1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2016 Broadcom Corporation
4  * Copyright (c) 2016-2018 Broadcom Limited
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation.
9  */
10 
11 #include <linux/module.h>
12 
13 #include <linux/stringify.h>
14 #include <linux/kernel.h>
15 #include <linux/timer.h>
16 #include <linux/errno.h>
17 #include <linux/ioport.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 #include <linux/interrupt.h>
21 #include <linux/pci.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/skbuff.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/bitops.h>
27 #include <linux/io.h>
28 #include <linux/irq.h>
29 #include <linux/delay.h>
30 #include <asm/byteorder.h>
31 #include <asm/page.h>
32 #include <linux/time.h>
33 #include <linux/mii.h>
34 #include <linux/if.h>
35 #include <linux/if_vlan.h>
36 #include <linux/if_bridge.h>
37 #include <linux/rtc.h>
38 #include <linux/bpf.h>
39 #include <net/ip.h>
40 #include <net/tcp.h>
41 #include <net/udp.h>
42 #include <net/checksum.h>
43 #include <net/ip6_checksum.h>
44 #include <net/udp_tunnel.h>
45 #include <linux/workqueue.h>
46 #include <linux/prefetch.h>
47 #include <linux/cache.h>
48 #include <linux/log2.h>
49 #include <linux/aer.h>
50 #include <linux/bitmap.h>
51 #include <linux/cpu_rmap.h>
52 #include <linux/cpumask.h>
53 #include <net/pkt_cls.h>
54 
55 #include "bnxt_hsi.h"
56 #include "bnxt.h"
57 #include "bnxt_ulp.h"
58 #include "bnxt_sriov.h"
59 #include "bnxt_ethtool.h"
60 #include "bnxt_dcb.h"
61 #include "bnxt_xdp.h"
62 #include "bnxt_vfr.h"
63 #include "bnxt_tc.h"
64 #include "bnxt_devlink.h"
65 
66 #define BNXT_TX_TIMEOUT		(5 * HZ)
67 
68 static const char version[] =
69 	"Broadcom NetXtreme-C/E driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION "\n";
70 
71 MODULE_LICENSE("GPL");
72 MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
73 MODULE_VERSION(DRV_MODULE_VERSION);
74 
75 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
76 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
77 #define BNXT_RX_COPY_THRESH 256
78 
79 #define BNXT_TX_PUSH_THRESH 164
80 
81 enum board_idx {
82 	BCM57301,
83 	BCM57302,
84 	BCM57304,
85 	BCM57417_NPAR,
86 	BCM58700,
87 	BCM57311,
88 	BCM57312,
89 	BCM57402,
90 	BCM57404,
91 	BCM57406,
92 	BCM57402_NPAR,
93 	BCM57407,
94 	BCM57412,
95 	BCM57414,
96 	BCM57416,
97 	BCM57417,
98 	BCM57412_NPAR,
99 	BCM57314,
100 	BCM57417_SFP,
101 	BCM57416_SFP,
102 	BCM57404_NPAR,
103 	BCM57406_NPAR,
104 	BCM57407_SFP,
105 	BCM57407_NPAR,
106 	BCM57414_NPAR,
107 	BCM57416_NPAR,
108 	BCM57452,
109 	BCM57454,
110 	BCM5745x_NPAR,
111 	BCM58802,
112 	BCM58804,
113 	BCM58808,
114 	NETXTREME_E_VF,
115 	NETXTREME_C_VF,
116 	NETXTREME_S_VF,
117 };
118 
119 /* indexed by enum above */
120 static const struct {
121 	char *name;
122 } board_info[] = {
123 	[BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" },
124 	[BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" },
125 	[BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
126 	[BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" },
127 	[BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" },
128 	[BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" },
129 	[BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" },
130 	[BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" },
131 	[BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" },
132 	[BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" },
133 	[BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" },
134 	[BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" },
135 	[BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" },
136 	[BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" },
137 	[BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" },
138 	[BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" },
139 	[BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" },
140 	[BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
141 	[BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" },
142 	[BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" },
143 	[BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" },
144 	[BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" },
145 	[BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" },
146 	[BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" },
147 	[BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" },
148 	[BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" },
149 	[BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" },
150 	[BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
151 	[BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" },
152 	[BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" },
153 	[BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
154 	[BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
155 	[NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" },
156 	[NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" },
157 	[NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" },
158 };
159 
160 static const struct pci_device_id bnxt_pci_tbl[] = {
161 	{ PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR },
162 	{ PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR },
163 	{ PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 },
164 	{ PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR },
165 	{ PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
166 	{ PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
167 	{ PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
168 	{ PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR },
169 	{ PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 },
170 	{ PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 },
171 	{ PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 },
172 	{ PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
173 	{ PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
174 	{ PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
175 	{ PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR },
176 	{ PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 },
177 	{ PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 },
178 	{ PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 },
179 	{ PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 },
180 	{ PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 },
181 	{ PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR },
182 	{ PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 },
183 	{ PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP },
184 	{ PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP },
185 	{ PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR },
186 	{ PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR },
187 	{ PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP },
188 	{ PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR },
189 	{ PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR },
190 	{ PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR },
191 	{ PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR },
192 	{ PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR },
193 	{ PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR },
194 	{ PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 },
195 	{ PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 },
196 	{ PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 },
197 	{ PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 },
198 #ifdef CONFIG_BNXT_SRIOV
199 	{ PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF },
200 	{ PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF },
201 	{ PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF },
202 	{ PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF },
203 	{ PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF },
204 	{ PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF },
205 	{ PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF },
206 	{ PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF },
207 	{ PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF },
208 #endif
209 	{ 0 }
210 };
211 
212 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
213 
214 static const u16 bnxt_vf_req_snif[] = {
215 	HWRM_FUNC_CFG,
216 	HWRM_FUNC_VF_CFG,
217 	HWRM_PORT_PHY_QCFG,
218 	HWRM_CFA_L2_FILTER_ALLOC,
219 };
220 
221 static const u16 bnxt_async_events_arr[] = {
222 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE,
223 	ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD,
224 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED,
225 	ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE,
226 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE,
227 };
228 
229 static struct workqueue_struct *bnxt_pf_wq;
230 
231 static bool bnxt_vf_pciid(enum board_idx idx)
232 {
233 	return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF ||
234 		idx == NETXTREME_S_VF);
235 }
236 
237 #define DB_CP_REARM_FLAGS	(DB_KEY_CP | DB_IDX_VALID)
238 #define DB_CP_FLAGS		(DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
239 #define DB_CP_IRQ_DIS_FLAGS	(DB_KEY_CP | DB_IRQ_DIS)
240 
241 #define BNXT_CP_DB_REARM(db, raw_cons)					\
242 		writel(DB_CP_REARM_FLAGS | RING_CMP(raw_cons), db)
243 
244 #define BNXT_CP_DB(db, raw_cons)					\
245 		writel(DB_CP_FLAGS | RING_CMP(raw_cons), db)
246 
247 #define BNXT_CP_DB_IRQ_DIS(db)						\
248 		writel(DB_CP_IRQ_DIS_FLAGS, db)
249 
250 const u16 bnxt_lhint_arr[] = {
251 	TX_BD_FLAGS_LHINT_512_AND_SMALLER,
252 	TX_BD_FLAGS_LHINT_512_TO_1023,
253 	TX_BD_FLAGS_LHINT_1024_TO_2047,
254 	TX_BD_FLAGS_LHINT_1024_TO_2047,
255 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
256 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
257 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
258 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
259 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
260 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
261 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
262 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
263 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
264 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
265 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
266 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
267 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
268 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
269 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
270 };
271 
272 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb)
273 {
274 	struct metadata_dst *md_dst = skb_metadata_dst(skb);
275 
276 	if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX)
277 		return 0;
278 
279 	return md_dst->u.port_info.port_id;
280 }
281 
282 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
283 {
284 	struct bnxt *bp = netdev_priv(dev);
285 	struct tx_bd *txbd;
286 	struct tx_bd_ext *txbd1;
287 	struct netdev_queue *txq;
288 	int i;
289 	dma_addr_t mapping;
290 	unsigned int length, pad = 0;
291 	u32 len, free_size, vlan_tag_flags, cfa_action, flags;
292 	u16 prod, last_frag;
293 	struct pci_dev *pdev = bp->pdev;
294 	struct bnxt_tx_ring_info *txr;
295 	struct bnxt_sw_tx_bd *tx_buf;
296 
297 	i = skb_get_queue_mapping(skb);
298 	if (unlikely(i >= bp->tx_nr_rings)) {
299 		dev_kfree_skb_any(skb);
300 		return NETDEV_TX_OK;
301 	}
302 
303 	txq = netdev_get_tx_queue(dev, i);
304 	txr = &bp->tx_ring[bp->tx_ring_map[i]];
305 	prod = txr->tx_prod;
306 
307 	free_size = bnxt_tx_avail(bp, txr);
308 	if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
309 		netif_tx_stop_queue(txq);
310 		return NETDEV_TX_BUSY;
311 	}
312 
313 	length = skb->len;
314 	len = skb_headlen(skb);
315 	last_frag = skb_shinfo(skb)->nr_frags;
316 
317 	txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
318 
319 	txbd->tx_bd_opaque = prod;
320 
321 	tx_buf = &txr->tx_buf_ring[prod];
322 	tx_buf->skb = skb;
323 	tx_buf->nr_frags = last_frag;
324 
325 	vlan_tag_flags = 0;
326 	cfa_action = bnxt_xmit_get_cfa_action(skb);
327 	if (skb_vlan_tag_present(skb)) {
328 		vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
329 				 skb_vlan_tag_get(skb);
330 		/* Currently supports 8021Q, 8021AD vlan offloads
331 		 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
332 		 */
333 		if (skb->vlan_proto == htons(ETH_P_8021Q))
334 			vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
335 	}
336 
337 	if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh) {
338 		struct tx_push_buffer *tx_push_buf = txr->tx_push;
339 		struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
340 		struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
341 		void *pdata = tx_push_buf->data;
342 		u64 *end;
343 		int j, push_len;
344 
345 		/* Set COAL_NOW to be ready quickly for the next push */
346 		tx_push->tx_bd_len_flags_type =
347 			cpu_to_le32((length << TX_BD_LEN_SHIFT) |
348 					TX_BD_TYPE_LONG_TX_BD |
349 					TX_BD_FLAGS_LHINT_512_AND_SMALLER |
350 					TX_BD_FLAGS_COAL_NOW |
351 					TX_BD_FLAGS_PACKET_END |
352 					(2 << TX_BD_FLAGS_BD_CNT_SHIFT));
353 
354 		if (skb->ip_summed == CHECKSUM_PARTIAL)
355 			tx_push1->tx_bd_hsize_lflags =
356 					cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
357 		else
358 			tx_push1->tx_bd_hsize_lflags = 0;
359 
360 		tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
361 		tx_push1->tx_bd_cfa_action =
362 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
363 
364 		end = pdata + length;
365 		end = PTR_ALIGN(end, 8) - 1;
366 		*end = 0;
367 
368 		skb_copy_from_linear_data(skb, pdata, len);
369 		pdata += len;
370 		for (j = 0; j < last_frag; j++) {
371 			skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
372 			void *fptr;
373 
374 			fptr = skb_frag_address_safe(frag);
375 			if (!fptr)
376 				goto normal_tx;
377 
378 			memcpy(pdata, fptr, skb_frag_size(frag));
379 			pdata += skb_frag_size(frag);
380 		}
381 
382 		txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
383 		txbd->tx_bd_haddr = txr->data_mapping;
384 		prod = NEXT_TX(prod);
385 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
386 		memcpy(txbd, tx_push1, sizeof(*txbd));
387 		prod = NEXT_TX(prod);
388 		tx_push->doorbell =
389 			cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod);
390 		txr->tx_prod = prod;
391 
392 		tx_buf->is_push = 1;
393 		netdev_tx_sent_queue(txq, skb->len);
394 		wmb();	/* Sync is_push and byte queue before pushing data */
395 
396 		push_len = (length + sizeof(*tx_push) + 7) / 8;
397 		if (push_len > 16) {
398 			__iowrite64_copy(txr->tx_doorbell, tx_push_buf, 16);
399 			__iowrite32_copy(txr->tx_doorbell + 4, tx_push_buf + 1,
400 					 (push_len - 16) << 1);
401 		} else {
402 			__iowrite64_copy(txr->tx_doorbell, tx_push_buf,
403 					 push_len);
404 		}
405 
406 		goto tx_done;
407 	}
408 
409 normal_tx:
410 	if (length < BNXT_MIN_PKT_SIZE) {
411 		pad = BNXT_MIN_PKT_SIZE - length;
412 		if (skb_pad(skb, pad)) {
413 			/* SKB already freed. */
414 			tx_buf->skb = NULL;
415 			return NETDEV_TX_OK;
416 		}
417 		length = BNXT_MIN_PKT_SIZE;
418 	}
419 
420 	mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
421 
422 	if (unlikely(dma_mapping_error(&pdev->dev, mapping))) {
423 		dev_kfree_skb_any(skb);
424 		tx_buf->skb = NULL;
425 		return NETDEV_TX_OK;
426 	}
427 
428 	dma_unmap_addr_set(tx_buf, mapping, mapping);
429 	flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
430 		((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
431 
432 	txbd->tx_bd_haddr = cpu_to_le64(mapping);
433 
434 	prod = NEXT_TX(prod);
435 	txbd1 = (struct tx_bd_ext *)
436 		&txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
437 
438 	txbd1->tx_bd_hsize_lflags = 0;
439 	if (skb_is_gso(skb)) {
440 		u32 hdr_len;
441 
442 		if (skb->encapsulation)
443 			hdr_len = skb_inner_network_offset(skb) +
444 				skb_inner_network_header_len(skb) +
445 				inner_tcp_hdrlen(skb);
446 		else
447 			hdr_len = skb_transport_offset(skb) +
448 				tcp_hdrlen(skb);
449 
450 		txbd1->tx_bd_hsize_lflags = cpu_to_le32(TX_BD_FLAGS_LSO |
451 					TX_BD_FLAGS_T_IPID |
452 					(hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
453 		length = skb_shinfo(skb)->gso_size;
454 		txbd1->tx_bd_mss = cpu_to_le32(length);
455 		length += hdr_len;
456 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
457 		txbd1->tx_bd_hsize_lflags =
458 			cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
459 		txbd1->tx_bd_mss = 0;
460 	}
461 
462 	length >>= 9;
463 	flags |= bnxt_lhint_arr[length];
464 	txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
465 
466 	txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
467 	txbd1->tx_bd_cfa_action =
468 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
469 	for (i = 0; i < last_frag; i++) {
470 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
471 
472 		prod = NEXT_TX(prod);
473 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
474 
475 		len = skb_frag_size(frag);
476 		mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
477 					   DMA_TO_DEVICE);
478 
479 		if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
480 			goto tx_dma_error;
481 
482 		tx_buf = &txr->tx_buf_ring[prod];
483 		dma_unmap_addr_set(tx_buf, mapping, mapping);
484 
485 		txbd->tx_bd_haddr = cpu_to_le64(mapping);
486 
487 		flags = len << TX_BD_LEN_SHIFT;
488 		txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
489 	}
490 
491 	flags &= ~TX_BD_LEN;
492 	txbd->tx_bd_len_flags_type =
493 		cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
494 			    TX_BD_FLAGS_PACKET_END);
495 
496 	netdev_tx_sent_queue(txq, skb->len);
497 
498 	/* Sync BD data before updating doorbell */
499 	wmb();
500 
501 	prod = NEXT_TX(prod);
502 	txr->tx_prod = prod;
503 
504 	if (!skb->xmit_more || netif_xmit_stopped(txq))
505 		bnxt_db_write(bp, txr->tx_doorbell, DB_KEY_TX | prod);
506 
507 tx_done:
508 
509 	mmiowb();
510 
511 	if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
512 		if (skb->xmit_more && !tx_buf->is_push)
513 			bnxt_db_write(bp, txr->tx_doorbell, DB_KEY_TX | prod);
514 
515 		netif_tx_stop_queue(txq);
516 
517 		/* netif_tx_stop_queue() must be done before checking
518 		 * tx index in bnxt_tx_avail() below, because in
519 		 * bnxt_tx_int(), we update tx index before checking for
520 		 * netif_tx_queue_stopped().
521 		 */
522 		smp_mb();
523 		if (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)
524 			netif_tx_wake_queue(txq);
525 	}
526 	return NETDEV_TX_OK;
527 
528 tx_dma_error:
529 	last_frag = i;
530 
531 	/* start back at beginning and unmap skb */
532 	prod = txr->tx_prod;
533 	tx_buf = &txr->tx_buf_ring[prod];
534 	tx_buf->skb = NULL;
535 	dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
536 			 skb_headlen(skb), PCI_DMA_TODEVICE);
537 	prod = NEXT_TX(prod);
538 
539 	/* unmap remaining mapped pages */
540 	for (i = 0; i < last_frag; i++) {
541 		prod = NEXT_TX(prod);
542 		tx_buf = &txr->tx_buf_ring[prod];
543 		dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
544 			       skb_frag_size(&skb_shinfo(skb)->frags[i]),
545 			       PCI_DMA_TODEVICE);
546 	}
547 
548 	dev_kfree_skb_any(skb);
549 	return NETDEV_TX_OK;
550 }
551 
552 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts)
553 {
554 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
555 	struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index);
556 	u16 cons = txr->tx_cons;
557 	struct pci_dev *pdev = bp->pdev;
558 	int i;
559 	unsigned int tx_bytes = 0;
560 
561 	for (i = 0; i < nr_pkts; i++) {
562 		struct bnxt_sw_tx_bd *tx_buf;
563 		struct sk_buff *skb;
564 		int j, last;
565 
566 		tx_buf = &txr->tx_buf_ring[cons];
567 		cons = NEXT_TX(cons);
568 		skb = tx_buf->skb;
569 		tx_buf->skb = NULL;
570 
571 		if (tx_buf->is_push) {
572 			tx_buf->is_push = 0;
573 			goto next_tx_int;
574 		}
575 
576 		dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
577 				 skb_headlen(skb), PCI_DMA_TODEVICE);
578 		last = tx_buf->nr_frags;
579 
580 		for (j = 0; j < last; j++) {
581 			cons = NEXT_TX(cons);
582 			tx_buf = &txr->tx_buf_ring[cons];
583 			dma_unmap_page(
584 				&pdev->dev,
585 				dma_unmap_addr(tx_buf, mapping),
586 				skb_frag_size(&skb_shinfo(skb)->frags[j]),
587 				PCI_DMA_TODEVICE);
588 		}
589 
590 next_tx_int:
591 		cons = NEXT_TX(cons);
592 
593 		tx_bytes += skb->len;
594 		dev_kfree_skb_any(skb);
595 	}
596 
597 	netdev_tx_completed_queue(txq, nr_pkts, tx_bytes);
598 	txr->tx_cons = cons;
599 
600 	/* Need to make the tx_cons update visible to bnxt_start_xmit()
601 	 * before checking for netif_tx_queue_stopped().  Without the
602 	 * memory barrier, there is a small possibility that bnxt_start_xmit()
603 	 * will miss it and cause the queue to be stopped forever.
604 	 */
605 	smp_mb();
606 
607 	if (unlikely(netif_tx_queue_stopped(txq)) &&
608 	    (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
609 		__netif_tx_lock(txq, smp_processor_id());
610 		if (netif_tx_queue_stopped(txq) &&
611 		    bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh &&
612 		    txr->dev_state != BNXT_DEV_STATE_CLOSING)
613 			netif_tx_wake_queue(txq);
614 		__netif_tx_unlock(txq);
615 	}
616 }
617 
618 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping,
619 					 gfp_t gfp)
620 {
621 	struct device *dev = &bp->pdev->dev;
622 	struct page *page;
623 
624 	page = alloc_page(gfp);
625 	if (!page)
626 		return NULL;
627 
628 	*mapping = dma_map_page_attrs(dev, page, 0, PAGE_SIZE, bp->rx_dir,
629 				      DMA_ATTR_WEAK_ORDERING);
630 	if (dma_mapping_error(dev, *mapping)) {
631 		__free_page(page);
632 		return NULL;
633 	}
634 	*mapping += bp->rx_dma_offset;
635 	return page;
636 }
637 
638 static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping,
639 				       gfp_t gfp)
640 {
641 	u8 *data;
642 	struct pci_dev *pdev = bp->pdev;
643 
644 	data = kmalloc(bp->rx_buf_size, gfp);
645 	if (!data)
646 		return NULL;
647 
648 	*mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset,
649 					bp->rx_buf_use_size, bp->rx_dir,
650 					DMA_ATTR_WEAK_ORDERING);
651 
652 	if (dma_mapping_error(&pdev->dev, *mapping)) {
653 		kfree(data);
654 		data = NULL;
655 	}
656 	return data;
657 }
658 
659 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
660 		       u16 prod, gfp_t gfp)
661 {
662 	struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
663 	struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
664 	dma_addr_t mapping;
665 
666 	if (BNXT_RX_PAGE_MODE(bp)) {
667 		struct page *page = __bnxt_alloc_rx_page(bp, &mapping, gfp);
668 
669 		if (!page)
670 			return -ENOMEM;
671 
672 		rx_buf->data = page;
673 		rx_buf->data_ptr = page_address(page) + bp->rx_offset;
674 	} else {
675 		u8 *data = __bnxt_alloc_rx_data(bp, &mapping, gfp);
676 
677 		if (!data)
678 			return -ENOMEM;
679 
680 		rx_buf->data = data;
681 		rx_buf->data_ptr = data + bp->rx_offset;
682 	}
683 	rx_buf->mapping = mapping;
684 
685 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
686 	return 0;
687 }
688 
689 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data)
690 {
691 	u16 prod = rxr->rx_prod;
692 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
693 	struct rx_bd *cons_bd, *prod_bd;
694 
695 	prod_rx_buf = &rxr->rx_buf_ring[prod];
696 	cons_rx_buf = &rxr->rx_buf_ring[cons];
697 
698 	prod_rx_buf->data = data;
699 	prod_rx_buf->data_ptr = cons_rx_buf->data_ptr;
700 
701 	prod_rx_buf->mapping = cons_rx_buf->mapping;
702 
703 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
704 	cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
705 
706 	prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
707 }
708 
709 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
710 {
711 	u16 next, max = rxr->rx_agg_bmap_size;
712 
713 	next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
714 	if (next >= max)
715 		next = find_first_zero_bit(rxr->rx_agg_bmap, max);
716 	return next;
717 }
718 
719 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
720 				     struct bnxt_rx_ring_info *rxr,
721 				     u16 prod, gfp_t gfp)
722 {
723 	struct rx_bd *rxbd =
724 		&rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
725 	struct bnxt_sw_rx_agg_bd *rx_agg_buf;
726 	struct pci_dev *pdev = bp->pdev;
727 	struct page *page;
728 	dma_addr_t mapping;
729 	u16 sw_prod = rxr->rx_sw_agg_prod;
730 	unsigned int offset = 0;
731 
732 	if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) {
733 		page = rxr->rx_page;
734 		if (!page) {
735 			page = alloc_page(gfp);
736 			if (!page)
737 				return -ENOMEM;
738 			rxr->rx_page = page;
739 			rxr->rx_page_offset = 0;
740 		}
741 		offset = rxr->rx_page_offset;
742 		rxr->rx_page_offset += BNXT_RX_PAGE_SIZE;
743 		if (rxr->rx_page_offset == PAGE_SIZE)
744 			rxr->rx_page = NULL;
745 		else
746 			get_page(page);
747 	} else {
748 		page = alloc_page(gfp);
749 		if (!page)
750 			return -ENOMEM;
751 	}
752 
753 	mapping = dma_map_page_attrs(&pdev->dev, page, offset,
754 				     BNXT_RX_PAGE_SIZE, PCI_DMA_FROMDEVICE,
755 				     DMA_ATTR_WEAK_ORDERING);
756 	if (dma_mapping_error(&pdev->dev, mapping)) {
757 		__free_page(page);
758 		return -EIO;
759 	}
760 
761 	if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
762 		sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
763 
764 	__set_bit(sw_prod, rxr->rx_agg_bmap);
765 	rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
766 	rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod);
767 
768 	rx_agg_buf->page = page;
769 	rx_agg_buf->offset = offset;
770 	rx_agg_buf->mapping = mapping;
771 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
772 	rxbd->rx_bd_opaque = sw_prod;
773 	return 0;
774 }
775 
776 static void bnxt_reuse_rx_agg_bufs(struct bnxt_napi *bnapi, u16 cp_cons,
777 				   u32 agg_bufs)
778 {
779 	struct bnxt *bp = bnapi->bp;
780 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
781 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
782 	u16 prod = rxr->rx_agg_prod;
783 	u16 sw_prod = rxr->rx_sw_agg_prod;
784 	u32 i;
785 
786 	for (i = 0; i < agg_bufs; i++) {
787 		u16 cons;
788 		struct rx_agg_cmp *agg;
789 		struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
790 		struct rx_bd *prod_bd;
791 		struct page *page;
792 
793 		agg = (struct rx_agg_cmp *)
794 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
795 		cons = agg->rx_agg_cmp_opaque;
796 		__clear_bit(cons, rxr->rx_agg_bmap);
797 
798 		if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
799 			sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
800 
801 		__set_bit(sw_prod, rxr->rx_agg_bmap);
802 		prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
803 		cons_rx_buf = &rxr->rx_agg_ring[cons];
804 
805 		/* It is possible for sw_prod to be equal to cons, so
806 		 * set cons_rx_buf->page to NULL first.
807 		 */
808 		page = cons_rx_buf->page;
809 		cons_rx_buf->page = NULL;
810 		prod_rx_buf->page = page;
811 		prod_rx_buf->offset = cons_rx_buf->offset;
812 
813 		prod_rx_buf->mapping = cons_rx_buf->mapping;
814 
815 		prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
816 
817 		prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
818 		prod_bd->rx_bd_opaque = sw_prod;
819 
820 		prod = NEXT_RX_AGG(prod);
821 		sw_prod = NEXT_RX_AGG(sw_prod);
822 		cp_cons = NEXT_CMP(cp_cons);
823 	}
824 	rxr->rx_agg_prod = prod;
825 	rxr->rx_sw_agg_prod = sw_prod;
826 }
827 
828 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp,
829 					struct bnxt_rx_ring_info *rxr,
830 					u16 cons, void *data, u8 *data_ptr,
831 					dma_addr_t dma_addr,
832 					unsigned int offset_and_len)
833 {
834 	unsigned int payload = offset_and_len >> 16;
835 	unsigned int len = offset_and_len & 0xffff;
836 	struct skb_frag_struct *frag;
837 	struct page *page = data;
838 	u16 prod = rxr->rx_prod;
839 	struct sk_buff *skb;
840 	int off, err;
841 
842 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
843 	if (unlikely(err)) {
844 		bnxt_reuse_rx_data(rxr, cons, data);
845 		return NULL;
846 	}
847 	dma_addr -= bp->rx_dma_offset;
848 	dma_unmap_page_attrs(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir,
849 			     DMA_ATTR_WEAK_ORDERING);
850 
851 	if (unlikely(!payload))
852 		payload = eth_get_headlen(data_ptr, len);
853 
854 	skb = napi_alloc_skb(&rxr->bnapi->napi, payload);
855 	if (!skb) {
856 		__free_page(page);
857 		return NULL;
858 	}
859 
860 	off = (void *)data_ptr - page_address(page);
861 	skb_add_rx_frag(skb, 0, page, off, len, PAGE_SIZE);
862 	memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN,
863 	       payload + NET_IP_ALIGN);
864 
865 	frag = &skb_shinfo(skb)->frags[0];
866 	skb_frag_size_sub(frag, payload);
867 	frag->page_offset += payload;
868 	skb->data_len -= payload;
869 	skb->tail += payload;
870 
871 	return skb;
872 }
873 
874 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
875 				   struct bnxt_rx_ring_info *rxr, u16 cons,
876 				   void *data, u8 *data_ptr,
877 				   dma_addr_t dma_addr,
878 				   unsigned int offset_and_len)
879 {
880 	u16 prod = rxr->rx_prod;
881 	struct sk_buff *skb;
882 	int err;
883 
884 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
885 	if (unlikely(err)) {
886 		bnxt_reuse_rx_data(rxr, cons, data);
887 		return NULL;
888 	}
889 
890 	skb = build_skb(data, 0);
891 	dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
892 			       bp->rx_dir, DMA_ATTR_WEAK_ORDERING);
893 	if (!skb) {
894 		kfree(data);
895 		return NULL;
896 	}
897 
898 	skb_reserve(skb, bp->rx_offset);
899 	skb_put(skb, offset_and_len & 0xffff);
900 	return skb;
901 }
902 
903 static struct sk_buff *bnxt_rx_pages(struct bnxt *bp, struct bnxt_napi *bnapi,
904 				     struct sk_buff *skb, u16 cp_cons,
905 				     u32 agg_bufs)
906 {
907 	struct pci_dev *pdev = bp->pdev;
908 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
909 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
910 	u16 prod = rxr->rx_agg_prod;
911 	u32 i;
912 
913 	for (i = 0; i < agg_bufs; i++) {
914 		u16 cons, frag_len;
915 		struct rx_agg_cmp *agg;
916 		struct bnxt_sw_rx_agg_bd *cons_rx_buf;
917 		struct page *page;
918 		dma_addr_t mapping;
919 
920 		agg = (struct rx_agg_cmp *)
921 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
922 		cons = agg->rx_agg_cmp_opaque;
923 		frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
924 			    RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
925 
926 		cons_rx_buf = &rxr->rx_agg_ring[cons];
927 		skb_fill_page_desc(skb, i, cons_rx_buf->page,
928 				   cons_rx_buf->offset, frag_len);
929 		__clear_bit(cons, rxr->rx_agg_bmap);
930 
931 		/* It is possible for bnxt_alloc_rx_page() to allocate
932 		 * a sw_prod index that equals the cons index, so we
933 		 * need to clear the cons entry now.
934 		 */
935 		mapping = cons_rx_buf->mapping;
936 		page = cons_rx_buf->page;
937 		cons_rx_buf->page = NULL;
938 
939 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
940 			struct skb_shared_info *shinfo;
941 			unsigned int nr_frags;
942 
943 			shinfo = skb_shinfo(skb);
944 			nr_frags = --shinfo->nr_frags;
945 			__skb_frag_set_page(&shinfo->frags[nr_frags], NULL);
946 
947 			dev_kfree_skb(skb);
948 
949 			cons_rx_buf->page = page;
950 
951 			/* Update prod since possibly some pages have been
952 			 * allocated already.
953 			 */
954 			rxr->rx_agg_prod = prod;
955 			bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs - i);
956 			return NULL;
957 		}
958 
959 		dma_unmap_page_attrs(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE,
960 				     PCI_DMA_FROMDEVICE,
961 				     DMA_ATTR_WEAK_ORDERING);
962 
963 		skb->data_len += frag_len;
964 		skb->len += frag_len;
965 		skb->truesize += PAGE_SIZE;
966 
967 		prod = NEXT_RX_AGG(prod);
968 		cp_cons = NEXT_CMP(cp_cons);
969 	}
970 	rxr->rx_agg_prod = prod;
971 	return skb;
972 }
973 
974 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
975 			       u8 agg_bufs, u32 *raw_cons)
976 {
977 	u16 last;
978 	struct rx_agg_cmp *agg;
979 
980 	*raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
981 	last = RING_CMP(*raw_cons);
982 	agg = (struct rx_agg_cmp *)
983 		&cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
984 	return RX_AGG_CMP_VALID(agg, *raw_cons);
985 }
986 
987 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
988 					    unsigned int len,
989 					    dma_addr_t mapping)
990 {
991 	struct bnxt *bp = bnapi->bp;
992 	struct pci_dev *pdev = bp->pdev;
993 	struct sk_buff *skb;
994 
995 	skb = napi_alloc_skb(&bnapi->napi, len);
996 	if (!skb)
997 		return NULL;
998 
999 	dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh,
1000 				bp->rx_dir);
1001 
1002 	memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN,
1003 	       len + NET_IP_ALIGN);
1004 
1005 	dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh,
1006 				   bp->rx_dir);
1007 
1008 	skb_put(skb, len);
1009 	return skb;
1010 }
1011 
1012 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_napi *bnapi,
1013 			   u32 *raw_cons, void *cmp)
1014 {
1015 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1016 	struct rx_cmp *rxcmp = cmp;
1017 	u32 tmp_raw_cons = *raw_cons;
1018 	u8 cmp_type, agg_bufs = 0;
1019 
1020 	cmp_type = RX_CMP_TYPE(rxcmp);
1021 
1022 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1023 		agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) &
1024 			    RX_CMP_AGG_BUFS) >>
1025 			   RX_CMP_AGG_BUFS_SHIFT;
1026 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1027 		struct rx_tpa_end_cmp *tpa_end = cmp;
1028 
1029 		agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
1030 			    RX_TPA_END_CMP_AGG_BUFS) >>
1031 			   RX_TPA_END_CMP_AGG_BUFS_SHIFT;
1032 	}
1033 
1034 	if (agg_bufs) {
1035 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1036 			return -EBUSY;
1037 	}
1038 	*raw_cons = tmp_raw_cons;
1039 	return 0;
1040 }
1041 
1042 static void bnxt_queue_sp_work(struct bnxt *bp)
1043 {
1044 	if (BNXT_PF(bp))
1045 		queue_work(bnxt_pf_wq, &bp->sp_task);
1046 	else
1047 		schedule_work(&bp->sp_task);
1048 }
1049 
1050 static void bnxt_cancel_sp_work(struct bnxt *bp)
1051 {
1052 	if (BNXT_PF(bp))
1053 		flush_workqueue(bnxt_pf_wq);
1054 	else
1055 		cancel_work_sync(&bp->sp_task);
1056 }
1057 
1058 static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
1059 {
1060 	if (!rxr->bnapi->in_reset) {
1061 		rxr->bnapi->in_reset = true;
1062 		set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
1063 		bnxt_queue_sp_work(bp);
1064 	}
1065 	rxr->rx_next_cons = 0xffff;
1066 }
1067 
1068 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1069 			   struct rx_tpa_start_cmp *tpa_start,
1070 			   struct rx_tpa_start_cmp_ext *tpa_start1)
1071 {
1072 	u8 agg_id = TPA_START_AGG_ID(tpa_start);
1073 	u16 cons, prod;
1074 	struct bnxt_tpa_info *tpa_info;
1075 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
1076 	struct rx_bd *prod_bd;
1077 	dma_addr_t mapping;
1078 
1079 	cons = tpa_start->rx_tpa_start_cmp_opaque;
1080 	prod = rxr->rx_prod;
1081 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1082 	prod_rx_buf = &rxr->rx_buf_ring[prod];
1083 	tpa_info = &rxr->rx_tpa[agg_id];
1084 
1085 	if (unlikely(cons != rxr->rx_next_cons)) {
1086 		bnxt_sched_reset(bp, rxr);
1087 		return;
1088 	}
1089 	/* Store cfa_code in tpa_info to use in tpa_end
1090 	 * completion processing.
1091 	 */
1092 	tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1);
1093 	prod_rx_buf->data = tpa_info->data;
1094 	prod_rx_buf->data_ptr = tpa_info->data_ptr;
1095 
1096 	mapping = tpa_info->mapping;
1097 	prod_rx_buf->mapping = mapping;
1098 
1099 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
1100 
1101 	prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
1102 
1103 	tpa_info->data = cons_rx_buf->data;
1104 	tpa_info->data_ptr = cons_rx_buf->data_ptr;
1105 	cons_rx_buf->data = NULL;
1106 	tpa_info->mapping = cons_rx_buf->mapping;
1107 
1108 	tpa_info->len =
1109 		le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
1110 				RX_TPA_START_CMP_LEN_SHIFT;
1111 	if (likely(TPA_START_HASH_VALID(tpa_start))) {
1112 		u32 hash_type = TPA_START_HASH_TYPE(tpa_start);
1113 
1114 		tpa_info->hash_type = PKT_HASH_TYPE_L4;
1115 		tpa_info->gso_type = SKB_GSO_TCPV4;
1116 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1117 		if (hash_type == 3)
1118 			tpa_info->gso_type = SKB_GSO_TCPV6;
1119 		tpa_info->rss_hash =
1120 			le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
1121 	} else {
1122 		tpa_info->hash_type = PKT_HASH_TYPE_NONE;
1123 		tpa_info->gso_type = 0;
1124 		if (netif_msg_rx_err(bp))
1125 			netdev_warn(bp->dev, "TPA packet without valid hash\n");
1126 	}
1127 	tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
1128 	tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
1129 	tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info);
1130 
1131 	rxr->rx_prod = NEXT_RX(prod);
1132 	cons = NEXT_RX(cons);
1133 	rxr->rx_next_cons = NEXT_RX(cons);
1134 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1135 
1136 	bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
1137 	rxr->rx_prod = NEXT_RX(rxr->rx_prod);
1138 	cons_rx_buf->data = NULL;
1139 }
1140 
1141 static void bnxt_abort_tpa(struct bnxt *bp, struct bnxt_napi *bnapi,
1142 			   u16 cp_cons, u32 agg_bufs)
1143 {
1144 	if (agg_bufs)
1145 		bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
1146 }
1147 
1148 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info,
1149 					   int payload_off, int tcp_ts,
1150 					   struct sk_buff *skb)
1151 {
1152 #ifdef CONFIG_INET
1153 	struct tcphdr *th;
1154 	int len, nw_off;
1155 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1156 	u32 hdr_info = tpa_info->hdr_info;
1157 	bool loopback = false;
1158 
1159 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1160 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1161 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1162 
1163 	/* If the packet is an internal loopback packet, the offsets will
1164 	 * have an extra 4 bytes.
1165 	 */
1166 	if (inner_mac_off == 4) {
1167 		loopback = true;
1168 	} else if (inner_mac_off > 4) {
1169 		__be16 proto = *((__be16 *)(skb->data + inner_ip_off -
1170 					    ETH_HLEN - 2));
1171 
1172 		/* We only support inner iPv4/ipv6.  If we don't see the
1173 		 * correct protocol ID, it must be a loopback packet where
1174 		 * the offsets are off by 4.
1175 		 */
1176 		if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6))
1177 			loopback = true;
1178 	}
1179 	if (loopback) {
1180 		/* internal loopback packet, subtract all offsets by 4 */
1181 		inner_ip_off -= 4;
1182 		inner_mac_off -= 4;
1183 		outer_ip_off -= 4;
1184 	}
1185 
1186 	nw_off = inner_ip_off - ETH_HLEN;
1187 	skb_set_network_header(skb, nw_off);
1188 	if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) {
1189 		struct ipv6hdr *iph = ipv6_hdr(skb);
1190 
1191 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1192 		len = skb->len - skb_transport_offset(skb);
1193 		th = tcp_hdr(skb);
1194 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1195 	} else {
1196 		struct iphdr *iph = ip_hdr(skb);
1197 
1198 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1199 		len = skb->len - skb_transport_offset(skb);
1200 		th = tcp_hdr(skb);
1201 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1202 	}
1203 
1204 	if (inner_mac_off) { /* tunnel */
1205 		struct udphdr *uh = NULL;
1206 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1207 					    ETH_HLEN - 2));
1208 
1209 		if (proto == htons(ETH_P_IP)) {
1210 			struct iphdr *iph = (struct iphdr *)skb->data;
1211 
1212 			if (iph->protocol == IPPROTO_UDP)
1213 				uh = (struct udphdr *)(iph + 1);
1214 		} else {
1215 			struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1216 
1217 			if (iph->nexthdr == IPPROTO_UDP)
1218 				uh = (struct udphdr *)(iph + 1);
1219 		}
1220 		if (uh) {
1221 			if (uh->check)
1222 				skb_shinfo(skb)->gso_type |=
1223 					SKB_GSO_UDP_TUNNEL_CSUM;
1224 			else
1225 				skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1226 		}
1227 	}
1228 #endif
1229 	return skb;
1230 }
1231 
1232 #define BNXT_IPV4_HDR_SIZE	(sizeof(struct iphdr) + sizeof(struct tcphdr))
1233 #define BNXT_IPV6_HDR_SIZE	(sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
1234 
1235 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info,
1236 					   int payload_off, int tcp_ts,
1237 					   struct sk_buff *skb)
1238 {
1239 #ifdef CONFIG_INET
1240 	struct tcphdr *th;
1241 	int len, nw_off, tcp_opt_len = 0;
1242 
1243 	if (tcp_ts)
1244 		tcp_opt_len = 12;
1245 
1246 	if (tpa_info->gso_type == SKB_GSO_TCPV4) {
1247 		struct iphdr *iph;
1248 
1249 		nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
1250 			 ETH_HLEN;
1251 		skb_set_network_header(skb, nw_off);
1252 		iph = ip_hdr(skb);
1253 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1254 		len = skb->len - skb_transport_offset(skb);
1255 		th = tcp_hdr(skb);
1256 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1257 	} else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
1258 		struct ipv6hdr *iph;
1259 
1260 		nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
1261 			 ETH_HLEN;
1262 		skb_set_network_header(skb, nw_off);
1263 		iph = ipv6_hdr(skb);
1264 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1265 		len = skb->len - skb_transport_offset(skb);
1266 		th = tcp_hdr(skb);
1267 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1268 	} else {
1269 		dev_kfree_skb_any(skb);
1270 		return NULL;
1271 	}
1272 
1273 	if (nw_off) { /* tunnel */
1274 		struct udphdr *uh = NULL;
1275 
1276 		if (skb->protocol == htons(ETH_P_IP)) {
1277 			struct iphdr *iph = (struct iphdr *)skb->data;
1278 
1279 			if (iph->protocol == IPPROTO_UDP)
1280 				uh = (struct udphdr *)(iph + 1);
1281 		} else {
1282 			struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1283 
1284 			if (iph->nexthdr == IPPROTO_UDP)
1285 				uh = (struct udphdr *)(iph + 1);
1286 		}
1287 		if (uh) {
1288 			if (uh->check)
1289 				skb_shinfo(skb)->gso_type |=
1290 					SKB_GSO_UDP_TUNNEL_CSUM;
1291 			else
1292 				skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1293 		}
1294 	}
1295 #endif
1296 	return skb;
1297 }
1298 
1299 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp,
1300 					   struct bnxt_tpa_info *tpa_info,
1301 					   struct rx_tpa_end_cmp *tpa_end,
1302 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1303 					   struct sk_buff *skb)
1304 {
1305 #ifdef CONFIG_INET
1306 	int payload_off;
1307 	u16 segs;
1308 
1309 	segs = TPA_END_TPA_SEGS(tpa_end);
1310 	if (segs == 1)
1311 		return skb;
1312 
1313 	NAPI_GRO_CB(skb)->count = segs;
1314 	skb_shinfo(skb)->gso_size =
1315 		le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
1316 	skb_shinfo(skb)->gso_type = tpa_info->gso_type;
1317 	payload_off = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
1318 		       RX_TPA_END_CMP_PAYLOAD_OFFSET) >>
1319 		      RX_TPA_END_CMP_PAYLOAD_OFFSET_SHIFT;
1320 	skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb);
1321 	if (likely(skb))
1322 		tcp_gro_complete(skb);
1323 #endif
1324 	return skb;
1325 }
1326 
1327 /* Given the cfa_code of a received packet determine which
1328  * netdev (vf-rep or PF) the packet is destined to.
1329  */
1330 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code)
1331 {
1332 	struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code);
1333 
1334 	/* if vf-rep dev is NULL, the must belongs to the PF */
1335 	return dev ? dev : bp->dev;
1336 }
1337 
1338 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
1339 					   struct bnxt_napi *bnapi,
1340 					   u32 *raw_cons,
1341 					   struct rx_tpa_end_cmp *tpa_end,
1342 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1343 					   u8 *event)
1344 {
1345 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1346 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1347 	u8 agg_id = TPA_END_AGG_ID(tpa_end);
1348 	u8 *data_ptr, agg_bufs;
1349 	u16 cp_cons = RING_CMP(*raw_cons);
1350 	unsigned int len;
1351 	struct bnxt_tpa_info *tpa_info;
1352 	dma_addr_t mapping;
1353 	struct sk_buff *skb;
1354 	void *data;
1355 
1356 	if (unlikely(bnapi->in_reset)) {
1357 		int rc = bnxt_discard_rx(bp, bnapi, raw_cons, tpa_end);
1358 
1359 		if (rc < 0)
1360 			return ERR_PTR(-EBUSY);
1361 		return NULL;
1362 	}
1363 
1364 	tpa_info = &rxr->rx_tpa[agg_id];
1365 	data = tpa_info->data;
1366 	data_ptr = tpa_info->data_ptr;
1367 	prefetch(data_ptr);
1368 	len = tpa_info->len;
1369 	mapping = tpa_info->mapping;
1370 
1371 	agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
1372 		    RX_TPA_END_CMP_AGG_BUFS) >> RX_TPA_END_CMP_AGG_BUFS_SHIFT;
1373 
1374 	if (agg_bufs) {
1375 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
1376 			return ERR_PTR(-EBUSY);
1377 
1378 		*event |= BNXT_AGG_EVENT;
1379 		cp_cons = NEXT_CMP(cp_cons);
1380 	}
1381 
1382 	if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) {
1383 		bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1384 		if (agg_bufs > MAX_SKB_FRAGS)
1385 			netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
1386 				    agg_bufs, (int)MAX_SKB_FRAGS);
1387 		return NULL;
1388 	}
1389 
1390 	if (len <= bp->rx_copy_thresh) {
1391 		skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping);
1392 		if (!skb) {
1393 			bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1394 			return NULL;
1395 		}
1396 	} else {
1397 		u8 *new_data;
1398 		dma_addr_t new_mapping;
1399 
1400 		new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC);
1401 		if (!new_data) {
1402 			bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1403 			return NULL;
1404 		}
1405 
1406 		tpa_info->data = new_data;
1407 		tpa_info->data_ptr = new_data + bp->rx_offset;
1408 		tpa_info->mapping = new_mapping;
1409 
1410 		skb = build_skb(data, 0);
1411 		dma_unmap_single_attrs(&bp->pdev->dev, mapping,
1412 				       bp->rx_buf_use_size, bp->rx_dir,
1413 				       DMA_ATTR_WEAK_ORDERING);
1414 
1415 		if (!skb) {
1416 			kfree(data);
1417 			bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1418 			return NULL;
1419 		}
1420 		skb_reserve(skb, bp->rx_offset);
1421 		skb_put(skb, len);
1422 	}
1423 
1424 	if (agg_bufs) {
1425 		skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
1426 		if (!skb) {
1427 			/* Page reuse already handled by bnxt_rx_pages(). */
1428 			return NULL;
1429 		}
1430 	}
1431 
1432 	skb->protocol =
1433 		eth_type_trans(skb, bnxt_get_pkt_dev(bp, tpa_info->cfa_code));
1434 
1435 	if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1436 		skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1437 
1438 	if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) &&
1439 	    (skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
1440 		u16 vlan_proto = tpa_info->metadata >>
1441 			RX_CMP_FLAGS2_METADATA_TPID_SFT;
1442 		u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1443 
1444 		__vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1445 	}
1446 
1447 	skb_checksum_none_assert(skb);
1448 	if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1449 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1450 		skb->csum_level =
1451 			(tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1452 	}
1453 
1454 	if (TPA_END_GRO(tpa_end))
1455 		skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb);
1456 
1457 	return skb;
1458 }
1459 
1460 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi,
1461 			     struct sk_buff *skb)
1462 {
1463 	if (skb->dev != bp->dev) {
1464 		/* this packet belongs to a vf-rep */
1465 		bnxt_vf_rep_rx(bp, skb);
1466 		return;
1467 	}
1468 	skb_record_rx_queue(skb, bnapi->index);
1469 	napi_gro_receive(&bnapi->napi, skb);
1470 }
1471 
1472 /* returns the following:
1473  * 1       - 1 packet successfully received
1474  * 0       - successful TPA_START, packet not completed yet
1475  * -EBUSY  - completion ring does not have all the agg buffers yet
1476  * -ENOMEM - packet aborted due to out of memory
1477  * -EIO    - packet aborted due to hw error indicated in BD
1478  */
1479 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_napi *bnapi, u32 *raw_cons,
1480 		       u8 *event)
1481 {
1482 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1483 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1484 	struct net_device *dev = bp->dev;
1485 	struct rx_cmp *rxcmp;
1486 	struct rx_cmp_ext *rxcmp1;
1487 	u32 tmp_raw_cons = *raw_cons;
1488 	u16 cfa_code, cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
1489 	struct bnxt_sw_rx_bd *rx_buf;
1490 	unsigned int len;
1491 	u8 *data_ptr, agg_bufs, cmp_type;
1492 	dma_addr_t dma_addr;
1493 	struct sk_buff *skb;
1494 	void *data;
1495 	int rc = 0;
1496 	u32 misc;
1497 
1498 	rxcmp = (struct rx_cmp *)
1499 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1500 
1501 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1502 	cp_cons = RING_CMP(tmp_raw_cons);
1503 	rxcmp1 = (struct rx_cmp_ext *)
1504 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1505 
1506 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1507 		return -EBUSY;
1508 
1509 	cmp_type = RX_CMP_TYPE(rxcmp);
1510 
1511 	prod = rxr->rx_prod;
1512 
1513 	if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) {
1514 		bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp,
1515 			       (struct rx_tpa_start_cmp_ext *)rxcmp1);
1516 
1517 		*event |= BNXT_RX_EVENT;
1518 		goto next_rx_no_prod_no_len;
1519 
1520 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1521 		skb = bnxt_tpa_end(bp, bnapi, &tmp_raw_cons,
1522 				   (struct rx_tpa_end_cmp *)rxcmp,
1523 				   (struct rx_tpa_end_cmp_ext *)rxcmp1, event);
1524 
1525 		if (IS_ERR(skb))
1526 			return -EBUSY;
1527 
1528 		rc = -ENOMEM;
1529 		if (likely(skb)) {
1530 			bnxt_deliver_skb(bp, bnapi, skb);
1531 			rc = 1;
1532 		}
1533 		*event |= BNXT_RX_EVENT;
1534 		goto next_rx_no_prod_no_len;
1535 	}
1536 
1537 	cons = rxcmp->rx_cmp_opaque;
1538 	rx_buf = &rxr->rx_buf_ring[cons];
1539 	data = rx_buf->data;
1540 	data_ptr = rx_buf->data_ptr;
1541 	if (unlikely(cons != rxr->rx_next_cons)) {
1542 		int rc1 = bnxt_discard_rx(bp, bnapi, raw_cons, rxcmp);
1543 
1544 		bnxt_sched_reset(bp, rxr);
1545 		return rc1;
1546 	}
1547 	prefetch(data_ptr);
1548 
1549 	misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1);
1550 	agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT;
1551 
1552 	if (agg_bufs) {
1553 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1554 			return -EBUSY;
1555 
1556 		cp_cons = NEXT_CMP(cp_cons);
1557 		*event |= BNXT_AGG_EVENT;
1558 	}
1559 	*event |= BNXT_RX_EVENT;
1560 
1561 	rx_buf->data = NULL;
1562 	if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
1563 		bnxt_reuse_rx_data(rxr, cons, data);
1564 		if (agg_bufs)
1565 			bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
1566 
1567 		rc = -EIO;
1568 		goto next_rx;
1569 	}
1570 
1571 	len = le32_to_cpu(rxcmp->rx_cmp_len_flags_type) >> RX_CMP_LEN_SHIFT;
1572 	dma_addr = rx_buf->mapping;
1573 
1574 	if (bnxt_rx_xdp(bp, rxr, cons, data, &data_ptr, &len, event)) {
1575 		rc = 1;
1576 		goto next_rx;
1577 	}
1578 
1579 	if (len <= bp->rx_copy_thresh) {
1580 		skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr);
1581 		bnxt_reuse_rx_data(rxr, cons, data);
1582 		if (!skb) {
1583 			rc = -ENOMEM;
1584 			goto next_rx;
1585 		}
1586 	} else {
1587 		u32 payload;
1588 
1589 		if (rx_buf->data_ptr == data_ptr)
1590 			payload = misc & RX_CMP_PAYLOAD_OFFSET;
1591 		else
1592 			payload = 0;
1593 		skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr,
1594 				      payload | len);
1595 		if (!skb) {
1596 			rc = -ENOMEM;
1597 			goto next_rx;
1598 		}
1599 	}
1600 
1601 	if (agg_bufs) {
1602 		skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
1603 		if (!skb) {
1604 			rc = -ENOMEM;
1605 			goto next_rx;
1606 		}
1607 	}
1608 
1609 	if (RX_CMP_HASH_VALID(rxcmp)) {
1610 		u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
1611 		enum pkt_hash_types type = PKT_HASH_TYPE_L4;
1612 
1613 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1614 		if (hash_type != 1 && hash_type != 3)
1615 			type = PKT_HASH_TYPE_L3;
1616 		skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
1617 	}
1618 
1619 	cfa_code = RX_CMP_CFA_CODE(rxcmp1);
1620 	skb->protocol = eth_type_trans(skb, bnxt_get_pkt_dev(bp, cfa_code));
1621 
1622 	if ((rxcmp1->rx_cmp_flags2 &
1623 	     cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) &&
1624 	    (skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
1625 		u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
1626 		u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1627 		u16 vlan_proto = meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT;
1628 
1629 		__vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1630 	}
1631 
1632 	skb_checksum_none_assert(skb);
1633 	if (RX_CMP_L4_CS_OK(rxcmp1)) {
1634 		if (dev->features & NETIF_F_RXCSUM) {
1635 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1636 			skb->csum_level = RX_CMP_ENCAP(rxcmp1);
1637 		}
1638 	} else {
1639 		if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
1640 			if (dev->features & NETIF_F_RXCSUM)
1641 				cpr->rx_l4_csum_errors++;
1642 		}
1643 	}
1644 
1645 	bnxt_deliver_skb(bp, bnapi, skb);
1646 	rc = 1;
1647 
1648 next_rx:
1649 	rxr->rx_prod = NEXT_RX(prod);
1650 	rxr->rx_next_cons = NEXT_RX(cons);
1651 
1652 	cpr->rx_packets += 1;
1653 	cpr->rx_bytes += len;
1654 
1655 next_rx_no_prod_no_len:
1656 	*raw_cons = tmp_raw_cons;
1657 
1658 	return rc;
1659 }
1660 
1661 /* In netpoll mode, if we are using a combined completion ring, we need to
1662  * discard the rx packets and recycle the buffers.
1663  */
1664 static int bnxt_force_rx_discard(struct bnxt *bp, struct bnxt_napi *bnapi,
1665 				 u32 *raw_cons, u8 *event)
1666 {
1667 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1668 	u32 tmp_raw_cons = *raw_cons;
1669 	struct rx_cmp_ext *rxcmp1;
1670 	struct rx_cmp *rxcmp;
1671 	u16 cp_cons;
1672 	u8 cmp_type;
1673 
1674 	cp_cons = RING_CMP(tmp_raw_cons);
1675 	rxcmp = (struct rx_cmp *)
1676 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1677 
1678 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1679 	cp_cons = RING_CMP(tmp_raw_cons);
1680 	rxcmp1 = (struct rx_cmp_ext *)
1681 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1682 
1683 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1684 		return -EBUSY;
1685 
1686 	cmp_type = RX_CMP_TYPE(rxcmp);
1687 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1688 		rxcmp1->rx_cmp_cfa_code_errors_v2 |=
1689 			cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
1690 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1691 		struct rx_tpa_end_cmp_ext *tpa_end1;
1692 
1693 		tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1;
1694 		tpa_end1->rx_tpa_end_cmp_errors_v2 |=
1695 			cpu_to_le32(RX_TPA_END_CMP_ERRORS);
1696 	}
1697 	return bnxt_rx_pkt(bp, bnapi, raw_cons, event);
1698 }
1699 
1700 #define BNXT_GET_EVENT_PORT(data)	\
1701 	((data) &			\
1702 	 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK)
1703 
1704 static int bnxt_async_event_process(struct bnxt *bp,
1705 				    struct hwrm_async_event_cmpl *cmpl)
1706 {
1707 	u16 event_id = le16_to_cpu(cmpl->event_id);
1708 
1709 	/* TODO CHIMP_FW: Define event id's for link change, error etc */
1710 	switch (event_id) {
1711 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: {
1712 		u32 data1 = le32_to_cpu(cmpl->event_data1);
1713 		struct bnxt_link_info *link_info = &bp->link_info;
1714 
1715 		if (BNXT_VF(bp))
1716 			goto async_event_process_exit;
1717 
1718 		/* print unsupported speed warning in forced speed mode only */
1719 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) &&
1720 		    (data1 & 0x20000)) {
1721 			u16 fw_speed = link_info->force_link_speed;
1722 			u32 speed = bnxt_fw_to_ethtool_speed(fw_speed);
1723 
1724 			if (speed != SPEED_UNKNOWN)
1725 				netdev_warn(bp->dev, "Link speed %d no longer supported\n",
1726 					    speed);
1727 		}
1728 		set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event);
1729 		/* fall thru */
1730 	}
1731 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
1732 		set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
1733 		break;
1734 	case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD:
1735 		set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event);
1736 		break;
1737 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: {
1738 		u32 data1 = le32_to_cpu(cmpl->event_data1);
1739 		u16 port_id = BNXT_GET_EVENT_PORT(data1);
1740 
1741 		if (BNXT_VF(bp))
1742 			break;
1743 
1744 		if (bp->pf.port_id != port_id)
1745 			break;
1746 
1747 		set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event);
1748 		break;
1749 	}
1750 	case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE:
1751 		if (BNXT_PF(bp))
1752 			goto async_event_process_exit;
1753 		set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event);
1754 		break;
1755 	default:
1756 		goto async_event_process_exit;
1757 	}
1758 	bnxt_queue_sp_work(bp);
1759 async_event_process_exit:
1760 	bnxt_ulp_async_events(bp, cmpl);
1761 	return 0;
1762 }
1763 
1764 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
1765 {
1766 	u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
1767 	struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
1768 	struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
1769 				(struct hwrm_fwd_req_cmpl *)txcmp;
1770 
1771 	switch (cmpl_type) {
1772 	case CMPL_BASE_TYPE_HWRM_DONE:
1773 		seq_id = le16_to_cpu(h_cmpl->sequence_id);
1774 		if (seq_id == bp->hwrm_intr_seq_id)
1775 			bp->hwrm_intr_seq_id = HWRM_SEQ_ID_INVALID;
1776 		else
1777 			netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id);
1778 		break;
1779 
1780 	case CMPL_BASE_TYPE_HWRM_FWD_REQ:
1781 		vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
1782 
1783 		if ((vf_id < bp->pf.first_vf_id) ||
1784 		    (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
1785 			netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
1786 				   vf_id);
1787 			return -EINVAL;
1788 		}
1789 
1790 		set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
1791 		set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event);
1792 		bnxt_queue_sp_work(bp);
1793 		break;
1794 
1795 	case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
1796 		bnxt_async_event_process(bp,
1797 					 (struct hwrm_async_event_cmpl *)txcmp);
1798 
1799 	default:
1800 		break;
1801 	}
1802 
1803 	return 0;
1804 }
1805 
1806 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
1807 {
1808 	struct bnxt_napi *bnapi = dev_instance;
1809 	struct bnxt *bp = bnapi->bp;
1810 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1811 	u32 cons = RING_CMP(cpr->cp_raw_cons);
1812 
1813 	cpr->event_ctr++;
1814 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1815 	napi_schedule(&bnapi->napi);
1816 	return IRQ_HANDLED;
1817 }
1818 
1819 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
1820 {
1821 	u32 raw_cons = cpr->cp_raw_cons;
1822 	u16 cons = RING_CMP(raw_cons);
1823 	struct tx_cmp *txcmp;
1824 
1825 	txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1826 
1827 	return TX_CMP_VALID(txcmp, raw_cons);
1828 }
1829 
1830 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
1831 {
1832 	struct bnxt_napi *bnapi = dev_instance;
1833 	struct bnxt *bp = bnapi->bp;
1834 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1835 	u32 cons = RING_CMP(cpr->cp_raw_cons);
1836 	u32 int_status;
1837 
1838 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1839 
1840 	if (!bnxt_has_work(bp, cpr)) {
1841 		int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
1842 		/* return if erroneous interrupt */
1843 		if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
1844 			return IRQ_NONE;
1845 	}
1846 
1847 	/* disable ring IRQ */
1848 	BNXT_CP_DB_IRQ_DIS(cpr->cp_doorbell);
1849 
1850 	/* Return here if interrupt is shared and is disabled. */
1851 	if (unlikely(atomic_read(&bp->intr_sem) != 0))
1852 		return IRQ_HANDLED;
1853 
1854 	napi_schedule(&bnapi->napi);
1855 	return IRQ_HANDLED;
1856 }
1857 
1858 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
1859 {
1860 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1861 	u32 raw_cons = cpr->cp_raw_cons;
1862 	u32 cons;
1863 	int tx_pkts = 0;
1864 	int rx_pkts = 0;
1865 	u8 event = 0;
1866 	struct tx_cmp *txcmp;
1867 
1868 	while (1) {
1869 		int rc;
1870 
1871 		cons = RING_CMP(raw_cons);
1872 		txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1873 
1874 		if (!TX_CMP_VALID(txcmp, raw_cons))
1875 			break;
1876 
1877 		/* The valid test of the entry must be done first before
1878 		 * reading any further.
1879 		 */
1880 		dma_rmb();
1881 		if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) {
1882 			tx_pkts++;
1883 			/* return full budget so NAPI will complete. */
1884 			if (unlikely(tx_pkts > bp->tx_wake_thresh))
1885 				rx_pkts = budget;
1886 		} else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
1887 			if (likely(budget))
1888 				rc = bnxt_rx_pkt(bp, bnapi, &raw_cons, &event);
1889 			else
1890 				rc = bnxt_force_rx_discard(bp, bnapi, &raw_cons,
1891 							   &event);
1892 			if (likely(rc >= 0))
1893 				rx_pkts += rc;
1894 			/* Increment rx_pkts when rc is -ENOMEM to count towards
1895 			 * the NAPI budget.  Otherwise, we may potentially loop
1896 			 * here forever if we consistently cannot allocate
1897 			 * buffers.
1898 			 */
1899 			else if (rc == -ENOMEM && budget)
1900 				rx_pkts++;
1901 			else if (rc == -EBUSY)	/* partial completion */
1902 				break;
1903 		} else if (unlikely((TX_CMP_TYPE(txcmp) ==
1904 				     CMPL_BASE_TYPE_HWRM_DONE) ||
1905 				    (TX_CMP_TYPE(txcmp) ==
1906 				     CMPL_BASE_TYPE_HWRM_FWD_REQ) ||
1907 				    (TX_CMP_TYPE(txcmp) ==
1908 				     CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) {
1909 			bnxt_hwrm_handler(bp, txcmp);
1910 		}
1911 		raw_cons = NEXT_RAW_CMP(raw_cons);
1912 
1913 		if (rx_pkts == budget)
1914 			break;
1915 	}
1916 
1917 	if (event & BNXT_TX_EVENT) {
1918 		struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
1919 		void __iomem *db = txr->tx_doorbell;
1920 		u16 prod = txr->tx_prod;
1921 
1922 		/* Sync BD data before updating doorbell */
1923 		wmb();
1924 
1925 		bnxt_db_write_relaxed(bp, db, DB_KEY_TX | prod);
1926 	}
1927 
1928 	cpr->cp_raw_cons = raw_cons;
1929 	/* ACK completion ring before freeing tx ring and producing new
1930 	 * buffers in rx/agg rings to prevent overflowing the completion
1931 	 * ring.
1932 	 */
1933 	BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
1934 
1935 	if (tx_pkts)
1936 		bnapi->tx_int(bp, bnapi, tx_pkts);
1937 
1938 	if (event & BNXT_RX_EVENT) {
1939 		struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1940 
1941 		bnxt_db_write(bp, rxr->rx_doorbell, DB_KEY_RX | rxr->rx_prod);
1942 		if (event & BNXT_AGG_EVENT)
1943 			bnxt_db_write(bp, rxr->rx_agg_doorbell,
1944 				      DB_KEY_RX | rxr->rx_agg_prod);
1945 	}
1946 	return rx_pkts;
1947 }
1948 
1949 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget)
1950 {
1951 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
1952 	struct bnxt *bp = bnapi->bp;
1953 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1954 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1955 	struct tx_cmp *txcmp;
1956 	struct rx_cmp_ext *rxcmp1;
1957 	u32 cp_cons, tmp_raw_cons;
1958 	u32 raw_cons = cpr->cp_raw_cons;
1959 	u32 rx_pkts = 0;
1960 	u8 event = 0;
1961 
1962 	while (1) {
1963 		int rc;
1964 
1965 		cp_cons = RING_CMP(raw_cons);
1966 		txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1967 
1968 		if (!TX_CMP_VALID(txcmp, raw_cons))
1969 			break;
1970 
1971 		if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
1972 			tmp_raw_cons = NEXT_RAW_CMP(raw_cons);
1973 			cp_cons = RING_CMP(tmp_raw_cons);
1974 			rxcmp1 = (struct rx_cmp_ext *)
1975 			  &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1976 
1977 			if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1978 				break;
1979 
1980 			/* force an error to recycle the buffer */
1981 			rxcmp1->rx_cmp_cfa_code_errors_v2 |=
1982 				cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
1983 
1984 			rc = bnxt_rx_pkt(bp, bnapi, &raw_cons, &event);
1985 			if (likely(rc == -EIO) && budget)
1986 				rx_pkts++;
1987 			else if (rc == -EBUSY)	/* partial completion */
1988 				break;
1989 		} else if (unlikely(TX_CMP_TYPE(txcmp) ==
1990 				    CMPL_BASE_TYPE_HWRM_DONE)) {
1991 			bnxt_hwrm_handler(bp, txcmp);
1992 		} else {
1993 			netdev_err(bp->dev,
1994 				   "Invalid completion received on special ring\n");
1995 		}
1996 		raw_cons = NEXT_RAW_CMP(raw_cons);
1997 
1998 		if (rx_pkts == budget)
1999 			break;
2000 	}
2001 
2002 	cpr->cp_raw_cons = raw_cons;
2003 	BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
2004 	bnxt_db_write(bp, rxr->rx_doorbell, DB_KEY_RX | rxr->rx_prod);
2005 
2006 	if (event & BNXT_AGG_EVENT)
2007 		bnxt_db_write(bp, rxr->rx_agg_doorbell,
2008 			      DB_KEY_RX | rxr->rx_agg_prod);
2009 
2010 	if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) {
2011 		napi_complete_done(napi, rx_pkts);
2012 		BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
2013 	}
2014 	return rx_pkts;
2015 }
2016 
2017 static int bnxt_poll(struct napi_struct *napi, int budget)
2018 {
2019 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2020 	struct bnxt *bp = bnapi->bp;
2021 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2022 	int work_done = 0;
2023 
2024 	while (1) {
2025 		work_done += bnxt_poll_work(bp, bnapi, budget - work_done);
2026 
2027 		if (work_done >= budget)
2028 			break;
2029 
2030 		if (!bnxt_has_work(bp, cpr)) {
2031 			if (napi_complete_done(napi, work_done))
2032 				BNXT_CP_DB_REARM(cpr->cp_doorbell,
2033 						 cpr->cp_raw_cons);
2034 			break;
2035 		}
2036 	}
2037 	if (bp->flags & BNXT_FLAG_DIM) {
2038 		struct net_dim_sample dim_sample;
2039 
2040 		net_dim_sample(cpr->event_ctr,
2041 			       cpr->rx_packets,
2042 			       cpr->rx_bytes,
2043 			       &dim_sample);
2044 		net_dim(&cpr->dim, dim_sample);
2045 	}
2046 	mmiowb();
2047 	return work_done;
2048 }
2049 
2050 static void bnxt_free_tx_skbs(struct bnxt *bp)
2051 {
2052 	int i, max_idx;
2053 	struct pci_dev *pdev = bp->pdev;
2054 
2055 	if (!bp->tx_ring)
2056 		return;
2057 
2058 	max_idx = bp->tx_nr_pages * TX_DESC_CNT;
2059 	for (i = 0; i < bp->tx_nr_rings; i++) {
2060 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2061 		int j;
2062 
2063 		for (j = 0; j < max_idx;) {
2064 			struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
2065 			struct sk_buff *skb = tx_buf->skb;
2066 			int k, last;
2067 
2068 			if (!skb) {
2069 				j++;
2070 				continue;
2071 			}
2072 
2073 			tx_buf->skb = NULL;
2074 
2075 			if (tx_buf->is_push) {
2076 				dev_kfree_skb(skb);
2077 				j += 2;
2078 				continue;
2079 			}
2080 
2081 			dma_unmap_single(&pdev->dev,
2082 					 dma_unmap_addr(tx_buf, mapping),
2083 					 skb_headlen(skb),
2084 					 PCI_DMA_TODEVICE);
2085 
2086 			last = tx_buf->nr_frags;
2087 			j += 2;
2088 			for (k = 0; k < last; k++, j++) {
2089 				int ring_idx = j & bp->tx_ring_mask;
2090 				skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2091 
2092 				tx_buf = &txr->tx_buf_ring[ring_idx];
2093 				dma_unmap_page(
2094 					&pdev->dev,
2095 					dma_unmap_addr(tx_buf, mapping),
2096 					skb_frag_size(frag), PCI_DMA_TODEVICE);
2097 			}
2098 			dev_kfree_skb(skb);
2099 		}
2100 		netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
2101 	}
2102 }
2103 
2104 static void bnxt_free_rx_skbs(struct bnxt *bp)
2105 {
2106 	int i, max_idx, max_agg_idx;
2107 	struct pci_dev *pdev = bp->pdev;
2108 
2109 	if (!bp->rx_ring)
2110 		return;
2111 
2112 	max_idx = bp->rx_nr_pages * RX_DESC_CNT;
2113 	max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
2114 	for (i = 0; i < bp->rx_nr_rings; i++) {
2115 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2116 		int j;
2117 
2118 		if (rxr->rx_tpa) {
2119 			for (j = 0; j < MAX_TPA; j++) {
2120 				struct bnxt_tpa_info *tpa_info =
2121 							&rxr->rx_tpa[j];
2122 				u8 *data = tpa_info->data;
2123 
2124 				if (!data)
2125 					continue;
2126 
2127 				dma_unmap_single_attrs(&pdev->dev,
2128 						       tpa_info->mapping,
2129 						       bp->rx_buf_use_size,
2130 						       bp->rx_dir,
2131 						       DMA_ATTR_WEAK_ORDERING);
2132 
2133 				tpa_info->data = NULL;
2134 
2135 				kfree(data);
2136 			}
2137 		}
2138 
2139 		for (j = 0; j < max_idx; j++) {
2140 			struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[j];
2141 			dma_addr_t mapping = rx_buf->mapping;
2142 			void *data = rx_buf->data;
2143 
2144 			if (!data)
2145 				continue;
2146 
2147 			rx_buf->data = NULL;
2148 
2149 			if (BNXT_RX_PAGE_MODE(bp)) {
2150 				mapping -= bp->rx_dma_offset;
2151 				dma_unmap_page_attrs(&pdev->dev, mapping,
2152 						     PAGE_SIZE, bp->rx_dir,
2153 						     DMA_ATTR_WEAK_ORDERING);
2154 				__free_page(data);
2155 			} else {
2156 				dma_unmap_single_attrs(&pdev->dev, mapping,
2157 						       bp->rx_buf_use_size,
2158 						       bp->rx_dir,
2159 						       DMA_ATTR_WEAK_ORDERING);
2160 				kfree(data);
2161 			}
2162 		}
2163 
2164 		for (j = 0; j < max_agg_idx; j++) {
2165 			struct bnxt_sw_rx_agg_bd *rx_agg_buf =
2166 				&rxr->rx_agg_ring[j];
2167 			struct page *page = rx_agg_buf->page;
2168 
2169 			if (!page)
2170 				continue;
2171 
2172 			dma_unmap_page_attrs(&pdev->dev, rx_agg_buf->mapping,
2173 					     BNXT_RX_PAGE_SIZE,
2174 					     PCI_DMA_FROMDEVICE,
2175 					     DMA_ATTR_WEAK_ORDERING);
2176 
2177 			rx_agg_buf->page = NULL;
2178 			__clear_bit(j, rxr->rx_agg_bmap);
2179 
2180 			__free_page(page);
2181 		}
2182 		if (rxr->rx_page) {
2183 			__free_page(rxr->rx_page);
2184 			rxr->rx_page = NULL;
2185 		}
2186 	}
2187 }
2188 
2189 static void bnxt_free_skbs(struct bnxt *bp)
2190 {
2191 	bnxt_free_tx_skbs(bp);
2192 	bnxt_free_rx_skbs(bp);
2193 }
2194 
2195 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
2196 {
2197 	struct pci_dev *pdev = bp->pdev;
2198 	int i;
2199 
2200 	for (i = 0; i < ring->nr_pages; i++) {
2201 		if (!ring->pg_arr[i])
2202 			continue;
2203 
2204 		dma_free_coherent(&pdev->dev, ring->page_size,
2205 				  ring->pg_arr[i], ring->dma_arr[i]);
2206 
2207 		ring->pg_arr[i] = NULL;
2208 	}
2209 	if (ring->pg_tbl) {
2210 		dma_free_coherent(&pdev->dev, ring->nr_pages * 8,
2211 				  ring->pg_tbl, ring->pg_tbl_map);
2212 		ring->pg_tbl = NULL;
2213 	}
2214 	if (ring->vmem_size && *ring->vmem) {
2215 		vfree(*ring->vmem);
2216 		*ring->vmem = NULL;
2217 	}
2218 }
2219 
2220 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
2221 {
2222 	int i;
2223 	struct pci_dev *pdev = bp->pdev;
2224 
2225 	if (ring->nr_pages > 1) {
2226 		ring->pg_tbl = dma_alloc_coherent(&pdev->dev,
2227 						  ring->nr_pages * 8,
2228 						  &ring->pg_tbl_map,
2229 						  GFP_KERNEL);
2230 		if (!ring->pg_tbl)
2231 			return -ENOMEM;
2232 	}
2233 
2234 	for (i = 0; i < ring->nr_pages; i++) {
2235 		ring->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
2236 						     ring->page_size,
2237 						     &ring->dma_arr[i],
2238 						     GFP_KERNEL);
2239 		if (!ring->pg_arr[i])
2240 			return -ENOMEM;
2241 
2242 		if (ring->nr_pages > 1)
2243 			ring->pg_tbl[i] = cpu_to_le64(ring->dma_arr[i]);
2244 	}
2245 
2246 	if (ring->vmem_size) {
2247 		*ring->vmem = vzalloc(ring->vmem_size);
2248 		if (!(*ring->vmem))
2249 			return -ENOMEM;
2250 	}
2251 	return 0;
2252 }
2253 
2254 static void bnxt_free_rx_rings(struct bnxt *bp)
2255 {
2256 	int i;
2257 
2258 	if (!bp->rx_ring)
2259 		return;
2260 
2261 	for (i = 0; i < bp->rx_nr_rings; i++) {
2262 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2263 		struct bnxt_ring_struct *ring;
2264 
2265 		if (rxr->xdp_prog)
2266 			bpf_prog_put(rxr->xdp_prog);
2267 
2268 		if (xdp_rxq_info_is_reg(&rxr->xdp_rxq))
2269 			xdp_rxq_info_unreg(&rxr->xdp_rxq);
2270 
2271 		kfree(rxr->rx_tpa);
2272 		rxr->rx_tpa = NULL;
2273 
2274 		kfree(rxr->rx_agg_bmap);
2275 		rxr->rx_agg_bmap = NULL;
2276 
2277 		ring = &rxr->rx_ring_struct;
2278 		bnxt_free_ring(bp, ring);
2279 
2280 		ring = &rxr->rx_agg_ring_struct;
2281 		bnxt_free_ring(bp, ring);
2282 	}
2283 }
2284 
2285 static int bnxt_alloc_rx_rings(struct bnxt *bp)
2286 {
2287 	int i, rc, agg_rings = 0, tpa_rings = 0;
2288 
2289 	if (!bp->rx_ring)
2290 		return -ENOMEM;
2291 
2292 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
2293 		agg_rings = 1;
2294 
2295 	if (bp->flags & BNXT_FLAG_TPA)
2296 		tpa_rings = 1;
2297 
2298 	for (i = 0; i < bp->rx_nr_rings; i++) {
2299 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2300 		struct bnxt_ring_struct *ring;
2301 
2302 		ring = &rxr->rx_ring_struct;
2303 
2304 		rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i);
2305 		if (rc < 0)
2306 			return rc;
2307 
2308 		rc = bnxt_alloc_ring(bp, ring);
2309 		if (rc)
2310 			return rc;
2311 
2312 		if (agg_rings) {
2313 			u16 mem_size;
2314 
2315 			ring = &rxr->rx_agg_ring_struct;
2316 			rc = bnxt_alloc_ring(bp, ring);
2317 			if (rc)
2318 				return rc;
2319 
2320 			ring->grp_idx = i;
2321 			rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
2322 			mem_size = rxr->rx_agg_bmap_size / 8;
2323 			rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
2324 			if (!rxr->rx_agg_bmap)
2325 				return -ENOMEM;
2326 
2327 			if (tpa_rings) {
2328 				rxr->rx_tpa = kcalloc(MAX_TPA,
2329 						sizeof(struct bnxt_tpa_info),
2330 						GFP_KERNEL);
2331 				if (!rxr->rx_tpa)
2332 					return -ENOMEM;
2333 			}
2334 		}
2335 	}
2336 	return 0;
2337 }
2338 
2339 static void bnxt_free_tx_rings(struct bnxt *bp)
2340 {
2341 	int i;
2342 	struct pci_dev *pdev = bp->pdev;
2343 
2344 	if (!bp->tx_ring)
2345 		return;
2346 
2347 	for (i = 0; i < bp->tx_nr_rings; i++) {
2348 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2349 		struct bnxt_ring_struct *ring;
2350 
2351 		if (txr->tx_push) {
2352 			dma_free_coherent(&pdev->dev, bp->tx_push_size,
2353 					  txr->tx_push, txr->tx_push_mapping);
2354 			txr->tx_push = NULL;
2355 		}
2356 
2357 		ring = &txr->tx_ring_struct;
2358 
2359 		bnxt_free_ring(bp, ring);
2360 	}
2361 }
2362 
2363 static int bnxt_alloc_tx_rings(struct bnxt *bp)
2364 {
2365 	int i, j, rc;
2366 	struct pci_dev *pdev = bp->pdev;
2367 
2368 	bp->tx_push_size = 0;
2369 	if (bp->tx_push_thresh) {
2370 		int push_size;
2371 
2372 		push_size  = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
2373 					bp->tx_push_thresh);
2374 
2375 		if (push_size > 256) {
2376 			push_size = 0;
2377 			bp->tx_push_thresh = 0;
2378 		}
2379 
2380 		bp->tx_push_size = push_size;
2381 	}
2382 
2383 	for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
2384 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2385 		struct bnxt_ring_struct *ring;
2386 
2387 		ring = &txr->tx_ring_struct;
2388 
2389 		rc = bnxt_alloc_ring(bp, ring);
2390 		if (rc)
2391 			return rc;
2392 
2393 		ring->grp_idx = txr->bnapi->index;
2394 		if (bp->tx_push_size) {
2395 			dma_addr_t mapping;
2396 
2397 			/* One pre-allocated DMA buffer to backup
2398 			 * TX push operation
2399 			 */
2400 			txr->tx_push = dma_alloc_coherent(&pdev->dev,
2401 						bp->tx_push_size,
2402 						&txr->tx_push_mapping,
2403 						GFP_KERNEL);
2404 
2405 			if (!txr->tx_push)
2406 				return -ENOMEM;
2407 
2408 			mapping = txr->tx_push_mapping +
2409 				sizeof(struct tx_push_bd);
2410 			txr->data_mapping = cpu_to_le64(mapping);
2411 
2412 			memset(txr->tx_push, 0, sizeof(struct tx_push_bd));
2413 		}
2414 		ring->queue_id = bp->q_info[j].queue_id;
2415 		if (i < bp->tx_nr_rings_xdp)
2416 			continue;
2417 		if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1))
2418 			j++;
2419 	}
2420 	return 0;
2421 }
2422 
2423 static void bnxt_free_cp_rings(struct bnxt *bp)
2424 {
2425 	int i;
2426 
2427 	if (!bp->bnapi)
2428 		return;
2429 
2430 	for (i = 0; i < bp->cp_nr_rings; i++) {
2431 		struct bnxt_napi *bnapi = bp->bnapi[i];
2432 		struct bnxt_cp_ring_info *cpr;
2433 		struct bnxt_ring_struct *ring;
2434 
2435 		if (!bnapi)
2436 			continue;
2437 
2438 		cpr = &bnapi->cp_ring;
2439 		ring = &cpr->cp_ring_struct;
2440 
2441 		bnxt_free_ring(bp, ring);
2442 	}
2443 }
2444 
2445 static int bnxt_alloc_cp_rings(struct bnxt *bp)
2446 {
2447 	int i, rc, ulp_base_vec, ulp_msix;
2448 
2449 	ulp_msix = bnxt_get_ulp_msix_num(bp);
2450 	ulp_base_vec = bnxt_get_ulp_msix_base(bp);
2451 	for (i = 0; i < bp->cp_nr_rings; i++) {
2452 		struct bnxt_napi *bnapi = bp->bnapi[i];
2453 		struct bnxt_cp_ring_info *cpr;
2454 		struct bnxt_ring_struct *ring;
2455 
2456 		if (!bnapi)
2457 			continue;
2458 
2459 		cpr = &bnapi->cp_ring;
2460 		ring = &cpr->cp_ring_struct;
2461 
2462 		rc = bnxt_alloc_ring(bp, ring);
2463 		if (rc)
2464 			return rc;
2465 
2466 		if (ulp_msix && i >= ulp_base_vec)
2467 			ring->map_idx = i + ulp_msix;
2468 		else
2469 			ring->map_idx = i;
2470 	}
2471 	return 0;
2472 }
2473 
2474 static void bnxt_init_ring_struct(struct bnxt *bp)
2475 {
2476 	int i;
2477 
2478 	for (i = 0; i < bp->cp_nr_rings; i++) {
2479 		struct bnxt_napi *bnapi = bp->bnapi[i];
2480 		struct bnxt_cp_ring_info *cpr;
2481 		struct bnxt_rx_ring_info *rxr;
2482 		struct bnxt_tx_ring_info *txr;
2483 		struct bnxt_ring_struct *ring;
2484 
2485 		if (!bnapi)
2486 			continue;
2487 
2488 		cpr = &bnapi->cp_ring;
2489 		ring = &cpr->cp_ring_struct;
2490 		ring->nr_pages = bp->cp_nr_pages;
2491 		ring->page_size = HW_CMPD_RING_SIZE;
2492 		ring->pg_arr = (void **)cpr->cp_desc_ring;
2493 		ring->dma_arr = cpr->cp_desc_mapping;
2494 		ring->vmem_size = 0;
2495 
2496 		rxr = bnapi->rx_ring;
2497 		if (!rxr)
2498 			goto skip_rx;
2499 
2500 		ring = &rxr->rx_ring_struct;
2501 		ring->nr_pages = bp->rx_nr_pages;
2502 		ring->page_size = HW_RXBD_RING_SIZE;
2503 		ring->pg_arr = (void **)rxr->rx_desc_ring;
2504 		ring->dma_arr = rxr->rx_desc_mapping;
2505 		ring->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
2506 		ring->vmem = (void **)&rxr->rx_buf_ring;
2507 
2508 		ring = &rxr->rx_agg_ring_struct;
2509 		ring->nr_pages = bp->rx_agg_nr_pages;
2510 		ring->page_size = HW_RXBD_RING_SIZE;
2511 		ring->pg_arr = (void **)rxr->rx_agg_desc_ring;
2512 		ring->dma_arr = rxr->rx_agg_desc_mapping;
2513 		ring->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
2514 		ring->vmem = (void **)&rxr->rx_agg_ring;
2515 
2516 skip_rx:
2517 		txr = bnapi->tx_ring;
2518 		if (!txr)
2519 			continue;
2520 
2521 		ring = &txr->tx_ring_struct;
2522 		ring->nr_pages = bp->tx_nr_pages;
2523 		ring->page_size = HW_RXBD_RING_SIZE;
2524 		ring->pg_arr = (void **)txr->tx_desc_ring;
2525 		ring->dma_arr = txr->tx_desc_mapping;
2526 		ring->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
2527 		ring->vmem = (void **)&txr->tx_buf_ring;
2528 	}
2529 }
2530 
2531 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
2532 {
2533 	int i;
2534 	u32 prod;
2535 	struct rx_bd **rx_buf_ring;
2536 
2537 	rx_buf_ring = (struct rx_bd **)ring->pg_arr;
2538 	for (i = 0, prod = 0; i < ring->nr_pages; i++) {
2539 		int j;
2540 		struct rx_bd *rxbd;
2541 
2542 		rxbd = rx_buf_ring[i];
2543 		if (!rxbd)
2544 			continue;
2545 
2546 		for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
2547 			rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
2548 			rxbd->rx_bd_opaque = prod;
2549 		}
2550 	}
2551 }
2552 
2553 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
2554 {
2555 	struct net_device *dev = bp->dev;
2556 	struct bnxt_rx_ring_info *rxr;
2557 	struct bnxt_ring_struct *ring;
2558 	u32 prod, type;
2559 	int i;
2560 
2561 	type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
2562 		RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
2563 
2564 	if (NET_IP_ALIGN == 2)
2565 		type |= RX_BD_FLAGS_SOP;
2566 
2567 	rxr = &bp->rx_ring[ring_nr];
2568 	ring = &rxr->rx_ring_struct;
2569 	bnxt_init_rxbd_pages(ring, type);
2570 
2571 	if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) {
2572 		rxr->xdp_prog = bpf_prog_add(bp->xdp_prog, 1);
2573 		if (IS_ERR(rxr->xdp_prog)) {
2574 			int rc = PTR_ERR(rxr->xdp_prog);
2575 
2576 			rxr->xdp_prog = NULL;
2577 			return rc;
2578 		}
2579 	}
2580 	prod = rxr->rx_prod;
2581 	for (i = 0; i < bp->rx_ring_size; i++) {
2582 		if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL) != 0) {
2583 			netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
2584 				    ring_nr, i, bp->rx_ring_size);
2585 			break;
2586 		}
2587 		prod = NEXT_RX(prod);
2588 	}
2589 	rxr->rx_prod = prod;
2590 	ring->fw_ring_id = INVALID_HW_RING_ID;
2591 
2592 	ring = &rxr->rx_agg_ring_struct;
2593 	ring->fw_ring_id = INVALID_HW_RING_ID;
2594 
2595 	if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
2596 		return 0;
2597 
2598 	type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) |
2599 		RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
2600 
2601 	bnxt_init_rxbd_pages(ring, type);
2602 
2603 	prod = rxr->rx_agg_prod;
2604 	for (i = 0; i < bp->rx_agg_ring_size; i++) {
2605 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL) != 0) {
2606 			netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
2607 				    ring_nr, i, bp->rx_ring_size);
2608 			break;
2609 		}
2610 		prod = NEXT_RX_AGG(prod);
2611 	}
2612 	rxr->rx_agg_prod = prod;
2613 
2614 	if (bp->flags & BNXT_FLAG_TPA) {
2615 		if (rxr->rx_tpa) {
2616 			u8 *data;
2617 			dma_addr_t mapping;
2618 
2619 			for (i = 0; i < MAX_TPA; i++) {
2620 				data = __bnxt_alloc_rx_data(bp, &mapping,
2621 							    GFP_KERNEL);
2622 				if (!data)
2623 					return -ENOMEM;
2624 
2625 				rxr->rx_tpa[i].data = data;
2626 				rxr->rx_tpa[i].data_ptr = data + bp->rx_offset;
2627 				rxr->rx_tpa[i].mapping = mapping;
2628 			}
2629 		} else {
2630 			netdev_err(bp->dev, "No resource allocated for LRO/GRO\n");
2631 			return -ENOMEM;
2632 		}
2633 	}
2634 
2635 	return 0;
2636 }
2637 
2638 static void bnxt_init_cp_rings(struct bnxt *bp)
2639 {
2640 	int i;
2641 
2642 	for (i = 0; i < bp->cp_nr_rings; i++) {
2643 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
2644 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
2645 
2646 		ring->fw_ring_id = INVALID_HW_RING_ID;
2647 		cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
2648 		cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
2649 	}
2650 }
2651 
2652 static int bnxt_init_rx_rings(struct bnxt *bp)
2653 {
2654 	int i, rc = 0;
2655 
2656 	if (BNXT_RX_PAGE_MODE(bp)) {
2657 		bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM;
2658 		bp->rx_dma_offset = XDP_PACKET_HEADROOM;
2659 	} else {
2660 		bp->rx_offset = BNXT_RX_OFFSET;
2661 		bp->rx_dma_offset = BNXT_RX_DMA_OFFSET;
2662 	}
2663 
2664 	for (i = 0; i < bp->rx_nr_rings; i++) {
2665 		rc = bnxt_init_one_rx_ring(bp, i);
2666 		if (rc)
2667 			break;
2668 	}
2669 
2670 	return rc;
2671 }
2672 
2673 static int bnxt_init_tx_rings(struct bnxt *bp)
2674 {
2675 	u16 i;
2676 
2677 	bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
2678 				   MAX_SKB_FRAGS + 1);
2679 
2680 	for (i = 0; i < bp->tx_nr_rings; i++) {
2681 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2682 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
2683 
2684 		ring->fw_ring_id = INVALID_HW_RING_ID;
2685 	}
2686 
2687 	return 0;
2688 }
2689 
2690 static void bnxt_free_ring_grps(struct bnxt *bp)
2691 {
2692 	kfree(bp->grp_info);
2693 	bp->grp_info = NULL;
2694 }
2695 
2696 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
2697 {
2698 	int i;
2699 
2700 	if (irq_re_init) {
2701 		bp->grp_info = kcalloc(bp->cp_nr_rings,
2702 				       sizeof(struct bnxt_ring_grp_info),
2703 				       GFP_KERNEL);
2704 		if (!bp->grp_info)
2705 			return -ENOMEM;
2706 	}
2707 	for (i = 0; i < bp->cp_nr_rings; i++) {
2708 		if (irq_re_init)
2709 			bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
2710 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
2711 		bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
2712 		bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
2713 		bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
2714 	}
2715 	return 0;
2716 }
2717 
2718 static void bnxt_free_vnics(struct bnxt *bp)
2719 {
2720 	kfree(bp->vnic_info);
2721 	bp->vnic_info = NULL;
2722 	bp->nr_vnics = 0;
2723 }
2724 
2725 static int bnxt_alloc_vnics(struct bnxt *bp)
2726 {
2727 	int num_vnics = 1;
2728 
2729 #ifdef CONFIG_RFS_ACCEL
2730 	if (bp->flags & BNXT_FLAG_RFS)
2731 		num_vnics += bp->rx_nr_rings;
2732 #endif
2733 
2734 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
2735 		num_vnics++;
2736 
2737 	bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
2738 				GFP_KERNEL);
2739 	if (!bp->vnic_info)
2740 		return -ENOMEM;
2741 
2742 	bp->nr_vnics = num_vnics;
2743 	return 0;
2744 }
2745 
2746 static void bnxt_init_vnics(struct bnxt *bp)
2747 {
2748 	int i;
2749 
2750 	for (i = 0; i < bp->nr_vnics; i++) {
2751 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2752 
2753 		vnic->fw_vnic_id = INVALID_HW_RING_ID;
2754 		vnic->fw_rss_cos_lb_ctx[0] = INVALID_HW_RING_ID;
2755 		vnic->fw_rss_cos_lb_ctx[1] = INVALID_HW_RING_ID;
2756 		vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
2757 
2758 		if (bp->vnic_info[i].rss_hash_key) {
2759 			if (i == 0)
2760 				prandom_bytes(vnic->rss_hash_key,
2761 					      HW_HASH_KEY_SIZE);
2762 			else
2763 				memcpy(vnic->rss_hash_key,
2764 				       bp->vnic_info[0].rss_hash_key,
2765 				       HW_HASH_KEY_SIZE);
2766 		}
2767 	}
2768 }
2769 
2770 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
2771 {
2772 	int pages;
2773 
2774 	pages = ring_size / desc_per_pg;
2775 
2776 	if (!pages)
2777 		return 1;
2778 
2779 	pages++;
2780 
2781 	while (pages & (pages - 1))
2782 		pages++;
2783 
2784 	return pages;
2785 }
2786 
2787 void bnxt_set_tpa_flags(struct bnxt *bp)
2788 {
2789 	bp->flags &= ~BNXT_FLAG_TPA;
2790 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
2791 		return;
2792 	if (bp->dev->features & NETIF_F_LRO)
2793 		bp->flags |= BNXT_FLAG_LRO;
2794 	else if (bp->dev->features & NETIF_F_GRO_HW)
2795 		bp->flags |= BNXT_FLAG_GRO;
2796 }
2797 
2798 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
2799  * be set on entry.
2800  */
2801 void bnxt_set_ring_params(struct bnxt *bp)
2802 {
2803 	u32 ring_size, rx_size, rx_space;
2804 	u32 agg_factor = 0, agg_ring_size = 0;
2805 
2806 	/* 8 for CRC and VLAN */
2807 	rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
2808 
2809 	rx_space = rx_size + NET_SKB_PAD +
2810 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2811 
2812 	bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
2813 	ring_size = bp->rx_ring_size;
2814 	bp->rx_agg_ring_size = 0;
2815 	bp->rx_agg_nr_pages = 0;
2816 
2817 	if (bp->flags & BNXT_FLAG_TPA)
2818 		agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE);
2819 
2820 	bp->flags &= ~BNXT_FLAG_JUMBO;
2821 	if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) {
2822 		u32 jumbo_factor;
2823 
2824 		bp->flags |= BNXT_FLAG_JUMBO;
2825 		jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
2826 		if (jumbo_factor > agg_factor)
2827 			agg_factor = jumbo_factor;
2828 	}
2829 	agg_ring_size = ring_size * agg_factor;
2830 
2831 	if (agg_ring_size) {
2832 		bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
2833 							RX_DESC_CNT);
2834 		if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
2835 			u32 tmp = agg_ring_size;
2836 
2837 			bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
2838 			agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
2839 			netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
2840 				    tmp, agg_ring_size);
2841 		}
2842 		bp->rx_agg_ring_size = agg_ring_size;
2843 		bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
2844 		rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
2845 		rx_space = rx_size + NET_SKB_PAD +
2846 			SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2847 	}
2848 
2849 	bp->rx_buf_use_size = rx_size;
2850 	bp->rx_buf_size = rx_space;
2851 
2852 	bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
2853 	bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
2854 
2855 	ring_size = bp->tx_ring_size;
2856 	bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
2857 	bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
2858 
2859 	ring_size = bp->rx_ring_size * (2 + agg_factor) + bp->tx_ring_size;
2860 	bp->cp_ring_size = ring_size;
2861 
2862 	bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
2863 	if (bp->cp_nr_pages > MAX_CP_PAGES) {
2864 		bp->cp_nr_pages = MAX_CP_PAGES;
2865 		bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
2866 		netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
2867 			    ring_size, bp->cp_ring_size);
2868 	}
2869 	bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
2870 	bp->cp_ring_mask = bp->cp_bit - 1;
2871 }
2872 
2873 /* Changing allocation mode of RX rings.
2874  * TODO: Update when extending xdp_rxq_info to support allocation modes.
2875  */
2876 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode)
2877 {
2878 	if (page_mode) {
2879 		if (bp->dev->mtu > BNXT_MAX_PAGE_MODE_MTU)
2880 			return -EOPNOTSUPP;
2881 		bp->dev->max_mtu =
2882 			min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU);
2883 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
2884 		bp->flags |= BNXT_FLAG_NO_AGG_RINGS | BNXT_FLAG_RX_PAGE_MODE;
2885 		bp->rx_dir = DMA_BIDIRECTIONAL;
2886 		bp->rx_skb_func = bnxt_rx_page_skb;
2887 		/* Disable LRO or GRO_HW */
2888 		netdev_update_features(bp->dev);
2889 	} else {
2890 		bp->dev->max_mtu = bp->max_mtu;
2891 		bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE;
2892 		bp->rx_dir = DMA_FROM_DEVICE;
2893 		bp->rx_skb_func = bnxt_rx_skb;
2894 	}
2895 	return 0;
2896 }
2897 
2898 static void bnxt_free_vnic_attributes(struct bnxt *bp)
2899 {
2900 	int i;
2901 	struct bnxt_vnic_info *vnic;
2902 	struct pci_dev *pdev = bp->pdev;
2903 
2904 	if (!bp->vnic_info)
2905 		return;
2906 
2907 	for (i = 0; i < bp->nr_vnics; i++) {
2908 		vnic = &bp->vnic_info[i];
2909 
2910 		kfree(vnic->fw_grp_ids);
2911 		vnic->fw_grp_ids = NULL;
2912 
2913 		kfree(vnic->uc_list);
2914 		vnic->uc_list = NULL;
2915 
2916 		if (vnic->mc_list) {
2917 			dma_free_coherent(&pdev->dev, vnic->mc_list_size,
2918 					  vnic->mc_list, vnic->mc_list_mapping);
2919 			vnic->mc_list = NULL;
2920 		}
2921 
2922 		if (vnic->rss_table) {
2923 			dma_free_coherent(&pdev->dev, PAGE_SIZE,
2924 					  vnic->rss_table,
2925 					  vnic->rss_table_dma_addr);
2926 			vnic->rss_table = NULL;
2927 		}
2928 
2929 		vnic->rss_hash_key = NULL;
2930 		vnic->flags = 0;
2931 	}
2932 }
2933 
2934 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
2935 {
2936 	int i, rc = 0, size;
2937 	struct bnxt_vnic_info *vnic;
2938 	struct pci_dev *pdev = bp->pdev;
2939 	int max_rings;
2940 
2941 	for (i = 0; i < bp->nr_vnics; i++) {
2942 		vnic = &bp->vnic_info[i];
2943 
2944 		if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
2945 			int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
2946 
2947 			if (mem_size > 0) {
2948 				vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
2949 				if (!vnic->uc_list) {
2950 					rc = -ENOMEM;
2951 					goto out;
2952 				}
2953 			}
2954 		}
2955 
2956 		if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
2957 			vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
2958 			vnic->mc_list =
2959 				dma_alloc_coherent(&pdev->dev,
2960 						   vnic->mc_list_size,
2961 						   &vnic->mc_list_mapping,
2962 						   GFP_KERNEL);
2963 			if (!vnic->mc_list) {
2964 				rc = -ENOMEM;
2965 				goto out;
2966 			}
2967 		}
2968 
2969 		if (vnic->flags & BNXT_VNIC_RSS_FLAG)
2970 			max_rings = bp->rx_nr_rings;
2971 		else
2972 			max_rings = 1;
2973 
2974 		vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
2975 		if (!vnic->fw_grp_ids) {
2976 			rc = -ENOMEM;
2977 			goto out;
2978 		}
2979 
2980 		if ((bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
2981 		    !(vnic->flags & BNXT_VNIC_RSS_FLAG))
2982 			continue;
2983 
2984 		/* Allocate rss table and hash key */
2985 		vnic->rss_table = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
2986 						     &vnic->rss_table_dma_addr,
2987 						     GFP_KERNEL);
2988 		if (!vnic->rss_table) {
2989 			rc = -ENOMEM;
2990 			goto out;
2991 		}
2992 
2993 		size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
2994 
2995 		vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
2996 		vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
2997 	}
2998 	return 0;
2999 
3000 out:
3001 	return rc;
3002 }
3003 
3004 static void bnxt_free_hwrm_resources(struct bnxt *bp)
3005 {
3006 	struct pci_dev *pdev = bp->pdev;
3007 
3008 	dma_free_coherent(&pdev->dev, PAGE_SIZE, bp->hwrm_cmd_resp_addr,
3009 			  bp->hwrm_cmd_resp_dma_addr);
3010 
3011 	bp->hwrm_cmd_resp_addr = NULL;
3012 	if (bp->hwrm_dbg_resp_addr) {
3013 		dma_free_coherent(&pdev->dev, HWRM_DBG_REG_BUF_SIZE,
3014 				  bp->hwrm_dbg_resp_addr,
3015 				  bp->hwrm_dbg_resp_dma_addr);
3016 
3017 		bp->hwrm_dbg_resp_addr = NULL;
3018 	}
3019 }
3020 
3021 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
3022 {
3023 	struct pci_dev *pdev = bp->pdev;
3024 
3025 	bp->hwrm_cmd_resp_addr = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
3026 						   &bp->hwrm_cmd_resp_dma_addr,
3027 						   GFP_KERNEL);
3028 	if (!bp->hwrm_cmd_resp_addr)
3029 		return -ENOMEM;
3030 	bp->hwrm_dbg_resp_addr = dma_alloc_coherent(&pdev->dev,
3031 						    HWRM_DBG_REG_BUF_SIZE,
3032 						    &bp->hwrm_dbg_resp_dma_addr,
3033 						    GFP_KERNEL);
3034 	if (!bp->hwrm_dbg_resp_addr)
3035 		netdev_warn(bp->dev, "fail to alloc debug register dma mem\n");
3036 
3037 	return 0;
3038 }
3039 
3040 static void bnxt_free_hwrm_short_cmd_req(struct bnxt *bp)
3041 {
3042 	if (bp->hwrm_short_cmd_req_addr) {
3043 		struct pci_dev *pdev = bp->pdev;
3044 
3045 		dma_free_coherent(&pdev->dev, BNXT_HWRM_MAX_REQ_LEN,
3046 				  bp->hwrm_short_cmd_req_addr,
3047 				  bp->hwrm_short_cmd_req_dma_addr);
3048 		bp->hwrm_short_cmd_req_addr = NULL;
3049 	}
3050 }
3051 
3052 static int bnxt_alloc_hwrm_short_cmd_req(struct bnxt *bp)
3053 {
3054 	struct pci_dev *pdev = bp->pdev;
3055 
3056 	bp->hwrm_short_cmd_req_addr =
3057 		dma_alloc_coherent(&pdev->dev, BNXT_HWRM_MAX_REQ_LEN,
3058 				   &bp->hwrm_short_cmd_req_dma_addr,
3059 				   GFP_KERNEL);
3060 	if (!bp->hwrm_short_cmd_req_addr)
3061 		return -ENOMEM;
3062 
3063 	return 0;
3064 }
3065 
3066 static void bnxt_free_stats(struct bnxt *bp)
3067 {
3068 	u32 size, i;
3069 	struct pci_dev *pdev = bp->pdev;
3070 
3071 	bp->flags &= ~BNXT_FLAG_PORT_STATS;
3072 	bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT;
3073 
3074 	if (bp->hw_rx_port_stats) {
3075 		dma_free_coherent(&pdev->dev, bp->hw_port_stats_size,
3076 				  bp->hw_rx_port_stats,
3077 				  bp->hw_rx_port_stats_map);
3078 		bp->hw_rx_port_stats = NULL;
3079 	}
3080 
3081 	if (bp->hw_rx_port_stats_ext) {
3082 		dma_free_coherent(&pdev->dev, sizeof(struct rx_port_stats_ext),
3083 				  bp->hw_rx_port_stats_ext,
3084 				  bp->hw_rx_port_stats_ext_map);
3085 		bp->hw_rx_port_stats_ext = NULL;
3086 	}
3087 
3088 	if (!bp->bnapi)
3089 		return;
3090 
3091 	size = sizeof(struct ctx_hw_stats);
3092 
3093 	for (i = 0; i < bp->cp_nr_rings; i++) {
3094 		struct bnxt_napi *bnapi = bp->bnapi[i];
3095 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3096 
3097 		if (cpr->hw_stats) {
3098 			dma_free_coherent(&pdev->dev, size, cpr->hw_stats,
3099 					  cpr->hw_stats_map);
3100 			cpr->hw_stats = NULL;
3101 		}
3102 	}
3103 }
3104 
3105 static int bnxt_alloc_stats(struct bnxt *bp)
3106 {
3107 	u32 size, i;
3108 	struct pci_dev *pdev = bp->pdev;
3109 
3110 	size = sizeof(struct ctx_hw_stats);
3111 
3112 	for (i = 0; i < bp->cp_nr_rings; i++) {
3113 		struct bnxt_napi *bnapi = bp->bnapi[i];
3114 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3115 
3116 		cpr->hw_stats = dma_alloc_coherent(&pdev->dev, size,
3117 						   &cpr->hw_stats_map,
3118 						   GFP_KERNEL);
3119 		if (!cpr->hw_stats)
3120 			return -ENOMEM;
3121 
3122 		cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
3123 	}
3124 
3125 	if (BNXT_PF(bp) && bp->chip_num != CHIP_NUM_58700) {
3126 		bp->hw_port_stats_size = sizeof(struct rx_port_stats) +
3127 					 sizeof(struct tx_port_stats) + 1024;
3128 
3129 		bp->hw_rx_port_stats =
3130 			dma_alloc_coherent(&pdev->dev, bp->hw_port_stats_size,
3131 					   &bp->hw_rx_port_stats_map,
3132 					   GFP_KERNEL);
3133 		if (!bp->hw_rx_port_stats)
3134 			return -ENOMEM;
3135 
3136 		bp->hw_tx_port_stats = (void *)(bp->hw_rx_port_stats + 1) +
3137 				       512;
3138 		bp->hw_tx_port_stats_map = bp->hw_rx_port_stats_map +
3139 					   sizeof(struct rx_port_stats) + 512;
3140 		bp->flags |= BNXT_FLAG_PORT_STATS;
3141 
3142 		/* Display extended statistics only if FW supports it */
3143 		if (bp->hwrm_spec_code < 0x10804 ||
3144 		    bp->hwrm_spec_code == 0x10900)
3145 			return 0;
3146 
3147 		bp->hw_rx_port_stats_ext =
3148 			dma_zalloc_coherent(&pdev->dev,
3149 					    sizeof(struct rx_port_stats_ext),
3150 					    &bp->hw_rx_port_stats_ext_map,
3151 					    GFP_KERNEL);
3152 		if (!bp->hw_rx_port_stats_ext)
3153 			return 0;
3154 
3155 		bp->flags |= BNXT_FLAG_PORT_STATS_EXT;
3156 	}
3157 	return 0;
3158 }
3159 
3160 static void bnxt_clear_ring_indices(struct bnxt *bp)
3161 {
3162 	int i;
3163 
3164 	if (!bp->bnapi)
3165 		return;
3166 
3167 	for (i = 0; i < bp->cp_nr_rings; i++) {
3168 		struct bnxt_napi *bnapi = bp->bnapi[i];
3169 		struct bnxt_cp_ring_info *cpr;
3170 		struct bnxt_rx_ring_info *rxr;
3171 		struct bnxt_tx_ring_info *txr;
3172 
3173 		if (!bnapi)
3174 			continue;
3175 
3176 		cpr = &bnapi->cp_ring;
3177 		cpr->cp_raw_cons = 0;
3178 
3179 		txr = bnapi->tx_ring;
3180 		if (txr) {
3181 			txr->tx_prod = 0;
3182 			txr->tx_cons = 0;
3183 		}
3184 
3185 		rxr = bnapi->rx_ring;
3186 		if (rxr) {
3187 			rxr->rx_prod = 0;
3188 			rxr->rx_agg_prod = 0;
3189 			rxr->rx_sw_agg_prod = 0;
3190 			rxr->rx_next_cons = 0;
3191 		}
3192 	}
3193 }
3194 
3195 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
3196 {
3197 #ifdef CONFIG_RFS_ACCEL
3198 	int i;
3199 
3200 	/* Under rtnl_lock and all our NAPIs have been disabled.  It's
3201 	 * safe to delete the hash table.
3202 	 */
3203 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
3204 		struct hlist_head *head;
3205 		struct hlist_node *tmp;
3206 		struct bnxt_ntuple_filter *fltr;
3207 
3208 		head = &bp->ntp_fltr_hash_tbl[i];
3209 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
3210 			hlist_del(&fltr->hash);
3211 			kfree(fltr);
3212 		}
3213 	}
3214 	if (irq_reinit) {
3215 		kfree(bp->ntp_fltr_bmap);
3216 		bp->ntp_fltr_bmap = NULL;
3217 	}
3218 	bp->ntp_fltr_count = 0;
3219 #endif
3220 }
3221 
3222 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
3223 {
3224 #ifdef CONFIG_RFS_ACCEL
3225 	int i, rc = 0;
3226 
3227 	if (!(bp->flags & BNXT_FLAG_RFS))
3228 		return 0;
3229 
3230 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
3231 		INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
3232 
3233 	bp->ntp_fltr_count = 0;
3234 	bp->ntp_fltr_bmap = kcalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR),
3235 				    sizeof(long),
3236 				    GFP_KERNEL);
3237 
3238 	if (!bp->ntp_fltr_bmap)
3239 		rc = -ENOMEM;
3240 
3241 	return rc;
3242 #else
3243 	return 0;
3244 #endif
3245 }
3246 
3247 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
3248 {
3249 	bnxt_free_vnic_attributes(bp);
3250 	bnxt_free_tx_rings(bp);
3251 	bnxt_free_rx_rings(bp);
3252 	bnxt_free_cp_rings(bp);
3253 	bnxt_free_ntp_fltrs(bp, irq_re_init);
3254 	if (irq_re_init) {
3255 		bnxt_free_stats(bp);
3256 		bnxt_free_ring_grps(bp);
3257 		bnxt_free_vnics(bp);
3258 		kfree(bp->tx_ring_map);
3259 		bp->tx_ring_map = NULL;
3260 		kfree(bp->tx_ring);
3261 		bp->tx_ring = NULL;
3262 		kfree(bp->rx_ring);
3263 		bp->rx_ring = NULL;
3264 		kfree(bp->bnapi);
3265 		bp->bnapi = NULL;
3266 	} else {
3267 		bnxt_clear_ring_indices(bp);
3268 	}
3269 }
3270 
3271 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
3272 {
3273 	int i, j, rc, size, arr_size;
3274 	void *bnapi;
3275 
3276 	if (irq_re_init) {
3277 		/* Allocate bnapi mem pointer array and mem block for
3278 		 * all queues
3279 		 */
3280 		arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
3281 				bp->cp_nr_rings);
3282 		size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
3283 		bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
3284 		if (!bnapi)
3285 			return -ENOMEM;
3286 
3287 		bp->bnapi = bnapi;
3288 		bnapi += arr_size;
3289 		for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
3290 			bp->bnapi[i] = bnapi;
3291 			bp->bnapi[i]->index = i;
3292 			bp->bnapi[i]->bp = bp;
3293 		}
3294 
3295 		bp->rx_ring = kcalloc(bp->rx_nr_rings,
3296 				      sizeof(struct bnxt_rx_ring_info),
3297 				      GFP_KERNEL);
3298 		if (!bp->rx_ring)
3299 			return -ENOMEM;
3300 
3301 		for (i = 0; i < bp->rx_nr_rings; i++) {
3302 			bp->rx_ring[i].bnapi = bp->bnapi[i];
3303 			bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
3304 		}
3305 
3306 		bp->tx_ring = kcalloc(bp->tx_nr_rings,
3307 				      sizeof(struct bnxt_tx_ring_info),
3308 				      GFP_KERNEL);
3309 		if (!bp->tx_ring)
3310 			return -ENOMEM;
3311 
3312 		bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16),
3313 					  GFP_KERNEL);
3314 
3315 		if (!bp->tx_ring_map)
3316 			return -ENOMEM;
3317 
3318 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
3319 			j = 0;
3320 		else
3321 			j = bp->rx_nr_rings;
3322 
3323 		for (i = 0; i < bp->tx_nr_rings; i++, j++) {
3324 			bp->tx_ring[i].bnapi = bp->bnapi[j];
3325 			bp->bnapi[j]->tx_ring = &bp->tx_ring[i];
3326 			bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i;
3327 			if (i >= bp->tx_nr_rings_xdp) {
3328 				bp->tx_ring[i].txq_index = i -
3329 					bp->tx_nr_rings_xdp;
3330 				bp->bnapi[j]->tx_int = bnxt_tx_int;
3331 			} else {
3332 				bp->bnapi[j]->flags |= BNXT_NAPI_FLAG_XDP;
3333 				bp->bnapi[j]->tx_int = bnxt_tx_int_xdp;
3334 			}
3335 		}
3336 
3337 		rc = bnxt_alloc_stats(bp);
3338 		if (rc)
3339 			goto alloc_mem_err;
3340 
3341 		rc = bnxt_alloc_ntp_fltrs(bp);
3342 		if (rc)
3343 			goto alloc_mem_err;
3344 
3345 		rc = bnxt_alloc_vnics(bp);
3346 		if (rc)
3347 			goto alloc_mem_err;
3348 	}
3349 
3350 	bnxt_init_ring_struct(bp);
3351 
3352 	rc = bnxt_alloc_rx_rings(bp);
3353 	if (rc)
3354 		goto alloc_mem_err;
3355 
3356 	rc = bnxt_alloc_tx_rings(bp);
3357 	if (rc)
3358 		goto alloc_mem_err;
3359 
3360 	rc = bnxt_alloc_cp_rings(bp);
3361 	if (rc)
3362 		goto alloc_mem_err;
3363 
3364 	bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
3365 				  BNXT_VNIC_UCAST_FLAG;
3366 	rc = bnxt_alloc_vnic_attributes(bp);
3367 	if (rc)
3368 		goto alloc_mem_err;
3369 	return 0;
3370 
3371 alloc_mem_err:
3372 	bnxt_free_mem(bp, true);
3373 	return rc;
3374 }
3375 
3376 static void bnxt_disable_int(struct bnxt *bp)
3377 {
3378 	int i;
3379 
3380 	if (!bp->bnapi)
3381 		return;
3382 
3383 	for (i = 0; i < bp->cp_nr_rings; i++) {
3384 		struct bnxt_napi *bnapi = bp->bnapi[i];
3385 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3386 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3387 
3388 		if (ring->fw_ring_id != INVALID_HW_RING_ID)
3389 			BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
3390 	}
3391 }
3392 
3393 static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n)
3394 {
3395 	struct bnxt_napi *bnapi = bp->bnapi[n];
3396 	struct bnxt_cp_ring_info *cpr;
3397 
3398 	cpr = &bnapi->cp_ring;
3399 	return cpr->cp_ring_struct.map_idx;
3400 }
3401 
3402 static void bnxt_disable_int_sync(struct bnxt *bp)
3403 {
3404 	int i;
3405 
3406 	atomic_inc(&bp->intr_sem);
3407 
3408 	bnxt_disable_int(bp);
3409 	for (i = 0; i < bp->cp_nr_rings; i++) {
3410 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
3411 
3412 		synchronize_irq(bp->irq_tbl[map_idx].vector);
3413 	}
3414 }
3415 
3416 static void bnxt_enable_int(struct bnxt *bp)
3417 {
3418 	int i;
3419 
3420 	atomic_set(&bp->intr_sem, 0);
3421 	for (i = 0; i < bp->cp_nr_rings; i++) {
3422 		struct bnxt_napi *bnapi = bp->bnapi[i];
3423 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3424 
3425 		BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
3426 	}
3427 }
3428 
3429 void bnxt_hwrm_cmd_hdr_init(struct bnxt *bp, void *request, u16 req_type,
3430 			    u16 cmpl_ring, u16 target_id)
3431 {
3432 	struct input *req = request;
3433 
3434 	req->req_type = cpu_to_le16(req_type);
3435 	req->cmpl_ring = cpu_to_le16(cmpl_ring);
3436 	req->target_id = cpu_to_le16(target_id);
3437 	req->resp_addr = cpu_to_le64(bp->hwrm_cmd_resp_dma_addr);
3438 }
3439 
3440 static int bnxt_hwrm_do_send_msg(struct bnxt *bp, void *msg, u32 msg_len,
3441 				 int timeout, bool silent)
3442 {
3443 	int i, intr_process, rc, tmo_count;
3444 	struct input *req = msg;
3445 	u32 *data = msg;
3446 	__le32 *resp_len;
3447 	u8 *valid;
3448 	u16 cp_ring_id, len = 0;
3449 	struct hwrm_err_output *resp = bp->hwrm_cmd_resp_addr;
3450 	u16 max_req_len = BNXT_HWRM_MAX_REQ_LEN;
3451 	struct hwrm_short_input short_input = {0};
3452 
3453 	req->seq_id = cpu_to_le16(bp->hwrm_cmd_seq++);
3454 	memset(resp, 0, PAGE_SIZE);
3455 	cp_ring_id = le16_to_cpu(req->cmpl_ring);
3456 	intr_process = (cp_ring_id == INVALID_HW_RING_ID) ? 0 : 1;
3457 
3458 	if (bp->flags & BNXT_FLAG_SHORT_CMD) {
3459 		void *short_cmd_req = bp->hwrm_short_cmd_req_addr;
3460 
3461 		memcpy(short_cmd_req, req, msg_len);
3462 		memset(short_cmd_req + msg_len, 0, BNXT_HWRM_MAX_REQ_LEN -
3463 						   msg_len);
3464 
3465 		short_input.req_type = req->req_type;
3466 		short_input.signature =
3467 				cpu_to_le16(SHORT_REQ_SIGNATURE_SHORT_CMD);
3468 		short_input.size = cpu_to_le16(msg_len);
3469 		short_input.req_addr =
3470 			cpu_to_le64(bp->hwrm_short_cmd_req_dma_addr);
3471 
3472 		data = (u32 *)&short_input;
3473 		msg_len = sizeof(short_input);
3474 
3475 		/* Sync memory write before updating doorbell */
3476 		wmb();
3477 
3478 		max_req_len = BNXT_HWRM_SHORT_REQ_LEN;
3479 	}
3480 
3481 	/* Write request msg to hwrm channel */
3482 	__iowrite32_copy(bp->bar0, data, msg_len / 4);
3483 
3484 	for (i = msg_len; i < max_req_len; i += 4)
3485 		writel(0, bp->bar0 + i);
3486 
3487 	/* currently supports only one outstanding message */
3488 	if (intr_process)
3489 		bp->hwrm_intr_seq_id = le16_to_cpu(req->seq_id);
3490 
3491 	/* Ring channel doorbell */
3492 	writel(1, bp->bar0 + 0x100);
3493 
3494 	if (!timeout)
3495 		timeout = DFLT_HWRM_CMD_TIMEOUT;
3496 
3497 	i = 0;
3498 	tmo_count = timeout * 40;
3499 	resp_len = bp->hwrm_cmd_resp_addr + HWRM_RESP_LEN_OFFSET;
3500 	if (intr_process) {
3501 		/* Wait until hwrm response cmpl interrupt is processed */
3502 		while (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID &&
3503 		       i++ < tmo_count) {
3504 			usleep_range(25, 40);
3505 		}
3506 
3507 		if (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID) {
3508 			netdev_err(bp->dev, "Resp cmpl intr err msg: 0x%x\n",
3509 				   le16_to_cpu(req->req_type));
3510 			return -1;
3511 		}
3512 		len = (le32_to_cpu(*resp_len) & HWRM_RESP_LEN_MASK) >>
3513 		      HWRM_RESP_LEN_SFT;
3514 		valid = bp->hwrm_cmd_resp_addr + len - 1;
3515 	} else {
3516 		/* Check if response len is updated */
3517 		for (i = 0; i < tmo_count; i++) {
3518 			len = (le32_to_cpu(*resp_len) & HWRM_RESP_LEN_MASK) >>
3519 			      HWRM_RESP_LEN_SFT;
3520 			if (len)
3521 				break;
3522 			usleep_range(25, 40);
3523 		}
3524 
3525 		if (i >= tmo_count) {
3526 			netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d\n",
3527 				   timeout, le16_to_cpu(req->req_type),
3528 				   le16_to_cpu(req->seq_id), len);
3529 			return -1;
3530 		}
3531 
3532 		/* Last byte of resp contains valid bit */
3533 		valid = bp->hwrm_cmd_resp_addr + len - 1;
3534 		for (i = 0; i < 5; i++) {
3535 			/* make sure we read from updated DMA memory */
3536 			dma_rmb();
3537 			if (*valid)
3538 				break;
3539 			udelay(1);
3540 		}
3541 
3542 		if (i >= 5) {
3543 			netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d v:%d\n",
3544 				   timeout, le16_to_cpu(req->req_type),
3545 				   le16_to_cpu(req->seq_id), len, *valid);
3546 			return -1;
3547 		}
3548 	}
3549 
3550 	/* Zero valid bit for compatibility.  Valid bit in an older spec
3551 	 * may become a new field in a newer spec.  We must make sure that
3552 	 * a new field not implemented by old spec will read zero.
3553 	 */
3554 	*valid = 0;
3555 	rc = le16_to_cpu(resp->error_code);
3556 	if (rc && !silent)
3557 		netdev_err(bp->dev, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n",
3558 			   le16_to_cpu(resp->req_type),
3559 			   le16_to_cpu(resp->seq_id), rc);
3560 	return rc;
3561 }
3562 
3563 int _hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
3564 {
3565 	return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, false);
3566 }
3567 
3568 int _hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len,
3569 			      int timeout)
3570 {
3571 	return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true);
3572 }
3573 
3574 int hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
3575 {
3576 	int rc;
3577 
3578 	mutex_lock(&bp->hwrm_cmd_lock);
3579 	rc = _hwrm_send_message(bp, msg, msg_len, timeout);
3580 	mutex_unlock(&bp->hwrm_cmd_lock);
3581 	return rc;
3582 }
3583 
3584 int hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len,
3585 			     int timeout)
3586 {
3587 	int rc;
3588 
3589 	mutex_lock(&bp->hwrm_cmd_lock);
3590 	rc = bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true);
3591 	mutex_unlock(&bp->hwrm_cmd_lock);
3592 	return rc;
3593 }
3594 
3595 int bnxt_hwrm_func_rgtr_async_events(struct bnxt *bp, unsigned long *bmap,
3596 				     int bmap_size)
3597 {
3598 	struct hwrm_func_drv_rgtr_input req = {0};
3599 	DECLARE_BITMAP(async_events_bmap, 256);
3600 	u32 *events = (u32 *)async_events_bmap;
3601 	int i;
3602 
3603 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
3604 
3605 	req.enables =
3606 		cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
3607 
3608 	memset(async_events_bmap, 0, sizeof(async_events_bmap));
3609 	for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++)
3610 		__set_bit(bnxt_async_events_arr[i], async_events_bmap);
3611 
3612 	if (bmap && bmap_size) {
3613 		for (i = 0; i < bmap_size; i++) {
3614 			if (test_bit(i, bmap))
3615 				__set_bit(i, async_events_bmap);
3616 		}
3617 	}
3618 
3619 	for (i = 0; i < 8; i++)
3620 		req.async_event_fwd[i] |= cpu_to_le32(events[i]);
3621 
3622 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3623 }
3624 
3625 static int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp)
3626 {
3627 	struct hwrm_func_drv_rgtr_input req = {0};
3628 
3629 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
3630 
3631 	req.enables =
3632 		cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
3633 			    FUNC_DRV_RGTR_REQ_ENABLES_VER);
3634 
3635 	req.os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX);
3636 	req.flags = cpu_to_le32(FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE);
3637 	req.ver_maj_8b = DRV_VER_MAJ;
3638 	req.ver_min_8b = DRV_VER_MIN;
3639 	req.ver_upd_8b = DRV_VER_UPD;
3640 	req.ver_maj = cpu_to_le16(DRV_VER_MAJ);
3641 	req.ver_min = cpu_to_le16(DRV_VER_MIN);
3642 	req.ver_upd = cpu_to_le16(DRV_VER_UPD);
3643 
3644 	if (BNXT_PF(bp)) {
3645 		u32 data[8];
3646 		int i;
3647 
3648 		memset(data, 0, sizeof(data));
3649 		for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) {
3650 			u16 cmd = bnxt_vf_req_snif[i];
3651 			unsigned int bit, idx;
3652 
3653 			idx = cmd / 32;
3654 			bit = cmd % 32;
3655 			data[idx] |= 1 << bit;
3656 		}
3657 
3658 		for (i = 0; i < 8; i++)
3659 			req.vf_req_fwd[i] = cpu_to_le32(data[i]);
3660 
3661 		req.enables |=
3662 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
3663 	}
3664 
3665 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3666 }
3667 
3668 static int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
3669 {
3670 	struct hwrm_func_drv_unrgtr_input req = {0};
3671 
3672 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_UNRGTR, -1, -1);
3673 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3674 }
3675 
3676 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
3677 {
3678 	u32 rc = 0;
3679 	struct hwrm_tunnel_dst_port_free_input req = {0};
3680 
3681 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_FREE, -1, -1);
3682 	req.tunnel_type = tunnel_type;
3683 
3684 	switch (tunnel_type) {
3685 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
3686 		req.tunnel_dst_port_id = bp->vxlan_fw_dst_port_id;
3687 		break;
3688 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
3689 		req.tunnel_dst_port_id = bp->nge_fw_dst_port_id;
3690 		break;
3691 	default:
3692 		break;
3693 	}
3694 
3695 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3696 	if (rc)
3697 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
3698 			   rc);
3699 	return rc;
3700 }
3701 
3702 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
3703 					   u8 tunnel_type)
3704 {
3705 	u32 rc = 0;
3706 	struct hwrm_tunnel_dst_port_alloc_input req = {0};
3707 	struct hwrm_tunnel_dst_port_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3708 
3709 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_ALLOC, -1, -1);
3710 
3711 	req.tunnel_type = tunnel_type;
3712 	req.tunnel_dst_port_val = port;
3713 
3714 	mutex_lock(&bp->hwrm_cmd_lock);
3715 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3716 	if (rc) {
3717 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
3718 			   rc);
3719 		goto err_out;
3720 	}
3721 
3722 	switch (tunnel_type) {
3723 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN:
3724 		bp->vxlan_fw_dst_port_id = resp->tunnel_dst_port_id;
3725 		break;
3726 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE:
3727 		bp->nge_fw_dst_port_id = resp->tunnel_dst_port_id;
3728 		break;
3729 	default:
3730 		break;
3731 	}
3732 
3733 err_out:
3734 	mutex_unlock(&bp->hwrm_cmd_lock);
3735 	return rc;
3736 }
3737 
3738 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
3739 {
3740 	struct hwrm_cfa_l2_set_rx_mask_input req = {0};
3741 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3742 
3743 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_SET_RX_MASK, -1, -1);
3744 	req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
3745 
3746 	req.num_mc_entries = cpu_to_le32(vnic->mc_list_count);
3747 	req.mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
3748 	req.mask = cpu_to_le32(vnic->rx_mask);
3749 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3750 }
3751 
3752 #ifdef CONFIG_RFS_ACCEL
3753 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
3754 					    struct bnxt_ntuple_filter *fltr)
3755 {
3756 	struct hwrm_cfa_ntuple_filter_free_input req = {0};
3757 
3758 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_FREE, -1, -1);
3759 	req.ntuple_filter_id = fltr->filter_id;
3760 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3761 }
3762 
3763 #define BNXT_NTP_FLTR_FLAGS					\
3764 	(CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID |	\
3765 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE |	\
3766 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR |	\
3767 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE |	\
3768 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR |	\
3769 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK |	\
3770 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR |	\
3771 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK |	\
3772 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL |	\
3773 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT |		\
3774 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK |	\
3775 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT |		\
3776 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK |	\
3777 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
3778 
3779 #define BNXT_NTP_TUNNEL_FLTR_FLAG				\
3780 		CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE
3781 
3782 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
3783 					     struct bnxt_ntuple_filter *fltr)
3784 {
3785 	int rc = 0;
3786 	struct hwrm_cfa_ntuple_filter_alloc_input req = {0};
3787 	struct hwrm_cfa_ntuple_filter_alloc_output *resp =
3788 		bp->hwrm_cmd_resp_addr;
3789 	struct flow_keys *keys = &fltr->fkeys;
3790 	struct bnxt_vnic_info *vnic = &bp->vnic_info[fltr->rxq + 1];
3791 
3792 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_ALLOC, -1, -1);
3793 	req.l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx];
3794 
3795 	req.enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
3796 
3797 	req.ethertype = htons(ETH_P_IP);
3798 	memcpy(req.src_macaddr, fltr->src_mac_addr, ETH_ALEN);
3799 	req.ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
3800 	req.ip_protocol = keys->basic.ip_proto;
3801 
3802 	if (keys->basic.n_proto == htons(ETH_P_IPV6)) {
3803 		int i;
3804 
3805 		req.ethertype = htons(ETH_P_IPV6);
3806 		req.ip_addr_type =
3807 			CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6;
3808 		*(struct in6_addr *)&req.src_ipaddr[0] =
3809 			keys->addrs.v6addrs.src;
3810 		*(struct in6_addr *)&req.dst_ipaddr[0] =
3811 			keys->addrs.v6addrs.dst;
3812 		for (i = 0; i < 4; i++) {
3813 			req.src_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
3814 			req.dst_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
3815 		}
3816 	} else {
3817 		req.src_ipaddr[0] = keys->addrs.v4addrs.src;
3818 		req.src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
3819 		req.dst_ipaddr[0] = keys->addrs.v4addrs.dst;
3820 		req.dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
3821 	}
3822 	if (keys->control.flags & FLOW_DIS_ENCAPSULATION) {
3823 		req.enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG);
3824 		req.tunnel_type =
3825 			CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL;
3826 	}
3827 
3828 	req.src_port = keys->ports.src;
3829 	req.src_port_mask = cpu_to_be16(0xffff);
3830 	req.dst_port = keys->ports.dst;
3831 	req.dst_port_mask = cpu_to_be16(0xffff);
3832 
3833 	req.dst_id = cpu_to_le16(vnic->fw_vnic_id);
3834 	mutex_lock(&bp->hwrm_cmd_lock);
3835 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3836 	if (!rc)
3837 		fltr->filter_id = resp->ntuple_filter_id;
3838 	mutex_unlock(&bp->hwrm_cmd_lock);
3839 	return rc;
3840 }
3841 #endif
3842 
3843 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
3844 				     u8 *mac_addr)
3845 {
3846 	u32 rc = 0;
3847 	struct hwrm_cfa_l2_filter_alloc_input req = {0};
3848 	struct hwrm_cfa_l2_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3849 
3850 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_ALLOC, -1, -1);
3851 	req.flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX);
3852 	if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
3853 		req.flags |=
3854 			cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
3855 	req.dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
3856 	req.enables =
3857 		cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
3858 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
3859 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
3860 	memcpy(req.l2_addr, mac_addr, ETH_ALEN);
3861 	req.l2_addr_mask[0] = 0xff;
3862 	req.l2_addr_mask[1] = 0xff;
3863 	req.l2_addr_mask[2] = 0xff;
3864 	req.l2_addr_mask[3] = 0xff;
3865 	req.l2_addr_mask[4] = 0xff;
3866 	req.l2_addr_mask[5] = 0xff;
3867 
3868 	mutex_lock(&bp->hwrm_cmd_lock);
3869 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3870 	if (!rc)
3871 		bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
3872 							resp->l2_filter_id;
3873 	mutex_unlock(&bp->hwrm_cmd_lock);
3874 	return rc;
3875 }
3876 
3877 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
3878 {
3879 	u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
3880 	int rc = 0;
3881 
3882 	/* Any associated ntuple filters will also be cleared by firmware. */
3883 	mutex_lock(&bp->hwrm_cmd_lock);
3884 	for (i = 0; i < num_of_vnics; i++) {
3885 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3886 
3887 		for (j = 0; j < vnic->uc_filter_count; j++) {
3888 			struct hwrm_cfa_l2_filter_free_input req = {0};
3889 
3890 			bnxt_hwrm_cmd_hdr_init(bp, &req,
3891 					       HWRM_CFA_L2_FILTER_FREE, -1, -1);
3892 
3893 			req.l2_filter_id = vnic->fw_l2_filter_id[j];
3894 
3895 			rc = _hwrm_send_message(bp, &req, sizeof(req),
3896 						HWRM_CMD_TIMEOUT);
3897 		}
3898 		vnic->uc_filter_count = 0;
3899 	}
3900 	mutex_unlock(&bp->hwrm_cmd_lock);
3901 
3902 	return rc;
3903 }
3904 
3905 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
3906 {
3907 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3908 	struct hwrm_vnic_tpa_cfg_input req = {0};
3909 
3910 	if (vnic->fw_vnic_id == INVALID_HW_RING_ID)
3911 		return 0;
3912 
3913 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_TPA_CFG, -1, -1);
3914 
3915 	if (tpa_flags) {
3916 		u16 mss = bp->dev->mtu - 40;
3917 		u32 nsegs, n, segs = 0, flags;
3918 
3919 		flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
3920 			VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
3921 			VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
3922 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
3923 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
3924 		if (tpa_flags & BNXT_FLAG_GRO)
3925 			flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
3926 
3927 		req.flags = cpu_to_le32(flags);
3928 
3929 		req.enables =
3930 			cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
3931 				    VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
3932 				    VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
3933 
3934 		/* Number of segs are log2 units, and first packet is not
3935 		 * included as part of this units.
3936 		 */
3937 		if (mss <= BNXT_RX_PAGE_SIZE) {
3938 			n = BNXT_RX_PAGE_SIZE / mss;
3939 			nsegs = (MAX_SKB_FRAGS - 1) * n;
3940 		} else {
3941 			n = mss / BNXT_RX_PAGE_SIZE;
3942 			if (mss & (BNXT_RX_PAGE_SIZE - 1))
3943 				n++;
3944 			nsegs = (MAX_SKB_FRAGS - n) / n;
3945 		}
3946 
3947 		segs = ilog2(nsegs);
3948 		req.max_agg_segs = cpu_to_le16(segs);
3949 		req.max_aggs = cpu_to_le16(VNIC_TPA_CFG_REQ_MAX_AGGS_MAX);
3950 
3951 		req.min_agg_len = cpu_to_le32(512);
3952 	}
3953 	req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
3954 
3955 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3956 }
3957 
3958 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
3959 {
3960 	u32 i, j, max_rings;
3961 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3962 	struct hwrm_vnic_rss_cfg_input req = {0};
3963 
3964 	if (vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID)
3965 		return 0;
3966 
3967 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1);
3968 	if (set_rss) {
3969 		req.hash_type = cpu_to_le32(bp->rss_hash_cfg);
3970 		if (vnic->flags & BNXT_VNIC_RSS_FLAG) {
3971 			if (BNXT_CHIP_TYPE_NITRO_A0(bp))
3972 				max_rings = bp->rx_nr_rings - 1;
3973 			else
3974 				max_rings = bp->rx_nr_rings;
3975 		} else {
3976 			max_rings = 1;
3977 		}
3978 
3979 		/* Fill the RSS indirection table with ring group ids */
3980 		for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++, j++) {
3981 			if (j == max_rings)
3982 				j = 0;
3983 			vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
3984 		}
3985 
3986 		req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
3987 		req.hash_key_tbl_addr =
3988 			cpu_to_le64(vnic->rss_hash_key_dma_addr);
3989 	}
3990 	req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
3991 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3992 }
3993 
3994 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
3995 {
3996 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3997 	struct hwrm_vnic_plcmodes_cfg_input req = {0};
3998 
3999 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_PLCMODES_CFG, -1, -1);
4000 	req.flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT |
4001 				VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
4002 				VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
4003 	req.enables =
4004 		cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID |
4005 			    VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
4006 	/* thresholds not implemented in firmware yet */
4007 	req.jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
4008 	req.hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
4009 	req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
4010 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4011 }
4012 
4013 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id,
4014 					u16 ctx_idx)
4015 {
4016 	struct hwrm_vnic_rss_cos_lb_ctx_free_input req = {0};
4017 
4018 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_FREE, -1, -1);
4019 	req.rss_cos_lb_ctx_id =
4020 		cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]);
4021 
4022 	hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4023 	bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID;
4024 }
4025 
4026 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
4027 {
4028 	int i, j;
4029 
4030 	for (i = 0; i < bp->nr_vnics; i++) {
4031 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
4032 
4033 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) {
4034 			if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID)
4035 				bnxt_hwrm_vnic_ctx_free_one(bp, i, j);
4036 		}
4037 	}
4038 	bp->rsscos_nr_ctxs = 0;
4039 }
4040 
4041 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx)
4042 {
4043 	int rc;
4044 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_input req = {0};
4045 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp =
4046 						bp->hwrm_cmd_resp_addr;
4047 
4048 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC, -1,
4049 			       -1);
4050 
4051 	mutex_lock(&bp->hwrm_cmd_lock);
4052 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4053 	if (!rc)
4054 		bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] =
4055 			le16_to_cpu(resp->rss_cos_lb_ctx_id);
4056 	mutex_unlock(&bp->hwrm_cmd_lock);
4057 
4058 	return rc;
4059 }
4060 
4061 static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp)
4062 {
4063 	if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP)
4064 		return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE;
4065 	return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE;
4066 }
4067 
4068 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
4069 {
4070 	unsigned int ring = 0, grp_idx;
4071 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4072 	struct hwrm_vnic_cfg_input req = {0};
4073 	u16 def_vlan = 0;
4074 
4075 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_CFG, -1, -1);
4076 
4077 	req.enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP);
4078 	/* Only RSS support for now TBD: COS & LB */
4079 	if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) {
4080 		req.rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
4081 		req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
4082 					   VNIC_CFG_REQ_ENABLES_MRU);
4083 	} else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) {
4084 		req.rss_rule =
4085 			cpu_to_le16(bp->vnic_info[0].fw_rss_cos_lb_ctx[0]);
4086 		req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
4087 					   VNIC_CFG_REQ_ENABLES_MRU);
4088 		req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE);
4089 	} else {
4090 		req.rss_rule = cpu_to_le16(0xffff);
4091 	}
4092 
4093 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) &&
4094 	    (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) {
4095 		req.cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]);
4096 		req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE);
4097 	} else {
4098 		req.cos_rule = cpu_to_le16(0xffff);
4099 	}
4100 
4101 	if (vnic->flags & BNXT_VNIC_RSS_FLAG)
4102 		ring = 0;
4103 	else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
4104 		ring = vnic_id - 1;
4105 	else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp))
4106 		ring = bp->rx_nr_rings - 1;
4107 
4108 	grp_idx = bp->rx_ring[ring].bnapi->index;
4109 	req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
4110 	req.dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
4111 
4112 	req.lb_rule = cpu_to_le16(0xffff);
4113 	req.mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + ETH_FCS_LEN +
4114 			      VLAN_HLEN);
4115 
4116 #ifdef CONFIG_BNXT_SRIOV
4117 	if (BNXT_VF(bp))
4118 		def_vlan = bp->vf.vlan;
4119 #endif
4120 	if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan)
4121 		req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
4122 	if (!vnic_id && bnxt_ulp_registered(bp->edev, BNXT_ROCE_ULP))
4123 		req.flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp));
4124 
4125 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4126 }
4127 
4128 static int bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
4129 {
4130 	u32 rc = 0;
4131 
4132 	if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
4133 		struct hwrm_vnic_free_input req = {0};
4134 
4135 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_FREE, -1, -1);
4136 		req.vnic_id =
4137 			cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
4138 
4139 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4140 		if (rc)
4141 			return rc;
4142 		bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
4143 	}
4144 	return rc;
4145 }
4146 
4147 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
4148 {
4149 	u16 i;
4150 
4151 	for (i = 0; i < bp->nr_vnics; i++)
4152 		bnxt_hwrm_vnic_free_one(bp, i);
4153 }
4154 
4155 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
4156 				unsigned int start_rx_ring_idx,
4157 				unsigned int nr_rings)
4158 {
4159 	int rc = 0;
4160 	unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
4161 	struct hwrm_vnic_alloc_input req = {0};
4162 	struct hwrm_vnic_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4163 
4164 	/* map ring groups to this vnic */
4165 	for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
4166 		grp_idx = bp->rx_ring[i].bnapi->index;
4167 		if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
4168 			netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
4169 				   j, nr_rings);
4170 			break;
4171 		}
4172 		bp->vnic_info[vnic_id].fw_grp_ids[j] =
4173 					bp->grp_info[grp_idx].fw_grp_id;
4174 	}
4175 
4176 	bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[0] = INVALID_HW_RING_ID;
4177 	bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[1] = INVALID_HW_RING_ID;
4178 	if (vnic_id == 0)
4179 		req.flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
4180 
4181 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_ALLOC, -1, -1);
4182 
4183 	mutex_lock(&bp->hwrm_cmd_lock);
4184 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4185 	if (!rc)
4186 		bp->vnic_info[vnic_id].fw_vnic_id = le32_to_cpu(resp->vnic_id);
4187 	mutex_unlock(&bp->hwrm_cmd_lock);
4188 	return rc;
4189 }
4190 
4191 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp)
4192 {
4193 	struct hwrm_vnic_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
4194 	struct hwrm_vnic_qcaps_input req = {0};
4195 	int rc;
4196 
4197 	if (bp->hwrm_spec_code < 0x10600)
4198 		return 0;
4199 
4200 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_QCAPS, -1, -1);
4201 	mutex_lock(&bp->hwrm_cmd_lock);
4202 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4203 	if (!rc) {
4204 		u32 flags = le32_to_cpu(resp->flags);
4205 
4206 		if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP)
4207 			bp->flags |= BNXT_FLAG_NEW_RSS_CAP;
4208 		if (flags &
4209 		    VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP)
4210 			bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP;
4211 	}
4212 	mutex_unlock(&bp->hwrm_cmd_lock);
4213 	return rc;
4214 }
4215 
4216 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
4217 {
4218 	u16 i;
4219 	u32 rc = 0;
4220 
4221 	mutex_lock(&bp->hwrm_cmd_lock);
4222 	for (i = 0; i < bp->rx_nr_rings; i++) {
4223 		struct hwrm_ring_grp_alloc_input req = {0};
4224 		struct hwrm_ring_grp_alloc_output *resp =
4225 					bp->hwrm_cmd_resp_addr;
4226 		unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
4227 
4228 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_ALLOC, -1, -1);
4229 
4230 		req.cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
4231 		req.rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
4232 		req.ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
4233 		req.sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
4234 
4235 		rc = _hwrm_send_message(bp, &req, sizeof(req),
4236 					HWRM_CMD_TIMEOUT);
4237 		if (rc)
4238 			break;
4239 
4240 		bp->grp_info[grp_idx].fw_grp_id =
4241 			le32_to_cpu(resp->ring_group_id);
4242 	}
4243 	mutex_unlock(&bp->hwrm_cmd_lock);
4244 	return rc;
4245 }
4246 
4247 static int bnxt_hwrm_ring_grp_free(struct bnxt *bp)
4248 {
4249 	u16 i;
4250 	u32 rc = 0;
4251 	struct hwrm_ring_grp_free_input req = {0};
4252 
4253 	if (!bp->grp_info)
4254 		return 0;
4255 
4256 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_FREE, -1, -1);
4257 
4258 	mutex_lock(&bp->hwrm_cmd_lock);
4259 	for (i = 0; i < bp->cp_nr_rings; i++) {
4260 		if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
4261 			continue;
4262 		req.ring_group_id =
4263 			cpu_to_le32(bp->grp_info[i].fw_grp_id);
4264 
4265 		rc = _hwrm_send_message(bp, &req, sizeof(req),
4266 					HWRM_CMD_TIMEOUT);
4267 		if (rc)
4268 			break;
4269 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
4270 	}
4271 	mutex_unlock(&bp->hwrm_cmd_lock);
4272 	return rc;
4273 }
4274 
4275 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
4276 				    struct bnxt_ring_struct *ring,
4277 				    u32 ring_type, u32 map_index)
4278 {
4279 	int rc = 0, err = 0;
4280 	struct hwrm_ring_alloc_input req = {0};
4281 	struct hwrm_ring_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4282 	struct bnxt_ring_grp_info *grp_info;
4283 	u16 ring_id;
4284 
4285 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_ALLOC, -1, -1);
4286 
4287 	req.enables = 0;
4288 	if (ring->nr_pages > 1) {
4289 		req.page_tbl_addr = cpu_to_le64(ring->pg_tbl_map);
4290 		/* Page size is in log2 units */
4291 		req.page_size = BNXT_PAGE_SHIFT;
4292 		req.page_tbl_depth = 1;
4293 	} else {
4294 		req.page_tbl_addr =  cpu_to_le64(ring->dma_arr[0]);
4295 	}
4296 	req.fbo = 0;
4297 	/* Association of ring index with doorbell index and MSIX number */
4298 	req.logical_id = cpu_to_le16(map_index);
4299 
4300 	switch (ring_type) {
4301 	case HWRM_RING_ALLOC_TX:
4302 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
4303 		/* Association of transmit ring with completion ring */
4304 		grp_info = &bp->grp_info[ring->grp_idx];
4305 		req.cmpl_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id);
4306 		req.length = cpu_to_le32(bp->tx_ring_mask + 1);
4307 		req.stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
4308 		req.queue_id = cpu_to_le16(ring->queue_id);
4309 		break;
4310 	case HWRM_RING_ALLOC_RX:
4311 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
4312 		req.length = cpu_to_le32(bp->rx_ring_mask + 1);
4313 		break;
4314 	case HWRM_RING_ALLOC_AGG:
4315 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
4316 		req.length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
4317 		break;
4318 	case HWRM_RING_ALLOC_CMPL:
4319 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL;
4320 		req.length = cpu_to_le32(bp->cp_ring_mask + 1);
4321 		if (bp->flags & BNXT_FLAG_USING_MSIX)
4322 			req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
4323 		break;
4324 	default:
4325 		netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
4326 			   ring_type);
4327 		return -1;
4328 	}
4329 
4330 	mutex_lock(&bp->hwrm_cmd_lock);
4331 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4332 	err = le16_to_cpu(resp->error_code);
4333 	ring_id = le16_to_cpu(resp->ring_id);
4334 	mutex_unlock(&bp->hwrm_cmd_lock);
4335 
4336 	if (rc || err) {
4337 		switch (ring_type) {
4338 		case RING_FREE_REQ_RING_TYPE_L2_CMPL:
4339 			netdev_err(bp->dev, "hwrm_ring_alloc cp failed. rc:%x err:%x\n",
4340 				   rc, err);
4341 			return -1;
4342 
4343 		case RING_FREE_REQ_RING_TYPE_RX:
4344 			netdev_err(bp->dev, "hwrm_ring_alloc rx failed. rc:%x err:%x\n",
4345 				   rc, err);
4346 			return -1;
4347 
4348 		case RING_FREE_REQ_RING_TYPE_TX:
4349 			netdev_err(bp->dev, "hwrm_ring_alloc tx failed. rc:%x err:%x\n",
4350 				   rc, err);
4351 			return -1;
4352 
4353 		default:
4354 			netdev_err(bp->dev, "Invalid ring\n");
4355 			return -1;
4356 		}
4357 	}
4358 	ring->fw_ring_id = ring_id;
4359 	return rc;
4360 }
4361 
4362 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx)
4363 {
4364 	int rc;
4365 
4366 	if (BNXT_PF(bp)) {
4367 		struct hwrm_func_cfg_input req = {0};
4368 
4369 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
4370 		req.fid = cpu_to_le16(0xffff);
4371 		req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
4372 		req.async_event_cr = cpu_to_le16(idx);
4373 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4374 	} else {
4375 		struct hwrm_func_vf_cfg_input req = {0};
4376 
4377 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_CFG, -1, -1);
4378 		req.enables =
4379 			cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
4380 		req.async_event_cr = cpu_to_le16(idx);
4381 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4382 	}
4383 	return rc;
4384 }
4385 
4386 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
4387 {
4388 	int i, rc = 0;
4389 
4390 	for (i = 0; i < bp->cp_nr_rings; i++) {
4391 		struct bnxt_napi *bnapi = bp->bnapi[i];
4392 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4393 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
4394 		u32 map_idx = ring->map_idx;
4395 
4396 		cpr->cp_doorbell = bp->bar1 + map_idx * 0x80;
4397 		rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_CMPL,
4398 					      map_idx);
4399 		if (rc)
4400 			goto err_out;
4401 		BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
4402 		bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
4403 
4404 		if (!i) {
4405 			rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id);
4406 			if (rc)
4407 				netdev_warn(bp->dev, "Failed to set async event completion ring.\n");
4408 		}
4409 	}
4410 
4411 	for (i = 0; i < bp->tx_nr_rings; i++) {
4412 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
4413 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
4414 		u32 map_idx = i;
4415 
4416 		rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_TX,
4417 					      map_idx);
4418 		if (rc)
4419 			goto err_out;
4420 		txr->tx_doorbell = bp->bar1 + map_idx * 0x80;
4421 	}
4422 
4423 	for (i = 0; i < bp->rx_nr_rings; i++) {
4424 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4425 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
4426 		u32 map_idx = rxr->bnapi->index;
4427 
4428 		rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_RX,
4429 					      map_idx);
4430 		if (rc)
4431 			goto err_out;
4432 		rxr->rx_doorbell = bp->bar1 + map_idx * 0x80;
4433 		writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
4434 		bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
4435 	}
4436 
4437 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
4438 		for (i = 0; i < bp->rx_nr_rings; i++) {
4439 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4440 			struct bnxt_ring_struct *ring =
4441 						&rxr->rx_agg_ring_struct;
4442 			u32 grp_idx = ring->grp_idx;
4443 			u32 map_idx = grp_idx + bp->rx_nr_rings;
4444 
4445 			rc = hwrm_ring_alloc_send_msg(bp, ring,
4446 						      HWRM_RING_ALLOC_AGG,
4447 						      map_idx);
4448 			if (rc)
4449 				goto err_out;
4450 
4451 			rxr->rx_agg_doorbell = bp->bar1 + map_idx * 0x80;
4452 			writel(DB_KEY_RX | rxr->rx_agg_prod,
4453 			       rxr->rx_agg_doorbell);
4454 			bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
4455 		}
4456 	}
4457 err_out:
4458 	return rc;
4459 }
4460 
4461 static int hwrm_ring_free_send_msg(struct bnxt *bp,
4462 				   struct bnxt_ring_struct *ring,
4463 				   u32 ring_type, int cmpl_ring_id)
4464 {
4465 	int rc;
4466 	struct hwrm_ring_free_input req = {0};
4467 	struct hwrm_ring_free_output *resp = bp->hwrm_cmd_resp_addr;
4468 	u16 error_code;
4469 
4470 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_FREE, cmpl_ring_id, -1);
4471 	req.ring_type = ring_type;
4472 	req.ring_id = cpu_to_le16(ring->fw_ring_id);
4473 
4474 	mutex_lock(&bp->hwrm_cmd_lock);
4475 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4476 	error_code = le16_to_cpu(resp->error_code);
4477 	mutex_unlock(&bp->hwrm_cmd_lock);
4478 
4479 	if (rc || error_code) {
4480 		switch (ring_type) {
4481 		case RING_FREE_REQ_RING_TYPE_L2_CMPL:
4482 			netdev_err(bp->dev, "hwrm_ring_free cp failed. rc:%d\n",
4483 				   rc);
4484 			return rc;
4485 		case RING_FREE_REQ_RING_TYPE_RX:
4486 			netdev_err(bp->dev, "hwrm_ring_free rx failed. rc:%d\n",
4487 				   rc);
4488 			return rc;
4489 		case RING_FREE_REQ_RING_TYPE_TX:
4490 			netdev_err(bp->dev, "hwrm_ring_free tx failed. rc:%d\n",
4491 				   rc);
4492 			return rc;
4493 		default:
4494 			netdev_err(bp->dev, "Invalid ring\n");
4495 			return -1;
4496 		}
4497 	}
4498 	return 0;
4499 }
4500 
4501 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
4502 {
4503 	int i;
4504 
4505 	if (!bp->bnapi)
4506 		return;
4507 
4508 	for (i = 0; i < bp->tx_nr_rings; i++) {
4509 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
4510 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
4511 		u32 grp_idx = txr->bnapi->index;
4512 		u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
4513 
4514 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
4515 			hwrm_ring_free_send_msg(bp, ring,
4516 						RING_FREE_REQ_RING_TYPE_TX,
4517 						close_path ? cmpl_ring_id :
4518 						INVALID_HW_RING_ID);
4519 			ring->fw_ring_id = INVALID_HW_RING_ID;
4520 		}
4521 	}
4522 
4523 	for (i = 0; i < bp->rx_nr_rings; i++) {
4524 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4525 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
4526 		u32 grp_idx = rxr->bnapi->index;
4527 		u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
4528 
4529 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
4530 			hwrm_ring_free_send_msg(bp, ring,
4531 						RING_FREE_REQ_RING_TYPE_RX,
4532 						close_path ? cmpl_ring_id :
4533 						INVALID_HW_RING_ID);
4534 			ring->fw_ring_id = INVALID_HW_RING_ID;
4535 			bp->grp_info[grp_idx].rx_fw_ring_id =
4536 				INVALID_HW_RING_ID;
4537 		}
4538 	}
4539 
4540 	for (i = 0; i < bp->rx_nr_rings; i++) {
4541 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4542 		struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
4543 		u32 grp_idx = rxr->bnapi->index;
4544 		u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
4545 
4546 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
4547 			hwrm_ring_free_send_msg(bp, ring,
4548 						RING_FREE_REQ_RING_TYPE_RX,
4549 						close_path ? cmpl_ring_id :
4550 						INVALID_HW_RING_ID);
4551 			ring->fw_ring_id = INVALID_HW_RING_ID;
4552 			bp->grp_info[grp_idx].agg_fw_ring_id =
4553 				INVALID_HW_RING_ID;
4554 		}
4555 	}
4556 
4557 	/* The completion rings are about to be freed.  After that the
4558 	 * IRQ doorbell will not work anymore.  So we need to disable
4559 	 * IRQ here.
4560 	 */
4561 	bnxt_disable_int_sync(bp);
4562 
4563 	for (i = 0; i < bp->cp_nr_rings; i++) {
4564 		struct bnxt_napi *bnapi = bp->bnapi[i];
4565 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4566 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
4567 
4568 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
4569 			hwrm_ring_free_send_msg(bp, ring,
4570 						RING_FREE_REQ_RING_TYPE_L2_CMPL,
4571 						INVALID_HW_RING_ID);
4572 			ring->fw_ring_id = INVALID_HW_RING_ID;
4573 			bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
4574 		}
4575 	}
4576 }
4577 
4578 static int bnxt_hwrm_get_rings(struct bnxt *bp)
4579 {
4580 	struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
4581 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
4582 	struct hwrm_func_qcfg_input req = {0};
4583 	int rc;
4584 
4585 	if (bp->hwrm_spec_code < 0x10601)
4586 		return 0;
4587 
4588 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
4589 	req.fid = cpu_to_le16(0xffff);
4590 	mutex_lock(&bp->hwrm_cmd_lock);
4591 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4592 	if (rc) {
4593 		mutex_unlock(&bp->hwrm_cmd_lock);
4594 		return -EIO;
4595 	}
4596 
4597 	hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings);
4598 	if (bp->flags & BNXT_FLAG_NEW_RM) {
4599 		u16 cp, stats;
4600 
4601 		hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings);
4602 		hw_resc->resv_hw_ring_grps =
4603 			le32_to_cpu(resp->alloc_hw_ring_grps);
4604 		hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics);
4605 		cp = le16_to_cpu(resp->alloc_cmpl_rings);
4606 		stats = le16_to_cpu(resp->alloc_stat_ctx);
4607 		cp = min_t(u16, cp, stats);
4608 		hw_resc->resv_cp_rings = cp;
4609 	}
4610 	mutex_unlock(&bp->hwrm_cmd_lock);
4611 	return 0;
4612 }
4613 
4614 /* Caller must hold bp->hwrm_cmd_lock */
4615 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings)
4616 {
4617 	struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
4618 	struct hwrm_func_qcfg_input req = {0};
4619 	int rc;
4620 
4621 	if (bp->hwrm_spec_code < 0x10601)
4622 		return 0;
4623 
4624 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
4625 	req.fid = cpu_to_le16(fid);
4626 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4627 	if (!rc)
4628 		*tx_rings = le16_to_cpu(resp->alloc_tx_rings);
4629 
4630 	return rc;
4631 }
4632 
4633 static void
4634 __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, struct hwrm_func_cfg_input *req,
4635 			     int tx_rings, int rx_rings, int ring_grps,
4636 			     int cp_rings, int vnics)
4637 {
4638 	u32 enables = 0;
4639 
4640 	bnxt_hwrm_cmd_hdr_init(bp, req, HWRM_FUNC_CFG, -1, -1);
4641 	req->fid = cpu_to_le16(0xffff);
4642 	enables |= tx_rings ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
4643 	req->num_tx_rings = cpu_to_le16(tx_rings);
4644 	if (bp->flags & BNXT_FLAG_NEW_RM) {
4645 		enables |= rx_rings ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0;
4646 		enables |= cp_rings ? FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS |
4647 				      FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
4648 		enables |= ring_grps ?
4649 			   FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0;
4650 		enables |= vnics ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0;
4651 
4652 		req->num_rx_rings = cpu_to_le16(rx_rings);
4653 		req->num_hw_ring_grps = cpu_to_le16(ring_grps);
4654 		req->num_cmpl_rings = cpu_to_le16(cp_rings);
4655 		req->num_stat_ctxs = req->num_cmpl_rings;
4656 		req->num_vnics = cpu_to_le16(vnics);
4657 	}
4658 	req->enables = cpu_to_le32(enables);
4659 }
4660 
4661 static void
4662 __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp,
4663 			     struct hwrm_func_vf_cfg_input *req, int tx_rings,
4664 			     int rx_rings, int ring_grps, int cp_rings,
4665 			     int vnics)
4666 {
4667 	u32 enables = 0;
4668 
4669 	bnxt_hwrm_cmd_hdr_init(bp, req, HWRM_FUNC_VF_CFG, -1, -1);
4670 	enables |= tx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
4671 	enables |= rx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS : 0;
4672 	enables |= cp_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS |
4673 			      FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
4674 	enables |= ring_grps ? FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0;
4675 	enables |= vnics ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0;
4676 
4677 	req->num_tx_rings = cpu_to_le16(tx_rings);
4678 	req->num_rx_rings = cpu_to_le16(rx_rings);
4679 	req->num_hw_ring_grps = cpu_to_le16(ring_grps);
4680 	req->num_cmpl_rings = cpu_to_le16(cp_rings);
4681 	req->num_stat_ctxs = req->num_cmpl_rings;
4682 	req->num_vnics = cpu_to_le16(vnics);
4683 
4684 	req->enables = cpu_to_le32(enables);
4685 }
4686 
4687 static int
4688 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
4689 			   int ring_grps, int cp_rings, int vnics)
4690 {
4691 	struct hwrm_func_cfg_input req = {0};
4692 	int rc;
4693 
4694 	__bnxt_hwrm_reserve_pf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
4695 				     cp_rings, vnics);
4696 	if (!req.enables)
4697 		return 0;
4698 
4699 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4700 	if (rc)
4701 		return -ENOMEM;
4702 
4703 	if (bp->hwrm_spec_code < 0x10601)
4704 		bp->hw_resc.resv_tx_rings = tx_rings;
4705 
4706 	rc = bnxt_hwrm_get_rings(bp);
4707 	return rc;
4708 }
4709 
4710 static int
4711 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
4712 			   int ring_grps, int cp_rings, int vnics)
4713 {
4714 	struct hwrm_func_vf_cfg_input req = {0};
4715 	int rc;
4716 
4717 	if (!(bp->flags & BNXT_FLAG_NEW_RM)) {
4718 		bp->hw_resc.resv_tx_rings = tx_rings;
4719 		return 0;
4720 	}
4721 
4722 	__bnxt_hwrm_reserve_vf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
4723 				     cp_rings, vnics);
4724 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4725 	if (rc)
4726 		return -ENOMEM;
4727 
4728 	rc = bnxt_hwrm_get_rings(bp);
4729 	return rc;
4730 }
4731 
4732 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, int tx, int rx, int grp,
4733 				   int cp, int vnic)
4734 {
4735 	if (BNXT_PF(bp))
4736 		return bnxt_hwrm_reserve_pf_rings(bp, tx, rx, grp, cp, vnic);
4737 	else
4738 		return bnxt_hwrm_reserve_vf_rings(bp, tx, rx, grp, cp, vnic);
4739 }
4740 
4741 static int bnxt_cp_rings_in_use(struct bnxt *bp)
4742 {
4743 	int cp = bp->cp_nr_rings;
4744 	int ulp_msix, ulp_base;
4745 
4746 	ulp_msix = bnxt_get_ulp_msix_num(bp);
4747 	if (ulp_msix) {
4748 		ulp_base = bnxt_get_ulp_msix_base(bp);
4749 		cp += ulp_msix;
4750 		if ((ulp_base + ulp_msix) > cp)
4751 			cp = ulp_base + ulp_msix;
4752 	}
4753 	return cp;
4754 }
4755 
4756 static bool bnxt_need_reserve_rings(struct bnxt *bp)
4757 {
4758 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
4759 	int cp = bnxt_cp_rings_in_use(bp);
4760 	int rx = bp->rx_nr_rings;
4761 	int vnic = 1, grp = rx;
4762 
4763 	if (bp->hwrm_spec_code < 0x10601)
4764 		return false;
4765 
4766 	if (hw_resc->resv_tx_rings != bp->tx_nr_rings)
4767 		return true;
4768 
4769 	if (bp->flags & BNXT_FLAG_RFS)
4770 		vnic = rx + 1;
4771 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
4772 		rx <<= 1;
4773 	if ((bp->flags & BNXT_FLAG_NEW_RM) &&
4774 	    (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp ||
4775 	     hw_resc->resv_hw_ring_grps != grp || hw_resc->resv_vnics != vnic))
4776 		return true;
4777 	return false;
4778 }
4779 
4780 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
4781 			   bool shared);
4782 
4783 static int __bnxt_reserve_rings(struct bnxt *bp)
4784 {
4785 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
4786 	int cp = bnxt_cp_rings_in_use(bp);
4787 	int tx = bp->tx_nr_rings;
4788 	int rx = bp->rx_nr_rings;
4789 	int grp, rx_rings, rc;
4790 	bool sh = false;
4791 	int vnic = 1;
4792 
4793 	if (!bnxt_need_reserve_rings(bp))
4794 		return 0;
4795 
4796 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
4797 		sh = true;
4798 	if (bp->flags & BNXT_FLAG_RFS)
4799 		vnic = rx + 1;
4800 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
4801 		rx <<= 1;
4802 	grp = bp->rx_nr_rings;
4803 
4804 	rc = bnxt_hwrm_reserve_rings(bp, tx, rx, grp, cp, vnic);
4805 	if (rc)
4806 		return rc;
4807 
4808 	tx = hw_resc->resv_tx_rings;
4809 	if (bp->flags & BNXT_FLAG_NEW_RM) {
4810 		rx = hw_resc->resv_rx_rings;
4811 		cp = hw_resc->resv_cp_rings;
4812 		grp = hw_resc->resv_hw_ring_grps;
4813 		vnic = hw_resc->resv_vnics;
4814 	}
4815 
4816 	rx_rings = rx;
4817 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
4818 		if (rx >= 2) {
4819 			rx_rings = rx >> 1;
4820 		} else {
4821 			if (netif_running(bp->dev))
4822 				return -ENOMEM;
4823 
4824 			bp->flags &= ~BNXT_FLAG_AGG_RINGS;
4825 			bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
4826 			bp->dev->hw_features &= ~NETIF_F_LRO;
4827 			bp->dev->features &= ~NETIF_F_LRO;
4828 			bnxt_set_ring_params(bp);
4829 		}
4830 	}
4831 	rx_rings = min_t(int, rx_rings, grp);
4832 	rc = bnxt_trim_rings(bp, &rx_rings, &tx, cp, sh);
4833 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
4834 		rx = rx_rings << 1;
4835 	cp = sh ? max_t(int, tx, rx_rings) : tx + rx_rings;
4836 	bp->tx_nr_rings = tx;
4837 	bp->rx_nr_rings = rx_rings;
4838 	bp->cp_nr_rings = cp;
4839 
4840 	if (!tx || !rx || !cp || !grp || !vnic)
4841 		return -ENOMEM;
4842 
4843 	return rc;
4844 }
4845 
4846 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
4847 				    int ring_grps, int cp_rings, int vnics)
4848 {
4849 	struct hwrm_func_vf_cfg_input req = {0};
4850 	u32 flags;
4851 	int rc;
4852 
4853 	if (!(bp->flags & BNXT_FLAG_NEW_RM))
4854 		return 0;
4855 
4856 	__bnxt_hwrm_reserve_vf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
4857 				     cp_rings, vnics);
4858 	flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST |
4859 		FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST |
4860 		FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
4861 		FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST |
4862 		FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
4863 		FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST;
4864 
4865 	req.flags = cpu_to_le32(flags);
4866 	rc = hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4867 	if (rc)
4868 		return -ENOMEM;
4869 	return 0;
4870 }
4871 
4872 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
4873 				    int ring_grps, int cp_rings, int vnics)
4874 {
4875 	struct hwrm_func_cfg_input req = {0};
4876 	u32 flags;
4877 	int rc;
4878 
4879 	__bnxt_hwrm_reserve_pf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
4880 				     cp_rings, vnics);
4881 	flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST;
4882 	if (bp->flags & BNXT_FLAG_NEW_RM)
4883 		flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST |
4884 			 FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
4885 			 FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST |
4886 			 FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
4887 			 FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST;
4888 
4889 	req.flags = cpu_to_le32(flags);
4890 	rc = hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4891 	if (rc)
4892 		return -ENOMEM;
4893 	return 0;
4894 }
4895 
4896 static int bnxt_hwrm_check_rings(struct bnxt *bp, int tx_rings, int rx_rings,
4897 				 int ring_grps, int cp_rings, int vnics)
4898 {
4899 	if (bp->hwrm_spec_code < 0x10801)
4900 		return 0;
4901 
4902 	if (BNXT_PF(bp))
4903 		return bnxt_hwrm_check_pf_rings(bp, tx_rings, rx_rings,
4904 						ring_grps, cp_rings, vnics);
4905 
4906 	return bnxt_hwrm_check_vf_rings(bp, tx_rings, rx_rings, ring_grps,
4907 					cp_rings, vnics);
4908 }
4909 
4910 static void bnxt_hwrm_set_coal_params(struct bnxt_coal *hw_coal,
4911 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
4912 {
4913 	u16 val, tmr, max, flags;
4914 
4915 	max = hw_coal->bufs_per_record * 128;
4916 	if (hw_coal->budget)
4917 		max = hw_coal->bufs_per_record * hw_coal->budget;
4918 
4919 	val = clamp_t(u16, hw_coal->coal_bufs, 1, max);
4920 	req->num_cmpl_aggr_int = cpu_to_le16(val);
4921 
4922 	/* This is a 6-bit value and must not be 0, or we'll get non stop IRQ */
4923 	val = min_t(u16, val, 63);
4924 	req->num_cmpl_dma_aggr = cpu_to_le16(val);
4925 
4926 	/* This is a 6-bit value and must not be 0, or we'll get non stop IRQ */
4927 	val = clamp_t(u16, hw_coal->coal_bufs_irq, 1, 63);
4928 	req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val);
4929 
4930 	tmr = BNXT_USEC_TO_COAL_TIMER(hw_coal->coal_ticks);
4931 	tmr = max_t(u16, tmr, 1);
4932 	req->int_lat_tmr_max = cpu_to_le16(tmr);
4933 
4934 	/* min timer set to 1/2 of interrupt timer */
4935 	val = tmr / 2;
4936 	req->int_lat_tmr_min = cpu_to_le16(val);
4937 
4938 	/* buf timer set to 1/4 of interrupt timer */
4939 	val = max_t(u16, tmr / 4, 1);
4940 	req->cmpl_aggr_dma_tmr = cpu_to_le16(val);
4941 
4942 	tmr = BNXT_USEC_TO_COAL_TIMER(hw_coal->coal_ticks_irq);
4943 	tmr = max_t(u16, tmr, 1);
4944 	req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(tmr);
4945 
4946 	flags = RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
4947 	if (hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh)
4948 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
4949 	req->flags = cpu_to_le16(flags);
4950 }
4951 
4952 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi)
4953 {
4954 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0};
4955 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4956 	struct bnxt_coal coal;
4957 	unsigned int grp_idx;
4958 
4959 	/* Tick values in micro seconds.
4960 	 * 1 coal_buf x bufs_per_record = 1 completion record.
4961 	 */
4962 	memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal));
4963 
4964 	coal.coal_ticks = cpr->rx_ring_coal.coal_ticks;
4965 	coal.coal_bufs = cpr->rx_ring_coal.coal_bufs;
4966 
4967 	if (!bnapi->rx_ring)
4968 		return -ENODEV;
4969 
4970 	bnxt_hwrm_cmd_hdr_init(bp, &req_rx,
4971 			       HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
4972 
4973 	bnxt_hwrm_set_coal_params(&coal, &req_rx);
4974 
4975 	grp_idx = bnapi->index;
4976 	req_rx.ring_id = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
4977 
4978 	return hwrm_send_message(bp, &req_rx, sizeof(req_rx),
4979 				 HWRM_CMD_TIMEOUT);
4980 }
4981 
4982 int bnxt_hwrm_set_coal(struct bnxt *bp)
4983 {
4984 	int i, rc = 0;
4985 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0},
4986 							   req_tx = {0}, *req;
4987 
4988 	bnxt_hwrm_cmd_hdr_init(bp, &req_rx,
4989 			       HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
4990 	bnxt_hwrm_cmd_hdr_init(bp, &req_tx,
4991 			       HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
4992 
4993 	bnxt_hwrm_set_coal_params(&bp->rx_coal, &req_rx);
4994 	bnxt_hwrm_set_coal_params(&bp->tx_coal, &req_tx);
4995 
4996 	mutex_lock(&bp->hwrm_cmd_lock);
4997 	for (i = 0; i < bp->cp_nr_rings; i++) {
4998 		struct bnxt_napi *bnapi = bp->bnapi[i];
4999 
5000 		req = &req_rx;
5001 		if (!bnapi->rx_ring)
5002 			req = &req_tx;
5003 		req->ring_id = cpu_to_le16(bp->grp_info[i].cp_fw_ring_id);
5004 
5005 		rc = _hwrm_send_message(bp, req, sizeof(*req),
5006 					HWRM_CMD_TIMEOUT);
5007 		if (rc)
5008 			break;
5009 	}
5010 	mutex_unlock(&bp->hwrm_cmd_lock);
5011 	return rc;
5012 }
5013 
5014 static int bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
5015 {
5016 	int rc = 0, i;
5017 	struct hwrm_stat_ctx_free_input req = {0};
5018 
5019 	if (!bp->bnapi)
5020 		return 0;
5021 
5022 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5023 		return 0;
5024 
5025 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_FREE, -1, -1);
5026 
5027 	mutex_lock(&bp->hwrm_cmd_lock);
5028 	for (i = 0; i < bp->cp_nr_rings; i++) {
5029 		struct bnxt_napi *bnapi = bp->bnapi[i];
5030 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5031 
5032 		if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
5033 			req.stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
5034 
5035 			rc = _hwrm_send_message(bp, &req, sizeof(req),
5036 						HWRM_CMD_TIMEOUT);
5037 			if (rc)
5038 				break;
5039 
5040 			cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
5041 		}
5042 	}
5043 	mutex_unlock(&bp->hwrm_cmd_lock);
5044 	return rc;
5045 }
5046 
5047 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
5048 {
5049 	int rc = 0, i;
5050 	struct hwrm_stat_ctx_alloc_input req = {0};
5051 	struct hwrm_stat_ctx_alloc_output *resp = bp->hwrm_cmd_resp_addr;
5052 
5053 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5054 		return 0;
5055 
5056 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_ALLOC, -1, -1);
5057 
5058 	req.update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000);
5059 
5060 	mutex_lock(&bp->hwrm_cmd_lock);
5061 	for (i = 0; i < bp->cp_nr_rings; i++) {
5062 		struct bnxt_napi *bnapi = bp->bnapi[i];
5063 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5064 
5065 		req.stats_dma_addr = cpu_to_le64(cpr->hw_stats_map);
5066 
5067 		rc = _hwrm_send_message(bp, &req, sizeof(req),
5068 					HWRM_CMD_TIMEOUT);
5069 		if (rc)
5070 			break;
5071 
5072 		cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
5073 
5074 		bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
5075 	}
5076 	mutex_unlock(&bp->hwrm_cmd_lock);
5077 	return rc;
5078 }
5079 
5080 static int bnxt_hwrm_func_qcfg(struct bnxt *bp)
5081 {
5082 	struct hwrm_func_qcfg_input req = {0};
5083 	struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
5084 	u16 flags;
5085 	int rc;
5086 
5087 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
5088 	req.fid = cpu_to_le16(0xffff);
5089 	mutex_lock(&bp->hwrm_cmd_lock);
5090 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5091 	if (rc)
5092 		goto func_qcfg_exit;
5093 
5094 #ifdef CONFIG_BNXT_SRIOV
5095 	if (BNXT_VF(bp)) {
5096 		struct bnxt_vf_info *vf = &bp->vf;
5097 
5098 		vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK;
5099 	}
5100 #endif
5101 	flags = le16_to_cpu(resp->flags);
5102 	if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED |
5103 		     FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) {
5104 		bp->flags |= BNXT_FLAG_FW_LLDP_AGENT;
5105 		if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED)
5106 			bp->flags |= BNXT_FLAG_FW_DCBX_AGENT;
5107 	}
5108 	if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST))
5109 		bp->flags |= BNXT_FLAG_MULTI_HOST;
5110 
5111 	switch (resp->port_partition_type) {
5112 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0:
5113 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5:
5114 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0:
5115 		bp->port_partition_type = resp->port_partition_type;
5116 		break;
5117 	}
5118 	if (bp->hwrm_spec_code < 0x10707 ||
5119 	    resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB)
5120 		bp->br_mode = BRIDGE_MODE_VEB;
5121 	else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA)
5122 		bp->br_mode = BRIDGE_MODE_VEPA;
5123 	else
5124 		bp->br_mode = BRIDGE_MODE_UNDEF;
5125 
5126 	bp->max_mtu = le16_to_cpu(resp->max_mtu_configured);
5127 	if (!bp->max_mtu)
5128 		bp->max_mtu = BNXT_MAX_MTU;
5129 
5130 func_qcfg_exit:
5131 	mutex_unlock(&bp->hwrm_cmd_lock);
5132 	return rc;
5133 }
5134 
5135 int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all)
5136 {
5137 	struct hwrm_func_resource_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
5138 	struct hwrm_func_resource_qcaps_input req = {0};
5139 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
5140 	int rc;
5141 
5142 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESOURCE_QCAPS, -1, -1);
5143 	req.fid = cpu_to_le16(0xffff);
5144 
5145 	mutex_lock(&bp->hwrm_cmd_lock);
5146 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5147 	if (rc) {
5148 		rc = -EIO;
5149 		goto hwrm_func_resc_qcaps_exit;
5150 	}
5151 
5152 	hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs);
5153 	if (!all)
5154 		goto hwrm_func_resc_qcaps_exit;
5155 
5156 	hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx);
5157 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
5158 	hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings);
5159 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
5160 	hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings);
5161 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
5162 	hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings);
5163 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
5164 	hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps);
5165 	hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps);
5166 	hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs);
5167 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
5168 	hw_resc->min_vnics = le16_to_cpu(resp->min_vnics);
5169 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
5170 	hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx);
5171 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
5172 
5173 	if (BNXT_PF(bp)) {
5174 		struct bnxt_pf_info *pf = &bp->pf;
5175 
5176 		pf->vf_resv_strategy =
5177 			le16_to_cpu(resp->vf_reservation_strategy);
5178 		if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL)
5179 			pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL;
5180 	}
5181 hwrm_func_resc_qcaps_exit:
5182 	mutex_unlock(&bp->hwrm_cmd_lock);
5183 	return rc;
5184 }
5185 
5186 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp)
5187 {
5188 	int rc = 0;
5189 	struct hwrm_func_qcaps_input req = {0};
5190 	struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
5191 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
5192 	u32 flags;
5193 
5194 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1);
5195 	req.fid = cpu_to_le16(0xffff);
5196 
5197 	mutex_lock(&bp->hwrm_cmd_lock);
5198 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5199 	if (rc)
5200 		goto hwrm_func_qcaps_exit;
5201 
5202 	flags = le32_to_cpu(resp->flags);
5203 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED)
5204 		bp->flags |= BNXT_FLAG_ROCEV1_CAP;
5205 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED)
5206 		bp->flags |= BNXT_FLAG_ROCEV2_CAP;
5207 
5208 	bp->tx_push_thresh = 0;
5209 	if (flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED)
5210 		bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
5211 
5212 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
5213 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
5214 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
5215 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
5216 	hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
5217 	if (!hw_resc->max_hw_ring_grps)
5218 		hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings;
5219 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
5220 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
5221 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
5222 
5223 	if (BNXT_PF(bp)) {
5224 		struct bnxt_pf_info *pf = &bp->pf;
5225 
5226 		pf->fw_fid = le16_to_cpu(resp->fid);
5227 		pf->port_id = le16_to_cpu(resp->port_id);
5228 		bp->dev->dev_port = pf->port_id;
5229 		memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN);
5230 		pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
5231 		pf->max_vfs = le16_to_cpu(resp->max_vfs);
5232 		pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
5233 		pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
5234 		pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
5235 		pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
5236 		pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
5237 		pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
5238 		if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED)
5239 			bp->flags |= BNXT_FLAG_WOL_CAP;
5240 	} else {
5241 #ifdef CONFIG_BNXT_SRIOV
5242 		struct bnxt_vf_info *vf = &bp->vf;
5243 
5244 		vf->fw_fid = le16_to_cpu(resp->fid);
5245 		memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN);
5246 #endif
5247 	}
5248 
5249 hwrm_func_qcaps_exit:
5250 	mutex_unlock(&bp->hwrm_cmd_lock);
5251 	return rc;
5252 }
5253 
5254 static int bnxt_hwrm_func_qcaps(struct bnxt *bp)
5255 {
5256 	int rc;
5257 
5258 	rc = __bnxt_hwrm_func_qcaps(bp);
5259 	if (rc)
5260 		return rc;
5261 	if (bp->hwrm_spec_code >= 0x10803) {
5262 		rc = bnxt_hwrm_func_resc_qcaps(bp, true);
5263 		if (!rc)
5264 			bp->flags |= BNXT_FLAG_NEW_RM;
5265 	}
5266 	return 0;
5267 }
5268 
5269 static int bnxt_hwrm_func_reset(struct bnxt *bp)
5270 {
5271 	struct hwrm_func_reset_input req = {0};
5272 
5273 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESET, -1, -1);
5274 	req.enables = 0;
5275 
5276 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_RESET_TIMEOUT);
5277 }
5278 
5279 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
5280 {
5281 	int rc = 0;
5282 	struct hwrm_queue_qportcfg_input req = {0};
5283 	struct hwrm_queue_qportcfg_output *resp = bp->hwrm_cmd_resp_addr;
5284 	u8 i, *qptr;
5285 
5286 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_QUEUE_QPORTCFG, -1, -1);
5287 
5288 	mutex_lock(&bp->hwrm_cmd_lock);
5289 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5290 	if (rc)
5291 		goto qportcfg_exit;
5292 
5293 	if (!resp->max_configurable_queues) {
5294 		rc = -EINVAL;
5295 		goto qportcfg_exit;
5296 	}
5297 	bp->max_tc = resp->max_configurable_queues;
5298 	bp->max_lltc = resp->max_configurable_lossless_queues;
5299 	if (bp->max_tc > BNXT_MAX_QUEUE)
5300 		bp->max_tc = BNXT_MAX_QUEUE;
5301 
5302 	if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG)
5303 		bp->max_tc = 1;
5304 
5305 	if (bp->max_lltc > bp->max_tc)
5306 		bp->max_lltc = bp->max_tc;
5307 
5308 	qptr = &resp->queue_id0;
5309 	for (i = 0; i < bp->max_tc; i++) {
5310 		bp->q_info[i].queue_id = *qptr++;
5311 		bp->q_info[i].queue_profile = *qptr++;
5312 	}
5313 
5314 qportcfg_exit:
5315 	mutex_unlock(&bp->hwrm_cmd_lock);
5316 	return rc;
5317 }
5318 
5319 static int bnxt_hwrm_ver_get(struct bnxt *bp)
5320 {
5321 	int rc;
5322 	struct hwrm_ver_get_input req = {0};
5323 	struct hwrm_ver_get_output *resp = bp->hwrm_cmd_resp_addr;
5324 	u32 dev_caps_cfg;
5325 
5326 	bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN;
5327 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VER_GET, -1, -1);
5328 	req.hwrm_intf_maj = HWRM_VERSION_MAJOR;
5329 	req.hwrm_intf_min = HWRM_VERSION_MINOR;
5330 	req.hwrm_intf_upd = HWRM_VERSION_UPDATE;
5331 	mutex_lock(&bp->hwrm_cmd_lock);
5332 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5333 	if (rc)
5334 		goto hwrm_ver_get_exit;
5335 
5336 	memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
5337 
5338 	bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 |
5339 			     resp->hwrm_intf_min_8b << 8 |
5340 			     resp->hwrm_intf_upd_8b;
5341 	if (resp->hwrm_intf_maj_8b < 1) {
5342 		netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
5343 			    resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
5344 			    resp->hwrm_intf_upd_8b);
5345 		netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
5346 	}
5347 	snprintf(bp->fw_ver_str, BC_HWRM_STR_LEN, "%d.%d.%d.%d",
5348 		 resp->hwrm_fw_maj_8b, resp->hwrm_fw_min_8b,
5349 		 resp->hwrm_fw_bld_8b, resp->hwrm_fw_rsvd_8b);
5350 
5351 	bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout);
5352 	if (!bp->hwrm_cmd_timeout)
5353 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
5354 
5355 	if (resp->hwrm_intf_maj_8b >= 1)
5356 		bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len);
5357 
5358 	bp->chip_num = le16_to_cpu(resp->chip_num);
5359 	if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev &&
5360 	    !resp->chip_metal)
5361 		bp->flags |= BNXT_FLAG_CHIP_NITRO_A0;
5362 
5363 	dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg);
5364 	if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) &&
5365 	    (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED))
5366 		bp->flags |= BNXT_FLAG_SHORT_CMD;
5367 
5368 hwrm_ver_get_exit:
5369 	mutex_unlock(&bp->hwrm_cmd_lock);
5370 	return rc;
5371 }
5372 
5373 int bnxt_hwrm_fw_set_time(struct bnxt *bp)
5374 {
5375 	struct hwrm_fw_set_time_input req = {0};
5376 	struct tm tm;
5377 	time64_t now = ktime_get_real_seconds();
5378 
5379 	if (bp->hwrm_spec_code < 0x10400)
5380 		return -EOPNOTSUPP;
5381 
5382 	time64_to_tm(now, 0, &tm);
5383 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FW_SET_TIME, -1, -1);
5384 	req.year = cpu_to_le16(1900 + tm.tm_year);
5385 	req.month = 1 + tm.tm_mon;
5386 	req.day = tm.tm_mday;
5387 	req.hour = tm.tm_hour;
5388 	req.minute = tm.tm_min;
5389 	req.second = tm.tm_sec;
5390 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5391 }
5392 
5393 static int bnxt_hwrm_port_qstats(struct bnxt *bp)
5394 {
5395 	int rc;
5396 	struct bnxt_pf_info *pf = &bp->pf;
5397 	struct hwrm_port_qstats_input req = {0};
5398 
5399 	if (!(bp->flags & BNXT_FLAG_PORT_STATS))
5400 		return 0;
5401 
5402 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS, -1, -1);
5403 	req.port_id = cpu_to_le16(pf->port_id);
5404 	req.tx_stat_host_addr = cpu_to_le64(bp->hw_tx_port_stats_map);
5405 	req.rx_stat_host_addr = cpu_to_le64(bp->hw_rx_port_stats_map);
5406 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5407 	return rc;
5408 }
5409 
5410 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp)
5411 {
5412 	struct hwrm_port_qstats_ext_input req = {0};
5413 	struct bnxt_pf_info *pf = &bp->pf;
5414 
5415 	if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT))
5416 		return 0;
5417 
5418 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS_EXT, -1, -1);
5419 	req.port_id = cpu_to_le16(pf->port_id);
5420 	req.rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext));
5421 	req.rx_stat_host_addr = cpu_to_le64(bp->hw_rx_port_stats_ext_map);
5422 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5423 }
5424 
5425 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
5426 {
5427 	if (bp->vxlan_port_cnt) {
5428 		bnxt_hwrm_tunnel_dst_port_free(
5429 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
5430 	}
5431 	bp->vxlan_port_cnt = 0;
5432 	if (bp->nge_port_cnt) {
5433 		bnxt_hwrm_tunnel_dst_port_free(
5434 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
5435 	}
5436 	bp->nge_port_cnt = 0;
5437 }
5438 
5439 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
5440 {
5441 	int rc, i;
5442 	u32 tpa_flags = 0;
5443 
5444 	if (set_tpa)
5445 		tpa_flags = bp->flags & BNXT_FLAG_TPA;
5446 	for (i = 0; i < bp->nr_vnics; i++) {
5447 		rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
5448 		if (rc) {
5449 			netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
5450 				   i, rc);
5451 			return rc;
5452 		}
5453 	}
5454 	return 0;
5455 }
5456 
5457 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
5458 {
5459 	int i;
5460 
5461 	for (i = 0; i < bp->nr_vnics; i++)
5462 		bnxt_hwrm_vnic_set_rss(bp, i, false);
5463 }
5464 
5465 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
5466 				    bool irq_re_init)
5467 {
5468 	if (bp->vnic_info) {
5469 		bnxt_hwrm_clear_vnic_filter(bp);
5470 		/* clear all RSS setting before free vnic ctx */
5471 		bnxt_hwrm_clear_vnic_rss(bp);
5472 		bnxt_hwrm_vnic_ctx_free(bp);
5473 		/* before free the vnic, undo the vnic tpa settings */
5474 		if (bp->flags & BNXT_FLAG_TPA)
5475 			bnxt_set_tpa(bp, false);
5476 		bnxt_hwrm_vnic_free(bp);
5477 	}
5478 	bnxt_hwrm_ring_free(bp, close_path);
5479 	bnxt_hwrm_ring_grp_free(bp);
5480 	if (irq_re_init) {
5481 		bnxt_hwrm_stat_ctx_free(bp);
5482 		bnxt_hwrm_free_tunnel_ports(bp);
5483 	}
5484 }
5485 
5486 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode)
5487 {
5488 	struct hwrm_func_cfg_input req = {0};
5489 	int rc;
5490 
5491 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
5492 	req.fid = cpu_to_le16(0xffff);
5493 	req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE);
5494 	if (br_mode == BRIDGE_MODE_VEB)
5495 		req.evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB;
5496 	else if (br_mode == BRIDGE_MODE_VEPA)
5497 		req.evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA;
5498 	else
5499 		return -EINVAL;
5500 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5501 	if (rc)
5502 		rc = -EIO;
5503 	return rc;
5504 }
5505 
5506 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size)
5507 {
5508 	struct hwrm_func_cfg_input req = {0};
5509 	int rc;
5510 
5511 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803)
5512 		return 0;
5513 
5514 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
5515 	req.fid = cpu_to_le16(0xffff);
5516 	req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE);
5517 	req.options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64;
5518 	if (size == 128)
5519 		req.options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128;
5520 
5521 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5522 	if (rc)
5523 		rc = -EIO;
5524 	return rc;
5525 }
5526 
5527 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
5528 {
5529 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5530 	int rc;
5531 
5532 	if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG)
5533 		goto skip_rss_ctx;
5534 
5535 	/* allocate context for vnic */
5536 	rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0);
5537 	if (rc) {
5538 		netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
5539 			   vnic_id, rc);
5540 		goto vnic_setup_err;
5541 	}
5542 	bp->rsscos_nr_ctxs++;
5543 
5544 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
5545 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1);
5546 		if (rc) {
5547 			netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n",
5548 				   vnic_id, rc);
5549 			goto vnic_setup_err;
5550 		}
5551 		bp->rsscos_nr_ctxs++;
5552 	}
5553 
5554 skip_rss_ctx:
5555 	/* configure default vnic, ring grp */
5556 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
5557 	if (rc) {
5558 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
5559 			   vnic_id, rc);
5560 		goto vnic_setup_err;
5561 	}
5562 
5563 	/* Enable RSS hashing on vnic */
5564 	rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
5565 	if (rc) {
5566 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
5567 			   vnic_id, rc);
5568 		goto vnic_setup_err;
5569 	}
5570 
5571 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
5572 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
5573 		if (rc) {
5574 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
5575 				   vnic_id, rc);
5576 		}
5577 	}
5578 
5579 vnic_setup_err:
5580 	return rc;
5581 }
5582 
5583 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
5584 {
5585 #ifdef CONFIG_RFS_ACCEL
5586 	int i, rc = 0;
5587 
5588 	for (i = 0; i < bp->rx_nr_rings; i++) {
5589 		struct bnxt_vnic_info *vnic;
5590 		u16 vnic_id = i + 1;
5591 		u16 ring_id = i;
5592 
5593 		if (vnic_id >= bp->nr_vnics)
5594 			break;
5595 
5596 		vnic = &bp->vnic_info[vnic_id];
5597 		vnic->flags |= BNXT_VNIC_RFS_FLAG;
5598 		if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
5599 			vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG;
5600 		rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1);
5601 		if (rc) {
5602 			netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
5603 				   vnic_id, rc);
5604 			break;
5605 		}
5606 		rc = bnxt_setup_vnic(bp, vnic_id);
5607 		if (rc)
5608 			break;
5609 	}
5610 	return rc;
5611 #else
5612 	return 0;
5613 #endif
5614 }
5615 
5616 /* Allow PF and VF with default VLAN to be in promiscuous mode */
5617 static bool bnxt_promisc_ok(struct bnxt *bp)
5618 {
5619 #ifdef CONFIG_BNXT_SRIOV
5620 	if (BNXT_VF(bp) && !bp->vf.vlan)
5621 		return false;
5622 #endif
5623 	return true;
5624 }
5625 
5626 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp)
5627 {
5628 	unsigned int rc = 0;
5629 
5630 	rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1);
5631 	if (rc) {
5632 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
5633 			   rc);
5634 		return rc;
5635 	}
5636 
5637 	rc = bnxt_hwrm_vnic_cfg(bp, 1);
5638 	if (rc) {
5639 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
5640 			   rc);
5641 		return rc;
5642 	}
5643 	return rc;
5644 }
5645 
5646 static int bnxt_cfg_rx_mode(struct bnxt *);
5647 static bool bnxt_mc_list_updated(struct bnxt *, u32 *);
5648 
5649 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
5650 {
5651 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
5652 	int rc = 0;
5653 	unsigned int rx_nr_rings = bp->rx_nr_rings;
5654 
5655 	if (irq_re_init) {
5656 		rc = bnxt_hwrm_stat_ctx_alloc(bp);
5657 		if (rc) {
5658 			netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
5659 				   rc);
5660 			goto err_out;
5661 		}
5662 	}
5663 
5664 	rc = bnxt_hwrm_ring_alloc(bp);
5665 	if (rc) {
5666 		netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
5667 		goto err_out;
5668 	}
5669 
5670 	rc = bnxt_hwrm_ring_grp_alloc(bp);
5671 	if (rc) {
5672 		netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
5673 		goto err_out;
5674 	}
5675 
5676 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5677 		rx_nr_rings--;
5678 
5679 	/* default vnic 0 */
5680 	rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings);
5681 	if (rc) {
5682 		netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
5683 		goto err_out;
5684 	}
5685 
5686 	rc = bnxt_setup_vnic(bp, 0);
5687 	if (rc)
5688 		goto err_out;
5689 
5690 	if (bp->flags & BNXT_FLAG_RFS) {
5691 		rc = bnxt_alloc_rfs_vnics(bp);
5692 		if (rc)
5693 			goto err_out;
5694 	}
5695 
5696 	if (bp->flags & BNXT_FLAG_TPA) {
5697 		rc = bnxt_set_tpa(bp, true);
5698 		if (rc)
5699 			goto err_out;
5700 	}
5701 
5702 	if (BNXT_VF(bp))
5703 		bnxt_update_vf_mac(bp);
5704 
5705 	/* Filter for default vnic 0 */
5706 	rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
5707 	if (rc) {
5708 		netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
5709 		goto err_out;
5710 	}
5711 	vnic->uc_filter_count = 1;
5712 
5713 	vnic->rx_mask = CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
5714 
5715 	if ((bp->dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
5716 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
5717 
5718 	if (bp->dev->flags & IFF_ALLMULTI) {
5719 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
5720 		vnic->mc_list_count = 0;
5721 	} else {
5722 		u32 mask = 0;
5723 
5724 		bnxt_mc_list_updated(bp, &mask);
5725 		vnic->rx_mask |= mask;
5726 	}
5727 
5728 	rc = bnxt_cfg_rx_mode(bp);
5729 	if (rc)
5730 		goto err_out;
5731 
5732 	rc = bnxt_hwrm_set_coal(bp);
5733 	if (rc)
5734 		netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
5735 				rc);
5736 
5737 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
5738 		rc = bnxt_setup_nitroa0_vnic(bp);
5739 		if (rc)
5740 			netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n",
5741 				   rc);
5742 	}
5743 
5744 	if (BNXT_VF(bp)) {
5745 		bnxt_hwrm_func_qcfg(bp);
5746 		netdev_update_features(bp->dev);
5747 	}
5748 
5749 	return 0;
5750 
5751 err_out:
5752 	bnxt_hwrm_resource_free(bp, 0, true);
5753 
5754 	return rc;
5755 }
5756 
5757 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
5758 {
5759 	bnxt_hwrm_resource_free(bp, 1, irq_re_init);
5760 	return 0;
5761 }
5762 
5763 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
5764 {
5765 	bnxt_init_cp_rings(bp);
5766 	bnxt_init_rx_rings(bp);
5767 	bnxt_init_tx_rings(bp);
5768 	bnxt_init_ring_grps(bp, irq_re_init);
5769 	bnxt_init_vnics(bp);
5770 
5771 	return bnxt_init_chip(bp, irq_re_init);
5772 }
5773 
5774 static int bnxt_set_real_num_queues(struct bnxt *bp)
5775 {
5776 	int rc;
5777 	struct net_device *dev = bp->dev;
5778 
5779 	rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings -
5780 					  bp->tx_nr_rings_xdp);
5781 	if (rc)
5782 		return rc;
5783 
5784 	rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
5785 	if (rc)
5786 		return rc;
5787 
5788 #ifdef CONFIG_RFS_ACCEL
5789 	if (bp->flags & BNXT_FLAG_RFS)
5790 		dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
5791 #endif
5792 
5793 	return rc;
5794 }
5795 
5796 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
5797 			   bool shared)
5798 {
5799 	int _rx = *rx, _tx = *tx;
5800 
5801 	if (shared) {
5802 		*rx = min_t(int, _rx, max);
5803 		*tx = min_t(int, _tx, max);
5804 	} else {
5805 		if (max < 2)
5806 			return -ENOMEM;
5807 
5808 		while (_rx + _tx > max) {
5809 			if (_rx > _tx && _rx > 1)
5810 				_rx--;
5811 			else if (_tx > 1)
5812 				_tx--;
5813 		}
5814 		*rx = _rx;
5815 		*tx = _tx;
5816 	}
5817 	return 0;
5818 }
5819 
5820 static void bnxt_setup_msix(struct bnxt *bp)
5821 {
5822 	const int len = sizeof(bp->irq_tbl[0].name);
5823 	struct net_device *dev = bp->dev;
5824 	int tcs, i;
5825 
5826 	tcs = netdev_get_num_tc(dev);
5827 	if (tcs > 1) {
5828 		int i, off, count;
5829 
5830 		for (i = 0; i < tcs; i++) {
5831 			count = bp->tx_nr_rings_per_tc;
5832 			off = i * count;
5833 			netdev_set_tc_queue(dev, i, count, off);
5834 		}
5835 	}
5836 
5837 	for (i = 0; i < bp->cp_nr_rings; i++) {
5838 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
5839 		char *attr;
5840 
5841 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
5842 			attr = "TxRx";
5843 		else if (i < bp->rx_nr_rings)
5844 			attr = "rx";
5845 		else
5846 			attr = "tx";
5847 
5848 		snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name,
5849 			 attr, i);
5850 		bp->irq_tbl[map_idx].handler = bnxt_msix;
5851 	}
5852 }
5853 
5854 static void bnxt_setup_inta(struct bnxt *bp)
5855 {
5856 	const int len = sizeof(bp->irq_tbl[0].name);
5857 
5858 	if (netdev_get_num_tc(bp->dev))
5859 		netdev_reset_tc(bp->dev);
5860 
5861 	snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx",
5862 		 0);
5863 	bp->irq_tbl[0].handler = bnxt_inta;
5864 }
5865 
5866 static int bnxt_setup_int_mode(struct bnxt *bp)
5867 {
5868 	int rc;
5869 
5870 	if (bp->flags & BNXT_FLAG_USING_MSIX)
5871 		bnxt_setup_msix(bp);
5872 	else
5873 		bnxt_setup_inta(bp);
5874 
5875 	rc = bnxt_set_real_num_queues(bp);
5876 	return rc;
5877 }
5878 
5879 #ifdef CONFIG_RFS_ACCEL
5880 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp)
5881 {
5882 	return bp->hw_resc.max_rsscos_ctxs;
5883 }
5884 
5885 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp)
5886 {
5887 	return bp->hw_resc.max_vnics;
5888 }
5889 #endif
5890 
5891 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp)
5892 {
5893 	return bp->hw_resc.max_stat_ctxs;
5894 }
5895 
5896 void bnxt_set_max_func_stat_ctxs(struct bnxt *bp, unsigned int max)
5897 {
5898 	bp->hw_resc.max_stat_ctxs = max;
5899 }
5900 
5901 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp)
5902 {
5903 	return bp->hw_resc.max_cp_rings;
5904 }
5905 
5906 void bnxt_set_max_func_cp_rings(struct bnxt *bp, unsigned int max)
5907 {
5908 	bp->hw_resc.max_cp_rings = max;
5909 }
5910 
5911 unsigned int bnxt_get_max_func_irqs(struct bnxt *bp)
5912 {
5913 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
5914 
5915 	return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings);
5916 }
5917 
5918 void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs)
5919 {
5920 	bp->hw_resc.max_irqs = max_irqs;
5921 }
5922 
5923 int bnxt_get_avail_msix(struct bnxt *bp, int num)
5924 {
5925 	int max_cp = bnxt_get_max_func_cp_rings(bp);
5926 	int max_irq = bnxt_get_max_func_irqs(bp);
5927 	int total_req = bp->cp_nr_rings + num;
5928 	int max_idx, avail_msix;
5929 
5930 	max_idx = min_t(int, bp->total_irqs, max_cp);
5931 	avail_msix = max_idx - bp->cp_nr_rings;
5932 	if (!(bp->flags & BNXT_FLAG_NEW_RM) || avail_msix >= num)
5933 		return avail_msix;
5934 
5935 	if (max_irq < total_req) {
5936 		num = max_irq - bp->cp_nr_rings;
5937 		if (num <= 0)
5938 			return 0;
5939 	}
5940 	return num;
5941 }
5942 
5943 static int bnxt_get_num_msix(struct bnxt *bp)
5944 {
5945 	if (!(bp->flags & BNXT_FLAG_NEW_RM))
5946 		return bnxt_get_max_func_irqs(bp);
5947 
5948 	return bnxt_cp_rings_in_use(bp);
5949 }
5950 
5951 static int bnxt_init_msix(struct bnxt *bp)
5952 {
5953 	int i, total_vecs, max, rc = 0, min = 1, ulp_msix;
5954 	struct msix_entry *msix_ent;
5955 
5956 	total_vecs = bnxt_get_num_msix(bp);
5957 	max = bnxt_get_max_func_irqs(bp);
5958 	if (total_vecs > max)
5959 		total_vecs = max;
5960 
5961 	msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
5962 	if (!msix_ent)
5963 		return -ENOMEM;
5964 
5965 	for (i = 0; i < total_vecs; i++) {
5966 		msix_ent[i].entry = i;
5967 		msix_ent[i].vector = 0;
5968 	}
5969 
5970 	if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
5971 		min = 2;
5972 
5973 	total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
5974 	ulp_msix = bnxt_get_ulp_msix_num(bp);
5975 	if (total_vecs < 0 || total_vecs < ulp_msix) {
5976 		rc = -ENODEV;
5977 		goto msix_setup_exit;
5978 	}
5979 
5980 	bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
5981 	if (bp->irq_tbl) {
5982 		for (i = 0; i < total_vecs; i++)
5983 			bp->irq_tbl[i].vector = msix_ent[i].vector;
5984 
5985 		bp->total_irqs = total_vecs;
5986 		/* Trim rings based upon num of vectors allocated */
5987 		rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
5988 				     total_vecs - ulp_msix, min == 1);
5989 		if (rc)
5990 			goto msix_setup_exit;
5991 
5992 		bp->cp_nr_rings = (min == 1) ?
5993 				  max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
5994 				  bp->tx_nr_rings + bp->rx_nr_rings;
5995 
5996 	} else {
5997 		rc = -ENOMEM;
5998 		goto msix_setup_exit;
5999 	}
6000 	bp->flags |= BNXT_FLAG_USING_MSIX;
6001 	kfree(msix_ent);
6002 	return 0;
6003 
6004 msix_setup_exit:
6005 	netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc);
6006 	kfree(bp->irq_tbl);
6007 	bp->irq_tbl = NULL;
6008 	pci_disable_msix(bp->pdev);
6009 	kfree(msix_ent);
6010 	return rc;
6011 }
6012 
6013 static int bnxt_init_inta(struct bnxt *bp)
6014 {
6015 	bp->irq_tbl = kcalloc(1, sizeof(struct bnxt_irq), GFP_KERNEL);
6016 	if (!bp->irq_tbl)
6017 		return -ENOMEM;
6018 
6019 	bp->total_irqs = 1;
6020 	bp->rx_nr_rings = 1;
6021 	bp->tx_nr_rings = 1;
6022 	bp->cp_nr_rings = 1;
6023 	bp->flags |= BNXT_FLAG_SHARED_RINGS;
6024 	bp->irq_tbl[0].vector = bp->pdev->irq;
6025 	return 0;
6026 }
6027 
6028 static int bnxt_init_int_mode(struct bnxt *bp)
6029 {
6030 	int rc = 0;
6031 
6032 	if (bp->flags & BNXT_FLAG_MSIX_CAP)
6033 		rc = bnxt_init_msix(bp);
6034 
6035 	if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) {
6036 		/* fallback to INTA */
6037 		rc = bnxt_init_inta(bp);
6038 	}
6039 	return rc;
6040 }
6041 
6042 static void bnxt_clear_int_mode(struct bnxt *bp)
6043 {
6044 	if (bp->flags & BNXT_FLAG_USING_MSIX)
6045 		pci_disable_msix(bp->pdev);
6046 
6047 	kfree(bp->irq_tbl);
6048 	bp->irq_tbl = NULL;
6049 	bp->flags &= ~BNXT_FLAG_USING_MSIX;
6050 }
6051 
6052 int bnxt_reserve_rings(struct bnxt *bp)
6053 {
6054 	int tcs = netdev_get_num_tc(bp->dev);
6055 	int rc;
6056 
6057 	if (!bnxt_need_reserve_rings(bp))
6058 		return 0;
6059 
6060 	rc = __bnxt_reserve_rings(bp);
6061 	if (rc) {
6062 		netdev_err(bp->dev, "ring reservation failure rc: %d\n", rc);
6063 		return rc;
6064 	}
6065 	if ((bp->flags & BNXT_FLAG_NEW_RM) &&
6066 	    (bnxt_get_num_msix(bp) != bp->total_irqs)) {
6067 		bnxt_ulp_irq_stop(bp);
6068 		bnxt_clear_int_mode(bp);
6069 		rc = bnxt_init_int_mode(bp);
6070 		bnxt_ulp_irq_restart(bp, rc);
6071 		if (rc)
6072 			return rc;
6073 	}
6074 	if (tcs && (bp->tx_nr_rings_per_tc * tcs != bp->tx_nr_rings)) {
6075 		netdev_err(bp->dev, "tx ring reservation failure\n");
6076 		netdev_reset_tc(bp->dev);
6077 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
6078 		return -ENOMEM;
6079 	}
6080 	bp->num_stat_ctxs = bp->cp_nr_rings;
6081 	return 0;
6082 }
6083 
6084 static void bnxt_free_irq(struct bnxt *bp)
6085 {
6086 	struct bnxt_irq *irq;
6087 	int i;
6088 
6089 #ifdef CONFIG_RFS_ACCEL
6090 	free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
6091 	bp->dev->rx_cpu_rmap = NULL;
6092 #endif
6093 	if (!bp->irq_tbl || !bp->bnapi)
6094 		return;
6095 
6096 	for (i = 0; i < bp->cp_nr_rings; i++) {
6097 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
6098 
6099 		irq = &bp->irq_tbl[map_idx];
6100 		if (irq->requested) {
6101 			if (irq->have_cpumask) {
6102 				irq_set_affinity_hint(irq->vector, NULL);
6103 				free_cpumask_var(irq->cpu_mask);
6104 				irq->have_cpumask = 0;
6105 			}
6106 			free_irq(irq->vector, bp->bnapi[i]);
6107 		}
6108 
6109 		irq->requested = 0;
6110 	}
6111 }
6112 
6113 static int bnxt_request_irq(struct bnxt *bp)
6114 {
6115 	int i, j, rc = 0;
6116 	unsigned long flags = 0;
6117 #ifdef CONFIG_RFS_ACCEL
6118 	struct cpu_rmap *rmap;
6119 #endif
6120 
6121 	rc = bnxt_setup_int_mode(bp);
6122 	if (rc) {
6123 		netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
6124 			   rc);
6125 		return rc;
6126 	}
6127 #ifdef CONFIG_RFS_ACCEL
6128 	rmap = bp->dev->rx_cpu_rmap;
6129 #endif
6130 	if (!(bp->flags & BNXT_FLAG_USING_MSIX))
6131 		flags = IRQF_SHARED;
6132 
6133 	for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
6134 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
6135 		struct bnxt_irq *irq = &bp->irq_tbl[map_idx];
6136 
6137 #ifdef CONFIG_RFS_ACCEL
6138 		if (rmap && bp->bnapi[i]->rx_ring) {
6139 			rc = irq_cpu_rmap_add(rmap, irq->vector);
6140 			if (rc)
6141 				netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
6142 					    j);
6143 			j++;
6144 		}
6145 #endif
6146 		rc = request_irq(irq->vector, irq->handler, flags, irq->name,
6147 				 bp->bnapi[i]);
6148 		if (rc)
6149 			break;
6150 
6151 		irq->requested = 1;
6152 
6153 		if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) {
6154 			int numa_node = dev_to_node(&bp->pdev->dev);
6155 
6156 			irq->have_cpumask = 1;
6157 			cpumask_set_cpu(cpumask_local_spread(i, numa_node),
6158 					irq->cpu_mask);
6159 			rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask);
6160 			if (rc) {
6161 				netdev_warn(bp->dev,
6162 					    "Set affinity failed, IRQ = %d\n",
6163 					    irq->vector);
6164 				break;
6165 			}
6166 		}
6167 	}
6168 	return rc;
6169 }
6170 
6171 static void bnxt_del_napi(struct bnxt *bp)
6172 {
6173 	int i;
6174 
6175 	if (!bp->bnapi)
6176 		return;
6177 
6178 	for (i = 0; i < bp->cp_nr_rings; i++) {
6179 		struct bnxt_napi *bnapi = bp->bnapi[i];
6180 
6181 		napi_hash_del(&bnapi->napi);
6182 		netif_napi_del(&bnapi->napi);
6183 	}
6184 	/* We called napi_hash_del() before netif_napi_del(), we need
6185 	 * to respect an RCU grace period before freeing napi structures.
6186 	 */
6187 	synchronize_net();
6188 }
6189 
6190 static void bnxt_init_napi(struct bnxt *bp)
6191 {
6192 	int i;
6193 	unsigned int cp_nr_rings = bp->cp_nr_rings;
6194 	struct bnxt_napi *bnapi;
6195 
6196 	if (bp->flags & BNXT_FLAG_USING_MSIX) {
6197 		if (BNXT_CHIP_TYPE_NITRO_A0(bp))
6198 			cp_nr_rings--;
6199 		for (i = 0; i < cp_nr_rings; i++) {
6200 			bnapi = bp->bnapi[i];
6201 			netif_napi_add(bp->dev, &bnapi->napi,
6202 				       bnxt_poll, 64);
6203 		}
6204 		if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
6205 			bnapi = bp->bnapi[cp_nr_rings];
6206 			netif_napi_add(bp->dev, &bnapi->napi,
6207 				       bnxt_poll_nitroa0, 64);
6208 		}
6209 	} else {
6210 		bnapi = bp->bnapi[0];
6211 		netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64);
6212 	}
6213 }
6214 
6215 static void bnxt_disable_napi(struct bnxt *bp)
6216 {
6217 	int i;
6218 
6219 	if (!bp->bnapi)
6220 		return;
6221 
6222 	for (i = 0; i < bp->cp_nr_rings; i++) {
6223 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
6224 
6225 		if (bp->bnapi[i]->rx_ring)
6226 			cancel_work_sync(&cpr->dim.work);
6227 
6228 		napi_disable(&bp->bnapi[i]->napi);
6229 	}
6230 }
6231 
6232 static void bnxt_enable_napi(struct bnxt *bp)
6233 {
6234 	int i;
6235 
6236 	for (i = 0; i < bp->cp_nr_rings; i++) {
6237 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
6238 		bp->bnapi[i]->in_reset = false;
6239 
6240 		if (bp->bnapi[i]->rx_ring) {
6241 			INIT_WORK(&cpr->dim.work, bnxt_dim_work);
6242 			cpr->dim.mode = NET_DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6243 		}
6244 		napi_enable(&bp->bnapi[i]->napi);
6245 	}
6246 }
6247 
6248 void bnxt_tx_disable(struct bnxt *bp)
6249 {
6250 	int i;
6251 	struct bnxt_tx_ring_info *txr;
6252 
6253 	if (bp->tx_ring) {
6254 		for (i = 0; i < bp->tx_nr_rings; i++) {
6255 			txr = &bp->tx_ring[i];
6256 			txr->dev_state = BNXT_DEV_STATE_CLOSING;
6257 		}
6258 	}
6259 	/* Stop all TX queues */
6260 	netif_tx_disable(bp->dev);
6261 	netif_carrier_off(bp->dev);
6262 }
6263 
6264 void bnxt_tx_enable(struct bnxt *bp)
6265 {
6266 	int i;
6267 	struct bnxt_tx_ring_info *txr;
6268 
6269 	for (i = 0; i < bp->tx_nr_rings; i++) {
6270 		txr = &bp->tx_ring[i];
6271 		txr->dev_state = 0;
6272 	}
6273 	netif_tx_wake_all_queues(bp->dev);
6274 	if (bp->link_info.link_up)
6275 		netif_carrier_on(bp->dev);
6276 }
6277 
6278 static void bnxt_report_link(struct bnxt *bp)
6279 {
6280 	if (bp->link_info.link_up) {
6281 		const char *duplex;
6282 		const char *flow_ctrl;
6283 		u32 speed;
6284 		u16 fec;
6285 
6286 		netif_carrier_on(bp->dev);
6287 		if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
6288 			duplex = "full";
6289 		else
6290 			duplex = "half";
6291 		if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
6292 			flow_ctrl = "ON - receive & transmit";
6293 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
6294 			flow_ctrl = "ON - transmit";
6295 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
6296 			flow_ctrl = "ON - receive";
6297 		else
6298 			flow_ctrl = "none";
6299 		speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
6300 		netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s duplex, Flow control: %s\n",
6301 			    speed, duplex, flow_ctrl);
6302 		if (bp->flags & BNXT_FLAG_EEE_CAP)
6303 			netdev_info(bp->dev, "EEE is %s\n",
6304 				    bp->eee.eee_active ? "active" :
6305 							 "not active");
6306 		fec = bp->link_info.fec_cfg;
6307 		if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED))
6308 			netdev_info(bp->dev, "FEC autoneg %s encodings: %s\n",
6309 				    (fec & BNXT_FEC_AUTONEG) ? "on" : "off",
6310 				    (fec & BNXT_FEC_ENC_BASE_R) ? "BaseR" :
6311 				     (fec & BNXT_FEC_ENC_RS) ? "RS" : "None");
6312 	} else {
6313 		netif_carrier_off(bp->dev);
6314 		netdev_err(bp->dev, "NIC Link is Down\n");
6315 	}
6316 }
6317 
6318 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp)
6319 {
6320 	int rc = 0;
6321 	struct hwrm_port_phy_qcaps_input req = {0};
6322 	struct hwrm_port_phy_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
6323 	struct bnxt_link_info *link_info = &bp->link_info;
6324 
6325 	if (bp->hwrm_spec_code < 0x10201)
6326 		return 0;
6327 
6328 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCAPS, -1, -1);
6329 
6330 	mutex_lock(&bp->hwrm_cmd_lock);
6331 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6332 	if (rc)
6333 		goto hwrm_phy_qcaps_exit;
6334 
6335 	if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) {
6336 		struct ethtool_eee *eee = &bp->eee;
6337 		u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode);
6338 
6339 		bp->flags |= BNXT_FLAG_EEE_CAP;
6340 		eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
6341 		bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) &
6342 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK;
6343 		bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) &
6344 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK;
6345 	}
6346 	if (resp->supported_speeds_auto_mode)
6347 		link_info->support_auto_speeds =
6348 			le16_to_cpu(resp->supported_speeds_auto_mode);
6349 
6350 	bp->port_count = resp->port_cnt;
6351 
6352 hwrm_phy_qcaps_exit:
6353 	mutex_unlock(&bp->hwrm_cmd_lock);
6354 	return rc;
6355 }
6356 
6357 static int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
6358 {
6359 	int rc = 0;
6360 	struct bnxt_link_info *link_info = &bp->link_info;
6361 	struct hwrm_port_phy_qcfg_input req = {0};
6362 	struct hwrm_port_phy_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
6363 	u8 link_up = link_info->link_up;
6364 	u16 diff;
6365 
6366 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCFG, -1, -1);
6367 
6368 	mutex_lock(&bp->hwrm_cmd_lock);
6369 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6370 	if (rc) {
6371 		mutex_unlock(&bp->hwrm_cmd_lock);
6372 		return rc;
6373 	}
6374 
6375 	memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
6376 	link_info->phy_link_status = resp->link;
6377 	link_info->duplex = resp->duplex_cfg;
6378 	if (bp->hwrm_spec_code >= 0x10800)
6379 		link_info->duplex = resp->duplex_state;
6380 	link_info->pause = resp->pause;
6381 	link_info->auto_mode = resp->auto_mode;
6382 	link_info->auto_pause_setting = resp->auto_pause;
6383 	link_info->lp_pause = resp->link_partner_adv_pause;
6384 	link_info->force_pause_setting = resp->force_pause;
6385 	link_info->duplex_setting = resp->duplex_cfg;
6386 	if (link_info->phy_link_status == BNXT_LINK_LINK)
6387 		link_info->link_speed = le16_to_cpu(resp->link_speed);
6388 	else
6389 		link_info->link_speed = 0;
6390 	link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
6391 	link_info->support_speeds = le16_to_cpu(resp->support_speeds);
6392 	link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
6393 	link_info->lp_auto_link_speeds =
6394 		le16_to_cpu(resp->link_partner_adv_speeds);
6395 	link_info->preemphasis = le32_to_cpu(resp->preemphasis);
6396 	link_info->phy_ver[0] = resp->phy_maj;
6397 	link_info->phy_ver[1] = resp->phy_min;
6398 	link_info->phy_ver[2] = resp->phy_bld;
6399 	link_info->media_type = resp->media_type;
6400 	link_info->phy_type = resp->phy_type;
6401 	link_info->transceiver = resp->xcvr_pkg_type;
6402 	link_info->phy_addr = resp->eee_config_phy_addr &
6403 			      PORT_PHY_QCFG_RESP_PHY_ADDR_MASK;
6404 	link_info->module_status = resp->module_status;
6405 
6406 	if (bp->flags & BNXT_FLAG_EEE_CAP) {
6407 		struct ethtool_eee *eee = &bp->eee;
6408 		u16 fw_speeds;
6409 
6410 		eee->eee_active = 0;
6411 		if (resp->eee_config_phy_addr &
6412 		    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) {
6413 			eee->eee_active = 1;
6414 			fw_speeds = le16_to_cpu(
6415 				resp->link_partner_adv_eee_link_speed_mask);
6416 			eee->lp_advertised =
6417 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
6418 		}
6419 
6420 		/* Pull initial EEE config */
6421 		if (!chng_link_state) {
6422 			if (resp->eee_config_phy_addr &
6423 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED)
6424 				eee->eee_enabled = 1;
6425 
6426 			fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask);
6427 			eee->advertised =
6428 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
6429 
6430 			if (resp->eee_config_phy_addr &
6431 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) {
6432 				__le32 tmr;
6433 
6434 				eee->tx_lpi_enabled = 1;
6435 				tmr = resp->xcvr_identifier_type_tx_lpi_timer;
6436 				eee->tx_lpi_timer = le32_to_cpu(tmr) &
6437 					PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK;
6438 			}
6439 		}
6440 	}
6441 
6442 	link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED;
6443 	if (bp->hwrm_spec_code >= 0x10504)
6444 		link_info->fec_cfg = le16_to_cpu(resp->fec_cfg);
6445 
6446 	/* TODO: need to add more logic to report VF link */
6447 	if (chng_link_state) {
6448 		if (link_info->phy_link_status == BNXT_LINK_LINK)
6449 			link_info->link_up = 1;
6450 		else
6451 			link_info->link_up = 0;
6452 		if (link_up != link_info->link_up)
6453 			bnxt_report_link(bp);
6454 	} else {
6455 		/* alwasy link down if not require to update link state */
6456 		link_info->link_up = 0;
6457 	}
6458 	mutex_unlock(&bp->hwrm_cmd_lock);
6459 
6460 	diff = link_info->support_auto_speeds ^ link_info->advertising;
6461 	if ((link_info->support_auto_speeds | diff) !=
6462 	    link_info->support_auto_speeds) {
6463 		/* An advertised speed is no longer supported, so we need to
6464 		 * update the advertisement settings.  Caller holds RTNL
6465 		 * so we can modify link settings.
6466 		 */
6467 		link_info->advertising = link_info->support_auto_speeds;
6468 		if (link_info->autoneg & BNXT_AUTONEG_SPEED)
6469 			bnxt_hwrm_set_link_setting(bp, true, false);
6470 	}
6471 	return 0;
6472 }
6473 
6474 static void bnxt_get_port_module_status(struct bnxt *bp)
6475 {
6476 	struct bnxt_link_info *link_info = &bp->link_info;
6477 	struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp;
6478 	u8 module_status;
6479 
6480 	if (bnxt_update_link(bp, true))
6481 		return;
6482 
6483 	module_status = link_info->module_status;
6484 	switch (module_status) {
6485 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX:
6486 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN:
6487 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG:
6488 		netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n",
6489 			    bp->pf.port_id);
6490 		if (bp->hwrm_spec_code >= 0x10201) {
6491 			netdev_warn(bp->dev, "Module part number %s\n",
6492 				    resp->phy_vendor_partnumber);
6493 		}
6494 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX)
6495 			netdev_warn(bp->dev, "TX is disabled\n");
6496 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN)
6497 			netdev_warn(bp->dev, "SFP+ module is shutdown\n");
6498 	}
6499 }
6500 
6501 static void
6502 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
6503 {
6504 	if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
6505 		if (bp->hwrm_spec_code >= 0x10201)
6506 			req->auto_pause =
6507 				PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE;
6508 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
6509 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
6510 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
6511 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX;
6512 		req->enables |=
6513 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
6514 	} else {
6515 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
6516 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
6517 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
6518 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
6519 		req->enables |=
6520 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
6521 		if (bp->hwrm_spec_code >= 0x10201) {
6522 			req->auto_pause = req->force_pause;
6523 			req->enables |= cpu_to_le32(
6524 				PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
6525 		}
6526 	}
6527 }
6528 
6529 static void bnxt_hwrm_set_link_common(struct bnxt *bp,
6530 				      struct hwrm_port_phy_cfg_input *req)
6531 {
6532 	u8 autoneg = bp->link_info.autoneg;
6533 	u16 fw_link_speed = bp->link_info.req_link_speed;
6534 	u16 advertising = bp->link_info.advertising;
6535 
6536 	if (autoneg & BNXT_AUTONEG_SPEED) {
6537 		req->auto_mode |=
6538 			PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK;
6539 
6540 		req->enables |= cpu_to_le32(
6541 			PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
6542 		req->auto_link_speed_mask = cpu_to_le16(advertising);
6543 
6544 		req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
6545 		req->flags |=
6546 			cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
6547 	} else {
6548 		req->force_link_speed = cpu_to_le16(fw_link_speed);
6549 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
6550 	}
6551 
6552 	/* tell chimp that the setting takes effect immediately */
6553 	req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
6554 }
6555 
6556 int bnxt_hwrm_set_pause(struct bnxt *bp)
6557 {
6558 	struct hwrm_port_phy_cfg_input req = {0};
6559 	int rc;
6560 
6561 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
6562 	bnxt_hwrm_set_pause_common(bp, &req);
6563 
6564 	if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
6565 	    bp->link_info.force_link_chng)
6566 		bnxt_hwrm_set_link_common(bp, &req);
6567 
6568 	mutex_lock(&bp->hwrm_cmd_lock);
6569 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6570 	if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
6571 		/* since changing of pause setting doesn't trigger any link
6572 		 * change event, the driver needs to update the current pause
6573 		 * result upon successfully return of the phy_cfg command
6574 		 */
6575 		bp->link_info.pause =
6576 		bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
6577 		bp->link_info.auto_pause_setting = 0;
6578 		if (!bp->link_info.force_link_chng)
6579 			bnxt_report_link(bp);
6580 	}
6581 	bp->link_info.force_link_chng = false;
6582 	mutex_unlock(&bp->hwrm_cmd_lock);
6583 	return rc;
6584 }
6585 
6586 static void bnxt_hwrm_set_eee(struct bnxt *bp,
6587 			      struct hwrm_port_phy_cfg_input *req)
6588 {
6589 	struct ethtool_eee *eee = &bp->eee;
6590 
6591 	if (eee->eee_enabled) {
6592 		u16 eee_speeds;
6593 		u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE;
6594 
6595 		if (eee->tx_lpi_enabled)
6596 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE;
6597 		else
6598 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE;
6599 
6600 		req->flags |= cpu_to_le32(flags);
6601 		eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised);
6602 		req->eee_link_speed_mask = cpu_to_le16(eee_speeds);
6603 		req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer);
6604 	} else {
6605 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE);
6606 	}
6607 }
6608 
6609 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee)
6610 {
6611 	struct hwrm_port_phy_cfg_input req = {0};
6612 
6613 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
6614 	if (set_pause)
6615 		bnxt_hwrm_set_pause_common(bp, &req);
6616 
6617 	bnxt_hwrm_set_link_common(bp, &req);
6618 
6619 	if (set_eee)
6620 		bnxt_hwrm_set_eee(bp, &req);
6621 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6622 }
6623 
6624 static int bnxt_hwrm_shutdown_link(struct bnxt *bp)
6625 {
6626 	struct hwrm_port_phy_cfg_input req = {0};
6627 
6628 	if (!BNXT_SINGLE_PF(bp))
6629 		return 0;
6630 
6631 	if (pci_num_vf(bp->pdev))
6632 		return 0;
6633 
6634 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
6635 	req.flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN);
6636 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6637 }
6638 
6639 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp)
6640 {
6641 	struct hwrm_port_led_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
6642 	struct hwrm_port_led_qcaps_input req = {0};
6643 	struct bnxt_pf_info *pf = &bp->pf;
6644 	int rc;
6645 
6646 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601)
6647 		return 0;
6648 
6649 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_LED_QCAPS, -1, -1);
6650 	req.port_id = cpu_to_le16(pf->port_id);
6651 	mutex_lock(&bp->hwrm_cmd_lock);
6652 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6653 	if (rc) {
6654 		mutex_unlock(&bp->hwrm_cmd_lock);
6655 		return rc;
6656 	}
6657 	if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) {
6658 		int i;
6659 
6660 		bp->num_leds = resp->num_leds;
6661 		memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) *
6662 						 bp->num_leds);
6663 		for (i = 0; i < bp->num_leds; i++) {
6664 			struct bnxt_led_info *led = &bp->leds[i];
6665 			__le16 caps = led->led_state_caps;
6666 
6667 			if (!led->led_group_id ||
6668 			    !BNXT_LED_ALT_BLINK_CAP(caps)) {
6669 				bp->num_leds = 0;
6670 				break;
6671 			}
6672 		}
6673 	}
6674 	mutex_unlock(&bp->hwrm_cmd_lock);
6675 	return 0;
6676 }
6677 
6678 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp)
6679 {
6680 	struct hwrm_wol_filter_alloc_input req = {0};
6681 	struct hwrm_wol_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
6682 	int rc;
6683 
6684 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_ALLOC, -1, -1);
6685 	req.port_id = cpu_to_le16(bp->pf.port_id);
6686 	req.wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT;
6687 	req.enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS);
6688 	memcpy(req.mac_address, bp->dev->dev_addr, ETH_ALEN);
6689 	mutex_lock(&bp->hwrm_cmd_lock);
6690 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6691 	if (!rc)
6692 		bp->wol_filter_id = resp->wol_filter_id;
6693 	mutex_unlock(&bp->hwrm_cmd_lock);
6694 	return rc;
6695 }
6696 
6697 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp)
6698 {
6699 	struct hwrm_wol_filter_free_input req = {0};
6700 	int rc;
6701 
6702 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_FREE, -1, -1);
6703 	req.port_id = cpu_to_le16(bp->pf.port_id);
6704 	req.enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID);
6705 	req.wol_filter_id = bp->wol_filter_id;
6706 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6707 	return rc;
6708 }
6709 
6710 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle)
6711 {
6712 	struct hwrm_wol_filter_qcfg_input req = {0};
6713 	struct hwrm_wol_filter_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
6714 	u16 next_handle = 0;
6715 	int rc;
6716 
6717 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_QCFG, -1, -1);
6718 	req.port_id = cpu_to_le16(bp->pf.port_id);
6719 	req.handle = cpu_to_le16(handle);
6720 	mutex_lock(&bp->hwrm_cmd_lock);
6721 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6722 	if (!rc) {
6723 		next_handle = le16_to_cpu(resp->next_handle);
6724 		if (next_handle != 0) {
6725 			if (resp->wol_type ==
6726 			    WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) {
6727 				bp->wol = 1;
6728 				bp->wol_filter_id = resp->wol_filter_id;
6729 			}
6730 		}
6731 	}
6732 	mutex_unlock(&bp->hwrm_cmd_lock);
6733 	return next_handle;
6734 }
6735 
6736 static void bnxt_get_wol_settings(struct bnxt *bp)
6737 {
6738 	u16 handle = 0;
6739 
6740 	if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP))
6741 		return;
6742 
6743 	do {
6744 		handle = bnxt_hwrm_get_wol_fltrs(bp, handle);
6745 	} while (handle && handle != 0xffff);
6746 }
6747 
6748 static bool bnxt_eee_config_ok(struct bnxt *bp)
6749 {
6750 	struct ethtool_eee *eee = &bp->eee;
6751 	struct bnxt_link_info *link_info = &bp->link_info;
6752 
6753 	if (!(bp->flags & BNXT_FLAG_EEE_CAP))
6754 		return true;
6755 
6756 	if (eee->eee_enabled) {
6757 		u32 advertising =
6758 			_bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0);
6759 
6760 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
6761 			eee->eee_enabled = 0;
6762 			return false;
6763 		}
6764 		if (eee->advertised & ~advertising) {
6765 			eee->advertised = advertising & eee->supported;
6766 			return false;
6767 		}
6768 	}
6769 	return true;
6770 }
6771 
6772 static int bnxt_update_phy_setting(struct bnxt *bp)
6773 {
6774 	int rc;
6775 	bool update_link = false;
6776 	bool update_pause = false;
6777 	bool update_eee = false;
6778 	struct bnxt_link_info *link_info = &bp->link_info;
6779 
6780 	rc = bnxt_update_link(bp, true);
6781 	if (rc) {
6782 		netdev_err(bp->dev, "failed to update link (rc: %x)\n",
6783 			   rc);
6784 		return rc;
6785 	}
6786 	if (!BNXT_SINGLE_PF(bp))
6787 		return 0;
6788 
6789 	if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
6790 	    (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) !=
6791 	    link_info->req_flow_ctrl)
6792 		update_pause = true;
6793 	if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
6794 	    link_info->force_pause_setting != link_info->req_flow_ctrl)
6795 		update_pause = true;
6796 	if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
6797 		if (BNXT_AUTO_MODE(link_info->auto_mode))
6798 			update_link = true;
6799 		if (link_info->req_link_speed != link_info->force_link_speed)
6800 			update_link = true;
6801 		if (link_info->req_duplex != link_info->duplex_setting)
6802 			update_link = true;
6803 	} else {
6804 		if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
6805 			update_link = true;
6806 		if (link_info->advertising != link_info->auto_link_speeds)
6807 			update_link = true;
6808 	}
6809 
6810 	/* The last close may have shutdown the link, so need to call
6811 	 * PHY_CFG to bring it back up.
6812 	 */
6813 	if (!netif_carrier_ok(bp->dev))
6814 		update_link = true;
6815 
6816 	if (!bnxt_eee_config_ok(bp))
6817 		update_eee = true;
6818 
6819 	if (update_link)
6820 		rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee);
6821 	else if (update_pause)
6822 		rc = bnxt_hwrm_set_pause(bp);
6823 	if (rc) {
6824 		netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
6825 			   rc);
6826 		return rc;
6827 	}
6828 
6829 	return rc;
6830 }
6831 
6832 /* Common routine to pre-map certain register block to different GRC window.
6833  * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
6834  * in PF and 3 windows in VF that can be customized to map in different
6835  * register blocks.
6836  */
6837 static void bnxt_preset_reg_win(struct bnxt *bp)
6838 {
6839 	if (BNXT_PF(bp)) {
6840 		/* CAG registers map to GRC window #4 */
6841 		writel(BNXT_CAG_REG_BASE,
6842 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
6843 	}
6844 }
6845 
6846 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
6847 {
6848 	int rc = 0;
6849 
6850 	bnxt_preset_reg_win(bp);
6851 	netif_carrier_off(bp->dev);
6852 	if (irq_re_init) {
6853 		rc = bnxt_reserve_rings(bp);
6854 		if (rc)
6855 			return rc;
6856 	}
6857 	if ((bp->flags & BNXT_FLAG_RFS) &&
6858 	    !(bp->flags & BNXT_FLAG_USING_MSIX)) {
6859 		/* disable RFS if falling back to INTA */
6860 		bp->dev->hw_features &= ~NETIF_F_NTUPLE;
6861 		bp->flags &= ~BNXT_FLAG_RFS;
6862 	}
6863 
6864 	rc = bnxt_alloc_mem(bp, irq_re_init);
6865 	if (rc) {
6866 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
6867 		goto open_err_free_mem;
6868 	}
6869 
6870 	if (irq_re_init) {
6871 		bnxt_init_napi(bp);
6872 		rc = bnxt_request_irq(bp);
6873 		if (rc) {
6874 			netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
6875 			goto open_err;
6876 		}
6877 	}
6878 
6879 	bnxt_enable_napi(bp);
6880 
6881 	rc = bnxt_init_nic(bp, irq_re_init);
6882 	if (rc) {
6883 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
6884 		goto open_err;
6885 	}
6886 
6887 	if (link_re_init) {
6888 		mutex_lock(&bp->link_lock);
6889 		rc = bnxt_update_phy_setting(bp);
6890 		mutex_unlock(&bp->link_lock);
6891 		if (rc)
6892 			netdev_warn(bp->dev, "failed to update phy settings\n");
6893 	}
6894 
6895 	if (irq_re_init)
6896 		udp_tunnel_get_rx_info(bp->dev);
6897 
6898 	set_bit(BNXT_STATE_OPEN, &bp->state);
6899 	bnxt_enable_int(bp);
6900 	/* Enable TX queues */
6901 	bnxt_tx_enable(bp);
6902 	mod_timer(&bp->timer, jiffies + bp->current_interval);
6903 	/* Poll link status and check for SFP+ module status */
6904 	bnxt_get_port_module_status(bp);
6905 
6906 	/* VF-reps may need to be re-opened after the PF is re-opened */
6907 	if (BNXT_PF(bp))
6908 		bnxt_vf_reps_open(bp);
6909 	return 0;
6910 
6911 open_err:
6912 	bnxt_disable_napi(bp);
6913 	bnxt_del_napi(bp);
6914 
6915 open_err_free_mem:
6916 	bnxt_free_skbs(bp);
6917 	bnxt_free_irq(bp);
6918 	bnxt_free_mem(bp, true);
6919 	return rc;
6920 }
6921 
6922 /* rtnl_lock held */
6923 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
6924 {
6925 	int rc = 0;
6926 
6927 	rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
6928 	if (rc) {
6929 		netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
6930 		dev_close(bp->dev);
6931 	}
6932 	return rc;
6933 }
6934 
6935 /* rtnl_lock held, open the NIC half way by allocating all resources, but
6936  * NAPI, IRQ, and TX are not enabled.  This is mainly used for offline
6937  * self tests.
6938  */
6939 int bnxt_half_open_nic(struct bnxt *bp)
6940 {
6941 	int rc = 0;
6942 
6943 	rc = bnxt_alloc_mem(bp, false);
6944 	if (rc) {
6945 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
6946 		goto half_open_err;
6947 	}
6948 	rc = bnxt_init_nic(bp, false);
6949 	if (rc) {
6950 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
6951 		goto half_open_err;
6952 	}
6953 	return 0;
6954 
6955 half_open_err:
6956 	bnxt_free_skbs(bp);
6957 	bnxt_free_mem(bp, false);
6958 	dev_close(bp->dev);
6959 	return rc;
6960 }
6961 
6962 /* rtnl_lock held, this call can only be made after a previous successful
6963  * call to bnxt_half_open_nic().
6964  */
6965 void bnxt_half_close_nic(struct bnxt *bp)
6966 {
6967 	bnxt_hwrm_resource_free(bp, false, false);
6968 	bnxt_free_skbs(bp);
6969 	bnxt_free_mem(bp, false);
6970 }
6971 
6972 static int bnxt_open(struct net_device *dev)
6973 {
6974 	struct bnxt *bp = netdev_priv(dev);
6975 
6976 	return __bnxt_open_nic(bp, true, true);
6977 }
6978 
6979 static bool bnxt_drv_busy(struct bnxt *bp)
6980 {
6981 	return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) ||
6982 		test_bit(BNXT_STATE_READ_STATS, &bp->state));
6983 }
6984 
6985 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init,
6986 			     bool link_re_init)
6987 {
6988 	/* Close the VF-reps before closing PF */
6989 	if (BNXT_PF(bp))
6990 		bnxt_vf_reps_close(bp);
6991 
6992 	/* Change device state to avoid TX queue wake up's */
6993 	bnxt_tx_disable(bp);
6994 
6995 	clear_bit(BNXT_STATE_OPEN, &bp->state);
6996 	smp_mb__after_atomic();
6997 	while (bnxt_drv_busy(bp))
6998 		msleep(20);
6999 
7000 	/* Flush rings and and disable interrupts */
7001 	bnxt_shutdown_nic(bp, irq_re_init);
7002 
7003 	/* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
7004 
7005 	bnxt_disable_napi(bp);
7006 	del_timer_sync(&bp->timer);
7007 	bnxt_free_skbs(bp);
7008 
7009 	if (irq_re_init) {
7010 		bnxt_free_irq(bp);
7011 		bnxt_del_napi(bp);
7012 	}
7013 	bnxt_free_mem(bp, irq_re_init);
7014 }
7015 
7016 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
7017 {
7018 	int rc = 0;
7019 
7020 #ifdef CONFIG_BNXT_SRIOV
7021 	if (bp->sriov_cfg) {
7022 		rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
7023 						      !bp->sriov_cfg,
7024 						      BNXT_SRIOV_CFG_WAIT_TMO);
7025 		if (rc)
7026 			netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
7027 	}
7028 #endif
7029 	__bnxt_close_nic(bp, irq_re_init, link_re_init);
7030 	return rc;
7031 }
7032 
7033 static int bnxt_close(struct net_device *dev)
7034 {
7035 	struct bnxt *bp = netdev_priv(dev);
7036 
7037 	bnxt_close_nic(bp, true, true);
7038 	bnxt_hwrm_shutdown_link(bp);
7039 	return 0;
7040 }
7041 
7042 /* rtnl_lock held */
7043 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
7044 {
7045 	switch (cmd) {
7046 	case SIOCGMIIPHY:
7047 		/* fallthru */
7048 	case SIOCGMIIREG: {
7049 		if (!netif_running(dev))
7050 			return -EAGAIN;
7051 
7052 		return 0;
7053 	}
7054 
7055 	case SIOCSMIIREG:
7056 		if (!netif_running(dev))
7057 			return -EAGAIN;
7058 
7059 		return 0;
7060 
7061 	default:
7062 		/* do nothing */
7063 		break;
7064 	}
7065 	return -EOPNOTSUPP;
7066 }
7067 
7068 static void
7069 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
7070 {
7071 	u32 i;
7072 	struct bnxt *bp = netdev_priv(dev);
7073 
7074 	set_bit(BNXT_STATE_READ_STATS, &bp->state);
7075 	/* Make sure bnxt_close_nic() sees that we are reading stats before
7076 	 * we check the BNXT_STATE_OPEN flag.
7077 	 */
7078 	smp_mb__after_atomic();
7079 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
7080 		clear_bit(BNXT_STATE_READ_STATS, &bp->state);
7081 		return;
7082 	}
7083 
7084 	/* TODO check if we need to synchronize with bnxt_close path */
7085 	for (i = 0; i < bp->cp_nr_rings; i++) {
7086 		struct bnxt_napi *bnapi = bp->bnapi[i];
7087 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
7088 		struct ctx_hw_stats *hw_stats = cpr->hw_stats;
7089 
7090 		stats->rx_packets += le64_to_cpu(hw_stats->rx_ucast_pkts);
7091 		stats->rx_packets += le64_to_cpu(hw_stats->rx_mcast_pkts);
7092 		stats->rx_packets += le64_to_cpu(hw_stats->rx_bcast_pkts);
7093 
7094 		stats->tx_packets += le64_to_cpu(hw_stats->tx_ucast_pkts);
7095 		stats->tx_packets += le64_to_cpu(hw_stats->tx_mcast_pkts);
7096 		stats->tx_packets += le64_to_cpu(hw_stats->tx_bcast_pkts);
7097 
7098 		stats->rx_bytes += le64_to_cpu(hw_stats->rx_ucast_bytes);
7099 		stats->rx_bytes += le64_to_cpu(hw_stats->rx_mcast_bytes);
7100 		stats->rx_bytes += le64_to_cpu(hw_stats->rx_bcast_bytes);
7101 
7102 		stats->tx_bytes += le64_to_cpu(hw_stats->tx_ucast_bytes);
7103 		stats->tx_bytes += le64_to_cpu(hw_stats->tx_mcast_bytes);
7104 		stats->tx_bytes += le64_to_cpu(hw_stats->tx_bcast_bytes);
7105 
7106 		stats->rx_missed_errors +=
7107 			le64_to_cpu(hw_stats->rx_discard_pkts);
7108 
7109 		stats->multicast += le64_to_cpu(hw_stats->rx_mcast_pkts);
7110 
7111 		stats->tx_dropped += le64_to_cpu(hw_stats->tx_drop_pkts);
7112 	}
7113 
7114 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
7115 		struct rx_port_stats *rx = bp->hw_rx_port_stats;
7116 		struct tx_port_stats *tx = bp->hw_tx_port_stats;
7117 
7118 		stats->rx_crc_errors = le64_to_cpu(rx->rx_fcs_err_frames);
7119 		stats->rx_frame_errors = le64_to_cpu(rx->rx_align_err_frames);
7120 		stats->rx_length_errors = le64_to_cpu(rx->rx_undrsz_frames) +
7121 					  le64_to_cpu(rx->rx_ovrsz_frames) +
7122 					  le64_to_cpu(rx->rx_runt_frames);
7123 		stats->rx_errors = le64_to_cpu(rx->rx_false_carrier_frames) +
7124 				   le64_to_cpu(rx->rx_jbr_frames);
7125 		stats->collisions = le64_to_cpu(tx->tx_total_collisions);
7126 		stats->tx_fifo_errors = le64_to_cpu(tx->tx_fifo_underruns);
7127 		stats->tx_errors = le64_to_cpu(tx->tx_err);
7128 	}
7129 	clear_bit(BNXT_STATE_READ_STATS, &bp->state);
7130 }
7131 
7132 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
7133 {
7134 	struct net_device *dev = bp->dev;
7135 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
7136 	struct netdev_hw_addr *ha;
7137 	u8 *haddr;
7138 	int mc_count = 0;
7139 	bool update = false;
7140 	int off = 0;
7141 
7142 	netdev_for_each_mc_addr(ha, dev) {
7143 		if (mc_count >= BNXT_MAX_MC_ADDRS) {
7144 			*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
7145 			vnic->mc_list_count = 0;
7146 			return false;
7147 		}
7148 		haddr = ha->addr;
7149 		if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
7150 			memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
7151 			update = true;
7152 		}
7153 		off += ETH_ALEN;
7154 		mc_count++;
7155 	}
7156 	if (mc_count)
7157 		*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
7158 
7159 	if (mc_count != vnic->mc_list_count) {
7160 		vnic->mc_list_count = mc_count;
7161 		update = true;
7162 	}
7163 	return update;
7164 }
7165 
7166 static bool bnxt_uc_list_updated(struct bnxt *bp)
7167 {
7168 	struct net_device *dev = bp->dev;
7169 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
7170 	struct netdev_hw_addr *ha;
7171 	int off = 0;
7172 
7173 	if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
7174 		return true;
7175 
7176 	netdev_for_each_uc_addr(ha, dev) {
7177 		if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
7178 			return true;
7179 
7180 		off += ETH_ALEN;
7181 	}
7182 	return false;
7183 }
7184 
7185 static void bnxt_set_rx_mode(struct net_device *dev)
7186 {
7187 	struct bnxt *bp = netdev_priv(dev);
7188 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
7189 	u32 mask = vnic->rx_mask;
7190 	bool mc_update = false;
7191 	bool uc_update;
7192 
7193 	if (!netif_running(dev))
7194 		return;
7195 
7196 	mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
7197 		  CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
7198 		  CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST);
7199 
7200 	if ((dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
7201 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
7202 
7203 	uc_update = bnxt_uc_list_updated(bp);
7204 
7205 	if (dev->flags & IFF_ALLMULTI) {
7206 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
7207 		vnic->mc_list_count = 0;
7208 	} else {
7209 		mc_update = bnxt_mc_list_updated(bp, &mask);
7210 	}
7211 
7212 	if (mask != vnic->rx_mask || uc_update || mc_update) {
7213 		vnic->rx_mask = mask;
7214 
7215 		set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
7216 		bnxt_queue_sp_work(bp);
7217 	}
7218 }
7219 
7220 static int bnxt_cfg_rx_mode(struct bnxt *bp)
7221 {
7222 	struct net_device *dev = bp->dev;
7223 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
7224 	struct netdev_hw_addr *ha;
7225 	int i, off = 0, rc;
7226 	bool uc_update;
7227 
7228 	netif_addr_lock_bh(dev);
7229 	uc_update = bnxt_uc_list_updated(bp);
7230 	netif_addr_unlock_bh(dev);
7231 
7232 	if (!uc_update)
7233 		goto skip_uc;
7234 
7235 	mutex_lock(&bp->hwrm_cmd_lock);
7236 	for (i = 1; i < vnic->uc_filter_count; i++) {
7237 		struct hwrm_cfa_l2_filter_free_input req = {0};
7238 
7239 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_FREE, -1,
7240 				       -1);
7241 
7242 		req.l2_filter_id = vnic->fw_l2_filter_id[i];
7243 
7244 		rc = _hwrm_send_message(bp, &req, sizeof(req),
7245 					HWRM_CMD_TIMEOUT);
7246 	}
7247 	mutex_unlock(&bp->hwrm_cmd_lock);
7248 
7249 	vnic->uc_filter_count = 1;
7250 
7251 	netif_addr_lock_bh(dev);
7252 	if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
7253 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
7254 	} else {
7255 		netdev_for_each_uc_addr(ha, dev) {
7256 			memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
7257 			off += ETH_ALEN;
7258 			vnic->uc_filter_count++;
7259 		}
7260 	}
7261 	netif_addr_unlock_bh(dev);
7262 
7263 	for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
7264 		rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
7265 		if (rc) {
7266 			netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n",
7267 				   rc);
7268 			vnic->uc_filter_count = i;
7269 			return rc;
7270 		}
7271 	}
7272 
7273 skip_uc:
7274 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
7275 	if (rc)
7276 		netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %x\n",
7277 			   rc);
7278 
7279 	return rc;
7280 }
7281 
7282 /* If the chip and firmware supports RFS */
7283 static bool bnxt_rfs_supported(struct bnxt *bp)
7284 {
7285 	if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
7286 		return true;
7287 	if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
7288 		return true;
7289 	return false;
7290 }
7291 
7292 /* If runtime conditions support RFS */
7293 static bool bnxt_rfs_capable(struct bnxt *bp)
7294 {
7295 #ifdef CONFIG_RFS_ACCEL
7296 	int vnics, max_vnics, max_rss_ctxs;
7297 
7298 	if (!(bp->flags & BNXT_FLAG_MSIX_CAP))
7299 		return false;
7300 
7301 	vnics = 1 + bp->rx_nr_rings;
7302 	max_vnics = bnxt_get_max_func_vnics(bp);
7303 	max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp);
7304 
7305 	/* RSS contexts not a limiting factor */
7306 	if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
7307 		max_rss_ctxs = max_vnics;
7308 	if (vnics > max_vnics || vnics > max_rss_ctxs) {
7309 		if (bp->rx_nr_rings > 1)
7310 			netdev_warn(bp->dev,
7311 				    "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n",
7312 				    min(max_rss_ctxs - 1, max_vnics - 1));
7313 		return false;
7314 	}
7315 
7316 	if (!(bp->flags & BNXT_FLAG_NEW_RM))
7317 		return true;
7318 
7319 	if (vnics == bp->hw_resc.resv_vnics)
7320 		return true;
7321 
7322 	bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, vnics);
7323 	if (vnics <= bp->hw_resc.resv_vnics)
7324 		return true;
7325 
7326 	netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n");
7327 	bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 1);
7328 	return false;
7329 #else
7330 	return false;
7331 #endif
7332 }
7333 
7334 static netdev_features_t bnxt_fix_features(struct net_device *dev,
7335 					   netdev_features_t features)
7336 {
7337 	struct bnxt *bp = netdev_priv(dev);
7338 
7339 	if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp))
7340 		features &= ~NETIF_F_NTUPLE;
7341 
7342 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
7343 		features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
7344 
7345 	if (!(features & NETIF_F_GRO))
7346 		features &= ~NETIF_F_GRO_HW;
7347 
7348 	if (features & NETIF_F_GRO_HW)
7349 		features &= ~NETIF_F_LRO;
7350 
7351 	/* Both CTAG and STAG VLAN accelaration on the RX side have to be
7352 	 * turned on or off together.
7353 	 */
7354 	if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) !=
7355 	    (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) {
7356 		if (dev->features & NETIF_F_HW_VLAN_CTAG_RX)
7357 			features &= ~(NETIF_F_HW_VLAN_CTAG_RX |
7358 				      NETIF_F_HW_VLAN_STAG_RX);
7359 		else
7360 			features |= NETIF_F_HW_VLAN_CTAG_RX |
7361 				    NETIF_F_HW_VLAN_STAG_RX;
7362 	}
7363 #ifdef CONFIG_BNXT_SRIOV
7364 	if (BNXT_VF(bp)) {
7365 		if (bp->vf.vlan) {
7366 			features &= ~(NETIF_F_HW_VLAN_CTAG_RX |
7367 				      NETIF_F_HW_VLAN_STAG_RX);
7368 		}
7369 	}
7370 #endif
7371 	return features;
7372 }
7373 
7374 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
7375 {
7376 	struct bnxt *bp = netdev_priv(dev);
7377 	u32 flags = bp->flags;
7378 	u32 changes;
7379 	int rc = 0;
7380 	bool re_init = false;
7381 	bool update_tpa = false;
7382 
7383 	flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
7384 	if (features & NETIF_F_GRO_HW)
7385 		flags |= BNXT_FLAG_GRO;
7386 	else if (features & NETIF_F_LRO)
7387 		flags |= BNXT_FLAG_LRO;
7388 
7389 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
7390 		flags &= ~BNXT_FLAG_TPA;
7391 
7392 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
7393 		flags |= BNXT_FLAG_STRIP_VLAN;
7394 
7395 	if (features & NETIF_F_NTUPLE)
7396 		flags |= BNXT_FLAG_RFS;
7397 
7398 	changes = flags ^ bp->flags;
7399 	if (changes & BNXT_FLAG_TPA) {
7400 		update_tpa = true;
7401 		if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
7402 		    (flags & BNXT_FLAG_TPA) == 0)
7403 			re_init = true;
7404 	}
7405 
7406 	if (changes & ~BNXT_FLAG_TPA)
7407 		re_init = true;
7408 
7409 	if (flags != bp->flags) {
7410 		u32 old_flags = bp->flags;
7411 
7412 		bp->flags = flags;
7413 
7414 		if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
7415 			if (update_tpa)
7416 				bnxt_set_ring_params(bp);
7417 			return rc;
7418 		}
7419 
7420 		if (re_init) {
7421 			bnxt_close_nic(bp, false, false);
7422 			if (update_tpa)
7423 				bnxt_set_ring_params(bp);
7424 
7425 			return bnxt_open_nic(bp, false, false);
7426 		}
7427 		if (update_tpa) {
7428 			rc = bnxt_set_tpa(bp,
7429 					  (flags & BNXT_FLAG_TPA) ?
7430 					  true : false);
7431 			if (rc)
7432 				bp->flags = old_flags;
7433 		}
7434 	}
7435 	return rc;
7436 }
7437 
7438 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
7439 {
7440 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
7441 	int i = bnapi->index;
7442 
7443 	if (!txr)
7444 		return;
7445 
7446 	netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
7447 		    i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
7448 		    txr->tx_cons);
7449 }
7450 
7451 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
7452 {
7453 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
7454 	int i = bnapi->index;
7455 
7456 	if (!rxr)
7457 		return;
7458 
7459 	netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
7460 		    i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
7461 		    rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
7462 		    rxr->rx_sw_agg_prod);
7463 }
7464 
7465 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
7466 {
7467 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
7468 	int i = bnapi->index;
7469 
7470 	netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
7471 		    i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
7472 }
7473 
7474 static void bnxt_dbg_dump_states(struct bnxt *bp)
7475 {
7476 	int i;
7477 	struct bnxt_napi *bnapi;
7478 
7479 	for (i = 0; i < bp->cp_nr_rings; i++) {
7480 		bnapi = bp->bnapi[i];
7481 		if (netif_msg_drv(bp)) {
7482 			bnxt_dump_tx_sw_state(bnapi);
7483 			bnxt_dump_rx_sw_state(bnapi);
7484 			bnxt_dump_cp_sw_state(bnapi);
7485 		}
7486 	}
7487 }
7488 
7489 static void bnxt_reset_task(struct bnxt *bp, bool silent)
7490 {
7491 	if (!silent)
7492 		bnxt_dbg_dump_states(bp);
7493 	if (netif_running(bp->dev)) {
7494 		int rc;
7495 
7496 		if (!silent)
7497 			bnxt_ulp_stop(bp);
7498 		bnxt_close_nic(bp, false, false);
7499 		rc = bnxt_open_nic(bp, false, false);
7500 		if (!silent && !rc)
7501 			bnxt_ulp_start(bp);
7502 	}
7503 }
7504 
7505 static void bnxt_tx_timeout(struct net_device *dev)
7506 {
7507 	struct bnxt *bp = netdev_priv(dev);
7508 
7509 	netdev_err(bp->dev,  "TX timeout detected, starting reset task!\n");
7510 	set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
7511 	bnxt_queue_sp_work(bp);
7512 }
7513 
7514 #ifdef CONFIG_NET_POLL_CONTROLLER
7515 static void bnxt_poll_controller(struct net_device *dev)
7516 {
7517 	struct bnxt *bp = netdev_priv(dev);
7518 	int i;
7519 
7520 	/* Only process tx rings/combined rings in netpoll mode. */
7521 	for (i = 0; i < bp->tx_nr_rings; i++) {
7522 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
7523 
7524 		napi_schedule(&txr->bnapi->napi);
7525 	}
7526 }
7527 #endif
7528 
7529 static void bnxt_timer(struct timer_list *t)
7530 {
7531 	struct bnxt *bp = from_timer(bp, t, timer);
7532 	struct net_device *dev = bp->dev;
7533 
7534 	if (!netif_running(dev))
7535 		return;
7536 
7537 	if (atomic_read(&bp->intr_sem) != 0)
7538 		goto bnxt_restart_timer;
7539 
7540 	if (bp->link_info.link_up && (bp->flags & BNXT_FLAG_PORT_STATS) &&
7541 	    bp->stats_coal_ticks) {
7542 		set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event);
7543 		bnxt_queue_sp_work(bp);
7544 	}
7545 
7546 	if (bnxt_tc_flower_enabled(bp)) {
7547 		set_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event);
7548 		bnxt_queue_sp_work(bp);
7549 	}
7550 bnxt_restart_timer:
7551 	mod_timer(&bp->timer, jiffies + bp->current_interval);
7552 }
7553 
7554 static void bnxt_rtnl_lock_sp(struct bnxt *bp)
7555 {
7556 	/* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK
7557 	 * set.  If the device is being closed, bnxt_close() may be holding
7558 	 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear.  So we
7559 	 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl().
7560 	 */
7561 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
7562 	rtnl_lock();
7563 }
7564 
7565 static void bnxt_rtnl_unlock_sp(struct bnxt *bp)
7566 {
7567 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
7568 	rtnl_unlock();
7569 }
7570 
7571 /* Only called from bnxt_sp_task() */
7572 static void bnxt_reset(struct bnxt *bp, bool silent)
7573 {
7574 	bnxt_rtnl_lock_sp(bp);
7575 	if (test_bit(BNXT_STATE_OPEN, &bp->state))
7576 		bnxt_reset_task(bp, silent);
7577 	bnxt_rtnl_unlock_sp(bp);
7578 }
7579 
7580 static void bnxt_cfg_ntp_filters(struct bnxt *);
7581 
7582 static void bnxt_sp_task(struct work_struct *work)
7583 {
7584 	struct bnxt *bp = container_of(work, struct bnxt, sp_task);
7585 
7586 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
7587 	smp_mb__after_atomic();
7588 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
7589 		clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
7590 		return;
7591 	}
7592 
7593 	if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
7594 		bnxt_cfg_rx_mode(bp);
7595 
7596 	if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
7597 		bnxt_cfg_ntp_filters(bp);
7598 	if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
7599 		bnxt_hwrm_exec_fwd_req(bp);
7600 	if (test_and_clear_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event)) {
7601 		bnxt_hwrm_tunnel_dst_port_alloc(
7602 			bp, bp->vxlan_port,
7603 			TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
7604 	}
7605 	if (test_and_clear_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event)) {
7606 		bnxt_hwrm_tunnel_dst_port_free(
7607 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
7608 	}
7609 	if (test_and_clear_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event)) {
7610 		bnxt_hwrm_tunnel_dst_port_alloc(
7611 			bp, bp->nge_port,
7612 			TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
7613 	}
7614 	if (test_and_clear_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event)) {
7615 		bnxt_hwrm_tunnel_dst_port_free(
7616 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
7617 	}
7618 	if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) {
7619 		bnxt_hwrm_port_qstats(bp);
7620 		bnxt_hwrm_port_qstats_ext(bp);
7621 	}
7622 
7623 	if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
7624 		int rc;
7625 
7626 		mutex_lock(&bp->link_lock);
7627 		if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT,
7628 				       &bp->sp_event))
7629 			bnxt_hwrm_phy_qcaps(bp);
7630 
7631 		rc = bnxt_update_link(bp, true);
7632 		mutex_unlock(&bp->link_lock);
7633 		if (rc)
7634 			netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
7635 				   rc);
7636 	}
7637 	if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) {
7638 		mutex_lock(&bp->link_lock);
7639 		bnxt_get_port_module_status(bp);
7640 		mutex_unlock(&bp->link_lock);
7641 	}
7642 
7643 	if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event))
7644 		bnxt_tc_flow_stats_work(bp);
7645 
7646 	/* These functions below will clear BNXT_STATE_IN_SP_TASK.  They
7647 	 * must be the last functions to be called before exiting.
7648 	 */
7649 	if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event))
7650 		bnxt_reset(bp, false);
7651 
7652 	if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event))
7653 		bnxt_reset(bp, true);
7654 
7655 	smp_mb__before_atomic();
7656 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
7657 }
7658 
7659 /* Under rtnl_lock */
7660 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs,
7661 		     int tx_xdp)
7662 {
7663 	int max_rx, max_tx, tx_sets = 1;
7664 	int tx_rings_needed;
7665 	int rx_rings = rx;
7666 	int cp, vnics, rc;
7667 
7668 	if (tcs)
7669 		tx_sets = tcs;
7670 
7671 	rc = bnxt_get_max_rings(bp, &max_rx, &max_tx, sh);
7672 	if (rc)
7673 		return rc;
7674 
7675 	if (max_rx < rx)
7676 		return -ENOMEM;
7677 
7678 	tx_rings_needed = tx * tx_sets + tx_xdp;
7679 	if (max_tx < tx_rings_needed)
7680 		return -ENOMEM;
7681 
7682 	vnics = 1;
7683 	if (bp->flags & BNXT_FLAG_RFS)
7684 		vnics += rx_rings;
7685 
7686 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
7687 		rx_rings <<= 1;
7688 	cp = sh ? max_t(int, tx_rings_needed, rx) : tx_rings_needed + rx;
7689 	if (bp->flags & BNXT_FLAG_NEW_RM)
7690 		cp += bnxt_get_ulp_msix_num(bp);
7691 	return bnxt_hwrm_check_rings(bp, tx_rings_needed, rx_rings, rx, cp,
7692 				     vnics);
7693 }
7694 
7695 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev)
7696 {
7697 	if (bp->bar2) {
7698 		pci_iounmap(pdev, bp->bar2);
7699 		bp->bar2 = NULL;
7700 	}
7701 
7702 	if (bp->bar1) {
7703 		pci_iounmap(pdev, bp->bar1);
7704 		bp->bar1 = NULL;
7705 	}
7706 
7707 	if (bp->bar0) {
7708 		pci_iounmap(pdev, bp->bar0);
7709 		bp->bar0 = NULL;
7710 	}
7711 }
7712 
7713 static void bnxt_cleanup_pci(struct bnxt *bp)
7714 {
7715 	bnxt_unmap_bars(bp, bp->pdev);
7716 	pci_release_regions(bp->pdev);
7717 	pci_disable_device(bp->pdev);
7718 }
7719 
7720 static void bnxt_init_dflt_coal(struct bnxt *bp)
7721 {
7722 	struct bnxt_coal *coal;
7723 
7724 	/* Tick values in micro seconds.
7725 	 * 1 coal_buf x bufs_per_record = 1 completion record.
7726 	 */
7727 	coal = &bp->rx_coal;
7728 	coal->coal_ticks = 14;
7729 	coal->coal_bufs = 30;
7730 	coal->coal_ticks_irq = 1;
7731 	coal->coal_bufs_irq = 2;
7732 	coal->idle_thresh = 25;
7733 	coal->bufs_per_record = 2;
7734 	coal->budget = 64;		/* NAPI budget */
7735 
7736 	coal = &bp->tx_coal;
7737 	coal->coal_ticks = 28;
7738 	coal->coal_bufs = 30;
7739 	coal->coal_ticks_irq = 2;
7740 	coal->coal_bufs_irq = 2;
7741 	coal->bufs_per_record = 1;
7742 
7743 	bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS;
7744 }
7745 
7746 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
7747 {
7748 	int rc;
7749 	struct bnxt *bp = netdev_priv(dev);
7750 
7751 	SET_NETDEV_DEV(dev, &pdev->dev);
7752 
7753 	/* enable device (incl. PCI PM wakeup), and bus-mastering */
7754 	rc = pci_enable_device(pdev);
7755 	if (rc) {
7756 		dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
7757 		goto init_err;
7758 	}
7759 
7760 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
7761 		dev_err(&pdev->dev,
7762 			"Cannot find PCI device base address, aborting\n");
7763 		rc = -ENODEV;
7764 		goto init_err_disable;
7765 	}
7766 
7767 	rc = pci_request_regions(pdev, DRV_MODULE_NAME);
7768 	if (rc) {
7769 		dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
7770 		goto init_err_disable;
7771 	}
7772 
7773 	if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
7774 	    dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
7775 		dev_err(&pdev->dev, "System does not support DMA, aborting\n");
7776 		goto init_err_disable;
7777 	}
7778 
7779 	pci_set_master(pdev);
7780 
7781 	bp->dev = dev;
7782 	bp->pdev = pdev;
7783 
7784 	bp->bar0 = pci_ioremap_bar(pdev, 0);
7785 	if (!bp->bar0) {
7786 		dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
7787 		rc = -ENOMEM;
7788 		goto init_err_release;
7789 	}
7790 
7791 	bp->bar1 = pci_ioremap_bar(pdev, 2);
7792 	if (!bp->bar1) {
7793 		dev_err(&pdev->dev, "Cannot map doorbell registers, aborting\n");
7794 		rc = -ENOMEM;
7795 		goto init_err_release;
7796 	}
7797 
7798 	bp->bar2 = pci_ioremap_bar(pdev, 4);
7799 	if (!bp->bar2) {
7800 		dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
7801 		rc = -ENOMEM;
7802 		goto init_err_release;
7803 	}
7804 
7805 	pci_enable_pcie_error_reporting(pdev);
7806 
7807 	INIT_WORK(&bp->sp_task, bnxt_sp_task);
7808 
7809 	spin_lock_init(&bp->ntp_fltr_lock);
7810 
7811 	bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
7812 	bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
7813 
7814 	bnxt_init_dflt_coal(bp);
7815 
7816 	timer_setup(&bp->timer, bnxt_timer, 0);
7817 	bp->current_interval = BNXT_TIMER_INTERVAL;
7818 
7819 	clear_bit(BNXT_STATE_OPEN, &bp->state);
7820 	return 0;
7821 
7822 init_err_release:
7823 	bnxt_unmap_bars(bp, pdev);
7824 	pci_release_regions(pdev);
7825 
7826 init_err_disable:
7827 	pci_disable_device(pdev);
7828 
7829 init_err:
7830 	return rc;
7831 }
7832 
7833 /* rtnl_lock held */
7834 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
7835 {
7836 	struct sockaddr *addr = p;
7837 	struct bnxt *bp = netdev_priv(dev);
7838 	int rc = 0;
7839 
7840 	if (!is_valid_ether_addr(addr->sa_data))
7841 		return -EADDRNOTAVAIL;
7842 
7843 	if (ether_addr_equal(addr->sa_data, dev->dev_addr))
7844 		return 0;
7845 
7846 	rc = bnxt_approve_mac(bp, addr->sa_data);
7847 	if (rc)
7848 		return rc;
7849 
7850 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
7851 	if (netif_running(dev)) {
7852 		bnxt_close_nic(bp, false, false);
7853 		rc = bnxt_open_nic(bp, false, false);
7854 	}
7855 
7856 	return rc;
7857 }
7858 
7859 /* rtnl_lock held */
7860 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
7861 {
7862 	struct bnxt *bp = netdev_priv(dev);
7863 
7864 	if (netif_running(dev))
7865 		bnxt_close_nic(bp, false, false);
7866 
7867 	dev->mtu = new_mtu;
7868 	bnxt_set_ring_params(bp);
7869 
7870 	if (netif_running(dev))
7871 		return bnxt_open_nic(bp, false, false);
7872 
7873 	return 0;
7874 }
7875 
7876 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc)
7877 {
7878 	struct bnxt *bp = netdev_priv(dev);
7879 	bool sh = false;
7880 	int rc;
7881 
7882 	if (tc > bp->max_tc) {
7883 		netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n",
7884 			   tc, bp->max_tc);
7885 		return -EINVAL;
7886 	}
7887 
7888 	if (netdev_get_num_tc(dev) == tc)
7889 		return 0;
7890 
7891 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
7892 		sh = true;
7893 
7894 	rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings,
7895 			      sh, tc, bp->tx_nr_rings_xdp);
7896 	if (rc)
7897 		return rc;
7898 
7899 	/* Needs to close the device and do hw resource re-allocations */
7900 	if (netif_running(bp->dev))
7901 		bnxt_close_nic(bp, true, false);
7902 
7903 	if (tc) {
7904 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
7905 		netdev_set_num_tc(dev, tc);
7906 	} else {
7907 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
7908 		netdev_reset_tc(dev);
7909 	}
7910 	bp->tx_nr_rings += bp->tx_nr_rings_xdp;
7911 	bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
7912 			       bp->tx_nr_rings + bp->rx_nr_rings;
7913 	bp->num_stat_ctxs = bp->cp_nr_rings;
7914 
7915 	if (netif_running(bp->dev))
7916 		return bnxt_open_nic(bp, true, false);
7917 
7918 	return 0;
7919 }
7920 
7921 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
7922 				  void *cb_priv)
7923 {
7924 	struct bnxt *bp = cb_priv;
7925 
7926 	if (!bnxt_tc_flower_enabled(bp) ||
7927 	    !tc_cls_can_offload_and_chain0(bp->dev, type_data))
7928 		return -EOPNOTSUPP;
7929 
7930 	switch (type) {
7931 	case TC_SETUP_CLSFLOWER:
7932 		return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data);
7933 	default:
7934 		return -EOPNOTSUPP;
7935 	}
7936 }
7937 
7938 static int bnxt_setup_tc_block(struct net_device *dev,
7939 			       struct tc_block_offload *f)
7940 {
7941 	struct bnxt *bp = netdev_priv(dev);
7942 
7943 	if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
7944 		return -EOPNOTSUPP;
7945 
7946 	switch (f->command) {
7947 	case TC_BLOCK_BIND:
7948 		return tcf_block_cb_register(f->block, bnxt_setup_tc_block_cb,
7949 					     bp, bp);
7950 	case TC_BLOCK_UNBIND:
7951 		tcf_block_cb_unregister(f->block, bnxt_setup_tc_block_cb, bp);
7952 		return 0;
7953 	default:
7954 		return -EOPNOTSUPP;
7955 	}
7956 }
7957 
7958 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type,
7959 			 void *type_data)
7960 {
7961 	switch (type) {
7962 	case TC_SETUP_BLOCK:
7963 		return bnxt_setup_tc_block(dev, type_data);
7964 	case TC_SETUP_QDISC_MQPRIO: {
7965 		struct tc_mqprio_qopt *mqprio = type_data;
7966 
7967 		mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
7968 
7969 		return bnxt_setup_mq_tc(dev, mqprio->num_tc);
7970 	}
7971 	default:
7972 		return -EOPNOTSUPP;
7973 	}
7974 }
7975 
7976 #ifdef CONFIG_RFS_ACCEL
7977 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
7978 			    struct bnxt_ntuple_filter *f2)
7979 {
7980 	struct flow_keys *keys1 = &f1->fkeys;
7981 	struct flow_keys *keys2 = &f2->fkeys;
7982 
7983 	if (keys1->addrs.v4addrs.src == keys2->addrs.v4addrs.src &&
7984 	    keys1->addrs.v4addrs.dst == keys2->addrs.v4addrs.dst &&
7985 	    keys1->ports.ports == keys2->ports.ports &&
7986 	    keys1->basic.ip_proto == keys2->basic.ip_proto &&
7987 	    keys1->basic.n_proto == keys2->basic.n_proto &&
7988 	    keys1->control.flags == keys2->control.flags &&
7989 	    ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) &&
7990 	    ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr))
7991 		return true;
7992 
7993 	return false;
7994 }
7995 
7996 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
7997 			      u16 rxq_index, u32 flow_id)
7998 {
7999 	struct bnxt *bp = netdev_priv(dev);
8000 	struct bnxt_ntuple_filter *fltr, *new_fltr;
8001 	struct flow_keys *fkeys;
8002 	struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
8003 	int rc = 0, idx, bit_id, l2_idx = 0;
8004 	struct hlist_head *head;
8005 
8006 	if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) {
8007 		struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
8008 		int off = 0, j;
8009 
8010 		netif_addr_lock_bh(dev);
8011 		for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) {
8012 			if (ether_addr_equal(eth->h_dest,
8013 					     vnic->uc_list + off)) {
8014 				l2_idx = j + 1;
8015 				break;
8016 			}
8017 		}
8018 		netif_addr_unlock_bh(dev);
8019 		if (!l2_idx)
8020 			return -EINVAL;
8021 	}
8022 	new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
8023 	if (!new_fltr)
8024 		return -ENOMEM;
8025 
8026 	fkeys = &new_fltr->fkeys;
8027 	if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
8028 		rc = -EPROTONOSUPPORT;
8029 		goto err_free;
8030 	}
8031 
8032 	if ((fkeys->basic.n_proto != htons(ETH_P_IP) &&
8033 	     fkeys->basic.n_proto != htons(ETH_P_IPV6)) ||
8034 	    ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
8035 	     (fkeys->basic.ip_proto != IPPROTO_UDP))) {
8036 		rc = -EPROTONOSUPPORT;
8037 		goto err_free;
8038 	}
8039 	if (fkeys->basic.n_proto == htons(ETH_P_IPV6) &&
8040 	    bp->hwrm_spec_code < 0x10601) {
8041 		rc = -EPROTONOSUPPORT;
8042 		goto err_free;
8043 	}
8044 	if ((fkeys->control.flags & FLOW_DIS_ENCAPSULATION) &&
8045 	    bp->hwrm_spec_code < 0x10601) {
8046 		rc = -EPROTONOSUPPORT;
8047 		goto err_free;
8048 	}
8049 
8050 	memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN);
8051 	memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
8052 
8053 	idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
8054 	head = &bp->ntp_fltr_hash_tbl[idx];
8055 	rcu_read_lock();
8056 	hlist_for_each_entry_rcu(fltr, head, hash) {
8057 		if (bnxt_fltr_match(fltr, new_fltr)) {
8058 			rcu_read_unlock();
8059 			rc = 0;
8060 			goto err_free;
8061 		}
8062 	}
8063 	rcu_read_unlock();
8064 
8065 	spin_lock_bh(&bp->ntp_fltr_lock);
8066 	bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
8067 					 BNXT_NTP_FLTR_MAX_FLTR, 0);
8068 	if (bit_id < 0) {
8069 		spin_unlock_bh(&bp->ntp_fltr_lock);
8070 		rc = -ENOMEM;
8071 		goto err_free;
8072 	}
8073 
8074 	new_fltr->sw_id = (u16)bit_id;
8075 	new_fltr->flow_id = flow_id;
8076 	new_fltr->l2_fltr_idx = l2_idx;
8077 	new_fltr->rxq = rxq_index;
8078 	hlist_add_head_rcu(&new_fltr->hash, head);
8079 	bp->ntp_fltr_count++;
8080 	spin_unlock_bh(&bp->ntp_fltr_lock);
8081 
8082 	set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
8083 	bnxt_queue_sp_work(bp);
8084 
8085 	return new_fltr->sw_id;
8086 
8087 err_free:
8088 	kfree(new_fltr);
8089 	return rc;
8090 }
8091 
8092 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
8093 {
8094 	int i;
8095 
8096 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
8097 		struct hlist_head *head;
8098 		struct hlist_node *tmp;
8099 		struct bnxt_ntuple_filter *fltr;
8100 		int rc;
8101 
8102 		head = &bp->ntp_fltr_hash_tbl[i];
8103 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
8104 			bool del = false;
8105 
8106 			if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
8107 				if (rps_may_expire_flow(bp->dev, fltr->rxq,
8108 							fltr->flow_id,
8109 							fltr->sw_id)) {
8110 					bnxt_hwrm_cfa_ntuple_filter_free(bp,
8111 									 fltr);
8112 					del = true;
8113 				}
8114 			} else {
8115 				rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
8116 								       fltr);
8117 				if (rc)
8118 					del = true;
8119 				else
8120 					set_bit(BNXT_FLTR_VALID, &fltr->state);
8121 			}
8122 
8123 			if (del) {
8124 				spin_lock_bh(&bp->ntp_fltr_lock);
8125 				hlist_del_rcu(&fltr->hash);
8126 				bp->ntp_fltr_count--;
8127 				spin_unlock_bh(&bp->ntp_fltr_lock);
8128 				synchronize_rcu();
8129 				clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
8130 				kfree(fltr);
8131 			}
8132 		}
8133 	}
8134 	if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event))
8135 		netdev_info(bp->dev, "Receive PF driver unload event!");
8136 }
8137 
8138 #else
8139 
8140 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
8141 {
8142 }
8143 
8144 #endif /* CONFIG_RFS_ACCEL */
8145 
8146 static void bnxt_udp_tunnel_add(struct net_device *dev,
8147 				struct udp_tunnel_info *ti)
8148 {
8149 	struct bnxt *bp = netdev_priv(dev);
8150 
8151 	if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET)
8152 		return;
8153 
8154 	if (!netif_running(dev))
8155 		return;
8156 
8157 	switch (ti->type) {
8158 	case UDP_TUNNEL_TYPE_VXLAN:
8159 		if (bp->vxlan_port_cnt && bp->vxlan_port != ti->port)
8160 			return;
8161 
8162 		bp->vxlan_port_cnt++;
8163 		if (bp->vxlan_port_cnt == 1) {
8164 			bp->vxlan_port = ti->port;
8165 			set_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event);
8166 			bnxt_queue_sp_work(bp);
8167 		}
8168 		break;
8169 	case UDP_TUNNEL_TYPE_GENEVE:
8170 		if (bp->nge_port_cnt && bp->nge_port != ti->port)
8171 			return;
8172 
8173 		bp->nge_port_cnt++;
8174 		if (bp->nge_port_cnt == 1) {
8175 			bp->nge_port = ti->port;
8176 			set_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event);
8177 		}
8178 		break;
8179 	default:
8180 		return;
8181 	}
8182 
8183 	bnxt_queue_sp_work(bp);
8184 }
8185 
8186 static void bnxt_udp_tunnel_del(struct net_device *dev,
8187 				struct udp_tunnel_info *ti)
8188 {
8189 	struct bnxt *bp = netdev_priv(dev);
8190 
8191 	if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET)
8192 		return;
8193 
8194 	if (!netif_running(dev))
8195 		return;
8196 
8197 	switch (ti->type) {
8198 	case UDP_TUNNEL_TYPE_VXLAN:
8199 		if (!bp->vxlan_port_cnt || bp->vxlan_port != ti->port)
8200 			return;
8201 		bp->vxlan_port_cnt--;
8202 
8203 		if (bp->vxlan_port_cnt != 0)
8204 			return;
8205 
8206 		set_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event);
8207 		break;
8208 	case UDP_TUNNEL_TYPE_GENEVE:
8209 		if (!bp->nge_port_cnt || bp->nge_port != ti->port)
8210 			return;
8211 		bp->nge_port_cnt--;
8212 
8213 		if (bp->nge_port_cnt != 0)
8214 			return;
8215 
8216 		set_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event);
8217 		break;
8218 	default:
8219 		return;
8220 	}
8221 
8222 	bnxt_queue_sp_work(bp);
8223 }
8224 
8225 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
8226 			       struct net_device *dev, u32 filter_mask,
8227 			       int nlflags)
8228 {
8229 	struct bnxt *bp = netdev_priv(dev);
8230 
8231 	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0,
8232 				       nlflags, filter_mask, NULL);
8233 }
8234 
8235 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
8236 			       u16 flags)
8237 {
8238 	struct bnxt *bp = netdev_priv(dev);
8239 	struct nlattr *attr, *br_spec;
8240 	int rem, rc = 0;
8241 
8242 	if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp))
8243 		return -EOPNOTSUPP;
8244 
8245 	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
8246 	if (!br_spec)
8247 		return -EINVAL;
8248 
8249 	nla_for_each_nested(attr, br_spec, rem) {
8250 		u16 mode;
8251 
8252 		if (nla_type(attr) != IFLA_BRIDGE_MODE)
8253 			continue;
8254 
8255 		if (nla_len(attr) < sizeof(mode))
8256 			return -EINVAL;
8257 
8258 		mode = nla_get_u16(attr);
8259 		if (mode == bp->br_mode)
8260 			break;
8261 
8262 		rc = bnxt_hwrm_set_br_mode(bp, mode);
8263 		if (!rc)
8264 			bp->br_mode = mode;
8265 		break;
8266 	}
8267 	return rc;
8268 }
8269 
8270 static int bnxt_get_phys_port_name(struct net_device *dev, char *buf,
8271 				   size_t len)
8272 {
8273 	struct bnxt *bp = netdev_priv(dev);
8274 	int rc;
8275 
8276 	/* The PF and it's VF-reps only support the switchdev framework */
8277 	if (!BNXT_PF(bp))
8278 		return -EOPNOTSUPP;
8279 
8280 	rc = snprintf(buf, len, "p%d", bp->pf.port_id);
8281 
8282 	if (rc >= len)
8283 		return -EOPNOTSUPP;
8284 	return 0;
8285 }
8286 
8287 int bnxt_port_attr_get(struct bnxt *bp, struct switchdev_attr *attr)
8288 {
8289 	if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV)
8290 		return -EOPNOTSUPP;
8291 
8292 	/* The PF and it's VF-reps only support the switchdev framework */
8293 	if (!BNXT_PF(bp))
8294 		return -EOPNOTSUPP;
8295 
8296 	switch (attr->id) {
8297 	case SWITCHDEV_ATTR_ID_PORT_PARENT_ID:
8298 		attr->u.ppid.id_len = sizeof(bp->switch_id);
8299 		memcpy(attr->u.ppid.id, bp->switch_id, attr->u.ppid.id_len);
8300 		break;
8301 	default:
8302 		return -EOPNOTSUPP;
8303 	}
8304 	return 0;
8305 }
8306 
8307 static int bnxt_swdev_port_attr_get(struct net_device *dev,
8308 				    struct switchdev_attr *attr)
8309 {
8310 	return bnxt_port_attr_get(netdev_priv(dev), attr);
8311 }
8312 
8313 static const struct switchdev_ops bnxt_switchdev_ops = {
8314 	.switchdev_port_attr_get	= bnxt_swdev_port_attr_get
8315 };
8316 
8317 static const struct net_device_ops bnxt_netdev_ops = {
8318 	.ndo_open		= bnxt_open,
8319 	.ndo_start_xmit		= bnxt_start_xmit,
8320 	.ndo_stop		= bnxt_close,
8321 	.ndo_get_stats64	= bnxt_get_stats64,
8322 	.ndo_set_rx_mode	= bnxt_set_rx_mode,
8323 	.ndo_do_ioctl		= bnxt_ioctl,
8324 	.ndo_validate_addr	= eth_validate_addr,
8325 	.ndo_set_mac_address	= bnxt_change_mac_addr,
8326 	.ndo_change_mtu		= bnxt_change_mtu,
8327 	.ndo_fix_features	= bnxt_fix_features,
8328 	.ndo_set_features	= bnxt_set_features,
8329 	.ndo_tx_timeout		= bnxt_tx_timeout,
8330 #ifdef CONFIG_BNXT_SRIOV
8331 	.ndo_get_vf_config	= bnxt_get_vf_config,
8332 	.ndo_set_vf_mac		= bnxt_set_vf_mac,
8333 	.ndo_set_vf_vlan	= bnxt_set_vf_vlan,
8334 	.ndo_set_vf_rate	= bnxt_set_vf_bw,
8335 	.ndo_set_vf_link_state	= bnxt_set_vf_link_state,
8336 	.ndo_set_vf_spoofchk	= bnxt_set_vf_spoofchk,
8337 	.ndo_set_vf_trust	= bnxt_set_vf_trust,
8338 #endif
8339 #ifdef CONFIG_NET_POLL_CONTROLLER
8340 	.ndo_poll_controller	= bnxt_poll_controller,
8341 #endif
8342 	.ndo_setup_tc           = bnxt_setup_tc,
8343 #ifdef CONFIG_RFS_ACCEL
8344 	.ndo_rx_flow_steer	= bnxt_rx_flow_steer,
8345 #endif
8346 	.ndo_udp_tunnel_add	= bnxt_udp_tunnel_add,
8347 	.ndo_udp_tunnel_del	= bnxt_udp_tunnel_del,
8348 	.ndo_bpf		= bnxt_xdp,
8349 	.ndo_bridge_getlink	= bnxt_bridge_getlink,
8350 	.ndo_bridge_setlink	= bnxt_bridge_setlink,
8351 	.ndo_get_phys_port_name = bnxt_get_phys_port_name
8352 };
8353 
8354 static void bnxt_remove_one(struct pci_dev *pdev)
8355 {
8356 	struct net_device *dev = pci_get_drvdata(pdev);
8357 	struct bnxt *bp = netdev_priv(dev);
8358 
8359 	if (BNXT_PF(bp)) {
8360 		bnxt_sriov_disable(bp);
8361 		bnxt_dl_unregister(bp);
8362 	}
8363 
8364 	pci_disable_pcie_error_reporting(pdev);
8365 	unregister_netdev(dev);
8366 	bnxt_shutdown_tc(bp);
8367 	bnxt_cancel_sp_work(bp);
8368 	bp->sp_event = 0;
8369 
8370 	bnxt_clear_int_mode(bp);
8371 	bnxt_hwrm_func_drv_unrgtr(bp);
8372 	bnxt_free_hwrm_resources(bp);
8373 	bnxt_free_hwrm_short_cmd_req(bp);
8374 	bnxt_ethtool_free(bp);
8375 	bnxt_dcb_free(bp);
8376 	kfree(bp->edev);
8377 	bp->edev = NULL;
8378 	bnxt_cleanup_pci(bp);
8379 	free_netdev(dev);
8380 }
8381 
8382 static int bnxt_probe_phy(struct bnxt *bp)
8383 {
8384 	int rc = 0;
8385 	struct bnxt_link_info *link_info = &bp->link_info;
8386 
8387 	rc = bnxt_hwrm_phy_qcaps(bp);
8388 	if (rc) {
8389 		netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n",
8390 			   rc);
8391 		return rc;
8392 	}
8393 	mutex_init(&bp->link_lock);
8394 
8395 	rc = bnxt_update_link(bp, false);
8396 	if (rc) {
8397 		netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
8398 			   rc);
8399 		return rc;
8400 	}
8401 
8402 	/* Older firmware does not have supported_auto_speeds, so assume
8403 	 * that all supported speeds can be autonegotiated.
8404 	 */
8405 	if (link_info->auto_link_speeds && !link_info->support_auto_speeds)
8406 		link_info->support_auto_speeds = link_info->support_speeds;
8407 
8408 	/*initialize the ethool setting copy with NVM settings */
8409 	if (BNXT_AUTO_MODE(link_info->auto_mode)) {
8410 		link_info->autoneg = BNXT_AUTONEG_SPEED;
8411 		if (bp->hwrm_spec_code >= 0x10201) {
8412 			if (link_info->auto_pause_setting &
8413 			    PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE)
8414 				link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
8415 		} else {
8416 			link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
8417 		}
8418 		link_info->advertising = link_info->auto_link_speeds;
8419 	} else {
8420 		link_info->req_link_speed = link_info->force_link_speed;
8421 		link_info->req_duplex = link_info->duplex_setting;
8422 	}
8423 	if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL)
8424 		link_info->req_flow_ctrl =
8425 			link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH;
8426 	else
8427 		link_info->req_flow_ctrl = link_info->force_pause_setting;
8428 	return rc;
8429 }
8430 
8431 static int bnxt_get_max_irq(struct pci_dev *pdev)
8432 {
8433 	u16 ctrl;
8434 
8435 	if (!pdev->msix_cap)
8436 		return 1;
8437 
8438 	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
8439 	return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
8440 }
8441 
8442 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
8443 				int *max_cp)
8444 {
8445 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
8446 	int max_ring_grps = 0;
8447 
8448 	*max_tx = hw_resc->max_tx_rings;
8449 	*max_rx = hw_resc->max_rx_rings;
8450 	*max_cp = min_t(int, hw_resc->max_irqs, hw_resc->max_cp_rings);
8451 	*max_cp = min_t(int, *max_cp, hw_resc->max_stat_ctxs);
8452 	max_ring_grps = hw_resc->max_hw_ring_grps;
8453 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) {
8454 		*max_cp -= 1;
8455 		*max_rx -= 2;
8456 	}
8457 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
8458 		*max_rx >>= 1;
8459 	*max_rx = min_t(int, *max_rx, max_ring_grps);
8460 }
8461 
8462 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
8463 {
8464 	int rx, tx, cp;
8465 
8466 	_bnxt_get_max_rings(bp, &rx, &tx, &cp);
8467 	if (!rx || !tx || !cp)
8468 		return -ENOMEM;
8469 
8470 	*max_rx = rx;
8471 	*max_tx = tx;
8472 	return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
8473 }
8474 
8475 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx,
8476 			       bool shared)
8477 {
8478 	int rc;
8479 
8480 	rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
8481 	if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) {
8482 		/* Not enough rings, try disabling agg rings. */
8483 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
8484 		rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
8485 		if (rc)
8486 			return rc;
8487 		bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
8488 		bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
8489 		bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
8490 		bnxt_set_ring_params(bp);
8491 	}
8492 
8493 	if (bp->flags & BNXT_FLAG_ROCE_CAP) {
8494 		int max_cp, max_stat, max_irq;
8495 
8496 		/* Reserve minimum resources for RoCE */
8497 		max_cp = bnxt_get_max_func_cp_rings(bp);
8498 		max_stat = bnxt_get_max_func_stat_ctxs(bp);
8499 		max_irq = bnxt_get_max_func_irqs(bp);
8500 		if (max_cp <= BNXT_MIN_ROCE_CP_RINGS ||
8501 		    max_irq <= BNXT_MIN_ROCE_CP_RINGS ||
8502 		    max_stat <= BNXT_MIN_ROCE_STAT_CTXS)
8503 			return 0;
8504 
8505 		max_cp -= BNXT_MIN_ROCE_CP_RINGS;
8506 		max_irq -= BNXT_MIN_ROCE_CP_RINGS;
8507 		max_stat -= BNXT_MIN_ROCE_STAT_CTXS;
8508 		max_cp = min_t(int, max_cp, max_irq);
8509 		max_cp = min_t(int, max_cp, max_stat);
8510 		rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared);
8511 		if (rc)
8512 			rc = 0;
8513 	}
8514 	return rc;
8515 }
8516 
8517 /* In initial default shared ring setting, each shared ring must have a
8518  * RX/TX ring pair.
8519  */
8520 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp)
8521 {
8522 	bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings);
8523 	bp->rx_nr_rings = bp->cp_nr_rings;
8524 	bp->tx_nr_rings_per_tc = bp->cp_nr_rings;
8525 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
8526 }
8527 
8528 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh)
8529 {
8530 	int dflt_rings, max_rx_rings, max_tx_rings, rc;
8531 
8532 	if (sh)
8533 		bp->flags |= BNXT_FLAG_SHARED_RINGS;
8534 	dflt_rings = netif_get_num_default_rss_queues();
8535 	/* Reduce default rings on multi-port cards so that total default
8536 	 * rings do not exceed CPU count.
8537 	 */
8538 	if (bp->port_count > 1) {
8539 		int max_rings =
8540 			max_t(int, num_online_cpus() / bp->port_count, 1);
8541 
8542 		dflt_rings = min_t(int, dflt_rings, max_rings);
8543 	}
8544 	rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh);
8545 	if (rc)
8546 		return rc;
8547 	bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
8548 	bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
8549 	if (sh)
8550 		bnxt_trim_dflt_sh_rings(bp);
8551 	else
8552 		bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings;
8553 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
8554 
8555 	rc = __bnxt_reserve_rings(bp);
8556 	if (rc)
8557 		netdev_warn(bp->dev, "Unable to reserve tx rings\n");
8558 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
8559 	if (sh)
8560 		bnxt_trim_dflt_sh_rings(bp);
8561 
8562 	/* Rings may have been trimmed, re-reserve the trimmed rings. */
8563 	if (bnxt_need_reserve_rings(bp)) {
8564 		rc = __bnxt_reserve_rings(bp);
8565 		if (rc)
8566 			netdev_warn(bp->dev, "2nd rings reservation failed.\n");
8567 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
8568 	}
8569 	bp->num_stat_ctxs = bp->cp_nr_rings;
8570 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
8571 		bp->rx_nr_rings++;
8572 		bp->cp_nr_rings++;
8573 	}
8574 	return rc;
8575 }
8576 
8577 int bnxt_restore_pf_fw_resources(struct bnxt *bp)
8578 {
8579 	int rc;
8580 
8581 	ASSERT_RTNL();
8582 	bnxt_hwrm_func_qcaps(bp);
8583 
8584 	if (netif_running(bp->dev))
8585 		__bnxt_close_nic(bp, true, false);
8586 
8587 	bnxt_ulp_irq_stop(bp);
8588 	bnxt_clear_int_mode(bp);
8589 	rc = bnxt_init_int_mode(bp);
8590 	bnxt_ulp_irq_restart(bp, rc);
8591 
8592 	if (netif_running(bp->dev)) {
8593 		if (rc)
8594 			dev_close(bp->dev);
8595 		else
8596 			rc = bnxt_open_nic(bp, true, false);
8597 	}
8598 
8599 	return rc;
8600 }
8601 
8602 static int bnxt_init_mac_addr(struct bnxt *bp)
8603 {
8604 	int rc = 0;
8605 
8606 	if (BNXT_PF(bp)) {
8607 		memcpy(bp->dev->dev_addr, bp->pf.mac_addr, ETH_ALEN);
8608 	} else {
8609 #ifdef CONFIG_BNXT_SRIOV
8610 		struct bnxt_vf_info *vf = &bp->vf;
8611 
8612 		if (is_valid_ether_addr(vf->mac_addr)) {
8613 			/* overwrite netdev dev_addr with admin VF MAC */
8614 			memcpy(bp->dev->dev_addr, vf->mac_addr, ETH_ALEN);
8615 		} else {
8616 			eth_hw_addr_random(bp->dev);
8617 			rc = bnxt_approve_mac(bp, bp->dev->dev_addr);
8618 		}
8619 #endif
8620 	}
8621 	return rc;
8622 }
8623 
8624 static void bnxt_parse_log_pcie_link(struct bnxt *bp)
8625 {
8626 	enum pcie_link_width width = PCIE_LNK_WIDTH_UNKNOWN;
8627 	enum pci_bus_speed speed = PCI_SPEED_UNKNOWN;
8628 
8629 	if (pcie_get_minimum_link(pci_physfn(bp->pdev), &speed, &width) ||
8630 	    speed == PCI_SPEED_UNKNOWN || width == PCIE_LNK_WIDTH_UNKNOWN)
8631 		netdev_info(bp->dev, "Failed to determine PCIe Link Info\n");
8632 	else
8633 		netdev_info(bp->dev, "PCIe: Speed %s Width x%d\n",
8634 			    speed == PCIE_SPEED_2_5GT ? "2.5GT/s" :
8635 			    speed == PCIE_SPEED_5_0GT ? "5.0GT/s" :
8636 			    speed == PCIE_SPEED_8_0GT ? "8.0GT/s" :
8637 			    "Unknown", width);
8638 }
8639 
8640 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8641 {
8642 	static int version_printed;
8643 	struct net_device *dev;
8644 	struct bnxt *bp;
8645 	int rc, max_irqs;
8646 
8647 	if (pci_is_bridge(pdev))
8648 		return -ENODEV;
8649 
8650 	if (version_printed++ == 0)
8651 		pr_info("%s", version);
8652 
8653 	max_irqs = bnxt_get_max_irq(pdev);
8654 	dev = alloc_etherdev_mq(sizeof(*bp), max_irqs);
8655 	if (!dev)
8656 		return -ENOMEM;
8657 
8658 	bp = netdev_priv(dev);
8659 
8660 	if (bnxt_vf_pciid(ent->driver_data))
8661 		bp->flags |= BNXT_FLAG_VF;
8662 
8663 	if (pdev->msix_cap)
8664 		bp->flags |= BNXT_FLAG_MSIX_CAP;
8665 
8666 	rc = bnxt_init_board(pdev, dev);
8667 	if (rc < 0)
8668 		goto init_err_free;
8669 
8670 	dev->netdev_ops = &bnxt_netdev_ops;
8671 	dev->watchdog_timeo = BNXT_TX_TIMEOUT;
8672 	dev->ethtool_ops = &bnxt_ethtool_ops;
8673 	SWITCHDEV_SET_OPS(dev, &bnxt_switchdev_ops);
8674 	pci_set_drvdata(pdev, dev);
8675 
8676 	rc = bnxt_alloc_hwrm_resources(bp);
8677 	if (rc)
8678 		goto init_err_pci_clean;
8679 
8680 	mutex_init(&bp->hwrm_cmd_lock);
8681 	rc = bnxt_hwrm_ver_get(bp);
8682 	if (rc)
8683 		goto init_err_pci_clean;
8684 
8685 	if (bp->flags & BNXT_FLAG_SHORT_CMD) {
8686 		rc = bnxt_alloc_hwrm_short_cmd_req(bp);
8687 		if (rc)
8688 			goto init_err_pci_clean;
8689 	}
8690 
8691 	rc = bnxt_hwrm_func_reset(bp);
8692 	if (rc)
8693 		goto init_err_pci_clean;
8694 
8695 	bnxt_hwrm_fw_set_time(bp);
8696 
8697 	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
8698 			   NETIF_F_TSO | NETIF_F_TSO6 |
8699 			   NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
8700 			   NETIF_F_GSO_IPXIP4 |
8701 			   NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
8702 			   NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH |
8703 			   NETIF_F_RXCSUM | NETIF_F_GRO;
8704 
8705 	if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
8706 		dev->hw_features |= NETIF_F_LRO;
8707 
8708 	dev->hw_enc_features =
8709 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
8710 			NETIF_F_TSO | NETIF_F_TSO6 |
8711 			NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
8712 			NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
8713 			NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL;
8714 	dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM |
8715 				    NETIF_F_GSO_GRE_CSUM;
8716 	dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
8717 	dev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
8718 			    NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX;
8719 	if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
8720 		dev->hw_features |= NETIF_F_GRO_HW;
8721 	dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
8722 	if (dev->features & NETIF_F_GRO_HW)
8723 		dev->features &= ~NETIF_F_LRO;
8724 	dev->priv_flags |= IFF_UNICAST_FLT;
8725 
8726 #ifdef CONFIG_BNXT_SRIOV
8727 	init_waitqueue_head(&bp->sriov_cfg_wait);
8728 	mutex_init(&bp->sriov_lock);
8729 #endif
8730 	bp->gro_func = bnxt_gro_func_5730x;
8731 	if (BNXT_CHIP_P4_PLUS(bp))
8732 		bp->gro_func = bnxt_gro_func_5731x;
8733 	else
8734 		bp->flags |= BNXT_FLAG_DOUBLE_DB;
8735 
8736 	rc = bnxt_hwrm_func_drv_rgtr(bp);
8737 	if (rc)
8738 		goto init_err_pci_clean;
8739 
8740 	rc = bnxt_hwrm_func_rgtr_async_events(bp, NULL, 0);
8741 	if (rc)
8742 		goto init_err_pci_clean;
8743 
8744 	bp->ulp_probe = bnxt_ulp_probe;
8745 
8746 	/* Get the MAX capabilities for this function */
8747 	rc = bnxt_hwrm_func_qcaps(bp);
8748 	if (rc) {
8749 		netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
8750 			   rc);
8751 		rc = -1;
8752 		goto init_err_pci_clean;
8753 	}
8754 	rc = bnxt_init_mac_addr(bp);
8755 	if (rc) {
8756 		dev_err(&pdev->dev, "Unable to initialize mac address.\n");
8757 		rc = -EADDRNOTAVAIL;
8758 		goto init_err_pci_clean;
8759 	}
8760 	rc = bnxt_hwrm_queue_qportcfg(bp);
8761 	if (rc) {
8762 		netdev_err(bp->dev, "hwrm query qportcfg failure rc: %x\n",
8763 			   rc);
8764 		rc = -1;
8765 		goto init_err_pci_clean;
8766 	}
8767 
8768 	bnxt_hwrm_func_qcfg(bp);
8769 	bnxt_hwrm_port_led_qcaps(bp);
8770 	bnxt_ethtool_init(bp);
8771 	bnxt_dcb_init(bp);
8772 
8773 	/* MTU range: 60 - FW defined max */
8774 	dev->min_mtu = ETH_ZLEN;
8775 	dev->max_mtu = bp->max_mtu;
8776 
8777 	rc = bnxt_probe_phy(bp);
8778 	if (rc)
8779 		goto init_err_pci_clean;
8780 
8781 	bnxt_set_rx_skb_mode(bp, false);
8782 	bnxt_set_tpa_flags(bp);
8783 	bnxt_set_ring_params(bp);
8784 	bnxt_set_max_func_irqs(bp, max_irqs);
8785 	rc = bnxt_set_dflt_rings(bp, true);
8786 	if (rc) {
8787 		netdev_err(bp->dev, "Not enough rings available.\n");
8788 		rc = -ENOMEM;
8789 		goto init_err_pci_clean;
8790 	}
8791 
8792 	/* Default RSS hash cfg. */
8793 	bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 |
8794 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 |
8795 			   VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 |
8796 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6;
8797 	if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) {
8798 		bp->flags |= BNXT_FLAG_UDP_RSS_CAP;
8799 		bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 |
8800 				    VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6;
8801 	}
8802 
8803 	bnxt_hwrm_vnic_qcaps(bp);
8804 	if (bnxt_rfs_supported(bp)) {
8805 		dev->hw_features |= NETIF_F_NTUPLE;
8806 		if (bnxt_rfs_capable(bp)) {
8807 			bp->flags |= BNXT_FLAG_RFS;
8808 			dev->features |= NETIF_F_NTUPLE;
8809 		}
8810 	}
8811 
8812 	if (dev->hw_features & NETIF_F_HW_VLAN_CTAG_RX)
8813 		bp->flags |= BNXT_FLAG_STRIP_VLAN;
8814 
8815 	rc = bnxt_init_int_mode(bp);
8816 	if (rc)
8817 		goto init_err_pci_clean;
8818 
8819 	/* No TC has been set yet and rings may have been trimmed due to
8820 	 * limited MSIX, so we re-initialize the TX rings per TC.
8821 	 */
8822 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
8823 
8824 	bnxt_get_wol_settings(bp);
8825 	if (bp->flags & BNXT_FLAG_WOL_CAP)
8826 		device_set_wakeup_enable(&pdev->dev, bp->wol);
8827 	else
8828 		device_set_wakeup_capable(&pdev->dev, false);
8829 
8830 	bnxt_hwrm_set_cache_line_size(bp, cache_line_size());
8831 
8832 	if (BNXT_PF(bp)) {
8833 		if (!bnxt_pf_wq) {
8834 			bnxt_pf_wq =
8835 				create_singlethread_workqueue("bnxt_pf_wq");
8836 			if (!bnxt_pf_wq) {
8837 				dev_err(&pdev->dev, "Unable to create workqueue.\n");
8838 				goto init_err_pci_clean;
8839 			}
8840 		}
8841 		bnxt_init_tc(bp);
8842 	}
8843 
8844 	rc = register_netdev(dev);
8845 	if (rc)
8846 		goto init_err_cleanup_tc;
8847 
8848 	if (BNXT_PF(bp))
8849 		bnxt_dl_register(bp);
8850 
8851 	netdev_info(dev, "%s found at mem %lx, node addr %pM\n",
8852 		    board_info[ent->driver_data].name,
8853 		    (long)pci_resource_start(pdev, 0), dev->dev_addr);
8854 
8855 	bnxt_parse_log_pcie_link(bp);
8856 
8857 	return 0;
8858 
8859 init_err_cleanup_tc:
8860 	bnxt_shutdown_tc(bp);
8861 	bnxt_clear_int_mode(bp);
8862 
8863 init_err_pci_clean:
8864 	bnxt_cleanup_pci(bp);
8865 
8866 init_err_free:
8867 	free_netdev(dev);
8868 	return rc;
8869 }
8870 
8871 static void bnxt_shutdown(struct pci_dev *pdev)
8872 {
8873 	struct net_device *dev = pci_get_drvdata(pdev);
8874 	struct bnxt *bp;
8875 
8876 	if (!dev)
8877 		return;
8878 
8879 	rtnl_lock();
8880 	bp = netdev_priv(dev);
8881 	if (!bp)
8882 		goto shutdown_exit;
8883 
8884 	if (netif_running(dev))
8885 		dev_close(dev);
8886 
8887 	bnxt_ulp_shutdown(bp);
8888 
8889 	if (system_state == SYSTEM_POWER_OFF) {
8890 		bnxt_clear_int_mode(bp);
8891 		pci_wake_from_d3(pdev, bp->wol);
8892 		pci_set_power_state(pdev, PCI_D3hot);
8893 	}
8894 
8895 shutdown_exit:
8896 	rtnl_unlock();
8897 }
8898 
8899 #ifdef CONFIG_PM_SLEEP
8900 static int bnxt_suspend(struct device *device)
8901 {
8902 	struct pci_dev *pdev = to_pci_dev(device);
8903 	struct net_device *dev = pci_get_drvdata(pdev);
8904 	struct bnxt *bp = netdev_priv(dev);
8905 	int rc = 0;
8906 
8907 	rtnl_lock();
8908 	if (netif_running(dev)) {
8909 		netif_device_detach(dev);
8910 		rc = bnxt_close(dev);
8911 	}
8912 	bnxt_hwrm_func_drv_unrgtr(bp);
8913 	rtnl_unlock();
8914 	return rc;
8915 }
8916 
8917 static int bnxt_resume(struct device *device)
8918 {
8919 	struct pci_dev *pdev = to_pci_dev(device);
8920 	struct net_device *dev = pci_get_drvdata(pdev);
8921 	struct bnxt *bp = netdev_priv(dev);
8922 	int rc = 0;
8923 
8924 	rtnl_lock();
8925 	if (bnxt_hwrm_ver_get(bp) || bnxt_hwrm_func_drv_rgtr(bp)) {
8926 		rc = -ENODEV;
8927 		goto resume_exit;
8928 	}
8929 	rc = bnxt_hwrm_func_reset(bp);
8930 	if (rc) {
8931 		rc = -EBUSY;
8932 		goto resume_exit;
8933 	}
8934 	bnxt_get_wol_settings(bp);
8935 	if (netif_running(dev)) {
8936 		rc = bnxt_open(dev);
8937 		if (!rc)
8938 			netif_device_attach(dev);
8939 	}
8940 
8941 resume_exit:
8942 	rtnl_unlock();
8943 	return rc;
8944 }
8945 
8946 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume);
8947 #define BNXT_PM_OPS (&bnxt_pm_ops)
8948 
8949 #else
8950 
8951 #define BNXT_PM_OPS NULL
8952 
8953 #endif /* CONFIG_PM_SLEEP */
8954 
8955 /**
8956  * bnxt_io_error_detected - called when PCI error is detected
8957  * @pdev: Pointer to PCI device
8958  * @state: The current pci connection state
8959  *
8960  * This function is called after a PCI bus error affecting
8961  * this device has been detected.
8962  */
8963 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev,
8964 					       pci_channel_state_t state)
8965 {
8966 	struct net_device *netdev = pci_get_drvdata(pdev);
8967 	struct bnxt *bp = netdev_priv(netdev);
8968 
8969 	netdev_info(netdev, "PCI I/O error detected\n");
8970 
8971 	rtnl_lock();
8972 	netif_device_detach(netdev);
8973 
8974 	bnxt_ulp_stop(bp);
8975 
8976 	if (state == pci_channel_io_perm_failure) {
8977 		rtnl_unlock();
8978 		return PCI_ERS_RESULT_DISCONNECT;
8979 	}
8980 
8981 	if (netif_running(netdev))
8982 		bnxt_close(netdev);
8983 
8984 	pci_disable_device(pdev);
8985 	rtnl_unlock();
8986 
8987 	/* Request a slot slot reset. */
8988 	return PCI_ERS_RESULT_NEED_RESET;
8989 }
8990 
8991 /**
8992  * bnxt_io_slot_reset - called after the pci bus has been reset.
8993  * @pdev: Pointer to PCI device
8994  *
8995  * Restart the card from scratch, as if from a cold-boot.
8996  * At this point, the card has exprienced a hard reset,
8997  * followed by fixups by BIOS, and has its config space
8998  * set up identically to what it was at cold boot.
8999  */
9000 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev)
9001 {
9002 	struct net_device *netdev = pci_get_drvdata(pdev);
9003 	struct bnxt *bp = netdev_priv(netdev);
9004 	int err = 0;
9005 	pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
9006 
9007 	netdev_info(bp->dev, "PCI Slot Reset\n");
9008 
9009 	rtnl_lock();
9010 
9011 	if (pci_enable_device(pdev)) {
9012 		dev_err(&pdev->dev,
9013 			"Cannot re-enable PCI device after reset.\n");
9014 	} else {
9015 		pci_set_master(pdev);
9016 
9017 		err = bnxt_hwrm_func_reset(bp);
9018 		if (!err && netif_running(netdev))
9019 			err = bnxt_open(netdev);
9020 
9021 		if (!err) {
9022 			result = PCI_ERS_RESULT_RECOVERED;
9023 			bnxt_ulp_start(bp);
9024 		}
9025 	}
9026 
9027 	if (result != PCI_ERS_RESULT_RECOVERED && netif_running(netdev))
9028 		dev_close(netdev);
9029 
9030 	rtnl_unlock();
9031 
9032 	err = pci_cleanup_aer_uncorrect_error_status(pdev);
9033 	if (err) {
9034 		dev_err(&pdev->dev,
9035 			"pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
9036 			 err); /* non-fatal, continue */
9037 	}
9038 
9039 	return PCI_ERS_RESULT_RECOVERED;
9040 }
9041 
9042 /**
9043  * bnxt_io_resume - called when traffic can start flowing again.
9044  * @pdev: Pointer to PCI device
9045  *
9046  * This callback is called when the error recovery driver tells
9047  * us that its OK to resume normal operation.
9048  */
9049 static void bnxt_io_resume(struct pci_dev *pdev)
9050 {
9051 	struct net_device *netdev = pci_get_drvdata(pdev);
9052 
9053 	rtnl_lock();
9054 
9055 	netif_device_attach(netdev);
9056 
9057 	rtnl_unlock();
9058 }
9059 
9060 static const struct pci_error_handlers bnxt_err_handler = {
9061 	.error_detected	= bnxt_io_error_detected,
9062 	.slot_reset	= bnxt_io_slot_reset,
9063 	.resume		= bnxt_io_resume
9064 };
9065 
9066 static struct pci_driver bnxt_pci_driver = {
9067 	.name		= DRV_MODULE_NAME,
9068 	.id_table	= bnxt_pci_tbl,
9069 	.probe		= bnxt_init_one,
9070 	.remove		= bnxt_remove_one,
9071 	.shutdown	= bnxt_shutdown,
9072 	.driver.pm	= BNXT_PM_OPS,
9073 	.err_handler	= &bnxt_err_handler,
9074 #if defined(CONFIG_BNXT_SRIOV)
9075 	.sriov_configure = bnxt_sriov_configure,
9076 #endif
9077 };
9078 
9079 static int __init bnxt_init(void)
9080 {
9081 	return pci_register_driver(&bnxt_pci_driver);
9082 }
9083 
9084 static void __exit bnxt_exit(void)
9085 {
9086 	pci_unregister_driver(&bnxt_pci_driver);
9087 	if (bnxt_pf_wq)
9088 		destroy_workqueue(bnxt_pf_wq);
9089 }
9090 
9091 module_init(bnxt_init);
9092 module_exit(bnxt_exit);
9093