xref: /openbmc/linux/drivers/net/ethernet/broadcom/bnxt/bnxt.c (revision 90741096769bd75152a5fe397343e5893c7d905a)
1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2016 Broadcom Corporation
4  * Copyright (c) 2016-2019 Broadcom Limited
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation.
9  */
10 
11 #include <linux/module.h>
12 
13 #include <linux/stringify.h>
14 #include <linux/kernel.h>
15 #include <linux/timer.h>
16 #include <linux/errno.h>
17 #include <linux/ioport.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 #include <linux/interrupt.h>
21 #include <linux/pci.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/skbuff.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/bitops.h>
27 #include <linux/io.h>
28 #include <linux/irq.h>
29 #include <linux/delay.h>
30 #include <asm/byteorder.h>
31 #include <asm/page.h>
32 #include <linux/time.h>
33 #include <linux/mii.h>
34 #include <linux/mdio.h>
35 #include <linux/if.h>
36 #include <linux/if_vlan.h>
37 #include <linux/if_bridge.h>
38 #include <linux/rtc.h>
39 #include <linux/bpf.h>
40 #include <net/gro.h>
41 #include <net/ip.h>
42 #include <net/tcp.h>
43 #include <net/udp.h>
44 #include <net/checksum.h>
45 #include <net/ip6_checksum.h>
46 #include <net/udp_tunnel.h>
47 #include <linux/workqueue.h>
48 #include <linux/prefetch.h>
49 #include <linux/cache.h>
50 #include <linux/log2.h>
51 #include <linux/aer.h>
52 #include <linux/bitmap.h>
53 #include <linux/cpu_rmap.h>
54 #include <linux/cpumask.h>
55 #include <net/pkt_cls.h>
56 #include <linux/hwmon.h>
57 #include <linux/hwmon-sysfs.h>
58 #include <net/page_pool.h>
59 #include <linux/align.h>
60 
61 #include "bnxt_hsi.h"
62 #include "bnxt.h"
63 #include "bnxt_hwrm.h"
64 #include "bnxt_ulp.h"
65 #include "bnxt_sriov.h"
66 #include "bnxt_ethtool.h"
67 #include "bnxt_dcb.h"
68 #include "bnxt_xdp.h"
69 #include "bnxt_ptp.h"
70 #include "bnxt_vfr.h"
71 #include "bnxt_tc.h"
72 #include "bnxt_devlink.h"
73 #include "bnxt_debugfs.h"
74 
75 #define BNXT_TX_TIMEOUT		(5 * HZ)
76 #define BNXT_DEF_MSG_ENABLE	(NETIF_MSG_DRV | NETIF_MSG_HW | \
77 				 NETIF_MSG_TX_ERR)
78 
79 MODULE_LICENSE("GPL");
80 MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
81 
82 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
83 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
84 #define BNXT_RX_COPY_THRESH 256
85 
86 #define BNXT_TX_PUSH_THRESH 164
87 
88 /* indexed by enum board_idx */
89 static const struct {
90 	char *name;
91 } board_info[] = {
92 	[BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" },
93 	[BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" },
94 	[BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
95 	[BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" },
96 	[BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" },
97 	[BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" },
98 	[BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" },
99 	[BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" },
100 	[BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" },
101 	[BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" },
102 	[BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" },
103 	[BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" },
104 	[BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" },
105 	[BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" },
106 	[BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" },
107 	[BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" },
108 	[BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" },
109 	[BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
110 	[BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" },
111 	[BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" },
112 	[BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" },
113 	[BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" },
114 	[BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" },
115 	[BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" },
116 	[BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" },
117 	[BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" },
118 	[BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" },
119 	[BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
120 	[BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" },
121 	[BCM57508] = { "Broadcom BCM57508 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
122 	[BCM57504] = { "Broadcom BCM57504 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
123 	[BCM57502] = { "Broadcom BCM57502 NetXtreme-E 10Gb/25Gb/50Gb Ethernet" },
124 	[BCM57508_NPAR] = { "Broadcom BCM57508 NetXtreme-E Ethernet Partition" },
125 	[BCM57504_NPAR] = { "Broadcom BCM57504 NetXtreme-E Ethernet Partition" },
126 	[BCM57502_NPAR] = { "Broadcom BCM57502 NetXtreme-E Ethernet Partition" },
127 	[BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" },
128 	[BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
129 	[BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
130 	[NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" },
131 	[NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" },
132 	[NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" },
133 	[NETXTREME_C_VF_HV] = { "Broadcom NetXtreme-C Virtual Function for Hyper-V" },
134 	[NETXTREME_E_VF_HV] = { "Broadcom NetXtreme-E Virtual Function for Hyper-V" },
135 	[NETXTREME_E_P5_VF] = { "Broadcom BCM5750X NetXtreme-E Ethernet Virtual Function" },
136 	[NETXTREME_E_P5_VF_HV] = { "Broadcom BCM5750X NetXtreme-E Virtual Function for Hyper-V" },
137 };
138 
139 static const struct pci_device_id bnxt_pci_tbl[] = {
140 	{ PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR },
141 	{ PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR },
142 	{ PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 },
143 	{ PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR },
144 	{ PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
145 	{ PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
146 	{ PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
147 	{ PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR },
148 	{ PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 },
149 	{ PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 },
150 	{ PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 },
151 	{ PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
152 	{ PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
153 	{ PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
154 	{ PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR },
155 	{ PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 },
156 	{ PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 },
157 	{ PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 },
158 	{ PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 },
159 	{ PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 },
160 	{ PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR },
161 	{ PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 },
162 	{ PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP },
163 	{ PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP },
164 	{ PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR },
165 	{ PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR },
166 	{ PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP },
167 	{ PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR },
168 	{ PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR },
169 	{ PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR },
170 	{ PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR },
171 	{ PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR },
172 	{ PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR },
173 	{ PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 },
174 	{ PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 },
175 	{ PCI_VDEVICE(BROADCOM, 0x1750), .driver_data = BCM57508 },
176 	{ PCI_VDEVICE(BROADCOM, 0x1751), .driver_data = BCM57504 },
177 	{ PCI_VDEVICE(BROADCOM, 0x1752), .driver_data = BCM57502 },
178 	{ PCI_VDEVICE(BROADCOM, 0x1800), .driver_data = BCM57508_NPAR },
179 	{ PCI_VDEVICE(BROADCOM, 0x1801), .driver_data = BCM57504_NPAR },
180 	{ PCI_VDEVICE(BROADCOM, 0x1802), .driver_data = BCM57502_NPAR },
181 	{ PCI_VDEVICE(BROADCOM, 0x1803), .driver_data = BCM57508_NPAR },
182 	{ PCI_VDEVICE(BROADCOM, 0x1804), .driver_data = BCM57504_NPAR },
183 	{ PCI_VDEVICE(BROADCOM, 0x1805), .driver_data = BCM57502_NPAR },
184 	{ PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 },
185 	{ PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 },
186 #ifdef CONFIG_BNXT_SRIOV
187 	{ PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF },
188 	{ PCI_VDEVICE(BROADCOM, 0x1607), .driver_data = NETXTREME_E_VF_HV },
189 	{ PCI_VDEVICE(BROADCOM, 0x1608), .driver_data = NETXTREME_E_VF_HV },
190 	{ PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF },
191 	{ PCI_VDEVICE(BROADCOM, 0x16bd), .driver_data = NETXTREME_E_VF_HV },
192 	{ PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF },
193 	{ PCI_VDEVICE(BROADCOM, 0x16c2), .driver_data = NETXTREME_C_VF_HV },
194 	{ PCI_VDEVICE(BROADCOM, 0x16c3), .driver_data = NETXTREME_C_VF_HV },
195 	{ PCI_VDEVICE(BROADCOM, 0x16c4), .driver_data = NETXTREME_E_VF_HV },
196 	{ PCI_VDEVICE(BROADCOM, 0x16c5), .driver_data = NETXTREME_E_VF_HV },
197 	{ PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF },
198 	{ PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF },
199 	{ PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF },
200 	{ PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF },
201 	{ PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF },
202 	{ PCI_VDEVICE(BROADCOM, 0x16e6), .driver_data = NETXTREME_C_VF_HV },
203 	{ PCI_VDEVICE(BROADCOM, 0x1806), .driver_data = NETXTREME_E_P5_VF },
204 	{ PCI_VDEVICE(BROADCOM, 0x1807), .driver_data = NETXTREME_E_P5_VF },
205 	{ PCI_VDEVICE(BROADCOM, 0x1808), .driver_data = NETXTREME_E_P5_VF_HV },
206 	{ PCI_VDEVICE(BROADCOM, 0x1809), .driver_data = NETXTREME_E_P5_VF_HV },
207 	{ PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF },
208 #endif
209 	{ 0 }
210 };
211 
212 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
213 
214 static const u16 bnxt_vf_req_snif[] = {
215 	HWRM_FUNC_CFG,
216 	HWRM_FUNC_VF_CFG,
217 	HWRM_PORT_PHY_QCFG,
218 	HWRM_CFA_L2_FILTER_ALLOC,
219 };
220 
221 static const u16 bnxt_async_events_arr[] = {
222 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE,
223 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE,
224 	ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD,
225 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED,
226 	ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE,
227 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE,
228 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE,
229 	ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY,
230 	ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY,
231 	ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION,
232 	ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE,
233 	ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG,
234 	ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST,
235 	ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP,
236 	ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT,
237 	ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE,
238 };
239 
240 static struct workqueue_struct *bnxt_pf_wq;
241 
242 static bool bnxt_vf_pciid(enum board_idx idx)
243 {
244 	return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF ||
245 		idx == NETXTREME_S_VF || idx == NETXTREME_C_VF_HV ||
246 		idx == NETXTREME_E_VF_HV || idx == NETXTREME_E_P5_VF ||
247 		idx == NETXTREME_E_P5_VF_HV);
248 }
249 
250 #define DB_CP_REARM_FLAGS	(DB_KEY_CP | DB_IDX_VALID)
251 #define DB_CP_FLAGS		(DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
252 #define DB_CP_IRQ_DIS_FLAGS	(DB_KEY_CP | DB_IRQ_DIS)
253 
254 #define BNXT_CP_DB_IRQ_DIS(db)						\
255 		writel(DB_CP_IRQ_DIS_FLAGS, db)
256 
257 #define BNXT_DB_CQ(db, idx)						\
258 	writel(DB_CP_FLAGS | RING_CMP(idx), (db)->doorbell)
259 
260 #define BNXT_DB_NQ_P5(db, idx)						\
261 	bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ | RING_CMP(idx),	\
262 		    (db)->doorbell)
263 
264 #define BNXT_DB_CQ_ARM(db, idx)						\
265 	writel(DB_CP_REARM_FLAGS | RING_CMP(idx), (db)->doorbell)
266 
267 #define BNXT_DB_NQ_ARM_P5(db, idx)					\
268 	bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ_ARM | RING_CMP(idx),\
269 		    (db)->doorbell)
270 
271 static void bnxt_db_nq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
272 {
273 	if (bp->flags & BNXT_FLAG_CHIP_P5)
274 		BNXT_DB_NQ_P5(db, idx);
275 	else
276 		BNXT_DB_CQ(db, idx);
277 }
278 
279 static void bnxt_db_nq_arm(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
280 {
281 	if (bp->flags & BNXT_FLAG_CHIP_P5)
282 		BNXT_DB_NQ_ARM_P5(db, idx);
283 	else
284 		BNXT_DB_CQ_ARM(db, idx);
285 }
286 
287 static void bnxt_db_cq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
288 {
289 	if (bp->flags & BNXT_FLAG_CHIP_P5)
290 		bnxt_writeq(bp, db->db_key64 | DBR_TYPE_CQ_ARMALL |
291 			    RING_CMP(idx), db->doorbell);
292 	else
293 		BNXT_DB_CQ(db, idx);
294 }
295 
296 const u16 bnxt_lhint_arr[] = {
297 	TX_BD_FLAGS_LHINT_512_AND_SMALLER,
298 	TX_BD_FLAGS_LHINT_512_TO_1023,
299 	TX_BD_FLAGS_LHINT_1024_TO_2047,
300 	TX_BD_FLAGS_LHINT_1024_TO_2047,
301 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
302 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
303 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
304 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
305 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
306 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
307 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
308 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
309 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
310 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
311 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
312 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
313 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
314 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
315 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
316 };
317 
318 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb)
319 {
320 	struct metadata_dst *md_dst = skb_metadata_dst(skb);
321 
322 	if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX)
323 		return 0;
324 
325 	return md_dst->u.port_info.port_id;
326 }
327 
328 static void bnxt_txr_db_kick(struct bnxt *bp, struct bnxt_tx_ring_info *txr,
329 			     u16 prod)
330 {
331 	bnxt_db_write(bp, &txr->tx_db, prod);
332 	txr->kick_pending = 0;
333 }
334 
335 static bool bnxt_txr_netif_try_stop_queue(struct bnxt *bp,
336 					  struct bnxt_tx_ring_info *txr,
337 					  struct netdev_queue *txq)
338 {
339 	netif_tx_stop_queue(txq);
340 
341 	/* netif_tx_stop_queue() must be done before checking
342 	 * tx index in bnxt_tx_avail() below, because in
343 	 * bnxt_tx_int(), we update tx index before checking for
344 	 * netif_tx_queue_stopped().
345 	 */
346 	smp_mb();
347 	if (bnxt_tx_avail(bp, txr) >= bp->tx_wake_thresh) {
348 		netif_tx_wake_queue(txq);
349 		return false;
350 	}
351 
352 	return true;
353 }
354 
355 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
356 {
357 	struct bnxt *bp = netdev_priv(dev);
358 	struct tx_bd *txbd;
359 	struct tx_bd_ext *txbd1;
360 	struct netdev_queue *txq;
361 	int i;
362 	dma_addr_t mapping;
363 	unsigned int length, pad = 0;
364 	u32 len, free_size, vlan_tag_flags, cfa_action, flags;
365 	u16 prod, last_frag;
366 	struct pci_dev *pdev = bp->pdev;
367 	struct bnxt_tx_ring_info *txr;
368 	struct bnxt_sw_tx_bd *tx_buf;
369 	__le32 lflags = 0;
370 
371 	i = skb_get_queue_mapping(skb);
372 	if (unlikely(i >= bp->tx_nr_rings)) {
373 		dev_kfree_skb_any(skb);
374 		dev_core_stats_tx_dropped_inc(dev);
375 		return NETDEV_TX_OK;
376 	}
377 
378 	txq = netdev_get_tx_queue(dev, i);
379 	txr = &bp->tx_ring[bp->tx_ring_map[i]];
380 	prod = txr->tx_prod;
381 
382 	free_size = bnxt_tx_avail(bp, txr);
383 	if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
384 		/* We must have raced with NAPI cleanup */
385 		if (net_ratelimit() && txr->kick_pending)
386 			netif_warn(bp, tx_err, dev,
387 				   "bnxt: ring busy w/ flush pending!\n");
388 		if (bnxt_txr_netif_try_stop_queue(bp, txr, txq))
389 			return NETDEV_TX_BUSY;
390 	}
391 
392 	if (unlikely(ipv6_hopopt_jumbo_remove(skb)))
393 		goto tx_free;
394 
395 	length = skb->len;
396 	len = skb_headlen(skb);
397 	last_frag = skb_shinfo(skb)->nr_frags;
398 
399 	txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
400 
401 	txbd->tx_bd_opaque = prod;
402 
403 	tx_buf = &txr->tx_buf_ring[prod];
404 	tx_buf->skb = skb;
405 	tx_buf->nr_frags = last_frag;
406 
407 	vlan_tag_flags = 0;
408 	cfa_action = bnxt_xmit_get_cfa_action(skb);
409 	if (skb_vlan_tag_present(skb)) {
410 		vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
411 				 skb_vlan_tag_get(skb);
412 		/* Currently supports 8021Q, 8021AD vlan offloads
413 		 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
414 		 */
415 		if (skb->vlan_proto == htons(ETH_P_8021Q))
416 			vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
417 	}
418 
419 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
420 		struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
421 
422 		if (ptp && ptp->tx_tstamp_en && !skb_is_gso(skb) &&
423 		    atomic_dec_if_positive(&ptp->tx_avail) >= 0) {
424 			if (!bnxt_ptp_parse(skb, &ptp->tx_seqid,
425 					    &ptp->tx_hdr_off)) {
426 				if (vlan_tag_flags)
427 					ptp->tx_hdr_off += VLAN_HLEN;
428 				lflags |= cpu_to_le32(TX_BD_FLAGS_STAMP);
429 				skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
430 			} else {
431 				atomic_inc(&bp->ptp_cfg->tx_avail);
432 			}
433 		}
434 	}
435 
436 	if (unlikely(skb->no_fcs))
437 		lflags |= cpu_to_le32(TX_BD_FLAGS_NO_CRC);
438 
439 	if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh &&
440 	    !lflags) {
441 		struct tx_push_buffer *tx_push_buf = txr->tx_push;
442 		struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
443 		struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
444 		void __iomem *db = txr->tx_db.doorbell;
445 		void *pdata = tx_push_buf->data;
446 		u64 *end;
447 		int j, push_len;
448 
449 		/* Set COAL_NOW to be ready quickly for the next push */
450 		tx_push->tx_bd_len_flags_type =
451 			cpu_to_le32((length << TX_BD_LEN_SHIFT) |
452 					TX_BD_TYPE_LONG_TX_BD |
453 					TX_BD_FLAGS_LHINT_512_AND_SMALLER |
454 					TX_BD_FLAGS_COAL_NOW |
455 					TX_BD_FLAGS_PACKET_END |
456 					(2 << TX_BD_FLAGS_BD_CNT_SHIFT));
457 
458 		if (skb->ip_summed == CHECKSUM_PARTIAL)
459 			tx_push1->tx_bd_hsize_lflags =
460 					cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
461 		else
462 			tx_push1->tx_bd_hsize_lflags = 0;
463 
464 		tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
465 		tx_push1->tx_bd_cfa_action =
466 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
467 
468 		end = pdata + length;
469 		end = PTR_ALIGN(end, 8) - 1;
470 		*end = 0;
471 
472 		skb_copy_from_linear_data(skb, pdata, len);
473 		pdata += len;
474 		for (j = 0; j < last_frag; j++) {
475 			skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
476 			void *fptr;
477 
478 			fptr = skb_frag_address_safe(frag);
479 			if (!fptr)
480 				goto normal_tx;
481 
482 			memcpy(pdata, fptr, skb_frag_size(frag));
483 			pdata += skb_frag_size(frag);
484 		}
485 
486 		txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
487 		txbd->tx_bd_haddr = txr->data_mapping;
488 		prod = NEXT_TX(prod);
489 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
490 		memcpy(txbd, tx_push1, sizeof(*txbd));
491 		prod = NEXT_TX(prod);
492 		tx_push->doorbell =
493 			cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod);
494 		txr->tx_prod = prod;
495 
496 		tx_buf->is_push = 1;
497 		netdev_tx_sent_queue(txq, skb->len);
498 		wmb();	/* Sync is_push and byte queue before pushing data */
499 
500 		push_len = (length + sizeof(*tx_push) + 7) / 8;
501 		if (push_len > 16) {
502 			__iowrite64_copy(db, tx_push_buf, 16);
503 			__iowrite32_copy(db + 4, tx_push_buf + 1,
504 					 (push_len - 16) << 1);
505 		} else {
506 			__iowrite64_copy(db, tx_push_buf, push_len);
507 		}
508 
509 		goto tx_done;
510 	}
511 
512 normal_tx:
513 	if (length < BNXT_MIN_PKT_SIZE) {
514 		pad = BNXT_MIN_PKT_SIZE - length;
515 		if (skb_pad(skb, pad))
516 			/* SKB already freed. */
517 			goto tx_kick_pending;
518 		length = BNXT_MIN_PKT_SIZE;
519 	}
520 
521 	mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
522 
523 	if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
524 		goto tx_free;
525 
526 	dma_unmap_addr_set(tx_buf, mapping, mapping);
527 	flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
528 		((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
529 
530 	txbd->tx_bd_haddr = cpu_to_le64(mapping);
531 
532 	prod = NEXT_TX(prod);
533 	txbd1 = (struct tx_bd_ext *)
534 		&txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
535 
536 	txbd1->tx_bd_hsize_lflags = lflags;
537 	if (skb_is_gso(skb)) {
538 		u32 hdr_len;
539 
540 		if (skb->encapsulation)
541 			hdr_len = skb_inner_tcp_all_headers(skb);
542 		else
543 			hdr_len = skb_tcp_all_headers(skb);
544 
545 		txbd1->tx_bd_hsize_lflags |= cpu_to_le32(TX_BD_FLAGS_LSO |
546 					TX_BD_FLAGS_T_IPID |
547 					(hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
548 		length = skb_shinfo(skb)->gso_size;
549 		txbd1->tx_bd_mss = cpu_to_le32(length);
550 		length += hdr_len;
551 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
552 		txbd1->tx_bd_hsize_lflags |=
553 			cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
554 		txbd1->tx_bd_mss = 0;
555 	}
556 
557 	length >>= 9;
558 	if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) {
559 		dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n",
560 				     skb->len);
561 		i = 0;
562 		goto tx_dma_error;
563 	}
564 	flags |= bnxt_lhint_arr[length];
565 	txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
566 
567 	txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
568 	txbd1->tx_bd_cfa_action =
569 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
570 	for (i = 0; i < last_frag; i++) {
571 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
572 
573 		prod = NEXT_TX(prod);
574 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
575 
576 		len = skb_frag_size(frag);
577 		mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
578 					   DMA_TO_DEVICE);
579 
580 		if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
581 			goto tx_dma_error;
582 
583 		tx_buf = &txr->tx_buf_ring[prod];
584 		dma_unmap_addr_set(tx_buf, mapping, mapping);
585 
586 		txbd->tx_bd_haddr = cpu_to_le64(mapping);
587 
588 		flags = len << TX_BD_LEN_SHIFT;
589 		txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
590 	}
591 
592 	flags &= ~TX_BD_LEN;
593 	txbd->tx_bd_len_flags_type =
594 		cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
595 			    TX_BD_FLAGS_PACKET_END);
596 
597 	netdev_tx_sent_queue(txq, skb->len);
598 
599 	skb_tx_timestamp(skb);
600 
601 	/* Sync BD data before updating doorbell */
602 	wmb();
603 
604 	prod = NEXT_TX(prod);
605 	txr->tx_prod = prod;
606 
607 	if (!netdev_xmit_more() || netif_xmit_stopped(txq))
608 		bnxt_txr_db_kick(bp, txr, prod);
609 	else
610 		txr->kick_pending = 1;
611 
612 tx_done:
613 
614 	if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
615 		if (netdev_xmit_more() && !tx_buf->is_push)
616 			bnxt_txr_db_kick(bp, txr, prod);
617 
618 		bnxt_txr_netif_try_stop_queue(bp, txr, txq);
619 	}
620 	return NETDEV_TX_OK;
621 
622 tx_dma_error:
623 	if (BNXT_TX_PTP_IS_SET(lflags))
624 		atomic_inc(&bp->ptp_cfg->tx_avail);
625 
626 	last_frag = i;
627 
628 	/* start back at beginning and unmap skb */
629 	prod = txr->tx_prod;
630 	tx_buf = &txr->tx_buf_ring[prod];
631 	dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
632 			 skb_headlen(skb), DMA_TO_DEVICE);
633 	prod = NEXT_TX(prod);
634 
635 	/* unmap remaining mapped pages */
636 	for (i = 0; i < last_frag; i++) {
637 		prod = NEXT_TX(prod);
638 		tx_buf = &txr->tx_buf_ring[prod];
639 		dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
640 			       skb_frag_size(&skb_shinfo(skb)->frags[i]),
641 			       DMA_TO_DEVICE);
642 	}
643 
644 tx_free:
645 	dev_kfree_skb_any(skb);
646 tx_kick_pending:
647 	if (txr->kick_pending)
648 		bnxt_txr_db_kick(bp, txr, txr->tx_prod);
649 	txr->tx_buf_ring[txr->tx_prod].skb = NULL;
650 	dev_core_stats_tx_dropped_inc(dev);
651 	return NETDEV_TX_OK;
652 }
653 
654 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts)
655 {
656 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
657 	struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index);
658 	u16 cons = txr->tx_cons;
659 	struct pci_dev *pdev = bp->pdev;
660 	int i;
661 	unsigned int tx_bytes = 0;
662 
663 	for (i = 0; i < nr_pkts; i++) {
664 		struct bnxt_sw_tx_bd *tx_buf;
665 		struct sk_buff *skb;
666 		int j, last;
667 
668 		tx_buf = &txr->tx_buf_ring[cons];
669 		cons = NEXT_TX(cons);
670 		skb = tx_buf->skb;
671 		tx_buf->skb = NULL;
672 
673 		tx_bytes += skb->len;
674 
675 		if (tx_buf->is_push) {
676 			tx_buf->is_push = 0;
677 			goto next_tx_int;
678 		}
679 
680 		dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
681 				 skb_headlen(skb), DMA_TO_DEVICE);
682 		last = tx_buf->nr_frags;
683 
684 		for (j = 0; j < last; j++) {
685 			cons = NEXT_TX(cons);
686 			tx_buf = &txr->tx_buf_ring[cons];
687 			dma_unmap_page(
688 				&pdev->dev,
689 				dma_unmap_addr(tx_buf, mapping),
690 				skb_frag_size(&skb_shinfo(skb)->frags[j]),
691 				DMA_TO_DEVICE);
692 		}
693 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
694 			if (bp->flags & BNXT_FLAG_CHIP_P5) {
695 				/* PTP worker takes ownership of the skb */
696 				if (!bnxt_get_tx_ts_p5(bp, skb))
697 					skb = NULL;
698 				else
699 					atomic_inc(&bp->ptp_cfg->tx_avail);
700 			}
701 		}
702 
703 next_tx_int:
704 		cons = NEXT_TX(cons);
705 
706 		dev_kfree_skb_any(skb);
707 	}
708 
709 	netdev_tx_completed_queue(txq, nr_pkts, tx_bytes);
710 	txr->tx_cons = cons;
711 
712 	/* Need to make the tx_cons update visible to bnxt_start_xmit()
713 	 * before checking for netif_tx_queue_stopped().  Without the
714 	 * memory barrier, there is a small possibility that bnxt_start_xmit()
715 	 * will miss it and cause the queue to be stopped forever.
716 	 */
717 	smp_mb();
718 
719 	if (unlikely(netif_tx_queue_stopped(txq)) &&
720 	    bnxt_tx_avail(bp, txr) >= bp->tx_wake_thresh &&
721 	    READ_ONCE(txr->dev_state) != BNXT_DEV_STATE_CLOSING)
722 		netif_tx_wake_queue(txq);
723 }
724 
725 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping,
726 					 struct bnxt_rx_ring_info *rxr,
727 					 gfp_t gfp)
728 {
729 	struct device *dev = &bp->pdev->dev;
730 	struct page *page;
731 
732 	page = page_pool_dev_alloc_pages(rxr->page_pool);
733 	if (!page)
734 		return NULL;
735 
736 	*mapping = dma_map_page_attrs(dev, page, 0, PAGE_SIZE, bp->rx_dir,
737 				      DMA_ATTR_WEAK_ORDERING);
738 	if (dma_mapping_error(dev, *mapping)) {
739 		page_pool_recycle_direct(rxr->page_pool, page);
740 		return NULL;
741 	}
742 	return page;
743 }
744 
745 static inline u8 *__bnxt_alloc_rx_frag(struct bnxt *bp, dma_addr_t *mapping,
746 				       gfp_t gfp)
747 {
748 	u8 *data;
749 	struct pci_dev *pdev = bp->pdev;
750 
751 	if (gfp == GFP_ATOMIC)
752 		data = napi_alloc_frag(bp->rx_buf_size);
753 	else
754 		data = netdev_alloc_frag(bp->rx_buf_size);
755 	if (!data)
756 		return NULL;
757 
758 	*mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset,
759 					bp->rx_buf_use_size, bp->rx_dir,
760 					DMA_ATTR_WEAK_ORDERING);
761 
762 	if (dma_mapping_error(&pdev->dev, *mapping)) {
763 		skb_free_frag(data);
764 		data = NULL;
765 	}
766 	return data;
767 }
768 
769 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
770 		       u16 prod, gfp_t gfp)
771 {
772 	struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
773 	struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
774 	dma_addr_t mapping;
775 
776 	if (BNXT_RX_PAGE_MODE(bp)) {
777 		struct page *page =
778 			__bnxt_alloc_rx_page(bp, &mapping, rxr, gfp);
779 
780 		if (!page)
781 			return -ENOMEM;
782 
783 		mapping += bp->rx_dma_offset;
784 		rx_buf->data = page;
785 		rx_buf->data_ptr = page_address(page) + bp->rx_offset;
786 	} else {
787 		u8 *data = __bnxt_alloc_rx_frag(bp, &mapping, gfp);
788 
789 		if (!data)
790 			return -ENOMEM;
791 
792 		rx_buf->data = data;
793 		rx_buf->data_ptr = data + bp->rx_offset;
794 	}
795 	rx_buf->mapping = mapping;
796 
797 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
798 	return 0;
799 }
800 
801 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data)
802 {
803 	u16 prod = rxr->rx_prod;
804 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
805 	struct rx_bd *cons_bd, *prod_bd;
806 
807 	prod_rx_buf = &rxr->rx_buf_ring[prod];
808 	cons_rx_buf = &rxr->rx_buf_ring[cons];
809 
810 	prod_rx_buf->data = data;
811 	prod_rx_buf->data_ptr = cons_rx_buf->data_ptr;
812 
813 	prod_rx_buf->mapping = cons_rx_buf->mapping;
814 
815 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
816 	cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
817 
818 	prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
819 }
820 
821 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
822 {
823 	u16 next, max = rxr->rx_agg_bmap_size;
824 
825 	next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
826 	if (next >= max)
827 		next = find_first_zero_bit(rxr->rx_agg_bmap, max);
828 	return next;
829 }
830 
831 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
832 				     struct bnxt_rx_ring_info *rxr,
833 				     u16 prod, gfp_t gfp)
834 {
835 	struct rx_bd *rxbd =
836 		&rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
837 	struct bnxt_sw_rx_agg_bd *rx_agg_buf;
838 	struct pci_dev *pdev = bp->pdev;
839 	struct page *page;
840 	dma_addr_t mapping;
841 	u16 sw_prod = rxr->rx_sw_agg_prod;
842 	unsigned int offset = 0;
843 
844 	if (BNXT_RX_PAGE_MODE(bp)) {
845 		page = __bnxt_alloc_rx_page(bp, &mapping, rxr, gfp);
846 
847 		if (!page)
848 			return -ENOMEM;
849 
850 	} else {
851 		if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) {
852 			page = rxr->rx_page;
853 			if (!page) {
854 				page = alloc_page(gfp);
855 				if (!page)
856 					return -ENOMEM;
857 				rxr->rx_page = page;
858 				rxr->rx_page_offset = 0;
859 			}
860 			offset = rxr->rx_page_offset;
861 			rxr->rx_page_offset += BNXT_RX_PAGE_SIZE;
862 			if (rxr->rx_page_offset == PAGE_SIZE)
863 				rxr->rx_page = NULL;
864 			else
865 				get_page(page);
866 		} else {
867 			page = alloc_page(gfp);
868 			if (!page)
869 				return -ENOMEM;
870 		}
871 
872 		mapping = dma_map_page_attrs(&pdev->dev, page, offset,
873 					     BNXT_RX_PAGE_SIZE, DMA_FROM_DEVICE,
874 					     DMA_ATTR_WEAK_ORDERING);
875 		if (dma_mapping_error(&pdev->dev, mapping)) {
876 			__free_page(page);
877 			return -EIO;
878 		}
879 	}
880 
881 	if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
882 		sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
883 
884 	__set_bit(sw_prod, rxr->rx_agg_bmap);
885 	rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
886 	rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod);
887 
888 	rx_agg_buf->page = page;
889 	rx_agg_buf->offset = offset;
890 	rx_agg_buf->mapping = mapping;
891 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
892 	rxbd->rx_bd_opaque = sw_prod;
893 	return 0;
894 }
895 
896 static struct rx_agg_cmp *bnxt_get_agg(struct bnxt *bp,
897 				       struct bnxt_cp_ring_info *cpr,
898 				       u16 cp_cons, u16 curr)
899 {
900 	struct rx_agg_cmp *agg;
901 
902 	cp_cons = RING_CMP(ADV_RAW_CMP(cp_cons, curr));
903 	agg = (struct rx_agg_cmp *)
904 		&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
905 	return agg;
906 }
907 
908 static struct rx_agg_cmp *bnxt_get_tpa_agg_p5(struct bnxt *bp,
909 					      struct bnxt_rx_ring_info *rxr,
910 					      u16 agg_id, u16 curr)
911 {
912 	struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[agg_id];
913 
914 	return &tpa_info->agg_arr[curr];
915 }
916 
917 static void bnxt_reuse_rx_agg_bufs(struct bnxt_cp_ring_info *cpr, u16 idx,
918 				   u16 start, u32 agg_bufs, bool tpa)
919 {
920 	struct bnxt_napi *bnapi = cpr->bnapi;
921 	struct bnxt *bp = bnapi->bp;
922 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
923 	u16 prod = rxr->rx_agg_prod;
924 	u16 sw_prod = rxr->rx_sw_agg_prod;
925 	bool p5_tpa = false;
926 	u32 i;
927 
928 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa)
929 		p5_tpa = true;
930 
931 	for (i = 0; i < agg_bufs; i++) {
932 		u16 cons;
933 		struct rx_agg_cmp *agg;
934 		struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
935 		struct rx_bd *prod_bd;
936 		struct page *page;
937 
938 		if (p5_tpa)
939 			agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, start + i);
940 		else
941 			agg = bnxt_get_agg(bp, cpr, idx, start + i);
942 		cons = agg->rx_agg_cmp_opaque;
943 		__clear_bit(cons, rxr->rx_agg_bmap);
944 
945 		if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
946 			sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
947 
948 		__set_bit(sw_prod, rxr->rx_agg_bmap);
949 		prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
950 		cons_rx_buf = &rxr->rx_agg_ring[cons];
951 
952 		/* It is possible for sw_prod to be equal to cons, so
953 		 * set cons_rx_buf->page to NULL first.
954 		 */
955 		page = cons_rx_buf->page;
956 		cons_rx_buf->page = NULL;
957 		prod_rx_buf->page = page;
958 		prod_rx_buf->offset = cons_rx_buf->offset;
959 
960 		prod_rx_buf->mapping = cons_rx_buf->mapping;
961 
962 		prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
963 
964 		prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
965 		prod_bd->rx_bd_opaque = sw_prod;
966 
967 		prod = NEXT_RX_AGG(prod);
968 		sw_prod = NEXT_RX_AGG(sw_prod);
969 	}
970 	rxr->rx_agg_prod = prod;
971 	rxr->rx_sw_agg_prod = sw_prod;
972 }
973 
974 static struct sk_buff *bnxt_rx_multi_page_skb(struct bnxt *bp,
975 					      struct bnxt_rx_ring_info *rxr,
976 					      u16 cons, void *data, u8 *data_ptr,
977 					      dma_addr_t dma_addr,
978 					      unsigned int offset_and_len)
979 {
980 	unsigned int len = offset_and_len & 0xffff;
981 	struct page *page = data;
982 	u16 prod = rxr->rx_prod;
983 	struct sk_buff *skb;
984 	int err;
985 
986 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
987 	if (unlikely(err)) {
988 		bnxt_reuse_rx_data(rxr, cons, data);
989 		return NULL;
990 	}
991 	dma_addr -= bp->rx_dma_offset;
992 	dma_unmap_page_attrs(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir,
993 			     DMA_ATTR_WEAK_ORDERING);
994 	skb = build_skb(page_address(page), BNXT_PAGE_MODE_BUF_SIZE +
995 					    bp->rx_dma_offset);
996 	if (!skb) {
997 		__free_page(page);
998 		return NULL;
999 	}
1000 	skb_mark_for_recycle(skb);
1001 	skb_reserve(skb, bp->rx_dma_offset);
1002 	__skb_put(skb, len);
1003 
1004 	return skb;
1005 }
1006 
1007 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp,
1008 					struct bnxt_rx_ring_info *rxr,
1009 					u16 cons, void *data, u8 *data_ptr,
1010 					dma_addr_t dma_addr,
1011 					unsigned int offset_and_len)
1012 {
1013 	unsigned int payload = offset_and_len >> 16;
1014 	unsigned int len = offset_and_len & 0xffff;
1015 	skb_frag_t *frag;
1016 	struct page *page = data;
1017 	u16 prod = rxr->rx_prod;
1018 	struct sk_buff *skb;
1019 	int off, err;
1020 
1021 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
1022 	if (unlikely(err)) {
1023 		bnxt_reuse_rx_data(rxr, cons, data);
1024 		return NULL;
1025 	}
1026 	dma_addr -= bp->rx_dma_offset;
1027 	dma_unmap_page_attrs(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir,
1028 			     DMA_ATTR_WEAK_ORDERING);
1029 
1030 	if (unlikely(!payload))
1031 		payload = eth_get_headlen(bp->dev, data_ptr, len);
1032 
1033 	skb = napi_alloc_skb(&rxr->bnapi->napi, payload);
1034 	if (!skb) {
1035 		__free_page(page);
1036 		return NULL;
1037 	}
1038 
1039 	skb_mark_for_recycle(skb);
1040 	off = (void *)data_ptr - page_address(page);
1041 	skb_add_rx_frag(skb, 0, page, off, len, PAGE_SIZE);
1042 	memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN,
1043 	       payload + NET_IP_ALIGN);
1044 
1045 	frag = &skb_shinfo(skb)->frags[0];
1046 	skb_frag_size_sub(frag, payload);
1047 	skb_frag_off_add(frag, payload);
1048 	skb->data_len -= payload;
1049 	skb->tail += payload;
1050 
1051 	return skb;
1052 }
1053 
1054 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
1055 				   struct bnxt_rx_ring_info *rxr, u16 cons,
1056 				   void *data, u8 *data_ptr,
1057 				   dma_addr_t dma_addr,
1058 				   unsigned int offset_and_len)
1059 {
1060 	u16 prod = rxr->rx_prod;
1061 	struct sk_buff *skb;
1062 	int err;
1063 
1064 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
1065 	if (unlikely(err)) {
1066 		bnxt_reuse_rx_data(rxr, cons, data);
1067 		return NULL;
1068 	}
1069 
1070 	skb = build_skb(data, bp->rx_buf_size);
1071 	dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
1072 			       bp->rx_dir, DMA_ATTR_WEAK_ORDERING);
1073 	if (!skb) {
1074 		skb_free_frag(data);
1075 		return NULL;
1076 	}
1077 
1078 	skb_reserve(skb, bp->rx_offset);
1079 	skb_put(skb, offset_and_len & 0xffff);
1080 	return skb;
1081 }
1082 
1083 static u32 __bnxt_rx_agg_pages(struct bnxt *bp,
1084 			       struct bnxt_cp_ring_info *cpr,
1085 			       struct skb_shared_info *shinfo,
1086 			       u16 idx, u32 agg_bufs, bool tpa,
1087 			       struct xdp_buff *xdp)
1088 {
1089 	struct bnxt_napi *bnapi = cpr->bnapi;
1090 	struct pci_dev *pdev = bp->pdev;
1091 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1092 	u16 prod = rxr->rx_agg_prod;
1093 	u32 i, total_frag_len = 0;
1094 	bool p5_tpa = false;
1095 
1096 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa)
1097 		p5_tpa = true;
1098 
1099 	for (i = 0; i < agg_bufs; i++) {
1100 		skb_frag_t *frag = &shinfo->frags[i];
1101 		u16 cons, frag_len;
1102 		struct rx_agg_cmp *agg;
1103 		struct bnxt_sw_rx_agg_bd *cons_rx_buf;
1104 		struct page *page;
1105 		dma_addr_t mapping;
1106 
1107 		if (p5_tpa)
1108 			agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, i);
1109 		else
1110 			agg = bnxt_get_agg(bp, cpr, idx, i);
1111 		cons = agg->rx_agg_cmp_opaque;
1112 		frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
1113 			    RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
1114 
1115 		cons_rx_buf = &rxr->rx_agg_ring[cons];
1116 		skb_frag_off_set(frag, cons_rx_buf->offset);
1117 		skb_frag_size_set(frag, frag_len);
1118 		__skb_frag_set_page(frag, cons_rx_buf->page);
1119 		shinfo->nr_frags = i + 1;
1120 		__clear_bit(cons, rxr->rx_agg_bmap);
1121 
1122 		/* It is possible for bnxt_alloc_rx_page() to allocate
1123 		 * a sw_prod index that equals the cons index, so we
1124 		 * need to clear the cons entry now.
1125 		 */
1126 		mapping = cons_rx_buf->mapping;
1127 		page = cons_rx_buf->page;
1128 		cons_rx_buf->page = NULL;
1129 
1130 		if (xdp && page_is_pfmemalloc(page))
1131 			xdp_buff_set_frag_pfmemalloc(xdp);
1132 
1133 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
1134 			unsigned int nr_frags;
1135 
1136 			nr_frags = --shinfo->nr_frags;
1137 			__skb_frag_set_page(&shinfo->frags[nr_frags], NULL);
1138 			cons_rx_buf->page = page;
1139 
1140 			/* Update prod since possibly some pages have been
1141 			 * allocated already.
1142 			 */
1143 			rxr->rx_agg_prod = prod;
1144 			bnxt_reuse_rx_agg_bufs(cpr, idx, i, agg_bufs - i, tpa);
1145 			return 0;
1146 		}
1147 
1148 		dma_unmap_page_attrs(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE,
1149 				     bp->rx_dir,
1150 				     DMA_ATTR_WEAK_ORDERING);
1151 
1152 		total_frag_len += frag_len;
1153 		prod = NEXT_RX_AGG(prod);
1154 	}
1155 	rxr->rx_agg_prod = prod;
1156 	return total_frag_len;
1157 }
1158 
1159 static struct sk_buff *bnxt_rx_agg_pages_skb(struct bnxt *bp,
1160 					     struct bnxt_cp_ring_info *cpr,
1161 					     struct sk_buff *skb, u16 idx,
1162 					     u32 agg_bufs, bool tpa)
1163 {
1164 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1165 	u32 total_frag_len = 0;
1166 
1167 	total_frag_len = __bnxt_rx_agg_pages(bp, cpr, shinfo, idx,
1168 					     agg_bufs, tpa, NULL);
1169 	if (!total_frag_len) {
1170 		dev_kfree_skb(skb);
1171 		return NULL;
1172 	}
1173 
1174 	skb->data_len += total_frag_len;
1175 	skb->len += total_frag_len;
1176 	skb->truesize += PAGE_SIZE * agg_bufs;
1177 	return skb;
1178 }
1179 
1180 static u32 bnxt_rx_agg_pages_xdp(struct bnxt *bp,
1181 				 struct bnxt_cp_ring_info *cpr,
1182 				 struct xdp_buff *xdp, u16 idx,
1183 				 u32 agg_bufs, bool tpa)
1184 {
1185 	struct skb_shared_info *shinfo = xdp_get_shared_info_from_buff(xdp);
1186 	u32 total_frag_len = 0;
1187 
1188 	if (!xdp_buff_has_frags(xdp))
1189 		shinfo->nr_frags = 0;
1190 
1191 	total_frag_len = __bnxt_rx_agg_pages(bp, cpr, shinfo,
1192 					     idx, agg_bufs, tpa, xdp);
1193 	if (total_frag_len) {
1194 		xdp_buff_set_frags_flag(xdp);
1195 		shinfo->nr_frags = agg_bufs;
1196 		shinfo->xdp_frags_size = total_frag_len;
1197 	}
1198 	return total_frag_len;
1199 }
1200 
1201 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1202 			       u8 agg_bufs, u32 *raw_cons)
1203 {
1204 	u16 last;
1205 	struct rx_agg_cmp *agg;
1206 
1207 	*raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
1208 	last = RING_CMP(*raw_cons);
1209 	agg = (struct rx_agg_cmp *)
1210 		&cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
1211 	return RX_AGG_CMP_VALID(agg, *raw_cons);
1212 }
1213 
1214 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
1215 					    unsigned int len,
1216 					    dma_addr_t mapping)
1217 {
1218 	struct bnxt *bp = bnapi->bp;
1219 	struct pci_dev *pdev = bp->pdev;
1220 	struct sk_buff *skb;
1221 
1222 	skb = napi_alloc_skb(&bnapi->napi, len);
1223 	if (!skb)
1224 		return NULL;
1225 
1226 	dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh,
1227 				bp->rx_dir);
1228 
1229 	memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN,
1230 	       len + NET_IP_ALIGN);
1231 
1232 	dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh,
1233 				   bp->rx_dir);
1234 
1235 	skb_put(skb, len);
1236 	return skb;
1237 }
1238 
1239 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1240 			   u32 *raw_cons, void *cmp)
1241 {
1242 	struct rx_cmp *rxcmp = cmp;
1243 	u32 tmp_raw_cons = *raw_cons;
1244 	u8 cmp_type, agg_bufs = 0;
1245 
1246 	cmp_type = RX_CMP_TYPE(rxcmp);
1247 
1248 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1249 		agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) &
1250 			    RX_CMP_AGG_BUFS) >>
1251 			   RX_CMP_AGG_BUFS_SHIFT;
1252 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1253 		struct rx_tpa_end_cmp *tpa_end = cmp;
1254 
1255 		if (bp->flags & BNXT_FLAG_CHIP_P5)
1256 			return 0;
1257 
1258 		agg_bufs = TPA_END_AGG_BUFS(tpa_end);
1259 	}
1260 
1261 	if (agg_bufs) {
1262 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1263 			return -EBUSY;
1264 	}
1265 	*raw_cons = tmp_raw_cons;
1266 	return 0;
1267 }
1268 
1269 static void bnxt_queue_fw_reset_work(struct bnxt *bp, unsigned long delay)
1270 {
1271 	if (!(test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)))
1272 		return;
1273 
1274 	if (BNXT_PF(bp))
1275 		queue_delayed_work(bnxt_pf_wq, &bp->fw_reset_task, delay);
1276 	else
1277 		schedule_delayed_work(&bp->fw_reset_task, delay);
1278 }
1279 
1280 static void bnxt_queue_sp_work(struct bnxt *bp)
1281 {
1282 	if (BNXT_PF(bp))
1283 		queue_work(bnxt_pf_wq, &bp->sp_task);
1284 	else
1285 		schedule_work(&bp->sp_task);
1286 }
1287 
1288 static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
1289 {
1290 	if (!rxr->bnapi->in_reset) {
1291 		rxr->bnapi->in_reset = true;
1292 		if (bp->flags & BNXT_FLAG_CHIP_P5)
1293 			set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
1294 		else
1295 			set_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event);
1296 		bnxt_queue_sp_work(bp);
1297 	}
1298 	rxr->rx_next_cons = 0xffff;
1299 }
1300 
1301 static u16 bnxt_alloc_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id)
1302 {
1303 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1304 	u16 idx = agg_id & MAX_TPA_P5_MASK;
1305 
1306 	if (test_bit(idx, map->agg_idx_bmap))
1307 		idx = find_first_zero_bit(map->agg_idx_bmap,
1308 					  BNXT_AGG_IDX_BMAP_SIZE);
1309 	__set_bit(idx, map->agg_idx_bmap);
1310 	map->agg_id_tbl[agg_id] = idx;
1311 	return idx;
1312 }
1313 
1314 static void bnxt_free_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
1315 {
1316 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1317 
1318 	__clear_bit(idx, map->agg_idx_bmap);
1319 }
1320 
1321 static u16 bnxt_lookup_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id)
1322 {
1323 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1324 
1325 	return map->agg_id_tbl[agg_id];
1326 }
1327 
1328 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1329 			   struct rx_tpa_start_cmp *tpa_start,
1330 			   struct rx_tpa_start_cmp_ext *tpa_start1)
1331 {
1332 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
1333 	struct bnxt_tpa_info *tpa_info;
1334 	u16 cons, prod, agg_id;
1335 	struct rx_bd *prod_bd;
1336 	dma_addr_t mapping;
1337 
1338 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
1339 		agg_id = TPA_START_AGG_ID_P5(tpa_start);
1340 		agg_id = bnxt_alloc_agg_idx(rxr, agg_id);
1341 	} else {
1342 		agg_id = TPA_START_AGG_ID(tpa_start);
1343 	}
1344 	cons = tpa_start->rx_tpa_start_cmp_opaque;
1345 	prod = rxr->rx_prod;
1346 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1347 	prod_rx_buf = &rxr->rx_buf_ring[prod];
1348 	tpa_info = &rxr->rx_tpa[agg_id];
1349 
1350 	if (unlikely(cons != rxr->rx_next_cons ||
1351 		     TPA_START_ERROR(tpa_start))) {
1352 		netdev_warn(bp->dev, "TPA cons %x, expected cons %x, error code %x\n",
1353 			    cons, rxr->rx_next_cons,
1354 			    TPA_START_ERROR_CODE(tpa_start1));
1355 		bnxt_sched_reset(bp, rxr);
1356 		return;
1357 	}
1358 	/* Store cfa_code in tpa_info to use in tpa_end
1359 	 * completion processing.
1360 	 */
1361 	tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1);
1362 	prod_rx_buf->data = tpa_info->data;
1363 	prod_rx_buf->data_ptr = tpa_info->data_ptr;
1364 
1365 	mapping = tpa_info->mapping;
1366 	prod_rx_buf->mapping = mapping;
1367 
1368 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
1369 
1370 	prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
1371 
1372 	tpa_info->data = cons_rx_buf->data;
1373 	tpa_info->data_ptr = cons_rx_buf->data_ptr;
1374 	cons_rx_buf->data = NULL;
1375 	tpa_info->mapping = cons_rx_buf->mapping;
1376 
1377 	tpa_info->len =
1378 		le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
1379 				RX_TPA_START_CMP_LEN_SHIFT;
1380 	if (likely(TPA_START_HASH_VALID(tpa_start))) {
1381 		u32 hash_type = TPA_START_HASH_TYPE(tpa_start);
1382 
1383 		tpa_info->hash_type = PKT_HASH_TYPE_L4;
1384 		tpa_info->gso_type = SKB_GSO_TCPV4;
1385 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1386 		if (hash_type == 3 || TPA_START_IS_IPV6(tpa_start1))
1387 			tpa_info->gso_type = SKB_GSO_TCPV6;
1388 		tpa_info->rss_hash =
1389 			le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
1390 	} else {
1391 		tpa_info->hash_type = PKT_HASH_TYPE_NONE;
1392 		tpa_info->gso_type = 0;
1393 		netif_warn(bp, rx_err, bp->dev, "TPA packet without valid hash\n");
1394 	}
1395 	tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
1396 	tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
1397 	tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info);
1398 	tpa_info->agg_count = 0;
1399 
1400 	rxr->rx_prod = NEXT_RX(prod);
1401 	cons = NEXT_RX(cons);
1402 	rxr->rx_next_cons = NEXT_RX(cons);
1403 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1404 
1405 	bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
1406 	rxr->rx_prod = NEXT_RX(rxr->rx_prod);
1407 	cons_rx_buf->data = NULL;
1408 }
1409 
1410 static void bnxt_abort_tpa(struct bnxt_cp_ring_info *cpr, u16 idx, u32 agg_bufs)
1411 {
1412 	if (agg_bufs)
1413 		bnxt_reuse_rx_agg_bufs(cpr, idx, 0, agg_bufs, true);
1414 }
1415 
1416 #ifdef CONFIG_INET
1417 static void bnxt_gro_tunnel(struct sk_buff *skb, __be16 ip_proto)
1418 {
1419 	struct udphdr *uh = NULL;
1420 
1421 	if (ip_proto == htons(ETH_P_IP)) {
1422 		struct iphdr *iph = (struct iphdr *)skb->data;
1423 
1424 		if (iph->protocol == IPPROTO_UDP)
1425 			uh = (struct udphdr *)(iph + 1);
1426 	} else {
1427 		struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1428 
1429 		if (iph->nexthdr == IPPROTO_UDP)
1430 			uh = (struct udphdr *)(iph + 1);
1431 	}
1432 	if (uh) {
1433 		if (uh->check)
1434 			skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL_CSUM;
1435 		else
1436 			skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1437 	}
1438 }
1439 #endif
1440 
1441 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info,
1442 					   int payload_off, int tcp_ts,
1443 					   struct sk_buff *skb)
1444 {
1445 #ifdef CONFIG_INET
1446 	struct tcphdr *th;
1447 	int len, nw_off;
1448 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1449 	u32 hdr_info = tpa_info->hdr_info;
1450 	bool loopback = false;
1451 
1452 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1453 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1454 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1455 
1456 	/* If the packet is an internal loopback packet, the offsets will
1457 	 * have an extra 4 bytes.
1458 	 */
1459 	if (inner_mac_off == 4) {
1460 		loopback = true;
1461 	} else if (inner_mac_off > 4) {
1462 		__be16 proto = *((__be16 *)(skb->data + inner_ip_off -
1463 					    ETH_HLEN - 2));
1464 
1465 		/* We only support inner iPv4/ipv6.  If we don't see the
1466 		 * correct protocol ID, it must be a loopback packet where
1467 		 * the offsets are off by 4.
1468 		 */
1469 		if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6))
1470 			loopback = true;
1471 	}
1472 	if (loopback) {
1473 		/* internal loopback packet, subtract all offsets by 4 */
1474 		inner_ip_off -= 4;
1475 		inner_mac_off -= 4;
1476 		outer_ip_off -= 4;
1477 	}
1478 
1479 	nw_off = inner_ip_off - ETH_HLEN;
1480 	skb_set_network_header(skb, nw_off);
1481 	if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) {
1482 		struct ipv6hdr *iph = ipv6_hdr(skb);
1483 
1484 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1485 		len = skb->len - skb_transport_offset(skb);
1486 		th = tcp_hdr(skb);
1487 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1488 	} else {
1489 		struct iphdr *iph = ip_hdr(skb);
1490 
1491 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1492 		len = skb->len - skb_transport_offset(skb);
1493 		th = tcp_hdr(skb);
1494 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1495 	}
1496 
1497 	if (inner_mac_off) { /* tunnel */
1498 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1499 					    ETH_HLEN - 2));
1500 
1501 		bnxt_gro_tunnel(skb, proto);
1502 	}
1503 #endif
1504 	return skb;
1505 }
1506 
1507 static struct sk_buff *bnxt_gro_func_5750x(struct bnxt_tpa_info *tpa_info,
1508 					   int payload_off, int tcp_ts,
1509 					   struct sk_buff *skb)
1510 {
1511 #ifdef CONFIG_INET
1512 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1513 	u32 hdr_info = tpa_info->hdr_info;
1514 	int iphdr_len, nw_off;
1515 
1516 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1517 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1518 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1519 
1520 	nw_off = inner_ip_off - ETH_HLEN;
1521 	skb_set_network_header(skb, nw_off);
1522 	iphdr_len = (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) ?
1523 		     sizeof(struct ipv6hdr) : sizeof(struct iphdr);
1524 	skb_set_transport_header(skb, nw_off + iphdr_len);
1525 
1526 	if (inner_mac_off) { /* tunnel */
1527 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1528 					    ETH_HLEN - 2));
1529 
1530 		bnxt_gro_tunnel(skb, proto);
1531 	}
1532 #endif
1533 	return skb;
1534 }
1535 
1536 #define BNXT_IPV4_HDR_SIZE	(sizeof(struct iphdr) + sizeof(struct tcphdr))
1537 #define BNXT_IPV6_HDR_SIZE	(sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
1538 
1539 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info,
1540 					   int payload_off, int tcp_ts,
1541 					   struct sk_buff *skb)
1542 {
1543 #ifdef CONFIG_INET
1544 	struct tcphdr *th;
1545 	int len, nw_off, tcp_opt_len = 0;
1546 
1547 	if (tcp_ts)
1548 		tcp_opt_len = 12;
1549 
1550 	if (tpa_info->gso_type == SKB_GSO_TCPV4) {
1551 		struct iphdr *iph;
1552 
1553 		nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
1554 			 ETH_HLEN;
1555 		skb_set_network_header(skb, nw_off);
1556 		iph = ip_hdr(skb);
1557 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1558 		len = skb->len - skb_transport_offset(skb);
1559 		th = tcp_hdr(skb);
1560 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1561 	} else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
1562 		struct ipv6hdr *iph;
1563 
1564 		nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
1565 			 ETH_HLEN;
1566 		skb_set_network_header(skb, nw_off);
1567 		iph = ipv6_hdr(skb);
1568 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1569 		len = skb->len - skb_transport_offset(skb);
1570 		th = tcp_hdr(skb);
1571 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1572 	} else {
1573 		dev_kfree_skb_any(skb);
1574 		return NULL;
1575 	}
1576 
1577 	if (nw_off) /* tunnel */
1578 		bnxt_gro_tunnel(skb, skb->protocol);
1579 #endif
1580 	return skb;
1581 }
1582 
1583 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp,
1584 					   struct bnxt_tpa_info *tpa_info,
1585 					   struct rx_tpa_end_cmp *tpa_end,
1586 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1587 					   struct sk_buff *skb)
1588 {
1589 #ifdef CONFIG_INET
1590 	int payload_off;
1591 	u16 segs;
1592 
1593 	segs = TPA_END_TPA_SEGS(tpa_end);
1594 	if (segs == 1)
1595 		return skb;
1596 
1597 	NAPI_GRO_CB(skb)->count = segs;
1598 	skb_shinfo(skb)->gso_size =
1599 		le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
1600 	skb_shinfo(skb)->gso_type = tpa_info->gso_type;
1601 	if (bp->flags & BNXT_FLAG_CHIP_P5)
1602 		payload_off = TPA_END_PAYLOAD_OFF_P5(tpa_end1);
1603 	else
1604 		payload_off = TPA_END_PAYLOAD_OFF(tpa_end);
1605 	skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb);
1606 	if (likely(skb))
1607 		tcp_gro_complete(skb);
1608 #endif
1609 	return skb;
1610 }
1611 
1612 /* Given the cfa_code of a received packet determine which
1613  * netdev (vf-rep or PF) the packet is destined to.
1614  */
1615 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code)
1616 {
1617 	struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code);
1618 
1619 	/* if vf-rep dev is NULL, the must belongs to the PF */
1620 	return dev ? dev : bp->dev;
1621 }
1622 
1623 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
1624 					   struct bnxt_cp_ring_info *cpr,
1625 					   u32 *raw_cons,
1626 					   struct rx_tpa_end_cmp *tpa_end,
1627 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1628 					   u8 *event)
1629 {
1630 	struct bnxt_napi *bnapi = cpr->bnapi;
1631 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1632 	u8 *data_ptr, agg_bufs;
1633 	unsigned int len;
1634 	struct bnxt_tpa_info *tpa_info;
1635 	dma_addr_t mapping;
1636 	struct sk_buff *skb;
1637 	u16 idx = 0, agg_id;
1638 	void *data;
1639 	bool gro;
1640 
1641 	if (unlikely(bnapi->in_reset)) {
1642 		int rc = bnxt_discard_rx(bp, cpr, raw_cons, tpa_end);
1643 
1644 		if (rc < 0)
1645 			return ERR_PTR(-EBUSY);
1646 		return NULL;
1647 	}
1648 
1649 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
1650 		agg_id = TPA_END_AGG_ID_P5(tpa_end);
1651 		agg_id = bnxt_lookup_agg_idx(rxr, agg_id);
1652 		agg_bufs = TPA_END_AGG_BUFS_P5(tpa_end1);
1653 		tpa_info = &rxr->rx_tpa[agg_id];
1654 		if (unlikely(agg_bufs != tpa_info->agg_count)) {
1655 			netdev_warn(bp->dev, "TPA end agg_buf %d != expected agg_bufs %d\n",
1656 				    agg_bufs, tpa_info->agg_count);
1657 			agg_bufs = tpa_info->agg_count;
1658 		}
1659 		tpa_info->agg_count = 0;
1660 		*event |= BNXT_AGG_EVENT;
1661 		bnxt_free_agg_idx(rxr, agg_id);
1662 		idx = agg_id;
1663 		gro = !!(bp->flags & BNXT_FLAG_GRO);
1664 	} else {
1665 		agg_id = TPA_END_AGG_ID(tpa_end);
1666 		agg_bufs = TPA_END_AGG_BUFS(tpa_end);
1667 		tpa_info = &rxr->rx_tpa[agg_id];
1668 		idx = RING_CMP(*raw_cons);
1669 		if (agg_bufs) {
1670 			if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
1671 				return ERR_PTR(-EBUSY);
1672 
1673 			*event |= BNXT_AGG_EVENT;
1674 			idx = NEXT_CMP(idx);
1675 		}
1676 		gro = !!TPA_END_GRO(tpa_end);
1677 	}
1678 	data = tpa_info->data;
1679 	data_ptr = tpa_info->data_ptr;
1680 	prefetch(data_ptr);
1681 	len = tpa_info->len;
1682 	mapping = tpa_info->mapping;
1683 
1684 	if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) {
1685 		bnxt_abort_tpa(cpr, idx, agg_bufs);
1686 		if (agg_bufs > MAX_SKB_FRAGS)
1687 			netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
1688 				    agg_bufs, (int)MAX_SKB_FRAGS);
1689 		return NULL;
1690 	}
1691 
1692 	if (len <= bp->rx_copy_thresh) {
1693 		skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping);
1694 		if (!skb) {
1695 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1696 			cpr->sw_stats.rx.rx_oom_discards += 1;
1697 			return NULL;
1698 		}
1699 	} else {
1700 		u8 *new_data;
1701 		dma_addr_t new_mapping;
1702 
1703 		new_data = __bnxt_alloc_rx_frag(bp, &new_mapping, GFP_ATOMIC);
1704 		if (!new_data) {
1705 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1706 			cpr->sw_stats.rx.rx_oom_discards += 1;
1707 			return NULL;
1708 		}
1709 
1710 		tpa_info->data = new_data;
1711 		tpa_info->data_ptr = new_data + bp->rx_offset;
1712 		tpa_info->mapping = new_mapping;
1713 
1714 		skb = build_skb(data, bp->rx_buf_size);
1715 		dma_unmap_single_attrs(&bp->pdev->dev, mapping,
1716 				       bp->rx_buf_use_size, bp->rx_dir,
1717 				       DMA_ATTR_WEAK_ORDERING);
1718 
1719 		if (!skb) {
1720 			skb_free_frag(data);
1721 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1722 			cpr->sw_stats.rx.rx_oom_discards += 1;
1723 			return NULL;
1724 		}
1725 		skb_reserve(skb, bp->rx_offset);
1726 		skb_put(skb, len);
1727 	}
1728 
1729 	if (agg_bufs) {
1730 		skb = bnxt_rx_agg_pages_skb(bp, cpr, skb, idx, agg_bufs, true);
1731 		if (!skb) {
1732 			/* Page reuse already handled by bnxt_rx_pages(). */
1733 			cpr->sw_stats.rx.rx_oom_discards += 1;
1734 			return NULL;
1735 		}
1736 	}
1737 
1738 	skb->protocol =
1739 		eth_type_trans(skb, bnxt_get_pkt_dev(bp, tpa_info->cfa_code));
1740 
1741 	if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1742 		skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1743 
1744 	if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) &&
1745 	    (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) {
1746 		__be16 vlan_proto = htons(tpa_info->metadata >>
1747 					  RX_CMP_FLAGS2_METADATA_TPID_SFT);
1748 		u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1749 
1750 		if (eth_type_vlan(vlan_proto)) {
1751 			__vlan_hwaccel_put_tag(skb, vlan_proto, vtag);
1752 		} else {
1753 			dev_kfree_skb(skb);
1754 			return NULL;
1755 		}
1756 	}
1757 
1758 	skb_checksum_none_assert(skb);
1759 	if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1760 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1761 		skb->csum_level =
1762 			(tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1763 	}
1764 
1765 	if (gro)
1766 		skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb);
1767 
1768 	return skb;
1769 }
1770 
1771 static void bnxt_tpa_agg(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1772 			 struct rx_agg_cmp *rx_agg)
1773 {
1774 	u16 agg_id = TPA_AGG_AGG_ID(rx_agg);
1775 	struct bnxt_tpa_info *tpa_info;
1776 
1777 	agg_id = bnxt_lookup_agg_idx(rxr, agg_id);
1778 	tpa_info = &rxr->rx_tpa[agg_id];
1779 	BUG_ON(tpa_info->agg_count >= MAX_SKB_FRAGS);
1780 	tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg;
1781 }
1782 
1783 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi,
1784 			     struct sk_buff *skb)
1785 {
1786 	if (skb->dev != bp->dev) {
1787 		/* this packet belongs to a vf-rep */
1788 		bnxt_vf_rep_rx(bp, skb);
1789 		return;
1790 	}
1791 	skb_record_rx_queue(skb, bnapi->index);
1792 	napi_gro_receive(&bnapi->napi, skb);
1793 }
1794 
1795 /* returns the following:
1796  * 1       - 1 packet successfully received
1797  * 0       - successful TPA_START, packet not completed yet
1798  * -EBUSY  - completion ring does not have all the agg buffers yet
1799  * -ENOMEM - packet aborted due to out of memory
1800  * -EIO    - packet aborted due to hw error indicated in BD
1801  */
1802 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1803 		       u32 *raw_cons, u8 *event)
1804 {
1805 	struct bnxt_napi *bnapi = cpr->bnapi;
1806 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1807 	struct net_device *dev = bp->dev;
1808 	struct rx_cmp *rxcmp;
1809 	struct rx_cmp_ext *rxcmp1;
1810 	u32 tmp_raw_cons = *raw_cons;
1811 	u16 cfa_code, cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
1812 	struct bnxt_sw_rx_bd *rx_buf;
1813 	unsigned int len;
1814 	u8 *data_ptr, agg_bufs, cmp_type;
1815 	bool xdp_active = false;
1816 	dma_addr_t dma_addr;
1817 	struct sk_buff *skb;
1818 	struct xdp_buff xdp;
1819 	u32 flags, misc;
1820 	void *data;
1821 	int rc = 0;
1822 
1823 	rxcmp = (struct rx_cmp *)
1824 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1825 
1826 	cmp_type = RX_CMP_TYPE(rxcmp);
1827 
1828 	if (cmp_type == CMP_TYPE_RX_TPA_AGG_CMP) {
1829 		bnxt_tpa_agg(bp, rxr, (struct rx_agg_cmp *)rxcmp);
1830 		goto next_rx_no_prod_no_len;
1831 	}
1832 
1833 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1834 	cp_cons = RING_CMP(tmp_raw_cons);
1835 	rxcmp1 = (struct rx_cmp_ext *)
1836 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1837 
1838 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1839 		return -EBUSY;
1840 
1841 	/* The valid test of the entry must be done first before
1842 	 * reading any further.
1843 	 */
1844 	dma_rmb();
1845 	prod = rxr->rx_prod;
1846 
1847 	if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) {
1848 		bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp,
1849 			       (struct rx_tpa_start_cmp_ext *)rxcmp1);
1850 
1851 		*event |= BNXT_RX_EVENT;
1852 		goto next_rx_no_prod_no_len;
1853 
1854 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1855 		skb = bnxt_tpa_end(bp, cpr, &tmp_raw_cons,
1856 				   (struct rx_tpa_end_cmp *)rxcmp,
1857 				   (struct rx_tpa_end_cmp_ext *)rxcmp1, event);
1858 
1859 		if (IS_ERR(skb))
1860 			return -EBUSY;
1861 
1862 		rc = -ENOMEM;
1863 		if (likely(skb)) {
1864 			bnxt_deliver_skb(bp, bnapi, skb);
1865 			rc = 1;
1866 		}
1867 		*event |= BNXT_RX_EVENT;
1868 		goto next_rx_no_prod_no_len;
1869 	}
1870 
1871 	cons = rxcmp->rx_cmp_opaque;
1872 	if (unlikely(cons != rxr->rx_next_cons)) {
1873 		int rc1 = bnxt_discard_rx(bp, cpr, &tmp_raw_cons, rxcmp);
1874 
1875 		/* 0xffff is forced error, don't print it */
1876 		if (rxr->rx_next_cons != 0xffff)
1877 			netdev_warn(bp->dev, "RX cons %x != expected cons %x\n",
1878 				    cons, rxr->rx_next_cons);
1879 		bnxt_sched_reset(bp, rxr);
1880 		if (rc1)
1881 			return rc1;
1882 		goto next_rx_no_prod_no_len;
1883 	}
1884 	rx_buf = &rxr->rx_buf_ring[cons];
1885 	data = rx_buf->data;
1886 	data_ptr = rx_buf->data_ptr;
1887 	prefetch(data_ptr);
1888 
1889 	misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1);
1890 	agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT;
1891 
1892 	if (agg_bufs) {
1893 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1894 			return -EBUSY;
1895 
1896 		cp_cons = NEXT_CMP(cp_cons);
1897 		*event |= BNXT_AGG_EVENT;
1898 	}
1899 	*event |= BNXT_RX_EVENT;
1900 
1901 	rx_buf->data = NULL;
1902 	if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
1903 		u32 rx_err = le32_to_cpu(rxcmp1->rx_cmp_cfa_code_errors_v2);
1904 
1905 		bnxt_reuse_rx_data(rxr, cons, data);
1906 		if (agg_bufs)
1907 			bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, agg_bufs,
1908 					       false);
1909 
1910 		rc = -EIO;
1911 		if (rx_err & RX_CMPL_ERRORS_BUFFER_ERROR_MASK) {
1912 			bnapi->cp_ring.sw_stats.rx.rx_buf_errors++;
1913 			if (!(bp->flags & BNXT_FLAG_CHIP_P5) &&
1914 			    !(bp->fw_cap & BNXT_FW_CAP_RING_MONITOR)) {
1915 				netdev_warn_once(bp->dev, "RX buffer error %x\n",
1916 						 rx_err);
1917 				bnxt_sched_reset(bp, rxr);
1918 			}
1919 		}
1920 		goto next_rx_no_len;
1921 	}
1922 
1923 	flags = le32_to_cpu(rxcmp->rx_cmp_len_flags_type);
1924 	len = flags >> RX_CMP_LEN_SHIFT;
1925 	dma_addr = rx_buf->mapping;
1926 
1927 	if (bnxt_xdp_attached(bp, rxr)) {
1928 		bnxt_xdp_buff_init(bp, rxr, cons, &data_ptr, &len, &xdp);
1929 		if (agg_bufs) {
1930 			u32 frag_len = bnxt_rx_agg_pages_xdp(bp, cpr, &xdp,
1931 							     cp_cons, agg_bufs,
1932 							     false);
1933 			if (!frag_len) {
1934 				cpr->sw_stats.rx.rx_oom_discards += 1;
1935 				rc = -ENOMEM;
1936 				goto next_rx;
1937 			}
1938 		}
1939 		xdp_active = true;
1940 	}
1941 
1942 	if (xdp_active) {
1943 		if (bnxt_rx_xdp(bp, rxr, cons, xdp, data, &len, event)) {
1944 			rc = 1;
1945 			goto next_rx;
1946 		}
1947 	}
1948 
1949 	if (len <= bp->rx_copy_thresh) {
1950 		skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr);
1951 		bnxt_reuse_rx_data(rxr, cons, data);
1952 		if (!skb) {
1953 			if (agg_bufs) {
1954 				if (!xdp_active)
1955 					bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0,
1956 							       agg_bufs, false);
1957 				else
1958 					bnxt_xdp_buff_frags_free(rxr, &xdp);
1959 			}
1960 			cpr->sw_stats.rx.rx_oom_discards += 1;
1961 			rc = -ENOMEM;
1962 			goto next_rx;
1963 		}
1964 	} else {
1965 		u32 payload;
1966 
1967 		if (rx_buf->data_ptr == data_ptr)
1968 			payload = misc & RX_CMP_PAYLOAD_OFFSET;
1969 		else
1970 			payload = 0;
1971 		skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr,
1972 				      payload | len);
1973 		if (!skb) {
1974 			cpr->sw_stats.rx.rx_oom_discards += 1;
1975 			rc = -ENOMEM;
1976 			goto next_rx;
1977 		}
1978 	}
1979 
1980 	if (agg_bufs) {
1981 		if (!xdp_active) {
1982 			skb = bnxt_rx_agg_pages_skb(bp, cpr, skb, cp_cons, agg_bufs, false);
1983 			if (!skb) {
1984 				cpr->sw_stats.rx.rx_oom_discards += 1;
1985 				rc = -ENOMEM;
1986 				goto next_rx;
1987 			}
1988 		} else {
1989 			skb = bnxt_xdp_build_skb(bp, skb, agg_bufs, rxr->page_pool, &xdp, rxcmp1);
1990 			if (!skb) {
1991 				/* we should be able to free the old skb here */
1992 				bnxt_xdp_buff_frags_free(rxr, &xdp);
1993 				cpr->sw_stats.rx.rx_oom_discards += 1;
1994 				rc = -ENOMEM;
1995 				goto next_rx;
1996 			}
1997 		}
1998 	}
1999 
2000 	if (RX_CMP_HASH_VALID(rxcmp)) {
2001 		u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
2002 		enum pkt_hash_types type = PKT_HASH_TYPE_L4;
2003 
2004 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
2005 		if (hash_type != 1 && hash_type != 3)
2006 			type = PKT_HASH_TYPE_L3;
2007 		skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
2008 	}
2009 
2010 	cfa_code = RX_CMP_CFA_CODE(rxcmp1);
2011 	skb->protocol = eth_type_trans(skb, bnxt_get_pkt_dev(bp, cfa_code));
2012 
2013 	if ((rxcmp1->rx_cmp_flags2 &
2014 	     cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) &&
2015 	    (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) {
2016 		u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
2017 		u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK;
2018 		__be16 vlan_proto = htons(meta_data >>
2019 					  RX_CMP_FLAGS2_METADATA_TPID_SFT);
2020 
2021 		if (eth_type_vlan(vlan_proto)) {
2022 			__vlan_hwaccel_put_tag(skb, vlan_proto, vtag);
2023 		} else {
2024 			dev_kfree_skb(skb);
2025 			goto next_rx;
2026 		}
2027 	}
2028 
2029 	skb_checksum_none_assert(skb);
2030 	if (RX_CMP_L4_CS_OK(rxcmp1)) {
2031 		if (dev->features & NETIF_F_RXCSUM) {
2032 			skb->ip_summed = CHECKSUM_UNNECESSARY;
2033 			skb->csum_level = RX_CMP_ENCAP(rxcmp1);
2034 		}
2035 	} else {
2036 		if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
2037 			if (dev->features & NETIF_F_RXCSUM)
2038 				bnapi->cp_ring.sw_stats.rx.rx_l4_csum_errors++;
2039 		}
2040 	}
2041 
2042 	if (unlikely((flags & RX_CMP_FLAGS_ITYPES_MASK) ==
2043 		     RX_CMP_FLAGS_ITYPE_PTP_W_TS) || bp->ptp_all_rx_tstamp) {
2044 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
2045 			u32 cmpl_ts = le32_to_cpu(rxcmp1->rx_cmp_timestamp);
2046 			u64 ns, ts;
2047 
2048 			if (!bnxt_get_rx_ts_p5(bp, &ts, cmpl_ts)) {
2049 				struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2050 
2051 				spin_lock_bh(&ptp->ptp_lock);
2052 				ns = timecounter_cyc2time(&ptp->tc, ts);
2053 				spin_unlock_bh(&ptp->ptp_lock);
2054 				memset(skb_hwtstamps(skb), 0,
2055 				       sizeof(*skb_hwtstamps(skb)));
2056 				skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
2057 			}
2058 		}
2059 	}
2060 	bnxt_deliver_skb(bp, bnapi, skb);
2061 	rc = 1;
2062 
2063 next_rx:
2064 	cpr->rx_packets += 1;
2065 	cpr->rx_bytes += len;
2066 
2067 next_rx_no_len:
2068 	rxr->rx_prod = NEXT_RX(prod);
2069 	rxr->rx_next_cons = NEXT_RX(cons);
2070 
2071 next_rx_no_prod_no_len:
2072 	*raw_cons = tmp_raw_cons;
2073 
2074 	return rc;
2075 }
2076 
2077 /* In netpoll mode, if we are using a combined completion ring, we need to
2078  * discard the rx packets and recycle the buffers.
2079  */
2080 static int bnxt_force_rx_discard(struct bnxt *bp,
2081 				 struct bnxt_cp_ring_info *cpr,
2082 				 u32 *raw_cons, u8 *event)
2083 {
2084 	u32 tmp_raw_cons = *raw_cons;
2085 	struct rx_cmp_ext *rxcmp1;
2086 	struct rx_cmp *rxcmp;
2087 	u16 cp_cons;
2088 	u8 cmp_type;
2089 	int rc;
2090 
2091 	cp_cons = RING_CMP(tmp_raw_cons);
2092 	rxcmp = (struct rx_cmp *)
2093 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2094 
2095 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
2096 	cp_cons = RING_CMP(tmp_raw_cons);
2097 	rxcmp1 = (struct rx_cmp_ext *)
2098 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2099 
2100 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
2101 		return -EBUSY;
2102 
2103 	/* The valid test of the entry must be done first before
2104 	 * reading any further.
2105 	 */
2106 	dma_rmb();
2107 	cmp_type = RX_CMP_TYPE(rxcmp);
2108 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
2109 		rxcmp1->rx_cmp_cfa_code_errors_v2 |=
2110 			cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
2111 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
2112 		struct rx_tpa_end_cmp_ext *tpa_end1;
2113 
2114 		tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1;
2115 		tpa_end1->rx_tpa_end_cmp_errors_v2 |=
2116 			cpu_to_le32(RX_TPA_END_CMP_ERRORS);
2117 	}
2118 	rc = bnxt_rx_pkt(bp, cpr, raw_cons, event);
2119 	if (rc && rc != -EBUSY)
2120 		cpr->sw_stats.rx.rx_netpoll_discards += 1;
2121 	return rc;
2122 }
2123 
2124 u32 bnxt_fw_health_readl(struct bnxt *bp, int reg_idx)
2125 {
2126 	struct bnxt_fw_health *fw_health = bp->fw_health;
2127 	u32 reg = fw_health->regs[reg_idx];
2128 	u32 reg_type, reg_off, val = 0;
2129 
2130 	reg_type = BNXT_FW_HEALTH_REG_TYPE(reg);
2131 	reg_off = BNXT_FW_HEALTH_REG_OFF(reg);
2132 	switch (reg_type) {
2133 	case BNXT_FW_HEALTH_REG_TYPE_CFG:
2134 		pci_read_config_dword(bp->pdev, reg_off, &val);
2135 		break;
2136 	case BNXT_FW_HEALTH_REG_TYPE_GRC:
2137 		reg_off = fw_health->mapped_regs[reg_idx];
2138 		fallthrough;
2139 	case BNXT_FW_HEALTH_REG_TYPE_BAR0:
2140 		val = readl(bp->bar0 + reg_off);
2141 		break;
2142 	case BNXT_FW_HEALTH_REG_TYPE_BAR1:
2143 		val = readl(bp->bar1 + reg_off);
2144 		break;
2145 	}
2146 	if (reg_idx == BNXT_FW_RESET_INPROG_REG)
2147 		val &= fw_health->fw_reset_inprog_reg_mask;
2148 	return val;
2149 }
2150 
2151 static u16 bnxt_agg_ring_id_to_grp_idx(struct bnxt *bp, u16 ring_id)
2152 {
2153 	int i;
2154 
2155 	for (i = 0; i < bp->rx_nr_rings; i++) {
2156 		u16 grp_idx = bp->rx_ring[i].bnapi->index;
2157 		struct bnxt_ring_grp_info *grp_info;
2158 
2159 		grp_info = &bp->grp_info[grp_idx];
2160 		if (grp_info->agg_fw_ring_id == ring_id)
2161 			return grp_idx;
2162 	}
2163 	return INVALID_HW_RING_ID;
2164 }
2165 
2166 static void bnxt_event_error_report(struct bnxt *bp, u32 data1, u32 data2)
2167 {
2168 	u32 err_type = BNXT_EVENT_ERROR_REPORT_TYPE(data1);
2169 
2170 	switch (err_type) {
2171 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_INVALID_SIGNAL:
2172 		netdev_err(bp->dev, "1PPS: Received invalid signal on pin%lu from the external source. Please fix the signal and reconfigure the pin\n",
2173 			   BNXT_EVENT_INVALID_SIGNAL_DATA(data2));
2174 		break;
2175 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_PAUSE_STORM:
2176 		netdev_warn(bp->dev, "Pause Storm detected!\n");
2177 		break;
2178 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_DOORBELL_DROP_THRESHOLD:
2179 		netdev_warn(bp->dev, "One or more MMIO doorbells dropped by the device!\n");
2180 		break;
2181 	default:
2182 		netdev_err(bp->dev, "FW reported unknown error type %u\n",
2183 			   err_type);
2184 		break;
2185 	}
2186 }
2187 
2188 #define BNXT_GET_EVENT_PORT(data)	\
2189 	((data) &			\
2190 	 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK)
2191 
2192 #define BNXT_EVENT_RING_TYPE(data2)	\
2193 	((data2) &			\
2194 	 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_MASK)
2195 
2196 #define BNXT_EVENT_RING_TYPE_RX(data2)	\
2197 	(BNXT_EVENT_RING_TYPE(data2) ==	\
2198 	 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_RX)
2199 
2200 #define BNXT_EVENT_PHC_EVENT_TYPE(data1)	\
2201 	(((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_MASK) >>\
2202 	 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_SFT)
2203 
2204 #define BNXT_EVENT_PHC_RTC_UPDATE(data1)	\
2205 	(((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_MASK) >>\
2206 	 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_SFT)
2207 
2208 #define BNXT_PHC_BITS	48
2209 
2210 static int bnxt_async_event_process(struct bnxt *bp,
2211 				    struct hwrm_async_event_cmpl *cmpl)
2212 {
2213 	u16 event_id = le16_to_cpu(cmpl->event_id);
2214 	u32 data1 = le32_to_cpu(cmpl->event_data1);
2215 	u32 data2 = le32_to_cpu(cmpl->event_data2);
2216 
2217 	netdev_dbg(bp->dev, "hwrm event 0x%x {0x%x, 0x%x}\n",
2218 		   event_id, data1, data2);
2219 
2220 	/* TODO CHIMP_FW: Define event id's for link change, error etc */
2221 	switch (event_id) {
2222 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: {
2223 		struct bnxt_link_info *link_info = &bp->link_info;
2224 
2225 		if (BNXT_VF(bp))
2226 			goto async_event_process_exit;
2227 
2228 		/* print unsupported speed warning in forced speed mode only */
2229 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) &&
2230 		    (data1 & 0x20000)) {
2231 			u16 fw_speed = link_info->force_link_speed;
2232 			u32 speed = bnxt_fw_to_ethtool_speed(fw_speed);
2233 
2234 			if (speed != SPEED_UNKNOWN)
2235 				netdev_warn(bp->dev, "Link speed %d no longer supported\n",
2236 					    speed);
2237 		}
2238 		set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event);
2239 	}
2240 		fallthrough;
2241 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE:
2242 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE:
2243 		set_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, &bp->sp_event);
2244 		fallthrough;
2245 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
2246 		set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
2247 		break;
2248 	case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD:
2249 		set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event);
2250 		break;
2251 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: {
2252 		u16 port_id = BNXT_GET_EVENT_PORT(data1);
2253 
2254 		if (BNXT_VF(bp))
2255 			break;
2256 
2257 		if (bp->pf.port_id != port_id)
2258 			break;
2259 
2260 		set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event);
2261 		break;
2262 	}
2263 	case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE:
2264 		if (BNXT_PF(bp))
2265 			goto async_event_process_exit;
2266 		set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event);
2267 		break;
2268 	case ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY: {
2269 		char *type_str = "Solicited";
2270 
2271 		if (!bp->fw_health)
2272 			goto async_event_process_exit;
2273 
2274 		bp->fw_reset_timestamp = jiffies;
2275 		bp->fw_reset_min_dsecs = cmpl->timestamp_lo;
2276 		if (!bp->fw_reset_min_dsecs)
2277 			bp->fw_reset_min_dsecs = BNXT_DFLT_FW_RST_MIN_DSECS;
2278 		bp->fw_reset_max_dsecs = le16_to_cpu(cmpl->timestamp_hi);
2279 		if (!bp->fw_reset_max_dsecs)
2280 			bp->fw_reset_max_dsecs = BNXT_DFLT_FW_RST_MAX_DSECS;
2281 		if (EVENT_DATA1_RESET_NOTIFY_FW_ACTIVATION(data1)) {
2282 			set_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state);
2283 		} else if (EVENT_DATA1_RESET_NOTIFY_FATAL(data1)) {
2284 			type_str = "Fatal";
2285 			bp->fw_health->fatalities++;
2286 			set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
2287 		} else if (data2 && BNXT_FW_STATUS_HEALTHY !=
2288 			   EVENT_DATA2_RESET_NOTIFY_FW_STATUS_CODE(data2)) {
2289 			type_str = "Non-fatal";
2290 			bp->fw_health->survivals++;
2291 			set_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state);
2292 		}
2293 		netif_warn(bp, hw, bp->dev,
2294 			   "%s firmware reset event, data1: 0x%x, data2: 0x%x, min wait %u ms, max wait %u ms\n",
2295 			   type_str, data1, data2,
2296 			   bp->fw_reset_min_dsecs * 100,
2297 			   bp->fw_reset_max_dsecs * 100);
2298 		set_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event);
2299 		break;
2300 	}
2301 	case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY: {
2302 		struct bnxt_fw_health *fw_health = bp->fw_health;
2303 		char *status_desc = "healthy";
2304 		u32 status;
2305 
2306 		if (!fw_health)
2307 			goto async_event_process_exit;
2308 
2309 		if (!EVENT_DATA1_RECOVERY_ENABLED(data1)) {
2310 			fw_health->enabled = false;
2311 			netif_info(bp, drv, bp->dev, "Driver recovery watchdog is disabled\n");
2312 			break;
2313 		}
2314 		fw_health->primary = EVENT_DATA1_RECOVERY_MASTER_FUNC(data1);
2315 		fw_health->tmr_multiplier =
2316 			DIV_ROUND_UP(fw_health->polling_dsecs * HZ,
2317 				     bp->current_interval * 10);
2318 		fw_health->tmr_counter = fw_health->tmr_multiplier;
2319 		if (!fw_health->enabled)
2320 			fw_health->last_fw_heartbeat =
2321 				bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
2322 		fw_health->last_fw_reset_cnt =
2323 			bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
2324 		status = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
2325 		if (status != BNXT_FW_STATUS_HEALTHY)
2326 			status_desc = "unhealthy";
2327 		netif_info(bp, drv, bp->dev,
2328 			   "Driver recovery watchdog, role: %s, firmware status: 0x%x (%s), resets: %u\n",
2329 			   fw_health->primary ? "primary" : "backup", status,
2330 			   status_desc, fw_health->last_fw_reset_cnt);
2331 		if (!fw_health->enabled) {
2332 			/* Make sure tmr_counter is set and visible to
2333 			 * bnxt_health_check() before setting enabled to true.
2334 			 */
2335 			smp_wmb();
2336 			fw_health->enabled = true;
2337 		}
2338 		goto async_event_process_exit;
2339 	}
2340 	case ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION:
2341 		netif_notice(bp, hw, bp->dev,
2342 			     "Received firmware debug notification, data1: 0x%x, data2: 0x%x\n",
2343 			     data1, data2);
2344 		goto async_event_process_exit;
2345 	case ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG: {
2346 		struct bnxt_rx_ring_info *rxr;
2347 		u16 grp_idx;
2348 
2349 		if (bp->flags & BNXT_FLAG_CHIP_P5)
2350 			goto async_event_process_exit;
2351 
2352 		netdev_warn(bp->dev, "Ring monitor event, ring type %lu id 0x%x\n",
2353 			    BNXT_EVENT_RING_TYPE(data2), data1);
2354 		if (!BNXT_EVENT_RING_TYPE_RX(data2))
2355 			goto async_event_process_exit;
2356 
2357 		grp_idx = bnxt_agg_ring_id_to_grp_idx(bp, data1);
2358 		if (grp_idx == INVALID_HW_RING_ID) {
2359 			netdev_warn(bp->dev, "Unknown RX agg ring id 0x%x\n",
2360 				    data1);
2361 			goto async_event_process_exit;
2362 		}
2363 		rxr = bp->bnapi[grp_idx]->rx_ring;
2364 		bnxt_sched_reset(bp, rxr);
2365 		goto async_event_process_exit;
2366 	}
2367 	case ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST: {
2368 		struct bnxt_fw_health *fw_health = bp->fw_health;
2369 
2370 		netif_notice(bp, hw, bp->dev,
2371 			     "Received firmware echo request, data1: 0x%x, data2: 0x%x\n",
2372 			     data1, data2);
2373 		if (fw_health) {
2374 			fw_health->echo_req_data1 = data1;
2375 			fw_health->echo_req_data2 = data2;
2376 			set_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event);
2377 			break;
2378 		}
2379 		goto async_event_process_exit;
2380 	}
2381 	case ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP: {
2382 		bnxt_ptp_pps_event(bp, data1, data2);
2383 		goto async_event_process_exit;
2384 	}
2385 	case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT: {
2386 		bnxt_event_error_report(bp, data1, data2);
2387 		goto async_event_process_exit;
2388 	}
2389 	case ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE: {
2390 		switch (BNXT_EVENT_PHC_EVENT_TYPE(data1)) {
2391 		case ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_PHC_RTC_UPDATE:
2392 			if (bp->fw_cap & BNXT_FW_CAP_PTP_RTC) {
2393 				struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2394 				u64 ns;
2395 
2396 				spin_lock_bh(&ptp->ptp_lock);
2397 				bnxt_ptp_update_current_time(bp);
2398 				ns = (((u64)BNXT_EVENT_PHC_RTC_UPDATE(data1) <<
2399 				       BNXT_PHC_BITS) | ptp->current_time);
2400 				bnxt_ptp_rtc_timecounter_init(ptp, ns);
2401 				spin_unlock_bh(&ptp->ptp_lock);
2402 			}
2403 			break;
2404 		}
2405 		goto async_event_process_exit;
2406 	}
2407 	case ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE: {
2408 		u16 seq_id = le32_to_cpu(cmpl->event_data2) & 0xffff;
2409 
2410 		hwrm_update_token(bp, seq_id, BNXT_HWRM_DEFERRED);
2411 		goto async_event_process_exit;
2412 	}
2413 	default:
2414 		goto async_event_process_exit;
2415 	}
2416 	bnxt_queue_sp_work(bp);
2417 async_event_process_exit:
2418 	bnxt_ulp_async_events(bp, cmpl);
2419 	return 0;
2420 }
2421 
2422 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
2423 {
2424 	u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
2425 	struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
2426 	struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
2427 				(struct hwrm_fwd_req_cmpl *)txcmp;
2428 
2429 	switch (cmpl_type) {
2430 	case CMPL_BASE_TYPE_HWRM_DONE:
2431 		seq_id = le16_to_cpu(h_cmpl->sequence_id);
2432 		hwrm_update_token(bp, seq_id, BNXT_HWRM_COMPLETE);
2433 		break;
2434 
2435 	case CMPL_BASE_TYPE_HWRM_FWD_REQ:
2436 		vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
2437 
2438 		if ((vf_id < bp->pf.first_vf_id) ||
2439 		    (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
2440 			netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
2441 				   vf_id);
2442 			return -EINVAL;
2443 		}
2444 
2445 		set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
2446 		set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event);
2447 		bnxt_queue_sp_work(bp);
2448 		break;
2449 
2450 	case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
2451 		bnxt_async_event_process(bp,
2452 					 (struct hwrm_async_event_cmpl *)txcmp);
2453 		break;
2454 
2455 	default:
2456 		break;
2457 	}
2458 
2459 	return 0;
2460 }
2461 
2462 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
2463 {
2464 	struct bnxt_napi *bnapi = dev_instance;
2465 	struct bnxt *bp = bnapi->bp;
2466 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2467 	u32 cons = RING_CMP(cpr->cp_raw_cons);
2468 
2469 	cpr->event_ctr++;
2470 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
2471 	napi_schedule(&bnapi->napi);
2472 	return IRQ_HANDLED;
2473 }
2474 
2475 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
2476 {
2477 	u32 raw_cons = cpr->cp_raw_cons;
2478 	u16 cons = RING_CMP(raw_cons);
2479 	struct tx_cmp *txcmp;
2480 
2481 	txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2482 
2483 	return TX_CMP_VALID(txcmp, raw_cons);
2484 }
2485 
2486 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
2487 {
2488 	struct bnxt_napi *bnapi = dev_instance;
2489 	struct bnxt *bp = bnapi->bp;
2490 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2491 	u32 cons = RING_CMP(cpr->cp_raw_cons);
2492 	u32 int_status;
2493 
2494 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
2495 
2496 	if (!bnxt_has_work(bp, cpr)) {
2497 		int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
2498 		/* return if erroneous interrupt */
2499 		if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
2500 			return IRQ_NONE;
2501 	}
2502 
2503 	/* disable ring IRQ */
2504 	BNXT_CP_DB_IRQ_DIS(cpr->cp_db.doorbell);
2505 
2506 	/* Return here if interrupt is shared and is disabled. */
2507 	if (unlikely(atomic_read(&bp->intr_sem) != 0))
2508 		return IRQ_HANDLED;
2509 
2510 	napi_schedule(&bnapi->napi);
2511 	return IRQ_HANDLED;
2512 }
2513 
2514 static int __bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2515 			    int budget)
2516 {
2517 	struct bnxt_napi *bnapi = cpr->bnapi;
2518 	u32 raw_cons = cpr->cp_raw_cons;
2519 	u32 cons;
2520 	int tx_pkts = 0;
2521 	int rx_pkts = 0;
2522 	u8 event = 0;
2523 	struct tx_cmp *txcmp;
2524 
2525 	cpr->has_more_work = 0;
2526 	cpr->had_work_done = 1;
2527 	while (1) {
2528 		int rc;
2529 
2530 		cons = RING_CMP(raw_cons);
2531 		txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2532 
2533 		if (!TX_CMP_VALID(txcmp, raw_cons))
2534 			break;
2535 
2536 		/* The valid test of the entry must be done first before
2537 		 * reading any further.
2538 		 */
2539 		dma_rmb();
2540 		if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) {
2541 			tx_pkts++;
2542 			/* return full budget so NAPI will complete. */
2543 			if (unlikely(tx_pkts >= bp->tx_wake_thresh)) {
2544 				rx_pkts = budget;
2545 				raw_cons = NEXT_RAW_CMP(raw_cons);
2546 				if (budget)
2547 					cpr->has_more_work = 1;
2548 				break;
2549 			}
2550 		} else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
2551 			if (likely(budget))
2552 				rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
2553 			else
2554 				rc = bnxt_force_rx_discard(bp, cpr, &raw_cons,
2555 							   &event);
2556 			if (likely(rc >= 0))
2557 				rx_pkts += rc;
2558 			/* Increment rx_pkts when rc is -ENOMEM to count towards
2559 			 * the NAPI budget.  Otherwise, we may potentially loop
2560 			 * here forever if we consistently cannot allocate
2561 			 * buffers.
2562 			 */
2563 			else if (rc == -ENOMEM && budget)
2564 				rx_pkts++;
2565 			else if (rc == -EBUSY)	/* partial completion */
2566 				break;
2567 		} else if (unlikely((TX_CMP_TYPE(txcmp) ==
2568 				     CMPL_BASE_TYPE_HWRM_DONE) ||
2569 				    (TX_CMP_TYPE(txcmp) ==
2570 				     CMPL_BASE_TYPE_HWRM_FWD_REQ) ||
2571 				    (TX_CMP_TYPE(txcmp) ==
2572 				     CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) {
2573 			bnxt_hwrm_handler(bp, txcmp);
2574 		}
2575 		raw_cons = NEXT_RAW_CMP(raw_cons);
2576 
2577 		if (rx_pkts && rx_pkts == budget) {
2578 			cpr->has_more_work = 1;
2579 			break;
2580 		}
2581 	}
2582 
2583 	if (event & BNXT_REDIRECT_EVENT)
2584 		xdp_do_flush();
2585 
2586 	if (event & BNXT_TX_EVENT) {
2587 		struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
2588 		u16 prod = txr->tx_prod;
2589 
2590 		/* Sync BD data before updating doorbell */
2591 		wmb();
2592 
2593 		bnxt_db_write_relaxed(bp, &txr->tx_db, prod);
2594 	}
2595 
2596 	cpr->cp_raw_cons = raw_cons;
2597 	bnapi->tx_pkts += tx_pkts;
2598 	bnapi->events |= event;
2599 	return rx_pkts;
2600 }
2601 
2602 static void __bnxt_poll_work_done(struct bnxt *bp, struct bnxt_napi *bnapi)
2603 {
2604 	if (bnapi->tx_pkts) {
2605 		bnapi->tx_int(bp, bnapi, bnapi->tx_pkts);
2606 		bnapi->tx_pkts = 0;
2607 	}
2608 
2609 	if ((bnapi->events & BNXT_RX_EVENT) && !(bnapi->in_reset)) {
2610 		struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2611 
2612 		bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
2613 	}
2614 	if (bnapi->events & BNXT_AGG_EVENT) {
2615 		struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2616 
2617 		bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
2618 	}
2619 	bnapi->events = 0;
2620 }
2621 
2622 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2623 			  int budget)
2624 {
2625 	struct bnxt_napi *bnapi = cpr->bnapi;
2626 	int rx_pkts;
2627 
2628 	rx_pkts = __bnxt_poll_work(bp, cpr, budget);
2629 
2630 	/* ACK completion ring before freeing tx ring and producing new
2631 	 * buffers in rx/agg rings to prevent overflowing the completion
2632 	 * ring.
2633 	 */
2634 	bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons);
2635 
2636 	__bnxt_poll_work_done(bp, bnapi);
2637 	return rx_pkts;
2638 }
2639 
2640 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget)
2641 {
2642 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2643 	struct bnxt *bp = bnapi->bp;
2644 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2645 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2646 	struct tx_cmp *txcmp;
2647 	struct rx_cmp_ext *rxcmp1;
2648 	u32 cp_cons, tmp_raw_cons;
2649 	u32 raw_cons = cpr->cp_raw_cons;
2650 	u32 rx_pkts = 0;
2651 	u8 event = 0;
2652 
2653 	while (1) {
2654 		int rc;
2655 
2656 		cp_cons = RING_CMP(raw_cons);
2657 		txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2658 
2659 		if (!TX_CMP_VALID(txcmp, raw_cons))
2660 			break;
2661 
2662 		/* The valid test of the entry must be done first before
2663 		 * reading any further.
2664 		 */
2665 		dma_rmb();
2666 		if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
2667 			tmp_raw_cons = NEXT_RAW_CMP(raw_cons);
2668 			cp_cons = RING_CMP(tmp_raw_cons);
2669 			rxcmp1 = (struct rx_cmp_ext *)
2670 			  &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2671 
2672 			if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
2673 				break;
2674 
2675 			/* force an error to recycle the buffer */
2676 			rxcmp1->rx_cmp_cfa_code_errors_v2 |=
2677 				cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
2678 
2679 			rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
2680 			if (likely(rc == -EIO) && budget)
2681 				rx_pkts++;
2682 			else if (rc == -EBUSY)	/* partial completion */
2683 				break;
2684 		} else if (unlikely(TX_CMP_TYPE(txcmp) ==
2685 				    CMPL_BASE_TYPE_HWRM_DONE)) {
2686 			bnxt_hwrm_handler(bp, txcmp);
2687 		} else {
2688 			netdev_err(bp->dev,
2689 				   "Invalid completion received on special ring\n");
2690 		}
2691 		raw_cons = NEXT_RAW_CMP(raw_cons);
2692 
2693 		if (rx_pkts == budget)
2694 			break;
2695 	}
2696 
2697 	cpr->cp_raw_cons = raw_cons;
2698 	BNXT_DB_CQ(&cpr->cp_db, cpr->cp_raw_cons);
2699 	bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
2700 
2701 	if (event & BNXT_AGG_EVENT)
2702 		bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
2703 
2704 	if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) {
2705 		napi_complete_done(napi, rx_pkts);
2706 		BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2707 	}
2708 	return rx_pkts;
2709 }
2710 
2711 static int bnxt_poll(struct napi_struct *napi, int budget)
2712 {
2713 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2714 	struct bnxt *bp = bnapi->bp;
2715 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2716 	int work_done = 0;
2717 
2718 	if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) {
2719 		napi_complete(napi);
2720 		return 0;
2721 	}
2722 	while (1) {
2723 		work_done += bnxt_poll_work(bp, cpr, budget - work_done);
2724 
2725 		if (work_done >= budget) {
2726 			if (!budget)
2727 				BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2728 			break;
2729 		}
2730 
2731 		if (!bnxt_has_work(bp, cpr)) {
2732 			if (napi_complete_done(napi, work_done))
2733 				BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2734 			break;
2735 		}
2736 	}
2737 	if (bp->flags & BNXT_FLAG_DIM) {
2738 		struct dim_sample dim_sample = {};
2739 
2740 		dim_update_sample(cpr->event_ctr,
2741 				  cpr->rx_packets,
2742 				  cpr->rx_bytes,
2743 				  &dim_sample);
2744 		net_dim(&cpr->dim, dim_sample);
2745 	}
2746 	return work_done;
2747 }
2748 
2749 static int __bnxt_poll_cqs(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
2750 {
2751 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2752 	int i, work_done = 0;
2753 
2754 	for (i = 0; i < 2; i++) {
2755 		struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i];
2756 
2757 		if (cpr2) {
2758 			work_done += __bnxt_poll_work(bp, cpr2,
2759 						      budget - work_done);
2760 			cpr->has_more_work |= cpr2->has_more_work;
2761 		}
2762 	}
2763 	return work_done;
2764 }
2765 
2766 static void __bnxt_poll_cqs_done(struct bnxt *bp, struct bnxt_napi *bnapi,
2767 				 u64 dbr_type)
2768 {
2769 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2770 	int i;
2771 
2772 	for (i = 0; i < 2; i++) {
2773 		struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i];
2774 		struct bnxt_db_info *db;
2775 
2776 		if (cpr2 && cpr2->had_work_done) {
2777 			db = &cpr2->cp_db;
2778 			bnxt_writeq(bp, db->db_key64 | dbr_type |
2779 				    RING_CMP(cpr2->cp_raw_cons), db->doorbell);
2780 			cpr2->had_work_done = 0;
2781 		}
2782 	}
2783 	__bnxt_poll_work_done(bp, bnapi);
2784 }
2785 
2786 static int bnxt_poll_p5(struct napi_struct *napi, int budget)
2787 {
2788 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2789 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2790 	struct bnxt_cp_ring_info *cpr_rx;
2791 	u32 raw_cons = cpr->cp_raw_cons;
2792 	struct bnxt *bp = bnapi->bp;
2793 	struct nqe_cn *nqcmp;
2794 	int work_done = 0;
2795 	u32 cons;
2796 
2797 	if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) {
2798 		napi_complete(napi);
2799 		return 0;
2800 	}
2801 	if (cpr->has_more_work) {
2802 		cpr->has_more_work = 0;
2803 		work_done = __bnxt_poll_cqs(bp, bnapi, budget);
2804 	}
2805 	while (1) {
2806 		cons = RING_CMP(raw_cons);
2807 		nqcmp = &cpr->nq_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2808 
2809 		if (!NQ_CMP_VALID(nqcmp, raw_cons)) {
2810 			if (cpr->has_more_work)
2811 				break;
2812 
2813 			__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL);
2814 			cpr->cp_raw_cons = raw_cons;
2815 			if (napi_complete_done(napi, work_done))
2816 				BNXT_DB_NQ_ARM_P5(&cpr->cp_db,
2817 						  cpr->cp_raw_cons);
2818 			goto poll_done;
2819 		}
2820 
2821 		/* The valid test of the entry must be done first before
2822 		 * reading any further.
2823 		 */
2824 		dma_rmb();
2825 
2826 		if (nqcmp->type == cpu_to_le16(NQ_CN_TYPE_CQ_NOTIFICATION)) {
2827 			u32 idx = le32_to_cpu(nqcmp->cq_handle_low);
2828 			struct bnxt_cp_ring_info *cpr2;
2829 
2830 			/* No more budget for RX work */
2831 			if (budget && work_done >= budget && idx == BNXT_RX_HDL)
2832 				break;
2833 
2834 			cpr2 = cpr->cp_ring_arr[idx];
2835 			work_done += __bnxt_poll_work(bp, cpr2,
2836 						      budget - work_done);
2837 			cpr->has_more_work |= cpr2->has_more_work;
2838 		} else {
2839 			bnxt_hwrm_handler(bp, (struct tx_cmp *)nqcmp);
2840 		}
2841 		raw_cons = NEXT_RAW_CMP(raw_cons);
2842 	}
2843 	__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ);
2844 	if (raw_cons != cpr->cp_raw_cons) {
2845 		cpr->cp_raw_cons = raw_cons;
2846 		BNXT_DB_NQ_P5(&cpr->cp_db, raw_cons);
2847 	}
2848 poll_done:
2849 	cpr_rx = cpr->cp_ring_arr[BNXT_RX_HDL];
2850 	if (cpr_rx && (bp->flags & BNXT_FLAG_DIM)) {
2851 		struct dim_sample dim_sample = {};
2852 
2853 		dim_update_sample(cpr->event_ctr,
2854 				  cpr_rx->rx_packets,
2855 				  cpr_rx->rx_bytes,
2856 				  &dim_sample);
2857 		net_dim(&cpr->dim, dim_sample);
2858 	}
2859 	return work_done;
2860 }
2861 
2862 static void bnxt_free_tx_skbs(struct bnxt *bp)
2863 {
2864 	int i, max_idx;
2865 	struct pci_dev *pdev = bp->pdev;
2866 
2867 	if (!bp->tx_ring)
2868 		return;
2869 
2870 	max_idx = bp->tx_nr_pages * TX_DESC_CNT;
2871 	for (i = 0; i < bp->tx_nr_rings; i++) {
2872 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2873 		int j;
2874 
2875 		if (!txr->tx_buf_ring)
2876 			continue;
2877 
2878 		for (j = 0; j < max_idx;) {
2879 			struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
2880 			struct sk_buff *skb;
2881 			int k, last;
2882 
2883 			if (i < bp->tx_nr_rings_xdp &&
2884 			    tx_buf->action == XDP_REDIRECT) {
2885 				dma_unmap_single(&pdev->dev,
2886 					dma_unmap_addr(tx_buf, mapping),
2887 					dma_unmap_len(tx_buf, len),
2888 					DMA_TO_DEVICE);
2889 				xdp_return_frame(tx_buf->xdpf);
2890 				tx_buf->action = 0;
2891 				tx_buf->xdpf = NULL;
2892 				j++;
2893 				continue;
2894 			}
2895 
2896 			skb = tx_buf->skb;
2897 			if (!skb) {
2898 				j++;
2899 				continue;
2900 			}
2901 
2902 			tx_buf->skb = NULL;
2903 
2904 			if (tx_buf->is_push) {
2905 				dev_kfree_skb(skb);
2906 				j += 2;
2907 				continue;
2908 			}
2909 
2910 			dma_unmap_single(&pdev->dev,
2911 					 dma_unmap_addr(tx_buf, mapping),
2912 					 skb_headlen(skb),
2913 					 DMA_TO_DEVICE);
2914 
2915 			last = tx_buf->nr_frags;
2916 			j += 2;
2917 			for (k = 0; k < last; k++, j++) {
2918 				int ring_idx = j & bp->tx_ring_mask;
2919 				skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2920 
2921 				tx_buf = &txr->tx_buf_ring[ring_idx];
2922 				dma_unmap_page(
2923 					&pdev->dev,
2924 					dma_unmap_addr(tx_buf, mapping),
2925 					skb_frag_size(frag), DMA_TO_DEVICE);
2926 			}
2927 			dev_kfree_skb(skb);
2928 		}
2929 		netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
2930 	}
2931 }
2932 
2933 static void bnxt_free_one_rx_ring_skbs(struct bnxt *bp, int ring_nr)
2934 {
2935 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
2936 	struct pci_dev *pdev = bp->pdev;
2937 	struct bnxt_tpa_idx_map *map;
2938 	int i, max_idx, max_agg_idx;
2939 
2940 	max_idx = bp->rx_nr_pages * RX_DESC_CNT;
2941 	max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
2942 	if (!rxr->rx_tpa)
2943 		goto skip_rx_tpa_free;
2944 
2945 	for (i = 0; i < bp->max_tpa; i++) {
2946 		struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[i];
2947 		u8 *data = tpa_info->data;
2948 
2949 		if (!data)
2950 			continue;
2951 
2952 		dma_unmap_single_attrs(&pdev->dev, tpa_info->mapping,
2953 				       bp->rx_buf_use_size, bp->rx_dir,
2954 				       DMA_ATTR_WEAK_ORDERING);
2955 
2956 		tpa_info->data = NULL;
2957 
2958 		skb_free_frag(data);
2959 	}
2960 
2961 skip_rx_tpa_free:
2962 	if (!rxr->rx_buf_ring)
2963 		goto skip_rx_buf_free;
2964 
2965 	for (i = 0; i < max_idx; i++) {
2966 		struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[i];
2967 		dma_addr_t mapping = rx_buf->mapping;
2968 		void *data = rx_buf->data;
2969 
2970 		if (!data)
2971 			continue;
2972 
2973 		rx_buf->data = NULL;
2974 		if (BNXT_RX_PAGE_MODE(bp)) {
2975 			mapping -= bp->rx_dma_offset;
2976 			dma_unmap_page_attrs(&pdev->dev, mapping, PAGE_SIZE,
2977 					     bp->rx_dir,
2978 					     DMA_ATTR_WEAK_ORDERING);
2979 			page_pool_recycle_direct(rxr->page_pool, data);
2980 		} else {
2981 			dma_unmap_single_attrs(&pdev->dev, mapping,
2982 					       bp->rx_buf_use_size, bp->rx_dir,
2983 					       DMA_ATTR_WEAK_ORDERING);
2984 			skb_free_frag(data);
2985 		}
2986 	}
2987 
2988 skip_rx_buf_free:
2989 	if (!rxr->rx_agg_ring)
2990 		goto skip_rx_agg_free;
2991 
2992 	for (i = 0; i < max_agg_idx; i++) {
2993 		struct bnxt_sw_rx_agg_bd *rx_agg_buf = &rxr->rx_agg_ring[i];
2994 		struct page *page = rx_agg_buf->page;
2995 
2996 		if (!page)
2997 			continue;
2998 
2999 		if (BNXT_RX_PAGE_MODE(bp)) {
3000 			dma_unmap_page_attrs(&pdev->dev, rx_agg_buf->mapping,
3001 					     BNXT_RX_PAGE_SIZE, bp->rx_dir,
3002 					     DMA_ATTR_WEAK_ORDERING);
3003 			rx_agg_buf->page = NULL;
3004 			__clear_bit(i, rxr->rx_agg_bmap);
3005 
3006 			page_pool_recycle_direct(rxr->page_pool, page);
3007 		} else {
3008 			dma_unmap_page_attrs(&pdev->dev, rx_agg_buf->mapping,
3009 					     BNXT_RX_PAGE_SIZE, DMA_FROM_DEVICE,
3010 					     DMA_ATTR_WEAK_ORDERING);
3011 			rx_agg_buf->page = NULL;
3012 			__clear_bit(i, rxr->rx_agg_bmap);
3013 
3014 			__free_page(page);
3015 		}
3016 	}
3017 
3018 skip_rx_agg_free:
3019 	if (rxr->rx_page) {
3020 		__free_page(rxr->rx_page);
3021 		rxr->rx_page = NULL;
3022 	}
3023 	map = rxr->rx_tpa_idx_map;
3024 	if (map)
3025 		memset(map->agg_idx_bmap, 0, sizeof(map->agg_idx_bmap));
3026 }
3027 
3028 static void bnxt_free_rx_skbs(struct bnxt *bp)
3029 {
3030 	int i;
3031 
3032 	if (!bp->rx_ring)
3033 		return;
3034 
3035 	for (i = 0; i < bp->rx_nr_rings; i++)
3036 		bnxt_free_one_rx_ring_skbs(bp, i);
3037 }
3038 
3039 static void bnxt_free_skbs(struct bnxt *bp)
3040 {
3041 	bnxt_free_tx_skbs(bp);
3042 	bnxt_free_rx_skbs(bp);
3043 }
3044 
3045 static void bnxt_init_ctx_mem(struct bnxt_mem_init *mem_init, void *p, int len)
3046 {
3047 	u8 init_val = mem_init->init_val;
3048 	u16 offset = mem_init->offset;
3049 	u8 *p2 = p;
3050 	int i;
3051 
3052 	if (!init_val)
3053 		return;
3054 	if (offset == BNXT_MEM_INVALID_OFFSET) {
3055 		memset(p, init_val, len);
3056 		return;
3057 	}
3058 	for (i = 0; i < len; i += mem_init->size)
3059 		*(p2 + i + offset) = init_val;
3060 }
3061 
3062 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
3063 {
3064 	struct pci_dev *pdev = bp->pdev;
3065 	int i;
3066 
3067 	if (!rmem->pg_arr)
3068 		goto skip_pages;
3069 
3070 	for (i = 0; i < rmem->nr_pages; i++) {
3071 		if (!rmem->pg_arr[i])
3072 			continue;
3073 
3074 		dma_free_coherent(&pdev->dev, rmem->page_size,
3075 				  rmem->pg_arr[i], rmem->dma_arr[i]);
3076 
3077 		rmem->pg_arr[i] = NULL;
3078 	}
3079 skip_pages:
3080 	if (rmem->pg_tbl) {
3081 		size_t pg_tbl_size = rmem->nr_pages * 8;
3082 
3083 		if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
3084 			pg_tbl_size = rmem->page_size;
3085 		dma_free_coherent(&pdev->dev, pg_tbl_size,
3086 				  rmem->pg_tbl, rmem->pg_tbl_map);
3087 		rmem->pg_tbl = NULL;
3088 	}
3089 	if (rmem->vmem_size && *rmem->vmem) {
3090 		vfree(*rmem->vmem);
3091 		*rmem->vmem = NULL;
3092 	}
3093 }
3094 
3095 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
3096 {
3097 	struct pci_dev *pdev = bp->pdev;
3098 	u64 valid_bit = 0;
3099 	int i;
3100 
3101 	if (rmem->flags & (BNXT_RMEM_VALID_PTE_FLAG | BNXT_RMEM_RING_PTE_FLAG))
3102 		valid_bit = PTU_PTE_VALID;
3103 	if ((rmem->nr_pages > 1 || rmem->depth > 0) && !rmem->pg_tbl) {
3104 		size_t pg_tbl_size = rmem->nr_pages * 8;
3105 
3106 		if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
3107 			pg_tbl_size = rmem->page_size;
3108 		rmem->pg_tbl = dma_alloc_coherent(&pdev->dev, pg_tbl_size,
3109 						  &rmem->pg_tbl_map,
3110 						  GFP_KERNEL);
3111 		if (!rmem->pg_tbl)
3112 			return -ENOMEM;
3113 	}
3114 
3115 	for (i = 0; i < rmem->nr_pages; i++) {
3116 		u64 extra_bits = valid_bit;
3117 
3118 		rmem->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
3119 						     rmem->page_size,
3120 						     &rmem->dma_arr[i],
3121 						     GFP_KERNEL);
3122 		if (!rmem->pg_arr[i])
3123 			return -ENOMEM;
3124 
3125 		if (rmem->mem_init)
3126 			bnxt_init_ctx_mem(rmem->mem_init, rmem->pg_arr[i],
3127 					  rmem->page_size);
3128 		if (rmem->nr_pages > 1 || rmem->depth > 0) {
3129 			if (i == rmem->nr_pages - 2 &&
3130 			    (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
3131 				extra_bits |= PTU_PTE_NEXT_TO_LAST;
3132 			else if (i == rmem->nr_pages - 1 &&
3133 				 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
3134 				extra_bits |= PTU_PTE_LAST;
3135 			rmem->pg_tbl[i] =
3136 				cpu_to_le64(rmem->dma_arr[i] | extra_bits);
3137 		}
3138 	}
3139 
3140 	if (rmem->vmem_size) {
3141 		*rmem->vmem = vzalloc(rmem->vmem_size);
3142 		if (!(*rmem->vmem))
3143 			return -ENOMEM;
3144 	}
3145 	return 0;
3146 }
3147 
3148 static void bnxt_free_tpa_info(struct bnxt *bp)
3149 {
3150 	int i;
3151 
3152 	for (i = 0; i < bp->rx_nr_rings; i++) {
3153 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3154 
3155 		kfree(rxr->rx_tpa_idx_map);
3156 		rxr->rx_tpa_idx_map = NULL;
3157 		if (rxr->rx_tpa) {
3158 			kfree(rxr->rx_tpa[0].agg_arr);
3159 			rxr->rx_tpa[0].agg_arr = NULL;
3160 		}
3161 		kfree(rxr->rx_tpa);
3162 		rxr->rx_tpa = NULL;
3163 	}
3164 }
3165 
3166 static int bnxt_alloc_tpa_info(struct bnxt *bp)
3167 {
3168 	int i, j, total_aggs = 0;
3169 
3170 	bp->max_tpa = MAX_TPA;
3171 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
3172 		if (!bp->max_tpa_v2)
3173 			return 0;
3174 		bp->max_tpa = max_t(u16, bp->max_tpa_v2, MAX_TPA_P5);
3175 		total_aggs = bp->max_tpa * MAX_SKB_FRAGS;
3176 	}
3177 
3178 	for (i = 0; i < bp->rx_nr_rings; i++) {
3179 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3180 		struct rx_agg_cmp *agg;
3181 
3182 		rxr->rx_tpa = kcalloc(bp->max_tpa, sizeof(struct bnxt_tpa_info),
3183 				      GFP_KERNEL);
3184 		if (!rxr->rx_tpa)
3185 			return -ENOMEM;
3186 
3187 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
3188 			continue;
3189 		agg = kcalloc(total_aggs, sizeof(*agg), GFP_KERNEL);
3190 		rxr->rx_tpa[0].agg_arr = agg;
3191 		if (!agg)
3192 			return -ENOMEM;
3193 		for (j = 1; j < bp->max_tpa; j++)
3194 			rxr->rx_tpa[j].agg_arr = agg + j * MAX_SKB_FRAGS;
3195 		rxr->rx_tpa_idx_map = kzalloc(sizeof(*rxr->rx_tpa_idx_map),
3196 					      GFP_KERNEL);
3197 		if (!rxr->rx_tpa_idx_map)
3198 			return -ENOMEM;
3199 	}
3200 	return 0;
3201 }
3202 
3203 static void bnxt_free_rx_rings(struct bnxt *bp)
3204 {
3205 	int i;
3206 
3207 	if (!bp->rx_ring)
3208 		return;
3209 
3210 	bnxt_free_tpa_info(bp);
3211 	for (i = 0; i < bp->rx_nr_rings; i++) {
3212 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3213 		struct bnxt_ring_struct *ring;
3214 
3215 		if (rxr->xdp_prog)
3216 			bpf_prog_put(rxr->xdp_prog);
3217 
3218 		if (xdp_rxq_info_is_reg(&rxr->xdp_rxq))
3219 			xdp_rxq_info_unreg(&rxr->xdp_rxq);
3220 
3221 		page_pool_destroy(rxr->page_pool);
3222 		rxr->page_pool = NULL;
3223 
3224 		kfree(rxr->rx_agg_bmap);
3225 		rxr->rx_agg_bmap = NULL;
3226 
3227 		ring = &rxr->rx_ring_struct;
3228 		bnxt_free_ring(bp, &ring->ring_mem);
3229 
3230 		ring = &rxr->rx_agg_ring_struct;
3231 		bnxt_free_ring(bp, &ring->ring_mem);
3232 	}
3233 }
3234 
3235 static int bnxt_alloc_rx_page_pool(struct bnxt *bp,
3236 				   struct bnxt_rx_ring_info *rxr)
3237 {
3238 	struct page_pool_params pp = { 0 };
3239 
3240 	pp.pool_size = bp->rx_ring_size;
3241 	pp.nid = dev_to_node(&bp->pdev->dev);
3242 	pp.dev = &bp->pdev->dev;
3243 	pp.dma_dir = DMA_BIDIRECTIONAL;
3244 
3245 	rxr->page_pool = page_pool_create(&pp);
3246 	if (IS_ERR(rxr->page_pool)) {
3247 		int err = PTR_ERR(rxr->page_pool);
3248 
3249 		rxr->page_pool = NULL;
3250 		return err;
3251 	}
3252 	return 0;
3253 }
3254 
3255 static int bnxt_alloc_rx_rings(struct bnxt *bp)
3256 {
3257 	int i, rc = 0, agg_rings = 0;
3258 
3259 	if (!bp->rx_ring)
3260 		return -ENOMEM;
3261 
3262 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
3263 		agg_rings = 1;
3264 
3265 	for (i = 0; i < bp->rx_nr_rings; i++) {
3266 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3267 		struct bnxt_ring_struct *ring;
3268 
3269 		ring = &rxr->rx_ring_struct;
3270 
3271 		rc = bnxt_alloc_rx_page_pool(bp, rxr);
3272 		if (rc)
3273 			return rc;
3274 
3275 		rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i, 0);
3276 		if (rc < 0)
3277 			return rc;
3278 
3279 		rc = xdp_rxq_info_reg_mem_model(&rxr->xdp_rxq,
3280 						MEM_TYPE_PAGE_POOL,
3281 						rxr->page_pool);
3282 		if (rc) {
3283 			xdp_rxq_info_unreg(&rxr->xdp_rxq);
3284 			return rc;
3285 		}
3286 
3287 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3288 		if (rc)
3289 			return rc;
3290 
3291 		ring->grp_idx = i;
3292 		if (agg_rings) {
3293 			u16 mem_size;
3294 
3295 			ring = &rxr->rx_agg_ring_struct;
3296 			rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3297 			if (rc)
3298 				return rc;
3299 
3300 			ring->grp_idx = i;
3301 			rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
3302 			mem_size = rxr->rx_agg_bmap_size / 8;
3303 			rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
3304 			if (!rxr->rx_agg_bmap)
3305 				return -ENOMEM;
3306 		}
3307 	}
3308 	if (bp->flags & BNXT_FLAG_TPA)
3309 		rc = bnxt_alloc_tpa_info(bp);
3310 	return rc;
3311 }
3312 
3313 static void bnxt_free_tx_rings(struct bnxt *bp)
3314 {
3315 	int i;
3316 	struct pci_dev *pdev = bp->pdev;
3317 
3318 	if (!bp->tx_ring)
3319 		return;
3320 
3321 	for (i = 0; i < bp->tx_nr_rings; i++) {
3322 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3323 		struct bnxt_ring_struct *ring;
3324 
3325 		if (txr->tx_push) {
3326 			dma_free_coherent(&pdev->dev, bp->tx_push_size,
3327 					  txr->tx_push, txr->tx_push_mapping);
3328 			txr->tx_push = NULL;
3329 		}
3330 
3331 		ring = &txr->tx_ring_struct;
3332 
3333 		bnxt_free_ring(bp, &ring->ring_mem);
3334 	}
3335 }
3336 
3337 static int bnxt_alloc_tx_rings(struct bnxt *bp)
3338 {
3339 	int i, j, rc;
3340 	struct pci_dev *pdev = bp->pdev;
3341 
3342 	bp->tx_push_size = 0;
3343 	if (bp->tx_push_thresh) {
3344 		int push_size;
3345 
3346 		push_size  = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
3347 					bp->tx_push_thresh);
3348 
3349 		if (push_size > 256) {
3350 			push_size = 0;
3351 			bp->tx_push_thresh = 0;
3352 		}
3353 
3354 		bp->tx_push_size = push_size;
3355 	}
3356 
3357 	for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
3358 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3359 		struct bnxt_ring_struct *ring;
3360 		u8 qidx;
3361 
3362 		ring = &txr->tx_ring_struct;
3363 
3364 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3365 		if (rc)
3366 			return rc;
3367 
3368 		ring->grp_idx = txr->bnapi->index;
3369 		if (bp->tx_push_size) {
3370 			dma_addr_t mapping;
3371 
3372 			/* One pre-allocated DMA buffer to backup
3373 			 * TX push operation
3374 			 */
3375 			txr->tx_push = dma_alloc_coherent(&pdev->dev,
3376 						bp->tx_push_size,
3377 						&txr->tx_push_mapping,
3378 						GFP_KERNEL);
3379 
3380 			if (!txr->tx_push)
3381 				return -ENOMEM;
3382 
3383 			mapping = txr->tx_push_mapping +
3384 				sizeof(struct tx_push_bd);
3385 			txr->data_mapping = cpu_to_le64(mapping);
3386 		}
3387 		qidx = bp->tc_to_qidx[j];
3388 		ring->queue_id = bp->q_info[qidx].queue_id;
3389 		spin_lock_init(&txr->xdp_tx_lock);
3390 		if (i < bp->tx_nr_rings_xdp)
3391 			continue;
3392 		if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1))
3393 			j++;
3394 	}
3395 	return 0;
3396 }
3397 
3398 static void bnxt_free_cp_arrays(struct bnxt_cp_ring_info *cpr)
3399 {
3400 	struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3401 
3402 	kfree(cpr->cp_desc_ring);
3403 	cpr->cp_desc_ring = NULL;
3404 	ring->ring_mem.pg_arr = NULL;
3405 	kfree(cpr->cp_desc_mapping);
3406 	cpr->cp_desc_mapping = NULL;
3407 	ring->ring_mem.dma_arr = NULL;
3408 }
3409 
3410 static int bnxt_alloc_cp_arrays(struct bnxt_cp_ring_info *cpr, int n)
3411 {
3412 	cpr->cp_desc_ring = kcalloc(n, sizeof(*cpr->cp_desc_ring), GFP_KERNEL);
3413 	if (!cpr->cp_desc_ring)
3414 		return -ENOMEM;
3415 	cpr->cp_desc_mapping = kcalloc(n, sizeof(*cpr->cp_desc_mapping),
3416 				       GFP_KERNEL);
3417 	if (!cpr->cp_desc_mapping)
3418 		return -ENOMEM;
3419 	return 0;
3420 }
3421 
3422 static void bnxt_free_all_cp_arrays(struct bnxt *bp)
3423 {
3424 	int i;
3425 
3426 	if (!bp->bnapi)
3427 		return;
3428 	for (i = 0; i < bp->cp_nr_rings; i++) {
3429 		struct bnxt_napi *bnapi = bp->bnapi[i];
3430 
3431 		if (!bnapi)
3432 			continue;
3433 		bnxt_free_cp_arrays(&bnapi->cp_ring);
3434 	}
3435 }
3436 
3437 static int bnxt_alloc_all_cp_arrays(struct bnxt *bp)
3438 {
3439 	int i, n = bp->cp_nr_pages;
3440 
3441 	for (i = 0; i < bp->cp_nr_rings; i++) {
3442 		struct bnxt_napi *bnapi = bp->bnapi[i];
3443 		int rc;
3444 
3445 		if (!bnapi)
3446 			continue;
3447 		rc = bnxt_alloc_cp_arrays(&bnapi->cp_ring, n);
3448 		if (rc)
3449 			return rc;
3450 	}
3451 	return 0;
3452 }
3453 
3454 static void bnxt_free_cp_rings(struct bnxt *bp)
3455 {
3456 	int i;
3457 
3458 	if (!bp->bnapi)
3459 		return;
3460 
3461 	for (i = 0; i < bp->cp_nr_rings; i++) {
3462 		struct bnxt_napi *bnapi = bp->bnapi[i];
3463 		struct bnxt_cp_ring_info *cpr;
3464 		struct bnxt_ring_struct *ring;
3465 		int j;
3466 
3467 		if (!bnapi)
3468 			continue;
3469 
3470 		cpr = &bnapi->cp_ring;
3471 		ring = &cpr->cp_ring_struct;
3472 
3473 		bnxt_free_ring(bp, &ring->ring_mem);
3474 
3475 		for (j = 0; j < 2; j++) {
3476 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
3477 
3478 			if (cpr2) {
3479 				ring = &cpr2->cp_ring_struct;
3480 				bnxt_free_ring(bp, &ring->ring_mem);
3481 				bnxt_free_cp_arrays(cpr2);
3482 				kfree(cpr2);
3483 				cpr->cp_ring_arr[j] = NULL;
3484 			}
3485 		}
3486 	}
3487 }
3488 
3489 static struct bnxt_cp_ring_info *bnxt_alloc_cp_sub_ring(struct bnxt *bp)
3490 {
3491 	struct bnxt_ring_mem_info *rmem;
3492 	struct bnxt_ring_struct *ring;
3493 	struct bnxt_cp_ring_info *cpr;
3494 	int rc;
3495 
3496 	cpr = kzalloc(sizeof(*cpr), GFP_KERNEL);
3497 	if (!cpr)
3498 		return NULL;
3499 
3500 	rc = bnxt_alloc_cp_arrays(cpr, bp->cp_nr_pages);
3501 	if (rc) {
3502 		bnxt_free_cp_arrays(cpr);
3503 		kfree(cpr);
3504 		return NULL;
3505 	}
3506 	ring = &cpr->cp_ring_struct;
3507 	rmem = &ring->ring_mem;
3508 	rmem->nr_pages = bp->cp_nr_pages;
3509 	rmem->page_size = HW_CMPD_RING_SIZE;
3510 	rmem->pg_arr = (void **)cpr->cp_desc_ring;
3511 	rmem->dma_arr = cpr->cp_desc_mapping;
3512 	rmem->flags = BNXT_RMEM_RING_PTE_FLAG;
3513 	rc = bnxt_alloc_ring(bp, rmem);
3514 	if (rc) {
3515 		bnxt_free_ring(bp, rmem);
3516 		bnxt_free_cp_arrays(cpr);
3517 		kfree(cpr);
3518 		cpr = NULL;
3519 	}
3520 	return cpr;
3521 }
3522 
3523 static int bnxt_alloc_cp_rings(struct bnxt *bp)
3524 {
3525 	bool sh = !!(bp->flags & BNXT_FLAG_SHARED_RINGS);
3526 	int i, rc, ulp_base_vec, ulp_msix;
3527 
3528 	ulp_msix = bnxt_get_ulp_msix_num(bp);
3529 	ulp_base_vec = bnxt_get_ulp_msix_base(bp);
3530 	for (i = 0; i < bp->cp_nr_rings; i++) {
3531 		struct bnxt_napi *bnapi = bp->bnapi[i];
3532 		struct bnxt_cp_ring_info *cpr;
3533 		struct bnxt_ring_struct *ring;
3534 
3535 		if (!bnapi)
3536 			continue;
3537 
3538 		cpr = &bnapi->cp_ring;
3539 		cpr->bnapi = bnapi;
3540 		ring = &cpr->cp_ring_struct;
3541 
3542 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3543 		if (rc)
3544 			return rc;
3545 
3546 		if (ulp_msix && i >= ulp_base_vec)
3547 			ring->map_idx = i + ulp_msix;
3548 		else
3549 			ring->map_idx = i;
3550 
3551 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
3552 			continue;
3553 
3554 		if (i < bp->rx_nr_rings) {
3555 			struct bnxt_cp_ring_info *cpr2 =
3556 				bnxt_alloc_cp_sub_ring(bp);
3557 
3558 			cpr->cp_ring_arr[BNXT_RX_HDL] = cpr2;
3559 			if (!cpr2)
3560 				return -ENOMEM;
3561 			cpr2->bnapi = bnapi;
3562 		}
3563 		if ((sh && i < bp->tx_nr_rings) ||
3564 		    (!sh && i >= bp->rx_nr_rings)) {
3565 			struct bnxt_cp_ring_info *cpr2 =
3566 				bnxt_alloc_cp_sub_ring(bp);
3567 
3568 			cpr->cp_ring_arr[BNXT_TX_HDL] = cpr2;
3569 			if (!cpr2)
3570 				return -ENOMEM;
3571 			cpr2->bnapi = bnapi;
3572 		}
3573 	}
3574 	return 0;
3575 }
3576 
3577 static void bnxt_init_ring_struct(struct bnxt *bp)
3578 {
3579 	int i;
3580 
3581 	for (i = 0; i < bp->cp_nr_rings; i++) {
3582 		struct bnxt_napi *bnapi = bp->bnapi[i];
3583 		struct bnxt_ring_mem_info *rmem;
3584 		struct bnxt_cp_ring_info *cpr;
3585 		struct bnxt_rx_ring_info *rxr;
3586 		struct bnxt_tx_ring_info *txr;
3587 		struct bnxt_ring_struct *ring;
3588 
3589 		if (!bnapi)
3590 			continue;
3591 
3592 		cpr = &bnapi->cp_ring;
3593 		ring = &cpr->cp_ring_struct;
3594 		rmem = &ring->ring_mem;
3595 		rmem->nr_pages = bp->cp_nr_pages;
3596 		rmem->page_size = HW_CMPD_RING_SIZE;
3597 		rmem->pg_arr = (void **)cpr->cp_desc_ring;
3598 		rmem->dma_arr = cpr->cp_desc_mapping;
3599 		rmem->vmem_size = 0;
3600 
3601 		rxr = bnapi->rx_ring;
3602 		if (!rxr)
3603 			goto skip_rx;
3604 
3605 		ring = &rxr->rx_ring_struct;
3606 		rmem = &ring->ring_mem;
3607 		rmem->nr_pages = bp->rx_nr_pages;
3608 		rmem->page_size = HW_RXBD_RING_SIZE;
3609 		rmem->pg_arr = (void **)rxr->rx_desc_ring;
3610 		rmem->dma_arr = rxr->rx_desc_mapping;
3611 		rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
3612 		rmem->vmem = (void **)&rxr->rx_buf_ring;
3613 
3614 		ring = &rxr->rx_agg_ring_struct;
3615 		rmem = &ring->ring_mem;
3616 		rmem->nr_pages = bp->rx_agg_nr_pages;
3617 		rmem->page_size = HW_RXBD_RING_SIZE;
3618 		rmem->pg_arr = (void **)rxr->rx_agg_desc_ring;
3619 		rmem->dma_arr = rxr->rx_agg_desc_mapping;
3620 		rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
3621 		rmem->vmem = (void **)&rxr->rx_agg_ring;
3622 
3623 skip_rx:
3624 		txr = bnapi->tx_ring;
3625 		if (!txr)
3626 			continue;
3627 
3628 		ring = &txr->tx_ring_struct;
3629 		rmem = &ring->ring_mem;
3630 		rmem->nr_pages = bp->tx_nr_pages;
3631 		rmem->page_size = HW_RXBD_RING_SIZE;
3632 		rmem->pg_arr = (void **)txr->tx_desc_ring;
3633 		rmem->dma_arr = txr->tx_desc_mapping;
3634 		rmem->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
3635 		rmem->vmem = (void **)&txr->tx_buf_ring;
3636 	}
3637 }
3638 
3639 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
3640 {
3641 	int i;
3642 	u32 prod;
3643 	struct rx_bd **rx_buf_ring;
3644 
3645 	rx_buf_ring = (struct rx_bd **)ring->ring_mem.pg_arr;
3646 	for (i = 0, prod = 0; i < ring->ring_mem.nr_pages; i++) {
3647 		int j;
3648 		struct rx_bd *rxbd;
3649 
3650 		rxbd = rx_buf_ring[i];
3651 		if (!rxbd)
3652 			continue;
3653 
3654 		for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
3655 			rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
3656 			rxbd->rx_bd_opaque = prod;
3657 		}
3658 	}
3659 }
3660 
3661 static int bnxt_alloc_one_rx_ring(struct bnxt *bp, int ring_nr)
3662 {
3663 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
3664 	struct net_device *dev = bp->dev;
3665 	u32 prod;
3666 	int i;
3667 
3668 	prod = rxr->rx_prod;
3669 	for (i = 0; i < bp->rx_ring_size; i++) {
3670 		if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL)) {
3671 			netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
3672 				    ring_nr, i, bp->rx_ring_size);
3673 			break;
3674 		}
3675 		prod = NEXT_RX(prod);
3676 	}
3677 	rxr->rx_prod = prod;
3678 
3679 	if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
3680 		return 0;
3681 
3682 	prod = rxr->rx_agg_prod;
3683 	for (i = 0; i < bp->rx_agg_ring_size; i++) {
3684 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL)) {
3685 			netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
3686 				    ring_nr, i, bp->rx_ring_size);
3687 			break;
3688 		}
3689 		prod = NEXT_RX_AGG(prod);
3690 	}
3691 	rxr->rx_agg_prod = prod;
3692 
3693 	if (rxr->rx_tpa) {
3694 		dma_addr_t mapping;
3695 		u8 *data;
3696 
3697 		for (i = 0; i < bp->max_tpa; i++) {
3698 			data = __bnxt_alloc_rx_frag(bp, &mapping, GFP_KERNEL);
3699 			if (!data)
3700 				return -ENOMEM;
3701 
3702 			rxr->rx_tpa[i].data = data;
3703 			rxr->rx_tpa[i].data_ptr = data + bp->rx_offset;
3704 			rxr->rx_tpa[i].mapping = mapping;
3705 		}
3706 	}
3707 	return 0;
3708 }
3709 
3710 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
3711 {
3712 	struct bnxt_rx_ring_info *rxr;
3713 	struct bnxt_ring_struct *ring;
3714 	u32 type;
3715 
3716 	type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
3717 		RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
3718 
3719 	if (NET_IP_ALIGN == 2)
3720 		type |= RX_BD_FLAGS_SOP;
3721 
3722 	rxr = &bp->rx_ring[ring_nr];
3723 	ring = &rxr->rx_ring_struct;
3724 	bnxt_init_rxbd_pages(ring, type);
3725 
3726 	if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) {
3727 		bpf_prog_add(bp->xdp_prog, 1);
3728 		rxr->xdp_prog = bp->xdp_prog;
3729 	}
3730 	ring->fw_ring_id = INVALID_HW_RING_ID;
3731 
3732 	ring = &rxr->rx_agg_ring_struct;
3733 	ring->fw_ring_id = INVALID_HW_RING_ID;
3734 
3735 	if ((bp->flags & BNXT_FLAG_AGG_RINGS)) {
3736 		type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) |
3737 			RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
3738 
3739 		bnxt_init_rxbd_pages(ring, type);
3740 	}
3741 
3742 	return bnxt_alloc_one_rx_ring(bp, ring_nr);
3743 }
3744 
3745 static void bnxt_init_cp_rings(struct bnxt *bp)
3746 {
3747 	int i, j;
3748 
3749 	for (i = 0; i < bp->cp_nr_rings; i++) {
3750 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
3751 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3752 
3753 		ring->fw_ring_id = INVALID_HW_RING_ID;
3754 		cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
3755 		cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
3756 		for (j = 0; j < 2; j++) {
3757 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
3758 
3759 			if (!cpr2)
3760 				continue;
3761 
3762 			ring = &cpr2->cp_ring_struct;
3763 			ring->fw_ring_id = INVALID_HW_RING_ID;
3764 			cpr2->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
3765 			cpr2->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
3766 		}
3767 	}
3768 }
3769 
3770 static int bnxt_init_rx_rings(struct bnxt *bp)
3771 {
3772 	int i, rc = 0;
3773 
3774 	if (BNXT_RX_PAGE_MODE(bp)) {
3775 		bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM;
3776 		bp->rx_dma_offset = XDP_PACKET_HEADROOM;
3777 	} else {
3778 		bp->rx_offset = BNXT_RX_OFFSET;
3779 		bp->rx_dma_offset = BNXT_RX_DMA_OFFSET;
3780 	}
3781 
3782 	for (i = 0; i < bp->rx_nr_rings; i++) {
3783 		rc = bnxt_init_one_rx_ring(bp, i);
3784 		if (rc)
3785 			break;
3786 	}
3787 
3788 	return rc;
3789 }
3790 
3791 static int bnxt_init_tx_rings(struct bnxt *bp)
3792 {
3793 	u16 i;
3794 
3795 	bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
3796 				   BNXT_MIN_TX_DESC_CNT);
3797 
3798 	for (i = 0; i < bp->tx_nr_rings; i++) {
3799 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3800 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
3801 
3802 		ring->fw_ring_id = INVALID_HW_RING_ID;
3803 	}
3804 
3805 	return 0;
3806 }
3807 
3808 static void bnxt_free_ring_grps(struct bnxt *bp)
3809 {
3810 	kfree(bp->grp_info);
3811 	bp->grp_info = NULL;
3812 }
3813 
3814 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
3815 {
3816 	int i;
3817 
3818 	if (irq_re_init) {
3819 		bp->grp_info = kcalloc(bp->cp_nr_rings,
3820 				       sizeof(struct bnxt_ring_grp_info),
3821 				       GFP_KERNEL);
3822 		if (!bp->grp_info)
3823 			return -ENOMEM;
3824 	}
3825 	for (i = 0; i < bp->cp_nr_rings; i++) {
3826 		if (irq_re_init)
3827 			bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
3828 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
3829 		bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
3830 		bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
3831 		bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
3832 	}
3833 	return 0;
3834 }
3835 
3836 static void bnxt_free_vnics(struct bnxt *bp)
3837 {
3838 	kfree(bp->vnic_info);
3839 	bp->vnic_info = NULL;
3840 	bp->nr_vnics = 0;
3841 }
3842 
3843 static int bnxt_alloc_vnics(struct bnxt *bp)
3844 {
3845 	int num_vnics = 1;
3846 
3847 #ifdef CONFIG_RFS_ACCEL
3848 	if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS)
3849 		num_vnics += bp->rx_nr_rings;
3850 #endif
3851 
3852 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
3853 		num_vnics++;
3854 
3855 	bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
3856 				GFP_KERNEL);
3857 	if (!bp->vnic_info)
3858 		return -ENOMEM;
3859 
3860 	bp->nr_vnics = num_vnics;
3861 	return 0;
3862 }
3863 
3864 static void bnxt_init_vnics(struct bnxt *bp)
3865 {
3866 	int i;
3867 
3868 	for (i = 0; i < bp->nr_vnics; i++) {
3869 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3870 		int j;
3871 
3872 		vnic->fw_vnic_id = INVALID_HW_RING_ID;
3873 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++)
3874 			vnic->fw_rss_cos_lb_ctx[j] = INVALID_HW_RING_ID;
3875 
3876 		vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
3877 
3878 		if (bp->vnic_info[i].rss_hash_key) {
3879 			if (i == 0)
3880 				get_random_bytes(vnic->rss_hash_key,
3881 					      HW_HASH_KEY_SIZE);
3882 			else
3883 				memcpy(vnic->rss_hash_key,
3884 				       bp->vnic_info[0].rss_hash_key,
3885 				       HW_HASH_KEY_SIZE);
3886 		}
3887 	}
3888 }
3889 
3890 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
3891 {
3892 	int pages;
3893 
3894 	pages = ring_size / desc_per_pg;
3895 
3896 	if (!pages)
3897 		return 1;
3898 
3899 	pages++;
3900 
3901 	while (pages & (pages - 1))
3902 		pages++;
3903 
3904 	return pages;
3905 }
3906 
3907 void bnxt_set_tpa_flags(struct bnxt *bp)
3908 {
3909 	bp->flags &= ~BNXT_FLAG_TPA;
3910 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
3911 		return;
3912 	if (bp->dev->features & NETIF_F_LRO)
3913 		bp->flags |= BNXT_FLAG_LRO;
3914 	else if (bp->dev->features & NETIF_F_GRO_HW)
3915 		bp->flags |= BNXT_FLAG_GRO;
3916 }
3917 
3918 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
3919  * be set on entry.
3920  */
3921 void bnxt_set_ring_params(struct bnxt *bp)
3922 {
3923 	u32 ring_size, rx_size, rx_space, max_rx_cmpl;
3924 	u32 agg_factor = 0, agg_ring_size = 0;
3925 
3926 	/* 8 for CRC and VLAN */
3927 	rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
3928 
3929 	rx_space = rx_size + ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) +
3930 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3931 
3932 	bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
3933 	ring_size = bp->rx_ring_size;
3934 	bp->rx_agg_ring_size = 0;
3935 	bp->rx_agg_nr_pages = 0;
3936 
3937 	if (bp->flags & BNXT_FLAG_TPA)
3938 		agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE);
3939 
3940 	bp->flags &= ~BNXT_FLAG_JUMBO;
3941 	if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) {
3942 		u32 jumbo_factor;
3943 
3944 		bp->flags |= BNXT_FLAG_JUMBO;
3945 		jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
3946 		if (jumbo_factor > agg_factor)
3947 			agg_factor = jumbo_factor;
3948 	}
3949 	if (agg_factor) {
3950 		if (ring_size > BNXT_MAX_RX_DESC_CNT_JUM_ENA) {
3951 			ring_size = BNXT_MAX_RX_DESC_CNT_JUM_ENA;
3952 			netdev_warn(bp->dev, "RX ring size reduced from %d to %d because the jumbo ring is now enabled\n",
3953 				    bp->rx_ring_size, ring_size);
3954 			bp->rx_ring_size = ring_size;
3955 		}
3956 		agg_ring_size = ring_size * agg_factor;
3957 
3958 		bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
3959 							RX_DESC_CNT);
3960 		if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
3961 			u32 tmp = agg_ring_size;
3962 
3963 			bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
3964 			agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
3965 			netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
3966 				    tmp, agg_ring_size);
3967 		}
3968 		bp->rx_agg_ring_size = agg_ring_size;
3969 		bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
3970 
3971 		if (BNXT_RX_PAGE_MODE(bp)) {
3972 			rx_space = BNXT_PAGE_MODE_BUF_SIZE;
3973 			rx_size = BNXT_MAX_PAGE_MODE_MTU;
3974 		} else {
3975 			rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
3976 			rx_space = rx_size + NET_SKB_PAD +
3977 				SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3978 		}
3979 	}
3980 
3981 	bp->rx_buf_use_size = rx_size;
3982 	bp->rx_buf_size = rx_space;
3983 
3984 	bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
3985 	bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
3986 
3987 	ring_size = bp->tx_ring_size;
3988 	bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
3989 	bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
3990 
3991 	max_rx_cmpl = bp->rx_ring_size;
3992 	/* MAX TPA needs to be added because TPA_START completions are
3993 	 * immediately recycled, so the TPA completions are not bound by
3994 	 * the RX ring size.
3995 	 */
3996 	if (bp->flags & BNXT_FLAG_TPA)
3997 		max_rx_cmpl += bp->max_tpa;
3998 	/* RX and TPA completions are 32-byte, all others are 16-byte */
3999 	ring_size = max_rx_cmpl * 2 + agg_ring_size + bp->tx_ring_size;
4000 	bp->cp_ring_size = ring_size;
4001 
4002 	bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
4003 	if (bp->cp_nr_pages > MAX_CP_PAGES) {
4004 		bp->cp_nr_pages = MAX_CP_PAGES;
4005 		bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
4006 		netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
4007 			    ring_size, bp->cp_ring_size);
4008 	}
4009 	bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
4010 	bp->cp_ring_mask = bp->cp_bit - 1;
4011 }
4012 
4013 /* Changing allocation mode of RX rings.
4014  * TODO: Update when extending xdp_rxq_info to support allocation modes.
4015  */
4016 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode)
4017 {
4018 	if (page_mode) {
4019 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
4020 		bp->flags |= BNXT_FLAG_RX_PAGE_MODE;
4021 
4022 		if (bp->dev->mtu > BNXT_MAX_PAGE_MODE_MTU) {
4023 			bp->flags |= BNXT_FLAG_JUMBO;
4024 			bp->rx_skb_func = bnxt_rx_multi_page_skb;
4025 			bp->dev->max_mtu =
4026 				min_t(u16, bp->max_mtu, BNXT_MAX_MTU);
4027 		} else {
4028 			bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
4029 			bp->rx_skb_func = bnxt_rx_page_skb;
4030 			bp->dev->max_mtu =
4031 				min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU);
4032 		}
4033 		bp->rx_dir = DMA_BIDIRECTIONAL;
4034 		/* Disable LRO or GRO_HW */
4035 		netdev_update_features(bp->dev);
4036 	} else {
4037 		bp->dev->max_mtu = bp->max_mtu;
4038 		bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE;
4039 		bp->rx_dir = DMA_FROM_DEVICE;
4040 		bp->rx_skb_func = bnxt_rx_skb;
4041 	}
4042 	return 0;
4043 }
4044 
4045 static void bnxt_free_vnic_attributes(struct bnxt *bp)
4046 {
4047 	int i;
4048 	struct bnxt_vnic_info *vnic;
4049 	struct pci_dev *pdev = bp->pdev;
4050 
4051 	if (!bp->vnic_info)
4052 		return;
4053 
4054 	for (i = 0; i < bp->nr_vnics; i++) {
4055 		vnic = &bp->vnic_info[i];
4056 
4057 		kfree(vnic->fw_grp_ids);
4058 		vnic->fw_grp_ids = NULL;
4059 
4060 		kfree(vnic->uc_list);
4061 		vnic->uc_list = NULL;
4062 
4063 		if (vnic->mc_list) {
4064 			dma_free_coherent(&pdev->dev, vnic->mc_list_size,
4065 					  vnic->mc_list, vnic->mc_list_mapping);
4066 			vnic->mc_list = NULL;
4067 		}
4068 
4069 		if (vnic->rss_table) {
4070 			dma_free_coherent(&pdev->dev, vnic->rss_table_size,
4071 					  vnic->rss_table,
4072 					  vnic->rss_table_dma_addr);
4073 			vnic->rss_table = NULL;
4074 		}
4075 
4076 		vnic->rss_hash_key = NULL;
4077 		vnic->flags = 0;
4078 	}
4079 }
4080 
4081 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
4082 {
4083 	int i, rc = 0, size;
4084 	struct bnxt_vnic_info *vnic;
4085 	struct pci_dev *pdev = bp->pdev;
4086 	int max_rings;
4087 
4088 	for (i = 0; i < bp->nr_vnics; i++) {
4089 		vnic = &bp->vnic_info[i];
4090 
4091 		if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
4092 			int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
4093 
4094 			if (mem_size > 0) {
4095 				vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
4096 				if (!vnic->uc_list) {
4097 					rc = -ENOMEM;
4098 					goto out;
4099 				}
4100 			}
4101 		}
4102 
4103 		if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
4104 			vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
4105 			vnic->mc_list =
4106 				dma_alloc_coherent(&pdev->dev,
4107 						   vnic->mc_list_size,
4108 						   &vnic->mc_list_mapping,
4109 						   GFP_KERNEL);
4110 			if (!vnic->mc_list) {
4111 				rc = -ENOMEM;
4112 				goto out;
4113 			}
4114 		}
4115 
4116 		if (bp->flags & BNXT_FLAG_CHIP_P5)
4117 			goto vnic_skip_grps;
4118 
4119 		if (vnic->flags & BNXT_VNIC_RSS_FLAG)
4120 			max_rings = bp->rx_nr_rings;
4121 		else
4122 			max_rings = 1;
4123 
4124 		vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
4125 		if (!vnic->fw_grp_ids) {
4126 			rc = -ENOMEM;
4127 			goto out;
4128 		}
4129 vnic_skip_grps:
4130 		if ((bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
4131 		    !(vnic->flags & BNXT_VNIC_RSS_FLAG))
4132 			continue;
4133 
4134 		/* Allocate rss table and hash key */
4135 		size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
4136 		if (bp->flags & BNXT_FLAG_CHIP_P5)
4137 			size = L1_CACHE_ALIGN(BNXT_MAX_RSS_TABLE_SIZE_P5);
4138 
4139 		vnic->rss_table_size = size + HW_HASH_KEY_SIZE;
4140 		vnic->rss_table = dma_alloc_coherent(&pdev->dev,
4141 						     vnic->rss_table_size,
4142 						     &vnic->rss_table_dma_addr,
4143 						     GFP_KERNEL);
4144 		if (!vnic->rss_table) {
4145 			rc = -ENOMEM;
4146 			goto out;
4147 		}
4148 
4149 		vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
4150 		vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
4151 	}
4152 	return 0;
4153 
4154 out:
4155 	return rc;
4156 }
4157 
4158 static void bnxt_free_hwrm_resources(struct bnxt *bp)
4159 {
4160 	struct bnxt_hwrm_wait_token *token;
4161 
4162 	dma_pool_destroy(bp->hwrm_dma_pool);
4163 	bp->hwrm_dma_pool = NULL;
4164 
4165 	rcu_read_lock();
4166 	hlist_for_each_entry_rcu(token, &bp->hwrm_pending_list, node)
4167 		WRITE_ONCE(token->state, BNXT_HWRM_CANCELLED);
4168 	rcu_read_unlock();
4169 }
4170 
4171 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
4172 {
4173 	bp->hwrm_dma_pool = dma_pool_create("bnxt_hwrm", &bp->pdev->dev,
4174 					    BNXT_HWRM_DMA_SIZE,
4175 					    BNXT_HWRM_DMA_ALIGN, 0);
4176 	if (!bp->hwrm_dma_pool)
4177 		return -ENOMEM;
4178 
4179 	INIT_HLIST_HEAD(&bp->hwrm_pending_list);
4180 
4181 	return 0;
4182 }
4183 
4184 static void bnxt_free_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats)
4185 {
4186 	kfree(stats->hw_masks);
4187 	stats->hw_masks = NULL;
4188 	kfree(stats->sw_stats);
4189 	stats->sw_stats = NULL;
4190 	if (stats->hw_stats) {
4191 		dma_free_coherent(&bp->pdev->dev, stats->len, stats->hw_stats,
4192 				  stats->hw_stats_map);
4193 		stats->hw_stats = NULL;
4194 	}
4195 }
4196 
4197 static int bnxt_alloc_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats,
4198 				bool alloc_masks)
4199 {
4200 	stats->hw_stats = dma_alloc_coherent(&bp->pdev->dev, stats->len,
4201 					     &stats->hw_stats_map, GFP_KERNEL);
4202 	if (!stats->hw_stats)
4203 		return -ENOMEM;
4204 
4205 	stats->sw_stats = kzalloc(stats->len, GFP_KERNEL);
4206 	if (!stats->sw_stats)
4207 		goto stats_mem_err;
4208 
4209 	if (alloc_masks) {
4210 		stats->hw_masks = kzalloc(stats->len, GFP_KERNEL);
4211 		if (!stats->hw_masks)
4212 			goto stats_mem_err;
4213 	}
4214 	return 0;
4215 
4216 stats_mem_err:
4217 	bnxt_free_stats_mem(bp, stats);
4218 	return -ENOMEM;
4219 }
4220 
4221 static void bnxt_fill_masks(u64 *mask_arr, u64 mask, int count)
4222 {
4223 	int i;
4224 
4225 	for (i = 0; i < count; i++)
4226 		mask_arr[i] = mask;
4227 }
4228 
4229 static void bnxt_copy_hw_masks(u64 *mask_arr, __le64 *hw_mask_arr, int count)
4230 {
4231 	int i;
4232 
4233 	for (i = 0; i < count; i++)
4234 		mask_arr[i] = le64_to_cpu(hw_mask_arr[i]);
4235 }
4236 
4237 static int bnxt_hwrm_func_qstat_ext(struct bnxt *bp,
4238 				    struct bnxt_stats_mem *stats)
4239 {
4240 	struct hwrm_func_qstats_ext_output *resp;
4241 	struct hwrm_func_qstats_ext_input *req;
4242 	__le64 *hw_masks;
4243 	int rc;
4244 
4245 	if (!(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED) ||
4246 	    !(bp->flags & BNXT_FLAG_CHIP_P5))
4247 		return -EOPNOTSUPP;
4248 
4249 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QSTATS_EXT);
4250 	if (rc)
4251 		return rc;
4252 
4253 	req->fid = cpu_to_le16(0xffff);
4254 	req->flags = FUNC_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK;
4255 
4256 	resp = hwrm_req_hold(bp, req);
4257 	rc = hwrm_req_send(bp, req);
4258 	if (!rc) {
4259 		hw_masks = &resp->rx_ucast_pkts;
4260 		bnxt_copy_hw_masks(stats->hw_masks, hw_masks, stats->len / 8);
4261 	}
4262 	hwrm_req_drop(bp, req);
4263 	return rc;
4264 }
4265 
4266 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags);
4267 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags);
4268 
4269 static void bnxt_init_stats(struct bnxt *bp)
4270 {
4271 	struct bnxt_napi *bnapi = bp->bnapi[0];
4272 	struct bnxt_cp_ring_info *cpr;
4273 	struct bnxt_stats_mem *stats;
4274 	__le64 *rx_stats, *tx_stats;
4275 	int rc, rx_count, tx_count;
4276 	u64 *rx_masks, *tx_masks;
4277 	u64 mask;
4278 	u8 flags;
4279 
4280 	cpr = &bnapi->cp_ring;
4281 	stats = &cpr->stats;
4282 	rc = bnxt_hwrm_func_qstat_ext(bp, stats);
4283 	if (rc) {
4284 		if (bp->flags & BNXT_FLAG_CHIP_P5)
4285 			mask = (1ULL << 48) - 1;
4286 		else
4287 			mask = -1ULL;
4288 		bnxt_fill_masks(stats->hw_masks, mask, stats->len / 8);
4289 	}
4290 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
4291 		stats = &bp->port_stats;
4292 		rx_stats = stats->hw_stats;
4293 		rx_masks = stats->hw_masks;
4294 		rx_count = sizeof(struct rx_port_stats) / 8;
4295 		tx_stats = rx_stats + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
4296 		tx_masks = rx_masks + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
4297 		tx_count = sizeof(struct tx_port_stats) / 8;
4298 
4299 		flags = PORT_QSTATS_REQ_FLAGS_COUNTER_MASK;
4300 		rc = bnxt_hwrm_port_qstats(bp, flags);
4301 		if (rc) {
4302 			mask = (1ULL << 40) - 1;
4303 
4304 			bnxt_fill_masks(rx_masks, mask, rx_count);
4305 			bnxt_fill_masks(tx_masks, mask, tx_count);
4306 		} else {
4307 			bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count);
4308 			bnxt_copy_hw_masks(tx_masks, tx_stats, tx_count);
4309 			bnxt_hwrm_port_qstats(bp, 0);
4310 		}
4311 	}
4312 	if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) {
4313 		stats = &bp->rx_port_stats_ext;
4314 		rx_stats = stats->hw_stats;
4315 		rx_masks = stats->hw_masks;
4316 		rx_count = sizeof(struct rx_port_stats_ext) / 8;
4317 		stats = &bp->tx_port_stats_ext;
4318 		tx_stats = stats->hw_stats;
4319 		tx_masks = stats->hw_masks;
4320 		tx_count = sizeof(struct tx_port_stats_ext) / 8;
4321 
4322 		flags = PORT_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK;
4323 		rc = bnxt_hwrm_port_qstats_ext(bp, flags);
4324 		if (rc) {
4325 			mask = (1ULL << 40) - 1;
4326 
4327 			bnxt_fill_masks(rx_masks, mask, rx_count);
4328 			if (tx_stats)
4329 				bnxt_fill_masks(tx_masks, mask, tx_count);
4330 		} else {
4331 			bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count);
4332 			if (tx_stats)
4333 				bnxt_copy_hw_masks(tx_masks, tx_stats,
4334 						   tx_count);
4335 			bnxt_hwrm_port_qstats_ext(bp, 0);
4336 		}
4337 	}
4338 }
4339 
4340 static void bnxt_free_port_stats(struct bnxt *bp)
4341 {
4342 	bp->flags &= ~BNXT_FLAG_PORT_STATS;
4343 	bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT;
4344 
4345 	bnxt_free_stats_mem(bp, &bp->port_stats);
4346 	bnxt_free_stats_mem(bp, &bp->rx_port_stats_ext);
4347 	bnxt_free_stats_mem(bp, &bp->tx_port_stats_ext);
4348 }
4349 
4350 static void bnxt_free_ring_stats(struct bnxt *bp)
4351 {
4352 	int i;
4353 
4354 	if (!bp->bnapi)
4355 		return;
4356 
4357 	for (i = 0; i < bp->cp_nr_rings; i++) {
4358 		struct bnxt_napi *bnapi = bp->bnapi[i];
4359 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4360 
4361 		bnxt_free_stats_mem(bp, &cpr->stats);
4362 	}
4363 }
4364 
4365 static int bnxt_alloc_stats(struct bnxt *bp)
4366 {
4367 	u32 size, i;
4368 	int rc;
4369 
4370 	size = bp->hw_ring_stats_size;
4371 
4372 	for (i = 0; i < bp->cp_nr_rings; i++) {
4373 		struct bnxt_napi *bnapi = bp->bnapi[i];
4374 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4375 
4376 		cpr->stats.len = size;
4377 		rc = bnxt_alloc_stats_mem(bp, &cpr->stats, !i);
4378 		if (rc)
4379 			return rc;
4380 
4381 		cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
4382 	}
4383 
4384 	if (BNXT_VF(bp) || bp->chip_num == CHIP_NUM_58700)
4385 		return 0;
4386 
4387 	if (bp->port_stats.hw_stats)
4388 		goto alloc_ext_stats;
4389 
4390 	bp->port_stats.len = BNXT_PORT_STATS_SIZE;
4391 	rc = bnxt_alloc_stats_mem(bp, &bp->port_stats, true);
4392 	if (rc)
4393 		return rc;
4394 
4395 	bp->flags |= BNXT_FLAG_PORT_STATS;
4396 
4397 alloc_ext_stats:
4398 	/* Display extended statistics only if FW supports it */
4399 	if (bp->hwrm_spec_code < 0x10804 || bp->hwrm_spec_code == 0x10900)
4400 		if (!(bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED))
4401 			return 0;
4402 
4403 	if (bp->rx_port_stats_ext.hw_stats)
4404 		goto alloc_tx_ext_stats;
4405 
4406 	bp->rx_port_stats_ext.len = sizeof(struct rx_port_stats_ext);
4407 	rc = bnxt_alloc_stats_mem(bp, &bp->rx_port_stats_ext, true);
4408 	/* Extended stats are optional */
4409 	if (rc)
4410 		return 0;
4411 
4412 alloc_tx_ext_stats:
4413 	if (bp->tx_port_stats_ext.hw_stats)
4414 		return 0;
4415 
4416 	if (bp->hwrm_spec_code >= 0x10902 ||
4417 	    (bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) {
4418 		bp->tx_port_stats_ext.len = sizeof(struct tx_port_stats_ext);
4419 		rc = bnxt_alloc_stats_mem(bp, &bp->tx_port_stats_ext, true);
4420 		/* Extended stats are optional */
4421 		if (rc)
4422 			return 0;
4423 	}
4424 	bp->flags |= BNXT_FLAG_PORT_STATS_EXT;
4425 	return 0;
4426 }
4427 
4428 static void bnxt_clear_ring_indices(struct bnxt *bp)
4429 {
4430 	int i;
4431 
4432 	if (!bp->bnapi)
4433 		return;
4434 
4435 	for (i = 0; i < bp->cp_nr_rings; i++) {
4436 		struct bnxt_napi *bnapi = bp->bnapi[i];
4437 		struct bnxt_cp_ring_info *cpr;
4438 		struct bnxt_rx_ring_info *rxr;
4439 		struct bnxt_tx_ring_info *txr;
4440 
4441 		if (!bnapi)
4442 			continue;
4443 
4444 		cpr = &bnapi->cp_ring;
4445 		cpr->cp_raw_cons = 0;
4446 
4447 		txr = bnapi->tx_ring;
4448 		if (txr) {
4449 			txr->tx_prod = 0;
4450 			txr->tx_cons = 0;
4451 		}
4452 
4453 		rxr = bnapi->rx_ring;
4454 		if (rxr) {
4455 			rxr->rx_prod = 0;
4456 			rxr->rx_agg_prod = 0;
4457 			rxr->rx_sw_agg_prod = 0;
4458 			rxr->rx_next_cons = 0;
4459 		}
4460 	}
4461 }
4462 
4463 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
4464 {
4465 #ifdef CONFIG_RFS_ACCEL
4466 	int i;
4467 
4468 	/* Under rtnl_lock and all our NAPIs have been disabled.  It's
4469 	 * safe to delete the hash table.
4470 	 */
4471 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
4472 		struct hlist_head *head;
4473 		struct hlist_node *tmp;
4474 		struct bnxt_ntuple_filter *fltr;
4475 
4476 		head = &bp->ntp_fltr_hash_tbl[i];
4477 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
4478 			hlist_del(&fltr->hash);
4479 			kfree(fltr);
4480 		}
4481 	}
4482 	if (irq_reinit) {
4483 		bitmap_free(bp->ntp_fltr_bmap);
4484 		bp->ntp_fltr_bmap = NULL;
4485 	}
4486 	bp->ntp_fltr_count = 0;
4487 #endif
4488 }
4489 
4490 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
4491 {
4492 #ifdef CONFIG_RFS_ACCEL
4493 	int i, rc = 0;
4494 
4495 	if (!(bp->flags & BNXT_FLAG_RFS))
4496 		return 0;
4497 
4498 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
4499 		INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
4500 
4501 	bp->ntp_fltr_count = 0;
4502 	bp->ntp_fltr_bmap = bitmap_zalloc(BNXT_NTP_FLTR_MAX_FLTR, GFP_KERNEL);
4503 
4504 	if (!bp->ntp_fltr_bmap)
4505 		rc = -ENOMEM;
4506 
4507 	return rc;
4508 #else
4509 	return 0;
4510 #endif
4511 }
4512 
4513 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
4514 {
4515 	bnxt_free_vnic_attributes(bp);
4516 	bnxt_free_tx_rings(bp);
4517 	bnxt_free_rx_rings(bp);
4518 	bnxt_free_cp_rings(bp);
4519 	bnxt_free_all_cp_arrays(bp);
4520 	bnxt_free_ntp_fltrs(bp, irq_re_init);
4521 	if (irq_re_init) {
4522 		bnxt_free_ring_stats(bp);
4523 		if (!(bp->phy_flags & BNXT_PHY_FL_PORT_STATS_NO_RESET) ||
4524 		    test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
4525 			bnxt_free_port_stats(bp);
4526 		bnxt_free_ring_grps(bp);
4527 		bnxt_free_vnics(bp);
4528 		kfree(bp->tx_ring_map);
4529 		bp->tx_ring_map = NULL;
4530 		kfree(bp->tx_ring);
4531 		bp->tx_ring = NULL;
4532 		kfree(bp->rx_ring);
4533 		bp->rx_ring = NULL;
4534 		kfree(bp->bnapi);
4535 		bp->bnapi = NULL;
4536 	} else {
4537 		bnxt_clear_ring_indices(bp);
4538 	}
4539 }
4540 
4541 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
4542 {
4543 	int i, j, rc, size, arr_size;
4544 	void *bnapi;
4545 
4546 	if (irq_re_init) {
4547 		/* Allocate bnapi mem pointer array and mem block for
4548 		 * all queues
4549 		 */
4550 		arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
4551 				bp->cp_nr_rings);
4552 		size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
4553 		bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
4554 		if (!bnapi)
4555 			return -ENOMEM;
4556 
4557 		bp->bnapi = bnapi;
4558 		bnapi += arr_size;
4559 		for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
4560 			bp->bnapi[i] = bnapi;
4561 			bp->bnapi[i]->index = i;
4562 			bp->bnapi[i]->bp = bp;
4563 			if (bp->flags & BNXT_FLAG_CHIP_P5) {
4564 				struct bnxt_cp_ring_info *cpr =
4565 					&bp->bnapi[i]->cp_ring;
4566 
4567 				cpr->cp_ring_struct.ring_mem.flags =
4568 					BNXT_RMEM_RING_PTE_FLAG;
4569 			}
4570 		}
4571 
4572 		bp->rx_ring = kcalloc(bp->rx_nr_rings,
4573 				      sizeof(struct bnxt_rx_ring_info),
4574 				      GFP_KERNEL);
4575 		if (!bp->rx_ring)
4576 			return -ENOMEM;
4577 
4578 		for (i = 0; i < bp->rx_nr_rings; i++) {
4579 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4580 
4581 			if (bp->flags & BNXT_FLAG_CHIP_P5) {
4582 				rxr->rx_ring_struct.ring_mem.flags =
4583 					BNXT_RMEM_RING_PTE_FLAG;
4584 				rxr->rx_agg_ring_struct.ring_mem.flags =
4585 					BNXT_RMEM_RING_PTE_FLAG;
4586 			}
4587 			rxr->bnapi = bp->bnapi[i];
4588 			bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
4589 		}
4590 
4591 		bp->tx_ring = kcalloc(bp->tx_nr_rings,
4592 				      sizeof(struct bnxt_tx_ring_info),
4593 				      GFP_KERNEL);
4594 		if (!bp->tx_ring)
4595 			return -ENOMEM;
4596 
4597 		bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16),
4598 					  GFP_KERNEL);
4599 
4600 		if (!bp->tx_ring_map)
4601 			return -ENOMEM;
4602 
4603 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
4604 			j = 0;
4605 		else
4606 			j = bp->rx_nr_rings;
4607 
4608 		for (i = 0; i < bp->tx_nr_rings; i++, j++) {
4609 			struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
4610 
4611 			if (bp->flags & BNXT_FLAG_CHIP_P5)
4612 				txr->tx_ring_struct.ring_mem.flags =
4613 					BNXT_RMEM_RING_PTE_FLAG;
4614 			txr->bnapi = bp->bnapi[j];
4615 			bp->bnapi[j]->tx_ring = txr;
4616 			bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i;
4617 			if (i >= bp->tx_nr_rings_xdp) {
4618 				txr->txq_index = i - bp->tx_nr_rings_xdp;
4619 				bp->bnapi[j]->tx_int = bnxt_tx_int;
4620 			} else {
4621 				bp->bnapi[j]->flags |= BNXT_NAPI_FLAG_XDP;
4622 				bp->bnapi[j]->tx_int = bnxt_tx_int_xdp;
4623 			}
4624 		}
4625 
4626 		rc = bnxt_alloc_stats(bp);
4627 		if (rc)
4628 			goto alloc_mem_err;
4629 		bnxt_init_stats(bp);
4630 
4631 		rc = bnxt_alloc_ntp_fltrs(bp);
4632 		if (rc)
4633 			goto alloc_mem_err;
4634 
4635 		rc = bnxt_alloc_vnics(bp);
4636 		if (rc)
4637 			goto alloc_mem_err;
4638 	}
4639 
4640 	rc = bnxt_alloc_all_cp_arrays(bp);
4641 	if (rc)
4642 		goto alloc_mem_err;
4643 
4644 	bnxt_init_ring_struct(bp);
4645 
4646 	rc = bnxt_alloc_rx_rings(bp);
4647 	if (rc)
4648 		goto alloc_mem_err;
4649 
4650 	rc = bnxt_alloc_tx_rings(bp);
4651 	if (rc)
4652 		goto alloc_mem_err;
4653 
4654 	rc = bnxt_alloc_cp_rings(bp);
4655 	if (rc)
4656 		goto alloc_mem_err;
4657 
4658 	bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
4659 				  BNXT_VNIC_UCAST_FLAG;
4660 	rc = bnxt_alloc_vnic_attributes(bp);
4661 	if (rc)
4662 		goto alloc_mem_err;
4663 	return 0;
4664 
4665 alloc_mem_err:
4666 	bnxt_free_mem(bp, true);
4667 	return rc;
4668 }
4669 
4670 static void bnxt_disable_int(struct bnxt *bp)
4671 {
4672 	int i;
4673 
4674 	if (!bp->bnapi)
4675 		return;
4676 
4677 	for (i = 0; i < bp->cp_nr_rings; i++) {
4678 		struct bnxt_napi *bnapi = bp->bnapi[i];
4679 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4680 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
4681 
4682 		if (ring->fw_ring_id != INVALID_HW_RING_ID)
4683 			bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
4684 	}
4685 }
4686 
4687 static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n)
4688 {
4689 	struct bnxt_napi *bnapi = bp->bnapi[n];
4690 	struct bnxt_cp_ring_info *cpr;
4691 
4692 	cpr = &bnapi->cp_ring;
4693 	return cpr->cp_ring_struct.map_idx;
4694 }
4695 
4696 static void bnxt_disable_int_sync(struct bnxt *bp)
4697 {
4698 	int i;
4699 
4700 	if (!bp->irq_tbl)
4701 		return;
4702 
4703 	atomic_inc(&bp->intr_sem);
4704 
4705 	bnxt_disable_int(bp);
4706 	for (i = 0; i < bp->cp_nr_rings; i++) {
4707 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
4708 
4709 		synchronize_irq(bp->irq_tbl[map_idx].vector);
4710 	}
4711 }
4712 
4713 static void bnxt_enable_int(struct bnxt *bp)
4714 {
4715 	int i;
4716 
4717 	atomic_set(&bp->intr_sem, 0);
4718 	for (i = 0; i < bp->cp_nr_rings; i++) {
4719 		struct bnxt_napi *bnapi = bp->bnapi[i];
4720 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4721 
4722 		bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons);
4723 	}
4724 }
4725 
4726 int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp, unsigned long *bmap, int bmap_size,
4727 			    bool async_only)
4728 {
4729 	DECLARE_BITMAP(async_events_bmap, 256);
4730 	u32 *events = (u32 *)async_events_bmap;
4731 	struct hwrm_func_drv_rgtr_output *resp;
4732 	struct hwrm_func_drv_rgtr_input *req;
4733 	u32 flags;
4734 	int rc, i;
4735 
4736 	rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_RGTR);
4737 	if (rc)
4738 		return rc;
4739 
4740 	req->enables = cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
4741 				   FUNC_DRV_RGTR_REQ_ENABLES_VER |
4742 				   FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
4743 
4744 	req->os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX);
4745 	flags = FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE;
4746 	if (bp->fw_cap & BNXT_FW_CAP_HOT_RESET)
4747 		flags |= FUNC_DRV_RGTR_REQ_FLAGS_HOT_RESET_SUPPORT;
4748 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
4749 		flags |= FUNC_DRV_RGTR_REQ_FLAGS_ERROR_RECOVERY_SUPPORT |
4750 			 FUNC_DRV_RGTR_REQ_FLAGS_MASTER_SUPPORT;
4751 	req->flags = cpu_to_le32(flags);
4752 	req->ver_maj_8b = DRV_VER_MAJ;
4753 	req->ver_min_8b = DRV_VER_MIN;
4754 	req->ver_upd_8b = DRV_VER_UPD;
4755 	req->ver_maj = cpu_to_le16(DRV_VER_MAJ);
4756 	req->ver_min = cpu_to_le16(DRV_VER_MIN);
4757 	req->ver_upd = cpu_to_le16(DRV_VER_UPD);
4758 
4759 	if (BNXT_PF(bp)) {
4760 		u32 data[8];
4761 		int i;
4762 
4763 		memset(data, 0, sizeof(data));
4764 		for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) {
4765 			u16 cmd = bnxt_vf_req_snif[i];
4766 			unsigned int bit, idx;
4767 
4768 			idx = cmd / 32;
4769 			bit = cmd % 32;
4770 			data[idx] |= 1 << bit;
4771 		}
4772 
4773 		for (i = 0; i < 8; i++)
4774 			req->vf_req_fwd[i] = cpu_to_le32(data[i]);
4775 
4776 		req->enables |=
4777 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
4778 	}
4779 
4780 	if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE)
4781 		req->flags |= cpu_to_le32(
4782 			FUNC_DRV_RGTR_REQ_FLAGS_FLOW_HANDLE_64BIT_MODE);
4783 
4784 	memset(async_events_bmap, 0, sizeof(async_events_bmap));
4785 	for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++) {
4786 		u16 event_id = bnxt_async_events_arr[i];
4787 
4788 		if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY &&
4789 		    !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
4790 			continue;
4791 		__set_bit(bnxt_async_events_arr[i], async_events_bmap);
4792 	}
4793 	if (bmap && bmap_size) {
4794 		for (i = 0; i < bmap_size; i++) {
4795 			if (test_bit(i, bmap))
4796 				__set_bit(i, async_events_bmap);
4797 		}
4798 	}
4799 	for (i = 0; i < 8; i++)
4800 		req->async_event_fwd[i] |= cpu_to_le32(events[i]);
4801 
4802 	if (async_only)
4803 		req->enables =
4804 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
4805 
4806 	resp = hwrm_req_hold(bp, req);
4807 	rc = hwrm_req_send(bp, req);
4808 	if (!rc) {
4809 		set_bit(BNXT_STATE_DRV_REGISTERED, &bp->state);
4810 		if (resp->flags &
4811 		    cpu_to_le32(FUNC_DRV_RGTR_RESP_FLAGS_IF_CHANGE_SUPPORTED))
4812 			bp->fw_cap |= BNXT_FW_CAP_IF_CHANGE;
4813 	}
4814 	hwrm_req_drop(bp, req);
4815 	return rc;
4816 }
4817 
4818 int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
4819 {
4820 	struct hwrm_func_drv_unrgtr_input *req;
4821 	int rc;
4822 
4823 	if (!test_and_clear_bit(BNXT_STATE_DRV_REGISTERED, &bp->state))
4824 		return 0;
4825 
4826 	rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_UNRGTR);
4827 	if (rc)
4828 		return rc;
4829 	return hwrm_req_send(bp, req);
4830 }
4831 
4832 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
4833 {
4834 	struct hwrm_tunnel_dst_port_free_input *req;
4835 	int rc;
4836 
4837 	if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN &&
4838 	    bp->vxlan_fw_dst_port_id == INVALID_HW_RING_ID)
4839 		return 0;
4840 	if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE &&
4841 	    bp->nge_fw_dst_port_id == INVALID_HW_RING_ID)
4842 		return 0;
4843 
4844 	rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_FREE);
4845 	if (rc)
4846 		return rc;
4847 
4848 	req->tunnel_type = tunnel_type;
4849 
4850 	switch (tunnel_type) {
4851 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
4852 		req->tunnel_dst_port_id = cpu_to_le16(bp->vxlan_fw_dst_port_id);
4853 		bp->vxlan_port = 0;
4854 		bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID;
4855 		break;
4856 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
4857 		req->tunnel_dst_port_id = cpu_to_le16(bp->nge_fw_dst_port_id);
4858 		bp->nge_port = 0;
4859 		bp->nge_fw_dst_port_id = INVALID_HW_RING_ID;
4860 		break;
4861 	default:
4862 		break;
4863 	}
4864 
4865 	rc = hwrm_req_send(bp, req);
4866 	if (rc)
4867 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
4868 			   rc);
4869 	return rc;
4870 }
4871 
4872 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
4873 					   u8 tunnel_type)
4874 {
4875 	struct hwrm_tunnel_dst_port_alloc_output *resp;
4876 	struct hwrm_tunnel_dst_port_alloc_input *req;
4877 	int rc;
4878 
4879 	rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_ALLOC);
4880 	if (rc)
4881 		return rc;
4882 
4883 	req->tunnel_type = tunnel_type;
4884 	req->tunnel_dst_port_val = port;
4885 
4886 	resp = hwrm_req_hold(bp, req);
4887 	rc = hwrm_req_send(bp, req);
4888 	if (rc) {
4889 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
4890 			   rc);
4891 		goto err_out;
4892 	}
4893 
4894 	switch (tunnel_type) {
4895 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN:
4896 		bp->vxlan_port = port;
4897 		bp->vxlan_fw_dst_port_id =
4898 			le16_to_cpu(resp->tunnel_dst_port_id);
4899 		break;
4900 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE:
4901 		bp->nge_port = port;
4902 		bp->nge_fw_dst_port_id = le16_to_cpu(resp->tunnel_dst_port_id);
4903 		break;
4904 	default:
4905 		break;
4906 	}
4907 
4908 err_out:
4909 	hwrm_req_drop(bp, req);
4910 	return rc;
4911 }
4912 
4913 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
4914 {
4915 	struct hwrm_cfa_l2_set_rx_mask_input *req;
4916 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4917 	int rc;
4918 
4919 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_SET_RX_MASK);
4920 	if (rc)
4921 		return rc;
4922 
4923 	req->vnic_id = cpu_to_le32(vnic->fw_vnic_id);
4924 	if (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST) {
4925 		req->num_mc_entries = cpu_to_le32(vnic->mc_list_count);
4926 		req->mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
4927 	}
4928 	req->mask = cpu_to_le32(vnic->rx_mask);
4929 	return hwrm_req_send_silent(bp, req);
4930 }
4931 
4932 #ifdef CONFIG_RFS_ACCEL
4933 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
4934 					    struct bnxt_ntuple_filter *fltr)
4935 {
4936 	struct hwrm_cfa_ntuple_filter_free_input *req;
4937 	int rc;
4938 
4939 	rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_FREE);
4940 	if (rc)
4941 		return rc;
4942 
4943 	req->ntuple_filter_id = fltr->filter_id;
4944 	return hwrm_req_send(bp, req);
4945 }
4946 
4947 #define BNXT_NTP_FLTR_FLAGS					\
4948 	(CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID |	\
4949 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE |	\
4950 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR |	\
4951 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE |	\
4952 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR |	\
4953 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK |	\
4954 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR |	\
4955 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK |	\
4956 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL |	\
4957 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT |		\
4958 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK |	\
4959 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT |		\
4960 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK |	\
4961 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
4962 
4963 #define BNXT_NTP_TUNNEL_FLTR_FLAG				\
4964 		CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE
4965 
4966 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
4967 					     struct bnxt_ntuple_filter *fltr)
4968 {
4969 	struct hwrm_cfa_ntuple_filter_alloc_output *resp;
4970 	struct hwrm_cfa_ntuple_filter_alloc_input *req;
4971 	struct flow_keys *keys = &fltr->fkeys;
4972 	struct bnxt_vnic_info *vnic;
4973 	u32 flags = 0;
4974 	int rc;
4975 
4976 	rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_ALLOC);
4977 	if (rc)
4978 		return rc;
4979 
4980 	req->l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx];
4981 
4982 	if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) {
4983 		flags = CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DEST_RFS_RING_IDX;
4984 		req->dst_id = cpu_to_le16(fltr->rxq);
4985 	} else {
4986 		vnic = &bp->vnic_info[fltr->rxq + 1];
4987 		req->dst_id = cpu_to_le16(vnic->fw_vnic_id);
4988 	}
4989 	req->flags = cpu_to_le32(flags);
4990 	req->enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
4991 
4992 	req->ethertype = htons(ETH_P_IP);
4993 	memcpy(req->src_macaddr, fltr->src_mac_addr, ETH_ALEN);
4994 	req->ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
4995 	req->ip_protocol = keys->basic.ip_proto;
4996 
4997 	if (keys->basic.n_proto == htons(ETH_P_IPV6)) {
4998 		int i;
4999 
5000 		req->ethertype = htons(ETH_P_IPV6);
5001 		req->ip_addr_type =
5002 			CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6;
5003 		*(struct in6_addr *)&req->src_ipaddr[0] =
5004 			keys->addrs.v6addrs.src;
5005 		*(struct in6_addr *)&req->dst_ipaddr[0] =
5006 			keys->addrs.v6addrs.dst;
5007 		for (i = 0; i < 4; i++) {
5008 			req->src_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
5009 			req->dst_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
5010 		}
5011 	} else {
5012 		req->src_ipaddr[0] = keys->addrs.v4addrs.src;
5013 		req->src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
5014 		req->dst_ipaddr[0] = keys->addrs.v4addrs.dst;
5015 		req->dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
5016 	}
5017 	if (keys->control.flags & FLOW_DIS_ENCAPSULATION) {
5018 		req->enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG);
5019 		req->tunnel_type =
5020 			CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL;
5021 	}
5022 
5023 	req->src_port = keys->ports.src;
5024 	req->src_port_mask = cpu_to_be16(0xffff);
5025 	req->dst_port = keys->ports.dst;
5026 	req->dst_port_mask = cpu_to_be16(0xffff);
5027 
5028 	resp = hwrm_req_hold(bp, req);
5029 	rc = hwrm_req_send(bp, req);
5030 	if (!rc)
5031 		fltr->filter_id = resp->ntuple_filter_id;
5032 	hwrm_req_drop(bp, req);
5033 	return rc;
5034 }
5035 #endif
5036 
5037 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
5038 				     const u8 *mac_addr)
5039 {
5040 	struct hwrm_cfa_l2_filter_alloc_output *resp;
5041 	struct hwrm_cfa_l2_filter_alloc_input *req;
5042 	int rc;
5043 
5044 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_ALLOC);
5045 	if (rc)
5046 		return rc;
5047 
5048 	req->flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX);
5049 	if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
5050 		req->flags |=
5051 			cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
5052 	req->dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
5053 	req->enables =
5054 		cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
5055 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
5056 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
5057 	memcpy(req->l2_addr, mac_addr, ETH_ALEN);
5058 	req->l2_addr_mask[0] = 0xff;
5059 	req->l2_addr_mask[1] = 0xff;
5060 	req->l2_addr_mask[2] = 0xff;
5061 	req->l2_addr_mask[3] = 0xff;
5062 	req->l2_addr_mask[4] = 0xff;
5063 	req->l2_addr_mask[5] = 0xff;
5064 
5065 	resp = hwrm_req_hold(bp, req);
5066 	rc = hwrm_req_send(bp, req);
5067 	if (!rc)
5068 		bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
5069 							resp->l2_filter_id;
5070 	hwrm_req_drop(bp, req);
5071 	return rc;
5072 }
5073 
5074 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
5075 {
5076 	struct hwrm_cfa_l2_filter_free_input *req;
5077 	u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
5078 	int rc;
5079 
5080 	/* Any associated ntuple filters will also be cleared by firmware. */
5081 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE);
5082 	if (rc)
5083 		return rc;
5084 	hwrm_req_hold(bp, req);
5085 	for (i = 0; i < num_of_vnics; i++) {
5086 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
5087 
5088 		for (j = 0; j < vnic->uc_filter_count; j++) {
5089 			req->l2_filter_id = vnic->fw_l2_filter_id[j];
5090 
5091 			rc = hwrm_req_send(bp, req);
5092 		}
5093 		vnic->uc_filter_count = 0;
5094 	}
5095 	hwrm_req_drop(bp, req);
5096 	return rc;
5097 }
5098 
5099 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
5100 {
5101 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5102 	u16 max_aggs = VNIC_TPA_CFG_REQ_MAX_AGGS_MAX;
5103 	struct hwrm_vnic_tpa_cfg_input *req;
5104 	int rc;
5105 
5106 	if (vnic->fw_vnic_id == INVALID_HW_RING_ID)
5107 		return 0;
5108 
5109 	rc = hwrm_req_init(bp, req, HWRM_VNIC_TPA_CFG);
5110 	if (rc)
5111 		return rc;
5112 
5113 	if (tpa_flags) {
5114 		u16 mss = bp->dev->mtu - 40;
5115 		u32 nsegs, n, segs = 0, flags;
5116 
5117 		flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
5118 			VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
5119 			VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
5120 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
5121 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
5122 		if (tpa_flags & BNXT_FLAG_GRO)
5123 			flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
5124 
5125 		req->flags = cpu_to_le32(flags);
5126 
5127 		req->enables =
5128 			cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
5129 				    VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
5130 				    VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
5131 
5132 		/* Number of segs are log2 units, and first packet is not
5133 		 * included as part of this units.
5134 		 */
5135 		if (mss <= BNXT_RX_PAGE_SIZE) {
5136 			n = BNXT_RX_PAGE_SIZE / mss;
5137 			nsegs = (MAX_SKB_FRAGS - 1) * n;
5138 		} else {
5139 			n = mss / BNXT_RX_PAGE_SIZE;
5140 			if (mss & (BNXT_RX_PAGE_SIZE - 1))
5141 				n++;
5142 			nsegs = (MAX_SKB_FRAGS - n) / n;
5143 		}
5144 
5145 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5146 			segs = MAX_TPA_SEGS_P5;
5147 			max_aggs = bp->max_tpa;
5148 		} else {
5149 			segs = ilog2(nsegs);
5150 		}
5151 		req->max_agg_segs = cpu_to_le16(segs);
5152 		req->max_aggs = cpu_to_le16(max_aggs);
5153 
5154 		req->min_agg_len = cpu_to_le32(512);
5155 	}
5156 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5157 
5158 	return hwrm_req_send(bp, req);
5159 }
5160 
5161 static u16 bnxt_cp_ring_from_grp(struct bnxt *bp, struct bnxt_ring_struct *ring)
5162 {
5163 	struct bnxt_ring_grp_info *grp_info;
5164 
5165 	grp_info = &bp->grp_info[ring->grp_idx];
5166 	return grp_info->cp_fw_ring_id;
5167 }
5168 
5169 static u16 bnxt_cp_ring_for_rx(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
5170 {
5171 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5172 		struct bnxt_napi *bnapi = rxr->bnapi;
5173 		struct bnxt_cp_ring_info *cpr;
5174 
5175 		cpr = bnapi->cp_ring.cp_ring_arr[BNXT_RX_HDL];
5176 		return cpr->cp_ring_struct.fw_ring_id;
5177 	} else {
5178 		return bnxt_cp_ring_from_grp(bp, &rxr->rx_ring_struct);
5179 	}
5180 }
5181 
5182 static u16 bnxt_cp_ring_for_tx(struct bnxt *bp, struct bnxt_tx_ring_info *txr)
5183 {
5184 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5185 		struct bnxt_napi *bnapi = txr->bnapi;
5186 		struct bnxt_cp_ring_info *cpr;
5187 
5188 		cpr = bnapi->cp_ring.cp_ring_arr[BNXT_TX_HDL];
5189 		return cpr->cp_ring_struct.fw_ring_id;
5190 	} else {
5191 		return bnxt_cp_ring_from_grp(bp, &txr->tx_ring_struct);
5192 	}
5193 }
5194 
5195 static int bnxt_alloc_rss_indir_tbl(struct bnxt *bp)
5196 {
5197 	int entries;
5198 
5199 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5200 		entries = BNXT_MAX_RSS_TABLE_ENTRIES_P5;
5201 	else
5202 		entries = HW_HASH_INDEX_SIZE;
5203 
5204 	bp->rss_indir_tbl_entries = entries;
5205 	bp->rss_indir_tbl = kmalloc_array(entries, sizeof(*bp->rss_indir_tbl),
5206 					  GFP_KERNEL);
5207 	if (!bp->rss_indir_tbl)
5208 		return -ENOMEM;
5209 	return 0;
5210 }
5211 
5212 static void bnxt_set_dflt_rss_indir_tbl(struct bnxt *bp)
5213 {
5214 	u16 max_rings, max_entries, pad, i;
5215 
5216 	if (!bp->rx_nr_rings)
5217 		return;
5218 
5219 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5220 		max_rings = bp->rx_nr_rings - 1;
5221 	else
5222 		max_rings = bp->rx_nr_rings;
5223 
5224 	max_entries = bnxt_get_rxfh_indir_size(bp->dev);
5225 
5226 	for (i = 0; i < max_entries; i++)
5227 		bp->rss_indir_tbl[i] = ethtool_rxfh_indir_default(i, max_rings);
5228 
5229 	pad = bp->rss_indir_tbl_entries - max_entries;
5230 	if (pad)
5231 		memset(&bp->rss_indir_tbl[i], 0, pad * sizeof(u16));
5232 }
5233 
5234 static u16 bnxt_get_max_rss_ring(struct bnxt *bp)
5235 {
5236 	u16 i, tbl_size, max_ring = 0;
5237 
5238 	if (!bp->rss_indir_tbl)
5239 		return 0;
5240 
5241 	tbl_size = bnxt_get_rxfh_indir_size(bp->dev);
5242 	for (i = 0; i < tbl_size; i++)
5243 		max_ring = max(max_ring, bp->rss_indir_tbl[i]);
5244 	return max_ring;
5245 }
5246 
5247 int bnxt_get_nr_rss_ctxs(struct bnxt *bp, int rx_rings)
5248 {
5249 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5250 		return DIV_ROUND_UP(rx_rings, BNXT_RSS_TABLE_ENTRIES_P5);
5251 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5252 		return 2;
5253 	return 1;
5254 }
5255 
5256 static void bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic)
5257 {
5258 	bool no_rss = !(vnic->flags & BNXT_VNIC_RSS_FLAG);
5259 	u16 i, j;
5260 
5261 	/* Fill the RSS indirection table with ring group ids */
5262 	for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++) {
5263 		if (!no_rss)
5264 			j = bp->rss_indir_tbl[i];
5265 		vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
5266 	}
5267 }
5268 
5269 static void bnxt_fill_hw_rss_tbl_p5(struct bnxt *bp,
5270 				    struct bnxt_vnic_info *vnic)
5271 {
5272 	__le16 *ring_tbl = vnic->rss_table;
5273 	struct bnxt_rx_ring_info *rxr;
5274 	u16 tbl_size, i;
5275 
5276 	tbl_size = bnxt_get_rxfh_indir_size(bp->dev);
5277 
5278 	for (i = 0; i < tbl_size; i++) {
5279 		u16 ring_id, j;
5280 
5281 		j = bp->rss_indir_tbl[i];
5282 		rxr = &bp->rx_ring[j];
5283 
5284 		ring_id = rxr->rx_ring_struct.fw_ring_id;
5285 		*ring_tbl++ = cpu_to_le16(ring_id);
5286 		ring_id = bnxt_cp_ring_for_rx(bp, rxr);
5287 		*ring_tbl++ = cpu_to_le16(ring_id);
5288 	}
5289 }
5290 
5291 static void
5292 __bnxt_hwrm_vnic_set_rss(struct bnxt *bp, struct hwrm_vnic_rss_cfg_input *req,
5293 			 struct bnxt_vnic_info *vnic)
5294 {
5295 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5296 		bnxt_fill_hw_rss_tbl_p5(bp, vnic);
5297 	else
5298 		bnxt_fill_hw_rss_tbl(bp, vnic);
5299 
5300 	if (bp->rss_hash_delta) {
5301 		req->hash_type = cpu_to_le32(bp->rss_hash_delta);
5302 		if (bp->rss_hash_cfg & bp->rss_hash_delta)
5303 			req->flags |= VNIC_RSS_CFG_REQ_FLAGS_HASH_TYPE_INCLUDE;
5304 		else
5305 			req->flags |= VNIC_RSS_CFG_REQ_FLAGS_HASH_TYPE_EXCLUDE;
5306 	} else {
5307 		req->hash_type = cpu_to_le32(bp->rss_hash_cfg);
5308 	}
5309 	req->hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT;
5310 	req->ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
5311 	req->hash_key_tbl_addr = cpu_to_le64(vnic->rss_hash_key_dma_addr);
5312 }
5313 
5314 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
5315 {
5316 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5317 	struct hwrm_vnic_rss_cfg_input *req;
5318 	int rc;
5319 
5320 	if ((bp->flags & BNXT_FLAG_CHIP_P5) ||
5321 	    vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID)
5322 		return 0;
5323 
5324 	rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG);
5325 	if (rc)
5326 		return rc;
5327 
5328 	if (set_rss)
5329 		__bnxt_hwrm_vnic_set_rss(bp, req, vnic);
5330 	req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
5331 	return hwrm_req_send(bp, req);
5332 }
5333 
5334 static int bnxt_hwrm_vnic_set_rss_p5(struct bnxt *bp, u16 vnic_id, bool set_rss)
5335 {
5336 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5337 	struct hwrm_vnic_rss_cfg_input *req;
5338 	dma_addr_t ring_tbl_map;
5339 	u32 i, nr_ctxs;
5340 	int rc;
5341 
5342 	rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG);
5343 	if (rc)
5344 		return rc;
5345 
5346 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5347 	if (!set_rss)
5348 		return hwrm_req_send(bp, req);
5349 
5350 	__bnxt_hwrm_vnic_set_rss(bp, req, vnic);
5351 	ring_tbl_map = vnic->rss_table_dma_addr;
5352 	nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings);
5353 
5354 	hwrm_req_hold(bp, req);
5355 	for (i = 0; i < nr_ctxs; ring_tbl_map += BNXT_RSS_TABLE_SIZE_P5, i++) {
5356 		req->ring_grp_tbl_addr = cpu_to_le64(ring_tbl_map);
5357 		req->ring_table_pair_index = i;
5358 		req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[i]);
5359 		rc = hwrm_req_send(bp, req);
5360 		if (rc)
5361 			goto exit;
5362 	}
5363 
5364 exit:
5365 	hwrm_req_drop(bp, req);
5366 	return rc;
5367 }
5368 
5369 static void bnxt_hwrm_update_rss_hash_cfg(struct bnxt *bp)
5370 {
5371 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
5372 	struct hwrm_vnic_rss_qcfg_output *resp;
5373 	struct hwrm_vnic_rss_qcfg_input *req;
5374 
5375 	if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_QCFG))
5376 		return;
5377 
5378 	/* all contexts configured to same hash_type, zero always exists */
5379 	req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
5380 	resp = hwrm_req_hold(bp, req);
5381 	if (!hwrm_req_send(bp, req)) {
5382 		bp->rss_hash_cfg = le32_to_cpu(resp->hash_type) ?: bp->rss_hash_cfg;
5383 		bp->rss_hash_delta = 0;
5384 	}
5385 	hwrm_req_drop(bp, req);
5386 }
5387 
5388 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
5389 {
5390 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5391 	struct hwrm_vnic_plcmodes_cfg_input *req;
5392 	int rc;
5393 
5394 	rc = hwrm_req_init(bp, req, HWRM_VNIC_PLCMODES_CFG);
5395 	if (rc)
5396 		return rc;
5397 
5398 	req->flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT);
5399 	req->enables = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID);
5400 
5401 	if (BNXT_RX_PAGE_MODE(bp) && !BNXT_RX_JUMBO_MODE(bp)) {
5402 		req->flags |= cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
5403 					  VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
5404 		req->enables |=
5405 			cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
5406 	}
5407 	/* thresholds not implemented in firmware yet */
5408 	req->jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
5409 	req->hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
5410 	req->vnic_id = cpu_to_le32(vnic->fw_vnic_id);
5411 	return hwrm_req_send(bp, req);
5412 }
5413 
5414 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id,
5415 					u16 ctx_idx)
5416 {
5417 	struct hwrm_vnic_rss_cos_lb_ctx_free_input *req;
5418 
5419 	if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_FREE))
5420 		return;
5421 
5422 	req->rss_cos_lb_ctx_id =
5423 		cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]);
5424 
5425 	hwrm_req_send(bp, req);
5426 	bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID;
5427 }
5428 
5429 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
5430 {
5431 	int i, j;
5432 
5433 	for (i = 0; i < bp->nr_vnics; i++) {
5434 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
5435 
5436 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) {
5437 			if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID)
5438 				bnxt_hwrm_vnic_ctx_free_one(bp, i, j);
5439 		}
5440 	}
5441 	bp->rsscos_nr_ctxs = 0;
5442 }
5443 
5444 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx)
5445 {
5446 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp;
5447 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_input *req;
5448 	int rc;
5449 
5450 	rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC);
5451 	if (rc)
5452 		return rc;
5453 
5454 	resp = hwrm_req_hold(bp, req);
5455 	rc = hwrm_req_send(bp, req);
5456 	if (!rc)
5457 		bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] =
5458 			le16_to_cpu(resp->rss_cos_lb_ctx_id);
5459 	hwrm_req_drop(bp, req);
5460 
5461 	return rc;
5462 }
5463 
5464 static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp)
5465 {
5466 	if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP)
5467 		return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE;
5468 	return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE;
5469 }
5470 
5471 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
5472 {
5473 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5474 	struct hwrm_vnic_cfg_input *req;
5475 	unsigned int ring = 0, grp_idx;
5476 	u16 def_vlan = 0;
5477 	int rc;
5478 
5479 	rc = hwrm_req_init(bp, req, HWRM_VNIC_CFG);
5480 	if (rc)
5481 		return rc;
5482 
5483 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5484 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0];
5485 
5486 		req->default_rx_ring_id =
5487 			cpu_to_le16(rxr->rx_ring_struct.fw_ring_id);
5488 		req->default_cmpl_ring_id =
5489 			cpu_to_le16(bnxt_cp_ring_for_rx(bp, rxr));
5490 		req->enables =
5491 			cpu_to_le32(VNIC_CFG_REQ_ENABLES_DEFAULT_RX_RING_ID |
5492 				    VNIC_CFG_REQ_ENABLES_DEFAULT_CMPL_RING_ID);
5493 		goto vnic_mru;
5494 	}
5495 	req->enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP);
5496 	/* Only RSS support for now TBD: COS & LB */
5497 	if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) {
5498 		req->rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
5499 		req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
5500 					   VNIC_CFG_REQ_ENABLES_MRU);
5501 	} else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) {
5502 		req->rss_rule =
5503 			cpu_to_le16(bp->vnic_info[0].fw_rss_cos_lb_ctx[0]);
5504 		req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
5505 					   VNIC_CFG_REQ_ENABLES_MRU);
5506 		req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE);
5507 	} else {
5508 		req->rss_rule = cpu_to_le16(0xffff);
5509 	}
5510 
5511 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) &&
5512 	    (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) {
5513 		req->cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]);
5514 		req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE);
5515 	} else {
5516 		req->cos_rule = cpu_to_le16(0xffff);
5517 	}
5518 
5519 	if (vnic->flags & BNXT_VNIC_RSS_FLAG)
5520 		ring = 0;
5521 	else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
5522 		ring = vnic_id - 1;
5523 	else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp))
5524 		ring = bp->rx_nr_rings - 1;
5525 
5526 	grp_idx = bp->rx_ring[ring].bnapi->index;
5527 	req->dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
5528 	req->lb_rule = cpu_to_le16(0xffff);
5529 vnic_mru:
5530 	req->mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + VLAN_HLEN);
5531 
5532 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5533 #ifdef CONFIG_BNXT_SRIOV
5534 	if (BNXT_VF(bp))
5535 		def_vlan = bp->vf.vlan;
5536 #endif
5537 	if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan)
5538 		req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
5539 	if (!vnic_id && bnxt_ulp_registered(bp->edev, BNXT_ROCE_ULP))
5540 		req->flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp));
5541 
5542 	return hwrm_req_send(bp, req);
5543 }
5544 
5545 static void bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
5546 {
5547 	if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
5548 		struct hwrm_vnic_free_input *req;
5549 
5550 		if (hwrm_req_init(bp, req, HWRM_VNIC_FREE))
5551 			return;
5552 
5553 		req->vnic_id =
5554 			cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
5555 
5556 		hwrm_req_send(bp, req);
5557 		bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
5558 	}
5559 }
5560 
5561 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
5562 {
5563 	u16 i;
5564 
5565 	for (i = 0; i < bp->nr_vnics; i++)
5566 		bnxt_hwrm_vnic_free_one(bp, i);
5567 }
5568 
5569 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
5570 				unsigned int start_rx_ring_idx,
5571 				unsigned int nr_rings)
5572 {
5573 	unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
5574 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5575 	struct hwrm_vnic_alloc_output *resp;
5576 	struct hwrm_vnic_alloc_input *req;
5577 	int rc;
5578 
5579 	rc = hwrm_req_init(bp, req, HWRM_VNIC_ALLOC);
5580 	if (rc)
5581 		return rc;
5582 
5583 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5584 		goto vnic_no_ring_grps;
5585 
5586 	/* map ring groups to this vnic */
5587 	for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
5588 		grp_idx = bp->rx_ring[i].bnapi->index;
5589 		if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
5590 			netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
5591 				   j, nr_rings);
5592 			break;
5593 		}
5594 		vnic->fw_grp_ids[j] = bp->grp_info[grp_idx].fw_grp_id;
5595 	}
5596 
5597 vnic_no_ring_grps:
5598 	for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++)
5599 		vnic->fw_rss_cos_lb_ctx[i] = INVALID_HW_RING_ID;
5600 	if (vnic_id == 0)
5601 		req->flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
5602 
5603 	resp = hwrm_req_hold(bp, req);
5604 	rc = hwrm_req_send(bp, req);
5605 	if (!rc)
5606 		vnic->fw_vnic_id = le32_to_cpu(resp->vnic_id);
5607 	hwrm_req_drop(bp, req);
5608 	return rc;
5609 }
5610 
5611 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp)
5612 {
5613 	struct hwrm_vnic_qcaps_output *resp;
5614 	struct hwrm_vnic_qcaps_input *req;
5615 	int rc;
5616 
5617 	bp->hw_ring_stats_size = sizeof(struct ctx_hw_stats);
5618 	bp->flags &= ~(BNXT_FLAG_NEW_RSS_CAP | BNXT_FLAG_ROCE_MIRROR_CAP);
5619 	if (bp->hwrm_spec_code < 0x10600)
5620 		return 0;
5621 
5622 	rc = hwrm_req_init(bp, req, HWRM_VNIC_QCAPS);
5623 	if (rc)
5624 		return rc;
5625 
5626 	resp = hwrm_req_hold(bp, req);
5627 	rc = hwrm_req_send(bp, req);
5628 	if (!rc) {
5629 		u32 flags = le32_to_cpu(resp->flags);
5630 
5631 		if (!(bp->flags & BNXT_FLAG_CHIP_P5) &&
5632 		    (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP))
5633 			bp->flags |= BNXT_FLAG_NEW_RSS_CAP;
5634 		if (flags &
5635 		    VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP)
5636 			bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP;
5637 
5638 		/* Older P5 fw before EXT_HW_STATS support did not set
5639 		 * VLAN_STRIP_CAP properly.
5640 		 */
5641 		if ((flags & VNIC_QCAPS_RESP_FLAGS_VLAN_STRIP_CAP) ||
5642 		    (BNXT_CHIP_P5_THOR(bp) &&
5643 		     !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)))
5644 			bp->fw_cap |= BNXT_FW_CAP_VLAN_RX_STRIP;
5645 		if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_HASH_TYPE_DELTA_CAP)
5646 			bp->fw_cap |= BNXT_FW_CAP_RSS_HASH_TYPE_DELTA;
5647 		bp->max_tpa_v2 = le16_to_cpu(resp->max_aggs_supported);
5648 		if (bp->max_tpa_v2) {
5649 			if (BNXT_CHIP_P5_THOR(bp))
5650 				bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5;
5651 			else
5652 				bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5_SR2;
5653 		}
5654 	}
5655 	hwrm_req_drop(bp, req);
5656 	return rc;
5657 }
5658 
5659 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
5660 {
5661 	struct hwrm_ring_grp_alloc_output *resp;
5662 	struct hwrm_ring_grp_alloc_input *req;
5663 	int rc;
5664 	u16 i;
5665 
5666 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5667 		return 0;
5668 
5669 	rc = hwrm_req_init(bp, req, HWRM_RING_GRP_ALLOC);
5670 	if (rc)
5671 		return rc;
5672 
5673 	resp = hwrm_req_hold(bp, req);
5674 	for (i = 0; i < bp->rx_nr_rings; i++) {
5675 		unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
5676 
5677 		req->cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
5678 		req->rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
5679 		req->ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
5680 		req->sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
5681 
5682 		rc = hwrm_req_send(bp, req);
5683 
5684 		if (rc)
5685 			break;
5686 
5687 		bp->grp_info[grp_idx].fw_grp_id =
5688 			le32_to_cpu(resp->ring_group_id);
5689 	}
5690 	hwrm_req_drop(bp, req);
5691 	return rc;
5692 }
5693 
5694 static void bnxt_hwrm_ring_grp_free(struct bnxt *bp)
5695 {
5696 	struct hwrm_ring_grp_free_input *req;
5697 	u16 i;
5698 
5699 	if (!bp->grp_info || (bp->flags & BNXT_FLAG_CHIP_P5))
5700 		return;
5701 
5702 	if (hwrm_req_init(bp, req, HWRM_RING_GRP_FREE))
5703 		return;
5704 
5705 	hwrm_req_hold(bp, req);
5706 	for (i = 0; i < bp->cp_nr_rings; i++) {
5707 		if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
5708 			continue;
5709 		req->ring_group_id =
5710 			cpu_to_le32(bp->grp_info[i].fw_grp_id);
5711 
5712 		hwrm_req_send(bp, req);
5713 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
5714 	}
5715 	hwrm_req_drop(bp, req);
5716 }
5717 
5718 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
5719 				    struct bnxt_ring_struct *ring,
5720 				    u32 ring_type, u32 map_index)
5721 {
5722 	struct hwrm_ring_alloc_output *resp;
5723 	struct hwrm_ring_alloc_input *req;
5724 	struct bnxt_ring_mem_info *rmem = &ring->ring_mem;
5725 	struct bnxt_ring_grp_info *grp_info;
5726 	int rc, err = 0;
5727 	u16 ring_id;
5728 
5729 	rc = hwrm_req_init(bp, req, HWRM_RING_ALLOC);
5730 	if (rc)
5731 		goto exit;
5732 
5733 	req->enables = 0;
5734 	if (rmem->nr_pages > 1) {
5735 		req->page_tbl_addr = cpu_to_le64(rmem->pg_tbl_map);
5736 		/* Page size is in log2 units */
5737 		req->page_size = BNXT_PAGE_SHIFT;
5738 		req->page_tbl_depth = 1;
5739 	} else {
5740 		req->page_tbl_addr =  cpu_to_le64(rmem->dma_arr[0]);
5741 	}
5742 	req->fbo = 0;
5743 	/* Association of ring index with doorbell index and MSIX number */
5744 	req->logical_id = cpu_to_le16(map_index);
5745 
5746 	switch (ring_type) {
5747 	case HWRM_RING_ALLOC_TX: {
5748 		struct bnxt_tx_ring_info *txr;
5749 
5750 		txr = container_of(ring, struct bnxt_tx_ring_info,
5751 				   tx_ring_struct);
5752 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
5753 		/* Association of transmit ring with completion ring */
5754 		grp_info = &bp->grp_info[ring->grp_idx];
5755 		req->cmpl_ring_id = cpu_to_le16(bnxt_cp_ring_for_tx(bp, txr));
5756 		req->length = cpu_to_le32(bp->tx_ring_mask + 1);
5757 		req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5758 		req->queue_id = cpu_to_le16(ring->queue_id);
5759 		break;
5760 	}
5761 	case HWRM_RING_ALLOC_RX:
5762 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
5763 		req->length = cpu_to_le32(bp->rx_ring_mask + 1);
5764 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5765 			u16 flags = 0;
5766 
5767 			/* Association of rx ring with stats context */
5768 			grp_info = &bp->grp_info[ring->grp_idx];
5769 			req->rx_buf_size = cpu_to_le16(bp->rx_buf_use_size);
5770 			req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5771 			req->enables |= cpu_to_le32(
5772 				RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
5773 			if (NET_IP_ALIGN == 2)
5774 				flags = RING_ALLOC_REQ_FLAGS_RX_SOP_PAD;
5775 			req->flags = cpu_to_le16(flags);
5776 		}
5777 		break;
5778 	case HWRM_RING_ALLOC_AGG:
5779 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5780 			req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX_AGG;
5781 			/* Association of agg ring with rx ring */
5782 			grp_info = &bp->grp_info[ring->grp_idx];
5783 			req->rx_ring_id = cpu_to_le16(grp_info->rx_fw_ring_id);
5784 			req->rx_buf_size = cpu_to_le16(BNXT_RX_PAGE_SIZE);
5785 			req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5786 			req->enables |= cpu_to_le32(
5787 				RING_ALLOC_REQ_ENABLES_RX_RING_ID_VALID |
5788 				RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
5789 		} else {
5790 			req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
5791 		}
5792 		req->length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
5793 		break;
5794 	case HWRM_RING_ALLOC_CMPL:
5795 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL;
5796 		req->length = cpu_to_le32(bp->cp_ring_mask + 1);
5797 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5798 			/* Association of cp ring with nq */
5799 			grp_info = &bp->grp_info[map_index];
5800 			req->nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id);
5801 			req->cq_handle = cpu_to_le64(ring->handle);
5802 			req->enables |= cpu_to_le32(
5803 				RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID);
5804 		} else if (bp->flags & BNXT_FLAG_USING_MSIX) {
5805 			req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
5806 		}
5807 		break;
5808 	case HWRM_RING_ALLOC_NQ:
5809 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_NQ;
5810 		req->length = cpu_to_le32(bp->cp_ring_mask + 1);
5811 		if (bp->flags & BNXT_FLAG_USING_MSIX)
5812 			req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
5813 		break;
5814 	default:
5815 		netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
5816 			   ring_type);
5817 		return -1;
5818 	}
5819 
5820 	resp = hwrm_req_hold(bp, req);
5821 	rc = hwrm_req_send(bp, req);
5822 	err = le16_to_cpu(resp->error_code);
5823 	ring_id = le16_to_cpu(resp->ring_id);
5824 	hwrm_req_drop(bp, req);
5825 
5826 exit:
5827 	if (rc || err) {
5828 		netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n",
5829 			   ring_type, rc, err);
5830 		return -EIO;
5831 	}
5832 	ring->fw_ring_id = ring_id;
5833 	return rc;
5834 }
5835 
5836 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx)
5837 {
5838 	int rc;
5839 
5840 	if (BNXT_PF(bp)) {
5841 		struct hwrm_func_cfg_input *req;
5842 
5843 		rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG);
5844 		if (rc)
5845 			return rc;
5846 
5847 		req->fid = cpu_to_le16(0xffff);
5848 		req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
5849 		req->async_event_cr = cpu_to_le16(idx);
5850 		return hwrm_req_send(bp, req);
5851 	} else {
5852 		struct hwrm_func_vf_cfg_input *req;
5853 
5854 		rc = hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG);
5855 		if (rc)
5856 			return rc;
5857 
5858 		req->enables =
5859 			cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
5860 		req->async_event_cr = cpu_to_le16(idx);
5861 		return hwrm_req_send(bp, req);
5862 	}
5863 }
5864 
5865 static void bnxt_set_db(struct bnxt *bp, struct bnxt_db_info *db, u32 ring_type,
5866 			u32 map_idx, u32 xid)
5867 {
5868 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5869 		if (BNXT_PF(bp))
5870 			db->doorbell = bp->bar1 + DB_PF_OFFSET_P5;
5871 		else
5872 			db->doorbell = bp->bar1 + DB_VF_OFFSET_P5;
5873 		switch (ring_type) {
5874 		case HWRM_RING_ALLOC_TX:
5875 			db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SQ;
5876 			break;
5877 		case HWRM_RING_ALLOC_RX:
5878 		case HWRM_RING_ALLOC_AGG:
5879 			db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SRQ;
5880 			break;
5881 		case HWRM_RING_ALLOC_CMPL:
5882 			db->db_key64 = DBR_PATH_L2;
5883 			break;
5884 		case HWRM_RING_ALLOC_NQ:
5885 			db->db_key64 = DBR_PATH_L2;
5886 			break;
5887 		}
5888 		db->db_key64 |= (u64)xid << DBR_XID_SFT;
5889 	} else {
5890 		db->doorbell = bp->bar1 + map_idx * 0x80;
5891 		switch (ring_type) {
5892 		case HWRM_RING_ALLOC_TX:
5893 			db->db_key32 = DB_KEY_TX;
5894 			break;
5895 		case HWRM_RING_ALLOC_RX:
5896 		case HWRM_RING_ALLOC_AGG:
5897 			db->db_key32 = DB_KEY_RX;
5898 			break;
5899 		case HWRM_RING_ALLOC_CMPL:
5900 			db->db_key32 = DB_KEY_CP;
5901 			break;
5902 		}
5903 	}
5904 }
5905 
5906 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
5907 {
5908 	bool agg_rings = !!(bp->flags & BNXT_FLAG_AGG_RINGS);
5909 	int i, rc = 0;
5910 	u32 type;
5911 
5912 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5913 		type = HWRM_RING_ALLOC_NQ;
5914 	else
5915 		type = HWRM_RING_ALLOC_CMPL;
5916 	for (i = 0; i < bp->cp_nr_rings; i++) {
5917 		struct bnxt_napi *bnapi = bp->bnapi[i];
5918 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5919 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
5920 		u32 map_idx = ring->map_idx;
5921 		unsigned int vector;
5922 
5923 		vector = bp->irq_tbl[map_idx].vector;
5924 		disable_irq_nosync(vector);
5925 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5926 		if (rc) {
5927 			enable_irq(vector);
5928 			goto err_out;
5929 		}
5930 		bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id);
5931 		bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
5932 		enable_irq(vector);
5933 		bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
5934 
5935 		if (!i) {
5936 			rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id);
5937 			if (rc)
5938 				netdev_warn(bp->dev, "Failed to set async event completion ring.\n");
5939 		}
5940 	}
5941 
5942 	type = HWRM_RING_ALLOC_TX;
5943 	for (i = 0; i < bp->tx_nr_rings; i++) {
5944 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
5945 		struct bnxt_ring_struct *ring;
5946 		u32 map_idx;
5947 
5948 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5949 			struct bnxt_napi *bnapi = txr->bnapi;
5950 			struct bnxt_cp_ring_info *cpr, *cpr2;
5951 			u32 type2 = HWRM_RING_ALLOC_CMPL;
5952 
5953 			cpr = &bnapi->cp_ring;
5954 			cpr2 = cpr->cp_ring_arr[BNXT_TX_HDL];
5955 			ring = &cpr2->cp_ring_struct;
5956 			ring->handle = BNXT_TX_HDL;
5957 			map_idx = bnapi->index;
5958 			rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
5959 			if (rc)
5960 				goto err_out;
5961 			bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
5962 				    ring->fw_ring_id);
5963 			bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
5964 		}
5965 		ring = &txr->tx_ring_struct;
5966 		map_idx = i;
5967 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5968 		if (rc)
5969 			goto err_out;
5970 		bnxt_set_db(bp, &txr->tx_db, type, map_idx, ring->fw_ring_id);
5971 	}
5972 
5973 	type = HWRM_RING_ALLOC_RX;
5974 	for (i = 0; i < bp->rx_nr_rings; i++) {
5975 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5976 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
5977 		struct bnxt_napi *bnapi = rxr->bnapi;
5978 		u32 map_idx = bnapi->index;
5979 
5980 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5981 		if (rc)
5982 			goto err_out;
5983 		bnxt_set_db(bp, &rxr->rx_db, type, map_idx, ring->fw_ring_id);
5984 		/* If we have agg rings, post agg buffers first. */
5985 		if (!agg_rings)
5986 			bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
5987 		bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
5988 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5989 			struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5990 			u32 type2 = HWRM_RING_ALLOC_CMPL;
5991 			struct bnxt_cp_ring_info *cpr2;
5992 
5993 			cpr2 = cpr->cp_ring_arr[BNXT_RX_HDL];
5994 			ring = &cpr2->cp_ring_struct;
5995 			ring->handle = BNXT_RX_HDL;
5996 			rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
5997 			if (rc)
5998 				goto err_out;
5999 			bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
6000 				    ring->fw_ring_id);
6001 			bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
6002 		}
6003 	}
6004 
6005 	if (agg_rings) {
6006 		type = HWRM_RING_ALLOC_AGG;
6007 		for (i = 0; i < bp->rx_nr_rings; i++) {
6008 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
6009 			struct bnxt_ring_struct *ring =
6010 						&rxr->rx_agg_ring_struct;
6011 			u32 grp_idx = ring->grp_idx;
6012 			u32 map_idx = grp_idx + bp->rx_nr_rings;
6013 
6014 			rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
6015 			if (rc)
6016 				goto err_out;
6017 
6018 			bnxt_set_db(bp, &rxr->rx_agg_db, type, map_idx,
6019 				    ring->fw_ring_id);
6020 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
6021 			bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
6022 			bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
6023 		}
6024 	}
6025 err_out:
6026 	return rc;
6027 }
6028 
6029 static int hwrm_ring_free_send_msg(struct bnxt *bp,
6030 				   struct bnxt_ring_struct *ring,
6031 				   u32 ring_type, int cmpl_ring_id)
6032 {
6033 	struct hwrm_ring_free_output *resp;
6034 	struct hwrm_ring_free_input *req;
6035 	u16 error_code = 0;
6036 	int rc;
6037 
6038 	if (BNXT_NO_FW_ACCESS(bp))
6039 		return 0;
6040 
6041 	rc = hwrm_req_init(bp, req, HWRM_RING_FREE);
6042 	if (rc)
6043 		goto exit;
6044 
6045 	req->cmpl_ring = cpu_to_le16(cmpl_ring_id);
6046 	req->ring_type = ring_type;
6047 	req->ring_id = cpu_to_le16(ring->fw_ring_id);
6048 
6049 	resp = hwrm_req_hold(bp, req);
6050 	rc = hwrm_req_send(bp, req);
6051 	error_code = le16_to_cpu(resp->error_code);
6052 	hwrm_req_drop(bp, req);
6053 exit:
6054 	if (rc || error_code) {
6055 		netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n",
6056 			   ring_type, rc, error_code);
6057 		return -EIO;
6058 	}
6059 	return 0;
6060 }
6061 
6062 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
6063 {
6064 	u32 type;
6065 	int i;
6066 
6067 	if (!bp->bnapi)
6068 		return;
6069 
6070 	for (i = 0; i < bp->tx_nr_rings; i++) {
6071 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
6072 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
6073 
6074 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
6075 			u32 cmpl_ring_id = bnxt_cp_ring_for_tx(bp, txr);
6076 
6077 			hwrm_ring_free_send_msg(bp, ring,
6078 						RING_FREE_REQ_RING_TYPE_TX,
6079 						close_path ? cmpl_ring_id :
6080 						INVALID_HW_RING_ID);
6081 			ring->fw_ring_id = INVALID_HW_RING_ID;
6082 		}
6083 	}
6084 
6085 	for (i = 0; i < bp->rx_nr_rings; i++) {
6086 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
6087 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
6088 		u32 grp_idx = rxr->bnapi->index;
6089 
6090 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
6091 			u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
6092 
6093 			hwrm_ring_free_send_msg(bp, ring,
6094 						RING_FREE_REQ_RING_TYPE_RX,
6095 						close_path ? cmpl_ring_id :
6096 						INVALID_HW_RING_ID);
6097 			ring->fw_ring_id = INVALID_HW_RING_ID;
6098 			bp->grp_info[grp_idx].rx_fw_ring_id =
6099 				INVALID_HW_RING_ID;
6100 		}
6101 	}
6102 
6103 	if (bp->flags & BNXT_FLAG_CHIP_P5)
6104 		type = RING_FREE_REQ_RING_TYPE_RX_AGG;
6105 	else
6106 		type = RING_FREE_REQ_RING_TYPE_RX;
6107 	for (i = 0; i < bp->rx_nr_rings; i++) {
6108 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
6109 		struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
6110 		u32 grp_idx = rxr->bnapi->index;
6111 
6112 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
6113 			u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
6114 
6115 			hwrm_ring_free_send_msg(bp, ring, type,
6116 						close_path ? cmpl_ring_id :
6117 						INVALID_HW_RING_ID);
6118 			ring->fw_ring_id = INVALID_HW_RING_ID;
6119 			bp->grp_info[grp_idx].agg_fw_ring_id =
6120 				INVALID_HW_RING_ID;
6121 		}
6122 	}
6123 
6124 	/* The completion rings are about to be freed.  After that the
6125 	 * IRQ doorbell will not work anymore.  So we need to disable
6126 	 * IRQ here.
6127 	 */
6128 	bnxt_disable_int_sync(bp);
6129 
6130 	if (bp->flags & BNXT_FLAG_CHIP_P5)
6131 		type = RING_FREE_REQ_RING_TYPE_NQ;
6132 	else
6133 		type = RING_FREE_REQ_RING_TYPE_L2_CMPL;
6134 	for (i = 0; i < bp->cp_nr_rings; i++) {
6135 		struct bnxt_napi *bnapi = bp->bnapi[i];
6136 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6137 		struct bnxt_ring_struct *ring;
6138 		int j;
6139 
6140 		for (j = 0; j < 2; j++) {
6141 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
6142 
6143 			if (cpr2) {
6144 				ring = &cpr2->cp_ring_struct;
6145 				if (ring->fw_ring_id == INVALID_HW_RING_ID)
6146 					continue;
6147 				hwrm_ring_free_send_msg(bp, ring,
6148 					RING_FREE_REQ_RING_TYPE_L2_CMPL,
6149 					INVALID_HW_RING_ID);
6150 				ring->fw_ring_id = INVALID_HW_RING_ID;
6151 			}
6152 		}
6153 		ring = &cpr->cp_ring_struct;
6154 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
6155 			hwrm_ring_free_send_msg(bp, ring, type,
6156 						INVALID_HW_RING_ID);
6157 			ring->fw_ring_id = INVALID_HW_RING_ID;
6158 			bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
6159 		}
6160 	}
6161 }
6162 
6163 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
6164 			   bool shared);
6165 
6166 static int bnxt_hwrm_get_rings(struct bnxt *bp)
6167 {
6168 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6169 	struct hwrm_func_qcfg_output *resp;
6170 	struct hwrm_func_qcfg_input *req;
6171 	int rc;
6172 
6173 	if (bp->hwrm_spec_code < 0x10601)
6174 		return 0;
6175 
6176 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
6177 	if (rc)
6178 		return rc;
6179 
6180 	req->fid = cpu_to_le16(0xffff);
6181 	resp = hwrm_req_hold(bp, req);
6182 	rc = hwrm_req_send(bp, req);
6183 	if (rc) {
6184 		hwrm_req_drop(bp, req);
6185 		return rc;
6186 	}
6187 
6188 	hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings);
6189 	if (BNXT_NEW_RM(bp)) {
6190 		u16 cp, stats;
6191 
6192 		hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings);
6193 		hw_resc->resv_hw_ring_grps =
6194 			le32_to_cpu(resp->alloc_hw_ring_grps);
6195 		hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics);
6196 		cp = le16_to_cpu(resp->alloc_cmpl_rings);
6197 		stats = le16_to_cpu(resp->alloc_stat_ctx);
6198 		hw_resc->resv_irqs = cp;
6199 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
6200 			int rx = hw_resc->resv_rx_rings;
6201 			int tx = hw_resc->resv_tx_rings;
6202 
6203 			if (bp->flags & BNXT_FLAG_AGG_RINGS)
6204 				rx >>= 1;
6205 			if (cp < (rx + tx)) {
6206 				bnxt_trim_rings(bp, &rx, &tx, cp, false);
6207 				if (bp->flags & BNXT_FLAG_AGG_RINGS)
6208 					rx <<= 1;
6209 				hw_resc->resv_rx_rings = rx;
6210 				hw_resc->resv_tx_rings = tx;
6211 			}
6212 			hw_resc->resv_irqs = le16_to_cpu(resp->alloc_msix);
6213 			hw_resc->resv_hw_ring_grps = rx;
6214 		}
6215 		hw_resc->resv_cp_rings = cp;
6216 		hw_resc->resv_stat_ctxs = stats;
6217 	}
6218 	hwrm_req_drop(bp, req);
6219 	return 0;
6220 }
6221 
6222 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings)
6223 {
6224 	struct hwrm_func_qcfg_output *resp;
6225 	struct hwrm_func_qcfg_input *req;
6226 	int rc;
6227 
6228 	if (bp->hwrm_spec_code < 0x10601)
6229 		return 0;
6230 
6231 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
6232 	if (rc)
6233 		return rc;
6234 
6235 	req->fid = cpu_to_le16(fid);
6236 	resp = hwrm_req_hold(bp, req);
6237 	rc = hwrm_req_send(bp, req);
6238 	if (!rc)
6239 		*tx_rings = le16_to_cpu(resp->alloc_tx_rings);
6240 
6241 	hwrm_req_drop(bp, req);
6242 	return rc;
6243 }
6244 
6245 static bool bnxt_rfs_supported(struct bnxt *bp);
6246 
6247 static struct hwrm_func_cfg_input *
6248 __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6249 			     int ring_grps, int cp_rings, int stats, int vnics)
6250 {
6251 	struct hwrm_func_cfg_input *req;
6252 	u32 enables = 0;
6253 
6254 	if (hwrm_req_init(bp, req, HWRM_FUNC_CFG))
6255 		return NULL;
6256 
6257 	req->fid = cpu_to_le16(0xffff);
6258 	enables |= tx_rings ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
6259 	req->num_tx_rings = cpu_to_le16(tx_rings);
6260 	if (BNXT_NEW_RM(bp)) {
6261 		enables |= rx_rings ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0;
6262 		enables |= stats ? FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
6263 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
6264 			enables |= cp_rings ? FUNC_CFG_REQ_ENABLES_NUM_MSIX : 0;
6265 			enables |= tx_rings + ring_grps ?
6266 				   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6267 			enables |= rx_rings ?
6268 				FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
6269 		} else {
6270 			enables |= cp_rings ?
6271 				   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6272 			enables |= ring_grps ?
6273 				   FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS |
6274 				   FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
6275 		}
6276 		enables |= vnics ? FUNC_CFG_REQ_ENABLES_NUM_VNICS : 0;
6277 
6278 		req->num_rx_rings = cpu_to_le16(rx_rings);
6279 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
6280 			req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps);
6281 			req->num_msix = cpu_to_le16(cp_rings);
6282 			req->num_rsscos_ctxs =
6283 				cpu_to_le16(DIV_ROUND_UP(ring_grps, 64));
6284 		} else {
6285 			req->num_cmpl_rings = cpu_to_le16(cp_rings);
6286 			req->num_hw_ring_grps = cpu_to_le16(ring_grps);
6287 			req->num_rsscos_ctxs = cpu_to_le16(1);
6288 			if (!(bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
6289 			    bnxt_rfs_supported(bp))
6290 				req->num_rsscos_ctxs =
6291 					cpu_to_le16(ring_grps + 1);
6292 		}
6293 		req->num_stat_ctxs = cpu_to_le16(stats);
6294 		req->num_vnics = cpu_to_le16(vnics);
6295 	}
6296 	req->enables = cpu_to_le32(enables);
6297 	return req;
6298 }
6299 
6300 static struct hwrm_func_vf_cfg_input *
6301 __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6302 			     int ring_grps, int cp_rings, int stats, int vnics)
6303 {
6304 	struct hwrm_func_vf_cfg_input *req;
6305 	u32 enables = 0;
6306 
6307 	if (hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG))
6308 		return NULL;
6309 
6310 	enables |= tx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
6311 	enables |= rx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS |
6312 			      FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
6313 	enables |= stats ? FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
6314 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
6315 		enables |= tx_rings + ring_grps ?
6316 			   FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6317 	} else {
6318 		enables |= cp_rings ?
6319 			   FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6320 		enables |= ring_grps ?
6321 			   FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0;
6322 	}
6323 	enables |= vnics ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0;
6324 	enables |= FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS;
6325 
6326 	req->num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX);
6327 	req->num_tx_rings = cpu_to_le16(tx_rings);
6328 	req->num_rx_rings = cpu_to_le16(rx_rings);
6329 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
6330 		req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps);
6331 		req->num_rsscos_ctxs = cpu_to_le16(DIV_ROUND_UP(ring_grps, 64));
6332 	} else {
6333 		req->num_cmpl_rings = cpu_to_le16(cp_rings);
6334 		req->num_hw_ring_grps = cpu_to_le16(ring_grps);
6335 		req->num_rsscos_ctxs = cpu_to_le16(BNXT_VF_MAX_RSS_CTX);
6336 	}
6337 	req->num_stat_ctxs = cpu_to_le16(stats);
6338 	req->num_vnics = cpu_to_le16(vnics);
6339 
6340 	req->enables = cpu_to_le32(enables);
6341 	return req;
6342 }
6343 
6344 static int
6345 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6346 			   int ring_grps, int cp_rings, int stats, int vnics)
6347 {
6348 	struct hwrm_func_cfg_input *req;
6349 	int rc;
6350 
6351 	req = __bnxt_hwrm_reserve_pf_rings(bp, tx_rings, rx_rings, ring_grps,
6352 					   cp_rings, stats, vnics);
6353 	if (!req)
6354 		return -ENOMEM;
6355 
6356 	if (!req->enables) {
6357 		hwrm_req_drop(bp, req);
6358 		return 0;
6359 	}
6360 
6361 	rc = hwrm_req_send(bp, req);
6362 	if (rc)
6363 		return rc;
6364 
6365 	if (bp->hwrm_spec_code < 0x10601)
6366 		bp->hw_resc.resv_tx_rings = tx_rings;
6367 
6368 	return bnxt_hwrm_get_rings(bp);
6369 }
6370 
6371 static int
6372 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6373 			   int ring_grps, int cp_rings, int stats, int vnics)
6374 {
6375 	struct hwrm_func_vf_cfg_input *req;
6376 	int rc;
6377 
6378 	if (!BNXT_NEW_RM(bp)) {
6379 		bp->hw_resc.resv_tx_rings = tx_rings;
6380 		return 0;
6381 	}
6382 
6383 	req = __bnxt_hwrm_reserve_vf_rings(bp, tx_rings, rx_rings, ring_grps,
6384 					   cp_rings, stats, vnics);
6385 	if (!req)
6386 		return -ENOMEM;
6387 
6388 	rc = hwrm_req_send(bp, req);
6389 	if (rc)
6390 		return rc;
6391 
6392 	return bnxt_hwrm_get_rings(bp);
6393 }
6394 
6395 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, int tx, int rx, int grp,
6396 				   int cp, int stat, int vnic)
6397 {
6398 	if (BNXT_PF(bp))
6399 		return bnxt_hwrm_reserve_pf_rings(bp, tx, rx, grp, cp, stat,
6400 						  vnic);
6401 	else
6402 		return bnxt_hwrm_reserve_vf_rings(bp, tx, rx, grp, cp, stat,
6403 						  vnic);
6404 }
6405 
6406 int bnxt_nq_rings_in_use(struct bnxt *bp)
6407 {
6408 	int cp = bp->cp_nr_rings;
6409 	int ulp_msix, ulp_base;
6410 
6411 	ulp_msix = bnxt_get_ulp_msix_num(bp);
6412 	if (ulp_msix) {
6413 		ulp_base = bnxt_get_ulp_msix_base(bp);
6414 		cp += ulp_msix;
6415 		if ((ulp_base + ulp_msix) > cp)
6416 			cp = ulp_base + ulp_msix;
6417 	}
6418 	return cp;
6419 }
6420 
6421 static int bnxt_cp_rings_in_use(struct bnxt *bp)
6422 {
6423 	int cp;
6424 
6425 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
6426 		return bnxt_nq_rings_in_use(bp);
6427 
6428 	cp = bp->tx_nr_rings + bp->rx_nr_rings;
6429 	return cp;
6430 }
6431 
6432 static int bnxt_get_func_stat_ctxs(struct bnxt *bp)
6433 {
6434 	int ulp_stat = bnxt_get_ulp_stat_ctxs(bp);
6435 	int cp = bp->cp_nr_rings;
6436 
6437 	if (!ulp_stat)
6438 		return cp;
6439 
6440 	if (bnxt_nq_rings_in_use(bp) > cp + bnxt_get_ulp_msix_num(bp))
6441 		return bnxt_get_ulp_msix_base(bp) + ulp_stat;
6442 
6443 	return cp + ulp_stat;
6444 }
6445 
6446 /* Check if a default RSS map needs to be setup.  This function is only
6447  * used on older firmware that does not require reserving RX rings.
6448  */
6449 static void bnxt_check_rss_tbl_no_rmgr(struct bnxt *bp)
6450 {
6451 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6452 
6453 	/* The RSS map is valid for RX rings set to resv_rx_rings */
6454 	if (hw_resc->resv_rx_rings != bp->rx_nr_rings) {
6455 		hw_resc->resv_rx_rings = bp->rx_nr_rings;
6456 		if (!netif_is_rxfh_configured(bp->dev))
6457 			bnxt_set_dflt_rss_indir_tbl(bp);
6458 	}
6459 }
6460 
6461 static bool bnxt_need_reserve_rings(struct bnxt *bp)
6462 {
6463 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6464 	int cp = bnxt_cp_rings_in_use(bp);
6465 	int nq = bnxt_nq_rings_in_use(bp);
6466 	int rx = bp->rx_nr_rings, stat;
6467 	int vnic = 1, grp = rx;
6468 
6469 	if (hw_resc->resv_tx_rings != bp->tx_nr_rings &&
6470 	    bp->hwrm_spec_code >= 0x10601)
6471 		return true;
6472 
6473 	/* Old firmware does not need RX ring reservations but we still
6474 	 * need to setup a default RSS map when needed.  With new firmware
6475 	 * we go through RX ring reservations first and then set up the
6476 	 * RSS map for the successfully reserved RX rings when needed.
6477 	 */
6478 	if (!BNXT_NEW_RM(bp)) {
6479 		bnxt_check_rss_tbl_no_rmgr(bp);
6480 		return false;
6481 	}
6482 	if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5))
6483 		vnic = rx + 1;
6484 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
6485 		rx <<= 1;
6486 	stat = bnxt_get_func_stat_ctxs(bp);
6487 	if (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp ||
6488 	    hw_resc->resv_vnics != vnic || hw_resc->resv_stat_ctxs != stat ||
6489 	    (hw_resc->resv_hw_ring_grps != grp &&
6490 	     !(bp->flags & BNXT_FLAG_CHIP_P5)))
6491 		return true;
6492 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && BNXT_PF(bp) &&
6493 	    hw_resc->resv_irqs != nq)
6494 		return true;
6495 	return false;
6496 }
6497 
6498 static int __bnxt_reserve_rings(struct bnxt *bp)
6499 {
6500 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6501 	int cp = bnxt_nq_rings_in_use(bp);
6502 	int tx = bp->tx_nr_rings;
6503 	int rx = bp->rx_nr_rings;
6504 	int grp, rx_rings, rc;
6505 	int vnic = 1, stat;
6506 	bool sh = false;
6507 
6508 	if (!bnxt_need_reserve_rings(bp))
6509 		return 0;
6510 
6511 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
6512 		sh = true;
6513 	if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5))
6514 		vnic = rx + 1;
6515 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
6516 		rx <<= 1;
6517 	grp = bp->rx_nr_rings;
6518 	stat = bnxt_get_func_stat_ctxs(bp);
6519 
6520 	rc = bnxt_hwrm_reserve_rings(bp, tx, rx, grp, cp, stat, vnic);
6521 	if (rc)
6522 		return rc;
6523 
6524 	tx = hw_resc->resv_tx_rings;
6525 	if (BNXT_NEW_RM(bp)) {
6526 		rx = hw_resc->resv_rx_rings;
6527 		cp = hw_resc->resv_irqs;
6528 		grp = hw_resc->resv_hw_ring_grps;
6529 		vnic = hw_resc->resv_vnics;
6530 		stat = hw_resc->resv_stat_ctxs;
6531 	}
6532 
6533 	rx_rings = rx;
6534 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
6535 		if (rx >= 2) {
6536 			rx_rings = rx >> 1;
6537 		} else {
6538 			if (netif_running(bp->dev))
6539 				return -ENOMEM;
6540 
6541 			bp->flags &= ~BNXT_FLAG_AGG_RINGS;
6542 			bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
6543 			bp->dev->hw_features &= ~NETIF_F_LRO;
6544 			bp->dev->features &= ~NETIF_F_LRO;
6545 			bnxt_set_ring_params(bp);
6546 		}
6547 	}
6548 	rx_rings = min_t(int, rx_rings, grp);
6549 	cp = min_t(int, cp, bp->cp_nr_rings);
6550 	if (stat > bnxt_get_ulp_stat_ctxs(bp))
6551 		stat -= bnxt_get_ulp_stat_ctxs(bp);
6552 	cp = min_t(int, cp, stat);
6553 	rc = bnxt_trim_rings(bp, &rx_rings, &tx, cp, sh);
6554 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
6555 		rx = rx_rings << 1;
6556 	cp = sh ? max_t(int, tx, rx_rings) : tx + rx_rings;
6557 	bp->tx_nr_rings = tx;
6558 
6559 	/* If we cannot reserve all the RX rings, reset the RSS map only
6560 	 * if absolutely necessary
6561 	 */
6562 	if (rx_rings != bp->rx_nr_rings) {
6563 		netdev_warn(bp->dev, "Able to reserve only %d out of %d requested RX rings\n",
6564 			    rx_rings, bp->rx_nr_rings);
6565 		if (netif_is_rxfh_configured(bp->dev) &&
6566 		    (bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings) !=
6567 		     bnxt_get_nr_rss_ctxs(bp, rx_rings) ||
6568 		     bnxt_get_max_rss_ring(bp) >= rx_rings)) {
6569 			netdev_warn(bp->dev, "RSS table entries reverting to default\n");
6570 			bp->dev->priv_flags &= ~IFF_RXFH_CONFIGURED;
6571 		}
6572 	}
6573 	bp->rx_nr_rings = rx_rings;
6574 	bp->cp_nr_rings = cp;
6575 
6576 	if (!tx || !rx || !cp || !grp || !vnic || !stat)
6577 		return -ENOMEM;
6578 
6579 	if (!netif_is_rxfh_configured(bp->dev))
6580 		bnxt_set_dflt_rss_indir_tbl(bp);
6581 
6582 	return rc;
6583 }
6584 
6585 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6586 				    int ring_grps, int cp_rings, int stats,
6587 				    int vnics)
6588 {
6589 	struct hwrm_func_vf_cfg_input *req;
6590 	u32 flags;
6591 
6592 	if (!BNXT_NEW_RM(bp))
6593 		return 0;
6594 
6595 	req = __bnxt_hwrm_reserve_vf_rings(bp, tx_rings, rx_rings, ring_grps,
6596 					   cp_rings, stats, vnics);
6597 	flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST |
6598 		FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST |
6599 		FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
6600 		FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
6601 		FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST |
6602 		FUNC_VF_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST;
6603 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
6604 		flags |= FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
6605 
6606 	req->flags = cpu_to_le32(flags);
6607 	return hwrm_req_send_silent(bp, req);
6608 }
6609 
6610 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6611 				    int ring_grps, int cp_rings, int stats,
6612 				    int vnics)
6613 {
6614 	struct hwrm_func_cfg_input *req;
6615 	u32 flags;
6616 
6617 	req = __bnxt_hwrm_reserve_pf_rings(bp, tx_rings, rx_rings, ring_grps,
6618 					   cp_rings, stats, vnics);
6619 	flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST;
6620 	if (BNXT_NEW_RM(bp)) {
6621 		flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST |
6622 			 FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
6623 			 FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
6624 			 FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST;
6625 		if (bp->flags & BNXT_FLAG_CHIP_P5)
6626 			flags |= FUNC_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST |
6627 				 FUNC_CFG_REQ_FLAGS_NQ_ASSETS_TEST;
6628 		else
6629 			flags |= FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
6630 	}
6631 
6632 	req->flags = cpu_to_le32(flags);
6633 	return hwrm_req_send_silent(bp, req);
6634 }
6635 
6636 static int bnxt_hwrm_check_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6637 				 int ring_grps, int cp_rings, int stats,
6638 				 int vnics)
6639 {
6640 	if (bp->hwrm_spec_code < 0x10801)
6641 		return 0;
6642 
6643 	if (BNXT_PF(bp))
6644 		return bnxt_hwrm_check_pf_rings(bp, tx_rings, rx_rings,
6645 						ring_grps, cp_rings, stats,
6646 						vnics);
6647 
6648 	return bnxt_hwrm_check_vf_rings(bp, tx_rings, rx_rings, ring_grps,
6649 					cp_rings, stats, vnics);
6650 }
6651 
6652 static void bnxt_hwrm_coal_params_qcaps(struct bnxt *bp)
6653 {
6654 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6655 	struct hwrm_ring_aggint_qcaps_output *resp;
6656 	struct hwrm_ring_aggint_qcaps_input *req;
6657 	int rc;
6658 
6659 	coal_cap->cmpl_params = BNXT_LEGACY_COAL_CMPL_PARAMS;
6660 	coal_cap->num_cmpl_dma_aggr_max = 63;
6661 	coal_cap->num_cmpl_dma_aggr_during_int_max = 63;
6662 	coal_cap->cmpl_aggr_dma_tmr_max = 65535;
6663 	coal_cap->cmpl_aggr_dma_tmr_during_int_max = 65535;
6664 	coal_cap->int_lat_tmr_min_max = 65535;
6665 	coal_cap->int_lat_tmr_max_max = 65535;
6666 	coal_cap->num_cmpl_aggr_int_max = 65535;
6667 	coal_cap->timer_units = 80;
6668 
6669 	if (bp->hwrm_spec_code < 0x10902)
6670 		return;
6671 
6672 	if (hwrm_req_init(bp, req, HWRM_RING_AGGINT_QCAPS))
6673 		return;
6674 
6675 	resp = hwrm_req_hold(bp, req);
6676 	rc = hwrm_req_send_silent(bp, req);
6677 	if (!rc) {
6678 		coal_cap->cmpl_params = le32_to_cpu(resp->cmpl_params);
6679 		coal_cap->nq_params = le32_to_cpu(resp->nq_params);
6680 		coal_cap->num_cmpl_dma_aggr_max =
6681 			le16_to_cpu(resp->num_cmpl_dma_aggr_max);
6682 		coal_cap->num_cmpl_dma_aggr_during_int_max =
6683 			le16_to_cpu(resp->num_cmpl_dma_aggr_during_int_max);
6684 		coal_cap->cmpl_aggr_dma_tmr_max =
6685 			le16_to_cpu(resp->cmpl_aggr_dma_tmr_max);
6686 		coal_cap->cmpl_aggr_dma_tmr_during_int_max =
6687 			le16_to_cpu(resp->cmpl_aggr_dma_tmr_during_int_max);
6688 		coal_cap->int_lat_tmr_min_max =
6689 			le16_to_cpu(resp->int_lat_tmr_min_max);
6690 		coal_cap->int_lat_tmr_max_max =
6691 			le16_to_cpu(resp->int_lat_tmr_max_max);
6692 		coal_cap->num_cmpl_aggr_int_max =
6693 			le16_to_cpu(resp->num_cmpl_aggr_int_max);
6694 		coal_cap->timer_units = le16_to_cpu(resp->timer_units);
6695 	}
6696 	hwrm_req_drop(bp, req);
6697 }
6698 
6699 static u16 bnxt_usec_to_coal_tmr(struct bnxt *bp, u16 usec)
6700 {
6701 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6702 
6703 	return usec * 1000 / coal_cap->timer_units;
6704 }
6705 
6706 static void bnxt_hwrm_set_coal_params(struct bnxt *bp,
6707 	struct bnxt_coal *hw_coal,
6708 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
6709 {
6710 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6711 	u16 val, tmr, max, flags = hw_coal->flags;
6712 	u32 cmpl_params = coal_cap->cmpl_params;
6713 
6714 	max = hw_coal->bufs_per_record * 128;
6715 	if (hw_coal->budget)
6716 		max = hw_coal->bufs_per_record * hw_coal->budget;
6717 	max = min_t(u16, max, coal_cap->num_cmpl_aggr_int_max);
6718 
6719 	val = clamp_t(u16, hw_coal->coal_bufs, 1, max);
6720 	req->num_cmpl_aggr_int = cpu_to_le16(val);
6721 
6722 	val = min_t(u16, val, coal_cap->num_cmpl_dma_aggr_max);
6723 	req->num_cmpl_dma_aggr = cpu_to_le16(val);
6724 
6725 	val = clamp_t(u16, hw_coal->coal_bufs_irq, 1,
6726 		      coal_cap->num_cmpl_dma_aggr_during_int_max);
6727 	req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val);
6728 
6729 	tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks);
6730 	tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_max_max);
6731 	req->int_lat_tmr_max = cpu_to_le16(tmr);
6732 
6733 	/* min timer set to 1/2 of interrupt timer */
6734 	if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_INT_LAT_TMR_MIN) {
6735 		val = tmr / 2;
6736 		val = clamp_t(u16, val, 1, coal_cap->int_lat_tmr_min_max);
6737 		req->int_lat_tmr_min = cpu_to_le16(val);
6738 		req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
6739 	}
6740 
6741 	/* buf timer set to 1/4 of interrupt timer */
6742 	val = clamp_t(u16, tmr / 4, 1, coal_cap->cmpl_aggr_dma_tmr_max);
6743 	req->cmpl_aggr_dma_tmr = cpu_to_le16(val);
6744 
6745 	if (cmpl_params &
6746 	    RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_NUM_CMPL_DMA_AGGR_DURING_INT) {
6747 		tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks_irq);
6748 		val = clamp_t(u16, tmr, 1,
6749 			      coal_cap->cmpl_aggr_dma_tmr_during_int_max);
6750 		req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(val);
6751 		req->enables |=
6752 			cpu_to_le16(BNXT_COAL_CMPL_AGGR_TMR_DURING_INT_ENABLE);
6753 	}
6754 
6755 	if ((cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_RING_IDLE) &&
6756 	    hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh)
6757 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
6758 	req->flags = cpu_to_le16(flags);
6759 	req->enables |= cpu_to_le16(BNXT_COAL_CMPL_ENABLES);
6760 }
6761 
6762 static int __bnxt_hwrm_set_coal_nq(struct bnxt *bp, struct bnxt_napi *bnapi,
6763 				   struct bnxt_coal *hw_coal)
6764 {
6765 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req;
6766 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6767 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6768 	u32 nq_params = coal_cap->nq_params;
6769 	u16 tmr;
6770 	int rc;
6771 
6772 	if (!(nq_params & RING_AGGINT_QCAPS_RESP_NQ_PARAMS_INT_LAT_TMR_MIN))
6773 		return 0;
6774 
6775 	rc = hwrm_req_init(bp, req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
6776 	if (rc)
6777 		return rc;
6778 
6779 	req->ring_id = cpu_to_le16(cpr->cp_ring_struct.fw_ring_id);
6780 	req->flags =
6781 		cpu_to_le16(RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_IS_NQ);
6782 
6783 	tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks) / 2;
6784 	tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_min_max);
6785 	req->int_lat_tmr_min = cpu_to_le16(tmr);
6786 	req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
6787 	return hwrm_req_send(bp, req);
6788 }
6789 
6790 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi)
6791 {
6792 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx;
6793 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6794 	struct bnxt_coal coal;
6795 	int rc;
6796 
6797 	/* Tick values in micro seconds.
6798 	 * 1 coal_buf x bufs_per_record = 1 completion record.
6799 	 */
6800 	memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal));
6801 
6802 	coal.coal_ticks = cpr->rx_ring_coal.coal_ticks;
6803 	coal.coal_bufs = cpr->rx_ring_coal.coal_bufs;
6804 
6805 	if (!bnapi->rx_ring)
6806 		return -ENODEV;
6807 
6808 	rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
6809 	if (rc)
6810 		return rc;
6811 
6812 	bnxt_hwrm_set_coal_params(bp, &coal, req_rx);
6813 
6814 	req_rx->ring_id = cpu_to_le16(bnxt_cp_ring_for_rx(bp, bnapi->rx_ring));
6815 
6816 	return hwrm_req_send(bp, req_rx);
6817 }
6818 
6819 int bnxt_hwrm_set_coal(struct bnxt *bp)
6820 {
6821 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx, *req_tx,
6822 							   *req;
6823 	int i, rc;
6824 
6825 	rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
6826 	if (rc)
6827 		return rc;
6828 
6829 	rc = hwrm_req_init(bp, req_tx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
6830 	if (rc) {
6831 		hwrm_req_drop(bp, req_rx);
6832 		return rc;
6833 	}
6834 
6835 	bnxt_hwrm_set_coal_params(bp, &bp->rx_coal, req_rx);
6836 	bnxt_hwrm_set_coal_params(bp, &bp->tx_coal, req_tx);
6837 
6838 	hwrm_req_hold(bp, req_rx);
6839 	hwrm_req_hold(bp, req_tx);
6840 	for (i = 0; i < bp->cp_nr_rings; i++) {
6841 		struct bnxt_napi *bnapi = bp->bnapi[i];
6842 		struct bnxt_coal *hw_coal;
6843 		u16 ring_id;
6844 
6845 		req = req_rx;
6846 		if (!bnapi->rx_ring) {
6847 			ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring);
6848 			req = req_tx;
6849 		} else {
6850 			ring_id = bnxt_cp_ring_for_rx(bp, bnapi->rx_ring);
6851 		}
6852 		req->ring_id = cpu_to_le16(ring_id);
6853 
6854 		rc = hwrm_req_send(bp, req);
6855 		if (rc)
6856 			break;
6857 
6858 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
6859 			continue;
6860 
6861 		if (bnapi->rx_ring && bnapi->tx_ring) {
6862 			req = req_tx;
6863 			ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring);
6864 			req->ring_id = cpu_to_le16(ring_id);
6865 			rc = hwrm_req_send(bp, req);
6866 			if (rc)
6867 				break;
6868 		}
6869 		if (bnapi->rx_ring)
6870 			hw_coal = &bp->rx_coal;
6871 		else
6872 			hw_coal = &bp->tx_coal;
6873 		__bnxt_hwrm_set_coal_nq(bp, bnapi, hw_coal);
6874 	}
6875 	hwrm_req_drop(bp, req_rx);
6876 	hwrm_req_drop(bp, req_tx);
6877 	return rc;
6878 }
6879 
6880 static void bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
6881 {
6882 	struct hwrm_stat_ctx_clr_stats_input *req0 = NULL;
6883 	struct hwrm_stat_ctx_free_input *req;
6884 	int i;
6885 
6886 	if (!bp->bnapi)
6887 		return;
6888 
6889 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
6890 		return;
6891 
6892 	if (hwrm_req_init(bp, req, HWRM_STAT_CTX_FREE))
6893 		return;
6894 	if (BNXT_FW_MAJ(bp) <= 20) {
6895 		if (hwrm_req_init(bp, req0, HWRM_STAT_CTX_CLR_STATS)) {
6896 			hwrm_req_drop(bp, req);
6897 			return;
6898 		}
6899 		hwrm_req_hold(bp, req0);
6900 	}
6901 	hwrm_req_hold(bp, req);
6902 	for (i = 0; i < bp->cp_nr_rings; i++) {
6903 		struct bnxt_napi *bnapi = bp->bnapi[i];
6904 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6905 
6906 		if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
6907 			req->stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
6908 			if (req0) {
6909 				req0->stat_ctx_id = req->stat_ctx_id;
6910 				hwrm_req_send(bp, req0);
6911 			}
6912 			hwrm_req_send(bp, req);
6913 
6914 			cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
6915 		}
6916 	}
6917 	hwrm_req_drop(bp, req);
6918 	if (req0)
6919 		hwrm_req_drop(bp, req0);
6920 }
6921 
6922 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
6923 {
6924 	struct hwrm_stat_ctx_alloc_output *resp;
6925 	struct hwrm_stat_ctx_alloc_input *req;
6926 	int rc, i;
6927 
6928 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
6929 		return 0;
6930 
6931 	rc = hwrm_req_init(bp, req, HWRM_STAT_CTX_ALLOC);
6932 	if (rc)
6933 		return rc;
6934 
6935 	req->stats_dma_length = cpu_to_le16(bp->hw_ring_stats_size);
6936 	req->update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000);
6937 
6938 	resp = hwrm_req_hold(bp, req);
6939 	for (i = 0; i < bp->cp_nr_rings; i++) {
6940 		struct bnxt_napi *bnapi = bp->bnapi[i];
6941 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6942 
6943 		req->stats_dma_addr = cpu_to_le64(cpr->stats.hw_stats_map);
6944 
6945 		rc = hwrm_req_send(bp, req);
6946 		if (rc)
6947 			break;
6948 
6949 		cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
6950 
6951 		bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
6952 	}
6953 	hwrm_req_drop(bp, req);
6954 	return rc;
6955 }
6956 
6957 static int bnxt_hwrm_func_qcfg(struct bnxt *bp)
6958 {
6959 	struct hwrm_func_qcfg_output *resp;
6960 	struct hwrm_func_qcfg_input *req;
6961 	u32 min_db_offset = 0;
6962 	u16 flags;
6963 	int rc;
6964 
6965 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
6966 	if (rc)
6967 		return rc;
6968 
6969 	req->fid = cpu_to_le16(0xffff);
6970 	resp = hwrm_req_hold(bp, req);
6971 	rc = hwrm_req_send(bp, req);
6972 	if (rc)
6973 		goto func_qcfg_exit;
6974 
6975 #ifdef CONFIG_BNXT_SRIOV
6976 	if (BNXT_VF(bp)) {
6977 		struct bnxt_vf_info *vf = &bp->vf;
6978 
6979 		vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK;
6980 	} else {
6981 		bp->pf.registered_vfs = le16_to_cpu(resp->registered_vfs);
6982 	}
6983 #endif
6984 	flags = le16_to_cpu(resp->flags);
6985 	if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED |
6986 		     FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) {
6987 		bp->fw_cap |= BNXT_FW_CAP_LLDP_AGENT;
6988 		if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED)
6989 			bp->fw_cap |= BNXT_FW_CAP_DCBX_AGENT;
6990 	}
6991 	if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST)) {
6992 		bp->flags |= BNXT_FLAG_MULTI_HOST;
6993 		if (bp->fw_cap & BNXT_FW_CAP_PTP_RTC)
6994 			bp->fw_cap &= ~BNXT_FW_CAP_PTP_RTC;
6995 	}
6996 	if (flags & FUNC_QCFG_RESP_FLAGS_RING_MONITOR_ENABLED)
6997 		bp->fw_cap |= BNXT_FW_CAP_RING_MONITOR;
6998 
6999 	switch (resp->port_partition_type) {
7000 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0:
7001 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5:
7002 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0:
7003 		bp->port_partition_type = resp->port_partition_type;
7004 		break;
7005 	}
7006 	if (bp->hwrm_spec_code < 0x10707 ||
7007 	    resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB)
7008 		bp->br_mode = BRIDGE_MODE_VEB;
7009 	else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA)
7010 		bp->br_mode = BRIDGE_MODE_VEPA;
7011 	else
7012 		bp->br_mode = BRIDGE_MODE_UNDEF;
7013 
7014 	bp->max_mtu = le16_to_cpu(resp->max_mtu_configured);
7015 	if (!bp->max_mtu)
7016 		bp->max_mtu = BNXT_MAX_MTU;
7017 
7018 	if (bp->db_size)
7019 		goto func_qcfg_exit;
7020 
7021 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
7022 		if (BNXT_PF(bp))
7023 			min_db_offset = DB_PF_OFFSET_P5;
7024 		else
7025 			min_db_offset = DB_VF_OFFSET_P5;
7026 	}
7027 	bp->db_size = PAGE_ALIGN(le16_to_cpu(resp->l2_doorbell_bar_size_kb) *
7028 				 1024);
7029 	if (!bp->db_size || bp->db_size > pci_resource_len(bp->pdev, 2) ||
7030 	    bp->db_size <= min_db_offset)
7031 		bp->db_size = pci_resource_len(bp->pdev, 2);
7032 
7033 func_qcfg_exit:
7034 	hwrm_req_drop(bp, req);
7035 	return rc;
7036 }
7037 
7038 static void bnxt_init_ctx_initializer(struct bnxt_ctx_mem_info *ctx,
7039 			struct hwrm_func_backing_store_qcaps_output *resp)
7040 {
7041 	struct bnxt_mem_init *mem_init;
7042 	u16 init_mask;
7043 	u8 init_val;
7044 	u8 *offset;
7045 	int i;
7046 
7047 	init_val = resp->ctx_kind_initializer;
7048 	init_mask = le16_to_cpu(resp->ctx_init_mask);
7049 	offset = &resp->qp_init_offset;
7050 	mem_init = &ctx->mem_init[BNXT_CTX_MEM_INIT_QP];
7051 	for (i = 0; i < BNXT_CTX_MEM_INIT_MAX; i++, mem_init++, offset++) {
7052 		mem_init->init_val = init_val;
7053 		mem_init->offset = BNXT_MEM_INVALID_OFFSET;
7054 		if (!init_mask)
7055 			continue;
7056 		if (i == BNXT_CTX_MEM_INIT_STAT)
7057 			offset = &resp->stat_init_offset;
7058 		if (init_mask & (1 << i))
7059 			mem_init->offset = *offset * 4;
7060 		else
7061 			mem_init->init_val = 0;
7062 	}
7063 	ctx->mem_init[BNXT_CTX_MEM_INIT_QP].size = ctx->qp_entry_size;
7064 	ctx->mem_init[BNXT_CTX_MEM_INIT_SRQ].size = ctx->srq_entry_size;
7065 	ctx->mem_init[BNXT_CTX_MEM_INIT_CQ].size = ctx->cq_entry_size;
7066 	ctx->mem_init[BNXT_CTX_MEM_INIT_VNIC].size = ctx->vnic_entry_size;
7067 	ctx->mem_init[BNXT_CTX_MEM_INIT_STAT].size = ctx->stat_entry_size;
7068 	ctx->mem_init[BNXT_CTX_MEM_INIT_MRAV].size = ctx->mrav_entry_size;
7069 }
7070 
7071 static int bnxt_hwrm_func_backing_store_qcaps(struct bnxt *bp)
7072 {
7073 	struct hwrm_func_backing_store_qcaps_output *resp;
7074 	struct hwrm_func_backing_store_qcaps_input *req;
7075 	int rc;
7076 
7077 	if (bp->hwrm_spec_code < 0x10902 || BNXT_VF(bp) || bp->ctx)
7078 		return 0;
7079 
7080 	rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_QCAPS);
7081 	if (rc)
7082 		return rc;
7083 
7084 	resp = hwrm_req_hold(bp, req);
7085 	rc = hwrm_req_send_silent(bp, req);
7086 	if (!rc) {
7087 		struct bnxt_ctx_pg_info *ctx_pg;
7088 		struct bnxt_ctx_mem_info *ctx;
7089 		int i, tqm_rings;
7090 
7091 		ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
7092 		if (!ctx) {
7093 			rc = -ENOMEM;
7094 			goto ctx_err;
7095 		}
7096 		ctx->qp_max_entries = le32_to_cpu(resp->qp_max_entries);
7097 		ctx->qp_min_qp1_entries = le16_to_cpu(resp->qp_min_qp1_entries);
7098 		ctx->qp_max_l2_entries = le16_to_cpu(resp->qp_max_l2_entries);
7099 		ctx->qp_entry_size = le16_to_cpu(resp->qp_entry_size);
7100 		ctx->srq_max_l2_entries = le16_to_cpu(resp->srq_max_l2_entries);
7101 		ctx->srq_max_entries = le32_to_cpu(resp->srq_max_entries);
7102 		ctx->srq_entry_size = le16_to_cpu(resp->srq_entry_size);
7103 		ctx->cq_max_l2_entries = le16_to_cpu(resp->cq_max_l2_entries);
7104 		ctx->cq_max_entries = le32_to_cpu(resp->cq_max_entries);
7105 		ctx->cq_entry_size = le16_to_cpu(resp->cq_entry_size);
7106 		ctx->vnic_max_vnic_entries =
7107 			le16_to_cpu(resp->vnic_max_vnic_entries);
7108 		ctx->vnic_max_ring_table_entries =
7109 			le16_to_cpu(resp->vnic_max_ring_table_entries);
7110 		ctx->vnic_entry_size = le16_to_cpu(resp->vnic_entry_size);
7111 		ctx->stat_max_entries = le32_to_cpu(resp->stat_max_entries);
7112 		ctx->stat_entry_size = le16_to_cpu(resp->stat_entry_size);
7113 		ctx->tqm_entry_size = le16_to_cpu(resp->tqm_entry_size);
7114 		ctx->tqm_min_entries_per_ring =
7115 			le32_to_cpu(resp->tqm_min_entries_per_ring);
7116 		ctx->tqm_max_entries_per_ring =
7117 			le32_to_cpu(resp->tqm_max_entries_per_ring);
7118 		ctx->tqm_entries_multiple = resp->tqm_entries_multiple;
7119 		if (!ctx->tqm_entries_multiple)
7120 			ctx->tqm_entries_multiple = 1;
7121 		ctx->mrav_max_entries = le32_to_cpu(resp->mrav_max_entries);
7122 		ctx->mrav_entry_size = le16_to_cpu(resp->mrav_entry_size);
7123 		ctx->mrav_num_entries_units =
7124 			le16_to_cpu(resp->mrav_num_entries_units);
7125 		ctx->tim_entry_size = le16_to_cpu(resp->tim_entry_size);
7126 		ctx->tim_max_entries = le32_to_cpu(resp->tim_max_entries);
7127 
7128 		bnxt_init_ctx_initializer(ctx, resp);
7129 
7130 		ctx->tqm_fp_rings_count = resp->tqm_fp_rings_count;
7131 		if (!ctx->tqm_fp_rings_count)
7132 			ctx->tqm_fp_rings_count = bp->max_q;
7133 		else if (ctx->tqm_fp_rings_count > BNXT_MAX_TQM_FP_RINGS)
7134 			ctx->tqm_fp_rings_count = BNXT_MAX_TQM_FP_RINGS;
7135 
7136 		tqm_rings = ctx->tqm_fp_rings_count + BNXT_MAX_TQM_SP_RINGS;
7137 		ctx_pg = kcalloc(tqm_rings, sizeof(*ctx_pg), GFP_KERNEL);
7138 		if (!ctx_pg) {
7139 			kfree(ctx);
7140 			rc = -ENOMEM;
7141 			goto ctx_err;
7142 		}
7143 		for (i = 0; i < tqm_rings; i++, ctx_pg++)
7144 			ctx->tqm_mem[i] = ctx_pg;
7145 		bp->ctx = ctx;
7146 	} else {
7147 		rc = 0;
7148 	}
7149 ctx_err:
7150 	hwrm_req_drop(bp, req);
7151 	return rc;
7152 }
7153 
7154 static void bnxt_hwrm_set_pg_attr(struct bnxt_ring_mem_info *rmem, u8 *pg_attr,
7155 				  __le64 *pg_dir)
7156 {
7157 	if (!rmem->nr_pages)
7158 		return;
7159 
7160 	BNXT_SET_CTX_PAGE_ATTR(*pg_attr);
7161 	if (rmem->depth >= 1) {
7162 		if (rmem->depth == 2)
7163 			*pg_attr |= 2;
7164 		else
7165 			*pg_attr |= 1;
7166 		*pg_dir = cpu_to_le64(rmem->pg_tbl_map);
7167 	} else {
7168 		*pg_dir = cpu_to_le64(rmem->dma_arr[0]);
7169 	}
7170 }
7171 
7172 #define FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES			\
7173 	(FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP |		\
7174 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ |		\
7175 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ |		\
7176 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC |		\
7177 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT)
7178 
7179 static int bnxt_hwrm_func_backing_store_cfg(struct bnxt *bp, u32 enables)
7180 {
7181 	struct hwrm_func_backing_store_cfg_input *req;
7182 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
7183 	struct bnxt_ctx_pg_info *ctx_pg;
7184 	void **__req = (void **)&req;
7185 	u32 req_len = sizeof(*req);
7186 	__le32 *num_entries;
7187 	__le64 *pg_dir;
7188 	u32 flags = 0;
7189 	u8 *pg_attr;
7190 	u32 ena;
7191 	int rc;
7192 	int i;
7193 
7194 	if (!ctx)
7195 		return 0;
7196 
7197 	if (req_len > bp->hwrm_max_ext_req_len)
7198 		req_len = BNXT_BACKING_STORE_CFG_LEGACY_LEN;
7199 	rc = __hwrm_req_init(bp, __req, HWRM_FUNC_BACKING_STORE_CFG, req_len);
7200 	if (rc)
7201 		return rc;
7202 
7203 	req->enables = cpu_to_le32(enables);
7204 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP) {
7205 		ctx_pg = &ctx->qp_mem;
7206 		req->qp_num_entries = cpu_to_le32(ctx_pg->entries);
7207 		req->qp_num_qp1_entries = cpu_to_le16(ctx->qp_min_qp1_entries);
7208 		req->qp_num_l2_entries = cpu_to_le16(ctx->qp_max_l2_entries);
7209 		req->qp_entry_size = cpu_to_le16(ctx->qp_entry_size);
7210 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7211 				      &req->qpc_pg_size_qpc_lvl,
7212 				      &req->qpc_page_dir);
7213 	}
7214 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ) {
7215 		ctx_pg = &ctx->srq_mem;
7216 		req->srq_num_entries = cpu_to_le32(ctx_pg->entries);
7217 		req->srq_num_l2_entries = cpu_to_le16(ctx->srq_max_l2_entries);
7218 		req->srq_entry_size = cpu_to_le16(ctx->srq_entry_size);
7219 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7220 				      &req->srq_pg_size_srq_lvl,
7221 				      &req->srq_page_dir);
7222 	}
7223 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ) {
7224 		ctx_pg = &ctx->cq_mem;
7225 		req->cq_num_entries = cpu_to_le32(ctx_pg->entries);
7226 		req->cq_num_l2_entries = cpu_to_le16(ctx->cq_max_l2_entries);
7227 		req->cq_entry_size = cpu_to_le16(ctx->cq_entry_size);
7228 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7229 				      &req->cq_pg_size_cq_lvl,
7230 				      &req->cq_page_dir);
7231 	}
7232 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC) {
7233 		ctx_pg = &ctx->vnic_mem;
7234 		req->vnic_num_vnic_entries =
7235 			cpu_to_le16(ctx->vnic_max_vnic_entries);
7236 		req->vnic_num_ring_table_entries =
7237 			cpu_to_le16(ctx->vnic_max_ring_table_entries);
7238 		req->vnic_entry_size = cpu_to_le16(ctx->vnic_entry_size);
7239 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7240 				      &req->vnic_pg_size_vnic_lvl,
7241 				      &req->vnic_page_dir);
7242 	}
7243 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) {
7244 		ctx_pg = &ctx->stat_mem;
7245 		req->stat_num_entries = cpu_to_le32(ctx->stat_max_entries);
7246 		req->stat_entry_size = cpu_to_le16(ctx->stat_entry_size);
7247 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7248 				      &req->stat_pg_size_stat_lvl,
7249 				      &req->stat_page_dir);
7250 	}
7251 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV) {
7252 		ctx_pg = &ctx->mrav_mem;
7253 		req->mrav_num_entries = cpu_to_le32(ctx_pg->entries);
7254 		if (ctx->mrav_num_entries_units)
7255 			flags |=
7256 			FUNC_BACKING_STORE_CFG_REQ_FLAGS_MRAV_RESERVATION_SPLIT;
7257 		req->mrav_entry_size = cpu_to_le16(ctx->mrav_entry_size);
7258 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7259 				      &req->mrav_pg_size_mrav_lvl,
7260 				      &req->mrav_page_dir);
7261 	}
7262 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) {
7263 		ctx_pg = &ctx->tim_mem;
7264 		req->tim_num_entries = cpu_to_le32(ctx_pg->entries);
7265 		req->tim_entry_size = cpu_to_le16(ctx->tim_entry_size);
7266 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7267 				      &req->tim_pg_size_tim_lvl,
7268 				      &req->tim_page_dir);
7269 	}
7270 	for (i = 0, num_entries = &req->tqm_sp_num_entries,
7271 	     pg_attr = &req->tqm_sp_pg_size_tqm_sp_lvl,
7272 	     pg_dir = &req->tqm_sp_page_dir,
7273 	     ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP;
7274 	     i < BNXT_MAX_TQM_RINGS;
7275 	     i++, num_entries++, pg_attr++, pg_dir++, ena <<= 1) {
7276 		if (!(enables & ena))
7277 			continue;
7278 
7279 		req->tqm_entry_size = cpu_to_le16(ctx->tqm_entry_size);
7280 		ctx_pg = ctx->tqm_mem[i];
7281 		*num_entries = cpu_to_le32(ctx_pg->entries);
7282 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, pg_attr, pg_dir);
7283 	}
7284 	req->flags = cpu_to_le32(flags);
7285 	return hwrm_req_send(bp, req);
7286 }
7287 
7288 static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp,
7289 				  struct bnxt_ctx_pg_info *ctx_pg)
7290 {
7291 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
7292 
7293 	rmem->page_size = BNXT_PAGE_SIZE;
7294 	rmem->pg_arr = ctx_pg->ctx_pg_arr;
7295 	rmem->dma_arr = ctx_pg->ctx_dma_arr;
7296 	rmem->flags = BNXT_RMEM_VALID_PTE_FLAG;
7297 	if (rmem->depth >= 1)
7298 		rmem->flags |= BNXT_RMEM_USE_FULL_PAGE_FLAG;
7299 	return bnxt_alloc_ring(bp, rmem);
7300 }
7301 
7302 static int bnxt_alloc_ctx_pg_tbls(struct bnxt *bp,
7303 				  struct bnxt_ctx_pg_info *ctx_pg, u32 mem_size,
7304 				  u8 depth, struct bnxt_mem_init *mem_init)
7305 {
7306 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
7307 	int rc;
7308 
7309 	if (!mem_size)
7310 		return -EINVAL;
7311 
7312 	ctx_pg->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
7313 	if (ctx_pg->nr_pages > MAX_CTX_TOTAL_PAGES) {
7314 		ctx_pg->nr_pages = 0;
7315 		return -EINVAL;
7316 	}
7317 	if (ctx_pg->nr_pages > MAX_CTX_PAGES || depth > 1) {
7318 		int nr_tbls, i;
7319 
7320 		rmem->depth = 2;
7321 		ctx_pg->ctx_pg_tbl = kcalloc(MAX_CTX_PAGES, sizeof(ctx_pg),
7322 					     GFP_KERNEL);
7323 		if (!ctx_pg->ctx_pg_tbl)
7324 			return -ENOMEM;
7325 		nr_tbls = DIV_ROUND_UP(ctx_pg->nr_pages, MAX_CTX_PAGES);
7326 		rmem->nr_pages = nr_tbls;
7327 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
7328 		if (rc)
7329 			return rc;
7330 		for (i = 0; i < nr_tbls; i++) {
7331 			struct bnxt_ctx_pg_info *pg_tbl;
7332 
7333 			pg_tbl = kzalloc(sizeof(*pg_tbl), GFP_KERNEL);
7334 			if (!pg_tbl)
7335 				return -ENOMEM;
7336 			ctx_pg->ctx_pg_tbl[i] = pg_tbl;
7337 			rmem = &pg_tbl->ring_mem;
7338 			rmem->pg_tbl = ctx_pg->ctx_pg_arr[i];
7339 			rmem->pg_tbl_map = ctx_pg->ctx_dma_arr[i];
7340 			rmem->depth = 1;
7341 			rmem->nr_pages = MAX_CTX_PAGES;
7342 			rmem->mem_init = mem_init;
7343 			if (i == (nr_tbls - 1)) {
7344 				int rem = ctx_pg->nr_pages % MAX_CTX_PAGES;
7345 
7346 				if (rem)
7347 					rmem->nr_pages = rem;
7348 			}
7349 			rc = bnxt_alloc_ctx_mem_blk(bp, pg_tbl);
7350 			if (rc)
7351 				break;
7352 		}
7353 	} else {
7354 		rmem->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
7355 		if (rmem->nr_pages > 1 || depth)
7356 			rmem->depth = 1;
7357 		rmem->mem_init = mem_init;
7358 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
7359 	}
7360 	return rc;
7361 }
7362 
7363 static void bnxt_free_ctx_pg_tbls(struct bnxt *bp,
7364 				  struct bnxt_ctx_pg_info *ctx_pg)
7365 {
7366 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
7367 
7368 	if (rmem->depth > 1 || ctx_pg->nr_pages > MAX_CTX_PAGES ||
7369 	    ctx_pg->ctx_pg_tbl) {
7370 		int i, nr_tbls = rmem->nr_pages;
7371 
7372 		for (i = 0; i < nr_tbls; i++) {
7373 			struct bnxt_ctx_pg_info *pg_tbl;
7374 			struct bnxt_ring_mem_info *rmem2;
7375 
7376 			pg_tbl = ctx_pg->ctx_pg_tbl[i];
7377 			if (!pg_tbl)
7378 				continue;
7379 			rmem2 = &pg_tbl->ring_mem;
7380 			bnxt_free_ring(bp, rmem2);
7381 			ctx_pg->ctx_pg_arr[i] = NULL;
7382 			kfree(pg_tbl);
7383 			ctx_pg->ctx_pg_tbl[i] = NULL;
7384 		}
7385 		kfree(ctx_pg->ctx_pg_tbl);
7386 		ctx_pg->ctx_pg_tbl = NULL;
7387 	}
7388 	bnxt_free_ring(bp, rmem);
7389 	ctx_pg->nr_pages = 0;
7390 }
7391 
7392 void bnxt_free_ctx_mem(struct bnxt *bp)
7393 {
7394 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
7395 	int i;
7396 
7397 	if (!ctx)
7398 		return;
7399 
7400 	if (ctx->tqm_mem[0]) {
7401 		for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++)
7402 			bnxt_free_ctx_pg_tbls(bp, ctx->tqm_mem[i]);
7403 		kfree(ctx->tqm_mem[0]);
7404 		ctx->tqm_mem[0] = NULL;
7405 	}
7406 
7407 	bnxt_free_ctx_pg_tbls(bp, &ctx->tim_mem);
7408 	bnxt_free_ctx_pg_tbls(bp, &ctx->mrav_mem);
7409 	bnxt_free_ctx_pg_tbls(bp, &ctx->stat_mem);
7410 	bnxt_free_ctx_pg_tbls(bp, &ctx->vnic_mem);
7411 	bnxt_free_ctx_pg_tbls(bp, &ctx->cq_mem);
7412 	bnxt_free_ctx_pg_tbls(bp, &ctx->srq_mem);
7413 	bnxt_free_ctx_pg_tbls(bp, &ctx->qp_mem);
7414 	ctx->flags &= ~BNXT_CTX_FLAG_INITED;
7415 }
7416 
7417 static int bnxt_alloc_ctx_mem(struct bnxt *bp)
7418 {
7419 	struct bnxt_ctx_pg_info *ctx_pg;
7420 	struct bnxt_ctx_mem_info *ctx;
7421 	struct bnxt_mem_init *init;
7422 	u32 mem_size, ena, entries;
7423 	u32 entries_sp, min;
7424 	u32 num_mr, num_ah;
7425 	u32 extra_srqs = 0;
7426 	u32 extra_qps = 0;
7427 	u8 pg_lvl = 1;
7428 	int i, rc;
7429 
7430 	rc = bnxt_hwrm_func_backing_store_qcaps(bp);
7431 	if (rc) {
7432 		netdev_err(bp->dev, "Failed querying context mem capability, rc = %d.\n",
7433 			   rc);
7434 		return rc;
7435 	}
7436 	ctx = bp->ctx;
7437 	if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED))
7438 		return 0;
7439 
7440 	if ((bp->flags & BNXT_FLAG_ROCE_CAP) && !is_kdump_kernel()) {
7441 		pg_lvl = 2;
7442 		extra_qps = 65536;
7443 		extra_srqs = 8192;
7444 	}
7445 
7446 	ctx_pg = &ctx->qp_mem;
7447 	ctx_pg->entries = ctx->qp_min_qp1_entries + ctx->qp_max_l2_entries +
7448 			  extra_qps;
7449 	if (ctx->qp_entry_size) {
7450 		mem_size = ctx->qp_entry_size * ctx_pg->entries;
7451 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_QP];
7452 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init);
7453 		if (rc)
7454 			return rc;
7455 	}
7456 
7457 	ctx_pg = &ctx->srq_mem;
7458 	ctx_pg->entries = ctx->srq_max_l2_entries + extra_srqs;
7459 	if (ctx->srq_entry_size) {
7460 		mem_size = ctx->srq_entry_size * ctx_pg->entries;
7461 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_SRQ];
7462 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init);
7463 		if (rc)
7464 			return rc;
7465 	}
7466 
7467 	ctx_pg = &ctx->cq_mem;
7468 	ctx_pg->entries = ctx->cq_max_l2_entries + extra_qps * 2;
7469 	if (ctx->cq_entry_size) {
7470 		mem_size = ctx->cq_entry_size * ctx_pg->entries;
7471 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_CQ];
7472 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init);
7473 		if (rc)
7474 			return rc;
7475 	}
7476 
7477 	ctx_pg = &ctx->vnic_mem;
7478 	ctx_pg->entries = ctx->vnic_max_vnic_entries +
7479 			  ctx->vnic_max_ring_table_entries;
7480 	if (ctx->vnic_entry_size) {
7481 		mem_size = ctx->vnic_entry_size * ctx_pg->entries;
7482 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_VNIC];
7483 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, init);
7484 		if (rc)
7485 			return rc;
7486 	}
7487 
7488 	ctx_pg = &ctx->stat_mem;
7489 	ctx_pg->entries = ctx->stat_max_entries;
7490 	if (ctx->stat_entry_size) {
7491 		mem_size = ctx->stat_entry_size * ctx_pg->entries;
7492 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_STAT];
7493 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, init);
7494 		if (rc)
7495 			return rc;
7496 	}
7497 
7498 	ena = 0;
7499 	if (!(bp->flags & BNXT_FLAG_ROCE_CAP))
7500 		goto skip_rdma;
7501 
7502 	ctx_pg = &ctx->mrav_mem;
7503 	/* 128K extra is needed to accommodate static AH context
7504 	 * allocation by f/w.
7505 	 */
7506 	num_mr = 1024 * 256;
7507 	num_ah = 1024 * 128;
7508 	ctx_pg->entries = num_mr + num_ah;
7509 	if (ctx->mrav_entry_size) {
7510 		mem_size = ctx->mrav_entry_size * ctx_pg->entries;
7511 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_MRAV];
7512 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 2, init);
7513 		if (rc)
7514 			return rc;
7515 	}
7516 	ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV;
7517 	if (ctx->mrav_num_entries_units)
7518 		ctx_pg->entries =
7519 			((num_mr / ctx->mrav_num_entries_units) << 16) |
7520 			 (num_ah / ctx->mrav_num_entries_units);
7521 
7522 	ctx_pg = &ctx->tim_mem;
7523 	ctx_pg->entries = ctx->qp_mem.entries;
7524 	if (ctx->tim_entry_size) {
7525 		mem_size = ctx->tim_entry_size * ctx_pg->entries;
7526 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, NULL);
7527 		if (rc)
7528 			return rc;
7529 	}
7530 	ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM;
7531 
7532 skip_rdma:
7533 	min = ctx->tqm_min_entries_per_ring;
7534 	entries_sp = ctx->vnic_max_vnic_entries + ctx->qp_max_l2_entries +
7535 		     2 * (extra_qps + ctx->qp_min_qp1_entries) + min;
7536 	entries_sp = roundup(entries_sp, ctx->tqm_entries_multiple);
7537 	entries = ctx->qp_max_l2_entries + 2 * (extra_qps + ctx->qp_min_qp1_entries);
7538 	entries = roundup(entries, ctx->tqm_entries_multiple);
7539 	entries = clamp_t(u32, entries, min, ctx->tqm_max_entries_per_ring);
7540 	for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++) {
7541 		ctx_pg = ctx->tqm_mem[i];
7542 		ctx_pg->entries = i ? entries : entries_sp;
7543 		if (ctx->tqm_entry_size) {
7544 			mem_size = ctx->tqm_entry_size * ctx_pg->entries;
7545 			rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1,
7546 						    NULL);
7547 			if (rc)
7548 				return rc;
7549 		}
7550 		ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP << i;
7551 	}
7552 	ena |= FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES;
7553 	rc = bnxt_hwrm_func_backing_store_cfg(bp, ena);
7554 	if (rc) {
7555 		netdev_err(bp->dev, "Failed configuring context mem, rc = %d.\n",
7556 			   rc);
7557 		return rc;
7558 	}
7559 	ctx->flags |= BNXT_CTX_FLAG_INITED;
7560 	return 0;
7561 }
7562 
7563 int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all)
7564 {
7565 	struct hwrm_func_resource_qcaps_output *resp;
7566 	struct hwrm_func_resource_qcaps_input *req;
7567 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7568 	int rc;
7569 
7570 	rc = hwrm_req_init(bp, req, HWRM_FUNC_RESOURCE_QCAPS);
7571 	if (rc)
7572 		return rc;
7573 
7574 	req->fid = cpu_to_le16(0xffff);
7575 	resp = hwrm_req_hold(bp, req);
7576 	rc = hwrm_req_send_silent(bp, req);
7577 	if (rc)
7578 		goto hwrm_func_resc_qcaps_exit;
7579 
7580 	hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs);
7581 	if (!all)
7582 		goto hwrm_func_resc_qcaps_exit;
7583 
7584 	hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx);
7585 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
7586 	hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings);
7587 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
7588 	hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings);
7589 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
7590 	hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings);
7591 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
7592 	hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps);
7593 	hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps);
7594 	hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs);
7595 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
7596 	hw_resc->min_vnics = le16_to_cpu(resp->min_vnics);
7597 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
7598 	hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx);
7599 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
7600 
7601 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
7602 		u16 max_msix = le16_to_cpu(resp->max_msix);
7603 
7604 		hw_resc->max_nqs = max_msix;
7605 		hw_resc->max_hw_ring_grps = hw_resc->max_rx_rings;
7606 	}
7607 
7608 	if (BNXT_PF(bp)) {
7609 		struct bnxt_pf_info *pf = &bp->pf;
7610 
7611 		pf->vf_resv_strategy =
7612 			le16_to_cpu(resp->vf_reservation_strategy);
7613 		if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC)
7614 			pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL;
7615 	}
7616 hwrm_func_resc_qcaps_exit:
7617 	hwrm_req_drop(bp, req);
7618 	return rc;
7619 }
7620 
7621 static int __bnxt_hwrm_ptp_qcfg(struct bnxt *bp)
7622 {
7623 	struct hwrm_port_mac_ptp_qcfg_output *resp;
7624 	struct hwrm_port_mac_ptp_qcfg_input *req;
7625 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
7626 	bool phc_cfg;
7627 	u8 flags;
7628 	int rc;
7629 
7630 	if (bp->hwrm_spec_code < 0x10801) {
7631 		rc = -ENODEV;
7632 		goto no_ptp;
7633 	}
7634 
7635 	rc = hwrm_req_init(bp, req, HWRM_PORT_MAC_PTP_QCFG);
7636 	if (rc)
7637 		goto no_ptp;
7638 
7639 	req->port_id = cpu_to_le16(bp->pf.port_id);
7640 	resp = hwrm_req_hold(bp, req);
7641 	rc = hwrm_req_send(bp, req);
7642 	if (rc)
7643 		goto exit;
7644 
7645 	flags = resp->flags;
7646 	if (!(flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_HWRM_ACCESS)) {
7647 		rc = -ENODEV;
7648 		goto exit;
7649 	}
7650 	if (!ptp) {
7651 		ptp = kzalloc(sizeof(*ptp), GFP_KERNEL);
7652 		if (!ptp) {
7653 			rc = -ENOMEM;
7654 			goto exit;
7655 		}
7656 		ptp->bp = bp;
7657 		bp->ptp_cfg = ptp;
7658 	}
7659 	if (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_PARTIAL_DIRECT_ACCESS_REF_CLOCK) {
7660 		ptp->refclk_regs[0] = le32_to_cpu(resp->ts_ref_clock_reg_lower);
7661 		ptp->refclk_regs[1] = le32_to_cpu(resp->ts_ref_clock_reg_upper);
7662 	} else if (bp->flags & BNXT_FLAG_CHIP_P5) {
7663 		ptp->refclk_regs[0] = BNXT_TS_REG_TIMESYNC_TS0_LOWER;
7664 		ptp->refclk_regs[1] = BNXT_TS_REG_TIMESYNC_TS0_UPPER;
7665 	} else {
7666 		rc = -ENODEV;
7667 		goto exit;
7668 	}
7669 	phc_cfg = (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_RTC_CONFIGURED) != 0;
7670 	rc = bnxt_ptp_init(bp, phc_cfg);
7671 	if (rc)
7672 		netdev_warn(bp->dev, "PTP initialization failed.\n");
7673 exit:
7674 	hwrm_req_drop(bp, req);
7675 	if (!rc)
7676 		return 0;
7677 
7678 no_ptp:
7679 	bnxt_ptp_clear(bp);
7680 	kfree(ptp);
7681 	bp->ptp_cfg = NULL;
7682 	return rc;
7683 }
7684 
7685 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp)
7686 {
7687 	struct hwrm_func_qcaps_output *resp;
7688 	struct hwrm_func_qcaps_input *req;
7689 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7690 	u32 flags, flags_ext, flags_ext2;
7691 	int rc;
7692 
7693 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCAPS);
7694 	if (rc)
7695 		return rc;
7696 
7697 	req->fid = cpu_to_le16(0xffff);
7698 	resp = hwrm_req_hold(bp, req);
7699 	rc = hwrm_req_send(bp, req);
7700 	if (rc)
7701 		goto hwrm_func_qcaps_exit;
7702 
7703 	flags = le32_to_cpu(resp->flags);
7704 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED)
7705 		bp->flags |= BNXT_FLAG_ROCEV1_CAP;
7706 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED)
7707 		bp->flags |= BNXT_FLAG_ROCEV2_CAP;
7708 	if (flags & FUNC_QCAPS_RESP_FLAGS_PCIE_STATS_SUPPORTED)
7709 		bp->fw_cap |= BNXT_FW_CAP_PCIE_STATS_SUPPORTED;
7710 	if (flags & FUNC_QCAPS_RESP_FLAGS_HOT_RESET_CAPABLE)
7711 		bp->fw_cap |= BNXT_FW_CAP_HOT_RESET;
7712 	if (flags & FUNC_QCAPS_RESP_FLAGS_EXT_STATS_SUPPORTED)
7713 		bp->fw_cap |= BNXT_FW_CAP_EXT_STATS_SUPPORTED;
7714 	if (flags &  FUNC_QCAPS_RESP_FLAGS_ERROR_RECOVERY_CAPABLE)
7715 		bp->fw_cap |= BNXT_FW_CAP_ERROR_RECOVERY;
7716 	if (flags & FUNC_QCAPS_RESP_FLAGS_ERR_RECOVER_RELOAD)
7717 		bp->fw_cap |= BNXT_FW_CAP_ERR_RECOVER_RELOAD;
7718 	if (!(flags & FUNC_QCAPS_RESP_FLAGS_VLAN_ACCELERATION_TX_DISABLED))
7719 		bp->fw_cap |= BNXT_FW_CAP_VLAN_TX_INSERT;
7720 	if (flags & FUNC_QCAPS_RESP_FLAGS_DBG_QCAPS_CMD_SUPPORTED)
7721 		bp->fw_cap |= BNXT_FW_CAP_DBG_QCAPS;
7722 
7723 	flags_ext = le32_to_cpu(resp->flags_ext);
7724 	if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_EXT_HW_STATS_SUPPORTED)
7725 		bp->fw_cap |= BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED;
7726 	if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_PPS_SUPPORTED))
7727 		bp->fw_cap |= BNXT_FW_CAP_PTP_PPS;
7728 	if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_64BIT_RTC_SUPPORTED)
7729 		bp->fw_cap |= BNXT_FW_CAP_PTP_RTC;
7730 	if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_HOT_RESET_IF_SUPPORT))
7731 		bp->fw_cap |= BNXT_FW_CAP_HOT_RESET_IF;
7732 	if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_FW_LIVEPATCH_SUPPORTED))
7733 		bp->fw_cap |= BNXT_FW_CAP_LIVEPATCH;
7734 
7735 	flags_ext2 = le32_to_cpu(resp->flags_ext2);
7736 	if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_RX_ALL_PKTS_TIMESTAMPS_SUPPORTED)
7737 		bp->fw_cap |= BNXT_FW_CAP_RX_ALL_PKT_TS;
7738 
7739 	bp->tx_push_thresh = 0;
7740 	if ((flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED) &&
7741 	    BNXT_FW_MAJ(bp) > 217)
7742 		bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
7743 
7744 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
7745 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
7746 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
7747 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
7748 	hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
7749 	if (!hw_resc->max_hw_ring_grps)
7750 		hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings;
7751 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
7752 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
7753 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
7754 
7755 	if (BNXT_PF(bp)) {
7756 		struct bnxt_pf_info *pf = &bp->pf;
7757 
7758 		pf->fw_fid = le16_to_cpu(resp->fid);
7759 		pf->port_id = le16_to_cpu(resp->port_id);
7760 		memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN);
7761 		pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
7762 		pf->max_vfs = le16_to_cpu(resp->max_vfs);
7763 		pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
7764 		pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
7765 		pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
7766 		pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
7767 		pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
7768 		pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
7769 		bp->flags &= ~BNXT_FLAG_WOL_CAP;
7770 		if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED)
7771 			bp->flags |= BNXT_FLAG_WOL_CAP;
7772 		if (flags & FUNC_QCAPS_RESP_FLAGS_PTP_SUPPORTED) {
7773 			__bnxt_hwrm_ptp_qcfg(bp);
7774 		} else {
7775 			bnxt_ptp_clear(bp);
7776 			kfree(bp->ptp_cfg);
7777 			bp->ptp_cfg = NULL;
7778 		}
7779 	} else {
7780 #ifdef CONFIG_BNXT_SRIOV
7781 		struct bnxt_vf_info *vf = &bp->vf;
7782 
7783 		vf->fw_fid = le16_to_cpu(resp->fid);
7784 		memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN);
7785 #endif
7786 	}
7787 
7788 hwrm_func_qcaps_exit:
7789 	hwrm_req_drop(bp, req);
7790 	return rc;
7791 }
7792 
7793 static void bnxt_hwrm_dbg_qcaps(struct bnxt *bp)
7794 {
7795 	struct hwrm_dbg_qcaps_output *resp;
7796 	struct hwrm_dbg_qcaps_input *req;
7797 	int rc;
7798 
7799 	bp->fw_dbg_cap = 0;
7800 	if (!(bp->fw_cap & BNXT_FW_CAP_DBG_QCAPS))
7801 		return;
7802 
7803 	rc = hwrm_req_init(bp, req, HWRM_DBG_QCAPS);
7804 	if (rc)
7805 		return;
7806 
7807 	req->fid = cpu_to_le16(0xffff);
7808 	resp = hwrm_req_hold(bp, req);
7809 	rc = hwrm_req_send(bp, req);
7810 	if (rc)
7811 		goto hwrm_dbg_qcaps_exit;
7812 
7813 	bp->fw_dbg_cap = le32_to_cpu(resp->flags);
7814 
7815 hwrm_dbg_qcaps_exit:
7816 	hwrm_req_drop(bp, req);
7817 }
7818 
7819 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp);
7820 
7821 int bnxt_hwrm_func_qcaps(struct bnxt *bp)
7822 {
7823 	int rc;
7824 
7825 	rc = __bnxt_hwrm_func_qcaps(bp);
7826 	if (rc)
7827 		return rc;
7828 
7829 	bnxt_hwrm_dbg_qcaps(bp);
7830 
7831 	rc = bnxt_hwrm_queue_qportcfg(bp);
7832 	if (rc) {
7833 		netdev_err(bp->dev, "hwrm query qportcfg failure rc: %d\n", rc);
7834 		return rc;
7835 	}
7836 	if (bp->hwrm_spec_code >= 0x10803) {
7837 		rc = bnxt_alloc_ctx_mem(bp);
7838 		if (rc)
7839 			return rc;
7840 		rc = bnxt_hwrm_func_resc_qcaps(bp, true);
7841 		if (!rc)
7842 			bp->fw_cap |= BNXT_FW_CAP_NEW_RM;
7843 	}
7844 	return 0;
7845 }
7846 
7847 static int bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(struct bnxt *bp)
7848 {
7849 	struct hwrm_cfa_adv_flow_mgnt_qcaps_output *resp;
7850 	struct hwrm_cfa_adv_flow_mgnt_qcaps_input *req;
7851 	u32 flags;
7852 	int rc;
7853 
7854 	if (!(bp->fw_cap & BNXT_FW_CAP_CFA_ADV_FLOW))
7855 		return 0;
7856 
7857 	rc = hwrm_req_init(bp, req, HWRM_CFA_ADV_FLOW_MGNT_QCAPS);
7858 	if (rc)
7859 		return rc;
7860 
7861 	resp = hwrm_req_hold(bp, req);
7862 	rc = hwrm_req_send(bp, req);
7863 	if (rc)
7864 		goto hwrm_cfa_adv_qcaps_exit;
7865 
7866 	flags = le32_to_cpu(resp->flags);
7867 	if (flags &
7868 	    CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V2_SUPPORTED)
7869 		bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2;
7870 
7871 hwrm_cfa_adv_qcaps_exit:
7872 	hwrm_req_drop(bp, req);
7873 	return rc;
7874 }
7875 
7876 static int __bnxt_alloc_fw_health(struct bnxt *bp)
7877 {
7878 	if (bp->fw_health)
7879 		return 0;
7880 
7881 	bp->fw_health = kzalloc(sizeof(*bp->fw_health), GFP_KERNEL);
7882 	if (!bp->fw_health)
7883 		return -ENOMEM;
7884 
7885 	mutex_init(&bp->fw_health->lock);
7886 	return 0;
7887 }
7888 
7889 static int bnxt_alloc_fw_health(struct bnxt *bp)
7890 {
7891 	int rc;
7892 
7893 	if (!(bp->fw_cap & BNXT_FW_CAP_HOT_RESET) &&
7894 	    !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
7895 		return 0;
7896 
7897 	rc = __bnxt_alloc_fw_health(bp);
7898 	if (rc) {
7899 		bp->fw_cap &= ~BNXT_FW_CAP_HOT_RESET;
7900 		bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
7901 		return rc;
7902 	}
7903 
7904 	return 0;
7905 }
7906 
7907 static void __bnxt_map_fw_health_reg(struct bnxt *bp, u32 reg)
7908 {
7909 	writel(reg & BNXT_GRC_BASE_MASK, bp->bar0 +
7910 					 BNXT_GRCPF_REG_WINDOW_BASE_OUT +
7911 					 BNXT_FW_HEALTH_WIN_MAP_OFF);
7912 }
7913 
7914 static void bnxt_inv_fw_health_reg(struct bnxt *bp)
7915 {
7916 	struct bnxt_fw_health *fw_health = bp->fw_health;
7917 	u32 reg_type;
7918 
7919 	if (!fw_health)
7920 		return;
7921 
7922 	reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_HEALTH_REG]);
7923 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC)
7924 		fw_health->status_reliable = false;
7925 
7926 	reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_RESET_CNT_REG]);
7927 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC)
7928 		fw_health->resets_reliable = false;
7929 }
7930 
7931 static void bnxt_try_map_fw_health_reg(struct bnxt *bp)
7932 {
7933 	void __iomem *hs;
7934 	u32 status_loc;
7935 	u32 reg_type;
7936 	u32 sig;
7937 
7938 	if (bp->fw_health)
7939 		bp->fw_health->status_reliable = false;
7940 
7941 	__bnxt_map_fw_health_reg(bp, HCOMM_STATUS_STRUCT_LOC);
7942 	hs = bp->bar0 + BNXT_FW_HEALTH_WIN_OFF(HCOMM_STATUS_STRUCT_LOC);
7943 
7944 	sig = readl(hs + offsetof(struct hcomm_status, sig_ver));
7945 	if ((sig & HCOMM_STATUS_SIGNATURE_MASK) != HCOMM_STATUS_SIGNATURE_VAL) {
7946 		if (!bp->chip_num) {
7947 			__bnxt_map_fw_health_reg(bp, BNXT_GRC_REG_BASE);
7948 			bp->chip_num = readl(bp->bar0 +
7949 					     BNXT_FW_HEALTH_WIN_BASE +
7950 					     BNXT_GRC_REG_CHIP_NUM);
7951 		}
7952 		if (!BNXT_CHIP_P5(bp))
7953 			return;
7954 
7955 		status_loc = BNXT_GRC_REG_STATUS_P5 |
7956 			     BNXT_FW_HEALTH_REG_TYPE_BAR0;
7957 	} else {
7958 		status_loc = readl(hs + offsetof(struct hcomm_status,
7959 						 fw_status_loc));
7960 	}
7961 
7962 	if (__bnxt_alloc_fw_health(bp)) {
7963 		netdev_warn(bp->dev, "no memory for firmware status checks\n");
7964 		return;
7965 	}
7966 
7967 	bp->fw_health->regs[BNXT_FW_HEALTH_REG] = status_loc;
7968 	reg_type = BNXT_FW_HEALTH_REG_TYPE(status_loc);
7969 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) {
7970 		__bnxt_map_fw_health_reg(bp, status_loc);
7971 		bp->fw_health->mapped_regs[BNXT_FW_HEALTH_REG] =
7972 			BNXT_FW_HEALTH_WIN_OFF(status_loc);
7973 	}
7974 
7975 	bp->fw_health->status_reliable = true;
7976 }
7977 
7978 static int bnxt_map_fw_health_regs(struct bnxt *bp)
7979 {
7980 	struct bnxt_fw_health *fw_health = bp->fw_health;
7981 	u32 reg_base = 0xffffffff;
7982 	int i;
7983 
7984 	bp->fw_health->status_reliable = false;
7985 	bp->fw_health->resets_reliable = false;
7986 	/* Only pre-map the monitoring GRC registers using window 3 */
7987 	for (i = 0; i < 4; i++) {
7988 		u32 reg = fw_health->regs[i];
7989 
7990 		if (BNXT_FW_HEALTH_REG_TYPE(reg) != BNXT_FW_HEALTH_REG_TYPE_GRC)
7991 			continue;
7992 		if (reg_base == 0xffffffff)
7993 			reg_base = reg & BNXT_GRC_BASE_MASK;
7994 		if ((reg & BNXT_GRC_BASE_MASK) != reg_base)
7995 			return -ERANGE;
7996 		fw_health->mapped_regs[i] = BNXT_FW_HEALTH_WIN_OFF(reg);
7997 	}
7998 	bp->fw_health->status_reliable = true;
7999 	bp->fw_health->resets_reliable = true;
8000 	if (reg_base == 0xffffffff)
8001 		return 0;
8002 
8003 	__bnxt_map_fw_health_reg(bp, reg_base);
8004 	return 0;
8005 }
8006 
8007 static void bnxt_remap_fw_health_regs(struct bnxt *bp)
8008 {
8009 	if (!bp->fw_health)
8010 		return;
8011 
8012 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) {
8013 		bp->fw_health->status_reliable = true;
8014 		bp->fw_health->resets_reliable = true;
8015 	} else {
8016 		bnxt_try_map_fw_health_reg(bp);
8017 	}
8018 }
8019 
8020 static int bnxt_hwrm_error_recovery_qcfg(struct bnxt *bp)
8021 {
8022 	struct bnxt_fw_health *fw_health = bp->fw_health;
8023 	struct hwrm_error_recovery_qcfg_output *resp;
8024 	struct hwrm_error_recovery_qcfg_input *req;
8025 	int rc, i;
8026 
8027 	if (!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
8028 		return 0;
8029 
8030 	rc = hwrm_req_init(bp, req, HWRM_ERROR_RECOVERY_QCFG);
8031 	if (rc)
8032 		return rc;
8033 
8034 	resp = hwrm_req_hold(bp, req);
8035 	rc = hwrm_req_send(bp, req);
8036 	if (rc)
8037 		goto err_recovery_out;
8038 	fw_health->flags = le32_to_cpu(resp->flags);
8039 	if ((fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) &&
8040 	    !(bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL)) {
8041 		rc = -EINVAL;
8042 		goto err_recovery_out;
8043 	}
8044 	fw_health->polling_dsecs = le32_to_cpu(resp->driver_polling_freq);
8045 	fw_health->master_func_wait_dsecs =
8046 		le32_to_cpu(resp->master_func_wait_period);
8047 	fw_health->normal_func_wait_dsecs =
8048 		le32_to_cpu(resp->normal_func_wait_period);
8049 	fw_health->post_reset_wait_dsecs =
8050 		le32_to_cpu(resp->master_func_wait_period_after_reset);
8051 	fw_health->post_reset_max_wait_dsecs =
8052 		le32_to_cpu(resp->max_bailout_time_after_reset);
8053 	fw_health->regs[BNXT_FW_HEALTH_REG] =
8054 		le32_to_cpu(resp->fw_health_status_reg);
8055 	fw_health->regs[BNXT_FW_HEARTBEAT_REG] =
8056 		le32_to_cpu(resp->fw_heartbeat_reg);
8057 	fw_health->regs[BNXT_FW_RESET_CNT_REG] =
8058 		le32_to_cpu(resp->fw_reset_cnt_reg);
8059 	fw_health->regs[BNXT_FW_RESET_INPROG_REG] =
8060 		le32_to_cpu(resp->reset_inprogress_reg);
8061 	fw_health->fw_reset_inprog_reg_mask =
8062 		le32_to_cpu(resp->reset_inprogress_reg_mask);
8063 	fw_health->fw_reset_seq_cnt = resp->reg_array_cnt;
8064 	if (fw_health->fw_reset_seq_cnt >= 16) {
8065 		rc = -EINVAL;
8066 		goto err_recovery_out;
8067 	}
8068 	for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) {
8069 		fw_health->fw_reset_seq_regs[i] =
8070 			le32_to_cpu(resp->reset_reg[i]);
8071 		fw_health->fw_reset_seq_vals[i] =
8072 			le32_to_cpu(resp->reset_reg_val[i]);
8073 		fw_health->fw_reset_seq_delay_msec[i] =
8074 			resp->delay_after_reset[i];
8075 	}
8076 err_recovery_out:
8077 	hwrm_req_drop(bp, req);
8078 	if (!rc)
8079 		rc = bnxt_map_fw_health_regs(bp);
8080 	if (rc)
8081 		bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
8082 	return rc;
8083 }
8084 
8085 static int bnxt_hwrm_func_reset(struct bnxt *bp)
8086 {
8087 	struct hwrm_func_reset_input *req;
8088 	int rc;
8089 
8090 	rc = hwrm_req_init(bp, req, HWRM_FUNC_RESET);
8091 	if (rc)
8092 		return rc;
8093 
8094 	req->enables = 0;
8095 	hwrm_req_timeout(bp, req, HWRM_RESET_TIMEOUT);
8096 	return hwrm_req_send(bp, req);
8097 }
8098 
8099 static void bnxt_nvm_cfg_ver_get(struct bnxt *bp)
8100 {
8101 	struct hwrm_nvm_get_dev_info_output nvm_info;
8102 
8103 	if (!bnxt_hwrm_nvm_get_dev_info(bp, &nvm_info))
8104 		snprintf(bp->nvm_cfg_ver, FW_VER_STR_LEN, "%d.%d.%d",
8105 			 nvm_info.nvm_cfg_ver_maj, nvm_info.nvm_cfg_ver_min,
8106 			 nvm_info.nvm_cfg_ver_upd);
8107 }
8108 
8109 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
8110 {
8111 	struct hwrm_queue_qportcfg_output *resp;
8112 	struct hwrm_queue_qportcfg_input *req;
8113 	u8 i, j, *qptr;
8114 	bool no_rdma;
8115 	int rc = 0;
8116 
8117 	rc = hwrm_req_init(bp, req, HWRM_QUEUE_QPORTCFG);
8118 	if (rc)
8119 		return rc;
8120 
8121 	resp = hwrm_req_hold(bp, req);
8122 	rc = hwrm_req_send(bp, req);
8123 	if (rc)
8124 		goto qportcfg_exit;
8125 
8126 	if (!resp->max_configurable_queues) {
8127 		rc = -EINVAL;
8128 		goto qportcfg_exit;
8129 	}
8130 	bp->max_tc = resp->max_configurable_queues;
8131 	bp->max_lltc = resp->max_configurable_lossless_queues;
8132 	if (bp->max_tc > BNXT_MAX_QUEUE)
8133 		bp->max_tc = BNXT_MAX_QUEUE;
8134 
8135 	no_rdma = !(bp->flags & BNXT_FLAG_ROCE_CAP);
8136 	qptr = &resp->queue_id0;
8137 	for (i = 0, j = 0; i < bp->max_tc; i++) {
8138 		bp->q_info[j].queue_id = *qptr;
8139 		bp->q_ids[i] = *qptr++;
8140 		bp->q_info[j].queue_profile = *qptr++;
8141 		bp->tc_to_qidx[j] = j;
8142 		if (!BNXT_CNPQ(bp->q_info[j].queue_profile) ||
8143 		    (no_rdma && BNXT_PF(bp)))
8144 			j++;
8145 	}
8146 	bp->max_q = bp->max_tc;
8147 	bp->max_tc = max_t(u8, j, 1);
8148 
8149 	if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG)
8150 		bp->max_tc = 1;
8151 
8152 	if (bp->max_lltc > bp->max_tc)
8153 		bp->max_lltc = bp->max_tc;
8154 
8155 qportcfg_exit:
8156 	hwrm_req_drop(bp, req);
8157 	return rc;
8158 }
8159 
8160 static int bnxt_hwrm_poll(struct bnxt *bp)
8161 {
8162 	struct hwrm_ver_get_input *req;
8163 	int rc;
8164 
8165 	rc = hwrm_req_init(bp, req, HWRM_VER_GET);
8166 	if (rc)
8167 		return rc;
8168 
8169 	req->hwrm_intf_maj = HWRM_VERSION_MAJOR;
8170 	req->hwrm_intf_min = HWRM_VERSION_MINOR;
8171 	req->hwrm_intf_upd = HWRM_VERSION_UPDATE;
8172 
8173 	hwrm_req_flags(bp, req, BNXT_HWRM_CTX_SILENT | BNXT_HWRM_FULL_WAIT);
8174 	rc = hwrm_req_send(bp, req);
8175 	return rc;
8176 }
8177 
8178 static int bnxt_hwrm_ver_get(struct bnxt *bp)
8179 {
8180 	struct hwrm_ver_get_output *resp;
8181 	struct hwrm_ver_get_input *req;
8182 	u16 fw_maj, fw_min, fw_bld, fw_rsv;
8183 	u32 dev_caps_cfg, hwrm_ver;
8184 	int rc, len;
8185 
8186 	rc = hwrm_req_init(bp, req, HWRM_VER_GET);
8187 	if (rc)
8188 		return rc;
8189 
8190 	hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT);
8191 	bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN;
8192 	req->hwrm_intf_maj = HWRM_VERSION_MAJOR;
8193 	req->hwrm_intf_min = HWRM_VERSION_MINOR;
8194 	req->hwrm_intf_upd = HWRM_VERSION_UPDATE;
8195 
8196 	resp = hwrm_req_hold(bp, req);
8197 	rc = hwrm_req_send(bp, req);
8198 	if (rc)
8199 		goto hwrm_ver_get_exit;
8200 
8201 	memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
8202 
8203 	bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 |
8204 			     resp->hwrm_intf_min_8b << 8 |
8205 			     resp->hwrm_intf_upd_8b;
8206 	if (resp->hwrm_intf_maj_8b < 1) {
8207 		netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
8208 			    resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
8209 			    resp->hwrm_intf_upd_8b);
8210 		netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
8211 	}
8212 
8213 	hwrm_ver = HWRM_VERSION_MAJOR << 16 | HWRM_VERSION_MINOR << 8 |
8214 			HWRM_VERSION_UPDATE;
8215 
8216 	if (bp->hwrm_spec_code > hwrm_ver)
8217 		snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d",
8218 			 HWRM_VERSION_MAJOR, HWRM_VERSION_MINOR,
8219 			 HWRM_VERSION_UPDATE);
8220 	else
8221 		snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d",
8222 			 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
8223 			 resp->hwrm_intf_upd_8b);
8224 
8225 	fw_maj = le16_to_cpu(resp->hwrm_fw_major);
8226 	if (bp->hwrm_spec_code > 0x10803 && fw_maj) {
8227 		fw_min = le16_to_cpu(resp->hwrm_fw_minor);
8228 		fw_bld = le16_to_cpu(resp->hwrm_fw_build);
8229 		fw_rsv = le16_to_cpu(resp->hwrm_fw_patch);
8230 		len = FW_VER_STR_LEN;
8231 	} else {
8232 		fw_maj = resp->hwrm_fw_maj_8b;
8233 		fw_min = resp->hwrm_fw_min_8b;
8234 		fw_bld = resp->hwrm_fw_bld_8b;
8235 		fw_rsv = resp->hwrm_fw_rsvd_8b;
8236 		len = BC_HWRM_STR_LEN;
8237 	}
8238 	bp->fw_ver_code = BNXT_FW_VER_CODE(fw_maj, fw_min, fw_bld, fw_rsv);
8239 	snprintf(bp->fw_ver_str, len, "%d.%d.%d.%d", fw_maj, fw_min, fw_bld,
8240 		 fw_rsv);
8241 
8242 	if (strlen(resp->active_pkg_name)) {
8243 		int fw_ver_len = strlen(bp->fw_ver_str);
8244 
8245 		snprintf(bp->fw_ver_str + fw_ver_len,
8246 			 FW_VER_STR_LEN - fw_ver_len - 1, "/pkg %s",
8247 			 resp->active_pkg_name);
8248 		bp->fw_cap |= BNXT_FW_CAP_PKG_VER;
8249 	}
8250 
8251 	bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout);
8252 	if (!bp->hwrm_cmd_timeout)
8253 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
8254 	bp->hwrm_cmd_max_timeout = le16_to_cpu(resp->max_req_timeout) * 1000;
8255 	if (!bp->hwrm_cmd_max_timeout)
8256 		bp->hwrm_cmd_max_timeout = HWRM_CMD_MAX_TIMEOUT;
8257 	else if (bp->hwrm_cmd_max_timeout > HWRM_CMD_MAX_TIMEOUT)
8258 		netdev_warn(bp->dev, "Device requests max timeout of %d seconds, may trigger hung task watchdog\n",
8259 			    bp->hwrm_cmd_max_timeout / 1000);
8260 
8261 	if (resp->hwrm_intf_maj_8b >= 1) {
8262 		bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len);
8263 		bp->hwrm_max_ext_req_len = le16_to_cpu(resp->max_ext_req_len);
8264 	}
8265 	if (bp->hwrm_max_ext_req_len < HWRM_MAX_REQ_LEN)
8266 		bp->hwrm_max_ext_req_len = HWRM_MAX_REQ_LEN;
8267 
8268 	bp->chip_num = le16_to_cpu(resp->chip_num);
8269 	bp->chip_rev = resp->chip_rev;
8270 	if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev &&
8271 	    !resp->chip_metal)
8272 		bp->flags |= BNXT_FLAG_CHIP_NITRO_A0;
8273 
8274 	dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg);
8275 	if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) &&
8276 	    (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED))
8277 		bp->fw_cap |= BNXT_FW_CAP_SHORT_CMD;
8278 
8279 	if (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_KONG_MB_CHNL_SUPPORTED)
8280 		bp->fw_cap |= BNXT_FW_CAP_KONG_MB_CHNL;
8281 
8282 	if (dev_caps_cfg &
8283 	    VER_GET_RESP_DEV_CAPS_CFG_FLOW_HANDLE_64BIT_SUPPORTED)
8284 		bp->fw_cap |= BNXT_FW_CAP_OVS_64BIT_HANDLE;
8285 
8286 	if (dev_caps_cfg &
8287 	    VER_GET_RESP_DEV_CAPS_CFG_TRUSTED_VF_SUPPORTED)
8288 		bp->fw_cap |= BNXT_FW_CAP_TRUSTED_VF;
8289 
8290 	if (dev_caps_cfg &
8291 	    VER_GET_RESP_DEV_CAPS_CFG_CFA_ADV_FLOW_MGNT_SUPPORTED)
8292 		bp->fw_cap |= BNXT_FW_CAP_CFA_ADV_FLOW;
8293 
8294 hwrm_ver_get_exit:
8295 	hwrm_req_drop(bp, req);
8296 	return rc;
8297 }
8298 
8299 int bnxt_hwrm_fw_set_time(struct bnxt *bp)
8300 {
8301 	struct hwrm_fw_set_time_input *req;
8302 	struct tm tm;
8303 	time64_t now = ktime_get_real_seconds();
8304 	int rc;
8305 
8306 	if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) ||
8307 	    bp->hwrm_spec_code < 0x10400)
8308 		return -EOPNOTSUPP;
8309 
8310 	time64_to_tm(now, 0, &tm);
8311 	rc = hwrm_req_init(bp, req, HWRM_FW_SET_TIME);
8312 	if (rc)
8313 		return rc;
8314 
8315 	req->year = cpu_to_le16(1900 + tm.tm_year);
8316 	req->month = 1 + tm.tm_mon;
8317 	req->day = tm.tm_mday;
8318 	req->hour = tm.tm_hour;
8319 	req->minute = tm.tm_min;
8320 	req->second = tm.tm_sec;
8321 	return hwrm_req_send(bp, req);
8322 }
8323 
8324 static void bnxt_add_one_ctr(u64 hw, u64 *sw, u64 mask)
8325 {
8326 	u64 sw_tmp;
8327 
8328 	hw &= mask;
8329 	sw_tmp = (*sw & ~mask) | hw;
8330 	if (hw < (*sw & mask))
8331 		sw_tmp += mask + 1;
8332 	WRITE_ONCE(*sw, sw_tmp);
8333 }
8334 
8335 static void __bnxt_accumulate_stats(__le64 *hw_stats, u64 *sw_stats, u64 *masks,
8336 				    int count, bool ignore_zero)
8337 {
8338 	int i;
8339 
8340 	for (i = 0; i < count; i++) {
8341 		u64 hw = le64_to_cpu(READ_ONCE(hw_stats[i]));
8342 
8343 		if (ignore_zero && !hw)
8344 			continue;
8345 
8346 		if (masks[i] == -1ULL)
8347 			sw_stats[i] = hw;
8348 		else
8349 			bnxt_add_one_ctr(hw, &sw_stats[i], masks[i]);
8350 	}
8351 }
8352 
8353 static void bnxt_accumulate_stats(struct bnxt_stats_mem *stats)
8354 {
8355 	if (!stats->hw_stats)
8356 		return;
8357 
8358 	__bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats,
8359 				stats->hw_masks, stats->len / 8, false);
8360 }
8361 
8362 static void bnxt_accumulate_all_stats(struct bnxt *bp)
8363 {
8364 	struct bnxt_stats_mem *ring0_stats;
8365 	bool ignore_zero = false;
8366 	int i;
8367 
8368 	/* Chip bug.  Counter intermittently becomes 0. */
8369 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8370 		ignore_zero = true;
8371 
8372 	for (i = 0; i < bp->cp_nr_rings; i++) {
8373 		struct bnxt_napi *bnapi = bp->bnapi[i];
8374 		struct bnxt_cp_ring_info *cpr;
8375 		struct bnxt_stats_mem *stats;
8376 
8377 		cpr = &bnapi->cp_ring;
8378 		stats = &cpr->stats;
8379 		if (!i)
8380 			ring0_stats = stats;
8381 		__bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats,
8382 					ring0_stats->hw_masks,
8383 					ring0_stats->len / 8, ignore_zero);
8384 	}
8385 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
8386 		struct bnxt_stats_mem *stats = &bp->port_stats;
8387 		__le64 *hw_stats = stats->hw_stats;
8388 		u64 *sw_stats = stats->sw_stats;
8389 		u64 *masks = stats->hw_masks;
8390 		int cnt;
8391 
8392 		cnt = sizeof(struct rx_port_stats) / 8;
8393 		__bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false);
8394 
8395 		hw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
8396 		sw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
8397 		masks += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
8398 		cnt = sizeof(struct tx_port_stats) / 8;
8399 		__bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false);
8400 	}
8401 	if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) {
8402 		bnxt_accumulate_stats(&bp->rx_port_stats_ext);
8403 		bnxt_accumulate_stats(&bp->tx_port_stats_ext);
8404 	}
8405 }
8406 
8407 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags)
8408 {
8409 	struct hwrm_port_qstats_input *req;
8410 	struct bnxt_pf_info *pf = &bp->pf;
8411 	int rc;
8412 
8413 	if (!(bp->flags & BNXT_FLAG_PORT_STATS))
8414 		return 0;
8415 
8416 	if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))
8417 		return -EOPNOTSUPP;
8418 
8419 	rc = hwrm_req_init(bp, req, HWRM_PORT_QSTATS);
8420 	if (rc)
8421 		return rc;
8422 
8423 	req->flags = flags;
8424 	req->port_id = cpu_to_le16(pf->port_id);
8425 	req->tx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map +
8426 					    BNXT_TX_PORT_STATS_BYTE_OFFSET);
8427 	req->rx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map);
8428 	return hwrm_req_send(bp, req);
8429 }
8430 
8431 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags)
8432 {
8433 	struct hwrm_queue_pri2cos_qcfg_output *resp_qc;
8434 	struct hwrm_queue_pri2cos_qcfg_input *req_qc;
8435 	struct hwrm_port_qstats_ext_output *resp_qs;
8436 	struct hwrm_port_qstats_ext_input *req_qs;
8437 	struct bnxt_pf_info *pf = &bp->pf;
8438 	u32 tx_stat_size;
8439 	int rc;
8440 
8441 	if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT))
8442 		return 0;
8443 
8444 	if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))
8445 		return -EOPNOTSUPP;
8446 
8447 	rc = hwrm_req_init(bp, req_qs, HWRM_PORT_QSTATS_EXT);
8448 	if (rc)
8449 		return rc;
8450 
8451 	req_qs->flags = flags;
8452 	req_qs->port_id = cpu_to_le16(pf->port_id);
8453 	req_qs->rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext));
8454 	req_qs->rx_stat_host_addr = cpu_to_le64(bp->rx_port_stats_ext.hw_stats_map);
8455 	tx_stat_size = bp->tx_port_stats_ext.hw_stats ?
8456 		       sizeof(struct tx_port_stats_ext) : 0;
8457 	req_qs->tx_stat_size = cpu_to_le16(tx_stat_size);
8458 	req_qs->tx_stat_host_addr = cpu_to_le64(bp->tx_port_stats_ext.hw_stats_map);
8459 	resp_qs = hwrm_req_hold(bp, req_qs);
8460 	rc = hwrm_req_send(bp, req_qs);
8461 	if (!rc) {
8462 		bp->fw_rx_stats_ext_size =
8463 			le16_to_cpu(resp_qs->rx_stat_size) / 8;
8464 		if (BNXT_FW_MAJ(bp) < 220 &&
8465 		    bp->fw_rx_stats_ext_size > BNXT_RX_STATS_EXT_NUM_LEGACY)
8466 			bp->fw_rx_stats_ext_size = BNXT_RX_STATS_EXT_NUM_LEGACY;
8467 
8468 		bp->fw_tx_stats_ext_size = tx_stat_size ?
8469 			le16_to_cpu(resp_qs->tx_stat_size) / 8 : 0;
8470 	} else {
8471 		bp->fw_rx_stats_ext_size = 0;
8472 		bp->fw_tx_stats_ext_size = 0;
8473 	}
8474 	hwrm_req_drop(bp, req_qs);
8475 
8476 	if (flags)
8477 		return rc;
8478 
8479 	if (bp->fw_tx_stats_ext_size <=
8480 	    offsetof(struct tx_port_stats_ext, pfc_pri0_tx_duration_us) / 8) {
8481 		bp->pri2cos_valid = 0;
8482 		return rc;
8483 	}
8484 
8485 	rc = hwrm_req_init(bp, req_qc, HWRM_QUEUE_PRI2COS_QCFG);
8486 	if (rc)
8487 		return rc;
8488 
8489 	req_qc->flags = cpu_to_le32(QUEUE_PRI2COS_QCFG_REQ_FLAGS_IVLAN);
8490 
8491 	resp_qc = hwrm_req_hold(bp, req_qc);
8492 	rc = hwrm_req_send(bp, req_qc);
8493 	if (!rc) {
8494 		u8 *pri2cos;
8495 		int i, j;
8496 
8497 		pri2cos = &resp_qc->pri0_cos_queue_id;
8498 		for (i = 0; i < 8; i++) {
8499 			u8 queue_id = pri2cos[i];
8500 			u8 queue_idx;
8501 
8502 			/* Per port queue IDs start from 0, 10, 20, etc */
8503 			queue_idx = queue_id % 10;
8504 			if (queue_idx > BNXT_MAX_QUEUE) {
8505 				bp->pri2cos_valid = false;
8506 				hwrm_req_drop(bp, req_qc);
8507 				return rc;
8508 			}
8509 			for (j = 0; j < bp->max_q; j++) {
8510 				if (bp->q_ids[j] == queue_id)
8511 					bp->pri2cos_idx[i] = queue_idx;
8512 			}
8513 		}
8514 		bp->pri2cos_valid = true;
8515 	}
8516 	hwrm_req_drop(bp, req_qc);
8517 
8518 	return rc;
8519 }
8520 
8521 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
8522 {
8523 	bnxt_hwrm_tunnel_dst_port_free(bp,
8524 		TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
8525 	bnxt_hwrm_tunnel_dst_port_free(bp,
8526 		TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
8527 }
8528 
8529 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
8530 {
8531 	int rc, i;
8532 	u32 tpa_flags = 0;
8533 
8534 	if (set_tpa)
8535 		tpa_flags = bp->flags & BNXT_FLAG_TPA;
8536 	else if (BNXT_NO_FW_ACCESS(bp))
8537 		return 0;
8538 	for (i = 0; i < bp->nr_vnics; i++) {
8539 		rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
8540 		if (rc) {
8541 			netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
8542 				   i, rc);
8543 			return rc;
8544 		}
8545 	}
8546 	return 0;
8547 }
8548 
8549 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
8550 {
8551 	int i;
8552 
8553 	for (i = 0; i < bp->nr_vnics; i++)
8554 		bnxt_hwrm_vnic_set_rss(bp, i, false);
8555 }
8556 
8557 static void bnxt_clear_vnic(struct bnxt *bp)
8558 {
8559 	if (!bp->vnic_info)
8560 		return;
8561 
8562 	bnxt_hwrm_clear_vnic_filter(bp);
8563 	if (!(bp->flags & BNXT_FLAG_CHIP_P5)) {
8564 		/* clear all RSS setting before free vnic ctx */
8565 		bnxt_hwrm_clear_vnic_rss(bp);
8566 		bnxt_hwrm_vnic_ctx_free(bp);
8567 	}
8568 	/* before free the vnic, undo the vnic tpa settings */
8569 	if (bp->flags & BNXT_FLAG_TPA)
8570 		bnxt_set_tpa(bp, false);
8571 	bnxt_hwrm_vnic_free(bp);
8572 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8573 		bnxt_hwrm_vnic_ctx_free(bp);
8574 }
8575 
8576 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
8577 				    bool irq_re_init)
8578 {
8579 	bnxt_clear_vnic(bp);
8580 	bnxt_hwrm_ring_free(bp, close_path);
8581 	bnxt_hwrm_ring_grp_free(bp);
8582 	if (irq_re_init) {
8583 		bnxt_hwrm_stat_ctx_free(bp);
8584 		bnxt_hwrm_free_tunnel_ports(bp);
8585 	}
8586 }
8587 
8588 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode)
8589 {
8590 	struct hwrm_func_cfg_input *req;
8591 	u8 evb_mode;
8592 	int rc;
8593 
8594 	if (br_mode == BRIDGE_MODE_VEB)
8595 		evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB;
8596 	else if (br_mode == BRIDGE_MODE_VEPA)
8597 		evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA;
8598 	else
8599 		return -EINVAL;
8600 
8601 	rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG);
8602 	if (rc)
8603 		return rc;
8604 
8605 	req->fid = cpu_to_le16(0xffff);
8606 	req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE);
8607 	req->evb_mode = evb_mode;
8608 	return hwrm_req_send(bp, req);
8609 }
8610 
8611 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size)
8612 {
8613 	struct hwrm_func_cfg_input *req;
8614 	int rc;
8615 
8616 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803)
8617 		return 0;
8618 
8619 	rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG);
8620 	if (rc)
8621 		return rc;
8622 
8623 	req->fid = cpu_to_le16(0xffff);
8624 	req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE);
8625 	req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64;
8626 	if (size == 128)
8627 		req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128;
8628 
8629 	return hwrm_req_send(bp, req);
8630 }
8631 
8632 static int __bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
8633 {
8634 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
8635 	int rc;
8636 
8637 	if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG)
8638 		goto skip_rss_ctx;
8639 
8640 	/* allocate context for vnic */
8641 	rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0);
8642 	if (rc) {
8643 		netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
8644 			   vnic_id, rc);
8645 		goto vnic_setup_err;
8646 	}
8647 	bp->rsscos_nr_ctxs++;
8648 
8649 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
8650 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1);
8651 		if (rc) {
8652 			netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n",
8653 				   vnic_id, rc);
8654 			goto vnic_setup_err;
8655 		}
8656 		bp->rsscos_nr_ctxs++;
8657 	}
8658 
8659 skip_rss_ctx:
8660 	/* configure default vnic, ring grp */
8661 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
8662 	if (rc) {
8663 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
8664 			   vnic_id, rc);
8665 		goto vnic_setup_err;
8666 	}
8667 
8668 	/* Enable RSS hashing on vnic */
8669 	rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
8670 	if (rc) {
8671 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
8672 			   vnic_id, rc);
8673 		goto vnic_setup_err;
8674 	}
8675 
8676 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
8677 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
8678 		if (rc) {
8679 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
8680 				   vnic_id, rc);
8681 		}
8682 	}
8683 
8684 vnic_setup_err:
8685 	return rc;
8686 }
8687 
8688 static int __bnxt_setup_vnic_p5(struct bnxt *bp, u16 vnic_id)
8689 {
8690 	int rc, i, nr_ctxs;
8691 
8692 	nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings);
8693 	for (i = 0; i < nr_ctxs; i++) {
8694 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, i);
8695 		if (rc) {
8696 			netdev_err(bp->dev, "hwrm vnic %d ctx %d alloc failure rc: %x\n",
8697 				   vnic_id, i, rc);
8698 			break;
8699 		}
8700 		bp->rsscos_nr_ctxs++;
8701 	}
8702 	if (i < nr_ctxs)
8703 		return -ENOMEM;
8704 
8705 	rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic_id, true);
8706 	if (rc) {
8707 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n",
8708 			   vnic_id, rc);
8709 		return rc;
8710 	}
8711 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
8712 	if (rc) {
8713 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
8714 			   vnic_id, rc);
8715 		return rc;
8716 	}
8717 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
8718 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
8719 		if (rc) {
8720 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
8721 				   vnic_id, rc);
8722 		}
8723 	}
8724 	return rc;
8725 }
8726 
8727 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
8728 {
8729 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8730 		return __bnxt_setup_vnic_p5(bp, vnic_id);
8731 	else
8732 		return __bnxt_setup_vnic(bp, vnic_id);
8733 }
8734 
8735 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
8736 {
8737 #ifdef CONFIG_RFS_ACCEL
8738 	int i, rc = 0;
8739 
8740 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8741 		return 0;
8742 
8743 	for (i = 0; i < bp->rx_nr_rings; i++) {
8744 		struct bnxt_vnic_info *vnic;
8745 		u16 vnic_id = i + 1;
8746 		u16 ring_id = i;
8747 
8748 		if (vnic_id >= bp->nr_vnics)
8749 			break;
8750 
8751 		vnic = &bp->vnic_info[vnic_id];
8752 		vnic->flags |= BNXT_VNIC_RFS_FLAG;
8753 		if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
8754 			vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG;
8755 		rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1);
8756 		if (rc) {
8757 			netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
8758 				   vnic_id, rc);
8759 			break;
8760 		}
8761 		rc = bnxt_setup_vnic(bp, vnic_id);
8762 		if (rc)
8763 			break;
8764 	}
8765 	return rc;
8766 #else
8767 	return 0;
8768 #endif
8769 }
8770 
8771 /* Allow PF, trusted VFs and VFs with default VLAN to be in promiscuous mode */
8772 static bool bnxt_promisc_ok(struct bnxt *bp)
8773 {
8774 #ifdef CONFIG_BNXT_SRIOV
8775 	if (BNXT_VF(bp) && !bp->vf.vlan && !bnxt_is_trusted_vf(bp, &bp->vf))
8776 		return false;
8777 #endif
8778 	return true;
8779 }
8780 
8781 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp)
8782 {
8783 	unsigned int rc = 0;
8784 
8785 	rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1);
8786 	if (rc) {
8787 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
8788 			   rc);
8789 		return rc;
8790 	}
8791 
8792 	rc = bnxt_hwrm_vnic_cfg(bp, 1);
8793 	if (rc) {
8794 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
8795 			   rc);
8796 		return rc;
8797 	}
8798 	return rc;
8799 }
8800 
8801 static int bnxt_cfg_rx_mode(struct bnxt *);
8802 static bool bnxt_mc_list_updated(struct bnxt *, u32 *);
8803 
8804 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
8805 {
8806 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
8807 	int rc = 0;
8808 	unsigned int rx_nr_rings = bp->rx_nr_rings;
8809 
8810 	if (irq_re_init) {
8811 		rc = bnxt_hwrm_stat_ctx_alloc(bp);
8812 		if (rc) {
8813 			netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
8814 				   rc);
8815 			goto err_out;
8816 		}
8817 	}
8818 
8819 	rc = bnxt_hwrm_ring_alloc(bp);
8820 	if (rc) {
8821 		netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
8822 		goto err_out;
8823 	}
8824 
8825 	rc = bnxt_hwrm_ring_grp_alloc(bp);
8826 	if (rc) {
8827 		netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
8828 		goto err_out;
8829 	}
8830 
8831 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
8832 		rx_nr_rings--;
8833 
8834 	/* default vnic 0 */
8835 	rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings);
8836 	if (rc) {
8837 		netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
8838 		goto err_out;
8839 	}
8840 
8841 	rc = bnxt_setup_vnic(bp, 0);
8842 	if (rc)
8843 		goto err_out;
8844 	if (bp->fw_cap & BNXT_FW_CAP_RSS_HASH_TYPE_DELTA)
8845 		bnxt_hwrm_update_rss_hash_cfg(bp);
8846 
8847 	if (bp->flags & BNXT_FLAG_RFS) {
8848 		rc = bnxt_alloc_rfs_vnics(bp);
8849 		if (rc)
8850 			goto err_out;
8851 	}
8852 
8853 	if (bp->flags & BNXT_FLAG_TPA) {
8854 		rc = bnxt_set_tpa(bp, true);
8855 		if (rc)
8856 			goto err_out;
8857 	}
8858 
8859 	if (BNXT_VF(bp))
8860 		bnxt_update_vf_mac(bp);
8861 
8862 	/* Filter for default vnic 0 */
8863 	rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
8864 	if (rc) {
8865 		if (BNXT_VF(bp) && rc == -ENODEV)
8866 			netdev_err(bp->dev, "Cannot configure L2 filter while PF is unavailable\n");
8867 		else
8868 			netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
8869 		goto err_out;
8870 	}
8871 	vnic->uc_filter_count = 1;
8872 
8873 	vnic->rx_mask = 0;
8874 	if (test_bit(BNXT_STATE_HALF_OPEN, &bp->state))
8875 		goto skip_rx_mask;
8876 
8877 	if (bp->dev->flags & IFF_BROADCAST)
8878 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
8879 
8880 	if (bp->dev->flags & IFF_PROMISC)
8881 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
8882 
8883 	if (bp->dev->flags & IFF_ALLMULTI) {
8884 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
8885 		vnic->mc_list_count = 0;
8886 	} else if (bp->dev->flags & IFF_MULTICAST) {
8887 		u32 mask = 0;
8888 
8889 		bnxt_mc_list_updated(bp, &mask);
8890 		vnic->rx_mask |= mask;
8891 	}
8892 
8893 	rc = bnxt_cfg_rx_mode(bp);
8894 	if (rc)
8895 		goto err_out;
8896 
8897 skip_rx_mask:
8898 	rc = bnxt_hwrm_set_coal(bp);
8899 	if (rc)
8900 		netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
8901 				rc);
8902 
8903 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
8904 		rc = bnxt_setup_nitroa0_vnic(bp);
8905 		if (rc)
8906 			netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n",
8907 				   rc);
8908 	}
8909 
8910 	if (BNXT_VF(bp)) {
8911 		bnxt_hwrm_func_qcfg(bp);
8912 		netdev_update_features(bp->dev);
8913 	}
8914 
8915 	return 0;
8916 
8917 err_out:
8918 	bnxt_hwrm_resource_free(bp, 0, true);
8919 
8920 	return rc;
8921 }
8922 
8923 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
8924 {
8925 	bnxt_hwrm_resource_free(bp, 1, irq_re_init);
8926 	return 0;
8927 }
8928 
8929 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
8930 {
8931 	bnxt_init_cp_rings(bp);
8932 	bnxt_init_rx_rings(bp);
8933 	bnxt_init_tx_rings(bp);
8934 	bnxt_init_ring_grps(bp, irq_re_init);
8935 	bnxt_init_vnics(bp);
8936 
8937 	return bnxt_init_chip(bp, irq_re_init);
8938 }
8939 
8940 static int bnxt_set_real_num_queues(struct bnxt *bp)
8941 {
8942 	int rc;
8943 	struct net_device *dev = bp->dev;
8944 
8945 	rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings -
8946 					  bp->tx_nr_rings_xdp);
8947 	if (rc)
8948 		return rc;
8949 
8950 	rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
8951 	if (rc)
8952 		return rc;
8953 
8954 #ifdef CONFIG_RFS_ACCEL
8955 	if (bp->flags & BNXT_FLAG_RFS)
8956 		dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
8957 #endif
8958 
8959 	return rc;
8960 }
8961 
8962 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
8963 			   bool shared)
8964 {
8965 	int _rx = *rx, _tx = *tx;
8966 
8967 	if (shared) {
8968 		*rx = min_t(int, _rx, max);
8969 		*tx = min_t(int, _tx, max);
8970 	} else {
8971 		if (max < 2)
8972 			return -ENOMEM;
8973 
8974 		while (_rx + _tx > max) {
8975 			if (_rx > _tx && _rx > 1)
8976 				_rx--;
8977 			else if (_tx > 1)
8978 				_tx--;
8979 		}
8980 		*rx = _rx;
8981 		*tx = _tx;
8982 	}
8983 	return 0;
8984 }
8985 
8986 static void bnxt_setup_msix(struct bnxt *bp)
8987 {
8988 	const int len = sizeof(bp->irq_tbl[0].name);
8989 	struct net_device *dev = bp->dev;
8990 	int tcs, i;
8991 
8992 	tcs = netdev_get_num_tc(dev);
8993 	if (tcs) {
8994 		int i, off, count;
8995 
8996 		for (i = 0; i < tcs; i++) {
8997 			count = bp->tx_nr_rings_per_tc;
8998 			off = i * count;
8999 			netdev_set_tc_queue(dev, i, count, off);
9000 		}
9001 	}
9002 
9003 	for (i = 0; i < bp->cp_nr_rings; i++) {
9004 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
9005 		char *attr;
9006 
9007 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
9008 			attr = "TxRx";
9009 		else if (i < bp->rx_nr_rings)
9010 			attr = "rx";
9011 		else
9012 			attr = "tx";
9013 
9014 		snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name,
9015 			 attr, i);
9016 		bp->irq_tbl[map_idx].handler = bnxt_msix;
9017 	}
9018 }
9019 
9020 static void bnxt_setup_inta(struct bnxt *bp)
9021 {
9022 	const int len = sizeof(bp->irq_tbl[0].name);
9023 
9024 	if (netdev_get_num_tc(bp->dev))
9025 		netdev_reset_tc(bp->dev);
9026 
9027 	snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx",
9028 		 0);
9029 	bp->irq_tbl[0].handler = bnxt_inta;
9030 }
9031 
9032 static int bnxt_init_int_mode(struct bnxt *bp);
9033 
9034 static int bnxt_setup_int_mode(struct bnxt *bp)
9035 {
9036 	int rc;
9037 
9038 	if (!bp->irq_tbl) {
9039 		rc = bnxt_init_int_mode(bp);
9040 		if (rc || !bp->irq_tbl)
9041 			return rc ?: -ENODEV;
9042 	}
9043 
9044 	if (bp->flags & BNXT_FLAG_USING_MSIX)
9045 		bnxt_setup_msix(bp);
9046 	else
9047 		bnxt_setup_inta(bp);
9048 
9049 	rc = bnxt_set_real_num_queues(bp);
9050 	return rc;
9051 }
9052 
9053 #ifdef CONFIG_RFS_ACCEL
9054 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp)
9055 {
9056 	return bp->hw_resc.max_rsscos_ctxs;
9057 }
9058 
9059 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp)
9060 {
9061 	return bp->hw_resc.max_vnics;
9062 }
9063 #endif
9064 
9065 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp)
9066 {
9067 	return bp->hw_resc.max_stat_ctxs;
9068 }
9069 
9070 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp)
9071 {
9072 	return bp->hw_resc.max_cp_rings;
9073 }
9074 
9075 static unsigned int bnxt_get_max_func_cp_rings_for_en(struct bnxt *bp)
9076 {
9077 	unsigned int cp = bp->hw_resc.max_cp_rings;
9078 
9079 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
9080 		cp -= bnxt_get_ulp_msix_num(bp);
9081 
9082 	return cp;
9083 }
9084 
9085 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp)
9086 {
9087 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
9088 
9089 	if (bp->flags & BNXT_FLAG_CHIP_P5)
9090 		return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_nqs);
9091 
9092 	return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings);
9093 }
9094 
9095 static void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs)
9096 {
9097 	bp->hw_resc.max_irqs = max_irqs;
9098 }
9099 
9100 unsigned int bnxt_get_avail_cp_rings_for_en(struct bnxt *bp)
9101 {
9102 	unsigned int cp;
9103 
9104 	cp = bnxt_get_max_func_cp_rings_for_en(bp);
9105 	if (bp->flags & BNXT_FLAG_CHIP_P5)
9106 		return cp - bp->rx_nr_rings - bp->tx_nr_rings;
9107 	else
9108 		return cp - bp->cp_nr_rings;
9109 }
9110 
9111 unsigned int bnxt_get_avail_stat_ctxs_for_en(struct bnxt *bp)
9112 {
9113 	return bnxt_get_max_func_stat_ctxs(bp) - bnxt_get_func_stat_ctxs(bp);
9114 }
9115 
9116 int bnxt_get_avail_msix(struct bnxt *bp, int num)
9117 {
9118 	int max_cp = bnxt_get_max_func_cp_rings(bp);
9119 	int max_irq = bnxt_get_max_func_irqs(bp);
9120 	int total_req = bp->cp_nr_rings + num;
9121 	int max_idx, avail_msix;
9122 
9123 	max_idx = bp->total_irqs;
9124 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
9125 		max_idx = min_t(int, bp->total_irqs, max_cp);
9126 	avail_msix = max_idx - bp->cp_nr_rings;
9127 	if (!BNXT_NEW_RM(bp) || avail_msix >= num)
9128 		return avail_msix;
9129 
9130 	if (max_irq < total_req) {
9131 		num = max_irq - bp->cp_nr_rings;
9132 		if (num <= 0)
9133 			return 0;
9134 	}
9135 	return num;
9136 }
9137 
9138 static int bnxt_get_num_msix(struct bnxt *bp)
9139 {
9140 	if (!BNXT_NEW_RM(bp))
9141 		return bnxt_get_max_func_irqs(bp);
9142 
9143 	return bnxt_nq_rings_in_use(bp);
9144 }
9145 
9146 static int bnxt_init_msix(struct bnxt *bp)
9147 {
9148 	int i, total_vecs, max, rc = 0, min = 1, ulp_msix;
9149 	struct msix_entry *msix_ent;
9150 
9151 	total_vecs = bnxt_get_num_msix(bp);
9152 	max = bnxt_get_max_func_irqs(bp);
9153 	if (total_vecs > max)
9154 		total_vecs = max;
9155 
9156 	if (!total_vecs)
9157 		return 0;
9158 
9159 	msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
9160 	if (!msix_ent)
9161 		return -ENOMEM;
9162 
9163 	for (i = 0; i < total_vecs; i++) {
9164 		msix_ent[i].entry = i;
9165 		msix_ent[i].vector = 0;
9166 	}
9167 
9168 	if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
9169 		min = 2;
9170 
9171 	total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
9172 	ulp_msix = bnxt_get_ulp_msix_num(bp);
9173 	if (total_vecs < 0 || total_vecs < ulp_msix) {
9174 		rc = -ENODEV;
9175 		goto msix_setup_exit;
9176 	}
9177 
9178 	bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
9179 	if (bp->irq_tbl) {
9180 		for (i = 0; i < total_vecs; i++)
9181 			bp->irq_tbl[i].vector = msix_ent[i].vector;
9182 
9183 		bp->total_irqs = total_vecs;
9184 		/* Trim rings based upon num of vectors allocated */
9185 		rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
9186 				     total_vecs - ulp_msix, min == 1);
9187 		if (rc)
9188 			goto msix_setup_exit;
9189 
9190 		bp->cp_nr_rings = (min == 1) ?
9191 				  max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
9192 				  bp->tx_nr_rings + bp->rx_nr_rings;
9193 
9194 	} else {
9195 		rc = -ENOMEM;
9196 		goto msix_setup_exit;
9197 	}
9198 	bp->flags |= BNXT_FLAG_USING_MSIX;
9199 	kfree(msix_ent);
9200 	return 0;
9201 
9202 msix_setup_exit:
9203 	netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc);
9204 	kfree(bp->irq_tbl);
9205 	bp->irq_tbl = NULL;
9206 	pci_disable_msix(bp->pdev);
9207 	kfree(msix_ent);
9208 	return rc;
9209 }
9210 
9211 static int bnxt_init_inta(struct bnxt *bp)
9212 {
9213 	bp->irq_tbl = kzalloc(sizeof(struct bnxt_irq), GFP_KERNEL);
9214 	if (!bp->irq_tbl)
9215 		return -ENOMEM;
9216 
9217 	bp->total_irqs = 1;
9218 	bp->rx_nr_rings = 1;
9219 	bp->tx_nr_rings = 1;
9220 	bp->cp_nr_rings = 1;
9221 	bp->flags |= BNXT_FLAG_SHARED_RINGS;
9222 	bp->irq_tbl[0].vector = bp->pdev->irq;
9223 	return 0;
9224 }
9225 
9226 static int bnxt_init_int_mode(struct bnxt *bp)
9227 {
9228 	int rc = -ENODEV;
9229 
9230 	if (bp->flags & BNXT_FLAG_MSIX_CAP)
9231 		rc = bnxt_init_msix(bp);
9232 
9233 	if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) {
9234 		/* fallback to INTA */
9235 		rc = bnxt_init_inta(bp);
9236 	}
9237 	return rc;
9238 }
9239 
9240 static void bnxt_clear_int_mode(struct bnxt *bp)
9241 {
9242 	if (bp->flags & BNXT_FLAG_USING_MSIX)
9243 		pci_disable_msix(bp->pdev);
9244 
9245 	kfree(bp->irq_tbl);
9246 	bp->irq_tbl = NULL;
9247 	bp->flags &= ~BNXT_FLAG_USING_MSIX;
9248 }
9249 
9250 int bnxt_reserve_rings(struct bnxt *bp, bool irq_re_init)
9251 {
9252 	int tcs = netdev_get_num_tc(bp->dev);
9253 	bool irq_cleared = false;
9254 	int rc;
9255 
9256 	if (!bnxt_need_reserve_rings(bp))
9257 		return 0;
9258 
9259 	if (irq_re_init && BNXT_NEW_RM(bp) &&
9260 	    bnxt_get_num_msix(bp) != bp->total_irqs) {
9261 		bnxt_ulp_irq_stop(bp);
9262 		bnxt_clear_int_mode(bp);
9263 		irq_cleared = true;
9264 	}
9265 	rc = __bnxt_reserve_rings(bp);
9266 	if (irq_cleared) {
9267 		if (!rc)
9268 			rc = bnxt_init_int_mode(bp);
9269 		bnxt_ulp_irq_restart(bp, rc);
9270 	}
9271 	if (rc) {
9272 		netdev_err(bp->dev, "ring reservation/IRQ init failure rc: %d\n", rc);
9273 		return rc;
9274 	}
9275 	if (tcs && (bp->tx_nr_rings_per_tc * tcs != bp->tx_nr_rings)) {
9276 		netdev_err(bp->dev, "tx ring reservation failure\n");
9277 		netdev_reset_tc(bp->dev);
9278 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
9279 		return -ENOMEM;
9280 	}
9281 	return 0;
9282 }
9283 
9284 static void bnxt_free_irq(struct bnxt *bp)
9285 {
9286 	struct bnxt_irq *irq;
9287 	int i;
9288 
9289 #ifdef CONFIG_RFS_ACCEL
9290 	free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
9291 	bp->dev->rx_cpu_rmap = NULL;
9292 #endif
9293 	if (!bp->irq_tbl || !bp->bnapi)
9294 		return;
9295 
9296 	for (i = 0; i < bp->cp_nr_rings; i++) {
9297 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
9298 
9299 		irq = &bp->irq_tbl[map_idx];
9300 		if (irq->requested) {
9301 			if (irq->have_cpumask) {
9302 				irq_set_affinity_hint(irq->vector, NULL);
9303 				free_cpumask_var(irq->cpu_mask);
9304 				irq->have_cpumask = 0;
9305 			}
9306 			free_irq(irq->vector, bp->bnapi[i]);
9307 		}
9308 
9309 		irq->requested = 0;
9310 	}
9311 }
9312 
9313 static int bnxt_request_irq(struct bnxt *bp)
9314 {
9315 	int i, j, rc = 0;
9316 	unsigned long flags = 0;
9317 #ifdef CONFIG_RFS_ACCEL
9318 	struct cpu_rmap *rmap;
9319 #endif
9320 
9321 	rc = bnxt_setup_int_mode(bp);
9322 	if (rc) {
9323 		netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
9324 			   rc);
9325 		return rc;
9326 	}
9327 #ifdef CONFIG_RFS_ACCEL
9328 	rmap = bp->dev->rx_cpu_rmap;
9329 #endif
9330 	if (!(bp->flags & BNXT_FLAG_USING_MSIX))
9331 		flags = IRQF_SHARED;
9332 
9333 	for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
9334 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
9335 		struct bnxt_irq *irq = &bp->irq_tbl[map_idx];
9336 
9337 #ifdef CONFIG_RFS_ACCEL
9338 		if (rmap && bp->bnapi[i]->rx_ring) {
9339 			rc = irq_cpu_rmap_add(rmap, irq->vector);
9340 			if (rc)
9341 				netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
9342 					    j);
9343 			j++;
9344 		}
9345 #endif
9346 		rc = request_irq(irq->vector, irq->handler, flags, irq->name,
9347 				 bp->bnapi[i]);
9348 		if (rc)
9349 			break;
9350 
9351 		irq->requested = 1;
9352 
9353 		if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) {
9354 			int numa_node = dev_to_node(&bp->pdev->dev);
9355 
9356 			irq->have_cpumask = 1;
9357 			cpumask_set_cpu(cpumask_local_spread(i, numa_node),
9358 					irq->cpu_mask);
9359 			rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask);
9360 			if (rc) {
9361 				netdev_warn(bp->dev,
9362 					    "Set affinity failed, IRQ = %d\n",
9363 					    irq->vector);
9364 				break;
9365 			}
9366 		}
9367 	}
9368 	return rc;
9369 }
9370 
9371 static void bnxt_del_napi(struct bnxt *bp)
9372 {
9373 	int i;
9374 
9375 	if (!bp->bnapi)
9376 		return;
9377 
9378 	for (i = 0; i < bp->cp_nr_rings; i++) {
9379 		struct bnxt_napi *bnapi = bp->bnapi[i];
9380 
9381 		__netif_napi_del(&bnapi->napi);
9382 	}
9383 	/* We called __netif_napi_del(), we need
9384 	 * to respect an RCU grace period before freeing napi structures.
9385 	 */
9386 	synchronize_net();
9387 }
9388 
9389 static void bnxt_init_napi(struct bnxt *bp)
9390 {
9391 	int i;
9392 	unsigned int cp_nr_rings = bp->cp_nr_rings;
9393 	struct bnxt_napi *bnapi;
9394 
9395 	if (bp->flags & BNXT_FLAG_USING_MSIX) {
9396 		int (*poll_fn)(struct napi_struct *, int) = bnxt_poll;
9397 
9398 		if (bp->flags & BNXT_FLAG_CHIP_P5)
9399 			poll_fn = bnxt_poll_p5;
9400 		else if (BNXT_CHIP_TYPE_NITRO_A0(bp))
9401 			cp_nr_rings--;
9402 		for (i = 0; i < cp_nr_rings; i++) {
9403 			bnapi = bp->bnapi[i];
9404 			netif_napi_add(bp->dev, &bnapi->napi, poll_fn);
9405 		}
9406 		if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
9407 			bnapi = bp->bnapi[cp_nr_rings];
9408 			netif_napi_add(bp->dev, &bnapi->napi,
9409 				       bnxt_poll_nitroa0);
9410 		}
9411 	} else {
9412 		bnapi = bp->bnapi[0];
9413 		netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll);
9414 	}
9415 }
9416 
9417 static void bnxt_disable_napi(struct bnxt *bp)
9418 {
9419 	int i;
9420 
9421 	if (!bp->bnapi ||
9422 	    test_and_set_bit(BNXT_STATE_NAPI_DISABLED, &bp->state))
9423 		return;
9424 
9425 	for (i = 0; i < bp->cp_nr_rings; i++) {
9426 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
9427 
9428 		napi_disable(&bp->bnapi[i]->napi);
9429 		if (bp->bnapi[i]->rx_ring)
9430 			cancel_work_sync(&cpr->dim.work);
9431 	}
9432 }
9433 
9434 static void bnxt_enable_napi(struct bnxt *bp)
9435 {
9436 	int i;
9437 
9438 	clear_bit(BNXT_STATE_NAPI_DISABLED, &bp->state);
9439 	for (i = 0; i < bp->cp_nr_rings; i++) {
9440 		struct bnxt_napi *bnapi = bp->bnapi[i];
9441 		struct bnxt_cp_ring_info *cpr;
9442 
9443 		cpr = &bnapi->cp_ring;
9444 		if (bnapi->in_reset)
9445 			cpr->sw_stats.rx.rx_resets++;
9446 		bnapi->in_reset = false;
9447 
9448 		if (bnapi->rx_ring) {
9449 			INIT_WORK(&cpr->dim.work, bnxt_dim_work);
9450 			cpr->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
9451 		}
9452 		napi_enable(&bnapi->napi);
9453 	}
9454 }
9455 
9456 void bnxt_tx_disable(struct bnxt *bp)
9457 {
9458 	int i;
9459 	struct bnxt_tx_ring_info *txr;
9460 
9461 	if (bp->tx_ring) {
9462 		for (i = 0; i < bp->tx_nr_rings; i++) {
9463 			txr = &bp->tx_ring[i];
9464 			WRITE_ONCE(txr->dev_state, BNXT_DEV_STATE_CLOSING);
9465 		}
9466 	}
9467 	/* Make sure napi polls see @dev_state change */
9468 	synchronize_net();
9469 	/* Drop carrier first to prevent TX timeout */
9470 	netif_carrier_off(bp->dev);
9471 	/* Stop all TX queues */
9472 	netif_tx_disable(bp->dev);
9473 }
9474 
9475 void bnxt_tx_enable(struct bnxt *bp)
9476 {
9477 	int i;
9478 	struct bnxt_tx_ring_info *txr;
9479 
9480 	for (i = 0; i < bp->tx_nr_rings; i++) {
9481 		txr = &bp->tx_ring[i];
9482 		WRITE_ONCE(txr->dev_state, 0);
9483 	}
9484 	/* Make sure napi polls see @dev_state change */
9485 	synchronize_net();
9486 	netif_tx_wake_all_queues(bp->dev);
9487 	if (BNXT_LINK_IS_UP(bp))
9488 		netif_carrier_on(bp->dev);
9489 }
9490 
9491 static char *bnxt_report_fec(struct bnxt_link_info *link_info)
9492 {
9493 	u8 active_fec = link_info->active_fec_sig_mode &
9494 			PORT_PHY_QCFG_RESP_ACTIVE_FEC_MASK;
9495 
9496 	switch (active_fec) {
9497 	default:
9498 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_NONE_ACTIVE:
9499 		return "None";
9500 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE74_ACTIVE:
9501 		return "Clause 74 BaseR";
9502 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE91_ACTIVE:
9503 		return "Clause 91 RS(528,514)";
9504 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_1XN_ACTIVE:
9505 		return "Clause 91 RS544_1XN";
9506 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_IEEE_ACTIVE:
9507 		return "Clause 91 RS(544,514)";
9508 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_1XN_ACTIVE:
9509 		return "Clause 91 RS272_1XN";
9510 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_IEEE_ACTIVE:
9511 		return "Clause 91 RS(272,257)";
9512 	}
9513 }
9514 
9515 void bnxt_report_link(struct bnxt *bp)
9516 {
9517 	if (BNXT_LINK_IS_UP(bp)) {
9518 		const char *signal = "";
9519 		const char *flow_ctrl;
9520 		const char *duplex;
9521 		u32 speed;
9522 		u16 fec;
9523 
9524 		netif_carrier_on(bp->dev);
9525 		speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
9526 		if (speed == SPEED_UNKNOWN) {
9527 			netdev_info(bp->dev, "NIC Link is Up, speed unknown\n");
9528 			return;
9529 		}
9530 		if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
9531 			duplex = "full";
9532 		else
9533 			duplex = "half";
9534 		if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
9535 			flow_ctrl = "ON - receive & transmit";
9536 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
9537 			flow_ctrl = "ON - transmit";
9538 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
9539 			flow_ctrl = "ON - receive";
9540 		else
9541 			flow_ctrl = "none";
9542 		if (bp->link_info.phy_qcfg_resp.option_flags &
9543 		    PORT_PHY_QCFG_RESP_OPTION_FLAGS_SIGNAL_MODE_KNOWN) {
9544 			u8 sig_mode = bp->link_info.active_fec_sig_mode &
9545 				      PORT_PHY_QCFG_RESP_SIGNAL_MODE_MASK;
9546 			switch (sig_mode) {
9547 			case PORT_PHY_QCFG_RESP_SIGNAL_MODE_NRZ:
9548 				signal = "(NRZ) ";
9549 				break;
9550 			case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4:
9551 				signal = "(PAM4) ";
9552 				break;
9553 			default:
9554 				break;
9555 			}
9556 		}
9557 		netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s%s duplex, Flow control: %s\n",
9558 			    speed, signal, duplex, flow_ctrl);
9559 		if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP)
9560 			netdev_info(bp->dev, "EEE is %s\n",
9561 				    bp->eee.eee_active ? "active" :
9562 							 "not active");
9563 		fec = bp->link_info.fec_cfg;
9564 		if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED))
9565 			netdev_info(bp->dev, "FEC autoneg %s encoding: %s\n",
9566 				    (fec & BNXT_FEC_AUTONEG) ? "on" : "off",
9567 				    bnxt_report_fec(&bp->link_info));
9568 	} else {
9569 		netif_carrier_off(bp->dev);
9570 		netdev_err(bp->dev, "NIC Link is Down\n");
9571 	}
9572 }
9573 
9574 static bool bnxt_phy_qcaps_no_speed(struct hwrm_port_phy_qcaps_output *resp)
9575 {
9576 	if (!resp->supported_speeds_auto_mode &&
9577 	    !resp->supported_speeds_force_mode &&
9578 	    !resp->supported_pam4_speeds_auto_mode &&
9579 	    !resp->supported_pam4_speeds_force_mode)
9580 		return true;
9581 	return false;
9582 }
9583 
9584 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp)
9585 {
9586 	struct bnxt_link_info *link_info = &bp->link_info;
9587 	struct hwrm_port_phy_qcaps_output *resp;
9588 	struct hwrm_port_phy_qcaps_input *req;
9589 	int rc = 0;
9590 
9591 	if (bp->hwrm_spec_code < 0x10201)
9592 		return 0;
9593 
9594 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCAPS);
9595 	if (rc)
9596 		return rc;
9597 
9598 	resp = hwrm_req_hold(bp, req);
9599 	rc = hwrm_req_send(bp, req);
9600 	if (rc)
9601 		goto hwrm_phy_qcaps_exit;
9602 
9603 	bp->phy_flags = resp->flags | (le16_to_cpu(resp->flags2) << 8);
9604 	if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) {
9605 		struct ethtool_eee *eee = &bp->eee;
9606 		u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode);
9607 
9608 		eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
9609 		bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) &
9610 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK;
9611 		bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) &
9612 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK;
9613 	}
9614 
9615 	if (bp->hwrm_spec_code >= 0x10a01) {
9616 		if (bnxt_phy_qcaps_no_speed(resp)) {
9617 			link_info->phy_state = BNXT_PHY_STATE_DISABLED;
9618 			netdev_warn(bp->dev, "Ethernet link disabled\n");
9619 		} else if (link_info->phy_state == BNXT_PHY_STATE_DISABLED) {
9620 			link_info->phy_state = BNXT_PHY_STATE_ENABLED;
9621 			netdev_info(bp->dev, "Ethernet link enabled\n");
9622 			/* Phy re-enabled, reprobe the speeds */
9623 			link_info->support_auto_speeds = 0;
9624 			link_info->support_pam4_auto_speeds = 0;
9625 		}
9626 	}
9627 	if (resp->supported_speeds_auto_mode)
9628 		link_info->support_auto_speeds =
9629 			le16_to_cpu(resp->supported_speeds_auto_mode);
9630 	if (resp->supported_pam4_speeds_auto_mode)
9631 		link_info->support_pam4_auto_speeds =
9632 			le16_to_cpu(resp->supported_pam4_speeds_auto_mode);
9633 
9634 	bp->port_count = resp->port_cnt;
9635 
9636 hwrm_phy_qcaps_exit:
9637 	hwrm_req_drop(bp, req);
9638 	return rc;
9639 }
9640 
9641 static bool bnxt_support_dropped(u16 advertising, u16 supported)
9642 {
9643 	u16 diff = advertising ^ supported;
9644 
9645 	return ((supported | diff) != supported);
9646 }
9647 
9648 int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
9649 {
9650 	struct bnxt_link_info *link_info = &bp->link_info;
9651 	struct hwrm_port_phy_qcfg_output *resp;
9652 	struct hwrm_port_phy_qcfg_input *req;
9653 	u8 link_state = link_info->link_state;
9654 	bool support_changed = false;
9655 	int rc;
9656 
9657 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCFG);
9658 	if (rc)
9659 		return rc;
9660 
9661 	resp = hwrm_req_hold(bp, req);
9662 	rc = hwrm_req_send(bp, req);
9663 	if (rc) {
9664 		hwrm_req_drop(bp, req);
9665 		if (BNXT_VF(bp) && rc == -ENODEV) {
9666 			netdev_warn(bp->dev, "Cannot obtain link state while PF unavailable.\n");
9667 			rc = 0;
9668 		}
9669 		return rc;
9670 	}
9671 
9672 	memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
9673 	link_info->phy_link_status = resp->link;
9674 	link_info->duplex = resp->duplex_cfg;
9675 	if (bp->hwrm_spec_code >= 0x10800)
9676 		link_info->duplex = resp->duplex_state;
9677 	link_info->pause = resp->pause;
9678 	link_info->auto_mode = resp->auto_mode;
9679 	link_info->auto_pause_setting = resp->auto_pause;
9680 	link_info->lp_pause = resp->link_partner_adv_pause;
9681 	link_info->force_pause_setting = resp->force_pause;
9682 	link_info->duplex_setting = resp->duplex_cfg;
9683 	if (link_info->phy_link_status == BNXT_LINK_LINK)
9684 		link_info->link_speed = le16_to_cpu(resp->link_speed);
9685 	else
9686 		link_info->link_speed = 0;
9687 	link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
9688 	link_info->force_pam4_link_speed =
9689 		le16_to_cpu(resp->force_pam4_link_speed);
9690 	link_info->support_speeds = le16_to_cpu(resp->support_speeds);
9691 	link_info->support_pam4_speeds = le16_to_cpu(resp->support_pam4_speeds);
9692 	link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
9693 	link_info->auto_pam4_link_speeds =
9694 		le16_to_cpu(resp->auto_pam4_link_speed_mask);
9695 	link_info->lp_auto_link_speeds =
9696 		le16_to_cpu(resp->link_partner_adv_speeds);
9697 	link_info->lp_auto_pam4_link_speeds =
9698 		resp->link_partner_pam4_adv_speeds;
9699 	link_info->preemphasis = le32_to_cpu(resp->preemphasis);
9700 	link_info->phy_ver[0] = resp->phy_maj;
9701 	link_info->phy_ver[1] = resp->phy_min;
9702 	link_info->phy_ver[2] = resp->phy_bld;
9703 	link_info->media_type = resp->media_type;
9704 	link_info->phy_type = resp->phy_type;
9705 	link_info->transceiver = resp->xcvr_pkg_type;
9706 	link_info->phy_addr = resp->eee_config_phy_addr &
9707 			      PORT_PHY_QCFG_RESP_PHY_ADDR_MASK;
9708 	link_info->module_status = resp->module_status;
9709 
9710 	if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) {
9711 		struct ethtool_eee *eee = &bp->eee;
9712 		u16 fw_speeds;
9713 
9714 		eee->eee_active = 0;
9715 		if (resp->eee_config_phy_addr &
9716 		    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) {
9717 			eee->eee_active = 1;
9718 			fw_speeds = le16_to_cpu(
9719 				resp->link_partner_adv_eee_link_speed_mask);
9720 			eee->lp_advertised =
9721 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
9722 		}
9723 
9724 		/* Pull initial EEE config */
9725 		if (!chng_link_state) {
9726 			if (resp->eee_config_phy_addr &
9727 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED)
9728 				eee->eee_enabled = 1;
9729 
9730 			fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask);
9731 			eee->advertised =
9732 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
9733 
9734 			if (resp->eee_config_phy_addr &
9735 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) {
9736 				__le32 tmr;
9737 
9738 				eee->tx_lpi_enabled = 1;
9739 				tmr = resp->xcvr_identifier_type_tx_lpi_timer;
9740 				eee->tx_lpi_timer = le32_to_cpu(tmr) &
9741 					PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK;
9742 			}
9743 		}
9744 	}
9745 
9746 	link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED;
9747 	if (bp->hwrm_spec_code >= 0x10504) {
9748 		link_info->fec_cfg = le16_to_cpu(resp->fec_cfg);
9749 		link_info->active_fec_sig_mode = resp->active_fec_signal_mode;
9750 	}
9751 	/* TODO: need to add more logic to report VF link */
9752 	if (chng_link_state) {
9753 		if (link_info->phy_link_status == BNXT_LINK_LINK)
9754 			link_info->link_state = BNXT_LINK_STATE_UP;
9755 		else
9756 			link_info->link_state = BNXT_LINK_STATE_DOWN;
9757 		if (link_state != link_info->link_state)
9758 			bnxt_report_link(bp);
9759 	} else {
9760 		/* always link down if not require to update link state */
9761 		link_info->link_state = BNXT_LINK_STATE_DOWN;
9762 	}
9763 	hwrm_req_drop(bp, req);
9764 
9765 	if (!BNXT_PHY_CFG_ABLE(bp))
9766 		return 0;
9767 
9768 	/* Check if any advertised speeds are no longer supported. The caller
9769 	 * holds the link_lock mutex, so we can modify link_info settings.
9770 	 */
9771 	if (bnxt_support_dropped(link_info->advertising,
9772 				 link_info->support_auto_speeds)) {
9773 		link_info->advertising = link_info->support_auto_speeds;
9774 		support_changed = true;
9775 	}
9776 	if (bnxt_support_dropped(link_info->advertising_pam4,
9777 				 link_info->support_pam4_auto_speeds)) {
9778 		link_info->advertising_pam4 = link_info->support_pam4_auto_speeds;
9779 		support_changed = true;
9780 	}
9781 	if (support_changed && (link_info->autoneg & BNXT_AUTONEG_SPEED))
9782 		bnxt_hwrm_set_link_setting(bp, true, false);
9783 	return 0;
9784 }
9785 
9786 static void bnxt_get_port_module_status(struct bnxt *bp)
9787 {
9788 	struct bnxt_link_info *link_info = &bp->link_info;
9789 	struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp;
9790 	u8 module_status;
9791 
9792 	if (bnxt_update_link(bp, true))
9793 		return;
9794 
9795 	module_status = link_info->module_status;
9796 	switch (module_status) {
9797 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX:
9798 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN:
9799 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG:
9800 		netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n",
9801 			    bp->pf.port_id);
9802 		if (bp->hwrm_spec_code >= 0x10201) {
9803 			netdev_warn(bp->dev, "Module part number %s\n",
9804 				    resp->phy_vendor_partnumber);
9805 		}
9806 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX)
9807 			netdev_warn(bp->dev, "TX is disabled\n");
9808 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN)
9809 			netdev_warn(bp->dev, "SFP+ module is shutdown\n");
9810 	}
9811 }
9812 
9813 static void
9814 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
9815 {
9816 	if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
9817 		if (bp->hwrm_spec_code >= 0x10201)
9818 			req->auto_pause =
9819 				PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE;
9820 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
9821 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
9822 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
9823 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX;
9824 		req->enables |=
9825 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
9826 	} else {
9827 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
9828 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
9829 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
9830 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
9831 		req->enables |=
9832 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
9833 		if (bp->hwrm_spec_code >= 0x10201) {
9834 			req->auto_pause = req->force_pause;
9835 			req->enables |= cpu_to_le32(
9836 				PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
9837 		}
9838 	}
9839 }
9840 
9841 static void bnxt_hwrm_set_link_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
9842 {
9843 	if (bp->link_info.autoneg & BNXT_AUTONEG_SPEED) {
9844 		req->auto_mode |= PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK;
9845 		if (bp->link_info.advertising) {
9846 			req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
9847 			req->auto_link_speed_mask = cpu_to_le16(bp->link_info.advertising);
9848 		}
9849 		if (bp->link_info.advertising_pam4) {
9850 			req->enables |=
9851 				cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAM4_LINK_SPEED_MASK);
9852 			req->auto_link_pam4_speed_mask =
9853 				cpu_to_le16(bp->link_info.advertising_pam4);
9854 		}
9855 		req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
9856 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
9857 	} else {
9858 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
9859 		if (bp->link_info.req_signal_mode == BNXT_SIG_MODE_PAM4) {
9860 			req->force_pam4_link_speed = cpu_to_le16(bp->link_info.req_link_speed);
9861 			req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAM4_LINK_SPEED);
9862 		} else {
9863 			req->force_link_speed = cpu_to_le16(bp->link_info.req_link_speed);
9864 		}
9865 	}
9866 
9867 	/* tell chimp that the setting takes effect immediately */
9868 	req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
9869 }
9870 
9871 int bnxt_hwrm_set_pause(struct bnxt *bp)
9872 {
9873 	struct hwrm_port_phy_cfg_input *req;
9874 	int rc;
9875 
9876 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
9877 	if (rc)
9878 		return rc;
9879 
9880 	bnxt_hwrm_set_pause_common(bp, req);
9881 
9882 	if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
9883 	    bp->link_info.force_link_chng)
9884 		bnxt_hwrm_set_link_common(bp, req);
9885 
9886 	rc = hwrm_req_send(bp, req);
9887 	if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
9888 		/* since changing of pause setting doesn't trigger any link
9889 		 * change event, the driver needs to update the current pause
9890 		 * result upon successfully return of the phy_cfg command
9891 		 */
9892 		bp->link_info.pause =
9893 		bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
9894 		bp->link_info.auto_pause_setting = 0;
9895 		if (!bp->link_info.force_link_chng)
9896 			bnxt_report_link(bp);
9897 	}
9898 	bp->link_info.force_link_chng = false;
9899 	return rc;
9900 }
9901 
9902 static void bnxt_hwrm_set_eee(struct bnxt *bp,
9903 			      struct hwrm_port_phy_cfg_input *req)
9904 {
9905 	struct ethtool_eee *eee = &bp->eee;
9906 
9907 	if (eee->eee_enabled) {
9908 		u16 eee_speeds;
9909 		u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE;
9910 
9911 		if (eee->tx_lpi_enabled)
9912 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE;
9913 		else
9914 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE;
9915 
9916 		req->flags |= cpu_to_le32(flags);
9917 		eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised);
9918 		req->eee_link_speed_mask = cpu_to_le16(eee_speeds);
9919 		req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer);
9920 	} else {
9921 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE);
9922 	}
9923 }
9924 
9925 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee)
9926 {
9927 	struct hwrm_port_phy_cfg_input *req;
9928 	int rc;
9929 
9930 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
9931 	if (rc)
9932 		return rc;
9933 
9934 	if (set_pause)
9935 		bnxt_hwrm_set_pause_common(bp, req);
9936 
9937 	bnxt_hwrm_set_link_common(bp, req);
9938 
9939 	if (set_eee)
9940 		bnxt_hwrm_set_eee(bp, req);
9941 	return hwrm_req_send(bp, req);
9942 }
9943 
9944 static int bnxt_hwrm_shutdown_link(struct bnxt *bp)
9945 {
9946 	struct hwrm_port_phy_cfg_input *req;
9947 	int rc;
9948 
9949 	if (!BNXT_SINGLE_PF(bp))
9950 		return 0;
9951 
9952 	if (pci_num_vf(bp->pdev) &&
9953 	    !(bp->phy_flags & BNXT_PHY_FL_FW_MANAGED_LKDN))
9954 		return 0;
9955 
9956 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
9957 	if (rc)
9958 		return rc;
9959 
9960 	req->flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN);
9961 	rc = hwrm_req_send(bp, req);
9962 	if (!rc) {
9963 		mutex_lock(&bp->link_lock);
9964 		/* Device is not obliged link down in certain scenarios, even
9965 		 * when forced. Setting the state unknown is consistent with
9966 		 * driver startup and will force link state to be reported
9967 		 * during subsequent open based on PORT_PHY_QCFG.
9968 		 */
9969 		bp->link_info.link_state = BNXT_LINK_STATE_UNKNOWN;
9970 		mutex_unlock(&bp->link_lock);
9971 	}
9972 	return rc;
9973 }
9974 
9975 static int bnxt_fw_reset_via_optee(struct bnxt *bp)
9976 {
9977 #ifdef CONFIG_TEE_BNXT_FW
9978 	int rc = tee_bnxt_fw_load();
9979 
9980 	if (rc)
9981 		netdev_err(bp->dev, "Failed FW reset via OP-TEE, rc=%d\n", rc);
9982 
9983 	return rc;
9984 #else
9985 	netdev_err(bp->dev, "OP-TEE not supported\n");
9986 	return -ENODEV;
9987 #endif
9988 }
9989 
9990 static int bnxt_try_recover_fw(struct bnxt *bp)
9991 {
9992 	if (bp->fw_health && bp->fw_health->status_reliable) {
9993 		int retry = 0, rc;
9994 		u32 sts;
9995 
9996 		do {
9997 			sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
9998 			rc = bnxt_hwrm_poll(bp);
9999 			if (!BNXT_FW_IS_BOOTING(sts) &&
10000 			    !BNXT_FW_IS_RECOVERING(sts))
10001 				break;
10002 			retry++;
10003 		} while (rc == -EBUSY && retry < BNXT_FW_RETRY);
10004 
10005 		if (!BNXT_FW_IS_HEALTHY(sts)) {
10006 			netdev_err(bp->dev,
10007 				   "Firmware not responding, status: 0x%x\n",
10008 				   sts);
10009 			rc = -ENODEV;
10010 		}
10011 		if (sts & FW_STATUS_REG_CRASHED_NO_MASTER) {
10012 			netdev_warn(bp->dev, "Firmware recover via OP-TEE requested\n");
10013 			return bnxt_fw_reset_via_optee(bp);
10014 		}
10015 		return rc;
10016 	}
10017 
10018 	return -ENODEV;
10019 }
10020 
10021 static void bnxt_clear_reservations(struct bnxt *bp, bool fw_reset)
10022 {
10023 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
10024 
10025 	if (!BNXT_NEW_RM(bp))
10026 		return; /* no resource reservations required */
10027 
10028 	hw_resc->resv_cp_rings = 0;
10029 	hw_resc->resv_stat_ctxs = 0;
10030 	hw_resc->resv_irqs = 0;
10031 	hw_resc->resv_tx_rings = 0;
10032 	hw_resc->resv_rx_rings = 0;
10033 	hw_resc->resv_hw_ring_grps = 0;
10034 	hw_resc->resv_vnics = 0;
10035 	if (!fw_reset) {
10036 		bp->tx_nr_rings = 0;
10037 		bp->rx_nr_rings = 0;
10038 	}
10039 }
10040 
10041 int bnxt_cancel_reservations(struct bnxt *bp, bool fw_reset)
10042 {
10043 	int rc;
10044 
10045 	if (!BNXT_NEW_RM(bp))
10046 		return 0; /* no resource reservations required */
10047 
10048 	rc = bnxt_hwrm_func_resc_qcaps(bp, true);
10049 	if (rc)
10050 		netdev_err(bp->dev, "resc_qcaps failed\n");
10051 
10052 	bnxt_clear_reservations(bp, fw_reset);
10053 
10054 	return rc;
10055 }
10056 
10057 static int bnxt_hwrm_if_change(struct bnxt *bp, bool up)
10058 {
10059 	struct hwrm_func_drv_if_change_output *resp;
10060 	struct hwrm_func_drv_if_change_input *req;
10061 	bool fw_reset = !bp->irq_tbl;
10062 	bool resc_reinit = false;
10063 	int rc, retry = 0;
10064 	u32 flags = 0;
10065 
10066 	if (!(bp->fw_cap & BNXT_FW_CAP_IF_CHANGE))
10067 		return 0;
10068 
10069 	rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_IF_CHANGE);
10070 	if (rc)
10071 		return rc;
10072 
10073 	if (up)
10074 		req->flags = cpu_to_le32(FUNC_DRV_IF_CHANGE_REQ_FLAGS_UP);
10075 	resp = hwrm_req_hold(bp, req);
10076 
10077 	hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT);
10078 	while (retry < BNXT_FW_IF_RETRY) {
10079 		rc = hwrm_req_send(bp, req);
10080 		if (rc != -EAGAIN)
10081 			break;
10082 
10083 		msleep(50);
10084 		retry++;
10085 	}
10086 
10087 	if (rc == -EAGAIN) {
10088 		hwrm_req_drop(bp, req);
10089 		return rc;
10090 	} else if (!rc) {
10091 		flags = le32_to_cpu(resp->flags);
10092 	} else if (up) {
10093 		rc = bnxt_try_recover_fw(bp);
10094 		fw_reset = true;
10095 	}
10096 	hwrm_req_drop(bp, req);
10097 	if (rc)
10098 		return rc;
10099 
10100 	if (!up) {
10101 		bnxt_inv_fw_health_reg(bp);
10102 		return 0;
10103 	}
10104 
10105 	if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_RESC_CHANGE)
10106 		resc_reinit = true;
10107 	if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_HOT_FW_RESET_DONE ||
10108 	    test_bit(BNXT_STATE_FW_RESET_DET, &bp->state))
10109 		fw_reset = true;
10110 	else
10111 		bnxt_remap_fw_health_regs(bp);
10112 
10113 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state) && !fw_reset) {
10114 		netdev_err(bp->dev, "RESET_DONE not set during FW reset.\n");
10115 		set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
10116 		return -ENODEV;
10117 	}
10118 	if (resc_reinit || fw_reset) {
10119 		if (fw_reset) {
10120 			set_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
10121 			if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
10122 				bnxt_ulp_stop(bp);
10123 			bnxt_free_ctx_mem(bp);
10124 			kfree(bp->ctx);
10125 			bp->ctx = NULL;
10126 			bnxt_dcb_free(bp);
10127 			rc = bnxt_fw_init_one(bp);
10128 			if (rc) {
10129 				clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
10130 				set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
10131 				return rc;
10132 			}
10133 			bnxt_clear_int_mode(bp);
10134 			rc = bnxt_init_int_mode(bp);
10135 			if (rc) {
10136 				clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
10137 				netdev_err(bp->dev, "init int mode failed\n");
10138 				return rc;
10139 			}
10140 		}
10141 		rc = bnxt_cancel_reservations(bp, fw_reset);
10142 	}
10143 	return rc;
10144 }
10145 
10146 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp)
10147 {
10148 	struct hwrm_port_led_qcaps_output *resp;
10149 	struct hwrm_port_led_qcaps_input *req;
10150 	struct bnxt_pf_info *pf = &bp->pf;
10151 	int rc;
10152 
10153 	bp->num_leds = 0;
10154 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601)
10155 		return 0;
10156 
10157 	rc = hwrm_req_init(bp, req, HWRM_PORT_LED_QCAPS);
10158 	if (rc)
10159 		return rc;
10160 
10161 	req->port_id = cpu_to_le16(pf->port_id);
10162 	resp = hwrm_req_hold(bp, req);
10163 	rc = hwrm_req_send(bp, req);
10164 	if (rc) {
10165 		hwrm_req_drop(bp, req);
10166 		return rc;
10167 	}
10168 	if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) {
10169 		int i;
10170 
10171 		bp->num_leds = resp->num_leds;
10172 		memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) *
10173 						 bp->num_leds);
10174 		for (i = 0; i < bp->num_leds; i++) {
10175 			struct bnxt_led_info *led = &bp->leds[i];
10176 			__le16 caps = led->led_state_caps;
10177 
10178 			if (!led->led_group_id ||
10179 			    !BNXT_LED_ALT_BLINK_CAP(caps)) {
10180 				bp->num_leds = 0;
10181 				break;
10182 			}
10183 		}
10184 	}
10185 	hwrm_req_drop(bp, req);
10186 	return 0;
10187 }
10188 
10189 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp)
10190 {
10191 	struct hwrm_wol_filter_alloc_output *resp;
10192 	struct hwrm_wol_filter_alloc_input *req;
10193 	int rc;
10194 
10195 	rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_ALLOC);
10196 	if (rc)
10197 		return rc;
10198 
10199 	req->port_id = cpu_to_le16(bp->pf.port_id);
10200 	req->wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT;
10201 	req->enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS);
10202 	memcpy(req->mac_address, bp->dev->dev_addr, ETH_ALEN);
10203 
10204 	resp = hwrm_req_hold(bp, req);
10205 	rc = hwrm_req_send(bp, req);
10206 	if (!rc)
10207 		bp->wol_filter_id = resp->wol_filter_id;
10208 	hwrm_req_drop(bp, req);
10209 	return rc;
10210 }
10211 
10212 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp)
10213 {
10214 	struct hwrm_wol_filter_free_input *req;
10215 	int rc;
10216 
10217 	rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_FREE);
10218 	if (rc)
10219 		return rc;
10220 
10221 	req->port_id = cpu_to_le16(bp->pf.port_id);
10222 	req->enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID);
10223 	req->wol_filter_id = bp->wol_filter_id;
10224 
10225 	return hwrm_req_send(bp, req);
10226 }
10227 
10228 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle)
10229 {
10230 	struct hwrm_wol_filter_qcfg_output *resp;
10231 	struct hwrm_wol_filter_qcfg_input *req;
10232 	u16 next_handle = 0;
10233 	int rc;
10234 
10235 	rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_QCFG);
10236 	if (rc)
10237 		return rc;
10238 
10239 	req->port_id = cpu_to_le16(bp->pf.port_id);
10240 	req->handle = cpu_to_le16(handle);
10241 	resp = hwrm_req_hold(bp, req);
10242 	rc = hwrm_req_send(bp, req);
10243 	if (!rc) {
10244 		next_handle = le16_to_cpu(resp->next_handle);
10245 		if (next_handle != 0) {
10246 			if (resp->wol_type ==
10247 			    WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) {
10248 				bp->wol = 1;
10249 				bp->wol_filter_id = resp->wol_filter_id;
10250 			}
10251 		}
10252 	}
10253 	hwrm_req_drop(bp, req);
10254 	return next_handle;
10255 }
10256 
10257 static void bnxt_get_wol_settings(struct bnxt *bp)
10258 {
10259 	u16 handle = 0;
10260 
10261 	bp->wol = 0;
10262 	if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP))
10263 		return;
10264 
10265 	do {
10266 		handle = bnxt_hwrm_get_wol_fltrs(bp, handle);
10267 	} while (handle && handle != 0xffff);
10268 }
10269 
10270 #ifdef CONFIG_BNXT_HWMON
10271 static ssize_t bnxt_show_temp(struct device *dev,
10272 			      struct device_attribute *devattr, char *buf)
10273 {
10274 	struct hwrm_temp_monitor_query_output *resp;
10275 	struct hwrm_temp_monitor_query_input *req;
10276 	struct bnxt *bp = dev_get_drvdata(dev);
10277 	u32 len = 0;
10278 	int rc;
10279 
10280 	rc = hwrm_req_init(bp, req, HWRM_TEMP_MONITOR_QUERY);
10281 	if (rc)
10282 		return rc;
10283 	resp = hwrm_req_hold(bp, req);
10284 	rc = hwrm_req_send(bp, req);
10285 	if (!rc)
10286 		len = sprintf(buf, "%u\n", resp->temp * 1000); /* display millidegree */
10287 	hwrm_req_drop(bp, req);
10288 	if (rc)
10289 		return rc;
10290 	return len;
10291 }
10292 static SENSOR_DEVICE_ATTR(temp1_input, 0444, bnxt_show_temp, NULL, 0);
10293 
10294 static struct attribute *bnxt_attrs[] = {
10295 	&sensor_dev_attr_temp1_input.dev_attr.attr,
10296 	NULL
10297 };
10298 ATTRIBUTE_GROUPS(bnxt);
10299 
10300 static void bnxt_hwmon_close(struct bnxt *bp)
10301 {
10302 	if (bp->hwmon_dev) {
10303 		hwmon_device_unregister(bp->hwmon_dev);
10304 		bp->hwmon_dev = NULL;
10305 	}
10306 }
10307 
10308 static void bnxt_hwmon_open(struct bnxt *bp)
10309 {
10310 	struct hwrm_temp_monitor_query_input *req;
10311 	struct pci_dev *pdev = bp->pdev;
10312 	int rc;
10313 
10314 	rc = hwrm_req_init(bp, req, HWRM_TEMP_MONITOR_QUERY);
10315 	if (!rc)
10316 		rc = hwrm_req_send_silent(bp, req);
10317 	if (rc == -EACCES || rc == -EOPNOTSUPP) {
10318 		bnxt_hwmon_close(bp);
10319 		return;
10320 	}
10321 
10322 	if (bp->hwmon_dev)
10323 		return;
10324 
10325 	bp->hwmon_dev = hwmon_device_register_with_groups(&pdev->dev,
10326 							  DRV_MODULE_NAME, bp,
10327 							  bnxt_groups);
10328 	if (IS_ERR(bp->hwmon_dev)) {
10329 		bp->hwmon_dev = NULL;
10330 		dev_warn(&pdev->dev, "Cannot register hwmon device\n");
10331 	}
10332 }
10333 #else
10334 static void bnxt_hwmon_close(struct bnxt *bp)
10335 {
10336 }
10337 
10338 static void bnxt_hwmon_open(struct bnxt *bp)
10339 {
10340 }
10341 #endif
10342 
10343 static bool bnxt_eee_config_ok(struct bnxt *bp)
10344 {
10345 	struct ethtool_eee *eee = &bp->eee;
10346 	struct bnxt_link_info *link_info = &bp->link_info;
10347 
10348 	if (!(bp->phy_flags & BNXT_PHY_FL_EEE_CAP))
10349 		return true;
10350 
10351 	if (eee->eee_enabled) {
10352 		u32 advertising =
10353 			_bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0);
10354 
10355 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
10356 			eee->eee_enabled = 0;
10357 			return false;
10358 		}
10359 		if (eee->advertised & ~advertising) {
10360 			eee->advertised = advertising & eee->supported;
10361 			return false;
10362 		}
10363 	}
10364 	return true;
10365 }
10366 
10367 static int bnxt_update_phy_setting(struct bnxt *bp)
10368 {
10369 	int rc;
10370 	bool update_link = false;
10371 	bool update_pause = false;
10372 	bool update_eee = false;
10373 	struct bnxt_link_info *link_info = &bp->link_info;
10374 
10375 	rc = bnxt_update_link(bp, true);
10376 	if (rc) {
10377 		netdev_err(bp->dev, "failed to update link (rc: %x)\n",
10378 			   rc);
10379 		return rc;
10380 	}
10381 	if (!BNXT_SINGLE_PF(bp))
10382 		return 0;
10383 
10384 	if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
10385 	    (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) !=
10386 	    link_info->req_flow_ctrl)
10387 		update_pause = true;
10388 	if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
10389 	    link_info->force_pause_setting != link_info->req_flow_ctrl)
10390 		update_pause = true;
10391 	if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
10392 		if (BNXT_AUTO_MODE(link_info->auto_mode))
10393 			update_link = true;
10394 		if (link_info->req_signal_mode == BNXT_SIG_MODE_NRZ &&
10395 		    link_info->req_link_speed != link_info->force_link_speed)
10396 			update_link = true;
10397 		else if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4 &&
10398 			 link_info->req_link_speed != link_info->force_pam4_link_speed)
10399 			update_link = true;
10400 		if (link_info->req_duplex != link_info->duplex_setting)
10401 			update_link = true;
10402 	} else {
10403 		if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
10404 			update_link = true;
10405 		if (link_info->advertising != link_info->auto_link_speeds ||
10406 		    link_info->advertising_pam4 != link_info->auto_pam4_link_speeds)
10407 			update_link = true;
10408 	}
10409 
10410 	/* The last close may have shutdown the link, so need to call
10411 	 * PHY_CFG to bring it back up.
10412 	 */
10413 	if (!BNXT_LINK_IS_UP(bp))
10414 		update_link = true;
10415 
10416 	if (!bnxt_eee_config_ok(bp))
10417 		update_eee = true;
10418 
10419 	if (update_link)
10420 		rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee);
10421 	else if (update_pause)
10422 		rc = bnxt_hwrm_set_pause(bp);
10423 	if (rc) {
10424 		netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
10425 			   rc);
10426 		return rc;
10427 	}
10428 
10429 	return rc;
10430 }
10431 
10432 /* Common routine to pre-map certain register block to different GRC window.
10433  * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
10434  * in PF and 3 windows in VF that can be customized to map in different
10435  * register blocks.
10436  */
10437 static void bnxt_preset_reg_win(struct bnxt *bp)
10438 {
10439 	if (BNXT_PF(bp)) {
10440 		/* CAG registers map to GRC window #4 */
10441 		writel(BNXT_CAG_REG_BASE,
10442 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
10443 	}
10444 }
10445 
10446 static int bnxt_init_dflt_ring_mode(struct bnxt *bp);
10447 
10448 static int bnxt_reinit_after_abort(struct bnxt *bp)
10449 {
10450 	int rc;
10451 
10452 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
10453 		return -EBUSY;
10454 
10455 	if (bp->dev->reg_state == NETREG_UNREGISTERED)
10456 		return -ENODEV;
10457 
10458 	rc = bnxt_fw_init_one(bp);
10459 	if (!rc) {
10460 		bnxt_clear_int_mode(bp);
10461 		rc = bnxt_init_int_mode(bp);
10462 		if (!rc) {
10463 			clear_bit(BNXT_STATE_ABORT_ERR, &bp->state);
10464 			set_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
10465 		}
10466 	}
10467 	return rc;
10468 }
10469 
10470 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
10471 {
10472 	int rc = 0;
10473 
10474 	bnxt_preset_reg_win(bp);
10475 	netif_carrier_off(bp->dev);
10476 	if (irq_re_init) {
10477 		/* Reserve rings now if none were reserved at driver probe. */
10478 		rc = bnxt_init_dflt_ring_mode(bp);
10479 		if (rc) {
10480 			netdev_err(bp->dev, "Failed to reserve default rings at open\n");
10481 			return rc;
10482 		}
10483 	}
10484 	rc = bnxt_reserve_rings(bp, irq_re_init);
10485 	if (rc)
10486 		return rc;
10487 	if ((bp->flags & BNXT_FLAG_RFS) &&
10488 	    !(bp->flags & BNXT_FLAG_USING_MSIX)) {
10489 		/* disable RFS if falling back to INTA */
10490 		bp->dev->hw_features &= ~NETIF_F_NTUPLE;
10491 		bp->flags &= ~BNXT_FLAG_RFS;
10492 	}
10493 
10494 	rc = bnxt_alloc_mem(bp, irq_re_init);
10495 	if (rc) {
10496 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
10497 		goto open_err_free_mem;
10498 	}
10499 
10500 	if (irq_re_init) {
10501 		bnxt_init_napi(bp);
10502 		rc = bnxt_request_irq(bp);
10503 		if (rc) {
10504 			netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
10505 			goto open_err_irq;
10506 		}
10507 	}
10508 
10509 	rc = bnxt_init_nic(bp, irq_re_init);
10510 	if (rc) {
10511 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
10512 		goto open_err_irq;
10513 	}
10514 
10515 	bnxt_enable_napi(bp);
10516 	bnxt_debug_dev_init(bp);
10517 
10518 	if (link_re_init) {
10519 		mutex_lock(&bp->link_lock);
10520 		rc = bnxt_update_phy_setting(bp);
10521 		mutex_unlock(&bp->link_lock);
10522 		if (rc) {
10523 			netdev_warn(bp->dev, "failed to update phy settings\n");
10524 			if (BNXT_SINGLE_PF(bp)) {
10525 				bp->link_info.phy_retry = true;
10526 				bp->link_info.phy_retry_expires =
10527 					jiffies + 5 * HZ;
10528 			}
10529 		}
10530 	}
10531 
10532 	if (irq_re_init)
10533 		udp_tunnel_nic_reset_ntf(bp->dev);
10534 
10535 	if (bp->tx_nr_rings_xdp < num_possible_cpus()) {
10536 		if (!static_key_enabled(&bnxt_xdp_locking_key))
10537 			static_branch_enable(&bnxt_xdp_locking_key);
10538 	} else if (static_key_enabled(&bnxt_xdp_locking_key)) {
10539 		static_branch_disable(&bnxt_xdp_locking_key);
10540 	}
10541 	set_bit(BNXT_STATE_OPEN, &bp->state);
10542 	bnxt_enable_int(bp);
10543 	/* Enable TX queues */
10544 	bnxt_tx_enable(bp);
10545 	mod_timer(&bp->timer, jiffies + bp->current_interval);
10546 	/* Poll link status and check for SFP+ module status */
10547 	mutex_lock(&bp->link_lock);
10548 	bnxt_get_port_module_status(bp);
10549 	mutex_unlock(&bp->link_lock);
10550 
10551 	/* VF-reps may need to be re-opened after the PF is re-opened */
10552 	if (BNXT_PF(bp))
10553 		bnxt_vf_reps_open(bp);
10554 	bnxt_ptp_init_rtc(bp, true);
10555 	bnxt_ptp_cfg_tstamp_filters(bp);
10556 	return 0;
10557 
10558 open_err_irq:
10559 	bnxt_del_napi(bp);
10560 
10561 open_err_free_mem:
10562 	bnxt_free_skbs(bp);
10563 	bnxt_free_irq(bp);
10564 	bnxt_free_mem(bp, true);
10565 	return rc;
10566 }
10567 
10568 /* rtnl_lock held */
10569 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
10570 {
10571 	int rc = 0;
10572 
10573 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state))
10574 		rc = -EIO;
10575 	if (!rc)
10576 		rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
10577 	if (rc) {
10578 		netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
10579 		dev_close(bp->dev);
10580 	}
10581 	return rc;
10582 }
10583 
10584 /* rtnl_lock held, open the NIC half way by allocating all resources, but
10585  * NAPI, IRQ, and TX are not enabled.  This is mainly used for offline
10586  * self tests.
10587  */
10588 int bnxt_half_open_nic(struct bnxt *bp)
10589 {
10590 	int rc = 0;
10591 
10592 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
10593 		netdev_err(bp->dev, "A previous firmware reset has not completed, aborting half open\n");
10594 		rc = -ENODEV;
10595 		goto half_open_err;
10596 	}
10597 
10598 	rc = bnxt_alloc_mem(bp, true);
10599 	if (rc) {
10600 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
10601 		goto half_open_err;
10602 	}
10603 	set_bit(BNXT_STATE_HALF_OPEN, &bp->state);
10604 	rc = bnxt_init_nic(bp, true);
10605 	if (rc) {
10606 		clear_bit(BNXT_STATE_HALF_OPEN, &bp->state);
10607 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
10608 		goto half_open_err;
10609 	}
10610 	return 0;
10611 
10612 half_open_err:
10613 	bnxt_free_skbs(bp);
10614 	bnxt_free_mem(bp, true);
10615 	dev_close(bp->dev);
10616 	return rc;
10617 }
10618 
10619 /* rtnl_lock held, this call can only be made after a previous successful
10620  * call to bnxt_half_open_nic().
10621  */
10622 void bnxt_half_close_nic(struct bnxt *bp)
10623 {
10624 	bnxt_hwrm_resource_free(bp, false, true);
10625 	bnxt_free_skbs(bp);
10626 	bnxt_free_mem(bp, true);
10627 	clear_bit(BNXT_STATE_HALF_OPEN, &bp->state);
10628 }
10629 
10630 void bnxt_reenable_sriov(struct bnxt *bp)
10631 {
10632 	if (BNXT_PF(bp)) {
10633 		struct bnxt_pf_info *pf = &bp->pf;
10634 		int n = pf->active_vfs;
10635 
10636 		if (n)
10637 			bnxt_cfg_hw_sriov(bp, &n, true);
10638 	}
10639 }
10640 
10641 static int bnxt_open(struct net_device *dev)
10642 {
10643 	struct bnxt *bp = netdev_priv(dev);
10644 	int rc;
10645 
10646 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
10647 		rc = bnxt_reinit_after_abort(bp);
10648 		if (rc) {
10649 			if (rc == -EBUSY)
10650 				netdev_err(bp->dev, "A previous firmware reset has not completed, aborting\n");
10651 			else
10652 				netdev_err(bp->dev, "Failed to reinitialize after aborted firmware reset\n");
10653 			return -ENODEV;
10654 		}
10655 	}
10656 
10657 	rc = bnxt_hwrm_if_change(bp, true);
10658 	if (rc)
10659 		return rc;
10660 
10661 	rc = __bnxt_open_nic(bp, true, true);
10662 	if (rc) {
10663 		bnxt_hwrm_if_change(bp, false);
10664 	} else {
10665 		if (test_and_clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) {
10666 			if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
10667 				bnxt_ulp_start(bp, 0);
10668 				bnxt_reenable_sriov(bp);
10669 			}
10670 		}
10671 		bnxt_hwmon_open(bp);
10672 	}
10673 
10674 	return rc;
10675 }
10676 
10677 static bool bnxt_drv_busy(struct bnxt *bp)
10678 {
10679 	return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) ||
10680 		test_bit(BNXT_STATE_READ_STATS, &bp->state));
10681 }
10682 
10683 static void bnxt_get_ring_stats(struct bnxt *bp,
10684 				struct rtnl_link_stats64 *stats);
10685 
10686 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init,
10687 			     bool link_re_init)
10688 {
10689 	/* Close the VF-reps before closing PF */
10690 	if (BNXT_PF(bp))
10691 		bnxt_vf_reps_close(bp);
10692 
10693 	/* Change device state to avoid TX queue wake up's */
10694 	bnxt_tx_disable(bp);
10695 
10696 	clear_bit(BNXT_STATE_OPEN, &bp->state);
10697 	smp_mb__after_atomic();
10698 	while (bnxt_drv_busy(bp))
10699 		msleep(20);
10700 
10701 	/* Flush rings and disable interrupts */
10702 	bnxt_shutdown_nic(bp, irq_re_init);
10703 
10704 	/* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
10705 
10706 	bnxt_debug_dev_exit(bp);
10707 	bnxt_disable_napi(bp);
10708 	del_timer_sync(&bp->timer);
10709 	bnxt_free_skbs(bp);
10710 
10711 	/* Save ring stats before shutdown */
10712 	if (bp->bnapi && irq_re_init)
10713 		bnxt_get_ring_stats(bp, &bp->net_stats_prev);
10714 	if (irq_re_init) {
10715 		bnxt_free_irq(bp);
10716 		bnxt_del_napi(bp);
10717 	}
10718 	bnxt_free_mem(bp, irq_re_init);
10719 }
10720 
10721 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
10722 {
10723 	int rc = 0;
10724 
10725 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
10726 		/* If we get here, it means firmware reset is in progress
10727 		 * while we are trying to close.  We can safely proceed with
10728 		 * the close because we are holding rtnl_lock().  Some firmware
10729 		 * messages may fail as we proceed to close.  We set the
10730 		 * ABORT_ERR flag here so that the FW reset thread will later
10731 		 * abort when it gets the rtnl_lock() and sees the flag.
10732 		 */
10733 		netdev_warn(bp->dev, "FW reset in progress during close, FW reset will be aborted\n");
10734 		set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
10735 	}
10736 
10737 #ifdef CONFIG_BNXT_SRIOV
10738 	if (bp->sriov_cfg) {
10739 		rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
10740 						      !bp->sriov_cfg,
10741 						      BNXT_SRIOV_CFG_WAIT_TMO);
10742 		if (rc)
10743 			netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
10744 	}
10745 #endif
10746 	__bnxt_close_nic(bp, irq_re_init, link_re_init);
10747 	return rc;
10748 }
10749 
10750 static int bnxt_close(struct net_device *dev)
10751 {
10752 	struct bnxt *bp = netdev_priv(dev);
10753 
10754 	bnxt_hwmon_close(bp);
10755 	bnxt_close_nic(bp, true, true);
10756 	bnxt_hwrm_shutdown_link(bp);
10757 	bnxt_hwrm_if_change(bp, false);
10758 	return 0;
10759 }
10760 
10761 static int bnxt_hwrm_port_phy_read(struct bnxt *bp, u16 phy_addr, u16 reg,
10762 				   u16 *val)
10763 {
10764 	struct hwrm_port_phy_mdio_read_output *resp;
10765 	struct hwrm_port_phy_mdio_read_input *req;
10766 	int rc;
10767 
10768 	if (bp->hwrm_spec_code < 0x10a00)
10769 		return -EOPNOTSUPP;
10770 
10771 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_READ);
10772 	if (rc)
10773 		return rc;
10774 
10775 	req->port_id = cpu_to_le16(bp->pf.port_id);
10776 	req->phy_addr = phy_addr;
10777 	req->reg_addr = cpu_to_le16(reg & 0x1f);
10778 	if (mdio_phy_id_is_c45(phy_addr)) {
10779 		req->cl45_mdio = 1;
10780 		req->phy_addr = mdio_phy_id_prtad(phy_addr);
10781 		req->dev_addr = mdio_phy_id_devad(phy_addr);
10782 		req->reg_addr = cpu_to_le16(reg);
10783 	}
10784 
10785 	resp = hwrm_req_hold(bp, req);
10786 	rc = hwrm_req_send(bp, req);
10787 	if (!rc)
10788 		*val = le16_to_cpu(resp->reg_data);
10789 	hwrm_req_drop(bp, req);
10790 	return rc;
10791 }
10792 
10793 static int bnxt_hwrm_port_phy_write(struct bnxt *bp, u16 phy_addr, u16 reg,
10794 				    u16 val)
10795 {
10796 	struct hwrm_port_phy_mdio_write_input *req;
10797 	int rc;
10798 
10799 	if (bp->hwrm_spec_code < 0x10a00)
10800 		return -EOPNOTSUPP;
10801 
10802 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_WRITE);
10803 	if (rc)
10804 		return rc;
10805 
10806 	req->port_id = cpu_to_le16(bp->pf.port_id);
10807 	req->phy_addr = phy_addr;
10808 	req->reg_addr = cpu_to_le16(reg & 0x1f);
10809 	if (mdio_phy_id_is_c45(phy_addr)) {
10810 		req->cl45_mdio = 1;
10811 		req->phy_addr = mdio_phy_id_prtad(phy_addr);
10812 		req->dev_addr = mdio_phy_id_devad(phy_addr);
10813 		req->reg_addr = cpu_to_le16(reg);
10814 	}
10815 	req->reg_data = cpu_to_le16(val);
10816 
10817 	return hwrm_req_send(bp, req);
10818 }
10819 
10820 /* rtnl_lock held */
10821 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
10822 {
10823 	struct mii_ioctl_data *mdio = if_mii(ifr);
10824 	struct bnxt *bp = netdev_priv(dev);
10825 	int rc;
10826 
10827 	switch (cmd) {
10828 	case SIOCGMIIPHY:
10829 		mdio->phy_id = bp->link_info.phy_addr;
10830 
10831 		fallthrough;
10832 	case SIOCGMIIREG: {
10833 		u16 mii_regval = 0;
10834 
10835 		if (!netif_running(dev))
10836 			return -EAGAIN;
10837 
10838 		rc = bnxt_hwrm_port_phy_read(bp, mdio->phy_id, mdio->reg_num,
10839 					     &mii_regval);
10840 		mdio->val_out = mii_regval;
10841 		return rc;
10842 	}
10843 
10844 	case SIOCSMIIREG:
10845 		if (!netif_running(dev))
10846 			return -EAGAIN;
10847 
10848 		return bnxt_hwrm_port_phy_write(bp, mdio->phy_id, mdio->reg_num,
10849 						mdio->val_in);
10850 
10851 	case SIOCSHWTSTAMP:
10852 		return bnxt_hwtstamp_set(dev, ifr);
10853 
10854 	case SIOCGHWTSTAMP:
10855 		return bnxt_hwtstamp_get(dev, ifr);
10856 
10857 	default:
10858 		/* do nothing */
10859 		break;
10860 	}
10861 	return -EOPNOTSUPP;
10862 }
10863 
10864 static void bnxt_get_ring_stats(struct bnxt *bp,
10865 				struct rtnl_link_stats64 *stats)
10866 {
10867 	int i;
10868 
10869 	for (i = 0; i < bp->cp_nr_rings; i++) {
10870 		struct bnxt_napi *bnapi = bp->bnapi[i];
10871 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
10872 		u64 *sw = cpr->stats.sw_stats;
10873 
10874 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts);
10875 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts);
10876 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts);
10877 
10878 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts);
10879 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts);
10880 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts);
10881 
10882 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes);
10883 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes);
10884 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes);
10885 
10886 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes);
10887 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes);
10888 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes);
10889 
10890 		stats->rx_missed_errors +=
10891 			BNXT_GET_RING_STATS64(sw, rx_discard_pkts);
10892 
10893 		stats->multicast += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts);
10894 
10895 		stats->tx_dropped += BNXT_GET_RING_STATS64(sw, tx_error_pkts);
10896 
10897 		stats->rx_dropped +=
10898 			cpr->sw_stats.rx.rx_netpoll_discards +
10899 			cpr->sw_stats.rx.rx_oom_discards;
10900 	}
10901 }
10902 
10903 static void bnxt_add_prev_stats(struct bnxt *bp,
10904 				struct rtnl_link_stats64 *stats)
10905 {
10906 	struct rtnl_link_stats64 *prev_stats = &bp->net_stats_prev;
10907 
10908 	stats->rx_packets += prev_stats->rx_packets;
10909 	stats->tx_packets += prev_stats->tx_packets;
10910 	stats->rx_bytes += prev_stats->rx_bytes;
10911 	stats->tx_bytes += prev_stats->tx_bytes;
10912 	stats->rx_missed_errors += prev_stats->rx_missed_errors;
10913 	stats->multicast += prev_stats->multicast;
10914 	stats->rx_dropped += prev_stats->rx_dropped;
10915 	stats->tx_dropped += prev_stats->tx_dropped;
10916 }
10917 
10918 static void
10919 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
10920 {
10921 	struct bnxt *bp = netdev_priv(dev);
10922 
10923 	set_bit(BNXT_STATE_READ_STATS, &bp->state);
10924 	/* Make sure bnxt_close_nic() sees that we are reading stats before
10925 	 * we check the BNXT_STATE_OPEN flag.
10926 	 */
10927 	smp_mb__after_atomic();
10928 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
10929 		clear_bit(BNXT_STATE_READ_STATS, &bp->state);
10930 		*stats = bp->net_stats_prev;
10931 		return;
10932 	}
10933 
10934 	bnxt_get_ring_stats(bp, stats);
10935 	bnxt_add_prev_stats(bp, stats);
10936 
10937 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
10938 		u64 *rx = bp->port_stats.sw_stats;
10939 		u64 *tx = bp->port_stats.sw_stats +
10940 			  BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
10941 
10942 		stats->rx_crc_errors =
10943 			BNXT_GET_RX_PORT_STATS64(rx, rx_fcs_err_frames);
10944 		stats->rx_frame_errors =
10945 			BNXT_GET_RX_PORT_STATS64(rx, rx_align_err_frames);
10946 		stats->rx_length_errors =
10947 			BNXT_GET_RX_PORT_STATS64(rx, rx_undrsz_frames) +
10948 			BNXT_GET_RX_PORT_STATS64(rx, rx_ovrsz_frames) +
10949 			BNXT_GET_RX_PORT_STATS64(rx, rx_runt_frames);
10950 		stats->rx_errors =
10951 			BNXT_GET_RX_PORT_STATS64(rx, rx_false_carrier_frames) +
10952 			BNXT_GET_RX_PORT_STATS64(rx, rx_jbr_frames);
10953 		stats->collisions =
10954 			BNXT_GET_TX_PORT_STATS64(tx, tx_total_collisions);
10955 		stats->tx_fifo_errors =
10956 			BNXT_GET_TX_PORT_STATS64(tx, tx_fifo_underruns);
10957 		stats->tx_errors = BNXT_GET_TX_PORT_STATS64(tx, tx_err);
10958 	}
10959 	clear_bit(BNXT_STATE_READ_STATS, &bp->state);
10960 }
10961 
10962 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
10963 {
10964 	struct net_device *dev = bp->dev;
10965 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
10966 	struct netdev_hw_addr *ha;
10967 	u8 *haddr;
10968 	int mc_count = 0;
10969 	bool update = false;
10970 	int off = 0;
10971 
10972 	netdev_for_each_mc_addr(ha, dev) {
10973 		if (mc_count >= BNXT_MAX_MC_ADDRS) {
10974 			*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
10975 			vnic->mc_list_count = 0;
10976 			return false;
10977 		}
10978 		haddr = ha->addr;
10979 		if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
10980 			memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
10981 			update = true;
10982 		}
10983 		off += ETH_ALEN;
10984 		mc_count++;
10985 	}
10986 	if (mc_count)
10987 		*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
10988 
10989 	if (mc_count != vnic->mc_list_count) {
10990 		vnic->mc_list_count = mc_count;
10991 		update = true;
10992 	}
10993 	return update;
10994 }
10995 
10996 static bool bnxt_uc_list_updated(struct bnxt *bp)
10997 {
10998 	struct net_device *dev = bp->dev;
10999 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
11000 	struct netdev_hw_addr *ha;
11001 	int off = 0;
11002 
11003 	if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
11004 		return true;
11005 
11006 	netdev_for_each_uc_addr(ha, dev) {
11007 		if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
11008 			return true;
11009 
11010 		off += ETH_ALEN;
11011 	}
11012 	return false;
11013 }
11014 
11015 static void bnxt_set_rx_mode(struct net_device *dev)
11016 {
11017 	struct bnxt *bp = netdev_priv(dev);
11018 	struct bnxt_vnic_info *vnic;
11019 	bool mc_update = false;
11020 	bool uc_update;
11021 	u32 mask;
11022 
11023 	if (!test_bit(BNXT_STATE_OPEN, &bp->state))
11024 		return;
11025 
11026 	vnic = &bp->vnic_info[0];
11027 	mask = vnic->rx_mask;
11028 	mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
11029 		  CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
11030 		  CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST |
11031 		  CFA_L2_SET_RX_MASK_REQ_MASK_BCAST);
11032 
11033 	if (dev->flags & IFF_PROMISC)
11034 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
11035 
11036 	uc_update = bnxt_uc_list_updated(bp);
11037 
11038 	if (dev->flags & IFF_BROADCAST)
11039 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
11040 	if (dev->flags & IFF_ALLMULTI) {
11041 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
11042 		vnic->mc_list_count = 0;
11043 	} else if (dev->flags & IFF_MULTICAST) {
11044 		mc_update = bnxt_mc_list_updated(bp, &mask);
11045 	}
11046 
11047 	if (mask != vnic->rx_mask || uc_update || mc_update) {
11048 		vnic->rx_mask = mask;
11049 
11050 		set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
11051 		bnxt_queue_sp_work(bp);
11052 	}
11053 }
11054 
11055 static int bnxt_cfg_rx_mode(struct bnxt *bp)
11056 {
11057 	struct net_device *dev = bp->dev;
11058 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
11059 	struct hwrm_cfa_l2_filter_free_input *req;
11060 	struct netdev_hw_addr *ha;
11061 	int i, off = 0, rc;
11062 	bool uc_update;
11063 
11064 	netif_addr_lock_bh(dev);
11065 	uc_update = bnxt_uc_list_updated(bp);
11066 	netif_addr_unlock_bh(dev);
11067 
11068 	if (!uc_update)
11069 		goto skip_uc;
11070 
11071 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE);
11072 	if (rc)
11073 		return rc;
11074 	hwrm_req_hold(bp, req);
11075 	for (i = 1; i < vnic->uc_filter_count; i++) {
11076 		req->l2_filter_id = vnic->fw_l2_filter_id[i];
11077 
11078 		rc = hwrm_req_send(bp, req);
11079 	}
11080 	hwrm_req_drop(bp, req);
11081 
11082 	vnic->uc_filter_count = 1;
11083 
11084 	netif_addr_lock_bh(dev);
11085 	if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
11086 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
11087 	} else {
11088 		netdev_for_each_uc_addr(ha, dev) {
11089 			memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
11090 			off += ETH_ALEN;
11091 			vnic->uc_filter_count++;
11092 		}
11093 	}
11094 	netif_addr_unlock_bh(dev);
11095 
11096 	for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
11097 		rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
11098 		if (rc) {
11099 			if (BNXT_VF(bp) && rc == -ENODEV) {
11100 				if (!test_and_set_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state))
11101 					netdev_warn(bp->dev, "Cannot configure L2 filters while PF is unavailable, will retry\n");
11102 				else
11103 					netdev_dbg(bp->dev, "PF still unavailable while configuring L2 filters.\n");
11104 				rc = 0;
11105 			} else {
11106 				netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
11107 			}
11108 			vnic->uc_filter_count = i;
11109 			return rc;
11110 		}
11111 	}
11112 	if (test_and_clear_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state))
11113 		netdev_notice(bp->dev, "Retry of L2 filter configuration successful.\n");
11114 
11115 skip_uc:
11116 	if ((vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS) &&
11117 	    !bnxt_promisc_ok(bp))
11118 		vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
11119 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
11120 	if (rc && (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST)) {
11121 		netdev_info(bp->dev, "Failed setting MC filters rc: %d, turning on ALL_MCAST mode\n",
11122 			    rc);
11123 		vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
11124 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
11125 		vnic->mc_list_count = 0;
11126 		rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
11127 	}
11128 	if (rc)
11129 		netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %d\n",
11130 			   rc);
11131 
11132 	return rc;
11133 }
11134 
11135 static bool bnxt_can_reserve_rings(struct bnxt *bp)
11136 {
11137 #ifdef CONFIG_BNXT_SRIOV
11138 	if (BNXT_NEW_RM(bp) && BNXT_VF(bp)) {
11139 		struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
11140 
11141 		/* No minimum rings were provisioned by the PF.  Don't
11142 		 * reserve rings by default when device is down.
11143 		 */
11144 		if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings)
11145 			return true;
11146 
11147 		if (!netif_running(bp->dev))
11148 			return false;
11149 	}
11150 #endif
11151 	return true;
11152 }
11153 
11154 /* If the chip and firmware supports RFS */
11155 static bool bnxt_rfs_supported(struct bnxt *bp)
11156 {
11157 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
11158 		if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2)
11159 			return true;
11160 		return false;
11161 	}
11162 	/* 212 firmware is broken for aRFS */
11163 	if (BNXT_FW_MAJ(bp) == 212)
11164 		return false;
11165 	if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
11166 		return true;
11167 	if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
11168 		return true;
11169 	return false;
11170 }
11171 
11172 /* If runtime conditions support RFS */
11173 static bool bnxt_rfs_capable(struct bnxt *bp)
11174 {
11175 #ifdef CONFIG_RFS_ACCEL
11176 	int vnics, max_vnics, max_rss_ctxs;
11177 
11178 	if (bp->flags & BNXT_FLAG_CHIP_P5)
11179 		return bnxt_rfs_supported(bp);
11180 	if (!(bp->flags & BNXT_FLAG_MSIX_CAP) || !bnxt_can_reserve_rings(bp) || !bp->rx_nr_rings)
11181 		return false;
11182 
11183 	vnics = 1 + bp->rx_nr_rings;
11184 	max_vnics = bnxt_get_max_func_vnics(bp);
11185 	max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp);
11186 
11187 	/* RSS contexts not a limiting factor */
11188 	if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
11189 		max_rss_ctxs = max_vnics;
11190 	if (vnics > max_vnics || vnics > max_rss_ctxs) {
11191 		if (bp->rx_nr_rings > 1)
11192 			netdev_warn(bp->dev,
11193 				    "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n",
11194 				    min(max_rss_ctxs - 1, max_vnics - 1));
11195 		return false;
11196 	}
11197 
11198 	if (!BNXT_NEW_RM(bp))
11199 		return true;
11200 
11201 	if (vnics == bp->hw_resc.resv_vnics)
11202 		return true;
11203 
11204 	bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, vnics);
11205 	if (vnics <= bp->hw_resc.resv_vnics)
11206 		return true;
11207 
11208 	netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n");
11209 	bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, 1);
11210 	return false;
11211 #else
11212 	return false;
11213 #endif
11214 }
11215 
11216 static netdev_features_t bnxt_fix_features(struct net_device *dev,
11217 					   netdev_features_t features)
11218 {
11219 	struct bnxt *bp = netdev_priv(dev);
11220 	netdev_features_t vlan_features;
11221 
11222 	if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp))
11223 		features &= ~NETIF_F_NTUPLE;
11224 
11225 	if ((bp->flags & BNXT_FLAG_NO_AGG_RINGS) || bp->xdp_prog)
11226 		features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
11227 
11228 	if (!(features & NETIF_F_GRO))
11229 		features &= ~NETIF_F_GRO_HW;
11230 
11231 	if (features & NETIF_F_GRO_HW)
11232 		features &= ~NETIF_F_LRO;
11233 
11234 	/* Both CTAG and STAG VLAN accelaration on the RX side have to be
11235 	 * turned on or off together.
11236 	 */
11237 	vlan_features = features & BNXT_HW_FEATURE_VLAN_ALL_RX;
11238 	if (vlan_features != BNXT_HW_FEATURE_VLAN_ALL_RX) {
11239 		if (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)
11240 			features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX;
11241 		else if (vlan_features)
11242 			features |= BNXT_HW_FEATURE_VLAN_ALL_RX;
11243 	}
11244 #ifdef CONFIG_BNXT_SRIOV
11245 	if (BNXT_VF(bp) && bp->vf.vlan)
11246 		features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX;
11247 #endif
11248 	return features;
11249 }
11250 
11251 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
11252 {
11253 	struct bnxt *bp = netdev_priv(dev);
11254 	u32 flags = bp->flags;
11255 	u32 changes;
11256 	int rc = 0;
11257 	bool re_init = false;
11258 	bool update_tpa = false;
11259 
11260 	flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
11261 	if (features & NETIF_F_GRO_HW)
11262 		flags |= BNXT_FLAG_GRO;
11263 	else if (features & NETIF_F_LRO)
11264 		flags |= BNXT_FLAG_LRO;
11265 
11266 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
11267 		flags &= ~BNXT_FLAG_TPA;
11268 
11269 	if (features & BNXT_HW_FEATURE_VLAN_ALL_RX)
11270 		flags |= BNXT_FLAG_STRIP_VLAN;
11271 
11272 	if (features & NETIF_F_NTUPLE)
11273 		flags |= BNXT_FLAG_RFS;
11274 
11275 	changes = flags ^ bp->flags;
11276 	if (changes & BNXT_FLAG_TPA) {
11277 		update_tpa = true;
11278 		if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
11279 		    (flags & BNXT_FLAG_TPA) == 0 ||
11280 		    (bp->flags & BNXT_FLAG_CHIP_P5))
11281 			re_init = true;
11282 	}
11283 
11284 	if (changes & ~BNXT_FLAG_TPA)
11285 		re_init = true;
11286 
11287 	if (flags != bp->flags) {
11288 		u32 old_flags = bp->flags;
11289 
11290 		if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
11291 			bp->flags = flags;
11292 			if (update_tpa)
11293 				bnxt_set_ring_params(bp);
11294 			return rc;
11295 		}
11296 
11297 		if (re_init) {
11298 			bnxt_close_nic(bp, false, false);
11299 			bp->flags = flags;
11300 			if (update_tpa)
11301 				bnxt_set_ring_params(bp);
11302 
11303 			return bnxt_open_nic(bp, false, false);
11304 		}
11305 		if (update_tpa) {
11306 			bp->flags = flags;
11307 			rc = bnxt_set_tpa(bp,
11308 					  (flags & BNXT_FLAG_TPA) ?
11309 					  true : false);
11310 			if (rc)
11311 				bp->flags = old_flags;
11312 		}
11313 	}
11314 	return rc;
11315 }
11316 
11317 static bool bnxt_exthdr_check(struct bnxt *bp, struct sk_buff *skb, int nw_off,
11318 			      u8 **nextp)
11319 {
11320 	struct ipv6hdr *ip6h = (struct ipv6hdr *)(skb->data + nw_off);
11321 	struct hop_jumbo_hdr *jhdr;
11322 	int hdr_count = 0;
11323 	u8 *nexthdr;
11324 	int start;
11325 
11326 	/* Check that there are at most 2 IPv6 extension headers, no
11327 	 * fragment header, and each is <= 64 bytes.
11328 	 */
11329 	start = nw_off + sizeof(*ip6h);
11330 	nexthdr = &ip6h->nexthdr;
11331 	while (ipv6_ext_hdr(*nexthdr)) {
11332 		struct ipv6_opt_hdr *hp;
11333 		int hdrlen;
11334 
11335 		if (hdr_count >= 3 || *nexthdr == NEXTHDR_NONE ||
11336 		    *nexthdr == NEXTHDR_FRAGMENT)
11337 			return false;
11338 		hp = __skb_header_pointer(NULL, start, sizeof(*hp), skb->data,
11339 					  skb_headlen(skb), NULL);
11340 		if (!hp)
11341 			return false;
11342 		if (*nexthdr == NEXTHDR_AUTH)
11343 			hdrlen = ipv6_authlen(hp);
11344 		else
11345 			hdrlen = ipv6_optlen(hp);
11346 
11347 		if (hdrlen > 64)
11348 			return false;
11349 
11350 		/* The ext header may be a hop-by-hop header inserted for
11351 		 * big TCP purposes. This will be removed before sending
11352 		 * from NIC, so do not count it.
11353 		 */
11354 		if (*nexthdr == NEXTHDR_HOP) {
11355 			if (likely(skb->len <= GRO_LEGACY_MAX_SIZE))
11356 				goto increment_hdr;
11357 
11358 			jhdr = (struct hop_jumbo_hdr *)hp;
11359 			if (jhdr->tlv_type != IPV6_TLV_JUMBO || jhdr->hdrlen != 0 ||
11360 			    jhdr->nexthdr != IPPROTO_TCP)
11361 				goto increment_hdr;
11362 
11363 			goto next_hdr;
11364 		}
11365 increment_hdr:
11366 		hdr_count++;
11367 next_hdr:
11368 		nexthdr = &hp->nexthdr;
11369 		start += hdrlen;
11370 	}
11371 	if (nextp) {
11372 		/* Caller will check inner protocol */
11373 		if (skb->encapsulation) {
11374 			*nextp = nexthdr;
11375 			return true;
11376 		}
11377 		*nextp = NULL;
11378 	}
11379 	/* Only support TCP/UDP for non-tunneled ipv6 and inner ipv6 */
11380 	return *nexthdr == IPPROTO_TCP || *nexthdr == IPPROTO_UDP;
11381 }
11382 
11383 /* For UDP, we can only handle 1 Vxlan port and 1 Geneve port. */
11384 static bool bnxt_udp_tunl_check(struct bnxt *bp, struct sk_buff *skb)
11385 {
11386 	struct udphdr *uh = udp_hdr(skb);
11387 	__be16 udp_port = uh->dest;
11388 
11389 	if (udp_port != bp->vxlan_port && udp_port != bp->nge_port)
11390 		return false;
11391 	if (skb->inner_protocol_type == ENCAP_TYPE_ETHER) {
11392 		struct ethhdr *eh = inner_eth_hdr(skb);
11393 
11394 		switch (eh->h_proto) {
11395 		case htons(ETH_P_IP):
11396 			return true;
11397 		case htons(ETH_P_IPV6):
11398 			return bnxt_exthdr_check(bp, skb,
11399 						 skb_inner_network_offset(skb),
11400 						 NULL);
11401 		}
11402 	}
11403 	return false;
11404 }
11405 
11406 static bool bnxt_tunl_check(struct bnxt *bp, struct sk_buff *skb, u8 l4_proto)
11407 {
11408 	switch (l4_proto) {
11409 	case IPPROTO_UDP:
11410 		return bnxt_udp_tunl_check(bp, skb);
11411 	case IPPROTO_IPIP:
11412 		return true;
11413 	case IPPROTO_GRE: {
11414 		switch (skb->inner_protocol) {
11415 		default:
11416 			return false;
11417 		case htons(ETH_P_IP):
11418 			return true;
11419 		case htons(ETH_P_IPV6):
11420 			fallthrough;
11421 		}
11422 	}
11423 	case IPPROTO_IPV6:
11424 		/* Check ext headers of inner ipv6 */
11425 		return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb),
11426 					 NULL);
11427 	}
11428 	return false;
11429 }
11430 
11431 static netdev_features_t bnxt_features_check(struct sk_buff *skb,
11432 					     struct net_device *dev,
11433 					     netdev_features_t features)
11434 {
11435 	struct bnxt *bp = netdev_priv(dev);
11436 	u8 *l4_proto;
11437 
11438 	features = vlan_features_check(skb, features);
11439 	switch (vlan_get_protocol(skb)) {
11440 	case htons(ETH_P_IP):
11441 		if (!skb->encapsulation)
11442 			return features;
11443 		l4_proto = &ip_hdr(skb)->protocol;
11444 		if (bnxt_tunl_check(bp, skb, *l4_proto))
11445 			return features;
11446 		break;
11447 	case htons(ETH_P_IPV6):
11448 		if (!bnxt_exthdr_check(bp, skb, skb_network_offset(skb),
11449 				       &l4_proto))
11450 			break;
11451 		if (!l4_proto || bnxt_tunl_check(bp, skb, *l4_proto))
11452 			return features;
11453 		break;
11454 	}
11455 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
11456 }
11457 
11458 int bnxt_dbg_hwrm_rd_reg(struct bnxt *bp, u32 reg_off, u16 num_words,
11459 			 u32 *reg_buf)
11460 {
11461 	struct hwrm_dbg_read_direct_output *resp;
11462 	struct hwrm_dbg_read_direct_input *req;
11463 	__le32 *dbg_reg_buf;
11464 	dma_addr_t mapping;
11465 	int rc, i;
11466 
11467 	rc = hwrm_req_init(bp, req, HWRM_DBG_READ_DIRECT);
11468 	if (rc)
11469 		return rc;
11470 
11471 	dbg_reg_buf = hwrm_req_dma_slice(bp, req, num_words * 4,
11472 					 &mapping);
11473 	if (!dbg_reg_buf) {
11474 		rc = -ENOMEM;
11475 		goto dbg_rd_reg_exit;
11476 	}
11477 
11478 	req->host_dest_addr = cpu_to_le64(mapping);
11479 
11480 	resp = hwrm_req_hold(bp, req);
11481 	req->read_addr = cpu_to_le32(reg_off + CHIMP_REG_VIEW_ADDR);
11482 	req->read_len32 = cpu_to_le32(num_words);
11483 
11484 	rc = hwrm_req_send(bp, req);
11485 	if (rc || resp->error_code) {
11486 		rc = -EIO;
11487 		goto dbg_rd_reg_exit;
11488 	}
11489 	for (i = 0; i < num_words; i++)
11490 		reg_buf[i] = le32_to_cpu(dbg_reg_buf[i]);
11491 
11492 dbg_rd_reg_exit:
11493 	hwrm_req_drop(bp, req);
11494 	return rc;
11495 }
11496 
11497 static int bnxt_dbg_hwrm_ring_info_get(struct bnxt *bp, u8 ring_type,
11498 				       u32 ring_id, u32 *prod, u32 *cons)
11499 {
11500 	struct hwrm_dbg_ring_info_get_output *resp;
11501 	struct hwrm_dbg_ring_info_get_input *req;
11502 	int rc;
11503 
11504 	rc = hwrm_req_init(bp, req, HWRM_DBG_RING_INFO_GET);
11505 	if (rc)
11506 		return rc;
11507 
11508 	req->ring_type = ring_type;
11509 	req->fw_ring_id = cpu_to_le32(ring_id);
11510 	resp = hwrm_req_hold(bp, req);
11511 	rc = hwrm_req_send(bp, req);
11512 	if (!rc) {
11513 		*prod = le32_to_cpu(resp->producer_index);
11514 		*cons = le32_to_cpu(resp->consumer_index);
11515 	}
11516 	hwrm_req_drop(bp, req);
11517 	return rc;
11518 }
11519 
11520 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
11521 {
11522 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
11523 	int i = bnapi->index;
11524 
11525 	if (!txr)
11526 		return;
11527 
11528 	netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
11529 		    i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
11530 		    txr->tx_cons);
11531 }
11532 
11533 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
11534 {
11535 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
11536 	int i = bnapi->index;
11537 
11538 	if (!rxr)
11539 		return;
11540 
11541 	netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
11542 		    i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
11543 		    rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
11544 		    rxr->rx_sw_agg_prod);
11545 }
11546 
11547 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
11548 {
11549 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
11550 	int i = bnapi->index;
11551 
11552 	netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
11553 		    i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
11554 }
11555 
11556 static void bnxt_dbg_dump_states(struct bnxt *bp)
11557 {
11558 	int i;
11559 	struct bnxt_napi *bnapi;
11560 
11561 	for (i = 0; i < bp->cp_nr_rings; i++) {
11562 		bnapi = bp->bnapi[i];
11563 		if (netif_msg_drv(bp)) {
11564 			bnxt_dump_tx_sw_state(bnapi);
11565 			bnxt_dump_rx_sw_state(bnapi);
11566 			bnxt_dump_cp_sw_state(bnapi);
11567 		}
11568 	}
11569 }
11570 
11571 static int bnxt_hwrm_rx_ring_reset(struct bnxt *bp, int ring_nr)
11572 {
11573 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
11574 	struct hwrm_ring_reset_input *req;
11575 	struct bnxt_napi *bnapi = rxr->bnapi;
11576 	struct bnxt_cp_ring_info *cpr;
11577 	u16 cp_ring_id;
11578 	int rc;
11579 
11580 	rc = hwrm_req_init(bp, req, HWRM_RING_RESET);
11581 	if (rc)
11582 		return rc;
11583 
11584 	cpr = &bnapi->cp_ring;
11585 	cp_ring_id = cpr->cp_ring_struct.fw_ring_id;
11586 	req->cmpl_ring = cpu_to_le16(cp_ring_id);
11587 	req->ring_type = RING_RESET_REQ_RING_TYPE_RX_RING_GRP;
11588 	req->ring_id = cpu_to_le16(bp->grp_info[bnapi->index].fw_grp_id);
11589 	return hwrm_req_send_silent(bp, req);
11590 }
11591 
11592 static void bnxt_reset_task(struct bnxt *bp, bool silent)
11593 {
11594 	if (!silent)
11595 		bnxt_dbg_dump_states(bp);
11596 	if (netif_running(bp->dev)) {
11597 		int rc;
11598 
11599 		if (silent) {
11600 			bnxt_close_nic(bp, false, false);
11601 			bnxt_open_nic(bp, false, false);
11602 		} else {
11603 			bnxt_ulp_stop(bp);
11604 			bnxt_close_nic(bp, true, false);
11605 			rc = bnxt_open_nic(bp, true, false);
11606 			bnxt_ulp_start(bp, rc);
11607 		}
11608 	}
11609 }
11610 
11611 static void bnxt_tx_timeout(struct net_device *dev, unsigned int txqueue)
11612 {
11613 	struct bnxt *bp = netdev_priv(dev);
11614 
11615 	netdev_err(bp->dev,  "TX timeout detected, starting reset task!\n");
11616 	set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
11617 	bnxt_queue_sp_work(bp);
11618 }
11619 
11620 static void bnxt_fw_health_check(struct bnxt *bp)
11621 {
11622 	struct bnxt_fw_health *fw_health = bp->fw_health;
11623 	u32 val;
11624 
11625 	if (!fw_health->enabled || test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
11626 		return;
11627 
11628 	/* Make sure it is enabled before checking the tmr_counter. */
11629 	smp_rmb();
11630 	if (fw_health->tmr_counter) {
11631 		fw_health->tmr_counter--;
11632 		return;
11633 	}
11634 
11635 	val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
11636 	if (val == fw_health->last_fw_heartbeat) {
11637 		fw_health->arrests++;
11638 		goto fw_reset;
11639 	}
11640 
11641 	fw_health->last_fw_heartbeat = val;
11642 
11643 	val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
11644 	if (val != fw_health->last_fw_reset_cnt) {
11645 		fw_health->discoveries++;
11646 		goto fw_reset;
11647 	}
11648 
11649 	fw_health->tmr_counter = fw_health->tmr_multiplier;
11650 	return;
11651 
11652 fw_reset:
11653 	set_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event);
11654 	bnxt_queue_sp_work(bp);
11655 }
11656 
11657 static void bnxt_timer(struct timer_list *t)
11658 {
11659 	struct bnxt *bp = from_timer(bp, t, timer);
11660 	struct net_device *dev = bp->dev;
11661 
11662 	if (!netif_running(dev) || !test_bit(BNXT_STATE_OPEN, &bp->state))
11663 		return;
11664 
11665 	if (atomic_read(&bp->intr_sem) != 0)
11666 		goto bnxt_restart_timer;
11667 
11668 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
11669 		bnxt_fw_health_check(bp);
11670 
11671 	if (BNXT_LINK_IS_UP(bp) && bp->stats_coal_ticks) {
11672 		set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event);
11673 		bnxt_queue_sp_work(bp);
11674 	}
11675 
11676 	if (bnxt_tc_flower_enabled(bp)) {
11677 		set_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event);
11678 		bnxt_queue_sp_work(bp);
11679 	}
11680 
11681 #ifdef CONFIG_RFS_ACCEL
11682 	if ((bp->flags & BNXT_FLAG_RFS) && bp->ntp_fltr_count) {
11683 		set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
11684 		bnxt_queue_sp_work(bp);
11685 	}
11686 #endif /*CONFIG_RFS_ACCEL*/
11687 
11688 	if (bp->link_info.phy_retry) {
11689 		if (time_after(jiffies, bp->link_info.phy_retry_expires)) {
11690 			bp->link_info.phy_retry = false;
11691 			netdev_warn(bp->dev, "failed to update phy settings after maximum retries.\n");
11692 		} else {
11693 			set_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event);
11694 			bnxt_queue_sp_work(bp);
11695 		}
11696 	}
11697 
11698 	if (test_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state)) {
11699 		set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
11700 		bnxt_queue_sp_work(bp);
11701 	}
11702 
11703 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && !bp->chip_rev &&
11704 	    netif_carrier_ok(dev)) {
11705 		set_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event);
11706 		bnxt_queue_sp_work(bp);
11707 	}
11708 bnxt_restart_timer:
11709 	mod_timer(&bp->timer, jiffies + bp->current_interval);
11710 }
11711 
11712 static void bnxt_rtnl_lock_sp(struct bnxt *bp)
11713 {
11714 	/* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK
11715 	 * set.  If the device is being closed, bnxt_close() may be holding
11716 	 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear.  So we
11717 	 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl().
11718 	 */
11719 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
11720 	rtnl_lock();
11721 }
11722 
11723 static void bnxt_rtnl_unlock_sp(struct bnxt *bp)
11724 {
11725 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
11726 	rtnl_unlock();
11727 }
11728 
11729 /* Only called from bnxt_sp_task() */
11730 static void bnxt_reset(struct bnxt *bp, bool silent)
11731 {
11732 	bnxt_rtnl_lock_sp(bp);
11733 	if (test_bit(BNXT_STATE_OPEN, &bp->state))
11734 		bnxt_reset_task(bp, silent);
11735 	bnxt_rtnl_unlock_sp(bp);
11736 }
11737 
11738 /* Only called from bnxt_sp_task() */
11739 static void bnxt_rx_ring_reset(struct bnxt *bp)
11740 {
11741 	int i;
11742 
11743 	bnxt_rtnl_lock_sp(bp);
11744 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
11745 		bnxt_rtnl_unlock_sp(bp);
11746 		return;
11747 	}
11748 	/* Disable and flush TPA before resetting the RX ring */
11749 	if (bp->flags & BNXT_FLAG_TPA)
11750 		bnxt_set_tpa(bp, false);
11751 	for (i = 0; i < bp->rx_nr_rings; i++) {
11752 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
11753 		struct bnxt_cp_ring_info *cpr;
11754 		int rc;
11755 
11756 		if (!rxr->bnapi->in_reset)
11757 			continue;
11758 
11759 		rc = bnxt_hwrm_rx_ring_reset(bp, i);
11760 		if (rc) {
11761 			if (rc == -EINVAL || rc == -EOPNOTSUPP)
11762 				netdev_info_once(bp->dev, "RX ring reset not supported by firmware, falling back to global reset\n");
11763 			else
11764 				netdev_warn(bp->dev, "RX ring reset failed, rc = %d, falling back to global reset\n",
11765 					    rc);
11766 			bnxt_reset_task(bp, true);
11767 			break;
11768 		}
11769 		bnxt_free_one_rx_ring_skbs(bp, i);
11770 		rxr->rx_prod = 0;
11771 		rxr->rx_agg_prod = 0;
11772 		rxr->rx_sw_agg_prod = 0;
11773 		rxr->rx_next_cons = 0;
11774 		rxr->bnapi->in_reset = false;
11775 		bnxt_alloc_one_rx_ring(bp, i);
11776 		cpr = &rxr->bnapi->cp_ring;
11777 		cpr->sw_stats.rx.rx_resets++;
11778 		if (bp->flags & BNXT_FLAG_AGG_RINGS)
11779 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
11780 		bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
11781 	}
11782 	if (bp->flags & BNXT_FLAG_TPA)
11783 		bnxt_set_tpa(bp, true);
11784 	bnxt_rtnl_unlock_sp(bp);
11785 }
11786 
11787 static void bnxt_fw_reset_close(struct bnxt *bp)
11788 {
11789 	bnxt_ulp_stop(bp);
11790 	/* When firmware is in fatal state, quiesce device and disable
11791 	 * bus master to prevent any potential bad DMAs before freeing
11792 	 * kernel memory.
11793 	 */
11794 	if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) {
11795 		u16 val = 0;
11796 
11797 		pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val);
11798 		if (val == 0xffff)
11799 			bp->fw_reset_min_dsecs = 0;
11800 		bnxt_tx_disable(bp);
11801 		bnxt_disable_napi(bp);
11802 		bnxt_disable_int_sync(bp);
11803 		bnxt_free_irq(bp);
11804 		bnxt_clear_int_mode(bp);
11805 		pci_disable_device(bp->pdev);
11806 	}
11807 	__bnxt_close_nic(bp, true, false);
11808 	bnxt_vf_reps_free(bp);
11809 	bnxt_clear_int_mode(bp);
11810 	bnxt_hwrm_func_drv_unrgtr(bp);
11811 	if (pci_is_enabled(bp->pdev))
11812 		pci_disable_device(bp->pdev);
11813 	bnxt_free_ctx_mem(bp);
11814 	kfree(bp->ctx);
11815 	bp->ctx = NULL;
11816 }
11817 
11818 static bool is_bnxt_fw_ok(struct bnxt *bp)
11819 {
11820 	struct bnxt_fw_health *fw_health = bp->fw_health;
11821 	bool no_heartbeat = false, has_reset = false;
11822 	u32 val;
11823 
11824 	val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
11825 	if (val == fw_health->last_fw_heartbeat)
11826 		no_heartbeat = true;
11827 
11828 	val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
11829 	if (val != fw_health->last_fw_reset_cnt)
11830 		has_reset = true;
11831 
11832 	if (!no_heartbeat && has_reset)
11833 		return true;
11834 
11835 	return false;
11836 }
11837 
11838 /* rtnl_lock is acquired before calling this function */
11839 static void bnxt_force_fw_reset(struct bnxt *bp)
11840 {
11841 	struct bnxt_fw_health *fw_health = bp->fw_health;
11842 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
11843 	u32 wait_dsecs;
11844 
11845 	if (!test_bit(BNXT_STATE_OPEN, &bp->state) ||
11846 	    test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
11847 		return;
11848 
11849 	if (ptp) {
11850 		spin_lock_bh(&ptp->ptp_lock);
11851 		set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11852 		spin_unlock_bh(&ptp->ptp_lock);
11853 	} else {
11854 		set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11855 	}
11856 	bnxt_fw_reset_close(bp);
11857 	wait_dsecs = fw_health->master_func_wait_dsecs;
11858 	if (fw_health->primary) {
11859 		if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU)
11860 			wait_dsecs = 0;
11861 		bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW;
11862 	} else {
11863 		bp->fw_reset_timestamp = jiffies + wait_dsecs * HZ / 10;
11864 		wait_dsecs = fw_health->normal_func_wait_dsecs;
11865 		bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
11866 	}
11867 
11868 	bp->fw_reset_min_dsecs = fw_health->post_reset_wait_dsecs;
11869 	bp->fw_reset_max_dsecs = fw_health->post_reset_max_wait_dsecs;
11870 	bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10);
11871 }
11872 
11873 void bnxt_fw_exception(struct bnxt *bp)
11874 {
11875 	netdev_warn(bp->dev, "Detected firmware fatal condition, initiating reset\n");
11876 	set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
11877 	bnxt_rtnl_lock_sp(bp);
11878 	bnxt_force_fw_reset(bp);
11879 	bnxt_rtnl_unlock_sp(bp);
11880 }
11881 
11882 /* Returns the number of registered VFs, or 1 if VF configuration is pending, or
11883  * < 0 on error.
11884  */
11885 static int bnxt_get_registered_vfs(struct bnxt *bp)
11886 {
11887 #ifdef CONFIG_BNXT_SRIOV
11888 	int rc;
11889 
11890 	if (!BNXT_PF(bp))
11891 		return 0;
11892 
11893 	rc = bnxt_hwrm_func_qcfg(bp);
11894 	if (rc) {
11895 		netdev_err(bp->dev, "func_qcfg cmd failed, rc = %d\n", rc);
11896 		return rc;
11897 	}
11898 	if (bp->pf.registered_vfs)
11899 		return bp->pf.registered_vfs;
11900 	if (bp->sriov_cfg)
11901 		return 1;
11902 #endif
11903 	return 0;
11904 }
11905 
11906 void bnxt_fw_reset(struct bnxt *bp)
11907 {
11908 	bnxt_rtnl_lock_sp(bp);
11909 	if (test_bit(BNXT_STATE_OPEN, &bp->state) &&
11910 	    !test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
11911 		struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
11912 		int n = 0, tmo;
11913 
11914 		if (ptp) {
11915 			spin_lock_bh(&ptp->ptp_lock);
11916 			set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11917 			spin_unlock_bh(&ptp->ptp_lock);
11918 		} else {
11919 			set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11920 		}
11921 		if (bp->pf.active_vfs &&
11922 		    !test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
11923 			n = bnxt_get_registered_vfs(bp);
11924 		if (n < 0) {
11925 			netdev_err(bp->dev, "Firmware reset aborted, rc = %d\n",
11926 				   n);
11927 			clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11928 			dev_close(bp->dev);
11929 			goto fw_reset_exit;
11930 		} else if (n > 0) {
11931 			u16 vf_tmo_dsecs = n * 10;
11932 
11933 			if (bp->fw_reset_max_dsecs < vf_tmo_dsecs)
11934 				bp->fw_reset_max_dsecs = vf_tmo_dsecs;
11935 			bp->fw_reset_state =
11936 				BNXT_FW_RESET_STATE_POLL_VF;
11937 			bnxt_queue_fw_reset_work(bp, HZ / 10);
11938 			goto fw_reset_exit;
11939 		}
11940 		bnxt_fw_reset_close(bp);
11941 		if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
11942 			bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN;
11943 			tmo = HZ / 10;
11944 		} else {
11945 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
11946 			tmo = bp->fw_reset_min_dsecs * HZ / 10;
11947 		}
11948 		bnxt_queue_fw_reset_work(bp, tmo);
11949 	}
11950 fw_reset_exit:
11951 	bnxt_rtnl_unlock_sp(bp);
11952 }
11953 
11954 static void bnxt_chk_missed_irq(struct bnxt *bp)
11955 {
11956 	int i;
11957 
11958 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
11959 		return;
11960 
11961 	for (i = 0; i < bp->cp_nr_rings; i++) {
11962 		struct bnxt_napi *bnapi = bp->bnapi[i];
11963 		struct bnxt_cp_ring_info *cpr;
11964 		u32 fw_ring_id;
11965 		int j;
11966 
11967 		if (!bnapi)
11968 			continue;
11969 
11970 		cpr = &bnapi->cp_ring;
11971 		for (j = 0; j < 2; j++) {
11972 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
11973 			u32 val[2];
11974 
11975 			if (!cpr2 || cpr2->has_more_work ||
11976 			    !bnxt_has_work(bp, cpr2))
11977 				continue;
11978 
11979 			if (cpr2->cp_raw_cons != cpr2->last_cp_raw_cons) {
11980 				cpr2->last_cp_raw_cons = cpr2->cp_raw_cons;
11981 				continue;
11982 			}
11983 			fw_ring_id = cpr2->cp_ring_struct.fw_ring_id;
11984 			bnxt_dbg_hwrm_ring_info_get(bp,
11985 				DBG_RING_INFO_GET_REQ_RING_TYPE_L2_CMPL,
11986 				fw_ring_id, &val[0], &val[1]);
11987 			cpr->sw_stats.cmn.missed_irqs++;
11988 		}
11989 	}
11990 }
11991 
11992 static void bnxt_cfg_ntp_filters(struct bnxt *);
11993 
11994 static void bnxt_init_ethtool_link_settings(struct bnxt *bp)
11995 {
11996 	struct bnxt_link_info *link_info = &bp->link_info;
11997 
11998 	if (BNXT_AUTO_MODE(link_info->auto_mode)) {
11999 		link_info->autoneg = BNXT_AUTONEG_SPEED;
12000 		if (bp->hwrm_spec_code >= 0x10201) {
12001 			if (link_info->auto_pause_setting &
12002 			    PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE)
12003 				link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
12004 		} else {
12005 			link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
12006 		}
12007 		link_info->advertising = link_info->auto_link_speeds;
12008 		link_info->advertising_pam4 = link_info->auto_pam4_link_speeds;
12009 	} else {
12010 		link_info->req_link_speed = link_info->force_link_speed;
12011 		link_info->req_signal_mode = BNXT_SIG_MODE_NRZ;
12012 		if (link_info->force_pam4_link_speed) {
12013 			link_info->req_link_speed =
12014 				link_info->force_pam4_link_speed;
12015 			link_info->req_signal_mode = BNXT_SIG_MODE_PAM4;
12016 		}
12017 		link_info->req_duplex = link_info->duplex_setting;
12018 	}
12019 	if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL)
12020 		link_info->req_flow_ctrl =
12021 			link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH;
12022 	else
12023 		link_info->req_flow_ctrl = link_info->force_pause_setting;
12024 }
12025 
12026 static void bnxt_fw_echo_reply(struct bnxt *bp)
12027 {
12028 	struct bnxt_fw_health *fw_health = bp->fw_health;
12029 	struct hwrm_func_echo_response_input *req;
12030 	int rc;
12031 
12032 	rc = hwrm_req_init(bp, req, HWRM_FUNC_ECHO_RESPONSE);
12033 	if (rc)
12034 		return;
12035 	req->event_data1 = cpu_to_le32(fw_health->echo_req_data1);
12036 	req->event_data2 = cpu_to_le32(fw_health->echo_req_data2);
12037 	hwrm_req_send(bp, req);
12038 }
12039 
12040 static void bnxt_sp_task(struct work_struct *work)
12041 {
12042 	struct bnxt *bp = container_of(work, struct bnxt, sp_task);
12043 
12044 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
12045 	smp_mb__after_atomic();
12046 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
12047 		clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
12048 		return;
12049 	}
12050 
12051 	if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
12052 		bnxt_cfg_rx_mode(bp);
12053 
12054 	if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
12055 		bnxt_cfg_ntp_filters(bp);
12056 	if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
12057 		bnxt_hwrm_exec_fwd_req(bp);
12058 	if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) {
12059 		bnxt_hwrm_port_qstats(bp, 0);
12060 		bnxt_hwrm_port_qstats_ext(bp, 0);
12061 		bnxt_accumulate_all_stats(bp);
12062 	}
12063 
12064 	if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
12065 		int rc;
12066 
12067 		mutex_lock(&bp->link_lock);
12068 		if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT,
12069 				       &bp->sp_event))
12070 			bnxt_hwrm_phy_qcaps(bp);
12071 
12072 		rc = bnxt_update_link(bp, true);
12073 		if (rc)
12074 			netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
12075 				   rc);
12076 
12077 		if (test_and_clear_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT,
12078 				       &bp->sp_event))
12079 			bnxt_init_ethtool_link_settings(bp);
12080 		mutex_unlock(&bp->link_lock);
12081 	}
12082 	if (test_and_clear_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event)) {
12083 		int rc;
12084 
12085 		mutex_lock(&bp->link_lock);
12086 		rc = bnxt_update_phy_setting(bp);
12087 		mutex_unlock(&bp->link_lock);
12088 		if (rc) {
12089 			netdev_warn(bp->dev, "update phy settings retry failed\n");
12090 		} else {
12091 			bp->link_info.phy_retry = false;
12092 			netdev_info(bp->dev, "update phy settings retry succeeded\n");
12093 		}
12094 	}
12095 	if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) {
12096 		mutex_lock(&bp->link_lock);
12097 		bnxt_get_port_module_status(bp);
12098 		mutex_unlock(&bp->link_lock);
12099 	}
12100 
12101 	if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event))
12102 		bnxt_tc_flow_stats_work(bp);
12103 
12104 	if (test_and_clear_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event))
12105 		bnxt_chk_missed_irq(bp);
12106 
12107 	if (test_and_clear_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event))
12108 		bnxt_fw_echo_reply(bp);
12109 
12110 	/* These functions below will clear BNXT_STATE_IN_SP_TASK.  They
12111 	 * must be the last functions to be called before exiting.
12112 	 */
12113 	if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event))
12114 		bnxt_reset(bp, false);
12115 
12116 	if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event))
12117 		bnxt_reset(bp, true);
12118 
12119 	if (test_and_clear_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event))
12120 		bnxt_rx_ring_reset(bp);
12121 
12122 	if (test_and_clear_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event)) {
12123 		if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) ||
12124 		    test_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state))
12125 			bnxt_devlink_health_fw_report(bp);
12126 		else
12127 			bnxt_fw_reset(bp);
12128 	}
12129 
12130 	if (test_and_clear_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event)) {
12131 		if (!is_bnxt_fw_ok(bp))
12132 			bnxt_devlink_health_fw_report(bp);
12133 	}
12134 
12135 	smp_mb__before_atomic();
12136 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
12137 }
12138 
12139 /* Under rtnl_lock */
12140 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs,
12141 		     int tx_xdp)
12142 {
12143 	int max_rx, max_tx, tx_sets = 1;
12144 	int tx_rings_needed, stats;
12145 	int rx_rings = rx;
12146 	int cp, vnics, rc;
12147 
12148 	if (tcs)
12149 		tx_sets = tcs;
12150 
12151 	rc = bnxt_get_max_rings(bp, &max_rx, &max_tx, sh);
12152 	if (rc)
12153 		return rc;
12154 
12155 	if (max_rx < rx)
12156 		return -ENOMEM;
12157 
12158 	tx_rings_needed = tx * tx_sets + tx_xdp;
12159 	if (max_tx < tx_rings_needed)
12160 		return -ENOMEM;
12161 
12162 	vnics = 1;
12163 	if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS)
12164 		vnics += rx_rings;
12165 
12166 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
12167 		rx_rings <<= 1;
12168 	cp = sh ? max_t(int, tx_rings_needed, rx) : tx_rings_needed + rx;
12169 	stats = cp;
12170 	if (BNXT_NEW_RM(bp)) {
12171 		cp += bnxt_get_ulp_msix_num(bp);
12172 		stats += bnxt_get_ulp_stat_ctxs(bp);
12173 	}
12174 	return bnxt_hwrm_check_rings(bp, tx_rings_needed, rx_rings, rx, cp,
12175 				     stats, vnics);
12176 }
12177 
12178 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev)
12179 {
12180 	if (bp->bar2) {
12181 		pci_iounmap(pdev, bp->bar2);
12182 		bp->bar2 = NULL;
12183 	}
12184 
12185 	if (bp->bar1) {
12186 		pci_iounmap(pdev, bp->bar1);
12187 		bp->bar1 = NULL;
12188 	}
12189 
12190 	if (bp->bar0) {
12191 		pci_iounmap(pdev, bp->bar0);
12192 		bp->bar0 = NULL;
12193 	}
12194 }
12195 
12196 static void bnxt_cleanup_pci(struct bnxt *bp)
12197 {
12198 	bnxt_unmap_bars(bp, bp->pdev);
12199 	pci_release_regions(bp->pdev);
12200 	if (pci_is_enabled(bp->pdev))
12201 		pci_disable_device(bp->pdev);
12202 }
12203 
12204 static void bnxt_init_dflt_coal(struct bnxt *bp)
12205 {
12206 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
12207 	struct bnxt_coal *coal;
12208 	u16 flags = 0;
12209 
12210 	if (coal_cap->cmpl_params &
12211 	    RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_TIMER_RESET)
12212 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
12213 
12214 	/* Tick values in micro seconds.
12215 	 * 1 coal_buf x bufs_per_record = 1 completion record.
12216 	 */
12217 	coal = &bp->rx_coal;
12218 	coal->coal_ticks = 10;
12219 	coal->coal_bufs = 30;
12220 	coal->coal_ticks_irq = 1;
12221 	coal->coal_bufs_irq = 2;
12222 	coal->idle_thresh = 50;
12223 	coal->bufs_per_record = 2;
12224 	coal->budget = 64;		/* NAPI budget */
12225 	coal->flags = flags;
12226 
12227 	coal = &bp->tx_coal;
12228 	coal->coal_ticks = 28;
12229 	coal->coal_bufs = 30;
12230 	coal->coal_ticks_irq = 2;
12231 	coal->coal_bufs_irq = 2;
12232 	coal->bufs_per_record = 1;
12233 	coal->flags = flags;
12234 
12235 	bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS;
12236 }
12237 
12238 static int bnxt_fw_init_one_p1(struct bnxt *bp)
12239 {
12240 	int rc;
12241 
12242 	bp->fw_cap = 0;
12243 	rc = bnxt_hwrm_ver_get(bp);
12244 	bnxt_try_map_fw_health_reg(bp);
12245 	if (rc) {
12246 		rc = bnxt_try_recover_fw(bp);
12247 		if (rc)
12248 			return rc;
12249 		rc = bnxt_hwrm_ver_get(bp);
12250 		if (rc)
12251 			return rc;
12252 	}
12253 
12254 	bnxt_nvm_cfg_ver_get(bp);
12255 
12256 	rc = bnxt_hwrm_func_reset(bp);
12257 	if (rc)
12258 		return -ENODEV;
12259 
12260 	bnxt_hwrm_fw_set_time(bp);
12261 	return 0;
12262 }
12263 
12264 static int bnxt_fw_init_one_p2(struct bnxt *bp)
12265 {
12266 	int rc;
12267 
12268 	/* Get the MAX capabilities for this function */
12269 	rc = bnxt_hwrm_func_qcaps(bp);
12270 	if (rc) {
12271 		netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
12272 			   rc);
12273 		return -ENODEV;
12274 	}
12275 
12276 	rc = bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(bp);
12277 	if (rc)
12278 		netdev_warn(bp->dev, "hwrm query adv flow mgnt failure rc: %d\n",
12279 			    rc);
12280 
12281 	if (bnxt_alloc_fw_health(bp)) {
12282 		netdev_warn(bp->dev, "no memory for firmware error recovery\n");
12283 	} else {
12284 		rc = bnxt_hwrm_error_recovery_qcfg(bp);
12285 		if (rc)
12286 			netdev_warn(bp->dev, "hwrm query error recovery failure rc: %d\n",
12287 				    rc);
12288 	}
12289 
12290 	rc = bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false);
12291 	if (rc)
12292 		return -ENODEV;
12293 
12294 	bnxt_hwrm_func_qcfg(bp);
12295 	bnxt_hwrm_vnic_qcaps(bp);
12296 	bnxt_hwrm_port_led_qcaps(bp);
12297 	bnxt_ethtool_init(bp);
12298 	bnxt_dcb_init(bp);
12299 	return 0;
12300 }
12301 
12302 static void bnxt_set_dflt_rss_hash_type(struct bnxt *bp)
12303 {
12304 	bp->flags &= ~BNXT_FLAG_UDP_RSS_CAP;
12305 	bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 |
12306 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 |
12307 			   VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 |
12308 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6;
12309 	if (bp->fw_cap & BNXT_FW_CAP_RSS_HASH_TYPE_DELTA)
12310 		bp->rss_hash_delta = bp->rss_hash_cfg;
12311 	if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) {
12312 		bp->flags |= BNXT_FLAG_UDP_RSS_CAP;
12313 		bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 |
12314 				    VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6;
12315 	}
12316 }
12317 
12318 static void bnxt_set_dflt_rfs(struct bnxt *bp)
12319 {
12320 	struct net_device *dev = bp->dev;
12321 
12322 	dev->hw_features &= ~NETIF_F_NTUPLE;
12323 	dev->features &= ~NETIF_F_NTUPLE;
12324 	bp->flags &= ~BNXT_FLAG_RFS;
12325 	if (bnxt_rfs_supported(bp)) {
12326 		dev->hw_features |= NETIF_F_NTUPLE;
12327 		if (bnxt_rfs_capable(bp)) {
12328 			bp->flags |= BNXT_FLAG_RFS;
12329 			dev->features |= NETIF_F_NTUPLE;
12330 		}
12331 	}
12332 }
12333 
12334 static void bnxt_fw_init_one_p3(struct bnxt *bp)
12335 {
12336 	struct pci_dev *pdev = bp->pdev;
12337 
12338 	bnxt_set_dflt_rss_hash_type(bp);
12339 	bnxt_set_dflt_rfs(bp);
12340 
12341 	bnxt_get_wol_settings(bp);
12342 	if (bp->flags & BNXT_FLAG_WOL_CAP)
12343 		device_set_wakeup_enable(&pdev->dev, bp->wol);
12344 	else
12345 		device_set_wakeup_capable(&pdev->dev, false);
12346 
12347 	bnxt_hwrm_set_cache_line_size(bp, cache_line_size());
12348 	bnxt_hwrm_coal_params_qcaps(bp);
12349 }
12350 
12351 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt);
12352 
12353 int bnxt_fw_init_one(struct bnxt *bp)
12354 {
12355 	int rc;
12356 
12357 	rc = bnxt_fw_init_one_p1(bp);
12358 	if (rc) {
12359 		netdev_err(bp->dev, "Firmware init phase 1 failed\n");
12360 		return rc;
12361 	}
12362 	rc = bnxt_fw_init_one_p2(bp);
12363 	if (rc) {
12364 		netdev_err(bp->dev, "Firmware init phase 2 failed\n");
12365 		return rc;
12366 	}
12367 	rc = bnxt_probe_phy(bp, false);
12368 	if (rc)
12369 		return rc;
12370 	rc = bnxt_approve_mac(bp, bp->dev->dev_addr, false);
12371 	if (rc)
12372 		return rc;
12373 
12374 	bnxt_fw_init_one_p3(bp);
12375 	return 0;
12376 }
12377 
12378 static void bnxt_fw_reset_writel(struct bnxt *bp, int reg_idx)
12379 {
12380 	struct bnxt_fw_health *fw_health = bp->fw_health;
12381 	u32 reg = fw_health->fw_reset_seq_regs[reg_idx];
12382 	u32 val = fw_health->fw_reset_seq_vals[reg_idx];
12383 	u32 reg_type, reg_off, delay_msecs;
12384 
12385 	delay_msecs = fw_health->fw_reset_seq_delay_msec[reg_idx];
12386 	reg_type = BNXT_FW_HEALTH_REG_TYPE(reg);
12387 	reg_off = BNXT_FW_HEALTH_REG_OFF(reg);
12388 	switch (reg_type) {
12389 	case BNXT_FW_HEALTH_REG_TYPE_CFG:
12390 		pci_write_config_dword(bp->pdev, reg_off, val);
12391 		break;
12392 	case BNXT_FW_HEALTH_REG_TYPE_GRC:
12393 		writel(reg_off & BNXT_GRC_BASE_MASK,
12394 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4);
12395 		reg_off = (reg_off & BNXT_GRC_OFFSET_MASK) + 0x2000;
12396 		fallthrough;
12397 	case BNXT_FW_HEALTH_REG_TYPE_BAR0:
12398 		writel(val, bp->bar0 + reg_off);
12399 		break;
12400 	case BNXT_FW_HEALTH_REG_TYPE_BAR1:
12401 		writel(val, bp->bar1 + reg_off);
12402 		break;
12403 	}
12404 	if (delay_msecs) {
12405 		pci_read_config_dword(bp->pdev, 0, &val);
12406 		msleep(delay_msecs);
12407 	}
12408 }
12409 
12410 bool bnxt_hwrm_reset_permitted(struct bnxt *bp)
12411 {
12412 	struct hwrm_func_qcfg_output *resp;
12413 	struct hwrm_func_qcfg_input *req;
12414 	bool result = true; /* firmware will enforce if unknown */
12415 
12416 	if (~bp->fw_cap & BNXT_FW_CAP_HOT_RESET_IF)
12417 		return result;
12418 
12419 	if (hwrm_req_init(bp, req, HWRM_FUNC_QCFG))
12420 		return result;
12421 
12422 	req->fid = cpu_to_le16(0xffff);
12423 	resp = hwrm_req_hold(bp, req);
12424 	if (!hwrm_req_send(bp, req))
12425 		result = !!(le16_to_cpu(resp->flags) &
12426 			    FUNC_QCFG_RESP_FLAGS_HOT_RESET_ALLOWED);
12427 	hwrm_req_drop(bp, req);
12428 	return result;
12429 }
12430 
12431 static void bnxt_reset_all(struct bnxt *bp)
12432 {
12433 	struct bnxt_fw_health *fw_health = bp->fw_health;
12434 	int i, rc;
12435 
12436 	if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
12437 		bnxt_fw_reset_via_optee(bp);
12438 		bp->fw_reset_timestamp = jiffies;
12439 		return;
12440 	}
12441 
12442 	if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_HOST) {
12443 		for (i = 0; i < fw_health->fw_reset_seq_cnt; i++)
12444 			bnxt_fw_reset_writel(bp, i);
12445 	} else if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) {
12446 		struct hwrm_fw_reset_input *req;
12447 
12448 		rc = hwrm_req_init(bp, req, HWRM_FW_RESET);
12449 		if (!rc) {
12450 			req->target_id = cpu_to_le16(HWRM_TARGET_ID_KONG);
12451 			req->embedded_proc_type = FW_RESET_REQ_EMBEDDED_PROC_TYPE_CHIP;
12452 			req->selfrst_status = FW_RESET_REQ_SELFRST_STATUS_SELFRSTASAP;
12453 			req->flags = FW_RESET_REQ_FLAGS_RESET_GRACEFUL;
12454 			rc = hwrm_req_send(bp, req);
12455 		}
12456 		if (rc != -ENODEV)
12457 			netdev_warn(bp->dev, "Unable to reset FW rc=%d\n", rc);
12458 	}
12459 	bp->fw_reset_timestamp = jiffies;
12460 }
12461 
12462 static bool bnxt_fw_reset_timeout(struct bnxt *bp)
12463 {
12464 	return time_after(jiffies, bp->fw_reset_timestamp +
12465 			  (bp->fw_reset_max_dsecs * HZ / 10));
12466 }
12467 
12468 static void bnxt_fw_reset_abort(struct bnxt *bp, int rc)
12469 {
12470 	clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12471 	if (bp->fw_reset_state != BNXT_FW_RESET_STATE_POLL_VF) {
12472 		bnxt_ulp_start(bp, rc);
12473 		bnxt_dl_health_fw_status_update(bp, false);
12474 	}
12475 	bp->fw_reset_state = 0;
12476 	dev_close(bp->dev);
12477 }
12478 
12479 static void bnxt_fw_reset_task(struct work_struct *work)
12480 {
12481 	struct bnxt *bp = container_of(work, struct bnxt, fw_reset_task.work);
12482 	int rc = 0;
12483 
12484 	if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
12485 		netdev_err(bp->dev, "bnxt_fw_reset_task() called when not in fw reset mode!\n");
12486 		return;
12487 	}
12488 
12489 	switch (bp->fw_reset_state) {
12490 	case BNXT_FW_RESET_STATE_POLL_VF: {
12491 		int n = bnxt_get_registered_vfs(bp);
12492 		int tmo;
12493 
12494 		if (n < 0) {
12495 			netdev_err(bp->dev, "Firmware reset aborted, subsequent func_qcfg cmd failed, rc = %d, %d msecs since reset timestamp\n",
12496 				   n, jiffies_to_msecs(jiffies -
12497 				   bp->fw_reset_timestamp));
12498 			goto fw_reset_abort;
12499 		} else if (n > 0) {
12500 			if (bnxt_fw_reset_timeout(bp)) {
12501 				clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12502 				bp->fw_reset_state = 0;
12503 				netdev_err(bp->dev, "Firmware reset aborted, bnxt_get_registered_vfs() returns %d\n",
12504 					   n);
12505 				return;
12506 			}
12507 			bnxt_queue_fw_reset_work(bp, HZ / 10);
12508 			return;
12509 		}
12510 		bp->fw_reset_timestamp = jiffies;
12511 		rtnl_lock();
12512 		if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
12513 			bnxt_fw_reset_abort(bp, rc);
12514 			rtnl_unlock();
12515 			return;
12516 		}
12517 		bnxt_fw_reset_close(bp);
12518 		if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
12519 			bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN;
12520 			tmo = HZ / 10;
12521 		} else {
12522 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
12523 			tmo = bp->fw_reset_min_dsecs * HZ / 10;
12524 		}
12525 		rtnl_unlock();
12526 		bnxt_queue_fw_reset_work(bp, tmo);
12527 		return;
12528 	}
12529 	case BNXT_FW_RESET_STATE_POLL_FW_DOWN: {
12530 		u32 val;
12531 
12532 		val = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
12533 		if (!(val & BNXT_FW_STATUS_SHUTDOWN) &&
12534 		    !bnxt_fw_reset_timeout(bp)) {
12535 			bnxt_queue_fw_reset_work(bp, HZ / 5);
12536 			return;
12537 		}
12538 
12539 		if (!bp->fw_health->primary) {
12540 			u32 wait_dsecs = bp->fw_health->normal_func_wait_dsecs;
12541 
12542 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
12543 			bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10);
12544 			return;
12545 		}
12546 		bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW;
12547 	}
12548 		fallthrough;
12549 	case BNXT_FW_RESET_STATE_RESET_FW:
12550 		bnxt_reset_all(bp);
12551 		bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
12552 		bnxt_queue_fw_reset_work(bp, bp->fw_reset_min_dsecs * HZ / 10);
12553 		return;
12554 	case BNXT_FW_RESET_STATE_ENABLE_DEV:
12555 		bnxt_inv_fw_health_reg(bp);
12556 		if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) &&
12557 		    !bp->fw_reset_min_dsecs) {
12558 			u16 val;
12559 
12560 			pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val);
12561 			if (val == 0xffff) {
12562 				if (bnxt_fw_reset_timeout(bp)) {
12563 					netdev_err(bp->dev, "Firmware reset aborted, PCI config space invalid\n");
12564 					rc = -ETIMEDOUT;
12565 					goto fw_reset_abort;
12566 				}
12567 				bnxt_queue_fw_reset_work(bp, HZ / 1000);
12568 				return;
12569 			}
12570 		}
12571 		clear_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
12572 		clear_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state);
12573 		if (test_and_clear_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state) &&
12574 		    !test_bit(BNXT_STATE_FW_ACTIVATE, &bp->state))
12575 			bnxt_dl_remote_reload(bp);
12576 		if (pci_enable_device(bp->pdev)) {
12577 			netdev_err(bp->dev, "Cannot re-enable PCI device\n");
12578 			rc = -ENODEV;
12579 			goto fw_reset_abort;
12580 		}
12581 		pci_set_master(bp->pdev);
12582 		bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW;
12583 		fallthrough;
12584 	case BNXT_FW_RESET_STATE_POLL_FW:
12585 		bp->hwrm_cmd_timeout = SHORT_HWRM_CMD_TIMEOUT;
12586 		rc = bnxt_hwrm_poll(bp);
12587 		if (rc) {
12588 			if (bnxt_fw_reset_timeout(bp)) {
12589 				netdev_err(bp->dev, "Firmware reset aborted\n");
12590 				goto fw_reset_abort_status;
12591 			}
12592 			bnxt_queue_fw_reset_work(bp, HZ / 5);
12593 			return;
12594 		}
12595 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
12596 		bp->fw_reset_state = BNXT_FW_RESET_STATE_OPENING;
12597 		fallthrough;
12598 	case BNXT_FW_RESET_STATE_OPENING:
12599 		while (!rtnl_trylock()) {
12600 			bnxt_queue_fw_reset_work(bp, HZ / 10);
12601 			return;
12602 		}
12603 		rc = bnxt_open(bp->dev);
12604 		if (rc) {
12605 			netdev_err(bp->dev, "bnxt_open() failed during FW reset\n");
12606 			bnxt_fw_reset_abort(bp, rc);
12607 			rtnl_unlock();
12608 			return;
12609 		}
12610 
12611 		if ((bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) &&
12612 		    bp->fw_health->enabled) {
12613 			bp->fw_health->last_fw_reset_cnt =
12614 				bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
12615 		}
12616 		bp->fw_reset_state = 0;
12617 		/* Make sure fw_reset_state is 0 before clearing the flag */
12618 		smp_mb__before_atomic();
12619 		clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12620 		bnxt_ulp_start(bp, 0);
12621 		bnxt_reenable_sriov(bp);
12622 		bnxt_vf_reps_alloc(bp);
12623 		bnxt_vf_reps_open(bp);
12624 		bnxt_ptp_reapply_pps(bp);
12625 		clear_bit(BNXT_STATE_FW_ACTIVATE, &bp->state);
12626 		if (test_and_clear_bit(BNXT_STATE_RECOVER, &bp->state)) {
12627 			bnxt_dl_health_fw_recovery_done(bp);
12628 			bnxt_dl_health_fw_status_update(bp, true);
12629 		}
12630 		rtnl_unlock();
12631 		break;
12632 	}
12633 	return;
12634 
12635 fw_reset_abort_status:
12636 	if (bp->fw_health->status_reliable ||
12637 	    (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) {
12638 		u32 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
12639 
12640 		netdev_err(bp->dev, "fw_health_status 0x%x\n", sts);
12641 	}
12642 fw_reset_abort:
12643 	rtnl_lock();
12644 	bnxt_fw_reset_abort(bp, rc);
12645 	rtnl_unlock();
12646 }
12647 
12648 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
12649 {
12650 	int rc;
12651 	struct bnxt *bp = netdev_priv(dev);
12652 
12653 	SET_NETDEV_DEV(dev, &pdev->dev);
12654 
12655 	/* enable device (incl. PCI PM wakeup), and bus-mastering */
12656 	rc = pci_enable_device(pdev);
12657 	if (rc) {
12658 		dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
12659 		goto init_err;
12660 	}
12661 
12662 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
12663 		dev_err(&pdev->dev,
12664 			"Cannot find PCI device base address, aborting\n");
12665 		rc = -ENODEV;
12666 		goto init_err_disable;
12667 	}
12668 
12669 	rc = pci_request_regions(pdev, DRV_MODULE_NAME);
12670 	if (rc) {
12671 		dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
12672 		goto init_err_disable;
12673 	}
12674 
12675 	if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
12676 	    dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
12677 		dev_err(&pdev->dev, "System does not support DMA, aborting\n");
12678 		rc = -EIO;
12679 		goto init_err_release;
12680 	}
12681 
12682 	pci_set_master(pdev);
12683 
12684 	bp->dev = dev;
12685 	bp->pdev = pdev;
12686 
12687 	/* Doorbell BAR bp->bar1 is mapped after bnxt_fw_init_one_p2()
12688 	 * determines the BAR size.
12689 	 */
12690 	bp->bar0 = pci_ioremap_bar(pdev, 0);
12691 	if (!bp->bar0) {
12692 		dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
12693 		rc = -ENOMEM;
12694 		goto init_err_release;
12695 	}
12696 
12697 	bp->bar2 = pci_ioremap_bar(pdev, 4);
12698 	if (!bp->bar2) {
12699 		dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
12700 		rc = -ENOMEM;
12701 		goto init_err_release;
12702 	}
12703 
12704 	pci_enable_pcie_error_reporting(pdev);
12705 
12706 	INIT_WORK(&bp->sp_task, bnxt_sp_task);
12707 	INIT_DELAYED_WORK(&bp->fw_reset_task, bnxt_fw_reset_task);
12708 
12709 	spin_lock_init(&bp->ntp_fltr_lock);
12710 #if BITS_PER_LONG == 32
12711 	spin_lock_init(&bp->db_lock);
12712 #endif
12713 
12714 	bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
12715 	bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
12716 
12717 	timer_setup(&bp->timer, bnxt_timer, 0);
12718 	bp->current_interval = BNXT_TIMER_INTERVAL;
12719 
12720 	bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID;
12721 	bp->nge_fw_dst_port_id = INVALID_HW_RING_ID;
12722 
12723 	clear_bit(BNXT_STATE_OPEN, &bp->state);
12724 	return 0;
12725 
12726 init_err_release:
12727 	bnxt_unmap_bars(bp, pdev);
12728 	pci_release_regions(pdev);
12729 
12730 init_err_disable:
12731 	pci_disable_device(pdev);
12732 
12733 init_err:
12734 	return rc;
12735 }
12736 
12737 /* rtnl_lock held */
12738 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
12739 {
12740 	struct sockaddr *addr = p;
12741 	struct bnxt *bp = netdev_priv(dev);
12742 	int rc = 0;
12743 
12744 	if (!is_valid_ether_addr(addr->sa_data))
12745 		return -EADDRNOTAVAIL;
12746 
12747 	if (ether_addr_equal(addr->sa_data, dev->dev_addr))
12748 		return 0;
12749 
12750 	rc = bnxt_approve_mac(bp, addr->sa_data, true);
12751 	if (rc)
12752 		return rc;
12753 
12754 	eth_hw_addr_set(dev, addr->sa_data);
12755 	if (netif_running(dev)) {
12756 		bnxt_close_nic(bp, false, false);
12757 		rc = bnxt_open_nic(bp, false, false);
12758 	}
12759 
12760 	return rc;
12761 }
12762 
12763 /* rtnl_lock held */
12764 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
12765 {
12766 	struct bnxt *bp = netdev_priv(dev);
12767 
12768 	if (netif_running(dev))
12769 		bnxt_close_nic(bp, true, false);
12770 
12771 	dev->mtu = new_mtu;
12772 	bnxt_set_ring_params(bp);
12773 
12774 	if (netif_running(dev))
12775 		return bnxt_open_nic(bp, true, false);
12776 
12777 	return 0;
12778 }
12779 
12780 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc)
12781 {
12782 	struct bnxt *bp = netdev_priv(dev);
12783 	bool sh = false;
12784 	int rc;
12785 
12786 	if (tc > bp->max_tc) {
12787 		netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n",
12788 			   tc, bp->max_tc);
12789 		return -EINVAL;
12790 	}
12791 
12792 	if (netdev_get_num_tc(dev) == tc)
12793 		return 0;
12794 
12795 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
12796 		sh = true;
12797 
12798 	rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings,
12799 			      sh, tc, bp->tx_nr_rings_xdp);
12800 	if (rc)
12801 		return rc;
12802 
12803 	/* Needs to close the device and do hw resource re-allocations */
12804 	if (netif_running(bp->dev))
12805 		bnxt_close_nic(bp, true, false);
12806 
12807 	if (tc) {
12808 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
12809 		netdev_set_num_tc(dev, tc);
12810 	} else {
12811 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
12812 		netdev_reset_tc(dev);
12813 	}
12814 	bp->tx_nr_rings += bp->tx_nr_rings_xdp;
12815 	bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
12816 			       bp->tx_nr_rings + bp->rx_nr_rings;
12817 
12818 	if (netif_running(bp->dev))
12819 		return bnxt_open_nic(bp, true, false);
12820 
12821 	return 0;
12822 }
12823 
12824 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
12825 				  void *cb_priv)
12826 {
12827 	struct bnxt *bp = cb_priv;
12828 
12829 	if (!bnxt_tc_flower_enabled(bp) ||
12830 	    !tc_cls_can_offload_and_chain0(bp->dev, type_data))
12831 		return -EOPNOTSUPP;
12832 
12833 	switch (type) {
12834 	case TC_SETUP_CLSFLOWER:
12835 		return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data);
12836 	default:
12837 		return -EOPNOTSUPP;
12838 	}
12839 }
12840 
12841 LIST_HEAD(bnxt_block_cb_list);
12842 
12843 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type,
12844 			 void *type_data)
12845 {
12846 	struct bnxt *bp = netdev_priv(dev);
12847 
12848 	switch (type) {
12849 	case TC_SETUP_BLOCK:
12850 		return flow_block_cb_setup_simple(type_data,
12851 						  &bnxt_block_cb_list,
12852 						  bnxt_setup_tc_block_cb,
12853 						  bp, bp, true);
12854 	case TC_SETUP_QDISC_MQPRIO: {
12855 		struct tc_mqprio_qopt *mqprio = type_data;
12856 
12857 		mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
12858 
12859 		return bnxt_setup_mq_tc(dev, mqprio->num_tc);
12860 	}
12861 	default:
12862 		return -EOPNOTSUPP;
12863 	}
12864 }
12865 
12866 #ifdef CONFIG_RFS_ACCEL
12867 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
12868 			    struct bnxt_ntuple_filter *f2)
12869 {
12870 	struct flow_keys *keys1 = &f1->fkeys;
12871 	struct flow_keys *keys2 = &f2->fkeys;
12872 
12873 	if (keys1->basic.n_proto != keys2->basic.n_proto ||
12874 	    keys1->basic.ip_proto != keys2->basic.ip_proto)
12875 		return false;
12876 
12877 	if (keys1->basic.n_proto == htons(ETH_P_IP)) {
12878 		if (keys1->addrs.v4addrs.src != keys2->addrs.v4addrs.src ||
12879 		    keys1->addrs.v4addrs.dst != keys2->addrs.v4addrs.dst)
12880 			return false;
12881 	} else {
12882 		if (memcmp(&keys1->addrs.v6addrs.src, &keys2->addrs.v6addrs.src,
12883 			   sizeof(keys1->addrs.v6addrs.src)) ||
12884 		    memcmp(&keys1->addrs.v6addrs.dst, &keys2->addrs.v6addrs.dst,
12885 			   sizeof(keys1->addrs.v6addrs.dst)))
12886 			return false;
12887 	}
12888 
12889 	if (keys1->ports.ports == keys2->ports.ports &&
12890 	    keys1->control.flags == keys2->control.flags &&
12891 	    ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) &&
12892 	    ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr))
12893 		return true;
12894 
12895 	return false;
12896 }
12897 
12898 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
12899 			      u16 rxq_index, u32 flow_id)
12900 {
12901 	struct bnxt *bp = netdev_priv(dev);
12902 	struct bnxt_ntuple_filter *fltr, *new_fltr;
12903 	struct flow_keys *fkeys;
12904 	struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
12905 	int rc = 0, idx, bit_id, l2_idx = 0;
12906 	struct hlist_head *head;
12907 	u32 flags;
12908 
12909 	if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) {
12910 		struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
12911 		int off = 0, j;
12912 
12913 		netif_addr_lock_bh(dev);
12914 		for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) {
12915 			if (ether_addr_equal(eth->h_dest,
12916 					     vnic->uc_list + off)) {
12917 				l2_idx = j + 1;
12918 				break;
12919 			}
12920 		}
12921 		netif_addr_unlock_bh(dev);
12922 		if (!l2_idx)
12923 			return -EINVAL;
12924 	}
12925 	new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
12926 	if (!new_fltr)
12927 		return -ENOMEM;
12928 
12929 	fkeys = &new_fltr->fkeys;
12930 	if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
12931 		rc = -EPROTONOSUPPORT;
12932 		goto err_free;
12933 	}
12934 
12935 	if ((fkeys->basic.n_proto != htons(ETH_P_IP) &&
12936 	     fkeys->basic.n_proto != htons(ETH_P_IPV6)) ||
12937 	    ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
12938 	     (fkeys->basic.ip_proto != IPPROTO_UDP))) {
12939 		rc = -EPROTONOSUPPORT;
12940 		goto err_free;
12941 	}
12942 	if (fkeys->basic.n_proto == htons(ETH_P_IPV6) &&
12943 	    bp->hwrm_spec_code < 0x10601) {
12944 		rc = -EPROTONOSUPPORT;
12945 		goto err_free;
12946 	}
12947 	flags = fkeys->control.flags;
12948 	if (((flags & FLOW_DIS_ENCAPSULATION) &&
12949 	     bp->hwrm_spec_code < 0x10601) || (flags & FLOW_DIS_IS_FRAGMENT)) {
12950 		rc = -EPROTONOSUPPORT;
12951 		goto err_free;
12952 	}
12953 
12954 	memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN);
12955 	memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
12956 
12957 	idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
12958 	head = &bp->ntp_fltr_hash_tbl[idx];
12959 	rcu_read_lock();
12960 	hlist_for_each_entry_rcu(fltr, head, hash) {
12961 		if (bnxt_fltr_match(fltr, new_fltr)) {
12962 			rc = fltr->sw_id;
12963 			rcu_read_unlock();
12964 			goto err_free;
12965 		}
12966 	}
12967 	rcu_read_unlock();
12968 
12969 	spin_lock_bh(&bp->ntp_fltr_lock);
12970 	bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
12971 					 BNXT_NTP_FLTR_MAX_FLTR, 0);
12972 	if (bit_id < 0) {
12973 		spin_unlock_bh(&bp->ntp_fltr_lock);
12974 		rc = -ENOMEM;
12975 		goto err_free;
12976 	}
12977 
12978 	new_fltr->sw_id = (u16)bit_id;
12979 	new_fltr->flow_id = flow_id;
12980 	new_fltr->l2_fltr_idx = l2_idx;
12981 	new_fltr->rxq = rxq_index;
12982 	hlist_add_head_rcu(&new_fltr->hash, head);
12983 	bp->ntp_fltr_count++;
12984 	spin_unlock_bh(&bp->ntp_fltr_lock);
12985 
12986 	set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
12987 	bnxt_queue_sp_work(bp);
12988 
12989 	return new_fltr->sw_id;
12990 
12991 err_free:
12992 	kfree(new_fltr);
12993 	return rc;
12994 }
12995 
12996 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
12997 {
12998 	int i;
12999 
13000 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
13001 		struct hlist_head *head;
13002 		struct hlist_node *tmp;
13003 		struct bnxt_ntuple_filter *fltr;
13004 		int rc;
13005 
13006 		head = &bp->ntp_fltr_hash_tbl[i];
13007 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
13008 			bool del = false;
13009 
13010 			if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
13011 				if (rps_may_expire_flow(bp->dev, fltr->rxq,
13012 							fltr->flow_id,
13013 							fltr->sw_id)) {
13014 					bnxt_hwrm_cfa_ntuple_filter_free(bp,
13015 									 fltr);
13016 					del = true;
13017 				}
13018 			} else {
13019 				rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
13020 								       fltr);
13021 				if (rc)
13022 					del = true;
13023 				else
13024 					set_bit(BNXT_FLTR_VALID, &fltr->state);
13025 			}
13026 
13027 			if (del) {
13028 				spin_lock_bh(&bp->ntp_fltr_lock);
13029 				hlist_del_rcu(&fltr->hash);
13030 				bp->ntp_fltr_count--;
13031 				spin_unlock_bh(&bp->ntp_fltr_lock);
13032 				synchronize_rcu();
13033 				clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
13034 				kfree(fltr);
13035 			}
13036 		}
13037 	}
13038 	if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event))
13039 		netdev_info(bp->dev, "Receive PF driver unload event!\n");
13040 }
13041 
13042 #else
13043 
13044 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
13045 {
13046 }
13047 
13048 #endif /* CONFIG_RFS_ACCEL */
13049 
13050 static int bnxt_udp_tunnel_sync(struct net_device *netdev, unsigned int table)
13051 {
13052 	struct bnxt *bp = netdev_priv(netdev);
13053 	struct udp_tunnel_info ti;
13054 	unsigned int cmd;
13055 
13056 	udp_tunnel_nic_get_port(netdev, table, 0, &ti);
13057 	if (ti.type == UDP_TUNNEL_TYPE_VXLAN)
13058 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN;
13059 	else
13060 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE;
13061 
13062 	if (ti.port)
13063 		return bnxt_hwrm_tunnel_dst_port_alloc(bp, ti.port, cmd);
13064 
13065 	return bnxt_hwrm_tunnel_dst_port_free(bp, cmd);
13066 }
13067 
13068 static const struct udp_tunnel_nic_info bnxt_udp_tunnels = {
13069 	.sync_table	= bnxt_udp_tunnel_sync,
13070 	.flags		= UDP_TUNNEL_NIC_INFO_MAY_SLEEP |
13071 			  UDP_TUNNEL_NIC_INFO_OPEN_ONLY,
13072 	.tables		= {
13073 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN,  },
13074 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
13075 	},
13076 };
13077 
13078 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
13079 			       struct net_device *dev, u32 filter_mask,
13080 			       int nlflags)
13081 {
13082 	struct bnxt *bp = netdev_priv(dev);
13083 
13084 	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0,
13085 				       nlflags, filter_mask, NULL);
13086 }
13087 
13088 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
13089 			       u16 flags, struct netlink_ext_ack *extack)
13090 {
13091 	struct bnxt *bp = netdev_priv(dev);
13092 	struct nlattr *attr, *br_spec;
13093 	int rem, rc = 0;
13094 
13095 	if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp))
13096 		return -EOPNOTSUPP;
13097 
13098 	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
13099 	if (!br_spec)
13100 		return -EINVAL;
13101 
13102 	nla_for_each_nested(attr, br_spec, rem) {
13103 		u16 mode;
13104 
13105 		if (nla_type(attr) != IFLA_BRIDGE_MODE)
13106 			continue;
13107 
13108 		if (nla_len(attr) < sizeof(mode))
13109 			return -EINVAL;
13110 
13111 		mode = nla_get_u16(attr);
13112 		if (mode == bp->br_mode)
13113 			break;
13114 
13115 		rc = bnxt_hwrm_set_br_mode(bp, mode);
13116 		if (!rc)
13117 			bp->br_mode = mode;
13118 		break;
13119 	}
13120 	return rc;
13121 }
13122 
13123 int bnxt_get_port_parent_id(struct net_device *dev,
13124 			    struct netdev_phys_item_id *ppid)
13125 {
13126 	struct bnxt *bp = netdev_priv(dev);
13127 
13128 	if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV)
13129 		return -EOPNOTSUPP;
13130 
13131 	/* The PF and it's VF-reps only support the switchdev framework */
13132 	if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_DSN_VALID))
13133 		return -EOPNOTSUPP;
13134 
13135 	ppid->id_len = sizeof(bp->dsn);
13136 	memcpy(ppid->id, bp->dsn, ppid->id_len);
13137 
13138 	return 0;
13139 }
13140 
13141 static const struct net_device_ops bnxt_netdev_ops = {
13142 	.ndo_open		= bnxt_open,
13143 	.ndo_start_xmit		= bnxt_start_xmit,
13144 	.ndo_stop		= bnxt_close,
13145 	.ndo_get_stats64	= bnxt_get_stats64,
13146 	.ndo_set_rx_mode	= bnxt_set_rx_mode,
13147 	.ndo_eth_ioctl		= bnxt_ioctl,
13148 	.ndo_validate_addr	= eth_validate_addr,
13149 	.ndo_set_mac_address	= bnxt_change_mac_addr,
13150 	.ndo_change_mtu		= bnxt_change_mtu,
13151 	.ndo_fix_features	= bnxt_fix_features,
13152 	.ndo_set_features	= bnxt_set_features,
13153 	.ndo_features_check	= bnxt_features_check,
13154 	.ndo_tx_timeout		= bnxt_tx_timeout,
13155 #ifdef CONFIG_BNXT_SRIOV
13156 	.ndo_get_vf_config	= bnxt_get_vf_config,
13157 	.ndo_set_vf_mac		= bnxt_set_vf_mac,
13158 	.ndo_set_vf_vlan	= bnxt_set_vf_vlan,
13159 	.ndo_set_vf_rate	= bnxt_set_vf_bw,
13160 	.ndo_set_vf_link_state	= bnxt_set_vf_link_state,
13161 	.ndo_set_vf_spoofchk	= bnxt_set_vf_spoofchk,
13162 	.ndo_set_vf_trust	= bnxt_set_vf_trust,
13163 #endif
13164 	.ndo_setup_tc           = bnxt_setup_tc,
13165 #ifdef CONFIG_RFS_ACCEL
13166 	.ndo_rx_flow_steer	= bnxt_rx_flow_steer,
13167 #endif
13168 	.ndo_bpf		= bnxt_xdp,
13169 	.ndo_xdp_xmit		= bnxt_xdp_xmit,
13170 	.ndo_bridge_getlink	= bnxt_bridge_getlink,
13171 	.ndo_bridge_setlink	= bnxt_bridge_setlink,
13172 };
13173 
13174 static void bnxt_remove_one(struct pci_dev *pdev)
13175 {
13176 	struct net_device *dev = pci_get_drvdata(pdev);
13177 	struct bnxt *bp = netdev_priv(dev);
13178 
13179 	if (BNXT_PF(bp))
13180 		bnxt_sriov_disable(bp);
13181 
13182 	bnxt_ptp_clear(bp);
13183 	pci_disable_pcie_error_reporting(pdev);
13184 	unregister_netdev(dev);
13185 	clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
13186 	/* Flush any pending tasks */
13187 	cancel_work_sync(&bp->sp_task);
13188 	cancel_delayed_work_sync(&bp->fw_reset_task);
13189 	bp->sp_event = 0;
13190 
13191 	bnxt_dl_fw_reporters_destroy(bp);
13192 	bnxt_dl_unregister(bp);
13193 	bnxt_shutdown_tc(bp);
13194 
13195 	bnxt_clear_int_mode(bp);
13196 	bnxt_hwrm_func_drv_unrgtr(bp);
13197 	bnxt_free_hwrm_resources(bp);
13198 	bnxt_ethtool_free(bp);
13199 	bnxt_dcb_free(bp);
13200 	kfree(bp->edev);
13201 	bp->edev = NULL;
13202 	kfree(bp->ptp_cfg);
13203 	bp->ptp_cfg = NULL;
13204 	kfree(bp->fw_health);
13205 	bp->fw_health = NULL;
13206 	bnxt_cleanup_pci(bp);
13207 	bnxt_free_ctx_mem(bp);
13208 	kfree(bp->ctx);
13209 	bp->ctx = NULL;
13210 	kfree(bp->rss_indir_tbl);
13211 	bp->rss_indir_tbl = NULL;
13212 	bnxt_free_port_stats(bp);
13213 	free_netdev(dev);
13214 }
13215 
13216 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt)
13217 {
13218 	int rc = 0;
13219 	struct bnxt_link_info *link_info = &bp->link_info;
13220 
13221 	bp->phy_flags = 0;
13222 	rc = bnxt_hwrm_phy_qcaps(bp);
13223 	if (rc) {
13224 		netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n",
13225 			   rc);
13226 		return rc;
13227 	}
13228 	if (bp->phy_flags & BNXT_PHY_FL_NO_FCS)
13229 		bp->dev->priv_flags |= IFF_SUPP_NOFCS;
13230 	else
13231 		bp->dev->priv_flags &= ~IFF_SUPP_NOFCS;
13232 	if (!fw_dflt)
13233 		return 0;
13234 
13235 	mutex_lock(&bp->link_lock);
13236 	rc = bnxt_update_link(bp, false);
13237 	if (rc) {
13238 		mutex_unlock(&bp->link_lock);
13239 		netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
13240 			   rc);
13241 		return rc;
13242 	}
13243 
13244 	/* Older firmware does not have supported_auto_speeds, so assume
13245 	 * that all supported speeds can be autonegotiated.
13246 	 */
13247 	if (link_info->auto_link_speeds && !link_info->support_auto_speeds)
13248 		link_info->support_auto_speeds = link_info->support_speeds;
13249 
13250 	bnxt_init_ethtool_link_settings(bp);
13251 	mutex_unlock(&bp->link_lock);
13252 	return 0;
13253 }
13254 
13255 static int bnxt_get_max_irq(struct pci_dev *pdev)
13256 {
13257 	u16 ctrl;
13258 
13259 	if (!pdev->msix_cap)
13260 		return 1;
13261 
13262 	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
13263 	return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
13264 }
13265 
13266 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
13267 				int *max_cp)
13268 {
13269 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
13270 	int max_ring_grps = 0, max_irq;
13271 
13272 	*max_tx = hw_resc->max_tx_rings;
13273 	*max_rx = hw_resc->max_rx_rings;
13274 	*max_cp = bnxt_get_max_func_cp_rings_for_en(bp);
13275 	max_irq = min_t(int, bnxt_get_max_func_irqs(bp) -
13276 			bnxt_get_ulp_msix_num(bp),
13277 			hw_resc->max_stat_ctxs - bnxt_get_ulp_stat_ctxs(bp));
13278 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
13279 		*max_cp = min_t(int, *max_cp, max_irq);
13280 	max_ring_grps = hw_resc->max_hw_ring_grps;
13281 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) {
13282 		*max_cp -= 1;
13283 		*max_rx -= 2;
13284 	}
13285 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
13286 		*max_rx >>= 1;
13287 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
13288 		bnxt_trim_rings(bp, max_rx, max_tx, *max_cp, false);
13289 		/* On P5 chips, max_cp output param should be available NQs */
13290 		*max_cp = max_irq;
13291 	}
13292 	*max_rx = min_t(int, *max_rx, max_ring_grps);
13293 }
13294 
13295 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
13296 {
13297 	int rx, tx, cp;
13298 
13299 	_bnxt_get_max_rings(bp, &rx, &tx, &cp);
13300 	*max_rx = rx;
13301 	*max_tx = tx;
13302 	if (!rx || !tx || !cp)
13303 		return -ENOMEM;
13304 
13305 	return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
13306 }
13307 
13308 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx,
13309 			       bool shared)
13310 {
13311 	int rc;
13312 
13313 	rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
13314 	if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) {
13315 		/* Not enough rings, try disabling agg rings. */
13316 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
13317 		rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
13318 		if (rc) {
13319 			/* set BNXT_FLAG_AGG_RINGS back for consistency */
13320 			bp->flags |= BNXT_FLAG_AGG_RINGS;
13321 			return rc;
13322 		}
13323 		bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
13324 		bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
13325 		bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
13326 		bnxt_set_ring_params(bp);
13327 	}
13328 
13329 	if (bp->flags & BNXT_FLAG_ROCE_CAP) {
13330 		int max_cp, max_stat, max_irq;
13331 
13332 		/* Reserve minimum resources for RoCE */
13333 		max_cp = bnxt_get_max_func_cp_rings(bp);
13334 		max_stat = bnxt_get_max_func_stat_ctxs(bp);
13335 		max_irq = bnxt_get_max_func_irqs(bp);
13336 		if (max_cp <= BNXT_MIN_ROCE_CP_RINGS ||
13337 		    max_irq <= BNXT_MIN_ROCE_CP_RINGS ||
13338 		    max_stat <= BNXT_MIN_ROCE_STAT_CTXS)
13339 			return 0;
13340 
13341 		max_cp -= BNXT_MIN_ROCE_CP_RINGS;
13342 		max_irq -= BNXT_MIN_ROCE_CP_RINGS;
13343 		max_stat -= BNXT_MIN_ROCE_STAT_CTXS;
13344 		max_cp = min_t(int, max_cp, max_irq);
13345 		max_cp = min_t(int, max_cp, max_stat);
13346 		rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared);
13347 		if (rc)
13348 			rc = 0;
13349 	}
13350 	return rc;
13351 }
13352 
13353 /* In initial default shared ring setting, each shared ring must have a
13354  * RX/TX ring pair.
13355  */
13356 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp)
13357 {
13358 	bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings);
13359 	bp->rx_nr_rings = bp->cp_nr_rings;
13360 	bp->tx_nr_rings_per_tc = bp->cp_nr_rings;
13361 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
13362 }
13363 
13364 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh)
13365 {
13366 	int dflt_rings, max_rx_rings, max_tx_rings, rc;
13367 
13368 	if (!bnxt_can_reserve_rings(bp))
13369 		return 0;
13370 
13371 	if (sh)
13372 		bp->flags |= BNXT_FLAG_SHARED_RINGS;
13373 	dflt_rings = is_kdump_kernel() ? 1 : netif_get_num_default_rss_queues();
13374 	/* Reduce default rings on multi-port cards so that total default
13375 	 * rings do not exceed CPU count.
13376 	 */
13377 	if (bp->port_count > 1) {
13378 		int max_rings =
13379 			max_t(int, num_online_cpus() / bp->port_count, 1);
13380 
13381 		dflt_rings = min_t(int, dflt_rings, max_rings);
13382 	}
13383 	rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh);
13384 	if (rc)
13385 		return rc;
13386 	bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
13387 	bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
13388 	if (sh)
13389 		bnxt_trim_dflt_sh_rings(bp);
13390 	else
13391 		bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings;
13392 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
13393 
13394 	rc = __bnxt_reserve_rings(bp);
13395 	if (rc && rc != -ENODEV)
13396 		netdev_warn(bp->dev, "Unable to reserve tx rings\n");
13397 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
13398 	if (sh)
13399 		bnxt_trim_dflt_sh_rings(bp);
13400 
13401 	/* Rings may have been trimmed, re-reserve the trimmed rings. */
13402 	if (bnxt_need_reserve_rings(bp)) {
13403 		rc = __bnxt_reserve_rings(bp);
13404 		if (rc && rc != -ENODEV)
13405 			netdev_warn(bp->dev, "2nd rings reservation failed.\n");
13406 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
13407 	}
13408 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
13409 		bp->rx_nr_rings++;
13410 		bp->cp_nr_rings++;
13411 	}
13412 	if (rc) {
13413 		bp->tx_nr_rings = 0;
13414 		bp->rx_nr_rings = 0;
13415 	}
13416 	return rc;
13417 }
13418 
13419 static int bnxt_init_dflt_ring_mode(struct bnxt *bp)
13420 {
13421 	int rc;
13422 
13423 	if (bp->tx_nr_rings)
13424 		return 0;
13425 
13426 	bnxt_ulp_irq_stop(bp);
13427 	bnxt_clear_int_mode(bp);
13428 	rc = bnxt_set_dflt_rings(bp, true);
13429 	if (rc) {
13430 		if (BNXT_VF(bp) && rc == -ENODEV)
13431 			netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n");
13432 		else
13433 			netdev_err(bp->dev, "Not enough rings available.\n");
13434 		goto init_dflt_ring_err;
13435 	}
13436 	rc = bnxt_init_int_mode(bp);
13437 	if (rc)
13438 		goto init_dflt_ring_err;
13439 
13440 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
13441 
13442 	bnxt_set_dflt_rfs(bp);
13443 
13444 init_dflt_ring_err:
13445 	bnxt_ulp_irq_restart(bp, rc);
13446 	return rc;
13447 }
13448 
13449 int bnxt_restore_pf_fw_resources(struct bnxt *bp)
13450 {
13451 	int rc;
13452 
13453 	ASSERT_RTNL();
13454 	bnxt_hwrm_func_qcaps(bp);
13455 
13456 	if (netif_running(bp->dev))
13457 		__bnxt_close_nic(bp, true, false);
13458 
13459 	bnxt_ulp_irq_stop(bp);
13460 	bnxt_clear_int_mode(bp);
13461 	rc = bnxt_init_int_mode(bp);
13462 	bnxt_ulp_irq_restart(bp, rc);
13463 
13464 	if (netif_running(bp->dev)) {
13465 		if (rc)
13466 			dev_close(bp->dev);
13467 		else
13468 			rc = bnxt_open_nic(bp, true, false);
13469 	}
13470 
13471 	return rc;
13472 }
13473 
13474 static int bnxt_init_mac_addr(struct bnxt *bp)
13475 {
13476 	int rc = 0;
13477 
13478 	if (BNXT_PF(bp)) {
13479 		eth_hw_addr_set(bp->dev, bp->pf.mac_addr);
13480 	} else {
13481 #ifdef CONFIG_BNXT_SRIOV
13482 		struct bnxt_vf_info *vf = &bp->vf;
13483 		bool strict_approval = true;
13484 
13485 		if (is_valid_ether_addr(vf->mac_addr)) {
13486 			/* overwrite netdev dev_addr with admin VF MAC */
13487 			eth_hw_addr_set(bp->dev, vf->mac_addr);
13488 			/* Older PF driver or firmware may not approve this
13489 			 * correctly.
13490 			 */
13491 			strict_approval = false;
13492 		} else {
13493 			eth_hw_addr_random(bp->dev);
13494 		}
13495 		rc = bnxt_approve_mac(bp, bp->dev->dev_addr, strict_approval);
13496 #endif
13497 	}
13498 	return rc;
13499 }
13500 
13501 static void bnxt_vpd_read_info(struct bnxt *bp)
13502 {
13503 	struct pci_dev *pdev = bp->pdev;
13504 	unsigned int vpd_size, kw_len;
13505 	int pos, size;
13506 	u8 *vpd_data;
13507 
13508 	vpd_data = pci_vpd_alloc(pdev, &vpd_size);
13509 	if (IS_ERR(vpd_data)) {
13510 		pci_warn(pdev, "Unable to read VPD\n");
13511 		return;
13512 	}
13513 
13514 	pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
13515 					   PCI_VPD_RO_KEYWORD_PARTNO, &kw_len);
13516 	if (pos < 0)
13517 		goto read_sn;
13518 
13519 	size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1);
13520 	memcpy(bp->board_partno, &vpd_data[pos], size);
13521 
13522 read_sn:
13523 	pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
13524 					   PCI_VPD_RO_KEYWORD_SERIALNO,
13525 					   &kw_len);
13526 	if (pos < 0)
13527 		goto exit;
13528 
13529 	size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1);
13530 	memcpy(bp->board_serialno, &vpd_data[pos], size);
13531 exit:
13532 	kfree(vpd_data);
13533 }
13534 
13535 static int bnxt_pcie_dsn_get(struct bnxt *bp, u8 dsn[])
13536 {
13537 	struct pci_dev *pdev = bp->pdev;
13538 	u64 qword;
13539 
13540 	qword = pci_get_dsn(pdev);
13541 	if (!qword) {
13542 		netdev_info(bp->dev, "Unable to read adapter's DSN\n");
13543 		return -EOPNOTSUPP;
13544 	}
13545 
13546 	put_unaligned_le64(qword, dsn);
13547 
13548 	bp->flags |= BNXT_FLAG_DSN_VALID;
13549 	return 0;
13550 }
13551 
13552 static int bnxt_map_db_bar(struct bnxt *bp)
13553 {
13554 	if (!bp->db_size)
13555 		return -ENODEV;
13556 	bp->bar1 = pci_iomap(bp->pdev, 2, bp->db_size);
13557 	if (!bp->bar1)
13558 		return -ENOMEM;
13559 	return 0;
13560 }
13561 
13562 void bnxt_print_device_info(struct bnxt *bp)
13563 {
13564 	netdev_info(bp->dev, "%s found at mem %lx, node addr %pM\n",
13565 		    board_info[bp->board_idx].name,
13566 		    (long)pci_resource_start(bp->pdev, 0), bp->dev->dev_addr);
13567 
13568 	pcie_print_link_status(bp->pdev);
13569 }
13570 
13571 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
13572 {
13573 	struct net_device *dev;
13574 	struct bnxt *bp;
13575 	int rc, max_irqs;
13576 
13577 	if (pci_is_bridge(pdev))
13578 		return -ENODEV;
13579 
13580 	/* Clear any pending DMA transactions from crash kernel
13581 	 * while loading driver in capture kernel.
13582 	 */
13583 	if (is_kdump_kernel()) {
13584 		pci_clear_master(pdev);
13585 		pcie_flr(pdev);
13586 	}
13587 
13588 	max_irqs = bnxt_get_max_irq(pdev);
13589 	dev = alloc_etherdev_mq(sizeof(*bp), max_irqs);
13590 	if (!dev)
13591 		return -ENOMEM;
13592 
13593 	bp = netdev_priv(dev);
13594 	SET_NETDEV_DEVLINK_PORT(dev, &bp->dl_port);
13595 	bp->board_idx = ent->driver_data;
13596 	bp->msg_enable = BNXT_DEF_MSG_ENABLE;
13597 	bnxt_set_max_func_irqs(bp, max_irqs);
13598 
13599 	if (bnxt_vf_pciid(bp->board_idx))
13600 		bp->flags |= BNXT_FLAG_VF;
13601 
13602 	if (pdev->msix_cap)
13603 		bp->flags |= BNXT_FLAG_MSIX_CAP;
13604 
13605 	rc = bnxt_init_board(pdev, dev);
13606 	if (rc < 0)
13607 		goto init_err_free;
13608 
13609 	dev->netdev_ops = &bnxt_netdev_ops;
13610 	dev->watchdog_timeo = BNXT_TX_TIMEOUT;
13611 	dev->ethtool_ops = &bnxt_ethtool_ops;
13612 	pci_set_drvdata(pdev, dev);
13613 
13614 	rc = bnxt_alloc_hwrm_resources(bp);
13615 	if (rc)
13616 		goto init_err_pci_clean;
13617 
13618 	mutex_init(&bp->hwrm_cmd_lock);
13619 	mutex_init(&bp->link_lock);
13620 
13621 	rc = bnxt_fw_init_one_p1(bp);
13622 	if (rc)
13623 		goto init_err_pci_clean;
13624 
13625 	if (BNXT_PF(bp))
13626 		bnxt_vpd_read_info(bp);
13627 
13628 	if (BNXT_CHIP_P5(bp)) {
13629 		bp->flags |= BNXT_FLAG_CHIP_P5;
13630 		if (BNXT_CHIP_SR2(bp))
13631 			bp->flags |= BNXT_FLAG_CHIP_SR2;
13632 	}
13633 
13634 	rc = bnxt_alloc_rss_indir_tbl(bp);
13635 	if (rc)
13636 		goto init_err_pci_clean;
13637 
13638 	rc = bnxt_fw_init_one_p2(bp);
13639 	if (rc)
13640 		goto init_err_pci_clean;
13641 
13642 	rc = bnxt_map_db_bar(bp);
13643 	if (rc) {
13644 		dev_err(&pdev->dev, "Cannot map doorbell BAR rc = %d, aborting\n",
13645 			rc);
13646 		goto init_err_pci_clean;
13647 	}
13648 
13649 	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
13650 			   NETIF_F_TSO | NETIF_F_TSO6 |
13651 			   NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
13652 			   NETIF_F_GSO_IPXIP4 |
13653 			   NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
13654 			   NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH |
13655 			   NETIF_F_RXCSUM | NETIF_F_GRO;
13656 
13657 	if (BNXT_SUPPORTS_TPA(bp))
13658 		dev->hw_features |= NETIF_F_LRO;
13659 
13660 	dev->hw_enc_features =
13661 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
13662 			NETIF_F_TSO | NETIF_F_TSO6 |
13663 			NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
13664 			NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
13665 			NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL;
13666 	dev->udp_tunnel_nic_info = &bnxt_udp_tunnels;
13667 
13668 	dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM |
13669 				    NETIF_F_GSO_GRE_CSUM;
13670 	dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
13671 	if (bp->fw_cap & BNXT_FW_CAP_VLAN_RX_STRIP)
13672 		dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_RX;
13673 	if (bp->fw_cap & BNXT_FW_CAP_VLAN_TX_INSERT)
13674 		dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_TX;
13675 	if (BNXT_SUPPORTS_TPA(bp))
13676 		dev->hw_features |= NETIF_F_GRO_HW;
13677 	dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
13678 	if (dev->features & NETIF_F_GRO_HW)
13679 		dev->features &= ~NETIF_F_LRO;
13680 	dev->priv_flags |= IFF_UNICAST_FLT;
13681 
13682 	netif_set_tso_max_size(dev, GSO_MAX_SIZE);
13683 
13684 #ifdef CONFIG_BNXT_SRIOV
13685 	init_waitqueue_head(&bp->sriov_cfg_wait);
13686 #endif
13687 	if (BNXT_SUPPORTS_TPA(bp)) {
13688 		bp->gro_func = bnxt_gro_func_5730x;
13689 		if (BNXT_CHIP_P4(bp))
13690 			bp->gro_func = bnxt_gro_func_5731x;
13691 		else if (BNXT_CHIP_P5(bp))
13692 			bp->gro_func = bnxt_gro_func_5750x;
13693 	}
13694 	if (!BNXT_CHIP_P4_PLUS(bp))
13695 		bp->flags |= BNXT_FLAG_DOUBLE_DB;
13696 
13697 	rc = bnxt_init_mac_addr(bp);
13698 	if (rc) {
13699 		dev_err(&pdev->dev, "Unable to initialize mac address.\n");
13700 		rc = -EADDRNOTAVAIL;
13701 		goto init_err_pci_clean;
13702 	}
13703 
13704 	if (BNXT_PF(bp)) {
13705 		/* Read the adapter's DSN to use as the eswitch switch_id */
13706 		rc = bnxt_pcie_dsn_get(bp, bp->dsn);
13707 	}
13708 
13709 	/* MTU range: 60 - FW defined max */
13710 	dev->min_mtu = ETH_ZLEN;
13711 	dev->max_mtu = bp->max_mtu;
13712 
13713 	rc = bnxt_probe_phy(bp, true);
13714 	if (rc)
13715 		goto init_err_pci_clean;
13716 
13717 	bnxt_set_rx_skb_mode(bp, false);
13718 	bnxt_set_tpa_flags(bp);
13719 	bnxt_set_ring_params(bp);
13720 	rc = bnxt_set_dflt_rings(bp, true);
13721 	if (rc) {
13722 		if (BNXT_VF(bp) && rc == -ENODEV) {
13723 			netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n");
13724 		} else {
13725 			netdev_err(bp->dev, "Not enough rings available.\n");
13726 			rc = -ENOMEM;
13727 		}
13728 		goto init_err_pci_clean;
13729 	}
13730 
13731 	bnxt_fw_init_one_p3(bp);
13732 
13733 	bnxt_init_dflt_coal(bp);
13734 
13735 	if (dev->hw_features & BNXT_HW_FEATURE_VLAN_ALL_RX)
13736 		bp->flags |= BNXT_FLAG_STRIP_VLAN;
13737 
13738 	rc = bnxt_init_int_mode(bp);
13739 	if (rc)
13740 		goto init_err_pci_clean;
13741 
13742 	/* No TC has been set yet and rings may have been trimmed due to
13743 	 * limited MSIX, so we re-initialize the TX rings per TC.
13744 	 */
13745 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
13746 
13747 	if (BNXT_PF(bp)) {
13748 		if (!bnxt_pf_wq) {
13749 			bnxt_pf_wq =
13750 				create_singlethread_workqueue("bnxt_pf_wq");
13751 			if (!bnxt_pf_wq) {
13752 				dev_err(&pdev->dev, "Unable to create workqueue.\n");
13753 				rc = -ENOMEM;
13754 				goto init_err_pci_clean;
13755 			}
13756 		}
13757 		rc = bnxt_init_tc(bp);
13758 		if (rc)
13759 			netdev_err(dev, "Failed to initialize TC flower offload, err = %d.\n",
13760 				   rc);
13761 	}
13762 
13763 	bnxt_inv_fw_health_reg(bp);
13764 	rc = bnxt_dl_register(bp);
13765 	if (rc)
13766 		goto init_err_dl;
13767 
13768 	rc = register_netdev(dev);
13769 	if (rc)
13770 		goto init_err_cleanup;
13771 
13772 	bnxt_dl_fw_reporters_create(bp);
13773 
13774 	bnxt_print_device_info(bp);
13775 
13776 	pci_save_state(pdev);
13777 	return 0;
13778 
13779 init_err_cleanup:
13780 	bnxt_dl_unregister(bp);
13781 init_err_dl:
13782 	bnxt_shutdown_tc(bp);
13783 	bnxt_clear_int_mode(bp);
13784 
13785 init_err_pci_clean:
13786 	bnxt_hwrm_func_drv_unrgtr(bp);
13787 	bnxt_free_hwrm_resources(bp);
13788 	bnxt_ethtool_free(bp);
13789 	bnxt_ptp_clear(bp);
13790 	kfree(bp->ptp_cfg);
13791 	bp->ptp_cfg = NULL;
13792 	kfree(bp->fw_health);
13793 	bp->fw_health = NULL;
13794 	bnxt_cleanup_pci(bp);
13795 	bnxt_free_ctx_mem(bp);
13796 	kfree(bp->ctx);
13797 	bp->ctx = NULL;
13798 	kfree(bp->rss_indir_tbl);
13799 	bp->rss_indir_tbl = NULL;
13800 
13801 init_err_free:
13802 	free_netdev(dev);
13803 	return rc;
13804 }
13805 
13806 static void bnxt_shutdown(struct pci_dev *pdev)
13807 {
13808 	struct net_device *dev = pci_get_drvdata(pdev);
13809 	struct bnxt *bp;
13810 
13811 	if (!dev)
13812 		return;
13813 
13814 	rtnl_lock();
13815 	bp = netdev_priv(dev);
13816 	if (!bp)
13817 		goto shutdown_exit;
13818 
13819 	if (netif_running(dev))
13820 		dev_close(dev);
13821 
13822 	bnxt_ulp_shutdown(bp);
13823 	bnxt_clear_int_mode(bp);
13824 	pci_disable_device(pdev);
13825 
13826 	if (system_state == SYSTEM_POWER_OFF) {
13827 		pci_wake_from_d3(pdev, bp->wol);
13828 		pci_set_power_state(pdev, PCI_D3hot);
13829 	}
13830 
13831 shutdown_exit:
13832 	rtnl_unlock();
13833 }
13834 
13835 #ifdef CONFIG_PM_SLEEP
13836 static int bnxt_suspend(struct device *device)
13837 {
13838 	struct net_device *dev = dev_get_drvdata(device);
13839 	struct bnxt *bp = netdev_priv(dev);
13840 	int rc = 0;
13841 
13842 	rtnl_lock();
13843 	bnxt_ulp_stop(bp);
13844 	if (netif_running(dev)) {
13845 		netif_device_detach(dev);
13846 		rc = bnxt_close(dev);
13847 	}
13848 	bnxt_hwrm_func_drv_unrgtr(bp);
13849 	pci_disable_device(bp->pdev);
13850 	bnxt_free_ctx_mem(bp);
13851 	kfree(bp->ctx);
13852 	bp->ctx = NULL;
13853 	rtnl_unlock();
13854 	return rc;
13855 }
13856 
13857 static int bnxt_resume(struct device *device)
13858 {
13859 	struct net_device *dev = dev_get_drvdata(device);
13860 	struct bnxt *bp = netdev_priv(dev);
13861 	int rc = 0;
13862 
13863 	rtnl_lock();
13864 	rc = pci_enable_device(bp->pdev);
13865 	if (rc) {
13866 		netdev_err(dev, "Cannot re-enable PCI device during resume, err = %d\n",
13867 			   rc);
13868 		goto resume_exit;
13869 	}
13870 	pci_set_master(bp->pdev);
13871 	if (bnxt_hwrm_ver_get(bp)) {
13872 		rc = -ENODEV;
13873 		goto resume_exit;
13874 	}
13875 	rc = bnxt_hwrm_func_reset(bp);
13876 	if (rc) {
13877 		rc = -EBUSY;
13878 		goto resume_exit;
13879 	}
13880 
13881 	rc = bnxt_hwrm_func_qcaps(bp);
13882 	if (rc)
13883 		goto resume_exit;
13884 
13885 	if (bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false)) {
13886 		rc = -ENODEV;
13887 		goto resume_exit;
13888 	}
13889 
13890 	bnxt_get_wol_settings(bp);
13891 	if (netif_running(dev)) {
13892 		rc = bnxt_open(dev);
13893 		if (!rc)
13894 			netif_device_attach(dev);
13895 	}
13896 
13897 resume_exit:
13898 	bnxt_ulp_start(bp, rc);
13899 	if (!rc)
13900 		bnxt_reenable_sriov(bp);
13901 	rtnl_unlock();
13902 	return rc;
13903 }
13904 
13905 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume);
13906 #define BNXT_PM_OPS (&bnxt_pm_ops)
13907 
13908 #else
13909 
13910 #define BNXT_PM_OPS NULL
13911 
13912 #endif /* CONFIG_PM_SLEEP */
13913 
13914 /**
13915  * bnxt_io_error_detected - called when PCI error is detected
13916  * @pdev: Pointer to PCI device
13917  * @state: The current pci connection state
13918  *
13919  * This function is called after a PCI bus error affecting
13920  * this device has been detected.
13921  */
13922 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev,
13923 					       pci_channel_state_t state)
13924 {
13925 	struct net_device *netdev = pci_get_drvdata(pdev);
13926 	struct bnxt *bp = netdev_priv(netdev);
13927 
13928 	netdev_info(netdev, "PCI I/O error detected\n");
13929 
13930 	rtnl_lock();
13931 	netif_device_detach(netdev);
13932 
13933 	bnxt_ulp_stop(bp);
13934 
13935 	if (state == pci_channel_io_perm_failure) {
13936 		rtnl_unlock();
13937 		return PCI_ERS_RESULT_DISCONNECT;
13938 	}
13939 
13940 	if (state == pci_channel_io_frozen)
13941 		set_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, &bp->state);
13942 
13943 	if (netif_running(netdev))
13944 		bnxt_close(netdev);
13945 
13946 	if (pci_is_enabled(pdev))
13947 		pci_disable_device(pdev);
13948 	bnxt_free_ctx_mem(bp);
13949 	kfree(bp->ctx);
13950 	bp->ctx = NULL;
13951 	rtnl_unlock();
13952 
13953 	/* Request a slot slot reset. */
13954 	return PCI_ERS_RESULT_NEED_RESET;
13955 }
13956 
13957 /**
13958  * bnxt_io_slot_reset - called after the pci bus has been reset.
13959  * @pdev: Pointer to PCI device
13960  *
13961  * Restart the card from scratch, as if from a cold-boot.
13962  * At this point, the card has exprienced a hard reset,
13963  * followed by fixups by BIOS, and has its config space
13964  * set up identically to what it was at cold boot.
13965  */
13966 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev)
13967 {
13968 	pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
13969 	struct net_device *netdev = pci_get_drvdata(pdev);
13970 	struct bnxt *bp = netdev_priv(netdev);
13971 	int retry = 0;
13972 	int err = 0;
13973 	int off;
13974 
13975 	netdev_info(bp->dev, "PCI Slot Reset\n");
13976 
13977 	rtnl_lock();
13978 
13979 	if (pci_enable_device(pdev)) {
13980 		dev_err(&pdev->dev,
13981 			"Cannot re-enable PCI device after reset.\n");
13982 	} else {
13983 		pci_set_master(pdev);
13984 		/* Upon fatal error, our device internal logic that latches to
13985 		 * BAR value is getting reset and will restore only upon
13986 		 * rewritting the BARs.
13987 		 *
13988 		 * As pci_restore_state() does not re-write the BARs if the
13989 		 * value is same as saved value earlier, driver needs to
13990 		 * write the BARs to 0 to force restore, in case of fatal error.
13991 		 */
13992 		if (test_and_clear_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN,
13993 				       &bp->state)) {
13994 			for (off = PCI_BASE_ADDRESS_0;
13995 			     off <= PCI_BASE_ADDRESS_5; off += 4)
13996 				pci_write_config_dword(bp->pdev, off, 0);
13997 		}
13998 		pci_restore_state(pdev);
13999 		pci_save_state(pdev);
14000 
14001 		bnxt_inv_fw_health_reg(bp);
14002 		bnxt_try_map_fw_health_reg(bp);
14003 
14004 		/* In some PCIe AER scenarios, firmware may take up to
14005 		 * 10 seconds to become ready in the worst case.
14006 		 */
14007 		do {
14008 			err = bnxt_try_recover_fw(bp);
14009 			if (!err)
14010 				break;
14011 			retry++;
14012 		} while (retry < BNXT_FW_SLOT_RESET_RETRY);
14013 
14014 		if (err) {
14015 			dev_err(&pdev->dev, "Firmware not ready\n");
14016 			goto reset_exit;
14017 		}
14018 
14019 		err = bnxt_hwrm_func_reset(bp);
14020 		if (!err)
14021 			result = PCI_ERS_RESULT_RECOVERED;
14022 
14023 		bnxt_ulp_irq_stop(bp);
14024 		bnxt_clear_int_mode(bp);
14025 		err = bnxt_init_int_mode(bp);
14026 		bnxt_ulp_irq_restart(bp, err);
14027 	}
14028 
14029 reset_exit:
14030 	bnxt_clear_reservations(bp, true);
14031 	rtnl_unlock();
14032 
14033 	return result;
14034 }
14035 
14036 /**
14037  * bnxt_io_resume - called when traffic can start flowing again.
14038  * @pdev: Pointer to PCI device
14039  *
14040  * This callback is called when the error recovery driver tells
14041  * us that its OK to resume normal operation.
14042  */
14043 static void bnxt_io_resume(struct pci_dev *pdev)
14044 {
14045 	struct net_device *netdev = pci_get_drvdata(pdev);
14046 	struct bnxt *bp = netdev_priv(netdev);
14047 	int err;
14048 
14049 	netdev_info(bp->dev, "PCI Slot Resume\n");
14050 	rtnl_lock();
14051 
14052 	err = bnxt_hwrm_func_qcaps(bp);
14053 	if (!err && netif_running(netdev))
14054 		err = bnxt_open(netdev);
14055 
14056 	bnxt_ulp_start(bp, err);
14057 	if (!err) {
14058 		bnxt_reenable_sriov(bp);
14059 		netif_device_attach(netdev);
14060 	}
14061 
14062 	rtnl_unlock();
14063 }
14064 
14065 static const struct pci_error_handlers bnxt_err_handler = {
14066 	.error_detected	= bnxt_io_error_detected,
14067 	.slot_reset	= bnxt_io_slot_reset,
14068 	.resume		= bnxt_io_resume
14069 };
14070 
14071 static struct pci_driver bnxt_pci_driver = {
14072 	.name		= DRV_MODULE_NAME,
14073 	.id_table	= bnxt_pci_tbl,
14074 	.probe		= bnxt_init_one,
14075 	.remove		= bnxt_remove_one,
14076 	.shutdown	= bnxt_shutdown,
14077 	.driver.pm	= BNXT_PM_OPS,
14078 	.err_handler	= &bnxt_err_handler,
14079 #if defined(CONFIG_BNXT_SRIOV)
14080 	.sriov_configure = bnxt_sriov_configure,
14081 #endif
14082 };
14083 
14084 static int __init bnxt_init(void)
14085 {
14086 	int err;
14087 
14088 	bnxt_debug_init();
14089 	err = pci_register_driver(&bnxt_pci_driver);
14090 	if (err) {
14091 		bnxt_debug_exit();
14092 		return err;
14093 	}
14094 
14095 	return 0;
14096 }
14097 
14098 static void __exit bnxt_exit(void)
14099 {
14100 	pci_unregister_driver(&bnxt_pci_driver);
14101 	if (bnxt_pf_wq)
14102 		destroy_workqueue(bnxt_pf_wq);
14103 	bnxt_debug_exit();
14104 }
14105 
14106 module_init(bnxt_init);
14107 module_exit(bnxt_exit);
14108