1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2015 Broadcom Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation.
8  */
9 
10 #include <linux/module.h>
11 
12 #include <linux/stringify.h>
13 #include <linux/kernel.h>
14 #include <linux/timer.h>
15 #include <linux/errno.h>
16 #include <linux/ioport.h>
17 #include <linux/slab.h>
18 #include <linux/vmalloc.h>
19 #include <linux/interrupt.h>
20 #include <linux/pci.h>
21 #include <linux/netdevice.h>
22 #include <linux/etherdevice.h>
23 #include <linux/skbuff.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/bitops.h>
26 #include <linux/io.h>
27 #include <linux/irq.h>
28 #include <linux/delay.h>
29 #include <asm/byteorder.h>
30 #include <asm/page.h>
31 #include <linux/time.h>
32 #include <linux/mii.h>
33 #include <linux/if.h>
34 #include <linux/if_vlan.h>
35 #include <net/ip.h>
36 #include <net/tcp.h>
37 #include <net/udp.h>
38 #include <net/checksum.h>
39 #include <net/ip6_checksum.h>
40 #if defined(CONFIG_VXLAN) || defined(CONFIG_VXLAN_MODULE)
41 #include <net/vxlan.h>
42 #endif
43 #ifdef CONFIG_NET_RX_BUSY_POLL
44 #include <net/busy_poll.h>
45 #endif
46 #include <linux/workqueue.h>
47 #include <linux/prefetch.h>
48 #include <linux/cache.h>
49 #include <linux/log2.h>
50 #include <linux/aer.h>
51 #include <linux/bitmap.h>
52 #include <linux/cpu_rmap.h>
53 
54 #include "bnxt_hsi.h"
55 #include "bnxt.h"
56 #include "bnxt_sriov.h"
57 #include "bnxt_ethtool.h"
58 
59 #define BNXT_TX_TIMEOUT		(5 * HZ)
60 
61 static const char version[] =
62 	"Broadcom NetXtreme-C/E driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION "\n";
63 
64 MODULE_LICENSE("GPL");
65 MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
66 MODULE_VERSION(DRV_MODULE_VERSION);
67 
68 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
69 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
70 #define BNXT_RX_COPY_THRESH 256
71 
72 #define BNXT_TX_PUSH_THRESH 92
73 
74 enum board_idx {
75 	BCM57301,
76 	BCM57302,
77 	BCM57304,
78 	BCM57402,
79 	BCM57404,
80 	BCM57406,
81 	BCM57304_VF,
82 	BCM57404_VF,
83 };
84 
85 /* indexed by enum above */
86 static const struct {
87 	char *name;
88 } board_info[] = {
89 	{ "Broadcom BCM57301 NetXtreme-C Single-port 10Gb Ethernet" },
90 	{ "Broadcom BCM57302 NetXtreme-C Dual-port 10Gb/25Gb Ethernet" },
91 	{ "Broadcom BCM57304 NetXtreme-C Dual-port 10Gb/25Gb/40Gb/50Gb Ethernet" },
92 	{ "Broadcom BCM57402 NetXtreme-E Dual-port 10Gb Ethernet" },
93 	{ "Broadcom BCM57404 NetXtreme-E Dual-port 10Gb/25Gb Ethernet" },
94 	{ "Broadcom BCM57406 NetXtreme-E Dual-port 10GBase-T Ethernet" },
95 	{ "Broadcom BCM57304 NetXtreme-C Ethernet Virtual Function" },
96 	{ "Broadcom BCM57404 NetXtreme-E Ethernet Virtual Function" },
97 };
98 
99 static const struct pci_device_id bnxt_pci_tbl[] = {
100 	{ PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
101 	{ PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
102 	{ PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
103 	{ PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
104 	{ PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
105 	{ PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
106 #ifdef CONFIG_BNXT_SRIOV
107 	{ PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = BCM57304_VF },
108 	{ PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = BCM57404_VF },
109 #endif
110 	{ 0 }
111 };
112 
113 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
114 
115 static const u16 bnxt_vf_req_snif[] = {
116 	HWRM_FUNC_CFG,
117 	HWRM_PORT_PHY_QCFG,
118 	HWRM_CFA_L2_FILTER_ALLOC,
119 };
120 
121 static bool bnxt_vf_pciid(enum board_idx idx)
122 {
123 	return (idx == BCM57304_VF || idx == BCM57404_VF);
124 }
125 
126 #define DB_CP_REARM_FLAGS	(DB_KEY_CP | DB_IDX_VALID)
127 #define DB_CP_FLAGS		(DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
128 #define DB_CP_IRQ_DIS_FLAGS	(DB_KEY_CP | DB_IRQ_DIS)
129 
130 #define BNXT_CP_DB_REARM(db, raw_cons)					\
131 		writel(DB_CP_REARM_FLAGS | RING_CMP(raw_cons), db)
132 
133 #define BNXT_CP_DB(db, raw_cons)					\
134 		writel(DB_CP_FLAGS | RING_CMP(raw_cons), db)
135 
136 #define BNXT_CP_DB_IRQ_DIS(db)						\
137 		writel(DB_CP_IRQ_DIS_FLAGS, db)
138 
139 static inline u32 bnxt_tx_avail(struct bnxt *bp, struct bnxt_tx_ring_info *txr)
140 {
141 	/* Tell compiler to fetch tx indices from memory. */
142 	barrier();
143 
144 	return bp->tx_ring_size -
145 		((txr->tx_prod - txr->tx_cons) & bp->tx_ring_mask);
146 }
147 
148 static const u16 bnxt_lhint_arr[] = {
149 	TX_BD_FLAGS_LHINT_512_AND_SMALLER,
150 	TX_BD_FLAGS_LHINT_512_TO_1023,
151 	TX_BD_FLAGS_LHINT_1024_TO_2047,
152 	TX_BD_FLAGS_LHINT_1024_TO_2047,
153 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
154 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
155 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
156 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
157 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
158 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
159 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
160 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
161 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
162 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
163 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
164 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
165 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
166 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
167 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
168 };
169 
170 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
171 {
172 	struct bnxt *bp = netdev_priv(dev);
173 	struct tx_bd *txbd;
174 	struct tx_bd_ext *txbd1;
175 	struct netdev_queue *txq;
176 	int i;
177 	dma_addr_t mapping;
178 	unsigned int length, pad = 0;
179 	u32 len, free_size, vlan_tag_flags, cfa_action, flags;
180 	u16 prod, last_frag;
181 	struct pci_dev *pdev = bp->pdev;
182 	struct bnxt_tx_ring_info *txr;
183 	struct bnxt_sw_tx_bd *tx_buf;
184 
185 	i = skb_get_queue_mapping(skb);
186 	if (unlikely(i >= bp->tx_nr_rings)) {
187 		dev_kfree_skb_any(skb);
188 		return NETDEV_TX_OK;
189 	}
190 
191 	txr = &bp->tx_ring[i];
192 	txq = netdev_get_tx_queue(dev, i);
193 	prod = txr->tx_prod;
194 
195 	free_size = bnxt_tx_avail(bp, txr);
196 	if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
197 		netif_tx_stop_queue(txq);
198 		return NETDEV_TX_BUSY;
199 	}
200 
201 	length = skb->len;
202 	len = skb_headlen(skb);
203 	last_frag = skb_shinfo(skb)->nr_frags;
204 
205 	txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
206 
207 	txbd->tx_bd_opaque = prod;
208 
209 	tx_buf = &txr->tx_buf_ring[prod];
210 	tx_buf->skb = skb;
211 	tx_buf->nr_frags = last_frag;
212 
213 	vlan_tag_flags = 0;
214 	cfa_action = 0;
215 	if (skb_vlan_tag_present(skb)) {
216 		vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
217 				 skb_vlan_tag_get(skb);
218 		/* Currently supports 8021Q, 8021AD vlan offloads
219 		 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
220 		 */
221 		if (skb->vlan_proto == htons(ETH_P_8021Q))
222 			vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
223 	}
224 
225 	if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh) {
226 		struct tx_push_bd *push = txr->tx_push;
227 		struct tx_bd *tx_push = &push->txbd1;
228 		struct tx_bd_ext *tx_push1 = &push->txbd2;
229 		void *pdata = tx_push1 + 1;
230 		int j;
231 
232 		/* Set COAL_NOW to be ready quickly for the next push */
233 		tx_push->tx_bd_len_flags_type =
234 			cpu_to_le32((length << TX_BD_LEN_SHIFT) |
235 					TX_BD_TYPE_LONG_TX_BD |
236 					TX_BD_FLAGS_LHINT_512_AND_SMALLER |
237 					TX_BD_FLAGS_COAL_NOW |
238 					TX_BD_FLAGS_PACKET_END |
239 					(2 << TX_BD_FLAGS_BD_CNT_SHIFT));
240 
241 		if (skb->ip_summed == CHECKSUM_PARTIAL)
242 			tx_push1->tx_bd_hsize_lflags =
243 					cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
244 		else
245 			tx_push1->tx_bd_hsize_lflags = 0;
246 
247 		tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
248 		tx_push1->tx_bd_cfa_action = cpu_to_le32(cfa_action);
249 
250 		skb_copy_from_linear_data(skb, pdata, len);
251 		pdata += len;
252 		for (j = 0; j < last_frag; j++) {
253 			skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
254 			void *fptr;
255 
256 			fptr = skb_frag_address_safe(frag);
257 			if (!fptr)
258 				goto normal_tx;
259 
260 			memcpy(pdata, fptr, skb_frag_size(frag));
261 			pdata += skb_frag_size(frag);
262 		}
263 
264 		memcpy(txbd, tx_push, sizeof(*txbd));
265 		prod = NEXT_TX(prod);
266 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
267 		memcpy(txbd, tx_push1, sizeof(*txbd));
268 		prod = NEXT_TX(prod);
269 		push->doorbell =
270 			cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod);
271 		txr->tx_prod = prod;
272 
273 		netdev_tx_sent_queue(txq, skb->len);
274 
275 		__iowrite64_copy(txr->tx_doorbell, push,
276 				 (length + sizeof(*push) + 8) / 8);
277 
278 		tx_buf->is_push = 1;
279 
280 		goto tx_done;
281 	}
282 
283 normal_tx:
284 	if (length < BNXT_MIN_PKT_SIZE) {
285 		pad = BNXT_MIN_PKT_SIZE - length;
286 		if (skb_pad(skb, pad)) {
287 			/* SKB already freed. */
288 			tx_buf->skb = NULL;
289 			return NETDEV_TX_OK;
290 		}
291 		length = BNXT_MIN_PKT_SIZE;
292 	}
293 
294 	mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
295 
296 	if (unlikely(dma_mapping_error(&pdev->dev, mapping))) {
297 		dev_kfree_skb_any(skb);
298 		tx_buf->skb = NULL;
299 		return NETDEV_TX_OK;
300 	}
301 
302 	dma_unmap_addr_set(tx_buf, mapping, mapping);
303 	flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
304 		((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
305 
306 	txbd->tx_bd_haddr = cpu_to_le64(mapping);
307 
308 	prod = NEXT_TX(prod);
309 	txbd1 = (struct tx_bd_ext *)
310 		&txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
311 
312 	txbd1->tx_bd_hsize_lflags = 0;
313 	if (skb_is_gso(skb)) {
314 		u32 hdr_len;
315 
316 		if (skb->encapsulation)
317 			hdr_len = skb_inner_network_offset(skb) +
318 				skb_inner_network_header_len(skb) +
319 				inner_tcp_hdrlen(skb);
320 		else
321 			hdr_len = skb_transport_offset(skb) +
322 				tcp_hdrlen(skb);
323 
324 		txbd1->tx_bd_hsize_lflags = cpu_to_le32(TX_BD_FLAGS_LSO |
325 					TX_BD_FLAGS_T_IPID |
326 					(hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
327 		length = skb_shinfo(skb)->gso_size;
328 		txbd1->tx_bd_mss = cpu_to_le32(length);
329 		length += hdr_len;
330 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
331 		txbd1->tx_bd_hsize_lflags =
332 			cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
333 		txbd1->tx_bd_mss = 0;
334 	}
335 
336 	length >>= 9;
337 	flags |= bnxt_lhint_arr[length];
338 	txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
339 
340 	txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
341 	txbd1->tx_bd_cfa_action = cpu_to_le32(cfa_action);
342 	for (i = 0; i < last_frag; i++) {
343 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
344 
345 		prod = NEXT_TX(prod);
346 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
347 
348 		len = skb_frag_size(frag);
349 		mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
350 					   DMA_TO_DEVICE);
351 
352 		if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
353 			goto tx_dma_error;
354 
355 		tx_buf = &txr->tx_buf_ring[prod];
356 		dma_unmap_addr_set(tx_buf, mapping, mapping);
357 
358 		txbd->tx_bd_haddr = cpu_to_le64(mapping);
359 
360 		flags = len << TX_BD_LEN_SHIFT;
361 		txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
362 	}
363 
364 	flags &= ~TX_BD_LEN;
365 	txbd->tx_bd_len_flags_type =
366 		cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
367 			    TX_BD_FLAGS_PACKET_END);
368 
369 	netdev_tx_sent_queue(txq, skb->len);
370 
371 	/* Sync BD data before updating doorbell */
372 	wmb();
373 
374 	prod = NEXT_TX(prod);
375 	txr->tx_prod = prod;
376 
377 	writel(DB_KEY_TX | prod, txr->tx_doorbell);
378 	writel(DB_KEY_TX | prod, txr->tx_doorbell);
379 
380 tx_done:
381 
382 	mmiowb();
383 
384 	if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
385 		netif_tx_stop_queue(txq);
386 
387 		/* netif_tx_stop_queue() must be done before checking
388 		 * tx index in bnxt_tx_avail() below, because in
389 		 * bnxt_tx_int(), we update tx index before checking for
390 		 * netif_tx_queue_stopped().
391 		 */
392 		smp_mb();
393 		if (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)
394 			netif_tx_wake_queue(txq);
395 	}
396 	return NETDEV_TX_OK;
397 
398 tx_dma_error:
399 	last_frag = i;
400 
401 	/* start back at beginning and unmap skb */
402 	prod = txr->tx_prod;
403 	tx_buf = &txr->tx_buf_ring[prod];
404 	tx_buf->skb = NULL;
405 	dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
406 			 skb_headlen(skb), PCI_DMA_TODEVICE);
407 	prod = NEXT_TX(prod);
408 
409 	/* unmap remaining mapped pages */
410 	for (i = 0; i < last_frag; i++) {
411 		prod = NEXT_TX(prod);
412 		tx_buf = &txr->tx_buf_ring[prod];
413 		dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
414 			       skb_frag_size(&skb_shinfo(skb)->frags[i]),
415 			       PCI_DMA_TODEVICE);
416 	}
417 
418 	dev_kfree_skb_any(skb);
419 	return NETDEV_TX_OK;
420 }
421 
422 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts)
423 {
424 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
425 	int index = txr - &bp->tx_ring[0];
426 	struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, index);
427 	u16 cons = txr->tx_cons;
428 	struct pci_dev *pdev = bp->pdev;
429 	int i;
430 	unsigned int tx_bytes = 0;
431 
432 	for (i = 0; i < nr_pkts; i++) {
433 		struct bnxt_sw_tx_bd *tx_buf;
434 		struct sk_buff *skb;
435 		int j, last;
436 
437 		tx_buf = &txr->tx_buf_ring[cons];
438 		cons = NEXT_TX(cons);
439 		skb = tx_buf->skb;
440 		tx_buf->skb = NULL;
441 
442 		if (tx_buf->is_push) {
443 			tx_buf->is_push = 0;
444 			goto next_tx_int;
445 		}
446 
447 		dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
448 				 skb_headlen(skb), PCI_DMA_TODEVICE);
449 		last = tx_buf->nr_frags;
450 
451 		for (j = 0; j < last; j++) {
452 			cons = NEXT_TX(cons);
453 			tx_buf = &txr->tx_buf_ring[cons];
454 			dma_unmap_page(
455 				&pdev->dev,
456 				dma_unmap_addr(tx_buf, mapping),
457 				skb_frag_size(&skb_shinfo(skb)->frags[j]),
458 				PCI_DMA_TODEVICE);
459 		}
460 
461 next_tx_int:
462 		cons = NEXT_TX(cons);
463 
464 		tx_bytes += skb->len;
465 		dev_kfree_skb_any(skb);
466 	}
467 
468 	netdev_tx_completed_queue(txq, nr_pkts, tx_bytes);
469 	txr->tx_cons = cons;
470 
471 	/* Need to make the tx_cons update visible to bnxt_start_xmit()
472 	 * before checking for netif_tx_queue_stopped().  Without the
473 	 * memory barrier, there is a small possibility that bnxt_start_xmit()
474 	 * will miss it and cause the queue to be stopped forever.
475 	 */
476 	smp_mb();
477 
478 	if (unlikely(netif_tx_queue_stopped(txq)) &&
479 	    (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
480 		__netif_tx_lock(txq, smp_processor_id());
481 		if (netif_tx_queue_stopped(txq) &&
482 		    bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh &&
483 		    txr->dev_state != BNXT_DEV_STATE_CLOSING)
484 			netif_tx_wake_queue(txq);
485 		__netif_tx_unlock(txq);
486 	}
487 }
488 
489 static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping,
490 				       gfp_t gfp)
491 {
492 	u8 *data;
493 	struct pci_dev *pdev = bp->pdev;
494 
495 	data = kmalloc(bp->rx_buf_size, gfp);
496 	if (!data)
497 		return NULL;
498 
499 	*mapping = dma_map_single(&pdev->dev, data + BNXT_RX_DMA_OFFSET,
500 				  bp->rx_buf_use_size, PCI_DMA_FROMDEVICE);
501 
502 	if (dma_mapping_error(&pdev->dev, *mapping)) {
503 		kfree(data);
504 		data = NULL;
505 	}
506 	return data;
507 }
508 
509 static inline int bnxt_alloc_rx_data(struct bnxt *bp,
510 				     struct bnxt_rx_ring_info *rxr,
511 				     u16 prod, gfp_t gfp)
512 {
513 	struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
514 	struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
515 	u8 *data;
516 	dma_addr_t mapping;
517 
518 	data = __bnxt_alloc_rx_data(bp, &mapping, gfp);
519 	if (!data)
520 		return -ENOMEM;
521 
522 	rx_buf->data = data;
523 	dma_unmap_addr_set(rx_buf, mapping, mapping);
524 
525 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
526 
527 	return 0;
528 }
529 
530 static void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons,
531 			       u8 *data)
532 {
533 	u16 prod = rxr->rx_prod;
534 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
535 	struct rx_bd *cons_bd, *prod_bd;
536 
537 	prod_rx_buf = &rxr->rx_buf_ring[prod];
538 	cons_rx_buf = &rxr->rx_buf_ring[cons];
539 
540 	prod_rx_buf->data = data;
541 
542 	dma_unmap_addr_set(prod_rx_buf, mapping,
543 			   dma_unmap_addr(cons_rx_buf, mapping));
544 
545 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
546 	cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
547 
548 	prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
549 }
550 
551 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
552 {
553 	u16 next, max = rxr->rx_agg_bmap_size;
554 
555 	next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
556 	if (next >= max)
557 		next = find_first_zero_bit(rxr->rx_agg_bmap, max);
558 	return next;
559 }
560 
561 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
562 				     struct bnxt_rx_ring_info *rxr,
563 				     u16 prod, gfp_t gfp)
564 {
565 	struct rx_bd *rxbd =
566 		&rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
567 	struct bnxt_sw_rx_agg_bd *rx_agg_buf;
568 	struct pci_dev *pdev = bp->pdev;
569 	struct page *page;
570 	dma_addr_t mapping;
571 	u16 sw_prod = rxr->rx_sw_agg_prod;
572 
573 	page = alloc_page(gfp);
574 	if (!page)
575 		return -ENOMEM;
576 
577 	mapping = dma_map_page(&pdev->dev, page, 0, PAGE_SIZE,
578 			       PCI_DMA_FROMDEVICE);
579 	if (dma_mapping_error(&pdev->dev, mapping)) {
580 		__free_page(page);
581 		return -EIO;
582 	}
583 
584 	if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
585 		sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
586 
587 	__set_bit(sw_prod, rxr->rx_agg_bmap);
588 	rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
589 	rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod);
590 
591 	rx_agg_buf->page = page;
592 	rx_agg_buf->mapping = mapping;
593 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
594 	rxbd->rx_bd_opaque = sw_prod;
595 	return 0;
596 }
597 
598 static void bnxt_reuse_rx_agg_bufs(struct bnxt_napi *bnapi, u16 cp_cons,
599 				   u32 agg_bufs)
600 {
601 	struct bnxt *bp = bnapi->bp;
602 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
603 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
604 	u16 prod = rxr->rx_agg_prod;
605 	u16 sw_prod = rxr->rx_sw_agg_prod;
606 	u32 i;
607 
608 	for (i = 0; i < agg_bufs; i++) {
609 		u16 cons;
610 		struct rx_agg_cmp *agg;
611 		struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
612 		struct rx_bd *prod_bd;
613 		struct page *page;
614 
615 		agg = (struct rx_agg_cmp *)
616 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
617 		cons = agg->rx_agg_cmp_opaque;
618 		__clear_bit(cons, rxr->rx_agg_bmap);
619 
620 		if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
621 			sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
622 
623 		__set_bit(sw_prod, rxr->rx_agg_bmap);
624 		prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
625 		cons_rx_buf = &rxr->rx_agg_ring[cons];
626 
627 		/* It is possible for sw_prod to be equal to cons, so
628 		 * set cons_rx_buf->page to NULL first.
629 		 */
630 		page = cons_rx_buf->page;
631 		cons_rx_buf->page = NULL;
632 		prod_rx_buf->page = page;
633 
634 		prod_rx_buf->mapping = cons_rx_buf->mapping;
635 
636 		prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
637 
638 		prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
639 		prod_bd->rx_bd_opaque = sw_prod;
640 
641 		prod = NEXT_RX_AGG(prod);
642 		sw_prod = NEXT_RX_AGG(sw_prod);
643 		cp_cons = NEXT_CMP(cp_cons);
644 	}
645 	rxr->rx_agg_prod = prod;
646 	rxr->rx_sw_agg_prod = sw_prod;
647 }
648 
649 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
650 				   struct bnxt_rx_ring_info *rxr, u16 cons,
651 				   u16 prod, u8 *data, dma_addr_t dma_addr,
652 				   unsigned int len)
653 {
654 	int err;
655 	struct sk_buff *skb;
656 
657 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
658 	if (unlikely(err)) {
659 		bnxt_reuse_rx_data(rxr, cons, data);
660 		return NULL;
661 	}
662 
663 	skb = build_skb(data, 0);
664 	dma_unmap_single(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
665 			 PCI_DMA_FROMDEVICE);
666 	if (!skb) {
667 		kfree(data);
668 		return NULL;
669 	}
670 
671 	skb_reserve(skb, BNXT_RX_OFFSET);
672 	skb_put(skb, len);
673 	return skb;
674 }
675 
676 static struct sk_buff *bnxt_rx_pages(struct bnxt *bp, struct bnxt_napi *bnapi,
677 				     struct sk_buff *skb, u16 cp_cons,
678 				     u32 agg_bufs)
679 {
680 	struct pci_dev *pdev = bp->pdev;
681 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
682 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
683 	u16 prod = rxr->rx_agg_prod;
684 	u32 i;
685 
686 	for (i = 0; i < agg_bufs; i++) {
687 		u16 cons, frag_len;
688 		struct rx_agg_cmp *agg;
689 		struct bnxt_sw_rx_agg_bd *cons_rx_buf;
690 		struct page *page;
691 		dma_addr_t mapping;
692 
693 		agg = (struct rx_agg_cmp *)
694 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
695 		cons = agg->rx_agg_cmp_opaque;
696 		frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
697 			    RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
698 
699 		cons_rx_buf = &rxr->rx_agg_ring[cons];
700 		skb_fill_page_desc(skb, i, cons_rx_buf->page, 0, frag_len);
701 		__clear_bit(cons, rxr->rx_agg_bmap);
702 
703 		/* It is possible for bnxt_alloc_rx_page() to allocate
704 		 * a sw_prod index that equals the cons index, so we
705 		 * need to clear the cons entry now.
706 		 */
707 		mapping = dma_unmap_addr(cons_rx_buf, mapping);
708 		page = cons_rx_buf->page;
709 		cons_rx_buf->page = NULL;
710 
711 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
712 			struct skb_shared_info *shinfo;
713 			unsigned int nr_frags;
714 
715 			shinfo = skb_shinfo(skb);
716 			nr_frags = --shinfo->nr_frags;
717 			__skb_frag_set_page(&shinfo->frags[nr_frags], NULL);
718 
719 			dev_kfree_skb(skb);
720 
721 			cons_rx_buf->page = page;
722 
723 			/* Update prod since possibly some pages have been
724 			 * allocated already.
725 			 */
726 			rxr->rx_agg_prod = prod;
727 			bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs - i);
728 			return NULL;
729 		}
730 
731 		dma_unmap_page(&pdev->dev, mapping, PAGE_SIZE,
732 			       PCI_DMA_FROMDEVICE);
733 
734 		skb->data_len += frag_len;
735 		skb->len += frag_len;
736 		skb->truesize += PAGE_SIZE;
737 
738 		prod = NEXT_RX_AGG(prod);
739 		cp_cons = NEXT_CMP(cp_cons);
740 	}
741 	rxr->rx_agg_prod = prod;
742 	return skb;
743 }
744 
745 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
746 			       u8 agg_bufs, u32 *raw_cons)
747 {
748 	u16 last;
749 	struct rx_agg_cmp *agg;
750 
751 	*raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
752 	last = RING_CMP(*raw_cons);
753 	agg = (struct rx_agg_cmp *)
754 		&cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
755 	return RX_AGG_CMP_VALID(agg, *raw_cons);
756 }
757 
758 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
759 					    unsigned int len,
760 					    dma_addr_t mapping)
761 {
762 	struct bnxt *bp = bnapi->bp;
763 	struct pci_dev *pdev = bp->pdev;
764 	struct sk_buff *skb;
765 
766 	skb = napi_alloc_skb(&bnapi->napi, len);
767 	if (!skb)
768 		return NULL;
769 
770 	dma_sync_single_for_cpu(&pdev->dev, mapping,
771 				bp->rx_copy_thresh, PCI_DMA_FROMDEVICE);
772 
773 	memcpy(skb->data - BNXT_RX_OFFSET, data, len + BNXT_RX_OFFSET);
774 
775 	dma_sync_single_for_device(&pdev->dev, mapping,
776 				   bp->rx_copy_thresh,
777 				   PCI_DMA_FROMDEVICE);
778 
779 	skb_put(skb, len);
780 	return skb;
781 }
782 
783 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
784 			   struct rx_tpa_start_cmp *tpa_start,
785 			   struct rx_tpa_start_cmp_ext *tpa_start1)
786 {
787 	u8 agg_id = TPA_START_AGG_ID(tpa_start);
788 	u16 cons, prod;
789 	struct bnxt_tpa_info *tpa_info;
790 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
791 	struct rx_bd *prod_bd;
792 	dma_addr_t mapping;
793 
794 	cons = tpa_start->rx_tpa_start_cmp_opaque;
795 	prod = rxr->rx_prod;
796 	cons_rx_buf = &rxr->rx_buf_ring[cons];
797 	prod_rx_buf = &rxr->rx_buf_ring[prod];
798 	tpa_info = &rxr->rx_tpa[agg_id];
799 
800 	prod_rx_buf->data = tpa_info->data;
801 
802 	mapping = tpa_info->mapping;
803 	dma_unmap_addr_set(prod_rx_buf, mapping, mapping);
804 
805 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
806 
807 	prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
808 
809 	tpa_info->data = cons_rx_buf->data;
810 	cons_rx_buf->data = NULL;
811 	tpa_info->mapping = dma_unmap_addr(cons_rx_buf, mapping);
812 
813 	tpa_info->len =
814 		le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
815 				RX_TPA_START_CMP_LEN_SHIFT;
816 	if (likely(TPA_START_HASH_VALID(tpa_start))) {
817 		u32 hash_type = TPA_START_HASH_TYPE(tpa_start);
818 
819 		tpa_info->hash_type = PKT_HASH_TYPE_L4;
820 		tpa_info->gso_type = SKB_GSO_TCPV4;
821 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
822 		if (hash_type == 3)
823 			tpa_info->gso_type = SKB_GSO_TCPV6;
824 		tpa_info->rss_hash =
825 			le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
826 	} else {
827 		tpa_info->hash_type = PKT_HASH_TYPE_NONE;
828 		tpa_info->gso_type = 0;
829 		if (netif_msg_rx_err(bp))
830 			netdev_warn(bp->dev, "TPA packet without valid hash\n");
831 	}
832 	tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
833 	tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
834 
835 	rxr->rx_prod = NEXT_RX(prod);
836 	cons = NEXT_RX(cons);
837 	cons_rx_buf = &rxr->rx_buf_ring[cons];
838 
839 	bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
840 	rxr->rx_prod = NEXT_RX(rxr->rx_prod);
841 	cons_rx_buf->data = NULL;
842 }
843 
844 static void bnxt_abort_tpa(struct bnxt *bp, struct bnxt_napi *bnapi,
845 			   u16 cp_cons, u32 agg_bufs)
846 {
847 	if (agg_bufs)
848 		bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
849 }
850 
851 #define BNXT_IPV4_HDR_SIZE	(sizeof(struct iphdr) + sizeof(struct tcphdr))
852 #define BNXT_IPV6_HDR_SIZE	(sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
853 
854 static inline struct sk_buff *bnxt_gro_skb(struct bnxt_tpa_info *tpa_info,
855 					   struct rx_tpa_end_cmp *tpa_end,
856 					   struct rx_tpa_end_cmp_ext *tpa_end1,
857 					   struct sk_buff *skb)
858 {
859 #ifdef CONFIG_INET
860 	struct tcphdr *th;
861 	int payload_off, tcp_opt_len = 0;
862 	int len, nw_off;
863 	u16 segs;
864 
865 	segs = TPA_END_TPA_SEGS(tpa_end);
866 	if (segs == 1)
867 		return skb;
868 
869 	NAPI_GRO_CB(skb)->count = segs;
870 	skb_shinfo(skb)->gso_size =
871 		le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
872 	skb_shinfo(skb)->gso_type = tpa_info->gso_type;
873 	payload_off = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
874 		       RX_TPA_END_CMP_PAYLOAD_OFFSET) >>
875 		      RX_TPA_END_CMP_PAYLOAD_OFFSET_SHIFT;
876 	if (TPA_END_GRO_TS(tpa_end))
877 		tcp_opt_len = 12;
878 
879 	if (tpa_info->gso_type == SKB_GSO_TCPV4) {
880 		struct iphdr *iph;
881 
882 		nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
883 			 ETH_HLEN;
884 		skb_set_network_header(skb, nw_off);
885 		iph = ip_hdr(skb);
886 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
887 		len = skb->len - skb_transport_offset(skb);
888 		th = tcp_hdr(skb);
889 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
890 	} else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
891 		struct ipv6hdr *iph;
892 
893 		nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
894 			 ETH_HLEN;
895 		skb_set_network_header(skb, nw_off);
896 		iph = ipv6_hdr(skb);
897 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
898 		len = skb->len - skb_transport_offset(skb);
899 		th = tcp_hdr(skb);
900 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
901 	} else {
902 		dev_kfree_skb_any(skb);
903 		return NULL;
904 	}
905 	tcp_gro_complete(skb);
906 
907 	if (nw_off) { /* tunnel */
908 		struct udphdr *uh = NULL;
909 
910 		if (skb->protocol == htons(ETH_P_IP)) {
911 			struct iphdr *iph = (struct iphdr *)skb->data;
912 
913 			if (iph->protocol == IPPROTO_UDP)
914 				uh = (struct udphdr *)(iph + 1);
915 		} else {
916 			struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
917 
918 			if (iph->nexthdr == IPPROTO_UDP)
919 				uh = (struct udphdr *)(iph + 1);
920 		}
921 		if (uh) {
922 			if (uh->check)
923 				skb_shinfo(skb)->gso_type |=
924 					SKB_GSO_UDP_TUNNEL_CSUM;
925 			else
926 				skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
927 		}
928 	}
929 #endif
930 	return skb;
931 }
932 
933 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
934 					   struct bnxt_napi *bnapi,
935 					   u32 *raw_cons,
936 					   struct rx_tpa_end_cmp *tpa_end,
937 					   struct rx_tpa_end_cmp_ext *tpa_end1,
938 					   bool *agg_event)
939 {
940 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
941 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
942 	u8 agg_id = TPA_END_AGG_ID(tpa_end);
943 	u8 *data, agg_bufs;
944 	u16 cp_cons = RING_CMP(*raw_cons);
945 	unsigned int len;
946 	struct bnxt_tpa_info *tpa_info;
947 	dma_addr_t mapping;
948 	struct sk_buff *skb;
949 
950 	tpa_info = &rxr->rx_tpa[agg_id];
951 	data = tpa_info->data;
952 	prefetch(data);
953 	len = tpa_info->len;
954 	mapping = tpa_info->mapping;
955 
956 	agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
957 		    RX_TPA_END_CMP_AGG_BUFS) >> RX_TPA_END_CMP_AGG_BUFS_SHIFT;
958 
959 	if (agg_bufs) {
960 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
961 			return ERR_PTR(-EBUSY);
962 
963 		*agg_event = true;
964 		cp_cons = NEXT_CMP(cp_cons);
965 	}
966 
967 	if (unlikely(agg_bufs > MAX_SKB_FRAGS)) {
968 		bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
969 		netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
970 			    agg_bufs, (int)MAX_SKB_FRAGS);
971 		return NULL;
972 	}
973 
974 	if (len <= bp->rx_copy_thresh) {
975 		skb = bnxt_copy_skb(bnapi, data, len, mapping);
976 		if (!skb) {
977 			bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
978 			return NULL;
979 		}
980 	} else {
981 		u8 *new_data;
982 		dma_addr_t new_mapping;
983 
984 		new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC);
985 		if (!new_data) {
986 			bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
987 			return NULL;
988 		}
989 
990 		tpa_info->data = new_data;
991 		tpa_info->mapping = new_mapping;
992 
993 		skb = build_skb(data, 0);
994 		dma_unmap_single(&bp->pdev->dev, mapping, bp->rx_buf_use_size,
995 				 PCI_DMA_FROMDEVICE);
996 
997 		if (!skb) {
998 			kfree(data);
999 			bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1000 			return NULL;
1001 		}
1002 		skb_reserve(skb, BNXT_RX_OFFSET);
1003 		skb_put(skb, len);
1004 	}
1005 
1006 	if (agg_bufs) {
1007 		skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
1008 		if (!skb) {
1009 			/* Page reuse already handled by bnxt_rx_pages(). */
1010 			return NULL;
1011 		}
1012 	}
1013 	skb->protocol = eth_type_trans(skb, bp->dev);
1014 
1015 	if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1016 		skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1017 
1018 	if (tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) {
1019 		netdev_features_t features = skb->dev->features;
1020 		u16 vlan_proto = tpa_info->metadata >>
1021 			RX_CMP_FLAGS2_METADATA_TPID_SFT;
1022 
1023 		if (((features & NETIF_F_HW_VLAN_CTAG_RX) &&
1024 		     vlan_proto == ETH_P_8021Q) ||
1025 		    ((features & NETIF_F_HW_VLAN_STAG_RX) &&
1026 		     vlan_proto == ETH_P_8021AD)) {
1027 			__vlan_hwaccel_put_tag(skb, htons(vlan_proto),
1028 					       tpa_info->metadata &
1029 					       RX_CMP_FLAGS2_METADATA_VID_MASK);
1030 		}
1031 	}
1032 
1033 	skb_checksum_none_assert(skb);
1034 	if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1035 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1036 		skb->csum_level =
1037 			(tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1038 	}
1039 
1040 	if (TPA_END_GRO(tpa_end))
1041 		skb = bnxt_gro_skb(tpa_info, tpa_end, tpa_end1, skb);
1042 
1043 	return skb;
1044 }
1045 
1046 /* returns the following:
1047  * 1       - 1 packet successfully received
1048  * 0       - successful TPA_START, packet not completed yet
1049  * -EBUSY  - completion ring does not have all the agg buffers yet
1050  * -ENOMEM - packet aborted due to out of memory
1051  * -EIO    - packet aborted due to hw error indicated in BD
1052  */
1053 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_napi *bnapi, u32 *raw_cons,
1054 		       bool *agg_event)
1055 {
1056 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1057 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1058 	struct net_device *dev = bp->dev;
1059 	struct rx_cmp *rxcmp;
1060 	struct rx_cmp_ext *rxcmp1;
1061 	u32 tmp_raw_cons = *raw_cons;
1062 	u16 cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
1063 	struct bnxt_sw_rx_bd *rx_buf;
1064 	unsigned int len;
1065 	u8 *data, agg_bufs, cmp_type;
1066 	dma_addr_t dma_addr;
1067 	struct sk_buff *skb;
1068 	int rc = 0;
1069 
1070 	rxcmp = (struct rx_cmp *)
1071 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1072 
1073 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1074 	cp_cons = RING_CMP(tmp_raw_cons);
1075 	rxcmp1 = (struct rx_cmp_ext *)
1076 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1077 
1078 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1079 		return -EBUSY;
1080 
1081 	cmp_type = RX_CMP_TYPE(rxcmp);
1082 
1083 	prod = rxr->rx_prod;
1084 
1085 	if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) {
1086 		bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp,
1087 			       (struct rx_tpa_start_cmp_ext *)rxcmp1);
1088 
1089 		goto next_rx_no_prod;
1090 
1091 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1092 		skb = bnxt_tpa_end(bp, bnapi, &tmp_raw_cons,
1093 				   (struct rx_tpa_end_cmp *)rxcmp,
1094 				   (struct rx_tpa_end_cmp_ext *)rxcmp1,
1095 				   agg_event);
1096 
1097 		if (unlikely(IS_ERR(skb)))
1098 			return -EBUSY;
1099 
1100 		rc = -ENOMEM;
1101 		if (likely(skb)) {
1102 			skb_record_rx_queue(skb, bnapi->index);
1103 			skb_mark_napi_id(skb, &bnapi->napi);
1104 			if (bnxt_busy_polling(bnapi))
1105 				netif_receive_skb(skb);
1106 			else
1107 				napi_gro_receive(&bnapi->napi, skb);
1108 			rc = 1;
1109 		}
1110 		goto next_rx_no_prod;
1111 	}
1112 
1113 	cons = rxcmp->rx_cmp_opaque;
1114 	rx_buf = &rxr->rx_buf_ring[cons];
1115 	data = rx_buf->data;
1116 	prefetch(data);
1117 
1118 	agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) & RX_CMP_AGG_BUFS) >>
1119 				RX_CMP_AGG_BUFS_SHIFT;
1120 
1121 	if (agg_bufs) {
1122 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1123 			return -EBUSY;
1124 
1125 		cp_cons = NEXT_CMP(cp_cons);
1126 		*agg_event = true;
1127 	}
1128 
1129 	rx_buf->data = NULL;
1130 	if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
1131 		bnxt_reuse_rx_data(rxr, cons, data);
1132 		if (agg_bufs)
1133 			bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
1134 
1135 		rc = -EIO;
1136 		goto next_rx;
1137 	}
1138 
1139 	len = le32_to_cpu(rxcmp->rx_cmp_len_flags_type) >> RX_CMP_LEN_SHIFT;
1140 	dma_addr = dma_unmap_addr(rx_buf, mapping);
1141 
1142 	if (len <= bp->rx_copy_thresh) {
1143 		skb = bnxt_copy_skb(bnapi, data, len, dma_addr);
1144 		bnxt_reuse_rx_data(rxr, cons, data);
1145 		if (!skb) {
1146 			rc = -ENOMEM;
1147 			goto next_rx;
1148 		}
1149 	} else {
1150 		skb = bnxt_rx_skb(bp, rxr, cons, prod, data, dma_addr, len);
1151 		if (!skb) {
1152 			rc = -ENOMEM;
1153 			goto next_rx;
1154 		}
1155 	}
1156 
1157 	if (agg_bufs) {
1158 		skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
1159 		if (!skb) {
1160 			rc = -ENOMEM;
1161 			goto next_rx;
1162 		}
1163 	}
1164 
1165 	if (RX_CMP_HASH_VALID(rxcmp)) {
1166 		u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
1167 		enum pkt_hash_types type = PKT_HASH_TYPE_L4;
1168 
1169 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1170 		if (hash_type != 1 && hash_type != 3)
1171 			type = PKT_HASH_TYPE_L3;
1172 		skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
1173 	}
1174 
1175 	skb->protocol = eth_type_trans(skb, dev);
1176 
1177 	if (rxcmp1->rx_cmp_flags2 &
1178 	    cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) {
1179 		netdev_features_t features = skb->dev->features;
1180 		u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
1181 		u16 vlan_proto = meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT;
1182 
1183 		if (((features & NETIF_F_HW_VLAN_CTAG_RX) &&
1184 		     vlan_proto == ETH_P_8021Q) ||
1185 		    ((features & NETIF_F_HW_VLAN_STAG_RX) &&
1186 		     vlan_proto == ETH_P_8021AD))
1187 			__vlan_hwaccel_put_tag(skb, htons(vlan_proto),
1188 					       meta_data &
1189 					       RX_CMP_FLAGS2_METADATA_VID_MASK);
1190 	}
1191 
1192 	skb_checksum_none_assert(skb);
1193 	if (RX_CMP_L4_CS_OK(rxcmp1)) {
1194 		if (dev->features & NETIF_F_RXCSUM) {
1195 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1196 			skb->csum_level = RX_CMP_ENCAP(rxcmp1);
1197 		}
1198 	} else {
1199 		if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
1200 			if (dev->features & NETIF_F_RXCSUM)
1201 				cpr->rx_l4_csum_errors++;
1202 		}
1203 	}
1204 
1205 	skb_record_rx_queue(skb, bnapi->index);
1206 	skb_mark_napi_id(skb, &bnapi->napi);
1207 	if (bnxt_busy_polling(bnapi))
1208 		netif_receive_skb(skb);
1209 	else
1210 		napi_gro_receive(&bnapi->napi, skb);
1211 	rc = 1;
1212 
1213 next_rx:
1214 	rxr->rx_prod = NEXT_RX(prod);
1215 
1216 next_rx_no_prod:
1217 	*raw_cons = tmp_raw_cons;
1218 
1219 	return rc;
1220 }
1221 
1222 static int bnxt_async_event_process(struct bnxt *bp,
1223 				    struct hwrm_async_event_cmpl *cmpl)
1224 {
1225 	u16 event_id = le16_to_cpu(cmpl->event_id);
1226 
1227 	/* TODO CHIMP_FW: Define event id's for link change, error etc */
1228 	switch (event_id) {
1229 	case HWRM_ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
1230 		set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
1231 		schedule_work(&bp->sp_task);
1232 		break;
1233 	default:
1234 		netdev_err(bp->dev, "unhandled ASYNC event (id 0x%x)\n",
1235 			   event_id);
1236 		break;
1237 	}
1238 	return 0;
1239 }
1240 
1241 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
1242 {
1243 	u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
1244 	struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
1245 	struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
1246 				(struct hwrm_fwd_req_cmpl *)txcmp;
1247 
1248 	switch (cmpl_type) {
1249 	case CMPL_BASE_TYPE_HWRM_DONE:
1250 		seq_id = le16_to_cpu(h_cmpl->sequence_id);
1251 		if (seq_id == bp->hwrm_intr_seq_id)
1252 			bp->hwrm_intr_seq_id = HWRM_SEQ_ID_INVALID;
1253 		else
1254 			netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id);
1255 		break;
1256 
1257 	case CMPL_BASE_TYPE_HWRM_FWD_REQ:
1258 		vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
1259 
1260 		if ((vf_id < bp->pf.first_vf_id) ||
1261 		    (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
1262 			netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
1263 				   vf_id);
1264 			return -EINVAL;
1265 		}
1266 
1267 		set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
1268 		set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event);
1269 		schedule_work(&bp->sp_task);
1270 		break;
1271 
1272 	case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
1273 		bnxt_async_event_process(bp,
1274 					 (struct hwrm_async_event_cmpl *)txcmp);
1275 
1276 	default:
1277 		break;
1278 	}
1279 
1280 	return 0;
1281 }
1282 
1283 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
1284 {
1285 	struct bnxt_napi *bnapi = dev_instance;
1286 	struct bnxt *bp = bnapi->bp;
1287 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1288 	u32 cons = RING_CMP(cpr->cp_raw_cons);
1289 
1290 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1291 	napi_schedule(&bnapi->napi);
1292 	return IRQ_HANDLED;
1293 }
1294 
1295 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
1296 {
1297 	u32 raw_cons = cpr->cp_raw_cons;
1298 	u16 cons = RING_CMP(raw_cons);
1299 	struct tx_cmp *txcmp;
1300 
1301 	txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1302 
1303 	return TX_CMP_VALID(txcmp, raw_cons);
1304 }
1305 
1306 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
1307 {
1308 	struct bnxt_napi *bnapi = dev_instance;
1309 	struct bnxt *bp = bnapi->bp;
1310 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1311 	u32 cons = RING_CMP(cpr->cp_raw_cons);
1312 	u32 int_status;
1313 
1314 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1315 
1316 	if (!bnxt_has_work(bp, cpr)) {
1317 		int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
1318 		/* return if erroneous interrupt */
1319 		if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
1320 			return IRQ_NONE;
1321 	}
1322 
1323 	/* disable ring IRQ */
1324 	BNXT_CP_DB_IRQ_DIS(cpr->cp_doorbell);
1325 
1326 	/* Return here if interrupt is shared and is disabled. */
1327 	if (unlikely(atomic_read(&bp->intr_sem) != 0))
1328 		return IRQ_HANDLED;
1329 
1330 	napi_schedule(&bnapi->napi);
1331 	return IRQ_HANDLED;
1332 }
1333 
1334 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
1335 {
1336 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1337 	u32 raw_cons = cpr->cp_raw_cons;
1338 	u32 cons;
1339 	int tx_pkts = 0;
1340 	int rx_pkts = 0;
1341 	bool rx_event = false;
1342 	bool agg_event = false;
1343 	struct tx_cmp *txcmp;
1344 
1345 	while (1) {
1346 		int rc;
1347 
1348 		cons = RING_CMP(raw_cons);
1349 		txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1350 
1351 		if (!TX_CMP_VALID(txcmp, raw_cons))
1352 			break;
1353 
1354 		if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) {
1355 			tx_pkts++;
1356 			/* return full budget so NAPI will complete. */
1357 			if (unlikely(tx_pkts > bp->tx_wake_thresh))
1358 				rx_pkts = budget;
1359 		} else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
1360 			rc = bnxt_rx_pkt(bp, bnapi, &raw_cons, &agg_event);
1361 			if (likely(rc >= 0))
1362 				rx_pkts += rc;
1363 			else if (rc == -EBUSY)	/* partial completion */
1364 				break;
1365 			rx_event = true;
1366 		} else if (unlikely((TX_CMP_TYPE(txcmp) ==
1367 				     CMPL_BASE_TYPE_HWRM_DONE) ||
1368 				    (TX_CMP_TYPE(txcmp) ==
1369 				     CMPL_BASE_TYPE_HWRM_FWD_REQ) ||
1370 				    (TX_CMP_TYPE(txcmp) ==
1371 				     CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) {
1372 			bnxt_hwrm_handler(bp, txcmp);
1373 		}
1374 		raw_cons = NEXT_RAW_CMP(raw_cons);
1375 
1376 		if (rx_pkts == budget)
1377 			break;
1378 	}
1379 
1380 	cpr->cp_raw_cons = raw_cons;
1381 	/* ACK completion ring before freeing tx ring and producing new
1382 	 * buffers in rx/agg rings to prevent overflowing the completion
1383 	 * ring.
1384 	 */
1385 	BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
1386 
1387 	if (tx_pkts)
1388 		bnxt_tx_int(bp, bnapi, tx_pkts);
1389 
1390 	if (rx_event) {
1391 		struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1392 
1393 		writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
1394 		writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
1395 		if (agg_event) {
1396 			writel(DB_KEY_RX | rxr->rx_agg_prod,
1397 			       rxr->rx_agg_doorbell);
1398 			writel(DB_KEY_RX | rxr->rx_agg_prod,
1399 			       rxr->rx_agg_doorbell);
1400 		}
1401 	}
1402 	return rx_pkts;
1403 }
1404 
1405 static int bnxt_poll(struct napi_struct *napi, int budget)
1406 {
1407 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
1408 	struct bnxt *bp = bnapi->bp;
1409 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1410 	int work_done = 0;
1411 
1412 	if (!bnxt_lock_napi(bnapi))
1413 		return budget;
1414 
1415 	while (1) {
1416 		work_done += bnxt_poll_work(bp, bnapi, budget - work_done);
1417 
1418 		if (work_done >= budget)
1419 			break;
1420 
1421 		if (!bnxt_has_work(bp, cpr)) {
1422 			napi_complete(napi);
1423 			BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
1424 			break;
1425 		}
1426 	}
1427 	mmiowb();
1428 	bnxt_unlock_napi(bnapi);
1429 	return work_done;
1430 }
1431 
1432 #ifdef CONFIG_NET_RX_BUSY_POLL
1433 static int bnxt_busy_poll(struct napi_struct *napi)
1434 {
1435 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
1436 	struct bnxt *bp = bnapi->bp;
1437 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1438 	int rx_work, budget = 4;
1439 
1440 	if (atomic_read(&bp->intr_sem) != 0)
1441 		return LL_FLUSH_FAILED;
1442 
1443 	if (!bnxt_lock_poll(bnapi))
1444 		return LL_FLUSH_BUSY;
1445 
1446 	rx_work = bnxt_poll_work(bp, bnapi, budget);
1447 
1448 	BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
1449 
1450 	bnxt_unlock_poll(bnapi);
1451 	return rx_work;
1452 }
1453 #endif
1454 
1455 static void bnxt_free_tx_skbs(struct bnxt *bp)
1456 {
1457 	int i, max_idx;
1458 	struct pci_dev *pdev = bp->pdev;
1459 
1460 	if (!bp->tx_ring)
1461 		return;
1462 
1463 	max_idx = bp->tx_nr_pages * TX_DESC_CNT;
1464 	for (i = 0; i < bp->tx_nr_rings; i++) {
1465 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
1466 		int j;
1467 
1468 		for (j = 0; j < max_idx;) {
1469 			struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
1470 			struct sk_buff *skb = tx_buf->skb;
1471 			int k, last;
1472 
1473 			if (!skb) {
1474 				j++;
1475 				continue;
1476 			}
1477 
1478 			tx_buf->skb = NULL;
1479 
1480 			if (tx_buf->is_push) {
1481 				dev_kfree_skb(skb);
1482 				j += 2;
1483 				continue;
1484 			}
1485 
1486 			dma_unmap_single(&pdev->dev,
1487 					 dma_unmap_addr(tx_buf, mapping),
1488 					 skb_headlen(skb),
1489 					 PCI_DMA_TODEVICE);
1490 
1491 			last = tx_buf->nr_frags;
1492 			j += 2;
1493 			for (k = 0; k < last; k++, j = NEXT_TX(j)) {
1494 				skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
1495 
1496 				tx_buf = &txr->tx_buf_ring[j];
1497 				dma_unmap_page(
1498 					&pdev->dev,
1499 					dma_unmap_addr(tx_buf, mapping),
1500 					skb_frag_size(frag), PCI_DMA_TODEVICE);
1501 			}
1502 			dev_kfree_skb(skb);
1503 		}
1504 		netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
1505 	}
1506 }
1507 
1508 static void bnxt_free_rx_skbs(struct bnxt *bp)
1509 {
1510 	int i, max_idx, max_agg_idx;
1511 	struct pci_dev *pdev = bp->pdev;
1512 
1513 	if (!bp->rx_ring)
1514 		return;
1515 
1516 	max_idx = bp->rx_nr_pages * RX_DESC_CNT;
1517 	max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
1518 	for (i = 0; i < bp->rx_nr_rings; i++) {
1519 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
1520 		int j;
1521 
1522 		if (rxr->rx_tpa) {
1523 			for (j = 0; j < MAX_TPA; j++) {
1524 				struct bnxt_tpa_info *tpa_info =
1525 							&rxr->rx_tpa[j];
1526 				u8 *data = tpa_info->data;
1527 
1528 				if (!data)
1529 					continue;
1530 
1531 				dma_unmap_single(
1532 					&pdev->dev,
1533 					dma_unmap_addr(tpa_info, mapping),
1534 					bp->rx_buf_use_size,
1535 					PCI_DMA_FROMDEVICE);
1536 
1537 				tpa_info->data = NULL;
1538 
1539 				kfree(data);
1540 			}
1541 		}
1542 
1543 		for (j = 0; j < max_idx; j++) {
1544 			struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[j];
1545 			u8 *data = rx_buf->data;
1546 
1547 			if (!data)
1548 				continue;
1549 
1550 			dma_unmap_single(&pdev->dev,
1551 					 dma_unmap_addr(rx_buf, mapping),
1552 					 bp->rx_buf_use_size,
1553 					 PCI_DMA_FROMDEVICE);
1554 
1555 			rx_buf->data = NULL;
1556 
1557 			kfree(data);
1558 		}
1559 
1560 		for (j = 0; j < max_agg_idx; j++) {
1561 			struct bnxt_sw_rx_agg_bd *rx_agg_buf =
1562 				&rxr->rx_agg_ring[j];
1563 			struct page *page = rx_agg_buf->page;
1564 
1565 			if (!page)
1566 				continue;
1567 
1568 			dma_unmap_page(&pdev->dev,
1569 				       dma_unmap_addr(rx_agg_buf, mapping),
1570 				       PAGE_SIZE, PCI_DMA_FROMDEVICE);
1571 
1572 			rx_agg_buf->page = NULL;
1573 			__clear_bit(j, rxr->rx_agg_bmap);
1574 
1575 			__free_page(page);
1576 		}
1577 	}
1578 }
1579 
1580 static void bnxt_free_skbs(struct bnxt *bp)
1581 {
1582 	bnxt_free_tx_skbs(bp);
1583 	bnxt_free_rx_skbs(bp);
1584 }
1585 
1586 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
1587 {
1588 	struct pci_dev *pdev = bp->pdev;
1589 	int i;
1590 
1591 	for (i = 0; i < ring->nr_pages; i++) {
1592 		if (!ring->pg_arr[i])
1593 			continue;
1594 
1595 		dma_free_coherent(&pdev->dev, ring->page_size,
1596 				  ring->pg_arr[i], ring->dma_arr[i]);
1597 
1598 		ring->pg_arr[i] = NULL;
1599 	}
1600 	if (ring->pg_tbl) {
1601 		dma_free_coherent(&pdev->dev, ring->nr_pages * 8,
1602 				  ring->pg_tbl, ring->pg_tbl_map);
1603 		ring->pg_tbl = NULL;
1604 	}
1605 	if (ring->vmem_size && *ring->vmem) {
1606 		vfree(*ring->vmem);
1607 		*ring->vmem = NULL;
1608 	}
1609 }
1610 
1611 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
1612 {
1613 	int i;
1614 	struct pci_dev *pdev = bp->pdev;
1615 
1616 	if (ring->nr_pages > 1) {
1617 		ring->pg_tbl = dma_alloc_coherent(&pdev->dev,
1618 						  ring->nr_pages * 8,
1619 						  &ring->pg_tbl_map,
1620 						  GFP_KERNEL);
1621 		if (!ring->pg_tbl)
1622 			return -ENOMEM;
1623 	}
1624 
1625 	for (i = 0; i < ring->nr_pages; i++) {
1626 		ring->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
1627 						     ring->page_size,
1628 						     &ring->dma_arr[i],
1629 						     GFP_KERNEL);
1630 		if (!ring->pg_arr[i])
1631 			return -ENOMEM;
1632 
1633 		if (ring->nr_pages > 1)
1634 			ring->pg_tbl[i] = cpu_to_le64(ring->dma_arr[i]);
1635 	}
1636 
1637 	if (ring->vmem_size) {
1638 		*ring->vmem = vzalloc(ring->vmem_size);
1639 		if (!(*ring->vmem))
1640 			return -ENOMEM;
1641 	}
1642 	return 0;
1643 }
1644 
1645 static void bnxt_free_rx_rings(struct bnxt *bp)
1646 {
1647 	int i;
1648 
1649 	if (!bp->rx_ring)
1650 		return;
1651 
1652 	for (i = 0; i < bp->rx_nr_rings; i++) {
1653 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
1654 		struct bnxt_ring_struct *ring;
1655 
1656 		kfree(rxr->rx_tpa);
1657 		rxr->rx_tpa = NULL;
1658 
1659 		kfree(rxr->rx_agg_bmap);
1660 		rxr->rx_agg_bmap = NULL;
1661 
1662 		ring = &rxr->rx_ring_struct;
1663 		bnxt_free_ring(bp, ring);
1664 
1665 		ring = &rxr->rx_agg_ring_struct;
1666 		bnxt_free_ring(bp, ring);
1667 	}
1668 }
1669 
1670 static int bnxt_alloc_rx_rings(struct bnxt *bp)
1671 {
1672 	int i, rc, agg_rings = 0, tpa_rings = 0;
1673 
1674 	if (!bp->rx_ring)
1675 		return -ENOMEM;
1676 
1677 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
1678 		agg_rings = 1;
1679 
1680 	if (bp->flags & BNXT_FLAG_TPA)
1681 		tpa_rings = 1;
1682 
1683 	for (i = 0; i < bp->rx_nr_rings; i++) {
1684 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
1685 		struct bnxt_ring_struct *ring;
1686 
1687 		ring = &rxr->rx_ring_struct;
1688 
1689 		rc = bnxt_alloc_ring(bp, ring);
1690 		if (rc)
1691 			return rc;
1692 
1693 		if (agg_rings) {
1694 			u16 mem_size;
1695 
1696 			ring = &rxr->rx_agg_ring_struct;
1697 			rc = bnxt_alloc_ring(bp, ring);
1698 			if (rc)
1699 				return rc;
1700 
1701 			rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
1702 			mem_size = rxr->rx_agg_bmap_size / 8;
1703 			rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
1704 			if (!rxr->rx_agg_bmap)
1705 				return -ENOMEM;
1706 
1707 			if (tpa_rings) {
1708 				rxr->rx_tpa = kcalloc(MAX_TPA,
1709 						sizeof(struct bnxt_tpa_info),
1710 						GFP_KERNEL);
1711 				if (!rxr->rx_tpa)
1712 					return -ENOMEM;
1713 			}
1714 		}
1715 	}
1716 	return 0;
1717 }
1718 
1719 static void bnxt_free_tx_rings(struct bnxt *bp)
1720 {
1721 	int i;
1722 	struct pci_dev *pdev = bp->pdev;
1723 
1724 	if (!bp->tx_ring)
1725 		return;
1726 
1727 	for (i = 0; i < bp->tx_nr_rings; i++) {
1728 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
1729 		struct bnxt_ring_struct *ring;
1730 
1731 		if (txr->tx_push) {
1732 			dma_free_coherent(&pdev->dev, bp->tx_push_size,
1733 					  txr->tx_push, txr->tx_push_mapping);
1734 			txr->tx_push = NULL;
1735 		}
1736 
1737 		ring = &txr->tx_ring_struct;
1738 
1739 		bnxt_free_ring(bp, ring);
1740 	}
1741 }
1742 
1743 static int bnxt_alloc_tx_rings(struct bnxt *bp)
1744 {
1745 	int i, j, rc;
1746 	struct pci_dev *pdev = bp->pdev;
1747 
1748 	bp->tx_push_size = 0;
1749 	if (bp->tx_push_thresh) {
1750 		int push_size;
1751 
1752 		push_size  = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
1753 					bp->tx_push_thresh);
1754 
1755 		if (push_size > 128) {
1756 			push_size = 0;
1757 			bp->tx_push_thresh = 0;
1758 		}
1759 
1760 		bp->tx_push_size = push_size;
1761 	}
1762 
1763 	for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
1764 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
1765 		struct bnxt_ring_struct *ring;
1766 
1767 		ring = &txr->tx_ring_struct;
1768 
1769 		rc = bnxt_alloc_ring(bp, ring);
1770 		if (rc)
1771 			return rc;
1772 
1773 		if (bp->tx_push_size) {
1774 			struct tx_bd *txbd;
1775 			dma_addr_t mapping;
1776 
1777 			/* One pre-allocated DMA buffer to backup
1778 			 * TX push operation
1779 			 */
1780 			txr->tx_push = dma_alloc_coherent(&pdev->dev,
1781 						bp->tx_push_size,
1782 						&txr->tx_push_mapping,
1783 						GFP_KERNEL);
1784 
1785 			if (!txr->tx_push)
1786 				return -ENOMEM;
1787 
1788 			txbd = &txr->tx_push->txbd1;
1789 
1790 			mapping = txr->tx_push_mapping +
1791 				sizeof(struct tx_push_bd);
1792 			txbd->tx_bd_haddr = cpu_to_le64(mapping);
1793 
1794 			memset(txbd + 1, 0, sizeof(struct tx_bd_ext));
1795 		}
1796 		ring->queue_id = bp->q_info[j].queue_id;
1797 		if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1))
1798 			j++;
1799 	}
1800 	return 0;
1801 }
1802 
1803 static void bnxt_free_cp_rings(struct bnxt *bp)
1804 {
1805 	int i;
1806 
1807 	if (!bp->bnapi)
1808 		return;
1809 
1810 	for (i = 0; i < bp->cp_nr_rings; i++) {
1811 		struct bnxt_napi *bnapi = bp->bnapi[i];
1812 		struct bnxt_cp_ring_info *cpr;
1813 		struct bnxt_ring_struct *ring;
1814 
1815 		if (!bnapi)
1816 			continue;
1817 
1818 		cpr = &bnapi->cp_ring;
1819 		ring = &cpr->cp_ring_struct;
1820 
1821 		bnxt_free_ring(bp, ring);
1822 	}
1823 }
1824 
1825 static int bnxt_alloc_cp_rings(struct bnxt *bp)
1826 {
1827 	int i, rc;
1828 
1829 	for (i = 0; i < bp->cp_nr_rings; i++) {
1830 		struct bnxt_napi *bnapi = bp->bnapi[i];
1831 		struct bnxt_cp_ring_info *cpr;
1832 		struct bnxt_ring_struct *ring;
1833 
1834 		if (!bnapi)
1835 			continue;
1836 
1837 		cpr = &bnapi->cp_ring;
1838 		ring = &cpr->cp_ring_struct;
1839 
1840 		rc = bnxt_alloc_ring(bp, ring);
1841 		if (rc)
1842 			return rc;
1843 	}
1844 	return 0;
1845 }
1846 
1847 static void bnxt_init_ring_struct(struct bnxt *bp)
1848 {
1849 	int i;
1850 
1851 	for (i = 0; i < bp->cp_nr_rings; i++) {
1852 		struct bnxt_napi *bnapi = bp->bnapi[i];
1853 		struct bnxt_cp_ring_info *cpr;
1854 		struct bnxt_rx_ring_info *rxr;
1855 		struct bnxt_tx_ring_info *txr;
1856 		struct bnxt_ring_struct *ring;
1857 
1858 		if (!bnapi)
1859 			continue;
1860 
1861 		cpr = &bnapi->cp_ring;
1862 		ring = &cpr->cp_ring_struct;
1863 		ring->nr_pages = bp->cp_nr_pages;
1864 		ring->page_size = HW_CMPD_RING_SIZE;
1865 		ring->pg_arr = (void **)cpr->cp_desc_ring;
1866 		ring->dma_arr = cpr->cp_desc_mapping;
1867 		ring->vmem_size = 0;
1868 
1869 		rxr = bnapi->rx_ring;
1870 		if (!rxr)
1871 			goto skip_rx;
1872 
1873 		ring = &rxr->rx_ring_struct;
1874 		ring->nr_pages = bp->rx_nr_pages;
1875 		ring->page_size = HW_RXBD_RING_SIZE;
1876 		ring->pg_arr = (void **)rxr->rx_desc_ring;
1877 		ring->dma_arr = rxr->rx_desc_mapping;
1878 		ring->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
1879 		ring->vmem = (void **)&rxr->rx_buf_ring;
1880 
1881 		ring = &rxr->rx_agg_ring_struct;
1882 		ring->nr_pages = bp->rx_agg_nr_pages;
1883 		ring->page_size = HW_RXBD_RING_SIZE;
1884 		ring->pg_arr = (void **)rxr->rx_agg_desc_ring;
1885 		ring->dma_arr = rxr->rx_agg_desc_mapping;
1886 		ring->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
1887 		ring->vmem = (void **)&rxr->rx_agg_ring;
1888 
1889 skip_rx:
1890 		txr = bnapi->tx_ring;
1891 		if (!txr)
1892 			continue;
1893 
1894 		ring = &txr->tx_ring_struct;
1895 		ring->nr_pages = bp->tx_nr_pages;
1896 		ring->page_size = HW_RXBD_RING_SIZE;
1897 		ring->pg_arr = (void **)txr->tx_desc_ring;
1898 		ring->dma_arr = txr->tx_desc_mapping;
1899 		ring->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
1900 		ring->vmem = (void **)&txr->tx_buf_ring;
1901 	}
1902 }
1903 
1904 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
1905 {
1906 	int i;
1907 	u32 prod;
1908 	struct rx_bd **rx_buf_ring;
1909 
1910 	rx_buf_ring = (struct rx_bd **)ring->pg_arr;
1911 	for (i = 0, prod = 0; i < ring->nr_pages; i++) {
1912 		int j;
1913 		struct rx_bd *rxbd;
1914 
1915 		rxbd = rx_buf_ring[i];
1916 		if (!rxbd)
1917 			continue;
1918 
1919 		for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
1920 			rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
1921 			rxbd->rx_bd_opaque = prod;
1922 		}
1923 	}
1924 }
1925 
1926 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
1927 {
1928 	struct net_device *dev = bp->dev;
1929 	struct bnxt_rx_ring_info *rxr;
1930 	struct bnxt_ring_struct *ring;
1931 	u32 prod, type;
1932 	int i;
1933 
1934 	type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
1935 		RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
1936 
1937 	if (NET_IP_ALIGN == 2)
1938 		type |= RX_BD_FLAGS_SOP;
1939 
1940 	rxr = &bp->rx_ring[ring_nr];
1941 	ring = &rxr->rx_ring_struct;
1942 	bnxt_init_rxbd_pages(ring, type);
1943 
1944 	prod = rxr->rx_prod;
1945 	for (i = 0; i < bp->rx_ring_size; i++) {
1946 		if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL) != 0) {
1947 			netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
1948 				    ring_nr, i, bp->rx_ring_size);
1949 			break;
1950 		}
1951 		prod = NEXT_RX(prod);
1952 	}
1953 	rxr->rx_prod = prod;
1954 	ring->fw_ring_id = INVALID_HW_RING_ID;
1955 
1956 	ring = &rxr->rx_agg_ring_struct;
1957 	ring->fw_ring_id = INVALID_HW_RING_ID;
1958 
1959 	if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
1960 		return 0;
1961 
1962 	type = ((u32)PAGE_SIZE << RX_BD_LEN_SHIFT) |
1963 		RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
1964 
1965 	bnxt_init_rxbd_pages(ring, type);
1966 
1967 	prod = rxr->rx_agg_prod;
1968 	for (i = 0; i < bp->rx_agg_ring_size; i++) {
1969 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL) != 0) {
1970 			netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
1971 				    ring_nr, i, bp->rx_ring_size);
1972 			break;
1973 		}
1974 		prod = NEXT_RX_AGG(prod);
1975 	}
1976 	rxr->rx_agg_prod = prod;
1977 
1978 	if (bp->flags & BNXT_FLAG_TPA) {
1979 		if (rxr->rx_tpa) {
1980 			u8 *data;
1981 			dma_addr_t mapping;
1982 
1983 			for (i = 0; i < MAX_TPA; i++) {
1984 				data = __bnxt_alloc_rx_data(bp, &mapping,
1985 							    GFP_KERNEL);
1986 				if (!data)
1987 					return -ENOMEM;
1988 
1989 				rxr->rx_tpa[i].data = data;
1990 				rxr->rx_tpa[i].mapping = mapping;
1991 			}
1992 		} else {
1993 			netdev_err(bp->dev, "No resource allocated for LRO/GRO\n");
1994 			return -ENOMEM;
1995 		}
1996 	}
1997 
1998 	return 0;
1999 }
2000 
2001 static int bnxt_init_rx_rings(struct bnxt *bp)
2002 {
2003 	int i, rc = 0;
2004 
2005 	for (i = 0; i < bp->rx_nr_rings; i++) {
2006 		rc = bnxt_init_one_rx_ring(bp, i);
2007 		if (rc)
2008 			break;
2009 	}
2010 
2011 	return rc;
2012 }
2013 
2014 static int bnxt_init_tx_rings(struct bnxt *bp)
2015 {
2016 	u16 i;
2017 
2018 	bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
2019 				   MAX_SKB_FRAGS + 1);
2020 
2021 	for (i = 0; i < bp->tx_nr_rings; i++) {
2022 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2023 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
2024 
2025 		ring->fw_ring_id = INVALID_HW_RING_ID;
2026 	}
2027 
2028 	return 0;
2029 }
2030 
2031 static void bnxt_free_ring_grps(struct bnxt *bp)
2032 {
2033 	kfree(bp->grp_info);
2034 	bp->grp_info = NULL;
2035 }
2036 
2037 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
2038 {
2039 	int i;
2040 
2041 	if (irq_re_init) {
2042 		bp->grp_info = kcalloc(bp->cp_nr_rings,
2043 				       sizeof(struct bnxt_ring_grp_info),
2044 				       GFP_KERNEL);
2045 		if (!bp->grp_info)
2046 			return -ENOMEM;
2047 	}
2048 	for (i = 0; i < bp->cp_nr_rings; i++) {
2049 		if (irq_re_init)
2050 			bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
2051 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
2052 		bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
2053 		bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
2054 		bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
2055 	}
2056 	return 0;
2057 }
2058 
2059 static void bnxt_free_vnics(struct bnxt *bp)
2060 {
2061 	kfree(bp->vnic_info);
2062 	bp->vnic_info = NULL;
2063 	bp->nr_vnics = 0;
2064 }
2065 
2066 static int bnxt_alloc_vnics(struct bnxt *bp)
2067 {
2068 	int num_vnics = 1;
2069 
2070 #ifdef CONFIG_RFS_ACCEL
2071 	if (bp->flags & BNXT_FLAG_RFS)
2072 		num_vnics += bp->rx_nr_rings;
2073 #endif
2074 
2075 	bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
2076 				GFP_KERNEL);
2077 	if (!bp->vnic_info)
2078 		return -ENOMEM;
2079 
2080 	bp->nr_vnics = num_vnics;
2081 	return 0;
2082 }
2083 
2084 static void bnxt_init_vnics(struct bnxt *bp)
2085 {
2086 	int i;
2087 
2088 	for (i = 0; i < bp->nr_vnics; i++) {
2089 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2090 
2091 		vnic->fw_vnic_id = INVALID_HW_RING_ID;
2092 		vnic->fw_rss_cos_lb_ctx = INVALID_HW_RING_ID;
2093 		vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
2094 
2095 		if (bp->vnic_info[i].rss_hash_key) {
2096 			if (i == 0)
2097 				prandom_bytes(vnic->rss_hash_key,
2098 					      HW_HASH_KEY_SIZE);
2099 			else
2100 				memcpy(vnic->rss_hash_key,
2101 				       bp->vnic_info[0].rss_hash_key,
2102 				       HW_HASH_KEY_SIZE);
2103 		}
2104 	}
2105 }
2106 
2107 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
2108 {
2109 	int pages;
2110 
2111 	pages = ring_size / desc_per_pg;
2112 
2113 	if (!pages)
2114 		return 1;
2115 
2116 	pages++;
2117 
2118 	while (pages & (pages - 1))
2119 		pages++;
2120 
2121 	return pages;
2122 }
2123 
2124 static void bnxt_set_tpa_flags(struct bnxt *bp)
2125 {
2126 	bp->flags &= ~BNXT_FLAG_TPA;
2127 	if (bp->dev->features & NETIF_F_LRO)
2128 		bp->flags |= BNXT_FLAG_LRO;
2129 	if ((bp->dev->features & NETIF_F_GRO) && (bp->pdev->revision > 0))
2130 		bp->flags |= BNXT_FLAG_GRO;
2131 }
2132 
2133 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
2134  * be set on entry.
2135  */
2136 void bnxt_set_ring_params(struct bnxt *bp)
2137 {
2138 	u32 ring_size, rx_size, rx_space;
2139 	u32 agg_factor = 0, agg_ring_size = 0;
2140 
2141 	/* 8 for CRC and VLAN */
2142 	rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
2143 
2144 	rx_space = rx_size + NET_SKB_PAD +
2145 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2146 
2147 	bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
2148 	ring_size = bp->rx_ring_size;
2149 	bp->rx_agg_ring_size = 0;
2150 	bp->rx_agg_nr_pages = 0;
2151 
2152 	if (bp->flags & BNXT_FLAG_TPA)
2153 		agg_factor = 4;
2154 
2155 	bp->flags &= ~BNXT_FLAG_JUMBO;
2156 	if (rx_space > PAGE_SIZE) {
2157 		u32 jumbo_factor;
2158 
2159 		bp->flags |= BNXT_FLAG_JUMBO;
2160 		jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
2161 		if (jumbo_factor > agg_factor)
2162 			agg_factor = jumbo_factor;
2163 	}
2164 	agg_ring_size = ring_size * agg_factor;
2165 
2166 	if (agg_ring_size) {
2167 		bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
2168 							RX_DESC_CNT);
2169 		if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
2170 			u32 tmp = agg_ring_size;
2171 
2172 			bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
2173 			agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
2174 			netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
2175 				    tmp, agg_ring_size);
2176 		}
2177 		bp->rx_agg_ring_size = agg_ring_size;
2178 		bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
2179 		rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
2180 		rx_space = rx_size + NET_SKB_PAD +
2181 			SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2182 	}
2183 
2184 	bp->rx_buf_use_size = rx_size;
2185 	bp->rx_buf_size = rx_space;
2186 
2187 	bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
2188 	bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
2189 
2190 	ring_size = bp->tx_ring_size;
2191 	bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
2192 	bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
2193 
2194 	ring_size = bp->rx_ring_size * (2 + agg_factor) + bp->tx_ring_size;
2195 	bp->cp_ring_size = ring_size;
2196 
2197 	bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
2198 	if (bp->cp_nr_pages > MAX_CP_PAGES) {
2199 		bp->cp_nr_pages = MAX_CP_PAGES;
2200 		bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
2201 		netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
2202 			    ring_size, bp->cp_ring_size);
2203 	}
2204 	bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
2205 	bp->cp_ring_mask = bp->cp_bit - 1;
2206 }
2207 
2208 static void bnxt_free_vnic_attributes(struct bnxt *bp)
2209 {
2210 	int i;
2211 	struct bnxt_vnic_info *vnic;
2212 	struct pci_dev *pdev = bp->pdev;
2213 
2214 	if (!bp->vnic_info)
2215 		return;
2216 
2217 	for (i = 0; i < bp->nr_vnics; i++) {
2218 		vnic = &bp->vnic_info[i];
2219 
2220 		kfree(vnic->fw_grp_ids);
2221 		vnic->fw_grp_ids = NULL;
2222 
2223 		kfree(vnic->uc_list);
2224 		vnic->uc_list = NULL;
2225 
2226 		if (vnic->mc_list) {
2227 			dma_free_coherent(&pdev->dev, vnic->mc_list_size,
2228 					  vnic->mc_list, vnic->mc_list_mapping);
2229 			vnic->mc_list = NULL;
2230 		}
2231 
2232 		if (vnic->rss_table) {
2233 			dma_free_coherent(&pdev->dev, PAGE_SIZE,
2234 					  vnic->rss_table,
2235 					  vnic->rss_table_dma_addr);
2236 			vnic->rss_table = NULL;
2237 		}
2238 
2239 		vnic->rss_hash_key = NULL;
2240 		vnic->flags = 0;
2241 	}
2242 }
2243 
2244 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
2245 {
2246 	int i, rc = 0, size;
2247 	struct bnxt_vnic_info *vnic;
2248 	struct pci_dev *pdev = bp->pdev;
2249 	int max_rings;
2250 
2251 	for (i = 0; i < bp->nr_vnics; i++) {
2252 		vnic = &bp->vnic_info[i];
2253 
2254 		if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
2255 			int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
2256 
2257 			if (mem_size > 0) {
2258 				vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
2259 				if (!vnic->uc_list) {
2260 					rc = -ENOMEM;
2261 					goto out;
2262 				}
2263 			}
2264 		}
2265 
2266 		if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
2267 			vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
2268 			vnic->mc_list =
2269 				dma_alloc_coherent(&pdev->dev,
2270 						   vnic->mc_list_size,
2271 						   &vnic->mc_list_mapping,
2272 						   GFP_KERNEL);
2273 			if (!vnic->mc_list) {
2274 				rc = -ENOMEM;
2275 				goto out;
2276 			}
2277 		}
2278 
2279 		if (vnic->flags & BNXT_VNIC_RSS_FLAG)
2280 			max_rings = bp->rx_nr_rings;
2281 		else
2282 			max_rings = 1;
2283 
2284 		vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
2285 		if (!vnic->fw_grp_ids) {
2286 			rc = -ENOMEM;
2287 			goto out;
2288 		}
2289 
2290 		/* Allocate rss table and hash key */
2291 		vnic->rss_table = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
2292 						     &vnic->rss_table_dma_addr,
2293 						     GFP_KERNEL);
2294 		if (!vnic->rss_table) {
2295 			rc = -ENOMEM;
2296 			goto out;
2297 		}
2298 
2299 		size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
2300 
2301 		vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
2302 		vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
2303 	}
2304 	return 0;
2305 
2306 out:
2307 	return rc;
2308 }
2309 
2310 static void bnxt_free_hwrm_resources(struct bnxt *bp)
2311 {
2312 	struct pci_dev *pdev = bp->pdev;
2313 
2314 	dma_free_coherent(&pdev->dev, PAGE_SIZE, bp->hwrm_cmd_resp_addr,
2315 			  bp->hwrm_cmd_resp_dma_addr);
2316 
2317 	bp->hwrm_cmd_resp_addr = NULL;
2318 	if (bp->hwrm_dbg_resp_addr) {
2319 		dma_free_coherent(&pdev->dev, HWRM_DBG_REG_BUF_SIZE,
2320 				  bp->hwrm_dbg_resp_addr,
2321 				  bp->hwrm_dbg_resp_dma_addr);
2322 
2323 		bp->hwrm_dbg_resp_addr = NULL;
2324 	}
2325 }
2326 
2327 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
2328 {
2329 	struct pci_dev *pdev = bp->pdev;
2330 
2331 	bp->hwrm_cmd_resp_addr = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
2332 						   &bp->hwrm_cmd_resp_dma_addr,
2333 						   GFP_KERNEL);
2334 	if (!bp->hwrm_cmd_resp_addr)
2335 		return -ENOMEM;
2336 	bp->hwrm_dbg_resp_addr = dma_alloc_coherent(&pdev->dev,
2337 						    HWRM_DBG_REG_BUF_SIZE,
2338 						    &bp->hwrm_dbg_resp_dma_addr,
2339 						    GFP_KERNEL);
2340 	if (!bp->hwrm_dbg_resp_addr)
2341 		netdev_warn(bp->dev, "fail to alloc debug register dma mem\n");
2342 
2343 	return 0;
2344 }
2345 
2346 static void bnxt_free_stats(struct bnxt *bp)
2347 {
2348 	u32 size, i;
2349 	struct pci_dev *pdev = bp->pdev;
2350 
2351 	if (!bp->bnapi)
2352 		return;
2353 
2354 	size = sizeof(struct ctx_hw_stats);
2355 
2356 	for (i = 0; i < bp->cp_nr_rings; i++) {
2357 		struct bnxt_napi *bnapi = bp->bnapi[i];
2358 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2359 
2360 		if (cpr->hw_stats) {
2361 			dma_free_coherent(&pdev->dev, size, cpr->hw_stats,
2362 					  cpr->hw_stats_map);
2363 			cpr->hw_stats = NULL;
2364 		}
2365 	}
2366 }
2367 
2368 static int bnxt_alloc_stats(struct bnxt *bp)
2369 {
2370 	u32 size, i;
2371 	struct pci_dev *pdev = bp->pdev;
2372 
2373 	size = sizeof(struct ctx_hw_stats);
2374 
2375 	for (i = 0; i < bp->cp_nr_rings; i++) {
2376 		struct bnxt_napi *bnapi = bp->bnapi[i];
2377 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2378 
2379 		cpr->hw_stats = dma_alloc_coherent(&pdev->dev, size,
2380 						   &cpr->hw_stats_map,
2381 						   GFP_KERNEL);
2382 		if (!cpr->hw_stats)
2383 			return -ENOMEM;
2384 
2385 		cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
2386 	}
2387 	return 0;
2388 }
2389 
2390 static void bnxt_clear_ring_indices(struct bnxt *bp)
2391 {
2392 	int i;
2393 
2394 	if (!bp->bnapi)
2395 		return;
2396 
2397 	for (i = 0; i < bp->cp_nr_rings; i++) {
2398 		struct bnxt_napi *bnapi = bp->bnapi[i];
2399 		struct bnxt_cp_ring_info *cpr;
2400 		struct bnxt_rx_ring_info *rxr;
2401 		struct bnxt_tx_ring_info *txr;
2402 
2403 		if (!bnapi)
2404 			continue;
2405 
2406 		cpr = &bnapi->cp_ring;
2407 		cpr->cp_raw_cons = 0;
2408 
2409 		txr = bnapi->tx_ring;
2410 		if (txr) {
2411 			txr->tx_prod = 0;
2412 			txr->tx_cons = 0;
2413 		}
2414 
2415 		rxr = bnapi->rx_ring;
2416 		if (rxr) {
2417 			rxr->rx_prod = 0;
2418 			rxr->rx_agg_prod = 0;
2419 			rxr->rx_sw_agg_prod = 0;
2420 		}
2421 	}
2422 }
2423 
2424 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
2425 {
2426 #ifdef CONFIG_RFS_ACCEL
2427 	int i;
2428 
2429 	/* Under rtnl_lock and all our NAPIs have been disabled.  It's
2430 	 * safe to delete the hash table.
2431 	 */
2432 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
2433 		struct hlist_head *head;
2434 		struct hlist_node *tmp;
2435 		struct bnxt_ntuple_filter *fltr;
2436 
2437 		head = &bp->ntp_fltr_hash_tbl[i];
2438 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
2439 			hlist_del(&fltr->hash);
2440 			kfree(fltr);
2441 		}
2442 	}
2443 	if (irq_reinit) {
2444 		kfree(bp->ntp_fltr_bmap);
2445 		bp->ntp_fltr_bmap = NULL;
2446 	}
2447 	bp->ntp_fltr_count = 0;
2448 #endif
2449 }
2450 
2451 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
2452 {
2453 #ifdef CONFIG_RFS_ACCEL
2454 	int i, rc = 0;
2455 
2456 	if (!(bp->flags & BNXT_FLAG_RFS))
2457 		return 0;
2458 
2459 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
2460 		INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
2461 
2462 	bp->ntp_fltr_count = 0;
2463 	bp->ntp_fltr_bmap = kzalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR),
2464 				    GFP_KERNEL);
2465 
2466 	if (!bp->ntp_fltr_bmap)
2467 		rc = -ENOMEM;
2468 
2469 	return rc;
2470 #else
2471 	return 0;
2472 #endif
2473 }
2474 
2475 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
2476 {
2477 	bnxt_free_vnic_attributes(bp);
2478 	bnxt_free_tx_rings(bp);
2479 	bnxt_free_rx_rings(bp);
2480 	bnxt_free_cp_rings(bp);
2481 	bnxt_free_ntp_fltrs(bp, irq_re_init);
2482 	if (irq_re_init) {
2483 		bnxt_free_stats(bp);
2484 		bnxt_free_ring_grps(bp);
2485 		bnxt_free_vnics(bp);
2486 		kfree(bp->tx_ring);
2487 		bp->tx_ring = NULL;
2488 		kfree(bp->rx_ring);
2489 		bp->rx_ring = NULL;
2490 		kfree(bp->bnapi);
2491 		bp->bnapi = NULL;
2492 	} else {
2493 		bnxt_clear_ring_indices(bp);
2494 	}
2495 }
2496 
2497 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
2498 {
2499 	int i, j, rc, size, arr_size;
2500 	void *bnapi;
2501 
2502 	if (irq_re_init) {
2503 		/* Allocate bnapi mem pointer array and mem block for
2504 		 * all queues
2505 		 */
2506 		arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
2507 				bp->cp_nr_rings);
2508 		size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
2509 		bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
2510 		if (!bnapi)
2511 			return -ENOMEM;
2512 
2513 		bp->bnapi = bnapi;
2514 		bnapi += arr_size;
2515 		for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
2516 			bp->bnapi[i] = bnapi;
2517 			bp->bnapi[i]->index = i;
2518 			bp->bnapi[i]->bp = bp;
2519 		}
2520 
2521 		bp->rx_ring = kcalloc(bp->rx_nr_rings,
2522 				      sizeof(struct bnxt_rx_ring_info),
2523 				      GFP_KERNEL);
2524 		if (!bp->rx_ring)
2525 			return -ENOMEM;
2526 
2527 		for (i = 0; i < bp->rx_nr_rings; i++) {
2528 			bp->rx_ring[i].bnapi = bp->bnapi[i];
2529 			bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
2530 		}
2531 
2532 		bp->tx_ring = kcalloc(bp->tx_nr_rings,
2533 				      sizeof(struct bnxt_tx_ring_info),
2534 				      GFP_KERNEL);
2535 		if (!bp->tx_ring)
2536 			return -ENOMEM;
2537 
2538 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
2539 			j = 0;
2540 		else
2541 			j = bp->rx_nr_rings;
2542 
2543 		for (i = 0; i < bp->tx_nr_rings; i++, j++) {
2544 			bp->tx_ring[i].bnapi = bp->bnapi[j];
2545 			bp->bnapi[j]->tx_ring = &bp->tx_ring[i];
2546 		}
2547 
2548 		rc = bnxt_alloc_stats(bp);
2549 		if (rc)
2550 			goto alloc_mem_err;
2551 
2552 		rc = bnxt_alloc_ntp_fltrs(bp);
2553 		if (rc)
2554 			goto alloc_mem_err;
2555 
2556 		rc = bnxt_alloc_vnics(bp);
2557 		if (rc)
2558 			goto alloc_mem_err;
2559 	}
2560 
2561 	bnxt_init_ring_struct(bp);
2562 
2563 	rc = bnxt_alloc_rx_rings(bp);
2564 	if (rc)
2565 		goto alloc_mem_err;
2566 
2567 	rc = bnxt_alloc_tx_rings(bp);
2568 	if (rc)
2569 		goto alloc_mem_err;
2570 
2571 	rc = bnxt_alloc_cp_rings(bp);
2572 	if (rc)
2573 		goto alloc_mem_err;
2574 
2575 	bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
2576 				  BNXT_VNIC_UCAST_FLAG;
2577 	rc = bnxt_alloc_vnic_attributes(bp);
2578 	if (rc)
2579 		goto alloc_mem_err;
2580 	return 0;
2581 
2582 alloc_mem_err:
2583 	bnxt_free_mem(bp, true);
2584 	return rc;
2585 }
2586 
2587 void bnxt_hwrm_cmd_hdr_init(struct bnxt *bp, void *request, u16 req_type,
2588 			    u16 cmpl_ring, u16 target_id)
2589 {
2590 	struct hwrm_cmd_req_hdr *req = request;
2591 
2592 	req->cmpl_ring_req_type =
2593 		cpu_to_le32(req_type | (cmpl_ring << HWRM_CMPL_RING_SFT));
2594 	req->target_id_seq_id = cpu_to_le32(target_id << HWRM_TARGET_FID_SFT);
2595 	req->resp_addr = cpu_to_le64(bp->hwrm_cmd_resp_dma_addr);
2596 }
2597 
2598 int _hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
2599 {
2600 	int i, intr_process, rc;
2601 	struct hwrm_cmd_req_hdr *req = msg;
2602 	u32 *data = msg;
2603 	__le32 *resp_len, *valid;
2604 	u16 cp_ring_id, len = 0;
2605 	struct hwrm_err_output *resp = bp->hwrm_cmd_resp_addr;
2606 
2607 	req->target_id_seq_id |= cpu_to_le32(bp->hwrm_cmd_seq++);
2608 	memset(resp, 0, PAGE_SIZE);
2609 	cp_ring_id = (le32_to_cpu(req->cmpl_ring_req_type) &
2610 		      HWRM_CMPL_RING_MASK) >>
2611 		     HWRM_CMPL_RING_SFT;
2612 	intr_process = (cp_ring_id == INVALID_HW_RING_ID) ? 0 : 1;
2613 
2614 	/* Write request msg to hwrm channel */
2615 	__iowrite32_copy(bp->bar0, data, msg_len / 4);
2616 
2617 	for (i = msg_len; i < HWRM_MAX_REQ_LEN; i += 4)
2618 		writel(0, bp->bar0 + i);
2619 
2620 	/* currently supports only one outstanding message */
2621 	if (intr_process)
2622 		bp->hwrm_intr_seq_id = le32_to_cpu(req->target_id_seq_id) &
2623 				       HWRM_SEQ_ID_MASK;
2624 
2625 	/* Ring channel doorbell */
2626 	writel(1, bp->bar0 + 0x100);
2627 
2628 	i = 0;
2629 	if (intr_process) {
2630 		/* Wait until hwrm response cmpl interrupt is processed */
2631 		while (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID &&
2632 		       i++ < timeout) {
2633 			usleep_range(600, 800);
2634 		}
2635 
2636 		if (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID) {
2637 			netdev_err(bp->dev, "Resp cmpl intr err msg: 0x%x\n",
2638 				   req->cmpl_ring_req_type);
2639 			return -1;
2640 		}
2641 	} else {
2642 		/* Check if response len is updated */
2643 		resp_len = bp->hwrm_cmd_resp_addr + HWRM_RESP_LEN_OFFSET;
2644 		for (i = 0; i < timeout; i++) {
2645 			len = (le32_to_cpu(*resp_len) & HWRM_RESP_LEN_MASK) >>
2646 			      HWRM_RESP_LEN_SFT;
2647 			if (len)
2648 				break;
2649 			usleep_range(600, 800);
2650 		}
2651 
2652 		if (i >= timeout) {
2653 			netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d\n",
2654 				   timeout, req->cmpl_ring_req_type,
2655 				   req->target_id_seq_id, *resp_len);
2656 			return -1;
2657 		}
2658 
2659 		/* Last word of resp contains valid bit */
2660 		valid = bp->hwrm_cmd_resp_addr + len - 4;
2661 		for (i = 0; i < timeout; i++) {
2662 			if (le32_to_cpu(*valid) & HWRM_RESP_VALID_MASK)
2663 				break;
2664 			usleep_range(600, 800);
2665 		}
2666 
2667 		if (i >= timeout) {
2668 			netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d v:%d\n",
2669 				   timeout, req->cmpl_ring_req_type,
2670 				   req->target_id_seq_id, len, *valid);
2671 			return -1;
2672 		}
2673 	}
2674 
2675 	rc = le16_to_cpu(resp->error_code);
2676 	if (rc) {
2677 		netdev_err(bp->dev, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n",
2678 			   le16_to_cpu(resp->req_type),
2679 			   le16_to_cpu(resp->seq_id), rc);
2680 		return rc;
2681 	}
2682 	return 0;
2683 }
2684 
2685 int hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
2686 {
2687 	int rc;
2688 
2689 	mutex_lock(&bp->hwrm_cmd_lock);
2690 	rc = _hwrm_send_message(bp, msg, msg_len, timeout);
2691 	mutex_unlock(&bp->hwrm_cmd_lock);
2692 	return rc;
2693 }
2694 
2695 static int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp)
2696 {
2697 	struct hwrm_func_drv_rgtr_input req = {0};
2698 	int i;
2699 
2700 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
2701 
2702 	req.enables =
2703 		cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
2704 			    FUNC_DRV_RGTR_REQ_ENABLES_VER |
2705 			    FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
2706 
2707 	/* TODO: current async event fwd bits are not defined and the firmware
2708 	 * only checks if it is non-zero to enable async event forwarding
2709 	 */
2710 	req.async_event_fwd[0] |= cpu_to_le32(1);
2711 	req.os_type = cpu_to_le16(1);
2712 	req.ver_maj = DRV_VER_MAJ;
2713 	req.ver_min = DRV_VER_MIN;
2714 	req.ver_upd = DRV_VER_UPD;
2715 
2716 	if (BNXT_PF(bp)) {
2717 		DECLARE_BITMAP(vf_req_snif_bmap, 256);
2718 		u32 *data = (u32 *)vf_req_snif_bmap;
2719 
2720 		memset(vf_req_snif_bmap, 0, sizeof(vf_req_snif_bmap));
2721 		for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++)
2722 			__set_bit(bnxt_vf_req_snif[i], vf_req_snif_bmap);
2723 
2724 		for (i = 0; i < 8; i++)
2725 			req.vf_req_fwd[i] = cpu_to_le32(data[i]);
2726 
2727 		req.enables |=
2728 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
2729 	}
2730 
2731 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2732 }
2733 
2734 static int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
2735 {
2736 	struct hwrm_func_drv_unrgtr_input req = {0};
2737 
2738 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_UNRGTR, -1, -1);
2739 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2740 }
2741 
2742 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
2743 {
2744 	u32 rc = 0;
2745 	struct hwrm_tunnel_dst_port_free_input req = {0};
2746 
2747 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_FREE, -1, -1);
2748 	req.tunnel_type = tunnel_type;
2749 
2750 	switch (tunnel_type) {
2751 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
2752 		req.tunnel_dst_port_id = bp->vxlan_fw_dst_port_id;
2753 		break;
2754 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
2755 		req.tunnel_dst_port_id = bp->nge_fw_dst_port_id;
2756 		break;
2757 	default:
2758 		break;
2759 	}
2760 
2761 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2762 	if (rc)
2763 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
2764 			   rc);
2765 	return rc;
2766 }
2767 
2768 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
2769 					   u8 tunnel_type)
2770 {
2771 	u32 rc = 0;
2772 	struct hwrm_tunnel_dst_port_alloc_input req = {0};
2773 	struct hwrm_tunnel_dst_port_alloc_output *resp = bp->hwrm_cmd_resp_addr;
2774 
2775 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_ALLOC, -1, -1);
2776 
2777 	req.tunnel_type = tunnel_type;
2778 	req.tunnel_dst_port_val = port;
2779 
2780 	mutex_lock(&bp->hwrm_cmd_lock);
2781 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2782 	if (rc) {
2783 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
2784 			   rc);
2785 		goto err_out;
2786 	}
2787 
2788 	if (tunnel_type & TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN)
2789 		bp->vxlan_fw_dst_port_id = resp->tunnel_dst_port_id;
2790 
2791 	else if (tunnel_type & TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE)
2792 		bp->nge_fw_dst_port_id = resp->tunnel_dst_port_id;
2793 err_out:
2794 	mutex_unlock(&bp->hwrm_cmd_lock);
2795 	return rc;
2796 }
2797 
2798 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
2799 {
2800 	struct hwrm_cfa_l2_set_rx_mask_input req = {0};
2801 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
2802 
2803 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_SET_RX_MASK, -1, -1);
2804 	req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
2805 
2806 	req.num_mc_entries = cpu_to_le32(vnic->mc_list_count);
2807 	req.mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
2808 	req.mask = cpu_to_le32(vnic->rx_mask);
2809 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2810 }
2811 
2812 #ifdef CONFIG_RFS_ACCEL
2813 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
2814 					    struct bnxt_ntuple_filter *fltr)
2815 {
2816 	struct hwrm_cfa_ntuple_filter_free_input req = {0};
2817 
2818 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_FREE, -1, -1);
2819 	req.ntuple_filter_id = fltr->filter_id;
2820 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2821 }
2822 
2823 #define BNXT_NTP_FLTR_FLAGS					\
2824 	(CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID |	\
2825 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE |	\
2826 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR |	\
2827 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE |	\
2828 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR |	\
2829 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK |	\
2830 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR |	\
2831 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK |	\
2832 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL |	\
2833 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT |		\
2834 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK |	\
2835 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT |		\
2836 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK |	\
2837 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
2838 
2839 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
2840 					     struct bnxt_ntuple_filter *fltr)
2841 {
2842 	int rc = 0;
2843 	struct hwrm_cfa_ntuple_filter_alloc_input req = {0};
2844 	struct hwrm_cfa_ntuple_filter_alloc_output *resp =
2845 		bp->hwrm_cmd_resp_addr;
2846 	struct flow_keys *keys = &fltr->fkeys;
2847 	struct bnxt_vnic_info *vnic = &bp->vnic_info[fltr->rxq + 1];
2848 
2849 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_ALLOC, -1, -1);
2850 	req.l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[0];
2851 
2852 	req.enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
2853 
2854 	req.ethertype = htons(ETH_P_IP);
2855 	memcpy(req.src_macaddr, fltr->src_mac_addr, ETH_ALEN);
2856 	req.ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
2857 	req.ip_protocol = keys->basic.ip_proto;
2858 
2859 	req.src_ipaddr[0] = keys->addrs.v4addrs.src;
2860 	req.src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
2861 	req.dst_ipaddr[0] = keys->addrs.v4addrs.dst;
2862 	req.dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
2863 
2864 	req.src_port = keys->ports.src;
2865 	req.src_port_mask = cpu_to_be16(0xffff);
2866 	req.dst_port = keys->ports.dst;
2867 	req.dst_port_mask = cpu_to_be16(0xffff);
2868 
2869 	req.dst_id = cpu_to_le16(vnic->fw_vnic_id);
2870 	mutex_lock(&bp->hwrm_cmd_lock);
2871 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2872 	if (!rc)
2873 		fltr->filter_id = resp->ntuple_filter_id;
2874 	mutex_unlock(&bp->hwrm_cmd_lock);
2875 	return rc;
2876 }
2877 #endif
2878 
2879 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
2880 				     u8 *mac_addr)
2881 {
2882 	u32 rc = 0;
2883 	struct hwrm_cfa_l2_filter_alloc_input req = {0};
2884 	struct hwrm_cfa_l2_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
2885 
2886 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_ALLOC, -1, -1);
2887 	req.flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX |
2888 				CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
2889 	req.dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
2890 	req.enables =
2891 		cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
2892 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
2893 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
2894 	memcpy(req.l2_addr, mac_addr, ETH_ALEN);
2895 	req.l2_addr_mask[0] = 0xff;
2896 	req.l2_addr_mask[1] = 0xff;
2897 	req.l2_addr_mask[2] = 0xff;
2898 	req.l2_addr_mask[3] = 0xff;
2899 	req.l2_addr_mask[4] = 0xff;
2900 	req.l2_addr_mask[5] = 0xff;
2901 
2902 	mutex_lock(&bp->hwrm_cmd_lock);
2903 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2904 	if (!rc)
2905 		bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
2906 							resp->l2_filter_id;
2907 	mutex_unlock(&bp->hwrm_cmd_lock);
2908 	return rc;
2909 }
2910 
2911 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
2912 {
2913 	u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
2914 	int rc = 0;
2915 
2916 	/* Any associated ntuple filters will also be cleared by firmware. */
2917 	mutex_lock(&bp->hwrm_cmd_lock);
2918 	for (i = 0; i < num_of_vnics; i++) {
2919 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2920 
2921 		for (j = 0; j < vnic->uc_filter_count; j++) {
2922 			struct hwrm_cfa_l2_filter_free_input req = {0};
2923 
2924 			bnxt_hwrm_cmd_hdr_init(bp, &req,
2925 					       HWRM_CFA_L2_FILTER_FREE, -1, -1);
2926 
2927 			req.l2_filter_id = vnic->fw_l2_filter_id[j];
2928 
2929 			rc = _hwrm_send_message(bp, &req, sizeof(req),
2930 						HWRM_CMD_TIMEOUT);
2931 		}
2932 		vnic->uc_filter_count = 0;
2933 	}
2934 	mutex_unlock(&bp->hwrm_cmd_lock);
2935 
2936 	return rc;
2937 }
2938 
2939 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
2940 {
2941 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
2942 	struct hwrm_vnic_tpa_cfg_input req = {0};
2943 
2944 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_TPA_CFG, -1, -1);
2945 
2946 	if (tpa_flags) {
2947 		u16 mss = bp->dev->mtu - 40;
2948 		u32 nsegs, n, segs = 0, flags;
2949 
2950 		flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
2951 			VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
2952 			VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
2953 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
2954 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
2955 		if (tpa_flags & BNXT_FLAG_GRO)
2956 			flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
2957 
2958 		req.flags = cpu_to_le32(flags);
2959 
2960 		req.enables =
2961 			cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
2962 				    VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
2963 				    VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
2964 
2965 		/* Number of segs are log2 units, and first packet is not
2966 		 * included as part of this units.
2967 		 */
2968 		if (mss <= PAGE_SIZE) {
2969 			n = PAGE_SIZE / mss;
2970 			nsegs = (MAX_SKB_FRAGS - 1) * n;
2971 		} else {
2972 			n = mss / PAGE_SIZE;
2973 			if (mss & (PAGE_SIZE - 1))
2974 				n++;
2975 			nsegs = (MAX_SKB_FRAGS - n) / n;
2976 		}
2977 
2978 		segs = ilog2(nsegs);
2979 		req.max_agg_segs = cpu_to_le16(segs);
2980 		req.max_aggs = cpu_to_le16(VNIC_TPA_CFG_REQ_MAX_AGGS_MAX);
2981 
2982 		req.min_agg_len = cpu_to_le32(512);
2983 	}
2984 	req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
2985 
2986 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2987 }
2988 
2989 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
2990 {
2991 	u32 i, j, max_rings;
2992 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
2993 	struct hwrm_vnic_rss_cfg_input req = {0};
2994 
2995 	if (vnic->fw_rss_cos_lb_ctx == INVALID_HW_RING_ID)
2996 		return 0;
2997 
2998 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1);
2999 	if (set_rss) {
3000 		vnic->hash_type = BNXT_RSS_HASH_TYPE_FLAG_IPV4 |
3001 				 BNXT_RSS_HASH_TYPE_FLAG_TCP_IPV4 |
3002 				 BNXT_RSS_HASH_TYPE_FLAG_IPV6 |
3003 				 BNXT_RSS_HASH_TYPE_FLAG_TCP_IPV6;
3004 
3005 		req.hash_type = cpu_to_le32(vnic->hash_type);
3006 
3007 		if (vnic->flags & BNXT_VNIC_RSS_FLAG)
3008 			max_rings = bp->rx_nr_rings;
3009 		else
3010 			max_rings = 1;
3011 
3012 		/* Fill the RSS indirection table with ring group ids */
3013 		for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++, j++) {
3014 			if (j == max_rings)
3015 				j = 0;
3016 			vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
3017 		}
3018 
3019 		req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
3020 		req.hash_key_tbl_addr =
3021 			cpu_to_le64(vnic->rss_hash_key_dma_addr);
3022 	}
3023 	req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx);
3024 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3025 }
3026 
3027 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
3028 {
3029 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3030 	struct hwrm_vnic_plcmodes_cfg_input req = {0};
3031 
3032 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_PLCMODES_CFG, -1, -1);
3033 	req.flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT |
3034 				VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
3035 				VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
3036 	req.enables =
3037 		cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID |
3038 			    VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
3039 	/* thresholds not implemented in firmware yet */
3040 	req.jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
3041 	req.hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
3042 	req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
3043 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3044 }
3045 
3046 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id)
3047 {
3048 	struct hwrm_vnic_rss_cos_lb_ctx_free_input req = {0};
3049 
3050 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_FREE, -1, -1);
3051 	req.rss_cos_lb_ctx_id =
3052 		cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx);
3053 
3054 	hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3055 	bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx = INVALID_HW_RING_ID;
3056 }
3057 
3058 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
3059 {
3060 	int i;
3061 
3062 	for (i = 0; i < bp->nr_vnics; i++) {
3063 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3064 
3065 		if (vnic->fw_rss_cos_lb_ctx != INVALID_HW_RING_ID)
3066 			bnxt_hwrm_vnic_ctx_free_one(bp, i);
3067 	}
3068 	bp->rsscos_nr_ctxs = 0;
3069 }
3070 
3071 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id)
3072 {
3073 	int rc;
3074 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_input req = {0};
3075 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp =
3076 						bp->hwrm_cmd_resp_addr;
3077 
3078 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC, -1,
3079 			       -1);
3080 
3081 	mutex_lock(&bp->hwrm_cmd_lock);
3082 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3083 	if (!rc)
3084 		bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx =
3085 			le16_to_cpu(resp->rss_cos_lb_ctx_id);
3086 	mutex_unlock(&bp->hwrm_cmd_lock);
3087 
3088 	return rc;
3089 }
3090 
3091 static int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
3092 {
3093 	unsigned int ring = 0, grp_idx;
3094 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3095 	struct hwrm_vnic_cfg_input req = {0};
3096 
3097 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_CFG, -1, -1);
3098 	/* Only RSS support for now TBD: COS & LB */
3099 	req.enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP |
3100 				  VNIC_CFG_REQ_ENABLES_RSS_RULE);
3101 	req.rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx);
3102 	req.cos_rule = cpu_to_le16(0xffff);
3103 	if (vnic->flags & BNXT_VNIC_RSS_FLAG)
3104 		ring = 0;
3105 	else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
3106 		ring = vnic_id - 1;
3107 
3108 	grp_idx = bp->rx_ring[ring].bnapi->index;
3109 	req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
3110 	req.dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
3111 
3112 	req.lb_rule = cpu_to_le16(0xffff);
3113 	req.mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + ETH_FCS_LEN +
3114 			      VLAN_HLEN);
3115 
3116 	if (bp->flags & BNXT_FLAG_STRIP_VLAN)
3117 		req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
3118 
3119 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3120 }
3121 
3122 static int bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
3123 {
3124 	u32 rc = 0;
3125 
3126 	if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
3127 		struct hwrm_vnic_free_input req = {0};
3128 
3129 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_FREE, -1, -1);
3130 		req.vnic_id =
3131 			cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
3132 
3133 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3134 		if (rc)
3135 			return rc;
3136 		bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
3137 	}
3138 	return rc;
3139 }
3140 
3141 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
3142 {
3143 	u16 i;
3144 
3145 	for (i = 0; i < bp->nr_vnics; i++)
3146 		bnxt_hwrm_vnic_free_one(bp, i);
3147 }
3148 
3149 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
3150 				unsigned int start_rx_ring_idx,
3151 				unsigned int nr_rings)
3152 {
3153 	int rc = 0;
3154 	unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
3155 	struct hwrm_vnic_alloc_input req = {0};
3156 	struct hwrm_vnic_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3157 
3158 	/* map ring groups to this vnic */
3159 	for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
3160 		grp_idx = bp->rx_ring[i].bnapi->index;
3161 		if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
3162 			netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
3163 				   j, nr_rings);
3164 			break;
3165 		}
3166 		bp->vnic_info[vnic_id].fw_grp_ids[j] =
3167 					bp->grp_info[grp_idx].fw_grp_id;
3168 	}
3169 
3170 	bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx = INVALID_HW_RING_ID;
3171 	if (vnic_id == 0)
3172 		req.flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
3173 
3174 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_ALLOC, -1, -1);
3175 
3176 	mutex_lock(&bp->hwrm_cmd_lock);
3177 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3178 	if (!rc)
3179 		bp->vnic_info[vnic_id].fw_vnic_id = le32_to_cpu(resp->vnic_id);
3180 	mutex_unlock(&bp->hwrm_cmd_lock);
3181 	return rc;
3182 }
3183 
3184 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
3185 {
3186 	u16 i;
3187 	u32 rc = 0;
3188 
3189 	mutex_lock(&bp->hwrm_cmd_lock);
3190 	for (i = 0; i < bp->rx_nr_rings; i++) {
3191 		struct hwrm_ring_grp_alloc_input req = {0};
3192 		struct hwrm_ring_grp_alloc_output *resp =
3193 					bp->hwrm_cmd_resp_addr;
3194 		unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
3195 
3196 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_ALLOC, -1, -1);
3197 
3198 		req.cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
3199 		req.rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
3200 		req.ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
3201 		req.sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
3202 
3203 		rc = _hwrm_send_message(bp, &req, sizeof(req),
3204 					HWRM_CMD_TIMEOUT);
3205 		if (rc)
3206 			break;
3207 
3208 		bp->grp_info[grp_idx].fw_grp_id =
3209 			le32_to_cpu(resp->ring_group_id);
3210 	}
3211 	mutex_unlock(&bp->hwrm_cmd_lock);
3212 	return rc;
3213 }
3214 
3215 static int bnxt_hwrm_ring_grp_free(struct bnxt *bp)
3216 {
3217 	u16 i;
3218 	u32 rc = 0;
3219 	struct hwrm_ring_grp_free_input req = {0};
3220 
3221 	if (!bp->grp_info)
3222 		return 0;
3223 
3224 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_FREE, -1, -1);
3225 
3226 	mutex_lock(&bp->hwrm_cmd_lock);
3227 	for (i = 0; i < bp->cp_nr_rings; i++) {
3228 		if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
3229 			continue;
3230 		req.ring_group_id =
3231 			cpu_to_le32(bp->grp_info[i].fw_grp_id);
3232 
3233 		rc = _hwrm_send_message(bp, &req, sizeof(req),
3234 					HWRM_CMD_TIMEOUT);
3235 		if (rc)
3236 			break;
3237 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
3238 	}
3239 	mutex_unlock(&bp->hwrm_cmd_lock);
3240 	return rc;
3241 }
3242 
3243 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
3244 				    struct bnxt_ring_struct *ring,
3245 				    u32 ring_type, u32 map_index,
3246 				    u32 stats_ctx_id)
3247 {
3248 	int rc = 0, err = 0;
3249 	struct hwrm_ring_alloc_input req = {0};
3250 	struct hwrm_ring_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3251 	u16 ring_id;
3252 
3253 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_ALLOC, -1, -1);
3254 
3255 	req.enables = 0;
3256 	if (ring->nr_pages > 1) {
3257 		req.page_tbl_addr = cpu_to_le64(ring->pg_tbl_map);
3258 		/* Page size is in log2 units */
3259 		req.page_size = BNXT_PAGE_SHIFT;
3260 		req.page_tbl_depth = 1;
3261 	} else {
3262 		req.page_tbl_addr =  cpu_to_le64(ring->dma_arr[0]);
3263 	}
3264 	req.fbo = 0;
3265 	/* Association of ring index with doorbell index and MSIX number */
3266 	req.logical_id = cpu_to_le16(map_index);
3267 
3268 	switch (ring_type) {
3269 	case HWRM_RING_ALLOC_TX:
3270 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
3271 		/* Association of transmit ring with completion ring */
3272 		req.cmpl_ring_id =
3273 			cpu_to_le16(bp->grp_info[map_index].cp_fw_ring_id);
3274 		req.length = cpu_to_le32(bp->tx_ring_mask + 1);
3275 		req.stat_ctx_id = cpu_to_le32(stats_ctx_id);
3276 		req.queue_id = cpu_to_le16(ring->queue_id);
3277 		break;
3278 	case HWRM_RING_ALLOC_RX:
3279 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
3280 		req.length = cpu_to_le32(bp->rx_ring_mask + 1);
3281 		break;
3282 	case HWRM_RING_ALLOC_AGG:
3283 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
3284 		req.length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
3285 		break;
3286 	case HWRM_RING_ALLOC_CMPL:
3287 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_CMPL;
3288 		req.length = cpu_to_le32(bp->cp_ring_mask + 1);
3289 		if (bp->flags & BNXT_FLAG_USING_MSIX)
3290 			req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
3291 		break;
3292 	default:
3293 		netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
3294 			   ring_type);
3295 		return -1;
3296 	}
3297 
3298 	mutex_lock(&bp->hwrm_cmd_lock);
3299 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3300 	err = le16_to_cpu(resp->error_code);
3301 	ring_id = le16_to_cpu(resp->ring_id);
3302 	mutex_unlock(&bp->hwrm_cmd_lock);
3303 
3304 	if (rc || err) {
3305 		switch (ring_type) {
3306 		case RING_FREE_REQ_RING_TYPE_CMPL:
3307 			netdev_err(bp->dev, "hwrm_ring_alloc cp failed. rc:%x err:%x\n",
3308 				   rc, err);
3309 			return -1;
3310 
3311 		case RING_FREE_REQ_RING_TYPE_RX:
3312 			netdev_err(bp->dev, "hwrm_ring_alloc rx failed. rc:%x err:%x\n",
3313 				   rc, err);
3314 			return -1;
3315 
3316 		case RING_FREE_REQ_RING_TYPE_TX:
3317 			netdev_err(bp->dev, "hwrm_ring_alloc tx failed. rc:%x err:%x\n",
3318 				   rc, err);
3319 			return -1;
3320 
3321 		default:
3322 			netdev_err(bp->dev, "Invalid ring\n");
3323 			return -1;
3324 		}
3325 	}
3326 	ring->fw_ring_id = ring_id;
3327 	return rc;
3328 }
3329 
3330 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
3331 {
3332 	int i, rc = 0;
3333 
3334 	for (i = 0; i < bp->cp_nr_rings; i++) {
3335 		struct bnxt_napi *bnapi = bp->bnapi[i];
3336 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3337 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3338 
3339 		rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_CMPL, i,
3340 					      INVALID_STATS_CTX_ID);
3341 		if (rc)
3342 			goto err_out;
3343 		cpr->cp_doorbell = bp->bar1 + i * 0x80;
3344 		BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
3345 		bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
3346 	}
3347 
3348 	for (i = 0; i < bp->tx_nr_rings; i++) {
3349 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3350 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
3351 		u32 map_idx = txr->bnapi->index;
3352 		u16 fw_stats_ctx = bp->grp_info[map_idx].fw_stats_ctx;
3353 
3354 		rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_TX,
3355 					      map_idx, fw_stats_ctx);
3356 		if (rc)
3357 			goto err_out;
3358 		txr->tx_doorbell = bp->bar1 + map_idx * 0x80;
3359 	}
3360 
3361 	for (i = 0; i < bp->rx_nr_rings; i++) {
3362 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3363 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
3364 		u32 map_idx = rxr->bnapi->index;
3365 
3366 		rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_RX,
3367 					      map_idx, INVALID_STATS_CTX_ID);
3368 		if (rc)
3369 			goto err_out;
3370 		rxr->rx_doorbell = bp->bar1 + map_idx * 0x80;
3371 		writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
3372 		bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
3373 	}
3374 
3375 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
3376 		for (i = 0; i < bp->rx_nr_rings; i++) {
3377 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3378 			struct bnxt_ring_struct *ring =
3379 						&rxr->rx_agg_ring_struct;
3380 			u32 grp_idx = rxr->bnapi->index;
3381 			u32 map_idx = grp_idx + bp->rx_nr_rings;
3382 
3383 			rc = hwrm_ring_alloc_send_msg(bp, ring,
3384 						      HWRM_RING_ALLOC_AGG,
3385 						      map_idx,
3386 						      INVALID_STATS_CTX_ID);
3387 			if (rc)
3388 				goto err_out;
3389 
3390 			rxr->rx_agg_doorbell = bp->bar1 + map_idx * 0x80;
3391 			writel(DB_KEY_RX | rxr->rx_agg_prod,
3392 			       rxr->rx_agg_doorbell);
3393 			bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
3394 		}
3395 	}
3396 err_out:
3397 	return rc;
3398 }
3399 
3400 static int hwrm_ring_free_send_msg(struct bnxt *bp,
3401 				   struct bnxt_ring_struct *ring,
3402 				   u32 ring_type, int cmpl_ring_id)
3403 {
3404 	int rc;
3405 	struct hwrm_ring_free_input req = {0};
3406 	struct hwrm_ring_free_output *resp = bp->hwrm_cmd_resp_addr;
3407 	u16 error_code;
3408 
3409 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_FREE, -1, -1);
3410 	req.ring_type = ring_type;
3411 	req.ring_id = cpu_to_le16(ring->fw_ring_id);
3412 
3413 	mutex_lock(&bp->hwrm_cmd_lock);
3414 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3415 	error_code = le16_to_cpu(resp->error_code);
3416 	mutex_unlock(&bp->hwrm_cmd_lock);
3417 
3418 	if (rc || error_code) {
3419 		switch (ring_type) {
3420 		case RING_FREE_REQ_RING_TYPE_CMPL:
3421 			netdev_err(bp->dev, "hwrm_ring_free cp failed. rc:%d\n",
3422 				   rc);
3423 			return rc;
3424 		case RING_FREE_REQ_RING_TYPE_RX:
3425 			netdev_err(bp->dev, "hwrm_ring_free rx failed. rc:%d\n",
3426 				   rc);
3427 			return rc;
3428 		case RING_FREE_REQ_RING_TYPE_TX:
3429 			netdev_err(bp->dev, "hwrm_ring_free tx failed. rc:%d\n",
3430 				   rc);
3431 			return rc;
3432 		default:
3433 			netdev_err(bp->dev, "Invalid ring\n");
3434 			return -1;
3435 		}
3436 	}
3437 	return 0;
3438 }
3439 
3440 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
3441 {
3442 	int i;
3443 
3444 	if (!bp->bnapi)
3445 		return;
3446 
3447 	for (i = 0; i < bp->tx_nr_rings; i++) {
3448 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3449 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
3450 		u32 grp_idx = txr->bnapi->index;
3451 		u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
3452 
3453 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3454 			hwrm_ring_free_send_msg(bp, ring,
3455 						RING_FREE_REQ_RING_TYPE_TX,
3456 						close_path ? cmpl_ring_id :
3457 						INVALID_HW_RING_ID);
3458 			ring->fw_ring_id = INVALID_HW_RING_ID;
3459 		}
3460 	}
3461 
3462 	for (i = 0; i < bp->rx_nr_rings; i++) {
3463 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3464 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
3465 		u32 grp_idx = rxr->bnapi->index;
3466 		u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
3467 
3468 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3469 			hwrm_ring_free_send_msg(bp, ring,
3470 						RING_FREE_REQ_RING_TYPE_RX,
3471 						close_path ? cmpl_ring_id :
3472 						INVALID_HW_RING_ID);
3473 			ring->fw_ring_id = INVALID_HW_RING_ID;
3474 			bp->grp_info[grp_idx].rx_fw_ring_id =
3475 				INVALID_HW_RING_ID;
3476 		}
3477 	}
3478 
3479 	for (i = 0; i < bp->rx_nr_rings; i++) {
3480 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3481 		struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
3482 		u32 grp_idx = rxr->bnapi->index;
3483 		u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
3484 
3485 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3486 			hwrm_ring_free_send_msg(bp, ring,
3487 						RING_FREE_REQ_RING_TYPE_RX,
3488 						close_path ? cmpl_ring_id :
3489 						INVALID_HW_RING_ID);
3490 			ring->fw_ring_id = INVALID_HW_RING_ID;
3491 			bp->grp_info[grp_idx].agg_fw_ring_id =
3492 				INVALID_HW_RING_ID;
3493 		}
3494 	}
3495 
3496 	for (i = 0; i < bp->cp_nr_rings; i++) {
3497 		struct bnxt_napi *bnapi = bp->bnapi[i];
3498 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3499 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3500 
3501 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3502 			hwrm_ring_free_send_msg(bp, ring,
3503 						RING_FREE_REQ_RING_TYPE_CMPL,
3504 						INVALID_HW_RING_ID);
3505 			ring->fw_ring_id = INVALID_HW_RING_ID;
3506 			bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
3507 		}
3508 	}
3509 }
3510 
3511 int bnxt_hwrm_set_coal(struct bnxt *bp)
3512 {
3513 	int i, rc = 0;
3514 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req = {0};
3515 	u16 max_buf, max_buf_irq;
3516 	u16 buf_tmr, buf_tmr_irq;
3517 	u32 flags;
3518 
3519 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS,
3520 			       -1, -1);
3521 
3522 	/* Each rx completion (2 records) should be DMAed immediately */
3523 	max_buf = min_t(u16, bp->coal_bufs / 4, 2);
3524 	/* max_buf must not be zero */
3525 	max_buf = clamp_t(u16, max_buf, 1, 63);
3526 	max_buf_irq = clamp_t(u16, bp->coal_bufs_irq, 1, 63);
3527 	buf_tmr = max_t(u16, bp->coal_ticks / 4, 1);
3528 	buf_tmr_irq = max_t(u16, bp->coal_ticks_irq, 1);
3529 
3530 	flags = RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
3531 
3532 	/* RING_IDLE generates more IRQs for lower latency.  Enable it only
3533 	 * if coal_ticks is less than 25 us.
3534 	 */
3535 	if (BNXT_COAL_TIMER_TO_USEC(bp->coal_ticks) < 25)
3536 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
3537 
3538 	req.flags = cpu_to_le16(flags);
3539 	req.num_cmpl_dma_aggr = cpu_to_le16(max_buf);
3540 	req.num_cmpl_dma_aggr_during_int = cpu_to_le16(max_buf_irq);
3541 	req.cmpl_aggr_dma_tmr = cpu_to_le16(buf_tmr);
3542 	req.cmpl_aggr_dma_tmr_during_int = cpu_to_le16(buf_tmr_irq);
3543 	req.int_lat_tmr_min = cpu_to_le16(buf_tmr);
3544 	req.int_lat_tmr_max = cpu_to_le16(bp->coal_ticks);
3545 	req.num_cmpl_aggr_int = cpu_to_le16(bp->coal_bufs);
3546 
3547 	mutex_lock(&bp->hwrm_cmd_lock);
3548 	for (i = 0; i < bp->cp_nr_rings; i++) {
3549 		req.ring_id = cpu_to_le16(bp->grp_info[i].cp_fw_ring_id);
3550 
3551 		rc = _hwrm_send_message(bp, &req, sizeof(req),
3552 					HWRM_CMD_TIMEOUT);
3553 		if (rc)
3554 			break;
3555 	}
3556 	mutex_unlock(&bp->hwrm_cmd_lock);
3557 	return rc;
3558 }
3559 
3560 static int bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
3561 {
3562 	int rc = 0, i;
3563 	struct hwrm_stat_ctx_free_input req = {0};
3564 
3565 	if (!bp->bnapi)
3566 		return 0;
3567 
3568 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_FREE, -1, -1);
3569 
3570 	mutex_lock(&bp->hwrm_cmd_lock);
3571 	for (i = 0; i < bp->cp_nr_rings; i++) {
3572 		struct bnxt_napi *bnapi = bp->bnapi[i];
3573 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3574 
3575 		if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
3576 			req.stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
3577 
3578 			rc = _hwrm_send_message(bp, &req, sizeof(req),
3579 						HWRM_CMD_TIMEOUT);
3580 			if (rc)
3581 				break;
3582 
3583 			cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
3584 		}
3585 	}
3586 	mutex_unlock(&bp->hwrm_cmd_lock);
3587 	return rc;
3588 }
3589 
3590 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
3591 {
3592 	int rc = 0, i;
3593 	struct hwrm_stat_ctx_alloc_input req = {0};
3594 	struct hwrm_stat_ctx_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3595 
3596 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_ALLOC, -1, -1);
3597 
3598 	req.update_period_ms = cpu_to_le32(1000);
3599 
3600 	mutex_lock(&bp->hwrm_cmd_lock);
3601 	for (i = 0; i < bp->cp_nr_rings; i++) {
3602 		struct bnxt_napi *bnapi = bp->bnapi[i];
3603 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3604 
3605 		req.stats_dma_addr = cpu_to_le64(cpr->hw_stats_map);
3606 
3607 		rc = _hwrm_send_message(bp, &req, sizeof(req),
3608 					HWRM_CMD_TIMEOUT);
3609 		if (rc)
3610 			break;
3611 
3612 		cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
3613 
3614 		bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
3615 	}
3616 	mutex_unlock(&bp->hwrm_cmd_lock);
3617 	return 0;
3618 }
3619 
3620 int bnxt_hwrm_func_qcaps(struct bnxt *bp)
3621 {
3622 	int rc = 0;
3623 	struct hwrm_func_qcaps_input req = {0};
3624 	struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
3625 
3626 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1);
3627 	req.fid = cpu_to_le16(0xffff);
3628 
3629 	mutex_lock(&bp->hwrm_cmd_lock);
3630 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3631 	if (rc)
3632 		goto hwrm_func_qcaps_exit;
3633 
3634 	if (BNXT_PF(bp)) {
3635 		struct bnxt_pf_info *pf = &bp->pf;
3636 
3637 		pf->fw_fid = le16_to_cpu(resp->fid);
3638 		pf->port_id = le16_to_cpu(resp->port_id);
3639 		memcpy(pf->mac_addr, resp->perm_mac_address, ETH_ALEN);
3640 		memcpy(bp->dev->dev_addr, pf->mac_addr, ETH_ALEN);
3641 		pf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
3642 		pf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
3643 		pf->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
3644 		pf->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
3645 		pf->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
3646 		if (!pf->max_hw_ring_grps)
3647 			pf->max_hw_ring_grps = pf->max_tx_rings;
3648 		pf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
3649 		pf->max_vnics = le16_to_cpu(resp->max_vnics);
3650 		pf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
3651 		pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
3652 		pf->max_vfs = le16_to_cpu(resp->max_vfs);
3653 		pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
3654 		pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
3655 		pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
3656 		pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
3657 		pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
3658 		pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
3659 	} else {
3660 #ifdef CONFIG_BNXT_SRIOV
3661 		struct bnxt_vf_info *vf = &bp->vf;
3662 
3663 		vf->fw_fid = le16_to_cpu(resp->fid);
3664 		memcpy(vf->mac_addr, resp->perm_mac_address, ETH_ALEN);
3665 		if (is_valid_ether_addr(vf->mac_addr))
3666 			/* overwrite netdev dev_adr with admin VF MAC */
3667 			memcpy(bp->dev->dev_addr, vf->mac_addr, ETH_ALEN);
3668 		else
3669 			random_ether_addr(bp->dev->dev_addr);
3670 
3671 		vf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
3672 		vf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
3673 		vf->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
3674 		vf->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
3675 		vf->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
3676 		if (!vf->max_hw_ring_grps)
3677 			vf->max_hw_ring_grps = vf->max_tx_rings;
3678 		vf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
3679 		vf->max_vnics = le16_to_cpu(resp->max_vnics);
3680 		vf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
3681 #endif
3682 	}
3683 
3684 	bp->tx_push_thresh = 0;
3685 	if (resp->flags &
3686 	    cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED))
3687 		bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
3688 
3689 hwrm_func_qcaps_exit:
3690 	mutex_unlock(&bp->hwrm_cmd_lock);
3691 	return rc;
3692 }
3693 
3694 static int bnxt_hwrm_func_reset(struct bnxt *bp)
3695 {
3696 	struct hwrm_func_reset_input req = {0};
3697 
3698 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESET, -1, -1);
3699 	req.enables = 0;
3700 
3701 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_RESET_TIMEOUT);
3702 }
3703 
3704 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
3705 {
3706 	int rc = 0;
3707 	struct hwrm_queue_qportcfg_input req = {0};
3708 	struct hwrm_queue_qportcfg_output *resp = bp->hwrm_cmd_resp_addr;
3709 	u8 i, *qptr;
3710 
3711 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_QUEUE_QPORTCFG, -1, -1);
3712 
3713 	mutex_lock(&bp->hwrm_cmd_lock);
3714 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3715 	if (rc)
3716 		goto qportcfg_exit;
3717 
3718 	if (!resp->max_configurable_queues) {
3719 		rc = -EINVAL;
3720 		goto qportcfg_exit;
3721 	}
3722 	bp->max_tc = resp->max_configurable_queues;
3723 	if (bp->max_tc > BNXT_MAX_QUEUE)
3724 		bp->max_tc = BNXT_MAX_QUEUE;
3725 
3726 	qptr = &resp->queue_id0;
3727 	for (i = 0; i < bp->max_tc; i++) {
3728 		bp->q_info[i].queue_id = *qptr++;
3729 		bp->q_info[i].queue_profile = *qptr++;
3730 	}
3731 
3732 qportcfg_exit:
3733 	mutex_unlock(&bp->hwrm_cmd_lock);
3734 	return rc;
3735 }
3736 
3737 static int bnxt_hwrm_ver_get(struct bnxt *bp)
3738 {
3739 	int rc;
3740 	struct hwrm_ver_get_input req = {0};
3741 	struct hwrm_ver_get_output *resp = bp->hwrm_cmd_resp_addr;
3742 
3743 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VER_GET, -1, -1);
3744 	req.hwrm_intf_maj = HWRM_VERSION_MAJOR;
3745 	req.hwrm_intf_min = HWRM_VERSION_MINOR;
3746 	req.hwrm_intf_upd = HWRM_VERSION_UPDATE;
3747 	mutex_lock(&bp->hwrm_cmd_lock);
3748 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3749 	if (rc)
3750 		goto hwrm_ver_get_exit;
3751 
3752 	memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
3753 
3754 	if (resp->hwrm_intf_maj < 1) {
3755 		netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
3756 			    resp->hwrm_intf_maj, resp->hwrm_intf_min,
3757 			    resp->hwrm_intf_upd);
3758 		netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
3759 	}
3760 	snprintf(bp->fw_ver_str, BC_HWRM_STR_LEN, "bc %d.%d.%d rm %d.%d.%d",
3761 		 resp->hwrm_fw_maj, resp->hwrm_fw_min, resp->hwrm_fw_bld,
3762 		 resp->hwrm_intf_maj, resp->hwrm_intf_min, resp->hwrm_intf_upd);
3763 
3764 hwrm_ver_get_exit:
3765 	mutex_unlock(&bp->hwrm_cmd_lock);
3766 	return rc;
3767 }
3768 
3769 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
3770 {
3771 	if (bp->vxlan_port_cnt) {
3772 		bnxt_hwrm_tunnel_dst_port_free(
3773 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
3774 	}
3775 	bp->vxlan_port_cnt = 0;
3776 	if (bp->nge_port_cnt) {
3777 		bnxt_hwrm_tunnel_dst_port_free(
3778 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
3779 	}
3780 	bp->nge_port_cnt = 0;
3781 }
3782 
3783 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
3784 {
3785 	int rc, i;
3786 	u32 tpa_flags = 0;
3787 
3788 	if (set_tpa)
3789 		tpa_flags = bp->flags & BNXT_FLAG_TPA;
3790 	for (i = 0; i < bp->nr_vnics; i++) {
3791 		rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
3792 		if (rc) {
3793 			netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
3794 				   rc, i);
3795 			return rc;
3796 		}
3797 	}
3798 	return 0;
3799 }
3800 
3801 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
3802 {
3803 	int i;
3804 
3805 	for (i = 0; i < bp->nr_vnics; i++)
3806 		bnxt_hwrm_vnic_set_rss(bp, i, false);
3807 }
3808 
3809 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
3810 				    bool irq_re_init)
3811 {
3812 	if (bp->vnic_info) {
3813 		bnxt_hwrm_clear_vnic_filter(bp);
3814 		/* clear all RSS setting before free vnic ctx */
3815 		bnxt_hwrm_clear_vnic_rss(bp);
3816 		bnxt_hwrm_vnic_ctx_free(bp);
3817 		/* before free the vnic, undo the vnic tpa settings */
3818 		if (bp->flags & BNXT_FLAG_TPA)
3819 			bnxt_set_tpa(bp, false);
3820 		bnxt_hwrm_vnic_free(bp);
3821 	}
3822 	bnxt_hwrm_ring_free(bp, close_path);
3823 	bnxt_hwrm_ring_grp_free(bp);
3824 	if (irq_re_init) {
3825 		bnxt_hwrm_stat_ctx_free(bp);
3826 		bnxt_hwrm_free_tunnel_ports(bp);
3827 	}
3828 }
3829 
3830 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
3831 {
3832 	int rc;
3833 
3834 	/* allocate context for vnic */
3835 	rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id);
3836 	if (rc) {
3837 		netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
3838 			   vnic_id, rc);
3839 		goto vnic_setup_err;
3840 	}
3841 	bp->rsscos_nr_ctxs++;
3842 
3843 	/* configure default vnic, ring grp */
3844 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
3845 	if (rc) {
3846 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
3847 			   vnic_id, rc);
3848 		goto vnic_setup_err;
3849 	}
3850 
3851 	/* Enable RSS hashing on vnic */
3852 	rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
3853 	if (rc) {
3854 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
3855 			   vnic_id, rc);
3856 		goto vnic_setup_err;
3857 	}
3858 
3859 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
3860 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
3861 		if (rc) {
3862 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
3863 				   vnic_id, rc);
3864 		}
3865 	}
3866 
3867 vnic_setup_err:
3868 	return rc;
3869 }
3870 
3871 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
3872 {
3873 #ifdef CONFIG_RFS_ACCEL
3874 	int i, rc = 0;
3875 
3876 	for (i = 0; i < bp->rx_nr_rings; i++) {
3877 		u16 vnic_id = i + 1;
3878 		u16 ring_id = i;
3879 
3880 		if (vnic_id >= bp->nr_vnics)
3881 			break;
3882 
3883 		bp->vnic_info[vnic_id].flags |= BNXT_VNIC_RFS_FLAG;
3884 		rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1);
3885 		if (rc) {
3886 			netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
3887 				   vnic_id, rc);
3888 			break;
3889 		}
3890 		rc = bnxt_setup_vnic(bp, vnic_id);
3891 		if (rc)
3892 			break;
3893 	}
3894 	return rc;
3895 #else
3896 	return 0;
3897 #endif
3898 }
3899 
3900 static int bnxt_cfg_rx_mode(struct bnxt *);
3901 
3902 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
3903 {
3904 	int rc = 0;
3905 
3906 	if (irq_re_init) {
3907 		rc = bnxt_hwrm_stat_ctx_alloc(bp);
3908 		if (rc) {
3909 			netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
3910 				   rc);
3911 			goto err_out;
3912 		}
3913 	}
3914 
3915 	rc = bnxt_hwrm_ring_alloc(bp);
3916 	if (rc) {
3917 		netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
3918 		goto err_out;
3919 	}
3920 
3921 	rc = bnxt_hwrm_ring_grp_alloc(bp);
3922 	if (rc) {
3923 		netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
3924 		goto err_out;
3925 	}
3926 
3927 	/* default vnic 0 */
3928 	rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, bp->rx_nr_rings);
3929 	if (rc) {
3930 		netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
3931 		goto err_out;
3932 	}
3933 
3934 	rc = bnxt_setup_vnic(bp, 0);
3935 	if (rc)
3936 		goto err_out;
3937 
3938 	if (bp->flags & BNXT_FLAG_RFS) {
3939 		rc = bnxt_alloc_rfs_vnics(bp);
3940 		if (rc)
3941 			goto err_out;
3942 	}
3943 
3944 	if (bp->flags & BNXT_FLAG_TPA) {
3945 		rc = bnxt_set_tpa(bp, true);
3946 		if (rc)
3947 			goto err_out;
3948 	}
3949 
3950 	if (BNXT_VF(bp))
3951 		bnxt_update_vf_mac(bp);
3952 
3953 	/* Filter for default vnic 0 */
3954 	rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
3955 	if (rc) {
3956 		netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
3957 		goto err_out;
3958 	}
3959 	bp->vnic_info[0].uc_filter_count = 1;
3960 
3961 	bp->vnic_info[0].rx_mask = CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
3962 
3963 	if ((bp->dev->flags & IFF_PROMISC) && BNXT_PF(bp))
3964 		bp->vnic_info[0].rx_mask |=
3965 				CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
3966 
3967 	rc = bnxt_cfg_rx_mode(bp);
3968 	if (rc)
3969 		goto err_out;
3970 
3971 	rc = bnxt_hwrm_set_coal(bp);
3972 	if (rc)
3973 		netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
3974 			    rc);
3975 
3976 	return 0;
3977 
3978 err_out:
3979 	bnxt_hwrm_resource_free(bp, 0, true);
3980 
3981 	return rc;
3982 }
3983 
3984 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
3985 {
3986 	bnxt_hwrm_resource_free(bp, 1, irq_re_init);
3987 	return 0;
3988 }
3989 
3990 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
3991 {
3992 	bnxt_init_rx_rings(bp);
3993 	bnxt_init_tx_rings(bp);
3994 	bnxt_init_ring_grps(bp, irq_re_init);
3995 	bnxt_init_vnics(bp);
3996 
3997 	return bnxt_init_chip(bp, irq_re_init);
3998 }
3999 
4000 static void bnxt_disable_int(struct bnxt *bp)
4001 {
4002 	int i;
4003 
4004 	if (!bp->bnapi)
4005 		return;
4006 
4007 	for (i = 0; i < bp->cp_nr_rings; i++) {
4008 		struct bnxt_napi *bnapi = bp->bnapi[i];
4009 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4010 
4011 		BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
4012 	}
4013 }
4014 
4015 static void bnxt_enable_int(struct bnxt *bp)
4016 {
4017 	int i;
4018 
4019 	atomic_set(&bp->intr_sem, 0);
4020 	for (i = 0; i < bp->cp_nr_rings; i++) {
4021 		struct bnxt_napi *bnapi = bp->bnapi[i];
4022 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4023 
4024 		BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
4025 	}
4026 }
4027 
4028 static int bnxt_set_real_num_queues(struct bnxt *bp)
4029 {
4030 	int rc;
4031 	struct net_device *dev = bp->dev;
4032 
4033 	rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings);
4034 	if (rc)
4035 		return rc;
4036 
4037 	rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
4038 	if (rc)
4039 		return rc;
4040 
4041 #ifdef CONFIG_RFS_ACCEL
4042 	if (bp->flags & BNXT_FLAG_RFS)
4043 		dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
4044 #endif
4045 
4046 	return rc;
4047 }
4048 
4049 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
4050 			   bool shared)
4051 {
4052 	int _rx = *rx, _tx = *tx;
4053 
4054 	if (shared) {
4055 		*rx = min_t(int, _rx, max);
4056 		*tx = min_t(int, _tx, max);
4057 	} else {
4058 		if (max < 2)
4059 			return -ENOMEM;
4060 
4061 		while (_rx + _tx > max) {
4062 			if (_rx > _tx && _rx > 1)
4063 				_rx--;
4064 			else if (_tx > 1)
4065 				_tx--;
4066 		}
4067 		*rx = _rx;
4068 		*tx = _tx;
4069 	}
4070 	return 0;
4071 }
4072 
4073 static int bnxt_setup_msix(struct bnxt *bp)
4074 {
4075 	struct msix_entry *msix_ent;
4076 	struct net_device *dev = bp->dev;
4077 	int i, total_vecs, rc = 0, min = 1;
4078 	const int len = sizeof(bp->irq_tbl[0].name);
4079 
4080 	bp->flags &= ~BNXT_FLAG_USING_MSIX;
4081 	total_vecs = bp->cp_nr_rings;
4082 
4083 	msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
4084 	if (!msix_ent)
4085 		return -ENOMEM;
4086 
4087 	for (i = 0; i < total_vecs; i++) {
4088 		msix_ent[i].entry = i;
4089 		msix_ent[i].vector = 0;
4090 	}
4091 
4092 	if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
4093 		min = 2;
4094 
4095 	total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
4096 	if (total_vecs < 0) {
4097 		rc = -ENODEV;
4098 		goto msix_setup_exit;
4099 	}
4100 
4101 	bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
4102 	if (bp->irq_tbl) {
4103 		int tcs;
4104 
4105 		/* Trim rings based upon num of vectors allocated */
4106 		rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
4107 				     total_vecs, min == 1);
4108 		if (rc)
4109 			goto msix_setup_exit;
4110 
4111 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
4112 		tcs = netdev_get_num_tc(dev);
4113 		if (tcs > 1) {
4114 			bp->tx_nr_rings_per_tc = bp->tx_nr_rings / tcs;
4115 			if (bp->tx_nr_rings_per_tc == 0) {
4116 				netdev_reset_tc(dev);
4117 				bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
4118 			} else {
4119 				int i, off, count;
4120 
4121 				bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tcs;
4122 				for (i = 0; i < tcs; i++) {
4123 					count = bp->tx_nr_rings_per_tc;
4124 					off = i * count;
4125 					netdev_set_tc_queue(dev, i, count, off);
4126 				}
4127 			}
4128 		}
4129 		bp->cp_nr_rings = total_vecs;
4130 
4131 		for (i = 0; i < bp->cp_nr_rings; i++) {
4132 			char *attr;
4133 
4134 			bp->irq_tbl[i].vector = msix_ent[i].vector;
4135 			if (bp->flags & BNXT_FLAG_SHARED_RINGS)
4136 				attr = "TxRx";
4137 			else if (i < bp->rx_nr_rings)
4138 				attr = "rx";
4139 			else
4140 				attr = "tx";
4141 
4142 			snprintf(bp->irq_tbl[i].name, len,
4143 				 "%s-%s-%d", dev->name, attr, i);
4144 			bp->irq_tbl[i].handler = bnxt_msix;
4145 		}
4146 		rc = bnxt_set_real_num_queues(bp);
4147 		if (rc)
4148 			goto msix_setup_exit;
4149 	} else {
4150 		rc = -ENOMEM;
4151 		goto msix_setup_exit;
4152 	}
4153 	bp->flags |= BNXT_FLAG_USING_MSIX;
4154 	kfree(msix_ent);
4155 	return 0;
4156 
4157 msix_setup_exit:
4158 	netdev_err(bp->dev, "bnxt_setup_msix err: %x\n", rc);
4159 	pci_disable_msix(bp->pdev);
4160 	kfree(msix_ent);
4161 	return rc;
4162 }
4163 
4164 static int bnxt_setup_inta(struct bnxt *bp)
4165 {
4166 	int rc;
4167 	const int len = sizeof(bp->irq_tbl[0].name);
4168 
4169 	if (netdev_get_num_tc(bp->dev))
4170 		netdev_reset_tc(bp->dev);
4171 
4172 	bp->irq_tbl = kcalloc(1, sizeof(struct bnxt_irq), GFP_KERNEL);
4173 	if (!bp->irq_tbl) {
4174 		rc = -ENOMEM;
4175 		return rc;
4176 	}
4177 	bp->rx_nr_rings = 1;
4178 	bp->tx_nr_rings = 1;
4179 	bp->cp_nr_rings = 1;
4180 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
4181 	bp->flags |= BNXT_FLAG_SHARED_RINGS;
4182 	bp->irq_tbl[0].vector = bp->pdev->irq;
4183 	snprintf(bp->irq_tbl[0].name, len,
4184 		 "%s-%s-%d", bp->dev->name, "TxRx", 0);
4185 	bp->irq_tbl[0].handler = bnxt_inta;
4186 	rc = bnxt_set_real_num_queues(bp);
4187 	return rc;
4188 }
4189 
4190 static int bnxt_setup_int_mode(struct bnxt *bp)
4191 {
4192 	int rc = 0;
4193 
4194 	if (bp->flags & BNXT_FLAG_MSIX_CAP)
4195 		rc = bnxt_setup_msix(bp);
4196 
4197 	if (!(bp->flags & BNXT_FLAG_USING_MSIX)) {
4198 		/* fallback to INTA */
4199 		rc = bnxt_setup_inta(bp);
4200 	}
4201 	return rc;
4202 }
4203 
4204 static void bnxt_free_irq(struct bnxt *bp)
4205 {
4206 	struct bnxt_irq *irq;
4207 	int i;
4208 
4209 #ifdef CONFIG_RFS_ACCEL
4210 	free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
4211 	bp->dev->rx_cpu_rmap = NULL;
4212 #endif
4213 	if (!bp->irq_tbl)
4214 		return;
4215 
4216 	for (i = 0; i < bp->cp_nr_rings; i++) {
4217 		irq = &bp->irq_tbl[i];
4218 		if (irq->requested)
4219 			free_irq(irq->vector, bp->bnapi[i]);
4220 		irq->requested = 0;
4221 	}
4222 	if (bp->flags & BNXT_FLAG_USING_MSIX)
4223 		pci_disable_msix(bp->pdev);
4224 	kfree(bp->irq_tbl);
4225 	bp->irq_tbl = NULL;
4226 }
4227 
4228 static int bnxt_request_irq(struct bnxt *bp)
4229 {
4230 	int i, j, rc = 0;
4231 	unsigned long flags = 0;
4232 #ifdef CONFIG_RFS_ACCEL
4233 	struct cpu_rmap *rmap = bp->dev->rx_cpu_rmap;
4234 #endif
4235 
4236 	if (!(bp->flags & BNXT_FLAG_USING_MSIX))
4237 		flags = IRQF_SHARED;
4238 
4239 	for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
4240 		struct bnxt_irq *irq = &bp->irq_tbl[i];
4241 #ifdef CONFIG_RFS_ACCEL
4242 		if (rmap && bp->bnapi[i]->rx_ring) {
4243 			rc = irq_cpu_rmap_add(rmap, irq->vector);
4244 			if (rc)
4245 				netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
4246 					    j);
4247 			j++;
4248 		}
4249 #endif
4250 		rc = request_irq(irq->vector, irq->handler, flags, irq->name,
4251 				 bp->bnapi[i]);
4252 		if (rc)
4253 			break;
4254 
4255 		irq->requested = 1;
4256 	}
4257 	return rc;
4258 }
4259 
4260 static void bnxt_del_napi(struct bnxt *bp)
4261 {
4262 	int i;
4263 
4264 	if (!bp->bnapi)
4265 		return;
4266 
4267 	for (i = 0; i < bp->cp_nr_rings; i++) {
4268 		struct bnxt_napi *bnapi = bp->bnapi[i];
4269 
4270 		napi_hash_del(&bnapi->napi);
4271 		netif_napi_del(&bnapi->napi);
4272 	}
4273 }
4274 
4275 static void bnxt_init_napi(struct bnxt *bp)
4276 {
4277 	int i;
4278 	struct bnxt_napi *bnapi;
4279 
4280 	if (bp->flags & BNXT_FLAG_USING_MSIX) {
4281 		for (i = 0; i < bp->cp_nr_rings; i++) {
4282 			bnapi = bp->bnapi[i];
4283 			netif_napi_add(bp->dev, &bnapi->napi,
4284 				       bnxt_poll, 64);
4285 		}
4286 	} else {
4287 		bnapi = bp->bnapi[0];
4288 		netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64);
4289 	}
4290 }
4291 
4292 static void bnxt_disable_napi(struct bnxt *bp)
4293 {
4294 	int i;
4295 
4296 	if (!bp->bnapi)
4297 		return;
4298 
4299 	for (i = 0; i < bp->cp_nr_rings; i++) {
4300 		napi_disable(&bp->bnapi[i]->napi);
4301 		bnxt_disable_poll(bp->bnapi[i]);
4302 	}
4303 }
4304 
4305 static void bnxt_enable_napi(struct bnxt *bp)
4306 {
4307 	int i;
4308 
4309 	for (i = 0; i < bp->cp_nr_rings; i++) {
4310 		bnxt_enable_poll(bp->bnapi[i]);
4311 		napi_enable(&bp->bnapi[i]->napi);
4312 	}
4313 }
4314 
4315 static void bnxt_tx_disable(struct bnxt *bp)
4316 {
4317 	int i;
4318 	struct bnxt_tx_ring_info *txr;
4319 	struct netdev_queue *txq;
4320 
4321 	if (bp->tx_ring) {
4322 		for (i = 0; i < bp->tx_nr_rings; i++) {
4323 			txr = &bp->tx_ring[i];
4324 			txq = netdev_get_tx_queue(bp->dev, i);
4325 			__netif_tx_lock(txq, smp_processor_id());
4326 			txr->dev_state = BNXT_DEV_STATE_CLOSING;
4327 			__netif_tx_unlock(txq);
4328 		}
4329 	}
4330 	/* Stop all TX queues */
4331 	netif_tx_disable(bp->dev);
4332 	netif_carrier_off(bp->dev);
4333 }
4334 
4335 static void bnxt_tx_enable(struct bnxt *bp)
4336 {
4337 	int i;
4338 	struct bnxt_tx_ring_info *txr;
4339 	struct netdev_queue *txq;
4340 
4341 	for (i = 0; i < bp->tx_nr_rings; i++) {
4342 		txr = &bp->tx_ring[i];
4343 		txq = netdev_get_tx_queue(bp->dev, i);
4344 		txr->dev_state = 0;
4345 	}
4346 	netif_tx_wake_all_queues(bp->dev);
4347 	if (bp->link_info.link_up)
4348 		netif_carrier_on(bp->dev);
4349 }
4350 
4351 static void bnxt_report_link(struct bnxt *bp)
4352 {
4353 	if (bp->link_info.link_up) {
4354 		const char *duplex;
4355 		const char *flow_ctrl;
4356 		u16 speed;
4357 
4358 		netif_carrier_on(bp->dev);
4359 		if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
4360 			duplex = "full";
4361 		else
4362 			duplex = "half";
4363 		if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
4364 			flow_ctrl = "ON - receive & transmit";
4365 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
4366 			flow_ctrl = "ON - transmit";
4367 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
4368 			flow_ctrl = "ON - receive";
4369 		else
4370 			flow_ctrl = "none";
4371 		speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
4372 		netdev_info(bp->dev, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
4373 			    speed, duplex, flow_ctrl);
4374 	} else {
4375 		netif_carrier_off(bp->dev);
4376 		netdev_err(bp->dev, "NIC Link is Down\n");
4377 	}
4378 }
4379 
4380 static int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
4381 {
4382 	int rc = 0;
4383 	struct bnxt_link_info *link_info = &bp->link_info;
4384 	struct hwrm_port_phy_qcfg_input req = {0};
4385 	struct hwrm_port_phy_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
4386 	u8 link_up = link_info->link_up;
4387 
4388 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCFG, -1, -1);
4389 
4390 	mutex_lock(&bp->hwrm_cmd_lock);
4391 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4392 	if (rc) {
4393 		mutex_unlock(&bp->hwrm_cmd_lock);
4394 		return rc;
4395 	}
4396 
4397 	memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
4398 	link_info->phy_link_status = resp->link;
4399 	link_info->duplex =  resp->duplex;
4400 	link_info->pause = resp->pause;
4401 	link_info->auto_mode = resp->auto_mode;
4402 	link_info->auto_pause_setting = resp->auto_pause;
4403 	link_info->force_pause_setting = resp->force_pause;
4404 	link_info->duplex_setting = resp->duplex;
4405 	if (link_info->phy_link_status == BNXT_LINK_LINK)
4406 		link_info->link_speed = le16_to_cpu(resp->link_speed);
4407 	else
4408 		link_info->link_speed = 0;
4409 	link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
4410 	link_info->auto_link_speed = le16_to_cpu(resp->auto_link_speed);
4411 	link_info->support_speeds = le16_to_cpu(resp->support_speeds);
4412 	link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
4413 	link_info->preemphasis = le32_to_cpu(resp->preemphasis);
4414 	link_info->phy_ver[0] = resp->phy_maj;
4415 	link_info->phy_ver[1] = resp->phy_min;
4416 	link_info->phy_ver[2] = resp->phy_bld;
4417 	link_info->media_type = resp->media_type;
4418 	link_info->transceiver = resp->transceiver_type;
4419 	link_info->phy_addr = resp->phy_addr;
4420 
4421 	/* TODO: need to add more logic to report VF link */
4422 	if (chng_link_state) {
4423 		if (link_info->phy_link_status == BNXT_LINK_LINK)
4424 			link_info->link_up = 1;
4425 		else
4426 			link_info->link_up = 0;
4427 		if (link_up != link_info->link_up)
4428 			bnxt_report_link(bp);
4429 	} else {
4430 		/* alwasy link down if not require to update link state */
4431 		link_info->link_up = 0;
4432 	}
4433 	mutex_unlock(&bp->hwrm_cmd_lock);
4434 	return 0;
4435 }
4436 
4437 static void
4438 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
4439 {
4440 	if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
4441 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
4442 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
4443 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
4444 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
4445 		req->enables |=
4446 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
4447 	} else {
4448 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
4449 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
4450 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
4451 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
4452 		req->enables |=
4453 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
4454 	}
4455 }
4456 
4457 static void bnxt_hwrm_set_link_common(struct bnxt *bp,
4458 				      struct hwrm_port_phy_cfg_input *req)
4459 {
4460 	u8 autoneg = bp->link_info.autoneg;
4461 	u16 fw_link_speed = bp->link_info.req_link_speed;
4462 	u32 advertising = bp->link_info.advertising;
4463 
4464 	if (autoneg & BNXT_AUTONEG_SPEED) {
4465 		req->auto_mode |=
4466 			PORT_PHY_CFG_REQ_AUTO_MODE_MASK;
4467 
4468 		req->enables |= cpu_to_le32(
4469 			PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
4470 		req->auto_link_speed_mask = cpu_to_le16(advertising);
4471 
4472 		req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
4473 		req->flags |=
4474 			cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
4475 	} else {
4476 		req->force_link_speed = cpu_to_le16(fw_link_speed);
4477 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
4478 	}
4479 
4480 	/* currently don't support half duplex */
4481 	req->auto_duplex = PORT_PHY_CFG_REQ_AUTO_DUPLEX_FULL;
4482 	req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_DUPLEX);
4483 	/* tell chimp that the setting takes effect immediately */
4484 	req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
4485 }
4486 
4487 int bnxt_hwrm_set_pause(struct bnxt *bp)
4488 {
4489 	struct hwrm_port_phy_cfg_input req = {0};
4490 	int rc;
4491 
4492 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
4493 	bnxt_hwrm_set_pause_common(bp, &req);
4494 
4495 	if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
4496 	    bp->link_info.force_link_chng)
4497 		bnxt_hwrm_set_link_common(bp, &req);
4498 
4499 	mutex_lock(&bp->hwrm_cmd_lock);
4500 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4501 	if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
4502 		/* since changing of pause setting doesn't trigger any link
4503 		 * change event, the driver needs to update the current pause
4504 		 * result upon successfully return of the phy_cfg command
4505 		 */
4506 		bp->link_info.pause =
4507 		bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
4508 		bp->link_info.auto_pause_setting = 0;
4509 		if (!bp->link_info.force_link_chng)
4510 			bnxt_report_link(bp);
4511 	}
4512 	bp->link_info.force_link_chng = false;
4513 	mutex_unlock(&bp->hwrm_cmd_lock);
4514 	return rc;
4515 }
4516 
4517 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause)
4518 {
4519 	struct hwrm_port_phy_cfg_input req = {0};
4520 
4521 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
4522 	if (set_pause)
4523 		bnxt_hwrm_set_pause_common(bp, &req);
4524 
4525 	bnxt_hwrm_set_link_common(bp, &req);
4526 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4527 }
4528 
4529 static int bnxt_update_phy_setting(struct bnxt *bp)
4530 {
4531 	int rc;
4532 	bool update_link = false;
4533 	bool update_pause = false;
4534 	struct bnxt_link_info *link_info = &bp->link_info;
4535 
4536 	rc = bnxt_update_link(bp, true);
4537 	if (rc) {
4538 		netdev_err(bp->dev, "failed to update link (rc: %x)\n",
4539 			   rc);
4540 		return rc;
4541 	}
4542 	if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
4543 	    link_info->auto_pause_setting != link_info->req_flow_ctrl)
4544 		update_pause = true;
4545 	if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
4546 	    link_info->force_pause_setting != link_info->req_flow_ctrl)
4547 		update_pause = true;
4548 	if (link_info->req_duplex != link_info->duplex_setting)
4549 		update_link = true;
4550 	if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
4551 		if (BNXT_AUTO_MODE(link_info->auto_mode))
4552 			update_link = true;
4553 		if (link_info->req_link_speed != link_info->force_link_speed)
4554 			update_link = true;
4555 	} else {
4556 		if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
4557 			update_link = true;
4558 		if (link_info->advertising != link_info->auto_link_speeds)
4559 			update_link = true;
4560 		if (link_info->req_link_speed != link_info->auto_link_speed)
4561 			update_link = true;
4562 	}
4563 
4564 	if (update_link)
4565 		rc = bnxt_hwrm_set_link_setting(bp, update_pause);
4566 	else if (update_pause)
4567 		rc = bnxt_hwrm_set_pause(bp);
4568 	if (rc) {
4569 		netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
4570 			   rc);
4571 		return rc;
4572 	}
4573 
4574 	return rc;
4575 }
4576 
4577 /* Common routine to pre-map certain register block to different GRC window.
4578  * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
4579  * in PF and 3 windows in VF that can be customized to map in different
4580  * register blocks.
4581  */
4582 static void bnxt_preset_reg_win(struct bnxt *bp)
4583 {
4584 	if (BNXT_PF(bp)) {
4585 		/* CAG registers map to GRC window #4 */
4586 		writel(BNXT_CAG_REG_BASE,
4587 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
4588 	}
4589 }
4590 
4591 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
4592 {
4593 	int rc = 0;
4594 
4595 	bnxt_preset_reg_win(bp);
4596 	netif_carrier_off(bp->dev);
4597 	if (irq_re_init) {
4598 		rc = bnxt_setup_int_mode(bp);
4599 		if (rc) {
4600 			netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
4601 				   rc);
4602 			return rc;
4603 		}
4604 	}
4605 	if ((bp->flags & BNXT_FLAG_RFS) &&
4606 	    !(bp->flags & BNXT_FLAG_USING_MSIX)) {
4607 		/* disable RFS if falling back to INTA */
4608 		bp->dev->hw_features &= ~NETIF_F_NTUPLE;
4609 		bp->flags &= ~BNXT_FLAG_RFS;
4610 	}
4611 
4612 	rc = bnxt_alloc_mem(bp, irq_re_init);
4613 	if (rc) {
4614 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
4615 		goto open_err_free_mem;
4616 	}
4617 
4618 	if (irq_re_init) {
4619 		bnxt_init_napi(bp);
4620 		rc = bnxt_request_irq(bp);
4621 		if (rc) {
4622 			netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
4623 			goto open_err;
4624 		}
4625 	}
4626 
4627 	bnxt_enable_napi(bp);
4628 
4629 	rc = bnxt_init_nic(bp, irq_re_init);
4630 	if (rc) {
4631 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
4632 		goto open_err;
4633 	}
4634 
4635 	if (link_re_init) {
4636 		rc = bnxt_update_phy_setting(bp);
4637 		if (rc)
4638 			goto open_err;
4639 	}
4640 
4641 	if (irq_re_init) {
4642 #if defined(CONFIG_VXLAN) || defined(CONFIG_VXLAN_MODULE)
4643 		vxlan_get_rx_port(bp->dev);
4644 #endif
4645 		if (!bnxt_hwrm_tunnel_dst_port_alloc(
4646 				bp, htons(0x17c1),
4647 				TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE))
4648 			bp->nge_port_cnt = 1;
4649 	}
4650 
4651 	set_bit(BNXT_STATE_OPEN, &bp->state);
4652 	bnxt_enable_int(bp);
4653 	/* Enable TX queues */
4654 	bnxt_tx_enable(bp);
4655 	mod_timer(&bp->timer, jiffies + bp->current_interval);
4656 
4657 	return 0;
4658 
4659 open_err:
4660 	bnxt_disable_napi(bp);
4661 	bnxt_del_napi(bp);
4662 
4663 open_err_free_mem:
4664 	bnxt_free_skbs(bp);
4665 	bnxt_free_irq(bp);
4666 	bnxt_free_mem(bp, true);
4667 	return rc;
4668 }
4669 
4670 /* rtnl_lock held */
4671 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
4672 {
4673 	int rc = 0;
4674 
4675 	rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
4676 	if (rc) {
4677 		netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
4678 		dev_close(bp->dev);
4679 	}
4680 	return rc;
4681 }
4682 
4683 static int bnxt_open(struct net_device *dev)
4684 {
4685 	struct bnxt *bp = netdev_priv(dev);
4686 	int rc = 0;
4687 
4688 	rc = bnxt_hwrm_func_reset(bp);
4689 	if (rc) {
4690 		netdev_err(bp->dev, "hwrm chip reset failure rc: %x\n",
4691 			   rc);
4692 		rc = -1;
4693 		return rc;
4694 	}
4695 	return __bnxt_open_nic(bp, true, true);
4696 }
4697 
4698 static void bnxt_disable_int_sync(struct bnxt *bp)
4699 {
4700 	int i;
4701 
4702 	atomic_inc(&bp->intr_sem);
4703 	if (!netif_running(bp->dev))
4704 		return;
4705 
4706 	bnxt_disable_int(bp);
4707 	for (i = 0; i < bp->cp_nr_rings; i++)
4708 		synchronize_irq(bp->irq_tbl[i].vector);
4709 }
4710 
4711 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
4712 {
4713 	int rc = 0;
4714 
4715 #ifdef CONFIG_BNXT_SRIOV
4716 	if (bp->sriov_cfg) {
4717 		rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
4718 						      !bp->sriov_cfg,
4719 						      BNXT_SRIOV_CFG_WAIT_TMO);
4720 		if (rc)
4721 			netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
4722 	}
4723 #endif
4724 	/* Change device state to avoid TX queue wake up's */
4725 	bnxt_tx_disable(bp);
4726 
4727 	clear_bit(BNXT_STATE_OPEN, &bp->state);
4728 	smp_mb__after_atomic();
4729 	while (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state))
4730 		msleep(20);
4731 
4732 	/* Flush rings before disabling interrupts */
4733 	bnxt_shutdown_nic(bp, irq_re_init);
4734 
4735 	/* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
4736 
4737 	bnxt_disable_napi(bp);
4738 	bnxt_disable_int_sync(bp);
4739 	del_timer_sync(&bp->timer);
4740 	bnxt_free_skbs(bp);
4741 
4742 	if (irq_re_init) {
4743 		bnxt_free_irq(bp);
4744 		bnxt_del_napi(bp);
4745 	}
4746 	bnxt_free_mem(bp, irq_re_init);
4747 	return rc;
4748 }
4749 
4750 static int bnxt_close(struct net_device *dev)
4751 {
4752 	struct bnxt *bp = netdev_priv(dev);
4753 
4754 	bnxt_close_nic(bp, true, true);
4755 	return 0;
4756 }
4757 
4758 /* rtnl_lock held */
4759 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4760 {
4761 	switch (cmd) {
4762 	case SIOCGMIIPHY:
4763 		/* fallthru */
4764 	case SIOCGMIIREG: {
4765 		if (!netif_running(dev))
4766 			return -EAGAIN;
4767 
4768 		return 0;
4769 	}
4770 
4771 	case SIOCSMIIREG:
4772 		if (!netif_running(dev))
4773 			return -EAGAIN;
4774 
4775 		return 0;
4776 
4777 	default:
4778 		/* do nothing */
4779 		break;
4780 	}
4781 	return -EOPNOTSUPP;
4782 }
4783 
4784 static struct rtnl_link_stats64 *
4785 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
4786 {
4787 	u32 i;
4788 	struct bnxt *bp = netdev_priv(dev);
4789 
4790 	memset(stats, 0, sizeof(struct rtnl_link_stats64));
4791 
4792 	if (!bp->bnapi)
4793 		return stats;
4794 
4795 	/* TODO check if we need to synchronize with bnxt_close path */
4796 	for (i = 0; i < bp->cp_nr_rings; i++) {
4797 		struct bnxt_napi *bnapi = bp->bnapi[i];
4798 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4799 		struct ctx_hw_stats *hw_stats = cpr->hw_stats;
4800 
4801 		stats->rx_packets += le64_to_cpu(hw_stats->rx_ucast_pkts);
4802 		stats->rx_packets += le64_to_cpu(hw_stats->rx_mcast_pkts);
4803 		stats->rx_packets += le64_to_cpu(hw_stats->rx_bcast_pkts);
4804 
4805 		stats->tx_packets += le64_to_cpu(hw_stats->tx_ucast_pkts);
4806 		stats->tx_packets += le64_to_cpu(hw_stats->tx_mcast_pkts);
4807 		stats->tx_packets += le64_to_cpu(hw_stats->tx_bcast_pkts);
4808 
4809 		stats->rx_bytes += le64_to_cpu(hw_stats->rx_ucast_bytes);
4810 		stats->rx_bytes += le64_to_cpu(hw_stats->rx_mcast_bytes);
4811 		stats->rx_bytes += le64_to_cpu(hw_stats->rx_bcast_bytes);
4812 
4813 		stats->tx_bytes += le64_to_cpu(hw_stats->tx_ucast_bytes);
4814 		stats->tx_bytes += le64_to_cpu(hw_stats->tx_mcast_bytes);
4815 		stats->tx_bytes += le64_to_cpu(hw_stats->tx_bcast_bytes);
4816 
4817 		stats->rx_missed_errors +=
4818 			le64_to_cpu(hw_stats->rx_discard_pkts);
4819 
4820 		stats->multicast += le64_to_cpu(hw_stats->rx_mcast_pkts);
4821 
4822 		stats->rx_dropped += le64_to_cpu(hw_stats->rx_drop_pkts);
4823 
4824 		stats->tx_dropped += le64_to_cpu(hw_stats->tx_drop_pkts);
4825 	}
4826 
4827 	return stats;
4828 }
4829 
4830 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
4831 {
4832 	struct net_device *dev = bp->dev;
4833 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
4834 	struct netdev_hw_addr *ha;
4835 	u8 *haddr;
4836 	int mc_count = 0;
4837 	bool update = false;
4838 	int off = 0;
4839 
4840 	netdev_for_each_mc_addr(ha, dev) {
4841 		if (mc_count >= BNXT_MAX_MC_ADDRS) {
4842 			*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
4843 			vnic->mc_list_count = 0;
4844 			return false;
4845 		}
4846 		haddr = ha->addr;
4847 		if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
4848 			memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
4849 			update = true;
4850 		}
4851 		off += ETH_ALEN;
4852 		mc_count++;
4853 	}
4854 	if (mc_count)
4855 		*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
4856 
4857 	if (mc_count != vnic->mc_list_count) {
4858 		vnic->mc_list_count = mc_count;
4859 		update = true;
4860 	}
4861 	return update;
4862 }
4863 
4864 static bool bnxt_uc_list_updated(struct bnxt *bp)
4865 {
4866 	struct net_device *dev = bp->dev;
4867 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
4868 	struct netdev_hw_addr *ha;
4869 	int off = 0;
4870 
4871 	if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
4872 		return true;
4873 
4874 	netdev_for_each_uc_addr(ha, dev) {
4875 		if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
4876 			return true;
4877 
4878 		off += ETH_ALEN;
4879 	}
4880 	return false;
4881 }
4882 
4883 static void bnxt_set_rx_mode(struct net_device *dev)
4884 {
4885 	struct bnxt *bp = netdev_priv(dev);
4886 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
4887 	u32 mask = vnic->rx_mask;
4888 	bool mc_update = false;
4889 	bool uc_update;
4890 
4891 	if (!netif_running(dev))
4892 		return;
4893 
4894 	mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
4895 		  CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
4896 		  CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST);
4897 
4898 	/* Only allow PF to be in promiscuous mode */
4899 	if ((dev->flags & IFF_PROMISC) && BNXT_PF(bp))
4900 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
4901 
4902 	uc_update = bnxt_uc_list_updated(bp);
4903 
4904 	if (dev->flags & IFF_ALLMULTI) {
4905 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
4906 		vnic->mc_list_count = 0;
4907 	} else {
4908 		mc_update = bnxt_mc_list_updated(bp, &mask);
4909 	}
4910 
4911 	if (mask != vnic->rx_mask || uc_update || mc_update) {
4912 		vnic->rx_mask = mask;
4913 
4914 		set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
4915 		schedule_work(&bp->sp_task);
4916 	}
4917 }
4918 
4919 static int bnxt_cfg_rx_mode(struct bnxt *bp)
4920 {
4921 	struct net_device *dev = bp->dev;
4922 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
4923 	struct netdev_hw_addr *ha;
4924 	int i, off = 0, rc;
4925 	bool uc_update;
4926 
4927 	netif_addr_lock_bh(dev);
4928 	uc_update = bnxt_uc_list_updated(bp);
4929 	netif_addr_unlock_bh(dev);
4930 
4931 	if (!uc_update)
4932 		goto skip_uc;
4933 
4934 	mutex_lock(&bp->hwrm_cmd_lock);
4935 	for (i = 1; i < vnic->uc_filter_count; i++) {
4936 		struct hwrm_cfa_l2_filter_free_input req = {0};
4937 
4938 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_FREE, -1,
4939 				       -1);
4940 
4941 		req.l2_filter_id = vnic->fw_l2_filter_id[i];
4942 
4943 		rc = _hwrm_send_message(bp, &req, sizeof(req),
4944 					HWRM_CMD_TIMEOUT);
4945 	}
4946 	mutex_unlock(&bp->hwrm_cmd_lock);
4947 
4948 	vnic->uc_filter_count = 1;
4949 
4950 	netif_addr_lock_bh(dev);
4951 	if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
4952 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
4953 	} else {
4954 		netdev_for_each_uc_addr(ha, dev) {
4955 			memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
4956 			off += ETH_ALEN;
4957 			vnic->uc_filter_count++;
4958 		}
4959 	}
4960 	netif_addr_unlock_bh(dev);
4961 
4962 	for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
4963 		rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
4964 		if (rc) {
4965 			netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n",
4966 				   rc);
4967 			vnic->uc_filter_count = i;
4968 			return rc;
4969 		}
4970 	}
4971 
4972 skip_uc:
4973 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
4974 	if (rc)
4975 		netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %x\n",
4976 			   rc);
4977 
4978 	return rc;
4979 }
4980 
4981 static bool bnxt_rfs_capable(struct bnxt *bp)
4982 {
4983 #ifdef CONFIG_RFS_ACCEL
4984 	struct bnxt_pf_info *pf = &bp->pf;
4985 	int vnics;
4986 
4987 	if (BNXT_VF(bp) || !(bp->flags & BNXT_FLAG_MSIX_CAP))
4988 		return false;
4989 
4990 	vnics = 1 + bp->rx_nr_rings;
4991 	if (vnics > pf->max_rsscos_ctxs || vnics > pf->max_vnics)
4992 		return false;
4993 
4994 	return true;
4995 #else
4996 	return false;
4997 #endif
4998 }
4999 
5000 static netdev_features_t bnxt_fix_features(struct net_device *dev,
5001 					   netdev_features_t features)
5002 {
5003 	struct bnxt *bp = netdev_priv(dev);
5004 
5005 	if (!bnxt_rfs_capable(bp))
5006 		features &= ~NETIF_F_NTUPLE;
5007 	return features;
5008 }
5009 
5010 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
5011 {
5012 	struct bnxt *bp = netdev_priv(dev);
5013 	u32 flags = bp->flags;
5014 	u32 changes;
5015 	int rc = 0;
5016 	bool re_init = false;
5017 	bool update_tpa = false;
5018 
5019 	flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
5020 	if ((features & NETIF_F_GRO) && (bp->pdev->revision > 0))
5021 		flags |= BNXT_FLAG_GRO;
5022 	if (features & NETIF_F_LRO)
5023 		flags |= BNXT_FLAG_LRO;
5024 
5025 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
5026 		flags |= BNXT_FLAG_STRIP_VLAN;
5027 
5028 	if (features & NETIF_F_NTUPLE)
5029 		flags |= BNXT_FLAG_RFS;
5030 
5031 	changes = flags ^ bp->flags;
5032 	if (changes & BNXT_FLAG_TPA) {
5033 		update_tpa = true;
5034 		if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
5035 		    (flags & BNXT_FLAG_TPA) == 0)
5036 			re_init = true;
5037 	}
5038 
5039 	if (changes & ~BNXT_FLAG_TPA)
5040 		re_init = true;
5041 
5042 	if (flags != bp->flags) {
5043 		u32 old_flags = bp->flags;
5044 
5045 		bp->flags = flags;
5046 
5047 		if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
5048 			if (update_tpa)
5049 				bnxt_set_ring_params(bp);
5050 			return rc;
5051 		}
5052 
5053 		if (re_init) {
5054 			bnxt_close_nic(bp, false, false);
5055 			if (update_tpa)
5056 				bnxt_set_ring_params(bp);
5057 
5058 			return bnxt_open_nic(bp, false, false);
5059 		}
5060 		if (update_tpa) {
5061 			rc = bnxt_set_tpa(bp,
5062 					  (flags & BNXT_FLAG_TPA) ?
5063 					  true : false);
5064 			if (rc)
5065 				bp->flags = old_flags;
5066 		}
5067 	}
5068 	return rc;
5069 }
5070 
5071 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
5072 {
5073 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
5074 	int i = bnapi->index;
5075 
5076 	if (!txr)
5077 		return;
5078 
5079 	netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
5080 		    i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
5081 		    txr->tx_cons);
5082 }
5083 
5084 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
5085 {
5086 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
5087 	int i = bnapi->index;
5088 
5089 	if (!rxr)
5090 		return;
5091 
5092 	netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
5093 		    i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
5094 		    rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
5095 		    rxr->rx_sw_agg_prod);
5096 }
5097 
5098 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
5099 {
5100 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5101 	int i = bnapi->index;
5102 
5103 	netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
5104 		    i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
5105 }
5106 
5107 static void bnxt_dbg_dump_states(struct bnxt *bp)
5108 {
5109 	int i;
5110 	struct bnxt_napi *bnapi;
5111 
5112 	for (i = 0; i < bp->cp_nr_rings; i++) {
5113 		bnapi = bp->bnapi[i];
5114 		if (netif_msg_drv(bp)) {
5115 			bnxt_dump_tx_sw_state(bnapi);
5116 			bnxt_dump_rx_sw_state(bnapi);
5117 			bnxt_dump_cp_sw_state(bnapi);
5118 		}
5119 	}
5120 }
5121 
5122 static void bnxt_reset_task(struct bnxt *bp)
5123 {
5124 	bnxt_dbg_dump_states(bp);
5125 	if (netif_running(bp->dev)) {
5126 		bnxt_close_nic(bp, false, false);
5127 		bnxt_open_nic(bp, false, false);
5128 	}
5129 }
5130 
5131 static void bnxt_tx_timeout(struct net_device *dev)
5132 {
5133 	struct bnxt *bp = netdev_priv(dev);
5134 
5135 	netdev_err(bp->dev,  "TX timeout detected, starting reset task!\n");
5136 	set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
5137 	schedule_work(&bp->sp_task);
5138 }
5139 
5140 #ifdef CONFIG_NET_POLL_CONTROLLER
5141 static void bnxt_poll_controller(struct net_device *dev)
5142 {
5143 	struct bnxt *bp = netdev_priv(dev);
5144 	int i;
5145 
5146 	for (i = 0; i < bp->cp_nr_rings; i++) {
5147 		struct bnxt_irq *irq = &bp->irq_tbl[i];
5148 
5149 		disable_irq(irq->vector);
5150 		irq->handler(irq->vector, bp->bnapi[i]);
5151 		enable_irq(irq->vector);
5152 	}
5153 }
5154 #endif
5155 
5156 static void bnxt_timer(unsigned long data)
5157 {
5158 	struct bnxt *bp = (struct bnxt *)data;
5159 	struct net_device *dev = bp->dev;
5160 
5161 	if (!netif_running(dev))
5162 		return;
5163 
5164 	if (atomic_read(&bp->intr_sem) != 0)
5165 		goto bnxt_restart_timer;
5166 
5167 bnxt_restart_timer:
5168 	mod_timer(&bp->timer, jiffies + bp->current_interval);
5169 }
5170 
5171 static void bnxt_cfg_ntp_filters(struct bnxt *);
5172 
5173 static void bnxt_sp_task(struct work_struct *work)
5174 {
5175 	struct bnxt *bp = container_of(work, struct bnxt, sp_task);
5176 	int rc;
5177 
5178 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5179 	smp_mb__after_atomic();
5180 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
5181 		clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5182 		return;
5183 	}
5184 
5185 	if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
5186 		bnxt_cfg_rx_mode(bp);
5187 
5188 	if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
5189 		bnxt_cfg_ntp_filters(bp);
5190 	if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
5191 		rc = bnxt_update_link(bp, true);
5192 		if (rc)
5193 			netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
5194 				   rc);
5195 	}
5196 	if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
5197 		bnxt_hwrm_exec_fwd_req(bp);
5198 	if (test_and_clear_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event)) {
5199 		bnxt_hwrm_tunnel_dst_port_alloc(
5200 			bp, bp->vxlan_port,
5201 			TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
5202 	}
5203 	if (test_and_clear_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event)) {
5204 		bnxt_hwrm_tunnel_dst_port_free(
5205 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
5206 	}
5207 	if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event)) {
5208 		/* bnxt_reset_task() calls bnxt_close_nic() which waits
5209 		 * for BNXT_STATE_IN_SP_TASK to clear.
5210 		 */
5211 		clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5212 		rtnl_lock();
5213 		bnxt_reset_task(bp);
5214 		set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5215 		rtnl_unlock();
5216 	}
5217 
5218 	smp_mb__before_atomic();
5219 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5220 }
5221 
5222 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
5223 {
5224 	int rc;
5225 	struct bnxt *bp = netdev_priv(dev);
5226 
5227 	SET_NETDEV_DEV(dev, &pdev->dev);
5228 
5229 	/* enable device (incl. PCI PM wakeup), and bus-mastering */
5230 	rc = pci_enable_device(pdev);
5231 	if (rc) {
5232 		dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
5233 		goto init_err;
5234 	}
5235 
5236 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
5237 		dev_err(&pdev->dev,
5238 			"Cannot find PCI device base address, aborting\n");
5239 		rc = -ENODEV;
5240 		goto init_err_disable;
5241 	}
5242 
5243 	rc = pci_request_regions(pdev, DRV_MODULE_NAME);
5244 	if (rc) {
5245 		dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
5246 		goto init_err_disable;
5247 	}
5248 
5249 	if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
5250 	    dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
5251 		dev_err(&pdev->dev, "System does not support DMA, aborting\n");
5252 		goto init_err_disable;
5253 	}
5254 
5255 	pci_set_master(pdev);
5256 
5257 	bp->dev = dev;
5258 	bp->pdev = pdev;
5259 
5260 	bp->bar0 = pci_ioremap_bar(pdev, 0);
5261 	if (!bp->bar0) {
5262 		dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
5263 		rc = -ENOMEM;
5264 		goto init_err_release;
5265 	}
5266 
5267 	bp->bar1 = pci_ioremap_bar(pdev, 2);
5268 	if (!bp->bar1) {
5269 		dev_err(&pdev->dev, "Cannot map doorbell registers, aborting\n");
5270 		rc = -ENOMEM;
5271 		goto init_err_release;
5272 	}
5273 
5274 	bp->bar2 = pci_ioremap_bar(pdev, 4);
5275 	if (!bp->bar2) {
5276 		dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
5277 		rc = -ENOMEM;
5278 		goto init_err_release;
5279 	}
5280 
5281 	INIT_WORK(&bp->sp_task, bnxt_sp_task);
5282 
5283 	spin_lock_init(&bp->ntp_fltr_lock);
5284 
5285 	bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
5286 	bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
5287 
5288 	bp->coal_ticks = BNXT_USEC_TO_COAL_TIMER(4);
5289 	bp->coal_bufs = 20;
5290 	bp->coal_ticks_irq = BNXT_USEC_TO_COAL_TIMER(1);
5291 	bp->coal_bufs_irq = 2;
5292 
5293 	init_timer(&bp->timer);
5294 	bp->timer.data = (unsigned long)bp;
5295 	bp->timer.function = bnxt_timer;
5296 	bp->current_interval = BNXT_TIMER_INTERVAL;
5297 
5298 	clear_bit(BNXT_STATE_OPEN, &bp->state);
5299 
5300 	return 0;
5301 
5302 init_err_release:
5303 	if (bp->bar2) {
5304 		pci_iounmap(pdev, bp->bar2);
5305 		bp->bar2 = NULL;
5306 	}
5307 
5308 	if (bp->bar1) {
5309 		pci_iounmap(pdev, bp->bar1);
5310 		bp->bar1 = NULL;
5311 	}
5312 
5313 	if (bp->bar0) {
5314 		pci_iounmap(pdev, bp->bar0);
5315 		bp->bar0 = NULL;
5316 	}
5317 
5318 	pci_release_regions(pdev);
5319 
5320 init_err_disable:
5321 	pci_disable_device(pdev);
5322 
5323 init_err:
5324 	return rc;
5325 }
5326 
5327 /* rtnl_lock held */
5328 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
5329 {
5330 	struct sockaddr *addr = p;
5331 	struct bnxt *bp = netdev_priv(dev);
5332 	int rc = 0;
5333 
5334 	if (!is_valid_ether_addr(addr->sa_data))
5335 		return -EADDRNOTAVAIL;
5336 
5337 #ifdef CONFIG_BNXT_SRIOV
5338 	if (BNXT_VF(bp) && is_valid_ether_addr(bp->vf.mac_addr))
5339 		return -EADDRNOTAVAIL;
5340 #endif
5341 
5342 	if (ether_addr_equal(addr->sa_data, dev->dev_addr))
5343 		return 0;
5344 
5345 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5346 	if (netif_running(dev)) {
5347 		bnxt_close_nic(bp, false, false);
5348 		rc = bnxt_open_nic(bp, false, false);
5349 	}
5350 
5351 	return rc;
5352 }
5353 
5354 /* rtnl_lock held */
5355 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
5356 {
5357 	struct bnxt *bp = netdev_priv(dev);
5358 
5359 	if (new_mtu < 60 || new_mtu > 9000)
5360 		return -EINVAL;
5361 
5362 	if (netif_running(dev))
5363 		bnxt_close_nic(bp, false, false);
5364 
5365 	dev->mtu = new_mtu;
5366 	bnxt_set_ring_params(bp);
5367 
5368 	if (netif_running(dev))
5369 		return bnxt_open_nic(bp, false, false);
5370 
5371 	return 0;
5372 }
5373 
5374 static int bnxt_setup_tc(struct net_device *dev, u8 tc)
5375 {
5376 	struct bnxt *bp = netdev_priv(dev);
5377 
5378 	if (tc > bp->max_tc) {
5379 		netdev_err(dev, "too many traffic classes requested: %d Max supported is %d\n",
5380 			   tc, bp->max_tc);
5381 		return -EINVAL;
5382 	}
5383 
5384 	if (netdev_get_num_tc(dev) == tc)
5385 		return 0;
5386 
5387 	if (tc) {
5388 		int max_rx_rings, max_tx_rings, rc;
5389 		bool sh = false;
5390 
5391 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
5392 			sh = true;
5393 
5394 		rc = bnxt_get_max_rings(bp, &max_rx_rings, &max_tx_rings, sh);
5395 		if (rc || bp->tx_nr_rings_per_tc * tc > max_tx_rings)
5396 			return -ENOMEM;
5397 	}
5398 
5399 	/* Needs to close the device and do hw resource re-allocations */
5400 	if (netif_running(bp->dev))
5401 		bnxt_close_nic(bp, true, false);
5402 
5403 	if (tc) {
5404 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
5405 		netdev_set_num_tc(dev, tc);
5406 	} else {
5407 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
5408 		netdev_reset_tc(dev);
5409 	}
5410 	bp->cp_nr_rings = max_t(int, bp->tx_nr_rings, bp->rx_nr_rings);
5411 	bp->num_stat_ctxs = bp->cp_nr_rings;
5412 
5413 	if (netif_running(bp->dev))
5414 		return bnxt_open_nic(bp, true, false);
5415 
5416 	return 0;
5417 }
5418 
5419 #ifdef CONFIG_RFS_ACCEL
5420 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
5421 			    struct bnxt_ntuple_filter *f2)
5422 {
5423 	struct flow_keys *keys1 = &f1->fkeys;
5424 	struct flow_keys *keys2 = &f2->fkeys;
5425 
5426 	if (keys1->addrs.v4addrs.src == keys2->addrs.v4addrs.src &&
5427 	    keys1->addrs.v4addrs.dst == keys2->addrs.v4addrs.dst &&
5428 	    keys1->ports.ports == keys2->ports.ports &&
5429 	    keys1->basic.ip_proto == keys2->basic.ip_proto &&
5430 	    keys1->basic.n_proto == keys2->basic.n_proto &&
5431 	    ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr))
5432 		return true;
5433 
5434 	return false;
5435 }
5436 
5437 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
5438 			      u16 rxq_index, u32 flow_id)
5439 {
5440 	struct bnxt *bp = netdev_priv(dev);
5441 	struct bnxt_ntuple_filter *fltr, *new_fltr;
5442 	struct flow_keys *fkeys;
5443 	struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
5444 	int rc = 0, idx, bit_id;
5445 	struct hlist_head *head;
5446 
5447 	if (skb->encapsulation)
5448 		return -EPROTONOSUPPORT;
5449 
5450 	new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
5451 	if (!new_fltr)
5452 		return -ENOMEM;
5453 
5454 	fkeys = &new_fltr->fkeys;
5455 	if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
5456 		rc = -EPROTONOSUPPORT;
5457 		goto err_free;
5458 	}
5459 
5460 	if ((fkeys->basic.n_proto != htons(ETH_P_IP)) ||
5461 	    ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
5462 	     (fkeys->basic.ip_proto != IPPROTO_UDP))) {
5463 		rc = -EPROTONOSUPPORT;
5464 		goto err_free;
5465 	}
5466 
5467 	memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
5468 
5469 	idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
5470 	head = &bp->ntp_fltr_hash_tbl[idx];
5471 	rcu_read_lock();
5472 	hlist_for_each_entry_rcu(fltr, head, hash) {
5473 		if (bnxt_fltr_match(fltr, new_fltr)) {
5474 			rcu_read_unlock();
5475 			rc = 0;
5476 			goto err_free;
5477 		}
5478 	}
5479 	rcu_read_unlock();
5480 
5481 	spin_lock_bh(&bp->ntp_fltr_lock);
5482 	bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
5483 					 BNXT_NTP_FLTR_MAX_FLTR, 0);
5484 	if (bit_id < 0) {
5485 		spin_unlock_bh(&bp->ntp_fltr_lock);
5486 		rc = -ENOMEM;
5487 		goto err_free;
5488 	}
5489 
5490 	new_fltr->sw_id = (u16)bit_id;
5491 	new_fltr->flow_id = flow_id;
5492 	new_fltr->rxq = rxq_index;
5493 	hlist_add_head_rcu(&new_fltr->hash, head);
5494 	bp->ntp_fltr_count++;
5495 	spin_unlock_bh(&bp->ntp_fltr_lock);
5496 
5497 	set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
5498 	schedule_work(&bp->sp_task);
5499 
5500 	return new_fltr->sw_id;
5501 
5502 err_free:
5503 	kfree(new_fltr);
5504 	return rc;
5505 }
5506 
5507 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
5508 {
5509 	int i;
5510 
5511 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
5512 		struct hlist_head *head;
5513 		struct hlist_node *tmp;
5514 		struct bnxt_ntuple_filter *fltr;
5515 		int rc;
5516 
5517 		head = &bp->ntp_fltr_hash_tbl[i];
5518 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
5519 			bool del = false;
5520 
5521 			if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
5522 				if (rps_may_expire_flow(bp->dev, fltr->rxq,
5523 							fltr->flow_id,
5524 							fltr->sw_id)) {
5525 					bnxt_hwrm_cfa_ntuple_filter_free(bp,
5526 									 fltr);
5527 					del = true;
5528 				}
5529 			} else {
5530 				rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
5531 								       fltr);
5532 				if (rc)
5533 					del = true;
5534 				else
5535 					set_bit(BNXT_FLTR_VALID, &fltr->state);
5536 			}
5537 
5538 			if (del) {
5539 				spin_lock_bh(&bp->ntp_fltr_lock);
5540 				hlist_del_rcu(&fltr->hash);
5541 				bp->ntp_fltr_count--;
5542 				spin_unlock_bh(&bp->ntp_fltr_lock);
5543 				synchronize_rcu();
5544 				clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
5545 				kfree(fltr);
5546 			}
5547 		}
5548 	}
5549 }
5550 
5551 #else
5552 
5553 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
5554 {
5555 }
5556 
5557 #endif /* CONFIG_RFS_ACCEL */
5558 
5559 static void bnxt_add_vxlan_port(struct net_device *dev, sa_family_t sa_family,
5560 				__be16 port)
5561 {
5562 	struct bnxt *bp = netdev_priv(dev);
5563 
5564 	if (!netif_running(dev))
5565 		return;
5566 
5567 	if (sa_family != AF_INET6 && sa_family != AF_INET)
5568 		return;
5569 
5570 	if (bp->vxlan_port_cnt && bp->vxlan_port != port)
5571 		return;
5572 
5573 	bp->vxlan_port_cnt++;
5574 	if (bp->vxlan_port_cnt == 1) {
5575 		bp->vxlan_port = port;
5576 		set_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event);
5577 		schedule_work(&bp->sp_task);
5578 	}
5579 }
5580 
5581 static void bnxt_del_vxlan_port(struct net_device *dev, sa_family_t sa_family,
5582 				__be16 port)
5583 {
5584 	struct bnxt *bp = netdev_priv(dev);
5585 
5586 	if (!netif_running(dev))
5587 		return;
5588 
5589 	if (sa_family != AF_INET6 && sa_family != AF_INET)
5590 		return;
5591 
5592 	if (bp->vxlan_port_cnt && bp->vxlan_port == port) {
5593 		bp->vxlan_port_cnt--;
5594 
5595 		if (bp->vxlan_port_cnt == 0) {
5596 			set_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event);
5597 			schedule_work(&bp->sp_task);
5598 		}
5599 	}
5600 }
5601 
5602 static const struct net_device_ops bnxt_netdev_ops = {
5603 	.ndo_open		= bnxt_open,
5604 	.ndo_start_xmit		= bnxt_start_xmit,
5605 	.ndo_stop		= bnxt_close,
5606 	.ndo_get_stats64	= bnxt_get_stats64,
5607 	.ndo_set_rx_mode	= bnxt_set_rx_mode,
5608 	.ndo_do_ioctl		= bnxt_ioctl,
5609 	.ndo_validate_addr	= eth_validate_addr,
5610 	.ndo_set_mac_address	= bnxt_change_mac_addr,
5611 	.ndo_change_mtu		= bnxt_change_mtu,
5612 	.ndo_fix_features	= bnxt_fix_features,
5613 	.ndo_set_features	= bnxt_set_features,
5614 	.ndo_tx_timeout		= bnxt_tx_timeout,
5615 #ifdef CONFIG_BNXT_SRIOV
5616 	.ndo_get_vf_config	= bnxt_get_vf_config,
5617 	.ndo_set_vf_mac		= bnxt_set_vf_mac,
5618 	.ndo_set_vf_vlan	= bnxt_set_vf_vlan,
5619 	.ndo_set_vf_rate	= bnxt_set_vf_bw,
5620 	.ndo_set_vf_link_state	= bnxt_set_vf_link_state,
5621 	.ndo_set_vf_spoofchk	= bnxt_set_vf_spoofchk,
5622 #endif
5623 #ifdef CONFIG_NET_POLL_CONTROLLER
5624 	.ndo_poll_controller	= bnxt_poll_controller,
5625 #endif
5626 	.ndo_setup_tc           = bnxt_setup_tc,
5627 #ifdef CONFIG_RFS_ACCEL
5628 	.ndo_rx_flow_steer	= bnxt_rx_flow_steer,
5629 #endif
5630 	.ndo_add_vxlan_port	= bnxt_add_vxlan_port,
5631 	.ndo_del_vxlan_port	= bnxt_del_vxlan_port,
5632 #ifdef CONFIG_NET_RX_BUSY_POLL
5633 	.ndo_busy_poll		= bnxt_busy_poll,
5634 #endif
5635 };
5636 
5637 static void bnxt_remove_one(struct pci_dev *pdev)
5638 {
5639 	struct net_device *dev = pci_get_drvdata(pdev);
5640 	struct bnxt *bp = netdev_priv(dev);
5641 
5642 	if (BNXT_PF(bp))
5643 		bnxt_sriov_disable(bp);
5644 
5645 	unregister_netdev(dev);
5646 	cancel_work_sync(&bp->sp_task);
5647 	bp->sp_event = 0;
5648 
5649 	bnxt_hwrm_func_drv_unrgtr(bp);
5650 	bnxt_free_hwrm_resources(bp);
5651 	pci_iounmap(pdev, bp->bar2);
5652 	pci_iounmap(pdev, bp->bar1);
5653 	pci_iounmap(pdev, bp->bar0);
5654 	free_netdev(dev);
5655 
5656 	pci_release_regions(pdev);
5657 	pci_disable_device(pdev);
5658 }
5659 
5660 static int bnxt_probe_phy(struct bnxt *bp)
5661 {
5662 	int rc = 0;
5663 	struct bnxt_link_info *link_info = &bp->link_info;
5664 	char phy_ver[PHY_VER_STR_LEN];
5665 
5666 	rc = bnxt_update_link(bp, false);
5667 	if (rc) {
5668 		netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
5669 			   rc);
5670 		return rc;
5671 	}
5672 
5673 	/*initialize the ethool setting copy with NVM settings */
5674 	if (BNXT_AUTO_MODE(link_info->auto_mode))
5675 		link_info->autoneg |= BNXT_AUTONEG_SPEED;
5676 
5677 	if (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) {
5678 		if (link_info->auto_pause_setting == BNXT_LINK_PAUSE_BOTH)
5679 			link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
5680 		link_info->req_flow_ctrl = link_info->auto_pause_setting;
5681 	} else if (link_info->force_pause_setting & BNXT_LINK_PAUSE_BOTH) {
5682 		link_info->req_flow_ctrl = link_info->force_pause_setting;
5683 	}
5684 	link_info->req_duplex = link_info->duplex_setting;
5685 	if (link_info->autoneg & BNXT_AUTONEG_SPEED)
5686 		link_info->req_link_speed = link_info->auto_link_speed;
5687 	else
5688 		link_info->req_link_speed = link_info->force_link_speed;
5689 	link_info->advertising = link_info->auto_link_speeds;
5690 	snprintf(phy_ver, PHY_VER_STR_LEN, " ph %d.%d.%d",
5691 		 link_info->phy_ver[0],
5692 		 link_info->phy_ver[1],
5693 		 link_info->phy_ver[2]);
5694 	strcat(bp->fw_ver_str, phy_ver);
5695 	return rc;
5696 }
5697 
5698 static int bnxt_get_max_irq(struct pci_dev *pdev)
5699 {
5700 	u16 ctrl;
5701 
5702 	if (!pdev->msix_cap)
5703 		return 1;
5704 
5705 	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
5706 	return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
5707 }
5708 
5709 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
5710 				int *max_cp)
5711 {
5712 	int max_ring_grps = 0;
5713 
5714 #ifdef CONFIG_BNXT_SRIOV
5715 	if (!BNXT_PF(bp)) {
5716 		*max_tx = bp->vf.max_tx_rings;
5717 		*max_rx = bp->vf.max_rx_rings;
5718 		*max_cp = min_t(int, bp->vf.max_irqs, bp->vf.max_cp_rings);
5719 		*max_cp = min_t(int, *max_cp, bp->vf.max_stat_ctxs);
5720 		max_ring_grps = bp->vf.max_hw_ring_grps;
5721 	} else
5722 #endif
5723 	{
5724 		*max_tx = bp->pf.max_tx_rings;
5725 		*max_rx = bp->pf.max_rx_rings;
5726 		*max_cp = min_t(int, bp->pf.max_irqs, bp->pf.max_cp_rings);
5727 		*max_cp = min_t(int, *max_cp, bp->pf.max_stat_ctxs);
5728 		max_ring_grps = bp->pf.max_hw_ring_grps;
5729 	}
5730 
5731 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
5732 		*max_rx >>= 1;
5733 	*max_rx = min_t(int, *max_rx, max_ring_grps);
5734 }
5735 
5736 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
5737 {
5738 	int rx, tx, cp;
5739 
5740 	_bnxt_get_max_rings(bp, &rx, &tx, &cp);
5741 	if (!rx || !tx || !cp)
5742 		return -ENOMEM;
5743 
5744 	*max_rx = rx;
5745 	*max_tx = tx;
5746 	return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
5747 }
5748 
5749 static int bnxt_set_dflt_rings(struct bnxt *bp)
5750 {
5751 	int dflt_rings, max_rx_rings, max_tx_rings, rc;
5752 	bool sh = true;
5753 
5754 	if (sh)
5755 		bp->flags |= BNXT_FLAG_SHARED_RINGS;
5756 	dflt_rings = netif_get_num_default_rss_queues();
5757 	rc = bnxt_get_max_rings(bp, &max_rx_rings, &max_tx_rings, sh);
5758 	if (rc)
5759 		return rc;
5760 	bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
5761 	bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
5762 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
5763 	bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
5764 			       bp->tx_nr_rings + bp->rx_nr_rings;
5765 	bp->num_stat_ctxs = bp->cp_nr_rings;
5766 	return rc;
5767 }
5768 
5769 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
5770 {
5771 	static int version_printed;
5772 	struct net_device *dev;
5773 	struct bnxt *bp;
5774 	int rc, max_irqs;
5775 
5776 	if (version_printed++ == 0)
5777 		pr_info("%s", version);
5778 
5779 	max_irqs = bnxt_get_max_irq(pdev);
5780 	dev = alloc_etherdev_mq(sizeof(*bp), max_irqs);
5781 	if (!dev)
5782 		return -ENOMEM;
5783 
5784 	bp = netdev_priv(dev);
5785 
5786 	if (bnxt_vf_pciid(ent->driver_data))
5787 		bp->flags |= BNXT_FLAG_VF;
5788 
5789 	if (pdev->msix_cap)
5790 		bp->flags |= BNXT_FLAG_MSIX_CAP;
5791 
5792 	rc = bnxt_init_board(pdev, dev);
5793 	if (rc < 0)
5794 		goto init_err_free;
5795 
5796 	dev->netdev_ops = &bnxt_netdev_ops;
5797 	dev->watchdog_timeo = BNXT_TX_TIMEOUT;
5798 	dev->ethtool_ops = &bnxt_ethtool_ops;
5799 
5800 	pci_set_drvdata(pdev, dev);
5801 
5802 	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
5803 			   NETIF_F_TSO | NETIF_F_TSO6 |
5804 			   NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
5805 			   NETIF_F_GSO_IPIP | NETIF_F_GSO_SIT |
5806 			   NETIF_F_RXHASH |
5807 			   NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO;
5808 
5809 	dev->hw_enc_features =
5810 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
5811 			NETIF_F_TSO | NETIF_F_TSO6 |
5812 			NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
5813 			NETIF_F_GSO_IPIP | NETIF_F_GSO_SIT;
5814 	dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
5815 	dev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
5816 			    NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX;
5817 	dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
5818 	dev->priv_flags |= IFF_UNICAST_FLT;
5819 
5820 #ifdef CONFIG_BNXT_SRIOV
5821 	init_waitqueue_head(&bp->sriov_cfg_wait);
5822 #endif
5823 	rc = bnxt_alloc_hwrm_resources(bp);
5824 	if (rc)
5825 		goto init_err;
5826 
5827 	mutex_init(&bp->hwrm_cmd_lock);
5828 	bnxt_hwrm_ver_get(bp);
5829 
5830 	rc = bnxt_hwrm_func_drv_rgtr(bp);
5831 	if (rc)
5832 		goto init_err;
5833 
5834 	/* Get the MAX capabilities for this function */
5835 	rc = bnxt_hwrm_func_qcaps(bp);
5836 	if (rc) {
5837 		netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
5838 			   rc);
5839 		rc = -1;
5840 		goto init_err;
5841 	}
5842 
5843 	rc = bnxt_hwrm_queue_qportcfg(bp);
5844 	if (rc) {
5845 		netdev_err(bp->dev, "hwrm query qportcfg failure rc: %x\n",
5846 			   rc);
5847 		rc = -1;
5848 		goto init_err;
5849 	}
5850 
5851 	bnxt_set_tpa_flags(bp);
5852 	bnxt_set_ring_params(bp);
5853 	if (BNXT_PF(bp))
5854 		bp->pf.max_irqs = max_irqs;
5855 #if defined(CONFIG_BNXT_SRIOV)
5856 	else
5857 		bp->vf.max_irqs = max_irqs;
5858 #endif
5859 	bnxt_set_dflt_rings(bp);
5860 
5861 	if (BNXT_PF(bp)) {
5862 		dev->hw_features |= NETIF_F_NTUPLE;
5863 		if (bnxt_rfs_capable(bp)) {
5864 			bp->flags |= BNXT_FLAG_RFS;
5865 			dev->features |= NETIF_F_NTUPLE;
5866 		}
5867 	}
5868 
5869 	if (dev->hw_features & NETIF_F_HW_VLAN_CTAG_RX)
5870 		bp->flags |= BNXT_FLAG_STRIP_VLAN;
5871 
5872 	rc = bnxt_probe_phy(bp);
5873 	if (rc)
5874 		goto init_err;
5875 
5876 	rc = register_netdev(dev);
5877 	if (rc)
5878 		goto init_err;
5879 
5880 	netdev_info(dev, "%s found at mem %lx, node addr %pM\n",
5881 		    board_info[ent->driver_data].name,
5882 		    (long)pci_resource_start(pdev, 0), dev->dev_addr);
5883 
5884 	return 0;
5885 
5886 init_err:
5887 	pci_iounmap(pdev, bp->bar0);
5888 	pci_release_regions(pdev);
5889 	pci_disable_device(pdev);
5890 
5891 init_err_free:
5892 	free_netdev(dev);
5893 	return rc;
5894 }
5895 
5896 static struct pci_driver bnxt_pci_driver = {
5897 	.name		= DRV_MODULE_NAME,
5898 	.id_table	= bnxt_pci_tbl,
5899 	.probe		= bnxt_init_one,
5900 	.remove		= bnxt_remove_one,
5901 #if defined(CONFIG_BNXT_SRIOV)
5902 	.sriov_configure = bnxt_sriov_configure,
5903 #endif
5904 };
5905 
5906 module_pci_driver(bnxt_pci_driver);
5907