1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2016 Broadcom Corporation
4  * Copyright (c) 2016-2019 Broadcom Limited
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation.
9  */
10 
11 #include <linux/module.h>
12 
13 #include <linux/stringify.h>
14 #include <linux/kernel.h>
15 #include <linux/timer.h>
16 #include <linux/errno.h>
17 #include <linux/ioport.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 #include <linux/interrupt.h>
21 #include <linux/pci.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/skbuff.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/bitops.h>
27 #include <linux/io.h>
28 #include <linux/irq.h>
29 #include <linux/delay.h>
30 #include <asm/byteorder.h>
31 #include <asm/page.h>
32 #include <linux/time.h>
33 #include <linux/mii.h>
34 #include <linux/mdio.h>
35 #include <linux/if.h>
36 #include <linux/if_vlan.h>
37 #include <linux/if_bridge.h>
38 #include <linux/rtc.h>
39 #include <linux/bpf.h>
40 #include <net/gro.h>
41 #include <net/ip.h>
42 #include <net/tcp.h>
43 #include <net/udp.h>
44 #include <net/checksum.h>
45 #include <net/ip6_checksum.h>
46 #include <net/udp_tunnel.h>
47 #include <linux/workqueue.h>
48 #include <linux/prefetch.h>
49 #include <linux/cache.h>
50 #include <linux/log2.h>
51 #include <linux/aer.h>
52 #include <linux/bitmap.h>
53 #include <linux/cpu_rmap.h>
54 #include <linux/cpumask.h>
55 #include <net/pkt_cls.h>
56 #include <linux/hwmon.h>
57 #include <linux/hwmon-sysfs.h>
58 #include <net/page_pool.h>
59 #include <linux/align.h>
60 
61 #include "bnxt_hsi.h"
62 #include "bnxt.h"
63 #include "bnxt_hwrm.h"
64 #include "bnxt_ulp.h"
65 #include "bnxt_sriov.h"
66 #include "bnxt_ethtool.h"
67 #include "bnxt_dcb.h"
68 #include "bnxt_xdp.h"
69 #include "bnxt_ptp.h"
70 #include "bnxt_vfr.h"
71 #include "bnxt_tc.h"
72 #include "bnxt_devlink.h"
73 #include "bnxt_debugfs.h"
74 
75 #define BNXT_TX_TIMEOUT		(5 * HZ)
76 #define BNXT_DEF_MSG_ENABLE	(NETIF_MSG_DRV | NETIF_MSG_HW | \
77 				 NETIF_MSG_TX_ERR)
78 
79 MODULE_LICENSE("GPL");
80 MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
81 
82 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
83 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
84 #define BNXT_RX_COPY_THRESH 256
85 
86 #define BNXT_TX_PUSH_THRESH 164
87 
88 /* indexed by enum board_idx */
89 static const struct {
90 	char *name;
91 } board_info[] = {
92 	[BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" },
93 	[BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" },
94 	[BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
95 	[BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" },
96 	[BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" },
97 	[BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" },
98 	[BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" },
99 	[BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" },
100 	[BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" },
101 	[BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" },
102 	[BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" },
103 	[BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" },
104 	[BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" },
105 	[BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" },
106 	[BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" },
107 	[BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" },
108 	[BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" },
109 	[BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
110 	[BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" },
111 	[BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" },
112 	[BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" },
113 	[BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" },
114 	[BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" },
115 	[BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" },
116 	[BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" },
117 	[BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" },
118 	[BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" },
119 	[BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
120 	[BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" },
121 	[BCM57508] = { "Broadcom BCM57508 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
122 	[BCM57504] = { "Broadcom BCM57504 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
123 	[BCM57502] = { "Broadcom BCM57502 NetXtreme-E 10Gb/25Gb/50Gb Ethernet" },
124 	[BCM57508_NPAR] = { "Broadcom BCM57508 NetXtreme-E Ethernet Partition" },
125 	[BCM57504_NPAR] = { "Broadcom BCM57504 NetXtreme-E Ethernet Partition" },
126 	[BCM57502_NPAR] = { "Broadcom BCM57502 NetXtreme-E Ethernet Partition" },
127 	[BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" },
128 	[BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
129 	[BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
130 	[NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" },
131 	[NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" },
132 	[NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" },
133 	[NETXTREME_C_VF_HV] = { "Broadcom NetXtreme-C Virtual Function for Hyper-V" },
134 	[NETXTREME_E_VF_HV] = { "Broadcom NetXtreme-E Virtual Function for Hyper-V" },
135 	[NETXTREME_E_P5_VF] = { "Broadcom BCM5750X NetXtreme-E Ethernet Virtual Function" },
136 	[NETXTREME_E_P5_VF_HV] = { "Broadcom BCM5750X NetXtreme-E Virtual Function for Hyper-V" },
137 };
138 
139 static const struct pci_device_id bnxt_pci_tbl[] = {
140 	{ PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR },
141 	{ PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR },
142 	{ PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 },
143 	{ PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR },
144 	{ PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
145 	{ PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
146 	{ PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
147 	{ PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR },
148 	{ PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 },
149 	{ PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 },
150 	{ PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 },
151 	{ PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
152 	{ PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
153 	{ PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
154 	{ PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR },
155 	{ PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 },
156 	{ PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 },
157 	{ PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 },
158 	{ PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 },
159 	{ PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 },
160 	{ PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR },
161 	{ PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 },
162 	{ PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP },
163 	{ PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP },
164 	{ PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR },
165 	{ PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR },
166 	{ PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP },
167 	{ PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR },
168 	{ PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR },
169 	{ PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR },
170 	{ PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR },
171 	{ PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR },
172 	{ PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR },
173 	{ PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 },
174 	{ PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 },
175 	{ PCI_VDEVICE(BROADCOM, 0x1750), .driver_data = BCM57508 },
176 	{ PCI_VDEVICE(BROADCOM, 0x1751), .driver_data = BCM57504 },
177 	{ PCI_VDEVICE(BROADCOM, 0x1752), .driver_data = BCM57502 },
178 	{ PCI_VDEVICE(BROADCOM, 0x1800), .driver_data = BCM57508_NPAR },
179 	{ PCI_VDEVICE(BROADCOM, 0x1801), .driver_data = BCM57504_NPAR },
180 	{ PCI_VDEVICE(BROADCOM, 0x1802), .driver_data = BCM57502_NPAR },
181 	{ PCI_VDEVICE(BROADCOM, 0x1803), .driver_data = BCM57508_NPAR },
182 	{ PCI_VDEVICE(BROADCOM, 0x1804), .driver_data = BCM57504_NPAR },
183 	{ PCI_VDEVICE(BROADCOM, 0x1805), .driver_data = BCM57502_NPAR },
184 	{ PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 },
185 	{ PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 },
186 #ifdef CONFIG_BNXT_SRIOV
187 	{ PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF },
188 	{ PCI_VDEVICE(BROADCOM, 0x1607), .driver_data = NETXTREME_E_VF_HV },
189 	{ PCI_VDEVICE(BROADCOM, 0x1608), .driver_data = NETXTREME_E_VF_HV },
190 	{ PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF },
191 	{ PCI_VDEVICE(BROADCOM, 0x16bd), .driver_data = NETXTREME_E_VF_HV },
192 	{ PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF },
193 	{ PCI_VDEVICE(BROADCOM, 0x16c2), .driver_data = NETXTREME_C_VF_HV },
194 	{ PCI_VDEVICE(BROADCOM, 0x16c3), .driver_data = NETXTREME_C_VF_HV },
195 	{ PCI_VDEVICE(BROADCOM, 0x16c4), .driver_data = NETXTREME_E_VF_HV },
196 	{ PCI_VDEVICE(BROADCOM, 0x16c5), .driver_data = NETXTREME_E_VF_HV },
197 	{ PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF },
198 	{ PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF },
199 	{ PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF },
200 	{ PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF },
201 	{ PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF },
202 	{ PCI_VDEVICE(BROADCOM, 0x16e6), .driver_data = NETXTREME_C_VF_HV },
203 	{ PCI_VDEVICE(BROADCOM, 0x1806), .driver_data = NETXTREME_E_P5_VF },
204 	{ PCI_VDEVICE(BROADCOM, 0x1807), .driver_data = NETXTREME_E_P5_VF },
205 	{ PCI_VDEVICE(BROADCOM, 0x1808), .driver_data = NETXTREME_E_P5_VF_HV },
206 	{ PCI_VDEVICE(BROADCOM, 0x1809), .driver_data = NETXTREME_E_P5_VF_HV },
207 	{ PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF },
208 #endif
209 	{ 0 }
210 };
211 
212 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
213 
214 static const u16 bnxt_vf_req_snif[] = {
215 	HWRM_FUNC_CFG,
216 	HWRM_FUNC_VF_CFG,
217 	HWRM_PORT_PHY_QCFG,
218 	HWRM_CFA_L2_FILTER_ALLOC,
219 };
220 
221 static const u16 bnxt_async_events_arr[] = {
222 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE,
223 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE,
224 	ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD,
225 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED,
226 	ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE,
227 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE,
228 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE,
229 	ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY,
230 	ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY,
231 	ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION,
232 	ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE,
233 	ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG,
234 	ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST,
235 	ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP,
236 	ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT,
237 	ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE,
238 };
239 
240 static struct workqueue_struct *bnxt_pf_wq;
241 
242 static bool bnxt_vf_pciid(enum board_idx idx)
243 {
244 	return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF ||
245 		idx == NETXTREME_S_VF || idx == NETXTREME_C_VF_HV ||
246 		idx == NETXTREME_E_VF_HV || idx == NETXTREME_E_P5_VF ||
247 		idx == NETXTREME_E_P5_VF_HV);
248 }
249 
250 #define DB_CP_REARM_FLAGS	(DB_KEY_CP | DB_IDX_VALID)
251 #define DB_CP_FLAGS		(DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
252 #define DB_CP_IRQ_DIS_FLAGS	(DB_KEY_CP | DB_IRQ_DIS)
253 
254 #define BNXT_CP_DB_IRQ_DIS(db)						\
255 		writel(DB_CP_IRQ_DIS_FLAGS, db)
256 
257 #define BNXT_DB_CQ(db, idx)						\
258 	writel(DB_CP_FLAGS | RING_CMP(idx), (db)->doorbell)
259 
260 #define BNXT_DB_NQ_P5(db, idx)						\
261 	bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ | RING_CMP(idx),	\
262 		    (db)->doorbell)
263 
264 #define BNXT_DB_CQ_ARM(db, idx)						\
265 	writel(DB_CP_REARM_FLAGS | RING_CMP(idx), (db)->doorbell)
266 
267 #define BNXT_DB_NQ_ARM_P5(db, idx)					\
268 	bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ_ARM | RING_CMP(idx),\
269 		    (db)->doorbell)
270 
271 static void bnxt_db_nq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
272 {
273 	if (bp->flags & BNXT_FLAG_CHIP_P5)
274 		BNXT_DB_NQ_P5(db, idx);
275 	else
276 		BNXT_DB_CQ(db, idx);
277 }
278 
279 static void bnxt_db_nq_arm(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
280 {
281 	if (bp->flags & BNXT_FLAG_CHIP_P5)
282 		BNXT_DB_NQ_ARM_P5(db, idx);
283 	else
284 		BNXT_DB_CQ_ARM(db, idx);
285 }
286 
287 static void bnxt_db_cq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
288 {
289 	if (bp->flags & BNXT_FLAG_CHIP_P5)
290 		bnxt_writeq(bp, db->db_key64 | DBR_TYPE_CQ_ARMALL |
291 			    RING_CMP(idx), db->doorbell);
292 	else
293 		BNXT_DB_CQ(db, idx);
294 }
295 
296 const u16 bnxt_lhint_arr[] = {
297 	TX_BD_FLAGS_LHINT_512_AND_SMALLER,
298 	TX_BD_FLAGS_LHINT_512_TO_1023,
299 	TX_BD_FLAGS_LHINT_1024_TO_2047,
300 	TX_BD_FLAGS_LHINT_1024_TO_2047,
301 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
302 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
303 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
304 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
305 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
306 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
307 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
308 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
309 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
310 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
311 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
312 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
313 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
314 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
315 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
316 };
317 
318 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb)
319 {
320 	struct metadata_dst *md_dst = skb_metadata_dst(skb);
321 
322 	if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX)
323 		return 0;
324 
325 	return md_dst->u.port_info.port_id;
326 }
327 
328 static void bnxt_txr_db_kick(struct bnxt *bp, struct bnxt_tx_ring_info *txr,
329 			     u16 prod)
330 {
331 	bnxt_db_write(bp, &txr->tx_db, prod);
332 	txr->kick_pending = 0;
333 }
334 
335 static bool bnxt_txr_netif_try_stop_queue(struct bnxt *bp,
336 					  struct bnxt_tx_ring_info *txr,
337 					  struct netdev_queue *txq)
338 {
339 	netif_tx_stop_queue(txq);
340 
341 	/* netif_tx_stop_queue() must be done before checking
342 	 * tx index in bnxt_tx_avail() below, because in
343 	 * bnxt_tx_int(), we update tx index before checking for
344 	 * netif_tx_queue_stopped().
345 	 */
346 	smp_mb();
347 	if (bnxt_tx_avail(bp, txr) >= bp->tx_wake_thresh) {
348 		netif_tx_wake_queue(txq);
349 		return false;
350 	}
351 
352 	return true;
353 }
354 
355 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
356 {
357 	struct bnxt *bp = netdev_priv(dev);
358 	struct tx_bd *txbd;
359 	struct tx_bd_ext *txbd1;
360 	struct netdev_queue *txq;
361 	int i;
362 	dma_addr_t mapping;
363 	unsigned int length, pad = 0;
364 	u32 len, free_size, vlan_tag_flags, cfa_action, flags;
365 	u16 prod, last_frag;
366 	struct pci_dev *pdev = bp->pdev;
367 	struct bnxt_tx_ring_info *txr;
368 	struct bnxt_sw_tx_bd *tx_buf;
369 	__le32 lflags = 0;
370 
371 	i = skb_get_queue_mapping(skb);
372 	if (unlikely(i >= bp->tx_nr_rings)) {
373 		dev_kfree_skb_any(skb);
374 		dev_core_stats_tx_dropped_inc(dev);
375 		return NETDEV_TX_OK;
376 	}
377 
378 	txq = netdev_get_tx_queue(dev, i);
379 	txr = &bp->tx_ring[bp->tx_ring_map[i]];
380 	prod = txr->tx_prod;
381 
382 	free_size = bnxt_tx_avail(bp, txr);
383 	if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
384 		/* We must have raced with NAPI cleanup */
385 		if (net_ratelimit() && txr->kick_pending)
386 			netif_warn(bp, tx_err, dev,
387 				   "bnxt: ring busy w/ flush pending!\n");
388 		if (bnxt_txr_netif_try_stop_queue(bp, txr, txq))
389 			return NETDEV_TX_BUSY;
390 	}
391 
392 	length = skb->len;
393 	len = skb_headlen(skb);
394 	last_frag = skb_shinfo(skb)->nr_frags;
395 
396 	txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
397 
398 	txbd->tx_bd_opaque = prod;
399 
400 	tx_buf = &txr->tx_buf_ring[prod];
401 	tx_buf->skb = skb;
402 	tx_buf->nr_frags = last_frag;
403 
404 	vlan_tag_flags = 0;
405 	cfa_action = bnxt_xmit_get_cfa_action(skb);
406 	if (skb_vlan_tag_present(skb)) {
407 		vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
408 				 skb_vlan_tag_get(skb);
409 		/* Currently supports 8021Q, 8021AD vlan offloads
410 		 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
411 		 */
412 		if (skb->vlan_proto == htons(ETH_P_8021Q))
413 			vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
414 	}
415 
416 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
417 		struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
418 
419 		if (ptp && ptp->tx_tstamp_en && !skb_is_gso(skb) &&
420 		    atomic_dec_if_positive(&ptp->tx_avail) >= 0) {
421 			if (!bnxt_ptp_parse(skb, &ptp->tx_seqid,
422 					    &ptp->tx_hdr_off)) {
423 				if (vlan_tag_flags)
424 					ptp->tx_hdr_off += VLAN_HLEN;
425 				lflags |= cpu_to_le32(TX_BD_FLAGS_STAMP);
426 				skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
427 			} else {
428 				atomic_inc(&bp->ptp_cfg->tx_avail);
429 			}
430 		}
431 	}
432 
433 	if (unlikely(skb->no_fcs))
434 		lflags |= cpu_to_le32(TX_BD_FLAGS_NO_CRC);
435 
436 	if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh &&
437 	    !lflags) {
438 		struct tx_push_buffer *tx_push_buf = txr->tx_push;
439 		struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
440 		struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
441 		void __iomem *db = txr->tx_db.doorbell;
442 		void *pdata = tx_push_buf->data;
443 		u64 *end;
444 		int j, push_len;
445 
446 		/* Set COAL_NOW to be ready quickly for the next push */
447 		tx_push->tx_bd_len_flags_type =
448 			cpu_to_le32((length << TX_BD_LEN_SHIFT) |
449 					TX_BD_TYPE_LONG_TX_BD |
450 					TX_BD_FLAGS_LHINT_512_AND_SMALLER |
451 					TX_BD_FLAGS_COAL_NOW |
452 					TX_BD_FLAGS_PACKET_END |
453 					(2 << TX_BD_FLAGS_BD_CNT_SHIFT));
454 
455 		if (skb->ip_summed == CHECKSUM_PARTIAL)
456 			tx_push1->tx_bd_hsize_lflags =
457 					cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
458 		else
459 			tx_push1->tx_bd_hsize_lflags = 0;
460 
461 		tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
462 		tx_push1->tx_bd_cfa_action =
463 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
464 
465 		end = pdata + length;
466 		end = PTR_ALIGN(end, 8) - 1;
467 		*end = 0;
468 
469 		skb_copy_from_linear_data(skb, pdata, len);
470 		pdata += len;
471 		for (j = 0; j < last_frag; j++) {
472 			skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
473 			void *fptr;
474 
475 			fptr = skb_frag_address_safe(frag);
476 			if (!fptr)
477 				goto normal_tx;
478 
479 			memcpy(pdata, fptr, skb_frag_size(frag));
480 			pdata += skb_frag_size(frag);
481 		}
482 
483 		txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
484 		txbd->tx_bd_haddr = txr->data_mapping;
485 		prod = NEXT_TX(prod);
486 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
487 		memcpy(txbd, tx_push1, sizeof(*txbd));
488 		prod = NEXT_TX(prod);
489 		tx_push->doorbell =
490 			cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod);
491 		txr->tx_prod = prod;
492 
493 		tx_buf->is_push = 1;
494 		netdev_tx_sent_queue(txq, skb->len);
495 		wmb();	/* Sync is_push and byte queue before pushing data */
496 
497 		push_len = (length + sizeof(*tx_push) + 7) / 8;
498 		if (push_len > 16) {
499 			__iowrite64_copy(db, tx_push_buf, 16);
500 			__iowrite32_copy(db + 4, tx_push_buf + 1,
501 					 (push_len - 16) << 1);
502 		} else {
503 			__iowrite64_copy(db, tx_push_buf, push_len);
504 		}
505 
506 		goto tx_done;
507 	}
508 
509 normal_tx:
510 	if (length < BNXT_MIN_PKT_SIZE) {
511 		pad = BNXT_MIN_PKT_SIZE - length;
512 		if (skb_pad(skb, pad))
513 			/* SKB already freed. */
514 			goto tx_kick_pending;
515 		length = BNXT_MIN_PKT_SIZE;
516 	}
517 
518 	mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
519 
520 	if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
521 		goto tx_free;
522 
523 	dma_unmap_addr_set(tx_buf, mapping, mapping);
524 	flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
525 		((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
526 
527 	txbd->tx_bd_haddr = cpu_to_le64(mapping);
528 
529 	prod = NEXT_TX(prod);
530 	txbd1 = (struct tx_bd_ext *)
531 		&txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
532 
533 	txbd1->tx_bd_hsize_lflags = lflags;
534 	if (skb_is_gso(skb)) {
535 		u32 hdr_len;
536 
537 		if (skb->encapsulation)
538 			hdr_len = skb_inner_network_offset(skb) +
539 				skb_inner_network_header_len(skb) +
540 				inner_tcp_hdrlen(skb);
541 		else
542 			hdr_len = skb_transport_offset(skb) +
543 				tcp_hdrlen(skb);
544 
545 		txbd1->tx_bd_hsize_lflags |= cpu_to_le32(TX_BD_FLAGS_LSO |
546 					TX_BD_FLAGS_T_IPID |
547 					(hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
548 		length = skb_shinfo(skb)->gso_size;
549 		txbd1->tx_bd_mss = cpu_to_le32(length);
550 		length += hdr_len;
551 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
552 		txbd1->tx_bd_hsize_lflags |=
553 			cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
554 		txbd1->tx_bd_mss = 0;
555 	}
556 
557 	length >>= 9;
558 	if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) {
559 		dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n",
560 				     skb->len);
561 		i = 0;
562 		goto tx_dma_error;
563 	}
564 	flags |= bnxt_lhint_arr[length];
565 	txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
566 
567 	txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
568 	txbd1->tx_bd_cfa_action =
569 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
570 	for (i = 0; i < last_frag; i++) {
571 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
572 
573 		prod = NEXT_TX(prod);
574 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
575 
576 		len = skb_frag_size(frag);
577 		mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
578 					   DMA_TO_DEVICE);
579 
580 		if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
581 			goto tx_dma_error;
582 
583 		tx_buf = &txr->tx_buf_ring[prod];
584 		dma_unmap_addr_set(tx_buf, mapping, mapping);
585 
586 		txbd->tx_bd_haddr = cpu_to_le64(mapping);
587 
588 		flags = len << TX_BD_LEN_SHIFT;
589 		txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
590 	}
591 
592 	flags &= ~TX_BD_LEN;
593 	txbd->tx_bd_len_flags_type =
594 		cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
595 			    TX_BD_FLAGS_PACKET_END);
596 
597 	netdev_tx_sent_queue(txq, skb->len);
598 
599 	skb_tx_timestamp(skb);
600 
601 	/* Sync BD data before updating doorbell */
602 	wmb();
603 
604 	prod = NEXT_TX(prod);
605 	txr->tx_prod = prod;
606 
607 	if (!netdev_xmit_more() || netif_xmit_stopped(txq))
608 		bnxt_txr_db_kick(bp, txr, prod);
609 	else
610 		txr->kick_pending = 1;
611 
612 tx_done:
613 
614 	if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
615 		if (netdev_xmit_more() && !tx_buf->is_push)
616 			bnxt_txr_db_kick(bp, txr, prod);
617 
618 		bnxt_txr_netif_try_stop_queue(bp, txr, txq);
619 	}
620 	return NETDEV_TX_OK;
621 
622 tx_dma_error:
623 	if (BNXT_TX_PTP_IS_SET(lflags))
624 		atomic_inc(&bp->ptp_cfg->tx_avail);
625 
626 	last_frag = i;
627 
628 	/* start back at beginning and unmap skb */
629 	prod = txr->tx_prod;
630 	tx_buf = &txr->tx_buf_ring[prod];
631 	dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
632 			 skb_headlen(skb), DMA_TO_DEVICE);
633 	prod = NEXT_TX(prod);
634 
635 	/* unmap remaining mapped pages */
636 	for (i = 0; i < last_frag; i++) {
637 		prod = NEXT_TX(prod);
638 		tx_buf = &txr->tx_buf_ring[prod];
639 		dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
640 			       skb_frag_size(&skb_shinfo(skb)->frags[i]),
641 			       DMA_TO_DEVICE);
642 	}
643 
644 tx_free:
645 	dev_kfree_skb_any(skb);
646 tx_kick_pending:
647 	if (txr->kick_pending)
648 		bnxt_txr_db_kick(bp, txr, txr->tx_prod);
649 	txr->tx_buf_ring[txr->tx_prod].skb = NULL;
650 	dev_core_stats_tx_dropped_inc(dev);
651 	return NETDEV_TX_OK;
652 }
653 
654 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts)
655 {
656 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
657 	struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index);
658 	u16 cons = txr->tx_cons;
659 	struct pci_dev *pdev = bp->pdev;
660 	int i;
661 	unsigned int tx_bytes = 0;
662 
663 	for (i = 0; i < nr_pkts; i++) {
664 		struct bnxt_sw_tx_bd *tx_buf;
665 		bool compl_deferred = false;
666 		struct sk_buff *skb;
667 		int j, last;
668 
669 		tx_buf = &txr->tx_buf_ring[cons];
670 		cons = NEXT_TX(cons);
671 		skb = tx_buf->skb;
672 		tx_buf->skb = NULL;
673 
674 		if (tx_buf->is_push) {
675 			tx_buf->is_push = 0;
676 			goto next_tx_int;
677 		}
678 
679 		dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
680 				 skb_headlen(skb), DMA_TO_DEVICE);
681 		last = tx_buf->nr_frags;
682 
683 		for (j = 0; j < last; j++) {
684 			cons = NEXT_TX(cons);
685 			tx_buf = &txr->tx_buf_ring[cons];
686 			dma_unmap_page(
687 				&pdev->dev,
688 				dma_unmap_addr(tx_buf, mapping),
689 				skb_frag_size(&skb_shinfo(skb)->frags[j]),
690 				DMA_TO_DEVICE);
691 		}
692 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
693 			if (bp->flags & BNXT_FLAG_CHIP_P5) {
694 				if (!bnxt_get_tx_ts_p5(bp, skb))
695 					compl_deferred = true;
696 				else
697 					atomic_inc(&bp->ptp_cfg->tx_avail);
698 			}
699 		}
700 
701 next_tx_int:
702 		cons = NEXT_TX(cons);
703 
704 		tx_bytes += skb->len;
705 		if (!compl_deferred)
706 			dev_kfree_skb_any(skb);
707 	}
708 
709 	netdev_tx_completed_queue(txq, nr_pkts, tx_bytes);
710 	txr->tx_cons = cons;
711 
712 	/* Need to make the tx_cons update visible to bnxt_start_xmit()
713 	 * before checking for netif_tx_queue_stopped().  Without the
714 	 * memory barrier, there is a small possibility that bnxt_start_xmit()
715 	 * will miss it and cause the queue to be stopped forever.
716 	 */
717 	smp_mb();
718 
719 	if (unlikely(netif_tx_queue_stopped(txq)) &&
720 	    bnxt_tx_avail(bp, txr) >= bp->tx_wake_thresh &&
721 	    READ_ONCE(txr->dev_state) != BNXT_DEV_STATE_CLOSING)
722 		netif_tx_wake_queue(txq);
723 }
724 
725 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping,
726 					 struct bnxt_rx_ring_info *rxr,
727 					 gfp_t gfp)
728 {
729 	struct device *dev = &bp->pdev->dev;
730 	struct page *page;
731 
732 	page = page_pool_dev_alloc_pages(rxr->page_pool);
733 	if (!page)
734 		return NULL;
735 
736 	*mapping = dma_map_page_attrs(dev, page, 0, PAGE_SIZE, bp->rx_dir,
737 				      DMA_ATTR_WEAK_ORDERING);
738 	if (dma_mapping_error(dev, *mapping)) {
739 		page_pool_recycle_direct(rxr->page_pool, page);
740 		return NULL;
741 	}
742 	return page;
743 }
744 
745 static inline u8 *__bnxt_alloc_rx_frag(struct bnxt *bp, dma_addr_t *mapping,
746 				       gfp_t gfp)
747 {
748 	u8 *data;
749 	struct pci_dev *pdev = bp->pdev;
750 
751 	if (gfp == GFP_ATOMIC)
752 		data = napi_alloc_frag(bp->rx_buf_size);
753 	else
754 		data = netdev_alloc_frag(bp->rx_buf_size);
755 	if (!data)
756 		return NULL;
757 
758 	*mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset,
759 					bp->rx_buf_use_size, bp->rx_dir,
760 					DMA_ATTR_WEAK_ORDERING);
761 
762 	if (dma_mapping_error(&pdev->dev, *mapping)) {
763 		skb_free_frag(data);
764 		data = NULL;
765 	}
766 	return data;
767 }
768 
769 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
770 		       u16 prod, gfp_t gfp)
771 {
772 	struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
773 	struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
774 	dma_addr_t mapping;
775 
776 	if (BNXT_RX_PAGE_MODE(bp)) {
777 		struct page *page =
778 			__bnxt_alloc_rx_page(bp, &mapping, rxr, gfp);
779 
780 		if (!page)
781 			return -ENOMEM;
782 
783 		mapping += bp->rx_dma_offset;
784 		rx_buf->data = page;
785 		rx_buf->data_ptr = page_address(page) + bp->rx_offset;
786 	} else {
787 		u8 *data = __bnxt_alloc_rx_frag(bp, &mapping, gfp);
788 
789 		if (!data)
790 			return -ENOMEM;
791 
792 		rx_buf->data = data;
793 		rx_buf->data_ptr = data + bp->rx_offset;
794 	}
795 	rx_buf->mapping = mapping;
796 
797 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
798 	return 0;
799 }
800 
801 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data)
802 {
803 	u16 prod = rxr->rx_prod;
804 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
805 	struct rx_bd *cons_bd, *prod_bd;
806 
807 	prod_rx_buf = &rxr->rx_buf_ring[prod];
808 	cons_rx_buf = &rxr->rx_buf_ring[cons];
809 
810 	prod_rx_buf->data = data;
811 	prod_rx_buf->data_ptr = cons_rx_buf->data_ptr;
812 
813 	prod_rx_buf->mapping = cons_rx_buf->mapping;
814 
815 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
816 	cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
817 
818 	prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
819 }
820 
821 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
822 {
823 	u16 next, max = rxr->rx_agg_bmap_size;
824 
825 	next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
826 	if (next >= max)
827 		next = find_first_zero_bit(rxr->rx_agg_bmap, max);
828 	return next;
829 }
830 
831 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
832 				     struct bnxt_rx_ring_info *rxr,
833 				     u16 prod, gfp_t gfp)
834 {
835 	struct rx_bd *rxbd =
836 		&rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
837 	struct bnxt_sw_rx_agg_bd *rx_agg_buf;
838 	struct pci_dev *pdev = bp->pdev;
839 	struct page *page;
840 	dma_addr_t mapping;
841 	u16 sw_prod = rxr->rx_sw_agg_prod;
842 	unsigned int offset = 0;
843 
844 	if (BNXT_RX_PAGE_MODE(bp)) {
845 		page = __bnxt_alloc_rx_page(bp, &mapping, rxr, gfp);
846 
847 		if (!page)
848 			return -ENOMEM;
849 
850 	} else {
851 		if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) {
852 			page = rxr->rx_page;
853 			if (!page) {
854 				page = alloc_page(gfp);
855 				if (!page)
856 					return -ENOMEM;
857 				rxr->rx_page = page;
858 				rxr->rx_page_offset = 0;
859 			}
860 			offset = rxr->rx_page_offset;
861 			rxr->rx_page_offset += BNXT_RX_PAGE_SIZE;
862 			if (rxr->rx_page_offset == PAGE_SIZE)
863 				rxr->rx_page = NULL;
864 			else
865 				get_page(page);
866 		} else {
867 			page = alloc_page(gfp);
868 			if (!page)
869 				return -ENOMEM;
870 		}
871 
872 		mapping = dma_map_page_attrs(&pdev->dev, page, offset,
873 					     BNXT_RX_PAGE_SIZE, DMA_FROM_DEVICE,
874 					     DMA_ATTR_WEAK_ORDERING);
875 		if (dma_mapping_error(&pdev->dev, mapping)) {
876 			__free_page(page);
877 			return -EIO;
878 		}
879 	}
880 
881 	if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
882 		sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
883 
884 	__set_bit(sw_prod, rxr->rx_agg_bmap);
885 	rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
886 	rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod);
887 
888 	rx_agg_buf->page = page;
889 	rx_agg_buf->offset = offset;
890 	rx_agg_buf->mapping = mapping;
891 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
892 	rxbd->rx_bd_opaque = sw_prod;
893 	return 0;
894 }
895 
896 static struct rx_agg_cmp *bnxt_get_agg(struct bnxt *bp,
897 				       struct bnxt_cp_ring_info *cpr,
898 				       u16 cp_cons, u16 curr)
899 {
900 	struct rx_agg_cmp *agg;
901 
902 	cp_cons = RING_CMP(ADV_RAW_CMP(cp_cons, curr));
903 	agg = (struct rx_agg_cmp *)
904 		&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
905 	return agg;
906 }
907 
908 static struct rx_agg_cmp *bnxt_get_tpa_agg_p5(struct bnxt *bp,
909 					      struct bnxt_rx_ring_info *rxr,
910 					      u16 agg_id, u16 curr)
911 {
912 	struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[agg_id];
913 
914 	return &tpa_info->agg_arr[curr];
915 }
916 
917 static void bnxt_reuse_rx_agg_bufs(struct bnxt_cp_ring_info *cpr, u16 idx,
918 				   u16 start, u32 agg_bufs, bool tpa)
919 {
920 	struct bnxt_napi *bnapi = cpr->bnapi;
921 	struct bnxt *bp = bnapi->bp;
922 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
923 	u16 prod = rxr->rx_agg_prod;
924 	u16 sw_prod = rxr->rx_sw_agg_prod;
925 	bool p5_tpa = false;
926 	u32 i;
927 
928 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa)
929 		p5_tpa = true;
930 
931 	for (i = 0; i < agg_bufs; i++) {
932 		u16 cons;
933 		struct rx_agg_cmp *agg;
934 		struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
935 		struct rx_bd *prod_bd;
936 		struct page *page;
937 
938 		if (p5_tpa)
939 			agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, start + i);
940 		else
941 			agg = bnxt_get_agg(bp, cpr, idx, start + i);
942 		cons = agg->rx_agg_cmp_opaque;
943 		__clear_bit(cons, rxr->rx_agg_bmap);
944 
945 		if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
946 			sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
947 
948 		__set_bit(sw_prod, rxr->rx_agg_bmap);
949 		prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
950 		cons_rx_buf = &rxr->rx_agg_ring[cons];
951 
952 		/* It is possible for sw_prod to be equal to cons, so
953 		 * set cons_rx_buf->page to NULL first.
954 		 */
955 		page = cons_rx_buf->page;
956 		cons_rx_buf->page = NULL;
957 		prod_rx_buf->page = page;
958 		prod_rx_buf->offset = cons_rx_buf->offset;
959 
960 		prod_rx_buf->mapping = cons_rx_buf->mapping;
961 
962 		prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
963 
964 		prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
965 		prod_bd->rx_bd_opaque = sw_prod;
966 
967 		prod = NEXT_RX_AGG(prod);
968 		sw_prod = NEXT_RX_AGG(sw_prod);
969 	}
970 	rxr->rx_agg_prod = prod;
971 	rxr->rx_sw_agg_prod = sw_prod;
972 }
973 
974 static struct sk_buff *bnxt_rx_multi_page_skb(struct bnxt *bp,
975 					      struct bnxt_rx_ring_info *rxr,
976 					      u16 cons, void *data, u8 *data_ptr,
977 					      dma_addr_t dma_addr,
978 					      unsigned int offset_and_len)
979 {
980 	unsigned int len = offset_and_len & 0xffff;
981 	struct page *page = data;
982 	u16 prod = rxr->rx_prod;
983 	struct sk_buff *skb;
984 	int err;
985 
986 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
987 	if (unlikely(err)) {
988 		bnxt_reuse_rx_data(rxr, cons, data);
989 		return NULL;
990 	}
991 	dma_addr -= bp->rx_dma_offset;
992 	dma_unmap_page_attrs(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir,
993 			     DMA_ATTR_WEAK_ORDERING);
994 	skb = build_skb(page_address(page), BNXT_PAGE_MODE_BUF_SIZE +
995 					    bp->rx_dma_offset);
996 	if (!skb) {
997 		__free_page(page);
998 		return NULL;
999 	}
1000 	skb_mark_for_recycle(skb);
1001 	skb_reserve(skb, bp->rx_dma_offset);
1002 	__skb_put(skb, len);
1003 
1004 	return skb;
1005 }
1006 
1007 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp,
1008 					struct bnxt_rx_ring_info *rxr,
1009 					u16 cons, void *data, u8 *data_ptr,
1010 					dma_addr_t dma_addr,
1011 					unsigned int offset_and_len)
1012 {
1013 	unsigned int payload = offset_and_len >> 16;
1014 	unsigned int len = offset_and_len & 0xffff;
1015 	skb_frag_t *frag;
1016 	struct page *page = data;
1017 	u16 prod = rxr->rx_prod;
1018 	struct sk_buff *skb;
1019 	int off, err;
1020 
1021 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
1022 	if (unlikely(err)) {
1023 		bnxt_reuse_rx_data(rxr, cons, data);
1024 		return NULL;
1025 	}
1026 	dma_addr -= bp->rx_dma_offset;
1027 	dma_unmap_page_attrs(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir,
1028 			     DMA_ATTR_WEAK_ORDERING);
1029 
1030 	if (unlikely(!payload))
1031 		payload = eth_get_headlen(bp->dev, data_ptr, len);
1032 
1033 	skb = napi_alloc_skb(&rxr->bnapi->napi, payload);
1034 	if (!skb) {
1035 		__free_page(page);
1036 		return NULL;
1037 	}
1038 
1039 	skb_mark_for_recycle(skb);
1040 	off = (void *)data_ptr - page_address(page);
1041 	skb_add_rx_frag(skb, 0, page, off, len, PAGE_SIZE);
1042 	memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN,
1043 	       payload + NET_IP_ALIGN);
1044 
1045 	frag = &skb_shinfo(skb)->frags[0];
1046 	skb_frag_size_sub(frag, payload);
1047 	skb_frag_off_add(frag, payload);
1048 	skb->data_len -= payload;
1049 	skb->tail += payload;
1050 
1051 	return skb;
1052 }
1053 
1054 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
1055 				   struct bnxt_rx_ring_info *rxr, u16 cons,
1056 				   void *data, u8 *data_ptr,
1057 				   dma_addr_t dma_addr,
1058 				   unsigned int offset_and_len)
1059 {
1060 	u16 prod = rxr->rx_prod;
1061 	struct sk_buff *skb;
1062 	int err;
1063 
1064 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
1065 	if (unlikely(err)) {
1066 		bnxt_reuse_rx_data(rxr, cons, data);
1067 		return NULL;
1068 	}
1069 
1070 	skb = build_skb(data, bp->rx_buf_size);
1071 	dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
1072 			       bp->rx_dir, DMA_ATTR_WEAK_ORDERING);
1073 	if (!skb) {
1074 		skb_free_frag(data);
1075 		return NULL;
1076 	}
1077 
1078 	skb_reserve(skb, bp->rx_offset);
1079 	skb_put(skb, offset_and_len & 0xffff);
1080 	return skb;
1081 }
1082 
1083 static u32 __bnxt_rx_agg_pages(struct bnxt *bp,
1084 			       struct bnxt_cp_ring_info *cpr,
1085 			       struct skb_shared_info *shinfo,
1086 			       u16 idx, u32 agg_bufs, bool tpa,
1087 			       struct xdp_buff *xdp)
1088 {
1089 	struct bnxt_napi *bnapi = cpr->bnapi;
1090 	struct pci_dev *pdev = bp->pdev;
1091 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1092 	u16 prod = rxr->rx_agg_prod;
1093 	u32 i, total_frag_len = 0;
1094 	bool p5_tpa = false;
1095 
1096 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa)
1097 		p5_tpa = true;
1098 
1099 	for (i = 0; i < agg_bufs; i++) {
1100 		skb_frag_t *frag = &shinfo->frags[i];
1101 		u16 cons, frag_len;
1102 		struct rx_agg_cmp *agg;
1103 		struct bnxt_sw_rx_agg_bd *cons_rx_buf;
1104 		struct page *page;
1105 		dma_addr_t mapping;
1106 
1107 		if (p5_tpa)
1108 			agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, i);
1109 		else
1110 			agg = bnxt_get_agg(bp, cpr, idx, i);
1111 		cons = agg->rx_agg_cmp_opaque;
1112 		frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
1113 			    RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
1114 
1115 		cons_rx_buf = &rxr->rx_agg_ring[cons];
1116 		skb_frag_off_set(frag, cons_rx_buf->offset);
1117 		skb_frag_size_set(frag, frag_len);
1118 		__skb_frag_set_page(frag, cons_rx_buf->page);
1119 		shinfo->nr_frags = i + 1;
1120 		__clear_bit(cons, rxr->rx_agg_bmap);
1121 
1122 		/* It is possible for bnxt_alloc_rx_page() to allocate
1123 		 * a sw_prod index that equals the cons index, so we
1124 		 * need to clear the cons entry now.
1125 		 */
1126 		mapping = cons_rx_buf->mapping;
1127 		page = cons_rx_buf->page;
1128 		cons_rx_buf->page = NULL;
1129 
1130 		if (xdp && page_is_pfmemalloc(page))
1131 			xdp_buff_set_frag_pfmemalloc(xdp);
1132 
1133 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
1134 			unsigned int nr_frags;
1135 
1136 			nr_frags = --shinfo->nr_frags;
1137 			__skb_frag_set_page(&shinfo->frags[nr_frags], NULL);
1138 			cons_rx_buf->page = page;
1139 
1140 			/* Update prod since possibly some pages have been
1141 			 * allocated already.
1142 			 */
1143 			rxr->rx_agg_prod = prod;
1144 			bnxt_reuse_rx_agg_bufs(cpr, idx, i, agg_bufs - i, tpa);
1145 			return 0;
1146 		}
1147 
1148 		dma_unmap_page_attrs(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE,
1149 				     bp->rx_dir,
1150 				     DMA_ATTR_WEAK_ORDERING);
1151 
1152 		total_frag_len += frag_len;
1153 		prod = NEXT_RX_AGG(prod);
1154 	}
1155 	rxr->rx_agg_prod = prod;
1156 	return total_frag_len;
1157 }
1158 
1159 static struct sk_buff *bnxt_rx_agg_pages_skb(struct bnxt *bp,
1160 					     struct bnxt_cp_ring_info *cpr,
1161 					     struct sk_buff *skb, u16 idx,
1162 					     u32 agg_bufs, bool tpa)
1163 {
1164 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1165 	u32 total_frag_len = 0;
1166 
1167 	total_frag_len = __bnxt_rx_agg_pages(bp, cpr, shinfo, idx,
1168 					     agg_bufs, tpa, NULL);
1169 	if (!total_frag_len) {
1170 		dev_kfree_skb(skb);
1171 		return NULL;
1172 	}
1173 
1174 	skb->data_len += total_frag_len;
1175 	skb->len += total_frag_len;
1176 	skb->truesize += PAGE_SIZE * agg_bufs;
1177 	return skb;
1178 }
1179 
1180 static u32 bnxt_rx_agg_pages_xdp(struct bnxt *bp,
1181 				 struct bnxt_cp_ring_info *cpr,
1182 				 struct xdp_buff *xdp, u16 idx,
1183 				 u32 agg_bufs, bool tpa)
1184 {
1185 	struct skb_shared_info *shinfo = xdp_get_shared_info_from_buff(xdp);
1186 	u32 total_frag_len = 0;
1187 
1188 	if (!xdp_buff_has_frags(xdp))
1189 		shinfo->nr_frags = 0;
1190 
1191 	total_frag_len = __bnxt_rx_agg_pages(bp, cpr, shinfo,
1192 					     idx, agg_bufs, tpa, xdp);
1193 	if (total_frag_len) {
1194 		xdp_buff_set_frags_flag(xdp);
1195 		shinfo->nr_frags = agg_bufs;
1196 		shinfo->xdp_frags_size = total_frag_len;
1197 	}
1198 	return total_frag_len;
1199 }
1200 
1201 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1202 			       u8 agg_bufs, u32 *raw_cons)
1203 {
1204 	u16 last;
1205 	struct rx_agg_cmp *agg;
1206 
1207 	*raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
1208 	last = RING_CMP(*raw_cons);
1209 	agg = (struct rx_agg_cmp *)
1210 		&cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
1211 	return RX_AGG_CMP_VALID(agg, *raw_cons);
1212 }
1213 
1214 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
1215 					    unsigned int len,
1216 					    dma_addr_t mapping)
1217 {
1218 	struct bnxt *bp = bnapi->bp;
1219 	struct pci_dev *pdev = bp->pdev;
1220 	struct sk_buff *skb;
1221 
1222 	skb = napi_alloc_skb(&bnapi->napi, len);
1223 	if (!skb)
1224 		return NULL;
1225 
1226 	dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh,
1227 				bp->rx_dir);
1228 
1229 	memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN,
1230 	       len + NET_IP_ALIGN);
1231 
1232 	dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh,
1233 				   bp->rx_dir);
1234 
1235 	skb_put(skb, len);
1236 	return skb;
1237 }
1238 
1239 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1240 			   u32 *raw_cons, void *cmp)
1241 {
1242 	struct rx_cmp *rxcmp = cmp;
1243 	u32 tmp_raw_cons = *raw_cons;
1244 	u8 cmp_type, agg_bufs = 0;
1245 
1246 	cmp_type = RX_CMP_TYPE(rxcmp);
1247 
1248 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1249 		agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) &
1250 			    RX_CMP_AGG_BUFS) >>
1251 			   RX_CMP_AGG_BUFS_SHIFT;
1252 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1253 		struct rx_tpa_end_cmp *tpa_end = cmp;
1254 
1255 		if (bp->flags & BNXT_FLAG_CHIP_P5)
1256 			return 0;
1257 
1258 		agg_bufs = TPA_END_AGG_BUFS(tpa_end);
1259 	}
1260 
1261 	if (agg_bufs) {
1262 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1263 			return -EBUSY;
1264 	}
1265 	*raw_cons = tmp_raw_cons;
1266 	return 0;
1267 }
1268 
1269 static void bnxt_queue_fw_reset_work(struct bnxt *bp, unsigned long delay)
1270 {
1271 	if (!(test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)))
1272 		return;
1273 
1274 	if (BNXT_PF(bp))
1275 		queue_delayed_work(bnxt_pf_wq, &bp->fw_reset_task, delay);
1276 	else
1277 		schedule_delayed_work(&bp->fw_reset_task, delay);
1278 }
1279 
1280 static void bnxt_queue_sp_work(struct bnxt *bp)
1281 {
1282 	if (BNXT_PF(bp))
1283 		queue_work(bnxt_pf_wq, &bp->sp_task);
1284 	else
1285 		schedule_work(&bp->sp_task);
1286 }
1287 
1288 static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
1289 {
1290 	if (!rxr->bnapi->in_reset) {
1291 		rxr->bnapi->in_reset = true;
1292 		if (bp->flags & BNXT_FLAG_CHIP_P5)
1293 			set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
1294 		else
1295 			set_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event);
1296 		bnxt_queue_sp_work(bp);
1297 	}
1298 	rxr->rx_next_cons = 0xffff;
1299 }
1300 
1301 static u16 bnxt_alloc_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id)
1302 {
1303 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1304 	u16 idx = agg_id & MAX_TPA_P5_MASK;
1305 
1306 	if (test_bit(idx, map->agg_idx_bmap))
1307 		idx = find_first_zero_bit(map->agg_idx_bmap,
1308 					  BNXT_AGG_IDX_BMAP_SIZE);
1309 	__set_bit(idx, map->agg_idx_bmap);
1310 	map->agg_id_tbl[agg_id] = idx;
1311 	return idx;
1312 }
1313 
1314 static void bnxt_free_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
1315 {
1316 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1317 
1318 	__clear_bit(idx, map->agg_idx_bmap);
1319 }
1320 
1321 static u16 bnxt_lookup_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id)
1322 {
1323 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1324 
1325 	return map->agg_id_tbl[agg_id];
1326 }
1327 
1328 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1329 			   struct rx_tpa_start_cmp *tpa_start,
1330 			   struct rx_tpa_start_cmp_ext *tpa_start1)
1331 {
1332 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
1333 	struct bnxt_tpa_info *tpa_info;
1334 	u16 cons, prod, agg_id;
1335 	struct rx_bd *prod_bd;
1336 	dma_addr_t mapping;
1337 
1338 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
1339 		agg_id = TPA_START_AGG_ID_P5(tpa_start);
1340 		agg_id = bnxt_alloc_agg_idx(rxr, agg_id);
1341 	} else {
1342 		agg_id = TPA_START_AGG_ID(tpa_start);
1343 	}
1344 	cons = tpa_start->rx_tpa_start_cmp_opaque;
1345 	prod = rxr->rx_prod;
1346 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1347 	prod_rx_buf = &rxr->rx_buf_ring[prod];
1348 	tpa_info = &rxr->rx_tpa[agg_id];
1349 
1350 	if (unlikely(cons != rxr->rx_next_cons ||
1351 		     TPA_START_ERROR(tpa_start))) {
1352 		netdev_warn(bp->dev, "TPA cons %x, expected cons %x, error code %x\n",
1353 			    cons, rxr->rx_next_cons,
1354 			    TPA_START_ERROR_CODE(tpa_start1));
1355 		bnxt_sched_reset(bp, rxr);
1356 		return;
1357 	}
1358 	/* Store cfa_code in tpa_info to use in tpa_end
1359 	 * completion processing.
1360 	 */
1361 	tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1);
1362 	prod_rx_buf->data = tpa_info->data;
1363 	prod_rx_buf->data_ptr = tpa_info->data_ptr;
1364 
1365 	mapping = tpa_info->mapping;
1366 	prod_rx_buf->mapping = mapping;
1367 
1368 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
1369 
1370 	prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
1371 
1372 	tpa_info->data = cons_rx_buf->data;
1373 	tpa_info->data_ptr = cons_rx_buf->data_ptr;
1374 	cons_rx_buf->data = NULL;
1375 	tpa_info->mapping = cons_rx_buf->mapping;
1376 
1377 	tpa_info->len =
1378 		le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
1379 				RX_TPA_START_CMP_LEN_SHIFT;
1380 	if (likely(TPA_START_HASH_VALID(tpa_start))) {
1381 		u32 hash_type = TPA_START_HASH_TYPE(tpa_start);
1382 
1383 		tpa_info->hash_type = PKT_HASH_TYPE_L4;
1384 		tpa_info->gso_type = SKB_GSO_TCPV4;
1385 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1386 		if (hash_type == 3 || TPA_START_IS_IPV6(tpa_start1))
1387 			tpa_info->gso_type = SKB_GSO_TCPV6;
1388 		tpa_info->rss_hash =
1389 			le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
1390 	} else {
1391 		tpa_info->hash_type = PKT_HASH_TYPE_NONE;
1392 		tpa_info->gso_type = 0;
1393 		netif_warn(bp, rx_err, bp->dev, "TPA packet without valid hash\n");
1394 	}
1395 	tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
1396 	tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
1397 	tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info);
1398 	tpa_info->agg_count = 0;
1399 
1400 	rxr->rx_prod = NEXT_RX(prod);
1401 	cons = NEXT_RX(cons);
1402 	rxr->rx_next_cons = NEXT_RX(cons);
1403 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1404 
1405 	bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
1406 	rxr->rx_prod = NEXT_RX(rxr->rx_prod);
1407 	cons_rx_buf->data = NULL;
1408 }
1409 
1410 static void bnxt_abort_tpa(struct bnxt_cp_ring_info *cpr, u16 idx, u32 agg_bufs)
1411 {
1412 	if (agg_bufs)
1413 		bnxt_reuse_rx_agg_bufs(cpr, idx, 0, agg_bufs, true);
1414 }
1415 
1416 #ifdef CONFIG_INET
1417 static void bnxt_gro_tunnel(struct sk_buff *skb, __be16 ip_proto)
1418 {
1419 	struct udphdr *uh = NULL;
1420 
1421 	if (ip_proto == htons(ETH_P_IP)) {
1422 		struct iphdr *iph = (struct iphdr *)skb->data;
1423 
1424 		if (iph->protocol == IPPROTO_UDP)
1425 			uh = (struct udphdr *)(iph + 1);
1426 	} else {
1427 		struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1428 
1429 		if (iph->nexthdr == IPPROTO_UDP)
1430 			uh = (struct udphdr *)(iph + 1);
1431 	}
1432 	if (uh) {
1433 		if (uh->check)
1434 			skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL_CSUM;
1435 		else
1436 			skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1437 	}
1438 }
1439 #endif
1440 
1441 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info,
1442 					   int payload_off, int tcp_ts,
1443 					   struct sk_buff *skb)
1444 {
1445 #ifdef CONFIG_INET
1446 	struct tcphdr *th;
1447 	int len, nw_off;
1448 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1449 	u32 hdr_info = tpa_info->hdr_info;
1450 	bool loopback = false;
1451 
1452 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1453 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1454 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1455 
1456 	/* If the packet is an internal loopback packet, the offsets will
1457 	 * have an extra 4 bytes.
1458 	 */
1459 	if (inner_mac_off == 4) {
1460 		loopback = true;
1461 	} else if (inner_mac_off > 4) {
1462 		__be16 proto = *((__be16 *)(skb->data + inner_ip_off -
1463 					    ETH_HLEN - 2));
1464 
1465 		/* We only support inner iPv4/ipv6.  If we don't see the
1466 		 * correct protocol ID, it must be a loopback packet where
1467 		 * the offsets are off by 4.
1468 		 */
1469 		if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6))
1470 			loopback = true;
1471 	}
1472 	if (loopback) {
1473 		/* internal loopback packet, subtract all offsets by 4 */
1474 		inner_ip_off -= 4;
1475 		inner_mac_off -= 4;
1476 		outer_ip_off -= 4;
1477 	}
1478 
1479 	nw_off = inner_ip_off - ETH_HLEN;
1480 	skb_set_network_header(skb, nw_off);
1481 	if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) {
1482 		struct ipv6hdr *iph = ipv6_hdr(skb);
1483 
1484 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1485 		len = skb->len - skb_transport_offset(skb);
1486 		th = tcp_hdr(skb);
1487 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1488 	} else {
1489 		struct iphdr *iph = ip_hdr(skb);
1490 
1491 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1492 		len = skb->len - skb_transport_offset(skb);
1493 		th = tcp_hdr(skb);
1494 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1495 	}
1496 
1497 	if (inner_mac_off) { /* tunnel */
1498 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1499 					    ETH_HLEN - 2));
1500 
1501 		bnxt_gro_tunnel(skb, proto);
1502 	}
1503 #endif
1504 	return skb;
1505 }
1506 
1507 static struct sk_buff *bnxt_gro_func_5750x(struct bnxt_tpa_info *tpa_info,
1508 					   int payload_off, int tcp_ts,
1509 					   struct sk_buff *skb)
1510 {
1511 #ifdef CONFIG_INET
1512 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1513 	u32 hdr_info = tpa_info->hdr_info;
1514 	int iphdr_len, nw_off;
1515 
1516 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1517 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1518 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1519 
1520 	nw_off = inner_ip_off - ETH_HLEN;
1521 	skb_set_network_header(skb, nw_off);
1522 	iphdr_len = (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) ?
1523 		     sizeof(struct ipv6hdr) : sizeof(struct iphdr);
1524 	skb_set_transport_header(skb, nw_off + iphdr_len);
1525 
1526 	if (inner_mac_off) { /* tunnel */
1527 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1528 					    ETH_HLEN - 2));
1529 
1530 		bnxt_gro_tunnel(skb, proto);
1531 	}
1532 #endif
1533 	return skb;
1534 }
1535 
1536 #define BNXT_IPV4_HDR_SIZE	(sizeof(struct iphdr) + sizeof(struct tcphdr))
1537 #define BNXT_IPV6_HDR_SIZE	(sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
1538 
1539 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info,
1540 					   int payload_off, int tcp_ts,
1541 					   struct sk_buff *skb)
1542 {
1543 #ifdef CONFIG_INET
1544 	struct tcphdr *th;
1545 	int len, nw_off, tcp_opt_len = 0;
1546 
1547 	if (tcp_ts)
1548 		tcp_opt_len = 12;
1549 
1550 	if (tpa_info->gso_type == SKB_GSO_TCPV4) {
1551 		struct iphdr *iph;
1552 
1553 		nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
1554 			 ETH_HLEN;
1555 		skb_set_network_header(skb, nw_off);
1556 		iph = ip_hdr(skb);
1557 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1558 		len = skb->len - skb_transport_offset(skb);
1559 		th = tcp_hdr(skb);
1560 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1561 	} else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
1562 		struct ipv6hdr *iph;
1563 
1564 		nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
1565 			 ETH_HLEN;
1566 		skb_set_network_header(skb, nw_off);
1567 		iph = ipv6_hdr(skb);
1568 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1569 		len = skb->len - skb_transport_offset(skb);
1570 		th = tcp_hdr(skb);
1571 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1572 	} else {
1573 		dev_kfree_skb_any(skb);
1574 		return NULL;
1575 	}
1576 
1577 	if (nw_off) /* tunnel */
1578 		bnxt_gro_tunnel(skb, skb->protocol);
1579 #endif
1580 	return skb;
1581 }
1582 
1583 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp,
1584 					   struct bnxt_tpa_info *tpa_info,
1585 					   struct rx_tpa_end_cmp *tpa_end,
1586 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1587 					   struct sk_buff *skb)
1588 {
1589 #ifdef CONFIG_INET
1590 	int payload_off;
1591 	u16 segs;
1592 
1593 	segs = TPA_END_TPA_SEGS(tpa_end);
1594 	if (segs == 1)
1595 		return skb;
1596 
1597 	NAPI_GRO_CB(skb)->count = segs;
1598 	skb_shinfo(skb)->gso_size =
1599 		le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
1600 	skb_shinfo(skb)->gso_type = tpa_info->gso_type;
1601 	if (bp->flags & BNXT_FLAG_CHIP_P5)
1602 		payload_off = TPA_END_PAYLOAD_OFF_P5(tpa_end1);
1603 	else
1604 		payload_off = TPA_END_PAYLOAD_OFF(tpa_end);
1605 	skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb);
1606 	if (likely(skb))
1607 		tcp_gro_complete(skb);
1608 #endif
1609 	return skb;
1610 }
1611 
1612 /* Given the cfa_code of a received packet determine which
1613  * netdev (vf-rep or PF) the packet is destined to.
1614  */
1615 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code)
1616 {
1617 	struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code);
1618 
1619 	/* if vf-rep dev is NULL, the must belongs to the PF */
1620 	return dev ? dev : bp->dev;
1621 }
1622 
1623 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
1624 					   struct bnxt_cp_ring_info *cpr,
1625 					   u32 *raw_cons,
1626 					   struct rx_tpa_end_cmp *tpa_end,
1627 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1628 					   u8 *event)
1629 {
1630 	struct bnxt_napi *bnapi = cpr->bnapi;
1631 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1632 	u8 *data_ptr, agg_bufs;
1633 	unsigned int len;
1634 	struct bnxt_tpa_info *tpa_info;
1635 	dma_addr_t mapping;
1636 	struct sk_buff *skb;
1637 	u16 idx = 0, agg_id;
1638 	void *data;
1639 	bool gro;
1640 
1641 	if (unlikely(bnapi->in_reset)) {
1642 		int rc = bnxt_discard_rx(bp, cpr, raw_cons, tpa_end);
1643 
1644 		if (rc < 0)
1645 			return ERR_PTR(-EBUSY);
1646 		return NULL;
1647 	}
1648 
1649 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
1650 		agg_id = TPA_END_AGG_ID_P5(tpa_end);
1651 		agg_id = bnxt_lookup_agg_idx(rxr, agg_id);
1652 		agg_bufs = TPA_END_AGG_BUFS_P5(tpa_end1);
1653 		tpa_info = &rxr->rx_tpa[agg_id];
1654 		if (unlikely(agg_bufs != tpa_info->agg_count)) {
1655 			netdev_warn(bp->dev, "TPA end agg_buf %d != expected agg_bufs %d\n",
1656 				    agg_bufs, tpa_info->agg_count);
1657 			agg_bufs = tpa_info->agg_count;
1658 		}
1659 		tpa_info->agg_count = 0;
1660 		*event |= BNXT_AGG_EVENT;
1661 		bnxt_free_agg_idx(rxr, agg_id);
1662 		idx = agg_id;
1663 		gro = !!(bp->flags & BNXT_FLAG_GRO);
1664 	} else {
1665 		agg_id = TPA_END_AGG_ID(tpa_end);
1666 		agg_bufs = TPA_END_AGG_BUFS(tpa_end);
1667 		tpa_info = &rxr->rx_tpa[agg_id];
1668 		idx = RING_CMP(*raw_cons);
1669 		if (agg_bufs) {
1670 			if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
1671 				return ERR_PTR(-EBUSY);
1672 
1673 			*event |= BNXT_AGG_EVENT;
1674 			idx = NEXT_CMP(idx);
1675 		}
1676 		gro = !!TPA_END_GRO(tpa_end);
1677 	}
1678 	data = tpa_info->data;
1679 	data_ptr = tpa_info->data_ptr;
1680 	prefetch(data_ptr);
1681 	len = tpa_info->len;
1682 	mapping = tpa_info->mapping;
1683 
1684 	if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) {
1685 		bnxt_abort_tpa(cpr, idx, agg_bufs);
1686 		if (agg_bufs > MAX_SKB_FRAGS)
1687 			netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
1688 				    agg_bufs, (int)MAX_SKB_FRAGS);
1689 		return NULL;
1690 	}
1691 
1692 	if (len <= bp->rx_copy_thresh) {
1693 		skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping);
1694 		if (!skb) {
1695 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1696 			cpr->sw_stats.rx.rx_oom_discards += 1;
1697 			return NULL;
1698 		}
1699 	} else {
1700 		u8 *new_data;
1701 		dma_addr_t new_mapping;
1702 
1703 		new_data = __bnxt_alloc_rx_frag(bp, &new_mapping, GFP_ATOMIC);
1704 		if (!new_data) {
1705 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1706 			cpr->sw_stats.rx.rx_oom_discards += 1;
1707 			return NULL;
1708 		}
1709 
1710 		tpa_info->data = new_data;
1711 		tpa_info->data_ptr = new_data + bp->rx_offset;
1712 		tpa_info->mapping = new_mapping;
1713 
1714 		skb = build_skb(data, bp->rx_buf_size);
1715 		dma_unmap_single_attrs(&bp->pdev->dev, mapping,
1716 				       bp->rx_buf_use_size, bp->rx_dir,
1717 				       DMA_ATTR_WEAK_ORDERING);
1718 
1719 		if (!skb) {
1720 			skb_free_frag(data);
1721 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1722 			cpr->sw_stats.rx.rx_oom_discards += 1;
1723 			return NULL;
1724 		}
1725 		skb_reserve(skb, bp->rx_offset);
1726 		skb_put(skb, len);
1727 	}
1728 
1729 	if (agg_bufs) {
1730 		skb = bnxt_rx_agg_pages_skb(bp, cpr, skb, idx, agg_bufs, true);
1731 		if (!skb) {
1732 			/* Page reuse already handled by bnxt_rx_pages(). */
1733 			cpr->sw_stats.rx.rx_oom_discards += 1;
1734 			return NULL;
1735 		}
1736 	}
1737 
1738 	skb->protocol =
1739 		eth_type_trans(skb, bnxt_get_pkt_dev(bp, tpa_info->cfa_code));
1740 
1741 	if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1742 		skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1743 
1744 	if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) &&
1745 	    (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) {
1746 		__be16 vlan_proto = htons(tpa_info->metadata >>
1747 					  RX_CMP_FLAGS2_METADATA_TPID_SFT);
1748 		u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1749 
1750 		if (eth_type_vlan(vlan_proto)) {
1751 			__vlan_hwaccel_put_tag(skb, vlan_proto, vtag);
1752 		} else {
1753 			dev_kfree_skb(skb);
1754 			return NULL;
1755 		}
1756 	}
1757 
1758 	skb_checksum_none_assert(skb);
1759 	if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1760 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1761 		skb->csum_level =
1762 			(tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1763 	}
1764 
1765 	if (gro)
1766 		skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb);
1767 
1768 	return skb;
1769 }
1770 
1771 static void bnxt_tpa_agg(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1772 			 struct rx_agg_cmp *rx_agg)
1773 {
1774 	u16 agg_id = TPA_AGG_AGG_ID(rx_agg);
1775 	struct bnxt_tpa_info *tpa_info;
1776 
1777 	agg_id = bnxt_lookup_agg_idx(rxr, agg_id);
1778 	tpa_info = &rxr->rx_tpa[agg_id];
1779 	BUG_ON(tpa_info->agg_count >= MAX_SKB_FRAGS);
1780 	tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg;
1781 }
1782 
1783 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi,
1784 			     struct sk_buff *skb)
1785 {
1786 	if (skb->dev != bp->dev) {
1787 		/* this packet belongs to a vf-rep */
1788 		bnxt_vf_rep_rx(bp, skb);
1789 		return;
1790 	}
1791 	skb_record_rx_queue(skb, bnapi->index);
1792 	napi_gro_receive(&bnapi->napi, skb);
1793 }
1794 
1795 /* returns the following:
1796  * 1       - 1 packet successfully received
1797  * 0       - successful TPA_START, packet not completed yet
1798  * -EBUSY  - completion ring does not have all the agg buffers yet
1799  * -ENOMEM - packet aborted due to out of memory
1800  * -EIO    - packet aborted due to hw error indicated in BD
1801  */
1802 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1803 		       u32 *raw_cons, u8 *event)
1804 {
1805 	struct bnxt_napi *bnapi = cpr->bnapi;
1806 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1807 	struct net_device *dev = bp->dev;
1808 	struct rx_cmp *rxcmp;
1809 	struct rx_cmp_ext *rxcmp1;
1810 	u32 tmp_raw_cons = *raw_cons;
1811 	u16 cfa_code, cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
1812 	struct bnxt_sw_rx_bd *rx_buf;
1813 	unsigned int len;
1814 	u8 *data_ptr, agg_bufs, cmp_type;
1815 	bool xdp_active = false;
1816 	dma_addr_t dma_addr;
1817 	struct sk_buff *skb;
1818 	struct xdp_buff xdp;
1819 	u32 flags, misc;
1820 	void *data;
1821 	int rc = 0;
1822 
1823 	rxcmp = (struct rx_cmp *)
1824 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1825 
1826 	cmp_type = RX_CMP_TYPE(rxcmp);
1827 
1828 	if (cmp_type == CMP_TYPE_RX_TPA_AGG_CMP) {
1829 		bnxt_tpa_agg(bp, rxr, (struct rx_agg_cmp *)rxcmp);
1830 		goto next_rx_no_prod_no_len;
1831 	}
1832 
1833 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1834 	cp_cons = RING_CMP(tmp_raw_cons);
1835 	rxcmp1 = (struct rx_cmp_ext *)
1836 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1837 
1838 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1839 		return -EBUSY;
1840 
1841 	/* The valid test of the entry must be done first before
1842 	 * reading any further.
1843 	 */
1844 	dma_rmb();
1845 	prod = rxr->rx_prod;
1846 
1847 	if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) {
1848 		bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp,
1849 			       (struct rx_tpa_start_cmp_ext *)rxcmp1);
1850 
1851 		*event |= BNXT_RX_EVENT;
1852 		goto next_rx_no_prod_no_len;
1853 
1854 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1855 		skb = bnxt_tpa_end(bp, cpr, &tmp_raw_cons,
1856 				   (struct rx_tpa_end_cmp *)rxcmp,
1857 				   (struct rx_tpa_end_cmp_ext *)rxcmp1, event);
1858 
1859 		if (IS_ERR(skb))
1860 			return -EBUSY;
1861 
1862 		rc = -ENOMEM;
1863 		if (likely(skb)) {
1864 			bnxt_deliver_skb(bp, bnapi, skb);
1865 			rc = 1;
1866 		}
1867 		*event |= BNXT_RX_EVENT;
1868 		goto next_rx_no_prod_no_len;
1869 	}
1870 
1871 	cons = rxcmp->rx_cmp_opaque;
1872 	if (unlikely(cons != rxr->rx_next_cons)) {
1873 		int rc1 = bnxt_discard_rx(bp, cpr, &tmp_raw_cons, rxcmp);
1874 
1875 		/* 0xffff is forced error, don't print it */
1876 		if (rxr->rx_next_cons != 0xffff)
1877 			netdev_warn(bp->dev, "RX cons %x != expected cons %x\n",
1878 				    cons, rxr->rx_next_cons);
1879 		bnxt_sched_reset(bp, rxr);
1880 		if (rc1)
1881 			return rc1;
1882 		goto next_rx_no_prod_no_len;
1883 	}
1884 	rx_buf = &rxr->rx_buf_ring[cons];
1885 	data = rx_buf->data;
1886 	data_ptr = rx_buf->data_ptr;
1887 	prefetch(data_ptr);
1888 
1889 	misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1);
1890 	agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT;
1891 
1892 	if (agg_bufs) {
1893 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1894 			return -EBUSY;
1895 
1896 		cp_cons = NEXT_CMP(cp_cons);
1897 		*event |= BNXT_AGG_EVENT;
1898 	}
1899 	*event |= BNXT_RX_EVENT;
1900 
1901 	rx_buf->data = NULL;
1902 	if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
1903 		u32 rx_err = le32_to_cpu(rxcmp1->rx_cmp_cfa_code_errors_v2);
1904 
1905 		bnxt_reuse_rx_data(rxr, cons, data);
1906 		if (agg_bufs)
1907 			bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, agg_bufs,
1908 					       false);
1909 
1910 		rc = -EIO;
1911 		if (rx_err & RX_CMPL_ERRORS_BUFFER_ERROR_MASK) {
1912 			bnapi->cp_ring.sw_stats.rx.rx_buf_errors++;
1913 			if (!(bp->flags & BNXT_FLAG_CHIP_P5) &&
1914 			    !(bp->fw_cap & BNXT_FW_CAP_RING_MONITOR)) {
1915 				netdev_warn_once(bp->dev, "RX buffer error %x\n",
1916 						 rx_err);
1917 				bnxt_sched_reset(bp, rxr);
1918 			}
1919 		}
1920 		goto next_rx_no_len;
1921 	}
1922 
1923 	flags = le32_to_cpu(rxcmp->rx_cmp_len_flags_type);
1924 	len = flags >> RX_CMP_LEN_SHIFT;
1925 	dma_addr = rx_buf->mapping;
1926 
1927 	if (bnxt_xdp_attached(bp, rxr)) {
1928 		bnxt_xdp_buff_init(bp, rxr, cons, &data_ptr, &len, &xdp);
1929 		if (agg_bufs) {
1930 			u32 frag_len = bnxt_rx_agg_pages_xdp(bp, cpr, &xdp,
1931 							     cp_cons, agg_bufs,
1932 							     false);
1933 			if (!frag_len) {
1934 				cpr->sw_stats.rx.rx_oom_discards += 1;
1935 				rc = -ENOMEM;
1936 				goto next_rx;
1937 			}
1938 		}
1939 		xdp_active = true;
1940 	}
1941 
1942 	if (xdp_active) {
1943 		if (bnxt_rx_xdp(bp, rxr, cons, xdp, data, &len, event)) {
1944 			rc = 1;
1945 			goto next_rx;
1946 		}
1947 	}
1948 
1949 	if (len <= bp->rx_copy_thresh) {
1950 		skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr);
1951 		bnxt_reuse_rx_data(rxr, cons, data);
1952 		if (!skb) {
1953 			if (agg_bufs) {
1954 				if (!xdp_active)
1955 					bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0,
1956 							       agg_bufs, false);
1957 				else
1958 					bnxt_xdp_buff_frags_free(rxr, &xdp);
1959 			}
1960 			cpr->sw_stats.rx.rx_oom_discards += 1;
1961 			rc = -ENOMEM;
1962 			goto next_rx;
1963 		}
1964 	} else {
1965 		u32 payload;
1966 
1967 		if (rx_buf->data_ptr == data_ptr)
1968 			payload = misc & RX_CMP_PAYLOAD_OFFSET;
1969 		else
1970 			payload = 0;
1971 		skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr,
1972 				      payload | len);
1973 		if (!skb) {
1974 			cpr->sw_stats.rx.rx_oom_discards += 1;
1975 			rc = -ENOMEM;
1976 			goto next_rx;
1977 		}
1978 	}
1979 
1980 	if (agg_bufs) {
1981 		if (!xdp_active) {
1982 			skb = bnxt_rx_agg_pages_skb(bp, cpr, skb, cp_cons, agg_bufs, false);
1983 			if (!skb) {
1984 				cpr->sw_stats.rx.rx_oom_discards += 1;
1985 				rc = -ENOMEM;
1986 				goto next_rx;
1987 			}
1988 		} else {
1989 			skb = bnxt_xdp_build_skb(bp, skb, agg_bufs, rxr->page_pool, &xdp, rxcmp1);
1990 			if (!skb) {
1991 				/* we should be able to free the old skb here */
1992 				bnxt_xdp_buff_frags_free(rxr, &xdp);
1993 				cpr->sw_stats.rx.rx_oom_discards += 1;
1994 				rc = -ENOMEM;
1995 				goto next_rx;
1996 			}
1997 		}
1998 	}
1999 
2000 	if (RX_CMP_HASH_VALID(rxcmp)) {
2001 		u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
2002 		enum pkt_hash_types type = PKT_HASH_TYPE_L4;
2003 
2004 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
2005 		if (hash_type != 1 && hash_type != 3)
2006 			type = PKT_HASH_TYPE_L3;
2007 		skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
2008 	}
2009 
2010 	cfa_code = RX_CMP_CFA_CODE(rxcmp1);
2011 	skb->protocol = eth_type_trans(skb, bnxt_get_pkt_dev(bp, cfa_code));
2012 
2013 	if ((rxcmp1->rx_cmp_flags2 &
2014 	     cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) &&
2015 	    (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) {
2016 		u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
2017 		u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK;
2018 		__be16 vlan_proto = htons(meta_data >>
2019 					  RX_CMP_FLAGS2_METADATA_TPID_SFT);
2020 
2021 		if (eth_type_vlan(vlan_proto)) {
2022 			__vlan_hwaccel_put_tag(skb, vlan_proto, vtag);
2023 		} else {
2024 			dev_kfree_skb(skb);
2025 			goto next_rx;
2026 		}
2027 	}
2028 
2029 	skb_checksum_none_assert(skb);
2030 	if (RX_CMP_L4_CS_OK(rxcmp1)) {
2031 		if (dev->features & NETIF_F_RXCSUM) {
2032 			skb->ip_summed = CHECKSUM_UNNECESSARY;
2033 			skb->csum_level = RX_CMP_ENCAP(rxcmp1);
2034 		}
2035 	} else {
2036 		if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
2037 			if (dev->features & NETIF_F_RXCSUM)
2038 				bnapi->cp_ring.sw_stats.rx.rx_l4_csum_errors++;
2039 		}
2040 	}
2041 
2042 	if (unlikely((flags & RX_CMP_FLAGS_ITYPES_MASK) ==
2043 		     RX_CMP_FLAGS_ITYPE_PTP_W_TS) || bp->ptp_all_rx_tstamp) {
2044 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
2045 			u32 cmpl_ts = le32_to_cpu(rxcmp1->rx_cmp_timestamp);
2046 			u64 ns, ts;
2047 
2048 			if (!bnxt_get_rx_ts_p5(bp, &ts, cmpl_ts)) {
2049 				struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2050 
2051 				spin_lock_bh(&ptp->ptp_lock);
2052 				ns = timecounter_cyc2time(&ptp->tc, ts);
2053 				spin_unlock_bh(&ptp->ptp_lock);
2054 				memset(skb_hwtstamps(skb), 0,
2055 				       sizeof(*skb_hwtstamps(skb)));
2056 				skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
2057 			}
2058 		}
2059 	}
2060 	bnxt_deliver_skb(bp, bnapi, skb);
2061 	rc = 1;
2062 
2063 next_rx:
2064 	cpr->rx_packets += 1;
2065 	cpr->rx_bytes += len;
2066 
2067 next_rx_no_len:
2068 	rxr->rx_prod = NEXT_RX(prod);
2069 	rxr->rx_next_cons = NEXT_RX(cons);
2070 
2071 next_rx_no_prod_no_len:
2072 	*raw_cons = tmp_raw_cons;
2073 
2074 	return rc;
2075 }
2076 
2077 /* In netpoll mode, if we are using a combined completion ring, we need to
2078  * discard the rx packets and recycle the buffers.
2079  */
2080 static int bnxt_force_rx_discard(struct bnxt *bp,
2081 				 struct bnxt_cp_ring_info *cpr,
2082 				 u32 *raw_cons, u8 *event)
2083 {
2084 	u32 tmp_raw_cons = *raw_cons;
2085 	struct rx_cmp_ext *rxcmp1;
2086 	struct rx_cmp *rxcmp;
2087 	u16 cp_cons;
2088 	u8 cmp_type;
2089 	int rc;
2090 
2091 	cp_cons = RING_CMP(tmp_raw_cons);
2092 	rxcmp = (struct rx_cmp *)
2093 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2094 
2095 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
2096 	cp_cons = RING_CMP(tmp_raw_cons);
2097 	rxcmp1 = (struct rx_cmp_ext *)
2098 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2099 
2100 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
2101 		return -EBUSY;
2102 
2103 	/* The valid test of the entry must be done first before
2104 	 * reading any further.
2105 	 */
2106 	dma_rmb();
2107 	cmp_type = RX_CMP_TYPE(rxcmp);
2108 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
2109 		rxcmp1->rx_cmp_cfa_code_errors_v2 |=
2110 			cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
2111 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
2112 		struct rx_tpa_end_cmp_ext *tpa_end1;
2113 
2114 		tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1;
2115 		tpa_end1->rx_tpa_end_cmp_errors_v2 |=
2116 			cpu_to_le32(RX_TPA_END_CMP_ERRORS);
2117 	}
2118 	rc = bnxt_rx_pkt(bp, cpr, raw_cons, event);
2119 	if (rc && rc != -EBUSY)
2120 		cpr->sw_stats.rx.rx_netpoll_discards += 1;
2121 	return rc;
2122 }
2123 
2124 u32 bnxt_fw_health_readl(struct bnxt *bp, int reg_idx)
2125 {
2126 	struct bnxt_fw_health *fw_health = bp->fw_health;
2127 	u32 reg = fw_health->regs[reg_idx];
2128 	u32 reg_type, reg_off, val = 0;
2129 
2130 	reg_type = BNXT_FW_HEALTH_REG_TYPE(reg);
2131 	reg_off = BNXT_FW_HEALTH_REG_OFF(reg);
2132 	switch (reg_type) {
2133 	case BNXT_FW_HEALTH_REG_TYPE_CFG:
2134 		pci_read_config_dword(bp->pdev, reg_off, &val);
2135 		break;
2136 	case BNXT_FW_HEALTH_REG_TYPE_GRC:
2137 		reg_off = fw_health->mapped_regs[reg_idx];
2138 		fallthrough;
2139 	case BNXT_FW_HEALTH_REG_TYPE_BAR0:
2140 		val = readl(bp->bar0 + reg_off);
2141 		break;
2142 	case BNXT_FW_HEALTH_REG_TYPE_BAR1:
2143 		val = readl(bp->bar1 + reg_off);
2144 		break;
2145 	}
2146 	if (reg_idx == BNXT_FW_RESET_INPROG_REG)
2147 		val &= fw_health->fw_reset_inprog_reg_mask;
2148 	return val;
2149 }
2150 
2151 static u16 bnxt_agg_ring_id_to_grp_idx(struct bnxt *bp, u16 ring_id)
2152 {
2153 	int i;
2154 
2155 	for (i = 0; i < bp->rx_nr_rings; i++) {
2156 		u16 grp_idx = bp->rx_ring[i].bnapi->index;
2157 		struct bnxt_ring_grp_info *grp_info;
2158 
2159 		grp_info = &bp->grp_info[grp_idx];
2160 		if (grp_info->agg_fw_ring_id == ring_id)
2161 			return grp_idx;
2162 	}
2163 	return INVALID_HW_RING_ID;
2164 }
2165 
2166 static void bnxt_event_error_report(struct bnxt *bp, u32 data1, u32 data2)
2167 {
2168 	u32 err_type = BNXT_EVENT_ERROR_REPORT_TYPE(data1);
2169 
2170 	switch (err_type) {
2171 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_INVALID_SIGNAL:
2172 		netdev_err(bp->dev, "1PPS: Received invalid signal on pin%lu from the external source. Please fix the signal and reconfigure the pin\n",
2173 			   BNXT_EVENT_INVALID_SIGNAL_DATA(data2));
2174 		break;
2175 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_PAUSE_STORM:
2176 		netdev_warn(bp->dev, "Pause Storm detected!\n");
2177 		break;
2178 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_DOORBELL_DROP_THRESHOLD:
2179 		netdev_warn(bp->dev, "One or more MMIO doorbells dropped by the device!\n");
2180 		break;
2181 	default:
2182 		netdev_err(bp->dev, "FW reported unknown error type %u\n",
2183 			   err_type);
2184 		break;
2185 	}
2186 }
2187 
2188 #define BNXT_GET_EVENT_PORT(data)	\
2189 	((data) &			\
2190 	 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK)
2191 
2192 #define BNXT_EVENT_RING_TYPE(data2)	\
2193 	((data2) &			\
2194 	 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_MASK)
2195 
2196 #define BNXT_EVENT_RING_TYPE_RX(data2)	\
2197 	(BNXT_EVENT_RING_TYPE(data2) ==	\
2198 	 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_RX)
2199 
2200 #define BNXT_EVENT_PHC_EVENT_TYPE(data1)	\
2201 	(((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_MASK) >>\
2202 	 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_SFT)
2203 
2204 #define BNXT_EVENT_PHC_RTC_UPDATE(data1)	\
2205 	(((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_MASK) >>\
2206 	 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_SFT)
2207 
2208 #define BNXT_PHC_BITS	48
2209 
2210 static int bnxt_async_event_process(struct bnxt *bp,
2211 				    struct hwrm_async_event_cmpl *cmpl)
2212 {
2213 	u16 event_id = le16_to_cpu(cmpl->event_id);
2214 	u32 data1 = le32_to_cpu(cmpl->event_data1);
2215 	u32 data2 = le32_to_cpu(cmpl->event_data2);
2216 
2217 	netdev_dbg(bp->dev, "hwrm event 0x%x {0x%x, 0x%x}\n",
2218 		   event_id, data1, data2);
2219 
2220 	/* TODO CHIMP_FW: Define event id's for link change, error etc */
2221 	switch (event_id) {
2222 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: {
2223 		struct bnxt_link_info *link_info = &bp->link_info;
2224 
2225 		if (BNXT_VF(bp))
2226 			goto async_event_process_exit;
2227 
2228 		/* print unsupported speed warning in forced speed mode only */
2229 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) &&
2230 		    (data1 & 0x20000)) {
2231 			u16 fw_speed = link_info->force_link_speed;
2232 			u32 speed = bnxt_fw_to_ethtool_speed(fw_speed);
2233 
2234 			if (speed != SPEED_UNKNOWN)
2235 				netdev_warn(bp->dev, "Link speed %d no longer supported\n",
2236 					    speed);
2237 		}
2238 		set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event);
2239 	}
2240 		fallthrough;
2241 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE:
2242 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE:
2243 		set_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, &bp->sp_event);
2244 		fallthrough;
2245 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
2246 		set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
2247 		break;
2248 	case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD:
2249 		set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event);
2250 		break;
2251 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: {
2252 		u16 port_id = BNXT_GET_EVENT_PORT(data1);
2253 
2254 		if (BNXT_VF(bp))
2255 			break;
2256 
2257 		if (bp->pf.port_id != port_id)
2258 			break;
2259 
2260 		set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event);
2261 		break;
2262 	}
2263 	case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE:
2264 		if (BNXT_PF(bp))
2265 			goto async_event_process_exit;
2266 		set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event);
2267 		break;
2268 	case ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY: {
2269 		char *type_str = "Solicited";
2270 
2271 		if (!bp->fw_health)
2272 			goto async_event_process_exit;
2273 
2274 		bp->fw_reset_timestamp = jiffies;
2275 		bp->fw_reset_min_dsecs = cmpl->timestamp_lo;
2276 		if (!bp->fw_reset_min_dsecs)
2277 			bp->fw_reset_min_dsecs = BNXT_DFLT_FW_RST_MIN_DSECS;
2278 		bp->fw_reset_max_dsecs = le16_to_cpu(cmpl->timestamp_hi);
2279 		if (!bp->fw_reset_max_dsecs)
2280 			bp->fw_reset_max_dsecs = BNXT_DFLT_FW_RST_MAX_DSECS;
2281 		if (EVENT_DATA1_RESET_NOTIFY_FW_ACTIVATION(data1)) {
2282 			set_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state);
2283 		} else if (EVENT_DATA1_RESET_NOTIFY_FATAL(data1)) {
2284 			type_str = "Fatal";
2285 			bp->fw_health->fatalities++;
2286 			set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
2287 		} else if (data2 && BNXT_FW_STATUS_HEALTHY !=
2288 			   EVENT_DATA2_RESET_NOTIFY_FW_STATUS_CODE(data2)) {
2289 			type_str = "Non-fatal";
2290 			bp->fw_health->survivals++;
2291 			set_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state);
2292 		}
2293 		netif_warn(bp, hw, bp->dev,
2294 			   "%s firmware reset event, data1: 0x%x, data2: 0x%x, min wait %u ms, max wait %u ms\n",
2295 			   type_str, data1, data2,
2296 			   bp->fw_reset_min_dsecs * 100,
2297 			   bp->fw_reset_max_dsecs * 100);
2298 		set_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event);
2299 		break;
2300 	}
2301 	case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY: {
2302 		struct bnxt_fw_health *fw_health = bp->fw_health;
2303 		char *status_desc = "healthy";
2304 		u32 status;
2305 
2306 		if (!fw_health)
2307 			goto async_event_process_exit;
2308 
2309 		if (!EVENT_DATA1_RECOVERY_ENABLED(data1)) {
2310 			fw_health->enabled = false;
2311 			netif_info(bp, drv, bp->dev, "Driver recovery watchdog is disabled\n");
2312 			break;
2313 		}
2314 		fw_health->primary = EVENT_DATA1_RECOVERY_MASTER_FUNC(data1);
2315 		fw_health->tmr_multiplier =
2316 			DIV_ROUND_UP(fw_health->polling_dsecs * HZ,
2317 				     bp->current_interval * 10);
2318 		fw_health->tmr_counter = fw_health->tmr_multiplier;
2319 		if (!fw_health->enabled)
2320 			fw_health->last_fw_heartbeat =
2321 				bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
2322 		fw_health->last_fw_reset_cnt =
2323 			bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
2324 		status = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
2325 		if (status != BNXT_FW_STATUS_HEALTHY)
2326 			status_desc = "unhealthy";
2327 		netif_info(bp, drv, bp->dev,
2328 			   "Driver recovery watchdog, role: %s, firmware status: 0x%x (%s), resets: %u\n",
2329 			   fw_health->primary ? "primary" : "backup", status,
2330 			   status_desc, fw_health->last_fw_reset_cnt);
2331 		if (!fw_health->enabled) {
2332 			/* Make sure tmr_counter is set and visible to
2333 			 * bnxt_health_check() before setting enabled to true.
2334 			 */
2335 			smp_wmb();
2336 			fw_health->enabled = true;
2337 		}
2338 		goto async_event_process_exit;
2339 	}
2340 	case ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION:
2341 		netif_notice(bp, hw, bp->dev,
2342 			     "Received firmware debug notification, data1: 0x%x, data2: 0x%x\n",
2343 			     data1, data2);
2344 		goto async_event_process_exit;
2345 	case ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG: {
2346 		struct bnxt_rx_ring_info *rxr;
2347 		u16 grp_idx;
2348 
2349 		if (bp->flags & BNXT_FLAG_CHIP_P5)
2350 			goto async_event_process_exit;
2351 
2352 		netdev_warn(bp->dev, "Ring monitor event, ring type %lu id 0x%x\n",
2353 			    BNXT_EVENT_RING_TYPE(data2), data1);
2354 		if (!BNXT_EVENT_RING_TYPE_RX(data2))
2355 			goto async_event_process_exit;
2356 
2357 		grp_idx = bnxt_agg_ring_id_to_grp_idx(bp, data1);
2358 		if (grp_idx == INVALID_HW_RING_ID) {
2359 			netdev_warn(bp->dev, "Unknown RX agg ring id 0x%x\n",
2360 				    data1);
2361 			goto async_event_process_exit;
2362 		}
2363 		rxr = bp->bnapi[grp_idx]->rx_ring;
2364 		bnxt_sched_reset(bp, rxr);
2365 		goto async_event_process_exit;
2366 	}
2367 	case ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST: {
2368 		struct bnxt_fw_health *fw_health = bp->fw_health;
2369 
2370 		netif_notice(bp, hw, bp->dev,
2371 			     "Received firmware echo request, data1: 0x%x, data2: 0x%x\n",
2372 			     data1, data2);
2373 		if (fw_health) {
2374 			fw_health->echo_req_data1 = data1;
2375 			fw_health->echo_req_data2 = data2;
2376 			set_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event);
2377 			break;
2378 		}
2379 		goto async_event_process_exit;
2380 	}
2381 	case ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP: {
2382 		bnxt_ptp_pps_event(bp, data1, data2);
2383 		goto async_event_process_exit;
2384 	}
2385 	case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT: {
2386 		bnxt_event_error_report(bp, data1, data2);
2387 		goto async_event_process_exit;
2388 	}
2389 	case ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE: {
2390 		switch (BNXT_EVENT_PHC_EVENT_TYPE(data1)) {
2391 		case ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_PHC_RTC_UPDATE:
2392 			if (bp->fw_cap & BNXT_FW_CAP_PTP_RTC) {
2393 				struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2394 				u64 ns;
2395 
2396 				spin_lock_bh(&ptp->ptp_lock);
2397 				bnxt_ptp_update_current_time(bp);
2398 				ns = (((u64)BNXT_EVENT_PHC_RTC_UPDATE(data1) <<
2399 				       BNXT_PHC_BITS) | ptp->current_time);
2400 				bnxt_ptp_rtc_timecounter_init(ptp, ns);
2401 				spin_unlock_bh(&ptp->ptp_lock);
2402 			}
2403 			break;
2404 		}
2405 		goto async_event_process_exit;
2406 	}
2407 	case ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE: {
2408 		u16 seq_id = le32_to_cpu(cmpl->event_data2) & 0xffff;
2409 
2410 		hwrm_update_token(bp, seq_id, BNXT_HWRM_DEFERRED);
2411 		goto async_event_process_exit;
2412 	}
2413 	default:
2414 		goto async_event_process_exit;
2415 	}
2416 	bnxt_queue_sp_work(bp);
2417 async_event_process_exit:
2418 	bnxt_ulp_async_events(bp, cmpl);
2419 	return 0;
2420 }
2421 
2422 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
2423 {
2424 	u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
2425 	struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
2426 	struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
2427 				(struct hwrm_fwd_req_cmpl *)txcmp;
2428 
2429 	switch (cmpl_type) {
2430 	case CMPL_BASE_TYPE_HWRM_DONE:
2431 		seq_id = le16_to_cpu(h_cmpl->sequence_id);
2432 		hwrm_update_token(bp, seq_id, BNXT_HWRM_COMPLETE);
2433 		break;
2434 
2435 	case CMPL_BASE_TYPE_HWRM_FWD_REQ:
2436 		vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
2437 
2438 		if ((vf_id < bp->pf.first_vf_id) ||
2439 		    (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
2440 			netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
2441 				   vf_id);
2442 			return -EINVAL;
2443 		}
2444 
2445 		set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
2446 		set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event);
2447 		bnxt_queue_sp_work(bp);
2448 		break;
2449 
2450 	case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
2451 		bnxt_async_event_process(bp,
2452 					 (struct hwrm_async_event_cmpl *)txcmp);
2453 		break;
2454 
2455 	default:
2456 		break;
2457 	}
2458 
2459 	return 0;
2460 }
2461 
2462 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
2463 {
2464 	struct bnxt_napi *bnapi = dev_instance;
2465 	struct bnxt *bp = bnapi->bp;
2466 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2467 	u32 cons = RING_CMP(cpr->cp_raw_cons);
2468 
2469 	cpr->event_ctr++;
2470 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
2471 	napi_schedule(&bnapi->napi);
2472 	return IRQ_HANDLED;
2473 }
2474 
2475 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
2476 {
2477 	u32 raw_cons = cpr->cp_raw_cons;
2478 	u16 cons = RING_CMP(raw_cons);
2479 	struct tx_cmp *txcmp;
2480 
2481 	txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2482 
2483 	return TX_CMP_VALID(txcmp, raw_cons);
2484 }
2485 
2486 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
2487 {
2488 	struct bnxt_napi *bnapi = dev_instance;
2489 	struct bnxt *bp = bnapi->bp;
2490 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2491 	u32 cons = RING_CMP(cpr->cp_raw_cons);
2492 	u32 int_status;
2493 
2494 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
2495 
2496 	if (!bnxt_has_work(bp, cpr)) {
2497 		int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
2498 		/* return if erroneous interrupt */
2499 		if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
2500 			return IRQ_NONE;
2501 	}
2502 
2503 	/* disable ring IRQ */
2504 	BNXT_CP_DB_IRQ_DIS(cpr->cp_db.doorbell);
2505 
2506 	/* Return here if interrupt is shared and is disabled. */
2507 	if (unlikely(atomic_read(&bp->intr_sem) != 0))
2508 		return IRQ_HANDLED;
2509 
2510 	napi_schedule(&bnapi->napi);
2511 	return IRQ_HANDLED;
2512 }
2513 
2514 static int __bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2515 			    int budget)
2516 {
2517 	struct bnxt_napi *bnapi = cpr->bnapi;
2518 	u32 raw_cons = cpr->cp_raw_cons;
2519 	u32 cons;
2520 	int tx_pkts = 0;
2521 	int rx_pkts = 0;
2522 	u8 event = 0;
2523 	struct tx_cmp *txcmp;
2524 
2525 	cpr->has_more_work = 0;
2526 	cpr->had_work_done = 1;
2527 	while (1) {
2528 		int rc;
2529 
2530 		cons = RING_CMP(raw_cons);
2531 		txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2532 
2533 		if (!TX_CMP_VALID(txcmp, raw_cons))
2534 			break;
2535 
2536 		/* The valid test of the entry must be done first before
2537 		 * reading any further.
2538 		 */
2539 		dma_rmb();
2540 		if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) {
2541 			tx_pkts++;
2542 			/* return full budget so NAPI will complete. */
2543 			if (unlikely(tx_pkts >= bp->tx_wake_thresh)) {
2544 				rx_pkts = budget;
2545 				raw_cons = NEXT_RAW_CMP(raw_cons);
2546 				if (budget)
2547 					cpr->has_more_work = 1;
2548 				break;
2549 			}
2550 		} else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
2551 			if (likely(budget))
2552 				rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
2553 			else
2554 				rc = bnxt_force_rx_discard(bp, cpr, &raw_cons,
2555 							   &event);
2556 			if (likely(rc >= 0))
2557 				rx_pkts += rc;
2558 			/* Increment rx_pkts when rc is -ENOMEM to count towards
2559 			 * the NAPI budget.  Otherwise, we may potentially loop
2560 			 * here forever if we consistently cannot allocate
2561 			 * buffers.
2562 			 */
2563 			else if (rc == -ENOMEM && budget)
2564 				rx_pkts++;
2565 			else if (rc == -EBUSY)	/* partial completion */
2566 				break;
2567 		} else if (unlikely((TX_CMP_TYPE(txcmp) ==
2568 				     CMPL_BASE_TYPE_HWRM_DONE) ||
2569 				    (TX_CMP_TYPE(txcmp) ==
2570 				     CMPL_BASE_TYPE_HWRM_FWD_REQ) ||
2571 				    (TX_CMP_TYPE(txcmp) ==
2572 				     CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) {
2573 			bnxt_hwrm_handler(bp, txcmp);
2574 		}
2575 		raw_cons = NEXT_RAW_CMP(raw_cons);
2576 
2577 		if (rx_pkts && rx_pkts == budget) {
2578 			cpr->has_more_work = 1;
2579 			break;
2580 		}
2581 	}
2582 
2583 	if (event & BNXT_REDIRECT_EVENT)
2584 		xdp_do_flush();
2585 
2586 	if (event & BNXT_TX_EVENT) {
2587 		struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
2588 		u16 prod = txr->tx_prod;
2589 
2590 		/* Sync BD data before updating doorbell */
2591 		wmb();
2592 
2593 		bnxt_db_write_relaxed(bp, &txr->tx_db, prod);
2594 	}
2595 
2596 	cpr->cp_raw_cons = raw_cons;
2597 	bnapi->tx_pkts += tx_pkts;
2598 	bnapi->events |= event;
2599 	return rx_pkts;
2600 }
2601 
2602 static void __bnxt_poll_work_done(struct bnxt *bp, struct bnxt_napi *bnapi)
2603 {
2604 	if (bnapi->tx_pkts) {
2605 		bnapi->tx_int(bp, bnapi, bnapi->tx_pkts);
2606 		bnapi->tx_pkts = 0;
2607 	}
2608 
2609 	if ((bnapi->events & BNXT_RX_EVENT) && !(bnapi->in_reset)) {
2610 		struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2611 
2612 		bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
2613 	}
2614 	if (bnapi->events & BNXT_AGG_EVENT) {
2615 		struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2616 
2617 		bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
2618 	}
2619 	bnapi->events = 0;
2620 }
2621 
2622 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2623 			  int budget)
2624 {
2625 	struct bnxt_napi *bnapi = cpr->bnapi;
2626 	int rx_pkts;
2627 
2628 	rx_pkts = __bnxt_poll_work(bp, cpr, budget);
2629 
2630 	/* ACK completion ring before freeing tx ring and producing new
2631 	 * buffers in rx/agg rings to prevent overflowing the completion
2632 	 * ring.
2633 	 */
2634 	bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons);
2635 
2636 	__bnxt_poll_work_done(bp, bnapi);
2637 	return rx_pkts;
2638 }
2639 
2640 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget)
2641 {
2642 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2643 	struct bnxt *bp = bnapi->bp;
2644 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2645 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2646 	struct tx_cmp *txcmp;
2647 	struct rx_cmp_ext *rxcmp1;
2648 	u32 cp_cons, tmp_raw_cons;
2649 	u32 raw_cons = cpr->cp_raw_cons;
2650 	u32 rx_pkts = 0;
2651 	u8 event = 0;
2652 
2653 	while (1) {
2654 		int rc;
2655 
2656 		cp_cons = RING_CMP(raw_cons);
2657 		txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2658 
2659 		if (!TX_CMP_VALID(txcmp, raw_cons))
2660 			break;
2661 
2662 		/* The valid test of the entry must be done first before
2663 		 * reading any further.
2664 		 */
2665 		dma_rmb();
2666 		if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
2667 			tmp_raw_cons = NEXT_RAW_CMP(raw_cons);
2668 			cp_cons = RING_CMP(tmp_raw_cons);
2669 			rxcmp1 = (struct rx_cmp_ext *)
2670 			  &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2671 
2672 			if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
2673 				break;
2674 
2675 			/* force an error to recycle the buffer */
2676 			rxcmp1->rx_cmp_cfa_code_errors_v2 |=
2677 				cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
2678 
2679 			rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
2680 			if (likely(rc == -EIO) && budget)
2681 				rx_pkts++;
2682 			else if (rc == -EBUSY)	/* partial completion */
2683 				break;
2684 		} else if (unlikely(TX_CMP_TYPE(txcmp) ==
2685 				    CMPL_BASE_TYPE_HWRM_DONE)) {
2686 			bnxt_hwrm_handler(bp, txcmp);
2687 		} else {
2688 			netdev_err(bp->dev,
2689 				   "Invalid completion received on special ring\n");
2690 		}
2691 		raw_cons = NEXT_RAW_CMP(raw_cons);
2692 
2693 		if (rx_pkts == budget)
2694 			break;
2695 	}
2696 
2697 	cpr->cp_raw_cons = raw_cons;
2698 	BNXT_DB_CQ(&cpr->cp_db, cpr->cp_raw_cons);
2699 	bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
2700 
2701 	if (event & BNXT_AGG_EVENT)
2702 		bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
2703 
2704 	if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) {
2705 		napi_complete_done(napi, rx_pkts);
2706 		BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2707 	}
2708 	return rx_pkts;
2709 }
2710 
2711 static int bnxt_poll(struct napi_struct *napi, int budget)
2712 {
2713 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2714 	struct bnxt *bp = bnapi->bp;
2715 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2716 	int work_done = 0;
2717 
2718 	if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) {
2719 		napi_complete(napi);
2720 		return 0;
2721 	}
2722 	while (1) {
2723 		work_done += bnxt_poll_work(bp, cpr, budget - work_done);
2724 
2725 		if (work_done >= budget) {
2726 			if (!budget)
2727 				BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2728 			break;
2729 		}
2730 
2731 		if (!bnxt_has_work(bp, cpr)) {
2732 			if (napi_complete_done(napi, work_done))
2733 				BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2734 			break;
2735 		}
2736 	}
2737 	if (bp->flags & BNXT_FLAG_DIM) {
2738 		struct dim_sample dim_sample = {};
2739 
2740 		dim_update_sample(cpr->event_ctr,
2741 				  cpr->rx_packets,
2742 				  cpr->rx_bytes,
2743 				  &dim_sample);
2744 		net_dim(&cpr->dim, dim_sample);
2745 	}
2746 	return work_done;
2747 }
2748 
2749 static int __bnxt_poll_cqs(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
2750 {
2751 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2752 	int i, work_done = 0;
2753 
2754 	for (i = 0; i < 2; i++) {
2755 		struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i];
2756 
2757 		if (cpr2) {
2758 			work_done += __bnxt_poll_work(bp, cpr2,
2759 						      budget - work_done);
2760 			cpr->has_more_work |= cpr2->has_more_work;
2761 		}
2762 	}
2763 	return work_done;
2764 }
2765 
2766 static void __bnxt_poll_cqs_done(struct bnxt *bp, struct bnxt_napi *bnapi,
2767 				 u64 dbr_type)
2768 {
2769 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2770 	int i;
2771 
2772 	for (i = 0; i < 2; i++) {
2773 		struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i];
2774 		struct bnxt_db_info *db;
2775 
2776 		if (cpr2 && cpr2->had_work_done) {
2777 			db = &cpr2->cp_db;
2778 			bnxt_writeq(bp, db->db_key64 | dbr_type |
2779 				    RING_CMP(cpr2->cp_raw_cons), db->doorbell);
2780 			cpr2->had_work_done = 0;
2781 		}
2782 	}
2783 	__bnxt_poll_work_done(bp, bnapi);
2784 }
2785 
2786 static int bnxt_poll_p5(struct napi_struct *napi, int budget)
2787 {
2788 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2789 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2790 	struct bnxt_cp_ring_info *cpr_rx;
2791 	u32 raw_cons = cpr->cp_raw_cons;
2792 	struct bnxt *bp = bnapi->bp;
2793 	struct nqe_cn *nqcmp;
2794 	int work_done = 0;
2795 	u32 cons;
2796 
2797 	if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) {
2798 		napi_complete(napi);
2799 		return 0;
2800 	}
2801 	if (cpr->has_more_work) {
2802 		cpr->has_more_work = 0;
2803 		work_done = __bnxt_poll_cqs(bp, bnapi, budget);
2804 	}
2805 	while (1) {
2806 		cons = RING_CMP(raw_cons);
2807 		nqcmp = &cpr->nq_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2808 
2809 		if (!NQ_CMP_VALID(nqcmp, raw_cons)) {
2810 			if (cpr->has_more_work)
2811 				break;
2812 
2813 			__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL);
2814 			cpr->cp_raw_cons = raw_cons;
2815 			if (napi_complete_done(napi, work_done))
2816 				BNXT_DB_NQ_ARM_P5(&cpr->cp_db,
2817 						  cpr->cp_raw_cons);
2818 			goto poll_done;
2819 		}
2820 
2821 		/* The valid test of the entry must be done first before
2822 		 * reading any further.
2823 		 */
2824 		dma_rmb();
2825 
2826 		if (nqcmp->type == cpu_to_le16(NQ_CN_TYPE_CQ_NOTIFICATION)) {
2827 			u32 idx = le32_to_cpu(nqcmp->cq_handle_low);
2828 			struct bnxt_cp_ring_info *cpr2;
2829 
2830 			/* No more budget for RX work */
2831 			if (budget && work_done >= budget && idx == BNXT_RX_HDL)
2832 				break;
2833 
2834 			cpr2 = cpr->cp_ring_arr[idx];
2835 			work_done += __bnxt_poll_work(bp, cpr2,
2836 						      budget - work_done);
2837 			cpr->has_more_work |= cpr2->has_more_work;
2838 		} else {
2839 			bnxt_hwrm_handler(bp, (struct tx_cmp *)nqcmp);
2840 		}
2841 		raw_cons = NEXT_RAW_CMP(raw_cons);
2842 	}
2843 	__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ);
2844 	if (raw_cons != cpr->cp_raw_cons) {
2845 		cpr->cp_raw_cons = raw_cons;
2846 		BNXT_DB_NQ_P5(&cpr->cp_db, raw_cons);
2847 	}
2848 poll_done:
2849 	cpr_rx = cpr->cp_ring_arr[BNXT_RX_HDL];
2850 	if (cpr_rx && (bp->flags & BNXT_FLAG_DIM)) {
2851 		struct dim_sample dim_sample = {};
2852 
2853 		dim_update_sample(cpr->event_ctr,
2854 				  cpr_rx->rx_packets,
2855 				  cpr_rx->rx_bytes,
2856 				  &dim_sample);
2857 		net_dim(&cpr->dim, dim_sample);
2858 	}
2859 	return work_done;
2860 }
2861 
2862 static void bnxt_free_tx_skbs(struct bnxt *bp)
2863 {
2864 	int i, max_idx;
2865 	struct pci_dev *pdev = bp->pdev;
2866 
2867 	if (!bp->tx_ring)
2868 		return;
2869 
2870 	max_idx = bp->tx_nr_pages * TX_DESC_CNT;
2871 	for (i = 0; i < bp->tx_nr_rings; i++) {
2872 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2873 		int j;
2874 
2875 		if (!txr->tx_buf_ring)
2876 			continue;
2877 
2878 		for (j = 0; j < max_idx;) {
2879 			struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
2880 			struct sk_buff *skb;
2881 			int k, last;
2882 
2883 			if (i < bp->tx_nr_rings_xdp &&
2884 			    tx_buf->action == XDP_REDIRECT) {
2885 				dma_unmap_single(&pdev->dev,
2886 					dma_unmap_addr(tx_buf, mapping),
2887 					dma_unmap_len(tx_buf, len),
2888 					DMA_TO_DEVICE);
2889 				xdp_return_frame(tx_buf->xdpf);
2890 				tx_buf->action = 0;
2891 				tx_buf->xdpf = NULL;
2892 				j++;
2893 				continue;
2894 			}
2895 
2896 			skb = tx_buf->skb;
2897 			if (!skb) {
2898 				j++;
2899 				continue;
2900 			}
2901 
2902 			tx_buf->skb = NULL;
2903 
2904 			if (tx_buf->is_push) {
2905 				dev_kfree_skb(skb);
2906 				j += 2;
2907 				continue;
2908 			}
2909 
2910 			dma_unmap_single(&pdev->dev,
2911 					 dma_unmap_addr(tx_buf, mapping),
2912 					 skb_headlen(skb),
2913 					 DMA_TO_DEVICE);
2914 
2915 			last = tx_buf->nr_frags;
2916 			j += 2;
2917 			for (k = 0; k < last; k++, j++) {
2918 				int ring_idx = j & bp->tx_ring_mask;
2919 				skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2920 
2921 				tx_buf = &txr->tx_buf_ring[ring_idx];
2922 				dma_unmap_page(
2923 					&pdev->dev,
2924 					dma_unmap_addr(tx_buf, mapping),
2925 					skb_frag_size(frag), DMA_TO_DEVICE);
2926 			}
2927 			dev_kfree_skb(skb);
2928 		}
2929 		netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
2930 	}
2931 }
2932 
2933 static void bnxt_free_one_rx_ring_skbs(struct bnxt *bp, int ring_nr)
2934 {
2935 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
2936 	struct pci_dev *pdev = bp->pdev;
2937 	struct bnxt_tpa_idx_map *map;
2938 	int i, max_idx, max_agg_idx;
2939 
2940 	max_idx = bp->rx_nr_pages * RX_DESC_CNT;
2941 	max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
2942 	if (!rxr->rx_tpa)
2943 		goto skip_rx_tpa_free;
2944 
2945 	for (i = 0; i < bp->max_tpa; i++) {
2946 		struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[i];
2947 		u8 *data = tpa_info->data;
2948 
2949 		if (!data)
2950 			continue;
2951 
2952 		dma_unmap_single_attrs(&pdev->dev, tpa_info->mapping,
2953 				       bp->rx_buf_use_size, bp->rx_dir,
2954 				       DMA_ATTR_WEAK_ORDERING);
2955 
2956 		tpa_info->data = NULL;
2957 
2958 		skb_free_frag(data);
2959 	}
2960 
2961 skip_rx_tpa_free:
2962 	if (!rxr->rx_buf_ring)
2963 		goto skip_rx_buf_free;
2964 
2965 	for (i = 0; i < max_idx; i++) {
2966 		struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[i];
2967 		dma_addr_t mapping = rx_buf->mapping;
2968 		void *data = rx_buf->data;
2969 
2970 		if (!data)
2971 			continue;
2972 
2973 		rx_buf->data = NULL;
2974 		if (BNXT_RX_PAGE_MODE(bp)) {
2975 			mapping -= bp->rx_dma_offset;
2976 			dma_unmap_page_attrs(&pdev->dev, mapping, PAGE_SIZE,
2977 					     bp->rx_dir,
2978 					     DMA_ATTR_WEAK_ORDERING);
2979 			page_pool_recycle_direct(rxr->page_pool, data);
2980 		} else {
2981 			dma_unmap_single_attrs(&pdev->dev, mapping,
2982 					       bp->rx_buf_use_size, bp->rx_dir,
2983 					       DMA_ATTR_WEAK_ORDERING);
2984 			skb_free_frag(data);
2985 		}
2986 	}
2987 
2988 skip_rx_buf_free:
2989 	if (!rxr->rx_agg_ring)
2990 		goto skip_rx_agg_free;
2991 
2992 	for (i = 0; i < max_agg_idx; i++) {
2993 		struct bnxt_sw_rx_agg_bd *rx_agg_buf = &rxr->rx_agg_ring[i];
2994 		struct page *page = rx_agg_buf->page;
2995 
2996 		if (!page)
2997 			continue;
2998 
2999 		if (BNXT_RX_PAGE_MODE(bp)) {
3000 			dma_unmap_page_attrs(&pdev->dev, rx_agg_buf->mapping,
3001 					     BNXT_RX_PAGE_SIZE, bp->rx_dir,
3002 					     DMA_ATTR_WEAK_ORDERING);
3003 			rx_agg_buf->page = NULL;
3004 			__clear_bit(i, rxr->rx_agg_bmap);
3005 
3006 			page_pool_recycle_direct(rxr->page_pool, page);
3007 		} else {
3008 			dma_unmap_page_attrs(&pdev->dev, rx_agg_buf->mapping,
3009 					     BNXT_RX_PAGE_SIZE, DMA_FROM_DEVICE,
3010 					     DMA_ATTR_WEAK_ORDERING);
3011 			rx_agg_buf->page = NULL;
3012 			__clear_bit(i, rxr->rx_agg_bmap);
3013 
3014 			__free_page(page);
3015 		}
3016 	}
3017 
3018 skip_rx_agg_free:
3019 	if (rxr->rx_page) {
3020 		__free_page(rxr->rx_page);
3021 		rxr->rx_page = NULL;
3022 	}
3023 	map = rxr->rx_tpa_idx_map;
3024 	if (map)
3025 		memset(map->agg_idx_bmap, 0, sizeof(map->agg_idx_bmap));
3026 }
3027 
3028 static void bnxt_free_rx_skbs(struct bnxt *bp)
3029 {
3030 	int i;
3031 
3032 	if (!bp->rx_ring)
3033 		return;
3034 
3035 	for (i = 0; i < bp->rx_nr_rings; i++)
3036 		bnxt_free_one_rx_ring_skbs(bp, i);
3037 }
3038 
3039 static void bnxt_free_skbs(struct bnxt *bp)
3040 {
3041 	bnxt_free_tx_skbs(bp);
3042 	bnxt_free_rx_skbs(bp);
3043 }
3044 
3045 static void bnxt_init_ctx_mem(struct bnxt_mem_init *mem_init, void *p, int len)
3046 {
3047 	u8 init_val = mem_init->init_val;
3048 	u16 offset = mem_init->offset;
3049 	u8 *p2 = p;
3050 	int i;
3051 
3052 	if (!init_val)
3053 		return;
3054 	if (offset == BNXT_MEM_INVALID_OFFSET) {
3055 		memset(p, init_val, len);
3056 		return;
3057 	}
3058 	for (i = 0; i < len; i += mem_init->size)
3059 		*(p2 + i + offset) = init_val;
3060 }
3061 
3062 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
3063 {
3064 	struct pci_dev *pdev = bp->pdev;
3065 	int i;
3066 
3067 	if (!rmem->pg_arr)
3068 		goto skip_pages;
3069 
3070 	for (i = 0; i < rmem->nr_pages; i++) {
3071 		if (!rmem->pg_arr[i])
3072 			continue;
3073 
3074 		dma_free_coherent(&pdev->dev, rmem->page_size,
3075 				  rmem->pg_arr[i], rmem->dma_arr[i]);
3076 
3077 		rmem->pg_arr[i] = NULL;
3078 	}
3079 skip_pages:
3080 	if (rmem->pg_tbl) {
3081 		size_t pg_tbl_size = rmem->nr_pages * 8;
3082 
3083 		if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
3084 			pg_tbl_size = rmem->page_size;
3085 		dma_free_coherent(&pdev->dev, pg_tbl_size,
3086 				  rmem->pg_tbl, rmem->pg_tbl_map);
3087 		rmem->pg_tbl = NULL;
3088 	}
3089 	if (rmem->vmem_size && *rmem->vmem) {
3090 		vfree(*rmem->vmem);
3091 		*rmem->vmem = NULL;
3092 	}
3093 }
3094 
3095 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
3096 {
3097 	struct pci_dev *pdev = bp->pdev;
3098 	u64 valid_bit = 0;
3099 	int i;
3100 
3101 	if (rmem->flags & (BNXT_RMEM_VALID_PTE_FLAG | BNXT_RMEM_RING_PTE_FLAG))
3102 		valid_bit = PTU_PTE_VALID;
3103 	if ((rmem->nr_pages > 1 || rmem->depth > 0) && !rmem->pg_tbl) {
3104 		size_t pg_tbl_size = rmem->nr_pages * 8;
3105 
3106 		if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
3107 			pg_tbl_size = rmem->page_size;
3108 		rmem->pg_tbl = dma_alloc_coherent(&pdev->dev, pg_tbl_size,
3109 						  &rmem->pg_tbl_map,
3110 						  GFP_KERNEL);
3111 		if (!rmem->pg_tbl)
3112 			return -ENOMEM;
3113 	}
3114 
3115 	for (i = 0; i < rmem->nr_pages; i++) {
3116 		u64 extra_bits = valid_bit;
3117 
3118 		rmem->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
3119 						     rmem->page_size,
3120 						     &rmem->dma_arr[i],
3121 						     GFP_KERNEL);
3122 		if (!rmem->pg_arr[i])
3123 			return -ENOMEM;
3124 
3125 		if (rmem->mem_init)
3126 			bnxt_init_ctx_mem(rmem->mem_init, rmem->pg_arr[i],
3127 					  rmem->page_size);
3128 		if (rmem->nr_pages > 1 || rmem->depth > 0) {
3129 			if (i == rmem->nr_pages - 2 &&
3130 			    (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
3131 				extra_bits |= PTU_PTE_NEXT_TO_LAST;
3132 			else if (i == rmem->nr_pages - 1 &&
3133 				 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
3134 				extra_bits |= PTU_PTE_LAST;
3135 			rmem->pg_tbl[i] =
3136 				cpu_to_le64(rmem->dma_arr[i] | extra_bits);
3137 		}
3138 	}
3139 
3140 	if (rmem->vmem_size) {
3141 		*rmem->vmem = vzalloc(rmem->vmem_size);
3142 		if (!(*rmem->vmem))
3143 			return -ENOMEM;
3144 	}
3145 	return 0;
3146 }
3147 
3148 static void bnxt_free_tpa_info(struct bnxt *bp)
3149 {
3150 	int i;
3151 
3152 	for (i = 0; i < bp->rx_nr_rings; i++) {
3153 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3154 
3155 		kfree(rxr->rx_tpa_idx_map);
3156 		rxr->rx_tpa_idx_map = NULL;
3157 		if (rxr->rx_tpa) {
3158 			kfree(rxr->rx_tpa[0].agg_arr);
3159 			rxr->rx_tpa[0].agg_arr = NULL;
3160 		}
3161 		kfree(rxr->rx_tpa);
3162 		rxr->rx_tpa = NULL;
3163 	}
3164 }
3165 
3166 static int bnxt_alloc_tpa_info(struct bnxt *bp)
3167 {
3168 	int i, j, total_aggs = 0;
3169 
3170 	bp->max_tpa = MAX_TPA;
3171 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
3172 		if (!bp->max_tpa_v2)
3173 			return 0;
3174 		bp->max_tpa = max_t(u16, bp->max_tpa_v2, MAX_TPA_P5);
3175 		total_aggs = bp->max_tpa * MAX_SKB_FRAGS;
3176 	}
3177 
3178 	for (i = 0; i < bp->rx_nr_rings; i++) {
3179 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3180 		struct rx_agg_cmp *agg;
3181 
3182 		rxr->rx_tpa = kcalloc(bp->max_tpa, sizeof(struct bnxt_tpa_info),
3183 				      GFP_KERNEL);
3184 		if (!rxr->rx_tpa)
3185 			return -ENOMEM;
3186 
3187 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
3188 			continue;
3189 		agg = kcalloc(total_aggs, sizeof(*agg), GFP_KERNEL);
3190 		rxr->rx_tpa[0].agg_arr = agg;
3191 		if (!agg)
3192 			return -ENOMEM;
3193 		for (j = 1; j < bp->max_tpa; j++)
3194 			rxr->rx_tpa[j].agg_arr = agg + j * MAX_SKB_FRAGS;
3195 		rxr->rx_tpa_idx_map = kzalloc(sizeof(*rxr->rx_tpa_idx_map),
3196 					      GFP_KERNEL);
3197 		if (!rxr->rx_tpa_idx_map)
3198 			return -ENOMEM;
3199 	}
3200 	return 0;
3201 }
3202 
3203 static void bnxt_free_rx_rings(struct bnxt *bp)
3204 {
3205 	int i;
3206 
3207 	if (!bp->rx_ring)
3208 		return;
3209 
3210 	bnxt_free_tpa_info(bp);
3211 	for (i = 0; i < bp->rx_nr_rings; i++) {
3212 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3213 		struct bnxt_ring_struct *ring;
3214 
3215 		if (rxr->xdp_prog)
3216 			bpf_prog_put(rxr->xdp_prog);
3217 
3218 		if (xdp_rxq_info_is_reg(&rxr->xdp_rxq))
3219 			xdp_rxq_info_unreg(&rxr->xdp_rxq);
3220 
3221 		page_pool_destroy(rxr->page_pool);
3222 		rxr->page_pool = NULL;
3223 
3224 		kfree(rxr->rx_agg_bmap);
3225 		rxr->rx_agg_bmap = NULL;
3226 
3227 		ring = &rxr->rx_ring_struct;
3228 		bnxt_free_ring(bp, &ring->ring_mem);
3229 
3230 		ring = &rxr->rx_agg_ring_struct;
3231 		bnxt_free_ring(bp, &ring->ring_mem);
3232 	}
3233 }
3234 
3235 static int bnxt_alloc_rx_page_pool(struct bnxt *bp,
3236 				   struct bnxt_rx_ring_info *rxr)
3237 {
3238 	struct page_pool_params pp = { 0 };
3239 
3240 	pp.pool_size = bp->rx_ring_size;
3241 	pp.nid = dev_to_node(&bp->pdev->dev);
3242 	pp.dev = &bp->pdev->dev;
3243 	pp.dma_dir = DMA_BIDIRECTIONAL;
3244 
3245 	rxr->page_pool = page_pool_create(&pp);
3246 	if (IS_ERR(rxr->page_pool)) {
3247 		int err = PTR_ERR(rxr->page_pool);
3248 
3249 		rxr->page_pool = NULL;
3250 		return err;
3251 	}
3252 	return 0;
3253 }
3254 
3255 static int bnxt_alloc_rx_rings(struct bnxt *bp)
3256 {
3257 	int i, rc = 0, agg_rings = 0;
3258 
3259 	if (!bp->rx_ring)
3260 		return -ENOMEM;
3261 
3262 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
3263 		agg_rings = 1;
3264 
3265 	for (i = 0; i < bp->rx_nr_rings; i++) {
3266 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3267 		struct bnxt_ring_struct *ring;
3268 
3269 		ring = &rxr->rx_ring_struct;
3270 
3271 		rc = bnxt_alloc_rx_page_pool(bp, rxr);
3272 		if (rc)
3273 			return rc;
3274 
3275 		rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i, 0);
3276 		if (rc < 0)
3277 			return rc;
3278 
3279 		rc = xdp_rxq_info_reg_mem_model(&rxr->xdp_rxq,
3280 						MEM_TYPE_PAGE_POOL,
3281 						rxr->page_pool);
3282 		if (rc) {
3283 			xdp_rxq_info_unreg(&rxr->xdp_rxq);
3284 			return rc;
3285 		}
3286 
3287 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3288 		if (rc)
3289 			return rc;
3290 
3291 		ring->grp_idx = i;
3292 		if (agg_rings) {
3293 			u16 mem_size;
3294 
3295 			ring = &rxr->rx_agg_ring_struct;
3296 			rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3297 			if (rc)
3298 				return rc;
3299 
3300 			ring->grp_idx = i;
3301 			rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
3302 			mem_size = rxr->rx_agg_bmap_size / 8;
3303 			rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
3304 			if (!rxr->rx_agg_bmap)
3305 				return -ENOMEM;
3306 		}
3307 	}
3308 	if (bp->flags & BNXT_FLAG_TPA)
3309 		rc = bnxt_alloc_tpa_info(bp);
3310 	return rc;
3311 }
3312 
3313 static void bnxt_free_tx_rings(struct bnxt *bp)
3314 {
3315 	int i;
3316 	struct pci_dev *pdev = bp->pdev;
3317 
3318 	if (!bp->tx_ring)
3319 		return;
3320 
3321 	for (i = 0; i < bp->tx_nr_rings; i++) {
3322 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3323 		struct bnxt_ring_struct *ring;
3324 
3325 		if (txr->tx_push) {
3326 			dma_free_coherent(&pdev->dev, bp->tx_push_size,
3327 					  txr->tx_push, txr->tx_push_mapping);
3328 			txr->tx_push = NULL;
3329 		}
3330 
3331 		ring = &txr->tx_ring_struct;
3332 
3333 		bnxt_free_ring(bp, &ring->ring_mem);
3334 	}
3335 }
3336 
3337 static int bnxt_alloc_tx_rings(struct bnxt *bp)
3338 {
3339 	int i, j, rc;
3340 	struct pci_dev *pdev = bp->pdev;
3341 
3342 	bp->tx_push_size = 0;
3343 	if (bp->tx_push_thresh) {
3344 		int push_size;
3345 
3346 		push_size  = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
3347 					bp->tx_push_thresh);
3348 
3349 		if (push_size > 256) {
3350 			push_size = 0;
3351 			bp->tx_push_thresh = 0;
3352 		}
3353 
3354 		bp->tx_push_size = push_size;
3355 	}
3356 
3357 	for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
3358 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3359 		struct bnxt_ring_struct *ring;
3360 		u8 qidx;
3361 
3362 		ring = &txr->tx_ring_struct;
3363 
3364 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3365 		if (rc)
3366 			return rc;
3367 
3368 		ring->grp_idx = txr->bnapi->index;
3369 		if (bp->tx_push_size) {
3370 			dma_addr_t mapping;
3371 
3372 			/* One pre-allocated DMA buffer to backup
3373 			 * TX push operation
3374 			 */
3375 			txr->tx_push = dma_alloc_coherent(&pdev->dev,
3376 						bp->tx_push_size,
3377 						&txr->tx_push_mapping,
3378 						GFP_KERNEL);
3379 
3380 			if (!txr->tx_push)
3381 				return -ENOMEM;
3382 
3383 			mapping = txr->tx_push_mapping +
3384 				sizeof(struct tx_push_bd);
3385 			txr->data_mapping = cpu_to_le64(mapping);
3386 		}
3387 		qidx = bp->tc_to_qidx[j];
3388 		ring->queue_id = bp->q_info[qidx].queue_id;
3389 		spin_lock_init(&txr->xdp_tx_lock);
3390 		if (i < bp->tx_nr_rings_xdp)
3391 			continue;
3392 		if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1))
3393 			j++;
3394 	}
3395 	return 0;
3396 }
3397 
3398 static void bnxt_free_cp_arrays(struct bnxt_cp_ring_info *cpr)
3399 {
3400 	struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3401 
3402 	kfree(cpr->cp_desc_ring);
3403 	cpr->cp_desc_ring = NULL;
3404 	ring->ring_mem.pg_arr = NULL;
3405 	kfree(cpr->cp_desc_mapping);
3406 	cpr->cp_desc_mapping = NULL;
3407 	ring->ring_mem.dma_arr = NULL;
3408 }
3409 
3410 static int bnxt_alloc_cp_arrays(struct bnxt_cp_ring_info *cpr, int n)
3411 {
3412 	cpr->cp_desc_ring = kcalloc(n, sizeof(*cpr->cp_desc_ring), GFP_KERNEL);
3413 	if (!cpr->cp_desc_ring)
3414 		return -ENOMEM;
3415 	cpr->cp_desc_mapping = kcalloc(n, sizeof(*cpr->cp_desc_mapping),
3416 				       GFP_KERNEL);
3417 	if (!cpr->cp_desc_mapping)
3418 		return -ENOMEM;
3419 	return 0;
3420 }
3421 
3422 static void bnxt_free_all_cp_arrays(struct bnxt *bp)
3423 {
3424 	int i;
3425 
3426 	if (!bp->bnapi)
3427 		return;
3428 	for (i = 0; i < bp->cp_nr_rings; i++) {
3429 		struct bnxt_napi *bnapi = bp->bnapi[i];
3430 
3431 		if (!bnapi)
3432 			continue;
3433 		bnxt_free_cp_arrays(&bnapi->cp_ring);
3434 	}
3435 }
3436 
3437 static int bnxt_alloc_all_cp_arrays(struct bnxt *bp)
3438 {
3439 	int i, n = bp->cp_nr_pages;
3440 
3441 	for (i = 0; i < bp->cp_nr_rings; i++) {
3442 		struct bnxt_napi *bnapi = bp->bnapi[i];
3443 		int rc;
3444 
3445 		if (!bnapi)
3446 			continue;
3447 		rc = bnxt_alloc_cp_arrays(&bnapi->cp_ring, n);
3448 		if (rc)
3449 			return rc;
3450 	}
3451 	return 0;
3452 }
3453 
3454 static void bnxt_free_cp_rings(struct bnxt *bp)
3455 {
3456 	int i;
3457 
3458 	if (!bp->bnapi)
3459 		return;
3460 
3461 	for (i = 0; i < bp->cp_nr_rings; i++) {
3462 		struct bnxt_napi *bnapi = bp->bnapi[i];
3463 		struct bnxt_cp_ring_info *cpr;
3464 		struct bnxt_ring_struct *ring;
3465 		int j;
3466 
3467 		if (!bnapi)
3468 			continue;
3469 
3470 		cpr = &bnapi->cp_ring;
3471 		ring = &cpr->cp_ring_struct;
3472 
3473 		bnxt_free_ring(bp, &ring->ring_mem);
3474 
3475 		for (j = 0; j < 2; j++) {
3476 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
3477 
3478 			if (cpr2) {
3479 				ring = &cpr2->cp_ring_struct;
3480 				bnxt_free_ring(bp, &ring->ring_mem);
3481 				bnxt_free_cp_arrays(cpr2);
3482 				kfree(cpr2);
3483 				cpr->cp_ring_arr[j] = NULL;
3484 			}
3485 		}
3486 	}
3487 }
3488 
3489 static struct bnxt_cp_ring_info *bnxt_alloc_cp_sub_ring(struct bnxt *bp)
3490 {
3491 	struct bnxt_ring_mem_info *rmem;
3492 	struct bnxt_ring_struct *ring;
3493 	struct bnxt_cp_ring_info *cpr;
3494 	int rc;
3495 
3496 	cpr = kzalloc(sizeof(*cpr), GFP_KERNEL);
3497 	if (!cpr)
3498 		return NULL;
3499 
3500 	rc = bnxt_alloc_cp_arrays(cpr, bp->cp_nr_pages);
3501 	if (rc) {
3502 		bnxt_free_cp_arrays(cpr);
3503 		kfree(cpr);
3504 		return NULL;
3505 	}
3506 	ring = &cpr->cp_ring_struct;
3507 	rmem = &ring->ring_mem;
3508 	rmem->nr_pages = bp->cp_nr_pages;
3509 	rmem->page_size = HW_CMPD_RING_SIZE;
3510 	rmem->pg_arr = (void **)cpr->cp_desc_ring;
3511 	rmem->dma_arr = cpr->cp_desc_mapping;
3512 	rmem->flags = BNXT_RMEM_RING_PTE_FLAG;
3513 	rc = bnxt_alloc_ring(bp, rmem);
3514 	if (rc) {
3515 		bnxt_free_ring(bp, rmem);
3516 		bnxt_free_cp_arrays(cpr);
3517 		kfree(cpr);
3518 		cpr = NULL;
3519 	}
3520 	return cpr;
3521 }
3522 
3523 static int bnxt_alloc_cp_rings(struct bnxt *bp)
3524 {
3525 	bool sh = !!(bp->flags & BNXT_FLAG_SHARED_RINGS);
3526 	int i, rc, ulp_base_vec, ulp_msix;
3527 
3528 	ulp_msix = bnxt_get_ulp_msix_num(bp);
3529 	ulp_base_vec = bnxt_get_ulp_msix_base(bp);
3530 	for (i = 0; i < bp->cp_nr_rings; i++) {
3531 		struct bnxt_napi *bnapi = bp->bnapi[i];
3532 		struct bnxt_cp_ring_info *cpr;
3533 		struct bnxt_ring_struct *ring;
3534 
3535 		if (!bnapi)
3536 			continue;
3537 
3538 		cpr = &bnapi->cp_ring;
3539 		cpr->bnapi = bnapi;
3540 		ring = &cpr->cp_ring_struct;
3541 
3542 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3543 		if (rc)
3544 			return rc;
3545 
3546 		if (ulp_msix && i >= ulp_base_vec)
3547 			ring->map_idx = i + ulp_msix;
3548 		else
3549 			ring->map_idx = i;
3550 
3551 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
3552 			continue;
3553 
3554 		if (i < bp->rx_nr_rings) {
3555 			struct bnxt_cp_ring_info *cpr2 =
3556 				bnxt_alloc_cp_sub_ring(bp);
3557 
3558 			cpr->cp_ring_arr[BNXT_RX_HDL] = cpr2;
3559 			if (!cpr2)
3560 				return -ENOMEM;
3561 			cpr2->bnapi = bnapi;
3562 		}
3563 		if ((sh && i < bp->tx_nr_rings) ||
3564 		    (!sh && i >= bp->rx_nr_rings)) {
3565 			struct bnxt_cp_ring_info *cpr2 =
3566 				bnxt_alloc_cp_sub_ring(bp);
3567 
3568 			cpr->cp_ring_arr[BNXT_TX_HDL] = cpr2;
3569 			if (!cpr2)
3570 				return -ENOMEM;
3571 			cpr2->bnapi = bnapi;
3572 		}
3573 	}
3574 	return 0;
3575 }
3576 
3577 static void bnxt_init_ring_struct(struct bnxt *bp)
3578 {
3579 	int i;
3580 
3581 	for (i = 0; i < bp->cp_nr_rings; i++) {
3582 		struct bnxt_napi *bnapi = bp->bnapi[i];
3583 		struct bnxt_ring_mem_info *rmem;
3584 		struct bnxt_cp_ring_info *cpr;
3585 		struct bnxt_rx_ring_info *rxr;
3586 		struct bnxt_tx_ring_info *txr;
3587 		struct bnxt_ring_struct *ring;
3588 
3589 		if (!bnapi)
3590 			continue;
3591 
3592 		cpr = &bnapi->cp_ring;
3593 		ring = &cpr->cp_ring_struct;
3594 		rmem = &ring->ring_mem;
3595 		rmem->nr_pages = bp->cp_nr_pages;
3596 		rmem->page_size = HW_CMPD_RING_SIZE;
3597 		rmem->pg_arr = (void **)cpr->cp_desc_ring;
3598 		rmem->dma_arr = cpr->cp_desc_mapping;
3599 		rmem->vmem_size = 0;
3600 
3601 		rxr = bnapi->rx_ring;
3602 		if (!rxr)
3603 			goto skip_rx;
3604 
3605 		ring = &rxr->rx_ring_struct;
3606 		rmem = &ring->ring_mem;
3607 		rmem->nr_pages = bp->rx_nr_pages;
3608 		rmem->page_size = HW_RXBD_RING_SIZE;
3609 		rmem->pg_arr = (void **)rxr->rx_desc_ring;
3610 		rmem->dma_arr = rxr->rx_desc_mapping;
3611 		rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
3612 		rmem->vmem = (void **)&rxr->rx_buf_ring;
3613 
3614 		ring = &rxr->rx_agg_ring_struct;
3615 		rmem = &ring->ring_mem;
3616 		rmem->nr_pages = bp->rx_agg_nr_pages;
3617 		rmem->page_size = HW_RXBD_RING_SIZE;
3618 		rmem->pg_arr = (void **)rxr->rx_agg_desc_ring;
3619 		rmem->dma_arr = rxr->rx_agg_desc_mapping;
3620 		rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
3621 		rmem->vmem = (void **)&rxr->rx_agg_ring;
3622 
3623 skip_rx:
3624 		txr = bnapi->tx_ring;
3625 		if (!txr)
3626 			continue;
3627 
3628 		ring = &txr->tx_ring_struct;
3629 		rmem = &ring->ring_mem;
3630 		rmem->nr_pages = bp->tx_nr_pages;
3631 		rmem->page_size = HW_RXBD_RING_SIZE;
3632 		rmem->pg_arr = (void **)txr->tx_desc_ring;
3633 		rmem->dma_arr = txr->tx_desc_mapping;
3634 		rmem->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
3635 		rmem->vmem = (void **)&txr->tx_buf_ring;
3636 	}
3637 }
3638 
3639 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
3640 {
3641 	int i;
3642 	u32 prod;
3643 	struct rx_bd **rx_buf_ring;
3644 
3645 	rx_buf_ring = (struct rx_bd **)ring->ring_mem.pg_arr;
3646 	for (i = 0, prod = 0; i < ring->ring_mem.nr_pages; i++) {
3647 		int j;
3648 		struct rx_bd *rxbd;
3649 
3650 		rxbd = rx_buf_ring[i];
3651 		if (!rxbd)
3652 			continue;
3653 
3654 		for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
3655 			rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
3656 			rxbd->rx_bd_opaque = prod;
3657 		}
3658 	}
3659 }
3660 
3661 static int bnxt_alloc_one_rx_ring(struct bnxt *bp, int ring_nr)
3662 {
3663 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
3664 	struct net_device *dev = bp->dev;
3665 	u32 prod;
3666 	int i;
3667 
3668 	prod = rxr->rx_prod;
3669 	for (i = 0; i < bp->rx_ring_size; i++) {
3670 		if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL)) {
3671 			netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
3672 				    ring_nr, i, bp->rx_ring_size);
3673 			break;
3674 		}
3675 		prod = NEXT_RX(prod);
3676 	}
3677 	rxr->rx_prod = prod;
3678 
3679 	if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
3680 		return 0;
3681 
3682 	prod = rxr->rx_agg_prod;
3683 	for (i = 0; i < bp->rx_agg_ring_size; i++) {
3684 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL)) {
3685 			netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
3686 				    ring_nr, i, bp->rx_ring_size);
3687 			break;
3688 		}
3689 		prod = NEXT_RX_AGG(prod);
3690 	}
3691 	rxr->rx_agg_prod = prod;
3692 
3693 	if (rxr->rx_tpa) {
3694 		dma_addr_t mapping;
3695 		u8 *data;
3696 
3697 		for (i = 0; i < bp->max_tpa; i++) {
3698 			data = __bnxt_alloc_rx_frag(bp, &mapping, GFP_KERNEL);
3699 			if (!data)
3700 				return -ENOMEM;
3701 
3702 			rxr->rx_tpa[i].data = data;
3703 			rxr->rx_tpa[i].data_ptr = data + bp->rx_offset;
3704 			rxr->rx_tpa[i].mapping = mapping;
3705 		}
3706 	}
3707 	return 0;
3708 }
3709 
3710 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
3711 {
3712 	struct bnxt_rx_ring_info *rxr;
3713 	struct bnxt_ring_struct *ring;
3714 	u32 type;
3715 
3716 	type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
3717 		RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
3718 
3719 	if (NET_IP_ALIGN == 2)
3720 		type |= RX_BD_FLAGS_SOP;
3721 
3722 	rxr = &bp->rx_ring[ring_nr];
3723 	ring = &rxr->rx_ring_struct;
3724 	bnxt_init_rxbd_pages(ring, type);
3725 
3726 	if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) {
3727 		bpf_prog_add(bp->xdp_prog, 1);
3728 		rxr->xdp_prog = bp->xdp_prog;
3729 	}
3730 	ring->fw_ring_id = INVALID_HW_RING_ID;
3731 
3732 	ring = &rxr->rx_agg_ring_struct;
3733 	ring->fw_ring_id = INVALID_HW_RING_ID;
3734 
3735 	if ((bp->flags & BNXT_FLAG_AGG_RINGS)) {
3736 		type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) |
3737 			RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
3738 
3739 		bnxt_init_rxbd_pages(ring, type);
3740 	}
3741 
3742 	return bnxt_alloc_one_rx_ring(bp, ring_nr);
3743 }
3744 
3745 static void bnxt_init_cp_rings(struct bnxt *bp)
3746 {
3747 	int i, j;
3748 
3749 	for (i = 0; i < bp->cp_nr_rings; i++) {
3750 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
3751 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3752 
3753 		ring->fw_ring_id = INVALID_HW_RING_ID;
3754 		cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
3755 		cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
3756 		for (j = 0; j < 2; j++) {
3757 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
3758 
3759 			if (!cpr2)
3760 				continue;
3761 
3762 			ring = &cpr2->cp_ring_struct;
3763 			ring->fw_ring_id = INVALID_HW_RING_ID;
3764 			cpr2->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
3765 			cpr2->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
3766 		}
3767 	}
3768 }
3769 
3770 static int bnxt_init_rx_rings(struct bnxt *bp)
3771 {
3772 	int i, rc = 0;
3773 
3774 	if (BNXT_RX_PAGE_MODE(bp)) {
3775 		bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM;
3776 		bp->rx_dma_offset = XDP_PACKET_HEADROOM;
3777 	} else {
3778 		bp->rx_offset = BNXT_RX_OFFSET;
3779 		bp->rx_dma_offset = BNXT_RX_DMA_OFFSET;
3780 	}
3781 
3782 	for (i = 0; i < bp->rx_nr_rings; i++) {
3783 		rc = bnxt_init_one_rx_ring(bp, i);
3784 		if (rc)
3785 			break;
3786 	}
3787 
3788 	return rc;
3789 }
3790 
3791 static int bnxt_init_tx_rings(struct bnxt *bp)
3792 {
3793 	u16 i;
3794 
3795 	bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
3796 				   BNXT_MIN_TX_DESC_CNT);
3797 
3798 	for (i = 0; i < bp->tx_nr_rings; i++) {
3799 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3800 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
3801 
3802 		ring->fw_ring_id = INVALID_HW_RING_ID;
3803 	}
3804 
3805 	return 0;
3806 }
3807 
3808 static void bnxt_free_ring_grps(struct bnxt *bp)
3809 {
3810 	kfree(bp->grp_info);
3811 	bp->grp_info = NULL;
3812 }
3813 
3814 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
3815 {
3816 	int i;
3817 
3818 	if (irq_re_init) {
3819 		bp->grp_info = kcalloc(bp->cp_nr_rings,
3820 				       sizeof(struct bnxt_ring_grp_info),
3821 				       GFP_KERNEL);
3822 		if (!bp->grp_info)
3823 			return -ENOMEM;
3824 	}
3825 	for (i = 0; i < bp->cp_nr_rings; i++) {
3826 		if (irq_re_init)
3827 			bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
3828 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
3829 		bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
3830 		bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
3831 		bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
3832 	}
3833 	return 0;
3834 }
3835 
3836 static void bnxt_free_vnics(struct bnxt *bp)
3837 {
3838 	kfree(bp->vnic_info);
3839 	bp->vnic_info = NULL;
3840 	bp->nr_vnics = 0;
3841 }
3842 
3843 static int bnxt_alloc_vnics(struct bnxt *bp)
3844 {
3845 	int num_vnics = 1;
3846 
3847 #ifdef CONFIG_RFS_ACCEL
3848 	if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS)
3849 		num_vnics += bp->rx_nr_rings;
3850 #endif
3851 
3852 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
3853 		num_vnics++;
3854 
3855 	bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
3856 				GFP_KERNEL);
3857 	if (!bp->vnic_info)
3858 		return -ENOMEM;
3859 
3860 	bp->nr_vnics = num_vnics;
3861 	return 0;
3862 }
3863 
3864 static void bnxt_init_vnics(struct bnxt *bp)
3865 {
3866 	int i;
3867 
3868 	for (i = 0; i < bp->nr_vnics; i++) {
3869 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3870 		int j;
3871 
3872 		vnic->fw_vnic_id = INVALID_HW_RING_ID;
3873 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++)
3874 			vnic->fw_rss_cos_lb_ctx[j] = INVALID_HW_RING_ID;
3875 
3876 		vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
3877 
3878 		if (bp->vnic_info[i].rss_hash_key) {
3879 			if (i == 0)
3880 				prandom_bytes(vnic->rss_hash_key,
3881 					      HW_HASH_KEY_SIZE);
3882 			else
3883 				memcpy(vnic->rss_hash_key,
3884 				       bp->vnic_info[0].rss_hash_key,
3885 				       HW_HASH_KEY_SIZE);
3886 		}
3887 	}
3888 }
3889 
3890 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
3891 {
3892 	int pages;
3893 
3894 	pages = ring_size / desc_per_pg;
3895 
3896 	if (!pages)
3897 		return 1;
3898 
3899 	pages++;
3900 
3901 	while (pages & (pages - 1))
3902 		pages++;
3903 
3904 	return pages;
3905 }
3906 
3907 void bnxt_set_tpa_flags(struct bnxt *bp)
3908 {
3909 	bp->flags &= ~BNXT_FLAG_TPA;
3910 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
3911 		return;
3912 	if (bp->dev->features & NETIF_F_LRO)
3913 		bp->flags |= BNXT_FLAG_LRO;
3914 	else if (bp->dev->features & NETIF_F_GRO_HW)
3915 		bp->flags |= BNXT_FLAG_GRO;
3916 }
3917 
3918 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
3919  * be set on entry.
3920  */
3921 void bnxt_set_ring_params(struct bnxt *bp)
3922 {
3923 	u32 ring_size, rx_size, rx_space, max_rx_cmpl;
3924 	u32 agg_factor = 0, agg_ring_size = 0;
3925 
3926 	/* 8 for CRC and VLAN */
3927 	rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
3928 
3929 	rx_space = rx_size + ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) +
3930 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3931 
3932 	bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
3933 	ring_size = bp->rx_ring_size;
3934 	bp->rx_agg_ring_size = 0;
3935 	bp->rx_agg_nr_pages = 0;
3936 
3937 	if (bp->flags & BNXT_FLAG_TPA)
3938 		agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE);
3939 
3940 	bp->flags &= ~BNXT_FLAG_JUMBO;
3941 	if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) {
3942 		u32 jumbo_factor;
3943 
3944 		bp->flags |= BNXT_FLAG_JUMBO;
3945 		jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
3946 		if (jumbo_factor > agg_factor)
3947 			agg_factor = jumbo_factor;
3948 	}
3949 	if (agg_factor) {
3950 		if (ring_size > BNXT_MAX_RX_DESC_CNT_JUM_ENA) {
3951 			ring_size = BNXT_MAX_RX_DESC_CNT_JUM_ENA;
3952 			netdev_warn(bp->dev, "RX ring size reduced from %d to %d because the jumbo ring is now enabled\n",
3953 				    bp->rx_ring_size, ring_size);
3954 			bp->rx_ring_size = ring_size;
3955 		}
3956 		agg_ring_size = ring_size * agg_factor;
3957 
3958 		bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
3959 							RX_DESC_CNT);
3960 		if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
3961 			u32 tmp = agg_ring_size;
3962 
3963 			bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
3964 			agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
3965 			netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
3966 				    tmp, agg_ring_size);
3967 		}
3968 		bp->rx_agg_ring_size = agg_ring_size;
3969 		bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
3970 
3971 		if (BNXT_RX_PAGE_MODE(bp)) {
3972 			rx_space = BNXT_PAGE_MODE_BUF_SIZE;
3973 			rx_size = BNXT_MAX_PAGE_MODE_MTU;
3974 		} else {
3975 			rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
3976 			rx_space = rx_size + NET_SKB_PAD +
3977 				SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3978 		}
3979 	}
3980 
3981 	bp->rx_buf_use_size = rx_size;
3982 	bp->rx_buf_size = rx_space;
3983 
3984 	bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
3985 	bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
3986 
3987 	ring_size = bp->tx_ring_size;
3988 	bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
3989 	bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
3990 
3991 	max_rx_cmpl = bp->rx_ring_size;
3992 	/* MAX TPA needs to be added because TPA_START completions are
3993 	 * immediately recycled, so the TPA completions are not bound by
3994 	 * the RX ring size.
3995 	 */
3996 	if (bp->flags & BNXT_FLAG_TPA)
3997 		max_rx_cmpl += bp->max_tpa;
3998 	/* RX and TPA completions are 32-byte, all others are 16-byte */
3999 	ring_size = max_rx_cmpl * 2 + agg_ring_size + bp->tx_ring_size;
4000 	bp->cp_ring_size = ring_size;
4001 
4002 	bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
4003 	if (bp->cp_nr_pages > MAX_CP_PAGES) {
4004 		bp->cp_nr_pages = MAX_CP_PAGES;
4005 		bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
4006 		netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
4007 			    ring_size, bp->cp_ring_size);
4008 	}
4009 	bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
4010 	bp->cp_ring_mask = bp->cp_bit - 1;
4011 }
4012 
4013 /* Changing allocation mode of RX rings.
4014  * TODO: Update when extending xdp_rxq_info to support allocation modes.
4015  */
4016 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode)
4017 {
4018 	if (page_mode) {
4019 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
4020 		bp->flags |= BNXT_FLAG_RX_PAGE_MODE;
4021 
4022 		if (bp->dev->mtu > BNXT_MAX_PAGE_MODE_MTU) {
4023 			bp->flags |= BNXT_FLAG_JUMBO;
4024 			bp->rx_skb_func = bnxt_rx_multi_page_skb;
4025 			bp->dev->max_mtu =
4026 				min_t(u16, bp->max_mtu, BNXT_MAX_MTU);
4027 		} else {
4028 			bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
4029 			bp->rx_skb_func = bnxt_rx_page_skb;
4030 			bp->dev->max_mtu =
4031 				min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU);
4032 		}
4033 		bp->rx_dir = DMA_BIDIRECTIONAL;
4034 		/* Disable LRO or GRO_HW */
4035 		netdev_update_features(bp->dev);
4036 	} else {
4037 		bp->dev->max_mtu = bp->max_mtu;
4038 		bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE;
4039 		bp->rx_dir = DMA_FROM_DEVICE;
4040 		bp->rx_skb_func = bnxt_rx_skb;
4041 	}
4042 	return 0;
4043 }
4044 
4045 static void bnxt_free_vnic_attributes(struct bnxt *bp)
4046 {
4047 	int i;
4048 	struct bnxt_vnic_info *vnic;
4049 	struct pci_dev *pdev = bp->pdev;
4050 
4051 	if (!bp->vnic_info)
4052 		return;
4053 
4054 	for (i = 0; i < bp->nr_vnics; i++) {
4055 		vnic = &bp->vnic_info[i];
4056 
4057 		kfree(vnic->fw_grp_ids);
4058 		vnic->fw_grp_ids = NULL;
4059 
4060 		kfree(vnic->uc_list);
4061 		vnic->uc_list = NULL;
4062 
4063 		if (vnic->mc_list) {
4064 			dma_free_coherent(&pdev->dev, vnic->mc_list_size,
4065 					  vnic->mc_list, vnic->mc_list_mapping);
4066 			vnic->mc_list = NULL;
4067 		}
4068 
4069 		if (vnic->rss_table) {
4070 			dma_free_coherent(&pdev->dev, vnic->rss_table_size,
4071 					  vnic->rss_table,
4072 					  vnic->rss_table_dma_addr);
4073 			vnic->rss_table = NULL;
4074 		}
4075 
4076 		vnic->rss_hash_key = NULL;
4077 		vnic->flags = 0;
4078 	}
4079 }
4080 
4081 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
4082 {
4083 	int i, rc = 0, size;
4084 	struct bnxt_vnic_info *vnic;
4085 	struct pci_dev *pdev = bp->pdev;
4086 	int max_rings;
4087 
4088 	for (i = 0; i < bp->nr_vnics; i++) {
4089 		vnic = &bp->vnic_info[i];
4090 
4091 		if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
4092 			int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
4093 
4094 			if (mem_size > 0) {
4095 				vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
4096 				if (!vnic->uc_list) {
4097 					rc = -ENOMEM;
4098 					goto out;
4099 				}
4100 			}
4101 		}
4102 
4103 		if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
4104 			vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
4105 			vnic->mc_list =
4106 				dma_alloc_coherent(&pdev->dev,
4107 						   vnic->mc_list_size,
4108 						   &vnic->mc_list_mapping,
4109 						   GFP_KERNEL);
4110 			if (!vnic->mc_list) {
4111 				rc = -ENOMEM;
4112 				goto out;
4113 			}
4114 		}
4115 
4116 		if (bp->flags & BNXT_FLAG_CHIP_P5)
4117 			goto vnic_skip_grps;
4118 
4119 		if (vnic->flags & BNXT_VNIC_RSS_FLAG)
4120 			max_rings = bp->rx_nr_rings;
4121 		else
4122 			max_rings = 1;
4123 
4124 		vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
4125 		if (!vnic->fw_grp_ids) {
4126 			rc = -ENOMEM;
4127 			goto out;
4128 		}
4129 vnic_skip_grps:
4130 		if ((bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
4131 		    !(vnic->flags & BNXT_VNIC_RSS_FLAG))
4132 			continue;
4133 
4134 		/* Allocate rss table and hash key */
4135 		size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
4136 		if (bp->flags & BNXT_FLAG_CHIP_P5)
4137 			size = L1_CACHE_ALIGN(BNXT_MAX_RSS_TABLE_SIZE_P5);
4138 
4139 		vnic->rss_table_size = size + HW_HASH_KEY_SIZE;
4140 		vnic->rss_table = dma_alloc_coherent(&pdev->dev,
4141 						     vnic->rss_table_size,
4142 						     &vnic->rss_table_dma_addr,
4143 						     GFP_KERNEL);
4144 		if (!vnic->rss_table) {
4145 			rc = -ENOMEM;
4146 			goto out;
4147 		}
4148 
4149 		vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
4150 		vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
4151 	}
4152 	return 0;
4153 
4154 out:
4155 	return rc;
4156 }
4157 
4158 static void bnxt_free_hwrm_resources(struct bnxt *bp)
4159 {
4160 	struct bnxt_hwrm_wait_token *token;
4161 
4162 	dma_pool_destroy(bp->hwrm_dma_pool);
4163 	bp->hwrm_dma_pool = NULL;
4164 
4165 	rcu_read_lock();
4166 	hlist_for_each_entry_rcu(token, &bp->hwrm_pending_list, node)
4167 		WRITE_ONCE(token->state, BNXT_HWRM_CANCELLED);
4168 	rcu_read_unlock();
4169 }
4170 
4171 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
4172 {
4173 	bp->hwrm_dma_pool = dma_pool_create("bnxt_hwrm", &bp->pdev->dev,
4174 					    BNXT_HWRM_DMA_SIZE,
4175 					    BNXT_HWRM_DMA_ALIGN, 0);
4176 	if (!bp->hwrm_dma_pool)
4177 		return -ENOMEM;
4178 
4179 	INIT_HLIST_HEAD(&bp->hwrm_pending_list);
4180 
4181 	return 0;
4182 }
4183 
4184 static void bnxt_free_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats)
4185 {
4186 	kfree(stats->hw_masks);
4187 	stats->hw_masks = NULL;
4188 	kfree(stats->sw_stats);
4189 	stats->sw_stats = NULL;
4190 	if (stats->hw_stats) {
4191 		dma_free_coherent(&bp->pdev->dev, stats->len, stats->hw_stats,
4192 				  stats->hw_stats_map);
4193 		stats->hw_stats = NULL;
4194 	}
4195 }
4196 
4197 static int bnxt_alloc_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats,
4198 				bool alloc_masks)
4199 {
4200 	stats->hw_stats = dma_alloc_coherent(&bp->pdev->dev, stats->len,
4201 					     &stats->hw_stats_map, GFP_KERNEL);
4202 	if (!stats->hw_stats)
4203 		return -ENOMEM;
4204 
4205 	stats->sw_stats = kzalloc(stats->len, GFP_KERNEL);
4206 	if (!stats->sw_stats)
4207 		goto stats_mem_err;
4208 
4209 	if (alloc_masks) {
4210 		stats->hw_masks = kzalloc(stats->len, GFP_KERNEL);
4211 		if (!stats->hw_masks)
4212 			goto stats_mem_err;
4213 	}
4214 	return 0;
4215 
4216 stats_mem_err:
4217 	bnxt_free_stats_mem(bp, stats);
4218 	return -ENOMEM;
4219 }
4220 
4221 static void bnxt_fill_masks(u64 *mask_arr, u64 mask, int count)
4222 {
4223 	int i;
4224 
4225 	for (i = 0; i < count; i++)
4226 		mask_arr[i] = mask;
4227 }
4228 
4229 static void bnxt_copy_hw_masks(u64 *mask_arr, __le64 *hw_mask_arr, int count)
4230 {
4231 	int i;
4232 
4233 	for (i = 0; i < count; i++)
4234 		mask_arr[i] = le64_to_cpu(hw_mask_arr[i]);
4235 }
4236 
4237 static int bnxt_hwrm_func_qstat_ext(struct bnxt *bp,
4238 				    struct bnxt_stats_mem *stats)
4239 {
4240 	struct hwrm_func_qstats_ext_output *resp;
4241 	struct hwrm_func_qstats_ext_input *req;
4242 	__le64 *hw_masks;
4243 	int rc;
4244 
4245 	if (!(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED) ||
4246 	    !(bp->flags & BNXT_FLAG_CHIP_P5))
4247 		return -EOPNOTSUPP;
4248 
4249 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QSTATS_EXT);
4250 	if (rc)
4251 		return rc;
4252 
4253 	req->fid = cpu_to_le16(0xffff);
4254 	req->flags = FUNC_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK;
4255 
4256 	resp = hwrm_req_hold(bp, req);
4257 	rc = hwrm_req_send(bp, req);
4258 	if (!rc) {
4259 		hw_masks = &resp->rx_ucast_pkts;
4260 		bnxt_copy_hw_masks(stats->hw_masks, hw_masks, stats->len / 8);
4261 	}
4262 	hwrm_req_drop(bp, req);
4263 	return rc;
4264 }
4265 
4266 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags);
4267 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags);
4268 
4269 static void bnxt_init_stats(struct bnxt *bp)
4270 {
4271 	struct bnxt_napi *bnapi = bp->bnapi[0];
4272 	struct bnxt_cp_ring_info *cpr;
4273 	struct bnxt_stats_mem *stats;
4274 	__le64 *rx_stats, *tx_stats;
4275 	int rc, rx_count, tx_count;
4276 	u64 *rx_masks, *tx_masks;
4277 	u64 mask;
4278 	u8 flags;
4279 
4280 	cpr = &bnapi->cp_ring;
4281 	stats = &cpr->stats;
4282 	rc = bnxt_hwrm_func_qstat_ext(bp, stats);
4283 	if (rc) {
4284 		if (bp->flags & BNXT_FLAG_CHIP_P5)
4285 			mask = (1ULL << 48) - 1;
4286 		else
4287 			mask = -1ULL;
4288 		bnxt_fill_masks(stats->hw_masks, mask, stats->len / 8);
4289 	}
4290 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
4291 		stats = &bp->port_stats;
4292 		rx_stats = stats->hw_stats;
4293 		rx_masks = stats->hw_masks;
4294 		rx_count = sizeof(struct rx_port_stats) / 8;
4295 		tx_stats = rx_stats + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
4296 		tx_masks = rx_masks + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
4297 		tx_count = sizeof(struct tx_port_stats) / 8;
4298 
4299 		flags = PORT_QSTATS_REQ_FLAGS_COUNTER_MASK;
4300 		rc = bnxt_hwrm_port_qstats(bp, flags);
4301 		if (rc) {
4302 			mask = (1ULL << 40) - 1;
4303 
4304 			bnxt_fill_masks(rx_masks, mask, rx_count);
4305 			bnxt_fill_masks(tx_masks, mask, tx_count);
4306 		} else {
4307 			bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count);
4308 			bnxt_copy_hw_masks(tx_masks, tx_stats, tx_count);
4309 			bnxt_hwrm_port_qstats(bp, 0);
4310 		}
4311 	}
4312 	if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) {
4313 		stats = &bp->rx_port_stats_ext;
4314 		rx_stats = stats->hw_stats;
4315 		rx_masks = stats->hw_masks;
4316 		rx_count = sizeof(struct rx_port_stats_ext) / 8;
4317 		stats = &bp->tx_port_stats_ext;
4318 		tx_stats = stats->hw_stats;
4319 		tx_masks = stats->hw_masks;
4320 		tx_count = sizeof(struct tx_port_stats_ext) / 8;
4321 
4322 		flags = PORT_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK;
4323 		rc = bnxt_hwrm_port_qstats_ext(bp, flags);
4324 		if (rc) {
4325 			mask = (1ULL << 40) - 1;
4326 
4327 			bnxt_fill_masks(rx_masks, mask, rx_count);
4328 			if (tx_stats)
4329 				bnxt_fill_masks(tx_masks, mask, tx_count);
4330 		} else {
4331 			bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count);
4332 			if (tx_stats)
4333 				bnxt_copy_hw_masks(tx_masks, tx_stats,
4334 						   tx_count);
4335 			bnxt_hwrm_port_qstats_ext(bp, 0);
4336 		}
4337 	}
4338 }
4339 
4340 static void bnxt_free_port_stats(struct bnxt *bp)
4341 {
4342 	bp->flags &= ~BNXT_FLAG_PORT_STATS;
4343 	bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT;
4344 
4345 	bnxt_free_stats_mem(bp, &bp->port_stats);
4346 	bnxt_free_stats_mem(bp, &bp->rx_port_stats_ext);
4347 	bnxt_free_stats_mem(bp, &bp->tx_port_stats_ext);
4348 }
4349 
4350 static void bnxt_free_ring_stats(struct bnxt *bp)
4351 {
4352 	int i;
4353 
4354 	if (!bp->bnapi)
4355 		return;
4356 
4357 	for (i = 0; i < bp->cp_nr_rings; i++) {
4358 		struct bnxt_napi *bnapi = bp->bnapi[i];
4359 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4360 
4361 		bnxt_free_stats_mem(bp, &cpr->stats);
4362 	}
4363 }
4364 
4365 static int bnxt_alloc_stats(struct bnxt *bp)
4366 {
4367 	u32 size, i;
4368 	int rc;
4369 
4370 	size = bp->hw_ring_stats_size;
4371 
4372 	for (i = 0; i < bp->cp_nr_rings; i++) {
4373 		struct bnxt_napi *bnapi = bp->bnapi[i];
4374 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4375 
4376 		cpr->stats.len = size;
4377 		rc = bnxt_alloc_stats_mem(bp, &cpr->stats, !i);
4378 		if (rc)
4379 			return rc;
4380 
4381 		cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
4382 	}
4383 
4384 	if (BNXT_VF(bp) || bp->chip_num == CHIP_NUM_58700)
4385 		return 0;
4386 
4387 	if (bp->port_stats.hw_stats)
4388 		goto alloc_ext_stats;
4389 
4390 	bp->port_stats.len = BNXT_PORT_STATS_SIZE;
4391 	rc = bnxt_alloc_stats_mem(bp, &bp->port_stats, true);
4392 	if (rc)
4393 		return rc;
4394 
4395 	bp->flags |= BNXT_FLAG_PORT_STATS;
4396 
4397 alloc_ext_stats:
4398 	/* Display extended statistics only if FW supports it */
4399 	if (bp->hwrm_spec_code < 0x10804 || bp->hwrm_spec_code == 0x10900)
4400 		if (!(bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED))
4401 			return 0;
4402 
4403 	if (bp->rx_port_stats_ext.hw_stats)
4404 		goto alloc_tx_ext_stats;
4405 
4406 	bp->rx_port_stats_ext.len = sizeof(struct rx_port_stats_ext);
4407 	rc = bnxt_alloc_stats_mem(bp, &bp->rx_port_stats_ext, true);
4408 	/* Extended stats are optional */
4409 	if (rc)
4410 		return 0;
4411 
4412 alloc_tx_ext_stats:
4413 	if (bp->tx_port_stats_ext.hw_stats)
4414 		return 0;
4415 
4416 	if (bp->hwrm_spec_code >= 0x10902 ||
4417 	    (bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) {
4418 		bp->tx_port_stats_ext.len = sizeof(struct tx_port_stats_ext);
4419 		rc = bnxt_alloc_stats_mem(bp, &bp->tx_port_stats_ext, true);
4420 		/* Extended stats are optional */
4421 		if (rc)
4422 			return 0;
4423 	}
4424 	bp->flags |= BNXT_FLAG_PORT_STATS_EXT;
4425 	return 0;
4426 }
4427 
4428 static void bnxt_clear_ring_indices(struct bnxt *bp)
4429 {
4430 	int i;
4431 
4432 	if (!bp->bnapi)
4433 		return;
4434 
4435 	for (i = 0; i < bp->cp_nr_rings; i++) {
4436 		struct bnxt_napi *bnapi = bp->bnapi[i];
4437 		struct bnxt_cp_ring_info *cpr;
4438 		struct bnxt_rx_ring_info *rxr;
4439 		struct bnxt_tx_ring_info *txr;
4440 
4441 		if (!bnapi)
4442 			continue;
4443 
4444 		cpr = &bnapi->cp_ring;
4445 		cpr->cp_raw_cons = 0;
4446 
4447 		txr = bnapi->tx_ring;
4448 		if (txr) {
4449 			txr->tx_prod = 0;
4450 			txr->tx_cons = 0;
4451 		}
4452 
4453 		rxr = bnapi->rx_ring;
4454 		if (rxr) {
4455 			rxr->rx_prod = 0;
4456 			rxr->rx_agg_prod = 0;
4457 			rxr->rx_sw_agg_prod = 0;
4458 			rxr->rx_next_cons = 0;
4459 		}
4460 	}
4461 }
4462 
4463 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
4464 {
4465 #ifdef CONFIG_RFS_ACCEL
4466 	int i;
4467 
4468 	/* Under rtnl_lock and all our NAPIs have been disabled.  It's
4469 	 * safe to delete the hash table.
4470 	 */
4471 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
4472 		struct hlist_head *head;
4473 		struct hlist_node *tmp;
4474 		struct bnxt_ntuple_filter *fltr;
4475 
4476 		head = &bp->ntp_fltr_hash_tbl[i];
4477 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
4478 			hlist_del(&fltr->hash);
4479 			kfree(fltr);
4480 		}
4481 	}
4482 	if (irq_reinit) {
4483 		kfree(bp->ntp_fltr_bmap);
4484 		bp->ntp_fltr_bmap = NULL;
4485 	}
4486 	bp->ntp_fltr_count = 0;
4487 #endif
4488 }
4489 
4490 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
4491 {
4492 #ifdef CONFIG_RFS_ACCEL
4493 	int i, rc = 0;
4494 
4495 	if (!(bp->flags & BNXT_FLAG_RFS))
4496 		return 0;
4497 
4498 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
4499 		INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
4500 
4501 	bp->ntp_fltr_count = 0;
4502 	bp->ntp_fltr_bmap = kcalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR),
4503 				    sizeof(long),
4504 				    GFP_KERNEL);
4505 
4506 	if (!bp->ntp_fltr_bmap)
4507 		rc = -ENOMEM;
4508 
4509 	return rc;
4510 #else
4511 	return 0;
4512 #endif
4513 }
4514 
4515 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
4516 {
4517 	bnxt_free_vnic_attributes(bp);
4518 	bnxt_free_tx_rings(bp);
4519 	bnxt_free_rx_rings(bp);
4520 	bnxt_free_cp_rings(bp);
4521 	bnxt_free_all_cp_arrays(bp);
4522 	bnxt_free_ntp_fltrs(bp, irq_re_init);
4523 	if (irq_re_init) {
4524 		bnxt_free_ring_stats(bp);
4525 		if (!(bp->phy_flags & BNXT_PHY_FL_PORT_STATS_NO_RESET) ||
4526 		    test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
4527 			bnxt_free_port_stats(bp);
4528 		bnxt_free_ring_grps(bp);
4529 		bnxt_free_vnics(bp);
4530 		kfree(bp->tx_ring_map);
4531 		bp->tx_ring_map = NULL;
4532 		kfree(bp->tx_ring);
4533 		bp->tx_ring = NULL;
4534 		kfree(bp->rx_ring);
4535 		bp->rx_ring = NULL;
4536 		kfree(bp->bnapi);
4537 		bp->bnapi = NULL;
4538 	} else {
4539 		bnxt_clear_ring_indices(bp);
4540 	}
4541 }
4542 
4543 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
4544 {
4545 	int i, j, rc, size, arr_size;
4546 	void *bnapi;
4547 
4548 	if (irq_re_init) {
4549 		/* Allocate bnapi mem pointer array and mem block for
4550 		 * all queues
4551 		 */
4552 		arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
4553 				bp->cp_nr_rings);
4554 		size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
4555 		bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
4556 		if (!bnapi)
4557 			return -ENOMEM;
4558 
4559 		bp->bnapi = bnapi;
4560 		bnapi += arr_size;
4561 		for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
4562 			bp->bnapi[i] = bnapi;
4563 			bp->bnapi[i]->index = i;
4564 			bp->bnapi[i]->bp = bp;
4565 			if (bp->flags & BNXT_FLAG_CHIP_P5) {
4566 				struct bnxt_cp_ring_info *cpr =
4567 					&bp->bnapi[i]->cp_ring;
4568 
4569 				cpr->cp_ring_struct.ring_mem.flags =
4570 					BNXT_RMEM_RING_PTE_FLAG;
4571 			}
4572 		}
4573 
4574 		bp->rx_ring = kcalloc(bp->rx_nr_rings,
4575 				      sizeof(struct bnxt_rx_ring_info),
4576 				      GFP_KERNEL);
4577 		if (!bp->rx_ring)
4578 			return -ENOMEM;
4579 
4580 		for (i = 0; i < bp->rx_nr_rings; i++) {
4581 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4582 
4583 			if (bp->flags & BNXT_FLAG_CHIP_P5) {
4584 				rxr->rx_ring_struct.ring_mem.flags =
4585 					BNXT_RMEM_RING_PTE_FLAG;
4586 				rxr->rx_agg_ring_struct.ring_mem.flags =
4587 					BNXT_RMEM_RING_PTE_FLAG;
4588 			}
4589 			rxr->bnapi = bp->bnapi[i];
4590 			bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
4591 		}
4592 
4593 		bp->tx_ring = kcalloc(bp->tx_nr_rings,
4594 				      sizeof(struct bnxt_tx_ring_info),
4595 				      GFP_KERNEL);
4596 		if (!bp->tx_ring)
4597 			return -ENOMEM;
4598 
4599 		bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16),
4600 					  GFP_KERNEL);
4601 
4602 		if (!bp->tx_ring_map)
4603 			return -ENOMEM;
4604 
4605 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
4606 			j = 0;
4607 		else
4608 			j = bp->rx_nr_rings;
4609 
4610 		for (i = 0; i < bp->tx_nr_rings; i++, j++) {
4611 			struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
4612 
4613 			if (bp->flags & BNXT_FLAG_CHIP_P5)
4614 				txr->tx_ring_struct.ring_mem.flags =
4615 					BNXT_RMEM_RING_PTE_FLAG;
4616 			txr->bnapi = bp->bnapi[j];
4617 			bp->bnapi[j]->tx_ring = txr;
4618 			bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i;
4619 			if (i >= bp->tx_nr_rings_xdp) {
4620 				txr->txq_index = i - bp->tx_nr_rings_xdp;
4621 				bp->bnapi[j]->tx_int = bnxt_tx_int;
4622 			} else {
4623 				bp->bnapi[j]->flags |= BNXT_NAPI_FLAG_XDP;
4624 				bp->bnapi[j]->tx_int = bnxt_tx_int_xdp;
4625 			}
4626 		}
4627 
4628 		rc = bnxt_alloc_stats(bp);
4629 		if (rc)
4630 			goto alloc_mem_err;
4631 		bnxt_init_stats(bp);
4632 
4633 		rc = bnxt_alloc_ntp_fltrs(bp);
4634 		if (rc)
4635 			goto alloc_mem_err;
4636 
4637 		rc = bnxt_alloc_vnics(bp);
4638 		if (rc)
4639 			goto alloc_mem_err;
4640 	}
4641 
4642 	rc = bnxt_alloc_all_cp_arrays(bp);
4643 	if (rc)
4644 		goto alloc_mem_err;
4645 
4646 	bnxt_init_ring_struct(bp);
4647 
4648 	rc = bnxt_alloc_rx_rings(bp);
4649 	if (rc)
4650 		goto alloc_mem_err;
4651 
4652 	rc = bnxt_alloc_tx_rings(bp);
4653 	if (rc)
4654 		goto alloc_mem_err;
4655 
4656 	rc = bnxt_alloc_cp_rings(bp);
4657 	if (rc)
4658 		goto alloc_mem_err;
4659 
4660 	bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
4661 				  BNXT_VNIC_UCAST_FLAG;
4662 	rc = bnxt_alloc_vnic_attributes(bp);
4663 	if (rc)
4664 		goto alloc_mem_err;
4665 	return 0;
4666 
4667 alloc_mem_err:
4668 	bnxt_free_mem(bp, true);
4669 	return rc;
4670 }
4671 
4672 static void bnxt_disable_int(struct bnxt *bp)
4673 {
4674 	int i;
4675 
4676 	if (!bp->bnapi)
4677 		return;
4678 
4679 	for (i = 0; i < bp->cp_nr_rings; i++) {
4680 		struct bnxt_napi *bnapi = bp->bnapi[i];
4681 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4682 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
4683 
4684 		if (ring->fw_ring_id != INVALID_HW_RING_ID)
4685 			bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
4686 	}
4687 }
4688 
4689 static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n)
4690 {
4691 	struct bnxt_napi *bnapi = bp->bnapi[n];
4692 	struct bnxt_cp_ring_info *cpr;
4693 
4694 	cpr = &bnapi->cp_ring;
4695 	return cpr->cp_ring_struct.map_idx;
4696 }
4697 
4698 static void bnxt_disable_int_sync(struct bnxt *bp)
4699 {
4700 	int i;
4701 
4702 	if (!bp->irq_tbl)
4703 		return;
4704 
4705 	atomic_inc(&bp->intr_sem);
4706 
4707 	bnxt_disable_int(bp);
4708 	for (i = 0; i < bp->cp_nr_rings; i++) {
4709 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
4710 
4711 		synchronize_irq(bp->irq_tbl[map_idx].vector);
4712 	}
4713 }
4714 
4715 static void bnxt_enable_int(struct bnxt *bp)
4716 {
4717 	int i;
4718 
4719 	atomic_set(&bp->intr_sem, 0);
4720 	for (i = 0; i < bp->cp_nr_rings; i++) {
4721 		struct bnxt_napi *bnapi = bp->bnapi[i];
4722 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4723 
4724 		bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons);
4725 	}
4726 }
4727 
4728 int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp, unsigned long *bmap, int bmap_size,
4729 			    bool async_only)
4730 {
4731 	DECLARE_BITMAP(async_events_bmap, 256);
4732 	u32 *events = (u32 *)async_events_bmap;
4733 	struct hwrm_func_drv_rgtr_output *resp;
4734 	struct hwrm_func_drv_rgtr_input *req;
4735 	u32 flags;
4736 	int rc, i;
4737 
4738 	rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_RGTR);
4739 	if (rc)
4740 		return rc;
4741 
4742 	req->enables = cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
4743 				   FUNC_DRV_RGTR_REQ_ENABLES_VER |
4744 				   FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
4745 
4746 	req->os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX);
4747 	flags = FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE;
4748 	if (bp->fw_cap & BNXT_FW_CAP_HOT_RESET)
4749 		flags |= FUNC_DRV_RGTR_REQ_FLAGS_HOT_RESET_SUPPORT;
4750 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
4751 		flags |= FUNC_DRV_RGTR_REQ_FLAGS_ERROR_RECOVERY_SUPPORT |
4752 			 FUNC_DRV_RGTR_REQ_FLAGS_MASTER_SUPPORT;
4753 	req->flags = cpu_to_le32(flags);
4754 	req->ver_maj_8b = DRV_VER_MAJ;
4755 	req->ver_min_8b = DRV_VER_MIN;
4756 	req->ver_upd_8b = DRV_VER_UPD;
4757 	req->ver_maj = cpu_to_le16(DRV_VER_MAJ);
4758 	req->ver_min = cpu_to_le16(DRV_VER_MIN);
4759 	req->ver_upd = cpu_to_le16(DRV_VER_UPD);
4760 
4761 	if (BNXT_PF(bp)) {
4762 		u32 data[8];
4763 		int i;
4764 
4765 		memset(data, 0, sizeof(data));
4766 		for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) {
4767 			u16 cmd = bnxt_vf_req_snif[i];
4768 			unsigned int bit, idx;
4769 
4770 			idx = cmd / 32;
4771 			bit = cmd % 32;
4772 			data[idx] |= 1 << bit;
4773 		}
4774 
4775 		for (i = 0; i < 8; i++)
4776 			req->vf_req_fwd[i] = cpu_to_le32(data[i]);
4777 
4778 		req->enables |=
4779 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
4780 	}
4781 
4782 	if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE)
4783 		req->flags |= cpu_to_le32(
4784 			FUNC_DRV_RGTR_REQ_FLAGS_FLOW_HANDLE_64BIT_MODE);
4785 
4786 	memset(async_events_bmap, 0, sizeof(async_events_bmap));
4787 	for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++) {
4788 		u16 event_id = bnxt_async_events_arr[i];
4789 
4790 		if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY &&
4791 		    !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
4792 			continue;
4793 		__set_bit(bnxt_async_events_arr[i], async_events_bmap);
4794 	}
4795 	if (bmap && bmap_size) {
4796 		for (i = 0; i < bmap_size; i++) {
4797 			if (test_bit(i, bmap))
4798 				__set_bit(i, async_events_bmap);
4799 		}
4800 	}
4801 	for (i = 0; i < 8; i++)
4802 		req->async_event_fwd[i] |= cpu_to_le32(events[i]);
4803 
4804 	if (async_only)
4805 		req->enables =
4806 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
4807 
4808 	resp = hwrm_req_hold(bp, req);
4809 	rc = hwrm_req_send(bp, req);
4810 	if (!rc) {
4811 		set_bit(BNXT_STATE_DRV_REGISTERED, &bp->state);
4812 		if (resp->flags &
4813 		    cpu_to_le32(FUNC_DRV_RGTR_RESP_FLAGS_IF_CHANGE_SUPPORTED))
4814 			bp->fw_cap |= BNXT_FW_CAP_IF_CHANGE;
4815 	}
4816 	hwrm_req_drop(bp, req);
4817 	return rc;
4818 }
4819 
4820 int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
4821 {
4822 	struct hwrm_func_drv_unrgtr_input *req;
4823 	int rc;
4824 
4825 	if (!test_and_clear_bit(BNXT_STATE_DRV_REGISTERED, &bp->state))
4826 		return 0;
4827 
4828 	rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_UNRGTR);
4829 	if (rc)
4830 		return rc;
4831 	return hwrm_req_send(bp, req);
4832 }
4833 
4834 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
4835 {
4836 	struct hwrm_tunnel_dst_port_free_input *req;
4837 	int rc;
4838 
4839 	if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN &&
4840 	    bp->vxlan_fw_dst_port_id == INVALID_HW_RING_ID)
4841 		return 0;
4842 	if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE &&
4843 	    bp->nge_fw_dst_port_id == INVALID_HW_RING_ID)
4844 		return 0;
4845 
4846 	rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_FREE);
4847 	if (rc)
4848 		return rc;
4849 
4850 	req->tunnel_type = tunnel_type;
4851 
4852 	switch (tunnel_type) {
4853 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
4854 		req->tunnel_dst_port_id = cpu_to_le16(bp->vxlan_fw_dst_port_id);
4855 		bp->vxlan_port = 0;
4856 		bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID;
4857 		break;
4858 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
4859 		req->tunnel_dst_port_id = cpu_to_le16(bp->nge_fw_dst_port_id);
4860 		bp->nge_port = 0;
4861 		bp->nge_fw_dst_port_id = INVALID_HW_RING_ID;
4862 		break;
4863 	default:
4864 		break;
4865 	}
4866 
4867 	rc = hwrm_req_send(bp, req);
4868 	if (rc)
4869 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
4870 			   rc);
4871 	return rc;
4872 }
4873 
4874 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
4875 					   u8 tunnel_type)
4876 {
4877 	struct hwrm_tunnel_dst_port_alloc_output *resp;
4878 	struct hwrm_tunnel_dst_port_alloc_input *req;
4879 	int rc;
4880 
4881 	rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_ALLOC);
4882 	if (rc)
4883 		return rc;
4884 
4885 	req->tunnel_type = tunnel_type;
4886 	req->tunnel_dst_port_val = port;
4887 
4888 	resp = hwrm_req_hold(bp, req);
4889 	rc = hwrm_req_send(bp, req);
4890 	if (rc) {
4891 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
4892 			   rc);
4893 		goto err_out;
4894 	}
4895 
4896 	switch (tunnel_type) {
4897 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN:
4898 		bp->vxlan_port = port;
4899 		bp->vxlan_fw_dst_port_id =
4900 			le16_to_cpu(resp->tunnel_dst_port_id);
4901 		break;
4902 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE:
4903 		bp->nge_port = port;
4904 		bp->nge_fw_dst_port_id = le16_to_cpu(resp->tunnel_dst_port_id);
4905 		break;
4906 	default:
4907 		break;
4908 	}
4909 
4910 err_out:
4911 	hwrm_req_drop(bp, req);
4912 	return rc;
4913 }
4914 
4915 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
4916 {
4917 	struct hwrm_cfa_l2_set_rx_mask_input *req;
4918 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4919 	int rc;
4920 
4921 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_SET_RX_MASK);
4922 	if (rc)
4923 		return rc;
4924 
4925 	req->vnic_id = cpu_to_le32(vnic->fw_vnic_id);
4926 	if (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST) {
4927 		req->num_mc_entries = cpu_to_le32(vnic->mc_list_count);
4928 		req->mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
4929 	}
4930 	req->mask = cpu_to_le32(vnic->rx_mask);
4931 	return hwrm_req_send_silent(bp, req);
4932 }
4933 
4934 #ifdef CONFIG_RFS_ACCEL
4935 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
4936 					    struct bnxt_ntuple_filter *fltr)
4937 {
4938 	struct hwrm_cfa_ntuple_filter_free_input *req;
4939 	int rc;
4940 
4941 	rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_FREE);
4942 	if (rc)
4943 		return rc;
4944 
4945 	req->ntuple_filter_id = fltr->filter_id;
4946 	return hwrm_req_send(bp, req);
4947 }
4948 
4949 #define BNXT_NTP_FLTR_FLAGS					\
4950 	(CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID |	\
4951 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE |	\
4952 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR |	\
4953 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE |	\
4954 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR |	\
4955 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK |	\
4956 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR |	\
4957 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK |	\
4958 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL |	\
4959 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT |		\
4960 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK |	\
4961 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT |		\
4962 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK |	\
4963 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
4964 
4965 #define BNXT_NTP_TUNNEL_FLTR_FLAG				\
4966 		CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE
4967 
4968 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
4969 					     struct bnxt_ntuple_filter *fltr)
4970 {
4971 	struct hwrm_cfa_ntuple_filter_alloc_output *resp;
4972 	struct hwrm_cfa_ntuple_filter_alloc_input *req;
4973 	struct flow_keys *keys = &fltr->fkeys;
4974 	struct bnxt_vnic_info *vnic;
4975 	u32 flags = 0;
4976 	int rc;
4977 
4978 	rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_ALLOC);
4979 	if (rc)
4980 		return rc;
4981 
4982 	req->l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx];
4983 
4984 	if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) {
4985 		flags = CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DEST_RFS_RING_IDX;
4986 		req->dst_id = cpu_to_le16(fltr->rxq);
4987 	} else {
4988 		vnic = &bp->vnic_info[fltr->rxq + 1];
4989 		req->dst_id = cpu_to_le16(vnic->fw_vnic_id);
4990 	}
4991 	req->flags = cpu_to_le32(flags);
4992 	req->enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
4993 
4994 	req->ethertype = htons(ETH_P_IP);
4995 	memcpy(req->src_macaddr, fltr->src_mac_addr, ETH_ALEN);
4996 	req->ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
4997 	req->ip_protocol = keys->basic.ip_proto;
4998 
4999 	if (keys->basic.n_proto == htons(ETH_P_IPV6)) {
5000 		int i;
5001 
5002 		req->ethertype = htons(ETH_P_IPV6);
5003 		req->ip_addr_type =
5004 			CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6;
5005 		*(struct in6_addr *)&req->src_ipaddr[0] =
5006 			keys->addrs.v6addrs.src;
5007 		*(struct in6_addr *)&req->dst_ipaddr[0] =
5008 			keys->addrs.v6addrs.dst;
5009 		for (i = 0; i < 4; i++) {
5010 			req->src_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
5011 			req->dst_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
5012 		}
5013 	} else {
5014 		req->src_ipaddr[0] = keys->addrs.v4addrs.src;
5015 		req->src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
5016 		req->dst_ipaddr[0] = keys->addrs.v4addrs.dst;
5017 		req->dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
5018 	}
5019 	if (keys->control.flags & FLOW_DIS_ENCAPSULATION) {
5020 		req->enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG);
5021 		req->tunnel_type =
5022 			CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL;
5023 	}
5024 
5025 	req->src_port = keys->ports.src;
5026 	req->src_port_mask = cpu_to_be16(0xffff);
5027 	req->dst_port = keys->ports.dst;
5028 	req->dst_port_mask = cpu_to_be16(0xffff);
5029 
5030 	resp = hwrm_req_hold(bp, req);
5031 	rc = hwrm_req_send(bp, req);
5032 	if (!rc)
5033 		fltr->filter_id = resp->ntuple_filter_id;
5034 	hwrm_req_drop(bp, req);
5035 	return rc;
5036 }
5037 #endif
5038 
5039 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
5040 				     const u8 *mac_addr)
5041 {
5042 	struct hwrm_cfa_l2_filter_alloc_output *resp;
5043 	struct hwrm_cfa_l2_filter_alloc_input *req;
5044 	int rc;
5045 
5046 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_ALLOC);
5047 	if (rc)
5048 		return rc;
5049 
5050 	req->flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX);
5051 	if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
5052 		req->flags |=
5053 			cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
5054 	req->dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
5055 	req->enables =
5056 		cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
5057 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
5058 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
5059 	memcpy(req->l2_addr, mac_addr, ETH_ALEN);
5060 	req->l2_addr_mask[0] = 0xff;
5061 	req->l2_addr_mask[1] = 0xff;
5062 	req->l2_addr_mask[2] = 0xff;
5063 	req->l2_addr_mask[3] = 0xff;
5064 	req->l2_addr_mask[4] = 0xff;
5065 	req->l2_addr_mask[5] = 0xff;
5066 
5067 	resp = hwrm_req_hold(bp, req);
5068 	rc = hwrm_req_send(bp, req);
5069 	if (!rc)
5070 		bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
5071 							resp->l2_filter_id;
5072 	hwrm_req_drop(bp, req);
5073 	return rc;
5074 }
5075 
5076 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
5077 {
5078 	struct hwrm_cfa_l2_filter_free_input *req;
5079 	u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
5080 	int rc;
5081 
5082 	/* Any associated ntuple filters will also be cleared by firmware. */
5083 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE);
5084 	if (rc)
5085 		return rc;
5086 	hwrm_req_hold(bp, req);
5087 	for (i = 0; i < num_of_vnics; i++) {
5088 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
5089 
5090 		for (j = 0; j < vnic->uc_filter_count; j++) {
5091 			req->l2_filter_id = vnic->fw_l2_filter_id[j];
5092 
5093 			rc = hwrm_req_send(bp, req);
5094 		}
5095 		vnic->uc_filter_count = 0;
5096 	}
5097 	hwrm_req_drop(bp, req);
5098 	return rc;
5099 }
5100 
5101 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
5102 {
5103 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5104 	u16 max_aggs = VNIC_TPA_CFG_REQ_MAX_AGGS_MAX;
5105 	struct hwrm_vnic_tpa_cfg_input *req;
5106 	int rc;
5107 
5108 	if (vnic->fw_vnic_id == INVALID_HW_RING_ID)
5109 		return 0;
5110 
5111 	rc = hwrm_req_init(bp, req, HWRM_VNIC_TPA_CFG);
5112 	if (rc)
5113 		return rc;
5114 
5115 	if (tpa_flags) {
5116 		u16 mss = bp->dev->mtu - 40;
5117 		u32 nsegs, n, segs = 0, flags;
5118 
5119 		flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
5120 			VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
5121 			VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
5122 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
5123 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
5124 		if (tpa_flags & BNXT_FLAG_GRO)
5125 			flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
5126 
5127 		req->flags = cpu_to_le32(flags);
5128 
5129 		req->enables =
5130 			cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
5131 				    VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
5132 				    VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
5133 
5134 		/* Number of segs are log2 units, and first packet is not
5135 		 * included as part of this units.
5136 		 */
5137 		if (mss <= BNXT_RX_PAGE_SIZE) {
5138 			n = BNXT_RX_PAGE_SIZE / mss;
5139 			nsegs = (MAX_SKB_FRAGS - 1) * n;
5140 		} else {
5141 			n = mss / BNXT_RX_PAGE_SIZE;
5142 			if (mss & (BNXT_RX_PAGE_SIZE - 1))
5143 				n++;
5144 			nsegs = (MAX_SKB_FRAGS - n) / n;
5145 		}
5146 
5147 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5148 			segs = MAX_TPA_SEGS_P5;
5149 			max_aggs = bp->max_tpa;
5150 		} else {
5151 			segs = ilog2(nsegs);
5152 		}
5153 		req->max_agg_segs = cpu_to_le16(segs);
5154 		req->max_aggs = cpu_to_le16(max_aggs);
5155 
5156 		req->min_agg_len = cpu_to_le32(512);
5157 	}
5158 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5159 
5160 	return hwrm_req_send(bp, req);
5161 }
5162 
5163 static u16 bnxt_cp_ring_from_grp(struct bnxt *bp, struct bnxt_ring_struct *ring)
5164 {
5165 	struct bnxt_ring_grp_info *grp_info;
5166 
5167 	grp_info = &bp->grp_info[ring->grp_idx];
5168 	return grp_info->cp_fw_ring_id;
5169 }
5170 
5171 static u16 bnxt_cp_ring_for_rx(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
5172 {
5173 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5174 		struct bnxt_napi *bnapi = rxr->bnapi;
5175 		struct bnxt_cp_ring_info *cpr;
5176 
5177 		cpr = bnapi->cp_ring.cp_ring_arr[BNXT_RX_HDL];
5178 		return cpr->cp_ring_struct.fw_ring_id;
5179 	} else {
5180 		return bnxt_cp_ring_from_grp(bp, &rxr->rx_ring_struct);
5181 	}
5182 }
5183 
5184 static u16 bnxt_cp_ring_for_tx(struct bnxt *bp, struct bnxt_tx_ring_info *txr)
5185 {
5186 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5187 		struct bnxt_napi *bnapi = txr->bnapi;
5188 		struct bnxt_cp_ring_info *cpr;
5189 
5190 		cpr = bnapi->cp_ring.cp_ring_arr[BNXT_TX_HDL];
5191 		return cpr->cp_ring_struct.fw_ring_id;
5192 	} else {
5193 		return bnxt_cp_ring_from_grp(bp, &txr->tx_ring_struct);
5194 	}
5195 }
5196 
5197 static int bnxt_alloc_rss_indir_tbl(struct bnxt *bp)
5198 {
5199 	int entries;
5200 
5201 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5202 		entries = BNXT_MAX_RSS_TABLE_ENTRIES_P5;
5203 	else
5204 		entries = HW_HASH_INDEX_SIZE;
5205 
5206 	bp->rss_indir_tbl_entries = entries;
5207 	bp->rss_indir_tbl = kmalloc_array(entries, sizeof(*bp->rss_indir_tbl),
5208 					  GFP_KERNEL);
5209 	if (!bp->rss_indir_tbl)
5210 		return -ENOMEM;
5211 	return 0;
5212 }
5213 
5214 static void bnxt_set_dflt_rss_indir_tbl(struct bnxt *bp)
5215 {
5216 	u16 max_rings, max_entries, pad, i;
5217 
5218 	if (!bp->rx_nr_rings)
5219 		return;
5220 
5221 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5222 		max_rings = bp->rx_nr_rings - 1;
5223 	else
5224 		max_rings = bp->rx_nr_rings;
5225 
5226 	max_entries = bnxt_get_rxfh_indir_size(bp->dev);
5227 
5228 	for (i = 0; i < max_entries; i++)
5229 		bp->rss_indir_tbl[i] = ethtool_rxfh_indir_default(i, max_rings);
5230 
5231 	pad = bp->rss_indir_tbl_entries - max_entries;
5232 	if (pad)
5233 		memset(&bp->rss_indir_tbl[i], 0, pad * sizeof(u16));
5234 }
5235 
5236 static u16 bnxt_get_max_rss_ring(struct bnxt *bp)
5237 {
5238 	u16 i, tbl_size, max_ring = 0;
5239 
5240 	if (!bp->rss_indir_tbl)
5241 		return 0;
5242 
5243 	tbl_size = bnxt_get_rxfh_indir_size(bp->dev);
5244 	for (i = 0; i < tbl_size; i++)
5245 		max_ring = max(max_ring, bp->rss_indir_tbl[i]);
5246 	return max_ring;
5247 }
5248 
5249 int bnxt_get_nr_rss_ctxs(struct bnxt *bp, int rx_rings)
5250 {
5251 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5252 		return DIV_ROUND_UP(rx_rings, BNXT_RSS_TABLE_ENTRIES_P5);
5253 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5254 		return 2;
5255 	return 1;
5256 }
5257 
5258 static void __bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic)
5259 {
5260 	bool no_rss = !(vnic->flags & BNXT_VNIC_RSS_FLAG);
5261 	u16 i, j;
5262 
5263 	/* Fill the RSS indirection table with ring group ids */
5264 	for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++) {
5265 		if (!no_rss)
5266 			j = bp->rss_indir_tbl[i];
5267 		vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
5268 	}
5269 }
5270 
5271 static void __bnxt_fill_hw_rss_tbl_p5(struct bnxt *bp,
5272 				      struct bnxt_vnic_info *vnic)
5273 {
5274 	__le16 *ring_tbl = vnic->rss_table;
5275 	struct bnxt_rx_ring_info *rxr;
5276 	u16 tbl_size, i;
5277 
5278 	tbl_size = bnxt_get_rxfh_indir_size(bp->dev);
5279 
5280 	for (i = 0; i < tbl_size; i++) {
5281 		u16 ring_id, j;
5282 
5283 		j = bp->rss_indir_tbl[i];
5284 		rxr = &bp->rx_ring[j];
5285 
5286 		ring_id = rxr->rx_ring_struct.fw_ring_id;
5287 		*ring_tbl++ = cpu_to_le16(ring_id);
5288 		ring_id = bnxt_cp_ring_for_rx(bp, rxr);
5289 		*ring_tbl++ = cpu_to_le16(ring_id);
5290 	}
5291 }
5292 
5293 static void bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic)
5294 {
5295 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5296 		__bnxt_fill_hw_rss_tbl_p5(bp, vnic);
5297 	else
5298 		__bnxt_fill_hw_rss_tbl(bp, vnic);
5299 }
5300 
5301 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
5302 {
5303 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5304 	struct hwrm_vnic_rss_cfg_input *req;
5305 	int rc;
5306 
5307 	if ((bp->flags & BNXT_FLAG_CHIP_P5) ||
5308 	    vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID)
5309 		return 0;
5310 
5311 	rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG);
5312 	if (rc)
5313 		return rc;
5314 
5315 	if (set_rss) {
5316 		bnxt_fill_hw_rss_tbl(bp, vnic);
5317 		req->hash_type = cpu_to_le32(bp->rss_hash_cfg);
5318 		req->hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT;
5319 		req->ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
5320 		req->hash_key_tbl_addr =
5321 			cpu_to_le64(vnic->rss_hash_key_dma_addr);
5322 	}
5323 	req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
5324 	return hwrm_req_send(bp, req);
5325 }
5326 
5327 static int bnxt_hwrm_vnic_set_rss_p5(struct bnxt *bp, u16 vnic_id, bool set_rss)
5328 {
5329 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5330 	struct hwrm_vnic_rss_cfg_input *req;
5331 	dma_addr_t ring_tbl_map;
5332 	u32 i, nr_ctxs;
5333 	int rc;
5334 
5335 	rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG);
5336 	if (rc)
5337 		return rc;
5338 
5339 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5340 	if (!set_rss)
5341 		return hwrm_req_send(bp, req);
5342 
5343 	bnxt_fill_hw_rss_tbl(bp, vnic);
5344 	req->hash_type = cpu_to_le32(bp->rss_hash_cfg);
5345 	req->hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT;
5346 	req->hash_key_tbl_addr = cpu_to_le64(vnic->rss_hash_key_dma_addr);
5347 	ring_tbl_map = vnic->rss_table_dma_addr;
5348 	nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings);
5349 
5350 	hwrm_req_hold(bp, req);
5351 	for (i = 0; i < nr_ctxs; ring_tbl_map += BNXT_RSS_TABLE_SIZE_P5, i++) {
5352 		req->ring_grp_tbl_addr = cpu_to_le64(ring_tbl_map);
5353 		req->ring_table_pair_index = i;
5354 		req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[i]);
5355 		rc = hwrm_req_send(bp, req);
5356 		if (rc)
5357 			goto exit;
5358 	}
5359 
5360 exit:
5361 	hwrm_req_drop(bp, req);
5362 	return rc;
5363 }
5364 
5365 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
5366 {
5367 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5368 	struct hwrm_vnic_plcmodes_cfg_input *req;
5369 	int rc;
5370 
5371 	rc = hwrm_req_init(bp, req, HWRM_VNIC_PLCMODES_CFG);
5372 	if (rc)
5373 		return rc;
5374 
5375 	req->flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT);
5376 	req->enables = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID);
5377 
5378 	if (BNXT_RX_PAGE_MODE(bp) && !BNXT_RX_JUMBO_MODE(bp)) {
5379 		req->flags |= cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
5380 					  VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
5381 		req->enables |=
5382 			cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
5383 	}
5384 	/* thresholds not implemented in firmware yet */
5385 	req->jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
5386 	req->hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
5387 	req->vnic_id = cpu_to_le32(vnic->fw_vnic_id);
5388 	return hwrm_req_send(bp, req);
5389 }
5390 
5391 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id,
5392 					u16 ctx_idx)
5393 {
5394 	struct hwrm_vnic_rss_cos_lb_ctx_free_input *req;
5395 
5396 	if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_FREE))
5397 		return;
5398 
5399 	req->rss_cos_lb_ctx_id =
5400 		cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]);
5401 
5402 	hwrm_req_send(bp, req);
5403 	bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID;
5404 }
5405 
5406 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
5407 {
5408 	int i, j;
5409 
5410 	for (i = 0; i < bp->nr_vnics; i++) {
5411 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
5412 
5413 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) {
5414 			if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID)
5415 				bnxt_hwrm_vnic_ctx_free_one(bp, i, j);
5416 		}
5417 	}
5418 	bp->rsscos_nr_ctxs = 0;
5419 }
5420 
5421 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx)
5422 {
5423 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp;
5424 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_input *req;
5425 	int rc;
5426 
5427 	rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC);
5428 	if (rc)
5429 		return rc;
5430 
5431 	resp = hwrm_req_hold(bp, req);
5432 	rc = hwrm_req_send(bp, req);
5433 	if (!rc)
5434 		bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] =
5435 			le16_to_cpu(resp->rss_cos_lb_ctx_id);
5436 	hwrm_req_drop(bp, req);
5437 
5438 	return rc;
5439 }
5440 
5441 static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp)
5442 {
5443 	if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP)
5444 		return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE;
5445 	return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE;
5446 }
5447 
5448 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
5449 {
5450 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5451 	struct hwrm_vnic_cfg_input *req;
5452 	unsigned int ring = 0, grp_idx;
5453 	u16 def_vlan = 0;
5454 	int rc;
5455 
5456 	rc = hwrm_req_init(bp, req, HWRM_VNIC_CFG);
5457 	if (rc)
5458 		return rc;
5459 
5460 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5461 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0];
5462 
5463 		req->default_rx_ring_id =
5464 			cpu_to_le16(rxr->rx_ring_struct.fw_ring_id);
5465 		req->default_cmpl_ring_id =
5466 			cpu_to_le16(bnxt_cp_ring_for_rx(bp, rxr));
5467 		req->enables =
5468 			cpu_to_le32(VNIC_CFG_REQ_ENABLES_DEFAULT_RX_RING_ID |
5469 				    VNIC_CFG_REQ_ENABLES_DEFAULT_CMPL_RING_ID);
5470 		goto vnic_mru;
5471 	}
5472 	req->enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP);
5473 	/* Only RSS support for now TBD: COS & LB */
5474 	if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) {
5475 		req->rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
5476 		req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
5477 					   VNIC_CFG_REQ_ENABLES_MRU);
5478 	} else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) {
5479 		req->rss_rule =
5480 			cpu_to_le16(bp->vnic_info[0].fw_rss_cos_lb_ctx[0]);
5481 		req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
5482 					   VNIC_CFG_REQ_ENABLES_MRU);
5483 		req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE);
5484 	} else {
5485 		req->rss_rule = cpu_to_le16(0xffff);
5486 	}
5487 
5488 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) &&
5489 	    (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) {
5490 		req->cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]);
5491 		req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE);
5492 	} else {
5493 		req->cos_rule = cpu_to_le16(0xffff);
5494 	}
5495 
5496 	if (vnic->flags & BNXT_VNIC_RSS_FLAG)
5497 		ring = 0;
5498 	else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
5499 		ring = vnic_id - 1;
5500 	else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp))
5501 		ring = bp->rx_nr_rings - 1;
5502 
5503 	grp_idx = bp->rx_ring[ring].bnapi->index;
5504 	req->dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
5505 	req->lb_rule = cpu_to_le16(0xffff);
5506 vnic_mru:
5507 	req->mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + VLAN_HLEN);
5508 
5509 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5510 #ifdef CONFIG_BNXT_SRIOV
5511 	if (BNXT_VF(bp))
5512 		def_vlan = bp->vf.vlan;
5513 #endif
5514 	if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan)
5515 		req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
5516 	if (!vnic_id && bnxt_ulp_registered(bp->edev, BNXT_ROCE_ULP))
5517 		req->flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp));
5518 
5519 	return hwrm_req_send(bp, req);
5520 }
5521 
5522 static void bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
5523 {
5524 	if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
5525 		struct hwrm_vnic_free_input *req;
5526 
5527 		if (hwrm_req_init(bp, req, HWRM_VNIC_FREE))
5528 			return;
5529 
5530 		req->vnic_id =
5531 			cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
5532 
5533 		hwrm_req_send(bp, req);
5534 		bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
5535 	}
5536 }
5537 
5538 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
5539 {
5540 	u16 i;
5541 
5542 	for (i = 0; i < bp->nr_vnics; i++)
5543 		bnxt_hwrm_vnic_free_one(bp, i);
5544 }
5545 
5546 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
5547 				unsigned int start_rx_ring_idx,
5548 				unsigned int nr_rings)
5549 {
5550 	unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
5551 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5552 	struct hwrm_vnic_alloc_output *resp;
5553 	struct hwrm_vnic_alloc_input *req;
5554 	int rc;
5555 
5556 	rc = hwrm_req_init(bp, req, HWRM_VNIC_ALLOC);
5557 	if (rc)
5558 		return rc;
5559 
5560 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5561 		goto vnic_no_ring_grps;
5562 
5563 	/* map ring groups to this vnic */
5564 	for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
5565 		grp_idx = bp->rx_ring[i].bnapi->index;
5566 		if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
5567 			netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
5568 				   j, nr_rings);
5569 			break;
5570 		}
5571 		vnic->fw_grp_ids[j] = bp->grp_info[grp_idx].fw_grp_id;
5572 	}
5573 
5574 vnic_no_ring_grps:
5575 	for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++)
5576 		vnic->fw_rss_cos_lb_ctx[i] = INVALID_HW_RING_ID;
5577 	if (vnic_id == 0)
5578 		req->flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
5579 
5580 	resp = hwrm_req_hold(bp, req);
5581 	rc = hwrm_req_send(bp, req);
5582 	if (!rc)
5583 		vnic->fw_vnic_id = le32_to_cpu(resp->vnic_id);
5584 	hwrm_req_drop(bp, req);
5585 	return rc;
5586 }
5587 
5588 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp)
5589 {
5590 	struct hwrm_vnic_qcaps_output *resp;
5591 	struct hwrm_vnic_qcaps_input *req;
5592 	int rc;
5593 
5594 	bp->hw_ring_stats_size = sizeof(struct ctx_hw_stats);
5595 	bp->flags &= ~(BNXT_FLAG_NEW_RSS_CAP | BNXT_FLAG_ROCE_MIRROR_CAP);
5596 	if (bp->hwrm_spec_code < 0x10600)
5597 		return 0;
5598 
5599 	rc = hwrm_req_init(bp, req, HWRM_VNIC_QCAPS);
5600 	if (rc)
5601 		return rc;
5602 
5603 	resp = hwrm_req_hold(bp, req);
5604 	rc = hwrm_req_send(bp, req);
5605 	if (!rc) {
5606 		u32 flags = le32_to_cpu(resp->flags);
5607 
5608 		if (!(bp->flags & BNXT_FLAG_CHIP_P5) &&
5609 		    (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP))
5610 			bp->flags |= BNXT_FLAG_NEW_RSS_CAP;
5611 		if (flags &
5612 		    VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP)
5613 			bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP;
5614 
5615 		/* Older P5 fw before EXT_HW_STATS support did not set
5616 		 * VLAN_STRIP_CAP properly.
5617 		 */
5618 		if ((flags & VNIC_QCAPS_RESP_FLAGS_VLAN_STRIP_CAP) ||
5619 		    (BNXT_CHIP_P5_THOR(bp) &&
5620 		     !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)))
5621 			bp->fw_cap |= BNXT_FW_CAP_VLAN_RX_STRIP;
5622 		bp->max_tpa_v2 = le16_to_cpu(resp->max_aggs_supported);
5623 		if (bp->max_tpa_v2) {
5624 			if (BNXT_CHIP_P5_THOR(bp))
5625 				bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5;
5626 			else
5627 				bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5_SR2;
5628 		}
5629 	}
5630 	hwrm_req_drop(bp, req);
5631 	return rc;
5632 }
5633 
5634 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
5635 {
5636 	struct hwrm_ring_grp_alloc_output *resp;
5637 	struct hwrm_ring_grp_alloc_input *req;
5638 	int rc;
5639 	u16 i;
5640 
5641 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5642 		return 0;
5643 
5644 	rc = hwrm_req_init(bp, req, HWRM_RING_GRP_ALLOC);
5645 	if (rc)
5646 		return rc;
5647 
5648 	resp = hwrm_req_hold(bp, req);
5649 	for (i = 0; i < bp->rx_nr_rings; i++) {
5650 		unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
5651 
5652 		req->cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
5653 		req->rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
5654 		req->ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
5655 		req->sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
5656 
5657 		rc = hwrm_req_send(bp, req);
5658 
5659 		if (rc)
5660 			break;
5661 
5662 		bp->grp_info[grp_idx].fw_grp_id =
5663 			le32_to_cpu(resp->ring_group_id);
5664 	}
5665 	hwrm_req_drop(bp, req);
5666 	return rc;
5667 }
5668 
5669 static void bnxt_hwrm_ring_grp_free(struct bnxt *bp)
5670 {
5671 	struct hwrm_ring_grp_free_input *req;
5672 	u16 i;
5673 
5674 	if (!bp->grp_info || (bp->flags & BNXT_FLAG_CHIP_P5))
5675 		return;
5676 
5677 	if (hwrm_req_init(bp, req, HWRM_RING_GRP_FREE))
5678 		return;
5679 
5680 	hwrm_req_hold(bp, req);
5681 	for (i = 0; i < bp->cp_nr_rings; i++) {
5682 		if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
5683 			continue;
5684 		req->ring_group_id =
5685 			cpu_to_le32(bp->grp_info[i].fw_grp_id);
5686 
5687 		hwrm_req_send(bp, req);
5688 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
5689 	}
5690 	hwrm_req_drop(bp, req);
5691 }
5692 
5693 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
5694 				    struct bnxt_ring_struct *ring,
5695 				    u32 ring_type, u32 map_index)
5696 {
5697 	struct hwrm_ring_alloc_output *resp;
5698 	struct hwrm_ring_alloc_input *req;
5699 	struct bnxt_ring_mem_info *rmem = &ring->ring_mem;
5700 	struct bnxt_ring_grp_info *grp_info;
5701 	int rc, err = 0;
5702 	u16 ring_id;
5703 
5704 	rc = hwrm_req_init(bp, req, HWRM_RING_ALLOC);
5705 	if (rc)
5706 		goto exit;
5707 
5708 	req->enables = 0;
5709 	if (rmem->nr_pages > 1) {
5710 		req->page_tbl_addr = cpu_to_le64(rmem->pg_tbl_map);
5711 		/* Page size is in log2 units */
5712 		req->page_size = BNXT_PAGE_SHIFT;
5713 		req->page_tbl_depth = 1;
5714 	} else {
5715 		req->page_tbl_addr =  cpu_to_le64(rmem->dma_arr[0]);
5716 	}
5717 	req->fbo = 0;
5718 	/* Association of ring index with doorbell index and MSIX number */
5719 	req->logical_id = cpu_to_le16(map_index);
5720 
5721 	switch (ring_type) {
5722 	case HWRM_RING_ALLOC_TX: {
5723 		struct bnxt_tx_ring_info *txr;
5724 
5725 		txr = container_of(ring, struct bnxt_tx_ring_info,
5726 				   tx_ring_struct);
5727 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
5728 		/* Association of transmit ring with completion ring */
5729 		grp_info = &bp->grp_info[ring->grp_idx];
5730 		req->cmpl_ring_id = cpu_to_le16(bnxt_cp_ring_for_tx(bp, txr));
5731 		req->length = cpu_to_le32(bp->tx_ring_mask + 1);
5732 		req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5733 		req->queue_id = cpu_to_le16(ring->queue_id);
5734 		break;
5735 	}
5736 	case HWRM_RING_ALLOC_RX:
5737 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
5738 		req->length = cpu_to_le32(bp->rx_ring_mask + 1);
5739 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5740 			u16 flags = 0;
5741 
5742 			/* Association of rx ring with stats context */
5743 			grp_info = &bp->grp_info[ring->grp_idx];
5744 			req->rx_buf_size = cpu_to_le16(bp->rx_buf_use_size);
5745 			req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5746 			req->enables |= cpu_to_le32(
5747 				RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
5748 			if (NET_IP_ALIGN == 2)
5749 				flags = RING_ALLOC_REQ_FLAGS_RX_SOP_PAD;
5750 			req->flags = cpu_to_le16(flags);
5751 		}
5752 		break;
5753 	case HWRM_RING_ALLOC_AGG:
5754 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5755 			req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX_AGG;
5756 			/* Association of agg ring with rx ring */
5757 			grp_info = &bp->grp_info[ring->grp_idx];
5758 			req->rx_ring_id = cpu_to_le16(grp_info->rx_fw_ring_id);
5759 			req->rx_buf_size = cpu_to_le16(BNXT_RX_PAGE_SIZE);
5760 			req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5761 			req->enables |= cpu_to_le32(
5762 				RING_ALLOC_REQ_ENABLES_RX_RING_ID_VALID |
5763 				RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
5764 		} else {
5765 			req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
5766 		}
5767 		req->length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
5768 		break;
5769 	case HWRM_RING_ALLOC_CMPL:
5770 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL;
5771 		req->length = cpu_to_le32(bp->cp_ring_mask + 1);
5772 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5773 			/* Association of cp ring with nq */
5774 			grp_info = &bp->grp_info[map_index];
5775 			req->nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id);
5776 			req->cq_handle = cpu_to_le64(ring->handle);
5777 			req->enables |= cpu_to_le32(
5778 				RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID);
5779 		} else if (bp->flags & BNXT_FLAG_USING_MSIX) {
5780 			req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
5781 		}
5782 		break;
5783 	case HWRM_RING_ALLOC_NQ:
5784 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_NQ;
5785 		req->length = cpu_to_le32(bp->cp_ring_mask + 1);
5786 		if (bp->flags & BNXT_FLAG_USING_MSIX)
5787 			req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
5788 		break;
5789 	default:
5790 		netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
5791 			   ring_type);
5792 		return -1;
5793 	}
5794 
5795 	resp = hwrm_req_hold(bp, req);
5796 	rc = hwrm_req_send(bp, req);
5797 	err = le16_to_cpu(resp->error_code);
5798 	ring_id = le16_to_cpu(resp->ring_id);
5799 	hwrm_req_drop(bp, req);
5800 
5801 exit:
5802 	if (rc || err) {
5803 		netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n",
5804 			   ring_type, rc, err);
5805 		return -EIO;
5806 	}
5807 	ring->fw_ring_id = ring_id;
5808 	return rc;
5809 }
5810 
5811 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx)
5812 {
5813 	int rc;
5814 
5815 	if (BNXT_PF(bp)) {
5816 		struct hwrm_func_cfg_input *req;
5817 
5818 		rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG);
5819 		if (rc)
5820 			return rc;
5821 
5822 		req->fid = cpu_to_le16(0xffff);
5823 		req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
5824 		req->async_event_cr = cpu_to_le16(idx);
5825 		return hwrm_req_send(bp, req);
5826 	} else {
5827 		struct hwrm_func_vf_cfg_input *req;
5828 
5829 		rc = hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG);
5830 		if (rc)
5831 			return rc;
5832 
5833 		req->enables =
5834 			cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
5835 		req->async_event_cr = cpu_to_le16(idx);
5836 		return hwrm_req_send(bp, req);
5837 	}
5838 }
5839 
5840 static void bnxt_set_db(struct bnxt *bp, struct bnxt_db_info *db, u32 ring_type,
5841 			u32 map_idx, u32 xid)
5842 {
5843 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5844 		if (BNXT_PF(bp))
5845 			db->doorbell = bp->bar1 + DB_PF_OFFSET_P5;
5846 		else
5847 			db->doorbell = bp->bar1 + DB_VF_OFFSET_P5;
5848 		switch (ring_type) {
5849 		case HWRM_RING_ALLOC_TX:
5850 			db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SQ;
5851 			break;
5852 		case HWRM_RING_ALLOC_RX:
5853 		case HWRM_RING_ALLOC_AGG:
5854 			db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SRQ;
5855 			break;
5856 		case HWRM_RING_ALLOC_CMPL:
5857 			db->db_key64 = DBR_PATH_L2;
5858 			break;
5859 		case HWRM_RING_ALLOC_NQ:
5860 			db->db_key64 = DBR_PATH_L2;
5861 			break;
5862 		}
5863 		db->db_key64 |= (u64)xid << DBR_XID_SFT;
5864 	} else {
5865 		db->doorbell = bp->bar1 + map_idx * 0x80;
5866 		switch (ring_type) {
5867 		case HWRM_RING_ALLOC_TX:
5868 			db->db_key32 = DB_KEY_TX;
5869 			break;
5870 		case HWRM_RING_ALLOC_RX:
5871 		case HWRM_RING_ALLOC_AGG:
5872 			db->db_key32 = DB_KEY_RX;
5873 			break;
5874 		case HWRM_RING_ALLOC_CMPL:
5875 			db->db_key32 = DB_KEY_CP;
5876 			break;
5877 		}
5878 	}
5879 }
5880 
5881 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
5882 {
5883 	bool agg_rings = !!(bp->flags & BNXT_FLAG_AGG_RINGS);
5884 	int i, rc = 0;
5885 	u32 type;
5886 
5887 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5888 		type = HWRM_RING_ALLOC_NQ;
5889 	else
5890 		type = HWRM_RING_ALLOC_CMPL;
5891 	for (i = 0; i < bp->cp_nr_rings; i++) {
5892 		struct bnxt_napi *bnapi = bp->bnapi[i];
5893 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5894 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
5895 		u32 map_idx = ring->map_idx;
5896 		unsigned int vector;
5897 
5898 		vector = bp->irq_tbl[map_idx].vector;
5899 		disable_irq_nosync(vector);
5900 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5901 		if (rc) {
5902 			enable_irq(vector);
5903 			goto err_out;
5904 		}
5905 		bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id);
5906 		bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
5907 		enable_irq(vector);
5908 		bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
5909 
5910 		if (!i) {
5911 			rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id);
5912 			if (rc)
5913 				netdev_warn(bp->dev, "Failed to set async event completion ring.\n");
5914 		}
5915 	}
5916 
5917 	type = HWRM_RING_ALLOC_TX;
5918 	for (i = 0; i < bp->tx_nr_rings; i++) {
5919 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
5920 		struct bnxt_ring_struct *ring;
5921 		u32 map_idx;
5922 
5923 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5924 			struct bnxt_napi *bnapi = txr->bnapi;
5925 			struct bnxt_cp_ring_info *cpr, *cpr2;
5926 			u32 type2 = HWRM_RING_ALLOC_CMPL;
5927 
5928 			cpr = &bnapi->cp_ring;
5929 			cpr2 = cpr->cp_ring_arr[BNXT_TX_HDL];
5930 			ring = &cpr2->cp_ring_struct;
5931 			ring->handle = BNXT_TX_HDL;
5932 			map_idx = bnapi->index;
5933 			rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
5934 			if (rc)
5935 				goto err_out;
5936 			bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
5937 				    ring->fw_ring_id);
5938 			bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
5939 		}
5940 		ring = &txr->tx_ring_struct;
5941 		map_idx = i;
5942 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5943 		if (rc)
5944 			goto err_out;
5945 		bnxt_set_db(bp, &txr->tx_db, type, map_idx, ring->fw_ring_id);
5946 	}
5947 
5948 	type = HWRM_RING_ALLOC_RX;
5949 	for (i = 0; i < bp->rx_nr_rings; i++) {
5950 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5951 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
5952 		struct bnxt_napi *bnapi = rxr->bnapi;
5953 		u32 map_idx = bnapi->index;
5954 
5955 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5956 		if (rc)
5957 			goto err_out;
5958 		bnxt_set_db(bp, &rxr->rx_db, type, map_idx, ring->fw_ring_id);
5959 		/* If we have agg rings, post agg buffers first. */
5960 		if (!agg_rings)
5961 			bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
5962 		bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
5963 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5964 			struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5965 			u32 type2 = HWRM_RING_ALLOC_CMPL;
5966 			struct bnxt_cp_ring_info *cpr2;
5967 
5968 			cpr2 = cpr->cp_ring_arr[BNXT_RX_HDL];
5969 			ring = &cpr2->cp_ring_struct;
5970 			ring->handle = BNXT_RX_HDL;
5971 			rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
5972 			if (rc)
5973 				goto err_out;
5974 			bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
5975 				    ring->fw_ring_id);
5976 			bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
5977 		}
5978 	}
5979 
5980 	if (agg_rings) {
5981 		type = HWRM_RING_ALLOC_AGG;
5982 		for (i = 0; i < bp->rx_nr_rings; i++) {
5983 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5984 			struct bnxt_ring_struct *ring =
5985 						&rxr->rx_agg_ring_struct;
5986 			u32 grp_idx = ring->grp_idx;
5987 			u32 map_idx = grp_idx + bp->rx_nr_rings;
5988 
5989 			rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5990 			if (rc)
5991 				goto err_out;
5992 
5993 			bnxt_set_db(bp, &rxr->rx_agg_db, type, map_idx,
5994 				    ring->fw_ring_id);
5995 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
5996 			bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
5997 			bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
5998 		}
5999 	}
6000 err_out:
6001 	return rc;
6002 }
6003 
6004 static int hwrm_ring_free_send_msg(struct bnxt *bp,
6005 				   struct bnxt_ring_struct *ring,
6006 				   u32 ring_type, int cmpl_ring_id)
6007 {
6008 	struct hwrm_ring_free_output *resp;
6009 	struct hwrm_ring_free_input *req;
6010 	u16 error_code = 0;
6011 	int rc;
6012 
6013 	if (BNXT_NO_FW_ACCESS(bp))
6014 		return 0;
6015 
6016 	rc = hwrm_req_init(bp, req, HWRM_RING_FREE);
6017 	if (rc)
6018 		goto exit;
6019 
6020 	req->cmpl_ring = cpu_to_le16(cmpl_ring_id);
6021 	req->ring_type = ring_type;
6022 	req->ring_id = cpu_to_le16(ring->fw_ring_id);
6023 
6024 	resp = hwrm_req_hold(bp, req);
6025 	rc = hwrm_req_send(bp, req);
6026 	error_code = le16_to_cpu(resp->error_code);
6027 	hwrm_req_drop(bp, req);
6028 exit:
6029 	if (rc || error_code) {
6030 		netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n",
6031 			   ring_type, rc, error_code);
6032 		return -EIO;
6033 	}
6034 	return 0;
6035 }
6036 
6037 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
6038 {
6039 	u32 type;
6040 	int i;
6041 
6042 	if (!bp->bnapi)
6043 		return;
6044 
6045 	for (i = 0; i < bp->tx_nr_rings; i++) {
6046 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
6047 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
6048 
6049 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
6050 			u32 cmpl_ring_id = bnxt_cp_ring_for_tx(bp, txr);
6051 
6052 			hwrm_ring_free_send_msg(bp, ring,
6053 						RING_FREE_REQ_RING_TYPE_TX,
6054 						close_path ? cmpl_ring_id :
6055 						INVALID_HW_RING_ID);
6056 			ring->fw_ring_id = INVALID_HW_RING_ID;
6057 		}
6058 	}
6059 
6060 	for (i = 0; i < bp->rx_nr_rings; i++) {
6061 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
6062 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
6063 		u32 grp_idx = rxr->bnapi->index;
6064 
6065 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
6066 			u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
6067 
6068 			hwrm_ring_free_send_msg(bp, ring,
6069 						RING_FREE_REQ_RING_TYPE_RX,
6070 						close_path ? cmpl_ring_id :
6071 						INVALID_HW_RING_ID);
6072 			ring->fw_ring_id = INVALID_HW_RING_ID;
6073 			bp->grp_info[grp_idx].rx_fw_ring_id =
6074 				INVALID_HW_RING_ID;
6075 		}
6076 	}
6077 
6078 	if (bp->flags & BNXT_FLAG_CHIP_P5)
6079 		type = RING_FREE_REQ_RING_TYPE_RX_AGG;
6080 	else
6081 		type = RING_FREE_REQ_RING_TYPE_RX;
6082 	for (i = 0; i < bp->rx_nr_rings; i++) {
6083 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
6084 		struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
6085 		u32 grp_idx = rxr->bnapi->index;
6086 
6087 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
6088 			u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
6089 
6090 			hwrm_ring_free_send_msg(bp, ring, type,
6091 						close_path ? cmpl_ring_id :
6092 						INVALID_HW_RING_ID);
6093 			ring->fw_ring_id = INVALID_HW_RING_ID;
6094 			bp->grp_info[grp_idx].agg_fw_ring_id =
6095 				INVALID_HW_RING_ID;
6096 		}
6097 	}
6098 
6099 	/* The completion rings are about to be freed.  After that the
6100 	 * IRQ doorbell will not work anymore.  So we need to disable
6101 	 * IRQ here.
6102 	 */
6103 	bnxt_disable_int_sync(bp);
6104 
6105 	if (bp->flags & BNXT_FLAG_CHIP_P5)
6106 		type = RING_FREE_REQ_RING_TYPE_NQ;
6107 	else
6108 		type = RING_FREE_REQ_RING_TYPE_L2_CMPL;
6109 	for (i = 0; i < bp->cp_nr_rings; i++) {
6110 		struct bnxt_napi *bnapi = bp->bnapi[i];
6111 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6112 		struct bnxt_ring_struct *ring;
6113 		int j;
6114 
6115 		for (j = 0; j < 2; j++) {
6116 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
6117 
6118 			if (cpr2) {
6119 				ring = &cpr2->cp_ring_struct;
6120 				if (ring->fw_ring_id == INVALID_HW_RING_ID)
6121 					continue;
6122 				hwrm_ring_free_send_msg(bp, ring,
6123 					RING_FREE_REQ_RING_TYPE_L2_CMPL,
6124 					INVALID_HW_RING_ID);
6125 				ring->fw_ring_id = INVALID_HW_RING_ID;
6126 			}
6127 		}
6128 		ring = &cpr->cp_ring_struct;
6129 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
6130 			hwrm_ring_free_send_msg(bp, ring, type,
6131 						INVALID_HW_RING_ID);
6132 			ring->fw_ring_id = INVALID_HW_RING_ID;
6133 			bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
6134 		}
6135 	}
6136 }
6137 
6138 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
6139 			   bool shared);
6140 
6141 static int bnxt_hwrm_get_rings(struct bnxt *bp)
6142 {
6143 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6144 	struct hwrm_func_qcfg_output *resp;
6145 	struct hwrm_func_qcfg_input *req;
6146 	int rc;
6147 
6148 	if (bp->hwrm_spec_code < 0x10601)
6149 		return 0;
6150 
6151 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
6152 	if (rc)
6153 		return rc;
6154 
6155 	req->fid = cpu_to_le16(0xffff);
6156 	resp = hwrm_req_hold(bp, req);
6157 	rc = hwrm_req_send(bp, req);
6158 	if (rc) {
6159 		hwrm_req_drop(bp, req);
6160 		return rc;
6161 	}
6162 
6163 	hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings);
6164 	if (BNXT_NEW_RM(bp)) {
6165 		u16 cp, stats;
6166 
6167 		hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings);
6168 		hw_resc->resv_hw_ring_grps =
6169 			le32_to_cpu(resp->alloc_hw_ring_grps);
6170 		hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics);
6171 		cp = le16_to_cpu(resp->alloc_cmpl_rings);
6172 		stats = le16_to_cpu(resp->alloc_stat_ctx);
6173 		hw_resc->resv_irqs = cp;
6174 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
6175 			int rx = hw_resc->resv_rx_rings;
6176 			int tx = hw_resc->resv_tx_rings;
6177 
6178 			if (bp->flags & BNXT_FLAG_AGG_RINGS)
6179 				rx >>= 1;
6180 			if (cp < (rx + tx)) {
6181 				bnxt_trim_rings(bp, &rx, &tx, cp, false);
6182 				if (bp->flags & BNXT_FLAG_AGG_RINGS)
6183 					rx <<= 1;
6184 				hw_resc->resv_rx_rings = rx;
6185 				hw_resc->resv_tx_rings = tx;
6186 			}
6187 			hw_resc->resv_irqs = le16_to_cpu(resp->alloc_msix);
6188 			hw_resc->resv_hw_ring_grps = rx;
6189 		}
6190 		hw_resc->resv_cp_rings = cp;
6191 		hw_resc->resv_stat_ctxs = stats;
6192 	}
6193 	hwrm_req_drop(bp, req);
6194 	return 0;
6195 }
6196 
6197 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings)
6198 {
6199 	struct hwrm_func_qcfg_output *resp;
6200 	struct hwrm_func_qcfg_input *req;
6201 	int rc;
6202 
6203 	if (bp->hwrm_spec_code < 0x10601)
6204 		return 0;
6205 
6206 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
6207 	if (rc)
6208 		return rc;
6209 
6210 	req->fid = cpu_to_le16(fid);
6211 	resp = hwrm_req_hold(bp, req);
6212 	rc = hwrm_req_send(bp, req);
6213 	if (!rc)
6214 		*tx_rings = le16_to_cpu(resp->alloc_tx_rings);
6215 
6216 	hwrm_req_drop(bp, req);
6217 	return rc;
6218 }
6219 
6220 static bool bnxt_rfs_supported(struct bnxt *bp);
6221 
6222 static struct hwrm_func_cfg_input *
6223 __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6224 			     int ring_grps, int cp_rings, int stats, int vnics)
6225 {
6226 	struct hwrm_func_cfg_input *req;
6227 	u32 enables = 0;
6228 
6229 	if (hwrm_req_init(bp, req, HWRM_FUNC_CFG))
6230 		return NULL;
6231 
6232 	req->fid = cpu_to_le16(0xffff);
6233 	enables |= tx_rings ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
6234 	req->num_tx_rings = cpu_to_le16(tx_rings);
6235 	if (BNXT_NEW_RM(bp)) {
6236 		enables |= rx_rings ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0;
6237 		enables |= stats ? FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
6238 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
6239 			enables |= cp_rings ? FUNC_CFG_REQ_ENABLES_NUM_MSIX : 0;
6240 			enables |= tx_rings + ring_grps ?
6241 				   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6242 			enables |= rx_rings ?
6243 				FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
6244 		} else {
6245 			enables |= cp_rings ?
6246 				   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6247 			enables |= ring_grps ?
6248 				   FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS |
6249 				   FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
6250 		}
6251 		enables |= vnics ? FUNC_CFG_REQ_ENABLES_NUM_VNICS : 0;
6252 
6253 		req->num_rx_rings = cpu_to_le16(rx_rings);
6254 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
6255 			req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps);
6256 			req->num_msix = cpu_to_le16(cp_rings);
6257 			req->num_rsscos_ctxs =
6258 				cpu_to_le16(DIV_ROUND_UP(ring_grps, 64));
6259 		} else {
6260 			req->num_cmpl_rings = cpu_to_le16(cp_rings);
6261 			req->num_hw_ring_grps = cpu_to_le16(ring_grps);
6262 			req->num_rsscos_ctxs = cpu_to_le16(1);
6263 			if (!(bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
6264 			    bnxt_rfs_supported(bp))
6265 				req->num_rsscos_ctxs =
6266 					cpu_to_le16(ring_grps + 1);
6267 		}
6268 		req->num_stat_ctxs = cpu_to_le16(stats);
6269 		req->num_vnics = cpu_to_le16(vnics);
6270 	}
6271 	req->enables = cpu_to_le32(enables);
6272 	return req;
6273 }
6274 
6275 static struct hwrm_func_vf_cfg_input *
6276 __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6277 			     int ring_grps, int cp_rings, int stats, int vnics)
6278 {
6279 	struct hwrm_func_vf_cfg_input *req;
6280 	u32 enables = 0;
6281 
6282 	if (hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG))
6283 		return NULL;
6284 
6285 	enables |= tx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
6286 	enables |= rx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS |
6287 			      FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
6288 	enables |= stats ? FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
6289 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
6290 		enables |= tx_rings + ring_grps ?
6291 			   FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6292 	} else {
6293 		enables |= cp_rings ?
6294 			   FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6295 		enables |= ring_grps ?
6296 			   FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0;
6297 	}
6298 	enables |= vnics ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0;
6299 	enables |= FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS;
6300 
6301 	req->num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX);
6302 	req->num_tx_rings = cpu_to_le16(tx_rings);
6303 	req->num_rx_rings = cpu_to_le16(rx_rings);
6304 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
6305 		req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps);
6306 		req->num_rsscos_ctxs = cpu_to_le16(DIV_ROUND_UP(ring_grps, 64));
6307 	} else {
6308 		req->num_cmpl_rings = cpu_to_le16(cp_rings);
6309 		req->num_hw_ring_grps = cpu_to_le16(ring_grps);
6310 		req->num_rsscos_ctxs = cpu_to_le16(BNXT_VF_MAX_RSS_CTX);
6311 	}
6312 	req->num_stat_ctxs = cpu_to_le16(stats);
6313 	req->num_vnics = cpu_to_le16(vnics);
6314 
6315 	req->enables = cpu_to_le32(enables);
6316 	return req;
6317 }
6318 
6319 static int
6320 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6321 			   int ring_grps, int cp_rings, int stats, int vnics)
6322 {
6323 	struct hwrm_func_cfg_input *req;
6324 	int rc;
6325 
6326 	req = __bnxt_hwrm_reserve_pf_rings(bp, tx_rings, rx_rings, ring_grps,
6327 					   cp_rings, stats, vnics);
6328 	if (!req)
6329 		return -ENOMEM;
6330 
6331 	if (!req->enables) {
6332 		hwrm_req_drop(bp, req);
6333 		return 0;
6334 	}
6335 
6336 	rc = hwrm_req_send(bp, req);
6337 	if (rc)
6338 		return rc;
6339 
6340 	if (bp->hwrm_spec_code < 0x10601)
6341 		bp->hw_resc.resv_tx_rings = tx_rings;
6342 
6343 	return bnxt_hwrm_get_rings(bp);
6344 }
6345 
6346 static int
6347 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6348 			   int ring_grps, int cp_rings, int stats, int vnics)
6349 {
6350 	struct hwrm_func_vf_cfg_input *req;
6351 	int rc;
6352 
6353 	if (!BNXT_NEW_RM(bp)) {
6354 		bp->hw_resc.resv_tx_rings = tx_rings;
6355 		return 0;
6356 	}
6357 
6358 	req = __bnxt_hwrm_reserve_vf_rings(bp, tx_rings, rx_rings, ring_grps,
6359 					   cp_rings, stats, vnics);
6360 	if (!req)
6361 		return -ENOMEM;
6362 
6363 	rc = hwrm_req_send(bp, req);
6364 	if (rc)
6365 		return rc;
6366 
6367 	return bnxt_hwrm_get_rings(bp);
6368 }
6369 
6370 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, int tx, int rx, int grp,
6371 				   int cp, int stat, int vnic)
6372 {
6373 	if (BNXT_PF(bp))
6374 		return bnxt_hwrm_reserve_pf_rings(bp, tx, rx, grp, cp, stat,
6375 						  vnic);
6376 	else
6377 		return bnxt_hwrm_reserve_vf_rings(bp, tx, rx, grp, cp, stat,
6378 						  vnic);
6379 }
6380 
6381 int bnxt_nq_rings_in_use(struct bnxt *bp)
6382 {
6383 	int cp = bp->cp_nr_rings;
6384 	int ulp_msix, ulp_base;
6385 
6386 	ulp_msix = bnxt_get_ulp_msix_num(bp);
6387 	if (ulp_msix) {
6388 		ulp_base = bnxt_get_ulp_msix_base(bp);
6389 		cp += ulp_msix;
6390 		if ((ulp_base + ulp_msix) > cp)
6391 			cp = ulp_base + ulp_msix;
6392 	}
6393 	return cp;
6394 }
6395 
6396 static int bnxt_cp_rings_in_use(struct bnxt *bp)
6397 {
6398 	int cp;
6399 
6400 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
6401 		return bnxt_nq_rings_in_use(bp);
6402 
6403 	cp = bp->tx_nr_rings + bp->rx_nr_rings;
6404 	return cp;
6405 }
6406 
6407 static int bnxt_get_func_stat_ctxs(struct bnxt *bp)
6408 {
6409 	int ulp_stat = bnxt_get_ulp_stat_ctxs(bp);
6410 	int cp = bp->cp_nr_rings;
6411 
6412 	if (!ulp_stat)
6413 		return cp;
6414 
6415 	if (bnxt_nq_rings_in_use(bp) > cp + bnxt_get_ulp_msix_num(bp))
6416 		return bnxt_get_ulp_msix_base(bp) + ulp_stat;
6417 
6418 	return cp + ulp_stat;
6419 }
6420 
6421 /* Check if a default RSS map needs to be setup.  This function is only
6422  * used on older firmware that does not require reserving RX rings.
6423  */
6424 static void bnxt_check_rss_tbl_no_rmgr(struct bnxt *bp)
6425 {
6426 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6427 
6428 	/* The RSS map is valid for RX rings set to resv_rx_rings */
6429 	if (hw_resc->resv_rx_rings != bp->rx_nr_rings) {
6430 		hw_resc->resv_rx_rings = bp->rx_nr_rings;
6431 		if (!netif_is_rxfh_configured(bp->dev))
6432 			bnxt_set_dflt_rss_indir_tbl(bp);
6433 	}
6434 }
6435 
6436 static bool bnxt_need_reserve_rings(struct bnxt *bp)
6437 {
6438 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6439 	int cp = bnxt_cp_rings_in_use(bp);
6440 	int nq = bnxt_nq_rings_in_use(bp);
6441 	int rx = bp->rx_nr_rings, stat;
6442 	int vnic = 1, grp = rx;
6443 
6444 	if (hw_resc->resv_tx_rings != bp->tx_nr_rings &&
6445 	    bp->hwrm_spec_code >= 0x10601)
6446 		return true;
6447 
6448 	/* Old firmware does not need RX ring reservations but we still
6449 	 * need to setup a default RSS map when needed.  With new firmware
6450 	 * we go through RX ring reservations first and then set up the
6451 	 * RSS map for the successfully reserved RX rings when needed.
6452 	 */
6453 	if (!BNXT_NEW_RM(bp)) {
6454 		bnxt_check_rss_tbl_no_rmgr(bp);
6455 		return false;
6456 	}
6457 	if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5))
6458 		vnic = rx + 1;
6459 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
6460 		rx <<= 1;
6461 	stat = bnxt_get_func_stat_ctxs(bp);
6462 	if (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp ||
6463 	    hw_resc->resv_vnics != vnic || hw_resc->resv_stat_ctxs != stat ||
6464 	    (hw_resc->resv_hw_ring_grps != grp &&
6465 	     !(bp->flags & BNXT_FLAG_CHIP_P5)))
6466 		return true;
6467 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && BNXT_PF(bp) &&
6468 	    hw_resc->resv_irqs != nq)
6469 		return true;
6470 	return false;
6471 }
6472 
6473 static int __bnxt_reserve_rings(struct bnxt *bp)
6474 {
6475 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6476 	int cp = bnxt_nq_rings_in_use(bp);
6477 	int tx = bp->tx_nr_rings;
6478 	int rx = bp->rx_nr_rings;
6479 	int grp, rx_rings, rc;
6480 	int vnic = 1, stat;
6481 	bool sh = false;
6482 
6483 	if (!bnxt_need_reserve_rings(bp))
6484 		return 0;
6485 
6486 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
6487 		sh = true;
6488 	if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5))
6489 		vnic = rx + 1;
6490 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
6491 		rx <<= 1;
6492 	grp = bp->rx_nr_rings;
6493 	stat = bnxt_get_func_stat_ctxs(bp);
6494 
6495 	rc = bnxt_hwrm_reserve_rings(bp, tx, rx, grp, cp, stat, vnic);
6496 	if (rc)
6497 		return rc;
6498 
6499 	tx = hw_resc->resv_tx_rings;
6500 	if (BNXT_NEW_RM(bp)) {
6501 		rx = hw_resc->resv_rx_rings;
6502 		cp = hw_resc->resv_irqs;
6503 		grp = hw_resc->resv_hw_ring_grps;
6504 		vnic = hw_resc->resv_vnics;
6505 		stat = hw_resc->resv_stat_ctxs;
6506 	}
6507 
6508 	rx_rings = rx;
6509 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
6510 		if (rx >= 2) {
6511 			rx_rings = rx >> 1;
6512 		} else {
6513 			if (netif_running(bp->dev))
6514 				return -ENOMEM;
6515 
6516 			bp->flags &= ~BNXT_FLAG_AGG_RINGS;
6517 			bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
6518 			bp->dev->hw_features &= ~NETIF_F_LRO;
6519 			bp->dev->features &= ~NETIF_F_LRO;
6520 			bnxt_set_ring_params(bp);
6521 		}
6522 	}
6523 	rx_rings = min_t(int, rx_rings, grp);
6524 	cp = min_t(int, cp, bp->cp_nr_rings);
6525 	if (stat > bnxt_get_ulp_stat_ctxs(bp))
6526 		stat -= bnxt_get_ulp_stat_ctxs(bp);
6527 	cp = min_t(int, cp, stat);
6528 	rc = bnxt_trim_rings(bp, &rx_rings, &tx, cp, sh);
6529 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
6530 		rx = rx_rings << 1;
6531 	cp = sh ? max_t(int, tx, rx_rings) : tx + rx_rings;
6532 	bp->tx_nr_rings = tx;
6533 
6534 	/* If we cannot reserve all the RX rings, reset the RSS map only
6535 	 * if absolutely necessary
6536 	 */
6537 	if (rx_rings != bp->rx_nr_rings) {
6538 		netdev_warn(bp->dev, "Able to reserve only %d out of %d requested RX rings\n",
6539 			    rx_rings, bp->rx_nr_rings);
6540 		if (netif_is_rxfh_configured(bp->dev) &&
6541 		    (bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings) !=
6542 		     bnxt_get_nr_rss_ctxs(bp, rx_rings) ||
6543 		     bnxt_get_max_rss_ring(bp) >= rx_rings)) {
6544 			netdev_warn(bp->dev, "RSS table entries reverting to default\n");
6545 			bp->dev->priv_flags &= ~IFF_RXFH_CONFIGURED;
6546 		}
6547 	}
6548 	bp->rx_nr_rings = rx_rings;
6549 	bp->cp_nr_rings = cp;
6550 
6551 	if (!tx || !rx || !cp || !grp || !vnic || !stat)
6552 		return -ENOMEM;
6553 
6554 	if (!netif_is_rxfh_configured(bp->dev))
6555 		bnxt_set_dflt_rss_indir_tbl(bp);
6556 
6557 	return rc;
6558 }
6559 
6560 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6561 				    int ring_grps, int cp_rings, int stats,
6562 				    int vnics)
6563 {
6564 	struct hwrm_func_vf_cfg_input *req;
6565 	u32 flags;
6566 
6567 	if (!BNXT_NEW_RM(bp))
6568 		return 0;
6569 
6570 	req = __bnxt_hwrm_reserve_vf_rings(bp, tx_rings, rx_rings, ring_grps,
6571 					   cp_rings, stats, vnics);
6572 	flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST |
6573 		FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST |
6574 		FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
6575 		FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
6576 		FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST |
6577 		FUNC_VF_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST;
6578 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
6579 		flags |= FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
6580 
6581 	req->flags = cpu_to_le32(flags);
6582 	return hwrm_req_send_silent(bp, req);
6583 }
6584 
6585 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6586 				    int ring_grps, int cp_rings, int stats,
6587 				    int vnics)
6588 {
6589 	struct hwrm_func_cfg_input *req;
6590 	u32 flags;
6591 
6592 	req = __bnxt_hwrm_reserve_pf_rings(bp, tx_rings, rx_rings, ring_grps,
6593 					   cp_rings, stats, vnics);
6594 	flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST;
6595 	if (BNXT_NEW_RM(bp)) {
6596 		flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST |
6597 			 FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
6598 			 FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
6599 			 FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST;
6600 		if (bp->flags & BNXT_FLAG_CHIP_P5)
6601 			flags |= FUNC_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST |
6602 				 FUNC_CFG_REQ_FLAGS_NQ_ASSETS_TEST;
6603 		else
6604 			flags |= FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
6605 	}
6606 
6607 	req->flags = cpu_to_le32(flags);
6608 	return hwrm_req_send_silent(bp, req);
6609 }
6610 
6611 static int bnxt_hwrm_check_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6612 				 int ring_grps, int cp_rings, int stats,
6613 				 int vnics)
6614 {
6615 	if (bp->hwrm_spec_code < 0x10801)
6616 		return 0;
6617 
6618 	if (BNXT_PF(bp))
6619 		return bnxt_hwrm_check_pf_rings(bp, tx_rings, rx_rings,
6620 						ring_grps, cp_rings, stats,
6621 						vnics);
6622 
6623 	return bnxt_hwrm_check_vf_rings(bp, tx_rings, rx_rings, ring_grps,
6624 					cp_rings, stats, vnics);
6625 }
6626 
6627 static void bnxt_hwrm_coal_params_qcaps(struct bnxt *bp)
6628 {
6629 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6630 	struct hwrm_ring_aggint_qcaps_output *resp;
6631 	struct hwrm_ring_aggint_qcaps_input *req;
6632 	int rc;
6633 
6634 	coal_cap->cmpl_params = BNXT_LEGACY_COAL_CMPL_PARAMS;
6635 	coal_cap->num_cmpl_dma_aggr_max = 63;
6636 	coal_cap->num_cmpl_dma_aggr_during_int_max = 63;
6637 	coal_cap->cmpl_aggr_dma_tmr_max = 65535;
6638 	coal_cap->cmpl_aggr_dma_tmr_during_int_max = 65535;
6639 	coal_cap->int_lat_tmr_min_max = 65535;
6640 	coal_cap->int_lat_tmr_max_max = 65535;
6641 	coal_cap->num_cmpl_aggr_int_max = 65535;
6642 	coal_cap->timer_units = 80;
6643 
6644 	if (bp->hwrm_spec_code < 0x10902)
6645 		return;
6646 
6647 	if (hwrm_req_init(bp, req, HWRM_RING_AGGINT_QCAPS))
6648 		return;
6649 
6650 	resp = hwrm_req_hold(bp, req);
6651 	rc = hwrm_req_send_silent(bp, req);
6652 	if (!rc) {
6653 		coal_cap->cmpl_params = le32_to_cpu(resp->cmpl_params);
6654 		coal_cap->nq_params = le32_to_cpu(resp->nq_params);
6655 		coal_cap->num_cmpl_dma_aggr_max =
6656 			le16_to_cpu(resp->num_cmpl_dma_aggr_max);
6657 		coal_cap->num_cmpl_dma_aggr_during_int_max =
6658 			le16_to_cpu(resp->num_cmpl_dma_aggr_during_int_max);
6659 		coal_cap->cmpl_aggr_dma_tmr_max =
6660 			le16_to_cpu(resp->cmpl_aggr_dma_tmr_max);
6661 		coal_cap->cmpl_aggr_dma_tmr_during_int_max =
6662 			le16_to_cpu(resp->cmpl_aggr_dma_tmr_during_int_max);
6663 		coal_cap->int_lat_tmr_min_max =
6664 			le16_to_cpu(resp->int_lat_tmr_min_max);
6665 		coal_cap->int_lat_tmr_max_max =
6666 			le16_to_cpu(resp->int_lat_tmr_max_max);
6667 		coal_cap->num_cmpl_aggr_int_max =
6668 			le16_to_cpu(resp->num_cmpl_aggr_int_max);
6669 		coal_cap->timer_units = le16_to_cpu(resp->timer_units);
6670 	}
6671 	hwrm_req_drop(bp, req);
6672 }
6673 
6674 static u16 bnxt_usec_to_coal_tmr(struct bnxt *bp, u16 usec)
6675 {
6676 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6677 
6678 	return usec * 1000 / coal_cap->timer_units;
6679 }
6680 
6681 static void bnxt_hwrm_set_coal_params(struct bnxt *bp,
6682 	struct bnxt_coal *hw_coal,
6683 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
6684 {
6685 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6686 	u16 val, tmr, max, flags = hw_coal->flags;
6687 	u32 cmpl_params = coal_cap->cmpl_params;
6688 
6689 	max = hw_coal->bufs_per_record * 128;
6690 	if (hw_coal->budget)
6691 		max = hw_coal->bufs_per_record * hw_coal->budget;
6692 	max = min_t(u16, max, coal_cap->num_cmpl_aggr_int_max);
6693 
6694 	val = clamp_t(u16, hw_coal->coal_bufs, 1, max);
6695 	req->num_cmpl_aggr_int = cpu_to_le16(val);
6696 
6697 	val = min_t(u16, val, coal_cap->num_cmpl_dma_aggr_max);
6698 	req->num_cmpl_dma_aggr = cpu_to_le16(val);
6699 
6700 	val = clamp_t(u16, hw_coal->coal_bufs_irq, 1,
6701 		      coal_cap->num_cmpl_dma_aggr_during_int_max);
6702 	req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val);
6703 
6704 	tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks);
6705 	tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_max_max);
6706 	req->int_lat_tmr_max = cpu_to_le16(tmr);
6707 
6708 	/* min timer set to 1/2 of interrupt timer */
6709 	if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_INT_LAT_TMR_MIN) {
6710 		val = tmr / 2;
6711 		val = clamp_t(u16, val, 1, coal_cap->int_lat_tmr_min_max);
6712 		req->int_lat_tmr_min = cpu_to_le16(val);
6713 		req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
6714 	}
6715 
6716 	/* buf timer set to 1/4 of interrupt timer */
6717 	val = clamp_t(u16, tmr / 4, 1, coal_cap->cmpl_aggr_dma_tmr_max);
6718 	req->cmpl_aggr_dma_tmr = cpu_to_le16(val);
6719 
6720 	if (cmpl_params &
6721 	    RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_NUM_CMPL_DMA_AGGR_DURING_INT) {
6722 		tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks_irq);
6723 		val = clamp_t(u16, tmr, 1,
6724 			      coal_cap->cmpl_aggr_dma_tmr_during_int_max);
6725 		req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(val);
6726 		req->enables |=
6727 			cpu_to_le16(BNXT_COAL_CMPL_AGGR_TMR_DURING_INT_ENABLE);
6728 	}
6729 
6730 	if ((cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_RING_IDLE) &&
6731 	    hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh)
6732 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
6733 	req->flags = cpu_to_le16(flags);
6734 	req->enables |= cpu_to_le16(BNXT_COAL_CMPL_ENABLES);
6735 }
6736 
6737 static int __bnxt_hwrm_set_coal_nq(struct bnxt *bp, struct bnxt_napi *bnapi,
6738 				   struct bnxt_coal *hw_coal)
6739 {
6740 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req;
6741 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6742 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6743 	u32 nq_params = coal_cap->nq_params;
6744 	u16 tmr;
6745 	int rc;
6746 
6747 	if (!(nq_params & RING_AGGINT_QCAPS_RESP_NQ_PARAMS_INT_LAT_TMR_MIN))
6748 		return 0;
6749 
6750 	rc = hwrm_req_init(bp, req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
6751 	if (rc)
6752 		return rc;
6753 
6754 	req->ring_id = cpu_to_le16(cpr->cp_ring_struct.fw_ring_id);
6755 	req->flags =
6756 		cpu_to_le16(RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_IS_NQ);
6757 
6758 	tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks) / 2;
6759 	tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_min_max);
6760 	req->int_lat_tmr_min = cpu_to_le16(tmr);
6761 	req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
6762 	return hwrm_req_send(bp, req);
6763 }
6764 
6765 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi)
6766 {
6767 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx;
6768 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6769 	struct bnxt_coal coal;
6770 	int rc;
6771 
6772 	/* Tick values in micro seconds.
6773 	 * 1 coal_buf x bufs_per_record = 1 completion record.
6774 	 */
6775 	memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal));
6776 
6777 	coal.coal_ticks = cpr->rx_ring_coal.coal_ticks;
6778 	coal.coal_bufs = cpr->rx_ring_coal.coal_bufs;
6779 
6780 	if (!bnapi->rx_ring)
6781 		return -ENODEV;
6782 
6783 	rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
6784 	if (rc)
6785 		return rc;
6786 
6787 	bnxt_hwrm_set_coal_params(bp, &coal, req_rx);
6788 
6789 	req_rx->ring_id = cpu_to_le16(bnxt_cp_ring_for_rx(bp, bnapi->rx_ring));
6790 
6791 	return hwrm_req_send(bp, req_rx);
6792 }
6793 
6794 int bnxt_hwrm_set_coal(struct bnxt *bp)
6795 {
6796 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx, *req_tx,
6797 							   *req;
6798 	int i, rc;
6799 
6800 	rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
6801 	if (rc)
6802 		return rc;
6803 
6804 	rc = hwrm_req_init(bp, req_tx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
6805 	if (rc) {
6806 		hwrm_req_drop(bp, req_rx);
6807 		return rc;
6808 	}
6809 
6810 	bnxt_hwrm_set_coal_params(bp, &bp->rx_coal, req_rx);
6811 	bnxt_hwrm_set_coal_params(bp, &bp->tx_coal, req_tx);
6812 
6813 	hwrm_req_hold(bp, req_rx);
6814 	hwrm_req_hold(bp, req_tx);
6815 	for (i = 0; i < bp->cp_nr_rings; i++) {
6816 		struct bnxt_napi *bnapi = bp->bnapi[i];
6817 		struct bnxt_coal *hw_coal;
6818 		u16 ring_id;
6819 
6820 		req = req_rx;
6821 		if (!bnapi->rx_ring) {
6822 			ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring);
6823 			req = req_tx;
6824 		} else {
6825 			ring_id = bnxt_cp_ring_for_rx(bp, bnapi->rx_ring);
6826 		}
6827 		req->ring_id = cpu_to_le16(ring_id);
6828 
6829 		rc = hwrm_req_send(bp, req);
6830 		if (rc)
6831 			break;
6832 
6833 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
6834 			continue;
6835 
6836 		if (bnapi->rx_ring && bnapi->tx_ring) {
6837 			req = req_tx;
6838 			ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring);
6839 			req->ring_id = cpu_to_le16(ring_id);
6840 			rc = hwrm_req_send(bp, req);
6841 			if (rc)
6842 				break;
6843 		}
6844 		if (bnapi->rx_ring)
6845 			hw_coal = &bp->rx_coal;
6846 		else
6847 			hw_coal = &bp->tx_coal;
6848 		__bnxt_hwrm_set_coal_nq(bp, bnapi, hw_coal);
6849 	}
6850 	hwrm_req_drop(bp, req_rx);
6851 	hwrm_req_drop(bp, req_tx);
6852 	return rc;
6853 }
6854 
6855 static void bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
6856 {
6857 	struct hwrm_stat_ctx_clr_stats_input *req0 = NULL;
6858 	struct hwrm_stat_ctx_free_input *req;
6859 	int i;
6860 
6861 	if (!bp->bnapi)
6862 		return;
6863 
6864 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
6865 		return;
6866 
6867 	if (hwrm_req_init(bp, req, HWRM_STAT_CTX_FREE))
6868 		return;
6869 	if (BNXT_FW_MAJ(bp) <= 20) {
6870 		if (hwrm_req_init(bp, req0, HWRM_STAT_CTX_CLR_STATS)) {
6871 			hwrm_req_drop(bp, req);
6872 			return;
6873 		}
6874 		hwrm_req_hold(bp, req0);
6875 	}
6876 	hwrm_req_hold(bp, req);
6877 	for (i = 0; i < bp->cp_nr_rings; i++) {
6878 		struct bnxt_napi *bnapi = bp->bnapi[i];
6879 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6880 
6881 		if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
6882 			req->stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
6883 			if (req0) {
6884 				req0->stat_ctx_id = req->stat_ctx_id;
6885 				hwrm_req_send(bp, req0);
6886 			}
6887 			hwrm_req_send(bp, req);
6888 
6889 			cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
6890 		}
6891 	}
6892 	hwrm_req_drop(bp, req);
6893 	if (req0)
6894 		hwrm_req_drop(bp, req0);
6895 }
6896 
6897 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
6898 {
6899 	struct hwrm_stat_ctx_alloc_output *resp;
6900 	struct hwrm_stat_ctx_alloc_input *req;
6901 	int rc, i;
6902 
6903 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
6904 		return 0;
6905 
6906 	rc = hwrm_req_init(bp, req, HWRM_STAT_CTX_ALLOC);
6907 	if (rc)
6908 		return rc;
6909 
6910 	req->stats_dma_length = cpu_to_le16(bp->hw_ring_stats_size);
6911 	req->update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000);
6912 
6913 	resp = hwrm_req_hold(bp, req);
6914 	for (i = 0; i < bp->cp_nr_rings; i++) {
6915 		struct bnxt_napi *bnapi = bp->bnapi[i];
6916 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6917 
6918 		req->stats_dma_addr = cpu_to_le64(cpr->stats.hw_stats_map);
6919 
6920 		rc = hwrm_req_send(bp, req);
6921 		if (rc)
6922 			break;
6923 
6924 		cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
6925 
6926 		bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
6927 	}
6928 	hwrm_req_drop(bp, req);
6929 	return rc;
6930 }
6931 
6932 static int bnxt_hwrm_func_qcfg(struct bnxt *bp)
6933 {
6934 	struct hwrm_func_qcfg_output *resp;
6935 	struct hwrm_func_qcfg_input *req;
6936 	u32 min_db_offset = 0;
6937 	u16 flags;
6938 	int rc;
6939 
6940 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
6941 	if (rc)
6942 		return rc;
6943 
6944 	req->fid = cpu_to_le16(0xffff);
6945 	resp = hwrm_req_hold(bp, req);
6946 	rc = hwrm_req_send(bp, req);
6947 	if (rc)
6948 		goto func_qcfg_exit;
6949 
6950 #ifdef CONFIG_BNXT_SRIOV
6951 	if (BNXT_VF(bp)) {
6952 		struct bnxt_vf_info *vf = &bp->vf;
6953 
6954 		vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK;
6955 	} else {
6956 		bp->pf.registered_vfs = le16_to_cpu(resp->registered_vfs);
6957 	}
6958 #endif
6959 	flags = le16_to_cpu(resp->flags);
6960 	if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED |
6961 		     FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) {
6962 		bp->fw_cap |= BNXT_FW_CAP_LLDP_AGENT;
6963 		if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED)
6964 			bp->fw_cap |= BNXT_FW_CAP_DCBX_AGENT;
6965 	}
6966 	if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST))
6967 		bp->flags |= BNXT_FLAG_MULTI_HOST;
6968 	if (flags & FUNC_QCFG_RESP_FLAGS_RING_MONITOR_ENABLED)
6969 		bp->fw_cap |= BNXT_FW_CAP_RING_MONITOR;
6970 
6971 	switch (resp->port_partition_type) {
6972 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0:
6973 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5:
6974 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0:
6975 		bp->port_partition_type = resp->port_partition_type;
6976 		break;
6977 	}
6978 	if (bp->hwrm_spec_code < 0x10707 ||
6979 	    resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB)
6980 		bp->br_mode = BRIDGE_MODE_VEB;
6981 	else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA)
6982 		bp->br_mode = BRIDGE_MODE_VEPA;
6983 	else
6984 		bp->br_mode = BRIDGE_MODE_UNDEF;
6985 
6986 	bp->max_mtu = le16_to_cpu(resp->max_mtu_configured);
6987 	if (!bp->max_mtu)
6988 		bp->max_mtu = BNXT_MAX_MTU;
6989 
6990 	if (bp->db_size)
6991 		goto func_qcfg_exit;
6992 
6993 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
6994 		if (BNXT_PF(bp))
6995 			min_db_offset = DB_PF_OFFSET_P5;
6996 		else
6997 			min_db_offset = DB_VF_OFFSET_P5;
6998 	}
6999 	bp->db_size = PAGE_ALIGN(le16_to_cpu(resp->l2_doorbell_bar_size_kb) *
7000 				 1024);
7001 	if (!bp->db_size || bp->db_size > pci_resource_len(bp->pdev, 2) ||
7002 	    bp->db_size <= min_db_offset)
7003 		bp->db_size = pci_resource_len(bp->pdev, 2);
7004 
7005 func_qcfg_exit:
7006 	hwrm_req_drop(bp, req);
7007 	return rc;
7008 }
7009 
7010 static void bnxt_init_ctx_initializer(struct bnxt_ctx_mem_info *ctx,
7011 			struct hwrm_func_backing_store_qcaps_output *resp)
7012 {
7013 	struct bnxt_mem_init *mem_init;
7014 	u16 init_mask;
7015 	u8 init_val;
7016 	u8 *offset;
7017 	int i;
7018 
7019 	init_val = resp->ctx_kind_initializer;
7020 	init_mask = le16_to_cpu(resp->ctx_init_mask);
7021 	offset = &resp->qp_init_offset;
7022 	mem_init = &ctx->mem_init[BNXT_CTX_MEM_INIT_QP];
7023 	for (i = 0; i < BNXT_CTX_MEM_INIT_MAX; i++, mem_init++, offset++) {
7024 		mem_init->init_val = init_val;
7025 		mem_init->offset = BNXT_MEM_INVALID_OFFSET;
7026 		if (!init_mask)
7027 			continue;
7028 		if (i == BNXT_CTX_MEM_INIT_STAT)
7029 			offset = &resp->stat_init_offset;
7030 		if (init_mask & (1 << i))
7031 			mem_init->offset = *offset * 4;
7032 		else
7033 			mem_init->init_val = 0;
7034 	}
7035 	ctx->mem_init[BNXT_CTX_MEM_INIT_QP].size = ctx->qp_entry_size;
7036 	ctx->mem_init[BNXT_CTX_MEM_INIT_SRQ].size = ctx->srq_entry_size;
7037 	ctx->mem_init[BNXT_CTX_MEM_INIT_CQ].size = ctx->cq_entry_size;
7038 	ctx->mem_init[BNXT_CTX_MEM_INIT_VNIC].size = ctx->vnic_entry_size;
7039 	ctx->mem_init[BNXT_CTX_MEM_INIT_STAT].size = ctx->stat_entry_size;
7040 	ctx->mem_init[BNXT_CTX_MEM_INIT_MRAV].size = ctx->mrav_entry_size;
7041 }
7042 
7043 static int bnxt_hwrm_func_backing_store_qcaps(struct bnxt *bp)
7044 {
7045 	struct hwrm_func_backing_store_qcaps_output *resp;
7046 	struct hwrm_func_backing_store_qcaps_input *req;
7047 	int rc;
7048 
7049 	if (bp->hwrm_spec_code < 0x10902 || BNXT_VF(bp) || bp->ctx)
7050 		return 0;
7051 
7052 	rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_QCAPS);
7053 	if (rc)
7054 		return rc;
7055 
7056 	resp = hwrm_req_hold(bp, req);
7057 	rc = hwrm_req_send_silent(bp, req);
7058 	if (!rc) {
7059 		struct bnxt_ctx_pg_info *ctx_pg;
7060 		struct bnxt_ctx_mem_info *ctx;
7061 		int i, tqm_rings;
7062 
7063 		ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
7064 		if (!ctx) {
7065 			rc = -ENOMEM;
7066 			goto ctx_err;
7067 		}
7068 		ctx->qp_max_entries = le32_to_cpu(resp->qp_max_entries);
7069 		ctx->qp_min_qp1_entries = le16_to_cpu(resp->qp_min_qp1_entries);
7070 		ctx->qp_max_l2_entries = le16_to_cpu(resp->qp_max_l2_entries);
7071 		ctx->qp_entry_size = le16_to_cpu(resp->qp_entry_size);
7072 		ctx->srq_max_l2_entries = le16_to_cpu(resp->srq_max_l2_entries);
7073 		ctx->srq_max_entries = le32_to_cpu(resp->srq_max_entries);
7074 		ctx->srq_entry_size = le16_to_cpu(resp->srq_entry_size);
7075 		ctx->cq_max_l2_entries = le16_to_cpu(resp->cq_max_l2_entries);
7076 		ctx->cq_max_entries = le32_to_cpu(resp->cq_max_entries);
7077 		ctx->cq_entry_size = le16_to_cpu(resp->cq_entry_size);
7078 		ctx->vnic_max_vnic_entries =
7079 			le16_to_cpu(resp->vnic_max_vnic_entries);
7080 		ctx->vnic_max_ring_table_entries =
7081 			le16_to_cpu(resp->vnic_max_ring_table_entries);
7082 		ctx->vnic_entry_size = le16_to_cpu(resp->vnic_entry_size);
7083 		ctx->stat_max_entries = le32_to_cpu(resp->stat_max_entries);
7084 		ctx->stat_entry_size = le16_to_cpu(resp->stat_entry_size);
7085 		ctx->tqm_entry_size = le16_to_cpu(resp->tqm_entry_size);
7086 		ctx->tqm_min_entries_per_ring =
7087 			le32_to_cpu(resp->tqm_min_entries_per_ring);
7088 		ctx->tqm_max_entries_per_ring =
7089 			le32_to_cpu(resp->tqm_max_entries_per_ring);
7090 		ctx->tqm_entries_multiple = resp->tqm_entries_multiple;
7091 		if (!ctx->tqm_entries_multiple)
7092 			ctx->tqm_entries_multiple = 1;
7093 		ctx->mrav_max_entries = le32_to_cpu(resp->mrav_max_entries);
7094 		ctx->mrav_entry_size = le16_to_cpu(resp->mrav_entry_size);
7095 		ctx->mrav_num_entries_units =
7096 			le16_to_cpu(resp->mrav_num_entries_units);
7097 		ctx->tim_entry_size = le16_to_cpu(resp->tim_entry_size);
7098 		ctx->tim_max_entries = le32_to_cpu(resp->tim_max_entries);
7099 
7100 		bnxt_init_ctx_initializer(ctx, resp);
7101 
7102 		ctx->tqm_fp_rings_count = resp->tqm_fp_rings_count;
7103 		if (!ctx->tqm_fp_rings_count)
7104 			ctx->tqm_fp_rings_count = bp->max_q;
7105 		else if (ctx->tqm_fp_rings_count > BNXT_MAX_TQM_FP_RINGS)
7106 			ctx->tqm_fp_rings_count = BNXT_MAX_TQM_FP_RINGS;
7107 
7108 		tqm_rings = ctx->tqm_fp_rings_count + BNXT_MAX_TQM_SP_RINGS;
7109 		ctx_pg = kcalloc(tqm_rings, sizeof(*ctx_pg), GFP_KERNEL);
7110 		if (!ctx_pg) {
7111 			kfree(ctx);
7112 			rc = -ENOMEM;
7113 			goto ctx_err;
7114 		}
7115 		for (i = 0; i < tqm_rings; i++, ctx_pg++)
7116 			ctx->tqm_mem[i] = ctx_pg;
7117 		bp->ctx = ctx;
7118 	} else {
7119 		rc = 0;
7120 	}
7121 ctx_err:
7122 	hwrm_req_drop(bp, req);
7123 	return rc;
7124 }
7125 
7126 static void bnxt_hwrm_set_pg_attr(struct bnxt_ring_mem_info *rmem, u8 *pg_attr,
7127 				  __le64 *pg_dir)
7128 {
7129 	if (!rmem->nr_pages)
7130 		return;
7131 
7132 	BNXT_SET_CTX_PAGE_ATTR(*pg_attr);
7133 	if (rmem->depth >= 1) {
7134 		if (rmem->depth == 2)
7135 			*pg_attr |= 2;
7136 		else
7137 			*pg_attr |= 1;
7138 		*pg_dir = cpu_to_le64(rmem->pg_tbl_map);
7139 	} else {
7140 		*pg_dir = cpu_to_le64(rmem->dma_arr[0]);
7141 	}
7142 }
7143 
7144 #define FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES			\
7145 	(FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP |		\
7146 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ |		\
7147 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ |		\
7148 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC |		\
7149 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT)
7150 
7151 static int bnxt_hwrm_func_backing_store_cfg(struct bnxt *bp, u32 enables)
7152 {
7153 	struct hwrm_func_backing_store_cfg_input *req;
7154 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
7155 	struct bnxt_ctx_pg_info *ctx_pg;
7156 	void **__req = (void **)&req;
7157 	u32 req_len = sizeof(*req);
7158 	__le32 *num_entries;
7159 	__le64 *pg_dir;
7160 	u32 flags = 0;
7161 	u8 *pg_attr;
7162 	u32 ena;
7163 	int rc;
7164 	int i;
7165 
7166 	if (!ctx)
7167 		return 0;
7168 
7169 	if (req_len > bp->hwrm_max_ext_req_len)
7170 		req_len = BNXT_BACKING_STORE_CFG_LEGACY_LEN;
7171 	rc = __hwrm_req_init(bp, __req, HWRM_FUNC_BACKING_STORE_CFG, req_len);
7172 	if (rc)
7173 		return rc;
7174 
7175 	req->enables = cpu_to_le32(enables);
7176 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP) {
7177 		ctx_pg = &ctx->qp_mem;
7178 		req->qp_num_entries = cpu_to_le32(ctx_pg->entries);
7179 		req->qp_num_qp1_entries = cpu_to_le16(ctx->qp_min_qp1_entries);
7180 		req->qp_num_l2_entries = cpu_to_le16(ctx->qp_max_l2_entries);
7181 		req->qp_entry_size = cpu_to_le16(ctx->qp_entry_size);
7182 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7183 				      &req->qpc_pg_size_qpc_lvl,
7184 				      &req->qpc_page_dir);
7185 	}
7186 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ) {
7187 		ctx_pg = &ctx->srq_mem;
7188 		req->srq_num_entries = cpu_to_le32(ctx_pg->entries);
7189 		req->srq_num_l2_entries = cpu_to_le16(ctx->srq_max_l2_entries);
7190 		req->srq_entry_size = cpu_to_le16(ctx->srq_entry_size);
7191 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7192 				      &req->srq_pg_size_srq_lvl,
7193 				      &req->srq_page_dir);
7194 	}
7195 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ) {
7196 		ctx_pg = &ctx->cq_mem;
7197 		req->cq_num_entries = cpu_to_le32(ctx_pg->entries);
7198 		req->cq_num_l2_entries = cpu_to_le16(ctx->cq_max_l2_entries);
7199 		req->cq_entry_size = cpu_to_le16(ctx->cq_entry_size);
7200 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7201 				      &req->cq_pg_size_cq_lvl,
7202 				      &req->cq_page_dir);
7203 	}
7204 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC) {
7205 		ctx_pg = &ctx->vnic_mem;
7206 		req->vnic_num_vnic_entries =
7207 			cpu_to_le16(ctx->vnic_max_vnic_entries);
7208 		req->vnic_num_ring_table_entries =
7209 			cpu_to_le16(ctx->vnic_max_ring_table_entries);
7210 		req->vnic_entry_size = cpu_to_le16(ctx->vnic_entry_size);
7211 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7212 				      &req->vnic_pg_size_vnic_lvl,
7213 				      &req->vnic_page_dir);
7214 	}
7215 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) {
7216 		ctx_pg = &ctx->stat_mem;
7217 		req->stat_num_entries = cpu_to_le32(ctx->stat_max_entries);
7218 		req->stat_entry_size = cpu_to_le16(ctx->stat_entry_size);
7219 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7220 				      &req->stat_pg_size_stat_lvl,
7221 				      &req->stat_page_dir);
7222 	}
7223 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV) {
7224 		ctx_pg = &ctx->mrav_mem;
7225 		req->mrav_num_entries = cpu_to_le32(ctx_pg->entries);
7226 		if (ctx->mrav_num_entries_units)
7227 			flags |=
7228 			FUNC_BACKING_STORE_CFG_REQ_FLAGS_MRAV_RESERVATION_SPLIT;
7229 		req->mrav_entry_size = cpu_to_le16(ctx->mrav_entry_size);
7230 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7231 				      &req->mrav_pg_size_mrav_lvl,
7232 				      &req->mrav_page_dir);
7233 	}
7234 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) {
7235 		ctx_pg = &ctx->tim_mem;
7236 		req->tim_num_entries = cpu_to_le32(ctx_pg->entries);
7237 		req->tim_entry_size = cpu_to_le16(ctx->tim_entry_size);
7238 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7239 				      &req->tim_pg_size_tim_lvl,
7240 				      &req->tim_page_dir);
7241 	}
7242 	for (i = 0, num_entries = &req->tqm_sp_num_entries,
7243 	     pg_attr = &req->tqm_sp_pg_size_tqm_sp_lvl,
7244 	     pg_dir = &req->tqm_sp_page_dir,
7245 	     ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP;
7246 	     i < BNXT_MAX_TQM_RINGS;
7247 	     i++, num_entries++, pg_attr++, pg_dir++, ena <<= 1) {
7248 		if (!(enables & ena))
7249 			continue;
7250 
7251 		req->tqm_entry_size = cpu_to_le16(ctx->tqm_entry_size);
7252 		ctx_pg = ctx->tqm_mem[i];
7253 		*num_entries = cpu_to_le32(ctx_pg->entries);
7254 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, pg_attr, pg_dir);
7255 	}
7256 	req->flags = cpu_to_le32(flags);
7257 	return hwrm_req_send(bp, req);
7258 }
7259 
7260 static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp,
7261 				  struct bnxt_ctx_pg_info *ctx_pg)
7262 {
7263 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
7264 
7265 	rmem->page_size = BNXT_PAGE_SIZE;
7266 	rmem->pg_arr = ctx_pg->ctx_pg_arr;
7267 	rmem->dma_arr = ctx_pg->ctx_dma_arr;
7268 	rmem->flags = BNXT_RMEM_VALID_PTE_FLAG;
7269 	if (rmem->depth >= 1)
7270 		rmem->flags |= BNXT_RMEM_USE_FULL_PAGE_FLAG;
7271 	return bnxt_alloc_ring(bp, rmem);
7272 }
7273 
7274 static int bnxt_alloc_ctx_pg_tbls(struct bnxt *bp,
7275 				  struct bnxt_ctx_pg_info *ctx_pg, u32 mem_size,
7276 				  u8 depth, struct bnxt_mem_init *mem_init)
7277 {
7278 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
7279 	int rc;
7280 
7281 	if (!mem_size)
7282 		return -EINVAL;
7283 
7284 	ctx_pg->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
7285 	if (ctx_pg->nr_pages > MAX_CTX_TOTAL_PAGES) {
7286 		ctx_pg->nr_pages = 0;
7287 		return -EINVAL;
7288 	}
7289 	if (ctx_pg->nr_pages > MAX_CTX_PAGES || depth > 1) {
7290 		int nr_tbls, i;
7291 
7292 		rmem->depth = 2;
7293 		ctx_pg->ctx_pg_tbl = kcalloc(MAX_CTX_PAGES, sizeof(ctx_pg),
7294 					     GFP_KERNEL);
7295 		if (!ctx_pg->ctx_pg_tbl)
7296 			return -ENOMEM;
7297 		nr_tbls = DIV_ROUND_UP(ctx_pg->nr_pages, MAX_CTX_PAGES);
7298 		rmem->nr_pages = nr_tbls;
7299 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
7300 		if (rc)
7301 			return rc;
7302 		for (i = 0; i < nr_tbls; i++) {
7303 			struct bnxt_ctx_pg_info *pg_tbl;
7304 
7305 			pg_tbl = kzalloc(sizeof(*pg_tbl), GFP_KERNEL);
7306 			if (!pg_tbl)
7307 				return -ENOMEM;
7308 			ctx_pg->ctx_pg_tbl[i] = pg_tbl;
7309 			rmem = &pg_tbl->ring_mem;
7310 			rmem->pg_tbl = ctx_pg->ctx_pg_arr[i];
7311 			rmem->pg_tbl_map = ctx_pg->ctx_dma_arr[i];
7312 			rmem->depth = 1;
7313 			rmem->nr_pages = MAX_CTX_PAGES;
7314 			rmem->mem_init = mem_init;
7315 			if (i == (nr_tbls - 1)) {
7316 				int rem = ctx_pg->nr_pages % MAX_CTX_PAGES;
7317 
7318 				if (rem)
7319 					rmem->nr_pages = rem;
7320 			}
7321 			rc = bnxt_alloc_ctx_mem_blk(bp, pg_tbl);
7322 			if (rc)
7323 				break;
7324 		}
7325 	} else {
7326 		rmem->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
7327 		if (rmem->nr_pages > 1 || depth)
7328 			rmem->depth = 1;
7329 		rmem->mem_init = mem_init;
7330 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
7331 	}
7332 	return rc;
7333 }
7334 
7335 static void bnxt_free_ctx_pg_tbls(struct bnxt *bp,
7336 				  struct bnxt_ctx_pg_info *ctx_pg)
7337 {
7338 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
7339 
7340 	if (rmem->depth > 1 || ctx_pg->nr_pages > MAX_CTX_PAGES ||
7341 	    ctx_pg->ctx_pg_tbl) {
7342 		int i, nr_tbls = rmem->nr_pages;
7343 
7344 		for (i = 0; i < nr_tbls; i++) {
7345 			struct bnxt_ctx_pg_info *pg_tbl;
7346 			struct bnxt_ring_mem_info *rmem2;
7347 
7348 			pg_tbl = ctx_pg->ctx_pg_tbl[i];
7349 			if (!pg_tbl)
7350 				continue;
7351 			rmem2 = &pg_tbl->ring_mem;
7352 			bnxt_free_ring(bp, rmem2);
7353 			ctx_pg->ctx_pg_arr[i] = NULL;
7354 			kfree(pg_tbl);
7355 			ctx_pg->ctx_pg_tbl[i] = NULL;
7356 		}
7357 		kfree(ctx_pg->ctx_pg_tbl);
7358 		ctx_pg->ctx_pg_tbl = NULL;
7359 	}
7360 	bnxt_free_ring(bp, rmem);
7361 	ctx_pg->nr_pages = 0;
7362 }
7363 
7364 void bnxt_free_ctx_mem(struct bnxt *bp)
7365 {
7366 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
7367 	int i;
7368 
7369 	if (!ctx)
7370 		return;
7371 
7372 	if (ctx->tqm_mem[0]) {
7373 		for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++)
7374 			bnxt_free_ctx_pg_tbls(bp, ctx->tqm_mem[i]);
7375 		kfree(ctx->tqm_mem[0]);
7376 		ctx->tqm_mem[0] = NULL;
7377 	}
7378 
7379 	bnxt_free_ctx_pg_tbls(bp, &ctx->tim_mem);
7380 	bnxt_free_ctx_pg_tbls(bp, &ctx->mrav_mem);
7381 	bnxt_free_ctx_pg_tbls(bp, &ctx->stat_mem);
7382 	bnxt_free_ctx_pg_tbls(bp, &ctx->vnic_mem);
7383 	bnxt_free_ctx_pg_tbls(bp, &ctx->cq_mem);
7384 	bnxt_free_ctx_pg_tbls(bp, &ctx->srq_mem);
7385 	bnxt_free_ctx_pg_tbls(bp, &ctx->qp_mem);
7386 	ctx->flags &= ~BNXT_CTX_FLAG_INITED;
7387 }
7388 
7389 static int bnxt_alloc_ctx_mem(struct bnxt *bp)
7390 {
7391 	struct bnxt_ctx_pg_info *ctx_pg;
7392 	struct bnxt_ctx_mem_info *ctx;
7393 	struct bnxt_mem_init *init;
7394 	u32 mem_size, ena, entries;
7395 	u32 entries_sp, min;
7396 	u32 num_mr, num_ah;
7397 	u32 extra_srqs = 0;
7398 	u32 extra_qps = 0;
7399 	u8 pg_lvl = 1;
7400 	int i, rc;
7401 
7402 	rc = bnxt_hwrm_func_backing_store_qcaps(bp);
7403 	if (rc) {
7404 		netdev_err(bp->dev, "Failed querying context mem capability, rc = %d.\n",
7405 			   rc);
7406 		return rc;
7407 	}
7408 	ctx = bp->ctx;
7409 	if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED))
7410 		return 0;
7411 
7412 	if ((bp->flags & BNXT_FLAG_ROCE_CAP) && !is_kdump_kernel()) {
7413 		pg_lvl = 2;
7414 		extra_qps = 65536;
7415 		extra_srqs = 8192;
7416 	}
7417 
7418 	ctx_pg = &ctx->qp_mem;
7419 	ctx_pg->entries = ctx->qp_min_qp1_entries + ctx->qp_max_l2_entries +
7420 			  extra_qps;
7421 	if (ctx->qp_entry_size) {
7422 		mem_size = ctx->qp_entry_size * ctx_pg->entries;
7423 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_QP];
7424 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init);
7425 		if (rc)
7426 			return rc;
7427 	}
7428 
7429 	ctx_pg = &ctx->srq_mem;
7430 	ctx_pg->entries = ctx->srq_max_l2_entries + extra_srqs;
7431 	if (ctx->srq_entry_size) {
7432 		mem_size = ctx->srq_entry_size * ctx_pg->entries;
7433 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_SRQ];
7434 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init);
7435 		if (rc)
7436 			return rc;
7437 	}
7438 
7439 	ctx_pg = &ctx->cq_mem;
7440 	ctx_pg->entries = ctx->cq_max_l2_entries + extra_qps * 2;
7441 	if (ctx->cq_entry_size) {
7442 		mem_size = ctx->cq_entry_size * ctx_pg->entries;
7443 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_CQ];
7444 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init);
7445 		if (rc)
7446 			return rc;
7447 	}
7448 
7449 	ctx_pg = &ctx->vnic_mem;
7450 	ctx_pg->entries = ctx->vnic_max_vnic_entries +
7451 			  ctx->vnic_max_ring_table_entries;
7452 	if (ctx->vnic_entry_size) {
7453 		mem_size = ctx->vnic_entry_size * ctx_pg->entries;
7454 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_VNIC];
7455 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, init);
7456 		if (rc)
7457 			return rc;
7458 	}
7459 
7460 	ctx_pg = &ctx->stat_mem;
7461 	ctx_pg->entries = ctx->stat_max_entries;
7462 	if (ctx->stat_entry_size) {
7463 		mem_size = ctx->stat_entry_size * ctx_pg->entries;
7464 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_STAT];
7465 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, init);
7466 		if (rc)
7467 			return rc;
7468 	}
7469 
7470 	ena = 0;
7471 	if (!(bp->flags & BNXT_FLAG_ROCE_CAP))
7472 		goto skip_rdma;
7473 
7474 	ctx_pg = &ctx->mrav_mem;
7475 	/* 128K extra is needed to accommodate static AH context
7476 	 * allocation by f/w.
7477 	 */
7478 	num_mr = 1024 * 256;
7479 	num_ah = 1024 * 128;
7480 	ctx_pg->entries = num_mr + num_ah;
7481 	if (ctx->mrav_entry_size) {
7482 		mem_size = ctx->mrav_entry_size * ctx_pg->entries;
7483 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_MRAV];
7484 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 2, init);
7485 		if (rc)
7486 			return rc;
7487 	}
7488 	ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV;
7489 	if (ctx->mrav_num_entries_units)
7490 		ctx_pg->entries =
7491 			((num_mr / ctx->mrav_num_entries_units) << 16) |
7492 			 (num_ah / ctx->mrav_num_entries_units);
7493 
7494 	ctx_pg = &ctx->tim_mem;
7495 	ctx_pg->entries = ctx->qp_mem.entries;
7496 	if (ctx->tim_entry_size) {
7497 		mem_size = ctx->tim_entry_size * ctx_pg->entries;
7498 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, NULL);
7499 		if (rc)
7500 			return rc;
7501 	}
7502 	ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM;
7503 
7504 skip_rdma:
7505 	min = ctx->tqm_min_entries_per_ring;
7506 	entries_sp = ctx->vnic_max_vnic_entries + ctx->qp_max_l2_entries +
7507 		     2 * (extra_qps + ctx->qp_min_qp1_entries) + min;
7508 	entries_sp = roundup(entries_sp, ctx->tqm_entries_multiple);
7509 	entries = ctx->qp_max_l2_entries + 2 * (extra_qps + ctx->qp_min_qp1_entries);
7510 	entries = roundup(entries, ctx->tqm_entries_multiple);
7511 	entries = clamp_t(u32, entries, min, ctx->tqm_max_entries_per_ring);
7512 	for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++) {
7513 		ctx_pg = ctx->tqm_mem[i];
7514 		ctx_pg->entries = i ? entries : entries_sp;
7515 		if (ctx->tqm_entry_size) {
7516 			mem_size = ctx->tqm_entry_size * ctx_pg->entries;
7517 			rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1,
7518 						    NULL);
7519 			if (rc)
7520 				return rc;
7521 		}
7522 		ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP << i;
7523 	}
7524 	ena |= FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES;
7525 	rc = bnxt_hwrm_func_backing_store_cfg(bp, ena);
7526 	if (rc) {
7527 		netdev_err(bp->dev, "Failed configuring context mem, rc = %d.\n",
7528 			   rc);
7529 		return rc;
7530 	}
7531 	ctx->flags |= BNXT_CTX_FLAG_INITED;
7532 	return 0;
7533 }
7534 
7535 int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all)
7536 {
7537 	struct hwrm_func_resource_qcaps_output *resp;
7538 	struct hwrm_func_resource_qcaps_input *req;
7539 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7540 	int rc;
7541 
7542 	rc = hwrm_req_init(bp, req, HWRM_FUNC_RESOURCE_QCAPS);
7543 	if (rc)
7544 		return rc;
7545 
7546 	req->fid = cpu_to_le16(0xffff);
7547 	resp = hwrm_req_hold(bp, req);
7548 	rc = hwrm_req_send_silent(bp, req);
7549 	if (rc)
7550 		goto hwrm_func_resc_qcaps_exit;
7551 
7552 	hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs);
7553 	if (!all)
7554 		goto hwrm_func_resc_qcaps_exit;
7555 
7556 	hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx);
7557 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
7558 	hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings);
7559 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
7560 	hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings);
7561 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
7562 	hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings);
7563 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
7564 	hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps);
7565 	hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps);
7566 	hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs);
7567 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
7568 	hw_resc->min_vnics = le16_to_cpu(resp->min_vnics);
7569 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
7570 	hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx);
7571 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
7572 
7573 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
7574 		u16 max_msix = le16_to_cpu(resp->max_msix);
7575 
7576 		hw_resc->max_nqs = max_msix;
7577 		hw_resc->max_hw_ring_grps = hw_resc->max_rx_rings;
7578 	}
7579 
7580 	if (BNXT_PF(bp)) {
7581 		struct bnxt_pf_info *pf = &bp->pf;
7582 
7583 		pf->vf_resv_strategy =
7584 			le16_to_cpu(resp->vf_reservation_strategy);
7585 		if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC)
7586 			pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL;
7587 	}
7588 hwrm_func_resc_qcaps_exit:
7589 	hwrm_req_drop(bp, req);
7590 	return rc;
7591 }
7592 
7593 static int __bnxt_hwrm_ptp_qcfg(struct bnxt *bp)
7594 {
7595 	struct hwrm_port_mac_ptp_qcfg_output *resp;
7596 	struct hwrm_port_mac_ptp_qcfg_input *req;
7597 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
7598 	bool phc_cfg;
7599 	u8 flags;
7600 	int rc;
7601 
7602 	if (bp->hwrm_spec_code < 0x10801) {
7603 		rc = -ENODEV;
7604 		goto no_ptp;
7605 	}
7606 
7607 	rc = hwrm_req_init(bp, req, HWRM_PORT_MAC_PTP_QCFG);
7608 	if (rc)
7609 		goto no_ptp;
7610 
7611 	req->port_id = cpu_to_le16(bp->pf.port_id);
7612 	resp = hwrm_req_hold(bp, req);
7613 	rc = hwrm_req_send(bp, req);
7614 	if (rc)
7615 		goto exit;
7616 
7617 	flags = resp->flags;
7618 	if (!(flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_HWRM_ACCESS)) {
7619 		rc = -ENODEV;
7620 		goto exit;
7621 	}
7622 	if (!ptp) {
7623 		ptp = kzalloc(sizeof(*ptp), GFP_KERNEL);
7624 		if (!ptp) {
7625 			rc = -ENOMEM;
7626 			goto exit;
7627 		}
7628 		ptp->bp = bp;
7629 		bp->ptp_cfg = ptp;
7630 	}
7631 	if (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_PARTIAL_DIRECT_ACCESS_REF_CLOCK) {
7632 		ptp->refclk_regs[0] = le32_to_cpu(resp->ts_ref_clock_reg_lower);
7633 		ptp->refclk_regs[1] = le32_to_cpu(resp->ts_ref_clock_reg_upper);
7634 	} else if (bp->flags & BNXT_FLAG_CHIP_P5) {
7635 		ptp->refclk_regs[0] = BNXT_TS_REG_TIMESYNC_TS0_LOWER;
7636 		ptp->refclk_regs[1] = BNXT_TS_REG_TIMESYNC_TS0_UPPER;
7637 	} else {
7638 		rc = -ENODEV;
7639 		goto exit;
7640 	}
7641 	phc_cfg = (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_RTC_CONFIGURED) != 0;
7642 	rc = bnxt_ptp_init(bp, phc_cfg);
7643 	if (rc)
7644 		netdev_warn(bp->dev, "PTP initialization failed.\n");
7645 exit:
7646 	hwrm_req_drop(bp, req);
7647 	if (!rc)
7648 		return 0;
7649 
7650 no_ptp:
7651 	bnxt_ptp_clear(bp);
7652 	kfree(ptp);
7653 	bp->ptp_cfg = NULL;
7654 	return rc;
7655 }
7656 
7657 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp)
7658 {
7659 	struct hwrm_func_qcaps_output *resp;
7660 	struct hwrm_func_qcaps_input *req;
7661 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7662 	u32 flags, flags_ext, flags_ext2;
7663 	int rc;
7664 
7665 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCAPS);
7666 	if (rc)
7667 		return rc;
7668 
7669 	req->fid = cpu_to_le16(0xffff);
7670 	resp = hwrm_req_hold(bp, req);
7671 	rc = hwrm_req_send(bp, req);
7672 	if (rc)
7673 		goto hwrm_func_qcaps_exit;
7674 
7675 	flags = le32_to_cpu(resp->flags);
7676 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED)
7677 		bp->flags |= BNXT_FLAG_ROCEV1_CAP;
7678 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED)
7679 		bp->flags |= BNXT_FLAG_ROCEV2_CAP;
7680 	if (flags & FUNC_QCAPS_RESP_FLAGS_PCIE_STATS_SUPPORTED)
7681 		bp->fw_cap |= BNXT_FW_CAP_PCIE_STATS_SUPPORTED;
7682 	if (flags & FUNC_QCAPS_RESP_FLAGS_HOT_RESET_CAPABLE)
7683 		bp->fw_cap |= BNXT_FW_CAP_HOT_RESET;
7684 	if (flags & FUNC_QCAPS_RESP_FLAGS_EXT_STATS_SUPPORTED)
7685 		bp->fw_cap |= BNXT_FW_CAP_EXT_STATS_SUPPORTED;
7686 	if (flags &  FUNC_QCAPS_RESP_FLAGS_ERROR_RECOVERY_CAPABLE)
7687 		bp->fw_cap |= BNXT_FW_CAP_ERROR_RECOVERY;
7688 	if (flags & FUNC_QCAPS_RESP_FLAGS_ERR_RECOVER_RELOAD)
7689 		bp->fw_cap |= BNXT_FW_CAP_ERR_RECOVER_RELOAD;
7690 	if (!(flags & FUNC_QCAPS_RESP_FLAGS_VLAN_ACCELERATION_TX_DISABLED))
7691 		bp->fw_cap |= BNXT_FW_CAP_VLAN_TX_INSERT;
7692 	if (flags & FUNC_QCAPS_RESP_FLAGS_DBG_QCAPS_CMD_SUPPORTED)
7693 		bp->fw_cap |= BNXT_FW_CAP_DBG_QCAPS;
7694 
7695 	flags_ext = le32_to_cpu(resp->flags_ext);
7696 	if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_EXT_HW_STATS_SUPPORTED)
7697 		bp->fw_cap |= BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED;
7698 	if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_PPS_SUPPORTED))
7699 		bp->fw_cap |= BNXT_FW_CAP_PTP_PPS;
7700 	if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_64BIT_RTC_SUPPORTED)
7701 		bp->fw_cap |= BNXT_FW_CAP_PTP_RTC;
7702 	if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_HOT_RESET_IF_SUPPORT))
7703 		bp->fw_cap |= BNXT_FW_CAP_HOT_RESET_IF;
7704 	if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_FW_LIVEPATCH_SUPPORTED))
7705 		bp->fw_cap |= BNXT_FW_CAP_LIVEPATCH;
7706 
7707 	flags_ext2 = le32_to_cpu(resp->flags_ext2);
7708 	if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_RX_ALL_PKTS_TIMESTAMPS_SUPPORTED)
7709 		bp->fw_cap |= BNXT_FW_CAP_RX_ALL_PKT_TS;
7710 
7711 	bp->tx_push_thresh = 0;
7712 	if ((flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED) &&
7713 	    BNXT_FW_MAJ(bp) > 217)
7714 		bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
7715 
7716 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
7717 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
7718 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
7719 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
7720 	hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
7721 	if (!hw_resc->max_hw_ring_grps)
7722 		hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings;
7723 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
7724 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
7725 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
7726 
7727 	if (BNXT_PF(bp)) {
7728 		struct bnxt_pf_info *pf = &bp->pf;
7729 
7730 		pf->fw_fid = le16_to_cpu(resp->fid);
7731 		pf->port_id = le16_to_cpu(resp->port_id);
7732 		memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN);
7733 		pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
7734 		pf->max_vfs = le16_to_cpu(resp->max_vfs);
7735 		pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
7736 		pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
7737 		pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
7738 		pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
7739 		pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
7740 		pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
7741 		bp->flags &= ~BNXT_FLAG_WOL_CAP;
7742 		if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED)
7743 			bp->flags |= BNXT_FLAG_WOL_CAP;
7744 		if (flags & FUNC_QCAPS_RESP_FLAGS_PTP_SUPPORTED) {
7745 			__bnxt_hwrm_ptp_qcfg(bp);
7746 		} else {
7747 			bnxt_ptp_clear(bp);
7748 			kfree(bp->ptp_cfg);
7749 			bp->ptp_cfg = NULL;
7750 		}
7751 	} else {
7752 #ifdef CONFIG_BNXT_SRIOV
7753 		struct bnxt_vf_info *vf = &bp->vf;
7754 
7755 		vf->fw_fid = le16_to_cpu(resp->fid);
7756 		memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN);
7757 #endif
7758 	}
7759 
7760 hwrm_func_qcaps_exit:
7761 	hwrm_req_drop(bp, req);
7762 	return rc;
7763 }
7764 
7765 static void bnxt_hwrm_dbg_qcaps(struct bnxt *bp)
7766 {
7767 	struct hwrm_dbg_qcaps_output *resp;
7768 	struct hwrm_dbg_qcaps_input *req;
7769 	int rc;
7770 
7771 	bp->fw_dbg_cap = 0;
7772 	if (!(bp->fw_cap & BNXT_FW_CAP_DBG_QCAPS))
7773 		return;
7774 
7775 	rc = hwrm_req_init(bp, req, HWRM_DBG_QCAPS);
7776 	if (rc)
7777 		return;
7778 
7779 	req->fid = cpu_to_le16(0xffff);
7780 	resp = hwrm_req_hold(bp, req);
7781 	rc = hwrm_req_send(bp, req);
7782 	if (rc)
7783 		goto hwrm_dbg_qcaps_exit;
7784 
7785 	bp->fw_dbg_cap = le32_to_cpu(resp->flags);
7786 
7787 hwrm_dbg_qcaps_exit:
7788 	hwrm_req_drop(bp, req);
7789 }
7790 
7791 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp);
7792 
7793 static int bnxt_hwrm_func_qcaps(struct bnxt *bp)
7794 {
7795 	int rc;
7796 
7797 	rc = __bnxt_hwrm_func_qcaps(bp);
7798 	if (rc)
7799 		return rc;
7800 
7801 	bnxt_hwrm_dbg_qcaps(bp);
7802 
7803 	rc = bnxt_hwrm_queue_qportcfg(bp);
7804 	if (rc) {
7805 		netdev_err(bp->dev, "hwrm query qportcfg failure rc: %d\n", rc);
7806 		return rc;
7807 	}
7808 	if (bp->hwrm_spec_code >= 0x10803) {
7809 		rc = bnxt_alloc_ctx_mem(bp);
7810 		if (rc)
7811 			return rc;
7812 		rc = bnxt_hwrm_func_resc_qcaps(bp, true);
7813 		if (!rc)
7814 			bp->fw_cap |= BNXT_FW_CAP_NEW_RM;
7815 	}
7816 	return 0;
7817 }
7818 
7819 static int bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(struct bnxt *bp)
7820 {
7821 	struct hwrm_cfa_adv_flow_mgnt_qcaps_output *resp;
7822 	struct hwrm_cfa_adv_flow_mgnt_qcaps_input *req;
7823 	u32 flags;
7824 	int rc;
7825 
7826 	if (!(bp->fw_cap & BNXT_FW_CAP_CFA_ADV_FLOW))
7827 		return 0;
7828 
7829 	rc = hwrm_req_init(bp, req, HWRM_CFA_ADV_FLOW_MGNT_QCAPS);
7830 	if (rc)
7831 		return rc;
7832 
7833 	resp = hwrm_req_hold(bp, req);
7834 	rc = hwrm_req_send(bp, req);
7835 	if (rc)
7836 		goto hwrm_cfa_adv_qcaps_exit;
7837 
7838 	flags = le32_to_cpu(resp->flags);
7839 	if (flags &
7840 	    CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V2_SUPPORTED)
7841 		bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2;
7842 
7843 hwrm_cfa_adv_qcaps_exit:
7844 	hwrm_req_drop(bp, req);
7845 	return rc;
7846 }
7847 
7848 static int __bnxt_alloc_fw_health(struct bnxt *bp)
7849 {
7850 	if (bp->fw_health)
7851 		return 0;
7852 
7853 	bp->fw_health = kzalloc(sizeof(*bp->fw_health), GFP_KERNEL);
7854 	if (!bp->fw_health)
7855 		return -ENOMEM;
7856 
7857 	mutex_init(&bp->fw_health->lock);
7858 	return 0;
7859 }
7860 
7861 static int bnxt_alloc_fw_health(struct bnxt *bp)
7862 {
7863 	int rc;
7864 
7865 	if (!(bp->fw_cap & BNXT_FW_CAP_HOT_RESET) &&
7866 	    !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
7867 		return 0;
7868 
7869 	rc = __bnxt_alloc_fw_health(bp);
7870 	if (rc) {
7871 		bp->fw_cap &= ~BNXT_FW_CAP_HOT_RESET;
7872 		bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
7873 		return rc;
7874 	}
7875 
7876 	return 0;
7877 }
7878 
7879 static void __bnxt_map_fw_health_reg(struct bnxt *bp, u32 reg)
7880 {
7881 	writel(reg & BNXT_GRC_BASE_MASK, bp->bar0 +
7882 					 BNXT_GRCPF_REG_WINDOW_BASE_OUT +
7883 					 BNXT_FW_HEALTH_WIN_MAP_OFF);
7884 }
7885 
7886 static void bnxt_inv_fw_health_reg(struct bnxt *bp)
7887 {
7888 	struct bnxt_fw_health *fw_health = bp->fw_health;
7889 	u32 reg_type;
7890 
7891 	if (!fw_health)
7892 		return;
7893 
7894 	reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_HEALTH_REG]);
7895 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC)
7896 		fw_health->status_reliable = false;
7897 
7898 	reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_RESET_CNT_REG]);
7899 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC)
7900 		fw_health->resets_reliable = false;
7901 }
7902 
7903 static void bnxt_try_map_fw_health_reg(struct bnxt *bp)
7904 {
7905 	void __iomem *hs;
7906 	u32 status_loc;
7907 	u32 reg_type;
7908 	u32 sig;
7909 
7910 	if (bp->fw_health)
7911 		bp->fw_health->status_reliable = false;
7912 
7913 	__bnxt_map_fw_health_reg(bp, HCOMM_STATUS_STRUCT_LOC);
7914 	hs = bp->bar0 + BNXT_FW_HEALTH_WIN_OFF(HCOMM_STATUS_STRUCT_LOC);
7915 
7916 	sig = readl(hs + offsetof(struct hcomm_status, sig_ver));
7917 	if ((sig & HCOMM_STATUS_SIGNATURE_MASK) != HCOMM_STATUS_SIGNATURE_VAL) {
7918 		if (!bp->chip_num) {
7919 			__bnxt_map_fw_health_reg(bp, BNXT_GRC_REG_BASE);
7920 			bp->chip_num = readl(bp->bar0 +
7921 					     BNXT_FW_HEALTH_WIN_BASE +
7922 					     BNXT_GRC_REG_CHIP_NUM);
7923 		}
7924 		if (!BNXT_CHIP_P5(bp))
7925 			return;
7926 
7927 		status_loc = BNXT_GRC_REG_STATUS_P5 |
7928 			     BNXT_FW_HEALTH_REG_TYPE_BAR0;
7929 	} else {
7930 		status_loc = readl(hs + offsetof(struct hcomm_status,
7931 						 fw_status_loc));
7932 	}
7933 
7934 	if (__bnxt_alloc_fw_health(bp)) {
7935 		netdev_warn(bp->dev, "no memory for firmware status checks\n");
7936 		return;
7937 	}
7938 
7939 	bp->fw_health->regs[BNXT_FW_HEALTH_REG] = status_loc;
7940 	reg_type = BNXT_FW_HEALTH_REG_TYPE(status_loc);
7941 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) {
7942 		__bnxt_map_fw_health_reg(bp, status_loc);
7943 		bp->fw_health->mapped_regs[BNXT_FW_HEALTH_REG] =
7944 			BNXT_FW_HEALTH_WIN_OFF(status_loc);
7945 	}
7946 
7947 	bp->fw_health->status_reliable = true;
7948 }
7949 
7950 static int bnxt_map_fw_health_regs(struct bnxt *bp)
7951 {
7952 	struct bnxt_fw_health *fw_health = bp->fw_health;
7953 	u32 reg_base = 0xffffffff;
7954 	int i;
7955 
7956 	bp->fw_health->status_reliable = false;
7957 	bp->fw_health->resets_reliable = false;
7958 	/* Only pre-map the monitoring GRC registers using window 3 */
7959 	for (i = 0; i < 4; i++) {
7960 		u32 reg = fw_health->regs[i];
7961 
7962 		if (BNXT_FW_HEALTH_REG_TYPE(reg) != BNXT_FW_HEALTH_REG_TYPE_GRC)
7963 			continue;
7964 		if (reg_base == 0xffffffff)
7965 			reg_base = reg & BNXT_GRC_BASE_MASK;
7966 		if ((reg & BNXT_GRC_BASE_MASK) != reg_base)
7967 			return -ERANGE;
7968 		fw_health->mapped_regs[i] = BNXT_FW_HEALTH_WIN_OFF(reg);
7969 	}
7970 	bp->fw_health->status_reliable = true;
7971 	bp->fw_health->resets_reliable = true;
7972 	if (reg_base == 0xffffffff)
7973 		return 0;
7974 
7975 	__bnxt_map_fw_health_reg(bp, reg_base);
7976 	return 0;
7977 }
7978 
7979 static void bnxt_remap_fw_health_regs(struct bnxt *bp)
7980 {
7981 	if (!bp->fw_health)
7982 		return;
7983 
7984 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) {
7985 		bp->fw_health->status_reliable = true;
7986 		bp->fw_health->resets_reliable = true;
7987 	} else {
7988 		bnxt_try_map_fw_health_reg(bp);
7989 	}
7990 }
7991 
7992 static int bnxt_hwrm_error_recovery_qcfg(struct bnxt *bp)
7993 {
7994 	struct bnxt_fw_health *fw_health = bp->fw_health;
7995 	struct hwrm_error_recovery_qcfg_output *resp;
7996 	struct hwrm_error_recovery_qcfg_input *req;
7997 	int rc, i;
7998 
7999 	if (!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
8000 		return 0;
8001 
8002 	rc = hwrm_req_init(bp, req, HWRM_ERROR_RECOVERY_QCFG);
8003 	if (rc)
8004 		return rc;
8005 
8006 	resp = hwrm_req_hold(bp, req);
8007 	rc = hwrm_req_send(bp, req);
8008 	if (rc)
8009 		goto err_recovery_out;
8010 	fw_health->flags = le32_to_cpu(resp->flags);
8011 	if ((fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) &&
8012 	    !(bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL)) {
8013 		rc = -EINVAL;
8014 		goto err_recovery_out;
8015 	}
8016 	fw_health->polling_dsecs = le32_to_cpu(resp->driver_polling_freq);
8017 	fw_health->master_func_wait_dsecs =
8018 		le32_to_cpu(resp->master_func_wait_period);
8019 	fw_health->normal_func_wait_dsecs =
8020 		le32_to_cpu(resp->normal_func_wait_period);
8021 	fw_health->post_reset_wait_dsecs =
8022 		le32_to_cpu(resp->master_func_wait_period_after_reset);
8023 	fw_health->post_reset_max_wait_dsecs =
8024 		le32_to_cpu(resp->max_bailout_time_after_reset);
8025 	fw_health->regs[BNXT_FW_HEALTH_REG] =
8026 		le32_to_cpu(resp->fw_health_status_reg);
8027 	fw_health->regs[BNXT_FW_HEARTBEAT_REG] =
8028 		le32_to_cpu(resp->fw_heartbeat_reg);
8029 	fw_health->regs[BNXT_FW_RESET_CNT_REG] =
8030 		le32_to_cpu(resp->fw_reset_cnt_reg);
8031 	fw_health->regs[BNXT_FW_RESET_INPROG_REG] =
8032 		le32_to_cpu(resp->reset_inprogress_reg);
8033 	fw_health->fw_reset_inprog_reg_mask =
8034 		le32_to_cpu(resp->reset_inprogress_reg_mask);
8035 	fw_health->fw_reset_seq_cnt = resp->reg_array_cnt;
8036 	if (fw_health->fw_reset_seq_cnt >= 16) {
8037 		rc = -EINVAL;
8038 		goto err_recovery_out;
8039 	}
8040 	for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) {
8041 		fw_health->fw_reset_seq_regs[i] =
8042 			le32_to_cpu(resp->reset_reg[i]);
8043 		fw_health->fw_reset_seq_vals[i] =
8044 			le32_to_cpu(resp->reset_reg_val[i]);
8045 		fw_health->fw_reset_seq_delay_msec[i] =
8046 			resp->delay_after_reset[i];
8047 	}
8048 err_recovery_out:
8049 	hwrm_req_drop(bp, req);
8050 	if (!rc)
8051 		rc = bnxt_map_fw_health_regs(bp);
8052 	if (rc)
8053 		bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
8054 	return rc;
8055 }
8056 
8057 static int bnxt_hwrm_func_reset(struct bnxt *bp)
8058 {
8059 	struct hwrm_func_reset_input *req;
8060 	int rc;
8061 
8062 	rc = hwrm_req_init(bp, req, HWRM_FUNC_RESET);
8063 	if (rc)
8064 		return rc;
8065 
8066 	req->enables = 0;
8067 	hwrm_req_timeout(bp, req, HWRM_RESET_TIMEOUT);
8068 	return hwrm_req_send(bp, req);
8069 }
8070 
8071 static void bnxt_nvm_cfg_ver_get(struct bnxt *bp)
8072 {
8073 	struct hwrm_nvm_get_dev_info_output nvm_info;
8074 
8075 	if (!bnxt_hwrm_nvm_get_dev_info(bp, &nvm_info))
8076 		snprintf(bp->nvm_cfg_ver, FW_VER_STR_LEN, "%d.%d.%d",
8077 			 nvm_info.nvm_cfg_ver_maj, nvm_info.nvm_cfg_ver_min,
8078 			 nvm_info.nvm_cfg_ver_upd);
8079 }
8080 
8081 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
8082 {
8083 	struct hwrm_queue_qportcfg_output *resp;
8084 	struct hwrm_queue_qportcfg_input *req;
8085 	u8 i, j, *qptr;
8086 	bool no_rdma;
8087 	int rc = 0;
8088 
8089 	rc = hwrm_req_init(bp, req, HWRM_QUEUE_QPORTCFG);
8090 	if (rc)
8091 		return rc;
8092 
8093 	resp = hwrm_req_hold(bp, req);
8094 	rc = hwrm_req_send(bp, req);
8095 	if (rc)
8096 		goto qportcfg_exit;
8097 
8098 	if (!resp->max_configurable_queues) {
8099 		rc = -EINVAL;
8100 		goto qportcfg_exit;
8101 	}
8102 	bp->max_tc = resp->max_configurable_queues;
8103 	bp->max_lltc = resp->max_configurable_lossless_queues;
8104 	if (bp->max_tc > BNXT_MAX_QUEUE)
8105 		bp->max_tc = BNXT_MAX_QUEUE;
8106 
8107 	no_rdma = !(bp->flags & BNXT_FLAG_ROCE_CAP);
8108 	qptr = &resp->queue_id0;
8109 	for (i = 0, j = 0; i < bp->max_tc; i++) {
8110 		bp->q_info[j].queue_id = *qptr;
8111 		bp->q_ids[i] = *qptr++;
8112 		bp->q_info[j].queue_profile = *qptr++;
8113 		bp->tc_to_qidx[j] = j;
8114 		if (!BNXT_CNPQ(bp->q_info[j].queue_profile) ||
8115 		    (no_rdma && BNXT_PF(bp)))
8116 			j++;
8117 	}
8118 	bp->max_q = bp->max_tc;
8119 	bp->max_tc = max_t(u8, j, 1);
8120 
8121 	if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG)
8122 		bp->max_tc = 1;
8123 
8124 	if (bp->max_lltc > bp->max_tc)
8125 		bp->max_lltc = bp->max_tc;
8126 
8127 qportcfg_exit:
8128 	hwrm_req_drop(bp, req);
8129 	return rc;
8130 }
8131 
8132 static int bnxt_hwrm_poll(struct bnxt *bp)
8133 {
8134 	struct hwrm_ver_get_input *req;
8135 	int rc;
8136 
8137 	rc = hwrm_req_init(bp, req, HWRM_VER_GET);
8138 	if (rc)
8139 		return rc;
8140 
8141 	req->hwrm_intf_maj = HWRM_VERSION_MAJOR;
8142 	req->hwrm_intf_min = HWRM_VERSION_MINOR;
8143 	req->hwrm_intf_upd = HWRM_VERSION_UPDATE;
8144 
8145 	hwrm_req_flags(bp, req, BNXT_HWRM_CTX_SILENT | BNXT_HWRM_FULL_WAIT);
8146 	rc = hwrm_req_send(bp, req);
8147 	return rc;
8148 }
8149 
8150 static int bnxt_hwrm_ver_get(struct bnxt *bp)
8151 {
8152 	struct hwrm_ver_get_output *resp;
8153 	struct hwrm_ver_get_input *req;
8154 	u16 fw_maj, fw_min, fw_bld, fw_rsv;
8155 	u32 dev_caps_cfg, hwrm_ver;
8156 	int rc, len;
8157 
8158 	rc = hwrm_req_init(bp, req, HWRM_VER_GET);
8159 	if (rc)
8160 		return rc;
8161 
8162 	hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT);
8163 	bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN;
8164 	req->hwrm_intf_maj = HWRM_VERSION_MAJOR;
8165 	req->hwrm_intf_min = HWRM_VERSION_MINOR;
8166 	req->hwrm_intf_upd = HWRM_VERSION_UPDATE;
8167 
8168 	resp = hwrm_req_hold(bp, req);
8169 	rc = hwrm_req_send(bp, req);
8170 	if (rc)
8171 		goto hwrm_ver_get_exit;
8172 
8173 	memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
8174 
8175 	bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 |
8176 			     resp->hwrm_intf_min_8b << 8 |
8177 			     resp->hwrm_intf_upd_8b;
8178 	if (resp->hwrm_intf_maj_8b < 1) {
8179 		netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
8180 			    resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
8181 			    resp->hwrm_intf_upd_8b);
8182 		netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
8183 	}
8184 
8185 	hwrm_ver = HWRM_VERSION_MAJOR << 16 | HWRM_VERSION_MINOR << 8 |
8186 			HWRM_VERSION_UPDATE;
8187 
8188 	if (bp->hwrm_spec_code > hwrm_ver)
8189 		snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d",
8190 			 HWRM_VERSION_MAJOR, HWRM_VERSION_MINOR,
8191 			 HWRM_VERSION_UPDATE);
8192 	else
8193 		snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d",
8194 			 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
8195 			 resp->hwrm_intf_upd_8b);
8196 
8197 	fw_maj = le16_to_cpu(resp->hwrm_fw_major);
8198 	if (bp->hwrm_spec_code > 0x10803 && fw_maj) {
8199 		fw_min = le16_to_cpu(resp->hwrm_fw_minor);
8200 		fw_bld = le16_to_cpu(resp->hwrm_fw_build);
8201 		fw_rsv = le16_to_cpu(resp->hwrm_fw_patch);
8202 		len = FW_VER_STR_LEN;
8203 	} else {
8204 		fw_maj = resp->hwrm_fw_maj_8b;
8205 		fw_min = resp->hwrm_fw_min_8b;
8206 		fw_bld = resp->hwrm_fw_bld_8b;
8207 		fw_rsv = resp->hwrm_fw_rsvd_8b;
8208 		len = BC_HWRM_STR_LEN;
8209 	}
8210 	bp->fw_ver_code = BNXT_FW_VER_CODE(fw_maj, fw_min, fw_bld, fw_rsv);
8211 	snprintf(bp->fw_ver_str, len, "%d.%d.%d.%d", fw_maj, fw_min, fw_bld,
8212 		 fw_rsv);
8213 
8214 	if (strlen(resp->active_pkg_name)) {
8215 		int fw_ver_len = strlen(bp->fw_ver_str);
8216 
8217 		snprintf(bp->fw_ver_str + fw_ver_len,
8218 			 FW_VER_STR_LEN - fw_ver_len - 1, "/pkg %s",
8219 			 resp->active_pkg_name);
8220 		bp->fw_cap |= BNXT_FW_CAP_PKG_VER;
8221 	}
8222 
8223 	bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout);
8224 	if (!bp->hwrm_cmd_timeout)
8225 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
8226 	bp->hwrm_cmd_max_timeout = le16_to_cpu(resp->max_req_timeout) * 1000;
8227 	if (!bp->hwrm_cmd_max_timeout)
8228 		bp->hwrm_cmd_max_timeout = HWRM_CMD_MAX_TIMEOUT;
8229 	else if (bp->hwrm_cmd_max_timeout > HWRM_CMD_MAX_TIMEOUT)
8230 		netdev_warn(bp->dev, "Device requests max timeout of %d seconds, may trigger hung task watchdog\n",
8231 			    bp->hwrm_cmd_max_timeout / 1000);
8232 
8233 	if (resp->hwrm_intf_maj_8b >= 1) {
8234 		bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len);
8235 		bp->hwrm_max_ext_req_len = le16_to_cpu(resp->max_ext_req_len);
8236 	}
8237 	if (bp->hwrm_max_ext_req_len < HWRM_MAX_REQ_LEN)
8238 		bp->hwrm_max_ext_req_len = HWRM_MAX_REQ_LEN;
8239 
8240 	bp->chip_num = le16_to_cpu(resp->chip_num);
8241 	bp->chip_rev = resp->chip_rev;
8242 	if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev &&
8243 	    !resp->chip_metal)
8244 		bp->flags |= BNXT_FLAG_CHIP_NITRO_A0;
8245 
8246 	dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg);
8247 	if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) &&
8248 	    (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED))
8249 		bp->fw_cap |= BNXT_FW_CAP_SHORT_CMD;
8250 
8251 	if (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_KONG_MB_CHNL_SUPPORTED)
8252 		bp->fw_cap |= BNXT_FW_CAP_KONG_MB_CHNL;
8253 
8254 	if (dev_caps_cfg &
8255 	    VER_GET_RESP_DEV_CAPS_CFG_FLOW_HANDLE_64BIT_SUPPORTED)
8256 		bp->fw_cap |= BNXT_FW_CAP_OVS_64BIT_HANDLE;
8257 
8258 	if (dev_caps_cfg &
8259 	    VER_GET_RESP_DEV_CAPS_CFG_TRUSTED_VF_SUPPORTED)
8260 		bp->fw_cap |= BNXT_FW_CAP_TRUSTED_VF;
8261 
8262 	if (dev_caps_cfg &
8263 	    VER_GET_RESP_DEV_CAPS_CFG_CFA_ADV_FLOW_MGNT_SUPPORTED)
8264 		bp->fw_cap |= BNXT_FW_CAP_CFA_ADV_FLOW;
8265 
8266 hwrm_ver_get_exit:
8267 	hwrm_req_drop(bp, req);
8268 	return rc;
8269 }
8270 
8271 int bnxt_hwrm_fw_set_time(struct bnxt *bp)
8272 {
8273 	struct hwrm_fw_set_time_input *req;
8274 	struct tm tm;
8275 	time64_t now = ktime_get_real_seconds();
8276 	int rc;
8277 
8278 	if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) ||
8279 	    bp->hwrm_spec_code < 0x10400)
8280 		return -EOPNOTSUPP;
8281 
8282 	time64_to_tm(now, 0, &tm);
8283 	rc = hwrm_req_init(bp, req, HWRM_FW_SET_TIME);
8284 	if (rc)
8285 		return rc;
8286 
8287 	req->year = cpu_to_le16(1900 + tm.tm_year);
8288 	req->month = 1 + tm.tm_mon;
8289 	req->day = tm.tm_mday;
8290 	req->hour = tm.tm_hour;
8291 	req->minute = tm.tm_min;
8292 	req->second = tm.tm_sec;
8293 	return hwrm_req_send(bp, req);
8294 }
8295 
8296 static void bnxt_add_one_ctr(u64 hw, u64 *sw, u64 mask)
8297 {
8298 	u64 sw_tmp;
8299 
8300 	hw &= mask;
8301 	sw_tmp = (*sw & ~mask) | hw;
8302 	if (hw < (*sw & mask))
8303 		sw_tmp += mask + 1;
8304 	WRITE_ONCE(*sw, sw_tmp);
8305 }
8306 
8307 static void __bnxt_accumulate_stats(__le64 *hw_stats, u64 *sw_stats, u64 *masks,
8308 				    int count, bool ignore_zero)
8309 {
8310 	int i;
8311 
8312 	for (i = 0; i < count; i++) {
8313 		u64 hw = le64_to_cpu(READ_ONCE(hw_stats[i]));
8314 
8315 		if (ignore_zero && !hw)
8316 			continue;
8317 
8318 		if (masks[i] == -1ULL)
8319 			sw_stats[i] = hw;
8320 		else
8321 			bnxt_add_one_ctr(hw, &sw_stats[i], masks[i]);
8322 	}
8323 }
8324 
8325 static void bnxt_accumulate_stats(struct bnxt_stats_mem *stats)
8326 {
8327 	if (!stats->hw_stats)
8328 		return;
8329 
8330 	__bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats,
8331 				stats->hw_masks, stats->len / 8, false);
8332 }
8333 
8334 static void bnxt_accumulate_all_stats(struct bnxt *bp)
8335 {
8336 	struct bnxt_stats_mem *ring0_stats;
8337 	bool ignore_zero = false;
8338 	int i;
8339 
8340 	/* Chip bug.  Counter intermittently becomes 0. */
8341 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8342 		ignore_zero = true;
8343 
8344 	for (i = 0; i < bp->cp_nr_rings; i++) {
8345 		struct bnxt_napi *bnapi = bp->bnapi[i];
8346 		struct bnxt_cp_ring_info *cpr;
8347 		struct bnxt_stats_mem *stats;
8348 
8349 		cpr = &bnapi->cp_ring;
8350 		stats = &cpr->stats;
8351 		if (!i)
8352 			ring0_stats = stats;
8353 		__bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats,
8354 					ring0_stats->hw_masks,
8355 					ring0_stats->len / 8, ignore_zero);
8356 	}
8357 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
8358 		struct bnxt_stats_mem *stats = &bp->port_stats;
8359 		__le64 *hw_stats = stats->hw_stats;
8360 		u64 *sw_stats = stats->sw_stats;
8361 		u64 *masks = stats->hw_masks;
8362 		int cnt;
8363 
8364 		cnt = sizeof(struct rx_port_stats) / 8;
8365 		__bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false);
8366 
8367 		hw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
8368 		sw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
8369 		masks += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
8370 		cnt = sizeof(struct tx_port_stats) / 8;
8371 		__bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false);
8372 	}
8373 	if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) {
8374 		bnxt_accumulate_stats(&bp->rx_port_stats_ext);
8375 		bnxt_accumulate_stats(&bp->tx_port_stats_ext);
8376 	}
8377 }
8378 
8379 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags)
8380 {
8381 	struct hwrm_port_qstats_input *req;
8382 	struct bnxt_pf_info *pf = &bp->pf;
8383 	int rc;
8384 
8385 	if (!(bp->flags & BNXT_FLAG_PORT_STATS))
8386 		return 0;
8387 
8388 	if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))
8389 		return -EOPNOTSUPP;
8390 
8391 	rc = hwrm_req_init(bp, req, HWRM_PORT_QSTATS);
8392 	if (rc)
8393 		return rc;
8394 
8395 	req->flags = flags;
8396 	req->port_id = cpu_to_le16(pf->port_id);
8397 	req->tx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map +
8398 					    BNXT_TX_PORT_STATS_BYTE_OFFSET);
8399 	req->rx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map);
8400 	return hwrm_req_send(bp, req);
8401 }
8402 
8403 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags)
8404 {
8405 	struct hwrm_queue_pri2cos_qcfg_output *resp_qc;
8406 	struct hwrm_queue_pri2cos_qcfg_input *req_qc;
8407 	struct hwrm_port_qstats_ext_output *resp_qs;
8408 	struct hwrm_port_qstats_ext_input *req_qs;
8409 	struct bnxt_pf_info *pf = &bp->pf;
8410 	u32 tx_stat_size;
8411 	int rc;
8412 
8413 	if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT))
8414 		return 0;
8415 
8416 	if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))
8417 		return -EOPNOTSUPP;
8418 
8419 	rc = hwrm_req_init(bp, req_qs, HWRM_PORT_QSTATS_EXT);
8420 	if (rc)
8421 		return rc;
8422 
8423 	req_qs->flags = flags;
8424 	req_qs->port_id = cpu_to_le16(pf->port_id);
8425 	req_qs->rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext));
8426 	req_qs->rx_stat_host_addr = cpu_to_le64(bp->rx_port_stats_ext.hw_stats_map);
8427 	tx_stat_size = bp->tx_port_stats_ext.hw_stats ?
8428 		       sizeof(struct tx_port_stats_ext) : 0;
8429 	req_qs->tx_stat_size = cpu_to_le16(tx_stat_size);
8430 	req_qs->tx_stat_host_addr = cpu_to_le64(bp->tx_port_stats_ext.hw_stats_map);
8431 	resp_qs = hwrm_req_hold(bp, req_qs);
8432 	rc = hwrm_req_send(bp, req_qs);
8433 	if (!rc) {
8434 		bp->fw_rx_stats_ext_size =
8435 			le16_to_cpu(resp_qs->rx_stat_size) / 8;
8436 		if (BNXT_FW_MAJ(bp) < 220 &&
8437 		    bp->fw_rx_stats_ext_size > BNXT_RX_STATS_EXT_NUM_LEGACY)
8438 			bp->fw_rx_stats_ext_size = BNXT_RX_STATS_EXT_NUM_LEGACY;
8439 
8440 		bp->fw_tx_stats_ext_size = tx_stat_size ?
8441 			le16_to_cpu(resp_qs->tx_stat_size) / 8 : 0;
8442 	} else {
8443 		bp->fw_rx_stats_ext_size = 0;
8444 		bp->fw_tx_stats_ext_size = 0;
8445 	}
8446 	hwrm_req_drop(bp, req_qs);
8447 
8448 	if (flags)
8449 		return rc;
8450 
8451 	if (bp->fw_tx_stats_ext_size <=
8452 	    offsetof(struct tx_port_stats_ext, pfc_pri0_tx_duration_us) / 8) {
8453 		bp->pri2cos_valid = 0;
8454 		return rc;
8455 	}
8456 
8457 	rc = hwrm_req_init(bp, req_qc, HWRM_QUEUE_PRI2COS_QCFG);
8458 	if (rc)
8459 		return rc;
8460 
8461 	req_qc->flags = cpu_to_le32(QUEUE_PRI2COS_QCFG_REQ_FLAGS_IVLAN);
8462 
8463 	resp_qc = hwrm_req_hold(bp, req_qc);
8464 	rc = hwrm_req_send(bp, req_qc);
8465 	if (!rc) {
8466 		u8 *pri2cos;
8467 		int i, j;
8468 
8469 		pri2cos = &resp_qc->pri0_cos_queue_id;
8470 		for (i = 0; i < 8; i++) {
8471 			u8 queue_id = pri2cos[i];
8472 			u8 queue_idx;
8473 
8474 			/* Per port queue IDs start from 0, 10, 20, etc */
8475 			queue_idx = queue_id % 10;
8476 			if (queue_idx > BNXT_MAX_QUEUE) {
8477 				bp->pri2cos_valid = false;
8478 				hwrm_req_drop(bp, req_qc);
8479 				return rc;
8480 			}
8481 			for (j = 0; j < bp->max_q; j++) {
8482 				if (bp->q_ids[j] == queue_id)
8483 					bp->pri2cos_idx[i] = queue_idx;
8484 			}
8485 		}
8486 		bp->pri2cos_valid = true;
8487 	}
8488 	hwrm_req_drop(bp, req_qc);
8489 
8490 	return rc;
8491 }
8492 
8493 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
8494 {
8495 	bnxt_hwrm_tunnel_dst_port_free(bp,
8496 		TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
8497 	bnxt_hwrm_tunnel_dst_port_free(bp,
8498 		TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
8499 }
8500 
8501 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
8502 {
8503 	int rc, i;
8504 	u32 tpa_flags = 0;
8505 
8506 	if (set_tpa)
8507 		tpa_flags = bp->flags & BNXT_FLAG_TPA;
8508 	else if (BNXT_NO_FW_ACCESS(bp))
8509 		return 0;
8510 	for (i = 0; i < bp->nr_vnics; i++) {
8511 		rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
8512 		if (rc) {
8513 			netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
8514 				   i, rc);
8515 			return rc;
8516 		}
8517 	}
8518 	return 0;
8519 }
8520 
8521 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
8522 {
8523 	int i;
8524 
8525 	for (i = 0; i < bp->nr_vnics; i++)
8526 		bnxt_hwrm_vnic_set_rss(bp, i, false);
8527 }
8528 
8529 static void bnxt_clear_vnic(struct bnxt *bp)
8530 {
8531 	if (!bp->vnic_info)
8532 		return;
8533 
8534 	bnxt_hwrm_clear_vnic_filter(bp);
8535 	if (!(bp->flags & BNXT_FLAG_CHIP_P5)) {
8536 		/* clear all RSS setting before free vnic ctx */
8537 		bnxt_hwrm_clear_vnic_rss(bp);
8538 		bnxt_hwrm_vnic_ctx_free(bp);
8539 	}
8540 	/* before free the vnic, undo the vnic tpa settings */
8541 	if (bp->flags & BNXT_FLAG_TPA)
8542 		bnxt_set_tpa(bp, false);
8543 	bnxt_hwrm_vnic_free(bp);
8544 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8545 		bnxt_hwrm_vnic_ctx_free(bp);
8546 }
8547 
8548 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
8549 				    bool irq_re_init)
8550 {
8551 	bnxt_clear_vnic(bp);
8552 	bnxt_hwrm_ring_free(bp, close_path);
8553 	bnxt_hwrm_ring_grp_free(bp);
8554 	if (irq_re_init) {
8555 		bnxt_hwrm_stat_ctx_free(bp);
8556 		bnxt_hwrm_free_tunnel_ports(bp);
8557 	}
8558 }
8559 
8560 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode)
8561 {
8562 	struct hwrm_func_cfg_input *req;
8563 	u8 evb_mode;
8564 	int rc;
8565 
8566 	if (br_mode == BRIDGE_MODE_VEB)
8567 		evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB;
8568 	else if (br_mode == BRIDGE_MODE_VEPA)
8569 		evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA;
8570 	else
8571 		return -EINVAL;
8572 
8573 	rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG);
8574 	if (rc)
8575 		return rc;
8576 
8577 	req->fid = cpu_to_le16(0xffff);
8578 	req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE);
8579 	req->evb_mode = evb_mode;
8580 	return hwrm_req_send(bp, req);
8581 }
8582 
8583 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size)
8584 {
8585 	struct hwrm_func_cfg_input *req;
8586 	int rc;
8587 
8588 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803)
8589 		return 0;
8590 
8591 	rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG);
8592 	if (rc)
8593 		return rc;
8594 
8595 	req->fid = cpu_to_le16(0xffff);
8596 	req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE);
8597 	req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64;
8598 	if (size == 128)
8599 		req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128;
8600 
8601 	return hwrm_req_send(bp, req);
8602 }
8603 
8604 static int __bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
8605 {
8606 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
8607 	int rc;
8608 
8609 	if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG)
8610 		goto skip_rss_ctx;
8611 
8612 	/* allocate context for vnic */
8613 	rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0);
8614 	if (rc) {
8615 		netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
8616 			   vnic_id, rc);
8617 		goto vnic_setup_err;
8618 	}
8619 	bp->rsscos_nr_ctxs++;
8620 
8621 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
8622 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1);
8623 		if (rc) {
8624 			netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n",
8625 				   vnic_id, rc);
8626 			goto vnic_setup_err;
8627 		}
8628 		bp->rsscos_nr_ctxs++;
8629 	}
8630 
8631 skip_rss_ctx:
8632 	/* configure default vnic, ring grp */
8633 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
8634 	if (rc) {
8635 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
8636 			   vnic_id, rc);
8637 		goto vnic_setup_err;
8638 	}
8639 
8640 	/* Enable RSS hashing on vnic */
8641 	rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
8642 	if (rc) {
8643 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
8644 			   vnic_id, rc);
8645 		goto vnic_setup_err;
8646 	}
8647 
8648 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
8649 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
8650 		if (rc) {
8651 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
8652 				   vnic_id, rc);
8653 		}
8654 	}
8655 
8656 vnic_setup_err:
8657 	return rc;
8658 }
8659 
8660 static int __bnxt_setup_vnic_p5(struct bnxt *bp, u16 vnic_id)
8661 {
8662 	int rc, i, nr_ctxs;
8663 
8664 	nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings);
8665 	for (i = 0; i < nr_ctxs; i++) {
8666 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, i);
8667 		if (rc) {
8668 			netdev_err(bp->dev, "hwrm vnic %d ctx %d alloc failure rc: %x\n",
8669 				   vnic_id, i, rc);
8670 			break;
8671 		}
8672 		bp->rsscos_nr_ctxs++;
8673 	}
8674 	if (i < nr_ctxs)
8675 		return -ENOMEM;
8676 
8677 	rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic_id, true);
8678 	if (rc) {
8679 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n",
8680 			   vnic_id, rc);
8681 		return rc;
8682 	}
8683 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
8684 	if (rc) {
8685 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
8686 			   vnic_id, rc);
8687 		return rc;
8688 	}
8689 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
8690 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
8691 		if (rc) {
8692 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
8693 				   vnic_id, rc);
8694 		}
8695 	}
8696 	return rc;
8697 }
8698 
8699 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
8700 {
8701 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8702 		return __bnxt_setup_vnic_p5(bp, vnic_id);
8703 	else
8704 		return __bnxt_setup_vnic(bp, vnic_id);
8705 }
8706 
8707 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
8708 {
8709 #ifdef CONFIG_RFS_ACCEL
8710 	int i, rc = 0;
8711 
8712 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8713 		return 0;
8714 
8715 	for (i = 0; i < bp->rx_nr_rings; i++) {
8716 		struct bnxt_vnic_info *vnic;
8717 		u16 vnic_id = i + 1;
8718 		u16 ring_id = i;
8719 
8720 		if (vnic_id >= bp->nr_vnics)
8721 			break;
8722 
8723 		vnic = &bp->vnic_info[vnic_id];
8724 		vnic->flags |= BNXT_VNIC_RFS_FLAG;
8725 		if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
8726 			vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG;
8727 		rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1);
8728 		if (rc) {
8729 			netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
8730 				   vnic_id, rc);
8731 			break;
8732 		}
8733 		rc = bnxt_setup_vnic(bp, vnic_id);
8734 		if (rc)
8735 			break;
8736 	}
8737 	return rc;
8738 #else
8739 	return 0;
8740 #endif
8741 }
8742 
8743 /* Allow PF, trusted VFs and VFs with default VLAN to be in promiscuous mode */
8744 static bool bnxt_promisc_ok(struct bnxt *bp)
8745 {
8746 #ifdef CONFIG_BNXT_SRIOV
8747 	if (BNXT_VF(bp) && !bp->vf.vlan && !bnxt_is_trusted_vf(bp, &bp->vf))
8748 		return false;
8749 #endif
8750 	return true;
8751 }
8752 
8753 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp)
8754 {
8755 	unsigned int rc = 0;
8756 
8757 	rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1);
8758 	if (rc) {
8759 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
8760 			   rc);
8761 		return rc;
8762 	}
8763 
8764 	rc = bnxt_hwrm_vnic_cfg(bp, 1);
8765 	if (rc) {
8766 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
8767 			   rc);
8768 		return rc;
8769 	}
8770 	return rc;
8771 }
8772 
8773 static int bnxt_cfg_rx_mode(struct bnxt *);
8774 static bool bnxt_mc_list_updated(struct bnxt *, u32 *);
8775 
8776 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
8777 {
8778 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
8779 	int rc = 0;
8780 	unsigned int rx_nr_rings = bp->rx_nr_rings;
8781 
8782 	if (irq_re_init) {
8783 		rc = bnxt_hwrm_stat_ctx_alloc(bp);
8784 		if (rc) {
8785 			netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
8786 				   rc);
8787 			goto err_out;
8788 		}
8789 	}
8790 
8791 	rc = bnxt_hwrm_ring_alloc(bp);
8792 	if (rc) {
8793 		netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
8794 		goto err_out;
8795 	}
8796 
8797 	rc = bnxt_hwrm_ring_grp_alloc(bp);
8798 	if (rc) {
8799 		netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
8800 		goto err_out;
8801 	}
8802 
8803 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
8804 		rx_nr_rings--;
8805 
8806 	/* default vnic 0 */
8807 	rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings);
8808 	if (rc) {
8809 		netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
8810 		goto err_out;
8811 	}
8812 
8813 	rc = bnxt_setup_vnic(bp, 0);
8814 	if (rc)
8815 		goto err_out;
8816 
8817 	if (bp->flags & BNXT_FLAG_RFS) {
8818 		rc = bnxt_alloc_rfs_vnics(bp);
8819 		if (rc)
8820 			goto err_out;
8821 	}
8822 
8823 	if (bp->flags & BNXT_FLAG_TPA) {
8824 		rc = bnxt_set_tpa(bp, true);
8825 		if (rc)
8826 			goto err_out;
8827 	}
8828 
8829 	if (BNXT_VF(bp))
8830 		bnxt_update_vf_mac(bp);
8831 
8832 	/* Filter for default vnic 0 */
8833 	rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
8834 	if (rc) {
8835 		if (BNXT_VF(bp) && rc == -ENODEV)
8836 			netdev_err(bp->dev, "Cannot configure L2 filter while PF is unavailable\n");
8837 		else
8838 			netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
8839 		goto err_out;
8840 	}
8841 	vnic->uc_filter_count = 1;
8842 
8843 	vnic->rx_mask = 0;
8844 	if (test_bit(BNXT_STATE_HALF_OPEN, &bp->state))
8845 		goto skip_rx_mask;
8846 
8847 	if (bp->dev->flags & IFF_BROADCAST)
8848 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
8849 
8850 	if (bp->dev->flags & IFF_PROMISC)
8851 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
8852 
8853 	if (bp->dev->flags & IFF_ALLMULTI) {
8854 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
8855 		vnic->mc_list_count = 0;
8856 	} else if (bp->dev->flags & IFF_MULTICAST) {
8857 		u32 mask = 0;
8858 
8859 		bnxt_mc_list_updated(bp, &mask);
8860 		vnic->rx_mask |= mask;
8861 	}
8862 
8863 	rc = bnxt_cfg_rx_mode(bp);
8864 	if (rc)
8865 		goto err_out;
8866 
8867 skip_rx_mask:
8868 	rc = bnxt_hwrm_set_coal(bp);
8869 	if (rc)
8870 		netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
8871 				rc);
8872 
8873 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
8874 		rc = bnxt_setup_nitroa0_vnic(bp);
8875 		if (rc)
8876 			netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n",
8877 				   rc);
8878 	}
8879 
8880 	if (BNXT_VF(bp)) {
8881 		bnxt_hwrm_func_qcfg(bp);
8882 		netdev_update_features(bp->dev);
8883 	}
8884 
8885 	return 0;
8886 
8887 err_out:
8888 	bnxt_hwrm_resource_free(bp, 0, true);
8889 
8890 	return rc;
8891 }
8892 
8893 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
8894 {
8895 	bnxt_hwrm_resource_free(bp, 1, irq_re_init);
8896 	return 0;
8897 }
8898 
8899 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
8900 {
8901 	bnxt_init_cp_rings(bp);
8902 	bnxt_init_rx_rings(bp);
8903 	bnxt_init_tx_rings(bp);
8904 	bnxt_init_ring_grps(bp, irq_re_init);
8905 	bnxt_init_vnics(bp);
8906 
8907 	return bnxt_init_chip(bp, irq_re_init);
8908 }
8909 
8910 static int bnxt_set_real_num_queues(struct bnxt *bp)
8911 {
8912 	int rc;
8913 	struct net_device *dev = bp->dev;
8914 
8915 	rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings -
8916 					  bp->tx_nr_rings_xdp);
8917 	if (rc)
8918 		return rc;
8919 
8920 	rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
8921 	if (rc)
8922 		return rc;
8923 
8924 #ifdef CONFIG_RFS_ACCEL
8925 	if (bp->flags & BNXT_FLAG_RFS)
8926 		dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
8927 #endif
8928 
8929 	return rc;
8930 }
8931 
8932 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
8933 			   bool shared)
8934 {
8935 	int _rx = *rx, _tx = *tx;
8936 
8937 	if (shared) {
8938 		*rx = min_t(int, _rx, max);
8939 		*tx = min_t(int, _tx, max);
8940 	} else {
8941 		if (max < 2)
8942 			return -ENOMEM;
8943 
8944 		while (_rx + _tx > max) {
8945 			if (_rx > _tx && _rx > 1)
8946 				_rx--;
8947 			else if (_tx > 1)
8948 				_tx--;
8949 		}
8950 		*rx = _rx;
8951 		*tx = _tx;
8952 	}
8953 	return 0;
8954 }
8955 
8956 static void bnxt_setup_msix(struct bnxt *bp)
8957 {
8958 	const int len = sizeof(bp->irq_tbl[0].name);
8959 	struct net_device *dev = bp->dev;
8960 	int tcs, i;
8961 
8962 	tcs = netdev_get_num_tc(dev);
8963 	if (tcs) {
8964 		int i, off, count;
8965 
8966 		for (i = 0; i < tcs; i++) {
8967 			count = bp->tx_nr_rings_per_tc;
8968 			off = i * count;
8969 			netdev_set_tc_queue(dev, i, count, off);
8970 		}
8971 	}
8972 
8973 	for (i = 0; i < bp->cp_nr_rings; i++) {
8974 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
8975 		char *attr;
8976 
8977 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
8978 			attr = "TxRx";
8979 		else if (i < bp->rx_nr_rings)
8980 			attr = "rx";
8981 		else
8982 			attr = "tx";
8983 
8984 		snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name,
8985 			 attr, i);
8986 		bp->irq_tbl[map_idx].handler = bnxt_msix;
8987 	}
8988 }
8989 
8990 static void bnxt_setup_inta(struct bnxt *bp)
8991 {
8992 	const int len = sizeof(bp->irq_tbl[0].name);
8993 
8994 	if (netdev_get_num_tc(bp->dev))
8995 		netdev_reset_tc(bp->dev);
8996 
8997 	snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx",
8998 		 0);
8999 	bp->irq_tbl[0].handler = bnxt_inta;
9000 }
9001 
9002 static int bnxt_init_int_mode(struct bnxt *bp);
9003 
9004 static int bnxt_setup_int_mode(struct bnxt *bp)
9005 {
9006 	int rc;
9007 
9008 	if (!bp->irq_tbl) {
9009 		rc = bnxt_init_int_mode(bp);
9010 		if (rc || !bp->irq_tbl)
9011 			return rc ?: -ENODEV;
9012 	}
9013 
9014 	if (bp->flags & BNXT_FLAG_USING_MSIX)
9015 		bnxt_setup_msix(bp);
9016 	else
9017 		bnxt_setup_inta(bp);
9018 
9019 	rc = bnxt_set_real_num_queues(bp);
9020 	return rc;
9021 }
9022 
9023 #ifdef CONFIG_RFS_ACCEL
9024 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp)
9025 {
9026 	return bp->hw_resc.max_rsscos_ctxs;
9027 }
9028 
9029 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp)
9030 {
9031 	return bp->hw_resc.max_vnics;
9032 }
9033 #endif
9034 
9035 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp)
9036 {
9037 	return bp->hw_resc.max_stat_ctxs;
9038 }
9039 
9040 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp)
9041 {
9042 	return bp->hw_resc.max_cp_rings;
9043 }
9044 
9045 static unsigned int bnxt_get_max_func_cp_rings_for_en(struct bnxt *bp)
9046 {
9047 	unsigned int cp = bp->hw_resc.max_cp_rings;
9048 
9049 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
9050 		cp -= bnxt_get_ulp_msix_num(bp);
9051 
9052 	return cp;
9053 }
9054 
9055 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp)
9056 {
9057 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
9058 
9059 	if (bp->flags & BNXT_FLAG_CHIP_P5)
9060 		return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_nqs);
9061 
9062 	return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings);
9063 }
9064 
9065 static void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs)
9066 {
9067 	bp->hw_resc.max_irqs = max_irqs;
9068 }
9069 
9070 unsigned int bnxt_get_avail_cp_rings_for_en(struct bnxt *bp)
9071 {
9072 	unsigned int cp;
9073 
9074 	cp = bnxt_get_max_func_cp_rings_for_en(bp);
9075 	if (bp->flags & BNXT_FLAG_CHIP_P5)
9076 		return cp - bp->rx_nr_rings - bp->tx_nr_rings;
9077 	else
9078 		return cp - bp->cp_nr_rings;
9079 }
9080 
9081 unsigned int bnxt_get_avail_stat_ctxs_for_en(struct bnxt *bp)
9082 {
9083 	return bnxt_get_max_func_stat_ctxs(bp) - bnxt_get_func_stat_ctxs(bp);
9084 }
9085 
9086 int bnxt_get_avail_msix(struct bnxt *bp, int num)
9087 {
9088 	int max_cp = bnxt_get_max_func_cp_rings(bp);
9089 	int max_irq = bnxt_get_max_func_irqs(bp);
9090 	int total_req = bp->cp_nr_rings + num;
9091 	int max_idx, avail_msix;
9092 
9093 	max_idx = bp->total_irqs;
9094 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
9095 		max_idx = min_t(int, bp->total_irqs, max_cp);
9096 	avail_msix = max_idx - bp->cp_nr_rings;
9097 	if (!BNXT_NEW_RM(bp) || avail_msix >= num)
9098 		return avail_msix;
9099 
9100 	if (max_irq < total_req) {
9101 		num = max_irq - bp->cp_nr_rings;
9102 		if (num <= 0)
9103 			return 0;
9104 	}
9105 	return num;
9106 }
9107 
9108 static int bnxt_get_num_msix(struct bnxt *bp)
9109 {
9110 	if (!BNXT_NEW_RM(bp))
9111 		return bnxt_get_max_func_irqs(bp);
9112 
9113 	return bnxt_nq_rings_in_use(bp);
9114 }
9115 
9116 static int bnxt_init_msix(struct bnxt *bp)
9117 {
9118 	int i, total_vecs, max, rc = 0, min = 1, ulp_msix;
9119 	struct msix_entry *msix_ent;
9120 
9121 	total_vecs = bnxt_get_num_msix(bp);
9122 	max = bnxt_get_max_func_irqs(bp);
9123 	if (total_vecs > max)
9124 		total_vecs = max;
9125 
9126 	if (!total_vecs)
9127 		return 0;
9128 
9129 	msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
9130 	if (!msix_ent)
9131 		return -ENOMEM;
9132 
9133 	for (i = 0; i < total_vecs; i++) {
9134 		msix_ent[i].entry = i;
9135 		msix_ent[i].vector = 0;
9136 	}
9137 
9138 	if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
9139 		min = 2;
9140 
9141 	total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
9142 	ulp_msix = bnxt_get_ulp_msix_num(bp);
9143 	if (total_vecs < 0 || total_vecs < ulp_msix) {
9144 		rc = -ENODEV;
9145 		goto msix_setup_exit;
9146 	}
9147 
9148 	bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
9149 	if (bp->irq_tbl) {
9150 		for (i = 0; i < total_vecs; i++)
9151 			bp->irq_tbl[i].vector = msix_ent[i].vector;
9152 
9153 		bp->total_irqs = total_vecs;
9154 		/* Trim rings based upon num of vectors allocated */
9155 		rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
9156 				     total_vecs - ulp_msix, min == 1);
9157 		if (rc)
9158 			goto msix_setup_exit;
9159 
9160 		bp->cp_nr_rings = (min == 1) ?
9161 				  max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
9162 				  bp->tx_nr_rings + bp->rx_nr_rings;
9163 
9164 	} else {
9165 		rc = -ENOMEM;
9166 		goto msix_setup_exit;
9167 	}
9168 	bp->flags |= BNXT_FLAG_USING_MSIX;
9169 	kfree(msix_ent);
9170 	return 0;
9171 
9172 msix_setup_exit:
9173 	netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc);
9174 	kfree(bp->irq_tbl);
9175 	bp->irq_tbl = NULL;
9176 	pci_disable_msix(bp->pdev);
9177 	kfree(msix_ent);
9178 	return rc;
9179 }
9180 
9181 static int bnxt_init_inta(struct bnxt *bp)
9182 {
9183 	bp->irq_tbl = kzalloc(sizeof(struct bnxt_irq), GFP_KERNEL);
9184 	if (!bp->irq_tbl)
9185 		return -ENOMEM;
9186 
9187 	bp->total_irqs = 1;
9188 	bp->rx_nr_rings = 1;
9189 	bp->tx_nr_rings = 1;
9190 	bp->cp_nr_rings = 1;
9191 	bp->flags |= BNXT_FLAG_SHARED_RINGS;
9192 	bp->irq_tbl[0].vector = bp->pdev->irq;
9193 	return 0;
9194 }
9195 
9196 static int bnxt_init_int_mode(struct bnxt *bp)
9197 {
9198 	int rc = -ENODEV;
9199 
9200 	if (bp->flags & BNXT_FLAG_MSIX_CAP)
9201 		rc = bnxt_init_msix(bp);
9202 
9203 	if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) {
9204 		/* fallback to INTA */
9205 		rc = bnxt_init_inta(bp);
9206 	}
9207 	return rc;
9208 }
9209 
9210 static void bnxt_clear_int_mode(struct bnxt *bp)
9211 {
9212 	if (bp->flags & BNXT_FLAG_USING_MSIX)
9213 		pci_disable_msix(bp->pdev);
9214 
9215 	kfree(bp->irq_tbl);
9216 	bp->irq_tbl = NULL;
9217 	bp->flags &= ~BNXT_FLAG_USING_MSIX;
9218 }
9219 
9220 int bnxt_reserve_rings(struct bnxt *bp, bool irq_re_init)
9221 {
9222 	int tcs = netdev_get_num_tc(bp->dev);
9223 	bool irq_cleared = false;
9224 	int rc;
9225 
9226 	if (!bnxt_need_reserve_rings(bp))
9227 		return 0;
9228 
9229 	if (irq_re_init && BNXT_NEW_RM(bp) &&
9230 	    bnxt_get_num_msix(bp) != bp->total_irqs) {
9231 		bnxt_ulp_irq_stop(bp);
9232 		bnxt_clear_int_mode(bp);
9233 		irq_cleared = true;
9234 	}
9235 	rc = __bnxt_reserve_rings(bp);
9236 	if (irq_cleared) {
9237 		if (!rc)
9238 			rc = bnxt_init_int_mode(bp);
9239 		bnxt_ulp_irq_restart(bp, rc);
9240 	}
9241 	if (rc) {
9242 		netdev_err(bp->dev, "ring reservation/IRQ init failure rc: %d\n", rc);
9243 		return rc;
9244 	}
9245 	if (tcs && (bp->tx_nr_rings_per_tc * tcs != bp->tx_nr_rings)) {
9246 		netdev_err(bp->dev, "tx ring reservation failure\n");
9247 		netdev_reset_tc(bp->dev);
9248 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
9249 		return -ENOMEM;
9250 	}
9251 	return 0;
9252 }
9253 
9254 static void bnxt_free_irq(struct bnxt *bp)
9255 {
9256 	struct bnxt_irq *irq;
9257 	int i;
9258 
9259 #ifdef CONFIG_RFS_ACCEL
9260 	free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
9261 	bp->dev->rx_cpu_rmap = NULL;
9262 #endif
9263 	if (!bp->irq_tbl || !bp->bnapi)
9264 		return;
9265 
9266 	for (i = 0; i < bp->cp_nr_rings; i++) {
9267 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
9268 
9269 		irq = &bp->irq_tbl[map_idx];
9270 		if (irq->requested) {
9271 			if (irq->have_cpumask) {
9272 				irq_set_affinity_hint(irq->vector, NULL);
9273 				free_cpumask_var(irq->cpu_mask);
9274 				irq->have_cpumask = 0;
9275 			}
9276 			free_irq(irq->vector, bp->bnapi[i]);
9277 		}
9278 
9279 		irq->requested = 0;
9280 	}
9281 }
9282 
9283 static int bnxt_request_irq(struct bnxt *bp)
9284 {
9285 	int i, j, rc = 0;
9286 	unsigned long flags = 0;
9287 #ifdef CONFIG_RFS_ACCEL
9288 	struct cpu_rmap *rmap;
9289 #endif
9290 
9291 	rc = bnxt_setup_int_mode(bp);
9292 	if (rc) {
9293 		netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
9294 			   rc);
9295 		return rc;
9296 	}
9297 #ifdef CONFIG_RFS_ACCEL
9298 	rmap = bp->dev->rx_cpu_rmap;
9299 #endif
9300 	if (!(bp->flags & BNXT_FLAG_USING_MSIX))
9301 		flags = IRQF_SHARED;
9302 
9303 	for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
9304 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
9305 		struct bnxt_irq *irq = &bp->irq_tbl[map_idx];
9306 
9307 #ifdef CONFIG_RFS_ACCEL
9308 		if (rmap && bp->bnapi[i]->rx_ring) {
9309 			rc = irq_cpu_rmap_add(rmap, irq->vector);
9310 			if (rc)
9311 				netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
9312 					    j);
9313 			j++;
9314 		}
9315 #endif
9316 		rc = request_irq(irq->vector, irq->handler, flags, irq->name,
9317 				 bp->bnapi[i]);
9318 		if (rc)
9319 			break;
9320 
9321 		irq->requested = 1;
9322 
9323 		if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) {
9324 			int numa_node = dev_to_node(&bp->pdev->dev);
9325 
9326 			irq->have_cpumask = 1;
9327 			cpumask_set_cpu(cpumask_local_spread(i, numa_node),
9328 					irq->cpu_mask);
9329 			rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask);
9330 			if (rc) {
9331 				netdev_warn(bp->dev,
9332 					    "Set affinity failed, IRQ = %d\n",
9333 					    irq->vector);
9334 				break;
9335 			}
9336 		}
9337 	}
9338 	return rc;
9339 }
9340 
9341 static void bnxt_del_napi(struct bnxt *bp)
9342 {
9343 	int i;
9344 
9345 	if (!bp->bnapi)
9346 		return;
9347 
9348 	for (i = 0; i < bp->cp_nr_rings; i++) {
9349 		struct bnxt_napi *bnapi = bp->bnapi[i];
9350 
9351 		__netif_napi_del(&bnapi->napi);
9352 	}
9353 	/* We called __netif_napi_del(), we need
9354 	 * to respect an RCU grace period before freeing napi structures.
9355 	 */
9356 	synchronize_net();
9357 }
9358 
9359 static void bnxt_init_napi(struct bnxt *bp)
9360 {
9361 	int i;
9362 	unsigned int cp_nr_rings = bp->cp_nr_rings;
9363 	struct bnxt_napi *bnapi;
9364 
9365 	if (bp->flags & BNXT_FLAG_USING_MSIX) {
9366 		int (*poll_fn)(struct napi_struct *, int) = bnxt_poll;
9367 
9368 		if (bp->flags & BNXT_FLAG_CHIP_P5)
9369 			poll_fn = bnxt_poll_p5;
9370 		else if (BNXT_CHIP_TYPE_NITRO_A0(bp))
9371 			cp_nr_rings--;
9372 		for (i = 0; i < cp_nr_rings; i++) {
9373 			bnapi = bp->bnapi[i];
9374 			netif_napi_add(bp->dev, &bnapi->napi, poll_fn, 64);
9375 		}
9376 		if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
9377 			bnapi = bp->bnapi[cp_nr_rings];
9378 			netif_napi_add(bp->dev, &bnapi->napi,
9379 				       bnxt_poll_nitroa0, 64);
9380 		}
9381 	} else {
9382 		bnapi = bp->bnapi[0];
9383 		netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64);
9384 	}
9385 }
9386 
9387 static void bnxt_disable_napi(struct bnxt *bp)
9388 {
9389 	int i;
9390 
9391 	if (!bp->bnapi ||
9392 	    test_and_set_bit(BNXT_STATE_NAPI_DISABLED, &bp->state))
9393 		return;
9394 
9395 	for (i = 0; i < bp->cp_nr_rings; i++) {
9396 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
9397 
9398 		napi_disable(&bp->bnapi[i]->napi);
9399 		if (bp->bnapi[i]->rx_ring)
9400 			cancel_work_sync(&cpr->dim.work);
9401 	}
9402 }
9403 
9404 static void bnxt_enable_napi(struct bnxt *bp)
9405 {
9406 	int i;
9407 
9408 	clear_bit(BNXT_STATE_NAPI_DISABLED, &bp->state);
9409 	for (i = 0; i < bp->cp_nr_rings; i++) {
9410 		struct bnxt_napi *bnapi = bp->bnapi[i];
9411 		struct bnxt_cp_ring_info *cpr;
9412 
9413 		cpr = &bnapi->cp_ring;
9414 		if (bnapi->in_reset)
9415 			cpr->sw_stats.rx.rx_resets++;
9416 		bnapi->in_reset = false;
9417 
9418 		if (bnapi->rx_ring) {
9419 			INIT_WORK(&cpr->dim.work, bnxt_dim_work);
9420 			cpr->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
9421 		}
9422 		napi_enable(&bnapi->napi);
9423 	}
9424 }
9425 
9426 void bnxt_tx_disable(struct bnxt *bp)
9427 {
9428 	int i;
9429 	struct bnxt_tx_ring_info *txr;
9430 
9431 	if (bp->tx_ring) {
9432 		for (i = 0; i < bp->tx_nr_rings; i++) {
9433 			txr = &bp->tx_ring[i];
9434 			WRITE_ONCE(txr->dev_state, BNXT_DEV_STATE_CLOSING);
9435 		}
9436 	}
9437 	/* Make sure napi polls see @dev_state change */
9438 	synchronize_net();
9439 	/* Drop carrier first to prevent TX timeout */
9440 	netif_carrier_off(bp->dev);
9441 	/* Stop all TX queues */
9442 	netif_tx_disable(bp->dev);
9443 }
9444 
9445 void bnxt_tx_enable(struct bnxt *bp)
9446 {
9447 	int i;
9448 	struct bnxt_tx_ring_info *txr;
9449 
9450 	for (i = 0; i < bp->tx_nr_rings; i++) {
9451 		txr = &bp->tx_ring[i];
9452 		WRITE_ONCE(txr->dev_state, 0);
9453 	}
9454 	/* Make sure napi polls see @dev_state change */
9455 	synchronize_net();
9456 	netif_tx_wake_all_queues(bp->dev);
9457 	if (BNXT_LINK_IS_UP(bp))
9458 		netif_carrier_on(bp->dev);
9459 }
9460 
9461 static char *bnxt_report_fec(struct bnxt_link_info *link_info)
9462 {
9463 	u8 active_fec = link_info->active_fec_sig_mode &
9464 			PORT_PHY_QCFG_RESP_ACTIVE_FEC_MASK;
9465 
9466 	switch (active_fec) {
9467 	default:
9468 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_NONE_ACTIVE:
9469 		return "None";
9470 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE74_ACTIVE:
9471 		return "Clause 74 BaseR";
9472 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE91_ACTIVE:
9473 		return "Clause 91 RS(528,514)";
9474 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_1XN_ACTIVE:
9475 		return "Clause 91 RS544_1XN";
9476 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_IEEE_ACTIVE:
9477 		return "Clause 91 RS(544,514)";
9478 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_1XN_ACTIVE:
9479 		return "Clause 91 RS272_1XN";
9480 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_IEEE_ACTIVE:
9481 		return "Clause 91 RS(272,257)";
9482 	}
9483 }
9484 
9485 void bnxt_report_link(struct bnxt *bp)
9486 {
9487 	if (BNXT_LINK_IS_UP(bp)) {
9488 		const char *signal = "";
9489 		const char *flow_ctrl;
9490 		const char *duplex;
9491 		u32 speed;
9492 		u16 fec;
9493 
9494 		netif_carrier_on(bp->dev);
9495 		speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
9496 		if (speed == SPEED_UNKNOWN) {
9497 			netdev_info(bp->dev, "NIC Link is Up, speed unknown\n");
9498 			return;
9499 		}
9500 		if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
9501 			duplex = "full";
9502 		else
9503 			duplex = "half";
9504 		if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
9505 			flow_ctrl = "ON - receive & transmit";
9506 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
9507 			flow_ctrl = "ON - transmit";
9508 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
9509 			flow_ctrl = "ON - receive";
9510 		else
9511 			flow_ctrl = "none";
9512 		if (bp->link_info.phy_qcfg_resp.option_flags &
9513 		    PORT_PHY_QCFG_RESP_OPTION_FLAGS_SIGNAL_MODE_KNOWN) {
9514 			u8 sig_mode = bp->link_info.active_fec_sig_mode &
9515 				      PORT_PHY_QCFG_RESP_SIGNAL_MODE_MASK;
9516 			switch (sig_mode) {
9517 			case PORT_PHY_QCFG_RESP_SIGNAL_MODE_NRZ:
9518 				signal = "(NRZ) ";
9519 				break;
9520 			case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4:
9521 				signal = "(PAM4) ";
9522 				break;
9523 			default:
9524 				break;
9525 			}
9526 		}
9527 		netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s%s duplex, Flow control: %s\n",
9528 			    speed, signal, duplex, flow_ctrl);
9529 		if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP)
9530 			netdev_info(bp->dev, "EEE is %s\n",
9531 				    bp->eee.eee_active ? "active" :
9532 							 "not active");
9533 		fec = bp->link_info.fec_cfg;
9534 		if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED))
9535 			netdev_info(bp->dev, "FEC autoneg %s encoding: %s\n",
9536 				    (fec & BNXT_FEC_AUTONEG) ? "on" : "off",
9537 				    bnxt_report_fec(&bp->link_info));
9538 	} else {
9539 		netif_carrier_off(bp->dev);
9540 		netdev_err(bp->dev, "NIC Link is Down\n");
9541 	}
9542 }
9543 
9544 static bool bnxt_phy_qcaps_no_speed(struct hwrm_port_phy_qcaps_output *resp)
9545 {
9546 	if (!resp->supported_speeds_auto_mode &&
9547 	    !resp->supported_speeds_force_mode &&
9548 	    !resp->supported_pam4_speeds_auto_mode &&
9549 	    !resp->supported_pam4_speeds_force_mode)
9550 		return true;
9551 	return false;
9552 }
9553 
9554 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp)
9555 {
9556 	struct bnxt_link_info *link_info = &bp->link_info;
9557 	struct hwrm_port_phy_qcaps_output *resp;
9558 	struct hwrm_port_phy_qcaps_input *req;
9559 	int rc = 0;
9560 
9561 	if (bp->hwrm_spec_code < 0x10201)
9562 		return 0;
9563 
9564 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCAPS);
9565 	if (rc)
9566 		return rc;
9567 
9568 	resp = hwrm_req_hold(bp, req);
9569 	rc = hwrm_req_send(bp, req);
9570 	if (rc)
9571 		goto hwrm_phy_qcaps_exit;
9572 
9573 	bp->phy_flags = resp->flags | (le16_to_cpu(resp->flags2) << 8);
9574 	if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) {
9575 		struct ethtool_eee *eee = &bp->eee;
9576 		u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode);
9577 
9578 		eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
9579 		bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) &
9580 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK;
9581 		bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) &
9582 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK;
9583 	}
9584 
9585 	if (bp->hwrm_spec_code >= 0x10a01) {
9586 		if (bnxt_phy_qcaps_no_speed(resp)) {
9587 			link_info->phy_state = BNXT_PHY_STATE_DISABLED;
9588 			netdev_warn(bp->dev, "Ethernet link disabled\n");
9589 		} else if (link_info->phy_state == BNXT_PHY_STATE_DISABLED) {
9590 			link_info->phy_state = BNXT_PHY_STATE_ENABLED;
9591 			netdev_info(bp->dev, "Ethernet link enabled\n");
9592 			/* Phy re-enabled, reprobe the speeds */
9593 			link_info->support_auto_speeds = 0;
9594 			link_info->support_pam4_auto_speeds = 0;
9595 		}
9596 	}
9597 	if (resp->supported_speeds_auto_mode)
9598 		link_info->support_auto_speeds =
9599 			le16_to_cpu(resp->supported_speeds_auto_mode);
9600 	if (resp->supported_pam4_speeds_auto_mode)
9601 		link_info->support_pam4_auto_speeds =
9602 			le16_to_cpu(resp->supported_pam4_speeds_auto_mode);
9603 
9604 	bp->port_count = resp->port_cnt;
9605 
9606 hwrm_phy_qcaps_exit:
9607 	hwrm_req_drop(bp, req);
9608 	return rc;
9609 }
9610 
9611 static bool bnxt_support_dropped(u16 advertising, u16 supported)
9612 {
9613 	u16 diff = advertising ^ supported;
9614 
9615 	return ((supported | diff) != supported);
9616 }
9617 
9618 int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
9619 {
9620 	struct bnxt_link_info *link_info = &bp->link_info;
9621 	struct hwrm_port_phy_qcfg_output *resp;
9622 	struct hwrm_port_phy_qcfg_input *req;
9623 	u8 link_state = link_info->link_state;
9624 	bool support_changed = false;
9625 	int rc;
9626 
9627 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCFG);
9628 	if (rc)
9629 		return rc;
9630 
9631 	resp = hwrm_req_hold(bp, req);
9632 	rc = hwrm_req_send(bp, req);
9633 	if (rc) {
9634 		hwrm_req_drop(bp, req);
9635 		if (BNXT_VF(bp) && rc == -ENODEV) {
9636 			netdev_warn(bp->dev, "Cannot obtain link state while PF unavailable.\n");
9637 			rc = 0;
9638 		}
9639 		return rc;
9640 	}
9641 
9642 	memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
9643 	link_info->phy_link_status = resp->link;
9644 	link_info->duplex = resp->duplex_cfg;
9645 	if (bp->hwrm_spec_code >= 0x10800)
9646 		link_info->duplex = resp->duplex_state;
9647 	link_info->pause = resp->pause;
9648 	link_info->auto_mode = resp->auto_mode;
9649 	link_info->auto_pause_setting = resp->auto_pause;
9650 	link_info->lp_pause = resp->link_partner_adv_pause;
9651 	link_info->force_pause_setting = resp->force_pause;
9652 	link_info->duplex_setting = resp->duplex_cfg;
9653 	if (link_info->phy_link_status == BNXT_LINK_LINK)
9654 		link_info->link_speed = le16_to_cpu(resp->link_speed);
9655 	else
9656 		link_info->link_speed = 0;
9657 	link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
9658 	link_info->force_pam4_link_speed =
9659 		le16_to_cpu(resp->force_pam4_link_speed);
9660 	link_info->support_speeds = le16_to_cpu(resp->support_speeds);
9661 	link_info->support_pam4_speeds = le16_to_cpu(resp->support_pam4_speeds);
9662 	link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
9663 	link_info->auto_pam4_link_speeds =
9664 		le16_to_cpu(resp->auto_pam4_link_speed_mask);
9665 	link_info->lp_auto_link_speeds =
9666 		le16_to_cpu(resp->link_partner_adv_speeds);
9667 	link_info->lp_auto_pam4_link_speeds =
9668 		resp->link_partner_pam4_adv_speeds;
9669 	link_info->preemphasis = le32_to_cpu(resp->preemphasis);
9670 	link_info->phy_ver[0] = resp->phy_maj;
9671 	link_info->phy_ver[1] = resp->phy_min;
9672 	link_info->phy_ver[2] = resp->phy_bld;
9673 	link_info->media_type = resp->media_type;
9674 	link_info->phy_type = resp->phy_type;
9675 	link_info->transceiver = resp->xcvr_pkg_type;
9676 	link_info->phy_addr = resp->eee_config_phy_addr &
9677 			      PORT_PHY_QCFG_RESP_PHY_ADDR_MASK;
9678 	link_info->module_status = resp->module_status;
9679 
9680 	if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) {
9681 		struct ethtool_eee *eee = &bp->eee;
9682 		u16 fw_speeds;
9683 
9684 		eee->eee_active = 0;
9685 		if (resp->eee_config_phy_addr &
9686 		    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) {
9687 			eee->eee_active = 1;
9688 			fw_speeds = le16_to_cpu(
9689 				resp->link_partner_adv_eee_link_speed_mask);
9690 			eee->lp_advertised =
9691 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
9692 		}
9693 
9694 		/* Pull initial EEE config */
9695 		if (!chng_link_state) {
9696 			if (resp->eee_config_phy_addr &
9697 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED)
9698 				eee->eee_enabled = 1;
9699 
9700 			fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask);
9701 			eee->advertised =
9702 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
9703 
9704 			if (resp->eee_config_phy_addr &
9705 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) {
9706 				__le32 tmr;
9707 
9708 				eee->tx_lpi_enabled = 1;
9709 				tmr = resp->xcvr_identifier_type_tx_lpi_timer;
9710 				eee->tx_lpi_timer = le32_to_cpu(tmr) &
9711 					PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK;
9712 			}
9713 		}
9714 	}
9715 
9716 	link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED;
9717 	if (bp->hwrm_spec_code >= 0x10504) {
9718 		link_info->fec_cfg = le16_to_cpu(resp->fec_cfg);
9719 		link_info->active_fec_sig_mode = resp->active_fec_signal_mode;
9720 	}
9721 	/* TODO: need to add more logic to report VF link */
9722 	if (chng_link_state) {
9723 		if (link_info->phy_link_status == BNXT_LINK_LINK)
9724 			link_info->link_state = BNXT_LINK_STATE_UP;
9725 		else
9726 			link_info->link_state = BNXT_LINK_STATE_DOWN;
9727 		if (link_state != link_info->link_state)
9728 			bnxt_report_link(bp);
9729 	} else {
9730 		/* always link down if not require to update link state */
9731 		link_info->link_state = BNXT_LINK_STATE_DOWN;
9732 	}
9733 	hwrm_req_drop(bp, req);
9734 
9735 	if (!BNXT_PHY_CFG_ABLE(bp))
9736 		return 0;
9737 
9738 	/* Check if any advertised speeds are no longer supported. The caller
9739 	 * holds the link_lock mutex, so we can modify link_info settings.
9740 	 */
9741 	if (bnxt_support_dropped(link_info->advertising,
9742 				 link_info->support_auto_speeds)) {
9743 		link_info->advertising = link_info->support_auto_speeds;
9744 		support_changed = true;
9745 	}
9746 	if (bnxt_support_dropped(link_info->advertising_pam4,
9747 				 link_info->support_pam4_auto_speeds)) {
9748 		link_info->advertising_pam4 = link_info->support_pam4_auto_speeds;
9749 		support_changed = true;
9750 	}
9751 	if (support_changed && (link_info->autoneg & BNXT_AUTONEG_SPEED))
9752 		bnxt_hwrm_set_link_setting(bp, true, false);
9753 	return 0;
9754 }
9755 
9756 static void bnxt_get_port_module_status(struct bnxt *bp)
9757 {
9758 	struct bnxt_link_info *link_info = &bp->link_info;
9759 	struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp;
9760 	u8 module_status;
9761 
9762 	if (bnxt_update_link(bp, true))
9763 		return;
9764 
9765 	module_status = link_info->module_status;
9766 	switch (module_status) {
9767 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX:
9768 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN:
9769 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG:
9770 		netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n",
9771 			    bp->pf.port_id);
9772 		if (bp->hwrm_spec_code >= 0x10201) {
9773 			netdev_warn(bp->dev, "Module part number %s\n",
9774 				    resp->phy_vendor_partnumber);
9775 		}
9776 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX)
9777 			netdev_warn(bp->dev, "TX is disabled\n");
9778 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN)
9779 			netdev_warn(bp->dev, "SFP+ module is shutdown\n");
9780 	}
9781 }
9782 
9783 static void
9784 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
9785 {
9786 	if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
9787 		if (bp->hwrm_spec_code >= 0x10201)
9788 			req->auto_pause =
9789 				PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE;
9790 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
9791 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
9792 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
9793 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX;
9794 		req->enables |=
9795 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
9796 	} else {
9797 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
9798 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
9799 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
9800 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
9801 		req->enables |=
9802 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
9803 		if (bp->hwrm_spec_code >= 0x10201) {
9804 			req->auto_pause = req->force_pause;
9805 			req->enables |= cpu_to_le32(
9806 				PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
9807 		}
9808 	}
9809 }
9810 
9811 static void bnxt_hwrm_set_link_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
9812 {
9813 	if (bp->link_info.autoneg & BNXT_AUTONEG_SPEED) {
9814 		req->auto_mode |= PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK;
9815 		if (bp->link_info.advertising) {
9816 			req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
9817 			req->auto_link_speed_mask = cpu_to_le16(bp->link_info.advertising);
9818 		}
9819 		if (bp->link_info.advertising_pam4) {
9820 			req->enables |=
9821 				cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAM4_LINK_SPEED_MASK);
9822 			req->auto_link_pam4_speed_mask =
9823 				cpu_to_le16(bp->link_info.advertising_pam4);
9824 		}
9825 		req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
9826 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
9827 	} else {
9828 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
9829 		if (bp->link_info.req_signal_mode == BNXT_SIG_MODE_PAM4) {
9830 			req->force_pam4_link_speed = cpu_to_le16(bp->link_info.req_link_speed);
9831 			req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAM4_LINK_SPEED);
9832 		} else {
9833 			req->force_link_speed = cpu_to_le16(bp->link_info.req_link_speed);
9834 		}
9835 	}
9836 
9837 	/* tell chimp that the setting takes effect immediately */
9838 	req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
9839 }
9840 
9841 int bnxt_hwrm_set_pause(struct bnxt *bp)
9842 {
9843 	struct hwrm_port_phy_cfg_input *req;
9844 	int rc;
9845 
9846 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
9847 	if (rc)
9848 		return rc;
9849 
9850 	bnxt_hwrm_set_pause_common(bp, req);
9851 
9852 	if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
9853 	    bp->link_info.force_link_chng)
9854 		bnxt_hwrm_set_link_common(bp, req);
9855 
9856 	rc = hwrm_req_send(bp, req);
9857 	if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
9858 		/* since changing of pause setting doesn't trigger any link
9859 		 * change event, the driver needs to update the current pause
9860 		 * result upon successfully return of the phy_cfg command
9861 		 */
9862 		bp->link_info.pause =
9863 		bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
9864 		bp->link_info.auto_pause_setting = 0;
9865 		if (!bp->link_info.force_link_chng)
9866 			bnxt_report_link(bp);
9867 	}
9868 	bp->link_info.force_link_chng = false;
9869 	return rc;
9870 }
9871 
9872 static void bnxt_hwrm_set_eee(struct bnxt *bp,
9873 			      struct hwrm_port_phy_cfg_input *req)
9874 {
9875 	struct ethtool_eee *eee = &bp->eee;
9876 
9877 	if (eee->eee_enabled) {
9878 		u16 eee_speeds;
9879 		u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE;
9880 
9881 		if (eee->tx_lpi_enabled)
9882 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE;
9883 		else
9884 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE;
9885 
9886 		req->flags |= cpu_to_le32(flags);
9887 		eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised);
9888 		req->eee_link_speed_mask = cpu_to_le16(eee_speeds);
9889 		req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer);
9890 	} else {
9891 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE);
9892 	}
9893 }
9894 
9895 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee)
9896 {
9897 	struct hwrm_port_phy_cfg_input *req;
9898 	int rc;
9899 
9900 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
9901 	if (rc)
9902 		return rc;
9903 
9904 	if (set_pause)
9905 		bnxt_hwrm_set_pause_common(bp, req);
9906 
9907 	bnxt_hwrm_set_link_common(bp, req);
9908 
9909 	if (set_eee)
9910 		bnxt_hwrm_set_eee(bp, req);
9911 	return hwrm_req_send(bp, req);
9912 }
9913 
9914 static int bnxt_hwrm_shutdown_link(struct bnxt *bp)
9915 {
9916 	struct hwrm_port_phy_cfg_input *req;
9917 	int rc;
9918 
9919 	if (!BNXT_SINGLE_PF(bp))
9920 		return 0;
9921 
9922 	if (pci_num_vf(bp->pdev) &&
9923 	    !(bp->phy_flags & BNXT_PHY_FL_FW_MANAGED_LKDN))
9924 		return 0;
9925 
9926 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
9927 	if (rc)
9928 		return rc;
9929 
9930 	req->flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN);
9931 	rc = hwrm_req_send(bp, req);
9932 	if (!rc) {
9933 		mutex_lock(&bp->link_lock);
9934 		/* Device is not obliged link down in certain scenarios, even
9935 		 * when forced. Setting the state unknown is consistent with
9936 		 * driver startup and will force link state to be reported
9937 		 * during subsequent open based on PORT_PHY_QCFG.
9938 		 */
9939 		bp->link_info.link_state = BNXT_LINK_STATE_UNKNOWN;
9940 		mutex_unlock(&bp->link_lock);
9941 	}
9942 	return rc;
9943 }
9944 
9945 static int bnxt_fw_reset_via_optee(struct bnxt *bp)
9946 {
9947 #ifdef CONFIG_TEE_BNXT_FW
9948 	int rc = tee_bnxt_fw_load();
9949 
9950 	if (rc)
9951 		netdev_err(bp->dev, "Failed FW reset via OP-TEE, rc=%d\n", rc);
9952 
9953 	return rc;
9954 #else
9955 	netdev_err(bp->dev, "OP-TEE not supported\n");
9956 	return -ENODEV;
9957 #endif
9958 }
9959 
9960 static int bnxt_try_recover_fw(struct bnxt *bp)
9961 {
9962 	if (bp->fw_health && bp->fw_health->status_reliable) {
9963 		int retry = 0, rc;
9964 		u32 sts;
9965 
9966 		do {
9967 			sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
9968 			rc = bnxt_hwrm_poll(bp);
9969 			if (!BNXT_FW_IS_BOOTING(sts) &&
9970 			    !BNXT_FW_IS_RECOVERING(sts))
9971 				break;
9972 			retry++;
9973 		} while (rc == -EBUSY && retry < BNXT_FW_RETRY);
9974 
9975 		if (!BNXT_FW_IS_HEALTHY(sts)) {
9976 			netdev_err(bp->dev,
9977 				   "Firmware not responding, status: 0x%x\n",
9978 				   sts);
9979 			rc = -ENODEV;
9980 		}
9981 		if (sts & FW_STATUS_REG_CRASHED_NO_MASTER) {
9982 			netdev_warn(bp->dev, "Firmware recover via OP-TEE requested\n");
9983 			return bnxt_fw_reset_via_optee(bp);
9984 		}
9985 		return rc;
9986 	}
9987 
9988 	return -ENODEV;
9989 }
9990 
9991 int bnxt_cancel_reservations(struct bnxt *bp, bool fw_reset)
9992 {
9993 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
9994 	int rc;
9995 
9996 	if (!BNXT_NEW_RM(bp))
9997 		return 0; /* no resource reservations required */
9998 
9999 	rc = bnxt_hwrm_func_resc_qcaps(bp, true);
10000 	if (rc)
10001 		netdev_err(bp->dev, "resc_qcaps failed\n");
10002 
10003 	hw_resc->resv_cp_rings = 0;
10004 	hw_resc->resv_stat_ctxs = 0;
10005 	hw_resc->resv_irqs = 0;
10006 	hw_resc->resv_tx_rings = 0;
10007 	hw_resc->resv_rx_rings = 0;
10008 	hw_resc->resv_hw_ring_grps = 0;
10009 	hw_resc->resv_vnics = 0;
10010 	if (!fw_reset) {
10011 		bp->tx_nr_rings = 0;
10012 		bp->rx_nr_rings = 0;
10013 	}
10014 
10015 	return rc;
10016 }
10017 
10018 static int bnxt_hwrm_if_change(struct bnxt *bp, bool up)
10019 {
10020 	struct hwrm_func_drv_if_change_output *resp;
10021 	struct hwrm_func_drv_if_change_input *req;
10022 	bool fw_reset = !bp->irq_tbl;
10023 	bool resc_reinit = false;
10024 	int rc, retry = 0;
10025 	u32 flags = 0;
10026 
10027 	if (!(bp->fw_cap & BNXT_FW_CAP_IF_CHANGE))
10028 		return 0;
10029 
10030 	rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_IF_CHANGE);
10031 	if (rc)
10032 		return rc;
10033 
10034 	if (up)
10035 		req->flags = cpu_to_le32(FUNC_DRV_IF_CHANGE_REQ_FLAGS_UP);
10036 	resp = hwrm_req_hold(bp, req);
10037 
10038 	hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT);
10039 	while (retry < BNXT_FW_IF_RETRY) {
10040 		rc = hwrm_req_send(bp, req);
10041 		if (rc != -EAGAIN)
10042 			break;
10043 
10044 		msleep(50);
10045 		retry++;
10046 	}
10047 
10048 	if (rc == -EAGAIN) {
10049 		hwrm_req_drop(bp, req);
10050 		return rc;
10051 	} else if (!rc) {
10052 		flags = le32_to_cpu(resp->flags);
10053 	} else if (up) {
10054 		rc = bnxt_try_recover_fw(bp);
10055 		fw_reset = true;
10056 	}
10057 	hwrm_req_drop(bp, req);
10058 	if (rc)
10059 		return rc;
10060 
10061 	if (!up) {
10062 		bnxt_inv_fw_health_reg(bp);
10063 		return 0;
10064 	}
10065 
10066 	if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_RESC_CHANGE)
10067 		resc_reinit = true;
10068 	if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_HOT_FW_RESET_DONE)
10069 		fw_reset = true;
10070 	else
10071 		bnxt_remap_fw_health_regs(bp);
10072 
10073 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state) && !fw_reset) {
10074 		netdev_err(bp->dev, "RESET_DONE not set during FW reset.\n");
10075 		set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
10076 		return -ENODEV;
10077 	}
10078 	if (resc_reinit || fw_reset) {
10079 		if (fw_reset) {
10080 			set_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
10081 			if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
10082 				bnxt_ulp_stop(bp);
10083 			bnxt_free_ctx_mem(bp);
10084 			kfree(bp->ctx);
10085 			bp->ctx = NULL;
10086 			bnxt_dcb_free(bp);
10087 			rc = bnxt_fw_init_one(bp);
10088 			if (rc) {
10089 				clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
10090 				set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
10091 				return rc;
10092 			}
10093 			bnxt_clear_int_mode(bp);
10094 			rc = bnxt_init_int_mode(bp);
10095 			if (rc) {
10096 				clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
10097 				netdev_err(bp->dev, "init int mode failed\n");
10098 				return rc;
10099 			}
10100 		}
10101 		rc = bnxt_cancel_reservations(bp, fw_reset);
10102 	}
10103 	return rc;
10104 }
10105 
10106 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp)
10107 {
10108 	struct hwrm_port_led_qcaps_output *resp;
10109 	struct hwrm_port_led_qcaps_input *req;
10110 	struct bnxt_pf_info *pf = &bp->pf;
10111 	int rc;
10112 
10113 	bp->num_leds = 0;
10114 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601)
10115 		return 0;
10116 
10117 	rc = hwrm_req_init(bp, req, HWRM_PORT_LED_QCAPS);
10118 	if (rc)
10119 		return rc;
10120 
10121 	req->port_id = cpu_to_le16(pf->port_id);
10122 	resp = hwrm_req_hold(bp, req);
10123 	rc = hwrm_req_send(bp, req);
10124 	if (rc) {
10125 		hwrm_req_drop(bp, req);
10126 		return rc;
10127 	}
10128 	if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) {
10129 		int i;
10130 
10131 		bp->num_leds = resp->num_leds;
10132 		memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) *
10133 						 bp->num_leds);
10134 		for (i = 0; i < bp->num_leds; i++) {
10135 			struct bnxt_led_info *led = &bp->leds[i];
10136 			__le16 caps = led->led_state_caps;
10137 
10138 			if (!led->led_group_id ||
10139 			    !BNXT_LED_ALT_BLINK_CAP(caps)) {
10140 				bp->num_leds = 0;
10141 				break;
10142 			}
10143 		}
10144 	}
10145 	hwrm_req_drop(bp, req);
10146 	return 0;
10147 }
10148 
10149 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp)
10150 {
10151 	struct hwrm_wol_filter_alloc_output *resp;
10152 	struct hwrm_wol_filter_alloc_input *req;
10153 	int rc;
10154 
10155 	rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_ALLOC);
10156 	if (rc)
10157 		return rc;
10158 
10159 	req->port_id = cpu_to_le16(bp->pf.port_id);
10160 	req->wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT;
10161 	req->enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS);
10162 	memcpy(req->mac_address, bp->dev->dev_addr, ETH_ALEN);
10163 
10164 	resp = hwrm_req_hold(bp, req);
10165 	rc = hwrm_req_send(bp, req);
10166 	if (!rc)
10167 		bp->wol_filter_id = resp->wol_filter_id;
10168 	hwrm_req_drop(bp, req);
10169 	return rc;
10170 }
10171 
10172 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp)
10173 {
10174 	struct hwrm_wol_filter_free_input *req;
10175 	int rc;
10176 
10177 	rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_FREE);
10178 	if (rc)
10179 		return rc;
10180 
10181 	req->port_id = cpu_to_le16(bp->pf.port_id);
10182 	req->enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID);
10183 	req->wol_filter_id = bp->wol_filter_id;
10184 
10185 	return hwrm_req_send(bp, req);
10186 }
10187 
10188 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle)
10189 {
10190 	struct hwrm_wol_filter_qcfg_output *resp;
10191 	struct hwrm_wol_filter_qcfg_input *req;
10192 	u16 next_handle = 0;
10193 	int rc;
10194 
10195 	rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_QCFG);
10196 	if (rc)
10197 		return rc;
10198 
10199 	req->port_id = cpu_to_le16(bp->pf.port_id);
10200 	req->handle = cpu_to_le16(handle);
10201 	resp = hwrm_req_hold(bp, req);
10202 	rc = hwrm_req_send(bp, req);
10203 	if (!rc) {
10204 		next_handle = le16_to_cpu(resp->next_handle);
10205 		if (next_handle != 0) {
10206 			if (resp->wol_type ==
10207 			    WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) {
10208 				bp->wol = 1;
10209 				bp->wol_filter_id = resp->wol_filter_id;
10210 			}
10211 		}
10212 	}
10213 	hwrm_req_drop(bp, req);
10214 	return next_handle;
10215 }
10216 
10217 static void bnxt_get_wol_settings(struct bnxt *bp)
10218 {
10219 	u16 handle = 0;
10220 
10221 	bp->wol = 0;
10222 	if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP))
10223 		return;
10224 
10225 	do {
10226 		handle = bnxt_hwrm_get_wol_fltrs(bp, handle);
10227 	} while (handle && handle != 0xffff);
10228 }
10229 
10230 #ifdef CONFIG_BNXT_HWMON
10231 static ssize_t bnxt_show_temp(struct device *dev,
10232 			      struct device_attribute *devattr, char *buf)
10233 {
10234 	struct hwrm_temp_monitor_query_output *resp;
10235 	struct hwrm_temp_monitor_query_input *req;
10236 	struct bnxt *bp = dev_get_drvdata(dev);
10237 	u32 len = 0;
10238 	int rc;
10239 
10240 	rc = hwrm_req_init(bp, req, HWRM_TEMP_MONITOR_QUERY);
10241 	if (rc)
10242 		return rc;
10243 	resp = hwrm_req_hold(bp, req);
10244 	rc = hwrm_req_send(bp, req);
10245 	if (!rc)
10246 		len = sprintf(buf, "%u\n", resp->temp * 1000); /* display millidegree */
10247 	hwrm_req_drop(bp, req);
10248 	if (rc)
10249 		return rc;
10250 	return len;
10251 }
10252 static SENSOR_DEVICE_ATTR(temp1_input, 0444, bnxt_show_temp, NULL, 0);
10253 
10254 static struct attribute *bnxt_attrs[] = {
10255 	&sensor_dev_attr_temp1_input.dev_attr.attr,
10256 	NULL
10257 };
10258 ATTRIBUTE_GROUPS(bnxt);
10259 
10260 static void bnxt_hwmon_close(struct bnxt *bp)
10261 {
10262 	if (bp->hwmon_dev) {
10263 		hwmon_device_unregister(bp->hwmon_dev);
10264 		bp->hwmon_dev = NULL;
10265 	}
10266 }
10267 
10268 static void bnxt_hwmon_open(struct bnxt *bp)
10269 {
10270 	struct hwrm_temp_monitor_query_input *req;
10271 	struct pci_dev *pdev = bp->pdev;
10272 	int rc;
10273 
10274 	rc = hwrm_req_init(bp, req, HWRM_TEMP_MONITOR_QUERY);
10275 	if (!rc)
10276 		rc = hwrm_req_send_silent(bp, req);
10277 	if (rc == -EACCES || rc == -EOPNOTSUPP) {
10278 		bnxt_hwmon_close(bp);
10279 		return;
10280 	}
10281 
10282 	if (bp->hwmon_dev)
10283 		return;
10284 
10285 	bp->hwmon_dev = hwmon_device_register_with_groups(&pdev->dev,
10286 							  DRV_MODULE_NAME, bp,
10287 							  bnxt_groups);
10288 	if (IS_ERR(bp->hwmon_dev)) {
10289 		bp->hwmon_dev = NULL;
10290 		dev_warn(&pdev->dev, "Cannot register hwmon device\n");
10291 	}
10292 }
10293 #else
10294 static void bnxt_hwmon_close(struct bnxt *bp)
10295 {
10296 }
10297 
10298 static void bnxt_hwmon_open(struct bnxt *bp)
10299 {
10300 }
10301 #endif
10302 
10303 static bool bnxt_eee_config_ok(struct bnxt *bp)
10304 {
10305 	struct ethtool_eee *eee = &bp->eee;
10306 	struct bnxt_link_info *link_info = &bp->link_info;
10307 
10308 	if (!(bp->phy_flags & BNXT_PHY_FL_EEE_CAP))
10309 		return true;
10310 
10311 	if (eee->eee_enabled) {
10312 		u32 advertising =
10313 			_bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0);
10314 
10315 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
10316 			eee->eee_enabled = 0;
10317 			return false;
10318 		}
10319 		if (eee->advertised & ~advertising) {
10320 			eee->advertised = advertising & eee->supported;
10321 			return false;
10322 		}
10323 	}
10324 	return true;
10325 }
10326 
10327 static int bnxt_update_phy_setting(struct bnxt *bp)
10328 {
10329 	int rc;
10330 	bool update_link = false;
10331 	bool update_pause = false;
10332 	bool update_eee = false;
10333 	struct bnxt_link_info *link_info = &bp->link_info;
10334 
10335 	rc = bnxt_update_link(bp, true);
10336 	if (rc) {
10337 		netdev_err(bp->dev, "failed to update link (rc: %x)\n",
10338 			   rc);
10339 		return rc;
10340 	}
10341 	if (!BNXT_SINGLE_PF(bp))
10342 		return 0;
10343 
10344 	if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
10345 	    (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) !=
10346 	    link_info->req_flow_ctrl)
10347 		update_pause = true;
10348 	if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
10349 	    link_info->force_pause_setting != link_info->req_flow_ctrl)
10350 		update_pause = true;
10351 	if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
10352 		if (BNXT_AUTO_MODE(link_info->auto_mode))
10353 			update_link = true;
10354 		if (link_info->req_signal_mode == BNXT_SIG_MODE_NRZ &&
10355 		    link_info->req_link_speed != link_info->force_link_speed)
10356 			update_link = true;
10357 		else if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4 &&
10358 			 link_info->req_link_speed != link_info->force_pam4_link_speed)
10359 			update_link = true;
10360 		if (link_info->req_duplex != link_info->duplex_setting)
10361 			update_link = true;
10362 	} else {
10363 		if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
10364 			update_link = true;
10365 		if (link_info->advertising != link_info->auto_link_speeds ||
10366 		    link_info->advertising_pam4 != link_info->auto_pam4_link_speeds)
10367 			update_link = true;
10368 	}
10369 
10370 	/* The last close may have shutdown the link, so need to call
10371 	 * PHY_CFG to bring it back up.
10372 	 */
10373 	if (!BNXT_LINK_IS_UP(bp))
10374 		update_link = true;
10375 
10376 	if (!bnxt_eee_config_ok(bp))
10377 		update_eee = true;
10378 
10379 	if (update_link)
10380 		rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee);
10381 	else if (update_pause)
10382 		rc = bnxt_hwrm_set_pause(bp);
10383 	if (rc) {
10384 		netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
10385 			   rc);
10386 		return rc;
10387 	}
10388 
10389 	return rc;
10390 }
10391 
10392 /* Common routine to pre-map certain register block to different GRC window.
10393  * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
10394  * in PF and 3 windows in VF that can be customized to map in different
10395  * register blocks.
10396  */
10397 static void bnxt_preset_reg_win(struct bnxt *bp)
10398 {
10399 	if (BNXT_PF(bp)) {
10400 		/* CAG registers map to GRC window #4 */
10401 		writel(BNXT_CAG_REG_BASE,
10402 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
10403 	}
10404 }
10405 
10406 static int bnxt_init_dflt_ring_mode(struct bnxt *bp);
10407 
10408 static int bnxt_reinit_after_abort(struct bnxt *bp)
10409 {
10410 	int rc;
10411 
10412 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
10413 		return -EBUSY;
10414 
10415 	if (bp->dev->reg_state == NETREG_UNREGISTERED)
10416 		return -ENODEV;
10417 
10418 	rc = bnxt_fw_init_one(bp);
10419 	if (!rc) {
10420 		bnxt_clear_int_mode(bp);
10421 		rc = bnxt_init_int_mode(bp);
10422 		if (!rc) {
10423 			clear_bit(BNXT_STATE_ABORT_ERR, &bp->state);
10424 			set_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
10425 		}
10426 	}
10427 	return rc;
10428 }
10429 
10430 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
10431 {
10432 	int rc = 0;
10433 
10434 	bnxt_preset_reg_win(bp);
10435 	netif_carrier_off(bp->dev);
10436 	if (irq_re_init) {
10437 		/* Reserve rings now if none were reserved at driver probe. */
10438 		rc = bnxt_init_dflt_ring_mode(bp);
10439 		if (rc) {
10440 			netdev_err(bp->dev, "Failed to reserve default rings at open\n");
10441 			return rc;
10442 		}
10443 	}
10444 	rc = bnxt_reserve_rings(bp, irq_re_init);
10445 	if (rc)
10446 		return rc;
10447 	if ((bp->flags & BNXT_FLAG_RFS) &&
10448 	    !(bp->flags & BNXT_FLAG_USING_MSIX)) {
10449 		/* disable RFS if falling back to INTA */
10450 		bp->dev->hw_features &= ~NETIF_F_NTUPLE;
10451 		bp->flags &= ~BNXT_FLAG_RFS;
10452 	}
10453 
10454 	rc = bnxt_alloc_mem(bp, irq_re_init);
10455 	if (rc) {
10456 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
10457 		goto open_err_free_mem;
10458 	}
10459 
10460 	if (irq_re_init) {
10461 		bnxt_init_napi(bp);
10462 		rc = bnxt_request_irq(bp);
10463 		if (rc) {
10464 			netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
10465 			goto open_err_irq;
10466 		}
10467 	}
10468 
10469 	rc = bnxt_init_nic(bp, irq_re_init);
10470 	if (rc) {
10471 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
10472 		goto open_err_irq;
10473 	}
10474 
10475 	bnxt_enable_napi(bp);
10476 	bnxt_debug_dev_init(bp);
10477 
10478 	if (link_re_init) {
10479 		mutex_lock(&bp->link_lock);
10480 		rc = bnxt_update_phy_setting(bp);
10481 		mutex_unlock(&bp->link_lock);
10482 		if (rc) {
10483 			netdev_warn(bp->dev, "failed to update phy settings\n");
10484 			if (BNXT_SINGLE_PF(bp)) {
10485 				bp->link_info.phy_retry = true;
10486 				bp->link_info.phy_retry_expires =
10487 					jiffies + 5 * HZ;
10488 			}
10489 		}
10490 	}
10491 
10492 	if (irq_re_init)
10493 		udp_tunnel_nic_reset_ntf(bp->dev);
10494 
10495 	if (bp->tx_nr_rings_xdp < num_possible_cpus()) {
10496 		if (!static_key_enabled(&bnxt_xdp_locking_key))
10497 			static_branch_enable(&bnxt_xdp_locking_key);
10498 	} else if (static_key_enabled(&bnxt_xdp_locking_key)) {
10499 		static_branch_disable(&bnxt_xdp_locking_key);
10500 	}
10501 	set_bit(BNXT_STATE_OPEN, &bp->state);
10502 	bnxt_enable_int(bp);
10503 	/* Enable TX queues */
10504 	bnxt_tx_enable(bp);
10505 	mod_timer(&bp->timer, jiffies + bp->current_interval);
10506 	/* Poll link status and check for SFP+ module status */
10507 	mutex_lock(&bp->link_lock);
10508 	bnxt_get_port_module_status(bp);
10509 	mutex_unlock(&bp->link_lock);
10510 
10511 	/* VF-reps may need to be re-opened after the PF is re-opened */
10512 	if (BNXT_PF(bp))
10513 		bnxt_vf_reps_open(bp);
10514 	bnxt_ptp_init_rtc(bp, true);
10515 	bnxt_ptp_cfg_tstamp_filters(bp);
10516 	return 0;
10517 
10518 open_err_irq:
10519 	bnxt_del_napi(bp);
10520 
10521 open_err_free_mem:
10522 	bnxt_free_skbs(bp);
10523 	bnxt_free_irq(bp);
10524 	bnxt_free_mem(bp, true);
10525 	return rc;
10526 }
10527 
10528 /* rtnl_lock held */
10529 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
10530 {
10531 	int rc = 0;
10532 
10533 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state))
10534 		rc = -EIO;
10535 	if (!rc)
10536 		rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
10537 	if (rc) {
10538 		netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
10539 		dev_close(bp->dev);
10540 	}
10541 	return rc;
10542 }
10543 
10544 /* rtnl_lock held, open the NIC half way by allocating all resources, but
10545  * NAPI, IRQ, and TX are not enabled.  This is mainly used for offline
10546  * self tests.
10547  */
10548 int bnxt_half_open_nic(struct bnxt *bp)
10549 {
10550 	int rc = 0;
10551 
10552 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
10553 		netdev_err(bp->dev, "A previous firmware reset has not completed, aborting half open\n");
10554 		rc = -ENODEV;
10555 		goto half_open_err;
10556 	}
10557 
10558 	rc = bnxt_alloc_mem(bp, true);
10559 	if (rc) {
10560 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
10561 		goto half_open_err;
10562 	}
10563 	set_bit(BNXT_STATE_HALF_OPEN, &bp->state);
10564 	rc = bnxt_init_nic(bp, true);
10565 	if (rc) {
10566 		clear_bit(BNXT_STATE_HALF_OPEN, &bp->state);
10567 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
10568 		goto half_open_err;
10569 	}
10570 	return 0;
10571 
10572 half_open_err:
10573 	bnxt_free_skbs(bp);
10574 	bnxt_free_mem(bp, true);
10575 	dev_close(bp->dev);
10576 	return rc;
10577 }
10578 
10579 /* rtnl_lock held, this call can only be made after a previous successful
10580  * call to bnxt_half_open_nic().
10581  */
10582 void bnxt_half_close_nic(struct bnxt *bp)
10583 {
10584 	bnxt_hwrm_resource_free(bp, false, true);
10585 	bnxt_free_skbs(bp);
10586 	bnxt_free_mem(bp, true);
10587 	clear_bit(BNXT_STATE_HALF_OPEN, &bp->state);
10588 }
10589 
10590 void bnxt_reenable_sriov(struct bnxt *bp)
10591 {
10592 	if (BNXT_PF(bp)) {
10593 		struct bnxt_pf_info *pf = &bp->pf;
10594 		int n = pf->active_vfs;
10595 
10596 		if (n)
10597 			bnxt_cfg_hw_sriov(bp, &n, true);
10598 	}
10599 }
10600 
10601 static int bnxt_open(struct net_device *dev)
10602 {
10603 	struct bnxt *bp = netdev_priv(dev);
10604 	int rc;
10605 
10606 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
10607 		rc = bnxt_reinit_after_abort(bp);
10608 		if (rc) {
10609 			if (rc == -EBUSY)
10610 				netdev_err(bp->dev, "A previous firmware reset has not completed, aborting\n");
10611 			else
10612 				netdev_err(bp->dev, "Failed to reinitialize after aborted firmware reset\n");
10613 			return -ENODEV;
10614 		}
10615 	}
10616 
10617 	rc = bnxt_hwrm_if_change(bp, true);
10618 	if (rc)
10619 		return rc;
10620 
10621 	rc = __bnxt_open_nic(bp, true, true);
10622 	if (rc) {
10623 		bnxt_hwrm_if_change(bp, false);
10624 	} else {
10625 		if (test_and_clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) {
10626 			if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
10627 				bnxt_ulp_start(bp, 0);
10628 				bnxt_reenable_sriov(bp);
10629 			}
10630 		}
10631 		bnxt_hwmon_open(bp);
10632 	}
10633 
10634 	return rc;
10635 }
10636 
10637 static bool bnxt_drv_busy(struct bnxt *bp)
10638 {
10639 	return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) ||
10640 		test_bit(BNXT_STATE_READ_STATS, &bp->state));
10641 }
10642 
10643 static void bnxt_get_ring_stats(struct bnxt *bp,
10644 				struct rtnl_link_stats64 *stats);
10645 
10646 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init,
10647 			     bool link_re_init)
10648 {
10649 	/* Close the VF-reps before closing PF */
10650 	if (BNXT_PF(bp))
10651 		bnxt_vf_reps_close(bp);
10652 
10653 	/* Change device state to avoid TX queue wake up's */
10654 	bnxt_tx_disable(bp);
10655 
10656 	clear_bit(BNXT_STATE_OPEN, &bp->state);
10657 	smp_mb__after_atomic();
10658 	while (bnxt_drv_busy(bp))
10659 		msleep(20);
10660 
10661 	/* Flush rings and and disable interrupts */
10662 	bnxt_shutdown_nic(bp, irq_re_init);
10663 
10664 	/* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
10665 
10666 	bnxt_debug_dev_exit(bp);
10667 	bnxt_disable_napi(bp);
10668 	del_timer_sync(&bp->timer);
10669 	bnxt_free_skbs(bp);
10670 
10671 	/* Save ring stats before shutdown */
10672 	if (bp->bnapi && irq_re_init)
10673 		bnxt_get_ring_stats(bp, &bp->net_stats_prev);
10674 	if (irq_re_init) {
10675 		bnxt_free_irq(bp);
10676 		bnxt_del_napi(bp);
10677 	}
10678 	bnxt_free_mem(bp, irq_re_init);
10679 }
10680 
10681 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
10682 {
10683 	int rc = 0;
10684 
10685 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
10686 		/* If we get here, it means firmware reset is in progress
10687 		 * while we are trying to close.  We can safely proceed with
10688 		 * the close because we are holding rtnl_lock().  Some firmware
10689 		 * messages may fail as we proceed to close.  We set the
10690 		 * ABORT_ERR flag here so that the FW reset thread will later
10691 		 * abort when it gets the rtnl_lock() and sees the flag.
10692 		 */
10693 		netdev_warn(bp->dev, "FW reset in progress during close, FW reset will be aborted\n");
10694 		set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
10695 	}
10696 
10697 #ifdef CONFIG_BNXT_SRIOV
10698 	if (bp->sriov_cfg) {
10699 		rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
10700 						      !bp->sriov_cfg,
10701 						      BNXT_SRIOV_CFG_WAIT_TMO);
10702 		if (rc)
10703 			netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
10704 	}
10705 #endif
10706 	__bnxt_close_nic(bp, irq_re_init, link_re_init);
10707 	return rc;
10708 }
10709 
10710 static int bnxt_close(struct net_device *dev)
10711 {
10712 	struct bnxt *bp = netdev_priv(dev);
10713 
10714 	bnxt_hwmon_close(bp);
10715 	bnxt_close_nic(bp, true, true);
10716 	bnxt_hwrm_shutdown_link(bp);
10717 	bnxt_hwrm_if_change(bp, false);
10718 	return 0;
10719 }
10720 
10721 static int bnxt_hwrm_port_phy_read(struct bnxt *bp, u16 phy_addr, u16 reg,
10722 				   u16 *val)
10723 {
10724 	struct hwrm_port_phy_mdio_read_output *resp;
10725 	struct hwrm_port_phy_mdio_read_input *req;
10726 	int rc;
10727 
10728 	if (bp->hwrm_spec_code < 0x10a00)
10729 		return -EOPNOTSUPP;
10730 
10731 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_READ);
10732 	if (rc)
10733 		return rc;
10734 
10735 	req->port_id = cpu_to_le16(bp->pf.port_id);
10736 	req->phy_addr = phy_addr;
10737 	req->reg_addr = cpu_to_le16(reg & 0x1f);
10738 	if (mdio_phy_id_is_c45(phy_addr)) {
10739 		req->cl45_mdio = 1;
10740 		req->phy_addr = mdio_phy_id_prtad(phy_addr);
10741 		req->dev_addr = mdio_phy_id_devad(phy_addr);
10742 		req->reg_addr = cpu_to_le16(reg);
10743 	}
10744 
10745 	resp = hwrm_req_hold(bp, req);
10746 	rc = hwrm_req_send(bp, req);
10747 	if (!rc)
10748 		*val = le16_to_cpu(resp->reg_data);
10749 	hwrm_req_drop(bp, req);
10750 	return rc;
10751 }
10752 
10753 static int bnxt_hwrm_port_phy_write(struct bnxt *bp, u16 phy_addr, u16 reg,
10754 				    u16 val)
10755 {
10756 	struct hwrm_port_phy_mdio_write_input *req;
10757 	int rc;
10758 
10759 	if (bp->hwrm_spec_code < 0x10a00)
10760 		return -EOPNOTSUPP;
10761 
10762 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_WRITE);
10763 	if (rc)
10764 		return rc;
10765 
10766 	req->port_id = cpu_to_le16(bp->pf.port_id);
10767 	req->phy_addr = phy_addr;
10768 	req->reg_addr = cpu_to_le16(reg & 0x1f);
10769 	if (mdio_phy_id_is_c45(phy_addr)) {
10770 		req->cl45_mdio = 1;
10771 		req->phy_addr = mdio_phy_id_prtad(phy_addr);
10772 		req->dev_addr = mdio_phy_id_devad(phy_addr);
10773 		req->reg_addr = cpu_to_le16(reg);
10774 	}
10775 	req->reg_data = cpu_to_le16(val);
10776 
10777 	return hwrm_req_send(bp, req);
10778 }
10779 
10780 /* rtnl_lock held */
10781 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
10782 {
10783 	struct mii_ioctl_data *mdio = if_mii(ifr);
10784 	struct bnxt *bp = netdev_priv(dev);
10785 	int rc;
10786 
10787 	switch (cmd) {
10788 	case SIOCGMIIPHY:
10789 		mdio->phy_id = bp->link_info.phy_addr;
10790 
10791 		fallthrough;
10792 	case SIOCGMIIREG: {
10793 		u16 mii_regval = 0;
10794 
10795 		if (!netif_running(dev))
10796 			return -EAGAIN;
10797 
10798 		rc = bnxt_hwrm_port_phy_read(bp, mdio->phy_id, mdio->reg_num,
10799 					     &mii_regval);
10800 		mdio->val_out = mii_regval;
10801 		return rc;
10802 	}
10803 
10804 	case SIOCSMIIREG:
10805 		if (!netif_running(dev))
10806 			return -EAGAIN;
10807 
10808 		return bnxt_hwrm_port_phy_write(bp, mdio->phy_id, mdio->reg_num,
10809 						mdio->val_in);
10810 
10811 	case SIOCSHWTSTAMP:
10812 		return bnxt_hwtstamp_set(dev, ifr);
10813 
10814 	case SIOCGHWTSTAMP:
10815 		return bnxt_hwtstamp_get(dev, ifr);
10816 
10817 	default:
10818 		/* do nothing */
10819 		break;
10820 	}
10821 	return -EOPNOTSUPP;
10822 }
10823 
10824 static void bnxt_get_ring_stats(struct bnxt *bp,
10825 				struct rtnl_link_stats64 *stats)
10826 {
10827 	int i;
10828 
10829 	for (i = 0; i < bp->cp_nr_rings; i++) {
10830 		struct bnxt_napi *bnapi = bp->bnapi[i];
10831 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
10832 		u64 *sw = cpr->stats.sw_stats;
10833 
10834 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts);
10835 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts);
10836 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts);
10837 
10838 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts);
10839 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts);
10840 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts);
10841 
10842 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes);
10843 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes);
10844 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes);
10845 
10846 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes);
10847 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes);
10848 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes);
10849 
10850 		stats->rx_missed_errors +=
10851 			BNXT_GET_RING_STATS64(sw, rx_discard_pkts);
10852 
10853 		stats->multicast += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts);
10854 
10855 		stats->tx_dropped += BNXT_GET_RING_STATS64(sw, tx_error_pkts);
10856 
10857 		stats->rx_dropped +=
10858 			cpr->sw_stats.rx.rx_netpoll_discards +
10859 			cpr->sw_stats.rx.rx_oom_discards;
10860 	}
10861 }
10862 
10863 static void bnxt_add_prev_stats(struct bnxt *bp,
10864 				struct rtnl_link_stats64 *stats)
10865 {
10866 	struct rtnl_link_stats64 *prev_stats = &bp->net_stats_prev;
10867 
10868 	stats->rx_packets += prev_stats->rx_packets;
10869 	stats->tx_packets += prev_stats->tx_packets;
10870 	stats->rx_bytes += prev_stats->rx_bytes;
10871 	stats->tx_bytes += prev_stats->tx_bytes;
10872 	stats->rx_missed_errors += prev_stats->rx_missed_errors;
10873 	stats->multicast += prev_stats->multicast;
10874 	stats->rx_dropped += prev_stats->rx_dropped;
10875 	stats->tx_dropped += prev_stats->tx_dropped;
10876 }
10877 
10878 static void
10879 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
10880 {
10881 	struct bnxt *bp = netdev_priv(dev);
10882 
10883 	set_bit(BNXT_STATE_READ_STATS, &bp->state);
10884 	/* Make sure bnxt_close_nic() sees that we are reading stats before
10885 	 * we check the BNXT_STATE_OPEN flag.
10886 	 */
10887 	smp_mb__after_atomic();
10888 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
10889 		clear_bit(BNXT_STATE_READ_STATS, &bp->state);
10890 		*stats = bp->net_stats_prev;
10891 		return;
10892 	}
10893 
10894 	bnxt_get_ring_stats(bp, stats);
10895 	bnxt_add_prev_stats(bp, stats);
10896 
10897 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
10898 		u64 *rx = bp->port_stats.sw_stats;
10899 		u64 *tx = bp->port_stats.sw_stats +
10900 			  BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
10901 
10902 		stats->rx_crc_errors =
10903 			BNXT_GET_RX_PORT_STATS64(rx, rx_fcs_err_frames);
10904 		stats->rx_frame_errors =
10905 			BNXT_GET_RX_PORT_STATS64(rx, rx_align_err_frames);
10906 		stats->rx_length_errors =
10907 			BNXT_GET_RX_PORT_STATS64(rx, rx_undrsz_frames) +
10908 			BNXT_GET_RX_PORT_STATS64(rx, rx_ovrsz_frames) +
10909 			BNXT_GET_RX_PORT_STATS64(rx, rx_runt_frames);
10910 		stats->rx_errors =
10911 			BNXT_GET_RX_PORT_STATS64(rx, rx_false_carrier_frames) +
10912 			BNXT_GET_RX_PORT_STATS64(rx, rx_jbr_frames);
10913 		stats->collisions =
10914 			BNXT_GET_TX_PORT_STATS64(tx, tx_total_collisions);
10915 		stats->tx_fifo_errors =
10916 			BNXT_GET_TX_PORT_STATS64(tx, tx_fifo_underruns);
10917 		stats->tx_errors = BNXT_GET_TX_PORT_STATS64(tx, tx_err);
10918 	}
10919 	clear_bit(BNXT_STATE_READ_STATS, &bp->state);
10920 }
10921 
10922 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
10923 {
10924 	struct net_device *dev = bp->dev;
10925 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
10926 	struct netdev_hw_addr *ha;
10927 	u8 *haddr;
10928 	int mc_count = 0;
10929 	bool update = false;
10930 	int off = 0;
10931 
10932 	netdev_for_each_mc_addr(ha, dev) {
10933 		if (mc_count >= BNXT_MAX_MC_ADDRS) {
10934 			*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
10935 			vnic->mc_list_count = 0;
10936 			return false;
10937 		}
10938 		haddr = ha->addr;
10939 		if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
10940 			memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
10941 			update = true;
10942 		}
10943 		off += ETH_ALEN;
10944 		mc_count++;
10945 	}
10946 	if (mc_count)
10947 		*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
10948 
10949 	if (mc_count != vnic->mc_list_count) {
10950 		vnic->mc_list_count = mc_count;
10951 		update = true;
10952 	}
10953 	return update;
10954 }
10955 
10956 static bool bnxt_uc_list_updated(struct bnxt *bp)
10957 {
10958 	struct net_device *dev = bp->dev;
10959 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
10960 	struct netdev_hw_addr *ha;
10961 	int off = 0;
10962 
10963 	if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
10964 		return true;
10965 
10966 	netdev_for_each_uc_addr(ha, dev) {
10967 		if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
10968 			return true;
10969 
10970 		off += ETH_ALEN;
10971 	}
10972 	return false;
10973 }
10974 
10975 static void bnxt_set_rx_mode(struct net_device *dev)
10976 {
10977 	struct bnxt *bp = netdev_priv(dev);
10978 	struct bnxt_vnic_info *vnic;
10979 	bool mc_update = false;
10980 	bool uc_update;
10981 	u32 mask;
10982 
10983 	if (!test_bit(BNXT_STATE_OPEN, &bp->state))
10984 		return;
10985 
10986 	vnic = &bp->vnic_info[0];
10987 	mask = vnic->rx_mask;
10988 	mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
10989 		  CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
10990 		  CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST |
10991 		  CFA_L2_SET_RX_MASK_REQ_MASK_BCAST);
10992 
10993 	if (dev->flags & IFF_PROMISC)
10994 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
10995 
10996 	uc_update = bnxt_uc_list_updated(bp);
10997 
10998 	if (dev->flags & IFF_BROADCAST)
10999 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
11000 	if (dev->flags & IFF_ALLMULTI) {
11001 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
11002 		vnic->mc_list_count = 0;
11003 	} else if (dev->flags & IFF_MULTICAST) {
11004 		mc_update = bnxt_mc_list_updated(bp, &mask);
11005 	}
11006 
11007 	if (mask != vnic->rx_mask || uc_update || mc_update) {
11008 		vnic->rx_mask = mask;
11009 
11010 		set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
11011 		bnxt_queue_sp_work(bp);
11012 	}
11013 }
11014 
11015 static int bnxt_cfg_rx_mode(struct bnxt *bp)
11016 {
11017 	struct net_device *dev = bp->dev;
11018 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
11019 	struct hwrm_cfa_l2_filter_free_input *req;
11020 	struct netdev_hw_addr *ha;
11021 	int i, off = 0, rc;
11022 	bool uc_update;
11023 
11024 	netif_addr_lock_bh(dev);
11025 	uc_update = bnxt_uc_list_updated(bp);
11026 	netif_addr_unlock_bh(dev);
11027 
11028 	if (!uc_update)
11029 		goto skip_uc;
11030 
11031 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE);
11032 	if (rc)
11033 		return rc;
11034 	hwrm_req_hold(bp, req);
11035 	for (i = 1; i < vnic->uc_filter_count; i++) {
11036 		req->l2_filter_id = vnic->fw_l2_filter_id[i];
11037 
11038 		rc = hwrm_req_send(bp, req);
11039 	}
11040 	hwrm_req_drop(bp, req);
11041 
11042 	vnic->uc_filter_count = 1;
11043 
11044 	netif_addr_lock_bh(dev);
11045 	if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
11046 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
11047 	} else {
11048 		netdev_for_each_uc_addr(ha, dev) {
11049 			memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
11050 			off += ETH_ALEN;
11051 			vnic->uc_filter_count++;
11052 		}
11053 	}
11054 	netif_addr_unlock_bh(dev);
11055 
11056 	for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
11057 		rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
11058 		if (rc) {
11059 			if (BNXT_VF(bp) && rc == -ENODEV) {
11060 				if (!test_and_set_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state))
11061 					netdev_warn(bp->dev, "Cannot configure L2 filters while PF is unavailable, will retry\n");
11062 				else
11063 					netdev_dbg(bp->dev, "PF still unavailable while configuring L2 filters.\n");
11064 				rc = 0;
11065 			} else {
11066 				netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
11067 			}
11068 			vnic->uc_filter_count = i;
11069 			return rc;
11070 		}
11071 	}
11072 	if (test_and_clear_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state))
11073 		netdev_notice(bp->dev, "Retry of L2 filter configuration successful.\n");
11074 
11075 skip_uc:
11076 	if ((vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS) &&
11077 	    !bnxt_promisc_ok(bp))
11078 		vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
11079 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
11080 	if (rc && (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST)) {
11081 		netdev_info(bp->dev, "Failed setting MC filters rc: %d, turning on ALL_MCAST mode\n",
11082 			    rc);
11083 		vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
11084 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
11085 		vnic->mc_list_count = 0;
11086 		rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
11087 	}
11088 	if (rc)
11089 		netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %d\n",
11090 			   rc);
11091 
11092 	return rc;
11093 }
11094 
11095 static bool bnxt_can_reserve_rings(struct bnxt *bp)
11096 {
11097 #ifdef CONFIG_BNXT_SRIOV
11098 	if (BNXT_NEW_RM(bp) && BNXT_VF(bp)) {
11099 		struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
11100 
11101 		/* No minimum rings were provisioned by the PF.  Don't
11102 		 * reserve rings by default when device is down.
11103 		 */
11104 		if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings)
11105 			return true;
11106 
11107 		if (!netif_running(bp->dev))
11108 			return false;
11109 	}
11110 #endif
11111 	return true;
11112 }
11113 
11114 /* If the chip and firmware supports RFS */
11115 static bool bnxt_rfs_supported(struct bnxt *bp)
11116 {
11117 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
11118 		if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2)
11119 			return true;
11120 		return false;
11121 	}
11122 	/* 212 firmware is broken for aRFS */
11123 	if (BNXT_FW_MAJ(bp) == 212)
11124 		return false;
11125 	if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
11126 		return true;
11127 	if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
11128 		return true;
11129 	return false;
11130 }
11131 
11132 /* If runtime conditions support RFS */
11133 static bool bnxt_rfs_capable(struct bnxt *bp)
11134 {
11135 #ifdef CONFIG_RFS_ACCEL
11136 	int vnics, max_vnics, max_rss_ctxs;
11137 
11138 	if (bp->flags & BNXT_FLAG_CHIP_P5)
11139 		return bnxt_rfs_supported(bp);
11140 	if (!(bp->flags & BNXT_FLAG_MSIX_CAP) || !bnxt_can_reserve_rings(bp) || !bp->rx_nr_rings)
11141 		return false;
11142 
11143 	vnics = 1 + bp->rx_nr_rings;
11144 	max_vnics = bnxt_get_max_func_vnics(bp);
11145 	max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp);
11146 
11147 	/* RSS contexts not a limiting factor */
11148 	if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
11149 		max_rss_ctxs = max_vnics;
11150 	if (vnics > max_vnics || vnics > max_rss_ctxs) {
11151 		if (bp->rx_nr_rings > 1)
11152 			netdev_warn(bp->dev,
11153 				    "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n",
11154 				    min(max_rss_ctxs - 1, max_vnics - 1));
11155 		return false;
11156 	}
11157 
11158 	if (!BNXT_NEW_RM(bp))
11159 		return true;
11160 
11161 	if (vnics == bp->hw_resc.resv_vnics)
11162 		return true;
11163 
11164 	bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, vnics);
11165 	if (vnics <= bp->hw_resc.resv_vnics)
11166 		return true;
11167 
11168 	netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n");
11169 	bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, 1);
11170 	return false;
11171 #else
11172 	return false;
11173 #endif
11174 }
11175 
11176 static netdev_features_t bnxt_fix_features(struct net_device *dev,
11177 					   netdev_features_t features)
11178 {
11179 	struct bnxt *bp = netdev_priv(dev);
11180 	netdev_features_t vlan_features;
11181 
11182 	if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp))
11183 		features &= ~NETIF_F_NTUPLE;
11184 
11185 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
11186 		features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
11187 
11188 	if (!(bp->flags & BNXT_FLAG_TPA))
11189 		features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
11190 
11191 	if (!(features & NETIF_F_GRO))
11192 		features &= ~NETIF_F_GRO_HW;
11193 
11194 	if (features & NETIF_F_GRO_HW)
11195 		features &= ~NETIF_F_LRO;
11196 
11197 	/* Both CTAG and STAG VLAN accelaration on the RX side have to be
11198 	 * turned on or off together.
11199 	 */
11200 	vlan_features = features & BNXT_HW_FEATURE_VLAN_ALL_RX;
11201 	if (vlan_features != BNXT_HW_FEATURE_VLAN_ALL_RX) {
11202 		if (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)
11203 			features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX;
11204 		else if (vlan_features)
11205 			features |= BNXT_HW_FEATURE_VLAN_ALL_RX;
11206 	}
11207 #ifdef CONFIG_BNXT_SRIOV
11208 	if (BNXT_VF(bp) && bp->vf.vlan)
11209 		features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX;
11210 #endif
11211 	return features;
11212 }
11213 
11214 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
11215 {
11216 	struct bnxt *bp = netdev_priv(dev);
11217 	u32 flags = bp->flags;
11218 	u32 changes;
11219 	int rc = 0;
11220 	bool re_init = false;
11221 	bool update_tpa = false;
11222 
11223 	flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
11224 	if (features & NETIF_F_GRO_HW)
11225 		flags |= BNXT_FLAG_GRO;
11226 	else if (features & NETIF_F_LRO)
11227 		flags |= BNXT_FLAG_LRO;
11228 
11229 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
11230 		flags &= ~BNXT_FLAG_TPA;
11231 
11232 	if (features & BNXT_HW_FEATURE_VLAN_ALL_RX)
11233 		flags |= BNXT_FLAG_STRIP_VLAN;
11234 
11235 	if (features & NETIF_F_NTUPLE)
11236 		flags |= BNXT_FLAG_RFS;
11237 
11238 	changes = flags ^ bp->flags;
11239 	if (changes & BNXT_FLAG_TPA) {
11240 		update_tpa = true;
11241 		if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
11242 		    (flags & BNXT_FLAG_TPA) == 0 ||
11243 		    (bp->flags & BNXT_FLAG_CHIP_P5))
11244 			re_init = true;
11245 	}
11246 
11247 	if (changes & ~BNXT_FLAG_TPA)
11248 		re_init = true;
11249 
11250 	if (flags != bp->flags) {
11251 		u32 old_flags = bp->flags;
11252 
11253 		if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
11254 			bp->flags = flags;
11255 			if (update_tpa)
11256 				bnxt_set_ring_params(bp);
11257 			return rc;
11258 		}
11259 
11260 		if (re_init) {
11261 			bnxt_close_nic(bp, false, false);
11262 			bp->flags = flags;
11263 			if (update_tpa)
11264 				bnxt_set_ring_params(bp);
11265 
11266 			return bnxt_open_nic(bp, false, false);
11267 		}
11268 		if (update_tpa) {
11269 			bp->flags = flags;
11270 			rc = bnxt_set_tpa(bp,
11271 					  (flags & BNXT_FLAG_TPA) ?
11272 					  true : false);
11273 			if (rc)
11274 				bp->flags = old_flags;
11275 		}
11276 	}
11277 	return rc;
11278 }
11279 
11280 static bool bnxt_exthdr_check(struct bnxt *bp, struct sk_buff *skb, int nw_off,
11281 			      u8 **nextp)
11282 {
11283 	struct ipv6hdr *ip6h = (struct ipv6hdr *)(skb->data + nw_off);
11284 	int hdr_count = 0;
11285 	u8 *nexthdr;
11286 	int start;
11287 
11288 	/* Check that there are at most 2 IPv6 extension headers, no
11289 	 * fragment header, and each is <= 64 bytes.
11290 	 */
11291 	start = nw_off + sizeof(*ip6h);
11292 	nexthdr = &ip6h->nexthdr;
11293 	while (ipv6_ext_hdr(*nexthdr)) {
11294 		struct ipv6_opt_hdr *hp;
11295 		int hdrlen;
11296 
11297 		if (hdr_count >= 3 || *nexthdr == NEXTHDR_NONE ||
11298 		    *nexthdr == NEXTHDR_FRAGMENT)
11299 			return false;
11300 		hp = __skb_header_pointer(NULL, start, sizeof(*hp), skb->data,
11301 					  skb_headlen(skb), NULL);
11302 		if (!hp)
11303 			return false;
11304 		if (*nexthdr == NEXTHDR_AUTH)
11305 			hdrlen = ipv6_authlen(hp);
11306 		else
11307 			hdrlen = ipv6_optlen(hp);
11308 
11309 		if (hdrlen > 64)
11310 			return false;
11311 		nexthdr = &hp->nexthdr;
11312 		start += hdrlen;
11313 		hdr_count++;
11314 	}
11315 	if (nextp) {
11316 		/* Caller will check inner protocol */
11317 		if (skb->encapsulation) {
11318 			*nextp = nexthdr;
11319 			return true;
11320 		}
11321 		*nextp = NULL;
11322 	}
11323 	/* Only support TCP/UDP for non-tunneled ipv6 and inner ipv6 */
11324 	return *nexthdr == IPPROTO_TCP || *nexthdr == IPPROTO_UDP;
11325 }
11326 
11327 /* For UDP, we can only handle 1 Vxlan port and 1 Geneve port. */
11328 static bool bnxt_udp_tunl_check(struct bnxt *bp, struct sk_buff *skb)
11329 {
11330 	struct udphdr *uh = udp_hdr(skb);
11331 	__be16 udp_port = uh->dest;
11332 
11333 	if (udp_port != bp->vxlan_port && udp_port != bp->nge_port)
11334 		return false;
11335 	if (skb->inner_protocol_type == ENCAP_TYPE_ETHER) {
11336 		struct ethhdr *eh = inner_eth_hdr(skb);
11337 
11338 		switch (eh->h_proto) {
11339 		case htons(ETH_P_IP):
11340 			return true;
11341 		case htons(ETH_P_IPV6):
11342 			return bnxt_exthdr_check(bp, skb,
11343 						 skb_inner_network_offset(skb),
11344 						 NULL);
11345 		}
11346 	}
11347 	return false;
11348 }
11349 
11350 static bool bnxt_tunl_check(struct bnxt *bp, struct sk_buff *skb, u8 l4_proto)
11351 {
11352 	switch (l4_proto) {
11353 	case IPPROTO_UDP:
11354 		return bnxt_udp_tunl_check(bp, skb);
11355 	case IPPROTO_IPIP:
11356 		return true;
11357 	case IPPROTO_GRE: {
11358 		switch (skb->inner_protocol) {
11359 		default:
11360 			return false;
11361 		case htons(ETH_P_IP):
11362 			return true;
11363 		case htons(ETH_P_IPV6):
11364 			fallthrough;
11365 		}
11366 	}
11367 	case IPPROTO_IPV6:
11368 		/* Check ext headers of inner ipv6 */
11369 		return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb),
11370 					 NULL);
11371 	}
11372 	return false;
11373 }
11374 
11375 static netdev_features_t bnxt_features_check(struct sk_buff *skb,
11376 					     struct net_device *dev,
11377 					     netdev_features_t features)
11378 {
11379 	struct bnxt *bp = netdev_priv(dev);
11380 	u8 *l4_proto;
11381 
11382 	features = vlan_features_check(skb, features);
11383 	switch (vlan_get_protocol(skb)) {
11384 	case htons(ETH_P_IP):
11385 		if (!skb->encapsulation)
11386 			return features;
11387 		l4_proto = &ip_hdr(skb)->protocol;
11388 		if (bnxt_tunl_check(bp, skb, *l4_proto))
11389 			return features;
11390 		break;
11391 	case htons(ETH_P_IPV6):
11392 		if (!bnxt_exthdr_check(bp, skb, skb_network_offset(skb),
11393 				       &l4_proto))
11394 			break;
11395 		if (!l4_proto || bnxt_tunl_check(bp, skb, *l4_proto))
11396 			return features;
11397 		break;
11398 	}
11399 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
11400 }
11401 
11402 int bnxt_dbg_hwrm_rd_reg(struct bnxt *bp, u32 reg_off, u16 num_words,
11403 			 u32 *reg_buf)
11404 {
11405 	struct hwrm_dbg_read_direct_output *resp;
11406 	struct hwrm_dbg_read_direct_input *req;
11407 	__le32 *dbg_reg_buf;
11408 	dma_addr_t mapping;
11409 	int rc, i;
11410 
11411 	rc = hwrm_req_init(bp, req, HWRM_DBG_READ_DIRECT);
11412 	if (rc)
11413 		return rc;
11414 
11415 	dbg_reg_buf = hwrm_req_dma_slice(bp, req, num_words * 4,
11416 					 &mapping);
11417 	if (!dbg_reg_buf) {
11418 		rc = -ENOMEM;
11419 		goto dbg_rd_reg_exit;
11420 	}
11421 
11422 	req->host_dest_addr = cpu_to_le64(mapping);
11423 
11424 	resp = hwrm_req_hold(bp, req);
11425 	req->read_addr = cpu_to_le32(reg_off + CHIMP_REG_VIEW_ADDR);
11426 	req->read_len32 = cpu_to_le32(num_words);
11427 
11428 	rc = hwrm_req_send(bp, req);
11429 	if (rc || resp->error_code) {
11430 		rc = -EIO;
11431 		goto dbg_rd_reg_exit;
11432 	}
11433 	for (i = 0; i < num_words; i++)
11434 		reg_buf[i] = le32_to_cpu(dbg_reg_buf[i]);
11435 
11436 dbg_rd_reg_exit:
11437 	hwrm_req_drop(bp, req);
11438 	return rc;
11439 }
11440 
11441 static int bnxt_dbg_hwrm_ring_info_get(struct bnxt *bp, u8 ring_type,
11442 				       u32 ring_id, u32 *prod, u32 *cons)
11443 {
11444 	struct hwrm_dbg_ring_info_get_output *resp;
11445 	struct hwrm_dbg_ring_info_get_input *req;
11446 	int rc;
11447 
11448 	rc = hwrm_req_init(bp, req, HWRM_DBG_RING_INFO_GET);
11449 	if (rc)
11450 		return rc;
11451 
11452 	req->ring_type = ring_type;
11453 	req->fw_ring_id = cpu_to_le32(ring_id);
11454 	resp = hwrm_req_hold(bp, req);
11455 	rc = hwrm_req_send(bp, req);
11456 	if (!rc) {
11457 		*prod = le32_to_cpu(resp->producer_index);
11458 		*cons = le32_to_cpu(resp->consumer_index);
11459 	}
11460 	hwrm_req_drop(bp, req);
11461 	return rc;
11462 }
11463 
11464 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
11465 {
11466 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
11467 	int i = bnapi->index;
11468 
11469 	if (!txr)
11470 		return;
11471 
11472 	netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
11473 		    i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
11474 		    txr->tx_cons);
11475 }
11476 
11477 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
11478 {
11479 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
11480 	int i = bnapi->index;
11481 
11482 	if (!rxr)
11483 		return;
11484 
11485 	netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
11486 		    i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
11487 		    rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
11488 		    rxr->rx_sw_agg_prod);
11489 }
11490 
11491 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
11492 {
11493 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
11494 	int i = bnapi->index;
11495 
11496 	netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
11497 		    i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
11498 }
11499 
11500 static void bnxt_dbg_dump_states(struct bnxt *bp)
11501 {
11502 	int i;
11503 	struct bnxt_napi *bnapi;
11504 
11505 	for (i = 0; i < bp->cp_nr_rings; i++) {
11506 		bnapi = bp->bnapi[i];
11507 		if (netif_msg_drv(bp)) {
11508 			bnxt_dump_tx_sw_state(bnapi);
11509 			bnxt_dump_rx_sw_state(bnapi);
11510 			bnxt_dump_cp_sw_state(bnapi);
11511 		}
11512 	}
11513 }
11514 
11515 static int bnxt_hwrm_rx_ring_reset(struct bnxt *bp, int ring_nr)
11516 {
11517 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
11518 	struct hwrm_ring_reset_input *req;
11519 	struct bnxt_napi *bnapi = rxr->bnapi;
11520 	struct bnxt_cp_ring_info *cpr;
11521 	u16 cp_ring_id;
11522 	int rc;
11523 
11524 	rc = hwrm_req_init(bp, req, HWRM_RING_RESET);
11525 	if (rc)
11526 		return rc;
11527 
11528 	cpr = &bnapi->cp_ring;
11529 	cp_ring_id = cpr->cp_ring_struct.fw_ring_id;
11530 	req->cmpl_ring = cpu_to_le16(cp_ring_id);
11531 	req->ring_type = RING_RESET_REQ_RING_TYPE_RX_RING_GRP;
11532 	req->ring_id = cpu_to_le16(bp->grp_info[bnapi->index].fw_grp_id);
11533 	return hwrm_req_send_silent(bp, req);
11534 }
11535 
11536 static void bnxt_reset_task(struct bnxt *bp, bool silent)
11537 {
11538 	if (!silent)
11539 		bnxt_dbg_dump_states(bp);
11540 	if (netif_running(bp->dev)) {
11541 		int rc;
11542 
11543 		if (silent) {
11544 			bnxt_close_nic(bp, false, false);
11545 			bnxt_open_nic(bp, false, false);
11546 		} else {
11547 			bnxt_ulp_stop(bp);
11548 			bnxt_close_nic(bp, true, false);
11549 			rc = bnxt_open_nic(bp, true, false);
11550 			bnxt_ulp_start(bp, rc);
11551 		}
11552 	}
11553 }
11554 
11555 static void bnxt_tx_timeout(struct net_device *dev, unsigned int txqueue)
11556 {
11557 	struct bnxt *bp = netdev_priv(dev);
11558 
11559 	netdev_err(bp->dev,  "TX timeout detected, starting reset task!\n");
11560 	set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
11561 	bnxt_queue_sp_work(bp);
11562 }
11563 
11564 static void bnxt_fw_health_check(struct bnxt *bp)
11565 {
11566 	struct bnxt_fw_health *fw_health = bp->fw_health;
11567 	u32 val;
11568 
11569 	if (!fw_health->enabled || test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
11570 		return;
11571 
11572 	/* Make sure it is enabled before checking the tmr_counter. */
11573 	smp_rmb();
11574 	if (fw_health->tmr_counter) {
11575 		fw_health->tmr_counter--;
11576 		return;
11577 	}
11578 
11579 	val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
11580 	if (val == fw_health->last_fw_heartbeat) {
11581 		fw_health->arrests++;
11582 		goto fw_reset;
11583 	}
11584 
11585 	fw_health->last_fw_heartbeat = val;
11586 
11587 	val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
11588 	if (val != fw_health->last_fw_reset_cnt) {
11589 		fw_health->discoveries++;
11590 		goto fw_reset;
11591 	}
11592 
11593 	fw_health->tmr_counter = fw_health->tmr_multiplier;
11594 	return;
11595 
11596 fw_reset:
11597 	set_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event);
11598 	bnxt_queue_sp_work(bp);
11599 }
11600 
11601 static void bnxt_timer(struct timer_list *t)
11602 {
11603 	struct bnxt *bp = from_timer(bp, t, timer);
11604 	struct net_device *dev = bp->dev;
11605 
11606 	if (!netif_running(dev) || !test_bit(BNXT_STATE_OPEN, &bp->state))
11607 		return;
11608 
11609 	if (atomic_read(&bp->intr_sem) != 0)
11610 		goto bnxt_restart_timer;
11611 
11612 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
11613 		bnxt_fw_health_check(bp);
11614 
11615 	if (BNXT_LINK_IS_UP(bp) && bp->stats_coal_ticks) {
11616 		set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event);
11617 		bnxt_queue_sp_work(bp);
11618 	}
11619 
11620 	if (bnxt_tc_flower_enabled(bp)) {
11621 		set_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event);
11622 		bnxt_queue_sp_work(bp);
11623 	}
11624 
11625 #ifdef CONFIG_RFS_ACCEL
11626 	if ((bp->flags & BNXT_FLAG_RFS) && bp->ntp_fltr_count) {
11627 		set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
11628 		bnxt_queue_sp_work(bp);
11629 	}
11630 #endif /*CONFIG_RFS_ACCEL*/
11631 
11632 	if (bp->link_info.phy_retry) {
11633 		if (time_after(jiffies, bp->link_info.phy_retry_expires)) {
11634 			bp->link_info.phy_retry = false;
11635 			netdev_warn(bp->dev, "failed to update phy settings after maximum retries.\n");
11636 		} else {
11637 			set_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event);
11638 			bnxt_queue_sp_work(bp);
11639 		}
11640 	}
11641 
11642 	if (test_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state)) {
11643 		set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
11644 		bnxt_queue_sp_work(bp);
11645 	}
11646 
11647 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && !bp->chip_rev &&
11648 	    netif_carrier_ok(dev)) {
11649 		set_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event);
11650 		bnxt_queue_sp_work(bp);
11651 	}
11652 bnxt_restart_timer:
11653 	mod_timer(&bp->timer, jiffies + bp->current_interval);
11654 }
11655 
11656 static void bnxt_rtnl_lock_sp(struct bnxt *bp)
11657 {
11658 	/* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK
11659 	 * set.  If the device is being closed, bnxt_close() may be holding
11660 	 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear.  So we
11661 	 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl().
11662 	 */
11663 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
11664 	rtnl_lock();
11665 }
11666 
11667 static void bnxt_rtnl_unlock_sp(struct bnxt *bp)
11668 {
11669 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
11670 	rtnl_unlock();
11671 }
11672 
11673 /* Only called from bnxt_sp_task() */
11674 static void bnxt_reset(struct bnxt *bp, bool silent)
11675 {
11676 	bnxt_rtnl_lock_sp(bp);
11677 	if (test_bit(BNXT_STATE_OPEN, &bp->state))
11678 		bnxt_reset_task(bp, silent);
11679 	bnxt_rtnl_unlock_sp(bp);
11680 }
11681 
11682 /* Only called from bnxt_sp_task() */
11683 static void bnxt_rx_ring_reset(struct bnxt *bp)
11684 {
11685 	int i;
11686 
11687 	bnxt_rtnl_lock_sp(bp);
11688 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
11689 		bnxt_rtnl_unlock_sp(bp);
11690 		return;
11691 	}
11692 	/* Disable and flush TPA before resetting the RX ring */
11693 	if (bp->flags & BNXT_FLAG_TPA)
11694 		bnxt_set_tpa(bp, false);
11695 	for (i = 0; i < bp->rx_nr_rings; i++) {
11696 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
11697 		struct bnxt_cp_ring_info *cpr;
11698 		int rc;
11699 
11700 		if (!rxr->bnapi->in_reset)
11701 			continue;
11702 
11703 		rc = bnxt_hwrm_rx_ring_reset(bp, i);
11704 		if (rc) {
11705 			if (rc == -EINVAL || rc == -EOPNOTSUPP)
11706 				netdev_info_once(bp->dev, "RX ring reset not supported by firmware, falling back to global reset\n");
11707 			else
11708 				netdev_warn(bp->dev, "RX ring reset failed, rc = %d, falling back to global reset\n",
11709 					    rc);
11710 			bnxt_reset_task(bp, true);
11711 			break;
11712 		}
11713 		bnxt_free_one_rx_ring_skbs(bp, i);
11714 		rxr->rx_prod = 0;
11715 		rxr->rx_agg_prod = 0;
11716 		rxr->rx_sw_agg_prod = 0;
11717 		rxr->rx_next_cons = 0;
11718 		rxr->bnapi->in_reset = false;
11719 		bnxt_alloc_one_rx_ring(bp, i);
11720 		cpr = &rxr->bnapi->cp_ring;
11721 		cpr->sw_stats.rx.rx_resets++;
11722 		if (bp->flags & BNXT_FLAG_AGG_RINGS)
11723 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
11724 		bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
11725 	}
11726 	if (bp->flags & BNXT_FLAG_TPA)
11727 		bnxt_set_tpa(bp, true);
11728 	bnxt_rtnl_unlock_sp(bp);
11729 }
11730 
11731 static void bnxt_fw_reset_close(struct bnxt *bp)
11732 {
11733 	bnxt_ulp_stop(bp);
11734 	/* When firmware is in fatal state, quiesce device and disable
11735 	 * bus master to prevent any potential bad DMAs before freeing
11736 	 * kernel memory.
11737 	 */
11738 	if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) {
11739 		u16 val = 0;
11740 
11741 		pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val);
11742 		if (val == 0xffff)
11743 			bp->fw_reset_min_dsecs = 0;
11744 		bnxt_tx_disable(bp);
11745 		bnxt_disable_napi(bp);
11746 		bnxt_disable_int_sync(bp);
11747 		bnxt_free_irq(bp);
11748 		bnxt_clear_int_mode(bp);
11749 		pci_disable_device(bp->pdev);
11750 	}
11751 	__bnxt_close_nic(bp, true, false);
11752 	bnxt_vf_reps_free(bp);
11753 	bnxt_clear_int_mode(bp);
11754 	bnxt_hwrm_func_drv_unrgtr(bp);
11755 	if (pci_is_enabled(bp->pdev))
11756 		pci_disable_device(bp->pdev);
11757 	bnxt_free_ctx_mem(bp);
11758 	kfree(bp->ctx);
11759 	bp->ctx = NULL;
11760 }
11761 
11762 static bool is_bnxt_fw_ok(struct bnxt *bp)
11763 {
11764 	struct bnxt_fw_health *fw_health = bp->fw_health;
11765 	bool no_heartbeat = false, has_reset = false;
11766 	u32 val;
11767 
11768 	val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
11769 	if (val == fw_health->last_fw_heartbeat)
11770 		no_heartbeat = true;
11771 
11772 	val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
11773 	if (val != fw_health->last_fw_reset_cnt)
11774 		has_reset = true;
11775 
11776 	if (!no_heartbeat && has_reset)
11777 		return true;
11778 
11779 	return false;
11780 }
11781 
11782 /* rtnl_lock is acquired before calling this function */
11783 static void bnxt_force_fw_reset(struct bnxt *bp)
11784 {
11785 	struct bnxt_fw_health *fw_health = bp->fw_health;
11786 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
11787 	u32 wait_dsecs;
11788 
11789 	if (!test_bit(BNXT_STATE_OPEN, &bp->state) ||
11790 	    test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
11791 		return;
11792 
11793 	if (ptp) {
11794 		spin_lock_bh(&ptp->ptp_lock);
11795 		set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11796 		spin_unlock_bh(&ptp->ptp_lock);
11797 	} else {
11798 		set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11799 	}
11800 	bnxt_fw_reset_close(bp);
11801 	wait_dsecs = fw_health->master_func_wait_dsecs;
11802 	if (fw_health->primary) {
11803 		if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU)
11804 			wait_dsecs = 0;
11805 		bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW;
11806 	} else {
11807 		bp->fw_reset_timestamp = jiffies + wait_dsecs * HZ / 10;
11808 		wait_dsecs = fw_health->normal_func_wait_dsecs;
11809 		bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
11810 	}
11811 
11812 	bp->fw_reset_min_dsecs = fw_health->post_reset_wait_dsecs;
11813 	bp->fw_reset_max_dsecs = fw_health->post_reset_max_wait_dsecs;
11814 	bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10);
11815 }
11816 
11817 void bnxt_fw_exception(struct bnxt *bp)
11818 {
11819 	netdev_warn(bp->dev, "Detected firmware fatal condition, initiating reset\n");
11820 	set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
11821 	bnxt_rtnl_lock_sp(bp);
11822 	bnxt_force_fw_reset(bp);
11823 	bnxt_rtnl_unlock_sp(bp);
11824 }
11825 
11826 /* Returns the number of registered VFs, or 1 if VF configuration is pending, or
11827  * < 0 on error.
11828  */
11829 static int bnxt_get_registered_vfs(struct bnxt *bp)
11830 {
11831 #ifdef CONFIG_BNXT_SRIOV
11832 	int rc;
11833 
11834 	if (!BNXT_PF(bp))
11835 		return 0;
11836 
11837 	rc = bnxt_hwrm_func_qcfg(bp);
11838 	if (rc) {
11839 		netdev_err(bp->dev, "func_qcfg cmd failed, rc = %d\n", rc);
11840 		return rc;
11841 	}
11842 	if (bp->pf.registered_vfs)
11843 		return bp->pf.registered_vfs;
11844 	if (bp->sriov_cfg)
11845 		return 1;
11846 #endif
11847 	return 0;
11848 }
11849 
11850 void bnxt_fw_reset(struct bnxt *bp)
11851 {
11852 	bnxt_rtnl_lock_sp(bp);
11853 	if (test_bit(BNXT_STATE_OPEN, &bp->state) &&
11854 	    !test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
11855 		struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
11856 		int n = 0, tmo;
11857 
11858 		if (ptp) {
11859 			spin_lock_bh(&ptp->ptp_lock);
11860 			set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11861 			spin_unlock_bh(&ptp->ptp_lock);
11862 		} else {
11863 			set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11864 		}
11865 		if (bp->pf.active_vfs &&
11866 		    !test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
11867 			n = bnxt_get_registered_vfs(bp);
11868 		if (n < 0) {
11869 			netdev_err(bp->dev, "Firmware reset aborted, rc = %d\n",
11870 				   n);
11871 			clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11872 			dev_close(bp->dev);
11873 			goto fw_reset_exit;
11874 		} else if (n > 0) {
11875 			u16 vf_tmo_dsecs = n * 10;
11876 
11877 			if (bp->fw_reset_max_dsecs < vf_tmo_dsecs)
11878 				bp->fw_reset_max_dsecs = vf_tmo_dsecs;
11879 			bp->fw_reset_state =
11880 				BNXT_FW_RESET_STATE_POLL_VF;
11881 			bnxt_queue_fw_reset_work(bp, HZ / 10);
11882 			goto fw_reset_exit;
11883 		}
11884 		bnxt_fw_reset_close(bp);
11885 		if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
11886 			bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN;
11887 			tmo = HZ / 10;
11888 		} else {
11889 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
11890 			tmo = bp->fw_reset_min_dsecs * HZ / 10;
11891 		}
11892 		bnxt_queue_fw_reset_work(bp, tmo);
11893 	}
11894 fw_reset_exit:
11895 	bnxt_rtnl_unlock_sp(bp);
11896 }
11897 
11898 static void bnxt_chk_missed_irq(struct bnxt *bp)
11899 {
11900 	int i;
11901 
11902 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
11903 		return;
11904 
11905 	for (i = 0; i < bp->cp_nr_rings; i++) {
11906 		struct bnxt_napi *bnapi = bp->bnapi[i];
11907 		struct bnxt_cp_ring_info *cpr;
11908 		u32 fw_ring_id;
11909 		int j;
11910 
11911 		if (!bnapi)
11912 			continue;
11913 
11914 		cpr = &bnapi->cp_ring;
11915 		for (j = 0; j < 2; j++) {
11916 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
11917 			u32 val[2];
11918 
11919 			if (!cpr2 || cpr2->has_more_work ||
11920 			    !bnxt_has_work(bp, cpr2))
11921 				continue;
11922 
11923 			if (cpr2->cp_raw_cons != cpr2->last_cp_raw_cons) {
11924 				cpr2->last_cp_raw_cons = cpr2->cp_raw_cons;
11925 				continue;
11926 			}
11927 			fw_ring_id = cpr2->cp_ring_struct.fw_ring_id;
11928 			bnxt_dbg_hwrm_ring_info_get(bp,
11929 				DBG_RING_INFO_GET_REQ_RING_TYPE_L2_CMPL,
11930 				fw_ring_id, &val[0], &val[1]);
11931 			cpr->sw_stats.cmn.missed_irqs++;
11932 		}
11933 	}
11934 }
11935 
11936 static void bnxt_cfg_ntp_filters(struct bnxt *);
11937 
11938 static void bnxt_init_ethtool_link_settings(struct bnxt *bp)
11939 {
11940 	struct bnxt_link_info *link_info = &bp->link_info;
11941 
11942 	if (BNXT_AUTO_MODE(link_info->auto_mode)) {
11943 		link_info->autoneg = BNXT_AUTONEG_SPEED;
11944 		if (bp->hwrm_spec_code >= 0x10201) {
11945 			if (link_info->auto_pause_setting &
11946 			    PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE)
11947 				link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
11948 		} else {
11949 			link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
11950 		}
11951 		link_info->advertising = link_info->auto_link_speeds;
11952 		link_info->advertising_pam4 = link_info->auto_pam4_link_speeds;
11953 	} else {
11954 		link_info->req_link_speed = link_info->force_link_speed;
11955 		link_info->req_signal_mode = BNXT_SIG_MODE_NRZ;
11956 		if (link_info->force_pam4_link_speed) {
11957 			link_info->req_link_speed =
11958 				link_info->force_pam4_link_speed;
11959 			link_info->req_signal_mode = BNXT_SIG_MODE_PAM4;
11960 		}
11961 		link_info->req_duplex = link_info->duplex_setting;
11962 	}
11963 	if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL)
11964 		link_info->req_flow_ctrl =
11965 			link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH;
11966 	else
11967 		link_info->req_flow_ctrl = link_info->force_pause_setting;
11968 }
11969 
11970 static void bnxt_fw_echo_reply(struct bnxt *bp)
11971 {
11972 	struct bnxt_fw_health *fw_health = bp->fw_health;
11973 	struct hwrm_func_echo_response_input *req;
11974 	int rc;
11975 
11976 	rc = hwrm_req_init(bp, req, HWRM_FUNC_ECHO_RESPONSE);
11977 	if (rc)
11978 		return;
11979 	req->event_data1 = cpu_to_le32(fw_health->echo_req_data1);
11980 	req->event_data2 = cpu_to_le32(fw_health->echo_req_data2);
11981 	hwrm_req_send(bp, req);
11982 }
11983 
11984 static void bnxt_sp_task(struct work_struct *work)
11985 {
11986 	struct bnxt *bp = container_of(work, struct bnxt, sp_task);
11987 
11988 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
11989 	smp_mb__after_atomic();
11990 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
11991 		clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
11992 		return;
11993 	}
11994 
11995 	if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
11996 		bnxt_cfg_rx_mode(bp);
11997 
11998 	if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
11999 		bnxt_cfg_ntp_filters(bp);
12000 	if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
12001 		bnxt_hwrm_exec_fwd_req(bp);
12002 	if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) {
12003 		bnxt_hwrm_port_qstats(bp, 0);
12004 		bnxt_hwrm_port_qstats_ext(bp, 0);
12005 		bnxt_accumulate_all_stats(bp);
12006 	}
12007 
12008 	if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
12009 		int rc;
12010 
12011 		mutex_lock(&bp->link_lock);
12012 		if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT,
12013 				       &bp->sp_event))
12014 			bnxt_hwrm_phy_qcaps(bp);
12015 
12016 		rc = bnxt_update_link(bp, true);
12017 		if (rc)
12018 			netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
12019 				   rc);
12020 
12021 		if (test_and_clear_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT,
12022 				       &bp->sp_event))
12023 			bnxt_init_ethtool_link_settings(bp);
12024 		mutex_unlock(&bp->link_lock);
12025 	}
12026 	if (test_and_clear_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event)) {
12027 		int rc;
12028 
12029 		mutex_lock(&bp->link_lock);
12030 		rc = bnxt_update_phy_setting(bp);
12031 		mutex_unlock(&bp->link_lock);
12032 		if (rc) {
12033 			netdev_warn(bp->dev, "update phy settings retry failed\n");
12034 		} else {
12035 			bp->link_info.phy_retry = false;
12036 			netdev_info(bp->dev, "update phy settings retry succeeded\n");
12037 		}
12038 	}
12039 	if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) {
12040 		mutex_lock(&bp->link_lock);
12041 		bnxt_get_port_module_status(bp);
12042 		mutex_unlock(&bp->link_lock);
12043 	}
12044 
12045 	if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event))
12046 		bnxt_tc_flow_stats_work(bp);
12047 
12048 	if (test_and_clear_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event))
12049 		bnxt_chk_missed_irq(bp);
12050 
12051 	if (test_and_clear_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event))
12052 		bnxt_fw_echo_reply(bp);
12053 
12054 	/* These functions below will clear BNXT_STATE_IN_SP_TASK.  They
12055 	 * must be the last functions to be called before exiting.
12056 	 */
12057 	if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event))
12058 		bnxt_reset(bp, false);
12059 
12060 	if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event))
12061 		bnxt_reset(bp, true);
12062 
12063 	if (test_and_clear_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event))
12064 		bnxt_rx_ring_reset(bp);
12065 
12066 	if (test_and_clear_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event)) {
12067 		if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) ||
12068 		    test_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state))
12069 			bnxt_devlink_health_fw_report(bp);
12070 		else
12071 			bnxt_fw_reset(bp);
12072 	}
12073 
12074 	if (test_and_clear_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event)) {
12075 		if (!is_bnxt_fw_ok(bp))
12076 			bnxt_devlink_health_fw_report(bp);
12077 	}
12078 
12079 	smp_mb__before_atomic();
12080 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
12081 }
12082 
12083 /* Under rtnl_lock */
12084 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs,
12085 		     int tx_xdp)
12086 {
12087 	int max_rx, max_tx, tx_sets = 1;
12088 	int tx_rings_needed, stats;
12089 	int rx_rings = rx;
12090 	int cp, vnics, rc;
12091 
12092 	if (tcs)
12093 		tx_sets = tcs;
12094 
12095 	rc = bnxt_get_max_rings(bp, &max_rx, &max_tx, sh);
12096 	if (rc)
12097 		return rc;
12098 
12099 	if (max_rx < rx)
12100 		return -ENOMEM;
12101 
12102 	tx_rings_needed = tx * tx_sets + tx_xdp;
12103 	if (max_tx < tx_rings_needed)
12104 		return -ENOMEM;
12105 
12106 	vnics = 1;
12107 	if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS)
12108 		vnics += rx_rings;
12109 
12110 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
12111 		rx_rings <<= 1;
12112 	cp = sh ? max_t(int, tx_rings_needed, rx) : tx_rings_needed + rx;
12113 	stats = cp;
12114 	if (BNXT_NEW_RM(bp)) {
12115 		cp += bnxt_get_ulp_msix_num(bp);
12116 		stats += bnxt_get_ulp_stat_ctxs(bp);
12117 	}
12118 	return bnxt_hwrm_check_rings(bp, tx_rings_needed, rx_rings, rx, cp,
12119 				     stats, vnics);
12120 }
12121 
12122 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev)
12123 {
12124 	if (bp->bar2) {
12125 		pci_iounmap(pdev, bp->bar2);
12126 		bp->bar2 = NULL;
12127 	}
12128 
12129 	if (bp->bar1) {
12130 		pci_iounmap(pdev, bp->bar1);
12131 		bp->bar1 = NULL;
12132 	}
12133 
12134 	if (bp->bar0) {
12135 		pci_iounmap(pdev, bp->bar0);
12136 		bp->bar0 = NULL;
12137 	}
12138 }
12139 
12140 static void bnxt_cleanup_pci(struct bnxt *bp)
12141 {
12142 	bnxt_unmap_bars(bp, bp->pdev);
12143 	pci_release_regions(bp->pdev);
12144 	if (pci_is_enabled(bp->pdev))
12145 		pci_disable_device(bp->pdev);
12146 }
12147 
12148 static void bnxt_init_dflt_coal(struct bnxt *bp)
12149 {
12150 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
12151 	struct bnxt_coal *coal;
12152 	u16 flags = 0;
12153 
12154 	if (coal_cap->cmpl_params &
12155 	    RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_TIMER_RESET)
12156 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
12157 
12158 	/* Tick values in micro seconds.
12159 	 * 1 coal_buf x bufs_per_record = 1 completion record.
12160 	 */
12161 	coal = &bp->rx_coal;
12162 	coal->coal_ticks = 10;
12163 	coal->coal_bufs = 30;
12164 	coal->coal_ticks_irq = 1;
12165 	coal->coal_bufs_irq = 2;
12166 	coal->idle_thresh = 50;
12167 	coal->bufs_per_record = 2;
12168 	coal->budget = 64;		/* NAPI budget */
12169 	coal->flags = flags;
12170 
12171 	coal = &bp->tx_coal;
12172 	coal->coal_ticks = 28;
12173 	coal->coal_bufs = 30;
12174 	coal->coal_ticks_irq = 2;
12175 	coal->coal_bufs_irq = 2;
12176 	coal->bufs_per_record = 1;
12177 	coal->flags = flags;
12178 
12179 	bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS;
12180 }
12181 
12182 static int bnxt_fw_init_one_p1(struct bnxt *bp)
12183 {
12184 	int rc;
12185 
12186 	bp->fw_cap = 0;
12187 	rc = bnxt_hwrm_ver_get(bp);
12188 	bnxt_try_map_fw_health_reg(bp);
12189 	if (rc) {
12190 		rc = bnxt_try_recover_fw(bp);
12191 		if (rc)
12192 			return rc;
12193 		rc = bnxt_hwrm_ver_get(bp);
12194 		if (rc)
12195 			return rc;
12196 	}
12197 
12198 	bnxt_nvm_cfg_ver_get(bp);
12199 
12200 	rc = bnxt_hwrm_func_reset(bp);
12201 	if (rc)
12202 		return -ENODEV;
12203 
12204 	bnxt_hwrm_fw_set_time(bp);
12205 	return 0;
12206 }
12207 
12208 static int bnxt_fw_init_one_p2(struct bnxt *bp)
12209 {
12210 	int rc;
12211 
12212 	/* Get the MAX capabilities for this function */
12213 	rc = bnxt_hwrm_func_qcaps(bp);
12214 	if (rc) {
12215 		netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
12216 			   rc);
12217 		return -ENODEV;
12218 	}
12219 
12220 	rc = bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(bp);
12221 	if (rc)
12222 		netdev_warn(bp->dev, "hwrm query adv flow mgnt failure rc: %d\n",
12223 			    rc);
12224 
12225 	if (bnxt_alloc_fw_health(bp)) {
12226 		netdev_warn(bp->dev, "no memory for firmware error recovery\n");
12227 	} else {
12228 		rc = bnxt_hwrm_error_recovery_qcfg(bp);
12229 		if (rc)
12230 			netdev_warn(bp->dev, "hwrm query error recovery failure rc: %d\n",
12231 				    rc);
12232 	}
12233 
12234 	rc = bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false);
12235 	if (rc)
12236 		return -ENODEV;
12237 
12238 	bnxt_hwrm_func_qcfg(bp);
12239 	bnxt_hwrm_vnic_qcaps(bp);
12240 	bnxt_hwrm_port_led_qcaps(bp);
12241 	bnxt_ethtool_init(bp);
12242 	bnxt_dcb_init(bp);
12243 	return 0;
12244 }
12245 
12246 static void bnxt_set_dflt_rss_hash_type(struct bnxt *bp)
12247 {
12248 	bp->flags &= ~BNXT_FLAG_UDP_RSS_CAP;
12249 	bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 |
12250 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 |
12251 			   VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 |
12252 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6;
12253 	if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) {
12254 		bp->flags |= BNXT_FLAG_UDP_RSS_CAP;
12255 		bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 |
12256 				    VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6;
12257 	}
12258 }
12259 
12260 static void bnxt_set_dflt_rfs(struct bnxt *bp)
12261 {
12262 	struct net_device *dev = bp->dev;
12263 
12264 	dev->hw_features &= ~NETIF_F_NTUPLE;
12265 	dev->features &= ~NETIF_F_NTUPLE;
12266 	bp->flags &= ~BNXT_FLAG_RFS;
12267 	if (bnxt_rfs_supported(bp)) {
12268 		dev->hw_features |= NETIF_F_NTUPLE;
12269 		if (bnxt_rfs_capable(bp)) {
12270 			bp->flags |= BNXT_FLAG_RFS;
12271 			dev->features |= NETIF_F_NTUPLE;
12272 		}
12273 	}
12274 }
12275 
12276 static void bnxt_fw_init_one_p3(struct bnxt *bp)
12277 {
12278 	struct pci_dev *pdev = bp->pdev;
12279 
12280 	bnxt_set_dflt_rss_hash_type(bp);
12281 	bnxt_set_dflt_rfs(bp);
12282 
12283 	bnxt_get_wol_settings(bp);
12284 	if (bp->flags & BNXT_FLAG_WOL_CAP)
12285 		device_set_wakeup_enable(&pdev->dev, bp->wol);
12286 	else
12287 		device_set_wakeup_capable(&pdev->dev, false);
12288 
12289 	bnxt_hwrm_set_cache_line_size(bp, cache_line_size());
12290 	bnxt_hwrm_coal_params_qcaps(bp);
12291 }
12292 
12293 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt);
12294 
12295 int bnxt_fw_init_one(struct bnxt *bp)
12296 {
12297 	int rc;
12298 
12299 	rc = bnxt_fw_init_one_p1(bp);
12300 	if (rc) {
12301 		netdev_err(bp->dev, "Firmware init phase 1 failed\n");
12302 		return rc;
12303 	}
12304 	rc = bnxt_fw_init_one_p2(bp);
12305 	if (rc) {
12306 		netdev_err(bp->dev, "Firmware init phase 2 failed\n");
12307 		return rc;
12308 	}
12309 	rc = bnxt_probe_phy(bp, false);
12310 	if (rc)
12311 		return rc;
12312 	rc = bnxt_approve_mac(bp, bp->dev->dev_addr, false);
12313 	if (rc)
12314 		return rc;
12315 
12316 	bnxt_fw_init_one_p3(bp);
12317 	return 0;
12318 }
12319 
12320 static void bnxt_fw_reset_writel(struct bnxt *bp, int reg_idx)
12321 {
12322 	struct bnxt_fw_health *fw_health = bp->fw_health;
12323 	u32 reg = fw_health->fw_reset_seq_regs[reg_idx];
12324 	u32 val = fw_health->fw_reset_seq_vals[reg_idx];
12325 	u32 reg_type, reg_off, delay_msecs;
12326 
12327 	delay_msecs = fw_health->fw_reset_seq_delay_msec[reg_idx];
12328 	reg_type = BNXT_FW_HEALTH_REG_TYPE(reg);
12329 	reg_off = BNXT_FW_HEALTH_REG_OFF(reg);
12330 	switch (reg_type) {
12331 	case BNXT_FW_HEALTH_REG_TYPE_CFG:
12332 		pci_write_config_dword(bp->pdev, reg_off, val);
12333 		break;
12334 	case BNXT_FW_HEALTH_REG_TYPE_GRC:
12335 		writel(reg_off & BNXT_GRC_BASE_MASK,
12336 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4);
12337 		reg_off = (reg_off & BNXT_GRC_OFFSET_MASK) + 0x2000;
12338 		fallthrough;
12339 	case BNXT_FW_HEALTH_REG_TYPE_BAR0:
12340 		writel(val, bp->bar0 + reg_off);
12341 		break;
12342 	case BNXT_FW_HEALTH_REG_TYPE_BAR1:
12343 		writel(val, bp->bar1 + reg_off);
12344 		break;
12345 	}
12346 	if (delay_msecs) {
12347 		pci_read_config_dword(bp->pdev, 0, &val);
12348 		msleep(delay_msecs);
12349 	}
12350 }
12351 
12352 bool bnxt_hwrm_reset_permitted(struct bnxt *bp)
12353 {
12354 	struct hwrm_func_qcfg_output *resp;
12355 	struct hwrm_func_qcfg_input *req;
12356 	bool result = true; /* firmware will enforce if unknown */
12357 
12358 	if (~bp->fw_cap & BNXT_FW_CAP_HOT_RESET_IF)
12359 		return result;
12360 
12361 	if (hwrm_req_init(bp, req, HWRM_FUNC_QCFG))
12362 		return result;
12363 
12364 	req->fid = cpu_to_le16(0xffff);
12365 	resp = hwrm_req_hold(bp, req);
12366 	if (!hwrm_req_send(bp, req))
12367 		result = !!(le16_to_cpu(resp->flags) &
12368 			    FUNC_QCFG_RESP_FLAGS_HOT_RESET_ALLOWED);
12369 	hwrm_req_drop(bp, req);
12370 	return result;
12371 }
12372 
12373 static void bnxt_reset_all(struct bnxt *bp)
12374 {
12375 	struct bnxt_fw_health *fw_health = bp->fw_health;
12376 	int i, rc;
12377 
12378 	if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
12379 		bnxt_fw_reset_via_optee(bp);
12380 		bp->fw_reset_timestamp = jiffies;
12381 		return;
12382 	}
12383 
12384 	if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_HOST) {
12385 		for (i = 0; i < fw_health->fw_reset_seq_cnt; i++)
12386 			bnxt_fw_reset_writel(bp, i);
12387 	} else if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) {
12388 		struct hwrm_fw_reset_input *req;
12389 
12390 		rc = hwrm_req_init(bp, req, HWRM_FW_RESET);
12391 		if (!rc) {
12392 			req->target_id = cpu_to_le16(HWRM_TARGET_ID_KONG);
12393 			req->embedded_proc_type = FW_RESET_REQ_EMBEDDED_PROC_TYPE_CHIP;
12394 			req->selfrst_status = FW_RESET_REQ_SELFRST_STATUS_SELFRSTASAP;
12395 			req->flags = FW_RESET_REQ_FLAGS_RESET_GRACEFUL;
12396 			rc = hwrm_req_send(bp, req);
12397 		}
12398 		if (rc != -ENODEV)
12399 			netdev_warn(bp->dev, "Unable to reset FW rc=%d\n", rc);
12400 	}
12401 	bp->fw_reset_timestamp = jiffies;
12402 }
12403 
12404 static bool bnxt_fw_reset_timeout(struct bnxt *bp)
12405 {
12406 	return time_after(jiffies, bp->fw_reset_timestamp +
12407 			  (bp->fw_reset_max_dsecs * HZ / 10));
12408 }
12409 
12410 static void bnxt_fw_reset_abort(struct bnxt *bp, int rc)
12411 {
12412 	clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12413 	if (bp->fw_reset_state != BNXT_FW_RESET_STATE_POLL_VF) {
12414 		bnxt_ulp_start(bp, rc);
12415 		bnxt_dl_health_fw_status_update(bp, false);
12416 	}
12417 	bp->fw_reset_state = 0;
12418 	dev_close(bp->dev);
12419 }
12420 
12421 static void bnxt_fw_reset_task(struct work_struct *work)
12422 {
12423 	struct bnxt *bp = container_of(work, struct bnxt, fw_reset_task.work);
12424 	int rc = 0;
12425 
12426 	if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
12427 		netdev_err(bp->dev, "bnxt_fw_reset_task() called when not in fw reset mode!\n");
12428 		return;
12429 	}
12430 
12431 	switch (bp->fw_reset_state) {
12432 	case BNXT_FW_RESET_STATE_POLL_VF: {
12433 		int n = bnxt_get_registered_vfs(bp);
12434 		int tmo;
12435 
12436 		if (n < 0) {
12437 			netdev_err(bp->dev, "Firmware reset aborted, subsequent func_qcfg cmd failed, rc = %d, %d msecs since reset timestamp\n",
12438 				   n, jiffies_to_msecs(jiffies -
12439 				   bp->fw_reset_timestamp));
12440 			goto fw_reset_abort;
12441 		} else if (n > 0) {
12442 			if (bnxt_fw_reset_timeout(bp)) {
12443 				clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12444 				bp->fw_reset_state = 0;
12445 				netdev_err(bp->dev, "Firmware reset aborted, bnxt_get_registered_vfs() returns %d\n",
12446 					   n);
12447 				return;
12448 			}
12449 			bnxt_queue_fw_reset_work(bp, HZ / 10);
12450 			return;
12451 		}
12452 		bp->fw_reset_timestamp = jiffies;
12453 		rtnl_lock();
12454 		if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
12455 			bnxt_fw_reset_abort(bp, rc);
12456 			rtnl_unlock();
12457 			return;
12458 		}
12459 		bnxt_fw_reset_close(bp);
12460 		if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
12461 			bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN;
12462 			tmo = HZ / 10;
12463 		} else {
12464 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
12465 			tmo = bp->fw_reset_min_dsecs * HZ / 10;
12466 		}
12467 		rtnl_unlock();
12468 		bnxt_queue_fw_reset_work(bp, tmo);
12469 		return;
12470 	}
12471 	case BNXT_FW_RESET_STATE_POLL_FW_DOWN: {
12472 		u32 val;
12473 
12474 		val = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
12475 		if (!(val & BNXT_FW_STATUS_SHUTDOWN) &&
12476 		    !bnxt_fw_reset_timeout(bp)) {
12477 			bnxt_queue_fw_reset_work(bp, HZ / 5);
12478 			return;
12479 		}
12480 
12481 		if (!bp->fw_health->primary) {
12482 			u32 wait_dsecs = bp->fw_health->normal_func_wait_dsecs;
12483 
12484 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
12485 			bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10);
12486 			return;
12487 		}
12488 		bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW;
12489 	}
12490 		fallthrough;
12491 	case BNXT_FW_RESET_STATE_RESET_FW:
12492 		bnxt_reset_all(bp);
12493 		bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
12494 		bnxt_queue_fw_reset_work(bp, bp->fw_reset_min_dsecs * HZ / 10);
12495 		return;
12496 	case BNXT_FW_RESET_STATE_ENABLE_DEV:
12497 		bnxt_inv_fw_health_reg(bp);
12498 		if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) &&
12499 		    !bp->fw_reset_min_dsecs) {
12500 			u16 val;
12501 
12502 			pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val);
12503 			if (val == 0xffff) {
12504 				if (bnxt_fw_reset_timeout(bp)) {
12505 					netdev_err(bp->dev, "Firmware reset aborted, PCI config space invalid\n");
12506 					rc = -ETIMEDOUT;
12507 					goto fw_reset_abort;
12508 				}
12509 				bnxt_queue_fw_reset_work(bp, HZ / 1000);
12510 				return;
12511 			}
12512 		}
12513 		clear_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
12514 		clear_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state);
12515 		if (test_and_clear_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state) &&
12516 		    !test_bit(BNXT_STATE_FW_ACTIVATE, &bp->state))
12517 			bnxt_dl_remote_reload(bp);
12518 		if (pci_enable_device(bp->pdev)) {
12519 			netdev_err(bp->dev, "Cannot re-enable PCI device\n");
12520 			rc = -ENODEV;
12521 			goto fw_reset_abort;
12522 		}
12523 		pci_set_master(bp->pdev);
12524 		bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW;
12525 		fallthrough;
12526 	case BNXT_FW_RESET_STATE_POLL_FW:
12527 		bp->hwrm_cmd_timeout = SHORT_HWRM_CMD_TIMEOUT;
12528 		rc = bnxt_hwrm_poll(bp);
12529 		if (rc) {
12530 			if (bnxt_fw_reset_timeout(bp)) {
12531 				netdev_err(bp->dev, "Firmware reset aborted\n");
12532 				goto fw_reset_abort_status;
12533 			}
12534 			bnxt_queue_fw_reset_work(bp, HZ / 5);
12535 			return;
12536 		}
12537 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
12538 		bp->fw_reset_state = BNXT_FW_RESET_STATE_OPENING;
12539 		fallthrough;
12540 	case BNXT_FW_RESET_STATE_OPENING:
12541 		while (!rtnl_trylock()) {
12542 			bnxt_queue_fw_reset_work(bp, HZ / 10);
12543 			return;
12544 		}
12545 		rc = bnxt_open(bp->dev);
12546 		if (rc) {
12547 			netdev_err(bp->dev, "bnxt_open() failed during FW reset\n");
12548 			bnxt_fw_reset_abort(bp, rc);
12549 			rtnl_unlock();
12550 			return;
12551 		}
12552 
12553 		if ((bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) &&
12554 		    bp->fw_health->enabled) {
12555 			bp->fw_health->last_fw_reset_cnt =
12556 				bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
12557 		}
12558 		bp->fw_reset_state = 0;
12559 		/* Make sure fw_reset_state is 0 before clearing the flag */
12560 		smp_mb__before_atomic();
12561 		clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12562 		bnxt_ulp_start(bp, 0);
12563 		bnxt_reenable_sriov(bp);
12564 		bnxt_vf_reps_alloc(bp);
12565 		bnxt_vf_reps_open(bp);
12566 		bnxt_ptp_reapply_pps(bp);
12567 		clear_bit(BNXT_STATE_FW_ACTIVATE, &bp->state);
12568 		if (test_and_clear_bit(BNXT_STATE_RECOVER, &bp->state)) {
12569 			bnxt_dl_health_fw_recovery_done(bp);
12570 			bnxt_dl_health_fw_status_update(bp, true);
12571 		}
12572 		rtnl_unlock();
12573 		break;
12574 	}
12575 	return;
12576 
12577 fw_reset_abort_status:
12578 	if (bp->fw_health->status_reliable ||
12579 	    (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) {
12580 		u32 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
12581 
12582 		netdev_err(bp->dev, "fw_health_status 0x%x\n", sts);
12583 	}
12584 fw_reset_abort:
12585 	rtnl_lock();
12586 	bnxt_fw_reset_abort(bp, rc);
12587 	rtnl_unlock();
12588 }
12589 
12590 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
12591 {
12592 	int rc;
12593 	struct bnxt *bp = netdev_priv(dev);
12594 
12595 	SET_NETDEV_DEV(dev, &pdev->dev);
12596 
12597 	/* enable device (incl. PCI PM wakeup), and bus-mastering */
12598 	rc = pci_enable_device(pdev);
12599 	if (rc) {
12600 		dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
12601 		goto init_err;
12602 	}
12603 
12604 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
12605 		dev_err(&pdev->dev,
12606 			"Cannot find PCI device base address, aborting\n");
12607 		rc = -ENODEV;
12608 		goto init_err_disable;
12609 	}
12610 
12611 	rc = pci_request_regions(pdev, DRV_MODULE_NAME);
12612 	if (rc) {
12613 		dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
12614 		goto init_err_disable;
12615 	}
12616 
12617 	if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
12618 	    dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
12619 		dev_err(&pdev->dev, "System does not support DMA, aborting\n");
12620 		rc = -EIO;
12621 		goto init_err_release;
12622 	}
12623 
12624 	pci_set_master(pdev);
12625 
12626 	bp->dev = dev;
12627 	bp->pdev = pdev;
12628 
12629 	/* Doorbell BAR bp->bar1 is mapped after bnxt_fw_init_one_p2()
12630 	 * determines the BAR size.
12631 	 */
12632 	bp->bar0 = pci_ioremap_bar(pdev, 0);
12633 	if (!bp->bar0) {
12634 		dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
12635 		rc = -ENOMEM;
12636 		goto init_err_release;
12637 	}
12638 
12639 	bp->bar2 = pci_ioremap_bar(pdev, 4);
12640 	if (!bp->bar2) {
12641 		dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
12642 		rc = -ENOMEM;
12643 		goto init_err_release;
12644 	}
12645 
12646 	pci_enable_pcie_error_reporting(pdev);
12647 
12648 	INIT_WORK(&bp->sp_task, bnxt_sp_task);
12649 	INIT_DELAYED_WORK(&bp->fw_reset_task, bnxt_fw_reset_task);
12650 
12651 	spin_lock_init(&bp->ntp_fltr_lock);
12652 #if BITS_PER_LONG == 32
12653 	spin_lock_init(&bp->db_lock);
12654 #endif
12655 
12656 	bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
12657 	bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
12658 
12659 	timer_setup(&bp->timer, bnxt_timer, 0);
12660 	bp->current_interval = BNXT_TIMER_INTERVAL;
12661 
12662 	bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID;
12663 	bp->nge_fw_dst_port_id = INVALID_HW_RING_ID;
12664 
12665 	clear_bit(BNXT_STATE_OPEN, &bp->state);
12666 	return 0;
12667 
12668 init_err_release:
12669 	bnxt_unmap_bars(bp, pdev);
12670 	pci_release_regions(pdev);
12671 
12672 init_err_disable:
12673 	pci_disable_device(pdev);
12674 
12675 init_err:
12676 	return rc;
12677 }
12678 
12679 /* rtnl_lock held */
12680 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
12681 {
12682 	struct sockaddr *addr = p;
12683 	struct bnxt *bp = netdev_priv(dev);
12684 	int rc = 0;
12685 
12686 	if (!is_valid_ether_addr(addr->sa_data))
12687 		return -EADDRNOTAVAIL;
12688 
12689 	if (ether_addr_equal(addr->sa_data, dev->dev_addr))
12690 		return 0;
12691 
12692 	rc = bnxt_approve_mac(bp, addr->sa_data, true);
12693 	if (rc)
12694 		return rc;
12695 
12696 	eth_hw_addr_set(dev, addr->sa_data);
12697 	if (netif_running(dev)) {
12698 		bnxt_close_nic(bp, false, false);
12699 		rc = bnxt_open_nic(bp, false, false);
12700 	}
12701 
12702 	return rc;
12703 }
12704 
12705 /* rtnl_lock held */
12706 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
12707 {
12708 	struct bnxt *bp = netdev_priv(dev);
12709 
12710 	if (netif_running(dev))
12711 		bnxt_close_nic(bp, true, false);
12712 
12713 	dev->mtu = new_mtu;
12714 	bnxt_set_ring_params(bp);
12715 
12716 	if (netif_running(dev))
12717 		return bnxt_open_nic(bp, true, false);
12718 
12719 	return 0;
12720 }
12721 
12722 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc)
12723 {
12724 	struct bnxt *bp = netdev_priv(dev);
12725 	bool sh = false;
12726 	int rc;
12727 
12728 	if (tc > bp->max_tc) {
12729 		netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n",
12730 			   tc, bp->max_tc);
12731 		return -EINVAL;
12732 	}
12733 
12734 	if (netdev_get_num_tc(dev) == tc)
12735 		return 0;
12736 
12737 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
12738 		sh = true;
12739 
12740 	rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings,
12741 			      sh, tc, bp->tx_nr_rings_xdp);
12742 	if (rc)
12743 		return rc;
12744 
12745 	/* Needs to close the device and do hw resource re-allocations */
12746 	if (netif_running(bp->dev))
12747 		bnxt_close_nic(bp, true, false);
12748 
12749 	if (tc) {
12750 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
12751 		netdev_set_num_tc(dev, tc);
12752 	} else {
12753 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
12754 		netdev_reset_tc(dev);
12755 	}
12756 	bp->tx_nr_rings += bp->tx_nr_rings_xdp;
12757 	bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
12758 			       bp->tx_nr_rings + bp->rx_nr_rings;
12759 
12760 	if (netif_running(bp->dev))
12761 		return bnxt_open_nic(bp, true, false);
12762 
12763 	return 0;
12764 }
12765 
12766 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
12767 				  void *cb_priv)
12768 {
12769 	struct bnxt *bp = cb_priv;
12770 
12771 	if (!bnxt_tc_flower_enabled(bp) ||
12772 	    !tc_cls_can_offload_and_chain0(bp->dev, type_data))
12773 		return -EOPNOTSUPP;
12774 
12775 	switch (type) {
12776 	case TC_SETUP_CLSFLOWER:
12777 		return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data);
12778 	default:
12779 		return -EOPNOTSUPP;
12780 	}
12781 }
12782 
12783 LIST_HEAD(bnxt_block_cb_list);
12784 
12785 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type,
12786 			 void *type_data)
12787 {
12788 	struct bnxt *bp = netdev_priv(dev);
12789 
12790 	switch (type) {
12791 	case TC_SETUP_BLOCK:
12792 		return flow_block_cb_setup_simple(type_data,
12793 						  &bnxt_block_cb_list,
12794 						  bnxt_setup_tc_block_cb,
12795 						  bp, bp, true);
12796 	case TC_SETUP_QDISC_MQPRIO: {
12797 		struct tc_mqprio_qopt *mqprio = type_data;
12798 
12799 		mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
12800 
12801 		return bnxt_setup_mq_tc(dev, mqprio->num_tc);
12802 	}
12803 	default:
12804 		return -EOPNOTSUPP;
12805 	}
12806 }
12807 
12808 #ifdef CONFIG_RFS_ACCEL
12809 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
12810 			    struct bnxt_ntuple_filter *f2)
12811 {
12812 	struct flow_keys *keys1 = &f1->fkeys;
12813 	struct flow_keys *keys2 = &f2->fkeys;
12814 
12815 	if (keys1->basic.n_proto != keys2->basic.n_proto ||
12816 	    keys1->basic.ip_proto != keys2->basic.ip_proto)
12817 		return false;
12818 
12819 	if (keys1->basic.n_proto == htons(ETH_P_IP)) {
12820 		if (keys1->addrs.v4addrs.src != keys2->addrs.v4addrs.src ||
12821 		    keys1->addrs.v4addrs.dst != keys2->addrs.v4addrs.dst)
12822 			return false;
12823 	} else {
12824 		if (memcmp(&keys1->addrs.v6addrs.src, &keys2->addrs.v6addrs.src,
12825 			   sizeof(keys1->addrs.v6addrs.src)) ||
12826 		    memcmp(&keys1->addrs.v6addrs.dst, &keys2->addrs.v6addrs.dst,
12827 			   sizeof(keys1->addrs.v6addrs.dst)))
12828 			return false;
12829 	}
12830 
12831 	if (keys1->ports.ports == keys2->ports.ports &&
12832 	    keys1->control.flags == keys2->control.flags &&
12833 	    ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) &&
12834 	    ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr))
12835 		return true;
12836 
12837 	return false;
12838 }
12839 
12840 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
12841 			      u16 rxq_index, u32 flow_id)
12842 {
12843 	struct bnxt *bp = netdev_priv(dev);
12844 	struct bnxt_ntuple_filter *fltr, *new_fltr;
12845 	struct flow_keys *fkeys;
12846 	struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
12847 	int rc = 0, idx, bit_id, l2_idx = 0;
12848 	struct hlist_head *head;
12849 	u32 flags;
12850 
12851 	if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) {
12852 		struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
12853 		int off = 0, j;
12854 
12855 		netif_addr_lock_bh(dev);
12856 		for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) {
12857 			if (ether_addr_equal(eth->h_dest,
12858 					     vnic->uc_list + off)) {
12859 				l2_idx = j + 1;
12860 				break;
12861 			}
12862 		}
12863 		netif_addr_unlock_bh(dev);
12864 		if (!l2_idx)
12865 			return -EINVAL;
12866 	}
12867 	new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
12868 	if (!new_fltr)
12869 		return -ENOMEM;
12870 
12871 	fkeys = &new_fltr->fkeys;
12872 	if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
12873 		rc = -EPROTONOSUPPORT;
12874 		goto err_free;
12875 	}
12876 
12877 	if ((fkeys->basic.n_proto != htons(ETH_P_IP) &&
12878 	     fkeys->basic.n_proto != htons(ETH_P_IPV6)) ||
12879 	    ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
12880 	     (fkeys->basic.ip_proto != IPPROTO_UDP))) {
12881 		rc = -EPROTONOSUPPORT;
12882 		goto err_free;
12883 	}
12884 	if (fkeys->basic.n_proto == htons(ETH_P_IPV6) &&
12885 	    bp->hwrm_spec_code < 0x10601) {
12886 		rc = -EPROTONOSUPPORT;
12887 		goto err_free;
12888 	}
12889 	flags = fkeys->control.flags;
12890 	if (((flags & FLOW_DIS_ENCAPSULATION) &&
12891 	     bp->hwrm_spec_code < 0x10601) || (flags & FLOW_DIS_IS_FRAGMENT)) {
12892 		rc = -EPROTONOSUPPORT;
12893 		goto err_free;
12894 	}
12895 
12896 	memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN);
12897 	memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
12898 
12899 	idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
12900 	head = &bp->ntp_fltr_hash_tbl[idx];
12901 	rcu_read_lock();
12902 	hlist_for_each_entry_rcu(fltr, head, hash) {
12903 		if (bnxt_fltr_match(fltr, new_fltr)) {
12904 			rcu_read_unlock();
12905 			rc = 0;
12906 			goto err_free;
12907 		}
12908 	}
12909 	rcu_read_unlock();
12910 
12911 	spin_lock_bh(&bp->ntp_fltr_lock);
12912 	bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
12913 					 BNXT_NTP_FLTR_MAX_FLTR, 0);
12914 	if (bit_id < 0) {
12915 		spin_unlock_bh(&bp->ntp_fltr_lock);
12916 		rc = -ENOMEM;
12917 		goto err_free;
12918 	}
12919 
12920 	new_fltr->sw_id = (u16)bit_id;
12921 	new_fltr->flow_id = flow_id;
12922 	new_fltr->l2_fltr_idx = l2_idx;
12923 	new_fltr->rxq = rxq_index;
12924 	hlist_add_head_rcu(&new_fltr->hash, head);
12925 	bp->ntp_fltr_count++;
12926 	spin_unlock_bh(&bp->ntp_fltr_lock);
12927 
12928 	set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
12929 	bnxt_queue_sp_work(bp);
12930 
12931 	return new_fltr->sw_id;
12932 
12933 err_free:
12934 	kfree(new_fltr);
12935 	return rc;
12936 }
12937 
12938 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
12939 {
12940 	int i;
12941 
12942 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
12943 		struct hlist_head *head;
12944 		struct hlist_node *tmp;
12945 		struct bnxt_ntuple_filter *fltr;
12946 		int rc;
12947 
12948 		head = &bp->ntp_fltr_hash_tbl[i];
12949 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
12950 			bool del = false;
12951 
12952 			if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
12953 				if (rps_may_expire_flow(bp->dev, fltr->rxq,
12954 							fltr->flow_id,
12955 							fltr->sw_id)) {
12956 					bnxt_hwrm_cfa_ntuple_filter_free(bp,
12957 									 fltr);
12958 					del = true;
12959 				}
12960 			} else {
12961 				rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
12962 								       fltr);
12963 				if (rc)
12964 					del = true;
12965 				else
12966 					set_bit(BNXT_FLTR_VALID, &fltr->state);
12967 			}
12968 
12969 			if (del) {
12970 				spin_lock_bh(&bp->ntp_fltr_lock);
12971 				hlist_del_rcu(&fltr->hash);
12972 				bp->ntp_fltr_count--;
12973 				spin_unlock_bh(&bp->ntp_fltr_lock);
12974 				synchronize_rcu();
12975 				clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
12976 				kfree(fltr);
12977 			}
12978 		}
12979 	}
12980 	if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event))
12981 		netdev_info(bp->dev, "Receive PF driver unload event!\n");
12982 }
12983 
12984 #else
12985 
12986 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
12987 {
12988 }
12989 
12990 #endif /* CONFIG_RFS_ACCEL */
12991 
12992 static int bnxt_udp_tunnel_sync(struct net_device *netdev, unsigned int table)
12993 {
12994 	struct bnxt *bp = netdev_priv(netdev);
12995 	struct udp_tunnel_info ti;
12996 	unsigned int cmd;
12997 
12998 	udp_tunnel_nic_get_port(netdev, table, 0, &ti);
12999 	if (ti.type == UDP_TUNNEL_TYPE_VXLAN)
13000 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN;
13001 	else
13002 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE;
13003 
13004 	if (ti.port)
13005 		return bnxt_hwrm_tunnel_dst_port_alloc(bp, ti.port, cmd);
13006 
13007 	return bnxt_hwrm_tunnel_dst_port_free(bp, cmd);
13008 }
13009 
13010 static const struct udp_tunnel_nic_info bnxt_udp_tunnels = {
13011 	.sync_table	= bnxt_udp_tunnel_sync,
13012 	.flags		= UDP_TUNNEL_NIC_INFO_MAY_SLEEP |
13013 			  UDP_TUNNEL_NIC_INFO_OPEN_ONLY,
13014 	.tables		= {
13015 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN,  },
13016 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
13017 	},
13018 };
13019 
13020 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
13021 			       struct net_device *dev, u32 filter_mask,
13022 			       int nlflags)
13023 {
13024 	struct bnxt *bp = netdev_priv(dev);
13025 
13026 	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0,
13027 				       nlflags, filter_mask, NULL);
13028 }
13029 
13030 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
13031 			       u16 flags, struct netlink_ext_ack *extack)
13032 {
13033 	struct bnxt *bp = netdev_priv(dev);
13034 	struct nlattr *attr, *br_spec;
13035 	int rem, rc = 0;
13036 
13037 	if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp))
13038 		return -EOPNOTSUPP;
13039 
13040 	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
13041 	if (!br_spec)
13042 		return -EINVAL;
13043 
13044 	nla_for_each_nested(attr, br_spec, rem) {
13045 		u16 mode;
13046 
13047 		if (nla_type(attr) != IFLA_BRIDGE_MODE)
13048 			continue;
13049 
13050 		if (nla_len(attr) < sizeof(mode))
13051 			return -EINVAL;
13052 
13053 		mode = nla_get_u16(attr);
13054 		if (mode == bp->br_mode)
13055 			break;
13056 
13057 		rc = bnxt_hwrm_set_br_mode(bp, mode);
13058 		if (!rc)
13059 			bp->br_mode = mode;
13060 		break;
13061 	}
13062 	return rc;
13063 }
13064 
13065 int bnxt_get_port_parent_id(struct net_device *dev,
13066 			    struct netdev_phys_item_id *ppid)
13067 {
13068 	struct bnxt *bp = netdev_priv(dev);
13069 
13070 	if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV)
13071 		return -EOPNOTSUPP;
13072 
13073 	/* The PF and it's VF-reps only support the switchdev framework */
13074 	if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_DSN_VALID))
13075 		return -EOPNOTSUPP;
13076 
13077 	ppid->id_len = sizeof(bp->dsn);
13078 	memcpy(ppid->id, bp->dsn, ppid->id_len);
13079 
13080 	return 0;
13081 }
13082 
13083 static struct devlink_port *bnxt_get_devlink_port(struct net_device *dev)
13084 {
13085 	struct bnxt *bp = netdev_priv(dev);
13086 
13087 	return &bp->dl_port;
13088 }
13089 
13090 static const struct net_device_ops bnxt_netdev_ops = {
13091 	.ndo_open		= bnxt_open,
13092 	.ndo_start_xmit		= bnxt_start_xmit,
13093 	.ndo_stop		= bnxt_close,
13094 	.ndo_get_stats64	= bnxt_get_stats64,
13095 	.ndo_set_rx_mode	= bnxt_set_rx_mode,
13096 	.ndo_eth_ioctl		= bnxt_ioctl,
13097 	.ndo_validate_addr	= eth_validate_addr,
13098 	.ndo_set_mac_address	= bnxt_change_mac_addr,
13099 	.ndo_change_mtu		= bnxt_change_mtu,
13100 	.ndo_fix_features	= bnxt_fix_features,
13101 	.ndo_set_features	= bnxt_set_features,
13102 	.ndo_features_check	= bnxt_features_check,
13103 	.ndo_tx_timeout		= bnxt_tx_timeout,
13104 #ifdef CONFIG_BNXT_SRIOV
13105 	.ndo_get_vf_config	= bnxt_get_vf_config,
13106 	.ndo_set_vf_mac		= bnxt_set_vf_mac,
13107 	.ndo_set_vf_vlan	= bnxt_set_vf_vlan,
13108 	.ndo_set_vf_rate	= bnxt_set_vf_bw,
13109 	.ndo_set_vf_link_state	= bnxt_set_vf_link_state,
13110 	.ndo_set_vf_spoofchk	= bnxt_set_vf_spoofchk,
13111 	.ndo_set_vf_trust	= bnxt_set_vf_trust,
13112 #endif
13113 	.ndo_setup_tc           = bnxt_setup_tc,
13114 #ifdef CONFIG_RFS_ACCEL
13115 	.ndo_rx_flow_steer	= bnxt_rx_flow_steer,
13116 #endif
13117 	.ndo_bpf		= bnxt_xdp,
13118 	.ndo_xdp_xmit		= bnxt_xdp_xmit,
13119 	.ndo_bridge_getlink	= bnxt_bridge_getlink,
13120 	.ndo_bridge_setlink	= bnxt_bridge_setlink,
13121 	.ndo_get_devlink_port	= bnxt_get_devlink_port,
13122 };
13123 
13124 static void bnxt_remove_one(struct pci_dev *pdev)
13125 {
13126 	struct net_device *dev = pci_get_drvdata(pdev);
13127 	struct bnxt *bp = netdev_priv(dev);
13128 
13129 	if (BNXT_PF(bp))
13130 		bnxt_sriov_disable(bp);
13131 
13132 	if (BNXT_PF(bp))
13133 		devlink_port_type_clear(&bp->dl_port);
13134 
13135 	bnxt_ptp_clear(bp);
13136 	pci_disable_pcie_error_reporting(pdev);
13137 	unregister_netdev(dev);
13138 	clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
13139 	/* Flush any pending tasks */
13140 	cancel_work_sync(&bp->sp_task);
13141 	cancel_delayed_work_sync(&bp->fw_reset_task);
13142 	bp->sp_event = 0;
13143 
13144 	bnxt_dl_fw_reporters_destroy(bp);
13145 	bnxt_dl_unregister(bp);
13146 	bnxt_shutdown_tc(bp);
13147 
13148 	bnxt_clear_int_mode(bp);
13149 	bnxt_hwrm_func_drv_unrgtr(bp);
13150 	bnxt_free_hwrm_resources(bp);
13151 	bnxt_ethtool_free(bp);
13152 	bnxt_dcb_free(bp);
13153 	kfree(bp->edev);
13154 	bp->edev = NULL;
13155 	kfree(bp->ptp_cfg);
13156 	bp->ptp_cfg = NULL;
13157 	kfree(bp->fw_health);
13158 	bp->fw_health = NULL;
13159 	bnxt_cleanup_pci(bp);
13160 	bnxt_free_ctx_mem(bp);
13161 	kfree(bp->ctx);
13162 	bp->ctx = NULL;
13163 	kfree(bp->rss_indir_tbl);
13164 	bp->rss_indir_tbl = NULL;
13165 	bnxt_free_port_stats(bp);
13166 	free_netdev(dev);
13167 }
13168 
13169 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt)
13170 {
13171 	int rc = 0;
13172 	struct bnxt_link_info *link_info = &bp->link_info;
13173 
13174 	bp->phy_flags = 0;
13175 	rc = bnxt_hwrm_phy_qcaps(bp);
13176 	if (rc) {
13177 		netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n",
13178 			   rc);
13179 		return rc;
13180 	}
13181 	if (bp->phy_flags & BNXT_PHY_FL_NO_FCS)
13182 		bp->dev->priv_flags |= IFF_SUPP_NOFCS;
13183 	else
13184 		bp->dev->priv_flags &= ~IFF_SUPP_NOFCS;
13185 	if (!fw_dflt)
13186 		return 0;
13187 
13188 	mutex_lock(&bp->link_lock);
13189 	rc = bnxt_update_link(bp, false);
13190 	if (rc) {
13191 		mutex_unlock(&bp->link_lock);
13192 		netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
13193 			   rc);
13194 		return rc;
13195 	}
13196 
13197 	/* Older firmware does not have supported_auto_speeds, so assume
13198 	 * that all supported speeds can be autonegotiated.
13199 	 */
13200 	if (link_info->auto_link_speeds && !link_info->support_auto_speeds)
13201 		link_info->support_auto_speeds = link_info->support_speeds;
13202 
13203 	bnxt_init_ethtool_link_settings(bp);
13204 	mutex_unlock(&bp->link_lock);
13205 	return 0;
13206 }
13207 
13208 static int bnxt_get_max_irq(struct pci_dev *pdev)
13209 {
13210 	u16 ctrl;
13211 
13212 	if (!pdev->msix_cap)
13213 		return 1;
13214 
13215 	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
13216 	return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
13217 }
13218 
13219 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
13220 				int *max_cp)
13221 {
13222 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
13223 	int max_ring_grps = 0, max_irq;
13224 
13225 	*max_tx = hw_resc->max_tx_rings;
13226 	*max_rx = hw_resc->max_rx_rings;
13227 	*max_cp = bnxt_get_max_func_cp_rings_for_en(bp);
13228 	max_irq = min_t(int, bnxt_get_max_func_irqs(bp) -
13229 			bnxt_get_ulp_msix_num(bp),
13230 			hw_resc->max_stat_ctxs - bnxt_get_ulp_stat_ctxs(bp));
13231 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
13232 		*max_cp = min_t(int, *max_cp, max_irq);
13233 	max_ring_grps = hw_resc->max_hw_ring_grps;
13234 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) {
13235 		*max_cp -= 1;
13236 		*max_rx -= 2;
13237 	}
13238 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
13239 		*max_rx >>= 1;
13240 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
13241 		bnxt_trim_rings(bp, max_rx, max_tx, *max_cp, false);
13242 		/* On P5 chips, max_cp output param should be available NQs */
13243 		*max_cp = max_irq;
13244 	}
13245 	*max_rx = min_t(int, *max_rx, max_ring_grps);
13246 }
13247 
13248 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
13249 {
13250 	int rx, tx, cp;
13251 
13252 	_bnxt_get_max_rings(bp, &rx, &tx, &cp);
13253 	*max_rx = rx;
13254 	*max_tx = tx;
13255 	if (!rx || !tx || !cp)
13256 		return -ENOMEM;
13257 
13258 	return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
13259 }
13260 
13261 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx,
13262 			       bool shared)
13263 {
13264 	int rc;
13265 
13266 	rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
13267 	if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) {
13268 		/* Not enough rings, try disabling agg rings. */
13269 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
13270 		rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
13271 		if (rc) {
13272 			/* set BNXT_FLAG_AGG_RINGS back for consistency */
13273 			bp->flags |= BNXT_FLAG_AGG_RINGS;
13274 			return rc;
13275 		}
13276 		bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
13277 		bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
13278 		bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
13279 		bnxt_set_ring_params(bp);
13280 	}
13281 
13282 	if (bp->flags & BNXT_FLAG_ROCE_CAP) {
13283 		int max_cp, max_stat, max_irq;
13284 
13285 		/* Reserve minimum resources for RoCE */
13286 		max_cp = bnxt_get_max_func_cp_rings(bp);
13287 		max_stat = bnxt_get_max_func_stat_ctxs(bp);
13288 		max_irq = bnxt_get_max_func_irqs(bp);
13289 		if (max_cp <= BNXT_MIN_ROCE_CP_RINGS ||
13290 		    max_irq <= BNXT_MIN_ROCE_CP_RINGS ||
13291 		    max_stat <= BNXT_MIN_ROCE_STAT_CTXS)
13292 			return 0;
13293 
13294 		max_cp -= BNXT_MIN_ROCE_CP_RINGS;
13295 		max_irq -= BNXT_MIN_ROCE_CP_RINGS;
13296 		max_stat -= BNXT_MIN_ROCE_STAT_CTXS;
13297 		max_cp = min_t(int, max_cp, max_irq);
13298 		max_cp = min_t(int, max_cp, max_stat);
13299 		rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared);
13300 		if (rc)
13301 			rc = 0;
13302 	}
13303 	return rc;
13304 }
13305 
13306 /* In initial default shared ring setting, each shared ring must have a
13307  * RX/TX ring pair.
13308  */
13309 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp)
13310 {
13311 	bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings);
13312 	bp->rx_nr_rings = bp->cp_nr_rings;
13313 	bp->tx_nr_rings_per_tc = bp->cp_nr_rings;
13314 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
13315 }
13316 
13317 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh)
13318 {
13319 	int dflt_rings, max_rx_rings, max_tx_rings, rc;
13320 
13321 	if (!bnxt_can_reserve_rings(bp))
13322 		return 0;
13323 
13324 	if (sh)
13325 		bp->flags |= BNXT_FLAG_SHARED_RINGS;
13326 	dflt_rings = is_kdump_kernel() ? 1 : netif_get_num_default_rss_queues();
13327 	/* Reduce default rings on multi-port cards so that total default
13328 	 * rings do not exceed CPU count.
13329 	 */
13330 	if (bp->port_count > 1) {
13331 		int max_rings =
13332 			max_t(int, num_online_cpus() / bp->port_count, 1);
13333 
13334 		dflt_rings = min_t(int, dflt_rings, max_rings);
13335 	}
13336 	rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh);
13337 	if (rc)
13338 		return rc;
13339 	bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
13340 	bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
13341 	if (sh)
13342 		bnxt_trim_dflt_sh_rings(bp);
13343 	else
13344 		bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings;
13345 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
13346 
13347 	rc = __bnxt_reserve_rings(bp);
13348 	if (rc && rc != -ENODEV)
13349 		netdev_warn(bp->dev, "Unable to reserve tx rings\n");
13350 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
13351 	if (sh)
13352 		bnxt_trim_dflt_sh_rings(bp);
13353 
13354 	/* Rings may have been trimmed, re-reserve the trimmed rings. */
13355 	if (bnxt_need_reserve_rings(bp)) {
13356 		rc = __bnxt_reserve_rings(bp);
13357 		if (rc && rc != -ENODEV)
13358 			netdev_warn(bp->dev, "2nd rings reservation failed.\n");
13359 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
13360 	}
13361 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
13362 		bp->rx_nr_rings++;
13363 		bp->cp_nr_rings++;
13364 	}
13365 	if (rc) {
13366 		bp->tx_nr_rings = 0;
13367 		bp->rx_nr_rings = 0;
13368 	}
13369 	return rc;
13370 }
13371 
13372 static int bnxt_init_dflt_ring_mode(struct bnxt *bp)
13373 {
13374 	int rc;
13375 
13376 	if (bp->tx_nr_rings)
13377 		return 0;
13378 
13379 	bnxt_ulp_irq_stop(bp);
13380 	bnxt_clear_int_mode(bp);
13381 	rc = bnxt_set_dflt_rings(bp, true);
13382 	if (rc) {
13383 		if (BNXT_VF(bp) && rc == -ENODEV)
13384 			netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n");
13385 		else
13386 			netdev_err(bp->dev, "Not enough rings available.\n");
13387 		goto init_dflt_ring_err;
13388 	}
13389 	rc = bnxt_init_int_mode(bp);
13390 	if (rc)
13391 		goto init_dflt_ring_err;
13392 
13393 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
13394 
13395 	bnxt_set_dflt_rfs(bp);
13396 
13397 init_dflt_ring_err:
13398 	bnxt_ulp_irq_restart(bp, rc);
13399 	return rc;
13400 }
13401 
13402 int bnxt_restore_pf_fw_resources(struct bnxt *bp)
13403 {
13404 	int rc;
13405 
13406 	ASSERT_RTNL();
13407 	bnxt_hwrm_func_qcaps(bp);
13408 
13409 	if (netif_running(bp->dev))
13410 		__bnxt_close_nic(bp, true, false);
13411 
13412 	bnxt_ulp_irq_stop(bp);
13413 	bnxt_clear_int_mode(bp);
13414 	rc = bnxt_init_int_mode(bp);
13415 	bnxt_ulp_irq_restart(bp, rc);
13416 
13417 	if (netif_running(bp->dev)) {
13418 		if (rc)
13419 			dev_close(bp->dev);
13420 		else
13421 			rc = bnxt_open_nic(bp, true, false);
13422 	}
13423 
13424 	return rc;
13425 }
13426 
13427 static int bnxt_init_mac_addr(struct bnxt *bp)
13428 {
13429 	int rc = 0;
13430 
13431 	if (BNXT_PF(bp)) {
13432 		eth_hw_addr_set(bp->dev, bp->pf.mac_addr);
13433 	} else {
13434 #ifdef CONFIG_BNXT_SRIOV
13435 		struct bnxt_vf_info *vf = &bp->vf;
13436 		bool strict_approval = true;
13437 
13438 		if (is_valid_ether_addr(vf->mac_addr)) {
13439 			/* overwrite netdev dev_addr with admin VF MAC */
13440 			eth_hw_addr_set(bp->dev, vf->mac_addr);
13441 			/* Older PF driver or firmware may not approve this
13442 			 * correctly.
13443 			 */
13444 			strict_approval = false;
13445 		} else {
13446 			eth_hw_addr_random(bp->dev);
13447 		}
13448 		rc = bnxt_approve_mac(bp, bp->dev->dev_addr, strict_approval);
13449 #endif
13450 	}
13451 	return rc;
13452 }
13453 
13454 static void bnxt_vpd_read_info(struct bnxt *bp)
13455 {
13456 	struct pci_dev *pdev = bp->pdev;
13457 	unsigned int vpd_size, kw_len;
13458 	int pos, size;
13459 	u8 *vpd_data;
13460 
13461 	vpd_data = pci_vpd_alloc(pdev, &vpd_size);
13462 	if (IS_ERR(vpd_data)) {
13463 		pci_warn(pdev, "Unable to read VPD\n");
13464 		return;
13465 	}
13466 
13467 	pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
13468 					   PCI_VPD_RO_KEYWORD_PARTNO, &kw_len);
13469 	if (pos < 0)
13470 		goto read_sn;
13471 
13472 	size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1);
13473 	memcpy(bp->board_partno, &vpd_data[pos], size);
13474 
13475 read_sn:
13476 	pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
13477 					   PCI_VPD_RO_KEYWORD_SERIALNO,
13478 					   &kw_len);
13479 	if (pos < 0)
13480 		goto exit;
13481 
13482 	size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1);
13483 	memcpy(bp->board_serialno, &vpd_data[pos], size);
13484 exit:
13485 	kfree(vpd_data);
13486 }
13487 
13488 static int bnxt_pcie_dsn_get(struct bnxt *bp, u8 dsn[])
13489 {
13490 	struct pci_dev *pdev = bp->pdev;
13491 	u64 qword;
13492 
13493 	qword = pci_get_dsn(pdev);
13494 	if (!qword) {
13495 		netdev_info(bp->dev, "Unable to read adapter's DSN\n");
13496 		return -EOPNOTSUPP;
13497 	}
13498 
13499 	put_unaligned_le64(qword, dsn);
13500 
13501 	bp->flags |= BNXT_FLAG_DSN_VALID;
13502 	return 0;
13503 }
13504 
13505 static int bnxt_map_db_bar(struct bnxt *bp)
13506 {
13507 	if (!bp->db_size)
13508 		return -ENODEV;
13509 	bp->bar1 = pci_iomap(bp->pdev, 2, bp->db_size);
13510 	if (!bp->bar1)
13511 		return -ENOMEM;
13512 	return 0;
13513 }
13514 
13515 void bnxt_print_device_info(struct bnxt *bp)
13516 {
13517 	netdev_info(bp->dev, "%s found at mem %lx, node addr %pM\n",
13518 		    board_info[bp->board_idx].name,
13519 		    (long)pci_resource_start(bp->pdev, 0), bp->dev->dev_addr);
13520 
13521 	pcie_print_link_status(bp->pdev);
13522 }
13523 
13524 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
13525 {
13526 	struct net_device *dev;
13527 	struct bnxt *bp;
13528 	int rc, max_irqs;
13529 
13530 	if (pci_is_bridge(pdev))
13531 		return -ENODEV;
13532 
13533 	/* Clear any pending DMA transactions from crash kernel
13534 	 * while loading driver in capture kernel.
13535 	 */
13536 	if (is_kdump_kernel()) {
13537 		pci_clear_master(pdev);
13538 		pcie_flr(pdev);
13539 	}
13540 
13541 	max_irqs = bnxt_get_max_irq(pdev);
13542 	dev = alloc_etherdev_mq(sizeof(*bp), max_irqs);
13543 	if (!dev)
13544 		return -ENOMEM;
13545 
13546 	bp = netdev_priv(dev);
13547 	bp->board_idx = ent->driver_data;
13548 	bp->msg_enable = BNXT_DEF_MSG_ENABLE;
13549 	bnxt_set_max_func_irqs(bp, max_irqs);
13550 
13551 	if (bnxt_vf_pciid(bp->board_idx))
13552 		bp->flags |= BNXT_FLAG_VF;
13553 
13554 	if (pdev->msix_cap)
13555 		bp->flags |= BNXT_FLAG_MSIX_CAP;
13556 
13557 	rc = bnxt_init_board(pdev, dev);
13558 	if (rc < 0)
13559 		goto init_err_free;
13560 
13561 	dev->netdev_ops = &bnxt_netdev_ops;
13562 	dev->watchdog_timeo = BNXT_TX_TIMEOUT;
13563 	dev->ethtool_ops = &bnxt_ethtool_ops;
13564 	pci_set_drvdata(pdev, dev);
13565 
13566 	rc = bnxt_alloc_hwrm_resources(bp);
13567 	if (rc)
13568 		goto init_err_pci_clean;
13569 
13570 	mutex_init(&bp->hwrm_cmd_lock);
13571 	mutex_init(&bp->link_lock);
13572 
13573 	rc = bnxt_fw_init_one_p1(bp);
13574 	if (rc)
13575 		goto init_err_pci_clean;
13576 
13577 	if (BNXT_PF(bp))
13578 		bnxt_vpd_read_info(bp);
13579 
13580 	if (BNXT_CHIP_P5(bp)) {
13581 		bp->flags |= BNXT_FLAG_CHIP_P5;
13582 		if (BNXT_CHIP_SR2(bp))
13583 			bp->flags |= BNXT_FLAG_CHIP_SR2;
13584 	}
13585 
13586 	rc = bnxt_alloc_rss_indir_tbl(bp);
13587 	if (rc)
13588 		goto init_err_pci_clean;
13589 
13590 	rc = bnxt_fw_init_one_p2(bp);
13591 	if (rc)
13592 		goto init_err_pci_clean;
13593 
13594 	rc = bnxt_map_db_bar(bp);
13595 	if (rc) {
13596 		dev_err(&pdev->dev, "Cannot map doorbell BAR rc = %d, aborting\n",
13597 			rc);
13598 		goto init_err_pci_clean;
13599 	}
13600 
13601 	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
13602 			   NETIF_F_TSO | NETIF_F_TSO6 |
13603 			   NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
13604 			   NETIF_F_GSO_IPXIP4 |
13605 			   NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
13606 			   NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH |
13607 			   NETIF_F_RXCSUM | NETIF_F_GRO;
13608 
13609 	if (BNXT_SUPPORTS_TPA(bp))
13610 		dev->hw_features |= NETIF_F_LRO;
13611 
13612 	dev->hw_enc_features =
13613 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
13614 			NETIF_F_TSO | NETIF_F_TSO6 |
13615 			NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
13616 			NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
13617 			NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL;
13618 	dev->udp_tunnel_nic_info = &bnxt_udp_tunnels;
13619 
13620 	dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM |
13621 				    NETIF_F_GSO_GRE_CSUM;
13622 	dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
13623 	if (bp->fw_cap & BNXT_FW_CAP_VLAN_RX_STRIP)
13624 		dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_RX;
13625 	if (bp->fw_cap & BNXT_FW_CAP_VLAN_TX_INSERT)
13626 		dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_TX;
13627 	if (BNXT_SUPPORTS_TPA(bp))
13628 		dev->hw_features |= NETIF_F_GRO_HW;
13629 	dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
13630 	if (dev->features & NETIF_F_GRO_HW)
13631 		dev->features &= ~NETIF_F_LRO;
13632 	dev->priv_flags |= IFF_UNICAST_FLT;
13633 
13634 #ifdef CONFIG_BNXT_SRIOV
13635 	init_waitqueue_head(&bp->sriov_cfg_wait);
13636 #endif
13637 	if (BNXT_SUPPORTS_TPA(bp)) {
13638 		bp->gro_func = bnxt_gro_func_5730x;
13639 		if (BNXT_CHIP_P4(bp))
13640 			bp->gro_func = bnxt_gro_func_5731x;
13641 		else if (BNXT_CHIP_P5(bp))
13642 			bp->gro_func = bnxt_gro_func_5750x;
13643 	}
13644 	if (!BNXT_CHIP_P4_PLUS(bp))
13645 		bp->flags |= BNXT_FLAG_DOUBLE_DB;
13646 
13647 	rc = bnxt_init_mac_addr(bp);
13648 	if (rc) {
13649 		dev_err(&pdev->dev, "Unable to initialize mac address.\n");
13650 		rc = -EADDRNOTAVAIL;
13651 		goto init_err_pci_clean;
13652 	}
13653 
13654 	if (BNXT_PF(bp)) {
13655 		/* Read the adapter's DSN to use as the eswitch switch_id */
13656 		rc = bnxt_pcie_dsn_get(bp, bp->dsn);
13657 	}
13658 
13659 	/* MTU range: 60 - FW defined max */
13660 	dev->min_mtu = ETH_ZLEN;
13661 	dev->max_mtu = bp->max_mtu;
13662 
13663 	rc = bnxt_probe_phy(bp, true);
13664 	if (rc)
13665 		goto init_err_pci_clean;
13666 
13667 	bnxt_set_rx_skb_mode(bp, false);
13668 	bnxt_set_tpa_flags(bp);
13669 	bnxt_set_ring_params(bp);
13670 	rc = bnxt_set_dflt_rings(bp, true);
13671 	if (rc) {
13672 		if (BNXT_VF(bp) && rc == -ENODEV) {
13673 			netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n");
13674 		} else {
13675 			netdev_err(bp->dev, "Not enough rings available.\n");
13676 			rc = -ENOMEM;
13677 		}
13678 		goto init_err_pci_clean;
13679 	}
13680 
13681 	bnxt_fw_init_one_p3(bp);
13682 
13683 	bnxt_init_dflt_coal(bp);
13684 
13685 	if (dev->hw_features & BNXT_HW_FEATURE_VLAN_ALL_RX)
13686 		bp->flags |= BNXT_FLAG_STRIP_VLAN;
13687 
13688 	rc = bnxt_init_int_mode(bp);
13689 	if (rc)
13690 		goto init_err_pci_clean;
13691 
13692 	/* No TC has been set yet and rings may have been trimmed due to
13693 	 * limited MSIX, so we re-initialize the TX rings per TC.
13694 	 */
13695 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
13696 
13697 	if (BNXT_PF(bp)) {
13698 		if (!bnxt_pf_wq) {
13699 			bnxt_pf_wq =
13700 				create_singlethread_workqueue("bnxt_pf_wq");
13701 			if (!bnxt_pf_wq) {
13702 				dev_err(&pdev->dev, "Unable to create workqueue.\n");
13703 				rc = -ENOMEM;
13704 				goto init_err_pci_clean;
13705 			}
13706 		}
13707 		rc = bnxt_init_tc(bp);
13708 		if (rc)
13709 			netdev_err(dev, "Failed to initialize TC flower offload, err = %d.\n",
13710 				   rc);
13711 	}
13712 
13713 	bnxt_inv_fw_health_reg(bp);
13714 	rc = bnxt_dl_register(bp);
13715 	if (rc)
13716 		goto init_err_dl;
13717 
13718 	rc = register_netdev(dev);
13719 	if (rc)
13720 		goto init_err_cleanup;
13721 
13722 	if (BNXT_PF(bp))
13723 		devlink_port_type_eth_set(&bp->dl_port, bp->dev);
13724 	bnxt_dl_fw_reporters_create(bp);
13725 
13726 	bnxt_print_device_info(bp);
13727 
13728 	pci_save_state(pdev);
13729 	return 0;
13730 
13731 init_err_cleanup:
13732 	bnxt_dl_unregister(bp);
13733 init_err_dl:
13734 	bnxt_shutdown_tc(bp);
13735 	bnxt_clear_int_mode(bp);
13736 
13737 init_err_pci_clean:
13738 	bnxt_hwrm_func_drv_unrgtr(bp);
13739 	bnxt_free_hwrm_resources(bp);
13740 	bnxt_ethtool_free(bp);
13741 	bnxt_ptp_clear(bp);
13742 	kfree(bp->ptp_cfg);
13743 	bp->ptp_cfg = NULL;
13744 	kfree(bp->fw_health);
13745 	bp->fw_health = NULL;
13746 	bnxt_cleanup_pci(bp);
13747 	bnxt_free_ctx_mem(bp);
13748 	kfree(bp->ctx);
13749 	bp->ctx = NULL;
13750 	kfree(bp->rss_indir_tbl);
13751 	bp->rss_indir_tbl = NULL;
13752 
13753 init_err_free:
13754 	free_netdev(dev);
13755 	return rc;
13756 }
13757 
13758 static void bnxt_shutdown(struct pci_dev *pdev)
13759 {
13760 	struct net_device *dev = pci_get_drvdata(pdev);
13761 	struct bnxt *bp;
13762 
13763 	if (!dev)
13764 		return;
13765 
13766 	rtnl_lock();
13767 	bp = netdev_priv(dev);
13768 	if (!bp)
13769 		goto shutdown_exit;
13770 
13771 	if (netif_running(dev))
13772 		dev_close(dev);
13773 
13774 	bnxt_ulp_shutdown(bp);
13775 	bnxt_clear_int_mode(bp);
13776 	pci_disable_device(pdev);
13777 
13778 	if (system_state == SYSTEM_POWER_OFF) {
13779 		pci_wake_from_d3(pdev, bp->wol);
13780 		pci_set_power_state(pdev, PCI_D3hot);
13781 	}
13782 
13783 shutdown_exit:
13784 	rtnl_unlock();
13785 }
13786 
13787 #ifdef CONFIG_PM_SLEEP
13788 static int bnxt_suspend(struct device *device)
13789 {
13790 	struct net_device *dev = dev_get_drvdata(device);
13791 	struct bnxt *bp = netdev_priv(dev);
13792 	int rc = 0;
13793 
13794 	rtnl_lock();
13795 	bnxt_ulp_stop(bp);
13796 	if (netif_running(dev)) {
13797 		netif_device_detach(dev);
13798 		rc = bnxt_close(dev);
13799 	}
13800 	bnxt_hwrm_func_drv_unrgtr(bp);
13801 	pci_disable_device(bp->pdev);
13802 	bnxt_free_ctx_mem(bp);
13803 	kfree(bp->ctx);
13804 	bp->ctx = NULL;
13805 	rtnl_unlock();
13806 	return rc;
13807 }
13808 
13809 static int bnxt_resume(struct device *device)
13810 {
13811 	struct net_device *dev = dev_get_drvdata(device);
13812 	struct bnxt *bp = netdev_priv(dev);
13813 	int rc = 0;
13814 
13815 	rtnl_lock();
13816 	rc = pci_enable_device(bp->pdev);
13817 	if (rc) {
13818 		netdev_err(dev, "Cannot re-enable PCI device during resume, err = %d\n",
13819 			   rc);
13820 		goto resume_exit;
13821 	}
13822 	pci_set_master(bp->pdev);
13823 	if (bnxt_hwrm_ver_get(bp)) {
13824 		rc = -ENODEV;
13825 		goto resume_exit;
13826 	}
13827 	rc = bnxt_hwrm_func_reset(bp);
13828 	if (rc) {
13829 		rc = -EBUSY;
13830 		goto resume_exit;
13831 	}
13832 
13833 	rc = bnxt_hwrm_func_qcaps(bp);
13834 	if (rc)
13835 		goto resume_exit;
13836 
13837 	if (bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false)) {
13838 		rc = -ENODEV;
13839 		goto resume_exit;
13840 	}
13841 
13842 	bnxt_get_wol_settings(bp);
13843 	if (netif_running(dev)) {
13844 		rc = bnxt_open(dev);
13845 		if (!rc)
13846 			netif_device_attach(dev);
13847 	}
13848 
13849 resume_exit:
13850 	bnxt_ulp_start(bp, rc);
13851 	if (!rc)
13852 		bnxt_reenable_sriov(bp);
13853 	rtnl_unlock();
13854 	return rc;
13855 }
13856 
13857 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume);
13858 #define BNXT_PM_OPS (&bnxt_pm_ops)
13859 
13860 #else
13861 
13862 #define BNXT_PM_OPS NULL
13863 
13864 #endif /* CONFIG_PM_SLEEP */
13865 
13866 /**
13867  * bnxt_io_error_detected - called when PCI error is detected
13868  * @pdev: Pointer to PCI device
13869  * @state: The current pci connection state
13870  *
13871  * This function is called after a PCI bus error affecting
13872  * this device has been detected.
13873  */
13874 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev,
13875 					       pci_channel_state_t state)
13876 {
13877 	struct net_device *netdev = pci_get_drvdata(pdev);
13878 	struct bnxt *bp = netdev_priv(netdev);
13879 
13880 	netdev_info(netdev, "PCI I/O error detected\n");
13881 
13882 	rtnl_lock();
13883 	netif_device_detach(netdev);
13884 
13885 	bnxt_ulp_stop(bp);
13886 
13887 	if (state == pci_channel_io_perm_failure) {
13888 		rtnl_unlock();
13889 		return PCI_ERS_RESULT_DISCONNECT;
13890 	}
13891 
13892 	if (state == pci_channel_io_frozen)
13893 		set_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, &bp->state);
13894 
13895 	if (netif_running(netdev))
13896 		bnxt_close(netdev);
13897 
13898 	if (pci_is_enabled(pdev))
13899 		pci_disable_device(pdev);
13900 	bnxt_free_ctx_mem(bp);
13901 	kfree(bp->ctx);
13902 	bp->ctx = NULL;
13903 	rtnl_unlock();
13904 
13905 	/* Request a slot slot reset. */
13906 	return PCI_ERS_RESULT_NEED_RESET;
13907 }
13908 
13909 /**
13910  * bnxt_io_slot_reset - called after the pci bus has been reset.
13911  * @pdev: Pointer to PCI device
13912  *
13913  * Restart the card from scratch, as if from a cold-boot.
13914  * At this point, the card has exprienced a hard reset,
13915  * followed by fixups by BIOS, and has its config space
13916  * set up identically to what it was at cold boot.
13917  */
13918 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev)
13919 {
13920 	pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
13921 	struct net_device *netdev = pci_get_drvdata(pdev);
13922 	struct bnxt *bp = netdev_priv(netdev);
13923 	int err = 0, off;
13924 
13925 	netdev_info(bp->dev, "PCI Slot Reset\n");
13926 
13927 	rtnl_lock();
13928 
13929 	if (pci_enable_device(pdev)) {
13930 		dev_err(&pdev->dev,
13931 			"Cannot re-enable PCI device after reset.\n");
13932 	} else {
13933 		pci_set_master(pdev);
13934 		/* Upon fatal error, our device internal logic that latches to
13935 		 * BAR value is getting reset and will restore only upon
13936 		 * rewritting the BARs.
13937 		 *
13938 		 * As pci_restore_state() does not re-write the BARs if the
13939 		 * value is same as saved value earlier, driver needs to
13940 		 * write the BARs to 0 to force restore, in case of fatal error.
13941 		 */
13942 		if (test_and_clear_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN,
13943 				       &bp->state)) {
13944 			for (off = PCI_BASE_ADDRESS_0;
13945 			     off <= PCI_BASE_ADDRESS_5; off += 4)
13946 				pci_write_config_dword(bp->pdev, off, 0);
13947 		}
13948 		pci_restore_state(pdev);
13949 		pci_save_state(pdev);
13950 
13951 		err = bnxt_hwrm_func_reset(bp);
13952 		if (!err)
13953 			result = PCI_ERS_RESULT_RECOVERED;
13954 	}
13955 
13956 	rtnl_unlock();
13957 
13958 	return result;
13959 }
13960 
13961 /**
13962  * bnxt_io_resume - called when traffic can start flowing again.
13963  * @pdev: Pointer to PCI device
13964  *
13965  * This callback is called when the error recovery driver tells
13966  * us that its OK to resume normal operation.
13967  */
13968 static void bnxt_io_resume(struct pci_dev *pdev)
13969 {
13970 	struct net_device *netdev = pci_get_drvdata(pdev);
13971 	struct bnxt *bp = netdev_priv(netdev);
13972 	int err;
13973 
13974 	netdev_info(bp->dev, "PCI Slot Resume\n");
13975 	rtnl_lock();
13976 
13977 	err = bnxt_hwrm_func_qcaps(bp);
13978 	if (!err && netif_running(netdev))
13979 		err = bnxt_open(netdev);
13980 
13981 	bnxt_ulp_start(bp, err);
13982 	if (!err) {
13983 		bnxt_reenable_sriov(bp);
13984 		netif_device_attach(netdev);
13985 	}
13986 
13987 	rtnl_unlock();
13988 }
13989 
13990 static const struct pci_error_handlers bnxt_err_handler = {
13991 	.error_detected	= bnxt_io_error_detected,
13992 	.slot_reset	= bnxt_io_slot_reset,
13993 	.resume		= bnxt_io_resume
13994 };
13995 
13996 static struct pci_driver bnxt_pci_driver = {
13997 	.name		= DRV_MODULE_NAME,
13998 	.id_table	= bnxt_pci_tbl,
13999 	.probe		= bnxt_init_one,
14000 	.remove		= bnxt_remove_one,
14001 	.shutdown	= bnxt_shutdown,
14002 	.driver.pm	= BNXT_PM_OPS,
14003 	.err_handler	= &bnxt_err_handler,
14004 #if defined(CONFIG_BNXT_SRIOV)
14005 	.sriov_configure = bnxt_sriov_configure,
14006 #endif
14007 };
14008 
14009 static int __init bnxt_init(void)
14010 {
14011 	bnxt_debug_init();
14012 	return pci_register_driver(&bnxt_pci_driver);
14013 }
14014 
14015 static void __exit bnxt_exit(void)
14016 {
14017 	pci_unregister_driver(&bnxt_pci_driver);
14018 	if (bnxt_pf_wq)
14019 		destroy_workqueue(bnxt_pf_wq);
14020 	bnxt_debug_exit();
14021 }
14022 
14023 module_init(bnxt_init);
14024 module_exit(bnxt_exit);
14025