1 /* Broadcom NetXtreme-C/E network driver. 2 * 3 * Copyright (c) 2014-2016 Broadcom Corporation 4 * Copyright (c) 2016-2019 Broadcom Limited 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation. 9 */ 10 11 #include <linux/module.h> 12 13 #include <linux/stringify.h> 14 #include <linux/kernel.h> 15 #include <linux/timer.h> 16 #include <linux/errno.h> 17 #include <linux/ioport.h> 18 #include <linux/slab.h> 19 #include <linux/vmalloc.h> 20 #include <linux/interrupt.h> 21 #include <linux/pci.h> 22 #include <linux/netdevice.h> 23 #include <linux/etherdevice.h> 24 #include <linux/skbuff.h> 25 #include <linux/dma-mapping.h> 26 #include <linux/bitops.h> 27 #include <linux/io.h> 28 #include <linux/irq.h> 29 #include <linux/delay.h> 30 #include <asm/byteorder.h> 31 #include <asm/page.h> 32 #include <linux/time.h> 33 #include <linux/mii.h> 34 #include <linux/mdio.h> 35 #include <linux/if.h> 36 #include <linux/if_vlan.h> 37 #include <linux/if_bridge.h> 38 #include <linux/rtc.h> 39 #include <linux/bpf.h> 40 #include <net/ip.h> 41 #include <net/tcp.h> 42 #include <net/udp.h> 43 #include <net/checksum.h> 44 #include <net/ip6_checksum.h> 45 #include <net/udp_tunnel.h> 46 #include <linux/workqueue.h> 47 #include <linux/prefetch.h> 48 #include <linux/cache.h> 49 #include <linux/log2.h> 50 #include <linux/aer.h> 51 #include <linux/bitmap.h> 52 #include <linux/ptp_clock_kernel.h> 53 #include <linux/timecounter.h> 54 #include <linux/cpu_rmap.h> 55 #include <linux/cpumask.h> 56 #include <net/pkt_cls.h> 57 #include <linux/hwmon.h> 58 #include <linux/hwmon-sysfs.h> 59 #include <net/page_pool.h> 60 61 #include "bnxt_hsi.h" 62 #include "bnxt.h" 63 #include "bnxt_ulp.h" 64 #include "bnxt_sriov.h" 65 #include "bnxt_ethtool.h" 66 #include "bnxt_dcb.h" 67 #include "bnxt_xdp.h" 68 #include "bnxt_ptp.h" 69 #include "bnxt_vfr.h" 70 #include "bnxt_tc.h" 71 #include "bnxt_devlink.h" 72 #include "bnxt_debugfs.h" 73 74 #define BNXT_TX_TIMEOUT (5 * HZ) 75 #define BNXT_DEF_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_HW | \ 76 NETIF_MSG_TX_ERR) 77 78 MODULE_LICENSE("GPL"); 79 MODULE_DESCRIPTION("Broadcom BCM573xx network driver"); 80 81 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN) 82 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD 83 #define BNXT_RX_COPY_THRESH 256 84 85 #define BNXT_TX_PUSH_THRESH 164 86 87 enum board_idx { 88 BCM57301, 89 BCM57302, 90 BCM57304, 91 BCM57417_NPAR, 92 BCM58700, 93 BCM57311, 94 BCM57312, 95 BCM57402, 96 BCM57404, 97 BCM57406, 98 BCM57402_NPAR, 99 BCM57407, 100 BCM57412, 101 BCM57414, 102 BCM57416, 103 BCM57417, 104 BCM57412_NPAR, 105 BCM57314, 106 BCM57417_SFP, 107 BCM57416_SFP, 108 BCM57404_NPAR, 109 BCM57406_NPAR, 110 BCM57407_SFP, 111 BCM57407_NPAR, 112 BCM57414_NPAR, 113 BCM57416_NPAR, 114 BCM57452, 115 BCM57454, 116 BCM5745x_NPAR, 117 BCM57508, 118 BCM57504, 119 BCM57502, 120 BCM57508_NPAR, 121 BCM57504_NPAR, 122 BCM57502_NPAR, 123 BCM58802, 124 BCM58804, 125 BCM58808, 126 NETXTREME_E_VF, 127 NETXTREME_C_VF, 128 NETXTREME_S_VF, 129 NETXTREME_C_VF_HV, 130 NETXTREME_E_VF_HV, 131 NETXTREME_E_P5_VF, 132 NETXTREME_E_P5_VF_HV, 133 }; 134 135 /* indexed by enum above */ 136 static const struct { 137 char *name; 138 } board_info[] = { 139 [BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" }, 140 [BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" }, 141 [BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" }, 142 [BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" }, 143 [BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" }, 144 [BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" }, 145 [BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" }, 146 [BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" }, 147 [BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" }, 148 [BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" }, 149 [BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" }, 150 [BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" }, 151 [BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" }, 152 [BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" }, 153 [BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" }, 154 [BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" }, 155 [BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" }, 156 [BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" }, 157 [BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" }, 158 [BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" }, 159 [BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" }, 160 [BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" }, 161 [BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" }, 162 [BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" }, 163 [BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" }, 164 [BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" }, 165 [BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" }, 166 [BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 167 [BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" }, 168 [BCM57508] = { "Broadcom BCM57508 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" }, 169 [BCM57504] = { "Broadcom BCM57504 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" }, 170 [BCM57502] = { "Broadcom BCM57502 NetXtreme-E 10Gb/25Gb/50Gb Ethernet" }, 171 [BCM57508_NPAR] = { "Broadcom BCM57508 NetXtreme-E Ethernet Partition" }, 172 [BCM57504_NPAR] = { "Broadcom BCM57504 NetXtreme-E Ethernet Partition" }, 173 [BCM57502_NPAR] = { "Broadcom BCM57502 NetXtreme-E Ethernet Partition" }, 174 [BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" }, 175 [BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 176 [BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 177 [NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" }, 178 [NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" }, 179 [NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" }, 180 [NETXTREME_C_VF_HV] = { "Broadcom NetXtreme-C Virtual Function for Hyper-V" }, 181 [NETXTREME_E_VF_HV] = { "Broadcom NetXtreme-E Virtual Function for Hyper-V" }, 182 [NETXTREME_E_P5_VF] = { "Broadcom BCM5750X NetXtreme-E Ethernet Virtual Function" }, 183 [NETXTREME_E_P5_VF_HV] = { "Broadcom BCM5750X NetXtreme-E Virtual Function for Hyper-V" }, 184 }; 185 186 static const struct pci_device_id bnxt_pci_tbl[] = { 187 { PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR }, 188 { PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR }, 189 { PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 }, 190 { PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR }, 191 { PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 }, 192 { PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 }, 193 { PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 }, 194 { PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR }, 195 { PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 }, 196 { PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 }, 197 { PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 }, 198 { PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 }, 199 { PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 }, 200 { PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 }, 201 { PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR }, 202 { PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 }, 203 { PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 }, 204 { PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 }, 205 { PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 }, 206 { PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 }, 207 { PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR }, 208 { PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 }, 209 { PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP }, 210 { PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP }, 211 { PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR }, 212 { PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR }, 213 { PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP }, 214 { PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR }, 215 { PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR }, 216 { PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR }, 217 { PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR }, 218 { PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR }, 219 { PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR }, 220 { PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 }, 221 { PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 }, 222 { PCI_VDEVICE(BROADCOM, 0x1750), .driver_data = BCM57508 }, 223 { PCI_VDEVICE(BROADCOM, 0x1751), .driver_data = BCM57504 }, 224 { PCI_VDEVICE(BROADCOM, 0x1752), .driver_data = BCM57502 }, 225 { PCI_VDEVICE(BROADCOM, 0x1800), .driver_data = BCM57508_NPAR }, 226 { PCI_VDEVICE(BROADCOM, 0x1801), .driver_data = BCM57504_NPAR }, 227 { PCI_VDEVICE(BROADCOM, 0x1802), .driver_data = BCM57502_NPAR }, 228 { PCI_VDEVICE(BROADCOM, 0x1803), .driver_data = BCM57508_NPAR }, 229 { PCI_VDEVICE(BROADCOM, 0x1804), .driver_data = BCM57504_NPAR }, 230 { PCI_VDEVICE(BROADCOM, 0x1805), .driver_data = BCM57502_NPAR }, 231 { PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 }, 232 { PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 }, 233 #ifdef CONFIG_BNXT_SRIOV 234 { PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF }, 235 { PCI_VDEVICE(BROADCOM, 0x1607), .driver_data = NETXTREME_E_VF_HV }, 236 { PCI_VDEVICE(BROADCOM, 0x1608), .driver_data = NETXTREME_E_VF_HV }, 237 { PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF }, 238 { PCI_VDEVICE(BROADCOM, 0x16bd), .driver_data = NETXTREME_E_VF_HV }, 239 { PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF }, 240 { PCI_VDEVICE(BROADCOM, 0x16c2), .driver_data = NETXTREME_C_VF_HV }, 241 { PCI_VDEVICE(BROADCOM, 0x16c3), .driver_data = NETXTREME_C_VF_HV }, 242 { PCI_VDEVICE(BROADCOM, 0x16c4), .driver_data = NETXTREME_E_VF_HV }, 243 { PCI_VDEVICE(BROADCOM, 0x16c5), .driver_data = NETXTREME_E_VF_HV }, 244 { PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF }, 245 { PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF }, 246 { PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF }, 247 { PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF }, 248 { PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF }, 249 { PCI_VDEVICE(BROADCOM, 0x16e6), .driver_data = NETXTREME_C_VF_HV }, 250 { PCI_VDEVICE(BROADCOM, 0x1806), .driver_data = NETXTREME_E_P5_VF }, 251 { PCI_VDEVICE(BROADCOM, 0x1807), .driver_data = NETXTREME_E_P5_VF }, 252 { PCI_VDEVICE(BROADCOM, 0x1808), .driver_data = NETXTREME_E_P5_VF_HV }, 253 { PCI_VDEVICE(BROADCOM, 0x1809), .driver_data = NETXTREME_E_P5_VF_HV }, 254 { PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF }, 255 #endif 256 { 0 } 257 }; 258 259 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl); 260 261 static const u16 bnxt_vf_req_snif[] = { 262 HWRM_FUNC_CFG, 263 HWRM_FUNC_VF_CFG, 264 HWRM_PORT_PHY_QCFG, 265 HWRM_CFA_L2_FILTER_ALLOC, 266 }; 267 268 static const u16 bnxt_async_events_arr[] = { 269 ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE, 270 ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE, 271 ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD, 272 ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED, 273 ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE, 274 ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE, 275 ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE, 276 ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY, 277 ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY, 278 ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION, 279 ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG, 280 ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST, 281 }; 282 283 static struct workqueue_struct *bnxt_pf_wq; 284 285 static bool bnxt_vf_pciid(enum board_idx idx) 286 { 287 return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF || 288 idx == NETXTREME_S_VF || idx == NETXTREME_C_VF_HV || 289 idx == NETXTREME_E_VF_HV || idx == NETXTREME_E_P5_VF || 290 idx == NETXTREME_E_P5_VF_HV); 291 } 292 293 #define DB_CP_REARM_FLAGS (DB_KEY_CP | DB_IDX_VALID) 294 #define DB_CP_FLAGS (DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS) 295 #define DB_CP_IRQ_DIS_FLAGS (DB_KEY_CP | DB_IRQ_DIS) 296 297 #define BNXT_CP_DB_IRQ_DIS(db) \ 298 writel(DB_CP_IRQ_DIS_FLAGS, db) 299 300 #define BNXT_DB_CQ(db, idx) \ 301 writel(DB_CP_FLAGS | RING_CMP(idx), (db)->doorbell) 302 303 #define BNXT_DB_NQ_P5(db, idx) \ 304 writeq((db)->db_key64 | DBR_TYPE_NQ | RING_CMP(idx), (db)->doorbell) 305 306 #define BNXT_DB_CQ_ARM(db, idx) \ 307 writel(DB_CP_REARM_FLAGS | RING_CMP(idx), (db)->doorbell) 308 309 #define BNXT_DB_NQ_ARM_P5(db, idx) \ 310 writeq((db)->db_key64 | DBR_TYPE_NQ_ARM | RING_CMP(idx), (db)->doorbell) 311 312 static void bnxt_db_nq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 313 { 314 if (bp->flags & BNXT_FLAG_CHIP_P5) 315 BNXT_DB_NQ_P5(db, idx); 316 else 317 BNXT_DB_CQ(db, idx); 318 } 319 320 static void bnxt_db_nq_arm(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 321 { 322 if (bp->flags & BNXT_FLAG_CHIP_P5) 323 BNXT_DB_NQ_ARM_P5(db, idx); 324 else 325 BNXT_DB_CQ_ARM(db, idx); 326 } 327 328 static void bnxt_db_cq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 329 { 330 if (bp->flags & BNXT_FLAG_CHIP_P5) 331 writeq(db->db_key64 | DBR_TYPE_CQ_ARMALL | RING_CMP(idx), 332 db->doorbell); 333 else 334 BNXT_DB_CQ(db, idx); 335 } 336 337 const u16 bnxt_lhint_arr[] = { 338 TX_BD_FLAGS_LHINT_512_AND_SMALLER, 339 TX_BD_FLAGS_LHINT_512_TO_1023, 340 TX_BD_FLAGS_LHINT_1024_TO_2047, 341 TX_BD_FLAGS_LHINT_1024_TO_2047, 342 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 343 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 344 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 345 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 346 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 347 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 348 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 349 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 350 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 351 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 352 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 353 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 354 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 355 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 356 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 357 }; 358 359 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb) 360 { 361 struct metadata_dst *md_dst = skb_metadata_dst(skb); 362 363 if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX) 364 return 0; 365 366 return md_dst->u.port_info.port_id; 367 } 368 369 static void bnxt_txr_db_kick(struct bnxt *bp, struct bnxt_tx_ring_info *txr, 370 u16 prod) 371 { 372 bnxt_db_write(bp, &txr->tx_db, prod); 373 txr->kick_pending = 0; 374 } 375 376 static bool bnxt_txr_netif_try_stop_queue(struct bnxt *bp, 377 struct bnxt_tx_ring_info *txr, 378 struct netdev_queue *txq) 379 { 380 netif_tx_stop_queue(txq); 381 382 /* netif_tx_stop_queue() must be done before checking 383 * tx index in bnxt_tx_avail() below, because in 384 * bnxt_tx_int(), we update tx index before checking for 385 * netif_tx_queue_stopped(). 386 */ 387 smp_mb(); 388 if (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh) { 389 netif_tx_wake_queue(txq); 390 return false; 391 } 392 393 return true; 394 } 395 396 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev) 397 { 398 struct bnxt *bp = netdev_priv(dev); 399 struct tx_bd *txbd; 400 struct tx_bd_ext *txbd1; 401 struct netdev_queue *txq; 402 int i; 403 dma_addr_t mapping; 404 unsigned int length, pad = 0; 405 u32 len, free_size, vlan_tag_flags, cfa_action, flags; 406 u16 prod, last_frag; 407 struct pci_dev *pdev = bp->pdev; 408 struct bnxt_tx_ring_info *txr; 409 struct bnxt_sw_tx_bd *tx_buf; 410 __le32 lflags = 0; 411 412 i = skb_get_queue_mapping(skb); 413 if (unlikely(i >= bp->tx_nr_rings)) { 414 dev_kfree_skb_any(skb); 415 atomic_long_inc(&dev->tx_dropped); 416 return NETDEV_TX_OK; 417 } 418 419 txq = netdev_get_tx_queue(dev, i); 420 txr = &bp->tx_ring[bp->tx_ring_map[i]]; 421 prod = txr->tx_prod; 422 423 free_size = bnxt_tx_avail(bp, txr); 424 if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) { 425 /* We must have raced with NAPI cleanup */ 426 if (net_ratelimit() && txr->kick_pending) 427 netif_warn(bp, tx_err, dev, 428 "bnxt: ring busy w/ flush pending!\n"); 429 if (bnxt_txr_netif_try_stop_queue(bp, txr, txq)) 430 return NETDEV_TX_BUSY; 431 } 432 433 length = skb->len; 434 len = skb_headlen(skb); 435 last_frag = skb_shinfo(skb)->nr_frags; 436 437 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; 438 439 txbd->tx_bd_opaque = prod; 440 441 tx_buf = &txr->tx_buf_ring[prod]; 442 tx_buf->skb = skb; 443 tx_buf->nr_frags = last_frag; 444 445 vlan_tag_flags = 0; 446 cfa_action = bnxt_xmit_get_cfa_action(skb); 447 if (skb_vlan_tag_present(skb)) { 448 vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN | 449 skb_vlan_tag_get(skb); 450 /* Currently supports 8021Q, 8021AD vlan offloads 451 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated 452 */ 453 if (skb->vlan_proto == htons(ETH_P_8021Q)) 454 vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT; 455 } 456 457 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) { 458 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 459 460 if (ptp && ptp->tx_tstamp_en && !skb_is_gso(skb) && 461 atomic_dec_if_positive(&ptp->tx_avail) >= 0) { 462 if (!bnxt_ptp_parse(skb, &ptp->tx_seqid, 463 &ptp->tx_hdr_off)) { 464 if (vlan_tag_flags) 465 ptp->tx_hdr_off += VLAN_HLEN; 466 lflags |= cpu_to_le32(TX_BD_FLAGS_STAMP); 467 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 468 } else { 469 atomic_inc(&bp->ptp_cfg->tx_avail); 470 } 471 } 472 } 473 474 if (unlikely(skb->no_fcs)) 475 lflags |= cpu_to_le32(TX_BD_FLAGS_NO_CRC); 476 477 if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh && 478 !lflags) { 479 struct tx_push_buffer *tx_push_buf = txr->tx_push; 480 struct tx_push_bd *tx_push = &tx_push_buf->push_bd; 481 struct tx_bd_ext *tx_push1 = &tx_push->txbd2; 482 void __iomem *db = txr->tx_db.doorbell; 483 void *pdata = tx_push_buf->data; 484 u64 *end; 485 int j, push_len; 486 487 /* Set COAL_NOW to be ready quickly for the next push */ 488 tx_push->tx_bd_len_flags_type = 489 cpu_to_le32((length << TX_BD_LEN_SHIFT) | 490 TX_BD_TYPE_LONG_TX_BD | 491 TX_BD_FLAGS_LHINT_512_AND_SMALLER | 492 TX_BD_FLAGS_COAL_NOW | 493 TX_BD_FLAGS_PACKET_END | 494 (2 << TX_BD_FLAGS_BD_CNT_SHIFT)); 495 496 if (skb->ip_summed == CHECKSUM_PARTIAL) 497 tx_push1->tx_bd_hsize_lflags = 498 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM); 499 else 500 tx_push1->tx_bd_hsize_lflags = 0; 501 502 tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags); 503 tx_push1->tx_bd_cfa_action = 504 cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT); 505 506 end = pdata + length; 507 end = PTR_ALIGN(end, 8) - 1; 508 *end = 0; 509 510 skb_copy_from_linear_data(skb, pdata, len); 511 pdata += len; 512 for (j = 0; j < last_frag; j++) { 513 skb_frag_t *frag = &skb_shinfo(skb)->frags[j]; 514 void *fptr; 515 516 fptr = skb_frag_address_safe(frag); 517 if (!fptr) 518 goto normal_tx; 519 520 memcpy(pdata, fptr, skb_frag_size(frag)); 521 pdata += skb_frag_size(frag); 522 } 523 524 txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type; 525 txbd->tx_bd_haddr = txr->data_mapping; 526 prod = NEXT_TX(prod); 527 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; 528 memcpy(txbd, tx_push1, sizeof(*txbd)); 529 prod = NEXT_TX(prod); 530 tx_push->doorbell = 531 cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod); 532 txr->tx_prod = prod; 533 534 tx_buf->is_push = 1; 535 netdev_tx_sent_queue(txq, skb->len); 536 wmb(); /* Sync is_push and byte queue before pushing data */ 537 538 push_len = (length + sizeof(*tx_push) + 7) / 8; 539 if (push_len > 16) { 540 __iowrite64_copy(db, tx_push_buf, 16); 541 __iowrite32_copy(db + 4, tx_push_buf + 1, 542 (push_len - 16) << 1); 543 } else { 544 __iowrite64_copy(db, tx_push_buf, push_len); 545 } 546 547 goto tx_done; 548 } 549 550 normal_tx: 551 if (length < BNXT_MIN_PKT_SIZE) { 552 pad = BNXT_MIN_PKT_SIZE - length; 553 if (skb_pad(skb, pad)) 554 /* SKB already freed. */ 555 goto tx_kick_pending; 556 length = BNXT_MIN_PKT_SIZE; 557 } 558 559 mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE); 560 561 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) 562 goto tx_free; 563 564 dma_unmap_addr_set(tx_buf, mapping, mapping); 565 flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD | 566 ((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT); 567 568 txbd->tx_bd_haddr = cpu_to_le64(mapping); 569 570 prod = NEXT_TX(prod); 571 txbd1 = (struct tx_bd_ext *) 572 &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; 573 574 txbd1->tx_bd_hsize_lflags = lflags; 575 if (skb_is_gso(skb)) { 576 u32 hdr_len; 577 578 if (skb->encapsulation) 579 hdr_len = skb_inner_network_offset(skb) + 580 skb_inner_network_header_len(skb) + 581 inner_tcp_hdrlen(skb); 582 else 583 hdr_len = skb_transport_offset(skb) + 584 tcp_hdrlen(skb); 585 586 txbd1->tx_bd_hsize_lflags |= cpu_to_le32(TX_BD_FLAGS_LSO | 587 TX_BD_FLAGS_T_IPID | 588 (hdr_len << (TX_BD_HSIZE_SHIFT - 1))); 589 length = skb_shinfo(skb)->gso_size; 590 txbd1->tx_bd_mss = cpu_to_le32(length); 591 length += hdr_len; 592 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 593 txbd1->tx_bd_hsize_lflags |= 594 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM); 595 txbd1->tx_bd_mss = 0; 596 } 597 598 length >>= 9; 599 if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) { 600 dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n", 601 skb->len); 602 i = 0; 603 goto tx_dma_error; 604 } 605 flags |= bnxt_lhint_arr[length]; 606 txbd->tx_bd_len_flags_type = cpu_to_le32(flags); 607 608 txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags); 609 txbd1->tx_bd_cfa_action = 610 cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT); 611 for (i = 0; i < last_frag; i++) { 612 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 613 614 prod = NEXT_TX(prod); 615 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; 616 617 len = skb_frag_size(frag); 618 mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len, 619 DMA_TO_DEVICE); 620 621 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) 622 goto tx_dma_error; 623 624 tx_buf = &txr->tx_buf_ring[prod]; 625 dma_unmap_addr_set(tx_buf, mapping, mapping); 626 627 txbd->tx_bd_haddr = cpu_to_le64(mapping); 628 629 flags = len << TX_BD_LEN_SHIFT; 630 txbd->tx_bd_len_flags_type = cpu_to_le32(flags); 631 } 632 633 flags &= ~TX_BD_LEN; 634 txbd->tx_bd_len_flags_type = 635 cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags | 636 TX_BD_FLAGS_PACKET_END); 637 638 netdev_tx_sent_queue(txq, skb->len); 639 640 skb_tx_timestamp(skb); 641 642 /* Sync BD data before updating doorbell */ 643 wmb(); 644 645 prod = NEXT_TX(prod); 646 txr->tx_prod = prod; 647 648 if (!netdev_xmit_more() || netif_xmit_stopped(txq)) 649 bnxt_txr_db_kick(bp, txr, prod); 650 else 651 txr->kick_pending = 1; 652 653 tx_done: 654 655 if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) { 656 if (netdev_xmit_more() && !tx_buf->is_push) 657 bnxt_txr_db_kick(bp, txr, prod); 658 659 bnxt_txr_netif_try_stop_queue(bp, txr, txq); 660 } 661 return NETDEV_TX_OK; 662 663 tx_dma_error: 664 if (BNXT_TX_PTP_IS_SET(lflags)) 665 atomic_inc(&bp->ptp_cfg->tx_avail); 666 667 last_frag = i; 668 669 /* start back at beginning and unmap skb */ 670 prod = txr->tx_prod; 671 tx_buf = &txr->tx_buf_ring[prod]; 672 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 673 skb_headlen(skb), PCI_DMA_TODEVICE); 674 prod = NEXT_TX(prod); 675 676 /* unmap remaining mapped pages */ 677 for (i = 0; i < last_frag; i++) { 678 prod = NEXT_TX(prod); 679 tx_buf = &txr->tx_buf_ring[prod]; 680 dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 681 skb_frag_size(&skb_shinfo(skb)->frags[i]), 682 PCI_DMA_TODEVICE); 683 } 684 685 tx_free: 686 dev_kfree_skb_any(skb); 687 tx_kick_pending: 688 if (txr->kick_pending) 689 bnxt_txr_db_kick(bp, txr, txr->tx_prod); 690 txr->tx_buf_ring[txr->tx_prod].skb = NULL; 691 atomic_long_inc(&dev->tx_dropped); 692 return NETDEV_TX_OK; 693 } 694 695 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts) 696 { 697 struct bnxt_tx_ring_info *txr = bnapi->tx_ring; 698 struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index); 699 u16 cons = txr->tx_cons; 700 struct pci_dev *pdev = bp->pdev; 701 int i; 702 unsigned int tx_bytes = 0; 703 704 for (i = 0; i < nr_pkts; i++) { 705 struct bnxt_sw_tx_bd *tx_buf; 706 bool compl_deferred = false; 707 struct sk_buff *skb; 708 int j, last; 709 710 tx_buf = &txr->tx_buf_ring[cons]; 711 cons = NEXT_TX(cons); 712 skb = tx_buf->skb; 713 tx_buf->skb = NULL; 714 715 if (tx_buf->is_push) { 716 tx_buf->is_push = 0; 717 goto next_tx_int; 718 } 719 720 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 721 skb_headlen(skb), PCI_DMA_TODEVICE); 722 last = tx_buf->nr_frags; 723 724 for (j = 0; j < last; j++) { 725 cons = NEXT_TX(cons); 726 tx_buf = &txr->tx_buf_ring[cons]; 727 dma_unmap_page( 728 &pdev->dev, 729 dma_unmap_addr(tx_buf, mapping), 730 skb_frag_size(&skb_shinfo(skb)->frags[j]), 731 PCI_DMA_TODEVICE); 732 } 733 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) { 734 if (bp->flags & BNXT_FLAG_CHIP_P5) { 735 if (!bnxt_get_tx_ts_p5(bp, skb)) 736 compl_deferred = true; 737 else 738 atomic_inc(&bp->ptp_cfg->tx_avail); 739 } 740 } 741 742 next_tx_int: 743 cons = NEXT_TX(cons); 744 745 tx_bytes += skb->len; 746 if (!compl_deferred) 747 dev_kfree_skb_any(skb); 748 } 749 750 netdev_tx_completed_queue(txq, nr_pkts, tx_bytes); 751 txr->tx_cons = cons; 752 753 /* Need to make the tx_cons update visible to bnxt_start_xmit() 754 * before checking for netif_tx_queue_stopped(). Without the 755 * memory barrier, there is a small possibility that bnxt_start_xmit() 756 * will miss it and cause the queue to be stopped forever. 757 */ 758 smp_mb(); 759 760 if (unlikely(netif_tx_queue_stopped(txq)) && 761 bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh && 762 READ_ONCE(txr->dev_state) != BNXT_DEV_STATE_CLOSING) 763 netif_tx_wake_queue(txq); 764 } 765 766 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping, 767 struct bnxt_rx_ring_info *rxr, 768 gfp_t gfp) 769 { 770 struct device *dev = &bp->pdev->dev; 771 struct page *page; 772 773 page = page_pool_dev_alloc_pages(rxr->page_pool); 774 if (!page) 775 return NULL; 776 777 *mapping = dma_map_page_attrs(dev, page, 0, PAGE_SIZE, bp->rx_dir, 778 DMA_ATTR_WEAK_ORDERING); 779 if (dma_mapping_error(dev, *mapping)) { 780 page_pool_recycle_direct(rxr->page_pool, page); 781 return NULL; 782 } 783 *mapping += bp->rx_dma_offset; 784 return page; 785 } 786 787 static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping, 788 gfp_t gfp) 789 { 790 u8 *data; 791 struct pci_dev *pdev = bp->pdev; 792 793 data = kmalloc(bp->rx_buf_size, gfp); 794 if (!data) 795 return NULL; 796 797 *mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset, 798 bp->rx_buf_use_size, bp->rx_dir, 799 DMA_ATTR_WEAK_ORDERING); 800 801 if (dma_mapping_error(&pdev->dev, *mapping)) { 802 kfree(data); 803 data = NULL; 804 } 805 return data; 806 } 807 808 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 809 u16 prod, gfp_t gfp) 810 { 811 struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 812 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod]; 813 dma_addr_t mapping; 814 815 if (BNXT_RX_PAGE_MODE(bp)) { 816 struct page *page = 817 __bnxt_alloc_rx_page(bp, &mapping, rxr, gfp); 818 819 if (!page) 820 return -ENOMEM; 821 822 rx_buf->data = page; 823 rx_buf->data_ptr = page_address(page) + bp->rx_offset; 824 } else { 825 u8 *data = __bnxt_alloc_rx_data(bp, &mapping, gfp); 826 827 if (!data) 828 return -ENOMEM; 829 830 rx_buf->data = data; 831 rx_buf->data_ptr = data + bp->rx_offset; 832 } 833 rx_buf->mapping = mapping; 834 835 rxbd->rx_bd_haddr = cpu_to_le64(mapping); 836 return 0; 837 } 838 839 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data) 840 { 841 u16 prod = rxr->rx_prod; 842 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf; 843 struct rx_bd *cons_bd, *prod_bd; 844 845 prod_rx_buf = &rxr->rx_buf_ring[prod]; 846 cons_rx_buf = &rxr->rx_buf_ring[cons]; 847 848 prod_rx_buf->data = data; 849 prod_rx_buf->data_ptr = cons_rx_buf->data_ptr; 850 851 prod_rx_buf->mapping = cons_rx_buf->mapping; 852 853 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 854 cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)]; 855 856 prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr; 857 } 858 859 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx) 860 { 861 u16 next, max = rxr->rx_agg_bmap_size; 862 863 next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx); 864 if (next >= max) 865 next = find_first_zero_bit(rxr->rx_agg_bmap, max); 866 return next; 867 } 868 869 static inline int bnxt_alloc_rx_page(struct bnxt *bp, 870 struct bnxt_rx_ring_info *rxr, 871 u16 prod, gfp_t gfp) 872 { 873 struct rx_bd *rxbd = 874 &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 875 struct bnxt_sw_rx_agg_bd *rx_agg_buf; 876 struct pci_dev *pdev = bp->pdev; 877 struct page *page; 878 dma_addr_t mapping; 879 u16 sw_prod = rxr->rx_sw_agg_prod; 880 unsigned int offset = 0; 881 882 if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) { 883 page = rxr->rx_page; 884 if (!page) { 885 page = alloc_page(gfp); 886 if (!page) 887 return -ENOMEM; 888 rxr->rx_page = page; 889 rxr->rx_page_offset = 0; 890 } 891 offset = rxr->rx_page_offset; 892 rxr->rx_page_offset += BNXT_RX_PAGE_SIZE; 893 if (rxr->rx_page_offset == PAGE_SIZE) 894 rxr->rx_page = NULL; 895 else 896 get_page(page); 897 } else { 898 page = alloc_page(gfp); 899 if (!page) 900 return -ENOMEM; 901 } 902 903 mapping = dma_map_page_attrs(&pdev->dev, page, offset, 904 BNXT_RX_PAGE_SIZE, PCI_DMA_FROMDEVICE, 905 DMA_ATTR_WEAK_ORDERING); 906 if (dma_mapping_error(&pdev->dev, mapping)) { 907 __free_page(page); 908 return -EIO; 909 } 910 911 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap))) 912 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod); 913 914 __set_bit(sw_prod, rxr->rx_agg_bmap); 915 rx_agg_buf = &rxr->rx_agg_ring[sw_prod]; 916 rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod); 917 918 rx_agg_buf->page = page; 919 rx_agg_buf->offset = offset; 920 rx_agg_buf->mapping = mapping; 921 rxbd->rx_bd_haddr = cpu_to_le64(mapping); 922 rxbd->rx_bd_opaque = sw_prod; 923 return 0; 924 } 925 926 static struct rx_agg_cmp *bnxt_get_agg(struct bnxt *bp, 927 struct bnxt_cp_ring_info *cpr, 928 u16 cp_cons, u16 curr) 929 { 930 struct rx_agg_cmp *agg; 931 932 cp_cons = RING_CMP(ADV_RAW_CMP(cp_cons, curr)); 933 agg = (struct rx_agg_cmp *) 934 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 935 return agg; 936 } 937 938 static struct rx_agg_cmp *bnxt_get_tpa_agg_p5(struct bnxt *bp, 939 struct bnxt_rx_ring_info *rxr, 940 u16 agg_id, u16 curr) 941 { 942 struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[agg_id]; 943 944 return &tpa_info->agg_arr[curr]; 945 } 946 947 static void bnxt_reuse_rx_agg_bufs(struct bnxt_cp_ring_info *cpr, u16 idx, 948 u16 start, u32 agg_bufs, bool tpa) 949 { 950 struct bnxt_napi *bnapi = cpr->bnapi; 951 struct bnxt *bp = bnapi->bp; 952 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 953 u16 prod = rxr->rx_agg_prod; 954 u16 sw_prod = rxr->rx_sw_agg_prod; 955 bool p5_tpa = false; 956 u32 i; 957 958 if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa) 959 p5_tpa = true; 960 961 for (i = 0; i < agg_bufs; i++) { 962 u16 cons; 963 struct rx_agg_cmp *agg; 964 struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf; 965 struct rx_bd *prod_bd; 966 struct page *page; 967 968 if (p5_tpa) 969 agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, start + i); 970 else 971 agg = bnxt_get_agg(bp, cpr, idx, start + i); 972 cons = agg->rx_agg_cmp_opaque; 973 __clear_bit(cons, rxr->rx_agg_bmap); 974 975 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap))) 976 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod); 977 978 __set_bit(sw_prod, rxr->rx_agg_bmap); 979 prod_rx_buf = &rxr->rx_agg_ring[sw_prod]; 980 cons_rx_buf = &rxr->rx_agg_ring[cons]; 981 982 /* It is possible for sw_prod to be equal to cons, so 983 * set cons_rx_buf->page to NULL first. 984 */ 985 page = cons_rx_buf->page; 986 cons_rx_buf->page = NULL; 987 prod_rx_buf->page = page; 988 prod_rx_buf->offset = cons_rx_buf->offset; 989 990 prod_rx_buf->mapping = cons_rx_buf->mapping; 991 992 prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 993 994 prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping); 995 prod_bd->rx_bd_opaque = sw_prod; 996 997 prod = NEXT_RX_AGG(prod); 998 sw_prod = NEXT_RX_AGG(sw_prod); 999 } 1000 rxr->rx_agg_prod = prod; 1001 rxr->rx_sw_agg_prod = sw_prod; 1002 } 1003 1004 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp, 1005 struct bnxt_rx_ring_info *rxr, 1006 u16 cons, void *data, u8 *data_ptr, 1007 dma_addr_t dma_addr, 1008 unsigned int offset_and_len) 1009 { 1010 unsigned int payload = offset_and_len >> 16; 1011 unsigned int len = offset_and_len & 0xffff; 1012 skb_frag_t *frag; 1013 struct page *page = data; 1014 u16 prod = rxr->rx_prod; 1015 struct sk_buff *skb; 1016 int off, err; 1017 1018 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 1019 if (unlikely(err)) { 1020 bnxt_reuse_rx_data(rxr, cons, data); 1021 return NULL; 1022 } 1023 dma_addr -= bp->rx_dma_offset; 1024 dma_unmap_page_attrs(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir, 1025 DMA_ATTR_WEAK_ORDERING); 1026 page_pool_release_page(rxr->page_pool, page); 1027 1028 if (unlikely(!payload)) 1029 payload = eth_get_headlen(bp->dev, data_ptr, len); 1030 1031 skb = napi_alloc_skb(&rxr->bnapi->napi, payload); 1032 if (!skb) { 1033 __free_page(page); 1034 return NULL; 1035 } 1036 1037 off = (void *)data_ptr - page_address(page); 1038 skb_add_rx_frag(skb, 0, page, off, len, PAGE_SIZE); 1039 memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN, 1040 payload + NET_IP_ALIGN); 1041 1042 frag = &skb_shinfo(skb)->frags[0]; 1043 skb_frag_size_sub(frag, payload); 1044 skb_frag_off_add(frag, payload); 1045 skb->data_len -= payload; 1046 skb->tail += payload; 1047 1048 return skb; 1049 } 1050 1051 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp, 1052 struct bnxt_rx_ring_info *rxr, u16 cons, 1053 void *data, u8 *data_ptr, 1054 dma_addr_t dma_addr, 1055 unsigned int offset_and_len) 1056 { 1057 u16 prod = rxr->rx_prod; 1058 struct sk_buff *skb; 1059 int err; 1060 1061 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 1062 if (unlikely(err)) { 1063 bnxt_reuse_rx_data(rxr, cons, data); 1064 return NULL; 1065 } 1066 1067 skb = build_skb(data, 0); 1068 dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size, 1069 bp->rx_dir, DMA_ATTR_WEAK_ORDERING); 1070 if (!skb) { 1071 kfree(data); 1072 return NULL; 1073 } 1074 1075 skb_reserve(skb, bp->rx_offset); 1076 skb_put(skb, offset_and_len & 0xffff); 1077 return skb; 1078 } 1079 1080 static struct sk_buff *bnxt_rx_pages(struct bnxt *bp, 1081 struct bnxt_cp_ring_info *cpr, 1082 struct sk_buff *skb, u16 idx, 1083 u32 agg_bufs, bool tpa) 1084 { 1085 struct bnxt_napi *bnapi = cpr->bnapi; 1086 struct pci_dev *pdev = bp->pdev; 1087 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1088 u16 prod = rxr->rx_agg_prod; 1089 bool p5_tpa = false; 1090 u32 i; 1091 1092 if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa) 1093 p5_tpa = true; 1094 1095 for (i = 0; i < agg_bufs; i++) { 1096 u16 cons, frag_len; 1097 struct rx_agg_cmp *agg; 1098 struct bnxt_sw_rx_agg_bd *cons_rx_buf; 1099 struct page *page; 1100 dma_addr_t mapping; 1101 1102 if (p5_tpa) 1103 agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, i); 1104 else 1105 agg = bnxt_get_agg(bp, cpr, idx, i); 1106 cons = agg->rx_agg_cmp_opaque; 1107 frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) & 1108 RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT; 1109 1110 cons_rx_buf = &rxr->rx_agg_ring[cons]; 1111 skb_fill_page_desc(skb, i, cons_rx_buf->page, 1112 cons_rx_buf->offset, frag_len); 1113 __clear_bit(cons, rxr->rx_agg_bmap); 1114 1115 /* It is possible for bnxt_alloc_rx_page() to allocate 1116 * a sw_prod index that equals the cons index, so we 1117 * need to clear the cons entry now. 1118 */ 1119 mapping = cons_rx_buf->mapping; 1120 page = cons_rx_buf->page; 1121 cons_rx_buf->page = NULL; 1122 1123 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) { 1124 struct skb_shared_info *shinfo; 1125 unsigned int nr_frags; 1126 1127 shinfo = skb_shinfo(skb); 1128 nr_frags = --shinfo->nr_frags; 1129 __skb_frag_set_page(&shinfo->frags[nr_frags], NULL); 1130 1131 dev_kfree_skb(skb); 1132 1133 cons_rx_buf->page = page; 1134 1135 /* Update prod since possibly some pages have been 1136 * allocated already. 1137 */ 1138 rxr->rx_agg_prod = prod; 1139 bnxt_reuse_rx_agg_bufs(cpr, idx, i, agg_bufs - i, tpa); 1140 return NULL; 1141 } 1142 1143 dma_unmap_page_attrs(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE, 1144 PCI_DMA_FROMDEVICE, 1145 DMA_ATTR_WEAK_ORDERING); 1146 1147 skb->data_len += frag_len; 1148 skb->len += frag_len; 1149 skb->truesize += PAGE_SIZE; 1150 1151 prod = NEXT_RX_AGG(prod); 1152 } 1153 rxr->rx_agg_prod = prod; 1154 return skb; 1155 } 1156 1157 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1158 u8 agg_bufs, u32 *raw_cons) 1159 { 1160 u16 last; 1161 struct rx_agg_cmp *agg; 1162 1163 *raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs); 1164 last = RING_CMP(*raw_cons); 1165 agg = (struct rx_agg_cmp *) 1166 &cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)]; 1167 return RX_AGG_CMP_VALID(agg, *raw_cons); 1168 } 1169 1170 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data, 1171 unsigned int len, 1172 dma_addr_t mapping) 1173 { 1174 struct bnxt *bp = bnapi->bp; 1175 struct pci_dev *pdev = bp->pdev; 1176 struct sk_buff *skb; 1177 1178 skb = napi_alloc_skb(&bnapi->napi, len); 1179 if (!skb) 1180 return NULL; 1181 1182 dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh, 1183 bp->rx_dir); 1184 1185 memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN, 1186 len + NET_IP_ALIGN); 1187 1188 dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh, 1189 bp->rx_dir); 1190 1191 skb_put(skb, len); 1192 return skb; 1193 } 1194 1195 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1196 u32 *raw_cons, void *cmp) 1197 { 1198 struct rx_cmp *rxcmp = cmp; 1199 u32 tmp_raw_cons = *raw_cons; 1200 u8 cmp_type, agg_bufs = 0; 1201 1202 cmp_type = RX_CMP_TYPE(rxcmp); 1203 1204 if (cmp_type == CMP_TYPE_RX_L2_CMP) { 1205 agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) & 1206 RX_CMP_AGG_BUFS) >> 1207 RX_CMP_AGG_BUFS_SHIFT; 1208 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 1209 struct rx_tpa_end_cmp *tpa_end = cmp; 1210 1211 if (bp->flags & BNXT_FLAG_CHIP_P5) 1212 return 0; 1213 1214 agg_bufs = TPA_END_AGG_BUFS(tpa_end); 1215 } 1216 1217 if (agg_bufs) { 1218 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons)) 1219 return -EBUSY; 1220 } 1221 *raw_cons = tmp_raw_cons; 1222 return 0; 1223 } 1224 1225 static void bnxt_queue_fw_reset_work(struct bnxt *bp, unsigned long delay) 1226 { 1227 if (!(test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))) 1228 return; 1229 1230 if (BNXT_PF(bp)) 1231 queue_delayed_work(bnxt_pf_wq, &bp->fw_reset_task, delay); 1232 else 1233 schedule_delayed_work(&bp->fw_reset_task, delay); 1234 } 1235 1236 static void bnxt_queue_sp_work(struct bnxt *bp) 1237 { 1238 if (BNXT_PF(bp)) 1239 queue_work(bnxt_pf_wq, &bp->sp_task); 1240 else 1241 schedule_work(&bp->sp_task); 1242 } 1243 1244 static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 1245 { 1246 if (!rxr->bnapi->in_reset) { 1247 rxr->bnapi->in_reset = true; 1248 if (bp->flags & BNXT_FLAG_CHIP_P5) 1249 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event); 1250 else 1251 set_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event); 1252 bnxt_queue_sp_work(bp); 1253 } 1254 rxr->rx_next_cons = 0xffff; 1255 } 1256 1257 static u16 bnxt_alloc_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id) 1258 { 1259 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1260 u16 idx = agg_id & MAX_TPA_P5_MASK; 1261 1262 if (test_bit(idx, map->agg_idx_bmap)) 1263 idx = find_first_zero_bit(map->agg_idx_bmap, 1264 BNXT_AGG_IDX_BMAP_SIZE); 1265 __set_bit(idx, map->agg_idx_bmap); 1266 map->agg_id_tbl[agg_id] = idx; 1267 return idx; 1268 } 1269 1270 static void bnxt_free_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx) 1271 { 1272 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1273 1274 __clear_bit(idx, map->agg_idx_bmap); 1275 } 1276 1277 static u16 bnxt_lookup_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id) 1278 { 1279 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1280 1281 return map->agg_id_tbl[agg_id]; 1282 } 1283 1284 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 1285 struct rx_tpa_start_cmp *tpa_start, 1286 struct rx_tpa_start_cmp_ext *tpa_start1) 1287 { 1288 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf; 1289 struct bnxt_tpa_info *tpa_info; 1290 u16 cons, prod, agg_id; 1291 struct rx_bd *prod_bd; 1292 dma_addr_t mapping; 1293 1294 if (bp->flags & BNXT_FLAG_CHIP_P5) { 1295 agg_id = TPA_START_AGG_ID_P5(tpa_start); 1296 agg_id = bnxt_alloc_agg_idx(rxr, agg_id); 1297 } else { 1298 agg_id = TPA_START_AGG_ID(tpa_start); 1299 } 1300 cons = tpa_start->rx_tpa_start_cmp_opaque; 1301 prod = rxr->rx_prod; 1302 cons_rx_buf = &rxr->rx_buf_ring[cons]; 1303 prod_rx_buf = &rxr->rx_buf_ring[prod]; 1304 tpa_info = &rxr->rx_tpa[agg_id]; 1305 1306 if (unlikely(cons != rxr->rx_next_cons || 1307 TPA_START_ERROR(tpa_start))) { 1308 netdev_warn(bp->dev, "TPA cons %x, expected cons %x, error code %x\n", 1309 cons, rxr->rx_next_cons, 1310 TPA_START_ERROR_CODE(tpa_start1)); 1311 bnxt_sched_reset(bp, rxr); 1312 return; 1313 } 1314 /* Store cfa_code in tpa_info to use in tpa_end 1315 * completion processing. 1316 */ 1317 tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1); 1318 prod_rx_buf->data = tpa_info->data; 1319 prod_rx_buf->data_ptr = tpa_info->data_ptr; 1320 1321 mapping = tpa_info->mapping; 1322 prod_rx_buf->mapping = mapping; 1323 1324 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 1325 1326 prod_bd->rx_bd_haddr = cpu_to_le64(mapping); 1327 1328 tpa_info->data = cons_rx_buf->data; 1329 tpa_info->data_ptr = cons_rx_buf->data_ptr; 1330 cons_rx_buf->data = NULL; 1331 tpa_info->mapping = cons_rx_buf->mapping; 1332 1333 tpa_info->len = 1334 le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >> 1335 RX_TPA_START_CMP_LEN_SHIFT; 1336 if (likely(TPA_START_HASH_VALID(tpa_start))) { 1337 u32 hash_type = TPA_START_HASH_TYPE(tpa_start); 1338 1339 tpa_info->hash_type = PKT_HASH_TYPE_L4; 1340 tpa_info->gso_type = SKB_GSO_TCPV4; 1341 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */ 1342 if (hash_type == 3 || TPA_START_IS_IPV6(tpa_start1)) 1343 tpa_info->gso_type = SKB_GSO_TCPV6; 1344 tpa_info->rss_hash = 1345 le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash); 1346 } else { 1347 tpa_info->hash_type = PKT_HASH_TYPE_NONE; 1348 tpa_info->gso_type = 0; 1349 netif_warn(bp, rx_err, bp->dev, "TPA packet without valid hash\n"); 1350 } 1351 tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2); 1352 tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata); 1353 tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info); 1354 tpa_info->agg_count = 0; 1355 1356 rxr->rx_prod = NEXT_RX(prod); 1357 cons = NEXT_RX(cons); 1358 rxr->rx_next_cons = NEXT_RX(cons); 1359 cons_rx_buf = &rxr->rx_buf_ring[cons]; 1360 1361 bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data); 1362 rxr->rx_prod = NEXT_RX(rxr->rx_prod); 1363 cons_rx_buf->data = NULL; 1364 } 1365 1366 static void bnxt_abort_tpa(struct bnxt_cp_ring_info *cpr, u16 idx, u32 agg_bufs) 1367 { 1368 if (agg_bufs) 1369 bnxt_reuse_rx_agg_bufs(cpr, idx, 0, agg_bufs, true); 1370 } 1371 1372 #ifdef CONFIG_INET 1373 static void bnxt_gro_tunnel(struct sk_buff *skb, __be16 ip_proto) 1374 { 1375 struct udphdr *uh = NULL; 1376 1377 if (ip_proto == htons(ETH_P_IP)) { 1378 struct iphdr *iph = (struct iphdr *)skb->data; 1379 1380 if (iph->protocol == IPPROTO_UDP) 1381 uh = (struct udphdr *)(iph + 1); 1382 } else { 1383 struct ipv6hdr *iph = (struct ipv6hdr *)skb->data; 1384 1385 if (iph->nexthdr == IPPROTO_UDP) 1386 uh = (struct udphdr *)(iph + 1); 1387 } 1388 if (uh) { 1389 if (uh->check) 1390 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL_CSUM; 1391 else 1392 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL; 1393 } 1394 } 1395 #endif 1396 1397 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info, 1398 int payload_off, int tcp_ts, 1399 struct sk_buff *skb) 1400 { 1401 #ifdef CONFIG_INET 1402 struct tcphdr *th; 1403 int len, nw_off; 1404 u16 outer_ip_off, inner_ip_off, inner_mac_off; 1405 u32 hdr_info = tpa_info->hdr_info; 1406 bool loopback = false; 1407 1408 inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info); 1409 inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info); 1410 outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info); 1411 1412 /* If the packet is an internal loopback packet, the offsets will 1413 * have an extra 4 bytes. 1414 */ 1415 if (inner_mac_off == 4) { 1416 loopback = true; 1417 } else if (inner_mac_off > 4) { 1418 __be16 proto = *((__be16 *)(skb->data + inner_ip_off - 1419 ETH_HLEN - 2)); 1420 1421 /* We only support inner iPv4/ipv6. If we don't see the 1422 * correct protocol ID, it must be a loopback packet where 1423 * the offsets are off by 4. 1424 */ 1425 if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6)) 1426 loopback = true; 1427 } 1428 if (loopback) { 1429 /* internal loopback packet, subtract all offsets by 4 */ 1430 inner_ip_off -= 4; 1431 inner_mac_off -= 4; 1432 outer_ip_off -= 4; 1433 } 1434 1435 nw_off = inner_ip_off - ETH_HLEN; 1436 skb_set_network_header(skb, nw_off); 1437 if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) { 1438 struct ipv6hdr *iph = ipv6_hdr(skb); 1439 1440 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr)); 1441 len = skb->len - skb_transport_offset(skb); 1442 th = tcp_hdr(skb); 1443 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0); 1444 } else { 1445 struct iphdr *iph = ip_hdr(skb); 1446 1447 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr)); 1448 len = skb->len - skb_transport_offset(skb); 1449 th = tcp_hdr(skb); 1450 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0); 1451 } 1452 1453 if (inner_mac_off) { /* tunnel */ 1454 __be16 proto = *((__be16 *)(skb->data + outer_ip_off - 1455 ETH_HLEN - 2)); 1456 1457 bnxt_gro_tunnel(skb, proto); 1458 } 1459 #endif 1460 return skb; 1461 } 1462 1463 static struct sk_buff *bnxt_gro_func_5750x(struct bnxt_tpa_info *tpa_info, 1464 int payload_off, int tcp_ts, 1465 struct sk_buff *skb) 1466 { 1467 #ifdef CONFIG_INET 1468 u16 outer_ip_off, inner_ip_off, inner_mac_off; 1469 u32 hdr_info = tpa_info->hdr_info; 1470 int iphdr_len, nw_off; 1471 1472 inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info); 1473 inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info); 1474 outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info); 1475 1476 nw_off = inner_ip_off - ETH_HLEN; 1477 skb_set_network_header(skb, nw_off); 1478 iphdr_len = (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) ? 1479 sizeof(struct ipv6hdr) : sizeof(struct iphdr); 1480 skb_set_transport_header(skb, nw_off + iphdr_len); 1481 1482 if (inner_mac_off) { /* tunnel */ 1483 __be16 proto = *((__be16 *)(skb->data + outer_ip_off - 1484 ETH_HLEN - 2)); 1485 1486 bnxt_gro_tunnel(skb, proto); 1487 } 1488 #endif 1489 return skb; 1490 } 1491 1492 #define BNXT_IPV4_HDR_SIZE (sizeof(struct iphdr) + sizeof(struct tcphdr)) 1493 #define BNXT_IPV6_HDR_SIZE (sizeof(struct ipv6hdr) + sizeof(struct tcphdr)) 1494 1495 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info, 1496 int payload_off, int tcp_ts, 1497 struct sk_buff *skb) 1498 { 1499 #ifdef CONFIG_INET 1500 struct tcphdr *th; 1501 int len, nw_off, tcp_opt_len = 0; 1502 1503 if (tcp_ts) 1504 tcp_opt_len = 12; 1505 1506 if (tpa_info->gso_type == SKB_GSO_TCPV4) { 1507 struct iphdr *iph; 1508 1509 nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len - 1510 ETH_HLEN; 1511 skb_set_network_header(skb, nw_off); 1512 iph = ip_hdr(skb); 1513 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr)); 1514 len = skb->len - skb_transport_offset(skb); 1515 th = tcp_hdr(skb); 1516 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0); 1517 } else if (tpa_info->gso_type == SKB_GSO_TCPV6) { 1518 struct ipv6hdr *iph; 1519 1520 nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len - 1521 ETH_HLEN; 1522 skb_set_network_header(skb, nw_off); 1523 iph = ipv6_hdr(skb); 1524 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr)); 1525 len = skb->len - skb_transport_offset(skb); 1526 th = tcp_hdr(skb); 1527 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0); 1528 } else { 1529 dev_kfree_skb_any(skb); 1530 return NULL; 1531 } 1532 1533 if (nw_off) /* tunnel */ 1534 bnxt_gro_tunnel(skb, skb->protocol); 1535 #endif 1536 return skb; 1537 } 1538 1539 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp, 1540 struct bnxt_tpa_info *tpa_info, 1541 struct rx_tpa_end_cmp *tpa_end, 1542 struct rx_tpa_end_cmp_ext *tpa_end1, 1543 struct sk_buff *skb) 1544 { 1545 #ifdef CONFIG_INET 1546 int payload_off; 1547 u16 segs; 1548 1549 segs = TPA_END_TPA_SEGS(tpa_end); 1550 if (segs == 1) 1551 return skb; 1552 1553 NAPI_GRO_CB(skb)->count = segs; 1554 skb_shinfo(skb)->gso_size = 1555 le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len); 1556 skb_shinfo(skb)->gso_type = tpa_info->gso_type; 1557 if (bp->flags & BNXT_FLAG_CHIP_P5) 1558 payload_off = TPA_END_PAYLOAD_OFF_P5(tpa_end1); 1559 else 1560 payload_off = TPA_END_PAYLOAD_OFF(tpa_end); 1561 skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb); 1562 if (likely(skb)) 1563 tcp_gro_complete(skb); 1564 #endif 1565 return skb; 1566 } 1567 1568 /* Given the cfa_code of a received packet determine which 1569 * netdev (vf-rep or PF) the packet is destined to. 1570 */ 1571 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code) 1572 { 1573 struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code); 1574 1575 /* if vf-rep dev is NULL, the must belongs to the PF */ 1576 return dev ? dev : bp->dev; 1577 } 1578 1579 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp, 1580 struct bnxt_cp_ring_info *cpr, 1581 u32 *raw_cons, 1582 struct rx_tpa_end_cmp *tpa_end, 1583 struct rx_tpa_end_cmp_ext *tpa_end1, 1584 u8 *event) 1585 { 1586 struct bnxt_napi *bnapi = cpr->bnapi; 1587 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1588 u8 *data_ptr, agg_bufs; 1589 unsigned int len; 1590 struct bnxt_tpa_info *tpa_info; 1591 dma_addr_t mapping; 1592 struct sk_buff *skb; 1593 u16 idx = 0, agg_id; 1594 void *data; 1595 bool gro; 1596 1597 if (unlikely(bnapi->in_reset)) { 1598 int rc = bnxt_discard_rx(bp, cpr, raw_cons, tpa_end); 1599 1600 if (rc < 0) 1601 return ERR_PTR(-EBUSY); 1602 return NULL; 1603 } 1604 1605 if (bp->flags & BNXT_FLAG_CHIP_P5) { 1606 agg_id = TPA_END_AGG_ID_P5(tpa_end); 1607 agg_id = bnxt_lookup_agg_idx(rxr, agg_id); 1608 agg_bufs = TPA_END_AGG_BUFS_P5(tpa_end1); 1609 tpa_info = &rxr->rx_tpa[agg_id]; 1610 if (unlikely(agg_bufs != tpa_info->agg_count)) { 1611 netdev_warn(bp->dev, "TPA end agg_buf %d != expected agg_bufs %d\n", 1612 agg_bufs, tpa_info->agg_count); 1613 agg_bufs = tpa_info->agg_count; 1614 } 1615 tpa_info->agg_count = 0; 1616 *event |= BNXT_AGG_EVENT; 1617 bnxt_free_agg_idx(rxr, agg_id); 1618 idx = agg_id; 1619 gro = !!(bp->flags & BNXT_FLAG_GRO); 1620 } else { 1621 agg_id = TPA_END_AGG_ID(tpa_end); 1622 agg_bufs = TPA_END_AGG_BUFS(tpa_end); 1623 tpa_info = &rxr->rx_tpa[agg_id]; 1624 idx = RING_CMP(*raw_cons); 1625 if (agg_bufs) { 1626 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons)) 1627 return ERR_PTR(-EBUSY); 1628 1629 *event |= BNXT_AGG_EVENT; 1630 idx = NEXT_CMP(idx); 1631 } 1632 gro = !!TPA_END_GRO(tpa_end); 1633 } 1634 data = tpa_info->data; 1635 data_ptr = tpa_info->data_ptr; 1636 prefetch(data_ptr); 1637 len = tpa_info->len; 1638 mapping = tpa_info->mapping; 1639 1640 if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) { 1641 bnxt_abort_tpa(cpr, idx, agg_bufs); 1642 if (agg_bufs > MAX_SKB_FRAGS) 1643 netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n", 1644 agg_bufs, (int)MAX_SKB_FRAGS); 1645 return NULL; 1646 } 1647 1648 if (len <= bp->rx_copy_thresh) { 1649 skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping); 1650 if (!skb) { 1651 bnxt_abort_tpa(cpr, idx, agg_bufs); 1652 return NULL; 1653 } 1654 } else { 1655 u8 *new_data; 1656 dma_addr_t new_mapping; 1657 1658 new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC); 1659 if (!new_data) { 1660 bnxt_abort_tpa(cpr, idx, agg_bufs); 1661 return NULL; 1662 } 1663 1664 tpa_info->data = new_data; 1665 tpa_info->data_ptr = new_data + bp->rx_offset; 1666 tpa_info->mapping = new_mapping; 1667 1668 skb = build_skb(data, 0); 1669 dma_unmap_single_attrs(&bp->pdev->dev, mapping, 1670 bp->rx_buf_use_size, bp->rx_dir, 1671 DMA_ATTR_WEAK_ORDERING); 1672 1673 if (!skb) { 1674 kfree(data); 1675 bnxt_abort_tpa(cpr, idx, agg_bufs); 1676 return NULL; 1677 } 1678 skb_reserve(skb, bp->rx_offset); 1679 skb_put(skb, len); 1680 } 1681 1682 if (agg_bufs) { 1683 skb = bnxt_rx_pages(bp, cpr, skb, idx, agg_bufs, true); 1684 if (!skb) { 1685 /* Page reuse already handled by bnxt_rx_pages(). */ 1686 return NULL; 1687 } 1688 } 1689 1690 skb->protocol = 1691 eth_type_trans(skb, bnxt_get_pkt_dev(bp, tpa_info->cfa_code)); 1692 1693 if (tpa_info->hash_type != PKT_HASH_TYPE_NONE) 1694 skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type); 1695 1696 if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) && 1697 (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) { 1698 __be16 vlan_proto = htons(tpa_info->metadata >> 1699 RX_CMP_FLAGS2_METADATA_TPID_SFT); 1700 u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK; 1701 1702 if (eth_type_vlan(vlan_proto)) { 1703 __vlan_hwaccel_put_tag(skb, vlan_proto, vtag); 1704 } else { 1705 dev_kfree_skb(skb); 1706 return NULL; 1707 } 1708 } 1709 1710 skb_checksum_none_assert(skb); 1711 if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) { 1712 skb->ip_summed = CHECKSUM_UNNECESSARY; 1713 skb->csum_level = 1714 (tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3; 1715 } 1716 1717 if (gro) 1718 skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb); 1719 1720 return skb; 1721 } 1722 1723 static void bnxt_tpa_agg(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 1724 struct rx_agg_cmp *rx_agg) 1725 { 1726 u16 agg_id = TPA_AGG_AGG_ID(rx_agg); 1727 struct bnxt_tpa_info *tpa_info; 1728 1729 agg_id = bnxt_lookup_agg_idx(rxr, agg_id); 1730 tpa_info = &rxr->rx_tpa[agg_id]; 1731 BUG_ON(tpa_info->agg_count >= MAX_SKB_FRAGS); 1732 tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg; 1733 } 1734 1735 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi, 1736 struct sk_buff *skb) 1737 { 1738 if (skb->dev != bp->dev) { 1739 /* this packet belongs to a vf-rep */ 1740 bnxt_vf_rep_rx(bp, skb); 1741 return; 1742 } 1743 skb_record_rx_queue(skb, bnapi->index); 1744 napi_gro_receive(&bnapi->napi, skb); 1745 } 1746 1747 /* returns the following: 1748 * 1 - 1 packet successfully received 1749 * 0 - successful TPA_START, packet not completed yet 1750 * -EBUSY - completion ring does not have all the agg buffers yet 1751 * -ENOMEM - packet aborted due to out of memory 1752 * -EIO - packet aborted due to hw error indicated in BD 1753 */ 1754 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1755 u32 *raw_cons, u8 *event) 1756 { 1757 struct bnxt_napi *bnapi = cpr->bnapi; 1758 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1759 struct net_device *dev = bp->dev; 1760 struct rx_cmp *rxcmp; 1761 struct rx_cmp_ext *rxcmp1; 1762 u32 tmp_raw_cons = *raw_cons; 1763 u16 cfa_code, cons, prod, cp_cons = RING_CMP(tmp_raw_cons); 1764 struct bnxt_sw_rx_bd *rx_buf; 1765 unsigned int len; 1766 u8 *data_ptr, agg_bufs, cmp_type; 1767 dma_addr_t dma_addr; 1768 struct sk_buff *skb; 1769 u32 flags, misc; 1770 void *data; 1771 int rc = 0; 1772 1773 rxcmp = (struct rx_cmp *) 1774 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 1775 1776 cmp_type = RX_CMP_TYPE(rxcmp); 1777 1778 if (cmp_type == CMP_TYPE_RX_TPA_AGG_CMP) { 1779 bnxt_tpa_agg(bp, rxr, (struct rx_agg_cmp *)rxcmp); 1780 goto next_rx_no_prod_no_len; 1781 } 1782 1783 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons); 1784 cp_cons = RING_CMP(tmp_raw_cons); 1785 rxcmp1 = (struct rx_cmp_ext *) 1786 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 1787 1788 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 1789 return -EBUSY; 1790 1791 /* The valid test of the entry must be done first before 1792 * reading any further. 1793 */ 1794 dma_rmb(); 1795 prod = rxr->rx_prod; 1796 1797 if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) { 1798 bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp, 1799 (struct rx_tpa_start_cmp_ext *)rxcmp1); 1800 1801 *event |= BNXT_RX_EVENT; 1802 goto next_rx_no_prod_no_len; 1803 1804 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 1805 skb = bnxt_tpa_end(bp, cpr, &tmp_raw_cons, 1806 (struct rx_tpa_end_cmp *)rxcmp, 1807 (struct rx_tpa_end_cmp_ext *)rxcmp1, event); 1808 1809 if (IS_ERR(skb)) 1810 return -EBUSY; 1811 1812 rc = -ENOMEM; 1813 if (likely(skb)) { 1814 bnxt_deliver_skb(bp, bnapi, skb); 1815 rc = 1; 1816 } 1817 *event |= BNXT_RX_EVENT; 1818 goto next_rx_no_prod_no_len; 1819 } 1820 1821 cons = rxcmp->rx_cmp_opaque; 1822 if (unlikely(cons != rxr->rx_next_cons)) { 1823 int rc1 = bnxt_discard_rx(bp, cpr, &tmp_raw_cons, rxcmp); 1824 1825 /* 0xffff is forced error, don't print it */ 1826 if (rxr->rx_next_cons != 0xffff) 1827 netdev_warn(bp->dev, "RX cons %x != expected cons %x\n", 1828 cons, rxr->rx_next_cons); 1829 bnxt_sched_reset(bp, rxr); 1830 if (rc1) 1831 return rc1; 1832 goto next_rx_no_prod_no_len; 1833 } 1834 rx_buf = &rxr->rx_buf_ring[cons]; 1835 data = rx_buf->data; 1836 data_ptr = rx_buf->data_ptr; 1837 prefetch(data_ptr); 1838 1839 misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1); 1840 agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT; 1841 1842 if (agg_bufs) { 1843 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons)) 1844 return -EBUSY; 1845 1846 cp_cons = NEXT_CMP(cp_cons); 1847 *event |= BNXT_AGG_EVENT; 1848 } 1849 *event |= BNXT_RX_EVENT; 1850 1851 rx_buf->data = NULL; 1852 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) { 1853 u32 rx_err = le32_to_cpu(rxcmp1->rx_cmp_cfa_code_errors_v2); 1854 1855 bnxt_reuse_rx_data(rxr, cons, data); 1856 if (agg_bufs) 1857 bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, agg_bufs, 1858 false); 1859 1860 rc = -EIO; 1861 if (rx_err & RX_CMPL_ERRORS_BUFFER_ERROR_MASK) { 1862 bnapi->cp_ring.sw_stats.rx.rx_buf_errors++; 1863 if (!(bp->flags & BNXT_FLAG_CHIP_P5) && 1864 !(bp->fw_cap & BNXT_FW_CAP_RING_MONITOR)) { 1865 netdev_warn_once(bp->dev, "RX buffer error %x\n", 1866 rx_err); 1867 bnxt_sched_reset(bp, rxr); 1868 } 1869 } 1870 goto next_rx_no_len; 1871 } 1872 1873 flags = le32_to_cpu(rxcmp->rx_cmp_len_flags_type); 1874 len = flags >> RX_CMP_LEN_SHIFT; 1875 dma_addr = rx_buf->mapping; 1876 1877 if (bnxt_rx_xdp(bp, rxr, cons, data, &data_ptr, &len, event)) { 1878 rc = 1; 1879 goto next_rx; 1880 } 1881 1882 if (len <= bp->rx_copy_thresh) { 1883 skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr); 1884 bnxt_reuse_rx_data(rxr, cons, data); 1885 if (!skb) { 1886 if (agg_bufs) 1887 bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, 1888 agg_bufs, false); 1889 rc = -ENOMEM; 1890 goto next_rx; 1891 } 1892 } else { 1893 u32 payload; 1894 1895 if (rx_buf->data_ptr == data_ptr) 1896 payload = misc & RX_CMP_PAYLOAD_OFFSET; 1897 else 1898 payload = 0; 1899 skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr, 1900 payload | len); 1901 if (!skb) { 1902 rc = -ENOMEM; 1903 goto next_rx; 1904 } 1905 } 1906 1907 if (agg_bufs) { 1908 skb = bnxt_rx_pages(bp, cpr, skb, cp_cons, agg_bufs, false); 1909 if (!skb) { 1910 rc = -ENOMEM; 1911 goto next_rx; 1912 } 1913 } 1914 1915 if (RX_CMP_HASH_VALID(rxcmp)) { 1916 u32 hash_type = RX_CMP_HASH_TYPE(rxcmp); 1917 enum pkt_hash_types type = PKT_HASH_TYPE_L4; 1918 1919 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */ 1920 if (hash_type != 1 && hash_type != 3) 1921 type = PKT_HASH_TYPE_L3; 1922 skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type); 1923 } 1924 1925 cfa_code = RX_CMP_CFA_CODE(rxcmp1); 1926 skb->protocol = eth_type_trans(skb, bnxt_get_pkt_dev(bp, cfa_code)); 1927 1928 if ((rxcmp1->rx_cmp_flags2 & 1929 cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) && 1930 (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) { 1931 u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data); 1932 u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK; 1933 __be16 vlan_proto = htons(meta_data >> 1934 RX_CMP_FLAGS2_METADATA_TPID_SFT); 1935 1936 if (eth_type_vlan(vlan_proto)) { 1937 __vlan_hwaccel_put_tag(skb, vlan_proto, vtag); 1938 } else { 1939 dev_kfree_skb(skb); 1940 goto next_rx; 1941 } 1942 } 1943 1944 skb_checksum_none_assert(skb); 1945 if (RX_CMP_L4_CS_OK(rxcmp1)) { 1946 if (dev->features & NETIF_F_RXCSUM) { 1947 skb->ip_summed = CHECKSUM_UNNECESSARY; 1948 skb->csum_level = RX_CMP_ENCAP(rxcmp1); 1949 } 1950 } else { 1951 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) { 1952 if (dev->features & NETIF_F_RXCSUM) 1953 bnapi->cp_ring.sw_stats.rx.rx_l4_csum_errors++; 1954 } 1955 } 1956 1957 if (unlikely((flags & RX_CMP_FLAGS_ITYPES_MASK) == 1958 RX_CMP_FLAGS_ITYPE_PTP_W_TS)) { 1959 if (bp->flags & BNXT_FLAG_CHIP_P5) { 1960 u32 cmpl_ts = le32_to_cpu(rxcmp1->rx_cmp_timestamp); 1961 u64 ns, ts; 1962 1963 if (!bnxt_get_rx_ts_p5(bp, &ts, cmpl_ts)) { 1964 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 1965 1966 spin_lock_bh(&ptp->ptp_lock); 1967 ns = timecounter_cyc2time(&ptp->tc, ts); 1968 spin_unlock_bh(&ptp->ptp_lock); 1969 memset(skb_hwtstamps(skb), 0, 1970 sizeof(*skb_hwtstamps(skb))); 1971 skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns); 1972 } 1973 } 1974 } 1975 bnxt_deliver_skb(bp, bnapi, skb); 1976 rc = 1; 1977 1978 next_rx: 1979 cpr->rx_packets += 1; 1980 cpr->rx_bytes += len; 1981 1982 next_rx_no_len: 1983 rxr->rx_prod = NEXT_RX(prod); 1984 rxr->rx_next_cons = NEXT_RX(cons); 1985 1986 next_rx_no_prod_no_len: 1987 *raw_cons = tmp_raw_cons; 1988 1989 return rc; 1990 } 1991 1992 /* In netpoll mode, if we are using a combined completion ring, we need to 1993 * discard the rx packets and recycle the buffers. 1994 */ 1995 static int bnxt_force_rx_discard(struct bnxt *bp, 1996 struct bnxt_cp_ring_info *cpr, 1997 u32 *raw_cons, u8 *event) 1998 { 1999 u32 tmp_raw_cons = *raw_cons; 2000 struct rx_cmp_ext *rxcmp1; 2001 struct rx_cmp *rxcmp; 2002 u16 cp_cons; 2003 u8 cmp_type; 2004 2005 cp_cons = RING_CMP(tmp_raw_cons); 2006 rxcmp = (struct rx_cmp *) 2007 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2008 2009 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons); 2010 cp_cons = RING_CMP(tmp_raw_cons); 2011 rxcmp1 = (struct rx_cmp_ext *) 2012 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2013 2014 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 2015 return -EBUSY; 2016 2017 /* The valid test of the entry must be done first before 2018 * reading any further. 2019 */ 2020 dma_rmb(); 2021 cmp_type = RX_CMP_TYPE(rxcmp); 2022 if (cmp_type == CMP_TYPE_RX_L2_CMP) { 2023 rxcmp1->rx_cmp_cfa_code_errors_v2 |= 2024 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR); 2025 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 2026 struct rx_tpa_end_cmp_ext *tpa_end1; 2027 2028 tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1; 2029 tpa_end1->rx_tpa_end_cmp_errors_v2 |= 2030 cpu_to_le32(RX_TPA_END_CMP_ERRORS); 2031 } 2032 return bnxt_rx_pkt(bp, cpr, raw_cons, event); 2033 } 2034 2035 u32 bnxt_fw_health_readl(struct bnxt *bp, int reg_idx) 2036 { 2037 struct bnxt_fw_health *fw_health = bp->fw_health; 2038 u32 reg = fw_health->regs[reg_idx]; 2039 u32 reg_type, reg_off, val = 0; 2040 2041 reg_type = BNXT_FW_HEALTH_REG_TYPE(reg); 2042 reg_off = BNXT_FW_HEALTH_REG_OFF(reg); 2043 switch (reg_type) { 2044 case BNXT_FW_HEALTH_REG_TYPE_CFG: 2045 pci_read_config_dword(bp->pdev, reg_off, &val); 2046 break; 2047 case BNXT_FW_HEALTH_REG_TYPE_GRC: 2048 reg_off = fw_health->mapped_regs[reg_idx]; 2049 fallthrough; 2050 case BNXT_FW_HEALTH_REG_TYPE_BAR0: 2051 val = readl(bp->bar0 + reg_off); 2052 break; 2053 case BNXT_FW_HEALTH_REG_TYPE_BAR1: 2054 val = readl(bp->bar1 + reg_off); 2055 break; 2056 } 2057 if (reg_idx == BNXT_FW_RESET_INPROG_REG) 2058 val &= fw_health->fw_reset_inprog_reg_mask; 2059 return val; 2060 } 2061 2062 static u16 bnxt_agg_ring_id_to_grp_idx(struct bnxt *bp, u16 ring_id) 2063 { 2064 int i; 2065 2066 for (i = 0; i < bp->rx_nr_rings; i++) { 2067 u16 grp_idx = bp->rx_ring[i].bnapi->index; 2068 struct bnxt_ring_grp_info *grp_info; 2069 2070 grp_info = &bp->grp_info[grp_idx]; 2071 if (grp_info->agg_fw_ring_id == ring_id) 2072 return grp_idx; 2073 } 2074 return INVALID_HW_RING_ID; 2075 } 2076 2077 #define BNXT_GET_EVENT_PORT(data) \ 2078 ((data) & \ 2079 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK) 2080 2081 #define BNXT_EVENT_RING_TYPE(data2) \ 2082 ((data2) & \ 2083 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_MASK) 2084 2085 #define BNXT_EVENT_RING_TYPE_RX(data2) \ 2086 (BNXT_EVENT_RING_TYPE(data2) == \ 2087 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_RX) 2088 2089 static int bnxt_async_event_process(struct bnxt *bp, 2090 struct hwrm_async_event_cmpl *cmpl) 2091 { 2092 u16 event_id = le16_to_cpu(cmpl->event_id); 2093 u32 data1 = le32_to_cpu(cmpl->event_data1); 2094 u32 data2 = le32_to_cpu(cmpl->event_data2); 2095 2096 /* TODO CHIMP_FW: Define event id's for link change, error etc */ 2097 switch (event_id) { 2098 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: { 2099 struct bnxt_link_info *link_info = &bp->link_info; 2100 2101 if (BNXT_VF(bp)) 2102 goto async_event_process_exit; 2103 2104 /* print unsupported speed warning in forced speed mode only */ 2105 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) && 2106 (data1 & 0x20000)) { 2107 u16 fw_speed = link_info->force_link_speed; 2108 u32 speed = bnxt_fw_to_ethtool_speed(fw_speed); 2109 2110 if (speed != SPEED_UNKNOWN) 2111 netdev_warn(bp->dev, "Link speed %d no longer supported\n", 2112 speed); 2113 } 2114 set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event); 2115 } 2116 fallthrough; 2117 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE: 2118 case ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE: 2119 set_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, &bp->sp_event); 2120 fallthrough; 2121 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE: 2122 set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event); 2123 break; 2124 case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD: 2125 set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event); 2126 break; 2127 case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: { 2128 u16 port_id = BNXT_GET_EVENT_PORT(data1); 2129 2130 if (BNXT_VF(bp)) 2131 break; 2132 2133 if (bp->pf.port_id != port_id) 2134 break; 2135 2136 set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event); 2137 break; 2138 } 2139 case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE: 2140 if (BNXT_PF(bp)) 2141 goto async_event_process_exit; 2142 set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event); 2143 break; 2144 case ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY: { 2145 char *fatal_str = "non-fatal"; 2146 2147 if (!bp->fw_health) 2148 goto async_event_process_exit; 2149 2150 bp->fw_reset_timestamp = jiffies; 2151 bp->fw_reset_min_dsecs = cmpl->timestamp_lo; 2152 if (!bp->fw_reset_min_dsecs) 2153 bp->fw_reset_min_dsecs = BNXT_DFLT_FW_RST_MIN_DSECS; 2154 bp->fw_reset_max_dsecs = le16_to_cpu(cmpl->timestamp_hi); 2155 if (!bp->fw_reset_max_dsecs) 2156 bp->fw_reset_max_dsecs = BNXT_DFLT_FW_RST_MAX_DSECS; 2157 if (EVENT_DATA1_RESET_NOTIFY_FATAL(data1)) { 2158 fatal_str = "fatal"; 2159 set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 2160 } 2161 netif_warn(bp, hw, bp->dev, 2162 "Firmware %s reset event, data1: 0x%x, data2: 0x%x, min wait %u ms, max wait %u ms\n", 2163 fatal_str, data1, data2, 2164 bp->fw_reset_min_dsecs * 100, 2165 bp->fw_reset_max_dsecs * 100); 2166 set_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event); 2167 break; 2168 } 2169 case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY: { 2170 struct bnxt_fw_health *fw_health = bp->fw_health; 2171 2172 if (!fw_health) 2173 goto async_event_process_exit; 2174 2175 fw_health->enabled = EVENT_DATA1_RECOVERY_ENABLED(data1); 2176 fw_health->master = EVENT_DATA1_RECOVERY_MASTER_FUNC(data1); 2177 if (!fw_health->enabled) { 2178 netif_info(bp, drv, bp->dev, 2179 "Error recovery info: error recovery[0]\n"); 2180 break; 2181 } 2182 fw_health->tmr_multiplier = 2183 DIV_ROUND_UP(fw_health->polling_dsecs * HZ, 2184 bp->current_interval * 10); 2185 fw_health->tmr_counter = fw_health->tmr_multiplier; 2186 fw_health->last_fw_heartbeat = 2187 bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 2188 fw_health->last_fw_reset_cnt = 2189 bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 2190 netif_info(bp, drv, bp->dev, 2191 "Error recovery info: error recovery[1], master[%d], reset count[%u], health status: 0x%x\n", 2192 fw_health->master, fw_health->last_fw_reset_cnt, 2193 bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG)); 2194 goto async_event_process_exit; 2195 } 2196 case ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION: 2197 netif_notice(bp, hw, bp->dev, 2198 "Received firmware debug notification, data1: 0x%x, data2: 0x%x\n", 2199 data1, data2); 2200 goto async_event_process_exit; 2201 case ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG: { 2202 struct bnxt_rx_ring_info *rxr; 2203 u16 grp_idx; 2204 2205 if (bp->flags & BNXT_FLAG_CHIP_P5) 2206 goto async_event_process_exit; 2207 2208 netdev_warn(bp->dev, "Ring monitor event, ring type %lu id 0x%x\n", 2209 BNXT_EVENT_RING_TYPE(data2), data1); 2210 if (!BNXT_EVENT_RING_TYPE_RX(data2)) 2211 goto async_event_process_exit; 2212 2213 grp_idx = bnxt_agg_ring_id_to_grp_idx(bp, data1); 2214 if (grp_idx == INVALID_HW_RING_ID) { 2215 netdev_warn(bp->dev, "Unknown RX agg ring id 0x%x\n", 2216 data1); 2217 goto async_event_process_exit; 2218 } 2219 rxr = bp->bnapi[grp_idx]->rx_ring; 2220 bnxt_sched_reset(bp, rxr); 2221 goto async_event_process_exit; 2222 } 2223 case ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST: { 2224 struct bnxt_fw_health *fw_health = bp->fw_health; 2225 2226 netif_notice(bp, hw, bp->dev, 2227 "Received firmware echo request, data1: 0x%x, data2: 0x%x\n", 2228 data1, data2); 2229 if (fw_health) { 2230 fw_health->echo_req_data1 = data1; 2231 fw_health->echo_req_data2 = data2; 2232 set_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event); 2233 break; 2234 } 2235 goto async_event_process_exit; 2236 } 2237 default: 2238 goto async_event_process_exit; 2239 } 2240 bnxt_queue_sp_work(bp); 2241 async_event_process_exit: 2242 bnxt_ulp_async_events(bp, cmpl); 2243 return 0; 2244 } 2245 2246 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp) 2247 { 2248 u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id; 2249 struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp; 2250 struct hwrm_fwd_req_cmpl *fwd_req_cmpl = 2251 (struct hwrm_fwd_req_cmpl *)txcmp; 2252 2253 switch (cmpl_type) { 2254 case CMPL_BASE_TYPE_HWRM_DONE: 2255 seq_id = le16_to_cpu(h_cmpl->sequence_id); 2256 if (seq_id == bp->hwrm_intr_seq_id) 2257 bp->hwrm_intr_seq_id = (u16)~bp->hwrm_intr_seq_id; 2258 else 2259 netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id); 2260 break; 2261 2262 case CMPL_BASE_TYPE_HWRM_FWD_REQ: 2263 vf_id = le16_to_cpu(fwd_req_cmpl->source_id); 2264 2265 if ((vf_id < bp->pf.first_vf_id) || 2266 (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) { 2267 netdev_err(bp->dev, "Msg contains invalid VF id %x\n", 2268 vf_id); 2269 return -EINVAL; 2270 } 2271 2272 set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap); 2273 set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event); 2274 bnxt_queue_sp_work(bp); 2275 break; 2276 2277 case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT: 2278 bnxt_async_event_process(bp, 2279 (struct hwrm_async_event_cmpl *)txcmp); 2280 break; 2281 2282 default: 2283 break; 2284 } 2285 2286 return 0; 2287 } 2288 2289 static irqreturn_t bnxt_msix(int irq, void *dev_instance) 2290 { 2291 struct bnxt_napi *bnapi = dev_instance; 2292 struct bnxt *bp = bnapi->bp; 2293 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2294 u32 cons = RING_CMP(cpr->cp_raw_cons); 2295 2296 cpr->event_ctr++; 2297 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]); 2298 napi_schedule(&bnapi->napi); 2299 return IRQ_HANDLED; 2300 } 2301 2302 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr) 2303 { 2304 u32 raw_cons = cpr->cp_raw_cons; 2305 u16 cons = RING_CMP(raw_cons); 2306 struct tx_cmp *txcmp; 2307 2308 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 2309 2310 return TX_CMP_VALID(txcmp, raw_cons); 2311 } 2312 2313 static irqreturn_t bnxt_inta(int irq, void *dev_instance) 2314 { 2315 struct bnxt_napi *bnapi = dev_instance; 2316 struct bnxt *bp = bnapi->bp; 2317 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2318 u32 cons = RING_CMP(cpr->cp_raw_cons); 2319 u32 int_status; 2320 2321 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]); 2322 2323 if (!bnxt_has_work(bp, cpr)) { 2324 int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS); 2325 /* return if erroneous interrupt */ 2326 if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id))) 2327 return IRQ_NONE; 2328 } 2329 2330 /* disable ring IRQ */ 2331 BNXT_CP_DB_IRQ_DIS(cpr->cp_db.doorbell); 2332 2333 /* Return here if interrupt is shared and is disabled. */ 2334 if (unlikely(atomic_read(&bp->intr_sem) != 0)) 2335 return IRQ_HANDLED; 2336 2337 napi_schedule(&bnapi->napi); 2338 return IRQ_HANDLED; 2339 } 2340 2341 static int __bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 2342 int budget) 2343 { 2344 struct bnxt_napi *bnapi = cpr->bnapi; 2345 u32 raw_cons = cpr->cp_raw_cons; 2346 u32 cons; 2347 int tx_pkts = 0; 2348 int rx_pkts = 0; 2349 u8 event = 0; 2350 struct tx_cmp *txcmp; 2351 2352 cpr->has_more_work = 0; 2353 cpr->had_work_done = 1; 2354 while (1) { 2355 int rc; 2356 2357 cons = RING_CMP(raw_cons); 2358 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 2359 2360 if (!TX_CMP_VALID(txcmp, raw_cons)) 2361 break; 2362 2363 /* The valid test of the entry must be done first before 2364 * reading any further. 2365 */ 2366 dma_rmb(); 2367 if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) { 2368 tx_pkts++; 2369 /* return full budget so NAPI will complete. */ 2370 if (unlikely(tx_pkts > bp->tx_wake_thresh)) { 2371 rx_pkts = budget; 2372 raw_cons = NEXT_RAW_CMP(raw_cons); 2373 if (budget) 2374 cpr->has_more_work = 1; 2375 break; 2376 } 2377 } else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) { 2378 if (likely(budget)) 2379 rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event); 2380 else 2381 rc = bnxt_force_rx_discard(bp, cpr, &raw_cons, 2382 &event); 2383 if (likely(rc >= 0)) 2384 rx_pkts += rc; 2385 /* Increment rx_pkts when rc is -ENOMEM to count towards 2386 * the NAPI budget. Otherwise, we may potentially loop 2387 * here forever if we consistently cannot allocate 2388 * buffers. 2389 */ 2390 else if (rc == -ENOMEM && budget) 2391 rx_pkts++; 2392 else if (rc == -EBUSY) /* partial completion */ 2393 break; 2394 } else if (unlikely((TX_CMP_TYPE(txcmp) == 2395 CMPL_BASE_TYPE_HWRM_DONE) || 2396 (TX_CMP_TYPE(txcmp) == 2397 CMPL_BASE_TYPE_HWRM_FWD_REQ) || 2398 (TX_CMP_TYPE(txcmp) == 2399 CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) { 2400 bnxt_hwrm_handler(bp, txcmp); 2401 } 2402 raw_cons = NEXT_RAW_CMP(raw_cons); 2403 2404 if (rx_pkts && rx_pkts == budget) { 2405 cpr->has_more_work = 1; 2406 break; 2407 } 2408 } 2409 2410 if (event & BNXT_REDIRECT_EVENT) 2411 xdp_do_flush_map(); 2412 2413 if (event & BNXT_TX_EVENT) { 2414 struct bnxt_tx_ring_info *txr = bnapi->tx_ring; 2415 u16 prod = txr->tx_prod; 2416 2417 /* Sync BD data before updating doorbell */ 2418 wmb(); 2419 2420 bnxt_db_write_relaxed(bp, &txr->tx_db, prod); 2421 } 2422 2423 cpr->cp_raw_cons = raw_cons; 2424 bnapi->tx_pkts += tx_pkts; 2425 bnapi->events |= event; 2426 return rx_pkts; 2427 } 2428 2429 static void __bnxt_poll_work_done(struct bnxt *bp, struct bnxt_napi *bnapi) 2430 { 2431 if (bnapi->tx_pkts) { 2432 bnapi->tx_int(bp, bnapi, bnapi->tx_pkts); 2433 bnapi->tx_pkts = 0; 2434 } 2435 2436 if ((bnapi->events & BNXT_RX_EVENT) && !(bnapi->in_reset)) { 2437 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 2438 2439 if (bnapi->events & BNXT_AGG_EVENT) 2440 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 2441 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 2442 } 2443 bnapi->events = 0; 2444 } 2445 2446 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 2447 int budget) 2448 { 2449 struct bnxt_napi *bnapi = cpr->bnapi; 2450 int rx_pkts; 2451 2452 rx_pkts = __bnxt_poll_work(bp, cpr, budget); 2453 2454 /* ACK completion ring before freeing tx ring and producing new 2455 * buffers in rx/agg rings to prevent overflowing the completion 2456 * ring. 2457 */ 2458 bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons); 2459 2460 __bnxt_poll_work_done(bp, bnapi); 2461 return rx_pkts; 2462 } 2463 2464 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget) 2465 { 2466 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 2467 struct bnxt *bp = bnapi->bp; 2468 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2469 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 2470 struct tx_cmp *txcmp; 2471 struct rx_cmp_ext *rxcmp1; 2472 u32 cp_cons, tmp_raw_cons; 2473 u32 raw_cons = cpr->cp_raw_cons; 2474 u32 rx_pkts = 0; 2475 u8 event = 0; 2476 2477 while (1) { 2478 int rc; 2479 2480 cp_cons = RING_CMP(raw_cons); 2481 txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2482 2483 if (!TX_CMP_VALID(txcmp, raw_cons)) 2484 break; 2485 2486 /* The valid test of the entry must be done first before 2487 * reading any further. 2488 */ 2489 dma_rmb(); 2490 if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) { 2491 tmp_raw_cons = NEXT_RAW_CMP(raw_cons); 2492 cp_cons = RING_CMP(tmp_raw_cons); 2493 rxcmp1 = (struct rx_cmp_ext *) 2494 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2495 2496 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 2497 break; 2498 2499 /* force an error to recycle the buffer */ 2500 rxcmp1->rx_cmp_cfa_code_errors_v2 |= 2501 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR); 2502 2503 rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event); 2504 if (likely(rc == -EIO) && budget) 2505 rx_pkts++; 2506 else if (rc == -EBUSY) /* partial completion */ 2507 break; 2508 } else if (unlikely(TX_CMP_TYPE(txcmp) == 2509 CMPL_BASE_TYPE_HWRM_DONE)) { 2510 bnxt_hwrm_handler(bp, txcmp); 2511 } else { 2512 netdev_err(bp->dev, 2513 "Invalid completion received on special ring\n"); 2514 } 2515 raw_cons = NEXT_RAW_CMP(raw_cons); 2516 2517 if (rx_pkts == budget) 2518 break; 2519 } 2520 2521 cpr->cp_raw_cons = raw_cons; 2522 BNXT_DB_CQ(&cpr->cp_db, cpr->cp_raw_cons); 2523 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 2524 2525 if (event & BNXT_AGG_EVENT) 2526 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 2527 2528 if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) { 2529 napi_complete_done(napi, rx_pkts); 2530 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 2531 } 2532 return rx_pkts; 2533 } 2534 2535 static int bnxt_poll(struct napi_struct *napi, int budget) 2536 { 2537 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 2538 struct bnxt *bp = bnapi->bp; 2539 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2540 int work_done = 0; 2541 2542 if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) { 2543 napi_complete(napi); 2544 return 0; 2545 } 2546 while (1) { 2547 work_done += bnxt_poll_work(bp, cpr, budget - work_done); 2548 2549 if (work_done >= budget) { 2550 if (!budget) 2551 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 2552 break; 2553 } 2554 2555 if (!bnxt_has_work(bp, cpr)) { 2556 if (napi_complete_done(napi, work_done)) 2557 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 2558 break; 2559 } 2560 } 2561 if (bp->flags & BNXT_FLAG_DIM) { 2562 struct dim_sample dim_sample = {}; 2563 2564 dim_update_sample(cpr->event_ctr, 2565 cpr->rx_packets, 2566 cpr->rx_bytes, 2567 &dim_sample); 2568 net_dim(&cpr->dim, dim_sample); 2569 } 2570 return work_done; 2571 } 2572 2573 static int __bnxt_poll_cqs(struct bnxt *bp, struct bnxt_napi *bnapi, int budget) 2574 { 2575 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2576 int i, work_done = 0; 2577 2578 for (i = 0; i < 2; i++) { 2579 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i]; 2580 2581 if (cpr2) { 2582 work_done += __bnxt_poll_work(bp, cpr2, 2583 budget - work_done); 2584 cpr->has_more_work |= cpr2->has_more_work; 2585 } 2586 } 2587 return work_done; 2588 } 2589 2590 static void __bnxt_poll_cqs_done(struct bnxt *bp, struct bnxt_napi *bnapi, 2591 u64 dbr_type) 2592 { 2593 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2594 int i; 2595 2596 for (i = 0; i < 2; i++) { 2597 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i]; 2598 struct bnxt_db_info *db; 2599 2600 if (cpr2 && cpr2->had_work_done) { 2601 db = &cpr2->cp_db; 2602 writeq(db->db_key64 | dbr_type | 2603 RING_CMP(cpr2->cp_raw_cons), db->doorbell); 2604 cpr2->had_work_done = 0; 2605 } 2606 } 2607 __bnxt_poll_work_done(bp, bnapi); 2608 } 2609 2610 static int bnxt_poll_p5(struct napi_struct *napi, int budget) 2611 { 2612 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 2613 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2614 u32 raw_cons = cpr->cp_raw_cons; 2615 struct bnxt *bp = bnapi->bp; 2616 struct nqe_cn *nqcmp; 2617 int work_done = 0; 2618 u32 cons; 2619 2620 if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) { 2621 napi_complete(napi); 2622 return 0; 2623 } 2624 if (cpr->has_more_work) { 2625 cpr->has_more_work = 0; 2626 work_done = __bnxt_poll_cqs(bp, bnapi, budget); 2627 } 2628 while (1) { 2629 cons = RING_CMP(raw_cons); 2630 nqcmp = &cpr->nq_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 2631 2632 if (!NQ_CMP_VALID(nqcmp, raw_cons)) { 2633 if (cpr->has_more_work) 2634 break; 2635 2636 __bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL); 2637 cpr->cp_raw_cons = raw_cons; 2638 if (napi_complete_done(napi, work_done)) 2639 BNXT_DB_NQ_ARM_P5(&cpr->cp_db, 2640 cpr->cp_raw_cons); 2641 return work_done; 2642 } 2643 2644 /* The valid test of the entry must be done first before 2645 * reading any further. 2646 */ 2647 dma_rmb(); 2648 2649 if (nqcmp->type == cpu_to_le16(NQ_CN_TYPE_CQ_NOTIFICATION)) { 2650 u32 idx = le32_to_cpu(nqcmp->cq_handle_low); 2651 struct bnxt_cp_ring_info *cpr2; 2652 2653 cpr2 = cpr->cp_ring_arr[idx]; 2654 work_done += __bnxt_poll_work(bp, cpr2, 2655 budget - work_done); 2656 cpr->has_more_work |= cpr2->has_more_work; 2657 } else { 2658 bnxt_hwrm_handler(bp, (struct tx_cmp *)nqcmp); 2659 } 2660 raw_cons = NEXT_RAW_CMP(raw_cons); 2661 } 2662 __bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ); 2663 if (raw_cons != cpr->cp_raw_cons) { 2664 cpr->cp_raw_cons = raw_cons; 2665 BNXT_DB_NQ_P5(&cpr->cp_db, raw_cons); 2666 } 2667 return work_done; 2668 } 2669 2670 static void bnxt_free_tx_skbs(struct bnxt *bp) 2671 { 2672 int i, max_idx; 2673 struct pci_dev *pdev = bp->pdev; 2674 2675 if (!bp->tx_ring) 2676 return; 2677 2678 max_idx = bp->tx_nr_pages * TX_DESC_CNT; 2679 for (i = 0; i < bp->tx_nr_rings; i++) { 2680 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 2681 int j; 2682 2683 for (j = 0; j < max_idx;) { 2684 struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j]; 2685 struct sk_buff *skb; 2686 int k, last; 2687 2688 if (i < bp->tx_nr_rings_xdp && 2689 tx_buf->action == XDP_REDIRECT) { 2690 dma_unmap_single(&pdev->dev, 2691 dma_unmap_addr(tx_buf, mapping), 2692 dma_unmap_len(tx_buf, len), 2693 PCI_DMA_TODEVICE); 2694 xdp_return_frame(tx_buf->xdpf); 2695 tx_buf->action = 0; 2696 tx_buf->xdpf = NULL; 2697 j++; 2698 continue; 2699 } 2700 2701 skb = tx_buf->skb; 2702 if (!skb) { 2703 j++; 2704 continue; 2705 } 2706 2707 tx_buf->skb = NULL; 2708 2709 if (tx_buf->is_push) { 2710 dev_kfree_skb(skb); 2711 j += 2; 2712 continue; 2713 } 2714 2715 dma_unmap_single(&pdev->dev, 2716 dma_unmap_addr(tx_buf, mapping), 2717 skb_headlen(skb), 2718 PCI_DMA_TODEVICE); 2719 2720 last = tx_buf->nr_frags; 2721 j += 2; 2722 for (k = 0; k < last; k++, j++) { 2723 int ring_idx = j & bp->tx_ring_mask; 2724 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 2725 2726 tx_buf = &txr->tx_buf_ring[ring_idx]; 2727 dma_unmap_page( 2728 &pdev->dev, 2729 dma_unmap_addr(tx_buf, mapping), 2730 skb_frag_size(frag), PCI_DMA_TODEVICE); 2731 } 2732 dev_kfree_skb(skb); 2733 } 2734 netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i)); 2735 } 2736 } 2737 2738 static void bnxt_free_one_rx_ring_skbs(struct bnxt *bp, int ring_nr) 2739 { 2740 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 2741 struct pci_dev *pdev = bp->pdev; 2742 struct bnxt_tpa_idx_map *map; 2743 int i, max_idx, max_agg_idx; 2744 2745 max_idx = bp->rx_nr_pages * RX_DESC_CNT; 2746 max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT; 2747 if (!rxr->rx_tpa) 2748 goto skip_rx_tpa_free; 2749 2750 for (i = 0; i < bp->max_tpa; i++) { 2751 struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[i]; 2752 u8 *data = tpa_info->data; 2753 2754 if (!data) 2755 continue; 2756 2757 dma_unmap_single_attrs(&pdev->dev, tpa_info->mapping, 2758 bp->rx_buf_use_size, bp->rx_dir, 2759 DMA_ATTR_WEAK_ORDERING); 2760 2761 tpa_info->data = NULL; 2762 2763 kfree(data); 2764 } 2765 2766 skip_rx_tpa_free: 2767 for (i = 0; i < max_idx; i++) { 2768 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[i]; 2769 dma_addr_t mapping = rx_buf->mapping; 2770 void *data = rx_buf->data; 2771 2772 if (!data) 2773 continue; 2774 2775 rx_buf->data = NULL; 2776 if (BNXT_RX_PAGE_MODE(bp)) { 2777 mapping -= bp->rx_dma_offset; 2778 dma_unmap_page_attrs(&pdev->dev, mapping, PAGE_SIZE, 2779 bp->rx_dir, 2780 DMA_ATTR_WEAK_ORDERING); 2781 page_pool_recycle_direct(rxr->page_pool, data); 2782 } else { 2783 dma_unmap_single_attrs(&pdev->dev, mapping, 2784 bp->rx_buf_use_size, bp->rx_dir, 2785 DMA_ATTR_WEAK_ORDERING); 2786 kfree(data); 2787 } 2788 } 2789 for (i = 0; i < max_agg_idx; i++) { 2790 struct bnxt_sw_rx_agg_bd *rx_agg_buf = &rxr->rx_agg_ring[i]; 2791 struct page *page = rx_agg_buf->page; 2792 2793 if (!page) 2794 continue; 2795 2796 dma_unmap_page_attrs(&pdev->dev, rx_agg_buf->mapping, 2797 BNXT_RX_PAGE_SIZE, PCI_DMA_FROMDEVICE, 2798 DMA_ATTR_WEAK_ORDERING); 2799 2800 rx_agg_buf->page = NULL; 2801 __clear_bit(i, rxr->rx_agg_bmap); 2802 2803 __free_page(page); 2804 } 2805 if (rxr->rx_page) { 2806 __free_page(rxr->rx_page); 2807 rxr->rx_page = NULL; 2808 } 2809 map = rxr->rx_tpa_idx_map; 2810 if (map) 2811 memset(map->agg_idx_bmap, 0, sizeof(map->agg_idx_bmap)); 2812 } 2813 2814 static void bnxt_free_rx_skbs(struct bnxt *bp) 2815 { 2816 int i; 2817 2818 if (!bp->rx_ring) 2819 return; 2820 2821 for (i = 0; i < bp->rx_nr_rings; i++) 2822 bnxt_free_one_rx_ring_skbs(bp, i); 2823 } 2824 2825 static void bnxt_free_skbs(struct bnxt *bp) 2826 { 2827 bnxt_free_tx_skbs(bp); 2828 bnxt_free_rx_skbs(bp); 2829 } 2830 2831 static void bnxt_init_ctx_mem(struct bnxt_mem_init *mem_init, void *p, int len) 2832 { 2833 u8 init_val = mem_init->init_val; 2834 u16 offset = mem_init->offset; 2835 u8 *p2 = p; 2836 int i; 2837 2838 if (!init_val) 2839 return; 2840 if (offset == BNXT_MEM_INVALID_OFFSET) { 2841 memset(p, init_val, len); 2842 return; 2843 } 2844 for (i = 0; i < len; i += mem_init->size) 2845 *(p2 + i + offset) = init_val; 2846 } 2847 2848 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem) 2849 { 2850 struct pci_dev *pdev = bp->pdev; 2851 int i; 2852 2853 for (i = 0; i < rmem->nr_pages; i++) { 2854 if (!rmem->pg_arr[i]) 2855 continue; 2856 2857 dma_free_coherent(&pdev->dev, rmem->page_size, 2858 rmem->pg_arr[i], rmem->dma_arr[i]); 2859 2860 rmem->pg_arr[i] = NULL; 2861 } 2862 if (rmem->pg_tbl) { 2863 size_t pg_tbl_size = rmem->nr_pages * 8; 2864 2865 if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG) 2866 pg_tbl_size = rmem->page_size; 2867 dma_free_coherent(&pdev->dev, pg_tbl_size, 2868 rmem->pg_tbl, rmem->pg_tbl_map); 2869 rmem->pg_tbl = NULL; 2870 } 2871 if (rmem->vmem_size && *rmem->vmem) { 2872 vfree(*rmem->vmem); 2873 *rmem->vmem = NULL; 2874 } 2875 } 2876 2877 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem) 2878 { 2879 struct pci_dev *pdev = bp->pdev; 2880 u64 valid_bit = 0; 2881 int i; 2882 2883 if (rmem->flags & (BNXT_RMEM_VALID_PTE_FLAG | BNXT_RMEM_RING_PTE_FLAG)) 2884 valid_bit = PTU_PTE_VALID; 2885 if ((rmem->nr_pages > 1 || rmem->depth > 0) && !rmem->pg_tbl) { 2886 size_t pg_tbl_size = rmem->nr_pages * 8; 2887 2888 if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG) 2889 pg_tbl_size = rmem->page_size; 2890 rmem->pg_tbl = dma_alloc_coherent(&pdev->dev, pg_tbl_size, 2891 &rmem->pg_tbl_map, 2892 GFP_KERNEL); 2893 if (!rmem->pg_tbl) 2894 return -ENOMEM; 2895 } 2896 2897 for (i = 0; i < rmem->nr_pages; i++) { 2898 u64 extra_bits = valid_bit; 2899 2900 rmem->pg_arr[i] = dma_alloc_coherent(&pdev->dev, 2901 rmem->page_size, 2902 &rmem->dma_arr[i], 2903 GFP_KERNEL); 2904 if (!rmem->pg_arr[i]) 2905 return -ENOMEM; 2906 2907 if (rmem->mem_init) 2908 bnxt_init_ctx_mem(rmem->mem_init, rmem->pg_arr[i], 2909 rmem->page_size); 2910 if (rmem->nr_pages > 1 || rmem->depth > 0) { 2911 if (i == rmem->nr_pages - 2 && 2912 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG)) 2913 extra_bits |= PTU_PTE_NEXT_TO_LAST; 2914 else if (i == rmem->nr_pages - 1 && 2915 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG)) 2916 extra_bits |= PTU_PTE_LAST; 2917 rmem->pg_tbl[i] = 2918 cpu_to_le64(rmem->dma_arr[i] | extra_bits); 2919 } 2920 } 2921 2922 if (rmem->vmem_size) { 2923 *rmem->vmem = vzalloc(rmem->vmem_size); 2924 if (!(*rmem->vmem)) 2925 return -ENOMEM; 2926 } 2927 return 0; 2928 } 2929 2930 static void bnxt_free_tpa_info(struct bnxt *bp) 2931 { 2932 int i; 2933 2934 for (i = 0; i < bp->rx_nr_rings; i++) { 2935 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 2936 2937 kfree(rxr->rx_tpa_idx_map); 2938 rxr->rx_tpa_idx_map = NULL; 2939 if (rxr->rx_tpa) { 2940 kfree(rxr->rx_tpa[0].agg_arr); 2941 rxr->rx_tpa[0].agg_arr = NULL; 2942 } 2943 kfree(rxr->rx_tpa); 2944 rxr->rx_tpa = NULL; 2945 } 2946 } 2947 2948 static int bnxt_alloc_tpa_info(struct bnxt *bp) 2949 { 2950 int i, j, total_aggs = 0; 2951 2952 bp->max_tpa = MAX_TPA; 2953 if (bp->flags & BNXT_FLAG_CHIP_P5) { 2954 if (!bp->max_tpa_v2) 2955 return 0; 2956 bp->max_tpa = max_t(u16, bp->max_tpa_v2, MAX_TPA_P5); 2957 total_aggs = bp->max_tpa * MAX_SKB_FRAGS; 2958 } 2959 2960 for (i = 0; i < bp->rx_nr_rings; i++) { 2961 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 2962 struct rx_agg_cmp *agg; 2963 2964 rxr->rx_tpa = kcalloc(bp->max_tpa, sizeof(struct bnxt_tpa_info), 2965 GFP_KERNEL); 2966 if (!rxr->rx_tpa) 2967 return -ENOMEM; 2968 2969 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 2970 continue; 2971 agg = kcalloc(total_aggs, sizeof(*agg), GFP_KERNEL); 2972 rxr->rx_tpa[0].agg_arr = agg; 2973 if (!agg) 2974 return -ENOMEM; 2975 for (j = 1; j < bp->max_tpa; j++) 2976 rxr->rx_tpa[j].agg_arr = agg + j * MAX_SKB_FRAGS; 2977 rxr->rx_tpa_idx_map = kzalloc(sizeof(*rxr->rx_tpa_idx_map), 2978 GFP_KERNEL); 2979 if (!rxr->rx_tpa_idx_map) 2980 return -ENOMEM; 2981 } 2982 return 0; 2983 } 2984 2985 static void bnxt_free_rx_rings(struct bnxt *bp) 2986 { 2987 int i; 2988 2989 if (!bp->rx_ring) 2990 return; 2991 2992 bnxt_free_tpa_info(bp); 2993 for (i = 0; i < bp->rx_nr_rings; i++) { 2994 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 2995 struct bnxt_ring_struct *ring; 2996 2997 if (rxr->xdp_prog) 2998 bpf_prog_put(rxr->xdp_prog); 2999 3000 if (xdp_rxq_info_is_reg(&rxr->xdp_rxq)) 3001 xdp_rxq_info_unreg(&rxr->xdp_rxq); 3002 3003 page_pool_destroy(rxr->page_pool); 3004 rxr->page_pool = NULL; 3005 3006 kfree(rxr->rx_agg_bmap); 3007 rxr->rx_agg_bmap = NULL; 3008 3009 ring = &rxr->rx_ring_struct; 3010 bnxt_free_ring(bp, &ring->ring_mem); 3011 3012 ring = &rxr->rx_agg_ring_struct; 3013 bnxt_free_ring(bp, &ring->ring_mem); 3014 } 3015 } 3016 3017 static int bnxt_alloc_rx_page_pool(struct bnxt *bp, 3018 struct bnxt_rx_ring_info *rxr) 3019 { 3020 struct page_pool_params pp = { 0 }; 3021 3022 pp.pool_size = bp->rx_ring_size; 3023 pp.nid = dev_to_node(&bp->pdev->dev); 3024 pp.dev = &bp->pdev->dev; 3025 pp.dma_dir = DMA_BIDIRECTIONAL; 3026 3027 rxr->page_pool = page_pool_create(&pp); 3028 if (IS_ERR(rxr->page_pool)) { 3029 int err = PTR_ERR(rxr->page_pool); 3030 3031 rxr->page_pool = NULL; 3032 return err; 3033 } 3034 return 0; 3035 } 3036 3037 static int bnxt_alloc_rx_rings(struct bnxt *bp) 3038 { 3039 int i, rc = 0, agg_rings = 0; 3040 3041 if (!bp->rx_ring) 3042 return -ENOMEM; 3043 3044 if (bp->flags & BNXT_FLAG_AGG_RINGS) 3045 agg_rings = 1; 3046 3047 for (i = 0; i < bp->rx_nr_rings; i++) { 3048 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3049 struct bnxt_ring_struct *ring; 3050 3051 ring = &rxr->rx_ring_struct; 3052 3053 rc = bnxt_alloc_rx_page_pool(bp, rxr); 3054 if (rc) 3055 return rc; 3056 3057 rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i, 0); 3058 if (rc < 0) 3059 return rc; 3060 3061 rc = xdp_rxq_info_reg_mem_model(&rxr->xdp_rxq, 3062 MEM_TYPE_PAGE_POOL, 3063 rxr->page_pool); 3064 if (rc) { 3065 xdp_rxq_info_unreg(&rxr->xdp_rxq); 3066 return rc; 3067 } 3068 3069 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3070 if (rc) 3071 return rc; 3072 3073 ring->grp_idx = i; 3074 if (agg_rings) { 3075 u16 mem_size; 3076 3077 ring = &rxr->rx_agg_ring_struct; 3078 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3079 if (rc) 3080 return rc; 3081 3082 ring->grp_idx = i; 3083 rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1; 3084 mem_size = rxr->rx_agg_bmap_size / 8; 3085 rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL); 3086 if (!rxr->rx_agg_bmap) 3087 return -ENOMEM; 3088 } 3089 } 3090 if (bp->flags & BNXT_FLAG_TPA) 3091 rc = bnxt_alloc_tpa_info(bp); 3092 return rc; 3093 } 3094 3095 static void bnxt_free_tx_rings(struct bnxt *bp) 3096 { 3097 int i; 3098 struct pci_dev *pdev = bp->pdev; 3099 3100 if (!bp->tx_ring) 3101 return; 3102 3103 for (i = 0; i < bp->tx_nr_rings; i++) { 3104 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3105 struct bnxt_ring_struct *ring; 3106 3107 if (txr->tx_push) { 3108 dma_free_coherent(&pdev->dev, bp->tx_push_size, 3109 txr->tx_push, txr->tx_push_mapping); 3110 txr->tx_push = NULL; 3111 } 3112 3113 ring = &txr->tx_ring_struct; 3114 3115 bnxt_free_ring(bp, &ring->ring_mem); 3116 } 3117 } 3118 3119 static int bnxt_alloc_tx_rings(struct bnxt *bp) 3120 { 3121 int i, j, rc; 3122 struct pci_dev *pdev = bp->pdev; 3123 3124 bp->tx_push_size = 0; 3125 if (bp->tx_push_thresh) { 3126 int push_size; 3127 3128 push_size = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) + 3129 bp->tx_push_thresh); 3130 3131 if (push_size > 256) { 3132 push_size = 0; 3133 bp->tx_push_thresh = 0; 3134 } 3135 3136 bp->tx_push_size = push_size; 3137 } 3138 3139 for (i = 0, j = 0; i < bp->tx_nr_rings; i++) { 3140 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3141 struct bnxt_ring_struct *ring; 3142 u8 qidx; 3143 3144 ring = &txr->tx_ring_struct; 3145 3146 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3147 if (rc) 3148 return rc; 3149 3150 ring->grp_idx = txr->bnapi->index; 3151 if (bp->tx_push_size) { 3152 dma_addr_t mapping; 3153 3154 /* One pre-allocated DMA buffer to backup 3155 * TX push operation 3156 */ 3157 txr->tx_push = dma_alloc_coherent(&pdev->dev, 3158 bp->tx_push_size, 3159 &txr->tx_push_mapping, 3160 GFP_KERNEL); 3161 3162 if (!txr->tx_push) 3163 return -ENOMEM; 3164 3165 mapping = txr->tx_push_mapping + 3166 sizeof(struct tx_push_bd); 3167 txr->data_mapping = cpu_to_le64(mapping); 3168 } 3169 qidx = bp->tc_to_qidx[j]; 3170 ring->queue_id = bp->q_info[qidx].queue_id; 3171 if (i < bp->tx_nr_rings_xdp) 3172 continue; 3173 if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1)) 3174 j++; 3175 } 3176 return 0; 3177 } 3178 3179 static void bnxt_free_cp_rings(struct bnxt *bp) 3180 { 3181 int i; 3182 3183 if (!bp->bnapi) 3184 return; 3185 3186 for (i = 0; i < bp->cp_nr_rings; i++) { 3187 struct bnxt_napi *bnapi = bp->bnapi[i]; 3188 struct bnxt_cp_ring_info *cpr; 3189 struct bnxt_ring_struct *ring; 3190 int j; 3191 3192 if (!bnapi) 3193 continue; 3194 3195 cpr = &bnapi->cp_ring; 3196 ring = &cpr->cp_ring_struct; 3197 3198 bnxt_free_ring(bp, &ring->ring_mem); 3199 3200 for (j = 0; j < 2; j++) { 3201 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j]; 3202 3203 if (cpr2) { 3204 ring = &cpr2->cp_ring_struct; 3205 bnxt_free_ring(bp, &ring->ring_mem); 3206 kfree(cpr2); 3207 cpr->cp_ring_arr[j] = NULL; 3208 } 3209 } 3210 } 3211 } 3212 3213 static struct bnxt_cp_ring_info *bnxt_alloc_cp_sub_ring(struct bnxt *bp) 3214 { 3215 struct bnxt_ring_mem_info *rmem; 3216 struct bnxt_ring_struct *ring; 3217 struct bnxt_cp_ring_info *cpr; 3218 int rc; 3219 3220 cpr = kzalloc(sizeof(*cpr), GFP_KERNEL); 3221 if (!cpr) 3222 return NULL; 3223 3224 ring = &cpr->cp_ring_struct; 3225 rmem = &ring->ring_mem; 3226 rmem->nr_pages = bp->cp_nr_pages; 3227 rmem->page_size = HW_CMPD_RING_SIZE; 3228 rmem->pg_arr = (void **)cpr->cp_desc_ring; 3229 rmem->dma_arr = cpr->cp_desc_mapping; 3230 rmem->flags = BNXT_RMEM_RING_PTE_FLAG; 3231 rc = bnxt_alloc_ring(bp, rmem); 3232 if (rc) { 3233 bnxt_free_ring(bp, rmem); 3234 kfree(cpr); 3235 cpr = NULL; 3236 } 3237 return cpr; 3238 } 3239 3240 static int bnxt_alloc_cp_rings(struct bnxt *bp) 3241 { 3242 bool sh = !!(bp->flags & BNXT_FLAG_SHARED_RINGS); 3243 int i, rc, ulp_base_vec, ulp_msix; 3244 3245 ulp_msix = bnxt_get_ulp_msix_num(bp); 3246 ulp_base_vec = bnxt_get_ulp_msix_base(bp); 3247 for (i = 0; i < bp->cp_nr_rings; i++) { 3248 struct bnxt_napi *bnapi = bp->bnapi[i]; 3249 struct bnxt_cp_ring_info *cpr; 3250 struct bnxt_ring_struct *ring; 3251 3252 if (!bnapi) 3253 continue; 3254 3255 cpr = &bnapi->cp_ring; 3256 cpr->bnapi = bnapi; 3257 ring = &cpr->cp_ring_struct; 3258 3259 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3260 if (rc) 3261 return rc; 3262 3263 if (ulp_msix && i >= ulp_base_vec) 3264 ring->map_idx = i + ulp_msix; 3265 else 3266 ring->map_idx = i; 3267 3268 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 3269 continue; 3270 3271 if (i < bp->rx_nr_rings) { 3272 struct bnxt_cp_ring_info *cpr2 = 3273 bnxt_alloc_cp_sub_ring(bp); 3274 3275 cpr->cp_ring_arr[BNXT_RX_HDL] = cpr2; 3276 if (!cpr2) 3277 return -ENOMEM; 3278 cpr2->bnapi = bnapi; 3279 } 3280 if ((sh && i < bp->tx_nr_rings) || 3281 (!sh && i >= bp->rx_nr_rings)) { 3282 struct bnxt_cp_ring_info *cpr2 = 3283 bnxt_alloc_cp_sub_ring(bp); 3284 3285 cpr->cp_ring_arr[BNXT_TX_HDL] = cpr2; 3286 if (!cpr2) 3287 return -ENOMEM; 3288 cpr2->bnapi = bnapi; 3289 } 3290 } 3291 return 0; 3292 } 3293 3294 static void bnxt_init_ring_struct(struct bnxt *bp) 3295 { 3296 int i; 3297 3298 for (i = 0; i < bp->cp_nr_rings; i++) { 3299 struct bnxt_napi *bnapi = bp->bnapi[i]; 3300 struct bnxt_ring_mem_info *rmem; 3301 struct bnxt_cp_ring_info *cpr; 3302 struct bnxt_rx_ring_info *rxr; 3303 struct bnxt_tx_ring_info *txr; 3304 struct bnxt_ring_struct *ring; 3305 3306 if (!bnapi) 3307 continue; 3308 3309 cpr = &bnapi->cp_ring; 3310 ring = &cpr->cp_ring_struct; 3311 rmem = &ring->ring_mem; 3312 rmem->nr_pages = bp->cp_nr_pages; 3313 rmem->page_size = HW_CMPD_RING_SIZE; 3314 rmem->pg_arr = (void **)cpr->cp_desc_ring; 3315 rmem->dma_arr = cpr->cp_desc_mapping; 3316 rmem->vmem_size = 0; 3317 3318 rxr = bnapi->rx_ring; 3319 if (!rxr) 3320 goto skip_rx; 3321 3322 ring = &rxr->rx_ring_struct; 3323 rmem = &ring->ring_mem; 3324 rmem->nr_pages = bp->rx_nr_pages; 3325 rmem->page_size = HW_RXBD_RING_SIZE; 3326 rmem->pg_arr = (void **)rxr->rx_desc_ring; 3327 rmem->dma_arr = rxr->rx_desc_mapping; 3328 rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages; 3329 rmem->vmem = (void **)&rxr->rx_buf_ring; 3330 3331 ring = &rxr->rx_agg_ring_struct; 3332 rmem = &ring->ring_mem; 3333 rmem->nr_pages = bp->rx_agg_nr_pages; 3334 rmem->page_size = HW_RXBD_RING_SIZE; 3335 rmem->pg_arr = (void **)rxr->rx_agg_desc_ring; 3336 rmem->dma_arr = rxr->rx_agg_desc_mapping; 3337 rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages; 3338 rmem->vmem = (void **)&rxr->rx_agg_ring; 3339 3340 skip_rx: 3341 txr = bnapi->tx_ring; 3342 if (!txr) 3343 continue; 3344 3345 ring = &txr->tx_ring_struct; 3346 rmem = &ring->ring_mem; 3347 rmem->nr_pages = bp->tx_nr_pages; 3348 rmem->page_size = HW_RXBD_RING_SIZE; 3349 rmem->pg_arr = (void **)txr->tx_desc_ring; 3350 rmem->dma_arr = txr->tx_desc_mapping; 3351 rmem->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages; 3352 rmem->vmem = (void **)&txr->tx_buf_ring; 3353 } 3354 } 3355 3356 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type) 3357 { 3358 int i; 3359 u32 prod; 3360 struct rx_bd **rx_buf_ring; 3361 3362 rx_buf_ring = (struct rx_bd **)ring->ring_mem.pg_arr; 3363 for (i = 0, prod = 0; i < ring->ring_mem.nr_pages; i++) { 3364 int j; 3365 struct rx_bd *rxbd; 3366 3367 rxbd = rx_buf_ring[i]; 3368 if (!rxbd) 3369 continue; 3370 3371 for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) { 3372 rxbd->rx_bd_len_flags_type = cpu_to_le32(type); 3373 rxbd->rx_bd_opaque = prod; 3374 } 3375 } 3376 } 3377 3378 static int bnxt_alloc_one_rx_ring(struct bnxt *bp, int ring_nr) 3379 { 3380 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 3381 struct net_device *dev = bp->dev; 3382 u32 prod; 3383 int i; 3384 3385 prod = rxr->rx_prod; 3386 for (i = 0; i < bp->rx_ring_size; i++) { 3387 if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL)) { 3388 netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n", 3389 ring_nr, i, bp->rx_ring_size); 3390 break; 3391 } 3392 prod = NEXT_RX(prod); 3393 } 3394 rxr->rx_prod = prod; 3395 3396 if (!(bp->flags & BNXT_FLAG_AGG_RINGS)) 3397 return 0; 3398 3399 prod = rxr->rx_agg_prod; 3400 for (i = 0; i < bp->rx_agg_ring_size; i++) { 3401 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL)) { 3402 netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n", 3403 ring_nr, i, bp->rx_ring_size); 3404 break; 3405 } 3406 prod = NEXT_RX_AGG(prod); 3407 } 3408 rxr->rx_agg_prod = prod; 3409 3410 if (rxr->rx_tpa) { 3411 dma_addr_t mapping; 3412 u8 *data; 3413 3414 for (i = 0; i < bp->max_tpa; i++) { 3415 data = __bnxt_alloc_rx_data(bp, &mapping, GFP_KERNEL); 3416 if (!data) 3417 return -ENOMEM; 3418 3419 rxr->rx_tpa[i].data = data; 3420 rxr->rx_tpa[i].data_ptr = data + bp->rx_offset; 3421 rxr->rx_tpa[i].mapping = mapping; 3422 } 3423 } 3424 return 0; 3425 } 3426 3427 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr) 3428 { 3429 struct bnxt_rx_ring_info *rxr; 3430 struct bnxt_ring_struct *ring; 3431 u32 type; 3432 3433 type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) | 3434 RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP; 3435 3436 if (NET_IP_ALIGN == 2) 3437 type |= RX_BD_FLAGS_SOP; 3438 3439 rxr = &bp->rx_ring[ring_nr]; 3440 ring = &rxr->rx_ring_struct; 3441 bnxt_init_rxbd_pages(ring, type); 3442 3443 if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) { 3444 bpf_prog_add(bp->xdp_prog, 1); 3445 rxr->xdp_prog = bp->xdp_prog; 3446 } 3447 ring->fw_ring_id = INVALID_HW_RING_ID; 3448 3449 ring = &rxr->rx_agg_ring_struct; 3450 ring->fw_ring_id = INVALID_HW_RING_ID; 3451 3452 if ((bp->flags & BNXT_FLAG_AGG_RINGS)) { 3453 type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) | 3454 RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP; 3455 3456 bnxt_init_rxbd_pages(ring, type); 3457 } 3458 3459 return bnxt_alloc_one_rx_ring(bp, ring_nr); 3460 } 3461 3462 static void bnxt_init_cp_rings(struct bnxt *bp) 3463 { 3464 int i, j; 3465 3466 for (i = 0; i < bp->cp_nr_rings; i++) { 3467 struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring; 3468 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 3469 3470 ring->fw_ring_id = INVALID_HW_RING_ID; 3471 cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks; 3472 cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs; 3473 for (j = 0; j < 2; j++) { 3474 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j]; 3475 3476 if (!cpr2) 3477 continue; 3478 3479 ring = &cpr2->cp_ring_struct; 3480 ring->fw_ring_id = INVALID_HW_RING_ID; 3481 cpr2->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks; 3482 cpr2->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs; 3483 } 3484 } 3485 } 3486 3487 static int bnxt_init_rx_rings(struct bnxt *bp) 3488 { 3489 int i, rc = 0; 3490 3491 if (BNXT_RX_PAGE_MODE(bp)) { 3492 bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM; 3493 bp->rx_dma_offset = XDP_PACKET_HEADROOM; 3494 } else { 3495 bp->rx_offset = BNXT_RX_OFFSET; 3496 bp->rx_dma_offset = BNXT_RX_DMA_OFFSET; 3497 } 3498 3499 for (i = 0; i < bp->rx_nr_rings; i++) { 3500 rc = bnxt_init_one_rx_ring(bp, i); 3501 if (rc) 3502 break; 3503 } 3504 3505 return rc; 3506 } 3507 3508 static int bnxt_init_tx_rings(struct bnxt *bp) 3509 { 3510 u16 i; 3511 3512 bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2, 3513 MAX_SKB_FRAGS + 1); 3514 3515 for (i = 0; i < bp->tx_nr_rings; i++) { 3516 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3517 struct bnxt_ring_struct *ring = &txr->tx_ring_struct; 3518 3519 ring->fw_ring_id = INVALID_HW_RING_ID; 3520 } 3521 3522 return 0; 3523 } 3524 3525 static void bnxt_free_ring_grps(struct bnxt *bp) 3526 { 3527 kfree(bp->grp_info); 3528 bp->grp_info = NULL; 3529 } 3530 3531 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init) 3532 { 3533 int i; 3534 3535 if (irq_re_init) { 3536 bp->grp_info = kcalloc(bp->cp_nr_rings, 3537 sizeof(struct bnxt_ring_grp_info), 3538 GFP_KERNEL); 3539 if (!bp->grp_info) 3540 return -ENOMEM; 3541 } 3542 for (i = 0; i < bp->cp_nr_rings; i++) { 3543 if (irq_re_init) 3544 bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID; 3545 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID; 3546 bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID; 3547 bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID; 3548 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID; 3549 } 3550 return 0; 3551 } 3552 3553 static void bnxt_free_vnics(struct bnxt *bp) 3554 { 3555 kfree(bp->vnic_info); 3556 bp->vnic_info = NULL; 3557 bp->nr_vnics = 0; 3558 } 3559 3560 static int bnxt_alloc_vnics(struct bnxt *bp) 3561 { 3562 int num_vnics = 1; 3563 3564 #ifdef CONFIG_RFS_ACCEL 3565 if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS) 3566 num_vnics += bp->rx_nr_rings; 3567 #endif 3568 3569 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 3570 num_vnics++; 3571 3572 bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info), 3573 GFP_KERNEL); 3574 if (!bp->vnic_info) 3575 return -ENOMEM; 3576 3577 bp->nr_vnics = num_vnics; 3578 return 0; 3579 } 3580 3581 static void bnxt_init_vnics(struct bnxt *bp) 3582 { 3583 int i; 3584 3585 for (i = 0; i < bp->nr_vnics; i++) { 3586 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 3587 int j; 3588 3589 vnic->fw_vnic_id = INVALID_HW_RING_ID; 3590 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) 3591 vnic->fw_rss_cos_lb_ctx[j] = INVALID_HW_RING_ID; 3592 3593 vnic->fw_l2_ctx_id = INVALID_HW_RING_ID; 3594 3595 if (bp->vnic_info[i].rss_hash_key) { 3596 if (i == 0) 3597 prandom_bytes(vnic->rss_hash_key, 3598 HW_HASH_KEY_SIZE); 3599 else 3600 memcpy(vnic->rss_hash_key, 3601 bp->vnic_info[0].rss_hash_key, 3602 HW_HASH_KEY_SIZE); 3603 } 3604 } 3605 } 3606 3607 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg) 3608 { 3609 int pages; 3610 3611 pages = ring_size / desc_per_pg; 3612 3613 if (!pages) 3614 return 1; 3615 3616 pages++; 3617 3618 while (pages & (pages - 1)) 3619 pages++; 3620 3621 return pages; 3622 } 3623 3624 void bnxt_set_tpa_flags(struct bnxt *bp) 3625 { 3626 bp->flags &= ~BNXT_FLAG_TPA; 3627 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) 3628 return; 3629 if (bp->dev->features & NETIF_F_LRO) 3630 bp->flags |= BNXT_FLAG_LRO; 3631 else if (bp->dev->features & NETIF_F_GRO_HW) 3632 bp->flags |= BNXT_FLAG_GRO; 3633 } 3634 3635 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must 3636 * be set on entry. 3637 */ 3638 void bnxt_set_ring_params(struct bnxt *bp) 3639 { 3640 u32 ring_size, rx_size, rx_space, max_rx_cmpl; 3641 u32 agg_factor = 0, agg_ring_size = 0; 3642 3643 /* 8 for CRC and VLAN */ 3644 rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8); 3645 3646 rx_space = rx_size + NET_SKB_PAD + 3647 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 3648 3649 bp->rx_copy_thresh = BNXT_RX_COPY_THRESH; 3650 ring_size = bp->rx_ring_size; 3651 bp->rx_agg_ring_size = 0; 3652 bp->rx_agg_nr_pages = 0; 3653 3654 if (bp->flags & BNXT_FLAG_TPA) 3655 agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE); 3656 3657 bp->flags &= ~BNXT_FLAG_JUMBO; 3658 if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) { 3659 u32 jumbo_factor; 3660 3661 bp->flags |= BNXT_FLAG_JUMBO; 3662 jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT; 3663 if (jumbo_factor > agg_factor) 3664 agg_factor = jumbo_factor; 3665 } 3666 agg_ring_size = ring_size * agg_factor; 3667 3668 if (agg_ring_size) { 3669 bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size, 3670 RX_DESC_CNT); 3671 if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) { 3672 u32 tmp = agg_ring_size; 3673 3674 bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES; 3675 agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1; 3676 netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n", 3677 tmp, agg_ring_size); 3678 } 3679 bp->rx_agg_ring_size = agg_ring_size; 3680 bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1; 3681 rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN); 3682 rx_space = rx_size + NET_SKB_PAD + 3683 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 3684 } 3685 3686 bp->rx_buf_use_size = rx_size; 3687 bp->rx_buf_size = rx_space; 3688 3689 bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT); 3690 bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1; 3691 3692 ring_size = bp->tx_ring_size; 3693 bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT); 3694 bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1; 3695 3696 max_rx_cmpl = bp->rx_ring_size; 3697 /* MAX TPA needs to be added because TPA_START completions are 3698 * immediately recycled, so the TPA completions are not bound by 3699 * the RX ring size. 3700 */ 3701 if (bp->flags & BNXT_FLAG_TPA) 3702 max_rx_cmpl += bp->max_tpa; 3703 /* RX and TPA completions are 32-byte, all others are 16-byte */ 3704 ring_size = max_rx_cmpl * 2 + agg_ring_size + bp->tx_ring_size; 3705 bp->cp_ring_size = ring_size; 3706 3707 bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT); 3708 if (bp->cp_nr_pages > MAX_CP_PAGES) { 3709 bp->cp_nr_pages = MAX_CP_PAGES; 3710 bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1; 3711 netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n", 3712 ring_size, bp->cp_ring_size); 3713 } 3714 bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT; 3715 bp->cp_ring_mask = bp->cp_bit - 1; 3716 } 3717 3718 /* Changing allocation mode of RX rings. 3719 * TODO: Update when extending xdp_rxq_info to support allocation modes. 3720 */ 3721 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode) 3722 { 3723 if (page_mode) { 3724 if (bp->dev->mtu > BNXT_MAX_PAGE_MODE_MTU) 3725 return -EOPNOTSUPP; 3726 bp->dev->max_mtu = 3727 min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU); 3728 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 3729 bp->flags |= BNXT_FLAG_NO_AGG_RINGS | BNXT_FLAG_RX_PAGE_MODE; 3730 bp->rx_dir = DMA_BIDIRECTIONAL; 3731 bp->rx_skb_func = bnxt_rx_page_skb; 3732 /* Disable LRO or GRO_HW */ 3733 netdev_update_features(bp->dev); 3734 } else { 3735 bp->dev->max_mtu = bp->max_mtu; 3736 bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE; 3737 bp->rx_dir = DMA_FROM_DEVICE; 3738 bp->rx_skb_func = bnxt_rx_skb; 3739 } 3740 return 0; 3741 } 3742 3743 static void bnxt_free_vnic_attributes(struct bnxt *bp) 3744 { 3745 int i; 3746 struct bnxt_vnic_info *vnic; 3747 struct pci_dev *pdev = bp->pdev; 3748 3749 if (!bp->vnic_info) 3750 return; 3751 3752 for (i = 0; i < bp->nr_vnics; i++) { 3753 vnic = &bp->vnic_info[i]; 3754 3755 kfree(vnic->fw_grp_ids); 3756 vnic->fw_grp_ids = NULL; 3757 3758 kfree(vnic->uc_list); 3759 vnic->uc_list = NULL; 3760 3761 if (vnic->mc_list) { 3762 dma_free_coherent(&pdev->dev, vnic->mc_list_size, 3763 vnic->mc_list, vnic->mc_list_mapping); 3764 vnic->mc_list = NULL; 3765 } 3766 3767 if (vnic->rss_table) { 3768 dma_free_coherent(&pdev->dev, vnic->rss_table_size, 3769 vnic->rss_table, 3770 vnic->rss_table_dma_addr); 3771 vnic->rss_table = NULL; 3772 } 3773 3774 vnic->rss_hash_key = NULL; 3775 vnic->flags = 0; 3776 } 3777 } 3778 3779 static int bnxt_alloc_vnic_attributes(struct bnxt *bp) 3780 { 3781 int i, rc = 0, size; 3782 struct bnxt_vnic_info *vnic; 3783 struct pci_dev *pdev = bp->pdev; 3784 int max_rings; 3785 3786 for (i = 0; i < bp->nr_vnics; i++) { 3787 vnic = &bp->vnic_info[i]; 3788 3789 if (vnic->flags & BNXT_VNIC_UCAST_FLAG) { 3790 int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN; 3791 3792 if (mem_size > 0) { 3793 vnic->uc_list = kmalloc(mem_size, GFP_KERNEL); 3794 if (!vnic->uc_list) { 3795 rc = -ENOMEM; 3796 goto out; 3797 } 3798 } 3799 } 3800 3801 if (vnic->flags & BNXT_VNIC_MCAST_FLAG) { 3802 vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN; 3803 vnic->mc_list = 3804 dma_alloc_coherent(&pdev->dev, 3805 vnic->mc_list_size, 3806 &vnic->mc_list_mapping, 3807 GFP_KERNEL); 3808 if (!vnic->mc_list) { 3809 rc = -ENOMEM; 3810 goto out; 3811 } 3812 } 3813 3814 if (bp->flags & BNXT_FLAG_CHIP_P5) 3815 goto vnic_skip_grps; 3816 3817 if (vnic->flags & BNXT_VNIC_RSS_FLAG) 3818 max_rings = bp->rx_nr_rings; 3819 else 3820 max_rings = 1; 3821 3822 vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL); 3823 if (!vnic->fw_grp_ids) { 3824 rc = -ENOMEM; 3825 goto out; 3826 } 3827 vnic_skip_grps: 3828 if ((bp->flags & BNXT_FLAG_NEW_RSS_CAP) && 3829 !(vnic->flags & BNXT_VNIC_RSS_FLAG)) 3830 continue; 3831 3832 /* Allocate rss table and hash key */ 3833 size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16)); 3834 if (bp->flags & BNXT_FLAG_CHIP_P5) 3835 size = L1_CACHE_ALIGN(BNXT_MAX_RSS_TABLE_SIZE_P5); 3836 3837 vnic->rss_table_size = size + HW_HASH_KEY_SIZE; 3838 vnic->rss_table = dma_alloc_coherent(&pdev->dev, 3839 vnic->rss_table_size, 3840 &vnic->rss_table_dma_addr, 3841 GFP_KERNEL); 3842 if (!vnic->rss_table) { 3843 rc = -ENOMEM; 3844 goto out; 3845 } 3846 3847 vnic->rss_hash_key = ((void *)vnic->rss_table) + size; 3848 vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size; 3849 } 3850 return 0; 3851 3852 out: 3853 return rc; 3854 } 3855 3856 static void bnxt_free_hwrm_resources(struct bnxt *bp) 3857 { 3858 struct pci_dev *pdev = bp->pdev; 3859 3860 if (bp->hwrm_cmd_resp_addr) { 3861 dma_free_coherent(&pdev->dev, PAGE_SIZE, bp->hwrm_cmd_resp_addr, 3862 bp->hwrm_cmd_resp_dma_addr); 3863 bp->hwrm_cmd_resp_addr = NULL; 3864 } 3865 3866 if (bp->hwrm_cmd_kong_resp_addr) { 3867 dma_free_coherent(&pdev->dev, PAGE_SIZE, 3868 bp->hwrm_cmd_kong_resp_addr, 3869 bp->hwrm_cmd_kong_resp_dma_addr); 3870 bp->hwrm_cmd_kong_resp_addr = NULL; 3871 } 3872 } 3873 3874 static int bnxt_alloc_kong_hwrm_resources(struct bnxt *bp) 3875 { 3876 struct pci_dev *pdev = bp->pdev; 3877 3878 if (bp->hwrm_cmd_kong_resp_addr) 3879 return 0; 3880 3881 bp->hwrm_cmd_kong_resp_addr = 3882 dma_alloc_coherent(&pdev->dev, PAGE_SIZE, 3883 &bp->hwrm_cmd_kong_resp_dma_addr, 3884 GFP_KERNEL); 3885 if (!bp->hwrm_cmd_kong_resp_addr) 3886 return -ENOMEM; 3887 3888 return 0; 3889 } 3890 3891 static int bnxt_alloc_hwrm_resources(struct bnxt *bp) 3892 { 3893 struct pci_dev *pdev = bp->pdev; 3894 3895 bp->hwrm_cmd_resp_addr = dma_alloc_coherent(&pdev->dev, PAGE_SIZE, 3896 &bp->hwrm_cmd_resp_dma_addr, 3897 GFP_KERNEL); 3898 if (!bp->hwrm_cmd_resp_addr) 3899 return -ENOMEM; 3900 3901 return 0; 3902 } 3903 3904 static void bnxt_free_hwrm_short_cmd_req(struct bnxt *bp) 3905 { 3906 if (bp->hwrm_short_cmd_req_addr) { 3907 struct pci_dev *pdev = bp->pdev; 3908 3909 dma_free_coherent(&pdev->dev, bp->hwrm_max_ext_req_len, 3910 bp->hwrm_short_cmd_req_addr, 3911 bp->hwrm_short_cmd_req_dma_addr); 3912 bp->hwrm_short_cmd_req_addr = NULL; 3913 } 3914 } 3915 3916 static int bnxt_alloc_hwrm_short_cmd_req(struct bnxt *bp) 3917 { 3918 struct pci_dev *pdev = bp->pdev; 3919 3920 if (bp->hwrm_short_cmd_req_addr) 3921 return 0; 3922 3923 bp->hwrm_short_cmd_req_addr = 3924 dma_alloc_coherent(&pdev->dev, bp->hwrm_max_ext_req_len, 3925 &bp->hwrm_short_cmd_req_dma_addr, 3926 GFP_KERNEL); 3927 if (!bp->hwrm_short_cmd_req_addr) 3928 return -ENOMEM; 3929 3930 return 0; 3931 } 3932 3933 static void bnxt_free_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats) 3934 { 3935 kfree(stats->hw_masks); 3936 stats->hw_masks = NULL; 3937 kfree(stats->sw_stats); 3938 stats->sw_stats = NULL; 3939 if (stats->hw_stats) { 3940 dma_free_coherent(&bp->pdev->dev, stats->len, stats->hw_stats, 3941 stats->hw_stats_map); 3942 stats->hw_stats = NULL; 3943 } 3944 } 3945 3946 static int bnxt_alloc_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats, 3947 bool alloc_masks) 3948 { 3949 stats->hw_stats = dma_alloc_coherent(&bp->pdev->dev, stats->len, 3950 &stats->hw_stats_map, GFP_KERNEL); 3951 if (!stats->hw_stats) 3952 return -ENOMEM; 3953 3954 stats->sw_stats = kzalloc(stats->len, GFP_KERNEL); 3955 if (!stats->sw_stats) 3956 goto stats_mem_err; 3957 3958 if (alloc_masks) { 3959 stats->hw_masks = kzalloc(stats->len, GFP_KERNEL); 3960 if (!stats->hw_masks) 3961 goto stats_mem_err; 3962 } 3963 return 0; 3964 3965 stats_mem_err: 3966 bnxt_free_stats_mem(bp, stats); 3967 return -ENOMEM; 3968 } 3969 3970 static void bnxt_fill_masks(u64 *mask_arr, u64 mask, int count) 3971 { 3972 int i; 3973 3974 for (i = 0; i < count; i++) 3975 mask_arr[i] = mask; 3976 } 3977 3978 static void bnxt_copy_hw_masks(u64 *mask_arr, __le64 *hw_mask_arr, int count) 3979 { 3980 int i; 3981 3982 for (i = 0; i < count; i++) 3983 mask_arr[i] = le64_to_cpu(hw_mask_arr[i]); 3984 } 3985 3986 static int bnxt_hwrm_func_qstat_ext(struct bnxt *bp, 3987 struct bnxt_stats_mem *stats) 3988 { 3989 struct hwrm_func_qstats_ext_output *resp = bp->hwrm_cmd_resp_addr; 3990 struct hwrm_func_qstats_ext_input req = {0}; 3991 __le64 *hw_masks; 3992 int rc; 3993 3994 if (!(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED) || 3995 !(bp->flags & BNXT_FLAG_CHIP_P5)) 3996 return -EOPNOTSUPP; 3997 3998 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QSTATS_EXT, -1, -1); 3999 req.fid = cpu_to_le16(0xffff); 4000 req.flags = FUNC_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK; 4001 mutex_lock(&bp->hwrm_cmd_lock); 4002 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 4003 if (rc) 4004 goto qstat_exit; 4005 4006 hw_masks = &resp->rx_ucast_pkts; 4007 bnxt_copy_hw_masks(stats->hw_masks, hw_masks, stats->len / 8); 4008 4009 qstat_exit: 4010 mutex_unlock(&bp->hwrm_cmd_lock); 4011 return rc; 4012 } 4013 4014 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags); 4015 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags); 4016 4017 static void bnxt_init_stats(struct bnxt *bp) 4018 { 4019 struct bnxt_napi *bnapi = bp->bnapi[0]; 4020 struct bnxt_cp_ring_info *cpr; 4021 struct bnxt_stats_mem *stats; 4022 __le64 *rx_stats, *tx_stats; 4023 int rc, rx_count, tx_count; 4024 u64 *rx_masks, *tx_masks; 4025 u64 mask; 4026 u8 flags; 4027 4028 cpr = &bnapi->cp_ring; 4029 stats = &cpr->stats; 4030 rc = bnxt_hwrm_func_qstat_ext(bp, stats); 4031 if (rc) { 4032 if (bp->flags & BNXT_FLAG_CHIP_P5) 4033 mask = (1ULL << 48) - 1; 4034 else 4035 mask = -1ULL; 4036 bnxt_fill_masks(stats->hw_masks, mask, stats->len / 8); 4037 } 4038 if (bp->flags & BNXT_FLAG_PORT_STATS) { 4039 stats = &bp->port_stats; 4040 rx_stats = stats->hw_stats; 4041 rx_masks = stats->hw_masks; 4042 rx_count = sizeof(struct rx_port_stats) / 8; 4043 tx_stats = rx_stats + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 4044 tx_masks = rx_masks + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 4045 tx_count = sizeof(struct tx_port_stats) / 8; 4046 4047 flags = PORT_QSTATS_REQ_FLAGS_COUNTER_MASK; 4048 rc = bnxt_hwrm_port_qstats(bp, flags); 4049 if (rc) { 4050 mask = (1ULL << 40) - 1; 4051 4052 bnxt_fill_masks(rx_masks, mask, rx_count); 4053 bnxt_fill_masks(tx_masks, mask, tx_count); 4054 } else { 4055 bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count); 4056 bnxt_copy_hw_masks(tx_masks, tx_stats, tx_count); 4057 bnxt_hwrm_port_qstats(bp, 0); 4058 } 4059 } 4060 if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) { 4061 stats = &bp->rx_port_stats_ext; 4062 rx_stats = stats->hw_stats; 4063 rx_masks = stats->hw_masks; 4064 rx_count = sizeof(struct rx_port_stats_ext) / 8; 4065 stats = &bp->tx_port_stats_ext; 4066 tx_stats = stats->hw_stats; 4067 tx_masks = stats->hw_masks; 4068 tx_count = sizeof(struct tx_port_stats_ext) / 8; 4069 4070 flags = PORT_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK; 4071 rc = bnxt_hwrm_port_qstats_ext(bp, flags); 4072 if (rc) { 4073 mask = (1ULL << 40) - 1; 4074 4075 bnxt_fill_masks(rx_masks, mask, rx_count); 4076 if (tx_stats) 4077 bnxt_fill_masks(tx_masks, mask, tx_count); 4078 } else { 4079 bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count); 4080 if (tx_stats) 4081 bnxt_copy_hw_masks(tx_masks, tx_stats, 4082 tx_count); 4083 bnxt_hwrm_port_qstats_ext(bp, 0); 4084 } 4085 } 4086 } 4087 4088 static void bnxt_free_port_stats(struct bnxt *bp) 4089 { 4090 bp->flags &= ~BNXT_FLAG_PORT_STATS; 4091 bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT; 4092 4093 bnxt_free_stats_mem(bp, &bp->port_stats); 4094 bnxt_free_stats_mem(bp, &bp->rx_port_stats_ext); 4095 bnxt_free_stats_mem(bp, &bp->tx_port_stats_ext); 4096 } 4097 4098 static void bnxt_free_ring_stats(struct bnxt *bp) 4099 { 4100 int i; 4101 4102 if (!bp->bnapi) 4103 return; 4104 4105 for (i = 0; i < bp->cp_nr_rings; i++) { 4106 struct bnxt_napi *bnapi = bp->bnapi[i]; 4107 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4108 4109 bnxt_free_stats_mem(bp, &cpr->stats); 4110 } 4111 } 4112 4113 static int bnxt_alloc_stats(struct bnxt *bp) 4114 { 4115 u32 size, i; 4116 int rc; 4117 4118 size = bp->hw_ring_stats_size; 4119 4120 for (i = 0; i < bp->cp_nr_rings; i++) { 4121 struct bnxt_napi *bnapi = bp->bnapi[i]; 4122 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4123 4124 cpr->stats.len = size; 4125 rc = bnxt_alloc_stats_mem(bp, &cpr->stats, !i); 4126 if (rc) 4127 return rc; 4128 4129 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID; 4130 } 4131 4132 if (BNXT_VF(bp) || bp->chip_num == CHIP_NUM_58700) 4133 return 0; 4134 4135 if (bp->port_stats.hw_stats) 4136 goto alloc_ext_stats; 4137 4138 bp->port_stats.len = BNXT_PORT_STATS_SIZE; 4139 rc = bnxt_alloc_stats_mem(bp, &bp->port_stats, true); 4140 if (rc) 4141 return rc; 4142 4143 bp->flags |= BNXT_FLAG_PORT_STATS; 4144 4145 alloc_ext_stats: 4146 /* Display extended statistics only if FW supports it */ 4147 if (bp->hwrm_spec_code < 0x10804 || bp->hwrm_spec_code == 0x10900) 4148 if (!(bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) 4149 return 0; 4150 4151 if (bp->rx_port_stats_ext.hw_stats) 4152 goto alloc_tx_ext_stats; 4153 4154 bp->rx_port_stats_ext.len = sizeof(struct rx_port_stats_ext); 4155 rc = bnxt_alloc_stats_mem(bp, &bp->rx_port_stats_ext, true); 4156 /* Extended stats are optional */ 4157 if (rc) 4158 return 0; 4159 4160 alloc_tx_ext_stats: 4161 if (bp->tx_port_stats_ext.hw_stats) 4162 return 0; 4163 4164 if (bp->hwrm_spec_code >= 0x10902 || 4165 (bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) { 4166 bp->tx_port_stats_ext.len = sizeof(struct tx_port_stats_ext); 4167 rc = bnxt_alloc_stats_mem(bp, &bp->tx_port_stats_ext, true); 4168 /* Extended stats are optional */ 4169 if (rc) 4170 return 0; 4171 } 4172 bp->flags |= BNXT_FLAG_PORT_STATS_EXT; 4173 return 0; 4174 } 4175 4176 static void bnxt_clear_ring_indices(struct bnxt *bp) 4177 { 4178 int i; 4179 4180 if (!bp->bnapi) 4181 return; 4182 4183 for (i = 0; i < bp->cp_nr_rings; i++) { 4184 struct bnxt_napi *bnapi = bp->bnapi[i]; 4185 struct bnxt_cp_ring_info *cpr; 4186 struct bnxt_rx_ring_info *rxr; 4187 struct bnxt_tx_ring_info *txr; 4188 4189 if (!bnapi) 4190 continue; 4191 4192 cpr = &bnapi->cp_ring; 4193 cpr->cp_raw_cons = 0; 4194 4195 txr = bnapi->tx_ring; 4196 if (txr) { 4197 txr->tx_prod = 0; 4198 txr->tx_cons = 0; 4199 } 4200 4201 rxr = bnapi->rx_ring; 4202 if (rxr) { 4203 rxr->rx_prod = 0; 4204 rxr->rx_agg_prod = 0; 4205 rxr->rx_sw_agg_prod = 0; 4206 rxr->rx_next_cons = 0; 4207 } 4208 } 4209 } 4210 4211 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit) 4212 { 4213 #ifdef CONFIG_RFS_ACCEL 4214 int i; 4215 4216 /* Under rtnl_lock and all our NAPIs have been disabled. It's 4217 * safe to delete the hash table. 4218 */ 4219 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) { 4220 struct hlist_head *head; 4221 struct hlist_node *tmp; 4222 struct bnxt_ntuple_filter *fltr; 4223 4224 head = &bp->ntp_fltr_hash_tbl[i]; 4225 hlist_for_each_entry_safe(fltr, tmp, head, hash) { 4226 hlist_del(&fltr->hash); 4227 kfree(fltr); 4228 } 4229 } 4230 if (irq_reinit) { 4231 kfree(bp->ntp_fltr_bmap); 4232 bp->ntp_fltr_bmap = NULL; 4233 } 4234 bp->ntp_fltr_count = 0; 4235 #endif 4236 } 4237 4238 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp) 4239 { 4240 #ifdef CONFIG_RFS_ACCEL 4241 int i, rc = 0; 4242 4243 if (!(bp->flags & BNXT_FLAG_RFS)) 4244 return 0; 4245 4246 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) 4247 INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]); 4248 4249 bp->ntp_fltr_count = 0; 4250 bp->ntp_fltr_bmap = kcalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR), 4251 sizeof(long), 4252 GFP_KERNEL); 4253 4254 if (!bp->ntp_fltr_bmap) 4255 rc = -ENOMEM; 4256 4257 return rc; 4258 #else 4259 return 0; 4260 #endif 4261 } 4262 4263 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init) 4264 { 4265 bnxt_free_vnic_attributes(bp); 4266 bnxt_free_tx_rings(bp); 4267 bnxt_free_rx_rings(bp); 4268 bnxt_free_cp_rings(bp); 4269 bnxt_free_ntp_fltrs(bp, irq_re_init); 4270 if (irq_re_init) { 4271 bnxt_free_ring_stats(bp); 4272 if (!(bp->phy_flags & BNXT_PHY_FL_PORT_STATS_NO_RESET) || 4273 test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 4274 bnxt_free_port_stats(bp); 4275 bnxt_free_ring_grps(bp); 4276 bnxt_free_vnics(bp); 4277 kfree(bp->tx_ring_map); 4278 bp->tx_ring_map = NULL; 4279 kfree(bp->tx_ring); 4280 bp->tx_ring = NULL; 4281 kfree(bp->rx_ring); 4282 bp->rx_ring = NULL; 4283 kfree(bp->bnapi); 4284 bp->bnapi = NULL; 4285 } else { 4286 bnxt_clear_ring_indices(bp); 4287 } 4288 } 4289 4290 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init) 4291 { 4292 int i, j, rc, size, arr_size; 4293 void *bnapi; 4294 4295 if (irq_re_init) { 4296 /* Allocate bnapi mem pointer array and mem block for 4297 * all queues 4298 */ 4299 arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) * 4300 bp->cp_nr_rings); 4301 size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi)); 4302 bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL); 4303 if (!bnapi) 4304 return -ENOMEM; 4305 4306 bp->bnapi = bnapi; 4307 bnapi += arr_size; 4308 for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) { 4309 bp->bnapi[i] = bnapi; 4310 bp->bnapi[i]->index = i; 4311 bp->bnapi[i]->bp = bp; 4312 if (bp->flags & BNXT_FLAG_CHIP_P5) { 4313 struct bnxt_cp_ring_info *cpr = 4314 &bp->bnapi[i]->cp_ring; 4315 4316 cpr->cp_ring_struct.ring_mem.flags = 4317 BNXT_RMEM_RING_PTE_FLAG; 4318 } 4319 } 4320 4321 bp->rx_ring = kcalloc(bp->rx_nr_rings, 4322 sizeof(struct bnxt_rx_ring_info), 4323 GFP_KERNEL); 4324 if (!bp->rx_ring) 4325 return -ENOMEM; 4326 4327 for (i = 0; i < bp->rx_nr_rings; i++) { 4328 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 4329 4330 if (bp->flags & BNXT_FLAG_CHIP_P5) { 4331 rxr->rx_ring_struct.ring_mem.flags = 4332 BNXT_RMEM_RING_PTE_FLAG; 4333 rxr->rx_agg_ring_struct.ring_mem.flags = 4334 BNXT_RMEM_RING_PTE_FLAG; 4335 } 4336 rxr->bnapi = bp->bnapi[i]; 4337 bp->bnapi[i]->rx_ring = &bp->rx_ring[i]; 4338 } 4339 4340 bp->tx_ring = kcalloc(bp->tx_nr_rings, 4341 sizeof(struct bnxt_tx_ring_info), 4342 GFP_KERNEL); 4343 if (!bp->tx_ring) 4344 return -ENOMEM; 4345 4346 bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16), 4347 GFP_KERNEL); 4348 4349 if (!bp->tx_ring_map) 4350 return -ENOMEM; 4351 4352 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 4353 j = 0; 4354 else 4355 j = bp->rx_nr_rings; 4356 4357 for (i = 0; i < bp->tx_nr_rings; i++, j++) { 4358 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 4359 4360 if (bp->flags & BNXT_FLAG_CHIP_P5) 4361 txr->tx_ring_struct.ring_mem.flags = 4362 BNXT_RMEM_RING_PTE_FLAG; 4363 txr->bnapi = bp->bnapi[j]; 4364 bp->bnapi[j]->tx_ring = txr; 4365 bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i; 4366 if (i >= bp->tx_nr_rings_xdp) { 4367 txr->txq_index = i - bp->tx_nr_rings_xdp; 4368 bp->bnapi[j]->tx_int = bnxt_tx_int; 4369 } else { 4370 bp->bnapi[j]->flags |= BNXT_NAPI_FLAG_XDP; 4371 bp->bnapi[j]->tx_int = bnxt_tx_int_xdp; 4372 } 4373 } 4374 4375 rc = bnxt_alloc_stats(bp); 4376 if (rc) 4377 goto alloc_mem_err; 4378 bnxt_init_stats(bp); 4379 4380 rc = bnxt_alloc_ntp_fltrs(bp); 4381 if (rc) 4382 goto alloc_mem_err; 4383 4384 rc = bnxt_alloc_vnics(bp); 4385 if (rc) 4386 goto alloc_mem_err; 4387 } 4388 4389 bnxt_init_ring_struct(bp); 4390 4391 rc = bnxt_alloc_rx_rings(bp); 4392 if (rc) 4393 goto alloc_mem_err; 4394 4395 rc = bnxt_alloc_tx_rings(bp); 4396 if (rc) 4397 goto alloc_mem_err; 4398 4399 rc = bnxt_alloc_cp_rings(bp); 4400 if (rc) 4401 goto alloc_mem_err; 4402 4403 bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG | 4404 BNXT_VNIC_UCAST_FLAG; 4405 rc = bnxt_alloc_vnic_attributes(bp); 4406 if (rc) 4407 goto alloc_mem_err; 4408 return 0; 4409 4410 alloc_mem_err: 4411 bnxt_free_mem(bp, true); 4412 return rc; 4413 } 4414 4415 static void bnxt_disable_int(struct bnxt *bp) 4416 { 4417 int i; 4418 4419 if (!bp->bnapi) 4420 return; 4421 4422 for (i = 0; i < bp->cp_nr_rings; i++) { 4423 struct bnxt_napi *bnapi = bp->bnapi[i]; 4424 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4425 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 4426 4427 if (ring->fw_ring_id != INVALID_HW_RING_ID) 4428 bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons); 4429 } 4430 } 4431 4432 static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n) 4433 { 4434 struct bnxt_napi *bnapi = bp->bnapi[n]; 4435 struct bnxt_cp_ring_info *cpr; 4436 4437 cpr = &bnapi->cp_ring; 4438 return cpr->cp_ring_struct.map_idx; 4439 } 4440 4441 static void bnxt_disable_int_sync(struct bnxt *bp) 4442 { 4443 int i; 4444 4445 if (!bp->irq_tbl) 4446 return; 4447 4448 atomic_inc(&bp->intr_sem); 4449 4450 bnxt_disable_int(bp); 4451 for (i = 0; i < bp->cp_nr_rings; i++) { 4452 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 4453 4454 synchronize_irq(bp->irq_tbl[map_idx].vector); 4455 } 4456 } 4457 4458 static void bnxt_enable_int(struct bnxt *bp) 4459 { 4460 int i; 4461 4462 atomic_set(&bp->intr_sem, 0); 4463 for (i = 0; i < bp->cp_nr_rings; i++) { 4464 struct bnxt_napi *bnapi = bp->bnapi[i]; 4465 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4466 4467 bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons); 4468 } 4469 } 4470 4471 void bnxt_hwrm_cmd_hdr_init(struct bnxt *bp, void *request, u16 req_type, 4472 u16 cmpl_ring, u16 target_id) 4473 { 4474 struct input *req = request; 4475 4476 req->req_type = cpu_to_le16(req_type); 4477 req->cmpl_ring = cpu_to_le16(cmpl_ring); 4478 req->target_id = cpu_to_le16(target_id); 4479 if (bnxt_kong_hwrm_message(bp, req)) 4480 req->resp_addr = cpu_to_le64(bp->hwrm_cmd_kong_resp_dma_addr); 4481 else 4482 req->resp_addr = cpu_to_le64(bp->hwrm_cmd_resp_dma_addr); 4483 } 4484 4485 static int bnxt_hwrm_to_stderr(u32 hwrm_err) 4486 { 4487 switch (hwrm_err) { 4488 case HWRM_ERR_CODE_SUCCESS: 4489 return 0; 4490 case HWRM_ERR_CODE_RESOURCE_LOCKED: 4491 return -EROFS; 4492 case HWRM_ERR_CODE_RESOURCE_ACCESS_DENIED: 4493 return -EACCES; 4494 case HWRM_ERR_CODE_RESOURCE_ALLOC_ERROR: 4495 return -ENOSPC; 4496 case HWRM_ERR_CODE_INVALID_PARAMS: 4497 case HWRM_ERR_CODE_INVALID_FLAGS: 4498 case HWRM_ERR_CODE_INVALID_ENABLES: 4499 case HWRM_ERR_CODE_UNSUPPORTED_TLV: 4500 case HWRM_ERR_CODE_UNSUPPORTED_OPTION_ERR: 4501 return -EINVAL; 4502 case HWRM_ERR_CODE_NO_BUFFER: 4503 return -ENOMEM; 4504 case HWRM_ERR_CODE_HOT_RESET_PROGRESS: 4505 case HWRM_ERR_CODE_BUSY: 4506 return -EAGAIN; 4507 case HWRM_ERR_CODE_CMD_NOT_SUPPORTED: 4508 return -EOPNOTSUPP; 4509 default: 4510 return -EIO; 4511 } 4512 } 4513 4514 static int bnxt_hwrm_do_send_msg(struct bnxt *bp, void *msg, u32 msg_len, 4515 int timeout, bool silent) 4516 { 4517 int i, intr_process, rc, tmo_count; 4518 struct input *req = msg; 4519 u32 *data = msg; 4520 u8 *valid; 4521 u16 cp_ring_id, len = 0; 4522 struct hwrm_err_output *resp = bp->hwrm_cmd_resp_addr; 4523 u16 max_req_len = BNXT_HWRM_MAX_REQ_LEN; 4524 struct hwrm_short_input short_input = {0}; 4525 u32 doorbell_offset = BNXT_GRCPF_REG_CHIMP_COMM_TRIGGER; 4526 u32 bar_offset = BNXT_GRCPF_REG_CHIMP_COMM; 4527 u16 dst = BNXT_HWRM_CHNL_CHIMP; 4528 4529 if (BNXT_NO_FW_ACCESS(bp) && 4530 le16_to_cpu(req->req_type) != HWRM_FUNC_RESET) 4531 return -EBUSY; 4532 4533 if (msg_len > BNXT_HWRM_MAX_REQ_LEN) { 4534 if (msg_len > bp->hwrm_max_ext_req_len || 4535 !bp->hwrm_short_cmd_req_addr) 4536 return -EINVAL; 4537 } 4538 4539 if (bnxt_hwrm_kong_chnl(bp, req)) { 4540 dst = BNXT_HWRM_CHNL_KONG; 4541 bar_offset = BNXT_GRCPF_REG_KONG_COMM; 4542 doorbell_offset = BNXT_GRCPF_REG_KONG_COMM_TRIGGER; 4543 resp = bp->hwrm_cmd_kong_resp_addr; 4544 } 4545 4546 memset(resp, 0, PAGE_SIZE); 4547 cp_ring_id = le16_to_cpu(req->cmpl_ring); 4548 intr_process = (cp_ring_id == INVALID_HW_RING_ID) ? 0 : 1; 4549 4550 req->seq_id = cpu_to_le16(bnxt_get_hwrm_seq_id(bp, dst)); 4551 /* currently supports only one outstanding message */ 4552 if (intr_process) 4553 bp->hwrm_intr_seq_id = le16_to_cpu(req->seq_id); 4554 4555 if ((bp->fw_cap & BNXT_FW_CAP_SHORT_CMD) || 4556 msg_len > BNXT_HWRM_MAX_REQ_LEN) { 4557 void *short_cmd_req = bp->hwrm_short_cmd_req_addr; 4558 u16 max_msg_len; 4559 4560 /* Set boundary for maximum extended request length for short 4561 * cmd format. If passed up from device use the max supported 4562 * internal req length. 4563 */ 4564 max_msg_len = bp->hwrm_max_ext_req_len; 4565 4566 memcpy(short_cmd_req, req, msg_len); 4567 if (msg_len < max_msg_len) 4568 memset(short_cmd_req + msg_len, 0, 4569 max_msg_len - msg_len); 4570 4571 short_input.req_type = req->req_type; 4572 short_input.signature = 4573 cpu_to_le16(SHORT_REQ_SIGNATURE_SHORT_CMD); 4574 short_input.size = cpu_to_le16(msg_len); 4575 short_input.req_addr = 4576 cpu_to_le64(bp->hwrm_short_cmd_req_dma_addr); 4577 4578 data = (u32 *)&short_input; 4579 msg_len = sizeof(short_input); 4580 4581 /* Sync memory write before updating doorbell */ 4582 wmb(); 4583 4584 max_req_len = BNXT_HWRM_SHORT_REQ_LEN; 4585 } 4586 4587 /* Write request msg to hwrm channel */ 4588 __iowrite32_copy(bp->bar0 + bar_offset, data, msg_len / 4); 4589 4590 for (i = msg_len; i < max_req_len; i += 4) 4591 writel(0, bp->bar0 + bar_offset + i); 4592 4593 /* Ring channel doorbell */ 4594 writel(1, bp->bar0 + doorbell_offset); 4595 4596 if (!pci_is_enabled(bp->pdev)) 4597 return -ENODEV; 4598 4599 if (!timeout) 4600 timeout = DFLT_HWRM_CMD_TIMEOUT; 4601 /* Limit timeout to an upper limit */ 4602 timeout = min(timeout, HWRM_CMD_MAX_TIMEOUT); 4603 /* convert timeout to usec */ 4604 timeout *= 1000; 4605 4606 i = 0; 4607 /* Short timeout for the first few iterations: 4608 * number of loops = number of loops for short timeout + 4609 * number of loops for standard timeout. 4610 */ 4611 tmo_count = HWRM_SHORT_TIMEOUT_COUNTER; 4612 timeout = timeout - HWRM_SHORT_MIN_TIMEOUT * HWRM_SHORT_TIMEOUT_COUNTER; 4613 tmo_count += DIV_ROUND_UP(timeout, HWRM_MIN_TIMEOUT); 4614 4615 if (intr_process) { 4616 u16 seq_id = bp->hwrm_intr_seq_id; 4617 4618 /* Wait until hwrm response cmpl interrupt is processed */ 4619 while (bp->hwrm_intr_seq_id != (u16)~seq_id && 4620 i++ < tmo_count) { 4621 /* Abort the wait for completion if the FW health 4622 * check has failed. 4623 */ 4624 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) 4625 return -EBUSY; 4626 /* on first few passes, just barely sleep */ 4627 if (i < HWRM_SHORT_TIMEOUT_COUNTER) { 4628 usleep_range(HWRM_SHORT_MIN_TIMEOUT, 4629 HWRM_SHORT_MAX_TIMEOUT); 4630 } else { 4631 if (HWRM_WAIT_MUST_ABORT(bp, req)) 4632 break; 4633 usleep_range(HWRM_MIN_TIMEOUT, 4634 HWRM_MAX_TIMEOUT); 4635 } 4636 } 4637 4638 if (bp->hwrm_intr_seq_id != (u16)~seq_id) { 4639 if (!silent) 4640 netdev_err(bp->dev, "Resp cmpl intr err msg: 0x%x\n", 4641 le16_to_cpu(req->req_type)); 4642 return -EBUSY; 4643 } 4644 len = le16_to_cpu(resp->resp_len); 4645 valid = ((u8 *)resp) + len - 1; 4646 } else { 4647 int j; 4648 4649 /* Check if response len is updated */ 4650 for (i = 0; i < tmo_count; i++) { 4651 /* Abort the wait for completion if the FW health 4652 * check has failed. 4653 */ 4654 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) 4655 return -EBUSY; 4656 len = le16_to_cpu(resp->resp_len); 4657 if (len) 4658 break; 4659 /* on first few passes, just barely sleep */ 4660 if (i < HWRM_SHORT_TIMEOUT_COUNTER) { 4661 usleep_range(HWRM_SHORT_MIN_TIMEOUT, 4662 HWRM_SHORT_MAX_TIMEOUT); 4663 } else { 4664 if (HWRM_WAIT_MUST_ABORT(bp, req)) 4665 goto timeout_abort; 4666 usleep_range(HWRM_MIN_TIMEOUT, 4667 HWRM_MAX_TIMEOUT); 4668 } 4669 } 4670 4671 if (i >= tmo_count) { 4672 timeout_abort: 4673 if (!silent) 4674 netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d\n", 4675 HWRM_TOTAL_TIMEOUT(i), 4676 le16_to_cpu(req->req_type), 4677 le16_to_cpu(req->seq_id), len); 4678 return -EBUSY; 4679 } 4680 4681 /* Last byte of resp contains valid bit */ 4682 valid = ((u8 *)resp) + len - 1; 4683 for (j = 0; j < HWRM_VALID_BIT_DELAY_USEC; j++) { 4684 /* make sure we read from updated DMA memory */ 4685 dma_rmb(); 4686 if (*valid) 4687 break; 4688 usleep_range(1, 5); 4689 } 4690 4691 if (j >= HWRM_VALID_BIT_DELAY_USEC) { 4692 if (!silent) 4693 netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d v:%d\n", 4694 HWRM_TOTAL_TIMEOUT(i), 4695 le16_to_cpu(req->req_type), 4696 le16_to_cpu(req->seq_id), len, 4697 *valid); 4698 return -EBUSY; 4699 } 4700 } 4701 4702 /* Zero valid bit for compatibility. Valid bit in an older spec 4703 * may become a new field in a newer spec. We must make sure that 4704 * a new field not implemented by old spec will read zero. 4705 */ 4706 *valid = 0; 4707 rc = le16_to_cpu(resp->error_code); 4708 if (rc && !silent) 4709 netdev_err(bp->dev, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n", 4710 le16_to_cpu(resp->req_type), 4711 le16_to_cpu(resp->seq_id), rc); 4712 return bnxt_hwrm_to_stderr(rc); 4713 } 4714 4715 int _hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout) 4716 { 4717 return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, false); 4718 } 4719 4720 int _hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len, 4721 int timeout) 4722 { 4723 return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true); 4724 } 4725 4726 int hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout) 4727 { 4728 int rc; 4729 4730 mutex_lock(&bp->hwrm_cmd_lock); 4731 rc = _hwrm_send_message(bp, msg, msg_len, timeout); 4732 mutex_unlock(&bp->hwrm_cmd_lock); 4733 return rc; 4734 } 4735 4736 int hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len, 4737 int timeout) 4738 { 4739 int rc; 4740 4741 mutex_lock(&bp->hwrm_cmd_lock); 4742 rc = bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true); 4743 mutex_unlock(&bp->hwrm_cmd_lock); 4744 return rc; 4745 } 4746 4747 int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp, unsigned long *bmap, int bmap_size, 4748 bool async_only) 4749 { 4750 struct hwrm_func_drv_rgtr_output *resp = bp->hwrm_cmd_resp_addr; 4751 struct hwrm_func_drv_rgtr_input req = {0}; 4752 DECLARE_BITMAP(async_events_bmap, 256); 4753 u32 *events = (u32 *)async_events_bmap; 4754 u32 flags; 4755 int rc, i; 4756 4757 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1); 4758 4759 req.enables = 4760 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE | 4761 FUNC_DRV_RGTR_REQ_ENABLES_VER | 4762 FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD); 4763 4764 req.os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX); 4765 flags = FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE; 4766 if (bp->fw_cap & BNXT_FW_CAP_HOT_RESET) 4767 flags |= FUNC_DRV_RGTR_REQ_FLAGS_HOT_RESET_SUPPORT; 4768 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) 4769 flags |= FUNC_DRV_RGTR_REQ_FLAGS_ERROR_RECOVERY_SUPPORT | 4770 FUNC_DRV_RGTR_REQ_FLAGS_MASTER_SUPPORT; 4771 req.flags = cpu_to_le32(flags); 4772 req.ver_maj_8b = DRV_VER_MAJ; 4773 req.ver_min_8b = DRV_VER_MIN; 4774 req.ver_upd_8b = DRV_VER_UPD; 4775 req.ver_maj = cpu_to_le16(DRV_VER_MAJ); 4776 req.ver_min = cpu_to_le16(DRV_VER_MIN); 4777 req.ver_upd = cpu_to_le16(DRV_VER_UPD); 4778 4779 if (BNXT_PF(bp)) { 4780 u32 data[8]; 4781 int i; 4782 4783 memset(data, 0, sizeof(data)); 4784 for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) { 4785 u16 cmd = bnxt_vf_req_snif[i]; 4786 unsigned int bit, idx; 4787 4788 idx = cmd / 32; 4789 bit = cmd % 32; 4790 data[idx] |= 1 << bit; 4791 } 4792 4793 for (i = 0; i < 8; i++) 4794 req.vf_req_fwd[i] = cpu_to_le32(data[i]); 4795 4796 req.enables |= 4797 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD); 4798 } 4799 4800 if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE) 4801 req.flags |= cpu_to_le32( 4802 FUNC_DRV_RGTR_REQ_FLAGS_FLOW_HANDLE_64BIT_MODE); 4803 4804 memset(async_events_bmap, 0, sizeof(async_events_bmap)); 4805 for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++) { 4806 u16 event_id = bnxt_async_events_arr[i]; 4807 4808 if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY && 4809 !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 4810 continue; 4811 __set_bit(bnxt_async_events_arr[i], async_events_bmap); 4812 } 4813 if (bmap && bmap_size) { 4814 for (i = 0; i < bmap_size; i++) { 4815 if (test_bit(i, bmap)) 4816 __set_bit(i, async_events_bmap); 4817 } 4818 } 4819 for (i = 0; i < 8; i++) 4820 req.async_event_fwd[i] |= cpu_to_le32(events[i]); 4821 4822 if (async_only) 4823 req.enables = 4824 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD); 4825 4826 mutex_lock(&bp->hwrm_cmd_lock); 4827 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 4828 if (!rc) { 4829 set_bit(BNXT_STATE_DRV_REGISTERED, &bp->state); 4830 if (resp->flags & 4831 cpu_to_le32(FUNC_DRV_RGTR_RESP_FLAGS_IF_CHANGE_SUPPORTED)) 4832 bp->fw_cap |= BNXT_FW_CAP_IF_CHANGE; 4833 } 4834 mutex_unlock(&bp->hwrm_cmd_lock); 4835 return rc; 4836 } 4837 4838 static int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp) 4839 { 4840 struct hwrm_func_drv_unrgtr_input req = {0}; 4841 4842 if (!test_and_clear_bit(BNXT_STATE_DRV_REGISTERED, &bp->state)) 4843 return 0; 4844 4845 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_UNRGTR, -1, -1); 4846 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 4847 } 4848 4849 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type) 4850 { 4851 u32 rc = 0; 4852 struct hwrm_tunnel_dst_port_free_input req = {0}; 4853 4854 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_FREE, -1, -1); 4855 req.tunnel_type = tunnel_type; 4856 4857 switch (tunnel_type) { 4858 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN: 4859 req.tunnel_dst_port_id = cpu_to_le16(bp->vxlan_fw_dst_port_id); 4860 bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID; 4861 break; 4862 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE: 4863 req.tunnel_dst_port_id = cpu_to_le16(bp->nge_fw_dst_port_id); 4864 bp->nge_fw_dst_port_id = INVALID_HW_RING_ID; 4865 break; 4866 default: 4867 break; 4868 } 4869 4870 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 4871 if (rc) 4872 netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n", 4873 rc); 4874 return rc; 4875 } 4876 4877 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port, 4878 u8 tunnel_type) 4879 { 4880 u32 rc = 0; 4881 struct hwrm_tunnel_dst_port_alloc_input req = {0}; 4882 struct hwrm_tunnel_dst_port_alloc_output *resp = bp->hwrm_cmd_resp_addr; 4883 4884 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_ALLOC, -1, -1); 4885 4886 req.tunnel_type = tunnel_type; 4887 req.tunnel_dst_port_val = port; 4888 4889 mutex_lock(&bp->hwrm_cmd_lock); 4890 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 4891 if (rc) { 4892 netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n", 4893 rc); 4894 goto err_out; 4895 } 4896 4897 switch (tunnel_type) { 4898 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN: 4899 bp->vxlan_fw_dst_port_id = 4900 le16_to_cpu(resp->tunnel_dst_port_id); 4901 break; 4902 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE: 4903 bp->nge_fw_dst_port_id = le16_to_cpu(resp->tunnel_dst_port_id); 4904 break; 4905 default: 4906 break; 4907 } 4908 4909 err_out: 4910 mutex_unlock(&bp->hwrm_cmd_lock); 4911 return rc; 4912 } 4913 4914 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id) 4915 { 4916 struct hwrm_cfa_l2_set_rx_mask_input req = {0}; 4917 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 4918 4919 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_SET_RX_MASK, -1, -1); 4920 req.vnic_id = cpu_to_le32(vnic->fw_vnic_id); 4921 4922 req.num_mc_entries = cpu_to_le32(vnic->mc_list_count); 4923 req.mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping); 4924 req.mask = cpu_to_le32(vnic->rx_mask); 4925 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 4926 } 4927 4928 #ifdef CONFIG_RFS_ACCEL 4929 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp, 4930 struct bnxt_ntuple_filter *fltr) 4931 { 4932 struct hwrm_cfa_ntuple_filter_free_input req = {0}; 4933 4934 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_FREE, -1, -1); 4935 req.ntuple_filter_id = fltr->filter_id; 4936 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 4937 } 4938 4939 #define BNXT_NTP_FLTR_FLAGS \ 4940 (CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID | \ 4941 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE | \ 4942 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR | \ 4943 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE | \ 4944 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR | \ 4945 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK | \ 4946 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR | \ 4947 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK | \ 4948 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL | \ 4949 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT | \ 4950 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK | \ 4951 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT | \ 4952 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK | \ 4953 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID) 4954 4955 #define BNXT_NTP_TUNNEL_FLTR_FLAG \ 4956 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE 4957 4958 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp, 4959 struct bnxt_ntuple_filter *fltr) 4960 { 4961 struct hwrm_cfa_ntuple_filter_alloc_input req = {0}; 4962 struct hwrm_cfa_ntuple_filter_alloc_output *resp; 4963 struct flow_keys *keys = &fltr->fkeys; 4964 struct bnxt_vnic_info *vnic; 4965 u32 flags = 0; 4966 int rc = 0; 4967 4968 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_ALLOC, -1, -1); 4969 req.l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx]; 4970 4971 if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) { 4972 flags = CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DEST_RFS_RING_IDX; 4973 req.dst_id = cpu_to_le16(fltr->rxq); 4974 } else { 4975 vnic = &bp->vnic_info[fltr->rxq + 1]; 4976 req.dst_id = cpu_to_le16(vnic->fw_vnic_id); 4977 } 4978 req.flags = cpu_to_le32(flags); 4979 req.enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS); 4980 4981 req.ethertype = htons(ETH_P_IP); 4982 memcpy(req.src_macaddr, fltr->src_mac_addr, ETH_ALEN); 4983 req.ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4; 4984 req.ip_protocol = keys->basic.ip_proto; 4985 4986 if (keys->basic.n_proto == htons(ETH_P_IPV6)) { 4987 int i; 4988 4989 req.ethertype = htons(ETH_P_IPV6); 4990 req.ip_addr_type = 4991 CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6; 4992 *(struct in6_addr *)&req.src_ipaddr[0] = 4993 keys->addrs.v6addrs.src; 4994 *(struct in6_addr *)&req.dst_ipaddr[0] = 4995 keys->addrs.v6addrs.dst; 4996 for (i = 0; i < 4; i++) { 4997 req.src_ipaddr_mask[i] = cpu_to_be32(0xffffffff); 4998 req.dst_ipaddr_mask[i] = cpu_to_be32(0xffffffff); 4999 } 5000 } else { 5001 req.src_ipaddr[0] = keys->addrs.v4addrs.src; 5002 req.src_ipaddr_mask[0] = cpu_to_be32(0xffffffff); 5003 req.dst_ipaddr[0] = keys->addrs.v4addrs.dst; 5004 req.dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff); 5005 } 5006 if (keys->control.flags & FLOW_DIS_ENCAPSULATION) { 5007 req.enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG); 5008 req.tunnel_type = 5009 CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL; 5010 } 5011 5012 req.src_port = keys->ports.src; 5013 req.src_port_mask = cpu_to_be16(0xffff); 5014 req.dst_port = keys->ports.dst; 5015 req.dst_port_mask = cpu_to_be16(0xffff); 5016 5017 mutex_lock(&bp->hwrm_cmd_lock); 5018 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5019 if (!rc) { 5020 resp = bnxt_get_hwrm_resp_addr(bp, &req); 5021 fltr->filter_id = resp->ntuple_filter_id; 5022 } 5023 mutex_unlock(&bp->hwrm_cmd_lock); 5024 return rc; 5025 } 5026 #endif 5027 5028 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx, 5029 u8 *mac_addr) 5030 { 5031 u32 rc = 0; 5032 struct hwrm_cfa_l2_filter_alloc_input req = {0}; 5033 struct hwrm_cfa_l2_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr; 5034 5035 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_ALLOC, -1, -1); 5036 req.flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX); 5037 if (!BNXT_CHIP_TYPE_NITRO_A0(bp)) 5038 req.flags |= 5039 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST); 5040 req.dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id); 5041 req.enables = 5042 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR | 5043 CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID | 5044 CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK); 5045 memcpy(req.l2_addr, mac_addr, ETH_ALEN); 5046 req.l2_addr_mask[0] = 0xff; 5047 req.l2_addr_mask[1] = 0xff; 5048 req.l2_addr_mask[2] = 0xff; 5049 req.l2_addr_mask[3] = 0xff; 5050 req.l2_addr_mask[4] = 0xff; 5051 req.l2_addr_mask[5] = 0xff; 5052 5053 mutex_lock(&bp->hwrm_cmd_lock); 5054 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5055 if (!rc) 5056 bp->vnic_info[vnic_id].fw_l2_filter_id[idx] = 5057 resp->l2_filter_id; 5058 mutex_unlock(&bp->hwrm_cmd_lock); 5059 return rc; 5060 } 5061 5062 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp) 5063 { 5064 u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */ 5065 int rc = 0; 5066 5067 /* Any associated ntuple filters will also be cleared by firmware. */ 5068 mutex_lock(&bp->hwrm_cmd_lock); 5069 for (i = 0; i < num_of_vnics; i++) { 5070 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 5071 5072 for (j = 0; j < vnic->uc_filter_count; j++) { 5073 struct hwrm_cfa_l2_filter_free_input req = {0}; 5074 5075 bnxt_hwrm_cmd_hdr_init(bp, &req, 5076 HWRM_CFA_L2_FILTER_FREE, -1, -1); 5077 5078 req.l2_filter_id = vnic->fw_l2_filter_id[j]; 5079 5080 rc = _hwrm_send_message(bp, &req, sizeof(req), 5081 HWRM_CMD_TIMEOUT); 5082 } 5083 vnic->uc_filter_count = 0; 5084 } 5085 mutex_unlock(&bp->hwrm_cmd_lock); 5086 5087 return rc; 5088 } 5089 5090 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags) 5091 { 5092 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5093 u16 max_aggs = VNIC_TPA_CFG_REQ_MAX_AGGS_MAX; 5094 struct hwrm_vnic_tpa_cfg_input req = {0}; 5095 5096 if (vnic->fw_vnic_id == INVALID_HW_RING_ID) 5097 return 0; 5098 5099 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_TPA_CFG, -1, -1); 5100 5101 if (tpa_flags) { 5102 u16 mss = bp->dev->mtu - 40; 5103 u32 nsegs, n, segs = 0, flags; 5104 5105 flags = VNIC_TPA_CFG_REQ_FLAGS_TPA | 5106 VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA | 5107 VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE | 5108 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN | 5109 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ; 5110 if (tpa_flags & BNXT_FLAG_GRO) 5111 flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO; 5112 5113 req.flags = cpu_to_le32(flags); 5114 5115 req.enables = 5116 cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS | 5117 VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS | 5118 VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN); 5119 5120 /* Number of segs are log2 units, and first packet is not 5121 * included as part of this units. 5122 */ 5123 if (mss <= BNXT_RX_PAGE_SIZE) { 5124 n = BNXT_RX_PAGE_SIZE / mss; 5125 nsegs = (MAX_SKB_FRAGS - 1) * n; 5126 } else { 5127 n = mss / BNXT_RX_PAGE_SIZE; 5128 if (mss & (BNXT_RX_PAGE_SIZE - 1)) 5129 n++; 5130 nsegs = (MAX_SKB_FRAGS - n) / n; 5131 } 5132 5133 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5134 segs = MAX_TPA_SEGS_P5; 5135 max_aggs = bp->max_tpa; 5136 } else { 5137 segs = ilog2(nsegs); 5138 } 5139 req.max_agg_segs = cpu_to_le16(segs); 5140 req.max_aggs = cpu_to_le16(max_aggs); 5141 5142 req.min_agg_len = cpu_to_le32(512); 5143 } 5144 req.vnic_id = cpu_to_le16(vnic->fw_vnic_id); 5145 5146 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5147 } 5148 5149 static u16 bnxt_cp_ring_from_grp(struct bnxt *bp, struct bnxt_ring_struct *ring) 5150 { 5151 struct bnxt_ring_grp_info *grp_info; 5152 5153 grp_info = &bp->grp_info[ring->grp_idx]; 5154 return grp_info->cp_fw_ring_id; 5155 } 5156 5157 static u16 bnxt_cp_ring_for_rx(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 5158 { 5159 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5160 struct bnxt_napi *bnapi = rxr->bnapi; 5161 struct bnxt_cp_ring_info *cpr; 5162 5163 cpr = bnapi->cp_ring.cp_ring_arr[BNXT_RX_HDL]; 5164 return cpr->cp_ring_struct.fw_ring_id; 5165 } else { 5166 return bnxt_cp_ring_from_grp(bp, &rxr->rx_ring_struct); 5167 } 5168 } 5169 5170 static u16 bnxt_cp_ring_for_tx(struct bnxt *bp, struct bnxt_tx_ring_info *txr) 5171 { 5172 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5173 struct bnxt_napi *bnapi = txr->bnapi; 5174 struct bnxt_cp_ring_info *cpr; 5175 5176 cpr = bnapi->cp_ring.cp_ring_arr[BNXT_TX_HDL]; 5177 return cpr->cp_ring_struct.fw_ring_id; 5178 } else { 5179 return bnxt_cp_ring_from_grp(bp, &txr->tx_ring_struct); 5180 } 5181 } 5182 5183 static int bnxt_alloc_rss_indir_tbl(struct bnxt *bp) 5184 { 5185 int entries; 5186 5187 if (bp->flags & BNXT_FLAG_CHIP_P5) 5188 entries = BNXT_MAX_RSS_TABLE_ENTRIES_P5; 5189 else 5190 entries = HW_HASH_INDEX_SIZE; 5191 5192 bp->rss_indir_tbl_entries = entries; 5193 bp->rss_indir_tbl = kmalloc_array(entries, sizeof(*bp->rss_indir_tbl), 5194 GFP_KERNEL); 5195 if (!bp->rss_indir_tbl) 5196 return -ENOMEM; 5197 return 0; 5198 } 5199 5200 static void bnxt_set_dflt_rss_indir_tbl(struct bnxt *bp) 5201 { 5202 u16 max_rings, max_entries, pad, i; 5203 5204 if (!bp->rx_nr_rings) 5205 return; 5206 5207 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 5208 max_rings = bp->rx_nr_rings - 1; 5209 else 5210 max_rings = bp->rx_nr_rings; 5211 5212 max_entries = bnxt_get_rxfh_indir_size(bp->dev); 5213 5214 for (i = 0; i < max_entries; i++) 5215 bp->rss_indir_tbl[i] = ethtool_rxfh_indir_default(i, max_rings); 5216 5217 pad = bp->rss_indir_tbl_entries - max_entries; 5218 if (pad) 5219 memset(&bp->rss_indir_tbl[i], 0, pad * sizeof(u16)); 5220 } 5221 5222 static u16 bnxt_get_max_rss_ring(struct bnxt *bp) 5223 { 5224 u16 i, tbl_size, max_ring = 0; 5225 5226 if (!bp->rss_indir_tbl) 5227 return 0; 5228 5229 tbl_size = bnxt_get_rxfh_indir_size(bp->dev); 5230 for (i = 0; i < tbl_size; i++) 5231 max_ring = max(max_ring, bp->rss_indir_tbl[i]); 5232 return max_ring; 5233 } 5234 5235 int bnxt_get_nr_rss_ctxs(struct bnxt *bp, int rx_rings) 5236 { 5237 if (bp->flags & BNXT_FLAG_CHIP_P5) 5238 return DIV_ROUND_UP(rx_rings, BNXT_RSS_TABLE_ENTRIES_P5); 5239 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 5240 return 2; 5241 return 1; 5242 } 5243 5244 static void __bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic) 5245 { 5246 bool no_rss = !(vnic->flags & BNXT_VNIC_RSS_FLAG); 5247 u16 i, j; 5248 5249 /* Fill the RSS indirection table with ring group ids */ 5250 for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++) { 5251 if (!no_rss) 5252 j = bp->rss_indir_tbl[i]; 5253 vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]); 5254 } 5255 } 5256 5257 static void __bnxt_fill_hw_rss_tbl_p5(struct bnxt *bp, 5258 struct bnxt_vnic_info *vnic) 5259 { 5260 __le16 *ring_tbl = vnic->rss_table; 5261 struct bnxt_rx_ring_info *rxr; 5262 u16 tbl_size, i; 5263 5264 tbl_size = bnxt_get_rxfh_indir_size(bp->dev); 5265 5266 for (i = 0; i < tbl_size; i++) { 5267 u16 ring_id, j; 5268 5269 j = bp->rss_indir_tbl[i]; 5270 rxr = &bp->rx_ring[j]; 5271 5272 ring_id = rxr->rx_ring_struct.fw_ring_id; 5273 *ring_tbl++ = cpu_to_le16(ring_id); 5274 ring_id = bnxt_cp_ring_for_rx(bp, rxr); 5275 *ring_tbl++ = cpu_to_le16(ring_id); 5276 } 5277 } 5278 5279 static void bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic) 5280 { 5281 if (bp->flags & BNXT_FLAG_CHIP_P5) 5282 __bnxt_fill_hw_rss_tbl_p5(bp, vnic); 5283 else 5284 __bnxt_fill_hw_rss_tbl(bp, vnic); 5285 } 5286 5287 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss) 5288 { 5289 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5290 struct hwrm_vnic_rss_cfg_input req = {0}; 5291 5292 if ((bp->flags & BNXT_FLAG_CHIP_P5) || 5293 vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID) 5294 return 0; 5295 5296 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1); 5297 if (set_rss) { 5298 bnxt_fill_hw_rss_tbl(bp, vnic); 5299 req.hash_type = cpu_to_le32(bp->rss_hash_cfg); 5300 req.hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT; 5301 req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr); 5302 req.hash_key_tbl_addr = 5303 cpu_to_le64(vnic->rss_hash_key_dma_addr); 5304 } 5305 req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 5306 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5307 } 5308 5309 static int bnxt_hwrm_vnic_set_rss_p5(struct bnxt *bp, u16 vnic_id, bool set_rss) 5310 { 5311 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5312 struct hwrm_vnic_rss_cfg_input req = {0}; 5313 dma_addr_t ring_tbl_map; 5314 u32 i, nr_ctxs; 5315 5316 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1); 5317 req.vnic_id = cpu_to_le16(vnic->fw_vnic_id); 5318 if (!set_rss) { 5319 hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5320 return 0; 5321 } 5322 bnxt_fill_hw_rss_tbl(bp, vnic); 5323 req.hash_type = cpu_to_le32(bp->rss_hash_cfg); 5324 req.hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT; 5325 req.hash_key_tbl_addr = cpu_to_le64(vnic->rss_hash_key_dma_addr); 5326 ring_tbl_map = vnic->rss_table_dma_addr; 5327 nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings); 5328 for (i = 0; i < nr_ctxs; ring_tbl_map += BNXT_RSS_TABLE_SIZE_P5, i++) { 5329 int rc; 5330 5331 req.ring_grp_tbl_addr = cpu_to_le64(ring_tbl_map); 5332 req.ring_table_pair_index = i; 5333 req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[i]); 5334 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5335 if (rc) 5336 return rc; 5337 } 5338 return 0; 5339 } 5340 5341 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id) 5342 { 5343 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5344 struct hwrm_vnic_plcmodes_cfg_input req = {0}; 5345 5346 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_PLCMODES_CFG, -1, -1); 5347 req.flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT | 5348 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 | 5349 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6); 5350 req.enables = 5351 cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID | 5352 VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID); 5353 /* thresholds not implemented in firmware yet */ 5354 req.jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh); 5355 req.hds_threshold = cpu_to_le16(bp->rx_copy_thresh); 5356 req.vnic_id = cpu_to_le32(vnic->fw_vnic_id); 5357 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5358 } 5359 5360 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id, 5361 u16 ctx_idx) 5362 { 5363 struct hwrm_vnic_rss_cos_lb_ctx_free_input req = {0}; 5364 5365 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_FREE, -1, -1); 5366 req.rss_cos_lb_ctx_id = 5367 cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]); 5368 5369 hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5370 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID; 5371 } 5372 5373 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp) 5374 { 5375 int i, j; 5376 5377 for (i = 0; i < bp->nr_vnics; i++) { 5378 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 5379 5380 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) { 5381 if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID) 5382 bnxt_hwrm_vnic_ctx_free_one(bp, i, j); 5383 } 5384 } 5385 bp->rsscos_nr_ctxs = 0; 5386 } 5387 5388 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx) 5389 { 5390 int rc; 5391 struct hwrm_vnic_rss_cos_lb_ctx_alloc_input req = {0}; 5392 struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp = 5393 bp->hwrm_cmd_resp_addr; 5394 5395 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC, -1, 5396 -1); 5397 5398 mutex_lock(&bp->hwrm_cmd_lock); 5399 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5400 if (!rc) 5401 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = 5402 le16_to_cpu(resp->rss_cos_lb_ctx_id); 5403 mutex_unlock(&bp->hwrm_cmd_lock); 5404 5405 return rc; 5406 } 5407 5408 static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp) 5409 { 5410 if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP) 5411 return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE; 5412 return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE; 5413 } 5414 5415 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id) 5416 { 5417 unsigned int ring = 0, grp_idx; 5418 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5419 struct hwrm_vnic_cfg_input req = {0}; 5420 u16 def_vlan = 0; 5421 5422 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_CFG, -1, -1); 5423 5424 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5425 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0]; 5426 5427 req.default_rx_ring_id = 5428 cpu_to_le16(rxr->rx_ring_struct.fw_ring_id); 5429 req.default_cmpl_ring_id = 5430 cpu_to_le16(bnxt_cp_ring_for_rx(bp, rxr)); 5431 req.enables = 5432 cpu_to_le32(VNIC_CFG_REQ_ENABLES_DEFAULT_RX_RING_ID | 5433 VNIC_CFG_REQ_ENABLES_DEFAULT_CMPL_RING_ID); 5434 goto vnic_mru; 5435 } 5436 req.enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP); 5437 /* Only RSS support for now TBD: COS & LB */ 5438 if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) { 5439 req.rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 5440 req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE | 5441 VNIC_CFG_REQ_ENABLES_MRU); 5442 } else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) { 5443 req.rss_rule = 5444 cpu_to_le16(bp->vnic_info[0].fw_rss_cos_lb_ctx[0]); 5445 req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE | 5446 VNIC_CFG_REQ_ENABLES_MRU); 5447 req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE); 5448 } else { 5449 req.rss_rule = cpu_to_le16(0xffff); 5450 } 5451 5452 if (BNXT_CHIP_TYPE_NITRO_A0(bp) && 5453 (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) { 5454 req.cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]); 5455 req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE); 5456 } else { 5457 req.cos_rule = cpu_to_le16(0xffff); 5458 } 5459 5460 if (vnic->flags & BNXT_VNIC_RSS_FLAG) 5461 ring = 0; 5462 else if (vnic->flags & BNXT_VNIC_RFS_FLAG) 5463 ring = vnic_id - 1; 5464 else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp)) 5465 ring = bp->rx_nr_rings - 1; 5466 5467 grp_idx = bp->rx_ring[ring].bnapi->index; 5468 req.dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id); 5469 req.lb_rule = cpu_to_le16(0xffff); 5470 vnic_mru: 5471 req.mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + VLAN_HLEN); 5472 5473 req.vnic_id = cpu_to_le16(vnic->fw_vnic_id); 5474 #ifdef CONFIG_BNXT_SRIOV 5475 if (BNXT_VF(bp)) 5476 def_vlan = bp->vf.vlan; 5477 #endif 5478 if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan) 5479 req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE); 5480 if (!vnic_id && bnxt_ulp_registered(bp->edev, BNXT_ROCE_ULP)) 5481 req.flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp)); 5482 5483 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5484 } 5485 5486 static void bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id) 5487 { 5488 if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) { 5489 struct hwrm_vnic_free_input req = {0}; 5490 5491 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_FREE, -1, -1); 5492 req.vnic_id = 5493 cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id); 5494 5495 hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5496 bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID; 5497 } 5498 } 5499 5500 static void bnxt_hwrm_vnic_free(struct bnxt *bp) 5501 { 5502 u16 i; 5503 5504 for (i = 0; i < bp->nr_vnics; i++) 5505 bnxt_hwrm_vnic_free_one(bp, i); 5506 } 5507 5508 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id, 5509 unsigned int start_rx_ring_idx, 5510 unsigned int nr_rings) 5511 { 5512 int rc = 0; 5513 unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings; 5514 struct hwrm_vnic_alloc_input req = {0}; 5515 struct hwrm_vnic_alloc_output *resp = bp->hwrm_cmd_resp_addr; 5516 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5517 5518 if (bp->flags & BNXT_FLAG_CHIP_P5) 5519 goto vnic_no_ring_grps; 5520 5521 /* map ring groups to this vnic */ 5522 for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) { 5523 grp_idx = bp->rx_ring[i].bnapi->index; 5524 if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) { 5525 netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n", 5526 j, nr_rings); 5527 break; 5528 } 5529 vnic->fw_grp_ids[j] = bp->grp_info[grp_idx].fw_grp_id; 5530 } 5531 5532 vnic_no_ring_grps: 5533 for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++) 5534 vnic->fw_rss_cos_lb_ctx[i] = INVALID_HW_RING_ID; 5535 if (vnic_id == 0) 5536 req.flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT); 5537 5538 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_ALLOC, -1, -1); 5539 5540 mutex_lock(&bp->hwrm_cmd_lock); 5541 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5542 if (!rc) 5543 vnic->fw_vnic_id = le32_to_cpu(resp->vnic_id); 5544 mutex_unlock(&bp->hwrm_cmd_lock); 5545 return rc; 5546 } 5547 5548 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp) 5549 { 5550 struct hwrm_vnic_qcaps_output *resp = bp->hwrm_cmd_resp_addr; 5551 struct hwrm_vnic_qcaps_input req = {0}; 5552 int rc; 5553 5554 bp->hw_ring_stats_size = sizeof(struct ctx_hw_stats); 5555 bp->flags &= ~(BNXT_FLAG_NEW_RSS_CAP | BNXT_FLAG_ROCE_MIRROR_CAP); 5556 if (bp->hwrm_spec_code < 0x10600) 5557 return 0; 5558 5559 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_QCAPS, -1, -1); 5560 mutex_lock(&bp->hwrm_cmd_lock); 5561 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5562 if (!rc) { 5563 u32 flags = le32_to_cpu(resp->flags); 5564 5565 if (!(bp->flags & BNXT_FLAG_CHIP_P5) && 5566 (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP)) 5567 bp->flags |= BNXT_FLAG_NEW_RSS_CAP; 5568 if (flags & 5569 VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP) 5570 bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP; 5571 5572 /* Older P5 fw before EXT_HW_STATS support did not set 5573 * VLAN_STRIP_CAP properly. 5574 */ 5575 if ((flags & VNIC_QCAPS_RESP_FLAGS_VLAN_STRIP_CAP) || 5576 (BNXT_CHIP_P5_THOR(bp) && 5577 !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))) 5578 bp->fw_cap |= BNXT_FW_CAP_VLAN_RX_STRIP; 5579 bp->max_tpa_v2 = le16_to_cpu(resp->max_aggs_supported); 5580 if (bp->max_tpa_v2) { 5581 if (BNXT_CHIP_P5_THOR(bp)) 5582 bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5; 5583 else 5584 bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5_SR2; 5585 } 5586 } 5587 mutex_unlock(&bp->hwrm_cmd_lock); 5588 return rc; 5589 } 5590 5591 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp) 5592 { 5593 u16 i; 5594 u32 rc = 0; 5595 5596 if (bp->flags & BNXT_FLAG_CHIP_P5) 5597 return 0; 5598 5599 mutex_lock(&bp->hwrm_cmd_lock); 5600 for (i = 0; i < bp->rx_nr_rings; i++) { 5601 struct hwrm_ring_grp_alloc_input req = {0}; 5602 struct hwrm_ring_grp_alloc_output *resp = 5603 bp->hwrm_cmd_resp_addr; 5604 unsigned int grp_idx = bp->rx_ring[i].bnapi->index; 5605 5606 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_ALLOC, -1, -1); 5607 5608 req.cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id); 5609 req.rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id); 5610 req.ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id); 5611 req.sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx); 5612 5613 rc = _hwrm_send_message(bp, &req, sizeof(req), 5614 HWRM_CMD_TIMEOUT); 5615 if (rc) 5616 break; 5617 5618 bp->grp_info[grp_idx].fw_grp_id = 5619 le32_to_cpu(resp->ring_group_id); 5620 } 5621 mutex_unlock(&bp->hwrm_cmd_lock); 5622 return rc; 5623 } 5624 5625 static void bnxt_hwrm_ring_grp_free(struct bnxt *bp) 5626 { 5627 u16 i; 5628 struct hwrm_ring_grp_free_input req = {0}; 5629 5630 if (!bp->grp_info || (bp->flags & BNXT_FLAG_CHIP_P5)) 5631 return; 5632 5633 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_FREE, -1, -1); 5634 5635 mutex_lock(&bp->hwrm_cmd_lock); 5636 for (i = 0; i < bp->cp_nr_rings; i++) { 5637 if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID) 5638 continue; 5639 req.ring_group_id = 5640 cpu_to_le32(bp->grp_info[i].fw_grp_id); 5641 5642 _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5643 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID; 5644 } 5645 mutex_unlock(&bp->hwrm_cmd_lock); 5646 } 5647 5648 static int hwrm_ring_alloc_send_msg(struct bnxt *bp, 5649 struct bnxt_ring_struct *ring, 5650 u32 ring_type, u32 map_index) 5651 { 5652 int rc = 0, err = 0; 5653 struct hwrm_ring_alloc_input req = {0}; 5654 struct hwrm_ring_alloc_output *resp = bp->hwrm_cmd_resp_addr; 5655 struct bnxt_ring_mem_info *rmem = &ring->ring_mem; 5656 struct bnxt_ring_grp_info *grp_info; 5657 u16 ring_id; 5658 5659 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_ALLOC, -1, -1); 5660 5661 req.enables = 0; 5662 if (rmem->nr_pages > 1) { 5663 req.page_tbl_addr = cpu_to_le64(rmem->pg_tbl_map); 5664 /* Page size is in log2 units */ 5665 req.page_size = BNXT_PAGE_SHIFT; 5666 req.page_tbl_depth = 1; 5667 } else { 5668 req.page_tbl_addr = cpu_to_le64(rmem->dma_arr[0]); 5669 } 5670 req.fbo = 0; 5671 /* Association of ring index with doorbell index and MSIX number */ 5672 req.logical_id = cpu_to_le16(map_index); 5673 5674 switch (ring_type) { 5675 case HWRM_RING_ALLOC_TX: { 5676 struct bnxt_tx_ring_info *txr; 5677 5678 txr = container_of(ring, struct bnxt_tx_ring_info, 5679 tx_ring_struct); 5680 req.ring_type = RING_ALLOC_REQ_RING_TYPE_TX; 5681 /* Association of transmit ring with completion ring */ 5682 grp_info = &bp->grp_info[ring->grp_idx]; 5683 req.cmpl_ring_id = cpu_to_le16(bnxt_cp_ring_for_tx(bp, txr)); 5684 req.length = cpu_to_le32(bp->tx_ring_mask + 1); 5685 req.stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 5686 req.queue_id = cpu_to_le16(ring->queue_id); 5687 break; 5688 } 5689 case HWRM_RING_ALLOC_RX: 5690 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX; 5691 req.length = cpu_to_le32(bp->rx_ring_mask + 1); 5692 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5693 u16 flags = 0; 5694 5695 /* Association of rx ring with stats context */ 5696 grp_info = &bp->grp_info[ring->grp_idx]; 5697 req.rx_buf_size = cpu_to_le16(bp->rx_buf_use_size); 5698 req.stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 5699 req.enables |= cpu_to_le32( 5700 RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID); 5701 if (NET_IP_ALIGN == 2) 5702 flags = RING_ALLOC_REQ_FLAGS_RX_SOP_PAD; 5703 req.flags = cpu_to_le16(flags); 5704 } 5705 break; 5706 case HWRM_RING_ALLOC_AGG: 5707 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5708 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX_AGG; 5709 /* Association of agg ring with rx ring */ 5710 grp_info = &bp->grp_info[ring->grp_idx]; 5711 req.rx_ring_id = cpu_to_le16(grp_info->rx_fw_ring_id); 5712 req.rx_buf_size = cpu_to_le16(BNXT_RX_PAGE_SIZE); 5713 req.stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 5714 req.enables |= cpu_to_le32( 5715 RING_ALLOC_REQ_ENABLES_RX_RING_ID_VALID | 5716 RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID); 5717 } else { 5718 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX; 5719 } 5720 req.length = cpu_to_le32(bp->rx_agg_ring_mask + 1); 5721 break; 5722 case HWRM_RING_ALLOC_CMPL: 5723 req.ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL; 5724 req.length = cpu_to_le32(bp->cp_ring_mask + 1); 5725 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5726 /* Association of cp ring with nq */ 5727 grp_info = &bp->grp_info[map_index]; 5728 req.nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id); 5729 req.cq_handle = cpu_to_le64(ring->handle); 5730 req.enables |= cpu_to_le32( 5731 RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID); 5732 } else if (bp->flags & BNXT_FLAG_USING_MSIX) { 5733 req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX; 5734 } 5735 break; 5736 case HWRM_RING_ALLOC_NQ: 5737 req.ring_type = RING_ALLOC_REQ_RING_TYPE_NQ; 5738 req.length = cpu_to_le32(bp->cp_ring_mask + 1); 5739 if (bp->flags & BNXT_FLAG_USING_MSIX) 5740 req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX; 5741 break; 5742 default: 5743 netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n", 5744 ring_type); 5745 return -1; 5746 } 5747 5748 mutex_lock(&bp->hwrm_cmd_lock); 5749 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5750 err = le16_to_cpu(resp->error_code); 5751 ring_id = le16_to_cpu(resp->ring_id); 5752 mutex_unlock(&bp->hwrm_cmd_lock); 5753 5754 if (rc || err) { 5755 netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n", 5756 ring_type, rc, err); 5757 return -EIO; 5758 } 5759 ring->fw_ring_id = ring_id; 5760 return rc; 5761 } 5762 5763 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx) 5764 { 5765 int rc; 5766 5767 if (BNXT_PF(bp)) { 5768 struct hwrm_func_cfg_input req = {0}; 5769 5770 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1); 5771 req.fid = cpu_to_le16(0xffff); 5772 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR); 5773 req.async_event_cr = cpu_to_le16(idx); 5774 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5775 } else { 5776 struct hwrm_func_vf_cfg_input req = {0}; 5777 5778 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_CFG, -1, -1); 5779 req.enables = 5780 cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR); 5781 req.async_event_cr = cpu_to_le16(idx); 5782 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5783 } 5784 return rc; 5785 } 5786 5787 static void bnxt_set_db(struct bnxt *bp, struct bnxt_db_info *db, u32 ring_type, 5788 u32 map_idx, u32 xid) 5789 { 5790 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5791 if (BNXT_PF(bp)) 5792 db->doorbell = bp->bar1 + DB_PF_OFFSET_P5; 5793 else 5794 db->doorbell = bp->bar1 + DB_VF_OFFSET_P5; 5795 switch (ring_type) { 5796 case HWRM_RING_ALLOC_TX: 5797 db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SQ; 5798 break; 5799 case HWRM_RING_ALLOC_RX: 5800 case HWRM_RING_ALLOC_AGG: 5801 db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SRQ; 5802 break; 5803 case HWRM_RING_ALLOC_CMPL: 5804 db->db_key64 = DBR_PATH_L2; 5805 break; 5806 case HWRM_RING_ALLOC_NQ: 5807 db->db_key64 = DBR_PATH_L2; 5808 break; 5809 } 5810 db->db_key64 |= (u64)xid << DBR_XID_SFT; 5811 } else { 5812 db->doorbell = bp->bar1 + map_idx * 0x80; 5813 switch (ring_type) { 5814 case HWRM_RING_ALLOC_TX: 5815 db->db_key32 = DB_KEY_TX; 5816 break; 5817 case HWRM_RING_ALLOC_RX: 5818 case HWRM_RING_ALLOC_AGG: 5819 db->db_key32 = DB_KEY_RX; 5820 break; 5821 case HWRM_RING_ALLOC_CMPL: 5822 db->db_key32 = DB_KEY_CP; 5823 break; 5824 } 5825 } 5826 } 5827 5828 static int bnxt_hwrm_ring_alloc(struct bnxt *bp) 5829 { 5830 bool agg_rings = !!(bp->flags & BNXT_FLAG_AGG_RINGS); 5831 int i, rc = 0; 5832 u32 type; 5833 5834 if (bp->flags & BNXT_FLAG_CHIP_P5) 5835 type = HWRM_RING_ALLOC_NQ; 5836 else 5837 type = HWRM_RING_ALLOC_CMPL; 5838 for (i = 0; i < bp->cp_nr_rings; i++) { 5839 struct bnxt_napi *bnapi = bp->bnapi[i]; 5840 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5841 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 5842 u32 map_idx = ring->map_idx; 5843 unsigned int vector; 5844 5845 vector = bp->irq_tbl[map_idx].vector; 5846 disable_irq_nosync(vector); 5847 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 5848 if (rc) { 5849 enable_irq(vector); 5850 goto err_out; 5851 } 5852 bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id); 5853 bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons); 5854 enable_irq(vector); 5855 bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id; 5856 5857 if (!i) { 5858 rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id); 5859 if (rc) 5860 netdev_warn(bp->dev, "Failed to set async event completion ring.\n"); 5861 } 5862 } 5863 5864 type = HWRM_RING_ALLOC_TX; 5865 for (i = 0; i < bp->tx_nr_rings; i++) { 5866 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 5867 struct bnxt_ring_struct *ring; 5868 u32 map_idx; 5869 5870 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5871 struct bnxt_napi *bnapi = txr->bnapi; 5872 struct bnxt_cp_ring_info *cpr, *cpr2; 5873 u32 type2 = HWRM_RING_ALLOC_CMPL; 5874 5875 cpr = &bnapi->cp_ring; 5876 cpr2 = cpr->cp_ring_arr[BNXT_TX_HDL]; 5877 ring = &cpr2->cp_ring_struct; 5878 ring->handle = BNXT_TX_HDL; 5879 map_idx = bnapi->index; 5880 rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx); 5881 if (rc) 5882 goto err_out; 5883 bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx, 5884 ring->fw_ring_id); 5885 bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons); 5886 } 5887 ring = &txr->tx_ring_struct; 5888 map_idx = i; 5889 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 5890 if (rc) 5891 goto err_out; 5892 bnxt_set_db(bp, &txr->tx_db, type, map_idx, ring->fw_ring_id); 5893 } 5894 5895 type = HWRM_RING_ALLOC_RX; 5896 for (i = 0; i < bp->rx_nr_rings; i++) { 5897 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 5898 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct; 5899 struct bnxt_napi *bnapi = rxr->bnapi; 5900 u32 map_idx = bnapi->index; 5901 5902 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 5903 if (rc) 5904 goto err_out; 5905 bnxt_set_db(bp, &rxr->rx_db, type, map_idx, ring->fw_ring_id); 5906 /* If we have agg rings, post agg buffers first. */ 5907 if (!agg_rings) 5908 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 5909 bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id; 5910 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5911 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5912 u32 type2 = HWRM_RING_ALLOC_CMPL; 5913 struct bnxt_cp_ring_info *cpr2; 5914 5915 cpr2 = cpr->cp_ring_arr[BNXT_RX_HDL]; 5916 ring = &cpr2->cp_ring_struct; 5917 ring->handle = BNXT_RX_HDL; 5918 rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx); 5919 if (rc) 5920 goto err_out; 5921 bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx, 5922 ring->fw_ring_id); 5923 bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons); 5924 } 5925 } 5926 5927 if (agg_rings) { 5928 type = HWRM_RING_ALLOC_AGG; 5929 for (i = 0; i < bp->rx_nr_rings; i++) { 5930 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 5931 struct bnxt_ring_struct *ring = 5932 &rxr->rx_agg_ring_struct; 5933 u32 grp_idx = ring->grp_idx; 5934 u32 map_idx = grp_idx + bp->rx_nr_rings; 5935 5936 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 5937 if (rc) 5938 goto err_out; 5939 5940 bnxt_set_db(bp, &rxr->rx_agg_db, type, map_idx, 5941 ring->fw_ring_id); 5942 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 5943 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 5944 bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id; 5945 } 5946 } 5947 err_out: 5948 return rc; 5949 } 5950 5951 static int hwrm_ring_free_send_msg(struct bnxt *bp, 5952 struct bnxt_ring_struct *ring, 5953 u32 ring_type, int cmpl_ring_id) 5954 { 5955 int rc; 5956 struct hwrm_ring_free_input req = {0}; 5957 struct hwrm_ring_free_output *resp = bp->hwrm_cmd_resp_addr; 5958 u16 error_code; 5959 5960 if (BNXT_NO_FW_ACCESS(bp)) 5961 return 0; 5962 5963 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_FREE, cmpl_ring_id, -1); 5964 req.ring_type = ring_type; 5965 req.ring_id = cpu_to_le16(ring->fw_ring_id); 5966 5967 mutex_lock(&bp->hwrm_cmd_lock); 5968 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5969 error_code = le16_to_cpu(resp->error_code); 5970 mutex_unlock(&bp->hwrm_cmd_lock); 5971 5972 if (rc || error_code) { 5973 netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n", 5974 ring_type, rc, error_code); 5975 return -EIO; 5976 } 5977 return 0; 5978 } 5979 5980 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path) 5981 { 5982 u32 type; 5983 int i; 5984 5985 if (!bp->bnapi) 5986 return; 5987 5988 for (i = 0; i < bp->tx_nr_rings; i++) { 5989 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 5990 struct bnxt_ring_struct *ring = &txr->tx_ring_struct; 5991 5992 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 5993 u32 cmpl_ring_id = bnxt_cp_ring_for_tx(bp, txr); 5994 5995 hwrm_ring_free_send_msg(bp, ring, 5996 RING_FREE_REQ_RING_TYPE_TX, 5997 close_path ? cmpl_ring_id : 5998 INVALID_HW_RING_ID); 5999 ring->fw_ring_id = INVALID_HW_RING_ID; 6000 } 6001 } 6002 6003 for (i = 0; i < bp->rx_nr_rings; i++) { 6004 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 6005 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct; 6006 u32 grp_idx = rxr->bnapi->index; 6007 6008 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 6009 u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr); 6010 6011 hwrm_ring_free_send_msg(bp, ring, 6012 RING_FREE_REQ_RING_TYPE_RX, 6013 close_path ? cmpl_ring_id : 6014 INVALID_HW_RING_ID); 6015 ring->fw_ring_id = INVALID_HW_RING_ID; 6016 bp->grp_info[grp_idx].rx_fw_ring_id = 6017 INVALID_HW_RING_ID; 6018 } 6019 } 6020 6021 if (bp->flags & BNXT_FLAG_CHIP_P5) 6022 type = RING_FREE_REQ_RING_TYPE_RX_AGG; 6023 else 6024 type = RING_FREE_REQ_RING_TYPE_RX; 6025 for (i = 0; i < bp->rx_nr_rings; i++) { 6026 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 6027 struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct; 6028 u32 grp_idx = rxr->bnapi->index; 6029 6030 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 6031 u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr); 6032 6033 hwrm_ring_free_send_msg(bp, ring, type, 6034 close_path ? cmpl_ring_id : 6035 INVALID_HW_RING_ID); 6036 ring->fw_ring_id = INVALID_HW_RING_ID; 6037 bp->grp_info[grp_idx].agg_fw_ring_id = 6038 INVALID_HW_RING_ID; 6039 } 6040 } 6041 6042 /* The completion rings are about to be freed. After that the 6043 * IRQ doorbell will not work anymore. So we need to disable 6044 * IRQ here. 6045 */ 6046 bnxt_disable_int_sync(bp); 6047 6048 if (bp->flags & BNXT_FLAG_CHIP_P5) 6049 type = RING_FREE_REQ_RING_TYPE_NQ; 6050 else 6051 type = RING_FREE_REQ_RING_TYPE_L2_CMPL; 6052 for (i = 0; i < bp->cp_nr_rings; i++) { 6053 struct bnxt_napi *bnapi = bp->bnapi[i]; 6054 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 6055 struct bnxt_ring_struct *ring; 6056 int j; 6057 6058 for (j = 0; j < 2; j++) { 6059 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j]; 6060 6061 if (cpr2) { 6062 ring = &cpr2->cp_ring_struct; 6063 if (ring->fw_ring_id == INVALID_HW_RING_ID) 6064 continue; 6065 hwrm_ring_free_send_msg(bp, ring, 6066 RING_FREE_REQ_RING_TYPE_L2_CMPL, 6067 INVALID_HW_RING_ID); 6068 ring->fw_ring_id = INVALID_HW_RING_ID; 6069 } 6070 } 6071 ring = &cpr->cp_ring_struct; 6072 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 6073 hwrm_ring_free_send_msg(bp, ring, type, 6074 INVALID_HW_RING_ID); 6075 ring->fw_ring_id = INVALID_HW_RING_ID; 6076 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID; 6077 } 6078 } 6079 } 6080 6081 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 6082 bool shared); 6083 6084 static int bnxt_hwrm_get_rings(struct bnxt *bp) 6085 { 6086 struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr; 6087 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 6088 struct hwrm_func_qcfg_input req = {0}; 6089 int rc; 6090 6091 if (bp->hwrm_spec_code < 0x10601) 6092 return 0; 6093 6094 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1); 6095 req.fid = cpu_to_le16(0xffff); 6096 mutex_lock(&bp->hwrm_cmd_lock); 6097 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 6098 if (rc) { 6099 mutex_unlock(&bp->hwrm_cmd_lock); 6100 return rc; 6101 } 6102 6103 hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings); 6104 if (BNXT_NEW_RM(bp)) { 6105 u16 cp, stats; 6106 6107 hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings); 6108 hw_resc->resv_hw_ring_grps = 6109 le32_to_cpu(resp->alloc_hw_ring_grps); 6110 hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics); 6111 cp = le16_to_cpu(resp->alloc_cmpl_rings); 6112 stats = le16_to_cpu(resp->alloc_stat_ctx); 6113 hw_resc->resv_irqs = cp; 6114 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6115 int rx = hw_resc->resv_rx_rings; 6116 int tx = hw_resc->resv_tx_rings; 6117 6118 if (bp->flags & BNXT_FLAG_AGG_RINGS) 6119 rx >>= 1; 6120 if (cp < (rx + tx)) { 6121 bnxt_trim_rings(bp, &rx, &tx, cp, false); 6122 if (bp->flags & BNXT_FLAG_AGG_RINGS) 6123 rx <<= 1; 6124 hw_resc->resv_rx_rings = rx; 6125 hw_resc->resv_tx_rings = tx; 6126 } 6127 hw_resc->resv_irqs = le16_to_cpu(resp->alloc_msix); 6128 hw_resc->resv_hw_ring_grps = rx; 6129 } 6130 hw_resc->resv_cp_rings = cp; 6131 hw_resc->resv_stat_ctxs = stats; 6132 } 6133 mutex_unlock(&bp->hwrm_cmd_lock); 6134 return 0; 6135 } 6136 6137 /* Caller must hold bp->hwrm_cmd_lock */ 6138 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings) 6139 { 6140 struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr; 6141 struct hwrm_func_qcfg_input req = {0}; 6142 int rc; 6143 6144 if (bp->hwrm_spec_code < 0x10601) 6145 return 0; 6146 6147 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1); 6148 req.fid = cpu_to_le16(fid); 6149 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 6150 if (!rc) 6151 *tx_rings = le16_to_cpu(resp->alloc_tx_rings); 6152 6153 return rc; 6154 } 6155 6156 static bool bnxt_rfs_supported(struct bnxt *bp); 6157 6158 static void 6159 __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, struct hwrm_func_cfg_input *req, 6160 int tx_rings, int rx_rings, int ring_grps, 6161 int cp_rings, int stats, int vnics) 6162 { 6163 u32 enables = 0; 6164 6165 bnxt_hwrm_cmd_hdr_init(bp, req, HWRM_FUNC_CFG, -1, -1); 6166 req->fid = cpu_to_le16(0xffff); 6167 enables |= tx_rings ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0; 6168 req->num_tx_rings = cpu_to_le16(tx_rings); 6169 if (BNXT_NEW_RM(bp)) { 6170 enables |= rx_rings ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0; 6171 enables |= stats ? FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0; 6172 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6173 enables |= cp_rings ? FUNC_CFG_REQ_ENABLES_NUM_MSIX : 0; 6174 enables |= tx_rings + ring_grps ? 6175 FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 6176 enables |= rx_rings ? 6177 FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; 6178 } else { 6179 enables |= cp_rings ? 6180 FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 6181 enables |= ring_grps ? 6182 FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS | 6183 FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; 6184 } 6185 enables |= vnics ? FUNC_CFG_REQ_ENABLES_NUM_VNICS : 0; 6186 6187 req->num_rx_rings = cpu_to_le16(rx_rings); 6188 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6189 req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps); 6190 req->num_msix = cpu_to_le16(cp_rings); 6191 req->num_rsscos_ctxs = 6192 cpu_to_le16(DIV_ROUND_UP(ring_grps, 64)); 6193 } else { 6194 req->num_cmpl_rings = cpu_to_le16(cp_rings); 6195 req->num_hw_ring_grps = cpu_to_le16(ring_grps); 6196 req->num_rsscos_ctxs = cpu_to_le16(1); 6197 if (!(bp->flags & BNXT_FLAG_NEW_RSS_CAP) && 6198 bnxt_rfs_supported(bp)) 6199 req->num_rsscos_ctxs = 6200 cpu_to_le16(ring_grps + 1); 6201 } 6202 req->num_stat_ctxs = cpu_to_le16(stats); 6203 req->num_vnics = cpu_to_le16(vnics); 6204 } 6205 req->enables = cpu_to_le32(enables); 6206 } 6207 6208 static void 6209 __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, 6210 struct hwrm_func_vf_cfg_input *req, int tx_rings, 6211 int rx_rings, int ring_grps, int cp_rings, 6212 int stats, int vnics) 6213 { 6214 u32 enables = 0; 6215 6216 bnxt_hwrm_cmd_hdr_init(bp, req, HWRM_FUNC_VF_CFG, -1, -1); 6217 enables |= tx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0; 6218 enables |= rx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS | 6219 FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; 6220 enables |= stats ? FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0; 6221 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6222 enables |= tx_rings + ring_grps ? 6223 FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 6224 } else { 6225 enables |= cp_rings ? 6226 FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 6227 enables |= ring_grps ? 6228 FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0; 6229 } 6230 enables |= vnics ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0; 6231 enables |= FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS; 6232 6233 req->num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX); 6234 req->num_tx_rings = cpu_to_le16(tx_rings); 6235 req->num_rx_rings = cpu_to_le16(rx_rings); 6236 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6237 req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps); 6238 req->num_rsscos_ctxs = cpu_to_le16(DIV_ROUND_UP(ring_grps, 64)); 6239 } else { 6240 req->num_cmpl_rings = cpu_to_le16(cp_rings); 6241 req->num_hw_ring_grps = cpu_to_le16(ring_grps); 6242 req->num_rsscos_ctxs = cpu_to_le16(BNXT_VF_MAX_RSS_CTX); 6243 } 6244 req->num_stat_ctxs = cpu_to_le16(stats); 6245 req->num_vnics = cpu_to_le16(vnics); 6246 6247 req->enables = cpu_to_le32(enables); 6248 } 6249 6250 static int 6251 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6252 int ring_grps, int cp_rings, int stats, int vnics) 6253 { 6254 struct hwrm_func_cfg_input req = {0}; 6255 int rc; 6256 6257 __bnxt_hwrm_reserve_pf_rings(bp, &req, tx_rings, rx_rings, ring_grps, 6258 cp_rings, stats, vnics); 6259 if (!req.enables) 6260 return 0; 6261 6262 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 6263 if (rc) 6264 return rc; 6265 6266 if (bp->hwrm_spec_code < 0x10601) 6267 bp->hw_resc.resv_tx_rings = tx_rings; 6268 6269 return bnxt_hwrm_get_rings(bp); 6270 } 6271 6272 static int 6273 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6274 int ring_grps, int cp_rings, int stats, int vnics) 6275 { 6276 struct hwrm_func_vf_cfg_input req = {0}; 6277 int rc; 6278 6279 if (!BNXT_NEW_RM(bp)) { 6280 bp->hw_resc.resv_tx_rings = tx_rings; 6281 return 0; 6282 } 6283 6284 __bnxt_hwrm_reserve_vf_rings(bp, &req, tx_rings, rx_rings, ring_grps, 6285 cp_rings, stats, vnics); 6286 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 6287 if (rc) 6288 return rc; 6289 6290 return bnxt_hwrm_get_rings(bp); 6291 } 6292 6293 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, int tx, int rx, int grp, 6294 int cp, int stat, int vnic) 6295 { 6296 if (BNXT_PF(bp)) 6297 return bnxt_hwrm_reserve_pf_rings(bp, tx, rx, grp, cp, stat, 6298 vnic); 6299 else 6300 return bnxt_hwrm_reserve_vf_rings(bp, tx, rx, grp, cp, stat, 6301 vnic); 6302 } 6303 6304 int bnxt_nq_rings_in_use(struct bnxt *bp) 6305 { 6306 int cp = bp->cp_nr_rings; 6307 int ulp_msix, ulp_base; 6308 6309 ulp_msix = bnxt_get_ulp_msix_num(bp); 6310 if (ulp_msix) { 6311 ulp_base = bnxt_get_ulp_msix_base(bp); 6312 cp += ulp_msix; 6313 if ((ulp_base + ulp_msix) > cp) 6314 cp = ulp_base + ulp_msix; 6315 } 6316 return cp; 6317 } 6318 6319 static int bnxt_cp_rings_in_use(struct bnxt *bp) 6320 { 6321 int cp; 6322 6323 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 6324 return bnxt_nq_rings_in_use(bp); 6325 6326 cp = bp->tx_nr_rings + bp->rx_nr_rings; 6327 return cp; 6328 } 6329 6330 static int bnxt_get_func_stat_ctxs(struct bnxt *bp) 6331 { 6332 int ulp_stat = bnxt_get_ulp_stat_ctxs(bp); 6333 int cp = bp->cp_nr_rings; 6334 6335 if (!ulp_stat) 6336 return cp; 6337 6338 if (bnxt_nq_rings_in_use(bp) > cp + bnxt_get_ulp_msix_num(bp)) 6339 return bnxt_get_ulp_msix_base(bp) + ulp_stat; 6340 6341 return cp + ulp_stat; 6342 } 6343 6344 /* Check if a default RSS map needs to be setup. This function is only 6345 * used on older firmware that does not require reserving RX rings. 6346 */ 6347 static void bnxt_check_rss_tbl_no_rmgr(struct bnxt *bp) 6348 { 6349 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 6350 6351 /* The RSS map is valid for RX rings set to resv_rx_rings */ 6352 if (hw_resc->resv_rx_rings != bp->rx_nr_rings) { 6353 hw_resc->resv_rx_rings = bp->rx_nr_rings; 6354 if (!netif_is_rxfh_configured(bp->dev)) 6355 bnxt_set_dflt_rss_indir_tbl(bp); 6356 } 6357 } 6358 6359 static bool bnxt_need_reserve_rings(struct bnxt *bp) 6360 { 6361 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 6362 int cp = bnxt_cp_rings_in_use(bp); 6363 int nq = bnxt_nq_rings_in_use(bp); 6364 int rx = bp->rx_nr_rings, stat; 6365 int vnic = 1, grp = rx; 6366 6367 if (hw_resc->resv_tx_rings != bp->tx_nr_rings && 6368 bp->hwrm_spec_code >= 0x10601) 6369 return true; 6370 6371 /* Old firmware does not need RX ring reservations but we still 6372 * need to setup a default RSS map when needed. With new firmware 6373 * we go through RX ring reservations first and then set up the 6374 * RSS map for the successfully reserved RX rings when needed. 6375 */ 6376 if (!BNXT_NEW_RM(bp)) { 6377 bnxt_check_rss_tbl_no_rmgr(bp); 6378 return false; 6379 } 6380 if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5)) 6381 vnic = rx + 1; 6382 if (bp->flags & BNXT_FLAG_AGG_RINGS) 6383 rx <<= 1; 6384 stat = bnxt_get_func_stat_ctxs(bp); 6385 if (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp || 6386 hw_resc->resv_vnics != vnic || hw_resc->resv_stat_ctxs != stat || 6387 (hw_resc->resv_hw_ring_grps != grp && 6388 !(bp->flags & BNXT_FLAG_CHIP_P5))) 6389 return true; 6390 if ((bp->flags & BNXT_FLAG_CHIP_P5) && BNXT_PF(bp) && 6391 hw_resc->resv_irqs != nq) 6392 return true; 6393 return false; 6394 } 6395 6396 static int __bnxt_reserve_rings(struct bnxt *bp) 6397 { 6398 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 6399 int cp = bnxt_nq_rings_in_use(bp); 6400 int tx = bp->tx_nr_rings; 6401 int rx = bp->rx_nr_rings; 6402 int grp, rx_rings, rc; 6403 int vnic = 1, stat; 6404 bool sh = false; 6405 6406 if (!bnxt_need_reserve_rings(bp)) 6407 return 0; 6408 6409 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 6410 sh = true; 6411 if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5)) 6412 vnic = rx + 1; 6413 if (bp->flags & BNXT_FLAG_AGG_RINGS) 6414 rx <<= 1; 6415 grp = bp->rx_nr_rings; 6416 stat = bnxt_get_func_stat_ctxs(bp); 6417 6418 rc = bnxt_hwrm_reserve_rings(bp, tx, rx, grp, cp, stat, vnic); 6419 if (rc) 6420 return rc; 6421 6422 tx = hw_resc->resv_tx_rings; 6423 if (BNXT_NEW_RM(bp)) { 6424 rx = hw_resc->resv_rx_rings; 6425 cp = hw_resc->resv_irqs; 6426 grp = hw_resc->resv_hw_ring_grps; 6427 vnic = hw_resc->resv_vnics; 6428 stat = hw_resc->resv_stat_ctxs; 6429 } 6430 6431 rx_rings = rx; 6432 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 6433 if (rx >= 2) { 6434 rx_rings = rx >> 1; 6435 } else { 6436 if (netif_running(bp->dev)) 6437 return -ENOMEM; 6438 6439 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 6440 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 6441 bp->dev->hw_features &= ~NETIF_F_LRO; 6442 bp->dev->features &= ~NETIF_F_LRO; 6443 bnxt_set_ring_params(bp); 6444 } 6445 } 6446 rx_rings = min_t(int, rx_rings, grp); 6447 cp = min_t(int, cp, bp->cp_nr_rings); 6448 if (stat > bnxt_get_ulp_stat_ctxs(bp)) 6449 stat -= bnxt_get_ulp_stat_ctxs(bp); 6450 cp = min_t(int, cp, stat); 6451 rc = bnxt_trim_rings(bp, &rx_rings, &tx, cp, sh); 6452 if (bp->flags & BNXT_FLAG_AGG_RINGS) 6453 rx = rx_rings << 1; 6454 cp = sh ? max_t(int, tx, rx_rings) : tx + rx_rings; 6455 bp->tx_nr_rings = tx; 6456 6457 /* If we cannot reserve all the RX rings, reset the RSS map only 6458 * if absolutely necessary 6459 */ 6460 if (rx_rings != bp->rx_nr_rings) { 6461 netdev_warn(bp->dev, "Able to reserve only %d out of %d requested RX rings\n", 6462 rx_rings, bp->rx_nr_rings); 6463 if ((bp->dev->priv_flags & IFF_RXFH_CONFIGURED) && 6464 (bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings) != 6465 bnxt_get_nr_rss_ctxs(bp, rx_rings) || 6466 bnxt_get_max_rss_ring(bp) >= rx_rings)) { 6467 netdev_warn(bp->dev, "RSS table entries reverting to default\n"); 6468 bp->dev->priv_flags &= ~IFF_RXFH_CONFIGURED; 6469 } 6470 } 6471 bp->rx_nr_rings = rx_rings; 6472 bp->cp_nr_rings = cp; 6473 6474 if (!tx || !rx || !cp || !grp || !vnic || !stat) 6475 return -ENOMEM; 6476 6477 if (!netif_is_rxfh_configured(bp->dev)) 6478 bnxt_set_dflt_rss_indir_tbl(bp); 6479 6480 return rc; 6481 } 6482 6483 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6484 int ring_grps, int cp_rings, int stats, 6485 int vnics) 6486 { 6487 struct hwrm_func_vf_cfg_input req = {0}; 6488 u32 flags; 6489 6490 if (!BNXT_NEW_RM(bp)) 6491 return 0; 6492 6493 __bnxt_hwrm_reserve_vf_rings(bp, &req, tx_rings, rx_rings, ring_grps, 6494 cp_rings, stats, vnics); 6495 flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST | 6496 FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST | 6497 FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST | 6498 FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST | 6499 FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST | 6500 FUNC_VF_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST; 6501 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 6502 flags |= FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST; 6503 6504 req.flags = cpu_to_le32(flags); 6505 return hwrm_send_message_silent(bp, &req, sizeof(req), 6506 HWRM_CMD_TIMEOUT); 6507 } 6508 6509 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6510 int ring_grps, int cp_rings, int stats, 6511 int vnics) 6512 { 6513 struct hwrm_func_cfg_input req = {0}; 6514 u32 flags; 6515 6516 __bnxt_hwrm_reserve_pf_rings(bp, &req, tx_rings, rx_rings, ring_grps, 6517 cp_rings, stats, vnics); 6518 flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST; 6519 if (BNXT_NEW_RM(bp)) { 6520 flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST | 6521 FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST | 6522 FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST | 6523 FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST; 6524 if (bp->flags & BNXT_FLAG_CHIP_P5) 6525 flags |= FUNC_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST | 6526 FUNC_CFG_REQ_FLAGS_NQ_ASSETS_TEST; 6527 else 6528 flags |= FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST; 6529 } 6530 6531 req.flags = cpu_to_le32(flags); 6532 return hwrm_send_message_silent(bp, &req, sizeof(req), 6533 HWRM_CMD_TIMEOUT); 6534 } 6535 6536 static int bnxt_hwrm_check_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6537 int ring_grps, int cp_rings, int stats, 6538 int vnics) 6539 { 6540 if (bp->hwrm_spec_code < 0x10801) 6541 return 0; 6542 6543 if (BNXT_PF(bp)) 6544 return bnxt_hwrm_check_pf_rings(bp, tx_rings, rx_rings, 6545 ring_grps, cp_rings, stats, 6546 vnics); 6547 6548 return bnxt_hwrm_check_vf_rings(bp, tx_rings, rx_rings, ring_grps, 6549 cp_rings, stats, vnics); 6550 } 6551 6552 static void bnxt_hwrm_coal_params_qcaps(struct bnxt *bp) 6553 { 6554 struct hwrm_ring_aggint_qcaps_output *resp = bp->hwrm_cmd_resp_addr; 6555 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 6556 struct hwrm_ring_aggint_qcaps_input req = {0}; 6557 int rc; 6558 6559 coal_cap->cmpl_params = BNXT_LEGACY_COAL_CMPL_PARAMS; 6560 coal_cap->num_cmpl_dma_aggr_max = 63; 6561 coal_cap->num_cmpl_dma_aggr_during_int_max = 63; 6562 coal_cap->cmpl_aggr_dma_tmr_max = 65535; 6563 coal_cap->cmpl_aggr_dma_tmr_during_int_max = 65535; 6564 coal_cap->int_lat_tmr_min_max = 65535; 6565 coal_cap->int_lat_tmr_max_max = 65535; 6566 coal_cap->num_cmpl_aggr_int_max = 65535; 6567 coal_cap->timer_units = 80; 6568 6569 if (bp->hwrm_spec_code < 0x10902) 6570 return; 6571 6572 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_AGGINT_QCAPS, -1, -1); 6573 mutex_lock(&bp->hwrm_cmd_lock); 6574 rc = _hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 6575 if (!rc) { 6576 coal_cap->cmpl_params = le32_to_cpu(resp->cmpl_params); 6577 coal_cap->nq_params = le32_to_cpu(resp->nq_params); 6578 coal_cap->num_cmpl_dma_aggr_max = 6579 le16_to_cpu(resp->num_cmpl_dma_aggr_max); 6580 coal_cap->num_cmpl_dma_aggr_during_int_max = 6581 le16_to_cpu(resp->num_cmpl_dma_aggr_during_int_max); 6582 coal_cap->cmpl_aggr_dma_tmr_max = 6583 le16_to_cpu(resp->cmpl_aggr_dma_tmr_max); 6584 coal_cap->cmpl_aggr_dma_tmr_during_int_max = 6585 le16_to_cpu(resp->cmpl_aggr_dma_tmr_during_int_max); 6586 coal_cap->int_lat_tmr_min_max = 6587 le16_to_cpu(resp->int_lat_tmr_min_max); 6588 coal_cap->int_lat_tmr_max_max = 6589 le16_to_cpu(resp->int_lat_tmr_max_max); 6590 coal_cap->num_cmpl_aggr_int_max = 6591 le16_to_cpu(resp->num_cmpl_aggr_int_max); 6592 coal_cap->timer_units = le16_to_cpu(resp->timer_units); 6593 } 6594 mutex_unlock(&bp->hwrm_cmd_lock); 6595 } 6596 6597 static u16 bnxt_usec_to_coal_tmr(struct bnxt *bp, u16 usec) 6598 { 6599 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 6600 6601 return usec * 1000 / coal_cap->timer_units; 6602 } 6603 6604 static void bnxt_hwrm_set_coal_params(struct bnxt *bp, 6605 struct bnxt_coal *hw_coal, 6606 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req) 6607 { 6608 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 6609 u32 cmpl_params = coal_cap->cmpl_params; 6610 u16 val, tmr, max, flags = 0; 6611 6612 max = hw_coal->bufs_per_record * 128; 6613 if (hw_coal->budget) 6614 max = hw_coal->bufs_per_record * hw_coal->budget; 6615 max = min_t(u16, max, coal_cap->num_cmpl_aggr_int_max); 6616 6617 val = clamp_t(u16, hw_coal->coal_bufs, 1, max); 6618 req->num_cmpl_aggr_int = cpu_to_le16(val); 6619 6620 val = min_t(u16, val, coal_cap->num_cmpl_dma_aggr_max); 6621 req->num_cmpl_dma_aggr = cpu_to_le16(val); 6622 6623 val = clamp_t(u16, hw_coal->coal_bufs_irq, 1, 6624 coal_cap->num_cmpl_dma_aggr_during_int_max); 6625 req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val); 6626 6627 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks); 6628 tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_max_max); 6629 req->int_lat_tmr_max = cpu_to_le16(tmr); 6630 6631 /* min timer set to 1/2 of interrupt timer */ 6632 if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_INT_LAT_TMR_MIN) { 6633 val = tmr / 2; 6634 val = clamp_t(u16, val, 1, coal_cap->int_lat_tmr_min_max); 6635 req->int_lat_tmr_min = cpu_to_le16(val); 6636 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE); 6637 } 6638 6639 /* buf timer set to 1/4 of interrupt timer */ 6640 val = clamp_t(u16, tmr / 4, 1, coal_cap->cmpl_aggr_dma_tmr_max); 6641 req->cmpl_aggr_dma_tmr = cpu_to_le16(val); 6642 6643 if (cmpl_params & 6644 RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_NUM_CMPL_DMA_AGGR_DURING_INT) { 6645 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks_irq); 6646 val = clamp_t(u16, tmr, 1, 6647 coal_cap->cmpl_aggr_dma_tmr_during_int_max); 6648 req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(val); 6649 req->enables |= 6650 cpu_to_le16(BNXT_COAL_CMPL_AGGR_TMR_DURING_INT_ENABLE); 6651 } 6652 6653 if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_TIMER_RESET) 6654 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET; 6655 if ((cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_RING_IDLE) && 6656 hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh) 6657 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE; 6658 req->flags = cpu_to_le16(flags); 6659 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_ENABLES); 6660 } 6661 6662 /* Caller holds bp->hwrm_cmd_lock */ 6663 static int __bnxt_hwrm_set_coal_nq(struct bnxt *bp, struct bnxt_napi *bnapi, 6664 struct bnxt_coal *hw_coal) 6665 { 6666 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req = {0}; 6667 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 6668 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 6669 u32 nq_params = coal_cap->nq_params; 6670 u16 tmr; 6671 6672 if (!(nq_params & RING_AGGINT_QCAPS_RESP_NQ_PARAMS_INT_LAT_TMR_MIN)) 6673 return 0; 6674 6675 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, 6676 -1, -1); 6677 req.ring_id = cpu_to_le16(cpr->cp_ring_struct.fw_ring_id); 6678 req.flags = 6679 cpu_to_le16(RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_IS_NQ); 6680 6681 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks) / 2; 6682 tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_min_max); 6683 req.int_lat_tmr_min = cpu_to_le16(tmr); 6684 req.enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE); 6685 return _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 6686 } 6687 6688 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi) 6689 { 6690 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0}; 6691 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 6692 struct bnxt_coal coal; 6693 6694 /* Tick values in micro seconds. 6695 * 1 coal_buf x bufs_per_record = 1 completion record. 6696 */ 6697 memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal)); 6698 6699 coal.coal_ticks = cpr->rx_ring_coal.coal_ticks; 6700 coal.coal_bufs = cpr->rx_ring_coal.coal_bufs; 6701 6702 if (!bnapi->rx_ring) 6703 return -ENODEV; 6704 6705 bnxt_hwrm_cmd_hdr_init(bp, &req_rx, 6706 HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1); 6707 6708 bnxt_hwrm_set_coal_params(bp, &coal, &req_rx); 6709 6710 req_rx.ring_id = cpu_to_le16(bnxt_cp_ring_for_rx(bp, bnapi->rx_ring)); 6711 6712 return hwrm_send_message(bp, &req_rx, sizeof(req_rx), 6713 HWRM_CMD_TIMEOUT); 6714 } 6715 6716 int bnxt_hwrm_set_coal(struct bnxt *bp) 6717 { 6718 int i, rc = 0; 6719 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0}, 6720 req_tx = {0}, *req; 6721 6722 bnxt_hwrm_cmd_hdr_init(bp, &req_rx, 6723 HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1); 6724 bnxt_hwrm_cmd_hdr_init(bp, &req_tx, 6725 HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1); 6726 6727 bnxt_hwrm_set_coal_params(bp, &bp->rx_coal, &req_rx); 6728 bnxt_hwrm_set_coal_params(bp, &bp->tx_coal, &req_tx); 6729 6730 mutex_lock(&bp->hwrm_cmd_lock); 6731 for (i = 0; i < bp->cp_nr_rings; i++) { 6732 struct bnxt_napi *bnapi = bp->bnapi[i]; 6733 struct bnxt_coal *hw_coal; 6734 u16 ring_id; 6735 6736 req = &req_rx; 6737 if (!bnapi->rx_ring) { 6738 ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring); 6739 req = &req_tx; 6740 } else { 6741 ring_id = bnxt_cp_ring_for_rx(bp, bnapi->rx_ring); 6742 } 6743 req->ring_id = cpu_to_le16(ring_id); 6744 6745 rc = _hwrm_send_message(bp, req, sizeof(*req), 6746 HWRM_CMD_TIMEOUT); 6747 if (rc) 6748 break; 6749 6750 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 6751 continue; 6752 6753 if (bnapi->rx_ring && bnapi->tx_ring) { 6754 req = &req_tx; 6755 ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring); 6756 req->ring_id = cpu_to_le16(ring_id); 6757 rc = _hwrm_send_message(bp, req, sizeof(*req), 6758 HWRM_CMD_TIMEOUT); 6759 if (rc) 6760 break; 6761 } 6762 if (bnapi->rx_ring) 6763 hw_coal = &bp->rx_coal; 6764 else 6765 hw_coal = &bp->tx_coal; 6766 __bnxt_hwrm_set_coal_nq(bp, bnapi, hw_coal); 6767 } 6768 mutex_unlock(&bp->hwrm_cmd_lock); 6769 return rc; 6770 } 6771 6772 static void bnxt_hwrm_stat_ctx_free(struct bnxt *bp) 6773 { 6774 struct hwrm_stat_ctx_clr_stats_input req0 = {0}; 6775 struct hwrm_stat_ctx_free_input req = {0}; 6776 int i; 6777 6778 if (!bp->bnapi) 6779 return; 6780 6781 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 6782 return; 6783 6784 bnxt_hwrm_cmd_hdr_init(bp, &req0, HWRM_STAT_CTX_CLR_STATS, -1, -1); 6785 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_FREE, -1, -1); 6786 6787 mutex_lock(&bp->hwrm_cmd_lock); 6788 for (i = 0; i < bp->cp_nr_rings; i++) { 6789 struct bnxt_napi *bnapi = bp->bnapi[i]; 6790 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 6791 6792 if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) { 6793 req.stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id); 6794 if (BNXT_FW_MAJ(bp) <= 20) { 6795 req0.stat_ctx_id = req.stat_ctx_id; 6796 _hwrm_send_message(bp, &req0, sizeof(req0), 6797 HWRM_CMD_TIMEOUT); 6798 } 6799 _hwrm_send_message(bp, &req, sizeof(req), 6800 HWRM_CMD_TIMEOUT); 6801 6802 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID; 6803 } 6804 } 6805 mutex_unlock(&bp->hwrm_cmd_lock); 6806 } 6807 6808 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp) 6809 { 6810 int rc = 0, i; 6811 struct hwrm_stat_ctx_alloc_input req = {0}; 6812 struct hwrm_stat_ctx_alloc_output *resp = bp->hwrm_cmd_resp_addr; 6813 6814 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 6815 return 0; 6816 6817 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_ALLOC, -1, -1); 6818 6819 req.stats_dma_length = cpu_to_le16(bp->hw_ring_stats_size); 6820 req.update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000); 6821 6822 mutex_lock(&bp->hwrm_cmd_lock); 6823 for (i = 0; i < bp->cp_nr_rings; i++) { 6824 struct bnxt_napi *bnapi = bp->bnapi[i]; 6825 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 6826 6827 req.stats_dma_addr = cpu_to_le64(cpr->stats.hw_stats_map); 6828 6829 rc = _hwrm_send_message(bp, &req, sizeof(req), 6830 HWRM_CMD_TIMEOUT); 6831 if (rc) 6832 break; 6833 6834 cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id); 6835 6836 bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id; 6837 } 6838 mutex_unlock(&bp->hwrm_cmd_lock); 6839 return rc; 6840 } 6841 6842 static int bnxt_hwrm_func_qcfg(struct bnxt *bp) 6843 { 6844 struct hwrm_func_qcfg_input req = {0}; 6845 struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr; 6846 u32 min_db_offset = 0; 6847 u16 flags; 6848 int rc; 6849 6850 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1); 6851 req.fid = cpu_to_le16(0xffff); 6852 mutex_lock(&bp->hwrm_cmd_lock); 6853 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 6854 if (rc) 6855 goto func_qcfg_exit; 6856 6857 #ifdef CONFIG_BNXT_SRIOV 6858 if (BNXT_VF(bp)) { 6859 struct bnxt_vf_info *vf = &bp->vf; 6860 6861 vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK; 6862 } else { 6863 bp->pf.registered_vfs = le16_to_cpu(resp->registered_vfs); 6864 } 6865 #endif 6866 flags = le16_to_cpu(resp->flags); 6867 if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED | 6868 FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) { 6869 bp->fw_cap |= BNXT_FW_CAP_LLDP_AGENT; 6870 if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED) 6871 bp->fw_cap |= BNXT_FW_CAP_DCBX_AGENT; 6872 } 6873 if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST)) 6874 bp->flags |= BNXT_FLAG_MULTI_HOST; 6875 if (flags & FUNC_QCFG_RESP_FLAGS_RING_MONITOR_ENABLED) 6876 bp->fw_cap |= BNXT_FW_CAP_RING_MONITOR; 6877 6878 switch (resp->port_partition_type) { 6879 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0: 6880 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5: 6881 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0: 6882 bp->port_partition_type = resp->port_partition_type; 6883 break; 6884 } 6885 if (bp->hwrm_spec_code < 0x10707 || 6886 resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB) 6887 bp->br_mode = BRIDGE_MODE_VEB; 6888 else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA) 6889 bp->br_mode = BRIDGE_MODE_VEPA; 6890 else 6891 bp->br_mode = BRIDGE_MODE_UNDEF; 6892 6893 bp->max_mtu = le16_to_cpu(resp->max_mtu_configured); 6894 if (!bp->max_mtu) 6895 bp->max_mtu = BNXT_MAX_MTU; 6896 6897 if (bp->db_size) 6898 goto func_qcfg_exit; 6899 6900 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6901 if (BNXT_PF(bp)) 6902 min_db_offset = DB_PF_OFFSET_P5; 6903 else 6904 min_db_offset = DB_VF_OFFSET_P5; 6905 } 6906 bp->db_size = PAGE_ALIGN(le16_to_cpu(resp->l2_doorbell_bar_size_kb) * 6907 1024); 6908 if (!bp->db_size || bp->db_size > pci_resource_len(bp->pdev, 2) || 6909 bp->db_size <= min_db_offset) 6910 bp->db_size = pci_resource_len(bp->pdev, 2); 6911 6912 func_qcfg_exit: 6913 mutex_unlock(&bp->hwrm_cmd_lock); 6914 return rc; 6915 } 6916 6917 static void bnxt_init_ctx_initializer(struct bnxt_ctx_mem_info *ctx, 6918 struct hwrm_func_backing_store_qcaps_output *resp) 6919 { 6920 struct bnxt_mem_init *mem_init; 6921 u16 init_mask; 6922 u8 init_val; 6923 u8 *offset; 6924 int i; 6925 6926 init_val = resp->ctx_kind_initializer; 6927 init_mask = le16_to_cpu(resp->ctx_init_mask); 6928 offset = &resp->qp_init_offset; 6929 mem_init = &ctx->mem_init[BNXT_CTX_MEM_INIT_QP]; 6930 for (i = 0; i < BNXT_CTX_MEM_INIT_MAX; i++, mem_init++, offset++) { 6931 mem_init->init_val = init_val; 6932 mem_init->offset = BNXT_MEM_INVALID_OFFSET; 6933 if (!init_mask) 6934 continue; 6935 if (i == BNXT_CTX_MEM_INIT_STAT) 6936 offset = &resp->stat_init_offset; 6937 if (init_mask & (1 << i)) 6938 mem_init->offset = *offset * 4; 6939 else 6940 mem_init->init_val = 0; 6941 } 6942 ctx->mem_init[BNXT_CTX_MEM_INIT_QP].size = ctx->qp_entry_size; 6943 ctx->mem_init[BNXT_CTX_MEM_INIT_SRQ].size = ctx->srq_entry_size; 6944 ctx->mem_init[BNXT_CTX_MEM_INIT_CQ].size = ctx->cq_entry_size; 6945 ctx->mem_init[BNXT_CTX_MEM_INIT_VNIC].size = ctx->vnic_entry_size; 6946 ctx->mem_init[BNXT_CTX_MEM_INIT_STAT].size = ctx->stat_entry_size; 6947 ctx->mem_init[BNXT_CTX_MEM_INIT_MRAV].size = ctx->mrav_entry_size; 6948 } 6949 6950 static int bnxt_hwrm_func_backing_store_qcaps(struct bnxt *bp) 6951 { 6952 struct hwrm_func_backing_store_qcaps_input req = {0}; 6953 struct hwrm_func_backing_store_qcaps_output *resp = 6954 bp->hwrm_cmd_resp_addr; 6955 int rc; 6956 6957 if (bp->hwrm_spec_code < 0x10902 || BNXT_VF(bp) || bp->ctx) 6958 return 0; 6959 6960 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_BACKING_STORE_QCAPS, -1, -1); 6961 mutex_lock(&bp->hwrm_cmd_lock); 6962 rc = _hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 6963 if (!rc) { 6964 struct bnxt_ctx_pg_info *ctx_pg; 6965 struct bnxt_ctx_mem_info *ctx; 6966 int i, tqm_rings; 6967 6968 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 6969 if (!ctx) { 6970 rc = -ENOMEM; 6971 goto ctx_err; 6972 } 6973 ctx->qp_max_entries = le32_to_cpu(resp->qp_max_entries); 6974 ctx->qp_min_qp1_entries = le16_to_cpu(resp->qp_min_qp1_entries); 6975 ctx->qp_max_l2_entries = le16_to_cpu(resp->qp_max_l2_entries); 6976 ctx->qp_entry_size = le16_to_cpu(resp->qp_entry_size); 6977 ctx->srq_max_l2_entries = le16_to_cpu(resp->srq_max_l2_entries); 6978 ctx->srq_max_entries = le32_to_cpu(resp->srq_max_entries); 6979 ctx->srq_entry_size = le16_to_cpu(resp->srq_entry_size); 6980 ctx->cq_max_l2_entries = le16_to_cpu(resp->cq_max_l2_entries); 6981 ctx->cq_max_entries = le32_to_cpu(resp->cq_max_entries); 6982 ctx->cq_entry_size = le16_to_cpu(resp->cq_entry_size); 6983 ctx->vnic_max_vnic_entries = 6984 le16_to_cpu(resp->vnic_max_vnic_entries); 6985 ctx->vnic_max_ring_table_entries = 6986 le16_to_cpu(resp->vnic_max_ring_table_entries); 6987 ctx->vnic_entry_size = le16_to_cpu(resp->vnic_entry_size); 6988 ctx->stat_max_entries = le32_to_cpu(resp->stat_max_entries); 6989 ctx->stat_entry_size = le16_to_cpu(resp->stat_entry_size); 6990 ctx->tqm_entry_size = le16_to_cpu(resp->tqm_entry_size); 6991 ctx->tqm_min_entries_per_ring = 6992 le32_to_cpu(resp->tqm_min_entries_per_ring); 6993 ctx->tqm_max_entries_per_ring = 6994 le32_to_cpu(resp->tqm_max_entries_per_ring); 6995 ctx->tqm_entries_multiple = resp->tqm_entries_multiple; 6996 if (!ctx->tqm_entries_multiple) 6997 ctx->tqm_entries_multiple = 1; 6998 ctx->mrav_max_entries = le32_to_cpu(resp->mrav_max_entries); 6999 ctx->mrav_entry_size = le16_to_cpu(resp->mrav_entry_size); 7000 ctx->mrav_num_entries_units = 7001 le16_to_cpu(resp->mrav_num_entries_units); 7002 ctx->tim_entry_size = le16_to_cpu(resp->tim_entry_size); 7003 ctx->tim_max_entries = le32_to_cpu(resp->tim_max_entries); 7004 7005 bnxt_init_ctx_initializer(ctx, resp); 7006 7007 ctx->tqm_fp_rings_count = resp->tqm_fp_rings_count; 7008 if (!ctx->tqm_fp_rings_count) 7009 ctx->tqm_fp_rings_count = bp->max_q; 7010 else if (ctx->tqm_fp_rings_count > BNXT_MAX_TQM_FP_RINGS) 7011 ctx->tqm_fp_rings_count = BNXT_MAX_TQM_FP_RINGS; 7012 7013 tqm_rings = ctx->tqm_fp_rings_count + BNXT_MAX_TQM_SP_RINGS; 7014 ctx_pg = kcalloc(tqm_rings, sizeof(*ctx_pg), GFP_KERNEL); 7015 if (!ctx_pg) { 7016 kfree(ctx); 7017 rc = -ENOMEM; 7018 goto ctx_err; 7019 } 7020 for (i = 0; i < tqm_rings; i++, ctx_pg++) 7021 ctx->tqm_mem[i] = ctx_pg; 7022 bp->ctx = ctx; 7023 } else { 7024 rc = 0; 7025 } 7026 ctx_err: 7027 mutex_unlock(&bp->hwrm_cmd_lock); 7028 return rc; 7029 } 7030 7031 static void bnxt_hwrm_set_pg_attr(struct bnxt_ring_mem_info *rmem, u8 *pg_attr, 7032 __le64 *pg_dir) 7033 { 7034 if (!rmem->nr_pages) 7035 return; 7036 7037 BNXT_SET_CTX_PAGE_ATTR(*pg_attr); 7038 if (rmem->depth >= 1) { 7039 if (rmem->depth == 2) 7040 *pg_attr |= 2; 7041 else 7042 *pg_attr |= 1; 7043 *pg_dir = cpu_to_le64(rmem->pg_tbl_map); 7044 } else { 7045 *pg_dir = cpu_to_le64(rmem->dma_arr[0]); 7046 } 7047 } 7048 7049 #define FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES \ 7050 (FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP | \ 7051 FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ | \ 7052 FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ | \ 7053 FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC | \ 7054 FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) 7055 7056 static int bnxt_hwrm_func_backing_store_cfg(struct bnxt *bp, u32 enables) 7057 { 7058 struct hwrm_func_backing_store_cfg_input req = {0}; 7059 struct bnxt_ctx_mem_info *ctx = bp->ctx; 7060 struct bnxt_ctx_pg_info *ctx_pg; 7061 u32 req_len = sizeof(req); 7062 __le32 *num_entries; 7063 __le64 *pg_dir; 7064 u32 flags = 0; 7065 u8 *pg_attr; 7066 u32 ena; 7067 int i; 7068 7069 if (!ctx) 7070 return 0; 7071 7072 if (req_len > bp->hwrm_max_ext_req_len) 7073 req_len = BNXT_BACKING_STORE_CFG_LEGACY_LEN; 7074 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_BACKING_STORE_CFG, -1, -1); 7075 req.enables = cpu_to_le32(enables); 7076 7077 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP) { 7078 ctx_pg = &ctx->qp_mem; 7079 req.qp_num_entries = cpu_to_le32(ctx_pg->entries); 7080 req.qp_num_qp1_entries = cpu_to_le16(ctx->qp_min_qp1_entries); 7081 req.qp_num_l2_entries = cpu_to_le16(ctx->qp_max_l2_entries); 7082 req.qp_entry_size = cpu_to_le16(ctx->qp_entry_size); 7083 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7084 &req.qpc_pg_size_qpc_lvl, 7085 &req.qpc_page_dir); 7086 } 7087 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ) { 7088 ctx_pg = &ctx->srq_mem; 7089 req.srq_num_entries = cpu_to_le32(ctx_pg->entries); 7090 req.srq_num_l2_entries = cpu_to_le16(ctx->srq_max_l2_entries); 7091 req.srq_entry_size = cpu_to_le16(ctx->srq_entry_size); 7092 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7093 &req.srq_pg_size_srq_lvl, 7094 &req.srq_page_dir); 7095 } 7096 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ) { 7097 ctx_pg = &ctx->cq_mem; 7098 req.cq_num_entries = cpu_to_le32(ctx_pg->entries); 7099 req.cq_num_l2_entries = cpu_to_le16(ctx->cq_max_l2_entries); 7100 req.cq_entry_size = cpu_to_le16(ctx->cq_entry_size); 7101 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, &req.cq_pg_size_cq_lvl, 7102 &req.cq_page_dir); 7103 } 7104 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC) { 7105 ctx_pg = &ctx->vnic_mem; 7106 req.vnic_num_vnic_entries = 7107 cpu_to_le16(ctx->vnic_max_vnic_entries); 7108 req.vnic_num_ring_table_entries = 7109 cpu_to_le16(ctx->vnic_max_ring_table_entries); 7110 req.vnic_entry_size = cpu_to_le16(ctx->vnic_entry_size); 7111 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7112 &req.vnic_pg_size_vnic_lvl, 7113 &req.vnic_page_dir); 7114 } 7115 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) { 7116 ctx_pg = &ctx->stat_mem; 7117 req.stat_num_entries = cpu_to_le32(ctx->stat_max_entries); 7118 req.stat_entry_size = cpu_to_le16(ctx->stat_entry_size); 7119 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7120 &req.stat_pg_size_stat_lvl, 7121 &req.stat_page_dir); 7122 } 7123 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV) { 7124 ctx_pg = &ctx->mrav_mem; 7125 req.mrav_num_entries = cpu_to_le32(ctx_pg->entries); 7126 if (ctx->mrav_num_entries_units) 7127 flags |= 7128 FUNC_BACKING_STORE_CFG_REQ_FLAGS_MRAV_RESERVATION_SPLIT; 7129 req.mrav_entry_size = cpu_to_le16(ctx->mrav_entry_size); 7130 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7131 &req.mrav_pg_size_mrav_lvl, 7132 &req.mrav_page_dir); 7133 } 7134 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) { 7135 ctx_pg = &ctx->tim_mem; 7136 req.tim_num_entries = cpu_to_le32(ctx_pg->entries); 7137 req.tim_entry_size = cpu_to_le16(ctx->tim_entry_size); 7138 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7139 &req.tim_pg_size_tim_lvl, 7140 &req.tim_page_dir); 7141 } 7142 for (i = 0, num_entries = &req.tqm_sp_num_entries, 7143 pg_attr = &req.tqm_sp_pg_size_tqm_sp_lvl, 7144 pg_dir = &req.tqm_sp_page_dir, 7145 ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP; 7146 i < BNXT_MAX_TQM_RINGS; 7147 i++, num_entries++, pg_attr++, pg_dir++, ena <<= 1) { 7148 if (!(enables & ena)) 7149 continue; 7150 7151 req.tqm_entry_size = cpu_to_le16(ctx->tqm_entry_size); 7152 ctx_pg = ctx->tqm_mem[i]; 7153 *num_entries = cpu_to_le32(ctx_pg->entries); 7154 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, pg_attr, pg_dir); 7155 } 7156 req.flags = cpu_to_le32(flags); 7157 return hwrm_send_message(bp, &req, req_len, HWRM_CMD_TIMEOUT); 7158 } 7159 7160 static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp, 7161 struct bnxt_ctx_pg_info *ctx_pg) 7162 { 7163 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 7164 7165 rmem->page_size = BNXT_PAGE_SIZE; 7166 rmem->pg_arr = ctx_pg->ctx_pg_arr; 7167 rmem->dma_arr = ctx_pg->ctx_dma_arr; 7168 rmem->flags = BNXT_RMEM_VALID_PTE_FLAG; 7169 if (rmem->depth >= 1) 7170 rmem->flags |= BNXT_RMEM_USE_FULL_PAGE_FLAG; 7171 return bnxt_alloc_ring(bp, rmem); 7172 } 7173 7174 static int bnxt_alloc_ctx_pg_tbls(struct bnxt *bp, 7175 struct bnxt_ctx_pg_info *ctx_pg, u32 mem_size, 7176 u8 depth, struct bnxt_mem_init *mem_init) 7177 { 7178 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 7179 int rc; 7180 7181 if (!mem_size) 7182 return -EINVAL; 7183 7184 ctx_pg->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE); 7185 if (ctx_pg->nr_pages > MAX_CTX_TOTAL_PAGES) { 7186 ctx_pg->nr_pages = 0; 7187 return -EINVAL; 7188 } 7189 if (ctx_pg->nr_pages > MAX_CTX_PAGES || depth > 1) { 7190 int nr_tbls, i; 7191 7192 rmem->depth = 2; 7193 ctx_pg->ctx_pg_tbl = kcalloc(MAX_CTX_PAGES, sizeof(ctx_pg), 7194 GFP_KERNEL); 7195 if (!ctx_pg->ctx_pg_tbl) 7196 return -ENOMEM; 7197 nr_tbls = DIV_ROUND_UP(ctx_pg->nr_pages, MAX_CTX_PAGES); 7198 rmem->nr_pages = nr_tbls; 7199 rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg); 7200 if (rc) 7201 return rc; 7202 for (i = 0; i < nr_tbls; i++) { 7203 struct bnxt_ctx_pg_info *pg_tbl; 7204 7205 pg_tbl = kzalloc(sizeof(*pg_tbl), GFP_KERNEL); 7206 if (!pg_tbl) 7207 return -ENOMEM; 7208 ctx_pg->ctx_pg_tbl[i] = pg_tbl; 7209 rmem = &pg_tbl->ring_mem; 7210 rmem->pg_tbl = ctx_pg->ctx_pg_arr[i]; 7211 rmem->pg_tbl_map = ctx_pg->ctx_dma_arr[i]; 7212 rmem->depth = 1; 7213 rmem->nr_pages = MAX_CTX_PAGES; 7214 rmem->mem_init = mem_init; 7215 if (i == (nr_tbls - 1)) { 7216 int rem = ctx_pg->nr_pages % MAX_CTX_PAGES; 7217 7218 if (rem) 7219 rmem->nr_pages = rem; 7220 } 7221 rc = bnxt_alloc_ctx_mem_blk(bp, pg_tbl); 7222 if (rc) 7223 break; 7224 } 7225 } else { 7226 rmem->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE); 7227 if (rmem->nr_pages > 1 || depth) 7228 rmem->depth = 1; 7229 rmem->mem_init = mem_init; 7230 rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg); 7231 } 7232 return rc; 7233 } 7234 7235 static void bnxt_free_ctx_pg_tbls(struct bnxt *bp, 7236 struct bnxt_ctx_pg_info *ctx_pg) 7237 { 7238 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 7239 7240 if (rmem->depth > 1 || ctx_pg->nr_pages > MAX_CTX_PAGES || 7241 ctx_pg->ctx_pg_tbl) { 7242 int i, nr_tbls = rmem->nr_pages; 7243 7244 for (i = 0; i < nr_tbls; i++) { 7245 struct bnxt_ctx_pg_info *pg_tbl; 7246 struct bnxt_ring_mem_info *rmem2; 7247 7248 pg_tbl = ctx_pg->ctx_pg_tbl[i]; 7249 if (!pg_tbl) 7250 continue; 7251 rmem2 = &pg_tbl->ring_mem; 7252 bnxt_free_ring(bp, rmem2); 7253 ctx_pg->ctx_pg_arr[i] = NULL; 7254 kfree(pg_tbl); 7255 ctx_pg->ctx_pg_tbl[i] = NULL; 7256 } 7257 kfree(ctx_pg->ctx_pg_tbl); 7258 ctx_pg->ctx_pg_tbl = NULL; 7259 } 7260 bnxt_free_ring(bp, rmem); 7261 ctx_pg->nr_pages = 0; 7262 } 7263 7264 static void bnxt_free_ctx_mem(struct bnxt *bp) 7265 { 7266 struct bnxt_ctx_mem_info *ctx = bp->ctx; 7267 int i; 7268 7269 if (!ctx) 7270 return; 7271 7272 if (ctx->tqm_mem[0]) { 7273 for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++) 7274 bnxt_free_ctx_pg_tbls(bp, ctx->tqm_mem[i]); 7275 kfree(ctx->tqm_mem[0]); 7276 ctx->tqm_mem[0] = NULL; 7277 } 7278 7279 bnxt_free_ctx_pg_tbls(bp, &ctx->tim_mem); 7280 bnxt_free_ctx_pg_tbls(bp, &ctx->mrav_mem); 7281 bnxt_free_ctx_pg_tbls(bp, &ctx->stat_mem); 7282 bnxt_free_ctx_pg_tbls(bp, &ctx->vnic_mem); 7283 bnxt_free_ctx_pg_tbls(bp, &ctx->cq_mem); 7284 bnxt_free_ctx_pg_tbls(bp, &ctx->srq_mem); 7285 bnxt_free_ctx_pg_tbls(bp, &ctx->qp_mem); 7286 ctx->flags &= ~BNXT_CTX_FLAG_INITED; 7287 } 7288 7289 static int bnxt_alloc_ctx_mem(struct bnxt *bp) 7290 { 7291 struct bnxt_ctx_pg_info *ctx_pg; 7292 struct bnxt_ctx_mem_info *ctx; 7293 struct bnxt_mem_init *init; 7294 u32 mem_size, ena, entries; 7295 u32 entries_sp, min; 7296 u32 num_mr, num_ah; 7297 u32 extra_srqs = 0; 7298 u32 extra_qps = 0; 7299 u8 pg_lvl = 1; 7300 int i, rc; 7301 7302 rc = bnxt_hwrm_func_backing_store_qcaps(bp); 7303 if (rc) { 7304 netdev_err(bp->dev, "Failed querying context mem capability, rc = %d.\n", 7305 rc); 7306 return rc; 7307 } 7308 ctx = bp->ctx; 7309 if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED)) 7310 return 0; 7311 7312 if ((bp->flags & BNXT_FLAG_ROCE_CAP) && !is_kdump_kernel()) { 7313 pg_lvl = 2; 7314 extra_qps = 65536; 7315 extra_srqs = 8192; 7316 } 7317 7318 ctx_pg = &ctx->qp_mem; 7319 ctx_pg->entries = ctx->qp_min_qp1_entries + ctx->qp_max_l2_entries + 7320 extra_qps; 7321 if (ctx->qp_entry_size) { 7322 mem_size = ctx->qp_entry_size * ctx_pg->entries; 7323 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_QP]; 7324 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init); 7325 if (rc) 7326 return rc; 7327 } 7328 7329 ctx_pg = &ctx->srq_mem; 7330 ctx_pg->entries = ctx->srq_max_l2_entries + extra_srqs; 7331 if (ctx->srq_entry_size) { 7332 mem_size = ctx->srq_entry_size * ctx_pg->entries; 7333 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_SRQ]; 7334 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init); 7335 if (rc) 7336 return rc; 7337 } 7338 7339 ctx_pg = &ctx->cq_mem; 7340 ctx_pg->entries = ctx->cq_max_l2_entries + extra_qps * 2; 7341 if (ctx->cq_entry_size) { 7342 mem_size = ctx->cq_entry_size * ctx_pg->entries; 7343 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_CQ]; 7344 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init); 7345 if (rc) 7346 return rc; 7347 } 7348 7349 ctx_pg = &ctx->vnic_mem; 7350 ctx_pg->entries = ctx->vnic_max_vnic_entries + 7351 ctx->vnic_max_ring_table_entries; 7352 if (ctx->vnic_entry_size) { 7353 mem_size = ctx->vnic_entry_size * ctx_pg->entries; 7354 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_VNIC]; 7355 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, init); 7356 if (rc) 7357 return rc; 7358 } 7359 7360 ctx_pg = &ctx->stat_mem; 7361 ctx_pg->entries = ctx->stat_max_entries; 7362 if (ctx->stat_entry_size) { 7363 mem_size = ctx->stat_entry_size * ctx_pg->entries; 7364 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_STAT]; 7365 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, init); 7366 if (rc) 7367 return rc; 7368 } 7369 7370 ena = 0; 7371 if (!(bp->flags & BNXT_FLAG_ROCE_CAP)) 7372 goto skip_rdma; 7373 7374 ctx_pg = &ctx->mrav_mem; 7375 /* 128K extra is needed to accommodate static AH context 7376 * allocation by f/w. 7377 */ 7378 num_mr = 1024 * 256; 7379 num_ah = 1024 * 128; 7380 ctx_pg->entries = num_mr + num_ah; 7381 if (ctx->mrav_entry_size) { 7382 mem_size = ctx->mrav_entry_size * ctx_pg->entries; 7383 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_MRAV]; 7384 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 2, init); 7385 if (rc) 7386 return rc; 7387 } 7388 ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV; 7389 if (ctx->mrav_num_entries_units) 7390 ctx_pg->entries = 7391 ((num_mr / ctx->mrav_num_entries_units) << 16) | 7392 (num_ah / ctx->mrav_num_entries_units); 7393 7394 ctx_pg = &ctx->tim_mem; 7395 ctx_pg->entries = ctx->qp_mem.entries; 7396 if (ctx->tim_entry_size) { 7397 mem_size = ctx->tim_entry_size * ctx_pg->entries; 7398 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, NULL); 7399 if (rc) 7400 return rc; 7401 } 7402 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM; 7403 7404 skip_rdma: 7405 min = ctx->tqm_min_entries_per_ring; 7406 entries_sp = ctx->vnic_max_vnic_entries + ctx->qp_max_l2_entries + 7407 2 * (extra_qps + ctx->qp_min_qp1_entries) + min; 7408 entries_sp = roundup(entries_sp, ctx->tqm_entries_multiple); 7409 entries = ctx->qp_max_l2_entries + 2 * (extra_qps + ctx->qp_min_qp1_entries); 7410 entries = roundup(entries, ctx->tqm_entries_multiple); 7411 entries = clamp_t(u32, entries, min, ctx->tqm_max_entries_per_ring); 7412 for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++) { 7413 ctx_pg = ctx->tqm_mem[i]; 7414 ctx_pg->entries = i ? entries : entries_sp; 7415 if (ctx->tqm_entry_size) { 7416 mem_size = ctx->tqm_entry_size * ctx_pg->entries; 7417 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, 7418 NULL); 7419 if (rc) 7420 return rc; 7421 } 7422 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP << i; 7423 } 7424 ena |= FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES; 7425 rc = bnxt_hwrm_func_backing_store_cfg(bp, ena); 7426 if (rc) { 7427 netdev_err(bp->dev, "Failed configuring context mem, rc = %d.\n", 7428 rc); 7429 return rc; 7430 } 7431 ctx->flags |= BNXT_CTX_FLAG_INITED; 7432 return 0; 7433 } 7434 7435 int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all) 7436 { 7437 struct hwrm_func_resource_qcaps_output *resp = bp->hwrm_cmd_resp_addr; 7438 struct hwrm_func_resource_qcaps_input req = {0}; 7439 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7440 int rc; 7441 7442 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESOURCE_QCAPS, -1, -1); 7443 req.fid = cpu_to_le16(0xffff); 7444 7445 mutex_lock(&bp->hwrm_cmd_lock); 7446 rc = _hwrm_send_message_silent(bp, &req, sizeof(req), 7447 HWRM_CMD_TIMEOUT); 7448 if (rc) 7449 goto hwrm_func_resc_qcaps_exit; 7450 7451 hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs); 7452 if (!all) 7453 goto hwrm_func_resc_qcaps_exit; 7454 7455 hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx); 7456 hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx); 7457 hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings); 7458 hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings); 7459 hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings); 7460 hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings); 7461 hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings); 7462 hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings); 7463 hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps); 7464 hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps); 7465 hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs); 7466 hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs); 7467 hw_resc->min_vnics = le16_to_cpu(resp->min_vnics); 7468 hw_resc->max_vnics = le16_to_cpu(resp->max_vnics); 7469 hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx); 7470 hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx); 7471 7472 if (bp->flags & BNXT_FLAG_CHIP_P5) { 7473 u16 max_msix = le16_to_cpu(resp->max_msix); 7474 7475 hw_resc->max_nqs = max_msix; 7476 hw_resc->max_hw_ring_grps = hw_resc->max_rx_rings; 7477 } 7478 7479 if (BNXT_PF(bp)) { 7480 struct bnxt_pf_info *pf = &bp->pf; 7481 7482 pf->vf_resv_strategy = 7483 le16_to_cpu(resp->vf_reservation_strategy); 7484 if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC) 7485 pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL; 7486 } 7487 hwrm_func_resc_qcaps_exit: 7488 mutex_unlock(&bp->hwrm_cmd_lock); 7489 return rc; 7490 } 7491 7492 /* bp->hwrm_cmd_lock already held. */ 7493 static int __bnxt_hwrm_ptp_qcfg(struct bnxt *bp) 7494 { 7495 struct hwrm_port_mac_ptp_qcfg_output *resp = bp->hwrm_cmd_resp_addr; 7496 struct hwrm_port_mac_ptp_qcfg_input req = {0}; 7497 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 7498 u8 flags; 7499 int rc; 7500 7501 if (bp->hwrm_spec_code < 0x10801) { 7502 rc = -ENODEV; 7503 goto no_ptp; 7504 } 7505 7506 req.port_id = cpu_to_le16(bp->pf.port_id); 7507 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_MAC_PTP_QCFG, -1, -1); 7508 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 7509 if (rc) 7510 goto no_ptp; 7511 7512 flags = resp->flags; 7513 if (!(flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_HWRM_ACCESS)) { 7514 rc = -ENODEV; 7515 goto no_ptp; 7516 } 7517 if (!ptp) { 7518 ptp = kzalloc(sizeof(*ptp), GFP_KERNEL); 7519 if (!ptp) 7520 return -ENOMEM; 7521 ptp->bp = bp; 7522 bp->ptp_cfg = ptp; 7523 } 7524 if (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_PARTIAL_DIRECT_ACCESS_REF_CLOCK) { 7525 ptp->refclk_regs[0] = le32_to_cpu(resp->ts_ref_clock_reg_lower); 7526 ptp->refclk_regs[1] = le32_to_cpu(resp->ts_ref_clock_reg_upper); 7527 } else if (bp->flags & BNXT_FLAG_CHIP_P5) { 7528 ptp->refclk_regs[0] = BNXT_TS_REG_TIMESYNC_TS0_LOWER; 7529 ptp->refclk_regs[1] = BNXT_TS_REG_TIMESYNC_TS0_UPPER; 7530 } else { 7531 rc = -ENODEV; 7532 goto no_ptp; 7533 } 7534 return 0; 7535 7536 no_ptp: 7537 kfree(ptp); 7538 bp->ptp_cfg = NULL; 7539 return rc; 7540 } 7541 7542 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp) 7543 { 7544 int rc = 0; 7545 struct hwrm_func_qcaps_input req = {0}; 7546 struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr; 7547 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7548 u32 flags, flags_ext; 7549 7550 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1); 7551 req.fid = cpu_to_le16(0xffff); 7552 7553 mutex_lock(&bp->hwrm_cmd_lock); 7554 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 7555 if (rc) 7556 goto hwrm_func_qcaps_exit; 7557 7558 flags = le32_to_cpu(resp->flags); 7559 if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED) 7560 bp->flags |= BNXT_FLAG_ROCEV1_CAP; 7561 if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED) 7562 bp->flags |= BNXT_FLAG_ROCEV2_CAP; 7563 if (flags & FUNC_QCAPS_RESP_FLAGS_PCIE_STATS_SUPPORTED) 7564 bp->fw_cap |= BNXT_FW_CAP_PCIE_STATS_SUPPORTED; 7565 if (flags & FUNC_QCAPS_RESP_FLAGS_HOT_RESET_CAPABLE) 7566 bp->fw_cap |= BNXT_FW_CAP_HOT_RESET; 7567 if (flags & FUNC_QCAPS_RESP_FLAGS_EXT_STATS_SUPPORTED) 7568 bp->fw_cap |= BNXT_FW_CAP_EXT_STATS_SUPPORTED; 7569 if (flags & FUNC_QCAPS_RESP_FLAGS_ERROR_RECOVERY_CAPABLE) 7570 bp->fw_cap |= BNXT_FW_CAP_ERROR_RECOVERY; 7571 if (flags & FUNC_QCAPS_RESP_FLAGS_ERR_RECOVER_RELOAD) 7572 bp->fw_cap |= BNXT_FW_CAP_ERR_RECOVER_RELOAD; 7573 if (!(flags & FUNC_QCAPS_RESP_FLAGS_VLAN_ACCELERATION_TX_DISABLED)) 7574 bp->fw_cap |= BNXT_FW_CAP_VLAN_TX_INSERT; 7575 7576 flags_ext = le32_to_cpu(resp->flags_ext); 7577 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_EXT_HW_STATS_SUPPORTED) 7578 bp->fw_cap |= BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED; 7579 7580 bp->tx_push_thresh = 0; 7581 if ((flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED) && 7582 BNXT_FW_MAJ(bp) > 217) 7583 bp->tx_push_thresh = BNXT_TX_PUSH_THRESH; 7584 7585 hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx); 7586 hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings); 7587 hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings); 7588 hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings); 7589 hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps); 7590 if (!hw_resc->max_hw_ring_grps) 7591 hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings; 7592 hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs); 7593 hw_resc->max_vnics = le16_to_cpu(resp->max_vnics); 7594 hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx); 7595 7596 if (BNXT_PF(bp)) { 7597 struct bnxt_pf_info *pf = &bp->pf; 7598 7599 pf->fw_fid = le16_to_cpu(resp->fid); 7600 pf->port_id = le16_to_cpu(resp->port_id); 7601 memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN); 7602 pf->first_vf_id = le16_to_cpu(resp->first_vf_id); 7603 pf->max_vfs = le16_to_cpu(resp->max_vfs); 7604 pf->max_encap_records = le32_to_cpu(resp->max_encap_records); 7605 pf->max_decap_records = le32_to_cpu(resp->max_decap_records); 7606 pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows); 7607 pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows); 7608 pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows); 7609 pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows); 7610 bp->flags &= ~BNXT_FLAG_WOL_CAP; 7611 if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED) 7612 bp->flags |= BNXT_FLAG_WOL_CAP; 7613 if (flags & FUNC_QCAPS_RESP_FLAGS_PTP_SUPPORTED) { 7614 __bnxt_hwrm_ptp_qcfg(bp); 7615 } else { 7616 kfree(bp->ptp_cfg); 7617 bp->ptp_cfg = NULL; 7618 } 7619 } else { 7620 #ifdef CONFIG_BNXT_SRIOV 7621 struct bnxt_vf_info *vf = &bp->vf; 7622 7623 vf->fw_fid = le16_to_cpu(resp->fid); 7624 memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN); 7625 #endif 7626 } 7627 7628 hwrm_func_qcaps_exit: 7629 mutex_unlock(&bp->hwrm_cmd_lock); 7630 return rc; 7631 } 7632 7633 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp); 7634 7635 static int bnxt_hwrm_func_qcaps(struct bnxt *bp) 7636 { 7637 int rc; 7638 7639 rc = __bnxt_hwrm_func_qcaps(bp); 7640 if (rc) 7641 return rc; 7642 rc = bnxt_hwrm_queue_qportcfg(bp); 7643 if (rc) { 7644 netdev_err(bp->dev, "hwrm query qportcfg failure rc: %d\n", rc); 7645 return rc; 7646 } 7647 if (bp->hwrm_spec_code >= 0x10803) { 7648 rc = bnxt_alloc_ctx_mem(bp); 7649 if (rc) 7650 return rc; 7651 rc = bnxt_hwrm_func_resc_qcaps(bp, true); 7652 if (!rc) 7653 bp->fw_cap |= BNXT_FW_CAP_NEW_RM; 7654 } 7655 return 0; 7656 } 7657 7658 static int bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(struct bnxt *bp) 7659 { 7660 struct hwrm_cfa_adv_flow_mgnt_qcaps_input req = {0}; 7661 struct hwrm_cfa_adv_flow_mgnt_qcaps_output *resp; 7662 int rc = 0; 7663 u32 flags; 7664 7665 if (!(bp->fw_cap & BNXT_FW_CAP_CFA_ADV_FLOW)) 7666 return 0; 7667 7668 resp = bp->hwrm_cmd_resp_addr; 7669 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_ADV_FLOW_MGNT_QCAPS, -1, -1); 7670 7671 mutex_lock(&bp->hwrm_cmd_lock); 7672 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 7673 if (rc) 7674 goto hwrm_cfa_adv_qcaps_exit; 7675 7676 flags = le32_to_cpu(resp->flags); 7677 if (flags & 7678 CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V2_SUPPORTED) 7679 bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2; 7680 7681 hwrm_cfa_adv_qcaps_exit: 7682 mutex_unlock(&bp->hwrm_cmd_lock); 7683 return rc; 7684 } 7685 7686 static int __bnxt_alloc_fw_health(struct bnxt *bp) 7687 { 7688 if (bp->fw_health) 7689 return 0; 7690 7691 bp->fw_health = kzalloc(sizeof(*bp->fw_health), GFP_KERNEL); 7692 if (!bp->fw_health) 7693 return -ENOMEM; 7694 7695 return 0; 7696 } 7697 7698 static int bnxt_alloc_fw_health(struct bnxt *bp) 7699 { 7700 int rc; 7701 7702 if (!(bp->fw_cap & BNXT_FW_CAP_HOT_RESET) && 7703 !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 7704 return 0; 7705 7706 rc = __bnxt_alloc_fw_health(bp); 7707 if (rc) { 7708 bp->fw_cap &= ~BNXT_FW_CAP_HOT_RESET; 7709 bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY; 7710 return rc; 7711 } 7712 7713 return 0; 7714 } 7715 7716 static void __bnxt_map_fw_health_reg(struct bnxt *bp, u32 reg) 7717 { 7718 writel(reg & BNXT_GRC_BASE_MASK, bp->bar0 + 7719 BNXT_GRCPF_REG_WINDOW_BASE_OUT + 7720 BNXT_FW_HEALTH_WIN_MAP_OFF); 7721 } 7722 7723 bool bnxt_is_fw_healthy(struct bnxt *bp) 7724 { 7725 if (bp->fw_health && bp->fw_health->status_reliable) { 7726 u32 fw_status; 7727 7728 fw_status = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 7729 if (fw_status && !BNXT_FW_IS_HEALTHY(fw_status)) 7730 return false; 7731 } 7732 7733 return true; 7734 } 7735 7736 static void bnxt_inv_fw_health_reg(struct bnxt *bp) 7737 { 7738 struct bnxt_fw_health *fw_health = bp->fw_health; 7739 u32 reg_type; 7740 7741 if (!fw_health || !fw_health->status_reliable) 7742 return; 7743 7744 reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_HEALTH_REG]); 7745 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) 7746 fw_health->status_reliable = false; 7747 } 7748 7749 static void bnxt_try_map_fw_health_reg(struct bnxt *bp) 7750 { 7751 void __iomem *hs; 7752 u32 status_loc; 7753 u32 reg_type; 7754 u32 sig; 7755 7756 if (bp->fw_health) 7757 bp->fw_health->status_reliable = false; 7758 7759 __bnxt_map_fw_health_reg(bp, HCOMM_STATUS_STRUCT_LOC); 7760 hs = bp->bar0 + BNXT_FW_HEALTH_WIN_OFF(HCOMM_STATUS_STRUCT_LOC); 7761 7762 sig = readl(hs + offsetof(struct hcomm_status, sig_ver)); 7763 if ((sig & HCOMM_STATUS_SIGNATURE_MASK) != HCOMM_STATUS_SIGNATURE_VAL) { 7764 if (!bp->chip_num) { 7765 __bnxt_map_fw_health_reg(bp, BNXT_GRC_REG_BASE); 7766 bp->chip_num = readl(bp->bar0 + 7767 BNXT_FW_HEALTH_WIN_BASE + 7768 BNXT_GRC_REG_CHIP_NUM); 7769 } 7770 if (!BNXT_CHIP_P5(bp)) 7771 return; 7772 7773 status_loc = BNXT_GRC_REG_STATUS_P5 | 7774 BNXT_FW_HEALTH_REG_TYPE_BAR0; 7775 } else { 7776 status_loc = readl(hs + offsetof(struct hcomm_status, 7777 fw_status_loc)); 7778 } 7779 7780 if (__bnxt_alloc_fw_health(bp)) { 7781 netdev_warn(bp->dev, "no memory for firmware status checks\n"); 7782 return; 7783 } 7784 7785 bp->fw_health->regs[BNXT_FW_HEALTH_REG] = status_loc; 7786 reg_type = BNXT_FW_HEALTH_REG_TYPE(status_loc); 7787 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) { 7788 __bnxt_map_fw_health_reg(bp, status_loc); 7789 bp->fw_health->mapped_regs[BNXT_FW_HEALTH_REG] = 7790 BNXT_FW_HEALTH_WIN_OFF(status_loc); 7791 } 7792 7793 bp->fw_health->status_reliable = true; 7794 } 7795 7796 static int bnxt_map_fw_health_regs(struct bnxt *bp) 7797 { 7798 struct bnxt_fw_health *fw_health = bp->fw_health; 7799 u32 reg_base = 0xffffffff; 7800 int i; 7801 7802 bp->fw_health->status_reliable = false; 7803 /* Only pre-map the monitoring GRC registers using window 3 */ 7804 for (i = 0; i < 4; i++) { 7805 u32 reg = fw_health->regs[i]; 7806 7807 if (BNXT_FW_HEALTH_REG_TYPE(reg) != BNXT_FW_HEALTH_REG_TYPE_GRC) 7808 continue; 7809 if (reg_base == 0xffffffff) 7810 reg_base = reg & BNXT_GRC_BASE_MASK; 7811 if ((reg & BNXT_GRC_BASE_MASK) != reg_base) 7812 return -ERANGE; 7813 fw_health->mapped_regs[i] = BNXT_FW_HEALTH_WIN_OFF(reg); 7814 } 7815 bp->fw_health->status_reliable = true; 7816 if (reg_base == 0xffffffff) 7817 return 0; 7818 7819 __bnxt_map_fw_health_reg(bp, reg_base); 7820 return 0; 7821 } 7822 7823 static int bnxt_hwrm_error_recovery_qcfg(struct bnxt *bp) 7824 { 7825 struct hwrm_error_recovery_qcfg_output *resp = bp->hwrm_cmd_resp_addr; 7826 struct bnxt_fw_health *fw_health = bp->fw_health; 7827 struct hwrm_error_recovery_qcfg_input req = {0}; 7828 int rc, i; 7829 7830 if (!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 7831 return 0; 7832 7833 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_ERROR_RECOVERY_QCFG, -1, -1); 7834 mutex_lock(&bp->hwrm_cmd_lock); 7835 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 7836 if (rc) 7837 goto err_recovery_out; 7838 fw_health->flags = le32_to_cpu(resp->flags); 7839 if ((fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) && 7840 !(bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL)) { 7841 rc = -EINVAL; 7842 goto err_recovery_out; 7843 } 7844 fw_health->polling_dsecs = le32_to_cpu(resp->driver_polling_freq); 7845 fw_health->master_func_wait_dsecs = 7846 le32_to_cpu(resp->master_func_wait_period); 7847 fw_health->normal_func_wait_dsecs = 7848 le32_to_cpu(resp->normal_func_wait_period); 7849 fw_health->post_reset_wait_dsecs = 7850 le32_to_cpu(resp->master_func_wait_period_after_reset); 7851 fw_health->post_reset_max_wait_dsecs = 7852 le32_to_cpu(resp->max_bailout_time_after_reset); 7853 fw_health->regs[BNXT_FW_HEALTH_REG] = 7854 le32_to_cpu(resp->fw_health_status_reg); 7855 fw_health->regs[BNXT_FW_HEARTBEAT_REG] = 7856 le32_to_cpu(resp->fw_heartbeat_reg); 7857 fw_health->regs[BNXT_FW_RESET_CNT_REG] = 7858 le32_to_cpu(resp->fw_reset_cnt_reg); 7859 fw_health->regs[BNXT_FW_RESET_INPROG_REG] = 7860 le32_to_cpu(resp->reset_inprogress_reg); 7861 fw_health->fw_reset_inprog_reg_mask = 7862 le32_to_cpu(resp->reset_inprogress_reg_mask); 7863 fw_health->fw_reset_seq_cnt = resp->reg_array_cnt; 7864 if (fw_health->fw_reset_seq_cnt >= 16) { 7865 rc = -EINVAL; 7866 goto err_recovery_out; 7867 } 7868 for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) { 7869 fw_health->fw_reset_seq_regs[i] = 7870 le32_to_cpu(resp->reset_reg[i]); 7871 fw_health->fw_reset_seq_vals[i] = 7872 le32_to_cpu(resp->reset_reg_val[i]); 7873 fw_health->fw_reset_seq_delay_msec[i] = 7874 resp->delay_after_reset[i]; 7875 } 7876 err_recovery_out: 7877 mutex_unlock(&bp->hwrm_cmd_lock); 7878 if (!rc) 7879 rc = bnxt_map_fw_health_regs(bp); 7880 if (rc) 7881 bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY; 7882 return rc; 7883 } 7884 7885 static int bnxt_hwrm_func_reset(struct bnxt *bp) 7886 { 7887 struct hwrm_func_reset_input req = {0}; 7888 7889 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESET, -1, -1); 7890 req.enables = 0; 7891 7892 return hwrm_send_message(bp, &req, sizeof(req), HWRM_RESET_TIMEOUT); 7893 } 7894 7895 static void bnxt_nvm_cfg_ver_get(struct bnxt *bp) 7896 { 7897 struct hwrm_nvm_get_dev_info_output nvm_info; 7898 7899 if (!bnxt_hwrm_nvm_get_dev_info(bp, &nvm_info)) 7900 snprintf(bp->nvm_cfg_ver, FW_VER_STR_LEN, "%d.%d.%d", 7901 nvm_info.nvm_cfg_ver_maj, nvm_info.nvm_cfg_ver_min, 7902 nvm_info.nvm_cfg_ver_upd); 7903 } 7904 7905 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp) 7906 { 7907 int rc = 0; 7908 struct hwrm_queue_qportcfg_input req = {0}; 7909 struct hwrm_queue_qportcfg_output *resp = bp->hwrm_cmd_resp_addr; 7910 u8 i, j, *qptr; 7911 bool no_rdma; 7912 7913 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_QUEUE_QPORTCFG, -1, -1); 7914 7915 mutex_lock(&bp->hwrm_cmd_lock); 7916 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 7917 if (rc) 7918 goto qportcfg_exit; 7919 7920 if (!resp->max_configurable_queues) { 7921 rc = -EINVAL; 7922 goto qportcfg_exit; 7923 } 7924 bp->max_tc = resp->max_configurable_queues; 7925 bp->max_lltc = resp->max_configurable_lossless_queues; 7926 if (bp->max_tc > BNXT_MAX_QUEUE) 7927 bp->max_tc = BNXT_MAX_QUEUE; 7928 7929 no_rdma = !(bp->flags & BNXT_FLAG_ROCE_CAP); 7930 qptr = &resp->queue_id0; 7931 for (i = 0, j = 0; i < bp->max_tc; i++) { 7932 bp->q_info[j].queue_id = *qptr; 7933 bp->q_ids[i] = *qptr++; 7934 bp->q_info[j].queue_profile = *qptr++; 7935 bp->tc_to_qidx[j] = j; 7936 if (!BNXT_CNPQ(bp->q_info[j].queue_profile) || 7937 (no_rdma && BNXT_PF(bp))) 7938 j++; 7939 } 7940 bp->max_q = bp->max_tc; 7941 bp->max_tc = max_t(u8, j, 1); 7942 7943 if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG) 7944 bp->max_tc = 1; 7945 7946 if (bp->max_lltc > bp->max_tc) 7947 bp->max_lltc = bp->max_tc; 7948 7949 qportcfg_exit: 7950 mutex_unlock(&bp->hwrm_cmd_lock); 7951 return rc; 7952 } 7953 7954 static int __bnxt_hwrm_ver_get(struct bnxt *bp, bool silent) 7955 { 7956 struct hwrm_ver_get_input req = {0}; 7957 int rc; 7958 7959 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VER_GET, -1, -1); 7960 req.hwrm_intf_maj = HWRM_VERSION_MAJOR; 7961 req.hwrm_intf_min = HWRM_VERSION_MINOR; 7962 req.hwrm_intf_upd = HWRM_VERSION_UPDATE; 7963 7964 rc = bnxt_hwrm_do_send_msg(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT, 7965 silent); 7966 return rc; 7967 } 7968 7969 static int bnxt_hwrm_ver_get(struct bnxt *bp) 7970 { 7971 struct hwrm_ver_get_output *resp = bp->hwrm_cmd_resp_addr; 7972 u16 fw_maj, fw_min, fw_bld, fw_rsv; 7973 u32 dev_caps_cfg, hwrm_ver; 7974 int rc, len; 7975 7976 bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN; 7977 mutex_lock(&bp->hwrm_cmd_lock); 7978 rc = __bnxt_hwrm_ver_get(bp, false); 7979 if (rc) 7980 goto hwrm_ver_get_exit; 7981 7982 memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output)); 7983 7984 bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 | 7985 resp->hwrm_intf_min_8b << 8 | 7986 resp->hwrm_intf_upd_8b; 7987 if (resp->hwrm_intf_maj_8b < 1) { 7988 netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n", 7989 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b, 7990 resp->hwrm_intf_upd_8b); 7991 netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n"); 7992 } 7993 7994 hwrm_ver = HWRM_VERSION_MAJOR << 16 | HWRM_VERSION_MINOR << 8 | 7995 HWRM_VERSION_UPDATE; 7996 7997 if (bp->hwrm_spec_code > hwrm_ver) 7998 snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d", 7999 HWRM_VERSION_MAJOR, HWRM_VERSION_MINOR, 8000 HWRM_VERSION_UPDATE); 8001 else 8002 snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d", 8003 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b, 8004 resp->hwrm_intf_upd_8b); 8005 8006 fw_maj = le16_to_cpu(resp->hwrm_fw_major); 8007 if (bp->hwrm_spec_code > 0x10803 && fw_maj) { 8008 fw_min = le16_to_cpu(resp->hwrm_fw_minor); 8009 fw_bld = le16_to_cpu(resp->hwrm_fw_build); 8010 fw_rsv = le16_to_cpu(resp->hwrm_fw_patch); 8011 len = FW_VER_STR_LEN; 8012 } else { 8013 fw_maj = resp->hwrm_fw_maj_8b; 8014 fw_min = resp->hwrm_fw_min_8b; 8015 fw_bld = resp->hwrm_fw_bld_8b; 8016 fw_rsv = resp->hwrm_fw_rsvd_8b; 8017 len = BC_HWRM_STR_LEN; 8018 } 8019 bp->fw_ver_code = BNXT_FW_VER_CODE(fw_maj, fw_min, fw_bld, fw_rsv); 8020 snprintf(bp->fw_ver_str, len, "%d.%d.%d.%d", fw_maj, fw_min, fw_bld, 8021 fw_rsv); 8022 8023 if (strlen(resp->active_pkg_name)) { 8024 int fw_ver_len = strlen(bp->fw_ver_str); 8025 8026 snprintf(bp->fw_ver_str + fw_ver_len, 8027 FW_VER_STR_LEN - fw_ver_len - 1, "/pkg %s", 8028 resp->active_pkg_name); 8029 bp->fw_cap |= BNXT_FW_CAP_PKG_VER; 8030 } 8031 8032 bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout); 8033 if (!bp->hwrm_cmd_timeout) 8034 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT; 8035 8036 if (resp->hwrm_intf_maj_8b >= 1) { 8037 bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len); 8038 bp->hwrm_max_ext_req_len = le16_to_cpu(resp->max_ext_req_len); 8039 } 8040 if (bp->hwrm_max_ext_req_len < HWRM_MAX_REQ_LEN) 8041 bp->hwrm_max_ext_req_len = HWRM_MAX_REQ_LEN; 8042 8043 bp->chip_num = le16_to_cpu(resp->chip_num); 8044 bp->chip_rev = resp->chip_rev; 8045 if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev && 8046 !resp->chip_metal) 8047 bp->flags |= BNXT_FLAG_CHIP_NITRO_A0; 8048 8049 dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg); 8050 if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) && 8051 (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED)) 8052 bp->fw_cap |= BNXT_FW_CAP_SHORT_CMD; 8053 8054 if (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_KONG_MB_CHNL_SUPPORTED) 8055 bp->fw_cap |= BNXT_FW_CAP_KONG_MB_CHNL; 8056 8057 if (dev_caps_cfg & 8058 VER_GET_RESP_DEV_CAPS_CFG_FLOW_HANDLE_64BIT_SUPPORTED) 8059 bp->fw_cap |= BNXT_FW_CAP_OVS_64BIT_HANDLE; 8060 8061 if (dev_caps_cfg & 8062 VER_GET_RESP_DEV_CAPS_CFG_TRUSTED_VF_SUPPORTED) 8063 bp->fw_cap |= BNXT_FW_CAP_TRUSTED_VF; 8064 8065 if (dev_caps_cfg & 8066 VER_GET_RESP_DEV_CAPS_CFG_CFA_ADV_FLOW_MGNT_SUPPORTED) 8067 bp->fw_cap |= BNXT_FW_CAP_CFA_ADV_FLOW; 8068 8069 hwrm_ver_get_exit: 8070 mutex_unlock(&bp->hwrm_cmd_lock); 8071 return rc; 8072 } 8073 8074 int bnxt_hwrm_fw_set_time(struct bnxt *bp) 8075 { 8076 struct hwrm_fw_set_time_input req = {0}; 8077 struct tm tm; 8078 time64_t now = ktime_get_real_seconds(); 8079 8080 if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) || 8081 bp->hwrm_spec_code < 0x10400) 8082 return -EOPNOTSUPP; 8083 8084 time64_to_tm(now, 0, &tm); 8085 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FW_SET_TIME, -1, -1); 8086 req.year = cpu_to_le16(1900 + tm.tm_year); 8087 req.month = 1 + tm.tm_mon; 8088 req.day = tm.tm_mday; 8089 req.hour = tm.tm_hour; 8090 req.minute = tm.tm_min; 8091 req.second = tm.tm_sec; 8092 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 8093 } 8094 8095 static void bnxt_add_one_ctr(u64 hw, u64 *sw, u64 mask) 8096 { 8097 u64 sw_tmp; 8098 8099 hw &= mask; 8100 sw_tmp = (*sw & ~mask) | hw; 8101 if (hw < (*sw & mask)) 8102 sw_tmp += mask + 1; 8103 WRITE_ONCE(*sw, sw_tmp); 8104 } 8105 8106 static void __bnxt_accumulate_stats(__le64 *hw_stats, u64 *sw_stats, u64 *masks, 8107 int count, bool ignore_zero) 8108 { 8109 int i; 8110 8111 for (i = 0; i < count; i++) { 8112 u64 hw = le64_to_cpu(READ_ONCE(hw_stats[i])); 8113 8114 if (ignore_zero && !hw) 8115 continue; 8116 8117 if (masks[i] == -1ULL) 8118 sw_stats[i] = hw; 8119 else 8120 bnxt_add_one_ctr(hw, &sw_stats[i], masks[i]); 8121 } 8122 } 8123 8124 static void bnxt_accumulate_stats(struct bnxt_stats_mem *stats) 8125 { 8126 if (!stats->hw_stats) 8127 return; 8128 8129 __bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats, 8130 stats->hw_masks, stats->len / 8, false); 8131 } 8132 8133 static void bnxt_accumulate_all_stats(struct bnxt *bp) 8134 { 8135 struct bnxt_stats_mem *ring0_stats; 8136 bool ignore_zero = false; 8137 int i; 8138 8139 /* Chip bug. Counter intermittently becomes 0. */ 8140 if (bp->flags & BNXT_FLAG_CHIP_P5) 8141 ignore_zero = true; 8142 8143 for (i = 0; i < bp->cp_nr_rings; i++) { 8144 struct bnxt_napi *bnapi = bp->bnapi[i]; 8145 struct bnxt_cp_ring_info *cpr; 8146 struct bnxt_stats_mem *stats; 8147 8148 cpr = &bnapi->cp_ring; 8149 stats = &cpr->stats; 8150 if (!i) 8151 ring0_stats = stats; 8152 __bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats, 8153 ring0_stats->hw_masks, 8154 ring0_stats->len / 8, ignore_zero); 8155 } 8156 if (bp->flags & BNXT_FLAG_PORT_STATS) { 8157 struct bnxt_stats_mem *stats = &bp->port_stats; 8158 __le64 *hw_stats = stats->hw_stats; 8159 u64 *sw_stats = stats->sw_stats; 8160 u64 *masks = stats->hw_masks; 8161 int cnt; 8162 8163 cnt = sizeof(struct rx_port_stats) / 8; 8164 __bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false); 8165 8166 hw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 8167 sw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 8168 masks += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 8169 cnt = sizeof(struct tx_port_stats) / 8; 8170 __bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false); 8171 } 8172 if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) { 8173 bnxt_accumulate_stats(&bp->rx_port_stats_ext); 8174 bnxt_accumulate_stats(&bp->tx_port_stats_ext); 8175 } 8176 } 8177 8178 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags) 8179 { 8180 struct bnxt_pf_info *pf = &bp->pf; 8181 struct hwrm_port_qstats_input req = {0}; 8182 8183 if (!(bp->flags & BNXT_FLAG_PORT_STATS)) 8184 return 0; 8185 8186 if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)) 8187 return -EOPNOTSUPP; 8188 8189 req.flags = flags; 8190 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS, -1, -1); 8191 req.port_id = cpu_to_le16(pf->port_id); 8192 req.tx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map + 8193 BNXT_TX_PORT_STATS_BYTE_OFFSET); 8194 req.rx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map); 8195 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 8196 } 8197 8198 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags) 8199 { 8200 struct hwrm_port_qstats_ext_output *resp = bp->hwrm_cmd_resp_addr; 8201 struct hwrm_queue_pri2cos_qcfg_input req2 = {0}; 8202 struct hwrm_port_qstats_ext_input req = {0}; 8203 struct bnxt_pf_info *pf = &bp->pf; 8204 u32 tx_stat_size; 8205 int rc; 8206 8207 if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT)) 8208 return 0; 8209 8210 if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)) 8211 return -EOPNOTSUPP; 8212 8213 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS_EXT, -1, -1); 8214 req.flags = flags; 8215 req.port_id = cpu_to_le16(pf->port_id); 8216 req.rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext)); 8217 req.rx_stat_host_addr = cpu_to_le64(bp->rx_port_stats_ext.hw_stats_map); 8218 tx_stat_size = bp->tx_port_stats_ext.hw_stats ? 8219 sizeof(struct tx_port_stats_ext) : 0; 8220 req.tx_stat_size = cpu_to_le16(tx_stat_size); 8221 req.tx_stat_host_addr = cpu_to_le64(bp->tx_port_stats_ext.hw_stats_map); 8222 mutex_lock(&bp->hwrm_cmd_lock); 8223 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 8224 if (!rc) { 8225 bp->fw_rx_stats_ext_size = le16_to_cpu(resp->rx_stat_size) / 8; 8226 bp->fw_tx_stats_ext_size = tx_stat_size ? 8227 le16_to_cpu(resp->tx_stat_size) / 8 : 0; 8228 } else { 8229 bp->fw_rx_stats_ext_size = 0; 8230 bp->fw_tx_stats_ext_size = 0; 8231 } 8232 if (flags) 8233 goto qstats_done; 8234 8235 if (bp->fw_tx_stats_ext_size <= 8236 offsetof(struct tx_port_stats_ext, pfc_pri0_tx_duration_us) / 8) { 8237 mutex_unlock(&bp->hwrm_cmd_lock); 8238 bp->pri2cos_valid = 0; 8239 return rc; 8240 } 8241 8242 bnxt_hwrm_cmd_hdr_init(bp, &req2, HWRM_QUEUE_PRI2COS_QCFG, -1, -1); 8243 req2.flags = cpu_to_le32(QUEUE_PRI2COS_QCFG_REQ_FLAGS_IVLAN); 8244 8245 rc = _hwrm_send_message(bp, &req2, sizeof(req2), HWRM_CMD_TIMEOUT); 8246 if (!rc) { 8247 struct hwrm_queue_pri2cos_qcfg_output *resp2; 8248 u8 *pri2cos; 8249 int i, j; 8250 8251 resp2 = bp->hwrm_cmd_resp_addr; 8252 pri2cos = &resp2->pri0_cos_queue_id; 8253 for (i = 0; i < 8; i++) { 8254 u8 queue_id = pri2cos[i]; 8255 u8 queue_idx; 8256 8257 /* Per port queue IDs start from 0, 10, 20, etc */ 8258 queue_idx = queue_id % 10; 8259 if (queue_idx > BNXT_MAX_QUEUE) { 8260 bp->pri2cos_valid = false; 8261 goto qstats_done; 8262 } 8263 for (j = 0; j < bp->max_q; j++) { 8264 if (bp->q_ids[j] == queue_id) 8265 bp->pri2cos_idx[i] = queue_idx; 8266 } 8267 } 8268 bp->pri2cos_valid = 1; 8269 } 8270 qstats_done: 8271 mutex_unlock(&bp->hwrm_cmd_lock); 8272 return rc; 8273 } 8274 8275 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp) 8276 { 8277 if (bp->vxlan_fw_dst_port_id != INVALID_HW_RING_ID) 8278 bnxt_hwrm_tunnel_dst_port_free( 8279 bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN); 8280 if (bp->nge_fw_dst_port_id != INVALID_HW_RING_ID) 8281 bnxt_hwrm_tunnel_dst_port_free( 8282 bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE); 8283 } 8284 8285 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa) 8286 { 8287 int rc, i; 8288 u32 tpa_flags = 0; 8289 8290 if (set_tpa) 8291 tpa_flags = bp->flags & BNXT_FLAG_TPA; 8292 else if (BNXT_NO_FW_ACCESS(bp)) 8293 return 0; 8294 for (i = 0; i < bp->nr_vnics; i++) { 8295 rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags); 8296 if (rc) { 8297 netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n", 8298 i, rc); 8299 return rc; 8300 } 8301 } 8302 return 0; 8303 } 8304 8305 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp) 8306 { 8307 int i; 8308 8309 for (i = 0; i < bp->nr_vnics; i++) 8310 bnxt_hwrm_vnic_set_rss(bp, i, false); 8311 } 8312 8313 static void bnxt_clear_vnic(struct bnxt *bp) 8314 { 8315 if (!bp->vnic_info) 8316 return; 8317 8318 bnxt_hwrm_clear_vnic_filter(bp); 8319 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) { 8320 /* clear all RSS setting before free vnic ctx */ 8321 bnxt_hwrm_clear_vnic_rss(bp); 8322 bnxt_hwrm_vnic_ctx_free(bp); 8323 } 8324 /* before free the vnic, undo the vnic tpa settings */ 8325 if (bp->flags & BNXT_FLAG_TPA) 8326 bnxt_set_tpa(bp, false); 8327 bnxt_hwrm_vnic_free(bp); 8328 if (bp->flags & BNXT_FLAG_CHIP_P5) 8329 bnxt_hwrm_vnic_ctx_free(bp); 8330 } 8331 8332 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path, 8333 bool irq_re_init) 8334 { 8335 bnxt_clear_vnic(bp); 8336 bnxt_hwrm_ring_free(bp, close_path); 8337 bnxt_hwrm_ring_grp_free(bp); 8338 if (irq_re_init) { 8339 bnxt_hwrm_stat_ctx_free(bp); 8340 bnxt_hwrm_free_tunnel_ports(bp); 8341 } 8342 } 8343 8344 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode) 8345 { 8346 struct hwrm_func_cfg_input req = {0}; 8347 8348 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1); 8349 req.fid = cpu_to_le16(0xffff); 8350 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE); 8351 if (br_mode == BRIDGE_MODE_VEB) 8352 req.evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB; 8353 else if (br_mode == BRIDGE_MODE_VEPA) 8354 req.evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA; 8355 else 8356 return -EINVAL; 8357 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 8358 } 8359 8360 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size) 8361 { 8362 struct hwrm_func_cfg_input req = {0}; 8363 8364 if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803) 8365 return 0; 8366 8367 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1); 8368 req.fid = cpu_to_le16(0xffff); 8369 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE); 8370 req.options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64; 8371 if (size == 128) 8372 req.options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128; 8373 8374 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 8375 } 8376 8377 static int __bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id) 8378 { 8379 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 8380 int rc; 8381 8382 if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) 8383 goto skip_rss_ctx; 8384 8385 /* allocate context for vnic */ 8386 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0); 8387 if (rc) { 8388 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n", 8389 vnic_id, rc); 8390 goto vnic_setup_err; 8391 } 8392 bp->rsscos_nr_ctxs++; 8393 8394 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 8395 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1); 8396 if (rc) { 8397 netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n", 8398 vnic_id, rc); 8399 goto vnic_setup_err; 8400 } 8401 bp->rsscos_nr_ctxs++; 8402 } 8403 8404 skip_rss_ctx: 8405 /* configure default vnic, ring grp */ 8406 rc = bnxt_hwrm_vnic_cfg(bp, vnic_id); 8407 if (rc) { 8408 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n", 8409 vnic_id, rc); 8410 goto vnic_setup_err; 8411 } 8412 8413 /* Enable RSS hashing on vnic */ 8414 rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true); 8415 if (rc) { 8416 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n", 8417 vnic_id, rc); 8418 goto vnic_setup_err; 8419 } 8420 8421 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 8422 rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id); 8423 if (rc) { 8424 netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n", 8425 vnic_id, rc); 8426 } 8427 } 8428 8429 vnic_setup_err: 8430 return rc; 8431 } 8432 8433 static int __bnxt_setup_vnic_p5(struct bnxt *bp, u16 vnic_id) 8434 { 8435 int rc, i, nr_ctxs; 8436 8437 nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings); 8438 for (i = 0; i < nr_ctxs; i++) { 8439 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, i); 8440 if (rc) { 8441 netdev_err(bp->dev, "hwrm vnic %d ctx %d alloc failure rc: %x\n", 8442 vnic_id, i, rc); 8443 break; 8444 } 8445 bp->rsscos_nr_ctxs++; 8446 } 8447 if (i < nr_ctxs) 8448 return -ENOMEM; 8449 8450 rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic_id, true); 8451 if (rc) { 8452 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n", 8453 vnic_id, rc); 8454 return rc; 8455 } 8456 rc = bnxt_hwrm_vnic_cfg(bp, vnic_id); 8457 if (rc) { 8458 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n", 8459 vnic_id, rc); 8460 return rc; 8461 } 8462 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 8463 rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id); 8464 if (rc) { 8465 netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n", 8466 vnic_id, rc); 8467 } 8468 } 8469 return rc; 8470 } 8471 8472 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id) 8473 { 8474 if (bp->flags & BNXT_FLAG_CHIP_P5) 8475 return __bnxt_setup_vnic_p5(bp, vnic_id); 8476 else 8477 return __bnxt_setup_vnic(bp, vnic_id); 8478 } 8479 8480 static int bnxt_alloc_rfs_vnics(struct bnxt *bp) 8481 { 8482 #ifdef CONFIG_RFS_ACCEL 8483 int i, rc = 0; 8484 8485 if (bp->flags & BNXT_FLAG_CHIP_P5) 8486 return 0; 8487 8488 for (i = 0; i < bp->rx_nr_rings; i++) { 8489 struct bnxt_vnic_info *vnic; 8490 u16 vnic_id = i + 1; 8491 u16 ring_id = i; 8492 8493 if (vnic_id >= bp->nr_vnics) 8494 break; 8495 8496 vnic = &bp->vnic_info[vnic_id]; 8497 vnic->flags |= BNXT_VNIC_RFS_FLAG; 8498 if (bp->flags & BNXT_FLAG_NEW_RSS_CAP) 8499 vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG; 8500 rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1); 8501 if (rc) { 8502 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n", 8503 vnic_id, rc); 8504 break; 8505 } 8506 rc = bnxt_setup_vnic(bp, vnic_id); 8507 if (rc) 8508 break; 8509 } 8510 return rc; 8511 #else 8512 return 0; 8513 #endif 8514 } 8515 8516 /* Allow PF, trusted VFs and VFs with default VLAN to be in promiscuous mode */ 8517 static bool bnxt_promisc_ok(struct bnxt *bp) 8518 { 8519 #ifdef CONFIG_BNXT_SRIOV 8520 if (BNXT_VF(bp) && !bp->vf.vlan && !bnxt_is_trusted_vf(bp, &bp->vf)) 8521 return false; 8522 #endif 8523 return true; 8524 } 8525 8526 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp) 8527 { 8528 unsigned int rc = 0; 8529 8530 rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1); 8531 if (rc) { 8532 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n", 8533 rc); 8534 return rc; 8535 } 8536 8537 rc = bnxt_hwrm_vnic_cfg(bp, 1); 8538 if (rc) { 8539 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n", 8540 rc); 8541 return rc; 8542 } 8543 return rc; 8544 } 8545 8546 static int bnxt_cfg_rx_mode(struct bnxt *); 8547 static bool bnxt_mc_list_updated(struct bnxt *, u32 *); 8548 8549 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init) 8550 { 8551 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 8552 int rc = 0; 8553 unsigned int rx_nr_rings = bp->rx_nr_rings; 8554 8555 if (irq_re_init) { 8556 rc = bnxt_hwrm_stat_ctx_alloc(bp); 8557 if (rc) { 8558 netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n", 8559 rc); 8560 goto err_out; 8561 } 8562 } 8563 8564 rc = bnxt_hwrm_ring_alloc(bp); 8565 if (rc) { 8566 netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc); 8567 goto err_out; 8568 } 8569 8570 rc = bnxt_hwrm_ring_grp_alloc(bp); 8571 if (rc) { 8572 netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc); 8573 goto err_out; 8574 } 8575 8576 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 8577 rx_nr_rings--; 8578 8579 /* default vnic 0 */ 8580 rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings); 8581 if (rc) { 8582 netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc); 8583 goto err_out; 8584 } 8585 8586 rc = bnxt_setup_vnic(bp, 0); 8587 if (rc) 8588 goto err_out; 8589 8590 if (bp->flags & BNXT_FLAG_RFS) { 8591 rc = bnxt_alloc_rfs_vnics(bp); 8592 if (rc) 8593 goto err_out; 8594 } 8595 8596 if (bp->flags & BNXT_FLAG_TPA) { 8597 rc = bnxt_set_tpa(bp, true); 8598 if (rc) 8599 goto err_out; 8600 } 8601 8602 if (BNXT_VF(bp)) 8603 bnxt_update_vf_mac(bp); 8604 8605 /* Filter for default vnic 0 */ 8606 rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr); 8607 if (rc) { 8608 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc); 8609 goto err_out; 8610 } 8611 vnic->uc_filter_count = 1; 8612 8613 vnic->rx_mask = 0; 8614 if (bp->dev->flags & IFF_BROADCAST) 8615 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST; 8616 8617 if (bp->dev->flags & IFF_PROMISC) 8618 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 8619 8620 if (bp->dev->flags & IFF_ALLMULTI) { 8621 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 8622 vnic->mc_list_count = 0; 8623 } else { 8624 u32 mask = 0; 8625 8626 bnxt_mc_list_updated(bp, &mask); 8627 vnic->rx_mask |= mask; 8628 } 8629 8630 rc = bnxt_cfg_rx_mode(bp); 8631 if (rc) 8632 goto err_out; 8633 8634 rc = bnxt_hwrm_set_coal(bp); 8635 if (rc) 8636 netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n", 8637 rc); 8638 8639 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 8640 rc = bnxt_setup_nitroa0_vnic(bp); 8641 if (rc) 8642 netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n", 8643 rc); 8644 } 8645 8646 if (BNXT_VF(bp)) { 8647 bnxt_hwrm_func_qcfg(bp); 8648 netdev_update_features(bp->dev); 8649 } 8650 8651 return 0; 8652 8653 err_out: 8654 bnxt_hwrm_resource_free(bp, 0, true); 8655 8656 return rc; 8657 } 8658 8659 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init) 8660 { 8661 bnxt_hwrm_resource_free(bp, 1, irq_re_init); 8662 return 0; 8663 } 8664 8665 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init) 8666 { 8667 bnxt_init_cp_rings(bp); 8668 bnxt_init_rx_rings(bp); 8669 bnxt_init_tx_rings(bp); 8670 bnxt_init_ring_grps(bp, irq_re_init); 8671 bnxt_init_vnics(bp); 8672 8673 return bnxt_init_chip(bp, irq_re_init); 8674 } 8675 8676 static int bnxt_set_real_num_queues(struct bnxt *bp) 8677 { 8678 int rc; 8679 struct net_device *dev = bp->dev; 8680 8681 rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings - 8682 bp->tx_nr_rings_xdp); 8683 if (rc) 8684 return rc; 8685 8686 rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings); 8687 if (rc) 8688 return rc; 8689 8690 #ifdef CONFIG_RFS_ACCEL 8691 if (bp->flags & BNXT_FLAG_RFS) 8692 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings); 8693 #endif 8694 8695 return rc; 8696 } 8697 8698 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 8699 bool shared) 8700 { 8701 int _rx = *rx, _tx = *tx; 8702 8703 if (shared) { 8704 *rx = min_t(int, _rx, max); 8705 *tx = min_t(int, _tx, max); 8706 } else { 8707 if (max < 2) 8708 return -ENOMEM; 8709 8710 while (_rx + _tx > max) { 8711 if (_rx > _tx && _rx > 1) 8712 _rx--; 8713 else if (_tx > 1) 8714 _tx--; 8715 } 8716 *rx = _rx; 8717 *tx = _tx; 8718 } 8719 return 0; 8720 } 8721 8722 static void bnxt_setup_msix(struct bnxt *bp) 8723 { 8724 const int len = sizeof(bp->irq_tbl[0].name); 8725 struct net_device *dev = bp->dev; 8726 int tcs, i; 8727 8728 tcs = netdev_get_num_tc(dev); 8729 if (tcs) { 8730 int i, off, count; 8731 8732 for (i = 0; i < tcs; i++) { 8733 count = bp->tx_nr_rings_per_tc; 8734 off = i * count; 8735 netdev_set_tc_queue(dev, i, count, off); 8736 } 8737 } 8738 8739 for (i = 0; i < bp->cp_nr_rings; i++) { 8740 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 8741 char *attr; 8742 8743 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 8744 attr = "TxRx"; 8745 else if (i < bp->rx_nr_rings) 8746 attr = "rx"; 8747 else 8748 attr = "tx"; 8749 8750 snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name, 8751 attr, i); 8752 bp->irq_tbl[map_idx].handler = bnxt_msix; 8753 } 8754 } 8755 8756 static void bnxt_setup_inta(struct bnxt *bp) 8757 { 8758 const int len = sizeof(bp->irq_tbl[0].name); 8759 8760 if (netdev_get_num_tc(bp->dev)) 8761 netdev_reset_tc(bp->dev); 8762 8763 snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx", 8764 0); 8765 bp->irq_tbl[0].handler = bnxt_inta; 8766 } 8767 8768 static int bnxt_init_int_mode(struct bnxt *bp); 8769 8770 static int bnxt_setup_int_mode(struct bnxt *bp) 8771 { 8772 int rc; 8773 8774 if (!bp->irq_tbl) { 8775 rc = bnxt_init_int_mode(bp); 8776 if (rc || !bp->irq_tbl) 8777 return rc ?: -ENODEV; 8778 } 8779 8780 if (bp->flags & BNXT_FLAG_USING_MSIX) 8781 bnxt_setup_msix(bp); 8782 else 8783 bnxt_setup_inta(bp); 8784 8785 rc = bnxt_set_real_num_queues(bp); 8786 return rc; 8787 } 8788 8789 #ifdef CONFIG_RFS_ACCEL 8790 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp) 8791 { 8792 return bp->hw_resc.max_rsscos_ctxs; 8793 } 8794 8795 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp) 8796 { 8797 return bp->hw_resc.max_vnics; 8798 } 8799 #endif 8800 8801 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp) 8802 { 8803 return bp->hw_resc.max_stat_ctxs; 8804 } 8805 8806 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp) 8807 { 8808 return bp->hw_resc.max_cp_rings; 8809 } 8810 8811 static unsigned int bnxt_get_max_func_cp_rings_for_en(struct bnxt *bp) 8812 { 8813 unsigned int cp = bp->hw_resc.max_cp_rings; 8814 8815 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 8816 cp -= bnxt_get_ulp_msix_num(bp); 8817 8818 return cp; 8819 } 8820 8821 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp) 8822 { 8823 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 8824 8825 if (bp->flags & BNXT_FLAG_CHIP_P5) 8826 return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_nqs); 8827 8828 return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings); 8829 } 8830 8831 static void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs) 8832 { 8833 bp->hw_resc.max_irqs = max_irqs; 8834 } 8835 8836 unsigned int bnxt_get_avail_cp_rings_for_en(struct bnxt *bp) 8837 { 8838 unsigned int cp; 8839 8840 cp = bnxt_get_max_func_cp_rings_for_en(bp); 8841 if (bp->flags & BNXT_FLAG_CHIP_P5) 8842 return cp - bp->rx_nr_rings - bp->tx_nr_rings; 8843 else 8844 return cp - bp->cp_nr_rings; 8845 } 8846 8847 unsigned int bnxt_get_avail_stat_ctxs_for_en(struct bnxt *bp) 8848 { 8849 return bnxt_get_max_func_stat_ctxs(bp) - bnxt_get_func_stat_ctxs(bp); 8850 } 8851 8852 int bnxt_get_avail_msix(struct bnxt *bp, int num) 8853 { 8854 int max_cp = bnxt_get_max_func_cp_rings(bp); 8855 int max_irq = bnxt_get_max_func_irqs(bp); 8856 int total_req = bp->cp_nr_rings + num; 8857 int max_idx, avail_msix; 8858 8859 max_idx = bp->total_irqs; 8860 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 8861 max_idx = min_t(int, bp->total_irqs, max_cp); 8862 avail_msix = max_idx - bp->cp_nr_rings; 8863 if (!BNXT_NEW_RM(bp) || avail_msix >= num) 8864 return avail_msix; 8865 8866 if (max_irq < total_req) { 8867 num = max_irq - bp->cp_nr_rings; 8868 if (num <= 0) 8869 return 0; 8870 } 8871 return num; 8872 } 8873 8874 static int bnxt_get_num_msix(struct bnxt *bp) 8875 { 8876 if (!BNXT_NEW_RM(bp)) 8877 return bnxt_get_max_func_irqs(bp); 8878 8879 return bnxt_nq_rings_in_use(bp); 8880 } 8881 8882 static int bnxt_init_msix(struct bnxt *bp) 8883 { 8884 int i, total_vecs, max, rc = 0, min = 1, ulp_msix; 8885 struct msix_entry *msix_ent; 8886 8887 total_vecs = bnxt_get_num_msix(bp); 8888 max = bnxt_get_max_func_irqs(bp); 8889 if (total_vecs > max) 8890 total_vecs = max; 8891 8892 if (!total_vecs) 8893 return 0; 8894 8895 msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL); 8896 if (!msix_ent) 8897 return -ENOMEM; 8898 8899 for (i = 0; i < total_vecs; i++) { 8900 msix_ent[i].entry = i; 8901 msix_ent[i].vector = 0; 8902 } 8903 8904 if (!(bp->flags & BNXT_FLAG_SHARED_RINGS)) 8905 min = 2; 8906 8907 total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs); 8908 ulp_msix = bnxt_get_ulp_msix_num(bp); 8909 if (total_vecs < 0 || total_vecs < ulp_msix) { 8910 rc = -ENODEV; 8911 goto msix_setup_exit; 8912 } 8913 8914 bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL); 8915 if (bp->irq_tbl) { 8916 for (i = 0; i < total_vecs; i++) 8917 bp->irq_tbl[i].vector = msix_ent[i].vector; 8918 8919 bp->total_irqs = total_vecs; 8920 /* Trim rings based upon num of vectors allocated */ 8921 rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings, 8922 total_vecs - ulp_msix, min == 1); 8923 if (rc) 8924 goto msix_setup_exit; 8925 8926 bp->cp_nr_rings = (min == 1) ? 8927 max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) : 8928 bp->tx_nr_rings + bp->rx_nr_rings; 8929 8930 } else { 8931 rc = -ENOMEM; 8932 goto msix_setup_exit; 8933 } 8934 bp->flags |= BNXT_FLAG_USING_MSIX; 8935 kfree(msix_ent); 8936 return 0; 8937 8938 msix_setup_exit: 8939 netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc); 8940 kfree(bp->irq_tbl); 8941 bp->irq_tbl = NULL; 8942 pci_disable_msix(bp->pdev); 8943 kfree(msix_ent); 8944 return rc; 8945 } 8946 8947 static int bnxt_init_inta(struct bnxt *bp) 8948 { 8949 bp->irq_tbl = kzalloc(sizeof(struct bnxt_irq), GFP_KERNEL); 8950 if (!bp->irq_tbl) 8951 return -ENOMEM; 8952 8953 bp->total_irqs = 1; 8954 bp->rx_nr_rings = 1; 8955 bp->tx_nr_rings = 1; 8956 bp->cp_nr_rings = 1; 8957 bp->flags |= BNXT_FLAG_SHARED_RINGS; 8958 bp->irq_tbl[0].vector = bp->pdev->irq; 8959 return 0; 8960 } 8961 8962 static int bnxt_init_int_mode(struct bnxt *bp) 8963 { 8964 int rc = -ENODEV; 8965 8966 if (bp->flags & BNXT_FLAG_MSIX_CAP) 8967 rc = bnxt_init_msix(bp); 8968 8969 if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) { 8970 /* fallback to INTA */ 8971 rc = bnxt_init_inta(bp); 8972 } 8973 return rc; 8974 } 8975 8976 static void bnxt_clear_int_mode(struct bnxt *bp) 8977 { 8978 if (bp->flags & BNXT_FLAG_USING_MSIX) 8979 pci_disable_msix(bp->pdev); 8980 8981 kfree(bp->irq_tbl); 8982 bp->irq_tbl = NULL; 8983 bp->flags &= ~BNXT_FLAG_USING_MSIX; 8984 } 8985 8986 int bnxt_reserve_rings(struct bnxt *bp, bool irq_re_init) 8987 { 8988 int tcs = netdev_get_num_tc(bp->dev); 8989 bool irq_cleared = false; 8990 int rc; 8991 8992 if (!bnxt_need_reserve_rings(bp)) 8993 return 0; 8994 8995 if (irq_re_init && BNXT_NEW_RM(bp) && 8996 bnxt_get_num_msix(bp) != bp->total_irqs) { 8997 bnxt_ulp_irq_stop(bp); 8998 bnxt_clear_int_mode(bp); 8999 irq_cleared = true; 9000 } 9001 rc = __bnxt_reserve_rings(bp); 9002 if (irq_cleared) { 9003 if (!rc) 9004 rc = bnxt_init_int_mode(bp); 9005 bnxt_ulp_irq_restart(bp, rc); 9006 } 9007 if (rc) { 9008 netdev_err(bp->dev, "ring reservation/IRQ init failure rc: %d\n", rc); 9009 return rc; 9010 } 9011 if (tcs && (bp->tx_nr_rings_per_tc * tcs != bp->tx_nr_rings)) { 9012 netdev_err(bp->dev, "tx ring reservation failure\n"); 9013 netdev_reset_tc(bp->dev); 9014 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 9015 return -ENOMEM; 9016 } 9017 return 0; 9018 } 9019 9020 static void bnxt_free_irq(struct bnxt *bp) 9021 { 9022 struct bnxt_irq *irq; 9023 int i; 9024 9025 #ifdef CONFIG_RFS_ACCEL 9026 free_irq_cpu_rmap(bp->dev->rx_cpu_rmap); 9027 bp->dev->rx_cpu_rmap = NULL; 9028 #endif 9029 if (!bp->irq_tbl || !bp->bnapi) 9030 return; 9031 9032 for (i = 0; i < bp->cp_nr_rings; i++) { 9033 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 9034 9035 irq = &bp->irq_tbl[map_idx]; 9036 if (irq->requested) { 9037 if (irq->have_cpumask) { 9038 irq_set_affinity_hint(irq->vector, NULL); 9039 free_cpumask_var(irq->cpu_mask); 9040 irq->have_cpumask = 0; 9041 } 9042 free_irq(irq->vector, bp->bnapi[i]); 9043 } 9044 9045 irq->requested = 0; 9046 } 9047 } 9048 9049 static int bnxt_request_irq(struct bnxt *bp) 9050 { 9051 int i, j, rc = 0; 9052 unsigned long flags = 0; 9053 #ifdef CONFIG_RFS_ACCEL 9054 struct cpu_rmap *rmap; 9055 #endif 9056 9057 rc = bnxt_setup_int_mode(bp); 9058 if (rc) { 9059 netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n", 9060 rc); 9061 return rc; 9062 } 9063 #ifdef CONFIG_RFS_ACCEL 9064 rmap = bp->dev->rx_cpu_rmap; 9065 #endif 9066 if (!(bp->flags & BNXT_FLAG_USING_MSIX)) 9067 flags = IRQF_SHARED; 9068 9069 for (i = 0, j = 0; i < bp->cp_nr_rings; i++) { 9070 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 9071 struct bnxt_irq *irq = &bp->irq_tbl[map_idx]; 9072 9073 #ifdef CONFIG_RFS_ACCEL 9074 if (rmap && bp->bnapi[i]->rx_ring) { 9075 rc = irq_cpu_rmap_add(rmap, irq->vector); 9076 if (rc) 9077 netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n", 9078 j); 9079 j++; 9080 } 9081 #endif 9082 rc = request_irq(irq->vector, irq->handler, flags, irq->name, 9083 bp->bnapi[i]); 9084 if (rc) 9085 break; 9086 9087 irq->requested = 1; 9088 9089 if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) { 9090 int numa_node = dev_to_node(&bp->pdev->dev); 9091 9092 irq->have_cpumask = 1; 9093 cpumask_set_cpu(cpumask_local_spread(i, numa_node), 9094 irq->cpu_mask); 9095 rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask); 9096 if (rc) { 9097 netdev_warn(bp->dev, 9098 "Set affinity failed, IRQ = %d\n", 9099 irq->vector); 9100 break; 9101 } 9102 } 9103 } 9104 return rc; 9105 } 9106 9107 static void bnxt_del_napi(struct bnxt *bp) 9108 { 9109 int i; 9110 9111 if (!bp->bnapi) 9112 return; 9113 9114 for (i = 0; i < bp->cp_nr_rings; i++) { 9115 struct bnxt_napi *bnapi = bp->bnapi[i]; 9116 9117 __netif_napi_del(&bnapi->napi); 9118 } 9119 /* We called __netif_napi_del(), we need 9120 * to respect an RCU grace period before freeing napi structures. 9121 */ 9122 synchronize_net(); 9123 } 9124 9125 static void bnxt_init_napi(struct bnxt *bp) 9126 { 9127 int i; 9128 unsigned int cp_nr_rings = bp->cp_nr_rings; 9129 struct bnxt_napi *bnapi; 9130 9131 if (bp->flags & BNXT_FLAG_USING_MSIX) { 9132 int (*poll_fn)(struct napi_struct *, int) = bnxt_poll; 9133 9134 if (bp->flags & BNXT_FLAG_CHIP_P5) 9135 poll_fn = bnxt_poll_p5; 9136 else if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 9137 cp_nr_rings--; 9138 for (i = 0; i < cp_nr_rings; i++) { 9139 bnapi = bp->bnapi[i]; 9140 netif_napi_add(bp->dev, &bnapi->napi, poll_fn, 64); 9141 } 9142 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 9143 bnapi = bp->bnapi[cp_nr_rings]; 9144 netif_napi_add(bp->dev, &bnapi->napi, 9145 bnxt_poll_nitroa0, 64); 9146 } 9147 } else { 9148 bnapi = bp->bnapi[0]; 9149 netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64); 9150 } 9151 } 9152 9153 static void bnxt_disable_napi(struct bnxt *bp) 9154 { 9155 int i; 9156 9157 if (!bp->bnapi || 9158 test_and_set_bit(BNXT_STATE_NAPI_DISABLED, &bp->state)) 9159 return; 9160 9161 for (i = 0; i < bp->cp_nr_rings; i++) { 9162 struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring; 9163 9164 napi_disable(&bp->bnapi[i]->napi); 9165 if (bp->bnapi[i]->rx_ring) 9166 cancel_work_sync(&cpr->dim.work); 9167 } 9168 } 9169 9170 static void bnxt_enable_napi(struct bnxt *bp) 9171 { 9172 int i; 9173 9174 clear_bit(BNXT_STATE_NAPI_DISABLED, &bp->state); 9175 for (i = 0; i < bp->cp_nr_rings; i++) { 9176 struct bnxt_napi *bnapi = bp->bnapi[i]; 9177 struct bnxt_cp_ring_info *cpr; 9178 9179 cpr = &bnapi->cp_ring; 9180 if (bnapi->in_reset) 9181 cpr->sw_stats.rx.rx_resets++; 9182 bnapi->in_reset = false; 9183 9184 if (bnapi->rx_ring) { 9185 INIT_WORK(&cpr->dim.work, bnxt_dim_work); 9186 cpr->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 9187 } 9188 napi_enable(&bnapi->napi); 9189 } 9190 } 9191 9192 void bnxt_tx_disable(struct bnxt *bp) 9193 { 9194 int i; 9195 struct bnxt_tx_ring_info *txr; 9196 9197 if (bp->tx_ring) { 9198 for (i = 0; i < bp->tx_nr_rings; i++) { 9199 txr = &bp->tx_ring[i]; 9200 WRITE_ONCE(txr->dev_state, BNXT_DEV_STATE_CLOSING); 9201 } 9202 } 9203 /* Make sure napi polls see @dev_state change */ 9204 synchronize_net(); 9205 /* Drop carrier first to prevent TX timeout */ 9206 netif_carrier_off(bp->dev); 9207 /* Stop all TX queues */ 9208 netif_tx_disable(bp->dev); 9209 } 9210 9211 void bnxt_tx_enable(struct bnxt *bp) 9212 { 9213 int i; 9214 struct bnxt_tx_ring_info *txr; 9215 9216 for (i = 0; i < bp->tx_nr_rings; i++) { 9217 txr = &bp->tx_ring[i]; 9218 WRITE_ONCE(txr->dev_state, 0); 9219 } 9220 /* Make sure napi polls see @dev_state change */ 9221 synchronize_net(); 9222 netif_tx_wake_all_queues(bp->dev); 9223 if (bp->link_info.link_up) 9224 netif_carrier_on(bp->dev); 9225 } 9226 9227 static char *bnxt_report_fec(struct bnxt_link_info *link_info) 9228 { 9229 u8 active_fec = link_info->active_fec_sig_mode & 9230 PORT_PHY_QCFG_RESP_ACTIVE_FEC_MASK; 9231 9232 switch (active_fec) { 9233 default: 9234 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_NONE_ACTIVE: 9235 return "None"; 9236 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE74_ACTIVE: 9237 return "Clause 74 BaseR"; 9238 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE91_ACTIVE: 9239 return "Clause 91 RS(528,514)"; 9240 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_1XN_ACTIVE: 9241 return "Clause 91 RS544_1XN"; 9242 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_IEEE_ACTIVE: 9243 return "Clause 91 RS(544,514)"; 9244 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_1XN_ACTIVE: 9245 return "Clause 91 RS272_1XN"; 9246 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_IEEE_ACTIVE: 9247 return "Clause 91 RS(272,257)"; 9248 } 9249 } 9250 9251 static void bnxt_report_link(struct bnxt *bp) 9252 { 9253 if (bp->link_info.link_up) { 9254 const char *signal = ""; 9255 const char *flow_ctrl; 9256 const char *duplex; 9257 u32 speed; 9258 u16 fec; 9259 9260 netif_carrier_on(bp->dev); 9261 speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed); 9262 if (speed == SPEED_UNKNOWN) { 9263 netdev_info(bp->dev, "NIC Link is Up, speed unknown\n"); 9264 return; 9265 } 9266 if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL) 9267 duplex = "full"; 9268 else 9269 duplex = "half"; 9270 if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH) 9271 flow_ctrl = "ON - receive & transmit"; 9272 else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX) 9273 flow_ctrl = "ON - transmit"; 9274 else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX) 9275 flow_ctrl = "ON - receive"; 9276 else 9277 flow_ctrl = "none"; 9278 if (bp->link_info.phy_qcfg_resp.option_flags & 9279 PORT_PHY_QCFG_RESP_OPTION_FLAGS_SIGNAL_MODE_KNOWN) { 9280 u8 sig_mode = bp->link_info.active_fec_sig_mode & 9281 PORT_PHY_QCFG_RESP_SIGNAL_MODE_MASK; 9282 switch (sig_mode) { 9283 case PORT_PHY_QCFG_RESP_SIGNAL_MODE_NRZ: 9284 signal = "(NRZ) "; 9285 break; 9286 case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4: 9287 signal = "(PAM4) "; 9288 break; 9289 default: 9290 break; 9291 } 9292 } 9293 netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s%s duplex, Flow control: %s\n", 9294 speed, signal, duplex, flow_ctrl); 9295 if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) 9296 netdev_info(bp->dev, "EEE is %s\n", 9297 bp->eee.eee_active ? "active" : 9298 "not active"); 9299 fec = bp->link_info.fec_cfg; 9300 if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED)) 9301 netdev_info(bp->dev, "FEC autoneg %s encoding: %s\n", 9302 (fec & BNXT_FEC_AUTONEG) ? "on" : "off", 9303 bnxt_report_fec(&bp->link_info)); 9304 } else { 9305 netif_carrier_off(bp->dev); 9306 netdev_err(bp->dev, "NIC Link is Down\n"); 9307 } 9308 } 9309 9310 static bool bnxt_phy_qcaps_no_speed(struct hwrm_port_phy_qcaps_output *resp) 9311 { 9312 if (!resp->supported_speeds_auto_mode && 9313 !resp->supported_speeds_force_mode && 9314 !resp->supported_pam4_speeds_auto_mode && 9315 !resp->supported_pam4_speeds_force_mode) 9316 return true; 9317 return false; 9318 } 9319 9320 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp) 9321 { 9322 int rc = 0; 9323 struct hwrm_port_phy_qcaps_input req = {0}; 9324 struct hwrm_port_phy_qcaps_output *resp = bp->hwrm_cmd_resp_addr; 9325 struct bnxt_link_info *link_info = &bp->link_info; 9326 9327 if (bp->hwrm_spec_code < 0x10201) 9328 return 0; 9329 9330 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCAPS, -1, -1); 9331 9332 mutex_lock(&bp->hwrm_cmd_lock); 9333 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 9334 if (rc) 9335 goto hwrm_phy_qcaps_exit; 9336 9337 bp->phy_flags = resp->flags; 9338 if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) { 9339 struct ethtool_eee *eee = &bp->eee; 9340 u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode); 9341 9342 eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0); 9343 bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) & 9344 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK; 9345 bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) & 9346 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK; 9347 } 9348 9349 if (bp->hwrm_spec_code >= 0x10a01) { 9350 if (bnxt_phy_qcaps_no_speed(resp)) { 9351 link_info->phy_state = BNXT_PHY_STATE_DISABLED; 9352 netdev_warn(bp->dev, "Ethernet link disabled\n"); 9353 } else if (link_info->phy_state == BNXT_PHY_STATE_DISABLED) { 9354 link_info->phy_state = BNXT_PHY_STATE_ENABLED; 9355 netdev_info(bp->dev, "Ethernet link enabled\n"); 9356 /* Phy re-enabled, reprobe the speeds */ 9357 link_info->support_auto_speeds = 0; 9358 link_info->support_pam4_auto_speeds = 0; 9359 } 9360 } 9361 if (resp->supported_speeds_auto_mode) 9362 link_info->support_auto_speeds = 9363 le16_to_cpu(resp->supported_speeds_auto_mode); 9364 if (resp->supported_pam4_speeds_auto_mode) 9365 link_info->support_pam4_auto_speeds = 9366 le16_to_cpu(resp->supported_pam4_speeds_auto_mode); 9367 9368 bp->port_count = resp->port_cnt; 9369 9370 hwrm_phy_qcaps_exit: 9371 mutex_unlock(&bp->hwrm_cmd_lock); 9372 return rc; 9373 } 9374 9375 static bool bnxt_support_dropped(u16 advertising, u16 supported) 9376 { 9377 u16 diff = advertising ^ supported; 9378 9379 return ((supported | diff) != supported); 9380 } 9381 9382 int bnxt_update_link(struct bnxt *bp, bool chng_link_state) 9383 { 9384 int rc = 0; 9385 struct bnxt_link_info *link_info = &bp->link_info; 9386 struct hwrm_port_phy_qcfg_input req = {0}; 9387 struct hwrm_port_phy_qcfg_output *resp = bp->hwrm_cmd_resp_addr; 9388 u8 link_up = link_info->link_up; 9389 bool support_changed = false; 9390 9391 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCFG, -1, -1); 9392 9393 mutex_lock(&bp->hwrm_cmd_lock); 9394 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 9395 if (rc) { 9396 mutex_unlock(&bp->hwrm_cmd_lock); 9397 return rc; 9398 } 9399 9400 memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp)); 9401 link_info->phy_link_status = resp->link; 9402 link_info->duplex = resp->duplex_cfg; 9403 if (bp->hwrm_spec_code >= 0x10800) 9404 link_info->duplex = resp->duplex_state; 9405 link_info->pause = resp->pause; 9406 link_info->auto_mode = resp->auto_mode; 9407 link_info->auto_pause_setting = resp->auto_pause; 9408 link_info->lp_pause = resp->link_partner_adv_pause; 9409 link_info->force_pause_setting = resp->force_pause; 9410 link_info->duplex_setting = resp->duplex_cfg; 9411 if (link_info->phy_link_status == BNXT_LINK_LINK) 9412 link_info->link_speed = le16_to_cpu(resp->link_speed); 9413 else 9414 link_info->link_speed = 0; 9415 link_info->force_link_speed = le16_to_cpu(resp->force_link_speed); 9416 link_info->force_pam4_link_speed = 9417 le16_to_cpu(resp->force_pam4_link_speed); 9418 link_info->support_speeds = le16_to_cpu(resp->support_speeds); 9419 link_info->support_pam4_speeds = le16_to_cpu(resp->support_pam4_speeds); 9420 link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask); 9421 link_info->auto_pam4_link_speeds = 9422 le16_to_cpu(resp->auto_pam4_link_speed_mask); 9423 link_info->lp_auto_link_speeds = 9424 le16_to_cpu(resp->link_partner_adv_speeds); 9425 link_info->lp_auto_pam4_link_speeds = 9426 resp->link_partner_pam4_adv_speeds; 9427 link_info->preemphasis = le32_to_cpu(resp->preemphasis); 9428 link_info->phy_ver[0] = resp->phy_maj; 9429 link_info->phy_ver[1] = resp->phy_min; 9430 link_info->phy_ver[2] = resp->phy_bld; 9431 link_info->media_type = resp->media_type; 9432 link_info->phy_type = resp->phy_type; 9433 link_info->transceiver = resp->xcvr_pkg_type; 9434 link_info->phy_addr = resp->eee_config_phy_addr & 9435 PORT_PHY_QCFG_RESP_PHY_ADDR_MASK; 9436 link_info->module_status = resp->module_status; 9437 9438 if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) { 9439 struct ethtool_eee *eee = &bp->eee; 9440 u16 fw_speeds; 9441 9442 eee->eee_active = 0; 9443 if (resp->eee_config_phy_addr & 9444 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) { 9445 eee->eee_active = 1; 9446 fw_speeds = le16_to_cpu( 9447 resp->link_partner_adv_eee_link_speed_mask); 9448 eee->lp_advertised = 9449 _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0); 9450 } 9451 9452 /* Pull initial EEE config */ 9453 if (!chng_link_state) { 9454 if (resp->eee_config_phy_addr & 9455 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED) 9456 eee->eee_enabled = 1; 9457 9458 fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask); 9459 eee->advertised = 9460 _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0); 9461 9462 if (resp->eee_config_phy_addr & 9463 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) { 9464 __le32 tmr; 9465 9466 eee->tx_lpi_enabled = 1; 9467 tmr = resp->xcvr_identifier_type_tx_lpi_timer; 9468 eee->tx_lpi_timer = le32_to_cpu(tmr) & 9469 PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK; 9470 } 9471 } 9472 } 9473 9474 link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED; 9475 if (bp->hwrm_spec_code >= 0x10504) { 9476 link_info->fec_cfg = le16_to_cpu(resp->fec_cfg); 9477 link_info->active_fec_sig_mode = resp->active_fec_signal_mode; 9478 } 9479 /* TODO: need to add more logic to report VF link */ 9480 if (chng_link_state) { 9481 if (link_info->phy_link_status == BNXT_LINK_LINK) 9482 link_info->link_up = 1; 9483 else 9484 link_info->link_up = 0; 9485 if (link_up != link_info->link_up) 9486 bnxt_report_link(bp); 9487 } else { 9488 /* alwasy link down if not require to update link state */ 9489 link_info->link_up = 0; 9490 } 9491 mutex_unlock(&bp->hwrm_cmd_lock); 9492 9493 if (!BNXT_PHY_CFG_ABLE(bp)) 9494 return 0; 9495 9496 /* Check if any advertised speeds are no longer supported. The caller 9497 * holds the link_lock mutex, so we can modify link_info settings. 9498 */ 9499 if (bnxt_support_dropped(link_info->advertising, 9500 link_info->support_auto_speeds)) { 9501 link_info->advertising = link_info->support_auto_speeds; 9502 support_changed = true; 9503 } 9504 if (bnxt_support_dropped(link_info->advertising_pam4, 9505 link_info->support_pam4_auto_speeds)) { 9506 link_info->advertising_pam4 = link_info->support_pam4_auto_speeds; 9507 support_changed = true; 9508 } 9509 if (support_changed && (link_info->autoneg & BNXT_AUTONEG_SPEED)) 9510 bnxt_hwrm_set_link_setting(bp, true, false); 9511 return 0; 9512 } 9513 9514 static void bnxt_get_port_module_status(struct bnxt *bp) 9515 { 9516 struct bnxt_link_info *link_info = &bp->link_info; 9517 struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp; 9518 u8 module_status; 9519 9520 if (bnxt_update_link(bp, true)) 9521 return; 9522 9523 module_status = link_info->module_status; 9524 switch (module_status) { 9525 case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX: 9526 case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN: 9527 case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG: 9528 netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n", 9529 bp->pf.port_id); 9530 if (bp->hwrm_spec_code >= 0x10201) { 9531 netdev_warn(bp->dev, "Module part number %s\n", 9532 resp->phy_vendor_partnumber); 9533 } 9534 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX) 9535 netdev_warn(bp->dev, "TX is disabled\n"); 9536 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN) 9537 netdev_warn(bp->dev, "SFP+ module is shutdown\n"); 9538 } 9539 } 9540 9541 static void 9542 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req) 9543 { 9544 if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) { 9545 if (bp->hwrm_spec_code >= 0x10201) 9546 req->auto_pause = 9547 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE; 9548 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX) 9549 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX; 9550 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX) 9551 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX; 9552 req->enables |= 9553 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE); 9554 } else { 9555 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX) 9556 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX; 9557 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX) 9558 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX; 9559 req->enables |= 9560 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE); 9561 if (bp->hwrm_spec_code >= 0x10201) { 9562 req->auto_pause = req->force_pause; 9563 req->enables |= cpu_to_le32( 9564 PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE); 9565 } 9566 } 9567 } 9568 9569 static void bnxt_hwrm_set_link_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req) 9570 { 9571 if (bp->link_info.autoneg & BNXT_AUTONEG_SPEED) { 9572 req->auto_mode |= PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK; 9573 if (bp->link_info.advertising) { 9574 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK); 9575 req->auto_link_speed_mask = cpu_to_le16(bp->link_info.advertising); 9576 } 9577 if (bp->link_info.advertising_pam4) { 9578 req->enables |= 9579 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAM4_LINK_SPEED_MASK); 9580 req->auto_link_pam4_speed_mask = 9581 cpu_to_le16(bp->link_info.advertising_pam4); 9582 } 9583 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE); 9584 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG); 9585 } else { 9586 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE); 9587 if (bp->link_info.req_signal_mode == BNXT_SIG_MODE_PAM4) { 9588 req->force_pam4_link_speed = cpu_to_le16(bp->link_info.req_link_speed); 9589 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAM4_LINK_SPEED); 9590 } else { 9591 req->force_link_speed = cpu_to_le16(bp->link_info.req_link_speed); 9592 } 9593 } 9594 9595 /* tell chimp that the setting takes effect immediately */ 9596 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY); 9597 } 9598 9599 int bnxt_hwrm_set_pause(struct bnxt *bp) 9600 { 9601 struct hwrm_port_phy_cfg_input req = {0}; 9602 int rc; 9603 9604 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1); 9605 bnxt_hwrm_set_pause_common(bp, &req); 9606 9607 if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) || 9608 bp->link_info.force_link_chng) 9609 bnxt_hwrm_set_link_common(bp, &req); 9610 9611 mutex_lock(&bp->hwrm_cmd_lock); 9612 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 9613 if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) { 9614 /* since changing of pause setting doesn't trigger any link 9615 * change event, the driver needs to update the current pause 9616 * result upon successfully return of the phy_cfg command 9617 */ 9618 bp->link_info.pause = 9619 bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl; 9620 bp->link_info.auto_pause_setting = 0; 9621 if (!bp->link_info.force_link_chng) 9622 bnxt_report_link(bp); 9623 } 9624 bp->link_info.force_link_chng = false; 9625 mutex_unlock(&bp->hwrm_cmd_lock); 9626 return rc; 9627 } 9628 9629 static void bnxt_hwrm_set_eee(struct bnxt *bp, 9630 struct hwrm_port_phy_cfg_input *req) 9631 { 9632 struct ethtool_eee *eee = &bp->eee; 9633 9634 if (eee->eee_enabled) { 9635 u16 eee_speeds; 9636 u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE; 9637 9638 if (eee->tx_lpi_enabled) 9639 flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE; 9640 else 9641 flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE; 9642 9643 req->flags |= cpu_to_le32(flags); 9644 eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised); 9645 req->eee_link_speed_mask = cpu_to_le16(eee_speeds); 9646 req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer); 9647 } else { 9648 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE); 9649 } 9650 } 9651 9652 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee) 9653 { 9654 struct hwrm_port_phy_cfg_input req = {0}; 9655 9656 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1); 9657 if (set_pause) 9658 bnxt_hwrm_set_pause_common(bp, &req); 9659 9660 bnxt_hwrm_set_link_common(bp, &req); 9661 9662 if (set_eee) 9663 bnxt_hwrm_set_eee(bp, &req); 9664 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 9665 } 9666 9667 static int bnxt_hwrm_shutdown_link(struct bnxt *bp) 9668 { 9669 struct hwrm_port_phy_cfg_input req = {0}; 9670 9671 if (!BNXT_SINGLE_PF(bp)) 9672 return 0; 9673 9674 if (pci_num_vf(bp->pdev) && 9675 !(bp->phy_flags & BNXT_PHY_FL_FW_MANAGED_LKDN)) 9676 return 0; 9677 9678 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1); 9679 req.flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN); 9680 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 9681 } 9682 9683 static int bnxt_fw_init_one(struct bnxt *bp); 9684 9685 static int bnxt_fw_reset_via_optee(struct bnxt *bp) 9686 { 9687 #ifdef CONFIG_TEE_BNXT_FW 9688 int rc = tee_bnxt_fw_load(); 9689 9690 if (rc) 9691 netdev_err(bp->dev, "Failed FW reset via OP-TEE, rc=%d\n", rc); 9692 9693 return rc; 9694 #else 9695 netdev_err(bp->dev, "OP-TEE not supported\n"); 9696 return -ENODEV; 9697 #endif 9698 } 9699 9700 static int bnxt_try_recover_fw(struct bnxt *bp) 9701 { 9702 if (bp->fw_health && bp->fw_health->status_reliable) { 9703 int retry = 0, rc; 9704 u32 sts; 9705 9706 mutex_lock(&bp->hwrm_cmd_lock); 9707 do { 9708 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 9709 rc = __bnxt_hwrm_ver_get(bp, true); 9710 if (!BNXT_FW_IS_BOOTING(sts) && 9711 !BNXT_FW_IS_RECOVERING(sts)) 9712 break; 9713 retry++; 9714 } while (rc == -EBUSY && retry < BNXT_FW_RETRY); 9715 mutex_unlock(&bp->hwrm_cmd_lock); 9716 9717 if (!BNXT_FW_IS_HEALTHY(sts)) { 9718 netdev_err(bp->dev, 9719 "Firmware not responding, status: 0x%x\n", 9720 sts); 9721 rc = -ENODEV; 9722 } 9723 if (sts & FW_STATUS_REG_CRASHED_NO_MASTER) { 9724 netdev_warn(bp->dev, "Firmware recover via OP-TEE requested\n"); 9725 return bnxt_fw_reset_via_optee(bp); 9726 } 9727 return rc; 9728 } 9729 9730 return -ENODEV; 9731 } 9732 9733 static int bnxt_hwrm_if_change(struct bnxt *bp, bool up) 9734 { 9735 struct hwrm_func_drv_if_change_output *resp = bp->hwrm_cmd_resp_addr; 9736 struct hwrm_func_drv_if_change_input req = {0}; 9737 bool fw_reset = !bp->irq_tbl; 9738 bool resc_reinit = false; 9739 int rc, retry = 0; 9740 u32 flags = 0; 9741 9742 if (!(bp->fw_cap & BNXT_FW_CAP_IF_CHANGE)) 9743 return 0; 9744 9745 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_IF_CHANGE, -1, -1); 9746 if (up) 9747 req.flags = cpu_to_le32(FUNC_DRV_IF_CHANGE_REQ_FLAGS_UP); 9748 mutex_lock(&bp->hwrm_cmd_lock); 9749 while (retry < BNXT_FW_IF_RETRY) { 9750 rc = _hwrm_send_message(bp, &req, sizeof(req), 9751 HWRM_CMD_TIMEOUT); 9752 if (rc != -EAGAIN) 9753 break; 9754 9755 msleep(50); 9756 retry++; 9757 } 9758 if (!rc) 9759 flags = le32_to_cpu(resp->flags); 9760 mutex_unlock(&bp->hwrm_cmd_lock); 9761 9762 if (rc == -EAGAIN) 9763 return rc; 9764 if (rc && up) { 9765 rc = bnxt_try_recover_fw(bp); 9766 fw_reset = true; 9767 } 9768 if (rc) 9769 return rc; 9770 9771 if (!up) { 9772 bnxt_inv_fw_health_reg(bp); 9773 return 0; 9774 } 9775 9776 if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_RESC_CHANGE) 9777 resc_reinit = true; 9778 if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_HOT_FW_RESET_DONE) 9779 fw_reset = true; 9780 else if (bp->fw_health && !bp->fw_health->status_reliable) 9781 bnxt_try_map_fw_health_reg(bp); 9782 9783 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state) && !fw_reset) { 9784 netdev_err(bp->dev, "RESET_DONE not set during FW reset.\n"); 9785 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 9786 return -ENODEV; 9787 } 9788 if (resc_reinit || fw_reset) { 9789 if (fw_reset) { 9790 set_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 9791 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 9792 bnxt_ulp_stop(bp); 9793 bnxt_free_ctx_mem(bp); 9794 kfree(bp->ctx); 9795 bp->ctx = NULL; 9796 bnxt_dcb_free(bp); 9797 rc = bnxt_fw_init_one(bp); 9798 if (rc) { 9799 clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 9800 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 9801 return rc; 9802 } 9803 bnxt_clear_int_mode(bp); 9804 rc = bnxt_init_int_mode(bp); 9805 if (rc) { 9806 clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 9807 netdev_err(bp->dev, "init int mode failed\n"); 9808 return rc; 9809 } 9810 } 9811 if (BNXT_NEW_RM(bp)) { 9812 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 9813 9814 rc = bnxt_hwrm_func_resc_qcaps(bp, true); 9815 if (rc) 9816 netdev_err(bp->dev, "resc_qcaps failed\n"); 9817 9818 hw_resc->resv_cp_rings = 0; 9819 hw_resc->resv_stat_ctxs = 0; 9820 hw_resc->resv_irqs = 0; 9821 hw_resc->resv_tx_rings = 0; 9822 hw_resc->resv_rx_rings = 0; 9823 hw_resc->resv_hw_ring_grps = 0; 9824 hw_resc->resv_vnics = 0; 9825 if (!fw_reset) { 9826 bp->tx_nr_rings = 0; 9827 bp->rx_nr_rings = 0; 9828 } 9829 } 9830 } 9831 return rc; 9832 } 9833 9834 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp) 9835 { 9836 struct hwrm_port_led_qcaps_output *resp = bp->hwrm_cmd_resp_addr; 9837 struct hwrm_port_led_qcaps_input req = {0}; 9838 struct bnxt_pf_info *pf = &bp->pf; 9839 int rc; 9840 9841 bp->num_leds = 0; 9842 if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601) 9843 return 0; 9844 9845 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_LED_QCAPS, -1, -1); 9846 req.port_id = cpu_to_le16(pf->port_id); 9847 mutex_lock(&bp->hwrm_cmd_lock); 9848 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 9849 if (rc) { 9850 mutex_unlock(&bp->hwrm_cmd_lock); 9851 return rc; 9852 } 9853 if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) { 9854 int i; 9855 9856 bp->num_leds = resp->num_leds; 9857 memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) * 9858 bp->num_leds); 9859 for (i = 0; i < bp->num_leds; i++) { 9860 struct bnxt_led_info *led = &bp->leds[i]; 9861 __le16 caps = led->led_state_caps; 9862 9863 if (!led->led_group_id || 9864 !BNXT_LED_ALT_BLINK_CAP(caps)) { 9865 bp->num_leds = 0; 9866 break; 9867 } 9868 } 9869 } 9870 mutex_unlock(&bp->hwrm_cmd_lock); 9871 return 0; 9872 } 9873 9874 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp) 9875 { 9876 struct hwrm_wol_filter_alloc_input req = {0}; 9877 struct hwrm_wol_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr; 9878 int rc; 9879 9880 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_ALLOC, -1, -1); 9881 req.port_id = cpu_to_le16(bp->pf.port_id); 9882 req.wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT; 9883 req.enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS); 9884 memcpy(req.mac_address, bp->dev->dev_addr, ETH_ALEN); 9885 mutex_lock(&bp->hwrm_cmd_lock); 9886 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 9887 if (!rc) 9888 bp->wol_filter_id = resp->wol_filter_id; 9889 mutex_unlock(&bp->hwrm_cmd_lock); 9890 return rc; 9891 } 9892 9893 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp) 9894 { 9895 struct hwrm_wol_filter_free_input req = {0}; 9896 9897 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_FREE, -1, -1); 9898 req.port_id = cpu_to_le16(bp->pf.port_id); 9899 req.enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID); 9900 req.wol_filter_id = bp->wol_filter_id; 9901 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 9902 } 9903 9904 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle) 9905 { 9906 struct hwrm_wol_filter_qcfg_input req = {0}; 9907 struct hwrm_wol_filter_qcfg_output *resp = bp->hwrm_cmd_resp_addr; 9908 u16 next_handle = 0; 9909 int rc; 9910 9911 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_QCFG, -1, -1); 9912 req.port_id = cpu_to_le16(bp->pf.port_id); 9913 req.handle = cpu_to_le16(handle); 9914 mutex_lock(&bp->hwrm_cmd_lock); 9915 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 9916 if (!rc) { 9917 next_handle = le16_to_cpu(resp->next_handle); 9918 if (next_handle != 0) { 9919 if (resp->wol_type == 9920 WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) { 9921 bp->wol = 1; 9922 bp->wol_filter_id = resp->wol_filter_id; 9923 } 9924 } 9925 } 9926 mutex_unlock(&bp->hwrm_cmd_lock); 9927 return next_handle; 9928 } 9929 9930 static void bnxt_get_wol_settings(struct bnxt *bp) 9931 { 9932 u16 handle = 0; 9933 9934 bp->wol = 0; 9935 if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP)) 9936 return; 9937 9938 do { 9939 handle = bnxt_hwrm_get_wol_fltrs(bp, handle); 9940 } while (handle && handle != 0xffff); 9941 } 9942 9943 #ifdef CONFIG_BNXT_HWMON 9944 static ssize_t bnxt_show_temp(struct device *dev, 9945 struct device_attribute *devattr, char *buf) 9946 { 9947 struct hwrm_temp_monitor_query_input req = {0}; 9948 struct hwrm_temp_monitor_query_output *resp; 9949 struct bnxt *bp = dev_get_drvdata(dev); 9950 u32 len = 0; 9951 int rc; 9952 9953 resp = bp->hwrm_cmd_resp_addr; 9954 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TEMP_MONITOR_QUERY, -1, -1); 9955 mutex_lock(&bp->hwrm_cmd_lock); 9956 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 9957 if (!rc) 9958 len = sprintf(buf, "%u\n", resp->temp * 1000); /* display millidegree */ 9959 mutex_unlock(&bp->hwrm_cmd_lock); 9960 if (rc) 9961 return rc; 9962 return len; 9963 } 9964 static SENSOR_DEVICE_ATTR(temp1_input, 0444, bnxt_show_temp, NULL, 0); 9965 9966 static struct attribute *bnxt_attrs[] = { 9967 &sensor_dev_attr_temp1_input.dev_attr.attr, 9968 NULL 9969 }; 9970 ATTRIBUTE_GROUPS(bnxt); 9971 9972 static void bnxt_hwmon_close(struct bnxt *bp) 9973 { 9974 if (bp->hwmon_dev) { 9975 hwmon_device_unregister(bp->hwmon_dev); 9976 bp->hwmon_dev = NULL; 9977 } 9978 } 9979 9980 static void bnxt_hwmon_open(struct bnxt *bp) 9981 { 9982 struct hwrm_temp_monitor_query_input req = {0}; 9983 struct pci_dev *pdev = bp->pdev; 9984 int rc; 9985 9986 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TEMP_MONITOR_QUERY, -1, -1); 9987 rc = hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 9988 if (rc == -EACCES || rc == -EOPNOTSUPP) { 9989 bnxt_hwmon_close(bp); 9990 return; 9991 } 9992 9993 if (bp->hwmon_dev) 9994 return; 9995 9996 bp->hwmon_dev = hwmon_device_register_with_groups(&pdev->dev, 9997 DRV_MODULE_NAME, bp, 9998 bnxt_groups); 9999 if (IS_ERR(bp->hwmon_dev)) { 10000 bp->hwmon_dev = NULL; 10001 dev_warn(&pdev->dev, "Cannot register hwmon device\n"); 10002 } 10003 } 10004 #else 10005 static void bnxt_hwmon_close(struct bnxt *bp) 10006 { 10007 } 10008 10009 static void bnxt_hwmon_open(struct bnxt *bp) 10010 { 10011 } 10012 #endif 10013 10014 static bool bnxt_eee_config_ok(struct bnxt *bp) 10015 { 10016 struct ethtool_eee *eee = &bp->eee; 10017 struct bnxt_link_info *link_info = &bp->link_info; 10018 10019 if (!(bp->phy_flags & BNXT_PHY_FL_EEE_CAP)) 10020 return true; 10021 10022 if (eee->eee_enabled) { 10023 u32 advertising = 10024 _bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0); 10025 10026 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) { 10027 eee->eee_enabled = 0; 10028 return false; 10029 } 10030 if (eee->advertised & ~advertising) { 10031 eee->advertised = advertising & eee->supported; 10032 return false; 10033 } 10034 } 10035 return true; 10036 } 10037 10038 static int bnxt_update_phy_setting(struct bnxt *bp) 10039 { 10040 int rc; 10041 bool update_link = false; 10042 bool update_pause = false; 10043 bool update_eee = false; 10044 struct bnxt_link_info *link_info = &bp->link_info; 10045 10046 rc = bnxt_update_link(bp, true); 10047 if (rc) { 10048 netdev_err(bp->dev, "failed to update link (rc: %x)\n", 10049 rc); 10050 return rc; 10051 } 10052 if (!BNXT_SINGLE_PF(bp)) 10053 return 0; 10054 10055 if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) && 10056 (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) != 10057 link_info->req_flow_ctrl) 10058 update_pause = true; 10059 if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) && 10060 link_info->force_pause_setting != link_info->req_flow_ctrl) 10061 update_pause = true; 10062 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) { 10063 if (BNXT_AUTO_MODE(link_info->auto_mode)) 10064 update_link = true; 10065 if (link_info->req_signal_mode == BNXT_SIG_MODE_NRZ && 10066 link_info->req_link_speed != link_info->force_link_speed) 10067 update_link = true; 10068 else if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4 && 10069 link_info->req_link_speed != link_info->force_pam4_link_speed) 10070 update_link = true; 10071 if (link_info->req_duplex != link_info->duplex_setting) 10072 update_link = true; 10073 } else { 10074 if (link_info->auto_mode == BNXT_LINK_AUTO_NONE) 10075 update_link = true; 10076 if (link_info->advertising != link_info->auto_link_speeds || 10077 link_info->advertising_pam4 != link_info->auto_pam4_link_speeds) 10078 update_link = true; 10079 } 10080 10081 /* The last close may have shutdown the link, so need to call 10082 * PHY_CFG to bring it back up. 10083 */ 10084 if (!bp->link_info.link_up) 10085 update_link = true; 10086 10087 if (!bnxt_eee_config_ok(bp)) 10088 update_eee = true; 10089 10090 if (update_link) 10091 rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee); 10092 else if (update_pause) 10093 rc = bnxt_hwrm_set_pause(bp); 10094 if (rc) { 10095 netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n", 10096 rc); 10097 return rc; 10098 } 10099 10100 return rc; 10101 } 10102 10103 /* Common routine to pre-map certain register block to different GRC window. 10104 * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows 10105 * in PF and 3 windows in VF that can be customized to map in different 10106 * register blocks. 10107 */ 10108 static void bnxt_preset_reg_win(struct bnxt *bp) 10109 { 10110 if (BNXT_PF(bp)) { 10111 /* CAG registers map to GRC window #4 */ 10112 writel(BNXT_CAG_REG_BASE, 10113 bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12); 10114 } 10115 } 10116 10117 static int bnxt_init_dflt_ring_mode(struct bnxt *bp); 10118 10119 static int bnxt_reinit_after_abort(struct bnxt *bp) 10120 { 10121 int rc; 10122 10123 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 10124 return -EBUSY; 10125 10126 if (bp->dev->reg_state == NETREG_UNREGISTERED) 10127 return -ENODEV; 10128 10129 rc = bnxt_fw_init_one(bp); 10130 if (!rc) { 10131 bnxt_clear_int_mode(bp); 10132 rc = bnxt_init_int_mode(bp); 10133 if (!rc) { 10134 clear_bit(BNXT_STATE_ABORT_ERR, &bp->state); 10135 set_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 10136 } 10137 } 10138 return rc; 10139 } 10140 10141 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 10142 { 10143 int rc = 0; 10144 10145 bnxt_preset_reg_win(bp); 10146 netif_carrier_off(bp->dev); 10147 if (irq_re_init) { 10148 /* Reserve rings now if none were reserved at driver probe. */ 10149 rc = bnxt_init_dflt_ring_mode(bp); 10150 if (rc) { 10151 netdev_err(bp->dev, "Failed to reserve default rings at open\n"); 10152 return rc; 10153 } 10154 } 10155 rc = bnxt_reserve_rings(bp, irq_re_init); 10156 if (rc) 10157 return rc; 10158 if ((bp->flags & BNXT_FLAG_RFS) && 10159 !(bp->flags & BNXT_FLAG_USING_MSIX)) { 10160 /* disable RFS if falling back to INTA */ 10161 bp->dev->hw_features &= ~NETIF_F_NTUPLE; 10162 bp->flags &= ~BNXT_FLAG_RFS; 10163 } 10164 10165 rc = bnxt_alloc_mem(bp, irq_re_init); 10166 if (rc) { 10167 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc); 10168 goto open_err_free_mem; 10169 } 10170 10171 if (irq_re_init) { 10172 bnxt_init_napi(bp); 10173 rc = bnxt_request_irq(bp); 10174 if (rc) { 10175 netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc); 10176 goto open_err_irq; 10177 } 10178 } 10179 10180 rc = bnxt_init_nic(bp, irq_re_init); 10181 if (rc) { 10182 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc); 10183 goto open_err_irq; 10184 } 10185 10186 bnxt_enable_napi(bp); 10187 bnxt_debug_dev_init(bp); 10188 10189 if (link_re_init) { 10190 mutex_lock(&bp->link_lock); 10191 rc = bnxt_update_phy_setting(bp); 10192 mutex_unlock(&bp->link_lock); 10193 if (rc) { 10194 netdev_warn(bp->dev, "failed to update phy settings\n"); 10195 if (BNXT_SINGLE_PF(bp)) { 10196 bp->link_info.phy_retry = true; 10197 bp->link_info.phy_retry_expires = 10198 jiffies + 5 * HZ; 10199 } 10200 } 10201 } 10202 10203 if (irq_re_init) 10204 udp_tunnel_nic_reset_ntf(bp->dev); 10205 10206 set_bit(BNXT_STATE_OPEN, &bp->state); 10207 bnxt_enable_int(bp); 10208 /* Enable TX queues */ 10209 bnxt_tx_enable(bp); 10210 mod_timer(&bp->timer, jiffies + bp->current_interval); 10211 /* Poll link status and check for SFP+ module status */ 10212 bnxt_get_port_module_status(bp); 10213 10214 /* VF-reps may need to be re-opened after the PF is re-opened */ 10215 if (BNXT_PF(bp)) 10216 bnxt_vf_reps_open(bp); 10217 return 0; 10218 10219 open_err_irq: 10220 bnxt_del_napi(bp); 10221 10222 open_err_free_mem: 10223 bnxt_free_skbs(bp); 10224 bnxt_free_irq(bp); 10225 bnxt_free_mem(bp, true); 10226 return rc; 10227 } 10228 10229 /* rtnl_lock held */ 10230 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 10231 { 10232 int rc = 0; 10233 10234 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) 10235 rc = -EIO; 10236 if (!rc) 10237 rc = __bnxt_open_nic(bp, irq_re_init, link_re_init); 10238 if (rc) { 10239 netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc); 10240 dev_close(bp->dev); 10241 } 10242 return rc; 10243 } 10244 10245 /* rtnl_lock held, open the NIC half way by allocating all resources, but 10246 * NAPI, IRQ, and TX are not enabled. This is mainly used for offline 10247 * self tests. 10248 */ 10249 int bnxt_half_open_nic(struct bnxt *bp) 10250 { 10251 int rc = 0; 10252 10253 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 10254 netdev_err(bp->dev, "A previous firmware reset has not completed, aborting half open\n"); 10255 rc = -ENODEV; 10256 goto half_open_err; 10257 } 10258 10259 rc = bnxt_alloc_mem(bp, false); 10260 if (rc) { 10261 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc); 10262 goto half_open_err; 10263 } 10264 rc = bnxt_init_nic(bp, false); 10265 if (rc) { 10266 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc); 10267 goto half_open_err; 10268 } 10269 return 0; 10270 10271 half_open_err: 10272 bnxt_free_skbs(bp); 10273 bnxt_free_mem(bp, false); 10274 dev_close(bp->dev); 10275 return rc; 10276 } 10277 10278 /* rtnl_lock held, this call can only be made after a previous successful 10279 * call to bnxt_half_open_nic(). 10280 */ 10281 void bnxt_half_close_nic(struct bnxt *bp) 10282 { 10283 bnxt_hwrm_resource_free(bp, false, false); 10284 bnxt_free_skbs(bp); 10285 bnxt_free_mem(bp, false); 10286 } 10287 10288 static void bnxt_reenable_sriov(struct bnxt *bp) 10289 { 10290 if (BNXT_PF(bp)) { 10291 struct bnxt_pf_info *pf = &bp->pf; 10292 int n = pf->active_vfs; 10293 10294 if (n) 10295 bnxt_cfg_hw_sriov(bp, &n, true); 10296 } 10297 } 10298 10299 static int bnxt_open(struct net_device *dev) 10300 { 10301 struct bnxt *bp = netdev_priv(dev); 10302 int rc; 10303 10304 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 10305 rc = bnxt_reinit_after_abort(bp); 10306 if (rc) { 10307 if (rc == -EBUSY) 10308 netdev_err(bp->dev, "A previous firmware reset has not completed, aborting\n"); 10309 else 10310 netdev_err(bp->dev, "Failed to reinitialize after aborted firmware reset\n"); 10311 return -ENODEV; 10312 } 10313 } 10314 10315 rc = bnxt_hwrm_if_change(bp, true); 10316 if (rc) 10317 return rc; 10318 10319 if (bnxt_ptp_init(bp)) { 10320 netdev_warn(dev, "PTP initialization failed.\n"); 10321 kfree(bp->ptp_cfg); 10322 bp->ptp_cfg = NULL; 10323 } 10324 rc = __bnxt_open_nic(bp, true, true); 10325 if (rc) { 10326 bnxt_hwrm_if_change(bp, false); 10327 bnxt_ptp_clear(bp); 10328 } else { 10329 if (test_and_clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) { 10330 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 10331 bnxt_ulp_start(bp, 0); 10332 bnxt_reenable_sriov(bp); 10333 } 10334 } 10335 bnxt_hwmon_open(bp); 10336 } 10337 10338 return rc; 10339 } 10340 10341 static bool bnxt_drv_busy(struct bnxt *bp) 10342 { 10343 return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) || 10344 test_bit(BNXT_STATE_READ_STATS, &bp->state)); 10345 } 10346 10347 static void bnxt_get_ring_stats(struct bnxt *bp, 10348 struct rtnl_link_stats64 *stats); 10349 10350 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init, 10351 bool link_re_init) 10352 { 10353 /* Close the VF-reps before closing PF */ 10354 if (BNXT_PF(bp)) 10355 bnxt_vf_reps_close(bp); 10356 10357 /* Change device state to avoid TX queue wake up's */ 10358 bnxt_tx_disable(bp); 10359 10360 clear_bit(BNXT_STATE_OPEN, &bp->state); 10361 smp_mb__after_atomic(); 10362 while (bnxt_drv_busy(bp)) 10363 msleep(20); 10364 10365 /* Flush rings and and disable interrupts */ 10366 bnxt_shutdown_nic(bp, irq_re_init); 10367 10368 /* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */ 10369 10370 bnxt_debug_dev_exit(bp); 10371 bnxt_disable_napi(bp); 10372 del_timer_sync(&bp->timer); 10373 bnxt_free_skbs(bp); 10374 10375 /* Save ring stats before shutdown */ 10376 if (bp->bnapi && irq_re_init) 10377 bnxt_get_ring_stats(bp, &bp->net_stats_prev); 10378 if (irq_re_init) { 10379 bnxt_free_irq(bp); 10380 bnxt_del_napi(bp); 10381 } 10382 bnxt_free_mem(bp, irq_re_init); 10383 } 10384 10385 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 10386 { 10387 int rc = 0; 10388 10389 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 10390 /* If we get here, it means firmware reset is in progress 10391 * while we are trying to close. We can safely proceed with 10392 * the close because we are holding rtnl_lock(). Some firmware 10393 * messages may fail as we proceed to close. We set the 10394 * ABORT_ERR flag here so that the FW reset thread will later 10395 * abort when it gets the rtnl_lock() and sees the flag. 10396 */ 10397 netdev_warn(bp->dev, "FW reset in progress during close, FW reset will be aborted\n"); 10398 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 10399 } 10400 10401 #ifdef CONFIG_BNXT_SRIOV 10402 if (bp->sriov_cfg) { 10403 rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait, 10404 !bp->sriov_cfg, 10405 BNXT_SRIOV_CFG_WAIT_TMO); 10406 if (rc) 10407 netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n"); 10408 } 10409 #endif 10410 __bnxt_close_nic(bp, irq_re_init, link_re_init); 10411 return rc; 10412 } 10413 10414 static int bnxt_close(struct net_device *dev) 10415 { 10416 struct bnxt *bp = netdev_priv(dev); 10417 10418 bnxt_ptp_clear(bp); 10419 bnxt_hwmon_close(bp); 10420 bnxt_close_nic(bp, true, true); 10421 bnxt_hwrm_shutdown_link(bp); 10422 bnxt_hwrm_if_change(bp, false); 10423 return 0; 10424 } 10425 10426 static int bnxt_hwrm_port_phy_read(struct bnxt *bp, u16 phy_addr, u16 reg, 10427 u16 *val) 10428 { 10429 struct hwrm_port_phy_mdio_read_output *resp = bp->hwrm_cmd_resp_addr; 10430 struct hwrm_port_phy_mdio_read_input req = {0}; 10431 int rc; 10432 10433 if (bp->hwrm_spec_code < 0x10a00) 10434 return -EOPNOTSUPP; 10435 10436 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_MDIO_READ, -1, -1); 10437 req.port_id = cpu_to_le16(bp->pf.port_id); 10438 req.phy_addr = phy_addr; 10439 req.reg_addr = cpu_to_le16(reg & 0x1f); 10440 if (mdio_phy_id_is_c45(phy_addr)) { 10441 req.cl45_mdio = 1; 10442 req.phy_addr = mdio_phy_id_prtad(phy_addr); 10443 req.dev_addr = mdio_phy_id_devad(phy_addr); 10444 req.reg_addr = cpu_to_le16(reg); 10445 } 10446 10447 mutex_lock(&bp->hwrm_cmd_lock); 10448 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 10449 if (!rc) 10450 *val = le16_to_cpu(resp->reg_data); 10451 mutex_unlock(&bp->hwrm_cmd_lock); 10452 return rc; 10453 } 10454 10455 static int bnxt_hwrm_port_phy_write(struct bnxt *bp, u16 phy_addr, u16 reg, 10456 u16 val) 10457 { 10458 struct hwrm_port_phy_mdio_write_input req = {0}; 10459 10460 if (bp->hwrm_spec_code < 0x10a00) 10461 return -EOPNOTSUPP; 10462 10463 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_MDIO_WRITE, -1, -1); 10464 req.port_id = cpu_to_le16(bp->pf.port_id); 10465 req.phy_addr = phy_addr; 10466 req.reg_addr = cpu_to_le16(reg & 0x1f); 10467 if (mdio_phy_id_is_c45(phy_addr)) { 10468 req.cl45_mdio = 1; 10469 req.phy_addr = mdio_phy_id_prtad(phy_addr); 10470 req.dev_addr = mdio_phy_id_devad(phy_addr); 10471 req.reg_addr = cpu_to_le16(reg); 10472 } 10473 req.reg_data = cpu_to_le16(val); 10474 10475 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 10476 } 10477 10478 /* rtnl_lock held */ 10479 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 10480 { 10481 struct mii_ioctl_data *mdio = if_mii(ifr); 10482 struct bnxt *bp = netdev_priv(dev); 10483 int rc; 10484 10485 switch (cmd) { 10486 case SIOCGMIIPHY: 10487 mdio->phy_id = bp->link_info.phy_addr; 10488 10489 fallthrough; 10490 case SIOCGMIIREG: { 10491 u16 mii_regval = 0; 10492 10493 if (!netif_running(dev)) 10494 return -EAGAIN; 10495 10496 rc = bnxt_hwrm_port_phy_read(bp, mdio->phy_id, mdio->reg_num, 10497 &mii_regval); 10498 mdio->val_out = mii_regval; 10499 return rc; 10500 } 10501 10502 case SIOCSMIIREG: 10503 if (!netif_running(dev)) 10504 return -EAGAIN; 10505 10506 return bnxt_hwrm_port_phy_write(bp, mdio->phy_id, mdio->reg_num, 10507 mdio->val_in); 10508 10509 case SIOCSHWTSTAMP: 10510 return bnxt_hwtstamp_set(dev, ifr); 10511 10512 case SIOCGHWTSTAMP: 10513 return bnxt_hwtstamp_get(dev, ifr); 10514 10515 default: 10516 /* do nothing */ 10517 break; 10518 } 10519 return -EOPNOTSUPP; 10520 } 10521 10522 static void bnxt_get_ring_stats(struct bnxt *bp, 10523 struct rtnl_link_stats64 *stats) 10524 { 10525 int i; 10526 10527 for (i = 0; i < bp->cp_nr_rings; i++) { 10528 struct bnxt_napi *bnapi = bp->bnapi[i]; 10529 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 10530 u64 *sw = cpr->stats.sw_stats; 10531 10532 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts); 10533 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts); 10534 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts); 10535 10536 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts); 10537 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts); 10538 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts); 10539 10540 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes); 10541 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes); 10542 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes); 10543 10544 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes); 10545 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes); 10546 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes); 10547 10548 stats->rx_missed_errors += 10549 BNXT_GET_RING_STATS64(sw, rx_discard_pkts); 10550 10551 stats->multicast += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts); 10552 10553 stats->tx_dropped += BNXT_GET_RING_STATS64(sw, tx_error_pkts); 10554 } 10555 } 10556 10557 static void bnxt_add_prev_stats(struct bnxt *bp, 10558 struct rtnl_link_stats64 *stats) 10559 { 10560 struct rtnl_link_stats64 *prev_stats = &bp->net_stats_prev; 10561 10562 stats->rx_packets += prev_stats->rx_packets; 10563 stats->tx_packets += prev_stats->tx_packets; 10564 stats->rx_bytes += prev_stats->rx_bytes; 10565 stats->tx_bytes += prev_stats->tx_bytes; 10566 stats->rx_missed_errors += prev_stats->rx_missed_errors; 10567 stats->multicast += prev_stats->multicast; 10568 stats->tx_dropped += prev_stats->tx_dropped; 10569 } 10570 10571 static void 10572 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) 10573 { 10574 struct bnxt *bp = netdev_priv(dev); 10575 10576 set_bit(BNXT_STATE_READ_STATS, &bp->state); 10577 /* Make sure bnxt_close_nic() sees that we are reading stats before 10578 * we check the BNXT_STATE_OPEN flag. 10579 */ 10580 smp_mb__after_atomic(); 10581 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 10582 clear_bit(BNXT_STATE_READ_STATS, &bp->state); 10583 *stats = bp->net_stats_prev; 10584 return; 10585 } 10586 10587 bnxt_get_ring_stats(bp, stats); 10588 bnxt_add_prev_stats(bp, stats); 10589 10590 if (bp->flags & BNXT_FLAG_PORT_STATS) { 10591 u64 *rx = bp->port_stats.sw_stats; 10592 u64 *tx = bp->port_stats.sw_stats + 10593 BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 10594 10595 stats->rx_crc_errors = 10596 BNXT_GET_RX_PORT_STATS64(rx, rx_fcs_err_frames); 10597 stats->rx_frame_errors = 10598 BNXT_GET_RX_PORT_STATS64(rx, rx_align_err_frames); 10599 stats->rx_length_errors = 10600 BNXT_GET_RX_PORT_STATS64(rx, rx_undrsz_frames) + 10601 BNXT_GET_RX_PORT_STATS64(rx, rx_ovrsz_frames) + 10602 BNXT_GET_RX_PORT_STATS64(rx, rx_runt_frames); 10603 stats->rx_errors = 10604 BNXT_GET_RX_PORT_STATS64(rx, rx_false_carrier_frames) + 10605 BNXT_GET_RX_PORT_STATS64(rx, rx_jbr_frames); 10606 stats->collisions = 10607 BNXT_GET_TX_PORT_STATS64(tx, tx_total_collisions); 10608 stats->tx_fifo_errors = 10609 BNXT_GET_TX_PORT_STATS64(tx, tx_fifo_underruns); 10610 stats->tx_errors = BNXT_GET_TX_PORT_STATS64(tx, tx_err); 10611 } 10612 clear_bit(BNXT_STATE_READ_STATS, &bp->state); 10613 } 10614 10615 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask) 10616 { 10617 struct net_device *dev = bp->dev; 10618 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 10619 struct netdev_hw_addr *ha; 10620 u8 *haddr; 10621 int mc_count = 0; 10622 bool update = false; 10623 int off = 0; 10624 10625 netdev_for_each_mc_addr(ha, dev) { 10626 if (mc_count >= BNXT_MAX_MC_ADDRS) { 10627 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 10628 vnic->mc_list_count = 0; 10629 return false; 10630 } 10631 haddr = ha->addr; 10632 if (!ether_addr_equal(haddr, vnic->mc_list + off)) { 10633 memcpy(vnic->mc_list + off, haddr, ETH_ALEN); 10634 update = true; 10635 } 10636 off += ETH_ALEN; 10637 mc_count++; 10638 } 10639 if (mc_count) 10640 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST; 10641 10642 if (mc_count != vnic->mc_list_count) { 10643 vnic->mc_list_count = mc_count; 10644 update = true; 10645 } 10646 return update; 10647 } 10648 10649 static bool bnxt_uc_list_updated(struct bnxt *bp) 10650 { 10651 struct net_device *dev = bp->dev; 10652 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 10653 struct netdev_hw_addr *ha; 10654 int off = 0; 10655 10656 if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1)) 10657 return true; 10658 10659 netdev_for_each_uc_addr(ha, dev) { 10660 if (!ether_addr_equal(ha->addr, vnic->uc_list + off)) 10661 return true; 10662 10663 off += ETH_ALEN; 10664 } 10665 return false; 10666 } 10667 10668 static void bnxt_set_rx_mode(struct net_device *dev) 10669 { 10670 struct bnxt *bp = netdev_priv(dev); 10671 struct bnxt_vnic_info *vnic; 10672 bool mc_update = false; 10673 bool uc_update; 10674 u32 mask; 10675 10676 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) 10677 return; 10678 10679 vnic = &bp->vnic_info[0]; 10680 mask = vnic->rx_mask; 10681 mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS | 10682 CFA_L2_SET_RX_MASK_REQ_MASK_MCAST | 10683 CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST | 10684 CFA_L2_SET_RX_MASK_REQ_MASK_BCAST); 10685 10686 if (dev->flags & IFF_PROMISC) 10687 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 10688 10689 uc_update = bnxt_uc_list_updated(bp); 10690 10691 if (dev->flags & IFF_BROADCAST) 10692 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST; 10693 if (dev->flags & IFF_ALLMULTI) { 10694 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 10695 vnic->mc_list_count = 0; 10696 } else { 10697 mc_update = bnxt_mc_list_updated(bp, &mask); 10698 } 10699 10700 if (mask != vnic->rx_mask || uc_update || mc_update) { 10701 vnic->rx_mask = mask; 10702 10703 set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event); 10704 bnxt_queue_sp_work(bp); 10705 } 10706 } 10707 10708 static int bnxt_cfg_rx_mode(struct bnxt *bp) 10709 { 10710 struct net_device *dev = bp->dev; 10711 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 10712 struct netdev_hw_addr *ha; 10713 int i, off = 0, rc; 10714 bool uc_update; 10715 10716 netif_addr_lock_bh(dev); 10717 uc_update = bnxt_uc_list_updated(bp); 10718 netif_addr_unlock_bh(dev); 10719 10720 if (!uc_update) 10721 goto skip_uc; 10722 10723 mutex_lock(&bp->hwrm_cmd_lock); 10724 for (i = 1; i < vnic->uc_filter_count; i++) { 10725 struct hwrm_cfa_l2_filter_free_input req = {0}; 10726 10727 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_FREE, -1, 10728 -1); 10729 10730 req.l2_filter_id = vnic->fw_l2_filter_id[i]; 10731 10732 rc = _hwrm_send_message(bp, &req, sizeof(req), 10733 HWRM_CMD_TIMEOUT); 10734 } 10735 mutex_unlock(&bp->hwrm_cmd_lock); 10736 10737 vnic->uc_filter_count = 1; 10738 10739 netif_addr_lock_bh(dev); 10740 if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) { 10741 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 10742 } else { 10743 netdev_for_each_uc_addr(ha, dev) { 10744 memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN); 10745 off += ETH_ALEN; 10746 vnic->uc_filter_count++; 10747 } 10748 } 10749 netif_addr_unlock_bh(dev); 10750 10751 for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) { 10752 rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off); 10753 if (rc) { 10754 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", 10755 rc); 10756 vnic->uc_filter_count = i; 10757 return rc; 10758 } 10759 } 10760 10761 skip_uc: 10762 if ((vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS) && 10763 !bnxt_promisc_ok(bp)) 10764 vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 10765 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0); 10766 if (rc && vnic->mc_list_count) { 10767 netdev_info(bp->dev, "Failed setting MC filters rc: %d, turning on ALL_MCAST mode\n", 10768 rc); 10769 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 10770 vnic->mc_list_count = 0; 10771 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0); 10772 } 10773 if (rc) 10774 netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %d\n", 10775 rc); 10776 10777 return rc; 10778 } 10779 10780 static bool bnxt_can_reserve_rings(struct bnxt *bp) 10781 { 10782 #ifdef CONFIG_BNXT_SRIOV 10783 if (BNXT_NEW_RM(bp) && BNXT_VF(bp)) { 10784 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 10785 10786 /* No minimum rings were provisioned by the PF. Don't 10787 * reserve rings by default when device is down. 10788 */ 10789 if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings) 10790 return true; 10791 10792 if (!netif_running(bp->dev)) 10793 return false; 10794 } 10795 #endif 10796 return true; 10797 } 10798 10799 /* If the chip and firmware supports RFS */ 10800 static bool bnxt_rfs_supported(struct bnxt *bp) 10801 { 10802 if (bp->flags & BNXT_FLAG_CHIP_P5) { 10803 if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) 10804 return true; 10805 return false; 10806 } 10807 /* 212 firmware is broken for aRFS */ 10808 if (BNXT_FW_MAJ(bp) == 212) 10809 return false; 10810 if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp)) 10811 return true; 10812 if (bp->flags & BNXT_FLAG_NEW_RSS_CAP) 10813 return true; 10814 return false; 10815 } 10816 10817 /* If runtime conditions support RFS */ 10818 static bool bnxt_rfs_capable(struct bnxt *bp) 10819 { 10820 #ifdef CONFIG_RFS_ACCEL 10821 int vnics, max_vnics, max_rss_ctxs; 10822 10823 if (bp->flags & BNXT_FLAG_CHIP_P5) 10824 return bnxt_rfs_supported(bp); 10825 if (!(bp->flags & BNXT_FLAG_MSIX_CAP) || !bnxt_can_reserve_rings(bp)) 10826 return false; 10827 10828 vnics = 1 + bp->rx_nr_rings; 10829 max_vnics = bnxt_get_max_func_vnics(bp); 10830 max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp); 10831 10832 /* RSS contexts not a limiting factor */ 10833 if (bp->flags & BNXT_FLAG_NEW_RSS_CAP) 10834 max_rss_ctxs = max_vnics; 10835 if (vnics > max_vnics || vnics > max_rss_ctxs) { 10836 if (bp->rx_nr_rings > 1) 10837 netdev_warn(bp->dev, 10838 "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n", 10839 min(max_rss_ctxs - 1, max_vnics - 1)); 10840 return false; 10841 } 10842 10843 if (!BNXT_NEW_RM(bp)) 10844 return true; 10845 10846 if (vnics == bp->hw_resc.resv_vnics) 10847 return true; 10848 10849 bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, vnics); 10850 if (vnics <= bp->hw_resc.resv_vnics) 10851 return true; 10852 10853 netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n"); 10854 bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, 1); 10855 return false; 10856 #else 10857 return false; 10858 #endif 10859 } 10860 10861 static netdev_features_t bnxt_fix_features(struct net_device *dev, 10862 netdev_features_t features) 10863 { 10864 struct bnxt *bp = netdev_priv(dev); 10865 netdev_features_t vlan_features; 10866 10867 if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp)) 10868 features &= ~NETIF_F_NTUPLE; 10869 10870 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) 10871 features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 10872 10873 if (!(features & NETIF_F_GRO)) 10874 features &= ~NETIF_F_GRO_HW; 10875 10876 if (features & NETIF_F_GRO_HW) 10877 features &= ~NETIF_F_LRO; 10878 10879 /* Both CTAG and STAG VLAN accelaration on the RX side have to be 10880 * turned on or off together. 10881 */ 10882 vlan_features = features & BNXT_HW_FEATURE_VLAN_ALL_RX; 10883 if (vlan_features != BNXT_HW_FEATURE_VLAN_ALL_RX) { 10884 if (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX) 10885 features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX; 10886 else if (vlan_features) 10887 features |= BNXT_HW_FEATURE_VLAN_ALL_RX; 10888 } 10889 #ifdef CONFIG_BNXT_SRIOV 10890 if (BNXT_VF(bp) && bp->vf.vlan) 10891 features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX; 10892 #endif 10893 return features; 10894 } 10895 10896 static int bnxt_set_features(struct net_device *dev, netdev_features_t features) 10897 { 10898 struct bnxt *bp = netdev_priv(dev); 10899 u32 flags = bp->flags; 10900 u32 changes; 10901 int rc = 0; 10902 bool re_init = false; 10903 bool update_tpa = false; 10904 10905 flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS; 10906 if (features & NETIF_F_GRO_HW) 10907 flags |= BNXT_FLAG_GRO; 10908 else if (features & NETIF_F_LRO) 10909 flags |= BNXT_FLAG_LRO; 10910 10911 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) 10912 flags &= ~BNXT_FLAG_TPA; 10913 10914 if (features & BNXT_HW_FEATURE_VLAN_ALL_RX) 10915 flags |= BNXT_FLAG_STRIP_VLAN; 10916 10917 if (features & NETIF_F_NTUPLE) 10918 flags |= BNXT_FLAG_RFS; 10919 10920 changes = flags ^ bp->flags; 10921 if (changes & BNXT_FLAG_TPA) { 10922 update_tpa = true; 10923 if ((bp->flags & BNXT_FLAG_TPA) == 0 || 10924 (flags & BNXT_FLAG_TPA) == 0 || 10925 (bp->flags & BNXT_FLAG_CHIP_P5)) 10926 re_init = true; 10927 } 10928 10929 if (changes & ~BNXT_FLAG_TPA) 10930 re_init = true; 10931 10932 if (flags != bp->flags) { 10933 u32 old_flags = bp->flags; 10934 10935 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 10936 bp->flags = flags; 10937 if (update_tpa) 10938 bnxt_set_ring_params(bp); 10939 return rc; 10940 } 10941 10942 if (re_init) { 10943 bnxt_close_nic(bp, false, false); 10944 bp->flags = flags; 10945 if (update_tpa) 10946 bnxt_set_ring_params(bp); 10947 10948 return bnxt_open_nic(bp, false, false); 10949 } 10950 if (update_tpa) { 10951 bp->flags = flags; 10952 rc = bnxt_set_tpa(bp, 10953 (flags & BNXT_FLAG_TPA) ? 10954 true : false); 10955 if (rc) 10956 bp->flags = old_flags; 10957 } 10958 } 10959 return rc; 10960 } 10961 10962 static bool bnxt_exthdr_check(struct bnxt *bp, struct sk_buff *skb, int nw_off, 10963 u8 **nextp) 10964 { 10965 struct ipv6hdr *ip6h = (struct ipv6hdr *)(skb->data + nw_off); 10966 int hdr_count = 0; 10967 u8 *nexthdr; 10968 int start; 10969 10970 /* Check that there are at most 2 IPv6 extension headers, no 10971 * fragment header, and each is <= 64 bytes. 10972 */ 10973 start = nw_off + sizeof(*ip6h); 10974 nexthdr = &ip6h->nexthdr; 10975 while (ipv6_ext_hdr(*nexthdr)) { 10976 struct ipv6_opt_hdr *hp; 10977 int hdrlen; 10978 10979 if (hdr_count >= 3 || *nexthdr == NEXTHDR_NONE || 10980 *nexthdr == NEXTHDR_FRAGMENT) 10981 return false; 10982 hp = __skb_header_pointer(NULL, start, sizeof(*hp), skb->data, 10983 skb_headlen(skb), NULL); 10984 if (!hp) 10985 return false; 10986 if (*nexthdr == NEXTHDR_AUTH) 10987 hdrlen = ipv6_authlen(hp); 10988 else 10989 hdrlen = ipv6_optlen(hp); 10990 10991 if (hdrlen > 64) 10992 return false; 10993 nexthdr = &hp->nexthdr; 10994 start += hdrlen; 10995 hdr_count++; 10996 } 10997 if (nextp) { 10998 /* Caller will check inner protocol */ 10999 if (skb->encapsulation) { 11000 *nextp = nexthdr; 11001 return true; 11002 } 11003 *nextp = NULL; 11004 } 11005 /* Only support TCP/UDP for non-tunneled ipv6 and inner ipv6 */ 11006 return *nexthdr == IPPROTO_TCP || *nexthdr == IPPROTO_UDP; 11007 } 11008 11009 /* For UDP, we can only handle 1 Vxlan port and 1 Geneve port. */ 11010 static bool bnxt_udp_tunl_check(struct bnxt *bp, struct sk_buff *skb) 11011 { 11012 struct udphdr *uh = udp_hdr(skb); 11013 __be16 udp_port = uh->dest; 11014 11015 if (udp_port != bp->vxlan_port && udp_port != bp->nge_port) 11016 return false; 11017 if (skb->inner_protocol_type == ENCAP_TYPE_ETHER) { 11018 struct ethhdr *eh = inner_eth_hdr(skb); 11019 11020 switch (eh->h_proto) { 11021 case htons(ETH_P_IP): 11022 return true; 11023 case htons(ETH_P_IPV6): 11024 return bnxt_exthdr_check(bp, skb, 11025 skb_inner_network_offset(skb), 11026 NULL); 11027 } 11028 } 11029 return false; 11030 } 11031 11032 static bool bnxt_tunl_check(struct bnxt *bp, struct sk_buff *skb, u8 l4_proto) 11033 { 11034 switch (l4_proto) { 11035 case IPPROTO_UDP: 11036 return bnxt_udp_tunl_check(bp, skb); 11037 case IPPROTO_IPIP: 11038 return true; 11039 case IPPROTO_GRE: { 11040 switch (skb->inner_protocol) { 11041 default: 11042 return false; 11043 case htons(ETH_P_IP): 11044 return true; 11045 case htons(ETH_P_IPV6): 11046 fallthrough; 11047 } 11048 } 11049 case IPPROTO_IPV6: 11050 /* Check ext headers of inner ipv6 */ 11051 return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb), 11052 NULL); 11053 } 11054 return false; 11055 } 11056 11057 static netdev_features_t bnxt_features_check(struct sk_buff *skb, 11058 struct net_device *dev, 11059 netdev_features_t features) 11060 { 11061 struct bnxt *bp = netdev_priv(dev); 11062 u8 *l4_proto; 11063 11064 features = vlan_features_check(skb, features); 11065 switch (vlan_get_protocol(skb)) { 11066 case htons(ETH_P_IP): 11067 if (!skb->encapsulation) 11068 return features; 11069 l4_proto = &ip_hdr(skb)->protocol; 11070 if (bnxt_tunl_check(bp, skb, *l4_proto)) 11071 return features; 11072 break; 11073 case htons(ETH_P_IPV6): 11074 if (!bnxt_exthdr_check(bp, skb, skb_network_offset(skb), 11075 &l4_proto)) 11076 break; 11077 if (!l4_proto || bnxt_tunl_check(bp, skb, *l4_proto)) 11078 return features; 11079 break; 11080 } 11081 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 11082 } 11083 11084 int bnxt_dbg_hwrm_rd_reg(struct bnxt *bp, u32 reg_off, u16 num_words, 11085 u32 *reg_buf) 11086 { 11087 struct hwrm_dbg_read_direct_output *resp = bp->hwrm_cmd_resp_addr; 11088 struct hwrm_dbg_read_direct_input req = {0}; 11089 __le32 *dbg_reg_buf; 11090 dma_addr_t mapping; 11091 int rc, i; 11092 11093 dbg_reg_buf = dma_alloc_coherent(&bp->pdev->dev, num_words * 4, 11094 &mapping, GFP_KERNEL); 11095 if (!dbg_reg_buf) 11096 return -ENOMEM; 11097 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_DBG_READ_DIRECT, -1, -1); 11098 req.host_dest_addr = cpu_to_le64(mapping); 11099 req.read_addr = cpu_to_le32(reg_off + CHIMP_REG_VIEW_ADDR); 11100 req.read_len32 = cpu_to_le32(num_words); 11101 mutex_lock(&bp->hwrm_cmd_lock); 11102 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 11103 if (rc || resp->error_code) { 11104 rc = -EIO; 11105 goto dbg_rd_reg_exit; 11106 } 11107 for (i = 0; i < num_words; i++) 11108 reg_buf[i] = le32_to_cpu(dbg_reg_buf[i]); 11109 11110 dbg_rd_reg_exit: 11111 mutex_unlock(&bp->hwrm_cmd_lock); 11112 dma_free_coherent(&bp->pdev->dev, num_words * 4, dbg_reg_buf, mapping); 11113 return rc; 11114 } 11115 11116 static int bnxt_dbg_hwrm_ring_info_get(struct bnxt *bp, u8 ring_type, 11117 u32 ring_id, u32 *prod, u32 *cons) 11118 { 11119 struct hwrm_dbg_ring_info_get_output *resp = bp->hwrm_cmd_resp_addr; 11120 struct hwrm_dbg_ring_info_get_input req = {0}; 11121 int rc; 11122 11123 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_DBG_RING_INFO_GET, -1, -1); 11124 req.ring_type = ring_type; 11125 req.fw_ring_id = cpu_to_le32(ring_id); 11126 mutex_lock(&bp->hwrm_cmd_lock); 11127 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 11128 if (!rc) { 11129 *prod = le32_to_cpu(resp->producer_index); 11130 *cons = le32_to_cpu(resp->consumer_index); 11131 } 11132 mutex_unlock(&bp->hwrm_cmd_lock); 11133 return rc; 11134 } 11135 11136 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi) 11137 { 11138 struct bnxt_tx_ring_info *txr = bnapi->tx_ring; 11139 int i = bnapi->index; 11140 11141 if (!txr) 11142 return; 11143 11144 netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n", 11145 i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod, 11146 txr->tx_cons); 11147 } 11148 11149 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi) 11150 { 11151 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 11152 int i = bnapi->index; 11153 11154 if (!rxr) 11155 return; 11156 11157 netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n", 11158 i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod, 11159 rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod, 11160 rxr->rx_sw_agg_prod); 11161 } 11162 11163 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi) 11164 { 11165 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 11166 int i = bnapi->index; 11167 11168 netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n", 11169 i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons); 11170 } 11171 11172 static void bnxt_dbg_dump_states(struct bnxt *bp) 11173 { 11174 int i; 11175 struct bnxt_napi *bnapi; 11176 11177 for (i = 0; i < bp->cp_nr_rings; i++) { 11178 bnapi = bp->bnapi[i]; 11179 if (netif_msg_drv(bp)) { 11180 bnxt_dump_tx_sw_state(bnapi); 11181 bnxt_dump_rx_sw_state(bnapi); 11182 bnxt_dump_cp_sw_state(bnapi); 11183 } 11184 } 11185 } 11186 11187 static int bnxt_hwrm_rx_ring_reset(struct bnxt *bp, int ring_nr) 11188 { 11189 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 11190 struct hwrm_ring_reset_input req = {0}; 11191 struct bnxt_napi *bnapi = rxr->bnapi; 11192 struct bnxt_cp_ring_info *cpr; 11193 u16 cp_ring_id; 11194 11195 cpr = &bnapi->cp_ring; 11196 cp_ring_id = cpr->cp_ring_struct.fw_ring_id; 11197 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_RESET, cp_ring_id, -1); 11198 req.ring_type = RING_RESET_REQ_RING_TYPE_RX_RING_GRP; 11199 req.ring_id = cpu_to_le16(bp->grp_info[bnapi->index].fw_grp_id); 11200 return hwrm_send_message_silent(bp, &req, sizeof(req), 11201 HWRM_CMD_TIMEOUT); 11202 } 11203 11204 static void bnxt_reset_task(struct bnxt *bp, bool silent) 11205 { 11206 if (!silent) 11207 bnxt_dbg_dump_states(bp); 11208 if (netif_running(bp->dev)) { 11209 int rc; 11210 11211 if (silent) { 11212 bnxt_close_nic(bp, false, false); 11213 bnxt_open_nic(bp, false, false); 11214 } else { 11215 bnxt_ulp_stop(bp); 11216 bnxt_close_nic(bp, true, false); 11217 rc = bnxt_open_nic(bp, true, false); 11218 bnxt_ulp_start(bp, rc); 11219 } 11220 } 11221 } 11222 11223 static void bnxt_tx_timeout(struct net_device *dev, unsigned int txqueue) 11224 { 11225 struct bnxt *bp = netdev_priv(dev); 11226 11227 netdev_err(bp->dev, "TX timeout detected, starting reset task!\n"); 11228 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event); 11229 bnxt_queue_sp_work(bp); 11230 } 11231 11232 static void bnxt_fw_health_check(struct bnxt *bp) 11233 { 11234 struct bnxt_fw_health *fw_health = bp->fw_health; 11235 u32 val; 11236 11237 if (!fw_health->enabled || test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 11238 return; 11239 11240 if (fw_health->tmr_counter) { 11241 fw_health->tmr_counter--; 11242 return; 11243 } 11244 11245 val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 11246 if (val == fw_health->last_fw_heartbeat) 11247 goto fw_reset; 11248 11249 fw_health->last_fw_heartbeat = val; 11250 11251 val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 11252 if (val != fw_health->last_fw_reset_cnt) 11253 goto fw_reset; 11254 11255 fw_health->tmr_counter = fw_health->tmr_multiplier; 11256 return; 11257 11258 fw_reset: 11259 set_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event); 11260 bnxt_queue_sp_work(bp); 11261 } 11262 11263 static void bnxt_timer(struct timer_list *t) 11264 { 11265 struct bnxt *bp = from_timer(bp, t, timer); 11266 struct net_device *dev = bp->dev; 11267 11268 if (!netif_running(dev) || !test_bit(BNXT_STATE_OPEN, &bp->state)) 11269 return; 11270 11271 if (atomic_read(&bp->intr_sem) != 0) 11272 goto bnxt_restart_timer; 11273 11274 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) 11275 bnxt_fw_health_check(bp); 11276 11277 if (bp->link_info.link_up && bp->stats_coal_ticks) { 11278 set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event); 11279 bnxt_queue_sp_work(bp); 11280 } 11281 11282 if (bnxt_tc_flower_enabled(bp)) { 11283 set_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event); 11284 bnxt_queue_sp_work(bp); 11285 } 11286 11287 #ifdef CONFIG_RFS_ACCEL 11288 if ((bp->flags & BNXT_FLAG_RFS) && bp->ntp_fltr_count) { 11289 set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event); 11290 bnxt_queue_sp_work(bp); 11291 } 11292 #endif /*CONFIG_RFS_ACCEL*/ 11293 11294 if (bp->link_info.phy_retry) { 11295 if (time_after(jiffies, bp->link_info.phy_retry_expires)) { 11296 bp->link_info.phy_retry = false; 11297 netdev_warn(bp->dev, "failed to update phy settings after maximum retries.\n"); 11298 } else { 11299 set_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event); 11300 bnxt_queue_sp_work(bp); 11301 } 11302 } 11303 11304 if ((bp->flags & BNXT_FLAG_CHIP_P5) && !bp->chip_rev && 11305 netif_carrier_ok(dev)) { 11306 set_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event); 11307 bnxt_queue_sp_work(bp); 11308 } 11309 bnxt_restart_timer: 11310 mod_timer(&bp->timer, jiffies + bp->current_interval); 11311 } 11312 11313 static void bnxt_rtnl_lock_sp(struct bnxt *bp) 11314 { 11315 /* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK 11316 * set. If the device is being closed, bnxt_close() may be holding 11317 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear. So we 11318 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl(). 11319 */ 11320 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 11321 rtnl_lock(); 11322 } 11323 11324 static void bnxt_rtnl_unlock_sp(struct bnxt *bp) 11325 { 11326 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 11327 rtnl_unlock(); 11328 } 11329 11330 /* Only called from bnxt_sp_task() */ 11331 static void bnxt_reset(struct bnxt *bp, bool silent) 11332 { 11333 bnxt_rtnl_lock_sp(bp); 11334 if (test_bit(BNXT_STATE_OPEN, &bp->state)) 11335 bnxt_reset_task(bp, silent); 11336 bnxt_rtnl_unlock_sp(bp); 11337 } 11338 11339 /* Only called from bnxt_sp_task() */ 11340 static void bnxt_rx_ring_reset(struct bnxt *bp) 11341 { 11342 int i; 11343 11344 bnxt_rtnl_lock_sp(bp); 11345 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 11346 bnxt_rtnl_unlock_sp(bp); 11347 return; 11348 } 11349 /* Disable and flush TPA before resetting the RX ring */ 11350 if (bp->flags & BNXT_FLAG_TPA) 11351 bnxt_set_tpa(bp, false); 11352 for (i = 0; i < bp->rx_nr_rings; i++) { 11353 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 11354 struct bnxt_cp_ring_info *cpr; 11355 int rc; 11356 11357 if (!rxr->bnapi->in_reset) 11358 continue; 11359 11360 rc = bnxt_hwrm_rx_ring_reset(bp, i); 11361 if (rc) { 11362 if (rc == -EINVAL || rc == -EOPNOTSUPP) 11363 netdev_info_once(bp->dev, "RX ring reset not supported by firmware, falling back to global reset\n"); 11364 else 11365 netdev_warn(bp->dev, "RX ring reset failed, rc = %d, falling back to global reset\n", 11366 rc); 11367 bnxt_reset_task(bp, true); 11368 break; 11369 } 11370 bnxt_free_one_rx_ring_skbs(bp, i); 11371 rxr->rx_prod = 0; 11372 rxr->rx_agg_prod = 0; 11373 rxr->rx_sw_agg_prod = 0; 11374 rxr->rx_next_cons = 0; 11375 rxr->bnapi->in_reset = false; 11376 bnxt_alloc_one_rx_ring(bp, i); 11377 cpr = &rxr->bnapi->cp_ring; 11378 cpr->sw_stats.rx.rx_resets++; 11379 if (bp->flags & BNXT_FLAG_AGG_RINGS) 11380 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 11381 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 11382 } 11383 if (bp->flags & BNXT_FLAG_TPA) 11384 bnxt_set_tpa(bp, true); 11385 bnxt_rtnl_unlock_sp(bp); 11386 } 11387 11388 static void bnxt_fw_reset_close(struct bnxt *bp) 11389 { 11390 bnxt_ulp_stop(bp); 11391 /* When firmware is in fatal state, quiesce device and disable 11392 * bus master to prevent any potential bad DMAs before freeing 11393 * kernel memory. 11394 */ 11395 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) { 11396 u16 val = 0; 11397 11398 pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val); 11399 if (val == 0xffff) 11400 bp->fw_reset_min_dsecs = 0; 11401 bnxt_tx_disable(bp); 11402 bnxt_disable_napi(bp); 11403 bnxt_disable_int_sync(bp); 11404 bnxt_free_irq(bp); 11405 bnxt_clear_int_mode(bp); 11406 pci_disable_device(bp->pdev); 11407 } 11408 bnxt_ptp_clear(bp); 11409 __bnxt_close_nic(bp, true, false); 11410 bnxt_vf_reps_free(bp); 11411 bnxt_clear_int_mode(bp); 11412 bnxt_hwrm_func_drv_unrgtr(bp); 11413 if (pci_is_enabled(bp->pdev)) 11414 pci_disable_device(bp->pdev); 11415 bnxt_free_ctx_mem(bp); 11416 kfree(bp->ctx); 11417 bp->ctx = NULL; 11418 } 11419 11420 static bool is_bnxt_fw_ok(struct bnxt *bp) 11421 { 11422 struct bnxt_fw_health *fw_health = bp->fw_health; 11423 bool no_heartbeat = false, has_reset = false; 11424 u32 val; 11425 11426 val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 11427 if (val == fw_health->last_fw_heartbeat) 11428 no_heartbeat = true; 11429 11430 val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 11431 if (val != fw_health->last_fw_reset_cnt) 11432 has_reset = true; 11433 11434 if (!no_heartbeat && has_reset) 11435 return true; 11436 11437 return false; 11438 } 11439 11440 /* rtnl_lock is acquired before calling this function */ 11441 static void bnxt_force_fw_reset(struct bnxt *bp) 11442 { 11443 struct bnxt_fw_health *fw_health = bp->fw_health; 11444 u32 wait_dsecs; 11445 11446 if (!test_bit(BNXT_STATE_OPEN, &bp->state) || 11447 test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 11448 return; 11449 11450 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 11451 bnxt_fw_reset_close(bp); 11452 wait_dsecs = fw_health->master_func_wait_dsecs; 11453 if (fw_health->master) { 11454 if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) 11455 wait_dsecs = 0; 11456 bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW; 11457 } else { 11458 bp->fw_reset_timestamp = jiffies + wait_dsecs * HZ / 10; 11459 wait_dsecs = fw_health->normal_func_wait_dsecs; 11460 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 11461 } 11462 11463 bp->fw_reset_min_dsecs = fw_health->post_reset_wait_dsecs; 11464 bp->fw_reset_max_dsecs = fw_health->post_reset_max_wait_dsecs; 11465 bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10); 11466 } 11467 11468 void bnxt_fw_exception(struct bnxt *bp) 11469 { 11470 netdev_warn(bp->dev, "Detected firmware fatal condition, initiating reset\n"); 11471 set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 11472 bnxt_rtnl_lock_sp(bp); 11473 bnxt_force_fw_reset(bp); 11474 bnxt_rtnl_unlock_sp(bp); 11475 } 11476 11477 /* Returns the number of registered VFs, or 1 if VF configuration is pending, or 11478 * < 0 on error. 11479 */ 11480 static int bnxt_get_registered_vfs(struct bnxt *bp) 11481 { 11482 #ifdef CONFIG_BNXT_SRIOV 11483 int rc; 11484 11485 if (!BNXT_PF(bp)) 11486 return 0; 11487 11488 rc = bnxt_hwrm_func_qcfg(bp); 11489 if (rc) { 11490 netdev_err(bp->dev, "func_qcfg cmd failed, rc = %d\n", rc); 11491 return rc; 11492 } 11493 if (bp->pf.registered_vfs) 11494 return bp->pf.registered_vfs; 11495 if (bp->sriov_cfg) 11496 return 1; 11497 #endif 11498 return 0; 11499 } 11500 11501 void bnxt_fw_reset(struct bnxt *bp) 11502 { 11503 bnxt_rtnl_lock_sp(bp); 11504 if (test_bit(BNXT_STATE_OPEN, &bp->state) && 11505 !test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 11506 int n = 0, tmo; 11507 11508 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 11509 if (bp->pf.active_vfs && 11510 !test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) 11511 n = bnxt_get_registered_vfs(bp); 11512 if (n < 0) { 11513 netdev_err(bp->dev, "Firmware reset aborted, rc = %d\n", 11514 n); 11515 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 11516 dev_close(bp->dev); 11517 goto fw_reset_exit; 11518 } else if (n > 0) { 11519 u16 vf_tmo_dsecs = n * 10; 11520 11521 if (bp->fw_reset_max_dsecs < vf_tmo_dsecs) 11522 bp->fw_reset_max_dsecs = vf_tmo_dsecs; 11523 bp->fw_reset_state = 11524 BNXT_FW_RESET_STATE_POLL_VF; 11525 bnxt_queue_fw_reset_work(bp, HZ / 10); 11526 goto fw_reset_exit; 11527 } 11528 bnxt_fw_reset_close(bp); 11529 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 11530 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN; 11531 tmo = HZ / 10; 11532 } else { 11533 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 11534 tmo = bp->fw_reset_min_dsecs * HZ / 10; 11535 } 11536 bnxt_queue_fw_reset_work(bp, tmo); 11537 } 11538 fw_reset_exit: 11539 bnxt_rtnl_unlock_sp(bp); 11540 } 11541 11542 static void bnxt_chk_missed_irq(struct bnxt *bp) 11543 { 11544 int i; 11545 11546 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 11547 return; 11548 11549 for (i = 0; i < bp->cp_nr_rings; i++) { 11550 struct bnxt_napi *bnapi = bp->bnapi[i]; 11551 struct bnxt_cp_ring_info *cpr; 11552 u32 fw_ring_id; 11553 int j; 11554 11555 if (!bnapi) 11556 continue; 11557 11558 cpr = &bnapi->cp_ring; 11559 for (j = 0; j < 2; j++) { 11560 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j]; 11561 u32 val[2]; 11562 11563 if (!cpr2 || cpr2->has_more_work || 11564 !bnxt_has_work(bp, cpr2)) 11565 continue; 11566 11567 if (cpr2->cp_raw_cons != cpr2->last_cp_raw_cons) { 11568 cpr2->last_cp_raw_cons = cpr2->cp_raw_cons; 11569 continue; 11570 } 11571 fw_ring_id = cpr2->cp_ring_struct.fw_ring_id; 11572 bnxt_dbg_hwrm_ring_info_get(bp, 11573 DBG_RING_INFO_GET_REQ_RING_TYPE_L2_CMPL, 11574 fw_ring_id, &val[0], &val[1]); 11575 cpr->sw_stats.cmn.missed_irqs++; 11576 } 11577 } 11578 } 11579 11580 static void bnxt_cfg_ntp_filters(struct bnxt *); 11581 11582 static void bnxt_init_ethtool_link_settings(struct bnxt *bp) 11583 { 11584 struct bnxt_link_info *link_info = &bp->link_info; 11585 11586 if (BNXT_AUTO_MODE(link_info->auto_mode)) { 11587 link_info->autoneg = BNXT_AUTONEG_SPEED; 11588 if (bp->hwrm_spec_code >= 0x10201) { 11589 if (link_info->auto_pause_setting & 11590 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE) 11591 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL; 11592 } else { 11593 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL; 11594 } 11595 link_info->advertising = link_info->auto_link_speeds; 11596 link_info->advertising_pam4 = link_info->auto_pam4_link_speeds; 11597 } else { 11598 link_info->req_link_speed = link_info->force_link_speed; 11599 link_info->req_signal_mode = BNXT_SIG_MODE_NRZ; 11600 if (link_info->force_pam4_link_speed) { 11601 link_info->req_link_speed = 11602 link_info->force_pam4_link_speed; 11603 link_info->req_signal_mode = BNXT_SIG_MODE_PAM4; 11604 } 11605 link_info->req_duplex = link_info->duplex_setting; 11606 } 11607 if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) 11608 link_info->req_flow_ctrl = 11609 link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH; 11610 else 11611 link_info->req_flow_ctrl = link_info->force_pause_setting; 11612 } 11613 11614 static void bnxt_fw_echo_reply(struct bnxt *bp) 11615 { 11616 struct bnxt_fw_health *fw_health = bp->fw_health; 11617 struct hwrm_func_echo_response_input req = {0}; 11618 11619 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_ECHO_RESPONSE, -1, -1); 11620 req.event_data1 = cpu_to_le32(fw_health->echo_req_data1); 11621 req.event_data2 = cpu_to_le32(fw_health->echo_req_data2); 11622 hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 11623 } 11624 11625 static void bnxt_sp_task(struct work_struct *work) 11626 { 11627 struct bnxt *bp = container_of(work, struct bnxt, sp_task); 11628 11629 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 11630 smp_mb__after_atomic(); 11631 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 11632 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 11633 return; 11634 } 11635 11636 if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event)) 11637 bnxt_cfg_rx_mode(bp); 11638 11639 if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event)) 11640 bnxt_cfg_ntp_filters(bp); 11641 if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event)) 11642 bnxt_hwrm_exec_fwd_req(bp); 11643 if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) { 11644 bnxt_hwrm_port_qstats(bp, 0); 11645 bnxt_hwrm_port_qstats_ext(bp, 0); 11646 bnxt_accumulate_all_stats(bp); 11647 } 11648 11649 if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) { 11650 int rc; 11651 11652 mutex_lock(&bp->link_lock); 11653 if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, 11654 &bp->sp_event)) 11655 bnxt_hwrm_phy_qcaps(bp); 11656 11657 rc = bnxt_update_link(bp, true); 11658 if (rc) 11659 netdev_err(bp->dev, "SP task can't update link (rc: %x)\n", 11660 rc); 11661 11662 if (test_and_clear_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, 11663 &bp->sp_event)) 11664 bnxt_init_ethtool_link_settings(bp); 11665 mutex_unlock(&bp->link_lock); 11666 } 11667 if (test_and_clear_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event)) { 11668 int rc; 11669 11670 mutex_lock(&bp->link_lock); 11671 rc = bnxt_update_phy_setting(bp); 11672 mutex_unlock(&bp->link_lock); 11673 if (rc) { 11674 netdev_warn(bp->dev, "update phy settings retry failed\n"); 11675 } else { 11676 bp->link_info.phy_retry = false; 11677 netdev_info(bp->dev, "update phy settings retry succeeded\n"); 11678 } 11679 } 11680 if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) { 11681 mutex_lock(&bp->link_lock); 11682 bnxt_get_port_module_status(bp); 11683 mutex_unlock(&bp->link_lock); 11684 } 11685 11686 if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event)) 11687 bnxt_tc_flow_stats_work(bp); 11688 11689 if (test_and_clear_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event)) 11690 bnxt_chk_missed_irq(bp); 11691 11692 if (test_and_clear_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event)) 11693 bnxt_fw_echo_reply(bp); 11694 11695 /* These functions below will clear BNXT_STATE_IN_SP_TASK. They 11696 * must be the last functions to be called before exiting. 11697 */ 11698 if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event)) 11699 bnxt_reset(bp, false); 11700 11701 if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event)) 11702 bnxt_reset(bp, true); 11703 11704 if (test_and_clear_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event)) 11705 bnxt_rx_ring_reset(bp); 11706 11707 if (test_and_clear_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event)) 11708 bnxt_devlink_health_report(bp, BNXT_FW_RESET_NOTIFY_SP_EVENT); 11709 11710 if (test_and_clear_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event)) { 11711 if (!is_bnxt_fw_ok(bp)) 11712 bnxt_devlink_health_report(bp, 11713 BNXT_FW_EXCEPTION_SP_EVENT); 11714 } 11715 11716 smp_mb__before_atomic(); 11717 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 11718 } 11719 11720 /* Under rtnl_lock */ 11721 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs, 11722 int tx_xdp) 11723 { 11724 int max_rx, max_tx, tx_sets = 1; 11725 int tx_rings_needed, stats; 11726 int rx_rings = rx; 11727 int cp, vnics, rc; 11728 11729 if (tcs) 11730 tx_sets = tcs; 11731 11732 rc = bnxt_get_max_rings(bp, &max_rx, &max_tx, sh); 11733 if (rc) 11734 return rc; 11735 11736 if (max_rx < rx) 11737 return -ENOMEM; 11738 11739 tx_rings_needed = tx * tx_sets + tx_xdp; 11740 if (max_tx < tx_rings_needed) 11741 return -ENOMEM; 11742 11743 vnics = 1; 11744 if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS) 11745 vnics += rx_rings; 11746 11747 if (bp->flags & BNXT_FLAG_AGG_RINGS) 11748 rx_rings <<= 1; 11749 cp = sh ? max_t(int, tx_rings_needed, rx) : tx_rings_needed + rx; 11750 stats = cp; 11751 if (BNXT_NEW_RM(bp)) { 11752 cp += bnxt_get_ulp_msix_num(bp); 11753 stats += bnxt_get_ulp_stat_ctxs(bp); 11754 } 11755 return bnxt_hwrm_check_rings(bp, tx_rings_needed, rx_rings, rx, cp, 11756 stats, vnics); 11757 } 11758 11759 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev) 11760 { 11761 if (bp->bar2) { 11762 pci_iounmap(pdev, bp->bar2); 11763 bp->bar2 = NULL; 11764 } 11765 11766 if (bp->bar1) { 11767 pci_iounmap(pdev, bp->bar1); 11768 bp->bar1 = NULL; 11769 } 11770 11771 if (bp->bar0) { 11772 pci_iounmap(pdev, bp->bar0); 11773 bp->bar0 = NULL; 11774 } 11775 } 11776 11777 static void bnxt_cleanup_pci(struct bnxt *bp) 11778 { 11779 bnxt_unmap_bars(bp, bp->pdev); 11780 pci_release_regions(bp->pdev); 11781 if (pci_is_enabled(bp->pdev)) 11782 pci_disable_device(bp->pdev); 11783 } 11784 11785 static void bnxt_init_dflt_coal(struct bnxt *bp) 11786 { 11787 struct bnxt_coal *coal; 11788 11789 /* Tick values in micro seconds. 11790 * 1 coal_buf x bufs_per_record = 1 completion record. 11791 */ 11792 coal = &bp->rx_coal; 11793 coal->coal_ticks = 10; 11794 coal->coal_bufs = 30; 11795 coal->coal_ticks_irq = 1; 11796 coal->coal_bufs_irq = 2; 11797 coal->idle_thresh = 50; 11798 coal->bufs_per_record = 2; 11799 coal->budget = 64; /* NAPI budget */ 11800 11801 coal = &bp->tx_coal; 11802 coal->coal_ticks = 28; 11803 coal->coal_bufs = 30; 11804 coal->coal_ticks_irq = 2; 11805 coal->coal_bufs_irq = 2; 11806 coal->bufs_per_record = 1; 11807 11808 bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS; 11809 } 11810 11811 static int bnxt_fw_init_one_p1(struct bnxt *bp) 11812 { 11813 int rc; 11814 11815 bp->fw_cap = 0; 11816 rc = bnxt_hwrm_ver_get(bp); 11817 bnxt_try_map_fw_health_reg(bp); 11818 if (rc) { 11819 rc = bnxt_try_recover_fw(bp); 11820 if (rc) 11821 return rc; 11822 rc = bnxt_hwrm_ver_get(bp); 11823 if (rc) 11824 return rc; 11825 } 11826 11827 if (bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL) { 11828 rc = bnxt_alloc_kong_hwrm_resources(bp); 11829 if (rc) 11830 bp->fw_cap &= ~BNXT_FW_CAP_KONG_MB_CHNL; 11831 } 11832 11833 if ((bp->fw_cap & BNXT_FW_CAP_SHORT_CMD) || 11834 bp->hwrm_max_ext_req_len > BNXT_HWRM_MAX_REQ_LEN) { 11835 rc = bnxt_alloc_hwrm_short_cmd_req(bp); 11836 if (rc) 11837 return rc; 11838 } 11839 bnxt_nvm_cfg_ver_get(bp); 11840 11841 rc = bnxt_hwrm_func_reset(bp); 11842 if (rc) 11843 return -ENODEV; 11844 11845 bnxt_hwrm_fw_set_time(bp); 11846 return 0; 11847 } 11848 11849 static int bnxt_fw_init_one_p2(struct bnxt *bp) 11850 { 11851 int rc; 11852 11853 /* Get the MAX capabilities for this function */ 11854 rc = bnxt_hwrm_func_qcaps(bp); 11855 if (rc) { 11856 netdev_err(bp->dev, "hwrm query capability failure rc: %x\n", 11857 rc); 11858 return -ENODEV; 11859 } 11860 11861 rc = bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(bp); 11862 if (rc) 11863 netdev_warn(bp->dev, "hwrm query adv flow mgnt failure rc: %d\n", 11864 rc); 11865 11866 if (bnxt_alloc_fw_health(bp)) { 11867 netdev_warn(bp->dev, "no memory for firmware error recovery\n"); 11868 } else { 11869 rc = bnxt_hwrm_error_recovery_qcfg(bp); 11870 if (rc) 11871 netdev_warn(bp->dev, "hwrm query error recovery failure rc: %d\n", 11872 rc); 11873 } 11874 11875 rc = bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false); 11876 if (rc) 11877 return -ENODEV; 11878 11879 bnxt_hwrm_func_qcfg(bp); 11880 bnxt_hwrm_vnic_qcaps(bp); 11881 bnxt_hwrm_port_led_qcaps(bp); 11882 bnxt_ethtool_init(bp); 11883 bnxt_dcb_init(bp); 11884 return 0; 11885 } 11886 11887 static void bnxt_set_dflt_rss_hash_type(struct bnxt *bp) 11888 { 11889 bp->flags &= ~BNXT_FLAG_UDP_RSS_CAP; 11890 bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 | 11891 VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 | 11892 VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 | 11893 VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6; 11894 if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) { 11895 bp->flags |= BNXT_FLAG_UDP_RSS_CAP; 11896 bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 | 11897 VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6; 11898 } 11899 } 11900 11901 static void bnxt_set_dflt_rfs(struct bnxt *bp) 11902 { 11903 struct net_device *dev = bp->dev; 11904 11905 dev->hw_features &= ~NETIF_F_NTUPLE; 11906 dev->features &= ~NETIF_F_NTUPLE; 11907 bp->flags &= ~BNXT_FLAG_RFS; 11908 if (bnxt_rfs_supported(bp)) { 11909 dev->hw_features |= NETIF_F_NTUPLE; 11910 if (bnxt_rfs_capable(bp)) { 11911 bp->flags |= BNXT_FLAG_RFS; 11912 dev->features |= NETIF_F_NTUPLE; 11913 } 11914 } 11915 } 11916 11917 static void bnxt_fw_init_one_p3(struct bnxt *bp) 11918 { 11919 struct pci_dev *pdev = bp->pdev; 11920 11921 bnxt_set_dflt_rss_hash_type(bp); 11922 bnxt_set_dflt_rfs(bp); 11923 11924 bnxt_get_wol_settings(bp); 11925 if (bp->flags & BNXT_FLAG_WOL_CAP) 11926 device_set_wakeup_enable(&pdev->dev, bp->wol); 11927 else 11928 device_set_wakeup_capable(&pdev->dev, false); 11929 11930 bnxt_hwrm_set_cache_line_size(bp, cache_line_size()); 11931 bnxt_hwrm_coal_params_qcaps(bp); 11932 } 11933 11934 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt); 11935 11936 static int bnxt_fw_init_one(struct bnxt *bp) 11937 { 11938 int rc; 11939 11940 rc = bnxt_fw_init_one_p1(bp); 11941 if (rc) { 11942 netdev_err(bp->dev, "Firmware init phase 1 failed\n"); 11943 return rc; 11944 } 11945 rc = bnxt_fw_init_one_p2(bp); 11946 if (rc) { 11947 netdev_err(bp->dev, "Firmware init phase 2 failed\n"); 11948 return rc; 11949 } 11950 rc = bnxt_probe_phy(bp, false); 11951 if (rc) 11952 return rc; 11953 rc = bnxt_approve_mac(bp, bp->dev->dev_addr, false); 11954 if (rc) 11955 return rc; 11956 11957 /* In case fw capabilities have changed, destroy the unneeded 11958 * reporters and create newly capable ones. 11959 */ 11960 bnxt_dl_fw_reporters_destroy(bp, false); 11961 bnxt_dl_fw_reporters_create(bp); 11962 bnxt_fw_init_one_p3(bp); 11963 return 0; 11964 } 11965 11966 static void bnxt_fw_reset_writel(struct bnxt *bp, int reg_idx) 11967 { 11968 struct bnxt_fw_health *fw_health = bp->fw_health; 11969 u32 reg = fw_health->fw_reset_seq_regs[reg_idx]; 11970 u32 val = fw_health->fw_reset_seq_vals[reg_idx]; 11971 u32 reg_type, reg_off, delay_msecs; 11972 11973 delay_msecs = fw_health->fw_reset_seq_delay_msec[reg_idx]; 11974 reg_type = BNXT_FW_HEALTH_REG_TYPE(reg); 11975 reg_off = BNXT_FW_HEALTH_REG_OFF(reg); 11976 switch (reg_type) { 11977 case BNXT_FW_HEALTH_REG_TYPE_CFG: 11978 pci_write_config_dword(bp->pdev, reg_off, val); 11979 break; 11980 case BNXT_FW_HEALTH_REG_TYPE_GRC: 11981 writel(reg_off & BNXT_GRC_BASE_MASK, 11982 bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4); 11983 reg_off = (reg_off & BNXT_GRC_OFFSET_MASK) + 0x2000; 11984 fallthrough; 11985 case BNXT_FW_HEALTH_REG_TYPE_BAR0: 11986 writel(val, bp->bar0 + reg_off); 11987 break; 11988 case BNXT_FW_HEALTH_REG_TYPE_BAR1: 11989 writel(val, bp->bar1 + reg_off); 11990 break; 11991 } 11992 if (delay_msecs) { 11993 pci_read_config_dword(bp->pdev, 0, &val); 11994 msleep(delay_msecs); 11995 } 11996 } 11997 11998 static void bnxt_reset_all(struct bnxt *bp) 11999 { 12000 struct bnxt_fw_health *fw_health = bp->fw_health; 12001 int i, rc; 12002 12003 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 12004 bnxt_fw_reset_via_optee(bp); 12005 bp->fw_reset_timestamp = jiffies; 12006 return; 12007 } 12008 12009 if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_HOST) { 12010 for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) 12011 bnxt_fw_reset_writel(bp, i); 12012 } else if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) { 12013 struct hwrm_fw_reset_input req = {0}; 12014 12015 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FW_RESET, -1, -1); 12016 req.resp_addr = cpu_to_le64(bp->hwrm_cmd_kong_resp_dma_addr); 12017 req.embedded_proc_type = FW_RESET_REQ_EMBEDDED_PROC_TYPE_CHIP; 12018 req.selfrst_status = FW_RESET_REQ_SELFRST_STATUS_SELFRSTASAP; 12019 req.flags = FW_RESET_REQ_FLAGS_RESET_GRACEFUL; 12020 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 12021 if (rc != -ENODEV) 12022 netdev_warn(bp->dev, "Unable to reset FW rc=%d\n", rc); 12023 } 12024 bp->fw_reset_timestamp = jiffies; 12025 } 12026 12027 static bool bnxt_fw_reset_timeout(struct bnxt *bp) 12028 { 12029 return time_after(jiffies, bp->fw_reset_timestamp + 12030 (bp->fw_reset_max_dsecs * HZ / 10)); 12031 } 12032 12033 static void bnxt_fw_reset_abort(struct bnxt *bp, int rc) 12034 { 12035 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 12036 if (bp->fw_reset_state != BNXT_FW_RESET_STATE_POLL_VF) { 12037 bnxt_ulp_start(bp, rc); 12038 bnxt_dl_health_status_update(bp, false); 12039 } 12040 bp->fw_reset_state = 0; 12041 dev_close(bp->dev); 12042 } 12043 12044 static void bnxt_fw_reset_task(struct work_struct *work) 12045 { 12046 struct bnxt *bp = container_of(work, struct bnxt, fw_reset_task.work); 12047 int rc = 0; 12048 12049 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 12050 netdev_err(bp->dev, "bnxt_fw_reset_task() called when not in fw reset mode!\n"); 12051 return; 12052 } 12053 12054 switch (bp->fw_reset_state) { 12055 case BNXT_FW_RESET_STATE_POLL_VF: { 12056 int n = bnxt_get_registered_vfs(bp); 12057 int tmo; 12058 12059 if (n < 0) { 12060 netdev_err(bp->dev, "Firmware reset aborted, subsequent func_qcfg cmd failed, rc = %d, %d msecs since reset timestamp\n", 12061 n, jiffies_to_msecs(jiffies - 12062 bp->fw_reset_timestamp)); 12063 goto fw_reset_abort; 12064 } else if (n > 0) { 12065 if (bnxt_fw_reset_timeout(bp)) { 12066 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 12067 bp->fw_reset_state = 0; 12068 netdev_err(bp->dev, "Firmware reset aborted, bnxt_get_registered_vfs() returns %d\n", 12069 n); 12070 return; 12071 } 12072 bnxt_queue_fw_reset_work(bp, HZ / 10); 12073 return; 12074 } 12075 bp->fw_reset_timestamp = jiffies; 12076 rtnl_lock(); 12077 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 12078 bnxt_fw_reset_abort(bp, rc); 12079 rtnl_unlock(); 12080 return; 12081 } 12082 bnxt_fw_reset_close(bp); 12083 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 12084 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN; 12085 tmo = HZ / 10; 12086 } else { 12087 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 12088 tmo = bp->fw_reset_min_dsecs * HZ / 10; 12089 } 12090 rtnl_unlock(); 12091 bnxt_queue_fw_reset_work(bp, tmo); 12092 return; 12093 } 12094 case BNXT_FW_RESET_STATE_POLL_FW_DOWN: { 12095 u32 val; 12096 12097 val = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 12098 if (!(val & BNXT_FW_STATUS_SHUTDOWN) && 12099 !bnxt_fw_reset_timeout(bp)) { 12100 bnxt_queue_fw_reset_work(bp, HZ / 5); 12101 return; 12102 } 12103 12104 if (!bp->fw_health->master) { 12105 u32 wait_dsecs = bp->fw_health->normal_func_wait_dsecs; 12106 12107 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 12108 bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10); 12109 return; 12110 } 12111 bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW; 12112 } 12113 fallthrough; 12114 case BNXT_FW_RESET_STATE_RESET_FW: 12115 bnxt_reset_all(bp); 12116 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 12117 bnxt_queue_fw_reset_work(bp, bp->fw_reset_min_dsecs * HZ / 10); 12118 return; 12119 case BNXT_FW_RESET_STATE_ENABLE_DEV: 12120 bnxt_inv_fw_health_reg(bp); 12121 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) && 12122 !bp->fw_reset_min_dsecs) { 12123 u16 val; 12124 12125 pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val); 12126 if (val == 0xffff) { 12127 if (bnxt_fw_reset_timeout(bp)) { 12128 netdev_err(bp->dev, "Firmware reset aborted, PCI config space invalid\n"); 12129 rc = -ETIMEDOUT; 12130 goto fw_reset_abort; 12131 } 12132 bnxt_queue_fw_reset_work(bp, HZ / 1000); 12133 return; 12134 } 12135 } 12136 clear_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 12137 if (pci_enable_device(bp->pdev)) { 12138 netdev_err(bp->dev, "Cannot re-enable PCI device\n"); 12139 rc = -ENODEV; 12140 goto fw_reset_abort; 12141 } 12142 pci_set_master(bp->pdev); 12143 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW; 12144 fallthrough; 12145 case BNXT_FW_RESET_STATE_POLL_FW: 12146 bp->hwrm_cmd_timeout = SHORT_HWRM_CMD_TIMEOUT; 12147 rc = __bnxt_hwrm_ver_get(bp, true); 12148 if (rc) { 12149 if (bnxt_fw_reset_timeout(bp)) { 12150 netdev_err(bp->dev, "Firmware reset aborted\n"); 12151 goto fw_reset_abort_status; 12152 } 12153 bnxt_queue_fw_reset_work(bp, HZ / 5); 12154 return; 12155 } 12156 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT; 12157 bp->fw_reset_state = BNXT_FW_RESET_STATE_OPENING; 12158 fallthrough; 12159 case BNXT_FW_RESET_STATE_OPENING: 12160 while (!rtnl_trylock()) { 12161 bnxt_queue_fw_reset_work(bp, HZ / 10); 12162 return; 12163 } 12164 rc = bnxt_open(bp->dev); 12165 if (rc) { 12166 netdev_err(bp->dev, "bnxt_open() failed during FW reset\n"); 12167 bnxt_fw_reset_abort(bp, rc); 12168 rtnl_unlock(); 12169 return; 12170 } 12171 12172 bp->fw_reset_state = 0; 12173 /* Make sure fw_reset_state is 0 before clearing the flag */ 12174 smp_mb__before_atomic(); 12175 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 12176 bnxt_ulp_start(bp, 0); 12177 bnxt_reenable_sriov(bp); 12178 bnxt_vf_reps_alloc(bp); 12179 bnxt_vf_reps_open(bp); 12180 bnxt_dl_health_recovery_done(bp); 12181 bnxt_dl_health_status_update(bp, true); 12182 rtnl_unlock(); 12183 break; 12184 } 12185 return; 12186 12187 fw_reset_abort_status: 12188 if (bp->fw_health->status_reliable || 12189 (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) { 12190 u32 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 12191 12192 netdev_err(bp->dev, "fw_health_status 0x%x\n", sts); 12193 } 12194 fw_reset_abort: 12195 rtnl_lock(); 12196 bnxt_fw_reset_abort(bp, rc); 12197 rtnl_unlock(); 12198 } 12199 12200 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev) 12201 { 12202 int rc; 12203 struct bnxt *bp = netdev_priv(dev); 12204 12205 SET_NETDEV_DEV(dev, &pdev->dev); 12206 12207 /* enable device (incl. PCI PM wakeup), and bus-mastering */ 12208 rc = pci_enable_device(pdev); 12209 if (rc) { 12210 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n"); 12211 goto init_err; 12212 } 12213 12214 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { 12215 dev_err(&pdev->dev, 12216 "Cannot find PCI device base address, aborting\n"); 12217 rc = -ENODEV; 12218 goto init_err_disable; 12219 } 12220 12221 rc = pci_request_regions(pdev, DRV_MODULE_NAME); 12222 if (rc) { 12223 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n"); 12224 goto init_err_disable; 12225 } 12226 12227 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 && 12228 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) { 12229 dev_err(&pdev->dev, "System does not support DMA, aborting\n"); 12230 rc = -EIO; 12231 goto init_err_release; 12232 } 12233 12234 pci_set_master(pdev); 12235 12236 bp->dev = dev; 12237 bp->pdev = pdev; 12238 12239 /* Doorbell BAR bp->bar1 is mapped after bnxt_fw_init_one_p2() 12240 * determines the BAR size. 12241 */ 12242 bp->bar0 = pci_ioremap_bar(pdev, 0); 12243 if (!bp->bar0) { 12244 dev_err(&pdev->dev, "Cannot map device registers, aborting\n"); 12245 rc = -ENOMEM; 12246 goto init_err_release; 12247 } 12248 12249 bp->bar2 = pci_ioremap_bar(pdev, 4); 12250 if (!bp->bar2) { 12251 dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n"); 12252 rc = -ENOMEM; 12253 goto init_err_release; 12254 } 12255 12256 pci_enable_pcie_error_reporting(pdev); 12257 12258 INIT_WORK(&bp->sp_task, bnxt_sp_task); 12259 INIT_DELAYED_WORK(&bp->fw_reset_task, bnxt_fw_reset_task); 12260 12261 spin_lock_init(&bp->ntp_fltr_lock); 12262 #if BITS_PER_LONG == 32 12263 spin_lock_init(&bp->db_lock); 12264 #endif 12265 12266 bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE; 12267 bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE; 12268 12269 bnxt_init_dflt_coal(bp); 12270 12271 timer_setup(&bp->timer, bnxt_timer, 0); 12272 bp->current_interval = BNXT_TIMER_INTERVAL; 12273 12274 bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID; 12275 bp->nge_fw_dst_port_id = INVALID_HW_RING_ID; 12276 12277 clear_bit(BNXT_STATE_OPEN, &bp->state); 12278 return 0; 12279 12280 init_err_release: 12281 bnxt_unmap_bars(bp, pdev); 12282 pci_release_regions(pdev); 12283 12284 init_err_disable: 12285 pci_disable_device(pdev); 12286 12287 init_err: 12288 return rc; 12289 } 12290 12291 /* rtnl_lock held */ 12292 static int bnxt_change_mac_addr(struct net_device *dev, void *p) 12293 { 12294 struct sockaddr *addr = p; 12295 struct bnxt *bp = netdev_priv(dev); 12296 int rc = 0; 12297 12298 if (!is_valid_ether_addr(addr->sa_data)) 12299 return -EADDRNOTAVAIL; 12300 12301 if (ether_addr_equal(addr->sa_data, dev->dev_addr)) 12302 return 0; 12303 12304 rc = bnxt_approve_mac(bp, addr->sa_data, true); 12305 if (rc) 12306 return rc; 12307 12308 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 12309 if (netif_running(dev)) { 12310 bnxt_close_nic(bp, false, false); 12311 rc = bnxt_open_nic(bp, false, false); 12312 } 12313 12314 return rc; 12315 } 12316 12317 /* rtnl_lock held */ 12318 static int bnxt_change_mtu(struct net_device *dev, int new_mtu) 12319 { 12320 struct bnxt *bp = netdev_priv(dev); 12321 12322 if (netif_running(dev)) 12323 bnxt_close_nic(bp, true, false); 12324 12325 dev->mtu = new_mtu; 12326 bnxt_set_ring_params(bp); 12327 12328 if (netif_running(dev)) 12329 return bnxt_open_nic(bp, true, false); 12330 12331 return 0; 12332 } 12333 12334 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc) 12335 { 12336 struct bnxt *bp = netdev_priv(dev); 12337 bool sh = false; 12338 int rc; 12339 12340 if (tc > bp->max_tc) { 12341 netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n", 12342 tc, bp->max_tc); 12343 return -EINVAL; 12344 } 12345 12346 if (netdev_get_num_tc(dev) == tc) 12347 return 0; 12348 12349 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 12350 sh = true; 12351 12352 rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings, 12353 sh, tc, bp->tx_nr_rings_xdp); 12354 if (rc) 12355 return rc; 12356 12357 /* Needs to close the device and do hw resource re-allocations */ 12358 if (netif_running(bp->dev)) 12359 bnxt_close_nic(bp, true, false); 12360 12361 if (tc) { 12362 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc; 12363 netdev_set_num_tc(dev, tc); 12364 } else { 12365 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 12366 netdev_reset_tc(dev); 12367 } 12368 bp->tx_nr_rings += bp->tx_nr_rings_xdp; 12369 bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) : 12370 bp->tx_nr_rings + bp->rx_nr_rings; 12371 12372 if (netif_running(bp->dev)) 12373 return bnxt_open_nic(bp, true, false); 12374 12375 return 0; 12376 } 12377 12378 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 12379 void *cb_priv) 12380 { 12381 struct bnxt *bp = cb_priv; 12382 12383 if (!bnxt_tc_flower_enabled(bp) || 12384 !tc_cls_can_offload_and_chain0(bp->dev, type_data)) 12385 return -EOPNOTSUPP; 12386 12387 switch (type) { 12388 case TC_SETUP_CLSFLOWER: 12389 return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data); 12390 default: 12391 return -EOPNOTSUPP; 12392 } 12393 } 12394 12395 LIST_HEAD(bnxt_block_cb_list); 12396 12397 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type, 12398 void *type_data) 12399 { 12400 struct bnxt *bp = netdev_priv(dev); 12401 12402 switch (type) { 12403 case TC_SETUP_BLOCK: 12404 return flow_block_cb_setup_simple(type_data, 12405 &bnxt_block_cb_list, 12406 bnxt_setup_tc_block_cb, 12407 bp, bp, true); 12408 case TC_SETUP_QDISC_MQPRIO: { 12409 struct tc_mqprio_qopt *mqprio = type_data; 12410 12411 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 12412 12413 return bnxt_setup_mq_tc(dev, mqprio->num_tc); 12414 } 12415 default: 12416 return -EOPNOTSUPP; 12417 } 12418 } 12419 12420 #ifdef CONFIG_RFS_ACCEL 12421 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1, 12422 struct bnxt_ntuple_filter *f2) 12423 { 12424 struct flow_keys *keys1 = &f1->fkeys; 12425 struct flow_keys *keys2 = &f2->fkeys; 12426 12427 if (keys1->basic.n_proto != keys2->basic.n_proto || 12428 keys1->basic.ip_proto != keys2->basic.ip_proto) 12429 return false; 12430 12431 if (keys1->basic.n_proto == htons(ETH_P_IP)) { 12432 if (keys1->addrs.v4addrs.src != keys2->addrs.v4addrs.src || 12433 keys1->addrs.v4addrs.dst != keys2->addrs.v4addrs.dst) 12434 return false; 12435 } else { 12436 if (memcmp(&keys1->addrs.v6addrs.src, &keys2->addrs.v6addrs.src, 12437 sizeof(keys1->addrs.v6addrs.src)) || 12438 memcmp(&keys1->addrs.v6addrs.dst, &keys2->addrs.v6addrs.dst, 12439 sizeof(keys1->addrs.v6addrs.dst))) 12440 return false; 12441 } 12442 12443 if (keys1->ports.ports == keys2->ports.ports && 12444 keys1->control.flags == keys2->control.flags && 12445 ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) && 12446 ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr)) 12447 return true; 12448 12449 return false; 12450 } 12451 12452 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb, 12453 u16 rxq_index, u32 flow_id) 12454 { 12455 struct bnxt *bp = netdev_priv(dev); 12456 struct bnxt_ntuple_filter *fltr, *new_fltr; 12457 struct flow_keys *fkeys; 12458 struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb); 12459 int rc = 0, idx, bit_id, l2_idx = 0; 12460 struct hlist_head *head; 12461 u32 flags; 12462 12463 if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) { 12464 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 12465 int off = 0, j; 12466 12467 netif_addr_lock_bh(dev); 12468 for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) { 12469 if (ether_addr_equal(eth->h_dest, 12470 vnic->uc_list + off)) { 12471 l2_idx = j + 1; 12472 break; 12473 } 12474 } 12475 netif_addr_unlock_bh(dev); 12476 if (!l2_idx) 12477 return -EINVAL; 12478 } 12479 new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC); 12480 if (!new_fltr) 12481 return -ENOMEM; 12482 12483 fkeys = &new_fltr->fkeys; 12484 if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) { 12485 rc = -EPROTONOSUPPORT; 12486 goto err_free; 12487 } 12488 12489 if ((fkeys->basic.n_proto != htons(ETH_P_IP) && 12490 fkeys->basic.n_proto != htons(ETH_P_IPV6)) || 12491 ((fkeys->basic.ip_proto != IPPROTO_TCP) && 12492 (fkeys->basic.ip_proto != IPPROTO_UDP))) { 12493 rc = -EPROTONOSUPPORT; 12494 goto err_free; 12495 } 12496 if (fkeys->basic.n_proto == htons(ETH_P_IPV6) && 12497 bp->hwrm_spec_code < 0x10601) { 12498 rc = -EPROTONOSUPPORT; 12499 goto err_free; 12500 } 12501 flags = fkeys->control.flags; 12502 if (((flags & FLOW_DIS_ENCAPSULATION) && 12503 bp->hwrm_spec_code < 0x10601) || (flags & FLOW_DIS_IS_FRAGMENT)) { 12504 rc = -EPROTONOSUPPORT; 12505 goto err_free; 12506 } 12507 12508 memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN); 12509 memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN); 12510 12511 idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK; 12512 head = &bp->ntp_fltr_hash_tbl[idx]; 12513 rcu_read_lock(); 12514 hlist_for_each_entry_rcu(fltr, head, hash) { 12515 if (bnxt_fltr_match(fltr, new_fltr)) { 12516 rcu_read_unlock(); 12517 rc = 0; 12518 goto err_free; 12519 } 12520 } 12521 rcu_read_unlock(); 12522 12523 spin_lock_bh(&bp->ntp_fltr_lock); 12524 bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap, 12525 BNXT_NTP_FLTR_MAX_FLTR, 0); 12526 if (bit_id < 0) { 12527 spin_unlock_bh(&bp->ntp_fltr_lock); 12528 rc = -ENOMEM; 12529 goto err_free; 12530 } 12531 12532 new_fltr->sw_id = (u16)bit_id; 12533 new_fltr->flow_id = flow_id; 12534 new_fltr->l2_fltr_idx = l2_idx; 12535 new_fltr->rxq = rxq_index; 12536 hlist_add_head_rcu(&new_fltr->hash, head); 12537 bp->ntp_fltr_count++; 12538 spin_unlock_bh(&bp->ntp_fltr_lock); 12539 12540 set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event); 12541 bnxt_queue_sp_work(bp); 12542 12543 return new_fltr->sw_id; 12544 12545 err_free: 12546 kfree(new_fltr); 12547 return rc; 12548 } 12549 12550 static void bnxt_cfg_ntp_filters(struct bnxt *bp) 12551 { 12552 int i; 12553 12554 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) { 12555 struct hlist_head *head; 12556 struct hlist_node *tmp; 12557 struct bnxt_ntuple_filter *fltr; 12558 int rc; 12559 12560 head = &bp->ntp_fltr_hash_tbl[i]; 12561 hlist_for_each_entry_safe(fltr, tmp, head, hash) { 12562 bool del = false; 12563 12564 if (test_bit(BNXT_FLTR_VALID, &fltr->state)) { 12565 if (rps_may_expire_flow(bp->dev, fltr->rxq, 12566 fltr->flow_id, 12567 fltr->sw_id)) { 12568 bnxt_hwrm_cfa_ntuple_filter_free(bp, 12569 fltr); 12570 del = true; 12571 } 12572 } else { 12573 rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp, 12574 fltr); 12575 if (rc) 12576 del = true; 12577 else 12578 set_bit(BNXT_FLTR_VALID, &fltr->state); 12579 } 12580 12581 if (del) { 12582 spin_lock_bh(&bp->ntp_fltr_lock); 12583 hlist_del_rcu(&fltr->hash); 12584 bp->ntp_fltr_count--; 12585 spin_unlock_bh(&bp->ntp_fltr_lock); 12586 synchronize_rcu(); 12587 clear_bit(fltr->sw_id, bp->ntp_fltr_bmap); 12588 kfree(fltr); 12589 } 12590 } 12591 } 12592 if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event)) 12593 netdev_info(bp->dev, "Receive PF driver unload event!\n"); 12594 } 12595 12596 #else 12597 12598 static void bnxt_cfg_ntp_filters(struct bnxt *bp) 12599 { 12600 } 12601 12602 #endif /* CONFIG_RFS_ACCEL */ 12603 12604 static int bnxt_udp_tunnel_sync(struct net_device *netdev, unsigned int table) 12605 { 12606 struct bnxt *bp = netdev_priv(netdev); 12607 struct udp_tunnel_info ti; 12608 unsigned int cmd; 12609 12610 udp_tunnel_nic_get_port(netdev, table, 0, &ti); 12611 if (ti.type == UDP_TUNNEL_TYPE_VXLAN) { 12612 bp->vxlan_port = ti.port; 12613 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN; 12614 } else { 12615 bp->nge_port = ti.port; 12616 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE; 12617 } 12618 12619 if (ti.port) 12620 return bnxt_hwrm_tunnel_dst_port_alloc(bp, ti.port, cmd); 12621 12622 return bnxt_hwrm_tunnel_dst_port_free(bp, cmd); 12623 } 12624 12625 static const struct udp_tunnel_nic_info bnxt_udp_tunnels = { 12626 .sync_table = bnxt_udp_tunnel_sync, 12627 .flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP | 12628 UDP_TUNNEL_NIC_INFO_OPEN_ONLY, 12629 .tables = { 12630 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN, }, 12631 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, }, 12632 }, 12633 }; 12634 12635 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 12636 struct net_device *dev, u32 filter_mask, 12637 int nlflags) 12638 { 12639 struct bnxt *bp = netdev_priv(dev); 12640 12641 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0, 12642 nlflags, filter_mask, NULL); 12643 } 12644 12645 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 12646 u16 flags, struct netlink_ext_ack *extack) 12647 { 12648 struct bnxt *bp = netdev_priv(dev); 12649 struct nlattr *attr, *br_spec; 12650 int rem, rc = 0; 12651 12652 if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp)) 12653 return -EOPNOTSUPP; 12654 12655 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 12656 if (!br_spec) 12657 return -EINVAL; 12658 12659 nla_for_each_nested(attr, br_spec, rem) { 12660 u16 mode; 12661 12662 if (nla_type(attr) != IFLA_BRIDGE_MODE) 12663 continue; 12664 12665 if (nla_len(attr) < sizeof(mode)) 12666 return -EINVAL; 12667 12668 mode = nla_get_u16(attr); 12669 if (mode == bp->br_mode) 12670 break; 12671 12672 rc = bnxt_hwrm_set_br_mode(bp, mode); 12673 if (!rc) 12674 bp->br_mode = mode; 12675 break; 12676 } 12677 return rc; 12678 } 12679 12680 int bnxt_get_port_parent_id(struct net_device *dev, 12681 struct netdev_phys_item_id *ppid) 12682 { 12683 struct bnxt *bp = netdev_priv(dev); 12684 12685 if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV) 12686 return -EOPNOTSUPP; 12687 12688 /* The PF and it's VF-reps only support the switchdev framework */ 12689 if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_DSN_VALID)) 12690 return -EOPNOTSUPP; 12691 12692 ppid->id_len = sizeof(bp->dsn); 12693 memcpy(ppid->id, bp->dsn, ppid->id_len); 12694 12695 return 0; 12696 } 12697 12698 static struct devlink_port *bnxt_get_devlink_port(struct net_device *dev) 12699 { 12700 struct bnxt *bp = netdev_priv(dev); 12701 12702 return &bp->dl_port; 12703 } 12704 12705 static const struct net_device_ops bnxt_netdev_ops = { 12706 .ndo_open = bnxt_open, 12707 .ndo_start_xmit = bnxt_start_xmit, 12708 .ndo_stop = bnxt_close, 12709 .ndo_get_stats64 = bnxt_get_stats64, 12710 .ndo_set_rx_mode = bnxt_set_rx_mode, 12711 .ndo_do_ioctl = bnxt_ioctl, 12712 .ndo_validate_addr = eth_validate_addr, 12713 .ndo_set_mac_address = bnxt_change_mac_addr, 12714 .ndo_change_mtu = bnxt_change_mtu, 12715 .ndo_fix_features = bnxt_fix_features, 12716 .ndo_set_features = bnxt_set_features, 12717 .ndo_features_check = bnxt_features_check, 12718 .ndo_tx_timeout = bnxt_tx_timeout, 12719 #ifdef CONFIG_BNXT_SRIOV 12720 .ndo_get_vf_config = bnxt_get_vf_config, 12721 .ndo_set_vf_mac = bnxt_set_vf_mac, 12722 .ndo_set_vf_vlan = bnxt_set_vf_vlan, 12723 .ndo_set_vf_rate = bnxt_set_vf_bw, 12724 .ndo_set_vf_link_state = bnxt_set_vf_link_state, 12725 .ndo_set_vf_spoofchk = bnxt_set_vf_spoofchk, 12726 .ndo_set_vf_trust = bnxt_set_vf_trust, 12727 #endif 12728 .ndo_setup_tc = bnxt_setup_tc, 12729 #ifdef CONFIG_RFS_ACCEL 12730 .ndo_rx_flow_steer = bnxt_rx_flow_steer, 12731 #endif 12732 .ndo_bpf = bnxt_xdp, 12733 .ndo_xdp_xmit = bnxt_xdp_xmit, 12734 .ndo_bridge_getlink = bnxt_bridge_getlink, 12735 .ndo_bridge_setlink = bnxt_bridge_setlink, 12736 .ndo_get_devlink_port = bnxt_get_devlink_port, 12737 }; 12738 12739 static void bnxt_remove_one(struct pci_dev *pdev) 12740 { 12741 struct net_device *dev = pci_get_drvdata(pdev); 12742 struct bnxt *bp = netdev_priv(dev); 12743 12744 if (BNXT_PF(bp)) 12745 bnxt_sriov_disable(bp); 12746 12747 if (BNXT_PF(bp)) 12748 devlink_port_type_clear(&bp->dl_port); 12749 12750 pci_disable_pcie_error_reporting(pdev); 12751 unregister_netdev(dev); 12752 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 12753 /* Flush any pending tasks */ 12754 cancel_work_sync(&bp->sp_task); 12755 cancel_delayed_work_sync(&bp->fw_reset_task); 12756 bp->sp_event = 0; 12757 12758 bnxt_dl_fw_reporters_destroy(bp, true); 12759 bnxt_dl_unregister(bp); 12760 bnxt_shutdown_tc(bp); 12761 12762 bnxt_clear_int_mode(bp); 12763 bnxt_hwrm_func_drv_unrgtr(bp); 12764 bnxt_free_hwrm_resources(bp); 12765 bnxt_free_hwrm_short_cmd_req(bp); 12766 bnxt_ethtool_free(bp); 12767 bnxt_dcb_free(bp); 12768 kfree(bp->edev); 12769 bp->edev = NULL; 12770 kfree(bp->ptp_cfg); 12771 bp->ptp_cfg = NULL; 12772 kfree(bp->fw_health); 12773 bp->fw_health = NULL; 12774 bnxt_cleanup_pci(bp); 12775 bnxt_free_ctx_mem(bp); 12776 kfree(bp->ctx); 12777 bp->ctx = NULL; 12778 kfree(bp->rss_indir_tbl); 12779 bp->rss_indir_tbl = NULL; 12780 bnxt_free_port_stats(bp); 12781 free_netdev(dev); 12782 } 12783 12784 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt) 12785 { 12786 int rc = 0; 12787 struct bnxt_link_info *link_info = &bp->link_info; 12788 12789 bp->phy_flags = 0; 12790 rc = bnxt_hwrm_phy_qcaps(bp); 12791 if (rc) { 12792 netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n", 12793 rc); 12794 return rc; 12795 } 12796 if (bp->phy_flags & BNXT_PHY_FL_NO_FCS) 12797 bp->dev->priv_flags |= IFF_SUPP_NOFCS; 12798 else 12799 bp->dev->priv_flags &= ~IFF_SUPP_NOFCS; 12800 if (!fw_dflt) 12801 return 0; 12802 12803 rc = bnxt_update_link(bp, false); 12804 if (rc) { 12805 netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n", 12806 rc); 12807 return rc; 12808 } 12809 12810 /* Older firmware does not have supported_auto_speeds, so assume 12811 * that all supported speeds can be autonegotiated. 12812 */ 12813 if (link_info->auto_link_speeds && !link_info->support_auto_speeds) 12814 link_info->support_auto_speeds = link_info->support_speeds; 12815 12816 bnxt_init_ethtool_link_settings(bp); 12817 return 0; 12818 } 12819 12820 static int bnxt_get_max_irq(struct pci_dev *pdev) 12821 { 12822 u16 ctrl; 12823 12824 if (!pdev->msix_cap) 12825 return 1; 12826 12827 pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl); 12828 return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1; 12829 } 12830 12831 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, 12832 int *max_cp) 12833 { 12834 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 12835 int max_ring_grps = 0, max_irq; 12836 12837 *max_tx = hw_resc->max_tx_rings; 12838 *max_rx = hw_resc->max_rx_rings; 12839 *max_cp = bnxt_get_max_func_cp_rings_for_en(bp); 12840 max_irq = min_t(int, bnxt_get_max_func_irqs(bp) - 12841 bnxt_get_ulp_msix_num(bp), 12842 hw_resc->max_stat_ctxs - bnxt_get_ulp_stat_ctxs(bp)); 12843 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 12844 *max_cp = min_t(int, *max_cp, max_irq); 12845 max_ring_grps = hw_resc->max_hw_ring_grps; 12846 if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) { 12847 *max_cp -= 1; 12848 *max_rx -= 2; 12849 } 12850 if (bp->flags & BNXT_FLAG_AGG_RINGS) 12851 *max_rx >>= 1; 12852 if (bp->flags & BNXT_FLAG_CHIP_P5) { 12853 bnxt_trim_rings(bp, max_rx, max_tx, *max_cp, false); 12854 /* On P5 chips, max_cp output param should be available NQs */ 12855 *max_cp = max_irq; 12856 } 12857 *max_rx = min_t(int, *max_rx, max_ring_grps); 12858 } 12859 12860 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared) 12861 { 12862 int rx, tx, cp; 12863 12864 _bnxt_get_max_rings(bp, &rx, &tx, &cp); 12865 *max_rx = rx; 12866 *max_tx = tx; 12867 if (!rx || !tx || !cp) 12868 return -ENOMEM; 12869 12870 return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared); 12871 } 12872 12873 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx, 12874 bool shared) 12875 { 12876 int rc; 12877 12878 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared); 12879 if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) { 12880 /* Not enough rings, try disabling agg rings. */ 12881 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 12882 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared); 12883 if (rc) { 12884 /* set BNXT_FLAG_AGG_RINGS back for consistency */ 12885 bp->flags |= BNXT_FLAG_AGG_RINGS; 12886 return rc; 12887 } 12888 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 12889 bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 12890 bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 12891 bnxt_set_ring_params(bp); 12892 } 12893 12894 if (bp->flags & BNXT_FLAG_ROCE_CAP) { 12895 int max_cp, max_stat, max_irq; 12896 12897 /* Reserve minimum resources for RoCE */ 12898 max_cp = bnxt_get_max_func_cp_rings(bp); 12899 max_stat = bnxt_get_max_func_stat_ctxs(bp); 12900 max_irq = bnxt_get_max_func_irqs(bp); 12901 if (max_cp <= BNXT_MIN_ROCE_CP_RINGS || 12902 max_irq <= BNXT_MIN_ROCE_CP_RINGS || 12903 max_stat <= BNXT_MIN_ROCE_STAT_CTXS) 12904 return 0; 12905 12906 max_cp -= BNXT_MIN_ROCE_CP_RINGS; 12907 max_irq -= BNXT_MIN_ROCE_CP_RINGS; 12908 max_stat -= BNXT_MIN_ROCE_STAT_CTXS; 12909 max_cp = min_t(int, max_cp, max_irq); 12910 max_cp = min_t(int, max_cp, max_stat); 12911 rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared); 12912 if (rc) 12913 rc = 0; 12914 } 12915 return rc; 12916 } 12917 12918 /* In initial default shared ring setting, each shared ring must have a 12919 * RX/TX ring pair. 12920 */ 12921 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp) 12922 { 12923 bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings); 12924 bp->rx_nr_rings = bp->cp_nr_rings; 12925 bp->tx_nr_rings_per_tc = bp->cp_nr_rings; 12926 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 12927 } 12928 12929 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh) 12930 { 12931 int dflt_rings, max_rx_rings, max_tx_rings, rc; 12932 12933 if (!bnxt_can_reserve_rings(bp)) 12934 return 0; 12935 12936 if (sh) 12937 bp->flags |= BNXT_FLAG_SHARED_RINGS; 12938 dflt_rings = is_kdump_kernel() ? 1 : netif_get_num_default_rss_queues(); 12939 /* Reduce default rings on multi-port cards so that total default 12940 * rings do not exceed CPU count. 12941 */ 12942 if (bp->port_count > 1) { 12943 int max_rings = 12944 max_t(int, num_online_cpus() / bp->port_count, 1); 12945 12946 dflt_rings = min_t(int, dflt_rings, max_rings); 12947 } 12948 rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh); 12949 if (rc) 12950 return rc; 12951 bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings); 12952 bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings); 12953 if (sh) 12954 bnxt_trim_dflt_sh_rings(bp); 12955 else 12956 bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings; 12957 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 12958 12959 rc = __bnxt_reserve_rings(bp); 12960 if (rc) 12961 netdev_warn(bp->dev, "Unable to reserve tx rings\n"); 12962 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 12963 if (sh) 12964 bnxt_trim_dflt_sh_rings(bp); 12965 12966 /* Rings may have been trimmed, re-reserve the trimmed rings. */ 12967 if (bnxt_need_reserve_rings(bp)) { 12968 rc = __bnxt_reserve_rings(bp); 12969 if (rc) 12970 netdev_warn(bp->dev, "2nd rings reservation failed.\n"); 12971 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 12972 } 12973 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 12974 bp->rx_nr_rings++; 12975 bp->cp_nr_rings++; 12976 } 12977 if (rc) { 12978 bp->tx_nr_rings = 0; 12979 bp->rx_nr_rings = 0; 12980 } 12981 return rc; 12982 } 12983 12984 static int bnxt_init_dflt_ring_mode(struct bnxt *bp) 12985 { 12986 int rc; 12987 12988 if (bp->tx_nr_rings) 12989 return 0; 12990 12991 bnxt_ulp_irq_stop(bp); 12992 bnxt_clear_int_mode(bp); 12993 rc = bnxt_set_dflt_rings(bp, true); 12994 if (rc) { 12995 netdev_err(bp->dev, "Not enough rings available.\n"); 12996 goto init_dflt_ring_err; 12997 } 12998 rc = bnxt_init_int_mode(bp); 12999 if (rc) 13000 goto init_dflt_ring_err; 13001 13002 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 13003 if (bnxt_rfs_supported(bp) && bnxt_rfs_capable(bp)) { 13004 bp->flags |= BNXT_FLAG_RFS; 13005 bp->dev->features |= NETIF_F_NTUPLE; 13006 } 13007 init_dflt_ring_err: 13008 bnxt_ulp_irq_restart(bp, rc); 13009 return rc; 13010 } 13011 13012 int bnxt_restore_pf_fw_resources(struct bnxt *bp) 13013 { 13014 int rc; 13015 13016 ASSERT_RTNL(); 13017 bnxt_hwrm_func_qcaps(bp); 13018 13019 if (netif_running(bp->dev)) 13020 __bnxt_close_nic(bp, true, false); 13021 13022 bnxt_ulp_irq_stop(bp); 13023 bnxt_clear_int_mode(bp); 13024 rc = bnxt_init_int_mode(bp); 13025 bnxt_ulp_irq_restart(bp, rc); 13026 13027 if (netif_running(bp->dev)) { 13028 if (rc) 13029 dev_close(bp->dev); 13030 else 13031 rc = bnxt_open_nic(bp, true, false); 13032 } 13033 13034 return rc; 13035 } 13036 13037 static int bnxt_init_mac_addr(struct bnxt *bp) 13038 { 13039 int rc = 0; 13040 13041 if (BNXT_PF(bp)) { 13042 memcpy(bp->dev->dev_addr, bp->pf.mac_addr, ETH_ALEN); 13043 } else { 13044 #ifdef CONFIG_BNXT_SRIOV 13045 struct bnxt_vf_info *vf = &bp->vf; 13046 bool strict_approval = true; 13047 13048 if (is_valid_ether_addr(vf->mac_addr)) { 13049 /* overwrite netdev dev_addr with admin VF MAC */ 13050 memcpy(bp->dev->dev_addr, vf->mac_addr, ETH_ALEN); 13051 /* Older PF driver or firmware may not approve this 13052 * correctly. 13053 */ 13054 strict_approval = false; 13055 } else { 13056 eth_hw_addr_random(bp->dev); 13057 } 13058 rc = bnxt_approve_mac(bp, bp->dev->dev_addr, strict_approval); 13059 #endif 13060 } 13061 return rc; 13062 } 13063 13064 #define BNXT_VPD_LEN 512 13065 static void bnxt_vpd_read_info(struct bnxt *bp) 13066 { 13067 struct pci_dev *pdev = bp->pdev; 13068 int i, len, pos, ro_size, size; 13069 ssize_t vpd_size; 13070 u8 *vpd_data; 13071 13072 vpd_data = kmalloc(BNXT_VPD_LEN, GFP_KERNEL); 13073 if (!vpd_data) 13074 return; 13075 13076 vpd_size = pci_read_vpd(pdev, 0, BNXT_VPD_LEN, vpd_data); 13077 if (vpd_size <= 0) { 13078 netdev_err(bp->dev, "Unable to read VPD\n"); 13079 goto exit; 13080 } 13081 13082 i = pci_vpd_find_tag(vpd_data, vpd_size, PCI_VPD_LRDT_RO_DATA); 13083 if (i < 0) { 13084 netdev_err(bp->dev, "VPD READ-Only not found\n"); 13085 goto exit; 13086 } 13087 13088 ro_size = pci_vpd_lrdt_size(&vpd_data[i]); 13089 i += PCI_VPD_LRDT_TAG_SIZE; 13090 if (i + ro_size > vpd_size) 13091 goto exit; 13092 13093 pos = pci_vpd_find_info_keyword(vpd_data, i, ro_size, 13094 PCI_VPD_RO_KEYWORD_PARTNO); 13095 if (pos < 0) 13096 goto read_sn; 13097 13098 len = pci_vpd_info_field_size(&vpd_data[pos]); 13099 pos += PCI_VPD_INFO_FLD_HDR_SIZE; 13100 if (len + pos > vpd_size) 13101 goto read_sn; 13102 13103 size = min(len, BNXT_VPD_FLD_LEN - 1); 13104 memcpy(bp->board_partno, &vpd_data[pos], size); 13105 13106 read_sn: 13107 pos = pci_vpd_find_info_keyword(vpd_data, i, ro_size, 13108 PCI_VPD_RO_KEYWORD_SERIALNO); 13109 if (pos < 0) 13110 goto exit; 13111 13112 len = pci_vpd_info_field_size(&vpd_data[pos]); 13113 pos += PCI_VPD_INFO_FLD_HDR_SIZE; 13114 if (len + pos > vpd_size) 13115 goto exit; 13116 13117 size = min(len, BNXT_VPD_FLD_LEN - 1); 13118 memcpy(bp->board_serialno, &vpd_data[pos], size); 13119 exit: 13120 kfree(vpd_data); 13121 } 13122 13123 static int bnxt_pcie_dsn_get(struct bnxt *bp, u8 dsn[]) 13124 { 13125 struct pci_dev *pdev = bp->pdev; 13126 u64 qword; 13127 13128 qword = pci_get_dsn(pdev); 13129 if (!qword) { 13130 netdev_info(bp->dev, "Unable to read adapter's DSN\n"); 13131 return -EOPNOTSUPP; 13132 } 13133 13134 put_unaligned_le64(qword, dsn); 13135 13136 bp->flags |= BNXT_FLAG_DSN_VALID; 13137 return 0; 13138 } 13139 13140 static int bnxt_map_db_bar(struct bnxt *bp) 13141 { 13142 if (!bp->db_size) 13143 return -ENODEV; 13144 bp->bar1 = pci_iomap(bp->pdev, 2, bp->db_size); 13145 if (!bp->bar1) 13146 return -ENOMEM; 13147 return 0; 13148 } 13149 13150 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 13151 { 13152 struct net_device *dev; 13153 struct bnxt *bp; 13154 int rc, max_irqs; 13155 13156 if (pci_is_bridge(pdev)) 13157 return -ENODEV; 13158 13159 /* Clear any pending DMA transactions from crash kernel 13160 * while loading driver in capture kernel. 13161 */ 13162 if (is_kdump_kernel()) { 13163 pci_clear_master(pdev); 13164 pcie_flr(pdev); 13165 } 13166 13167 max_irqs = bnxt_get_max_irq(pdev); 13168 dev = alloc_etherdev_mq(sizeof(*bp), max_irqs); 13169 if (!dev) 13170 return -ENOMEM; 13171 13172 bp = netdev_priv(dev); 13173 bp->msg_enable = BNXT_DEF_MSG_ENABLE; 13174 bnxt_set_max_func_irqs(bp, max_irqs); 13175 13176 if (bnxt_vf_pciid(ent->driver_data)) 13177 bp->flags |= BNXT_FLAG_VF; 13178 13179 if (pdev->msix_cap) 13180 bp->flags |= BNXT_FLAG_MSIX_CAP; 13181 13182 rc = bnxt_init_board(pdev, dev); 13183 if (rc < 0) 13184 goto init_err_free; 13185 13186 dev->netdev_ops = &bnxt_netdev_ops; 13187 dev->watchdog_timeo = BNXT_TX_TIMEOUT; 13188 dev->ethtool_ops = &bnxt_ethtool_ops; 13189 pci_set_drvdata(pdev, dev); 13190 13191 rc = bnxt_alloc_hwrm_resources(bp); 13192 if (rc) 13193 goto init_err_pci_clean; 13194 13195 mutex_init(&bp->hwrm_cmd_lock); 13196 mutex_init(&bp->link_lock); 13197 13198 rc = bnxt_fw_init_one_p1(bp); 13199 if (rc) 13200 goto init_err_pci_clean; 13201 13202 if (BNXT_PF(bp)) 13203 bnxt_vpd_read_info(bp); 13204 13205 if (BNXT_CHIP_P5(bp)) { 13206 bp->flags |= BNXT_FLAG_CHIP_P5; 13207 if (BNXT_CHIP_SR2(bp)) 13208 bp->flags |= BNXT_FLAG_CHIP_SR2; 13209 } 13210 13211 rc = bnxt_alloc_rss_indir_tbl(bp); 13212 if (rc) 13213 goto init_err_pci_clean; 13214 13215 rc = bnxt_fw_init_one_p2(bp); 13216 if (rc) 13217 goto init_err_pci_clean; 13218 13219 rc = bnxt_map_db_bar(bp); 13220 if (rc) { 13221 dev_err(&pdev->dev, "Cannot map doorbell BAR rc = %d, aborting\n", 13222 rc); 13223 goto init_err_pci_clean; 13224 } 13225 13226 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 13227 NETIF_F_TSO | NETIF_F_TSO6 | 13228 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | 13229 NETIF_F_GSO_IPXIP4 | 13230 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM | 13231 NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH | 13232 NETIF_F_RXCSUM | NETIF_F_GRO; 13233 13234 if (BNXT_SUPPORTS_TPA(bp)) 13235 dev->hw_features |= NETIF_F_LRO; 13236 13237 dev->hw_enc_features = 13238 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 13239 NETIF_F_TSO | NETIF_F_TSO6 | 13240 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | 13241 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM | 13242 NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL; 13243 dev->udp_tunnel_nic_info = &bnxt_udp_tunnels; 13244 13245 dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM | 13246 NETIF_F_GSO_GRE_CSUM; 13247 dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA; 13248 if (bp->fw_cap & BNXT_FW_CAP_VLAN_RX_STRIP) 13249 dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_RX; 13250 if (bp->fw_cap & BNXT_FW_CAP_VLAN_TX_INSERT) 13251 dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_TX; 13252 if (BNXT_SUPPORTS_TPA(bp)) 13253 dev->hw_features |= NETIF_F_GRO_HW; 13254 dev->features |= dev->hw_features | NETIF_F_HIGHDMA; 13255 if (dev->features & NETIF_F_GRO_HW) 13256 dev->features &= ~NETIF_F_LRO; 13257 dev->priv_flags |= IFF_UNICAST_FLT; 13258 13259 #ifdef CONFIG_BNXT_SRIOV 13260 init_waitqueue_head(&bp->sriov_cfg_wait); 13261 mutex_init(&bp->sriov_lock); 13262 #endif 13263 if (BNXT_SUPPORTS_TPA(bp)) { 13264 bp->gro_func = bnxt_gro_func_5730x; 13265 if (BNXT_CHIP_P4(bp)) 13266 bp->gro_func = bnxt_gro_func_5731x; 13267 else if (BNXT_CHIP_P5(bp)) 13268 bp->gro_func = bnxt_gro_func_5750x; 13269 } 13270 if (!BNXT_CHIP_P4_PLUS(bp)) 13271 bp->flags |= BNXT_FLAG_DOUBLE_DB; 13272 13273 rc = bnxt_init_mac_addr(bp); 13274 if (rc) { 13275 dev_err(&pdev->dev, "Unable to initialize mac address.\n"); 13276 rc = -EADDRNOTAVAIL; 13277 goto init_err_pci_clean; 13278 } 13279 13280 if (BNXT_PF(bp)) { 13281 /* Read the adapter's DSN to use as the eswitch switch_id */ 13282 rc = bnxt_pcie_dsn_get(bp, bp->dsn); 13283 } 13284 13285 /* MTU range: 60 - FW defined max */ 13286 dev->min_mtu = ETH_ZLEN; 13287 dev->max_mtu = bp->max_mtu; 13288 13289 rc = bnxt_probe_phy(bp, true); 13290 if (rc) 13291 goto init_err_pci_clean; 13292 13293 bnxt_set_rx_skb_mode(bp, false); 13294 bnxt_set_tpa_flags(bp); 13295 bnxt_set_ring_params(bp); 13296 rc = bnxt_set_dflt_rings(bp, true); 13297 if (rc) { 13298 netdev_err(bp->dev, "Not enough rings available.\n"); 13299 rc = -ENOMEM; 13300 goto init_err_pci_clean; 13301 } 13302 13303 bnxt_fw_init_one_p3(bp); 13304 13305 if (dev->hw_features & BNXT_HW_FEATURE_VLAN_ALL_RX) 13306 bp->flags |= BNXT_FLAG_STRIP_VLAN; 13307 13308 rc = bnxt_init_int_mode(bp); 13309 if (rc) 13310 goto init_err_pci_clean; 13311 13312 /* No TC has been set yet and rings may have been trimmed due to 13313 * limited MSIX, so we re-initialize the TX rings per TC. 13314 */ 13315 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 13316 13317 if (BNXT_PF(bp)) { 13318 if (!bnxt_pf_wq) { 13319 bnxt_pf_wq = 13320 create_singlethread_workqueue("bnxt_pf_wq"); 13321 if (!bnxt_pf_wq) { 13322 dev_err(&pdev->dev, "Unable to create workqueue.\n"); 13323 rc = -ENOMEM; 13324 goto init_err_pci_clean; 13325 } 13326 } 13327 rc = bnxt_init_tc(bp); 13328 if (rc) 13329 netdev_err(dev, "Failed to initialize TC flower offload, err = %d.\n", 13330 rc); 13331 } 13332 13333 bnxt_inv_fw_health_reg(bp); 13334 bnxt_dl_register(bp); 13335 13336 rc = register_netdev(dev); 13337 if (rc) 13338 goto init_err_cleanup; 13339 13340 if (BNXT_PF(bp)) 13341 devlink_port_type_eth_set(&bp->dl_port, bp->dev); 13342 bnxt_dl_fw_reporters_create(bp); 13343 13344 netdev_info(dev, "%s found at mem %lx, node addr %pM\n", 13345 board_info[ent->driver_data].name, 13346 (long)pci_resource_start(pdev, 0), dev->dev_addr); 13347 pcie_print_link_status(pdev); 13348 13349 pci_save_state(pdev); 13350 return 0; 13351 13352 init_err_cleanup: 13353 bnxt_dl_unregister(bp); 13354 bnxt_shutdown_tc(bp); 13355 bnxt_clear_int_mode(bp); 13356 13357 init_err_pci_clean: 13358 bnxt_hwrm_func_drv_unrgtr(bp); 13359 bnxt_free_hwrm_short_cmd_req(bp); 13360 bnxt_free_hwrm_resources(bp); 13361 bnxt_ethtool_free(bp); 13362 kfree(bp->ptp_cfg); 13363 bp->ptp_cfg = NULL; 13364 kfree(bp->fw_health); 13365 bp->fw_health = NULL; 13366 bnxt_cleanup_pci(bp); 13367 bnxt_free_ctx_mem(bp); 13368 kfree(bp->ctx); 13369 bp->ctx = NULL; 13370 kfree(bp->rss_indir_tbl); 13371 bp->rss_indir_tbl = NULL; 13372 13373 init_err_free: 13374 free_netdev(dev); 13375 return rc; 13376 } 13377 13378 static void bnxt_shutdown(struct pci_dev *pdev) 13379 { 13380 struct net_device *dev = pci_get_drvdata(pdev); 13381 struct bnxt *bp; 13382 13383 if (!dev) 13384 return; 13385 13386 rtnl_lock(); 13387 bp = netdev_priv(dev); 13388 if (!bp) 13389 goto shutdown_exit; 13390 13391 if (netif_running(dev)) 13392 dev_close(dev); 13393 13394 bnxt_ulp_shutdown(bp); 13395 bnxt_clear_int_mode(bp); 13396 pci_disable_device(pdev); 13397 13398 if (system_state == SYSTEM_POWER_OFF) { 13399 pci_wake_from_d3(pdev, bp->wol); 13400 pci_set_power_state(pdev, PCI_D3hot); 13401 } 13402 13403 shutdown_exit: 13404 rtnl_unlock(); 13405 } 13406 13407 #ifdef CONFIG_PM_SLEEP 13408 static int bnxt_suspend(struct device *device) 13409 { 13410 struct net_device *dev = dev_get_drvdata(device); 13411 struct bnxt *bp = netdev_priv(dev); 13412 int rc = 0; 13413 13414 rtnl_lock(); 13415 bnxt_ulp_stop(bp); 13416 if (netif_running(dev)) { 13417 netif_device_detach(dev); 13418 rc = bnxt_close(dev); 13419 } 13420 bnxt_hwrm_func_drv_unrgtr(bp); 13421 pci_disable_device(bp->pdev); 13422 bnxt_free_ctx_mem(bp); 13423 kfree(bp->ctx); 13424 bp->ctx = NULL; 13425 rtnl_unlock(); 13426 return rc; 13427 } 13428 13429 static int bnxt_resume(struct device *device) 13430 { 13431 struct net_device *dev = dev_get_drvdata(device); 13432 struct bnxt *bp = netdev_priv(dev); 13433 int rc = 0; 13434 13435 rtnl_lock(); 13436 rc = pci_enable_device(bp->pdev); 13437 if (rc) { 13438 netdev_err(dev, "Cannot re-enable PCI device during resume, err = %d\n", 13439 rc); 13440 goto resume_exit; 13441 } 13442 pci_set_master(bp->pdev); 13443 if (bnxt_hwrm_ver_get(bp)) { 13444 rc = -ENODEV; 13445 goto resume_exit; 13446 } 13447 rc = bnxt_hwrm_func_reset(bp); 13448 if (rc) { 13449 rc = -EBUSY; 13450 goto resume_exit; 13451 } 13452 13453 rc = bnxt_hwrm_func_qcaps(bp); 13454 if (rc) 13455 goto resume_exit; 13456 13457 if (bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false)) { 13458 rc = -ENODEV; 13459 goto resume_exit; 13460 } 13461 13462 bnxt_get_wol_settings(bp); 13463 if (netif_running(dev)) { 13464 rc = bnxt_open(dev); 13465 if (!rc) 13466 netif_device_attach(dev); 13467 } 13468 13469 resume_exit: 13470 bnxt_ulp_start(bp, rc); 13471 if (!rc) 13472 bnxt_reenable_sriov(bp); 13473 rtnl_unlock(); 13474 return rc; 13475 } 13476 13477 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume); 13478 #define BNXT_PM_OPS (&bnxt_pm_ops) 13479 13480 #else 13481 13482 #define BNXT_PM_OPS NULL 13483 13484 #endif /* CONFIG_PM_SLEEP */ 13485 13486 /** 13487 * bnxt_io_error_detected - called when PCI error is detected 13488 * @pdev: Pointer to PCI device 13489 * @state: The current pci connection state 13490 * 13491 * This function is called after a PCI bus error affecting 13492 * this device has been detected. 13493 */ 13494 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev, 13495 pci_channel_state_t state) 13496 { 13497 struct net_device *netdev = pci_get_drvdata(pdev); 13498 struct bnxt *bp = netdev_priv(netdev); 13499 13500 netdev_info(netdev, "PCI I/O error detected\n"); 13501 13502 rtnl_lock(); 13503 netif_device_detach(netdev); 13504 13505 bnxt_ulp_stop(bp); 13506 13507 if (state == pci_channel_io_perm_failure) { 13508 rtnl_unlock(); 13509 return PCI_ERS_RESULT_DISCONNECT; 13510 } 13511 13512 if (state == pci_channel_io_frozen) 13513 set_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, &bp->state); 13514 13515 if (netif_running(netdev)) 13516 bnxt_close(netdev); 13517 13518 if (pci_is_enabled(pdev)) 13519 pci_disable_device(pdev); 13520 bnxt_free_ctx_mem(bp); 13521 kfree(bp->ctx); 13522 bp->ctx = NULL; 13523 rtnl_unlock(); 13524 13525 /* Request a slot slot reset. */ 13526 return PCI_ERS_RESULT_NEED_RESET; 13527 } 13528 13529 /** 13530 * bnxt_io_slot_reset - called after the pci bus has been reset. 13531 * @pdev: Pointer to PCI device 13532 * 13533 * Restart the card from scratch, as if from a cold-boot. 13534 * At this point, the card has exprienced a hard reset, 13535 * followed by fixups by BIOS, and has its config space 13536 * set up identically to what it was at cold boot. 13537 */ 13538 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev) 13539 { 13540 pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT; 13541 struct net_device *netdev = pci_get_drvdata(pdev); 13542 struct bnxt *bp = netdev_priv(netdev); 13543 int err = 0, off; 13544 13545 netdev_info(bp->dev, "PCI Slot Reset\n"); 13546 13547 rtnl_lock(); 13548 13549 if (pci_enable_device(pdev)) { 13550 dev_err(&pdev->dev, 13551 "Cannot re-enable PCI device after reset.\n"); 13552 } else { 13553 pci_set_master(pdev); 13554 /* Upon fatal error, our device internal logic that latches to 13555 * BAR value is getting reset and will restore only upon 13556 * rewritting the BARs. 13557 * 13558 * As pci_restore_state() does not re-write the BARs if the 13559 * value is same as saved value earlier, driver needs to 13560 * write the BARs to 0 to force restore, in case of fatal error. 13561 */ 13562 if (test_and_clear_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, 13563 &bp->state)) { 13564 for (off = PCI_BASE_ADDRESS_0; 13565 off <= PCI_BASE_ADDRESS_5; off += 4) 13566 pci_write_config_dword(bp->pdev, off, 0); 13567 } 13568 pci_restore_state(pdev); 13569 pci_save_state(pdev); 13570 13571 err = bnxt_hwrm_func_reset(bp); 13572 if (!err) 13573 result = PCI_ERS_RESULT_RECOVERED; 13574 } 13575 13576 rtnl_unlock(); 13577 13578 return result; 13579 } 13580 13581 /** 13582 * bnxt_io_resume - called when traffic can start flowing again. 13583 * @pdev: Pointer to PCI device 13584 * 13585 * This callback is called when the error recovery driver tells 13586 * us that its OK to resume normal operation. 13587 */ 13588 static void bnxt_io_resume(struct pci_dev *pdev) 13589 { 13590 struct net_device *netdev = pci_get_drvdata(pdev); 13591 struct bnxt *bp = netdev_priv(netdev); 13592 int err; 13593 13594 netdev_info(bp->dev, "PCI Slot Resume\n"); 13595 rtnl_lock(); 13596 13597 err = bnxt_hwrm_func_qcaps(bp); 13598 if (!err && netif_running(netdev)) 13599 err = bnxt_open(netdev); 13600 13601 bnxt_ulp_start(bp, err); 13602 if (!err) { 13603 bnxt_reenable_sriov(bp); 13604 netif_device_attach(netdev); 13605 } 13606 13607 rtnl_unlock(); 13608 } 13609 13610 static const struct pci_error_handlers bnxt_err_handler = { 13611 .error_detected = bnxt_io_error_detected, 13612 .slot_reset = bnxt_io_slot_reset, 13613 .resume = bnxt_io_resume 13614 }; 13615 13616 static struct pci_driver bnxt_pci_driver = { 13617 .name = DRV_MODULE_NAME, 13618 .id_table = bnxt_pci_tbl, 13619 .probe = bnxt_init_one, 13620 .remove = bnxt_remove_one, 13621 .shutdown = bnxt_shutdown, 13622 .driver.pm = BNXT_PM_OPS, 13623 .err_handler = &bnxt_err_handler, 13624 #if defined(CONFIG_BNXT_SRIOV) 13625 .sriov_configure = bnxt_sriov_configure, 13626 #endif 13627 }; 13628 13629 static int __init bnxt_init(void) 13630 { 13631 bnxt_debug_init(); 13632 return pci_register_driver(&bnxt_pci_driver); 13633 } 13634 13635 static void __exit bnxt_exit(void) 13636 { 13637 pci_unregister_driver(&bnxt_pci_driver); 13638 if (bnxt_pf_wq) 13639 destroy_workqueue(bnxt_pf_wq); 13640 bnxt_debug_exit(); 13641 } 13642 13643 module_init(bnxt_init); 13644 module_exit(bnxt_exit); 13645