1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2016 Broadcom Corporation
4  * Copyright (c) 2016-2018 Broadcom Limited
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation.
9  */
10 
11 #include <linux/module.h>
12 
13 #include <linux/stringify.h>
14 #include <linux/kernel.h>
15 #include <linux/timer.h>
16 #include <linux/errno.h>
17 #include <linux/ioport.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 #include <linux/interrupt.h>
21 #include <linux/pci.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/skbuff.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/bitops.h>
27 #include <linux/io.h>
28 #include <linux/irq.h>
29 #include <linux/delay.h>
30 #include <asm/byteorder.h>
31 #include <asm/page.h>
32 #include <linux/time.h>
33 #include <linux/mii.h>
34 #include <linux/if.h>
35 #include <linux/if_vlan.h>
36 #include <linux/if_bridge.h>
37 #include <linux/rtc.h>
38 #include <linux/bpf.h>
39 #include <net/ip.h>
40 #include <net/tcp.h>
41 #include <net/udp.h>
42 #include <net/checksum.h>
43 #include <net/ip6_checksum.h>
44 #include <net/udp_tunnel.h>
45 #include <linux/workqueue.h>
46 #include <linux/prefetch.h>
47 #include <linux/cache.h>
48 #include <linux/log2.h>
49 #include <linux/aer.h>
50 #include <linux/bitmap.h>
51 #include <linux/cpu_rmap.h>
52 #include <linux/cpumask.h>
53 #include <net/pkt_cls.h>
54 
55 #include "bnxt_hsi.h"
56 #include "bnxt.h"
57 #include "bnxt_ulp.h"
58 #include "bnxt_sriov.h"
59 #include "bnxt_ethtool.h"
60 #include "bnxt_dcb.h"
61 #include "bnxt_xdp.h"
62 #include "bnxt_vfr.h"
63 #include "bnxt_tc.h"
64 #include "bnxt_devlink.h"
65 #include "bnxt_debugfs.h"
66 
67 #define BNXT_TX_TIMEOUT		(5 * HZ)
68 
69 static const char version[] =
70 	"Broadcom NetXtreme-C/E driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION "\n";
71 
72 MODULE_LICENSE("GPL");
73 MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
74 MODULE_VERSION(DRV_MODULE_VERSION);
75 
76 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
77 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
78 #define BNXT_RX_COPY_THRESH 256
79 
80 #define BNXT_TX_PUSH_THRESH 164
81 
82 enum board_idx {
83 	BCM57301,
84 	BCM57302,
85 	BCM57304,
86 	BCM57417_NPAR,
87 	BCM58700,
88 	BCM57311,
89 	BCM57312,
90 	BCM57402,
91 	BCM57404,
92 	BCM57406,
93 	BCM57402_NPAR,
94 	BCM57407,
95 	BCM57412,
96 	BCM57414,
97 	BCM57416,
98 	BCM57417,
99 	BCM57412_NPAR,
100 	BCM57314,
101 	BCM57417_SFP,
102 	BCM57416_SFP,
103 	BCM57404_NPAR,
104 	BCM57406_NPAR,
105 	BCM57407_SFP,
106 	BCM57407_NPAR,
107 	BCM57414_NPAR,
108 	BCM57416_NPAR,
109 	BCM57452,
110 	BCM57454,
111 	BCM5745x_NPAR,
112 	BCM58802,
113 	BCM58804,
114 	BCM58808,
115 	NETXTREME_E_VF,
116 	NETXTREME_C_VF,
117 	NETXTREME_S_VF,
118 };
119 
120 /* indexed by enum above */
121 static const struct {
122 	char *name;
123 } board_info[] = {
124 	[BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" },
125 	[BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" },
126 	[BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
127 	[BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" },
128 	[BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" },
129 	[BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" },
130 	[BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" },
131 	[BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" },
132 	[BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" },
133 	[BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" },
134 	[BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" },
135 	[BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" },
136 	[BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" },
137 	[BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" },
138 	[BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" },
139 	[BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" },
140 	[BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" },
141 	[BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
142 	[BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" },
143 	[BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" },
144 	[BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" },
145 	[BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" },
146 	[BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" },
147 	[BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" },
148 	[BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" },
149 	[BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" },
150 	[BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" },
151 	[BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
152 	[BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" },
153 	[BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" },
154 	[BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
155 	[BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
156 	[NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" },
157 	[NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" },
158 	[NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" },
159 };
160 
161 static const struct pci_device_id bnxt_pci_tbl[] = {
162 	{ PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR },
163 	{ PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR },
164 	{ PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 },
165 	{ PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR },
166 	{ PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
167 	{ PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
168 	{ PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
169 	{ PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR },
170 	{ PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 },
171 	{ PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 },
172 	{ PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 },
173 	{ PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
174 	{ PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
175 	{ PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
176 	{ PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR },
177 	{ PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 },
178 	{ PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 },
179 	{ PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 },
180 	{ PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 },
181 	{ PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 },
182 	{ PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR },
183 	{ PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 },
184 	{ PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP },
185 	{ PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP },
186 	{ PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR },
187 	{ PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR },
188 	{ PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP },
189 	{ PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR },
190 	{ PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR },
191 	{ PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR },
192 	{ PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR },
193 	{ PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR },
194 	{ PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR },
195 	{ PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 },
196 	{ PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 },
197 	{ PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 },
198 	{ PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 },
199 #ifdef CONFIG_BNXT_SRIOV
200 	{ PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF },
201 	{ PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF },
202 	{ PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF },
203 	{ PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF },
204 	{ PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF },
205 	{ PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF },
206 	{ PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF },
207 	{ PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF },
208 	{ PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF },
209 #endif
210 	{ 0 }
211 };
212 
213 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
214 
215 static const u16 bnxt_vf_req_snif[] = {
216 	HWRM_FUNC_CFG,
217 	HWRM_FUNC_VF_CFG,
218 	HWRM_PORT_PHY_QCFG,
219 	HWRM_CFA_L2_FILTER_ALLOC,
220 };
221 
222 static const u16 bnxt_async_events_arr[] = {
223 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE,
224 	ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD,
225 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED,
226 	ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE,
227 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE,
228 };
229 
230 static struct workqueue_struct *bnxt_pf_wq;
231 
232 static bool bnxt_vf_pciid(enum board_idx idx)
233 {
234 	return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF ||
235 		idx == NETXTREME_S_VF);
236 }
237 
238 #define DB_CP_REARM_FLAGS	(DB_KEY_CP | DB_IDX_VALID)
239 #define DB_CP_FLAGS		(DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
240 #define DB_CP_IRQ_DIS_FLAGS	(DB_KEY_CP | DB_IRQ_DIS)
241 
242 #define BNXT_CP_DB_REARM(db, raw_cons)					\
243 		writel(DB_CP_REARM_FLAGS | RING_CMP(raw_cons), db)
244 
245 #define BNXT_CP_DB(db, raw_cons)					\
246 		writel(DB_CP_FLAGS | RING_CMP(raw_cons), db)
247 
248 #define BNXT_CP_DB_IRQ_DIS(db)						\
249 		writel(DB_CP_IRQ_DIS_FLAGS, db)
250 
251 const u16 bnxt_lhint_arr[] = {
252 	TX_BD_FLAGS_LHINT_512_AND_SMALLER,
253 	TX_BD_FLAGS_LHINT_512_TO_1023,
254 	TX_BD_FLAGS_LHINT_1024_TO_2047,
255 	TX_BD_FLAGS_LHINT_1024_TO_2047,
256 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
257 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
258 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
259 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
260 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
261 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
262 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
263 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
264 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
265 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
266 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
267 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
268 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
269 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
270 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
271 };
272 
273 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb)
274 {
275 	struct metadata_dst *md_dst = skb_metadata_dst(skb);
276 
277 	if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX)
278 		return 0;
279 
280 	return md_dst->u.port_info.port_id;
281 }
282 
283 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
284 {
285 	struct bnxt *bp = netdev_priv(dev);
286 	struct tx_bd *txbd;
287 	struct tx_bd_ext *txbd1;
288 	struct netdev_queue *txq;
289 	int i;
290 	dma_addr_t mapping;
291 	unsigned int length, pad = 0;
292 	u32 len, free_size, vlan_tag_flags, cfa_action, flags;
293 	u16 prod, last_frag;
294 	struct pci_dev *pdev = bp->pdev;
295 	struct bnxt_tx_ring_info *txr;
296 	struct bnxt_sw_tx_bd *tx_buf;
297 
298 	i = skb_get_queue_mapping(skb);
299 	if (unlikely(i >= bp->tx_nr_rings)) {
300 		dev_kfree_skb_any(skb);
301 		return NETDEV_TX_OK;
302 	}
303 
304 	txq = netdev_get_tx_queue(dev, i);
305 	txr = &bp->tx_ring[bp->tx_ring_map[i]];
306 	prod = txr->tx_prod;
307 
308 	free_size = bnxt_tx_avail(bp, txr);
309 	if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
310 		netif_tx_stop_queue(txq);
311 		return NETDEV_TX_BUSY;
312 	}
313 
314 	length = skb->len;
315 	len = skb_headlen(skb);
316 	last_frag = skb_shinfo(skb)->nr_frags;
317 
318 	txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
319 
320 	txbd->tx_bd_opaque = prod;
321 
322 	tx_buf = &txr->tx_buf_ring[prod];
323 	tx_buf->skb = skb;
324 	tx_buf->nr_frags = last_frag;
325 
326 	vlan_tag_flags = 0;
327 	cfa_action = bnxt_xmit_get_cfa_action(skb);
328 	if (skb_vlan_tag_present(skb)) {
329 		vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
330 				 skb_vlan_tag_get(skb);
331 		/* Currently supports 8021Q, 8021AD vlan offloads
332 		 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
333 		 */
334 		if (skb->vlan_proto == htons(ETH_P_8021Q))
335 			vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
336 	}
337 
338 	if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh) {
339 		struct tx_push_buffer *tx_push_buf = txr->tx_push;
340 		struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
341 		struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
342 		void *pdata = tx_push_buf->data;
343 		u64 *end;
344 		int j, push_len;
345 
346 		/* Set COAL_NOW to be ready quickly for the next push */
347 		tx_push->tx_bd_len_flags_type =
348 			cpu_to_le32((length << TX_BD_LEN_SHIFT) |
349 					TX_BD_TYPE_LONG_TX_BD |
350 					TX_BD_FLAGS_LHINT_512_AND_SMALLER |
351 					TX_BD_FLAGS_COAL_NOW |
352 					TX_BD_FLAGS_PACKET_END |
353 					(2 << TX_BD_FLAGS_BD_CNT_SHIFT));
354 
355 		if (skb->ip_summed == CHECKSUM_PARTIAL)
356 			tx_push1->tx_bd_hsize_lflags =
357 					cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
358 		else
359 			tx_push1->tx_bd_hsize_lflags = 0;
360 
361 		tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
362 		tx_push1->tx_bd_cfa_action =
363 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
364 
365 		end = pdata + length;
366 		end = PTR_ALIGN(end, 8) - 1;
367 		*end = 0;
368 
369 		skb_copy_from_linear_data(skb, pdata, len);
370 		pdata += len;
371 		for (j = 0; j < last_frag; j++) {
372 			skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
373 			void *fptr;
374 
375 			fptr = skb_frag_address_safe(frag);
376 			if (!fptr)
377 				goto normal_tx;
378 
379 			memcpy(pdata, fptr, skb_frag_size(frag));
380 			pdata += skb_frag_size(frag);
381 		}
382 
383 		txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
384 		txbd->tx_bd_haddr = txr->data_mapping;
385 		prod = NEXT_TX(prod);
386 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
387 		memcpy(txbd, tx_push1, sizeof(*txbd));
388 		prod = NEXT_TX(prod);
389 		tx_push->doorbell =
390 			cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod);
391 		txr->tx_prod = prod;
392 
393 		tx_buf->is_push = 1;
394 		netdev_tx_sent_queue(txq, skb->len);
395 		wmb();	/* Sync is_push and byte queue before pushing data */
396 
397 		push_len = (length + sizeof(*tx_push) + 7) / 8;
398 		if (push_len > 16) {
399 			__iowrite64_copy(txr->tx_doorbell, tx_push_buf, 16);
400 			__iowrite32_copy(txr->tx_doorbell + 4, tx_push_buf + 1,
401 					 (push_len - 16) << 1);
402 		} else {
403 			__iowrite64_copy(txr->tx_doorbell, tx_push_buf,
404 					 push_len);
405 		}
406 
407 		goto tx_done;
408 	}
409 
410 normal_tx:
411 	if (length < BNXT_MIN_PKT_SIZE) {
412 		pad = BNXT_MIN_PKT_SIZE - length;
413 		if (skb_pad(skb, pad)) {
414 			/* SKB already freed. */
415 			tx_buf->skb = NULL;
416 			return NETDEV_TX_OK;
417 		}
418 		length = BNXT_MIN_PKT_SIZE;
419 	}
420 
421 	mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
422 
423 	if (unlikely(dma_mapping_error(&pdev->dev, mapping))) {
424 		dev_kfree_skb_any(skb);
425 		tx_buf->skb = NULL;
426 		return NETDEV_TX_OK;
427 	}
428 
429 	dma_unmap_addr_set(tx_buf, mapping, mapping);
430 	flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
431 		((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
432 
433 	txbd->tx_bd_haddr = cpu_to_le64(mapping);
434 
435 	prod = NEXT_TX(prod);
436 	txbd1 = (struct tx_bd_ext *)
437 		&txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
438 
439 	txbd1->tx_bd_hsize_lflags = 0;
440 	if (skb_is_gso(skb)) {
441 		u32 hdr_len;
442 
443 		if (skb->encapsulation)
444 			hdr_len = skb_inner_network_offset(skb) +
445 				skb_inner_network_header_len(skb) +
446 				inner_tcp_hdrlen(skb);
447 		else
448 			hdr_len = skb_transport_offset(skb) +
449 				tcp_hdrlen(skb);
450 
451 		txbd1->tx_bd_hsize_lflags = cpu_to_le32(TX_BD_FLAGS_LSO |
452 					TX_BD_FLAGS_T_IPID |
453 					(hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
454 		length = skb_shinfo(skb)->gso_size;
455 		txbd1->tx_bd_mss = cpu_to_le32(length);
456 		length += hdr_len;
457 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
458 		txbd1->tx_bd_hsize_lflags =
459 			cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
460 		txbd1->tx_bd_mss = 0;
461 	}
462 
463 	length >>= 9;
464 	flags |= bnxt_lhint_arr[length];
465 	txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
466 
467 	txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
468 	txbd1->tx_bd_cfa_action =
469 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
470 	for (i = 0; i < last_frag; i++) {
471 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
472 
473 		prod = NEXT_TX(prod);
474 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
475 
476 		len = skb_frag_size(frag);
477 		mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
478 					   DMA_TO_DEVICE);
479 
480 		if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
481 			goto tx_dma_error;
482 
483 		tx_buf = &txr->tx_buf_ring[prod];
484 		dma_unmap_addr_set(tx_buf, mapping, mapping);
485 
486 		txbd->tx_bd_haddr = cpu_to_le64(mapping);
487 
488 		flags = len << TX_BD_LEN_SHIFT;
489 		txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
490 	}
491 
492 	flags &= ~TX_BD_LEN;
493 	txbd->tx_bd_len_flags_type =
494 		cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
495 			    TX_BD_FLAGS_PACKET_END);
496 
497 	netdev_tx_sent_queue(txq, skb->len);
498 
499 	/* Sync BD data before updating doorbell */
500 	wmb();
501 
502 	prod = NEXT_TX(prod);
503 	txr->tx_prod = prod;
504 
505 	if (!skb->xmit_more || netif_xmit_stopped(txq))
506 		bnxt_db_write(bp, txr->tx_doorbell, DB_KEY_TX | prod);
507 
508 tx_done:
509 
510 	mmiowb();
511 
512 	if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
513 		if (skb->xmit_more && !tx_buf->is_push)
514 			bnxt_db_write(bp, txr->tx_doorbell, DB_KEY_TX | prod);
515 
516 		netif_tx_stop_queue(txq);
517 
518 		/* netif_tx_stop_queue() must be done before checking
519 		 * tx index in bnxt_tx_avail() below, because in
520 		 * bnxt_tx_int(), we update tx index before checking for
521 		 * netif_tx_queue_stopped().
522 		 */
523 		smp_mb();
524 		if (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)
525 			netif_tx_wake_queue(txq);
526 	}
527 	return NETDEV_TX_OK;
528 
529 tx_dma_error:
530 	last_frag = i;
531 
532 	/* start back at beginning and unmap skb */
533 	prod = txr->tx_prod;
534 	tx_buf = &txr->tx_buf_ring[prod];
535 	tx_buf->skb = NULL;
536 	dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
537 			 skb_headlen(skb), PCI_DMA_TODEVICE);
538 	prod = NEXT_TX(prod);
539 
540 	/* unmap remaining mapped pages */
541 	for (i = 0; i < last_frag; i++) {
542 		prod = NEXT_TX(prod);
543 		tx_buf = &txr->tx_buf_ring[prod];
544 		dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
545 			       skb_frag_size(&skb_shinfo(skb)->frags[i]),
546 			       PCI_DMA_TODEVICE);
547 	}
548 
549 	dev_kfree_skb_any(skb);
550 	return NETDEV_TX_OK;
551 }
552 
553 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts)
554 {
555 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
556 	struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index);
557 	u16 cons = txr->tx_cons;
558 	struct pci_dev *pdev = bp->pdev;
559 	int i;
560 	unsigned int tx_bytes = 0;
561 
562 	for (i = 0; i < nr_pkts; i++) {
563 		struct bnxt_sw_tx_bd *tx_buf;
564 		struct sk_buff *skb;
565 		int j, last;
566 
567 		tx_buf = &txr->tx_buf_ring[cons];
568 		cons = NEXT_TX(cons);
569 		skb = tx_buf->skb;
570 		tx_buf->skb = NULL;
571 
572 		if (tx_buf->is_push) {
573 			tx_buf->is_push = 0;
574 			goto next_tx_int;
575 		}
576 
577 		dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
578 				 skb_headlen(skb), PCI_DMA_TODEVICE);
579 		last = tx_buf->nr_frags;
580 
581 		for (j = 0; j < last; j++) {
582 			cons = NEXT_TX(cons);
583 			tx_buf = &txr->tx_buf_ring[cons];
584 			dma_unmap_page(
585 				&pdev->dev,
586 				dma_unmap_addr(tx_buf, mapping),
587 				skb_frag_size(&skb_shinfo(skb)->frags[j]),
588 				PCI_DMA_TODEVICE);
589 		}
590 
591 next_tx_int:
592 		cons = NEXT_TX(cons);
593 
594 		tx_bytes += skb->len;
595 		dev_kfree_skb_any(skb);
596 	}
597 
598 	netdev_tx_completed_queue(txq, nr_pkts, tx_bytes);
599 	txr->tx_cons = cons;
600 
601 	/* Need to make the tx_cons update visible to bnxt_start_xmit()
602 	 * before checking for netif_tx_queue_stopped().  Without the
603 	 * memory barrier, there is a small possibility that bnxt_start_xmit()
604 	 * will miss it and cause the queue to be stopped forever.
605 	 */
606 	smp_mb();
607 
608 	if (unlikely(netif_tx_queue_stopped(txq)) &&
609 	    (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
610 		__netif_tx_lock(txq, smp_processor_id());
611 		if (netif_tx_queue_stopped(txq) &&
612 		    bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh &&
613 		    txr->dev_state != BNXT_DEV_STATE_CLOSING)
614 			netif_tx_wake_queue(txq);
615 		__netif_tx_unlock(txq);
616 	}
617 }
618 
619 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping,
620 					 gfp_t gfp)
621 {
622 	struct device *dev = &bp->pdev->dev;
623 	struct page *page;
624 
625 	page = alloc_page(gfp);
626 	if (!page)
627 		return NULL;
628 
629 	*mapping = dma_map_page_attrs(dev, page, 0, PAGE_SIZE, bp->rx_dir,
630 				      DMA_ATTR_WEAK_ORDERING);
631 	if (dma_mapping_error(dev, *mapping)) {
632 		__free_page(page);
633 		return NULL;
634 	}
635 	*mapping += bp->rx_dma_offset;
636 	return page;
637 }
638 
639 static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping,
640 				       gfp_t gfp)
641 {
642 	u8 *data;
643 	struct pci_dev *pdev = bp->pdev;
644 
645 	data = kmalloc(bp->rx_buf_size, gfp);
646 	if (!data)
647 		return NULL;
648 
649 	*mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset,
650 					bp->rx_buf_use_size, bp->rx_dir,
651 					DMA_ATTR_WEAK_ORDERING);
652 
653 	if (dma_mapping_error(&pdev->dev, *mapping)) {
654 		kfree(data);
655 		data = NULL;
656 	}
657 	return data;
658 }
659 
660 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
661 		       u16 prod, gfp_t gfp)
662 {
663 	struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
664 	struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
665 	dma_addr_t mapping;
666 
667 	if (BNXT_RX_PAGE_MODE(bp)) {
668 		struct page *page = __bnxt_alloc_rx_page(bp, &mapping, gfp);
669 
670 		if (!page)
671 			return -ENOMEM;
672 
673 		rx_buf->data = page;
674 		rx_buf->data_ptr = page_address(page) + bp->rx_offset;
675 	} else {
676 		u8 *data = __bnxt_alloc_rx_data(bp, &mapping, gfp);
677 
678 		if (!data)
679 			return -ENOMEM;
680 
681 		rx_buf->data = data;
682 		rx_buf->data_ptr = data + bp->rx_offset;
683 	}
684 	rx_buf->mapping = mapping;
685 
686 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
687 	return 0;
688 }
689 
690 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data)
691 {
692 	u16 prod = rxr->rx_prod;
693 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
694 	struct rx_bd *cons_bd, *prod_bd;
695 
696 	prod_rx_buf = &rxr->rx_buf_ring[prod];
697 	cons_rx_buf = &rxr->rx_buf_ring[cons];
698 
699 	prod_rx_buf->data = data;
700 	prod_rx_buf->data_ptr = cons_rx_buf->data_ptr;
701 
702 	prod_rx_buf->mapping = cons_rx_buf->mapping;
703 
704 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
705 	cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
706 
707 	prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
708 }
709 
710 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
711 {
712 	u16 next, max = rxr->rx_agg_bmap_size;
713 
714 	next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
715 	if (next >= max)
716 		next = find_first_zero_bit(rxr->rx_agg_bmap, max);
717 	return next;
718 }
719 
720 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
721 				     struct bnxt_rx_ring_info *rxr,
722 				     u16 prod, gfp_t gfp)
723 {
724 	struct rx_bd *rxbd =
725 		&rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
726 	struct bnxt_sw_rx_agg_bd *rx_agg_buf;
727 	struct pci_dev *pdev = bp->pdev;
728 	struct page *page;
729 	dma_addr_t mapping;
730 	u16 sw_prod = rxr->rx_sw_agg_prod;
731 	unsigned int offset = 0;
732 
733 	if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) {
734 		page = rxr->rx_page;
735 		if (!page) {
736 			page = alloc_page(gfp);
737 			if (!page)
738 				return -ENOMEM;
739 			rxr->rx_page = page;
740 			rxr->rx_page_offset = 0;
741 		}
742 		offset = rxr->rx_page_offset;
743 		rxr->rx_page_offset += BNXT_RX_PAGE_SIZE;
744 		if (rxr->rx_page_offset == PAGE_SIZE)
745 			rxr->rx_page = NULL;
746 		else
747 			get_page(page);
748 	} else {
749 		page = alloc_page(gfp);
750 		if (!page)
751 			return -ENOMEM;
752 	}
753 
754 	mapping = dma_map_page_attrs(&pdev->dev, page, offset,
755 				     BNXT_RX_PAGE_SIZE, PCI_DMA_FROMDEVICE,
756 				     DMA_ATTR_WEAK_ORDERING);
757 	if (dma_mapping_error(&pdev->dev, mapping)) {
758 		__free_page(page);
759 		return -EIO;
760 	}
761 
762 	if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
763 		sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
764 
765 	__set_bit(sw_prod, rxr->rx_agg_bmap);
766 	rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
767 	rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod);
768 
769 	rx_agg_buf->page = page;
770 	rx_agg_buf->offset = offset;
771 	rx_agg_buf->mapping = mapping;
772 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
773 	rxbd->rx_bd_opaque = sw_prod;
774 	return 0;
775 }
776 
777 static void bnxt_reuse_rx_agg_bufs(struct bnxt_napi *bnapi, u16 cp_cons,
778 				   u32 agg_bufs)
779 {
780 	struct bnxt *bp = bnapi->bp;
781 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
782 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
783 	u16 prod = rxr->rx_agg_prod;
784 	u16 sw_prod = rxr->rx_sw_agg_prod;
785 	u32 i;
786 
787 	for (i = 0; i < agg_bufs; i++) {
788 		u16 cons;
789 		struct rx_agg_cmp *agg;
790 		struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
791 		struct rx_bd *prod_bd;
792 		struct page *page;
793 
794 		agg = (struct rx_agg_cmp *)
795 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
796 		cons = agg->rx_agg_cmp_opaque;
797 		__clear_bit(cons, rxr->rx_agg_bmap);
798 
799 		if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
800 			sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
801 
802 		__set_bit(sw_prod, rxr->rx_agg_bmap);
803 		prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
804 		cons_rx_buf = &rxr->rx_agg_ring[cons];
805 
806 		/* It is possible for sw_prod to be equal to cons, so
807 		 * set cons_rx_buf->page to NULL first.
808 		 */
809 		page = cons_rx_buf->page;
810 		cons_rx_buf->page = NULL;
811 		prod_rx_buf->page = page;
812 		prod_rx_buf->offset = cons_rx_buf->offset;
813 
814 		prod_rx_buf->mapping = cons_rx_buf->mapping;
815 
816 		prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
817 
818 		prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
819 		prod_bd->rx_bd_opaque = sw_prod;
820 
821 		prod = NEXT_RX_AGG(prod);
822 		sw_prod = NEXT_RX_AGG(sw_prod);
823 		cp_cons = NEXT_CMP(cp_cons);
824 	}
825 	rxr->rx_agg_prod = prod;
826 	rxr->rx_sw_agg_prod = sw_prod;
827 }
828 
829 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp,
830 					struct bnxt_rx_ring_info *rxr,
831 					u16 cons, void *data, u8 *data_ptr,
832 					dma_addr_t dma_addr,
833 					unsigned int offset_and_len)
834 {
835 	unsigned int payload = offset_and_len >> 16;
836 	unsigned int len = offset_and_len & 0xffff;
837 	struct skb_frag_struct *frag;
838 	struct page *page = data;
839 	u16 prod = rxr->rx_prod;
840 	struct sk_buff *skb;
841 	int off, err;
842 
843 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
844 	if (unlikely(err)) {
845 		bnxt_reuse_rx_data(rxr, cons, data);
846 		return NULL;
847 	}
848 	dma_addr -= bp->rx_dma_offset;
849 	dma_unmap_page_attrs(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir,
850 			     DMA_ATTR_WEAK_ORDERING);
851 
852 	if (unlikely(!payload))
853 		payload = eth_get_headlen(data_ptr, len);
854 
855 	skb = napi_alloc_skb(&rxr->bnapi->napi, payload);
856 	if (!skb) {
857 		__free_page(page);
858 		return NULL;
859 	}
860 
861 	off = (void *)data_ptr - page_address(page);
862 	skb_add_rx_frag(skb, 0, page, off, len, PAGE_SIZE);
863 	memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN,
864 	       payload + NET_IP_ALIGN);
865 
866 	frag = &skb_shinfo(skb)->frags[0];
867 	skb_frag_size_sub(frag, payload);
868 	frag->page_offset += payload;
869 	skb->data_len -= payload;
870 	skb->tail += payload;
871 
872 	return skb;
873 }
874 
875 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
876 				   struct bnxt_rx_ring_info *rxr, u16 cons,
877 				   void *data, u8 *data_ptr,
878 				   dma_addr_t dma_addr,
879 				   unsigned int offset_and_len)
880 {
881 	u16 prod = rxr->rx_prod;
882 	struct sk_buff *skb;
883 	int err;
884 
885 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
886 	if (unlikely(err)) {
887 		bnxt_reuse_rx_data(rxr, cons, data);
888 		return NULL;
889 	}
890 
891 	skb = build_skb(data, 0);
892 	dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
893 			       bp->rx_dir, DMA_ATTR_WEAK_ORDERING);
894 	if (!skb) {
895 		kfree(data);
896 		return NULL;
897 	}
898 
899 	skb_reserve(skb, bp->rx_offset);
900 	skb_put(skb, offset_and_len & 0xffff);
901 	return skb;
902 }
903 
904 static struct sk_buff *bnxt_rx_pages(struct bnxt *bp, struct bnxt_napi *bnapi,
905 				     struct sk_buff *skb, u16 cp_cons,
906 				     u32 agg_bufs)
907 {
908 	struct pci_dev *pdev = bp->pdev;
909 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
910 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
911 	u16 prod = rxr->rx_agg_prod;
912 	u32 i;
913 
914 	for (i = 0; i < agg_bufs; i++) {
915 		u16 cons, frag_len;
916 		struct rx_agg_cmp *agg;
917 		struct bnxt_sw_rx_agg_bd *cons_rx_buf;
918 		struct page *page;
919 		dma_addr_t mapping;
920 
921 		agg = (struct rx_agg_cmp *)
922 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
923 		cons = agg->rx_agg_cmp_opaque;
924 		frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
925 			    RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
926 
927 		cons_rx_buf = &rxr->rx_agg_ring[cons];
928 		skb_fill_page_desc(skb, i, cons_rx_buf->page,
929 				   cons_rx_buf->offset, frag_len);
930 		__clear_bit(cons, rxr->rx_agg_bmap);
931 
932 		/* It is possible for bnxt_alloc_rx_page() to allocate
933 		 * a sw_prod index that equals the cons index, so we
934 		 * need to clear the cons entry now.
935 		 */
936 		mapping = cons_rx_buf->mapping;
937 		page = cons_rx_buf->page;
938 		cons_rx_buf->page = NULL;
939 
940 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
941 			struct skb_shared_info *shinfo;
942 			unsigned int nr_frags;
943 
944 			shinfo = skb_shinfo(skb);
945 			nr_frags = --shinfo->nr_frags;
946 			__skb_frag_set_page(&shinfo->frags[nr_frags], NULL);
947 
948 			dev_kfree_skb(skb);
949 
950 			cons_rx_buf->page = page;
951 
952 			/* Update prod since possibly some pages have been
953 			 * allocated already.
954 			 */
955 			rxr->rx_agg_prod = prod;
956 			bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs - i);
957 			return NULL;
958 		}
959 
960 		dma_unmap_page_attrs(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE,
961 				     PCI_DMA_FROMDEVICE,
962 				     DMA_ATTR_WEAK_ORDERING);
963 
964 		skb->data_len += frag_len;
965 		skb->len += frag_len;
966 		skb->truesize += PAGE_SIZE;
967 
968 		prod = NEXT_RX_AGG(prod);
969 		cp_cons = NEXT_CMP(cp_cons);
970 	}
971 	rxr->rx_agg_prod = prod;
972 	return skb;
973 }
974 
975 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
976 			       u8 agg_bufs, u32 *raw_cons)
977 {
978 	u16 last;
979 	struct rx_agg_cmp *agg;
980 
981 	*raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
982 	last = RING_CMP(*raw_cons);
983 	agg = (struct rx_agg_cmp *)
984 		&cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
985 	return RX_AGG_CMP_VALID(agg, *raw_cons);
986 }
987 
988 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
989 					    unsigned int len,
990 					    dma_addr_t mapping)
991 {
992 	struct bnxt *bp = bnapi->bp;
993 	struct pci_dev *pdev = bp->pdev;
994 	struct sk_buff *skb;
995 
996 	skb = napi_alloc_skb(&bnapi->napi, len);
997 	if (!skb)
998 		return NULL;
999 
1000 	dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh,
1001 				bp->rx_dir);
1002 
1003 	memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN,
1004 	       len + NET_IP_ALIGN);
1005 
1006 	dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh,
1007 				   bp->rx_dir);
1008 
1009 	skb_put(skb, len);
1010 	return skb;
1011 }
1012 
1013 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_napi *bnapi,
1014 			   u32 *raw_cons, void *cmp)
1015 {
1016 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1017 	struct rx_cmp *rxcmp = cmp;
1018 	u32 tmp_raw_cons = *raw_cons;
1019 	u8 cmp_type, agg_bufs = 0;
1020 
1021 	cmp_type = RX_CMP_TYPE(rxcmp);
1022 
1023 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1024 		agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) &
1025 			    RX_CMP_AGG_BUFS) >>
1026 			   RX_CMP_AGG_BUFS_SHIFT;
1027 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1028 		struct rx_tpa_end_cmp *tpa_end = cmp;
1029 
1030 		agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
1031 			    RX_TPA_END_CMP_AGG_BUFS) >>
1032 			   RX_TPA_END_CMP_AGG_BUFS_SHIFT;
1033 	}
1034 
1035 	if (agg_bufs) {
1036 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1037 			return -EBUSY;
1038 	}
1039 	*raw_cons = tmp_raw_cons;
1040 	return 0;
1041 }
1042 
1043 static void bnxt_queue_sp_work(struct bnxt *bp)
1044 {
1045 	if (BNXT_PF(bp))
1046 		queue_work(bnxt_pf_wq, &bp->sp_task);
1047 	else
1048 		schedule_work(&bp->sp_task);
1049 }
1050 
1051 static void bnxt_cancel_sp_work(struct bnxt *bp)
1052 {
1053 	if (BNXT_PF(bp))
1054 		flush_workqueue(bnxt_pf_wq);
1055 	else
1056 		cancel_work_sync(&bp->sp_task);
1057 }
1058 
1059 static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
1060 {
1061 	if (!rxr->bnapi->in_reset) {
1062 		rxr->bnapi->in_reset = true;
1063 		set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
1064 		bnxt_queue_sp_work(bp);
1065 	}
1066 	rxr->rx_next_cons = 0xffff;
1067 }
1068 
1069 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1070 			   struct rx_tpa_start_cmp *tpa_start,
1071 			   struct rx_tpa_start_cmp_ext *tpa_start1)
1072 {
1073 	u8 agg_id = TPA_START_AGG_ID(tpa_start);
1074 	u16 cons, prod;
1075 	struct bnxt_tpa_info *tpa_info;
1076 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
1077 	struct rx_bd *prod_bd;
1078 	dma_addr_t mapping;
1079 
1080 	cons = tpa_start->rx_tpa_start_cmp_opaque;
1081 	prod = rxr->rx_prod;
1082 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1083 	prod_rx_buf = &rxr->rx_buf_ring[prod];
1084 	tpa_info = &rxr->rx_tpa[agg_id];
1085 
1086 	if (unlikely(cons != rxr->rx_next_cons)) {
1087 		bnxt_sched_reset(bp, rxr);
1088 		return;
1089 	}
1090 	/* Store cfa_code in tpa_info to use in tpa_end
1091 	 * completion processing.
1092 	 */
1093 	tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1);
1094 	prod_rx_buf->data = tpa_info->data;
1095 	prod_rx_buf->data_ptr = tpa_info->data_ptr;
1096 
1097 	mapping = tpa_info->mapping;
1098 	prod_rx_buf->mapping = mapping;
1099 
1100 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
1101 
1102 	prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
1103 
1104 	tpa_info->data = cons_rx_buf->data;
1105 	tpa_info->data_ptr = cons_rx_buf->data_ptr;
1106 	cons_rx_buf->data = NULL;
1107 	tpa_info->mapping = cons_rx_buf->mapping;
1108 
1109 	tpa_info->len =
1110 		le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
1111 				RX_TPA_START_CMP_LEN_SHIFT;
1112 	if (likely(TPA_START_HASH_VALID(tpa_start))) {
1113 		u32 hash_type = TPA_START_HASH_TYPE(tpa_start);
1114 
1115 		tpa_info->hash_type = PKT_HASH_TYPE_L4;
1116 		tpa_info->gso_type = SKB_GSO_TCPV4;
1117 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1118 		if (hash_type == 3)
1119 			tpa_info->gso_type = SKB_GSO_TCPV6;
1120 		tpa_info->rss_hash =
1121 			le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
1122 	} else {
1123 		tpa_info->hash_type = PKT_HASH_TYPE_NONE;
1124 		tpa_info->gso_type = 0;
1125 		if (netif_msg_rx_err(bp))
1126 			netdev_warn(bp->dev, "TPA packet without valid hash\n");
1127 	}
1128 	tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
1129 	tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
1130 	tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info);
1131 
1132 	rxr->rx_prod = NEXT_RX(prod);
1133 	cons = NEXT_RX(cons);
1134 	rxr->rx_next_cons = NEXT_RX(cons);
1135 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1136 
1137 	bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
1138 	rxr->rx_prod = NEXT_RX(rxr->rx_prod);
1139 	cons_rx_buf->data = NULL;
1140 }
1141 
1142 static void bnxt_abort_tpa(struct bnxt *bp, struct bnxt_napi *bnapi,
1143 			   u16 cp_cons, u32 agg_bufs)
1144 {
1145 	if (agg_bufs)
1146 		bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
1147 }
1148 
1149 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info,
1150 					   int payload_off, int tcp_ts,
1151 					   struct sk_buff *skb)
1152 {
1153 #ifdef CONFIG_INET
1154 	struct tcphdr *th;
1155 	int len, nw_off;
1156 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1157 	u32 hdr_info = tpa_info->hdr_info;
1158 	bool loopback = false;
1159 
1160 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1161 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1162 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1163 
1164 	/* If the packet is an internal loopback packet, the offsets will
1165 	 * have an extra 4 bytes.
1166 	 */
1167 	if (inner_mac_off == 4) {
1168 		loopback = true;
1169 	} else if (inner_mac_off > 4) {
1170 		__be16 proto = *((__be16 *)(skb->data + inner_ip_off -
1171 					    ETH_HLEN - 2));
1172 
1173 		/* We only support inner iPv4/ipv6.  If we don't see the
1174 		 * correct protocol ID, it must be a loopback packet where
1175 		 * the offsets are off by 4.
1176 		 */
1177 		if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6))
1178 			loopback = true;
1179 	}
1180 	if (loopback) {
1181 		/* internal loopback packet, subtract all offsets by 4 */
1182 		inner_ip_off -= 4;
1183 		inner_mac_off -= 4;
1184 		outer_ip_off -= 4;
1185 	}
1186 
1187 	nw_off = inner_ip_off - ETH_HLEN;
1188 	skb_set_network_header(skb, nw_off);
1189 	if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) {
1190 		struct ipv6hdr *iph = ipv6_hdr(skb);
1191 
1192 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1193 		len = skb->len - skb_transport_offset(skb);
1194 		th = tcp_hdr(skb);
1195 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1196 	} else {
1197 		struct iphdr *iph = ip_hdr(skb);
1198 
1199 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1200 		len = skb->len - skb_transport_offset(skb);
1201 		th = tcp_hdr(skb);
1202 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1203 	}
1204 
1205 	if (inner_mac_off) { /* tunnel */
1206 		struct udphdr *uh = NULL;
1207 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1208 					    ETH_HLEN - 2));
1209 
1210 		if (proto == htons(ETH_P_IP)) {
1211 			struct iphdr *iph = (struct iphdr *)skb->data;
1212 
1213 			if (iph->protocol == IPPROTO_UDP)
1214 				uh = (struct udphdr *)(iph + 1);
1215 		} else {
1216 			struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1217 
1218 			if (iph->nexthdr == IPPROTO_UDP)
1219 				uh = (struct udphdr *)(iph + 1);
1220 		}
1221 		if (uh) {
1222 			if (uh->check)
1223 				skb_shinfo(skb)->gso_type |=
1224 					SKB_GSO_UDP_TUNNEL_CSUM;
1225 			else
1226 				skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1227 		}
1228 	}
1229 #endif
1230 	return skb;
1231 }
1232 
1233 #define BNXT_IPV4_HDR_SIZE	(sizeof(struct iphdr) + sizeof(struct tcphdr))
1234 #define BNXT_IPV6_HDR_SIZE	(sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
1235 
1236 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info,
1237 					   int payload_off, int tcp_ts,
1238 					   struct sk_buff *skb)
1239 {
1240 #ifdef CONFIG_INET
1241 	struct tcphdr *th;
1242 	int len, nw_off, tcp_opt_len = 0;
1243 
1244 	if (tcp_ts)
1245 		tcp_opt_len = 12;
1246 
1247 	if (tpa_info->gso_type == SKB_GSO_TCPV4) {
1248 		struct iphdr *iph;
1249 
1250 		nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
1251 			 ETH_HLEN;
1252 		skb_set_network_header(skb, nw_off);
1253 		iph = ip_hdr(skb);
1254 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1255 		len = skb->len - skb_transport_offset(skb);
1256 		th = tcp_hdr(skb);
1257 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1258 	} else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
1259 		struct ipv6hdr *iph;
1260 
1261 		nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
1262 			 ETH_HLEN;
1263 		skb_set_network_header(skb, nw_off);
1264 		iph = ipv6_hdr(skb);
1265 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1266 		len = skb->len - skb_transport_offset(skb);
1267 		th = tcp_hdr(skb);
1268 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1269 	} else {
1270 		dev_kfree_skb_any(skb);
1271 		return NULL;
1272 	}
1273 
1274 	if (nw_off) { /* tunnel */
1275 		struct udphdr *uh = NULL;
1276 
1277 		if (skb->protocol == htons(ETH_P_IP)) {
1278 			struct iphdr *iph = (struct iphdr *)skb->data;
1279 
1280 			if (iph->protocol == IPPROTO_UDP)
1281 				uh = (struct udphdr *)(iph + 1);
1282 		} else {
1283 			struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1284 
1285 			if (iph->nexthdr == IPPROTO_UDP)
1286 				uh = (struct udphdr *)(iph + 1);
1287 		}
1288 		if (uh) {
1289 			if (uh->check)
1290 				skb_shinfo(skb)->gso_type |=
1291 					SKB_GSO_UDP_TUNNEL_CSUM;
1292 			else
1293 				skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1294 		}
1295 	}
1296 #endif
1297 	return skb;
1298 }
1299 
1300 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp,
1301 					   struct bnxt_tpa_info *tpa_info,
1302 					   struct rx_tpa_end_cmp *tpa_end,
1303 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1304 					   struct sk_buff *skb)
1305 {
1306 #ifdef CONFIG_INET
1307 	int payload_off;
1308 	u16 segs;
1309 
1310 	segs = TPA_END_TPA_SEGS(tpa_end);
1311 	if (segs == 1)
1312 		return skb;
1313 
1314 	NAPI_GRO_CB(skb)->count = segs;
1315 	skb_shinfo(skb)->gso_size =
1316 		le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
1317 	skb_shinfo(skb)->gso_type = tpa_info->gso_type;
1318 	payload_off = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
1319 		       RX_TPA_END_CMP_PAYLOAD_OFFSET) >>
1320 		      RX_TPA_END_CMP_PAYLOAD_OFFSET_SHIFT;
1321 	skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb);
1322 	if (likely(skb))
1323 		tcp_gro_complete(skb);
1324 #endif
1325 	return skb;
1326 }
1327 
1328 /* Given the cfa_code of a received packet determine which
1329  * netdev (vf-rep or PF) the packet is destined to.
1330  */
1331 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code)
1332 {
1333 	struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code);
1334 
1335 	/* if vf-rep dev is NULL, the must belongs to the PF */
1336 	return dev ? dev : bp->dev;
1337 }
1338 
1339 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
1340 					   struct bnxt_napi *bnapi,
1341 					   u32 *raw_cons,
1342 					   struct rx_tpa_end_cmp *tpa_end,
1343 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1344 					   u8 *event)
1345 {
1346 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1347 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1348 	u8 agg_id = TPA_END_AGG_ID(tpa_end);
1349 	u8 *data_ptr, agg_bufs;
1350 	u16 cp_cons = RING_CMP(*raw_cons);
1351 	unsigned int len;
1352 	struct bnxt_tpa_info *tpa_info;
1353 	dma_addr_t mapping;
1354 	struct sk_buff *skb;
1355 	void *data;
1356 
1357 	if (unlikely(bnapi->in_reset)) {
1358 		int rc = bnxt_discard_rx(bp, bnapi, raw_cons, tpa_end);
1359 
1360 		if (rc < 0)
1361 			return ERR_PTR(-EBUSY);
1362 		return NULL;
1363 	}
1364 
1365 	tpa_info = &rxr->rx_tpa[agg_id];
1366 	data = tpa_info->data;
1367 	data_ptr = tpa_info->data_ptr;
1368 	prefetch(data_ptr);
1369 	len = tpa_info->len;
1370 	mapping = tpa_info->mapping;
1371 
1372 	agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
1373 		    RX_TPA_END_CMP_AGG_BUFS) >> RX_TPA_END_CMP_AGG_BUFS_SHIFT;
1374 
1375 	if (agg_bufs) {
1376 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
1377 			return ERR_PTR(-EBUSY);
1378 
1379 		*event |= BNXT_AGG_EVENT;
1380 		cp_cons = NEXT_CMP(cp_cons);
1381 	}
1382 
1383 	if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) {
1384 		bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1385 		if (agg_bufs > MAX_SKB_FRAGS)
1386 			netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
1387 				    agg_bufs, (int)MAX_SKB_FRAGS);
1388 		return NULL;
1389 	}
1390 
1391 	if (len <= bp->rx_copy_thresh) {
1392 		skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping);
1393 		if (!skb) {
1394 			bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1395 			return NULL;
1396 		}
1397 	} else {
1398 		u8 *new_data;
1399 		dma_addr_t new_mapping;
1400 
1401 		new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC);
1402 		if (!new_data) {
1403 			bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1404 			return NULL;
1405 		}
1406 
1407 		tpa_info->data = new_data;
1408 		tpa_info->data_ptr = new_data + bp->rx_offset;
1409 		tpa_info->mapping = new_mapping;
1410 
1411 		skb = build_skb(data, 0);
1412 		dma_unmap_single_attrs(&bp->pdev->dev, mapping,
1413 				       bp->rx_buf_use_size, bp->rx_dir,
1414 				       DMA_ATTR_WEAK_ORDERING);
1415 
1416 		if (!skb) {
1417 			kfree(data);
1418 			bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1419 			return NULL;
1420 		}
1421 		skb_reserve(skb, bp->rx_offset);
1422 		skb_put(skb, len);
1423 	}
1424 
1425 	if (agg_bufs) {
1426 		skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
1427 		if (!skb) {
1428 			/* Page reuse already handled by bnxt_rx_pages(). */
1429 			return NULL;
1430 		}
1431 	}
1432 
1433 	skb->protocol =
1434 		eth_type_trans(skb, bnxt_get_pkt_dev(bp, tpa_info->cfa_code));
1435 
1436 	if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1437 		skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1438 
1439 	if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) &&
1440 	    (skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
1441 		u16 vlan_proto = tpa_info->metadata >>
1442 			RX_CMP_FLAGS2_METADATA_TPID_SFT;
1443 		u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1444 
1445 		__vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1446 	}
1447 
1448 	skb_checksum_none_assert(skb);
1449 	if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1450 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1451 		skb->csum_level =
1452 			(tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1453 	}
1454 
1455 	if (TPA_END_GRO(tpa_end))
1456 		skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb);
1457 
1458 	return skb;
1459 }
1460 
1461 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi,
1462 			     struct sk_buff *skb)
1463 {
1464 	if (skb->dev != bp->dev) {
1465 		/* this packet belongs to a vf-rep */
1466 		bnxt_vf_rep_rx(bp, skb);
1467 		return;
1468 	}
1469 	skb_record_rx_queue(skb, bnapi->index);
1470 	napi_gro_receive(&bnapi->napi, skb);
1471 }
1472 
1473 /* returns the following:
1474  * 1       - 1 packet successfully received
1475  * 0       - successful TPA_START, packet not completed yet
1476  * -EBUSY  - completion ring does not have all the agg buffers yet
1477  * -ENOMEM - packet aborted due to out of memory
1478  * -EIO    - packet aborted due to hw error indicated in BD
1479  */
1480 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_napi *bnapi, u32 *raw_cons,
1481 		       u8 *event)
1482 {
1483 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1484 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1485 	struct net_device *dev = bp->dev;
1486 	struct rx_cmp *rxcmp;
1487 	struct rx_cmp_ext *rxcmp1;
1488 	u32 tmp_raw_cons = *raw_cons;
1489 	u16 cfa_code, cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
1490 	struct bnxt_sw_rx_bd *rx_buf;
1491 	unsigned int len;
1492 	u8 *data_ptr, agg_bufs, cmp_type;
1493 	dma_addr_t dma_addr;
1494 	struct sk_buff *skb;
1495 	void *data;
1496 	int rc = 0;
1497 	u32 misc;
1498 
1499 	rxcmp = (struct rx_cmp *)
1500 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1501 
1502 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1503 	cp_cons = RING_CMP(tmp_raw_cons);
1504 	rxcmp1 = (struct rx_cmp_ext *)
1505 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1506 
1507 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1508 		return -EBUSY;
1509 
1510 	cmp_type = RX_CMP_TYPE(rxcmp);
1511 
1512 	prod = rxr->rx_prod;
1513 
1514 	if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) {
1515 		bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp,
1516 			       (struct rx_tpa_start_cmp_ext *)rxcmp1);
1517 
1518 		*event |= BNXT_RX_EVENT;
1519 		goto next_rx_no_prod_no_len;
1520 
1521 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1522 		skb = bnxt_tpa_end(bp, bnapi, &tmp_raw_cons,
1523 				   (struct rx_tpa_end_cmp *)rxcmp,
1524 				   (struct rx_tpa_end_cmp_ext *)rxcmp1, event);
1525 
1526 		if (IS_ERR(skb))
1527 			return -EBUSY;
1528 
1529 		rc = -ENOMEM;
1530 		if (likely(skb)) {
1531 			bnxt_deliver_skb(bp, bnapi, skb);
1532 			rc = 1;
1533 		}
1534 		*event |= BNXT_RX_EVENT;
1535 		goto next_rx_no_prod_no_len;
1536 	}
1537 
1538 	cons = rxcmp->rx_cmp_opaque;
1539 	rx_buf = &rxr->rx_buf_ring[cons];
1540 	data = rx_buf->data;
1541 	data_ptr = rx_buf->data_ptr;
1542 	if (unlikely(cons != rxr->rx_next_cons)) {
1543 		int rc1 = bnxt_discard_rx(bp, bnapi, raw_cons, rxcmp);
1544 
1545 		bnxt_sched_reset(bp, rxr);
1546 		return rc1;
1547 	}
1548 	prefetch(data_ptr);
1549 
1550 	misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1);
1551 	agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT;
1552 
1553 	if (agg_bufs) {
1554 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1555 			return -EBUSY;
1556 
1557 		cp_cons = NEXT_CMP(cp_cons);
1558 		*event |= BNXT_AGG_EVENT;
1559 	}
1560 	*event |= BNXT_RX_EVENT;
1561 
1562 	rx_buf->data = NULL;
1563 	if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
1564 		bnxt_reuse_rx_data(rxr, cons, data);
1565 		if (agg_bufs)
1566 			bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
1567 
1568 		rc = -EIO;
1569 		goto next_rx;
1570 	}
1571 
1572 	len = le32_to_cpu(rxcmp->rx_cmp_len_flags_type) >> RX_CMP_LEN_SHIFT;
1573 	dma_addr = rx_buf->mapping;
1574 
1575 	if (bnxt_rx_xdp(bp, rxr, cons, data, &data_ptr, &len, event)) {
1576 		rc = 1;
1577 		goto next_rx;
1578 	}
1579 
1580 	if (len <= bp->rx_copy_thresh) {
1581 		skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr);
1582 		bnxt_reuse_rx_data(rxr, cons, data);
1583 		if (!skb) {
1584 			rc = -ENOMEM;
1585 			goto next_rx;
1586 		}
1587 	} else {
1588 		u32 payload;
1589 
1590 		if (rx_buf->data_ptr == data_ptr)
1591 			payload = misc & RX_CMP_PAYLOAD_OFFSET;
1592 		else
1593 			payload = 0;
1594 		skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr,
1595 				      payload | len);
1596 		if (!skb) {
1597 			rc = -ENOMEM;
1598 			goto next_rx;
1599 		}
1600 	}
1601 
1602 	if (agg_bufs) {
1603 		skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
1604 		if (!skb) {
1605 			rc = -ENOMEM;
1606 			goto next_rx;
1607 		}
1608 	}
1609 
1610 	if (RX_CMP_HASH_VALID(rxcmp)) {
1611 		u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
1612 		enum pkt_hash_types type = PKT_HASH_TYPE_L4;
1613 
1614 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1615 		if (hash_type != 1 && hash_type != 3)
1616 			type = PKT_HASH_TYPE_L3;
1617 		skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
1618 	}
1619 
1620 	cfa_code = RX_CMP_CFA_CODE(rxcmp1);
1621 	skb->protocol = eth_type_trans(skb, bnxt_get_pkt_dev(bp, cfa_code));
1622 
1623 	if ((rxcmp1->rx_cmp_flags2 &
1624 	     cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) &&
1625 	    (skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
1626 		u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
1627 		u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1628 		u16 vlan_proto = meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT;
1629 
1630 		__vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1631 	}
1632 
1633 	skb_checksum_none_assert(skb);
1634 	if (RX_CMP_L4_CS_OK(rxcmp1)) {
1635 		if (dev->features & NETIF_F_RXCSUM) {
1636 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1637 			skb->csum_level = RX_CMP_ENCAP(rxcmp1);
1638 		}
1639 	} else {
1640 		if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
1641 			if (dev->features & NETIF_F_RXCSUM)
1642 				cpr->rx_l4_csum_errors++;
1643 		}
1644 	}
1645 
1646 	bnxt_deliver_skb(bp, bnapi, skb);
1647 	rc = 1;
1648 
1649 next_rx:
1650 	rxr->rx_prod = NEXT_RX(prod);
1651 	rxr->rx_next_cons = NEXT_RX(cons);
1652 
1653 	cpr->rx_packets += 1;
1654 	cpr->rx_bytes += len;
1655 
1656 next_rx_no_prod_no_len:
1657 	*raw_cons = tmp_raw_cons;
1658 
1659 	return rc;
1660 }
1661 
1662 /* In netpoll mode, if we are using a combined completion ring, we need to
1663  * discard the rx packets and recycle the buffers.
1664  */
1665 static int bnxt_force_rx_discard(struct bnxt *bp, struct bnxt_napi *bnapi,
1666 				 u32 *raw_cons, u8 *event)
1667 {
1668 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1669 	u32 tmp_raw_cons = *raw_cons;
1670 	struct rx_cmp_ext *rxcmp1;
1671 	struct rx_cmp *rxcmp;
1672 	u16 cp_cons;
1673 	u8 cmp_type;
1674 
1675 	cp_cons = RING_CMP(tmp_raw_cons);
1676 	rxcmp = (struct rx_cmp *)
1677 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1678 
1679 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1680 	cp_cons = RING_CMP(tmp_raw_cons);
1681 	rxcmp1 = (struct rx_cmp_ext *)
1682 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1683 
1684 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1685 		return -EBUSY;
1686 
1687 	cmp_type = RX_CMP_TYPE(rxcmp);
1688 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1689 		rxcmp1->rx_cmp_cfa_code_errors_v2 |=
1690 			cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
1691 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1692 		struct rx_tpa_end_cmp_ext *tpa_end1;
1693 
1694 		tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1;
1695 		tpa_end1->rx_tpa_end_cmp_errors_v2 |=
1696 			cpu_to_le32(RX_TPA_END_CMP_ERRORS);
1697 	}
1698 	return bnxt_rx_pkt(bp, bnapi, raw_cons, event);
1699 }
1700 
1701 #define BNXT_GET_EVENT_PORT(data)	\
1702 	((data) &			\
1703 	 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK)
1704 
1705 static int bnxt_async_event_process(struct bnxt *bp,
1706 				    struct hwrm_async_event_cmpl *cmpl)
1707 {
1708 	u16 event_id = le16_to_cpu(cmpl->event_id);
1709 
1710 	/* TODO CHIMP_FW: Define event id's for link change, error etc */
1711 	switch (event_id) {
1712 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: {
1713 		u32 data1 = le32_to_cpu(cmpl->event_data1);
1714 		struct bnxt_link_info *link_info = &bp->link_info;
1715 
1716 		if (BNXT_VF(bp))
1717 			goto async_event_process_exit;
1718 
1719 		/* print unsupported speed warning in forced speed mode only */
1720 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) &&
1721 		    (data1 & 0x20000)) {
1722 			u16 fw_speed = link_info->force_link_speed;
1723 			u32 speed = bnxt_fw_to_ethtool_speed(fw_speed);
1724 
1725 			if (speed != SPEED_UNKNOWN)
1726 				netdev_warn(bp->dev, "Link speed %d no longer supported\n",
1727 					    speed);
1728 		}
1729 		set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event);
1730 		/* fall thru */
1731 	}
1732 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
1733 		set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
1734 		break;
1735 	case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD:
1736 		set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event);
1737 		break;
1738 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: {
1739 		u32 data1 = le32_to_cpu(cmpl->event_data1);
1740 		u16 port_id = BNXT_GET_EVENT_PORT(data1);
1741 
1742 		if (BNXT_VF(bp))
1743 			break;
1744 
1745 		if (bp->pf.port_id != port_id)
1746 			break;
1747 
1748 		set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event);
1749 		break;
1750 	}
1751 	case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE:
1752 		if (BNXT_PF(bp))
1753 			goto async_event_process_exit;
1754 		set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event);
1755 		break;
1756 	default:
1757 		goto async_event_process_exit;
1758 	}
1759 	bnxt_queue_sp_work(bp);
1760 async_event_process_exit:
1761 	bnxt_ulp_async_events(bp, cmpl);
1762 	return 0;
1763 }
1764 
1765 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
1766 {
1767 	u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
1768 	struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
1769 	struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
1770 				(struct hwrm_fwd_req_cmpl *)txcmp;
1771 
1772 	switch (cmpl_type) {
1773 	case CMPL_BASE_TYPE_HWRM_DONE:
1774 		seq_id = le16_to_cpu(h_cmpl->sequence_id);
1775 		if (seq_id == bp->hwrm_intr_seq_id)
1776 			bp->hwrm_intr_seq_id = HWRM_SEQ_ID_INVALID;
1777 		else
1778 			netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id);
1779 		break;
1780 
1781 	case CMPL_BASE_TYPE_HWRM_FWD_REQ:
1782 		vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
1783 
1784 		if ((vf_id < bp->pf.first_vf_id) ||
1785 		    (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
1786 			netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
1787 				   vf_id);
1788 			return -EINVAL;
1789 		}
1790 
1791 		set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
1792 		set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event);
1793 		bnxt_queue_sp_work(bp);
1794 		break;
1795 
1796 	case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
1797 		bnxt_async_event_process(bp,
1798 					 (struct hwrm_async_event_cmpl *)txcmp);
1799 
1800 	default:
1801 		break;
1802 	}
1803 
1804 	return 0;
1805 }
1806 
1807 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
1808 {
1809 	struct bnxt_napi *bnapi = dev_instance;
1810 	struct bnxt *bp = bnapi->bp;
1811 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1812 	u32 cons = RING_CMP(cpr->cp_raw_cons);
1813 
1814 	cpr->event_ctr++;
1815 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1816 	napi_schedule(&bnapi->napi);
1817 	return IRQ_HANDLED;
1818 }
1819 
1820 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
1821 {
1822 	u32 raw_cons = cpr->cp_raw_cons;
1823 	u16 cons = RING_CMP(raw_cons);
1824 	struct tx_cmp *txcmp;
1825 
1826 	txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1827 
1828 	return TX_CMP_VALID(txcmp, raw_cons);
1829 }
1830 
1831 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
1832 {
1833 	struct bnxt_napi *bnapi = dev_instance;
1834 	struct bnxt *bp = bnapi->bp;
1835 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1836 	u32 cons = RING_CMP(cpr->cp_raw_cons);
1837 	u32 int_status;
1838 
1839 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1840 
1841 	if (!bnxt_has_work(bp, cpr)) {
1842 		int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
1843 		/* return if erroneous interrupt */
1844 		if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
1845 			return IRQ_NONE;
1846 	}
1847 
1848 	/* disable ring IRQ */
1849 	BNXT_CP_DB_IRQ_DIS(cpr->cp_doorbell);
1850 
1851 	/* Return here if interrupt is shared and is disabled. */
1852 	if (unlikely(atomic_read(&bp->intr_sem) != 0))
1853 		return IRQ_HANDLED;
1854 
1855 	napi_schedule(&bnapi->napi);
1856 	return IRQ_HANDLED;
1857 }
1858 
1859 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
1860 {
1861 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1862 	u32 raw_cons = cpr->cp_raw_cons;
1863 	u32 cons;
1864 	int tx_pkts = 0;
1865 	int rx_pkts = 0;
1866 	u8 event = 0;
1867 	struct tx_cmp *txcmp;
1868 
1869 	while (1) {
1870 		int rc;
1871 
1872 		cons = RING_CMP(raw_cons);
1873 		txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1874 
1875 		if (!TX_CMP_VALID(txcmp, raw_cons))
1876 			break;
1877 
1878 		/* The valid test of the entry must be done first before
1879 		 * reading any further.
1880 		 */
1881 		dma_rmb();
1882 		if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) {
1883 			tx_pkts++;
1884 			/* return full budget so NAPI will complete. */
1885 			if (unlikely(tx_pkts > bp->tx_wake_thresh))
1886 				rx_pkts = budget;
1887 		} else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
1888 			if (likely(budget))
1889 				rc = bnxt_rx_pkt(bp, bnapi, &raw_cons, &event);
1890 			else
1891 				rc = bnxt_force_rx_discard(bp, bnapi, &raw_cons,
1892 							   &event);
1893 			if (likely(rc >= 0))
1894 				rx_pkts += rc;
1895 			/* Increment rx_pkts when rc is -ENOMEM to count towards
1896 			 * the NAPI budget.  Otherwise, we may potentially loop
1897 			 * here forever if we consistently cannot allocate
1898 			 * buffers.
1899 			 */
1900 			else if (rc == -ENOMEM && budget)
1901 				rx_pkts++;
1902 			else if (rc == -EBUSY)	/* partial completion */
1903 				break;
1904 		} else if (unlikely((TX_CMP_TYPE(txcmp) ==
1905 				     CMPL_BASE_TYPE_HWRM_DONE) ||
1906 				    (TX_CMP_TYPE(txcmp) ==
1907 				     CMPL_BASE_TYPE_HWRM_FWD_REQ) ||
1908 				    (TX_CMP_TYPE(txcmp) ==
1909 				     CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) {
1910 			bnxt_hwrm_handler(bp, txcmp);
1911 		}
1912 		raw_cons = NEXT_RAW_CMP(raw_cons);
1913 
1914 		if (rx_pkts == budget)
1915 			break;
1916 	}
1917 
1918 	if (event & BNXT_TX_EVENT) {
1919 		struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
1920 		void __iomem *db = txr->tx_doorbell;
1921 		u16 prod = txr->tx_prod;
1922 
1923 		/* Sync BD data before updating doorbell */
1924 		wmb();
1925 
1926 		bnxt_db_write_relaxed(bp, db, DB_KEY_TX | prod);
1927 	}
1928 
1929 	cpr->cp_raw_cons = raw_cons;
1930 	/* ACK completion ring before freeing tx ring and producing new
1931 	 * buffers in rx/agg rings to prevent overflowing the completion
1932 	 * ring.
1933 	 */
1934 	BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
1935 
1936 	if (tx_pkts)
1937 		bnapi->tx_int(bp, bnapi, tx_pkts);
1938 
1939 	if (event & BNXT_RX_EVENT) {
1940 		struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1941 
1942 		bnxt_db_write(bp, rxr->rx_doorbell, DB_KEY_RX | rxr->rx_prod);
1943 		if (event & BNXT_AGG_EVENT)
1944 			bnxt_db_write(bp, rxr->rx_agg_doorbell,
1945 				      DB_KEY_RX | rxr->rx_agg_prod);
1946 	}
1947 	return rx_pkts;
1948 }
1949 
1950 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget)
1951 {
1952 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
1953 	struct bnxt *bp = bnapi->bp;
1954 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1955 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1956 	struct tx_cmp *txcmp;
1957 	struct rx_cmp_ext *rxcmp1;
1958 	u32 cp_cons, tmp_raw_cons;
1959 	u32 raw_cons = cpr->cp_raw_cons;
1960 	u32 rx_pkts = 0;
1961 	u8 event = 0;
1962 
1963 	while (1) {
1964 		int rc;
1965 
1966 		cp_cons = RING_CMP(raw_cons);
1967 		txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1968 
1969 		if (!TX_CMP_VALID(txcmp, raw_cons))
1970 			break;
1971 
1972 		if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
1973 			tmp_raw_cons = NEXT_RAW_CMP(raw_cons);
1974 			cp_cons = RING_CMP(tmp_raw_cons);
1975 			rxcmp1 = (struct rx_cmp_ext *)
1976 			  &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1977 
1978 			if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1979 				break;
1980 
1981 			/* force an error to recycle the buffer */
1982 			rxcmp1->rx_cmp_cfa_code_errors_v2 |=
1983 				cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
1984 
1985 			rc = bnxt_rx_pkt(bp, bnapi, &raw_cons, &event);
1986 			if (likely(rc == -EIO) && budget)
1987 				rx_pkts++;
1988 			else if (rc == -EBUSY)	/* partial completion */
1989 				break;
1990 		} else if (unlikely(TX_CMP_TYPE(txcmp) ==
1991 				    CMPL_BASE_TYPE_HWRM_DONE)) {
1992 			bnxt_hwrm_handler(bp, txcmp);
1993 		} else {
1994 			netdev_err(bp->dev,
1995 				   "Invalid completion received on special ring\n");
1996 		}
1997 		raw_cons = NEXT_RAW_CMP(raw_cons);
1998 
1999 		if (rx_pkts == budget)
2000 			break;
2001 	}
2002 
2003 	cpr->cp_raw_cons = raw_cons;
2004 	BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
2005 	bnxt_db_write(bp, rxr->rx_doorbell, DB_KEY_RX | rxr->rx_prod);
2006 
2007 	if (event & BNXT_AGG_EVENT)
2008 		bnxt_db_write(bp, rxr->rx_agg_doorbell,
2009 			      DB_KEY_RX | rxr->rx_agg_prod);
2010 
2011 	if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) {
2012 		napi_complete_done(napi, rx_pkts);
2013 		BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
2014 	}
2015 	return rx_pkts;
2016 }
2017 
2018 static int bnxt_poll(struct napi_struct *napi, int budget)
2019 {
2020 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2021 	struct bnxt *bp = bnapi->bp;
2022 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2023 	int work_done = 0;
2024 
2025 	while (1) {
2026 		work_done += bnxt_poll_work(bp, bnapi, budget - work_done);
2027 
2028 		if (work_done >= budget)
2029 			break;
2030 
2031 		if (!bnxt_has_work(bp, cpr)) {
2032 			if (napi_complete_done(napi, work_done))
2033 				BNXT_CP_DB_REARM(cpr->cp_doorbell,
2034 						 cpr->cp_raw_cons);
2035 			break;
2036 		}
2037 	}
2038 	if (bp->flags & BNXT_FLAG_DIM) {
2039 		struct net_dim_sample dim_sample;
2040 
2041 		net_dim_sample(cpr->event_ctr,
2042 			       cpr->rx_packets,
2043 			       cpr->rx_bytes,
2044 			       &dim_sample);
2045 		net_dim(&cpr->dim, dim_sample);
2046 	}
2047 	mmiowb();
2048 	return work_done;
2049 }
2050 
2051 static void bnxt_free_tx_skbs(struct bnxt *bp)
2052 {
2053 	int i, max_idx;
2054 	struct pci_dev *pdev = bp->pdev;
2055 
2056 	if (!bp->tx_ring)
2057 		return;
2058 
2059 	max_idx = bp->tx_nr_pages * TX_DESC_CNT;
2060 	for (i = 0; i < bp->tx_nr_rings; i++) {
2061 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2062 		int j;
2063 
2064 		for (j = 0; j < max_idx;) {
2065 			struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
2066 			struct sk_buff *skb = tx_buf->skb;
2067 			int k, last;
2068 
2069 			if (!skb) {
2070 				j++;
2071 				continue;
2072 			}
2073 
2074 			tx_buf->skb = NULL;
2075 
2076 			if (tx_buf->is_push) {
2077 				dev_kfree_skb(skb);
2078 				j += 2;
2079 				continue;
2080 			}
2081 
2082 			dma_unmap_single(&pdev->dev,
2083 					 dma_unmap_addr(tx_buf, mapping),
2084 					 skb_headlen(skb),
2085 					 PCI_DMA_TODEVICE);
2086 
2087 			last = tx_buf->nr_frags;
2088 			j += 2;
2089 			for (k = 0; k < last; k++, j++) {
2090 				int ring_idx = j & bp->tx_ring_mask;
2091 				skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2092 
2093 				tx_buf = &txr->tx_buf_ring[ring_idx];
2094 				dma_unmap_page(
2095 					&pdev->dev,
2096 					dma_unmap_addr(tx_buf, mapping),
2097 					skb_frag_size(frag), PCI_DMA_TODEVICE);
2098 			}
2099 			dev_kfree_skb(skb);
2100 		}
2101 		netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
2102 	}
2103 }
2104 
2105 static void bnxt_free_rx_skbs(struct bnxt *bp)
2106 {
2107 	int i, max_idx, max_agg_idx;
2108 	struct pci_dev *pdev = bp->pdev;
2109 
2110 	if (!bp->rx_ring)
2111 		return;
2112 
2113 	max_idx = bp->rx_nr_pages * RX_DESC_CNT;
2114 	max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
2115 	for (i = 0; i < bp->rx_nr_rings; i++) {
2116 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2117 		int j;
2118 
2119 		if (rxr->rx_tpa) {
2120 			for (j = 0; j < MAX_TPA; j++) {
2121 				struct bnxt_tpa_info *tpa_info =
2122 							&rxr->rx_tpa[j];
2123 				u8 *data = tpa_info->data;
2124 
2125 				if (!data)
2126 					continue;
2127 
2128 				dma_unmap_single_attrs(&pdev->dev,
2129 						       tpa_info->mapping,
2130 						       bp->rx_buf_use_size,
2131 						       bp->rx_dir,
2132 						       DMA_ATTR_WEAK_ORDERING);
2133 
2134 				tpa_info->data = NULL;
2135 
2136 				kfree(data);
2137 			}
2138 		}
2139 
2140 		for (j = 0; j < max_idx; j++) {
2141 			struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[j];
2142 			dma_addr_t mapping = rx_buf->mapping;
2143 			void *data = rx_buf->data;
2144 
2145 			if (!data)
2146 				continue;
2147 
2148 			rx_buf->data = NULL;
2149 
2150 			if (BNXT_RX_PAGE_MODE(bp)) {
2151 				mapping -= bp->rx_dma_offset;
2152 				dma_unmap_page_attrs(&pdev->dev, mapping,
2153 						     PAGE_SIZE, bp->rx_dir,
2154 						     DMA_ATTR_WEAK_ORDERING);
2155 				__free_page(data);
2156 			} else {
2157 				dma_unmap_single_attrs(&pdev->dev, mapping,
2158 						       bp->rx_buf_use_size,
2159 						       bp->rx_dir,
2160 						       DMA_ATTR_WEAK_ORDERING);
2161 				kfree(data);
2162 			}
2163 		}
2164 
2165 		for (j = 0; j < max_agg_idx; j++) {
2166 			struct bnxt_sw_rx_agg_bd *rx_agg_buf =
2167 				&rxr->rx_agg_ring[j];
2168 			struct page *page = rx_agg_buf->page;
2169 
2170 			if (!page)
2171 				continue;
2172 
2173 			dma_unmap_page_attrs(&pdev->dev, rx_agg_buf->mapping,
2174 					     BNXT_RX_PAGE_SIZE,
2175 					     PCI_DMA_FROMDEVICE,
2176 					     DMA_ATTR_WEAK_ORDERING);
2177 
2178 			rx_agg_buf->page = NULL;
2179 			__clear_bit(j, rxr->rx_agg_bmap);
2180 
2181 			__free_page(page);
2182 		}
2183 		if (rxr->rx_page) {
2184 			__free_page(rxr->rx_page);
2185 			rxr->rx_page = NULL;
2186 		}
2187 	}
2188 }
2189 
2190 static void bnxt_free_skbs(struct bnxt *bp)
2191 {
2192 	bnxt_free_tx_skbs(bp);
2193 	bnxt_free_rx_skbs(bp);
2194 }
2195 
2196 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
2197 {
2198 	struct pci_dev *pdev = bp->pdev;
2199 	int i;
2200 
2201 	for (i = 0; i < ring->nr_pages; i++) {
2202 		if (!ring->pg_arr[i])
2203 			continue;
2204 
2205 		dma_free_coherent(&pdev->dev, ring->page_size,
2206 				  ring->pg_arr[i], ring->dma_arr[i]);
2207 
2208 		ring->pg_arr[i] = NULL;
2209 	}
2210 	if (ring->pg_tbl) {
2211 		dma_free_coherent(&pdev->dev, ring->nr_pages * 8,
2212 				  ring->pg_tbl, ring->pg_tbl_map);
2213 		ring->pg_tbl = NULL;
2214 	}
2215 	if (ring->vmem_size && *ring->vmem) {
2216 		vfree(*ring->vmem);
2217 		*ring->vmem = NULL;
2218 	}
2219 }
2220 
2221 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
2222 {
2223 	int i;
2224 	struct pci_dev *pdev = bp->pdev;
2225 
2226 	if (ring->nr_pages > 1) {
2227 		ring->pg_tbl = dma_alloc_coherent(&pdev->dev,
2228 						  ring->nr_pages * 8,
2229 						  &ring->pg_tbl_map,
2230 						  GFP_KERNEL);
2231 		if (!ring->pg_tbl)
2232 			return -ENOMEM;
2233 	}
2234 
2235 	for (i = 0; i < ring->nr_pages; i++) {
2236 		ring->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
2237 						     ring->page_size,
2238 						     &ring->dma_arr[i],
2239 						     GFP_KERNEL);
2240 		if (!ring->pg_arr[i])
2241 			return -ENOMEM;
2242 
2243 		if (ring->nr_pages > 1)
2244 			ring->pg_tbl[i] = cpu_to_le64(ring->dma_arr[i]);
2245 	}
2246 
2247 	if (ring->vmem_size) {
2248 		*ring->vmem = vzalloc(ring->vmem_size);
2249 		if (!(*ring->vmem))
2250 			return -ENOMEM;
2251 	}
2252 	return 0;
2253 }
2254 
2255 static void bnxt_free_rx_rings(struct bnxt *bp)
2256 {
2257 	int i;
2258 
2259 	if (!bp->rx_ring)
2260 		return;
2261 
2262 	for (i = 0; i < bp->rx_nr_rings; i++) {
2263 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2264 		struct bnxt_ring_struct *ring;
2265 
2266 		if (rxr->xdp_prog)
2267 			bpf_prog_put(rxr->xdp_prog);
2268 
2269 		if (xdp_rxq_info_is_reg(&rxr->xdp_rxq))
2270 			xdp_rxq_info_unreg(&rxr->xdp_rxq);
2271 
2272 		kfree(rxr->rx_tpa);
2273 		rxr->rx_tpa = NULL;
2274 
2275 		kfree(rxr->rx_agg_bmap);
2276 		rxr->rx_agg_bmap = NULL;
2277 
2278 		ring = &rxr->rx_ring_struct;
2279 		bnxt_free_ring(bp, ring);
2280 
2281 		ring = &rxr->rx_agg_ring_struct;
2282 		bnxt_free_ring(bp, ring);
2283 	}
2284 }
2285 
2286 static int bnxt_alloc_rx_rings(struct bnxt *bp)
2287 {
2288 	int i, rc, agg_rings = 0, tpa_rings = 0;
2289 
2290 	if (!bp->rx_ring)
2291 		return -ENOMEM;
2292 
2293 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
2294 		agg_rings = 1;
2295 
2296 	if (bp->flags & BNXT_FLAG_TPA)
2297 		tpa_rings = 1;
2298 
2299 	for (i = 0; i < bp->rx_nr_rings; i++) {
2300 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2301 		struct bnxt_ring_struct *ring;
2302 
2303 		ring = &rxr->rx_ring_struct;
2304 
2305 		rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i);
2306 		if (rc < 0)
2307 			return rc;
2308 
2309 		rc = bnxt_alloc_ring(bp, ring);
2310 		if (rc)
2311 			return rc;
2312 
2313 		if (agg_rings) {
2314 			u16 mem_size;
2315 
2316 			ring = &rxr->rx_agg_ring_struct;
2317 			rc = bnxt_alloc_ring(bp, ring);
2318 			if (rc)
2319 				return rc;
2320 
2321 			ring->grp_idx = i;
2322 			rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
2323 			mem_size = rxr->rx_agg_bmap_size / 8;
2324 			rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
2325 			if (!rxr->rx_agg_bmap)
2326 				return -ENOMEM;
2327 
2328 			if (tpa_rings) {
2329 				rxr->rx_tpa = kcalloc(MAX_TPA,
2330 						sizeof(struct bnxt_tpa_info),
2331 						GFP_KERNEL);
2332 				if (!rxr->rx_tpa)
2333 					return -ENOMEM;
2334 			}
2335 		}
2336 	}
2337 	return 0;
2338 }
2339 
2340 static void bnxt_free_tx_rings(struct bnxt *bp)
2341 {
2342 	int i;
2343 	struct pci_dev *pdev = bp->pdev;
2344 
2345 	if (!bp->tx_ring)
2346 		return;
2347 
2348 	for (i = 0; i < bp->tx_nr_rings; i++) {
2349 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2350 		struct bnxt_ring_struct *ring;
2351 
2352 		if (txr->tx_push) {
2353 			dma_free_coherent(&pdev->dev, bp->tx_push_size,
2354 					  txr->tx_push, txr->tx_push_mapping);
2355 			txr->tx_push = NULL;
2356 		}
2357 
2358 		ring = &txr->tx_ring_struct;
2359 
2360 		bnxt_free_ring(bp, ring);
2361 	}
2362 }
2363 
2364 static int bnxt_alloc_tx_rings(struct bnxt *bp)
2365 {
2366 	int i, j, rc;
2367 	struct pci_dev *pdev = bp->pdev;
2368 
2369 	bp->tx_push_size = 0;
2370 	if (bp->tx_push_thresh) {
2371 		int push_size;
2372 
2373 		push_size  = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
2374 					bp->tx_push_thresh);
2375 
2376 		if (push_size > 256) {
2377 			push_size = 0;
2378 			bp->tx_push_thresh = 0;
2379 		}
2380 
2381 		bp->tx_push_size = push_size;
2382 	}
2383 
2384 	for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
2385 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2386 		struct bnxt_ring_struct *ring;
2387 		u8 qidx;
2388 
2389 		ring = &txr->tx_ring_struct;
2390 
2391 		rc = bnxt_alloc_ring(bp, ring);
2392 		if (rc)
2393 			return rc;
2394 
2395 		ring->grp_idx = txr->bnapi->index;
2396 		if (bp->tx_push_size) {
2397 			dma_addr_t mapping;
2398 
2399 			/* One pre-allocated DMA buffer to backup
2400 			 * TX push operation
2401 			 */
2402 			txr->tx_push = dma_alloc_coherent(&pdev->dev,
2403 						bp->tx_push_size,
2404 						&txr->tx_push_mapping,
2405 						GFP_KERNEL);
2406 
2407 			if (!txr->tx_push)
2408 				return -ENOMEM;
2409 
2410 			mapping = txr->tx_push_mapping +
2411 				sizeof(struct tx_push_bd);
2412 			txr->data_mapping = cpu_to_le64(mapping);
2413 
2414 			memset(txr->tx_push, 0, sizeof(struct tx_push_bd));
2415 		}
2416 		qidx = bp->tc_to_qidx[j];
2417 		ring->queue_id = bp->q_info[qidx].queue_id;
2418 		if (i < bp->tx_nr_rings_xdp)
2419 			continue;
2420 		if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1))
2421 			j++;
2422 	}
2423 	return 0;
2424 }
2425 
2426 static void bnxt_free_cp_rings(struct bnxt *bp)
2427 {
2428 	int i;
2429 
2430 	if (!bp->bnapi)
2431 		return;
2432 
2433 	for (i = 0; i < bp->cp_nr_rings; i++) {
2434 		struct bnxt_napi *bnapi = bp->bnapi[i];
2435 		struct bnxt_cp_ring_info *cpr;
2436 		struct bnxt_ring_struct *ring;
2437 
2438 		if (!bnapi)
2439 			continue;
2440 
2441 		cpr = &bnapi->cp_ring;
2442 		ring = &cpr->cp_ring_struct;
2443 
2444 		bnxt_free_ring(bp, ring);
2445 	}
2446 }
2447 
2448 static int bnxt_alloc_cp_rings(struct bnxt *bp)
2449 {
2450 	int i, rc, ulp_base_vec, ulp_msix;
2451 
2452 	ulp_msix = bnxt_get_ulp_msix_num(bp);
2453 	ulp_base_vec = bnxt_get_ulp_msix_base(bp);
2454 	for (i = 0; i < bp->cp_nr_rings; i++) {
2455 		struct bnxt_napi *bnapi = bp->bnapi[i];
2456 		struct bnxt_cp_ring_info *cpr;
2457 		struct bnxt_ring_struct *ring;
2458 
2459 		if (!bnapi)
2460 			continue;
2461 
2462 		cpr = &bnapi->cp_ring;
2463 		ring = &cpr->cp_ring_struct;
2464 
2465 		rc = bnxt_alloc_ring(bp, ring);
2466 		if (rc)
2467 			return rc;
2468 
2469 		if (ulp_msix && i >= ulp_base_vec)
2470 			ring->map_idx = i + ulp_msix;
2471 		else
2472 			ring->map_idx = i;
2473 	}
2474 	return 0;
2475 }
2476 
2477 static void bnxt_init_ring_struct(struct bnxt *bp)
2478 {
2479 	int i;
2480 
2481 	for (i = 0; i < bp->cp_nr_rings; i++) {
2482 		struct bnxt_napi *bnapi = bp->bnapi[i];
2483 		struct bnxt_cp_ring_info *cpr;
2484 		struct bnxt_rx_ring_info *rxr;
2485 		struct bnxt_tx_ring_info *txr;
2486 		struct bnxt_ring_struct *ring;
2487 
2488 		if (!bnapi)
2489 			continue;
2490 
2491 		cpr = &bnapi->cp_ring;
2492 		ring = &cpr->cp_ring_struct;
2493 		ring->nr_pages = bp->cp_nr_pages;
2494 		ring->page_size = HW_CMPD_RING_SIZE;
2495 		ring->pg_arr = (void **)cpr->cp_desc_ring;
2496 		ring->dma_arr = cpr->cp_desc_mapping;
2497 		ring->vmem_size = 0;
2498 
2499 		rxr = bnapi->rx_ring;
2500 		if (!rxr)
2501 			goto skip_rx;
2502 
2503 		ring = &rxr->rx_ring_struct;
2504 		ring->nr_pages = bp->rx_nr_pages;
2505 		ring->page_size = HW_RXBD_RING_SIZE;
2506 		ring->pg_arr = (void **)rxr->rx_desc_ring;
2507 		ring->dma_arr = rxr->rx_desc_mapping;
2508 		ring->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
2509 		ring->vmem = (void **)&rxr->rx_buf_ring;
2510 
2511 		ring = &rxr->rx_agg_ring_struct;
2512 		ring->nr_pages = bp->rx_agg_nr_pages;
2513 		ring->page_size = HW_RXBD_RING_SIZE;
2514 		ring->pg_arr = (void **)rxr->rx_agg_desc_ring;
2515 		ring->dma_arr = rxr->rx_agg_desc_mapping;
2516 		ring->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
2517 		ring->vmem = (void **)&rxr->rx_agg_ring;
2518 
2519 skip_rx:
2520 		txr = bnapi->tx_ring;
2521 		if (!txr)
2522 			continue;
2523 
2524 		ring = &txr->tx_ring_struct;
2525 		ring->nr_pages = bp->tx_nr_pages;
2526 		ring->page_size = HW_RXBD_RING_SIZE;
2527 		ring->pg_arr = (void **)txr->tx_desc_ring;
2528 		ring->dma_arr = txr->tx_desc_mapping;
2529 		ring->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
2530 		ring->vmem = (void **)&txr->tx_buf_ring;
2531 	}
2532 }
2533 
2534 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
2535 {
2536 	int i;
2537 	u32 prod;
2538 	struct rx_bd **rx_buf_ring;
2539 
2540 	rx_buf_ring = (struct rx_bd **)ring->pg_arr;
2541 	for (i = 0, prod = 0; i < ring->nr_pages; i++) {
2542 		int j;
2543 		struct rx_bd *rxbd;
2544 
2545 		rxbd = rx_buf_ring[i];
2546 		if (!rxbd)
2547 			continue;
2548 
2549 		for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
2550 			rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
2551 			rxbd->rx_bd_opaque = prod;
2552 		}
2553 	}
2554 }
2555 
2556 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
2557 {
2558 	struct net_device *dev = bp->dev;
2559 	struct bnxt_rx_ring_info *rxr;
2560 	struct bnxt_ring_struct *ring;
2561 	u32 prod, type;
2562 	int i;
2563 
2564 	type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
2565 		RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
2566 
2567 	if (NET_IP_ALIGN == 2)
2568 		type |= RX_BD_FLAGS_SOP;
2569 
2570 	rxr = &bp->rx_ring[ring_nr];
2571 	ring = &rxr->rx_ring_struct;
2572 	bnxt_init_rxbd_pages(ring, type);
2573 
2574 	if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) {
2575 		rxr->xdp_prog = bpf_prog_add(bp->xdp_prog, 1);
2576 		if (IS_ERR(rxr->xdp_prog)) {
2577 			int rc = PTR_ERR(rxr->xdp_prog);
2578 
2579 			rxr->xdp_prog = NULL;
2580 			return rc;
2581 		}
2582 	}
2583 	prod = rxr->rx_prod;
2584 	for (i = 0; i < bp->rx_ring_size; i++) {
2585 		if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL) != 0) {
2586 			netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
2587 				    ring_nr, i, bp->rx_ring_size);
2588 			break;
2589 		}
2590 		prod = NEXT_RX(prod);
2591 	}
2592 	rxr->rx_prod = prod;
2593 	ring->fw_ring_id = INVALID_HW_RING_ID;
2594 
2595 	ring = &rxr->rx_agg_ring_struct;
2596 	ring->fw_ring_id = INVALID_HW_RING_ID;
2597 
2598 	if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
2599 		return 0;
2600 
2601 	type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) |
2602 		RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
2603 
2604 	bnxt_init_rxbd_pages(ring, type);
2605 
2606 	prod = rxr->rx_agg_prod;
2607 	for (i = 0; i < bp->rx_agg_ring_size; i++) {
2608 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL) != 0) {
2609 			netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
2610 				    ring_nr, i, bp->rx_ring_size);
2611 			break;
2612 		}
2613 		prod = NEXT_RX_AGG(prod);
2614 	}
2615 	rxr->rx_agg_prod = prod;
2616 
2617 	if (bp->flags & BNXT_FLAG_TPA) {
2618 		if (rxr->rx_tpa) {
2619 			u8 *data;
2620 			dma_addr_t mapping;
2621 
2622 			for (i = 0; i < MAX_TPA; i++) {
2623 				data = __bnxt_alloc_rx_data(bp, &mapping,
2624 							    GFP_KERNEL);
2625 				if (!data)
2626 					return -ENOMEM;
2627 
2628 				rxr->rx_tpa[i].data = data;
2629 				rxr->rx_tpa[i].data_ptr = data + bp->rx_offset;
2630 				rxr->rx_tpa[i].mapping = mapping;
2631 			}
2632 		} else {
2633 			netdev_err(bp->dev, "No resource allocated for LRO/GRO\n");
2634 			return -ENOMEM;
2635 		}
2636 	}
2637 
2638 	return 0;
2639 }
2640 
2641 static void bnxt_init_cp_rings(struct bnxt *bp)
2642 {
2643 	int i;
2644 
2645 	for (i = 0; i < bp->cp_nr_rings; i++) {
2646 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
2647 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
2648 
2649 		ring->fw_ring_id = INVALID_HW_RING_ID;
2650 		cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
2651 		cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
2652 	}
2653 }
2654 
2655 static int bnxt_init_rx_rings(struct bnxt *bp)
2656 {
2657 	int i, rc = 0;
2658 
2659 	if (BNXT_RX_PAGE_MODE(bp)) {
2660 		bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM;
2661 		bp->rx_dma_offset = XDP_PACKET_HEADROOM;
2662 	} else {
2663 		bp->rx_offset = BNXT_RX_OFFSET;
2664 		bp->rx_dma_offset = BNXT_RX_DMA_OFFSET;
2665 	}
2666 
2667 	for (i = 0; i < bp->rx_nr_rings; i++) {
2668 		rc = bnxt_init_one_rx_ring(bp, i);
2669 		if (rc)
2670 			break;
2671 	}
2672 
2673 	return rc;
2674 }
2675 
2676 static int bnxt_init_tx_rings(struct bnxt *bp)
2677 {
2678 	u16 i;
2679 
2680 	bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
2681 				   MAX_SKB_FRAGS + 1);
2682 
2683 	for (i = 0; i < bp->tx_nr_rings; i++) {
2684 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2685 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
2686 
2687 		ring->fw_ring_id = INVALID_HW_RING_ID;
2688 	}
2689 
2690 	return 0;
2691 }
2692 
2693 static void bnxt_free_ring_grps(struct bnxt *bp)
2694 {
2695 	kfree(bp->grp_info);
2696 	bp->grp_info = NULL;
2697 }
2698 
2699 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
2700 {
2701 	int i;
2702 
2703 	if (irq_re_init) {
2704 		bp->grp_info = kcalloc(bp->cp_nr_rings,
2705 				       sizeof(struct bnxt_ring_grp_info),
2706 				       GFP_KERNEL);
2707 		if (!bp->grp_info)
2708 			return -ENOMEM;
2709 	}
2710 	for (i = 0; i < bp->cp_nr_rings; i++) {
2711 		if (irq_re_init)
2712 			bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
2713 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
2714 		bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
2715 		bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
2716 		bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
2717 	}
2718 	return 0;
2719 }
2720 
2721 static void bnxt_free_vnics(struct bnxt *bp)
2722 {
2723 	kfree(bp->vnic_info);
2724 	bp->vnic_info = NULL;
2725 	bp->nr_vnics = 0;
2726 }
2727 
2728 static int bnxt_alloc_vnics(struct bnxt *bp)
2729 {
2730 	int num_vnics = 1;
2731 
2732 #ifdef CONFIG_RFS_ACCEL
2733 	if (bp->flags & BNXT_FLAG_RFS)
2734 		num_vnics += bp->rx_nr_rings;
2735 #endif
2736 
2737 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
2738 		num_vnics++;
2739 
2740 	bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
2741 				GFP_KERNEL);
2742 	if (!bp->vnic_info)
2743 		return -ENOMEM;
2744 
2745 	bp->nr_vnics = num_vnics;
2746 	return 0;
2747 }
2748 
2749 static void bnxt_init_vnics(struct bnxt *bp)
2750 {
2751 	int i;
2752 
2753 	for (i = 0; i < bp->nr_vnics; i++) {
2754 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2755 
2756 		vnic->fw_vnic_id = INVALID_HW_RING_ID;
2757 		vnic->fw_rss_cos_lb_ctx[0] = INVALID_HW_RING_ID;
2758 		vnic->fw_rss_cos_lb_ctx[1] = INVALID_HW_RING_ID;
2759 		vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
2760 
2761 		if (bp->vnic_info[i].rss_hash_key) {
2762 			if (i == 0)
2763 				prandom_bytes(vnic->rss_hash_key,
2764 					      HW_HASH_KEY_SIZE);
2765 			else
2766 				memcpy(vnic->rss_hash_key,
2767 				       bp->vnic_info[0].rss_hash_key,
2768 				       HW_HASH_KEY_SIZE);
2769 		}
2770 	}
2771 }
2772 
2773 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
2774 {
2775 	int pages;
2776 
2777 	pages = ring_size / desc_per_pg;
2778 
2779 	if (!pages)
2780 		return 1;
2781 
2782 	pages++;
2783 
2784 	while (pages & (pages - 1))
2785 		pages++;
2786 
2787 	return pages;
2788 }
2789 
2790 void bnxt_set_tpa_flags(struct bnxt *bp)
2791 {
2792 	bp->flags &= ~BNXT_FLAG_TPA;
2793 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
2794 		return;
2795 	if (bp->dev->features & NETIF_F_LRO)
2796 		bp->flags |= BNXT_FLAG_LRO;
2797 	else if (bp->dev->features & NETIF_F_GRO_HW)
2798 		bp->flags |= BNXT_FLAG_GRO;
2799 }
2800 
2801 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
2802  * be set on entry.
2803  */
2804 void bnxt_set_ring_params(struct bnxt *bp)
2805 {
2806 	u32 ring_size, rx_size, rx_space;
2807 	u32 agg_factor = 0, agg_ring_size = 0;
2808 
2809 	/* 8 for CRC and VLAN */
2810 	rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
2811 
2812 	rx_space = rx_size + NET_SKB_PAD +
2813 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2814 
2815 	bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
2816 	ring_size = bp->rx_ring_size;
2817 	bp->rx_agg_ring_size = 0;
2818 	bp->rx_agg_nr_pages = 0;
2819 
2820 	if (bp->flags & BNXT_FLAG_TPA)
2821 		agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE);
2822 
2823 	bp->flags &= ~BNXT_FLAG_JUMBO;
2824 	if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) {
2825 		u32 jumbo_factor;
2826 
2827 		bp->flags |= BNXT_FLAG_JUMBO;
2828 		jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
2829 		if (jumbo_factor > agg_factor)
2830 			agg_factor = jumbo_factor;
2831 	}
2832 	agg_ring_size = ring_size * agg_factor;
2833 
2834 	if (agg_ring_size) {
2835 		bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
2836 							RX_DESC_CNT);
2837 		if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
2838 			u32 tmp = agg_ring_size;
2839 
2840 			bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
2841 			agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
2842 			netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
2843 				    tmp, agg_ring_size);
2844 		}
2845 		bp->rx_agg_ring_size = agg_ring_size;
2846 		bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
2847 		rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
2848 		rx_space = rx_size + NET_SKB_PAD +
2849 			SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2850 	}
2851 
2852 	bp->rx_buf_use_size = rx_size;
2853 	bp->rx_buf_size = rx_space;
2854 
2855 	bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
2856 	bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
2857 
2858 	ring_size = bp->tx_ring_size;
2859 	bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
2860 	bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
2861 
2862 	ring_size = bp->rx_ring_size * (2 + agg_factor) + bp->tx_ring_size;
2863 	bp->cp_ring_size = ring_size;
2864 
2865 	bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
2866 	if (bp->cp_nr_pages > MAX_CP_PAGES) {
2867 		bp->cp_nr_pages = MAX_CP_PAGES;
2868 		bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
2869 		netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
2870 			    ring_size, bp->cp_ring_size);
2871 	}
2872 	bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
2873 	bp->cp_ring_mask = bp->cp_bit - 1;
2874 }
2875 
2876 /* Changing allocation mode of RX rings.
2877  * TODO: Update when extending xdp_rxq_info to support allocation modes.
2878  */
2879 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode)
2880 {
2881 	if (page_mode) {
2882 		if (bp->dev->mtu > BNXT_MAX_PAGE_MODE_MTU)
2883 			return -EOPNOTSUPP;
2884 		bp->dev->max_mtu =
2885 			min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU);
2886 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
2887 		bp->flags |= BNXT_FLAG_NO_AGG_RINGS | BNXT_FLAG_RX_PAGE_MODE;
2888 		bp->rx_dir = DMA_BIDIRECTIONAL;
2889 		bp->rx_skb_func = bnxt_rx_page_skb;
2890 		/* Disable LRO or GRO_HW */
2891 		netdev_update_features(bp->dev);
2892 	} else {
2893 		bp->dev->max_mtu = bp->max_mtu;
2894 		bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE;
2895 		bp->rx_dir = DMA_FROM_DEVICE;
2896 		bp->rx_skb_func = bnxt_rx_skb;
2897 	}
2898 	return 0;
2899 }
2900 
2901 static void bnxt_free_vnic_attributes(struct bnxt *bp)
2902 {
2903 	int i;
2904 	struct bnxt_vnic_info *vnic;
2905 	struct pci_dev *pdev = bp->pdev;
2906 
2907 	if (!bp->vnic_info)
2908 		return;
2909 
2910 	for (i = 0; i < bp->nr_vnics; i++) {
2911 		vnic = &bp->vnic_info[i];
2912 
2913 		kfree(vnic->fw_grp_ids);
2914 		vnic->fw_grp_ids = NULL;
2915 
2916 		kfree(vnic->uc_list);
2917 		vnic->uc_list = NULL;
2918 
2919 		if (vnic->mc_list) {
2920 			dma_free_coherent(&pdev->dev, vnic->mc_list_size,
2921 					  vnic->mc_list, vnic->mc_list_mapping);
2922 			vnic->mc_list = NULL;
2923 		}
2924 
2925 		if (vnic->rss_table) {
2926 			dma_free_coherent(&pdev->dev, PAGE_SIZE,
2927 					  vnic->rss_table,
2928 					  vnic->rss_table_dma_addr);
2929 			vnic->rss_table = NULL;
2930 		}
2931 
2932 		vnic->rss_hash_key = NULL;
2933 		vnic->flags = 0;
2934 	}
2935 }
2936 
2937 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
2938 {
2939 	int i, rc = 0, size;
2940 	struct bnxt_vnic_info *vnic;
2941 	struct pci_dev *pdev = bp->pdev;
2942 	int max_rings;
2943 
2944 	for (i = 0; i < bp->nr_vnics; i++) {
2945 		vnic = &bp->vnic_info[i];
2946 
2947 		if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
2948 			int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
2949 
2950 			if (mem_size > 0) {
2951 				vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
2952 				if (!vnic->uc_list) {
2953 					rc = -ENOMEM;
2954 					goto out;
2955 				}
2956 			}
2957 		}
2958 
2959 		if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
2960 			vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
2961 			vnic->mc_list =
2962 				dma_alloc_coherent(&pdev->dev,
2963 						   vnic->mc_list_size,
2964 						   &vnic->mc_list_mapping,
2965 						   GFP_KERNEL);
2966 			if (!vnic->mc_list) {
2967 				rc = -ENOMEM;
2968 				goto out;
2969 			}
2970 		}
2971 
2972 		if (vnic->flags & BNXT_VNIC_RSS_FLAG)
2973 			max_rings = bp->rx_nr_rings;
2974 		else
2975 			max_rings = 1;
2976 
2977 		vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
2978 		if (!vnic->fw_grp_ids) {
2979 			rc = -ENOMEM;
2980 			goto out;
2981 		}
2982 
2983 		if ((bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
2984 		    !(vnic->flags & BNXT_VNIC_RSS_FLAG))
2985 			continue;
2986 
2987 		/* Allocate rss table and hash key */
2988 		vnic->rss_table = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
2989 						     &vnic->rss_table_dma_addr,
2990 						     GFP_KERNEL);
2991 		if (!vnic->rss_table) {
2992 			rc = -ENOMEM;
2993 			goto out;
2994 		}
2995 
2996 		size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
2997 
2998 		vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
2999 		vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
3000 	}
3001 	return 0;
3002 
3003 out:
3004 	return rc;
3005 }
3006 
3007 static void bnxt_free_hwrm_resources(struct bnxt *bp)
3008 {
3009 	struct pci_dev *pdev = bp->pdev;
3010 
3011 	dma_free_coherent(&pdev->dev, PAGE_SIZE, bp->hwrm_cmd_resp_addr,
3012 			  bp->hwrm_cmd_resp_dma_addr);
3013 
3014 	bp->hwrm_cmd_resp_addr = NULL;
3015 	if (bp->hwrm_dbg_resp_addr) {
3016 		dma_free_coherent(&pdev->dev, HWRM_DBG_REG_BUF_SIZE,
3017 				  bp->hwrm_dbg_resp_addr,
3018 				  bp->hwrm_dbg_resp_dma_addr);
3019 
3020 		bp->hwrm_dbg_resp_addr = NULL;
3021 	}
3022 }
3023 
3024 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
3025 {
3026 	struct pci_dev *pdev = bp->pdev;
3027 
3028 	bp->hwrm_cmd_resp_addr = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
3029 						   &bp->hwrm_cmd_resp_dma_addr,
3030 						   GFP_KERNEL);
3031 	if (!bp->hwrm_cmd_resp_addr)
3032 		return -ENOMEM;
3033 	bp->hwrm_dbg_resp_addr = dma_alloc_coherent(&pdev->dev,
3034 						    HWRM_DBG_REG_BUF_SIZE,
3035 						    &bp->hwrm_dbg_resp_dma_addr,
3036 						    GFP_KERNEL);
3037 	if (!bp->hwrm_dbg_resp_addr)
3038 		netdev_warn(bp->dev, "fail to alloc debug register dma mem\n");
3039 
3040 	return 0;
3041 }
3042 
3043 static void bnxt_free_hwrm_short_cmd_req(struct bnxt *bp)
3044 {
3045 	if (bp->hwrm_short_cmd_req_addr) {
3046 		struct pci_dev *pdev = bp->pdev;
3047 
3048 		dma_free_coherent(&pdev->dev, BNXT_HWRM_MAX_REQ_LEN,
3049 				  bp->hwrm_short_cmd_req_addr,
3050 				  bp->hwrm_short_cmd_req_dma_addr);
3051 		bp->hwrm_short_cmd_req_addr = NULL;
3052 	}
3053 }
3054 
3055 static int bnxt_alloc_hwrm_short_cmd_req(struct bnxt *bp)
3056 {
3057 	struct pci_dev *pdev = bp->pdev;
3058 
3059 	bp->hwrm_short_cmd_req_addr =
3060 		dma_alloc_coherent(&pdev->dev, BNXT_HWRM_MAX_REQ_LEN,
3061 				   &bp->hwrm_short_cmd_req_dma_addr,
3062 				   GFP_KERNEL);
3063 	if (!bp->hwrm_short_cmd_req_addr)
3064 		return -ENOMEM;
3065 
3066 	return 0;
3067 }
3068 
3069 static void bnxt_free_stats(struct bnxt *bp)
3070 {
3071 	u32 size, i;
3072 	struct pci_dev *pdev = bp->pdev;
3073 
3074 	bp->flags &= ~BNXT_FLAG_PORT_STATS;
3075 	bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT;
3076 
3077 	if (bp->hw_rx_port_stats) {
3078 		dma_free_coherent(&pdev->dev, bp->hw_port_stats_size,
3079 				  bp->hw_rx_port_stats,
3080 				  bp->hw_rx_port_stats_map);
3081 		bp->hw_rx_port_stats = NULL;
3082 	}
3083 
3084 	if (bp->hw_rx_port_stats_ext) {
3085 		dma_free_coherent(&pdev->dev, sizeof(struct rx_port_stats_ext),
3086 				  bp->hw_rx_port_stats_ext,
3087 				  bp->hw_rx_port_stats_ext_map);
3088 		bp->hw_rx_port_stats_ext = NULL;
3089 	}
3090 
3091 	if (!bp->bnapi)
3092 		return;
3093 
3094 	size = sizeof(struct ctx_hw_stats);
3095 
3096 	for (i = 0; i < bp->cp_nr_rings; i++) {
3097 		struct bnxt_napi *bnapi = bp->bnapi[i];
3098 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3099 
3100 		if (cpr->hw_stats) {
3101 			dma_free_coherent(&pdev->dev, size, cpr->hw_stats,
3102 					  cpr->hw_stats_map);
3103 			cpr->hw_stats = NULL;
3104 		}
3105 	}
3106 }
3107 
3108 static int bnxt_alloc_stats(struct bnxt *bp)
3109 {
3110 	u32 size, i;
3111 	struct pci_dev *pdev = bp->pdev;
3112 
3113 	size = sizeof(struct ctx_hw_stats);
3114 
3115 	for (i = 0; i < bp->cp_nr_rings; i++) {
3116 		struct bnxt_napi *bnapi = bp->bnapi[i];
3117 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3118 
3119 		cpr->hw_stats = dma_alloc_coherent(&pdev->dev, size,
3120 						   &cpr->hw_stats_map,
3121 						   GFP_KERNEL);
3122 		if (!cpr->hw_stats)
3123 			return -ENOMEM;
3124 
3125 		cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
3126 	}
3127 
3128 	if (BNXT_PF(bp) && bp->chip_num != CHIP_NUM_58700) {
3129 		bp->hw_port_stats_size = sizeof(struct rx_port_stats) +
3130 					 sizeof(struct tx_port_stats) + 1024;
3131 
3132 		bp->hw_rx_port_stats =
3133 			dma_alloc_coherent(&pdev->dev, bp->hw_port_stats_size,
3134 					   &bp->hw_rx_port_stats_map,
3135 					   GFP_KERNEL);
3136 		if (!bp->hw_rx_port_stats)
3137 			return -ENOMEM;
3138 
3139 		bp->hw_tx_port_stats = (void *)(bp->hw_rx_port_stats + 1) +
3140 				       512;
3141 		bp->hw_tx_port_stats_map = bp->hw_rx_port_stats_map +
3142 					   sizeof(struct rx_port_stats) + 512;
3143 		bp->flags |= BNXT_FLAG_PORT_STATS;
3144 
3145 		/* Display extended statistics only if FW supports it */
3146 		if (bp->hwrm_spec_code < 0x10804 ||
3147 		    bp->hwrm_spec_code == 0x10900)
3148 			return 0;
3149 
3150 		bp->hw_rx_port_stats_ext =
3151 			dma_zalloc_coherent(&pdev->dev,
3152 					    sizeof(struct rx_port_stats_ext),
3153 					    &bp->hw_rx_port_stats_ext_map,
3154 					    GFP_KERNEL);
3155 		if (!bp->hw_rx_port_stats_ext)
3156 			return 0;
3157 
3158 		bp->flags |= BNXT_FLAG_PORT_STATS_EXT;
3159 	}
3160 	return 0;
3161 }
3162 
3163 static void bnxt_clear_ring_indices(struct bnxt *bp)
3164 {
3165 	int i;
3166 
3167 	if (!bp->bnapi)
3168 		return;
3169 
3170 	for (i = 0; i < bp->cp_nr_rings; i++) {
3171 		struct bnxt_napi *bnapi = bp->bnapi[i];
3172 		struct bnxt_cp_ring_info *cpr;
3173 		struct bnxt_rx_ring_info *rxr;
3174 		struct bnxt_tx_ring_info *txr;
3175 
3176 		if (!bnapi)
3177 			continue;
3178 
3179 		cpr = &bnapi->cp_ring;
3180 		cpr->cp_raw_cons = 0;
3181 
3182 		txr = bnapi->tx_ring;
3183 		if (txr) {
3184 			txr->tx_prod = 0;
3185 			txr->tx_cons = 0;
3186 		}
3187 
3188 		rxr = bnapi->rx_ring;
3189 		if (rxr) {
3190 			rxr->rx_prod = 0;
3191 			rxr->rx_agg_prod = 0;
3192 			rxr->rx_sw_agg_prod = 0;
3193 			rxr->rx_next_cons = 0;
3194 		}
3195 	}
3196 }
3197 
3198 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
3199 {
3200 #ifdef CONFIG_RFS_ACCEL
3201 	int i;
3202 
3203 	/* Under rtnl_lock and all our NAPIs have been disabled.  It's
3204 	 * safe to delete the hash table.
3205 	 */
3206 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
3207 		struct hlist_head *head;
3208 		struct hlist_node *tmp;
3209 		struct bnxt_ntuple_filter *fltr;
3210 
3211 		head = &bp->ntp_fltr_hash_tbl[i];
3212 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
3213 			hlist_del(&fltr->hash);
3214 			kfree(fltr);
3215 		}
3216 	}
3217 	if (irq_reinit) {
3218 		kfree(bp->ntp_fltr_bmap);
3219 		bp->ntp_fltr_bmap = NULL;
3220 	}
3221 	bp->ntp_fltr_count = 0;
3222 #endif
3223 }
3224 
3225 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
3226 {
3227 #ifdef CONFIG_RFS_ACCEL
3228 	int i, rc = 0;
3229 
3230 	if (!(bp->flags & BNXT_FLAG_RFS))
3231 		return 0;
3232 
3233 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
3234 		INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
3235 
3236 	bp->ntp_fltr_count = 0;
3237 	bp->ntp_fltr_bmap = kcalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR),
3238 				    sizeof(long),
3239 				    GFP_KERNEL);
3240 
3241 	if (!bp->ntp_fltr_bmap)
3242 		rc = -ENOMEM;
3243 
3244 	return rc;
3245 #else
3246 	return 0;
3247 #endif
3248 }
3249 
3250 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
3251 {
3252 	bnxt_free_vnic_attributes(bp);
3253 	bnxt_free_tx_rings(bp);
3254 	bnxt_free_rx_rings(bp);
3255 	bnxt_free_cp_rings(bp);
3256 	bnxt_free_ntp_fltrs(bp, irq_re_init);
3257 	if (irq_re_init) {
3258 		bnxt_free_stats(bp);
3259 		bnxt_free_ring_grps(bp);
3260 		bnxt_free_vnics(bp);
3261 		kfree(bp->tx_ring_map);
3262 		bp->tx_ring_map = NULL;
3263 		kfree(bp->tx_ring);
3264 		bp->tx_ring = NULL;
3265 		kfree(bp->rx_ring);
3266 		bp->rx_ring = NULL;
3267 		kfree(bp->bnapi);
3268 		bp->bnapi = NULL;
3269 	} else {
3270 		bnxt_clear_ring_indices(bp);
3271 	}
3272 }
3273 
3274 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
3275 {
3276 	int i, j, rc, size, arr_size;
3277 	void *bnapi;
3278 
3279 	if (irq_re_init) {
3280 		/* Allocate bnapi mem pointer array and mem block for
3281 		 * all queues
3282 		 */
3283 		arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
3284 				bp->cp_nr_rings);
3285 		size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
3286 		bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
3287 		if (!bnapi)
3288 			return -ENOMEM;
3289 
3290 		bp->bnapi = bnapi;
3291 		bnapi += arr_size;
3292 		for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
3293 			bp->bnapi[i] = bnapi;
3294 			bp->bnapi[i]->index = i;
3295 			bp->bnapi[i]->bp = bp;
3296 		}
3297 
3298 		bp->rx_ring = kcalloc(bp->rx_nr_rings,
3299 				      sizeof(struct bnxt_rx_ring_info),
3300 				      GFP_KERNEL);
3301 		if (!bp->rx_ring)
3302 			return -ENOMEM;
3303 
3304 		for (i = 0; i < bp->rx_nr_rings; i++) {
3305 			bp->rx_ring[i].bnapi = bp->bnapi[i];
3306 			bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
3307 		}
3308 
3309 		bp->tx_ring = kcalloc(bp->tx_nr_rings,
3310 				      sizeof(struct bnxt_tx_ring_info),
3311 				      GFP_KERNEL);
3312 		if (!bp->tx_ring)
3313 			return -ENOMEM;
3314 
3315 		bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16),
3316 					  GFP_KERNEL);
3317 
3318 		if (!bp->tx_ring_map)
3319 			return -ENOMEM;
3320 
3321 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
3322 			j = 0;
3323 		else
3324 			j = bp->rx_nr_rings;
3325 
3326 		for (i = 0; i < bp->tx_nr_rings; i++, j++) {
3327 			bp->tx_ring[i].bnapi = bp->bnapi[j];
3328 			bp->bnapi[j]->tx_ring = &bp->tx_ring[i];
3329 			bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i;
3330 			if (i >= bp->tx_nr_rings_xdp) {
3331 				bp->tx_ring[i].txq_index = i -
3332 					bp->tx_nr_rings_xdp;
3333 				bp->bnapi[j]->tx_int = bnxt_tx_int;
3334 			} else {
3335 				bp->bnapi[j]->flags |= BNXT_NAPI_FLAG_XDP;
3336 				bp->bnapi[j]->tx_int = bnxt_tx_int_xdp;
3337 			}
3338 		}
3339 
3340 		rc = bnxt_alloc_stats(bp);
3341 		if (rc)
3342 			goto alloc_mem_err;
3343 
3344 		rc = bnxt_alloc_ntp_fltrs(bp);
3345 		if (rc)
3346 			goto alloc_mem_err;
3347 
3348 		rc = bnxt_alloc_vnics(bp);
3349 		if (rc)
3350 			goto alloc_mem_err;
3351 	}
3352 
3353 	bnxt_init_ring_struct(bp);
3354 
3355 	rc = bnxt_alloc_rx_rings(bp);
3356 	if (rc)
3357 		goto alloc_mem_err;
3358 
3359 	rc = bnxt_alloc_tx_rings(bp);
3360 	if (rc)
3361 		goto alloc_mem_err;
3362 
3363 	rc = bnxt_alloc_cp_rings(bp);
3364 	if (rc)
3365 		goto alloc_mem_err;
3366 
3367 	bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
3368 				  BNXT_VNIC_UCAST_FLAG;
3369 	rc = bnxt_alloc_vnic_attributes(bp);
3370 	if (rc)
3371 		goto alloc_mem_err;
3372 	return 0;
3373 
3374 alloc_mem_err:
3375 	bnxt_free_mem(bp, true);
3376 	return rc;
3377 }
3378 
3379 static void bnxt_disable_int(struct bnxt *bp)
3380 {
3381 	int i;
3382 
3383 	if (!bp->bnapi)
3384 		return;
3385 
3386 	for (i = 0; i < bp->cp_nr_rings; i++) {
3387 		struct bnxt_napi *bnapi = bp->bnapi[i];
3388 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3389 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3390 
3391 		if (ring->fw_ring_id != INVALID_HW_RING_ID)
3392 			BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
3393 	}
3394 }
3395 
3396 static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n)
3397 {
3398 	struct bnxt_napi *bnapi = bp->bnapi[n];
3399 	struct bnxt_cp_ring_info *cpr;
3400 
3401 	cpr = &bnapi->cp_ring;
3402 	return cpr->cp_ring_struct.map_idx;
3403 }
3404 
3405 static void bnxt_disable_int_sync(struct bnxt *bp)
3406 {
3407 	int i;
3408 
3409 	atomic_inc(&bp->intr_sem);
3410 
3411 	bnxt_disable_int(bp);
3412 	for (i = 0; i < bp->cp_nr_rings; i++) {
3413 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
3414 
3415 		synchronize_irq(bp->irq_tbl[map_idx].vector);
3416 	}
3417 }
3418 
3419 static void bnxt_enable_int(struct bnxt *bp)
3420 {
3421 	int i;
3422 
3423 	atomic_set(&bp->intr_sem, 0);
3424 	for (i = 0; i < bp->cp_nr_rings; i++) {
3425 		struct bnxt_napi *bnapi = bp->bnapi[i];
3426 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3427 
3428 		BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
3429 	}
3430 }
3431 
3432 void bnxt_hwrm_cmd_hdr_init(struct bnxt *bp, void *request, u16 req_type,
3433 			    u16 cmpl_ring, u16 target_id)
3434 {
3435 	struct input *req = request;
3436 
3437 	req->req_type = cpu_to_le16(req_type);
3438 	req->cmpl_ring = cpu_to_le16(cmpl_ring);
3439 	req->target_id = cpu_to_le16(target_id);
3440 	req->resp_addr = cpu_to_le64(bp->hwrm_cmd_resp_dma_addr);
3441 }
3442 
3443 static int bnxt_hwrm_do_send_msg(struct bnxt *bp, void *msg, u32 msg_len,
3444 				 int timeout, bool silent)
3445 {
3446 	int i, intr_process, rc, tmo_count;
3447 	struct input *req = msg;
3448 	u32 *data = msg;
3449 	__le32 *resp_len;
3450 	u8 *valid;
3451 	u16 cp_ring_id, len = 0;
3452 	struct hwrm_err_output *resp = bp->hwrm_cmd_resp_addr;
3453 	u16 max_req_len = BNXT_HWRM_MAX_REQ_LEN;
3454 	struct hwrm_short_input short_input = {0};
3455 
3456 	req->seq_id = cpu_to_le16(bp->hwrm_cmd_seq++);
3457 	memset(resp, 0, PAGE_SIZE);
3458 	cp_ring_id = le16_to_cpu(req->cmpl_ring);
3459 	intr_process = (cp_ring_id == INVALID_HW_RING_ID) ? 0 : 1;
3460 
3461 	if (bp->flags & BNXT_FLAG_SHORT_CMD) {
3462 		void *short_cmd_req = bp->hwrm_short_cmd_req_addr;
3463 
3464 		memcpy(short_cmd_req, req, msg_len);
3465 		memset(short_cmd_req + msg_len, 0, BNXT_HWRM_MAX_REQ_LEN -
3466 						   msg_len);
3467 
3468 		short_input.req_type = req->req_type;
3469 		short_input.signature =
3470 				cpu_to_le16(SHORT_REQ_SIGNATURE_SHORT_CMD);
3471 		short_input.size = cpu_to_le16(msg_len);
3472 		short_input.req_addr =
3473 			cpu_to_le64(bp->hwrm_short_cmd_req_dma_addr);
3474 
3475 		data = (u32 *)&short_input;
3476 		msg_len = sizeof(short_input);
3477 
3478 		/* Sync memory write before updating doorbell */
3479 		wmb();
3480 
3481 		max_req_len = BNXT_HWRM_SHORT_REQ_LEN;
3482 	}
3483 
3484 	/* Write request msg to hwrm channel */
3485 	__iowrite32_copy(bp->bar0, data, msg_len / 4);
3486 
3487 	for (i = msg_len; i < max_req_len; i += 4)
3488 		writel(0, bp->bar0 + i);
3489 
3490 	/* currently supports only one outstanding message */
3491 	if (intr_process)
3492 		bp->hwrm_intr_seq_id = le16_to_cpu(req->seq_id);
3493 
3494 	/* Ring channel doorbell */
3495 	writel(1, bp->bar0 + 0x100);
3496 
3497 	if (!timeout)
3498 		timeout = DFLT_HWRM_CMD_TIMEOUT;
3499 	/* convert timeout to usec */
3500 	timeout *= 1000;
3501 
3502 	i = 0;
3503 	/* Short timeout for the first few iterations:
3504 	 * number of loops = number of loops for short timeout +
3505 	 * number of loops for standard timeout.
3506 	 */
3507 	tmo_count = HWRM_SHORT_TIMEOUT_COUNTER;
3508 	timeout = timeout - HWRM_SHORT_MIN_TIMEOUT * HWRM_SHORT_TIMEOUT_COUNTER;
3509 	tmo_count += DIV_ROUND_UP(timeout, HWRM_MIN_TIMEOUT);
3510 	resp_len = bp->hwrm_cmd_resp_addr + HWRM_RESP_LEN_OFFSET;
3511 	if (intr_process) {
3512 		/* Wait until hwrm response cmpl interrupt is processed */
3513 		while (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID &&
3514 		       i++ < tmo_count) {
3515 			/* on first few passes, just barely sleep */
3516 			if (i < HWRM_SHORT_TIMEOUT_COUNTER)
3517 				usleep_range(HWRM_SHORT_MIN_TIMEOUT,
3518 					     HWRM_SHORT_MAX_TIMEOUT);
3519 			else
3520 				usleep_range(HWRM_MIN_TIMEOUT,
3521 					     HWRM_MAX_TIMEOUT);
3522 		}
3523 
3524 		if (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID) {
3525 			netdev_err(bp->dev, "Resp cmpl intr err msg: 0x%x\n",
3526 				   le16_to_cpu(req->req_type));
3527 			return -1;
3528 		}
3529 		len = (le32_to_cpu(*resp_len) & HWRM_RESP_LEN_MASK) >>
3530 		      HWRM_RESP_LEN_SFT;
3531 		valid = bp->hwrm_cmd_resp_addr + len - 1;
3532 	} else {
3533 		int j;
3534 
3535 		/* Check if response len is updated */
3536 		for (i = 0; i < tmo_count; i++) {
3537 			len = (le32_to_cpu(*resp_len) & HWRM_RESP_LEN_MASK) >>
3538 			      HWRM_RESP_LEN_SFT;
3539 			if (len)
3540 				break;
3541 			/* on first few passes, just barely sleep */
3542 			if (i < DFLT_HWRM_CMD_TIMEOUT)
3543 				usleep_range(HWRM_SHORT_MIN_TIMEOUT,
3544 					     HWRM_SHORT_MAX_TIMEOUT);
3545 			else
3546 				usleep_range(HWRM_MIN_TIMEOUT,
3547 					     HWRM_MAX_TIMEOUT);
3548 		}
3549 
3550 		if (i >= tmo_count) {
3551 			netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d\n",
3552 				   HWRM_TOTAL_TIMEOUT(i),
3553 				   le16_to_cpu(req->req_type),
3554 				   le16_to_cpu(req->seq_id), len);
3555 			return -1;
3556 		}
3557 
3558 		/* Last byte of resp contains valid bit */
3559 		valid = bp->hwrm_cmd_resp_addr + len - 1;
3560 		for (j = 0; j < HWRM_VALID_BIT_DELAY_USEC; j++) {
3561 			/* make sure we read from updated DMA memory */
3562 			dma_rmb();
3563 			if (*valid)
3564 				break;
3565 			udelay(1);
3566 		}
3567 
3568 		if (j >= HWRM_VALID_BIT_DELAY_USEC) {
3569 			netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d v:%d\n",
3570 				   HWRM_TOTAL_TIMEOUT(i),
3571 				   le16_to_cpu(req->req_type),
3572 				   le16_to_cpu(req->seq_id), len, *valid);
3573 			return -1;
3574 		}
3575 	}
3576 
3577 	/* Zero valid bit for compatibility.  Valid bit in an older spec
3578 	 * may become a new field in a newer spec.  We must make sure that
3579 	 * a new field not implemented by old spec will read zero.
3580 	 */
3581 	*valid = 0;
3582 	rc = le16_to_cpu(resp->error_code);
3583 	if (rc && !silent)
3584 		netdev_err(bp->dev, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n",
3585 			   le16_to_cpu(resp->req_type),
3586 			   le16_to_cpu(resp->seq_id), rc);
3587 	return rc;
3588 }
3589 
3590 int _hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
3591 {
3592 	return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, false);
3593 }
3594 
3595 int _hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len,
3596 			      int timeout)
3597 {
3598 	return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true);
3599 }
3600 
3601 int hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
3602 {
3603 	int rc;
3604 
3605 	mutex_lock(&bp->hwrm_cmd_lock);
3606 	rc = _hwrm_send_message(bp, msg, msg_len, timeout);
3607 	mutex_unlock(&bp->hwrm_cmd_lock);
3608 	return rc;
3609 }
3610 
3611 int hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len,
3612 			     int timeout)
3613 {
3614 	int rc;
3615 
3616 	mutex_lock(&bp->hwrm_cmd_lock);
3617 	rc = bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true);
3618 	mutex_unlock(&bp->hwrm_cmd_lock);
3619 	return rc;
3620 }
3621 
3622 int bnxt_hwrm_func_rgtr_async_events(struct bnxt *bp, unsigned long *bmap,
3623 				     int bmap_size)
3624 {
3625 	struct hwrm_func_drv_rgtr_input req = {0};
3626 	DECLARE_BITMAP(async_events_bmap, 256);
3627 	u32 *events = (u32 *)async_events_bmap;
3628 	int i;
3629 
3630 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
3631 
3632 	req.enables =
3633 		cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
3634 
3635 	memset(async_events_bmap, 0, sizeof(async_events_bmap));
3636 	for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++)
3637 		__set_bit(bnxt_async_events_arr[i], async_events_bmap);
3638 
3639 	if (bmap && bmap_size) {
3640 		for (i = 0; i < bmap_size; i++) {
3641 			if (test_bit(i, bmap))
3642 				__set_bit(i, async_events_bmap);
3643 		}
3644 	}
3645 
3646 	for (i = 0; i < 8; i++)
3647 		req.async_event_fwd[i] |= cpu_to_le32(events[i]);
3648 
3649 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3650 }
3651 
3652 static int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp)
3653 {
3654 	struct hwrm_func_drv_rgtr_input req = {0};
3655 
3656 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
3657 
3658 	req.enables =
3659 		cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
3660 			    FUNC_DRV_RGTR_REQ_ENABLES_VER);
3661 
3662 	req.os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX);
3663 	req.flags = cpu_to_le32(FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE);
3664 	req.ver_maj_8b = DRV_VER_MAJ;
3665 	req.ver_min_8b = DRV_VER_MIN;
3666 	req.ver_upd_8b = DRV_VER_UPD;
3667 	req.ver_maj = cpu_to_le16(DRV_VER_MAJ);
3668 	req.ver_min = cpu_to_le16(DRV_VER_MIN);
3669 	req.ver_upd = cpu_to_le16(DRV_VER_UPD);
3670 
3671 	if (BNXT_PF(bp)) {
3672 		u32 data[8];
3673 		int i;
3674 
3675 		memset(data, 0, sizeof(data));
3676 		for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) {
3677 			u16 cmd = bnxt_vf_req_snif[i];
3678 			unsigned int bit, idx;
3679 
3680 			idx = cmd / 32;
3681 			bit = cmd % 32;
3682 			data[idx] |= 1 << bit;
3683 		}
3684 
3685 		for (i = 0; i < 8; i++)
3686 			req.vf_req_fwd[i] = cpu_to_le32(data[i]);
3687 
3688 		req.enables |=
3689 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
3690 	}
3691 
3692 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3693 }
3694 
3695 static int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
3696 {
3697 	struct hwrm_func_drv_unrgtr_input req = {0};
3698 
3699 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_UNRGTR, -1, -1);
3700 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3701 }
3702 
3703 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
3704 {
3705 	u32 rc = 0;
3706 	struct hwrm_tunnel_dst_port_free_input req = {0};
3707 
3708 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_FREE, -1, -1);
3709 	req.tunnel_type = tunnel_type;
3710 
3711 	switch (tunnel_type) {
3712 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
3713 		req.tunnel_dst_port_id = bp->vxlan_fw_dst_port_id;
3714 		break;
3715 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
3716 		req.tunnel_dst_port_id = bp->nge_fw_dst_port_id;
3717 		break;
3718 	default:
3719 		break;
3720 	}
3721 
3722 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3723 	if (rc)
3724 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
3725 			   rc);
3726 	return rc;
3727 }
3728 
3729 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
3730 					   u8 tunnel_type)
3731 {
3732 	u32 rc = 0;
3733 	struct hwrm_tunnel_dst_port_alloc_input req = {0};
3734 	struct hwrm_tunnel_dst_port_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3735 
3736 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_ALLOC, -1, -1);
3737 
3738 	req.tunnel_type = tunnel_type;
3739 	req.tunnel_dst_port_val = port;
3740 
3741 	mutex_lock(&bp->hwrm_cmd_lock);
3742 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3743 	if (rc) {
3744 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
3745 			   rc);
3746 		goto err_out;
3747 	}
3748 
3749 	switch (tunnel_type) {
3750 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN:
3751 		bp->vxlan_fw_dst_port_id = resp->tunnel_dst_port_id;
3752 		break;
3753 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE:
3754 		bp->nge_fw_dst_port_id = resp->tunnel_dst_port_id;
3755 		break;
3756 	default:
3757 		break;
3758 	}
3759 
3760 err_out:
3761 	mutex_unlock(&bp->hwrm_cmd_lock);
3762 	return rc;
3763 }
3764 
3765 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
3766 {
3767 	struct hwrm_cfa_l2_set_rx_mask_input req = {0};
3768 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3769 
3770 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_SET_RX_MASK, -1, -1);
3771 	req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
3772 
3773 	req.num_mc_entries = cpu_to_le32(vnic->mc_list_count);
3774 	req.mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
3775 	req.mask = cpu_to_le32(vnic->rx_mask);
3776 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3777 }
3778 
3779 #ifdef CONFIG_RFS_ACCEL
3780 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
3781 					    struct bnxt_ntuple_filter *fltr)
3782 {
3783 	struct hwrm_cfa_ntuple_filter_free_input req = {0};
3784 
3785 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_FREE, -1, -1);
3786 	req.ntuple_filter_id = fltr->filter_id;
3787 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3788 }
3789 
3790 #define BNXT_NTP_FLTR_FLAGS					\
3791 	(CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID |	\
3792 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE |	\
3793 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR |	\
3794 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE |	\
3795 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR |	\
3796 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK |	\
3797 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR |	\
3798 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK |	\
3799 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL |	\
3800 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT |		\
3801 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK |	\
3802 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT |		\
3803 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK |	\
3804 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
3805 
3806 #define BNXT_NTP_TUNNEL_FLTR_FLAG				\
3807 		CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE
3808 
3809 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
3810 					     struct bnxt_ntuple_filter *fltr)
3811 {
3812 	int rc = 0;
3813 	struct hwrm_cfa_ntuple_filter_alloc_input req = {0};
3814 	struct hwrm_cfa_ntuple_filter_alloc_output *resp =
3815 		bp->hwrm_cmd_resp_addr;
3816 	struct flow_keys *keys = &fltr->fkeys;
3817 	struct bnxt_vnic_info *vnic = &bp->vnic_info[fltr->rxq + 1];
3818 
3819 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_ALLOC, -1, -1);
3820 	req.l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx];
3821 
3822 	req.enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
3823 
3824 	req.ethertype = htons(ETH_P_IP);
3825 	memcpy(req.src_macaddr, fltr->src_mac_addr, ETH_ALEN);
3826 	req.ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
3827 	req.ip_protocol = keys->basic.ip_proto;
3828 
3829 	if (keys->basic.n_proto == htons(ETH_P_IPV6)) {
3830 		int i;
3831 
3832 		req.ethertype = htons(ETH_P_IPV6);
3833 		req.ip_addr_type =
3834 			CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6;
3835 		*(struct in6_addr *)&req.src_ipaddr[0] =
3836 			keys->addrs.v6addrs.src;
3837 		*(struct in6_addr *)&req.dst_ipaddr[0] =
3838 			keys->addrs.v6addrs.dst;
3839 		for (i = 0; i < 4; i++) {
3840 			req.src_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
3841 			req.dst_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
3842 		}
3843 	} else {
3844 		req.src_ipaddr[0] = keys->addrs.v4addrs.src;
3845 		req.src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
3846 		req.dst_ipaddr[0] = keys->addrs.v4addrs.dst;
3847 		req.dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
3848 	}
3849 	if (keys->control.flags & FLOW_DIS_ENCAPSULATION) {
3850 		req.enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG);
3851 		req.tunnel_type =
3852 			CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL;
3853 	}
3854 
3855 	req.src_port = keys->ports.src;
3856 	req.src_port_mask = cpu_to_be16(0xffff);
3857 	req.dst_port = keys->ports.dst;
3858 	req.dst_port_mask = cpu_to_be16(0xffff);
3859 
3860 	req.dst_id = cpu_to_le16(vnic->fw_vnic_id);
3861 	mutex_lock(&bp->hwrm_cmd_lock);
3862 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3863 	if (!rc)
3864 		fltr->filter_id = resp->ntuple_filter_id;
3865 	mutex_unlock(&bp->hwrm_cmd_lock);
3866 	return rc;
3867 }
3868 #endif
3869 
3870 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
3871 				     u8 *mac_addr)
3872 {
3873 	u32 rc = 0;
3874 	struct hwrm_cfa_l2_filter_alloc_input req = {0};
3875 	struct hwrm_cfa_l2_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3876 
3877 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_ALLOC, -1, -1);
3878 	req.flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX);
3879 	if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
3880 		req.flags |=
3881 			cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
3882 	req.dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
3883 	req.enables =
3884 		cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
3885 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
3886 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
3887 	memcpy(req.l2_addr, mac_addr, ETH_ALEN);
3888 	req.l2_addr_mask[0] = 0xff;
3889 	req.l2_addr_mask[1] = 0xff;
3890 	req.l2_addr_mask[2] = 0xff;
3891 	req.l2_addr_mask[3] = 0xff;
3892 	req.l2_addr_mask[4] = 0xff;
3893 	req.l2_addr_mask[5] = 0xff;
3894 
3895 	mutex_lock(&bp->hwrm_cmd_lock);
3896 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3897 	if (!rc)
3898 		bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
3899 							resp->l2_filter_id;
3900 	mutex_unlock(&bp->hwrm_cmd_lock);
3901 	return rc;
3902 }
3903 
3904 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
3905 {
3906 	u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
3907 	int rc = 0;
3908 
3909 	/* Any associated ntuple filters will also be cleared by firmware. */
3910 	mutex_lock(&bp->hwrm_cmd_lock);
3911 	for (i = 0; i < num_of_vnics; i++) {
3912 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3913 
3914 		for (j = 0; j < vnic->uc_filter_count; j++) {
3915 			struct hwrm_cfa_l2_filter_free_input req = {0};
3916 
3917 			bnxt_hwrm_cmd_hdr_init(bp, &req,
3918 					       HWRM_CFA_L2_FILTER_FREE, -1, -1);
3919 
3920 			req.l2_filter_id = vnic->fw_l2_filter_id[j];
3921 
3922 			rc = _hwrm_send_message(bp, &req, sizeof(req),
3923 						HWRM_CMD_TIMEOUT);
3924 		}
3925 		vnic->uc_filter_count = 0;
3926 	}
3927 	mutex_unlock(&bp->hwrm_cmd_lock);
3928 
3929 	return rc;
3930 }
3931 
3932 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
3933 {
3934 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3935 	struct hwrm_vnic_tpa_cfg_input req = {0};
3936 
3937 	if (vnic->fw_vnic_id == INVALID_HW_RING_ID)
3938 		return 0;
3939 
3940 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_TPA_CFG, -1, -1);
3941 
3942 	if (tpa_flags) {
3943 		u16 mss = bp->dev->mtu - 40;
3944 		u32 nsegs, n, segs = 0, flags;
3945 
3946 		flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
3947 			VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
3948 			VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
3949 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
3950 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
3951 		if (tpa_flags & BNXT_FLAG_GRO)
3952 			flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
3953 
3954 		req.flags = cpu_to_le32(flags);
3955 
3956 		req.enables =
3957 			cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
3958 				    VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
3959 				    VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
3960 
3961 		/* Number of segs are log2 units, and first packet is not
3962 		 * included as part of this units.
3963 		 */
3964 		if (mss <= BNXT_RX_PAGE_SIZE) {
3965 			n = BNXT_RX_PAGE_SIZE / mss;
3966 			nsegs = (MAX_SKB_FRAGS - 1) * n;
3967 		} else {
3968 			n = mss / BNXT_RX_PAGE_SIZE;
3969 			if (mss & (BNXT_RX_PAGE_SIZE - 1))
3970 				n++;
3971 			nsegs = (MAX_SKB_FRAGS - n) / n;
3972 		}
3973 
3974 		segs = ilog2(nsegs);
3975 		req.max_agg_segs = cpu_to_le16(segs);
3976 		req.max_aggs = cpu_to_le16(VNIC_TPA_CFG_REQ_MAX_AGGS_MAX);
3977 
3978 		req.min_agg_len = cpu_to_le32(512);
3979 	}
3980 	req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
3981 
3982 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3983 }
3984 
3985 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
3986 {
3987 	u32 i, j, max_rings;
3988 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3989 	struct hwrm_vnic_rss_cfg_input req = {0};
3990 
3991 	if (vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID)
3992 		return 0;
3993 
3994 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1);
3995 	if (set_rss) {
3996 		req.hash_type = cpu_to_le32(bp->rss_hash_cfg);
3997 		if (vnic->flags & BNXT_VNIC_RSS_FLAG) {
3998 			if (BNXT_CHIP_TYPE_NITRO_A0(bp))
3999 				max_rings = bp->rx_nr_rings - 1;
4000 			else
4001 				max_rings = bp->rx_nr_rings;
4002 		} else {
4003 			max_rings = 1;
4004 		}
4005 
4006 		/* Fill the RSS indirection table with ring group ids */
4007 		for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++, j++) {
4008 			if (j == max_rings)
4009 				j = 0;
4010 			vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
4011 		}
4012 
4013 		req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
4014 		req.hash_key_tbl_addr =
4015 			cpu_to_le64(vnic->rss_hash_key_dma_addr);
4016 	}
4017 	req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
4018 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4019 }
4020 
4021 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
4022 {
4023 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4024 	struct hwrm_vnic_plcmodes_cfg_input req = {0};
4025 
4026 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_PLCMODES_CFG, -1, -1);
4027 	req.flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT |
4028 				VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
4029 				VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
4030 	req.enables =
4031 		cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID |
4032 			    VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
4033 	/* thresholds not implemented in firmware yet */
4034 	req.jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
4035 	req.hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
4036 	req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
4037 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4038 }
4039 
4040 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id,
4041 					u16 ctx_idx)
4042 {
4043 	struct hwrm_vnic_rss_cos_lb_ctx_free_input req = {0};
4044 
4045 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_FREE, -1, -1);
4046 	req.rss_cos_lb_ctx_id =
4047 		cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]);
4048 
4049 	hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4050 	bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID;
4051 }
4052 
4053 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
4054 {
4055 	int i, j;
4056 
4057 	for (i = 0; i < bp->nr_vnics; i++) {
4058 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
4059 
4060 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) {
4061 			if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID)
4062 				bnxt_hwrm_vnic_ctx_free_one(bp, i, j);
4063 		}
4064 	}
4065 	bp->rsscos_nr_ctxs = 0;
4066 }
4067 
4068 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx)
4069 {
4070 	int rc;
4071 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_input req = {0};
4072 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp =
4073 						bp->hwrm_cmd_resp_addr;
4074 
4075 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC, -1,
4076 			       -1);
4077 
4078 	mutex_lock(&bp->hwrm_cmd_lock);
4079 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4080 	if (!rc)
4081 		bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] =
4082 			le16_to_cpu(resp->rss_cos_lb_ctx_id);
4083 	mutex_unlock(&bp->hwrm_cmd_lock);
4084 
4085 	return rc;
4086 }
4087 
4088 static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp)
4089 {
4090 	if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP)
4091 		return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE;
4092 	return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE;
4093 }
4094 
4095 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
4096 {
4097 	unsigned int ring = 0, grp_idx;
4098 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4099 	struct hwrm_vnic_cfg_input req = {0};
4100 	u16 def_vlan = 0;
4101 
4102 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_CFG, -1, -1);
4103 
4104 	req.enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP);
4105 	/* Only RSS support for now TBD: COS & LB */
4106 	if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) {
4107 		req.rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
4108 		req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
4109 					   VNIC_CFG_REQ_ENABLES_MRU);
4110 	} else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) {
4111 		req.rss_rule =
4112 			cpu_to_le16(bp->vnic_info[0].fw_rss_cos_lb_ctx[0]);
4113 		req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
4114 					   VNIC_CFG_REQ_ENABLES_MRU);
4115 		req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE);
4116 	} else {
4117 		req.rss_rule = cpu_to_le16(0xffff);
4118 	}
4119 
4120 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) &&
4121 	    (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) {
4122 		req.cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]);
4123 		req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE);
4124 	} else {
4125 		req.cos_rule = cpu_to_le16(0xffff);
4126 	}
4127 
4128 	if (vnic->flags & BNXT_VNIC_RSS_FLAG)
4129 		ring = 0;
4130 	else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
4131 		ring = vnic_id - 1;
4132 	else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp))
4133 		ring = bp->rx_nr_rings - 1;
4134 
4135 	grp_idx = bp->rx_ring[ring].bnapi->index;
4136 	req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
4137 	req.dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
4138 
4139 	req.lb_rule = cpu_to_le16(0xffff);
4140 	req.mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + ETH_FCS_LEN +
4141 			      VLAN_HLEN);
4142 
4143 #ifdef CONFIG_BNXT_SRIOV
4144 	if (BNXT_VF(bp))
4145 		def_vlan = bp->vf.vlan;
4146 #endif
4147 	if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan)
4148 		req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
4149 	if (!vnic_id && bnxt_ulp_registered(bp->edev, BNXT_ROCE_ULP))
4150 		req.flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp));
4151 
4152 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4153 }
4154 
4155 static int bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
4156 {
4157 	u32 rc = 0;
4158 
4159 	if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
4160 		struct hwrm_vnic_free_input req = {0};
4161 
4162 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_FREE, -1, -1);
4163 		req.vnic_id =
4164 			cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
4165 
4166 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4167 		if (rc)
4168 			return rc;
4169 		bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
4170 	}
4171 	return rc;
4172 }
4173 
4174 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
4175 {
4176 	u16 i;
4177 
4178 	for (i = 0; i < bp->nr_vnics; i++)
4179 		bnxt_hwrm_vnic_free_one(bp, i);
4180 }
4181 
4182 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
4183 				unsigned int start_rx_ring_idx,
4184 				unsigned int nr_rings)
4185 {
4186 	int rc = 0;
4187 	unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
4188 	struct hwrm_vnic_alloc_input req = {0};
4189 	struct hwrm_vnic_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4190 
4191 	/* map ring groups to this vnic */
4192 	for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
4193 		grp_idx = bp->rx_ring[i].bnapi->index;
4194 		if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
4195 			netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
4196 				   j, nr_rings);
4197 			break;
4198 		}
4199 		bp->vnic_info[vnic_id].fw_grp_ids[j] =
4200 					bp->grp_info[grp_idx].fw_grp_id;
4201 	}
4202 
4203 	bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[0] = INVALID_HW_RING_ID;
4204 	bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[1] = INVALID_HW_RING_ID;
4205 	if (vnic_id == 0)
4206 		req.flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
4207 
4208 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_ALLOC, -1, -1);
4209 
4210 	mutex_lock(&bp->hwrm_cmd_lock);
4211 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4212 	if (!rc)
4213 		bp->vnic_info[vnic_id].fw_vnic_id = le32_to_cpu(resp->vnic_id);
4214 	mutex_unlock(&bp->hwrm_cmd_lock);
4215 	return rc;
4216 }
4217 
4218 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp)
4219 {
4220 	struct hwrm_vnic_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
4221 	struct hwrm_vnic_qcaps_input req = {0};
4222 	int rc;
4223 
4224 	if (bp->hwrm_spec_code < 0x10600)
4225 		return 0;
4226 
4227 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_QCAPS, -1, -1);
4228 	mutex_lock(&bp->hwrm_cmd_lock);
4229 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4230 	if (!rc) {
4231 		u32 flags = le32_to_cpu(resp->flags);
4232 
4233 		if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP)
4234 			bp->flags |= BNXT_FLAG_NEW_RSS_CAP;
4235 		if (flags &
4236 		    VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP)
4237 			bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP;
4238 	}
4239 	mutex_unlock(&bp->hwrm_cmd_lock);
4240 	return rc;
4241 }
4242 
4243 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
4244 {
4245 	u16 i;
4246 	u32 rc = 0;
4247 
4248 	mutex_lock(&bp->hwrm_cmd_lock);
4249 	for (i = 0; i < bp->rx_nr_rings; i++) {
4250 		struct hwrm_ring_grp_alloc_input req = {0};
4251 		struct hwrm_ring_grp_alloc_output *resp =
4252 					bp->hwrm_cmd_resp_addr;
4253 		unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
4254 
4255 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_ALLOC, -1, -1);
4256 
4257 		req.cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
4258 		req.rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
4259 		req.ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
4260 		req.sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
4261 
4262 		rc = _hwrm_send_message(bp, &req, sizeof(req),
4263 					HWRM_CMD_TIMEOUT);
4264 		if (rc)
4265 			break;
4266 
4267 		bp->grp_info[grp_idx].fw_grp_id =
4268 			le32_to_cpu(resp->ring_group_id);
4269 	}
4270 	mutex_unlock(&bp->hwrm_cmd_lock);
4271 	return rc;
4272 }
4273 
4274 static int bnxt_hwrm_ring_grp_free(struct bnxt *bp)
4275 {
4276 	u16 i;
4277 	u32 rc = 0;
4278 	struct hwrm_ring_grp_free_input req = {0};
4279 
4280 	if (!bp->grp_info)
4281 		return 0;
4282 
4283 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_FREE, -1, -1);
4284 
4285 	mutex_lock(&bp->hwrm_cmd_lock);
4286 	for (i = 0; i < bp->cp_nr_rings; i++) {
4287 		if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
4288 			continue;
4289 		req.ring_group_id =
4290 			cpu_to_le32(bp->grp_info[i].fw_grp_id);
4291 
4292 		rc = _hwrm_send_message(bp, &req, sizeof(req),
4293 					HWRM_CMD_TIMEOUT);
4294 		if (rc)
4295 			break;
4296 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
4297 	}
4298 	mutex_unlock(&bp->hwrm_cmd_lock);
4299 	return rc;
4300 }
4301 
4302 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
4303 				    struct bnxt_ring_struct *ring,
4304 				    u32 ring_type, u32 map_index)
4305 {
4306 	int rc = 0, err = 0;
4307 	struct hwrm_ring_alloc_input req = {0};
4308 	struct hwrm_ring_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4309 	struct bnxt_ring_grp_info *grp_info;
4310 	u16 ring_id;
4311 
4312 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_ALLOC, -1, -1);
4313 
4314 	req.enables = 0;
4315 	if (ring->nr_pages > 1) {
4316 		req.page_tbl_addr = cpu_to_le64(ring->pg_tbl_map);
4317 		/* Page size is in log2 units */
4318 		req.page_size = BNXT_PAGE_SHIFT;
4319 		req.page_tbl_depth = 1;
4320 	} else {
4321 		req.page_tbl_addr =  cpu_to_le64(ring->dma_arr[0]);
4322 	}
4323 	req.fbo = 0;
4324 	/* Association of ring index with doorbell index and MSIX number */
4325 	req.logical_id = cpu_to_le16(map_index);
4326 
4327 	switch (ring_type) {
4328 	case HWRM_RING_ALLOC_TX:
4329 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
4330 		/* Association of transmit ring with completion ring */
4331 		grp_info = &bp->grp_info[ring->grp_idx];
4332 		req.cmpl_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id);
4333 		req.length = cpu_to_le32(bp->tx_ring_mask + 1);
4334 		req.stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
4335 		req.queue_id = cpu_to_le16(ring->queue_id);
4336 		break;
4337 	case HWRM_RING_ALLOC_RX:
4338 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
4339 		req.length = cpu_to_le32(bp->rx_ring_mask + 1);
4340 		break;
4341 	case HWRM_RING_ALLOC_AGG:
4342 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
4343 		req.length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
4344 		break;
4345 	case HWRM_RING_ALLOC_CMPL:
4346 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL;
4347 		req.length = cpu_to_le32(bp->cp_ring_mask + 1);
4348 		if (bp->flags & BNXT_FLAG_USING_MSIX)
4349 			req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
4350 		break;
4351 	default:
4352 		netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
4353 			   ring_type);
4354 		return -1;
4355 	}
4356 
4357 	mutex_lock(&bp->hwrm_cmd_lock);
4358 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4359 	err = le16_to_cpu(resp->error_code);
4360 	ring_id = le16_to_cpu(resp->ring_id);
4361 	mutex_unlock(&bp->hwrm_cmd_lock);
4362 
4363 	if (rc || err) {
4364 		netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n",
4365 			   ring_type, rc, err);
4366 		return -EIO;
4367 	}
4368 	ring->fw_ring_id = ring_id;
4369 	return rc;
4370 }
4371 
4372 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx)
4373 {
4374 	int rc;
4375 
4376 	if (BNXT_PF(bp)) {
4377 		struct hwrm_func_cfg_input req = {0};
4378 
4379 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
4380 		req.fid = cpu_to_le16(0xffff);
4381 		req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
4382 		req.async_event_cr = cpu_to_le16(idx);
4383 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4384 	} else {
4385 		struct hwrm_func_vf_cfg_input req = {0};
4386 
4387 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_CFG, -1, -1);
4388 		req.enables =
4389 			cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
4390 		req.async_event_cr = cpu_to_le16(idx);
4391 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4392 	}
4393 	return rc;
4394 }
4395 
4396 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
4397 {
4398 	int i, rc = 0;
4399 
4400 	for (i = 0; i < bp->cp_nr_rings; i++) {
4401 		struct bnxt_napi *bnapi = bp->bnapi[i];
4402 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4403 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
4404 		u32 map_idx = ring->map_idx;
4405 
4406 		cpr->cp_doorbell = bp->bar1 + map_idx * 0x80;
4407 		rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_CMPL,
4408 					      map_idx);
4409 		if (rc)
4410 			goto err_out;
4411 		BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
4412 		bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
4413 
4414 		if (!i) {
4415 			rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id);
4416 			if (rc)
4417 				netdev_warn(bp->dev, "Failed to set async event completion ring.\n");
4418 		}
4419 	}
4420 
4421 	for (i = 0; i < bp->tx_nr_rings; i++) {
4422 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
4423 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
4424 		u32 map_idx = i;
4425 
4426 		rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_TX,
4427 					      map_idx);
4428 		if (rc)
4429 			goto err_out;
4430 		txr->tx_doorbell = bp->bar1 + map_idx * 0x80;
4431 	}
4432 
4433 	for (i = 0; i < bp->rx_nr_rings; i++) {
4434 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4435 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
4436 		u32 map_idx = rxr->bnapi->index;
4437 
4438 		rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_RX,
4439 					      map_idx);
4440 		if (rc)
4441 			goto err_out;
4442 		rxr->rx_doorbell = bp->bar1 + map_idx * 0x80;
4443 		writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
4444 		bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
4445 	}
4446 
4447 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
4448 		for (i = 0; i < bp->rx_nr_rings; i++) {
4449 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4450 			struct bnxt_ring_struct *ring =
4451 						&rxr->rx_agg_ring_struct;
4452 			u32 grp_idx = ring->grp_idx;
4453 			u32 map_idx = grp_idx + bp->rx_nr_rings;
4454 
4455 			rc = hwrm_ring_alloc_send_msg(bp, ring,
4456 						      HWRM_RING_ALLOC_AGG,
4457 						      map_idx);
4458 			if (rc)
4459 				goto err_out;
4460 
4461 			rxr->rx_agg_doorbell = bp->bar1 + map_idx * 0x80;
4462 			writel(DB_KEY_RX | rxr->rx_agg_prod,
4463 			       rxr->rx_agg_doorbell);
4464 			bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
4465 		}
4466 	}
4467 err_out:
4468 	return rc;
4469 }
4470 
4471 static int hwrm_ring_free_send_msg(struct bnxt *bp,
4472 				   struct bnxt_ring_struct *ring,
4473 				   u32 ring_type, int cmpl_ring_id)
4474 {
4475 	int rc;
4476 	struct hwrm_ring_free_input req = {0};
4477 	struct hwrm_ring_free_output *resp = bp->hwrm_cmd_resp_addr;
4478 	u16 error_code;
4479 
4480 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_FREE, cmpl_ring_id, -1);
4481 	req.ring_type = ring_type;
4482 	req.ring_id = cpu_to_le16(ring->fw_ring_id);
4483 
4484 	mutex_lock(&bp->hwrm_cmd_lock);
4485 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4486 	error_code = le16_to_cpu(resp->error_code);
4487 	mutex_unlock(&bp->hwrm_cmd_lock);
4488 
4489 	if (rc || error_code) {
4490 		netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n",
4491 			   ring_type, rc, error_code);
4492 		return -EIO;
4493 	}
4494 	return 0;
4495 }
4496 
4497 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
4498 {
4499 	int i;
4500 
4501 	if (!bp->bnapi)
4502 		return;
4503 
4504 	for (i = 0; i < bp->tx_nr_rings; i++) {
4505 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
4506 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
4507 		u32 grp_idx = txr->bnapi->index;
4508 		u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
4509 
4510 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
4511 			hwrm_ring_free_send_msg(bp, ring,
4512 						RING_FREE_REQ_RING_TYPE_TX,
4513 						close_path ? cmpl_ring_id :
4514 						INVALID_HW_RING_ID);
4515 			ring->fw_ring_id = INVALID_HW_RING_ID;
4516 		}
4517 	}
4518 
4519 	for (i = 0; i < bp->rx_nr_rings; i++) {
4520 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4521 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
4522 		u32 grp_idx = rxr->bnapi->index;
4523 		u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
4524 
4525 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
4526 			hwrm_ring_free_send_msg(bp, ring,
4527 						RING_FREE_REQ_RING_TYPE_RX,
4528 						close_path ? cmpl_ring_id :
4529 						INVALID_HW_RING_ID);
4530 			ring->fw_ring_id = INVALID_HW_RING_ID;
4531 			bp->grp_info[grp_idx].rx_fw_ring_id =
4532 				INVALID_HW_RING_ID;
4533 		}
4534 	}
4535 
4536 	for (i = 0; i < bp->rx_nr_rings; i++) {
4537 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4538 		struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
4539 		u32 grp_idx = rxr->bnapi->index;
4540 		u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
4541 
4542 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
4543 			hwrm_ring_free_send_msg(bp, ring,
4544 						RING_FREE_REQ_RING_TYPE_RX,
4545 						close_path ? cmpl_ring_id :
4546 						INVALID_HW_RING_ID);
4547 			ring->fw_ring_id = INVALID_HW_RING_ID;
4548 			bp->grp_info[grp_idx].agg_fw_ring_id =
4549 				INVALID_HW_RING_ID;
4550 		}
4551 	}
4552 
4553 	/* The completion rings are about to be freed.  After that the
4554 	 * IRQ doorbell will not work anymore.  So we need to disable
4555 	 * IRQ here.
4556 	 */
4557 	bnxt_disable_int_sync(bp);
4558 
4559 	for (i = 0; i < bp->cp_nr_rings; i++) {
4560 		struct bnxt_napi *bnapi = bp->bnapi[i];
4561 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4562 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
4563 
4564 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
4565 			hwrm_ring_free_send_msg(bp, ring,
4566 						RING_FREE_REQ_RING_TYPE_L2_CMPL,
4567 						INVALID_HW_RING_ID);
4568 			ring->fw_ring_id = INVALID_HW_RING_ID;
4569 			bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
4570 		}
4571 	}
4572 }
4573 
4574 static int bnxt_hwrm_get_rings(struct bnxt *bp)
4575 {
4576 	struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
4577 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
4578 	struct hwrm_func_qcfg_input req = {0};
4579 	int rc;
4580 
4581 	if (bp->hwrm_spec_code < 0x10601)
4582 		return 0;
4583 
4584 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
4585 	req.fid = cpu_to_le16(0xffff);
4586 	mutex_lock(&bp->hwrm_cmd_lock);
4587 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4588 	if (rc) {
4589 		mutex_unlock(&bp->hwrm_cmd_lock);
4590 		return -EIO;
4591 	}
4592 
4593 	hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings);
4594 	if (bp->flags & BNXT_FLAG_NEW_RM) {
4595 		u16 cp, stats;
4596 
4597 		hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings);
4598 		hw_resc->resv_hw_ring_grps =
4599 			le32_to_cpu(resp->alloc_hw_ring_grps);
4600 		hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics);
4601 		cp = le16_to_cpu(resp->alloc_cmpl_rings);
4602 		stats = le16_to_cpu(resp->alloc_stat_ctx);
4603 		cp = min_t(u16, cp, stats);
4604 		hw_resc->resv_cp_rings = cp;
4605 	}
4606 	mutex_unlock(&bp->hwrm_cmd_lock);
4607 	return 0;
4608 }
4609 
4610 /* Caller must hold bp->hwrm_cmd_lock */
4611 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings)
4612 {
4613 	struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
4614 	struct hwrm_func_qcfg_input req = {0};
4615 	int rc;
4616 
4617 	if (bp->hwrm_spec_code < 0x10601)
4618 		return 0;
4619 
4620 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
4621 	req.fid = cpu_to_le16(fid);
4622 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4623 	if (!rc)
4624 		*tx_rings = le16_to_cpu(resp->alloc_tx_rings);
4625 
4626 	return rc;
4627 }
4628 
4629 static void
4630 __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, struct hwrm_func_cfg_input *req,
4631 			     int tx_rings, int rx_rings, int ring_grps,
4632 			     int cp_rings, int vnics)
4633 {
4634 	u32 enables = 0;
4635 
4636 	bnxt_hwrm_cmd_hdr_init(bp, req, HWRM_FUNC_CFG, -1, -1);
4637 	req->fid = cpu_to_le16(0xffff);
4638 	enables |= tx_rings ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
4639 	req->num_tx_rings = cpu_to_le16(tx_rings);
4640 	if (bp->flags & BNXT_FLAG_NEW_RM) {
4641 		enables |= rx_rings ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0;
4642 		enables |= cp_rings ? FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS |
4643 				      FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
4644 		enables |= ring_grps ?
4645 			   FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0;
4646 		enables |= vnics ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0;
4647 
4648 		req->num_rx_rings = cpu_to_le16(rx_rings);
4649 		req->num_hw_ring_grps = cpu_to_le16(ring_grps);
4650 		req->num_cmpl_rings = cpu_to_le16(cp_rings);
4651 		req->num_stat_ctxs = req->num_cmpl_rings;
4652 		req->num_vnics = cpu_to_le16(vnics);
4653 	}
4654 	req->enables = cpu_to_le32(enables);
4655 }
4656 
4657 static void
4658 __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp,
4659 			     struct hwrm_func_vf_cfg_input *req, int tx_rings,
4660 			     int rx_rings, int ring_grps, int cp_rings,
4661 			     int vnics)
4662 {
4663 	u32 enables = 0;
4664 
4665 	bnxt_hwrm_cmd_hdr_init(bp, req, HWRM_FUNC_VF_CFG, -1, -1);
4666 	enables |= tx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
4667 	enables |= rx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS : 0;
4668 	enables |= cp_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS |
4669 			      FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
4670 	enables |= ring_grps ? FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0;
4671 	enables |= vnics ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0;
4672 
4673 	req->num_tx_rings = cpu_to_le16(tx_rings);
4674 	req->num_rx_rings = cpu_to_le16(rx_rings);
4675 	req->num_hw_ring_grps = cpu_to_le16(ring_grps);
4676 	req->num_cmpl_rings = cpu_to_le16(cp_rings);
4677 	req->num_stat_ctxs = req->num_cmpl_rings;
4678 	req->num_vnics = cpu_to_le16(vnics);
4679 
4680 	req->enables = cpu_to_le32(enables);
4681 }
4682 
4683 static int
4684 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
4685 			   int ring_grps, int cp_rings, int vnics)
4686 {
4687 	struct hwrm_func_cfg_input req = {0};
4688 	int rc;
4689 
4690 	__bnxt_hwrm_reserve_pf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
4691 				     cp_rings, vnics);
4692 	if (!req.enables)
4693 		return 0;
4694 
4695 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4696 	if (rc)
4697 		return -ENOMEM;
4698 
4699 	if (bp->hwrm_spec_code < 0x10601)
4700 		bp->hw_resc.resv_tx_rings = tx_rings;
4701 
4702 	rc = bnxt_hwrm_get_rings(bp);
4703 	return rc;
4704 }
4705 
4706 static int
4707 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
4708 			   int ring_grps, int cp_rings, int vnics)
4709 {
4710 	struct hwrm_func_vf_cfg_input req = {0};
4711 	int rc;
4712 
4713 	if (!(bp->flags & BNXT_FLAG_NEW_RM)) {
4714 		bp->hw_resc.resv_tx_rings = tx_rings;
4715 		return 0;
4716 	}
4717 
4718 	__bnxt_hwrm_reserve_vf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
4719 				     cp_rings, vnics);
4720 	req.enables |= cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS |
4721 				   FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS);
4722 	req.num_rsscos_ctxs = cpu_to_le16(BNXT_VF_MAX_RSS_CTX);
4723 	req.num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX);
4724 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4725 	if (rc)
4726 		return -ENOMEM;
4727 
4728 	rc = bnxt_hwrm_get_rings(bp);
4729 	return rc;
4730 }
4731 
4732 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, int tx, int rx, int grp,
4733 				   int cp, int vnic)
4734 {
4735 	if (BNXT_PF(bp))
4736 		return bnxt_hwrm_reserve_pf_rings(bp, tx, rx, grp, cp, vnic);
4737 	else
4738 		return bnxt_hwrm_reserve_vf_rings(bp, tx, rx, grp, cp, vnic);
4739 }
4740 
4741 static int bnxt_cp_rings_in_use(struct bnxt *bp)
4742 {
4743 	int cp = bp->cp_nr_rings;
4744 	int ulp_msix, ulp_base;
4745 
4746 	ulp_msix = bnxt_get_ulp_msix_num(bp);
4747 	if (ulp_msix) {
4748 		ulp_base = bnxt_get_ulp_msix_base(bp);
4749 		cp += ulp_msix;
4750 		if ((ulp_base + ulp_msix) > cp)
4751 			cp = ulp_base + ulp_msix;
4752 	}
4753 	return cp;
4754 }
4755 
4756 static bool bnxt_need_reserve_rings(struct bnxt *bp)
4757 {
4758 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
4759 	int cp = bnxt_cp_rings_in_use(bp);
4760 	int rx = bp->rx_nr_rings;
4761 	int vnic = 1, grp = rx;
4762 
4763 	if (bp->hwrm_spec_code < 0x10601)
4764 		return false;
4765 
4766 	if (hw_resc->resv_tx_rings != bp->tx_nr_rings)
4767 		return true;
4768 
4769 	if (bp->flags & BNXT_FLAG_RFS)
4770 		vnic = rx + 1;
4771 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
4772 		rx <<= 1;
4773 	if ((bp->flags & BNXT_FLAG_NEW_RM) &&
4774 	    (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp ||
4775 	     hw_resc->resv_hw_ring_grps != grp || hw_resc->resv_vnics != vnic))
4776 		return true;
4777 	return false;
4778 }
4779 
4780 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
4781 			   bool shared);
4782 
4783 static int __bnxt_reserve_rings(struct bnxt *bp)
4784 {
4785 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
4786 	int cp = bnxt_cp_rings_in_use(bp);
4787 	int tx = bp->tx_nr_rings;
4788 	int rx = bp->rx_nr_rings;
4789 	int grp, rx_rings, rc;
4790 	bool sh = false;
4791 	int vnic = 1;
4792 
4793 	if (!bnxt_need_reserve_rings(bp))
4794 		return 0;
4795 
4796 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
4797 		sh = true;
4798 	if (bp->flags & BNXT_FLAG_RFS)
4799 		vnic = rx + 1;
4800 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
4801 		rx <<= 1;
4802 	grp = bp->rx_nr_rings;
4803 
4804 	rc = bnxt_hwrm_reserve_rings(bp, tx, rx, grp, cp, vnic);
4805 	if (rc)
4806 		return rc;
4807 
4808 	tx = hw_resc->resv_tx_rings;
4809 	if (bp->flags & BNXT_FLAG_NEW_RM) {
4810 		rx = hw_resc->resv_rx_rings;
4811 		cp = hw_resc->resv_cp_rings;
4812 		grp = hw_resc->resv_hw_ring_grps;
4813 		vnic = hw_resc->resv_vnics;
4814 	}
4815 
4816 	rx_rings = rx;
4817 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
4818 		if (rx >= 2) {
4819 			rx_rings = rx >> 1;
4820 		} else {
4821 			if (netif_running(bp->dev))
4822 				return -ENOMEM;
4823 
4824 			bp->flags &= ~BNXT_FLAG_AGG_RINGS;
4825 			bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
4826 			bp->dev->hw_features &= ~NETIF_F_LRO;
4827 			bp->dev->features &= ~NETIF_F_LRO;
4828 			bnxt_set_ring_params(bp);
4829 		}
4830 	}
4831 	rx_rings = min_t(int, rx_rings, grp);
4832 	rc = bnxt_trim_rings(bp, &rx_rings, &tx, cp, sh);
4833 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
4834 		rx = rx_rings << 1;
4835 	cp = sh ? max_t(int, tx, rx_rings) : tx + rx_rings;
4836 	bp->tx_nr_rings = tx;
4837 	bp->rx_nr_rings = rx_rings;
4838 	bp->cp_nr_rings = cp;
4839 
4840 	if (!tx || !rx || !cp || !grp || !vnic)
4841 		return -ENOMEM;
4842 
4843 	return rc;
4844 }
4845 
4846 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
4847 				    int ring_grps, int cp_rings, int vnics)
4848 {
4849 	struct hwrm_func_vf_cfg_input req = {0};
4850 	u32 flags;
4851 	int rc;
4852 
4853 	if (!(bp->flags & BNXT_FLAG_NEW_RM))
4854 		return 0;
4855 
4856 	__bnxt_hwrm_reserve_vf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
4857 				     cp_rings, vnics);
4858 	flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST |
4859 		FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST |
4860 		FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
4861 		FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST |
4862 		FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
4863 		FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST;
4864 
4865 	req.flags = cpu_to_le32(flags);
4866 	rc = hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4867 	if (rc)
4868 		return -ENOMEM;
4869 	return 0;
4870 }
4871 
4872 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
4873 				    int ring_grps, int cp_rings, int vnics)
4874 {
4875 	struct hwrm_func_cfg_input req = {0};
4876 	u32 flags;
4877 	int rc;
4878 
4879 	__bnxt_hwrm_reserve_pf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
4880 				     cp_rings, vnics);
4881 	flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST;
4882 	if (bp->flags & BNXT_FLAG_NEW_RM)
4883 		flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST |
4884 			 FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
4885 			 FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST |
4886 			 FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
4887 			 FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST;
4888 
4889 	req.flags = cpu_to_le32(flags);
4890 	rc = hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4891 	if (rc)
4892 		return -ENOMEM;
4893 	return 0;
4894 }
4895 
4896 static int bnxt_hwrm_check_rings(struct bnxt *bp, int tx_rings, int rx_rings,
4897 				 int ring_grps, int cp_rings, int vnics)
4898 {
4899 	if (bp->hwrm_spec_code < 0x10801)
4900 		return 0;
4901 
4902 	if (BNXT_PF(bp))
4903 		return bnxt_hwrm_check_pf_rings(bp, tx_rings, rx_rings,
4904 						ring_grps, cp_rings, vnics);
4905 
4906 	return bnxt_hwrm_check_vf_rings(bp, tx_rings, rx_rings, ring_grps,
4907 					cp_rings, vnics);
4908 }
4909 
4910 static void bnxt_hwrm_set_coal_params(struct bnxt_coal *hw_coal,
4911 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
4912 {
4913 	u16 val, tmr, max, flags;
4914 
4915 	max = hw_coal->bufs_per_record * 128;
4916 	if (hw_coal->budget)
4917 		max = hw_coal->bufs_per_record * hw_coal->budget;
4918 
4919 	val = clamp_t(u16, hw_coal->coal_bufs, 1, max);
4920 	req->num_cmpl_aggr_int = cpu_to_le16(val);
4921 
4922 	/* This is a 6-bit value and must not be 0, or we'll get non stop IRQ */
4923 	val = min_t(u16, val, 63);
4924 	req->num_cmpl_dma_aggr = cpu_to_le16(val);
4925 
4926 	/* This is a 6-bit value and must not be 0, or we'll get non stop IRQ */
4927 	val = clamp_t(u16, hw_coal->coal_bufs_irq, 1, 63);
4928 	req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val);
4929 
4930 	tmr = BNXT_USEC_TO_COAL_TIMER(hw_coal->coal_ticks);
4931 	tmr = max_t(u16, tmr, 1);
4932 	req->int_lat_tmr_max = cpu_to_le16(tmr);
4933 
4934 	/* min timer set to 1/2 of interrupt timer */
4935 	val = tmr / 2;
4936 	req->int_lat_tmr_min = cpu_to_le16(val);
4937 
4938 	/* buf timer set to 1/4 of interrupt timer */
4939 	val = max_t(u16, tmr / 4, 1);
4940 	req->cmpl_aggr_dma_tmr = cpu_to_le16(val);
4941 
4942 	tmr = BNXT_USEC_TO_COAL_TIMER(hw_coal->coal_ticks_irq);
4943 	tmr = max_t(u16, tmr, 1);
4944 	req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(tmr);
4945 
4946 	flags = RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
4947 	if (hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh)
4948 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
4949 	req->flags = cpu_to_le16(flags);
4950 }
4951 
4952 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi)
4953 {
4954 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0};
4955 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4956 	struct bnxt_coal coal;
4957 	unsigned int grp_idx;
4958 
4959 	/* Tick values in micro seconds.
4960 	 * 1 coal_buf x bufs_per_record = 1 completion record.
4961 	 */
4962 	memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal));
4963 
4964 	coal.coal_ticks = cpr->rx_ring_coal.coal_ticks;
4965 	coal.coal_bufs = cpr->rx_ring_coal.coal_bufs;
4966 
4967 	if (!bnapi->rx_ring)
4968 		return -ENODEV;
4969 
4970 	bnxt_hwrm_cmd_hdr_init(bp, &req_rx,
4971 			       HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
4972 
4973 	bnxt_hwrm_set_coal_params(&coal, &req_rx);
4974 
4975 	grp_idx = bnapi->index;
4976 	req_rx.ring_id = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
4977 
4978 	return hwrm_send_message(bp, &req_rx, sizeof(req_rx),
4979 				 HWRM_CMD_TIMEOUT);
4980 }
4981 
4982 int bnxt_hwrm_set_coal(struct bnxt *bp)
4983 {
4984 	int i, rc = 0;
4985 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0},
4986 							   req_tx = {0}, *req;
4987 
4988 	bnxt_hwrm_cmd_hdr_init(bp, &req_rx,
4989 			       HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
4990 	bnxt_hwrm_cmd_hdr_init(bp, &req_tx,
4991 			       HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
4992 
4993 	bnxt_hwrm_set_coal_params(&bp->rx_coal, &req_rx);
4994 	bnxt_hwrm_set_coal_params(&bp->tx_coal, &req_tx);
4995 
4996 	mutex_lock(&bp->hwrm_cmd_lock);
4997 	for (i = 0; i < bp->cp_nr_rings; i++) {
4998 		struct bnxt_napi *bnapi = bp->bnapi[i];
4999 
5000 		req = &req_rx;
5001 		if (!bnapi->rx_ring)
5002 			req = &req_tx;
5003 		req->ring_id = cpu_to_le16(bp->grp_info[i].cp_fw_ring_id);
5004 
5005 		rc = _hwrm_send_message(bp, req, sizeof(*req),
5006 					HWRM_CMD_TIMEOUT);
5007 		if (rc)
5008 			break;
5009 	}
5010 	mutex_unlock(&bp->hwrm_cmd_lock);
5011 	return rc;
5012 }
5013 
5014 static int bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
5015 {
5016 	int rc = 0, i;
5017 	struct hwrm_stat_ctx_free_input req = {0};
5018 
5019 	if (!bp->bnapi)
5020 		return 0;
5021 
5022 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5023 		return 0;
5024 
5025 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_FREE, -1, -1);
5026 
5027 	mutex_lock(&bp->hwrm_cmd_lock);
5028 	for (i = 0; i < bp->cp_nr_rings; i++) {
5029 		struct bnxt_napi *bnapi = bp->bnapi[i];
5030 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5031 
5032 		if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
5033 			req.stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
5034 
5035 			rc = _hwrm_send_message(bp, &req, sizeof(req),
5036 						HWRM_CMD_TIMEOUT);
5037 			if (rc)
5038 				break;
5039 
5040 			cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
5041 		}
5042 	}
5043 	mutex_unlock(&bp->hwrm_cmd_lock);
5044 	return rc;
5045 }
5046 
5047 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
5048 {
5049 	int rc = 0, i;
5050 	struct hwrm_stat_ctx_alloc_input req = {0};
5051 	struct hwrm_stat_ctx_alloc_output *resp = bp->hwrm_cmd_resp_addr;
5052 
5053 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5054 		return 0;
5055 
5056 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_ALLOC, -1, -1);
5057 
5058 	req.update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000);
5059 
5060 	mutex_lock(&bp->hwrm_cmd_lock);
5061 	for (i = 0; i < bp->cp_nr_rings; i++) {
5062 		struct bnxt_napi *bnapi = bp->bnapi[i];
5063 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5064 
5065 		req.stats_dma_addr = cpu_to_le64(cpr->hw_stats_map);
5066 
5067 		rc = _hwrm_send_message(bp, &req, sizeof(req),
5068 					HWRM_CMD_TIMEOUT);
5069 		if (rc)
5070 			break;
5071 
5072 		cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
5073 
5074 		bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
5075 	}
5076 	mutex_unlock(&bp->hwrm_cmd_lock);
5077 	return rc;
5078 }
5079 
5080 static int bnxt_hwrm_func_qcfg(struct bnxt *bp)
5081 {
5082 	struct hwrm_func_qcfg_input req = {0};
5083 	struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
5084 	u16 flags;
5085 	int rc;
5086 
5087 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
5088 	req.fid = cpu_to_le16(0xffff);
5089 	mutex_lock(&bp->hwrm_cmd_lock);
5090 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5091 	if (rc)
5092 		goto func_qcfg_exit;
5093 
5094 #ifdef CONFIG_BNXT_SRIOV
5095 	if (BNXT_VF(bp)) {
5096 		struct bnxt_vf_info *vf = &bp->vf;
5097 
5098 		vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK;
5099 	}
5100 #endif
5101 	flags = le16_to_cpu(resp->flags);
5102 	if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED |
5103 		     FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) {
5104 		bp->flags |= BNXT_FLAG_FW_LLDP_AGENT;
5105 		if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED)
5106 			bp->flags |= BNXT_FLAG_FW_DCBX_AGENT;
5107 	}
5108 	if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST))
5109 		bp->flags |= BNXT_FLAG_MULTI_HOST;
5110 
5111 	switch (resp->port_partition_type) {
5112 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0:
5113 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5:
5114 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0:
5115 		bp->port_partition_type = resp->port_partition_type;
5116 		break;
5117 	}
5118 	if (bp->hwrm_spec_code < 0x10707 ||
5119 	    resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB)
5120 		bp->br_mode = BRIDGE_MODE_VEB;
5121 	else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA)
5122 		bp->br_mode = BRIDGE_MODE_VEPA;
5123 	else
5124 		bp->br_mode = BRIDGE_MODE_UNDEF;
5125 
5126 	bp->max_mtu = le16_to_cpu(resp->max_mtu_configured);
5127 	if (!bp->max_mtu)
5128 		bp->max_mtu = BNXT_MAX_MTU;
5129 
5130 func_qcfg_exit:
5131 	mutex_unlock(&bp->hwrm_cmd_lock);
5132 	return rc;
5133 }
5134 
5135 int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all)
5136 {
5137 	struct hwrm_func_resource_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
5138 	struct hwrm_func_resource_qcaps_input req = {0};
5139 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
5140 	int rc;
5141 
5142 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESOURCE_QCAPS, -1, -1);
5143 	req.fid = cpu_to_le16(0xffff);
5144 
5145 	mutex_lock(&bp->hwrm_cmd_lock);
5146 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5147 	if (rc) {
5148 		rc = -EIO;
5149 		goto hwrm_func_resc_qcaps_exit;
5150 	}
5151 
5152 	hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs);
5153 	if (!all)
5154 		goto hwrm_func_resc_qcaps_exit;
5155 
5156 	hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx);
5157 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
5158 	hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings);
5159 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
5160 	hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings);
5161 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
5162 	hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings);
5163 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
5164 	hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps);
5165 	hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps);
5166 	hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs);
5167 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
5168 	hw_resc->min_vnics = le16_to_cpu(resp->min_vnics);
5169 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
5170 	hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx);
5171 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
5172 
5173 	if (BNXT_PF(bp)) {
5174 		struct bnxt_pf_info *pf = &bp->pf;
5175 
5176 		pf->vf_resv_strategy =
5177 			le16_to_cpu(resp->vf_reservation_strategy);
5178 		if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL)
5179 			pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL;
5180 	}
5181 hwrm_func_resc_qcaps_exit:
5182 	mutex_unlock(&bp->hwrm_cmd_lock);
5183 	return rc;
5184 }
5185 
5186 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp)
5187 {
5188 	int rc = 0;
5189 	struct hwrm_func_qcaps_input req = {0};
5190 	struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
5191 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
5192 	u32 flags;
5193 
5194 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1);
5195 	req.fid = cpu_to_le16(0xffff);
5196 
5197 	mutex_lock(&bp->hwrm_cmd_lock);
5198 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5199 	if (rc)
5200 		goto hwrm_func_qcaps_exit;
5201 
5202 	flags = le32_to_cpu(resp->flags);
5203 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED)
5204 		bp->flags |= BNXT_FLAG_ROCEV1_CAP;
5205 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED)
5206 		bp->flags |= BNXT_FLAG_ROCEV2_CAP;
5207 
5208 	bp->tx_push_thresh = 0;
5209 	if (flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED)
5210 		bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
5211 
5212 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
5213 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
5214 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
5215 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
5216 	hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
5217 	if (!hw_resc->max_hw_ring_grps)
5218 		hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings;
5219 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
5220 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
5221 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
5222 
5223 	if (BNXT_PF(bp)) {
5224 		struct bnxt_pf_info *pf = &bp->pf;
5225 
5226 		pf->fw_fid = le16_to_cpu(resp->fid);
5227 		pf->port_id = le16_to_cpu(resp->port_id);
5228 		bp->dev->dev_port = pf->port_id;
5229 		memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN);
5230 		pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
5231 		pf->max_vfs = le16_to_cpu(resp->max_vfs);
5232 		pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
5233 		pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
5234 		pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
5235 		pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
5236 		pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
5237 		pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
5238 		if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED)
5239 			bp->flags |= BNXT_FLAG_WOL_CAP;
5240 	} else {
5241 #ifdef CONFIG_BNXT_SRIOV
5242 		struct bnxt_vf_info *vf = &bp->vf;
5243 
5244 		vf->fw_fid = le16_to_cpu(resp->fid);
5245 		memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN);
5246 #endif
5247 	}
5248 
5249 hwrm_func_qcaps_exit:
5250 	mutex_unlock(&bp->hwrm_cmd_lock);
5251 	return rc;
5252 }
5253 
5254 static int bnxt_hwrm_func_qcaps(struct bnxt *bp)
5255 {
5256 	int rc;
5257 
5258 	rc = __bnxt_hwrm_func_qcaps(bp);
5259 	if (rc)
5260 		return rc;
5261 	if (bp->hwrm_spec_code >= 0x10803) {
5262 		rc = bnxt_hwrm_func_resc_qcaps(bp, true);
5263 		if (!rc)
5264 			bp->flags |= BNXT_FLAG_NEW_RM;
5265 	}
5266 	return 0;
5267 }
5268 
5269 static int bnxt_hwrm_func_reset(struct bnxt *bp)
5270 {
5271 	struct hwrm_func_reset_input req = {0};
5272 
5273 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESET, -1, -1);
5274 	req.enables = 0;
5275 
5276 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_RESET_TIMEOUT);
5277 }
5278 
5279 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
5280 {
5281 	int rc = 0;
5282 	struct hwrm_queue_qportcfg_input req = {0};
5283 	struct hwrm_queue_qportcfg_output *resp = bp->hwrm_cmd_resp_addr;
5284 	u8 i, *qptr;
5285 
5286 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_QUEUE_QPORTCFG, -1, -1);
5287 
5288 	mutex_lock(&bp->hwrm_cmd_lock);
5289 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5290 	if (rc)
5291 		goto qportcfg_exit;
5292 
5293 	if (!resp->max_configurable_queues) {
5294 		rc = -EINVAL;
5295 		goto qportcfg_exit;
5296 	}
5297 	bp->max_tc = resp->max_configurable_queues;
5298 	bp->max_lltc = resp->max_configurable_lossless_queues;
5299 	if (bp->max_tc > BNXT_MAX_QUEUE)
5300 		bp->max_tc = BNXT_MAX_QUEUE;
5301 
5302 	if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG)
5303 		bp->max_tc = 1;
5304 
5305 	if (bp->max_lltc > bp->max_tc)
5306 		bp->max_lltc = bp->max_tc;
5307 
5308 	qptr = &resp->queue_id0;
5309 	for (i = 0; i < bp->max_tc; i++) {
5310 		bp->q_info[i].queue_id = *qptr++;
5311 		bp->q_info[i].queue_profile = *qptr++;
5312 		bp->tc_to_qidx[i] = i;
5313 	}
5314 
5315 qportcfg_exit:
5316 	mutex_unlock(&bp->hwrm_cmd_lock);
5317 	return rc;
5318 }
5319 
5320 static int bnxt_hwrm_ver_get(struct bnxt *bp)
5321 {
5322 	int rc;
5323 	struct hwrm_ver_get_input req = {0};
5324 	struct hwrm_ver_get_output *resp = bp->hwrm_cmd_resp_addr;
5325 	u32 dev_caps_cfg;
5326 
5327 	bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN;
5328 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VER_GET, -1, -1);
5329 	req.hwrm_intf_maj = HWRM_VERSION_MAJOR;
5330 	req.hwrm_intf_min = HWRM_VERSION_MINOR;
5331 	req.hwrm_intf_upd = HWRM_VERSION_UPDATE;
5332 	mutex_lock(&bp->hwrm_cmd_lock);
5333 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5334 	if (rc)
5335 		goto hwrm_ver_get_exit;
5336 
5337 	memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
5338 
5339 	bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 |
5340 			     resp->hwrm_intf_min_8b << 8 |
5341 			     resp->hwrm_intf_upd_8b;
5342 	if (resp->hwrm_intf_maj_8b < 1) {
5343 		netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
5344 			    resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
5345 			    resp->hwrm_intf_upd_8b);
5346 		netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
5347 	}
5348 	snprintf(bp->fw_ver_str, BC_HWRM_STR_LEN, "%d.%d.%d.%d",
5349 		 resp->hwrm_fw_maj_8b, resp->hwrm_fw_min_8b,
5350 		 resp->hwrm_fw_bld_8b, resp->hwrm_fw_rsvd_8b);
5351 
5352 	bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout);
5353 	if (!bp->hwrm_cmd_timeout)
5354 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
5355 
5356 	if (resp->hwrm_intf_maj_8b >= 1)
5357 		bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len);
5358 
5359 	bp->chip_num = le16_to_cpu(resp->chip_num);
5360 	if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev &&
5361 	    !resp->chip_metal)
5362 		bp->flags |= BNXT_FLAG_CHIP_NITRO_A0;
5363 
5364 	dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg);
5365 	if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) &&
5366 	    (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED))
5367 		bp->flags |= BNXT_FLAG_SHORT_CMD;
5368 
5369 hwrm_ver_get_exit:
5370 	mutex_unlock(&bp->hwrm_cmd_lock);
5371 	return rc;
5372 }
5373 
5374 int bnxt_hwrm_fw_set_time(struct bnxt *bp)
5375 {
5376 	struct hwrm_fw_set_time_input req = {0};
5377 	struct tm tm;
5378 	time64_t now = ktime_get_real_seconds();
5379 
5380 	if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) ||
5381 	    bp->hwrm_spec_code < 0x10400)
5382 		return -EOPNOTSUPP;
5383 
5384 	time64_to_tm(now, 0, &tm);
5385 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FW_SET_TIME, -1, -1);
5386 	req.year = cpu_to_le16(1900 + tm.tm_year);
5387 	req.month = 1 + tm.tm_mon;
5388 	req.day = tm.tm_mday;
5389 	req.hour = tm.tm_hour;
5390 	req.minute = tm.tm_min;
5391 	req.second = tm.tm_sec;
5392 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5393 }
5394 
5395 static int bnxt_hwrm_port_qstats(struct bnxt *bp)
5396 {
5397 	int rc;
5398 	struct bnxt_pf_info *pf = &bp->pf;
5399 	struct hwrm_port_qstats_input req = {0};
5400 
5401 	if (!(bp->flags & BNXT_FLAG_PORT_STATS))
5402 		return 0;
5403 
5404 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS, -1, -1);
5405 	req.port_id = cpu_to_le16(pf->port_id);
5406 	req.tx_stat_host_addr = cpu_to_le64(bp->hw_tx_port_stats_map);
5407 	req.rx_stat_host_addr = cpu_to_le64(bp->hw_rx_port_stats_map);
5408 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5409 	return rc;
5410 }
5411 
5412 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp)
5413 {
5414 	struct hwrm_port_qstats_ext_input req = {0};
5415 	struct bnxt_pf_info *pf = &bp->pf;
5416 
5417 	if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT))
5418 		return 0;
5419 
5420 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS_EXT, -1, -1);
5421 	req.port_id = cpu_to_le16(pf->port_id);
5422 	req.rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext));
5423 	req.rx_stat_host_addr = cpu_to_le64(bp->hw_rx_port_stats_ext_map);
5424 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5425 }
5426 
5427 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
5428 {
5429 	if (bp->vxlan_port_cnt) {
5430 		bnxt_hwrm_tunnel_dst_port_free(
5431 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
5432 	}
5433 	bp->vxlan_port_cnt = 0;
5434 	if (bp->nge_port_cnt) {
5435 		bnxt_hwrm_tunnel_dst_port_free(
5436 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
5437 	}
5438 	bp->nge_port_cnt = 0;
5439 }
5440 
5441 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
5442 {
5443 	int rc, i;
5444 	u32 tpa_flags = 0;
5445 
5446 	if (set_tpa)
5447 		tpa_flags = bp->flags & BNXT_FLAG_TPA;
5448 	for (i = 0; i < bp->nr_vnics; i++) {
5449 		rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
5450 		if (rc) {
5451 			netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
5452 				   i, rc);
5453 			return rc;
5454 		}
5455 	}
5456 	return 0;
5457 }
5458 
5459 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
5460 {
5461 	int i;
5462 
5463 	for (i = 0; i < bp->nr_vnics; i++)
5464 		bnxt_hwrm_vnic_set_rss(bp, i, false);
5465 }
5466 
5467 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
5468 				    bool irq_re_init)
5469 {
5470 	if (bp->vnic_info) {
5471 		bnxt_hwrm_clear_vnic_filter(bp);
5472 		/* clear all RSS setting before free vnic ctx */
5473 		bnxt_hwrm_clear_vnic_rss(bp);
5474 		bnxt_hwrm_vnic_ctx_free(bp);
5475 		/* before free the vnic, undo the vnic tpa settings */
5476 		if (bp->flags & BNXT_FLAG_TPA)
5477 			bnxt_set_tpa(bp, false);
5478 		bnxt_hwrm_vnic_free(bp);
5479 	}
5480 	bnxt_hwrm_ring_free(bp, close_path);
5481 	bnxt_hwrm_ring_grp_free(bp);
5482 	if (irq_re_init) {
5483 		bnxt_hwrm_stat_ctx_free(bp);
5484 		bnxt_hwrm_free_tunnel_ports(bp);
5485 	}
5486 }
5487 
5488 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode)
5489 {
5490 	struct hwrm_func_cfg_input req = {0};
5491 	int rc;
5492 
5493 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
5494 	req.fid = cpu_to_le16(0xffff);
5495 	req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE);
5496 	if (br_mode == BRIDGE_MODE_VEB)
5497 		req.evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB;
5498 	else if (br_mode == BRIDGE_MODE_VEPA)
5499 		req.evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA;
5500 	else
5501 		return -EINVAL;
5502 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5503 	if (rc)
5504 		rc = -EIO;
5505 	return rc;
5506 }
5507 
5508 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size)
5509 {
5510 	struct hwrm_func_cfg_input req = {0};
5511 	int rc;
5512 
5513 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803)
5514 		return 0;
5515 
5516 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
5517 	req.fid = cpu_to_le16(0xffff);
5518 	req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE);
5519 	req.options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64;
5520 	if (size == 128)
5521 		req.options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128;
5522 
5523 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5524 	if (rc)
5525 		rc = -EIO;
5526 	return rc;
5527 }
5528 
5529 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
5530 {
5531 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5532 	int rc;
5533 
5534 	if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG)
5535 		goto skip_rss_ctx;
5536 
5537 	/* allocate context for vnic */
5538 	rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0);
5539 	if (rc) {
5540 		netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
5541 			   vnic_id, rc);
5542 		goto vnic_setup_err;
5543 	}
5544 	bp->rsscos_nr_ctxs++;
5545 
5546 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
5547 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1);
5548 		if (rc) {
5549 			netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n",
5550 				   vnic_id, rc);
5551 			goto vnic_setup_err;
5552 		}
5553 		bp->rsscos_nr_ctxs++;
5554 	}
5555 
5556 skip_rss_ctx:
5557 	/* configure default vnic, ring grp */
5558 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
5559 	if (rc) {
5560 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
5561 			   vnic_id, rc);
5562 		goto vnic_setup_err;
5563 	}
5564 
5565 	/* Enable RSS hashing on vnic */
5566 	rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
5567 	if (rc) {
5568 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
5569 			   vnic_id, rc);
5570 		goto vnic_setup_err;
5571 	}
5572 
5573 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
5574 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
5575 		if (rc) {
5576 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
5577 				   vnic_id, rc);
5578 		}
5579 	}
5580 
5581 vnic_setup_err:
5582 	return rc;
5583 }
5584 
5585 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
5586 {
5587 #ifdef CONFIG_RFS_ACCEL
5588 	int i, rc = 0;
5589 
5590 	for (i = 0; i < bp->rx_nr_rings; i++) {
5591 		struct bnxt_vnic_info *vnic;
5592 		u16 vnic_id = i + 1;
5593 		u16 ring_id = i;
5594 
5595 		if (vnic_id >= bp->nr_vnics)
5596 			break;
5597 
5598 		vnic = &bp->vnic_info[vnic_id];
5599 		vnic->flags |= BNXT_VNIC_RFS_FLAG;
5600 		if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
5601 			vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG;
5602 		rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1);
5603 		if (rc) {
5604 			netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
5605 				   vnic_id, rc);
5606 			break;
5607 		}
5608 		rc = bnxt_setup_vnic(bp, vnic_id);
5609 		if (rc)
5610 			break;
5611 	}
5612 	return rc;
5613 #else
5614 	return 0;
5615 #endif
5616 }
5617 
5618 /* Allow PF and VF with default VLAN to be in promiscuous mode */
5619 static bool bnxt_promisc_ok(struct bnxt *bp)
5620 {
5621 #ifdef CONFIG_BNXT_SRIOV
5622 	if (BNXT_VF(bp) && !bp->vf.vlan)
5623 		return false;
5624 #endif
5625 	return true;
5626 }
5627 
5628 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp)
5629 {
5630 	unsigned int rc = 0;
5631 
5632 	rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1);
5633 	if (rc) {
5634 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
5635 			   rc);
5636 		return rc;
5637 	}
5638 
5639 	rc = bnxt_hwrm_vnic_cfg(bp, 1);
5640 	if (rc) {
5641 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
5642 			   rc);
5643 		return rc;
5644 	}
5645 	return rc;
5646 }
5647 
5648 static int bnxt_cfg_rx_mode(struct bnxt *);
5649 static bool bnxt_mc_list_updated(struct bnxt *, u32 *);
5650 
5651 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
5652 {
5653 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
5654 	int rc = 0;
5655 	unsigned int rx_nr_rings = bp->rx_nr_rings;
5656 
5657 	if (irq_re_init) {
5658 		rc = bnxt_hwrm_stat_ctx_alloc(bp);
5659 		if (rc) {
5660 			netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
5661 				   rc);
5662 			goto err_out;
5663 		}
5664 	}
5665 
5666 	rc = bnxt_hwrm_ring_alloc(bp);
5667 	if (rc) {
5668 		netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
5669 		goto err_out;
5670 	}
5671 
5672 	rc = bnxt_hwrm_ring_grp_alloc(bp);
5673 	if (rc) {
5674 		netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
5675 		goto err_out;
5676 	}
5677 
5678 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5679 		rx_nr_rings--;
5680 
5681 	/* default vnic 0 */
5682 	rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings);
5683 	if (rc) {
5684 		netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
5685 		goto err_out;
5686 	}
5687 
5688 	rc = bnxt_setup_vnic(bp, 0);
5689 	if (rc)
5690 		goto err_out;
5691 
5692 	if (bp->flags & BNXT_FLAG_RFS) {
5693 		rc = bnxt_alloc_rfs_vnics(bp);
5694 		if (rc)
5695 			goto err_out;
5696 	}
5697 
5698 	if (bp->flags & BNXT_FLAG_TPA) {
5699 		rc = bnxt_set_tpa(bp, true);
5700 		if (rc)
5701 			goto err_out;
5702 	}
5703 
5704 	if (BNXT_VF(bp))
5705 		bnxt_update_vf_mac(bp);
5706 
5707 	/* Filter for default vnic 0 */
5708 	rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
5709 	if (rc) {
5710 		netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
5711 		goto err_out;
5712 	}
5713 	vnic->uc_filter_count = 1;
5714 
5715 	vnic->rx_mask = CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
5716 
5717 	if ((bp->dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
5718 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
5719 
5720 	if (bp->dev->flags & IFF_ALLMULTI) {
5721 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
5722 		vnic->mc_list_count = 0;
5723 	} else {
5724 		u32 mask = 0;
5725 
5726 		bnxt_mc_list_updated(bp, &mask);
5727 		vnic->rx_mask |= mask;
5728 	}
5729 
5730 	rc = bnxt_cfg_rx_mode(bp);
5731 	if (rc)
5732 		goto err_out;
5733 
5734 	rc = bnxt_hwrm_set_coal(bp);
5735 	if (rc)
5736 		netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
5737 				rc);
5738 
5739 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
5740 		rc = bnxt_setup_nitroa0_vnic(bp);
5741 		if (rc)
5742 			netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n",
5743 				   rc);
5744 	}
5745 
5746 	if (BNXT_VF(bp)) {
5747 		bnxt_hwrm_func_qcfg(bp);
5748 		netdev_update_features(bp->dev);
5749 	}
5750 
5751 	return 0;
5752 
5753 err_out:
5754 	bnxt_hwrm_resource_free(bp, 0, true);
5755 
5756 	return rc;
5757 }
5758 
5759 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
5760 {
5761 	bnxt_hwrm_resource_free(bp, 1, irq_re_init);
5762 	return 0;
5763 }
5764 
5765 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
5766 {
5767 	bnxt_init_cp_rings(bp);
5768 	bnxt_init_rx_rings(bp);
5769 	bnxt_init_tx_rings(bp);
5770 	bnxt_init_ring_grps(bp, irq_re_init);
5771 	bnxt_init_vnics(bp);
5772 
5773 	return bnxt_init_chip(bp, irq_re_init);
5774 }
5775 
5776 static int bnxt_set_real_num_queues(struct bnxt *bp)
5777 {
5778 	int rc;
5779 	struct net_device *dev = bp->dev;
5780 
5781 	rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings -
5782 					  bp->tx_nr_rings_xdp);
5783 	if (rc)
5784 		return rc;
5785 
5786 	rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
5787 	if (rc)
5788 		return rc;
5789 
5790 #ifdef CONFIG_RFS_ACCEL
5791 	if (bp->flags & BNXT_FLAG_RFS)
5792 		dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
5793 #endif
5794 
5795 	return rc;
5796 }
5797 
5798 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
5799 			   bool shared)
5800 {
5801 	int _rx = *rx, _tx = *tx;
5802 
5803 	if (shared) {
5804 		*rx = min_t(int, _rx, max);
5805 		*tx = min_t(int, _tx, max);
5806 	} else {
5807 		if (max < 2)
5808 			return -ENOMEM;
5809 
5810 		while (_rx + _tx > max) {
5811 			if (_rx > _tx && _rx > 1)
5812 				_rx--;
5813 			else if (_tx > 1)
5814 				_tx--;
5815 		}
5816 		*rx = _rx;
5817 		*tx = _tx;
5818 	}
5819 	return 0;
5820 }
5821 
5822 static void bnxt_setup_msix(struct bnxt *bp)
5823 {
5824 	const int len = sizeof(bp->irq_tbl[0].name);
5825 	struct net_device *dev = bp->dev;
5826 	int tcs, i;
5827 
5828 	tcs = netdev_get_num_tc(dev);
5829 	if (tcs > 1) {
5830 		int i, off, count;
5831 
5832 		for (i = 0; i < tcs; i++) {
5833 			count = bp->tx_nr_rings_per_tc;
5834 			off = i * count;
5835 			netdev_set_tc_queue(dev, i, count, off);
5836 		}
5837 	}
5838 
5839 	for (i = 0; i < bp->cp_nr_rings; i++) {
5840 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
5841 		char *attr;
5842 
5843 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
5844 			attr = "TxRx";
5845 		else if (i < bp->rx_nr_rings)
5846 			attr = "rx";
5847 		else
5848 			attr = "tx";
5849 
5850 		snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name,
5851 			 attr, i);
5852 		bp->irq_tbl[map_idx].handler = bnxt_msix;
5853 	}
5854 }
5855 
5856 static void bnxt_setup_inta(struct bnxt *bp)
5857 {
5858 	const int len = sizeof(bp->irq_tbl[0].name);
5859 
5860 	if (netdev_get_num_tc(bp->dev))
5861 		netdev_reset_tc(bp->dev);
5862 
5863 	snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx",
5864 		 0);
5865 	bp->irq_tbl[0].handler = bnxt_inta;
5866 }
5867 
5868 static int bnxt_setup_int_mode(struct bnxt *bp)
5869 {
5870 	int rc;
5871 
5872 	if (bp->flags & BNXT_FLAG_USING_MSIX)
5873 		bnxt_setup_msix(bp);
5874 	else
5875 		bnxt_setup_inta(bp);
5876 
5877 	rc = bnxt_set_real_num_queues(bp);
5878 	return rc;
5879 }
5880 
5881 #ifdef CONFIG_RFS_ACCEL
5882 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp)
5883 {
5884 	return bp->hw_resc.max_rsscos_ctxs;
5885 }
5886 
5887 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp)
5888 {
5889 	return bp->hw_resc.max_vnics;
5890 }
5891 #endif
5892 
5893 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp)
5894 {
5895 	return bp->hw_resc.max_stat_ctxs;
5896 }
5897 
5898 void bnxt_set_max_func_stat_ctxs(struct bnxt *bp, unsigned int max)
5899 {
5900 	bp->hw_resc.max_stat_ctxs = max;
5901 }
5902 
5903 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp)
5904 {
5905 	return bp->hw_resc.max_cp_rings;
5906 }
5907 
5908 void bnxt_set_max_func_cp_rings(struct bnxt *bp, unsigned int max)
5909 {
5910 	bp->hw_resc.max_cp_rings = max;
5911 }
5912 
5913 unsigned int bnxt_get_max_func_irqs(struct bnxt *bp)
5914 {
5915 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
5916 
5917 	return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings);
5918 }
5919 
5920 void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs)
5921 {
5922 	bp->hw_resc.max_irqs = max_irqs;
5923 }
5924 
5925 int bnxt_get_avail_msix(struct bnxt *bp, int num)
5926 {
5927 	int max_cp = bnxt_get_max_func_cp_rings(bp);
5928 	int max_irq = bnxt_get_max_func_irqs(bp);
5929 	int total_req = bp->cp_nr_rings + num;
5930 	int max_idx, avail_msix;
5931 
5932 	max_idx = min_t(int, bp->total_irqs, max_cp);
5933 	avail_msix = max_idx - bp->cp_nr_rings;
5934 	if (!(bp->flags & BNXT_FLAG_NEW_RM) || avail_msix >= num)
5935 		return avail_msix;
5936 
5937 	if (max_irq < total_req) {
5938 		num = max_irq - bp->cp_nr_rings;
5939 		if (num <= 0)
5940 			return 0;
5941 	}
5942 	return num;
5943 }
5944 
5945 static int bnxt_get_num_msix(struct bnxt *bp)
5946 {
5947 	if (!(bp->flags & BNXT_FLAG_NEW_RM))
5948 		return bnxt_get_max_func_irqs(bp);
5949 
5950 	return bnxt_cp_rings_in_use(bp);
5951 }
5952 
5953 static int bnxt_init_msix(struct bnxt *bp)
5954 {
5955 	int i, total_vecs, max, rc = 0, min = 1, ulp_msix;
5956 	struct msix_entry *msix_ent;
5957 
5958 	total_vecs = bnxt_get_num_msix(bp);
5959 	max = bnxt_get_max_func_irqs(bp);
5960 	if (total_vecs > max)
5961 		total_vecs = max;
5962 
5963 	if (!total_vecs)
5964 		return 0;
5965 
5966 	msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
5967 	if (!msix_ent)
5968 		return -ENOMEM;
5969 
5970 	for (i = 0; i < total_vecs; i++) {
5971 		msix_ent[i].entry = i;
5972 		msix_ent[i].vector = 0;
5973 	}
5974 
5975 	if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
5976 		min = 2;
5977 
5978 	total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
5979 	ulp_msix = bnxt_get_ulp_msix_num(bp);
5980 	if (total_vecs < 0 || total_vecs < ulp_msix) {
5981 		rc = -ENODEV;
5982 		goto msix_setup_exit;
5983 	}
5984 
5985 	bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
5986 	if (bp->irq_tbl) {
5987 		for (i = 0; i < total_vecs; i++)
5988 			bp->irq_tbl[i].vector = msix_ent[i].vector;
5989 
5990 		bp->total_irqs = total_vecs;
5991 		/* Trim rings based upon num of vectors allocated */
5992 		rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
5993 				     total_vecs - ulp_msix, min == 1);
5994 		if (rc)
5995 			goto msix_setup_exit;
5996 
5997 		bp->cp_nr_rings = (min == 1) ?
5998 				  max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
5999 				  bp->tx_nr_rings + bp->rx_nr_rings;
6000 
6001 	} else {
6002 		rc = -ENOMEM;
6003 		goto msix_setup_exit;
6004 	}
6005 	bp->flags |= BNXT_FLAG_USING_MSIX;
6006 	kfree(msix_ent);
6007 	return 0;
6008 
6009 msix_setup_exit:
6010 	netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc);
6011 	kfree(bp->irq_tbl);
6012 	bp->irq_tbl = NULL;
6013 	pci_disable_msix(bp->pdev);
6014 	kfree(msix_ent);
6015 	return rc;
6016 }
6017 
6018 static int bnxt_init_inta(struct bnxt *bp)
6019 {
6020 	bp->irq_tbl = kcalloc(1, sizeof(struct bnxt_irq), GFP_KERNEL);
6021 	if (!bp->irq_tbl)
6022 		return -ENOMEM;
6023 
6024 	bp->total_irqs = 1;
6025 	bp->rx_nr_rings = 1;
6026 	bp->tx_nr_rings = 1;
6027 	bp->cp_nr_rings = 1;
6028 	bp->flags |= BNXT_FLAG_SHARED_RINGS;
6029 	bp->irq_tbl[0].vector = bp->pdev->irq;
6030 	return 0;
6031 }
6032 
6033 static int bnxt_init_int_mode(struct bnxt *bp)
6034 {
6035 	int rc = 0;
6036 
6037 	if (bp->flags & BNXT_FLAG_MSIX_CAP)
6038 		rc = bnxt_init_msix(bp);
6039 
6040 	if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) {
6041 		/* fallback to INTA */
6042 		rc = bnxt_init_inta(bp);
6043 	}
6044 	return rc;
6045 }
6046 
6047 static void bnxt_clear_int_mode(struct bnxt *bp)
6048 {
6049 	if (bp->flags & BNXT_FLAG_USING_MSIX)
6050 		pci_disable_msix(bp->pdev);
6051 
6052 	kfree(bp->irq_tbl);
6053 	bp->irq_tbl = NULL;
6054 	bp->flags &= ~BNXT_FLAG_USING_MSIX;
6055 }
6056 
6057 int bnxt_reserve_rings(struct bnxt *bp)
6058 {
6059 	int tcs = netdev_get_num_tc(bp->dev);
6060 	int rc;
6061 
6062 	if (!bnxt_need_reserve_rings(bp))
6063 		return 0;
6064 
6065 	rc = __bnxt_reserve_rings(bp);
6066 	if (rc) {
6067 		netdev_err(bp->dev, "ring reservation failure rc: %d\n", rc);
6068 		return rc;
6069 	}
6070 	if ((bp->flags & BNXT_FLAG_NEW_RM) &&
6071 	    (bnxt_get_num_msix(bp) != bp->total_irqs)) {
6072 		bnxt_ulp_irq_stop(bp);
6073 		bnxt_clear_int_mode(bp);
6074 		rc = bnxt_init_int_mode(bp);
6075 		bnxt_ulp_irq_restart(bp, rc);
6076 		if (rc)
6077 			return rc;
6078 	}
6079 	if (tcs && (bp->tx_nr_rings_per_tc * tcs != bp->tx_nr_rings)) {
6080 		netdev_err(bp->dev, "tx ring reservation failure\n");
6081 		netdev_reset_tc(bp->dev);
6082 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
6083 		return -ENOMEM;
6084 	}
6085 	bp->num_stat_ctxs = bp->cp_nr_rings;
6086 	return 0;
6087 }
6088 
6089 static void bnxt_free_irq(struct bnxt *bp)
6090 {
6091 	struct bnxt_irq *irq;
6092 	int i;
6093 
6094 #ifdef CONFIG_RFS_ACCEL
6095 	free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
6096 	bp->dev->rx_cpu_rmap = NULL;
6097 #endif
6098 	if (!bp->irq_tbl || !bp->bnapi)
6099 		return;
6100 
6101 	for (i = 0; i < bp->cp_nr_rings; i++) {
6102 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
6103 
6104 		irq = &bp->irq_tbl[map_idx];
6105 		if (irq->requested) {
6106 			if (irq->have_cpumask) {
6107 				irq_set_affinity_hint(irq->vector, NULL);
6108 				free_cpumask_var(irq->cpu_mask);
6109 				irq->have_cpumask = 0;
6110 			}
6111 			free_irq(irq->vector, bp->bnapi[i]);
6112 		}
6113 
6114 		irq->requested = 0;
6115 	}
6116 }
6117 
6118 static int bnxt_request_irq(struct bnxt *bp)
6119 {
6120 	int i, j, rc = 0;
6121 	unsigned long flags = 0;
6122 #ifdef CONFIG_RFS_ACCEL
6123 	struct cpu_rmap *rmap;
6124 #endif
6125 
6126 	rc = bnxt_setup_int_mode(bp);
6127 	if (rc) {
6128 		netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
6129 			   rc);
6130 		return rc;
6131 	}
6132 #ifdef CONFIG_RFS_ACCEL
6133 	rmap = bp->dev->rx_cpu_rmap;
6134 #endif
6135 	if (!(bp->flags & BNXT_FLAG_USING_MSIX))
6136 		flags = IRQF_SHARED;
6137 
6138 	for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
6139 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
6140 		struct bnxt_irq *irq = &bp->irq_tbl[map_idx];
6141 
6142 #ifdef CONFIG_RFS_ACCEL
6143 		if (rmap && bp->bnapi[i]->rx_ring) {
6144 			rc = irq_cpu_rmap_add(rmap, irq->vector);
6145 			if (rc)
6146 				netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
6147 					    j);
6148 			j++;
6149 		}
6150 #endif
6151 		rc = request_irq(irq->vector, irq->handler, flags, irq->name,
6152 				 bp->bnapi[i]);
6153 		if (rc)
6154 			break;
6155 
6156 		irq->requested = 1;
6157 
6158 		if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) {
6159 			int numa_node = dev_to_node(&bp->pdev->dev);
6160 
6161 			irq->have_cpumask = 1;
6162 			cpumask_set_cpu(cpumask_local_spread(i, numa_node),
6163 					irq->cpu_mask);
6164 			rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask);
6165 			if (rc) {
6166 				netdev_warn(bp->dev,
6167 					    "Set affinity failed, IRQ = %d\n",
6168 					    irq->vector);
6169 				break;
6170 			}
6171 		}
6172 	}
6173 	return rc;
6174 }
6175 
6176 static void bnxt_del_napi(struct bnxt *bp)
6177 {
6178 	int i;
6179 
6180 	if (!bp->bnapi)
6181 		return;
6182 
6183 	for (i = 0; i < bp->cp_nr_rings; i++) {
6184 		struct bnxt_napi *bnapi = bp->bnapi[i];
6185 
6186 		napi_hash_del(&bnapi->napi);
6187 		netif_napi_del(&bnapi->napi);
6188 	}
6189 	/* We called napi_hash_del() before netif_napi_del(), we need
6190 	 * to respect an RCU grace period before freeing napi structures.
6191 	 */
6192 	synchronize_net();
6193 }
6194 
6195 static void bnxt_init_napi(struct bnxt *bp)
6196 {
6197 	int i;
6198 	unsigned int cp_nr_rings = bp->cp_nr_rings;
6199 	struct bnxt_napi *bnapi;
6200 
6201 	if (bp->flags & BNXT_FLAG_USING_MSIX) {
6202 		if (BNXT_CHIP_TYPE_NITRO_A0(bp))
6203 			cp_nr_rings--;
6204 		for (i = 0; i < cp_nr_rings; i++) {
6205 			bnapi = bp->bnapi[i];
6206 			netif_napi_add(bp->dev, &bnapi->napi,
6207 				       bnxt_poll, 64);
6208 		}
6209 		if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
6210 			bnapi = bp->bnapi[cp_nr_rings];
6211 			netif_napi_add(bp->dev, &bnapi->napi,
6212 				       bnxt_poll_nitroa0, 64);
6213 		}
6214 	} else {
6215 		bnapi = bp->bnapi[0];
6216 		netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64);
6217 	}
6218 }
6219 
6220 static void bnxt_disable_napi(struct bnxt *bp)
6221 {
6222 	int i;
6223 
6224 	if (!bp->bnapi)
6225 		return;
6226 
6227 	for (i = 0; i < bp->cp_nr_rings; i++) {
6228 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
6229 
6230 		if (bp->bnapi[i]->rx_ring)
6231 			cancel_work_sync(&cpr->dim.work);
6232 
6233 		napi_disable(&bp->bnapi[i]->napi);
6234 	}
6235 }
6236 
6237 static void bnxt_enable_napi(struct bnxt *bp)
6238 {
6239 	int i;
6240 
6241 	for (i = 0; i < bp->cp_nr_rings; i++) {
6242 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
6243 		bp->bnapi[i]->in_reset = false;
6244 
6245 		if (bp->bnapi[i]->rx_ring) {
6246 			INIT_WORK(&cpr->dim.work, bnxt_dim_work);
6247 			cpr->dim.mode = NET_DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6248 		}
6249 		napi_enable(&bp->bnapi[i]->napi);
6250 	}
6251 }
6252 
6253 void bnxt_tx_disable(struct bnxt *bp)
6254 {
6255 	int i;
6256 	struct bnxt_tx_ring_info *txr;
6257 
6258 	if (bp->tx_ring) {
6259 		for (i = 0; i < bp->tx_nr_rings; i++) {
6260 			txr = &bp->tx_ring[i];
6261 			txr->dev_state = BNXT_DEV_STATE_CLOSING;
6262 		}
6263 	}
6264 	/* Stop all TX queues */
6265 	netif_tx_disable(bp->dev);
6266 	netif_carrier_off(bp->dev);
6267 }
6268 
6269 void bnxt_tx_enable(struct bnxt *bp)
6270 {
6271 	int i;
6272 	struct bnxt_tx_ring_info *txr;
6273 
6274 	for (i = 0; i < bp->tx_nr_rings; i++) {
6275 		txr = &bp->tx_ring[i];
6276 		txr->dev_state = 0;
6277 	}
6278 	netif_tx_wake_all_queues(bp->dev);
6279 	if (bp->link_info.link_up)
6280 		netif_carrier_on(bp->dev);
6281 }
6282 
6283 static void bnxt_report_link(struct bnxt *bp)
6284 {
6285 	if (bp->link_info.link_up) {
6286 		const char *duplex;
6287 		const char *flow_ctrl;
6288 		u32 speed;
6289 		u16 fec;
6290 
6291 		netif_carrier_on(bp->dev);
6292 		if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
6293 			duplex = "full";
6294 		else
6295 			duplex = "half";
6296 		if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
6297 			flow_ctrl = "ON - receive & transmit";
6298 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
6299 			flow_ctrl = "ON - transmit";
6300 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
6301 			flow_ctrl = "ON - receive";
6302 		else
6303 			flow_ctrl = "none";
6304 		speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
6305 		netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s duplex, Flow control: %s\n",
6306 			    speed, duplex, flow_ctrl);
6307 		if (bp->flags & BNXT_FLAG_EEE_CAP)
6308 			netdev_info(bp->dev, "EEE is %s\n",
6309 				    bp->eee.eee_active ? "active" :
6310 							 "not active");
6311 		fec = bp->link_info.fec_cfg;
6312 		if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED))
6313 			netdev_info(bp->dev, "FEC autoneg %s encodings: %s\n",
6314 				    (fec & BNXT_FEC_AUTONEG) ? "on" : "off",
6315 				    (fec & BNXT_FEC_ENC_BASE_R) ? "BaseR" :
6316 				     (fec & BNXT_FEC_ENC_RS) ? "RS" : "None");
6317 	} else {
6318 		netif_carrier_off(bp->dev);
6319 		netdev_err(bp->dev, "NIC Link is Down\n");
6320 	}
6321 }
6322 
6323 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp)
6324 {
6325 	int rc = 0;
6326 	struct hwrm_port_phy_qcaps_input req = {0};
6327 	struct hwrm_port_phy_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
6328 	struct bnxt_link_info *link_info = &bp->link_info;
6329 
6330 	if (bp->hwrm_spec_code < 0x10201)
6331 		return 0;
6332 
6333 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCAPS, -1, -1);
6334 
6335 	mutex_lock(&bp->hwrm_cmd_lock);
6336 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6337 	if (rc)
6338 		goto hwrm_phy_qcaps_exit;
6339 
6340 	if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) {
6341 		struct ethtool_eee *eee = &bp->eee;
6342 		u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode);
6343 
6344 		bp->flags |= BNXT_FLAG_EEE_CAP;
6345 		eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
6346 		bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) &
6347 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK;
6348 		bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) &
6349 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK;
6350 	}
6351 	if (resp->supported_speeds_auto_mode)
6352 		link_info->support_auto_speeds =
6353 			le16_to_cpu(resp->supported_speeds_auto_mode);
6354 
6355 	bp->port_count = resp->port_cnt;
6356 
6357 hwrm_phy_qcaps_exit:
6358 	mutex_unlock(&bp->hwrm_cmd_lock);
6359 	return rc;
6360 }
6361 
6362 static int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
6363 {
6364 	int rc = 0;
6365 	struct bnxt_link_info *link_info = &bp->link_info;
6366 	struct hwrm_port_phy_qcfg_input req = {0};
6367 	struct hwrm_port_phy_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
6368 	u8 link_up = link_info->link_up;
6369 	u16 diff;
6370 
6371 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCFG, -1, -1);
6372 
6373 	mutex_lock(&bp->hwrm_cmd_lock);
6374 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6375 	if (rc) {
6376 		mutex_unlock(&bp->hwrm_cmd_lock);
6377 		return rc;
6378 	}
6379 
6380 	memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
6381 	link_info->phy_link_status = resp->link;
6382 	link_info->duplex = resp->duplex_cfg;
6383 	if (bp->hwrm_spec_code >= 0x10800)
6384 		link_info->duplex = resp->duplex_state;
6385 	link_info->pause = resp->pause;
6386 	link_info->auto_mode = resp->auto_mode;
6387 	link_info->auto_pause_setting = resp->auto_pause;
6388 	link_info->lp_pause = resp->link_partner_adv_pause;
6389 	link_info->force_pause_setting = resp->force_pause;
6390 	link_info->duplex_setting = resp->duplex_cfg;
6391 	if (link_info->phy_link_status == BNXT_LINK_LINK)
6392 		link_info->link_speed = le16_to_cpu(resp->link_speed);
6393 	else
6394 		link_info->link_speed = 0;
6395 	link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
6396 	link_info->support_speeds = le16_to_cpu(resp->support_speeds);
6397 	link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
6398 	link_info->lp_auto_link_speeds =
6399 		le16_to_cpu(resp->link_partner_adv_speeds);
6400 	link_info->preemphasis = le32_to_cpu(resp->preemphasis);
6401 	link_info->phy_ver[0] = resp->phy_maj;
6402 	link_info->phy_ver[1] = resp->phy_min;
6403 	link_info->phy_ver[2] = resp->phy_bld;
6404 	link_info->media_type = resp->media_type;
6405 	link_info->phy_type = resp->phy_type;
6406 	link_info->transceiver = resp->xcvr_pkg_type;
6407 	link_info->phy_addr = resp->eee_config_phy_addr &
6408 			      PORT_PHY_QCFG_RESP_PHY_ADDR_MASK;
6409 	link_info->module_status = resp->module_status;
6410 
6411 	if (bp->flags & BNXT_FLAG_EEE_CAP) {
6412 		struct ethtool_eee *eee = &bp->eee;
6413 		u16 fw_speeds;
6414 
6415 		eee->eee_active = 0;
6416 		if (resp->eee_config_phy_addr &
6417 		    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) {
6418 			eee->eee_active = 1;
6419 			fw_speeds = le16_to_cpu(
6420 				resp->link_partner_adv_eee_link_speed_mask);
6421 			eee->lp_advertised =
6422 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
6423 		}
6424 
6425 		/* Pull initial EEE config */
6426 		if (!chng_link_state) {
6427 			if (resp->eee_config_phy_addr &
6428 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED)
6429 				eee->eee_enabled = 1;
6430 
6431 			fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask);
6432 			eee->advertised =
6433 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
6434 
6435 			if (resp->eee_config_phy_addr &
6436 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) {
6437 				__le32 tmr;
6438 
6439 				eee->tx_lpi_enabled = 1;
6440 				tmr = resp->xcvr_identifier_type_tx_lpi_timer;
6441 				eee->tx_lpi_timer = le32_to_cpu(tmr) &
6442 					PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK;
6443 			}
6444 		}
6445 	}
6446 
6447 	link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED;
6448 	if (bp->hwrm_spec_code >= 0x10504)
6449 		link_info->fec_cfg = le16_to_cpu(resp->fec_cfg);
6450 
6451 	/* TODO: need to add more logic to report VF link */
6452 	if (chng_link_state) {
6453 		if (link_info->phy_link_status == BNXT_LINK_LINK)
6454 			link_info->link_up = 1;
6455 		else
6456 			link_info->link_up = 0;
6457 		if (link_up != link_info->link_up)
6458 			bnxt_report_link(bp);
6459 	} else {
6460 		/* alwasy link down if not require to update link state */
6461 		link_info->link_up = 0;
6462 	}
6463 	mutex_unlock(&bp->hwrm_cmd_lock);
6464 
6465 	if (!BNXT_SINGLE_PF(bp))
6466 		return 0;
6467 
6468 	diff = link_info->support_auto_speeds ^ link_info->advertising;
6469 	if ((link_info->support_auto_speeds | diff) !=
6470 	    link_info->support_auto_speeds) {
6471 		/* An advertised speed is no longer supported, so we need to
6472 		 * update the advertisement settings.  Caller holds RTNL
6473 		 * so we can modify link settings.
6474 		 */
6475 		link_info->advertising = link_info->support_auto_speeds;
6476 		if (link_info->autoneg & BNXT_AUTONEG_SPEED)
6477 			bnxt_hwrm_set_link_setting(bp, true, false);
6478 	}
6479 	return 0;
6480 }
6481 
6482 static void bnxt_get_port_module_status(struct bnxt *bp)
6483 {
6484 	struct bnxt_link_info *link_info = &bp->link_info;
6485 	struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp;
6486 	u8 module_status;
6487 
6488 	if (bnxt_update_link(bp, true))
6489 		return;
6490 
6491 	module_status = link_info->module_status;
6492 	switch (module_status) {
6493 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX:
6494 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN:
6495 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG:
6496 		netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n",
6497 			    bp->pf.port_id);
6498 		if (bp->hwrm_spec_code >= 0x10201) {
6499 			netdev_warn(bp->dev, "Module part number %s\n",
6500 				    resp->phy_vendor_partnumber);
6501 		}
6502 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX)
6503 			netdev_warn(bp->dev, "TX is disabled\n");
6504 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN)
6505 			netdev_warn(bp->dev, "SFP+ module is shutdown\n");
6506 	}
6507 }
6508 
6509 static void
6510 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
6511 {
6512 	if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
6513 		if (bp->hwrm_spec_code >= 0x10201)
6514 			req->auto_pause =
6515 				PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE;
6516 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
6517 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
6518 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
6519 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX;
6520 		req->enables |=
6521 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
6522 	} else {
6523 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
6524 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
6525 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
6526 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
6527 		req->enables |=
6528 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
6529 		if (bp->hwrm_spec_code >= 0x10201) {
6530 			req->auto_pause = req->force_pause;
6531 			req->enables |= cpu_to_le32(
6532 				PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
6533 		}
6534 	}
6535 }
6536 
6537 static void bnxt_hwrm_set_link_common(struct bnxt *bp,
6538 				      struct hwrm_port_phy_cfg_input *req)
6539 {
6540 	u8 autoneg = bp->link_info.autoneg;
6541 	u16 fw_link_speed = bp->link_info.req_link_speed;
6542 	u16 advertising = bp->link_info.advertising;
6543 
6544 	if (autoneg & BNXT_AUTONEG_SPEED) {
6545 		req->auto_mode |=
6546 			PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK;
6547 
6548 		req->enables |= cpu_to_le32(
6549 			PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
6550 		req->auto_link_speed_mask = cpu_to_le16(advertising);
6551 
6552 		req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
6553 		req->flags |=
6554 			cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
6555 	} else {
6556 		req->force_link_speed = cpu_to_le16(fw_link_speed);
6557 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
6558 	}
6559 
6560 	/* tell chimp that the setting takes effect immediately */
6561 	req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
6562 }
6563 
6564 int bnxt_hwrm_set_pause(struct bnxt *bp)
6565 {
6566 	struct hwrm_port_phy_cfg_input req = {0};
6567 	int rc;
6568 
6569 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
6570 	bnxt_hwrm_set_pause_common(bp, &req);
6571 
6572 	if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
6573 	    bp->link_info.force_link_chng)
6574 		bnxt_hwrm_set_link_common(bp, &req);
6575 
6576 	mutex_lock(&bp->hwrm_cmd_lock);
6577 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6578 	if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
6579 		/* since changing of pause setting doesn't trigger any link
6580 		 * change event, the driver needs to update the current pause
6581 		 * result upon successfully return of the phy_cfg command
6582 		 */
6583 		bp->link_info.pause =
6584 		bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
6585 		bp->link_info.auto_pause_setting = 0;
6586 		if (!bp->link_info.force_link_chng)
6587 			bnxt_report_link(bp);
6588 	}
6589 	bp->link_info.force_link_chng = false;
6590 	mutex_unlock(&bp->hwrm_cmd_lock);
6591 	return rc;
6592 }
6593 
6594 static void bnxt_hwrm_set_eee(struct bnxt *bp,
6595 			      struct hwrm_port_phy_cfg_input *req)
6596 {
6597 	struct ethtool_eee *eee = &bp->eee;
6598 
6599 	if (eee->eee_enabled) {
6600 		u16 eee_speeds;
6601 		u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE;
6602 
6603 		if (eee->tx_lpi_enabled)
6604 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE;
6605 		else
6606 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE;
6607 
6608 		req->flags |= cpu_to_le32(flags);
6609 		eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised);
6610 		req->eee_link_speed_mask = cpu_to_le16(eee_speeds);
6611 		req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer);
6612 	} else {
6613 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE);
6614 	}
6615 }
6616 
6617 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee)
6618 {
6619 	struct hwrm_port_phy_cfg_input req = {0};
6620 
6621 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
6622 	if (set_pause)
6623 		bnxt_hwrm_set_pause_common(bp, &req);
6624 
6625 	bnxt_hwrm_set_link_common(bp, &req);
6626 
6627 	if (set_eee)
6628 		bnxt_hwrm_set_eee(bp, &req);
6629 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6630 }
6631 
6632 static int bnxt_hwrm_shutdown_link(struct bnxt *bp)
6633 {
6634 	struct hwrm_port_phy_cfg_input req = {0};
6635 
6636 	if (!BNXT_SINGLE_PF(bp))
6637 		return 0;
6638 
6639 	if (pci_num_vf(bp->pdev))
6640 		return 0;
6641 
6642 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
6643 	req.flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN);
6644 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6645 }
6646 
6647 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp)
6648 {
6649 	struct hwrm_port_led_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
6650 	struct hwrm_port_led_qcaps_input req = {0};
6651 	struct bnxt_pf_info *pf = &bp->pf;
6652 	int rc;
6653 
6654 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601)
6655 		return 0;
6656 
6657 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_LED_QCAPS, -1, -1);
6658 	req.port_id = cpu_to_le16(pf->port_id);
6659 	mutex_lock(&bp->hwrm_cmd_lock);
6660 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6661 	if (rc) {
6662 		mutex_unlock(&bp->hwrm_cmd_lock);
6663 		return rc;
6664 	}
6665 	if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) {
6666 		int i;
6667 
6668 		bp->num_leds = resp->num_leds;
6669 		memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) *
6670 						 bp->num_leds);
6671 		for (i = 0; i < bp->num_leds; i++) {
6672 			struct bnxt_led_info *led = &bp->leds[i];
6673 			__le16 caps = led->led_state_caps;
6674 
6675 			if (!led->led_group_id ||
6676 			    !BNXT_LED_ALT_BLINK_CAP(caps)) {
6677 				bp->num_leds = 0;
6678 				break;
6679 			}
6680 		}
6681 	}
6682 	mutex_unlock(&bp->hwrm_cmd_lock);
6683 	return 0;
6684 }
6685 
6686 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp)
6687 {
6688 	struct hwrm_wol_filter_alloc_input req = {0};
6689 	struct hwrm_wol_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
6690 	int rc;
6691 
6692 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_ALLOC, -1, -1);
6693 	req.port_id = cpu_to_le16(bp->pf.port_id);
6694 	req.wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT;
6695 	req.enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS);
6696 	memcpy(req.mac_address, bp->dev->dev_addr, ETH_ALEN);
6697 	mutex_lock(&bp->hwrm_cmd_lock);
6698 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6699 	if (!rc)
6700 		bp->wol_filter_id = resp->wol_filter_id;
6701 	mutex_unlock(&bp->hwrm_cmd_lock);
6702 	return rc;
6703 }
6704 
6705 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp)
6706 {
6707 	struct hwrm_wol_filter_free_input req = {0};
6708 	int rc;
6709 
6710 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_FREE, -1, -1);
6711 	req.port_id = cpu_to_le16(bp->pf.port_id);
6712 	req.enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID);
6713 	req.wol_filter_id = bp->wol_filter_id;
6714 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6715 	return rc;
6716 }
6717 
6718 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle)
6719 {
6720 	struct hwrm_wol_filter_qcfg_input req = {0};
6721 	struct hwrm_wol_filter_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
6722 	u16 next_handle = 0;
6723 	int rc;
6724 
6725 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_QCFG, -1, -1);
6726 	req.port_id = cpu_to_le16(bp->pf.port_id);
6727 	req.handle = cpu_to_le16(handle);
6728 	mutex_lock(&bp->hwrm_cmd_lock);
6729 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6730 	if (!rc) {
6731 		next_handle = le16_to_cpu(resp->next_handle);
6732 		if (next_handle != 0) {
6733 			if (resp->wol_type ==
6734 			    WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) {
6735 				bp->wol = 1;
6736 				bp->wol_filter_id = resp->wol_filter_id;
6737 			}
6738 		}
6739 	}
6740 	mutex_unlock(&bp->hwrm_cmd_lock);
6741 	return next_handle;
6742 }
6743 
6744 static void bnxt_get_wol_settings(struct bnxt *bp)
6745 {
6746 	u16 handle = 0;
6747 
6748 	if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP))
6749 		return;
6750 
6751 	do {
6752 		handle = bnxt_hwrm_get_wol_fltrs(bp, handle);
6753 	} while (handle && handle != 0xffff);
6754 }
6755 
6756 static bool bnxt_eee_config_ok(struct bnxt *bp)
6757 {
6758 	struct ethtool_eee *eee = &bp->eee;
6759 	struct bnxt_link_info *link_info = &bp->link_info;
6760 
6761 	if (!(bp->flags & BNXT_FLAG_EEE_CAP))
6762 		return true;
6763 
6764 	if (eee->eee_enabled) {
6765 		u32 advertising =
6766 			_bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0);
6767 
6768 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
6769 			eee->eee_enabled = 0;
6770 			return false;
6771 		}
6772 		if (eee->advertised & ~advertising) {
6773 			eee->advertised = advertising & eee->supported;
6774 			return false;
6775 		}
6776 	}
6777 	return true;
6778 }
6779 
6780 static int bnxt_update_phy_setting(struct bnxt *bp)
6781 {
6782 	int rc;
6783 	bool update_link = false;
6784 	bool update_pause = false;
6785 	bool update_eee = false;
6786 	struct bnxt_link_info *link_info = &bp->link_info;
6787 
6788 	rc = bnxt_update_link(bp, true);
6789 	if (rc) {
6790 		netdev_err(bp->dev, "failed to update link (rc: %x)\n",
6791 			   rc);
6792 		return rc;
6793 	}
6794 	if (!BNXT_SINGLE_PF(bp))
6795 		return 0;
6796 
6797 	if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
6798 	    (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) !=
6799 	    link_info->req_flow_ctrl)
6800 		update_pause = true;
6801 	if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
6802 	    link_info->force_pause_setting != link_info->req_flow_ctrl)
6803 		update_pause = true;
6804 	if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
6805 		if (BNXT_AUTO_MODE(link_info->auto_mode))
6806 			update_link = true;
6807 		if (link_info->req_link_speed != link_info->force_link_speed)
6808 			update_link = true;
6809 		if (link_info->req_duplex != link_info->duplex_setting)
6810 			update_link = true;
6811 	} else {
6812 		if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
6813 			update_link = true;
6814 		if (link_info->advertising != link_info->auto_link_speeds)
6815 			update_link = true;
6816 	}
6817 
6818 	/* The last close may have shutdown the link, so need to call
6819 	 * PHY_CFG to bring it back up.
6820 	 */
6821 	if (!netif_carrier_ok(bp->dev))
6822 		update_link = true;
6823 
6824 	if (!bnxt_eee_config_ok(bp))
6825 		update_eee = true;
6826 
6827 	if (update_link)
6828 		rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee);
6829 	else if (update_pause)
6830 		rc = bnxt_hwrm_set_pause(bp);
6831 	if (rc) {
6832 		netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
6833 			   rc);
6834 		return rc;
6835 	}
6836 
6837 	return rc;
6838 }
6839 
6840 /* Common routine to pre-map certain register block to different GRC window.
6841  * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
6842  * in PF and 3 windows in VF that can be customized to map in different
6843  * register blocks.
6844  */
6845 static void bnxt_preset_reg_win(struct bnxt *bp)
6846 {
6847 	if (BNXT_PF(bp)) {
6848 		/* CAG registers map to GRC window #4 */
6849 		writel(BNXT_CAG_REG_BASE,
6850 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
6851 	}
6852 }
6853 
6854 static int bnxt_init_dflt_ring_mode(struct bnxt *bp);
6855 
6856 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
6857 {
6858 	int rc = 0;
6859 
6860 	bnxt_preset_reg_win(bp);
6861 	netif_carrier_off(bp->dev);
6862 	if (irq_re_init) {
6863 		/* Reserve rings now if none were reserved at driver probe. */
6864 		rc = bnxt_init_dflt_ring_mode(bp);
6865 		if (rc) {
6866 			netdev_err(bp->dev, "Failed to reserve default rings at open\n");
6867 			return rc;
6868 		}
6869 		rc = bnxt_reserve_rings(bp);
6870 		if (rc)
6871 			return rc;
6872 	}
6873 	if ((bp->flags & BNXT_FLAG_RFS) &&
6874 	    !(bp->flags & BNXT_FLAG_USING_MSIX)) {
6875 		/* disable RFS if falling back to INTA */
6876 		bp->dev->hw_features &= ~NETIF_F_NTUPLE;
6877 		bp->flags &= ~BNXT_FLAG_RFS;
6878 	}
6879 
6880 	rc = bnxt_alloc_mem(bp, irq_re_init);
6881 	if (rc) {
6882 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
6883 		goto open_err_free_mem;
6884 	}
6885 
6886 	if (irq_re_init) {
6887 		bnxt_init_napi(bp);
6888 		rc = bnxt_request_irq(bp);
6889 		if (rc) {
6890 			netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
6891 			goto open_err;
6892 		}
6893 	}
6894 
6895 	bnxt_enable_napi(bp);
6896 	bnxt_debug_dev_init(bp);
6897 
6898 	rc = bnxt_init_nic(bp, irq_re_init);
6899 	if (rc) {
6900 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
6901 		goto open_err;
6902 	}
6903 
6904 	if (link_re_init) {
6905 		mutex_lock(&bp->link_lock);
6906 		rc = bnxt_update_phy_setting(bp);
6907 		mutex_unlock(&bp->link_lock);
6908 		if (rc)
6909 			netdev_warn(bp->dev, "failed to update phy settings\n");
6910 	}
6911 
6912 	if (irq_re_init)
6913 		udp_tunnel_get_rx_info(bp->dev);
6914 
6915 	set_bit(BNXT_STATE_OPEN, &bp->state);
6916 	bnxt_enable_int(bp);
6917 	/* Enable TX queues */
6918 	bnxt_tx_enable(bp);
6919 	mod_timer(&bp->timer, jiffies + bp->current_interval);
6920 	/* Poll link status and check for SFP+ module status */
6921 	bnxt_get_port_module_status(bp);
6922 
6923 	/* VF-reps may need to be re-opened after the PF is re-opened */
6924 	if (BNXT_PF(bp))
6925 		bnxt_vf_reps_open(bp);
6926 	return 0;
6927 
6928 open_err:
6929 	bnxt_debug_dev_exit(bp);
6930 	bnxt_disable_napi(bp);
6931 	bnxt_del_napi(bp);
6932 
6933 open_err_free_mem:
6934 	bnxt_free_skbs(bp);
6935 	bnxt_free_irq(bp);
6936 	bnxt_free_mem(bp, true);
6937 	return rc;
6938 }
6939 
6940 /* rtnl_lock held */
6941 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
6942 {
6943 	int rc = 0;
6944 
6945 	rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
6946 	if (rc) {
6947 		netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
6948 		dev_close(bp->dev);
6949 	}
6950 	return rc;
6951 }
6952 
6953 /* rtnl_lock held, open the NIC half way by allocating all resources, but
6954  * NAPI, IRQ, and TX are not enabled.  This is mainly used for offline
6955  * self tests.
6956  */
6957 int bnxt_half_open_nic(struct bnxt *bp)
6958 {
6959 	int rc = 0;
6960 
6961 	rc = bnxt_alloc_mem(bp, false);
6962 	if (rc) {
6963 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
6964 		goto half_open_err;
6965 	}
6966 	rc = bnxt_init_nic(bp, false);
6967 	if (rc) {
6968 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
6969 		goto half_open_err;
6970 	}
6971 	return 0;
6972 
6973 half_open_err:
6974 	bnxt_free_skbs(bp);
6975 	bnxt_free_mem(bp, false);
6976 	dev_close(bp->dev);
6977 	return rc;
6978 }
6979 
6980 /* rtnl_lock held, this call can only be made after a previous successful
6981  * call to bnxt_half_open_nic().
6982  */
6983 void bnxt_half_close_nic(struct bnxt *bp)
6984 {
6985 	bnxt_hwrm_resource_free(bp, false, false);
6986 	bnxt_free_skbs(bp);
6987 	bnxt_free_mem(bp, false);
6988 }
6989 
6990 static int bnxt_open(struct net_device *dev)
6991 {
6992 	struct bnxt *bp = netdev_priv(dev);
6993 
6994 	return __bnxt_open_nic(bp, true, true);
6995 }
6996 
6997 static bool bnxt_drv_busy(struct bnxt *bp)
6998 {
6999 	return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) ||
7000 		test_bit(BNXT_STATE_READ_STATS, &bp->state));
7001 }
7002 
7003 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init,
7004 			     bool link_re_init)
7005 {
7006 	/* Close the VF-reps before closing PF */
7007 	if (BNXT_PF(bp))
7008 		bnxt_vf_reps_close(bp);
7009 
7010 	/* Change device state to avoid TX queue wake up's */
7011 	bnxt_tx_disable(bp);
7012 
7013 	clear_bit(BNXT_STATE_OPEN, &bp->state);
7014 	smp_mb__after_atomic();
7015 	while (bnxt_drv_busy(bp))
7016 		msleep(20);
7017 
7018 	/* Flush rings and and disable interrupts */
7019 	bnxt_shutdown_nic(bp, irq_re_init);
7020 
7021 	/* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
7022 
7023 	bnxt_debug_dev_exit(bp);
7024 	bnxt_disable_napi(bp);
7025 	del_timer_sync(&bp->timer);
7026 	bnxt_free_skbs(bp);
7027 
7028 	if (irq_re_init) {
7029 		bnxt_free_irq(bp);
7030 		bnxt_del_napi(bp);
7031 	}
7032 	bnxt_free_mem(bp, irq_re_init);
7033 }
7034 
7035 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
7036 {
7037 	int rc = 0;
7038 
7039 #ifdef CONFIG_BNXT_SRIOV
7040 	if (bp->sriov_cfg) {
7041 		rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
7042 						      !bp->sriov_cfg,
7043 						      BNXT_SRIOV_CFG_WAIT_TMO);
7044 		if (rc)
7045 			netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
7046 	}
7047 #endif
7048 	__bnxt_close_nic(bp, irq_re_init, link_re_init);
7049 	return rc;
7050 }
7051 
7052 static int bnxt_close(struct net_device *dev)
7053 {
7054 	struct bnxt *bp = netdev_priv(dev);
7055 
7056 	bnxt_close_nic(bp, true, true);
7057 	bnxt_hwrm_shutdown_link(bp);
7058 	return 0;
7059 }
7060 
7061 /* rtnl_lock held */
7062 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
7063 {
7064 	switch (cmd) {
7065 	case SIOCGMIIPHY:
7066 		/* fallthru */
7067 	case SIOCGMIIREG: {
7068 		if (!netif_running(dev))
7069 			return -EAGAIN;
7070 
7071 		return 0;
7072 	}
7073 
7074 	case SIOCSMIIREG:
7075 		if (!netif_running(dev))
7076 			return -EAGAIN;
7077 
7078 		return 0;
7079 
7080 	default:
7081 		/* do nothing */
7082 		break;
7083 	}
7084 	return -EOPNOTSUPP;
7085 }
7086 
7087 static void
7088 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
7089 {
7090 	u32 i;
7091 	struct bnxt *bp = netdev_priv(dev);
7092 
7093 	set_bit(BNXT_STATE_READ_STATS, &bp->state);
7094 	/* Make sure bnxt_close_nic() sees that we are reading stats before
7095 	 * we check the BNXT_STATE_OPEN flag.
7096 	 */
7097 	smp_mb__after_atomic();
7098 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
7099 		clear_bit(BNXT_STATE_READ_STATS, &bp->state);
7100 		return;
7101 	}
7102 
7103 	/* TODO check if we need to synchronize with bnxt_close path */
7104 	for (i = 0; i < bp->cp_nr_rings; i++) {
7105 		struct bnxt_napi *bnapi = bp->bnapi[i];
7106 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
7107 		struct ctx_hw_stats *hw_stats = cpr->hw_stats;
7108 
7109 		stats->rx_packets += le64_to_cpu(hw_stats->rx_ucast_pkts);
7110 		stats->rx_packets += le64_to_cpu(hw_stats->rx_mcast_pkts);
7111 		stats->rx_packets += le64_to_cpu(hw_stats->rx_bcast_pkts);
7112 
7113 		stats->tx_packets += le64_to_cpu(hw_stats->tx_ucast_pkts);
7114 		stats->tx_packets += le64_to_cpu(hw_stats->tx_mcast_pkts);
7115 		stats->tx_packets += le64_to_cpu(hw_stats->tx_bcast_pkts);
7116 
7117 		stats->rx_bytes += le64_to_cpu(hw_stats->rx_ucast_bytes);
7118 		stats->rx_bytes += le64_to_cpu(hw_stats->rx_mcast_bytes);
7119 		stats->rx_bytes += le64_to_cpu(hw_stats->rx_bcast_bytes);
7120 
7121 		stats->tx_bytes += le64_to_cpu(hw_stats->tx_ucast_bytes);
7122 		stats->tx_bytes += le64_to_cpu(hw_stats->tx_mcast_bytes);
7123 		stats->tx_bytes += le64_to_cpu(hw_stats->tx_bcast_bytes);
7124 
7125 		stats->rx_missed_errors +=
7126 			le64_to_cpu(hw_stats->rx_discard_pkts);
7127 
7128 		stats->multicast += le64_to_cpu(hw_stats->rx_mcast_pkts);
7129 
7130 		stats->tx_dropped += le64_to_cpu(hw_stats->tx_drop_pkts);
7131 	}
7132 
7133 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
7134 		struct rx_port_stats *rx = bp->hw_rx_port_stats;
7135 		struct tx_port_stats *tx = bp->hw_tx_port_stats;
7136 
7137 		stats->rx_crc_errors = le64_to_cpu(rx->rx_fcs_err_frames);
7138 		stats->rx_frame_errors = le64_to_cpu(rx->rx_align_err_frames);
7139 		stats->rx_length_errors = le64_to_cpu(rx->rx_undrsz_frames) +
7140 					  le64_to_cpu(rx->rx_ovrsz_frames) +
7141 					  le64_to_cpu(rx->rx_runt_frames);
7142 		stats->rx_errors = le64_to_cpu(rx->rx_false_carrier_frames) +
7143 				   le64_to_cpu(rx->rx_jbr_frames);
7144 		stats->collisions = le64_to_cpu(tx->tx_total_collisions);
7145 		stats->tx_fifo_errors = le64_to_cpu(tx->tx_fifo_underruns);
7146 		stats->tx_errors = le64_to_cpu(tx->tx_err);
7147 	}
7148 	clear_bit(BNXT_STATE_READ_STATS, &bp->state);
7149 }
7150 
7151 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
7152 {
7153 	struct net_device *dev = bp->dev;
7154 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
7155 	struct netdev_hw_addr *ha;
7156 	u8 *haddr;
7157 	int mc_count = 0;
7158 	bool update = false;
7159 	int off = 0;
7160 
7161 	netdev_for_each_mc_addr(ha, dev) {
7162 		if (mc_count >= BNXT_MAX_MC_ADDRS) {
7163 			*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
7164 			vnic->mc_list_count = 0;
7165 			return false;
7166 		}
7167 		haddr = ha->addr;
7168 		if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
7169 			memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
7170 			update = true;
7171 		}
7172 		off += ETH_ALEN;
7173 		mc_count++;
7174 	}
7175 	if (mc_count)
7176 		*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
7177 
7178 	if (mc_count != vnic->mc_list_count) {
7179 		vnic->mc_list_count = mc_count;
7180 		update = true;
7181 	}
7182 	return update;
7183 }
7184 
7185 static bool bnxt_uc_list_updated(struct bnxt *bp)
7186 {
7187 	struct net_device *dev = bp->dev;
7188 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
7189 	struct netdev_hw_addr *ha;
7190 	int off = 0;
7191 
7192 	if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
7193 		return true;
7194 
7195 	netdev_for_each_uc_addr(ha, dev) {
7196 		if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
7197 			return true;
7198 
7199 		off += ETH_ALEN;
7200 	}
7201 	return false;
7202 }
7203 
7204 static void bnxt_set_rx_mode(struct net_device *dev)
7205 {
7206 	struct bnxt *bp = netdev_priv(dev);
7207 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
7208 	u32 mask = vnic->rx_mask;
7209 	bool mc_update = false;
7210 	bool uc_update;
7211 
7212 	if (!netif_running(dev))
7213 		return;
7214 
7215 	mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
7216 		  CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
7217 		  CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST);
7218 
7219 	if ((dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
7220 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
7221 
7222 	uc_update = bnxt_uc_list_updated(bp);
7223 
7224 	if (dev->flags & IFF_ALLMULTI) {
7225 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
7226 		vnic->mc_list_count = 0;
7227 	} else {
7228 		mc_update = bnxt_mc_list_updated(bp, &mask);
7229 	}
7230 
7231 	if (mask != vnic->rx_mask || uc_update || mc_update) {
7232 		vnic->rx_mask = mask;
7233 
7234 		set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
7235 		bnxt_queue_sp_work(bp);
7236 	}
7237 }
7238 
7239 static int bnxt_cfg_rx_mode(struct bnxt *bp)
7240 {
7241 	struct net_device *dev = bp->dev;
7242 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
7243 	struct netdev_hw_addr *ha;
7244 	int i, off = 0, rc;
7245 	bool uc_update;
7246 
7247 	netif_addr_lock_bh(dev);
7248 	uc_update = bnxt_uc_list_updated(bp);
7249 	netif_addr_unlock_bh(dev);
7250 
7251 	if (!uc_update)
7252 		goto skip_uc;
7253 
7254 	mutex_lock(&bp->hwrm_cmd_lock);
7255 	for (i = 1; i < vnic->uc_filter_count; i++) {
7256 		struct hwrm_cfa_l2_filter_free_input req = {0};
7257 
7258 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_FREE, -1,
7259 				       -1);
7260 
7261 		req.l2_filter_id = vnic->fw_l2_filter_id[i];
7262 
7263 		rc = _hwrm_send_message(bp, &req, sizeof(req),
7264 					HWRM_CMD_TIMEOUT);
7265 	}
7266 	mutex_unlock(&bp->hwrm_cmd_lock);
7267 
7268 	vnic->uc_filter_count = 1;
7269 
7270 	netif_addr_lock_bh(dev);
7271 	if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
7272 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
7273 	} else {
7274 		netdev_for_each_uc_addr(ha, dev) {
7275 			memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
7276 			off += ETH_ALEN;
7277 			vnic->uc_filter_count++;
7278 		}
7279 	}
7280 	netif_addr_unlock_bh(dev);
7281 
7282 	for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
7283 		rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
7284 		if (rc) {
7285 			netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n",
7286 				   rc);
7287 			vnic->uc_filter_count = i;
7288 			return rc;
7289 		}
7290 	}
7291 
7292 skip_uc:
7293 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
7294 	if (rc)
7295 		netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %x\n",
7296 			   rc);
7297 
7298 	return rc;
7299 }
7300 
7301 static bool bnxt_can_reserve_rings(struct bnxt *bp)
7302 {
7303 #ifdef CONFIG_BNXT_SRIOV
7304 	if ((bp->flags & BNXT_FLAG_NEW_RM) && BNXT_VF(bp)) {
7305 		struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7306 
7307 		/* No minimum rings were provisioned by the PF.  Don't
7308 		 * reserve rings by default when device is down.
7309 		 */
7310 		if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings)
7311 			return true;
7312 
7313 		if (!netif_running(bp->dev))
7314 			return false;
7315 	}
7316 #endif
7317 	return true;
7318 }
7319 
7320 /* If the chip and firmware supports RFS */
7321 static bool bnxt_rfs_supported(struct bnxt *bp)
7322 {
7323 	if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
7324 		return true;
7325 	if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
7326 		return true;
7327 	return false;
7328 }
7329 
7330 /* If runtime conditions support RFS */
7331 static bool bnxt_rfs_capable(struct bnxt *bp)
7332 {
7333 #ifdef CONFIG_RFS_ACCEL
7334 	int vnics, max_vnics, max_rss_ctxs;
7335 
7336 	if (!(bp->flags & BNXT_FLAG_MSIX_CAP) || !bnxt_can_reserve_rings(bp))
7337 		return false;
7338 
7339 	vnics = 1 + bp->rx_nr_rings;
7340 	max_vnics = bnxt_get_max_func_vnics(bp);
7341 	max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp);
7342 
7343 	/* RSS contexts not a limiting factor */
7344 	if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
7345 		max_rss_ctxs = max_vnics;
7346 	if (vnics > max_vnics || vnics > max_rss_ctxs) {
7347 		if (bp->rx_nr_rings > 1)
7348 			netdev_warn(bp->dev,
7349 				    "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n",
7350 				    min(max_rss_ctxs - 1, max_vnics - 1));
7351 		return false;
7352 	}
7353 
7354 	if (!(bp->flags & BNXT_FLAG_NEW_RM))
7355 		return true;
7356 
7357 	if (vnics == bp->hw_resc.resv_vnics)
7358 		return true;
7359 
7360 	bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, vnics);
7361 	if (vnics <= bp->hw_resc.resv_vnics)
7362 		return true;
7363 
7364 	netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n");
7365 	bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 1);
7366 	return false;
7367 #else
7368 	return false;
7369 #endif
7370 }
7371 
7372 static netdev_features_t bnxt_fix_features(struct net_device *dev,
7373 					   netdev_features_t features)
7374 {
7375 	struct bnxt *bp = netdev_priv(dev);
7376 
7377 	if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp))
7378 		features &= ~NETIF_F_NTUPLE;
7379 
7380 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
7381 		features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
7382 
7383 	if (!(features & NETIF_F_GRO))
7384 		features &= ~NETIF_F_GRO_HW;
7385 
7386 	if (features & NETIF_F_GRO_HW)
7387 		features &= ~NETIF_F_LRO;
7388 
7389 	/* Both CTAG and STAG VLAN accelaration on the RX side have to be
7390 	 * turned on or off together.
7391 	 */
7392 	if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) !=
7393 	    (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) {
7394 		if (dev->features & NETIF_F_HW_VLAN_CTAG_RX)
7395 			features &= ~(NETIF_F_HW_VLAN_CTAG_RX |
7396 				      NETIF_F_HW_VLAN_STAG_RX);
7397 		else
7398 			features |= NETIF_F_HW_VLAN_CTAG_RX |
7399 				    NETIF_F_HW_VLAN_STAG_RX;
7400 	}
7401 #ifdef CONFIG_BNXT_SRIOV
7402 	if (BNXT_VF(bp)) {
7403 		if (bp->vf.vlan) {
7404 			features &= ~(NETIF_F_HW_VLAN_CTAG_RX |
7405 				      NETIF_F_HW_VLAN_STAG_RX);
7406 		}
7407 	}
7408 #endif
7409 	return features;
7410 }
7411 
7412 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
7413 {
7414 	struct bnxt *bp = netdev_priv(dev);
7415 	u32 flags = bp->flags;
7416 	u32 changes;
7417 	int rc = 0;
7418 	bool re_init = false;
7419 	bool update_tpa = false;
7420 
7421 	flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
7422 	if (features & NETIF_F_GRO_HW)
7423 		flags |= BNXT_FLAG_GRO;
7424 	else if (features & NETIF_F_LRO)
7425 		flags |= BNXT_FLAG_LRO;
7426 
7427 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
7428 		flags &= ~BNXT_FLAG_TPA;
7429 
7430 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
7431 		flags |= BNXT_FLAG_STRIP_VLAN;
7432 
7433 	if (features & NETIF_F_NTUPLE)
7434 		flags |= BNXT_FLAG_RFS;
7435 
7436 	changes = flags ^ bp->flags;
7437 	if (changes & BNXT_FLAG_TPA) {
7438 		update_tpa = true;
7439 		if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
7440 		    (flags & BNXT_FLAG_TPA) == 0)
7441 			re_init = true;
7442 	}
7443 
7444 	if (changes & ~BNXT_FLAG_TPA)
7445 		re_init = true;
7446 
7447 	if (flags != bp->flags) {
7448 		u32 old_flags = bp->flags;
7449 
7450 		bp->flags = flags;
7451 
7452 		if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
7453 			if (update_tpa)
7454 				bnxt_set_ring_params(bp);
7455 			return rc;
7456 		}
7457 
7458 		if (re_init) {
7459 			bnxt_close_nic(bp, false, false);
7460 			if (update_tpa)
7461 				bnxt_set_ring_params(bp);
7462 
7463 			return bnxt_open_nic(bp, false, false);
7464 		}
7465 		if (update_tpa) {
7466 			rc = bnxt_set_tpa(bp,
7467 					  (flags & BNXT_FLAG_TPA) ?
7468 					  true : false);
7469 			if (rc)
7470 				bp->flags = old_flags;
7471 		}
7472 	}
7473 	return rc;
7474 }
7475 
7476 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
7477 {
7478 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
7479 	int i = bnapi->index;
7480 
7481 	if (!txr)
7482 		return;
7483 
7484 	netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
7485 		    i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
7486 		    txr->tx_cons);
7487 }
7488 
7489 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
7490 {
7491 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
7492 	int i = bnapi->index;
7493 
7494 	if (!rxr)
7495 		return;
7496 
7497 	netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
7498 		    i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
7499 		    rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
7500 		    rxr->rx_sw_agg_prod);
7501 }
7502 
7503 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
7504 {
7505 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
7506 	int i = bnapi->index;
7507 
7508 	netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
7509 		    i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
7510 }
7511 
7512 static void bnxt_dbg_dump_states(struct bnxt *bp)
7513 {
7514 	int i;
7515 	struct bnxt_napi *bnapi;
7516 
7517 	for (i = 0; i < bp->cp_nr_rings; i++) {
7518 		bnapi = bp->bnapi[i];
7519 		if (netif_msg_drv(bp)) {
7520 			bnxt_dump_tx_sw_state(bnapi);
7521 			bnxt_dump_rx_sw_state(bnapi);
7522 			bnxt_dump_cp_sw_state(bnapi);
7523 		}
7524 	}
7525 }
7526 
7527 static void bnxt_reset_task(struct bnxt *bp, bool silent)
7528 {
7529 	if (!silent)
7530 		bnxt_dbg_dump_states(bp);
7531 	if (netif_running(bp->dev)) {
7532 		int rc;
7533 
7534 		if (!silent)
7535 			bnxt_ulp_stop(bp);
7536 		bnxt_close_nic(bp, false, false);
7537 		rc = bnxt_open_nic(bp, false, false);
7538 		if (!silent && !rc)
7539 			bnxt_ulp_start(bp);
7540 	}
7541 }
7542 
7543 static void bnxt_tx_timeout(struct net_device *dev)
7544 {
7545 	struct bnxt *bp = netdev_priv(dev);
7546 
7547 	netdev_err(bp->dev,  "TX timeout detected, starting reset task!\n");
7548 	set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
7549 	bnxt_queue_sp_work(bp);
7550 }
7551 
7552 #ifdef CONFIG_NET_POLL_CONTROLLER
7553 static void bnxt_poll_controller(struct net_device *dev)
7554 {
7555 	struct bnxt *bp = netdev_priv(dev);
7556 	int i;
7557 
7558 	/* Only process tx rings/combined rings in netpoll mode. */
7559 	for (i = 0; i < bp->tx_nr_rings; i++) {
7560 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
7561 
7562 		napi_schedule(&txr->bnapi->napi);
7563 	}
7564 }
7565 #endif
7566 
7567 static void bnxt_timer(struct timer_list *t)
7568 {
7569 	struct bnxt *bp = from_timer(bp, t, timer);
7570 	struct net_device *dev = bp->dev;
7571 
7572 	if (!netif_running(dev))
7573 		return;
7574 
7575 	if (atomic_read(&bp->intr_sem) != 0)
7576 		goto bnxt_restart_timer;
7577 
7578 	if (bp->link_info.link_up && (bp->flags & BNXT_FLAG_PORT_STATS) &&
7579 	    bp->stats_coal_ticks) {
7580 		set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event);
7581 		bnxt_queue_sp_work(bp);
7582 	}
7583 
7584 	if (bnxt_tc_flower_enabled(bp)) {
7585 		set_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event);
7586 		bnxt_queue_sp_work(bp);
7587 	}
7588 bnxt_restart_timer:
7589 	mod_timer(&bp->timer, jiffies + bp->current_interval);
7590 }
7591 
7592 static void bnxt_rtnl_lock_sp(struct bnxt *bp)
7593 {
7594 	/* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK
7595 	 * set.  If the device is being closed, bnxt_close() may be holding
7596 	 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear.  So we
7597 	 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl().
7598 	 */
7599 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
7600 	rtnl_lock();
7601 }
7602 
7603 static void bnxt_rtnl_unlock_sp(struct bnxt *bp)
7604 {
7605 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
7606 	rtnl_unlock();
7607 }
7608 
7609 /* Only called from bnxt_sp_task() */
7610 static void bnxt_reset(struct bnxt *bp, bool silent)
7611 {
7612 	bnxt_rtnl_lock_sp(bp);
7613 	if (test_bit(BNXT_STATE_OPEN, &bp->state))
7614 		bnxt_reset_task(bp, silent);
7615 	bnxt_rtnl_unlock_sp(bp);
7616 }
7617 
7618 static void bnxt_cfg_ntp_filters(struct bnxt *);
7619 
7620 static void bnxt_sp_task(struct work_struct *work)
7621 {
7622 	struct bnxt *bp = container_of(work, struct bnxt, sp_task);
7623 
7624 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
7625 	smp_mb__after_atomic();
7626 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
7627 		clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
7628 		return;
7629 	}
7630 
7631 	if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
7632 		bnxt_cfg_rx_mode(bp);
7633 
7634 	if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
7635 		bnxt_cfg_ntp_filters(bp);
7636 	if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
7637 		bnxt_hwrm_exec_fwd_req(bp);
7638 	if (test_and_clear_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event)) {
7639 		bnxt_hwrm_tunnel_dst_port_alloc(
7640 			bp, bp->vxlan_port,
7641 			TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
7642 	}
7643 	if (test_and_clear_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event)) {
7644 		bnxt_hwrm_tunnel_dst_port_free(
7645 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
7646 	}
7647 	if (test_and_clear_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event)) {
7648 		bnxt_hwrm_tunnel_dst_port_alloc(
7649 			bp, bp->nge_port,
7650 			TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
7651 	}
7652 	if (test_and_clear_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event)) {
7653 		bnxt_hwrm_tunnel_dst_port_free(
7654 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
7655 	}
7656 	if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) {
7657 		bnxt_hwrm_port_qstats(bp);
7658 		bnxt_hwrm_port_qstats_ext(bp);
7659 	}
7660 
7661 	if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
7662 		int rc;
7663 
7664 		mutex_lock(&bp->link_lock);
7665 		if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT,
7666 				       &bp->sp_event))
7667 			bnxt_hwrm_phy_qcaps(bp);
7668 
7669 		rc = bnxt_update_link(bp, true);
7670 		mutex_unlock(&bp->link_lock);
7671 		if (rc)
7672 			netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
7673 				   rc);
7674 	}
7675 	if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) {
7676 		mutex_lock(&bp->link_lock);
7677 		bnxt_get_port_module_status(bp);
7678 		mutex_unlock(&bp->link_lock);
7679 	}
7680 
7681 	if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event))
7682 		bnxt_tc_flow_stats_work(bp);
7683 
7684 	/* These functions below will clear BNXT_STATE_IN_SP_TASK.  They
7685 	 * must be the last functions to be called before exiting.
7686 	 */
7687 	if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event))
7688 		bnxt_reset(bp, false);
7689 
7690 	if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event))
7691 		bnxt_reset(bp, true);
7692 
7693 	smp_mb__before_atomic();
7694 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
7695 }
7696 
7697 /* Under rtnl_lock */
7698 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs,
7699 		     int tx_xdp)
7700 {
7701 	int max_rx, max_tx, tx_sets = 1;
7702 	int tx_rings_needed;
7703 	int rx_rings = rx;
7704 	int cp, vnics, rc;
7705 
7706 	if (tcs)
7707 		tx_sets = tcs;
7708 
7709 	rc = bnxt_get_max_rings(bp, &max_rx, &max_tx, sh);
7710 	if (rc)
7711 		return rc;
7712 
7713 	if (max_rx < rx)
7714 		return -ENOMEM;
7715 
7716 	tx_rings_needed = tx * tx_sets + tx_xdp;
7717 	if (max_tx < tx_rings_needed)
7718 		return -ENOMEM;
7719 
7720 	vnics = 1;
7721 	if (bp->flags & BNXT_FLAG_RFS)
7722 		vnics += rx_rings;
7723 
7724 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
7725 		rx_rings <<= 1;
7726 	cp = sh ? max_t(int, tx_rings_needed, rx) : tx_rings_needed + rx;
7727 	if (bp->flags & BNXT_FLAG_NEW_RM)
7728 		cp += bnxt_get_ulp_msix_num(bp);
7729 	return bnxt_hwrm_check_rings(bp, tx_rings_needed, rx_rings, rx, cp,
7730 				     vnics);
7731 }
7732 
7733 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev)
7734 {
7735 	if (bp->bar2) {
7736 		pci_iounmap(pdev, bp->bar2);
7737 		bp->bar2 = NULL;
7738 	}
7739 
7740 	if (bp->bar1) {
7741 		pci_iounmap(pdev, bp->bar1);
7742 		bp->bar1 = NULL;
7743 	}
7744 
7745 	if (bp->bar0) {
7746 		pci_iounmap(pdev, bp->bar0);
7747 		bp->bar0 = NULL;
7748 	}
7749 }
7750 
7751 static void bnxt_cleanup_pci(struct bnxt *bp)
7752 {
7753 	bnxt_unmap_bars(bp, bp->pdev);
7754 	pci_release_regions(bp->pdev);
7755 	pci_disable_device(bp->pdev);
7756 }
7757 
7758 static void bnxt_init_dflt_coal(struct bnxt *bp)
7759 {
7760 	struct bnxt_coal *coal;
7761 
7762 	/* Tick values in micro seconds.
7763 	 * 1 coal_buf x bufs_per_record = 1 completion record.
7764 	 */
7765 	coal = &bp->rx_coal;
7766 	coal->coal_ticks = 14;
7767 	coal->coal_bufs = 30;
7768 	coal->coal_ticks_irq = 1;
7769 	coal->coal_bufs_irq = 2;
7770 	coal->idle_thresh = 50;
7771 	coal->bufs_per_record = 2;
7772 	coal->budget = 64;		/* NAPI budget */
7773 
7774 	coal = &bp->tx_coal;
7775 	coal->coal_ticks = 28;
7776 	coal->coal_bufs = 30;
7777 	coal->coal_ticks_irq = 2;
7778 	coal->coal_bufs_irq = 2;
7779 	coal->bufs_per_record = 1;
7780 
7781 	bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS;
7782 }
7783 
7784 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
7785 {
7786 	int rc;
7787 	struct bnxt *bp = netdev_priv(dev);
7788 
7789 	SET_NETDEV_DEV(dev, &pdev->dev);
7790 
7791 	/* enable device (incl. PCI PM wakeup), and bus-mastering */
7792 	rc = pci_enable_device(pdev);
7793 	if (rc) {
7794 		dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
7795 		goto init_err;
7796 	}
7797 
7798 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
7799 		dev_err(&pdev->dev,
7800 			"Cannot find PCI device base address, aborting\n");
7801 		rc = -ENODEV;
7802 		goto init_err_disable;
7803 	}
7804 
7805 	rc = pci_request_regions(pdev, DRV_MODULE_NAME);
7806 	if (rc) {
7807 		dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
7808 		goto init_err_disable;
7809 	}
7810 
7811 	if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
7812 	    dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
7813 		dev_err(&pdev->dev, "System does not support DMA, aborting\n");
7814 		goto init_err_disable;
7815 	}
7816 
7817 	pci_set_master(pdev);
7818 
7819 	bp->dev = dev;
7820 	bp->pdev = pdev;
7821 
7822 	bp->bar0 = pci_ioremap_bar(pdev, 0);
7823 	if (!bp->bar0) {
7824 		dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
7825 		rc = -ENOMEM;
7826 		goto init_err_release;
7827 	}
7828 
7829 	bp->bar1 = pci_ioremap_bar(pdev, 2);
7830 	if (!bp->bar1) {
7831 		dev_err(&pdev->dev, "Cannot map doorbell registers, aborting\n");
7832 		rc = -ENOMEM;
7833 		goto init_err_release;
7834 	}
7835 
7836 	bp->bar2 = pci_ioremap_bar(pdev, 4);
7837 	if (!bp->bar2) {
7838 		dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
7839 		rc = -ENOMEM;
7840 		goto init_err_release;
7841 	}
7842 
7843 	pci_enable_pcie_error_reporting(pdev);
7844 
7845 	INIT_WORK(&bp->sp_task, bnxt_sp_task);
7846 
7847 	spin_lock_init(&bp->ntp_fltr_lock);
7848 
7849 	bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
7850 	bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
7851 
7852 	bnxt_init_dflt_coal(bp);
7853 
7854 	timer_setup(&bp->timer, bnxt_timer, 0);
7855 	bp->current_interval = BNXT_TIMER_INTERVAL;
7856 
7857 	clear_bit(BNXT_STATE_OPEN, &bp->state);
7858 	return 0;
7859 
7860 init_err_release:
7861 	bnxt_unmap_bars(bp, pdev);
7862 	pci_release_regions(pdev);
7863 
7864 init_err_disable:
7865 	pci_disable_device(pdev);
7866 
7867 init_err:
7868 	return rc;
7869 }
7870 
7871 /* rtnl_lock held */
7872 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
7873 {
7874 	struct sockaddr *addr = p;
7875 	struct bnxt *bp = netdev_priv(dev);
7876 	int rc = 0;
7877 
7878 	if (!is_valid_ether_addr(addr->sa_data))
7879 		return -EADDRNOTAVAIL;
7880 
7881 	if (ether_addr_equal(addr->sa_data, dev->dev_addr))
7882 		return 0;
7883 
7884 	rc = bnxt_approve_mac(bp, addr->sa_data);
7885 	if (rc)
7886 		return rc;
7887 
7888 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
7889 	if (netif_running(dev)) {
7890 		bnxt_close_nic(bp, false, false);
7891 		rc = bnxt_open_nic(bp, false, false);
7892 	}
7893 
7894 	return rc;
7895 }
7896 
7897 /* rtnl_lock held */
7898 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
7899 {
7900 	struct bnxt *bp = netdev_priv(dev);
7901 
7902 	if (netif_running(dev))
7903 		bnxt_close_nic(bp, false, false);
7904 
7905 	dev->mtu = new_mtu;
7906 	bnxt_set_ring_params(bp);
7907 
7908 	if (netif_running(dev))
7909 		return bnxt_open_nic(bp, false, false);
7910 
7911 	return 0;
7912 }
7913 
7914 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc)
7915 {
7916 	struct bnxt *bp = netdev_priv(dev);
7917 	bool sh = false;
7918 	int rc;
7919 
7920 	if (tc > bp->max_tc) {
7921 		netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n",
7922 			   tc, bp->max_tc);
7923 		return -EINVAL;
7924 	}
7925 
7926 	if (netdev_get_num_tc(dev) == tc)
7927 		return 0;
7928 
7929 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
7930 		sh = true;
7931 
7932 	rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings,
7933 			      sh, tc, bp->tx_nr_rings_xdp);
7934 	if (rc)
7935 		return rc;
7936 
7937 	/* Needs to close the device and do hw resource re-allocations */
7938 	if (netif_running(bp->dev))
7939 		bnxt_close_nic(bp, true, false);
7940 
7941 	if (tc) {
7942 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
7943 		netdev_set_num_tc(dev, tc);
7944 	} else {
7945 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
7946 		netdev_reset_tc(dev);
7947 	}
7948 	bp->tx_nr_rings += bp->tx_nr_rings_xdp;
7949 	bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
7950 			       bp->tx_nr_rings + bp->rx_nr_rings;
7951 	bp->num_stat_ctxs = bp->cp_nr_rings;
7952 
7953 	if (netif_running(bp->dev))
7954 		return bnxt_open_nic(bp, true, false);
7955 
7956 	return 0;
7957 }
7958 
7959 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
7960 				  void *cb_priv)
7961 {
7962 	struct bnxt *bp = cb_priv;
7963 
7964 	if (!bnxt_tc_flower_enabled(bp) ||
7965 	    !tc_cls_can_offload_and_chain0(bp->dev, type_data))
7966 		return -EOPNOTSUPP;
7967 
7968 	switch (type) {
7969 	case TC_SETUP_CLSFLOWER:
7970 		return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data);
7971 	default:
7972 		return -EOPNOTSUPP;
7973 	}
7974 }
7975 
7976 static int bnxt_setup_tc_block(struct net_device *dev,
7977 			       struct tc_block_offload *f)
7978 {
7979 	struct bnxt *bp = netdev_priv(dev);
7980 
7981 	if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
7982 		return -EOPNOTSUPP;
7983 
7984 	switch (f->command) {
7985 	case TC_BLOCK_BIND:
7986 		return tcf_block_cb_register(f->block, bnxt_setup_tc_block_cb,
7987 					     bp, bp);
7988 	case TC_BLOCK_UNBIND:
7989 		tcf_block_cb_unregister(f->block, bnxt_setup_tc_block_cb, bp);
7990 		return 0;
7991 	default:
7992 		return -EOPNOTSUPP;
7993 	}
7994 }
7995 
7996 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type,
7997 			 void *type_data)
7998 {
7999 	switch (type) {
8000 	case TC_SETUP_BLOCK:
8001 		return bnxt_setup_tc_block(dev, type_data);
8002 	case TC_SETUP_QDISC_MQPRIO: {
8003 		struct tc_mqprio_qopt *mqprio = type_data;
8004 
8005 		mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
8006 
8007 		return bnxt_setup_mq_tc(dev, mqprio->num_tc);
8008 	}
8009 	default:
8010 		return -EOPNOTSUPP;
8011 	}
8012 }
8013 
8014 #ifdef CONFIG_RFS_ACCEL
8015 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
8016 			    struct bnxt_ntuple_filter *f2)
8017 {
8018 	struct flow_keys *keys1 = &f1->fkeys;
8019 	struct flow_keys *keys2 = &f2->fkeys;
8020 
8021 	if (keys1->addrs.v4addrs.src == keys2->addrs.v4addrs.src &&
8022 	    keys1->addrs.v4addrs.dst == keys2->addrs.v4addrs.dst &&
8023 	    keys1->ports.ports == keys2->ports.ports &&
8024 	    keys1->basic.ip_proto == keys2->basic.ip_proto &&
8025 	    keys1->basic.n_proto == keys2->basic.n_proto &&
8026 	    keys1->control.flags == keys2->control.flags &&
8027 	    ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) &&
8028 	    ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr))
8029 		return true;
8030 
8031 	return false;
8032 }
8033 
8034 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
8035 			      u16 rxq_index, u32 flow_id)
8036 {
8037 	struct bnxt *bp = netdev_priv(dev);
8038 	struct bnxt_ntuple_filter *fltr, *new_fltr;
8039 	struct flow_keys *fkeys;
8040 	struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
8041 	int rc = 0, idx, bit_id, l2_idx = 0;
8042 	struct hlist_head *head;
8043 
8044 	if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) {
8045 		struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
8046 		int off = 0, j;
8047 
8048 		netif_addr_lock_bh(dev);
8049 		for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) {
8050 			if (ether_addr_equal(eth->h_dest,
8051 					     vnic->uc_list + off)) {
8052 				l2_idx = j + 1;
8053 				break;
8054 			}
8055 		}
8056 		netif_addr_unlock_bh(dev);
8057 		if (!l2_idx)
8058 			return -EINVAL;
8059 	}
8060 	new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
8061 	if (!new_fltr)
8062 		return -ENOMEM;
8063 
8064 	fkeys = &new_fltr->fkeys;
8065 	if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
8066 		rc = -EPROTONOSUPPORT;
8067 		goto err_free;
8068 	}
8069 
8070 	if ((fkeys->basic.n_proto != htons(ETH_P_IP) &&
8071 	     fkeys->basic.n_proto != htons(ETH_P_IPV6)) ||
8072 	    ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
8073 	     (fkeys->basic.ip_proto != IPPROTO_UDP))) {
8074 		rc = -EPROTONOSUPPORT;
8075 		goto err_free;
8076 	}
8077 	if (fkeys->basic.n_proto == htons(ETH_P_IPV6) &&
8078 	    bp->hwrm_spec_code < 0x10601) {
8079 		rc = -EPROTONOSUPPORT;
8080 		goto err_free;
8081 	}
8082 	if ((fkeys->control.flags & FLOW_DIS_ENCAPSULATION) &&
8083 	    bp->hwrm_spec_code < 0x10601) {
8084 		rc = -EPROTONOSUPPORT;
8085 		goto err_free;
8086 	}
8087 
8088 	memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN);
8089 	memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
8090 
8091 	idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
8092 	head = &bp->ntp_fltr_hash_tbl[idx];
8093 	rcu_read_lock();
8094 	hlist_for_each_entry_rcu(fltr, head, hash) {
8095 		if (bnxt_fltr_match(fltr, new_fltr)) {
8096 			rcu_read_unlock();
8097 			rc = 0;
8098 			goto err_free;
8099 		}
8100 	}
8101 	rcu_read_unlock();
8102 
8103 	spin_lock_bh(&bp->ntp_fltr_lock);
8104 	bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
8105 					 BNXT_NTP_FLTR_MAX_FLTR, 0);
8106 	if (bit_id < 0) {
8107 		spin_unlock_bh(&bp->ntp_fltr_lock);
8108 		rc = -ENOMEM;
8109 		goto err_free;
8110 	}
8111 
8112 	new_fltr->sw_id = (u16)bit_id;
8113 	new_fltr->flow_id = flow_id;
8114 	new_fltr->l2_fltr_idx = l2_idx;
8115 	new_fltr->rxq = rxq_index;
8116 	hlist_add_head_rcu(&new_fltr->hash, head);
8117 	bp->ntp_fltr_count++;
8118 	spin_unlock_bh(&bp->ntp_fltr_lock);
8119 
8120 	set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
8121 	bnxt_queue_sp_work(bp);
8122 
8123 	return new_fltr->sw_id;
8124 
8125 err_free:
8126 	kfree(new_fltr);
8127 	return rc;
8128 }
8129 
8130 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
8131 {
8132 	int i;
8133 
8134 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
8135 		struct hlist_head *head;
8136 		struct hlist_node *tmp;
8137 		struct bnxt_ntuple_filter *fltr;
8138 		int rc;
8139 
8140 		head = &bp->ntp_fltr_hash_tbl[i];
8141 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
8142 			bool del = false;
8143 
8144 			if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
8145 				if (rps_may_expire_flow(bp->dev, fltr->rxq,
8146 							fltr->flow_id,
8147 							fltr->sw_id)) {
8148 					bnxt_hwrm_cfa_ntuple_filter_free(bp,
8149 									 fltr);
8150 					del = true;
8151 				}
8152 			} else {
8153 				rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
8154 								       fltr);
8155 				if (rc)
8156 					del = true;
8157 				else
8158 					set_bit(BNXT_FLTR_VALID, &fltr->state);
8159 			}
8160 
8161 			if (del) {
8162 				spin_lock_bh(&bp->ntp_fltr_lock);
8163 				hlist_del_rcu(&fltr->hash);
8164 				bp->ntp_fltr_count--;
8165 				spin_unlock_bh(&bp->ntp_fltr_lock);
8166 				synchronize_rcu();
8167 				clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
8168 				kfree(fltr);
8169 			}
8170 		}
8171 	}
8172 	if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event))
8173 		netdev_info(bp->dev, "Receive PF driver unload event!");
8174 }
8175 
8176 #else
8177 
8178 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
8179 {
8180 }
8181 
8182 #endif /* CONFIG_RFS_ACCEL */
8183 
8184 static void bnxt_udp_tunnel_add(struct net_device *dev,
8185 				struct udp_tunnel_info *ti)
8186 {
8187 	struct bnxt *bp = netdev_priv(dev);
8188 
8189 	if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET)
8190 		return;
8191 
8192 	if (!netif_running(dev))
8193 		return;
8194 
8195 	switch (ti->type) {
8196 	case UDP_TUNNEL_TYPE_VXLAN:
8197 		if (bp->vxlan_port_cnt && bp->vxlan_port != ti->port)
8198 			return;
8199 
8200 		bp->vxlan_port_cnt++;
8201 		if (bp->vxlan_port_cnt == 1) {
8202 			bp->vxlan_port = ti->port;
8203 			set_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event);
8204 			bnxt_queue_sp_work(bp);
8205 		}
8206 		break;
8207 	case UDP_TUNNEL_TYPE_GENEVE:
8208 		if (bp->nge_port_cnt && bp->nge_port != ti->port)
8209 			return;
8210 
8211 		bp->nge_port_cnt++;
8212 		if (bp->nge_port_cnt == 1) {
8213 			bp->nge_port = ti->port;
8214 			set_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event);
8215 		}
8216 		break;
8217 	default:
8218 		return;
8219 	}
8220 
8221 	bnxt_queue_sp_work(bp);
8222 }
8223 
8224 static void bnxt_udp_tunnel_del(struct net_device *dev,
8225 				struct udp_tunnel_info *ti)
8226 {
8227 	struct bnxt *bp = netdev_priv(dev);
8228 
8229 	if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET)
8230 		return;
8231 
8232 	if (!netif_running(dev))
8233 		return;
8234 
8235 	switch (ti->type) {
8236 	case UDP_TUNNEL_TYPE_VXLAN:
8237 		if (!bp->vxlan_port_cnt || bp->vxlan_port != ti->port)
8238 			return;
8239 		bp->vxlan_port_cnt--;
8240 
8241 		if (bp->vxlan_port_cnt != 0)
8242 			return;
8243 
8244 		set_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event);
8245 		break;
8246 	case UDP_TUNNEL_TYPE_GENEVE:
8247 		if (!bp->nge_port_cnt || bp->nge_port != ti->port)
8248 			return;
8249 		bp->nge_port_cnt--;
8250 
8251 		if (bp->nge_port_cnt != 0)
8252 			return;
8253 
8254 		set_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event);
8255 		break;
8256 	default:
8257 		return;
8258 	}
8259 
8260 	bnxt_queue_sp_work(bp);
8261 }
8262 
8263 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
8264 			       struct net_device *dev, u32 filter_mask,
8265 			       int nlflags)
8266 {
8267 	struct bnxt *bp = netdev_priv(dev);
8268 
8269 	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0,
8270 				       nlflags, filter_mask, NULL);
8271 }
8272 
8273 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
8274 			       u16 flags)
8275 {
8276 	struct bnxt *bp = netdev_priv(dev);
8277 	struct nlattr *attr, *br_spec;
8278 	int rem, rc = 0;
8279 
8280 	if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp))
8281 		return -EOPNOTSUPP;
8282 
8283 	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
8284 	if (!br_spec)
8285 		return -EINVAL;
8286 
8287 	nla_for_each_nested(attr, br_spec, rem) {
8288 		u16 mode;
8289 
8290 		if (nla_type(attr) != IFLA_BRIDGE_MODE)
8291 			continue;
8292 
8293 		if (nla_len(attr) < sizeof(mode))
8294 			return -EINVAL;
8295 
8296 		mode = nla_get_u16(attr);
8297 		if (mode == bp->br_mode)
8298 			break;
8299 
8300 		rc = bnxt_hwrm_set_br_mode(bp, mode);
8301 		if (!rc)
8302 			bp->br_mode = mode;
8303 		break;
8304 	}
8305 	return rc;
8306 }
8307 
8308 static int bnxt_get_phys_port_name(struct net_device *dev, char *buf,
8309 				   size_t len)
8310 {
8311 	struct bnxt *bp = netdev_priv(dev);
8312 	int rc;
8313 
8314 	/* The PF and it's VF-reps only support the switchdev framework */
8315 	if (!BNXT_PF(bp))
8316 		return -EOPNOTSUPP;
8317 
8318 	rc = snprintf(buf, len, "p%d", bp->pf.port_id);
8319 
8320 	if (rc >= len)
8321 		return -EOPNOTSUPP;
8322 	return 0;
8323 }
8324 
8325 int bnxt_port_attr_get(struct bnxt *bp, struct switchdev_attr *attr)
8326 {
8327 	if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV)
8328 		return -EOPNOTSUPP;
8329 
8330 	/* The PF and it's VF-reps only support the switchdev framework */
8331 	if (!BNXT_PF(bp))
8332 		return -EOPNOTSUPP;
8333 
8334 	switch (attr->id) {
8335 	case SWITCHDEV_ATTR_ID_PORT_PARENT_ID:
8336 		attr->u.ppid.id_len = sizeof(bp->switch_id);
8337 		memcpy(attr->u.ppid.id, bp->switch_id, attr->u.ppid.id_len);
8338 		break;
8339 	default:
8340 		return -EOPNOTSUPP;
8341 	}
8342 	return 0;
8343 }
8344 
8345 static int bnxt_swdev_port_attr_get(struct net_device *dev,
8346 				    struct switchdev_attr *attr)
8347 {
8348 	return bnxt_port_attr_get(netdev_priv(dev), attr);
8349 }
8350 
8351 static const struct switchdev_ops bnxt_switchdev_ops = {
8352 	.switchdev_port_attr_get	= bnxt_swdev_port_attr_get
8353 };
8354 
8355 static const struct net_device_ops bnxt_netdev_ops = {
8356 	.ndo_open		= bnxt_open,
8357 	.ndo_start_xmit		= bnxt_start_xmit,
8358 	.ndo_stop		= bnxt_close,
8359 	.ndo_get_stats64	= bnxt_get_stats64,
8360 	.ndo_set_rx_mode	= bnxt_set_rx_mode,
8361 	.ndo_do_ioctl		= bnxt_ioctl,
8362 	.ndo_validate_addr	= eth_validate_addr,
8363 	.ndo_set_mac_address	= bnxt_change_mac_addr,
8364 	.ndo_change_mtu		= bnxt_change_mtu,
8365 	.ndo_fix_features	= bnxt_fix_features,
8366 	.ndo_set_features	= bnxt_set_features,
8367 	.ndo_tx_timeout		= bnxt_tx_timeout,
8368 #ifdef CONFIG_BNXT_SRIOV
8369 	.ndo_get_vf_config	= bnxt_get_vf_config,
8370 	.ndo_set_vf_mac		= bnxt_set_vf_mac,
8371 	.ndo_set_vf_vlan	= bnxt_set_vf_vlan,
8372 	.ndo_set_vf_rate	= bnxt_set_vf_bw,
8373 	.ndo_set_vf_link_state	= bnxt_set_vf_link_state,
8374 	.ndo_set_vf_spoofchk	= bnxt_set_vf_spoofchk,
8375 	.ndo_set_vf_trust	= bnxt_set_vf_trust,
8376 #endif
8377 #ifdef CONFIG_NET_POLL_CONTROLLER
8378 	.ndo_poll_controller	= bnxt_poll_controller,
8379 #endif
8380 	.ndo_setup_tc           = bnxt_setup_tc,
8381 #ifdef CONFIG_RFS_ACCEL
8382 	.ndo_rx_flow_steer	= bnxt_rx_flow_steer,
8383 #endif
8384 	.ndo_udp_tunnel_add	= bnxt_udp_tunnel_add,
8385 	.ndo_udp_tunnel_del	= bnxt_udp_tunnel_del,
8386 	.ndo_bpf		= bnxt_xdp,
8387 	.ndo_bridge_getlink	= bnxt_bridge_getlink,
8388 	.ndo_bridge_setlink	= bnxt_bridge_setlink,
8389 	.ndo_get_phys_port_name = bnxt_get_phys_port_name
8390 };
8391 
8392 static void bnxt_remove_one(struct pci_dev *pdev)
8393 {
8394 	struct net_device *dev = pci_get_drvdata(pdev);
8395 	struct bnxt *bp = netdev_priv(dev);
8396 
8397 	if (BNXT_PF(bp)) {
8398 		bnxt_sriov_disable(bp);
8399 		bnxt_dl_unregister(bp);
8400 	}
8401 
8402 	pci_disable_pcie_error_reporting(pdev);
8403 	unregister_netdev(dev);
8404 	bnxt_shutdown_tc(bp);
8405 	bnxt_cancel_sp_work(bp);
8406 	bp->sp_event = 0;
8407 
8408 	bnxt_clear_int_mode(bp);
8409 	bnxt_hwrm_func_drv_unrgtr(bp);
8410 	bnxt_free_hwrm_resources(bp);
8411 	bnxt_free_hwrm_short_cmd_req(bp);
8412 	bnxt_ethtool_free(bp);
8413 	bnxt_dcb_free(bp);
8414 	kfree(bp->edev);
8415 	bp->edev = NULL;
8416 	bnxt_cleanup_pci(bp);
8417 	free_netdev(dev);
8418 }
8419 
8420 static int bnxt_probe_phy(struct bnxt *bp)
8421 {
8422 	int rc = 0;
8423 	struct bnxt_link_info *link_info = &bp->link_info;
8424 
8425 	rc = bnxt_hwrm_phy_qcaps(bp);
8426 	if (rc) {
8427 		netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n",
8428 			   rc);
8429 		return rc;
8430 	}
8431 	mutex_init(&bp->link_lock);
8432 
8433 	rc = bnxt_update_link(bp, false);
8434 	if (rc) {
8435 		netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
8436 			   rc);
8437 		return rc;
8438 	}
8439 
8440 	/* Older firmware does not have supported_auto_speeds, so assume
8441 	 * that all supported speeds can be autonegotiated.
8442 	 */
8443 	if (link_info->auto_link_speeds && !link_info->support_auto_speeds)
8444 		link_info->support_auto_speeds = link_info->support_speeds;
8445 
8446 	/*initialize the ethool setting copy with NVM settings */
8447 	if (BNXT_AUTO_MODE(link_info->auto_mode)) {
8448 		link_info->autoneg = BNXT_AUTONEG_SPEED;
8449 		if (bp->hwrm_spec_code >= 0x10201) {
8450 			if (link_info->auto_pause_setting &
8451 			    PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE)
8452 				link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
8453 		} else {
8454 			link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
8455 		}
8456 		link_info->advertising = link_info->auto_link_speeds;
8457 	} else {
8458 		link_info->req_link_speed = link_info->force_link_speed;
8459 		link_info->req_duplex = link_info->duplex_setting;
8460 	}
8461 	if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL)
8462 		link_info->req_flow_ctrl =
8463 			link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH;
8464 	else
8465 		link_info->req_flow_ctrl = link_info->force_pause_setting;
8466 	return rc;
8467 }
8468 
8469 static int bnxt_get_max_irq(struct pci_dev *pdev)
8470 {
8471 	u16 ctrl;
8472 
8473 	if (!pdev->msix_cap)
8474 		return 1;
8475 
8476 	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
8477 	return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
8478 }
8479 
8480 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
8481 				int *max_cp)
8482 {
8483 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
8484 	int max_ring_grps = 0;
8485 
8486 	*max_tx = hw_resc->max_tx_rings;
8487 	*max_rx = hw_resc->max_rx_rings;
8488 	*max_cp = min_t(int, hw_resc->max_irqs, hw_resc->max_cp_rings);
8489 	*max_cp = min_t(int, *max_cp, hw_resc->max_stat_ctxs);
8490 	max_ring_grps = hw_resc->max_hw_ring_grps;
8491 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) {
8492 		*max_cp -= 1;
8493 		*max_rx -= 2;
8494 	}
8495 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
8496 		*max_rx >>= 1;
8497 	*max_rx = min_t(int, *max_rx, max_ring_grps);
8498 }
8499 
8500 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
8501 {
8502 	int rx, tx, cp;
8503 
8504 	_bnxt_get_max_rings(bp, &rx, &tx, &cp);
8505 	if (!rx || !tx || !cp)
8506 		return -ENOMEM;
8507 
8508 	*max_rx = rx;
8509 	*max_tx = tx;
8510 	return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
8511 }
8512 
8513 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx,
8514 			       bool shared)
8515 {
8516 	int rc;
8517 
8518 	rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
8519 	if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) {
8520 		/* Not enough rings, try disabling agg rings. */
8521 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
8522 		rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
8523 		if (rc)
8524 			return rc;
8525 		bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
8526 		bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
8527 		bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
8528 		bnxt_set_ring_params(bp);
8529 	}
8530 
8531 	if (bp->flags & BNXT_FLAG_ROCE_CAP) {
8532 		int max_cp, max_stat, max_irq;
8533 
8534 		/* Reserve minimum resources for RoCE */
8535 		max_cp = bnxt_get_max_func_cp_rings(bp);
8536 		max_stat = bnxt_get_max_func_stat_ctxs(bp);
8537 		max_irq = bnxt_get_max_func_irqs(bp);
8538 		if (max_cp <= BNXT_MIN_ROCE_CP_RINGS ||
8539 		    max_irq <= BNXT_MIN_ROCE_CP_RINGS ||
8540 		    max_stat <= BNXT_MIN_ROCE_STAT_CTXS)
8541 			return 0;
8542 
8543 		max_cp -= BNXT_MIN_ROCE_CP_RINGS;
8544 		max_irq -= BNXT_MIN_ROCE_CP_RINGS;
8545 		max_stat -= BNXT_MIN_ROCE_STAT_CTXS;
8546 		max_cp = min_t(int, max_cp, max_irq);
8547 		max_cp = min_t(int, max_cp, max_stat);
8548 		rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared);
8549 		if (rc)
8550 			rc = 0;
8551 	}
8552 	return rc;
8553 }
8554 
8555 /* In initial default shared ring setting, each shared ring must have a
8556  * RX/TX ring pair.
8557  */
8558 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp)
8559 {
8560 	bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings);
8561 	bp->rx_nr_rings = bp->cp_nr_rings;
8562 	bp->tx_nr_rings_per_tc = bp->cp_nr_rings;
8563 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
8564 }
8565 
8566 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh)
8567 {
8568 	int dflt_rings, max_rx_rings, max_tx_rings, rc;
8569 
8570 	if (!bnxt_can_reserve_rings(bp))
8571 		return 0;
8572 
8573 	if (sh)
8574 		bp->flags |= BNXT_FLAG_SHARED_RINGS;
8575 	dflt_rings = netif_get_num_default_rss_queues();
8576 	/* Reduce default rings on multi-port cards so that total default
8577 	 * rings do not exceed CPU count.
8578 	 */
8579 	if (bp->port_count > 1) {
8580 		int max_rings =
8581 			max_t(int, num_online_cpus() / bp->port_count, 1);
8582 
8583 		dflt_rings = min_t(int, dflt_rings, max_rings);
8584 	}
8585 	rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh);
8586 	if (rc)
8587 		return rc;
8588 	bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
8589 	bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
8590 	if (sh)
8591 		bnxt_trim_dflt_sh_rings(bp);
8592 	else
8593 		bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings;
8594 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
8595 
8596 	rc = __bnxt_reserve_rings(bp);
8597 	if (rc)
8598 		netdev_warn(bp->dev, "Unable to reserve tx rings\n");
8599 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
8600 	if (sh)
8601 		bnxt_trim_dflt_sh_rings(bp);
8602 
8603 	/* Rings may have been trimmed, re-reserve the trimmed rings. */
8604 	if (bnxt_need_reserve_rings(bp)) {
8605 		rc = __bnxt_reserve_rings(bp);
8606 		if (rc)
8607 			netdev_warn(bp->dev, "2nd rings reservation failed.\n");
8608 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
8609 	}
8610 	bp->num_stat_ctxs = bp->cp_nr_rings;
8611 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
8612 		bp->rx_nr_rings++;
8613 		bp->cp_nr_rings++;
8614 	}
8615 	return rc;
8616 }
8617 
8618 static int bnxt_init_dflt_ring_mode(struct bnxt *bp)
8619 {
8620 	int rc;
8621 
8622 	if (bp->tx_nr_rings)
8623 		return 0;
8624 
8625 	rc = bnxt_set_dflt_rings(bp, true);
8626 	if (rc) {
8627 		netdev_err(bp->dev, "Not enough rings available.\n");
8628 		return rc;
8629 	}
8630 	rc = bnxt_init_int_mode(bp);
8631 	if (rc)
8632 		return rc;
8633 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
8634 	if (bnxt_rfs_supported(bp) && bnxt_rfs_capable(bp)) {
8635 		bp->flags |= BNXT_FLAG_RFS;
8636 		bp->dev->features |= NETIF_F_NTUPLE;
8637 	}
8638 	return 0;
8639 }
8640 
8641 int bnxt_restore_pf_fw_resources(struct bnxt *bp)
8642 {
8643 	int rc;
8644 
8645 	ASSERT_RTNL();
8646 	bnxt_hwrm_func_qcaps(bp);
8647 
8648 	if (netif_running(bp->dev))
8649 		__bnxt_close_nic(bp, true, false);
8650 
8651 	bnxt_ulp_irq_stop(bp);
8652 	bnxt_clear_int_mode(bp);
8653 	rc = bnxt_init_int_mode(bp);
8654 	bnxt_ulp_irq_restart(bp, rc);
8655 
8656 	if (netif_running(bp->dev)) {
8657 		if (rc)
8658 			dev_close(bp->dev);
8659 		else
8660 			rc = bnxt_open_nic(bp, true, false);
8661 	}
8662 
8663 	return rc;
8664 }
8665 
8666 static int bnxt_init_mac_addr(struct bnxt *bp)
8667 {
8668 	int rc = 0;
8669 
8670 	if (BNXT_PF(bp)) {
8671 		memcpy(bp->dev->dev_addr, bp->pf.mac_addr, ETH_ALEN);
8672 	} else {
8673 #ifdef CONFIG_BNXT_SRIOV
8674 		struct bnxt_vf_info *vf = &bp->vf;
8675 
8676 		if (is_valid_ether_addr(vf->mac_addr)) {
8677 			/* overwrite netdev dev_addr with admin VF MAC */
8678 			memcpy(bp->dev->dev_addr, vf->mac_addr, ETH_ALEN);
8679 		} else {
8680 			eth_hw_addr_random(bp->dev);
8681 		}
8682 		rc = bnxt_approve_mac(bp, bp->dev->dev_addr);
8683 #endif
8684 	}
8685 	return rc;
8686 }
8687 
8688 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8689 {
8690 	static int version_printed;
8691 	struct net_device *dev;
8692 	struct bnxt *bp;
8693 	int rc, max_irqs;
8694 
8695 	if (pci_is_bridge(pdev))
8696 		return -ENODEV;
8697 
8698 	if (version_printed++ == 0)
8699 		pr_info("%s", version);
8700 
8701 	max_irqs = bnxt_get_max_irq(pdev);
8702 	dev = alloc_etherdev_mq(sizeof(*bp), max_irqs);
8703 	if (!dev)
8704 		return -ENOMEM;
8705 
8706 	bp = netdev_priv(dev);
8707 
8708 	if (bnxt_vf_pciid(ent->driver_data))
8709 		bp->flags |= BNXT_FLAG_VF;
8710 
8711 	if (pdev->msix_cap)
8712 		bp->flags |= BNXT_FLAG_MSIX_CAP;
8713 
8714 	rc = bnxt_init_board(pdev, dev);
8715 	if (rc < 0)
8716 		goto init_err_free;
8717 
8718 	dev->netdev_ops = &bnxt_netdev_ops;
8719 	dev->watchdog_timeo = BNXT_TX_TIMEOUT;
8720 	dev->ethtool_ops = &bnxt_ethtool_ops;
8721 	SWITCHDEV_SET_OPS(dev, &bnxt_switchdev_ops);
8722 	pci_set_drvdata(pdev, dev);
8723 
8724 	rc = bnxt_alloc_hwrm_resources(bp);
8725 	if (rc)
8726 		goto init_err_pci_clean;
8727 
8728 	mutex_init(&bp->hwrm_cmd_lock);
8729 	rc = bnxt_hwrm_ver_get(bp);
8730 	if (rc)
8731 		goto init_err_pci_clean;
8732 
8733 	if (bp->flags & BNXT_FLAG_SHORT_CMD) {
8734 		rc = bnxt_alloc_hwrm_short_cmd_req(bp);
8735 		if (rc)
8736 			goto init_err_pci_clean;
8737 	}
8738 
8739 	rc = bnxt_hwrm_func_reset(bp);
8740 	if (rc)
8741 		goto init_err_pci_clean;
8742 
8743 	bnxt_hwrm_fw_set_time(bp);
8744 
8745 	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
8746 			   NETIF_F_TSO | NETIF_F_TSO6 |
8747 			   NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
8748 			   NETIF_F_GSO_IPXIP4 |
8749 			   NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
8750 			   NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH |
8751 			   NETIF_F_RXCSUM | NETIF_F_GRO;
8752 
8753 	if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
8754 		dev->hw_features |= NETIF_F_LRO;
8755 
8756 	dev->hw_enc_features =
8757 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
8758 			NETIF_F_TSO | NETIF_F_TSO6 |
8759 			NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
8760 			NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
8761 			NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL;
8762 	dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM |
8763 				    NETIF_F_GSO_GRE_CSUM;
8764 	dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
8765 	dev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
8766 			    NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX;
8767 	if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
8768 		dev->hw_features |= NETIF_F_GRO_HW;
8769 	dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
8770 	if (dev->features & NETIF_F_GRO_HW)
8771 		dev->features &= ~NETIF_F_LRO;
8772 	dev->priv_flags |= IFF_UNICAST_FLT;
8773 
8774 #ifdef CONFIG_BNXT_SRIOV
8775 	init_waitqueue_head(&bp->sriov_cfg_wait);
8776 	mutex_init(&bp->sriov_lock);
8777 #endif
8778 	bp->gro_func = bnxt_gro_func_5730x;
8779 	if (BNXT_CHIP_P4_PLUS(bp))
8780 		bp->gro_func = bnxt_gro_func_5731x;
8781 	else
8782 		bp->flags |= BNXT_FLAG_DOUBLE_DB;
8783 
8784 	rc = bnxt_hwrm_func_drv_rgtr(bp);
8785 	if (rc)
8786 		goto init_err_pci_clean;
8787 
8788 	rc = bnxt_hwrm_func_rgtr_async_events(bp, NULL, 0);
8789 	if (rc)
8790 		goto init_err_pci_clean;
8791 
8792 	bp->ulp_probe = bnxt_ulp_probe;
8793 
8794 	/* Get the MAX capabilities for this function */
8795 	rc = bnxt_hwrm_func_qcaps(bp);
8796 	if (rc) {
8797 		netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
8798 			   rc);
8799 		rc = -1;
8800 		goto init_err_pci_clean;
8801 	}
8802 	rc = bnxt_init_mac_addr(bp);
8803 	if (rc) {
8804 		dev_err(&pdev->dev, "Unable to initialize mac address.\n");
8805 		rc = -EADDRNOTAVAIL;
8806 		goto init_err_pci_clean;
8807 	}
8808 	rc = bnxt_hwrm_queue_qportcfg(bp);
8809 	if (rc) {
8810 		netdev_err(bp->dev, "hwrm query qportcfg failure rc: %x\n",
8811 			   rc);
8812 		rc = -1;
8813 		goto init_err_pci_clean;
8814 	}
8815 
8816 	bnxt_hwrm_func_qcfg(bp);
8817 	bnxt_hwrm_port_led_qcaps(bp);
8818 	bnxt_ethtool_init(bp);
8819 	bnxt_dcb_init(bp);
8820 
8821 	/* MTU range: 60 - FW defined max */
8822 	dev->min_mtu = ETH_ZLEN;
8823 	dev->max_mtu = bp->max_mtu;
8824 
8825 	rc = bnxt_probe_phy(bp);
8826 	if (rc)
8827 		goto init_err_pci_clean;
8828 
8829 	bnxt_set_rx_skb_mode(bp, false);
8830 	bnxt_set_tpa_flags(bp);
8831 	bnxt_set_ring_params(bp);
8832 	bnxt_set_max_func_irqs(bp, max_irqs);
8833 	rc = bnxt_set_dflt_rings(bp, true);
8834 	if (rc) {
8835 		netdev_err(bp->dev, "Not enough rings available.\n");
8836 		rc = -ENOMEM;
8837 		goto init_err_pci_clean;
8838 	}
8839 
8840 	/* Default RSS hash cfg. */
8841 	bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 |
8842 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 |
8843 			   VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 |
8844 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6;
8845 	if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) {
8846 		bp->flags |= BNXT_FLAG_UDP_RSS_CAP;
8847 		bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 |
8848 				    VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6;
8849 	}
8850 
8851 	bnxt_hwrm_vnic_qcaps(bp);
8852 	if (bnxt_rfs_supported(bp)) {
8853 		dev->hw_features |= NETIF_F_NTUPLE;
8854 		if (bnxt_rfs_capable(bp)) {
8855 			bp->flags |= BNXT_FLAG_RFS;
8856 			dev->features |= NETIF_F_NTUPLE;
8857 		}
8858 	}
8859 
8860 	if (dev->hw_features & NETIF_F_HW_VLAN_CTAG_RX)
8861 		bp->flags |= BNXT_FLAG_STRIP_VLAN;
8862 
8863 	rc = bnxt_init_int_mode(bp);
8864 	if (rc)
8865 		goto init_err_pci_clean;
8866 
8867 	/* No TC has been set yet and rings may have been trimmed due to
8868 	 * limited MSIX, so we re-initialize the TX rings per TC.
8869 	 */
8870 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
8871 
8872 	bnxt_get_wol_settings(bp);
8873 	if (bp->flags & BNXT_FLAG_WOL_CAP)
8874 		device_set_wakeup_enable(&pdev->dev, bp->wol);
8875 	else
8876 		device_set_wakeup_capable(&pdev->dev, false);
8877 
8878 	bnxt_hwrm_set_cache_line_size(bp, cache_line_size());
8879 
8880 	if (BNXT_PF(bp)) {
8881 		if (!bnxt_pf_wq) {
8882 			bnxt_pf_wq =
8883 				create_singlethread_workqueue("bnxt_pf_wq");
8884 			if (!bnxt_pf_wq) {
8885 				dev_err(&pdev->dev, "Unable to create workqueue.\n");
8886 				goto init_err_pci_clean;
8887 			}
8888 		}
8889 		bnxt_init_tc(bp);
8890 	}
8891 
8892 	rc = register_netdev(dev);
8893 	if (rc)
8894 		goto init_err_cleanup_tc;
8895 
8896 	if (BNXT_PF(bp))
8897 		bnxt_dl_register(bp);
8898 
8899 	netdev_info(dev, "%s found at mem %lx, node addr %pM\n",
8900 		    board_info[ent->driver_data].name,
8901 		    (long)pci_resource_start(pdev, 0), dev->dev_addr);
8902 	pcie_print_link_status(pdev);
8903 
8904 	return 0;
8905 
8906 init_err_cleanup_tc:
8907 	bnxt_shutdown_tc(bp);
8908 	bnxt_clear_int_mode(bp);
8909 
8910 init_err_pci_clean:
8911 	bnxt_cleanup_pci(bp);
8912 
8913 init_err_free:
8914 	free_netdev(dev);
8915 	return rc;
8916 }
8917 
8918 static void bnxt_shutdown(struct pci_dev *pdev)
8919 {
8920 	struct net_device *dev = pci_get_drvdata(pdev);
8921 	struct bnxt *bp;
8922 
8923 	if (!dev)
8924 		return;
8925 
8926 	rtnl_lock();
8927 	bp = netdev_priv(dev);
8928 	if (!bp)
8929 		goto shutdown_exit;
8930 
8931 	if (netif_running(dev))
8932 		dev_close(dev);
8933 
8934 	bnxt_ulp_shutdown(bp);
8935 
8936 	if (system_state == SYSTEM_POWER_OFF) {
8937 		bnxt_clear_int_mode(bp);
8938 		pci_wake_from_d3(pdev, bp->wol);
8939 		pci_set_power_state(pdev, PCI_D3hot);
8940 	}
8941 
8942 shutdown_exit:
8943 	rtnl_unlock();
8944 }
8945 
8946 #ifdef CONFIG_PM_SLEEP
8947 static int bnxt_suspend(struct device *device)
8948 {
8949 	struct pci_dev *pdev = to_pci_dev(device);
8950 	struct net_device *dev = pci_get_drvdata(pdev);
8951 	struct bnxt *bp = netdev_priv(dev);
8952 	int rc = 0;
8953 
8954 	rtnl_lock();
8955 	if (netif_running(dev)) {
8956 		netif_device_detach(dev);
8957 		rc = bnxt_close(dev);
8958 	}
8959 	bnxt_hwrm_func_drv_unrgtr(bp);
8960 	rtnl_unlock();
8961 	return rc;
8962 }
8963 
8964 static int bnxt_resume(struct device *device)
8965 {
8966 	struct pci_dev *pdev = to_pci_dev(device);
8967 	struct net_device *dev = pci_get_drvdata(pdev);
8968 	struct bnxt *bp = netdev_priv(dev);
8969 	int rc = 0;
8970 
8971 	rtnl_lock();
8972 	if (bnxt_hwrm_ver_get(bp) || bnxt_hwrm_func_drv_rgtr(bp)) {
8973 		rc = -ENODEV;
8974 		goto resume_exit;
8975 	}
8976 	rc = bnxt_hwrm_func_reset(bp);
8977 	if (rc) {
8978 		rc = -EBUSY;
8979 		goto resume_exit;
8980 	}
8981 	bnxt_get_wol_settings(bp);
8982 	if (netif_running(dev)) {
8983 		rc = bnxt_open(dev);
8984 		if (!rc)
8985 			netif_device_attach(dev);
8986 	}
8987 
8988 resume_exit:
8989 	rtnl_unlock();
8990 	return rc;
8991 }
8992 
8993 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume);
8994 #define BNXT_PM_OPS (&bnxt_pm_ops)
8995 
8996 #else
8997 
8998 #define BNXT_PM_OPS NULL
8999 
9000 #endif /* CONFIG_PM_SLEEP */
9001 
9002 /**
9003  * bnxt_io_error_detected - called when PCI error is detected
9004  * @pdev: Pointer to PCI device
9005  * @state: The current pci connection state
9006  *
9007  * This function is called after a PCI bus error affecting
9008  * this device has been detected.
9009  */
9010 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev,
9011 					       pci_channel_state_t state)
9012 {
9013 	struct net_device *netdev = pci_get_drvdata(pdev);
9014 	struct bnxt *bp = netdev_priv(netdev);
9015 
9016 	netdev_info(netdev, "PCI I/O error detected\n");
9017 
9018 	rtnl_lock();
9019 	netif_device_detach(netdev);
9020 
9021 	bnxt_ulp_stop(bp);
9022 
9023 	if (state == pci_channel_io_perm_failure) {
9024 		rtnl_unlock();
9025 		return PCI_ERS_RESULT_DISCONNECT;
9026 	}
9027 
9028 	if (netif_running(netdev))
9029 		bnxt_close(netdev);
9030 
9031 	pci_disable_device(pdev);
9032 	rtnl_unlock();
9033 
9034 	/* Request a slot slot reset. */
9035 	return PCI_ERS_RESULT_NEED_RESET;
9036 }
9037 
9038 /**
9039  * bnxt_io_slot_reset - called after the pci bus has been reset.
9040  * @pdev: Pointer to PCI device
9041  *
9042  * Restart the card from scratch, as if from a cold-boot.
9043  * At this point, the card has exprienced a hard reset,
9044  * followed by fixups by BIOS, and has its config space
9045  * set up identically to what it was at cold boot.
9046  */
9047 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev)
9048 {
9049 	struct net_device *netdev = pci_get_drvdata(pdev);
9050 	struct bnxt *bp = netdev_priv(netdev);
9051 	int err = 0;
9052 	pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
9053 
9054 	netdev_info(bp->dev, "PCI Slot Reset\n");
9055 
9056 	rtnl_lock();
9057 
9058 	if (pci_enable_device(pdev)) {
9059 		dev_err(&pdev->dev,
9060 			"Cannot re-enable PCI device after reset.\n");
9061 	} else {
9062 		pci_set_master(pdev);
9063 
9064 		err = bnxt_hwrm_func_reset(bp);
9065 		if (!err && netif_running(netdev))
9066 			err = bnxt_open(netdev);
9067 
9068 		if (!err) {
9069 			result = PCI_ERS_RESULT_RECOVERED;
9070 			bnxt_ulp_start(bp);
9071 		}
9072 	}
9073 
9074 	if (result != PCI_ERS_RESULT_RECOVERED && netif_running(netdev))
9075 		dev_close(netdev);
9076 
9077 	rtnl_unlock();
9078 
9079 	err = pci_cleanup_aer_uncorrect_error_status(pdev);
9080 	if (err) {
9081 		dev_err(&pdev->dev,
9082 			"pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
9083 			 err); /* non-fatal, continue */
9084 	}
9085 
9086 	return PCI_ERS_RESULT_RECOVERED;
9087 }
9088 
9089 /**
9090  * bnxt_io_resume - called when traffic can start flowing again.
9091  * @pdev: Pointer to PCI device
9092  *
9093  * This callback is called when the error recovery driver tells
9094  * us that its OK to resume normal operation.
9095  */
9096 static void bnxt_io_resume(struct pci_dev *pdev)
9097 {
9098 	struct net_device *netdev = pci_get_drvdata(pdev);
9099 
9100 	rtnl_lock();
9101 
9102 	netif_device_attach(netdev);
9103 
9104 	rtnl_unlock();
9105 }
9106 
9107 static const struct pci_error_handlers bnxt_err_handler = {
9108 	.error_detected	= bnxt_io_error_detected,
9109 	.slot_reset	= bnxt_io_slot_reset,
9110 	.resume		= bnxt_io_resume
9111 };
9112 
9113 static struct pci_driver bnxt_pci_driver = {
9114 	.name		= DRV_MODULE_NAME,
9115 	.id_table	= bnxt_pci_tbl,
9116 	.probe		= bnxt_init_one,
9117 	.remove		= bnxt_remove_one,
9118 	.shutdown	= bnxt_shutdown,
9119 	.driver.pm	= BNXT_PM_OPS,
9120 	.err_handler	= &bnxt_err_handler,
9121 #if defined(CONFIG_BNXT_SRIOV)
9122 	.sriov_configure = bnxt_sriov_configure,
9123 #endif
9124 };
9125 
9126 static int __init bnxt_init(void)
9127 {
9128 	bnxt_debug_init();
9129 	return pci_register_driver(&bnxt_pci_driver);
9130 }
9131 
9132 static void __exit bnxt_exit(void)
9133 {
9134 	pci_unregister_driver(&bnxt_pci_driver);
9135 	if (bnxt_pf_wq)
9136 		destroy_workqueue(bnxt_pf_wq);
9137 	bnxt_debug_exit();
9138 }
9139 
9140 module_init(bnxt_init);
9141 module_exit(bnxt_exit);
9142