1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2016 Broadcom Corporation
4  * Copyright (c) 2016-2019 Broadcom Limited
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation.
9  */
10 
11 #include <linux/module.h>
12 
13 #include <linux/stringify.h>
14 #include <linux/kernel.h>
15 #include <linux/timer.h>
16 #include <linux/errno.h>
17 #include <linux/ioport.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 #include <linux/interrupt.h>
21 #include <linux/pci.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/skbuff.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/bitops.h>
27 #include <linux/io.h>
28 #include <linux/irq.h>
29 #include <linux/delay.h>
30 #include <asm/byteorder.h>
31 #include <asm/page.h>
32 #include <linux/time.h>
33 #include <linux/mii.h>
34 #include <linux/mdio.h>
35 #include <linux/if.h>
36 #include <linux/if_vlan.h>
37 #include <linux/if_bridge.h>
38 #include <linux/rtc.h>
39 #include <linux/bpf.h>
40 #include <net/gro.h>
41 #include <net/ip.h>
42 #include <net/tcp.h>
43 #include <net/udp.h>
44 #include <net/checksum.h>
45 #include <net/ip6_checksum.h>
46 #include <net/udp_tunnel.h>
47 #include <linux/workqueue.h>
48 #include <linux/prefetch.h>
49 #include <linux/cache.h>
50 #include <linux/log2.h>
51 #include <linux/aer.h>
52 #include <linux/bitmap.h>
53 #include <linux/cpu_rmap.h>
54 #include <linux/cpumask.h>
55 #include <net/pkt_cls.h>
56 #include <linux/hwmon.h>
57 #include <linux/hwmon-sysfs.h>
58 #include <net/page_pool.h>
59 #include <linux/align.h>
60 
61 #include "bnxt_hsi.h"
62 #include "bnxt.h"
63 #include "bnxt_hwrm.h"
64 #include "bnxt_ulp.h"
65 #include "bnxt_sriov.h"
66 #include "bnxt_ethtool.h"
67 #include "bnxt_dcb.h"
68 #include "bnxt_xdp.h"
69 #include "bnxt_ptp.h"
70 #include "bnxt_vfr.h"
71 #include "bnxt_tc.h"
72 #include "bnxt_devlink.h"
73 #include "bnxt_debugfs.h"
74 
75 #define BNXT_TX_TIMEOUT		(5 * HZ)
76 #define BNXT_DEF_MSG_ENABLE	(NETIF_MSG_DRV | NETIF_MSG_HW | \
77 				 NETIF_MSG_TX_ERR)
78 
79 MODULE_LICENSE("GPL");
80 MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
81 
82 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
83 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
84 #define BNXT_RX_COPY_THRESH 256
85 
86 #define BNXT_TX_PUSH_THRESH 164
87 
88 /* indexed by enum board_idx */
89 static const struct {
90 	char *name;
91 } board_info[] = {
92 	[BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" },
93 	[BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" },
94 	[BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
95 	[BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" },
96 	[BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" },
97 	[BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" },
98 	[BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" },
99 	[BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" },
100 	[BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" },
101 	[BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" },
102 	[BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" },
103 	[BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" },
104 	[BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" },
105 	[BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" },
106 	[BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" },
107 	[BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" },
108 	[BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" },
109 	[BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
110 	[BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" },
111 	[BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" },
112 	[BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" },
113 	[BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" },
114 	[BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" },
115 	[BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" },
116 	[BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" },
117 	[BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" },
118 	[BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" },
119 	[BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
120 	[BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" },
121 	[BCM57508] = { "Broadcom BCM57508 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
122 	[BCM57504] = { "Broadcom BCM57504 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
123 	[BCM57502] = { "Broadcom BCM57502 NetXtreme-E 10Gb/25Gb/50Gb Ethernet" },
124 	[BCM57508_NPAR] = { "Broadcom BCM57508 NetXtreme-E Ethernet Partition" },
125 	[BCM57504_NPAR] = { "Broadcom BCM57504 NetXtreme-E Ethernet Partition" },
126 	[BCM57502_NPAR] = { "Broadcom BCM57502 NetXtreme-E Ethernet Partition" },
127 	[BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" },
128 	[BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
129 	[BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
130 	[NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" },
131 	[NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" },
132 	[NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" },
133 	[NETXTREME_C_VF_HV] = { "Broadcom NetXtreme-C Virtual Function for Hyper-V" },
134 	[NETXTREME_E_VF_HV] = { "Broadcom NetXtreme-E Virtual Function for Hyper-V" },
135 	[NETXTREME_E_P5_VF] = { "Broadcom BCM5750X NetXtreme-E Ethernet Virtual Function" },
136 	[NETXTREME_E_P5_VF_HV] = { "Broadcom BCM5750X NetXtreme-E Virtual Function for Hyper-V" },
137 };
138 
139 static const struct pci_device_id bnxt_pci_tbl[] = {
140 	{ PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR },
141 	{ PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR },
142 	{ PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 },
143 	{ PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR },
144 	{ PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
145 	{ PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
146 	{ PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
147 	{ PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR },
148 	{ PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 },
149 	{ PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 },
150 	{ PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 },
151 	{ PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
152 	{ PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
153 	{ PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
154 	{ PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR },
155 	{ PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 },
156 	{ PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 },
157 	{ PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 },
158 	{ PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 },
159 	{ PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 },
160 	{ PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR },
161 	{ PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 },
162 	{ PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP },
163 	{ PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP },
164 	{ PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR },
165 	{ PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR },
166 	{ PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP },
167 	{ PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR },
168 	{ PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR },
169 	{ PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR },
170 	{ PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR },
171 	{ PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR },
172 	{ PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR },
173 	{ PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 },
174 	{ PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 },
175 	{ PCI_VDEVICE(BROADCOM, 0x1750), .driver_data = BCM57508 },
176 	{ PCI_VDEVICE(BROADCOM, 0x1751), .driver_data = BCM57504 },
177 	{ PCI_VDEVICE(BROADCOM, 0x1752), .driver_data = BCM57502 },
178 	{ PCI_VDEVICE(BROADCOM, 0x1800), .driver_data = BCM57508_NPAR },
179 	{ PCI_VDEVICE(BROADCOM, 0x1801), .driver_data = BCM57504_NPAR },
180 	{ PCI_VDEVICE(BROADCOM, 0x1802), .driver_data = BCM57502_NPAR },
181 	{ PCI_VDEVICE(BROADCOM, 0x1803), .driver_data = BCM57508_NPAR },
182 	{ PCI_VDEVICE(BROADCOM, 0x1804), .driver_data = BCM57504_NPAR },
183 	{ PCI_VDEVICE(BROADCOM, 0x1805), .driver_data = BCM57502_NPAR },
184 	{ PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 },
185 	{ PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 },
186 #ifdef CONFIG_BNXT_SRIOV
187 	{ PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF },
188 	{ PCI_VDEVICE(BROADCOM, 0x1607), .driver_data = NETXTREME_E_VF_HV },
189 	{ PCI_VDEVICE(BROADCOM, 0x1608), .driver_data = NETXTREME_E_VF_HV },
190 	{ PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF },
191 	{ PCI_VDEVICE(BROADCOM, 0x16bd), .driver_data = NETXTREME_E_VF_HV },
192 	{ PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF },
193 	{ PCI_VDEVICE(BROADCOM, 0x16c2), .driver_data = NETXTREME_C_VF_HV },
194 	{ PCI_VDEVICE(BROADCOM, 0x16c3), .driver_data = NETXTREME_C_VF_HV },
195 	{ PCI_VDEVICE(BROADCOM, 0x16c4), .driver_data = NETXTREME_E_VF_HV },
196 	{ PCI_VDEVICE(BROADCOM, 0x16c5), .driver_data = NETXTREME_E_VF_HV },
197 	{ PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF },
198 	{ PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF },
199 	{ PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF },
200 	{ PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF },
201 	{ PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF },
202 	{ PCI_VDEVICE(BROADCOM, 0x16e6), .driver_data = NETXTREME_C_VF_HV },
203 	{ PCI_VDEVICE(BROADCOM, 0x1806), .driver_data = NETXTREME_E_P5_VF },
204 	{ PCI_VDEVICE(BROADCOM, 0x1807), .driver_data = NETXTREME_E_P5_VF },
205 	{ PCI_VDEVICE(BROADCOM, 0x1808), .driver_data = NETXTREME_E_P5_VF_HV },
206 	{ PCI_VDEVICE(BROADCOM, 0x1809), .driver_data = NETXTREME_E_P5_VF_HV },
207 	{ PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF },
208 #endif
209 	{ 0 }
210 };
211 
212 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
213 
214 static const u16 bnxt_vf_req_snif[] = {
215 	HWRM_FUNC_CFG,
216 	HWRM_FUNC_VF_CFG,
217 	HWRM_PORT_PHY_QCFG,
218 	HWRM_CFA_L2_FILTER_ALLOC,
219 };
220 
221 static const u16 bnxt_async_events_arr[] = {
222 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE,
223 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE,
224 	ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD,
225 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED,
226 	ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE,
227 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE,
228 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE,
229 	ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY,
230 	ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY,
231 	ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION,
232 	ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE,
233 	ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG,
234 	ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST,
235 	ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP,
236 	ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT,
237 	ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE,
238 };
239 
240 static struct workqueue_struct *bnxt_pf_wq;
241 
242 static bool bnxt_vf_pciid(enum board_idx idx)
243 {
244 	return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF ||
245 		idx == NETXTREME_S_VF || idx == NETXTREME_C_VF_HV ||
246 		idx == NETXTREME_E_VF_HV || idx == NETXTREME_E_P5_VF ||
247 		idx == NETXTREME_E_P5_VF_HV);
248 }
249 
250 #define DB_CP_REARM_FLAGS	(DB_KEY_CP | DB_IDX_VALID)
251 #define DB_CP_FLAGS		(DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
252 #define DB_CP_IRQ_DIS_FLAGS	(DB_KEY_CP | DB_IRQ_DIS)
253 
254 #define BNXT_CP_DB_IRQ_DIS(db)						\
255 		writel(DB_CP_IRQ_DIS_FLAGS, db)
256 
257 #define BNXT_DB_CQ(db, idx)						\
258 	writel(DB_CP_FLAGS | RING_CMP(idx), (db)->doorbell)
259 
260 #define BNXT_DB_NQ_P5(db, idx)						\
261 	bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ | RING_CMP(idx),	\
262 		    (db)->doorbell)
263 
264 #define BNXT_DB_CQ_ARM(db, idx)						\
265 	writel(DB_CP_REARM_FLAGS | RING_CMP(idx), (db)->doorbell)
266 
267 #define BNXT_DB_NQ_ARM_P5(db, idx)					\
268 	bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ_ARM | RING_CMP(idx),\
269 		    (db)->doorbell)
270 
271 static void bnxt_db_nq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
272 {
273 	if (bp->flags & BNXT_FLAG_CHIP_P5)
274 		BNXT_DB_NQ_P5(db, idx);
275 	else
276 		BNXT_DB_CQ(db, idx);
277 }
278 
279 static void bnxt_db_nq_arm(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
280 {
281 	if (bp->flags & BNXT_FLAG_CHIP_P5)
282 		BNXT_DB_NQ_ARM_P5(db, idx);
283 	else
284 		BNXT_DB_CQ_ARM(db, idx);
285 }
286 
287 static void bnxt_db_cq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
288 {
289 	if (bp->flags & BNXT_FLAG_CHIP_P5)
290 		bnxt_writeq(bp, db->db_key64 | DBR_TYPE_CQ_ARMALL |
291 			    RING_CMP(idx), db->doorbell);
292 	else
293 		BNXT_DB_CQ(db, idx);
294 }
295 
296 const u16 bnxt_lhint_arr[] = {
297 	TX_BD_FLAGS_LHINT_512_AND_SMALLER,
298 	TX_BD_FLAGS_LHINT_512_TO_1023,
299 	TX_BD_FLAGS_LHINT_1024_TO_2047,
300 	TX_BD_FLAGS_LHINT_1024_TO_2047,
301 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
302 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
303 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
304 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
305 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
306 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
307 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
308 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
309 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
310 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
311 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
312 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
313 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
314 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
315 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
316 };
317 
318 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb)
319 {
320 	struct metadata_dst *md_dst = skb_metadata_dst(skb);
321 
322 	if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX)
323 		return 0;
324 
325 	return md_dst->u.port_info.port_id;
326 }
327 
328 static void bnxt_txr_db_kick(struct bnxt *bp, struct bnxt_tx_ring_info *txr,
329 			     u16 prod)
330 {
331 	bnxt_db_write(bp, &txr->tx_db, prod);
332 	txr->kick_pending = 0;
333 }
334 
335 static bool bnxt_txr_netif_try_stop_queue(struct bnxt *bp,
336 					  struct bnxt_tx_ring_info *txr,
337 					  struct netdev_queue *txq)
338 {
339 	netif_tx_stop_queue(txq);
340 
341 	/* netif_tx_stop_queue() must be done before checking
342 	 * tx index in bnxt_tx_avail() below, because in
343 	 * bnxt_tx_int(), we update tx index before checking for
344 	 * netif_tx_queue_stopped().
345 	 */
346 	smp_mb();
347 	if (bnxt_tx_avail(bp, txr) >= bp->tx_wake_thresh) {
348 		netif_tx_wake_queue(txq);
349 		return false;
350 	}
351 
352 	return true;
353 }
354 
355 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
356 {
357 	struct bnxt *bp = netdev_priv(dev);
358 	struct tx_bd *txbd;
359 	struct tx_bd_ext *txbd1;
360 	struct netdev_queue *txq;
361 	int i;
362 	dma_addr_t mapping;
363 	unsigned int length, pad = 0;
364 	u32 len, free_size, vlan_tag_flags, cfa_action, flags;
365 	u16 prod, last_frag;
366 	struct pci_dev *pdev = bp->pdev;
367 	struct bnxt_tx_ring_info *txr;
368 	struct bnxt_sw_tx_bd *tx_buf;
369 	__le32 lflags = 0;
370 
371 	i = skb_get_queue_mapping(skb);
372 	if (unlikely(i >= bp->tx_nr_rings)) {
373 		dev_kfree_skb_any(skb);
374 		dev_core_stats_tx_dropped_inc(dev);
375 		return NETDEV_TX_OK;
376 	}
377 
378 	txq = netdev_get_tx_queue(dev, i);
379 	txr = &bp->tx_ring[bp->tx_ring_map[i]];
380 	prod = txr->tx_prod;
381 
382 	free_size = bnxt_tx_avail(bp, txr);
383 	if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
384 		/* We must have raced with NAPI cleanup */
385 		if (net_ratelimit() && txr->kick_pending)
386 			netif_warn(bp, tx_err, dev,
387 				   "bnxt: ring busy w/ flush pending!\n");
388 		if (bnxt_txr_netif_try_stop_queue(bp, txr, txq))
389 			return NETDEV_TX_BUSY;
390 	}
391 
392 	if (unlikely(ipv6_hopopt_jumbo_remove(skb)))
393 		goto tx_free;
394 
395 	length = skb->len;
396 	len = skb_headlen(skb);
397 	last_frag = skb_shinfo(skb)->nr_frags;
398 
399 	txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
400 
401 	txbd->tx_bd_opaque = prod;
402 
403 	tx_buf = &txr->tx_buf_ring[prod];
404 	tx_buf->skb = skb;
405 	tx_buf->nr_frags = last_frag;
406 
407 	vlan_tag_flags = 0;
408 	cfa_action = bnxt_xmit_get_cfa_action(skb);
409 	if (skb_vlan_tag_present(skb)) {
410 		vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
411 				 skb_vlan_tag_get(skb);
412 		/* Currently supports 8021Q, 8021AD vlan offloads
413 		 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
414 		 */
415 		if (skb->vlan_proto == htons(ETH_P_8021Q))
416 			vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
417 	}
418 
419 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
420 		struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
421 
422 		if (ptp && ptp->tx_tstamp_en && !skb_is_gso(skb) &&
423 		    atomic_dec_if_positive(&ptp->tx_avail) >= 0) {
424 			if (!bnxt_ptp_parse(skb, &ptp->tx_seqid,
425 					    &ptp->tx_hdr_off)) {
426 				if (vlan_tag_flags)
427 					ptp->tx_hdr_off += VLAN_HLEN;
428 				lflags |= cpu_to_le32(TX_BD_FLAGS_STAMP);
429 				skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
430 			} else {
431 				atomic_inc(&bp->ptp_cfg->tx_avail);
432 			}
433 		}
434 	}
435 
436 	if (unlikely(skb->no_fcs))
437 		lflags |= cpu_to_le32(TX_BD_FLAGS_NO_CRC);
438 
439 	if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh &&
440 	    !lflags) {
441 		struct tx_push_buffer *tx_push_buf = txr->tx_push;
442 		struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
443 		struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
444 		void __iomem *db = txr->tx_db.doorbell;
445 		void *pdata = tx_push_buf->data;
446 		u64 *end;
447 		int j, push_len;
448 
449 		/* Set COAL_NOW to be ready quickly for the next push */
450 		tx_push->tx_bd_len_flags_type =
451 			cpu_to_le32((length << TX_BD_LEN_SHIFT) |
452 					TX_BD_TYPE_LONG_TX_BD |
453 					TX_BD_FLAGS_LHINT_512_AND_SMALLER |
454 					TX_BD_FLAGS_COAL_NOW |
455 					TX_BD_FLAGS_PACKET_END |
456 					(2 << TX_BD_FLAGS_BD_CNT_SHIFT));
457 
458 		if (skb->ip_summed == CHECKSUM_PARTIAL)
459 			tx_push1->tx_bd_hsize_lflags =
460 					cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
461 		else
462 			tx_push1->tx_bd_hsize_lflags = 0;
463 
464 		tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
465 		tx_push1->tx_bd_cfa_action =
466 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
467 
468 		end = pdata + length;
469 		end = PTR_ALIGN(end, 8) - 1;
470 		*end = 0;
471 
472 		skb_copy_from_linear_data(skb, pdata, len);
473 		pdata += len;
474 		for (j = 0; j < last_frag; j++) {
475 			skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
476 			void *fptr;
477 
478 			fptr = skb_frag_address_safe(frag);
479 			if (!fptr)
480 				goto normal_tx;
481 
482 			memcpy(pdata, fptr, skb_frag_size(frag));
483 			pdata += skb_frag_size(frag);
484 		}
485 
486 		txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
487 		txbd->tx_bd_haddr = txr->data_mapping;
488 		prod = NEXT_TX(prod);
489 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
490 		memcpy(txbd, tx_push1, sizeof(*txbd));
491 		prod = NEXT_TX(prod);
492 		tx_push->doorbell =
493 			cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod);
494 		txr->tx_prod = prod;
495 
496 		tx_buf->is_push = 1;
497 		netdev_tx_sent_queue(txq, skb->len);
498 		wmb();	/* Sync is_push and byte queue before pushing data */
499 
500 		push_len = (length + sizeof(*tx_push) + 7) / 8;
501 		if (push_len > 16) {
502 			__iowrite64_copy(db, tx_push_buf, 16);
503 			__iowrite32_copy(db + 4, tx_push_buf + 1,
504 					 (push_len - 16) << 1);
505 		} else {
506 			__iowrite64_copy(db, tx_push_buf, push_len);
507 		}
508 
509 		goto tx_done;
510 	}
511 
512 normal_tx:
513 	if (length < BNXT_MIN_PKT_SIZE) {
514 		pad = BNXT_MIN_PKT_SIZE - length;
515 		if (skb_pad(skb, pad))
516 			/* SKB already freed. */
517 			goto tx_kick_pending;
518 		length = BNXT_MIN_PKT_SIZE;
519 	}
520 
521 	mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
522 
523 	if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
524 		goto tx_free;
525 
526 	dma_unmap_addr_set(tx_buf, mapping, mapping);
527 	flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
528 		((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
529 
530 	txbd->tx_bd_haddr = cpu_to_le64(mapping);
531 
532 	prod = NEXT_TX(prod);
533 	txbd1 = (struct tx_bd_ext *)
534 		&txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
535 
536 	txbd1->tx_bd_hsize_lflags = lflags;
537 	if (skb_is_gso(skb)) {
538 		u32 hdr_len;
539 
540 		if (skb->encapsulation)
541 			hdr_len = skb_inner_tcp_all_headers(skb);
542 		else
543 			hdr_len = skb_tcp_all_headers(skb);
544 
545 		txbd1->tx_bd_hsize_lflags |= cpu_to_le32(TX_BD_FLAGS_LSO |
546 					TX_BD_FLAGS_T_IPID |
547 					(hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
548 		length = skb_shinfo(skb)->gso_size;
549 		txbd1->tx_bd_mss = cpu_to_le32(length);
550 		length += hdr_len;
551 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
552 		txbd1->tx_bd_hsize_lflags |=
553 			cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
554 		txbd1->tx_bd_mss = 0;
555 	}
556 
557 	length >>= 9;
558 	if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) {
559 		dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n",
560 				     skb->len);
561 		i = 0;
562 		goto tx_dma_error;
563 	}
564 	flags |= bnxt_lhint_arr[length];
565 	txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
566 
567 	txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
568 	txbd1->tx_bd_cfa_action =
569 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
570 	for (i = 0; i < last_frag; i++) {
571 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
572 
573 		prod = NEXT_TX(prod);
574 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
575 
576 		len = skb_frag_size(frag);
577 		mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
578 					   DMA_TO_DEVICE);
579 
580 		if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
581 			goto tx_dma_error;
582 
583 		tx_buf = &txr->tx_buf_ring[prod];
584 		dma_unmap_addr_set(tx_buf, mapping, mapping);
585 
586 		txbd->tx_bd_haddr = cpu_to_le64(mapping);
587 
588 		flags = len << TX_BD_LEN_SHIFT;
589 		txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
590 	}
591 
592 	flags &= ~TX_BD_LEN;
593 	txbd->tx_bd_len_flags_type =
594 		cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
595 			    TX_BD_FLAGS_PACKET_END);
596 
597 	netdev_tx_sent_queue(txq, skb->len);
598 
599 	skb_tx_timestamp(skb);
600 
601 	/* Sync BD data before updating doorbell */
602 	wmb();
603 
604 	prod = NEXT_TX(prod);
605 	txr->tx_prod = prod;
606 
607 	if (!netdev_xmit_more() || netif_xmit_stopped(txq))
608 		bnxt_txr_db_kick(bp, txr, prod);
609 	else
610 		txr->kick_pending = 1;
611 
612 tx_done:
613 
614 	if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
615 		if (netdev_xmit_more() && !tx_buf->is_push)
616 			bnxt_txr_db_kick(bp, txr, prod);
617 
618 		bnxt_txr_netif_try_stop_queue(bp, txr, txq);
619 	}
620 	return NETDEV_TX_OK;
621 
622 tx_dma_error:
623 	if (BNXT_TX_PTP_IS_SET(lflags))
624 		atomic_inc(&bp->ptp_cfg->tx_avail);
625 
626 	last_frag = i;
627 
628 	/* start back at beginning and unmap skb */
629 	prod = txr->tx_prod;
630 	tx_buf = &txr->tx_buf_ring[prod];
631 	dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
632 			 skb_headlen(skb), DMA_TO_DEVICE);
633 	prod = NEXT_TX(prod);
634 
635 	/* unmap remaining mapped pages */
636 	for (i = 0; i < last_frag; i++) {
637 		prod = NEXT_TX(prod);
638 		tx_buf = &txr->tx_buf_ring[prod];
639 		dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
640 			       skb_frag_size(&skb_shinfo(skb)->frags[i]),
641 			       DMA_TO_DEVICE);
642 	}
643 
644 tx_free:
645 	dev_kfree_skb_any(skb);
646 tx_kick_pending:
647 	if (txr->kick_pending)
648 		bnxt_txr_db_kick(bp, txr, txr->tx_prod);
649 	txr->tx_buf_ring[txr->tx_prod].skb = NULL;
650 	dev_core_stats_tx_dropped_inc(dev);
651 	return NETDEV_TX_OK;
652 }
653 
654 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts)
655 {
656 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
657 	struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index);
658 	u16 cons = txr->tx_cons;
659 	struct pci_dev *pdev = bp->pdev;
660 	int i;
661 	unsigned int tx_bytes = 0;
662 
663 	for (i = 0; i < nr_pkts; i++) {
664 		struct bnxt_sw_tx_bd *tx_buf;
665 		struct sk_buff *skb;
666 		int j, last;
667 
668 		tx_buf = &txr->tx_buf_ring[cons];
669 		cons = NEXT_TX(cons);
670 		skb = tx_buf->skb;
671 		tx_buf->skb = NULL;
672 
673 		tx_bytes += skb->len;
674 
675 		if (tx_buf->is_push) {
676 			tx_buf->is_push = 0;
677 			goto next_tx_int;
678 		}
679 
680 		dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
681 				 skb_headlen(skb), DMA_TO_DEVICE);
682 		last = tx_buf->nr_frags;
683 
684 		for (j = 0; j < last; j++) {
685 			cons = NEXT_TX(cons);
686 			tx_buf = &txr->tx_buf_ring[cons];
687 			dma_unmap_page(
688 				&pdev->dev,
689 				dma_unmap_addr(tx_buf, mapping),
690 				skb_frag_size(&skb_shinfo(skb)->frags[j]),
691 				DMA_TO_DEVICE);
692 		}
693 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
694 			if (bp->flags & BNXT_FLAG_CHIP_P5) {
695 				/* PTP worker takes ownership of the skb */
696 				if (!bnxt_get_tx_ts_p5(bp, skb))
697 					skb = NULL;
698 				else
699 					atomic_inc(&bp->ptp_cfg->tx_avail);
700 			}
701 		}
702 
703 next_tx_int:
704 		cons = NEXT_TX(cons);
705 
706 		dev_kfree_skb_any(skb);
707 	}
708 
709 	netdev_tx_completed_queue(txq, nr_pkts, tx_bytes);
710 	txr->tx_cons = cons;
711 
712 	/* Need to make the tx_cons update visible to bnxt_start_xmit()
713 	 * before checking for netif_tx_queue_stopped().  Without the
714 	 * memory barrier, there is a small possibility that bnxt_start_xmit()
715 	 * will miss it and cause the queue to be stopped forever.
716 	 */
717 	smp_mb();
718 
719 	if (unlikely(netif_tx_queue_stopped(txq)) &&
720 	    bnxt_tx_avail(bp, txr) >= bp->tx_wake_thresh &&
721 	    READ_ONCE(txr->dev_state) != BNXT_DEV_STATE_CLOSING)
722 		netif_tx_wake_queue(txq);
723 }
724 
725 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping,
726 					 struct bnxt_rx_ring_info *rxr,
727 					 gfp_t gfp)
728 {
729 	struct device *dev = &bp->pdev->dev;
730 	struct page *page;
731 
732 	page = page_pool_dev_alloc_pages(rxr->page_pool);
733 	if (!page)
734 		return NULL;
735 
736 	*mapping = dma_map_page_attrs(dev, page, 0, PAGE_SIZE, bp->rx_dir,
737 				      DMA_ATTR_WEAK_ORDERING);
738 	if (dma_mapping_error(dev, *mapping)) {
739 		page_pool_recycle_direct(rxr->page_pool, page);
740 		return NULL;
741 	}
742 	return page;
743 }
744 
745 static inline u8 *__bnxt_alloc_rx_frag(struct bnxt *bp, dma_addr_t *mapping,
746 				       gfp_t gfp)
747 {
748 	u8 *data;
749 	struct pci_dev *pdev = bp->pdev;
750 
751 	if (gfp == GFP_ATOMIC)
752 		data = napi_alloc_frag(bp->rx_buf_size);
753 	else
754 		data = netdev_alloc_frag(bp->rx_buf_size);
755 	if (!data)
756 		return NULL;
757 
758 	*mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset,
759 					bp->rx_buf_use_size, bp->rx_dir,
760 					DMA_ATTR_WEAK_ORDERING);
761 
762 	if (dma_mapping_error(&pdev->dev, *mapping)) {
763 		skb_free_frag(data);
764 		data = NULL;
765 	}
766 	return data;
767 }
768 
769 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
770 		       u16 prod, gfp_t gfp)
771 {
772 	struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
773 	struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
774 	dma_addr_t mapping;
775 
776 	if (BNXT_RX_PAGE_MODE(bp)) {
777 		struct page *page =
778 			__bnxt_alloc_rx_page(bp, &mapping, rxr, gfp);
779 
780 		if (!page)
781 			return -ENOMEM;
782 
783 		mapping += bp->rx_dma_offset;
784 		rx_buf->data = page;
785 		rx_buf->data_ptr = page_address(page) + bp->rx_offset;
786 	} else {
787 		u8 *data = __bnxt_alloc_rx_frag(bp, &mapping, gfp);
788 
789 		if (!data)
790 			return -ENOMEM;
791 
792 		rx_buf->data = data;
793 		rx_buf->data_ptr = data + bp->rx_offset;
794 	}
795 	rx_buf->mapping = mapping;
796 
797 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
798 	return 0;
799 }
800 
801 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data)
802 {
803 	u16 prod = rxr->rx_prod;
804 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
805 	struct rx_bd *cons_bd, *prod_bd;
806 
807 	prod_rx_buf = &rxr->rx_buf_ring[prod];
808 	cons_rx_buf = &rxr->rx_buf_ring[cons];
809 
810 	prod_rx_buf->data = data;
811 	prod_rx_buf->data_ptr = cons_rx_buf->data_ptr;
812 
813 	prod_rx_buf->mapping = cons_rx_buf->mapping;
814 
815 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
816 	cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
817 
818 	prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
819 }
820 
821 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
822 {
823 	u16 next, max = rxr->rx_agg_bmap_size;
824 
825 	next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
826 	if (next >= max)
827 		next = find_first_zero_bit(rxr->rx_agg_bmap, max);
828 	return next;
829 }
830 
831 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
832 				     struct bnxt_rx_ring_info *rxr,
833 				     u16 prod, gfp_t gfp)
834 {
835 	struct rx_bd *rxbd =
836 		&rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
837 	struct bnxt_sw_rx_agg_bd *rx_agg_buf;
838 	struct pci_dev *pdev = bp->pdev;
839 	struct page *page;
840 	dma_addr_t mapping;
841 	u16 sw_prod = rxr->rx_sw_agg_prod;
842 	unsigned int offset = 0;
843 
844 	if (BNXT_RX_PAGE_MODE(bp)) {
845 		page = __bnxt_alloc_rx_page(bp, &mapping, rxr, gfp);
846 
847 		if (!page)
848 			return -ENOMEM;
849 
850 	} else {
851 		if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) {
852 			page = rxr->rx_page;
853 			if (!page) {
854 				page = alloc_page(gfp);
855 				if (!page)
856 					return -ENOMEM;
857 				rxr->rx_page = page;
858 				rxr->rx_page_offset = 0;
859 			}
860 			offset = rxr->rx_page_offset;
861 			rxr->rx_page_offset += BNXT_RX_PAGE_SIZE;
862 			if (rxr->rx_page_offset == PAGE_SIZE)
863 				rxr->rx_page = NULL;
864 			else
865 				get_page(page);
866 		} else {
867 			page = alloc_page(gfp);
868 			if (!page)
869 				return -ENOMEM;
870 		}
871 
872 		mapping = dma_map_page_attrs(&pdev->dev, page, offset,
873 					     BNXT_RX_PAGE_SIZE, DMA_FROM_DEVICE,
874 					     DMA_ATTR_WEAK_ORDERING);
875 		if (dma_mapping_error(&pdev->dev, mapping)) {
876 			__free_page(page);
877 			return -EIO;
878 		}
879 	}
880 
881 	if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
882 		sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
883 
884 	__set_bit(sw_prod, rxr->rx_agg_bmap);
885 	rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
886 	rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod);
887 
888 	rx_agg_buf->page = page;
889 	rx_agg_buf->offset = offset;
890 	rx_agg_buf->mapping = mapping;
891 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
892 	rxbd->rx_bd_opaque = sw_prod;
893 	return 0;
894 }
895 
896 static struct rx_agg_cmp *bnxt_get_agg(struct bnxt *bp,
897 				       struct bnxt_cp_ring_info *cpr,
898 				       u16 cp_cons, u16 curr)
899 {
900 	struct rx_agg_cmp *agg;
901 
902 	cp_cons = RING_CMP(ADV_RAW_CMP(cp_cons, curr));
903 	agg = (struct rx_agg_cmp *)
904 		&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
905 	return agg;
906 }
907 
908 static struct rx_agg_cmp *bnxt_get_tpa_agg_p5(struct bnxt *bp,
909 					      struct bnxt_rx_ring_info *rxr,
910 					      u16 agg_id, u16 curr)
911 {
912 	struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[agg_id];
913 
914 	return &tpa_info->agg_arr[curr];
915 }
916 
917 static void bnxt_reuse_rx_agg_bufs(struct bnxt_cp_ring_info *cpr, u16 idx,
918 				   u16 start, u32 agg_bufs, bool tpa)
919 {
920 	struct bnxt_napi *bnapi = cpr->bnapi;
921 	struct bnxt *bp = bnapi->bp;
922 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
923 	u16 prod = rxr->rx_agg_prod;
924 	u16 sw_prod = rxr->rx_sw_agg_prod;
925 	bool p5_tpa = false;
926 	u32 i;
927 
928 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa)
929 		p5_tpa = true;
930 
931 	for (i = 0; i < agg_bufs; i++) {
932 		u16 cons;
933 		struct rx_agg_cmp *agg;
934 		struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
935 		struct rx_bd *prod_bd;
936 		struct page *page;
937 
938 		if (p5_tpa)
939 			agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, start + i);
940 		else
941 			agg = bnxt_get_agg(bp, cpr, idx, start + i);
942 		cons = agg->rx_agg_cmp_opaque;
943 		__clear_bit(cons, rxr->rx_agg_bmap);
944 
945 		if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
946 			sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
947 
948 		__set_bit(sw_prod, rxr->rx_agg_bmap);
949 		prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
950 		cons_rx_buf = &rxr->rx_agg_ring[cons];
951 
952 		/* It is possible for sw_prod to be equal to cons, so
953 		 * set cons_rx_buf->page to NULL first.
954 		 */
955 		page = cons_rx_buf->page;
956 		cons_rx_buf->page = NULL;
957 		prod_rx_buf->page = page;
958 		prod_rx_buf->offset = cons_rx_buf->offset;
959 
960 		prod_rx_buf->mapping = cons_rx_buf->mapping;
961 
962 		prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
963 
964 		prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
965 		prod_bd->rx_bd_opaque = sw_prod;
966 
967 		prod = NEXT_RX_AGG(prod);
968 		sw_prod = NEXT_RX_AGG(sw_prod);
969 	}
970 	rxr->rx_agg_prod = prod;
971 	rxr->rx_sw_agg_prod = sw_prod;
972 }
973 
974 static struct sk_buff *bnxt_rx_multi_page_skb(struct bnxt *bp,
975 					      struct bnxt_rx_ring_info *rxr,
976 					      u16 cons, void *data, u8 *data_ptr,
977 					      dma_addr_t dma_addr,
978 					      unsigned int offset_and_len)
979 {
980 	unsigned int len = offset_and_len & 0xffff;
981 	struct page *page = data;
982 	u16 prod = rxr->rx_prod;
983 	struct sk_buff *skb;
984 	int err;
985 
986 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
987 	if (unlikely(err)) {
988 		bnxt_reuse_rx_data(rxr, cons, data);
989 		return NULL;
990 	}
991 	dma_addr -= bp->rx_dma_offset;
992 	dma_unmap_page_attrs(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir,
993 			     DMA_ATTR_WEAK_ORDERING);
994 	skb = build_skb(page_address(page), PAGE_SIZE);
995 	if (!skb) {
996 		page_pool_recycle_direct(rxr->page_pool, page);
997 		return NULL;
998 	}
999 	skb_mark_for_recycle(skb);
1000 	skb_reserve(skb, bp->rx_dma_offset);
1001 	__skb_put(skb, len);
1002 
1003 	return skb;
1004 }
1005 
1006 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp,
1007 					struct bnxt_rx_ring_info *rxr,
1008 					u16 cons, void *data, u8 *data_ptr,
1009 					dma_addr_t dma_addr,
1010 					unsigned int offset_and_len)
1011 {
1012 	unsigned int payload = offset_and_len >> 16;
1013 	unsigned int len = offset_and_len & 0xffff;
1014 	skb_frag_t *frag;
1015 	struct page *page = data;
1016 	u16 prod = rxr->rx_prod;
1017 	struct sk_buff *skb;
1018 	int off, err;
1019 
1020 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
1021 	if (unlikely(err)) {
1022 		bnxt_reuse_rx_data(rxr, cons, data);
1023 		return NULL;
1024 	}
1025 	dma_addr -= bp->rx_dma_offset;
1026 	dma_unmap_page_attrs(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir,
1027 			     DMA_ATTR_WEAK_ORDERING);
1028 
1029 	if (unlikely(!payload))
1030 		payload = eth_get_headlen(bp->dev, data_ptr, len);
1031 
1032 	skb = napi_alloc_skb(&rxr->bnapi->napi, payload);
1033 	if (!skb) {
1034 		page_pool_recycle_direct(rxr->page_pool, page);
1035 		return NULL;
1036 	}
1037 
1038 	skb_mark_for_recycle(skb);
1039 	off = (void *)data_ptr - page_address(page);
1040 	skb_add_rx_frag(skb, 0, page, off, len, PAGE_SIZE);
1041 	memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN,
1042 	       payload + NET_IP_ALIGN);
1043 
1044 	frag = &skb_shinfo(skb)->frags[0];
1045 	skb_frag_size_sub(frag, payload);
1046 	skb_frag_off_add(frag, payload);
1047 	skb->data_len -= payload;
1048 	skb->tail += payload;
1049 
1050 	return skb;
1051 }
1052 
1053 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
1054 				   struct bnxt_rx_ring_info *rxr, u16 cons,
1055 				   void *data, u8 *data_ptr,
1056 				   dma_addr_t dma_addr,
1057 				   unsigned int offset_and_len)
1058 {
1059 	u16 prod = rxr->rx_prod;
1060 	struct sk_buff *skb;
1061 	int err;
1062 
1063 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
1064 	if (unlikely(err)) {
1065 		bnxt_reuse_rx_data(rxr, cons, data);
1066 		return NULL;
1067 	}
1068 
1069 	skb = build_skb(data, bp->rx_buf_size);
1070 	dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
1071 			       bp->rx_dir, DMA_ATTR_WEAK_ORDERING);
1072 	if (!skb) {
1073 		skb_free_frag(data);
1074 		return NULL;
1075 	}
1076 
1077 	skb_reserve(skb, bp->rx_offset);
1078 	skb_put(skb, offset_and_len & 0xffff);
1079 	return skb;
1080 }
1081 
1082 static u32 __bnxt_rx_agg_pages(struct bnxt *bp,
1083 			       struct bnxt_cp_ring_info *cpr,
1084 			       struct skb_shared_info *shinfo,
1085 			       u16 idx, u32 agg_bufs, bool tpa,
1086 			       struct xdp_buff *xdp)
1087 {
1088 	struct bnxt_napi *bnapi = cpr->bnapi;
1089 	struct pci_dev *pdev = bp->pdev;
1090 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1091 	u16 prod = rxr->rx_agg_prod;
1092 	u32 i, total_frag_len = 0;
1093 	bool p5_tpa = false;
1094 
1095 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa)
1096 		p5_tpa = true;
1097 
1098 	for (i = 0; i < agg_bufs; i++) {
1099 		skb_frag_t *frag = &shinfo->frags[i];
1100 		u16 cons, frag_len;
1101 		struct rx_agg_cmp *agg;
1102 		struct bnxt_sw_rx_agg_bd *cons_rx_buf;
1103 		struct page *page;
1104 		dma_addr_t mapping;
1105 
1106 		if (p5_tpa)
1107 			agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, i);
1108 		else
1109 			agg = bnxt_get_agg(bp, cpr, idx, i);
1110 		cons = agg->rx_agg_cmp_opaque;
1111 		frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
1112 			    RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
1113 
1114 		cons_rx_buf = &rxr->rx_agg_ring[cons];
1115 		skb_frag_off_set(frag, cons_rx_buf->offset);
1116 		skb_frag_size_set(frag, frag_len);
1117 		__skb_frag_set_page(frag, cons_rx_buf->page);
1118 		shinfo->nr_frags = i + 1;
1119 		__clear_bit(cons, rxr->rx_agg_bmap);
1120 
1121 		/* It is possible for bnxt_alloc_rx_page() to allocate
1122 		 * a sw_prod index that equals the cons index, so we
1123 		 * need to clear the cons entry now.
1124 		 */
1125 		mapping = cons_rx_buf->mapping;
1126 		page = cons_rx_buf->page;
1127 		cons_rx_buf->page = NULL;
1128 
1129 		if (xdp && page_is_pfmemalloc(page))
1130 			xdp_buff_set_frag_pfmemalloc(xdp);
1131 
1132 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
1133 			unsigned int nr_frags;
1134 
1135 			nr_frags = --shinfo->nr_frags;
1136 			__skb_frag_set_page(&shinfo->frags[nr_frags], NULL);
1137 			cons_rx_buf->page = page;
1138 
1139 			/* Update prod since possibly some pages have been
1140 			 * allocated already.
1141 			 */
1142 			rxr->rx_agg_prod = prod;
1143 			bnxt_reuse_rx_agg_bufs(cpr, idx, i, agg_bufs - i, tpa);
1144 			return 0;
1145 		}
1146 
1147 		dma_unmap_page_attrs(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE,
1148 				     bp->rx_dir,
1149 				     DMA_ATTR_WEAK_ORDERING);
1150 
1151 		total_frag_len += frag_len;
1152 		prod = NEXT_RX_AGG(prod);
1153 	}
1154 	rxr->rx_agg_prod = prod;
1155 	return total_frag_len;
1156 }
1157 
1158 static struct sk_buff *bnxt_rx_agg_pages_skb(struct bnxt *bp,
1159 					     struct bnxt_cp_ring_info *cpr,
1160 					     struct sk_buff *skb, u16 idx,
1161 					     u32 agg_bufs, bool tpa)
1162 {
1163 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1164 	u32 total_frag_len = 0;
1165 
1166 	total_frag_len = __bnxt_rx_agg_pages(bp, cpr, shinfo, idx,
1167 					     agg_bufs, tpa, NULL);
1168 	if (!total_frag_len) {
1169 		dev_kfree_skb(skb);
1170 		return NULL;
1171 	}
1172 
1173 	skb->data_len += total_frag_len;
1174 	skb->len += total_frag_len;
1175 	skb->truesize += PAGE_SIZE * agg_bufs;
1176 	return skb;
1177 }
1178 
1179 static u32 bnxt_rx_agg_pages_xdp(struct bnxt *bp,
1180 				 struct bnxt_cp_ring_info *cpr,
1181 				 struct xdp_buff *xdp, u16 idx,
1182 				 u32 agg_bufs, bool tpa)
1183 {
1184 	struct skb_shared_info *shinfo = xdp_get_shared_info_from_buff(xdp);
1185 	u32 total_frag_len = 0;
1186 
1187 	if (!xdp_buff_has_frags(xdp))
1188 		shinfo->nr_frags = 0;
1189 
1190 	total_frag_len = __bnxt_rx_agg_pages(bp, cpr, shinfo,
1191 					     idx, agg_bufs, tpa, xdp);
1192 	if (total_frag_len) {
1193 		xdp_buff_set_frags_flag(xdp);
1194 		shinfo->nr_frags = agg_bufs;
1195 		shinfo->xdp_frags_size = total_frag_len;
1196 	}
1197 	return total_frag_len;
1198 }
1199 
1200 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1201 			       u8 agg_bufs, u32 *raw_cons)
1202 {
1203 	u16 last;
1204 	struct rx_agg_cmp *agg;
1205 
1206 	*raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
1207 	last = RING_CMP(*raw_cons);
1208 	agg = (struct rx_agg_cmp *)
1209 		&cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
1210 	return RX_AGG_CMP_VALID(agg, *raw_cons);
1211 }
1212 
1213 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
1214 					    unsigned int len,
1215 					    dma_addr_t mapping)
1216 {
1217 	struct bnxt *bp = bnapi->bp;
1218 	struct pci_dev *pdev = bp->pdev;
1219 	struct sk_buff *skb;
1220 
1221 	skb = napi_alloc_skb(&bnapi->napi, len);
1222 	if (!skb)
1223 		return NULL;
1224 
1225 	dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh,
1226 				bp->rx_dir);
1227 
1228 	memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN,
1229 	       len + NET_IP_ALIGN);
1230 
1231 	dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh,
1232 				   bp->rx_dir);
1233 
1234 	skb_put(skb, len);
1235 	return skb;
1236 }
1237 
1238 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1239 			   u32 *raw_cons, void *cmp)
1240 {
1241 	struct rx_cmp *rxcmp = cmp;
1242 	u32 tmp_raw_cons = *raw_cons;
1243 	u8 cmp_type, agg_bufs = 0;
1244 
1245 	cmp_type = RX_CMP_TYPE(rxcmp);
1246 
1247 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1248 		agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) &
1249 			    RX_CMP_AGG_BUFS) >>
1250 			   RX_CMP_AGG_BUFS_SHIFT;
1251 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1252 		struct rx_tpa_end_cmp *tpa_end = cmp;
1253 
1254 		if (bp->flags & BNXT_FLAG_CHIP_P5)
1255 			return 0;
1256 
1257 		agg_bufs = TPA_END_AGG_BUFS(tpa_end);
1258 	}
1259 
1260 	if (agg_bufs) {
1261 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1262 			return -EBUSY;
1263 	}
1264 	*raw_cons = tmp_raw_cons;
1265 	return 0;
1266 }
1267 
1268 static void bnxt_queue_fw_reset_work(struct bnxt *bp, unsigned long delay)
1269 {
1270 	if (!(test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)))
1271 		return;
1272 
1273 	if (BNXT_PF(bp))
1274 		queue_delayed_work(bnxt_pf_wq, &bp->fw_reset_task, delay);
1275 	else
1276 		schedule_delayed_work(&bp->fw_reset_task, delay);
1277 }
1278 
1279 static void bnxt_queue_sp_work(struct bnxt *bp)
1280 {
1281 	if (BNXT_PF(bp))
1282 		queue_work(bnxt_pf_wq, &bp->sp_task);
1283 	else
1284 		schedule_work(&bp->sp_task);
1285 }
1286 
1287 static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
1288 {
1289 	if (!rxr->bnapi->in_reset) {
1290 		rxr->bnapi->in_reset = true;
1291 		if (bp->flags & BNXT_FLAG_CHIP_P5)
1292 			set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
1293 		else
1294 			set_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event);
1295 		bnxt_queue_sp_work(bp);
1296 	}
1297 	rxr->rx_next_cons = 0xffff;
1298 }
1299 
1300 static u16 bnxt_alloc_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id)
1301 {
1302 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1303 	u16 idx = agg_id & MAX_TPA_P5_MASK;
1304 
1305 	if (test_bit(idx, map->agg_idx_bmap))
1306 		idx = find_first_zero_bit(map->agg_idx_bmap,
1307 					  BNXT_AGG_IDX_BMAP_SIZE);
1308 	__set_bit(idx, map->agg_idx_bmap);
1309 	map->agg_id_tbl[agg_id] = idx;
1310 	return idx;
1311 }
1312 
1313 static void bnxt_free_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
1314 {
1315 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1316 
1317 	__clear_bit(idx, map->agg_idx_bmap);
1318 }
1319 
1320 static u16 bnxt_lookup_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id)
1321 {
1322 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1323 
1324 	return map->agg_id_tbl[agg_id];
1325 }
1326 
1327 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1328 			   struct rx_tpa_start_cmp *tpa_start,
1329 			   struct rx_tpa_start_cmp_ext *tpa_start1)
1330 {
1331 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
1332 	struct bnxt_tpa_info *tpa_info;
1333 	u16 cons, prod, agg_id;
1334 	struct rx_bd *prod_bd;
1335 	dma_addr_t mapping;
1336 
1337 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
1338 		agg_id = TPA_START_AGG_ID_P5(tpa_start);
1339 		agg_id = bnxt_alloc_agg_idx(rxr, agg_id);
1340 	} else {
1341 		agg_id = TPA_START_AGG_ID(tpa_start);
1342 	}
1343 	cons = tpa_start->rx_tpa_start_cmp_opaque;
1344 	prod = rxr->rx_prod;
1345 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1346 	prod_rx_buf = &rxr->rx_buf_ring[prod];
1347 	tpa_info = &rxr->rx_tpa[agg_id];
1348 
1349 	if (unlikely(cons != rxr->rx_next_cons ||
1350 		     TPA_START_ERROR(tpa_start))) {
1351 		netdev_warn(bp->dev, "TPA cons %x, expected cons %x, error code %x\n",
1352 			    cons, rxr->rx_next_cons,
1353 			    TPA_START_ERROR_CODE(tpa_start1));
1354 		bnxt_sched_reset(bp, rxr);
1355 		return;
1356 	}
1357 	/* Store cfa_code in tpa_info to use in tpa_end
1358 	 * completion processing.
1359 	 */
1360 	tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1);
1361 	prod_rx_buf->data = tpa_info->data;
1362 	prod_rx_buf->data_ptr = tpa_info->data_ptr;
1363 
1364 	mapping = tpa_info->mapping;
1365 	prod_rx_buf->mapping = mapping;
1366 
1367 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
1368 
1369 	prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
1370 
1371 	tpa_info->data = cons_rx_buf->data;
1372 	tpa_info->data_ptr = cons_rx_buf->data_ptr;
1373 	cons_rx_buf->data = NULL;
1374 	tpa_info->mapping = cons_rx_buf->mapping;
1375 
1376 	tpa_info->len =
1377 		le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
1378 				RX_TPA_START_CMP_LEN_SHIFT;
1379 	if (likely(TPA_START_HASH_VALID(tpa_start))) {
1380 		u32 hash_type = TPA_START_HASH_TYPE(tpa_start);
1381 
1382 		tpa_info->hash_type = PKT_HASH_TYPE_L4;
1383 		tpa_info->gso_type = SKB_GSO_TCPV4;
1384 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1385 		if (hash_type == 3 || TPA_START_IS_IPV6(tpa_start1))
1386 			tpa_info->gso_type = SKB_GSO_TCPV6;
1387 		tpa_info->rss_hash =
1388 			le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
1389 	} else {
1390 		tpa_info->hash_type = PKT_HASH_TYPE_NONE;
1391 		tpa_info->gso_type = 0;
1392 		netif_warn(bp, rx_err, bp->dev, "TPA packet without valid hash\n");
1393 	}
1394 	tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
1395 	tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
1396 	tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info);
1397 	tpa_info->agg_count = 0;
1398 
1399 	rxr->rx_prod = NEXT_RX(prod);
1400 	cons = NEXT_RX(cons);
1401 	rxr->rx_next_cons = NEXT_RX(cons);
1402 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1403 
1404 	bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
1405 	rxr->rx_prod = NEXT_RX(rxr->rx_prod);
1406 	cons_rx_buf->data = NULL;
1407 }
1408 
1409 static void bnxt_abort_tpa(struct bnxt_cp_ring_info *cpr, u16 idx, u32 agg_bufs)
1410 {
1411 	if (agg_bufs)
1412 		bnxt_reuse_rx_agg_bufs(cpr, idx, 0, agg_bufs, true);
1413 }
1414 
1415 #ifdef CONFIG_INET
1416 static void bnxt_gro_tunnel(struct sk_buff *skb, __be16 ip_proto)
1417 {
1418 	struct udphdr *uh = NULL;
1419 
1420 	if (ip_proto == htons(ETH_P_IP)) {
1421 		struct iphdr *iph = (struct iphdr *)skb->data;
1422 
1423 		if (iph->protocol == IPPROTO_UDP)
1424 			uh = (struct udphdr *)(iph + 1);
1425 	} else {
1426 		struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1427 
1428 		if (iph->nexthdr == IPPROTO_UDP)
1429 			uh = (struct udphdr *)(iph + 1);
1430 	}
1431 	if (uh) {
1432 		if (uh->check)
1433 			skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL_CSUM;
1434 		else
1435 			skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1436 	}
1437 }
1438 #endif
1439 
1440 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info,
1441 					   int payload_off, int tcp_ts,
1442 					   struct sk_buff *skb)
1443 {
1444 #ifdef CONFIG_INET
1445 	struct tcphdr *th;
1446 	int len, nw_off;
1447 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1448 	u32 hdr_info = tpa_info->hdr_info;
1449 	bool loopback = false;
1450 
1451 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1452 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1453 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1454 
1455 	/* If the packet is an internal loopback packet, the offsets will
1456 	 * have an extra 4 bytes.
1457 	 */
1458 	if (inner_mac_off == 4) {
1459 		loopback = true;
1460 	} else if (inner_mac_off > 4) {
1461 		__be16 proto = *((__be16 *)(skb->data + inner_ip_off -
1462 					    ETH_HLEN - 2));
1463 
1464 		/* We only support inner iPv4/ipv6.  If we don't see the
1465 		 * correct protocol ID, it must be a loopback packet where
1466 		 * the offsets are off by 4.
1467 		 */
1468 		if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6))
1469 			loopback = true;
1470 	}
1471 	if (loopback) {
1472 		/* internal loopback packet, subtract all offsets by 4 */
1473 		inner_ip_off -= 4;
1474 		inner_mac_off -= 4;
1475 		outer_ip_off -= 4;
1476 	}
1477 
1478 	nw_off = inner_ip_off - ETH_HLEN;
1479 	skb_set_network_header(skb, nw_off);
1480 	if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) {
1481 		struct ipv6hdr *iph = ipv6_hdr(skb);
1482 
1483 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1484 		len = skb->len - skb_transport_offset(skb);
1485 		th = tcp_hdr(skb);
1486 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1487 	} else {
1488 		struct iphdr *iph = ip_hdr(skb);
1489 
1490 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1491 		len = skb->len - skb_transport_offset(skb);
1492 		th = tcp_hdr(skb);
1493 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1494 	}
1495 
1496 	if (inner_mac_off) { /* tunnel */
1497 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1498 					    ETH_HLEN - 2));
1499 
1500 		bnxt_gro_tunnel(skb, proto);
1501 	}
1502 #endif
1503 	return skb;
1504 }
1505 
1506 static struct sk_buff *bnxt_gro_func_5750x(struct bnxt_tpa_info *tpa_info,
1507 					   int payload_off, int tcp_ts,
1508 					   struct sk_buff *skb)
1509 {
1510 #ifdef CONFIG_INET
1511 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1512 	u32 hdr_info = tpa_info->hdr_info;
1513 	int iphdr_len, nw_off;
1514 
1515 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1516 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1517 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1518 
1519 	nw_off = inner_ip_off - ETH_HLEN;
1520 	skb_set_network_header(skb, nw_off);
1521 	iphdr_len = (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) ?
1522 		     sizeof(struct ipv6hdr) : sizeof(struct iphdr);
1523 	skb_set_transport_header(skb, nw_off + iphdr_len);
1524 
1525 	if (inner_mac_off) { /* tunnel */
1526 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1527 					    ETH_HLEN - 2));
1528 
1529 		bnxt_gro_tunnel(skb, proto);
1530 	}
1531 #endif
1532 	return skb;
1533 }
1534 
1535 #define BNXT_IPV4_HDR_SIZE	(sizeof(struct iphdr) + sizeof(struct tcphdr))
1536 #define BNXT_IPV6_HDR_SIZE	(sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
1537 
1538 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info,
1539 					   int payload_off, int tcp_ts,
1540 					   struct sk_buff *skb)
1541 {
1542 #ifdef CONFIG_INET
1543 	struct tcphdr *th;
1544 	int len, nw_off, tcp_opt_len = 0;
1545 
1546 	if (tcp_ts)
1547 		tcp_opt_len = 12;
1548 
1549 	if (tpa_info->gso_type == SKB_GSO_TCPV4) {
1550 		struct iphdr *iph;
1551 
1552 		nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
1553 			 ETH_HLEN;
1554 		skb_set_network_header(skb, nw_off);
1555 		iph = ip_hdr(skb);
1556 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1557 		len = skb->len - skb_transport_offset(skb);
1558 		th = tcp_hdr(skb);
1559 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1560 	} else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
1561 		struct ipv6hdr *iph;
1562 
1563 		nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
1564 			 ETH_HLEN;
1565 		skb_set_network_header(skb, nw_off);
1566 		iph = ipv6_hdr(skb);
1567 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1568 		len = skb->len - skb_transport_offset(skb);
1569 		th = tcp_hdr(skb);
1570 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1571 	} else {
1572 		dev_kfree_skb_any(skb);
1573 		return NULL;
1574 	}
1575 
1576 	if (nw_off) /* tunnel */
1577 		bnxt_gro_tunnel(skb, skb->protocol);
1578 #endif
1579 	return skb;
1580 }
1581 
1582 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp,
1583 					   struct bnxt_tpa_info *tpa_info,
1584 					   struct rx_tpa_end_cmp *tpa_end,
1585 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1586 					   struct sk_buff *skb)
1587 {
1588 #ifdef CONFIG_INET
1589 	int payload_off;
1590 	u16 segs;
1591 
1592 	segs = TPA_END_TPA_SEGS(tpa_end);
1593 	if (segs == 1)
1594 		return skb;
1595 
1596 	NAPI_GRO_CB(skb)->count = segs;
1597 	skb_shinfo(skb)->gso_size =
1598 		le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
1599 	skb_shinfo(skb)->gso_type = tpa_info->gso_type;
1600 	if (bp->flags & BNXT_FLAG_CHIP_P5)
1601 		payload_off = TPA_END_PAYLOAD_OFF_P5(tpa_end1);
1602 	else
1603 		payload_off = TPA_END_PAYLOAD_OFF(tpa_end);
1604 	skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb);
1605 	if (likely(skb))
1606 		tcp_gro_complete(skb);
1607 #endif
1608 	return skb;
1609 }
1610 
1611 /* Given the cfa_code of a received packet determine which
1612  * netdev (vf-rep or PF) the packet is destined to.
1613  */
1614 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code)
1615 {
1616 	struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code);
1617 
1618 	/* if vf-rep dev is NULL, the must belongs to the PF */
1619 	return dev ? dev : bp->dev;
1620 }
1621 
1622 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
1623 					   struct bnxt_cp_ring_info *cpr,
1624 					   u32 *raw_cons,
1625 					   struct rx_tpa_end_cmp *tpa_end,
1626 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1627 					   u8 *event)
1628 {
1629 	struct bnxt_napi *bnapi = cpr->bnapi;
1630 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1631 	u8 *data_ptr, agg_bufs;
1632 	unsigned int len;
1633 	struct bnxt_tpa_info *tpa_info;
1634 	dma_addr_t mapping;
1635 	struct sk_buff *skb;
1636 	u16 idx = 0, agg_id;
1637 	void *data;
1638 	bool gro;
1639 
1640 	if (unlikely(bnapi->in_reset)) {
1641 		int rc = bnxt_discard_rx(bp, cpr, raw_cons, tpa_end);
1642 
1643 		if (rc < 0)
1644 			return ERR_PTR(-EBUSY);
1645 		return NULL;
1646 	}
1647 
1648 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
1649 		agg_id = TPA_END_AGG_ID_P5(tpa_end);
1650 		agg_id = bnxt_lookup_agg_idx(rxr, agg_id);
1651 		agg_bufs = TPA_END_AGG_BUFS_P5(tpa_end1);
1652 		tpa_info = &rxr->rx_tpa[agg_id];
1653 		if (unlikely(agg_bufs != tpa_info->agg_count)) {
1654 			netdev_warn(bp->dev, "TPA end agg_buf %d != expected agg_bufs %d\n",
1655 				    agg_bufs, tpa_info->agg_count);
1656 			agg_bufs = tpa_info->agg_count;
1657 		}
1658 		tpa_info->agg_count = 0;
1659 		*event |= BNXT_AGG_EVENT;
1660 		bnxt_free_agg_idx(rxr, agg_id);
1661 		idx = agg_id;
1662 		gro = !!(bp->flags & BNXT_FLAG_GRO);
1663 	} else {
1664 		agg_id = TPA_END_AGG_ID(tpa_end);
1665 		agg_bufs = TPA_END_AGG_BUFS(tpa_end);
1666 		tpa_info = &rxr->rx_tpa[agg_id];
1667 		idx = RING_CMP(*raw_cons);
1668 		if (agg_bufs) {
1669 			if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
1670 				return ERR_PTR(-EBUSY);
1671 
1672 			*event |= BNXT_AGG_EVENT;
1673 			idx = NEXT_CMP(idx);
1674 		}
1675 		gro = !!TPA_END_GRO(tpa_end);
1676 	}
1677 	data = tpa_info->data;
1678 	data_ptr = tpa_info->data_ptr;
1679 	prefetch(data_ptr);
1680 	len = tpa_info->len;
1681 	mapping = tpa_info->mapping;
1682 
1683 	if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) {
1684 		bnxt_abort_tpa(cpr, idx, agg_bufs);
1685 		if (agg_bufs > MAX_SKB_FRAGS)
1686 			netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
1687 				    agg_bufs, (int)MAX_SKB_FRAGS);
1688 		return NULL;
1689 	}
1690 
1691 	if (len <= bp->rx_copy_thresh) {
1692 		skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping);
1693 		if (!skb) {
1694 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1695 			cpr->sw_stats.rx.rx_oom_discards += 1;
1696 			return NULL;
1697 		}
1698 	} else {
1699 		u8 *new_data;
1700 		dma_addr_t new_mapping;
1701 
1702 		new_data = __bnxt_alloc_rx_frag(bp, &new_mapping, GFP_ATOMIC);
1703 		if (!new_data) {
1704 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1705 			cpr->sw_stats.rx.rx_oom_discards += 1;
1706 			return NULL;
1707 		}
1708 
1709 		tpa_info->data = new_data;
1710 		tpa_info->data_ptr = new_data + bp->rx_offset;
1711 		tpa_info->mapping = new_mapping;
1712 
1713 		skb = build_skb(data, bp->rx_buf_size);
1714 		dma_unmap_single_attrs(&bp->pdev->dev, mapping,
1715 				       bp->rx_buf_use_size, bp->rx_dir,
1716 				       DMA_ATTR_WEAK_ORDERING);
1717 
1718 		if (!skb) {
1719 			skb_free_frag(data);
1720 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1721 			cpr->sw_stats.rx.rx_oom_discards += 1;
1722 			return NULL;
1723 		}
1724 		skb_reserve(skb, bp->rx_offset);
1725 		skb_put(skb, len);
1726 	}
1727 
1728 	if (agg_bufs) {
1729 		skb = bnxt_rx_agg_pages_skb(bp, cpr, skb, idx, agg_bufs, true);
1730 		if (!skb) {
1731 			/* Page reuse already handled by bnxt_rx_pages(). */
1732 			cpr->sw_stats.rx.rx_oom_discards += 1;
1733 			return NULL;
1734 		}
1735 	}
1736 
1737 	skb->protocol =
1738 		eth_type_trans(skb, bnxt_get_pkt_dev(bp, tpa_info->cfa_code));
1739 
1740 	if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1741 		skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1742 
1743 	if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) &&
1744 	    (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) {
1745 		__be16 vlan_proto = htons(tpa_info->metadata >>
1746 					  RX_CMP_FLAGS2_METADATA_TPID_SFT);
1747 		u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1748 
1749 		if (eth_type_vlan(vlan_proto)) {
1750 			__vlan_hwaccel_put_tag(skb, vlan_proto, vtag);
1751 		} else {
1752 			dev_kfree_skb(skb);
1753 			return NULL;
1754 		}
1755 	}
1756 
1757 	skb_checksum_none_assert(skb);
1758 	if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1759 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1760 		skb->csum_level =
1761 			(tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1762 	}
1763 
1764 	if (gro)
1765 		skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb);
1766 
1767 	return skb;
1768 }
1769 
1770 static void bnxt_tpa_agg(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1771 			 struct rx_agg_cmp *rx_agg)
1772 {
1773 	u16 agg_id = TPA_AGG_AGG_ID(rx_agg);
1774 	struct bnxt_tpa_info *tpa_info;
1775 
1776 	agg_id = bnxt_lookup_agg_idx(rxr, agg_id);
1777 	tpa_info = &rxr->rx_tpa[agg_id];
1778 	BUG_ON(tpa_info->agg_count >= MAX_SKB_FRAGS);
1779 	tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg;
1780 }
1781 
1782 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi,
1783 			     struct sk_buff *skb)
1784 {
1785 	if (skb->dev != bp->dev) {
1786 		/* this packet belongs to a vf-rep */
1787 		bnxt_vf_rep_rx(bp, skb);
1788 		return;
1789 	}
1790 	skb_record_rx_queue(skb, bnapi->index);
1791 	napi_gro_receive(&bnapi->napi, skb);
1792 }
1793 
1794 /* returns the following:
1795  * 1       - 1 packet successfully received
1796  * 0       - successful TPA_START, packet not completed yet
1797  * -EBUSY  - completion ring does not have all the agg buffers yet
1798  * -ENOMEM - packet aborted due to out of memory
1799  * -EIO    - packet aborted due to hw error indicated in BD
1800  */
1801 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1802 		       u32 *raw_cons, u8 *event)
1803 {
1804 	struct bnxt_napi *bnapi = cpr->bnapi;
1805 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1806 	struct net_device *dev = bp->dev;
1807 	struct rx_cmp *rxcmp;
1808 	struct rx_cmp_ext *rxcmp1;
1809 	u32 tmp_raw_cons = *raw_cons;
1810 	u16 cfa_code, cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
1811 	struct bnxt_sw_rx_bd *rx_buf;
1812 	unsigned int len;
1813 	u8 *data_ptr, agg_bufs, cmp_type;
1814 	bool xdp_active = false;
1815 	dma_addr_t dma_addr;
1816 	struct sk_buff *skb;
1817 	struct xdp_buff xdp;
1818 	u32 flags, misc;
1819 	void *data;
1820 	int rc = 0;
1821 
1822 	rxcmp = (struct rx_cmp *)
1823 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1824 
1825 	cmp_type = RX_CMP_TYPE(rxcmp);
1826 
1827 	if (cmp_type == CMP_TYPE_RX_TPA_AGG_CMP) {
1828 		bnxt_tpa_agg(bp, rxr, (struct rx_agg_cmp *)rxcmp);
1829 		goto next_rx_no_prod_no_len;
1830 	}
1831 
1832 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1833 	cp_cons = RING_CMP(tmp_raw_cons);
1834 	rxcmp1 = (struct rx_cmp_ext *)
1835 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1836 
1837 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1838 		return -EBUSY;
1839 
1840 	/* The valid test of the entry must be done first before
1841 	 * reading any further.
1842 	 */
1843 	dma_rmb();
1844 	prod = rxr->rx_prod;
1845 
1846 	if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) {
1847 		bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp,
1848 			       (struct rx_tpa_start_cmp_ext *)rxcmp1);
1849 
1850 		*event |= BNXT_RX_EVENT;
1851 		goto next_rx_no_prod_no_len;
1852 
1853 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1854 		skb = bnxt_tpa_end(bp, cpr, &tmp_raw_cons,
1855 				   (struct rx_tpa_end_cmp *)rxcmp,
1856 				   (struct rx_tpa_end_cmp_ext *)rxcmp1, event);
1857 
1858 		if (IS_ERR(skb))
1859 			return -EBUSY;
1860 
1861 		rc = -ENOMEM;
1862 		if (likely(skb)) {
1863 			bnxt_deliver_skb(bp, bnapi, skb);
1864 			rc = 1;
1865 		}
1866 		*event |= BNXT_RX_EVENT;
1867 		goto next_rx_no_prod_no_len;
1868 	}
1869 
1870 	cons = rxcmp->rx_cmp_opaque;
1871 	if (unlikely(cons != rxr->rx_next_cons)) {
1872 		int rc1 = bnxt_discard_rx(bp, cpr, &tmp_raw_cons, rxcmp);
1873 
1874 		/* 0xffff is forced error, don't print it */
1875 		if (rxr->rx_next_cons != 0xffff)
1876 			netdev_warn(bp->dev, "RX cons %x != expected cons %x\n",
1877 				    cons, rxr->rx_next_cons);
1878 		bnxt_sched_reset(bp, rxr);
1879 		if (rc1)
1880 			return rc1;
1881 		goto next_rx_no_prod_no_len;
1882 	}
1883 	rx_buf = &rxr->rx_buf_ring[cons];
1884 	data = rx_buf->data;
1885 	data_ptr = rx_buf->data_ptr;
1886 	prefetch(data_ptr);
1887 
1888 	misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1);
1889 	agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT;
1890 
1891 	if (agg_bufs) {
1892 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1893 			return -EBUSY;
1894 
1895 		cp_cons = NEXT_CMP(cp_cons);
1896 		*event |= BNXT_AGG_EVENT;
1897 	}
1898 	*event |= BNXT_RX_EVENT;
1899 
1900 	rx_buf->data = NULL;
1901 	if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
1902 		u32 rx_err = le32_to_cpu(rxcmp1->rx_cmp_cfa_code_errors_v2);
1903 
1904 		bnxt_reuse_rx_data(rxr, cons, data);
1905 		if (agg_bufs)
1906 			bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, agg_bufs,
1907 					       false);
1908 
1909 		rc = -EIO;
1910 		if (rx_err & RX_CMPL_ERRORS_BUFFER_ERROR_MASK) {
1911 			bnapi->cp_ring.sw_stats.rx.rx_buf_errors++;
1912 			if (!(bp->flags & BNXT_FLAG_CHIP_P5) &&
1913 			    !(bp->fw_cap & BNXT_FW_CAP_RING_MONITOR)) {
1914 				netdev_warn_once(bp->dev, "RX buffer error %x\n",
1915 						 rx_err);
1916 				bnxt_sched_reset(bp, rxr);
1917 			}
1918 		}
1919 		goto next_rx_no_len;
1920 	}
1921 
1922 	flags = le32_to_cpu(rxcmp->rx_cmp_len_flags_type);
1923 	len = flags >> RX_CMP_LEN_SHIFT;
1924 	dma_addr = rx_buf->mapping;
1925 
1926 	if (bnxt_xdp_attached(bp, rxr)) {
1927 		bnxt_xdp_buff_init(bp, rxr, cons, data_ptr, len, &xdp);
1928 		if (agg_bufs) {
1929 			u32 frag_len = bnxt_rx_agg_pages_xdp(bp, cpr, &xdp,
1930 							     cp_cons, agg_bufs,
1931 							     false);
1932 			if (!frag_len) {
1933 				cpr->sw_stats.rx.rx_oom_discards += 1;
1934 				rc = -ENOMEM;
1935 				goto next_rx;
1936 			}
1937 		}
1938 		xdp_active = true;
1939 	}
1940 
1941 	if (xdp_active) {
1942 		if (bnxt_rx_xdp(bp, rxr, cons, xdp, data, &data_ptr, &len, event)) {
1943 			rc = 1;
1944 			goto next_rx;
1945 		}
1946 	}
1947 
1948 	if (len <= bp->rx_copy_thresh) {
1949 		skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr);
1950 		bnxt_reuse_rx_data(rxr, cons, data);
1951 		if (!skb) {
1952 			if (agg_bufs) {
1953 				if (!xdp_active)
1954 					bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0,
1955 							       agg_bufs, false);
1956 				else
1957 					bnxt_xdp_buff_frags_free(rxr, &xdp);
1958 			}
1959 			cpr->sw_stats.rx.rx_oom_discards += 1;
1960 			rc = -ENOMEM;
1961 			goto next_rx;
1962 		}
1963 	} else {
1964 		u32 payload;
1965 
1966 		if (rx_buf->data_ptr == data_ptr)
1967 			payload = misc & RX_CMP_PAYLOAD_OFFSET;
1968 		else
1969 			payload = 0;
1970 		skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr,
1971 				      payload | len);
1972 		if (!skb) {
1973 			cpr->sw_stats.rx.rx_oom_discards += 1;
1974 			rc = -ENOMEM;
1975 			goto next_rx;
1976 		}
1977 	}
1978 
1979 	if (agg_bufs) {
1980 		if (!xdp_active) {
1981 			skb = bnxt_rx_agg_pages_skb(bp, cpr, skb, cp_cons, agg_bufs, false);
1982 			if (!skb) {
1983 				cpr->sw_stats.rx.rx_oom_discards += 1;
1984 				rc = -ENOMEM;
1985 				goto next_rx;
1986 			}
1987 		} else {
1988 			skb = bnxt_xdp_build_skb(bp, skb, agg_bufs, rxr->page_pool, &xdp, rxcmp1);
1989 			if (!skb) {
1990 				/* we should be able to free the old skb here */
1991 				bnxt_xdp_buff_frags_free(rxr, &xdp);
1992 				cpr->sw_stats.rx.rx_oom_discards += 1;
1993 				rc = -ENOMEM;
1994 				goto next_rx;
1995 			}
1996 		}
1997 	}
1998 
1999 	if (RX_CMP_HASH_VALID(rxcmp)) {
2000 		u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
2001 		enum pkt_hash_types type = PKT_HASH_TYPE_L4;
2002 
2003 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
2004 		if (hash_type != 1 && hash_type != 3)
2005 			type = PKT_HASH_TYPE_L3;
2006 		skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
2007 	}
2008 
2009 	cfa_code = RX_CMP_CFA_CODE(rxcmp1);
2010 	skb->protocol = eth_type_trans(skb, bnxt_get_pkt_dev(bp, cfa_code));
2011 
2012 	if ((rxcmp1->rx_cmp_flags2 &
2013 	     cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) &&
2014 	    (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) {
2015 		u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
2016 		u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK;
2017 		__be16 vlan_proto = htons(meta_data >>
2018 					  RX_CMP_FLAGS2_METADATA_TPID_SFT);
2019 
2020 		if (eth_type_vlan(vlan_proto)) {
2021 			__vlan_hwaccel_put_tag(skb, vlan_proto, vtag);
2022 		} else {
2023 			dev_kfree_skb(skb);
2024 			goto next_rx;
2025 		}
2026 	}
2027 
2028 	skb_checksum_none_assert(skb);
2029 	if (RX_CMP_L4_CS_OK(rxcmp1)) {
2030 		if (dev->features & NETIF_F_RXCSUM) {
2031 			skb->ip_summed = CHECKSUM_UNNECESSARY;
2032 			skb->csum_level = RX_CMP_ENCAP(rxcmp1);
2033 		}
2034 	} else {
2035 		if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
2036 			if (dev->features & NETIF_F_RXCSUM)
2037 				bnapi->cp_ring.sw_stats.rx.rx_l4_csum_errors++;
2038 		}
2039 	}
2040 
2041 	if (unlikely((flags & RX_CMP_FLAGS_ITYPES_MASK) ==
2042 		     RX_CMP_FLAGS_ITYPE_PTP_W_TS) || bp->ptp_all_rx_tstamp) {
2043 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
2044 			u32 cmpl_ts = le32_to_cpu(rxcmp1->rx_cmp_timestamp);
2045 			u64 ns, ts;
2046 
2047 			if (!bnxt_get_rx_ts_p5(bp, &ts, cmpl_ts)) {
2048 				struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2049 
2050 				spin_lock_bh(&ptp->ptp_lock);
2051 				ns = timecounter_cyc2time(&ptp->tc, ts);
2052 				spin_unlock_bh(&ptp->ptp_lock);
2053 				memset(skb_hwtstamps(skb), 0,
2054 				       sizeof(*skb_hwtstamps(skb)));
2055 				skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
2056 			}
2057 		}
2058 	}
2059 	bnxt_deliver_skb(bp, bnapi, skb);
2060 	rc = 1;
2061 
2062 next_rx:
2063 	cpr->rx_packets += 1;
2064 	cpr->rx_bytes += len;
2065 
2066 next_rx_no_len:
2067 	rxr->rx_prod = NEXT_RX(prod);
2068 	rxr->rx_next_cons = NEXT_RX(cons);
2069 
2070 next_rx_no_prod_no_len:
2071 	*raw_cons = tmp_raw_cons;
2072 
2073 	return rc;
2074 }
2075 
2076 /* In netpoll mode, if we are using a combined completion ring, we need to
2077  * discard the rx packets and recycle the buffers.
2078  */
2079 static int bnxt_force_rx_discard(struct bnxt *bp,
2080 				 struct bnxt_cp_ring_info *cpr,
2081 				 u32 *raw_cons, u8 *event)
2082 {
2083 	u32 tmp_raw_cons = *raw_cons;
2084 	struct rx_cmp_ext *rxcmp1;
2085 	struct rx_cmp *rxcmp;
2086 	u16 cp_cons;
2087 	u8 cmp_type;
2088 	int rc;
2089 
2090 	cp_cons = RING_CMP(tmp_raw_cons);
2091 	rxcmp = (struct rx_cmp *)
2092 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2093 
2094 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
2095 	cp_cons = RING_CMP(tmp_raw_cons);
2096 	rxcmp1 = (struct rx_cmp_ext *)
2097 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2098 
2099 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
2100 		return -EBUSY;
2101 
2102 	/* The valid test of the entry must be done first before
2103 	 * reading any further.
2104 	 */
2105 	dma_rmb();
2106 	cmp_type = RX_CMP_TYPE(rxcmp);
2107 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
2108 		rxcmp1->rx_cmp_cfa_code_errors_v2 |=
2109 			cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
2110 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
2111 		struct rx_tpa_end_cmp_ext *tpa_end1;
2112 
2113 		tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1;
2114 		tpa_end1->rx_tpa_end_cmp_errors_v2 |=
2115 			cpu_to_le32(RX_TPA_END_CMP_ERRORS);
2116 	}
2117 	rc = bnxt_rx_pkt(bp, cpr, raw_cons, event);
2118 	if (rc && rc != -EBUSY)
2119 		cpr->sw_stats.rx.rx_netpoll_discards += 1;
2120 	return rc;
2121 }
2122 
2123 u32 bnxt_fw_health_readl(struct bnxt *bp, int reg_idx)
2124 {
2125 	struct bnxt_fw_health *fw_health = bp->fw_health;
2126 	u32 reg = fw_health->regs[reg_idx];
2127 	u32 reg_type, reg_off, val = 0;
2128 
2129 	reg_type = BNXT_FW_HEALTH_REG_TYPE(reg);
2130 	reg_off = BNXT_FW_HEALTH_REG_OFF(reg);
2131 	switch (reg_type) {
2132 	case BNXT_FW_HEALTH_REG_TYPE_CFG:
2133 		pci_read_config_dword(bp->pdev, reg_off, &val);
2134 		break;
2135 	case BNXT_FW_HEALTH_REG_TYPE_GRC:
2136 		reg_off = fw_health->mapped_regs[reg_idx];
2137 		fallthrough;
2138 	case BNXT_FW_HEALTH_REG_TYPE_BAR0:
2139 		val = readl(bp->bar0 + reg_off);
2140 		break;
2141 	case BNXT_FW_HEALTH_REG_TYPE_BAR1:
2142 		val = readl(bp->bar1 + reg_off);
2143 		break;
2144 	}
2145 	if (reg_idx == BNXT_FW_RESET_INPROG_REG)
2146 		val &= fw_health->fw_reset_inprog_reg_mask;
2147 	return val;
2148 }
2149 
2150 static u16 bnxt_agg_ring_id_to_grp_idx(struct bnxt *bp, u16 ring_id)
2151 {
2152 	int i;
2153 
2154 	for (i = 0; i < bp->rx_nr_rings; i++) {
2155 		u16 grp_idx = bp->rx_ring[i].bnapi->index;
2156 		struct bnxt_ring_grp_info *grp_info;
2157 
2158 		grp_info = &bp->grp_info[grp_idx];
2159 		if (grp_info->agg_fw_ring_id == ring_id)
2160 			return grp_idx;
2161 	}
2162 	return INVALID_HW_RING_ID;
2163 }
2164 
2165 static void bnxt_event_error_report(struct bnxt *bp, u32 data1, u32 data2)
2166 {
2167 	u32 err_type = BNXT_EVENT_ERROR_REPORT_TYPE(data1);
2168 
2169 	switch (err_type) {
2170 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_INVALID_SIGNAL:
2171 		netdev_err(bp->dev, "1PPS: Received invalid signal on pin%lu from the external source. Please fix the signal and reconfigure the pin\n",
2172 			   BNXT_EVENT_INVALID_SIGNAL_DATA(data2));
2173 		break;
2174 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_PAUSE_STORM:
2175 		netdev_warn(bp->dev, "Pause Storm detected!\n");
2176 		break;
2177 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_DOORBELL_DROP_THRESHOLD:
2178 		netdev_warn(bp->dev, "One or more MMIO doorbells dropped by the device!\n");
2179 		break;
2180 	default:
2181 		netdev_err(bp->dev, "FW reported unknown error type %u\n",
2182 			   err_type);
2183 		break;
2184 	}
2185 }
2186 
2187 #define BNXT_GET_EVENT_PORT(data)	\
2188 	((data) &			\
2189 	 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK)
2190 
2191 #define BNXT_EVENT_RING_TYPE(data2)	\
2192 	((data2) &			\
2193 	 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_MASK)
2194 
2195 #define BNXT_EVENT_RING_TYPE_RX(data2)	\
2196 	(BNXT_EVENT_RING_TYPE(data2) ==	\
2197 	 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_RX)
2198 
2199 #define BNXT_EVENT_PHC_EVENT_TYPE(data1)	\
2200 	(((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_MASK) >>\
2201 	 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_SFT)
2202 
2203 #define BNXT_EVENT_PHC_RTC_UPDATE(data1)	\
2204 	(((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_MASK) >>\
2205 	 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_SFT)
2206 
2207 #define BNXT_PHC_BITS	48
2208 
2209 static int bnxt_async_event_process(struct bnxt *bp,
2210 				    struct hwrm_async_event_cmpl *cmpl)
2211 {
2212 	u16 event_id = le16_to_cpu(cmpl->event_id);
2213 	u32 data1 = le32_to_cpu(cmpl->event_data1);
2214 	u32 data2 = le32_to_cpu(cmpl->event_data2);
2215 
2216 	netdev_dbg(bp->dev, "hwrm event 0x%x {0x%x, 0x%x}\n",
2217 		   event_id, data1, data2);
2218 
2219 	/* TODO CHIMP_FW: Define event id's for link change, error etc */
2220 	switch (event_id) {
2221 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: {
2222 		struct bnxt_link_info *link_info = &bp->link_info;
2223 
2224 		if (BNXT_VF(bp))
2225 			goto async_event_process_exit;
2226 
2227 		/* print unsupported speed warning in forced speed mode only */
2228 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) &&
2229 		    (data1 & 0x20000)) {
2230 			u16 fw_speed = link_info->force_link_speed;
2231 			u32 speed = bnxt_fw_to_ethtool_speed(fw_speed);
2232 
2233 			if (speed != SPEED_UNKNOWN)
2234 				netdev_warn(bp->dev, "Link speed %d no longer supported\n",
2235 					    speed);
2236 		}
2237 		set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event);
2238 	}
2239 		fallthrough;
2240 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE:
2241 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE:
2242 		set_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, &bp->sp_event);
2243 		fallthrough;
2244 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
2245 		set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
2246 		break;
2247 	case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD:
2248 		set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event);
2249 		break;
2250 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: {
2251 		u16 port_id = BNXT_GET_EVENT_PORT(data1);
2252 
2253 		if (BNXT_VF(bp))
2254 			break;
2255 
2256 		if (bp->pf.port_id != port_id)
2257 			break;
2258 
2259 		set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event);
2260 		break;
2261 	}
2262 	case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE:
2263 		if (BNXT_PF(bp))
2264 			goto async_event_process_exit;
2265 		set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event);
2266 		break;
2267 	case ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY: {
2268 		char *type_str = "Solicited";
2269 
2270 		if (!bp->fw_health)
2271 			goto async_event_process_exit;
2272 
2273 		bp->fw_reset_timestamp = jiffies;
2274 		bp->fw_reset_min_dsecs = cmpl->timestamp_lo;
2275 		if (!bp->fw_reset_min_dsecs)
2276 			bp->fw_reset_min_dsecs = BNXT_DFLT_FW_RST_MIN_DSECS;
2277 		bp->fw_reset_max_dsecs = le16_to_cpu(cmpl->timestamp_hi);
2278 		if (!bp->fw_reset_max_dsecs)
2279 			bp->fw_reset_max_dsecs = BNXT_DFLT_FW_RST_MAX_DSECS;
2280 		if (EVENT_DATA1_RESET_NOTIFY_FW_ACTIVATION(data1)) {
2281 			set_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state);
2282 		} else if (EVENT_DATA1_RESET_NOTIFY_FATAL(data1)) {
2283 			type_str = "Fatal";
2284 			bp->fw_health->fatalities++;
2285 			set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
2286 		} else if (data2 && BNXT_FW_STATUS_HEALTHY !=
2287 			   EVENT_DATA2_RESET_NOTIFY_FW_STATUS_CODE(data2)) {
2288 			type_str = "Non-fatal";
2289 			bp->fw_health->survivals++;
2290 			set_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state);
2291 		}
2292 		netif_warn(bp, hw, bp->dev,
2293 			   "%s firmware reset event, data1: 0x%x, data2: 0x%x, min wait %u ms, max wait %u ms\n",
2294 			   type_str, data1, data2,
2295 			   bp->fw_reset_min_dsecs * 100,
2296 			   bp->fw_reset_max_dsecs * 100);
2297 		set_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event);
2298 		break;
2299 	}
2300 	case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY: {
2301 		struct bnxt_fw_health *fw_health = bp->fw_health;
2302 		char *status_desc = "healthy";
2303 		u32 status;
2304 
2305 		if (!fw_health)
2306 			goto async_event_process_exit;
2307 
2308 		if (!EVENT_DATA1_RECOVERY_ENABLED(data1)) {
2309 			fw_health->enabled = false;
2310 			netif_info(bp, drv, bp->dev, "Driver recovery watchdog is disabled\n");
2311 			break;
2312 		}
2313 		fw_health->primary = EVENT_DATA1_RECOVERY_MASTER_FUNC(data1);
2314 		fw_health->tmr_multiplier =
2315 			DIV_ROUND_UP(fw_health->polling_dsecs * HZ,
2316 				     bp->current_interval * 10);
2317 		fw_health->tmr_counter = fw_health->tmr_multiplier;
2318 		if (!fw_health->enabled)
2319 			fw_health->last_fw_heartbeat =
2320 				bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
2321 		fw_health->last_fw_reset_cnt =
2322 			bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
2323 		status = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
2324 		if (status != BNXT_FW_STATUS_HEALTHY)
2325 			status_desc = "unhealthy";
2326 		netif_info(bp, drv, bp->dev,
2327 			   "Driver recovery watchdog, role: %s, firmware status: 0x%x (%s), resets: %u\n",
2328 			   fw_health->primary ? "primary" : "backup", status,
2329 			   status_desc, fw_health->last_fw_reset_cnt);
2330 		if (!fw_health->enabled) {
2331 			/* Make sure tmr_counter is set and visible to
2332 			 * bnxt_health_check() before setting enabled to true.
2333 			 */
2334 			smp_wmb();
2335 			fw_health->enabled = true;
2336 		}
2337 		goto async_event_process_exit;
2338 	}
2339 	case ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION:
2340 		netif_notice(bp, hw, bp->dev,
2341 			     "Received firmware debug notification, data1: 0x%x, data2: 0x%x\n",
2342 			     data1, data2);
2343 		goto async_event_process_exit;
2344 	case ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG: {
2345 		struct bnxt_rx_ring_info *rxr;
2346 		u16 grp_idx;
2347 
2348 		if (bp->flags & BNXT_FLAG_CHIP_P5)
2349 			goto async_event_process_exit;
2350 
2351 		netdev_warn(bp->dev, "Ring monitor event, ring type %lu id 0x%x\n",
2352 			    BNXT_EVENT_RING_TYPE(data2), data1);
2353 		if (!BNXT_EVENT_RING_TYPE_RX(data2))
2354 			goto async_event_process_exit;
2355 
2356 		grp_idx = bnxt_agg_ring_id_to_grp_idx(bp, data1);
2357 		if (grp_idx == INVALID_HW_RING_ID) {
2358 			netdev_warn(bp->dev, "Unknown RX agg ring id 0x%x\n",
2359 				    data1);
2360 			goto async_event_process_exit;
2361 		}
2362 		rxr = bp->bnapi[grp_idx]->rx_ring;
2363 		bnxt_sched_reset(bp, rxr);
2364 		goto async_event_process_exit;
2365 	}
2366 	case ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST: {
2367 		struct bnxt_fw_health *fw_health = bp->fw_health;
2368 
2369 		netif_notice(bp, hw, bp->dev,
2370 			     "Received firmware echo request, data1: 0x%x, data2: 0x%x\n",
2371 			     data1, data2);
2372 		if (fw_health) {
2373 			fw_health->echo_req_data1 = data1;
2374 			fw_health->echo_req_data2 = data2;
2375 			set_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event);
2376 			break;
2377 		}
2378 		goto async_event_process_exit;
2379 	}
2380 	case ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP: {
2381 		bnxt_ptp_pps_event(bp, data1, data2);
2382 		goto async_event_process_exit;
2383 	}
2384 	case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT: {
2385 		bnxt_event_error_report(bp, data1, data2);
2386 		goto async_event_process_exit;
2387 	}
2388 	case ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE: {
2389 		switch (BNXT_EVENT_PHC_EVENT_TYPE(data1)) {
2390 		case ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_PHC_RTC_UPDATE:
2391 			if (bp->fw_cap & BNXT_FW_CAP_PTP_RTC) {
2392 				struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2393 				u64 ns;
2394 
2395 				spin_lock_bh(&ptp->ptp_lock);
2396 				bnxt_ptp_update_current_time(bp);
2397 				ns = (((u64)BNXT_EVENT_PHC_RTC_UPDATE(data1) <<
2398 				       BNXT_PHC_BITS) | ptp->current_time);
2399 				bnxt_ptp_rtc_timecounter_init(ptp, ns);
2400 				spin_unlock_bh(&ptp->ptp_lock);
2401 			}
2402 			break;
2403 		}
2404 		goto async_event_process_exit;
2405 	}
2406 	case ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE: {
2407 		u16 seq_id = le32_to_cpu(cmpl->event_data2) & 0xffff;
2408 
2409 		hwrm_update_token(bp, seq_id, BNXT_HWRM_DEFERRED);
2410 		goto async_event_process_exit;
2411 	}
2412 	default:
2413 		goto async_event_process_exit;
2414 	}
2415 	bnxt_queue_sp_work(bp);
2416 async_event_process_exit:
2417 	return 0;
2418 }
2419 
2420 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
2421 {
2422 	u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
2423 	struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
2424 	struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
2425 				(struct hwrm_fwd_req_cmpl *)txcmp;
2426 
2427 	switch (cmpl_type) {
2428 	case CMPL_BASE_TYPE_HWRM_DONE:
2429 		seq_id = le16_to_cpu(h_cmpl->sequence_id);
2430 		hwrm_update_token(bp, seq_id, BNXT_HWRM_COMPLETE);
2431 		break;
2432 
2433 	case CMPL_BASE_TYPE_HWRM_FWD_REQ:
2434 		vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
2435 
2436 		if ((vf_id < bp->pf.first_vf_id) ||
2437 		    (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
2438 			netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
2439 				   vf_id);
2440 			return -EINVAL;
2441 		}
2442 
2443 		set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
2444 		set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event);
2445 		bnxt_queue_sp_work(bp);
2446 		break;
2447 
2448 	case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
2449 		bnxt_async_event_process(bp,
2450 					 (struct hwrm_async_event_cmpl *)txcmp);
2451 		break;
2452 
2453 	default:
2454 		break;
2455 	}
2456 
2457 	return 0;
2458 }
2459 
2460 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
2461 {
2462 	struct bnxt_napi *bnapi = dev_instance;
2463 	struct bnxt *bp = bnapi->bp;
2464 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2465 	u32 cons = RING_CMP(cpr->cp_raw_cons);
2466 
2467 	cpr->event_ctr++;
2468 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
2469 	napi_schedule(&bnapi->napi);
2470 	return IRQ_HANDLED;
2471 }
2472 
2473 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
2474 {
2475 	u32 raw_cons = cpr->cp_raw_cons;
2476 	u16 cons = RING_CMP(raw_cons);
2477 	struct tx_cmp *txcmp;
2478 
2479 	txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2480 
2481 	return TX_CMP_VALID(txcmp, raw_cons);
2482 }
2483 
2484 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
2485 {
2486 	struct bnxt_napi *bnapi = dev_instance;
2487 	struct bnxt *bp = bnapi->bp;
2488 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2489 	u32 cons = RING_CMP(cpr->cp_raw_cons);
2490 	u32 int_status;
2491 
2492 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
2493 
2494 	if (!bnxt_has_work(bp, cpr)) {
2495 		int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
2496 		/* return if erroneous interrupt */
2497 		if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
2498 			return IRQ_NONE;
2499 	}
2500 
2501 	/* disable ring IRQ */
2502 	BNXT_CP_DB_IRQ_DIS(cpr->cp_db.doorbell);
2503 
2504 	/* Return here if interrupt is shared and is disabled. */
2505 	if (unlikely(atomic_read(&bp->intr_sem) != 0))
2506 		return IRQ_HANDLED;
2507 
2508 	napi_schedule(&bnapi->napi);
2509 	return IRQ_HANDLED;
2510 }
2511 
2512 static int __bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2513 			    int budget)
2514 {
2515 	struct bnxt_napi *bnapi = cpr->bnapi;
2516 	u32 raw_cons = cpr->cp_raw_cons;
2517 	u32 cons;
2518 	int tx_pkts = 0;
2519 	int rx_pkts = 0;
2520 	u8 event = 0;
2521 	struct tx_cmp *txcmp;
2522 
2523 	cpr->has_more_work = 0;
2524 	cpr->had_work_done = 1;
2525 	while (1) {
2526 		int rc;
2527 
2528 		cons = RING_CMP(raw_cons);
2529 		txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2530 
2531 		if (!TX_CMP_VALID(txcmp, raw_cons))
2532 			break;
2533 
2534 		/* The valid test of the entry must be done first before
2535 		 * reading any further.
2536 		 */
2537 		dma_rmb();
2538 		if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) {
2539 			tx_pkts++;
2540 			/* return full budget so NAPI will complete. */
2541 			if (unlikely(tx_pkts >= bp->tx_wake_thresh)) {
2542 				rx_pkts = budget;
2543 				raw_cons = NEXT_RAW_CMP(raw_cons);
2544 				if (budget)
2545 					cpr->has_more_work = 1;
2546 				break;
2547 			}
2548 		} else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
2549 			if (likely(budget))
2550 				rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
2551 			else
2552 				rc = bnxt_force_rx_discard(bp, cpr, &raw_cons,
2553 							   &event);
2554 			if (likely(rc >= 0))
2555 				rx_pkts += rc;
2556 			/* Increment rx_pkts when rc is -ENOMEM to count towards
2557 			 * the NAPI budget.  Otherwise, we may potentially loop
2558 			 * here forever if we consistently cannot allocate
2559 			 * buffers.
2560 			 */
2561 			else if (rc == -ENOMEM && budget)
2562 				rx_pkts++;
2563 			else if (rc == -EBUSY)	/* partial completion */
2564 				break;
2565 		} else if (unlikely((TX_CMP_TYPE(txcmp) ==
2566 				     CMPL_BASE_TYPE_HWRM_DONE) ||
2567 				    (TX_CMP_TYPE(txcmp) ==
2568 				     CMPL_BASE_TYPE_HWRM_FWD_REQ) ||
2569 				    (TX_CMP_TYPE(txcmp) ==
2570 				     CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) {
2571 			bnxt_hwrm_handler(bp, txcmp);
2572 		}
2573 		raw_cons = NEXT_RAW_CMP(raw_cons);
2574 
2575 		if (rx_pkts && rx_pkts == budget) {
2576 			cpr->has_more_work = 1;
2577 			break;
2578 		}
2579 	}
2580 
2581 	if (event & BNXT_REDIRECT_EVENT)
2582 		xdp_do_flush();
2583 
2584 	if (event & BNXT_TX_EVENT) {
2585 		struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
2586 		u16 prod = txr->tx_prod;
2587 
2588 		/* Sync BD data before updating doorbell */
2589 		wmb();
2590 
2591 		bnxt_db_write_relaxed(bp, &txr->tx_db, prod);
2592 	}
2593 
2594 	cpr->cp_raw_cons = raw_cons;
2595 	bnapi->tx_pkts += tx_pkts;
2596 	bnapi->events |= event;
2597 	return rx_pkts;
2598 }
2599 
2600 static void __bnxt_poll_work_done(struct bnxt *bp, struct bnxt_napi *bnapi)
2601 {
2602 	if (bnapi->tx_pkts) {
2603 		bnapi->tx_int(bp, bnapi, bnapi->tx_pkts);
2604 		bnapi->tx_pkts = 0;
2605 	}
2606 
2607 	if ((bnapi->events & BNXT_RX_EVENT) && !(bnapi->in_reset)) {
2608 		struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2609 
2610 		bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
2611 	}
2612 	if (bnapi->events & BNXT_AGG_EVENT) {
2613 		struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2614 
2615 		bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
2616 	}
2617 	bnapi->events = 0;
2618 }
2619 
2620 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2621 			  int budget)
2622 {
2623 	struct bnxt_napi *bnapi = cpr->bnapi;
2624 	int rx_pkts;
2625 
2626 	rx_pkts = __bnxt_poll_work(bp, cpr, budget);
2627 
2628 	/* ACK completion ring before freeing tx ring and producing new
2629 	 * buffers in rx/agg rings to prevent overflowing the completion
2630 	 * ring.
2631 	 */
2632 	bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons);
2633 
2634 	__bnxt_poll_work_done(bp, bnapi);
2635 	return rx_pkts;
2636 }
2637 
2638 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget)
2639 {
2640 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2641 	struct bnxt *bp = bnapi->bp;
2642 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2643 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2644 	struct tx_cmp *txcmp;
2645 	struct rx_cmp_ext *rxcmp1;
2646 	u32 cp_cons, tmp_raw_cons;
2647 	u32 raw_cons = cpr->cp_raw_cons;
2648 	u32 rx_pkts = 0;
2649 	u8 event = 0;
2650 
2651 	while (1) {
2652 		int rc;
2653 
2654 		cp_cons = RING_CMP(raw_cons);
2655 		txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2656 
2657 		if (!TX_CMP_VALID(txcmp, raw_cons))
2658 			break;
2659 
2660 		/* The valid test of the entry must be done first before
2661 		 * reading any further.
2662 		 */
2663 		dma_rmb();
2664 		if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
2665 			tmp_raw_cons = NEXT_RAW_CMP(raw_cons);
2666 			cp_cons = RING_CMP(tmp_raw_cons);
2667 			rxcmp1 = (struct rx_cmp_ext *)
2668 			  &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2669 
2670 			if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
2671 				break;
2672 
2673 			/* force an error to recycle the buffer */
2674 			rxcmp1->rx_cmp_cfa_code_errors_v2 |=
2675 				cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
2676 
2677 			rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
2678 			if (likely(rc == -EIO) && budget)
2679 				rx_pkts++;
2680 			else if (rc == -EBUSY)	/* partial completion */
2681 				break;
2682 		} else if (unlikely(TX_CMP_TYPE(txcmp) ==
2683 				    CMPL_BASE_TYPE_HWRM_DONE)) {
2684 			bnxt_hwrm_handler(bp, txcmp);
2685 		} else {
2686 			netdev_err(bp->dev,
2687 				   "Invalid completion received on special ring\n");
2688 		}
2689 		raw_cons = NEXT_RAW_CMP(raw_cons);
2690 
2691 		if (rx_pkts == budget)
2692 			break;
2693 	}
2694 
2695 	cpr->cp_raw_cons = raw_cons;
2696 	BNXT_DB_CQ(&cpr->cp_db, cpr->cp_raw_cons);
2697 	bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
2698 
2699 	if (event & BNXT_AGG_EVENT)
2700 		bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
2701 
2702 	if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) {
2703 		napi_complete_done(napi, rx_pkts);
2704 		BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2705 	}
2706 	return rx_pkts;
2707 }
2708 
2709 static int bnxt_poll(struct napi_struct *napi, int budget)
2710 {
2711 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2712 	struct bnxt *bp = bnapi->bp;
2713 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2714 	int work_done = 0;
2715 
2716 	if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) {
2717 		napi_complete(napi);
2718 		return 0;
2719 	}
2720 	while (1) {
2721 		work_done += bnxt_poll_work(bp, cpr, budget - work_done);
2722 
2723 		if (work_done >= budget) {
2724 			if (!budget)
2725 				BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2726 			break;
2727 		}
2728 
2729 		if (!bnxt_has_work(bp, cpr)) {
2730 			if (napi_complete_done(napi, work_done))
2731 				BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2732 			break;
2733 		}
2734 	}
2735 	if (bp->flags & BNXT_FLAG_DIM) {
2736 		struct dim_sample dim_sample = {};
2737 
2738 		dim_update_sample(cpr->event_ctr,
2739 				  cpr->rx_packets,
2740 				  cpr->rx_bytes,
2741 				  &dim_sample);
2742 		net_dim(&cpr->dim, dim_sample);
2743 	}
2744 	return work_done;
2745 }
2746 
2747 static int __bnxt_poll_cqs(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
2748 {
2749 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2750 	int i, work_done = 0;
2751 
2752 	for (i = 0; i < 2; i++) {
2753 		struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i];
2754 
2755 		if (cpr2) {
2756 			work_done += __bnxt_poll_work(bp, cpr2,
2757 						      budget - work_done);
2758 			cpr->has_more_work |= cpr2->has_more_work;
2759 		}
2760 	}
2761 	return work_done;
2762 }
2763 
2764 static void __bnxt_poll_cqs_done(struct bnxt *bp, struct bnxt_napi *bnapi,
2765 				 u64 dbr_type)
2766 {
2767 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2768 	int i;
2769 
2770 	for (i = 0; i < 2; i++) {
2771 		struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i];
2772 		struct bnxt_db_info *db;
2773 
2774 		if (cpr2 && cpr2->had_work_done) {
2775 			db = &cpr2->cp_db;
2776 			bnxt_writeq(bp, db->db_key64 | dbr_type |
2777 				    RING_CMP(cpr2->cp_raw_cons), db->doorbell);
2778 			cpr2->had_work_done = 0;
2779 		}
2780 	}
2781 	__bnxt_poll_work_done(bp, bnapi);
2782 }
2783 
2784 static int bnxt_poll_p5(struct napi_struct *napi, int budget)
2785 {
2786 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2787 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2788 	struct bnxt_cp_ring_info *cpr_rx;
2789 	u32 raw_cons = cpr->cp_raw_cons;
2790 	struct bnxt *bp = bnapi->bp;
2791 	struct nqe_cn *nqcmp;
2792 	int work_done = 0;
2793 	u32 cons;
2794 
2795 	if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) {
2796 		napi_complete(napi);
2797 		return 0;
2798 	}
2799 	if (cpr->has_more_work) {
2800 		cpr->has_more_work = 0;
2801 		work_done = __bnxt_poll_cqs(bp, bnapi, budget);
2802 	}
2803 	while (1) {
2804 		cons = RING_CMP(raw_cons);
2805 		nqcmp = &cpr->nq_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2806 
2807 		if (!NQ_CMP_VALID(nqcmp, raw_cons)) {
2808 			if (cpr->has_more_work)
2809 				break;
2810 
2811 			__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL);
2812 			cpr->cp_raw_cons = raw_cons;
2813 			if (napi_complete_done(napi, work_done))
2814 				BNXT_DB_NQ_ARM_P5(&cpr->cp_db,
2815 						  cpr->cp_raw_cons);
2816 			goto poll_done;
2817 		}
2818 
2819 		/* The valid test of the entry must be done first before
2820 		 * reading any further.
2821 		 */
2822 		dma_rmb();
2823 
2824 		if (nqcmp->type == cpu_to_le16(NQ_CN_TYPE_CQ_NOTIFICATION)) {
2825 			u32 idx = le32_to_cpu(nqcmp->cq_handle_low);
2826 			struct bnxt_cp_ring_info *cpr2;
2827 
2828 			/* No more budget for RX work */
2829 			if (budget && work_done >= budget && idx == BNXT_RX_HDL)
2830 				break;
2831 
2832 			cpr2 = cpr->cp_ring_arr[idx];
2833 			work_done += __bnxt_poll_work(bp, cpr2,
2834 						      budget - work_done);
2835 			cpr->has_more_work |= cpr2->has_more_work;
2836 		} else {
2837 			bnxt_hwrm_handler(bp, (struct tx_cmp *)nqcmp);
2838 		}
2839 		raw_cons = NEXT_RAW_CMP(raw_cons);
2840 	}
2841 	__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ);
2842 	if (raw_cons != cpr->cp_raw_cons) {
2843 		cpr->cp_raw_cons = raw_cons;
2844 		BNXT_DB_NQ_P5(&cpr->cp_db, raw_cons);
2845 	}
2846 poll_done:
2847 	cpr_rx = cpr->cp_ring_arr[BNXT_RX_HDL];
2848 	if (cpr_rx && (bp->flags & BNXT_FLAG_DIM)) {
2849 		struct dim_sample dim_sample = {};
2850 
2851 		dim_update_sample(cpr->event_ctr,
2852 				  cpr_rx->rx_packets,
2853 				  cpr_rx->rx_bytes,
2854 				  &dim_sample);
2855 		net_dim(&cpr->dim, dim_sample);
2856 	}
2857 	return work_done;
2858 }
2859 
2860 static void bnxt_free_tx_skbs(struct bnxt *bp)
2861 {
2862 	int i, max_idx;
2863 	struct pci_dev *pdev = bp->pdev;
2864 
2865 	if (!bp->tx_ring)
2866 		return;
2867 
2868 	max_idx = bp->tx_nr_pages * TX_DESC_CNT;
2869 	for (i = 0; i < bp->tx_nr_rings; i++) {
2870 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2871 		int j;
2872 
2873 		if (!txr->tx_buf_ring)
2874 			continue;
2875 
2876 		for (j = 0; j < max_idx;) {
2877 			struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
2878 			struct sk_buff *skb;
2879 			int k, last;
2880 
2881 			if (i < bp->tx_nr_rings_xdp &&
2882 			    tx_buf->action == XDP_REDIRECT) {
2883 				dma_unmap_single(&pdev->dev,
2884 					dma_unmap_addr(tx_buf, mapping),
2885 					dma_unmap_len(tx_buf, len),
2886 					DMA_TO_DEVICE);
2887 				xdp_return_frame(tx_buf->xdpf);
2888 				tx_buf->action = 0;
2889 				tx_buf->xdpf = NULL;
2890 				j++;
2891 				continue;
2892 			}
2893 
2894 			skb = tx_buf->skb;
2895 			if (!skb) {
2896 				j++;
2897 				continue;
2898 			}
2899 
2900 			tx_buf->skb = NULL;
2901 
2902 			if (tx_buf->is_push) {
2903 				dev_kfree_skb(skb);
2904 				j += 2;
2905 				continue;
2906 			}
2907 
2908 			dma_unmap_single(&pdev->dev,
2909 					 dma_unmap_addr(tx_buf, mapping),
2910 					 skb_headlen(skb),
2911 					 DMA_TO_DEVICE);
2912 
2913 			last = tx_buf->nr_frags;
2914 			j += 2;
2915 			for (k = 0; k < last; k++, j++) {
2916 				int ring_idx = j & bp->tx_ring_mask;
2917 				skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2918 
2919 				tx_buf = &txr->tx_buf_ring[ring_idx];
2920 				dma_unmap_page(
2921 					&pdev->dev,
2922 					dma_unmap_addr(tx_buf, mapping),
2923 					skb_frag_size(frag), DMA_TO_DEVICE);
2924 			}
2925 			dev_kfree_skb(skb);
2926 		}
2927 		netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
2928 	}
2929 }
2930 
2931 static void bnxt_free_one_rx_ring_skbs(struct bnxt *bp, int ring_nr)
2932 {
2933 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
2934 	struct pci_dev *pdev = bp->pdev;
2935 	struct bnxt_tpa_idx_map *map;
2936 	int i, max_idx, max_agg_idx;
2937 
2938 	max_idx = bp->rx_nr_pages * RX_DESC_CNT;
2939 	max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
2940 	if (!rxr->rx_tpa)
2941 		goto skip_rx_tpa_free;
2942 
2943 	for (i = 0; i < bp->max_tpa; i++) {
2944 		struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[i];
2945 		u8 *data = tpa_info->data;
2946 
2947 		if (!data)
2948 			continue;
2949 
2950 		dma_unmap_single_attrs(&pdev->dev, tpa_info->mapping,
2951 				       bp->rx_buf_use_size, bp->rx_dir,
2952 				       DMA_ATTR_WEAK_ORDERING);
2953 
2954 		tpa_info->data = NULL;
2955 
2956 		skb_free_frag(data);
2957 	}
2958 
2959 skip_rx_tpa_free:
2960 	if (!rxr->rx_buf_ring)
2961 		goto skip_rx_buf_free;
2962 
2963 	for (i = 0; i < max_idx; i++) {
2964 		struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[i];
2965 		dma_addr_t mapping = rx_buf->mapping;
2966 		void *data = rx_buf->data;
2967 
2968 		if (!data)
2969 			continue;
2970 
2971 		rx_buf->data = NULL;
2972 		if (BNXT_RX_PAGE_MODE(bp)) {
2973 			mapping -= bp->rx_dma_offset;
2974 			dma_unmap_page_attrs(&pdev->dev, mapping, PAGE_SIZE,
2975 					     bp->rx_dir,
2976 					     DMA_ATTR_WEAK_ORDERING);
2977 			page_pool_recycle_direct(rxr->page_pool, data);
2978 		} else {
2979 			dma_unmap_single_attrs(&pdev->dev, mapping,
2980 					       bp->rx_buf_use_size, bp->rx_dir,
2981 					       DMA_ATTR_WEAK_ORDERING);
2982 			skb_free_frag(data);
2983 		}
2984 	}
2985 
2986 skip_rx_buf_free:
2987 	if (!rxr->rx_agg_ring)
2988 		goto skip_rx_agg_free;
2989 
2990 	for (i = 0; i < max_agg_idx; i++) {
2991 		struct bnxt_sw_rx_agg_bd *rx_agg_buf = &rxr->rx_agg_ring[i];
2992 		struct page *page = rx_agg_buf->page;
2993 
2994 		if (!page)
2995 			continue;
2996 
2997 		if (BNXT_RX_PAGE_MODE(bp)) {
2998 			dma_unmap_page_attrs(&pdev->dev, rx_agg_buf->mapping,
2999 					     BNXT_RX_PAGE_SIZE, bp->rx_dir,
3000 					     DMA_ATTR_WEAK_ORDERING);
3001 			rx_agg_buf->page = NULL;
3002 			__clear_bit(i, rxr->rx_agg_bmap);
3003 
3004 			page_pool_recycle_direct(rxr->page_pool, page);
3005 		} else {
3006 			dma_unmap_page_attrs(&pdev->dev, rx_agg_buf->mapping,
3007 					     BNXT_RX_PAGE_SIZE, DMA_FROM_DEVICE,
3008 					     DMA_ATTR_WEAK_ORDERING);
3009 			rx_agg_buf->page = NULL;
3010 			__clear_bit(i, rxr->rx_agg_bmap);
3011 
3012 			__free_page(page);
3013 		}
3014 	}
3015 
3016 skip_rx_agg_free:
3017 	if (rxr->rx_page) {
3018 		__free_page(rxr->rx_page);
3019 		rxr->rx_page = NULL;
3020 	}
3021 	map = rxr->rx_tpa_idx_map;
3022 	if (map)
3023 		memset(map->agg_idx_bmap, 0, sizeof(map->agg_idx_bmap));
3024 }
3025 
3026 static void bnxt_free_rx_skbs(struct bnxt *bp)
3027 {
3028 	int i;
3029 
3030 	if (!bp->rx_ring)
3031 		return;
3032 
3033 	for (i = 0; i < bp->rx_nr_rings; i++)
3034 		bnxt_free_one_rx_ring_skbs(bp, i);
3035 }
3036 
3037 static void bnxt_free_skbs(struct bnxt *bp)
3038 {
3039 	bnxt_free_tx_skbs(bp);
3040 	bnxt_free_rx_skbs(bp);
3041 }
3042 
3043 static void bnxt_init_ctx_mem(struct bnxt_mem_init *mem_init, void *p, int len)
3044 {
3045 	u8 init_val = mem_init->init_val;
3046 	u16 offset = mem_init->offset;
3047 	u8 *p2 = p;
3048 	int i;
3049 
3050 	if (!init_val)
3051 		return;
3052 	if (offset == BNXT_MEM_INVALID_OFFSET) {
3053 		memset(p, init_val, len);
3054 		return;
3055 	}
3056 	for (i = 0; i < len; i += mem_init->size)
3057 		*(p2 + i + offset) = init_val;
3058 }
3059 
3060 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
3061 {
3062 	struct pci_dev *pdev = bp->pdev;
3063 	int i;
3064 
3065 	if (!rmem->pg_arr)
3066 		goto skip_pages;
3067 
3068 	for (i = 0; i < rmem->nr_pages; i++) {
3069 		if (!rmem->pg_arr[i])
3070 			continue;
3071 
3072 		dma_free_coherent(&pdev->dev, rmem->page_size,
3073 				  rmem->pg_arr[i], rmem->dma_arr[i]);
3074 
3075 		rmem->pg_arr[i] = NULL;
3076 	}
3077 skip_pages:
3078 	if (rmem->pg_tbl) {
3079 		size_t pg_tbl_size = rmem->nr_pages * 8;
3080 
3081 		if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
3082 			pg_tbl_size = rmem->page_size;
3083 		dma_free_coherent(&pdev->dev, pg_tbl_size,
3084 				  rmem->pg_tbl, rmem->pg_tbl_map);
3085 		rmem->pg_tbl = NULL;
3086 	}
3087 	if (rmem->vmem_size && *rmem->vmem) {
3088 		vfree(*rmem->vmem);
3089 		*rmem->vmem = NULL;
3090 	}
3091 }
3092 
3093 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
3094 {
3095 	struct pci_dev *pdev = bp->pdev;
3096 	u64 valid_bit = 0;
3097 	int i;
3098 
3099 	if (rmem->flags & (BNXT_RMEM_VALID_PTE_FLAG | BNXT_RMEM_RING_PTE_FLAG))
3100 		valid_bit = PTU_PTE_VALID;
3101 	if ((rmem->nr_pages > 1 || rmem->depth > 0) && !rmem->pg_tbl) {
3102 		size_t pg_tbl_size = rmem->nr_pages * 8;
3103 
3104 		if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
3105 			pg_tbl_size = rmem->page_size;
3106 		rmem->pg_tbl = dma_alloc_coherent(&pdev->dev, pg_tbl_size,
3107 						  &rmem->pg_tbl_map,
3108 						  GFP_KERNEL);
3109 		if (!rmem->pg_tbl)
3110 			return -ENOMEM;
3111 	}
3112 
3113 	for (i = 0; i < rmem->nr_pages; i++) {
3114 		u64 extra_bits = valid_bit;
3115 
3116 		rmem->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
3117 						     rmem->page_size,
3118 						     &rmem->dma_arr[i],
3119 						     GFP_KERNEL);
3120 		if (!rmem->pg_arr[i])
3121 			return -ENOMEM;
3122 
3123 		if (rmem->mem_init)
3124 			bnxt_init_ctx_mem(rmem->mem_init, rmem->pg_arr[i],
3125 					  rmem->page_size);
3126 		if (rmem->nr_pages > 1 || rmem->depth > 0) {
3127 			if (i == rmem->nr_pages - 2 &&
3128 			    (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
3129 				extra_bits |= PTU_PTE_NEXT_TO_LAST;
3130 			else if (i == rmem->nr_pages - 1 &&
3131 				 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
3132 				extra_bits |= PTU_PTE_LAST;
3133 			rmem->pg_tbl[i] =
3134 				cpu_to_le64(rmem->dma_arr[i] | extra_bits);
3135 		}
3136 	}
3137 
3138 	if (rmem->vmem_size) {
3139 		*rmem->vmem = vzalloc(rmem->vmem_size);
3140 		if (!(*rmem->vmem))
3141 			return -ENOMEM;
3142 	}
3143 	return 0;
3144 }
3145 
3146 static void bnxt_free_tpa_info(struct bnxt *bp)
3147 {
3148 	int i;
3149 
3150 	for (i = 0; i < bp->rx_nr_rings; i++) {
3151 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3152 
3153 		kfree(rxr->rx_tpa_idx_map);
3154 		rxr->rx_tpa_idx_map = NULL;
3155 		if (rxr->rx_tpa) {
3156 			kfree(rxr->rx_tpa[0].agg_arr);
3157 			rxr->rx_tpa[0].agg_arr = NULL;
3158 		}
3159 		kfree(rxr->rx_tpa);
3160 		rxr->rx_tpa = NULL;
3161 	}
3162 }
3163 
3164 static int bnxt_alloc_tpa_info(struct bnxt *bp)
3165 {
3166 	int i, j, total_aggs = 0;
3167 
3168 	bp->max_tpa = MAX_TPA;
3169 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
3170 		if (!bp->max_tpa_v2)
3171 			return 0;
3172 		bp->max_tpa = max_t(u16, bp->max_tpa_v2, MAX_TPA_P5);
3173 		total_aggs = bp->max_tpa * MAX_SKB_FRAGS;
3174 	}
3175 
3176 	for (i = 0; i < bp->rx_nr_rings; i++) {
3177 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3178 		struct rx_agg_cmp *agg;
3179 
3180 		rxr->rx_tpa = kcalloc(bp->max_tpa, sizeof(struct bnxt_tpa_info),
3181 				      GFP_KERNEL);
3182 		if (!rxr->rx_tpa)
3183 			return -ENOMEM;
3184 
3185 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
3186 			continue;
3187 		agg = kcalloc(total_aggs, sizeof(*agg), GFP_KERNEL);
3188 		rxr->rx_tpa[0].agg_arr = agg;
3189 		if (!agg)
3190 			return -ENOMEM;
3191 		for (j = 1; j < bp->max_tpa; j++)
3192 			rxr->rx_tpa[j].agg_arr = agg + j * MAX_SKB_FRAGS;
3193 		rxr->rx_tpa_idx_map = kzalloc(sizeof(*rxr->rx_tpa_idx_map),
3194 					      GFP_KERNEL);
3195 		if (!rxr->rx_tpa_idx_map)
3196 			return -ENOMEM;
3197 	}
3198 	return 0;
3199 }
3200 
3201 static void bnxt_free_rx_rings(struct bnxt *bp)
3202 {
3203 	int i;
3204 
3205 	if (!bp->rx_ring)
3206 		return;
3207 
3208 	bnxt_free_tpa_info(bp);
3209 	for (i = 0; i < bp->rx_nr_rings; i++) {
3210 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3211 		struct bnxt_ring_struct *ring;
3212 
3213 		if (rxr->xdp_prog)
3214 			bpf_prog_put(rxr->xdp_prog);
3215 
3216 		if (xdp_rxq_info_is_reg(&rxr->xdp_rxq))
3217 			xdp_rxq_info_unreg(&rxr->xdp_rxq);
3218 
3219 		page_pool_destroy(rxr->page_pool);
3220 		rxr->page_pool = NULL;
3221 
3222 		kfree(rxr->rx_agg_bmap);
3223 		rxr->rx_agg_bmap = NULL;
3224 
3225 		ring = &rxr->rx_ring_struct;
3226 		bnxt_free_ring(bp, &ring->ring_mem);
3227 
3228 		ring = &rxr->rx_agg_ring_struct;
3229 		bnxt_free_ring(bp, &ring->ring_mem);
3230 	}
3231 }
3232 
3233 static int bnxt_alloc_rx_page_pool(struct bnxt *bp,
3234 				   struct bnxt_rx_ring_info *rxr)
3235 {
3236 	struct page_pool_params pp = { 0 };
3237 
3238 	pp.pool_size = bp->rx_ring_size;
3239 	pp.nid = dev_to_node(&bp->pdev->dev);
3240 	pp.dev = &bp->pdev->dev;
3241 	pp.dma_dir = DMA_BIDIRECTIONAL;
3242 
3243 	rxr->page_pool = page_pool_create(&pp);
3244 	if (IS_ERR(rxr->page_pool)) {
3245 		int err = PTR_ERR(rxr->page_pool);
3246 
3247 		rxr->page_pool = NULL;
3248 		return err;
3249 	}
3250 	return 0;
3251 }
3252 
3253 static int bnxt_alloc_rx_rings(struct bnxt *bp)
3254 {
3255 	int i, rc = 0, agg_rings = 0;
3256 
3257 	if (!bp->rx_ring)
3258 		return -ENOMEM;
3259 
3260 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
3261 		agg_rings = 1;
3262 
3263 	for (i = 0; i < bp->rx_nr_rings; i++) {
3264 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3265 		struct bnxt_ring_struct *ring;
3266 
3267 		ring = &rxr->rx_ring_struct;
3268 
3269 		rc = bnxt_alloc_rx_page_pool(bp, rxr);
3270 		if (rc)
3271 			return rc;
3272 
3273 		rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i, 0);
3274 		if (rc < 0)
3275 			return rc;
3276 
3277 		rc = xdp_rxq_info_reg_mem_model(&rxr->xdp_rxq,
3278 						MEM_TYPE_PAGE_POOL,
3279 						rxr->page_pool);
3280 		if (rc) {
3281 			xdp_rxq_info_unreg(&rxr->xdp_rxq);
3282 			return rc;
3283 		}
3284 
3285 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3286 		if (rc)
3287 			return rc;
3288 
3289 		ring->grp_idx = i;
3290 		if (agg_rings) {
3291 			u16 mem_size;
3292 
3293 			ring = &rxr->rx_agg_ring_struct;
3294 			rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3295 			if (rc)
3296 				return rc;
3297 
3298 			ring->grp_idx = i;
3299 			rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
3300 			mem_size = rxr->rx_agg_bmap_size / 8;
3301 			rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
3302 			if (!rxr->rx_agg_bmap)
3303 				return -ENOMEM;
3304 		}
3305 	}
3306 	if (bp->flags & BNXT_FLAG_TPA)
3307 		rc = bnxt_alloc_tpa_info(bp);
3308 	return rc;
3309 }
3310 
3311 static void bnxt_free_tx_rings(struct bnxt *bp)
3312 {
3313 	int i;
3314 	struct pci_dev *pdev = bp->pdev;
3315 
3316 	if (!bp->tx_ring)
3317 		return;
3318 
3319 	for (i = 0; i < bp->tx_nr_rings; i++) {
3320 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3321 		struct bnxt_ring_struct *ring;
3322 
3323 		if (txr->tx_push) {
3324 			dma_free_coherent(&pdev->dev, bp->tx_push_size,
3325 					  txr->tx_push, txr->tx_push_mapping);
3326 			txr->tx_push = NULL;
3327 		}
3328 
3329 		ring = &txr->tx_ring_struct;
3330 
3331 		bnxt_free_ring(bp, &ring->ring_mem);
3332 	}
3333 }
3334 
3335 static int bnxt_alloc_tx_rings(struct bnxt *bp)
3336 {
3337 	int i, j, rc;
3338 	struct pci_dev *pdev = bp->pdev;
3339 
3340 	bp->tx_push_size = 0;
3341 	if (bp->tx_push_thresh) {
3342 		int push_size;
3343 
3344 		push_size  = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
3345 					bp->tx_push_thresh);
3346 
3347 		if (push_size > 256) {
3348 			push_size = 0;
3349 			bp->tx_push_thresh = 0;
3350 		}
3351 
3352 		bp->tx_push_size = push_size;
3353 	}
3354 
3355 	for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
3356 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3357 		struct bnxt_ring_struct *ring;
3358 		u8 qidx;
3359 
3360 		ring = &txr->tx_ring_struct;
3361 
3362 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3363 		if (rc)
3364 			return rc;
3365 
3366 		ring->grp_idx = txr->bnapi->index;
3367 		if (bp->tx_push_size) {
3368 			dma_addr_t mapping;
3369 
3370 			/* One pre-allocated DMA buffer to backup
3371 			 * TX push operation
3372 			 */
3373 			txr->tx_push = dma_alloc_coherent(&pdev->dev,
3374 						bp->tx_push_size,
3375 						&txr->tx_push_mapping,
3376 						GFP_KERNEL);
3377 
3378 			if (!txr->tx_push)
3379 				return -ENOMEM;
3380 
3381 			mapping = txr->tx_push_mapping +
3382 				sizeof(struct tx_push_bd);
3383 			txr->data_mapping = cpu_to_le64(mapping);
3384 		}
3385 		qidx = bp->tc_to_qidx[j];
3386 		ring->queue_id = bp->q_info[qidx].queue_id;
3387 		spin_lock_init(&txr->xdp_tx_lock);
3388 		if (i < bp->tx_nr_rings_xdp)
3389 			continue;
3390 		if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1))
3391 			j++;
3392 	}
3393 	return 0;
3394 }
3395 
3396 static void bnxt_free_cp_arrays(struct bnxt_cp_ring_info *cpr)
3397 {
3398 	struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3399 
3400 	kfree(cpr->cp_desc_ring);
3401 	cpr->cp_desc_ring = NULL;
3402 	ring->ring_mem.pg_arr = NULL;
3403 	kfree(cpr->cp_desc_mapping);
3404 	cpr->cp_desc_mapping = NULL;
3405 	ring->ring_mem.dma_arr = NULL;
3406 }
3407 
3408 static int bnxt_alloc_cp_arrays(struct bnxt_cp_ring_info *cpr, int n)
3409 {
3410 	cpr->cp_desc_ring = kcalloc(n, sizeof(*cpr->cp_desc_ring), GFP_KERNEL);
3411 	if (!cpr->cp_desc_ring)
3412 		return -ENOMEM;
3413 	cpr->cp_desc_mapping = kcalloc(n, sizeof(*cpr->cp_desc_mapping),
3414 				       GFP_KERNEL);
3415 	if (!cpr->cp_desc_mapping)
3416 		return -ENOMEM;
3417 	return 0;
3418 }
3419 
3420 static void bnxt_free_all_cp_arrays(struct bnxt *bp)
3421 {
3422 	int i;
3423 
3424 	if (!bp->bnapi)
3425 		return;
3426 	for (i = 0; i < bp->cp_nr_rings; i++) {
3427 		struct bnxt_napi *bnapi = bp->bnapi[i];
3428 
3429 		if (!bnapi)
3430 			continue;
3431 		bnxt_free_cp_arrays(&bnapi->cp_ring);
3432 	}
3433 }
3434 
3435 static int bnxt_alloc_all_cp_arrays(struct bnxt *bp)
3436 {
3437 	int i, n = bp->cp_nr_pages;
3438 
3439 	for (i = 0; i < bp->cp_nr_rings; i++) {
3440 		struct bnxt_napi *bnapi = bp->bnapi[i];
3441 		int rc;
3442 
3443 		if (!bnapi)
3444 			continue;
3445 		rc = bnxt_alloc_cp_arrays(&bnapi->cp_ring, n);
3446 		if (rc)
3447 			return rc;
3448 	}
3449 	return 0;
3450 }
3451 
3452 static void bnxt_free_cp_rings(struct bnxt *bp)
3453 {
3454 	int i;
3455 
3456 	if (!bp->bnapi)
3457 		return;
3458 
3459 	for (i = 0; i < bp->cp_nr_rings; i++) {
3460 		struct bnxt_napi *bnapi = bp->bnapi[i];
3461 		struct bnxt_cp_ring_info *cpr;
3462 		struct bnxt_ring_struct *ring;
3463 		int j;
3464 
3465 		if (!bnapi)
3466 			continue;
3467 
3468 		cpr = &bnapi->cp_ring;
3469 		ring = &cpr->cp_ring_struct;
3470 
3471 		bnxt_free_ring(bp, &ring->ring_mem);
3472 
3473 		for (j = 0; j < 2; j++) {
3474 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
3475 
3476 			if (cpr2) {
3477 				ring = &cpr2->cp_ring_struct;
3478 				bnxt_free_ring(bp, &ring->ring_mem);
3479 				bnxt_free_cp_arrays(cpr2);
3480 				kfree(cpr2);
3481 				cpr->cp_ring_arr[j] = NULL;
3482 			}
3483 		}
3484 	}
3485 }
3486 
3487 static struct bnxt_cp_ring_info *bnxt_alloc_cp_sub_ring(struct bnxt *bp)
3488 {
3489 	struct bnxt_ring_mem_info *rmem;
3490 	struct bnxt_ring_struct *ring;
3491 	struct bnxt_cp_ring_info *cpr;
3492 	int rc;
3493 
3494 	cpr = kzalloc(sizeof(*cpr), GFP_KERNEL);
3495 	if (!cpr)
3496 		return NULL;
3497 
3498 	rc = bnxt_alloc_cp_arrays(cpr, bp->cp_nr_pages);
3499 	if (rc) {
3500 		bnxt_free_cp_arrays(cpr);
3501 		kfree(cpr);
3502 		return NULL;
3503 	}
3504 	ring = &cpr->cp_ring_struct;
3505 	rmem = &ring->ring_mem;
3506 	rmem->nr_pages = bp->cp_nr_pages;
3507 	rmem->page_size = HW_CMPD_RING_SIZE;
3508 	rmem->pg_arr = (void **)cpr->cp_desc_ring;
3509 	rmem->dma_arr = cpr->cp_desc_mapping;
3510 	rmem->flags = BNXT_RMEM_RING_PTE_FLAG;
3511 	rc = bnxt_alloc_ring(bp, rmem);
3512 	if (rc) {
3513 		bnxt_free_ring(bp, rmem);
3514 		bnxt_free_cp_arrays(cpr);
3515 		kfree(cpr);
3516 		cpr = NULL;
3517 	}
3518 	return cpr;
3519 }
3520 
3521 static int bnxt_alloc_cp_rings(struct bnxt *bp)
3522 {
3523 	bool sh = !!(bp->flags & BNXT_FLAG_SHARED_RINGS);
3524 	int i, rc, ulp_base_vec, ulp_msix;
3525 
3526 	ulp_msix = bnxt_get_ulp_msix_num(bp);
3527 	ulp_base_vec = bnxt_get_ulp_msix_base(bp);
3528 	for (i = 0; i < bp->cp_nr_rings; i++) {
3529 		struct bnxt_napi *bnapi = bp->bnapi[i];
3530 		struct bnxt_cp_ring_info *cpr;
3531 		struct bnxt_ring_struct *ring;
3532 
3533 		if (!bnapi)
3534 			continue;
3535 
3536 		cpr = &bnapi->cp_ring;
3537 		cpr->bnapi = bnapi;
3538 		ring = &cpr->cp_ring_struct;
3539 
3540 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3541 		if (rc)
3542 			return rc;
3543 
3544 		if (ulp_msix && i >= ulp_base_vec)
3545 			ring->map_idx = i + ulp_msix;
3546 		else
3547 			ring->map_idx = i;
3548 
3549 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
3550 			continue;
3551 
3552 		if (i < bp->rx_nr_rings) {
3553 			struct bnxt_cp_ring_info *cpr2 =
3554 				bnxt_alloc_cp_sub_ring(bp);
3555 
3556 			cpr->cp_ring_arr[BNXT_RX_HDL] = cpr2;
3557 			if (!cpr2)
3558 				return -ENOMEM;
3559 			cpr2->bnapi = bnapi;
3560 		}
3561 		if ((sh && i < bp->tx_nr_rings) ||
3562 		    (!sh && i >= bp->rx_nr_rings)) {
3563 			struct bnxt_cp_ring_info *cpr2 =
3564 				bnxt_alloc_cp_sub_ring(bp);
3565 
3566 			cpr->cp_ring_arr[BNXT_TX_HDL] = cpr2;
3567 			if (!cpr2)
3568 				return -ENOMEM;
3569 			cpr2->bnapi = bnapi;
3570 		}
3571 	}
3572 	return 0;
3573 }
3574 
3575 static void bnxt_init_ring_struct(struct bnxt *bp)
3576 {
3577 	int i;
3578 
3579 	for (i = 0; i < bp->cp_nr_rings; i++) {
3580 		struct bnxt_napi *bnapi = bp->bnapi[i];
3581 		struct bnxt_ring_mem_info *rmem;
3582 		struct bnxt_cp_ring_info *cpr;
3583 		struct bnxt_rx_ring_info *rxr;
3584 		struct bnxt_tx_ring_info *txr;
3585 		struct bnxt_ring_struct *ring;
3586 
3587 		if (!bnapi)
3588 			continue;
3589 
3590 		cpr = &bnapi->cp_ring;
3591 		ring = &cpr->cp_ring_struct;
3592 		rmem = &ring->ring_mem;
3593 		rmem->nr_pages = bp->cp_nr_pages;
3594 		rmem->page_size = HW_CMPD_RING_SIZE;
3595 		rmem->pg_arr = (void **)cpr->cp_desc_ring;
3596 		rmem->dma_arr = cpr->cp_desc_mapping;
3597 		rmem->vmem_size = 0;
3598 
3599 		rxr = bnapi->rx_ring;
3600 		if (!rxr)
3601 			goto skip_rx;
3602 
3603 		ring = &rxr->rx_ring_struct;
3604 		rmem = &ring->ring_mem;
3605 		rmem->nr_pages = bp->rx_nr_pages;
3606 		rmem->page_size = HW_RXBD_RING_SIZE;
3607 		rmem->pg_arr = (void **)rxr->rx_desc_ring;
3608 		rmem->dma_arr = rxr->rx_desc_mapping;
3609 		rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
3610 		rmem->vmem = (void **)&rxr->rx_buf_ring;
3611 
3612 		ring = &rxr->rx_agg_ring_struct;
3613 		rmem = &ring->ring_mem;
3614 		rmem->nr_pages = bp->rx_agg_nr_pages;
3615 		rmem->page_size = HW_RXBD_RING_SIZE;
3616 		rmem->pg_arr = (void **)rxr->rx_agg_desc_ring;
3617 		rmem->dma_arr = rxr->rx_agg_desc_mapping;
3618 		rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
3619 		rmem->vmem = (void **)&rxr->rx_agg_ring;
3620 
3621 skip_rx:
3622 		txr = bnapi->tx_ring;
3623 		if (!txr)
3624 			continue;
3625 
3626 		ring = &txr->tx_ring_struct;
3627 		rmem = &ring->ring_mem;
3628 		rmem->nr_pages = bp->tx_nr_pages;
3629 		rmem->page_size = HW_RXBD_RING_SIZE;
3630 		rmem->pg_arr = (void **)txr->tx_desc_ring;
3631 		rmem->dma_arr = txr->tx_desc_mapping;
3632 		rmem->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
3633 		rmem->vmem = (void **)&txr->tx_buf_ring;
3634 	}
3635 }
3636 
3637 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
3638 {
3639 	int i;
3640 	u32 prod;
3641 	struct rx_bd **rx_buf_ring;
3642 
3643 	rx_buf_ring = (struct rx_bd **)ring->ring_mem.pg_arr;
3644 	for (i = 0, prod = 0; i < ring->ring_mem.nr_pages; i++) {
3645 		int j;
3646 		struct rx_bd *rxbd;
3647 
3648 		rxbd = rx_buf_ring[i];
3649 		if (!rxbd)
3650 			continue;
3651 
3652 		for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
3653 			rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
3654 			rxbd->rx_bd_opaque = prod;
3655 		}
3656 	}
3657 }
3658 
3659 static int bnxt_alloc_one_rx_ring(struct bnxt *bp, int ring_nr)
3660 {
3661 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
3662 	struct net_device *dev = bp->dev;
3663 	u32 prod;
3664 	int i;
3665 
3666 	prod = rxr->rx_prod;
3667 	for (i = 0; i < bp->rx_ring_size; i++) {
3668 		if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL)) {
3669 			netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
3670 				    ring_nr, i, bp->rx_ring_size);
3671 			break;
3672 		}
3673 		prod = NEXT_RX(prod);
3674 	}
3675 	rxr->rx_prod = prod;
3676 
3677 	if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
3678 		return 0;
3679 
3680 	prod = rxr->rx_agg_prod;
3681 	for (i = 0; i < bp->rx_agg_ring_size; i++) {
3682 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL)) {
3683 			netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
3684 				    ring_nr, i, bp->rx_ring_size);
3685 			break;
3686 		}
3687 		prod = NEXT_RX_AGG(prod);
3688 	}
3689 	rxr->rx_agg_prod = prod;
3690 
3691 	if (rxr->rx_tpa) {
3692 		dma_addr_t mapping;
3693 		u8 *data;
3694 
3695 		for (i = 0; i < bp->max_tpa; i++) {
3696 			data = __bnxt_alloc_rx_frag(bp, &mapping, GFP_KERNEL);
3697 			if (!data)
3698 				return -ENOMEM;
3699 
3700 			rxr->rx_tpa[i].data = data;
3701 			rxr->rx_tpa[i].data_ptr = data + bp->rx_offset;
3702 			rxr->rx_tpa[i].mapping = mapping;
3703 		}
3704 	}
3705 	return 0;
3706 }
3707 
3708 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
3709 {
3710 	struct bnxt_rx_ring_info *rxr;
3711 	struct bnxt_ring_struct *ring;
3712 	u32 type;
3713 
3714 	type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
3715 		RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
3716 
3717 	if (NET_IP_ALIGN == 2)
3718 		type |= RX_BD_FLAGS_SOP;
3719 
3720 	rxr = &bp->rx_ring[ring_nr];
3721 	ring = &rxr->rx_ring_struct;
3722 	bnxt_init_rxbd_pages(ring, type);
3723 
3724 	if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) {
3725 		bpf_prog_add(bp->xdp_prog, 1);
3726 		rxr->xdp_prog = bp->xdp_prog;
3727 	}
3728 	ring->fw_ring_id = INVALID_HW_RING_ID;
3729 
3730 	ring = &rxr->rx_agg_ring_struct;
3731 	ring->fw_ring_id = INVALID_HW_RING_ID;
3732 
3733 	if ((bp->flags & BNXT_FLAG_AGG_RINGS)) {
3734 		type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) |
3735 			RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
3736 
3737 		bnxt_init_rxbd_pages(ring, type);
3738 	}
3739 
3740 	return bnxt_alloc_one_rx_ring(bp, ring_nr);
3741 }
3742 
3743 static void bnxt_init_cp_rings(struct bnxt *bp)
3744 {
3745 	int i, j;
3746 
3747 	for (i = 0; i < bp->cp_nr_rings; i++) {
3748 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
3749 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3750 
3751 		ring->fw_ring_id = INVALID_HW_RING_ID;
3752 		cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
3753 		cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
3754 		for (j = 0; j < 2; j++) {
3755 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
3756 
3757 			if (!cpr2)
3758 				continue;
3759 
3760 			ring = &cpr2->cp_ring_struct;
3761 			ring->fw_ring_id = INVALID_HW_RING_ID;
3762 			cpr2->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
3763 			cpr2->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
3764 		}
3765 	}
3766 }
3767 
3768 static int bnxt_init_rx_rings(struct bnxt *bp)
3769 {
3770 	int i, rc = 0;
3771 
3772 	if (BNXT_RX_PAGE_MODE(bp)) {
3773 		bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM;
3774 		bp->rx_dma_offset = XDP_PACKET_HEADROOM;
3775 	} else {
3776 		bp->rx_offset = BNXT_RX_OFFSET;
3777 		bp->rx_dma_offset = BNXT_RX_DMA_OFFSET;
3778 	}
3779 
3780 	for (i = 0; i < bp->rx_nr_rings; i++) {
3781 		rc = bnxt_init_one_rx_ring(bp, i);
3782 		if (rc)
3783 			break;
3784 	}
3785 
3786 	return rc;
3787 }
3788 
3789 static int bnxt_init_tx_rings(struct bnxt *bp)
3790 {
3791 	u16 i;
3792 
3793 	bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
3794 				   BNXT_MIN_TX_DESC_CNT);
3795 
3796 	for (i = 0; i < bp->tx_nr_rings; i++) {
3797 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3798 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
3799 
3800 		ring->fw_ring_id = INVALID_HW_RING_ID;
3801 	}
3802 
3803 	return 0;
3804 }
3805 
3806 static void bnxt_free_ring_grps(struct bnxt *bp)
3807 {
3808 	kfree(bp->grp_info);
3809 	bp->grp_info = NULL;
3810 }
3811 
3812 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
3813 {
3814 	int i;
3815 
3816 	if (irq_re_init) {
3817 		bp->grp_info = kcalloc(bp->cp_nr_rings,
3818 				       sizeof(struct bnxt_ring_grp_info),
3819 				       GFP_KERNEL);
3820 		if (!bp->grp_info)
3821 			return -ENOMEM;
3822 	}
3823 	for (i = 0; i < bp->cp_nr_rings; i++) {
3824 		if (irq_re_init)
3825 			bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
3826 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
3827 		bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
3828 		bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
3829 		bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
3830 	}
3831 	return 0;
3832 }
3833 
3834 static void bnxt_free_vnics(struct bnxt *bp)
3835 {
3836 	kfree(bp->vnic_info);
3837 	bp->vnic_info = NULL;
3838 	bp->nr_vnics = 0;
3839 }
3840 
3841 static int bnxt_alloc_vnics(struct bnxt *bp)
3842 {
3843 	int num_vnics = 1;
3844 
3845 #ifdef CONFIG_RFS_ACCEL
3846 	if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS)
3847 		num_vnics += bp->rx_nr_rings;
3848 #endif
3849 
3850 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
3851 		num_vnics++;
3852 
3853 	bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
3854 				GFP_KERNEL);
3855 	if (!bp->vnic_info)
3856 		return -ENOMEM;
3857 
3858 	bp->nr_vnics = num_vnics;
3859 	return 0;
3860 }
3861 
3862 static void bnxt_init_vnics(struct bnxt *bp)
3863 {
3864 	int i;
3865 
3866 	for (i = 0; i < bp->nr_vnics; i++) {
3867 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3868 		int j;
3869 
3870 		vnic->fw_vnic_id = INVALID_HW_RING_ID;
3871 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++)
3872 			vnic->fw_rss_cos_lb_ctx[j] = INVALID_HW_RING_ID;
3873 
3874 		vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
3875 
3876 		if (bp->vnic_info[i].rss_hash_key) {
3877 			if (i == 0)
3878 				get_random_bytes(vnic->rss_hash_key,
3879 					      HW_HASH_KEY_SIZE);
3880 			else
3881 				memcpy(vnic->rss_hash_key,
3882 				       bp->vnic_info[0].rss_hash_key,
3883 				       HW_HASH_KEY_SIZE);
3884 		}
3885 	}
3886 }
3887 
3888 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
3889 {
3890 	int pages;
3891 
3892 	pages = ring_size / desc_per_pg;
3893 
3894 	if (!pages)
3895 		return 1;
3896 
3897 	pages++;
3898 
3899 	while (pages & (pages - 1))
3900 		pages++;
3901 
3902 	return pages;
3903 }
3904 
3905 void bnxt_set_tpa_flags(struct bnxt *bp)
3906 {
3907 	bp->flags &= ~BNXT_FLAG_TPA;
3908 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
3909 		return;
3910 	if (bp->dev->features & NETIF_F_LRO)
3911 		bp->flags |= BNXT_FLAG_LRO;
3912 	else if (bp->dev->features & NETIF_F_GRO_HW)
3913 		bp->flags |= BNXT_FLAG_GRO;
3914 }
3915 
3916 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
3917  * be set on entry.
3918  */
3919 void bnxt_set_ring_params(struct bnxt *bp)
3920 {
3921 	u32 ring_size, rx_size, rx_space, max_rx_cmpl;
3922 	u32 agg_factor = 0, agg_ring_size = 0;
3923 
3924 	/* 8 for CRC and VLAN */
3925 	rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
3926 
3927 	rx_space = rx_size + ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) +
3928 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3929 
3930 	bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
3931 	ring_size = bp->rx_ring_size;
3932 	bp->rx_agg_ring_size = 0;
3933 	bp->rx_agg_nr_pages = 0;
3934 
3935 	if (bp->flags & BNXT_FLAG_TPA)
3936 		agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE);
3937 
3938 	bp->flags &= ~BNXT_FLAG_JUMBO;
3939 	if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) {
3940 		u32 jumbo_factor;
3941 
3942 		bp->flags |= BNXT_FLAG_JUMBO;
3943 		jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
3944 		if (jumbo_factor > agg_factor)
3945 			agg_factor = jumbo_factor;
3946 	}
3947 	if (agg_factor) {
3948 		if (ring_size > BNXT_MAX_RX_DESC_CNT_JUM_ENA) {
3949 			ring_size = BNXT_MAX_RX_DESC_CNT_JUM_ENA;
3950 			netdev_warn(bp->dev, "RX ring size reduced from %d to %d because the jumbo ring is now enabled\n",
3951 				    bp->rx_ring_size, ring_size);
3952 			bp->rx_ring_size = ring_size;
3953 		}
3954 		agg_ring_size = ring_size * agg_factor;
3955 
3956 		bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
3957 							RX_DESC_CNT);
3958 		if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
3959 			u32 tmp = agg_ring_size;
3960 
3961 			bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
3962 			agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
3963 			netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
3964 				    tmp, agg_ring_size);
3965 		}
3966 		bp->rx_agg_ring_size = agg_ring_size;
3967 		bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
3968 
3969 		if (BNXT_RX_PAGE_MODE(bp)) {
3970 			rx_space = PAGE_SIZE;
3971 			rx_size = PAGE_SIZE -
3972 				  ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) -
3973 				  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3974 		} else {
3975 			rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
3976 			rx_space = rx_size + NET_SKB_PAD +
3977 				SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3978 		}
3979 	}
3980 
3981 	bp->rx_buf_use_size = rx_size;
3982 	bp->rx_buf_size = rx_space;
3983 
3984 	bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
3985 	bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
3986 
3987 	ring_size = bp->tx_ring_size;
3988 	bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
3989 	bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
3990 
3991 	max_rx_cmpl = bp->rx_ring_size;
3992 	/* MAX TPA needs to be added because TPA_START completions are
3993 	 * immediately recycled, so the TPA completions are not bound by
3994 	 * the RX ring size.
3995 	 */
3996 	if (bp->flags & BNXT_FLAG_TPA)
3997 		max_rx_cmpl += bp->max_tpa;
3998 	/* RX and TPA completions are 32-byte, all others are 16-byte */
3999 	ring_size = max_rx_cmpl * 2 + agg_ring_size + bp->tx_ring_size;
4000 	bp->cp_ring_size = ring_size;
4001 
4002 	bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
4003 	if (bp->cp_nr_pages > MAX_CP_PAGES) {
4004 		bp->cp_nr_pages = MAX_CP_PAGES;
4005 		bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
4006 		netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
4007 			    ring_size, bp->cp_ring_size);
4008 	}
4009 	bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
4010 	bp->cp_ring_mask = bp->cp_bit - 1;
4011 }
4012 
4013 /* Changing allocation mode of RX rings.
4014  * TODO: Update when extending xdp_rxq_info to support allocation modes.
4015  */
4016 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode)
4017 {
4018 	if (page_mode) {
4019 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
4020 		bp->flags |= BNXT_FLAG_RX_PAGE_MODE;
4021 
4022 		if (bp->dev->mtu > BNXT_MAX_PAGE_MODE_MTU) {
4023 			bp->flags |= BNXT_FLAG_JUMBO;
4024 			bp->rx_skb_func = bnxt_rx_multi_page_skb;
4025 			bp->dev->max_mtu =
4026 				min_t(u16, bp->max_mtu, BNXT_MAX_MTU);
4027 		} else {
4028 			bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
4029 			bp->rx_skb_func = bnxt_rx_page_skb;
4030 			bp->dev->max_mtu =
4031 				min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU);
4032 		}
4033 		bp->rx_dir = DMA_BIDIRECTIONAL;
4034 		/* Disable LRO or GRO_HW */
4035 		netdev_update_features(bp->dev);
4036 	} else {
4037 		bp->dev->max_mtu = bp->max_mtu;
4038 		bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE;
4039 		bp->rx_dir = DMA_FROM_DEVICE;
4040 		bp->rx_skb_func = bnxt_rx_skb;
4041 	}
4042 	return 0;
4043 }
4044 
4045 static void bnxt_free_vnic_attributes(struct bnxt *bp)
4046 {
4047 	int i;
4048 	struct bnxt_vnic_info *vnic;
4049 	struct pci_dev *pdev = bp->pdev;
4050 
4051 	if (!bp->vnic_info)
4052 		return;
4053 
4054 	for (i = 0; i < bp->nr_vnics; i++) {
4055 		vnic = &bp->vnic_info[i];
4056 
4057 		kfree(vnic->fw_grp_ids);
4058 		vnic->fw_grp_ids = NULL;
4059 
4060 		kfree(vnic->uc_list);
4061 		vnic->uc_list = NULL;
4062 
4063 		if (vnic->mc_list) {
4064 			dma_free_coherent(&pdev->dev, vnic->mc_list_size,
4065 					  vnic->mc_list, vnic->mc_list_mapping);
4066 			vnic->mc_list = NULL;
4067 		}
4068 
4069 		if (vnic->rss_table) {
4070 			dma_free_coherent(&pdev->dev, vnic->rss_table_size,
4071 					  vnic->rss_table,
4072 					  vnic->rss_table_dma_addr);
4073 			vnic->rss_table = NULL;
4074 		}
4075 
4076 		vnic->rss_hash_key = NULL;
4077 		vnic->flags = 0;
4078 	}
4079 }
4080 
4081 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
4082 {
4083 	int i, rc = 0, size;
4084 	struct bnxt_vnic_info *vnic;
4085 	struct pci_dev *pdev = bp->pdev;
4086 	int max_rings;
4087 
4088 	for (i = 0; i < bp->nr_vnics; i++) {
4089 		vnic = &bp->vnic_info[i];
4090 
4091 		if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
4092 			int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
4093 
4094 			if (mem_size > 0) {
4095 				vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
4096 				if (!vnic->uc_list) {
4097 					rc = -ENOMEM;
4098 					goto out;
4099 				}
4100 			}
4101 		}
4102 
4103 		if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
4104 			vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
4105 			vnic->mc_list =
4106 				dma_alloc_coherent(&pdev->dev,
4107 						   vnic->mc_list_size,
4108 						   &vnic->mc_list_mapping,
4109 						   GFP_KERNEL);
4110 			if (!vnic->mc_list) {
4111 				rc = -ENOMEM;
4112 				goto out;
4113 			}
4114 		}
4115 
4116 		if (bp->flags & BNXT_FLAG_CHIP_P5)
4117 			goto vnic_skip_grps;
4118 
4119 		if (vnic->flags & BNXT_VNIC_RSS_FLAG)
4120 			max_rings = bp->rx_nr_rings;
4121 		else
4122 			max_rings = 1;
4123 
4124 		vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
4125 		if (!vnic->fw_grp_ids) {
4126 			rc = -ENOMEM;
4127 			goto out;
4128 		}
4129 vnic_skip_grps:
4130 		if ((bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
4131 		    !(vnic->flags & BNXT_VNIC_RSS_FLAG))
4132 			continue;
4133 
4134 		/* Allocate rss table and hash key */
4135 		size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
4136 		if (bp->flags & BNXT_FLAG_CHIP_P5)
4137 			size = L1_CACHE_ALIGN(BNXT_MAX_RSS_TABLE_SIZE_P5);
4138 
4139 		vnic->rss_table_size = size + HW_HASH_KEY_SIZE;
4140 		vnic->rss_table = dma_alloc_coherent(&pdev->dev,
4141 						     vnic->rss_table_size,
4142 						     &vnic->rss_table_dma_addr,
4143 						     GFP_KERNEL);
4144 		if (!vnic->rss_table) {
4145 			rc = -ENOMEM;
4146 			goto out;
4147 		}
4148 
4149 		vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
4150 		vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
4151 	}
4152 	return 0;
4153 
4154 out:
4155 	return rc;
4156 }
4157 
4158 static void bnxt_free_hwrm_resources(struct bnxt *bp)
4159 {
4160 	struct bnxt_hwrm_wait_token *token;
4161 
4162 	dma_pool_destroy(bp->hwrm_dma_pool);
4163 	bp->hwrm_dma_pool = NULL;
4164 
4165 	rcu_read_lock();
4166 	hlist_for_each_entry_rcu(token, &bp->hwrm_pending_list, node)
4167 		WRITE_ONCE(token->state, BNXT_HWRM_CANCELLED);
4168 	rcu_read_unlock();
4169 }
4170 
4171 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
4172 {
4173 	bp->hwrm_dma_pool = dma_pool_create("bnxt_hwrm", &bp->pdev->dev,
4174 					    BNXT_HWRM_DMA_SIZE,
4175 					    BNXT_HWRM_DMA_ALIGN, 0);
4176 	if (!bp->hwrm_dma_pool)
4177 		return -ENOMEM;
4178 
4179 	INIT_HLIST_HEAD(&bp->hwrm_pending_list);
4180 
4181 	return 0;
4182 }
4183 
4184 static void bnxt_free_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats)
4185 {
4186 	kfree(stats->hw_masks);
4187 	stats->hw_masks = NULL;
4188 	kfree(stats->sw_stats);
4189 	stats->sw_stats = NULL;
4190 	if (stats->hw_stats) {
4191 		dma_free_coherent(&bp->pdev->dev, stats->len, stats->hw_stats,
4192 				  stats->hw_stats_map);
4193 		stats->hw_stats = NULL;
4194 	}
4195 }
4196 
4197 static int bnxt_alloc_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats,
4198 				bool alloc_masks)
4199 {
4200 	stats->hw_stats = dma_alloc_coherent(&bp->pdev->dev, stats->len,
4201 					     &stats->hw_stats_map, GFP_KERNEL);
4202 	if (!stats->hw_stats)
4203 		return -ENOMEM;
4204 
4205 	stats->sw_stats = kzalloc(stats->len, GFP_KERNEL);
4206 	if (!stats->sw_stats)
4207 		goto stats_mem_err;
4208 
4209 	if (alloc_masks) {
4210 		stats->hw_masks = kzalloc(stats->len, GFP_KERNEL);
4211 		if (!stats->hw_masks)
4212 			goto stats_mem_err;
4213 	}
4214 	return 0;
4215 
4216 stats_mem_err:
4217 	bnxt_free_stats_mem(bp, stats);
4218 	return -ENOMEM;
4219 }
4220 
4221 static void bnxt_fill_masks(u64 *mask_arr, u64 mask, int count)
4222 {
4223 	int i;
4224 
4225 	for (i = 0; i < count; i++)
4226 		mask_arr[i] = mask;
4227 }
4228 
4229 static void bnxt_copy_hw_masks(u64 *mask_arr, __le64 *hw_mask_arr, int count)
4230 {
4231 	int i;
4232 
4233 	for (i = 0; i < count; i++)
4234 		mask_arr[i] = le64_to_cpu(hw_mask_arr[i]);
4235 }
4236 
4237 static int bnxt_hwrm_func_qstat_ext(struct bnxt *bp,
4238 				    struct bnxt_stats_mem *stats)
4239 {
4240 	struct hwrm_func_qstats_ext_output *resp;
4241 	struct hwrm_func_qstats_ext_input *req;
4242 	__le64 *hw_masks;
4243 	int rc;
4244 
4245 	if (!(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED) ||
4246 	    !(bp->flags & BNXT_FLAG_CHIP_P5))
4247 		return -EOPNOTSUPP;
4248 
4249 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QSTATS_EXT);
4250 	if (rc)
4251 		return rc;
4252 
4253 	req->fid = cpu_to_le16(0xffff);
4254 	req->flags = FUNC_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK;
4255 
4256 	resp = hwrm_req_hold(bp, req);
4257 	rc = hwrm_req_send(bp, req);
4258 	if (!rc) {
4259 		hw_masks = &resp->rx_ucast_pkts;
4260 		bnxt_copy_hw_masks(stats->hw_masks, hw_masks, stats->len / 8);
4261 	}
4262 	hwrm_req_drop(bp, req);
4263 	return rc;
4264 }
4265 
4266 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags);
4267 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags);
4268 
4269 static void bnxt_init_stats(struct bnxt *bp)
4270 {
4271 	struct bnxt_napi *bnapi = bp->bnapi[0];
4272 	struct bnxt_cp_ring_info *cpr;
4273 	struct bnxt_stats_mem *stats;
4274 	__le64 *rx_stats, *tx_stats;
4275 	int rc, rx_count, tx_count;
4276 	u64 *rx_masks, *tx_masks;
4277 	u64 mask;
4278 	u8 flags;
4279 
4280 	cpr = &bnapi->cp_ring;
4281 	stats = &cpr->stats;
4282 	rc = bnxt_hwrm_func_qstat_ext(bp, stats);
4283 	if (rc) {
4284 		if (bp->flags & BNXT_FLAG_CHIP_P5)
4285 			mask = (1ULL << 48) - 1;
4286 		else
4287 			mask = -1ULL;
4288 		bnxt_fill_masks(stats->hw_masks, mask, stats->len / 8);
4289 	}
4290 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
4291 		stats = &bp->port_stats;
4292 		rx_stats = stats->hw_stats;
4293 		rx_masks = stats->hw_masks;
4294 		rx_count = sizeof(struct rx_port_stats) / 8;
4295 		tx_stats = rx_stats + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
4296 		tx_masks = rx_masks + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
4297 		tx_count = sizeof(struct tx_port_stats) / 8;
4298 
4299 		flags = PORT_QSTATS_REQ_FLAGS_COUNTER_MASK;
4300 		rc = bnxt_hwrm_port_qstats(bp, flags);
4301 		if (rc) {
4302 			mask = (1ULL << 40) - 1;
4303 
4304 			bnxt_fill_masks(rx_masks, mask, rx_count);
4305 			bnxt_fill_masks(tx_masks, mask, tx_count);
4306 		} else {
4307 			bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count);
4308 			bnxt_copy_hw_masks(tx_masks, tx_stats, tx_count);
4309 			bnxt_hwrm_port_qstats(bp, 0);
4310 		}
4311 	}
4312 	if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) {
4313 		stats = &bp->rx_port_stats_ext;
4314 		rx_stats = stats->hw_stats;
4315 		rx_masks = stats->hw_masks;
4316 		rx_count = sizeof(struct rx_port_stats_ext) / 8;
4317 		stats = &bp->tx_port_stats_ext;
4318 		tx_stats = stats->hw_stats;
4319 		tx_masks = stats->hw_masks;
4320 		tx_count = sizeof(struct tx_port_stats_ext) / 8;
4321 
4322 		flags = PORT_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK;
4323 		rc = bnxt_hwrm_port_qstats_ext(bp, flags);
4324 		if (rc) {
4325 			mask = (1ULL << 40) - 1;
4326 
4327 			bnxt_fill_masks(rx_masks, mask, rx_count);
4328 			if (tx_stats)
4329 				bnxt_fill_masks(tx_masks, mask, tx_count);
4330 		} else {
4331 			bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count);
4332 			if (tx_stats)
4333 				bnxt_copy_hw_masks(tx_masks, tx_stats,
4334 						   tx_count);
4335 			bnxt_hwrm_port_qstats_ext(bp, 0);
4336 		}
4337 	}
4338 }
4339 
4340 static void bnxt_free_port_stats(struct bnxt *bp)
4341 {
4342 	bp->flags &= ~BNXT_FLAG_PORT_STATS;
4343 	bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT;
4344 
4345 	bnxt_free_stats_mem(bp, &bp->port_stats);
4346 	bnxt_free_stats_mem(bp, &bp->rx_port_stats_ext);
4347 	bnxt_free_stats_mem(bp, &bp->tx_port_stats_ext);
4348 }
4349 
4350 static void bnxt_free_ring_stats(struct bnxt *bp)
4351 {
4352 	int i;
4353 
4354 	if (!bp->bnapi)
4355 		return;
4356 
4357 	for (i = 0; i < bp->cp_nr_rings; i++) {
4358 		struct bnxt_napi *bnapi = bp->bnapi[i];
4359 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4360 
4361 		bnxt_free_stats_mem(bp, &cpr->stats);
4362 	}
4363 }
4364 
4365 static int bnxt_alloc_stats(struct bnxt *bp)
4366 {
4367 	u32 size, i;
4368 	int rc;
4369 
4370 	size = bp->hw_ring_stats_size;
4371 
4372 	for (i = 0; i < bp->cp_nr_rings; i++) {
4373 		struct bnxt_napi *bnapi = bp->bnapi[i];
4374 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4375 
4376 		cpr->stats.len = size;
4377 		rc = bnxt_alloc_stats_mem(bp, &cpr->stats, !i);
4378 		if (rc)
4379 			return rc;
4380 
4381 		cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
4382 	}
4383 
4384 	if (BNXT_VF(bp) || bp->chip_num == CHIP_NUM_58700)
4385 		return 0;
4386 
4387 	if (bp->port_stats.hw_stats)
4388 		goto alloc_ext_stats;
4389 
4390 	bp->port_stats.len = BNXT_PORT_STATS_SIZE;
4391 	rc = bnxt_alloc_stats_mem(bp, &bp->port_stats, true);
4392 	if (rc)
4393 		return rc;
4394 
4395 	bp->flags |= BNXT_FLAG_PORT_STATS;
4396 
4397 alloc_ext_stats:
4398 	/* Display extended statistics only if FW supports it */
4399 	if (bp->hwrm_spec_code < 0x10804 || bp->hwrm_spec_code == 0x10900)
4400 		if (!(bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED))
4401 			return 0;
4402 
4403 	if (bp->rx_port_stats_ext.hw_stats)
4404 		goto alloc_tx_ext_stats;
4405 
4406 	bp->rx_port_stats_ext.len = sizeof(struct rx_port_stats_ext);
4407 	rc = bnxt_alloc_stats_mem(bp, &bp->rx_port_stats_ext, true);
4408 	/* Extended stats are optional */
4409 	if (rc)
4410 		return 0;
4411 
4412 alloc_tx_ext_stats:
4413 	if (bp->tx_port_stats_ext.hw_stats)
4414 		return 0;
4415 
4416 	if (bp->hwrm_spec_code >= 0x10902 ||
4417 	    (bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) {
4418 		bp->tx_port_stats_ext.len = sizeof(struct tx_port_stats_ext);
4419 		rc = bnxt_alloc_stats_mem(bp, &bp->tx_port_stats_ext, true);
4420 		/* Extended stats are optional */
4421 		if (rc)
4422 			return 0;
4423 	}
4424 	bp->flags |= BNXT_FLAG_PORT_STATS_EXT;
4425 	return 0;
4426 }
4427 
4428 static void bnxt_clear_ring_indices(struct bnxt *bp)
4429 {
4430 	int i;
4431 
4432 	if (!bp->bnapi)
4433 		return;
4434 
4435 	for (i = 0; i < bp->cp_nr_rings; i++) {
4436 		struct bnxt_napi *bnapi = bp->bnapi[i];
4437 		struct bnxt_cp_ring_info *cpr;
4438 		struct bnxt_rx_ring_info *rxr;
4439 		struct bnxt_tx_ring_info *txr;
4440 
4441 		if (!bnapi)
4442 			continue;
4443 
4444 		cpr = &bnapi->cp_ring;
4445 		cpr->cp_raw_cons = 0;
4446 
4447 		txr = bnapi->tx_ring;
4448 		if (txr) {
4449 			txr->tx_prod = 0;
4450 			txr->tx_cons = 0;
4451 		}
4452 
4453 		rxr = bnapi->rx_ring;
4454 		if (rxr) {
4455 			rxr->rx_prod = 0;
4456 			rxr->rx_agg_prod = 0;
4457 			rxr->rx_sw_agg_prod = 0;
4458 			rxr->rx_next_cons = 0;
4459 		}
4460 	}
4461 }
4462 
4463 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
4464 {
4465 #ifdef CONFIG_RFS_ACCEL
4466 	int i;
4467 
4468 	/* Under rtnl_lock and all our NAPIs have been disabled.  It's
4469 	 * safe to delete the hash table.
4470 	 */
4471 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
4472 		struct hlist_head *head;
4473 		struct hlist_node *tmp;
4474 		struct bnxt_ntuple_filter *fltr;
4475 
4476 		head = &bp->ntp_fltr_hash_tbl[i];
4477 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
4478 			hlist_del(&fltr->hash);
4479 			kfree(fltr);
4480 		}
4481 	}
4482 	if (irq_reinit) {
4483 		bitmap_free(bp->ntp_fltr_bmap);
4484 		bp->ntp_fltr_bmap = NULL;
4485 	}
4486 	bp->ntp_fltr_count = 0;
4487 #endif
4488 }
4489 
4490 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
4491 {
4492 #ifdef CONFIG_RFS_ACCEL
4493 	int i, rc = 0;
4494 
4495 	if (!(bp->flags & BNXT_FLAG_RFS))
4496 		return 0;
4497 
4498 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
4499 		INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
4500 
4501 	bp->ntp_fltr_count = 0;
4502 	bp->ntp_fltr_bmap = bitmap_zalloc(BNXT_NTP_FLTR_MAX_FLTR, GFP_KERNEL);
4503 
4504 	if (!bp->ntp_fltr_bmap)
4505 		rc = -ENOMEM;
4506 
4507 	return rc;
4508 #else
4509 	return 0;
4510 #endif
4511 }
4512 
4513 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
4514 {
4515 	bnxt_free_vnic_attributes(bp);
4516 	bnxt_free_tx_rings(bp);
4517 	bnxt_free_rx_rings(bp);
4518 	bnxt_free_cp_rings(bp);
4519 	bnxt_free_all_cp_arrays(bp);
4520 	bnxt_free_ntp_fltrs(bp, irq_re_init);
4521 	if (irq_re_init) {
4522 		bnxt_free_ring_stats(bp);
4523 		if (!(bp->phy_flags & BNXT_PHY_FL_PORT_STATS_NO_RESET) ||
4524 		    test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
4525 			bnxt_free_port_stats(bp);
4526 		bnxt_free_ring_grps(bp);
4527 		bnxt_free_vnics(bp);
4528 		kfree(bp->tx_ring_map);
4529 		bp->tx_ring_map = NULL;
4530 		kfree(bp->tx_ring);
4531 		bp->tx_ring = NULL;
4532 		kfree(bp->rx_ring);
4533 		bp->rx_ring = NULL;
4534 		kfree(bp->bnapi);
4535 		bp->bnapi = NULL;
4536 	} else {
4537 		bnxt_clear_ring_indices(bp);
4538 	}
4539 }
4540 
4541 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
4542 {
4543 	int i, j, rc, size, arr_size;
4544 	void *bnapi;
4545 
4546 	if (irq_re_init) {
4547 		/* Allocate bnapi mem pointer array and mem block for
4548 		 * all queues
4549 		 */
4550 		arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
4551 				bp->cp_nr_rings);
4552 		size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
4553 		bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
4554 		if (!bnapi)
4555 			return -ENOMEM;
4556 
4557 		bp->bnapi = bnapi;
4558 		bnapi += arr_size;
4559 		for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
4560 			bp->bnapi[i] = bnapi;
4561 			bp->bnapi[i]->index = i;
4562 			bp->bnapi[i]->bp = bp;
4563 			if (bp->flags & BNXT_FLAG_CHIP_P5) {
4564 				struct bnxt_cp_ring_info *cpr =
4565 					&bp->bnapi[i]->cp_ring;
4566 
4567 				cpr->cp_ring_struct.ring_mem.flags =
4568 					BNXT_RMEM_RING_PTE_FLAG;
4569 			}
4570 		}
4571 
4572 		bp->rx_ring = kcalloc(bp->rx_nr_rings,
4573 				      sizeof(struct bnxt_rx_ring_info),
4574 				      GFP_KERNEL);
4575 		if (!bp->rx_ring)
4576 			return -ENOMEM;
4577 
4578 		for (i = 0; i < bp->rx_nr_rings; i++) {
4579 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4580 
4581 			if (bp->flags & BNXT_FLAG_CHIP_P5) {
4582 				rxr->rx_ring_struct.ring_mem.flags =
4583 					BNXT_RMEM_RING_PTE_FLAG;
4584 				rxr->rx_agg_ring_struct.ring_mem.flags =
4585 					BNXT_RMEM_RING_PTE_FLAG;
4586 			}
4587 			rxr->bnapi = bp->bnapi[i];
4588 			bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
4589 		}
4590 
4591 		bp->tx_ring = kcalloc(bp->tx_nr_rings,
4592 				      sizeof(struct bnxt_tx_ring_info),
4593 				      GFP_KERNEL);
4594 		if (!bp->tx_ring)
4595 			return -ENOMEM;
4596 
4597 		bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16),
4598 					  GFP_KERNEL);
4599 
4600 		if (!bp->tx_ring_map)
4601 			return -ENOMEM;
4602 
4603 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
4604 			j = 0;
4605 		else
4606 			j = bp->rx_nr_rings;
4607 
4608 		for (i = 0; i < bp->tx_nr_rings; i++, j++) {
4609 			struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
4610 
4611 			if (bp->flags & BNXT_FLAG_CHIP_P5)
4612 				txr->tx_ring_struct.ring_mem.flags =
4613 					BNXT_RMEM_RING_PTE_FLAG;
4614 			txr->bnapi = bp->bnapi[j];
4615 			bp->bnapi[j]->tx_ring = txr;
4616 			bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i;
4617 			if (i >= bp->tx_nr_rings_xdp) {
4618 				txr->txq_index = i - bp->tx_nr_rings_xdp;
4619 				bp->bnapi[j]->tx_int = bnxt_tx_int;
4620 			} else {
4621 				bp->bnapi[j]->flags |= BNXT_NAPI_FLAG_XDP;
4622 				bp->bnapi[j]->tx_int = bnxt_tx_int_xdp;
4623 			}
4624 		}
4625 
4626 		rc = bnxt_alloc_stats(bp);
4627 		if (rc)
4628 			goto alloc_mem_err;
4629 		bnxt_init_stats(bp);
4630 
4631 		rc = bnxt_alloc_ntp_fltrs(bp);
4632 		if (rc)
4633 			goto alloc_mem_err;
4634 
4635 		rc = bnxt_alloc_vnics(bp);
4636 		if (rc)
4637 			goto alloc_mem_err;
4638 	}
4639 
4640 	rc = bnxt_alloc_all_cp_arrays(bp);
4641 	if (rc)
4642 		goto alloc_mem_err;
4643 
4644 	bnxt_init_ring_struct(bp);
4645 
4646 	rc = bnxt_alloc_rx_rings(bp);
4647 	if (rc)
4648 		goto alloc_mem_err;
4649 
4650 	rc = bnxt_alloc_tx_rings(bp);
4651 	if (rc)
4652 		goto alloc_mem_err;
4653 
4654 	rc = bnxt_alloc_cp_rings(bp);
4655 	if (rc)
4656 		goto alloc_mem_err;
4657 
4658 	bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
4659 				  BNXT_VNIC_UCAST_FLAG;
4660 	rc = bnxt_alloc_vnic_attributes(bp);
4661 	if (rc)
4662 		goto alloc_mem_err;
4663 	return 0;
4664 
4665 alloc_mem_err:
4666 	bnxt_free_mem(bp, true);
4667 	return rc;
4668 }
4669 
4670 static void bnxt_disable_int(struct bnxt *bp)
4671 {
4672 	int i;
4673 
4674 	if (!bp->bnapi)
4675 		return;
4676 
4677 	for (i = 0; i < bp->cp_nr_rings; i++) {
4678 		struct bnxt_napi *bnapi = bp->bnapi[i];
4679 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4680 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
4681 
4682 		if (ring->fw_ring_id != INVALID_HW_RING_ID)
4683 			bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
4684 	}
4685 }
4686 
4687 static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n)
4688 {
4689 	struct bnxt_napi *bnapi = bp->bnapi[n];
4690 	struct bnxt_cp_ring_info *cpr;
4691 
4692 	cpr = &bnapi->cp_ring;
4693 	return cpr->cp_ring_struct.map_idx;
4694 }
4695 
4696 static void bnxt_disable_int_sync(struct bnxt *bp)
4697 {
4698 	int i;
4699 
4700 	if (!bp->irq_tbl)
4701 		return;
4702 
4703 	atomic_inc(&bp->intr_sem);
4704 
4705 	bnxt_disable_int(bp);
4706 	for (i = 0; i < bp->cp_nr_rings; i++) {
4707 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
4708 
4709 		synchronize_irq(bp->irq_tbl[map_idx].vector);
4710 	}
4711 }
4712 
4713 static void bnxt_enable_int(struct bnxt *bp)
4714 {
4715 	int i;
4716 
4717 	atomic_set(&bp->intr_sem, 0);
4718 	for (i = 0; i < bp->cp_nr_rings; i++) {
4719 		struct bnxt_napi *bnapi = bp->bnapi[i];
4720 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4721 
4722 		bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons);
4723 	}
4724 }
4725 
4726 int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp, unsigned long *bmap, int bmap_size,
4727 			    bool async_only)
4728 {
4729 	DECLARE_BITMAP(async_events_bmap, 256);
4730 	u32 *events = (u32 *)async_events_bmap;
4731 	struct hwrm_func_drv_rgtr_output *resp;
4732 	struct hwrm_func_drv_rgtr_input *req;
4733 	u32 flags;
4734 	int rc, i;
4735 
4736 	rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_RGTR);
4737 	if (rc)
4738 		return rc;
4739 
4740 	req->enables = cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
4741 				   FUNC_DRV_RGTR_REQ_ENABLES_VER |
4742 				   FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
4743 
4744 	req->os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX);
4745 	flags = FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE;
4746 	if (bp->fw_cap & BNXT_FW_CAP_HOT_RESET)
4747 		flags |= FUNC_DRV_RGTR_REQ_FLAGS_HOT_RESET_SUPPORT;
4748 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
4749 		flags |= FUNC_DRV_RGTR_REQ_FLAGS_ERROR_RECOVERY_SUPPORT |
4750 			 FUNC_DRV_RGTR_REQ_FLAGS_MASTER_SUPPORT;
4751 	req->flags = cpu_to_le32(flags);
4752 	req->ver_maj_8b = DRV_VER_MAJ;
4753 	req->ver_min_8b = DRV_VER_MIN;
4754 	req->ver_upd_8b = DRV_VER_UPD;
4755 	req->ver_maj = cpu_to_le16(DRV_VER_MAJ);
4756 	req->ver_min = cpu_to_le16(DRV_VER_MIN);
4757 	req->ver_upd = cpu_to_le16(DRV_VER_UPD);
4758 
4759 	if (BNXT_PF(bp)) {
4760 		u32 data[8];
4761 		int i;
4762 
4763 		memset(data, 0, sizeof(data));
4764 		for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) {
4765 			u16 cmd = bnxt_vf_req_snif[i];
4766 			unsigned int bit, idx;
4767 
4768 			idx = cmd / 32;
4769 			bit = cmd % 32;
4770 			data[idx] |= 1 << bit;
4771 		}
4772 
4773 		for (i = 0; i < 8; i++)
4774 			req->vf_req_fwd[i] = cpu_to_le32(data[i]);
4775 
4776 		req->enables |=
4777 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
4778 	}
4779 
4780 	if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE)
4781 		req->flags |= cpu_to_le32(
4782 			FUNC_DRV_RGTR_REQ_FLAGS_FLOW_HANDLE_64BIT_MODE);
4783 
4784 	memset(async_events_bmap, 0, sizeof(async_events_bmap));
4785 	for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++) {
4786 		u16 event_id = bnxt_async_events_arr[i];
4787 
4788 		if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY &&
4789 		    !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
4790 			continue;
4791 		__set_bit(bnxt_async_events_arr[i], async_events_bmap);
4792 	}
4793 	if (bmap && bmap_size) {
4794 		for (i = 0; i < bmap_size; i++) {
4795 			if (test_bit(i, bmap))
4796 				__set_bit(i, async_events_bmap);
4797 		}
4798 	}
4799 	for (i = 0; i < 8; i++)
4800 		req->async_event_fwd[i] |= cpu_to_le32(events[i]);
4801 
4802 	if (async_only)
4803 		req->enables =
4804 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
4805 
4806 	resp = hwrm_req_hold(bp, req);
4807 	rc = hwrm_req_send(bp, req);
4808 	if (!rc) {
4809 		set_bit(BNXT_STATE_DRV_REGISTERED, &bp->state);
4810 		if (resp->flags &
4811 		    cpu_to_le32(FUNC_DRV_RGTR_RESP_FLAGS_IF_CHANGE_SUPPORTED))
4812 			bp->fw_cap |= BNXT_FW_CAP_IF_CHANGE;
4813 	}
4814 	hwrm_req_drop(bp, req);
4815 	return rc;
4816 }
4817 
4818 int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
4819 {
4820 	struct hwrm_func_drv_unrgtr_input *req;
4821 	int rc;
4822 
4823 	if (!test_and_clear_bit(BNXT_STATE_DRV_REGISTERED, &bp->state))
4824 		return 0;
4825 
4826 	rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_UNRGTR);
4827 	if (rc)
4828 		return rc;
4829 	return hwrm_req_send(bp, req);
4830 }
4831 
4832 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
4833 {
4834 	struct hwrm_tunnel_dst_port_free_input *req;
4835 	int rc;
4836 
4837 	if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN &&
4838 	    bp->vxlan_fw_dst_port_id == INVALID_HW_RING_ID)
4839 		return 0;
4840 	if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE &&
4841 	    bp->nge_fw_dst_port_id == INVALID_HW_RING_ID)
4842 		return 0;
4843 
4844 	rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_FREE);
4845 	if (rc)
4846 		return rc;
4847 
4848 	req->tunnel_type = tunnel_type;
4849 
4850 	switch (tunnel_type) {
4851 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
4852 		req->tunnel_dst_port_id = cpu_to_le16(bp->vxlan_fw_dst_port_id);
4853 		bp->vxlan_port = 0;
4854 		bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID;
4855 		break;
4856 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
4857 		req->tunnel_dst_port_id = cpu_to_le16(bp->nge_fw_dst_port_id);
4858 		bp->nge_port = 0;
4859 		bp->nge_fw_dst_port_id = INVALID_HW_RING_ID;
4860 		break;
4861 	default:
4862 		break;
4863 	}
4864 
4865 	rc = hwrm_req_send(bp, req);
4866 	if (rc)
4867 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
4868 			   rc);
4869 	return rc;
4870 }
4871 
4872 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
4873 					   u8 tunnel_type)
4874 {
4875 	struct hwrm_tunnel_dst_port_alloc_output *resp;
4876 	struct hwrm_tunnel_dst_port_alloc_input *req;
4877 	int rc;
4878 
4879 	rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_ALLOC);
4880 	if (rc)
4881 		return rc;
4882 
4883 	req->tunnel_type = tunnel_type;
4884 	req->tunnel_dst_port_val = port;
4885 
4886 	resp = hwrm_req_hold(bp, req);
4887 	rc = hwrm_req_send(bp, req);
4888 	if (rc) {
4889 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
4890 			   rc);
4891 		goto err_out;
4892 	}
4893 
4894 	switch (tunnel_type) {
4895 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN:
4896 		bp->vxlan_port = port;
4897 		bp->vxlan_fw_dst_port_id =
4898 			le16_to_cpu(resp->tunnel_dst_port_id);
4899 		break;
4900 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE:
4901 		bp->nge_port = port;
4902 		bp->nge_fw_dst_port_id = le16_to_cpu(resp->tunnel_dst_port_id);
4903 		break;
4904 	default:
4905 		break;
4906 	}
4907 
4908 err_out:
4909 	hwrm_req_drop(bp, req);
4910 	return rc;
4911 }
4912 
4913 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
4914 {
4915 	struct hwrm_cfa_l2_set_rx_mask_input *req;
4916 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4917 	int rc;
4918 
4919 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_SET_RX_MASK);
4920 	if (rc)
4921 		return rc;
4922 
4923 	req->vnic_id = cpu_to_le32(vnic->fw_vnic_id);
4924 	if (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST) {
4925 		req->num_mc_entries = cpu_to_le32(vnic->mc_list_count);
4926 		req->mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
4927 	}
4928 	req->mask = cpu_to_le32(vnic->rx_mask);
4929 	return hwrm_req_send_silent(bp, req);
4930 }
4931 
4932 #ifdef CONFIG_RFS_ACCEL
4933 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
4934 					    struct bnxt_ntuple_filter *fltr)
4935 {
4936 	struct hwrm_cfa_ntuple_filter_free_input *req;
4937 	int rc;
4938 
4939 	rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_FREE);
4940 	if (rc)
4941 		return rc;
4942 
4943 	req->ntuple_filter_id = fltr->filter_id;
4944 	return hwrm_req_send(bp, req);
4945 }
4946 
4947 #define BNXT_NTP_FLTR_FLAGS					\
4948 	(CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID |	\
4949 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE |	\
4950 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR |	\
4951 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE |	\
4952 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR |	\
4953 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK |	\
4954 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR |	\
4955 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK |	\
4956 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL |	\
4957 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT |		\
4958 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK |	\
4959 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT |		\
4960 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK |	\
4961 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
4962 
4963 #define BNXT_NTP_TUNNEL_FLTR_FLAG				\
4964 		CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE
4965 
4966 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
4967 					     struct bnxt_ntuple_filter *fltr)
4968 {
4969 	struct hwrm_cfa_ntuple_filter_alloc_output *resp;
4970 	struct hwrm_cfa_ntuple_filter_alloc_input *req;
4971 	struct flow_keys *keys = &fltr->fkeys;
4972 	struct bnxt_vnic_info *vnic;
4973 	u32 flags = 0;
4974 	int rc;
4975 
4976 	rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_ALLOC);
4977 	if (rc)
4978 		return rc;
4979 
4980 	req->l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx];
4981 
4982 	if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) {
4983 		flags = CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DEST_RFS_RING_IDX;
4984 		req->dst_id = cpu_to_le16(fltr->rxq);
4985 	} else {
4986 		vnic = &bp->vnic_info[fltr->rxq + 1];
4987 		req->dst_id = cpu_to_le16(vnic->fw_vnic_id);
4988 	}
4989 	req->flags = cpu_to_le32(flags);
4990 	req->enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
4991 
4992 	req->ethertype = htons(ETH_P_IP);
4993 	memcpy(req->src_macaddr, fltr->src_mac_addr, ETH_ALEN);
4994 	req->ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
4995 	req->ip_protocol = keys->basic.ip_proto;
4996 
4997 	if (keys->basic.n_proto == htons(ETH_P_IPV6)) {
4998 		int i;
4999 
5000 		req->ethertype = htons(ETH_P_IPV6);
5001 		req->ip_addr_type =
5002 			CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6;
5003 		*(struct in6_addr *)&req->src_ipaddr[0] =
5004 			keys->addrs.v6addrs.src;
5005 		*(struct in6_addr *)&req->dst_ipaddr[0] =
5006 			keys->addrs.v6addrs.dst;
5007 		for (i = 0; i < 4; i++) {
5008 			req->src_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
5009 			req->dst_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
5010 		}
5011 	} else {
5012 		req->src_ipaddr[0] = keys->addrs.v4addrs.src;
5013 		req->src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
5014 		req->dst_ipaddr[0] = keys->addrs.v4addrs.dst;
5015 		req->dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
5016 	}
5017 	if (keys->control.flags & FLOW_DIS_ENCAPSULATION) {
5018 		req->enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG);
5019 		req->tunnel_type =
5020 			CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL;
5021 	}
5022 
5023 	req->src_port = keys->ports.src;
5024 	req->src_port_mask = cpu_to_be16(0xffff);
5025 	req->dst_port = keys->ports.dst;
5026 	req->dst_port_mask = cpu_to_be16(0xffff);
5027 
5028 	resp = hwrm_req_hold(bp, req);
5029 	rc = hwrm_req_send(bp, req);
5030 	if (!rc)
5031 		fltr->filter_id = resp->ntuple_filter_id;
5032 	hwrm_req_drop(bp, req);
5033 	return rc;
5034 }
5035 #endif
5036 
5037 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
5038 				     const u8 *mac_addr)
5039 {
5040 	struct hwrm_cfa_l2_filter_alloc_output *resp;
5041 	struct hwrm_cfa_l2_filter_alloc_input *req;
5042 	int rc;
5043 
5044 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_ALLOC);
5045 	if (rc)
5046 		return rc;
5047 
5048 	req->flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX);
5049 	if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
5050 		req->flags |=
5051 			cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
5052 	req->dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
5053 	req->enables =
5054 		cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
5055 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
5056 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
5057 	memcpy(req->l2_addr, mac_addr, ETH_ALEN);
5058 	req->l2_addr_mask[0] = 0xff;
5059 	req->l2_addr_mask[1] = 0xff;
5060 	req->l2_addr_mask[2] = 0xff;
5061 	req->l2_addr_mask[3] = 0xff;
5062 	req->l2_addr_mask[4] = 0xff;
5063 	req->l2_addr_mask[5] = 0xff;
5064 
5065 	resp = hwrm_req_hold(bp, req);
5066 	rc = hwrm_req_send(bp, req);
5067 	if (!rc)
5068 		bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
5069 							resp->l2_filter_id;
5070 	hwrm_req_drop(bp, req);
5071 	return rc;
5072 }
5073 
5074 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
5075 {
5076 	struct hwrm_cfa_l2_filter_free_input *req;
5077 	u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
5078 	int rc;
5079 
5080 	/* Any associated ntuple filters will also be cleared by firmware. */
5081 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE);
5082 	if (rc)
5083 		return rc;
5084 	hwrm_req_hold(bp, req);
5085 	for (i = 0; i < num_of_vnics; i++) {
5086 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
5087 
5088 		for (j = 0; j < vnic->uc_filter_count; j++) {
5089 			req->l2_filter_id = vnic->fw_l2_filter_id[j];
5090 
5091 			rc = hwrm_req_send(bp, req);
5092 		}
5093 		vnic->uc_filter_count = 0;
5094 	}
5095 	hwrm_req_drop(bp, req);
5096 	return rc;
5097 }
5098 
5099 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
5100 {
5101 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5102 	u16 max_aggs = VNIC_TPA_CFG_REQ_MAX_AGGS_MAX;
5103 	struct hwrm_vnic_tpa_cfg_input *req;
5104 	int rc;
5105 
5106 	if (vnic->fw_vnic_id == INVALID_HW_RING_ID)
5107 		return 0;
5108 
5109 	rc = hwrm_req_init(bp, req, HWRM_VNIC_TPA_CFG);
5110 	if (rc)
5111 		return rc;
5112 
5113 	if (tpa_flags) {
5114 		u16 mss = bp->dev->mtu - 40;
5115 		u32 nsegs, n, segs = 0, flags;
5116 
5117 		flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
5118 			VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
5119 			VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
5120 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
5121 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
5122 		if (tpa_flags & BNXT_FLAG_GRO)
5123 			flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
5124 
5125 		req->flags = cpu_to_le32(flags);
5126 
5127 		req->enables =
5128 			cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
5129 				    VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
5130 				    VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
5131 
5132 		/* Number of segs are log2 units, and first packet is not
5133 		 * included as part of this units.
5134 		 */
5135 		if (mss <= BNXT_RX_PAGE_SIZE) {
5136 			n = BNXT_RX_PAGE_SIZE / mss;
5137 			nsegs = (MAX_SKB_FRAGS - 1) * n;
5138 		} else {
5139 			n = mss / BNXT_RX_PAGE_SIZE;
5140 			if (mss & (BNXT_RX_PAGE_SIZE - 1))
5141 				n++;
5142 			nsegs = (MAX_SKB_FRAGS - n) / n;
5143 		}
5144 
5145 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5146 			segs = MAX_TPA_SEGS_P5;
5147 			max_aggs = bp->max_tpa;
5148 		} else {
5149 			segs = ilog2(nsegs);
5150 		}
5151 		req->max_agg_segs = cpu_to_le16(segs);
5152 		req->max_aggs = cpu_to_le16(max_aggs);
5153 
5154 		req->min_agg_len = cpu_to_le32(512);
5155 	}
5156 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5157 
5158 	return hwrm_req_send(bp, req);
5159 }
5160 
5161 static u16 bnxt_cp_ring_from_grp(struct bnxt *bp, struct bnxt_ring_struct *ring)
5162 {
5163 	struct bnxt_ring_grp_info *grp_info;
5164 
5165 	grp_info = &bp->grp_info[ring->grp_idx];
5166 	return grp_info->cp_fw_ring_id;
5167 }
5168 
5169 static u16 bnxt_cp_ring_for_rx(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
5170 {
5171 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5172 		struct bnxt_napi *bnapi = rxr->bnapi;
5173 		struct bnxt_cp_ring_info *cpr;
5174 
5175 		cpr = bnapi->cp_ring.cp_ring_arr[BNXT_RX_HDL];
5176 		return cpr->cp_ring_struct.fw_ring_id;
5177 	} else {
5178 		return bnxt_cp_ring_from_grp(bp, &rxr->rx_ring_struct);
5179 	}
5180 }
5181 
5182 static u16 bnxt_cp_ring_for_tx(struct bnxt *bp, struct bnxt_tx_ring_info *txr)
5183 {
5184 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5185 		struct bnxt_napi *bnapi = txr->bnapi;
5186 		struct bnxt_cp_ring_info *cpr;
5187 
5188 		cpr = bnapi->cp_ring.cp_ring_arr[BNXT_TX_HDL];
5189 		return cpr->cp_ring_struct.fw_ring_id;
5190 	} else {
5191 		return bnxt_cp_ring_from_grp(bp, &txr->tx_ring_struct);
5192 	}
5193 }
5194 
5195 static int bnxt_alloc_rss_indir_tbl(struct bnxt *bp)
5196 {
5197 	int entries;
5198 
5199 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5200 		entries = BNXT_MAX_RSS_TABLE_ENTRIES_P5;
5201 	else
5202 		entries = HW_HASH_INDEX_SIZE;
5203 
5204 	bp->rss_indir_tbl_entries = entries;
5205 	bp->rss_indir_tbl = kmalloc_array(entries, sizeof(*bp->rss_indir_tbl),
5206 					  GFP_KERNEL);
5207 	if (!bp->rss_indir_tbl)
5208 		return -ENOMEM;
5209 	return 0;
5210 }
5211 
5212 static void bnxt_set_dflt_rss_indir_tbl(struct bnxt *bp)
5213 {
5214 	u16 max_rings, max_entries, pad, i;
5215 
5216 	if (!bp->rx_nr_rings)
5217 		return;
5218 
5219 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5220 		max_rings = bp->rx_nr_rings - 1;
5221 	else
5222 		max_rings = bp->rx_nr_rings;
5223 
5224 	max_entries = bnxt_get_rxfh_indir_size(bp->dev);
5225 
5226 	for (i = 0; i < max_entries; i++)
5227 		bp->rss_indir_tbl[i] = ethtool_rxfh_indir_default(i, max_rings);
5228 
5229 	pad = bp->rss_indir_tbl_entries - max_entries;
5230 	if (pad)
5231 		memset(&bp->rss_indir_tbl[i], 0, pad * sizeof(u16));
5232 }
5233 
5234 static u16 bnxt_get_max_rss_ring(struct bnxt *bp)
5235 {
5236 	u16 i, tbl_size, max_ring = 0;
5237 
5238 	if (!bp->rss_indir_tbl)
5239 		return 0;
5240 
5241 	tbl_size = bnxt_get_rxfh_indir_size(bp->dev);
5242 	for (i = 0; i < tbl_size; i++)
5243 		max_ring = max(max_ring, bp->rss_indir_tbl[i]);
5244 	return max_ring;
5245 }
5246 
5247 int bnxt_get_nr_rss_ctxs(struct bnxt *bp, int rx_rings)
5248 {
5249 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5250 		return DIV_ROUND_UP(rx_rings, BNXT_RSS_TABLE_ENTRIES_P5);
5251 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5252 		return 2;
5253 	return 1;
5254 }
5255 
5256 static void bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic)
5257 {
5258 	bool no_rss = !(vnic->flags & BNXT_VNIC_RSS_FLAG);
5259 	u16 i, j;
5260 
5261 	/* Fill the RSS indirection table with ring group ids */
5262 	for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++) {
5263 		if (!no_rss)
5264 			j = bp->rss_indir_tbl[i];
5265 		vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
5266 	}
5267 }
5268 
5269 static void bnxt_fill_hw_rss_tbl_p5(struct bnxt *bp,
5270 				    struct bnxt_vnic_info *vnic)
5271 {
5272 	__le16 *ring_tbl = vnic->rss_table;
5273 	struct bnxt_rx_ring_info *rxr;
5274 	u16 tbl_size, i;
5275 
5276 	tbl_size = bnxt_get_rxfh_indir_size(bp->dev);
5277 
5278 	for (i = 0; i < tbl_size; i++) {
5279 		u16 ring_id, j;
5280 
5281 		j = bp->rss_indir_tbl[i];
5282 		rxr = &bp->rx_ring[j];
5283 
5284 		ring_id = rxr->rx_ring_struct.fw_ring_id;
5285 		*ring_tbl++ = cpu_to_le16(ring_id);
5286 		ring_id = bnxt_cp_ring_for_rx(bp, rxr);
5287 		*ring_tbl++ = cpu_to_le16(ring_id);
5288 	}
5289 }
5290 
5291 static void
5292 __bnxt_hwrm_vnic_set_rss(struct bnxt *bp, struct hwrm_vnic_rss_cfg_input *req,
5293 			 struct bnxt_vnic_info *vnic)
5294 {
5295 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5296 		bnxt_fill_hw_rss_tbl_p5(bp, vnic);
5297 	else
5298 		bnxt_fill_hw_rss_tbl(bp, vnic);
5299 
5300 	if (bp->rss_hash_delta) {
5301 		req->hash_type = cpu_to_le32(bp->rss_hash_delta);
5302 		if (bp->rss_hash_cfg & bp->rss_hash_delta)
5303 			req->flags |= VNIC_RSS_CFG_REQ_FLAGS_HASH_TYPE_INCLUDE;
5304 		else
5305 			req->flags |= VNIC_RSS_CFG_REQ_FLAGS_HASH_TYPE_EXCLUDE;
5306 	} else {
5307 		req->hash_type = cpu_to_le32(bp->rss_hash_cfg);
5308 	}
5309 	req->hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT;
5310 	req->ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
5311 	req->hash_key_tbl_addr = cpu_to_le64(vnic->rss_hash_key_dma_addr);
5312 }
5313 
5314 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
5315 {
5316 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5317 	struct hwrm_vnic_rss_cfg_input *req;
5318 	int rc;
5319 
5320 	if ((bp->flags & BNXT_FLAG_CHIP_P5) ||
5321 	    vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID)
5322 		return 0;
5323 
5324 	rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG);
5325 	if (rc)
5326 		return rc;
5327 
5328 	if (set_rss)
5329 		__bnxt_hwrm_vnic_set_rss(bp, req, vnic);
5330 	req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
5331 	return hwrm_req_send(bp, req);
5332 }
5333 
5334 static int bnxt_hwrm_vnic_set_rss_p5(struct bnxt *bp, u16 vnic_id, bool set_rss)
5335 {
5336 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5337 	struct hwrm_vnic_rss_cfg_input *req;
5338 	dma_addr_t ring_tbl_map;
5339 	u32 i, nr_ctxs;
5340 	int rc;
5341 
5342 	rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG);
5343 	if (rc)
5344 		return rc;
5345 
5346 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5347 	if (!set_rss)
5348 		return hwrm_req_send(bp, req);
5349 
5350 	__bnxt_hwrm_vnic_set_rss(bp, req, vnic);
5351 	ring_tbl_map = vnic->rss_table_dma_addr;
5352 	nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings);
5353 
5354 	hwrm_req_hold(bp, req);
5355 	for (i = 0; i < nr_ctxs; ring_tbl_map += BNXT_RSS_TABLE_SIZE_P5, i++) {
5356 		req->ring_grp_tbl_addr = cpu_to_le64(ring_tbl_map);
5357 		req->ring_table_pair_index = i;
5358 		req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[i]);
5359 		rc = hwrm_req_send(bp, req);
5360 		if (rc)
5361 			goto exit;
5362 	}
5363 
5364 exit:
5365 	hwrm_req_drop(bp, req);
5366 	return rc;
5367 }
5368 
5369 static void bnxt_hwrm_update_rss_hash_cfg(struct bnxt *bp)
5370 {
5371 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
5372 	struct hwrm_vnic_rss_qcfg_output *resp;
5373 	struct hwrm_vnic_rss_qcfg_input *req;
5374 
5375 	if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_QCFG))
5376 		return;
5377 
5378 	/* all contexts configured to same hash_type, zero always exists */
5379 	req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
5380 	resp = hwrm_req_hold(bp, req);
5381 	if (!hwrm_req_send(bp, req)) {
5382 		bp->rss_hash_cfg = le32_to_cpu(resp->hash_type) ?: bp->rss_hash_cfg;
5383 		bp->rss_hash_delta = 0;
5384 	}
5385 	hwrm_req_drop(bp, req);
5386 }
5387 
5388 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
5389 {
5390 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5391 	struct hwrm_vnic_plcmodes_cfg_input *req;
5392 	int rc;
5393 
5394 	rc = hwrm_req_init(bp, req, HWRM_VNIC_PLCMODES_CFG);
5395 	if (rc)
5396 		return rc;
5397 
5398 	req->flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT);
5399 	req->enables = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID);
5400 
5401 	if (BNXT_RX_PAGE_MODE(bp)) {
5402 		req->jumbo_thresh = cpu_to_le16(bp->rx_buf_use_size);
5403 	} else {
5404 		req->flags |= cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
5405 					  VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
5406 		req->enables |=
5407 			cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
5408 		req->jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
5409 		req->hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
5410 	}
5411 	req->vnic_id = cpu_to_le32(vnic->fw_vnic_id);
5412 	return hwrm_req_send(bp, req);
5413 }
5414 
5415 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id,
5416 					u16 ctx_idx)
5417 {
5418 	struct hwrm_vnic_rss_cos_lb_ctx_free_input *req;
5419 
5420 	if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_FREE))
5421 		return;
5422 
5423 	req->rss_cos_lb_ctx_id =
5424 		cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]);
5425 
5426 	hwrm_req_send(bp, req);
5427 	bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID;
5428 }
5429 
5430 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
5431 {
5432 	int i, j;
5433 
5434 	for (i = 0; i < bp->nr_vnics; i++) {
5435 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
5436 
5437 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) {
5438 			if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID)
5439 				bnxt_hwrm_vnic_ctx_free_one(bp, i, j);
5440 		}
5441 	}
5442 	bp->rsscos_nr_ctxs = 0;
5443 }
5444 
5445 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx)
5446 {
5447 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp;
5448 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_input *req;
5449 	int rc;
5450 
5451 	rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC);
5452 	if (rc)
5453 		return rc;
5454 
5455 	resp = hwrm_req_hold(bp, req);
5456 	rc = hwrm_req_send(bp, req);
5457 	if (!rc)
5458 		bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] =
5459 			le16_to_cpu(resp->rss_cos_lb_ctx_id);
5460 	hwrm_req_drop(bp, req);
5461 
5462 	return rc;
5463 }
5464 
5465 static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp)
5466 {
5467 	if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP)
5468 		return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE;
5469 	return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE;
5470 }
5471 
5472 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
5473 {
5474 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5475 	struct hwrm_vnic_cfg_input *req;
5476 	unsigned int ring = 0, grp_idx;
5477 	u16 def_vlan = 0;
5478 	int rc;
5479 
5480 	rc = hwrm_req_init(bp, req, HWRM_VNIC_CFG);
5481 	if (rc)
5482 		return rc;
5483 
5484 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5485 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0];
5486 
5487 		req->default_rx_ring_id =
5488 			cpu_to_le16(rxr->rx_ring_struct.fw_ring_id);
5489 		req->default_cmpl_ring_id =
5490 			cpu_to_le16(bnxt_cp_ring_for_rx(bp, rxr));
5491 		req->enables =
5492 			cpu_to_le32(VNIC_CFG_REQ_ENABLES_DEFAULT_RX_RING_ID |
5493 				    VNIC_CFG_REQ_ENABLES_DEFAULT_CMPL_RING_ID);
5494 		goto vnic_mru;
5495 	}
5496 	req->enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP);
5497 	/* Only RSS support for now TBD: COS & LB */
5498 	if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) {
5499 		req->rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
5500 		req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
5501 					   VNIC_CFG_REQ_ENABLES_MRU);
5502 	} else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) {
5503 		req->rss_rule =
5504 			cpu_to_le16(bp->vnic_info[0].fw_rss_cos_lb_ctx[0]);
5505 		req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
5506 					   VNIC_CFG_REQ_ENABLES_MRU);
5507 		req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE);
5508 	} else {
5509 		req->rss_rule = cpu_to_le16(0xffff);
5510 	}
5511 
5512 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) &&
5513 	    (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) {
5514 		req->cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]);
5515 		req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE);
5516 	} else {
5517 		req->cos_rule = cpu_to_le16(0xffff);
5518 	}
5519 
5520 	if (vnic->flags & BNXT_VNIC_RSS_FLAG)
5521 		ring = 0;
5522 	else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
5523 		ring = vnic_id - 1;
5524 	else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp))
5525 		ring = bp->rx_nr_rings - 1;
5526 
5527 	grp_idx = bp->rx_ring[ring].bnapi->index;
5528 	req->dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
5529 	req->lb_rule = cpu_to_le16(0xffff);
5530 vnic_mru:
5531 	req->mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + VLAN_HLEN);
5532 
5533 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5534 #ifdef CONFIG_BNXT_SRIOV
5535 	if (BNXT_VF(bp))
5536 		def_vlan = bp->vf.vlan;
5537 #endif
5538 	if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan)
5539 		req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
5540 	if (!vnic_id && bnxt_ulp_registered(bp->edev))
5541 		req->flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp));
5542 
5543 	return hwrm_req_send(bp, req);
5544 }
5545 
5546 static void bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
5547 {
5548 	if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
5549 		struct hwrm_vnic_free_input *req;
5550 
5551 		if (hwrm_req_init(bp, req, HWRM_VNIC_FREE))
5552 			return;
5553 
5554 		req->vnic_id =
5555 			cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
5556 
5557 		hwrm_req_send(bp, req);
5558 		bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
5559 	}
5560 }
5561 
5562 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
5563 {
5564 	u16 i;
5565 
5566 	for (i = 0; i < bp->nr_vnics; i++)
5567 		bnxt_hwrm_vnic_free_one(bp, i);
5568 }
5569 
5570 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
5571 				unsigned int start_rx_ring_idx,
5572 				unsigned int nr_rings)
5573 {
5574 	unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
5575 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5576 	struct hwrm_vnic_alloc_output *resp;
5577 	struct hwrm_vnic_alloc_input *req;
5578 	int rc;
5579 
5580 	rc = hwrm_req_init(bp, req, HWRM_VNIC_ALLOC);
5581 	if (rc)
5582 		return rc;
5583 
5584 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5585 		goto vnic_no_ring_grps;
5586 
5587 	/* map ring groups to this vnic */
5588 	for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
5589 		grp_idx = bp->rx_ring[i].bnapi->index;
5590 		if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
5591 			netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
5592 				   j, nr_rings);
5593 			break;
5594 		}
5595 		vnic->fw_grp_ids[j] = bp->grp_info[grp_idx].fw_grp_id;
5596 	}
5597 
5598 vnic_no_ring_grps:
5599 	for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++)
5600 		vnic->fw_rss_cos_lb_ctx[i] = INVALID_HW_RING_ID;
5601 	if (vnic_id == 0)
5602 		req->flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
5603 
5604 	resp = hwrm_req_hold(bp, req);
5605 	rc = hwrm_req_send(bp, req);
5606 	if (!rc)
5607 		vnic->fw_vnic_id = le32_to_cpu(resp->vnic_id);
5608 	hwrm_req_drop(bp, req);
5609 	return rc;
5610 }
5611 
5612 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp)
5613 {
5614 	struct hwrm_vnic_qcaps_output *resp;
5615 	struct hwrm_vnic_qcaps_input *req;
5616 	int rc;
5617 
5618 	bp->hw_ring_stats_size = sizeof(struct ctx_hw_stats);
5619 	bp->flags &= ~(BNXT_FLAG_NEW_RSS_CAP | BNXT_FLAG_ROCE_MIRROR_CAP);
5620 	if (bp->hwrm_spec_code < 0x10600)
5621 		return 0;
5622 
5623 	rc = hwrm_req_init(bp, req, HWRM_VNIC_QCAPS);
5624 	if (rc)
5625 		return rc;
5626 
5627 	resp = hwrm_req_hold(bp, req);
5628 	rc = hwrm_req_send(bp, req);
5629 	if (!rc) {
5630 		u32 flags = le32_to_cpu(resp->flags);
5631 
5632 		if (!(bp->flags & BNXT_FLAG_CHIP_P5) &&
5633 		    (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP))
5634 			bp->flags |= BNXT_FLAG_NEW_RSS_CAP;
5635 		if (flags &
5636 		    VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP)
5637 			bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP;
5638 
5639 		/* Older P5 fw before EXT_HW_STATS support did not set
5640 		 * VLAN_STRIP_CAP properly.
5641 		 */
5642 		if ((flags & VNIC_QCAPS_RESP_FLAGS_VLAN_STRIP_CAP) ||
5643 		    (BNXT_CHIP_P5_THOR(bp) &&
5644 		     !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)))
5645 			bp->fw_cap |= BNXT_FW_CAP_VLAN_RX_STRIP;
5646 		if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_HASH_TYPE_DELTA_CAP)
5647 			bp->fw_cap |= BNXT_FW_CAP_RSS_HASH_TYPE_DELTA;
5648 		bp->max_tpa_v2 = le16_to_cpu(resp->max_aggs_supported);
5649 		if (bp->max_tpa_v2) {
5650 			if (BNXT_CHIP_P5_THOR(bp))
5651 				bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5;
5652 			else
5653 				bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5_SR2;
5654 		}
5655 	}
5656 	hwrm_req_drop(bp, req);
5657 	return rc;
5658 }
5659 
5660 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
5661 {
5662 	struct hwrm_ring_grp_alloc_output *resp;
5663 	struct hwrm_ring_grp_alloc_input *req;
5664 	int rc;
5665 	u16 i;
5666 
5667 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5668 		return 0;
5669 
5670 	rc = hwrm_req_init(bp, req, HWRM_RING_GRP_ALLOC);
5671 	if (rc)
5672 		return rc;
5673 
5674 	resp = hwrm_req_hold(bp, req);
5675 	for (i = 0; i < bp->rx_nr_rings; i++) {
5676 		unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
5677 
5678 		req->cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
5679 		req->rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
5680 		req->ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
5681 		req->sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
5682 
5683 		rc = hwrm_req_send(bp, req);
5684 
5685 		if (rc)
5686 			break;
5687 
5688 		bp->grp_info[grp_idx].fw_grp_id =
5689 			le32_to_cpu(resp->ring_group_id);
5690 	}
5691 	hwrm_req_drop(bp, req);
5692 	return rc;
5693 }
5694 
5695 static void bnxt_hwrm_ring_grp_free(struct bnxt *bp)
5696 {
5697 	struct hwrm_ring_grp_free_input *req;
5698 	u16 i;
5699 
5700 	if (!bp->grp_info || (bp->flags & BNXT_FLAG_CHIP_P5))
5701 		return;
5702 
5703 	if (hwrm_req_init(bp, req, HWRM_RING_GRP_FREE))
5704 		return;
5705 
5706 	hwrm_req_hold(bp, req);
5707 	for (i = 0; i < bp->cp_nr_rings; i++) {
5708 		if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
5709 			continue;
5710 		req->ring_group_id =
5711 			cpu_to_le32(bp->grp_info[i].fw_grp_id);
5712 
5713 		hwrm_req_send(bp, req);
5714 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
5715 	}
5716 	hwrm_req_drop(bp, req);
5717 }
5718 
5719 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
5720 				    struct bnxt_ring_struct *ring,
5721 				    u32 ring_type, u32 map_index)
5722 {
5723 	struct hwrm_ring_alloc_output *resp;
5724 	struct hwrm_ring_alloc_input *req;
5725 	struct bnxt_ring_mem_info *rmem = &ring->ring_mem;
5726 	struct bnxt_ring_grp_info *grp_info;
5727 	int rc, err = 0;
5728 	u16 ring_id;
5729 
5730 	rc = hwrm_req_init(bp, req, HWRM_RING_ALLOC);
5731 	if (rc)
5732 		goto exit;
5733 
5734 	req->enables = 0;
5735 	if (rmem->nr_pages > 1) {
5736 		req->page_tbl_addr = cpu_to_le64(rmem->pg_tbl_map);
5737 		/* Page size is in log2 units */
5738 		req->page_size = BNXT_PAGE_SHIFT;
5739 		req->page_tbl_depth = 1;
5740 	} else {
5741 		req->page_tbl_addr =  cpu_to_le64(rmem->dma_arr[0]);
5742 	}
5743 	req->fbo = 0;
5744 	/* Association of ring index with doorbell index and MSIX number */
5745 	req->logical_id = cpu_to_le16(map_index);
5746 
5747 	switch (ring_type) {
5748 	case HWRM_RING_ALLOC_TX: {
5749 		struct bnxt_tx_ring_info *txr;
5750 
5751 		txr = container_of(ring, struct bnxt_tx_ring_info,
5752 				   tx_ring_struct);
5753 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
5754 		/* Association of transmit ring with completion ring */
5755 		grp_info = &bp->grp_info[ring->grp_idx];
5756 		req->cmpl_ring_id = cpu_to_le16(bnxt_cp_ring_for_tx(bp, txr));
5757 		req->length = cpu_to_le32(bp->tx_ring_mask + 1);
5758 		req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5759 		req->queue_id = cpu_to_le16(ring->queue_id);
5760 		break;
5761 	}
5762 	case HWRM_RING_ALLOC_RX:
5763 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
5764 		req->length = cpu_to_le32(bp->rx_ring_mask + 1);
5765 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5766 			u16 flags = 0;
5767 
5768 			/* Association of rx ring with stats context */
5769 			grp_info = &bp->grp_info[ring->grp_idx];
5770 			req->rx_buf_size = cpu_to_le16(bp->rx_buf_use_size);
5771 			req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5772 			req->enables |= cpu_to_le32(
5773 				RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
5774 			if (NET_IP_ALIGN == 2)
5775 				flags = RING_ALLOC_REQ_FLAGS_RX_SOP_PAD;
5776 			req->flags = cpu_to_le16(flags);
5777 		}
5778 		break;
5779 	case HWRM_RING_ALLOC_AGG:
5780 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5781 			req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX_AGG;
5782 			/* Association of agg ring with rx ring */
5783 			grp_info = &bp->grp_info[ring->grp_idx];
5784 			req->rx_ring_id = cpu_to_le16(grp_info->rx_fw_ring_id);
5785 			req->rx_buf_size = cpu_to_le16(BNXT_RX_PAGE_SIZE);
5786 			req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5787 			req->enables |= cpu_to_le32(
5788 				RING_ALLOC_REQ_ENABLES_RX_RING_ID_VALID |
5789 				RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
5790 		} else {
5791 			req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
5792 		}
5793 		req->length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
5794 		break;
5795 	case HWRM_RING_ALLOC_CMPL:
5796 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL;
5797 		req->length = cpu_to_le32(bp->cp_ring_mask + 1);
5798 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5799 			/* Association of cp ring with nq */
5800 			grp_info = &bp->grp_info[map_index];
5801 			req->nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id);
5802 			req->cq_handle = cpu_to_le64(ring->handle);
5803 			req->enables |= cpu_to_le32(
5804 				RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID);
5805 		} else if (bp->flags & BNXT_FLAG_USING_MSIX) {
5806 			req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
5807 		}
5808 		break;
5809 	case HWRM_RING_ALLOC_NQ:
5810 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_NQ;
5811 		req->length = cpu_to_le32(bp->cp_ring_mask + 1);
5812 		if (bp->flags & BNXT_FLAG_USING_MSIX)
5813 			req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
5814 		break;
5815 	default:
5816 		netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
5817 			   ring_type);
5818 		return -1;
5819 	}
5820 
5821 	resp = hwrm_req_hold(bp, req);
5822 	rc = hwrm_req_send(bp, req);
5823 	err = le16_to_cpu(resp->error_code);
5824 	ring_id = le16_to_cpu(resp->ring_id);
5825 	hwrm_req_drop(bp, req);
5826 
5827 exit:
5828 	if (rc || err) {
5829 		netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n",
5830 			   ring_type, rc, err);
5831 		return -EIO;
5832 	}
5833 	ring->fw_ring_id = ring_id;
5834 	return rc;
5835 }
5836 
5837 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx)
5838 {
5839 	int rc;
5840 
5841 	if (BNXT_PF(bp)) {
5842 		struct hwrm_func_cfg_input *req;
5843 
5844 		rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG);
5845 		if (rc)
5846 			return rc;
5847 
5848 		req->fid = cpu_to_le16(0xffff);
5849 		req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
5850 		req->async_event_cr = cpu_to_le16(idx);
5851 		return hwrm_req_send(bp, req);
5852 	} else {
5853 		struct hwrm_func_vf_cfg_input *req;
5854 
5855 		rc = hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG);
5856 		if (rc)
5857 			return rc;
5858 
5859 		req->enables =
5860 			cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
5861 		req->async_event_cr = cpu_to_le16(idx);
5862 		return hwrm_req_send(bp, req);
5863 	}
5864 }
5865 
5866 static void bnxt_set_db(struct bnxt *bp, struct bnxt_db_info *db, u32 ring_type,
5867 			u32 map_idx, u32 xid)
5868 {
5869 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5870 		if (BNXT_PF(bp))
5871 			db->doorbell = bp->bar1 + DB_PF_OFFSET_P5;
5872 		else
5873 			db->doorbell = bp->bar1 + DB_VF_OFFSET_P5;
5874 		switch (ring_type) {
5875 		case HWRM_RING_ALLOC_TX:
5876 			db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SQ;
5877 			break;
5878 		case HWRM_RING_ALLOC_RX:
5879 		case HWRM_RING_ALLOC_AGG:
5880 			db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SRQ;
5881 			break;
5882 		case HWRM_RING_ALLOC_CMPL:
5883 			db->db_key64 = DBR_PATH_L2;
5884 			break;
5885 		case HWRM_RING_ALLOC_NQ:
5886 			db->db_key64 = DBR_PATH_L2;
5887 			break;
5888 		}
5889 		db->db_key64 |= (u64)xid << DBR_XID_SFT;
5890 	} else {
5891 		db->doorbell = bp->bar1 + map_idx * 0x80;
5892 		switch (ring_type) {
5893 		case HWRM_RING_ALLOC_TX:
5894 			db->db_key32 = DB_KEY_TX;
5895 			break;
5896 		case HWRM_RING_ALLOC_RX:
5897 		case HWRM_RING_ALLOC_AGG:
5898 			db->db_key32 = DB_KEY_RX;
5899 			break;
5900 		case HWRM_RING_ALLOC_CMPL:
5901 			db->db_key32 = DB_KEY_CP;
5902 			break;
5903 		}
5904 	}
5905 }
5906 
5907 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
5908 {
5909 	bool agg_rings = !!(bp->flags & BNXT_FLAG_AGG_RINGS);
5910 	int i, rc = 0;
5911 	u32 type;
5912 
5913 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5914 		type = HWRM_RING_ALLOC_NQ;
5915 	else
5916 		type = HWRM_RING_ALLOC_CMPL;
5917 	for (i = 0; i < bp->cp_nr_rings; i++) {
5918 		struct bnxt_napi *bnapi = bp->bnapi[i];
5919 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5920 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
5921 		u32 map_idx = ring->map_idx;
5922 		unsigned int vector;
5923 
5924 		vector = bp->irq_tbl[map_idx].vector;
5925 		disable_irq_nosync(vector);
5926 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5927 		if (rc) {
5928 			enable_irq(vector);
5929 			goto err_out;
5930 		}
5931 		bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id);
5932 		bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
5933 		enable_irq(vector);
5934 		bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
5935 
5936 		if (!i) {
5937 			rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id);
5938 			if (rc)
5939 				netdev_warn(bp->dev, "Failed to set async event completion ring.\n");
5940 		}
5941 	}
5942 
5943 	type = HWRM_RING_ALLOC_TX;
5944 	for (i = 0; i < bp->tx_nr_rings; i++) {
5945 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
5946 		struct bnxt_ring_struct *ring;
5947 		u32 map_idx;
5948 
5949 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5950 			struct bnxt_napi *bnapi = txr->bnapi;
5951 			struct bnxt_cp_ring_info *cpr, *cpr2;
5952 			u32 type2 = HWRM_RING_ALLOC_CMPL;
5953 
5954 			cpr = &bnapi->cp_ring;
5955 			cpr2 = cpr->cp_ring_arr[BNXT_TX_HDL];
5956 			ring = &cpr2->cp_ring_struct;
5957 			ring->handle = BNXT_TX_HDL;
5958 			map_idx = bnapi->index;
5959 			rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
5960 			if (rc)
5961 				goto err_out;
5962 			bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
5963 				    ring->fw_ring_id);
5964 			bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
5965 		}
5966 		ring = &txr->tx_ring_struct;
5967 		map_idx = i;
5968 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5969 		if (rc)
5970 			goto err_out;
5971 		bnxt_set_db(bp, &txr->tx_db, type, map_idx, ring->fw_ring_id);
5972 	}
5973 
5974 	type = HWRM_RING_ALLOC_RX;
5975 	for (i = 0; i < bp->rx_nr_rings; i++) {
5976 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5977 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
5978 		struct bnxt_napi *bnapi = rxr->bnapi;
5979 		u32 map_idx = bnapi->index;
5980 
5981 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5982 		if (rc)
5983 			goto err_out;
5984 		bnxt_set_db(bp, &rxr->rx_db, type, map_idx, ring->fw_ring_id);
5985 		/* If we have agg rings, post agg buffers first. */
5986 		if (!agg_rings)
5987 			bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
5988 		bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
5989 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5990 			struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5991 			u32 type2 = HWRM_RING_ALLOC_CMPL;
5992 			struct bnxt_cp_ring_info *cpr2;
5993 
5994 			cpr2 = cpr->cp_ring_arr[BNXT_RX_HDL];
5995 			ring = &cpr2->cp_ring_struct;
5996 			ring->handle = BNXT_RX_HDL;
5997 			rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
5998 			if (rc)
5999 				goto err_out;
6000 			bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
6001 				    ring->fw_ring_id);
6002 			bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
6003 		}
6004 	}
6005 
6006 	if (agg_rings) {
6007 		type = HWRM_RING_ALLOC_AGG;
6008 		for (i = 0; i < bp->rx_nr_rings; i++) {
6009 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
6010 			struct bnxt_ring_struct *ring =
6011 						&rxr->rx_agg_ring_struct;
6012 			u32 grp_idx = ring->grp_idx;
6013 			u32 map_idx = grp_idx + bp->rx_nr_rings;
6014 
6015 			rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
6016 			if (rc)
6017 				goto err_out;
6018 
6019 			bnxt_set_db(bp, &rxr->rx_agg_db, type, map_idx,
6020 				    ring->fw_ring_id);
6021 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
6022 			bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
6023 			bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
6024 		}
6025 	}
6026 err_out:
6027 	return rc;
6028 }
6029 
6030 static int hwrm_ring_free_send_msg(struct bnxt *bp,
6031 				   struct bnxt_ring_struct *ring,
6032 				   u32 ring_type, int cmpl_ring_id)
6033 {
6034 	struct hwrm_ring_free_output *resp;
6035 	struct hwrm_ring_free_input *req;
6036 	u16 error_code = 0;
6037 	int rc;
6038 
6039 	if (BNXT_NO_FW_ACCESS(bp))
6040 		return 0;
6041 
6042 	rc = hwrm_req_init(bp, req, HWRM_RING_FREE);
6043 	if (rc)
6044 		goto exit;
6045 
6046 	req->cmpl_ring = cpu_to_le16(cmpl_ring_id);
6047 	req->ring_type = ring_type;
6048 	req->ring_id = cpu_to_le16(ring->fw_ring_id);
6049 
6050 	resp = hwrm_req_hold(bp, req);
6051 	rc = hwrm_req_send(bp, req);
6052 	error_code = le16_to_cpu(resp->error_code);
6053 	hwrm_req_drop(bp, req);
6054 exit:
6055 	if (rc || error_code) {
6056 		netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n",
6057 			   ring_type, rc, error_code);
6058 		return -EIO;
6059 	}
6060 	return 0;
6061 }
6062 
6063 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
6064 {
6065 	u32 type;
6066 	int i;
6067 
6068 	if (!bp->bnapi)
6069 		return;
6070 
6071 	for (i = 0; i < bp->tx_nr_rings; i++) {
6072 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
6073 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
6074 
6075 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
6076 			u32 cmpl_ring_id = bnxt_cp_ring_for_tx(bp, txr);
6077 
6078 			hwrm_ring_free_send_msg(bp, ring,
6079 						RING_FREE_REQ_RING_TYPE_TX,
6080 						close_path ? cmpl_ring_id :
6081 						INVALID_HW_RING_ID);
6082 			ring->fw_ring_id = INVALID_HW_RING_ID;
6083 		}
6084 	}
6085 
6086 	for (i = 0; i < bp->rx_nr_rings; i++) {
6087 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
6088 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
6089 		u32 grp_idx = rxr->bnapi->index;
6090 
6091 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
6092 			u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
6093 
6094 			hwrm_ring_free_send_msg(bp, ring,
6095 						RING_FREE_REQ_RING_TYPE_RX,
6096 						close_path ? cmpl_ring_id :
6097 						INVALID_HW_RING_ID);
6098 			ring->fw_ring_id = INVALID_HW_RING_ID;
6099 			bp->grp_info[grp_idx].rx_fw_ring_id =
6100 				INVALID_HW_RING_ID;
6101 		}
6102 	}
6103 
6104 	if (bp->flags & BNXT_FLAG_CHIP_P5)
6105 		type = RING_FREE_REQ_RING_TYPE_RX_AGG;
6106 	else
6107 		type = RING_FREE_REQ_RING_TYPE_RX;
6108 	for (i = 0; i < bp->rx_nr_rings; i++) {
6109 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
6110 		struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
6111 		u32 grp_idx = rxr->bnapi->index;
6112 
6113 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
6114 			u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
6115 
6116 			hwrm_ring_free_send_msg(bp, ring, type,
6117 						close_path ? cmpl_ring_id :
6118 						INVALID_HW_RING_ID);
6119 			ring->fw_ring_id = INVALID_HW_RING_ID;
6120 			bp->grp_info[grp_idx].agg_fw_ring_id =
6121 				INVALID_HW_RING_ID;
6122 		}
6123 	}
6124 
6125 	/* The completion rings are about to be freed.  After that the
6126 	 * IRQ doorbell will not work anymore.  So we need to disable
6127 	 * IRQ here.
6128 	 */
6129 	bnxt_disable_int_sync(bp);
6130 
6131 	if (bp->flags & BNXT_FLAG_CHIP_P5)
6132 		type = RING_FREE_REQ_RING_TYPE_NQ;
6133 	else
6134 		type = RING_FREE_REQ_RING_TYPE_L2_CMPL;
6135 	for (i = 0; i < bp->cp_nr_rings; i++) {
6136 		struct bnxt_napi *bnapi = bp->bnapi[i];
6137 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6138 		struct bnxt_ring_struct *ring;
6139 		int j;
6140 
6141 		for (j = 0; j < 2; j++) {
6142 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
6143 
6144 			if (cpr2) {
6145 				ring = &cpr2->cp_ring_struct;
6146 				if (ring->fw_ring_id == INVALID_HW_RING_ID)
6147 					continue;
6148 				hwrm_ring_free_send_msg(bp, ring,
6149 					RING_FREE_REQ_RING_TYPE_L2_CMPL,
6150 					INVALID_HW_RING_ID);
6151 				ring->fw_ring_id = INVALID_HW_RING_ID;
6152 			}
6153 		}
6154 		ring = &cpr->cp_ring_struct;
6155 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
6156 			hwrm_ring_free_send_msg(bp, ring, type,
6157 						INVALID_HW_RING_ID);
6158 			ring->fw_ring_id = INVALID_HW_RING_ID;
6159 			bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
6160 		}
6161 	}
6162 }
6163 
6164 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
6165 			   bool shared);
6166 
6167 static int bnxt_hwrm_get_rings(struct bnxt *bp)
6168 {
6169 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6170 	struct hwrm_func_qcfg_output *resp;
6171 	struct hwrm_func_qcfg_input *req;
6172 	int rc;
6173 
6174 	if (bp->hwrm_spec_code < 0x10601)
6175 		return 0;
6176 
6177 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
6178 	if (rc)
6179 		return rc;
6180 
6181 	req->fid = cpu_to_le16(0xffff);
6182 	resp = hwrm_req_hold(bp, req);
6183 	rc = hwrm_req_send(bp, req);
6184 	if (rc) {
6185 		hwrm_req_drop(bp, req);
6186 		return rc;
6187 	}
6188 
6189 	hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings);
6190 	if (BNXT_NEW_RM(bp)) {
6191 		u16 cp, stats;
6192 
6193 		hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings);
6194 		hw_resc->resv_hw_ring_grps =
6195 			le32_to_cpu(resp->alloc_hw_ring_grps);
6196 		hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics);
6197 		cp = le16_to_cpu(resp->alloc_cmpl_rings);
6198 		stats = le16_to_cpu(resp->alloc_stat_ctx);
6199 		hw_resc->resv_irqs = cp;
6200 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
6201 			int rx = hw_resc->resv_rx_rings;
6202 			int tx = hw_resc->resv_tx_rings;
6203 
6204 			if (bp->flags & BNXT_FLAG_AGG_RINGS)
6205 				rx >>= 1;
6206 			if (cp < (rx + tx)) {
6207 				bnxt_trim_rings(bp, &rx, &tx, cp, false);
6208 				if (bp->flags & BNXT_FLAG_AGG_RINGS)
6209 					rx <<= 1;
6210 				hw_resc->resv_rx_rings = rx;
6211 				hw_resc->resv_tx_rings = tx;
6212 			}
6213 			hw_resc->resv_irqs = le16_to_cpu(resp->alloc_msix);
6214 			hw_resc->resv_hw_ring_grps = rx;
6215 		}
6216 		hw_resc->resv_cp_rings = cp;
6217 		hw_resc->resv_stat_ctxs = stats;
6218 	}
6219 	hwrm_req_drop(bp, req);
6220 	return 0;
6221 }
6222 
6223 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings)
6224 {
6225 	struct hwrm_func_qcfg_output *resp;
6226 	struct hwrm_func_qcfg_input *req;
6227 	int rc;
6228 
6229 	if (bp->hwrm_spec_code < 0x10601)
6230 		return 0;
6231 
6232 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
6233 	if (rc)
6234 		return rc;
6235 
6236 	req->fid = cpu_to_le16(fid);
6237 	resp = hwrm_req_hold(bp, req);
6238 	rc = hwrm_req_send(bp, req);
6239 	if (!rc)
6240 		*tx_rings = le16_to_cpu(resp->alloc_tx_rings);
6241 
6242 	hwrm_req_drop(bp, req);
6243 	return rc;
6244 }
6245 
6246 static bool bnxt_rfs_supported(struct bnxt *bp);
6247 
6248 static struct hwrm_func_cfg_input *
6249 __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6250 			     int ring_grps, int cp_rings, int stats, int vnics)
6251 {
6252 	struct hwrm_func_cfg_input *req;
6253 	u32 enables = 0;
6254 
6255 	if (hwrm_req_init(bp, req, HWRM_FUNC_CFG))
6256 		return NULL;
6257 
6258 	req->fid = cpu_to_le16(0xffff);
6259 	enables |= tx_rings ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
6260 	req->num_tx_rings = cpu_to_le16(tx_rings);
6261 	if (BNXT_NEW_RM(bp)) {
6262 		enables |= rx_rings ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0;
6263 		enables |= stats ? FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
6264 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
6265 			enables |= cp_rings ? FUNC_CFG_REQ_ENABLES_NUM_MSIX : 0;
6266 			enables |= tx_rings + ring_grps ?
6267 				   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6268 			enables |= rx_rings ?
6269 				FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
6270 		} else {
6271 			enables |= cp_rings ?
6272 				   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6273 			enables |= ring_grps ?
6274 				   FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS |
6275 				   FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
6276 		}
6277 		enables |= vnics ? FUNC_CFG_REQ_ENABLES_NUM_VNICS : 0;
6278 
6279 		req->num_rx_rings = cpu_to_le16(rx_rings);
6280 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
6281 			req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps);
6282 			req->num_msix = cpu_to_le16(cp_rings);
6283 			req->num_rsscos_ctxs =
6284 				cpu_to_le16(DIV_ROUND_UP(ring_grps, 64));
6285 		} else {
6286 			req->num_cmpl_rings = cpu_to_le16(cp_rings);
6287 			req->num_hw_ring_grps = cpu_to_le16(ring_grps);
6288 			req->num_rsscos_ctxs = cpu_to_le16(1);
6289 			if (!(bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
6290 			    bnxt_rfs_supported(bp))
6291 				req->num_rsscos_ctxs =
6292 					cpu_to_le16(ring_grps + 1);
6293 		}
6294 		req->num_stat_ctxs = cpu_to_le16(stats);
6295 		req->num_vnics = cpu_to_le16(vnics);
6296 	}
6297 	req->enables = cpu_to_le32(enables);
6298 	return req;
6299 }
6300 
6301 static struct hwrm_func_vf_cfg_input *
6302 __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6303 			     int ring_grps, int cp_rings, int stats, int vnics)
6304 {
6305 	struct hwrm_func_vf_cfg_input *req;
6306 	u32 enables = 0;
6307 
6308 	if (hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG))
6309 		return NULL;
6310 
6311 	enables |= tx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
6312 	enables |= rx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS |
6313 			      FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
6314 	enables |= stats ? FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
6315 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
6316 		enables |= tx_rings + ring_grps ?
6317 			   FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6318 	} else {
6319 		enables |= cp_rings ?
6320 			   FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6321 		enables |= ring_grps ?
6322 			   FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0;
6323 	}
6324 	enables |= vnics ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0;
6325 	enables |= FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS;
6326 
6327 	req->num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX);
6328 	req->num_tx_rings = cpu_to_le16(tx_rings);
6329 	req->num_rx_rings = cpu_to_le16(rx_rings);
6330 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
6331 		req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps);
6332 		req->num_rsscos_ctxs = cpu_to_le16(DIV_ROUND_UP(ring_grps, 64));
6333 	} else {
6334 		req->num_cmpl_rings = cpu_to_le16(cp_rings);
6335 		req->num_hw_ring_grps = cpu_to_le16(ring_grps);
6336 		req->num_rsscos_ctxs = cpu_to_le16(BNXT_VF_MAX_RSS_CTX);
6337 	}
6338 	req->num_stat_ctxs = cpu_to_le16(stats);
6339 	req->num_vnics = cpu_to_le16(vnics);
6340 
6341 	req->enables = cpu_to_le32(enables);
6342 	return req;
6343 }
6344 
6345 static int
6346 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6347 			   int ring_grps, int cp_rings, int stats, int vnics)
6348 {
6349 	struct hwrm_func_cfg_input *req;
6350 	int rc;
6351 
6352 	req = __bnxt_hwrm_reserve_pf_rings(bp, tx_rings, rx_rings, ring_grps,
6353 					   cp_rings, stats, vnics);
6354 	if (!req)
6355 		return -ENOMEM;
6356 
6357 	if (!req->enables) {
6358 		hwrm_req_drop(bp, req);
6359 		return 0;
6360 	}
6361 
6362 	rc = hwrm_req_send(bp, req);
6363 	if (rc)
6364 		return rc;
6365 
6366 	if (bp->hwrm_spec_code < 0x10601)
6367 		bp->hw_resc.resv_tx_rings = tx_rings;
6368 
6369 	return bnxt_hwrm_get_rings(bp);
6370 }
6371 
6372 static int
6373 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6374 			   int ring_grps, int cp_rings, int stats, int vnics)
6375 {
6376 	struct hwrm_func_vf_cfg_input *req;
6377 	int rc;
6378 
6379 	if (!BNXT_NEW_RM(bp)) {
6380 		bp->hw_resc.resv_tx_rings = tx_rings;
6381 		return 0;
6382 	}
6383 
6384 	req = __bnxt_hwrm_reserve_vf_rings(bp, tx_rings, rx_rings, ring_grps,
6385 					   cp_rings, stats, vnics);
6386 	if (!req)
6387 		return -ENOMEM;
6388 
6389 	rc = hwrm_req_send(bp, req);
6390 	if (rc)
6391 		return rc;
6392 
6393 	return bnxt_hwrm_get_rings(bp);
6394 }
6395 
6396 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, int tx, int rx, int grp,
6397 				   int cp, int stat, int vnic)
6398 {
6399 	if (BNXT_PF(bp))
6400 		return bnxt_hwrm_reserve_pf_rings(bp, tx, rx, grp, cp, stat,
6401 						  vnic);
6402 	else
6403 		return bnxt_hwrm_reserve_vf_rings(bp, tx, rx, grp, cp, stat,
6404 						  vnic);
6405 }
6406 
6407 int bnxt_nq_rings_in_use(struct bnxt *bp)
6408 {
6409 	int cp = bp->cp_nr_rings;
6410 	int ulp_msix, ulp_base;
6411 
6412 	ulp_msix = bnxt_get_ulp_msix_num(bp);
6413 	if (ulp_msix) {
6414 		ulp_base = bnxt_get_ulp_msix_base(bp);
6415 		cp += ulp_msix;
6416 		if ((ulp_base + ulp_msix) > cp)
6417 			cp = ulp_base + ulp_msix;
6418 	}
6419 	return cp;
6420 }
6421 
6422 static int bnxt_cp_rings_in_use(struct bnxt *bp)
6423 {
6424 	int cp;
6425 
6426 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
6427 		return bnxt_nq_rings_in_use(bp);
6428 
6429 	cp = bp->tx_nr_rings + bp->rx_nr_rings;
6430 	return cp;
6431 }
6432 
6433 static int bnxt_get_func_stat_ctxs(struct bnxt *bp)
6434 {
6435 	int ulp_stat = bnxt_get_ulp_stat_ctxs(bp);
6436 	int cp = bp->cp_nr_rings;
6437 
6438 	if (!ulp_stat)
6439 		return cp;
6440 
6441 	if (bnxt_nq_rings_in_use(bp) > cp + bnxt_get_ulp_msix_num(bp))
6442 		return bnxt_get_ulp_msix_base(bp) + ulp_stat;
6443 
6444 	return cp + ulp_stat;
6445 }
6446 
6447 /* Check if a default RSS map needs to be setup.  This function is only
6448  * used on older firmware that does not require reserving RX rings.
6449  */
6450 static void bnxt_check_rss_tbl_no_rmgr(struct bnxt *bp)
6451 {
6452 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6453 
6454 	/* The RSS map is valid for RX rings set to resv_rx_rings */
6455 	if (hw_resc->resv_rx_rings != bp->rx_nr_rings) {
6456 		hw_resc->resv_rx_rings = bp->rx_nr_rings;
6457 		if (!netif_is_rxfh_configured(bp->dev))
6458 			bnxt_set_dflt_rss_indir_tbl(bp);
6459 	}
6460 }
6461 
6462 static bool bnxt_need_reserve_rings(struct bnxt *bp)
6463 {
6464 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6465 	int cp = bnxt_cp_rings_in_use(bp);
6466 	int nq = bnxt_nq_rings_in_use(bp);
6467 	int rx = bp->rx_nr_rings, stat;
6468 	int vnic = 1, grp = rx;
6469 
6470 	if (hw_resc->resv_tx_rings != bp->tx_nr_rings &&
6471 	    bp->hwrm_spec_code >= 0x10601)
6472 		return true;
6473 
6474 	/* Old firmware does not need RX ring reservations but we still
6475 	 * need to setup a default RSS map when needed.  With new firmware
6476 	 * we go through RX ring reservations first and then set up the
6477 	 * RSS map for the successfully reserved RX rings when needed.
6478 	 */
6479 	if (!BNXT_NEW_RM(bp)) {
6480 		bnxt_check_rss_tbl_no_rmgr(bp);
6481 		return false;
6482 	}
6483 	if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5))
6484 		vnic = rx + 1;
6485 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
6486 		rx <<= 1;
6487 	stat = bnxt_get_func_stat_ctxs(bp);
6488 	if (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp ||
6489 	    hw_resc->resv_vnics != vnic || hw_resc->resv_stat_ctxs != stat ||
6490 	    (hw_resc->resv_hw_ring_grps != grp &&
6491 	     !(bp->flags & BNXT_FLAG_CHIP_P5)))
6492 		return true;
6493 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && BNXT_PF(bp) &&
6494 	    hw_resc->resv_irqs != nq)
6495 		return true;
6496 	return false;
6497 }
6498 
6499 static int __bnxt_reserve_rings(struct bnxt *bp)
6500 {
6501 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6502 	int cp = bnxt_nq_rings_in_use(bp);
6503 	int tx = bp->tx_nr_rings;
6504 	int rx = bp->rx_nr_rings;
6505 	int grp, rx_rings, rc;
6506 	int vnic = 1, stat;
6507 	bool sh = false;
6508 
6509 	if (!bnxt_need_reserve_rings(bp))
6510 		return 0;
6511 
6512 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
6513 		sh = true;
6514 	if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5))
6515 		vnic = rx + 1;
6516 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
6517 		rx <<= 1;
6518 	grp = bp->rx_nr_rings;
6519 	stat = bnxt_get_func_stat_ctxs(bp);
6520 
6521 	rc = bnxt_hwrm_reserve_rings(bp, tx, rx, grp, cp, stat, vnic);
6522 	if (rc)
6523 		return rc;
6524 
6525 	tx = hw_resc->resv_tx_rings;
6526 	if (BNXT_NEW_RM(bp)) {
6527 		rx = hw_resc->resv_rx_rings;
6528 		cp = hw_resc->resv_irqs;
6529 		grp = hw_resc->resv_hw_ring_grps;
6530 		vnic = hw_resc->resv_vnics;
6531 		stat = hw_resc->resv_stat_ctxs;
6532 	}
6533 
6534 	rx_rings = rx;
6535 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
6536 		if (rx >= 2) {
6537 			rx_rings = rx >> 1;
6538 		} else {
6539 			if (netif_running(bp->dev))
6540 				return -ENOMEM;
6541 
6542 			bp->flags &= ~BNXT_FLAG_AGG_RINGS;
6543 			bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
6544 			bp->dev->hw_features &= ~NETIF_F_LRO;
6545 			bp->dev->features &= ~NETIF_F_LRO;
6546 			bnxt_set_ring_params(bp);
6547 		}
6548 	}
6549 	rx_rings = min_t(int, rx_rings, grp);
6550 	cp = min_t(int, cp, bp->cp_nr_rings);
6551 	if (stat > bnxt_get_ulp_stat_ctxs(bp))
6552 		stat -= bnxt_get_ulp_stat_ctxs(bp);
6553 	cp = min_t(int, cp, stat);
6554 	rc = bnxt_trim_rings(bp, &rx_rings, &tx, cp, sh);
6555 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
6556 		rx = rx_rings << 1;
6557 	cp = sh ? max_t(int, tx, rx_rings) : tx + rx_rings;
6558 	bp->tx_nr_rings = tx;
6559 
6560 	/* If we cannot reserve all the RX rings, reset the RSS map only
6561 	 * if absolutely necessary
6562 	 */
6563 	if (rx_rings != bp->rx_nr_rings) {
6564 		netdev_warn(bp->dev, "Able to reserve only %d out of %d requested RX rings\n",
6565 			    rx_rings, bp->rx_nr_rings);
6566 		if (netif_is_rxfh_configured(bp->dev) &&
6567 		    (bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings) !=
6568 		     bnxt_get_nr_rss_ctxs(bp, rx_rings) ||
6569 		     bnxt_get_max_rss_ring(bp) >= rx_rings)) {
6570 			netdev_warn(bp->dev, "RSS table entries reverting to default\n");
6571 			bp->dev->priv_flags &= ~IFF_RXFH_CONFIGURED;
6572 		}
6573 	}
6574 	bp->rx_nr_rings = rx_rings;
6575 	bp->cp_nr_rings = cp;
6576 
6577 	if (!tx || !rx || !cp || !grp || !vnic || !stat)
6578 		return -ENOMEM;
6579 
6580 	if (!netif_is_rxfh_configured(bp->dev))
6581 		bnxt_set_dflt_rss_indir_tbl(bp);
6582 
6583 	return rc;
6584 }
6585 
6586 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6587 				    int ring_grps, int cp_rings, int stats,
6588 				    int vnics)
6589 {
6590 	struct hwrm_func_vf_cfg_input *req;
6591 	u32 flags;
6592 
6593 	if (!BNXT_NEW_RM(bp))
6594 		return 0;
6595 
6596 	req = __bnxt_hwrm_reserve_vf_rings(bp, tx_rings, rx_rings, ring_grps,
6597 					   cp_rings, stats, vnics);
6598 	flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST |
6599 		FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST |
6600 		FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
6601 		FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
6602 		FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST |
6603 		FUNC_VF_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST;
6604 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
6605 		flags |= FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
6606 
6607 	req->flags = cpu_to_le32(flags);
6608 	return hwrm_req_send_silent(bp, req);
6609 }
6610 
6611 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6612 				    int ring_grps, int cp_rings, int stats,
6613 				    int vnics)
6614 {
6615 	struct hwrm_func_cfg_input *req;
6616 	u32 flags;
6617 
6618 	req = __bnxt_hwrm_reserve_pf_rings(bp, tx_rings, rx_rings, ring_grps,
6619 					   cp_rings, stats, vnics);
6620 	flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST;
6621 	if (BNXT_NEW_RM(bp)) {
6622 		flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST |
6623 			 FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
6624 			 FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
6625 			 FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST;
6626 		if (bp->flags & BNXT_FLAG_CHIP_P5)
6627 			flags |= FUNC_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST |
6628 				 FUNC_CFG_REQ_FLAGS_NQ_ASSETS_TEST;
6629 		else
6630 			flags |= FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
6631 	}
6632 
6633 	req->flags = cpu_to_le32(flags);
6634 	return hwrm_req_send_silent(bp, req);
6635 }
6636 
6637 static int bnxt_hwrm_check_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6638 				 int ring_grps, int cp_rings, int stats,
6639 				 int vnics)
6640 {
6641 	if (bp->hwrm_spec_code < 0x10801)
6642 		return 0;
6643 
6644 	if (BNXT_PF(bp))
6645 		return bnxt_hwrm_check_pf_rings(bp, tx_rings, rx_rings,
6646 						ring_grps, cp_rings, stats,
6647 						vnics);
6648 
6649 	return bnxt_hwrm_check_vf_rings(bp, tx_rings, rx_rings, ring_grps,
6650 					cp_rings, stats, vnics);
6651 }
6652 
6653 static void bnxt_hwrm_coal_params_qcaps(struct bnxt *bp)
6654 {
6655 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6656 	struct hwrm_ring_aggint_qcaps_output *resp;
6657 	struct hwrm_ring_aggint_qcaps_input *req;
6658 	int rc;
6659 
6660 	coal_cap->cmpl_params = BNXT_LEGACY_COAL_CMPL_PARAMS;
6661 	coal_cap->num_cmpl_dma_aggr_max = 63;
6662 	coal_cap->num_cmpl_dma_aggr_during_int_max = 63;
6663 	coal_cap->cmpl_aggr_dma_tmr_max = 65535;
6664 	coal_cap->cmpl_aggr_dma_tmr_during_int_max = 65535;
6665 	coal_cap->int_lat_tmr_min_max = 65535;
6666 	coal_cap->int_lat_tmr_max_max = 65535;
6667 	coal_cap->num_cmpl_aggr_int_max = 65535;
6668 	coal_cap->timer_units = 80;
6669 
6670 	if (bp->hwrm_spec_code < 0x10902)
6671 		return;
6672 
6673 	if (hwrm_req_init(bp, req, HWRM_RING_AGGINT_QCAPS))
6674 		return;
6675 
6676 	resp = hwrm_req_hold(bp, req);
6677 	rc = hwrm_req_send_silent(bp, req);
6678 	if (!rc) {
6679 		coal_cap->cmpl_params = le32_to_cpu(resp->cmpl_params);
6680 		coal_cap->nq_params = le32_to_cpu(resp->nq_params);
6681 		coal_cap->num_cmpl_dma_aggr_max =
6682 			le16_to_cpu(resp->num_cmpl_dma_aggr_max);
6683 		coal_cap->num_cmpl_dma_aggr_during_int_max =
6684 			le16_to_cpu(resp->num_cmpl_dma_aggr_during_int_max);
6685 		coal_cap->cmpl_aggr_dma_tmr_max =
6686 			le16_to_cpu(resp->cmpl_aggr_dma_tmr_max);
6687 		coal_cap->cmpl_aggr_dma_tmr_during_int_max =
6688 			le16_to_cpu(resp->cmpl_aggr_dma_tmr_during_int_max);
6689 		coal_cap->int_lat_tmr_min_max =
6690 			le16_to_cpu(resp->int_lat_tmr_min_max);
6691 		coal_cap->int_lat_tmr_max_max =
6692 			le16_to_cpu(resp->int_lat_tmr_max_max);
6693 		coal_cap->num_cmpl_aggr_int_max =
6694 			le16_to_cpu(resp->num_cmpl_aggr_int_max);
6695 		coal_cap->timer_units = le16_to_cpu(resp->timer_units);
6696 	}
6697 	hwrm_req_drop(bp, req);
6698 }
6699 
6700 static u16 bnxt_usec_to_coal_tmr(struct bnxt *bp, u16 usec)
6701 {
6702 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6703 
6704 	return usec * 1000 / coal_cap->timer_units;
6705 }
6706 
6707 static void bnxt_hwrm_set_coal_params(struct bnxt *bp,
6708 	struct bnxt_coal *hw_coal,
6709 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
6710 {
6711 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6712 	u16 val, tmr, max, flags = hw_coal->flags;
6713 	u32 cmpl_params = coal_cap->cmpl_params;
6714 
6715 	max = hw_coal->bufs_per_record * 128;
6716 	if (hw_coal->budget)
6717 		max = hw_coal->bufs_per_record * hw_coal->budget;
6718 	max = min_t(u16, max, coal_cap->num_cmpl_aggr_int_max);
6719 
6720 	val = clamp_t(u16, hw_coal->coal_bufs, 1, max);
6721 	req->num_cmpl_aggr_int = cpu_to_le16(val);
6722 
6723 	val = min_t(u16, val, coal_cap->num_cmpl_dma_aggr_max);
6724 	req->num_cmpl_dma_aggr = cpu_to_le16(val);
6725 
6726 	val = clamp_t(u16, hw_coal->coal_bufs_irq, 1,
6727 		      coal_cap->num_cmpl_dma_aggr_during_int_max);
6728 	req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val);
6729 
6730 	tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks);
6731 	tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_max_max);
6732 	req->int_lat_tmr_max = cpu_to_le16(tmr);
6733 
6734 	/* min timer set to 1/2 of interrupt timer */
6735 	if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_INT_LAT_TMR_MIN) {
6736 		val = tmr / 2;
6737 		val = clamp_t(u16, val, 1, coal_cap->int_lat_tmr_min_max);
6738 		req->int_lat_tmr_min = cpu_to_le16(val);
6739 		req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
6740 	}
6741 
6742 	/* buf timer set to 1/4 of interrupt timer */
6743 	val = clamp_t(u16, tmr / 4, 1, coal_cap->cmpl_aggr_dma_tmr_max);
6744 	req->cmpl_aggr_dma_tmr = cpu_to_le16(val);
6745 
6746 	if (cmpl_params &
6747 	    RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_NUM_CMPL_DMA_AGGR_DURING_INT) {
6748 		tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks_irq);
6749 		val = clamp_t(u16, tmr, 1,
6750 			      coal_cap->cmpl_aggr_dma_tmr_during_int_max);
6751 		req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(val);
6752 		req->enables |=
6753 			cpu_to_le16(BNXT_COAL_CMPL_AGGR_TMR_DURING_INT_ENABLE);
6754 	}
6755 
6756 	if ((cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_RING_IDLE) &&
6757 	    hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh)
6758 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
6759 	req->flags = cpu_to_le16(flags);
6760 	req->enables |= cpu_to_le16(BNXT_COAL_CMPL_ENABLES);
6761 }
6762 
6763 static int __bnxt_hwrm_set_coal_nq(struct bnxt *bp, struct bnxt_napi *bnapi,
6764 				   struct bnxt_coal *hw_coal)
6765 {
6766 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req;
6767 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6768 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6769 	u32 nq_params = coal_cap->nq_params;
6770 	u16 tmr;
6771 	int rc;
6772 
6773 	if (!(nq_params & RING_AGGINT_QCAPS_RESP_NQ_PARAMS_INT_LAT_TMR_MIN))
6774 		return 0;
6775 
6776 	rc = hwrm_req_init(bp, req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
6777 	if (rc)
6778 		return rc;
6779 
6780 	req->ring_id = cpu_to_le16(cpr->cp_ring_struct.fw_ring_id);
6781 	req->flags =
6782 		cpu_to_le16(RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_IS_NQ);
6783 
6784 	tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks) / 2;
6785 	tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_min_max);
6786 	req->int_lat_tmr_min = cpu_to_le16(tmr);
6787 	req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
6788 	return hwrm_req_send(bp, req);
6789 }
6790 
6791 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi)
6792 {
6793 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx;
6794 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6795 	struct bnxt_coal coal;
6796 	int rc;
6797 
6798 	/* Tick values in micro seconds.
6799 	 * 1 coal_buf x bufs_per_record = 1 completion record.
6800 	 */
6801 	memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal));
6802 
6803 	coal.coal_ticks = cpr->rx_ring_coal.coal_ticks;
6804 	coal.coal_bufs = cpr->rx_ring_coal.coal_bufs;
6805 
6806 	if (!bnapi->rx_ring)
6807 		return -ENODEV;
6808 
6809 	rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
6810 	if (rc)
6811 		return rc;
6812 
6813 	bnxt_hwrm_set_coal_params(bp, &coal, req_rx);
6814 
6815 	req_rx->ring_id = cpu_to_le16(bnxt_cp_ring_for_rx(bp, bnapi->rx_ring));
6816 
6817 	return hwrm_req_send(bp, req_rx);
6818 }
6819 
6820 int bnxt_hwrm_set_coal(struct bnxt *bp)
6821 {
6822 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx, *req_tx,
6823 							   *req;
6824 	int i, rc;
6825 
6826 	rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
6827 	if (rc)
6828 		return rc;
6829 
6830 	rc = hwrm_req_init(bp, req_tx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
6831 	if (rc) {
6832 		hwrm_req_drop(bp, req_rx);
6833 		return rc;
6834 	}
6835 
6836 	bnxt_hwrm_set_coal_params(bp, &bp->rx_coal, req_rx);
6837 	bnxt_hwrm_set_coal_params(bp, &bp->tx_coal, req_tx);
6838 
6839 	hwrm_req_hold(bp, req_rx);
6840 	hwrm_req_hold(bp, req_tx);
6841 	for (i = 0; i < bp->cp_nr_rings; i++) {
6842 		struct bnxt_napi *bnapi = bp->bnapi[i];
6843 		struct bnxt_coal *hw_coal;
6844 		u16 ring_id;
6845 
6846 		req = req_rx;
6847 		if (!bnapi->rx_ring) {
6848 			ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring);
6849 			req = req_tx;
6850 		} else {
6851 			ring_id = bnxt_cp_ring_for_rx(bp, bnapi->rx_ring);
6852 		}
6853 		req->ring_id = cpu_to_le16(ring_id);
6854 
6855 		rc = hwrm_req_send(bp, req);
6856 		if (rc)
6857 			break;
6858 
6859 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
6860 			continue;
6861 
6862 		if (bnapi->rx_ring && bnapi->tx_ring) {
6863 			req = req_tx;
6864 			ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring);
6865 			req->ring_id = cpu_to_le16(ring_id);
6866 			rc = hwrm_req_send(bp, req);
6867 			if (rc)
6868 				break;
6869 		}
6870 		if (bnapi->rx_ring)
6871 			hw_coal = &bp->rx_coal;
6872 		else
6873 			hw_coal = &bp->tx_coal;
6874 		__bnxt_hwrm_set_coal_nq(bp, bnapi, hw_coal);
6875 	}
6876 	hwrm_req_drop(bp, req_rx);
6877 	hwrm_req_drop(bp, req_tx);
6878 	return rc;
6879 }
6880 
6881 static void bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
6882 {
6883 	struct hwrm_stat_ctx_clr_stats_input *req0 = NULL;
6884 	struct hwrm_stat_ctx_free_input *req;
6885 	int i;
6886 
6887 	if (!bp->bnapi)
6888 		return;
6889 
6890 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
6891 		return;
6892 
6893 	if (hwrm_req_init(bp, req, HWRM_STAT_CTX_FREE))
6894 		return;
6895 	if (BNXT_FW_MAJ(bp) <= 20) {
6896 		if (hwrm_req_init(bp, req0, HWRM_STAT_CTX_CLR_STATS)) {
6897 			hwrm_req_drop(bp, req);
6898 			return;
6899 		}
6900 		hwrm_req_hold(bp, req0);
6901 	}
6902 	hwrm_req_hold(bp, req);
6903 	for (i = 0; i < bp->cp_nr_rings; i++) {
6904 		struct bnxt_napi *bnapi = bp->bnapi[i];
6905 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6906 
6907 		if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
6908 			req->stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
6909 			if (req0) {
6910 				req0->stat_ctx_id = req->stat_ctx_id;
6911 				hwrm_req_send(bp, req0);
6912 			}
6913 			hwrm_req_send(bp, req);
6914 
6915 			cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
6916 		}
6917 	}
6918 	hwrm_req_drop(bp, req);
6919 	if (req0)
6920 		hwrm_req_drop(bp, req0);
6921 }
6922 
6923 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
6924 {
6925 	struct hwrm_stat_ctx_alloc_output *resp;
6926 	struct hwrm_stat_ctx_alloc_input *req;
6927 	int rc, i;
6928 
6929 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
6930 		return 0;
6931 
6932 	rc = hwrm_req_init(bp, req, HWRM_STAT_CTX_ALLOC);
6933 	if (rc)
6934 		return rc;
6935 
6936 	req->stats_dma_length = cpu_to_le16(bp->hw_ring_stats_size);
6937 	req->update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000);
6938 
6939 	resp = hwrm_req_hold(bp, req);
6940 	for (i = 0; i < bp->cp_nr_rings; i++) {
6941 		struct bnxt_napi *bnapi = bp->bnapi[i];
6942 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6943 
6944 		req->stats_dma_addr = cpu_to_le64(cpr->stats.hw_stats_map);
6945 
6946 		rc = hwrm_req_send(bp, req);
6947 		if (rc)
6948 			break;
6949 
6950 		cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
6951 
6952 		bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
6953 	}
6954 	hwrm_req_drop(bp, req);
6955 	return rc;
6956 }
6957 
6958 static int bnxt_hwrm_func_qcfg(struct bnxt *bp)
6959 {
6960 	struct hwrm_func_qcfg_output *resp;
6961 	struct hwrm_func_qcfg_input *req;
6962 	u32 min_db_offset = 0;
6963 	u16 flags;
6964 	int rc;
6965 
6966 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
6967 	if (rc)
6968 		return rc;
6969 
6970 	req->fid = cpu_to_le16(0xffff);
6971 	resp = hwrm_req_hold(bp, req);
6972 	rc = hwrm_req_send(bp, req);
6973 	if (rc)
6974 		goto func_qcfg_exit;
6975 
6976 #ifdef CONFIG_BNXT_SRIOV
6977 	if (BNXT_VF(bp)) {
6978 		struct bnxt_vf_info *vf = &bp->vf;
6979 
6980 		vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK;
6981 	} else {
6982 		bp->pf.registered_vfs = le16_to_cpu(resp->registered_vfs);
6983 	}
6984 #endif
6985 	flags = le16_to_cpu(resp->flags);
6986 	if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED |
6987 		     FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) {
6988 		bp->fw_cap |= BNXT_FW_CAP_LLDP_AGENT;
6989 		if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED)
6990 			bp->fw_cap |= BNXT_FW_CAP_DCBX_AGENT;
6991 	}
6992 	if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST)) {
6993 		bp->flags |= BNXT_FLAG_MULTI_HOST;
6994 		if (bp->fw_cap & BNXT_FW_CAP_PTP_RTC)
6995 			bp->fw_cap &= ~BNXT_FW_CAP_PTP_RTC;
6996 	}
6997 	if (flags & FUNC_QCFG_RESP_FLAGS_RING_MONITOR_ENABLED)
6998 		bp->fw_cap |= BNXT_FW_CAP_RING_MONITOR;
6999 
7000 	switch (resp->port_partition_type) {
7001 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0:
7002 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5:
7003 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0:
7004 		bp->port_partition_type = resp->port_partition_type;
7005 		break;
7006 	}
7007 	if (bp->hwrm_spec_code < 0x10707 ||
7008 	    resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB)
7009 		bp->br_mode = BRIDGE_MODE_VEB;
7010 	else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA)
7011 		bp->br_mode = BRIDGE_MODE_VEPA;
7012 	else
7013 		bp->br_mode = BRIDGE_MODE_UNDEF;
7014 
7015 	bp->max_mtu = le16_to_cpu(resp->max_mtu_configured);
7016 	if (!bp->max_mtu)
7017 		bp->max_mtu = BNXT_MAX_MTU;
7018 
7019 	if (bp->db_size)
7020 		goto func_qcfg_exit;
7021 
7022 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
7023 		if (BNXT_PF(bp))
7024 			min_db_offset = DB_PF_OFFSET_P5;
7025 		else
7026 			min_db_offset = DB_VF_OFFSET_P5;
7027 	}
7028 	bp->db_size = PAGE_ALIGN(le16_to_cpu(resp->l2_doorbell_bar_size_kb) *
7029 				 1024);
7030 	if (!bp->db_size || bp->db_size > pci_resource_len(bp->pdev, 2) ||
7031 	    bp->db_size <= min_db_offset)
7032 		bp->db_size = pci_resource_len(bp->pdev, 2);
7033 
7034 func_qcfg_exit:
7035 	hwrm_req_drop(bp, req);
7036 	return rc;
7037 }
7038 
7039 static void bnxt_init_ctx_initializer(struct bnxt_ctx_mem_info *ctx,
7040 			struct hwrm_func_backing_store_qcaps_output *resp)
7041 {
7042 	struct bnxt_mem_init *mem_init;
7043 	u16 init_mask;
7044 	u8 init_val;
7045 	u8 *offset;
7046 	int i;
7047 
7048 	init_val = resp->ctx_kind_initializer;
7049 	init_mask = le16_to_cpu(resp->ctx_init_mask);
7050 	offset = &resp->qp_init_offset;
7051 	mem_init = &ctx->mem_init[BNXT_CTX_MEM_INIT_QP];
7052 	for (i = 0; i < BNXT_CTX_MEM_INIT_MAX; i++, mem_init++, offset++) {
7053 		mem_init->init_val = init_val;
7054 		mem_init->offset = BNXT_MEM_INVALID_OFFSET;
7055 		if (!init_mask)
7056 			continue;
7057 		if (i == BNXT_CTX_MEM_INIT_STAT)
7058 			offset = &resp->stat_init_offset;
7059 		if (init_mask & (1 << i))
7060 			mem_init->offset = *offset * 4;
7061 		else
7062 			mem_init->init_val = 0;
7063 	}
7064 	ctx->mem_init[BNXT_CTX_MEM_INIT_QP].size = ctx->qp_entry_size;
7065 	ctx->mem_init[BNXT_CTX_MEM_INIT_SRQ].size = ctx->srq_entry_size;
7066 	ctx->mem_init[BNXT_CTX_MEM_INIT_CQ].size = ctx->cq_entry_size;
7067 	ctx->mem_init[BNXT_CTX_MEM_INIT_VNIC].size = ctx->vnic_entry_size;
7068 	ctx->mem_init[BNXT_CTX_MEM_INIT_STAT].size = ctx->stat_entry_size;
7069 	ctx->mem_init[BNXT_CTX_MEM_INIT_MRAV].size = ctx->mrav_entry_size;
7070 }
7071 
7072 static int bnxt_hwrm_func_backing_store_qcaps(struct bnxt *bp)
7073 {
7074 	struct hwrm_func_backing_store_qcaps_output *resp;
7075 	struct hwrm_func_backing_store_qcaps_input *req;
7076 	int rc;
7077 
7078 	if (bp->hwrm_spec_code < 0x10902 || BNXT_VF(bp) || bp->ctx)
7079 		return 0;
7080 
7081 	rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_QCAPS);
7082 	if (rc)
7083 		return rc;
7084 
7085 	resp = hwrm_req_hold(bp, req);
7086 	rc = hwrm_req_send_silent(bp, req);
7087 	if (!rc) {
7088 		struct bnxt_ctx_pg_info *ctx_pg;
7089 		struct bnxt_ctx_mem_info *ctx;
7090 		int i, tqm_rings;
7091 
7092 		ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
7093 		if (!ctx) {
7094 			rc = -ENOMEM;
7095 			goto ctx_err;
7096 		}
7097 		ctx->qp_max_entries = le32_to_cpu(resp->qp_max_entries);
7098 		ctx->qp_min_qp1_entries = le16_to_cpu(resp->qp_min_qp1_entries);
7099 		ctx->qp_max_l2_entries = le16_to_cpu(resp->qp_max_l2_entries);
7100 		ctx->qp_entry_size = le16_to_cpu(resp->qp_entry_size);
7101 		ctx->srq_max_l2_entries = le16_to_cpu(resp->srq_max_l2_entries);
7102 		ctx->srq_max_entries = le32_to_cpu(resp->srq_max_entries);
7103 		ctx->srq_entry_size = le16_to_cpu(resp->srq_entry_size);
7104 		ctx->cq_max_l2_entries = le16_to_cpu(resp->cq_max_l2_entries);
7105 		ctx->cq_max_entries = le32_to_cpu(resp->cq_max_entries);
7106 		ctx->cq_entry_size = le16_to_cpu(resp->cq_entry_size);
7107 		ctx->vnic_max_vnic_entries =
7108 			le16_to_cpu(resp->vnic_max_vnic_entries);
7109 		ctx->vnic_max_ring_table_entries =
7110 			le16_to_cpu(resp->vnic_max_ring_table_entries);
7111 		ctx->vnic_entry_size = le16_to_cpu(resp->vnic_entry_size);
7112 		ctx->stat_max_entries = le32_to_cpu(resp->stat_max_entries);
7113 		ctx->stat_entry_size = le16_to_cpu(resp->stat_entry_size);
7114 		ctx->tqm_entry_size = le16_to_cpu(resp->tqm_entry_size);
7115 		ctx->tqm_min_entries_per_ring =
7116 			le32_to_cpu(resp->tqm_min_entries_per_ring);
7117 		ctx->tqm_max_entries_per_ring =
7118 			le32_to_cpu(resp->tqm_max_entries_per_ring);
7119 		ctx->tqm_entries_multiple = resp->tqm_entries_multiple;
7120 		if (!ctx->tqm_entries_multiple)
7121 			ctx->tqm_entries_multiple = 1;
7122 		ctx->mrav_max_entries = le32_to_cpu(resp->mrav_max_entries);
7123 		ctx->mrav_entry_size = le16_to_cpu(resp->mrav_entry_size);
7124 		ctx->mrav_num_entries_units =
7125 			le16_to_cpu(resp->mrav_num_entries_units);
7126 		ctx->tim_entry_size = le16_to_cpu(resp->tim_entry_size);
7127 		ctx->tim_max_entries = le32_to_cpu(resp->tim_max_entries);
7128 
7129 		bnxt_init_ctx_initializer(ctx, resp);
7130 
7131 		ctx->tqm_fp_rings_count = resp->tqm_fp_rings_count;
7132 		if (!ctx->tqm_fp_rings_count)
7133 			ctx->tqm_fp_rings_count = bp->max_q;
7134 		else if (ctx->tqm_fp_rings_count > BNXT_MAX_TQM_FP_RINGS)
7135 			ctx->tqm_fp_rings_count = BNXT_MAX_TQM_FP_RINGS;
7136 
7137 		tqm_rings = ctx->tqm_fp_rings_count + BNXT_MAX_TQM_SP_RINGS;
7138 		ctx_pg = kcalloc(tqm_rings, sizeof(*ctx_pg), GFP_KERNEL);
7139 		if (!ctx_pg) {
7140 			kfree(ctx);
7141 			rc = -ENOMEM;
7142 			goto ctx_err;
7143 		}
7144 		for (i = 0; i < tqm_rings; i++, ctx_pg++)
7145 			ctx->tqm_mem[i] = ctx_pg;
7146 		bp->ctx = ctx;
7147 	} else {
7148 		rc = 0;
7149 	}
7150 ctx_err:
7151 	hwrm_req_drop(bp, req);
7152 	return rc;
7153 }
7154 
7155 static void bnxt_hwrm_set_pg_attr(struct bnxt_ring_mem_info *rmem, u8 *pg_attr,
7156 				  __le64 *pg_dir)
7157 {
7158 	if (!rmem->nr_pages)
7159 		return;
7160 
7161 	BNXT_SET_CTX_PAGE_ATTR(*pg_attr);
7162 	if (rmem->depth >= 1) {
7163 		if (rmem->depth == 2)
7164 			*pg_attr |= 2;
7165 		else
7166 			*pg_attr |= 1;
7167 		*pg_dir = cpu_to_le64(rmem->pg_tbl_map);
7168 	} else {
7169 		*pg_dir = cpu_to_le64(rmem->dma_arr[0]);
7170 	}
7171 }
7172 
7173 #define FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES			\
7174 	(FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP |		\
7175 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ |		\
7176 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ |		\
7177 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC |		\
7178 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT)
7179 
7180 static int bnxt_hwrm_func_backing_store_cfg(struct bnxt *bp, u32 enables)
7181 {
7182 	struct hwrm_func_backing_store_cfg_input *req;
7183 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
7184 	struct bnxt_ctx_pg_info *ctx_pg;
7185 	void **__req = (void **)&req;
7186 	u32 req_len = sizeof(*req);
7187 	__le32 *num_entries;
7188 	__le64 *pg_dir;
7189 	u32 flags = 0;
7190 	u8 *pg_attr;
7191 	u32 ena;
7192 	int rc;
7193 	int i;
7194 
7195 	if (!ctx)
7196 		return 0;
7197 
7198 	if (req_len > bp->hwrm_max_ext_req_len)
7199 		req_len = BNXT_BACKING_STORE_CFG_LEGACY_LEN;
7200 	rc = __hwrm_req_init(bp, __req, HWRM_FUNC_BACKING_STORE_CFG, req_len);
7201 	if (rc)
7202 		return rc;
7203 
7204 	req->enables = cpu_to_le32(enables);
7205 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP) {
7206 		ctx_pg = &ctx->qp_mem;
7207 		req->qp_num_entries = cpu_to_le32(ctx_pg->entries);
7208 		req->qp_num_qp1_entries = cpu_to_le16(ctx->qp_min_qp1_entries);
7209 		req->qp_num_l2_entries = cpu_to_le16(ctx->qp_max_l2_entries);
7210 		req->qp_entry_size = cpu_to_le16(ctx->qp_entry_size);
7211 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7212 				      &req->qpc_pg_size_qpc_lvl,
7213 				      &req->qpc_page_dir);
7214 	}
7215 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ) {
7216 		ctx_pg = &ctx->srq_mem;
7217 		req->srq_num_entries = cpu_to_le32(ctx_pg->entries);
7218 		req->srq_num_l2_entries = cpu_to_le16(ctx->srq_max_l2_entries);
7219 		req->srq_entry_size = cpu_to_le16(ctx->srq_entry_size);
7220 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7221 				      &req->srq_pg_size_srq_lvl,
7222 				      &req->srq_page_dir);
7223 	}
7224 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ) {
7225 		ctx_pg = &ctx->cq_mem;
7226 		req->cq_num_entries = cpu_to_le32(ctx_pg->entries);
7227 		req->cq_num_l2_entries = cpu_to_le16(ctx->cq_max_l2_entries);
7228 		req->cq_entry_size = cpu_to_le16(ctx->cq_entry_size);
7229 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7230 				      &req->cq_pg_size_cq_lvl,
7231 				      &req->cq_page_dir);
7232 	}
7233 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC) {
7234 		ctx_pg = &ctx->vnic_mem;
7235 		req->vnic_num_vnic_entries =
7236 			cpu_to_le16(ctx->vnic_max_vnic_entries);
7237 		req->vnic_num_ring_table_entries =
7238 			cpu_to_le16(ctx->vnic_max_ring_table_entries);
7239 		req->vnic_entry_size = cpu_to_le16(ctx->vnic_entry_size);
7240 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7241 				      &req->vnic_pg_size_vnic_lvl,
7242 				      &req->vnic_page_dir);
7243 	}
7244 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) {
7245 		ctx_pg = &ctx->stat_mem;
7246 		req->stat_num_entries = cpu_to_le32(ctx->stat_max_entries);
7247 		req->stat_entry_size = cpu_to_le16(ctx->stat_entry_size);
7248 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7249 				      &req->stat_pg_size_stat_lvl,
7250 				      &req->stat_page_dir);
7251 	}
7252 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV) {
7253 		ctx_pg = &ctx->mrav_mem;
7254 		req->mrav_num_entries = cpu_to_le32(ctx_pg->entries);
7255 		if (ctx->mrav_num_entries_units)
7256 			flags |=
7257 			FUNC_BACKING_STORE_CFG_REQ_FLAGS_MRAV_RESERVATION_SPLIT;
7258 		req->mrav_entry_size = cpu_to_le16(ctx->mrav_entry_size);
7259 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7260 				      &req->mrav_pg_size_mrav_lvl,
7261 				      &req->mrav_page_dir);
7262 	}
7263 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) {
7264 		ctx_pg = &ctx->tim_mem;
7265 		req->tim_num_entries = cpu_to_le32(ctx_pg->entries);
7266 		req->tim_entry_size = cpu_to_le16(ctx->tim_entry_size);
7267 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7268 				      &req->tim_pg_size_tim_lvl,
7269 				      &req->tim_page_dir);
7270 	}
7271 	for (i = 0, num_entries = &req->tqm_sp_num_entries,
7272 	     pg_attr = &req->tqm_sp_pg_size_tqm_sp_lvl,
7273 	     pg_dir = &req->tqm_sp_page_dir,
7274 	     ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP;
7275 	     i < BNXT_MAX_TQM_RINGS;
7276 	     i++, num_entries++, pg_attr++, pg_dir++, ena <<= 1) {
7277 		if (!(enables & ena))
7278 			continue;
7279 
7280 		req->tqm_entry_size = cpu_to_le16(ctx->tqm_entry_size);
7281 		ctx_pg = ctx->tqm_mem[i];
7282 		*num_entries = cpu_to_le32(ctx_pg->entries);
7283 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, pg_attr, pg_dir);
7284 	}
7285 	req->flags = cpu_to_le32(flags);
7286 	return hwrm_req_send(bp, req);
7287 }
7288 
7289 static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp,
7290 				  struct bnxt_ctx_pg_info *ctx_pg)
7291 {
7292 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
7293 
7294 	rmem->page_size = BNXT_PAGE_SIZE;
7295 	rmem->pg_arr = ctx_pg->ctx_pg_arr;
7296 	rmem->dma_arr = ctx_pg->ctx_dma_arr;
7297 	rmem->flags = BNXT_RMEM_VALID_PTE_FLAG;
7298 	if (rmem->depth >= 1)
7299 		rmem->flags |= BNXT_RMEM_USE_FULL_PAGE_FLAG;
7300 	return bnxt_alloc_ring(bp, rmem);
7301 }
7302 
7303 static int bnxt_alloc_ctx_pg_tbls(struct bnxt *bp,
7304 				  struct bnxt_ctx_pg_info *ctx_pg, u32 mem_size,
7305 				  u8 depth, struct bnxt_mem_init *mem_init)
7306 {
7307 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
7308 	int rc;
7309 
7310 	if (!mem_size)
7311 		return -EINVAL;
7312 
7313 	ctx_pg->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
7314 	if (ctx_pg->nr_pages > MAX_CTX_TOTAL_PAGES) {
7315 		ctx_pg->nr_pages = 0;
7316 		return -EINVAL;
7317 	}
7318 	if (ctx_pg->nr_pages > MAX_CTX_PAGES || depth > 1) {
7319 		int nr_tbls, i;
7320 
7321 		rmem->depth = 2;
7322 		ctx_pg->ctx_pg_tbl = kcalloc(MAX_CTX_PAGES, sizeof(ctx_pg),
7323 					     GFP_KERNEL);
7324 		if (!ctx_pg->ctx_pg_tbl)
7325 			return -ENOMEM;
7326 		nr_tbls = DIV_ROUND_UP(ctx_pg->nr_pages, MAX_CTX_PAGES);
7327 		rmem->nr_pages = nr_tbls;
7328 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
7329 		if (rc)
7330 			return rc;
7331 		for (i = 0; i < nr_tbls; i++) {
7332 			struct bnxt_ctx_pg_info *pg_tbl;
7333 
7334 			pg_tbl = kzalloc(sizeof(*pg_tbl), GFP_KERNEL);
7335 			if (!pg_tbl)
7336 				return -ENOMEM;
7337 			ctx_pg->ctx_pg_tbl[i] = pg_tbl;
7338 			rmem = &pg_tbl->ring_mem;
7339 			rmem->pg_tbl = ctx_pg->ctx_pg_arr[i];
7340 			rmem->pg_tbl_map = ctx_pg->ctx_dma_arr[i];
7341 			rmem->depth = 1;
7342 			rmem->nr_pages = MAX_CTX_PAGES;
7343 			rmem->mem_init = mem_init;
7344 			if (i == (nr_tbls - 1)) {
7345 				int rem = ctx_pg->nr_pages % MAX_CTX_PAGES;
7346 
7347 				if (rem)
7348 					rmem->nr_pages = rem;
7349 			}
7350 			rc = bnxt_alloc_ctx_mem_blk(bp, pg_tbl);
7351 			if (rc)
7352 				break;
7353 		}
7354 	} else {
7355 		rmem->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
7356 		if (rmem->nr_pages > 1 || depth)
7357 			rmem->depth = 1;
7358 		rmem->mem_init = mem_init;
7359 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
7360 	}
7361 	return rc;
7362 }
7363 
7364 static void bnxt_free_ctx_pg_tbls(struct bnxt *bp,
7365 				  struct bnxt_ctx_pg_info *ctx_pg)
7366 {
7367 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
7368 
7369 	if (rmem->depth > 1 || ctx_pg->nr_pages > MAX_CTX_PAGES ||
7370 	    ctx_pg->ctx_pg_tbl) {
7371 		int i, nr_tbls = rmem->nr_pages;
7372 
7373 		for (i = 0; i < nr_tbls; i++) {
7374 			struct bnxt_ctx_pg_info *pg_tbl;
7375 			struct bnxt_ring_mem_info *rmem2;
7376 
7377 			pg_tbl = ctx_pg->ctx_pg_tbl[i];
7378 			if (!pg_tbl)
7379 				continue;
7380 			rmem2 = &pg_tbl->ring_mem;
7381 			bnxt_free_ring(bp, rmem2);
7382 			ctx_pg->ctx_pg_arr[i] = NULL;
7383 			kfree(pg_tbl);
7384 			ctx_pg->ctx_pg_tbl[i] = NULL;
7385 		}
7386 		kfree(ctx_pg->ctx_pg_tbl);
7387 		ctx_pg->ctx_pg_tbl = NULL;
7388 	}
7389 	bnxt_free_ring(bp, rmem);
7390 	ctx_pg->nr_pages = 0;
7391 }
7392 
7393 void bnxt_free_ctx_mem(struct bnxt *bp)
7394 {
7395 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
7396 	int i;
7397 
7398 	if (!ctx)
7399 		return;
7400 
7401 	if (ctx->tqm_mem[0]) {
7402 		for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++)
7403 			bnxt_free_ctx_pg_tbls(bp, ctx->tqm_mem[i]);
7404 		kfree(ctx->tqm_mem[0]);
7405 		ctx->tqm_mem[0] = NULL;
7406 	}
7407 
7408 	bnxt_free_ctx_pg_tbls(bp, &ctx->tim_mem);
7409 	bnxt_free_ctx_pg_tbls(bp, &ctx->mrav_mem);
7410 	bnxt_free_ctx_pg_tbls(bp, &ctx->stat_mem);
7411 	bnxt_free_ctx_pg_tbls(bp, &ctx->vnic_mem);
7412 	bnxt_free_ctx_pg_tbls(bp, &ctx->cq_mem);
7413 	bnxt_free_ctx_pg_tbls(bp, &ctx->srq_mem);
7414 	bnxt_free_ctx_pg_tbls(bp, &ctx->qp_mem);
7415 	ctx->flags &= ~BNXT_CTX_FLAG_INITED;
7416 }
7417 
7418 static int bnxt_alloc_ctx_mem(struct bnxt *bp)
7419 {
7420 	struct bnxt_ctx_pg_info *ctx_pg;
7421 	struct bnxt_ctx_mem_info *ctx;
7422 	struct bnxt_mem_init *init;
7423 	u32 mem_size, ena, entries;
7424 	u32 entries_sp, min;
7425 	u32 num_mr, num_ah;
7426 	u32 extra_srqs = 0;
7427 	u32 extra_qps = 0;
7428 	u8 pg_lvl = 1;
7429 	int i, rc;
7430 
7431 	rc = bnxt_hwrm_func_backing_store_qcaps(bp);
7432 	if (rc) {
7433 		netdev_err(bp->dev, "Failed querying context mem capability, rc = %d.\n",
7434 			   rc);
7435 		return rc;
7436 	}
7437 	ctx = bp->ctx;
7438 	if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED))
7439 		return 0;
7440 
7441 	if ((bp->flags & BNXT_FLAG_ROCE_CAP) && !is_kdump_kernel()) {
7442 		pg_lvl = 2;
7443 		extra_qps = 65536;
7444 		extra_srqs = 8192;
7445 	}
7446 
7447 	ctx_pg = &ctx->qp_mem;
7448 	ctx_pg->entries = ctx->qp_min_qp1_entries + ctx->qp_max_l2_entries +
7449 			  extra_qps;
7450 	if (ctx->qp_entry_size) {
7451 		mem_size = ctx->qp_entry_size * ctx_pg->entries;
7452 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_QP];
7453 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init);
7454 		if (rc)
7455 			return rc;
7456 	}
7457 
7458 	ctx_pg = &ctx->srq_mem;
7459 	ctx_pg->entries = ctx->srq_max_l2_entries + extra_srqs;
7460 	if (ctx->srq_entry_size) {
7461 		mem_size = ctx->srq_entry_size * ctx_pg->entries;
7462 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_SRQ];
7463 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init);
7464 		if (rc)
7465 			return rc;
7466 	}
7467 
7468 	ctx_pg = &ctx->cq_mem;
7469 	ctx_pg->entries = ctx->cq_max_l2_entries + extra_qps * 2;
7470 	if (ctx->cq_entry_size) {
7471 		mem_size = ctx->cq_entry_size * ctx_pg->entries;
7472 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_CQ];
7473 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init);
7474 		if (rc)
7475 			return rc;
7476 	}
7477 
7478 	ctx_pg = &ctx->vnic_mem;
7479 	ctx_pg->entries = ctx->vnic_max_vnic_entries +
7480 			  ctx->vnic_max_ring_table_entries;
7481 	if (ctx->vnic_entry_size) {
7482 		mem_size = ctx->vnic_entry_size * ctx_pg->entries;
7483 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_VNIC];
7484 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, init);
7485 		if (rc)
7486 			return rc;
7487 	}
7488 
7489 	ctx_pg = &ctx->stat_mem;
7490 	ctx_pg->entries = ctx->stat_max_entries;
7491 	if (ctx->stat_entry_size) {
7492 		mem_size = ctx->stat_entry_size * ctx_pg->entries;
7493 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_STAT];
7494 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, init);
7495 		if (rc)
7496 			return rc;
7497 	}
7498 
7499 	ena = 0;
7500 	if (!(bp->flags & BNXT_FLAG_ROCE_CAP))
7501 		goto skip_rdma;
7502 
7503 	ctx_pg = &ctx->mrav_mem;
7504 	/* 128K extra is needed to accommodate static AH context
7505 	 * allocation by f/w.
7506 	 */
7507 	num_mr = 1024 * 256;
7508 	num_ah = 1024 * 128;
7509 	ctx_pg->entries = num_mr + num_ah;
7510 	if (ctx->mrav_entry_size) {
7511 		mem_size = ctx->mrav_entry_size * ctx_pg->entries;
7512 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_MRAV];
7513 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 2, init);
7514 		if (rc)
7515 			return rc;
7516 	}
7517 	ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV;
7518 	if (ctx->mrav_num_entries_units)
7519 		ctx_pg->entries =
7520 			((num_mr / ctx->mrav_num_entries_units) << 16) |
7521 			 (num_ah / ctx->mrav_num_entries_units);
7522 
7523 	ctx_pg = &ctx->tim_mem;
7524 	ctx_pg->entries = ctx->qp_mem.entries;
7525 	if (ctx->tim_entry_size) {
7526 		mem_size = ctx->tim_entry_size * ctx_pg->entries;
7527 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, NULL);
7528 		if (rc)
7529 			return rc;
7530 	}
7531 	ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM;
7532 
7533 skip_rdma:
7534 	min = ctx->tqm_min_entries_per_ring;
7535 	entries_sp = ctx->vnic_max_vnic_entries + ctx->qp_max_l2_entries +
7536 		     2 * (extra_qps + ctx->qp_min_qp1_entries) + min;
7537 	entries_sp = roundup(entries_sp, ctx->tqm_entries_multiple);
7538 	entries = ctx->qp_max_l2_entries + 2 * (extra_qps + ctx->qp_min_qp1_entries);
7539 	entries = roundup(entries, ctx->tqm_entries_multiple);
7540 	entries = clamp_t(u32, entries, min, ctx->tqm_max_entries_per_ring);
7541 	for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++) {
7542 		ctx_pg = ctx->tqm_mem[i];
7543 		ctx_pg->entries = i ? entries : entries_sp;
7544 		if (ctx->tqm_entry_size) {
7545 			mem_size = ctx->tqm_entry_size * ctx_pg->entries;
7546 			rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1,
7547 						    NULL);
7548 			if (rc)
7549 				return rc;
7550 		}
7551 		ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP << i;
7552 	}
7553 	ena |= FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES;
7554 	rc = bnxt_hwrm_func_backing_store_cfg(bp, ena);
7555 	if (rc) {
7556 		netdev_err(bp->dev, "Failed configuring context mem, rc = %d.\n",
7557 			   rc);
7558 		return rc;
7559 	}
7560 	ctx->flags |= BNXT_CTX_FLAG_INITED;
7561 	return 0;
7562 }
7563 
7564 int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all)
7565 {
7566 	struct hwrm_func_resource_qcaps_output *resp;
7567 	struct hwrm_func_resource_qcaps_input *req;
7568 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7569 	int rc;
7570 
7571 	rc = hwrm_req_init(bp, req, HWRM_FUNC_RESOURCE_QCAPS);
7572 	if (rc)
7573 		return rc;
7574 
7575 	req->fid = cpu_to_le16(0xffff);
7576 	resp = hwrm_req_hold(bp, req);
7577 	rc = hwrm_req_send_silent(bp, req);
7578 	if (rc)
7579 		goto hwrm_func_resc_qcaps_exit;
7580 
7581 	hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs);
7582 	if (!all)
7583 		goto hwrm_func_resc_qcaps_exit;
7584 
7585 	hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx);
7586 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
7587 	hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings);
7588 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
7589 	hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings);
7590 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
7591 	hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings);
7592 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
7593 	hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps);
7594 	hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps);
7595 	hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs);
7596 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
7597 	hw_resc->min_vnics = le16_to_cpu(resp->min_vnics);
7598 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
7599 	hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx);
7600 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
7601 
7602 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
7603 		u16 max_msix = le16_to_cpu(resp->max_msix);
7604 
7605 		hw_resc->max_nqs = max_msix;
7606 		hw_resc->max_hw_ring_grps = hw_resc->max_rx_rings;
7607 	}
7608 
7609 	if (BNXT_PF(bp)) {
7610 		struct bnxt_pf_info *pf = &bp->pf;
7611 
7612 		pf->vf_resv_strategy =
7613 			le16_to_cpu(resp->vf_reservation_strategy);
7614 		if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC)
7615 			pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL;
7616 	}
7617 hwrm_func_resc_qcaps_exit:
7618 	hwrm_req_drop(bp, req);
7619 	return rc;
7620 }
7621 
7622 static int __bnxt_hwrm_ptp_qcfg(struct bnxt *bp)
7623 {
7624 	struct hwrm_port_mac_ptp_qcfg_output *resp;
7625 	struct hwrm_port_mac_ptp_qcfg_input *req;
7626 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
7627 	bool phc_cfg;
7628 	u8 flags;
7629 	int rc;
7630 
7631 	if (bp->hwrm_spec_code < 0x10801) {
7632 		rc = -ENODEV;
7633 		goto no_ptp;
7634 	}
7635 
7636 	rc = hwrm_req_init(bp, req, HWRM_PORT_MAC_PTP_QCFG);
7637 	if (rc)
7638 		goto no_ptp;
7639 
7640 	req->port_id = cpu_to_le16(bp->pf.port_id);
7641 	resp = hwrm_req_hold(bp, req);
7642 	rc = hwrm_req_send(bp, req);
7643 	if (rc)
7644 		goto exit;
7645 
7646 	flags = resp->flags;
7647 	if (!(flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_HWRM_ACCESS)) {
7648 		rc = -ENODEV;
7649 		goto exit;
7650 	}
7651 	if (!ptp) {
7652 		ptp = kzalloc(sizeof(*ptp), GFP_KERNEL);
7653 		if (!ptp) {
7654 			rc = -ENOMEM;
7655 			goto exit;
7656 		}
7657 		ptp->bp = bp;
7658 		bp->ptp_cfg = ptp;
7659 	}
7660 	if (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_PARTIAL_DIRECT_ACCESS_REF_CLOCK) {
7661 		ptp->refclk_regs[0] = le32_to_cpu(resp->ts_ref_clock_reg_lower);
7662 		ptp->refclk_regs[1] = le32_to_cpu(resp->ts_ref_clock_reg_upper);
7663 	} else if (bp->flags & BNXT_FLAG_CHIP_P5) {
7664 		ptp->refclk_regs[0] = BNXT_TS_REG_TIMESYNC_TS0_LOWER;
7665 		ptp->refclk_regs[1] = BNXT_TS_REG_TIMESYNC_TS0_UPPER;
7666 	} else {
7667 		rc = -ENODEV;
7668 		goto exit;
7669 	}
7670 	phc_cfg = (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_RTC_CONFIGURED) != 0;
7671 	rc = bnxt_ptp_init(bp, phc_cfg);
7672 	if (rc)
7673 		netdev_warn(bp->dev, "PTP initialization failed.\n");
7674 exit:
7675 	hwrm_req_drop(bp, req);
7676 	if (!rc)
7677 		return 0;
7678 
7679 no_ptp:
7680 	bnxt_ptp_clear(bp);
7681 	kfree(ptp);
7682 	bp->ptp_cfg = NULL;
7683 	return rc;
7684 }
7685 
7686 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp)
7687 {
7688 	struct hwrm_func_qcaps_output *resp;
7689 	struct hwrm_func_qcaps_input *req;
7690 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7691 	u32 flags, flags_ext, flags_ext2;
7692 	int rc;
7693 
7694 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCAPS);
7695 	if (rc)
7696 		return rc;
7697 
7698 	req->fid = cpu_to_le16(0xffff);
7699 	resp = hwrm_req_hold(bp, req);
7700 	rc = hwrm_req_send(bp, req);
7701 	if (rc)
7702 		goto hwrm_func_qcaps_exit;
7703 
7704 	flags = le32_to_cpu(resp->flags);
7705 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED)
7706 		bp->flags |= BNXT_FLAG_ROCEV1_CAP;
7707 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED)
7708 		bp->flags |= BNXT_FLAG_ROCEV2_CAP;
7709 	if (flags & FUNC_QCAPS_RESP_FLAGS_PCIE_STATS_SUPPORTED)
7710 		bp->fw_cap |= BNXT_FW_CAP_PCIE_STATS_SUPPORTED;
7711 	if (flags & FUNC_QCAPS_RESP_FLAGS_HOT_RESET_CAPABLE)
7712 		bp->fw_cap |= BNXT_FW_CAP_HOT_RESET;
7713 	if (flags & FUNC_QCAPS_RESP_FLAGS_EXT_STATS_SUPPORTED)
7714 		bp->fw_cap |= BNXT_FW_CAP_EXT_STATS_SUPPORTED;
7715 	if (flags &  FUNC_QCAPS_RESP_FLAGS_ERROR_RECOVERY_CAPABLE)
7716 		bp->fw_cap |= BNXT_FW_CAP_ERROR_RECOVERY;
7717 	if (flags & FUNC_QCAPS_RESP_FLAGS_ERR_RECOVER_RELOAD)
7718 		bp->fw_cap |= BNXT_FW_CAP_ERR_RECOVER_RELOAD;
7719 	if (!(flags & FUNC_QCAPS_RESP_FLAGS_VLAN_ACCELERATION_TX_DISABLED))
7720 		bp->fw_cap |= BNXT_FW_CAP_VLAN_TX_INSERT;
7721 	if (flags & FUNC_QCAPS_RESP_FLAGS_DBG_QCAPS_CMD_SUPPORTED)
7722 		bp->fw_cap |= BNXT_FW_CAP_DBG_QCAPS;
7723 
7724 	flags_ext = le32_to_cpu(resp->flags_ext);
7725 	if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_EXT_HW_STATS_SUPPORTED)
7726 		bp->fw_cap |= BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED;
7727 	if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_PPS_SUPPORTED))
7728 		bp->fw_cap |= BNXT_FW_CAP_PTP_PPS;
7729 	if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_64BIT_RTC_SUPPORTED)
7730 		bp->fw_cap |= BNXT_FW_CAP_PTP_RTC;
7731 	if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_HOT_RESET_IF_SUPPORT))
7732 		bp->fw_cap |= BNXT_FW_CAP_HOT_RESET_IF;
7733 	if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_FW_LIVEPATCH_SUPPORTED))
7734 		bp->fw_cap |= BNXT_FW_CAP_LIVEPATCH;
7735 
7736 	flags_ext2 = le32_to_cpu(resp->flags_ext2);
7737 	if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_RX_ALL_PKTS_TIMESTAMPS_SUPPORTED)
7738 		bp->fw_cap |= BNXT_FW_CAP_RX_ALL_PKT_TS;
7739 
7740 	bp->tx_push_thresh = 0;
7741 	if ((flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED) &&
7742 	    BNXT_FW_MAJ(bp) > 217)
7743 		bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
7744 
7745 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
7746 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
7747 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
7748 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
7749 	hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
7750 	if (!hw_resc->max_hw_ring_grps)
7751 		hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings;
7752 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
7753 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
7754 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
7755 
7756 	if (BNXT_PF(bp)) {
7757 		struct bnxt_pf_info *pf = &bp->pf;
7758 
7759 		pf->fw_fid = le16_to_cpu(resp->fid);
7760 		pf->port_id = le16_to_cpu(resp->port_id);
7761 		memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN);
7762 		pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
7763 		pf->max_vfs = le16_to_cpu(resp->max_vfs);
7764 		pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
7765 		pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
7766 		pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
7767 		pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
7768 		pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
7769 		pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
7770 		bp->flags &= ~BNXT_FLAG_WOL_CAP;
7771 		if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED)
7772 			bp->flags |= BNXT_FLAG_WOL_CAP;
7773 		if (flags & FUNC_QCAPS_RESP_FLAGS_PTP_SUPPORTED) {
7774 			__bnxt_hwrm_ptp_qcfg(bp);
7775 		} else {
7776 			bnxt_ptp_clear(bp);
7777 			kfree(bp->ptp_cfg);
7778 			bp->ptp_cfg = NULL;
7779 		}
7780 	} else {
7781 #ifdef CONFIG_BNXT_SRIOV
7782 		struct bnxt_vf_info *vf = &bp->vf;
7783 
7784 		vf->fw_fid = le16_to_cpu(resp->fid);
7785 		memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN);
7786 #endif
7787 	}
7788 
7789 hwrm_func_qcaps_exit:
7790 	hwrm_req_drop(bp, req);
7791 	return rc;
7792 }
7793 
7794 static void bnxt_hwrm_dbg_qcaps(struct bnxt *bp)
7795 {
7796 	struct hwrm_dbg_qcaps_output *resp;
7797 	struct hwrm_dbg_qcaps_input *req;
7798 	int rc;
7799 
7800 	bp->fw_dbg_cap = 0;
7801 	if (!(bp->fw_cap & BNXT_FW_CAP_DBG_QCAPS))
7802 		return;
7803 
7804 	rc = hwrm_req_init(bp, req, HWRM_DBG_QCAPS);
7805 	if (rc)
7806 		return;
7807 
7808 	req->fid = cpu_to_le16(0xffff);
7809 	resp = hwrm_req_hold(bp, req);
7810 	rc = hwrm_req_send(bp, req);
7811 	if (rc)
7812 		goto hwrm_dbg_qcaps_exit;
7813 
7814 	bp->fw_dbg_cap = le32_to_cpu(resp->flags);
7815 
7816 hwrm_dbg_qcaps_exit:
7817 	hwrm_req_drop(bp, req);
7818 }
7819 
7820 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp);
7821 
7822 int bnxt_hwrm_func_qcaps(struct bnxt *bp)
7823 {
7824 	int rc;
7825 
7826 	rc = __bnxt_hwrm_func_qcaps(bp);
7827 	if (rc)
7828 		return rc;
7829 
7830 	bnxt_hwrm_dbg_qcaps(bp);
7831 
7832 	rc = bnxt_hwrm_queue_qportcfg(bp);
7833 	if (rc) {
7834 		netdev_err(bp->dev, "hwrm query qportcfg failure rc: %d\n", rc);
7835 		return rc;
7836 	}
7837 	if (bp->hwrm_spec_code >= 0x10803) {
7838 		rc = bnxt_alloc_ctx_mem(bp);
7839 		if (rc)
7840 			return rc;
7841 		rc = bnxt_hwrm_func_resc_qcaps(bp, true);
7842 		if (!rc)
7843 			bp->fw_cap |= BNXT_FW_CAP_NEW_RM;
7844 	}
7845 	return 0;
7846 }
7847 
7848 static int bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(struct bnxt *bp)
7849 {
7850 	struct hwrm_cfa_adv_flow_mgnt_qcaps_output *resp;
7851 	struct hwrm_cfa_adv_flow_mgnt_qcaps_input *req;
7852 	u32 flags;
7853 	int rc;
7854 
7855 	if (!(bp->fw_cap & BNXT_FW_CAP_CFA_ADV_FLOW))
7856 		return 0;
7857 
7858 	rc = hwrm_req_init(bp, req, HWRM_CFA_ADV_FLOW_MGNT_QCAPS);
7859 	if (rc)
7860 		return rc;
7861 
7862 	resp = hwrm_req_hold(bp, req);
7863 	rc = hwrm_req_send(bp, req);
7864 	if (rc)
7865 		goto hwrm_cfa_adv_qcaps_exit;
7866 
7867 	flags = le32_to_cpu(resp->flags);
7868 	if (flags &
7869 	    CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V2_SUPPORTED)
7870 		bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2;
7871 
7872 hwrm_cfa_adv_qcaps_exit:
7873 	hwrm_req_drop(bp, req);
7874 	return rc;
7875 }
7876 
7877 static int __bnxt_alloc_fw_health(struct bnxt *bp)
7878 {
7879 	if (bp->fw_health)
7880 		return 0;
7881 
7882 	bp->fw_health = kzalloc(sizeof(*bp->fw_health), GFP_KERNEL);
7883 	if (!bp->fw_health)
7884 		return -ENOMEM;
7885 
7886 	mutex_init(&bp->fw_health->lock);
7887 	return 0;
7888 }
7889 
7890 static int bnxt_alloc_fw_health(struct bnxt *bp)
7891 {
7892 	int rc;
7893 
7894 	if (!(bp->fw_cap & BNXT_FW_CAP_HOT_RESET) &&
7895 	    !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
7896 		return 0;
7897 
7898 	rc = __bnxt_alloc_fw_health(bp);
7899 	if (rc) {
7900 		bp->fw_cap &= ~BNXT_FW_CAP_HOT_RESET;
7901 		bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
7902 		return rc;
7903 	}
7904 
7905 	return 0;
7906 }
7907 
7908 static void __bnxt_map_fw_health_reg(struct bnxt *bp, u32 reg)
7909 {
7910 	writel(reg & BNXT_GRC_BASE_MASK, bp->bar0 +
7911 					 BNXT_GRCPF_REG_WINDOW_BASE_OUT +
7912 					 BNXT_FW_HEALTH_WIN_MAP_OFF);
7913 }
7914 
7915 static void bnxt_inv_fw_health_reg(struct bnxt *bp)
7916 {
7917 	struct bnxt_fw_health *fw_health = bp->fw_health;
7918 	u32 reg_type;
7919 
7920 	if (!fw_health)
7921 		return;
7922 
7923 	reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_HEALTH_REG]);
7924 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC)
7925 		fw_health->status_reliable = false;
7926 
7927 	reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_RESET_CNT_REG]);
7928 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC)
7929 		fw_health->resets_reliable = false;
7930 }
7931 
7932 static void bnxt_try_map_fw_health_reg(struct bnxt *bp)
7933 {
7934 	void __iomem *hs;
7935 	u32 status_loc;
7936 	u32 reg_type;
7937 	u32 sig;
7938 
7939 	if (bp->fw_health)
7940 		bp->fw_health->status_reliable = false;
7941 
7942 	__bnxt_map_fw_health_reg(bp, HCOMM_STATUS_STRUCT_LOC);
7943 	hs = bp->bar0 + BNXT_FW_HEALTH_WIN_OFF(HCOMM_STATUS_STRUCT_LOC);
7944 
7945 	sig = readl(hs + offsetof(struct hcomm_status, sig_ver));
7946 	if ((sig & HCOMM_STATUS_SIGNATURE_MASK) != HCOMM_STATUS_SIGNATURE_VAL) {
7947 		if (!bp->chip_num) {
7948 			__bnxt_map_fw_health_reg(bp, BNXT_GRC_REG_BASE);
7949 			bp->chip_num = readl(bp->bar0 +
7950 					     BNXT_FW_HEALTH_WIN_BASE +
7951 					     BNXT_GRC_REG_CHIP_NUM);
7952 		}
7953 		if (!BNXT_CHIP_P5(bp))
7954 			return;
7955 
7956 		status_loc = BNXT_GRC_REG_STATUS_P5 |
7957 			     BNXT_FW_HEALTH_REG_TYPE_BAR0;
7958 	} else {
7959 		status_loc = readl(hs + offsetof(struct hcomm_status,
7960 						 fw_status_loc));
7961 	}
7962 
7963 	if (__bnxt_alloc_fw_health(bp)) {
7964 		netdev_warn(bp->dev, "no memory for firmware status checks\n");
7965 		return;
7966 	}
7967 
7968 	bp->fw_health->regs[BNXT_FW_HEALTH_REG] = status_loc;
7969 	reg_type = BNXT_FW_HEALTH_REG_TYPE(status_loc);
7970 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) {
7971 		__bnxt_map_fw_health_reg(bp, status_loc);
7972 		bp->fw_health->mapped_regs[BNXT_FW_HEALTH_REG] =
7973 			BNXT_FW_HEALTH_WIN_OFF(status_loc);
7974 	}
7975 
7976 	bp->fw_health->status_reliable = true;
7977 }
7978 
7979 static int bnxt_map_fw_health_regs(struct bnxt *bp)
7980 {
7981 	struct bnxt_fw_health *fw_health = bp->fw_health;
7982 	u32 reg_base = 0xffffffff;
7983 	int i;
7984 
7985 	bp->fw_health->status_reliable = false;
7986 	bp->fw_health->resets_reliable = false;
7987 	/* Only pre-map the monitoring GRC registers using window 3 */
7988 	for (i = 0; i < 4; i++) {
7989 		u32 reg = fw_health->regs[i];
7990 
7991 		if (BNXT_FW_HEALTH_REG_TYPE(reg) != BNXT_FW_HEALTH_REG_TYPE_GRC)
7992 			continue;
7993 		if (reg_base == 0xffffffff)
7994 			reg_base = reg & BNXT_GRC_BASE_MASK;
7995 		if ((reg & BNXT_GRC_BASE_MASK) != reg_base)
7996 			return -ERANGE;
7997 		fw_health->mapped_regs[i] = BNXT_FW_HEALTH_WIN_OFF(reg);
7998 	}
7999 	bp->fw_health->status_reliable = true;
8000 	bp->fw_health->resets_reliable = true;
8001 	if (reg_base == 0xffffffff)
8002 		return 0;
8003 
8004 	__bnxt_map_fw_health_reg(bp, reg_base);
8005 	return 0;
8006 }
8007 
8008 static void bnxt_remap_fw_health_regs(struct bnxt *bp)
8009 {
8010 	if (!bp->fw_health)
8011 		return;
8012 
8013 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) {
8014 		bp->fw_health->status_reliable = true;
8015 		bp->fw_health->resets_reliable = true;
8016 	} else {
8017 		bnxt_try_map_fw_health_reg(bp);
8018 	}
8019 }
8020 
8021 static int bnxt_hwrm_error_recovery_qcfg(struct bnxt *bp)
8022 {
8023 	struct bnxt_fw_health *fw_health = bp->fw_health;
8024 	struct hwrm_error_recovery_qcfg_output *resp;
8025 	struct hwrm_error_recovery_qcfg_input *req;
8026 	int rc, i;
8027 
8028 	if (!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
8029 		return 0;
8030 
8031 	rc = hwrm_req_init(bp, req, HWRM_ERROR_RECOVERY_QCFG);
8032 	if (rc)
8033 		return rc;
8034 
8035 	resp = hwrm_req_hold(bp, req);
8036 	rc = hwrm_req_send(bp, req);
8037 	if (rc)
8038 		goto err_recovery_out;
8039 	fw_health->flags = le32_to_cpu(resp->flags);
8040 	if ((fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) &&
8041 	    !(bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL)) {
8042 		rc = -EINVAL;
8043 		goto err_recovery_out;
8044 	}
8045 	fw_health->polling_dsecs = le32_to_cpu(resp->driver_polling_freq);
8046 	fw_health->master_func_wait_dsecs =
8047 		le32_to_cpu(resp->master_func_wait_period);
8048 	fw_health->normal_func_wait_dsecs =
8049 		le32_to_cpu(resp->normal_func_wait_period);
8050 	fw_health->post_reset_wait_dsecs =
8051 		le32_to_cpu(resp->master_func_wait_period_after_reset);
8052 	fw_health->post_reset_max_wait_dsecs =
8053 		le32_to_cpu(resp->max_bailout_time_after_reset);
8054 	fw_health->regs[BNXT_FW_HEALTH_REG] =
8055 		le32_to_cpu(resp->fw_health_status_reg);
8056 	fw_health->regs[BNXT_FW_HEARTBEAT_REG] =
8057 		le32_to_cpu(resp->fw_heartbeat_reg);
8058 	fw_health->regs[BNXT_FW_RESET_CNT_REG] =
8059 		le32_to_cpu(resp->fw_reset_cnt_reg);
8060 	fw_health->regs[BNXT_FW_RESET_INPROG_REG] =
8061 		le32_to_cpu(resp->reset_inprogress_reg);
8062 	fw_health->fw_reset_inprog_reg_mask =
8063 		le32_to_cpu(resp->reset_inprogress_reg_mask);
8064 	fw_health->fw_reset_seq_cnt = resp->reg_array_cnt;
8065 	if (fw_health->fw_reset_seq_cnt >= 16) {
8066 		rc = -EINVAL;
8067 		goto err_recovery_out;
8068 	}
8069 	for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) {
8070 		fw_health->fw_reset_seq_regs[i] =
8071 			le32_to_cpu(resp->reset_reg[i]);
8072 		fw_health->fw_reset_seq_vals[i] =
8073 			le32_to_cpu(resp->reset_reg_val[i]);
8074 		fw_health->fw_reset_seq_delay_msec[i] =
8075 			resp->delay_after_reset[i];
8076 	}
8077 err_recovery_out:
8078 	hwrm_req_drop(bp, req);
8079 	if (!rc)
8080 		rc = bnxt_map_fw_health_regs(bp);
8081 	if (rc)
8082 		bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
8083 	return rc;
8084 }
8085 
8086 static int bnxt_hwrm_func_reset(struct bnxt *bp)
8087 {
8088 	struct hwrm_func_reset_input *req;
8089 	int rc;
8090 
8091 	rc = hwrm_req_init(bp, req, HWRM_FUNC_RESET);
8092 	if (rc)
8093 		return rc;
8094 
8095 	req->enables = 0;
8096 	hwrm_req_timeout(bp, req, HWRM_RESET_TIMEOUT);
8097 	return hwrm_req_send(bp, req);
8098 }
8099 
8100 static void bnxt_nvm_cfg_ver_get(struct bnxt *bp)
8101 {
8102 	struct hwrm_nvm_get_dev_info_output nvm_info;
8103 
8104 	if (!bnxt_hwrm_nvm_get_dev_info(bp, &nvm_info))
8105 		snprintf(bp->nvm_cfg_ver, FW_VER_STR_LEN, "%d.%d.%d",
8106 			 nvm_info.nvm_cfg_ver_maj, nvm_info.nvm_cfg_ver_min,
8107 			 nvm_info.nvm_cfg_ver_upd);
8108 }
8109 
8110 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
8111 {
8112 	struct hwrm_queue_qportcfg_output *resp;
8113 	struct hwrm_queue_qportcfg_input *req;
8114 	u8 i, j, *qptr;
8115 	bool no_rdma;
8116 	int rc = 0;
8117 
8118 	rc = hwrm_req_init(bp, req, HWRM_QUEUE_QPORTCFG);
8119 	if (rc)
8120 		return rc;
8121 
8122 	resp = hwrm_req_hold(bp, req);
8123 	rc = hwrm_req_send(bp, req);
8124 	if (rc)
8125 		goto qportcfg_exit;
8126 
8127 	if (!resp->max_configurable_queues) {
8128 		rc = -EINVAL;
8129 		goto qportcfg_exit;
8130 	}
8131 	bp->max_tc = resp->max_configurable_queues;
8132 	bp->max_lltc = resp->max_configurable_lossless_queues;
8133 	if (bp->max_tc > BNXT_MAX_QUEUE)
8134 		bp->max_tc = BNXT_MAX_QUEUE;
8135 
8136 	no_rdma = !(bp->flags & BNXT_FLAG_ROCE_CAP);
8137 	qptr = &resp->queue_id0;
8138 	for (i = 0, j = 0; i < bp->max_tc; i++) {
8139 		bp->q_info[j].queue_id = *qptr;
8140 		bp->q_ids[i] = *qptr++;
8141 		bp->q_info[j].queue_profile = *qptr++;
8142 		bp->tc_to_qidx[j] = j;
8143 		if (!BNXT_CNPQ(bp->q_info[j].queue_profile) ||
8144 		    (no_rdma && BNXT_PF(bp)))
8145 			j++;
8146 	}
8147 	bp->max_q = bp->max_tc;
8148 	bp->max_tc = max_t(u8, j, 1);
8149 
8150 	if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG)
8151 		bp->max_tc = 1;
8152 
8153 	if (bp->max_lltc > bp->max_tc)
8154 		bp->max_lltc = bp->max_tc;
8155 
8156 qportcfg_exit:
8157 	hwrm_req_drop(bp, req);
8158 	return rc;
8159 }
8160 
8161 static int bnxt_hwrm_poll(struct bnxt *bp)
8162 {
8163 	struct hwrm_ver_get_input *req;
8164 	int rc;
8165 
8166 	rc = hwrm_req_init(bp, req, HWRM_VER_GET);
8167 	if (rc)
8168 		return rc;
8169 
8170 	req->hwrm_intf_maj = HWRM_VERSION_MAJOR;
8171 	req->hwrm_intf_min = HWRM_VERSION_MINOR;
8172 	req->hwrm_intf_upd = HWRM_VERSION_UPDATE;
8173 
8174 	hwrm_req_flags(bp, req, BNXT_HWRM_CTX_SILENT | BNXT_HWRM_FULL_WAIT);
8175 	rc = hwrm_req_send(bp, req);
8176 	return rc;
8177 }
8178 
8179 static int bnxt_hwrm_ver_get(struct bnxt *bp)
8180 {
8181 	struct hwrm_ver_get_output *resp;
8182 	struct hwrm_ver_get_input *req;
8183 	u16 fw_maj, fw_min, fw_bld, fw_rsv;
8184 	u32 dev_caps_cfg, hwrm_ver;
8185 	int rc, len;
8186 
8187 	rc = hwrm_req_init(bp, req, HWRM_VER_GET);
8188 	if (rc)
8189 		return rc;
8190 
8191 	hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT);
8192 	bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN;
8193 	req->hwrm_intf_maj = HWRM_VERSION_MAJOR;
8194 	req->hwrm_intf_min = HWRM_VERSION_MINOR;
8195 	req->hwrm_intf_upd = HWRM_VERSION_UPDATE;
8196 
8197 	resp = hwrm_req_hold(bp, req);
8198 	rc = hwrm_req_send(bp, req);
8199 	if (rc)
8200 		goto hwrm_ver_get_exit;
8201 
8202 	memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
8203 
8204 	bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 |
8205 			     resp->hwrm_intf_min_8b << 8 |
8206 			     resp->hwrm_intf_upd_8b;
8207 	if (resp->hwrm_intf_maj_8b < 1) {
8208 		netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
8209 			    resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
8210 			    resp->hwrm_intf_upd_8b);
8211 		netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
8212 	}
8213 
8214 	hwrm_ver = HWRM_VERSION_MAJOR << 16 | HWRM_VERSION_MINOR << 8 |
8215 			HWRM_VERSION_UPDATE;
8216 
8217 	if (bp->hwrm_spec_code > hwrm_ver)
8218 		snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d",
8219 			 HWRM_VERSION_MAJOR, HWRM_VERSION_MINOR,
8220 			 HWRM_VERSION_UPDATE);
8221 	else
8222 		snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d",
8223 			 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
8224 			 resp->hwrm_intf_upd_8b);
8225 
8226 	fw_maj = le16_to_cpu(resp->hwrm_fw_major);
8227 	if (bp->hwrm_spec_code > 0x10803 && fw_maj) {
8228 		fw_min = le16_to_cpu(resp->hwrm_fw_minor);
8229 		fw_bld = le16_to_cpu(resp->hwrm_fw_build);
8230 		fw_rsv = le16_to_cpu(resp->hwrm_fw_patch);
8231 		len = FW_VER_STR_LEN;
8232 	} else {
8233 		fw_maj = resp->hwrm_fw_maj_8b;
8234 		fw_min = resp->hwrm_fw_min_8b;
8235 		fw_bld = resp->hwrm_fw_bld_8b;
8236 		fw_rsv = resp->hwrm_fw_rsvd_8b;
8237 		len = BC_HWRM_STR_LEN;
8238 	}
8239 	bp->fw_ver_code = BNXT_FW_VER_CODE(fw_maj, fw_min, fw_bld, fw_rsv);
8240 	snprintf(bp->fw_ver_str, len, "%d.%d.%d.%d", fw_maj, fw_min, fw_bld,
8241 		 fw_rsv);
8242 
8243 	if (strlen(resp->active_pkg_name)) {
8244 		int fw_ver_len = strlen(bp->fw_ver_str);
8245 
8246 		snprintf(bp->fw_ver_str + fw_ver_len,
8247 			 FW_VER_STR_LEN - fw_ver_len - 1, "/pkg %s",
8248 			 resp->active_pkg_name);
8249 		bp->fw_cap |= BNXT_FW_CAP_PKG_VER;
8250 	}
8251 
8252 	bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout);
8253 	if (!bp->hwrm_cmd_timeout)
8254 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
8255 	bp->hwrm_cmd_max_timeout = le16_to_cpu(resp->max_req_timeout) * 1000;
8256 	if (!bp->hwrm_cmd_max_timeout)
8257 		bp->hwrm_cmd_max_timeout = HWRM_CMD_MAX_TIMEOUT;
8258 	else if (bp->hwrm_cmd_max_timeout > HWRM_CMD_MAX_TIMEOUT)
8259 		netdev_warn(bp->dev, "Device requests max timeout of %d seconds, may trigger hung task watchdog\n",
8260 			    bp->hwrm_cmd_max_timeout / 1000);
8261 
8262 	if (resp->hwrm_intf_maj_8b >= 1) {
8263 		bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len);
8264 		bp->hwrm_max_ext_req_len = le16_to_cpu(resp->max_ext_req_len);
8265 	}
8266 	if (bp->hwrm_max_ext_req_len < HWRM_MAX_REQ_LEN)
8267 		bp->hwrm_max_ext_req_len = HWRM_MAX_REQ_LEN;
8268 
8269 	bp->chip_num = le16_to_cpu(resp->chip_num);
8270 	bp->chip_rev = resp->chip_rev;
8271 	if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev &&
8272 	    !resp->chip_metal)
8273 		bp->flags |= BNXT_FLAG_CHIP_NITRO_A0;
8274 
8275 	dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg);
8276 	if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) &&
8277 	    (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED))
8278 		bp->fw_cap |= BNXT_FW_CAP_SHORT_CMD;
8279 
8280 	if (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_KONG_MB_CHNL_SUPPORTED)
8281 		bp->fw_cap |= BNXT_FW_CAP_KONG_MB_CHNL;
8282 
8283 	if (dev_caps_cfg &
8284 	    VER_GET_RESP_DEV_CAPS_CFG_FLOW_HANDLE_64BIT_SUPPORTED)
8285 		bp->fw_cap |= BNXT_FW_CAP_OVS_64BIT_HANDLE;
8286 
8287 	if (dev_caps_cfg &
8288 	    VER_GET_RESP_DEV_CAPS_CFG_TRUSTED_VF_SUPPORTED)
8289 		bp->fw_cap |= BNXT_FW_CAP_TRUSTED_VF;
8290 
8291 	if (dev_caps_cfg &
8292 	    VER_GET_RESP_DEV_CAPS_CFG_CFA_ADV_FLOW_MGNT_SUPPORTED)
8293 		bp->fw_cap |= BNXT_FW_CAP_CFA_ADV_FLOW;
8294 
8295 hwrm_ver_get_exit:
8296 	hwrm_req_drop(bp, req);
8297 	return rc;
8298 }
8299 
8300 int bnxt_hwrm_fw_set_time(struct bnxt *bp)
8301 {
8302 	struct hwrm_fw_set_time_input *req;
8303 	struct tm tm;
8304 	time64_t now = ktime_get_real_seconds();
8305 	int rc;
8306 
8307 	if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) ||
8308 	    bp->hwrm_spec_code < 0x10400)
8309 		return -EOPNOTSUPP;
8310 
8311 	time64_to_tm(now, 0, &tm);
8312 	rc = hwrm_req_init(bp, req, HWRM_FW_SET_TIME);
8313 	if (rc)
8314 		return rc;
8315 
8316 	req->year = cpu_to_le16(1900 + tm.tm_year);
8317 	req->month = 1 + tm.tm_mon;
8318 	req->day = tm.tm_mday;
8319 	req->hour = tm.tm_hour;
8320 	req->minute = tm.tm_min;
8321 	req->second = tm.tm_sec;
8322 	return hwrm_req_send(bp, req);
8323 }
8324 
8325 static void bnxt_add_one_ctr(u64 hw, u64 *sw, u64 mask)
8326 {
8327 	u64 sw_tmp;
8328 
8329 	hw &= mask;
8330 	sw_tmp = (*sw & ~mask) | hw;
8331 	if (hw < (*sw & mask))
8332 		sw_tmp += mask + 1;
8333 	WRITE_ONCE(*sw, sw_tmp);
8334 }
8335 
8336 static void __bnxt_accumulate_stats(__le64 *hw_stats, u64 *sw_stats, u64 *masks,
8337 				    int count, bool ignore_zero)
8338 {
8339 	int i;
8340 
8341 	for (i = 0; i < count; i++) {
8342 		u64 hw = le64_to_cpu(READ_ONCE(hw_stats[i]));
8343 
8344 		if (ignore_zero && !hw)
8345 			continue;
8346 
8347 		if (masks[i] == -1ULL)
8348 			sw_stats[i] = hw;
8349 		else
8350 			bnxt_add_one_ctr(hw, &sw_stats[i], masks[i]);
8351 	}
8352 }
8353 
8354 static void bnxt_accumulate_stats(struct bnxt_stats_mem *stats)
8355 {
8356 	if (!stats->hw_stats)
8357 		return;
8358 
8359 	__bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats,
8360 				stats->hw_masks, stats->len / 8, false);
8361 }
8362 
8363 static void bnxt_accumulate_all_stats(struct bnxt *bp)
8364 {
8365 	struct bnxt_stats_mem *ring0_stats;
8366 	bool ignore_zero = false;
8367 	int i;
8368 
8369 	/* Chip bug.  Counter intermittently becomes 0. */
8370 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8371 		ignore_zero = true;
8372 
8373 	for (i = 0; i < bp->cp_nr_rings; i++) {
8374 		struct bnxt_napi *bnapi = bp->bnapi[i];
8375 		struct bnxt_cp_ring_info *cpr;
8376 		struct bnxt_stats_mem *stats;
8377 
8378 		cpr = &bnapi->cp_ring;
8379 		stats = &cpr->stats;
8380 		if (!i)
8381 			ring0_stats = stats;
8382 		__bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats,
8383 					ring0_stats->hw_masks,
8384 					ring0_stats->len / 8, ignore_zero);
8385 	}
8386 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
8387 		struct bnxt_stats_mem *stats = &bp->port_stats;
8388 		__le64 *hw_stats = stats->hw_stats;
8389 		u64 *sw_stats = stats->sw_stats;
8390 		u64 *masks = stats->hw_masks;
8391 		int cnt;
8392 
8393 		cnt = sizeof(struct rx_port_stats) / 8;
8394 		__bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false);
8395 
8396 		hw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
8397 		sw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
8398 		masks += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
8399 		cnt = sizeof(struct tx_port_stats) / 8;
8400 		__bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false);
8401 	}
8402 	if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) {
8403 		bnxt_accumulate_stats(&bp->rx_port_stats_ext);
8404 		bnxt_accumulate_stats(&bp->tx_port_stats_ext);
8405 	}
8406 }
8407 
8408 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags)
8409 {
8410 	struct hwrm_port_qstats_input *req;
8411 	struct bnxt_pf_info *pf = &bp->pf;
8412 	int rc;
8413 
8414 	if (!(bp->flags & BNXT_FLAG_PORT_STATS))
8415 		return 0;
8416 
8417 	if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))
8418 		return -EOPNOTSUPP;
8419 
8420 	rc = hwrm_req_init(bp, req, HWRM_PORT_QSTATS);
8421 	if (rc)
8422 		return rc;
8423 
8424 	req->flags = flags;
8425 	req->port_id = cpu_to_le16(pf->port_id);
8426 	req->tx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map +
8427 					    BNXT_TX_PORT_STATS_BYTE_OFFSET);
8428 	req->rx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map);
8429 	return hwrm_req_send(bp, req);
8430 }
8431 
8432 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags)
8433 {
8434 	struct hwrm_queue_pri2cos_qcfg_output *resp_qc;
8435 	struct hwrm_queue_pri2cos_qcfg_input *req_qc;
8436 	struct hwrm_port_qstats_ext_output *resp_qs;
8437 	struct hwrm_port_qstats_ext_input *req_qs;
8438 	struct bnxt_pf_info *pf = &bp->pf;
8439 	u32 tx_stat_size;
8440 	int rc;
8441 
8442 	if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT))
8443 		return 0;
8444 
8445 	if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))
8446 		return -EOPNOTSUPP;
8447 
8448 	rc = hwrm_req_init(bp, req_qs, HWRM_PORT_QSTATS_EXT);
8449 	if (rc)
8450 		return rc;
8451 
8452 	req_qs->flags = flags;
8453 	req_qs->port_id = cpu_to_le16(pf->port_id);
8454 	req_qs->rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext));
8455 	req_qs->rx_stat_host_addr = cpu_to_le64(bp->rx_port_stats_ext.hw_stats_map);
8456 	tx_stat_size = bp->tx_port_stats_ext.hw_stats ?
8457 		       sizeof(struct tx_port_stats_ext) : 0;
8458 	req_qs->tx_stat_size = cpu_to_le16(tx_stat_size);
8459 	req_qs->tx_stat_host_addr = cpu_to_le64(bp->tx_port_stats_ext.hw_stats_map);
8460 	resp_qs = hwrm_req_hold(bp, req_qs);
8461 	rc = hwrm_req_send(bp, req_qs);
8462 	if (!rc) {
8463 		bp->fw_rx_stats_ext_size =
8464 			le16_to_cpu(resp_qs->rx_stat_size) / 8;
8465 		if (BNXT_FW_MAJ(bp) < 220 &&
8466 		    bp->fw_rx_stats_ext_size > BNXT_RX_STATS_EXT_NUM_LEGACY)
8467 			bp->fw_rx_stats_ext_size = BNXT_RX_STATS_EXT_NUM_LEGACY;
8468 
8469 		bp->fw_tx_stats_ext_size = tx_stat_size ?
8470 			le16_to_cpu(resp_qs->tx_stat_size) / 8 : 0;
8471 	} else {
8472 		bp->fw_rx_stats_ext_size = 0;
8473 		bp->fw_tx_stats_ext_size = 0;
8474 	}
8475 	hwrm_req_drop(bp, req_qs);
8476 
8477 	if (flags)
8478 		return rc;
8479 
8480 	if (bp->fw_tx_stats_ext_size <=
8481 	    offsetof(struct tx_port_stats_ext, pfc_pri0_tx_duration_us) / 8) {
8482 		bp->pri2cos_valid = 0;
8483 		return rc;
8484 	}
8485 
8486 	rc = hwrm_req_init(bp, req_qc, HWRM_QUEUE_PRI2COS_QCFG);
8487 	if (rc)
8488 		return rc;
8489 
8490 	req_qc->flags = cpu_to_le32(QUEUE_PRI2COS_QCFG_REQ_FLAGS_IVLAN);
8491 
8492 	resp_qc = hwrm_req_hold(bp, req_qc);
8493 	rc = hwrm_req_send(bp, req_qc);
8494 	if (!rc) {
8495 		u8 *pri2cos;
8496 		int i, j;
8497 
8498 		pri2cos = &resp_qc->pri0_cos_queue_id;
8499 		for (i = 0; i < 8; i++) {
8500 			u8 queue_id = pri2cos[i];
8501 			u8 queue_idx;
8502 
8503 			/* Per port queue IDs start from 0, 10, 20, etc */
8504 			queue_idx = queue_id % 10;
8505 			if (queue_idx > BNXT_MAX_QUEUE) {
8506 				bp->pri2cos_valid = false;
8507 				hwrm_req_drop(bp, req_qc);
8508 				return rc;
8509 			}
8510 			for (j = 0; j < bp->max_q; j++) {
8511 				if (bp->q_ids[j] == queue_id)
8512 					bp->pri2cos_idx[i] = queue_idx;
8513 			}
8514 		}
8515 		bp->pri2cos_valid = true;
8516 	}
8517 	hwrm_req_drop(bp, req_qc);
8518 
8519 	return rc;
8520 }
8521 
8522 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
8523 {
8524 	bnxt_hwrm_tunnel_dst_port_free(bp,
8525 		TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
8526 	bnxt_hwrm_tunnel_dst_port_free(bp,
8527 		TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
8528 }
8529 
8530 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
8531 {
8532 	int rc, i;
8533 	u32 tpa_flags = 0;
8534 
8535 	if (set_tpa)
8536 		tpa_flags = bp->flags & BNXT_FLAG_TPA;
8537 	else if (BNXT_NO_FW_ACCESS(bp))
8538 		return 0;
8539 	for (i = 0; i < bp->nr_vnics; i++) {
8540 		rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
8541 		if (rc) {
8542 			netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
8543 				   i, rc);
8544 			return rc;
8545 		}
8546 	}
8547 	return 0;
8548 }
8549 
8550 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
8551 {
8552 	int i;
8553 
8554 	for (i = 0; i < bp->nr_vnics; i++)
8555 		bnxt_hwrm_vnic_set_rss(bp, i, false);
8556 }
8557 
8558 static void bnxt_clear_vnic(struct bnxt *bp)
8559 {
8560 	if (!bp->vnic_info)
8561 		return;
8562 
8563 	bnxt_hwrm_clear_vnic_filter(bp);
8564 	if (!(bp->flags & BNXT_FLAG_CHIP_P5)) {
8565 		/* clear all RSS setting before free vnic ctx */
8566 		bnxt_hwrm_clear_vnic_rss(bp);
8567 		bnxt_hwrm_vnic_ctx_free(bp);
8568 	}
8569 	/* before free the vnic, undo the vnic tpa settings */
8570 	if (bp->flags & BNXT_FLAG_TPA)
8571 		bnxt_set_tpa(bp, false);
8572 	bnxt_hwrm_vnic_free(bp);
8573 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8574 		bnxt_hwrm_vnic_ctx_free(bp);
8575 }
8576 
8577 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
8578 				    bool irq_re_init)
8579 {
8580 	bnxt_clear_vnic(bp);
8581 	bnxt_hwrm_ring_free(bp, close_path);
8582 	bnxt_hwrm_ring_grp_free(bp);
8583 	if (irq_re_init) {
8584 		bnxt_hwrm_stat_ctx_free(bp);
8585 		bnxt_hwrm_free_tunnel_ports(bp);
8586 	}
8587 }
8588 
8589 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode)
8590 {
8591 	struct hwrm_func_cfg_input *req;
8592 	u8 evb_mode;
8593 	int rc;
8594 
8595 	if (br_mode == BRIDGE_MODE_VEB)
8596 		evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB;
8597 	else if (br_mode == BRIDGE_MODE_VEPA)
8598 		evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA;
8599 	else
8600 		return -EINVAL;
8601 
8602 	rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG);
8603 	if (rc)
8604 		return rc;
8605 
8606 	req->fid = cpu_to_le16(0xffff);
8607 	req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE);
8608 	req->evb_mode = evb_mode;
8609 	return hwrm_req_send(bp, req);
8610 }
8611 
8612 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size)
8613 {
8614 	struct hwrm_func_cfg_input *req;
8615 	int rc;
8616 
8617 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803)
8618 		return 0;
8619 
8620 	rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG);
8621 	if (rc)
8622 		return rc;
8623 
8624 	req->fid = cpu_to_le16(0xffff);
8625 	req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE);
8626 	req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64;
8627 	if (size == 128)
8628 		req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128;
8629 
8630 	return hwrm_req_send(bp, req);
8631 }
8632 
8633 static int __bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
8634 {
8635 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
8636 	int rc;
8637 
8638 	if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG)
8639 		goto skip_rss_ctx;
8640 
8641 	/* allocate context for vnic */
8642 	rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0);
8643 	if (rc) {
8644 		netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
8645 			   vnic_id, rc);
8646 		goto vnic_setup_err;
8647 	}
8648 	bp->rsscos_nr_ctxs++;
8649 
8650 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
8651 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1);
8652 		if (rc) {
8653 			netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n",
8654 				   vnic_id, rc);
8655 			goto vnic_setup_err;
8656 		}
8657 		bp->rsscos_nr_ctxs++;
8658 	}
8659 
8660 skip_rss_ctx:
8661 	/* configure default vnic, ring grp */
8662 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
8663 	if (rc) {
8664 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
8665 			   vnic_id, rc);
8666 		goto vnic_setup_err;
8667 	}
8668 
8669 	/* Enable RSS hashing on vnic */
8670 	rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
8671 	if (rc) {
8672 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
8673 			   vnic_id, rc);
8674 		goto vnic_setup_err;
8675 	}
8676 
8677 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
8678 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
8679 		if (rc) {
8680 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
8681 				   vnic_id, rc);
8682 		}
8683 	}
8684 
8685 vnic_setup_err:
8686 	return rc;
8687 }
8688 
8689 static int __bnxt_setup_vnic_p5(struct bnxt *bp, u16 vnic_id)
8690 {
8691 	int rc, i, nr_ctxs;
8692 
8693 	nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings);
8694 	for (i = 0; i < nr_ctxs; i++) {
8695 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, i);
8696 		if (rc) {
8697 			netdev_err(bp->dev, "hwrm vnic %d ctx %d alloc failure rc: %x\n",
8698 				   vnic_id, i, rc);
8699 			break;
8700 		}
8701 		bp->rsscos_nr_ctxs++;
8702 	}
8703 	if (i < nr_ctxs)
8704 		return -ENOMEM;
8705 
8706 	rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic_id, true);
8707 	if (rc) {
8708 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n",
8709 			   vnic_id, rc);
8710 		return rc;
8711 	}
8712 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
8713 	if (rc) {
8714 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
8715 			   vnic_id, rc);
8716 		return rc;
8717 	}
8718 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
8719 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
8720 		if (rc) {
8721 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
8722 				   vnic_id, rc);
8723 		}
8724 	}
8725 	return rc;
8726 }
8727 
8728 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
8729 {
8730 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8731 		return __bnxt_setup_vnic_p5(bp, vnic_id);
8732 	else
8733 		return __bnxt_setup_vnic(bp, vnic_id);
8734 }
8735 
8736 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
8737 {
8738 #ifdef CONFIG_RFS_ACCEL
8739 	int i, rc = 0;
8740 
8741 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8742 		return 0;
8743 
8744 	for (i = 0; i < bp->rx_nr_rings; i++) {
8745 		struct bnxt_vnic_info *vnic;
8746 		u16 vnic_id = i + 1;
8747 		u16 ring_id = i;
8748 
8749 		if (vnic_id >= bp->nr_vnics)
8750 			break;
8751 
8752 		vnic = &bp->vnic_info[vnic_id];
8753 		vnic->flags |= BNXT_VNIC_RFS_FLAG;
8754 		if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
8755 			vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG;
8756 		rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1);
8757 		if (rc) {
8758 			netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
8759 				   vnic_id, rc);
8760 			break;
8761 		}
8762 		rc = bnxt_setup_vnic(bp, vnic_id);
8763 		if (rc)
8764 			break;
8765 	}
8766 	return rc;
8767 #else
8768 	return 0;
8769 #endif
8770 }
8771 
8772 /* Allow PF, trusted VFs and VFs with default VLAN to be in promiscuous mode */
8773 static bool bnxt_promisc_ok(struct bnxt *bp)
8774 {
8775 #ifdef CONFIG_BNXT_SRIOV
8776 	if (BNXT_VF(bp) && !bp->vf.vlan && !bnxt_is_trusted_vf(bp, &bp->vf))
8777 		return false;
8778 #endif
8779 	return true;
8780 }
8781 
8782 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp)
8783 {
8784 	unsigned int rc = 0;
8785 
8786 	rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1);
8787 	if (rc) {
8788 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
8789 			   rc);
8790 		return rc;
8791 	}
8792 
8793 	rc = bnxt_hwrm_vnic_cfg(bp, 1);
8794 	if (rc) {
8795 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
8796 			   rc);
8797 		return rc;
8798 	}
8799 	return rc;
8800 }
8801 
8802 static int bnxt_cfg_rx_mode(struct bnxt *);
8803 static bool bnxt_mc_list_updated(struct bnxt *, u32 *);
8804 
8805 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
8806 {
8807 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
8808 	int rc = 0;
8809 	unsigned int rx_nr_rings = bp->rx_nr_rings;
8810 
8811 	if (irq_re_init) {
8812 		rc = bnxt_hwrm_stat_ctx_alloc(bp);
8813 		if (rc) {
8814 			netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
8815 				   rc);
8816 			goto err_out;
8817 		}
8818 	}
8819 
8820 	rc = bnxt_hwrm_ring_alloc(bp);
8821 	if (rc) {
8822 		netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
8823 		goto err_out;
8824 	}
8825 
8826 	rc = bnxt_hwrm_ring_grp_alloc(bp);
8827 	if (rc) {
8828 		netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
8829 		goto err_out;
8830 	}
8831 
8832 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
8833 		rx_nr_rings--;
8834 
8835 	/* default vnic 0 */
8836 	rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings);
8837 	if (rc) {
8838 		netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
8839 		goto err_out;
8840 	}
8841 
8842 	rc = bnxt_setup_vnic(bp, 0);
8843 	if (rc)
8844 		goto err_out;
8845 	if (bp->fw_cap & BNXT_FW_CAP_RSS_HASH_TYPE_DELTA)
8846 		bnxt_hwrm_update_rss_hash_cfg(bp);
8847 
8848 	if (bp->flags & BNXT_FLAG_RFS) {
8849 		rc = bnxt_alloc_rfs_vnics(bp);
8850 		if (rc)
8851 			goto err_out;
8852 	}
8853 
8854 	if (bp->flags & BNXT_FLAG_TPA) {
8855 		rc = bnxt_set_tpa(bp, true);
8856 		if (rc)
8857 			goto err_out;
8858 	}
8859 
8860 	if (BNXT_VF(bp))
8861 		bnxt_update_vf_mac(bp);
8862 
8863 	/* Filter for default vnic 0 */
8864 	rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
8865 	if (rc) {
8866 		if (BNXT_VF(bp) && rc == -ENODEV)
8867 			netdev_err(bp->dev, "Cannot configure L2 filter while PF is unavailable\n");
8868 		else
8869 			netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
8870 		goto err_out;
8871 	}
8872 	vnic->uc_filter_count = 1;
8873 
8874 	vnic->rx_mask = 0;
8875 	if (test_bit(BNXT_STATE_HALF_OPEN, &bp->state))
8876 		goto skip_rx_mask;
8877 
8878 	if (bp->dev->flags & IFF_BROADCAST)
8879 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
8880 
8881 	if (bp->dev->flags & IFF_PROMISC)
8882 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
8883 
8884 	if (bp->dev->flags & IFF_ALLMULTI) {
8885 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
8886 		vnic->mc_list_count = 0;
8887 	} else if (bp->dev->flags & IFF_MULTICAST) {
8888 		u32 mask = 0;
8889 
8890 		bnxt_mc_list_updated(bp, &mask);
8891 		vnic->rx_mask |= mask;
8892 	}
8893 
8894 	rc = bnxt_cfg_rx_mode(bp);
8895 	if (rc)
8896 		goto err_out;
8897 
8898 skip_rx_mask:
8899 	rc = bnxt_hwrm_set_coal(bp);
8900 	if (rc)
8901 		netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
8902 				rc);
8903 
8904 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
8905 		rc = bnxt_setup_nitroa0_vnic(bp);
8906 		if (rc)
8907 			netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n",
8908 				   rc);
8909 	}
8910 
8911 	if (BNXT_VF(bp)) {
8912 		bnxt_hwrm_func_qcfg(bp);
8913 		netdev_update_features(bp->dev);
8914 	}
8915 
8916 	return 0;
8917 
8918 err_out:
8919 	bnxt_hwrm_resource_free(bp, 0, true);
8920 
8921 	return rc;
8922 }
8923 
8924 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
8925 {
8926 	bnxt_hwrm_resource_free(bp, 1, irq_re_init);
8927 	return 0;
8928 }
8929 
8930 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
8931 {
8932 	bnxt_init_cp_rings(bp);
8933 	bnxt_init_rx_rings(bp);
8934 	bnxt_init_tx_rings(bp);
8935 	bnxt_init_ring_grps(bp, irq_re_init);
8936 	bnxt_init_vnics(bp);
8937 
8938 	return bnxt_init_chip(bp, irq_re_init);
8939 }
8940 
8941 static int bnxt_set_real_num_queues(struct bnxt *bp)
8942 {
8943 	int rc;
8944 	struct net_device *dev = bp->dev;
8945 
8946 	rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings -
8947 					  bp->tx_nr_rings_xdp);
8948 	if (rc)
8949 		return rc;
8950 
8951 	rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
8952 	if (rc)
8953 		return rc;
8954 
8955 #ifdef CONFIG_RFS_ACCEL
8956 	if (bp->flags & BNXT_FLAG_RFS)
8957 		dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
8958 #endif
8959 
8960 	return rc;
8961 }
8962 
8963 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
8964 			   bool shared)
8965 {
8966 	int _rx = *rx, _tx = *tx;
8967 
8968 	if (shared) {
8969 		*rx = min_t(int, _rx, max);
8970 		*tx = min_t(int, _tx, max);
8971 	} else {
8972 		if (max < 2)
8973 			return -ENOMEM;
8974 
8975 		while (_rx + _tx > max) {
8976 			if (_rx > _tx && _rx > 1)
8977 				_rx--;
8978 			else if (_tx > 1)
8979 				_tx--;
8980 		}
8981 		*rx = _rx;
8982 		*tx = _tx;
8983 	}
8984 	return 0;
8985 }
8986 
8987 static void bnxt_setup_msix(struct bnxt *bp)
8988 {
8989 	const int len = sizeof(bp->irq_tbl[0].name);
8990 	struct net_device *dev = bp->dev;
8991 	int tcs, i;
8992 
8993 	tcs = netdev_get_num_tc(dev);
8994 	if (tcs) {
8995 		int i, off, count;
8996 
8997 		for (i = 0; i < tcs; i++) {
8998 			count = bp->tx_nr_rings_per_tc;
8999 			off = i * count;
9000 			netdev_set_tc_queue(dev, i, count, off);
9001 		}
9002 	}
9003 
9004 	for (i = 0; i < bp->cp_nr_rings; i++) {
9005 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
9006 		char *attr;
9007 
9008 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
9009 			attr = "TxRx";
9010 		else if (i < bp->rx_nr_rings)
9011 			attr = "rx";
9012 		else
9013 			attr = "tx";
9014 
9015 		snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name,
9016 			 attr, i);
9017 		bp->irq_tbl[map_idx].handler = bnxt_msix;
9018 	}
9019 }
9020 
9021 static void bnxt_setup_inta(struct bnxt *bp)
9022 {
9023 	const int len = sizeof(bp->irq_tbl[0].name);
9024 
9025 	if (netdev_get_num_tc(bp->dev))
9026 		netdev_reset_tc(bp->dev);
9027 
9028 	snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx",
9029 		 0);
9030 	bp->irq_tbl[0].handler = bnxt_inta;
9031 }
9032 
9033 static int bnxt_init_int_mode(struct bnxt *bp);
9034 
9035 static int bnxt_setup_int_mode(struct bnxt *bp)
9036 {
9037 	int rc;
9038 
9039 	if (!bp->irq_tbl) {
9040 		rc = bnxt_init_int_mode(bp);
9041 		if (rc || !bp->irq_tbl)
9042 			return rc ?: -ENODEV;
9043 	}
9044 
9045 	if (bp->flags & BNXT_FLAG_USING_MSIX)
9046 		bnxt_setup_msix(bp);
9047 	else
9048 		bnxt_setup_inta(bp);
9049 
9050 	rc = bnxt_set_real_num_queues(bp);
9051 	return rc;
9052 }
9053 
9054 #ifdef CONFIG_RFS_ACCEL
9055 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp)
9056 {
9057 	return bp->hw_resc.max_rsscos_ctxs;
9058 }
9059 
9060 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp)
9061 {
9062 	return bp->hw_resc.max_vnics;
9063 }
9064 #endif
9065 
9066 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp)
9067 {
9068 	return bp->hw_resc.max_stat_ctxs;
9069 }
9070 
9071 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp)
9072 {
9073 	return bp->hw_resc.max_cp_rings;
9074 }
9075 
9076 static unsigned int bnxt_get_max_func_cp_rings_for_en(struct bnxt *bp)
9077 {
9078 	unsigned int cp = bp->hw_resc.max_cp_rings;
9079 
9080 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
9081 		cp -= bnxt_get_ulp_msix_num(bp);
9082 
9083 	return cp;
9084 }
9085 
9086 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp)
9087 {
9088 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
9089 
9090 	if (bp->flags & BNXT_FLAG_CHIP_P5)
9091 		return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_nqs);
9092 
9093 	return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings);
9094 }
9095 
9096 static void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs)
9097 {
9098 	bp->hw_resc.max_irqs = max_irqs;
9099 }
9100 
9101 unsigned int bnxt_get_avail_cp_rings_for_en(struct bnxt *bp)
9102 {
9103 	unsigned int cp;
9104 
9105 	cp = bnxt_get_max_func_cp_rings_for_en(bp);
9106 	if (bp->flags & BNXT_FLAG_CHIP_P5)
9107 		return cp - bp->rx_nr_rings - bp->tx_nr_rings;
9108 	else
9109 		return cp - bp->cp_nr_rings;
9110 }
9111 
9112 unsigned int bnxt_get_avail_stat_ctxs_for_en(struct bnxt *bp)
9113 {
9114 	return bnxt_get_max_func_stat_ctxs(bp) - bnxt_get_func_stat_ctxs(bp);
9115 }
9116 
9117 int bnxt_get_avail_msix(struct bnxt *bp, int num)
9118 {
9119 	int max_cp = bnxt_get_max_func_cp_rings(bp);
9120 	int max_irq = bnxt_get_max_func_irqs(bp);
9121 	int total_req = bp->cp_nr_rings + num;
9122 	int max_idx, avail_msix;
9123 
9124 	max_idx = bp->total_irqs;
9125 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
9126 		max_idx = min_t(int, bp->total_irqs, max_cp);
9127 	avail_msix = max_idx - bp->cp_nr_rings;
9128 	if (!BNXT_NEW_RM(bp) || avail_msix >= num)
9129 		return avail_msix;
9130 
9131 	if (max_irq < total_req) {
9132 		num = max_irq - bp->cp_nr_rings;
9133 		if (num <= 0)
9134 			return 0;
9135 	}
9136 	return num;
9137 }
9138 
9139 static int bnxt_get_num_msix(struct bnxt *bp)
9140 {
9141 	if (!BNXT_NEW_RM(bp))
9142 		return bnxt_get_max_func_irqs(bp);
9143 
9144 	return bnxt_nq_rings_in_use(bp);
9145 }
9146 
9147 static int bnxt_init_msix(struct bnxt *bp)
9148 {
9149 	int i, total_vecs, max, rc = 0, min = 1, ulp_msix;
9150 	struct msix_entry *msix_ent;
9151 
9152 	total_vecs = bnxt_get_num_msix(bp);
9153 	max = bnxt_get_max_func_irqs(bp);
9154 	if (total_vecs > max)
9155 		total_vecs = max;
9156 
9157 	if (!total_vecs)
9158 		return 0;
9159 
9160 	msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
9161 	if (!msix_ent)
9162 		return -ENOMEM;
9163 
9164 	for (i = 0; i < total_vecs; i++) {
9165 		msix_ent[i].entry = i;
9166 		msix_ent[i].vector = 0;
9167 	}
9168 
9169 	if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
9170 		min = 2;
9171 
9172 	total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
9173 	ulp_msix = bnxt_get_ulp_msix_num(bp);
9174 	if (total_vecs < 0 || total_vecs < ulp_msix) {
9175 		rc = -ENODEV;
9176 		goto msix_setup_exit;
9177 	}
9178 
9179 	bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
9180 	if (bp->irq_tbl) {
9181 		for (i = 0; i < total_vecs; i++)
9182 			bp->irq_tbl[i].vector = msix_ent[i].vector;
9183 
9184 		bp->total_irqs = total_vecs;
9185 		/* Trim rings based upon num of vectors allocated */
9186 		rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
9187 				     total_vecs - ulp_msix, min == 1);
9188 		if (rc)
9189 			goto msix_setup_exit;
9190 
9191 		bp->cp_nr_rings = (min == 1) ?
9192 				  max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
9193 				  bp->tx_nr_rings + bp->rx_nr_rings;
9194 
9195 	} else {
9196 		rc = -ENOMEM;
9197 		goto msix_setup_exit;
9198 	}
9199 	bp->flags |= BNXT_FLAG_USING_MSIX;
9200 	kfree(msix_ent);
9201 	return 0;
9202 
9203 msix_setup_exit:
9204 	netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc);
9205 	kfree(bp->irq_tbl);
9206 	bp->irq_tbl = NULL;
9207 	pci_disable_msix(bp->pdev);
9208 	kfree(msix_ent);
9209 	return rc;
9210 }
9211 
9212 static int bnxt_init_inta(struct bnxt *bp)
9213 {
9214 	bp->irq_tbl = kzalloc(sizeof(struct bnxt_irq), GFP_KERNEL);
9215 	if (!bp->irq_tbl)
9216 		return -ENOMEM;
9217 
9218 	bp->total_irqs = 1;
9219 	bp->rx_nr_rings = 1;
9220 	bp->tx_nr_rings = 1;
9221 	bp->cp_nr_rings = 1;
9222 	bp->flags |= BNXT_FLAG_SHARED_RINGS;
9223 	bp->irq_tbl[0].vector = bp->pdev->irq;
9224 	return 0;
9225 }
9226 
9227 static int bnxt_init_int_mode(struct bnxt *bp)
9228 {
9229 	int rc = -ENODEV;
9230 
9231 	if (bp->flags & BNXT_FLAG_MSIX_CAP)
9232 		rc = bnxt_init_msix(bp);
9233 
9234 	if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) {
9235 		/* fallback to INTA */
9236 		rc = bnxt_init_inta(bp);
9237 	}
9238 	return rc;
9239 }
9240 
9241 static void bnxt_clear_int_mode(struct bnxt *bp)
9242 {
9243 	if (bp->flags & BNXT_FLAG_USING_MSIX)
9244 		pci_disable_msix(bp->pdev);
9245 
9246 	kfree(bp->irq_tbl);
9247 	bp->irq_tbl = NULL;
9248 	bp->flags &= ~BNXT_FLAG_USING_MSIX;
9249 }
9250 
9251 int bnxt_reserve_rings(struct bnxt *bp, bool irq_re_init)
9252 {
9253 	int tcs = netdev_get_num_tc(bp->dev);
9254 	bool irq_cleared = false;
9255 	int rc;
9256 
9257 	if (!bnxt_need_reserve_rings(bp))
9258 		return 0;
9259 
9260 	if (irq_re_init && BNXT_NEW_RM(bp) &&
9261 	    bnxt_get_num_msix(bp) != bp->total_irqs) {
9262 		bnxt_ulp_irq_stop(bp);
9263 		bnxt_clear_int_mode(bp);
9264 		irq_cleared = true;
9265 	}
9266 	rc = __bnxt_reserve_rings(bp);
9267 	if (irq_cleared) {
9268 		if (!rc)
9269 			rc = bnxt_init_int_mode(bp);
9270 		bnxt_ulp_irq_restart(bp, rc);
9271 	}
9272 	if (rc) {
9273 		netdev_err(bp->dev, "ring reservation/IRQ init failure rc: %d\n", rc);
9274 		return rc;
9275 	}
9276 	if (tcs && (bp->tx_nr_rings_per_tc * tcs != bp->tx_nr_rings)) {
9277 		netdev_err(bp->dev, "tx ring reservation failure\n");
9278 		netdev_reset_tc(bp->dev);
9279 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
9280 		return -ENOMEM;
9281 	}
9282 	return 0;
9283 }
9284 
9285 static void bnxt_free_irq(struct bnxt *bp)
9286 {
9287 	struct bnxt_irq *irq;
9288 	int i;
9289 
9290 #ifdef CONFIG_RFS_ACCEL
9291 	free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
9292 	bp->dev->rx_cpu_rmap = NULL;
9293 #endif
9294 	if (!bp->irq_tbl || !bp->bnapi)
9295 		return;
9296 
9297 	for (i = 0; i < bp->cp_nr_rings; i++) {
9298 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
9299 
9300 		irq = &bp->irq_tbl[map_idx];
9301 		if (irq->requested) {
9302 			if (irq->have_cpumask) {
9303 				irq_set_affinity_hint(irq->vector, NULL);
9304 				free_cpumask_var(irq->cpu_mask);
9305 				irq->have_cpumask = 0;
9306 			}
9307 			free_irq(irq->vector, bp->bnapi[i]);
9308 		}
9309 
9310 		irq->requested = 0;
9311 	}
9312 }
9313 
9314 static int bnxt_request_irq(struct bnxt *bp)
9315 {
9316 	int i, j, rc = 0;
9317 	unsigned long flags = 0;
9318 #ifdef CONFIG_RFS_ACCEL
9319 	struct cpu_rmap *rmap;
9320 #endif
9321 
9322 	rc = bnxt_setup_int_mode(bp);
9323 	if (rc) {
9324 		netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
9325 			   rc);
9326 		return rc;
9327 	}
9328 #ifdef CONFIG_RFS_ACCEL
9329 	rmap = bp->dev->rx_cpu_rmap;
9330 #endif
9331 	if (!(bp->flags & BNXT_FLAG_USING_MSIX))
9332 		flags = IRQF_SHARED;
9333 
9334 	for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
9335 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
9336 		struct bnxt_irq *irq = &bp->irq_tbl[map_idx];
9337 
9338 #ifdef CONFIG_RFS_ACCEL
9339 		if (rmap && bp->bnapi[i]->rx_ring) {
9340 			rc = irq_cpu_rmap_add(rmap, irq->vector);
9341 			if (rc)
9342 				netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
9343 					    j);
9344 			j++;
9345 		}
9346 #endif
9347 		rc = request_irq(irq->vector, irq->handler, flags, irq->name,
9348 				 bp->bnapi[i]);
9349 		if (rc)
9350 			break;
9351 
9352 		irq->requested = 1;
9353 
9354 		if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) {
9355 			int numa_node = dev_to_node(&bp->pdev->dev);
9356 
9357 			irq->have_cpumask = 1;
9358 			cpumask_set_cpu(cpumask_local_spread(i, numa_node),
9359 					irq->cpu_mask);
9360 			rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask);
9361 			if (rc) {
9362 				netdev_warn(bp->dev,
9363 					    "Set affinity failed, IRQ = %d\n",
9364 					    irq->vector);
9365 				break;
9366 			}
9367 		}
9368 	}
9369 	return rc;
9370 }
9371 
9372 static void bnxt_del_napi(struct bnxt *bp)
9373 {
9374 	int i;
9375 
9376 	if (!bp->bnapi)
9377 		return;
9378 
9379 	for (i = 0; i < bp->cp_nr_rings; i++) {
9380 		struct bnxt_napi *bnapi = bp->bnapi[i];
9381 
9382 		__netif_napi_del(&bnapi->napi);
9383 	}
9384 	/* We called __netif_napi_del(), we need
9385 	 * to respect an RCU grace period before freeing napi structures.
9386 	 */
9387 	synchronize_net();
9388 }
9389 
9390 static void bnxt_init_napi(struct bnxt *bp)
9391 {
9392 	int i;
9393 	unsigned int cp_nr_rings = bp->cp_nr_rings;
9394 	struct bnxt_napi *bnapi;
9395 
9396 	if (bp->flags & BNXT_FLAG_USING_MSIX) {
9397 		int (*poll_fn)(struct napi_struct *, int) = bnxt_poll;
9398 
9399 		if (bp->flags & BNXT_FLAG_CHIP_P5)
9400 			poll_fn = bnxt_poll_p5;
9401 		else if (BNXT_CHIP_TYPE_NITRO_A0(bp))
9402 			cp_nr_rings--;
9403 		for (i = 0; i < cp_nr_rings; i++) {
9404 			bnapi = bp->bnapi[i];
9405 			netif_napi_add(bp->dev, &bnapi->napi, poll_fn);
9406 		}
9407 		if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
9408 			bnapi = bp->bnapi[cp_nr_rings];
9409 			netif_napi_add(bp->dev, &bnapi->napi,
9410 				       bnxt_poll_nitroa0);
9411 		}
9412 	} else {
9413 		bnapi = bp->bnapi[0];
9414 		netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll);
9415 	}
9416 }
9417 
9418 static void bnxt_disable_napi(struct bnxt *bp)
9419 {
9420 	int i;
9421 
9422 	if (!bp->bnapi ||
9423 	    test_and_set_bit(BNXT_STATE_NAPI_DISABLED, &bp->state))
9424 		return;
9425 
9426 	for (i = 0; i < bp->cp_nr_rings; i++) {
9427 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
9428 
9429 		napi_disable(&bp->bnapi[i]->napi);
9430 		if (bp->bnapi[i]->rx_ring)
9431 			cancel_work_sync(&cpr->dim.work);
9432 	}
9433 }
9434 
9435 static void bnxt_enable_napi(struct bnxt *bp)
9436 {
9437 	int i;
9438 
9439 	clear_bit(BNXT_STATE_NAPI_DISABLED, &bp->state);
9440 	for (i = 0; i < bp->cp_nr_rings; i++) {
9441 		struct bnxt_napi *bnapi = bp->bnapi[i];
9442 		struct bnxt_cp_ring_info *cpr;
9443 
9444 		cpr = &bnapi->cp_ring;
9445 		if (bnapi->in_reset)
9446 			cpr->sw_stats.rx.rx_resets++;
9447 		bnapi->in_reset = false;
9448 
9449 		if (bnapi->rx_ring) {
9450 			INIT_WORK(&cpr->dim.work, bnxt_dim_work);
9451 			cpr->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
9452 		}
9453 		napi_enable(&bnapi->napi);
9454 	}
9455 }
9456 
9457 void bnxt_tx_disable(struct bnxt *bp)
9458 {
9459 	int i;
9460 	struct bnxt_tx_ring_info *txr;
9461 
9462 	if (bp->tx_ring) {
9463 		for (i = 0; i < bp->tx_nr_rings; i++) {
9464 			txr = &bp->tx_ring[i];
9465 			WRITE_ONCE(txr->dev_state, BNXT_DEV_STATE_CLOSING);
9466 		}
9467 	}
9468 	/* Make sure napi polls see @dev_state change */
9469 	synchronize_net();
9470 	/* Drop carrier first to prevent TX timeout */
9471 	netif_carrier_off(bp->dev);
9472 	/* Stop all TX queues */
9473 	netif_tx_disable(bp->dev);
9474 }
9475 
9476 void bnxt_tx_enable(struct bnxt *bp)
9477 {
9478 	int i;
9479 	struct bnxt_tx_ring_info *txr;
9480 
9481 	for (i = 0; i < bp->tx_nr_rings; i++) {
9482 		txr = &bp->tx_ring[i];
9483 		WRITE_ONCE(txr->dev_state, 0);
9484 	}
9485 	/* Make sure napi polls see @dev_state change */
9486 	synchronize_net();
9487 	netif_tx_wake_all_queues(bp->dev);
9488 	if (BNXT_LINK_IS_UP(bp))
9489 		netif_carrier_on(bp->dev);
9490 }
9491 
9492 static char *bnxt_report_fec(struct bnxt_link_info *link_info)
9493 {
9494 	u8 active_fec = link_info->active_fec_sig_mode &
9495 			PORT_PHY_QCFG_RESP_ACTIVE_FEC_MASK;
9496 
9497 	switch (active_fec) {
9498 	default:
9499 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_NONE_ACTIVE:
9500 		return "None";
9501 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE74_ACTIVE:
9502 		return "Clause 74 BaseR";
9503 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE91_ACTIVE:
9504 		return "Clause 91 RS(528,514)";
9505 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_1XN_ACTIVE:
9506 		return "Clause 91 RS544_1XN";
9507 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_IEEE_ACTIVE:
9508 		return "Clause 91 RS(544,514)";
9509 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_1XN_ACTIVE:
9510 		return "Clause 91 RS272_1XN";
9511 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_IEEE_ACTIVE:
9512 		return "Clause 91 RS(272,257)";
9513 	}
9514 }
9515 
9516 void bnxt_report_link(struct bnxt *bp)
9517 {
9518 	if (BNXT_LINK_IS_UP(bp)) {
9519 		const char *signal = "";
9520 		const char *flow_ctrl;
9521 		const char *duplex;
9522 		u32 speed;
9523 		u16 fec;
9524 
9525 		netif_carrier_on(bp->dev);
9526 		speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
9527 		if (speed == SPEED_UNKNOWN) {
9528 			netdev_info(bp->dev, "NIC Link is Up, speed unknown\n");
9529 			return;
9530 		}
9531 		if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
9532 			duplex = "full";
9533 		else
9534 			duplex = "half";
9535 		if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
9536 			flow_ctrl = "ON - receive & transmit";
9537 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
9538 			flow_ctrl = "ON - transmit";
9539 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
9540 			flow_ctrl = "ON - receive";
9541 		else
9542 			flow_ctrl = "none";
9543 		if (bp->link_info.phy_qcfg_resp.option_flags &
9544 		    PORT_PHY_QCFG_RESP_OPTION_FLAGS_SIGNAL_MODE_KNOWN) {
9545 			u8 sig_mode = bp->link_info.active_fec_sig_mode &
9546 				      PORT_PHY_QCFG_RESP_SIGNAL_MODE_MASK;
9547 			switch (sig_mode) {
9548 			case PORT_PHY_QCFG_RESP_SIGNAL_MODE_NRZ:
9549 				signal = "(NRZ) ";
9550 				break;
9551 			case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4:
9552 				signal = "(PAM4) ";
9553 				break;
9554 			default:
9555 				break;
9556 			}
9557 		}
9558 		netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s%s duplex, Flow control: %s\n",
9559 			    speed, signal, duplex, flow_ctrl);
9560 		if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP)
9561 			netdev_info(bp->dev, "EEE is %s\n",
9562 				    bp->eee.eee_active ? "active" :
9563 							 "not active");
9564 		fec = bp->link_info.fec_cfg;
9565 		if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED))
9566 			netdev_info(bp->dev, "FEC autoneg %s encoding: %s\n",
9567 				    (fec & BNXT_FEC_AUTONEG) ? "on" : "off",
9568 				    bnxt_report_fec(&bp->link_info));
9569 	} else {
9570 		netif_carrier_off(bp->dev);
9571 		netdev_err(bp->dev, "NIC Link is Down\n");
9572 	}
9573 }
9574 
9575 static bool bnxt_phy_qcaps_no_speed(struct hwrm_port_phy_qcaps_output *resp)
9576 {
9577 	if (!resp->supported_speeds_auto_mode &&
9578 	    !resp->supported_speeds_force_mode &&
9579 	    !resp->supported_pam4_speeds_auto_mode &&
9580 	    !resp->supported_pam4_speeds_force_mode)
9581 		return true;
9582 	return false;
9583 }
9584 
9585 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp)
9586 {
9587 	struct bnxt_link_info *link_info = &bp->link_info;
9588 	struct hwrm_port_phy_qcaps_output *resp;
9589 	struct hwrm_port_phy_qcaps_input *req;
9590 	int rc = 0;
9591 
9592 	if (bp->hwrm_spec_code < 0x10201)
9593 		return 0;
9594 
9595 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCAPS);
9596 	if (rc)
9597 		return rc;
9598 
9599 	resp = hwrm_req_hold(bp, req);
9600 	rc = hwrm_req_send(bp, req);
9601 	if (rc)
9602 		goto hwrm_phy_qcaps_exit;
9603 
9604 	bp->phy_flags = resp->flags | (le16_to_cpu(resp->flags2) << 8);
9605 	if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) {
9606 		struct ethtool_eee *eee = &bp->eee;
9607 		u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode);
9608 
9609 		eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
9610 		bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) &
9611 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK;
9612 		bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) &
9613 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK;
9614 	}
9615 
9616 	if (bp->hwrm_spec_code >= 0x10a01) {
9617 		if (bnxt_phy_qcaps_no_speed(resp)) {
9618 			link_info->phy_state = BNXT_PHY_STATE_DISABLED;
9619 			netdev_warn(bp->dev, "Ethernet link disabled\n");
9620 		} else if (link_info->phy_state == BNXT_PHY_STATE_DISABLED) {
9621 			link_info->phy_state = BNXT_PHY_STATE_ENABLED;
9622 			netdev_info(bp->dev, "Ethernet link enabled\n");
9623 			/* Phy re-enabled, reprobe the speeds */
9624 			link_info->support_auto_speeds = 0;
9625 			link_info->support_pam4_auto_speeds = 0;
9626 		}
9627 	}
9628 	if (resp->supported_speeds_auto_mode)
9629 		link_info->support_auto_speeds =
9630 			le16_to_cpu(resp->supported_speeds_auto_mode);
9631 	if (resp->supported_pam4_speeds_auto_mode)
9632 		link_info->support_pam4_auto_speeds =
9633 			le16_to_cpu(resp->supported_pam4_speeds_auto_mode);
9634 
9635 	bp->port_count = resp->port_cnt;
9636 
9637 hwrm_phy_qcaps_exit:
9638 	hwrm_req_drop(bp, req);
9639 	return rc;
9640 }
9641 
9642 static bool bnxt_support_dropped(u16 advertising, u16 supported)
9643 {
9644 	u16 diff = advertising ^ supported;
9645 
9646 	return ((supported | diff) != supported);
9647 }
9648 
9649 int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
9650 {
9651 	struct bnxt_link_info *link_info = &bp->link_info;
9652 	struct hwrm_port_phy_qcfg_output *resp;
9653 	struct hwrm_port_phy_qcfg_input *req;
9654 	u8 link_state = link_info->link_state;
9655 	bool support_changed = false;
9656 	int rc;
9657 
9658 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCFG);
9659 	if (rc)
9660 		return rc;
9661 
9662 	resp = hwrm_req_hold(bp, req);
9663 	rc = hwrm_req_send(bp, req);
9664 	if (rc) {
9665 		hwrm_req_drop(bp, req);
9666 		if (BNXT_VF(bp) && rc == -ENODEV) {
9667 			netdev_warn(bp->dev, "Cannot obtain link state while PF unavailable.\n");
9668 			rc = 0;
9669 		}
9670 		return rc;
9671 	}
9672 
9673 	memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
9674 	link_info->phy_link_status = resp->link;
9675 	link_info->duplex = resp->duplex_cfg;
9676 	if (bp->hwrm_spec_code >= 0x10800)
9677 		link_info->duplex = resp->duplex_state;
9678 	link_info->pause = resp->pause;
9679 	link_info->auto_mode = resp->auto_mode;
9680 	link_info->auto_pause_setting = resp->auto_pause;
9681 	link_info->lp_pause = resp->link_partner_adv_pause;
9682 	link_info->force_pause_setting = resp->force_pause;
9683 	link_info->duplex_setting = resp->duplex_cfg;
9684 	if (link_info->phy_link_status == BNXT_LINK_LINK)
9685 		link_info->link_speed = le16_to_cpu(resp->link_speed);
9686 	else
9687 		link_info->link_speed = 0;
9688 	link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
9689 	link_info->force_pam4_link_speed =
9690 		le16_to_cpu(resp->force_pam4_link_speed);
9691 	link_info->support_speeds = le16_to_cpu(resp->support_speeds);
9692 	link_info->support_pam4_speeds = le16_to_cpu(resp->support_pam4_speeds);
9693 	link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
9694 	link_info->auto_pam4_link_speeds =
9695 		le16_to_cpu(resp->auto_pam4_link_speed_mask);
9696 	link_info->lp_auto_link_speeds =
9697 		le16_to_cpu(resp->link_partner_adv_speeds);
9698 	link_info->lp_auto_pam4_link_speeds =
9699 		resp->link_partner_pam4_adv_speeds;
9700 	link_info->preemphasis = le32_to_cpu(resp->preemphasis);
9701 	link_info->phy_ver[0] = resp->phy_maj;
9702 	link_info->phy_ver[1] = resp->phy_min;
9703 	link_info->phy_ver[2] = resp->phy_bld;
9704 	link_info->media_type = resp->media_type;
9705 	link_info->phy_type = resp->phy_type;
9706 	link_info->transceiver = resp->xcvr_pkg_type;
9707 	link_info->phy_addr = resp->eee_config_phy_addr &
9708 			      PORT_PHY_QCFG_RESP_PHY_ADDR_MASK;
9709 	link_info->module_status = resp->module_status;
9710 
9711 	if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) {
9712 		struct ethtool_eee *eee = &bp->eee;
9713 		u16 fw_speeds;
9714 
9715 		eee->eee_active = 0;
9716 		if (resp->eee_config_phy_addr &
9717 		    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) {
9718 			eee->eee_active = 1;
9719 			fw_speeds = le16_to_cpu(
9720 				resp->link_partner_adv_eee_link_speed_mask);
9721 			eee->lp_advertised =
9722 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
9723 		}
9724 
9725 		/* Pull initial EEE config */
9726 		if (!chng_link_state) {
9727 			if (resp->eee_config_phy_addr &
9728 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED)
9729 				eee->eee_enabled = 1;
9730 
9731 			fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask);
9732 			eee->advertised =
9733 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
9734 
9735 			if (resp->eee_config_phy_addr &
9736 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) {
9737 				__le32 tmr;
9738 
9739 				eee->tx_lpi_enabled = 1;
9740 				tmr = resp->xcvr_identifier_type_tx_lpi_timer;
9741 				eee->tx_lpi_timer = le32_to_cpu(tmr) &
9742 					PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK;
9743 			}
9744 		}
9745 	}
9746 
9747 	link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED;
9748 	if (bp->hwrm_spec_code >= 0x10504) {
9749 		link_info->fec_cfg = le16_to_cpu(resp->fec_cfg);
9750 		link_info->active_fec_sig_mode = resp->active_fec_signal_mode;
9751 	}
9752 	/* TODO: need to add more logic to report VF link */
9753 	if (chng_link_state) {
9754 		if (link_info->phy_link_status == BNXT_LINK_LINK)
9755 			link_info->link_state = BNXT_LINK_STATE_UP;
9756 		else
9757 			link_info->link_state = BNXT_LINK_STATE_DOWN;
9758 		if (link_state != link_info->link_state)
9759 			bnxt_report_link(bp);
9760 	} else {
9761 		/* always link down if not require to update link state */
9762 		link_info->link_state = BNXT_LINK_STATE_DOWN;
9763 	}
9764 	hwrm_req_drop(bp, req);
9765 
9766 	if (!BNXT_PHY_CFG_ABLE(bp))
9767 		return 0;
9768 
9769 	/* Check if any advertised speeds are no longer supported. The caller
9770 	 * holds the link_lock mutex, so we can modify link_info settings.
9771 	 */
9772 	if (bnxt_support_dropped(link_info->advertising,
9773 				 link_info->support_auto_speeds)) {
9774 		link_info->advertising = link_info->support_auto_speeds;
9775 		support_changed = true;
9776 	}
9777 	if (bnxt_support_dropped(link_info->advertising_pam4,
9778 				 link_info->support_pam4_auto_speeds)) {
9779 		link_info->advertising_pam4 = link_info->support_pam4_auto_speeds;
9780 		support_changed = true;
9781 	}
9782 	if (support_changed && (link_info->autoneg & BNXT_AUTONEG_SPEED))
9783 		bnxt_hwrm_set_link_setting(bp, true, false);
9784 	return 0;
9785 }
9786 
9787 static void bnxt_get_port_module_status(struct bnxt *bp)
9788 {
9789 	struct bnxt_link_info *link_info = &bp->link_info;
9790 	struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp;
9791 	u8 module_status;
9792 
9793 	if (bnxt_update_link(bp, true))
9794 		return;
9795 
9796 	module_status = link_info->module_status;
9797 	switch (module_status) {
9798 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX:
9799 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN:
9800 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG:
9801 		netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n",
9802 			    bp->pf.port_id);
9803 		if (bp->hwrm_spec_code >= 0x10201) {
9804 			netdev_warn(bp->dev, "Module part number %s\n",
9805 				    resp->phy_vendor_partnumber);
9806 		}
9807 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX)
9808 			netdev_warn(bp->dev, "TX is disabled\n");
9809 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN)
9810 			netdev_warn(bp->dev, "SFP+ module is shutdown\n");
9811 	}
9812 }
9813 
9814 static void
9815 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
9816 {
9817 	if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
9818 		if (bp->hwrm_spec_code >= 0x10201)
9819 			req->auto_pause =
9820 				PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE;
9821 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
9822 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
9823 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
9824 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX;
9825 		req->enables |=
9826 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
9827 	} else {
9828 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
9829 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
9830 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
9831 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
9832 		req->enables |=
9833 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
9834 		if (bp->hwrm_spec_code >= 0x10201) {
9835 			req->auto_pause = req->force_pause;
9836 			req->enables |= cpu_to_le32(
9837 				PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
9838 		}
9839 	}
9840 }
9841 
9842 static void bnxt_hwrm_set_link_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
9843 {
9844 	if (bp->link_info.autoneg & BNXT_AUTONEG_SPEED) {
9845 		req->auto_mode |= PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK;
9846 		if (bp->link_info.advertising) {
9847 			req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
9848 			req->auto_link_speed_mask = cpu_to_le16(bp->link_info.advertising);
9849 		}
9850 		if (bp->link_info.advertising_pam4) {
9851 			req->enables |=
9852 				cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAM4_LINK_SPEED_MASK);
9853 			req->auto_link_pam4_speed_mask =
9854 				cpu_to_le16(bp->link_info.advertising_pam4);
9855 		}
9856 		req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
9857 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
9858 	} else {
9859 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
9860 		if (bp->link_info.req_signal_mode == BNXT_SIG_MODE_PAM4) {
9861 			req->force_pam4_link_speed = cpu_to_le16(bp->link_info.req_link_speed);
9862 			req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAM4_LINK_SPEED);
9863 		} else {
9864 			req->force_link_speed = cpu_to_le16(bp->link_info.req_link_speed);
9865 		}
9866 	}
9867 
9868 	/* tell chimp that the setting takes effect immediately */
9869 	req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
9870 }
9871 
9872 int bnxt_hwrm_set_pause(struct bnxt *bp)
9873 {
9874 	struct hwrm_port_phy_cfg_input *req;
9875 	int rc;
9876 
9877 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
9878 	if (rc)
9879 		return rc;
9880 
9881 	bnxt_hwrm_set_pause_common(bp, req);
9882 
9883 	if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
9884 	    bp->link_info.force_link_chng)
9885 		bnxt_hwrm_set_link_common(bp, req);
9886 
9887 	rc = hwrm_req_send(bp, req);
9888 	if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
9889 		/* since changing of pause setting doesn't trigger any link
9890 		 * change event, the driver needs to update the current pause
9891 		 * result upon successfully return of the phy_cfg command
9892 		 */
9893 		bp->link_info.pause =
9894 		bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
9895 		bp->link_info.auto_pause_setting = 0;
9896 		if (!bp->link_info.force_link_chng)
9897 			bnxt_report_link(bp);
9898 	}
9899 	bp->link_info.force_link_chng = false;
9900 	return rc;
9901 }
9902 
9903 static void bnxt_hwrm_set_eee(struct bnxt *bp,
9904 			      struct hwrm_port_phy_cfg_input *req)
9905 {
9906 	struct ethtool_eee *eee = &bp->eee;
9907 
9908 	if (eee->eee_enabled) {
9909 		u16 eee_speeds;
9910 		u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE;
9911 
9912 		if (eee->tx_lpi_enabled)
9913 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE;
9914 		else
9915 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE;
9916 
9917 		req->flags |= cpu_to_le32(flags);
9918 		eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised);
9919 		req->eee_link_speed_mask = cpu_to_le16(eee_speeds);
9920 		req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer);
9921 	} else {
9922 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE);
9923 	}
9924 }
9925 
9926 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee)
9927 {
9928 	struct hwrm_port_phy_cfg_input *req;
9929 	int rc;
9930 
9931 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
9932 	if (rc)
9933 		return rc;
9934 
9935 	if (set_pause)
9936 		bnxt_hwrm_set_pause_common(bp, req);
9937 
9938 	bnxt_hwrm_set_link_common(bp, req);
9939 
9940 	if (set_eee)
9941 		bnxt_hwrm_set_eee(bp, req);
9942 	return hwrm_req_send(bp, req);
9943 }
9944 
9945 static int bnxt_hwrm_shutdown_link(struct bnxt *bp)
9946 {
9947 	struct hwrm_port_phy_cfg_input *req;
9948 	int rc;
9949 
9950 	if (!BNXT_SINGLE_PF(bp))
9951 		return 0;
9952 
9953 	if (pci_num_vf(bp->pdev) &&
9954 	    !(bp->phy_flags & BNXT_PHY_FL_FW_MANAGED_LKDN))
9955 		return 0;
9956 
9957 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
9958 	if (rc)
9959 		return rc;
9960 
9961 	req->flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN);
9962 	rc = hwrm_req_send(bp, req);
9963 	if (!rc) {
9964 		mutex_lock(&bp->link_lock);
9965 		/* Device is not obliged link down in certain scenarios, even
9966 		 * when forced. Setting the state unknown is consistent with
9967 		 * driver startup and will force link state to be reported
9968 		 * during subsequent open based on PORT_PHY_QCFG.
9969 		 */
9970 		bp->link_info.link_state = BNXT_LINK_STATE_UNKNOWN;
9971 		mutex_unlock(&bp->link_lock);
9972 	}
9973 	return rc;
9974 }
9975 
9976 static int bnxt_fw_reset_via_optee(struct bnxt *bp)
9977 {
9978 #ifdef CONFIG_TEE_BNXT_FW
9979 	int rc = tee_bnxt_fw_load();
9980 
9981 	if (rc)
9982 		netdev_err(bp->dev, "Failed FW reset via OP-TEE, rc=%d\n", rc);
9983 
9984 	return rc;
9985 #else
9986 	netdev_err(bp->dev, "OP-TEE not supported\n");
9987 	return -ENODEV;
9988 #endif
9989 }
9990 
9991 static int bnxt_try_recover_fw(struct bnxt *bp)
9992 {
9993 	if (bp->fw_health && bp->fw_health->status_reliable) {
9994 		int retry = 0, rc;
9995 		u32 sts;
9996 
9997 		do {
9998 			sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
9999 			rc = bnxt_hwrm_poll(bp);
10000 			if (!BNXT_FW_IS_BOOTING(sts) &&
10001 			    !BNXT_FW_IS_RECOVERING(sts))
10002 				break;
10003 			retry++;
10004 		} while (rc == -EBUSY && retry < BNXT_FW_RETRY);
10005 
10006 		if (!BNXT_FW_IS_HEALTHY(sts)) {
10007 			netdev_err(bp->dev,
10008 				   "Firmware not responding, status: 0x%x\n",
10009 				   sts);
10010 			rc = -ENODEV;
10011 		}
10012 		if (sts & FW_STATUS_REG_CRASHED_NO_MASTER) {
10013 			netdev_warn(bp->dev, "Firmware recover via OP-TEE requested\n");
10014 			return bnxt_fw_reset_via_optee(bp);
10015 		}
10016 		return rc;
10017 	}
10018 
10019 	return -ENODEV;
10020 }
10021 
10022 static void bnxt_clear_reservations(struct bnxt *bp, bool fw_reset)
10023 {
10024 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
10025 
10026 	if (!BNXT_NEW_RM(bp))
10027 		return; /* no resource reservations required */
10028 
10029 	hw_resc->resv_cp_rings = 0;
10030 	hw_resc->resv_stat_ctxs = 0;
10031 	hw_resc->resv_irqs = 0;
10032 	hw_resc->resv_tx_rings = 0;
10033 	hw_resc->resv_rx_rings = 0;
10034 	hw_resc->resv_hw_ring_grps = 0;
10035 	hw_resc->resv_vnics = 0;
10036 	if (!fw_reset) {
10037 		bp->tx_nr_rings = 0;
10038 		bp->rx_nr_rings = 0;
10039 	}
10040 }
10041 
10042 int bnxt_cancel_reservations(struct bnxt *bp, bool fw_reset)
10043 {
10044 	int rc;
10045 
10046 	if (!BNXT_NEW_RM(bp))
10047 		return 0; /* no resource reservations required */
10048 
10049 	rc = bnxt_hwrm_func_resc_qcaps(bp, true);
10050 	if (rc)
10051 		netdev_err(bp->dev, "resc_qcaps failed\n");
10052 
10053 	bnxt_clear_reservations(bp, fw_reset);
10054 
10055 	return rc;
10056 }
10057 
10058 static int bnxt_hwrm_if_change(struct bnxt *bp, bool up)
10059 {
10060 	struct hwrm_func_drv_if_change_output *resp;
10061 	struct hwrm_func_drv_if_change_input *req;
10062 	bool fw_reset = !bp->irq_tbl;
10063 	bool resc_reinit = false;
10064 	int rc, retry = 0;
10065 	u32 flags = 0;
10066 
10067 	if (!(bp->fw_cap & BNXT_FW_CAP_IF_CHANGE))
10068 		return 0;
10069 
10070 	rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_IF_CHANGE);
10071 	if (rc)
10072 		return rc;
10073 
10074 	if (up)
10075 		req->flags = cpu_to_le32(FUNC_DRV_IF_CHANGE_REQ_FLAGS_UP);
10076 	resp = hwrm_req_hold(bp, req);
10077 
10078 	hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT);
10079 	while (retry < BNXT_FW_IF_RETRY) {
10080 		rc = hwrm_req_send(bp, req);
10081 		if (rc != -EAGAIN)
10082 			break;
10083 
10084 		msleep(50);
10085 		retry++;
10086 	}
10087 
10088 	if (rc == -EAGAIN) {
10089 		hwrm_req_drop(bp, req);
10090 		return rc;
10091 	} else if (!rc) {
10092 		flags = le32_to_cpu(resp->flags);
10093 	} else if (up) {
10094 		rc = bnxt_try_recover_fw(bp);
10095 		fw_reset = true;
10096 	}
10097 	hwrm_req_drop(bp, req);
10098 	if (rc)
10099 		return rc;
10100 
10101 	if (!up) {
10102 		bnxt_inv_fw_health_reg(bp);
10103 		return 0;
10104 	}
10105 
10106 	if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_RESC_CHANGE)
10107 		resc_reinit = true;
10108 	if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_HOT_FW_RESET_DONE ||
10109 	    test_bit(BNXT_STATE_FW_RESET_DET, &bp->state))
10110 		fw_reset = true;
10111 	else
10112 		bnxt_remap_fw_health_regs(bp);
10113 
10114 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state) && !fw_reset) {
10115 		netdev_err(bp->dev, "RESET_DONE not set during FW reset.\n");
10116 		set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
10117 		return -ENODEV;
10118 	}
10119 	if (resc_reinit || fw_reset) {
10120 		if (fw_reset) {
10121 			set_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
10122 			if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
10123 				bnxt_ulp_stop(bp);
10124 			bnxt_free_ctx_mem(bp);
10125 			kfree(bp->ctx);
10126 			bp->ctx = NULL;
10127 			bnxt_dcb_free(bp);
10128 			rc = bnxt_fw_init_one(bp);
10129 			if (rc) {
10130 				clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
10131 				set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
10132 				return rc;
10133 			}
10134 			bnxt_clear_int_mode(bp);
10135 			rc = bnxt_init_int_mode(bp);
10136 			if (rc) {
10137 				clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
10138 				netdev_err(bp->dev, "init int mode failed\n");
10139 				return rc;
10140 			}
10141 		}
10142 		rc = bnxt_cancel_reservations(bp, fw_reset);
10143 	}
10144 	return rc;
10145 }
10146 
10147 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp)
10148 {
10149 	struct hwrm_port_led_qcaps_output *resp;
10150 	struct hwrm_port_led_qcaps_input *req;
10151 	struct bnxt_pf_info *pf = &bp->pf;
10152 	int rc;
10153 
10154 	bp->num_leds = 0;
10155 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601)
10156 		return 0;
10157 
10158 	rc = hwrm_req_init(bp, req, HWRM_PORT_LED_QCAPS);
10159 	if (rc)
10160 		return rc;
10161 
10162 	req->port_id = cpu_to_le16(pf->port_id);
10163 	resp = hwrm_req_hold(bp, req);
10164 	rc = hwrm_req_send(bp, req);
10165 	if (rc) {
10166 		hwrm_req_drop(bp, req);
10167 		return rc;
10168 	}
10169 	if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) {
10170 		int i;
10171 
10172 		bp->num_leds = resp->num_leds;
10173 		memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) *
10174 						 bp->num_leds);
10175 		for (i = 0; i < bp->num_leds; i++) {
10176 			struct bnxt_led_info *led = &bp->leds[i];
10177 			__le16 caps = led->led_state_caps;
10178 
10179 			if (!led->led_group_id ||
10180 			    !BNXT_LED_ALT_BLINK_CAP(caps)) {
10181 				bp->num_leds = 0;
10182 				break;
10183 			}
10184 		}
10185 	}
10186 	hwrm_req_drop(bp, req);
10187 	return 0;
10188 }
10189 
10190 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp)
10191 {
10192 	struct hwrm_wol_filter_alloc_output *resp;
10193 	struct hwrm_wol_filter_alloc_input *req;
10194 	int rc;
10195 
10196 	rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_ALLOC);
10197 	if (rc)
10198 		return rc;
10199 
10200 	req->port_id = cpu_to_le16(bp->pf.port_id);
10201 	req->wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT;
10202 	req->enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS);
10203 	memcpy(req->mac_address, bp->dev->dev_addr, ETH_ALEN);
10204 
10205 	resp = hwrm_req_hold(bp, req);
10206 	rc = hwrm_req_send(bp, req);
10207 	if (!rc)
10208 		bp->wol_filter_id = resp->wol_filter_id;
10209 	hwrm_req_drop(bp, req);
10210 	return rc;
10211 }
10212 
10213 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp)
10214 {
10215 	struct hwrm_wol_filter_free_input *req;
10216 	int rc;
10217 
10218 	rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_FREE);
10219 	if (rc)
10220 		return rc;
10221 
10222 	req->port_id = cpu_to_le16(bp->pf.port_id);
10223 	req->enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID);
10224 	req->wol_filter_id = bp->wol_filter_id;
10225 
10226 	return hwrm_req_send(bp, req);
10227 }
10228 
10229 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle)
10230 {
10231 	struct hwrm_wol_filter_qcfg_output *resp;
10232 	struct hwrm_wol_filter_qcfg_input *req;
10233 	u16 next_handle = 0;
10234 	int rc;
10235 
10236 	rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_QCFG);
10237 	if (rc)
10238 		return rc;
10239 
10240 	req->port_id = cpu_to_le16(bp->pf.port_id);
10241 	req->handle = cpu_to_le16(handle);
10242 	resp = hwrm_req_hold(bp, req);
10243 	rc = hwrm_req_send(bp, req);
10244 	if (!rc) {
10245 		next_handle = le16_to_cpu(resp->next_handle);
10246 		if (next_handle != 0) {
10247 			if (resp->wol_type ==
10248 			    WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) {
10249 				bp->wol = 1;
10250 				bp->wol_filter_id = resp->wol_filter_id;
10251 			}
10252 		}
10253 	}
10254 	hwrm_req_drop(bp, req);
10255 	return next_handle;
10256 }
10257 
10258 static void bnxt_get_wol_settings(struct bnxt *bp)
10259 {
10260 	u16 handle = 0;
10261 
10262 	bp->wol = 0;
10263 	if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP))
10264 		return;
10265 
10266 	do {
10267 		handle = bnxt_hwrm_get_wol_fltrs(bp, handle);
10268 	} while (handle && handle != 0xffff);
10269 }
10270 
10271 #ifdef CONFIG_BNXT_HWMON
10272 static ssize_t bnxt_show_temp(struct device *dev,
10273 			      struct device_attribute *devattr, char *buf)
10274 {
10275 	struct hwrm_temp_monitor_query_output *resp;
10276 	struct hwrm_temp_monitor_query_input *req;
10277 	struct bnxt *bp = dev_get_drvdata(dev);
10278 	u32 len = 0;
10279 	int rc;
10280 
10281 	rc = hwrm_req_init(bp, req, HWRM_TEMP_MONITOR_QUERY);
10282 	if (rc)
10283 		return rc;
10284 	resp = hwrm_req_hold(bp, req);
10285 	rc = hwrm_req_send(bp, req);
10286 	if (!rc)
10287 		len = sprintf(buf, "%u\n", resp->temp * 1000); /* display millidegree */
10288 	hwrm_req_drop(bp, req);
10289 	if (rc)
10290 		return rc;
10291 	return len;
10292 }
10293 static SENSOR_DEVICE_ATTR(temp1_input, 0444, bnxt_show_temp, NULL, 0);
10294 
10295 static struct attribute *bnxt_attrs[] = {
10296 	&sensor_dev_attr_temp1_input.dev_attr.attr,
10297 	NULL
10298 };
10299 ATTRIBUTE_GROUPS(bnxt);
10300 
10301 static void bnxt_hwmon_close(struct bnxt *bp)
10302 {
10303 	if (bp->hwmon_dev) {
10304 		hwmon_device_unregister(bp->hwmon_dev);
10305 		bp->hwmon_dev = NULL;
10306 	}
10307 }
10308 
10309 static void bnxt_hwmon_open(struct bnxt *bp)
10310 {
10311 	struct hwrm_temp_monitor_query_input *req;
10312 	struct pci_dev *pdev = bp->pdev;
10313 	int rc;
10314 
10315 	rc = hwrm_req_init(bp, req, HWRM_TEMP_MONITOR_QUERY);
10316 	if (!rc)
10317 		rc = hwrm_req_send_silent(bp, req);
10318 	if (rc == -EACCES || rc == -EOPNOTSUPP) {
10319 		bnxt_hwmon_close(bp);
10320 		return;
10321 	}
10322 
10323 	if (bp->hwmon_dev)
10324 		return;
10325 
10326 	bp->hwmon_dev = hwmon_device_register_with_groups(&pdev->dev,
10327 							  DRV_MODULE_NAME, bp,
10328 							  bnxt_groups);
10329 	if (IS_ERR(bp->hwmon_dev)) {
10330 		bp->hwmon_dev = NULL;
10331 		dev_warn(&pdev->dev, "Cannot register hwmon device\n");
10332 	}
10333 }
10334 #else
10335 static void bnxt_hwmon_close(struct bnxt *bp)
10336 {
10337 }
10338 
10339 static void bnxt_hwmon_open(struct bnxt *bp)
10340 {
10341 }
10342 #endif
10343 
10344 static bool bnxt_eee_config_ok(struct bnxt *bp)
10345 {
10346 	struct ethtool_eee *eee = &bp->eee;
10347 	struct bnxt_link_info *link_info = &bp->link_info;
10348 
10349 	if (!(bp->phy_flags & BNXT_PHY_FL_EEE_CAP))
10350 		return true;
10351 
10352 	if (eee->eee_enabled) {
10353 		u32 advertising =
10354 			_bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0);
10355 
10356 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
10357 			eee->eee_enabled = 0;
10358 			return false;
10359 		}
10360 		if (eee->advertised & ~advertising) {
10361 			eee->advertised = advertising & eee->supported;
10362 			return false;
10363 		}
10364 	}
10365 	return true;
10366 }
10367 
10368 static int bnxt_update_phy_setting(struct bnxt *bp)
10369 {
10370 	int rc;
10371 	bool update_link = false;
10372 	bool update_pause = false;
10373 	bool update_eee = false;
10374 	struct bnxt_link_info *link_info = &bp->link_info;
10375 
10376 	rc = bnxt_update_link(bp, true);
10377 	if (rc) {
10378 		netdev_err(bp->dev, "failed to update link (rc: %x)\n",
10379 			   rc);
10380 		return rc;
10381 	}
10382 	if (!BNXT_SINGLE_PF(bp))
10383 		return 0;
10384 
10385 	if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
10386 	    (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) !=
10387 	    link_info->req_flow_ctrl)
10388 		update_pause = true;
10389 	if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
10390 	    link_info->force_pause_setting != link_info->req_flow_ctrl)
10391 		update_pause = true;
10392 	if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
10393 		if (BNXT_AUTO_MODE(link_info->auto_mode))
10394 			update_link = true;
10395 		if (link_info->req_signal_mode == BNXT_SIG_MODE_NRZ &&
10396 		    link_info->req_link_speed != link_info->force_link_speed)
10397 			update_link = true;
10398 		else if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4 &&
10399 			 link_info->req_link_speed != link_info->force_pam4_link_speed)
10400 			update_link = true;
10401 		if (link_info->req_duplex != link_info->duplex_setting)
10402 			update_link = true;
10403 	} else {
10404 		if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
10405 			update_link = true;
10406 		if (link_info->advertising != link_info->auto_link_speeds ||
10407 		    link_info->advertising_pam4 != link_info->auto_pam4_link_speeds)
10408 			update_link = true;
10409 	}
10410 
10411 	/* The last close may have shutdown the link, so need to call
10412 	 * PHY_CFG to bring it back up.
10413 	 */
10414 	if (!BNXT_LINK_IS_UP(bp))
10415 		update_link = true;
10416 
10417 	if (!bnxt_eee_config_ok(bp))
10418 		update_eee = true;
10419 
10420 	if (update_link)
10421 		rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee);
10422 	else if (update_pause)
10423 		rc = bnxt_hwrm_set_pause(bp);
10424 	if (rc) {
10425 		netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
10426 			   rc);
10427 		return rc;
10428 	}
10429 
10430 	return rc;
10431 }
10432 
10433 /* Common routine to pre-map certain register block to different GRC window.
10434  * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
10435  * in PF and 3 windows in VF that can be customized to map in different
10436  * register blocks.
10437  */
10438 static void bnxt_preset_reg_win(struct bnxt *bp)
10439 {
10440 	if (BNXT_PF(bp)) {
10441 		/* CAG registers map to GRC window #4 */
10442 		writel(BNXT_CAG_REG_BASE,
10443 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
10444 	}
10445 }
10446 
10447 static int bnxt_init_dflt_ring_mode(struct bnxt *bp);
10448 
10449 static int bnxt_reinit_after_abort(struct bnxt *bp)
10450 {
10451 	int rc;
10452 
10453 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
10454 		return -EBUSY;
10455 
10456 	if (bp->dev->reg_state == NETREG_UNREGISTERED)
10457 		return -ENODEV;
10458 
10459 	rc = bnxt_fw_init_one(bp);
10460 	if (!rc) {
10461 		bnxt_clear_int_mode(bp);
10462 		rc = bnxt_init_int_mode(bp);
10463 		if (!rc) {
10464 			clear_bit(BNXT_STATE_ABORT_ERR, &bp->state);
10465 			set_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
10466 		}
10467 	}
10468 	return rc;
10469 }
10470 
10471 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
10472 {
10473 	int rc = 0;
10474 
10475 	bnxt_preset_reg_win(bp);
10476 	netif_carrier_off(bp->dev);
10477 	if (irq_re_init) {
10478 		/* Reserve rings now if none were reserved at driver probe. */
10479 		rc = bnxt_init_dflt_ring_mode(bp);
10480 		if (rc) {
10481 			netdev_err(bp->dev, "Failed to reserve default rings at open\n");
10482 			return rc;
10483 		}
10484 	}
10485 	rc = bnxt_reserve_rings(bp, irq_re_init);
10486 	if (rc)
10487 		return rc;
10488 	if ((bp->flags & BNXT_FLAG_RFS) &&
10489 	    !(bp->flags & BNXT_FLAG_USING_MSIX)) {
10490 		/* disable RFS if falling back to INTA */
10491 		bp->dev->hw_features &= ~NETIF_F_NTUPLE;
10492 		bp->flags &= ~BNXT_FLAG_RFS;
10493 	}
10494 
10495 	rc = bnxt_alloc_mem(bp, irq_re_init);
10496 	if (rc) {
10497 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
10498 		goto open_err_free_mem;
10499 	}
10500 
10501 	if (irq_re_init) {
10502 		bnxt_init_napi(bp);
10503 		rc = bnxt_request_irq(bp);
10504 		if (rc) {
10505 			netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
10506 			goto open_err_irq;
10507 		}
10508 	}
10509 
10510 	rc = bnxt_init_nic(bp, irq_re_init);
10511 	if (rc) {
10512 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
10513 		goto open_err_irq;
10514 	}
10515 
10516 	bnxt_enable_napi(bp);
10517 	bnxt_debug_dev_init(bp);
10518 
10519 	if (link_re_init) {
10520 		mutex_lock(&bp->link_lock);
10521 		rc = bnxt_update_phy_setting(bp);
10522 		mutex_unlock(&bp->link_lock);
10523 		if (rc) {
10524 			netdev_warn(bp->dev, "failed to update phy settings\n");
10525 			if (BNXT_SINGLE_PF(bp)) {
10526 				bp->link_info.phy_retry = true;
10527 				bp->link_info.phy_retry_expires =
10528 					jiffies + 5 * HZ;
10529 			}
10530 		}
10531 	}
10532 
10533 	if (irq_re_init)
10534 		udp_tunnel_nic_reset_ntf(bp->dev);
10535 
10536 	if (bp->tx_nr_rings_xdp < num_possible_cpus()) {
10537 		if (!static_key_enabled(&bnxt_xdp_locking_key))
10538 			static_branch_enable(&bnxt_xdp_locking_key);
10539 	} else if (static_key_enabled(&bnxt_xdp_locking_key)) {
10540 		static_branch_disable(&bnxt_xdp_locking_key);
10541 	}
10542 	set_bit(BNXT_STATE_OPEN, &bp->state);
10543 	bnxt_enable_int(bp);
10544 	/* Enable TX queues */
10545 	bnxt_tx_enable(bp);
10546 	mod_timer(&bp->timer, jiffies + bp->current_interval);
10547 	/* Poll link status and check for SFP+ module status */
10548 	mutex_lock(&bp->link_lock);
10549 	bnxt_get_port_module_status(bp);
10550 	mutex_unlock(&bp->link_lock);
10551 
10552 	/* VF-reps may need to be re-opened after the PF is re-opened */
10553 	if (BNXT_PF(bp))
10554 		bnxt_vf_reps_open(bp);
10555 	bnxt_ptp_init_rtc(bp, true);
10556 	bnxt_ptp_cfg_tstamp_filters(bp);
10557 	return 0;
10558 
10559 open_err_irq:
10560 	bnxt_del_napi(bp);
10561 
10562 open_err_free_mem:
10563 	bnxt_free_skbs(bp);
10564 	bnxt_free_irq(bp);
10565 	bnxt_free_mem(bp, true);
10566 	return rc;
10567 }
10568 
10569 /* rtnl_lock held */
10570 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
10571 {
10572 	int rc = 0;
10573 
10574 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state))
10575 		rc = -EIO;
10576 	if (!rc)
10577 		rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
10578 	if (rc) {
10579 		netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
10580 		dev_close(bp->dev);
10581 	}
10582 	return rc;
10583 }
10584 
10585 /* rtnl_lock held, open the NIC half way by allocating all resources, but
10586  * NAPI, IRQ, and TX are not enabled.  This is mainly used for offline
10587  * self tests.
10588  */
10589 int bnxt_half_open_nic(struct bnxt *bp)
10590 {
10591 	int rc = 0;
10592 
10593 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
10594 		netdev_err(bp->dev, "A previous firmware reset has not completed, aborting half open\n");
10595 		rc = -ENODEV;
10596 		goto half_open_err;
10597 	}
10598 
10599 	rc = bnxt_alloc_mem(bp, true);
10600 	if (rc) {
10601 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
10602 		goto half_open_err;
10603 	}
10604 	set_bit(BNXT_STATE_HALF_OPEN, &bp->state);
10605 	rc = bnxt_init_nic(bp, true);
10606 	if (rc) {
10607 		clear_bit(BNXT_STATE_HALF_OPEN, &bp->state);
10608 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
10609 		goto half_open_err;
10610 	}
10611 	return 0;
10612 
10613 half_open_err:
10614 	bnxt_free_skbs(bp);
10615 	bnxt_free_mem(bp, true);
10616 	dev_close(bp->dev);
10617 	return rc;
10618 }
10619 
10620 /* rtnl_lock held, this call can only be made after a previous successful
10621  * call to bnxt_half_open_nic().
10622  */
10623 void bnxt_half_close_nic(struct bnxt *bp)
10624 {
10625 	bnxt_hwrm_resource_free(bp, false, true);
10626 	bnxt_free_skbs(bp);
10627 	bnxt_free_mem(bp, true);
10628 	clear_bit(BNXT_STATE_HALF_OPEN, &bp->state);
10629 }
10630 
10631 void bnxt_reenable_sriov(struct bnxt *bp)
10632 {
10633 	if (BNXT_PF(bp)) {
10634 		struct bnxt_pf_info *pf = &bp->pf;
10635 		int n = pf->active_vfs;
10636 
10637 		if (n)
10638 			bnxt_cfg_hw_sriov(bp, &n, true);
10639 	}
10640 }
10641 
10642 static int bnxt_open(struct net_device *dev)
10643 {
10644 	struct bnxt *bp = netdev_priv(dev);
10645 	int rc;
10646 
10647 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
10648 		rc = bnxt_reinit_after_abort(bp);
10649 		if (rc) {
10650 			if (rc == -EBUSY)
10651 				netdev_err(bp->dev, "A previous firmware reset has not completed, aborting\n");
10652 			else
10653 				netdev_err(bp->dev, "Failed to reinitialize after aborted firmware reset\n");
10654 			return -ENODEV;
10655 		}
10656 	}
10657 
10658 	rc = bnxt_hwrm_if_change(bp, true);
10659 	if (rc)
10660 		return rc;
10661 
10662 	rc = __bnxt_open_nic(bp, true, true);
10663 	if (rc) {
10664 		bnxt_hwrm_if_change(bp, false);
10665 	} else {
10666 		if (test_and_clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) {
10667 			if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
10668 				bnxt_ulp_start(bp, 0);
10669 				bnxt_reenable_sriov(bp);
10670 			}
10671 		}
10672 		bnxt_hwmon_open(bp);
10673 	}
10674 
10675 	return rc;
10676 }
10677 
10678 static bool bnxt_drv_busy(struct bnxt *bp)
10679 {
10680 	return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) ||
10681 		test_bit(BNXT_STATE_READ_STATS, &bp->state));
10682 }
10683 
10684 static void bnxt_get_ring_stats(struct bnxt *bp,
10685 				struct rtnl_link_stats64 *stats);
10686 
10687 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init,
10688 			     bool link_re_init)
10689 {
10690 	/* Close the VF-reps before closing PF */
10691 	if (BNXT_PF(bp))
10692 		bnxt_vf_reps_close(bp);
10693 
10694 	/* Change device state to avoid TX queue wake up's */
10695 	bnxt_tx_disable(bp);
10696 
10697 	clear_bit(BNXT_STATE_OPEN, &bp->state);
10698 	smp_mb__after_atomic();
10699 	while (bnxt_drv_busy(bp))
10700 		msleep(20);
10701 
10702 	/* Flush rings and disable interrupts */
10703 	bnxt_shutdown_nic(bp, irq_re_init);
10704 
10705 	/* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
10706 
10707 	bnxt_debug_dev_exit(bp);
10708 	bnxt_disable_napi(bp);
10709 	del_timer_sync(&bp->timer);
10710 	bnxt_free_skbs(bp);
10711 
10712 	/* Save ring stats before shutdown */
10713 	if (bp->bnapi && irq_re_init)
10714 		bnxt_get_ring_stats(bp, &bp->net_stats_prev);
10715 	if (irq_re_init) {
10716 		bnxt_free_irq(bp);
10717 		bnxt_del_napi(bp);
10718 	}
10719 	bnxt_free_mem(bp, irq_re_init);
10720 }
10721 
10722 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
10723 {
10724 	int rc = 0;
10725 
10726 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
10727 		/* If we get here, it means firmware reset is in progress
10728 		 * while we are trying to close.  We can safely proceed with
10729 		 * the close because we are holding rtnl_lock().  Some firmware
10730 		 * messages may fail as we proceed to close.  We set the
10731 		 * ABORT_ERR flag here so that the FW reset thread will later
10732 		 * abort when it gets the rtnl_lock() and sees the flag.
10733 		 */
10734 		netdev_warn(bp->dev, "FW reset in progress during close, FW reset will be aborted\n");
10735 		set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
10736 	}
10737 
10738 #ifdef CONFIG_BNXT_SRIOV
10739 	if (bp->sriov_cfg) {
10740 		rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
10741 						      !bp->sriov_cfg,
10742 						      BNXT_SRIOV_CFG_WAIT_TMO);
10743 		if (rc)
10744 			netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
10745 	}
10746 #endif
10747 	__bnxt_close_nic(bp, irq_re_init, link_re_init);
10748 	return rc;
10749 }
10750 
10751 static int bnxt_close(struct net_device *dev)
10752 {
10753 	struct bnxt *bp = netdev_priv(dev);
10754 
10755 	bnxt_hwmon_close(bp);
10756 	bnxt_close_nic(bp, true, true);
10757 	bnxt_hwrm_shutdown_link(bp);
10758 	bnxt_hwrm_if_change(bp, false);
10759 	return 0;
10760 }
10761 
10762 static int bnxt_hwrm_port_phy_read(struct bnxt *bp, u16 phy_addr, u16 reg,
10763 				   u16 *val)
10764 {
10765 	struct hwrm_port_phy_mdio_read_output *resp;
10766 	struct hwrm_port_phy_mdio_read_input *req;
10767 	int rc;
10768 
10769 	if (bp->hwrm_spec_code < 0x10a00)
10770 		return -EOPNOTSUPP;
10771 
10772 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_READ);
10773 	if (rc)
10774 		return rc;
10775 
10776 	req->port_id = cpu_to_le16(bp->pf.port_id);
10777 	req->phy_addr = phy_addr;
10778 	req->reg_addr = cpu_to_le16(reg & 0x1f);
10779 	if (mdio_phy_id_is_c45(phy_addr)) {
10780 		req->cl45_mdio = 1;
10781 		req->phy_addr = mdio_phy_id_prtad(phy_addr);
10782 		req->dev_addr = mdio_phy_id_devad(phy_addr);
10783 		req->reg_addr = cpu_to_le16(reg);
10784 	}
10785 
10786 	resp = hwrm_req_hold(bp, req);
10787 	rc = hwrm_req_send(bp, req);
10788 	if (!rc)
10789 		*val = le16_to_cpu(resp->reg_data);
10790 	hwrm_req_drop(bp, req);
10791 	return rc;
10792 }
10793 
10794 static int bnxt_hwrm_port_phy_write(struct bnxt *bp, u16 phy_addr, u16 reg,
10795 				    u16 val)
10796 {
10797 	struct hwrm_port_phy_mdio_write_input *req;
10798 	int rc;
10799 
10800 	if (bp->hwrm_spec_code < 0x10a00)
10801 		return -EOPNOTSUPP;
10802 
10803 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_WRITE);
10804 	if (rc)
10805 		return rc;
10806 
10807 	req->port_id = cpu_to_le16(bp->pf.port_id);
10808 	req->phy_addr = phy_addr;
10809 	req->reg_addr = cpu_to_le16(reg & 0x1f);
10810 	if (mdio_phy_id_is_c45(phy_addr)) {
10811 		req->cl45_mdio = 1;
10812 		req->phy_addr = mdio_phy_id_prtad(phy_addr);
10813 		req->dev_addr = mdio_phy_id_devad(phy_addr);
10814 		req->reg_addr = cpu_to_le16(reg);
10815 	}
10816 	req->reg_data = cpu_to_le16(val);
10817 
10818 	return hwrm_req_send(bp, req);
10819 }
10820 
10821 /* rtnl_lock held */
10822 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
10823 {
10824 	struct mii_ioctl_data *mdio = if_mii(ifr);
10825 	struct bnxt *bp = netdev_priv(dev);
10826 	int rc;
10827 
10828 	switch (cmd) {
10829 	case SIOCGMIIPHY:
10830 		mdio->phy_id = bp->link_info.phy_addr;
10831 
10832 		fallthrough;
10833 	case SIOCGMIIREG: {
10834 		u16 mii_regval = 0;
10835 
10836 		if (!netif_running(dev))
10837 			return -EAGAIN;
10838 
10839 		rc = bnxt_hwrm_port_phy_read(bp, mdio->phy_id, mdio->reg_num,
10840 					     &mii_regval);
10841 		mdio->val_out = mii_regval;
10842 		return rc;
10843 	}
10844 
10845 	case SIOCSMIIREG:
10846 		if (!netif_running(dev))
10847 			return -EAGAIN;
10848 
10849 		return bnxt_hwrm_port_phy_write(bp, mdio->phy_id, mdio->reg_num,
10850 						mdio->val_in);
10851 
10852 	case SIOCSHWTSTAMP:
10853 		return bnxt_hwtstamp_set(dev, ifr);
10854 
10855 	case SIOCGHWTSTAMP:
10856 		return bnxt_hwtstamp_get(dev, ifr);
10857 
10858 	default:
10859 		/* do nothing */
10860 		break;
10861 	}
10862 	return -EOPNOTSUPP;
10863 }
10864 
10865 static void bnxt_get_ring_stats(struct bnxt *bp,
10866 				struct rtnl_link_stats64 *stats)
10867 {
10868 	int i;
10869 
10870 	for (i = 0; i < bp->cp_nr_rings; i++) {
10871 		struct bnxt_napi *bnapi = bp->bnapi[i];
10872 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
10873 		u64 *sw = cpr->stats.sw_stats;
10874 
10875 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts);
10876 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts);
10877 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts);
10878 
10879 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts);
10880 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts);
10881 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts);
10882 
10883 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes);
10884 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes);
10885 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes);
10886 
10887 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes);
10888 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes);
10889 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes);
10890 
10891 		stats->rx_missed_errors +=
10892 			BNXT_GET_RING_STATS64(sw, rx_discard_pkts);
10893 
10894 		stats->multicast += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts);
10895 
10896 		stats->tx_dropped += BNXT_GET_RING_STATS64(sw, tx_error_pkts);
10897 
10898 		stats->rx_dropped +=
10899 			cpr->sw_stats.rx.rx_netpoll_discards +
10900 			cpr->sw_stats.rx.rx_oom_discards;
10901 	}
10902 }
10903 
10904 static void bnxt_add_prev_stats(struct bnxt *bp,
10905 				struct rtnl_link_stats64 *stats)
10906 {
10907 	struct rtnl_link_stats64 *prev_stats = &bp->net_stats_prev;
10908 
10909 	stats->rx_packets += prev_stats->rx_packets;
10910 	stats->tx_packets += prev_stats->tx_packets;
10911 	stats->rx_bytes += prev_stats->rx_bytes;
10912 	stats->tx_bytes += prev_stats->tx_bytes;
10913 	stats->rx_missed_errors += prev_stats->rx_missed_errors;
10914 	stats->multicast += prev_stats->multicast;
10915 	stats->rx_dropped += prev_stats->rx_dropped;
10916 	stats->tx_dropped += prev_stats->tx_dropped;
10917 }
10918 
10919 static void
10920 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
10921 {
10922 	struct bnxt *bp = netdev_priv(dev);
10923 
10924 	set_bit(BNXT_STATE_READ_STATS, &bp->state);
10925 	/* Make sure bnxt_close_nic() sees that we are reading stats before
10926 	 * we check the BNXT_STATE_OPEN flag.
10927 	 */
10928 	smp_mb__after_atomic();
10929 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
10930 		clear_bit(BNXT_STATE_READ_STATS, &bp->state);
10931 		*stats = bp->net_stats_prev;
10932 		return;
10933 	}
10934 
10935 	bnxt_get_ring_stats(bp, stats);
10936 	bnxt_add_prev_stats(bp, stats);
10937 
10938 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
10939 		u64 *rx = bp->port_stats.sw_stats;
10940 		u64 *tx = bp->port_stats.sw_stats +
10941 			  BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
10942 
10943 		stats->rx_crc_errors =
10944 			BNXT_GET_RX_PORT_STATS64(rx, rx_fcs_err_frames);
10945 		stats->rx_frame_errors =
10946 			BNXT_GET_RX_PORT_STATS64(rx, rx_align_err_frames);
10947 		stats->rx_length_errors =
10948 			BNXT_GET_RX_PORT_STATS64(rx, rx_undrsz_frames) +
10949 			BNXT_GET_RX_PORT_STATS64(rx, rx_ovrsz_frames) +
10950 			BNXT_GET_RX_PORT_STATS64(rx, rx_runt_frames);
10951 		stats->rx_errors =
10952 			BNXT_GET_RX_PORT_STATS64(rx, rx_false_carrier_frames) +
10953 			BNXT_GET_RX_PORT_STATS64(rx, rx_jbr_frames);
10954 		stats->collisions =
10955 			BNXT_GET_TX_PORT_STATS64(tx, tx_total_collisions);
10956 		stats->tx_fifo_errors =
10957 			BNXT_GET_TX_PORT_STATS64(tx, tx_fifo_underruns);
10958 		stats->tx_errors = BNXT_GET_TX_PORT_STATS64(tx, tx_err);
10959 	}
10960 	clear_bit(BNXT_STATE_READ_STATS, &bp->state);
10961 }
10962 
10963 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
10964 {
10965 	struct net_device *dev = bp->dev;
10966 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
10967 	struct netdev_hw_addr *ha;
10968 	u8 *haddr;
10969 	int mc_count = 0;
10970 	bool update = false;
10971 	int off = 0;
10972 
10973 	netdev_for_each_mc_addr(ha, dev) {
10974 		if (mc_count >= BNXT_MAX_MC_ADDRS) {
10975 			*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
10976 			vnic->mc_list_count = 0;
10977 			return false;
10978 		}
10979 		haddr = ha->addr;
10980 		if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
10981 			memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
10982 			update = true;
10983 		}
10984 		off += ETH_ALEN;
10985 		mc_count++;
10986 	}
10987 	if (mc_count)
10988 		*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
10989 
10990 	if (mc_count != vnic->mc_list_count) {
10991 		vnic->mc_list_count = mc_count;
10992 		update = true;
10993 	}
10994 	return update;
10995 }
10996 
10997 static bool bnxt_uc_list_updated(struct bnxt *bp)
10998 {
10999 	struct net_device *dev = bp->dev;
11000 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
11001 	struct netdev_hw_addr *ha;
11002 	int off = 0;
11003 
11004 	if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
11005 		return true;
11006 
11007 	netdev_for_each_uc_addr(ha, dev) {
11008 		if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
11009 			return true;
11010 
11011 		off += ETH_ALEN;
11012 	}
11013 	return false;
11014 }
11015 
11016 static void bnxt_set_rx_mode(struct net_device *dev)
11017 {
11018 	struct bnxt *bp = netdev_priv(dev);
11019 	struct bnxt_vnic_info *vnic;
11020 	bool mc_update = false;
11021 	bool uc_update;
11022 	u32 mask;
11023 
11024 	if (!test_bit(BNXT_STATE_OPEN, &bp->state))
11025 		return;
11026 
11027 	vnic = &bp->vnic_info[0];
11028 	mask = vnic->rx_mask;
11029 	mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
11030 		  CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
11031 		  CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST |
11032 		  CFA_L2_SET_RX_MASK_REQ_MASK_BCAST);
11033 
11034 	if (dev->flags & IFF_PROMISC)
11035 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
11036 
11037 	uc_update = bnxt_uc_list_updated(bp);
11038 
11039 	if (dev->flags & IFF_BROADCAST)
11040 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
11041 	if (dev->flags & IFF_ALLMULTI) {
11042 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
11043 		vnic->mc_list_count = 0;
11044 	} else if (dev->flags & IFF_MULTICAST) {
11045 		mc_update = bnxt_mc_list_updated(bp, &mask);
11046 	}
11047 
11048 	if (mask != vnic->rx_mask || uc_update || mc_update) {
11049 		vnic->rx_mask = mask;
11050 
11051 		set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
11052 		bnxt_queue_sp_work(bp);
11053 	}
11054 }
11055 
11056 static int bnxt_cfg_rx_mode(struct bnxt *bp)
11057 {
11058 	struct net_device *dev = bp->dev;
11059 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
11060 	struct hwrm_cfa_l2_filter_free_input *req;
11061 	struct netdev_hw_addr *ha;
11062 	int i, off = 0, rc;
11063 	bool uc_update;
11064 
11065 	netif_addr_lock_bh(dev);
11066 	uc_update = bnxt_uc_list_updated(bp);
11067 	netif_addr_unlock_bh(dev);
11068 
11069 	if (!uc_update)
11070 		goto skip_uc;
11071 
11072 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE);
11073 	if (rc)
11074 		return rc;
11075 	hwrm_req_hold(bp, req);
11076 	for (i = 1; i < vnic->uc_filter_count; i++) {
11077 		req->l2_filter_id = vnic->fw_l2_filter_id[i];
11078 
11079 		rc = hwrm_req_send(bp, req);
11080 	}
11081 	hwrm_req_drop(bp, req);
11082 
11083 	vnic->uc_filter_count = 1;
11084 
11085 	netif_addr_lock_bh(dev);
11086 	if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
11087 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
11088 	} else {
11089 		netdev_for_each_uc_addr(ha, dev) {
11090 			memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
11091 			off += ETH_ALEN;
11092 			vnic->uc_filter_count++;
11093 		}
11094 	}
11095 	netif_addr_unlock_bh(dev);
11096 
11097 	for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
11098 		rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
11099 		if (rc) {
11100 			if (BNXT_VF(bp) && rc == -ENODEV) {
11101 				if (!test_and_set_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state))
11102 					netdev_warn(bp->dev, "Cannot configure L2 filters while PF is unavailable, will retry\n");
11103 				else
11104 					netdev_dbg(bp->dev, "PF still unavailable while configuring L2 filters.\n");
11105 				rc = 0;
11106 			} else {
11107 				netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
11108 			}
11109 			vnic->uc_filter_count = i;
11110 			return rc;
11111 		}
11112 	}
11113 	if (test_and_clear_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state))
11114 		netdev_notice(bp->dev, "Retry of L2 filter configuration successful.\n");
11115 
11116 skip_uc:
11117 	if ((vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS) &&
11118 	    !bnxt_promisc_ok(bp))
11119 		vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
11120 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
11121 	if (rc && (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST)) {
11122 		netdev_info(bp->dev, "Failed setting MC filters rc: %d, turning on ALL_MCAST mode\n",
11123 			    rc);
11124 		vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
11125 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
11126 		vnic->mc_list_count = 0;
11127 		rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
11128 	}
11129 	if (rc)
11130 		netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %d\n",
11131 			   rc);
11132 
11133 	return rc;
11134 }
11135 
11136 static bool bnxt_can_reserve_rings(struct bnxt *bp)
11137 {
11138 #ifdef CONFIG_BNXT_SRIOV
11139 	if (BNXT_NEW_RM(bp) && BNXT_VF(bp)) {
11140 		struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
11141 
11142 		/* No minimum rings were provisioned by the PF.  Don't
11143 		 * reserve rings by default when device is down.
11144 		 */
11145 		if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings)
11146 			return true;
11147 
11148 		if (!netif_running(bp->dev))
11149 			return false;
11150 	}
11151 #endif
11152 	return true;
11153 }
11154 
11155 /* If the chip and firmware supports RFS */
11156 static bool bnxt_rfs_supported(struct bnxt *bp)
11157 {
11158 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
11159 		if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2)
11160 			return true;
11161 		return false;
11162 	}
11163 	/* 212 firmware is broken for aRFS */
11164 	if (BNXT_FW_MAJ(bp) == 212)
11165 		return false;
11166 	if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
11167 		return true;
11168 	if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
11169 		return true;
11170 	return false;
11171 }
11172 
11173 /* If runtime conditions support RFS */
11174 static bool bnxt_rfs_capable(struct bnxt *bp)
11175 {
11176 #ifdef CONFIG_RFS_ACCEL
11177 	int vnics, max_vnics, max_rss_ctxs;
11178 
11179 	if (bp->flags & BNXT_FLAG_CHIP_P5)
11180 		return bnxt_rfs_supported(bp);
11181 	if (!(bp->flags & BNXT_FLAG_MSIX_CAP) || !bnxt_can_reserve_rings(bp) || !bp->rx_nr_rings)
11182 		return false;
11183 
11184 	vnics = 1 + bp->rx_nr_rings;
11185 	max_vnics = bnxt_get_max_func_vnics(bp);
11186 	max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp);
11187 
11188 	/* RSS contexts not a limiting factor */
11189 	if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
11190 		max_rss_ctxs = max_vnics;
11191 	if (vnics > max_vnics || vnics > max_rss_ctxs) {
11192 		if (bp->rx_nr_rings > 1)
11193 			netdev_warn(bp->dev,
11194 				    "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n",
11195 				    min(max_rss_ctxs - 1, max_vnics - 1));
11196 		return false;
11197 	}
11198 
11199 	if (!BNXT_NEW_RM(bp))
11200 		return true;
11201 
11202 	if (vnics == bp->hw_resc.resv_vnics)
11203 		return true;
11204 
11205 	bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, vnics);
11206 	if (vnics <= bp->hw_resc.resv_vnics)
11207 		return true;
11208 
11209 	netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n");
11210 	bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, 1);
11211 	return false;
11212 #else
11213 	return false;
11214 #endif
11215 }
11216 
11217 static netdev_features_t bnxt_fix_features(struct net_device *dev,
11218 					   netdev_features_t features)
11219 {
11220 	struct bnxt *bp = netdev_priv(dev);
11221 	netdev_features_t vlan_features;
11222 
11223 	if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp))
11224 		features &= ~NETIF_F_NTUPLE;
11225 
11226 	if ((bp->flags & BNXT_FLAG_NO_AGG_RINGS) || bp->xdp_prog)
11227 		features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
11228 
11229 	if (!(features & NETIF_F_GRO))
11230 		features &= ~NETIF_F_GRO_HW;
11231 
11232 	if (features & NETIF_F_GRO_HW)
11233 		features &= ~NETIF_F_LRO;
11234 
11235 	/* Both CTAG and STAG VLAN accelaration on the RX side have to be
11236 	 * turned on or off together.
11237 	 */
11238 	vlan_features = features & BNXT_HW_FEATURE_VLAN_ALL_RX;
11239 	if (vlan_features != BNXT_HW_FEATURE_VLAN_ALL_RX) {
11240 		if (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)
11241 			features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX;
11242 		else if (vlan_features)
11243 			features |= BNXT_HW_FEATURE_VLAN_ALL_RX;
11244 	}
11245 #ifdef CONFIG_BNXT_SRIOV
11246 	if (BNXT_VF(bp) && bp->vf.vlan)
11247 		features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX;
11248 #endif
11249 	return features;
11250 }
11251 
11252 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
11253 {
11254 	struct bnxt *bp = netdev_priv(dev);
11255 	u32 flags = bp->flags;
11256 	u32 changes;
11257 	int rc = 0;
11258 	bool re_init = false;
11259 	bool update_tpa = false;
11260 
11261 	flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
11262 	if (features & NETIF_F_GRO_HW)
11263 		flags |= BNXT_FLAG_GRO;
11264 	else if (features & NETIF_F_LRO)
11265 		flags |= BNXT_FLAG_LRO;
11266 
11267 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
11268 		flags &= ~BNXT_FLAG_TPA;
11269 
11270 	if (features & BNXT_HW_FEATURE_VLAN_ALL_RX)
11271 		flags |= BNXT_FLAG_STRIP_VLAN;
11272 
11273 	if (features & NETIF_F_NTUPLE)
11274 		flags |= BNXT_FLAG_RFS;
11275 
11276 	changes = flags ^ bp->flags;
11277 	if (changes & BNXT_FLAG_TPA) {
11278 		update_tpa = true;
11279 		if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
11280 		    (flags & BNXT_FLAG_TPA) == 0 ||
11281 		    (bp->flags & BNXT_FLAG_CHIP_P5))
11282 			re_init = true;
11283 	}
11284 
11285 	if (changes & ~BNXT_FLAG_TPA)
11286 		re_init = true;
11287 
11288 	if (flags != bp->flags) {
11289 		u32 old_flags = bp->flags;
11290 
11291 		if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
11292 			bp->flags = flags;
11293 			if (update_tpa)
11294 				bnxt_set_ring_params(bp);
11295 			return rc;
11296 		}
11297 
11298 		if (re_init) {
11299 			bnxt_close_nic(bp, false, false);
11300 			bp->flags = flags;
11301 			if (update_tpa)
11302 				bnxt_set_ring_params(bp);
11303 
11304 			return bnxt_open_nic(bp, false, false);
11305 		}
11306 		if (update_tpa) {
11307 			bp->flags = flags;
11308 			rc = bnxt_set_tpa(bp,
11309 					  (flags & BNXT_FLAG_TPA) ?
11310 					  true : false);
11311 			if (rc)
11312 				bp->flags = old_flags;
11313 		}
11314 	}
11315 	return rc;
11316 }
11317 
11318 static bool bnxt_exthdr_check(struct bnxt *bp, struct sk_buff *skb, int nw_off,
11319 			      u8 **nextp)
11320 {
11321 	struct ipv6hdr *ip6h = (struct ipv6hdr *)(skb->data + nw_off);
11322 	struct hop_jumbo_hdr *jhdr;
11323 	int hdr_count = 0;
11324 	u8 *nexthdr;
11325 	int start;
11326 
11327 	/* Check that there are at most 2 IPv6 extension headers, no
11328 	 * fragment header, and each is <= 64 bytes.
11329 	 */
11330 	start = nw_off + sizeof(*ip6h);
11331 	nexthdr = &ip6h->nexthdr;
11332 	while (ipv6_ext_hdr(*nexthdr)) {
11333 		struct ipv6_opt_hdr *hp;
11334 		int hdrlen;
11335 
11336 		if (hdr_count >= 3 || *nexthdr == NEXTHDR_NONE ||
11337 		    *nexthdr == NEXTHDR_FRAGMENT)
11338 			return false;
11339 		hp = __skb_header_pointer(NULL, start, sizeof(*hp), skb->data,
11340 					  skb_headlen(skb), NULL);
11341 		if (!hp)
11342 			return false;
11343 		if (*nexthdr == NEXTHDR_AUTH)
11344 			hdrlen = ipv6_authlen(hp);
11345 		else
11346 			hdrlen = ipv6_optlen(hp);
11347 
11348 		if (hdrlen > 64)
11349 			return false;
11350 
11351 		/* The ext header may be a hop-by-hop header inserted for
11352 		 * big TCP purposes. This will be removed before sending
11353 		 * from NIC, so do not count it.
11354 		 */
11355 		if (*nexthdr == NEXTHDR_HOP) {
11356 			if (likely(skb->len <= GRO_LEGACY_MAX_SIZE))
11357 				goto increment_hdr;
11358 
11359 			jhdr = (struct hop_jumbo_hdr *)hp;
11360 			if (jhdr->tlv_type != IPV6_TLV_JUMBO || jhdr->hdrlen != 0 ||
11361 			    jhdr->nexthdr != IPPROTO_TCP)
11362 				goto increment_hdr;
11363 
11364 			goto next_hdr;
11365 		}
11366 increment_hdr:
11367 		hdr_count++;
11368 next_hdr:
11369 		nexthdr = &hp->nexthdr;
11370 		start += hdrlen;
11371 	}
11372 	if (nextp) {
11373 		/* Caller will check inner protocol */
11374 		if (skb->encapsulation) {
11375 			*nextp = nexthdr;
11376 			return true;
11377 		}
11378 		*nextp = NULL;
11379 	}
11380 	/* Only support TCP/UDP for non-tunneled ipv6 and inner ipv6 */
11381 	return *nexthdr == IPPROTO_TCP || *nexthdr == IPPROTO_UDP;
11382 }
11383 
11384 /* For UDP, we can only handle 1 Vxlan port and 1 Geneve port. */
11385 static bool bnxt_udp_tunl_check(struct bnxt *bp, struct sk_buff *skb)
11386 {
11387 	struct udphdr *uh = udp_hdr(skb);
11388 	__be16 udp_port = uh->dest;
11389 
11390 	if (udp_port != bp->vxlan_port && udp_port != bp->nge_port)
11391 		return false;
11392 	if (skb->inner_protocol_type == ENCAP_TYPE_ETHER) {
11393 		struct ethhdr *eh = inner_eth_hdr(skb);
11394 
11395 		switch (eh->h_proto) {
11396 		case htons(ETH_P_IP):
11397 			return true;
11398 		case htons(ETH_P_IPV6):
11399 			return bnxt_exthdr_check(bp, skb,
11400 						 skb_inner_network_offset(skb),
11401 						 NULL);
11402 		}
11403 	}
11404 	return false;
11405 }
11406 
11407 static bool bnxt_tunl_check(struct bnxt *bp, struct sk_buff *skb, u8 l4_proto)
11408 {
11409 	switch (l4_proto) {
11410 	case IPPROTO_UDP:
11411 		return bnxt_udp_tunl_check(bp, skb);
11412 	case IPPROTO_IPIP:
11413 		return true;
11414 	case IPPROTO_GRE: {
11415 		switch (skb->inner_protocol) {
11416 		default:
11417 			return false;
11418 		case htons(ETH_P_IP):
11419 			return true;
11420 		case htons(ETH_P_IPV6):
11421 			fallthrough;
11422 		}
11423 	}
11424 	case IPPROTO_IPV6:
11425 		/* Check ext headers of inner ipv6 */
11426 		return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb),
11427 					 NULL);
11428 	}
11429 	return false;
11430 }
11431 
11432 static netdev_features_t bnxt_features_check(struct sk_buff *skb,
11433 					     struct net_device *dev,
11434 					     netdev_features_t features)
11435 {
11436 	struct bnxt *bp = netdev_priv(dev);
11437 	u8 *l4_proto;
11438 
11439 	features = vlan_features_check(skb, features);
11440 	switch (vlan_get_protocol(skb)) {
11441 	case htons(ETH_P_IP):
11442 		if (!skb->encapsulation)
11443 			return features;
11444 		l4_proto = &ip_hdr(skb)->protocol;
11445 		if (bnxt_tunl_check(bp, skb, *l4_proto))
11446 			return features;
11447 		break;
11448 	case htons(ETH_P_IPV6):
11449 		if (!bnxt_exthdr_check(bp, skb, skb_network_offset(skb),
11450 				       &l4_proto))
11451 			break;
11452 		if (!l4_proto || bnxt_tunl_check(bp, skb, *l4_proto))
11453 			return features;
11454 		break;
11455 	}
11456 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
11457 }
11458 
11459 int bnxt_dbg_hwrm_rd_reg(struct bnxt *bp, u32 reg_off, u16 num_words,
11460 			 u32 *reg_buf)
11461 {
11462 	struct hwrm_dbg_read_direct_output *resp;
11463 	struct hwrm_dbg_read_direct_input *req;
11464 	__le32 *dbg_reg_buf;
11465 	dma_addr_t mapping;
11466 	int rc, i;
11467 
11468 	rc = hwrm_req_init(bp, req, HWRM_DBG_READ_DIRECT);
11469 	if (rc)
11470 		return rc;
11471 
11472 	dbg_reg_buf = hwrm_req_dma_slice(bp, req, num_words * 4,
11473 					 &mapping);
11474 	if (!dbg_reg_buf) {
11475 		rc = -ENOMEM;
11476 		goto dbg_rd_reg_exit;
11477 	}
11478 
11479 	req->host_dest_addr = cpu_to_le64(mapping);
11480 
11481 	resp = hwrm_req_hold(bp, req);
11482 	req->read_addr = cpu_to_le32(reg_off + CHIMP_REG_VIEW_ADDR);
11483 	req->read_len32 = cpu_to_le32(num_words);
11484 
11485 	rc = hwrm_req_send(bp, req);
11486 	if (rc || resp->error_code) {
11487 		rc = -EIO;
11488 		goto dbg_rd_reg_exit;
11489 	}
11490 	for (i = 0; i < num_words; i++)
11491 		reg_buf[i] = le32_to_cpu(dbg_reg_buf[i]);
11492 
11493 dbg_rd_reg_exit:
11494 	hwrm_req_drop(bp, req);
11495 	return rc;
11496 }
11497 
11498 static int bnxt_dbg_hwrm_ring_info_get(struct bnxt *bp, u8 ring_type,
11499 				       u32 ring_id, u32 *prod, u32 *cons)
11500 {
11501 	struct hwrm_dbg_ring_info_get_output *resp;
11502 	struct hwrm_dbg_ring_info_get_input *req;
11503 	int rc;
11504 
11505 	rc = hwrm_req_init(bp, req, HWRM_DBG_RING_INFO_GET);
11506 	if (rc)
11507 		return rc;
11508 
11509 	req->ring_type = ring_type;
11510 	req->fw_ring_id = cpu_to_le32(ring_id);
11511 	resp = hwrm_req_hold(bp, req);
11512 	rc = hwrm_req_send(bp, req);
11513 	if (!rc) {
11514 		*prod = le32_to_cpu(resp->producer_index);
11515 		*cons = le32_to_cpu(resp->consumer_index);
11516 	}
11517 	hwrm_req_drop(bp, req);
11518 	return rc;
11519 }
11520 
11521 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
11522 {
11523 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
11524 	int i = bnapi->index;
11525 
11526 	if (!txr)
11527 		return;
11528 
11529 	netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
11530 		    i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
11531 		    txr->tx_cons);
11532 }
11533 
11534 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
11535 {
11536 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
11537 	int i = bnapi->index;
11538 
11539 	if (!rxr)
11540 		return;
11541 
11542 	netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
11543 		    i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
11544 		    rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
11545 		    rxr->rx_sw_agg_prod);
11546 }
11547 
11548 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
11549 {
11550 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
11551 	int i = bnapi->index;
11552 
11553 	netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
11554 		    i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
11555 }
11556 
11557 static void bnxt_dbg_dump_states(struct bnxt *bp)
11558 {
11559 	int i;
11560 	struct bnxt_napi *bnapi;
11561 
11562 	for (i = 0; i < bp->cp_nr_rings; i++) {
11563 		bnapi = bp->bnapi[i];
11564 		if (netif_msg_drv(bp)) {
11565 			bnxt_dump_tx_sw_state(bnapi);
11566 			bnxt_dump_rx_sw_state(bnapi);
11567 			bnxt_dump_cp_sw_state(bnapi);
11568 		}
11569 	}
11570 }
11571 
11572 static int bnxt_hwrm_rx_ring_reset(struct bnxt *bp, int ring_nr)
11573 {
11574 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
11575 	struct hwrm_ring_reset_input *req;
11576 	struct bnxt_napi *bnapi = rxr->bnapi;
11577 	struct bnxt_cp_ring_info *cpr;
11578 	u16 cp_ring_id;
11579 	int rc;
11580 
11581 	rc = hwrm_req_init(bp, req, HWRM_RING_RESET);
11582 	if (rc)
11583 		return rc;
11584 
11585 	cpr = &bnapi->cp_ring;
11586 	cp_ring_id = cpr->cp_ring_struct.fw_ring_id;
11587 	req->cmpl_ring = cpu_to_le16(cp_ring_id);
11588 	req->ring_type = RING_RESET_REQ_RING_TYPE_RX_RING_GRP;
11589 	req->ring_id = cpu_to_le16(bp->grp_info[bnapi->index].fw_grp_id);
11590 	return hwrm_req_send_silent(bp, req);
11591 }
11592 
11593 static void bnxt_reset_task(struct bnxt *bp, bool silent)
11594 {
11595 	if (!silent)
11596 		bnxt_dbg_dump_states(bp);
11597 	if (netif_running(bp->dev)) {
11598 		int rc;
11599 
11600 		if (silent) {
11601 			bnxt_close_nic(bp, false, false);
11602 			bnxt_open_nic(bp, false, false);
11603 		} else {
11604 			bnxt_ulp_stop(bp);
11605 			bnxt_close_nic(bp, true, false);
11606 			rc = bnxt_open_nic(bp, true, false);
11607 			bnxt_ulp_start(bp, rc);
11608 		}
11609 	}
11610 }
11611 
11612 static void bnxt_tx_timeout(struct net_device *dev, unsigned int txqueue)
11613 {
11614 	struct bnxt *bp = netdev_priv(dev);
11615 
11616 	netdev_err(bp->dev,  "TX timeout detected, starting reset task!\n");
11617 	set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
11618 	bnxt_queue_sp_work(bp);
11619 }
11620 
11621 static void bnxt_fw_health_check(struct bnxt *bp)
11622 {
11623 	struct bnxt_fw_health *fw_health = bp->fw_health;
11624 	u32 val;
11625 
11626 	if (!fw_health->enabled || test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
11627 		return;
11628 
11629 	/* Make sure it is enabled before checking the tmr_counter. */
11630 	smp_rmb();
11631 	if (fw_health->tmr_counter) {
11632 		fw_health->tmr_counter--;
11633 		return;
11634 	}
11635 
11636 	val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
11637 	if (val == fw_health->last_fw_heartbeat) {
11638 		fw_health->arrests++;
11639 		goto fw_reset;
11640 	}
11641 
11642 	fw_health->last_fw_heartbeat = val;
11643 
11644 	val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
11645 	if (val != fw_health->last_fw_reset_cnt) {
11646 		fw_health->discoveries++;
11647 		goto fw_reset;
11648 	}
11649 
11650 	fw_health->tmr_counter = fw_health->tmr_multiplier;
11651 	return;
11652 
11653 fw_reset:
11654 	set_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event);
11655 	bnxt_queue_sp_work(bp);
11656 }
11657 
11658 static void bnxt_timer(struct timer_list *t)
11659 {
11660 	struct bnxt *bp = from_timer(bp, t, timer);
11661 	struct net_device *dev = bp->dev;
11662 
11663 	if (!netif_running(dev) || !test_bit(BNXT_STATE_OPEN, &bp->state))
11664 		return;
11665 
11666 	if (atomic_read(&bp->intr_sem) != 0)
11667 		goto bnxt_restart_timer;
11668 
11669 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
11670 		bnxt_fw_health_check(bp);
11671 
11672 	if (BNXT_LINK_IS_UP(bp) && bp->stats_coal_ticks) {
11673 		set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event);
11674 		bnxt_queue_sp_work(bp);
11675 	}
11676 
11677 	if (bnxt_tc_flower_enabled(bp)) {
11678 		set_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event);
11679 		bnxt_queue_sp_work(bp);
11680 	}
11681 
11682 #ifdef CONFIG_RFS_ACCEL
11683 	if ((bp->flags & BNXT_FLAG_RFS) && bp->ntp_fltr_count) {
11684 		set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
11685 		bnxt_queue_sp_work(bp);
11686 	}
11687 #endif /*CONFIG_RFS_ACCEL*/
11688 
11689 	if (bp->link_info.phy_retry) {
11690 		if (time_after(jiffies, bp->link_info.phy_retry_expires)) {
11691 			bp->link_info.phy_retry = false;
11692 			netdev_warn(bp->dev, "failed to update phy settings after maximum retries.\n");
11693 		} else {
11694 			set_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event);
11695 			bnxt_queue_sp_work(bp);
11696 		}
11697 	}
11698 
11699 	if (test_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state)) {
11700 		set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
11701 		bnxt_queue_sp_work(bp);
11702 	}
11703 
11704 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && !bp->chip_rev &&
11705 	    netif_carrier_ok(dev)) {
11706 		set_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event);
11707 		bnxt_queue_sp_work(bp);
11708 	}
11709 bnxt_restart_timer:
11710 	mod_timer(&bp->timer, jiffies + bp->current_interval);
11711 }
11712 
11713 static void bnxt_rtnl_lock_sp(struct bnxt *bp)
11714 {
11715 	/* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK
11716 	 * set.  If the device is being closed, bnxt_close() may be holding
11717 	 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear.  So we
11718 	 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl().
11719 	 */
11720 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
11721 	rtnl_lock();
11722 }
11723 
11724 static void bnxt_rtnl_unlock_sp(struct bnxt *bp)
11725 {
11726 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
11727 	rtnl_unlock();
11728 }
11729 
11730 /* Only called from bnxt_sp_task() */
11731 static void bnxt_reset(struct bnxt *bp, bool silent)
11732 {
11733 	bnxt_rtnl_lock_sp(bp);
11734 	if (test_bit(BNXT_STATE_OPEN, &bp->state))
11735 		bnxt_reset_task(bp, silent);
11736 	bnxt_rtnl_unlock_sp(bp);
11737 }
11738 
11739 /* Only called from bnxt_sp_task() */
11740 static void bnxt_rx_ring_reset(struct bnxt *bp)
11741 {
11742 	int i;
11743 
11744 	bnxt_rtnl_lock_sp(bp);
11745 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
11746 		bnxt_rtnl_unlock_sp(bp);
11747 		return;
11748 	}
11749 	/* Disable and flush TPA before resetting the RX ring */
11750 	if (bp->flags & BNXT_FLAG_TPA)
11751 		bnxt_set_tpa(bp, false);
11752 	for (i = 0; i < bp->rx_nr_rings; i++) {
11753 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
11754 		struct bnxt_cp_ring_info *cpr;
11755 		int rc;
11756 
11757 		if (!rxr->bnapi->in_reset)
11758 			continue;
11759 
11760 		rc = bnxt_hwrm_rx_ring_reset(bp, i);
11761 		if (rc) {
11762 			if (rc == -EINVAL || rc == -EOPNOTSUPP)
11763 				netdev_info_once(bp->dev, "RX ring reset not supported by firmware, falling back to global reset\n");
11764 			else
11765 				netdev_warn(bp->dev, "RX ring reset failed, rc = %d, falling back to global reset\n",
11766 					    rc);
11767 			bnxt_reset_task(bp, true);
11768 			break;
11769 		}
11770 		bnxt_free_one_rx_ring_skbs(bp, i);
11771 		rxr->rx_prod = 0;
11772 		rxr->rx_agg_prod = 0;
11773 		rxr->rx_sw_agg_prod = 0;
11774 		rxr->rx_next_cons = 0;
11775 		rxr->bnapi->in_reset = false;
11776 		bnxt_alloc_one_rx_ring(bp, i);
11777 		cpr = &rxr->bnapi->cp_ring;
11778 		cpr->sw_stats.rx.rx_resets++;
11779 		if (bp->flags & BNXT_FLAG_AGG_RINGS)
11780 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
11781 		bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
11782 	}
11783 	if (bp->flags & BNXT_FLAG_TPA)
11784 		bnxt_set_tpa(bp, true);
11785 	bnxt_rtnl_unlock_sp(bp);
11786 }
11787 
11788 static void bnxt_fw_reset_close(struct bnxt *bp)
11789 {
11790 	bnxt_ulp_stop(bp);
11791 	/* When firmware is in fatal state, quiesce device and disable
11792 	 * bus master to prevent any potential bad DMAs before freeing
11793 	 * kernel memory.
11794 	 */
11795 	if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) {
11796 		u16 val = 0;
11797 
11798 		pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val);
11799 		if (val == 0xffff)
11800 			bp->fw_reset_min_dsecs = 0;
11801 		bnxt_tx_disable(bp);
11802 		bnxt_disable_napi(bp);
11803 		bnxt_disable_int_sync(bp);
11804 		bnxt_free_irq(bp);
11805 		bnxt_clear_int_mode(bp);
11806 		pci_disable_device(bp->pdev);
11807 	}
11808 	__bnxt_close_nic(bp, true, false);
11809 	bnxt_vf_reps_free(bp);
11810 	bnxt_clear_int_mode(bp);
11811 	bnxt_hwrm_func_drv_unrgtr(bp);
11812 	if (pci_is_enabled(bp->pdev))
11813 		pci_disable_device(bp->pdev);
11814 	bnxt_free_ctx_mem(bp);
11815 	kfree(bp->ctx);
11816 	bp->ctx = NULL;
11817 }
11818 
11819 static bool is_bnxt_fw_ok(struct bnxt *bp)
11820 {
11821 	struct bnxt_fw_health *fw_health = bp->fw_health;
11822 	bool no_heartbeat = false, has_reset = false;
11823 	u32 val;
11824 
11825 	val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
11826 	if (val == fw_health->last_fw_heartbeat)
11827 		no_heartbeat = true;
11828 
11829 	val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
11830 	if (val != fw_health->last_fw_reset_cnt)
11831 		has_reset = true;
11832 
11833 	if (!no_heartbeat && has_reset)
11834 		return true;
11835 
11836 	return false;
11837 }
11838 
11839 /* rtnl_lock is acquired before calling this function */
11840 static void bnxt_force_fw_reset(struct bnxt *bp)
11841 {
11842 	struct bnxt_fw_health *fw_health = bp->fw_health;
11843 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
11844 	u32 wait_dsecs;
11845 
11846 	if (!test_bit(BNXT_STATE_OPEN, &bp->state) ||
11847 	    test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
11848 		return;
11849 
11850 	if (ptp) {
11851 		spin_lock_bh(&ptp->ptp_lock);
11852 		set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11853 		spin_unlock_bh(&ptp->ptp_lock);
11854 	} else {
11855 		set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11856 	}
11857 	bnxt_fw_reset_close(bp);
11858 	wait_dsecs = fw_health->master_func_wait_dsecs;
11859 	if (fw_health->primary) {
11860 		if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU)
11861 			wait_dsecs = 0;
11862 		bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW;
11863 	} else {
11864 		bp->fw_reset_timestamp = jiffies + wait_dsecs * HZ / 10;
11865 		wait_dsecs = fw_health->normal_func_wait_dsecs;
11866 		bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
11867 	}
11868 
11869 	bp->fw_reset_min_dsecs = fw_health->post_reset_wait_dsecs;
11870 	bp->fw_reset_max_dsecs = fw_health->post_reset_max_wait_dsecs;
11871 	bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10);
11872 }
11873 
11874 void bnxt_fw_exception(struct bnxt *bp)
11875 {
11876 	netdev_warn(bp->dev, "Detected firmware fatal condition, initiating reset\n");
11877 	set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
11878 	bnxt_rtnl_lock_sp(bp);
11879 	bnxt_force_fw_reset(bp);
11880 	bnxt_rtnl_unlock_sp(bp);
11881 }
11882 
11883 /* Returns the number of registered VFs, or 1 if VF configuration is pending, or
11884  * < 0 on error.
11885  */
11886 static int bnxt_get_registered_vfs(struct bnxt *bp)
11887 {
11888 #ifdef CONFIG_BNXT_SRIOV
11889 	int rc;
11890 
11891 	if (!BNXT_PF(bp))
11892 		return 0;
11893 
11894 	rc = bnxt_hwrm_func_qcfg(bp);
11895 	if (rc) {
11896 		netdev_err(bp->dev, "func_qcfg cmd failed, rc = %d\n", rc);
11897 		return rc;
11898 	}
11899 	if (bp->pf.registered_vfs)
11900 		return bp->pf.registered_vfs;
11901 	if (bp->sriov_cfg)
11902 		return 1;
11903 #endif
11904 	return 0;
11905 }
11906 
11907 void bnxt_fw_reset(struct bnxt *bp)
11908 {
11909 	bnxt_rtnl_lock_sp(bp);
11910 	if (test_bit(BNXT_STATE_OPEN, &bp->state) &&
11911 	    !test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
11912 		struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
11913 		int n = 0, tmo;
11914 
11915 		if (ptp) {
11916 			spin_lock_bh(&ptp->ptp_lock);
11917 			set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11918 			spin_unlock_bh(&ptp->ptp_lock);
11919 		} else {
11920 			set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11921 		}
11922 		if (bp->pf.active_vfs &&
11923 		    !test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
11924 			n = bnxt_get_registered_vfs(bp);
11925 		if (n < 0) {
11926 			netdev_err(bp->dev, "Firmware reset aborted, rc = %d\n",
11927 				   n);
11928 			clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11929 			dev_close(bp->dev);
11930 			goto fw_reset_exit;
11931 		} else if (n > 0) {
11932 			u16 vf_tmo_dsecs = n * 10;
11933 
11934 			if (bp->fw_reset_max_dsecs < vf_tmo_dsecs)
11935 				bp->fw_reset_max_dsecs = vf_tmo_dsecs;
11936 			bp->fw_reset_state =
11937 				BNXT_FW_RESET_STATE_POLL_VF;
11938 			bnxt_queue_fw_reset_work(bp, HZ / 10);
11939 			goto fw_reset_exit;
11940 		}
11941 		bnxt_fw_reset_close(bp);
11942 		if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
11943 			bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN;
11944 			tmo = HZ / 10;
11945 		} else {
11946 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
11947 			tmo = bp->fw_reset_min_dsecs * HZ / 10;
11948 		}
11949 		bnxt_queue_fw_reset_work(bp, tmo);
11950 	}
11951 fw_reset_exit:
11952 	bnxt_rtnl_unlock_sp(bp);
11953 }
11954 
11955 static void bnxt_chk_missed_irq(struct bnxt *bp)
11956 {
11957 	int i;
11958 
11959 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
11960 		return;
11961 
11962 	for (i = 0; i < bp->cp_nr_rings; i++) {
11963 		struct bnxt_napi *bnapi = bp->bnapi[i];
11964 		struct bnxt_cp_ring_info *cpr;
11965 		u32 fw_ring_id;
11966 		int j;
11967 
11968 		if (!bnapi)
11969 			continue;
11970 
11971 		cpr = &bnapi->cp_ring;
11972 		for (j = 0; j < 2; j++) {
11973 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
11974 			u32 val[2];
11975 
11976 			if (!cpr2 || cpr2->has_more_work ||
11977 			    !bnxt_has_work(bp, cpr2))
11978 				continue;
11979 
11980 			if (cpr2->cp_raw_cons != cpr2->last_cp_raw_cons) {
11981 				cpr2->last_cp_raw_cons = cpr2->cp_raw_cons;
11982 				continue;
11983 			}
11984 			fw_ring_id = cpr2->cp_ring_struct.fw_ring_id;
11985 			bnxt_dbg_hwrm_ring_info_get(bp,
11986 				DBG_RING_INFO_GET_REQ_RING_TYPE_L2_CMPL,
11987 				fw_ring_id, &val[0], &val[1]);
11988 			cpr->sw_stats.cmn.missed_irqs++;
11989 		}
11990 	}
11991 }
11992 
11993 static void bnxt_cfg_ntp_filters(struct bnxt *);
11994 
11995 static void bnxt_init_ethtool_link_settings(struct bnxt *bp)
11996 {
11997 	struct bnxt_link_info *link_info = &bp->link_info;
11998 
11999 	if (BNXT_AUTO_MODE(link_info->auto_mode)) {
12000 		link_info->autoneg = BNXT_AUTONEG_SPEED;
12001 		if (bp->hwrm_spec_code >= 0x10201) {
12002 			if (link_info->auto_pause_setting &
12003 			    PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE)
12004 				link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
12005 		} else {
12006 			link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
12007 		}
12008 		link_info->advertising = link_info->auto_link_speeds;
12009 		link_info->advertising_pam4 = link_info->auto_pam4_link_speeds;
12010 	} else {
12011 		link_info->req_link_speed = link_info->force_link_speed;
12012 		link_info->req_signal_mode = BNXT_SIG_MODE_NRZ;
12013 		if (link_info->force_pam4_link_speed) {
12014 			link_info->req_link_speed =
12015 				link_info->force_pam4_link_speed;
12016 			link_info->req_signal_mode = BNXT_SIG_MODE_PAM4;
12017 		}
12018 		link_info->req_duplex = link_info->duplex_setting;
12019 	}
12020 	if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL)
12021 		link_info->req_flow_ctrl =
12022 			link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH;
12023 	else
12024 		link_info->req_flow_ctrl = link_info->force_pause_setting;
12025 }
12026 
12027 static void bnxt_fw_echo_reply(struct bnxt *bp)
12028 {
12029 	struct bnxt_fw_health *fw_health = bp->fw_health;
12030 	struct hwrm_func_echo_response_input *req;
12031 	int rc;
12032 
12033 	rc = hwrm_req_init(bp, req, HWRM_FUNC_ECHO_RESPONSE);
12034 	if (rc)
12035 		return;
12036 	req->event_data1 = cpu_to_le32(fw_health->echo_req_data1);
12037 	req->event_data2 = cpu_to_le32(fw_health->echo_req_data2);
12038 	hwrm_req_send(bp, req);
12039 }
12040 
12041 static void bnxt_sp_task(struct work_struct *work)
12042 {
12043 	struct bnxt *bp = container_of(work, struct bnxt, sp_task);
12044 
12045 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
12046 	smp_mb__after_atomic();
12047 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
12048 		clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
12049 		return;
12050 	}
12051 
12052 	if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
12053 		bnxt_cfg_rx_mode(bp);
12054 
12055 	if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
12056 		bnxt_cfg_ntp_filters(bp);
12057 	if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
12058 		bnxt_hwrm_exec_fwd_req(bp);
12059 	if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) {
12060 		bnxt_hwrm_port_qstats(bp, 0);
12061 		bnxt_hwrm_port_qstats_ext(bp, 0);
12062 		bnxt_accumulate_all_stats(bp);
12063 	}
12064 
12065 	if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
12066 		int rc;
12067 
12068 		mutex_lock(&bp->link_lock);
12069 		if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT,
12070 				       &bp->sp_event))
12071 			bnxt_hwrm_phy_qcaps(bp);
12072 
12073 		rc = bnxt_update_link(bp, true);
12074 		if (rc)
12075 			netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
12076 				   rc);
12077 
12078 		if (test_and_clear_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT,
12079 				       &bp->sp_event))
12080 			bnxt_init_ethtool_link_settings(bp);
12081 		mutex_unlock(&bp->link_lock);
12082 	}
12083 	if (test_and_clear_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event)) {
12084 		int rc;
12085 
12086 		mutex_lock(&bp->link_lock);
12087 		rc = bnxt_update_phy_setting(bp);
12088 		mutex_unlock(&bp->link_lock);
12089 		if (rc) {
12090 			netdev_warn(bp->dev, "update phy settings retry failed\n");
12091 		} else {
12092 			bp->link_info.phy_retry = false;
12093 			netdev_info(bp->dev, "update phy settings retry succeeded\n");
12094 		}
12095 	}
12096 	if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) {
12097 		mutex_lock(&bp->link_lock);
12098 		bnxt_get_port_module_status(bp);
12099 		mutex_unlock(&bp->link_lock);
12100 	}
12101 
12102 	if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event))
12103 		bnxt_tc_flow_stats_work(bp);
12104 
12105 	if (test_and_clear_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event))
12106 		bnxt_chk_missed_irq(bp);
12107 
12108 	if (test_and_clear_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event))
12109 		bnxt_fw_echo_reply(bp);
12110 
12111 	/* These functions below will clear BNXT_STATE_IN_SP_TASK.  They
12112 	 * must be the last functions to be called before exiting.
12113 	 */
12114 	if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event))
12115 		bnxt_reset(bp, false);
12116 
12117 	if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event))
12118 		bnxt_reset(bp, true);
12119 
12120 	if (test_and_clear_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event))
12121 		bnxt_rx_ring_reset(bp);
12122 
12123 	if (test_and_clear_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event)) {
12124 		if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) ||
12125 		    test_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state))
12126 			bnxt_devlink_health_fw_report(bp);
12127 		else
12128 			bnxt_fw_reset(bp);
12129 	}
12130 
12131 	if (test_and_clear_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event)) {
12132 		if (!is_bnxt_fw_ok(bp))
12133 			bnxt_devlink_health_fw_report(bp);
12134 	}
12135 
12136 	smp_mb__before_atomic();
12137 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
12138 }
12139 
12140 /* Under rtnl_lock */
12141 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs,
12142 		     int tx_xdp)
12143 {
12144 	int max_rx, max_tx, tx_sets = 1;
12145 	int tx_rings_needed, stats;
12146 	int rx_rings = rx;
12147 	int cp, vnics, rc;
12148 
12149 	if (tcs)
12150 		tx_sets = tcs;
12151 
12152 	rc = bnxt_get_max_rings(bp, &max_rx, &max_tx, sh);
12153 	if (rc)
12154 		return rc;
12155 
12156 	if (max_rx < rx)
12157 		return -ENOMEM;
12158 
12159 	tx_rings_needed = tx * tx_sets + tx_xdp;
12160 	if (max_tx < tx_rings_needed)
12161 		return -ENOMEM;
12162 
12163 	vnics = 1;
12164 	if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS)
12165 		vnics += rx_rings;
12166 
12167 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
12168 		rx_rings <<= 1;
12169 	cp = sh ? max_t(int, tx_rings_needed, rx) : tx_rings_needed + rx;
12170 	stats = cp;
12171 	if (BNXT_NEW_RM(bp)) {
12172 		cp += bnxt_get_ulp_msix_num(bp);
12173 		stats += bnxt_get_ulp_stat_ctxs(bp);
12174 	}
12175 	return bnxt_hwrm_check_rings(bp, tx_rings_needed, rx_rings, rx, cp,
12176 				     stats, vnics);
12177 }
12178 
12179 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev)
12180 {
12181 	if (bp->bar2) {
12182 		pci_iounmap(pdev, bp->bar2);
12183 		bp->bar2 = NULL;
12184 	}
12185 
12186 	if (bp->bar1) {
12187 		pci_iounmap(pdev, bp->bar1);
12188 		bp->bar1 = NULL;
12189 	}
12190 
12191 	if (bp->bar0) {
12192 		pci_iounmap(pdev, bp->bar0);
12193 		bp->bar0 = NULL;
12194 	}
12195 }
12196 
12197 static void bnxt_cleanup_pci(struct bnxt *bp)
12198 {
12199 	bnxt_unmap_bars(bp, bp->pdev);
12200 	pci_release_regions(bp->pdev);
12201 	if (pci_is_enabled(bp->pdev))
12202 		pci_disable_device(bp->pdev);
12203 }
12204 
12205 static void bnxt_init_dflt_coal(struct bnxt *bp)
12206 {
12207 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
12208 	struct bnxt_coal *coal;
12209 	u16 flags = 0;
12210 
12211 	if (coal_cap->cmpl_params &
12212 	    RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_TIMER_RESET)
12213 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
12214 
12215 	/* Tick values in micro seconds.
12216 	 * 1 coal_buf x bufs_per_record = 1 completion record.
12217 	 */
12218 	coal = &bp->rx_coal;
12219 	coal->coal_ticks = 10;
12220 	coal->coal_bufs = 30;
12221 	coal->coal_ticks_irq = 1;
12222 	coal->coal_bufs_irq = 2;
12223 	coal->idle_thresh = 50;
12224 	coal->bufs_per_record = 2;
12225 	coal->budget = 64;		/* NAPI budget */
12226 	coal->flags = flags;
12227 
12228 	coal = &bp->tx_coal;
12229 	coal->coal_ticks = 28;
12230 	coal->coal_bufs = 30;
12231 	coal->coal_ticks_irq = 2;
12232 	coal->coal_bufs_irq = 2;
12233 	coal->bufs_per_record = 1;
12234 	coal->flags = flags;
12235 
12236 	bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS;
12237 }
12238 
12239 static int bnxt_fw_init_one_p1(struct bnxt *bp)
12240 {
12241 	int rc;
12242 
12243 	bp->fw_cap = 0;
12244 	rc = bnxt_hwrm_ver_get(bp);
12245 	bnxt_try_map_fw_health_reg(bp);
12246 	if (rc) {
12247 		rc = bnxt_try_recover_fw(bp);
12248 		if (rc)
12249 			return rc;
12250 		rc = bnxt_hwrm_ver_get(bp);
12251 		if (rc)
12252 			return rc;
12253 	}
12254 
12255 	bnxt_nvm_cfg_ver_get(bp);
12256 
12257 	rc = bnxt_hwrm_func_reset(bp);
12258 	if (rc)
12259 		return -ENODEV;
12260 
12261 	bnxt_hwrm_fw_set_time(bp);
12262 	return 0;
12263 }
12264 
12265 static int bnxt_fw_init_one_p2(struct bnxt *bp)
12266 {
12267 	int rc;
12268 
12269 	/* Get the MAX capabilities for this function */
12270 	rc = bnxt_hwrm_func_qcaps(bp);
12271 	if (rc) {
12272 		netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
12273 			   rc);
12274 		return -ENODEV;
12275 	}
12276 
12277 	rc = bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(bp);
12278 	if (rc)
12279 		netdev_warn(bp->dev, "hwrm query adv flow mgnt failure rc: %d\n",
12280 			    rc);
12281 
12282 	if (bnxt_alloc_fw_health(bp)) {
12283 		netdev_warn(bp->dev, "no memory for firmware error recovery\n");
12284 	} else {
12285 		rc = bnxt_hwrm_error_recovery_qcfg(bp);
12286 		if (rc)
12287 			netdev_warn(bp->dev, "hwrm query error recovery failure rc: %d\n",
12288 				    rc);
12289 	}
12290 
12291 	rc = bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false);
12292 	if (rc)
12293 		return -ENODEV;
12294 
12295 	bnxt_hwrm_func_qcfg(bp);
12296 	bnxt_hwrm_vnic_qcaps(bp);
12297 	bnxt_hwrm_port_led_qcaps(bp);
12298 	bnxt_ethtool_init(bp);
12299 	bnxt_dcb_init(bp);
12300 	return 0;
12301 }
12302 
12303 static void bnxt_set_dflt_rss_hash_type(struct bnxt *bp)
12304 {
12305 	bp->flags &= ~BNXT_FLAG_UDP_RSS_CAP;
12306 	bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 |
12307 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 |
12308 			   VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 |
12309 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6;
12310 	if (bp->fw_cap & BNXT_FW_CAP_RSS_HASH_TYPE_DELTA)
12311 		bp->rss_hash_delta = bp->rss_hash_cfg;
12312 	if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) {
12313 		bp->flags |= BNXT_FLAG_UDP_RSS_CAP;
12314 		bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 |
12315 				    VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6;
12316 	}
12317 }
12318 
12319 static void bnxt_set_dflt_rfs(struct bnxt *bp)
12320 {
12321 	struct net_device *dev = bp->dev;
12322 
12323 	dev->hw_features &= ~NETIF_F_NTUPLE;
12324 	dev->features &= ~NETIF_F_NTUPLE;
12325 	bp->flags &= ~BNXT_FLAG_RFS;
12326 	if (bnxt_rfs_supported(bp)) {
12327 		dev->hw_features |= NETIF_F_NTUPLE;
12328 		if (bnxt_rfs_capable(bp)) {
12329 			bp->flags |= BNXT_FLAG_RFS;
12330 			dev->features |= NETIF_F_NTUPLE;
12331 		}
12332 	}
12333 }
12334 
12335 static void bnxt_fw_init_one_p3(struct bnxt *bp)
12336 {
12337 	struct pci_dev *pdev = bp->pdev;
12338 
12339 	bnxt_set_dflt_rss_hash_type(bp);
12340 	bnxt_set_dflt_rfs(bp);
12341 
12342 	bnxt_get_wol_settings(bp);
12343 	if (bp->flags & BNXT_FLAG_WOL_CAP)
12344 		device_set_wakeup_enable(&pdev->dev, bp->wol);
12345 	else
12346 		device_set_wakeup_capable(&pdev->dev, false);
12347 
12348 	bnxt_hwrm_set_cache_line_size(bp, cache_line_size());
12349 	bnxt_hwrm_coal_params_qcaps(bp);
12350 }
12351 
12352 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt);
12353 
12354 int bnxt_fw_init_one(struct bnxt *bp)
12355 {
12356 	int rc;
12357 
12358 	rc = bnxt_fw_init_one_p1(bp);
12359 	if (rc) {
12360 		netdev_err(bp->dev, "Firmware init phase 1 failed\n");
12361 		return rc;
12362 	}
12363 	rc = bnxt_fw_init_one_p2(bp);
12364 	if (rc) {
12365 		netdev_err(bp->dev, "Firmware init phase 2 failed\n");
12366 		return rc;
12367 	}
12368 	rc = bnxt_probe_phy(bp, false);
12369 	if (rc)
12370 		return rc;
12371 	rc = bnxt_approve_mac(bp, bp->dev->dev_addr, false);
12372 	if (rc)
12373 		return rc;
12374 
12375 	bnxt_fw_init_one_p3(bp);
12376 	return 0;
12377 }
12378 
12379 static void bnxt_fw_reset_writel(struct bnxt *bp, int reg_idx)
12380 {
12381 	struct bnxt_fw_health *fw_health = bp->fw_health;
12382 	u32 reg = fw_health->fw_reset_seq_regs[reg_idx];
12383 	u32 val = fw_health->fw_reset_seq_vals[reg_idx];
12384 	u32 reg_type, reg_off, delay_msecs;
12385 
12386 	delay_msecs = fw_health->fw_reset_seq_delay_msec[reg_idx];
12387 	reg_type = BNXT_FW_HEALTH_REG_TYPE(reg);
12388 	reg_off = BNXT_FW_HEALTH_REG_OFF(reg);
12389 	switch (reg_type) {
12390 	case BNXT_FW_HEALTH_REG_TYPE_CFG:
12391 		pci_write_config_dword(bp->pdev, reg_off, val);
12392 		break;
12393 	case BNXT_FW_HEALTH_REG_TYPE_GRC:
12394 		writel(reg_off & BNXT_GRC_BASE_MASK,
12395 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4);
12396 		reg_off = (reg_off & BNXT_GRC_OFFSET_MASK) + 0x2000;
12397 		fallthrough;
12398 	case BNXT_FW_HEALTH_REG_TYPE_BAR0:
12399 		writel(val, bp->bar0 + reg_off);
12400 		break;
12401 	case BNXT_FW_HEALTH_REG_TYPE_BAR1:
12402 		writel(val, bp->bar1 + reg_off);
12403 		break;
12404 	}
12405 	if (delay_msecs) {
12406 		pci_read_config_dword(bp->pdev, 0, &val);
12407 		msleep(delay_msecs);
12408 	}
12409 }
12410 
12411 bool bnxt_hwrm_reset_permitted(struct bnxt *bp)
12412 {
12413 	struct hwrm_func_qcfg_output *resp;
12414 	struct hwrm_func_qcfg_input *req;
12415 	bool result = true; /* firmware will enforce if unknown */
12416 
12417 	if (~bp->fw_cap & BNXT_FW_CAP_HOT_RESET_IF)
12418 		return result;
12419 
12420 	if (hwrm_req_init(bp, req, HWRM_FUNC_QCFG))
12421 		return result;
12422 
12423 	req->fid = cpu_to_le16(0xffff);
12424 	resp = hwrm_req_hold(bp, req);
12425 	if (!hwrm_req_send(bp, req))
12426 		result = !!(le16_to_cpu(resp->flags) &
12427 			    FUNC_QCFG_RESP_FLAGS_HOT_RESET_ALLOWED);
12428 	hwrm_req_drop(bp, req);
12429 	return result;
12430 }
12431 
12432 static void bnxt_reset_all(struct bnxt *bp)
12433 {
12434 	struct bnxt_fw_health *fw_health = bp->fw_health;
12435 	int i, rc;
12436 
12437 	if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
12438 		bnxt_fw_reset_via_optee(bp);
12439 		bp->fw_reset_timestamp = jiffies;
12440 		return;
12441 	}
12442 
12443 	if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_HOST) {
12444 		for (i = 0; i < fw_health->fw_reset_seq_cnt; i++)
12445 			bnxt_fw_reset_writel(bp, i);
12446 	} else if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) {
12447 		struct hwrm_fw_reset_input *req;
12448 
12449 		rc = hwrm_req_init(bp, req, HWRM_FW_RESET);
12450 		if (!rc) {
12451 			req->target_id = cpu_to_le16(HWRM_TARGET_ID_KONG);
12452 			req->embedded_proc_type = FW_RESET_REQ_EMBEDDED_PROC_TYPE_CHIP;
12453 			req->selfrst_status = FW_RESET_REQ_SELFRST_STATUS_SELFRSTASAP;
12454 			req->flags = FW_RESET_REQ_FLAGS_RESET_GRACEFUL;
12455 			rc = hwrm_req_send(bp, req);
12456 		}
12457 		if (rc != -ENODEV)
12458 			netdev_warn(bp->dev, "Unable to reset FW rc=%d\n", rc);
12459 	}
12460 	bp->fw_reset_timestamp = jiffies;
12461 }
12462 
12463 static bool bnxt_fw_reset_timeout(struct bnxt *bp)
12464 {
12465 	return time_after(jiffies, bp->fw_reset_timestamp +
12466 			  (bp->fw_reset_max_dsecs * HZ / 10));
12467 }
12468 
12469 static void bnxt_fw_reset_abort(struct bnxt *bp, int rc)
12470 {
12471 	clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12472 	if (bp->fw_reset_state != BNXT_FW_RESET_STATE_POLL_VF) {
12473 		bnxt_ulp_start(bp, rc);
12474 		bnxt_dl_health_fw_status_update(bp, false);
12475 	}
12476 	bp->fw_reset_state = 0;
12477 	dev_close(bp->dev);
12478 }
12479 
12480 static void bnxt_fw_reset_task(struct work_struct *work)
12481 {
12482 	struct bnxt *bp = container_of(work, struct bnxt, fw_reset_task.work);
12483 	int rc = 0;
12484 
12485 	if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
12486 		netdev_err(bp->dev, "bnxt_fw_reset_task() called when not in fw reset mode!\n");
12487 		return;
12488 	}
12489 
12490 	switch (bp->fw_reset_state) {
12491 	case BNXT_FW_RESET_STATE_POLL_VF: {
12492 		int n = bnxt_get_registered_vfs(bp);
12493 		int tmo;
12494 
12495 		if (n < 0) {
12496 			netdev_err(bp->dev, "Firmware reset aborted, subsequent func_qcfg cmd failed, rc = %d, %d msecs since reset timestamp\n",
12497 				   n, jiffies_to_msecs(jiffies -
12498 				   bp->fw_reset_timestamp));
12499 			goto fw_reset_abort;
12500 		} else if (n > 0) {
12501 			if (bnxt_fw_reset_timeout(bp)) {
12502 				clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12503 				bp->fw_reset_state = 0;
12504 				netdev_err(bp->dev, "Firmware reset aborted, bnxt_get_registered_vfs() returns %d\n",
12505 					   n);
12506 				return;
12507 			}
12508 			bnxt_queue_fw_reset_work(bp, HZ / 10);
12509 			return;
12510 		}
12511 		bp->fw_reset_timestamp = jiffies;
12512 		rtnl_lock();
12513 		if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
12514 			bnxt_fw_reset_abort(bp, rc);
12515 			rtnl_unlock();
12516 			return;
12517 		}
12518 		bnxt_fw_reset_close(bp);
12519 		if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
12520 			bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN;
12521 			tmo = HZ / 10;
12522 		} else {
12523 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
12524 			tmo = bp->fw_reset_min_dsecs * HZ / 10;
12525 		}
12526 		rtnl_unlock();
12527 		bnxt_queue_fw_reset_work(bp, tmo);
12528 		return;
12529 	}
12530 	case BNXT_FW_RESET_STATE_POLL_FW_DOWN: {
12531 		u32 val;
12532 
12533 		val = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
12534 		if (!(val & BNXT_FW_STATUS_SHUTDOWN) &&
12535 		    !bnxt_fw_reset_timeout(bp)) {
12536 			bnxt_queue_fw_reset_work(bp, HZ / 5);
12537 			return;
12538 		}
12539 
12540 		if (!bp->fw_health->primary) {
12541 			u32 wait_dsecs = bp->fw_health->normal_func_wait_dsecs;
12542 
12543 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
12544 			bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10);
12545 			return;
12546 		}
12547 		bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW;
12548 	}
12549 		fallthrough;
12550 	case BNXT_FW_RESET_STATE_RESET_FW:
12551 		bnxt_reset_all(bp);
12552 		bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
12553 		bnxt_queue_fw_reset_work(bp, bp->fw_reset_min_dsecs * HZ / 10);
12554 		return;
12555 	case BNXT_FW_RESET_STATE_ENABLE_DEV:
12556 		bnxt_inv_fw_health_reg(bp);
12557 		if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) &&
12558 		    !bp->fw_reset_min_dsecs) {
12559 			u16 val;
12560 
12561 			pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val);
12562 			if (val == 0xffff) {
12563 				if (bnxt_fw_reset_timeout(bp)) {
12564 					netdev_err(bp->dev, "Firmware reset aborted, PCI config space invalid\n");
12565 					rc = -ETIMEDOUT;
12566 					goto fw_reset_abort;
12567 				}
12568 				bnxt_queue_fw_reset_work(bp, HZ / 1000);
12569 				return;
12570 			}
12571 		}
12572 		clear_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
12573 		clear_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state);
12574 		if (test_and_clear_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state) &&
12575 		    !test_bit(BNXT_STATE_FW_ACTIVATE, &bp->state))
12576 			bnxt_dl_remote_reload(bp);
12577 		if (pci_enable_device(bp->pdev)) {
12578 			netdev_err(bp->dev, "Cannot re-enable PCI device\n");
12579 			rc = -ENODEV;
12580 			goto fw_reset_abort;
12581 		}
12582 		pci_set_master(bp->pdev);
12583 		bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW;
12584 		fallthrough;
12585 	case BNXT_FW_RESET_STATE_POLL_FW:
12586 		bp->hwrm_cmd_timeout = SHORT_HWRM_CMD_TIMEOUT;
12587 		rc = bnxt_hwrm_poll(bp);
12588 		if (rc) {
12589 			if (bnxt_fw_reset_timeout(bp)) {
12590 				netdev_err(bp->dev, "Firmware reset aborted\n");
12591 				goto fw_reset_abort_status;
12592 			}
12593 			bnxt_queue_fw_reset_work(bp, HZ / 5);
12594 			return;
12595 		}
12596 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
12597 		bp->fw_reset_state = BNXT_FW_RESET_STATE_OPENING;
12598 		fallthrough;
12599 	case BNXT_FW_RESET_STATE_OPENING:
12600 		while (!rtnl_trylock()) {
12601 			bnxt_queue_fw_reset_work(bp, HZ / 10);
12602 			return;
12603 		}
12604 		rc = bnxt_open(bp->dev);
12605 		if (rc) {
12606 			netdev_err(bp->dev, "bnxt_open() failed during FW reset\n");
12607 			bnxt_fw_reset_abort(bp, rc);
12608 			rtnl_unlock();
12609 			return;
12610 		}
12611 
12612 		if ((bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) &&
12613 		    bp->fw_health->enabled) {
12614 			bp->fw_health->last_fw_reset_cnt =
12615 				bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
12616 		}
12617 		bp->fw_reset_state = 0;
12618 		/* Make sure fw_reset_state is 0 before clearing the flag */
12619 		smp_mb__before_atomic();
12620 		clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12621 		bnxt_ulp_start(bp, 0);
12622 		bnxt_reenable_sriov(bp);
12623 		bnxt_vf_reps_alloc(bp);
12624 		bnxt_vf_reps_open(bp);
12625 		bnxt_ptp_reapply_pps(bp);
12626 		clear_bit(BNXT_STATE_FW_ACTIVATE, &bp->state);
12627 		if (test_and_clear_bit(BNXT_STATE_RECOVER, &bp->state)) {
12628 			bnxt_dl_health_fw_recovery_done(bp);
12629 			bnxt_dl_health_fw_status_update(bp, true);
12630 		}
12631 		rtnl_unlock();
12632 		break;
12633 	}
12634 	return;
12635 
12636 fw_reset_abort_status:
12637 	if (bp->fw_health->status_reliable ||
12638 	    (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) {
12639 		u32 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
12640 
12641 		netdev_err(bp->dev, "fw_health_status 0x%x\n", sts);
12642 	}
12643 fw_reset_abort:
12644 	rtnl_lock();
12645 	bnxt_fw_reset_abort(bp, rc);
12646 	rtnl_unlock();
12647 }
12648 
12649 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
12650 {
12651 	int rc;
12652 	struct bnxt *bp = netdev_priv(dev);
12653 
12654 	SET_NETDEV_DEV(dev, &pdev->dev);
12655 
12656 	/* enable device (incl. PCI PM wakeup), and bus-mastering */
12657 	rc = pci_enable_device(pdev);
12658 	if (rc) {
12659 		dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
12660 		goto init_err;
12661 	}
12662 
12663 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
12664 		dev_err(&pdev->dev,
12665 			"Cannot find PCI device base address, aborting\n");
12666 		rc = -ENODEV;
12667 		goto init_err_disable;
12668 	}
12669 
12670 	rc = pci_request_regions(pdev, DRV_MODULE_NAME);
12671 	if (rc) {
12672 		dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
12673 		goto init_err_disable;
12674 	}
12675 
12676 	if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
12677 	    dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
12678 		dev_err(&pdev->dev, "System does not support DMA, aborting\n");
12679 		rc = -EIO;
12680 		goto init_err_release;
12681 	}
12682 
12683 	pci_set_master(pdev);
12684 
12685 	bp->dev = dev;
12686 	bp->pdev = pdev;
12687 
12688 	/* Doorbell BAR bp->bar1 is mapped after bnxt_fw_init_one_p2()
12689 	 * determines the BAR size.
12690 	 */
12691 	bp->bar0 = pci_ioremap_bar(pdev, 0);
12692 	if (!bp->bar0) {
12693 		dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
12694 		rc = -ENOMEM;
12695 		goto init_err_release;
12696 	}
12697 
12698 	bp->bar2 = pci_ioremap_bar(pdev, 4);
12699 	if (!bp->bar2) {
12700 		dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
12701 		rc = -ENOMEM;
12702 		goto init_err_release;
12703 	}
12704 
12705 	pci_enable_pcie_error_reporting(pdev);
12706 
12707 	INIT_WORK(&bp->sp_task, bnxt_sp_task);
12708 	INIT_DELAYED_WORK(&bp->fw_reset_task, bnxt_fw_reset_task);
12709 
12710 	spin_lock_init(&bp->ntp_fltr_lock);
12711 #if BITS_PER_LONG == 32
12712 	spin_lock_init(&bp->db_lock);
12713 #endif
12714 
12715 	bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
12716 	bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
12717 
12718 	timer_setup(&bp->timer, bnxt_timer, 0);
12719 	bp->current_interval = BNXT_TIMER_INTERVAL;
12720 
12721 	bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID;
12722 	bp->nge_fw_dst_port_id = INVALID_HW_RING_ID;
12723 
12724 	clear_bit(BNXT_STATE_OPEN, &bp->state);
12725 	return 0;
12726 
12727 init_err_release:
12728 	bnxt_unmap_bars(bp, pdev);
12729 	pci_release_regions(pdev);
12730 
12731 init_err_disable:
12732 	pci_disable_device(pdev);
12733 
12734 init_err:
12735 	return rc;
12736 }
12737 
12738 /* rtnl_lock held */
12739 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
12740 {
12741 	struct sockaddr *addr = p;
12742 	struct bnxt *bp = netdev_priv(dev);
12743 	int rc = 0;
12744 
12745 	if (!is_valid_ether_addr(addr->sa_data))
12746 		return -EADDRNOTAVAIL;
12747 
12748 	if (ether_addr_equal(addr->sa_data, dev->dev_addr))
12749 		return 0;
12750 
12751 	rc = bnxt_approve_mac(bp, addr->sa_data, true);
12752 	if (rc)
12753 		return rc;
12754 
12755 	eth_hw_addr_set(dev, addr->sa_data);
12756 	if (netif_running(dev)) {
12757 		bnxt_close_nic(bp, false, false);
12758 		rc = bnxt_open_nic(bp, false, false);
12759 	}
12760 
12761 	return rc;
12762 }
12763 
12764 /* rtnl_lock held */
12765 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
12766 {
12767 	struct bnxt *bp = netdev_priv(dev);
12768 
12769 	if (netif_running(dev))
12770 		bnxt_close_nic(bp, true, false);
12771 
12772 	dev->mtu = new_mtu;
12773 	bnxt_set_ring_params(bp);
12774 
12775 	if (netif_running(dev))
12776 		return bnxt_open_nic(bp, true, false);
12777 
12778 	return 0;
12779 }
12780 
12781 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc)
12782 {
12783 	struct bnxt *bp = netdev_priv(dev);
12784 	bool sh = false;
12785 	int rc;
12786 
12787 	if (tc > bp->max_tc) {
12788 		netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n",
12789 			   tc, bp->max_tc);
12790 		return -EINVAL;
12791 	}
12792 
12793 	if (netdev_get_num_tc(dev) == tc)
12794 		return 0;
12795 
12796 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
12797 		sh = true;
12798 
12799 	rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings,
12800 			      sh, tc, bp->tx_nr_rings_xdp);
12801 	if (rc)
12802 		return rc;
12803 
12804 	/* Needs to close the device and do hw resource re-allocations */
12805 	if (netif_running(bp->dev))
12806 		bnxt_close_nic(bp, true, false);
12807 
12808 	if (tc) {
12809 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
12810 		netdev_set_num_tc(dev, tc);
12811 	} else {
12812 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
12813 		netdev_reset_tc(dev);
12814 	}
12815 	bp->tx_nr_rings += bp->tx_nr_rings_xdp;
12816 	bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
12817 			       bp->tx_nr_rings + bp->rx_nr_rings;
12818 
12819 	if (netif_running(bp->dev))
12820 		return bnxt_open_nic(bp, true, false);
12821 
12822 	return 0;
12823 }
12824 
12825 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
12826 				  void *cb_priv)
12827 {
12828 	struct bnxt *bp = cb_priv;
12829 
12830 	if (!bnxt_tc_flower_enabled(bp) ||
12831 	    !tc_cls_can_offload_and_chain0(bp->dev, type_data))
12832 		return -EOPNOTSUPP;
12833 
12834 	switch (type) {
12835 	case TC_SETUP_CLSFLOWER:
12836 		return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data);
12837 	default:
12838 		return -EOPNOTSUPP;
12839 	}
12840 }
12841 
12842 LIST_HEAD(bnxt_block_cb_list);
12843 
12844 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type,
12845 			 void *type_data)
12846 {
12847 	struct bnxt *bp = netdev_priv(dev);
12848 
12849 	switch (type) {
12850 	case TC_SETUP_BLOCK:
12851 		return flow_block_cb_setup_simple(type_data,
12852 						  &bnxt_block_cb_list,
12853 						  bnxt_setup_tc_block_cb,
12854 						  bp, bp, true);
12855 	case TC_SETUP_QDISC_MQPRIO: {
12856 		struct tc_mqprio_qopt *mqprio = type_data;
12857 
12858 		mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
12859 
12860 		return bnxt_setup_mq_tc(dev, mqprio->num_tc);
12861 	}
12862 	default:
12863 		return -EOPNOTSUPP;
12864 	}
12865 }
12866 
12867 #ifdef CONFIG_RFS_ACCEL
12868 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
12869 			    struct bnxt_ntuple_filter *f2)
12870 {
12871 	struct flow_keys *keys1 = &f1->fkeys;
12872 	struct flow_keys *keys2 = &f2->fkeys;
12873 
12874 	if (keys1->basic.n_proto != keys2->basic.n_proto ||
12875 	    keys1->basic.ip_proto != keys2->basic.ip_proto)
12876 		return false;
12877 
12878 	if (keys1->basic.n_proto == htons(ETH_P_IP)) {
12879 		if (keys1->addrs.v4addrs.src != keys2->addrs.v4addrs.src ||
12880 		    keys1->addrs.v4addrs.dst != keys2->addrs.v4addrs.dst)
12881 			return false;
12882 	} else {
12883 		if (memcmp(&keys1->addrs.v6addrs.src, &keys2->addrs.v6addrs.src,
12884 			   sizeof(keys1->addrs.v6addrs.src)) ||
12885 		    memcmp(&keys1->addrs.v6addrs.dst, &keys2->addrs.v6addrs.dst,
12886 			   sizeof(keys1->addrs.v6addrs.dst)))
12887 			return false;
12888 	}
12889 
12890 	if (keys1->ports.ports == keys2->ports.ports &&
12891 	    keys1->control.flags == keys2->control.flags &&
12892 	    ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) &&
12893 	    ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr))
12894 		return true;
12895 
12896 	return false;
12897 }
12898 
12899 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
12900 			      u16 rxq_index, u32 flow_id)
12901 {
12902 	struct bnxt *bp = netdev_priv(dev);
12903 	struct bnxt_ntuple_filter *fltr, *new_fltr;
12904 	struct flow_keys *fkeys;
12905 	struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
12906 	int rc = 0, idx, bit_id, l2_idx = 0;
12907 	struct hlist_head *head;
12908 	u32 flags;
12909 
12910 	if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) {
12911 		struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
12912 		int off = 0, j;
12913 
12914 		netif_addr_lock_bh(dev);
12915 		for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) {
12916 			if (ether_addr_equal(eth->h_dest,
12917 					     vnic->uc_list + off)) {
12918 				l2_idx = j + 1;
12919 				break;
12920 			}
12921 		}
12922 		netif_addr_unlock_bh(dev);
12923 		if (!l2_idx)
12924 			return -EINVAL;
12925 	}
12926 	new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
12927 	if (!new_fltr)
12928 		return -ENOMEM;
12929 
12930 	fkeys = &new_fltr->fkeys;
12931 	if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
12932 		rc = -EPROTONOSUPPORT;
12933 		goto err_free;
12934 	}
12935 
12936 	if ((fkeys->basic.n_proto != htons(ETH_P_IP) &&
12937 	     fkeys->basic.n_proto != htons(ETH_P_IPV6)) ||
12938 	    ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
12939 	     (fkeys->basic.ip_proto != IPPROTO_UDP))) {
12940 		rc = -EPROTONOSUPPORT;
12941 		goto err_free;
12942 	}
12943 	if (fkeys->basic.n_proto == htons(ETH_P_IPV6) &&
12944 	    bp->hwrm_spec_code < 0x10601) {
12945 		rc = -EPROTONOSUPPORT;
12946 		goto err_free;
12947 	}
12948 	flags = fkeys->control.flags;
12949 	if (((flags & FLOW_DIS_ENCAPSULATION) &&
12950 	     bp->hwrm_spec_code < 0x10601) || (flags & FLOW_DIS_IS_FRAGMENT)) {
12951 		rc = -EPROTONOSUPPORT;
12952 		goto err_free;
12953 	}
12954 
12955 	memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN);
12956 	memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
12957 
12958 	idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
12959 	head = &bp->ntp_fltr_hash_tbl[idx];
12960 	rcu_read_lock();
12961 	hlist_for_each_entry_rcu(fltr, head, hash) {
12962 		if (bnxt_fltr_match(fltr, new_fltr)) {
12963 			rc = fltr->sw_id;
12964 			rcu_read_unlock();
12965 			goto err_free;
12966 		}
12967 	}
12968 	rcu_read_unlock();
12969 
12970 	spin_lock_bh(&bp->ntp_fltr_lock);
12971 	bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
12972 					 BNXT_NTP_FLTR_MAX_FLTR, 0);
12973 	if (bit_id < 0) {
12974 		spin_unlock_bh(&bp->ntp_fltr_lock);
12975 		rc = -ENOMEM;
12976 		goto err_free;
12977 	}
12978 
12979 	new_fltr->sw_id = (u16)bit_id;
12980 	new_fltr->flow_id = flow_id;
12981 	new_fltr->l2_fltr_idx = l2_idx;
12982 	new_fltr->rxq = rxq_index;
12983 	hlist_add_head_rcu(&new_fltr->hash, head);
12984 	bp->ntp_fltr_count++;
12985 	spin_unlock_bh(&bp->ntp_fltr_lock);
12986 
12987 	set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
12988 	bnxt_queue_sp_work(bp);
12989 
12990 	return new_fltr->sw_id;
12991 
12992 err_free:
12993 	kfree(new_fltr);
12994 	return rc;
12995 }
12996 
12997 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
12998 {
12999 	int i;
13000 
13001 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
13002 		struct hlist_head *head;
13003 		struct hlist_node *tmp;
13004 		struct bnxt_ntuple_filter *fltr;
13005 		int rc;
13006 
13007 		head = &bp->ntp_fltr_hash_tbl[i];
13008 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
13009 			bool del = false;
13010 
13011 			if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
13012 				if (rps_may_expire_flow(bp->dev, fltr->rxq,
13013 							fltr->flow_id,
13014 							fltr->sw_id)) {
13015 					bnxt_hwrm_cfa_ntuple_filter_free(bp,
13016 									 fltr);
13017 					del = true;
13018 				}
13019 			} else {
13020 				rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
13021 								       fltr);
13022 				if (rc)
13023 					del = true;
13024 				else
13025 					set_bit(BNXT_FLTR_VALID, &fltr->state);
13026 			}
13027 
13028 			if (del) {
13029 				spin_lock_bh(&bp->ntp_fltr_lock);
13030 				hlist_del_rcu(&fltr->hash);
13031 				bp->ntp_fltr_count--;
13032 				spin_unlock_bh(&bp->ntp_fltr_lock);
13033 				synchronize_rcu();
13034 				clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
13035 				kfree(fltr);
13036 			}
13037 		}
13038 	}
13039 	if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event))
13040 		netdev_info(bp->dev, "Receive PF driver unload event!\n");
13041 }
13042 
13043 #else
13044 
13045 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
13046 {
13047 }
13048 
13049 #endif /* CONFIG_RFS_ACCEL */
13050 
13051 static int bnxt_udp_tunnel_sync(struct net_device *netdev, unsigned int table)
13052 {
13053 	struct bnxt *bp = netdev_priv(netdev);
13054 	struct udp_tunnel_info ti;
13055 	unsigned int cmd;
13056 
13057 	udp_tunnel_nic_get_port(netdev, table, 0, &ti);
13058 	if (ti.type == UDP_TUNNEL_TYPE_VXLAN)
13059 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN;
13060 	else
13061 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE;
13062 
13063 	if (ti.port)
13064 		return bnxt_hwrm_tunnel_dst_port_alloc(bp, ti.port, cmd);
13065 
13066 	return bnxt_hwrm_tunnel_dst_port_free(bp, cmd);
13067 }
13068 
13069 static const struct udp_tunnel_nic_info bnxt_udp_tunnels = {
13070 	.sync_table	= bnxt_udp_tunnel_sync,
13071 	.flags		= UDP_TUNNEL_NIC_INFO_MAY_SLEEP |
13072 			  UDP_TUNNEL_NIC_INFO_OPEN_ONLY,
13073 	.tables		= {
13074 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN,  },
13075 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
13076 	},
13077 };
13078 
13079 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
13080 			       struct net_device *dev, u32 filter_mask,
13081 			       int nlflags)
13082 {
13083 	struct bnxt *bp = netdev_priv(dev);
13084 
13085 	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0,
13086 				       nlflags, filter_mask, NULL);
13087 }
13088 
13089 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
13090 			       u16 flags, struct netlink_ext_ack *extack)
13091 {
13092 	struct bnxt *bp = netdev_priv(dev);
13093 	struct nlattr *attr, *br_spec;
13094 	int rem, rc = 0;
13095 
13096 	if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp))
13097 		return -EOPNOTSUPP;
13098 
13099 	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
13100 	if (!br_spec)
13101 		return -EINVAL;
13102 
13103 	nla_for_each_nested(attr, br_spec, rem) {
13104 		u16 mode;
13105 
13106 		if (nla_type(attr) != IFLA_BRIDGE_MODE)
13107 			continue;
13108 
13109 		if (nla_len(attr) < sizeof(mode))
13110 			return -EINVAL;
13111 
13112 		mode = nla_get_u16(attr);
13113 		if (mode == bp->br_mode)
13114 			break;
13115 
13116 		rc = bnxt_hwrm_set_br_mode(bp, mode);
13117 		if (!rc)
13118 			bp->br_mode = mode;
13119 		break;
13120 	}
13121 	return rc;
13122 }
13123 
13124 int bnxt_get_port_parent_id(struct net_device *dev,
13125 			    struct netdev_phys_item_id *ppid)
13126 {
13127 	struct bnxt *bp = netdev_priv(dev);
13128 
13129 	if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV)
13130 		return -EOPNOTSUPP;
13131 
13132 	/* The PF and it's VF-reps only support the switchdev framework */
13133 	if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_DSN_VALID))
13134 		return -EOPNOTSUPP;
13135 
13136 	ppid->id_len = sizeof(bp->dsn);
13137 	memcpy(ppid->id, bp->dsn, ppid->id_len);
13138 
13139 	return 0;
13140 }
13141 
13142 static const struct net_device_ops bnxt_netdev_ops = {
13143 	.ndo_open		= bnxt_open,
13144 	.ndo_start_xmit		= bnxt_start_xmit,
13145 	.ndo_stop		= bnxt_close,
13146 	.ndo_get_stats64	= bnxt_get_stats64,
13147 	.ndo_set_rx_mode	= bnxt_set_rx_mode,
13148 	.ndo_eth_ioctl		= bnxt_ioctl,
13149 	.ndo_validate_addr	= eth_validate_addr,
13150 	.ndo_set_mac_address	= bnxt_change_mac_addr,
13151 	.ndo_change_mtu		= bnxt_change_mtu,
13152 	.ndo_fix_features	= bnxt_fix_features,
13153 	.ndo_set_features	= bnxt_set_features,
13154 	.ndo_features_check	= bnxt_features_check,
13155 	.ndo_tx_timeout		= bnxt_tx_timeout,
13156 #ifdef CONFIG_BNXT_SRIOV
13157 	.ndo_get_vf_config	= bnxt_get_vf_config,
13158 	.ndo_set_vf_mac		= bnxt_set_vf_mac,
13159 	.ndo_set_vf_vlan	= bnxt_set_vf_vlan,
13160 	.ndo_set_vf_rate	= bnxt_set_vf_bw,
13161 	.ndo_set_vf_link_state	= bnxt_set_vf_link_state,
13162 	.ndo_set_vf_spoofchk	= bnxt_set_vf_spoofchk,
13163 	.ndo_set_vf_trust	= bnxt_set_vf_trust,
13164 #endif
13165 	.ndo_setup_tc           = bnxt_setup_tc,
13166 #ifdef CONFIG_RFS_ACCEL
13167 	.ndo_rx_flow_steer	= bnxt_rx_flow_steer,
13168 #endif
13169 	.ndo_bpf		= bnxt_xdp,
13170 	.ndo_xdp_xmit		= bnxt_xdp_xmit,
13171 	.ndo_bridge_getlink	= bnxt_bridge_getlink,
13172 	.ndo_bridge_setlink	= bnxt_bridge_setlink,
13173 };
13174 
13175 static void bnxt_remove_one(struct pci_dev *pdev)
13176 {
13177 	struct net_device *dev = pci_get_drvdata(pdev);
13178 	struct bnxt *bp = netdev_priv(dev);
13179 
13180 	if (BNXT_PF(bp))
13181 		bnxt_sriov_disable(bp);
13182 
13183 	bnxt_rdma_aux_device_uninit(bp);
13184 
13185 	bnxt_ptp_clear(bp);
13186 	pci_disable_pcie_error_reporting(pdev);
13187 	unregister_netdev(dev);
13188 	clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
13189 	/* Flush any pending tasks */
13190 	cancel_work_sync(&bp->sp_task);
13191 	cancel_delayed_work_sync(&bp->fw_reset_task);
13192 	bp->sp_event = 0;
13193 
13194 	bnxt_dl_fw_reporters_destroy(bp);
13195 	bnxt_dl_unregister(bp);
13196 	bnxt_shutdown_tc(bp);
13197 
13198 	bnxt_clear_int_mode(bp);
13199 	bnxt_hwrm_func_drv_unrgtr(bp);
13200 	bnxt_free_hwrm_resources(bp);
13201 	bnxt_ethtool_free(bp);
13202 	bnxt_dcb_free(bp);
13203 	kfree(bp->edev);
13204 	bp->edev = NULL;
13205 	kfree(bp->ptp_cfg);
13206 	bp->ptp_cfg = NULL;
13207 	kfree(bp->fw_health);
13208 	bp->fw_health = NULL;
13209 	bnxt_cleanup_pci(bp);
13210 	bnxt_free_ctx_mem(bp);
13211 	kfree(bp->ctx);
13212 	bp->ctx = NULL;
13213 	kfree(bp->rss_indir_tbl);
13214 	bp->rss_indir_tbl = NULL;
13215 	bnxt_free_port_stats(bp);
13216 	free_netdev(dev);
13217 }
13218 
13219 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt)
13220 {
13221 	int rc = 0;
13222 	struct bnxt_link_info *link_info = &bp->link_info;
13223 
13224 	bp->phy_flags = 0;
13225 	rc = bnxt_hwrm_phy_qcaps(bp);
13226 	if (rc) {
13227 		netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n",
13228 			   rc);
13229 		return rc;
13230 	}
13231 	if (bp->phy_flags & BNXT_PHY_FL_NO_FCS)
13232 		bp->dev->priv_flags |= IFF_SUPP_NOFCS;
13233 	else
13234 		bp->dev->priv_flags &= ~IFF_SUPP_NOFCS;
13235 	if (!fw_dflt)
13236 		return 0;
13237 
13238 	mutex_lock(&bp->link_lock);
13239 	rc = bnxt_update_link(bp, false);
13240 	if (rc) {
13241 		mutex_unlock(&bp->link_lock);
13242 		netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
13243 			   rc);
13244 		return rc;
13245 	}
13246 
13247 	/* Older firmware does not have supported_auto_speeds, so assume
13248 	 * that all supported speeds can be autonegotiated.
13249 	 */
13250 	if (link_info->auto_link_speeds && !link_info->support_auto_speeds)
13251 		link_info->support_auto_speeds = link_info->support_speeds;
13252 
13253 	bnxt_init_ethtool_link_settings(bp);
13254 	mutex_unlock(&bp->link_lock);
13255 	return 0;
13256 }
13257 
13258 static int bnxt_get_max_irq(struct pci_dev *pdev)
13259 {
13260 	u16 ctrl;
13261 
13262 	if (!pdev->msix_cap)
13263 		return 1;
13264 
13265 	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
13266 	return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
13267 }
13268 
13269 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
13270 				int *max_cp)
13271 {
13272 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
13273 	int max_ring_grps = 0, max_irq;
13274 
13275 	*max_tx = hw_resc->max_tx_rings;
13276 	*max_rx = hw_resc->max_rx_rings;
13277 	*max_cp = bnxt_get_max_func_cp_rings_for_en(bp);
13278 	max_irq = min_t(int, bnxt_get_max_func_irqs(bp) -
13279 			bnxt_get_ulp_msix_num(bp),
13280 			hw_resc->max_stat_ctxs - bnxt_get_ulp_stat_ctxs(bp));
13281 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
13282 		*max_cp = min_t(int, *max_cp, max_irq);
13283 	max_ring_grps = hw_resc->max_hw_ring_grps;
13284 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) {
13285 		*max_cp -= 1;
13286 		*max_rx -= 2;
13287 	}
13288 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
13289 		*max_rx >>= 1;
13290 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
13291 		bnxt_trim_rings(bp, max_rx, max_tx, *max_cp, false);
13292 		/* On P5 chips, max_cp output param should be available NQs */
13293 		*max_cp = max_irq;
13294 	}
13295 	*max_rx = min_t(int, *max_rx, max_ring_grps);
13296 }
13297 
13298 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
13299 {
13300 	int rx, tx, cp;
13301 
13302 	_bnxt_get_max_rings(bp, &rx, &tx, &cp);
13303 	*max_rx = rx;
13304 	*max_tx = tx;
13305 	if (!rx || !tx || !cp)
13306 		return -ENOMEM;
13307 
13308 	return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
13309 }
13310 
13311 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx,
13312 			       bool shared)
13313 {
13314 	int rc;
13315 
13316 	rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
13317 	if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) {
13318 		/* Not enough rings, try disabling agg rings. */
13319 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
13320 		rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
13321 		if (rc) {
13322 			/* set BNXT_FLAG_AGG_RINGS back for consistency */
13323 			bp->flags |= BNXT_FLAG_AGG_RINGS;
13324 			return rc;
13325 		}
13326 		bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
13327 		bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
13328 		bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
13329 		bnxt_set_ring_params(bp);
13330 	}
13331 
13332 	if (bp->flags & BNXT_FLAG_ROCE_CAP) {
13333 		int max_cp, max_stat, max_irq;
13334 
13335 		/* Reserve minimum resources for RoCE */
13336 		max_cp = bnxt_get_max_func_cp_rings(bp);
13337 		max_stat = bnxt_get_max_func_stat_ctxs(bp);
13338 		max_irq = bnxt_get_max_func_irqs(bp);
13339 		if (max_cp <= BNXT_MIN_ROCE_CP_RINGS ||
13340 		    max_irq <= BNXT_MIN_ROCE_CP_RINGS ||
13341 		    max_stat <= BNXT_MIN_ROCE_STAT_CTXS)
13342 			return 0;
13343 
13344 		max_cp -= BNXT_MIN_ROCE_CP_RINGS;
13345 		max_irq -= BNXT_MIN_ROCE_CP_RINGS;
13346 		max_stat -= BNXT_MIN_ROCE_STAT_CTXS;
13347 		max_cp = min_t(int, max_cp, max_irq);
13348 		max_cp = min_t(int, max_cp, max_stat);
13349 		rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared);
13350 		if (rc)
13351 			rc = 0;
13352 	}
13353 	return rc;
13354 }
13355 
13356 /* In initial default shared ring setting, each shared ring must have a
13357  * RX/TX ring pair.
13358  */
13359 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp)
13360 {
13361 	bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings);
13362 	bp->rx_nr_rings = bp->cp_nr_rings;
13363 	bp->tx_nr_rings_per_tc = bp->cp_nr_rings;
13364 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
13365 }
13366 
13367 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh)
13368 {
13369 	int dflt_rings, max_rx_rings, max_tx_rings, rc;
13370 
13371 	if (!bnxt_can_reserve_rings(bp))
13372 		return 0;
13373 
13374 	if (sh)
13375 		bp->flags |= BNXT_FLAG_SHARED_RINGS;
13376 	dflt_rings = is_kdump_kernel() ? 1 : netif_get_num_default_rss_queues();
13377 	/* Reduce default rings on multi-port cards so that total default
13378 	 * rings do not exceed CPU count.
13379 	 */
13380 	if (bp->port_count > 1) {
13381 		int max_rings =
13382 			max_t(int, num_online_cpus() / bp->port_count, 1);
13383 
13384 		dflt_rings = min_t(int, dflt_rings, max_rings);
13385 	}
13386 	rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh);
13387 	if (rc)
13388 		return rc;
13389 	bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
13390 	bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
13391 	if (sh)
13392 		bnxt_trim_dflt_sh_rings(bp);
13393 	else
13394 		bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings;
13395 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
13396 
13397 	rc = __bnxt_reserve_rings(bp);
13398 	if (rc && rc != -ENODEV)
13399 		netdev_warn(bp->dev, "Unable to reserve tx rings\n");
13400 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
13401 	if (sh)
13402 		bnxt_trim_dflt_sh_rings(bp);
13403 
13404 	/* Rings may have been trimmed, re-reserve the trimmed rings. */
13405 	if (bnxt_need_reserve_rings(bp)) {
13406 		rc = __bnxt_reserve_rings(bp);
13407 		if (rc && rc != -ENODEV)
13408 			netdev_warn(bp->dev, "2nd rings reservation failed.\n");
13409 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
13410 	}
13411 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
13412 		bp->rx_nr_rings++;
13413 		bp->cp_nr_rings++;
13414 	}
13415 	if (rc) {
13416 		bp->tx_nr_rings = 0;
13417 		bp->rx_nr_rings = 0;
13418 	}
13419 	return rc;
13420 }
13421 
13422 static int bnxt_init_dflt_ring_mode(struct bnxt *bp)
13423 {
13424 	int rc;
13425 
13426 	if (bp->tx_nr_rings)
13427 		return 0;
13428 
13429 	bnxt_ulp_irq_stop(bp);
13430 	bnxt_clear_int_mode(bp);
13431 	rc = bnxt_set_dflt_rings(bp, true);
13432 	if (rc) {
13433 		if (BNXT_VF(bp) && rc == -ENODEV)
13434 			netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n");
13435 		else
13436 			netdev_err(bp->dev, "Not enough rings available.\n");
13437 		goto init_dflt_ring_err;
13438 	}
13439 	rc = bnxt_init_int_mode(bp);
13440 	if (rc)
13441 		goto init_dflt_ring_err;
13442 
13443 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
13444 
13445 	bnxt_set_dflt_rfs(bp);
13446 
13447 init_dflt_ring_err:
13448 	bnxt_ulp_irq_restart(bp, rc);
13449 	return rc;
13450 }
13451 
13452 int bnxt_restore_pf_fw_resources(struct bnxt *bp)
13453 {
13454 	int rc;
13455 
13456 	ASSERT_RTNL();
13457 	bnxt_hwrm_func_qcaps(bp);
13458 
13459 	if (netif_running(bp->dev))
13460 		__bnxt_close_nic(bp, true, false);
13461 
13462 	bnxt_ulp_irq_stop(bp);
13463 	bnxt_clear_int_mode(bp);
13464 	rc = bnxt_init_int_mode(bp);
13465 	bnxt_ulp_irq_restart(bp, rc);
13466 
13467 	if (netif_running(bp->dev)) {
13468 		if (rc)
13469 			dev_close(bp->dev);
13470 		else
13471 			rc = bnxt_open_nic(bp, true, false);
13472 	}
13473 
13474 	return rc;
13475 }
13476 
13477 static int bnxt_init_mac_addr(struct bnxt *bp)
13478 {
13479 	int rc = 0;
13480 
13481 	if (BNXT_PF(bp)) {
13482 		eth_hw_addr_set(bp->dev, bp->pf.mac_addr);
13483 	} else {
13484 #ifdef CONFIG_BNXT_SRIOV
13485 		struct bnxt_vf_info *vf = &bp->vf;
13486 		bool strict_approval = true;
13487 
13488 		if (is_valid_ether_addr(vf->mac_addr)) {
13489 			/* overwrite netdev dev_addr with admin VF MAC */
13490 			eth_hw_addr_set(bp->dev, vf->mac_addr);
13491 			/* Older PF driver or firmware may not approve this
13492 			 * correctly.
13493 			 */
13494 			strict_approval = false;
13495 		} else {
13496 			eth_hw_addr_random(bp->dev);
13497 		}
13498 		rc = bnxt_approve_mac(bp, bp->dev->dev_addr, strict_approval);
13499 #endif
13500 	}
13501 	return rc;
13502 }
13503 
13504 static void bnxt_vpd_read_info(struct bnxt *bp)
13505 {
13506 	struct pci_dev *pdev = bp->pdev;
13507 	unsigned int vpd_size, kw_len;
13508 	int pos, size;
13509 	u8 *vpd_data;
13510 
13511 	vpd_data = pci_vpd_alloc(pdev, &vpd_size);
13512 	if (IS_ERR(vpd_data)) {
13513 		pci_warn(pdev, "Unable to read VPD\n");
13514 		return;
13515 	}
13516 
13517 	pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
13518 					   PCI_VPD_RO_KEYWORD_PARTNO, &kw_len);
13519 	if (pos < 0)
13520 		goto read_sn;
13521 
13522 	size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1);
13523 	memcpy(bp->board_partno, &vpd_data[pos], size);
13524 
13525 read_sn:
13526 	pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
13527 					   PCI_VPD_RO_KEYWORD_SERIALNO,
13528 					   &kw_len);
13529 	if (pos < 0)
13530 		goto exit;
13531 
13532 	size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1);
13533 	memcpy(bp->board_serialno, &vpd_data[pos], size);
13534 exit:
13535 	kfree(vpd_data);
13536 }
13537 
13538 static int bnxt_pcie_dsn_get(struct bnxt *bp, u8 dsn[])
13539 {
13540 	struct pci_dev *pdev = bp->pdev;
13541 	u64 qword;
13542 
13543 	qword = pci_get_dsn(pdev);
13544 	if (!qword) {
13545 		netdev_info(bp->dev, "Unable to read adapter's DSN\n");
13546 		return -EOPNOTSUPP;
13547 	}
13548 
13549 	put_unaligned_le64(qword, dsn);
13550 
13551 	bp->flags |= BNXT_FLAG_DSN_VALID;
13552 	return 0;
13553 }
13554 
13555 static int bnxt_map_db_bar(struct bnxt *bp)
13556 {
13557 	if (!bp->db_size)
13558 		return -ENODEV;
13559 	bp->bar1 = pci_iomap(bp->pdev, 2, bp->db_size);
13560 	if (!bp->bar1)
13561 		return -ENOMEM;
13562 	return 0;
13563 }
13564 
13565 void bnxt_print_device_info(struct bnxt *bp)
13566 {
13567 	netdev_info(bp->dev, "%s found at mem %lx, node addr %pM\n",
13568 		    board_info[bp->board_idx].name,
13569 		    (long)pci_resource_start(bp->pdev, 0), bp->dev->dev_addr);
13570 
13571 	pcie_print_link_status(bp->pdev);
13572 }
13573 
13574 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
13575 {
13576 	struct net_device *dev;
13577 	struct bnxt *bp;
13578 	int rc, max_irqs;
13579 
13580 	if (pci_is_bridge(pdev))
13581 		return -ENODEV;
13582 
13583 	/* Clear any pending DMA transactions from crash kernel
13584 	 * while loading driver in capture kernel.
13585 	 */
13586 	if (is_kdump_kernel()) {
13587 		pci_clear_master(pdev);
13588 		pcie_flr(pdev);
13589 	}
13590 
13591 	max_irqs = bnxt_get_max_irq(pdev);
13592 	dev = alloc_etherdev_mq(sizeof(*bp), max_irqs);
13593 	if (!dev)
13594 		return -ENOMEM;
13595 
13596 	bp = netdev_priv(dev);
13597 	bp->board_idx = ent->driver_data;
13598 	bp->msg_enable = BNXT_DEF_MSG_ENABLE;
13599 	bnxt_set_max_func_irqs(bp, max_irqs);
13600 
13601 	if (bnxt_vf_pciid(bp->board_idx))
13602 		bp->flags |= BNXT_FLAG_VF;
13603 
13604 	/* No devlink port registration in case of a VF */
13605 	if (BNXT_PF(bp))
13606 		SET_NETDEV_DEVLINK_PORT(dev, &bp->dl_port);
13607 
13608 	if (pdev->msix_cap)
13609 		bp->flags |= BNXT_FLAG_MSIX_CAP;
13610 
13611 	rc = bnxt_init_board(pdev, dev);
13612 	if (rc < 0)
13613 		goto init_err_free;
13614 
13615 	dev->netdev_ops = &bnxt_netdev_ops;
13616 	dev->watchdog_timeo = BNXT_TX_TIMEOUT;
13617 	dev->ethtool_ops = &bnxt_ethtool_ops;
13618 	pci_set_drvdata(pdev, dev);
13619 
13620 	rc = bnxt_alloc_hwrm_resources(bp);
13621 	if (rc)
13622 		goto init_err_pci_clean;
13623 
13624 	mutex_init(&bp->hwrm_cmd_lock);
13625 	mutex_init(&bp->link_lock);
13626 
13627 	rc = bnxt_fw_init_one_p1(bp);
13628 	if (rc)
13629 		goto init_err_pci_clean;
13630 
13631 	if (BNXT_PF(bp))
13632 		bnxt_vpd_read_info(bp);
13633 
13634 	if (BNXT_CHIP_P5(bp)) {
13635 		bp->flags |= BNXT_FLAG_CHIP_P5;
13636 		if (BNXT_CHIP_SR2(bp))
13637 			bp->flags |= BNXT_FLAG_CHIP_SR2;
13638 	}
13639 
13640 	rc = bnxt_alloc_rss_indir_tbl(bp);
13641 	if (rc)
13642 		goto init_err_pci_clean;
13643 
13644 	rc = bnxt_fw_init_one_p2(bp);
13645 	if (rc)
13646 		goto init_err_pci_clean;
13647 
13648 	rc = bnxt_map_db_bar(bp);
13649 	if (rc) {
13650 		dev_err(&pdev->dev, "Cannot map doorbell BAR rc = %d, aborting\n",
13651 			rc);
13652 		goto init_err_pci_clean;
13653 	}
13654 
13655 	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
13656 			   NETIF_F_TSO | NETIF_F_TSO6 |
13657 			   NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
13658 			   NETIF_F_GSO_IPXIP4 |
13659 			   NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
13660 			   NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH |
13661 			   NETIF_F_RXCSUM | NETIF_F_GRO;
13662 
13663 	if (BNXT_SUPPORTS_TPA(bp))
13664 		dev->hw_features |= NETIF_F_LRO;
13665 
13666 	dev->hw_enc_features =
13667 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
13668 			NETIF_F_TSO | NETIF_F_TSO6 |
13669 			NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
13670 			NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
13671 			NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL;
13672 	dev->udp_tunnel_nic_info = &bnxt_udp_tunnels;
13673 
13674 	dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM |
13675 				    NETIF_F_GSO_GRE_CSUM;
13676 	dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
13677 	if (bp->fw_cap & BNXT_FW_CAP_VLAN_RX_STRIP)
13678 		dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_RX;
13679 	if (bp->fw_cap & BNXT_FW_CAP_VLAN_TX_INSERT)
13680 		dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_TX;
13681 	if (BNXT_SUPPORTS_TPA(bp))
13682 		dev->hw_features |= NETIF_F_GRO_HW;
13683 	dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
13684 	if (dev->features & NETIF_F_GRO_HW)
13685 		dev->features &= ~NETIF_F_LRO;
13686 	dev->priv_flags |= IFF_UNICAST_FLT;
13687 
13688 	netif_set_tso_max_size(dev, GSO_MAX_SIZE);
13689 
13690 	dev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
13691 			    NETDEV_XDP_ACT_RX_SG;
13692 
13693 #ifdef CONFIG_BNXT_SRIOV
13694 	init_waitqueue_head(&bp->sriov_cfg_wait);
13695 #endif
13696 	if (BNXT_SUPPORTS_TPA(bp)) {
13697 		bp->gro_func = bnxt_gro_func_5730x;
13698 		if (BNXT_CHIP_P4(bp))
13699 			bp->gro_func = bnxt_gro_func_5731x;
13700 		else if (BNXT_CHIP_P5(bp))
13701 			bp->gro_func = bnxt_gro_func_5750x;
13702 	}
13703 	if (!BNXT_CHIP_P4_PLUS(bp))
13704 		bp->flags |= BNXT_FLAG_DOUBLE_DB;
13705 
13706 	rc = bnxt_init_mac_addr(bp);
13707 	if (rc) {
13708 		dev_err(&pdev->dev, "Unable to initialize mac address.\n");
13709 		rc = -EADDRNOTAVAIL;
13710 		goto init_err_pci_clean;
13711 	}
13712 
13713 	if (BNXT_PF(bp)) {
13714 		/* Read the adapter's DSN to use as the eswitch switch_id */
13715 		rc = bnxt_pcie_dsn_get(bp, bp->dsn);
13716 	}
13717 
13718 	/* MTU range: 60 - FW defined max */
13719 	dev->min_mtu = ETH_ZLEN;
13720 	dev->max_mtu = bp->max_mtu;
13721 
13722 	rc = bnxt_probe_phy(bp, true);
13723 	if (rc)
13724 		goto init_err_pci_clean;
13725 
13726 	bnxt_set_rx_skb_mode(bp, false);
13727 	bnxt_set_tpa_flags(bp);
13728 	bnxt_set_ring_params(bp);
13729 	rc = bnxt_set_dflt_rings(bp, true);
13730 	if (rc) {
13731 		if (BNXT_VF(bp) && rc == -ENODEV) {
13732 			netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n");
13733 		} else {
13734 			netdev_err(bp->dev, "Not enough rings available.\n");
13735 			rc = -ENOMEM;
13736 		}
13737 		goto init_err_pci_clean;
13738 	}
13739 
13740 	bnxt_fw_init_one_p3(bp);
13741 
13742 	bnxt_init_dflt_coal(bp);
13743 
13744 	if (dev->hw_features & BNXT_HW_FEATURE_VLAN_ALL_RX)
13745 		bp->flags |= BNXT_FLAG_STRIP_VLAN;
13746 
13747 	rc = bnxt_init_int_mode(bp);
13748 	if (rc)
13749 		goto init_err_pci_clean;
13750 
13751 	/* No TC has been set yet and rings may have been trimmed due to
13752 	 * limited MSIX, so we re-initialize the TX rings per TC.
13753 	 */
13754 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
13755 
13756 	if (BNXT_PF(bp)) {
13757 		if (!bnxt_pf_wq) {
13758 			bnxt_pf_wq =
13759 				create_singlethread_workqueue("bnxt_pf_wq");
13760 			if (!bnxt_pf_wq) {
13761 				dev_err(&pdev->dev, "Unable to create workqueue.\n");
13762 				rc = -ENOMEM;
13763 				goto init_err_pci_clean;
13764 			}
13765 		}
13766 		rc = bnxt_init_tc(bp);
13767 		if (rc)
13768 			netdev_err(dev, "Failed to initialize TC flower offload, err = %d.\n",
13769 				   rc);
13770 	}
13771 
13772 	bnxt_inv_fw_health_reg(bp);
13773 	rc = bnxt_dl_register(bp);
13774 	if (rc)
13775 		goto init_err_dl;
13776 
13777 	rc = register_netdev(dev);
13778 	if (rc)
13779 		goto init_err_cleanup;
13780 
13781 	bnxt_dl_fw_reporters_create(bp);
13782 
13783 	bnxt_rdma_aux_device_init(bp);
13784 
13785 	bnxt_print_device_info(bp);
13786 
13787 	pci_save_state(pdev);
13788 
13789 	return 0;
13790 init_err_cleanup:
13791 	bnxt_dl_unregister(bp);
13792 init_err_dl:
13793 	bnxt_shutdown_tc(bp);
13794 	bnxt_clear_int_mode(bp);
13795 
13796 init_err_pci_clean:
13797 	bnxt_hwrm_func_drv_unrgtr(bp);
13798 	bnxt_free_hwrm_resources(bp);
13799 	bnxt_ethtool_free(bp);
13800 	bnxt_ptp_clear(bp);
13801 	kfree(bp->ptp_cfg);
13802 	bp->ptp_cfg = NULL;
13803 	kfree(bp->fw_health);
13804 	bp->fw_health = NULL;
13805 	bnxt_cleanup_pci(bp);
13806 	bnxt_free_ctx_mem(bp);
13807 	kfree(bp->ctx);
13808 	bp->ctx = NULL;
13809 	kfree(bp->rss_indir_tbl);
13810 	bp->rss_indir_tbl = NULL;
13811 
13812 init_err_free:
13813 	free_netdev(dev);
13814 	return rc;
13815 }
13816 
13817 static void bnxt_shutdown(struct pci_dev *pdev)
13818 {
13819 	struct net_device *dev = pci_get_drvdata(pdev);
13820 	struct bnxt *bp;
13821 
13822 	if (!dev)
13823 		return;
13824 
13825 	rtnl_lock();
13826 	bp = netdev_priv(dev);
13827 	if (!bp)
13828 		goto shutdown_exit;
13829 
13830 	if (netif_running(dev))
13831 		dev_close(dev);
13832 
13833 	bnxt_clear_int_mode(bp);
13834 	pci_disable_device(pdev);
13835 
13836 	if (system_state == SYSTEM_POWER_OFF) {
13837 		pci_wake_from_d3(pdev, bp->wol);
13838 		pci_set_power_state(pdev, PCI_D3hot);
13839 	}
13840 
13841 shutdown_exit:
13842 	rtnl_unlock();
13843 }
13844 
13845 #ifdef CONFIG_PM_SLEEP
13846 static int bnxt_suspend(struct device *device)
13847 {
13848 	struct net_device *dev = dev_get_drvdata(device);
13849 	struct bnxt *bp = netdev_priv(dev);
13850 	int rc = 0;
13851 
13852 	rtnl_lock();
13853 	bnxt_ulp_stop(bp);
13854 	if (netif_running(dev)) {
13855 		netif_device_detach(dev);
13856 		rc = bnxt_close(dev);
13857 	}
13858 	bnxt_hwrm_func_drv_unrgtr(bp);
13859 	pci_disable_device(bp->pdev);
13860 	bnxt_free_ctx_mem(bp);
13861 	kfree(bp->ctx);
13862 	bp->ctx = NULL;
13863 	rtnl_unlock();
13864 	return rc;
13865 }
13866 
13867 static int bnxt_resume(struct device *device)
13868 {
13869 	struct net_device *dev = dev_get_drvdata(device);
13870 	struct bnxt *bp = netdev_priv(dev);
13871 	int rc = 0;
13872 
13873 	rtnl_lock();
13874 	rc = pci_enable_device(bp->pdev);
13875 	if (rc) {
13876 		netdev_err(dev, "Cannot re-enable PCI device during resume, err = %d\n",
13877 			   rc);
13878 		goto resume_exit;
13879 	}
13880 	pci_set_master(bp->pdev);
13881 	if (bnxt_hwrm_ver_get(bp)) {
13882 		rc = -ENODEV;
13883 		goto resume_exit;
13884 	}
13885 	rc = bnxt_hwrm_func_reset(bp);
13886 	if (rc) {
13887 		rc = -EBUSY;
13888 		goto resume_exit;
13889 	}
13890 
13891 	rc = bnxt_hwrm_func_qcaps(bp);
13892 	if (rc)
13893 		goto resume_exit;
13894 
13895 	if (bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false)) {
13896 		rc = -ENODEV;
13897 		goto resume_exit;
13898 	}
13899 
13900 	bnxt_get_wol_settings(bp);
13901 	if (netif_running(dev)) {
13902 		rc = bnxt_open(dev);
13903 		if (!rc)
13904 			netif_device_attach(dev);
13905 	}
13906 
13907 resume_exit:
13908 	bnxt_ulp_start(bp, rc);
13909 	if (!rc)
13910 		bnxt_reenable_sriov(bp);
13911 	rtnl_unlock();
13912 	return rc;
13913 }
13914 
13915 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume);
13916 #define BNXT_PM_OPS (&bnxt_pm_ops)
13917 
13918 #else
13919 
13920 #define BNXT_PM_OPS NULL
13921 
13922 #endif /* CONFIG_PM_SLEEP */
13923 
13924 /**
13925  * bnxt_io_error_detected - called when PCI error is detected
13926  * @pdev: Pointer to PCI device
13927  * @state: The current pci connection state
13928  *
13929  * This function is called after a PCI bus error affecting
13930  * this device has been detected.
13931  */
13932 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev,
13933 					       pci_channel_state_t state)
13934 {
13935 	struct net_device *netdev = pci_get_drvdata(pdev);
13936 	struct bnxt *bp = netdev_priv(netdev);
13937 
13938 	netdev_info(netdev, "PCI I/O error detected\n");
13939 
13940 	rtnl_lock();
13941 	netif_device_detach(netdev);
13942 
13943 	bnxt_ulp_stop(bp);
13944 
13945 	if (state == pci_channel_io_perm_failure) {
13946 		rtnl_unlock();
13947 		return PCI_ERS_RESULT_DISCONNECT;
13948 	}
13949 
13950 	if (state == pci_channel_io_frozen)
13951 		set_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, &bp->state);
13952 
13953 	if (netif_running(netdev))
13954 		bnxt_close(netdev);
13955 
13956 	if (pci_is_enabled(pdev))
13957 		pci_disable_device(pdev);
13958 	bnxt_free_ctx_mem(bp);
13959 	kfree(bp->ctx);
13960 	bp->ctx = NULL;
13961 	rtnl_unlock();
13962 
13963 	/* Request a slot slot reset. */
13964 	return PCI_ERS_RESULT_NEED_RESET;
13965 }
13966 
13967 /**
13968  * bnxt_io_slot_reset - called after the pci bus has been reset.
13969  * @pdev: Pointer to PCI device
13970  *
13971  * Restart the card from scratch, as if from a cold-boot.
13972  * At this point, the card has exprienced a hard reset,
13973  * followed by fixups by BIOS, and has its config space
13974  * set up identically to what it was at cold boot.
13975  */
13976 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev)
13977 {
13978 	pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
13979 	struct net_device *netdev = pci_get_drvdata(pdev);
13980 	struct bnxt *bp = netdev_priv(netdev);
13981 	int retry = 0;
13982 	int err = 0;
13983 	int off;
13984 
13985 	netdev_info(bp->dev, "PCI Slot Reset\n");
13986 
13987 	rtnl_lock();
13988 
13989 	if (pci_enable_device(pdev)) {
13990 		dev_err(&pdev->dev,
13991 			"Cannot re-enable PCI device after reset.\n");
13992 	} else {
13993 		pci_set_master(pdev);
13994 		/* Upon fatal error, our device internal logic that latches to
13995 		 * BAR value is getting reset and will restore only upon
13996 		 * rewritting the BARs.
13997 		 *
13998 		 * As pci_restore_state() does not re-write the BARs if the
13999 		 * value is same as saved value earlier, driver needs to
14000 		 * write the BARs to 0 to force restore, in case of fatal error.
14001 		 */
14002 		if (test_and_clear_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN,
14003 				       &bp->state)) {
14004 			for (off = PCI_BASE_ADDRESS_0;
14005 			     off <= PCI_BASE_ADDRESS_5; off += 4)
14006 				pci_write_config_dword(bp->pdev, off, 0);
14007 		}
14008 		pci_restore_state(pdev);
14009 		pci_save_state(pdev);
14010 
14011 		bnxt_inv_fw_health_reg(bp);
14012 		bnxt_try_map_fw_health_reg(bp);
14013 
14014 		/* In some PCIe AER scenarios, firmware may take up to
14015 		 * 10 seconds to become ready in the worst case.
14016 		 */
14017 		do {
14018 			err = bnxt_try_recover_fw(bp);
14019 			if (!err)
14020 				break;
14021 			retry++;
14022 		} while (retry < BNXT_FW_SLOT_RESET_RETRY);
14023 
14024 		if (err) {
14025 			dev_err(&pdev->dev, "Firmware not ready\n");
14026 			goto reset_exit;
14027 		}
14028 
14029 		err = bnxt_hwrm_func_reset(bp);
14030 		if (!err)
14031 			result = PCI_ERS_RESULT_RECOVERED;
14032 
14033 		bnxt_ulp_irq_stop(bp);
14034 		bnxt_clear_int_mode(bp);
14035 		err = bnxt_init_int_mode(bp);
14036 		bnxt_ulp_irq_restart(bp, err);
14037 	}
14038 
14039 reset_exit:
14040 	bnxt_clear_reservations(bp, true);
14041 	rtnl_unlock();
14042 
14043 	return result;
14044 }
14045 
14046 /**
14047  * bnxt_io_resume - called when traffic can start flowing again.
14048  * @pdev: Pointer to PCI device
14049  *
14050  * This callback is called when the error recovery driver tells
14051  * us that its OK to resume normal operation.
14052  */
14053 static void bnxt_io_resume(struct pci_dev *pdev)
14054 {
14055 	struct net_device *netdev = pci_get_drvdata(pdev);
14056 	struct bnxt *bp = netdev_priv(netdev);
14057 	int err;
14058 
14059 	netdev_info(bp->dev, "PCI Slot Resume\n");
14060 	rtnl_lock();
14061 
14062 	err = bnxt_hwrm_func_qcaps(bp);
14063 	if (!err && netif_running(netdev))
14064 		err = bnxt_open(netdev);
14065 
14066 	bnxt_ulp_start(bp, err);
14067 	if (!err) {
14068 		bnxt_reenable_sriov(bp);
14069 		netif_device_attach(netdev);
14070 	}
14071 
14072 	rtnl_unlock();
14073 }
14074 
14075 static const struct pci_error_handlers bnxt_err_handler = {
14076 	.error_detected	= bnxt_io_error_detected,
14077 	.slot_reset	= bnxt_io_slot_reset,
14078 	.resume		= bnxt_io_resume
14079 };
14080 
14081 static struct pci_driver bnxt_pci_driver = {
14082 	.name		= DRV_MODULE_NAME,
14083 	.id_table	= bnxt_pci_tbl,
14084 	.probe		= bnxt_init_one,
14085 	.remove		= bnxt_remove_one,
14086 	.shutdown	= bnxt_shutdown,
14087 	.driver.pm	= BNXT_PM_OPS,
14088 	.err_handler	= &bnxt_err_handler,
14089 #if defined(CONFIG_BNXT_SRIOV)
14090 	.sriov_configure = bnxt_sriov_configure,
14091 #endif
14092 };
14093 
14094 static int __init bnxt_init(void)
14095 {
14096 	int err;
14097 
14098 	bnxt_debug_init();
14099 	err = pci_register_driver(&bnxt_pci_driver);
14100 	if (err) {
14101 		bnxt_debug_exit();
14102 		return err;
14103 	}
14104 
14105 	return 0;
14106 }
14107 
14108 static void __exit bnxt_exit(void)
14109 {
14110 	pci_unregister_driver(&bnxt_pci_driver);
14111 	if (bnxt_pf_wq)
14112 		destroy_workqueue(bnxt_pf_wq);
14113 	bnxt_debug_exit();
14114 }
14115 
14116 module_init(bnxt_init);
14117 module_exit(bnxt_exit);
14118