init_tx_rings(bp);
8929 	bnxt_init_ring_grps(bp, irq_re_init);
8930 	bnxt_init_vnics(bp);
8931 
8932 	return bnxt_init_chip(bp, irq_re_init);
8933 }
8934 
8935 static int bnxt_set_real_num_queues(struct bnxt *bp)
8936 {
8937 	int rc;
8938 	struct net_device *dev = bp->dev;
8939 
8940 	rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings -
8941 					  bp->tx_nr_rings_xdp);
8942 	if (rc)
8943 		return rc;
8944 
8945 	rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
8946 	if (rc)
8947 		return rc;
8948 
8949 #ifdef CONFIG_RFS_ACCEL
8950 	if (bp->flags & BNXT_FLAG_RFS)
8951 		dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
8952 #endif
8953 
8954 	return rc;
8955 }
8956 
8957 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
8958 			   bool shared)
8959 {
8960 	int _rx = *rx, _tx = *tx;
8961 
8962 	if (shared) {
8963 		*rx = min_t(int, _rx, max);
8964 		*tx = min_t(int, _tx, max);
8965 	} else {
8966 		if (max < 2)
8967 			return -ENOMEM;
8968 
8969 		while (_rx + _tx > max) {
8970 			if (_rx > _tx && _rx > 1)
8971 				_rx--;
8972 			else if (_tx > 1)
8973 				_tx--;
8974 		}
8975 		*rx = _rx;
8976 		*tx = _tx;
8977 	}
8978 	return 0;
8979 }
8980 
8981 static void bnxt_setup_msix(struct bnxt *bp)
8982 {
8983 	const int len = sizeof(bp->irq_tbl[0].name);
8984 	struct net_device *dev = bp->dev;
8985 	int tcs, i;
8986 
8987 	tcs = netdev_get_num_tc(dev);
8988 	if (tcs) {
8989 		int i, off, count;
8990 
8991 		for (i = 0; i < tcs; i++) {
8992 			count = bp->tx_nr_rings_per_tc;
8993 			off = i * count;
8994 			netdev_set_tc_queue(dev, i, count, off);
8995 		}
8996 	}
8997 
8998 	for (i = 0; i < bp->cp_nr_rings; i++) {
8999 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
9000 		char *attr;
9001 
9002 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
9003 			attr = "TxRx";
9004 		else if (i < bp->rx_nr_rings)
9005 			attr = "rx";
9006 		else
9007 			attr = "tx";
9008 
9009 		snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name,
9010 			 attr, i);
9011 		bp->irq_tbl[map_idx].handler = bnxt_msix;
9012 	}
9013 }
9014 
9015 static void bnxt_setup_inta(struct bnxt *bp)
9016 {
9017 	const int len = sizeof(bp->irq_tbl[0].name);
9018 
9019 	if (netdev_get_num_tc(bp->dev))
9020 		netdev_reset_tc(bp->dev);
9021 
9022 	snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx",
9023 		 0);
9024 	bp->irq_tbl[0].handler = bnxt_inta;
9025 }
9026 
9027 static int bnxt_init_int_mode(struct bnxt *bp);
9028 
9029 static int bnxt_setup_int_mode(struct bnxt *bp)
9030 {
9031 	int rc;
9032 
9033 	if (!bp->irq_tbl) {
9034 		rc = bnxt_init_int_mode(bp);
9035 		if (rc || !bp->irq_tbl)
9036 			return rc ?: -ENODEV;
9037 	}
9038 
9039 	if (bp->flags & BNXT_FLAG_USING_MSIX)
9040 		bnxt_setup_msix(bp);
9041 	else
9042 		bnxt_setup_inta(bp);
9043 
9044 	rc = bnxt_set_real_num_queues(bp);
9045 	return rc;
9046 }
9047 
9048 #ifdef CONFIG_RFS_ACCEL
9049 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp)
9050 {
9051 	return bp->hw_resc.max_rsscos_ctxs;
9052 }
9053 
9054 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp)
9055 {
9056 	return bp->hw_resc.max_vnics;
9057 }
9058 #endif
9059 
9060 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp)
9061 {
9062 	return bp->hw_resc.max_stat_ctxs;
9063 }
9064 
9065 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp)
9066 {
9067 	return bp->hw_resc.max_cp_rings;
9068 }
9069 
9070 static unsigned int bnxt_get_max_func_cp_rings_for_en(struct bnxt *bp)
9071 {
9072 	unsigned int cp = bp->hw_resc.max_cp_rings;
9073 
9074 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
9075 		cp -= bnxt_get_ulp_msix_num(bp);
9076 
9077 	return cp;
9078 }
9079 
9080 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp)
9081 {
9082 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
9083 
9084 	if (bp->flags & BNXT_FLAG_CHIP_P5)
9085 		return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_nqs);
9086 
9087 	return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings);
9088 }
9089 
9090 static void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs)
9091 {
9092 	bp->hw_resc.max_irqs = max_irqs;
9093 }
9094 
9095 unsigned int bnxt_get_avail_cp_rings_for_en(struct bnxt *bp)
9096 {
9097 	unsigned int cp;
9098 
9099 	cp = bnxt_get_max_func_cp_rings_for_en(bp);
9100 	if (bp->flags & BNXT_FLAG_CHIP_P5)
9101 		return cp - bp->rx_nr_rings - bp->tx_nr_rings;
9102 	else
9103 		return cp - bp->cp_nr_rings;
9104 }
9105 
9106 unsigned int bnxt_get_avail_stat_ctxs_for_en(struct bnxt *bp)
9107 {
9108 	return bnxt_get_max_func_stat_ctxs(bp) - bnxt_get_func_stat_ctxs(bp);
9109 }
9110 
9111 int bnxt_get_avail_msix(struct bnxt *bp, int num)
9112 {
9113 	int max_cp = bnxt_get_max_func_cp_rings(bp);
9114 	int max_irq = bnxt_get_max_func_irqs(bp);
9115 	int total_req = bp->cp_nr_rings + num;
9116 	int max_idx, avail_msix;
9117 
9118 	max_idx = bp->total_irqs;
9119 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
9120 		max_idx = min_t(int, bp->total_irqs, max_cp);
9121 	avail_msix = max_idx - bp->cp_nr_rings;
9122 	if (!BNXT_NEW_RM(bp) || avail_msix >= num)
9123 		return avail_msix;
9124 
9125 	if (max_irq < total_req) {
9126 		num = max_irq - bp->cp_nr_rings;
9127 		if (num <= 0)
9128 			return 0;
9129 	}
9130 	return num;
9131 }
9132 
9133 static int bnxt_get_num_msix(struct bnxt *bp)
9134 {
9135 	if (!BNXT_NEW_RM(bp))
9136 		return bnxt_get_max_func_irqs(bp);
9137 
9138 	return bnxt_nq_rings_in_use(bp);
9139 }
9140 
9141 static int bnxt_init_msix(struct bnxt *bp)
9142 {
9143 	int i, total_vecs, max, rc = 0, min = 1, ulp_msix;
9144 	struct msix_entry *msix_ent;
9145 
9146 	total_vecs = bnxt_get_num_msix(bp);
9147 	max = bnxt_get_max_func_irqs(bp);
9148 	if (total_vecs > max)
9149 		total_vecs = max;
9150 
9151 	if (!total_vecs)
9152 		return 0;
9153 
9154 	msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
9155 	if (!msix_ent)
9156 		return -ENOMEM;
9157 
9158 	for (i = 0; i < total_vecs; i++) {
9159 		msix_ent[i].entry = i;
9160 		msix_ent[i].vector = 0;
9161 	}
9162 
9163 	if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
9164 		min = 2;
9165 
9166 	total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
9167 	ulp_msix = bnxt_get_ulp_msix_num(bp);
9168 	if (total_vecs < 0 || total_vecs < ulp_msix) {
9169 		rc = -ENODEV;
9170 		goto msix_setup_exit;
9171 	}
9172 
9173 	bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
9174 	if (bp->irq_tbl) {
9175 		for (i = 0; i < total_vecs; i++)
9176 			bp->irq_tbl[i].vector = msix_ent[i].vector;
9177 
9178 		bp->total_irqs = total_vecs;
9179 		/* Trim rings based upon num of vectors allocated */
9180 		rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
9181 				     total_vecs - ulp_msix, min == 1);
9182 		if (rc)
9183 			goto msix_setup_exit;
9184 
9185 		bp->cp_nr_rings = (min == 1) ?
9186 				  max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
9187 				  bp->tx_nr_rings + bp->rx_nr_rings;
9188 
9189 	} else {
9190 		rc = -ENOMEM;
9191 		goto msix_setup_exit;
9192 	}
9193 	bp->flags |= BNXT_FLAG_USING_MSIX;
9194 	kfree(msix_ent);
9195 	return 0;
9196 
9197 msix_setup_exit:
9198 	netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc);
9199 	kfree(bp->irq_tbl);
9200 	bp->irq_tbl = NULL;
9201 	pci_disable_msix(bp->pdev);
9202 	kfree(msix_ent);
9203 	return rc;
9204 }
9205 
9206 static int bnxt_init_inta(struct bnxt *bp)
9207 {
9208 	bp->irq_tbl = kzalloc(sizeof(struct bnxt_irq), GFP_KERNEL);
9209 	if (!bp->irq_tbl)
9210 		return -ENOMEM;
9211 
9212 	bp->total_irqs = 1;
9213 	bp->rx_nr_rings = 1;
9214 	bp->tx_nr_rings = 1;
9215 	bp->cp_nr_rings = 1;
9216 	bp->flags |= BNXT_FLAG_SHARED_RINGS;
9217 	bp->irq_tbl[0].vector = bp->pdev->irq;
9218 	return 0;
9219 }
9220 
9221 static int bnxt_init_int_mode(struct bnxt *bp)
9222 {
9223 	int rc = -ENODEV;
9224 
9225 	if (bp->flags & BNXT_FLAG_MSIX_CAP)
9226 		rc = bnxt_init_msix(bp);
9227 
9228 	if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) {
9229 		/* fallback to INTA */
9230 		rc = bnxt_init_inta(bp);
9231 	}
9232 	return rc;
9233 }
9234 
9235 static void bnxt_clear_int_mode(struct bnxt *bp)
9236 {
9237 	if (bp->flags & BNXT_FLAG_USING_MSIX)
9238 		pci_disable_msix(bp->pdev);
9239 
9240 	kfree(bp->irq_tbl);
9241 	bp->irq_tbl = NULL;
9242 	bp->flags &= ~BNXT_FLAG_USING_MSIX;
9243 }
9244 
9245 int bnxt_reserve_rings(struct bnxt *bp, bool irq_re_init)
9246 {
9247 	int tcs = netdev_get_num_tc(bp->dev);
9248 	bool irq_cleared = false;
9249 	int rc;
9250 
9251 	if (!bnxt_need_reserve_rings(bp))
9252 		return 0;
9253 
9254 	if (irq_re_init && BNXT_NEW_RM(bp) &&
9255 	    bnxt_get_num_msix(bp) != bp->total_irqs) {
9256 		bnxt_ulp_irq_stop(bp);
9257 		bnxt_clear_int_mode(bp);
9258 		irq_cleared = true;
9259 	}
9260 	rc = __bnxt_reserve_rings(bp);
9261 	if (irq_cleared) {
9262 		if (!rc)
9263 			rc = bnxt_init_int_mode(bp);
9264 		bnxt_ulp_irq_restart(bp, rc);
9265 	}
9266 	if (rc) {
9267 		netdev_err(bp->dev, "ring reservation/IRQ init failure rc: %d\n", rc);
9268 		return rc;
9269 	}
9270 	if (tcs && (bp->tx_nr_rings_per_tc * tcs !=
9271 		    bp->tx_nr_rings - bp->tx_nr_rings_xdp)) {
9272 		netdev_err(bp->dev, "tx ring reservation failure\n");
9273 		netdev_reset_tc(bp->dev);
9274 		if (bp->tx_nr_rings_xdp)
9275 			bp->tx_nr_rings_per_tc = bp->tx_nr_rings_xdp;
9276 		else
9277 			bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
9278 		return -ENOMEM;
9279 	}
9280 	return 0;
9281 }
9282 
9283 static void bnxt_free_irq(struct bnxt *bp)
9284 {
9285 	struct bnxt_irq *irq;
9286 	int i;
9287 
9288 #ifdef CONFIG_RFS_ACCEL
9289 	free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
9290 	bp->dev->rx_cpu_rmap = NULL;
9291 #endif
9292 	if (!bp->irq_tbl || !bp->bnapi)
9293 		return;
9294 
9295 	for (i = 0; i < bp->cp_nr_rings; i++) {
9296 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
9297 
9298 		irq = &bp->irq_tbl[map_idx];
9299 		if (irq->requested) {
9300 			if (irq->have_cpumask) {
9301 				irq_set_affinity_hint(irq->vector, NULL);
9302 				free_cpumask_var(irq->cpu_mask);
9303 				irq->have_cpumask = 0;
9304 			}
9305 			free_irq(irq->vector, bp->bnapi[i]);
9306 		}
9307 
9308 		irq->requested = 0;
9309 	}
9310 }
9311 
9312 static int bnxt_request_irq(struct bnxt *bp)
9313 {
9314 	int i, j, rc = 0;
9315 	unsigned long flags = 0;
9316 #ifdef CONFIG_RFS_ACCEL
9317 	struct cpu_rmap *rmap;
9318 #endif
9319 
9320 	rc = bnxt_setup_int_mode(bp);
9321 	if (rc) {
9322 		netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
9323 			   rc);
9324 		return rc;
9325 	}
9326 #ifdef CONFIG_RFS_ACCEL
9327 	rmap = bp->dev->rx_cpu_rmap;
9328 #endif
9329 	if (!(bp->flags & BNXT_FLAG_USING_MSIX))
9330 		flags = IRQF_SHARED;
9331 
9332 	for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
9333 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
9334 		struct bnxt_irq *irq = &bp->irq_tbl[map_idx];
9335 
9336 #ifdef CONFIG_RFS_ACCEL
9337 		if (rmap && bp->bnapi[i]->rx_ring) {
9338 			rc = irq_cpu_rmap_add(rmap, irq->vector);
9339 			if (rc)
9340 				netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
9341 					    j);
9342 			j++;
9343 		}
9344 #endif
9345 		rc = request_irq(irq->vector, irq->handler, flags, irq->name,
9346 				 bp->bnapi[i]);
9347 		if (rc)
9348 			break;
9349 
9350 		irq->requested = 1;
9351 
9352 		if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) {
9353 			int numa_node = dev_to_node(&bp->pdev->dev);
9354 
9355 			irq->have_cpumask = 1;
9356 			cpumask_set_cpu(cpumask_local_spread(i, numa_node),
9357 					irq->cpu_mask);
9358 			rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask);
9359 			if (rc) {
9360 				netdev_warn(bp->dev,
9361 					    "Set affinity failed, IRQ = %d\n",
9362 					    irq->vector);
9363 				break;
9364 			}
9365 		}
9366 	}
9367 	return rc;
9368 }
9369 
9370 static void bnxt_del_napi(struct bnxt *bp)
9371 {
9372 	int i;
9373 
9374 	if (!bp->bnapi)
9375 		return;
9376 
9377 	for (i = 0; i < bp->cp_nr_rings; i++) {
9378 		struct bnxt_napi *bnapi = bp->bnapi[i];
9379 
9380 		__netif_napi_del(&bnapi->napi);
9381 	}
9382 	/* We called __netif_napi_del(), we need
9383 	 * to respect an RCU grace period before freeing napi structures.
9384 	 */
9385 	synchronize_net();
9386 }
9387 
9388 static void bnxt_init_napi(struct bnxt *bp)
9389 {
9390 	int i;
9391 	unsigned int cp_nr_rings = bp->cp_nr_rings;
9392 	struct bnxt_napi *bnapi;
9393 
9394 	if (bp->flags & BNXT_FLAG_USING_MSIX) {
9395 		int (*poll_fn)(struct napi_struct *, int) = bnxt_poll;
9396 
9397 		if (bp->flags & BNXT_FLAG_CHIP_P5)
9398 			poll_fn = bnxt_poll_p5;
9399 		else if (BNXT_CHIP_TYPE_NITRO_A0(bp))
9400 			cp_nr_rings--;
9401 		for (i = 0; i < cp_nr_rings; i++) {
9402 			bnapi = bp->bnapi[i];
9403 			netif_napi_add(bp->dev, &bnapi->napi, poll_fn);
9404 		}
9405 		if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
9406 			bnapi = bp->bnapi[cp_nr_rings];
9407 			netif_napi_add(bp->dev, &bnapi->napi,
9408 				       bnxt_poll_nitroa0);
9409 		}
9410 	} else {
9411 		bnapi = bp->bnapi[0];
9412 		netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll);
9413 	}
9414 }
9415 
9416 static void bnxt_disable_napi(struct bnxt *bp)
9417 {
9418 	int i;
9419 
9420 	if (!bp->bnapi ||
9421 	    test_and_set_bit(BNXT_STATE_NAPI_DISABLED, &bp->state))
9422 		return;
9423 
9424 	for (i = 0; i < bp->cp_nr_rings; i++) {
9425 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
9426 
9427 		napi_disable(&bp->bnapi[i]->napi);
9428 		if (bp->bnapi[i]->rx_ring)
9429 			cancel_work_sync(&cpr->dim.work);
9430 	}
9431 }
9432 
9433 static void bnxt_enable_napi(struct bnxt *bp)
9434 {
9435 	int i;
9436 
9437 	clear_bit(BNXT_STATE_NAPI_DISABLED, &bp->state);
9438 	for (i = 0; i < bp->cp_nr_rings; i++) {
9439 		struct bnxt_napi *bnapi = bp->bnapi[i];
9440 		struct bnxt_cp_ring_info *cpr;
9441 
9442 		cpr = &bnapi->cp_ring;
9443 		if (bnapi->in_reset)
9444 			cpr->sw_stats.rx.rx_resets++;
9445 		bnapi->in_reset = false;
9446 
9447 		bnapi->tx_pkts = 0;
9448 
9449 		if (bnapi->rx_ring) {
9450 			INIT_WORK(&cpr->dim.work, bnxt_dim_work);
9451 			cpr->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
9452 		}
9453 		napi_enable(&bnapi->napi);
9454 	}
9455 }
9456 
9457 void bnxt_tx_disable(struct bnxt *bp)
9458 {
9459 	int i;
9460 	struct bnxt_tx_ring_info *txr;
9461 
9462 	if (bp->tx_ring) {
9463 		for (i = 0; i < bp->tx_nr_rings; i++) {
9464 			txr = &bp->tx_ring[i];
9465 			WRITE_ONCE(txr->dev_state, BNXT_DEV_STATE_CLOSING);
9466 		}
9467 	}
9468 	/* Make sure napi polls see @dev_state change */
9469 	synchronize_net();
9470 	/* Drop carrier first to prevent TX timeout */
9471 	netif_carrier_off(bp->dev);
9472 	/* Stop all TX queues */
9473 	netif_tx_disable(bp->dev);
9474 }
9475 
9476 void bnxt_tx_enable(struct bnxt *bp)
9477 {
9478 	int i;
9479 	struct bnxt_tx_ring_info *txr;
9480 
9481 	for (i = 0; i < bp->tx_nr_rings; i++) {
9482 		txr = &bp->tx_ring[i];
9483 		WRITE_ONCE(txr->dev_state, 0);
9484 	}
9485 	/* Make sure napi polls see @dev_state change */
9486 	synchronize_net();
9487 	netif_tx_wake_all_queues(bp->dev);
9488 	if (BNXT_LINK_IS_UP(bp))
9489 		netif_carrier_on(bp->dev);
9490 }
9491 
9492 static char *bnxt_report_fec(struct bnxt_link_info *link_info)
9493 {
9494 	u8 active_fec = link_info->active_fec_sig_mode &
9495 			PORT_PHY_QCFG_RESP_ACTIVE_FEC_MASK;
9496 
9497 	switch (active_fec) {
9498 	default:
9499 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_NONE_ACTIVE:
9500 		return "None";
9501 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE74_ACTIVE:
9502 		return "Clause 74 BaseR";
9503 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE91_ACTIVE:
9504 		return "Clause 91 RS(528,514)";
9505 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_1XN_ACTIVE:
9506 		return "Clause 91 RS544_1XN";
9507 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_IEEE_ACTIVE:
9508 		return "Clause 91 RS(544,514)";
9509 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_1XN_ACTIVE:
9510 		return "Clause 91 RS272_1XN";
9511 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_IEEE_ACTIVE:
9512 		return "Clause 91 RS(272,257)";
9513 	}
9514 }
9515 
9516 void bnxt_report_link(struct bnxt *bp)
9517 {
9518 	if (BNXT_LINK_IS_UP(bp)) {
9519 		const char *signal = "";
9520 		const char *flow_ctrl;
9521 		const char *duplex;
9522 		u32 speed;
9523 		u16 fec;
9524 
9525 		netif_carrier_on(bp->dev);
9526 		speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
9527 		if (speed == SPEED_UNKNOWN) {
9528 			netdev_info(bp->dev, "NIC Link is Up, speed unknown\n");
9529 			return;
9530 		}
9531 		if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
9532 			duplex = "full";
9533 		else
9534 			duplex = "half";
9535 		if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
9536 			flow_ctrl = "ON - receive & transmit";
9537 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
9538 			flow_ctrl = "ON - transmit";
9539 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
9540 			flow_ctrl = "ON - receive";
9541 		else
9542 			flow_ctrl = "none";
9543 		if (bp->link_info.phy_qcfg_resp.option_flags &
9544 		    PORT_PHY_QCFG_RESP_OPTION_FLAGS_SIGNAL_MODE_KNOWN) {
9545 			u8 sig_mode = bp->link_info.active_fec_sig_mode &
9546 				      PORT_PHY_QCFG_RESP_SIGNAL_MODE_MASK;
9547 			switch (sig_mode) {
9548 			case PORT_PHY_QCFG_RESP_SIGNAL_MODE_NRZ:
9549 				signal = "(NRZ) ";
9550 				break;
9551 			case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4:
9552 				signal = "(PAM4) ";
9553 				break;
9554 			default:
9555 				break;
9556 			}
9557 		}
9558 		netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s%s duplex, Flow control: %s\n",
9559 			    speed, signal, duplex, flow_ctrl);
9560 		if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP)
9561 			netdev_info(bp->dev, "EEE is %s\n",
9562 				    bp->eee.eee_active ? "active" :
9563 							 "not active");
9564 		fec = bp->link_info.fec_cfg;
9565 		if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED))
9566 			netdev_info(bp->dev, "FEC autoneg %s encoding: %s\n",
9567 				    (fec & BNXT_FEC_AUTONEG) ? "on" : "off",
9568 				    bnxt_report_fec(&bp->link_info));
9569 	} else {
9570 		netif_carrier_off(bp->dev);
9571 		netdev_err(bp->dev, "NIC Link is Down\n");
9572 	}
9573 }
9574 
9575 static bool bnxt_phy_qcaps_no_speed(struct hwrm_port_phy_qcaps_output *resp)
9576 {
9577 	if (!resp->supported_speeds_auto_mode &&
9578 	    !resp->supported_speeds_force_mode &&
9579 	    !resp->supported_pam4_speeds_auto_mode &&
9580 	    !resp->supported_pam4_speeds_force_mode)
9581 		return true;
9582 	return false;
9583 }
9584 
9585 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp)
9586 {
9587 	struct bnxt_link_info *link_info = &bp->link_info;
9588 	struct hwrm_port_phy_qcaps_output *resp;
9589 	struct hwrm_port_phy_qcaps_input *req;
9590 	int rc = 0;
9591 
9592 	if (bp->hwrm_spec_code < 0x10201)
9593 		return 0;
9594 
9595 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCAPS);
9596 	if (rc)
9597 		return rc;
9598 
9599 	resp = hwrm_req_hold(bp, req);
9600 	rc = hwrm_req_send(bp, req);
9601 	if (rc)
9602 		goto hwrm_phy_qcaps_exit;
9603 
9604 	bp->phy_flags = resp->flags | (le16_to_cpu(resp->flags2) << 8);
9605 	if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) {
9606 		struct ethtool_eee *eee = &bp->eee;
9607 		u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode);
9608 
9609 		eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
9610 		bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) &
9611 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK;
9612 		bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) &
9613 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK;
9614 	}
9615 
9616 	if (bp->hwrm_spec_code >= 0x10a01) {
9617 		if (bnxt_phy_qcaps_no_speed(resp)) {
9618 			link_info->phy_state = BNXT_PHY_STATE_DISABLED;
9619 			netdev_warn(bp->dev, "Ethernet link disabled\n");
9620 		} else if (link_info->phy_state == BNXT_PHY_STATE_DISABLED) {
9621 			link_info->phy_state = BNXT_PHY_STATE_ENABLED;
9622 			netdev_info(bp->dev, "Ethernet link enabled\n");
9623 			/* Phy re-enabled, reprobe the speeds */
9624 			link_info->support_auto_speeds = 0;
9625 			link_info->support_pam4_auto_speeds = 0;
9626 		}
9627 	}
9628 	if (resp->supported_speeds_auto_mode)
9629 		link_info->support_auto_speeds =
9630 			le16_to_cpu(resp->supported_speeds_auto_mode);
9631 	if (resp->supported_pam4_speeds_auto_mode)
9632 		link_info->support_pam4_auto_speeds =
9633 			le16_to_cpu(resp->supported_pam4_speeds_auto_mode);
9634 
9635 	bp->port_count = resp->port_cnt;
9636 
9637 hwrm_phy_qcaps_exit:
9638 	hwrm_req_drop(bp, req);
9639 	return rc;
9640 }
9641 
9642 static bool bnxt_support_dropped(u16 advertising, u16 supported)
9643 {
9644 	u16 diff = advertising ^ supported;
9645 
9646 	return ((supported | diff) != supported);
9647 }
9648 
9649 int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
9650 {
9651 	struct bnxt_link_info *link_info = &bp->link_info;
9652 	struct hwrm_port_phy_qcfg_output *resp;
9653 	struct hwrm_port_phy_qcfg_input *req;
9654 	u8 link_state = link_info->link_state;
9655 	bool support_changed = false;
9656 	int rc;
9657 
9658 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCFG);
9659 	if (rc)
9660 		return rc;
9661 
9662 	resp = hwrm_req_hold(bp, req);
9663 	rc = hwrm_req_send(bp, req);
9664 	if (rc) {
9665 		hwrm_req_drop(bp, req);
9666 		if (BNXT_VF(bp) && rc == -ENODEV) {
9667 			netdev_warn(bp->dev, "Cannot obtain link state while PF unavailable.\n");
9668 			rc = 0;
9669 		}
9670 		return rc;
9671 	}
9672 
9673 	memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
9674 	link_info->phy_link_status = resp->link;
9675 	link_info->duplex = resp->duplex_cfg;
9676 	if (bp->hwrm_spec_code >= 0x10800)
9677 		link_info->duplex = resp->duplex_state;
9678 	link_info->pause = resp->pause;
9679 	link_info->auto_mode = resp->auto_mode;
9680 	link_info->auto_pause_setting = resp->auto_pause;
9681 	link_info->lp_pause = resp->link_partner_adv_pause;
9682 	link_info->force_pause_setting = resp->force_pause;
9683 	link_info->duplex_setting = resp->duplex_cfg;
9684 	if (link_info->phy_link_status == BNXT_LINK_LINK)
9685 		link_info->link_speed = le16_to_cpu(resp->link_speed);
9686 	else
9687 		link_info->link_speed = 0;
9688 	link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
9689 	link_info->force_pam4_link_speed =
9690 		le16_to_cpu(resp->force_pam4_link_speed);
9691 	link_info->support_speeds = le16_to_cpu(resp->support_speeds);
9692 	link_info->support_pam4_speeds = le16_to_cpu(resp->support_pam4_speeds);
9693 	link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
9694 	link_info->auto_pam4_link_speeds =
9695 		le16_to_cpu(resp->auto_pam4_link_speed_mask);
9696 	link_info->lp_auto_link_speeds =
9697 		le16_to_cpu(resp->link_partner_adv_speeds);
9698 	link_info->lp_auto_pam4_link_speeds =
9699 		resp->link_partner_pam4_adv_speeds;
9700 	link_info->preemphasis = le32_to_cpu(resp->preemphasis);
9701 	link_info->phy_ver[0] = resp->phy_maj;
9702 	link_info->phy_ver[1] = resp->phy_min;
9703 	link_info->phy_ver[2] = resp->phy_bld;
9704 	link_info->media_type = resp->media_type;
9705 	link_info->phy_type = resp->phy_type;
9706 	link_info->transceiver = resp->xcvr_pkg_type;
9707 	link_info->phy_addr = resp->eee_config_phy_addr &
9708 			      PORT_PHY_QCFG_RESP_PHY_ADDR_MASK;
9709 	link_info->module_status = resp->module_status;
9710 
9711 	if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) {
9712 		struct ethtool_eee *eee = &bp->eee;
9713 		u16 fw_speeds;
9714 
9715 		eee->eee_active = 0;
9716 		if (resp->eee_config_phy_addr &
9717 		    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) {
9718 			eee->eee_active = 1;
9719 			fw_speeds = le16_to_cpu(
9720 				resp->link_partner_adv_eee_link_speed_mask);
9721 			eee->lp_advertised =
9722 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
9723 		}
9724 
9725 		/* Pull initial EEE config */
9726 		if (!chng_link_state) {
9727 			if (resp->eee_config_phy_addr &
9728 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED)
9729 				eee->eee_enabled = 1;
9730 
9731 			fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask);
9732 			eee->advertised =
9733 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
9734 
9735 			if (resp->eee_config_phy_addr &
9736 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) {
9737 				__le32 tmr;
9738 
9739 				eee->tx_lpi_enabled = 1;
9740 				tmr = resp->xcvr_identifier_type_tx_lpi_timer;
9741 				eee->tx_lpi_timer = le32_to_cpu(tmr) &
9742 					PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK;
9743 			}
9744 		}
9745 	}
9746 
9747 	link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED;
9748 	if (bp->hwrm_spec_code >= 0x10504) {
9749 		link_info->fec_cfg = le16_to_cpu(resp->fec_cfg);
9750 		link_info->active_fec_sig_mode = resp->active_fec_signal_mode;
9751 	}
9752 	/* TODO: need to add more logic to report VF link */
9753 	if (chng_link_state) {
9754 		if (link_info->phy_link_status == BNXT_LINK_LINK)
9755 			link_info->link_state = BNXT_LINK_STATE_UP;
9756 		else
9757 			link_info->link_state = BNXT_LINK_STATE_DOWN;
9758 		if (link_state != link_info->link_state)
9759 			bnxt_report_link(bp);
9760 	} else {
9761 		/* always link down if not require to update link state */
9762 		link_info->link_state = BNXT_LINK_STATE_DOWN;
9763 	}
9764 	hwrm_req_drop(bp, req);
9765 
9766 	if (!BNXT_PHY_CFG_ABLE(bp))
9767 		return 0;
9768 
9769 	/* Check if any advertised speeds are no longer supported. The caller
9770 	 * holds the link_lock mutex, so we can modify link_info settings.
9771 	 */
9772 	if (bnxt_support_dropped(link_info->advertising,
9773 				 link_info->support_auto_speeds)) {
9774 		link_info->advertising = link_info->support_auto_speeds;
9775 		support_changed = true;
9776 	}
9777 	if (bnxt_support_dropped(link_info->advertising_pam4,
9778 				 link_info->support_pam4_auto_speeds)) {
9779 		link_info->advertising_pam4 = link_info->support_pam4_auto_speeds;
9780 		support_changed = true;
9781 	}
9782 	if (support_changed && (link_info->autoneg & BNXT_AUTONEG_SPEED))
9783 		bnxt_hwrm_set_link_setting(bp, true, false);
9784 	return 0;
9785 }
9786 
9787 static void bnxt_get_port_module_status(struct bnxt *bp)
9788 {
9789 	struct bnxt_link_info *link_info = &bp->link_info;
9790 	struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp;
9791 	u8 module_status;
9792 
9793 	if (bnxt_update_link(bp, true))
9794 		return;
9795 
9796 	module_status = link_info->module_status;
9797 	switch (module_status) {
9798 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX:
9799 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN:
9800 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG:
9801 		netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n",
9802 			    bp->pf.port_id);
9803 		if (bp->hwrm_spec_code >= 0x10201) {
9804 			netdev_warn(bp->dev, "Module part number %s\n",
9805 				    resp->phy_vendor_partnumber);
9806 		}
9807 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX)
9808 			netdev_warn(bp->dev, "TX is disabled\n");
9809 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN)
9810 			netdev_warn(bp->dev, "SFP+ module is shutdown\n");
9811 	}
9812 }
9813 
9814 static void
9815 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
9816 {
9817 	if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
9818 		if (bp->hwrm_spec_code >= 0x10201)
9819 			req->auto_pause =
9820 				PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE;
9821 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
9822 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
9823 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
9824 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX;
9825 		req->enables |=
9826 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
9827 	} else {
9828 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
9829 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
9830 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
9831 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
9832 		req->enables |=
9833 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
9834 		if (bp->hwrm_spec_code >= 0x10201) {
9835 			req->auto_pause = req->force_pause;
9836 			req->enables |= cpu_to_le32(
9837 				PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
9838 		}
9839 	}
9840 }
9841 
9842 static void bnxt_hwrm_set_link_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
9843 {
9844 	if (bp->link_info.autoneg & BNXT_AUTONEG_SPEED) {
9845 		req->auto_mode |= PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK;
9846 		if (bp->link_info.advertising) {
9847 			req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
9848 			req->auto_link_speed_mask = cpu_to_le16(bp->link_info.advertising);
9849 		}
9850 		if (bp->link_info.advertising_pam4) {
9851 			req->enables |=
9852 				cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAM4_LINK_SPEED_MASK);
9853 			req->auto_link_pam4_speed_mask =
9854 				cpu_to_le16(bp->link_info.advertising_pam4);
9855 		}
9856 		req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
9857 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
9858 	} else {
9859 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
9860 		if (bp->link_info.req_signal_mode == BNXT_SIG_MODE_PAM4) {
9861 			req->force_pam4_link_speed = cpu_to_le16(bp->link_info.req_link_speed);
9862 			req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAM4_LINK_SPEED);
9863 		} else {
9864 			req->force_link_speed = cpu_to_le16(bp->link_info.req_link_speed);
9865 		}
9866 	}
9867 
9868 	/* tell chimp that the setting takes effect immediately */
9869 	req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
9870 }
9871 
9872 int bnxt_hwrm_set_pause(struct bnxt *bp)
9873 {
9874 	struct hwrm_port_phy_cfg_input *req;
9875 	int rc;
9876 
9877 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
9878 	if (rc)
9879 		return rc;
9880 
9881 	bnxt_hwrm_set_pause_common(bp, req);
9882 
9883 	if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
9884 	    bp->link_info.force_link_chng)
9885 		bnxt_hwrm_set_link_common(bp, req);
9886 
9887 	rc = hwrm_req_send(bp, req);
9888 	if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
9889 		/* since changing of pause setting doesn't trigger any link
9890 		 * change event, the driver needs to update the current pause
9891 		 * result upon successfully return of the phy_cfg command
9892 		 */
9893 		bp->link_info.pause =
9894 		bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
9895 		bp->link_info.auto_pause_setting = 0;
9896 		if (!bp->link_info.force_link_chng)
9897 			bnxt_report_link(bp);
9898 	}
9899 	bp->link_info.force_link_chng = false;
9900 	return rc;
9901 }
9902 
9903 static void bnxt_hwrm_set_eee(struct bnxt *bp,
9904 			      struct hwrm_port_phy_cfg_input *req)
9905 {
9906 	struct ethtool_eee *eee = &bp->eee;
9907 
9908 	if (eee->eee_enabled) {
9909 		u16 eee_speeds;
9910 		u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE;
9911 
9912 		if (eee->tx_lpi_enabled)
9913 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE;
9914 		else
9915 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE;
9916 
9917 		req->flags |= cpu_to_le32(flags);
9918 		eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised);
9919 		req->eee_link_speed_mask = cpu_to_le16(eee_speeds);
9920 		req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer);
9921 	} else {
9922 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE);
9923 	}
9924 }
9925 
9926 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee)
9927 {
9928 	struct hwrm_port_phy_cfg_input *req;
9929 	int rc;
9930 
9931 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
9932 	if (rc)
9933 		return rc;
9934 
9935 	if (set_pause)
9936 		bnxt_hwrm_set_pause_common(bp, req);
9937 
9938 	bnxt_hwrm_set_link_common(bp, req);
9939 
9940 	if (set_eee)
9941 		bnxt_hwrm_set_eee(bp, req);
9942 	return hwrm_req_send(bp, req);
9943 }
9944 
9945 static int bnxt_hwrm_shutdown_link(struct bnxt *bp)
9946 {
9947 	struct hwrm_port_phy_cfg_input *req;
9948 	int rc;
9949 
9950 	if (!BNXT_SINGLE_PF(bp))
9951 		return 0;
9952 
9953 	if (pci_num_vf(bp->pdev) &&
9954 	    !(bp->phy_flags & BNXT_PHY_FL_FW_MANAGED_LKDN))
9955 		return 0;
9956 
9957 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
9958 	if (rc)
9959 		return rc;
9960 
9961 	req->flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN);
9962 	rc = hwrm_req_send(bp, req);
9963 	if (!rc) {
9964 		mutex_lock(&bp->link_lock);
9965 		/* Device is not obliged link down in certain scenarios, even
9966 		 * when forced. Setting the state unknown is consistent with
9967 		 * driver startup and will force link state to be reported
9968 		 * during subsequent open based on PORT_PHY_QCFG.
9969 		 */
9970 		bp->link_info.link_state = BNXT_LINK_STATE_UNKNOWN;
9971 		mutex_unlock(&bp->link_lock);
9972 	}
9973 	return rc;
9974 }
9975 
9976 static int bnxt_fw_reset_via_optee(struct bnxt *bp)
9977 {
9978 #ifdef CONFIG_TEE_BNXT_FW
9979 	int rc = tee_bnxt_fw_load();
9980 
9981 	if (rc)
9982 		netdev_err(bp->dev, "Failed FW reset via OP-TEE, rc=%d\n", rc);
9983 
9984 	return rc;
9985 #else
9986 	netdev_err(bp->dev, "OP-TEE not supported\n");
9987 	return -ENODEV;
9988 #endif
9989 }
9990 
9991 static int bnxt_try_recover_fw(struct bnxt *bp)
9992 {
9993 	if (bp->fw_health && bp->fw_health->status_reliable) {
9994 		int retry = 0, rc;
9995 		u32 sts;
9996 
9997 		do {
9998 			sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
9999 			rc = bnxt_hwrm_poll(bp);
10000 			if (!BNXT_FW_IS_BOOTING(sts) &&
10001 			    !BNXT_FW_IS_RECOVERING(sts))
10002 				break;
10003 			retry++;
10004 		} while (rc == -EBUSY && retry < BNXT_FW_RETRY);
10005 
10006 		if (!BNXT_FW_IS_HEALTHY(sts)) {
10007 			netdev_err(bp->dev,
10008 				   "Firmware not responding, status: 0x%x\n",
10009 				   sts);
10010 			rc = -ENODEV;
10011 		}
10012 		if (sts & FW_STATUS_REG_CRASHED_NO_MASTER) {
10013 			netdev_warn(bp->dev, "Firmware recover via OP-TEE requested\n");
10014 			return bnxt_fw_reset_via_optee(bp);
10015 		}
10016 		return rc;
10017 	}
10018 
10019 	return -ENODEV;
10020 }
10021 
10022 static void bnxt_clear_reservations(struct bnxt *bp, bool fw_reset)
10023 {
10024 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
10025 
10026 	if (!BNXT_NEW_RM(bp))
10027 		return; /* no resource reservations required */
10028 
10029 	hw_resc->resv_cp_rings = 0;
10030 	hw_resc->resv_stat_ctxs = 0;
10031 	hw_resc->resv_irqs = 0;
10032 	hw_resc->resv_tx_rings = 0;
10033 	hw_resc->resv_rx_rings = 0;
10034 	hw_resc->resv_hw_ring_grps = 0;
10035 	hw_resc->resv_vnics = 0;
10036 	if (!fw_reset) {
10037 		bp->tx_nr_rings = 0;
10038 		bp->rx_nr_rings = 0;
10039 	}
10040 }
10041 
10042 int bnxt_cancel_reservations(struct bnxt *bp, bool fw_reset)
10043 {
10044 	int rc;
10045 
10046 	if (!BNXT_NEW_RM(bp))
10047 		return 0; /* no resource reservations required */
10048 
10049 	rc = bnxt_hwrm_func_resc_qcaps(bp, true);
10050 	if (rc)
10051 		netdev_err(bp->dev, "resc_qcaps failed\n");
10052 
10053 	bnxt_clear_reservations(bp, fw_reset);
10054 
10055 	return rc;
10056 }
10057 
10058 static int bnxt_hwrm_if_change(struct bnxt *bp, bool up)
10059 {
10060 	struct hwrm_func_drv_if_change_output *resp;
10061 	struct hwrm_func_drv_if_change_input *req;
10062 	bool fw_reset = !bp->irq_tbl;
10063 	bool resc_reinit = false;
10064 	int rc, retry = 0;
10065 	u32 flags = 0;
10066 
10067 	if (!(bp->fw_cap & BNXT_FW_CAP_IF_CHANGE))
10068 		return 0;
10069 
10070 	rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_IF_CHANGE);
10071 	if (rc)
10072 		return rc;
10073 
10074 	if (up)
10075 		req->flags = cpu_to_le32(FUNC_DRV_IF_CHANGE_REQ_FLAGS_UP);
10076 	resp = hwrm_req_hold(bp, req);
10077 
10078 	hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT);
10079 	while (retry < BNXT_FW_IF_RETRY) {
10080 		rc = hwrm_req_send(bp, req);
10081 		if (rc != -EAGAIN)
10082 			break;
10083 
10084 		msleep(50);
10085 		retry++;
10086 	}
10087 
10088 	if (rc == -EAGAIN) {
10089 		hwrm_req_drop(bp, req);
10090 		return rc;
10091 	} else if (!rc) {
10092 		flags = le32_to_cpu(resp->flags);
10093 	} else if (up) {
10094 		rc = bnxt_try_recover_fw(bp);
10095 		fw_reset = true;
10096 	}
10097 	hwrm_req_drop(bp, req);
10098 	if (rc)
10099 		return rc;
10100 
10101 	if (!up) {
10102 		bnxt_inv_fw_health_reg(bp);
10103 		return 0;
10104 	}
10105 
10106 	if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_RESC_CHANGE)
10107 		resc_reinit = true;
10108 	if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_HOT_FW_RESET_DONE ||
10109 	    test_bit(BNXT_STATE_FW_RESET_DET, &bp->state))
10110 		fw_reset = true;
10111 	else
10112 		bnxt_remap_fw_health_regs(bp);
10113 
10114 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state) && !fw_reset) {
10115 		netdev_err(bp->dev, "RESET_DONE not set during FW reset.\n");
10116 		set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
10117 		return -ENODEV;
10118 	}
10119 	if (resc_reinit || fw_reset) {
10120 		if (fw_reset) {
10121 			set_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
10122 			if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
10123 				bnxt_ulp_stop(bp);
10124 			bnxt_free_ctx_mem(bp);
10125 			kfree(bp->ctx);
10126 			bp->ctx = NULL;
10127 			bnxt_dcb_free(bp);
10128 			rc = bnxt_fw_init_one(bp);
10129 			if (rc) {
10130 				clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
10131 				set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
10132 				return rc;
10133 			}
10134 			bnxt_clear_int_mode(bp);
10135 			rc = bnxt_init_int_mode(bp);
10136 			if (rc) {
10137 				clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
10138 				netdev_err(bp->dev, "init int mode failed\n");
10139 				return rc;
10140 			}
10141 		}
10142 		rc = bnxt_cancel_reservations(bp, fw_reset);
10143 	}
10144 	return rc;
10145 }
10146 
10147 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp)
10148 {
10149 	struct hwrm_port_led_qcaps_output *resp;
10150 	struct hwrm_port_led_qcaps_input *req;
10151 	struct bnxt_pf_info *pf = &bp->pf;
10152 	int rc;
10153 
10154 	bp->num_leds = 0;
10155 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601)
10156 		return 0;
10157 
10158 	rc = hwrm_req_init(bp, req, HWRM_PORT_LED_QCAPS);
10159 	if (rc)
10160 		return rc;
10161 
10162 	req->port_id = cpu_to_le16(pf->port_id);
10163 	resp = hwrm_req_hold(bp, req);
10164 	rc = hwrm_req_send(bp, req);
10165 	if (rc) {
10166 		hwrm_req_drop(bp, req);
10167 		return rc;
10168 	}
10169 	if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) {
10170 		int i;
10171 
10172 		bp->num_leds = resp->num_leds;
10173 		memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) *
10174 						 bp->num_leds);
10175 		for (i = 0; i < bp->num_leds; i++) {
10176 			struct bnxt_led_info *led = &bp->leds[i];
10177 			__le16 caps = led->led_state_caps;
10178 
10179 			if (!led->led_group_id ||
10180 			    !BNXT_LED_ALT_BLINK_CAP(caps)) {
10181 				bp->num_leds = 0;
10182 				break;
10183 			}
10184 		}
10185 	}
10186 	hwrm_req_drop(bp, req);
10187 	return 0;
10188 }
10189 
10190 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp)
10191 {
10192 	struct hwrm_wol_filter_alloc_output *resp;
10193 	struct hwrm_wol_filter_alloc_input *req;
10194 	int rc;
10195 
10196 	rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_ALLOC);
10197 	if (rc)
10198 		return rc;
10199 
10200 	req->port_id = cpu_to_le16(bp->pf.port_id);
10201 	req->wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT;
10202 	req->enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS);
10203 	memcpy(req->mac_address, bp->dev->dev_addr, ETH_ALEN);
10204 
10205 	resp = hwrm_req_hold(bp, req);
10206 	rc = hwrm_req_send(bp, req);
10207 	if (!rc)
10208 		bp->wol_filter_id = resp->wol_filter_id;
10209 	hwrm_req_drop(bp, req);
10210 	return rc;
10211 }
10212 
10213 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp)
10214 {
10215 	struct hwrm_wol_filter_free_input *req;
10216 	int rc;
10217 
10218 	rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_FREE);
10219 	if (rc)
10220 		return rc;
10221 
10222 	req->port_id = cpu_to_le16(bp->pf.port_id);
10223 	req->enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID);
10224 	req->wol_filter_id = bp->wol_filter_id;
10225 
10226 	return hwrm_req_send(bp, req);
10227 }
10228 
10229 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle)
10230 {
10231 	struct hwrm_wol_filter_qcfg_output *resp;
10232 	struct hwrm_wol_filter_qcfg_input *req;
10233 	u16 next_handle = 0;
10234 	int rc;
10235 
10236 	rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_QCFG);
10237 	if (rc)
10238 		return rc;
10239 
10240 	req->port_id = cpu_to_le16(bp->pf.port_id);
10241 	req->handle = cpu_to_le16(handle);
10242 	resp = hwrm_req_hold(bp, req);
10243 	rc = hwrm_req_send(bp, req);
10244 	if (!rc) {
10245 		next_handle = le16_to_cpu(resp->next_handle);
10246 		if (next_handle != 0) {
10247 			if (resp->wol_type ==
10248 			    WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) {
10249 				bp->wol = 1;
10250 				bp->wol_filter_id = resp->wol_filter_id;
10251 			}
10252 		}
10253 	}
10254 	hwrm_req_drop(bp, req);
10255 	return next_handle;
10256 }
10257 
10258 static void bnxt_get_wol_settings(struct bnxt *bp)
10259 {
10260 	u16 handle = 0;
10261 
10262 	bp->wol = 0;
10263 	if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP))
10264 		return;
10265 
10266 	do {
10267 		handle = bnxt_hwrm_get_wol_fltrs(bp, handle);
10268 	} while (handle && handle != 0xffff);
10269 }
10270 
10271 #ifdef CONFIG_BNXT_HWMON
10272 static ssize_t bnxt_show_temp(struct device *dev,
10273 			      struct device_attribute *devattr, char *buf)
10274 {
10275 	struct hwrm_temp_monitor_query_output *resp;
10276 	struct hwrm_temp_monitor_query_input *req;
10277 	struct bnxt *bp = dev_get_drvdata(dev);
10278 	u32 len = 0;
10279 	int rc;
10280 
10281 	rc = hwrm_req_init(bp, req, HWRM_TEMP_MONITOR_QUERY);
10282 	if (rc)
10283 		return rc;
10284 	resp = hwrm_req_hold(bp, req);
10285 	rc = hwrm_req_send(bp, req);
10286 	if (!rc)
10287 		len = sprintf(buf, "%u\n", resp->temp * 1000); /* display millidegree */
10288 	hwrm_req_drop(bp, req);
10289 	if (rc)
10290 		return rc;
10291 	return len;
10292 }
10293 static SENSOR_DEVICE_ATTR(temp1_input, 0444, bnxt_show_temp, NULL, 0);
10294 
10295 static struct attribute *bnxt_attrs[] = {
10296 	&sensor_dev_attr_temp1_input.dev_attr.attr,
10297 	NULL
10298 };
10299 ATTRIBUTE_GROUPS(bnxt);
10300 
10301 static void bnxt_hwmon_close(struct bnxt *bp)
10302 {
10303 	if (bp->hwmon_dev) {
10304 		hwmon_device_unregister(bp->hwmon_dev);
10305 		bp->hwmon_dev = NULL;
10306 	}
10307 }
10308 
10309 static void bnxt_hwmon_open(struct bnxt *bp)
10310 {
10311 	struct hwrm_temp_monitor_query_input *req;
10312 	struct pci_dev *pdev = bp->pdev;
10313 	int rc;
10314 
10315 	rc = hwrm_req_init(bp, req, HWRM_TEMP_MONITOR_QUERY);
10316 	if (!rc)
10317 		rc = hwrm_req_send_silent(bp, req);
10318 	if (rc == -EACCES || rc == -EOPNOTSUPP) {
10319 		bnxt_hwmon_close(bp);
10320 		return;
10321 	}
10322 
10323 	if (bp->hwmon_dev)
10324 		return;
10325 
10326 	bp->hwmon_dev = hwmon_device_register_with_groups(&pdev->dev,
10327 							  DRV_MODULE_NAME, bp,
10328 							  bnxt_groups);
10329 	if (IS_ERR(bp->hwmon_dev)) {
10330 		bp->hwmon_dev = NULL;
10331 		dev_warn(&pdev->dev, "Cannot register hwmon device\n");
10332 	}
10333 }
10334 #else
10335 static void bnxt_hwmon_close(struct bnxt *bp)
10336 {
10337 }
10338 
10339 static void bnxt_hwmon_open(struct bnxt *bp)
10340 {
10341 }
10342 #endif
10343 
10344 static bool bnxt_eee_config_ok(struct bnxt *bp)
10345 {
10346 	struct ethtool_eee *eee = &bp->eee;
10347 	struct bnxt_link_info *link_info = &bp->link_info;
10348 
10349 	if (!(bp->phy_flags & BNXT_PHY_FL_EEE_CAP))
10350 		return true;
10351 
10352 	if (eee->eee_enabled) {
10353 		u32 advertising =
10354 			_bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0);
10355 
10356 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
10357 			eee->eee_enabled = 0;
10358 			return false;
10359 		}
10360 		if (eee->advertised & ~advertising) {
10361 			eee->advertised = advertising & eee->supported;
10362 			return false;
10363 		}
10364 	}
10365 	return true;
10366 }
10367 
10368 static int bnxt_update_phy_setting(struct bnxt *bp)
10369 {
10370 	int rc;
10371 	bool update_link = false;
10372 	bool update_pause = false;
10373 	bool update_eee = false;
10374 	struct bnxt_link_info *link_info = &bp->link_info;
10375 
10376 	rc = bnxt_update_link(bp, true);
10377 	if (rc) {
10378 		netdev_err(bp->dev, "failed to update link (rc: %x)\n",
10379 			   rc);
10380 		return rc;
10381 	}
10382 	if (!BNXT_SINGLE_PF(bp))
10383 		return 0;
10384 
10385 	if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
10386 	    (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) !=
10387 	    link_info->req_flow_ctrl)
10388 		update_pause = true;
10389 	if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
10390 	    link_info->force_pause_setting != link_info->req_flow_ctrl)
10391 		update_pause = true;
10392 	if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
10393 		if (BNXT_AUTO_MODE(link_info->auto_mode))
10394 			update_link = true;
10395 		if (link_info->req_signal_mode == BNXT_SIG_MODE_NRZ &&
10396 		    link_info->req_link_speed != link_info->force_link_speed)
10397 			update_link = true;
10398 		else if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4 &&
10399 			 link_info->req_link_speed != link_info->force_pam4_link_speed)
10400 			update_link = true;
10401 		if (link_info->req_duplex != link_info->duplex_setting)
10402 			update_link = true;
10403 	} else {
10404 		if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
10405 			update_link = true;
10406 		if (link_info->advertising != link_info->auto_link_speeds ||
10407 		    link_info->advertising_pam4 != link_info->auto_pam4_link_speeds)
10408 			update_link = true;
10409 	}
10410 
10411 	/* The last close may have shutdown the link, so need to call
10412 	 * PHY_CFG to bring it back up.
10413 	 */
10414 	if (!BNXT_LINK_IS_UP(bp))
10415 		update_link = true;
10416 
10417 	if (!bnxt_eee_config_ok(bp))
10418 		update_eee = true;
10419 
10420 	if (update_link)
10421 		rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee);
10422 	else if (update_pause)
10423 		rc = bnxt_hwrm_set_pause(bp);
10424 	if (rc) {
10425 		netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
10426 			   rc);
10427 		return rc;
10428 	}
10429 
10430 	return rc;
10431 }
10432 
10433 /* Common routine to pre-map certain register block to different GRC window.
10434  * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
10435  * in PF and 3 windows in VF that can be customized to map in different
10436  * register blocks.
10437  */
10438 static void bnxt_preset_reg_win(struct bnxt *bp)
10439 {
10440 	if (BNXT_PF(bp)) {
10441 		/* CAG registers map to GRC window #4 */
10442 		writel(BNXT_CAG_REG_BASE,
10443 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
10444 	}
10445 }
10446 
10447 static int bnxt_init_dflt_ring_mode(struct bnxt *bp);
10448 
10449 static int bnxt_reinit_after_abort(struct bnxt *bp)
10450 {
10451 	int rc;
10452 
10453 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
10454 		return -EBUSY;
10455 
10456 	if (bp->dev->reg_state == NETREG_UNREGISTERED)
10457 		return -ENODEV;
10458 
10459 	rc = bnxt_fw_init_one(bp);
10460 	if (!rc) {
10461 		bnxt_clear_int_mode(bp);
10462 		rc = bnxt_init_int_mode(bp);
10463 		if (!rc) {
10464 			clear_bit(BNXT_STATE_ABORT_ERR, &bp->state);
10465 			set_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
10466 		}
10467 	}
10468 	return rc;
10469 }
10470 
10471 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
10472 {
10473 	int rc = 0;
10474 
10475 	bnxt_preset_reg_win(bp);
10476 	netif_carrier_off(bp->dev);
10477 	if (irq_re_init) {
10478 		/* Reserve rings now if none were reserved at driver probe. */
10479 		rc = bnxt_init_dflt_ring_mode(bp);
10480 		if (rc) {
10481 			netdev_err(bp->dev, "Failed to reserve default rings at open\n");
10482 			return rc;
10483 		}
10484 	}
10485 	rc = bnxt_reserve_rings(bp, irq_re_init);
10486 	if (rc)
10487 		return rc;
10488 	if ((bp->flags & BNXT_FLAG_RFS) &&
10489 	    !(bp->flags & BNXT_FLAG_USING_MSIX)) {
10490 		/* disable RFS if falling back to INTA */
10491 		bp->dev->hw_features &= ~NETIF_F_NTUPLE;
10492 		bp->flags &= ~BNXT_FLAG_RFS;
10493 	}
10494 
10495 	rc = bnxt_alloc_mem(bp, irq_re_init);
10496 	if (rc) {
10497 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
10498 		goto open_err_free_mem;
10499 	}
10500 
10501 	if (irq_re_init) {
10502 		bnxt_init_napi(bp);
10503 		rc = bnxt_request_irq(bp);
10504 		if (rc) {
10505 			netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
10506 			goto open_err_irq;
10507 		}
10508 	}
10509 
10510 	rc = bnxt_init_nic(bp, irq_re_init);
10511 	if (rc) {
10512 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
10513 		goto open_err_irq;
10514 	}
10515 
10516 	bnxt_enable_napi(bp);
10517 	bnxt_debug_dev_init(bp);
10518 
10519 	if (link_re_init) {
10520 		mutex_lock(&bp->link_lock);
10521 		rc = bnxt_update_phy_setting(bp);
10522 		mutex_unlock(&bp->link_lock);
10523 		if (rc) {
10524 			netdev_warn(bp->dev, "failed to update phy settings\n");
10525 			if (BNXT_SINGLE_PF(bp)) {
10526 				bp->link_info.phy_retry = true;
10527 				bp->link_info.phy_retry_expires =
10528 					jiffies + 5 * HZ;
10529 			}
10530 		}
10531 	}
10532 
10533 	if (irq_re_init)
10534 		udp_tunnel_nic_reset_ntf(bp->dev);
10535 
10536 	if (bp->tx_nr_rings_xdp < num_possible_cpus()) {
10537 		if (!static_key_enabled(&bnxt_xdp_locking_key))
10538 			static_branch_enable(&bnxt_xdp_locking_key);
10539 	} else if (static_key_enabled(&bnxt_xdp_locking_key)) {
10540 		static_branch_disable(&bnxt_xdp_locking_key);
10541 	}
10542 	set_bit(BNXT_STATE_OPEN, &bp->state);
10543 	bnxt_enable_int(bp);
10544 	/* Enable TX queues */
10545 	bnxt_tx_enable(bp);
10546 	mod_timer(&bp->timer, jiffies + bp->current_interval);
10547 	/* Poll link status and check for SFP+ module status */
10548 	mutex_lock(&bp->link_lock);
10549 	bnxt_get_port_module_status(bp);
10550 	mutex_unlock(&bp->link_lock);
10551 
10552 	/* VF-reps may need to be re-opened after the PF is re-opened */
10553 	if (BNXT_PF(bp))
10554 		bnxt_vf_reps_open(bp);
10555 	bnxt_ptp_init_rtc(bp, true);
10556 	bnxt_ptp_cfg_tstamp_filters(bp);
10557 	return 0;
10558 
10559 open_err_irq:
10560 	bnxt_del_napi(bp);
10561 
10562 open_err_free_mem:
10563 	bnxt_free_skbs(bp);
10564 	bnxt_free_irq(bp);
10565 	bnxt_free_mem(bp, true);
10566 	return rc;
10567 }
10568 
10569 /* rtnl_lock held */
10570 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
10571 {
10572 	int rc = 0;
10573 
10574 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state))
10575 		rc = -EIO;
10576 	if (!rc)
10577 		rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
10578 	if (rc) {
10579 		netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
10580 		dev_close(bp->dev);
10581 	}
10582 	return rc;
10583 }
10584 
10585 /* rtnl_lock held, open the NIC half way by allocating all resources, but
10586  * NAPI, IRQ, and TX are not enabled.  This is mainly used for offline
10587  * self tests.
10588  */
10589 int bnxt_half_open_nic(struct bnxt *bp)
10590 {
10591 	int rc = 0;
10592 
10593 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
10594 		netdev_err(bp->dev, "A previous firmware reset has not completed, aborting half open\n");
10595 		rc = -ENODEV;
10596 		goto half_open_err;
10597 	}
10598 
10599 	rc = bnxt_alloc_mem(bp, true);
10600 	if (rc) {
10601 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
10602 		goto half_open_err;
10603 	}
10604 	set_bit(BNXT_STATE_HALF_OPEN, &bp->state);
10605 	rc = bnxt_init_nic(bp, true);
10606 	if (rc) {
10607 		clear_bit(BNXT_STATE_HALF_OPEN, &bp->state);
10608 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
10609 		goto half_open_err;
10610 	}
10611 	return 0;
10612 
10613 half_open_err:
10614 	bnxt_free_skbs(bp);
10615 	bnxt_free_mem(bp, true);
10616 	dev_close(bp->dev);
10617 	return rc;
10618 }
10619 
10620 /* rtnl_lock held, this call can only be made after a previous successful
10621  * call to bnxt_half_open_nic().
10622  */
10623 void bnxt_half_close_nic(struct bnxt *bp)
10624 {
10625 	bnxt_hwrm_resource_free(bp, false, true);
10626 	bnxt_free_skbs(bp);
10627 	bnxt_free_mem(bp, true);
10628 	clear_bit(BNXT_STATE_HALF_OPEN, &bp->state);
10629 }
10630 
10631 void bnxt_reenable_sriov(struct bnxt *bp)
10632 {
10633 	if (BNXT_PF(bp)) {
10634 		struct bnxt_pf_info *pf = &bp->pf;
10635 		int n = pf->active_vfs;
10636 
10637 		if (n)
10638 			bnxt_cfg_hw_sriov(bp, &n, true);
10639 	}
10640 }
10641 
10642 static int bnxt_open(struct net_device *dev)
10643 {
10644 	struct bnxt *bp = netdev_priv(dev);
10645 	int rc;
10646 
10647 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
10648 		rc = bnxt_reinit_after_abort(bp);
10649 		if (rc) {
10650 			if (rc == -EBUSY)
10651 				netdev_err(bp->dev, "A previous firmware reset has not completed, aborting\n");
10652 			else
10653 				netdev_err(bp->dev, "Failed to reinitialize after aborted firmware reset\n");
10654 			return -ENODEV;
10655 		}
10656 	}
10657 
10658 	rc = bnxt_hwrm_if_change(bp, true);
10659 	if (rc)
10660 		return rc;
10661 
10662 	rc = __bnxt_open_nic(bp, true, true);
10663 	if (rc) {
10664 		bnxt_hwrm_if_change(bp, false);
10665 	} else {
10666 		if (test_and_clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) {
10667 			if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
10668 				bnxt_ulp_start(bp, 0);
10669 				bnxt_reenable_sriov(bp);
10670 			}
10671 		}
10672 		bnxt_hwmon_open(bp);
10673 	}
10674 
10675 	return rc;
10676 }
10677 
10678 static bool bnxt_drv_busy(struct bnxt *bp)
10679 {
10680 	return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) ||
10681 		test_bit(BNXT_STATE_READ_STATS, &bp->state));
10682 }
10683 
10684 static void bnxt_get_ring_stats(struct bnxt *bp,
10685 				struct rtnl_link_stats64 *stats);
10686 
10687 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init,
10688 			     bool link_re_init)
10689 {
10690 	/* Close the VF-reps before closing PF */
10691 	if (BNXT_PF(bp))
10692 		bnxt_vf_reps_close(bp);
10693 
10694 	/* Change device state to avoid TX queue wake up's */
10695 	bnxt_tx_disable(bp);
10696 
10697 	clear_bit(BNXT_STATE_OPEN, &bp->state);
10698 	smp_mb__after_atomic();
10699 	while (bnxt_drv_busy(bp))
10700 		msleep(20);
10701 
10702 	/* Flush rings and disable interrupts */
10703 	bnxt_shutdown_nic(bp, irq_re_init);
10704 
10705 	/* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
10706 
10707 	bnxt_debug_dev_exit(bp);
10708 	bnxt_disable_napi(bp);
10709 	del_timer_sync(&bp->timer);
10710 	bnxt_free_skbs(bp);
10711 
10712 	/* Save ring stats before shutdown */
10713 	if (bp->bnapi && irq_re_init)
10714 		bnxt_get_ring_stats(bp, &bp->net_stats_prev);
10715 	if (irq_re_init) {
10716 		bnxt_free_irq(bp);
10717 		bnxt_del_napi(bp);
10718 	}
10719 	bnxt_free_mem(bp, irq_re_init);
10720 }
10721 
10722 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
10723 {
10724 	int rc = 0;
10725 
10726 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
10727 		/* If we get here, it means firmware reset is in progress
10728 		 * while we are trying to close.  We can safely proceed with
10729 		 * the close because we are holding rtnl_lock().  Some firmware
10730 		 * messages may fail as we proceed to close.  We set the
10731 		 * ABORT_ERR flag here so that the FW reset thread will later
10732 		 * abort when it gets the rtnl_lock() and sees the flag.
10733 		 */
10734 		netdev_warn(bp->dev, "FW reset in progress during close, FW reset will be aborted\n");
10735 		set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
10736 	}
10737 
10738 #ifdef CONFIG_BNXT_SRIOV
10739 	if (bp->sriov_cfg) {
10740 		rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
10741 						      !bp->sriov_cfg,
10742 						      BNXT_SRIOV_CFG_WAIT_TMO);
10743 		if (rc)
10744 			netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
10745 	}
10746 #endif
10747 	__bnxt_close_nic(bp, irq_re_init, link_re_init);
10748 	return rc;
10749 }
10750 
10751 static int bnxt_close(struct net_device *dev)
10752 {
10753 	struct bnxt *bp = netdev_priv(dev);
10754 
10755 	bnxt_hwmon_close(bp);
10756 	bnxt_close_nic(bp, true, true);
10757 	bnxt_hwrm_shutdown_link(bp);
10758 	bnxt_hwrm_if_change(bp, false);
10759 	return 0;
10760 }
10761 
10762 static int bnxt_hwrm_port_phy_read(struct bnxt *bp, u16 phy_addr, u16 reg,
10763 				   u16 *val)
10764 {
10765 	struct hwrm_port_phy_mdio_read_output *resp;
10766 	struct hwrm_port_phy_mdio_read_input *req;
10767 	int rc;
10768 
10769 	if (bp->hwrm_spec_code < 0x10a00)
10770 		return -EOPNOTSUPP;
10771 
10772 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_READ);
10773 	if (rc)
10774 		return rc;
10775 
10776 	req->port_id = cpu_to_le16(bp->pf.port_id);
10777 	req->phy_addr = phy_addr;
10778 	req->reg_addr = cpu_to_le16(reg & 0x1f);
10779 	if (mdio_phy_id_is_c45(phy_addr)) {
10780 		req->cl45_mdio = 1;
10781 		req->phy_addr = mdio_phy_id_prtad(phy_addr);
10782 		req->dev_addr = mdio_phy_id_devad(phy_addr);
10783 		req->reg_addr = cpu_to_le16(reg);
10784 	}
10785 
10786 	resp = hwrm_req_hold(bp, req);
10787 	rc = hwrm_req_send(bp, req);
10788 	if (!rc)
10789 		*val = le16_to_cpu(resp->reg_data);
10790 	hwrm_req_drop(bp, req);
10791 	return rc;
10792 }
10793 
10794 static int bnxt_hwrm_port_phy_write(struct bnxt *bp, u16 phy_addr, u16 reg,
10795 				    u16 val)
10796 {
10797 	struct hwrm_port_phy_mdio_write_input *req;
10798 	int rc;
10799 
10800 	if (bp->hwrm_spec_code < 0x10a00)
10801 		return -EOPNOTSUPP;
10802 
10803 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_WRITE);
10804 	if (rc)
10805 		return rc;
10806 
10807 	req->port_id = cpu_to_le16(bp->pf.port_id);
10808 	req->phy_addr = phy_addr;
10809 	req->reg_addr = cpu_to_le16(reg & 0x1f);
10810 	if (mdio_phy_id_is_c45(phy_addr)) {
10811 		req->cl45_mdio = 1;
10812 		req->phy_addr = mdio_phy_id_prtad(phy_addr);
10813 		req->dev_addr = mdio_phy_id_devad(phy_addr);
10814 		req->reg_addr = cpu_to_le16(reg);
10815 	}
10816 	req->reg_data = cpu_to_le16(val);
10817 
10818 	return hwrm_req_send(bp, req);
10819 }
10820 
10821 /* rtnl_lock held */
10822 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
10823 {
10824 	struct mii_ioctl_data *mdio = if_mii(ifr);
10825 	struct bnxt *bp = netdev_priv(dev);
10826 	int rc;
10827 
10828 	switch (cmd) {
10829 	case SIOCGMIIPHY:
10830 		mdio->phy_id = bp->link_info.phy_addr;
10831 
10832 		fallthrough;
10833 	case SIOCGMIIREG: {
10834 		u16 mii_regval = 0;
10835 
10836 		if (!netif_running(dev))
10837 			return -EAGAIN;
10838 
10839 		rc = bnxt_hwrm_port_phy_read(bp, mdio->phy_id, mdio->reg_num,
10840 					     &mii_regval);
10841 		mdio->val_out = mii_regval;
10842 		return rc;
10843 	}
10844 
10845 	case SIOCSMIIREG:
10846 		if (!netif_running(dev))
10847 			return -EAGAIN;
10848 
10849 		return bnxt_hwrm_port_phy_write(bp, mdio->phy_id, mdio->reg_num,
10850 						mdio->val_in);
10851 
10852 	case SIOCSHWTSTAMP:
10853 		return bnxt_hwtstamp_set(dev, ifr);
10854 
10855 	case SIOCGHWTSTAMP:
10856 		return bnxt_hwtstamp_get(dev, ifr);
10857 
10858 	default:
10859 		/* do nothing */
10860 		break;
10861 	}
10862 	return -EOPNOTSUPP;
10863 }
10864 
10865 static void bnxt_get_ring_stats(struct bnxt *bp,
10866 				struct rtnl_link_stats64 *stats)
10867 {
10868 	int i;
10869 
10870 	for (i = 0; i < bp->cp_nr_rings; i++) {
10871 		struct bnxt_napi *bnapi = bp->bnapi[i];
10872 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
10873 		u64 *sw = cpr->stats.sw_stats;
10874 
10875 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts);
10876 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts);
10877 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts);
10878 
10879 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts);
10880 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts);
10881 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts);
10882 
10883 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes);
10884 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes);
10885 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes);
10886 
10887 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes);
10888 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes);
10889 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes);
10890 
10891 		stats->rx_missed_errors +=
10892 			BNXT_GET_RING_STATS64(sw, rx_discard_pkts);
10893 
10894 		stats->multicast += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts);
10895 
10896 		stats->tx_dropped += BNXT_GET_RING_STATS64(sw, tx_error_pkts);
10897 
10898 		stats->rx_dropped +=
10899 			cpr->sw_stats.rx.rx_netpoll_discards +
10900 			cpr->sw_stats.rx.rx_oom_discards;
10901 	}
10902 }
10903 
10904 static void bnxt_add_prev_stats(struct bnxt *bp,
10905 				struct rtnl_link_stats64 *stats)
10906 {
10907 	struct rtnl_link_stats64 *prev_stats = &bp->net_stats_prev;
10908 
10909 	stats->rx_packets += prev_stats->rx_packets;
10910 	stats->tx_packets += prev_stats->tx_packets;
10911 	stats->rx_bytes += prev_stats->rx_bytes;
10912 	stats->tx_bytes += prev_stats->tx_bytes;
10913 	stats->rx_missed_errors += prev_stats->rx_missed_errors;
10914 	stats->multicast += prev_stats->multicast;
10915 	stats->rx_dropped += prev_stats->rx_dropped;
10916 	stats->tx_dropped += prev_stats->tx_dropped;
10917 }
10918 
10919 static void
10920 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
10921 {
10922 	struct bnxt *bp = netdev_priv(dev);
10923 
10924 	set_bit(BNXT_STATE_READ_STATS, &bp->state);
10925 	/* Make sure bnxt_close_nic() sees that we are reading stats before
10926 	 * we check the BNXT_STATE_OPEN flag.
10927 	 */
10928 	smp_mb__after_atomic();
10929 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
10930 		clear_bit(BNXT_STATE_READ_STATS, &bp->state);
10931 		*stats = bp->net_stats_prev;
10932 		return;
10933 	}
10934 
10935 	bnxt_get_ring_stats(bp, stats);
10936 	bnxt_add_prev_stats(bp, stats);
10937 
10938 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
10939 		u64 *rx = bp->port_stats.sw_stats;
10940 		u64 *tx = bp->port_stats.sw_stats +
10941 			  BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
10942 
10943 		stats->rx_crc_errors =
10944 			BNXT_GET_RX_PORT_STATS64(rx, rx_fcs_err_frames);
10945 		stats->rx_frame_errors =
10946 			BNXT_GET_RX_PORT_STATS64(rx, rx_align_err_frames);
10947 		stats->rx_length_errors =
10948 			BNXT_GET_RX_PORT_STATS64(rx, rx_undrsz_frames) +
10949 			BNXT_GET_RX_PORT_STATS64(rx, rx_ovrsz_frames) +
10950 			BNXT_GET_RX_PORT_STATS64(rx, rx_runt_frames);
10951 		stats->rx_errors =
10952 			BNXT_GET_RX_PORT_STATS64(rx, rx_false_carrier_frames) +
10953 			BNXT_GET_RX_PORT_STATS64(rx, rx_jbr_frames);
10954 		stats->collisions =
10955 			BNXT_GET_TX_PORT_STATS64(tx, tx_total_collisions);
10956 		stats->tx_fifo_errors =
10957 			BNXT_GET_TX_PORT_STATS64(tx, tx_fifo_underruns);
10958 		stats->tx_errors = BNXT_GET_TX_PORT_STATS64(tx, tx_err);
10959 	}
10960 	clear_bit(BNXT_STATE_READ_STATS, &bp->state);
10961 }
10962 
10963 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
10964 {
10965 	struct net_device *dev = bp->dev;
10966 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
10967 	struct netdev_hw_addr *ha;
10968 	u8 *haddr;
10969 	int mc_count = 0;
10970 	bool update = false;
10971 	int off = 0;
10972 
10973 	netdev_for_each_mc_addr(ha, dev) {
10974 		if (mc_count >= BNXT_MAX_MC_ADDRS) {
10975 			*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
10976 			vnic->mc_list_count = 0;
10977 			return false;
10978 		}
10979 		haddr = ha->addr;
10980 		if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
10981 			memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
10982 			update = true;
10983 		}
10984 		off += ETH_ALEN;
10985 		mc_count++;
10986 	}
10987 	if (mc_count)
10988 		*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
10989 
10990 	if (mc_count != vnic->mc_list_count) {
10991 		vnic->mc_list_count = mc_count;
10992 		update = true;
10993 	}
10994 	return update;
10995 }
10996 
10997 static bool bnxt_uc_list_updated(struct bnxt *bp)
10998 {
10999 	struct net_device *dev = bp->dev;
11000 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
11001 	struct netdev_hw_addr *ha;
11002 	int off = 0;
11003 
11004 	if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
11005 		return true;
11006 
11007 	netdev_for_each_uc_addr(ha, dev) {
11008 		if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
11009 			return true;
11010 
11011 		off += ETH_ALEN;
11012 	}
11013 	return false;
11014 }
11015 
11016 static void bnxt_set_rx_mode(struct net_device *dev)
11017 {
11018 	struct bnxt *bp = netdev_priv(dev);
11019 	struct bnxt_vnic_info *vnic;
11020 	bool mc_update = false;
11021 	bool uc_update;
11022 	u32 mask;
11023 
11024 	if (!test_bit(BNXT_STATE_OPEN, &bp->state))
11025 		return;
11026 
11027 	vnic = &bp->vnic_info[0];
11028 	mask = vnic->rx_mask;
11029 	mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
11030 		  CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
11031 		  CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST |
11032 		  CFA_L2_SET_RX_MASK_REQ_MASK_BCAST);
11033 
11034 	if (dev->flags & IFF_PROMISC)
11035 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
11036 
11037 	uc_update = bnxt_uc_list_updated(bp);
11038 
11039 	if (dev->flags & IFF_BROADCAST)
11040 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
11041 	if (dev->flags & IFF_ALLMULTI) {
11042 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
11043 		vnic->mc_list_count = 0;
11044 	} else if (dev->flags & IFF_MULTICAST) {
11045 		mc_update = bnxt_mc_list_updated(bp, &mask);
11046 	}
11047 
11048 	if (mask != vnic->rx_mask || uc_update || mc_update) {
11049 		vnic->rx_mask = mask;
11050 
11051 		set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
11052 		bnxt_queue_sp_work(bp);
11053 	}
11054 }
11055 
11056 static int bnxt_cfg_rx_mode(struct bnxt *bp)
11057 {
11058 	struct net_device *dev = bp->dev;
11059 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
11060 	struct hwrm_cfa_l2_filter_free_input *req;
11061 	struct netdev_hw_addr *ha;
11062 	int i, off = 0, rc;
11063 	bool uc_update;
11064 
11065 	netif_addr_lock_bh(dev);
11066 	uc_update = bnxt_uc_list_updated(bp);
11067 	netif_addr_unlock_bh(dev);
11068 
11069 	if (!uc_update)
11070 		goto skip_uc;
11071 
11072 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE);
11073 	if (rc)
11074 		return rc;
11075 	hwrm_req_hold(bp, req);
11076 	for (i = 1; i < vnic->uc_filter_count; i++) {
11077 		req->l2_filter_id = vnic->fw_l2_filter_id[i];
11078 
11079 		rc = hwrm_req_send(bp, req);
11080 	}
11081 	hwrm_req_drop(bp, req);
11082 
11083 	vnic->uc_filter_count = 1;
11084 
11085 	netif_addr_lock_bh(dev);
11086 	if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
11087 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
11088 	} else {
11089 		netdev_for_each_uc_addr(ha, dev) {
11090 			memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
11091 			off += ETH_ALEN;
11092 			vnic->uc_filter_count++;
11093 		}
11094 	}
11095 	netif_addr_unlock_bh(dev);
11096 
11097 	for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
11098 		rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
11099 		if (rc) {
11100 			if (BNXT_VF(bp) && rc == -ENODEV) {
11101 				if (!test_and_set_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state))
11102 					netdev_warn(bp->dev, "Cannot configure L2 filters while PF is unavailable, will retry\n");
11103 				else
11104 					netdev_dbg(bp->dev, "PF still unavailable while configuring L2 filters.\n");
11105 				rc = 0;
11106 			} else {
11107 				netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
11108 			}
11109 			vnic->uc_filter_count = i;
11110 			return rc;
11111 		}
11112 	}
11113 	if (test_and_clear_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state))
11114 		netdev_notice(bp->dev, "Retry of L2 filter configuration successful.\n");
11115 
11116 skip_uc:
11117 	if ((vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS) &&
11118 	    !bnxt_promisc_ok(bp))
11119 		vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
11120 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
11121 	if (rc && (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST)) {
11122 		netdev_info(bp->dev, "Failed setting MC filters rc: %d, turning on ALL_MCAST mode\n",
11123 			    rc);
11124 		vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
11125 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
11126 		vnic->mc_list_count = 0;
11127 		rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
11128 	}
11129 	if (rc)
11130 		netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %d\n",
11131 			   rc);
11132 
11133 	return rc;
11134 }
11135 
11136 static bool bnxt_can_reserve_rings(struct bnxt *bp)
11137 {
11138 #ifdef CONFIG_BNXT_SRIOV
11139 	if (BNXT_NEW_RM(bp) && BNXT_VF(bp)) {
11140 		struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
11141 
11142 		/* No minimum rings were provisioned by the PF.  Don't
11143 		 * reserve rings by default when device is down.
11144 		 */
11145 		if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings)
11146 			return true;
11147 
11148 		if (!netif_running(bp->dev))
11149 			return false;
11150 	}
11151 #endif
11152 	return true;
11153 }
11154 
11155 /* If the chip and firmware supports RFS */
11156 static bool bnxt_rfs_supported(struct bnxt *bp)
11157 {
11158 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
11159 		if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2)
11160 			return true;
11161 		return false;
11162 	}
11163 	/* 212 firmware is broken for aRFS */
11164 	if (BNXT_FW_MAJ(bp) == 212)
11165 		return false;
11166 	if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
11167 		return true;
11168 	if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
11169 		return true;
11170 	return false;
11171 }
11172 
11173 /* If runtime conditions support RFS */
11174 static bool bnxt_rfs_capable(struct bnxt *bp)
11175 {
11176 #ifdef CONFIG_RFS_ACCEL
11177 	int vnics, max_vnics, max_rss_ctxs;
11178 
11179 	if (bp->flags & BNXT_FLAG_CHIP_P5)
11180 		return bnxt_rfs_supported(bp);
11181 	if (!(bp->flags & BNXT_FLAG_MSIX_CAP) || !bnxt_can_reserve_rings(bp) || !bp->rx_nr_rings)
11182 		return false;
11183 
11184 	vnics = 1 + bp->rx_nr_rings;
11185 	max_vnics = bnxt_get_max_func_vnics(bp);
11186 	max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp);
11187 
11188 	/* RSS contexts not a limiting factor */
11189 	if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
11190 		max_rss_ctxs = max_vnics;
11191 	if (vnics > max_vnics || vnics > max_rss_ctxs) {
11192 		if (bp->rx_nr_rings > 1)
11193 			netdev_warn(bp->dev,
11194 				    "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n",
11195 				    min(max_rss_ctxs - 1, max_vnics - 1));
11196 		return false;
11197 	}
11198 
11199 	if (!BNXT_NEW_RM(bp))
11200 		return true;
11201 
11202 	if (vnics == bp->hw_resc.resv_vnics)
11203 		return true;
11204 
11205 	bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, vnics);
11206 	if (vnics <= bp->hw_resc.resv_vnics)
11207 		return true;
11208 
11209 	netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n");
11210 	bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, 1);
11211 	return false;
11212 #else
11213 	return false;
11214 #endif
11215 }
11216 
11217 static netdev_features_t bnxt_fix_features(struct net_device *dev,
11218 					   netdev_features_t features)
11219 {
11220 	struct bnxt *bp = netdev_priv(dev);
11221 	netdev_features_t vlan_features;
11222 
11223 	if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp))
11224 		features &= ~NETIF_F_NTUPLE;
11225 
11226 	if ((bp->flags & BNXT_FLAG_NO_AGG_RINGS) || bp->xdp_prog)
11227 		features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
11228 
11229 	if (!(features & NETIF_F_GRO))
11230 		features &= ~NETIF_F_GRO_HW;
11231 
11232 	if (features & NETIF_F_GRO_HW)
11233 		features &= ~NETIF_F_LRO;
11234 
11235 	/* Both CTAG and STAG VLAN accelaration on the RX side have to be
11236 	 * turned on or off together.
11237 	 */
11238 	vlan_features = features & BNXT_HW_FEATURE_VLAN_ALL_RX;
11239 	if (vlan_features != BNXT_HW_FEATURE_VLAN_ALL_RX) {
11240 		if (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)
11241 			features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX;
11242 		else if (vlan_features)
11243 			features |= BNXT_HW_FEATURE_VLAN_ALL_RX;
11244 	}
11245 #ifdef CONFIG_BNXT_SRIOV
11246 	if (BNXT_VF(bp) && bp->vf.vlan)
11247 		features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX;
11248 #endif
11249 	return features;
11250 }
11251 
11252 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
11253 {
11254 	struct bnxt *bp = netdev_priv(dev);
11255 	u32 flags = bp->flags;
11256 	u32 changes;
11257 	int rc = 0;
11258 	bool re_init = false;
11259 	bool update_tpa = false;
11260 
11261 	flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
11262 	if (features & NETIF_F_GRO_HW)
11263 		flags |= BNXT_FLAG_GRO;
11264 	else if (features & NETIF_F_LRO)
11265 		flags |= BNXT_FLAG_LRO;
11266 
11267 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
11268 		flags &= ~BNXT_FLAG_TPA;
11269 
11270 	if (features & BNXT_HW_FEATURE_VLAN_ALL_RX)
11271 		flags |= BNXT_FLAG_STRIP_VLAN;
11272 
11273 	if (features & NETIF_F_NTUPLE)
11274 		flags |= BNXT_FLAG_RFS;
11275 
11276 	changes = flags ^ bp->flags;
11277 	if (changes & BNXT_FLAG_TPA) {
11278 		update_tpa = true;
11279 		if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
11280 		    (flags & BNXT_FLAG_TPA) == 0 ||
11281 		    (bp->flags & BNXT_FLAG_CHIP_P5))
11282 			re_init = true;
11283 	}
11284 
11285 	if (changes & ~BNXT_FLAG_TPA)
11286 		re_init = true;
11287 
11288 	if (flags != bp->flags) {
11289 		u32 old_flags = bp->flags;
11290 
11291 		if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
11292 			bp->flags = flags;
11293 			if (update_tpa)
11294 				bnxt_set_ring_params(bp);
11295 			return rc;
11296 		}
11297 
11298 		if (re_init) {
11299 			bnxt_close_nic(bp, false, false);
11300 			bp->flags = flags;
11301 			if (update_tpa)
11302 				bnxt_set_ring_params(bp);
11303 
11304 			return bnxt_open_nic(bp, false, false);
11305 		}
11306 		if (update_tpa) {
11307 			bp->flags = flags;
11308 			rc = bnxt_set_tpa(bp,
11309 					  (flags & BNXT_FLAG_TPA) ?
11310 					  true : false);
11311 			if (rc)
11312 				bp->flags = old_flags;
11313 		}
11314 	}
11315 	return rc;
11316 }
11317 
11318 static bool bnxt_exthdr_check(struct bnxt *bp, struct sk_buff *skb, int nw_off,
11319 			      u8 **nextp)
11320 {
11321 	struct ipv6hdr *ip6h = (struct ipv6hdr *)(skb->data + nw_off);
11322 	struct hop_jumbo_hdr *jhdr;
11323 	int hdr_count = 0;
11324 	u8 *nexthdr;
11325 	int start;
11326 
11327 	/* Check that there are at most 2 IPv6 extension headers, no
11328 	 * fragment header, and each is <= 64 bytes.
11329 	 */
11330 	start = nw_off + sizeof(*ip6h);
11331 	nexthdr = &ip6h->nexthdr;
11332 	while (ipv6_ext_hdr(*nexthdr)) {
11333 		struct ipv6_opt_hdr *hp;
11334 		int hdrlen;
11335 
11336 		if (hdr_count >= 3 || *nexthdr == NEXTHDR_NONE ||
11337 		    *nexthdr == NEXTHDR_FRAGMENT)
11338 			return false;
11339 		hp = __skb_header_pointer(NULL, start, sizeof(*hp), skb->data,
11340 					  skb_headlen(skb), NULL);
11341 		if (!hp)
11342 			return false;
11343 		if (*nexthdr == NEXTHDR_AUTH)
11344 			hdrlen = ipv6_authlen(hp);
11345 		else
11346 			hdrlen = ipv6_optlen(hp);
11347 
11348 		if (hdrlen > 64)
11349 			return false;
11350 
11351 		/* The ext header may be a hop-by-hop header inserted for
11352 		 * big TCP purposes. This will be removed before sending
11353 		 * from NIC, so do not count it.
11354 		 */
11355 		if (*nexthdr == NEXTHDR_HOP) {
11356 			if (likely(skb->len <= GRO_LEGACY_MAX_SIZE))
11357 				goto increment_hdr;
11358 
11359 			jhdr = (struct hop_jumbo_hdr *)hp;
11360 			if (jhdr->tlv_type != IPV6_TLV_JUMBO || jhdr->hdrlen != 0 ||
11361 			    jhdr->nexthdr != IPPROTO_TCP)
11362 				goto increment_hdr;
11363 
11364 			goto next_hdr;
11365 		}
11366 increment_hdr:
11367 		hdr_count++;
11368 next_hdr:
11369 		nexthdr = &hp->nexthdr;
11370 		start += hdrlen;
11371 	}
11372 	if (nextp) {
11373 		/* Caller will check inner protocol */
11374 		if (skb->encapsulation) {
11375 			*nextp = nexthdr;
11376 			return true;
11377 		}
11378 		*nextp = NULL;
11379 	}
11380 	/* Only support TCP/UDP for non-tunneled ipv6 and inner ipv6 */
11381 	return *nexthdr == IPPROTO_TCP || *nexthdr == IPPROTO_UDP;
11382 }
11383 
11384 /* For UDP, we can only handle 1 Vxlan port and 1 Geneve port. */
11385 static bool bnxt_udp_tunl_check(struct bnxt *bp, struct sk_buff *skb)
11386 {
11387 	struct udphdr *uh = udp_hdr(skb);
11388 	__be16 udp_port = uh->dest;
11389 
11390 	if (udp_port != bp->vxlan_port && udp_port != bp->nge_port)
11391 		return false;
11392 	if (skb->inner_protocol_type == ENCAP_TYPE_ETHER) {
11393 		struct ethhdr *eh = inner_eth_hdr(skb);
11394 
11395 		switch (eh->h_proto) {
11396 		case htons(ETH_P_IP):
11397 			return true;
11398 		case htons(ETH_P_IPV6):
11399 			return bnxt_exthdr_check(bp, skb,
11400 						 skb_inner_network_offset(skb),
11401 						 NULL);
11402 		}
11403 	}
11404 	return false;
11405 }
11406 
11407 static bool bnxt_tunl_check(struct bnxt *bp, struct sk_buff *skb, u8 l4_proto)
11408 {
11409 	switch (l4_proto) {
11410 	case IPPROTO_UDP:
11411 		return bnxt_udp_tunl_check(bp, skb);
11412 	case IPPROTO_IPIP:
11413 		return true;
11414 	case IPPROTO_GRE: {
11415 		switch (skb->inner_protocol) {
11416 		default:
11417 			return false;
11418 		case htons(ETH_P_IP):
11419 			return true;
11420 		case htons(ETH_P_IPV6):
11421 			fallthrough;
11422 		}
11423 	}
11424 	case IPPROTO_IPV6:
11425 		/* Check ext headers of inner ipv6 */
11426 		return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb),
11427 					 NULL);
11428 	}
11429 	return false;
11430 }
11431 
11432 static netdev_features_t bnxt_features_check(struct sk_buff *skb,
11433 					     struct net_device *dev,
11434 					     netdev_features_t features)
11435 {
11436 	struct bnxt *bp = netdev_priv(dev);
11437 	u8 *l4_proto;
11438 
11439 	features = vlan_features_check(skb, features);
11440 	switch (vlan_get_protocol(skb)) {
11441 	case htons(ETH_P_IP):
11442 		if (!skb->encapsulation)
11443 			return features;
11444 		l4_proto = &ip_hdr(skb)->protocol;
11445 		if (bnxt_tunl_check(bp, skb, *l4_proto))
11446 			return features;
11447 		break;
11448 	case htons(ETH_P_IPV6):
11449 		if (!bnxt_exthdr_check(bp, skb, skb_network_offset(skb),
11450 				       &l4_proto))
11451 			break;
11452 		if (!l4_proto || bnxt_tunl_check(bp, skb, *l4_proto))
11453 			return features;
11454 		break;
11455 	}
11456 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
11457 }
11458 
11459 int bnxt_dbg_hwrm_rd_reg(struct bnxt *bp, u32 reg_off, u16 num_words,
11460 			 u32 *reg_buf)
11461 {
11462 	struct hwrm_dbg_read_direct_output *resp;
11463 	struct hwrm_dbg_read_direct_input *req;
11464 	__le32 *dbg_reg_buf;
11465 	dma_addr_t mapping;
11466 	int rc, i;
11467 
11468 	rc = hwrm_req_init(bp, req, HWRM_DBG_READ_DIRECT);
11469 	if (rc)
11470 		return rc;
11471 
11472 	dbg_reg_buf = hwrm_req_dma_slice(bp, req, num_words * 4,
11473 					 &mapping);
11474 	if (!dbg_reg_buf) {
11475 		rc = -ENOMEM;
11476 		goto dbg_rd_reg_exit;
11477 	}
11478 
11479 	req->host_dest_addr = cpu_to_le64(mapping);
11480 
11481 	resp = hwrm_req_hold(bp, req);
11482 	req->read_addr = cpu_to_le32(reg_off + CHIMP_REG_VIEW_ADDR);
11483 	req->read_len32 = cpu_to_le32(num_words);
11484 
11485 	rc = hwrm_req_send(bp, req);
11486 	if (rc || resp->error_code) {
11487 		rc = -EIO;
11488 		goto dbg_rd_reg_exit;
11489 	}
11490 	for (i = 0; i < num_words; i++)
11491 		reg_buf[i] = le32_to_cpu(dbg_reg_buf[i]);
11492 
11493 dbg_rd_reg_exit:
11494 	hwrm_req_drop(bp, req);
11495 	return rc;
11496 }
11497 
11498 static int bnxt_dbg_hwrm_ring_info_get(struct bnxt *bp, u8 ring_type,
11499 				       u32 ring_id, u32 *prod, u32 *cons)
11500 {
11501 	struct hwrm_dbg_ring_info_get_output *resp;
11502 	struct hwrm_dbg_ring_info_get_input *req;
11503 	int rc;
11504 
11505 	rc = hwrm_req_init(bp, req, HWRM_DBG_RING_INFO_GET);
11506 	if (rc)
11507 		return rc;
11508 
11509 	req->ring_type = ring_type;
11510 	req->fw_ring_id = cpu_to_le32(ring_id);
11511 	resp = hwrm_req_hold(bp, req);
11512 	rc = hwrm_req_send(bp, req);
11513 	if (!rc) {
11514 		*prod = le32_to_cpu(resp->producer_index);
11515 		*cons = le32_to_cpu(resp->consumer_index);
11516 	}
11517 	hwrm_req_drop(bp, req);
11518 	return rc;
11519 }
11520 
11521 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
11522 {
11523 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
11524 	int i = bnapi->index;
11525 
11526 	if (!txr)
11527 		return;
11528 
11529 	netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
11530 		    i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
11531 		    txr->tx_cons);
11532 }
11533 
11534 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
11535 {
11536 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
11537 	int i = bnapi->index;
11538 
11539 	if (!rxr)
11540 		return;
11541 
11542 	netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
11543 		    i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
11544 		    rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
11545 		    rxr->rx_sw_agg_prod);
11546 }
11547 
11548 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
11549 {
11550 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
11551 	int i = bnapi->index;
11552 
11553 	netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
11554 		    i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
11555 }
11556 
11557 static void bnxt_dbg_dump_states(struct bnxt *bp)
11558 {
11559 	int i;
11560 	struct bnxt_napi *bnapi;
11561 
11562 	for (i = 0; i < bp->cp_nr_rings; i++) {
11563 		bnapi = bp->bnapi[i];
11564 		if (netif_msg_drv(bp)) {
11565 			bnxt_dump_tx_sw_state(bnapi);
11566 			bnxt_dump_rx_sw_state(bnapi);
11567 			bnxt_dump_cp_sw_state(bnapi);
11568 		}
11569 	}
11570 }
11571 
11572 static int bnxt_hwrm_rx_ring_reset(struct bnxt *bp, int ring_nr)
11573 {
11574 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
11575 	struct hwrm_ring_reset_input *req;
11576 	struct bnxt_napi *bnapi = rxr->bnapi;
11577 	struct bnxt_cp_ring_info *cpr;
11578 	u16 cp_ring_id;
11579 	int rc;
11580 
11581 	rc = hwrm_req_init(bp, req, HWRM_RING_RESET);
11582 	if (rc)
11583 		return rc;
11584 
11585 	cpr = &bnapi->cp_ring;
11586 	cp_ring_id = cpr->cp_ring_struct.fw_ring_id;
11587 	req->cmpl_ring = cpu_to_le16(cp_ring_id);
11588 	req->ring_type = RING_RESET_REQ_RING_TYPE_RX_RING_GRP;
11589 	req->ring_id = cpu_to_le16(bp->grp_info[bnapi->index].fw_grp_id);
11590 	return hwrm_req_send_silent(bp, req);
11591 }
11592 
11593 static void bnxt_reset_task(struct bnxt *bp, bool silent)
11594 {
11595 	if (!silent)
11596 		bnxt_dbg_dump_states(bp);
11597 	if (netif_running(bp->dev)) {
11598 		int rc;
11599 
11600 		if (silent) {
11601 			bnxt_close_nic(bp, false, false);
11602 			bnxt_open_nic(bp, false, false);
11603 		} else {
11604 			bnxt_ulp_stop(bp);
11605 			bnxt_close_nic(bp, true, false);
11606 			rc = bnxt_open_nic(bp, true, false);
11607 			bnxt_ulp_start(bp, rc);
11608 		}
11609 	}
11610 }
11611 
11612 static void bnxt_tx_timeout(struct net_device *dev, unsigned int txqueue)
11613 {
11614 	struct bnxt *bp = netdev_priv(dev);
11615 
11616 	netdev_err(bp->dev,  "TX timeout detected, starting reset task!\n");
11617 	set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
11618 	bnxt_queue_sp_work(bp);
11619 }
11620 
11621 static void bnxt_fw_health_check(struct bnxt *bp)
11622 {
11623 	struct bnxt_fw_health *fw_health = bp->fw_health;
11624 	struct pci_dev *pdev = bp->pdev;
11625 	u32 val;
11626 
11627 	if (!fw_health->enabled || test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
11628 		return;
11629 
11630 	/* Make sure it is enabled before checking the tmr_counter. */
11631 	smp_rmb();
11632 	if (fw_health->tmr_counter) {
11633 		fw_health->tmr_counter--;
11634 		return;
11635 	}
11636 
11637 	val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
11638 	if (val == fw_health->last_fw_heartbeat && pci_device_is_present(pdev)) {
11639 		fw_health->arrests++;
11640 		goto fw_reset;
11641 	}
11642 
11643 	fw_health->last_fw_heartbeat = val;
11644 
11645 	val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
11646 	if (val != fw_health->last_fw_reset_cnt && pci_device_is_present(pdev)) {
11647 		fw_health->discoveries++;
11648 		goto fw_reset;
11649 	}
11650 
11651 	fw_health->tmr_counter = fw_health->tmr_multiplier;
11652 	return;
11653 
11654 fw_reset:
11655 	set_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event);
11656 	bnxt_queue_sp_work(bp);
11657 }
11658 
11659 static void bnxt_timer(struct timer_list *t)
11660 {
11661 	struct bnxt *bp = from_timer(bp, t, timer);
11662 	struct net_device *dev = bp->dev;
11663 
11664 	if (!netif_running(dev) || !test_bit(BNXT_STATE_OPEN, &bp->state))
11665 		return;
11666 
11667 	if (atomic_read(&bp->intr_sem) != 0)
11668 		goto bnxt_restart_timer;
11669 
11670 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
11671 		bnxt_fw_health_check(bp);
11672 
11673 	if (BNXT_LINK_IS_UP(bp) && bp->stats_coal_ticks) {
11674 		set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event);
11675 		bnxt_queue_sp_work(bp);
11676 	}
11677 
11678 	if (bnxt_tc_flower_enabled(bp)) {
11679 		set_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event);
11680 		bnxt_queue_sp_work(bp);
11681 	}
11682 
11683 #ifdef CONFIG_RFS_ACCEL
11684 	if ((bp->flags & BNXT_FLAG_RFS) && bp->ntp_fltr_count) {
11685 		set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
11686 		bnxt_queue_sp_work(bp);
11687 	}
11688 #endif /*CONFIG_RFS_ACCEL*/
11689 
11690 	if (bp->link_info.phy_retry) {
11691 		if (time_after(jiffies, bp->link_info.phy_retry_expires)) {
11692 			bp->link_info.phy_retry = false;
11693 			netdev_warn(bp->dev, "failed to update phy settings after maximum retries.\n");
11694 		} else {
11695 			set_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event);
11696 			bnxt_queue_sp_work(bp);
11697 		}
11698 	}
11699 
11700 	if (test_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state)) {
11701 		set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
11702 		bnxt_queue_sp_work(bp);
11703 	}
11704 
11705 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && !bp->chip_rev &&
11706 	    netif_carrier_ok(dev)) {
11707 		set_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event);
11708 		bnxt_queue_sp_work(bp);
11709 	}
11710 bnxt_restart_timer:
11711 	mod_timer(&bp->timer, jiffies + bp->current_interval);
11712 }
11713 
11714 static void bnxt_rtnl_lock_sp(struct bnxt *bp)
11715 {
11716 	/* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK
11717 	 * set.  If the device is being closed, bnxt_close() may be holding
11718 	 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear.  So we
11719 	 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl().
11720 	 */
11721 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
11722 	rtnl_lock();
11723 }
11724 
11725 static void bnxt_rtnl_unlock_sp(struct bnxt *bp)
11726 {
11727 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
11728 	rtnl_unlock();
11729 }
11730 
11731 /* Only called from bnxt_sp_task() */
11732 static void bnxt_reset(struct bnxt *bp, bool silent)
11733 {
11734 	bnxt_rtnl_lock_sp(bp);
11735 	if (test_bit(BNXT_STATE_OPEN, &bp->state))
11736 		bnxt_reset_task(bp, silent);
11737 	bnxt_rtnl_unlock_sp(bp);
11738 }
11739 
11740 /* Only called from bnxt_sp_task() */
11741 static void bnxt_rx_ring_reset(struct bnxt *bp)
11742 {
11743 	int i;
11744 
11745 	bnxt_rtnl_lock_sp(bp);
11746 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
11747 		bnxt_rtnl_unlock_sp(bp);
11748 		return;
11749 	}
11750 	/* Disable and flush TPA before resetting the RX ring */
11751 	if (bp->flags & BNXT_FLAG_TPA)
11752 		bnxt_set_tpa(bp, false);
11753 	for (i = 0; i < bp->rx_nr_rings; i++) {
11754 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
11755 		struct bnxt_cp_ring_info *cpr;
11756 		int rc;
11757 
11758 		if (!rxr->bnapi->in_reset)
11759 			continue;
11760 
11761 		rc = bnxt_hwrm_rx_ring_reset(bp, i);
11762 		if (rc) {
11763 			if (rc == -EINVAL || rc == -EOPNOTSUPP)
11764 				netdev_info_once(bp->dev, "RX ring reset not supported by firmware, falling back to global reset\n");
11765 			else
11766 				netdev_warn(bp->dev, "RX ring reset failed, rc = %d, falling back to global reset\n",
11767 					    rc);
11768 			bnxt_reset_task(bp, true);
11769 			break;
11770 		}
11771 		bnxt_free_one_rx_ring_skbs(bp, i);
11772 		rxr->rx_prod = 0;
11773 		rxr->rx_agg_prod = 0;
11774 		rxr->rx_sw_agg_prod = 0;
11775 		rxr->rx_next_cons = 0;
11776 		rxr->bnapi->in_reset = false;
11777 		bnxt_alloc_one_rx_ring(bp, i);
11778 		cpr = &rxr->bnapi->cp_ring;
11779 		cpr->sw_stats.rx.rx_resets++;
11780 		if (bp->flags & BNXT_FLAG_AGG_RINGS)
11781 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
11782 		bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
11783 	}
11784 	if (bp->flags & BNXT_FLAG_TPA)
11785 		bnxt_set_tpa(bp, true);
11786 	bnxt_rtnl_unlock_sp(bp);
11787 }
11788 
11789 static void bnxt_fw_reset_close(struct bnxt *bp)
11790 {
11791 	bnxt_ulp_stop(bp);
11792 	/* When firmware is in fatal state, quiesce device and disable
11793 	 * bus master to prevent any potential bad DMAs before freeing
11794 	 * kernel memory.
11795 	 */
11796 	if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) {
11797 		u16 val = 0;
11798 
11799 		pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val);
11800 		if (val == 0xffff)
11801 			bp->fw_reset_min_dsecs = 0;
11802 		bnxt_tx_disable(bp);
11803 		bnxt_disable_napi(bp);
11804 		bnxt_disable_int_sync(bp);
11805 		bnxt_free_irq(bp);
11806 		bnxt_clear_int_mode(bp);
11807 		pci_disable_device(bp->pdev);
11808 	}
11809 	__bnxt_close_nic(bp, true, false);
11810 	bnxt_vf_reps_free(bp);
11811 	bnxt_clear_int_mode(bp);
11812 	bnxt_hwrm_func_drv_unrgtr(bp);
11813 	if (pci_is_enabled(bp->pdev))
11814 		pci_disable_device(bp->pdev);
11815 	bnxt_free_ctx_mem(bp);
11816 	kfree(bp->ctx);
11817 	bp->ctx = NULL;
11818 }
11819 
11820 static bool is_bnxt_fw_ok(struct bnxt *bp)
11821 {
11822 	struct bnxt_fw_health *fw_health = bp->fw_health;
11823 	bool no_heartbeat = false, has_reset = false;
11824 	u32 val;
11825 
11826 	val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
11827 	if (val == fw_health->last_fw_heartbeat)
11828 		no_heartbeat = true;
11829 
11830 	val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
11831 	if (val != fw_health->last_fw_reset_cnt)
11832 		has_reset = true;
11833 
11834 	if (!no_heartbeat && has_reset)
11835 		return true;
11836 
11837 	return false;
11838 }
11839 
11840 /* rtnl_lock is acquired before calling this function */
11841 static void bnxt_force_fw_reset(struct bnxt *bp)
11842 {
11843 	struct bnxt_fw_health *fw_health = bp->fw_health;
11844 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
11845 	u32 wait_dsecs;
11846 
11847 	if (!test_bit(BNXT_STATE_OPEN, &bp->state) ||
11848 	    test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
11849 		return;
11850 
11851 	if (ptp) {
11852 		spin_lock_bh(&ptp->ptp_lock);
11853 		set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11854 		spin_unlock_bh(&ptp->ptp_lock);
11855 	} else {
11856 		set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11857 	}
11858 	bnxt_fw_reset_close(bp);
11859 	wait_dsecs = fw_health->master_func_wait_dsecs;
11860 	if (fw_health->primary) {
11861 		if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU)
11862 			wait_dsecs = 0;
11863 		bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW;
11864 	} else {
11865 		bp->fw_reset_timestamp = jiffies + wait_dsecs * HZ / 10;
11866 		wait_dsecs = fw_health->normal_func_wait_dsecs;
11867 		bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
11868 	}
11869 
11870 	bp->fw_reset_min_dsecs = fw_health->post_reset_wait_dsecs;
11871 	bp->fw_reset_max_dsecs = fw_health->post_reset_max_wait_dsecs;
11872 	bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10);
11873 }
11874 
11875 void bnxt_fw_exception(struct bnxt *bp)
11876 {
11877 	netdev_warn(bp->dev, "Detected firmware fatal condition, initiating reset\n");
11878 	set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
11879 	bnxt_rtnl_lock_sp(bp);
11880 	bnxt_force_fw_reset(bp);
11881 	bnxt_rtnl_unlock_sp(bp);
11882 }
11883 
11884 /* Returns the number of registered VFs, or 1 if VF configuration is pending, or
11885  * < 0 on error.
11886  */
11887 static int bnxt_get_registered_vfs(struct bnxt *bp)
11888 {
11889 #ifdef CONFIG_BNXT_SRIOV
11890 	int rc;
11891 
11892 	if (!BNXT_PF(bp))
11893 		return 0;
11894 
11895 	rc = bnxt_hwrm_func_qcfg(bp);
11896 	if (rc) {
11897 		netdev_err(bp->dev, "func_qcfg cmd failed, rc = %d\n", rc);
11898 		return rc;
11899 	}
11900 	if (bp->pf.registered_vfs)
11901 		return bp->pf.registered_vfs;
11902 	if (bp->sriov_cfg)
11903 		return 1;
11904 #endif
11905 	return 0;
11906 }
11907 
11908 void bnxt_fw_reset(struct bnxt *bp)
11909 {
11910 	bnxt_rtnl_lock_sp(bp);
11911 	if (test_bit(BNXT_STATE_OPEN, &bp->state) &&
11912 	    !test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
11913 		struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
11914 		int n = 0, tmo;
11915 
11916 		if (ptp) {
11917 			spin_lock_bh(&ptp->ptp_lock);
11918 			set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11919 			spin_unlock_bh(&ptp->ptp_lock);
11920 		} else {
11921 			set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11922 		}
11923 		if (bp->pf.active_vfs &&
11924 		    !test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
11925 			n = bnxt_get_registered_vfs(bp);
11926 		if (n < 0) {
11927 			netdev_err(bp->dev, "Firmware reset aborted, rc = %d\n",
11928 				   n);
11929 			clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11930 			dev_close(bp->dev);
11931 			goto fw_reset_exit;
11932 		} else if (n > 0) {
11933 			u16 vf_tmo_dsecs = n * 10;
11934 
11935 			if (bp->fw_reset_max_dsecs < vf_tmo_dsecs)
11936 				bp->fw_reset_max_dsecs = vf_tmo_dsecs;
11937 			bp->fw_reset_state =
11938 				BNXT_FW_RESET_STATE_POLL_VF;
11939 			bnxt_queue_fw_reset_work(bp, HZ / 10);
11940 			goto fw_reset_exit;
11941 		}
11942 		bnxt_fw_reset_close(bp);
11943 		if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
11944 			bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN;
11945 			tmo = HZ / 10;
11946 		} else {
11947 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
11948 			tmo = bp->fw_reset_min_dsecs * HZ / 10;
11949 		}
11950 		bnxt_queue_fw_reset_work(bp, tmo);
11951 	}
11952 fw_reset_exit:
11953 	bnxt_rtnl_unlock_sp(bp);
11954 }
11955 
11956 static void bnxt_chk_missed_irq(struct bnxt *bp)
11957 {
11958 	int i;
11959 
11960 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
11961 		return;
11962 
11963 	for (i = 0; i < bp->cp_nr_rings; i++) {
11964 		struct bnxt_napi *bnapi = bp->bnapi[i];
11965 		struct bnxt_cp_ring_info *cpr;
11966 		u32 fw_ring_id;
11967 		int j;
11968 
11969 		if (!bnapi)
11970 			continue;
11971 
11972 		cpr = &bnapi->cp_ring;
11973 		for (j = 0; j < 2; j++) {
11974 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
11975 			u32 val[2];
11976 
11977 			if (!cpr2 || cpr2->has_more_work ||
11978 			    !bnxt_has_work(bp, cpr2))
11979 				continue;
11980 
11981 			if (cpr2->cp_raw_cons != cpr2->last_cp_raw_cons) {
11982 				cpr2->last_cp_raw_cons = cpr2->cp_raw_cons;
11983 				continue;
11984 			}
11985 			fw_ring_id = cpr2->cp_ring_struct.fw_ring_id;
11986 			bnxt_dbg_hwrm_ring_info_get(bp,
11987 				DBG_RING_INFO_GET_REQ_RING_TYPE_L2_CMPL,
11988 				fw_ring_id, &val[0], &val[1]);
11989 			cpr->sw_stats.cmn.missed_irqs++;
11990 		}
11991 	}
11992 }
11993 
11994 static void bnxt_cfg_ntp_filters(struct bnxt *);
11995 
11996 static void bnxt_init_ethtool_link_settings(struct bnxt *bp)
11997 {
11998 	struct bnxt_link_info *link_info = &bp->link_info;
11999 
12000 	if (BNXT_AUTO_MODE(link_info->auto_mode)) {
12001 		link_info->autoneg = BNXT_AUTONEG_SPEED;
12002 		if (bp->hwrm_spec_code >= 0x10201) {
12003 			if (link_info->auto_pause_setting &
12004 			    PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE)
12005 				link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
12006 		} else {
12007 			link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
12008 		}
12009 		link_info->advertising = link_info->auto_link_speeds;
12010 		link_info->advertising_pam4 = link_info->auto_pam4_link_speeds;
12011 	} else {
12012 		link_info->req_link_speed = link_info->force_link_speed;
12013 		link_info->req_signal_mode = BNXT_SIG_MODE_NRZ;
12014 		if (link_info->force_pam4_link_speed) {
12015 			link_info->req_link_speed =
12016 				link_info->force_pam4_link_speed;
12017 			link_info->req_signal_mode = BNXT_SIG_MODE_PAM4;
12018 		}
12019 		link_info->req_duplex = link_info->duplex_setting;
12020 	}
12021 	if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL)
12022 		link_info->req_flow_ctrl =
12023 			link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH;
12024 	else
12025 		link_info->req_flow_ctrl = link_info->force_pause_setting;
12026 }
12027 
12028 static void bnxt_fw_echo_reply(struct bnxt *bp)
12029 {
12030 	struct bnxt_fw_health *fw_health = bp->fw_health;
12031 	struct hwrm_func_echo_response_input *req;
12032 	int rc;
12033 
12034 	rc = hwrm_req_init(bp, req, HWRM_FUNC_ECHO_RESPONSE);
12035 	if (rc)
12036 		return;
12037 	req->event_data1 = cpu_to_le32(fw_health->echo_req_data1);
12038 	req->event_data2 = cpu_to_le32(fw_health->echo_req_data2);
12039 	hwrm_req_send(bp, req);
12040 }
12041 
12042 static void bnxt_sp_task(struct work_struct *work)
12043 {
12044 	struct bnxt *bp = container_of(work, struct bnxt, sp_task);
12045 
12046 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
12047 	smp_mb__after_atomic();
12048 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
12049 		clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
12050 		return;
12051 	}
12052 
12053 	if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
12054 		bnxt_cfg_rx_mode(bp);
12055 
12056 	if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
12057 		bnxt_cfg_ntp_filters(bp);
12058 	if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
12059 		bnxt_hwrm_exec_fwd_req(bp);
12060 	if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) {
12061 		bnxt_hwrm_port_qstats(bp, 0);
12062 		bnxt_hwrm_port_qstats_ext(bp, 0);
12063 		bnxt_accumulate_all_stats(bp);
12064 	}
12065 
12066 	if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
12067 		int rc;
12068 
12069 		mutex_lock(&bp->link_lock);
12070 		if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT,
12071 				       &bp->sp_event))
12072 			bnxt_hwrm_phy_qcaps(bp);
12073 
12074 		rc = bnxt_update_link(bp, true);
12075 		if (rc)
12076 			netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
12077 				   rc);
12078 
12079 		if (test_and_clear_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT,
12080 				       &bp->sp_event))
12081 			bnxt_init_ethtool_link_settings(bp);
12082 		mutex_unlock(&bp->link_lock);
12083 	}
12084 	if (test_and_clear_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event)) {
12085 		int rc;
12086 
12087 		mutex_lock(&bp->link_lock);
12088 		rc = bnxt_update_phy_setting(bp);
12089 		mutex_unlock(&bp->link_lock);
12090 		if (rc) {
12091 			netdev_warn(bp->dev, "update phy settings retry failed\n");
12092 		} else {
12093 			bp->link_info.phy_retry = false;
12094 			netdev_info(bp->dev, "update phy settings retry succeeded\n");
12095 		}
12096 	}
12097 	if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) {
12098 		mutex_lock(&bp->link_lock);
12099 		bnxt_get_port_module_status(bp);
12100 		mutex_unlock(&bp->link_lock);
12101 	}
12102 
12103 	if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event))
12104 		bnxt_tc_flow_stats_work(bp);
12105 
12106 	if (test_and_clear_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event))
12107 		bnxt_chk_missed_irq(bp);
12108 
12109 	if (test_and_clear_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event))
12110 		bnxt_fw_echo_reply(bp);
12111 
12112 	/* These functions below will clear BNXT_STATE_IN_SP_TASK.  They
12113 	 * must be the last functions to be called before exiting.
12114 	 */
12115 	if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event))
12116 		bnxt_reset(bp, false);
12117 
12118 	if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event))
12119 		bnxt_reset(bp, true);
12120 
12121 	if (test_and_clear_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event))
12122 		bnxt_rx_ring_reset(bp);
12123 
12124 	if (test_and_clear_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event)) {
12125 		if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) ||
12126 		    test_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state))
12127 			bnxt_devlink_health_fw_report(bp);
12128 		else
12129 			bnxt_fw_reset(bp);
12130 	}
12131 
12132 	if (test_and_clear_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event)) {
12133 		if (!is_bnxt_fw_ok(bp))
12134 			bnxt_devlink_health_fw_report(bp);
12135 	}
12136 
12137 	smp_mb__before_atomic();
12138 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
12139 }
12140 
12141 /* Under rtnl_lock */
12142 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs,
12143 		     int tx_xdp)
12144 {
12145 	int max_rx, max_tx, tx_sets = 1;
12146 	int tx_rings_needed, stats;
12147 	int rx_rings = rx;
12148 	int cp, vnics, rc;
12149 
12150 	if (tcs)
12151 		tx_sets = tcs;
12152 
12153 	rc = bnxt_get_max_rings(bp, &max_rx, &max_tx, sh);
12154 	if (rc)
12155 		return rc;
12156 
12157 	if (max_rx < rx)
12158 		return -ENOMEM;
12159 
12160 	tx_rings_needed = tx * tx_sets + tx_xdp;
12161 	if (max_tx < tx_rings_needed)
12162 		return -ENOMEM;
12163 
12164 	vnics = 1;
12165 	if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS)
12166 		vnics += rx_rings;
12167 
12168 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
12169 		rx_rings <<= 1;
12170 	cp = sh ? max_t(int, tx_rings_needed, rx) : tx_rings_needed + rx;
12171 	stats = cp;
12172 	if (BNXT_NEW_RM(bp)) {
12173 		cp += bnxt_get_ulp_msix_num(bp);
12174 		stats += bnxt_get_ulp_stat_ctxs(bp);
12175 	}
12176 	return bnxt_hwrm_check_rings(bp, tx_rings_needed, rx_rings, rx, cp,
12177 				     stats, vnics);
12178 }
12179 
12180 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev)
12181 {
12182 	if (bp->bar2) {
12183 		pci_iounmap(pdev, bp->bar2);
12184 		bp->bar2 = NULL;
12185 	}
12186 
12187 	if (bp->bar1) {
12188 		pci_iounmap(pdev, bp->bar1);
12189 		bp->bar1 = NULL;
12190 	}
12191 
12192 	if (bp->bar0) {
12193 		pci_iounmap(pdev, bp->bar0);
12194 		bp->bar0 = NULL;
12195 	}
12196 }
12197 
12198 static void bnxt_cleanup_pci(struct bnxt *bp)
12199 {
12200 	bnxt_unmap_bars(bp, bp->pdev);
12201 	pci_release_regions(bp->pdev);
12202 	if (pci_is_enabled(bp->pdev))
12203 		pci_disable_device(bp->pdev);
12204 }
12205 
12206 static void bnxt_init_dflt_coal(struct bnxt *bp)
12207 {
12208 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
12209 	struct bnxt_coal *coal;
12210 	u16 flags = 0;
12211 
12212 	if (coal_cap->cmpl_params &
12213 	    RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_TIMER_RESET)
12214 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
12215 
12216 	/* Tick values in micro seconds.
12217 	 * 1 coal_buf x bufs_per_record = 1 completion record.
12218 	 */
12219 	coal = &bp->rx_coal;
12220 	coal->coal_ticks = 10;
12221 	coal->coal_bufs = 30;
12222 	coal->coal_ticks_irq = 1;
12223 	coal->coal_bufs_irq = 2;
12224 	coal->idle_thresh = 50;
12225 	coal->bufs_per_record = 2;
12226 	coal->budget = 64;		/* NAPI budget */
12227 	coal->flags = flags;
12228 
12229 	coal = &bp->tx_coal;
12230 	coal->coal_ticks = 28;
12231 	coal->coal_bufs = 30;
12232 	coal->coal_ticks_irq = 2;
12233 	coal->coal_bufs_irq = 2;
12234 	coal->bufs_per_record = 1;
12235 	coal->flags = flags;
12236 
12237 	bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS;
12238 }
12239 
12240 static int bnxt_fw_init_one_p1(struct bnxt *bp)
12241 {
12242 	int rc;
12243 
12244 	bp->fw_cap = 0;
12245 	rc = bnxt_hwrm_ver_get(bp);
12246 	bnxt_try_map_fw_health_reg(bp);
12247 	if (rc) {
12248 		rc = bnxt_try_recover_fw(bp);
12249 		if (rc)
12250 			return rc;
12251 		rc = bnxt_hwrm_ver_get(bp);
12252 		if (rc)
12253 			return rc;
12254 	}
12255 
12256 	bnxt_nvm_cfg_ver_get(bp);
12257 
12258 	rc = bnxt_hwrm_func_reset(bp);
12259 	if (rc)
12260 		return -ENODEV;
12261 
12262 	bnxt_hwrm_fw_set_time(bp);
12263 	return 0;
12264 }
12265 
12266 static int bnxt_fw_init_one_p2(struct bnxt *bp)
12267 {
12268 	int rc;
12269 
12270 	/* Get the MAX capabilities for this function */
12271 	rc = bnxt_hwrm_func_qcaps(bp);
12272 	if (rc) {
12273 		netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
12274 			   rc);
12275 		return -ENODEV;
12276 	}
12277 
12278 	rc = bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(bp);
12279 	if (rc)
12280 		netdev_warn(bp->dev, "hwrm query adv flow mgnt failure rc: %d\n",
12281 			    rc);
12282 
12283 	if (bnxt_alloc_fw_health(bp)) {
12284 		netdev_warn(bp->dev, "no memory for firmware error recovery\n");
12285 	} else {
12286 		rc = bnxt_hwrm_error_recovery_qcfg(bp);
12287 		if (rc)
12288 			netdev_warn(bp->dev, "hwrm query error recovery failure rc: %d\n",
12289 				    rc);
12290 	}
12291 
12292 	rc = bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false);
12293 	if (rc)
12294 		return -ENODEV;
12295 
12296 	bnxt_hwrm_func_qcfg(bp);
12297 	bnxt_hwrm_vnic_qcaps(bp);
12298 	bnxt_hwrm_port_led_qcaps(bp);
12299 	bnxt_ethtool_init(bp);
12300 	if (bp->fw_cap & BNXT_FW_CAP_PTP)
12301 		__bnxt_hwrm_ptp_qcfg(bp);
12302 	bnxt_dcb_init(bp);
12303 	return 0;
12304 }
12305 
12306 static void bnxt_set_dflt_rss_hash_type(struct bnxt *bp)
12307 {
12308 	bp->flags &= ~BNXT_FLAG_UDP_RSS_CAP;
12309 	bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 |
12310 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 |
12311 			   VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 |
12312 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6;
12313 	if (bp->fw_cap & BNXT_FW_CAP_RSS_HASH_TYPE_DELTA)
12314 		bp->rss_hash_delta = bp->rss_hash_cfg;
12315 	if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) {
12316 		bp->flags |= BNXT_FLAG_UDP_RSS_CAP;
12317 		bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 |
12318 				    VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6;
12319 	}
12320 }
12321 
12322 static void bnxt_set_dflt_rfs(struct bnxt *bp)
12323 {
12324 	struct net_device *dev = bp->dev;
12325 
12326 	dev->hw_features &= ~NETIF_F_NTUPLE;
12327 	dev->features &= ~NETIF_F_NTUPLE;
12328 	bp->flags &= ~BNXT_FLAG_RFS;
12329 	if (bnxt_rfs_supported(bp)) {
12330 		dev->hw_features |= NETIF_F_NTUPLE;
12331 		if (bnxt_rfs_capable(bp)) {
12332 			bp->flags |= BNXT_FLAG_RFS;
12333 			dev->features |= NETIF_F_NTUPLE;
12334 		}
12335 	}
12336 }
12337 
12338 static void bnxt_fw_init_one_p3(struct bnxt *bp)
12339 {
12340 	struct pci_dev *pdev = bp->pdev;
12341 
12342 	bnxt_set_dflt_rss_hash_type(bp);
12343 	bnxt_set_dflt_rfs(bp);
12344 
12345 	bnxt_get_wol_settings(bp);
12346 	if (bp->flags & BNXT_FLAG_WOL_CAP)
12347 		device_set_wakeup_enable(&pdev->dev, bp->wol);
12348 	else
12349 		device_set_wakeup_capable(&pdev->dev, false);
12350 
12351 	bnxt_hwrm_set_cache_line_size(bp, cache_line_size());
12352 	bnxt_hwrm_coal_params_qcaps(bp);
12353 }
12354 
12355 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt);
12356 
12357 int bnxt_fw_init_one(struct bnxt *bp)
12358 {
12359 	int rc;
12360 
12361 	rc = bnxt_fw_init_one_p1(bp);
12362 	if (rc) {
12363 		netdev_err(bp->dev, "Firmware init phase 1 failed\n");
12364 		return rc;
12365 	}
12366 	rc = bnxt_fw_init_one_p2(bp);
12367 	if (rc) {
12368 		netdev_err(bp->dev, "Firmware init phase 2 failed\n");
12369 		return rc;
12370 	}
12371 	rc = bnxt_probe_phy(bp, false);
12372 	if (rc)
12373 		return rc;
12374 	rc = bnxt_approve_mac(bp, bp->dev->dev_addr, false);
12375 	if (rc)
12376 		return rc;
12377 
12378 	bnxt_fw_init_one_p3(bp);
12379 	return 0;
12380 }
12381 
12382 static void bnxt_fw_reset_writel(struct bnxt *bp, int reg_idx)
12383 {
12384 	struct bnxt_fw_health *fw_health = bp->fw_health;
12385 	u32 reg = fw_health->fw_reset_seq_regs[reg_idx];
12386 	u32 val = fw_health->fw_reset_seq_vals[reg_idx];
12387 	u32 reg_type, reg_off, delay_msecs;
12388 
12389 	delay_msecs = fw_health->fw_reset_seq_delay_msec[reg_idx];
12390 	reg_type = BNXT_FW_HEALTH_REG_TYPE(reg);
12391 	reg_off = BNXT_FW_HEALTH_REG_OFF(reg);
12392 	switch (reg_type) {
12393 	case BNXT_FW_HEALTH_REG_TYPE_CFG:
12394 		pci_write_config_dword(bp->pdev, reg_off, val);
12395 		break;
12396 	case BNXT_FW_HEALTH_REG_TYPE_GRC:
12397 		writel(reg_off & BNXT_GRC_BASE_MASK,
12398 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4);
12399 		reg_off = (reg_off & BNXT_GRC_OFFSET_MASK) + 0x2000;
12400 		fallthrough;
12401 	case BNXT_FW_HEALTH_REG_TYPE_BAR0:
12402 		writel(val, bp->bar0 + reg_off);
12403 		break;
12404 	case BNXT_FW_HEALTH_REG_TYPE_BAR1:
12405 		writel(val, bp->bar1 + reg_off);
12406 		break;
12407 	}
12408 	if (delay_msecs) {
12409 		pci_read_config_dword(bp->pdev, 0, &val);
12410 		msleep(delay_msecs);
12411 	}
12412 }
12413 
12414 bool bnxt_hwrm_reset_permitted(struct bnxt *bp)
12415 {
12416 	struct hwrm_func_qcfg_output *resp;
12417 	struct hwrm_func_qcfg_input *req;
12418 	bool result = true; /* firmware will enforce if unknown */
12419 
12420 	if (~bp->fw_cap & BNXT_FW_CAP_HOT_RESET_IF)
12421 		return result;
12422 
12423 	if (hwrm_req_init(bp, req, HWRM_FUNC_QCFG))
12424 		return result;
12425 
12426 	req->fid = cpu_to_le16(0xffff);
12427 	resp = hwrm_req_hold(bp, req);
12428 	if (!hwrm_req_send(bp, req))
12429 		result = !!(le16_to_cpu(resp->flags) &
12430 			    FUNC_QCFG_RESP_FLAGS_HOT_RESET_ALLOWED);
12431 	hwrm_req_drop(bp, req);
12432 	return result;
12433 }
12434 
12435 static void bnxt_reset_all(struct bnxt *bp)
12436 {
12437 	struct bnxt_fw_health *fw_health = bp->fw_health;
12438 	int i, rc;
12439 
12440 	if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
12441 		bnxt_fw_reset_via_optee(bp);
12442 		bp->fw_reset_timestamp = jiffies;
12443 		return;
12444 	}
12445 
12446 	if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_HOST) {
12447 		for (i = 0; i < fw_health->fw_reset_seq_cnt; i++)
12448 			bnxt_fw_reset_writel(bp, i);
12449 	} else if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) {
12450 		struct hwrm_fw_reset_input *req;
12451 
12452 		rc = hwrm_req_init(bp, req, HWRM_FW_RESET);
12453 		if (!rc) {
12454 			req->target_id = cpu_to_le16(HWRM_TARGET_ID_KONG);
12455 			req->embedded_proc_type = FW_RESET_REQ_EMBEDDED_PROC_TYPE_CHIP;
12456 			req->selfrst_status = FW_RESET_REQ_SELFRST_STATUS_SELFRSTASAP;
12457 			req->flags = FW_RESET_REQ_FLAGS_RESET_GRACEFUL;
12458 			rc = hwrm_req_send(bp, req);
12459 		}
12460 		if (rc != -ENODEV)
12461 			netdev_warn(bp->dev, "Unable to reset FW rc=%d\n", rc);
12462 	}
12463 	bp->fw_reset_timestamp = jiffies;
12464 }
12465 
12466 static bool bnxt_fw_reset_timeout(struct bnxt *bp)
12467 {
12468 	return time_after(jiffies, bp->fw_reset_timestamp +
12469 			  (bp->fw_reset_max_dsecs * HZ / 10));
12470 }
12471 
12472 static void bnxt_fw_reset_abort(struct bnxt *bp, int rc)
12473 {
12474 	clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12475 	if (bp->fw_reset_state != BNXT_FW_RESET_STATE_POLL_VF) {
12476 		bnxt_ulp_start(bp, rc);
12477 		bnxt_dl_health_fw_status_update(bp, false);
12478 	}
12479 	bp->fw_reset_state = 0;
12480 	dev_close(bp->dev);
12481 }
12482 
12483 static void bnxt_fw_reset_task(struct work_struct *work)
12484 {
12485 	struct bnxt *bp = container_of(work, struct bnxt, fw_reset_task.work);
12486 	int rc = 0;
12487 
12488 	if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
12489 		netdev_err(bp->dev, "bnxt_fw_reset_task() called when not in fw reset mode!\n");
12490 		return;
12491 	}
12492 
12493 	switch (bp->fw_reset_state) {
12494 	case BNXT_FW_RESET_STATE_POLL_VF: {
12495 		int n = bnxt_get_registered_vfs(bp);
12496 		int tmo;
12497 
12498 		if (n < 0) {
12499 			netdev_err(bp->dev, "Firmware reset aborted, subsequent func_qcfg cmd failed, rc = %d, %d msecs since reset timestamp\n",
12500 				   n, jiffies_to_msecs(jiffies -
12501 				   bp->fw_reset_timestamp));
12502 			goto fw_reset_abort;
12503 		} else if (n > 0) {
12504 			if (bnxt_fw_reset_timeout(bp)) {
12505 				clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12506 				bp->fw_reset_state = 0;
12507 				netdev_err(bp->dev, "Firmware reset aborted, bnxt_get_registered_vfs() returns %d\n",
12508 					   n);
12509 				return;
12510 			}
12511 			bnxt_queue_fw_reset_work(bp, HZ / 10);
12512 			return;
12513 		}
12514 		bp->fw_reset_timestamp = jiffies;
12515 		rtnl_lock();
12516 		if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
12517 			bnxt_fw_reset_abort(bp, rc);
12518 			rtnl_unlock();
12519 			return;
12520 		}
12521 		bnxt_fw_reset_close(bp);
12522 		if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
12523 			bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN;
12524 			tmo = HZ / 10;
12525 		} else {
12526 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
12527 			tmo = bp->fw_reset_min_dsecs * HZ / 10;
12528 		}
12529 		rtnl_unlock();
12530 		bnxt_queue_fw_reset_work(bp, tmo);
12531 		return;
12532 	}
12533 	case BNXT_FW_RESET_STATE_POLL_FW_DOWN: {
12534 		u32 val;
12535 
12536 		val = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
12537 		if (!(val & BNXT_FW_STATUS_SHUTDOWN) &&
12538 		    !bnxt_fw_reset_timeout(bp)) {
12539 			bnxt_queue_fw_reset_work(bp, HZ / 5);
12540 			return;
12541 		}
12542 
12543 		if (!bp->fw_health->primary) {
12544 			u32 wait_dsecs = bp->fw_health->normal_func_wait_dsecs;
12545 
12546 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
12547 			bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10);
12548 			return;
12549 		}
12550 		bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW;
12551 	}
12552 		fallthrough;
12553 	case BNXT_FW_RESET_STATE_RESET_FW:
12554 		bnxt_reset_all(bp);
12555 		bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
12556 		bnxt_queue_fw_reset_work(bp, bp->fw_reset_min_dsecs * HZ / 10);
12557 		return;
12558 	case BNXT_FW_RESET_STATE_ENABLE_DEV:
12559 		bnxt_inv_fw_health_reg(bp);
12560 		if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) &&
12561 		    !bp->fw_reset_min_dsecs) {
12562 			u16 val;
12563 
12564 			pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val);
12565 			if (val == 0xffff) {
12566 				if (bnxt_fw_reset_timeout(bp)) {
12567 					netdev_err(bp->dev, "Firmware reset aborted, PCI config space invalid\n");
12568 					rc = -ETIMEDOUT;
12569 					goto fw_reset_abort;
12570 				}
12571 				bnxt_queue_fw_reset_work(bp, HZ / 1000);
12572 				return;
12573 			}
12574 		}
12575 		clear_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
12576 		clear_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state);
12577 		if (test_and_clear_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state) &&
12578 		    !test_bit(BNXT_STATE_FW_ACTIVATE, &bp->state))
12579 			bnxt_dl_remote_reload(bp);
12580 		if (pci_enable_device(bp->pdev)) {
12581 			netdev_err(bp->dev, "Cannot re-enable PCI device\n");
12582 			rc = -ENODEV;
12583 			goto fw_reset_abort;
12584 		}
12585 		pci_set_master(bp->pdev);
12586 		bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW;
12587 		fallthrough;
12588 	case BNXT_FW_RESET_STATE_POLL_FW:
12589 		bp->hwrm_cmd_timeout = SHORT_HWRM_CMD_TIMEOUT;
12590 		rc = bnxt_hwrm_poll(bp);
12591 		if (rc) {
12592 			if (bnxt_fw_reset_timeout(bp)) {
12593 				netdev_err(bp->dev, "Firmware reset aborted\n");
12594 				goto fw_reset_abort_status;
12595 			}
12596 			bnxt_queue_fw_reset_work(bp, HZ / 5);
12597 			return;
12598 		}
12599 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
12600 		bp->fw_reset_state = BNXT_FW_RESET_STATE_OPENING;
12601 		fallthrough;
12602 	case BNXT_FW_RESET_STATE_OPENING:
12603 		while (!rtnl_trylock()) {
12604 			bnxt_queue_fw_reset_work(bp, HZ / 10);
12605 			return;
12606 		}
12607 		rc = bnxt_open(bp->dev);
12608 		if (rc) {
12609 			netdev_err(bp->dev, "bnxt_open() failed during FW reset\n");
12610 			bnxt_fw_reset_abort(bp, rc);
12611 			rtnl_unlock();
12612 			return;
12613 		}
12614 
12615 		if ((bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) &&
12616 		    bp->fw_health->enabled) {
12617 			bp->fw_health->last_fw_reset_cnt =
12618 				bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
12619 		}
12620 		bp->fw_reset_state = 0;
12621 		/* Make sure fw_reset_state is 0 before clearing the flag */
12622 		smp_mb__before_atomic();
12623 		clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12624 		bnxt_ulp_start(bp, 0);
12625 		bnxt_reenable_sriov(bp);
12626 		bnxt_vf_reps_alloc(bp);
12627 		bnxt_vf_reps_open(bp);
12628 		bnxt_ptp_reapply_pps(bp);
12629 		clear_bit(BNXT_STATE_FW_ACTIVATE, &bp->state);
12630 		if (test_and_clear_bit(BNXT_STATE_RECOVER, &bp->state)) {
12631 			bnxt_dl_health_fw_recovery_done(bp);
12632 			bnxt_dl_health_fw_status_update(bp, true);
12633 		}
12634 		rtnl_unlock();
12635 		break;
12636 	}
12637 	return;
12638 
12639 fw_reset_abort_status:
12640 	if (bp->fw_health->status_reliable ||
12641 	    (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) {
12642 		u32 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
12643 
12644 		netdev_err(bp->dev, "fw_health_status 0x%x\n", sts);
12645 	}
12646 fw_reset_abort:
12647 	rtnl_lock();
12648 	bnxt_fw_reset_abort(bp, rc);
12649 	rtnl_unlock();
12650 }
12651 
12652 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
12653 {
12654 	int rc;
12655 	struct bnxt *bp = netdev_priv(dev);
12656 
12657 	SET_NETDEV_DEV(dev, &pdev->dev);
12658 
12659 	/* enable device (incl. PCI PM wakeup), and bus-mastering */
12660 	rc = pci_enable_device(pdev);
12661 	if (rc) {
12662 		dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
12663 		goto init_err;
12664 	}
12665 
12666 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
12667 		dev_err(&pdev->dev,
12668 			"Cannot find PCI device base address, aborting\n");
12669 		rc = -ENODEV;
12670 		goto init_err_disable;
12671 	}
12672 
12673 	rc = pci_request_regions(pdev, DRV_MODULE_NAME);
12674 	if (rc) {
12675 		dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
12676 		goto init_err_disable;
12677 	}
12678 
12679 	if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
12680 	    dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
12681 		dev_err(&pdev->dev, "System does not support DMA, aborting\n");
12682 		rc = -EIO;
12683 		goto init_err_release;
12684 	}
12685 
12686 	pci_set_master(pdev);
12687 
12688 	bp->dev = dev;
12689 	bp->pdev = pdev;
12690 
12691 	/* Doorbell BAR bp->bar1 is mapped after bnxt_fw_init_one_p2()
12692 	 * determines the BAR size.
12693 	 */
12694 	bp->bar0 = pci_ioremap_bar(pdev, 0);
12695 	if (!bp->bar0) {
12696 		dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
12697 		rc = -ENOMEM;
12698 		goto init_err_release;
12699 	}
12700 
12701 	bp->bar2 = pci_ioremap_bar(pdev, 4);
12702 	if (!bp->bar2) {
12703 		dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
12704 		rc = -ENOMEM;
12705 		goto init_err_release;
12706 	}
12707 
12708 	INIT_WORK(&bp->sp_task, bnxt_sp_task);
12709 	INIT_DELAYED_WORK(&bp->fw_reset_task, bnxt_fw_reset_task);
12710 
12711 	spin_lock_init(&bp->ntp_fltr_lock);
12712 #if BITS_PER_LONG == 32
12713 	spin_lock_init(&bp->db_lock);
12714 #endif
12715 
12716 	bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
12717 	bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
12718 
12719 	timer_setup(&bp->timer, bnxt_timer, 0);
12720 	bp->current_interval = BNXT_TIMER_INTERVAL;
12721 
12722 	bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID;
12723 	bp->nge_fw_dst_port_id = INVALID_HW_RING_ID;
12724 
12725 	clear_bit(BNXT_STATE_OPEN, &bp->state);
12726 	return 0;
12727 
12728 init_err_release:
12729 	bnxt_unmap_bars(bp, pdev);
12730 	pci_release_regions(pdev);
12731 
12732 init_err_disable:
12733 	pci_disable_device(pdev);
12734 
12735 init_err:
12736 	return rc;
12737 }
12738 
12739 /* rtnl_lock held */
12740 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
12741 {
12742 	struct sockaddr *addr = p;
12743 	struct bnxt *bp = netdev_priv(dev);
12744 	int rc = 0;
12745 
12746 	if (!is_valid_ether_addr(addr->sa_data))
12747 		return -EADDRNOTAVAIL;
12748 
12749 	if (ether_addr_equal(addr->sa_data, dev->dev_addr))
12750 		return 0;
12751 
12752 	rc = bnxt_approve_mac(bp, addr->sa_data, true);
12753 	if (rc)
12754 		return rc;
12755 
12756 	eth_hw_addr_set(dev, addr->sa_data);
12757 	if (netif_running(dev)) {
12758 		bnxt_close_nic(bp, false, false);
12759 		rc = bnxt_open_nic(bp, false, false);
12760 	}
12761 
12762 	return rc;
12763 }
12764 
12765 /* rtnl_lock held */
12766 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
12767 {
12768 	struct bnxt *bp = netdev_priv(dev);
12769 
12770 	if (netif_running(dev))
12771 		bnxt_close_nic(bp, true, false);
12772 
12773 	dev->mtu = new_mtu;
12774 	bnxt_set_ring_params(bp);
12775 
12776 	if (netif_running(dev))
12777 		return bnxt_open_nic(bp, true, false);
12778 
12779 	return 0;
12780 }
12781 
12782 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc)
12783 {
12784 	struct bnxt *bp = netdev_priv(dev);
12785 	bool sh = false;
12786 	int rc;
12787 
12788 	if (tc > bp->max_tc) {
12789 		netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n",
12790 			   tc, bp->max_tc);
12791 		return -EINVAL;
12792 	}
12793 
12794 	if (netdev_get_num_tc(dev) == tc)
12795 		return 0;
12796 
12797 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
12798 		sh = true;
12799 
12800 	rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings,
12801 			      sh, tc, bp->tx_nr_rings_xdp);
12802 	if (rc)
12803 		return rc;
12804 
12805 	/* Needs to close the device and do hw resource re-allocations */
12806 	if (netif_running(bp->dev))
12807 		bnxt_close_nic(bp, true, false);
12808 
12809 	if (tc) {
12810 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
12811 		netdev_set_num_tc(dev, tc);
12812 	} else {
12813 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
12814 		netdev_reset_tc(dev);
12815 	}
12816 	bp->tx_nr_rings += bp->tx_nr_rings_xdp;
12817 	bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
12818 			       bp->tx_nr_rings + bp->rx_nr_rings;
12819 
12820 	if (netif_running(bp->dev))
12821 		return bnxt_open_nic(bp, true, false);
12822 
12823 	return 0;
12824 }
12825 
12826 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
12827 				  void *cb_priv)
12828 {
12829 	struct bnxt *bp = cb_priv;
12830 
12831 	if (!bnxt_tc_flower_enabled(bp) ||
12832 	    !tc_cls_can_offload_and_chain0(bp->dev, type_data))
12833 		return -EOPNOTSUPP;
12834 
12835 	switch (type) {
12836 	case TC_SETUP_CLSFLOWER:
12837 		return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data);
12838 	default:
12839 		return -EOPNOTSUPP;
12840 	}
12841 }
12842 
12843 LIST_HEAD(bnxt_block_cb_list);
12844 
12845 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type,
12846 			 void *type_data)
12847 {
12848 	struct bnxt *bp = netdev_priv(dev);
12849 
12850 	switch (type) {
12851 	case TC_SETUP_BLOCK:
12852 		return flow_block_cb_setup_simple(type_data,
12853 						  &bnxt_block_cb_list,
12854 						  bnxt_setup_tc_block_cb,
12855 						  bp, bp, true);
12856 	case TC_SETUP_QDISC_MQPRIO: {
12857 		struct tc_mqprio_qopt *mqprio = type_data;
12858 
12859 		mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
12860 
12861 		return bnxt_setup_mq_tc(dev, mqprio->num_tc);
12862 	}
12863 	default:
12864 		return -EOPNOTSUPP;
12865 	}
12866 }
12867 
12868 #ifdef CONFIG_RFS_ACCEL
12869 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
12870 			    struct bnxt_ntuple_filter *f2)
12871 {
12872 	struct flow_keys *keys1 = &f1->fkeys;
12873 	struct flow_keys *keys2 = &f2->fkeys;
12874 
12875 	if (keys1->basic.n_proto != keys2->basic.n_proto ||
12876 	    keys1->basic.ip_proto != keys2->basic.ip_proto)
12877 		return false;
12878 
12879 	if (keys1->basic.n_proto == htons(ETH_P_IP)) {
12880 		if (keys1->addrs.v4addrs.src != keys2->addrs.v4addrs.src ||
12881 		    keys1->addrs.v4addrs.dst != keys2->addrs.v4addrs.dst)
12882 			return false;
12883 	} else {
12884 		if (memcmp(&keys1->addrs.v6addrs.src, &keys2->addrs.v6addrs.src,
12885 			   sizeof(keys1->addrs.v6addrs.src)) ||
12886 		    memcmp(&keys1->addrs.v6addrs.dst, &keys2->addrs.v6addrs.dst,
12887 			   sizeof(keys1->addrs.v6addrs.dst)))
12888 			return false;
12889 	}
12890 
12891 	if (keys1->ports.ports == keys2->ports.ports &&
12892 	    keys1->control.flags == keys2->control.flags &&
12893 	    ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) &&
12894 	    ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr))
12895 		return true;
12896 
12897 	return false;
12898 }
12899 
12900 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
12901 			      u16 rxq_index, u32 flow_id)
12902 {
12903 	struct bnxt *bp = netdev_priv(dev);
12904 	struct bnxt_ntuple_filter *fltr, *new_fltr;
12905 	struct flow_keys *fkeys;
12906 	struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
12907 	int rc = 0, idx, bit_id, l2_idx = 0;
12908 	struct hlist_head *head;
12909 	u32 flags;
12910 
12911 	if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) {
12912 		struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
12913 		int off = 0, j;
12914 
12915 		netif_addr_lock_bh(dev);
12916 		for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) {
12917 			if (ether_addr_equal(eth->h_dest,
12918 					     vnic->uc_list + off)) {
12919 				l2_idx = j + 1;
12920 				break;
12921 			}
12922 		}
12923 		netif_addr_unlock_bh(dev);
12924 		if (!l2_idx)
12925 			return -EINVAL;
12926 	}
12927 	new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
12928 	if (!new_fltr)
12929 		return -ENOMEM;
12930 
12931 	fkeys = &new_fltr->fkeys;
12932 	if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
12933 		rc = -EPROTONOSUPPORT;
12934 		goto err_free;
12935 	}
12936 
12937 	if ((fkeys->basic.n_proto != htons(ETH_P_IP) &&
12938 	     fkeys->basic.n_proto != htons(ETH_P_IPV6)) ||
12939 	    ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
12940 	     (fkeys->basic.ip_proto != IPPROTO_UDP))) {
12941 		rc = -EPROTONOSUPPORT;
12942 		goto err_free;
12943 	}
12944 	if (fkeys->basic.n_proto == htons(ETH_P_IPV6) &&
12945 	    bp->hwrm_spec_code < 0x10601) {
12946 		rc = -EPROTONOSUPPORT;
12947 		goto err_free;
12948 	}
12949 	flags = fkeys->control.flags;
12950 	if (((flags & FLOW_DIS_ENCAPSULATION) &&
12951 	     bp->hwrm_spec_code < 0x10601) || (flags & FLOW_DIS_IS_FRAGMENT)) {
12952 		rc = -EPROTONOSUPPORT;
12953 		goto err_free;
12954 	}
12955 
12956 	memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN);
12957 	memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
12958 
12959 	idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
12960 	head = &bp->ntp_fltr_hash_tbl[idx];
12961 	rcu_read_lock();
12962 	hlist_for_each_entry_rcu(fltr, head, hash) {
12963 		if (bnxt_fltr_match(fltr, new_fltr)) {
12964 			rc = fltr->sw_id;
12965 			rcu_read_unlock();
12966 			goto err_free;
12967 		}
12968 	}
12969 	rcu_read_unlock();
12970 
12971 	spin_lock_bh(&bp->ntp_fltr_lock);
12972 	bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
12973 					 BNXT_NTP_FLTR_MAX_FLTR, 0);
12974 	if (bit_id < 0) {
12975 		spin_unlock_bh(&bp->ntp_fltr_lock);
12976 		rc = -ENOMEM;
12977 		goto err_free;
12978 	}
12979 
12980 	new_fltr->sw_id = (u16)bit_id;
12981 	new_fltr->flow_id = flow_id;
12982 	new_fltr->l2_fltr_idx = l2_idx;
12983 	new_fltr->rxq = rxq_index;
12984 	hlist_add_head_rcu(&new_fltr->hash, head);
12985 	bp->ntp_fltr_count++;
12986 	spin_unlock_bh(&bp->ntp_fltr_lock);
12987 
12988 	set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
12989 	bnxt_queue_sp_work(bp);
12990 
12991 	return new_fltr->sw_id;
12992 
12993 err_free:
12994 	kfree(new_fltr);
12995 	return rc;
12996 }
12997 
12998 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
12999 {
13000 	int i;
13001 
13002 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
13003 		struct hlist_head *head;
13004 		struct hlist_node *tmp;
13005 		struct bnxt_ntuple_filter *fltr;
13006 		int rc;
13007 
13008 		head = &bp->ntp_fltr_hash_tbl[i];
13009 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
13010 			bool del = false;
13011 
13012 			if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
13013 				if (rps_may_expire_flow(bp->dev, fltr->rxq,
13014 							fltr->flow_id,
13015 							fltr->sw_id)) {
13016 					bnxt_hwrm_cfa_ntuple_filter_free(bp,
13017 									 fltr);
13018 					del = true;
13019 				}
13020 			} else {
13021 				rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
13022 								       fltr);
13023 				if (rc)
13024 					del = true;
13025 				else
13026 					set_bit(BNXT_FLTR_VALID, &fltr->state);
13027 			}
13028 
13029 			if (del) {
13030 				spin_lock_bh(&bp->ntp_fltr_lock);
13031 				hlist_del_rcu(&fltr->hash);
13032 				bp->ntp_fltr_count--;
13033 				spin_unlock_bh(&bp->ntp_fltr_lock);
13034 				synchronize_rcu();
13035 				clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
13036 				kfree(fltr);
13037 			}
13038 		}
13039 	}
13040 	if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event))
13041 		netdev_info(bp->dev, "Receive PF driver unload event!\n");
13042 }
13043 
13044 #else
13045 
13046 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
13047 {
13048 }
13049 
13050 #endif /* CONFIG_RFS_ACCEL */
13051 
13052 static int bnxt_udp_tunnel_set_port(struct net_device *netdev, unsigned int table,
13053 				    unsigned int entry, struct udp_tunnel_info *ti)
13054 {
13055 	struct bnxt *bp = netdev_priv(netdev);
13056 	unsigned int cmd;
13057 
13058 	if (ti->type == UDP_TUNNEL_TYPE_VXLAN)
13059 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN;
13060 	else
13061 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE;
13062 
13063 	return bnxt_hwrm_tunnel_dst_port_alloc(bp, ti->port, cmd);
13064 }
13065 
13066 static int bnxt_udp_tunnel_unset_port(struct net_device *netdev, unsigned int table,
13067 				      unsigned int entry, struct udp_tunnel_info *ti)
13068 {
13069 	struct bnxt *bp = netdev_priv(netdev);
13070 	unsigned int cmd;
13071 
13072 	if (ti->type == UDP_TUNNEL_TYPE_VXLAN)
13073 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN;
13074 	else
13075 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE;
13076 
13077 	return bnxt_hwrm_tunnel_dst_port_free(bp, cmd);
13078 }
13079 
13080 static const struct udp_tunnel_nic_info bnxt_udp_tunnels = {
13081 	.set_port	= bnxt_udp_tunnel_set_port,
13082 	.unset_port	= bnxt_udp_tunnel_unset_port,
13083 	.flags		= UDP_TUNNEL_NIC_INFO_MAY_SLEEP |
13084 			  UDP_TUNNEL_NIC_INFO_OPEN_ONLY,
13085 	.tables		= {
13086 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN,  },
13087 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
13088 	},
13089 };
13090 
13091 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
13092 			       struct net_device *dev, u32 filter_mask,
13093 			       int nlflags)
13094 {
13095 	struct bnxt *bp = netdev_priv(dev);
13096 
13097 	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0,
13098 				       nlflags, filter_mask, NULL);
13099 }
13100 
13101 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
13102 			       u16 flags, struct netlink_ext_ack *extack)
13103 {
13104 	struct bnxt *bp = netdev_priv(dev);
13105 	struct nlattr *attr, *br_spec;
13106 	int rem, rc = 0;
13107 
13108 	if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp))
13109 		return -EOPNOTSUPP;
13110 
13111 	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
13112 	if (!br_spec)
13113 		return -EINVAL;
13114 
13115 	nla_for_each_nested(attr, br_spec, rem) {
13116 		u16 mode;
13117 
13118 		if (nla_type(attr) != IFLA_BRIDGE_MODE)
13119 			continue;
13120 
13121 		if (nla_len(attr) < sizeof(mode))
13122 			return -EINVAL;
13123 
13124 		mode = nla_get_u16(attr);
13125 		if (mode == bp->br_mode)
13126 			break;
13127 
13128 		rc = bnxt_hwrm_set_br_mode(bp, mode);
13129 		if (!rc)
13130 			bp->br_mode = mode;
13131 		break;
13132 	}
13133 	return rc;
13134 }
13135 
13136 int bnxt_get_port_parent_id(struct net_device *dev,
13137 			    struct netdev_phys_item_id *ppid)
13138 {
13139 	struct bnxt *bp = netdev_priv(dev);
13140 
13141 	if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV)
13142 		return -EOPNOTSUPP;
13143 
13144 	/* The PF and it's VF-reps only support the switchdev framework */
13145 	if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_DSN_VALID))
13146 		return -EOPNOTSUPP;
13147 
13148 	ppid->id_len = sizeof(bp->dsn);
13149 	memcpy(ppid->id, bp->dsn, ppid->id_len);
13150 
13151 	return 0;
13152 }
13153 
13154 static const struct net_device_ops bnxt_netdev_ops = {
13155 	.ndo_open		= bnxt_open,
13156 	.ndo_start_xmit		= bnxt_start_xmit,
13157 	.ndo_stop		= bnxt_close,
13158 	.ndo_get_stats64	= bnxt_get_stats64,
13159 	.ndo_set_rx_mode	= bnxt_set_rx_mode,
13160 	.ndo_eth_ioctl		= bnxt_ioctl,
13161 	.ndo_validate_addr	= eth_validate_addr,
13162 	.ndo_set_mac_address	= bnxt_change_mac_addr,
13163 	.ndo_change_mtu		= bnxt_change_mtu,
13164 	.ndo_fix_features	= bnxt_fix_features,
13165 	.ndo_set_features	= bnxt_set_features,
13166 	.ndo_features_check	= bnxt_features_check,
13167 	.ndo_tx_timeout		= bnxt_tx_timeout,
13168 #ifdef CONFIG_BNXT_SRIOV
13169 	.ndo_get_vf_config	= bnxt_get_vf_config,
13170 	.ndo_set_vf_mac		= bnxt_set_vf_mac,
13171 	.ndo_set_vf_vlan	= bnxt_set_vf_vlan,
13172 	.ndo_set_vf_rate	= bnxt_set_vf_bw,
13173 	.ndo_set_vf_link_state	= bnxt_set_vf_link_state,
13174 	.ndo_set_vf_spoofchk	= bnxt_set_vf_spoofchk,
13175 	.ndo_set_vf_trust	= bnxt_set_vf_trust,
13176 #endif
13177 	.ndo_setup_tc           = bnxt_setup_tc,
13178 #ifdef CONFIG_RFS_ACCEL
13179 	.ndo_rx_flow_steer	= bnxt_rx_flow_steer,
13180 #endif
13181 	.ndo_bpf		= bnxt_xdp,
13182 	.ndo_xdp_xmit		= bnxt_xdp_xmit,
13183 	.ndo_bridge_getlink	= bnxt_bridge_getlink,
13184 	.ndo_bridge_setlink	= bnxt_bridge_setlink,
13185 };
13186 
13187 static void bnxt_remove_one(struct pci_dev *pdev)
13188 {
13189 	struct net_device *dev = pci_get_drvdata(pdev);
13190 	struct bnxt *bp = netdev_priv(dev);
13191 
13192 	if (BNXT_PF(bp))
13193 		bnxt_sriov_disable(bp);
13194 
13195 	bnxt_rdma_aux_device_uninit(bp);
13196 
13197 	bnxt_ptp_clear(bp);
13198 	unregister_netdev(dev);
13199 	clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
13200 	/* Flush any pending tasks */
13201 	cancel_work_sync(&bp->sp_task);
13202 	cancel_delayed_work_sync(&bp->fw_reset_task);
13203 	bp->sp_event = 0;
13204 
13205 	bnxt_dl_fw_reporters_destroy(bp);
13206 	bnxt_dl_unregister(bp);
13207 	bnxt_shutdown_tc(bp);
13208 
13209 	bnxt_clear_int_mode(bp);
13210 	bnxt_hwrm_func_drv_unrgtr(bp);
13211 	bnxt_free_hwrm_resources(bp);
13212 	bnxt_ethtool_free(bp);
13213 	bnxt_dcb_free(bp);
13214 	kfree(bp->ptp_cfg);
13215 	bp->ptp_cfg = NULL;
13216 	kfree(bp->fw_health);
13217 	bp->fw_health = NULL;
13218 	bnxt_cleanup_pci(bp);
13219 	bnxt_free_ctx_mem(bp);
13220 	kfree(bp->ctx);
13221 	bp->ctx = NULL;
13222 	kfree(bp->rss_indir_tbl);
13223 	bp->rss_indir_tbl = NULL;
13224 	bnxt_free_port_stats(bp);
13225 	free_netdev(dev);
13226 }
13227 
13228 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt)
13229 {
13230 	int rc = 0;
13231 	struct bnxt_link_info *link_info = &bp->link_info;
13232 
13233 	bp->phy_flags = 0;
13234 	rc = bnxt_hwrm_phy_qcaps(bp);
13235 	if (rc) {
13236 		netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n",
13237 			   rc);
13238 		return rc;
13239 	}
13240 	if (bp->phy_flags & BNXT_PHY_FL_NO_FCS)
13241 		bp->dev->priv_flags |= IFF_SUPP_NOFCS;
13242 	else
13243 		bp->dev->priv_flags &= ~IFF_SUPP_NOFCS;
13244 	if (!fw_dflt)
13245 		return 0;
13246 
13247 	mutex_lock(&bp->link_lock);
13248 	rc = bnxt_update_link(bp, false);
13249 	if (rc) {
13250 		mutex_unlock(&bp->link_lock);
13251 		netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
13252 			   rc);
13253 		return rc;
13254 	}
13255 
13256 	/* Older firmware does not have supported_auto_speeds, so assume
13257 	 * that all supported speeds can be autonegotiated.
13258 	 */
13259 	if (link_info->auto_link_speeds && !link_info->support_auto_speeds)
13260 		link_info->support_auto_speeds = link_info->support_speeds;
13261 
13262 	bnxt_init_ethtool_link_settings(bp);
13263 	mutex_unlock(&bp->link_lock);
13264 	return 0;
13265 }
13266 
13267 static int bnxt_get_max_irq(struct pci_dev *pdev)
13268 {
13269 	u16 ctrl;
13270 
13271 	if (!pdev->msix_cap)
13272 		return 1;
13273 
13274 	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
13275 	return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
13276 }
13277 
13278 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
13279 				int *max_cp)
13280 {
13281 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
13282 	int max_ring_grps = 0, max_irq;
13283 
13284 	*max_tx = hw_resc->max_tx_rings;
13285 	*max_rx = hw_resc->max_rx_rings;
13286 	*max_cp = bnxt_get_max_func_cp_rings_for_en(bp);
13287 	max_irq = min_t(int, bnxt_get_max_func_irqs(bp) -
13288 			bnxt_get_ulp_msix_num(bp),
13289 			hw_resc->max_stat_ctxs - bnxt_get_ulp_stat_ctxs(bp));
13290 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
13291 		*max_cp = min_t(int, *max_cp, max_irq);
13292 	max_ring_grps = hw_resc->max_hw_ring_grps;
13293 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) {
13294 		*max_cp -= 1;
13295 		*max_rx -= 2;
13296 	}
13297 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
13298 		*max_rx >>= 1;
13299 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
13300 		bnxt_trim_rings(bp, max_rx, max_tx, *max_cp, false);
13301 		/* On P5 chips, max_cp output param should be available NQs */
13302 		*max_cp = max_irq;
13303 	}
13304 	*max_rx = min_t(int, *max_rx, max_ring_grps);
13305 }
13306 
13307 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
13308 {
13309 	int rx, tx, cp;
13310 
13311 	_bnxt_get_max_rings(bp, &rx, &tx, &cp);
13312 	*max_rx = rx;
13313 	*max_tx = tx;
13314 	if (!rx || !tx || !cp)
13315 		return -ENOMEM;
13316 
13317 	return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
13318 }
13319 
13320 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx,
13321 			       bool shared)
13322 {
13323 	int rc;
13324 
13325 	rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
13326 	if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) {
13327 		/* Not enough rings, try disabling agg rings. */
13328 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
13329 		rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
13330 		if (rc) {
13331 			/* set BNXT_FLAG_AGG_RINGS back for consistency */
13332 			bp->flags |= BNXT_FLAG_AGG_RINGS;
13333 			return rc;
13334 		}
13335 		bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
13336 		bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
13337 		bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
13338 		bnxt_set_ring_params(bp);
13339 	}
13340 
13341 	if (bp->flags & BNXT_FLAG_ROCE_CAP) {
13342 		int max_cp, max_stat, max_irq;
13343 
13344 		/* Reserve minimum resources for RoCE */
13345 		max_cp = bnxt_get_max_func_cp_rings(bp);
13346 		max_stat = bnxt_get_max_func_stat_ctxs(bp);
13347 		max_irq = bnxt_get_max_func_irqs(bp);
13348 		if (max_cp <= BNXT_MIN_ROCE_CP_RINGS ||
13349 		    max_irq <= BNXT_MIN_ROCE_CP_RINGS ||
13350 		    max_stat <= BNXT_MIN_ROCE_STAT_CTXS)
13351 			return 0;
13352 
13353 		max_cp -= BNXT_MIN_ROCE_CP_RINGS;
13354 		max_irq -= BNXT_MIN_ROCE_CP_RINGS;
13355 		max_stat -= BNXT_MIN_ROCE_STAT_CTXS;
13356 		max_cp = min_t(int, max_cp, max_irq);
13357 		max_cp = min_t(int, max_cp, max_stat);
13358 		rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared);
13359 		if (rc)
13360 			rc = 0;
13361 	}
13362 	return rc;
13363 }
13364 
13365 /* In initial default shared ring setting, each shared ring must have a
13366  * RX/TX ring pair.
13367  */
13368 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp)
13369 {
13370 	bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings);
13371 	bp->rx_nr_rings = bp->cp_nr_rings;
13372 	bp->tx_nr_rings_per_tc = bp->cp_nr_rings;
13373 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
13374 }
13375 
13376 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh)
13377 {
13378 	int dflt_rings, max_rx_rings, max_tx_rings, rc;
13379 
13380 	if (!bnxt_can_reserve_rings(bp))
13381 		return 0;
13382 
13383 	if (sh)
13384 		bp->flags |= BNXT_FLAG_SHARED_RINGS;
13385 	dflt_rings = is_kdump_kernel() ? 1 : netif_get_num_default_rss_queues();
13386 	/* Reduce default rings on multi-port cards so that total default
13387 	 * rings do not exceed CPU count.
13388 	 */
13389 	if (bp->port_count > 1) {
13390 		int max_rings =
13391 			max_t(int, num_online_cpus() / bp->port_count, 1);
13392 
13393 		dflt_rings = min_t(int, dflt_rings, max_rings);
13394 	}
13395 	rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh);
13396 	if (rc)
13397 		return rc;
13398 	bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
13399 	bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
13400 	if (sh)
13401 		bnxt_trim_dflt_sh_rings(bp);
13402 	else
13403 		bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings;
13404 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
13405 
13406 	rc = __bnxt_reserve_rings(bp);
13407 	if (rc && rc != -ENODEV)
13408 		netdev_warn(bp->dev, "Unable to reserve tx rings\n");
13409 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
13410 	if (sh)
13411 		bnxt_trim_dflt_sh_rings(bp);
13412 
13413 	/* Rings may have been trimmed, re-reserve the trimmed rings. */
13414 	if (bnxt_need_reserve_rings(bp)) {
13415 		rc = __bnxt_reserve_rings(bp);
13416 		if (rc && rc != -ENODEV)
13417 			netdev_warn(bp->dev, "2nd rings reservation failed.\n");
13418 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
13419 	}
13420 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
13421 		bp->rx_nr_rings++;
13422 		bp->cp_nr_rings++;
13423 	}
13424 	if (rc) {
13425 		bp->tx_nr_rings = 0;
13426 		bp->rx_nr_rings = 0;
13427 	}
13428 	return rc;
13429 }
13430 
13431 static int bnxt_init_dflt_ring_mode(struct bnxt *bp)
13432 {
13433 	int rc;
13434 
13435 	if (bp->tx_nr_rings)
13436 		return 0;
13437 
13438 	bnxt_ulp_irq_stop(bp);
13439 	bnxt_clear_int_mode(bp);
13440 	rc = bnxt_set_dflt_rings(bp, true);
13441 	if (rc) {
13442 		if (BNXT_VF(bp) && rc == -ENODEV)
13443 			netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n");
13444 		else
13445 			netdev_err(bp->dev, "Not enough rings available.\n");
13446 		goto init_dflt_ring_err;
13447 	}
13448 	rc = bnxt_init_int_mode(bp);
13449 	if (rc)
13450 		goto init_dflt_ring_err;
13451 
13452 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
13453 
13454 	bnxt_set_dflt_rfs(bp);
13455 
13456 init_dflt_ring_err:
13457 	bnxt_ulp_irq_restart(bp, rc);
13458 	return rc;
13459 }
13460 
13461 int bnxt_restore_pf_fw_resources(struct bnxt *bp)
13462 {
13463 	int rc;
13464 
13465 	ASSERT_RTNL();
13466 	bnxt_hwrm_func_qcaps(bp);
13467 
13468 	if (netif_running(bp->dev))
13469 		__bnxt_close_nic(bp, true, false);
13470 
13471 	bnxt_ulp_irq_stop(bp);
13472 	bnxt_clear_int_mode(bp);
13473 	rc = bnxt_init_int_mode(bp);
13474 	bnxt_ulp_irq_restart(bp, rc);
13475 
13476 	if (netif_running(bp->dev)) {
13477 		if (rc)
13478 			dev_close(bp->dev);
13479 		else
13480 			rc = bnxt_open_nic(bp, true, false);
13481 	}
13482 
13483 	return rc;
13484 }
13485 
13486 static int bnxt_init_mac_addr(struct bnxt *bp)
13487 {
13488 	int rc = 0;
13489 
13490 	if (BNXT_PF(bp)) {
13491 		eth_hw_addr_set(bp->dev, bp->pf.mac_addr);
13492 	} else {
13493 #ifdef CONFIG_BNXT_SRIOV
13494 		struct bnxt_vf_info *vf = &bp->vf;
13495 		bool strict_approval = true;
13496 
13497 		if (is_valid_ether_addr(vf->mac_addr)) {
13498 			/* overwrite netdev dev_addr with admin VF MAC */
13499 			eth_hw_addr_set(bp->dev, vf->mac_addr);
13500 			/* Older PF driver or firmware may not approve this
13501 			 * correctly.
13502 			 */
13503 			strict_approval = false;
13504 		} else {
13505 			eth_hw_addr_random(bp->dev);
13506 		}
13507 		rc = bnxt_approve_mac(bp, bp->dev->dev_addr, strict_approval);
13508 #endif
13509 	}
13510 	return rc;
13511 }
13512 
13513 static void bnxt_vpd_read_info(struct bnxt *bp)
13514 {
13515 	struct pci_dev *pdev = bp->pdev;
13516 	unsigned int vpd_size, kw_len;
13517 	int pos, size;
13518 	u8 *vpd_data;
13519 
13520 	vpd_data = pci_vpd_alloc(pdev, &vpd_size);
13521 	if (IS_ERR(vpd_data)) {
13522 		pci_warn(pdev, "Unable to read VPD\n");
13523 		return;
13524 	}
13525 
13526 	pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
13527 					   PCI_VPD_RO_KEYWORD_PARTNO, &kw_len);
13528 	if (pos < 0)
13529 		goto read_sn;
13530 
13531 	size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1);
13532 	memcpy(bp->board_partno, &vpd_data[pos], size);
13533 
13534 read_sn:
13535 	pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
13536 					   PCI_VPD_RO_KEYWORD_SERIALNO,
13537 					   &kw_len);
13538 	if (pos < 0)
13539 		goto exit;
13540 
13541 	size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1);
13542 	memcpy(bp->board_serialno, &vpd_data[pos], size);
13543 exit:
13544 	kfree(vpd_data);
13545 }
13546 
13547 static int bnxt_pcie_dsn_get(struct bnxt *bp, u8 dsn[])
13548 {
13549 	struct pci_dev *pdev = bp->pdev;
13550 	u64 qword;
13551 
13552 	qword = pci_get_dsn(pdev);
13553 	if (!qword) {
13554 		netdev_info(bp->dev, "Unable to read adapter's DSN\n");
13555 		return -EOPNOTSUPP;
13556 	}
13557 
13558 	put_unaligned_le64(qword, dsn);
13559 
13560 	bp->flags |= BNXT_FLAG_DSN_VALID;
13561 	return 0;
13562 }
13563 
13564 static int bnxt_map_db_bar(struct bnxt *bp)
13565 {
13566 	if (!bp->db_size)
13567 		return -ENODEV;
13568 	bp->bar1 = pci_iomap(bp->pdev, 2, bp->db_size);
13569 	if (!bp->bar1)
13570 		return -ENOMEM;
13571 	return 0;
13572 }
13573 
13574 void bnxt_print_device_info(struct bnxt *bp)
13575 {
13576 	netdev_info(bp->dev, "%s found at mem %lx, node addr %pM\n",
13577 		    board_info[bp->board_idx].name,
13578 		    (long)pci_resource_start(bp->pdev, 0), bp->dev->dev_addr);
13579 
13580 	pcie_print_link_status(bp->pdev);
13581 }
13582 
13583 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
13584 {
13585 	struct net_device *dev;
13586 	struct bnxt *bp;
13587 	int rc, max_irqs;
13588 
13589 	if (pci_is_bridge(pdev))
13590 		return -ENODEV;
13591 
13592 	/* Clear any pending DMA transactions from crash kernel
13593 	 * while loading driver in capture kernel.
13594 	 */
13595 	if (is_kdump_kernel()) {
13596 		pci_clear_master(pdev);
13597 		pcie_flr(pdev);
13598 	}
13599 
13600 	max_irqs = bnxt_get_max_irq(pdev);
13601 	dev = alloc_etherdev_mq(sizeof(*bp), max_irqs);
13602 	if (!dev)
13603 		return -ENOMEM;
13604 
13605 	bp = netdev_priv(dev);
13606 	bp->board_idx = ent->driver_data;
13607 	bp->msg_enable = BNXT_DEF_MSG_ENABLE;
13608 	bnxt_set_max_func_irqs(bp, max_irqs);
13609 
13610 	if (bnxt_vf_pciid(bp->board_idx))
13611 		bp->flags |= BNXT_FLAG_VF;
13612 
13613 	/* No devlink port registration in case of a VF */
13614 	if (BNXT_PF(bp))
13615 		SET_NETDEV_DEVLINK_PORT(dev, &bp->dl_port);
13616 
13617 	if (pdev->msix_cap)
13618 		bp->flags |= BNXT_FLAG_MSIX_CAP;
13619 
13620 	rc = bnxt_init_board(pdev, dev);
13621 	if (rc < 0)
13622 		goto init_err_free;
13623 
13624 	dev->netdev_ops = &bnxt_netdev_ops;
13625 	dev->watchdog_timeo = BNXT_TX_TIMEOUT;
13626 	dev->ethtool_ops = &bnxt_ethtool_ops;
13627 	pci_set_drvdata(pdev, dev);
13628 
13629 	rc = bnxt_alloc_hwrm_resources(bp);
13630 	if (rc)
13631 		goto init_err_pci_clean;
13632 
13633 	mutex_init(&bp->hwrm_cmd_lock);
13634 	mutex_init(&bp->link_lock);
13635 
13636 	rc = bnxt_fw_init_one_p1(bp);
13637 	if (rc)
13638 		goto init_err_pci_clean;
13639 
13640 	if (BNXT_PF(bp))
13641 		bnxt_vpd_read_info(bp);
13642 
13643 	if (BNXT_CHIP_P5(bp)) {
13644 		bp->flags |= BNXT_FLAG_CHIP_P5;
13645 		if (BNXT_CHIP_SR2(bp))
13646 			bp->flags |= BNXT_FLAG_CHIP_SR2;
13647 	}
13648 
13649 	rc = bnxt_alloc_rss_indir_tbl(bp);
13650 	if (rc)
13651 		goto init_err_pci_clean;
13652 
13653 	rc = bnxt_fw_init_one_p2(bp);
13654 	if (rc)
13655 		goto init_err_pci_clean;
13656 
13657 	rc = bnxt_map_db_bar(bp);
13658 	if (rc) {
13659 		dev_err(&pdev->dev, "Cannot map doorbell BAR rc = %d, aborting\n",
13660 			rc);
13661 		goto init_err_pci_clean;
13662 	}
13663 
13664 	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
13665 			   NETIF_F_TSO | NETIF_F_TSO6 |
13666 			   NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
13667 			   NETIF_F_GSO_IPXIP4 |
13668 			   NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
13669 			   NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH |
13670 			   NETIF_F_RXCSUM | NETIF_F_GRO;
13671 
13672 	if (BNXT_SUPPORTS_TPA(bp))
13673 		dev->hw_features |= NETIF_F_LRO;
13674 
13675 	dev->hw_enc_features =
13676 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
13677 			NETIF_F_TSO | NETIF_F_TSO6 |
13678 			NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
13679 			NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
13680 			NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL;
13681 	dev->udp_tunnel_nic_info = &bnxt_udp_tunnels;
13682 
13683 	dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM |
13684 				    NETIF_F_GSO_GRE_CSUM;
13685 	dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
13686 	if (bp->fw_cap & BNXT_FW_CAP_VLAN_RX_STRIP)
13687 		dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_RX;
13688 	if (bp->fw_cap & BNXT_FW_CAP_VLAN_TX_INSERT)
13689 		dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_TX;
13690 	if (BNXT_SUPPORTS_TPA(bp))
13691 		dev->hw_features |= NETIF_F_GRO_HW;
13692 	dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
13693 	if (dev->features & NETIF_F_GRO_HW)
13694 		dev->features &= ~NETIF_F_LRO;
13695 	dev->priv_flags |= IFF_UNICAST_FLT;
13696 
13697 	netif_set_tso_max_size(dev, GSO_MAX_SIZE);
13698 
13699 	dev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
13700 			    NETDEV_XDP_ACT_RX_SG;
13701 
13702 #ifdef CONFIG_BNXT_SRIOV
13703 	init_waitqueue_head(&bp->sriov_cfg_wait);
13704 #endif
13705 	if (BNXT_SUPPORTS_TPA(bp)) {
13706 		bp->gro_func = bnxt_gro_func_5730x;
13707 		if (BNXT_CHIP_P4(bp))
13708 			bp->gro_func = bnxt_gro_func_5731x;
13709 		else if (BNXT_CHIP_P5(bp))
13710 			bp->gro_func = bnxt_gro_func_5750x;
13711 	}
13712 	if (!BNXT_CHIP_P4_PLUS(bp))
13713 		bp->flags |= BNXT_FLAG_DOUBLE_DB;
13714 
13715 	rc = bnxt_init_mac_addr(bp);
13716 	if (rc) {
13717 		dev_err(&pdev->dev, "Unable to initialize mac address.\n");
13718 		rc = -EADDRNOTAVAIL;
13719 		goto init_err_pci_clean;
13720 	}
13721 
13722 	if (BNXT_PF(bp)) {
13723 		/* Read the adapter's DSN to use as the eswitch switch_id */
13724 		rc = bnxt_pcie_dsn_get(bp, bp->dsn);
13725 	}
13726 
13727 	/* MTU range: 60 - FW defined max */
13728 	dev->min_mtu = ETH_ZLEN;
13729 	dev->max_mtu = bp->max_mtu;
13730 
13731 	rc = bnxt_probe_phy(bp, true);
13732 	if (rc)
13733 		goto init_err_pci_clean;
13734 
13735 	bnxt_set_rx_skb_mode(bp, false);
13736 	bnxt_set_tpa_flags(bp);
13737 	bnxt_set_ring_params(bp);
13738 	rc = bnxt_set_dflt_rings(bp, true);
13739 	if (rc) {
13740 		if (BNXT_VF(bp) && rc == -ENODEV) {
13741 			netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n");
13742 		} else {
13743 			netdev_err(bp->dev, "Not enough rings available.\n");
13744 			rc = -ENOMEM;
13745 		}
13746 		goto init_err_pci_clean;
13747 	}
13748 
13749 	bnxt_fw_init_one_p3(bp);
13750 
13751 	bnxt_init_dflt_coal(bp);
13752 
13753 	if (dev->hw_features & BNXT_HW_FEATURE_VLAN_ALL_RX)
13754 		bp->flags |= BNXT_FLAG_STRIP_VLAN;
13755 
13756 	rc = bnxt_init_int_mode(bp);
13757 	if (rc)
13758 		goto init_err_pci_clean;
13759 
13760 	/* No TC has been set yet and rings may have been trimmed due to
13761 	 * limited MSIX, so we re-initialize the TX rings per TC.
13762 	 */
13763 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
13764 
13765 	if (BNXT_PF(bp)) {
13766 		if (!bnxt_pf_wq) {
13767 			bnxt_pf_wq =
13768 				create_singlethread_workqueue("bnxt_pf_wq");
13769 			if (!bnxt_pf_wq) {
13770 				dev_err(&pdev->dev, "Unable to create workqueue.\n");
13771 				rc = -ENOMEM;
13772 				goto init_err_pci_clean;
13773 			}
13774 		}
13775 		rc = bnxt_init_tc(bp);
13776 		if (rc)
13777 			netdev_err(dev, "Failed to initialize TC flower offload, err = %d.\n",
13778 				   rc);
13779 	}
13780 
13781 	bnxt_inv_fw_health_reg(bp);
13782 	rc = bnxt_dl_register(bp);
13783 	if (rc)
13784 		goto init_err_dl;
13785 
13786 	rc = register_netdev(dev);
13787 	if (rc)
13788 		goto init_err_cleanup;
13789 
13790 	bnxt_dl_fw_reporters_create(bp);
13791 
13792 	bnxt_rdma_aux_device_init(bp);
13793 
13794 	bnxt_print_device_info(bp);
13795 
13796 	pci_save_state(pdev);
13797 
13798 	return 0;
13799 init_err_cleanup:
13800 	bnxt_dl_unregister(bp);
13801 init_err_dl:
13802 	bnxt_shutdown_tc(bp);
13803 	bnxt_clear_int_mode(bp);
13804 
13805 init_err_pci_clean:
13806 	bnxt_hwrm_func_drv_unrgtr(bp);
13807 	bnxt_free_hwrm_resources(bp);
13808 	bnxt_ethtool_free(bp);
13809 	bnxt_ptp_clear(bp);
13810 	kfree(bp->ptp_cfg);
13811 	bp->ptp_cfg = NULL;
13812 	kfree(bp->fw_health);
13813 	bp->fw_health = NULL;
13814 	bnxt_cleanup_pci(bp);
13815 	bnxt_free_ctx_mem(bp);
13816 	kfree(bp->ctx);
13817 	bp->ctx = NULL;
13818 	kfree(bp->rss_indir_tbl);
13819 	bp->rss_indir_tbl = NULL;
13820 
13821 init_err_free:
13822 	free_netdev(dev);
13823 	return rc;
13824 }
13825 
13826 static void bnxt_shutdown(struct pci_dev *pdev)
13827 {
13828 	struct net_device *dev = pci_get_drvdata(pdev);
13829 	struct bnxt *bp;
13830 
13831 	if (!dev)
13832 		return;
13833 
13834 	rtnl_lock();
13835 	bp = netdev_priv(dev);
13836 	if (!bp)
13837 		goto shutdown_exit;
13838 
13839 	if (netif_running(dev))
13840 		dev_close(dev);
13841 
13842 	bnxt_clear_int_mode(bp);
13843 	pci_disable_device(pdev);
13844 
13845 	if (system_state == SYSTEM_POWER_OFF) {
13846 		pci_wake_from_d3(pdev, bp->wol);
13847 		pci_set_power_state(pdev, PCI_D3hot);
13848 	}
13849 
13850 shutdown_exit:
13851 	rtnl_unlock();
13852 }
13853 
13854 #ifdef CONFIG_PM_SLEEP
13855 static int bnxt_suspend(struct device *device)
13856 {
13857 	struct net_device *dev = dev_get_drvdata(device);
13858 	struct bnxt *bp = netdev_priv(dev);
13859 	int rc = 0;
13860 
13861 	rtnl_lock();
13862 	bnxt_ulp_stop(bp);
13863 	if (netif_running(dev)) {
13864 		netif_device_detach(dev);
13865 		rc = bnxt_close(dev);
13866 	}
13867 	bnxt_hwrm_func_drv_unrgtr(bp);
13868 	pci_disable_device(bp->pdev);
13869 	bnxt_free_ctx_mem(bp);
13870 	kfree(bp->ctx);
13871 	bp->ctx = NULL;
13872 	rtnl_unlock();
13873 	return rc;
13874 }
13875 
13876 static int bnxt_resume(struct device *device)
13877 {
13878 	struct net_device *dev = dev_get_drvdata(device);
13879 	struct bnxt *bp = netdev_priv(dev);
13880 	int rc = 0;
13881 
13882 	rtnl_lock();
13883 	rc = pci_enable_device(bp->pdev);
13884 	if (rc) {
13885 		netdev_err(dev, "Cannot re-enable PCI device during resume, err = %d\n",
13886 			   rc);
13887 		goto resume_exit;
13888 	}
13889 	pci_set_master(bp->pdev);
13890 	if (bnxt_hwrm_ver_get(bp)) {
13891 		rc = -ENODEV;
13892 		goto resume_exit;
13893 	}
13894 	rc = bnxt_hwrm_func_reset(bp);
13895 	if (rc) {
13896 		rc = -EBUSY;
13897 		goto resume_exit;
13898 	}
13899 
13900 	rc = bnxt_hwrm_func_qcaps(bp);
13901 	if (rc)
13902 		goto resume_exit;
13903 
13904 	if (bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false)) {
13905 		rc = -ENODEV;
13906 		goto resume_exit;
13907 	}
13908 
13909 	bnxt_get_wol_settings(bp);
13910 	if (netif_running(dev)) {
13911 		rc = bnxt_open(dev);
13912 		if (!rc)
13913 			netif_device_attach(dev);
13914 	}
13915 
13916 resume_exit:
13917 	bnxt_ulp_start(bp, rc);
13918 	if (!rc)
13919 		bnxt_reenable_sriov(bp);
13920 	rtnl_unlock();
13921 	return rc;
13922 }
13923 
13924 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume);
13925 #define BNXT_PM_OPS (&bnxt_pm_ops)
13926 
13927 #else
13928 
13929 #define BNXT_PM_OPS NULL
13930 
13931 #endif /* CONFIG_PM_SLEEP */
13932 
13933 /**
13934  * bnxt_io_error_detected - called when PCI error is detected
13935  * @pdev: Pointer to PCI device
13936  * @state: The current pci connection state
13937  *
13938  * This function is called after a PCI bus error affecting
13939  * this device has been detected.
13940  */
13941 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev,
13942 					       pci_channel_state_t state)
13943 {
13944 	struct net_device *netdev = pci_get_drvdata(pdev);
13945 	struct bnxt *bp = netdev_priv(netdev);
13946 
13947 	netdev_info(netdev, "PCI I/O error detected\n");
13948 
13949 	rtnl_lock();
13950 	netif_device_detach(netdev);
13951 
13952 	bnxt_ulp_stop(bp);
13953 
13954 	if (state == pci_channel_io_perm_failure) {
13955 		rtnl_unlock();
13956 		return PCI_ERS_RESULT_DISCONNECT;
13957 	}
13958 
13959 	if (state == pci_channel_io_frozen)
13960 		set_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, &bp->state);
13961 
13962 	if (netif_running(netdev))
13963 		bnxt_close(netdev);
13964 
13965 	if (pci_is_enabled(pdev))
13966 		pci_disable_device(pdev);
13967 	bnxt_free_ctx_mem(bp);
13968 	kfree(bp->ctx);
13969 	bp->ctx = NULL;
13970 	rtnl_unlock();
13971 
13972 	/* Request a slot slot reset. */
13973 	return PCI_ERS_RESULT_NEED_RESET;
13974 }
13975 
13976 /**
13977  * bnxt_io_slot_reset - called after the pci bus has been reset.
13978  * @pdev: Pointer to PCI device
13979  *
13980  * Restart the card from scratch, as if from a cold-boot.
13981  * At this point, the card has exprienced a hard reset,
13982  * followed by fixups by BIOS, and has its config space
13983  * set up identically to what it was at cold boot.
13984  */
13985 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev)
13986 {
13987 	pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
13988 	struct net_device *netdev = pci_get_drvdata(pdev);
13989 	struct bnxt *bp = netdev_priv(netdev);
13990 	int retry = 0;
13991 	int err = 0;
13992 	int off;
13993 
13994 	netdev_info(bp->dev, "PCI Slot Reset\n");
13995 
13996 	rtnl_lock();
13997 
13998 	if (pci_enable_device(pdev)) {
13999 		dev_err(&pdev->dev,
14000 			"Cannot re-enable PCI device after reset.\n");
14001 	} else {
14002 		pci_set_master(pdev);
14003 		/* Upon fatal error, our device internal logic that latches to
14004 		 * BAR value is getting reset and will restore only upon
14005 		 * rewritting the BARs.
14006 		 *
14007 		 * As pci_restore_state() does not re-write the BARs if the
14008 		 * value is same as saved value earlier, driver needs to
14009 		 * write the BARs to 0 to force restore, in case of fatal error.
14010 		 */
14011 		if (test_and_clear_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN,
14012 				       &bp->state)) {
14013 			for (off = PCI_BASE_ADDRESS_0;
14014 			     off <= PCI_BASE_ADDRESS_5; off += 4)
14015 				pci_write_config_dword(bp->pdev, off, 0);
14016 		}
14017 		pci_restore_state(pdev);
14018 		pci_save_state(pdev);
14019 
14020 		bnxt_inv_fw_health_reg(bp);
14021 		bnxt_try_map_fw_health_reg(bp);
14022 
14023 		/* In some PCIe AER scenarios, firmware may take up to
14024 		 * 10 seconds to become ready in the worst case.
14025 		 */
14026 		do {
14027 			err = bnxt_try_recover_fw(bp);
14028 			if (!err)
14029 				break;
14030 			retry++;
14031 		} while (retry < BNXT_FW_SLOT_RESET_RETRY);
14032 
14033 		if (err) {
14034 			dev_err(&pdev->dev, "Firmware not ready\n");
14035 			goto reset_exit;
14036 		}
14037 
14038 		err = bnxt_hwrm_func_reset(bp);
14039 		if (!err)
14040 			result = PCI_ERS_RESULT_RECOVERED;
14041 
14042 		bnxt_ulp_irq_stop(bp);
14043 		bnxt_clear_int_mode(bp);
14044 		err = bnxt_init_int_mode(bp);
14045 		bnxt_ulp_irq_restart(bp, err);
14046 	}
14047 
14048 reset_exit:
14049 	bnxt_clear_reservations(bp, true);
14050 	rtnl_unlock();
14051 
14052 	return result;
14053 }
14054 
14055 /**
14056  * bnxt_io_resume - called when traffic can start flowing again.
14057  * @pdev: Pointer to PCI device
14058  *
14059  * This callback is called when the error recovery driver tells
14060  * us that its OK to resume normal operation.
14061  */
14062 static void bnxt_io_resume(struct pci_dev *pdev)
14063 {
14064 	struct net_device *netdev = pci_get_drvdata(pdev);
14065 	struct bnxt *bp = netdev_priv(netdev);
14066 	int err;
14067 
14068 	netdev_info(bp->dev, "PCI Slot Resume\n");
14069 	rtnl_lock();
14070 
14071 	err = bnxt_hwrm_func_qcaps(bp);
14072 	if (!err && netif_running(netdev))
14073 		err = bnxt_open(netdev);
14074 
14075 	bnxt_ulp_start(bp, err);
14076 	if (!err) {
14077 		bnxt_reenable_sriov(bp);
14078 		netif_device_attach(netdev);
14079 	}
14080 
14081 	rtnl_unlock();
14082 }
14083 
14084 static const struct pci_error_handlers bnxt_err_handler = {
14085 	.error_detected	= bnxt_io_error_detected,
14086 	.slot_reset	= bnxt_io_slot_reset,
14087 	.resume		= bnxt_io_resume
14088 };
14089 
14090 static struct pci_driver bnxt_pci_driver = {
14091 	.name		= DRV_MODULE_NAME,
14092 	.id_table	= bnxt_pci_tbl,
14093 	.probe		= bnxt_init_one,
14094 	.remove		= bnxt_remove_one,
14095 	.shutdown	= bnxt_shutdown,
14096 	.driver.pm	= BNXT_PM_OPS,
14097 	.err_handler	= &bnxt_err_handler,
14098 #if defined(CONFIG_BNXT_SRIOV)
14099 	.sriov_configure = bnxt_sriov_configure,
14100 #endif
14101 };
14102 
14103 static int __init bnxt_init(void)
14104 {
14105 	int err;
14106 
14107 	bnxt_debug_init();
14108 	err = pci_register_driver(&bnxt_pci_driver);
14109 	if (err) {
14110 		bnxt_debug_exit();
14111 		return err;
14112 	}
14113 
14114 	return 0;
14115 }
14116 
14117 static void __exit bnxt_exit(void)
14118 {
14119 	pci_unregister_driver(&bnxt_pci_driver);
14120 	if (bnxt_pf_wq)
14121 		destroy_workqueue(bnxt_pf_wq);
14122 	bnxt_debug_exit();
14123 }
14124 
14125 module_init(bnxt_init);
14126 module_exit(bnxt_exit);
14127