1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2016 Broadcom Corporation
4  * Copyright (c) 2016-2018 Broadcom Limited
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation.
9  */
10 
11 #include <linux/module.h>
12 
13 #include <linux/stringify.h>
14 #include <linux/kernel.h>
15 #include <linux/timer.h>
16 #include <linux/errno.h>
17 #include <linux/ioport.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 #include <linux/interrupt.h>
21 #include <linux/pci.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/skbuff.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/bitops.h>
27 #include <linux/io.h>
28 #include <linux/irq.h>
29 #include <linux/delay.h>
30 #include <asm/byteorder.h>
31 #include <asm/page.h>
32 #include <linux/time.h>
33 #include <linux/mii.h>
34 #include <linux/if.h>
35 #include <linux/if_vlan.h>
36 #include <linux/if_bridge.h>
37 #include <linux/rtc.h>
38 #include <linux/bpf.h>
39 #include <net/ip.h>
40 #include <net/tcp.h>
41 #include <net/udp.h>
42 #include <net/checksum.h>
43 #include <net/ip6_checksum.h>
44 #include <net/udp_tunnel.h>
45 #include <linux/workqueue.h>
46 #include <linux/prefetch.h>
47 #include <linux/cache.h>
48 #include <linux/log2.h>
49 #include <linux/aer.h>
50 #include <linux/bitmap.h>
51 #include <linux/cpu_rmap.h>
52 #include <linux/cpumask.h>
53 #include <net/pkt_cls.h>
54 
55 #include "bnxt_hsi.h"
56 #include "bnxt.h"
57 #include "bnxt_ulp.h"
58 #include "bnxt_sriov.h"
59 #include "bnxt_ethtool.h"
60 #include "bnxt_dcb.h"
61 #include "bnxt_xdp.h"
62 #include "bnxt_vfr.h"
63 #include "bnxt_tc.h"
64 #include "bnxt_devlink.h"
65 #include "bnxt_debugfs.h"
66 
67 #define BNXT_TX_TIMEOUT		(5 * HZ)
68 
69 static const char version[] =
70 	"Broadcom NetXtreme-C/E driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION "\n";
71 
72 MODULE_LICENSE("GPL");
73 MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
74 MODULE_VERSION(DRV_MODULE_VERSION);
75 
76 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
77 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
78 #define BNXT_RX_COPY_THRESH 256
79 
80 #define BNXT_TX_PUSH_THRESH 164
81 
82 enum board_idx {
83 	BCM57301,
84 	BCM57302,
85 	BCM57304,
86 	BCM57417_NPAR,
87 	BCM58700,
88 	BCM57311,
89 	BCM57312,
90 	BCM57402,
91 	BCM57404,
92 	BCM57406,
93 	BCM57402_NPAR,
94 	BCM57407,
95 	BCM57412,
96 	BCM57414,
97 	BCM57416,
98 	BCM57417,
99 	BCM57412_NPAR,
100 	BCM57314,
101 	BCM57417_SFP,
102 	BCM57416_SFP,
103 	BCM57404_NPAR,
104 	BCM57406_NPAR,
105 	BCM57407_SFP,
106 	BCM57407_NPAR,
107 	BCM57414_NPAR,
108 	BCM57416_NPAR,
109 	BCM57452,
110 	BCM57454,
111 	BCM5745x_NPAR,
112 	BCM58802,
113 	BCM58804,
114 	BCM58808,
115 	NETXTREME_E_VF,
116 	NETXTREME_C_VF,
117 	NETXTREME_S_VF,
118 };
119 
120 /* indexed by enum above */
121 static const struct {
122 	char *name;
123 } board_info[] = {
124 	[BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" },
125 	[BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" },
126 	[BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
127 	[BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" },
128 	[BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" },
129 	[BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" },
130 	[BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" },
131 	[BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" },
132 	[BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" },
133 	[BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" },
134 	[BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" },
135 	[BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" },
136 	[BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" },
137 	[BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" },
138 	[BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" },
139 	[BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" },
140 	[BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" },
141 	[BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
142 	[BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" },
143 	[BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" },
144 	[BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" },
145 	[BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" },
146 	[BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" },
147 	[BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" },
148 	[BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" },
149 	[BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" },
150 	[BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" },
151 	[BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
152 	[BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" },
153 	[BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" },
154 	[BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
155 	[BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
156 	[NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" },
157 	[NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" },
158 	[NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" },
159 };
160 
161 static const struct pci_device_id bnxt_pci_tbl[] = {
162 	{ PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR },
163 	{ PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR },
164 	{ PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 },
165 	{ PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR },
166 	{ PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
167 	{ PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
168 	{ PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
169 	{ PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR },
170 	{ PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 },
171 	{ PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 },
172 	{ PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 },
173 	{ PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
174 	{ PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
175 	{ PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
176 	{ PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR },
177 	{ PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 },
178 	{ PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 },
179 	{ PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 },
180 	{ PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 },
181 	{ PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 },
182 	{ PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR },
183 	{ PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 },
184 	{ PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP },
185 	{ PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP },
186 	{ PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR },
187 	{ PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR },
188 	{ PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP },
189 	{ PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR },
190 	{ PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR },
191 	{ PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR },
192 	{ PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR },
193 	{ PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR },
194 	{ PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR },
195 	{ PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 },
196 	{ PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 },
197 	{ PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 },
198 	{ PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 },
199 #ifdef CONFIG_BNXT_SRIOV
200 	{ PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF },
201 	{ PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF },
202 	{ PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF },
203 	{ PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF },
204 	{ PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF },
205 	{ PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF },
206 	{ PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF },
207 	{ PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF },
208 	{ PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF },
209 #endif
210 	{ 0 }
211 };
212 
213 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
214 
215 static const u16 bnxt_vf_req_snif[] = {
216 	HWRM_FUNC_CFG,
217 	HWRM_FUNC_VF_CFG,
218 	HWRM_PORT_PHY_QCFG,
219 	HWRM_CFA_L2_FILTER_ALLOC,
220 };
221 
222 static const u16 bnxt_async_events_arr[] = {
223 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE,
224 	ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD,
225 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED,
226 	ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE,
227 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE,
228 };
229 
230 static struct workqueue_struct *bnxt_pf_wq;
231 
232 static bool bnxt_vf_pciid(enum board_idx idx)
233 {
234 	return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF ||
235 		idx == NETXTREME_S_VF);
236 }
237 
238 #define DB_CP_REARM_FLAGS	(DB_KEY_CP | DB_IDX_VALID)
239 #define DB_CP_FLAGS		(DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
240 #define DB_CP_IRQ_DIS_FLAGS	(DB_KEY_CP | DB_IRQ_DIS)
241 
242 #define BNXT_CP_DB_REARM(db, raw_cons)					\
243 		writel(DB_CP_REARM_FLAGS | RING_CMP(raw_cons), db)
244 
245 #define BNXT_CP_DB(db, raw_cons)					\
246 		writel(DB_CP_FLAGS | RING_CMP(raw_cons), db)
247 
248 #define BNXT_CP_DB_IRQ_DIS(db)						\
249 		writel(DB_CP_IRQ_DIS_FLAGS, db)
250 
251 const u16 bnxt_lhint_arr[] = {
252 	TX_BD_FLAGS_LHINT_512_AND_SMALLER,
253 	TX_BD_FLAGS_LHINT_512_TO_1023,
254 	TX_BD_FLAGS_LHINT_1024_TO_2047,
255 	TX_BD_FLAGS_LHINT_1024_TO_2047,
256 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
257 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
258 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
259 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
260 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
261 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
262 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
263 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
264 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
265 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
266 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
267 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
268 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
269 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
270 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
271 };
272 
273 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb)
274 {
275 	struct metadata_dst *md_dst = skb_metadata_dst(skb);
276 
277 	if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX)
278 		return 0;
279 
280 	return md_dst->u.port_info.port_id;
281 }
282 
283 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
284 {
285 	struct bnxt *bp = netdev_priv(dev);
286 	struct tx_bd *txbd;
287 	struct tx_bd_ext *txbd1;
288 	struct netdev_queue *txq;
289 	int i;
290 	dma_addr_t mapping;
291 	unsigned int length, pad = 0;
292 	u32 len, free_size, vlan_tag_flags, cfa_action, flags;
293 	u16 prod, last_frag;
294 	struct pci_dev *pdev = bp->pdev;
295 	struct bnxt_tx_ring_info *txr;
296 	struct bnxt_sw_tx_bd *tx_buf;
297 
298 	i = skb_get_queue_mapping(skb);
299 	if (unlikely(i >= bp->tx_nr_rings)) {
300 		dev_kfree_skb_any(skb);
301 		return NETDEV_TX_OK;
302 	}
303 
304 	txq = netdev_get_tx_queue(dev, i);
305 	txr = &bp->tx_ring[bp->tx_ring_map[i]];
306 	prod = txr->tx_prod;
307 
308 	free_size = bnxt_tx_avail(bp, txr);
309 	if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
310 		netif_tx_stop_queue(txq);
311 		return NETDEV_TX_BUSY;
312 	}
313 
314 	length = skb->len;
315 	len = skb_headlen(skb);
316 	last_frag = skb_shinfo(skb)->nr_frags;
317 
318 	txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
319 
320 	txbd->tx_bd_opaque = prod;
321 
322 	tx_buf = &txr->tx_buf_ring[prod];
323 	tx_buf->skb = skb;
324 	tx_buf->nr_frags = last_frag;
325 
326 	vlan_tag_flags = 0;
327 	cfa_action = bnxt_xmit_get_cfa_action(skb);
328 	if (skb_vlan_tag_present(skb)) {
329 		vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
330 				 skb_vlan_tag_get(skb);
331 		/* Currently supports 8021Q, 8021AD vlan offloads
332 		 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
333 		 */
334 		if (skb->vlan_proto == htons(ETH_P_8021Q))
335 			vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
336 	}
337 
338 	if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh) {
339 		struct tx_push_buffer *tx_push_buf = txr->tx_push;
340 		struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
341 		struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
342 		void *pdata = tx_push_buf->data;
343 		u64 *end;
344 		int j, push_len;
345 
346 		/* Set COAL_NOW to be ready quickly for the next push */
347 		tx_push->tx_bd_len_flags_type =
348 			cpu_to_le32((length << TX_BD_LEN_SHIFT) |
349 					TX_BD_TYPE_LONG_TX_BD |
350 					TX_BD_FLAGS_LHINT_512_AND_SMALLER |
351 					TX_BD_FLAGS_COAL_NOW |
352 					TX_BD_FLAGS_PACKET_END |
353 					(2 << TX_BD_FLAGS_BD_CNT_SHIFT));
354 
355 		if (skb->ip_summed == CHECKSUM_PARTIAL)
356 			tx_push1->tx_bd_hsize_lflags =
357 					cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
358 		else
359 			tx_push1->tx_bd_hsize_lflags = 0;
360 
361 		tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
362 		tx_push1->tx_bd_cfa_action =
363 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
364 
365 		end = pdata + length;
366 		end = PTR_ALIGN(end, 8) - 1;
367 		*end = 0;
368 
369 		skb_copy_from_linear_data(skb, pdata, len);
370 		pdata += len;
371 		for (j = 0; j < last_frag; j++) {
372 			skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
373 			void *fptr;
374 
375 			fptr = skb_frag_address_safe(frag);
376 			if (!fptr)
377 				goto normal_tx;
378 
379 			memcpy(pdata, fptr, skb_frag_size(frag));
380 			pdata += skb_frag_size(frag);
381 		}
382 
383 		txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
384 		txbd->tx_bd_haddr = txr->data_mapping;
385 		prod = NEXT_TX(prod);
386 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
387 		memcpy(txbd, tx_push1, sizeof(*txbd));
388 		prod = NEXT_TX(prod);
389 		tx_push->doorbell =
390 			cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod);
391 		txr->tx_prod = prod;
392 
393 		tx_buf->is_push = 1;
394 		netdev_tx_sent_queue(txq, skb->len);
395 		wmb();	/* Sync is_push and byte queue before pushing data */
396 
397 		push_len = (length + sizeof(*tx_push) + 7) / 8;
398 		if (push_len > 16) {
399 			__iowrite64_copy(txr->tx_doorbell, tx_push_buf, 16);
400 			__iowrite32_copy(txr->tx_doorbell + 4, tx_push_buf + 1,
401 					 (push_len - 16) << 1);
402 		} else {
403 			__iowrite64_copy(txr->tx_doorbell, tx_push_buf,
404 					 push_len);
405 		}
406 
407 		goto tx_done;
408 	}
409 
410 normal_tx:
411 	if (length < BNXT_MIN_PKT_SIZE) {
412 		pad = BNXT_MIN_PKT_SIZE - length;
413 		if (skb_pad(skb, pad)) {
414 			/* SKB already freed. */
415 			tx_buf->skb = NULL;
416 			return NETDEV_TX_OK;
417 		}
418 		length = BNXT_MIN_PKT_SIZE;
419 	}
420 
421 	mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
422 
423 	if (unlikely(dma_mapping_error(&pdev->dev, mapping))) {
424 		dev_kfree_skb_any(skb);
425 		tx_buf->skb = NULL;
426 		return NETDEV_TX_OK;
427 	}
428 
429 	dma_unmap_addr_set(tx_buf, mapping, mapping);
430 	flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
431 		((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
432 
433 	txbd->tx_bd_haddr = cpu_to_le64(mapping);
434 
435 	prod = NEXT_TX(prod);
436 	txbd1 = (struct tx_bd_ext *)
437 		&txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
438 
439 	txbd1->tx_bd_hsize_lflags = 0;
440 	if (skb_is_gso(skb)) {
441 		u32 hdr_len;
442 
443 		if (skb->encapsulation)
444 			hdr_len = skb_inner_network_offset(skb) +
445 				skb_inner_network_header_len(skb) +
446 				inner_tcp_hdrlen(skb);
447 		else
448 			hdr_len = skb_transport_offset(skb) +
449 				tcp_hdrlen(skb);
450 
451 		txbd1->tx_bd_hsize_lflags = cpu_to_le32(TX_BD_FLAGS_LSO |
452 					TX_BD_FLAGS_T_IPID |
453 					(hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
454 		length = skb_shinfo(skb)->gso_size;
455 		txbd1->tx_bd_mss = cpu_to_le32(length);
456 		length += hdr_len;
457 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
458 		txbd1->tx_bd_hsize_lflags =
459 			cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
460 		txbd1->tx_bd_mss = 0;
461 	}
462 
463 	length >>= 9;
464 	flags |= bnxt_lhint_arr[length];
465 	txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
466 
467 	txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
468 	txbd1->tx_bd_cfa_action =
469 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
470 	for (i = 0; i < last_frag; i++) {
471 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
472 
473 		prod = NEXT_TX(prod);
474 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
475 
476 		len = skb_frag_size(frag);
477 		mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
478 					   DMA_TO_DEVICE);
479 
480 		if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
481 			goto tx_dma_error;
482 
483 		tx_buf = &txr->tx_buf_ring[prod];
484 		dma_unmap_addr_set(tx_buf, mapping, mapping);
485 
486 		txbd->tx_bd_haddr = cpu_to_le64(mapping);
487 
488 		flags = len << TX_BD_LEN_SHIFT;
489 		txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
490 	}
491 
492 	flags &= ~TX_BD_LEN;
493 	txbd->tx_bd_len_flags_type =
494 		cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
495 			    TX_BD_FLAGS_PACKET_END);
496 
497 	netdev_tx_sent_queue(txq, skb->len);
498 
499 	/* Sync BD data before updating doorbell */
500 	wmb();
501 
502 	prod = NEXT_TX(prod);
503 	txr->tx_prod = prod;
504 
505 	if (!skb->xmit_more || netif_xmit_stopped(txq))
506 		bnxt_db_write(bp, txr->tx_doorbell, DB_KEY_TX | prod);
507 
508 tx_done:
509 
510 	mmiowb();
511 
512 	if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
513 		if (skb->xmit_more && !tx_buf->is_push)
514 			bnxt_db_write(bp, txr->tx_doorbell, DB_KEY_TX | prod);
515 
516 		netif_tx_stop_queue(txq);
517 
518 		/* netif_tx_stop_queue() must be done before checking
519 		 * tx index in bnxt_tx_avail() below, because in
520 		 * bnxt_tx_int(), we update tx index before checking for
521 		 * netif_tx_queue_stopped().
522 		 */
523 		smp_mb();
524 		if (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)
525 			netif_tx_wake_queue(txq);
526 	}
527 	return NETDEV_TX_OK;
528 
529 tx_dma_error:
530 	last_frag = i;
531 
532 	/* start back at beginning and unmap skb */
533 	prod = txr->tx_prod;
534 	tx_buf = &txr->tx_buf_ring[prod];
535 	tx_buf->skb = NULL;
536 	dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
537 			 skb_headlen(skb), PCI_DMA_TODEVICE);
538 	prod = NEXT_TX(prod);
539 
540 	/* unmap remaining mapped pages */
541 	for (i = 0; i < last_frag; i++) {
542 		prod = NEXT_TX(prod);
543 		tx_buf = &txr->tx_buf_ring[prod];
544 		dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
545 			       skb_frag_size(&skb_shinfo(skb)->frags[i]),
546 			       PCI_DMA_TODEVICE);
547 	}
548 
549 	dev_kfree_skb_any(skb);
550 	return NETDEV_TX_OK;
551 }
552 
553 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts)
554 {
555 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
556 	struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index);
557 	u16 cons = txr->tx_cons;
558 	struct pci_dev *pdev = bp->pdev;
559 	int i;
560 	unsigned int tx_bytes = 0;
561 
562 	for (i = 0; i < nr_pkts; i++) {
563 		struct bnxt_sw_tx_bd *tx_buf;
564 		struct sk_buff *skb;
565 		int j, last;
566 
567 		tx_buf = &txr->tx_buf_ring[cons];
568 		cons = NEXT_TX(cons);
569 		skb = tx_buf->skb;
570 		tx_buf->skb = NULL;
571 
572 		if (tx_buf->is_push) {
573 			tx_buf->is_push = 0;
574 			goto next_tx_int;
575 		}
576 
577 		dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
578 				 skb_headlen(skb), PCI_DMA_TODEVICE);
579 		last = tx_buf->nr_frags;
580 
581 		for (j = 0; j < last; j++) {
582 			cons = NEXT_TX(cons);
583 			tx_buf = &txr->tx_buf_ring[cons];
584 			dma_unmap_page(
585 				&pdev->dev,
586 				dma_unmap_addr(tx_buf, mapping),
587 				skb_frag_size(&skb_shinfo(skb)->frags[j]),
588 				PCI_DMA_TODEVICE);
589 		}
590 
591 next_tx_int:
592 		cons = NEXT_TX(cons);
593 
594 		tx_bytes += skb->len;
595 		dev_kfree_skb_any(skb);
596 	}
597 
598 	netdev_tx_completed_queue(txq, nr_pkts, tx_bytes);
599 	txr->tx_cons = cons;
600 
601 	/* Need to make the tx_cons update visible to bnxt_start_xmit()
602 	 * before checking for netif_tx_queue_stopped().  Without the
603 	 * memory barrier, there is a small possibility that bnxt_start_xmit()
604 	 * will miss it and cause the queue to be stopped forever.
605 	 */
606 	smp_mb();
607 
608 	if (unlikely(netif_tx_queue_stopped(txq)) &&
609 	    (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
610 		__netif_tx_lock(txq, smp_processor_id());
611 		if (netif_tx_queue_stopped(txq) &&
612 		    bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh &&
613 		    txr->dev_state != BNXT_DEV_STATE_CLOSING)
614 			netif_tx_wake_queue(txq);
615 		__netif_tx_unlock(txq);
616 	}
617 }
618 
619 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping,
620 					 gfp_t gfp)
621 {
622 	struct device *dev = &bp->pdev->dev;
623 	struct page *page;
624 
625 	page = alloc_page(gfp);
626 	if (!page)
627 		return NULL;
628 
629 	*mapping = dma_map_page_attrs(dev, page, 0, PAGE_SIZE, bp->rx_dir,
630 				      DMA_ATTR_WEAK_ORDERING);
631 	if (dma_mapping_error(dev, *mapping)) {
632 		__free_page(page);
633 		return NULL;
634 	}
635 	*mapping += bp->rx_dma_offset;
636 	return page;
637 }
638 
639 static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping,
640 				       gfp_t gfp)
641 {
642 	u8 *data;
643 	struct pci_dev *pdev = bp->pdev;
644 
645 	data = kmalloc(bp->rx_buf_size, gfp);
646 	if (!data)
647 		return NULL;
648 
649 	*mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset,
650 					bp->rx_buf_use_size, bp->rx_dir,
651 					DMA_ATTR_WEAK_ORDERING);
652 
653 	if (dma_mapping_error(&pdev->dev, *mapping)) {
654 		kfree(data);
655 		data = NULL;
656 	}
657 	return data;
658 }
659 
660 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
661 		       u16 prod, gfp_t gfp)
662 {
663 	struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
664 	struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
665 	dma_addr_t mapping;
666 
667 	if (BNXT_RX_PAGE_MODE(bp)) {
668 		struct page *page = __bnxt_alloc_rx_page(bp, &mapping, gfp);
669 
670 		if (!page)
671 			return -ENOMEM;
672 
673 		rx_buf->data = page;
674 		rx_buf->data_ptr = page_address(page) + bp->rx_offset;
675 	} else {
676 		u8 *data = __bnxt_alloc_rx_data(bp, &mapping, gfp);
677 
678 		if (!data)
679 			return -ENOMEM;
680 
681 		rx_buf->data = data;
682 		rx_buf->data_ptr = data + bp->rx_offset;
683 	}
684 	rx_buf->mapping = mapping;
685 
686 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
687 	return 0;
688 }
689 
690 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data)
691 {
692 	u16 prod = rxr->rx_prod;
693 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
694 	struct rx_bd *cons_bd, *prod_bd;
695 
696 	prod_rx_buf = &rxr->rx_buf_ring[prod];
697 	cons_rx_buf = &rxr->rx_buf_ring[cons];
698 
699 	prod_rx_buf->data = data;
700 	prod_rx_buf->data_ptr = cons_rx_buf->data_ptr;
701 
702 	prod_rx_buf->mapping = cons_rx_buf->mapping;
703 
704 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
705 	cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
706 
707 	prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
708 }
709 
710 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
711 {
712 	u16 next, max = rxr->rx_agg_bmap_size;
713 
714 	next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
715 	if (next >= max)
716 		next = find_first_zero_bit(rxr->rx_agg_bmap, max);
717 	return next;
718 }
719 
720 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
721 				     struct bnxt_rx_ring_info *rxr,
722 				     u16 prod, gfp_t gfp)
723 {
724 	struct rx_bd *rxbd =
725 		&rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
726 	struct bnxt_sw_rx_agg_bd *rx_agg_buf;
727 	struct pci_dev *pdev = bp->pdev;
728 	struct page *page;
729 	dma_addr_t mapping;
730 	u16 sw_prod = rxr->rx_sw_agg_prod;
731 	unsigned int offset = 0;
732 
733 	if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) {
734 		page = rxr->rx_page;
735 		if (!page) {
736 			page = alloc_page(gfp);
737 			if (!page)
738 				return -ENOMEM;
739 			rxr->rx_page = page;
740 			rxr->rx_page_offset = 0;
741 		}
742 		offset = rxr->rx_page_offset;
743 		rxr->rx_page_offset += BNXT_RX_PAGE_SIZE;
744 		if (rxr->rx_page_offset == PAGE_SIZE)
745 			rxr->rx_page = NULL;
746 		else
747 			get_page(page);
748 	} else {
749 		page = alloc_page(gfp);
750 		if (!page)
751 			return -ENOMEM;
752 	}
753 
754 	mapping = dma_map_page_attrs(&pdev->dev, page, offset,
755 				     BNXT_RX_PAGE_SIZE, PCI_DMA_FROMDEVICE,
756 				     DMA_ATTR_WEAK_ORDERING);
757 	if (dma_mapping_error(&pdev->dev, mapping)) {
758 		__free_page(page);
759 		return -EIO;
760 	}
761 
762 	if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
763 		sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
764 
765 	__set_bit(sw_prod, rxr->rx_agg_bmap);
766 	rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
767 	rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod);
768 
769 	rx_agg_buf->page = page;
770 	rx_agg_buf->offset = offset;
771 	rx_agg_buf->mapping = mapping;
772 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
773 	rxbd->rx_bd_opaque = sw_prod;
774 	return 0;
775 }
776 
777 static void bnxt_reuse_rx_agg_bufs(struct bnxt_napi *bnapi, u16 cp_cons,
778 				   u32 agg_bufs)
779 {
780 	struct bnxt *bp = bnapi->bp;
781 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
782 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
783 	u16 prod = rxr->rx_agg_prod;
784 	u16 sw_prod = rxr->rx_sw_agg_prod;
785 	u32 i;
786 
787 	for (i = 0; i < agg_bufs; i++) {
788 		u16 cons;
789 		struct rx_agg_cmp *agg;
790 		struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
791 		struct rx_bd *prod_bd;
792 		struct page *page;
793 
794 		agg = (struct rx_agg_cmp *)
795 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
796 		cons = agg->rx_agg_cmp_opaque;
797 		__clear_bit(cons, rxr->rx_agg_bmap);
798 
799 		if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
800 			sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
801 
802 		__set_bit(sw_prod, rxr->rx_agg_bmap);
803 		prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
804 		cons_rx_buf = &rxr->rx_agg_ring[cons];
805 
806 		/* It is possible for sw_prod to be equal to cons, so
807 		 * set cons_rx_buf->page to NULL first.
808 		 */
809 		page = cons_rx_buf->page;
810 		cons_rx_buf->page = NULL;
811 		prod_rx_buf->page = page;
812 		prod_rx_buf->offset = cons_rx_buf->offset;
813 
814 		prod_rx_buf->mapping = cons_rx_buf->mapping;
815 
816 		prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
817 
818 		prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
819 		prod_bd->rx_bd_opaque = sw_prod;
820 
821 		prod = NEXT_RX_AGG(prod);
822 		sw_prod = NEXT_RX_AGG(sw_prod);
823 		cp_cons = NEXT_CMP(cp_cons);
824 	}
825 	rxr->rx_agg_prod = prod;
826 	rxr->rx_sw_agg_prod = sw_prod;
827 }
828 
829 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp,
830 					struct bnxt_rx_ring_info *rxr,
831 					u16 cons, void *data, u8 *data_ptr,
832 					dma_addr_t dma_addr,
833 					unsigned int offset_and_len)
834 {
835 	unsigned int payload = offset_and_len >> 16;
836 	unsigned int len = offset_and_len & 0xffff;
837 	struct skb_frag_struct *frag;
838 	struct page *page = data;
839 	u16 prod = rxr->rx_prod;
840 	struct sk_buff *skb;
841 	int off, err;
842 
843 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
844 	if (unlikely(err)) {
845 		bnxt_reuse_rx_data(rxr, cons, data);
846 		return NULL;
847 	}
848 	dma_addr -= bp->rx_dma_offset;
849 	dma_unmap_page_attrs(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir,
850 			     DMA_ATTR_WEAK_ORDERING);
851 
852 	if (unlikely(!payload))
853 		payload = eth_get_headlen(data_ptr, len);
854 
855 	skb = napi_alloc_skb(&rxr->bnapi->napi, payload);
856 	if (!skb) {
857 		__free_page(page);
858 		return NULL;
859 	}
860 
861 	off = (void *)data_ptr - page_address(page);
862 	skb_add_rx_frag(skb, 0, page, off, len, PAGE_SIZE);
863 	memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN,
864 	       payload + NET_IP_ALIGN);
865 
866 	frag = &skb_shinfo(skb)->frags[0];
867 	skb_frag_size_sub(frag, payload);
868 	frag->page_offset += payload;
869 	skb->data_len -= payload;
870 	skb->tail += payload;
871 
872 	return skb;
873 }
874 
875 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
876 				   struct bnxt_rx_ring_info *rxr, u16 cons,
877 				   void *data, u8 *data_ptr,
878 				   dma_addr_t dma_addr,
879 				   unsigned int offset_and_len)
880 {
881 	u16 prod = rxr->rx_prod;
882 	struct sk_buff *skb;
883 	int err;
884 
885 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
886 	if (unlikely(err)) {
887 		bnxt_reuse_rx_data(rxr, cons, data);
888 		return NULL;
889 	}
890 
891 	skb = build_skb(data, 0);
892 	dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
893 			       bp->rx_dir, DMA_ATTR_WEAK_ORDERING);
894 	if (!skb) {
895 		kfree(data);
896 		return NULL;
897 	}
898 
899 	skb_reserve(skb, bp->rx_offset);
900 	skb_put(skb, offset_and_len & 0xffff);
901 	return skb;
902 }
903 
904 static struct sk_buff *bnxt_rx_pages(struct bnxt *bp, struct bnxt_napi *bnapi,
905 				     struct sk_buff *skb, u16 cp_cons,
906 				     u32 agg_bufs)
907 {
908 	struct pci_dev *pdev = bp->pdev;
909 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
910 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
911 	u16 prod = rxr->rx_agg_prod;
912 	u32 i;
913 
914 	for (i = 0; i < agg_bufs; i++) {
915 		u16 cons, frag_len;
916 		struct rx_agg_cmp *agg;
917 		struct bnxt_sw_rx_agg_bd *cons_rx_buf;
918 		struct page *page;
919 		dma_addr_t mapping;
920 
921 		agg = (struct rx_agg_cmp *)
922 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
923 		cons = agg->rx_agg_cmp_opaque;
924 		frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
925 			    RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
926 
927 		cons_rx_buf = &rxr->rx_agg_ring[cons];
928 		skb_fill_page_desc(skb, i, cons_rx_buf->page,
929 				   cons_rx_buf->offset, frag_len);
930 		__clear_bit(cons, rxr->rx_agg_bmap);
931 
932 		/* It is possible for bnxt_alloc_rx_page() to allocate
933 		 * a sw_prod index that equals the cons index, so we
934 		 * need to clear the cons entry now.
935 		 */
936 		mapping = cons_rx_buf->mapping;
937 		page = cons_rx_buf->page;
938 		cons_rx_buf->page = NULL;
939 
940 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
941 			struct skb_shared_info *shinfo;
942 			unsigned int nr_frags;
943 
944 			shinfo = skb_shinfo(skb);
945 			nr_frags = --shinfo->nr_frags;
946 			__skb_frag_set_page(&shinfo->frags[nr_frags], NULL);
947 
948 			dev_kfree_skb(skb);
949 
950 			cons_rx_buf->page = page;
951 
952 			/* Update prod since possibly some pages have been
953 			 * allocated already.
954 			 */
955 			rxr->rx_agg_prod = prod;
956 			bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs - i);
957 			return NULL;
958 		}
959 
960 		dma_unmap_page_attrs(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE,
961 				     PCI_DMA_FROMDEVICE,
962 				     DMA_ATTR_WEAK_ORDERING);
963 
964 		skb->data_len += frag_len;
965 		skb->len += frag_len;
966 		skb->truesize += PAGE_SIZE;
967 
968 		prod = NEXT_RX_AGG(prod);
969 		cp_cons = NEXT_CMP(cp_cons);
970 	}
971 	rxr->rx_agg_prod = prod;
972 	return skb;
973 }
974 
975 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
976 			       u8 agg_bufs, u32 *raw_cons)
977 {
978 	u16 last;
979 	struct rx_agg_cmp *agg;
980 
981 	*raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
982 	last = RING_CMP(*raw_cons);
983 	agg = (struct rx_agg_cmp *)
984 		&cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
985 	return RX_AGG_CMP_VALID(agg, *raw_cons);
986 }
987 
988 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
989 					    unsigned int len,
990 					    dma_addr_t mapping)
991 {
992 	struct bnxt *bp = bnapi->bp;
993 	struct pci_dev *pdev = bp->pdev;
994 	struct sk_buff *skb;
995 
996 	skb = napi_alloc_skb(&bnapi->napi, len);
997 	if (!skb)
998 		return NULL;
999 
1000 	dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh,
1001 				bp->rx_dir);
1002 
1003 	memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN,
1004 	       len + NET_IP_ALIGN);
1005 
1006 	dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh,
1007 				   bp->rx_dir);
1008 
1009 	skb_put(skb, len);
1010 	return skb;
1011 }
1012 
1013 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_napi *bnapi,
1014 			   u32 *raw_cons, void *cmp)
1015 {
1016 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1017 	struct rx_cmp *rxcmp = cmp;
1018 	u32 tmp_raw_cons = *raw_cons;
1019 	u8 cmp_type, agg_bufs = 0;
1020 
1021 	cmp_type = RX_CMP_TYPE(rxcmp);
1022 
1023 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1024 		agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) &
1025 			    RX_CMP_AGG_BUFS) >>
1026 			   RX_CMP_AGG_BUFS_SHIFT;
1027 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1028 		struct rx_tpa_end_cmp *tpa_end = cmp;
1029 
1030 		agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
1031 			    RX_TPA_END_CMP_AGG_BUFS) >>
1032 			   RX_TPA_END_CMP_AGG_BUFS_SHIFT;
1033 	}
1034 
1035 	if (agg_bufs) {
1036 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1037 			return -EBUSY;
1038 	}
1039 	*raw_cons = tmp_raw_cons;
1040 	return 0;
1041 }
1042 
1043 static void bnxt_queue_sp_work(struct bnxt *bp)
1044 {
1045 	if (BNXT_PF(bp))
1046 		queue_work(bnxt_pf_wq, &bp->sp_task);
1047 	else
1048 		schedule_work(&bp->sp_task);
1049 }
1050 
1051 static void bnxt_cancel_sp_work(struct bnxt *bp)
1052 {
1053 	if (BNXT_PF(bp))
1054 		flush_workqueue(bnxt_pf_wq);
1055 	else
1056 		cancel_work_sync(&bp->sp_task);
1057 }
1058 
1059 static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
1060 {
1061 	if (!rxr->bnapi->in_reset) {
1062 		rxr->bnapi->in_reset = true;
1063 		set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
1064 		bnxt_queue_sp_work(bp);
1065 	}
1066 	rxr->rx_next_cons = 0xffff;
1067 }
1068 
1069 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1070 			   struct rx_tpa_start_cmp *tpa_start,
1071 			   struct rx_tpa_start_cmp_ext *tpa_start1)
1072 {
1073 	u8 agg_id = TPA_START_AGG_ID(tpa_start);
1074 	u16 cons, prod;
1075 	struct bnxt_tpa_info *tpa_info;
1076 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
1077 	struct rx_bd *prod_bd;
1078 	dma_addr_t mapping;
1079 
1080 	cons = tpa_start->rx_tpa_start_cmp_opaque;
1081 	prod = rxr->rx_prod;
1082 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1083 	prod_rx_buf = &rxr->rx_buf_ring[prod];
1084 	tpa_info = &rxr->rx_tpa[agg_id];
1085 
1086 	if (unlikely(cons != rxr->rx_next_cons)) {
1087 		bnxt_sched_reset(bp, rxr);
1088 		return;
1089 	}
1090 	/* Store cfa_code in tpa_info to use in tpa_end
1091 	 * completion processing.
1092 	 */
1093 	tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1);
1094 	prod_rx_buf->data = tpa_info->data;
1095 	prod_rx_buf->data_ptr = tpa_info->data_ptr;
1096 
1097 	mapping = tpa_info->mapping;
1098 	prod_rx_buf->mapping = mapping;
1099 
1100 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
1101 
1102 	prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
1103 
1104 	tpa_info->data = cons_rx_buf->data;
1105 	tpa_info->data_ptr = cons_rx_buf->data_ptr;
1106 	cons_rx_buf->data = NULL;
1107 	tpa_info->mapping = cons_rx_buf->mapping;
1108 
1109 	tpa_info->len =
1110 		le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
1111 				RX_TPA_START_CMP_LEN_SHIFT;
1112 	if (likely(TPA_START_HASH_VALID(tpa_start))) {
1113 		u32 hash_type = TPA_START_HASH_TYPE(tpa_start);
1114 
1115 		tpa_info->hash_type = PKT_HASH_TYPE_L4;
1116 		tpa_info->gso_type = SKB_GSO_TCPV4;
1117 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1118 		if (hash_type == 3)
1119 			tpa_info->gso_type = SKB_GSO_TCPV6;
1120 		tpa_info->rss_hash =
1121 			le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
1122 	} else {
1123 		tpa_info->hash_type = PKT_HASH_TYPE_NONE;
1124 		tpa_info->gso_type = 0;
1125 		if (netif_msg_rx_err(bp))
1126 			netdev_warn(bp->dev, "TPA packet without valid hash\n");
1127 	}
1128 	tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
1129 	tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
1130 	tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info);
1131 
1132 	rxr->rx_prod = NEXT_RX(prod);
1133 	cons = NEXT_RX(cons);
1134 	rxr->rx_next_cons = NEXT_RX(cons);
1135 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1136 
1137 	bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
1138 	rxr->rx_prod = NEXT_RX(rxr->rx_prod);
1139 	cons_rx_buf->data = NULL;
1140 }
1141 
1142 static void bnxt_abort_tpa(struct bnxt *bp, struct bnxt_napi *bnapi,
1143 			   u16 cp_cons, u32 agg_bufs)
1144 {
1145 	if (agg_bufs)
1146 		bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
1147 }
1148 
1149 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info,
1150 					   int payload_off, int tcp_ts,
1151 					   struct sk_buff *skb)
1152 {
1153 #ifdef CONFIG_INET
1154 	struct tcphdr *th;
1155 	int len, nw_off;
1156 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1157 	u32 hdr_info = tpa_info->hdr_info;
1158 	bool loopback = false;
1159 
1160 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1161 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1162 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1163 
1164 	/* If the packet is an internal loopback packet, the offsets will
1165 	 * have an extra 4 bytes.
1166 	 */
1167 	if (inner_mac_off == 4) {
1168 		loopback = true;
1169 	} else if (inner_mac_off > 4) {
1170 		__be16 proto = *((__be16 *)(skb->data + inner_ip_off -
1171 					    ETH_HLEN - 2));
1172 
1173 		/* We only support inner iPv4/ipv6.  If we don't see the
1174 		 * correct protocol ID, it must be a loopback packet where
1175 		 * the offsets are off by 4.
1176 		 */
1177 		if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6))
1178 			loopback = true;
1179 	}
1180 	if (loopback) {
1181 		/* internal loopback packet, subtract all offsets by 4 */
1182 		inner_ip_off -= 4;
1183 		inner_mac_off -= 4;
1184 		outer_ip_off -= 4;
1185 	}
1186 
1187 	nw_off = inner_ip_off - ETH_HLEN;
1188 	skb_set_network_header(skb, nw_off);
1189 	if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) {
1190 		struct ipv6hdr *iph = ipv6_hdr(skb);
1191 
1192 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1193 		len = skb->len - skb_transport_offset(skb);
1194 		th = tcp_hdr(skb);
1195 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1196 	} else {
1197 		struct iphdr *iph = ip_hdr(skb);
1198 
1199 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1200 		len = skb->len - skb_transport_offset(skb);
1201 		th = tcp_hdr(skb);
1202 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1203 	}
1204 
1205 	if (inner_mac_off) { /* tunnel */
1206 		struct udphdr *uh = NULL;
1207 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1208 					    ETH_HLEN - 2));
1209 
1210 		if (proto == htons(ETH_P_IP)) {
1211 			struct iphdr *iph = (struct iphdr *)skb->data;
1212 
1213 			if (iph->protocol == IPPROTO_UDP)
1214 				uh = (struct udphdr *)(iph + 1);
1215 		} else {
1216 			struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1217 
1218 			if (iph->nexthdr == IPPROTO_UDP)
1219 				uh = (struct udphdr *)(iph + 1);
1220 		}
1221 		if (uh) {
1222 			if (uh->check)
1223 				skb_shinfo(skb)->gso_type |=
1224 					SKB_GSO_UDP_TUNNEL_CSUM;
1225 			else
1226 				skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1227 		}
1228 	}
1229 #endif
1230 	return skb;
1231 }
1232 
1233 #define BNXT_IPV4_HDR_SIZE	(sizeof(struct iphdr) + sizeof(struct tcphdr))
1234 #define BNXT_IPV6_HDR_SIZE	(sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
1235 
1236 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info,
1237 					   int payload_off, int tcp_ts,
1238 					   struct sk_buff *skb)
1239 {
1240 #ifdef CONFIG_INET
1241 	struct tcphdr *th;
1242 	int len, nw_off, tcp_opt_len = 0;
1243 
1244 	if (tcp_ts)
1245 		tcp_opt_len = 12;
1246 
1247 	if (tpa_info->gso_type == SKB_GSO_TCPV4) {
1248 		struct iphdr *iph;
1249 
1250 		nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
1251 			 ETH_HLEN;
1252 		skb_set_network_header(skb, nw_off);
1253 		iph = ip_hdr(skb);
1254 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1255 		len = skb->len - skb_transport_offset(skb);
1256 		th = tcp_hdr(skb);
1257 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1258 	} else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
1259 		struct ipv6hdr *iph;
1260 
1261 		nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
1262 			 ETH_HLEN;
1263 		skb_set_network_header(skb, nw_off);
1264 		iph = ipv6_hdr(skb);
1265 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1266 		len = skb->len - skb_transport_offset(skb);
1267 		th = tcp_hdr(skb);
1268 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1269 	} else {
1270 		dev_kfree_skb_any(skb);
1271 		return NULL;
1272 	}
1273 
1274 	if (nw_off) { /* tunnel */
1275 		struct udphdr *uh = NULL;
1276 
1277 		if (skb->protocol == htons(ETH_P_IP)) {
1278 			struct iphdr *iph = (struct iphdr *)skb->data;
1279 
1280 			if (iph->protocol == IPPROTO_UDP)
1281 				uh = (struct udphdr *)(iph + 1);
1282 		} else {
1283 			struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1284 
1285 			if (iph->nexthdr == IPPROTO_UDP)
1286 				uh = (struct udphdr *)(iph + 1);
1287 		}
1288 		if (uh) {
1289 			if (uh->check)
1290 				skb_shinfo(skb)->gso_type |=
1291 					SKB_GSO_UDP_TUNNEL_CSUM;
1292 			else
1293 				skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1294 		}
1295 	}
1296 #endif
1297 	return skb;
1298 }
1299 
1300 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp,
1301 					   struct bnxt_tpa_info *tpa_info,
1302 					   struct rx_tpa_end_cmp *tpa_end,
1303 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1304 					   struct sk_buff *skb)
1305 {
1306 #ifdef CONFIG_INET
1307 	int payload_off;
1308 	u16 segs;
1309 
1310 	segs = TPA_END_TPA_SEGS(tpa_end);
1311 	if (segs == 1)
1312 		return skb;
1313 
1314 	NAPI_GRO_CB(skb)->count = segs;
1315 	skb_shinfo(skb)->gso_size =
1316 		le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
1317 	skb_shinfo(skb)->gso_type = tpa_info->gso_type;
1318 	payload_off = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
1319 		       RX_TPA_END_CMP_PAYLOAD_OFFSET) >>
1320 		      RX_TPA_END_CMP_PAYLOAD_OFFSET_SHIFT;
1321 	skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb);
1322 	if (likely(skb))
1323 		tcp_gro_complete(skb);
1324 #endif
1325 	return skb;
1326 }
1327 
1328 /* Given the cfa_code of a received packet determine which
1329  * netdev (vf-rep or PF) the packet is destined to.
1330  */
1331 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code)
1332 {
1333 	struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code);
1334 
1335 	/* if vf-rep dev is NULL, the must belongs to the PF */
1336 	return dev ? dev : bp->dev;
1337 }
1338 
1339 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
1340 					   struct bnxt_napi *bnapi,
1341 					   u32 *raw_cons,
1342 					   struct rx_tpa_end_cmp *tpa_end,
1343 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1344 					   u8 *event)
1345 {
1346 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1347 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1348 	u8 agg_id = TPA_END_AGG_ID(tpa_end);
1349 	u8 *data_ptr, agg_bufs;
1350 	u16 cp_cons = RING_CMP(*raw_cons);
1351 	unsigned int len;
1352 	struct bnxt_tpa_info *tpa_info;
1353 	dma_addr_t mapping;
1354 	struct sk_buff *skb;
1355 	void *data;
1356 
1357 	if (unlikely(bnapi->in_reset)) {
1358 		int rc = bnxt_discard_rx(bp, bnapi, raw_cons, tpa_end);
1359 
1360 		if (rc < 0)
1361 			return ERR_PTR(-EBUSY);
1362 		return NULL;
1363 	}
1364 
1365 	tpa_info = &rxr->rx_tpa[agg_id];
1366 	data = tpa_info->data;
1367 	data_ptr = tpa_info->data_ptr;
1368 	prefetch(data_ptr);
1369 	len = tpa_info->len;
1370 	mapping = tpa_info->mapping;
1371 
1372 	agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
1373 		    RX_TPA_END_CMP_AGG_BUFS) >> RX_TPA_END_CMP_AGG_BUFS_SHIFT;
1374 
1375 	if (agg_bufs) {
1376 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
1377 			return ERR_PTR(-EBUSY);
1378 
1379 		*event |= BNXT_AGG_EVENT;
1380 		cp_cons = NEXT_CMP(cp_cons);
1381 	}
1382 
1383 	if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) {
1384 		bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1385 		if (agg_bufs > MAX_SKB_FRAGS)
1386 			netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
1387 				    agg_bufs, (int)MAX_SKB_FRAGS);
1388 		return NULL;
1389 	}
1390 
1391 	if (len <= bp->rx_copy_thresh) {
1392 		skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping);
1393 		if (!skb) {
1394 			bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1395 			return NULL;
1396 		}
1397 	} else {
1398 		u8 *new_data;
1399 		dma_addr_t new_mapping;
1400 
1401 		new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC);
1402 		if (!new_data) {
1403 			bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1404 			return NULL;
1405 		}
1406 
1407 		tpa_info->data = new_data;
1408 		tpa_info->data_ptr = new_data + bp->rx_offset;
1409 		tpa_info->mapping = new_mapping;
1410 
1411 		skb = build_skb(data, 0);
1412 		dma_unmap_single_attrs(&bp->pdev->dev, mapping,
1413 				       bp->rx_buf_use_size, bp->rx_dir,
1414 				       DMA_ATTR_WEAK_ORDERING);
1415 
1416 		if (!skb) {
1417 			kfree(data);
1418 			bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1419 			return NULL;
1420 		}
1421 		skb_reserve(skb, bp->rx_offset);
1422 		skb_put(skb, len);
1423 	}
1424 
1425 	if (agg_bufs) {
1426 		skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
1427 		if (!skb) {
1428 			/* Page reuse already handled by bnxt_rx_pages(). */
1429 			return NULL;
1430 		}
1431 	}
1432 
1433 	skb->protocol =
1434 		eth_type_trans(skb, bnxt_get_pkt_dev(bp, tpa_info->cfa_code));
1435 
1436 	if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1437 		skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1438 
1439 	if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) &&
1440 	    (skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
1441 		u16 vlan_proto = tpa_info->metadata >>
1442 			RX_CMP_FLAGS2_METADATA_TPID_SFT;
1443 		u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1444 
1445 		__vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1446 	}
1447 
1448 	skb_checksum_none_assert(skb);
1449 	if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1450 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1451 		skb->csum_level =
1452 			(tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1453 	}
1454 
1455 	if (TPA_END_GRO(tpa_end))
1456 		skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb);
1457 
1458 	return skb;
1459 }
1460 
1461 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi,
1462 			     struct sk_buff *skb)
1463 {
1464 	if (skb->dev != bp->dev) {
1465 		/* this packet belongs to a vf-rep */
1466 		bnxt_vf_rep_rx(bp, skb);
1467 		return;
1468 	}
1469 	skb_record_rx_queue(skb, bnapi->index);
1470 	napi_gro_receive(&bnapi->napi, skb);
1471 }
1472 
1473 /* returns the following:
1474  * 1       - 1 packet successfully received
1475  * 0       - successful TPA_START, packet not completed yet
1476  * -EBUSY  - completion ring does not have all the agg buffers yet
1477  * -ENOMEM - packet aborted due to out of memory
1478  * -EIO    - packet aborted due to hw error indicated in BD
1479  */
1480 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_napi *bnapi, u32 *raw_cons,
1481 		       u8 *event)
1482 {
1483 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1484 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1485 	struct net_device *dev = bp->dev;
1486 	struct rx_cmp *rxcmp;
1487 	struct rx_cmp_ext *rxcmp1;
1488 	u32 tmp_raw_cons = *raw_cons;
1489 	u16 cfa_code, cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
1490 	struct bnxt_sw_rx_bd *rx_buf;
1491 	unsigned int len;
1492 	u8 *data_ptr, agg_bufs, cmp_type;
1493 	dma_addr_t dma_addr;
1494 	struct sk_buff *skb;
1495 	void *data;
1496 	int rc = 0;
1497 	u32 misc;
1498 
1499 	rxcmp = (struct rx_cmp *)
1500 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1501 
1502 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1503 	cp_cons = RING_CMP(tmp_raw_cons);
1504 	rxcmp1 = (struct rx_cmp_ext *)
1505 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1506 
1507 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1508 		return -EBUSY;
1509 
1510 	cmp_type = RX_CMP_TYPE(rxcmp);
1511 
1512 	prod = rxr->rx_prod;
1513 
1514 	if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) {
1515 		bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp,
1516 			       (struct rx_tpa_start_cmp_ext *)rxcmp1);
1517 
1518 		*event |= BNXT_RX_EVENT;
1519 		goto next_rx_no_prod_no_len;
1520 
1521 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1522 		skb = bnxt_tpa_end(bp, bnapi, &tmp_raw_cons,
1523 				   (struct rx_tpa_end_cmp *)rxcmp,
1524 				   (struct rx_tpa_end_cmp_ext *)rxcmp1, event);
1525 
1526 		if (IS_ERR(skb))
1527 			return -EBUSY;
1528 
1529 		rc = -ENOMEM;
1530 		if (likely(skb)) {
1531 			bnxt_deliver_skb(bp, bnapi, skb);
1532 			rc = 1;
1533 		}
1534 		*event |= BNXT_RX_EVENT;
1535 		goto next_rx_no_prod_no_len;
1536 	}
1537 
1538 	cons = rxcmp->rx_cmp_opaque;
1539 	rx_buf = &rxr->rx_buf_ring[cons];
1540 	data = rx_buf->data;
1541 	data_ptr = rx_buf->data_ptr;
1542 	if (unlikely(cons != rxr->rx_next_cons)) {
1543 		int rc1 = bnxt_discard_rx(bp, bnapi, raw_cons, rxcmp);
1544 
1545 		bnxt_sched_reset(bp, rxr);
1546 		return rc1;
1547 	}
1548 	prefetch(data_ptr);
1549 
1550 	misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1);
1551 	agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT;
1552 
1553 	if (agg_bufs) {
1554 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1555 			return -EBUSY;
1556 
1557 		cp_cons = NEXT_CMP(cp_cons);
1558 		*event |= BNXT_AGG_EVENT;
1559 	}
1560 	*event |= BNXT_RX_EVENT;
1561 
1562 	rx_buf->data = NULL;
1563 	if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
1564 		bnxt_reuse_rx_data(rxr, cons, data);
1565 		if (agg_bufs)
1566 			bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
1567 
1568 		rc = -EIO;
1569 		goto next_rx;
1570 	}
1571 
1572 	len = le32_to_cpu(rxcmp->rx_cmp_len_flags_type) >> RX_CMP_LEN_SHIFT;
1573 	dma_addr = rx_buf->mapping;
1574 
1575 	if (bnxt_rx_xdp(bp, rxr, cons, data, &data_ptr, &len, event)) {
1576 		rc = 1;
1577 		goto next_rx;
1578 	}
1579 
1580 	if (len <= bp->rx_copy_thresh) {
1581 		skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr);
1582 		bnxt_reuse_rx_data(rxr, cons, data);
1583 		if (!skb) {
1584 			rc = -ENOMEM;
1585 			goto next_rx;
1586 		}
1587 	} else {
1588 		u32 payload;
1589 
1590 		if (rx_buf->data_ptr == data_ptr)
1591 			payload = misc & RX_CMP_PAYLOAD_OFFSET;
1592 		else
1593 			payload = 0;
1594 		skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr,
1595 				      payload | len);
1596 		if (!skb) {
1597 			rc = -ENOMEM;
1598 			goto next_rx;
1599 		}
1600 	}
1601 
1602 	if (agg_bufs) {
1603 		skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
1604 		if (!skb) {
1605 			rc = -ENOMEM;
1606 			goto next_rx;
1607 		}
1608 	}
1609 
1610 	if (RX_CMP_HASH_VALID(rxcmp)) {
1611 		u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
1612 		enum pkt_hash_types type = PKT_HASH_TYPE_L4;
1613 
1614 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1615 		if (hash_type != 1 && hash_type != 3)
1616 			type = PKT_HASH_TYPE_L3;
1617 		skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
1618 	}
1619 
1620 	cfa_code = RX_CMP_CFA_CODE(rxcmp1);
1621 	skb->protocol = eth_type_trans(skb, bnxt_get_pkt_dev(bp, cfa_code));
1622 
1623 	if ((rxcmp1->rx_cmp_flags2 &
1624 	     cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) &&
1625 	    (skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
1626 		u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
1627 		u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1628 		u16 vlan_proto = meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT;
1629 
1630 		__vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1631 	}
1632 
1633 	skb_checksum_none_assert(skb);
1634 	if (RX_CMP_L4_CS_OK(rxcmp1)) {
1635 		if (dev->features & NETIF_F_RXCSUM) {
1636 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1637 			skb->csum_level = RX_CMP_ENCAP(rxcmp1);
1638 		}
1639 	} else {
1640 		if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
1641 			if (dev->features & NETIF_F_RXCSUM)
1642 				cpr->rx_l4_csum_errors++;
1643 		}
1644 	}
1645 
1646 	bnxt_deliver_skb(bp, bnapi, skb);
1647 	rc = 1;
1648 
1649 next_rx:
1650 	rxr->rx_prod = NEXT_RX(prod);
1651 	rxr->rx_next_cons = NEXT_RX(cons);
1652 
1653 	cpr->rx_packets += 1;
1654 	cpr->rx_bytes += len;
1655 
1656 next_rx_no_prod_no_len:
1657 	*raw_cons = tmp_raw_cons;
1658 
1659 	return rc;
1660 }
1661 
1662 /* In netpoll mode, if we are using a combined completion ring, we need to
1663  * discard the rx packets and recycle the buffers.
1664  */
1665 static int bnxt_force_rx_discard(struct bnxt *bp, struct bnxt_napi *bnapi,
1666 				 u32 *raw_cons, u8 *event)
1667 {
1668 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1669 	u32 tmp_raw_cons = *raw_cons;
1670 	struct rx_cmp_ext *rxcmp1;
1671 	struct rx_cmp *rxcmp;
1672 	u16 cp_cons;
1673 	u8 cmp_type;
1674 
1675 	cp_cons = RING_CMP(tmp_raw_cons);
1676 	rxcmp = (struct rx_cmp *)
1677 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1678 
1679 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1680 	cp_cons = RING_CMP(tmp_raw_cons);
1681 	rxcmp1 = (struct rx_cmp_ext *)
1682 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1683 
1684 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1685 		return -EBUSY;
1686 
1687 	cmp_type = RX_CMP_TYPE(rxcmp);
1688 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1689 		rxcmp1->rx_cmp_cfa_code_errors_v2 |=
1690 			cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
1691 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1692 		struct rx_tpa_end_cmp_ext *tpa_end1;
1693 
1694 		tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1;
1695 		tpa_end1->rx_tpa_end_cmp_errors_v2 |=
1696 			cpu_to_le32(RX_TPA_END_CMP_ERRORS);
1697 	}
1698 	return bnxt_rx_pkt(bp, bnapi, raw_cons, event);
1699 }
1700 
1701 #define BNXT_GET_EVENT_PORT(data)	\
1702 	((data) &			\
1703 	 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK)
1704 
1705 static int bnxt_async_event_process(struct bnxt *bp,
1706 				    struct hwrm_async_event_cmpl *cmpl)
1707 {
1708 	u16 event_id = le16_to_cpu(cmpl->event_id);
1709 
1710 	/* TODO CHIMP_FW: Define event id's for link change, error etc */
1711 	switch (event_id) {
1712 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: {
1713 		u32 data1 = le32_to_cpu(cmpl->event_data1);
1714 		struct bnxt_link_info *link_info = &bp->link_info;
1715 
1716 		if (BNXT_VF(bp))
1717 			goto async_event_process_exit;
1718 
1719 		/* print unsupported speed warning in forced speed mode only */
1720 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) &&
1721 		    (data1 & 0x20000)) {
1722 			u16 fw_speed = link_info->force_link_speed;
1723 			u32 speed = bnxt_fw_to_ethtool_speed(fw_speed);
1724 
1725 			if (speed != SPEED_UNKNOWN)
1726 				netdev_warn(bp->dev, "Link speed %d no longer supported\n",
1727 					    speed);
1728 		}
1729 		set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event);
1730 		/* fall through */
1731 	}
1732 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
1733 		set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
1734 		break;
1735 	case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD:
1736 		set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event);
1737 		break;
1738 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: {
1739 		u32 data1 = le32_to_cpu(cmpl->event_data1);
1740 		u16 port_id = BNXT_GET_EVENT_PORT(data1);
1741 
1742 		if (BNXT_VF(bp))
1743 			break;
1744 
1745 		if (bp->pf.port_id != port_id)
1746 			break;
1747 
1748 		set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event);
1749 		break;
1750 	}
1751 	case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE:
1752 		if (BNXT_PF(bp))
1753 			goto async_event_process_exit;
1754 		set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event);
1755 		break;
1756 	default:
1757 		goto async_event_process_exit;
1758 	}
1759 	bnxt_queue_sp_work(bp);
1760 async_event_process_exit:
1761 	bnxt_ulp_async_events(bp, cmpl);
1762 	return 0;
1763 }
1764 
1765 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
1766 {
1767 	u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
1768 	struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
1769 	struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
1770 				(struct hwrm_fwd_req_cmpl *)txcmp;
1771 
1772 	switch (cmpl_type) {
1773 	case CMPL_BASE_TYPE_HWRM_DONE:
1774 		seq_id = le16_to_cpu(h_cmpl->sequence_id);
1775 		if (seq_id == bp->hwrm_intr_seq_id)
1776 			bp->hwrm_intr_seq_id = HWRM_SEQ_ID_INVALID;
1777 		else
1778 			netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id);
1779 		break;
1780 
1781 	case CMPL_BASE_TYPE_HWRM_FWD_REQ:
1782 		vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
1783 
1784 		if ((vf_id < bp->pf.first_vf_id) ||
1785 		    (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
1786 			netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
1787 				   vf_id);
1788 			return -EINVAL;
1789 		}
1790 
1791 		set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
1792 		set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event);
1793 		bnxt_queue_sp_work(bp);
1794 		break;
1795 
1796 	case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
1797 		bnxt_async_event_process(bp,
1798 					 (struct hwrm_async_event_cmpl *)txcmp);
1799 
1800 	default:
1801 		break;
1802 	}
1803 
1804 	return 0;
1805 }
1806 
1807 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
1808 {
1809 	struct bnxt_napi *bnapi = dev_instance;
1810 	struct bnxt *bp = bnapi->bp;
1811 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1812 	u32 cons = RING_CMP(cpr->cp_raw_cons);
1813 
1814 	cpr->event_ctr++;
1815 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1816 	napi_schedule(&bnapi->napi);
1817 	return IRQ_HANDLED;
1818 }
1819 
1820 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
1821 {
1822 	u32 raw_cons = cpr->cp_raw_cons;
1823 	u16 cons = RING_CMP(raw_cons);
1824 	struct tx_cmp *txcmp;
1825 
1826 	txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1827 
1828 	return TX_CMP_VALID(txcmp, raw_cons);
1829 }
1830 
1831 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
1832 {
1833 	struct bnxt_napi *bnapi = dev_instance;
1834 	struct bnxt *bp = bnapi->bp;
1835 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1836 	u32 cons = RING_CMP(cpr->cp_raw_cons);
1837 	u32 int_status;
1838 
1839 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1840 
1841 	if (!bnxt_has_work(bp, cpr)) {
1842 		int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
1843 		/* return if erroneous interrupt */
1844 		if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
1845 			return IRQ_NONE;
1846 	}
1847 
1848 	/* disable ring IRQ */
1849 	BNXT_CP_DB_IRQ_DIS(cpr->cp_doorbell);
1850 
1851 	/* Return here if interrupt is shared and is disabled. */
1852 	if (unlikely(atomic_read(&bp->intr_sem) != 0))
1853 		return IRQ_HANDLED;
1854 
1855 	napi_schedule(&bnapi->napi);
1856 	return IRQ_HANDLED;
1857 }
1858 
1859 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
1860 {
1861 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1862 	u32 raw_cons = cpr->cp_raw_cons;
1863 	u32 cons;
1864 	int tx_pkts = 0;
1865 	int rx_pkts = 0;
1866 	u8 event = 0;
1867 	struct tx_cmp *txcmp;
1868 
1869 	while (1) {
1870 		int rc;
1871 
1872 		cons = RING_CMP(raw_cons);
1873 		txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1874 
1875 		if (!TX_CMP_VALID(txcmp, raw_cons))
1876 			break;
1877 
1878 		/* The valid test of the entry must be done first before
1879 		 * reading any further.
1880 		 */
1881 		dma_rmb();
1882 		if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) {
1883 			tx_pkts++;
1884 			/* return full budget so NAPI will complete. */
1885 			if (unlikely(tx_pkts > bp->tx_wake_thresh))
1886 				rx_pkts = budget;
1887 		} else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
1888 			if (likely(budget))
1889 				rc = bnxt_rx_pkt(bp, bnapi, &raw_cons, &event);
1890 			else
1891 				rc = bnxt_force_rx_discard(bp, bnapi, &raw_cons,
1892 							   &event);
1893 			if (likely(rc >= 0))
1894 				rx_pkts += rc;
1895 			/* Increment rx_pkts when rc is -ENOMEM to count towards
1896 			 * the NAPI budget.  Otherwise, we may potentially loop
1897 			 * here forever if we consistently cannot allocate
1898 			 * buffers.
1899 			 */
1900 			else if (rc == -ENOMEM && budget)
1901 				rx_pkts++;
1902 			else if (rc == -EBUSY)	/* partial completion */
1903 				break;
1904 		} else if (unlikely((TX_CMP_TYPE(txcmp) ==
1905 				     CMPL_BASE_TYPE_HWRM_DONE) ||
1906 				    (TX_CMP_TYPE(txcmp) ==
1907 				     CMPL_BASE_TYPE_HWRM_FWD_REQ) ||
1908 				    (TX_CMP_TYPE(txcmp) ==
1909 				     CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) {
1910 			bnxt_hwrm_handler(bp, txcmp);
1911 		}
1912 		raw_cons = NEXT_RAW_CMP(raw_cons);
1913 
1914 		if (rx_pkts == budget)
1915 			break;
1916 	}
1917 
1918 	if (event & BNXT_TX_EVENT) {
1919 		struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
1920 		void __iomem *db = txr->tx_doorbell;
1921 		u16 prod = txr->tx_prod;
1922 
1923 		/* Sync BD data before updating doorbell */
1924 		wmb();
1925 
1926 		bnxt_db_write_relaxed(bp, db, DB_KEY_TX | prod);
1927 	}
1928 
1929 	cpr->cp_raw_cons = raw_cons;
1930 	/* ACK completion ring before freeing tx ring and producing new
1931 	 * buffers in rx/agg rings to prevent overflowing the completion
1932 	 * ring.
1933 	 */
1934 	BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
1935 
1936 	if (tx_pkts)
1937 		bnapi->tx_int(bp, bnapi, tx_pkts);
1938 
1939 	if (event & BNXT_RX_EVENT) {
1940 		struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1941 
1942 		bnxt_db_write(bp, rxr->rx_doorbell, DB_KEY_RX | rxr->rx_prod);
1943 		if (event & BNXT_AGG_EVENT)
1944 			bnxt_db_write(bp, rxr->rx_agg_doorbell,
1945 				      DB_KEY_RX | rxr->rx_agg_prod);
1946 	}
1947 	return rx_pkts;
1948 }
1949 
1950 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget)
1951 {
1952 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
1953 	struct bnxt *bp = bnapi->bp;
1954 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1955 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1956 	struct tx_cmp *txcmp;
1957 	struct rx_cmp_ext *rxcmp1;
1958 	u32 cp_cons, tmp_raw_cons;
1959 	u32 raw_cons = cpr->cp_raw_cons;
1960 	u32 rx_pkts = 0;
1961 	u8 event = 0;
1962 
1963 	while (1) {
1964 		int rc;
1965 
1966 		cp_cons = RING_CMP(raw_cons);
1967 		txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1968 
1969 		if (!TX_CMP_VALID(txcmp, raw_cons))
1970 			break;
1971 
1972 		if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
1973 			tmp_raw_cons = NEXT_RAW_CMP(raw_cons);
1974 			cp_cons = RING_CMP(tmp_raw_cons);
1975 			rxcmp1 = (struct rx_cmp_ext *)
1976 			  &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1977 
1978 			if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1979 				break;
1980 
1981 			/* force an error to recycle the buffer */
1982 			rxcmp1->rx_cmp_cfa_code_errors_v2 |=
1983 				cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
1984 
1985 			rc = bnxt_rx_pkt(bp, bnapi, &raw_cons, &event);
1986 			if (likely(rc == -EIO) && budget)
1987 				rx_pkts++;
1988 			else if (rc == -EBUSY)	/* partial completion */
1989 				break;
1990 		} else if (unlikely(TX_CMP_TYPE(txcmp) ==
1991 				    CMPL_BASE_TYPE_HWRM_DONE)) {
1992 			bnxt_hwrm_handler(bp, txcmp);
1993 		} else {
1994 			netdev_err(bp->dev,
1995 				   "Invalid completion received on special ring\n");
1996 		}
1997 		raw_cons = NEXT_RAW_CMP(raw_cons);
1998 
1999 		if (rx_pkts == budget)
2000 			break;
2001 	}
2002 
2003 	cpr->cp_raw_cons = raw_cons;
2004 	BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
2005 	bnxt_db_write(bp, rxr->rx_doorbell, DB_KEY_RX | rxr->rx_prod);
2006 
2007 	if (event & BNXT_AGG_EVENT)
2008 		bnxt_db_write(bp, rxr->rx_agg_doorbell,
2009 			      DB_KEY_RX | rxr->rx_agg_prod);
2010 
2011 	if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) {
2012 		napi_complete_done(napi, rx_pkts);
2013 		BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
2014 	}
2015 	return rx_pkts;
2016 }
2017 
2018 static int bnxt_poll(struct napi_struct *napi, int budget)
2019 {
2020 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2021 	struct bnxt *bp = bnapi->bp;
2022 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2023 	int work_done = 0;
2024 
2025 	while (1) {
2026 		work_done += bnxt_poll_work(bp, bnapi, budget - work_done);
2027 
2028 		if (work_done >= budget)
2029 			break;
2030 
2031 		if (!bnxt_has_work(bp, cpr)) {
2032 			if (napi_complete_done(napi, work_done))
2033 				BNXT_CP_DB_REARM(cpr->cp_doorbell,
2034 						 cpr->cp_raw_cons);
2035 			break;
2036 		}
2037 	}
2038 	if (bp->flags & BNXT_FLAG_DIM) {
2039 		struct net_dim_sample dim_sample;
2040 
2041 		net_dim_sample(cpr->event_ctr,
2042 			       cpr->rx_packets,
2043 			       cpr->rx_bytes,
2044 			       &dim_sample);
2045 		net_dim(&cpr->dim, dim_sample);
2046 	}
2047 	mmiowb();
2048 	return work_done;
2049 }
2050 
2051 static void bnxt_free_tx_skbs(struct bnxt *bp)
2052 {
2053 	int i, max_idx;
2054 	struct pci_dev *pdev = bp->pdev;
2055 
2056 	if (!bp->tx_ring)
2057 		return;
2058 
2059 	max_idx = bp->tx_nr_pages * TX_DESC_CNT;
2060 	for (i = 0; i < bp->tx_nr_rings; i++) {
2061 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2062 		int j;
2063 
2064 		for (j = 0; j < max_idx;) {
2065 			struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
2066 			struct sk_buff *skb = tx_buf->skb;
2067 			int k, last;
2068 
2069 			if (!skb) {
2070 				j++;
2071 				continue;
2072 			}
2073 
2074 			tx_buf->skb = NULL;
2075 
2076 			if (tx_buf->is_push) {
2077 				dev_kfree_skb(skb);
2078 				j += 2;
2079 				continue;
2080 			}
2081 
2082 			dma_unmap_single(&pdev->dev,
2083 					 dma_unmap_addr(tx_buf, mapping),
2084 					 skb_headlen(skb),
2085 					 PCI_DMA_TODEVICE);
2086 
2087 			last = tx_buf->nr_frags;
2088 			j += 2;
2089 			for (k = 0; k < last; k++, j++) {
2090 				int ring_idx = j & bp->tx_ring_mask;
2091 				skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2092 
2093 				tx_buf = &txr->tx_buf_ring[ring_idx];
2094 				dma_unmap_page(
2095 					&pdev->dev,
2096 					dma_unmap_addr(tx_buf, mapping),
2097 					skb_frag_size(frag), PCI_DMA_TODEVICE);
2098 			}
2099 			dev_kfree_skb(skb);
2100 		}
2101 		netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
2102 	}
2103 }
2104 
2105 static void bnxt_free_rx_skbs(struct bnxt *bp)
2106 {
2107 	int i, max_idx, max_agg_idx;
2108 	struct pci_dev *pdev = bp->pdev;
2109 
2110 	if (!bp->rx_ring)
2111 		return;
2112 
2113 	max_idx = bp->rx_nr_pages * RX_DESC_CNT;
2114 	max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
2115 	for (i = 0; i < bp->rx_nr_rings; i++) {
2116 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2117 		int j;
2118 
2119 		if (rxr->rx_tpa) {
2120 			for (j = 0; j < MAX_TPA; j++) {
2121 				struct bnxt_tpa_info *tpa_info =
2122 							&rxr->rx_tpa[j];
2123 				u8 *data = tpa_info->data;
2124 
2125 				if (!data)
2126 					continue;
2127 
2128 				dma_unmap_single_attrs(&pdev->dev,
2129 						       tpa_info->mapping,
2130 						       bp->rx_buf_use_size,
2131 						       bp->rx_dir,
2132 						       DMA_ATTR_WEAK_ORDERING);
2133 
2134 				tpa_info->data = NULL;
2135 
2136 				kfree(data);
2137 			}
2138 		}
2139 
2140 		for (j = 0; j < max_idx; j++) {
2141 			struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[j];
2142 			dma_addr_t mapping = rx_buf->mapping;
2143 			void *data = rx_buf->data;
2144 
2145 			if (!data)
2146 				continue;
2147 
2148 			rx_buf->data = NULL;
2149 
2150 			if (BNXT_RX_PAGE_MODE(bp)) {
2151 				mapping -= bp->rx_dma_offset;
2152 				dma_unmap_page_attrs(&pdev->dev, mapping,
2153 						     PAGE_SIZE, bp->rx_dir,
2154 						     DMA_ATTR_WEAK_ORDERING);
2155 				__free_page(data);
2156 			} else {
2157 				dma_unmap_single_attrs(&pdev->dev, mapping,
2158 						       bp->rx_buf_use_size,
2159 						       bp->rx_dir,
2160 						       DMA_ATTR_WEAK_ORDERING);
2161 				kfree(data);
2162 			}
2163 		}
2164 
2165 		for (j = 0; j < max_agg_idx; j++) {
2166 			struct bnxt_sw_rx_agg_bd *rx_agg_buf =
2167 				&rxr->rx_agg_ring[j];
2168 			struct page *page = rx_agg_buf->page;
2169 
2170 			if (!page)
2171 				continue;
2172 
2173 			dma_unmap_page_attrs(&pdev->dev, rx_agg_buf->mapping,
2174 					     BNXT_RX_PAGE_SIZE,
2175 					     PCI_DMA_FROMDEVICE,
2176 					     DMA_ATTR_WEAK_ORDERING);
2177 
2178 			rx_agg_buf->page = NULL;
2179 			__clear_bit(j, rxr->rx_agg_bmap);
2180 
2181 			__free_page(page);
2182 		}
2183 		if (rxr->rx_page) {
2184 			__free_page(rxr->rx_page);
2185 			rxr->rx_page = NULL;
2186 		}
2187 	}
2188 }
2189 
2190 static void bnxt_free_skbs(struct bnxt *bp)
2191 {
2192 	bnxt_free_tx_skbs(bp);
2193 	bnxt_free_rx_skbs(bp);
2194 }
2195 
2196 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
2197 {
2198 	struct pci_dev *pdev = bp->pdev;
2199 	int i;
2200 
2201 	for (i = 0; i < ring->nr_pages; i++) {
2202 		if (!ring->pg_arr[i])
2203 			continue;
2204 
2205 		dma_free_coherent(&pdev->dev, ring->page_size,
2206 				  ring->pg_arr[i], ring->dma_arr[i]);
2207 
2208 		ring->pg_arr[i] = NULL;
2209 	}
2210 	if (ring->pg_tbl) {
2211 		dma_free_coherent(&pdev->dev, ring->nr_pages * 8,
2212 				  ring->pg_tbl, ring->pg_tbl_map);
2213 		ring->pg_tbl = NULL;
2214 	}
2215 	if (ring->vmem_size && *ring->vmem) {
2216 		vfree(*ring->vmem);
2217 		*ring->vmem = NULL;
2218 	}
2219 }
2220 
2221 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
2222 {
2223 	int i;
2224 	struct pci_dev *pdev = bp->pdev;
2225 
2226 	if (ring->nr_pages > 1) {
2227 		ring->pg_tbl = dma_alloc_coherent(&pdev->dev,
2228 						  ring->nr_pages * 8,
2229 						  &ring->pg_tbl_map,
2230 						  GFP_KERNEL);
2231 		if (!ring->pg_tbl)
2232 			return -ENOMEM;
2233 	}
2234 
2235 	for (i = 0; i < ring->nr_pages; i++) {
2236 		ring->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
2237 						     ring->page_size,
2238 						     &ring->dma_arr[i],
2239 						     GFP_KERNEL);
2240 		if (!ring->pg_arr[i])
2241 			return -ENOMEM;
2242 
2243 		if (ring->nr_pages > 1)
2244 			ring->pg_tbl[i] = cpu_to_le64(ring->dma_arr[i]);
2245 	}
2246 
2247 	if (ring->vmem_size) {
2248 		*ring->vmem = vzalloc(ring->vmem_size);
2249 		if (!(*ring->vmem))
2250 			return -ENOMEM;
2251 	}
2252 	return 0;
2253 }
2254 
2255 static void bnxt_free_rx_rings(struct bnxt *bp)
2256 {
2257 	int i;
2258 
2259 	if (!bp->rx_ring)
2260 		return;
2261 
2262 	for (i = 0; i < bp->rx_nr_rings; i++) {
2263 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2264 		struct bnxt_ring_struct *ring;
2265 
2266 		if (rxr->xdp_prog)
2267 			bpf_prog_put(rxr->xdp_prog);
2268 
2269 		if (xdp_rxq_info_is_reg(&rxr->xdp_rxq))
2270 			xdp_rxq_info_unreg(&rxr->xdp_rxq);
2271 
2272 		kfree(rxr->rx_tpa);
2273 		rxr->rx_tpa = NULL;
2274 
2275 		kfree(rxr->rx_agg_bmap);
2276 		rxr->rx_agg_bmap = NULL;
2277 
2278 		ring = &rxr->rx_ring_struct;
2279 		bnxt_free_ring(bp, ring);
2280 
2281 		ring = &rxr->rx_agg_ring_struct;
2282 		bnxt_free_ring(bp, ring);
2283 	}
2284 }
2285 
2286 static int bnxt_alloc_rx_rings(struct bnxt *bp)
2287 {
2288 	int i, rc, agg_rings = 0, tpa_rings = 0;
2289 
2290 	if (!bp->rx_ring)
2291 		return -ENOMEM;
2292 
2293 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
2294 		agg_rings = 1;
2295 
2296 	if (bp->flags & BNXT_FLAG_TPA)
2297 		tpa_rings = 1;
2298 
2299 	for (i = 0; i < bp->rx_nr_rings; i++) {
2300 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2301 		struct bnxt_ring_struct *ring;
2302 
2303 		ring = &rxr->rx_ring_struct;
2304 
2305 		rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i);
2306 		if (rc < 0)
2307 			return rc;
2308 
2309 		rc = bnxt_alloc_ring(bp, ring);
2310 		if (rc)
2311 			return rc;
2312 
2313 		if (agg_rings) {
2314 			u16 mem_size;
2315 
2316 			ring = &rxr->rx_agg_ring_struct;
2317 			rc = bnxt_alloc_ring(bp, ring);
2318 			if (rc)
2319 				return rc;
2320 
2321 			ring->grp_idx = i;
2322 			rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
2323 			mem_size = rxr->rx_agg_bmap_size / 8;
2324 			rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
2325 			if (!rxr->rx_agg_bmap)
2326 				return -ENOMEM;
2327 
2328 			if (tpa_rings) {
2329 				rxr->rx_tpa = kcalloc(MAX_TPA,
2330 						sizeof(struct bnxt_tpa_info),
2331 						GFP_KERNEL);
2332 				if (!rxr->rx_tpa)
2333 					return -ENOMEM;
2334 			}
2335 		}
2336 	}
2337 	return 0;
2338 }
2339 
2340 static void bnxt_free_tx_rings(struct bnxt *bp)
2341 {
2342 	int i;
2343 	struct pci_dev *pdev = bp->pdev;
2344 
2345 	if (!bp->tx_ring)
2346 		return;
2347 
2348 	for (i = 0; i < bp->tx_nr_rings; i++) {
2349 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2350 		struct bnxt_ring_struct *ring;
2351 
2352 		if (txr->tx_push) {
2353 			dma_free_coherent(&pdev->dev, bp->tx_push_size,
2354 					  txr->tx_push, txr->tx_push_mapping);
2355 			txr->tx_push = NULL;
2356 		}
2357 
2358 		ring = &txr->tx_ring_struct;
2359 
2360 		bnxt_free_ring(bp, ring);
2361 	}
2362 }
2363 
2364 static int bnxt_alloc_tx_rings(struct bnxt *bp)
2365 {
2366 	int i, j, rc;
2367 	struct pci_dev *pdev = bp->pdev;
2368 
2369 	bp->tx_push_size = 0;
2370 	if (bp->tx_push_thresh) {
2371 		int push_size;
2372 
2373 		push_size  = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
2374 					bp->tx_push_thresh);
2375 
2376 		if (push_size > 256) {
2377 			push_size = 0;
2378 			bp->tx_push_thresh = 0;
2379 		}
2380 
2381 		bp->tx_push_size = push_size;
2382 	}
2383 
2384 	for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
2385 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2386 		struct bnxt_ring_struct *ring;
2387 		u8 qidx;
2388 
2389 		ring = &txr->tx_ring_struct;
2390 
2391 		rc = bnxt_alloc_ring(bp, ring);
2392 		if (rc)
2393 			return rc;
2394 
2395 		ring->grp_idx = txr->bnapi->index;
2396 		if (bp->tx_push_size) {
2397 			dma_addr_t mapping;
2398 
2399 			/* One pre-allocated DMA buffer to backup
2400 			 * TX push operation
2401 			 */
2402 			txr->tx_push = dma_alloc_coherent(&pdev->dev,
2403 						bp->tx_push_size,
2404 						&txr->tx_push_mapping,
2405 						GFP_KERNEL);
2406 
2407 			if (!txr->tx_push)
2408 				return -ENOMEM;
2409 
2410 			mapping = txr->tx_push_mapping +
2411 				sizeof(struct tx_push_bd);
2412 			txr->data_mapping = cpu_to_le64(mapping);
2413 
2414 			memset(txr->tx_push, 0, sizeof(struct tx_push_bd));
2415 		}
2416 		qidx = bp->tc_to_qidx[j];
2417 		ring->queue_id = bp->q_info[qidx].queue_id;
2418 		if (i < bp->tx_nr_rings_xdp)
2419 			continue;
2420 		if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1))
2421 			j++;
2422 	}
2423 	return 0;
2424 }
2425 
2426 static void bnxt_free_cp_rings(struct bnxt *bp)
2427 {
2428 	int i;
2429 
2430 	if (!bp->bnapi)
2431 		return;
2432 
2433 	for (i = 0; i < bp->cp_nr_rings; i++) {
2434 		struct bnxt_napi *bnapi = bp->bnapi[i];
2435 		struct bnxt_cp_ring_info *cpr;
2436 		struct bnxt_ring_struct *ring;
2437 
2438 		if (!bnapi)
2439 			continue;
2440 
2441 		cpr = &bnapi->cp_ring;
2442 		ring = &cpr->cp_ring_struct;
2443 
2444 		bnxt_free_ring(bp, ring);
2445 	}
2446 }
2447 
2448 static int bnxt_alloc_cp_rings(struct bnxt *bp)
2449 {
2450 	int i, rc, ulp_base_vec, ulp_msix;
2451 
2452 	ulp_msix = bnxt_get_ulp_msix_num(bp);
2453 	ulp_base_vec = bnxt_get_ulp_msix_base(bp);
2454 	for (i = 0; i < bp->cp_nr_rings; i++) {
2455 		struct bnxt_napi *bnapi = bp->bnapi[i];
2456 		struct bnxt_cp_ring_info *cpr;
2457 		struct bnxt_ring_struct *ring;
2458 
2459 		if (!bnapi)
2460 			continue;
2461 
2462 		cpr = &bnapi->cp_ring;
2463 		ring = &cpr->cp_ring_struct;
2464 
2465 		rc = bnxt_alloc_ring(bp, ring);
2466 		if (rc)
2467 			return rc;
2468 
2469 		if (ulp_msix && i >= ulp_base_vec)
2470 			ring->map_idx = i + ulp_msix;
2471 		else
2472 			ring->map_idx = i;
2473 	}
2474 	return 0;
2475 }
2476 
2477 static void bnxt_init_ring_struct(struct bnxt *bp)
2478 {
2479 	int i;
2480 
2481 	for (i = 0; i < bp->cp_nr_rings; i++) {
2482 		struct bnxt_napi *bnapi = bp->bnapi[i];
2483 		struct bnxt_cp_ring_info *cpr;
2484 		struct bnxt_rx_ring_info *rxr;
2485 		struct bnxt_tx_ring_info *txr;
2486 		struct bnxt_ring_struct *ring;
2487 
2488 		if (!bnapi)
2489 			continue;
2490 
2491 		cpr = &bnapi->cp_ring;
2492 		ring = &cpr->cp_ring_struct;
2493 		ring->nr_pages = bp->cp_nr_pages;
2494 		ring->page_size = HW_CMPD_RING_SIZE;
2495 		ring->pg_arr = (void **)cpr->cp_desc_ring;
2496 		ring->dma_arr = cpr->cp_desc_mapping;
2497 		ring->vmem_size = 0;
2498 
2499 		rxr = bnapi->rx_ring;
2500 		if (!rxr)
2501 			goto skip_rx;
2502 
2503 		ring = &rxr->rx_ring_struct;
2504 		ring->nr_pages = bp->rx_nr_pages;
2505 		ring->page_size = HW_RXBD_RING_SIZE;
2506 		ring->pg_arr = (void **)rxr->rx_desc_ring;
2507 		ring->dma_arr = rxr->rx_desc_mapping;
2508 		ring->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
2509 		ring->vmem = (void **)&rxr->rx_buf_ring;
2510 
2511 		ring = &rxr->rx_agg_ring_struct;
2512 		ring->nr_pages = bp->rx_agg_nr_pages;
2513 		ring->page_size = HW_RXBD_RING_SIZE;
2514 		ring->pg_arr = (void **)rxr->rx_agg_desc_ring;
2515 		ring->dma_arr = rxr->rx_agg_desc_mapping;
2516 		ring->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
2517 		ring->vmem = (void **)&rxr->rx_agg_ring;
2518 
2519 skip_rx:
2520 		txr = bnapi->tx_ring;
2521 		if (!txr)
2522 			continue;
2523 
2524 		ring = &txr->tx_ring_struct;
2525 		ring->nr_pages = bp->tx_nr_pages;
2526 		ring->page_size = HW_RXBD_RING_SIZE;
2527 		ring->pg_arr = (void **)txr->tx_desc_ring;
2528 		ring->dma_arr = txr->tx_desc_mapping;
2529 		ring->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
2530 		ring->vmem = (void **)&txr->tx_buf_ring;
2531 	}
2532 }
2533 
2534 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
2535 {
2536 	int i;
2537 	u32 prod;
2538 	struct rx_bd **rx_buf_ring;
2539 
2540 	rx_buf_ring = (struct rx_bd **)ring->pg_arr;
2541 	for (i = 0, prod = 0; i < ring->nr_pages; i++) {
2542 		int j;
2543 		struct rx_bd *rxbd;
2544 
2545 		rxbd = rx_buf_ring[i];
2546 		if (!rxbd)
2547 			continue;
2548 
2549 		for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
2550 			rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
2551 			rxbd->rx_bd_opaque = prod;
2552 		}
2553 	}
2554 }
2555 
2556 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
2557 {
2558 	struct net_device *dev = bp->dev;
2559 	struct bnxt_rx_ring_info *rxr;
2560 	struct bnxt_ring_struct *ring;
2561 	u32 prod, type;
2562 	int i;
2563 
2564 	type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
2565 		RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
2566 
2567 	if (NET_IP_ALIGN == 2)
2568 		type |= RX_BD_FLAGS_SOP;
2569 
2570 	rxr = &bp->rx_ring[ring_nr];
2571 	ring = &rxr->rx_ring_struct;
2572 	bnxt_init_rxbd_pages(ring, type);
2573 
2574 	if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) {
2575 		rxr->xdp_prog = bpf_prog_add(bp->xdp_prog, 1);
2576 		if (IS_ERR(rxr->xdp_prog)) {
2577 			int rc = PTR_ERR(rxr->xdp_prog);
2578 
2579 			rxr->xdp_prog = NULL;
2580 			return rc;
2581 		}
2582 	}
2583 	prod = rxr->rx_prod;
2584 	for (i = 0; i < bp->rx_ring_size; i++) {
2585 		if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL) != 0) {
2586 			netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
2587 				    ring_nr, i, bp->rx_ring_size);
2588 			break;
2589 		}
2590 		prod = NEXT_RX(prod);
2591 	}
2592 	rxr->rx_prod = prod;
2593 	ring->fw_ring_id = INVALID_HW_RING_ID;
2594 
2595 	ring = &rxr->rx_agg_ring_struct;
2596 	ring->fw_ring_id = INVALID_HW_RING_ID;
2597 
2598 	if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
2599 		return 0;
2600 
2601 	type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) |
2602 		RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
2603 
2604 	bnxt_init_rxbd_pages(ring, type);
2605 
2606 	prod = rxr->rx_agg_prod;
2607 	for (i = 0; i < bp->rx_agg_ring_size; i++) {
2608 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL) != 0) {
2609 			netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
2610 				    ring_nr, i, bp->rx_ring_size);
2611 			break;
2612 		}
2613 		prod = NEXT_RX_AGG(prod);
2614 	}
2615 	rxr->rx_agg_prod = prod;
2616 
2617 	if (bp->flags & BNXT_FLAG_TPA) {
2618 		if (rxr->rx_tpa) {
2619 			u8 *data;
2620 			dma_addr_t mapping;
2621 
2622 			for (i = 0; i < MAX_TPA; i++) {
2623 				data = __bnxt_alloc_rx_data(bp, &mapping,
2624 							    GFP_KERNEL);
2625 				if (!data)
2626 					return -ENOMEM;
2627 
2628 				rxr->rx_tpa[i].data = data;
2629 				rxr->rx_tpa[i].data_ptr = data + bp->rx_offset;
2630 				rxr->rx_tpa[i].mapping = mapping;
2631 			}
2632 		} else {
2633 			netdev_err(bp->dev, "No resource allocated for LRO/GRO\n");
2634 			return -ENOMEM;
2635 		}
2636 	}
2637 
2638 	return 0;
2639 }
2640 
2641 static void bnxt_init_cp_rings(struct bnxt *bp)
2642 {
2643 	int i;
2644 
2645 	for (i = 0; i < bp->cp_nr_rings; i++) {
2646 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
2647 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
2648 
2649 		ring->fw_ring_id = INVALID_HW_RING_ID;
2650 		cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
2651 		cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
2652 	}
2653 }
2654 
2655 static int bnxt_init_rx_rings(struct bnxt *bp)
2656 {
2657 	int i, rc = 0;
2658 
2659 	if (BNXT_RX_PAGE_MODE(bp)) {
2660 		bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM;
2661 		bp->rx_dma_offset = XDP_PACKET_HEADROOM;
2662 	} else {
2663 		bp->rx_offset = BNXT_RX_OFFSET;
2664 		bp->rx_dma_offset = BNXT_RX_DMA_OFFSET;
2665 	}
2666 
2667 	for (i = 0; i < bp->rx_nr_rings; i++) {
2668 		rc = bnxt_init_one_rx_ring(bp, i);
2669 		if (rc)
2670 			break;
2671 	}
2672 
2673 	return rc;
2674 }
2675 
2676 static int bnxt_init_tx_rings(struct bnxt *bp)
2677 {
2678 	u16 i;
2679 
2680 	bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
2681 				   MAX_SKB_FRAGS + 1);
2682 
2683 	for (i = 0; i < bp->tx_nr_rings; i++) {
2684 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2685 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
2686 
2687 		ring->fw_ring_id = INVALID_HW_RING_ID;
2688 	}
2689 
2690 	return 0;
2691 }
2692 
2693 static void bnxt_free_ring_grps(struct bnxt *bp)
2694 {
2695 	kfree(bp->grp_info);
2696 	bp->grp_info = NULL;
2697 }
2698 
2699 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
2700 {
2701 	int i;
2702 
2703 	if (irq_re_init) {
2704 		bp->grp_info = kcalloc(bp->cp_nr_rings,
2705 				       sizeof(struct bnxt_ring_grp_info),
2706 				       GFP_KERNEL);
2707 		if (!bp->grp_info)
2708 			return -ENOMEM;
2709 	}
2710 	for (i = 0; i < bp->cp_nr_rings; i++) {
2711 		if (irq_re_init)
2712 			bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
2713 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
2714 		bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
2715 		bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
2716 		bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
2717 	}
2718 	return 0;
2719 }
2720 
2721 static void bnxt_free_vnics(struct bnxt *bp)
2722 {
2723 	kfree(bp->vnic_info);
2724 	bp->vnic_info = NULL;
2725 	bp->nr_vnics = 0;
2726 }
2727 
2728 static int bnxt_alloc_vnics(struct bnxt *bp)
2729 {
2730 	int num_vnics = 1;
2731 
2732 #ifdef CONFIG_RFS_ACCEL
2733 	if (bp->flags & BNXT_FLAG_RFS)
2734 		num_vnics += bp->rx_nr_rings;
2735 #endif
2736 
2737 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
2738 		num_vnics++;
2739 
2740 	bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
2741 				GFP_KERNEL);
2742 	if (!bp->vnic_info)
2743 		return -ENOMEM;
2744 
2745 	bp->nr_vnics = num_vnics;
2746 	return 0;
2747 }
2748 
2749 static void bnxt_init_vnics(struct bnxt *bp)
2750 {
2751 	int i;
2752 
2753 	for (i = 0; i < bp->nr_vnics; i++) {
2754 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2755 
2756 		vnic->fw_vnic_id = INVALID_HW_RING_ID;
2757 		vnic->fw_rss_cos_lb_ctx[0] = INVALID_HW_RING_ID;
2758 		vnic->fw_rss_cos_lb_ctx[1] = INVALID_HW_RING_ID;
2759 		vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
2760 
2761 		if (bp->vnic_info[i].rss_hash_key) {
2762 			if (i == 0)
2763 				prandom_bytes(vnic->rss_hash_key,
2764 					      HW_HASH_KEY_SIZE);
2765 			else
2766 				memcpy(vnic->rss_hash_key,
2767 				       bp->vnic_info[0].rss_hash_key,
2768 				       HW_HASH_KEY_SIZE);
2769 		}
2770 	}
2771 }
2772 
2773 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
2774 {
2775 	int pages;
2776 
2777 	pages = ring_size / desc_per_pg;
2778 
2779 	if (!pages)
2780 		return 1;
2781 
2782 	pages++;
2783 
2784 	while (pages & (pages - 1))
2785 		pages++;
2786 
2787 	return pages;
2788 }
2789 
2790 void bnxt_set_tpa_flags(struct bnxt *bp)
2791 {
2792 	bp->flags &= ~BNXT_FLAG_TPA;
2793 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
2794 		return;
2795 	if (bp->dev->features & NETIF_F_LRO)
2796 		bp->flags |= BNXT_FLAG_LRO;
2797 	else if (bp->dev->features & NETIF_F_GRO_HW)
2798 		bp->flags |= BNXT_FLAG_GRO;
2799 }
2800 
2801 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
2802  * be set on entry.
2803  */
2804 void bnxt_set_ring_params(struct bnxt *bp)
2805 {
2806 	u32 ring_size, rx_size, rx_space;
2807 	u32 agg_factor = 0, agg_ring_size = 0;
2808 
2809 	/* 8 for CRC and VLAN */
2810 	rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
2811 
2812 	rx_space = rx_size + NET_SKB_PAD +
2813 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2814 
2815 	bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
2816 	ring_size = bp->rx_ring_size;
2817 	bp->rx_agg_ring_size = 0;
2818 	bp->rx_agg_nr_pages = 0;
2819 
2820 	if (bp->flags & BNXT_FLAG_TPA)
2821 		agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE);
2822 
2823 	bp->flags &= ~BNXT_FLAG_JUMBO;
2824 	if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) {
2825 		u32 jumbo_factor;
2826 
2827 		bp->flags |= BNXT_FLAG_JUMBO;
2828 		jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
2829 		if (jumbo_factor > agg_factor)
2830 			agg_factor = jumbo_factor;
2831 	}
2832 	agg_ring_size = ring_size * agg_factor;
2833 
2834 	if (agg_ring_size) {
2835 		bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
2836 							RX_DESC_CNT);
2837 		if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
2838 			u32 tmp = agg_ring_size;
2839 
2840 			bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
2841 			agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
2842 			netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
2843 				    tmp, agg_ring_size);
2844 		}
2845 		bp->rx_agg_ring_size = agg_ring_size;
2846 		bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
2847 		rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
2848 		rx_space = rx_size + NET_SKB_PAD +
2849 			SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2850 	}
2851 
2852 	bp->rx_buf_use_size = rx_size;
2853 	bp->rx_buf_size = rx_space;
2854 
2855 	bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
2856 	bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
2857 
2858 	ring_size = bp->tx_ring_size;
2859 	bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
2860 	bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
2861 
2862 	ring_size = bp->rx_ring_size * (2 + agg_factor) + bp->tx_ring_size;
2863 	bp->cp_ring_size = ring_size;
2864 
2865 	bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
2866 	if (bp->cp_nr_pages > MAX_CP_PAGES) {
2867 		bp->cp_nr_pages = MAX_CP_PAGES;
2868 		bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
2869 		netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
2870 			    ring_size, bp->cp_ring_size);
2871 	}
2872 	bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
2873 	bp->cp_ring_mask = bp->cp_bit - 1;
2874 }
2875 
2876 /* Changing allocation mode of RX rings.
2877  * TODO: Update when extending xdp_rxq_info to support allocation modes.
2878  */
2879 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode)
2880 {
2881 	if (page_mode) {
2882 		if (bp->dev->mtu > BNXT_MAX_PAGE_MODE_MTU)
2883 			return -EOPNOTSUPP;
2884 		bp->dev->max_mtu =
2885 			min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU);
2886 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
2887 		bp->flags |= BNXT_FLAG_NO_AGG_RINGS | BNXT_FLAG_RX_PAGE_MODE;
2888 		bp->rx_dir = DMA_BIDIRECTIONAL;
2889 		bp->rx_skb_func = bnxt_rx_page_skb;
2890 		/* Disable LRO or GRO_HW */
2891 		netdev_update_features(bp->dev);
2892 	} else {
2893 		bp->dev->max_mtu = bp->max_mtu;
2894 		bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE;
2895 		bp->rx_dir = DMA_FROM_DEVICE;
2896 		bp->rx_skb_func = bnxt_rx_skb;
2897 	}
2898 	return 0;
2899 }
2900 
2901 static void bnxt_free_vnic_attributes(struct bnxt *bp)
2902 {
2903 	int i;
2904 	struct bnxt_vnic_info *vnic;
2905 	struct pci_dev *pdev = bp->pdev;
2906 
2907 	if (!bp->vnic_info)
2908 		return;
2909 
2910 	for (i = 0; i < bp->nr_vnics; i++) {
2911 		vnic = &bp->vnic_info[i];
2912 
2913 		kfree(vnic->fw_grp_ids);
2914 		vnic->fw_grp_ids = NULL;
2915 
2916 		kfree(vnic->uc_list);
2917 		vnic->uc_list = NULL;
2918 
2919 		if (vnic->mc_list) {
2920 			dma_free_coherent(&pdev->dev, vnic->mc_list_size,
2921 					  vnic->mc_list, vnic->mc_list_mapping);
2922 			vnic->mc_list = NULL;
2923 		}
2924 
2925 		if (vnic->rss_table) {
2926 			dma_free_coherent(&pdev->dev, PAGE_SIZE,
2927 					  vnic->rss_table,
2928 					  vnic->rss_table_dma_addr);
2929 			vnic->rss_table = NULL;
2930 		}
2931 
2932 		vnic->rss_hash_key = NULL;
2933 		vnic->flags = 0;
2934 	}
2935 }
2936 
2937 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
2938 {
2939 	int i, rc = 0, size;
2940 	struct bnxt_vnic_info *vnic;
2941 	struct pci_dev *pdev = bp->pdev;
2942 	int max_rings;
2943 
2944 	for (i = 0; i < bp->nr_vnics; i++) {
2945 		vnic = &bp->vnic_info[i];
2946 
2947 		if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
2948 			int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
2949 
2950 			if (mem_size > 0) {
2951 				vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
2952 				if (!vnic->uc_list) {
2953 					rc = -ENOMEM;
2954 					goto out;
2955 				}
2956 			}
2957 		}
2958 
2959 		if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
2960 			vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
2961 			vnic->mc_list =
2962 				dma_alloc_coherent(&pdev->dev,
2963 						   vnic->mc_list_size,
2964 						   &vnic->mc_list_mapping,
2965 						   GFP_KERNEL);
2966 			if (!vnic->mc_list) {
2967 				rc = -ENOMEM;
2968 				goto out;
2969 			}
2970 		}
2971 
2972 		if (vnic->flags & BNXT_VNIC_RSS_FLAG)
2973 			max_rings = bp->rx_nr_rings;
2974 		else
2975 			max_rings = 1;
2976 
2977 		vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
2978 		if (!vnic->fw_grp_ids) {
2979 			rc = -ENOMEM;
2980 			goto out;
2981 		}
2982 
2983 		if ((bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
2984 		    !(vnic->flags & BNXT_VNIC_RSS_FLAG))
2985 			continue;
2986 
2987 		/* Allocate rss table and hash key */
2988 		vnic->rss_table = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
2989 						     &vnic->rss_table_dma_addr,
2990 						     GFP_KERNEL);
2991 		if (!vnic->rss_table) {
2992 			rc = -ENOMEM;
2993 			goto out;
2994 		}
2995 
2996 		size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
2997 
2998 		vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
2999 		vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
3000 	}
3001 	return 0;
3002 
3003 out:
3004 	return rc;
3005 }
3006 
3007 static void bnxt_free_hwrm_resources(struct bnxt *bp)
3008 {
3009 	struct pci_dev *pdev = bp->pdev;
3010 
3011 	dma_free_coherent(&pdev->dev, PAGE_SIZE, bp->hwrm_cmd_resp_addr,
3012 			  bp->hwrm_cmd_resp_dma_addr);
3013 
3014 	bp->hwrm_cmd_resp_addr = NULL;
3015 }
3016 
3017 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
3018 {
3019 	struct pci_dev *pdev = bp->pdev;
3020 
3021 	bp->hwrm_cmd_resp_addr = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
3022 						   &bp->hwrm_cmd_resp_dma_addr,
3023 						   GFP_KERNEL);
3024 	if (!bp->hwrm_cmd_resp_addr)
3025 		return -ENOMEM;
3026 
3027 	return 0;
3028 }
3029 
3030 static void bnxt_free_hwrm_short_cmd_req(struct bnxt *bp)
3031 {
3032 	if (bp->hwrm_short_cmd_req_addr) {
3033 		struct pci_dev *pdev = bp->pdev;
3034 
3035 		dma_free_coherent(&pdev->dev, BNXT_HWRM_MAX_REQ_LEN,
3036 				  bp->hwrm_short_cmd_req_addr,
3037 				  bp->hwrm_short_cmd_req_dma_addr);
3038 		bp->hwrm_short_cmd_req_addr = NULL;
3039 	}
3040 }
3041 
3042 static int bnxt_alloc_hwrm_short_cmd_req(struct bnxt *bp)
3043 {
3044 	struct pci_dev *pdev = bp->pdev;
3045 
3046 	bp->hwrm_short_cmd_req_addr =
3047 		dma_alloc_coherent(&pdev->dev, BNXT_HWRM_MAX_REQ_LEN,
3048 				   &bp->hwrm_short_cmd_req_dma_addr,
3049 				   GFP_KERNEL);
3050 	if (!bp->hwrm_short_cmd_req_addr)
3051 		return -ENOMEM;
3052 
3053 	return 0;
3054 }
3055 
3056 static void bnxt_free_stats(struct bnxt *bp)
3057 {
3058 	u32 size, i;
3059 	struct pci_dev *pdev = bp->pdev;
3060 
3061 	bp->flags &= ~BNXT_FLAG_PORT_STATS;
3062 	bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT;
3063 
3064 	if (bp->hw_rx_port_stats) {
3065 		dma_free_coherent(&pdev->dev, bp->hw_port_stats_size,
3066 				  bp->hw_rx_port_stats,
3067 				  bp->hw_rx_port_stats_map);
3068 		bp->hw_rx_port_stats = NULL;
3069 	}
3070 
3071 	if (bp->hw_rx_port_stats_ext) {
3072 		dma_free_coherent(&pdev->dev, sizeof(struct rx_port_stats_ext),
3073 				  bp->hw_rx_port_stats_ext,
3074 				  bp->hw_rx_port_stats_ext_map);
3075 		bp->hw_rx_port_stats_ext = NULL;
3076 	}
3077 
3078 	if (!bp->bnapi)
3079 		return;
3080 
3081 	size = sizeof(struct ctx_hw_stats);
3082 
3083 	for (i = 0; i < bp->cp_nr_rings; i++) {
3084 		struct bnxt_napi *bnapi = bp->bnapi[i];
3085 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3086 
3087 		if (cpr->hw_stats) {
3088 			dma_free_coherent(&pdev->dev, size, cpr->hw_stats,
3089 					  cpr->hw_stats_map);
3090 			cpr->hw_stats = NULL;
3091 		}
3092 	}
3093 }
3094 
3095 static int bnxt_alloc_stats(struct bnxt *bp)
3096 {
3097 	u32 size, i;
3098 	struct pci_dev *pdev = bp->pdev;
3099 
3100 	size = sizeof(struct ctx_hw_stats);
3101 
3102 	for (i = 0; i < bp->cp_nr_rings; i++) {
3103 		struct bnxt_napi *bnapi = bp->bnapi[i];
3104 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3105 
3106 		cpr->hw_stats = dma_alloc_coherent(&pdev->dev, size,
3107 						   &cpr->hw_stats_map,
3108 						   GFP_KERNEL);
3109 		if (!cpr->hw_stats)
3110 			return -ENOMEM;
3111 
3112 		cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
3113 	}
3114 
3115 	if (BNXT_PF(bp) && bp->chip_num != CHIP_NUM_58700) {
3116 		bp->hw_port_stats_size = sizeof(struct rx_port_stats) +
3117 					 sizeof(struct tx_port_stats) + 1024;
3118 
3119 		bp->hw_rx_port_stats =
3120 			dma_alloc_coherent(&pdev->dev, bp->hw_port_stats_size,
3121 					   &bp->hw_rx_port_stats_map,
3122 					   GFP_KERNEL);
3123 		if (!bp->hw_rx_port_stats)
3124 			return -ENOMEM;
3125 
3126 		bp->hw_tx_port_stats = (void *)(bp->hw_rx_port_stats + 1) +
3127 				       512;
3128 		bp->hw_tx_port_stats_map = bp->hw_rx_port_stats_map +
3129 					   sizeof(struct rx_port_stats) + 512;
3130 		bp->flags |= BNXT_FLAG_PORT_STATS;
3131 
3132 		/* Display extended statistics only if FW supports it */
3133 		if (bp->hwrm_spec_code < 0x10804 ||
3134 		    bp->hwrm_spec_code == 0x10900)
3135 			return 0;
3136 
3137 		bp->hw_rx_port_stats_ext =
3138 			dma_zalloc_coherent(&pdev->dev,
3139 					    sizeof(struct rx_port_stats_ext),
3140 					    &bp->hw_rx_port_stats_ext_map,
3141 					    GFP_KERNEL);
3142 		if (!bp->hw_rx_port_stats_ext)
3143 			return 0;
3144 
3145 		bp->flags |= BNXT_FLAG_PORT_STATS_EXT;
3146 	}
3147 	return 0;
3148 }
3149 
3150 static void bnxt_clear_ring_indices(struct bnxt *bp)
3151 {
3152 	int i;
3153 
3154 	if (!bp->bnapi)
3155 		return;
3156 
3157 	for (i = 0; i < bp->cp_nr_rings; i++) {
3158 		struct bnxt_napi *bnapi = bp->bnapi[i];
3159 		struct bnxt_cp_ring_info *cpr;
3160 		struct bnxt_rx_ring_info *rxr;
3161 		struct bnxt_tx_ring_info *txr;
3162 
3163 		if (!bnapi)
3164 			continue;
3165 
3166 		cpr = &bnapi->cp_ring;
3167 		cpr->cp_raw_cons = 0;
3168 
3169 		txr = bnapi->tx_ring;
3170 		if (txr) {
3171 			txr->tx_prod = 0;
3172 			txr->tx_cons = 0;
3173 		}
3174 
3175 		rxr = bnapi->rx_ring;
3176 		if (rxr) {
3177 			rxr->rx_prod = 0;
3178 			rxr->rx_agg_prod = 0;
3179 			rxr->rx_sw_agg_prod = 0;
3180 			rxr->rx_next_cons = 0;
3181 		}
3182 	}
3183 }
3184 
3185 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
3186 {
3187 #ifdef CONFIG_RFS_ACCEL
3188 	int i;
3189 
3190 	/* Under rtnl_lock and all our NAPIs have been disabled.  It's
3191 	 * safe to delete the hash table.
3192 	 */
3193 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
3194 		struct hlist_head *head;
3195 		struct hlist_node *tmp;
3196 		struct bnxt_ntuple_filter *fltr;
3197 
3198 		head = &bp->ntp_fltr_hash_tbl[i];
3199 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
3200 			hlist_del(&fltr->hash);
3201 			kfree(fltr);
3202 		}
3203 	}
3204 	if (irq_reinit) {
3205 		kfree(bp->ntp_fltr_bmap);
3206 		bp->ntp_fltr_bmap = NULL;
3207 	}
3208 	bp->ntp_fltr_count = 0;
3209 #endif
3210 }
3211 
3212 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
3213 {
3214 #ifdef CONFIG_RFS_ACCEL
3215 	int i, rc = 0;
3216 
3217 	if (!(bp->flags & BNXT_FLAG_RFS))
3218 		return 0;
3219 
3220 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
3221 		INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
3222 
3223 	bp->ntp_fltr_count = 0;
3224 	bp->ntp_fltr_bmap = kcalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR),
3225 				    sizeof(long),
3226 				    GFP_KERNEL);
3227 
3228 	if (!bp->ntp_fltr_bmap)
3229 		rc = -ENOMEM;
3230 
3231 	return rc;
3232 #else
3233 	return 0;
3234 #endif
3235 }
3236 
3237 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
3238 {
3239 	bnxt_free_vnic_attributes(bp);
3240 	bnxt_free_tx_rings(bp);
3241 	bnxt_free_rx_rings(bp);
3242 	bnxt_free_cp_rings(bp);
3243 	bnxt_free_ntp_fltrs(bp, irq_re_init);
3244 	if (irq_re_init) {
3245 		bnxt_free_stats(bp);
3246 		bnxt_free_ring_grps(bp);
3247 		bnxt_free_vnics(bp);
3248 		kfree(bp->tx_ring_map);
3249 		bp->tx_ring_map = NULL;
3250 		kfree(bp->tx_ring);
3251 		bp->tx_ring = NULL;
3252 		kfree(bp->rx_ring);
3253 		bp->rx_ring = NULL;
3254 		kfree(bp->bnapi);
3255 		bp->bnapi = NULL;
3256 	} else {
3257 		bnxt_clear_ring_indices(bp);
3258 	}
3259 }
3260 
3261 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
3262 {
3263 	int i, j, rc, size, arr_size;
3264 	void *bnapi;
3265 
3266 	if (irq_re_init) {
3267 		/* Allocate bnapi mem pointer array and mem block for
3268 		 * all queues
3269 		 */
3270 		arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
3271 				bp->cp_nr_rings);
3272 		size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
3273 		bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
3274 		if (!bnapi)
3275 			return -ENOMEM;
3276 
3277 		bp->bnapi = bnapi;
3278 		bnapi += arr_size;
3279 		for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
3280 			bp->bnapi[i] = bnapi;
3281 			bp->bnapi[i]->index = i;
3282 			bp->bnapi[i]->bp = bp;
3283 		}
3284 
3285 		bp->rx_ring = kcalloc(bp->rx_nr_rings,
3286 				      sizeof(struct bnxt_rx_ring_info),
3287 				      GFP_KERNEL);
3288 		if (!bp->rx_ring)
3289 			return -ENOMEM;
3290 
3291 		for (i = 0; i < bp->rx_nr_rings; i++) {
3292 			bp->rx_ring[i].bnapi = bp->bnapi[i];
3293 			bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
3294 		}
3295 
3296 		bp->tx_ring = kcalloc(bp->tx_nr_rings,
3297 				      sizeof(struct bnxt_tx_ring_info),
3298 				      GFP_KERNEL);
3299 		if (!bp->tx_ring)
3300 			return -ENOMEM;
3301 
3302 		bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16),
3303 					  GFP_KERNEL);
3304 
3305 		if (!bp->tx_ring_map)
3306 			return -ENOMEM;
3307 
3308 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
3309 			j = 0;
3310 		else
3311 			j = bp->rx_nr_rings;
3312 
3313 		for (i = 0; i < bp->tx_nr_rings; i++, j++) {
3314 			bp->tx_ring[i].bnapi = bp->bnapi[j];
3315 			bp->bnapi[j]->tx_ring = &bp->tx_ring[i];
3316 			bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i;
3317 			if (i >= bp->tx_nr_rings_xdp) {
3318 				bp->tx_ring[i].txq_index = i -
3319 					bp->tx_nr_rings_xdp;
3320 				bp->bnapi[j]->tx_int = bnxt_tx_int;
3321 			} else {
3322 				bp->bnapi[j]->flags |= BNXT_NAPI_FLAG_XDP;
3323 				bp->bnapi[j]->tx_int = bnxt_tx_int_xdp;
3324 			}
3325 		}
3326 
3327 		rc = bnxt_alloc_stats(bp);
3328 		if (rc)
3329 			goto alloc_mem_err;
3330 
3331 		rc = bnxt_alloc_ntp_fltrs(bp);
3332 		if (rc)
3333 			goto alloc_mem_err;
3334 
3335 		rc = bnxt_alloc_vnics(bp);
3336 		if (rc)
3337 			goto alloc_mem_err;
3338 	}
3339 
3340 	bnxt_init_ring_struct(bp);
3341 
3342 	rc = bnxt_alloc_rx_rings(bp);
3343 	if (rc)
3344 		goto alloc_mem_err;
3345 
3346 	rc = bnxt_alloc_tx_rings(bp);
3347 	if (rc)
3348 		goto alloc_mem_err;
3349 
3350 	rc = bnxt_alloc_cp_rings(bp);
3351 	if (rc)
3352 		goto alloc_mem_err;
3353 
3354 	bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
3355 				  BNXT_VNIC_UCAST_FLAG;
3356 	rc = bnxt_alloc_vnic_attributes(bp);
3357 	if (rc)
3358 		goto alloc_mem_err;
3359 	return 0;
3360 
3361 alloc_mem_err:
3362 	bnxt_free_mem(bp, true);
3363 	return rc;
3364 }
3365 
3366 static void bnxt_disable_int(struct bnxt *bp)
3367 {
3368 	int i;
3369 
3370 	if (!bp->bnapi)
3371 		return;
3372 
3373 	for (i = 0; i < bp->cp_nr_rings; i++) {
3374 		struct bnxt_napi *bnapi = bp->bnapi[i];
3375 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3376 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3377 
3378 		if (ring->fw_ring_id != INVALID_HW_RING_ID)
3379 			BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
3380 	}
3381 }
3382 
3383 static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n)
3384 {
3385 	struct bnxt_napi *bnapi = bp->bnapi[n];
3386 	struct bnxt_cp_ring_info *cpr;
3387 
3388 	cpr = &bnapi->cp_ring;
3389 	return cpr->cp_ring_struct.map_idx;
3390 }
3391 
3392 static void bnxt_disable_int_sync(struct bnxt *bp)
3393 {
3394 	int i;
3395 
3396 	atomic_inc(&bp->intr_sem);
3397 
3398 	bnxt_disable_int(bp);
3399 	for (i = 0; i < bp->cp_nr_rings; i++) {
3400 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
3401 
3402 		synchronize_irq(bp->irq_tbl[map_idx].vector);
3403 	}
3404 }
3405 
3406 static void bnxt_enable_int(struct bnxt *bp)
3407 {
3408 	int i;
3409 
3410 	atomic_set(&bp->intr_sem, 0);
3411 	for (i = 0; i < bp->cp_nr_rings; i++) {
3412 		struct bnxt_napi *bnapi = bp->bnapi[i];
3413 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3414 
3415 		BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
3416 	}
3417 }
3418 
3419 void bnxt_hwrm_cmd_hdr_init(struct bnxt *bp, void *request, u16 req_type,
3420 			    u16 cmpl_ring, u16 target_id)
3421 {
3422 	struct input *req = request;
3423 
3424 	req->req_type = cpu_to_le16(req_type);
3425 	req->cmpl_ring = cpu_to_le16(cmpl_ring);
3426 	req->target_id = cpu_to_le16(target_id);
3427 	req->resp_addr = cpu_to_le64(bp->hwrm_cmd_resp_dma_addr);
3428 }
3429 
3430 static int bnxt_hwrm_do_send_msg(struct bnxt *bp, void *msg, u32 msg_len,
3431 				 int timeout, bool silent)
3432 {
3433 	int i, intr_process, rc, tmo_count;
3434 	struct input *req = msg;
3435 	u32 *data = msg;
3436 	__le32 *resp_len;
3437 	u8 *valid;
3438 	u16 cp_ring_id, len = 0;
3439 	struct hwrm_err_output *resp = bp->hwrm_cmd_resp_addr;
3440 	u16 max_req_len = BNXT_HWRM_MAX_REQ_LEN;
3441 	struct hwrm_short_input short_input = {0};
3442 
3443 	req->seq_id = cpu_to_le16(bp->hwrm_cmd_seq++);
3444 	memset(resp, 0, PAGE_SIZE);
3445 	cp_ring_id = le16_to_cpu(req->cmpl_ring);
3446 	intr_process = (cp_ring_id == INVALID_HW_RING_ID) ? 0 : 1;
3447 
3448 	if (bp->flags & BNXT_FLAG_SHORT_CMD) {
3449 		void *short_cmd_req = bp->hwrm_short_cmd_req_addr;
3450 
3451 		memcpy(short_cmd_req, req, msg_len);
3452 		memset(short_cmd_req + msg_len, 0, BNXT_HWRM_MAX_REQ_LEN -
3453 						   msg_len);
3454 
3455 		short_input.req_type = req->req_type;
3456 		short_input.signature =
3457 				cpu_to_le16(SHORT_REQ_SIGNATURE_SHORT_CMD);
3458 		short_input.size = cpu_to_le16(msg_len);
3459 		short_input.req_addr =
3460 			cpu_to_le64(bp->hwrm_short_cmd_req_dma_addr);
3461 
3462 		data = (u32 *)&short_input;
3463 		msg_len = sizeof(short_input);
3464 
3465 		/* Sync memory write before updating doorbell */
3466 		wmb();
3467 
3468 		max_req_len = BNXT_HWRM_SHORT_REQ_LEN;
3469 	}
3470 
3471 	/* Write request msg to hwrm channel */
3472 	__iowrite32_copy(bp->bar0, data, msg_len / 4);
3473 
3474 	for (i = msg_len; i < max_req_len; i += 4)
3475 		writel(0, bp->bar0 + i);
3476 
3477 	/* currently supports only one outstanding message */
3478 	if (intr_process)
3479 		bp->hwrm_intr_seq_id = le16_to_cpu(req->seq_id);
3480 
3481 	/* Ring channel doorbell */
3482 	writel(1, bp->bar0 + 0x100);
3483 
3484 	if (!timeout)
3485 		timeout = DFLT_HWRM_CMD_TIMEOUT;
3486 	/* convert timeout to usec */
3487 	timeout *= 1000;
3488 
3489 	i = 0;
3490 	/* Short timeout for the first few iterations:
3491 	 * number of loops = number of loops for short timeout +
3492 	 * number of loops for standard timeout.
3493 	 */
3494 	tmo_count = HWRM_SHORT_TIMEOUT_COUNTER;
3495 	timeout = timeout - HWRM_SHORT_MIN_TIMEOUT * HWRM_SHORT_TIMEOUT_COUNTER;
3496 	tmo_count += DIV_ROUND_UP(timeout, HWRM_MIN_TIMEOUT);
3497 	resp_len = bp->hwrm_cmd_resp_addr + HWRM_RESP_LEN_OFFSET;
3498 	if (intr_process) {
3499 		/* Wait until hwrm response cmpl interrupt is processed */
3500 		while (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID &&
3501 		       i++ < tmo_count) {
3502 			/* on first few passes, just barely sleep */
3503 			if (i < HWRM_SHORT_TIMEOUT_COUNTER)
3504 				usleep_range(HWRM_SHORT_MIN_TIMEOUT,
3505 					     HWRM_SHORT_MAX_TIMEOUT);
3506 			else
3507 				usleep_range(HWRM_MIN_TIMEOUT,
3508 					     HWRM_MAX_TIMEOUT);
3509 		}
3510 
3511 		if (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID) {
3512 			netdev_err(bp->dev, "Resp cmpl intr err msg: 0x%x\n",
3513 				   le16_to_cpu(req->req_type));
3514 			return -1;
3515 		}
3516 		len = (le32_to_cpu(*resp_len) & HWRM_RESP_LEN_MASK) >>
3517 		      HWRM_RESP_LEN_SFT;
3518 		valid = bp->hwrm_cmd_resp_addr + len - 1;
3519 	} else {
3520 		int j;
3521 
3522 		/* Check if response len is updated */
3523 		for (i = 0; i < tmo_count; i++) {
3524 			len = (le32_to_cpu(*resp_len) & HWRM_RESP_LEN_MASK) >>
3525 			      HWRM_RESP_LEN_SFT;
3526 			if (len)
3527 				break;
3528 			/* on first few passes, just barely sleep */
3529 			if (i < DFLT_HWRM_CMD_TIMEOUT)
3530 				usleep_range(HWRM_SHORT_MIN_TIMEOUT,
3531 					     HWRM_SHORT_MAX_TIMEOUT);
3532 			else
3533 				usleep_range(HWRM_MIN_TIMEOUT,
3534 					     HWRM_MAX_TIMEOUT);
3535 		}
3536 
3537 		if (i >= tmo_count) {
3538 			netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d\n",
3539 				   HWRM_TOTAL_TIMEOUT(i),
3540 				   le16_to_cpu(req->req_type),
3541 				   le16_to_cpu(req->seq_id), len);
3542 			return -1;
3543 		}
3544 
3545 		/* Last byte of resp contains valid bit */
3546 		valid = bp->hwrm_cmd_resp_addr + len - 1;
3547 		for (j = 0; j < HWRM_VALID_BIT_DELAY_USEC; j++) {
3548 			/* make sure we read from updated DMA memory */
3549 			dma_rmb();
3550 			if (*valid)
3551 				break;
3552 			udelay(1);
3553 		}
3554 
3555 		if (j >= HWRM_VALID_BIT_DELAY_USEC) {
3556 			netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d v:%d\n",
3557 				   HWRM_TOTAL_TIMEOUT(i),
3558 				   le16_to_cpu(req->req_type),
3559 				   le16_to_cpu(req->seq_id), len, *valid);
3560 			return -1;
3561 		}
3562 	}
3563 
3564 	/* Zero valid bit for compatibility.  Valid bit in an older spec
3565 	 * may become a new field in a newer spec.  We must make sure that
3566 	 * a new field not implemented by old spec will read zero.
3567 	 */
3568 	*valid = 0;
3569 	rc = le16_to_cpu(resp->error_code);
3570 	if (rc && !silent)
3571 		netdev_err(bp->dev, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n",
3572 			   le16_to_cpu(resp->req_type),
3573 			   le16_to_cpu(resp->seq_id), rc);
3574 	return rc;
3575 }
3576 
3577 int _hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
3578 {
3579 	return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, false);
3580 }
3581 
3582 int _hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len,
3583 			      int timeout)
3584 {
3585 	return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true);
3586 }
3587 
3588 int hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
3589 {
3590 	int rc;
3591 
3592 	mutex_lock(&bp->hwrm_cmd_lock);
3593 	rc = _hwrm_send_message(bp, msg, msg_len, timeout);
3594 	mutex_unlock(&bp->hwrm_cmd_lock);
3595 	return rc;
3596 }
3597 
3598 int hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len,
3599 			     int timeout)
3600 {
3601 	int rc;
3602 
3603 	mutex_lock(&bp->hwrm_cmd_lock);
3604 	rc = bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true);
3605 	mutex_unlock(&bp->hwrm_cmd_lock);
3606 	return rc;
3607 }
3608 
3609 int bnxt_hwrm_func_rgtr_async_events(struct bnxt *bp, unsigned long *bmap,
3610 				     int bmap_size)
3611 {
3612 	struct hwrm_func_drv_rgtr_input req = {0};
3613 	DECLARE_BITMAP(async_events_bmap, 256);
3614 	u32 *events = (u32 *)async_events_bmap;
3615 	int i;
3616 
3617 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
3618 
3619 	req.enables =
3620 		cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
3621 
3622 	memset(async_events_bmap, 0, sizeof(async_events_bmap));
3623 	for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++)
3624 		__set_bit(bnxt_async_events_arr[i], async_events_bmap);
3625 
3626 	if (bmap && bmap_size) {
3627 		for (i = 0; i < bmap_size; i++) {
3628 			if (test_bit(i, bmap))
3629 				__set_bit(i, async_events_bmap);
3630 		}
3631 	}
3632 
3633 	for (i = 0; i < 8; i++)
3634 		req.async_event_fwd[i] |= cpu_to_le32(events[i]);
3635 
3636 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3637 }
3638 
3639 static int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp)
3640 {
3641 	struct hwrm_func_drv_rgtr_input req = {0};
3642 
3643 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
3644 
3645 	req.enables =
3646 		cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
3647 			    FUNC_DRV_RGTR_REQ_ENABLES_VER);
3648 
3649 	req.os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX);
3650 	req.flags = cpu_to_le32(FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE);
3651 	req.ver_maj_8b = DRV_VER_MAJ;
3652 	req.ver_min_8b = DRV_VER_MIN;
3653 	req.ver_upd_8b = DRV_VER_UPD;
3654 	req.ver_maj = cpu_to_le16(DRV_VER_MAJ);
3655 	req.ver_min = cpu_to_le16(DRV_VER_MIN);
3656 	req.ver_upd = cpu_to_le16(DRV_VER_UPD);
3657 
3658 	if (BNXT_PF(bp)) {
3659 		u32 data[8];
3660 		int i;
3661 
3662 		memset(data, 0, sizeof(data));
3663 		for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) {
3664 			u16 cmd = bnxt_vf_req_snif[i];
3665 			unsigned int bit, idx;
3666 
3667 			idx = cmd / 32;
3668 			bit = cmd % 32;
3669 			data[idx] |= 1 << bit;
3670 		}
3671 
3672 		for (i = 0; i < 8; i++)
3673 			req.vf_req_fwd[i] = cpu_to_le32(data[i]);
3674 
3675 		req.enables |=
3676 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
3677 	}
3678 
3679 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3680 }
3681 
3682 static int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
3683 {
3684 	struct hwrm_func_drv_unrgtr_input req = {0};
3685 
3686 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_UNRGTR, -1, -1);
3687 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3688 }
3689 
3690 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
3691 {
3692 	u32 rc = 0;
3693 	struct hwrm_tunnel_dst_port_free_input req = {0};
3694 
3695 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_FREE, -1, -1);
3696 	req.tunnel_type = tunnel_type;
3697 
3698 	switch (tunnel_type) {
3699 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
3700 		req.tunnel_dst_port_id = bp->vxlan_fw_dst_port_id;
3701 		break;
3702 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
3703 		req.tunnel_dst_port_id = bp->nge_fw_dst_port_id;
3704 		break;
3705 	default:
3706 		break;
3707 	}
3708 
3709 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3710 	if (rc)
3711 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
3712 			   rc);
3713 	return rc;
3714 }
3715 
3716 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
3717 					   u8 tunnel_type)
3718 {
3719 	u32 rc = 0;
3720 	struct hwrm_tunnel_dst_port_alloc_input req = {0};
3721 	struct hwrm_tunnel_dst_port_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3722 
3723 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_ALLOC, -1, -1);
3724 
3725 	req.tunnel_type = tunnel_type;
3726 	req.tunnel_dst_port_val = port;
3727 
3728 	mutex_lock(&bp->hwrm_cmd_lock);
3729 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3730 	if (rc) {
3731 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
3732 			   rc);
3733 		goto err_out;
3734 	}
3735 
3736 	switch (tunnel_type) {
3737 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN:
3738 		bp->vxlan_fw_dst_port_id = resp->tunnel_dst_port_id;
3739 		break;
3740 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE:
3741 		bp->nge_fw_dst_port_id = resp->tunnel_dst_port_id;
3742 		break;
3743 	default:
3744 		break;
3745 	}
3746 
3747 err_out:
3748 	mutex_unlock(&bp->hwrm_cmd_lock);
3749 	return rc;
3750 }
3751 
3752 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
3753 {
3754 	struct hwrm_cfa_l2_set_rx_mask_input req = {0};
3755 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3756 
3757 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_SET_RX_MASK, -1, -1);
3758 	req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
3759 
3760 	req.num_mc_entries = cpu_to_le32(vnic->mc_list_count);
3761 	req.mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
3762 	req.mask = cpu_to_le32(vnic->rx_mask);
3763 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3764 }
3765 
3766 #ifdef CONFIG_RFS_ACCEL
3767 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
3768 					    struct bnxt_ntuple_filter *fltr)
3769 {
3770 	struct hwrm_cfa_ntuple_filter_free_input req = {0};
3771 
3772 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_FREE, -1, -1);
3773 	req.ntuple_filter_id = fltr->filter_id;
3774 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3775 }
3776 
3777 #define BNXT_NTP_FLTR_FLAGS					\
3778 	(CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID |	\
3779 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE |	\
3780 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR |	\
3781 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE |	\
3782 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR |	\
3783 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK |	\
3784 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR |	\
3785 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK |	\
3786 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL |	\
3787 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT |		\
3788 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK |	\
3789 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT |		\
3790 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK |	\
3791 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
3792 
3793 #define BNXT_NTP_TUNNEL_FLTR_FLAG				\
3794 		CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE
3795 
3796 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
3797 					     struct bnxt_ntuple_filter *fltr)
3798 {
3799 	int rc = 0;
3800 	struct hwrm_cfa_ntuple_filter_alloc_input req = {0};
3801 	struct hwrm_cfa_ntuple_filter_alloc_output *resp =
3802 		bp->hwrm_cmd_resp_addr;
3803 	struct flow_keys *keys = &fltr->fkeys;
3804 	struct bnxt_vnic_info *vnic = &bp->vnic_info[fltr->rxq + 1];
3805 
3806 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_ALLOC, -1, -1);
3807 	req.l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx];
3808 
3809 	req.enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
3810 
3811 	req.ethertype = htons(ETH_P_IP);
3812 	memcpy(req.src_macaddr, fltr->src_mac_addr, ETH_ALEN);
3813 	req.ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
3814 	req.ip_protocol = keys->basic.ip_proto;
3815 
3816 	if (keys->basic.n_proto == htons(ETH_P_IPV6)) {
3817 		int i;
3818 
3819 		req.ethertype = htons(ETH_P_IPV6);
3820 		req.ip_addr_type =
3821 			CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6;
3822 		*(struct in6_addr *)&req.src_ipaddr[0] =
3823 			keys->addrs.v6addrs.src;
3824 		*(struct in6_addr *)&req.dst_ipaddr[0] =
3825 			keys->addrs.v6addrs.dst;
3826 		for (i = 0; i < 4; i++) {
3827 			req.src_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
3828 			req.dst_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
3829 		}
3830 	} else {
3831 		req.src_ipaddr[0] = keys->addrs.v4addrs.src;
3832 		req.src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
3833 		req.dst_ipaddr[0] = keys->addrs.v4addrs.dst;
3834 		req.dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
3835 	}
3836 	if (keys->control.flags & FLOW_DIS_ENCAPSULATION) {
3837 		req.enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG);
3838 		req.tunnel_type =
3839 			CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL;
3840 	}
3841 
3842 	req.src_port = keys->ports.src;
3843 	req.src_port_mask = cpu_to_be16(0xffff);
3844 	req.dst_port = keys->ports.dst;
3845 	req.dst_port_mask = cpu_to_be16(0xffff);
3846 
3847 	req.dst_id = cpu_to_le16(vnic->fw_vnic_id);
3848 	mutex_lock(&bp->hwrm_cmd_lock);
3849 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3850 	if (!rc)
3851 		fltr->filter_id = resp->ntuple_filter_id;
3852 	mutex_unlock(&bp->hwrm_cmd_lock);
3853 	return rc;
3854 }
3855 #endif
3856 
3857 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
3858 				     u8 *mac_addr)
3859 {
3860 	u32 rc = 0;
3861 	struct hwrm_cfa_l2_filter_alloc_input req = {0};
3862 	struct hwrm_cfa_l2_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3863 
3864 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_ALLOC, -1, -1);
3865 	req.flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX);
3866 	if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
3867 		req.flags |=
3868 			cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
3869 	req.dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
3870 	req.enables =
3871 		cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
3872 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
3873 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
3874 	memcpy(req.l2_addr, mac_addr, ETH_ALEN);
3875 	req.l2_addr_mask[0] = 0xff;
3876 	req.l2_addr_mask[1] = 0xff;
3877 	req.l2_addr_mask[2] = 0xff;
3878 	req.l2_addr_mask[3] = 0xff;
3879 	req.l2_addr_mask[4] = 0xff;
3880 	req.l2_addr_mask[5] = 0xff;
3881 
3882 	mutex_lock(&bp->hwrm_cmd_lock);
3883 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3884 	if (!rc)
3885 		bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
3886 							resp->l2_filter_id;
3887 	mutex_unlock(&bp->hwrm_cmd_lock);
3888 	return rc;
3889 }
3890 
3891 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
3892 {
3893 	u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
3894 	int rc = 0;
3895 
3896 	/* Any associated ntuple filters will also be cleared by firmware. */
3897 	mutex_lock(&bp->hwrm_cmd_lock);
3898 	for (i = 0; i < num_of_vnics; i++) {
3899 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3900 
3901 		for (j = 0; j < vnic->uc_filter_count; j++) {
3902 			struct hwrm_cfa_l2_filter_free_input req = {0};
3903 
3904 			bnxt_hwrm_cmd_hdr_init(bp, &req,
3905 					       HWRM_CFA_L2_FILTER_FREE, -1, -1);
3906 
3907 			req.l2_filter_id = vnic->fw_l2_filter_id[j];
3908 
3909 			rc = _hwrm_send_message(bp, &req, sizeof(req),
3910 						HWRM_CMD_TIMEOUT);
3911 		}
3912 		vnic->uc_filter_count = 0;
3913 	}
3914 	mutex_unlock(&bp->hwrm_cmd_lock);
3915 
3916 	return rc;
3917 }
3918 
3919 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
3920 {
3921 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3922 	struct hwrm_vnic_tpa_cfg_input req = {0};
3923 
3924 	if (vnic->fw_vnic_id == INVALID_HW_RING_ID)
3925 		return 0;
3926 
3927 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_TPA_CFG, -1, -1);
3928 
3929 	if (tpa_flags) {
3930 		u16 mss = bp->dev->mtu - 40;
3931 		u32 nsegs, n, segs = 0, flags;
3932 
3933 		flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
3934 			VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
3935 			VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
3936 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
3937 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
3938 		if (tpa_flags & BNXT_FLAG_GRO)
3939 			flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
3940 
3941 		req.flags = cpu_to_le32(flags);
3942 
3943 		req.enables =
3944 			cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
3945 				    VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
3946 				    VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
3947 
3948 		/* Number of segs are log2 units, and first packet is not
3949 		 * included as part of this units.
3950 		 */
3951 		if (mss <= BNXT_RX_PAGE_SIZE) {
3952 			n = BNXT_RX_PAGE_SIZE / mss;
3953 			nsegs = (MAX_SKB_FRAGS - 1) * n;
3954 		} else {
3955 			n = mss / BNXT_RX_PAGE_SIZE;
3956 			if (mss & (BNXT_RX_PAGE_SIZE - 1))
3957 				n++;
3958 			nsegs = (MAX_SKB_FRAGS - n) / n;
3959 		}
3960 
3961 		segs = ilog2(nsegs);
3962 		req.max_agg_segs = cpu_to_le16(segs);
3963 		req.max_aggs = cpu_to_le16(VNIC_TPA_CFG_REQ_MAX_AGGS_MAX);
3964 
3965 		req.min_agg_len = cpu_to_le32(512);
3966 	}
3967 	req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
3968 
3969 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3970 }
3971 
3972 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
3973 {
3974 	u32 i, j, max_rings;
3975 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3976 	struct hwrm_vnic_rss_cfg_input req = {0};
3977 
3978 	if (vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID)
3979 		return 0;
3980 
3981 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1);
3982 	if (set_rss) {
3983 		req.hash_type = cpu_to_le32(bp->rss_hash_cfg);
3984 		if (vnic->flags & BNXT_VNIC_RSS_FLAG) {
3985 			if (BNXT_CHIP_TYPE_NITRO_A0(bp))
3986 				max_rings = bp->rx_nr_rings - 1;
3987 			else
3988 				max_rings = bp->rx_nr_rings;
3989 		} else {
3990 			max_rings = 1;
3991 		}
3992 
3993 		/* Fill the RSS indirection table with ring group ids */
3994 		for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++, j++) {
3995 			if (j == max_rings)
3996 				j = 0;
3997 			vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
3998 		}
3999 
4000 		req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
4001 		req.hash_key_tbl_addr =
4002 			cpu_to_le64(vnic->rss_hash_key_dma_addr);
4003 	}
4004 	req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
4005 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4006 }
4007 
4008 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
4009 {
4010 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4011 	struct hwrm_vnic_plcmodes_cfg_input req = {0};
4012 
4013 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_PLCMODES_CFG, -1, -1);
4014 	req.flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT |
4015 				VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
4016 				VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
4017 	req.enables =
4018 		cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID |
4019 			    VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
4020 	/* thresholds not implemented in firmware yet */
4021 	req.jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
4022 	req.hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
4023 	req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
4024 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4025 }
4026 
4027 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id,
4028 					u16 ctx_idx)
4029 {
4030 	struct hwrm_vnic_rss_cos_lb_ctx_free_input req = {0};
4031 
4032 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_FREE, -1, -1);
4033 	req.rss_cos_lb_ctx_id =
4034 		cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]);
4035 
4036 	hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4037 	bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID;
4038 }
4039 
4040 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
4041 {
4042 	int i, j;
4043 
4044 	for (i = 0; i < bp->nr_vnics; i++) {
4045 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
4046 
4047 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) {
4048 			if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID)
4049 				bnxt_hwrm_vnic_ctx_free_one(bp, i, j);
4050 		}
4051 	}
4052 	bp->rsscos_nr_ctxs = 0;
4053 }
4054 
4055 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx)
4056 {
4057 	int rc;
4058 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_input req = {0};
4059 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp =
4060 						bp->hwrm_cmd_resp_addr;
4061 
4062 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC, -1,
4063 			       -1);
4064 
4065 	mutex_lock(&bp->hwrm_cmd_lock);
4066 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4067 	if (!rc)
4068 		bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] =
4069 			le16_to_cpu(resp->rss_cos_lb_ctx_id);
4070 	mutex_unlock(&bp->hwrm_cmd_lock);
4071 
4072 	return rc;
4073 }
4074 
4075 static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp)
4076 {
4077 	if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP)
4078 		return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE;
4079 	return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE;
4080 }
4081 
4082 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
4083 {
4084 	unsigned int ring = 0, grp_idx;
4085 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4086 	struct hwrm_vnic_cfg_input req = {0};
4087 	u16 def_vlan = 0;
4088 
4089 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_CFG, -1, -1);
4090 
4091 	req.enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP);
4092 	/* Only RSS support for now TBD: COS & LB */
4093 	if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) {
4094 		req.rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
4095 		req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
4096 					   VNIC_CFG_REQ_ENABLES_MRU);
4097 	} else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) {
4098 		req.rss_rule =
4099 			cpu_to_le16(bp->vnic_info[0].fw_rss_cos_lb_ctx[0]);
4100 		req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
4101 					   VNIC_CFG_REQ_ENABLES_MRU);
4102 		req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE);
4103 	} else {
4104 		req.rss_rule = cpu_to_le16(0xffff);
4105 	}
4106 
4107 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) &&
4108 	    (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) {
4109 		req.cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]);
4110 		req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE);
4111 	} else {
4112 		req.cos_rule = cpu_to_le16(0xffff);
4113 	}
4114 
4115 	if (vnic->flags & BNXT_VNIC_RSS_FLAG)
4116 		ring = 0;
4117 	else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
4118 		ring = vnic_id - 1;
4119 	else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp))
4120 		ring = bp->rx_nr_rings - 1;
4121 
4122 	grp_idx = bp->rx_ring[ring].bnapi->index;
4123 	req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
4124 	req.dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
4125 
4126 	req.lb_rule = cpu_to_le16(0xffff);
4127 	req.mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + ETH_FCS_LEN +
4128 			      VLAN_HLEN);
4129 
4130 #ifdef CONFIG_BNXT_SRIOV
4131 	if (BNXT_VF(bp))
4132 		def_vlan = bp->vf.vlan;
4133 #endif
4134 	if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan)
4135 		req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
4136 	if (!vnic_id && bnxt_ulp_registered(bp->edev, BNXT_ROCE_ULP))
4137 		req.flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp));
4138 
4139 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4140 }
4141 
4142 static int bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
4143 {
4144 	u32 rc = 0;
4145 
4146 	if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
4147 		struct hwrm_vnic_free_input req = {0};
4148 
4149 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_FREE, -1, -1);
4150 		req.vnic_id =
4151 			cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
4152 
4153 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4154 		if (rc)
4155 			return rc;
4156 		bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
4157 	}
4158 	return rc;
4159 }
4160 
4161 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
4162 {
4163 	u16 i;
4164 
4165 	for (i = 0; i < bp->nr_vnics; i++)
4166 		bnxt_hwrm_vnic_free_one(bp, i);
4167 }
4168 
4169 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
4170 				unsigned int start_rx_ring_idx,
4171 				unsigned int nr_rings)
4172 {
4173 	int rc = 0;
4174 	unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
4175 	struct hwrm_vnic_alloc_input req = {0};
4176 	struct hwrm_vnic_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4177 
4178 	/* map ring groups to this vnic */
4179 	for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
4180 		grp_idx = bp->rx_ring[i].bnapi->index;
4181 		if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
4182 			netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
4183 				   j, nr_rings);
4184 			break;
4185 		}
4186 		bp->vnic_info[vnic_id].fw_grp_ids[j] =
4187 					bp->grp_info[grp_idx].fw_grp_id;
4188 	}
4189 
4190 	bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[0] = INVALID_HW_RING_ID;
4191 	bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[1] = INVALID_HW_RING_ID;
4192 	if (vnic_id == 0)
4193 		req.flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
4194 
4195 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_ALLOC, -1, -1);
4196 
4197 	mutex_lock(&bp->hwrm_cmd_lock);
4198 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4199 	if (!rc)
4200 		bp->vnic_info[vnic_id].fw_vnic_id = le32_to_cpu(resp->vnic_id);
4201 	mutex_unlock(&bp->hwrm_cmd_lock);
4202 	return rc;
4203 }
4204 
4205 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp)
4206 {
4207 	struct hwrm_vnic_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
4208 	struct hwrm_vnic_qcaps_input req = {0};
4209 	int rc;
4210 
4211 	if (bp->hwrm_spec_code < 0x10600)
4212 		return 0;
4213 
4214 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_QCAPS, -1, -1);
4215 	mutex_lock(&bp->hwrm_cmd_lock);
4216 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4217 	if (!rc) {
4218 		u32 flags = le32_to_cpu(resp->flags);
4219 
4220 		if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP)
4221 			bp->flags |= BNXT_FLAG_NEW_RSS_CAP;
4222 		if (flags &
4223 		    VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP)
4224 			bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP;
4225 	}
4226 	mutex_unlock(&bp->hwrm_cmd_lock);
4227 	return rc;
4228 }
4229 
4230 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
4231 {
4232 	u16 i;
4233 	u32 rc = 0;
4234 
4235 	mutex_lock(&bp->hwrm_cmd_lock);
4236 	for (i = 0; i < bp->rx_nr_rings; i++) {
4237 		struct hwrm_ring_grp_alloc_input req = {0};
4238 		struct hwrm_ring_grp_alloc_output *resp =
4239 					bp->hwrm_cmd_resp_addr;
4240 		unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
4241 
4242 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_ALLOC, -1, -1);
4243 
4244 		req.cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
4245 		req.rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
4246 		req.ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
4247 		req.sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
4248 
4249 		rc = _hwrm_send_message(bp, &req, sizeof(req),
4250 					HWRM_CMD_TIMEOUT);
4251 		if (rc)
4252 			break;
4253 
4254 		bp->grp_info[grp_idx].fw_grp_id =
4255 			le32_to_cpu(resp->ring_group_id);
4256 	}
4257 	mutex_unlock(&bp->hwrm_cmd_lock);
4258 	return rc;
4259 }
4260 
4261 static int bnxt_hwrm_ring_grp_free(struct bnxt *bp)
4262 {
4263 	u16 i;
4264 	u32 rc = 0;
4265 	struct hwrm_ring_grp_free_input req = {0};
4266 
4267 	if (!bp->grp_info)
4268 		return 0;
4269 
4270 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_FREE, -1, -1);
4271 
4272 	mutex_lock(&bp->hwrm_cmd_lock);
4273 	for (i = 0; i < bp->cp_nr_rings; i++) {
4274 		if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
4275 			continue;
4276 		req.ring_group_id =
4277 			cpu_to_le32(bp->grp_info[i].fw_grp_id);
4278 
4279 		rc = _hwrm_send_message(bp, &req, sizeof(req),
4280 					HWRM_CMD_TIMEOUT);
4281 		if (rc)
4282 			break;
4283 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
4284 	}
4285 	mutex_unlock(&bp->hwrm_cmd_lock);
4286 	return rc;
4287 }
4288 
4289 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
4290 				    struct bnxt_ring_struct *ring,
4291 				    u32 ring_type, u32 map_index)
4292 {
4293 	int rc = 0, err = 0;
4294 	struct hwrm_ring_alloc_input req = {0};
4295 	struct hwrm_ring_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4296 	struct bnxt_ring_grp_info *grp_info;
4297 	u16 ring_id;
4298 
4299 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_ALLOC, -1, -1);
4300 
4301 	req.enables = 0;
4302 	if (ring->nr_pages > 1) {
4303 		req.page_tbl_addr = cpu_to_le64(ring->pg_tbl_map);
4304 		/* Page size is in log2 units */
4305 		req.page_size = BNXT_PAGE_SHIFT;
4306 		req.page_tbl_depth = 1;
4307 	} else {
4308 		req.page_tbl_addr =  cpu_to_le64(ring->dma_arr[0]);
4309 	}
4310 	req.fbo = 0;
4311 	/* Association of ring index with doorbell index and MSIX number */
4312 	req.logical_id = cpu_to_le16(map_index);
4313 
4314 	switch (ring_type) {
4315 	case HWRM_RING_ALLOC_TX:
4316 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
4317 		/* Association of transmit ring with completion ring */
4318 		grp_info = &bp->grp_info[ring->grp_idx];
4319 		req.cmpl_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id);
4320 		req.length = cpu_to_le32(bp->tx_ring_mask + 1);
4321 		req.stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
4322 		req.queue_id = cpu_to_le16(ring->queue_id);
4323 		break;
4324 	case HWRM_RING_ALLOC_RX:
4325 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
4326 		req.length = cpu_to_le32(bp->rx_ring_mask + 1);
4327 		break;
4328 	case HWRM_RING_ALLOC_AGG:
4329 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
4330 		req.length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
4331 		break;
4332 	case HWRM_RING_ALLOC_CMPL:
4333 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL;
4334 		req.length = cpu_to_le32(bp->cp_ring_mask + 1);
4335 		if (bp->flags & BNXT_FLAG_USING_MSIX)
4336 			req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
4337 		break;
4338 	default:
4339 		netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
4340 			   ring_type);
4341 		return -1;
4342 	}
4343 
4344 	mutex_lock(&bp->hwrm_cmd_lock);
4345 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4346 	err = le16_to_cpu(resp->error_code);
4347 	ring_id = le16_to_cpu(resp->ring_id);
4348 	mutex_unlock(&bp->hwrm_cmd_lock);
4349 
4350 	if (rc || err) {
4351 		netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n",
4352 			   ring_type, rc, err);
4353 		return -EIO;
4354 	}
4355 	ring->fw_ring_id = ring_id;
4356 	return rc;
4357 }
4358 
4359 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx)
4360 {
4361 	int rc;
4362 
4363 	if (BNXT_PF(bp)) {
4364 		struct hwrm_func_cfg_input req = {0};
4365 
4366 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
4367 		req.fid = cpu_to_le16(0xffff);
4368 		req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
4369 		req.async_event_cr = cpu_to_le16(idx);
4370 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4371 	} else {
4372 		struct hwrm_func_vf_cfg_input req = {0};
4373 
4374 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_CFG, -1, -1);
4375 		req.enables =
4376 			cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
4377 		req.async_event_cr = cpu_to_le16(idx);
4378 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4379 	}
4380 	return rc;
4381 }
4382 
4383 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
4384 {
4385 	int i, rc = 0;
4386 
4387 	for (i = 0; i < bp->cp_nr_rings; i++) {
4388 		struct bnxt_napi *bnapi = bp->bnapi[i];
4389 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4390 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
4391 		u32 map_idx = ring->map_idx;
4392 
4393 		cpr->cp_doorbell = bp->bar1 + map_idx * 0x80;
4394 		rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_CMPL,
4395 					      map_idx);
4396 		if (rc)
4397 			goto err_out;
4398 		BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
4399 		bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
4400 
4401 		if (!i) {
4402 			rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id);
4403 			if (rc)
4404 				netdev_warn(bp->dev, "Failed to set async event completion ring.\n");
4405 		}
4406 	}
4407 
4408 	for (i = 0; i < bp->tx_nr_rings; i++) {
4409 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
4410 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
4411 		u32 map_idx = i;
4412 
4413 		rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_TX,
4414 					      map_idx);
4415 		if (rc)
4416 			goto err_out;
4417 		txr->tx_doorbell = bp->bar1 + map_idx * 0x80;
4418 	}
4419 
4420 	for (i = 0; i < bp->rx_nr_rings; i++) {
4421 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4422 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
4423 		u32 map_idx = rxr->bnapi->index;
4424 
4425 		rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_RX,
4426 					      map_idx);
4427 		if (rc)
4428 			goto err_out;
4429 		rxr->rx_doorbell = bp->bar1 + map_idx * 0x80;
4430 		writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
4431 		bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
4432 	}
4433 
4434 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
4435 		for (i = 0; i < bp->rx_nr_rings; i++) {
4436 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4437 			struct bnxt_ring_struct *ring =
4438 						&rxr->rx_agg_ring_struct;
4439 			u32 grp_idx = ring->grp_idx;
4440 			u32 map_idx = grp_idx + bp->rx_nr_rings;
4441 
4442 			rc = hwrm_ring_alloc_send_msg(bp, ring,
4443 						      HWRM_RING_ALLOC_AGG,
4444 						      map_idx);
4445 			if (rc)
4446 				goto err_out;
4447 
4448 			rxr->rx_agg_doorbell = bp->bar1 + map_idx * 0x80;
4449 			writel(DB_KEY_RX | rxr->rx_agg_prod,
4450 			       rxr->rx_agg_doorbell);
4451 			bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
4452 		}
4453 	}
4454 err_out:
4455 	return rc;
4456 }
4457 
4458 static int hwrm_ring_free_send_msg(struct bnxt *bp,
4459 				   struct bnxt_ring_struct *ring,
4460 				   u32 ring_type, int cmpl_ring_id)
4461 {
4462 	int rc;
4463 	struct hwrm_ring_free_input req = {0};
4464 	struct hwrm_ring_free_output *resp = bp->hwrm_cmd_resp_addr;
4465 	u16 error_code;
4466 
4467 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_FREE, cmpl_ring_id, -1);
4468 	req.ring_type = ring_type;
4469 	req.ring_id = cpu_to_le16(ring->fw_ring_id);
4470 
4471 	mutex_lock(&bp->hwrm_cmd_lock);
4472 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4473 	error_code = le16_to_cpu(resp->error_code);
4474 	mutex_unlock(&bp->hwrm_cmd_lock);
4475 
4476 	if (rc || error_code) {
4477 		netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n",
4478 			   ring_type, rc, error_code);
4479 		return -EIO;
4480 	}
4481 	return 0;
4482 }
4483 
4484 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
4485 {
4486 	int i;
4487 
4488 	if (!bp->bnapi)
4489 		return;
4490 
4491 	for (i = 0; i < bp->tx_nr_rings; i++) {
4492 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
4493 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
4494 		u32 grp_idx = txr->bnapi->index;
4495 		u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
4496 
4497 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
4498 			hwrm_ring_free_send_msg(bp, ring,
4499 						RING_FREE_REQ_RING_TYPE_TX,
4500 						close_path ? cmpl_ring_id :
4501 						INVALID_HW_RING_ID);
4502 			ring->fw_ring_id = INVALID_HW_RING_ID;
4503 		}
4504 	}
4505 
4506 	for (i = 0; i < bp->rx_nr_rings; i++) {
4507 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4508 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
4509 		u32 grp_idx = rxr->bnapi->index;
4510 		u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
4511 
4512 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
4513 			hwrm_ring_free_send_msg(bp, ring,
4514 						RING_FREE_REQ_RING_TYPE_RX,
4515 						close_path ? cmpl_ring_id :
4516 						INVALID_HW_RING_ID);
4517 			ring->fw_ring_id = INVALID_HW_RING_ID;
4518 			bp->grp_info[grp_idx].rx_fw_ring_id =
4519 				INVALID_HW_RING_ID;
4520 		}
4521 	}
4522 
4523 	for (i = 0; i < bp->rx_nr_rings; i++) {
4524 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4525 		struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
4526 		u32 grp_idx = rxr->bnapi->index;
4527 		u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
4528 
4529 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
4530 			hwrm_ring_free_send_msg(bp, ring,
4531 						RING_FREE_REQ_RING_TYPE_RX,
4532 						close_path ? cmpl_ring_id :
4533 						INVALID_HW_RING_ID);
4534 			ring->fw_ring_id = INVALID_HW_RING_ID;
4535 			bp->grp_info[grp_idx].agg_fw_ring_id =
4536 				INVALID_HW_RING_ID;
4537 		}
4538 	}
4539 
4540 	/* The completion rings are about to be freed.  After that the
4541 	 * IRQ doorbell will not work anymore.  So we need to disable
4542 	 * IRQ here.
4543 	 */
4544 	bnxt_disable_int_sync(bp);
4545 
4546 	for (i = 0; i < bp->cp_nr_rings; i++) {
4547 		struct bnxt_napi *bnapi = bp->bnapi[i];
4548 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4549 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
4550 
4551 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
4552 			hwrm_ring_free_send_msg(bp, ring,
4553 						RING_FREE_REQ_RING_TYPE_L2_CMPL,
4554 						INVALID_HW_RING_ID);
4555 			ring->fw_ring_id = INVALID_HW_RING_ID;
4556 			bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
4557 		}
4558 	}
4559 }
4560 
4561 static int bnxt_hwrm_get_rings(struct bnxt *bp)
4562 {
4563 	struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
4564 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
4565 	struct hwrm_func_qcfg_input req = {0};
4566 	int rc;
4567 
4568 	if (bp->hwrm_spec_code < 0x10601)
4569 		return 0;
4570 
4571 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
4572 	req.fid = cpu_to_le16(0xffff);
4573 	mutex_lock(&bp->hwrm_cmd_lock);
4574 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4575 	if (rc) {
4576 		mutex_unlock(&bp->hwrm_cmd_lock);
4577 		return -EIO;
4578 	}
4579 
4580 	hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings);
4581 	if (bp->flags & BNXT_FLAG_NEW_RM) {
4582 		u16 cp, stats;
4583 
4584 		hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings);
4585 		hw_resc->resv_hw_ring_grps =
4586 			le32_to_cpu(resp->alloc_hw_ring_grps);
4587 		hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics);
4588 		cp = le16_to_cpu(resp->alloc_cmpl_rings);
4589 		stats = le16_to_cpu(resp->alloc_stat_ctx);
4590 		cp = min_t(u16, cp, stats);
4591 		hw_resc->resv_cp_rings = cp;
4592 	}
4593 	mutex_unlock(&bp->hwrm_cmd_lock);
4594 	return 0;
4595 }
4596 
4597 /* Caller must hold bp->hwrm_cmd_lock */
4598 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings)
4599 {
4600 	struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
4601 	struct hwrm_func_qcfg_input req = {0};
4602 	int rc;
4603 
4604 	if (bp->hwrm_spec_code < 0x10601)
4605 		return 0;
4606 
4607 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
4608 	req.fid = cpu_to_le16(fid);
4609 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4610 	if (!rc)
4611 		*tx_rings = le16_to_cpu(resp->alloc_tx_rings);
4612 
4613 	return rc;
4614 }
4615 
4616 static void
4617 __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, struct hwrm_func_cfg_input *req,
4618 			     int tx_rings, int rx_rings, int ring_grps,
4619 			     int cp_rings, int vnics)
4620 {
4621 	u32 enables = 0;
4622 
4623 	bnxt_hwrm_cmd_hdr_init(bp, req, HWRM_FUNC_CFG, -1, -1);
4624 	req->fid = cpu_to_le16(0xffff);
4625 	enables |= tx_rings ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
4626 	req->num_tx_rings = cpu_to_le16(tx_rings);
4627 	if (bp->flags & BNXT_FLAG_NEW_RM) {
4628 		enables |= rx_rings ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0;
4629 		enables |= cp_rings ? FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS |
4630 				      FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
4631 		enables |= ring_grps ?
4632 			   FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0;
4633 		enables |= vnics ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0;
4634 
4635 		req->num_rx_rings = cpu_to_le16(rx_rings);
4636 		req->num_hw_ring_grps = cpu_to_le16(ring_grps);
4637 		req->num_cmpl_rings = cpu_to_le16(cp_rings);
4638 		req->num_stat_ctxs = req->num_cmpl_rings;
4639 		req->num_vnics = cpu_to_le16(vnics);
4640 	}
4641 	req->enables = cpu_to_le32(enables);
4642 }
4643 
4644 static void
4645 __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp,
4646 			     struct hwrm_func_vf_cfg_input *req, int tx_rings,
4647 			     int rx_rings, int ring_grps, int cp_rings,
4648 			     int vnics)
4649 {
4650 	u32 enables = 0;
4651 
4652 	bnxt_hwrm_cmd_hdr_init(bp, req, HWRM_FUNC_VF_CFG, -1, -1);
4653 	enables |= tx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
4654 	enables |= rx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS : 0;
4655 	enables |= cp_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS |
4656 			      FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
4657 	enables |= ring_grps ? FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0;
4658 	enables |= vnics ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0;
4659 
4660 	req->num_tx_rings = cpu_to_le16(tx_rings);
4661 	req->num_rx_rings = cpu_to_le16(rx_rings);
4662 	req->num_hw_ring_grps = cpu_to_le16(ring_grps);
4663 	req->num_cmpl_rings = cpu_to_le16(cp_rings);
4664 	req->num_stat_ctxs = req->num_cmpl_rings;
4665 	req->num_vnics = cpu_to_le16(vnics);
4666 
4667 	req->enables = cpu_to_le32(enables);
4668 }
4669 
4670 static int
4671 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
4672 			   int ring_grps, int cp_rings, int vnics)
4673 {
4674 	struct hwrm_func_cfg_input req = {0};
4675 	int rc;
4676 
4677 	__bnxt_hwrm_reserve_pf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
4678 				     cp_rings, vnics);
4679 	if (!req.enables)
4680 		return 0;
4681 
4682 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4683 	if (rc)
4684 		return -ENOMEM;
4685 
4686 	if (bp->hwrm_spec_code < 0x10601)
4687 		bp->hw_resc.resv_tx_rings = tx_rings;
4688 
4689 	rc = bnxt_hwrm_get_rings(bp);
4690 	return rc;
4691 }
4692 
4693 static int
4694 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
4695 			   int ring_grps, int cp_rings, int vnics)
4696 {
4697 	struct hwrm_func_vf_cfg_input req = {0};
4698 	int rc;
4699 
4700 	if (!(bp->flags & BNXT_FLAG_NEW_RM)) {
4701 		bp->hw_resc.resv_tx_rings = tx_rings;
4702 		return 0;
4703 	}
4704 
4705 	__bnxt_hwrm_reserve_vf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
4706 				     cp_rings, vnics);
4707 	req.enables |= cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS |
4708 				   FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS);
4709 	req.num_rsscos_ctxs = cpu_to_le16(BNXT_VF_MAX_RSS_CTX);
4710 	req.num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX);
4711 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4712 	if (rc)
4713 		return -ENOMEM;
4714 
4715 	rc = bnxt_hwrm_get_rings(bp);
4716 	return rc;
4717 }
4718 
4719 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, int tx, int rx, int grp,
4720 				   int cp, int vnic)
4721 {
4722 	if (BNXT_PF(bp))
4723 		return bnxt_hwrm_reserve_pf_rings(bp, tx, rx, grp, cp, vnic);
4724 	else
4725 		return bnxt_hwrm_reserve_vf_rings(bp, tx, rx, grp, cp, vnic);
4726 }
4727 
4728 static int bnxt_cp_rings_in_use(struct bnxt *bp)
4729 {
4730 	int cp = bp->cp_nr_rings;
4731 	int ulp_msix, ulp_base;
4732 
4733 	ulp_msix = bnxt_get_ulp_msix_num(bp);
4734 	if (ulp_msix) {
4735 		ulp_base = bnxt_get_ulp_msix_base(bp);
4736 		cp += ulp_msix;
4737 		if ((ulp_base + ulp_msix) > cp)
4738 			cp = ulp_base + ulp_msix;
4739 	}
4740 	return cp;
4741 }
4742 
4743 static bool bnxt_need_reserve_rings(struct bnxt *bp)
4744 {
4745 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
4746 	int cp = bnxt_cp_rings_in_use(bp);
4747 	int rx = bp->rx_nr_rings;
4748 	int vnic = 1, grp = rx;
4749 
4750 	if (bp->hwrm_spec_code < 0x10601)
4751 		return false;
4752 
4753 	if (hw_resc->resv_tx_rings != bp->tx_nr_rings)
4754 		return true;
4755 
4756 	if (bp->flags & BNXT_FLAG_RFS)
4757 		vnic = rx + 1;
4758 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
4759 		rx <<= 1;
4760 	if ((bp->flags & BNXT_FLAG_NEW_RM) &&
4761 	    (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp ||
4762 	     hw_resc->resv_hw_ring_grps != grp || hw_resc->resv_vnics != vnic))
4763 		return true;
4764 	return false;
4765 }
4766 
4767 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
4768 			   bool shared);
4769 
4770 static int __bnxt_reserve_rings(struct bnxt *bp)
4771 {
4772 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
4773 	int cp = bnxt_cp_rings_in_use(bp);
4774 	int tx = bp->tx_nr_rings;
4775 	int rx = bp->rx_nr_rings;
4776 	int grp, rx_rings, rc;
4777 	bool sh = false;
4778 	int vnic = 1;
4779 
4780 	if (!bnxt_need_reserve_rings(bp))
4781 		return 0;
4782 
4783 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
4784 		sh = true;
4785 	if (bp->flags & BNXT_FLAG_RFS)
4786 		vnic = rx + 1;
4787 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
4788 		rx <<= 1;
4789 	grp = bp->rx_nr_rings;
4790 
4791 	rc = bnxt_hwrm_reserve_rings(bp, tx, rx, grp, cp, vnic);
4792 	if (rc)
4793 		return rc;
4794 
4795 	tx = hw_resc->resv_tx_rings;
4796 	if (bp->flags & BNXT_FLAG_NEW_RM) {
4797 		rx = hw_resc->resv_rx_rings;
4798 		cp = hw_resc->resv_cp_rings;
4799 		grp = hw_resc->resv_hw_ring_grps;
4800 		vnic = hw_resc->resv_vnics;
4801 	}
4802 
4803 	rx_rings = rx;
4804 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
4805 		if (rx >= 2) {
4806 			rx_rings = rx >> 1;
4807 		} else {
4808 			if (netif_running(bp->dev))
4809 				return -ENOMEM;
4810 
4811 			bp->flags &= ~BNXT_FLAG_AGG_RINGS;
4812 			bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
4813 			bp->dev->hw_features &= ~NETIF_F_LRO;
4814 			bp->dev->features &= ~NETIF_F_LRO;
4815 			bnxt_set_ring_params(bp);
4816 		}
4817 	}
4818 	rx_rings = min_t(int, rx_rings, grp);
4819 	rc = bnxt_trim_rings(bp, &rx_rings, &tx, cp, sh);
4820 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
4821 		rx = rx_rings << 1;
4822 	cp = sh ? max_t(int, tx, rx_rings) : tx + rx_rings;
4823 	bp->tx_nr_rings = tx;
4824 	bp->rx_nr_rings = rx_rings;
4825 	bp->cp_nr_rings = cp;
4826 
4827 	if (!tx || !rx || !cp || !grp || !vnic)
4828 		return -ENOMEM;
4829 
4830 	return rc;
4831 }
4832 
4833 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
4834 				    int ring_grps, int cp_rings, int vnics)
4835 {
4836 	struct hwrm_func_vf_cfg_input req = {0};
4837 	u32 flags;
4838 	int rc;
4839 
4840 	if (!(bp->flags & BNXT_FLAG_NEW_RM))
4841 		return 0;
4842 
4843 	__bnxt_hwrm_reserve_vf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
4844 				     cp_rings, vnics);
4845 	flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST |
4846 		FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST |
4847 		FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
4848 		FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST |
4849 		FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
4850 		FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST;
4851 
4852 	req.flags = cpu_to_le32(flags);
4853 	rc = hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4854 	if (rc)
4855 		return -ENOMEM;
4856 	return 0;
4857 }
4858 
4859 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
4860 				    int ring_grps, int cp_rings, int vnics)
4861 {
4862 	struct hwrm_func_cfg_input req = {0};
4863 	u32 flags;
4864 	int rc;
4865 
4866 	__bnxt_hwrm_reserve_pf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
4867 				     cp_rings, vnics);
4868 	flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST;
4869 	if (bp->flags & BNXT_FLAG_NEW_RM)
4870 		flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST |
4871 			 FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
4872 			 FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST |
4873 			 FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
4874 			 FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST;
4875 
4876 	req.flags = cpu_to_le32(flags);
4877 	rc = hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4878 	if (rc)
4879 		return -ENOMEM;
4880 	return 0;
4881 }
4882 
4883 static int bnxt_hwrm_check_rings(struct bnxt *bp, int tx_rings, int rx_rings,
4884 				 int ring_grps, int cp_rings, int vnics)
4885 {
4886 	if (bp->hwrm_spec_code < 0x10801)
4887 		return 0;
4888 
4889 	if (BNXT_PF(bp))
4890 		return bnxt_hwrm_check_pf_rings(bp, tx_rings, rx_rings,
4891 						ring_grps, cp_rings, vnics);
4892 
4893 	return bnxt_hwrm_check_vf_rings(bp, tx_rings, rx_rings, ring_grps,
4894 					cp_rings, vnics);
4895 }
4896 
4897 static void bnxt_hwrm_set_coal_params(struct bnxt_coal *hw_coal,
4898 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
4899 {
4900 	u16 val, tmr, max, flags;
4901 
4902 	max = hw_coal->bufs_per_record * 128;
4903 	if (hw_coal->budget)
4904 		max = hw_coal->bufs_per_record * hw_coal->budget;
4905 
4906 	val = clamp_t(u16, hw_coal->coal_bufs, 1, max);
4907 	req->num_cmpl_aggr_int = cpu_to_le16(val);
4908 
4909 	/* This is a 6-bit value and must not be 0, or we'll get non stop IRQ */
4910 	val = min_t(u16, val, 63);
4911 	req->num_cmpl_dma_aggr = cpu_to_le16(val);
4912 
4913 	/* This is a 6-bit value and must not be 0, or we'll get non stop IRQ */
4914 	val = clamp_t(u16, hw_coal->coal_bufs_irq, 1, 63);
4915 	req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val);
4916 
4917 	tmr = BNXT_USEC_TO_COAL_TIMER(hw_coal->coal_ticks);
4918 	tmr = max_t(u16, tmr, 1);
4919 	req->int_lat_tmr_max = cpu_to_le16(tmr);
4920 
4921 	/* min timer set to 1/2 of interrupt timer */
4922 	val = tmr / 2;
4923 	req->int_lat_tmr_min = cpu_to_le16(val);
4924 
4925 	/* buf timer set to 1/4 of interrupt timer */
4926 	val = max_t(u16, tmr / 4, 1);
4927 	req->cmpl_aggr_dma_tmr = cpu_to_le16(val);
4928 
4929 	tmr = BNXT_USEC_TO_COAL_TIMER(hw_coal->coal_ticks_irq);
4930 	tmr = max_t(u16, tmr, 1);
4931 	req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(tmr);
4932 
4933 	flags = RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
4934 	if (hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh)
4935 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
4936 	req->flags = cpu_to_le16(flags);
4937 }
4938 
4939 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi)
4940 {
4941 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0};
4942 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4943 	struct bnxt_coal coal;
4944 	unsigned int grp_idx;
4945 
4946 	/* Tick values in micro seconds.
4947 	 * 1 coal_buf x bufs_per_record = 1 completion record.
4948 	 */
4949 	memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal));
4950 
4951 	coal.coal_ticks = cpr->rx_ring_coal.coal_ticks;
4952 	coal.coal_bufs = cpr->rx_ring_coal.coal_bufs;
4953 
4954 	if (!bnapi->rx_ring)
4955 		return -ENODEV;
4956 
4957 	bnxt_hwrm_cmd_hdr_init(bp, &req_rx,
4958 			       HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
4959 
4960 	bnxt_hwrm_set_coal_params(&coal, &req_rx);
4961 
4962 	grp_idx = bnapi->index;
4963 	req_rx.ring_id = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
4964 
4965 	return hwrm_send_message(bp, &req_rx, sizeof(req_rx),
4966 				 HWRM_CMD_TIMEOUT);
4967 }
4968 
4969 int bnxt_hwrm_set_coal(struct bnxt *bp)
4970 {
4971 	int i, rc = 0;
4972 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0},
4973 							   req_tx = {0}, *req;
4974 
4975 	bnxt_hwrm_cmd_hdr_init(bp, &req_rx,
4976 			       HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
4977 	bnxt_hwrm_cmd_hdr_init(bp, &req_tx,
4978 			       HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
4979 
4980 	bnxt_hwrm_set_coal_params(&bp->rx_coal, &req_rx);
4981 	bnxt_hwrm_set_coal_params(&bp->tx_coal, &req_tx);
4982 
4983 	mutex_lock(&bp->hwrm_cmd_lock);
4984 	for (i = 0; i < bp->cp_nr_rings; i++) {
4985 		struct bnxt_napi *bnapi = bp->bnapi[i];
4986 
4987 		req = &req_rx;
4988 		if (!bnapi->rx_ring)
4989 			req = &req_tx;
4990 		req->ring_id = cpu_to_le16(bp->grp_info[i].cp_fw_ring_id);
4991 
4992 		rc = _hwrm_send_message(bp, req, sizeof(*req),
4993 					HWRM_CMD_TIMEOUT);
4994 		if (rc)
4995 			break;
4996 	}
4997 	mutex_unlock(&bp->hwrm_cmd_lock);
4998 	return rc;
4999 }
5000 
5001 static int bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
5002 {
5003 	int rc = 0, i;
5004 	struct hwrm_stat_ctx_free_input req = {0};
5005 
5006 	if (!bp->bnapi)
5007 		return 0;
5008 
5009 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5010 		return 0;
5011 
5012 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_FREE, -1, -1);
5013 
5014 	mutex_lock(&bp->hwrm_cmd_lock);
5015 	for (i = 0; i < bp->cp_nr_rings; i++) {
5016 		struct bnxt_napi *bnapi = bp->bnapi[i];
5017 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5018 
5019 		if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
5020 			req.stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
5021 
5022 			rc = _hwrm_send_message(bp, &req, sizeof(req),
5023 						HWRM_CMD_TIMEOUT);
5024 			if (rc)
5025 				break;
5026 
5027 			cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
5028 		}
5029 	}
5030 	mutex_unlock(&bp->hwrm_cmd_lock);
5031 	return rc;
5032 }
5033 
5034 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
5035 {
5036 	int rc = 0, i;
5037 	struct hwrm_stat_ctx_alloc_input req = {0};
5038 	struct hwrm_stat_ctx_alloc_output *resp = bp->hwrm_cmd_resp_addr;
5039 
5040 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5041 		return 0;
5042 
5043 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_ALLOC, -1, -1);
5044 
5045 	req.update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000);
5046 
5047 	mutex_lock(&bp->hwrm_cmd_lock);
5048 	for (i = 0; i < bp->cp_nr_rings; i++) {
5049 		struct bnxt_napi *bnapi = bp->bnapi[i];
5050 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5051 
5052 		req.stats_dma_addr = cpu_to_le64(cpr->hw_stats_map);
5053 
5054 		rc = _hwrm_send_message(bp, &req, sizeof(req),
5055 					HWRM_CMD_TIMEOUT);
5056 		if (rc)
5057 			break;
5058 
5059 		cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
5060 
5061 		bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
5062 	}
5063 	mutex_unlock(&bp->hwrm_cmd_lock);
5064 	return rc;
5065 }
5066 
5067 static int bnxt_hwrm_func_qcfg(struct bnxt *bp)
5068 {
5069 	struct hwrm_func_qcfg_input req = {0};
5070 	struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
5071 	u16 flags;
5072 	int rc;
5073 
5074 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
5075 	req.fid = cpu_to_le16(0xffff);
5076 	mutex_lock(&bp->hwrm_cmd_lock);
5077 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5078 	if (rc)
5079 		goto func_qcfg_exit;
5080 
5081 #ifdef CONFIG_BNXT_SRIOV
5082 	if (BNXT_VF(bp)) {
5083 		struct bnxt_vf_info *vf = &bp->vf;
5084 
5085 		vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK;
5086 	}
5087 #endif
5088 	flags = le16_to_cpu(resp->flags);
5089 	if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED |
5090 		     FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) {
5091 		bp->flags |= BNXT_FLAG_FW_LLDP_AGENT;
5092 		if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED)
5093 			bp->flags |= BNXT_FLAG_FW_DCBX_AGENT;
5094 	}
5095 	if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST))
5096 		bp->flags |= BNXT_FLAG_MULTI_HOST;
5097 
5098 	switch (resp->port_partition_type) {
5099 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0:
5100 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5:
5101 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0:
5102 		bp->port_partition_type = resp->port_partition_type;
5103 		break;
5104 	}
5105 	if (bp->hwrm_spec_code < 0x10707 ||
5106 	    resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB)
5107 		bp->br_mode = BRIDGE_MODE_VEB;
5108 	else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA)
5109 		bp->br_mode = BRIDGE_MODE_VEPA;
5110 	else
5111 		bp->br_mode = BRIDGE_MODE_UNDEF;
5112 
5113 	bp->max_mtu = le16_to_cpu(resp->max_mtu_configured);
5114 	if (!bp->max_mtu)
5115 		bp->max_mtu = BNXT_MAX_MTU;
5116 
5117 func_qcfg_exit:
5118 	mutex_unlock(&bp->hwrm_cmd_lock);
5119 	return rc;
5120 }
5121 
5122 int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all)
5123 {
5124 	struct hwrm_func_resource_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
5125 	struct hwrm_func_resource_qcaps_input req = {0};
5126 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
5127 	int rc;
5128 
5129 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESOURCE_QCAPS, -1, -1);
5130 	req.fid = cpu_to_le16(0xffff);
5131 
5132 	mutex_lock(&bp->hwrm_cmd_lock);
5133 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5134 	if (rc) {
5135 		rc = -EIO;
5136 		goto hwrm_func_resc_qcaps_exit;
5137 	}
5138 
5139 	hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs);
5140 	if (!all)
5141 		goto hwrm_func_resc_qcaps_exit;
5142 
5143 	hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx);
5144 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
5145 	hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings);
5146 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
5147 	hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings);
5148 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
5149 	hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings);
5150 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
5151 	hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps);
5152 	hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps);
5153 	hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs);
5154 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
5155 	hw_resc->min_vnics = le16_to_cpu(resp->min_vnics);
5156 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
5157 	hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx);
5158 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
5159 
5160 	if (BNXT_PF(bp)) {
5161 		struct bnxt_pf_info *pf = &bp->pf;
5162 
5163 		pf->vf_resv_strategy =
5164 			le16_to_cpu(resp->vf_reservation_strategy);
5165 		if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL)
5166 			pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL;
5167 	}
5168 hwrm_func_resc_qcaps_exit:
5169 	mutex_unlock(&bp->hwrm_cmd_lock);
5170 	return rc;
5171 }
5172 
5173 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp)
5174 {
5175 	int rc = 0;
5176 	struct hwrm_func_qcaps_input req = {0};
5177 	struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
5178 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
5179 	u32 flags;
5180 
5181 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1);
5182 	req.fid = cpu_to_le16(0xffff);
5183 
5184 	mutex_lock(&bp->hwrm_cmd_lock);
5185 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5186 	if (rc)
5187 		goto hwrm_func_qcaps_exit;
5188 
5189 	flags = le32_to_cpu(resp->flags);
5190 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED)
5191 		bp->flags |= BNXT_FLAG_ROCEV1_CAP;
5192 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED)
5193 		bp->flags |= BNXT_FLAG_ROCEV2_CAP;
5194 
5195 	bp->tx_push_thresh = 0;
5196 	if (flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED)
5197 		bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
5198 
5199 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
5200 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
5201 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
5202 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
5203 	hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
5204 	if (!hw_resc->max_hw_ring_grps)
5205 		hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings;
5206 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
5207 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
5208 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
5209 
5210 	if (BNXT_PF(bp)) {
5211 		struct bnxt_pf_info *pf = &bp->pf;
5212 
5213 		pf->fw_fid = le16_to_cpu(resp->fid);
5214 		pf->port_id = le16_to_cpu(resp->port_id);
5215 		bp->dev->dev_port = pf->port_id;
5216 		memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN);
5217 		pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
5218 		pf->max_vfs = le16_to_cpu(resp->max_vfs);
5219 		pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
5220 		pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
5221 		pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
5222 		pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
5223 		pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
5224 		pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
5225 		if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED)
5226 			bp->flags |= BNXT_FLAG_WOL_CAP;
5227 	} else {
5228 #ifdef CONFIG_BNXT_SRIOV
5229 		struct bnxt_vf_info *vf = &bp->vf;
5230 
5231 		vf->fw_fid = le16_to_cpu(resp->fid);
5232 		memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN);
5233 #endif
5234 	}
5235 
5236 hwrm_func_qcaps_exit:
5237 	mutex_unlock(&bp->hwrm_cmd_lock);
5238 	return rc;
5239 }
5240 
5241 static int bnxt_hwrm_func_qcaps(struct bnxt *bp)
5242 {
5243 	int rc;
5244 
5245 	rc = __bnxt_hwrm_func_qcaps(bp);
5246 	if (rc)
5247 		return rc;
5248 	if (bp->hwrm_spec_code >= 0x10803) {
5249 		rc = bnxt_hwrm_func_resc_qcaps(bp, true);
5250 		if (!rc)
5251 			bp->flags |= BNXT_FLAG_NEW_RM;
5252 	}
5253 	return 0;
5254 }
5255 
5256 static int bnxt_hwrm_func_reset(struct bnxt *bp)
5257 {
5258 	struct hwrm_func_reset_input req = {0};
5259 
5260 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESET, -1, -1);
5261 	req.enables = 0;
5262 
5263 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_RESET_TIMEOUT);
5264 }
5265 
5266 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
5267 {
5268 	int rc = 0;
5269 	struct hwrm_queue_qportcfg_input req = {0};
5270 	struct hwrm_queue_qportcfg_output *resp = bp->hwrm_cmd_resp_addr;
5271 	u8 i, *qptr;
5272 
5273 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_QUEUE_QPORTCFG, -1, -1);
5274 
5275 	mutex_lock(&bp->hwrm_cmd_lock);
5276 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5277 	if (rc)
5278 		goto qportcfg_exit;
5279 
5280 	if (!resp->max_configurable_queues) {
5281 		rc = -EINVAL;
5282 		goto qportcfg_exit;
5283 	}
5284 	bp->max_tc = resp->max_configurable_queues;
5285 	bp->max_lltc = resp->max_configurable_lossless_queues;
5286 	if (bp->max_tc > BNXT_MAX_QUEUE)
5287 		bp->max_tc = BNXT_MAX_QUEUE;
5288 
5289 	if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG)
5290 		bp->max_tc = 1;
5291 
5292 	if (bp->max_lltc > bp->max_tc)
5293 		bp->max_lltc = bp->max_tc;
5294 
5295 	qptr = &resp->queue_id0;
5296 	for (i = 0; i < bp->max_tc; i++) {
5297 		bp->q_info[i].queue_id = *qptr++;
5298 		bp->q_info[i].queue_profile = *qptr++;
5299 		bp->tc_to_qidx[i] = i;
5300 	}
5301 
5302 qportcfg_exit:
5303 	mutex_unlock(&bp->hwrm_cmd_lock);
5304 	return rc;
5305 }
5306 
5307 static int bnxt_hwrm_ver_get(struct bnxt *bp)
5308 {
5309 	int rc;
5310 	struct hwrm_ver_get_input req = {0};
5311 	struct hwrm_ver_get_output *resp = bp->hwrm_cmd_resp_addr;
5312 	u32 dev_caps_cfg;
5313 
5314 	bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN;
5315 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VER_GET, -1, -1);
5316 	req.hwrm_intf_maj = HWRM_VERSION_MAJOR;
5317 	req.hwrm_intf_min = HWRM_VERSION_MINOR;
5318 	req.hwrm_intf_upd = HWRM_VERSION_UPDATE;
5319 	mutex_lock(&bp->hwrm_cmd_lock);
5320 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5321 	if (rc)
5322 		goto hwrm_ver_get_exit;
5323 
5324 	memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
5325 
5326 	bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 |
5327 			     resp->hwrm_intf_min_8b << 8 |
5328 			     resp->hwrm_intf_upd_8b;
5329 	if (resp->hwrm_intf_maj_8b < 1) {
5330 		netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
5331 			    resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
5332 			    resp->hwrm_intf_upd_8b);
5333 		netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
5334 	}
5335 	snprintf(bp->fw_ver_str, BC_HWRM_STR_LEN, "%d.%d.%d.%d",
5336 		 resp->hwrm_fw_maj_8b, resp->hwrm_fw_min_8b,
5337 		 resp->hwrm_fw_bld_8b, resp->hwrm_fw_rsvd_8b);
5338 
5339 	bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout);
5340 	if (!bp->hwrm_cmd_timeout)
5341 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
5342 
5343 	if (resp->hwrm_intf_maj_8b >= 1)
5344 		bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len);
5345 
5346 	bp->chip_num = le16_to_cpu(resp->chip_num);
5347 	if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev &&
5348 	    !resp->chip_metal)
5349 		bp->flags |= BNXT_FLAG_CHIP_NITRO_A0;
5350 
5351 	dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg);
5352 	if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) &&
5353 	    (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED))
5354 		bp->flags |= BNXT_FLAG_SHORT_CMD;
5355 
5356 hwrm_ver_get_exit:
5357 	mutex_unlock(&bp->hwrm_cmd_lock);
5358 	return rc;
5359 }
5360 
5361 int bnxt_hwrm_fw_set_time(struct bnxt *bp)
5362 {
5363 	struct hwrm_fw_set_time_input req = {0};
5364 	struct tm tm;
5365 	time64_t now = ktime_get_real_seconds();
5366 
5367 	if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) ||
5368 	    bp->hwrm_spec_code < 0x10400)
5369 		return -EOPNOTSUPP;
5370 
5371 	time64_to_tm(now, 0, &tm);
5372 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FW_SET_TIME, -1, -1);
5373 	req.year = cpu_to_le16(1900 + tm.tm_year);
5374 	req.month = 1 + tm.tm_mon;
5375 	req.day = tm.tm_mday;
5376 	req.hour = tm.tm_hour;
5377 	req.minute = tm.tm_min;
5378 	req.second = tm.tm_sec;
5379 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5380 }
5381 
5382 static int bnxt_hwrm_port_qstats(struct bnxt *bp)
5383 {
5384 	int rc;
5385 	struct bnxt_pf_info *pf = &bp->pf;
5386 	struct hwrm_port_qstats_input req = {0};
5387 
5388 	if (!(bp->flags & BNXT_FLAG_PORT_STATS))
5389 		return 0;
5390 
5391 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS, -1, -1);
5392 	req.port_id = cpu_to_le16(pf->port_id);
5393 	req.tx_stat_host_addr = cpu_to_le64(bp->hw_tx_port_stats_map);
5394 	req.rx_stat_host_addr = cpu_to_le64(bp->hw_rx_port_stats_map);
5395 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5396 	return rc;
5397 }
5398 
5399 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp)
5400 {
5401 	struct hwrm_port_qstats_ext_input req = {0};
5402 	struct bnxt_pf_info *pf = &bp->pf;
5403 
5404 	if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT))
5405 		return 0;
5406 
5407 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS_EXT, -1, -1);
5408 	req.port_id = cpu_to_le16(pf->port_id);
5409 	req.rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext));
5410 	req.rx_stat_host_addr = cpu_to_le64(bp->hw_rx_port_stats_ext_map);
5411 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5412 }
5413 
5414 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
5415 {
5416 	if (bp->vxlan_port_cnt) {
5417 		bnxt_hwrm_tunnel_dst_port_free(
5418 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
5419 	}
5420 	bp->vxlan_port_cnt = 0;
5421 	if (bp->nge_port_cnt) {
5422 		bnxt_hwrm_tunnel_dst_port_free(
5423 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
5424 	}
5425 	bp->nge_port_cnt = 0;
5426 }
5427 
5428 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
5429 {
5430 	int rc, i;
5431 	u32 tpa_flags = 0;
5432 
5433 	if (set_tpa)
5434 		tpa_flags = bp->flags & BNXT_FLAG_TPA;
5435 	for (i = 0; i < bp->nr_vnics; i++) {
5436 		rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
5437 		if (rc) {
5438 			netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
5439 				   i, rc);
5440 			return rc;
5441 		}
5442 	}
5443 	return 0;
5444 }
5445 
5446 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
5447 {
5448 	int i;
5449 
5450 	for (i = 0; i < bp->nr_vnics; i++)
5451 		bnxt_hwrm_vnic_set_rss(bp, i, false);
5452 }
5453 
5454 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
5455 				    bool irq_re_init)
5456 {
5457 	if (bp->vnic_info) {
5458 		bnxt_hwrm_clear_vnic_filter(bp);
5459 		/* clear all RSS setting before free vnic ctx */
5460 		bnxt_hwrm_clear_vnic_rss(bp);
5461 		bnxt_hwrm_vnic_ctx_free(bp);
5462 		/* before free the vnic, undo the vnic tpa settings */
5463 		if (bp->flags & BNXT_FLAG_TPA)
5464 			bnxt_set_tpa(bp, false);
5465 		bnxt_hwrm_vnic_free(bp);
5466 	}
5467 	bnxt_hwrm_ring_free(bp, close_path);
5468 	bnxt_hwrm_ring_grp_free(bp);
5469 	if (irq_re_init) {
5470 		bnxt_hwrm_stat_ctx_free(bp);
5471 		bnxt_hwrm_free_tunnel_ports(bp);
5472 	}
5473 }
5474 
5475 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode)
5476 {
5477 	struct hwrm_func_cfg_input req = {0};
5478 	int rc;
5479 
5480 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
5481 	req.fid = cpu_to_le16(0xffff);
5482 	req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE);
5483 	if (br_mode == BRIDGE_MODE_VEB)
5484 		req.evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB;
5485 	else if (br_mode == BRIDGE_MODE_VEPA)
5486 		req.evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA;
5487 	else
5488 		return -EINVAL;
5489 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5490 	if (rc)
5491 		rc = -EIO;
5492 	return rc;
5493 }
5494 
5495 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size)
5496 {
5497 	struct hwrm_func_cfg_input req = {0};
5498 	int rc;
5499 
5500 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803)
5501 		return 0;
5502 
5503 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
5504 	req.fid = cpu_to_le16(0xffff);
5505 	req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE);
5506 	req.options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64;
5507 	if (size == 128)
5508 		req.options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128;
5509 
5510 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5511 	if (rc)
5512 		rc = -EIO;
5513 	return rc;
5514 }
5515 
5516 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
5517 {
5518 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5519 	int rc;
5520 
5521 	if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG)
5522 		goto skip_rss_ctx;
5523 
5524 	/* allocate context for vnic */
5525 	rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0);
5526 	if (rc) {
5527 		netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
5528 			   vnic_id, rc);
5529 		goto vnic_setup_err;
5530 	}
5531 	bp->rsscos_nr_ctxs++;
5532 
5533 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
5534 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1);
5535 		if (rc) {
5536 			netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n",
5537 				   vnic_id, rc);
5538 			goto vnic_setup_err;
5539 		}
5540 		bp->rsscos_nr_ctxs++;
5541 	}
5542 
5543 skip_rss_ctx:
5544 	/* configure default vnic, ring grp */
5545 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
5546 	if (rc) {
5547 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
5548 			   vnic_id, rc);
5549 		goto vnic_setup_err;
5550 	}
5551 
5552 	/* Enable RSS hashing on vnic */
5553 	rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
5554 	if (rc) {
5555 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
5556 			   vnic_id, rc);
5557 		goto vnic_setup_err;
5558 	}
5559 
5560 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
5561 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
5562 		if (rc) {
5563 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
5564 				   vnic_id, rc);
5565 		}
5566 	}
5567 
5568 vnic_setup_err:
5569 	return rc;
5570 }
5571 
5572 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
5573 {
5574 #ifdef CONFIG_RFS_ACCEL
5575 	int i, rc = 0;
5576 
5577 	for (i = 0; i < bp->rx_nr_rings; i++) {
5578 		struct bnxt_vnic_info *vnic;
5579 		u16 vnic_id = i + 1;
5580 		u16 ring_id = i;
5581 
5582 		if (vnic_id >= bp->nr_vnics)
5583 			break;
5584 
5585 		vnic = &bp->vnic_info[vnic_id];
5586 		vnic->flags |= BNXT_VNIC_RFS_FLAG;
5587 		if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
5588 			vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG;
5589 		rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1);
5590 		if (rc) {
5591 			netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
5592 				   vnic_id, rc);
5593 			break;
5594 		}
5595 		rc = bnxt_setup_vnic(bp, vnic_id);
5596 		if (rc)
5597 			break;
5598 	}
5599 	return rc;
5600 #else
5601 	return 0;
5602 #endif
5603 }
5604 
5605 /* Allow PF and VF with default VLAN to be in promiscuous mode */
5606 static bool bnxt_promisc_ok(struct bnxt *bp)
5607 {
5608 #ifdef CONFIG_BNXT_SRIOV
5609 	if (BNXT_VF(bp) && !bp->vf.vlan)
5610 		return false;
5611 #endif
5612 	return true;
5613 }
5614 
5615 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp)
5616 {
5617 	unsigned int rc = 0;
5618 
5619 	rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1);
5620 	if (rc) {
5621 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
5622 			   rc);
5623 		return rc;
5624 	}
5625 
5626 	rc = bnxt_hwrm_vnic_cfg(bp, 1);
5627 	if (rc) {
5628 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
5629 			   rc);
5630 		return rc;
5631 	}
5632 	return rc;
5633 }
5634 
5635 static int bnxt_cfg_rx_mode(struct bnxt *);
5636 static bool bnxt_mc_list_updated(struct bnxt *, u32 *);
5637 
5638 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
5639 {
5640 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
5641 	int rc = 0;
5642 	unsigned int rx_nr_rings = bp->rx_nr_rings;
5643 
5644 	if (irq_re_init) {
5645 		rc = bnxt_hwrm_stat_ctx_alloc(bp);
5646 		if (rc) {
5647 			netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
5648 				   rc);
5649 			goto err_out;
5650 		}
5651 	}
5652 
5653 	rc = bnxt_hwrm_ring_alloc(bp);
5654 	if (rc) {
5655 		netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
5656 		goto err_out;
5657 	}
5658 
5659 	rc = bnxt_hwrm_ring_grp_alloc(bp);
5660 	if (rc) {
5661 		netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
5662 		goto err_out;
5663 	}
5664 
5665 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5666 		rx_nr_rings--;
5667 
5668 	/* default vnic 0 */
5669 	rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings);
5670 	if (rc) {
5671 		netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
5672 		goto err_out;
5673 	}
5674 
5675 	rc = bnxt_setup_vnic(bp, 0);
5676 	if (rc)
5677 		goto err_out;
5678 
5679 	if (bp->flags & BNXT_FLAG_RFS) {
5680 		rc = bnxt_alloc_rfs_vnics(bp);
5681 		if (rc)
5682 			goto err_out;
5683 	}
5684 
5685 	if (bp->flags & BNXT_FLAG_TPA) {
5686 		rc = bnxt_set_tpa(bp, true);
5687 		if (rc)
5688 			goto err_out;
5689 	}
5690 
5691 	if (BNXT_VF(bp))
5692 		bnxt_update_vf_mac(bp);
5693 
5694 	/* Filter for default vnic 0 */
5695 	rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
5696 	if (rc) {
5697 		netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
5698 		goto err_out;
5699 	}
5700 	vnic->uc_filter_count = 1;
5701 
5702 	vnic->rx_mask = 0;
5703 	if (bp->dev->flags & IFF_BROADCAST)
5704 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
5705 
5706 	if ((bp->dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
5707 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
5708 
5709 	if (bp->dev->flags & IFF_ALLMULTI) {
5710 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
5711 		vnic->mc_list_count = 0;
5712 	} else {
5713 		u32 mask = 0;
5714 
5715 		bnxt_mc_list_updated(bp, &mask);
5716 		vnic->rx_mask |= mask;
5717 	}
5718 
5719 	rc = bnxt_cfg_rx_mode(bp);
5720 	if (rc)
5721 		goto err_out;
5722 
5723 	rc = bnxt_hwrm_set_coal(bp);
5724 	if (rc)
5725 		netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
5726 				rc);
5727 
5728 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
5729 		rc = bnxt_setup_nitroa0_vnic(bp);
5730 		if (rc)
5731 			netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n",
5732 				   rc);
5733 	}
5734 
5735 	if (BNXT_VF(bp)) {
5736 		bnxt_hwrm_func_qcfg(bp);
5737 		netdev_update_features(bp->dev);
5738 	}
5739 
5740 	return 0;
5741 
5742 err_out:
5743 	bnxt_hwrm_resource_free(bp, 0, true);
5744 
5745 	return rc;
5746 }
5747 
5748 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
5749 {
5750 	bnxt_hwrm_resource_free(bp, 1, irq_re_init);
5751 	return 0;
5752 }
5753 
5754 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
5755 {
5756 	bnxt_init_cp_rings(bp);
5757 	bnxt_init_rx_rings(bp);
5758 	bnxt_init_tx_rings(bp);
5759 	bnxt_init_ring_grps(bp, irq_re_init);
5760 	bnxt_init_vnics(bp);
5761 
5762 	return bnxt_init_chip(bp, irq_re_init);
5763 }
5764 
5765 static int bnxt_set_real_num_queues(struct bnxt *bp)
5766 {
5767 	int rc;
5768 	struct net_device *dev = bp->dev;
5769 
5770 	rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings -
5771 					  bp->tx_nr_rings_xdp);
5772 	if (rc)
5773 		return rc;
5774 
5775 	rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
5776 	if (rc)
5777 		return rc;
5778 
5779 #ifdef CONFIG_RFS_ACCEL
5780 	if (bp->flags & BNXT_FLAG_RFS)
5781 		dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
5782 #endif
5783 
5784 	return rc;
5785 }
5786 
5787 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
5788 			   bool shared)
5789 {
5790 	int _rx = *rx, _tx = *tx;
5791 
5792 	if (shared) {
5793 		*rx = min_t(int, _rx, max);
5794 		*tx = min_t(int, _tx, max);
5795 	} else {
5796 		if (max < 2)
5797 			return -ENOMEM;
5798 
5799 		while (_rx + _tx > max) {
5800 			if (_rx > _tx && _rx > 1)
5801 				_rx--;
5802 			else if (_tx > 1)
5803 				_tx--;
5804 		}
5805 		*rx = _rx;
5806 		*tx = _tx;
5807 	}
5808 	return 0;
5809 }
5810 
5811 static void bnxt_setup_msix(struct bnxt *bp)
5812 {
5813 	const int len = sizeof(bp->irq_tbl[0].name);
5814 	struct net_device *dev = bp->dev;
5815 	int tcs, i;
5816 
5817 	tcs = netdev_get_num_tc(dev);
5818 	if (tcs > 1) {
5819 		int i, off, count;
5820 
5821 		for (i = 0; i < tcs; i++) {
5822 			count = bp->tx_nr_rings_per_tc;
5823 			off = i * count;
5824 			netdev_set_tc_queue(dev, i, count, off);
5825 		}
5826 	}
5827 
5828 	for (i = 0; i < bp->cp_nr_rings; i++) {
5829 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
5830 		char *attr;
5831 
5832 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
5833 			attr = "TxRx";
5834 		else if (i < bp->rx_nr_rings)
5835 			attr = "rx";
5836 		else
5837 			attr = "tx";
5838 
5839 		snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name,
5840 			 attr, i);
5841 		bp->irq_tbl[map_idx].handler = bnxt_msix;
5842 	}
5843 }
5844 
5845 static void bnxt_setup_inta(struct bnxt *bp)
5846 {
5847 	const int len = sizeof(bp->irq_tbl[0].name);
5848 
5849 	if (netdev_get_num_tc(bp->dev))
5850 		netdev_reset_tc(bp->dev);
5851 
5852 	snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx",
5853 		 0);
5854 	bp->irq_tbl[0].handler = bnxt_inta;
5855 }
5856 
5857 static int bnxt_setup_int_mode(struct bnxt *bp)
5858 {
5859 	int rc;
5860 
5861 	if (bp->flags & BNXT_FLAG_USING_MSIX)
5862 		bnxt_setup_msix(bp);
5863 	else
5864 		bnxt_setup_inta(bp);
5865 
5866 	rc = bnxt_set_real_num_queues(bp);
5867 	return rc;
5868 }
5869 
5870 #ifdef CONFIG_RFS_ACCEL
5871 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp)
5872 {
5873 	return bp->hw_resc.max_rsscos_ctxs;
5874 }
5875 
5876 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp)
5877 {
5878 	return bp->hw_resc.max_vnics;
5879 }
5880 #endif
5881 
5882 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp)
5883 {
5884 	return bp->hw_resc.max_stat_ctxs;
5885 }
5886 
5887 void bnxt_set_max_func_stat_ctxs(struct bnxt *bp, unsigned int max)
5888 {
5889 	bp->hw_resc.max_stat_ctxs = max;
5890 }
5891 
5892 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp)
5893 {
5894 	return bp->hw_resc.max_cp_rings;
5895 }
5896 
5897 void bnxt_set_max_func_cp_rings(struct bnxt *bp, unsigned int max)
5898 {
5899 	bp->hw_resc.max_cp_rings = max;
5900 }
5901 
5902 unsigned int bnxt_get_max_func_irqs(struct bnxt *bp)
5903 {
5904 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
5905 
5906 	return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings);
5907 }
5908 
5909 static void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs)
5910 {
5911 	bp->hw_resc.max_irqs = max_irqs;
5912 }
5913 
5914 int bnxt_get_avail_msix(struct bnxt *bp, int num)
5915 {
5916 	int max_cp = bnxt_get_max_func_cp_rings(bp);
5917 	int max_irq = bnxt_get_max_func_irqs(bp);
5918 	int total_req = bp->cp_nr_rings + num;
5919 	int max_idx, avail_msix;
5920 
5921 	max_idx = min_t(int, bp->total_irqs, max_cp);
5922 	avail_msix = max_idx - bp->cp_nr_rings;
5923 	if (!(bp->flags & BNXT_FLAG_NEW_RM) || avail_msix >= num)
5924 		return avail_msix;
5925 
5926 	if (max_irq < total_req) {
5927 		num = max_irq - bp->cp_nr_rings;
5928 		if (num <= 0)
5929 			return 0;
5930 	}
5931 	return num;
5932 }
5933 
5934 static int bnxt_get_num_msix(struct bnxt *bp)
5935 {
5936 	if (!(bp->flags & BNXT_FLAG_NEW_RM))
5937 		return bnxt_get_max_func_irqs(bp);
5938 
5939 	return bnxt_cp_rings_in_use(bp);
5940 }
5941 
5942 static int bnxt_init_msix(struct bnxt *bp)
5943 {
5944 	int i, total_vecs, max, rc = 0, min = 1, ulp_msix;
5945 	struct msix_entry *msix_ent;
5946 
5947 	total_vecs = bnxt_get_num_msix(bp);
5948 	max = bnxt_get_max_func_irqs(bp);
5949 	if (total_vecs > max)
5950 		total_vecs = max;
5951 
5952 	if (!total_vecs)
5953 		return 0;
5954 
5955 	msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
5956 	if (!msix_ent)
5957 		return -ENOMEM;
5958 
5959 	for (i = 0; i < total_vecs; i++) {
5960 		msix_ent[i].entry = i;
5961 		msix_ent[i].vector = 0;
5962 	}
5963 
5964 	if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
5965 		min = 2;
5966 
5967 	total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
5968 	ulp_msix = bnxt_get_ulp_msix_num(bp);
5969 	if (total_vecs < 0 || total_vecs < ulp_msix) {
5970 		rc = -ENODEV;
5971 		goto msix_setup_exit;
5972 	}
5973 
5974 	bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
5975 	if (bp->irq_tbl) {
5976 		for (i = 0; i < total_vecs; i++)
5977 			bp->irq_tbl[i].vector = msix_ent[i].vector;
5978 
5979 		bp->total_irqs = total_vecs;
5980 		/* Trim rings based upon num of vectors allocated */
5981 		rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
5982 				     total_vecs - ulp_msix, min == 1);
5983 		if (rc)
5984 			goto msix_setup_exit;
5985 
5986 		bp->cp_nr_rings = (min == 1) ?
5987 				  max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
5988 				  bp->tx_nr_rings + bp->rx_nr_rings;
5989 
5990 	} else {
5991 		rc = -ENOMEM;
5992 		goto msix_setup_exit;
5993 	}
5994 	bp->flags |= BNXT_FLAG_USING_MSIX;
5995 	kfree(msix_ent);
5996 	return 0;
5997 
5998 msix_setup_exit:
5999 	netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc);
6000 	kfree(bp->irq_tbl);
6001 	bp->irq_tbl = NULL;
6002 	pci_disable_msix(bp->pdev);
6003 	kfree(msix_ent);
6004 	return rc;
6005 }
6006 
6007 static int bnxt_init_inta(struct bnxt *bp)
6008 {
6009 	bp->irq_tbl = kcalloc(1, sizeof(struct bnxt_irq), GFP_KERNEL);
6010 	if (!bp->irq_tbl)
6011 		return -ENOMEM;
6012 
6013 	bp->total_irqs = 1;
6014 	bp->rx_nr_rings = 1;
6015 	bp->tx_nr_rings = 1;
6016 	bp->cp_nr_rings = 1;
6017 	bp->flags |= BNXT_FLAG_SHARED_RINGS;
6018 	bp->irq_tbl[0].vector = bp->pdev->irq;
6019 	return 0;
6020 }
6021 
6022 static int bnxt_init_int_mode(struct bnxt *bp)
6023 {
6024 	int rc = 0;
6025 
6026 	if (bp->flags & BNXT_FLAG_MSIX_CAP)
6027 		rc = bnxt_init_msix(bp);
6028 
6029 	if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) {
6030 		/* fallback to INTA */
6031 		rc = bnxt_init_inta(bp);
6032 	}
6033 	return rc;
6034 }
6035 
6036 static void bnxt_clear_int_mode(struct bnxt *bp)
6037 {
6038 	if (bp->flags & BNXT_FLAG_USING_MSIX)
6039 		pci_disable_msix(bp->pdev);
6040 
6041 	kfree(bp->irq_tbl);
6042 	bp->irq_tbl = NULL;
6043 	bp->flags &= ~BNXT_FLAG_USING_MSIX;
6044 }
6045 
6046 int bnxt_reserve_rings(struct bnxt *bp)
6047 {
6048 	int tcs = netdev_get_num_tc(bp->dev);
6049 	int rc;
6050 
6051 	if (!bnxt_need_reserve_rings(bp))
6052 		return 0;
6053 
6054 	rc = __bnxt_reserve_rings(bp);
6055 	if (rc) {
6056 		netdev_err(bp->dev, "ring reservation failure rc: %d\n", rc);
6057 		return rc;
6058 	}
6059 	if ((bp->flags & BNXT_FLAG_NEW_RM) &&
6060 	    (bnxt_get_num_msix(bp) != bp->total_irqs)) {
6061 		bnxt_ulp_irq_stop(bp);
6062 		bnxt_clear_int_mode(bp);
6063 		rc = bnxt_init_int_mode(bp);
6064 		bnxt_ulp_irq_restart(bp, rc);
6065 		if (rc)
6066 			return rc;
6067 	}
6068 	if (tcs && (bp->tx_nr_rings_per_tc * tcs != bp->tx_nr_rings)) {
6069 		netdev_err(bp->dev, "tx ring reservation failure\n");
6070 		netdev_reset_tc(bp->dev);
6071 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
6072 		return -ENOMEM;
6073 	}
6074 	bp->num_stat_ctxs = bp->cp_nr_rings;
6075 	return 0;
6076 }
6077 
6078 static void bnxt_free_irq(struct bnxt *bp)
6079 {
6080 	struct bnxt_irq *irq;
6081 	int i;
6082 
6083 #ifdef CONFIG_RFS_ACCEL
6084 	free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
6085 	bp->dev->rx_cpu_rmap = NULL;
6086 #endif
6087 	if (!bp->irq_tbl || !bp->bnapi)
6088 		return;
6089 
6090 	for (i = 0; i < bp->cp_nr_rings; i++) {
6091 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
6092 
6093 		irq = &bp->irq_tbl[map_idx];
6094 		if (irq->requested) {
6095 			if (irq->have_cpumask) {
6096 				irq_set_affinity_hint(irq->vector, NULL);
6097 				free_cpumask_var(irq->cpu_mask);
6098 				irq->have_cpumask = 0;
6099 			}
6100 			free_irq(irq->vector, bp->bnapi[i]);
6101 		}
6102 
6103 		irq->requested = 0;
6104 	}
6105 }
6106 
6107 static int bnxt_request_irq(struct bnxt *bp)
6108 {
6109 	int i, j, rc = 0;
6110 	unsigned long flags = 0;
6111 #ifdef CONFIG_RFS_ACCEL
6112 	struct cpu_rmap *rmap;
6113 #endif
6114 
6115 	rc = bnxt_setup_int_mode(bp);
6116 	if (rc) {
6117 		netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
6118 			   rc);
6119 		return rc;
6120 	}
6121 #ifdef CONFIG_RFS_ACCEL
6122 	rmap = bp->dev->rx_cpu_rmap;
6123 #endif
6124 	if (!(bp->flags & BNXT_FLAG_USING_MSIX))
6125 		flags = IRQF_SHARED;
6126 
6127 	for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
6128 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
6129 		struct bnxt_irq *irq = &bp->irq_tbl[map_idx];
6130 
6131 #ifdef CONFIG_RFS_ACCEL
6132 		if (rmap && bp->bnapi[i]->rx_ring) {
6133 			rc = irq_cpu_rmap_add(rmap, irq->vector);
6134 			if (rc)
6135 				netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
6136 					    j);
6137 			j++;
6138 		}
6139 #endif
6140 		rc = request_irq(irq->vector, irq->handler, flags, irq->name,
6141 				 bp->bnapi[i]);
6142 		if (rc)
6143 			break;
6144 
6145 		irq->requested = 1;
6146 
6147 		if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) {
6148 			int numa_node = dev_to_node(&bp->pdev->dev);
6149 
6150 			irq->have_cpumask = 1;
6151 			cpumask_set_cpu(cpumask_local_spread(i, numa_node),
6152 					irq->cpu_mask);
6153 			rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask);
6154 			if (rc) {
6155 				netdev_warn(bp->dev,
6156 					    "Set affinity failed, IRQ = %d\n",
6157 					    irq->vector);
6158 				break;
6159 			}
6160 		}
6161 	}
6162 	return rc;
6163 }
6164 
6165 static void bnxt_del_napi(struct bnxt *bp)
6166 {
6167 	int i;
6168 
6169 	if (!bp->bnapi)
6170 		return;
6171 
6172 	for (i = 0; i < bp->cp_nr_rings; i++) {
6173 		struct bnxt_napi *bnapi = bp->bnapi[i];
6174 
6175 		napi_hash_del(&bnapi->napi);
6176 		netif_napi_del(&bnapi->napi);
6177 	}
6178 	/* We called napi_hash_del() before netif_napi_del(), we need
6179 	 * to respect an RCU grace period before freeing napi structures.
6180 	 */
6181 	synchronize_net();
6182 }
6183 
6184 static void bnxt_init_napi(struct bnxt *bp)
6185 {
6186 	int i;
6187 	unsigned int cp_nr_rings = bp->cp_nr_rings;
6188 	struct bnxt_napi *bnapi;
6189 
6190 	if (bp->flags & BNXT_FLAG_USING_MSIX) {
6191 		if (BNXT_CHIP_TYPE_NITRO_A0(bp))
6192 			cp_nr_rings--;
6193 		for (i = 0; i < cp_nr_rings; i++) {
6194 			bnapi = bp->bnapi[i];
6195 			netif_napi_add(bp->dev, &bnapi->napi,
6196 				       bnxt_poll, 64);
6197 		}
6198 		if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
6199 			bnapi = bp->bnapi[cp_nr_rings];
6200 			netif_napi_add(bp->dev, &bnapi->napi,
6201 				       bnxt_poll_nitroa0, 64);
6202 		}
6203 	} else {
6204 		bnapi = bp->bnapi[0];
6205 		netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64);
6206 	}
6207 }
6208 
6209 static void bnxt_disable_napi(struct bnxt *bp)
6210 {
6211 	int i;
6212 
6213 	if (!bp->bnapi)
6214 		return;
6215 
6216 	for (i = 0; i < bp->cp_nr_rings; i++) {
6217 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
6218 
6219 		if (bp->bnapi[i]->rx_ring)
6220 			cancel_work_sync(&cpr->dim.work);
6221 
6222 		napi_disable(&bp->bnapi[i]->napi);
6223 	}
6224 }
6225 
6226 static void bnxt_enable_napi(struct bnxt *bp)
6227 {
6228 	int i;
6229 
6230 	for (i = 0; i < bp->cp_nr_rings; i++) {
6231 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
6232 		bp->bnapi[i]->in_reset = false;
6233 
6234 		if (bp->bnapi[i]->rx_ring) {
6235 			INIT_WORK(&cpr->dim.work, bnxt_dim_work);
6236 			cpr->dim.mode = NET_DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6237 		}
6238 		napi_enable(&bp->bnapi[i]->napi);
6239 	}
6240 }
6241 
6242 void bnxt_tx_disable(struct bnxt *bp)
6243 {
6244 	int i;
6245 	struct bnxt_tx_ring_info *txr;
6246 
6247 	if (bp->tx_ring) {
6248 		for (i = 0; i < bp->tx_nr_rings; i++) {
6249 			txr = &bp->tx_ring[i];
6250 			txr->dev_state = BNXT_DEV_STATE_CLOSING;
6251 		}
6252 	}
6253 	/* Stop all TX queues */
6254 	netif_tx_disable(bp->dev);
6255 	netif_carrier_off(bp->dev);
6256 }
6257 
6258 void bnxt_tx_enable(struct bnxt *bp)
6259 {
6260 	int i;
6261 	struct bnxt_tx_ring_info *txr;
6262 
6263 	for (i = 0; i < bp->tx_nr_rings; i++) {
6264 		txr = &bp->tx_ring[i];
6265 		txr->dev_state = 0;
6266 	}
6267 	netif_tx_wake_all_queues(bp->dev);
6268 	if (bp->link_info.link_up)
6269 		netif_carrier_on(bp->dev);
6270 }
6271 
6272 static void bnxt_report_link(struct bnxt *bp)
6273 {
6274 	if (bp->link_info.link_up) {
6275 		const char *duplex;
6276 		const char *flow_ctrl;
6277 		u32 speed;
6278 		u16 fec;
6279 
6280 		netif_carrier_on(bp->dev);
6281 		if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
6282 			duplex = "full";
6283 		else
6284 			duplex = "half";
6285 		if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
6286 			flow_ctrl = "ON - receive & transmit";
6287 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
6288 			flow_ctrl = "ON - transmit";
6289 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
6290 			flow_ctrl = "ON - receive";
6291 		else
6292 			flow_ctrl = "none";
6293 		speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
6294 		netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s duplex, Flow control: %s\n",
6295 			    speed, duplex, flow_ctrl);
6296 		if (bp->flags & BNXT_FLAG_EEE_CAP)
6297 			netdev_info(bp->dev, "EEE is %s\n",
6298 				    bp->eee.eee_active ? "active" :
6299 							 "not active");
6300 		fec = bp->link_info.fec_cfg;
6301 		if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED))
6302 			netdev_info(bp->dev, "FEC autoneg %s encodings: %s\n",
6303 				    (fec & BNXT_FEC_AUTONEG) ? "on" : "off",
6304 				    (fec & BNXT_FEC_ENC_BASE_R) ? "BaseR" :
6305 				     (fec & BNXT_FEC_ENC_RS) ? "RS" : "None");
6306 	} else {
6307 		netif_carrier_off(bp->dev);
6308 		netdev_err(bp->dev, "NIC Link is Down\n");
6309 	}
6310 }
6311 
6312 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp)
6313 {
6314 	int rc = 0;
6315 	struct hwrm_port_phy_qcaps_input req = {0};
6316 	struct hwrm_port_phy_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
6317 	struct bnxt_link_info *link_info = &bp->link_info;
6318 
6319 	if (bp->hwrm_spec_code < 0x10201)
6320 		return 0;
6321 
6322 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCAPS, -1, -1);
6323 
6324 	mutex_lock(&bp->hwrm_cmd_lock);
6325 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6326 	if (rc)
6327 		goto hwrm_phy_qcaps_exit;
6328 
6329 	if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) {
6330 		struct ethtool_eee *eee = &bp->eee;
6331 		u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode);
6332 
6333 		bp->flags |= BNXT_FLAG_EEE_CAP;
6334 		eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
6335 		bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) &
6336 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK;
6337 		bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) &
6338 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK;
6339 	}
6340 	if (resp->supported_speeds_auto_mode)
6341 		link_info->support_auto_speeds =
6342 			le16_to_cpu(resp->supported_speeds_auto_mode);
6343 
6344 	bp->port_count = resp->port_cnt;
6345 
6346 hwrm_phy_qcaps_exit:
6347 	mutex_unlock(&bp->hwrm_cmd_lock);
6348 	return rc;
6349 }
6350 
6351 static int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
6352 {
6353 	int rc = 0;
6354 	struct bnxt_link_info *link_info = &bp->link_info;
6355 	struct hwrm_port_phy_qcfg_input req = {0};
6356 	struct hwrm_port_phy_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
6357 	u8 link_up = link_info->link_up;
6358 	u16 diff;
6359 
6360 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCFG, -1, -1);
6361 
6362 	mutex_lock(&bp->hwrm_cmd_lock);
6363 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6364 	if (rc) {
6365 		mutex_unlock(&bp->hwrm_cmd_lock);
6366 		return rc;
6367 	}
6368 
6369 	memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
6370 	link_info->phy_link_status = resp->link;
6371 	link_info->duplex = resp->duplex_cfg;
6372 	if (bp->hwrm_spec_code >= 0x10800)
6373 		link_info->duplex = resp->duplex_state;
6374 	link_info->pause = resp->pause;
6375 	link_info->auto_mode = resp->auto_mode;
6376 	link_info->auto_pause_setting = resp->auto_pause;
6377 	link_info->lp_pause = resp->link_partner_adv_pause;
6378 	link_info->force_pause_setting = resp->force_pause;
6379 	link_info->duplex_setting = resp->duplex_cfg;
6380 	if (link_info->phy_link_status == BNXT_LINK_LINK)
6381 		link_info->link_speed = le16_to_cpu(resp->link_speed);
6382 	else
6383 		link_info->link_speed = 0;
6384 	link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
6385 	link_info->support_speeds = le16_to_cpu(resp->support_speeds);
6386 	link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
6387 	link_info->lp_auto_link_speeds =
6388 		le16_to_cpu(resp->link_partner_adv_speeds);
6389 	link_info->preemphasis = le32_to_cpu(resp->preemphasis);
6390 	link_info->phy_ver[0] = resp->phy_maj;
6391 	link_info->phy_ver[1] = resp->phy_min;
6392 	link_info->phy_ver[2] = resp->phy_bld;
6393 	link_info->media_type = resp->media_type;
6394 	link_info->phy_type = resp->phy_type;
6395 	link_info->transceiver = resp->xcvr_pkg_type;
6396 	link_info->phy_addr = resp->eee_config_phy_addr &
6397 			      PORT_PHY_QCFG_RESP_PHY_ADDR_MASK;
6398 	link_info->module_status = resp->module_status;
6399 
6400 	if (bp->flags & BNXT_FLAG_EEE_CAP) {
6401 		struct ethtool_eee *eee = &bp->eee;
6402 		u16 fw_speeds;
6403 
6404 		eee->eee_active = 0;
6405 		if (resp->eee_config_phy_addr &
6406 		    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) {
6407 			eee->eee_active = 1;
6408 			fw_speeds = le16_to_cpu(
6409 				resp->link_partner_adv_eee_link_speed_mask);
6410 			eee->lp_advertised =
6411 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
6412 		}
6413 
6414 		/* Pull initial EEE config */
6415 		if (!chng_link_state) {
6416 			if (resp->eee_config_phy_addr &
6417 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED)
6418 				eee->eee_enabled = 1;
6419 
6420 			fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask);
6421 			eee->advertised =
6422 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
6423 
6424 			if (resp->eee_config_phy_addr &
6425 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) {
6426 				__le32 tmr;
6427 
6428 				eee->tx_lpi_enabled = 1;
6429 				tmr = resp->xcvr_identifier_type_tx_lpi_timer;
6430 				eee->tx_lpi_timer = le32_to_cpu(tmr) &
6431 					PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK;
6432 			}
6433 		}
6434 	}
6435 
6436 	link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED;
6437 	if (bp->hwrm_spec_code >= 0x10504)
6438 		link_info->fec_cfg = le16_to_cpu(resp->fec_cfg);
6439 
6440 	/* TODO: need to add more logic to report VF link */
6441 	if (chng_link_state) {
6442 		if (link_info->phy_link_status == BNXT_LINK_LINK)
6443 			link_info->link_up = 1;
6444 		else
6445 			link_info->link_up = 0;
6446 		if (link_up != link_info->link_up)
6447 			bnxt_report_link(bp);
6448 	} else {
6449 		/* alwasy link down if not require to update link state */
6450 		link_info->link_up = 0;
6451 	}
6452 	mutex_unlock(&bp->hwrm_cmd_lock);
6453 
6454 	if (!BNXT_SINGLE_PF(bp))
6455 		return 0;
6456 
6457 	diff = link_info->support_auto_speeds ^ link_info->advertising;
6458 	if ((link_info->support_auto_speeds | diff) !=
6459 	    link_info->support_auto_speeds) {
6460 		/* An advertised speed is no longer supported, so we need to
6461 		 * update the advertisement settings.  Caller holds RTNL
6462 		 * so we can modify link settings.
6463 		 */
6464 		link_info->advertising = link_info->support_auto_speeds;
6465 		if (link_info->autoneg & BNXT_AUTONEG_SPEED)
6466 			bnxt_hwrm_set_link_setting(bp, true, false);
6467 	}
6468 	return 0;
6469 }
6470 
6471 static void bnxt_get_port_module_status(struct bnxt *bp)
6472 {
6473 	struct bnxt_link_info *link_info = &bp->link_info;
6474 	struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp;
6475 	u8 module_status;
6476 
6477 	if (bnxt_update_link(bp, true))
6478 		return;
6479 
6480 	module_status = link_info->module_status;
6481 	switch (module_status) {
6482 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX:
6483 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN:
6484 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG:
6485 		netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n",
6486 			    bp->pf.port_id);
6487 		if (bp->hwrm_spec_code >= 0x10201) {
6488 			netdev_warn(bp->dev, "Module part number %s\n",
6489 				    resp->phy_vendor_partnumber);
6490 		}
6491 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX)
6492 			netdev_warn(bp->dev, "TX is disabled\n");
6493 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN)
6494 			netdev_warn(bp->dev, "SFP+ module is shutdown\n");
6495 	}
6496 }
6497 
6498 static void
6499 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
6500 {
6501 	if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
6502 		if (bp->hwrm_spec_code >= 0x10201)
6503 			req->auto_pause =
6504 				PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE;
6505 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
6506 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
6507 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
6508 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX;
6509 		req->enables |=
6510 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
6511 	} else {
6512 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
6513 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
6514 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
6515 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
6516 		req->enables |=
6517 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
6518 		if (bp->hwrm_spec_code >= 0x10201) {
6519 			req->auto_pause = req->force_pause;
6520 			req->enables |= cpu_to_le32(
6521 				PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
6522 		}
6523 	}
6524 }
6525 
6526 static void bnxt_hwrm_set_link_common(struct bnxt *bp,
6527 				      struct hwrm_port_phy_cfg_input *req)
6528 {
6529 	u8 autoneg = bp->link_info.autoneg;
6530 	u16 fw_link_speed = bp->link_info.req_link_speed;
6531 	u16 advertising = bp->link_info.advertising;
6532 
6533 	if (autoneg & BNXT_AUTONEG_SPEED) {
6534 		req->auto_mode |=
6535 			PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK;
6536 
6537 		req->enables |= cpu_to_le32(
6538 			PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
6539 		req->auto_link_speed_mask = cpu_to_le16(advertising);
6540 
6541 		req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
6542 		req->flags |=
6543 			cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
6544 	} else {
6545 		req->force_link_speed = cpu_to_le16(fw_link_speed);
6546 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
6547 	}
6548 
6549 	/* tell chimp that the setting takes effect immediately */
6550 	req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
6551 }
6552 
6553 int bnxt_hwrm_set_pause(struct bnxt *bp)
6554 {
6555 	struct hwrm_port_phy_cfg_input req = {0};
6556 	int rc;
6557 
6558 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
6559 	bnxt_hwrm_set_pause_common(bp, &req);
6560 
6561 	if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
6562 	    bp->link_info.force_link_chng)
6563 		bnxt_hwrm_set_link_common(bp, &req);
6564 
6565 	mutex_lock(&bp->hwrm_cmd_lock);
6566 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6567 	if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
6568 		/* since changing of pause setting doesn't trigger any link
6569 		 * change event, the driver needs to update the current pause
6570 		 * result upon successfully return of the phy_cfg command
6571 		 */
6572 		bp->link_info.pause =
6573 		bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
6574 		bp->link_info.auto_pause_setting = 0;
6575 		if (!bp->link_info.force_link_chng)
6576 			bnxt_report_link(bp);
6577 	}
6578 	bp->link_info.force_link_chng = false;
6579 	mutex_unlock(&bp->hwrm_cmd_lock);
6580 	return rc;
6581 }
6582 
6583 static void bnxt_hwrm_set_eee(struct bnxt *bp,
6584 			      struct hwrm_port_phy_cfg_input *req)
6585 {
6586 	struct ethtool_eee *eee = &bp->eee;
6587 
6588 	if (eee->eee_enabled) {
6589 		u16 eee_speeds;
6590 		u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE;
6591 
6592 		if (eee->tx_lpi_enabled)
6593 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE;
6594 		else
6595 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE;
6596 
6597 		req->flags |= cpu_to_le32(flags);
6598 		eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised);
6599 		req->eee_link_speed_mask = cpu_to_le16(eee_speeds);
6600 		req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer);
6601 	} else {
6602 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE);
6603 	}
6604 }
6605 
6606 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee)
6607 {
6608 	struct hwrm_port_phy_cfg_input req = {0};
6609 
6610 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
6611 	if (set_pause)
6612 		bnxt_hwrm_set_pause_common(bp, &req);
6613 
6614 	bnxt_hwrm_set_link_common(bp, &req);
6615 
6616 	if (set_eee)
6617 		bnxt_hwrm_set_eee(bp, &req);
6618 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6619 }
6620 
6621 static int bnxt_hwrm_shutdown_link(struct bnxt *bp)
6622 {
6623 	struct hwrm_port_phy_cfg_input req = {0};
6624 
6625 	if (!BNXT_SINGLE_PF(bp))
6626 		return 0;
6627 
6628 	if (pci_num_vf(bp->pdev))
6629 		return 0;
6630 
6631 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
6632 	req.flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN);
6633 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6634 }
6635 
6636 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp)
6637 {
6638 	struct hwrm_port_led_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
6639 	struct hwrm_port_led_qcaps_input req = {0};
6640 	struct bnxt_pf_info *pf = &bp->pf;
6641 	int rc;
6642 
6643 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601)
6644 		return 0;
6645 
6646 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_LED_QCAPS, -1, -1);
6647 	req.port_id = cpu_to_le16(pf->port_id);
6648 	mutex_lock(&bp->hwrm_cmd_lock);
6649 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6650 	if (rc) {
6651 		mutex_unlock(&bp->hwrm_cmd_lock);
6652 		return rc;
6653 	}
6654 	if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) {
6655 		int i;
6656 
6657 		bp->num_leds = resp->num_leds;
6658 		memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) *
6659 						 bp->num_leds);
6660 		for (i = 0; i < bp->num_leds; i++) {
6661 			struct bnxt_led_info *led = &bp->leds[i];
6662 			__le16 caps = led->led_state_caps;
6663 
6664 			if (!led->led_group_id ||
6665 			    !BNXT_LED_ALT_BLINK_CAP(caps)) {
6666 				bp->num_leds = 0;
6667 				break;
6668 			}
6669 		}
6670 	}
6671 	mutex_unlock(&bp->hwrm_cmd_lock);
6672 	return 0;
6673 }
6674 
6675 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp)
6676 {
6677 	struct hwrm_wol_filter_alloc_input req = {0};
6678 	struct hwrm_wol_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
6679 	int rc;
6680 
6681 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_ALLOC, -1, -1);
6682 	req.port_id = cpu_to_le16(bp->pf.port_id);
6683 	req.wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT;
6684 	req.enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS);
6685 	memcpy(req.mac_address, bp->dev->dev_addr, ETH_ALEN);
6686 	mutex_lock(&bp->hwrm_cmd_lock);
6687 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6688 	if (!rc)
6689 		bp->wol_filter_id = resp->wol_filter_id;
6690 	mutex_unlock(&bp->hwrm_cmd_lock);
6691 	return rc;
6692 }
6693 
6694 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp)
6695 {
6696 	struct hwrm_wol_filter_free_input req = {0};
6697 	int rc;
6698 
6699 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_FREE, -1, -1);
6700 	req.port_id = cpu_to_le16(bp->pf.port_id);
6701 	req.enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID);
6702 	req.wol_filter_id = bp->wol_filter_id;
6703 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6704 	return rc;
6705 }
6706 
6707 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle)
6708 {
6709 	struct hwrm_wol_filter_qcfg_input req = {0};
6710 	struct hwrm_wol_filter_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
6711 	u16 next_handle = 0;
6712 	int rc;
6713 
6714 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_QCFG, -1, -1);
6715 	req.port_id = cpu_to_le16(bp->pf.port_id);
6716 	req.handle = cpu_to_le16(handle);
6717 	mutex_lock(&bp->hwrm_cmd_lock);
6718 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6719 	if (!rc) {
6720 		next_handle = le16_to_cpu(resp->next_handle);
6721 		if (next_handle != 0) {
6722 			if (resp->wol_type ==
6723 			    WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) {
6724 				bp->wol = 1;
6725 				bp->wol_filter_id = resp->wol_filter_id;
6726 			}
6727 		}
6728 	}
6729 	mutex_unlock(&bp->hwrm_cmd_lock);
6730 	return next_handle;
6731 }
6732 
6733 static void bnxt_get_wol_settings(struct bnxt *bp)
6734 {
6735 	u16 handle = 0;
6736 
6737 	if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP))
6738 		return;
6739 
6740 	do {
6741 		handle = bnxt_hwrm_get_wol_fltrs(bp, handle);
6742 	} while (handle && handle != 0xffff);
6743 }
6744 
6745 static bool bnxt_eee_config_ok(struct bnxt *bp)
6746 {
6747 	struct ethtool_eee *eee = &bp->eee;
6748 	struct bnxt_link_info *link_info = &bp->link_info;
6749 
6750 	if (!(bp->flags & BNXT_FLAG_EEE_CAP))
6751 		return true;
6752 
6753 	if (eee->eee_enabled) {
6754 		u32 advertising =
6755 			_bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0);
6756 
6757 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
6758 			eee->eee_enabled = 0;
6759 			return false;
6760 		}
6761 		if (eee->advertised & ~advertising) {
6762 			eee->advertised = advertising & eee->supported;
6763 			return false;
6764 		}
6765 	}
6766 	return true;
6767 }
6768 
6769 static int bnxt_update_phy_setting(struct bnxt *bp)
6770 {
6771 	int rc;
6772 	bool update_link = false;
6773 	bool update_pause = false;
6774 	bool update_eee = false;
6775 	struct bnxt_link_info *link_info = &bp->link_info;
6776 
6777 	rc = bnxt_update_link(bp, true);
6778 	if (rc) {
6779 		netdev_err(bp->dev, "failed to update link (rc: %x)\n",
6780 			   rc);
6781 		return rc;
6782 	}
6783 	if (!BNXT_SINGLE_PF(bp))
6784 		return 0;
6785 
6786 	if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
6787 	    (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) !=
6788 	    link_info->req_flow_ctrl)
6789 		update_pause = true;
6790 	if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
6791 	    link_info->force_pause_setting != link_info->req_flow_ctrl)
6792 		update_pause = true;
6793 	if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
6794 		if (BNXT_AUTO_MODE(link_info->auto_mode))
6795 			update_link = true;
6796 		if (link_info->req_link_speed != link_info->force_link_speed)
6797 			update_link = true;
6798 		if (link_info->req_duplex != link_info->duplex_setting)
6799 			update_link = true;
6800 	} else {
6801 		if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
6802 			update_link = true;
6803 		if (link_info->advertising != link_info->auto_link_speeds)
6804 			update_link = true;
6805 	}
6806 
6807 	/* The last close may have shutdown the link, so need to call
6808 	 * PHY_CFG to bring it back up.
6809 	 */
6810 	if (!netif_carrier_ok(bp->dev))
6811 		update_link = true;
6812 
6813 	if (!bnxt_eee_config_ok(bp))
6814 		update_eee = true;
6815 
6816 	if (update_link)
6817 		rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee);
6818 	else if (update_pause)
6819 		rc = bnxt_hwrm_set_pause(bp);
6820 	if (rc) {
6821 		netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
6822 			   rc);
6823 		return rc;
6824 	}
6825 
6826 	return rc;
6827 }
6828 
6829 /* Common routine to pre-map certain register block to different GRC window.
6830  * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
6831  * in PF and 3 windows in VF that can be customized to map in different
6832  * register blocks.
6833  */
6834 static void bnxt_preset_reg_win(struct bnxt *bp)
6835 {
6836 	if (BNXT_PF(bp)) {
6837 		/* CAG registers map to GRC window #4 */
6838 		writel(BNXT_CAG_REG_BASE,
6839 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
6840 	}
6841 }
6842 
6843 static int bnxt_init_dflt_ring_mode(struct bnxt *bp);
6844 
6845 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
6846 {
6847 	int rc = 0;
6848 
6849 	bnxt_preset_reg_win(bp);
6850 	netif_carrier_off(bp->dev);
6851 	if (irq_re_init) {
6852 		/* Reserve rings now if none were reserved at driver probe. */
6853 		rc = bnxt_init_dflt_ring_mode(bp);
6854 		if (rc) {
6855 			netdev_err(bp->dev, "Failed to reserve default rings at open\n");
6856 			return rc;
6857 		}
6858 		rc = bnxt_reserve_rings(bp);
6859 		if (rc)
6860 			return rc;
6861 	}
6862 	if ((bp->flags & BNXT_FLAG_RFS) &&
6863 	    !(bp->flags & BNXT_FLAG_USING_MSIX)) {
6864 		/* disable RFS if falling back to INTA */
6865 		bp->dev->hw_features &= ~NETIF_F_NTUPLE;
6866 		bp->flags &= ~BNXT_FLAG_RFS;
6867 	}
6868 
6869 	rc = bnxt_alloc_mem(bp, irq_re_init);
6870 	if (rc) {
6871 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
6872 		goto open_err_free_mem;
6873 	}
6874 
6875 	if (irq_re_init) {
6876 		bnxt_init_napi(bp);
6877 		rc = bnxt_request_irq(bp);
6878 		if (rc) {
6879 			netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
6880 			goto open_err_irq;
6881 		}
6882 	}
6883 
6884 	bnxt_enable_napi(bp);
6885 	bnxt_debug_dev_init(bp);
6886 
6887 	rc = bnxt_init_nic(bp, irq_re_init);
6888 	if (rc) {
6889 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
6890 		goto open_err;
6891 	}
6892 
6893 	if (link_re_init) {
6894 		mutex_lock(&bp->link_lock);
6895 		rc = bnxt_update_phy_setting(bp);
6896 		mutex_unlock(&bp->link_lock);
6897 		if (rc)
6898 			netdev_warn(bp->dev, "failed to update phy settings\n");
6899 	}
6900 
6901 	if (irq_re_init)
6902 		udp_tunnel_get_rx_info(bp->dev);
6903 
6904 	set_bit(BNXT_STATE_OPEN, &bp->state);
6905 	bnxt_enable_int(bp);
6906 	/* Enable TX queues */
6907 	bnxt_tx_enable(bp);
6908 	mod_timer(&bp->timer, jiffies + bp->current_interval);
6909 	/* Poll link status and check for SFP+ module status */
6910 	bnxt_get_port_module_status(bp);
6911 
6912 	/* VF-reps may need to be re-opened after the PF is re-opened */
6913 	if (BNXT_PF(bp))
6914 		bnxt_vf_reps_open(bp);
6915 	return 0;
6916 
6917 open_err:
6918 	bnxt_debug_dev_exit(bp);
6919 	bnxt_disable_napi(bp);
6920 
6921 open_err_irq:
6922 	bnxt_del_napi(bp);
6923 
6924 open_err_free_mem:
6925 	bnxt_free_skbs(bp);
6926 	bnxt_free_irq(bp);
6927 	bnxt_free_mem(bp, true);
6928 	return rc;
6929 }
6930 
6931 /* rtnl_lock held */
6932 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
6933 {
6934 	int rc = 0;
6935 
6936 	rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
6937 	if (rc) {
6938 		netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
6939 		dev_close(bp->dev);
6940 	}
6941 	return rc;
6942 }
6943 
6944 /* rtnl_lock held, open the NIC half way by allocating all resources, but
6945  * NAPI, IRQ, and TX are not enabled.  This is mainly used for offline
6946  * self tests.
6947  */
6948 int bnxt_half_open_nic(struct bnxt *bp)
6949 {
6950 	int rc = 0;
6951 
6952 	rc = bnxt_alloc_mem(bp, false);
6953 	if (rc) {
6954 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
6955 		goto half_open_err;
6956 	}
6957 	rc = bnxt_init_nic(bp, false);
6958 	if (rc) {
6959 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
6960 		goto half_open_err;
6961 	}
6962 	return 0;
6963 
6964 half_open_err:
6965 	bnxt_free_skbs(bp);
6966 	bnxt_free_mem(bp, false);
6967 	dev_close(bp->dev);
6968 	return rc;
6969 }
6970 
6971 /* rtnl_lock held, this call can only be made after a previous successful
6972  * call to bnxt_half_open_nic().
6973  */
6974 void bnxt_half_close_nic(struct bnxt *bp)
6975 {
6976 	bnxt_hwrm_resource_free(bp, false, false);
6977 	bnxt_free_skbs(bp);
6978 	bnxt_free_mem(bp, false);
6979 }
6980 
6981 static int bnxt_open(struct net_device *dev)
6982 {
6983 	struct bnxt *bp = netdev_priv(dev);
6984 
6985 	return __bnxt_open_nic(bp, true, true);
6986 }
6987 
6988 static bool bnxt_drv_busy(struct bnxt *bp)
6989 {
6990 	return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) ||
6991 		test_bit(BNXT_STATE_READ_STATS, &bp->state));
6992 }
6993 
6994 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init,
6995 			     bool link_re_init)
6996 {
6997 	/* Close the VF-reps before closing PF */
6998 	if (BNXT_PF(bp))
6999 		bnxt_vf_reps_close(bp);
7000 
7001 	/* Change device state to avoid TX queue wake up's */
7002 	bnxt_tx_disable(bp);
7003 
7004 	clear_bit(BNXT_STATE_OPEN, &bp->state);
7005 	smp_mb__after_atomic();
7006 	while (bnxt_drv_busy(bp))
7007 		msleep(20);
7008 
7009 	/* Flush rings and and disable interrupts */
7010 	bnxt_shutdown_nic(bp, irq_re_init);
7011 
7012 	/* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
7013 
7014 	bnxt_debug_dev_exit(bp);
7015 	bnxt_disable_napi(bp);
7016 	del_timer_sync(&bp->timer);
7017 	bnxt_free_skbs(bp);
7018 
7019 	if (irq_re_init) {
7020 		bnxt_free_irq(bp);
7021 		bnxt_del_napi(bp);
7022 	}
7023 	bnxt_free_mem(bp, irq_re_init);
7024 }
7025 
7026 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
7027 {
7028 	int rc = 0;
7029 
7030 #ifdef CONFIG_BNXT_SRIOV
7031 	if (bp->sriov_cfg) {
7032 		rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
7033 						      !bp->sriov_cfg,
7034 						      BNXT_SRIOV_CFG_WAIT_TMO);
7035 		if (rc)
7036 			netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
7037 	}
7038 #endif
7039 	__bnxt_close_nic(bp, irq_re_init, link_re_init);
7040 	return rc;
7041 }
7042 
7043 static int bnxt_close(struct net_device *dev)
7044 {
7045 	struct bnxt *bp = netdev_priv(dev);
7046 
7047 	bnxt_close_nic(bp, true, true);
7048 	bnxt_hwrm_shutdown_link(bp);
7049 	return 0;
7050 }
7051 
7052 /* rtnl_lock held */
7053 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
7054 {
7055 	switch (cmd) {
7056 	case SIOCGMIIPHY:
7057 		/* fallthru */
7058 	case SIOCGMIIREG: {
7059 		if (!netif_running(dev))
7060 			return -EAGAIN;
7061 
7062 		return 0;
7063 	}
7064 
7065 	case SIOCSMIIREG:
7066 		if (!netif_running(dev))
7067 			return -EAGAIN;
7068 
7069 		return 0;
7070 
7071 	default:
7072 		/* do nothing */
7073 		break;
7074 	}
7075 	return -EOPNOTSUPP;
7076 }
7077 
7078 static void
7079 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
7080 {
7081 	u32 i;
7082 	struct bnxt *bp = netdev_priv(dev);
7083 
7084 	set_bit(BNXT_STATE_READ_STATS, &bp->state);
7085 	/* Make sure bnxt_close_nic() sees that we are reading stats before
7086 	 * we check the BNXT_STATE_OPEN flag.
7087 	 */
7088 	smp_mb__after_atomic();
7089 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
7090 		clear_bit(BNXT_STATE_READ_STATS, &bp->state);
7091 		return;
7092 	}
7093 
7094 	/* TODO check if we need to synchronize with bnxt_close path */
7095 	for (i = 0; i < bp->cp_nr_rings; i++) {
7096 		struct bnxt_napi *bnapi = bp->bnapi[i];
7097 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
7098 		struct ctx_hw_stats *hw_stats = cpr->hw_stats;
7099 
7100 		stats->rx_packets += le64_to_cpu(hw_stats->rx_ucast_pkts);
7101 		stats->rx_packets += le64_to_cpu(hw_stats->rx_mcast_pkts);
7102 		stats->rx_packets += le64_to_cpu(hw_stats->rx_bcast_pkts);
7103 
7104 		stats->tx_packets += le64_to_cpu(hw_stats->tx_ucast_pkts);
7105 		stats->tx_packets += le64_to_cpu(hw_stats->tx_mcast_pkts);
7106 		stats->tx_packets += le64_to_cpu(hw_stats->tx_bcast_pkts);
7107 
7108 		stats->rx_bytes += le64_to_cpu(hw_stats->rx_ucast_bytes);
7109 		stats->rx_bytes += le64_to_cpu(hw_stats->rx_mcast_bytes);
7110 		stats->rx_bytes += le64_to_cpu(hw_stats->rx_bcast_bytes);
7111 
7112 		stats->tx_bytes += le64_to_cpu(hw_stats->tx_ucast_bytes);
7113 		stats->tx_bytes += le64_to_cpu(hw_stats->tx_mcast_bytes);
7114 		stats->tx_bytes += le64_to_cpu(hw_stats->tx_bcast_bytes);
7115 
7116 		stats->rx_missed_errors +=
7117 			le64_to_cpu(hw_stats->rx_discard_pkts);
7118 
7119 		stats->multicast += le64_to_cpu(hw_stats->rx_mcast_pkts);
7120 
7121 		stats->tx_dropped += le64_to_cpu(hw_stats->tx_drop_pkts);
7122 	}
7123 
7124 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
7125 		struct rx_port_stats *rx = bp->hw_rx_port_stats;
7126 		struct tx_port_stats *tx = bp->hw_tx_port_stats;
7127 
7128 		stats->rx_crc_errors = le64_to_cpu(rx->rx_fcs_err_frames);
7129 		stats->rx_frame_errors = le64_to_cpu(rx->rx_align_err_frames);
7130 		stats->rx_length_errors = le64_to_cpu(rx->rx_undrsz_frames) +
7131 					  le64_to_cpu(rx->rx_ovrsz_frames) +
7132 					  le64_to_cpu(rx->rx_runt_frames);
7133 		stats->rx_errors = le64_to_cpu(rx->rx_false_carrier_frames) +
7134 				   le64_to_cpu(rx->rx_jbr_frames);
7135 		stats->collisions = le64_to_cpu(tx->tx_total_collisions);
7136 		stats->tx_fifo_errors = le64_to_cpu(tx->tx_fifo_underruns);
7137 		stats->tx_errors = le64_to_cpu(tx->tx_err);
7138 	}
7139 	clear_bit(BNXT_STATE_READ_STATS, &bp->state);
7140 }
7141 
7142 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
7143 {
7144 	struct net_device *dev = bp->dev;
7145 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
7146 	struct netdev_hw_addr *ha;
7147 	u8 *haddr;
7148 	int mc_count = 0;
7149 	bool update = false;
7150 	int off = 0;
7151 
7152 	netdev_for_each_mc_addr(ha, dev) {
7153 		if (mc_count >= BNXT_MAX_MC_ADDRS) {
7154 			*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
7155 			vnic->mc_list_count = 0;
7156 			return false;
7157 		}
7158 		haddr = ha->addr;
7159 		if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
7160 			memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
7161 			update = true;
7162 		}
7163 		off += ETH_ALEN;
7164 		mc_count++;
7165 	}
7166 	if (mc_count)
7167 		*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
7168 
7169 	if (mc_count != vnic->mc_list_count) {
7170 		vnic->mc_list_count = mc_count;
7171 		update = true;
7172 	}
7173 	return update;
7174 }
7175 
7176 static bool bnxt_uc_list_updated(struct bnxt *bp)
7177 {
7178 	struct net_device *dev = bp->dev;
7179 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
7180 	struct netdev_hw_addr *ha;
7181 	int off = 0;
7182 
7183 	if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
7184 		return true;
7185 
7186 	netdev_for_each_uc_addr(ha, dev) {
7187 		if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
7188 			return true;
7189 
7190 		off += ETH_ALEN;
7191 	}
7192 	return false;
7193 }
7194 
7195 static void bnxt_set_rx_mode(struct net_device *dev)
7196 {
7197 	struct bnxt *bp = netdev_priv(dev);
7198 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
7199 	u32 mask = vnic->rx_mask;
7200 	bool mc_update = false;
7201 	bool uc_update;
7202 
7203 	if (!netif_running(dev))
7204 		return;
7205 
7206 	mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
7207 		  CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
7208 		  CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST |
7209 		  CFA_L2_SET_RX_MASK_REQ_MASK_BCAST);
7210 
7211 	if ((dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
7212 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
7213 
7214 	uc_update = bnxt_uc_list_updated(bp);
7215 
7216 	if (dev->flags & IFF_BROADCAST)
7217 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
7218 	if (dev->flags & IFF_ALLMULTI) {
7219 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
7220 		vnic->mc_list_count = 0;
7221 	} else {
7222 		mc_update = bnxt_mc_list_updated(bp, &mask);
7223 	}
7224 
7225 	if (mask != vnic->rx_mask || uc_update || mc_update) {
7226 		vnic->rx_mask = mask;
7227 
7228 		set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
7229 		bnxt_queue_sp_work(bp);
7230 	}
7231 }
7232 
7233 static int bnxt_cfg_rx_mode(struct bnxt *bp)
7234 {
7235 	struct net_device *dev = bp->dev;
7236 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
7237 	struct netdev_hw_addr *ha;
7238 	int i, off = 0, rc;
7239 	bool uc_update;
7240 
7241 	netif_addr_lock_bh(dev);
7242 	uc_update = bnxt_uc_list_updated(bp);
7243 	netif_addr_unlock_bh(dev);
7244 
7245 	if (!uc_update)
7246 		goto skip_uc;
7247 
7248 	mutex_lock(&bp->hwrm_cmd_lock);
7249 	for (i = 1; i < vnic->uc_filter_count; i++) {
7250 		struct hwrm_cfa_l2_filter_free_input req = {0};
7251 
7252 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_FREE, -1,
7253 				       -1);
7254 
7255 		req.l2_filter_id = vnic->fw_l2_filter_id[i];
7256 
7257 		rc = _hwrm_send_message(bp, &req, sizeof(req),
7258 					HWRM_CMD_TIMEOUT);
7259 	}
7260 	mutex_unlock(&bp->hwrm_cmd_lock);
7261 
7262 	vnic->uc_filter_count = 1;
7263 
7264 	netif_addr_lock_bh(dev);
7265 	if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
7266 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
7267 	} else {
7268 		netdev_for_each_uc_addr(ha, dev) {
7269 			memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
7270 			off += ETH_ALEN;
7271 			vnic->uc_filter_count++;
7272 		}
7273 	}
7274 	netif_addr_unlock_bh(dev);
7275 
7276 	for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
7277 		rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
7278 		if (rc) {
7279 			netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n",
7280 				   rc);
7281 			vnic->uc_filter_count = i;
7282 			return rc;
7283 		}
7284 	}
7285 
7286 skip_uc:
7287 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
7288 	if (rc)
7289 		netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %x\n",
7290 			   rc);
7291 
7292 	return rc;
7293 }
7294 
7295 static bool bnxt_can_reserve_rings(struct bnxt *bp)
7296 {
7297 #ifdef CONFIG_BNXT_SRIOV
7298 	if ((bp->flags & BNXT_FLAG_NEW_RM) && BNXT_VF(bp)) {
7299 		struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7300 
7301 		/* No minimum rings were provisioned by the PF.  Don't
7302 		 * reserve rings by default when device is down.
7303 		 */
7304 		if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings)
7305 			return true;
7306 
7307 		if (!netif_running(bp->dev))
7308 			return false;
7309 	}
7310 #endif
7311 	return true;
7312 }
7313 
7314 /* If the chip and firmware supports RFS */
7315 static bool bnxt_rfs_supported(struct bnxt *bp)
7316 {
7317 	if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
7318 		return true;
7319 	if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
7320 		return true;
7321 	return false;
7322 }
7323 
7324 /* If runtime conditions support RFS */
7325 static bool bnxt_rfs_capable(struct bnxt *bp)
7326 {
7327 #ifdef CONFIG_RFS_ACCEL
7328 	int vnics, max_vnics, max_rss_ctxs;
7329 
7330 	if (!(bp->flags & BNXT_FLAG_MSIX_CAP) || !bnxt_can_reserve_rings(bp))
7331 		return false;
7332 
7333 	vnics = 1 + bp->rx_nr_rings;
7334 	max_vnics = bnxt_get_max_func_vnics(bp);
7335 	max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp);
7336 
7337 	/* RSS contexts not a limiting factor */
7338 	if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
7339 		max_rss_ctxs = max_vnics;
7340 	if (vnics > max_vnics || vnics > max_rss_ctxs) {
7341 		if (bp->rx_nr_rings > 1)
7342 			netdev_warn(bp->dev,
7343 				    "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n",
7344 				    min(max_rss_ctxs - 1, max_vnics - 1));
7345 		return false;
7346 	}
7347 
7348 	if (!(bp->flags & BNXT_FLAG_NEW_RM))
7349 		return true;
7350 
7351 	if (vnics == bp->hw_resc.resv_vnics)
7352 		return true;
7353 
7354 	bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, vnics);
7355 	if (vnics <= bp->hw_resc.resv_vnics)
7356 		return true;
7357 
7358 	netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n");
7359 	bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 1);
7360 	return false;
7361 #else
7362 	return false;
7363 #endif
7364 }
7365 
7366 static netdev_features_t bnxt_fix_features(struct net_device *dev,
7367 					   netdev_features_t features)
7368 {
7369 	struct bnxt *bp = netdev_priv(dev);
7370 
7371 	if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp))
7372 		features &= ~NETIF_F_NTUPLE;
7373 
7374 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
7375 		features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
7376 
7377 	if (!(features & NETIF_F_GRO))
7378 		features &= ~NETIF_F_GRO_HW;
7379 
7380 	if (features & NETIF_F_GRO_HW)
7381 		features &= ~NETIF_F_LRO;
7382 
7383 	/* Both CTAG and STAG VLAN accelaration on the RX side have to be
7384 	 * turned on or off together.
7385 	 */
7386 	if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) !=
7387 	    (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) {
7388 		if (dev->features & NETIF_F_HW_VLAN_CTAG_RX)
7389 			features &= ~(NETIF_F_HW_VLAN_CTAG_RX |
7390 				      NETIF_F_HW_VLAN_STAG_RX);
7391 		else
7392 			features |= NETIF_F_HW_VLAN_CTAG_RX |
7393 				    NETIF_F_HW_VLAN_STAG_RX;
7394 	}
7395 #ifdef CONFIG_BNXT_SRIOV
7396 	if (BNXT_VF(bp)) {
7397 		if (bp->vf.vlan) {
7398 			features &= ~(NETIF_F_HW_VLAN_CTAG_RX |
7399 				      NETIF_F_HW_VLAN_STAG_RX);
7400 		}
7401 	}
7402 #endif
7403 	return features;
7404 }
7405 
7406 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
7407 {
7408 	struct bnxt *bp = netdev_priv(dev);
7409 	u32 flags = bp->flags;
7410 	u32 changes;
7411 	int rc = 0;
7412 	bool re_init = false;
7413 	bool update_tpa = false;
7414 
7415 	flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
7416 	if (features & NETIF_F_GRO_HW)
7417 		flags |= BNXT_FLAG_GRO;
7418 	else if (features & NETIF_F_LRO)
7419 		flags |= BNXT_FLAG_LRO;
7420 
7421 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
7422 		flags &= ~BNXT_FLAG_TPA;
7423 
7424 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
7425 		flags |= BNXT_FLAG_STRIP_VLAN;
7426 
7427 	if (features & NETIF_F_NTUPLE)
7428 		flags |= BNXT_FLAG_RFS;
7429 
7430 	changes = flags ^ bp->flags;
7431 	if (changes & BNXT_FLAG_TPA) {
7432 		update_tpa = true;
7433 		if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
7434 		    (flags & BNXT_FLAG_TPA) == 0)
7435 			re_init = true;
7436 	}
7437 
7438 	if (changes & ~BNXT_FLAG_TPA)
7439 		re_init = true;
7440 
7441 	if (flags != bp->flags) {
7442 		u32 old_flags = bp->flags;
7443 
7444 		bp->flags = flags;
7445 
7446 		if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
7447 			if (update_tpa)
7448 				bnxt_set_ring_params(bp);
7449 			return rc;
7450 		}
7451 
7452 		if (re_init) {
7453 			bnxt_close_nic(bp, false, false);
7454 			if (update_tpa)
7455 				bnxt_set_ring_params(bp);
7456 
7457 			return bnxt_open_nic(bp, false, false);
7458 		}
7459 		if (update_tpa) {
7460 			rc = bnxt_set_tpa(bp,
7461 					  (flags & BNXT_FLAG_TPA) ?
7462 					  true : false);
7463 			if (rc)
7464 				bp->flags = old_flags;
7465 		}
7466 	}
7467 	return rc;
7468 }
7469 
7470 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
7471 {
7472 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
7473 	int i = bnapi->index;
7474 
7475 	if (!txr)
7476 		return;
7477 
7478 	netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
7479 		    i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
7480 		    txr->tx_cons);
7481 }
7482 
7483 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
7484 {
7485 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
7486 	int i = bnapi->index;
7487 
7488 	if (!rxr)
7489 		return;
7490 
7491 	netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
7492 		    i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
7493 		    rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
7494 		    rxr->rx_sw_agg_prod);
7495 }
7496 
7497 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
7498 {
7499 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
7500 	int i = bnapi->index;
7501 
7502 	netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
7503 		    i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
7504 }
7505 
7506 static void bnxt_dbg_dump_states(struct bnxt *bp)
7507 {
7508 	int i;
7509 	struct bnxt_napi *bnapi;
7510 
7511 	for (i = 0; i < bp->cp_nr_rings; i++) {
7512 		bnapi = bp->bnapi[i];
7513 		if (netif_msg_drv(bp)) {
7514 			bnxt_dump_tx_sw_state(bnapi);
7515 			bnxt_dump_rx_sw_state(bnapi);
7516 			bnxt_dump_cp_sw_state(bnapi);
7517 		}
7518 	}
7519 }
7520 
7521 static void bnxt_reset_task(struct bnxt *bp, bool silent)
7522 {
7523 	if (!silent)
7524 		bnxt_dbg_dump_states(bp);
7525 	if (netif_running(bp->dev)) {
7526 		int rc;
7527 
7528 		if (!silent)
7529 			bnxt_ulp_stop(bp);
7530 		bnxt_close_nic(bp, false, false);
7531 		rc = bnxt_open_nic(bp, false, false);
7532 		if (!silent && !rc)
7533 			bnxt_ulp_start(bp);
7534 	}
7535 }
7536 
7537 static void bnxt_tx_timeout(struct net_device *dev)
7538 {
7539 	struct bnxt *bp = netdev_priv(dev);
7540 
7541 	netdev_err(bp->dev,  "TX timeout detected, starting reset task!\n");
7542 	set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
7543 	bnxt_queue_sp_work(bp);
7544 }
7545 
7546 #ifdef CONFIG_NET_POLL_CONTROLLER
7547 static void bnxt_poll_controller(struct net_device *dev)
7548 {
7549 	struct bnxt *bp = netdev_priv(dev);
7550 	int i;
7551 
7552 	/* Only process tx rings/combined rings in netpoll mode. */
7553 	for (i = 0; i < bp->tx_nr_rings; i++) {
7554 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
7555 
7556 		napi_schedule(&txr->bnapi->napi);
7557 	}
7558 }
7559 #endif
7560 
7561 static void bnxt_timer(struct timer_list *t)
7562 {
7563 	struct bnxt *bp = from_timer(bp, t, timer);
7564 	struct net_device *dev = bp->dev;
7565 
7566 	if (!netif_running(dev))
7567 		return;
7568 
7569 	if (atomic_read(&bp->intr_sem) != 0)
7570 		goto bnxt_restart_timer;
7571 
7572 	if (bp->link_info.link_up && (bp->flags & BNXT_FLAG_PORT_STATS) &&
7573 	    bp->stats_coal_ticks) {
7574 		set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event);
7575 		bnxt_queue_sp_work(bp);
7576 	}
7577 
7578 	if (bnxt_tc_flower_enabled(bp)) {
7579 		set_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event);
7580 		bnxt_queue_sp_work(bp);
7581 	}
7582 bnxt_restart_timer:
7583 	mod_timer(&bp->timer, jiffies + bp->current_interval);
7584 }
7585 
7586 static void bnxt_rtnl_lock_sp(struct bnxt *bp)
7587 {
7588 	/* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK
7589 	 * set.  If the device is being closed, bnxt_close() may be holding
7590 	 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear.  So we
7591 	 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl().
7592 	 */
7593 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
7594 	rtnl_lock();
7595 }
7596 
7597 static void bnxt_rtnl_unlock_sp(struct bnxt *bp)
7598 {
7599 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
7600 	rtnl_unlock();
7601 }
7602 
7603 /* Only called from bnxt_sp_task() */
7604 static void bnxt_reset(struct bnxt *bp, bool silent)
7605 {
7606 	bnxt_rtnl_lock_sp(bp);
7607 	if (test_bit(BNXT_STATE_OPEN, &bp->state))
7608 		bnxt_reset_task(bp, silent);
7609 	bnxt_rtnl_unlock_sp(bp);
7610 }
7611 
7612 static void bnxt_cfg_ntp_filters(struct bnxt *);
7613 
7614 static void bnxt_sp_task(struct work_struct *work)
7615 {
7616 	struct bnxt *bp = container_of(work, struct bnxt, sp_task);
7617 
7618 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
7619 	smp_mb__after_atomic();
7620 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
7621 		clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
7622 		return;
7623 	}
7624 
7625 	if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
7626 		bnxt_cfg_rx_mode(bp);
7627 
7628 	if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
7629 		bnxt_cfg_ntp_filters(bp);
7630 	if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
7631 		bnxt_hwrm_exec_fwd_req(bp);
7632 	if (test_and_clear_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event)) {
7633 		bnxt_hwrm_tunnel_dst_port_alloc(
7634 			bp, bp->vxlan_port,
7635 			TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
7636 	}
7637 	if (test_and_clear_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event)) {
7638 		bnxt_hwrm_tunnel_dst_port_free(
7639 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
7640 	}
7641 	if (test_and_clear_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event)) {
7642 		bnxt_hwrm_tunnel_dst_port_alloc(
7643 			bp, bp->nge_port,
7644 			TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
7645 	}
7646 	if (test_and_clear_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event)) {
7647 		bnxt_hwrm_tunnel_dst_port_free(
7648 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
7649 	}
7650 	if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) {
7651 		bnxt_hwrm_port_qstats(bp);
7652 		bnxt_hwrm_port_qstats_ext(bp);
7653 	}
7654 
7655 	if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
7656 		int rc;
7657 
7658 		mutex_lock(&bp->link_lock);
7659 		if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT,
7660 				       &bp->sp_event))
7661 			bnxt_hwrm_phy_qcaps(bp);
7662 
7663 		rc = bnxt_update_link(bp, true);
7664 		mutex_unlock(&bp->link_lock);
7665 		if (rc)
7666 			netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
7667 				   rc);
7668 	}
7669 	if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) {
7670 		mutex_lock(&bp->link_lock);
7671 		bnxt_get_port_module_status(bp);
7672 		mutex_unlock(&bp->link_lock);
7673 	}
7674 
7675 	if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event))
7676 		bnxt_tc_flow_stats_work(bp);
7677 
7678 	/* These functions below will clear BNXT_STATE_IN_SP_TASK.  They
7679 	 * must be the last functions to be called before exiting.
7680 	 */
7681 	if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event))
7682 		bnxt_reset(bp, false);
7683 
7684 	if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event))
7685 		bnxt_reset(bp, true);
7686 
7687 	smp_mb__before_atomic();
7688 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
7689 }
7690 
7691 /* Under rtnl_lock */
7692 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs,
7693 		     int tx_xdp)
7694 {
7695 	int max_rx, max_tx, tx_sets = 1;
7696 	int tx_rings_needed;
7697 	int rx_rings = rx;
7698 	int cp, vnics, rc;
7699 
7700 	if (tcs)
7701 		tx_sets = tcs;
7702 
7703 	rc = bnxt_get_max_rings(bp, &max_rx, &max_tx, sh);
7704 	if (rc)
7705 		return rc;
7706 
7707 	if (max_rx < rx)
7708 		return -ENOMEM;
7709 
7710 	tx_rings_needed = tx * tx_sets + tx_xdp;
7711 	if (max_tx < tx_rings_needed)
7712 		return -ENOMEM;
7713 
7714 	vnics = 1;
7715 	if (bp->flags & BNXT_FLAG_RFS)
7716 		vnics += rx_rings;
7717 
7718 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
7719 		rx_rings <<= 1;
7720 	cp = sh ? max_t(int, tx_rings_needed, rx) : tx_rings_needed + rx;
7721 	if (bp->flags & BNXT_FLAG_NEW_RM)
7722 		cp += bnxt_get_ulp_msix_num(bp);
7723 	return bnxt_hwrm_check_rings(bp, tx_rings_needed, rx_rings, rx, cp,
7724 				     vnics);
7725 }
7726 
7727 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev)
7728 {
7729 	if (bp->bar2) {
7730 		pci_iounmap(pdev, bp->bar2);
7731 		bp->bar2 = NULL;
7732 	}
7733 
7734 	if (bp->bar1) {
7735 		pci_iounmap(pdev, bp->bar1);
7736 		bp->bar1 = NULL;
7737 	}
7738 
7739 	if (bp->bar0) {
7740 		pci_iounmap(pdev, bp->bar0);
7741 		bp->bar0 = NULL;
7742 	}
7743 }
7744 
7745 static void bnxt_cleanup_pci(struct bnxt *bp)
7746 {
7747 	bnxt_unmap_bars(bp, bp->pdev);
7748 	pci_release_regions(bp->pdev);
7749 	pci_disable_device(bp->pdev);
7750 }
7751 
7752 static void bnxt_init_dflt_coal(struct bnxt *bp)
7753 {
7754 	struct bnxt_coal *coal;
7755 
7756 	/* Tick values in micro seconds.
7757 	 * 1 coal_buf x bufs_per_record = 1 completion record.
7758 	 */
7759 	coal = &bp->rx_coal;
7760 	coal->coal_ticks = 14;
7761 	coal->coal_bufs = 30;
7762 	coal->coal_ticks_irq = 1;
7763 	coal->coal_bufs_irq = 2;
7764 	coal->idle_thresh = 50;
7765 	coal->bufs_per_record = 2;
7766 	coal->budget = 64;		/* NAPI budget */
7767 
7768 	coal = &bp->tx_coal;
7769 	coal->coal_ticks = 28;
7770 	coal->coal_bufs = 30;
7771 	coal->coal_ticks_irq = 2;
7772 	coal->coal_bufs_irq = 2;
7773 	coal->bufs_per_record = 1;
7774 
7775 	bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS;
7776 }
7777 
7778 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
7779 {
7780 	int rc;
7781 	struct bnxt *bp = netdev_priv(dev);
7782 
7783 	SET_NETDEV_DEV(dev, &pdev->dev);
7784 
7785 	/* enable device (incl. PCI PM wakeup), and bus-mastering */
7786 	rc = pci_enable_device(pdev);
7787 	if (rc) {
7788 		dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
7789 		goto init_err;
7790 	}
7791 
7792 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
7793 		dev_err(&pdev->dev,
7794 			"Cannot find PCI device base address, aborting\n");
7795 		rc = -ENODEV;
7796 		goto init_err_disable;
7797 	}
7798 
7799 	rc = pci_request_regions(pdev, DRV_MODULE_NAME);
7800 	if (rc) {
7801 		dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
7802 		goto init_err_disable;
7803 	}
7804 
7805 	if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
7806 	    dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
7807 		dev_err(&pdev->dev, "System does not support DMA, aborting\n");
7808 		goto init_err_disable;
7809 	}
7810 
7811 	pci_set_master(pdev);
7812 
7813 	bp->dev = dev;
7814 	bp->pdev = pdev;
7815 
7816 	bp->bar0 = pci_ioremap_bar(pdev, 0);
7817 	if (!bp->bar0) {
7818 		dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
7819 		rc = -ENOMEM;
7820 		goto init_err_release;
7821 	}
7822 
7823 	bp->bar1 = pci_ioremap_bar(pdev, 2);
7824 	if (!bp->bar1) {
7825 		dev_err(&pdev->dev, "Cannot map doorbell registers, aborting\n");
7826 		rc = -ENOMEM;
7827 		goto init_err_release;
7828 	}
7829 
7830 	bp->bar2 = pci_ioremap_bar(pdev, 4);
7831 	if (!bp->bar2) {
7832 		dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
7833 		rc = -ENOMEM;
7834 		goto init_err_release;
7835 	}
7836 
7837 	pci_enable_pcie_error_reporting(pdev);
7838 
7839 	INIT_WORK(&bp->sp_task, bnxt_sp_task);
7840 
7841 	spin_lock_init(&bp->ntp_fltr_lock);
7842 
7843 	bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
7844 	bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
7845 
7846 	bnxt_init_dflt_coal(bp);
7847 
7848 	timer_setup(&bp->timer, bnxt_timer, 0);
7849 	bp->current_interval = BNXT_TIMER_INTERVAL;
7850 
7851 	clear_bit(BNXT_STATE_OPEN, &bp->state);
7852 	return 0;
7853 
7854 init_err_release:
7855 	bnxt_unmap_bars(bp, pdev);
7856 	pci_release_regions(pdev);
7857 
7858 init_err_disable:
7859 	pci_disable_device(pdev);
7860 
7861 init_err:
7862 	return rc;
7863 }
7864 
7865 /* rtnl_lock held */
7866 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
7867 {
7868 	struct sockaddr *addr = p;
7869 	struct bnxt *bp = netdev_priv(dev);
7870 	int rc = 0;
7871 
7872 	if (!is_valid_ether_addr(addr->sa_data))
7873 		return -EADDRNOTAVAIL;
7874 
7875 	if (ether_addr_equal(addr->sa_data, dev->dev_addr))
7876 		return 0;
7877 
7878 	rc = bnxt_approve_mac(bp, addr->sa_data);
7879 	if (rc)
7880 		return rc;
7881 
7882 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
7883 	if (netif_running(dev)) {
7884 		bnxt_close_nic(bp, false, false);
7885 		rc = bnxt_open_nic(bp, false, false);
7886 	}
7887 
7888 	return rc;
7889 }
7890 
7891 /* rtnl_lock held */
7892 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
7893 {
7894 	struct bnxt *bp = netdev_priv(dev);
7895 
7896 	if (netif_running(dev))
7897 		bnxt_close_nic(bp, false, false);
7898 
7899 	dev->mtu = new_mtu;
7900 	bnxt_set_ring_params(bp);
7901 
7902 	if (netif_running(dev))
7903 		return bnxt_open_nic(bp, false, false);
7904 
7905 	return 0;
7906 }
7907 
7908 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc)
7909 {
7910 	struct bnxt *bp = netdev_priv(dev);
7911 	bool sh = false;
7912 	int rc;
7913 
7914 	if (tc > bp->max_tc) {
7915 		netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n",
7916 			   tc, bp->max_tc);
7917 		return -EINVAL;
7918 	}
7919 
7920 	if (netdev_get_num_tc(dev) == tc)
7921 		return 0;
7922 
7923 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
7924 		sh = true;
7925 
7926 	rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings,
7927 			      sh, tc, bp->tx_nr_rings_xdp);
7928 	if (rc)
7929 		return rc;
7930 
7931 	/* Needs to close the device and do hw resource re-allocations */
7932 	if (netif_running(bp->dev))
7933 		bnxt_close_nic(bp, true, false);
7934 
7935 	if (tc) {
7936 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
7937 		netdev_set_num_tc(dev, tc);
7938 	} else {
7939 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
7940 		netdev_reset_tc(dev);
7941 	}
7942 	bp->tx_nr_rings += bp->tx_nr_rings_xdp;
7943 	bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
7944 			       bp->tx_nr_rings + bp->rx_nr_rings;
7945 	bp->num_stat_ctxs = bp->cp_nr_rings;
7946 
7947 	if (netif_running(bp->dev))
7948 		return bnxt_open_nic(bp, true, false);
7949 
7950 	return 0;
7951 }
7952 
7953 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
7954 				  void *cb_priv)
7955 {
7956 	struct bnxt *bp = cb_priv;
7957 
7958 	if (!bnxt_tc_flower_enabled(bp) ||
7959 	    !tc_cls_can_offload_and_chain0(bp->dev, type_data))
7960 		return -EOPNOTSUPP;
7961 
7962 	switch (type) {
7963 	case TC_SETUP_CLSFLOWER:
7964 		return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data);
7965 	default:
7966 		return -EOPNOTSUPP;
7967 	}
7968 }
7969 
7970 static int bnxt_setup_tc_block(struct net_device *dev,
7971 			       struct tc_block_offload *f)
7972 {
7973 	struct bnxt *bp = netdev_priv(dev);
7974 
7975 	if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
7976 		return -EOPNOTSUPP;
7977 
7978 	switch (f->command) {
7979 	case TC_BLOCK_BIND:
7980 		return tcf_block_cb_register(f->block, bnxt_setup_tc_block_cb,
7981 					     bp, bp, f->extack);
7982 	case TC_BLOCK_UNBIND:
7983 		tcf_block_cb_unregister(f->block, bnxt_setup_tc_block_cb, bp);
7984 		return 0;
7985 	default:
7986 		return -EOPNOTSUPP;
7987 	}
7988 }
7989 
7990 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type,
7991 			 void *type_data)
7992 {
7993 	switch (type) {
7994 	case TC_SETUP_BLOCK:
7995 		return bnxt_setup_tc_block(dev, type_data);
7996 	case TC_SETUP_QDISC_MQPRIO: {
7997 		struct tc_mqprio_qopt *mqprio = type_data;
7998 
7999 		mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
8000 
8001 		return bnxt_setup_mq_tc(dev, mqprio->num_tc);
8002 	}
8003 	default:
8004 		return -EOPNOTSUPP;
8005 	}
8006 }
8007 
8008 #ifdef CONFIG_RFS_ACCEL
8009 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
8010 			    struct bnxt_ntuple_filter *f2)
8011 {
8012 	struct flow_keys *keys1 = &f1->fkeys;
8013 	struct flow_keys *keys2 = &f2->fkeys;
8014 
8015 	if (keys1->addrs.v4addrs.src == keys2->addrs.v4addrs.src &&
8016 	    keys1->addrs.v4addrs.dst == keys2->addrs.v4addrs.dst &&
8017 	    keys1->ports.ports == keys2->ports.ports &&
8018 	    keys1->basic.ip_proto == keys2->basic.ip_proto &&
8019 	    keys1->basic.n_proto == keys2->basic.n_proto &&
8020 	    keys1->control.flags == keys2->control.flags &&
8021 	    ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) &&
8022 	    ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr))
8023 		return true;
8024 
8025 	return false;
8026 }
8027 
8028 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
8029 			      u16 rxq_index, u32 flow_id)
8030 {
8031 	struct bnxt *bp = netdev_priv(dev);
8032 	struct bnxt_ntuple_filter *fltr, *new_fltr;
8033 	struct flow_keys *fkeys;
8034 	struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
8035 	int rc = 0, idx, bit_id, l2_idx = 0;
8036 	struct hlist_head *head;
8037 
8038 	if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) {
8039 		struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
8040 		int off = 0, j;
8041 
8042 		netif_addr_lock_bh(dev);
8043 		for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) {
8044 			if (ether_addr_equal(eth->h_dest,
8045 					     vnic->uc_list + off)) {
8046 				l2_idx = j + 1;
8047 				break;
8048 			}
8049 		}
8050 		netif_addr_unlock_bh(dev);
8051 		if (!l2_idx)
8052 			return -EINVAL;
8053 	}
8054 	new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
8055 	if (!new_fltr)
8056 		return -ENOMEM;
8057 
8058 	fkeys = &new_fltr->fkeys;
8059 	if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
8060 		rc = -EPROTONOSUPPORT;
8061 		goto err_free;
8062 	}
8063 
8064 	if ((fkeys->basic.n_proto != htons(ETH_P_IP) &&
8065 	     fkeys->basic.n_proto != htons(ETH_P_IPV6)) ||
8066 	    ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
8067 	     (fkeys->basic.ip_proto != IPPROTO_UDP))) {
8068 		rc = -EPROTONOSUPPORT;
8069 		goto err_free;
8070 	}
8071 	if (fkeys->basic.n_proto == htons(ETH_P_IPV6) &&
8072 	    bp->hwrm_spec_code < 0x10601) {
8073 		rc = -EPROTONOSUPPORT;
8074 		goto err_free;
8075 	}
8076 	if ((fkeys->control.flags & FLOW_DIS_ENCAPSULATION) &&
8077 	    bp->hwrm_spec_code < 0x10601) {
8078 		rc = -EPROTONOSUPPORT;
8079 		goto err_free;
8080 	}
8081 
8082 	memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN);
8083 	memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
8084 
8085 	idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
8086 	head = &bp->ntp_fltr_hash_tbl[idx];
8087 	rcu_read_lock();
8088 	hlist_for_each_entry_rcu(fltr, head, hash) {
8089 		if (bnxt_fltr_match(fltr, new_fltr)) {
8090 			rcu_read_unlock();
8091 			rc = 0;
8092 			goto err_free;
8093 		}
8094 	}
8095 	rcu_read_unlock();
8096 
8097 	spin_lock_bh(&bp->ntp_fltr_lock);
8098 	bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
8099 					 BNXT_NTP_FLTR_MAX_FLTR, 0);
8100 	if (bit_id < 0) {
8101 		spin_unlock_bh(&bp->ntp_fltr_lock);
8102 		rc = -ENOMEM;
8103 		goto err_free;
8104 	}
8105 
8106 	new_fltr->sw_id = (u16)bit_id;
8107 	new_fltr->flow_id = flow_id;
8108 	new_fltr->l2_fltr_idx = l2_idx;
8109 	new_fltr->rxq = rxq_index;
8110 	hlist_add_head_rcu(&new_fltr->hash, head);
8111 	bp->ntp_fltr_count++;
8112 	spin_unlock_bh(&bp->ntp_fltr_lock);
8113 
8114 	set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
8115 	bnxt_queue_sp_work(bp);
8116 
8117 	return new_fltr->sw_id;
8118 
8119 err_free:
8120 	kfree(new_fltr);
8121 	return rc;
8122 }
8123 
8124 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
8125 {
8126 	int i;
8127 
8128 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
8129 		struct hlist_head *head;
8130 		struct hlist_node *tmp;
8131 		struct bnxt_ntuple_filter *fltr;
8132 		int rc;
8133 
8134 		head = &bp->ntp_fltr_hash_tbl[i];
8135 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
8136 			bool del = false;
8137 
8138 			if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
8139 				if (rps_may_expire_flow(bp->dev, fltr->rxq,
8140 							fltr->flow_id,
8141 							fltr->sw_id)) {
8142 					bnxt_hwrm_cfa_ntuple_filter_free(bp,
8143 									 fltr);
8144 					del = true;
8145 				}
8146 			} else {
8147 				rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
8148 								       fltr);
8149 				if (rc)
8150 					del = true;
8151 				else
8152 					set_bit(BNXT_FLTR_VALID, &fltr->state);
8153 			}
8154 
8155 			if (del) {
8156 				spin_lock_bh(&bp->ntp_fltr_lock);
8157 				hlist_del_rcu(&fltr->hash);
8158 				bp->ntp_fltr_count--;
8159 				spin_unlock_bh(&bp->ntp_fltr_lock);
8160 				synchronize_rcu();
8161 				clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
8162 				kfree(fltr);
8163 			}
8164 		}
8165 	}
8166 	if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event))
8167 		netdev_info(bp->dev, "Receive PF driver unload event!");
8168 }
8169 
8170 #else
8171 
8172 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
8173 {
8174 }
8175 
8176 #endif /* CONFIG_RFS_ACCEL */
8177 
8178 static void bnxt_udp_tunnel_add(struct net_device *dev,
8179 				struct udp_tunnel_info *ti)
8180 {
8181 	struct bnxt *bp = netdev_priv(dev);
8182 
8183 	if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET)
8184 		return;
8185 
8186 	if (!netif_running(dev))
8187 		return;
8188 
8189 	switch (ti->type) {
8190 	case UDP_TUNNEL_TYPE_VXLAN:
8191 		if (bp->vxlan_port_cnt && bp->vxlan_port != ti->port)
8192 			return;
8193 
8194 		bp->vxlan_port_cnt++;
8195 		if (bp->vxlan_port_cnt == 1) {
8196 			bp->vxlan_port = ti->port;
8197 			set_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event);
8198 			bnxt_queue_sp_work(bp);
8199 		}
8200 		break;
8201 	case UDP_TUNNEL_TYPE_GENEVE:
8202 		if (bp->nge_port_cnt && bp->nge_port != ti->port)
8203 			return;
8204 
8205 		bp->nge_port_cnt++;
8206 		if (bp->nge_port_cnt == 1) {
8207 			bp->nge_port = ti->port;
8208 			set_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event);
8209 		}
8210 		break;
8211 	default:
8212 		return;
8213 	}
8214 
8215 	bnxt_queue_sp_work(bp);
8216 }
8217 
8218 static void bnxt_udp_tunnel_del(struct net_device *dev,
8219 				struct udp_tunnel_info *ti)
8220 {
8221 	struct bnxt *bp = netdev_priv(dev);
8222 
8223 	if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET)
8224 		return;
8225 
8226 	if (!netif_running(dev))
8227 		return;
8228 
8229 	switch (ti->type) {
8230 	case UDP_TUNNEL_TYPE_VXLAN:
8231 		if (!bp->vxlan_port_cnt || bp->vxlan_port != ti->port)
8232 			return;
8233 		bp->vxlan_port_cnt--;
8234 
8235 		if (bp->vxlan_port_cnt != 0)
8236 			return;
8237 
8238 		set_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event);
8239 		break;
8240 	case UDP_TUNNEL_TYPE_GENEVE:
8241 		if (!bp->nge_port_cnt || bp->nge_port != ti->port)
8242 			return;
8243 		bp->nge_port_cnt--;
8244 
8245 		if (bp->nge_port_cnt != 0)
8246 			return;
8247 
8248 		set_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event);
8249 		break;
8250 	default:
8251 		return;
8252 	}
8253 
8254 	bnxt_queue_sp_work(bp);
8255 }
8256 
8257 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
8258 			       struct net_device *dev, u32 filter_mask,
8259 			       int nlflags)
8260 {
8261 	struct bnxt *bp = netdev_priv(dev);
8262 
8263 	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0,
8264 				       nlflags, filter_mask, NULL);
8265 }
8266 
8267 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
8268 			       u16 flags)
8269 {
8270 	struct bnxt *bp = netdev_priv(dev);
8271 	struct nlattr *attr, *br_spec;
8272 	int rem, rc = 0;
8273 
8274 	if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp))
8275 		return -EOPNOTSUPP;
8276 
8277 	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
8278 	if (!br_spec)
8279 		return -EINVAL;
8280 
8281 	nla_for_each_nested(attr, br_spec, rem) {
8282 		u16 mode;
8283 
8284 		if (nla_type(attr) != IFLA_BRIDGE_MODE)
8285 			continue;
8286 
8287 		if (nla_len(attr) < sizeof(mode))
8288 			return -EINVAL;
8289 
8290 		mode = nla_get_u16(attr);
8291 		if (mode == bp->br_mode)
8292 			break;
8293 
8294 		rc = bnxt_hwrm_set_br_mode(bp, mode);
8295 		if (!rc)
8296 			bp->br_mode = mode;
8297 		break;
8298 	}
8299 	return rc;
8300 }
8301 
8302 static int bnxt_get_phys_port_name(struct net_device *dev, char *buf,
8303 				   size_t len)
8304 {
8305 	struct bnxt *bp = netdev_priv(dev);
8306 	int rc;
8307 
8308 	/* The PF and it's VF-reps only support the switchdev framework */
8309 	if (!BNXT_PF(bp))
8310 		return -EOPNOTSUPP;
8311 
8312 	rc = snprintf(buf, len, "p%d", bp->pf.port_id);
8313 
8314 	if (rc >= len)
8315 		return -EOPNOTSUPP;
8316 	return 0;
8317 }
8318 
8319 int bnxt_port_attr_get(struct bnxt *bp, struct switchdev_attr *attr)
8320 {
8321 	if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV)
8322 		return -EOPNOTSUPP;
8323 
8324 	/* The PF and it's VF-reps only support the switchdev framework */
8325 	if (!BNXT_PF(bp))
8326 		return -EOPNOTSUPP;
8327 
8328 	switch (attr->id) {
8329 	case SWITCHDEV_ATTR_ID_PORT_PARENT_ID:
8330 		attr->u.ppid.id_len = sizeof(bp->switch_id);
8331 		memcpy(attr->u.ppid.id, bp->switch_id, attr->u.ppid.id_len);
8332 		break;
8333 	default:
8334 		return -EOPNOTSUPP;
8335 	}
8336 	return 0;
8337 }
8338 
8339 static int bnxt_swdev_port_attr_get(struct net_device *dev,
8340 				    struct switchdev_attr *attr)
8341 {
8342 	return bnxt_port_attr_get(netdev_priv(dev), attr);
8343 }
8344 
8345 static const struct switchdev_ops bnxt_switchdev_ops = {
8346 	.switchdev_port_attr_get	= bnxt_swdev_port_attr_get
8347 };
8348 
8349 static const struct net_device_ops bnxt_netdev_ops = {
8350 	.ndo_open		= bnxt_open,
8351 	.ndo_start_xmit		= bnxt_start_xmit,
8352 	.ndo_stop		= bnxt_close,
8353 	.ndo_get_stats64	= bnxt_get_stats64,
8354 	.ndo_set_rx_mode	= bnxt_set_rx_mode,
8355 	.ndo_do_ioctl		= bnxt_ioctl,
8356 	.ndo_validate_addr	= eth_validate_addr,
8357 	.ndo_set_mac_address	= bnxt_change_mac_addr,
8358 	.ndo_change_mtu		= bnxt_change_mtu,
8359 	.ndo_fix_features	= bnxt_fix_features,
8360 	.ndo_set_features	= bnxt_set_features,
8361 	.ndo_tx_timeout		= bnxt_tx_timeout,
8362 #ifdef CONFIG_BNXT_SRIOV
8363 	.ndo_get_vf_config	= bnxt_get_vf_config,
8364 	.ndo_set_vf_mac		= bnxt_set_vf_mac,
8365 	.ndo_set_vf_vlan	= bnxt_set_vf_vlan,
8366 	.ndo_set_vf_rate	= bnxt_set_vf_bw,
8367 	.ndo_set_vf_link_state	= bnxt_set_vf_link_state,
8368 	.ndo_set_vf_spoofchk	= bnxt_set_vf_spoofchk,
8369 	.ndo_set_vf_trust	= bnxt_set_vf_trust,
8370 #endif
8371 #ifdef CONFIG_NET_POLL_CONTROLLER
8372 	.ndo_poll_controller	= bnxt_poll_controller,
8373 #endif
8374 	.ndo_setup_tc           = bnxt_setup_tc,
8375 #ifdef CONFIG_RFS_ACCEL
8376 	.ndo_rx_flow_steer	= bnxt_rx_flow_steer,
8377 #endif
8378 	.ndo_udp_tunnel_add	= bnxt_udp_tunnel_add,
8379 	.ndo_udp_tunnel_del	= bnxt_udp_tunnel_del,
8380 	.ndo_bpf		= bnxt_xdp,
8381 	.ndo_bridge_getlink	= bnxt_bridge_getlink,
8382 	.ndo_bridge_setlink	= bnxt_bridge_setlink,
8383 	.ndo_get_phys_port_name = bnxt_get_phys_port_name
8384 };
8385 
8386 static void bnxt_remove_one(struct pci_dev *pdev)
8387 {
8388 	struct net_device *dev = pci_get_drvdata(pdev);
8389 	struct bnxt *bp = netdev_priv(dev);
8390 
8391 	if (BNXT_PF(bp)) {
8392 		bnxt_sriov_disable(bp);
8393 		bnxt_dl_unregister(bp);
8394 	}
8395 
8396 	pci_disable_pcie_error_reporting(pdev);
8397 	unregister_netdev(dev);
8398 	bnxt_shutdown_tc(bp);
8399 	bnxt_cancel_sp_work(bp);
8400 	bp->sp_event = 0;
8401 
8402 	bnxt_clear_int_mode(bp);
8403 	bnxt_hwrm_func_drv_unrgtr(bp);
8404 	bnxt_free_hwrm_resources(bp);
8405 	bnxt_free_hwrm_short_cmd_req(bp);
8406 	bnxt_ethtool_free(bp);
8407 	bnxt_dcb_free(bp);
8408 	kfree(bp->edev);
8409 	bp->edev = NULL;
8410 	bnxt_cleanup_pci(bp);
8411 	free_netdev(dev);
8412 }
8413 
8414 static int bnxt_probe_phy(struct bnxt *bp)
8415 {
8416 	int rc = 0;
8417 	struct bnxt_link_info *link_info = &bp->link_info;
8418 
8419 	rc = bnxt_hwrm_phy_qcaps(bp);
8420 	if (rc) {
8421 		netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n",
8422 			   rc);
8423 		return rc;
8424 	}
8425 	mutex_init(&bp->link_lock);
8426 
8427 	rc = bnxt_update_link(bp, false);
8428 	if (rc) {
8429 		netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
8430 			   rc);
8431 		return rc;
8432 	}
8433 
8434 	/* Older firmware does not have supported_auto_speeds, so assume
8435 	 * that all supported speeds can be autonegotiated.
8436 	 */
8437 	if (link_info->auto_link_speeds && !link_info->support_auto_speeds)
8438 		link_info->support_auto_speeds = link_info->support_speeds;
8439 
8440 	/*initialize the ethool setting copy with NVM settings */
8441 	if (BNXT_AUTO_MODE(link_info->auto_mode)) {
8442 		link_info->autoneg = BNXT_AUTONEG_SPEED;
8443 		if (bp->hwrm_spec_code >= 0x10201) {
8444 			if (link_info->auto_pause_setting &
8445 			    PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE)
8446 				link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
8447 		} else {
8448 			link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
8449 		}
8450 		link_info->advertising = link_info->auto_link_speeds;
8451 	} else {
8452 		link_info->req_link_speed = link_info->force_link_speed;
8453 		link_info->req_duplex = link_info->duplex_setting;
8454 	}
8455 	if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL)
8456 		link_info->req_flow_ctrl =
8457 			link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH;
8458 	else
8459 		link_info->req_flow_ctrl = link_info->force_pause_setting;
8460 	return rc;
8461 }
8462 
8463 static int bnxt_get_max_irq(struct pci_dev *pdev)
8464 {
8465 	u16 ctrl;
8466 
8467 	if (!pdev->msix_cap)
8468 		return 1;
8469 
8470 	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
8471 	return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
8472 }
8473 
8474 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
8475 				int *max_cp)
8476 {
8477 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
8478 	int max_ring_grps = 0;
8479 
8480 	*max_tx = hw_resc->max_tx_rings;
8481 	*max_rx = hw_resc->max_rx_rings;
8482 	*max_cp = min_t(int, hw_resc->max_irqs, hw_resc->max_cp_rings);
8483 	*max_cp = min_t(int, *max_cp, hw_resc->max_stat_ctxs);
8484 	max_ring_grps = hw_resc->max_hw_ring_grps;
8485 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) {
8486 		*max_cp -= 1;
8487 		*max_rx -= 2;
8488 	}
8489 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
8490 		*max_rx >>= 1;
8491 	*max_rx = min_t(int, *max_rx, max_ring_grps);
8492 }
8493 
8494 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
8495 {
8496 	int rx, tx, cp;
8497 
8498 	_bnxt_get_max_rings(bp, &rx, &tx, &cp);
8499 	*max_rx = rx;
8500 	*max_tx = tx;
8501 	if (!rx || !tx || !cp)
8502 		return -ENOMEM;
8503 
8504 	return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
8505 }
8506 
8507 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx,
8508 			       bool shared)
8509 {
8510 	int rc;
8511 
8512 	rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
8513 	if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) {
8514 		/* Not enough rings, try disabling agg rings. */
8515 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
8516 		rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
8517 		if (rc) {
8518 			/* set BNXT_FLAG_AGG_RINGS back for consistency */
8519 			bp->flags |= BNXT_FLAG_AGG_RINGS;
8520 			return rc;
8521 		}
8522 		bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
8523 		bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
8524 		bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
8525 		bnxt_set_ring_params(bp);
8526 	}
8527 
8528 	if (bp->flags & BNXT_FLAG_ROCE_CAP) {
8529 		int max_cp, max_stat, max_irq;
8530 
8531 		/* Reserve minimum resources for RoCE */
8532 		max_cp = bnxt_get_max_func_cp_rings(bp);
8533 		max_stat = bnxt_get_max_func_stat_ctxs(bp);
8534 		max_irq = bnxt_get_max_func_irqs(bp);
8535 		if (max_cp <= BNXT_MIN_ROCE_CP_RINGS ||
8536 		    max_irq <= BNXT_MIN_ROCE_CP_RINGS ||
8537 		    max_stat <= BNXT_MIN_ROCE_STAT_CTXS)
8538 			return 0;
8539 
8540 		max_cp -= BNXT_MIN_ROCE_CP_RINGS;
8541 		max_irq -= BNXT_MIN_ROCE_CP_RINGS;
8542 		max_stat -= BNXT_MIN_ROCE_STAT_CTXS;
8543 		max_cp = min_t(int, max_cp, max_irq);
8544 		max_cp = min_t(int, max_cp, max_stat);
8545 		rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared);
8546 		if (rc)
8547 			rc = 0;
8548 	}
8549 	return rc;
8550 }
8551 
8552 /* In initial default shared ring setting, each shared ring must have a
8553  * RX/TX ring pair.
8554  */
8555 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp)
8556 {
8557 	bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings);
8558 	bp->rx_nr_rings = bp->cp_nr_rings;
8559 	bp->tx_nr_rings_per_tc = bp->cp_nr_rings;
8560 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
8561 }
8562 
8563 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh)
8564 {
8565 	int dflt_rings, max_rx_rings, max_tx_rings, rc;
8566 
8567 	if (!bnxt_can_reserve_rings(bp))
8568 		return 0;
8569 
8570 	if (sh)
8571 		bp->flags |= BNXT_FLAG_SHARED_RINGS;
8572 	dflt_rings = netif_get_num_default_rss_queues();
8573 	/* Reduce default rings on multi-port cards so that total default
8574 	 * rings do not exceed CPU count.
8575 	 */
8576 	if (bp->port_count > 1) {
8577 		int max_rings =
8578 			max_t(int, num_online_cpus() / bp->port_count, 1);
8579 
8580 		dflt_rings = min_t(int, dflt_rings, max_rings);
8581 	}
8582 	rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh);
8583 	if (rc)
8584 		return rc;
8585 	bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
8586 	bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
8587 	if (sh)
8588 		bnxt_trim_dflt_sh_rings(bp);
8589 	else
8590 		bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings;
8591 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
8592 
8593 	rc = __bnxt_reserve_rings(bp);
8594 	if (rc)
8595 		netdev_warn(bp->dev, "Unable to reserve tx rings\n");
8596 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
8597 	if (sh)
8598 		bnxt_trim_dflt_sh_rings(bp);
8599 
8600 	/* Rings may have been trimmed, re-reserve the trimmed rings. */
8601 	if (bnxt_need_reserve_rings(bp)) {
8602 		rc = __bnxt_reserve_rings(bp);
8603 		if (rc)
8604 			netdev_warn(bp->dev, "2nd rings reservation failed.\n");
8605 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
8606 	}
8607 	bp->num_stat_ctxs = bp->cp_nr_rings;
8608 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
8609 		bp->rx_nr_rings++;
8610 		bp->cp_nr_rings++;
8611 	}
8612 	return rc;
8613 }
8614 
8615 static int bnxt_init_dflt_ring_mode(struct bnxt *bp)
8616 {
8617 	int rc;
8618 
8619 	if (bp->tx_nr_rings)
8620 		return 0;
8621 
8622 	rc = bnxt_set_dflt_rings(bp, true);
8623 	if (rc) {
8624 		netdev_err(bp->dev, "Not enough rings available.\n");
8625 		return rc;
8626 	}
8627 	rc = bnxt_init_int_mode(bp);
8628 	if (rc)
8629 		return rc;
8630 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
8631 	if (bnxt_rfs_supported(bp) && bnxt_rfs_capable(bp)) {
8632 		bp->flags |= BNXT_FLAG_RFS;
8633 		bp->dev->features |= NETIF_F_NTUPLE;
8634 	}
8635 	return 0;
8636 }
8637 
8638 int bnxt_restore_pf_fw_resources(struct bnxt *bp)
8639 {
8640 	int rc;
8641 
8642 	ASSERT_RTNL();
8643 	bnxt_hwrm_func_qcaps(bp);
8644 
8645 	if (netif_running(bp->dev))
8646 		__bnxt_close_nic(bp, true, false);
8647 
8648 	bnxt_ulp_irq_stop(bp);
8649 	bnxt_clear_int_mode(bp);
8650 	rc = bnxt_init_int_mode(bp);
8651 	bnxt_ulp_irq_restart(bp, rc);
8652 
8653 	if (netif_running(bp->dev)) {
8654 		if (rc)
8655 			dev_close(bp->dev);
8656 		else
8657 			rc = bnxt_open_nic(bp, true, false);
8658 	}
8659 
8660 	return rc;
8661 }
8662 
8663 static int bnxt_init_mac_addr(struct bnxt *bp)
8664 {
8665 	int rc = 0;
8666 
8667 	if (BNXT_PF(bp)) {
8668 		memcpy(bp->dev->dev_addr, bp->pf.mac_addr, ETH_ALEN);
8669 	} else {
8670 #ifdef CONFIG_BNXT_SRIOV
8671 		struct bnxt_vf_info *vf = &bp->vf;
8672 
8673 		if (is_valid_ether_addr(vf->mac_addr)) {
8674 			/* overwrite netdev dev_addr with admin VF MAC */
8675 			memcpy(bp->dev->dev_addr, vf->mac_addr, ETH_ALEN);
8676 		} else {
8677 			eth_hw_addr_random(bp->dev);
8678 		}
8679 		rc = bnxt_approve_mac(bp, bp->dev->dev_addr);
8680 #endif
8681 	}
8682 	return rc;
8683 }
8684 
8685 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8686 {
8687 	static int version_printed;
8688 	struct net_device *dev;
8689 	struct bnxt *bp;
8690 	int rc, max_irqs;
8691 
8692 	if (pci_is_bridge(pdev))
8693 		return -ENODEV;
8694 
8695 	if (version_printed++ == 0)
8696 		pr_info("%s", version);
8697 
8698 	max_irqs = bnxt_get_max_irq(pdev);
8699 	dev = alloc_etherdev_mq(sizeof(*bp), max_irqs);
8700 	if (!dev)
8701 		return -ENOMEM;
8702 
8703 	bp = netdev_priv(dev);
8704 
8705 	if (bnxt_vf_pciid(ent->driver_data))
8706 		bp->flags |= BNXT_FLAG_VF;
8707 
8708 	if (pdev->msix_cap)
8709 		bp->flags |= BNXT_FLAG_MSIX_CAP;
8710 
8711 	rc = bnxt_init_board(pdev, dev);
8712 	if (rc < 0)
8713 		goto init_err_free;
8714 
8715 	dev->netdev_ops = &bnxt_netdev_ops;
8716 	dev->watchdog_timeo = BNXT_TX_TIMEOUT;
8717 	dev->ethtool_ops = &bnxt_ethtool_ops;
8718 	SWITCHDEV_SET_OPS(dev, &bnxt_switchdev_ops);
8719 	pci_set_drvdata(pdev, dev);
8720 
8721 	rc = bnxt_alloc_hwrm_resources(bp);
8722 	if (rc)
8723 		goto init_err_pci_clean;
8724 
8725 	mutex_init(&bp->hwrm_cmd_lock);
8726 	rc = bnxt_hwrm_ver_get(bp);
8727 	if (rc)
8728 		goto init_err_pci_clean;
8729 
8730 	if (bp->flags & BNXT_FLAG_SHORT_CMD) {
8731 		rc = bnxt_alloc_hwrm_short_cmd_req(bp);
8732 		if (rc)
8733 			goto init_err_pci_clean;
8734 	}
8735 
8736 	rc = bnxt_hwrm_func_reset(bp);
8737 	if (rc)
8738 		goto init_err_pci_clean;
8739 
8740 	bnxt_hwrm_fw_set_time(bp);
8741 
8742 	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
8743 			   NETIF_F_TSO | NETIF_F_TSO6 |
8744 			   NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
8745 			   NETIF_F_GSO_IPXIP4 |
8746 			   NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
8747 			   NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH |
8748 			   NETIF_F_RXCSUM | NETIF_F_GRO;
8749 
8750 	if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
8751 		dev->hw_features |= NETIF_F_LRO;
8752 
8753 	dev->hw_enc_features =
8754 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
8755 			NETIF_F_TSO | NETIF_F_TSO6 |
8756 			NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
8757 			NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
8758 			NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL;
8759 	dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM |
8760 				    NETIF_F_GSO_GRE_CSUM;
8761 	dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
8762 	dev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
8763 			    NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX;
8764 	if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
8765 		dev->hw_features |= NETIF_F_GRO_HW;
8766 	dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
8767 	if (dev->features & NETIF_F_GRO_HW)
8768 		dev->features &= ~NETIF_F_LRO;
8769 	dev->priv_flags |= IFF_UNICAST_FLT;
8770 
8771 #ifdef CONFIG_BNXT_SRIOV
8772 	init_waitqueue_head(&bp->sriov_cfg_wait);
8773 	mutex_init(&bp->sriov_lock);
8774 #endif
8775 	bp->gro_func = bnxt_gro_func_5730x;
8776 	if (BNXT_CHIP_P4_PLUS(bp))
8777 		bp->gro_func = bnxt_gro_func_5731x;
8778 	else
8779 		bp->flags |= BNXT_FLAG_DOUBLE_DB;
8780 
8781 	rc = bnxt_hwrm_func_drv_rgtr(bp);
8782 	if (rc)
8783 		goto init_err_pci_clean;
8784 
8785 	rc = bnxt_hwrm_func_rgtr_async_events(bp, NULL, 0);
8786 	if (rc)
8787 		goto init_err_pci_clean;
8788 
8789 	bp->ulp_probe = bnxt_ulp_probe;
8790 
8791 	/* Get the MAX capabilities for this function */
8792 	rc = bnxt_hwrm_func_qcaps(bp);
8793 	if (rc) {
8794 		netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
8795 			   rc);
8796 		rc = -1;
8797 		goto init_err_pci_clean;
8798 	}
8799 	rc = bnxt_init_mac_addr(bp);
8800 	if (rc) {
8801 		dev_err(&pdev->dev, "Unable to initialize mac address.\n");
8802 		rc = -EADDRNOTAVAIL;
8803 		goto init_err_pci_clean;
8804 	}
8805 	rc = bnxt_hwrm_queue_qportcfg(bp);
8806 	if (rc) {
8807 		netdev_err(bp->dev, "hwrm query qportcfg failure rc: %x\n",
8808 			   rc);
8809 		rc = -1;
8810 		goto init_err_pci_clean;
8811 	}
8812 
8813 	bnxt_hwrm_func_qcfg(bp);
8814 	bnxt_hwrm_port_led_qcaps(bp);
8815 	bnxt_ethtool_init(bp);
8816 	bnxt_dcb_init(bp);
8817 
8818 	/* MTU range: 60 - FW defined max */
8819 	dev->min_mtu = ETH_ZLEN;
8820 	dev->max_mtu = bp->max_mtu;
8821 
8822 	rc = bnxt_probe_phy(bp);
8823 	if (rc)
8824 		goto init_err_pci_clean;
8825 
8826 	bnxt_set_rx_skb_mode(bp, false);
8827 	bnxt_set_tpa_flags(bp);
8828 	bnxt_set_ring_params(bp);
8829 	bnxt_set_max_func_irqs(bp, max_irqs);
8830 	rc = bnxt_set_dflt_rings(bp, true);
8831 	if (rc) {
8832 		netdev_err(bp->dev, "Not enough rings available.\n");
8833 		rc = -ENOMEM;
8834 		goto init_err_pci_clean;
8835 	}
8836 
8837 	/* Default RSS hash cfg. */
8838 	bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 |
8839 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 |
8840 			   VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 |
8841 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6;
8842 	if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) {
8843 		bp->flags |= BNXT_FLAG_UDP_RSS_CAP;
8844 		bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 |
8845 				    VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6;
8846 	}
8847 
8848 	bnxt_hwrm_vnic_qcaps(bp);
8849 	if (bnxt_rfs_supported(bp)) {
8850 		dev->hw_features |= NETIF_F_NTUPLE;
8851 		if (bnxt_rfs_capable(bp)) {
8852 			bp->flags |= BNXT_FLAG_RFS;
8853 			dev->features |= NETIF_F_NTUPLE;
8854 		}
8855 	}
8856 
8857 	if (dev->hw_features & NETIF_F_HW_VLAN_CTAG_RX)
8858 		bp->flags |= BNXT_FLAG_STRIP_VLAN;
8859 
8860 	rc = bnxt_init_int_mode(bp);
8861 	if (rc)
8862 		goto init_err_pci_clean;
8863 
8864 	/* No TC has been set yet and rings may have been trimmed due to
8865 	 * limited MSIX, so we re-initialize the TX rings per TC.
8866 	 */
8867 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
8868 
8869 	bnxt_get_wol_settings(bp);
8870 	if (bp->flags & BNXT_FLAG_WOL_CAP)
8871 		device_set_wakeup_enable(&pdev->dev, bp->wol);
8872 	else
8873 		device_set_wakeup_capable(&pdev->dev, false);
8874 
8875 	bnxt_hwrm_set_cache_line_size(bp, cache_line_size());
8876 
8877 	if (BNXT_PF(bp)) {
8878 		if (!bnxt_pf_wq) {
8879 			bnxt_pf_wq =
8880 				create_singlethread_workqueue("bnxt_pf_wq");
8881 			if (!bnxt_pf_wq) {
8882 				dev_err(&pdev->dev, "Unable to create workqueue.\n");
8883 				goto init_err_pci_clean;
8884 			}
8885 		}
8886 		bnxt_init_tc(bp);
8887 	}
8888 
8889 	rc = register_netdev(dev);
8890 	if (rc)
8891 		goto init_err_cleanup_tc;
8892 
8893 	if (BNXT_PF(bp))
8894 		bnxt_dl_register(bp);
8895 
8896 	netdev_info(dev, "%s found at mem %lx, node addr %pM\n",
8897 		    board_info[ent->driver_data].name,
8898 		    (long)pci_resource_start(pdev, 0), dev->dev_addr);
8899 	pcie_print_link_status(pdev);
8900 
8901 	return 0;
8902 
8903 init_err_cleanup_tc:
8904 	bnxt_shutdown_tc(bp);
8905 	bnxt_clear_int_mode(bp);
8906 
8907 init_err_pci_clean:
8908 	bnxt_cleanup_pci(bp);
8909 
8910 init_err_free:
8911 	free_netdev(dev);
8912 	return rc;
8913 }
8914 
8915 static void bnxt_shutdown(struct pci_dev *pdev)
8916 {
8917 	struct net_device *dev = pci_get_drvdata(pdev);
8918 	struct bnxt *bp;
8919 
8920 	if (!dev)
8921 		return;
8922 
8923 	rtnl_lock();
8924 	bp = netdev_priv(dev);
8925 	if (!bp)
8926 		goto shutdown_exit;
8927 
8928 	if (netif_running(dev))
8929 		dev_close(dev);
8930 
8931 	bnxt_ulp_shutdown(bp);
8932 
8933 	if (system_state == SYSTEM_POWER_OFF) {
8934 		bnxt_clear_int_mode(bp);
8935 		pci_wake_from_d3(pdev, bp->wol);
8936 		pci_set_power_state(pdev, PCI_D3hot);
8937 	}
8938 
8939 shutdown_exit:
8940 	rtnl_unlock();
8941 }
8942 
8943 #ifdef CONFIG_PM_SLEEP
8944 static int bnxt_suspend(struct device *device)
8945 {
8946 	struct pci_dev *pdev = to_pci_dev(device);
8947 	struct net_device *dev = pci_get_drvdata(pdev);
8948 	struct bnxt *bp = netdev_priv(dev);
8949 	int rc = 0;
8950 
8951 	rtnl_lock();
8952 	if (netif_running(dev)) {
8953 		netif_device_detach(dev);
8954 		rc = bnxt_close(dev);
8955 	}
8956 	bnxt_hwrm_func_drv_unrgtr(bp);
8957 	rtnl_unlock();
8958 	return rc;
8959 }
8960 
8961 static int bnxt_resume(struct device *device)
8962 {
8963 	struct pci_dev *pdev = to_pci_dev(device);
8964 	struct net_device *dev = pci_get_drvdata(pdev);
8965 	struct bnxt *bp = netdev_priv(dev);
8966 	int rc = 0;
8967 
8968 	rtnl_lock();
8969 	if (bnxt_hwrm_ver_get(bp) || bnxt_hwrm_func_drv_rgtr(bp)) {
8970 		rc = -ENODEV;
8971 		goto resume_exit;
8972 	}
8973 	rc = bnxt_hwrm_func_reset(bp);
8974 	if (rc) {
8975 		rc = -EBUSY;
8976 		goto resume_exit;
8977 	}
8978 	bnxt_get_wol_settings(bp);
8979 	if (netif_running(dev)) {
8980 		rc = bnxt_open(dev);
8981 		if (!rc)
8982 			netif_device_attach(dev);
8983 	}
8984 
8985 resume_exit:
8986 	rtnl_unlock();
8987 	return rc;
8988 }
8989 
8990 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume);
8991 #define BNXT_PM_OPS (&bnxt_pm_ops)
8992 
8993 #else
8994 
8995 #define BNXT_PM_OPS NULL
8996 
8997 #endif /* CONFIG_PM_SLEEP */
8998 
8999 /**
9000  * bnxt_io_error_detected - called when PCI error is detected
9001  * @pdev: Pointer to PCI device
9002  * @state: The current pci connection state
9003  *
9004  * This function is called after a PCI bus error affecting
9005  * this device has been detected.
9006  */
9007 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev,
9008 					       pci_channel_state_t state)
9009 {
9010 	struct net_device *netdev = pci_get_drvdata(pdev);
9011 	struct bnxt *bp = netdev_priv(netdev);
9012 
9013 	netdev_info(netdev, "PCI I/O error detected\n");
9014 
9015 	rtnl_lock();
9016 	netif_device_detach(netdev);
9017 
9018 	bnxt_ulp_stop(bp);
9019 
9020 	if (state == pci_channel_io_perm_failure) {
9021 		rtnl_unlock();
9022 		return PCI_ERS_RESULT_DISCONNECT;
9023 	}
9024 
9025 	if (netif_running(netdev))
9026 		bnxt_close(netdev);
9027 
9028 	pci_disable_device(pdev);
9029 	rtnl_unlock();
9030 
9031 	/* Request a slot slot reset. */
9032 	return PCI_ERS_RESULT_NEED_RESET;
9033 }
9034 
9035 /**
9036  * bnxt_io_slot_reset - called after the pci bus has been reset.
9037  * @pdev: Pointer to PCI device
9038  *
9039  * Restart the card from scratch, as if from a cold-boot.
9040  * At this point, the card has exprienced a hard reset,
9041  * followed by fixups by BIOS, and has its config space
9042  * set up identically to what it was at cold boot.
9043  */
9044 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev)
9045 {
9046 	struct net_device *netdev = pci_get_drvdata(pdev);
9047 	struct bnxt *bp = netdev_priv(netdev);
9048 	int err = 0;
9049 	pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
9050 
9051 	netdev_info(bp->dev, "PCI Slot Reset\n");
9052 
9053 	rtnl_lock();
9054 
9055 	if (pci_enable_device(pdev)) {
9056 		dev_err(&pdev->dev,
9057 			"Cannot re-enable PCI device after reset.\n");
9058 	} else {
9059 		pci_set_master(pdev);
9060 
9061 		err = bnxt_hwrm_func_reset(bp);
9062 		if (!err && netif_running(netdev))
9063 			err = bnxt_open(netdev);
9064 
9065 		if (!err) {
9066 			result = PCI_ERS_RESULT_RECOVERED;
9067 			bnxt_ulp_start(bp);
9068 		}
9069 	}
9070 
9071 	if (result != PCI_ERS_RESULT_RECOVERED && netif_running(netdev))
9072 		dev_close(netdev);
9073 
9074 	rtnl_unlock();
9075 
9076 	err = pci_cleanup_aer_uncorrect_error_status(pdev);
9077 	if (err) {
9078 		dev_err(&pdev->dev,
9079 			"pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
9080 			 err); /* non-fatal, continue */
9081 	}
9082 
9083 	return PCI_ERS_RESULT_RECOVERED;
9084 }
9085 
9086 /**
9087  * bnxt_io_resume - called when traffic can start flowing again.
9088  * @pdev: Pointer to PCI device
9089  *
9090  * This callback is called when the error recovery driver tells
9091  * us that its OK to resume normal operation.
9092  */
9093 static void bnxt_io_resume(struct pci_dev *pdev)
9094 {
9095 	struct net_device *netdev = pci_get_drvdata(pdev);
9096 
9097 	rtnl_lock();
9098 
9099 	netif_device_attach(netdev);
9100 
9101 	rtnl_unlock();
9102 }
9103 
9104 static const struct pci_error_handlers bnxt_err_handler = {
9105 	.error_detected	= bnxt_io_error_detected,
9106 	.slot_reset	= bnxt_io_slot_reset,
9107 	.resume		= bnxt_io_resume
9108 };
9109 
9110 static struct pci_driver bnxt_pci_driver = {
9111 	.name		= DRV_MODULE_NAME,
9112 	.id_table	= bnxt_pci_tbl,
9113 	.probe		= bnxt_init_one,
9114 	.remove		= bnxt_remove_one,
9115 	.shutdown	= bnxt_shutdown,
9116 	.driver.pm	= BNXT_PM_OPS,
9117 	.err_handler	= &bnxt_err_handler,
9118 #if defined(CONFIG_BNXT_SRIOV)
9119 	.sriov_configure = bnxt_sriov_configure,
9120 #endif
9121 };
9122 
9123 static int __init bnxt_init(void)
9124 {
9125 	bnxt_debug_init();
9126 	return pci_register_driver(&bnxt_pci_driver);
9127 }
9128 
9129 static void __exit bnxt_exit(void)
9130 {
9131 	pci_unregister_driver(&bnxt_pci_driver);
9132 	if (bnxt_pf_wq)
9133 		destroy_workqueue(bnxt_pf_wq);
9134 	bnxt_debug_exit();
9135 }
9136 
9137 module_init(bnxt_init);
9138 module_exit(bnxt_exit);
9139