1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2016 Broadcom Corporation
4  * Copyright (c) 2016-2019 Broadcom Limited
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation.
9  */
10 
11 #include <linux/module.h>
12 
13 #include <linux/stringify.h>
14 #include <linux/kernel.h>
15 #include <linux/timer.h>
16 #include <linux/errno.h>
17 #include <linux/ioport.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 #include <linux/interrupt.h>
21 #include <linux/pci.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/skbuff.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/bitops.h>
27 #include <linux/io.h>
28 #include <linux/irq.h>
29 #include <linux/delay.h>
30 #include <asm/byteorder.h>
31 #include <asm/page.h>
32 #include <linux/time.h>
33 #include <linux/mii.h>
34 #include <linux/mdio.h>
35 #include <linux/if.h>
36 #include <linux/if_vlan.h>
37 #include <linux/if_bridge.h>
38 #include <linux/rtc.h>
39 #include <linux/bpf.h>
40 #include <net/ip.h>
41 #include <net/tcp.h>
42 #include <net/udp.h>
43 #include <net/checksum.h>
44 #include <net/ip6_checksum.h>
45 #include <net/udp_tunnel.h>
46 #include <linux/workqueue.h>
47 #include <linux/prefetch.h>
48 #include <linux/cache.h>
49 #include <linux/log2.h>
50 #include <linux/aer.h>
51 #include <linux/bitmap.h>
52 #include <linux/cpu_rmap.h>
53 #include <linux/cpumask.h>
54 #include <net/pkt_cls.h>
55 #include <linux/hwmon.h>
56 #include <linux/hwmon-sysfs.h>
57 #include <net/page_pool.h>
58 
59 #include "bnxt_hsi.h"
60 #include "bnxt.h"
61 #include "bnxt_ulp.h"
62 #include "bnxt_sriov.h"
63 #include "bnxt_ethtool.h"
64 #include "bnxt_dcb.h"
65 #include "bnxt_xdp.h"
66 #include "bnxt_vfr.h"
67 #include "bnxt_tc.h"
68 #include "bnxt_devlink.h"
69 #include "bnxt_debugfs.h"
70 
71 #define BNXT_TX_TIMEOUT		(5 * HZ)
72 
73 MODULE_LICENSE("GPL");
74 MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
75 
76 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
77 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
78 #define BNXT_RX_COPY_THRESH 256
79 
80 #define BNXT_TX_PUSH_THRESH 164
81 
82 enum board_idx {
83 	BCM57301,
84 	BCM57302,
85 	BCM57304,
86 	BCM57417_NPAR,
87 	BCM58700,
88 	BCM57311,
89 	BCM57312,
90 	BCM57402,
91 	BCM57404,
92 	BCM57406,
93 	BCM57402_NPAR,
94 	BCM57407,
95 	BCM57412,
96 	BCM57414,
97 	BCM57416,
98 	BCM57417,
99 	BCM57412_NPAR,
100 	BCM57314,
101 	BCM57417_SFP,
102 	BCM57416_SFP,
103 	BCM57404_NPAR,
104 	BCM57406_NPAR,
105 	BCM57407_SFP,
106 	BCM57407_NPAR,
107 	BCM57414_NPAR,
108 	BCM57416_NPAR,
109 	BCM57452,
110 	BCM57454,
111 	BCM5745x_NPAR,
112 	BCM57508,
113 	BCM57504,
114 	BCM57502,
115 	BCM57508_NPAR,
116 	BCM57504_NPAR,
117 	BCM57502_NPAR,
118 	BCM58802,
119 	BCM58804,
120 	BCM58808,
121 	NETXTREME_E_VF,
122 	NETXTREME_C_VF,
123 	NETXTREME_S_VF,
124 	NETXTREME_E_P5_VF,
125 };
126 
127 /* indexed by enum above */
128 static const struct {
129 	char *name;
130 } board_info[] = {
131 	[BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" },
132 	[BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" },
133 	[BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
134 	[BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" },
135 	[BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" },
136 	[BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" },
137 	[BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" },
138 	[BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" },
139 	[BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" },
140 	[BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" },
141 	[BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" },
142 	[BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" },
143 	[BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" },
144 	[BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" },
145 	[BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" },
146 	[BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" },
147 	[BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" },
148 	[BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
149 	[BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" },
150 	[BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" },
151 	[BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" },
152 	[BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" },
153 	[BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" },
154 	[BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" },
155 	[BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" },
156 	[BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" },
157 	[BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" },
158 	[BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
159 	[BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" },
160 	[BCM57508] = { "Broadcom BCM57508 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
161 	[BCM57504] = { "Broadcom BCM57504 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
162 	[BCM57502] = { "Broadcom BCM57502 NetXtreme-E 10Gb/25Gb/50Gb Ethernet" },
163 	[BCM57508_NPAR] = { "Broadcom BCM57508 NetXtreme-E Ethernet Partition" },
164 	[BCM57504_NPAR] = { "Broadcom BCM57504 NetXtreme-E Ethernet Partition" },
165 	[BCM57502_NPAR] = { "Broadcom BCM57502 NetXtreme-E Ethernet Partition" },
166 	[BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" },
167 	[BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
168 	[BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
169 	[NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" },
170 	[NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" },
171 	[NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" },
172 	[NETXTREME_E_P5_VF] = { "Broadcom BCM5750X NetXtreme-E Ethernet Virtual Function" },
173 };
174 
175 static const struct pci_device_id bnxt_pci_tbl[] = {
176 	{ PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR },
177 	{ PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR },
178 	{ PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 },
179 	{ PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR },
180 	{ PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
181 	{ PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
182 	{ PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
183 	{ PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR },
184 	{ PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 },
185 	{ PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 },
186 	{ PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 },
187 	{ PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
188 	{ PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
189 	{ PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
190 	{ PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR },
191 	{ PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 },
192 	{ PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 },
193 	{ PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 },
194 	{ PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 },
195 	{ PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 },
196 	{ PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR },
197 	{ PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 },
198 	{ PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP },
199 	{ PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP },
200 	{ PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR },
201 	{ PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR },
202 	{ PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP },
203 	{ PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR },
204 	{ PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR },
205 	{ PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR },
206 	{ PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR },
207 	{ PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR },
208 	{ PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR },
209 	{ PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 },
210 	{ PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 },
211 	{ PCI_VDEVICE(BROADCOM, 0x1750), .driver_data = BCM57508 },
212 	{ PCI_VDEVICE(BROADCOM, 0x1751), .driver_data = BCM57504 },
213 	{ PCI_VDEVICE(BROADCOM, 0x1752), .driver_data = BCM57502 },
214 	{ PCI_VDEVICE(BROADCOM, 0x1800), .driver_data = BCM57508_NPAR },
215 	{ PCI_VDEVICE(BROADCOM, 0x1801), .driver_data = BCM57504_NPAR },
216 	{ PCI_VDEVICE(BROADCOM, 0x1802), .driver_data = BCM57502_NPAR },
217 	{ PCI_VDEVICE(BROADCOM, 0x1803), .driver_data = BCM57508_NPAR },
218 	{ PCI_VDEVICE(BROADCOM, 0x1804), .driver_data = BCM57504_NPAR },
219 	{ PCI_VDEVICE(BROADCOM, 0x1805), .driver_data = BCM57502_NPAR },
220 	{ PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 },
221 	{ PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 },
222 #ifdef CONFIG_BNXT_SRIOV
223 	{ PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF },
224 	{ PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF },
225 	{ PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF },
226 	{ PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF },
227 	{ PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF },
228 	{ PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF },
229 	{ PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF },
230 	{ PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF },
231 	{ PCI_VDEVICE(BROADCOM, 0x1806), .driver_data = NETXTREME_E_P5_VF },
232 	{ PCI_VDEVICE(BROADCOM, 0x1807), .driver_data = NETXTREME_E_P5_VF },
233 	{ PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF },
234 #endif
235 	{ 0 }
236 };
237 
238 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
239 
240 static const u16 bnxt_vf_req_snif[] = {
241 	HWRM_FUNC_CFG,
242 	HWRM_FUNC_VF_CFG,
243 	HWRM_PORT_PHY_QCFG,
244 	HWRM_CFA_L2_FILTER_ALLOC,
245 };
246 
247 static const u16 bnxt_async_events_arr[] = {
248 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE,
249 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE,
250 	ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD,
251 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED,
252 	ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE,
253 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE,
254 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE,
255 	ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY,
256 	ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY,
257 };
258 
259 static struct workqueue_struct *bnxt_pf_wq;
260 
261 static bool bnxt_vf_pciid(enum board_idx idx)
262 {
263 	return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF ||
264 		idx == NETXTREME_S_VF || idx == NETXTREME_E_P5_VF);
265 }
266 
267 #define DB_CP_REARM_FLAGS	(DB_KEY_CP | DB_IDX_VALID)
268 #define DB_CP_FLAGS		(DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
269 #define DB_CP_IRQ_DIS_FLAGS	(DB_KEY_CP | DB_IRQ_DIS)
270 
271 #define BNXT_CP_DB_IRQ_DIS(db)						\
272 		writel(DB_CP_IRQ_DIS_FLAGS, db)
273 
274 #define BNXT_DB_CQ(db, idx)						\
275 	writel(DB_CP_FLAGS | RING_CMP(idx), (db)->doorbell)
276 
277 #define BNXT_DB_NQ_P5(db, idx)						\
278 	writeq((db)->db_key64 | DBR_TYPE_NQ | RING_CMP(idx), (db)->doorbell)
279 
280 #define BNXT_DB_CQ_ARM(db, idx)						\
281 	writel(DB_CP_REARM_FLAGS | RING_CMP(idx), (db)->doorbell)
282 
283 #define BNXT_DB_NQ_ARM_P5(db, idx)					\
284 	writeq((db)->db_key64 | DBR_TYPE_NQ_ARM | RING_CMP(idx), (db)->doorbell)
285 
286 static void bnxt_db_nq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
287 {
288 	if (bp->flags & BNXT_FLAG_CHIP_P5)
289 		BNXT_DB_NQ_P5(db, idx);
290 	else
291 		BNXT_DB_CQ(db, idx);
292 }
293 
294 static void bnxt_db_nq_arm(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
295 {
296 	if (bp->flags & BNXT_FLAG_CHIP_P5)
297 		BNXT_DB_NQ_ARM_P5(db, idx);
298 	else
299 		BNXT_DB_CQ_ARM(db, idx);
300 }
301 
302 static void bnxt_db_cq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
303 {
304 	if (bp->flags & BNXT_FLAG_CHIP_P5)
305 		writeq(db->db_key64 | DBR_TYPE_CQ_ARMALL | RING_CMP(idx),
306 		       db->doorbell);
307 	else
308 		BNXT_DB_CQ(db, idx);
309 }
310 
311 const u16 bnxt_lhint_arr[] = {
312 	TX_BD_FLAGS_LHINT_512_AND_SMALLER,
313 	TX_BD_FLAGS_LHINT_512_TO_1023,
314 	TX_BD_FLAGS_LHINT_1024_TO_2047,
315 	TX_BD_FLAGS_LHINT_1024_TO_2047,
316 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
317 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
318 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
319 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
320 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
321 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
322 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
323 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
324 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
325 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
326 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
327 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
328 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
329 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
330 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
331 };
332 
333 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb)
334 {
335 	struct metadata_dst *md_dst = skb_metadata_dst(skb);
336 
337 	if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX)
338 		return 0;
339 
340 	return md_dst->u.port_info.port_id;
341 }
342 
343 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
344 {
345 	struct bnxt *bp = netdev_priv(dev);
346 	struct tx_bd *txbd;
347 	struct tx_bd_ext *txbd1;
348 	struct netdev_queue *txq;
349 	int i;
350 	dma_addr_t mapping;
351 	unsigned int length, pad = 0;
352 	u32 len, free_size, vlan_tag_flags, cfa_action, flags;
353 	u16 prod, last_frag;
354 	struct pci_dev *pdev = bp->pdev;
355 	struct bnxt_tx_ring_info *txr;
356 	struct bnxt_sw_tx_bd *tx_buf;
357 
358 	i = skb_get_queue_mapping(skb);
359 	if (unlikely(i >= bp->tx_nr_rings)) {
360 		dev_kfree_skb_any(skb);
361 		return NETDEV_TX_OK;
362 	}
363 
364 	txq = netdev_get_tx_queue(dev, i);
365 	txr = &bp->tx_ring[bp->tx_ring_map[i]];
366 	prod = txr->tx_prod;
367 
368 	free_size = bnxt_tx_avail(bp, txr);
369 	if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
370 		netif_tx_stop_queue(txq);
371 		return NETDEV_TX_BUSY;
372 	}
373 
374 	length = skb->len;
375 	len = skb_headlen(skb);
376 	last_frag = skb_shinfo(skb)->nr_frags;
377 
378 	txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
379 
380 	txbd->tx_bd_opaque = prod;
381 
382 	tx_buf = &txr->tx_buf_ring[prod];
383 	tx_buf->skb = skb;
384 	tx_buf->nr_frags = last_frag;
385 
386 	vlan_tag_flags = 0;
387 	cfa_action = bnxt_xmit_get_cfa_action(skb);
388 	if (skb_vlan_tag_present(skb)) {
389 		vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
390 				 skb_vlan_tag_get(skb);
391 		/* Currently supports 8021Q, 8021AD vlan offloads
392 		 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
393 		 */
394 		if (skb->vlan_proto == htons(ETH_P_8021Q))
395 			vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
396 	}
397 
398 	if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh) {
399 		struct tx_push_buffer *tx_push_buf = txr->tx_push;
400 		struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
401 		struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
402 		void __iomem *db = txr->tx_db.doorbell;
403 		void *pdata = tx_push_buf->data;
404 		u64 *end;
405 		int j, push_len;
406 
407 		/* Set COAL_NOW to be ready quickly for the next push */
408 		tx_push->tx_bd_len_flags_type =
409 			cpu_to_le32((length << TX_BD_LEN_SHIFT) |
410 					TX_BD_TYPE_LONG_TX_BD |
411 					TX_BD_FLAGS_LHINT_512_AND_SMALLER |
412 					TX_BD_FLAGS_COAL_NOW |
413 					TX_BD_FLAGS_PACKET_END |
414 					(2 << TX_BD_FLAGS_BD_CNT_SHIFT));
415 
416 		if (skb->ip_summed == CHECKSUM_PARTIAL)
417 			tx_push1->tx_bd_hsize_lflags =
418 					cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
419 		else
420 			tx_push1->tx_bd_hsize_lflags = 0;
421 
422 		tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
423 		tx_push1->tx_bd_cfa_action =
424 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
425 
426 		end = pdata + length;
427 		end = PTR_ALIGN(end, 8) - 1;
428 		*end = 0;
429 
430 		skb_copy_from_linear_data(skb, pdata, len);
431 		pdata += len;
432 		for (j = 0; j < last_frag; j++) {
433 			skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
434 			void *fptr;
435 
436 			fptr = skb_frag_address_safe(frag);
437 			if (!fptr)
438 				goto normal_tx;
439 
440 			memcpy(pdata, fptr, skb_frag_size(frag));
441 			pdata += skb_frag_size(frag);
442 		}
443 
444 		txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
445 		txbd->tx_bd_haddr = txr->data_mapping;
446 		prod = NEXT_TX(prod);
447 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
448 		memcpy(txbd, tx_push1, sizeof(*txbd));
449 		prod = NEXT_TX(prod);
450 		tx_push->doorbell =
451 			cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod);
452 		txr->tx_prod = prod;
453 
454 		tx_buf->is_push = 1;
455 		netdev_tx_sent_queue(txq, skb->len);
456 		wmb();	/* Sync is_push and byte queue before pushing data */
457 
458 		push_len = (length + sizeof(*tx_push) + 7) / 8;
459 		if (push_len > 16) {
460 			__iowrite64_copy(db, tx_push_buf, 16);
461 			__iowrite32_copy(db + 4, tx_push_buf + 1,
462 					 (push_len - 16) << 1);
463 		} else {
464 			__iowrite64_copy(db, tx_push_buf, push_len);
465 		}
466 
467 		goto tx_done;
468 	}
469 
470 normal_tx:
471 	if (length < BNXT_MIN_PKT_SIZE) {
472 		pad = BNXT_MIN_PKT_SIZE - length;
473 		if (skb_pad(skb, pad)) {
474 			/* SKB already freed. */
475 			tx_buf->skb = NULL;
476 			return NETDEV_TX_OK;
477 		}
478 		length = BNXT_MIN_PKT_SIZE;
479 	}
480 
481 	mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
482 
483 	if (unlikely(dma_mapping_error(&pdev->dev, mapping))) {
484 		dev_kfree_skb_any(skb);
485 		tx_buf->skb = NULL;
486 		return NETDEV_TX_OK;
487 	}
488 
489 	dma_unmap_addr_set(tx_buf, mapping, mapping);
490 	flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
491 		((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
492 
493 	txbd->tx_bd_haddr = cpu_to_le64(mapping);
494 
495 	prod = NEXT_TX(prod);
496 	txbd1 = (struct tx_bd_ext *)
497 		&txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
498 
499 	txbd1->tx_bd_hsize_lflags = 0;
500 	if (skb_is_gso(skb)) {
501 		u32 hdr_len;
502 
503 		if (skb->encapsulation)
504 			hdr_len = skb_inner_network_offset(skb) +
505 				skb_inner_network_header_len(skb) +
506 				inner_tcp_hdrlen(skb);
507 		else
508 			hdr_len = skb_transport_offset(skb) +
509 				tcp_hdrlen(skb);
510 
511 		txbd1->tx_bd_hsize_lflags = cpu_to_le32(TX_BD_FLAGS_LSO |
512 					TX_BD_FLAGS_T_IPID |
513 					(hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
514 		length = skb_shinfo(skb)->gso_size;
515 		txbd1->tx_bd_mss = cpu_to_le32(length);
516 		length += hdr_len;
517 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
518 		txbd1->tx_bd_hsize_lflags =
519 			cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
520 		txbd1->tx_bd_mss = 0;
521 	}
522 
523 	length >>= 9;
524 	if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) {
525 		dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n",
526 				     skb->len);
527 		i = 0;
528 		goto tx_dma_error;
529 	}
530 	flags |= bnxt_lhint_arr[length];
531 	txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
532 
533 	txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
534 	txbd1->tx_bd_cfa_action =
535 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
536 	for (i = 0; i < last_frag; i++) {
537 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
538 
539 		prod = NEXT_TX(prod);
540 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
541 
542 		len = skb_frag_size(frag);
543 		mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
544 					   DMA_TO_DEVICE);
545 
546 		if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
547 			goto tx_dma_error;
548 
549 		tx_buf = &txr->tx_buf_ring[prod];
550 		dma_unmap_addr_set(tx_buf, mapping, mapping);
551 
552 		txbd->tx_bd_haddr = cpu_to_le64(mapping);
553 
554 		flags = len << TX_BD_LEN_SHIFT;
555 		txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
556 	}
557 
558 	flags &= ~TX_BD_LEN;
559 	txbd->tx_bd_len_flags_type =
560 		cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
561 			    TX_BD_FLAGS_PACKET_END);
562 
563 	netdev_tx_sent_queue(txq, skb->len);
564 
565 	/* Sync BD data before updating doorbell */
566 	wmb();
567 
568 	prod = NEXT_TX(prod);
569 	txr->tx_prod = prod;
570 
571 	if (!netdev_xmit_more() || netif_xmit_stopped(txq))
572 		bnxt_db_write(bp, &txr->tx_db, prod);
573 
574 tx_done:
575 
576 	if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
577 		if (netdev_xmit_more() && !tx_buf->is_push)
578 			bnxt_db_write(bp, &txr->tx_db, prod);
579 
580 		netif_tx_stop_queue(txq);
581 
582 		/* netif_tx_stop_queue() must be done before checking
583 		 * tx index in bnxt_tx_avail() below, because in
584 		 * bnxt_tx_int(), we update tx index before checking for
585 		 * netif_tx_queue_stopped().
586 		 */
587 		smp_mb();
588 		if (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)
589 			netif_tx_wake_queue(txq);
590 	}
591 	return NETDEV_TX_OK;
592 
593 tx_dma_error:
594 	last_frag = i;
595 
596 	/* start back at beginning and unmap skb */
597 	prod = txr->tx_prod;
598 	tx_buf = &txr->tx_buf_ring[prod];
599 	tx_buf->skb = NULL;
600 	dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
601 			 skb_headlen(skb), PCI_DMA_TODEVICE);
602 	prod = NEXT_TX(prod);
603 
604 	/* unmap remaining mapped pages */
605 	for (i = 0; i < last_frag; i++) {
606 		prod = NEXT_TX(prod);
607 		tx_buf = &txr->tx_buf_ring[prod];
608 		dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
609 			       skb_frag_size(&skb_shinfo(skb)->frags[i]),
610 			       PCI_DMA_TODEVICE);
611 	}
612 
613 	dev_kfree_skb_any(skb);
614 	return NETDEV_TX_OK;
615 }
616 
617 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts)
618 {
619 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
620 	struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index);
621 	u16 cons = txr->tx_cons;
622 	struct pci_dev *pdev = bp->pdev;
623 	int i;
624 	unsigned int tx_bytes = 0;
625 
626 	for (i = 0; i < nr_pkts; i++) {
627 		struct bnxt_sw_tx_bd *tx_buf;
628 		struct sk_buff *skb;
629 		int j, last;
630 
631 		tx_buf = &txr->tx_buf_ring[cons];
632 		cons = NEXT_TX(cons);
633 		skb = tx_buf->skb;
634 		tx_buf->skb = NULL;
635 
636 		if (tx_buf->is_push) {
637 			tx_buf->is_push = 0;
638 			goto next_tx_int;
639 		}
640 
641 		dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
642 				 skb_headlen(skb), PCI_DMA_TODEVICE);
643 		last = tx_buf->nr_frags;
644 
645 		for (j = 0; j < last; j++) {
646 			cons = NEXT_TX(cons);
647 			tx_buf = &txr->tx_buf_ring[cons];
648 			dma_unmap_page(
649 				&pdev->dev,
650 				dma_unmap_addr(tx_buf, mapping),
651 				skb_frag_size(&skb_shinfo(skb)->frags[j]),
652 				PCI_DMA_TODEVICE);
653 		}
654 
655 next_tx_int:
656 		cons = NEXT_TX(cons);
657 
658 		tx_bytes += skb->len;
659 		dev_kfree_skb_any(skb);
660 	}
661 
662 	netdev_tx_completed_queue(txq, nr_pkts, tx_bytes);
663 	txr->tx_cons = cons;
664 
665 	/* Need to make the tx_cons update visible to bnxt_start_xmit()
666 	 * before checking for netif_tx_queue_stopped().  Without the
667 	 * memory barrier, there is a small possibility that bnxt_start_xmit()
668 	 * will miss it and cause the queue to be stopped forever.
669 	 */
670 	smp_mb();
671 
672 	if (unlikely(netif_tx_queue_stopped(txq)) &&
673 	    (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
674 		__netif_tx_lock(txq, smp_processor_id());
675 		if (netif_tx_queue_stopped(txq) &&
676 		    bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh &&
677 		    txr->dev_state != BNXT_DEV_STATE_CLOSING)
678 			netif_tx_wake_queue(txq);
679 		__netif_tx_unlock(txq);
680 	}
681 }
682 
683 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping,
684 					 struct bnxt_rx_ring_info *rxr,
685 					 gfp_t gfp)
686 {
687 	struct device *dev = &bp->pdev->dev;
688 	struct page *page;
689 
690 	page = page_pool_dev_alloc_pages(rxr->page_pool);
691 	if (!page)
692 		return NULL;
693 
694 	*mapping = dma_map_page_attrs(dev, page, 0, PAGE_SIZE, bp->rx_dir,
695 				      DMA_ATTR_WEAK_ORDERING);
696 	if (dma_mapping_error(dev, *mapping)) {
697 		page_pool_recycle_direct(rxr->page_pool, page);
698 		return NULL;
699 	}
700 	*mapping += bp->rx_dma_offset;
701 	return page;
702 }
703 
704 static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping,
705 				       gfp_t gfp)
706 {
707 	u8 *data;
708 	struct pci_dev *pdev = bp->pdev;
709 
710 	data = kmalloc(bp->rx_buf_size, gfp);
711 	if (!data)
712 		return NULL;
713 
714 	*mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset,
715 					bp->rx_buf_use_size, bp->rx_dir,
716 					DMA_ATTR_WEAK_ORDERING);
717 
718 	if (dma_mapping_error(&pdev->dev, *mapping)) {
719 		kfree(data);
720 		data = NULL;
721 	}
722 	return data;
723 }
724 
725 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
726 		       u16 prod, gfp_t gfp)
727 {
728 	struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
729 	struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
730 	dma_addr_t mapping;
731 
732 	if (BNXT_RX_PAGE_MODE(bp)) {
733 		struct page *page =
734 			__bnxt_alloc_rx_page(bp, &mapping, rxr, gfp);
735 
736 		if (!page)
737 			return -ENOMEM;
738 
739 		rx_buf->data = page;
740 		rx_buf->data_ptr = page_address(page) + bp->rx_offset;
741 	} else {
742 		u8 *data = __bnxt_alloc_rx_data(bp, &mapping, gfp);
743 
744 		if (!data)
745 			return -ENOMEM;
746 
747 		rx_buf->data = data;
748 		rx_buf->data_ptr = data + bp->rx_offset;
749 	}
750 	rx_buf->mapping = mapping;
751 
752 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
753 	return 0;
754 }
755 
756 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data)
757 {
758 	u16 prod = rxr->rx_prod;
759 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
760 	struct rx_bd *cons_bd, *prod_bd;
761 
762 	prod_rx_buf = &rxr->rx_buf_ring[prod];
763 	cons_rx_buf = &rxr->rx_buf_ring[cons];
764 
765 	prod_rx_buf->data = data;
766 	prod_rx_buf->data_ptr = cons_rx_buf->data_ptr;
767 
768 	prod_rx_buf->mapping = cons_rx_buf->mapping;
769 
770 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
771 	cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
772 
773 	prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
774 }
775 
776 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
777 {
778 	u16 next, max = rxr->rx_agg_bmap_size;
779 
780 	next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
781 	if (next >= max)
782 		next = find_first_zero_bit(rxr->rx_agg_bmap, max);
783 	return next;
784 }
785 
786 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
787 				     struct bnxt_rx_ring_info *rxr,
788 				     u16 prod, gfp_t gfp)
789 {
790 	struct rx_bd *rxbd =
791 		&rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
792 	struct bnxt_sw_rx_agg_bd *rx_agg_buf;
793 	struct pci_dev *pdev = bp->pdev;
794 	struct page *page;
795 	dma_addr_t mapping;
796 	u16 sw_prod = rxr->rx_sw_agg_prod;
797 	unsigned int offset = 0;
798 
799 	if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) {
800 		page = rxr->rx_page;
801 		if (!page) {
802 			page = alloc_page(gfp);
803 			if (!page)
804 				return -ENOMEM;
805 			rxr->rx_page = page;
806 			rxr->rx_page_offset = 0;
807 		}
808 		offset = rxr->rx_page_offset;
809 		rxr->rx_page_offset += BNXT_RX_PAGE_SIZE;
810 		if (rxr->rx_page_offset == PAGE_SIZE)
811 			rxr->rx_page = NULL;
812 		else
813 			get_page(page);
814 	} else {
815 		page = alloc_page(gfp);
816 		if (!page)
817 			return -ENOMEM;
818 	}
819 
820 	mapping = dma_map_page_attrs(&pdev->dev, page, offset,
821 				     BNXT_RX_PAGE_SIZE, PCI_DMA_FROMDEVICE,
822 				     DMA_ATTR_WEAK_ORDERING);
823 	if (dma_mapping_error(&pdev->dev, mapping)) {
824 		__free_page(page);
825 		return -EIO;
826 	}
827 
828 	if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
829 		sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
830 
831 	__set_bit(sw_prod, rxr->rx_agg_bmap);
832 	rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
833 	rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod);
834 
835 	rx_agg_buf->page = page;
836 	rx_agg_buf->offset = offset;
837 	rx_agg_buf->mapping = mapping;
838 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
839 	rxbd->rx_bd_opaque = sw_prod;
840 	return 0;
841 }
842 
843 static struct rx_agg_cmp *bnxt_get_agg(struct bnxt *bp,
844 				       struct bnxt_cp_ring_info *cpr,
845 				       u16 cp_cons, u16 curr)
846 {
847 	struct rx_agg_cmp *agg;
848 
849 	cp_cons = RING_CMP(ADV_RAW_CMP(cp_cons, curr));
850 	agg = (struct rx_agg_cmp *)
851 		&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
852 	return agg;
853 }
854 
855 static struct rx_agg_cmp *bnxt_get_tpa_agg_p5(struct bnxt *bp,
856 					      struct bnxt_rx_ring_info *rxr,
857 					      u16 agg_id, u16 curr)
858 {
859 	struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[agg_id];
860 
861 	return &tpa_info->agg_arr[curr];
862 }
863 
864 static void bnxt_reuse_rx_agg_bufs(struct bnxt_cp_ring_info *cpr, u16 idx,
865 				   u16 start, u32 agg_bufs, bool tpa)
866 {
867 	struct bnxt_napi *bnapi = cpr->bnapi;
868 	struct bnxt *bp = bnapi->bp;
869 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
870 	u16 prod = rxr->rx_agg_prod;
871 	u16 sw_prod = rxr->rx_sw_agg_prod;
872 	bool p5_tpa = false;
873 	u32 i;
874 
875 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa)
876 		p5_tpa = true;
877 
878 	for (i = 0; i < agg_bufs; i++) {
879 		u16 cons;
880 		struct rx_agg_cmp *agg;
881 		struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
882 		struct rx_bd *prod_bd;
883 		struct page *page;
884 
885 		if (p5_tpa)
886 			agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, start + i);
887 		else
888 			agg = bnxt_get_agg(bp, cpr, idx, start + i);
889 		cons = agg->rx_agg_cmp_opaque;
890 		__clear_bit(cons, rxr->rx_agg_bmap);
891 
892 		if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
893 			sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
894 
895 		__set_bit(sw_prod, rxr->rx_agg_bmap);
896 		prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
897 		cons_rx_buf = &rxr->rx_agg_ring[cons];
898 
899 		/* It is possible for sw_prod to be equal to cons, so
900 		 * set cons_rx_buf->page to NULL first.
901 		 */
902 		page = cons_rx_buf->page;
903 		cons_rx_buf->page = NULL;
904 		prod_rx_buf->page = page;
905 		prod_rx_buf->offset = cons_rx_buf->offset;
906 
907 		prod_rx_buf->mapping = cons_rx_buf->mapping;
908 
909 		prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
910 
911 		prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
912 		prod_bd->rx_bd_opaque = sw_prod;
913 
914 		prod = NEXT_RX_AGG(prod);
915 		sw_prod = NEXT_RX_AGG(sw_prod);
916 	}
917 	rxr->rx_agg_prod = prod;
918 	rxr->rx_sw_agg_prod = sw_prod;
919 }
920 
921 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp,
922 					struct bnxt_rx_ring_info *rxr,
923 					u16 cons, void *data, u8 *data_ptr,
924 					dma_addr_t dma_addr,
925 					unsigned int offset_and_len)
926 {
927 	unsigned int payload = offset_and_len >> 16;
928 	unsigned int len = offset_and_len & 0xffff;
929 	skb_frag_t *frag;
930 	struct page *page = data;
931 	u16 prod = rxr->rx_prod;
932 	struct sk_buff *skb;
933 	int off, err;
934 
935 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
936 	if (unlikely(err)) {
937 		bnxt_reuse_rx_data(rxr, cons, data);
938 		return NULL;
939 	}
940 	dma_addr -= bp->rx_dma_offset;
941 	dma_unmap_page_attrs(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir,
942 			     DMA_ATTR_WEAK_ORDERING);
943 	page_pool_release_page(rxr->page_pool, page);
944 
945 	if (unlikely(!payload))
946 		payload = eth_get_headlen(bp->dev, data_ptr, len);
947 
948 	skb = napi_alloc_skb(&rxr->bnapi->napi, payload);
949 	if (!skb) {
950 		__free_page(page);
951 		return NULL;
952 	}
953 
954 	off = (void *)data_ptr - page_address(page);
955 	skb_add_rx_frag(skb, 0, page, off, len, PAGE_SIZE);
956 	memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN,
957 	       payload + NET_IP_ALIGN);
958 
959 	frag = &skb_shinfo(skb)->frags[0];
960 	skb_frag_size_sub(frag, payload);
961 	skb_frag_off_add(frag, payload);
962 	skb->data_len -= payload;
963 	skb->tail += payload;
964 
965 	return skb;
966 }
967 
968 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
969 				   struct bnxt_rx_ring_info *rxr, u16 cons,
970 				   void *data, u8 *data_ptr,
971 				   dma_addr_t dma_addr,
972 				   unsigned int offset_and_len)
973 {
974 	u16 prod = rxr->rx_prod;
975 	struct sk_buff *skb;
976 	int err;
977 
978 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
979 	if (unlikely(err)) {
980 		bnxt_reuse_rx_data(rxr, cons, data);
981 		return NULL;
982 	}
983 
984 	skb = build_skb(data, 0);
985 	dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
986 			       bp->rx_dir, DMA_ATTR_WEAK_ORDERING);
987 	if (!skb) {
988 		kfree(data);
989 		return NULL;
990 	}
991 
992 	skb_reserve(skb, bp->rx_offset);
993 	skb_put(skb, offset_and_len & 0xffff);
994 	return skb;
995 }
996 
997 static struct sk_buff *bnxt_rx_pages(struct bnxt *bp,
998 				     struct bnxt_cp_ring_info *cpr,
999 				     struct sk_buff *skb, u16 idx,
1000 				     u32 agg_bufs, bool tpa)
1001 {
1002 	struct bnxt_napi *bnapi = cpr->bnapi;
1003 	struct pci_dev *pdev = bp->pdev;
1004 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1005 	u16 prod = rxr->rx_agg_prod;
1006 	bool p5_tpa = false;
1007 	u32 i;
1008 
1009 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa)
1010 		p5_tpa = true;
1011 
1012 	for (i = 0; i < agg_bufs; i++) {
1013 		u16 cons, frag_len;
1014 		struct rx_agg_cmp *agg;
1015 		struct bnxt_sw_rx_agg_bd *cons_rx_buf;
1016 		struct page *page;
1017 		dma_addr_t mapping;
1018 
1019 		if (p5_tpa)
1020 			agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, i);
1021 		else
1022 			agg = bnxt_get_agg(bp, cpr, idx, i);
1023 		cons = agg->rx_agg_cmp_opaque;
1024 		frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
1025 			    RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
1026 
1027 		cons_rx_buf = &rxr->rx_agg_ring[cons];
1028 		skb_fill_page_desc(skb, i, cons_rx_buf->page,
1029 				   cons_rx_buf->offset, frag_len);
1030 		__clear_bit(cons, rxr->rx_agg_bmap);
1031 
1032 		/* It is possible for bnxt_alloc_rx_page() to allocate
1033 		 * a sw_prod index that equals the cons index, so we
1034 		 * need to clear the cons entry now.
1035 		 */
1036 		mapping = cons_rx_buf->mapping;
1037 		page = cons_rx_buf->page;
1038 		cons_rx_buf->page = NULL;
1039 
1040 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
1041 			struct skb_shared_info *shinfo;
1042 			unsigned int nr_frags;
1043 
1044 			shinfo = skb_shinfo(skb);
1045 			nr_frags = --shinfo->nr_frags;
1046 			__skb_frag_set_page(&shinfo->frags[nr_frags], NULL);
1047 
1048 			dev_kfree_skb(skb);
1049 
1050 			cons_rx_buf->page = page;
1051 
1052 			/* Update prod since possibly some pages have been
1053 			 * allocated already.
1054 			 */
1055 			rxr->rx_agg_prod = prod;
1056 			bnxt_reuse_rx_agg_bufs(cpr, idx, i, agg_bufs - i, tpa);
1057 			return NULL;
1058 		}
1059 
1060 		dma_unmap_page_attrs(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE,
1061 				     PCI_DMA_FROMDEVICE,
1062 				     DMA_ATTR_WEAK_ORDERING);
1063 
1064 		skb->data_len += frag_len;
1065 		skb->len += frag_len;
1066 		skb->truesize += PAGE_SIZE;
1067 
1068 		prod = NEXT_RX_AGG(prod);
1069 	}
1070 	rxr->rx_agg_prod = prod;
1071 	return skb;
1072 }
1073 
1074 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1075 			       u8 agg_bufs, u32 *raw_cons)
1076 {
1077 	u16 last;
1078 	struct rx_agg_cmp *agg;
1079 
1080 	*raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
1081 	last = RING_CMP(*raw_cons);
1082 	agg = (struct rx_agg_cmp *)
1083 		&cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
1084 	return RX_AGG_CMP_VALID(agg, *raw_cons);
1085 }
1086 
1087 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
1088 					    unsigned int len,
1089 					    dma_addr_t mapping)
1090 {
1091 	struct bnxt *bp = bnapi->bp;
1092 	struct pci_dev *pdev = bp->pdev;
1093 	struct sk_buff *skb;
1094 
1095 	skb = napi_alloc_skb(&bnapi->napi, len);
1096 	if (!skb)
1097 		return NULL;
1098 
1099 	dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh,
1100 				bp->rx_dir);
1101 
1102 	memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN,
1103 	       len + NET_IP_ALIGN);
1104 
1105 	dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh,
1106 				   bp->rx_dir);
1107 
1108 	skb_put(skb, len);
1109 	return skb;
1110 }
1111 
1112 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1113 			   u32 *raw_cons, void *cmp)
1114 {
1115 	struct rx_cmp *rxcmp = cmp;
1116 	u32 tmp_raw_cons = *raw_cons;
1117 	u8 cmp_type, agg_bufs = 0;
1118 
1119 	cmp_type = RX_CMP_TYPE(rxcmp);
1120 
1121 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1122 		agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) &
1123 			    RX_CMP_AGG_BUFS) >>
1124 			   RX_CMP_AGG_BUFS_SHIFT;
1125 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1126 		struct rx_tpa_end_cmp *tpa_end = cmp;
1127 
1128 		if (bp->flags & BNXT_FLAG_CHIP_P5)
1129 			return 0;
1130 
1131 		agg_bufs = TPA_END_AGG_BUFS(tpa_end);
1132 	}
1133 
1134 	if (agg_bufs) {
1135 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1136 			return -EBUSY;
1137 	}
1138 	*raw_cons = tmp_raw_cons;
1139 	return 0;
1140 }
1141 
1142 static void bnxt_queue_fw_reset_work(struct bnxt *bp, unsigned long delay)
1143 {
1144 	if (BNXT_PF(bp))
1145 		queue_delayed_work(bnxt_pf_wq, &bp->fw_reset_task, delay);
1146 	else
1147 		schedule_delayed_work(&bp->fw_reset_task, delay);
1148 }
1149 
1150 static void bnxt_queue_sp_work(struct bnxt *bp)
1151 {
1152 	if (BNXT_PF(bp))
1153 		queue_work(bnxt_pf_wq, &bp->sp_task);
1154 	else
1155 		schedule_work(&bp->sp_task);
1156 }
1157 
1158 static void bnxt_cancel_sp_work(struct bnxt *bp)
1159 {
1160 	if (BNXT_PF(bp))
1161 		flush_workqueue(bnxt_pf_wq);
1162 	else
1163 		cancel_work_sync(&bp->sp_task);
1164 }
1165 
1166 static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
1167 {
1168 	if (!rxr->bnapi->in_reset) {
1169 		rxr->bnapi->in_reset = true;
1170 		set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
1171 		bnxt_queue_sp_work(bp);
1172 	}
1173 	rxr->rx_next_cons = 0xffff;
1174 }
1175 
1176 static u16 bnxt_alloc_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id)
1177 {
1178 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1179 	u16 idx = agg_id & MAX_TPA_P5_MASK;
1180 
1181 	if (test_bit(idx, map->agg_idx_bmap))
1182 		idx = find_first_zero_bit(map->agg_idx_bmap,
1183 					  BNXT_AGG_IDX_BMAP_SIZE);
1184 	__set_bit(idx, map->agg_idx_bmap);
1185 	map->agg_id_tbl[agg_id] = idx;
1186 	return idx;
1187 }
1188 
1189 static void bnxt_free_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
1190 {
1191 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1192 
1193 	__clear_bit(idx, map->agg_idx_bmap);
1194 }
1195 
1196 static u16 bnxt_lookup_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id)
1197 {
1198 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1199 
1200 	return map->agg_id_tbl[agg_id];
1201 }
1202 
1203 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1204 			   struct rx_tpa_start_cmp *tpa_start,
1205 			   struct rx_tpa_start_cmp_ext *tpa_start1)
1206 {
1207 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
1208 	struct bnxt_tpa_info *tpa_info;
1209 	u16 cons, prod, agg_id;
1210 	struct rx_bd *prod_bd;
1211 	dma_addr_t mapping;
1212 
1213 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
1214 		agg_id = TPA_START_AGG_ID_P5(tpa_start);
1215 		agg_id = bnxt_alloc_agg_idx(rxr, agg_id);
1216 	} else {
1217 		agg_id = TPA_START_AGG_ID(tpa_start);
1218 	}
1219 	cons = tpa_start->rx_tpa_start_cmp_opaque;
1220 	prod = rxr->rx_prod;
1221 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1222 	prod_rx_buf = &rxr->rx_buf_ring[prod];
1223 	tpa_info = &rxr->rx_tpa[agg_id];
1224 
1225 	if (unlikely(cons != rxr->rx_next_cons ||
1226 		     TPA_START_ERROR(tpa_start))) {
1227 		netdev_warn(bp->dev, "TPA cons %x, expected cons %x, error code %x\n",
1228 			    cons, rxr->rx_next_cons,
1229 			    TPA_START_ERROR_CODE(tpa_start1));
1230 		bnxt_sched_reset(bp, rxr);
1231 		return;
1232 	}
1233 	/* Store cfa_code in tpa_info to use in tpa_end
1234 	 * completion processing.
1235 	 */
1236 	tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1);
1237 	prod_rx_buf->data = tpa_info->data;
1238 	prod_rx_buf->data_ptr = tpa_info->data_ptr;
1239 
1240 	mapping = tpa_info->mapping;
1241 	prod_rx_buf->mapping = mapping;
1242 
1243 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
1244 
1245 	prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
1246 
1247 	tpa_info->data = cons_rx_buf->data;
1248 	tpa_info->data_ptr = cons_rx_buf->data_ptr;
1249 	cons_rx_buf->data = NULL;
1250 	tpa_info->mapping = cons_rx_buf->mapping;
1251 
1252 	tpa_info->len =
1253 		le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
1254 				RX_TPA_START_CMP_LEN_SHIFT;
1255 	if (likely(TPA_START_HASH_VALID(tpa_start))) {
1256 		u32 hash_type = TPA_START_HASH_TYPE(tpa_start);
1257 
1258 		tpa_info->hash_type = PKT_HASH_TYPE_L4;
1259 		tpa_info->gso_type = SKB_GSO_TCPV4;
1260 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1261 		if (hash_type == 3 || TPA_START_IS_IPV6(tpa_start1))
1262 			tpa_info->gso_type = SKB_GSO_TCPV6;
1263 		tpa_info->rss_hash =
1264 			le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
1265 	} else {
1266 		tpa_info->hash_type = PKT_HASH_TYPE_NONE;
1267 		tpa_info->gso_type = 0;
1268 		if (netif_msg_rx_err(bp))
1269 			netdev_warn(bp->dev, "TPA packet without valid hash\n");
1270 	}
1271 	tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
1272 	tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
1273 	tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info);
1274 	tpa_info->agg_count = 0;
1275 
1276 	rxr->rx_prod = NEXT_RX(prod);
1277 	cons = NEXT_RX(cons);
1278 	rxr->rx_next_cons = NEXT_RX(cons);
1279 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1280 
1281 	bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
1282 	rxr->rx_prod = NEXT_RX(rxr->rx_prod);
1283 	cons_rx_buf->data = NULL;
1284 }
1285 
1286 static void bnxt_abort_tpa(struct bnxt_cp_ring_info *cpr, u16 idx, u32 agg_bufs)
1287 {
1288 	if (agg_bufs)
1289 		bnxt_reuse_rx_agg_bufs(cpr, idx, 0, agg_bufs, true);
1290 }
1291 
1292 #ifdef CONFIG_INET
1293 static void bnxt_gro_tunnel(struct sk_buff *skb, __be16 ip_proto)
1294 {
1295 	struct udphdr *uh = NULL;
1296 
1297 	if (ip_proto == htons(ETH_P_IP)) {
1298 		struct iphdr *iph = (struct iphdr *)skb->data;
1299 
1300 		if (iph->protocol == IPPROTO_UDP)
1301 			uh = (struct udphdr *)(iph + 1);
1302 	} else {
1303 		struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1304 
1305 		if (iph->nexthdr == IPPROTO_UDP)
1306 			uh = (struct udphdr *)(iph + 1);
1307 	}
1308 	if (uh) {
1309 		if (uh->check)
1310 			skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL_CSUM;
1311 		else
1312 			skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1313 	}
1314 }
1315 #endif
1316 
1317 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info,
1318 					   int payload_off, int tcp_ts,
1319 					   struct sk_buff *skb)
1320 {
1321 #ifdef CONFIG_INET
1322 	struct tcphdr *th;
1323 	int len, nw_off;
1324 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1325 	u32 hdr_info = tpa_info->hdr_info;
1326 	bool loopback = false;
1327 
1328 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1329 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1330 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1331 
1332 	/* If the packet is an internal loopback packet, the offsets will
1333 	 * have an extra 4 bytes.
1334 	 */
1335 	if (inner_mac_off == 4) {
1336 		loopback = true;
1337 	} else if (inner_mac_off > 4) {
1338 		__be16 proto = *((__be16 *)(skb->data + inner_ip_off -
1339 					    ETH_HLEN - 2));
1340 
1341 		/* We only support inner iPv4/ipv6.  If we don't see the
1342 		 * correct protocol ID, it must be a loopback packet where
1343 		 * the offsets are off by 4.
1344 		 */
1345 		if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6))
1346 			loopback = true;
1347 	}
1348 	if (loopback) {
1349 		/* internal loopback packet, subtract all offsets by 4 */
1350 		inner_ip_off -= 4;
1351 		inner_mac_off -= 4;
1352 		outer_ip_off -= 4;
1353 	}
1354 
1355 	nw_off = inner_ip_off - ETH_HLEN;
1356 	skb_set_network_header(skb, nw_off);
1357 	if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) {
1358 		struct ipv6hdr *iph = ipv6_hdr(skb);
1359 
1360 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1361 		len = skb->len - skb_transport_offset(skb);
1362 		th = tcp_hdr(skb);
1363 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1364 	} else {
1365 		struct iphdr *iph = ip_hdr(skb);
1366 
1367 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1368 		len = skb->len - skb_transport_offset(skb);
1369 		th = tcp_hdr(skb);
1370 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1371 	}
1372 
1373 	if (inner_mac_off) { /* tunnel */
1374 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1375 					    ETH_HLEN - 2));
1376 
1377 		bnxt_gro_tunnel(skb, proto);
1378 	}
1379 #endif
1380 	return skb;
1381 }
1382 
1383 static struct sk_buff *bnxt_gro_func_5750x(struct bnxt_tpa_info *tpa_info,
1384 					   int payload_off, int tcp_ts,
1385 					   struct sk_buff *skb)
1386 {
1387 #ifdef CONFIG_INET
1388 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1389 	u32 hdr_info = tpa_info->hdr_info;
1390 	int iphdr_len, nw_off;
1391 
1392 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1393 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1394 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1395 
1396 	nw_off = inner_ip_off - ETH_HLEN;
1397 	skb_set_network_header(skb, nw_off);
1398 	iphdr_len = (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) ?
1399 		     sizeof(struct ipv6hdr) : sizeof(struct iphdr);
1400 	skb_set_transport_header(skb, nw_off + iphdr_len);
1401 
1402 	if (inner_mac_off) { /* tunnel */
1403 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1404 					    ETH_HLEN - 2));
1405 
1406 		bnxt_gro_tunnel(skb, proto);
1407 	}
1408 #endif
1409 	return skb;
1410 }
1411 
1412 #define BNXT_IPV4_HDR_SIZE	(sizeof(struct iphdr) + sizeof(struct tcphdr))
1413 #define BNXT_IPV6_HDR_SIZE	(sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
1414 
1415 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info,
1416 					   int payload_off, int tcp_ts,
1417 					   struct sk_buff *skb)
1418 {
1419 #ifdef CONFIG_INET
1420 	struct tcphdr *th;
1421 	int len, nw_off, tcp_opt_len = 0;
1422 
1423 	if (tcp_ts)
1424 		tcp_opt_len = 12;
1425 
1426 	if (tpa_info->gso_type == SKB_GSO_TCPV4) {
1427 		struct iphdr *iph;
1428 
1429 		nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
1430 			 ETH_HLEN;
1431 		skb_set_network_header(skb, nw_off);
1432 		iph = ip_hdr(skb);
1433 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1434 		len = skb->len - skb_transport_offset(skb);
1435 		th = tcp_hdr(skb);
1436 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1437 	} else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
1438 		struct ipv6hdr *iph;
1439 
1440 		nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
1441 			 ETH_HLEN;
1442 		skb_set_network_header(skb, nw_off);
1443 		iph = ipv6_hdr(skb);
1444 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1445 		len = skb->len - skb_transport_offset(skb);
1446 		th = tcp_hdr(skb);
1447 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1448 	} else {
1449 		dev_kfree_skb_any(skb);
1450 		return NULL;
1451 	}
1452 
1453 	if (nw_off) /* tunnel */
1454 		bnxt_gro_tunnel(skb, skb->protocol);
1455 #endif
1456 	return skb;
1457 }
1458 
1459 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp,
1460 					   struct bnxt_tpa_info *tpa_info,
1461 					   struct rx_tpa_end_cmp *tpa_end,
1462 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1463 					   struct sk_buff *skb)
1464 {
1465 #ifdef CONFIG_INET
1466 	int payload_off;
1467 	u16 segs;
1468 
1469 	segs = TPA_END_TPA_SEGS(tpa_end);
1470 	if (segs == 1)
1471 		return skb;
1472 
1473 	NAPI_GRO_CB(skb)->count = segs;
1474 	skb_shinfo(skb)->gso_size =
1475 		le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
1476 	skb_shinfo(skb)->gso_type = tpa_info->gso_type;
1477 	if (bp->flags & BNXT_FLAG_CHIP_P5)
1478 		payload_off = TPA_END_PAYLOAD_OFF_P5(tpa_end1);
1479 	else
1480 		payload_off = TPA_END_PAYLOAD_OFF(tpa_end);
1481 	skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb);
1482 	if (likely(skb))
1483 		tcp_gro_complete(skb);
1484 #endif
1485 	return skb;
1486 }
1487 
1488 /* Given the cfa_code of a received packet determine which
1489  * netdev (vf-rep or PF) the packet is destined to.
1490  */
1491 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code)
1492 {
1493 	struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code);
1494 
1495 	/* if vf-rep dev is NULL, the must belongs to the PF */
1496 	return dev ? dev : bp->dev;
1497 }
1498 
1499 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
1500 					   struct bnxt_cp_ring_info *cpr,
1501 					   u32 *raw_cons,
1502 					   struct rx_tpa_end_cmp *tpa_end,
1503 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1504 					   u8 *event)
1505 {
1506 	struct bnxt_napi *bnapi = cpr->bnapi;
1507 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1508 	u8 *data_ptr, agg_bufs;
1509 	unsigned int len;
1510 	struct bnxt_tpa_info *tpa_info;
1511 	dma_addr_t mapping;
1512 	struct sk_buff *skb;
1513 	u16 idx = 0, agg_id;
1514 	void *data;
1515 	bool gro;
1516 
1517 	if (unlikely(bnapi->in_reset)) {
1518 		int rc = bnxt_discard_rx(bp, cpr, raw_cons, tpa_end);
1519 
1520 		if (rc < 0)
1521 			return ERR_PTR(-EBUSY);
1522 		return NULL;
1523 	}
1524 
1525 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
1526 		agg_id = TPA_END_AGG_ID_P5(tpa_end);
1527 		agg_id = bnxt_lookup_agg_idx(rxr, agg_id);
1528 		agg_bufs = TPA_END_AGG_BUFS_P5(tpa_end1);
1529 		tpa_info = &rxr->rx_tpa[agg_id];
1530 		if (unlikely(agg_bufs != tpa_info->agg_count)) {
1531 			netdev_warn(bp->dev, "TPA end agg_buf %d != expected agg_bufs %d\n",
1532 				    agg_bufs, tpa_info->agg_count);
1533 			agg_bufs = tpa_info->agg_count;
1534 		}
1535 		tpa_info->agg_count = 0;
1536 		*event |= BNXT_AGG_EVENT;
1537 		bnxt_free_agg_idx(rxr, agg_id);
1538 		idx = agg_id;
1539 		gro = !!(bp->flags & BNXT_FLAG_GRO);
1540 	} else {
1541 		agg_id = TPA_END_AGG_ID(tpa_end);
1542 		agg_bufs = TPA_END_AGG_BUFS(tpa_end);
1543 		tpa_info = &rxr->rx_tpa[agg_id];
1544 		idx = RING_CMP(*raw_cons);
1545 		if (agg_bufs) {
1546 			if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
1547 				return ERR_PTR(-EBUSY);
1548 
1549 			*event |= BNXT_AGG_EVENT;
1550 			idx = NEXT_CMP(idx);
1551 		}
1552 		gro = !!TPA_END_GRO(tpa_end);
1553 	}
1554 	data = tpa_info->data;
1555 	data_ptr = tpa_info->data_ptr;
1556 	prefetch(data_ptr);
1557 	len = tpa_info->len;
1558 	mapping = tpa_info->mapping;
1559 
1560 	if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) {
1561 		bnxt_abort_tpa(cpr, idx, agg_bufs);
1562 		if (agg_bufs > MAX_SKB_FRAGS)
1563 			netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
1564 				    agg_bufs, (int)MAX_SKB_FRAGS);
1565 		return NULL;
1566 	}
1567 
1568 	if (len <= bp->rx_copy_thresh) {
1569 		skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping);
1570 		if (!skb) {
1571 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1572 			return NULL;
1573 		}
1574 	} else {
1575 		u8 *new_data;
1576 		dma_addr_t new_mapping;
1577 
1578 		new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC);
1579 		if (!new_data) {
1580 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1581 			return NULL;
1582 		}
1583 
1584 		tpa_info->data = new_data;
1585 		tpa_info->data_ptr = new_data + bp->rx_offset;
1586 		tpa_info->mapping = new_mapping;
1587 
1588 		skb = build_skb(data, 0);
1589 		dma_unmap_single_attrs(&bp->pdev->dev, mapping,
1590 				       bp->rx_buf_use_size, bp->rx_dir,
1591 				       DMA_ATTR_WEAK_ORDERING);
1592 
1593 		if (!skb) {
1594 			kfree(data);
1595 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1596 			return NULL;
1597 		}
1598 		skb_reserve(skb, bp->rx_offset);
1599 		skb_put(skb, len);
1600 	}
1601 
1602 	if (agg_bufs) {
1603 		skb = bnxt_rx_pages(bp, cpr, skb, idx, agg_bufs, true);
1604 		if (!skb) {
1605 			/* Page reuse already handled by bnxt_rx_pages(). */
1606 			return NULL;
1607 		}
1608 	}
1609 
1610 	skb->protocol =
1611 		eth_type_trans(skb, bnxt_get_pkt_dev(bp, tpa_info->cfa_code));
1612 
1613 	if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1614 		skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1615 
1616 	if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) &&
1617 	    (skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
1618 		u16 vlan_proto = tpa_info->metadata >>
1619 			RX_CMP_FLAGS2_METADATA_TPID_SFT;
1620 		u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1621 
1622 		__vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1623 	}
1624 
1625 	skb_checksum_none_assert(skb);
1626 	if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1627 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1628 		skb->csum_level =
1629 			(tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1630 	}
1631 
1632 	if (gro)
1633 		skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb);
1634 
1635 	return skb;
1636 }
1637 
1638 static void bnxt_tpa_agg(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1639 			 struct rx_agg_cmp *rx_agg)
1640 {
1641 	u16 agg_id = TPA_AGG_AGG_ID(rx_agg);
1642 	struct bnxt_tpa_info *tpa_info;
1643 
1644 	agg_id = bnxt_lookup_agg_idx(rxr, agg_id);
1645 	tpa_info = &rxr->rx_tpa[agg_id];
1646 	BUG_ON(tpa_info->agg_count >= MAX_SKB_FRAGS);
1647 	tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg;
1648 }
1649 
1650 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi,
1651 			     struct sk_buff *skb)
1652 {
1653 	if (skb->dev != bp->dev) {
1654 		/* this packet belongs to a vf-rep */
1655 		bnxt_vf_rep_rx(bp, skb);
1656 		return;
1657 	}
1658 	skb_record_rx_queue(skb, bnapi->index);
1659 	napi_gro_receive(&bnapi->napi, skb);
1660 }
1661 
1662 /* returns the following:
1663  * 1       - 1 packet successfully received
1664  * 0       - successful TPA_START, packet not completed yet
1665  * -EBUSY  - completion ring does not have all the agg buffers yet
1666  * -ENOMEM - packet aborted due to out of memory
1667  * -EIO    - packet aborted due to hw error indicated in BD
1668  */
1669 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1670 		       u32 *raw_cons, u8 *event)
1671 {
1672 	struct bnxt_napi *bnapi = cpr->bnapi;
1673 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1674 	struct net_device *dev = bp->dev;
1675 	struct rx_cmp *rxcmp;
1676 	struct rx_cmp_ext *rxcmp1;
1677 	u32 tmp_raw_cons = *raw_cons;
1678 	u16 cfa_code, cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
1679 	struct bnxt_sw_rx_bd *rx_buf;
1680 	unsigned int len;
1681 	u8 *data_ptr, agg_bufs, cmp_type;
1682 	dma_addr_t dma_addr;
1683 	struct sk_buff *skb;
1684 	void *data;
1685 	int rc = 0;
1686 	u32 misc;
1687 
1688 	rxcmp = (struct rx_cmp *)
1689 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1690 
1691 	cmp_type = RX_CMP_TYPE(rxcmp);
1692 
1693 	if (cmp_type == CMP_TYPE_RX_TPA_AGG_CMP) {
1694 		bnxt_tpa_agg(bp, rxr, (struct rx_agg_cmp *)rxcmp);
1695 		goto next_rx_no_prod_no_len;
1696 	}
1697 
1698 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1699 	cp_cons = RING_CMP(tmp_raw_cons);
1700 	rxcmp1 = (struct rx_cmp_ext *)
1701 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1702 
1703 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1704 		return -EBUSY;
1705 
1706 	prod = rxr->rx_prod;
1707 
1708 	if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) {
1709 		bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp,
1710 			       (struct rx_tpa_start_cmp_ext *)rxcmp1);
1711 
1712 		*event |= BNXT_RX_EVENT;
1713 		goto next_rx_no_prod_no_len;
1714 
1715 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1716 		skb = bnxt_tpa_end(bp, cpr, &tmp_raw_cons,
1717 				   (struct rx_tpa_end_cmp *)rxcmp,
1718 				   (struct rx_tpa_end_cmp_ext *)rxcmp1, event);
1719 
1720 		if (IS_ERR(skb))
1721 			return -EBUSY;
1722 
1723 		rc = -ENOMEM;
1724 		if (likely(skb)) {
1725 			bnxt_deliver_skb(bp, bnapi, skb);
1726 			rc = 1;
1727 		}
1728 		*event |= BNXT_RX_EVENT;
1729 		goto next_rx_no_prod_no_len;
1730 	}
1731 
1732 	cons = rxcmp->rx_cmp_opaque;
1733 	if (unlikely(cons != rxr->rx_next_cons)) {
1734 		int rc1 = bnxt_discard_rx(bp, cpr, raw_cons, rxcmp);
1735 
1736 		netdev_warn(bp->dev, "RX cons %x != expected cons %x\n",
1737 			    cons, rxr->rx_next_cons);
1738 		bnxt_sched_reset(bp, rxr);
1739 		return rc1;
1740 	}
1741 	rx_buf = &rxr->rx_buf_ring[cons];
1742 	data = rx_buf->data;
1743 	data_ptr = rx_buf->data_ptr;
1744 	prefetch(data_ptr);
1745 
1746 	misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1);
1747 	agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT;
1748 
1749 	if (agg_bufs) {
1750 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1751 			return -EBUSY;
1752 
1753 		cp_cons = NEXT_CMP(cp_cons);
1754 		*event |= BNXT_AGG_EVENT;
1755 	}
1756 	*event |= BNXT_RX_EVENT;
1757 
1758 	rx_buf->data = NULL;
1759 	if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
1760 		u32 rx_err = le32_to_cpu(rxcmp1->rx_cmp_cfa_code_errors_v2);
1761 
1762 		bnxt_reuse_rx_data(rxr, cons, data);
1763 		if (agg_bufs)
1764 			bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, agg_bufs,
1765 					       false);
1766 
1767 		rc = -EIO;
1768 		if (rx_err & RX_CMPL_ERRORS_BUFFER_ERROR_MASK) {
1769 			bnapi->cp_ring.rx_buf_errors++;
1770 			if (!(bp->flags & BNXT_FLAG_CHIP_P5)) {
1771 				netdev_warn(bp->dev, "RX buffer error %x\n",
1772 					    rx_err);
1773 				bnxt_sched_reset(bp, rxr);
1774 			}
1775 		}
1776 		goto next_rx_no_len;
1777 	}
1778 
1779 	len = le32_to_cpu(rxcmp->rx_cmp_len_flags_type) >> RX_CMP_LEN_SHIFT;
1780 	dma_addr = rx_buf->mapping;
1781 
1782 	if (bnxt_rx_xdp(bp, rxr, cons, data, &data_ptr, &len, event)) {
1783 		rc = 1;
1784 		goto next_rx;
1785 	}
1786 
1787 	if (len <= bp->rx_copy_thresh) {
1788 		skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr);
1789 		bnxt_reuse_rx_data(rxr, cons, data);
1790 		if (!skb) {
1791 			if (agg_bufs)
1792 				bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0,
1793 						       agg_bufs, false);
1794 			rc = -ENOMEM;
1795 			goto next_rx;
1796 		}
1797 	} else {
1798 		u32 payload;
1799 
1800 		if (rx_buf->data_ptr == data_ptr)
1801 			payload = misc & RX_CMP_PAYLOAD_OFFSET;
1802 		else
1803 			payload = 0;
1804 		skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr,
1805 				      payload | len);
1806 		if (!skb) {
1807 			rc = -ENOMEM;
1808 			goto next_rx;
1809 		}
1810 	}
1811 
1812 	if (agg_bufs) {
1813 		skb = bnxt_rx_pages(bp, cpr, skb, cp_cons, agg_bufs, false);
1814 		if (!skb) {
1815 			rc = -ENOMEM;
1816 			goto next_rx;
1817 		}
1818 	}
1819 
1820 	if (RX_CMP_HASH_VALID(rxcmp)) {
1821 		u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
1822 		enum pkt_hash_types type = PKT_HASH_TYPE_L4;
1823 
1824 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1825 		if (hash_type != 1 && hash_type != 3)
1826 			type = PKT_HASH_TYPE_L3;
1827 		skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
1828 	}
1829 
1830 	cfa_code = RX_CMP_CFA_CODE(rxcmp1);
1831 	skb->protocol = eth_type_trans(skb, bnxt_get_pkt_dev(bp, cfa_code));
1832 
1833 	if ((rxcmp1->rx_cmp_flags2 &
1834 	     cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) &&
1835 	    (skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
1836 		u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
1837 		u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1838 		u16 vlan_proto = meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT;
1839 
1840 		__vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1841 	}
1842 
1843 	skb_checksum_none_assert(skb);
1844 	if (RX_CMP_L4_CS_OK(rxcmp1)) {
1845 		if (dev->features & NETIF_F_RXCSUM) {
1846 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1847 			skb->csum_level = RX_CMP_ENCAP(rxcmp1);
1848 		}
1849 	} else {
1850 		if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
1851 			if (dev->features & NETIF_F_RXCSUM)
1852 				bnapi->cp_ring.rx_l4_csum_errors++;
1853 		}
1854 	}
1855 
1856 	bnxt_deliver_skb(bp, bnapi, skb);
1857 	rc = 1;
1858 
1859 next_rx:
1860 	cpr->rx_packets += 1;
1861 	cpr->rx_bytes += len;
1862 
1863 next_rx_no_len:
1864 	rxr->rx_prod = NEXT_RX(prod);
1865 	rxr->rx_next_cons = NEXT_RX(cons);
1866 
1867 next_rx_no_prod_no_len:
1868 	*raw_cons = tmp_raw_cons;
1869 
1870 	return rc;
1871 }
1872 
1873 /* In netpoll mode, if we are using a combined completion ring, we need to
1874  * discard the rx packets and recycle the buffers.
1875  */
1876 static int bnxt_force_rx_discard(struct bnxt *bp,
1877 				 struct bnxt_cp_ring_info *cpr,
1878 				 u32 *raw_cons, u8 *event)
1879 {
1880 	u32 tmp_raw_cons = *raw_cons;
1881 	struct rx_cmp_ext *rxcmp1;
1882 	struct rx_cmp *rxcmp;
1883 	u16 cp_cons;
1884 	u8 cmp_type;
1885 
1886 	cp_cons = RING_CMP(tmp_raw_cons);
1887 	rxcmp = (struct rx_cmp *)
1888 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1889 
1890 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1891 	cp_cons = RING_CMP(tmp_raw_cons);
1892 	rxcmp1 = (struct rx_cmp_ext *)
1893 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1894 
1895 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1896 		return -EBUSY;
1897 
1898 	cmp_type = RX_CMP_TYPE(rxcmp);
1899 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1900 		rxcmp1->rx_cmp_cfa_code_errors_v2 |=
1901 			cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
1902 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1903 		struct rx_tpa_end_cmp_ext *tpa_end1;
1904 
1905 		tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1;
1906 		tpa_end1->rx_tpa_end_cmp_errors_v2 |=
1907 			cpu_to_le32(RX_TPA_END_CMP_ERRORS);
1908 	}
1909 	return bnxt_rx_pkt(bp, cpr, raw_cons, event);
1910 }
1911 
1912 u32 bnxt_fw_health_readl(struct bnxt *bp, int reg_idx)
1913 {
1914 	struct bnxt_fw_health *fw_health = bp->fw_health;
1915 	u32 reg = fw_health->regs[reg_idx];
1916 	u32 reg_type, reg_off, val = 0;
1917 
1918 	reg_type = BNXT_FW_HEALTH_REG_TYPE(reg);
1919 	reg_off = BNXT_FW_HEALTH_REG_OFF(reg);
1920 	switch (reg_type) {
1921 	case BNXT_FW_HEALTH_REG_TYPE_CFG:
1922 		pci_read_config_dword(bp->pdev, reg_off, &val);
1923 		break;
1924 	case BNXT_FW_HEALTH_REG_TYPE_GRC:
1925 		reg_off = fw_health->mapped_regs[reg_idx];
1926 		/* fall through */
1927 	case BNXT_FW_HEALTH_REG_TYPE_BAR0:
1928 		val = readl(bp->bar0 + reg_off);
1929 		break;
1930 	case BNXT_FW_HEALTH_REG_TYPE_BAR1:
1931 		val = readl(bp->bar1 + reg_off);
1932 		break;
1933 	}
1934 	if (reg_idx == BNXT_FW_RESET_INPROG_REG)
1935 		val &= fw_health->fw_reset_inprog_reg_mask;
1936 	return val;
1937 }
1938 
1939 #define BNXT_GET_EVENT_PORT(data)	\
1940 	((data) &			\
1941 	 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK)
1942 
1943 static int bnxt_async_event_process(struct bnxt *bp,
1944 				    struct hwrm_async_event_cmpl *cmpl)
1945 {
1946 	u16 event_id = le16_to_cpu(cmpl->event_id);
1947 
1948 	/* TODO CHIMP_FW: Define event id's for link change, error etc */
1949 	switch (event_id) {
1950 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: {
1951 		u32 data1 = le32_to_cpu(cmpl->event_data1);
1952 		struct bnxt_link_info *link_info = &bp->link_info;
1953 
1954 		if (BNXT_VF(bp))
1955 			goto async_event_process_exit;
1956 
1957 		/* print unsupported speed warning in forced speed mode only */
1958 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) &&
1959 		    (data1 & 0x20000)) {
1960 			u16 fw_speed = link_info->force_link_speed;
1961 			u32 speed = bnxt_fw_to_ethtool_speed(fw_speed);
1962 
1963 			if (speed != SPEED_UNKNOWN)
1964 				netdev_warn(bp->dev, "Link speed %d no longer supported\n",
1965 					    speed);
1966 		}
1967 		set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event);
1968 	}
1969 	/* fall through */
1970 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE:
1971 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE:
1972 		set_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, &bp->sp_event);
1973 		/* fall through */
1974 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
1975 		set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
1976 		break;
1977 	case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD:
1978 		set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event);
1979 		break;
1980 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: {
1981 		u32 data1 = le32_to_cpu(cmpl->event_data1);
1982 		u16 port_id = BNXT_GET_EVENT_PORT(data1);
1983 
1984 		if (BNXT_VF(bp))
1985 			break;
1986 
1987 		if (bp->pf.port_id != port_id)
1988 			break;
1989 
1990 		set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event);
1991 		break;
1992 	}
1993 	case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE:
1994 		if (BNXT_PF(bp))
1995 			goto async_event_process_exit;
1996 		set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event);
1997 		break;
1998 	case ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY: {
1999 		u32 data1 = le32_to_cpu(cmpl->event_data1);
2000 
2001 		if (!bp->fw_health)
2002 			goto async_event_process_exit;
2003 
2004 		bp->fw_reset_timestamp = jiffies;
2005 		bp->fw_reset_min_dsecs = cmpl->timestamp_lo;
2006 		if (!bp->fw_reset_min_dsecs)
2007 			bp->fw_reset_min_dsecs = BNXT_DFLT_FW_RST_MIN_DSECS;
2008 		bp->fw_reset_max_dsecs = le16_to_cpu(cmpl->timestamp_hi);
2009 		if (!bp->fw_reset_max_dsecs)
2010 			bp->fw_reset_max_dsecs = BNXT_DFLT_FW_RST_MAX_DSECS;
2011 		if (EVENT_DATA1_RESET_NOTIFY_FATAL(data1)) {
2012 			netdev_warn(bp->dev, "Firmware fatal reset event received\n");
2013 			set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
2014 		} else {
2015 			netdev_warn(bp->dev, "Firmware non-fatal reset event received, max wait time %d msec\n",
2016 				    bp->fw_reset_max_dsecs * 100);
2017 		}
2018 		set_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event);
2019 		break;
2020 	}
2021 	case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY: {
2022 		struct bnxt_fw_health *fw_health = bp->fw_health;
2023 		u32 data1 = le32_to_cpu(cmpl->event_data1);
2024 
2025 		if (!fw_health)
2026 			goto async_event_process_exit;
2027 
2028 		fw_health->enabled = EVENT_DATA1_RECOVERY_ENABLED(data1);
2029 		fw_health->master = EVENT_DATA1_RECOVERY_MASTER_FUNC(data1);
2030 		if (!fw_health->enabled)
2031 			break;
2032 
2033 		if (netif_msg_drv(bp))
2034 			netdev_info(bp->dev, "Error recovery info: error recovery[%d], master[%d], reset count[0x%x], health status: 0x%x\n",
2035 				    fw_health->enabled, fw_health->master,
2036 				    bnxt_fw_health_readl(bp,
2037 							 BNXT_FW_RESET_CNT_REG),
2038 				    bnxt_fw_health_readl(bp,
2039 							 BNXT_FW_HEALTH_REG));
2040 		fw_health->tmr_multiplier =
2041 			DIV_ROUND_UP(fw_health->polling_dsecs * HZ,
2042 				     bp->current_interval * 10);
2043 		fw_health->tmr_counter = fw_health->tmr_multiplier;
2044 		fw_health->last_fw_heartbeat =
2045 			bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
2046 		fw_health->last_fw_reset_cnt =
2047 			bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
2048 		goto async_event_process_exit;
2049 	}
2050 	default:
2051 		goto async_event_process_exit;
2052 	}
2053 	bnxt_queue_sp_work(bp);
2054 async_event_process_exit:
2055 	bnxt_ulp_async_events(bp, cmpl);
2056 	return 0;
2057 }
2058 
2059 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
2060 {
2061 	u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
2062 	struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
2063 	struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
2064 				(struct hwrm_fwd_req_cmpl *)txcmp;
2065 
2066 	switch (cmpl_type) {
2067 	case CMPL_BASE_TYPE_HWRM_DONE:
2068 		seq_id = le16_to_cpu(h_cmpl->sequence_id);
2069 		if (seq_id == bp->hwrm_intr_seq_id)
2070 			bp->hwrm_intr_seq_id = (u16)~bp->hwrm_intr_seq_id;
2071 		else
2072 			netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id);
2073 		break;
2074 
2075 	case CMPL_BASE_TYPE_HWRM_FWD_REQ:
2076 		vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
2077 
2078 		if ((vf_id < bp->pf.first_vf_id) ||
2079 		    (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
2080 			netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
2081 				   vf_id);
2082 			return -EINVAL;
2083 		}
2084 
2085 		set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
2086 		set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event);
2087 		bnxt_queue_sp_work(bp);
2088 		break;
2089 
2090 	case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
2091 		bnxt_async_event_process(bp,
2092 					 (struct hwrm_async_event_cmpl *)txcmp);
2093 
2094 	default:
2095 		break;
2096 	}
2097 
2098 	return 0;
2099 }
2100 
2101 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
2102 {
2103 	struct bnxt_napi *bnapi = dev_instance;
2104 	struct bnxt *bp = bnapi->bp;
2105 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2106 	u32 cons = RING_CMP(cpr->cp_raw_cons);
2107 
2108 	cpr->event_ctr++;
2109 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
2110 	napi_schedule(&bnapi->napi);
2111 	return IRQ_HANDLED;
2112 }
2113 
2114 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
2115 {
2116 	u32 raw_cons = cpr->cp_raw_cons;
2117 	u16 cons = RING_CMP(raw_cons);
2118 	struct tx_cmp *txcmp;
2119 
2120 	txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2121 
2122 	return TX_CMP_VALID(txcmp, raw_cons);
2123 }
2124 
2125 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
2126 {
2127 	struct bnxt_napi *bnapi = dev_instance;
2128 	struct bnxt *bp = bnapi->bp;
2129 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2130 	u32 cons = RING_CMP(cpr->cp_raw_cons);
2131 	u32 int_status;
2132 
2133 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
2134 
2135 	if (!bnxt_has_work(bp, cpr)) {
2136 		int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
2137 		/* return if erroneous interrupt */
2138 		if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
2139 			return IRQ_NONE;
2140 	}
2141 
2142 	/* disable ring IRQ */
2143 	BNXT_CP_DB_IRQ_DIS(cpr->cp_db.doorbell);
2144 
2145 	/* Return here if interrupt is shared and is disabled. */
2146 	if (unlikely(atomic_read(&bp->intr_sem) != 0))
2147 		return IRQ_HANDLED;
2148 
2149 	napi_schedule(&bnapi->napi);
2150 	return IRQ_HANDLED;
2151 }
2152 
2153 static int __bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2154 			    int budget)
2155 {
2156 	struct bnxt_napi *bnapi = cpr->bnapi;
2157 	u32 raw_cons = cpr->cp_raw_cons;
2158 	u32 cons;
2159 	int tx_pkts = 0;
2160 	int rx_pkts = 0;
2161 	u8 event = 0;
2162 	struct tx_cmp *txcmp;
2163 
2164 	cpr->has_more_work = 0;
2165 	cpr->had_work_done = 1;
2166 	while (1) {
2167 		int rc;
2168 
2169 		cons = RING_CMP(raw_cons);
2170 		txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2171 
2172 		if (!TX_CMP_VALID(txcmp, raw_cons))
2173 			break;
2174 
2175 		/* The valid test of the entry must be done first before
2176 		 * reading any further.
2177 		 */
2178 		dma_rmb();
2179 		if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) {
2180 			tx_pkts++;
2181 			/* return full budget so NAPI will complete. */
2182 			if (unlikely(tx_pkts > bp->tx_wake_thresh)) {
2183 				rx_pkts = budget;
2184 				raw_cons = NEXT_RAW_CMP(raw_cons);
2185 				if (budget)
2186 					cpr->has_more_work = 1;
2187 				break;
2188 			}
2189 		} else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
2190 			if (likely(budget))
2191 				rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
2192 			else
2193 				rc = bnxt_force_rx_discard(bp, cpr, &raw_cons,
2194 							   &event);
2195 			if (likely(rc >= 0))
2196 				rx_pkts += rc;
2197 			/* Increment rx_pkts when rc is -ENOMEM to count towards
2198 			 * the NAPI budget.  Otherwise, we may potentially loop
2199 			 * here forever if we consistently cannot allocate
2200 			 * buffers.
2201 			 */
2202 			else if (rc == -ENOMEM && budget)
2203 				rx_pkts++;
2204 			else if (rc == -EBUSY)	/* partial completion */
2205 				break;
2206 		} else if (unlikely((TX_CMP_TYPE(txcmp) ==
2207 				     CMPL_BASE_TYPE_HWRM_DONE) ||
2208 				    (TX_CMP_TYPE(txcmp) ==
2209 				     CMPL_BASE_TYPE_HWRM_FWD_REQ) ||
2210 				    (TX_CMP_TYPE(txcmp) ==
2211 				     CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) {
2212 			bnxt_hwrm_handler(bp, txcmp);
2213 		}
2214 		raw_cons = NEXT_RAW_CMP(raw_cons);
2215 
2216 		if (rx_pkts && rx_pkts == budget) {
2217 			cpr->has_more_work = 1;
2218 			break;
2219 		}
2220 	}
2221 
2222 	if (event & BNXT_REDIRECT_EVENT)
2223 		xdp_do_flush_map();
2224 
2225 	if (event & BNXT_TX_EVENT) {
2226 		struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
2227 		u16 prod = txr->tx_prod;
2228 
2229 		/* Sync BD data before updating doorbell */
2230 		wmb();
2231 
2232 		bnxt_db_write_relaxed(bp, &txr->tx_db, prod);
2233 	}
2234 
2235 	cpr->cp_raw_cons = raw_cons;
2236 	bnapi->tx_pkts += tx_pkts;
2237 	bnapi->events |= event;
2238 	return rx_pkts;
2239 }
2240 
2241 static void __bnxt_poll_work_done(struct bnxt *bp, struct bnxt_napi *bnapi)
2242 {
2243 	if (bnapi->tx_pkts) {
2244 		bnapi->tx_int(bp, bnapi, bnapi->tx_pkts);
2245 		bnapi->tx_pkts = 0;
2246 	}
2247 
2248 	if (bnapi->events & BNXT_RX_EVENT) {
2249 		struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2250 
2251 		if (bnapi->events & BNXT_AGG_EVENT)
2252 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
2253 		bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
2254 	}
2255 	bnapi->events = 0;
2256 }
2257 
2258 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2259 			  int budget)
2260 {
2261 	struct bnxt_napi *bnapi = cpr->bnapi;
2262 	int rx_pkts;
2263 
2264 	rx_pkts = __bnxt_poll_work(bp, cpr, budget);
2265 
2266 	/* ACK completion ring before freeing tx ring and producing new
2267 	 * buffers in rx/agg rings to prevent overflowing the completion
2268 	 * ring.
2269 	 */
2270 	bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons);
2271 
2272 	__bnxt_poll_work_done(bp, bnapi);
2273 	return rx_pkts;
2274 }
2275 
2276 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget)
2277 {
2278 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2279 	struct bnxt *bp = bnapi->bp;
2280 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2281 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2282 	struct tx_cmp *txcmp;
2283 	struct rx_cmp_ext *rxcmp1;
2284 	u32 cp_cons, tmp_raw_cons;
2285 	u32 raw_cons = cpr->cp_raw_cons;
2286 	u32 rx_pkts = 0;
2287 	u8 event = 0;
2288 
2289 	while (1) {
2290 		int rc;
2291 
2292 		cp_cons = RING_CMP(raw_cons);
2293 		txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2294 
2295 		if (!TX_CMP_VALID(txcmp, raw_cons))
2296 			break;
2297 
2298 		if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
2299 			tmp_raw_cons = NEXT_RAW_CMP(raw_cons);
2300 			cp_cons = RING_CMP(tmp_raw_cons);
2301 			rxcmp1 = (struct rx_cmp_ext *)
2302 			  &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2303 
2304 			if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
2305 				break;
2306 
2307 			/* force an error to recycle the buffer */
2308 			rxcmp1->rx_cmp_cfa_code_errors_v2 |=
2309 				cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
2310 
2311 			rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
2312 			if (likely(rc == -EIO) && budget)
2313 				rx_pkts++;
2314 			else if (rc == -EBUSY)	/* partial completion */
2315 				break;
2316 		} else if (unlikely(TX_CMP_TYPE(txcmp) ==
2317 				    CMPL_BASE_TYPE_HWRM_DONE)) {
2318 			bnxt_hwrm_handler(bp, txcmp);
2319 		} else {
2320 			netdev_err(bp->dev,
2321 				   "Invalid completion received on special ring\n");
2322 		}
2323 		raw_cons = NEXT_RAW_CMP(raw_cons);
2324 
2325 		if (rx_pkts == budget)
2326 			break;
2327 	}
2328 
2329 	cpr->cp_raw_cons = raw_cons;
2330 	BNXT_DB_CQ(&cpr->cp_db, cpr->cp_raw_cons);
2331 	bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
2332 
2333 	if (event & BNXT_AGG_EVENT)
2334 		bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
2335 
2336 	if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) {
2337 		napi_complete_done(napi, rx_pkts);
2338 		BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2339 	}
2340 	return rx_pkts;
2341 }
2342 
2343 static int bnxt_poll(struct napi_struct *napi, int budget)
2344 {
2345 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2346 	struct bnxt *bp = bnapi->bp;
2347 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2348 	int work_done = 0;
2349 
2350 	while (1) {
2351 		work_done += bnxt_poll_work(bp, cpr, budget - work_done);
2352 
2353 		if (work_done >= budget) {
2354 			if (!budget)
2355 				BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2356 			break;
2357 		}
2358 
2359 		if (!bnxt_has_work(bp, cpr)) {
2360 			if (napi_complete_done(napi, work_done))
2361 				BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2362 			break;
2363 		}
2364 	}
2365 	if (bp->flags & BNXT_FLAG_DIM) {
2366 		struct dim_sample dim_sample = {};
2367 
2368 		dim_update_sample(cpr->event_ctr,
2369 				  cpr->rx_packets,
2370 				  cpr->rx_bytes,
2371 				  &dim_sample);
2372 		net_dim(&cpr->dim, dim_sample);
2373 	}
2374 	return work_done;
2375 }
2376 
2377 static int __bnxt_poll_cqs(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
2378 {
2379 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2380 	int i, work_done = 0;
2381 
2382 	for (i = 0; i < 2; i++) {
2383 		struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i];
2384 
2385 		if (cpr2) {
2386 			work_done += __bnxt_poll_work(bp, cpr2,
2387 						      budget - work_done);
2388 			cpr->has_more_work |= cpr2->has_more_work;
2389 		}
2390 	}
2391 	return work_done;
2392 }
2393 
2394 static void __bnxt_poll_cqs_done(struct bnxt *bp, struct bnxt_napi *bnapi,
2395 				 u64 dbr_type)
2396 {
2397 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2398 	int i;
2399 
2400 	for (i = 0; i < 2; i++) {
2401 		struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i];
2402 		struct bnxt_db_info *db;
2403 
2404 		if (cpr2 && cpr2->had_work_done) {
2405 			db = &cpr2->cp_db;
2406 			writeq(db->db_key64 | dbr_type |
2407 			       RING_CMP(cpr2->cp_raw_cons), db->doorbell);
2408 			cpr2->had_work_done = 0;
2409 		}
2410 	}
2411 	__bnxt_poll_work_done(bp, bnapi);
2412 }
2413 
2414 static int bnxt_poll_p5(struct napi_struct *napi, int budget)
2415 {
2416 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2417 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2418 	u32 raw_cons = cpr->cp_raw_cons;
2419 	struct bnxt *bp = bnapi->bp;
2420 	struct nqe_cn *nqcmp;
2421 	int work_done = 0;
2422 	u32 cons;
2423 
2424 	if (cpr->has_more_work) {
2425 		cpr->has_more_work = 0;
2426 		work_done = __bnxt_poll_cqs(bp, bnapi, budget);
2427 	}
2428 	while (1) {
2429 		cons = RING_CMP(raw_cons);
2430 		nqcmp = &cpr->nq_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2431 
2432 		if (!NQ_CMP_VALID(nqcmp, raw_cons)) {
2433 			if (cpr->has_more_work)
2434 				break;
2435 
2436 			__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL);
2437 			cpr->cp_raw_cons = raw_cons;
2438 			if (napi_complete_done(napi, work_done))
2439 				BNXT_DB_NQ_ARM_P5(&cpr->cp_db,
2440 						  cpr->cp_raw_cons);
2441 			return work_done;
2442 		}
2443 
2444 		/* The valid test of the entry must be done first before
2445 		 * reading any further.
2446 		 */
2447 		dma_rmb();
2448 
2449 		if (nqcmp->type == cpu_to_le16(NQ_CN_TYPE_CQ_NOTIFICATION)) {
2450 			u32 idx = le32_to_cpu(nqcmp->cq_handle_low);
2451 			struct bnxt_cp_ring_info *cpr2;
2452 
2453 			cpr2 = cpr->cp_ring_arr[idx];
2454 			work_done += __bnxt_poll_work(bp, cpr2,
2455 						      budget - work_done);
2456 			cpr->has_more_work |= cpr2->has_more_work;
2457 		} else {
2458 			bnxt_hwrm_handler(bp, (struct tx_cmp *)nqcmp);
2459 		}
2460 		raw_cons = NEXT_RAW_CMP(raw_cons);
2461 	}
2462 	__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ);
2463 	if (raw_cons != cpr->cp_raw_cons) {
2464 		cpr->cp_raw_cons = raw_cons;
2465 		BNXT_DB_NQ_P5(&cpr->cp_db, raw_cons);
2466 	}
2467 	return work_done;
2468 }
2469 
2470 static void bnxt_free_tx_skbs(struct bnxt *bp)
2471 {
2472 	int i, max_idx;
2473 	struct pci_dev *pdev = bp->pdev;
2474 
2475 	if (!bp->tx_ring)
2476 		return;
2477 
2478 	max_idx = bp->tx_nr_pages * TX_DESC_CNT;
2479 	for (i = 0; i < bp->tx_nr_rings; i++) {
2480 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2481 		int j;
2482 
2483 		for (j = 0; j < max_idx;) {
2484 			struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
2485 			struct sk_buff *skb;
2486 			int k, last;
2487 
2488 			if (i < bp->tx_nr_rings_xdp &&
2489 			    tx_buf->action == XDP_REDIRECT) {
2490 				dma_unmap_single(&pdev->dev,
2491 					dma_unmap_addr(tx_buf, mapping),
2492 					dma_unmap_len(tx_buf, len),
2493 					PCI_DMA_TODEVICE);
2494 				xdp_return_frame(tx_buf->xdpf);
2495 				tx_buf->action = 0;
2496 				tx_buf->xdpf = NULL;
2497 				j++;
2498 				continue;
2499 			}
2500 
2501 			skb = tx_buf->skb;
2502 			if (!skb) {
2503 				j++;
2504 				continue;
2505 			}
2506 
2507 			tx_buf->skb = NULL;
2508 
2509 			if (tx_buf->is_push) {
2510 				dev_kfree_skb(skb);
2511 				j += 2;
2512 				continue;
2513 			}
2514 
2515 			dma_unmap_single(&pdev->dev,
2516 					 dma_unmap_addr(tx_buf, mapping),
2517 					 skb_headlen(skb),
2518 					 PCI_DMA_TODEVICE);
2519 
2520 			last = tx_buf->nr_frags;
2521 			j += 2;
2522 			for (k = 0; k < last; k++, j++) {
2523 				int ring_idx = j & bp->tx_ring_mask;
2524 				skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2525 
2526 				tx_buf = &txr->tx_buf_ring[ring_idx];
2527 				dma_unmap_page(
2528 					&pdev->dev,
2529 					dma_unmap_addr(tx_buf, mapping),
2530 					skb_frag_size(frag), PCI_DMA_TODEVICE);
2531 			}
2532 			dev_kfree_skb(skb);
2533 		}
2534 		netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
2535 	}
2536 }
2537 
2538 static void bnxt_free_rx_skbs(struct bnxt *bp)
2539 {
2540 	int i, max_idx, max_agg_idx;
2541 	struct pci_dev *pdev = bp->pdev;
2542 
2543 	if (!bp->rx_ring)
2544 		return;
2545 
2546 	max_idx = bp->rx_nr_pages * RX_DESC_CNT;
2547 	max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
2548 	for (i = 0; i < bp->rx_nr_rings; i++) {
2549 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2550 		struct bnxt_tpa_idx_map *map;
2551 		int j;
2552 
2553 		if (rxr->rx_tpa) {
2554 			for (j = 0; j < bp->max_tpa; j++) {
2555 				struct bnxt_tpa_info *tpa_info =
2556 							&rxr->rx_tpa[j];
2557 				u8 *data = tpa_info->data;
2558 
2559 				if (!data)
2560 					continue;
2561 
2562 				dma_unmap_single_attrs(&pdev->dev,
2563 						       tpa_info->mapping,
2564 						       bp->rx_buf_use_size,
2565 						       bp->rx_dir,
2566 						       DMA_ATTR_WEAK_ORDERING);
2567 
2568 				tpa_info->data = NULL;
2569 
2570 				kfree(data);
2571 			}
2572 		}
2573 
2574 		for (j = 0; j < max_idx; j++) {
2575 			struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[j];
2576 			dma_addr_t mapping = rx_buf->mapping;
2577 			void *data = rx_buf->data;
2578 
2579 			if (!data)
2580 				continue;
2581 
2582 			rx_buf->data = NULL;
2583 
2584 			if (BNXT_RX_PAGE_MODE(bp)) {
2585 				mapping -= bp->rx_dma_offset;
2586 				dma_unmap_page_attrs(&pdev->dev, mapping,
2587 						     PAGE_SIZE, bp->rx_dir,
2588 						     DMA_ATTR_WEAK_ORDERING);
2589 				page_pool_recycle_direct(rxr->page_pool, data);
2590 			} else {
2591 				dma_unmap_single_attrs(&pdev->dev, mapping,
2592 						       bp->rx_buf_use_size,
2593 						       bp->rx_dir,
2594 						       DMA_ATTR_WEAK_ORDERING);
2595 				kfree(data);
2596 			}
2597 		}
2598 
2599 		for (j = 0; j < max_agg_idx; j++) {
2600 			struct bnxt_sw_rx_agg_bd *rx_agg_buf =
2601 				&rxr->rx_agg_ring[j];
2602 			struct page *page = rx_agg_buf->page;
2603 
2604 			if (!page)
2605 				continue;
2606 
2607 			dma_unmap_page_attrs(&pdev->dev, rx_agg_buf->mapping,
2608 					     BNXT_RX_PAGE_SIZE,
2609 					     PCI_DMA_FROMDEVICE,
2610 					     DMA_ATTR_WEAK_ORDERING);
2611 
2612 			rx_agg_buf->page = NULL;
2613 			__clear_bit(j, rxr->rx_agg_bmap);
2614 
2615 			__free_page(page);
2616 		}
2617 		if (rxr->rx_page) {
2618 			__free_page(rxr->rx_page);
2619 			rxr->rx_page = NULL;
2620 		}
2621 		map = rxr->rx_tpa_idx_map;
2622 		if (map)
2623 			memset(map->agg_idx_bmap, 0, sizeof(map->agg_idx_bmap));
2624 	}
2625 }
2626 
2627 static void bnxt_free_skbs(struct bnxt *bp)
2628 {
2629 	bnxt_free_tx_skbs(bp);
2630 	bnxt_free_rx_skbs(bp);
2631 }
2632 
2633 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
2634 {
2635 	struct pci_dev *pdev = bp->pdev;
2636 	int i;
2637 
2638 	for (i = 0; i < rmem->nr_pages; i++) {
2639 		if (!rmem->pg_arr[i])
2640 			continue;
2641 
2642 		dma_free_coherent(&pdev->dev, rmem->page_size,
2643 				  rmem->pg_arr[i], rmem->dma_arr[i]);
2644 
2645 		rmem->pg_arr[i] = NULL;
2646 	}
2647 	if (rmem->pg_tbl) {
2648 		size_t pg_tbl_size = rmem->nr_pages * 8;
2649 
2650 		if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
2651 			pg_tbl_size = rmem->page_size;
2652 		dma_free_coherent(&pdev->dev, pg_tbl_size,
2653 				  rmem->pg_tbl, rmem->pg_tbl_map);
2654 		rmem->pg_tbl = NULL;
2655 	}
2656 	if (rmem->vmem_size && *rmem->vmem) {
2657 		vfree(*rmem->vmem);
2658 		*rmem->vmem = NULL;
2659 	}
2660 }
2661 
2662 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
2663 {
2664 	struct pci_dev *pdev = bp->pdev;
2665 	u64 valid_bit = 0;
2666 	int i;
2667 
2668 	if (rmem->flags & (BNXT_RMEM_VALID_PTE_FLAG | BNXT_RMEM_RING_PTE_FLAG))
2669 		valid_bit = PTU_PTE_VALID;
2670 	if ((rmem->nr_pages > 1 || rmem->depth > 0) && !rmem->pg_tbl) {
2671 		size_t pg_tbl_size = rmem->nr_pages * 8;
2672 
2673 		if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
2674 			pg_tbl_size = rmem->page_size;
2675 		rmem->pg_tbl = dma_alloc_coherent(&pdev->dev, pg_tbl_size,
2676 						  &rmem->pg_tbl_map,
2677 						  GFP_KERNEL);
2678 		if (!rmem->pg_tbl)
2679 			return -ENOMEM;
2680 	}
2681 
2682 	for (i = 0; i < rmem->nr_pages; i++) {
2683 		u64 extra_bits = valid_bit;
2684 
2685 		rmem->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
2686 						     rmem->page_size,
2687 						     &rmem->dma_arr[i],
2688 						     GFP_KERNEL);
2689 		if (!rmem->pg_arr[i])
2690 			return -ENOMEM;
2691 
2692 		if (rmem->init_val)
2693 			memset(rmem->pg_arr[i], rmem->init_val,
2694 			       rmem->page_size);
2695 		if (rmem->nr_pages > 1 || rmem->depth > 0) {
2696 			if (i == rmem->nr_pages - 2 &&
2697 			    (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
2698 				extra_bits |= PTU_PTE_NEXT_TO_LAST;
2699 			else if (i == rmem->nr_pages - 1 &&
2700 				 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
2701 				extra_bits |= PTU_PTE_LAST;
2702 			rmem->pg_tbl[i] =
2703 				cpu_to_le64(rmem->dma_arr[i] | extra_bits);
2704 		}
2705 	}
2706 
2707 	if (rmem->vmem_size) {
2708 		*rmem->vmem = vzalloc(rmem->vmem_size);
2709 		if (!(*rmem->vmem))
2710 			return -ENOMEM;
2711 	}
2712 	return 0;
2713 }
2714 
2715 static void bnxt_free_tpa_info(struct bnxt *bp)
2716 {
2717 	int i;
2718 
2719 	for (i = 0; i < bp->rx_nr_rings; i++) {
2720 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2721 
2722 		kfree(rxr->rx_tpa_idx_map);
2723 		rxr->rx_tpa_idx_map = NULL;
2724 		if (rxr->rx_tpa) {
2725 			kfree(rxr->rx_tpa[0].agg_arr);
2726 			rxr->rx_tpa[0].agg_arr = NULL;
2727 		}
2728 		kfree(rxr->rx_tpa);
2729 		rxr->rx_tpa = NULL;
2730 	}
2731 }
2732 
2733 static int bnxt_alloc_tpa_info(struct bnxt *bp)
2734 {
2735 	int i, j, total_aggs = 0;
2736 
2737 	bp->max_tpa = MAX_TPA;
2738 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
2739 		if (!bp->max_tpa_v2)
2740 			return 0;
2741 		bp->max_tpa = max_t(u16, bp->max_tpa_v2, MAX_TPA_P5);
2742 		total_aggs = bp->max_tpa * MAX_SKB_FRAGS;
2743 	}
2744 
2745 	for (i = 0; i < bp->rx_nr_rings; i++) {
2746 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2747 		struct rx_agg_cmp *agg;
2748 
2749 		rxr->rx_tpa = kcalloc(bp->max_tpa, sizeof(struct bnxt_tpa_info),
2750 				      GFP_KERNEL);
2751 		if (!rxr->rx_tpa)
2752 			return -ENOMEM;
2753 
2754 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
2755 			continue;
2756 		agg = kcalloc(total_aggs, sizeof(*agg), GFP_KERNEL);
2757 		rxr->rx_tpa[0].agg_arr = agg;
2758 		if (!agg)
2759 			return -ENOMEM;
2760 		for (j = 1; j < bp->max_tpa; j++)
2761 			rxr->rx_tpa[j].agg_arr = agg + j * MAX_SKB_FRAGS;
2762 		rxr->rx_tpa_idx_map = kzalloc(sizeof(*rxr->rx_tpa_idx_map),
2763 					      GFP_KERNEL);
2764 		if (!rxr->rx_tpa_idx_map)
2765 			return -ENOMEM;
2766 	}
2767 	return 0;
2768 }
2769 
2770 static void bnxt_free_rx_rings(struct bnxt *bp)
2771 {
2772 	int i;
2773 
2774 	if (!bp->rx_ring)
2775 		return;
2776 
2777 	bnxt_free_tpa_info(bp);
2778 	for (i = 0; i < bp->rx_nr_rings; i++) {
2779 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2780 		struct bnxt_ring_struct *ring;
2781 
2782 		if (rxr->xdp_prog)
2783 			bpf_prog_put(rxr->xdp_prog);
2784 
2785 		if (xdp_rxq_info_is_reg(&rxr->xdp_rxq))
2786 			xdp_rxq_info_unreg(&rxr->xdp_rxq);
2787 
2788 		page_pool_destroy(rxr->page_pool);
2789 		rxr->page_pool = NULL;
2790 
2791 		kfree(rxr->rx_agg_bmap);
2792 		rxr->rx_agg_bmap = NULL;
2793 
2794 		ring = &rxr->rx_ring_struct;
2795 		bnxt_free_ring(bp, &ring->ring_mem);
2796 
2797 		ring = &rxr->rx_agg_ring_struct;
2798 		bnxt_free_ring(bp, &ring->ring_mem);
2799 	}
2800 }
2801 
2802 static int bnxt_alloc_rx_page_pool(struct bnxt *bp,
2803 				   struct bnxt_rx_ring_info *rxr)
2804 {
2805 	struct page_pool_params pp = { 0 };
2806 
2807 	pp.pool_size = bp->rx_ring_size;
2808 	pp.nid = dev_to_node(&bp->pdev->dev);
2809 	pp.dev = &bp->pdev->dev;
2810 	pp.dma_dir = DMA_BIDIRECTIONAL;
2811 
2812 	rxr->page_pool = page_pool_create(&pp);
2813 	if (IS_ERR(rxr->page_pool)) {
2814 		int err = PTR_ERR(rxr->page_pool);
2815 
2816 		rxr->page_pool = NULL;
2817 		return err;
2818 	}
2819 	return 0;
2820 }
2821 
2822 static int bnxt_alloc_rx_rings(struct bnxt *bp)
2823 {
2824 	int i, rc = 0, agg_rings = 0;
2825 
2826 	if (!bp->rx_ring)
2827 		return -ENOMEM;
2828 
2829 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
2830 		agg_rings = 1;
2831 
2832 	for (i = 0; i < bp->rx_nr_rings; i++) {
2833 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2834 		struct bnxt_ring_struct *ring;
2835 
2836 		ring = &rxr->rx_ring_struct;
2837 
2838 		rc = bnxt_alloc_rx_page_pool(bp, rxr);
2839 		if (rc)
2840 			return rc;
2841 
2842 		rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i);
2843 		if (rc < 0)
2844 			return rc;
2845 
2846 		rc = xdp_rxq_info_reg_mem_model(&rxr->xdp_rxq,
2847 						MEM_TYPE_PAGE_POOL,
2848 						rxr->page_pool);
2849 		if (rc) {
2850 			xdp_rxq_info_unreg(&rxr->xdp_rxq);
2851 			return rc;
2852 		}
2853 
2854 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
2855 		if (rc)
2856 			return rc;
2857 
2858 		ring->grp_idx = i;
2859 		if (agg_rings) {
2860 			u16 mem_size;
2861 
2862 			ring = &rxr->rx_agg_ring_struct;
2863 			rc = bnxt_alloc_ring(bp, &ring->ring_mem);
2864 			if (rc)
2865 				return rc;
2866 
2867 			ring->grp_idx = i;
2868 			rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
2869 			mem_size = rxr->rx_agg_bmap_size / 8;
2870 			rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
2871 			if (!rxr->rx_agg_bmap)
2872 				return -ENOMEM;
2873 		}
2874 	}
2875 	if (bp->flags & BNXT_FLAG_TPA)
2876 		rc = bnxt_alloc_tpa_info(bp);
2877 	return rc;
2878 }
2879 
2880 static void bnxt_free_tx_rings(struct bnxt *bp)
2881 {
2882 	int i;
2883 	struct pci_dev *pdev = bp->pdev;
2884 
2885 	if (!bp->tx_ring)
2886 		return;
2887 
2888 	for (i = 0; i < bp->tx_nr_rings; i++) {
2889 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2890 		struct bnxt_ring_struct *ring;
2891 
2892 		if (txr->tx_push) {
2893 			dma_free_coherent(&pdev->dev, bp->tx_push_size,
2894 					  txr->tx_push, txr->tx_push_mapping);
2895 			txr->tx_push = NULL;
2896 		}
2897 
2898 		ring = &txr->tx_ring_struct;
2899 
2900 		bnxt_free_ring(bp, &ring->ring_mem);
2901 	}
2902 }
2903 
2904 static int bnxt_alloc_tx_rings(struct bnxt *bp)
2905 {
2906 	int i, j, rc;
2907 	struct pci_dev *pdev = bp->pdev;
2908 
2909 	bp->tx_push_size = 0;
2910 	if (bp->tx_push_thresh) {
2911 		int push_size;
2912 
2913 		push_size  = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
2914 					bp->tx_push_thresh);
2915 
2916 		if (push_size > 256) {
2917 			push_size = 0;
2918 			bp->tx_push_thresh = 0;
2919 		}
2920 
2921 		bp->tx_push_size = push_size;
2922 	}
2923 
2924 	for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
2925 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2926 		struct bnxt_ring_struct *ring;
2927 		u8 qidx;
2928 
2929 		ring = &txr->tx_ring_struct;
2930 
2931 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
2932 		if (rc)
2933 			return rc;
2934 
2935 		ring->grp_idx = txr->bnapi->index;
2936 		if (bp->tx_push_size) {
2937 			dma_addr_t mapping;
2938 
2939 			/* One pre-allocated DMA buffer to backup
2940 			 * TX push operation
2941 			 */
2942 			txr->tx_push = dma_alloc_coherent(&pdev->dev,
2943 						bp->tx_push_size,
2944 						&txr->tx_push_mapping,
2945 						GFP_KERNEL);
2946 
2947 			if (!txr->tx_push)
2948 				return -ENOMEM;
2949 
2950 			mapping = txr->tx_push_mapping +
2951 				sizeof(struct tx_push_bd);
2952 			txr->data_mapping = cpu_to_le64(mapping);
2953 		}
2954 		qidx = bp->tc_to_qidx[j];
2955 		ring->queue_id = bp->q_info[qidx].queue_id;
2956 		if (i < bp->tx_nr_rings_xdp)
2957 			continue;
2958 		if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1))
2959 			j++;
2960 	}
2961 	return 0;
2962 }
2963 
2964 static void bnxt_free_cp_rings(struct bnxt *bp)
2965 {
2966 	int i;
2967 
2968 	if (!bp->bnapi)
2969 		return;
2970 
2971 	for (i = 0; i < bp->cp_nr_rings; i++) {
2972 		struct bnxt_napi *bnapi = bp->bnapi[i];
2973 		struct bnxt_cp_ring_info *cpr;
2974 		struct bnxt_ring_struct *ring;
2975 		int j;
2976 
2977 		if (!bnapi)
2978 			continue;
2979 
2980 		cpr = &bnapi->cp_ring;
2981 		ring = &cpr->cp_ring_struct;
2982 
2983 		bnxt_free_ring(bp, &ring->ring_mem);
2984 
2985 		for (j = 0; j < 2; j++) {
2986 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
2987 
2988 			if (cpr2) {
2989 				ring = &cpr2->cp_ring_struct;
2990 				bnxt_free_ring(bp, &ring->ring_mem);
2991 				kfree(cpr2);
2992 				cpr->cp_ring_arr[j] = NULL;
2993 			}
2994 		}
2995 	}
2996 }
2997 
2998 static struct bnxt_cp_ring_info *bnxt_alloc_cp_sub_ring(struct bnxt *bp)
2999 {
3000 	struct bnxt_ring_mem_info *rmem;
3001 	struct bnxt_ring_struct *ring;
3002 	struct bnxt_cp_ring_info *cpr;
3003 	int rc;
3004 
3005 	cpr = kzalloc(sizeof(*cpr), GFP_KERNEL);
3006 	if (!cpr)
3007 		return NULL;
3008 
3009 	ring = &cpr->cp_ring_struct;
3010 	rmem = &ring->ring_mem;
3011 	rmem->nr_pages = bp->cp_nr_pages;
3012 	rmem->page_size = HW_CMPD_RING_SIZE;
3013 	rmem->pg_arr = (void **)cpr->cp_desc_ring;
3014 	rmem->dma_arr = cpr->cp_desc_mapping;
3015 	rmem->flags = BNXT_RMEM_RING_PTE_FLAG;
3016 	rc = bnxt_alloc_ring(bp, rmem);
3017 	if (rc) {
3018 		bnxt_free_ring(bp, rmem);
3019 		kfree(cpr);
3020 		cpr = NULL;
3021 	}
3022 	return cpr;
3023 }
3024 
3025 static int bnxt_alloc_cp_rings(struct bnxt *bp)
3026 {
3027 	bool sh = !!(bp->flags & BNXT_FLAG_SHARED_RINGS);
3028 	int i, rc, ulp_base_vec, ulp_msix;
3029 
3030 	ulp_msix = bnxt_get_ulp_msix_num(bp);
3031 	ulp_base_vec = bnxt_get_ulp_msix_base(bp);
3032 	for (i = 0; i < bp->cp_nr_rings; i++) {
3033 		struct bnxt_napi *bnapi = bp->bnapi[i];
3034 		struct bnxt_cp_ring_info *cpr;
3035 		struct bnxt_ring_struct *ring;
3036 
3037 		if (!bnapi)
3038 			continue;
3039 
3040 		cpr = &bnapi->cp_ring;
3041 		cpr->bnapi = bnapi;
3042 		ring = &cpr->cp_ring_struct;
3043 
3044 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3045 		if (rc)
3046 			return rc;
3047 
3048 		if (ulp_msix && i >= ulp_base_vec)
3049 			ring->map_idx = i + ulp_msix;
3050 		else
3051 			ring->map_idx = i;
3052 
3053 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
3054 			continue;
3055 
3056 		if (i < bp->rx_nr_rings) {
3057 			struct bnxt_cp_ring_info *cpr2 =
3058 				bnxt_alloc_cp_sub_ring(bp);
3059 
3060 			cpr->cp_ring_arr[BNXT_RX_HDL] = cpr2;
3061 			if (!cpr2)
3062 				return -ENOMEM;
3063 			cpr2->bnapi = bnapi;
3064 		}
3065 		if ((sh && i < bp->tx_nr_rings) ||
3066 		    (!sh && i >= bp->rx_nr_rings)) {
3067 			struct bnxt_cp_ring_info *cpr2 =
3068 				bnxt_alloc_cp_sub_ring(bp);
3069 
3070 			cpr->cp_ring_arr[BNXT_TX_HDL] = cpr2;
3071 			if (!cpr2)
3072 				return -ENOMEM;
3073 			cpr2->bnapi = bnapi;
3074 		}
3075 	}
3076 	return 0;
3077 }
3078 
3079 static void bnxt_init_ring_struct(struct bnxt *bp)
3080 {
3081 	int i;
3082 
3083 	for (i = 0; i < bp->cp_nr_rings; i++) {
3084 		struct bnxt_napi *bnapi = bp->bnapi[i];
3085 		struct bnxt_ring_mem_info *rmem;
3086 		struct bnxt_cp_ring_info *cpr;
3087 		struct bnxt_rx_ring_info *rxr;
3088 		struct bnxt_tx_ring_info *txr;
3089 		struct bnxt_ring_struct *ring;
3090 
3091 		if (!bnapi)
3092 			continue;
3093 
3094 		cpr = &bnapi->cp_ring;
3095 		ring = &cpr->cp_ring_struct;
3096 		rmem = &ring->ring_mem;
3097 		rmem->nr_pages = bp->cp_nr_pages;
3098 		rmem->page_size = HW_CMPD_RING_SIZE;
3099 		rmem->pg_arr = (void **)cpr->cp_desc_ring;
3100 		rmem->dma_arr = cpr->cp_desc_mapping;
3101 		rmem->vmem_size = 0;
3102 
3103 		rxr = bnapi->rx_ring;
3104 		if (!rxr)
3105 			goto skip_rx;
3106 
3107 		ring = &rxr->rx_ring_struct;
3108 		rmem = &ring->ring_mem;
3109 		rmem->nr_pages = bp->rx_nr_pages;
3110 		rmem->page_size = HW_RXBD_RING_SIZE;
3111 		rmem->pg_arr = (void **)rxr->rx_desc_ring;
3112 		rmem->dma_arr = rxr->rx_desc_mapping;
3113 		rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
3114 		rmem->vmem = (void **)&rxr->rx_buf_ring;
3115 
3116 		ring = &rxr->rx_agg_ring_struct;
3117 		rmem = &ring->ring_mem;
3118 		rmem->nr_pages = bp->rx_agg_nr_pages;
3119 		rmem->page_size = HW_RXBD_RING_SIZE;
3120 		rmem->pg_arr = (void **)rxr->rx_agg_desc_ring;
3121 		rmem->dma_arr = rxr->rx_agg_desc_mapping;
3122 		rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
3123 		rmem->vmem = (void **)&rxr->rx_agg_ring;
3124 
3125 skip_rx:
3126 		txr = bnapi->tx_ring;
3127 		if (!txr)
3128 			continue;
3129 
3130 		ring = &txr->tx_ring_struct;
3131 		rmem = &ring->ring_mem;
3132 		rmem->nr_pages = bp->tx_nr_pages;
3133 		rmem->page_size = HW_RXBD_RING_SIZE;
3134 		rmem->pg_arr = (void **)txr->tx_desc_ring;
3135 		rmem->dma_arr = txr->tx_desc_mapping;
3136 		rmem->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
3137 		rmem->vmem = (void **)&txr->tx_buf_ring;
3138 	}
3139 }
3140 
3141 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
3142 {
3143 	int i;
3144 	u32 prod;
3145 	struct rx_bd **rx_buf_ring;
3146 
3147 	rx_buf_ring = (struct rx_bd **)ring->ring_mem.pg_arr;
3148 	for (i = 0, prod = 0; i < ring->ring_mem.nr_pages; i++) {
3149 		int j;
3150 		struct rx_bd *rxbd;
3151 
3152 		rxbd = rx_buf_ring[i];
3153 		if (!rxbd)
3154 			continue;
3155 
3156 		for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
3157 			rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
3158 			rxbd->rx_bd_opaque = prod;
3159 		}
3160 	}
3161 }
3162 
3163 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
3164 {
3165 	struct net_device *dev = bp->dev;
3166 	struct bnxt_rx_ring_info *rxr;
3167 	struct bnxt_ring_struct *ring;
3168 	u32 prod, type;
3169 	int i;
3170 
3171 	type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
3172 		RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
3173 
3174 	if (NET_IP_ALIGN == 2)
3175 		type |= RX_BD_FLAGS_SOP;
3176 
3177 	rxr = &bp->rx_ring[ring_nr];
3178 	ring = &rxr->rx_ring_struct;
3179 	bnxt_init_rxbd_pages(ring, type);
3180 
3181 	if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) {
3182 		bpf_prog_add(bp->xdp_prog, 1);
3183 		rxr->xdp_prog = bp->xdp_prog;
3184 	}
3185 	prod = rxr->rx_prod;
3186 	for (i = 0; i < bp->rx_ring_size; i++) {
3187 		if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL) != 0) {
3188 			netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
3189 				    ring_nr, i, bp->rx_ring_size);
3190 			break;
3191 		}
3192 		prod = NEXT_RX(prod);
3193 	}
3194 	rxr->rx_prod = prod;
3195 	ring->fw_ring_id = INVALID_HW_RING_ID;
3196 
3197 	ring = &rxr->rx_agg_ring_struct;
3198 	ring->fw_ring_id = INVALID_HW_RING_ID;
3199 
3200 	if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
3201 		return 0;
3202 
3203 	type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) |
3204 		RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
3205 
3206 	bnxt_init_rxbd_pages(ring, type);
3207 
3208 	prod = rxr->rx_agg_prod;
3209 	for (i = 0; i < bp->rx_agg_ring_size; i++) {
3210 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL) != 0) {
3211 			netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
3212 				    ring_nr, i, bp->rx_ring_size);
3213 			break;
3214 		}
3215 		prod = NEXT_RX_AGG(prod);
3216 	}
3217 	rxr->rx_agg_prod = prod;
3218 
3219 	if (bp->flags & BNXT_FLAG_TPA) {
3220 		if (rxr->rx_tpa) {
3221 			u8 *data;
3222 			dma_addr_t mapping;
3223 
3224 			for (i = 0; i < bp->max_tpa; i++) {
3225 				data = __bnxt_alloc_rx_data(bp, &mapping,
3226 							    GFP_KERNEL);
3227 				if (!data)
3228 					return -ENOMEM;
3229 
3230 				rxr->rx_tpa[i].data = data;
3231 				rxr->rx_tpa[i].data_ptr = data + bp->rx_offset;
3232 				rxr->rx_tpa[i].mapping = mapping;
3233 			}
3234 		} else {
3235 			netdev_err(bp->dev, "No resource allocated for LRO/GRO\n");
3236 			return -ENOMEM;
3237 		}
3238 	}
3239 
3240 	return 0;
3241 }
3242 
3243 static void bnxt_init_cp_rings(struct bnxt *bp)
3244 {
3245 	int i, j;
3246 
3247 	for (i = 0; i < bp->cp_nr_rings; i++) {
3248 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
3249 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3250 
3251 		ring->fw_ring_id = INVALID_HW_RING_ID;
3252 		cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
3253 		cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
3254 		for (j = 0; j < 2; j++) {
3255 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
3256 
3257 			if (!cpr2)
3258 				continue;
3259 
3260 			ring = &cpr2->cp_ring_struct;
3261 			ring->fw_ring_id = INVALID_HW_RING_ID;
3262 			cpr2->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
3263 			cpr2->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
3264 		}
3265 	}
3266 }
3267 
3268 static int bnxt_init_rx_rings(struct bnxt *bp)
3269 {
3270 	int i, rc = 0;
3271 
3272 	if (BNXT_RX_PAGE_MODE(bp)) {
3273 		bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM;
3274 		bp->rx_dma_offset = XDP_PACKET_HEADROOM;
3275 	} else {
3276 		bp->rx_offset = BNXT_RX_OFFSET;
3277 		bp->rx_dma_offset = BNXT_RX_DMA_OFFSET;
3278 	}
3279 
3280 	for (i = 0; i < bp->rx_nr_rings; i++) {
3281 		rc = bnxt_init_one_rx_ring(bp, i);
3282 		if (rc)
3283 			break;
3284 	}
3285 
3286 	return rc;
3287 }
3288 
3289 static int bnxt_init_tx_rings(struct bnxt *bp)
3290 {
3291 	u16 i;
3292 
3293 	bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
3294 				   MAX_SKB_FRAGS + 1);
3295 
3296 	for (i = 0; i < bp->tx_nr_rings; i++) {
3297 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3298 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
3299 
3300 		ring->fw_ring_id = INVALID_HW_RING_ID;
3301 	}
3302 
3303 	return 0;
3304 }
3305 
3306 static void bnxt_free_ring_grps(struct bnxt *bp)
3307 {
3308 	kfree(bp->grp_info);
3309 	bp->grp_info = NULL;
3310 }
3311 
3312 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
3313 {
3314 	int i;
3315 
3316 	if (irq_re_init) {
3317 		bp->grp_info = kcalloc(bp->cp_nr_rings,
3318 				       sizeof(struct bnxt_ring_grp_info),
3319 				       GFP_KERNEL);
3320 		if (!bp->grp_info)
3321 			return -ENOMEM;
3322 	}
3323 	for (i = 0; i < bp->cp_nr_rings; i++) {
3324 		if (irq_re_init)
3325 			bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
3326 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
3327 		bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
3328 		bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
3329 		bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
3330 	}
3331 	return 0;
3332 }
3333 
3334 static void bnxt_free_vnics(struct bnxt *bp)
3335 {
3336 	kfree(bp->vnic_info);
3337 	bp->vnic_info = NULL;
3338 	bp->nr_vnics = 0;
3339 }
3340 
3341 static int bnxt_alloc_vnics(struct bnxt *bp)
3342 {
3343 	int num_vnics = 1;
3344 
3345 #ifdef CONFIG_RFS_ACCEL
3346 	if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS)
3347 		num_vnics += bp->rx_nr_rings;
3348 #endif
3349 
3350 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
3351 		num_vnics++;
3352 
3353 	bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
3354 				GFP_KERNEL);
3355 	if (!bp->vnic_info)
3356 		return -ENOMEM;
3357 
3358 	bp->nr_vnics = num_vnics;
3359 	return 0;
3360 }
3361 
3362 static void bnxt_init_vnics(struct bnxt *bp)
3363 {
3364 	int i;
3365 
3366 	for (i = 0; i < bp->nr_vnics; i++) {
3367 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3368 		int j;
3369 
3370 		vnic->fw_vnic_id = INVALID_HW_RING_ID;
3371 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++)
3372 			vnic->fw_rss_cos_lb_ctx[j] = INVALID_HW_RING_ID;
3373 
3374 		vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
3375 
3376 		if (bp->vnic_info[i].rss_hash_key) {
3377 			if (i == 0)
3378 				prandom_bytes(vnic->rss_hash_key,
3379 					      HW_HASH_KEY_SIZE);
3380 			else
3381 				memcpy(vnic->rss_hash_key,
3382 				       bp->vnic_info[0].rss_hash_key,
3383 				       HW_HASH_KEY_SIZE);
3384 		}
3385 	}
3386 }
3387 
3388 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
3389 {
3390 	int pages;
3391 
3392 	pages = ring_size / desc_per_pg;
3393 
3394 	if (!pages)
3395 		return 1;
3396 
3397 	pages++;
3398 
3399 	while (pages & (pages - 1))
3400 		pages++;
3401 
3402 	return pages;
3403 }
3404 
3405 void bnxt_set_tpa_flags(struct bnxt *bp)
3406 {
3407 	bp->flags &= ~BNXT_FLAG_TPA;
3408 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
3409 		return;
3410 	if (bp->dev->features & NETIF_F_LRO)
3411 		bp->flags |= BNXT_FLAG_LRO;
3412 	else if (bp->dev->features & NETIF_F_GRO_HW)
3413 		bp->flags |= BNXT_FLAG_GRO;
3414 }
3415 
3416 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
3417  * be set on entry.
3418  */
3419 void bnxt_set_ring_params(struct bnxt *bp)
3420 {
3421 	u32 ring_size, rx_size, rx_space;
3422 	u32 agg_factor = 0, agg_ring_size = 0;
3423 
3424 	/* 8 for CRC and VLAN */
3425 	rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
3426 
3427 	rx_space = rx_size + NET_SKB_PAD +
3428 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3429 
3430 	bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
3431 	ring_size = bp->rx_ring_size;
3432 	bp->rx_agg_ring_size = 0;
3433 	bp->rx_agg_nr_pages = 0;
3434 
3435 	if (bp->flags & BNXT_FLAG_TPA)
3436 		agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE);
3437 
3438 	bp->flags &= ~BNXT_FLAG_JUMBO;
3439 	if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) {
3440 		u32 jumbo_factor;
3441 
3442 		bp->flags |= BNXT_FLAG_JUMBO;
3443 		jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
3444 		if (jumbo_factor > agg_factor)
3445 			agg_factor = jumbo_factor;
3446 	}
3447 	agg_ring_size = ring_size * agg_factor;
3448 
3449 	if (agg_ring_size) {
3450 		bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
3451 							RX_DESC_CNT);
3452 		if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
3453 			u32 tmp = agg_ring_size;
3454 
3455 			bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
3456 			agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
3457 			netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
3458 				    tmp, agg_ring_size);
3459 		}
3460 		bp->rx_agg_ring_size = agg_ring_size;
3461 		bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
3462 		rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
3463 		rx_space = rx_size + NET_SKB_PAD +
3464 			SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3465 	}
3466 
3467 	bp->rx_buf_use_size = rx_size;
3468 	bp->rx_buf_size = rx_space;
3469 
3470 	bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
3471 	bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
3472 
3473 	ring_size = bp->tx_ring_size;
3474 	bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
3475 	bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
3476 
3477 	ring_size = bp->rx_ring_size * (2 + agg_factor) + bp->tx_ring_size;
3478 	bp->cp_ring_size = ring_size;
3479 
3480 	bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
3481 	if (bp->cp_nr_pages > MAX_CP_PAGES) {
3482 		bp->cp_nr_pages = MAX_CP_PAGES;
3483 		bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
3484 		netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
3485 			    ring_size, bp->cp_ring_size);
3486 	}
3487 	bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
3488 	bp->cp_ring_mask = bp->cp_bit - 1;
3489 }
3490 
3491 /* Changing allocation mode of RX rings.
3492  * TODO: Update when extending xdp_rxq_info to support allocation modes.
3493  */
3494 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode)
3495 {
3496 	if (page_mode) {
3497 		if (bp->dev->mtu > BNXT_MAX_PAGE_MODE_MTU)
3498 			return -EOPNOTSUPP;
3499 		bp->dev->max_mtu =
3500 			min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU);
3501 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
3502 		bp->flags |= BNXT_FLAG_NO_AGG_RINGS | BNXT_FLAG_RX_PAGE_MODE;
3503 		bp->rx_dir = DMA_BIDIRECTIONAL;
3504 		bp->rx_skb_func = bnxt_rx_page_skb;
3505 		/* Disable LRO or GRO_HW */
3506 		netdev_update_features(bp->dev);
3507 	} else {
3508 		bp->dev->max_mtu = bp->max_mtu;
3509 		bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE;
3510 		bp->rx_dir = DMA_FROM_DEVICE;
3511 		bp->rx_skb_func = bnxt_rx_skb;
3512 	}
3513 	return 0;
3514 }
3515 
3516 static void bnxt_free_vnic_attributes(struct bnxt *bp)
3517 {
3518 	int i;
3519 	struct bnxt_vnic_info *vnic;
3520 	struct pci_dev *pdev = bp->pdev;
3521 
3522 	if (!bp->vnic_info)
3523 		return;
3524 
3525 	for (i = 0; i < bp->nr_vnics; i++) {
3526 		vnic = &bp->vnic_info[i];
3527 
3528 		kfree(vnic->fw_grp_ids);
3529 		vnic->fw_grp_ids = NULL;
3530 
3531 		kfree(vnic->uc_list);
3532 		vnic->uc_list = NULL;
3533 
3534 		if (vnic->mc_list) {
3535 			dma_free_coherent(&pdev->dev, vnic->mc_list_size,
3536 					  vnic->mc_list, vnic->mc_list_mapping);
3537 			vnic->mc_list = NULL;
3538 		}
3539 
3540 		if (vnic->rss_table) {
3541 			dma_free_coherent(&pdev->dev, PAGE_SIZE,
3542 					  vnic->rss_table,
3543 					  vnic->rss_table_dma_addr);
3544 			vnic->rss_table = NULL;
3545 		}
3546 
3547 		vnic->rss_hash_key = NULL;
3548 		vnic->flags = 0;
3549 	}
3550 }
3551 
3552 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
3553 {
3554 	int i, rc = 0, size;
3555 	struct bnxt_vnic_info *vnic;
3556 	struct pci_dev *pdev = bp->pdev;
3557 	int max_rings;
3558 
3559 	for (i = 0; i < bp->nr_vnics; i++) {
3560 		vnic = &bp->vnic_info[i];
3561 
3562 		if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
3563 			int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
3564 
3565 			if (mem_size > 0) {
3566 				vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
3567 				if (!vnic->uc_list) {
3568 					rc = -ENOMEM;
3569 					goto out;
3570 				}
3571 			}
3572 		}
3573 
3574 		if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
3575 			vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
3576 			vnic->mc_list =
3577 				dma_alloc_coherent(&pdev->dev,
3578 						   vnic->mc_list_size,
3579 						   &vnic->mc_list_mapping,
3580 						   GFP_KERNEL);
3581 			if (!vnic->mc_list) {
3582 				rc = -ENOMEM;
3583 				goto out;
3584 			}
3585 		}
3586 
3587 		if (bp->flags & BNXT_FLAG_CHIP_P5)
3588 			goto vnic_skip_grps;
3589 
3590 		if (vnic->flags & BNXT_VNIC_RSS_FLAG)
3591 			max_rings = bp->rx_nr_rings;
3592 		else
3593 			max_rings = 1;
3594 
3595 		vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
3596 		if (!vnic->fw_grp_ids) {
3597 			rc = -ENOMEM;
3598 			goto out;
3599 		}
3600 vnic_skip_grps:
3601 		if ((bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
3602 		    !(vnic->flags & BNXT_VNIC_RSS_FLAG))
3603 			continue;
3604 
3605 		/* Allocate rss table and hash key */
3606 		vnic->rss_table = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
3607 						     &vnic->rss_table_dma_addr,
3608 						     GFP_KERNEL);
3609 		if (!vnic->rss_table) {
3610 			rc = -ENOMEM;
3611 			goto out;
3612 		}
3613 
3614 		size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
3615 
3616 		vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
3617 		vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
3618 	}
3619 	return 0;
3620 
3621 out:
3622 	return rc;
3623 }
3624 
3625 static void bnxt_free_hwrm_resources(struct bnxt *bp)
3626 {
3627 	struct pci_dev *pdev = bp->pdev;
3628 
3629 	if (bp->hwrm_cmd_resp_addr) {
3630 		dma_free_coherent(&pdev->dev, PAGE_SIZE, bp->hwrm_cmd_resp_addr,
3631 				  bp->hwrm_cmd_resp_dma_addr);
3632 		bp->hwrm_cmd_resp_addr = NULL;
3633 	}
3634 
3635 	if (bp->hwrm_cmd_kong_resp_addr) {
3636 		dma_free_coherent(&pdev->dev, PAGE_SIZE,
3637 				  bp->hwrm_cmd_kong_resp_addr,
3638 				  bp->hwrm_cmd_kong_resp_dma_addr);
3639 		bp->hwrm_cmd_kong_resp_addr = NULL;
3640 	}
3641 }
3642 
3643 static int bnxt_alloc_kong_hwrm_resources(struct bnxt *bp)
3644 {
3645 	struct pci_dev *pdev = bp->pdev;
3646 
3647 	if (bp->hwrm_cmd_kong_resp_addr)
3648 		return 0;
3649 
3650 	bp->hwrm_cmd_kong_resp_addr =
3651 		dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
3652 				   &bp->hwrm_cmd_kong_resp_dma_addr,
3653 				   GFP_KERNEL);
3654 	if (!bp->hwrm_cmd_kong_resp_addr)
3655 		return -ENOMEM;
3656 
3657 	return 0;
3658 }
3659 
3660 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
3661 {
3662 	struct pci_dev *pdev = bp->pdev;
3663 
3664 	bp->hwrm_cmd_resp_addr = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
3665 						   &bp->hwrm_cmd_resp_dma_addr,
3666 						   GFP_KERNEL);
3667 	if (!bp->hwrm_cmd_resp_addr)
3668 		return -ENOMEM;
3669 
3670 	return 0;
3671 }
3672 
3673 static void bnxt_free_hwrm_short_cmd_req(struct bnxt *bp)
3674 {
3675 	if (bp->hwrm_short_cmd_req_addr) {
3676 		struct pci_dev *pdev = bp->pdev;
3677 
3678 		dma_free_coherent(&pdev->dev, bp->hwrm_max_ext_req_len,
3679 				  bp->hwrm_short_cmd_req_addr,
3680 				  bp->hwrm_short_cmd_req_dma_addr);
3681 		bp->hwrm_short_cmd_req_addr = NULL;
3682 	}
3683 }
3684 
3685 static int bnxt_alloc_hwrm_short_cmd_req(struct bnxt *bp)
3686 {
3687 	struct pci_dev *pdev = bp->pdev;
3688 
3689 	if (bp->hwrm_short_cmd_req_addr)
3690 		return 0;
3691 
3692 	bp->hwrm_short_cmd_req_addr =
3693 		dma_alloc_coherent(&pdev->dev, bp->hwrm_max_ext_req_len,
3694 				   &bp->hwrm_short_cmd_req_dma_addr,
3695 				   GFP_KERNEL);
3696 	if (!bp->hwrm_short_cmd_req_addr)
3697 		return -ENOMEM;
3698 
3699 	return 0;
3700 }
3701 
3702 static void bnxt_free_port_stats(struct bnxt *bp)
3703 {
3704 	struct pci_dev *pdev = bp->pdev;
3705 
3706 	bp->flags &= ~BNXT_FLAG_PORT_STATS;
3707 	bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT;
3708 
3709 	if (bp->hw_rx_port_stats) {
3710 		dma_free_coherent(&pdev->dev, bp->hw_port_stats_size,
3711 				  bp->hw_rx_port_stats,
3712 				  bp->hw_rx_port_stats_map);
3713 		bp->hw_rx_port_stats = NULL;
3714 	}
3715 
3716 	if (bp->hw_tx_port_stats_ext) {
3717 		dma_free_coherent(&pdev->dev, sizeof(struct tx_port_stats_ext),
3718 				  bp->hw_tx_port_stats_ext,
3719 				  bp->hw_tx_port_stats_ext_map);
3720 		bp->hw_tx_port_stats_ext = NULL;
3721 	}
3722 
3723 	if (bp->hw_rx_port_stats_ext) {
3724 		dma_free_coherent(&pdev->dev, sizeof(struct rx_port_stats_ext),
3725 				  bp->hw_rx_port_stats_ext,
3726 				  bp->hw_rx_port_stats_ext_map);
3727 		bp->hw_rx_port_stats_ext = NULL;
3728 	}
3729 
3730 	if (bp->hw_pcie_stats) {
3731 		dma_free_coherent(&pdev->dev, sizeof(struct pcie_ctx_hw_stats),
3732 				  bp->hw_pcie_stats, bp->hw_pcie_stats_map);
3733 		bp->hw_pcie_stats = NULL;
3734 	}
3735 }
3736 
3737 static void bnxt_free_ring_stats(struct bnxt *bp)
3738 {
3739 	struct pci_dev *pdev = bp->pdev;
3740 	int size, i;
3741 
3742 	if (!bp->bnapi)
3743 		return;
3744 
3745 	size = bp->hw_ring_stats_size;
3746 
3747 	for (i = 0; i < bp->cp_nr_rings; i++) {
3748 		struct bnxt_napi *bnapi = bp->bnapi[i];
3749 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3750 
3751 		if (cpr->hw_stats) {
3752 			dma_free_coherent(&pdev->dev, size, cpr->hw_stats,
3753 					  cpr->hw_stats_map);
3754 			cpr->hw_stats = NULL;
3755 		}
3756 	}
3757 }
3758 
3759 static int bnxt_alloc_stats(struct bnxt *bp)
3760 {
3761 	u32 size, i;
3762 	struct pci_dev *pdev = bp->pdev;
3763 
3764 	size = bp->hw_ring_stats_size;
3765 
3766 	for (i = 0; i < bp->cp_nr_rings; i++) {
3767 		struct bnxt_napi *bnapi = bp->bnapi[i];
3768 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3769 
3770 		cpr->hw_stats = dma_alloc_coherent(&pdev->dev, size,
3771 						   &cpr->hw_stats_map,
3772 						   GFP_KERNEL);
3773 		if (!cpr->hw_stats)
3774 			return -ENOMEM;
3775 
3776 		cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
3777 	}
3778 
3779 	if (BNXT_VF(bp) || bp->chip_num == CHIP_NUM_58700)
3780 		return 0;
3781 
3782 	if (bp->hw_rx_port_stats)
3783 		goto alloc_ext_stats;
3784 
3785 	bp->hw_port_stats_size = sizeof(struct rx_port_stats) +
3786 				 sizeof(struct tx_port_stats) + 1024;
3787 
3788 	bp->hw_rx_port_stats =
3789 		dma_alloc_coherent(&pdev->dev, bp->hw_port_stats_size,
3790 				   &bp->hw_rx_port_stats_map,
3791 				   GFP_KERNEL);
3792 	if (!bp->hw_rx_port_stats)
3793 		return -ENOMEM;
3794 
3795 	bp->hw_tx_port_stats = (void *)(bp->hw_rx_port_stats + 1) + 512;
3796 	bp->hw_tx_port_stats_map = bp->hw_rx_port_stats_map +
3797 				   sizeof(struct rx_port_stats) + 512;
3798 	bp->flags |= BNXT_FLAG_PORT_STATS;
3799 
3800 alloc_ext_stats:
3801 	/* Display extended statistics only if FW supports it */
3802 	if (bp->hwrm_spec_code < 0x10804 || bp->hwrm_spec_code == 0x10900)
3803 		if (!(bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED))
3804 			return 0;
3805 
3806 	if (bp->hw_rx_port_stats_ext)
3807 		goto alloc_tx_ext_stats;
3808 
3809 	bp->hw_rx_port_stats_ext =
3810 		dma_alloc_coherent(&pdev->dev, sizeof(struct rx_port_stats_ext),
3811 				   &bp->hw_rx_port_stats_ext_map, GFP_KERNEL);
3812 	if (!bp->hw_rx_port_stats_ext)
3813 		return 0;
3814 
3815 alloc_tx_ext_stats:
3816 	if (bp->hw_tx_port_stats_ext)
3817 		goto alloc_pcie_stats;
3818 
3819 	if (bp->hwrm_spec_code >= 0x10902 ||
3820 	    (bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) {
3821 		bp->hw_tx_port_stats_ext =
3822 			dma_alloc_coherent(&pdev->dev,
3823 					   sizeof(struct tx_port_stats_ext),
3824 					   &bp->hw_tx_port_stats_ext_map,
3825 					   GFP_KERNEL);
3826 	}
3827 	bp->flags |= BNXT_FLAG_PORT_STATS_EXT;
3828 
3829 alloc_pcie_stats:
3830 	if (bp->hw_pcie_stats ||
3831 	    !(bp->fw_cap & BNXT_FW_CAP_PCIE_STATS_SUPPORTED))
3832 		return 0;
3833 
3834 	bp->hw_pcie_stats =
3835 		dma_alloc_coherent(&pdev->dev, sizeof(struct pcie_ctx_hw_stats),
3836 				   &bp->hw_pcie_stats_map, GFP_KERNEL);
3837 	if (!bp->hw_pcie_stats)
3838 		return 0;
3839 
3840 	bp->flags |= BNXT_FLAG_PCIE_STATS;
3841 	return 0;
3842 }
3843 
3844 static void bnxt_clear_ring_indices(struct bnxt *bp)
3845 {
3846 	int i;
3847 
3848 	if (!bp->bnapi)
3849 		return;
3850 
3851 	for (i = 0; i < bp->cp_nr_rings; i++) {
3852 		struct bnxt_napi *bnapi = bp->bnapi[i];
3853 		struct bnxt_cp_ring_info *cpr;
3854 		struct bnxt_rx_ring_info *rxr;
3855 		struct bnxt_tx_ring_info *txr;
3856 
3857 		if (!bnapi)
3858 			continue;
3859 
3860 		cpr = &bnapi->cp_ring;
3861 		cpr->cp_raw_cons = 0;
3862 
3863 		txr = bnapi->tx_ring;
3864 		if (txr) {
3865 			txr->tx_prod = 0;
3866 			txr->tx_cons = 0;
3867 		}
3868 
3869 		rxr = bnapi->rx_ring;
3870 		if (rxr) {
3871 			rxr->rx_prod = 0;
3872 			rxr->rx_agg_prod = 0;
3873 			rxr->rx_sw_agg_prod = 0;
3874 			rxr->rx_next_cons = 0;
3875 		}
3876 	}
3877 }
3878 
3879 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
3880 {
3881 #ifdef CONFIG_RFS_ACCEL
3882 	int i;
3883 
3884 	/* Under rtnl_lock and all our NAPIs have been disabled.  It's
3885 	 * safe to delete the hash table.
3886 	 */
3887 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
3888 		struct hlist_head *head;
3889 		struct hlist_node *tmp;
3890 		struct bnxt_ntuple_filter *fltr;
3891 
3892 		head = &bp->ntp_fltr_hash_tbl[i];
3893 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
3894 			hlist_del(&fltr->hash);
3895 			kfree(fltr);
3896 		}
3897 	}
3898 	if (irq_reinit) {
3899 		kfree(bp->ntp_fltr_bmap);
3900 		bp->ntp_fltr_bmap = NULL;
3901 	}
3902 	bp->ntp_fltr_count = 0;
3903 #endif
3904 }
3905 
3906 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
3907 {
3908 #ifdef CONFIG_RFS_ACCEL
3909 	int i, rc = 0;
3910 
3911 	if (!(bp->flags & BNXT_FLAG_RFS))
3912 		return 0;
3913 
3914 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
3915 		INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
3916 
3917 	bp->ntp_fltr_count = 0;
3918 	bp->ntp_fltr_bmap = kcalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR),
3919 				    sizeof(long),
3920 				    GFP_KERNEL);
3921 
3922 	if (!bp->ntp_fltr_bmap)
3923 		rc = -ENOMEM;
3924 
3925 	return rc;
3926 #else
3927 	return 0;
3928 #endif
3929 }
3930 
3931 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
3932 {
3933 	bnxt_free_vnic_attributes(bp);
3934 	bnxt_free_tx_rings(bp);
3935 	bnxt_free_rx_rings(bp);
3936 	bnxt_free_cp_rings(bp);
3937 	bnxt_free_ntp_fltrs(bp, irq_re_init);
3938 	if (irq_re_init) {
3939 		bnxt_free_ring_stats(bp);
3940 		bnxt_free_ring_grps(bp);
3941 		bnxt_free_vnics(bp);
3942 		kfree(bp->tx_ring_map);
3943 		bp->tx_ring_map = NULL;
3944 		kfree(bp->tx_ring);
3945 		bp->tx_ring = NULL;
3946 		kfree(bp->rx_ring);
3947 		bp->rx_ring = NULL;
3948 		kfree(bp->bnapi);
3949 		bp->bnapi = NULL;
3950 	} else {
3951 		bnxt_clear_ring_indices(bp);
3952 	}
3953 }
3954 
3955 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
3956 {
3957 	int i, j, rc, size, arr_size;
3958 	void *bnapi;
3959 
3960 	if (irq_re_init) {
3961 		/* Allocate bnapi mem pointer array and mem block for
3962 		 * all queues
3963 		 */
3964 		arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
3965 				bp->cp_nr_rings);
3966 		size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
3967 		bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
3968 		if (!bnapi)
3969 			return -ENOMEM;
3970 
3971 		bp->bnapi = bnapi;
3972 		bnapi += arr_size;
3973 		for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
3974 			bp->bnapi[i] = bnapi;
3975 			bp->bnapi[i]->index = i;
3976 			bp->bnapi[i]->bp = bp;
3977 			if (bp->flags & BNXT_FLAG_CHIP_P5) {
3978 				struct bnxt_cp_ring_info *cpr =
3979 					&bp->bnapi[i]->cp_ring;
3980 
3981 				cpr->cp_ring_struct.ring_mem.flags =
3982 					BNXT_RMEM_RING_PTE_FLAG;
3983 			}
3984 		}
3985 
3986 		bp->rx_ring = kcalloc(bp->rx_nr_rings,
3987 				      sizeof(struct bnxt_rx_ring_info),
3988 				      GFP_KERNEL);
3989 		if (!bp->rx_ring)
3990 			return -ENOMEM;
3991 
3992 		for (i = 0; i < bp->rx_nr_rings; i++) {
3993 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3994 
3995 			if (bp->flags & BNXT_FLAG_CHIP_P5) {
3996 				rxr->rx_ring_struct.ring_mem.flags =
3997 					BNXT_RMEM_RING_PTE_FLAG;
3998 				rxr->rx_agg_ring_struct.ring_mem.flags =
3999 					BNXT_RMEM_RING_PTE_FLAG;
4000 			}
4001 			rxr->bnapi = bp->bnapi[i];
4002 			bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
4003 		}
4004 
4005 		bp->tx_ring = kcalloc(bp->tx_nr_rings,
4006 				      sizeof(struct bnxt_tx_ring_info),
4007 				      GFP_KERNEL);
4008 		if (!bp->tx_ring)
4009 			return -ENOMEM;
4010 
4011 		bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16),
4012 					  GFP_KERNEL);
4013 
4014 		if (!bp->tx_ring_map)
4015 			return -ENOMEM;
4016 
4017 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
4018 			j = 0;
4019 		else
4020 			j = bp->rx_nr_rings;
4021 
4022 		for (i = 0; i < bp->tx_nr_rings; i++, j++) {
4023 			struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
4024 
4025 			if (bp->flags & BNXT_FLAG_CHIP_P5)
4026 				txr->tx_ring_struct.ring_mem.flags =
4027 					BNXT_RMEM_RING_PTE_FLAG;
4028 			txr->bnapi = bp->bnapi[j];
4029 			bp->bnapi[j]->tx_ring = txr;
4030 			bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i;
4031 			if (i >= bp->tx_nr_rings_xdp) {
4032 				txr->txq_index = i - bp->tx_nr_rings_xdp;
4033 				bp->bnapi[j]->tx_int = bnxt_tx_int;
4034 			} else {
4035 				bp->bnapi[j]->flags |= BNXT_NAPI_FLAG_XDP;
4036 				bp->bnapi[j]->tx_int = bnxt_tx_int_xdp;
4037 			}
4038 		}
4039 
4040 		rc = bnxt_alloc_stats(bp);
4041 		if (rc)
4042 			goto alloc_mem_err;
4043 
4044 		rc = bnxt_alloc_ntp_fltrs(bp);
4045 		if (rc)
4046 			goto alloc_mem_err;
4047 
4048 		rc = bnxt_alloc_vnics(bp);
4049 		if (rc)
4050 			goto alloc_mem_err;
4051 	}
4052 
4053 	bnxt_init_ring_struct(bp);
4054 
4055 	rc = bnxt_alloc_rx_rings(bp);
4056 	if (rc)
4057 		goto alloc_mem_err;
4058 
4059 	rc = bnxt_alloc_tx_rings(bp);
4060 	if (rc)
4061 		goto alloc_mem_err;
4062 
4063 	rc = bnxt_alloc_cp_rings(bp);
4064 	if (rc)
4065 		goto alloc_mem_err;
4066 
4067 	bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
4068 				  BNXT_VNIC_UCAST_FLAG;
4069 	rc = bnxt_alloc_vnic_attributes(bp);
4070 	if (rc)
4071 		goto alloc_mem_err;
4072 	return 0;
4073 
4074 alloc_mem_err:
4075 	bnxt_free_mem(bp, true);
4076 	return rc;
4077 }
4078 
4079 static void bnxt_disable_int(struct bnxt *bp)
4080 {
4081 	int i;
4082 
4083 	if (!bp->bnapi)
4084 		return;
4085 
4086 	for (i = 0; i < bp->cp_nr_rings; i++) {
4087 		struct bnxt_napi *bnapi = bp->bnapi[i];
4088 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4089 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
4090 
4091 		if (ring->fw_ring_id != INVALID_HW_RING_ID)
4092 			bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
4093 	}
4094 }
4095 
4096 static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n)
4097 {
4098 	struct bnxt_napi *bnapi = bp->bnapi[n];
4099 	struct bnxt_cp_ring_info *cpr;
4100 
4101 	cpr = &bnapi->cp_ring;
4102 	return cpr->cp_ring_struct.map_idx;
4103 }
4104 
4105 static void bnxt_disable_int_sync(struct bnxt *bp)
4106 {
4107 	int i;
4108 
4109 	atomic_inc(&bp->intr_sem);
4110 
4111 	bnxt_disable_int(bp);
4112 	for (i = 0; i < bp->cp_nr_rings; i++) {
4113 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
4114 
4115 		synchronize_irq(bp->irq_tbl[map_idx].vector);
4116 	}
4117 }
4118 
4119 static void bnxt_enable_int(struct bnxt *bp)
4120 {
4121 	int i;
4122 
4123 	atomic_set(&bp->intr_sem, 0);
4124 	for (i = 0; i < bp->cp_nr_rings; i++) {
4125 		struct bnxt_napi *bnapi = bp->bnapi[i];
4126 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4127 
4128 		bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons);
4129 	}
4130 }
4131 
4132 void bnxt_hwrm_cmd_hdr_init(struct bnxt *bp, void *request, u16 req_type,
4133 			    u16 cmpl_ring, u16 target_id)
4134 {
4135 	struct input *req = request;
4136 
4137 	req->req_type = cpu_to_le16(req_type);
4138 	req->cmpl_ring = cpu_to_le16(cmpl_ring);
4139 	req->target_id = cpu_to_le16(target_id);
4140 	if (bnxt_kong_hwrm_message(bp, req))
4141 		req->resp_addr = cpu_to_le64(bp->hwrm_cmd_kong_resp_dma_addr);
4142 	else
4143 		req->resp_addr = cpu_to_le64(bp->hwrm_cmd_resp_dma_addr);
4144 }
4145 
4146 static int bnxt_hwrm_to_stderr(u32 hwrm_err)
4147 {
4148 	switch (hwrm_err) {
4149 	case HWRM_ERR_CODE_SUCCESS:
4150 		return 0;
4151 	case HWRM_ERR_CODE_RESOURCE_ACCESS_DENIED:
4152 		return -EACCES;
4153 	case HWRM_ERR_CODE_RESOURCE_ALLOC_ERROR:
4154 		return -ENOSPC;
4155 	case HWRM_ERR_CODE_INVALID_PARAMS:
4156 	case HWRM_ERR_CODE_INVALID_FLAGS:
4157 	case HWRM_ERR_CODE_INVALID_ENABLES:
4158 	case HWRM_ERR_CODE_UNSUPPORTED_TLV:
4159 	case HWRM_ERR_CODE_UNSUPPORTED_OPTION_ERR:
4160 		return -EINVAL;
4161 	case HWRM_ERR_CODE_NO_BUFFER:
4162 		return -ENOMEM;
4163 	case HWRM_ERR_CODE_HOT_RESET_PROGRESS:
4164 	case HWRM_ERR_CODE_BUSY:
4165 		return -EAGAIN;
4166 	case HWRM_ERR_CODE_CMD_NOT_SUPPORTED:
4167 		return -EOPNOTSUPP;
4168 	default:
4169 		return -EIO;
4170 	}
4171 }
4172 
4173 static int bnxt_hwrm_do_send_msg(struct bnxt *bp, void *msg, u32 msg_len,
4174 				 int timeout, bool silent)
4175 {
4176 	int i, intr_process, rc, tmo_count;
4177 	struct input *req = msg;
4178 	u32 *data = msg;
4179 	__le32 *resp_len;
4180 	u8 *valid;
4181 	u16 cp_ring_id, len = 0;
4182 	struct hwrm_err_output *resp = bp->hwrm_cmd_resp_addr;
4183 	u16 max_req_len = BNXT_HWRM_MAX_REQ_LEN;
4184 	struct hwrm_short_input short_input = {0};
4185 	u32 doorbell_offset = BNXT_GRCPF_REG_CHIMP_COMM_TRIGGER;
4186 	u8 *resp_addr = (u8 *)bp->hwrm_cmd_resp_addr;
4187 	u32 bar_offset = BNXT_GRCPF_REG_CHIMP_COMM;
4188 	u16 dst = BNXT_HWRM_CHNL_CHIMP;
4189 
4190 	if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
4191 		return -EBUSY;
4192 
4193 	if (msg_len > BNXT_HWRM_MAX_REQ_LEN) {
4194 		if (msg_len > bp->hwrm_max_ext_req_len ||
4195 		    !bp->hwrm_short_cmd_req_addr)
4196 			return -EINVAL;
4197 	}
4198 
4199 	if (bnxt_hwrm_kong_chnl(bp, req)) {
4200 		dst = BNXT_HWRM_CHNL_KONG;
4201 		bar_offset = BNXT_GRCPF_REG_KONG_COMM;
4202 		doorbell_offset = BNXT_GRCPF_REG_KONG_COMM_TRIGGER;
4203 		resp = bp->hwrm_cmd_kong_resp_addr;
4204 		resp_addr = (u8 *)bp->hwrm_cmd_kong_resp_addr;
4205 	}
4206 
4207 	memset(resp, 0, PAGE_SIZE);
4208 	cp_ring_id = le16_to_cpu(req->cmpl_ring);
4209 	intr_process = (cp_ring_id == INVALID_HW_RING_ID) ? 0 : 1;
4210 
4211 	req->seq_id = cpu_to_le16(bnxt_get_hwrm_seq_id(bp, dst));
4212 	/* currently supports only one outstanding message */
4213 	if (intr_process)
4214 		bp->hwrm_intr_seq_id = le16_to_cpu(req->seq_id);
4215 
4216 	if ((bp->fw_cap & BNXT_FW_CAP_SHORT_CMD) ||
4217 	    msg_len > BNXT_HWRM_MAX_REQ_LEN) {
4218 		void *short_cmd_req = bp->hwrm_short_cmd_req_addr;
4219 		u16 max_msg_len;
4220 
4221 		/* Set boundary for maximum extended request length for short
4222 		 * cmd format. If passed up from device use the max supported
4223 		 * internal req length.
4224 		 */
4225 		max_msg_len = bp->hwrm_max_ext_req_len;
4226 
4227 		memcpy(short_cmd_req, req, msg_len);
4228 		if (msg_len < max_msg_len)
4229 			memset(short_cmd_req + msg_len, 0,
4230 			       max_msg_len - msg_len);
4231 
4232 		short_input.req_type = req->req_type;
4233 		short_input.signature =
4234 				cpu_to_le16(SHORT_REQ_SIGNATURE_SHORT_CMD);
4235 		short_input.size = cpu_to_le16(msg_len);
4236 		short_input.req_addr =
4237 			cpu_to_le64(bp->hwrm_short_cmd_req_dma_addr);
4238 
4239 		data = (u32 *)&short_input;
4240 		msg_len = sizeof(short_input);
4241 
4242 		/* Sync memory write before updating doorbell */
4243 		wmb();
4244 
4245 		max_req_len = BNXT_HWRM_SHORT_REQ_LEN;
4246 	}
4247 
4248 	/* Write request msg to hwrm channel */
4249 	__iowrite32_copy(bp->bar0 + bar_offset, data, msg_len / 4);
4250 
4251 	for (i = msg_len; i < max_req_len; i += 4)
4252 		writel(0, bp->bar0 + bar_offset + i);
4253 
4254 	/* Ring channel doorbell */
4255 	writel(1, bp->bar0 + doorbell_offset);
4256 
4257 	if (!pci_is_enabled(bp->pdev))
4258 		return 0;
4259 
4260 	if (!timeout)
4261 		timeout = DFLT_HWRM_CMD_TIMEOUT;
4262 	/* convert timeout to usec */
4263 	timeout *= 1000;
4264 
4265 	i = 0;
4266 	/* Short timeout for the first few iterations:
4267 	 * number of loops = number of loops for short timeout +
4268 	 * number of loops for standard timeout.
4269 	 */
4270 	tmo_count = HWRM_SHORT_TIMEOUT_COUNTER;
4271 	timeout = timeout - HWRM_SHORT_MIN_TIMEOUT * HWRM_SHORT_TIMEOUT_COUNTER;
4272 	tmo_count += DIV_ROUND_UP(timeout, HWRM_MIN_TIMEOUT);
4273 	resp_len = (__le32 *)(resp_addr + HWRM_RESP_LEN_OFFSET);
4274 
4275 	if (intr_process) {
4276 		u16 seq_id = bp->hwrm_intr_seq_id;
4277 
4278 		/* Wait until hwrm response cmpl interrupt is processed */
4279 		while (bp->hwrm_intr_seq_id != (u16)~seq_id &&
4280 		       i++ < tmo_count) {
4281 			/* Abort the wait for completion if the FW health
4282 			 * check has failed.
4283 			 */
4284 			if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
4285 				return -EBUSY;
4286 			/* on first few passes, just barely sleep */
4287 			if (i < HWRM_SHORT_TIMEOUT_COUNTER)
4288 				usleep_range(HWRM_SHORT_MIN_TIMEOUT,
4289 					     HWRM_SHORT_MAX_TIMEOUT);
4290 			else
4291 				usleep_range(HWRM_MIN_TIMEOUT,
4292 					     HWRM_MAX_TIMEOUT);
4293 		}
4294 
4295 		if (bp->hwrm_intr_seq_id != (u16)~seq_id) {
4296 			if (!silent)
4297 				netdev_err(bp->dev, "Resp cmpl intr err msg: 0x%x\n",
4298 					   le16_to_cpu(req->req_type));
4299 			return -EBUSY;
4300 		}
4301 		len = (le32_to_cpu(*resp_len) & HWRM_RESP_LEN_MASK) >>
4302 		      HWRM_RESP_LEN_SFT;
4303 		valid = resp_addr + len - 1;
4304 	} else {
4305 		int j;
4306 
4307 		/* Check if response len is updated */
4308 		for (i = 0; i < tmo_count; i++) {
4309 			/* Abort the wait for completion if the FW health
4310 			 * check has failed.
4311 			 */
4312 			if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
4313 				return -EBUSY;
4314 			len = (le32_to_cpu(*resp_len) & HWRM_RESP_LEN_MASK) >>
4315 			      HWRM_RESP_LEN_SFT;
4316 			if (len)
4317 				break;
4318 			/* on first few passes, just barely sleep */
4319 			if (i < HWRM_SHORT_TIMEOUT_COUNTER)
4320 				usleep_range(HWRM_SHORT_MIN_TIMEOUT,
4321 					     HWRM_SHORT_MAX_TIMEOUT);
4322 			else
4323 				usleep_range(HWRM_MIN_TIMEOUT,
4324 					     HWRM_MAX_TIMEOUT);
4325 		}
4326 
4327 		if (i >= tmo_count) {
4328 			if (!silent)
4329 				netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d\n",
4330 					   HWRM_TOTAL_TIMEOUT(i),
4331 					   le16_to_cpu(req->req_type),
4332 					   le16_to_cpu(req->seq_id), len);
4333 			return -EBUSY;
4334 		}
4335 
4336 		/* Last byte of resp contains valid bit */
4337 		valid = resp_addr + len - 1;
4338 		for (j = 0; j < HWRM_VALID_BIT_DELAY_USEC; j++) {
4339 			/* make sure we read from updated DMA memory */
4340 			dma_rmb();
4341 			if (*valid)
4342 				break;
4343 			usleep_range(1, 5);
4344 		}
4345 
4346 		if (j >= HWRM_VALID_BIT_DELAY_USEC) {
4347 			if (!silent)
4348 				netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d v:%d\n",
4349 					   HWRM_TOTAL_TIMEOUT(i),
4350 					   le16_to_cpu(req->req_type),
4351 					   le16_to_cpu(req->seq_id), len,
4352 					   *valid);
4353 			return -EBUSY;
4354 		}
4355 	}
4356 
4357 	/* Zero valid bit for compatibility.  Valid bit in an older spec
4358 	 * may become a new field in a newer spec.  We must make sure that
4359 	 * a new field not implemented by old spec will read zero.
4360 	 */
4361 	*valid = 0;
4362 	rc = le16_to_cpu(resp->error_code);
4363 	if (rc && !silent)
4364 		netdev_err(bp->dev, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n",
4365 			   le16_to_cpu(resp->req_type),
4366 			   le16_to_cpu(resp->seq_id), rc);
4367 	return bnxt_hwrm_to_stderr(rc);
4368 }
4369 
4370 int _hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
4371 {
4372 	return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, false);
4373 }
4374 
4375 int _hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len,
4376 			      int timeout)
4377 {
4378 	return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true);
4379 }
4380 
4381 int hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
4382 {
4383 	int rc;
4384 
4385 	mutex_lock(&bp->hwrm_cmd_lock);
4386 	rc = _hwrm_send_message(bp, msg, msg_len, timeout);
4387 	mutex_unlock(&bp->hwrm_cmd_lock);
4388 	return rc;
4389 }
4390 
4391 int hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len,
4392 			     int timeout)
4393 {
4394 	int rc;
4395 
4396 	mutex_lock(&bp->hwrm_cmd_lock);
4397 	rc = bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true);
4398 	mutex_unlock(&bp->hwrm_cmd_lock);
4399 	return rc;
4400 }
4401 
4402 int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp, unsigned long *bmap, int bmap_size,
4403 			    bool async_only)
4404 {
4405 	struct hwrm_func_drv_rgtr_output *resp = bp->hwrm_cmd_resp_addr;
4406 	struct hwrm_func_drv_rgtr_input req = {0};
4407 	DECLARE_BITMAP(async_events_bmap, 256);
4408 	u32 *events = (u32 *)async_events_bmap;
4409 	u32 flags;
4410 	int rc, i;
4411 
4412 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
4413 
4414 	req.enables =
4415 		cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
4416 			    FUNC_DRV_RGTR_REQ_ENABLES_VER |
4417 			    FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
4418 
4419 	req.os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX);
4420 	flags = FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE;
4421 	if (bp->fw_cap & BNXT_FW_CAP_HOT_RESET)
4422 		flags |= FUNC_DRV_RGTR_REQ_FLAGS_HOT_RESET_SUPPORT;
4423 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
4424 		flags |= FUNC_DRV_RGTR_REQ_FLAGS_ERROR_RECOVERY_SUPPORT |
4425 			 FUNC_DRV_RGTR_REQ_FLAGS_MASTER_SUPPORT;
4426 	req.flags = cpu_to_le32(flags);
4427 	req.ver_maj_8b = DRV_VER_MAJ;
4428 	req.ver_min_8b = DRV_VER_MIN;
4429 	req.ver_upd_8b = DRV_VER_UPD;
4430 	req.ver_maj = cpu_to_le16(DRV_VER_MAJ);
4431 	req.ver_min = cpu_to_le16(DRV_VER_MIN);
4432 	req.ver_upd = cpu_to_le16(DRV_VER_UPD);
4433 
4434 	if (BNXT_PF(bp)) {
4435 		u32 data[8];
4436 		int i;
4437 
4438 		memset(data, 0, sizeof(data));
4439 		for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) {
4440 			u16 cmd = bnxt_vf_req_snif[i];
4441 			unsigned int bit, idx;
4442 
4443 			idx = cmd / 32;
4444 			bit = cmd % 32;
4445 			data[idx] |= 1 << bit;
4446 		}
4447 
4448 		for (i = 0; i < 8; i++)
4449 			req.vf_req_fwd[i] = cpu_to_le32(data[i]);
4450 
4451 		req.enables |=
4452 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
4453 	}
4454 
4455 	if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE)
4456 		req.flags |= cpu_to_le32(
4457 			FUNC_DRV_RGTR_REQ_FLAGS_FLOW_HANDLE_64BIT_MODE);
4458 
4459 	memset(async_events_bmap, 0, sizeof(async_events_bmap));
4460 	for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++) {
4461 		u16 event_id = bnxt_async_events_arr[i];
4462 
4463 		if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY &&
4464 		    !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
4465 			continue;
4466 		__set_bit(bnxt_async_events_arr[i], async_events_bmap);
4467 	}
4468 	if (bmap && bmap_size) {
4469 		for (i = 0; i < bmap_size; i++) {
4470 			if (test_bit(i, bmap))
4471 				__set_bit(i, async_events_bmap);
4472 		}
4473 	}
4474 	for (i = 0; i < 8; i++)
4475 		req.async_event_fwd[i] |= cpu_to_le32(events[i]);
4476 
4477 	if (async_only)
4478 		req.enables =
4479 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
4480 
4481 	mutex_lock(&bp->hwrm_cmd_lock);
4482 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4483 	if (!rc) {
4484 		set_bit(BNXT_STATE_DRV_REGISTERED, &bp->state);
4485 		if (resp->flags &
4486 		    cpu_to_le32(FUNC_DRV_RGTR_RESP_FLAGS_IF_CHANGE_SUPPORTED))
4487 			bp->fw_cap |= BNXT_FW_CAP_IF_CHANGE;
4488 	}
4489 	mutex_unlock(&bp->hwrm_cmd_lock);
4490 	return rc;
4491 }
4492 
4493 static int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
4494 {
4495 	struct hwrm_func_drv_unrgtr_input req = {0};
4496 
4497 	if (!test_and_clear_bit(BNXT_STATE_DRV_REGISTERED, &bp->state))
4498 		return 0;
4499 
4500 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_UNRGTR, -1, -1);
4501 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4502 }
4503 
4504 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
4505 {
4506 	u32 rc = 0;
4507 	struct hwrm_tunnel_dst_port_free_input req = {0};
4508 
4509 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_FREE, -1, -1);
4510 	req.tunnel_type = tunnel_type;
4511 
4512 	switch (tunnel_type) {
4513 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
4514 		req.tunnel_dst_port_id = bp->vxlan_fw_dst_port_id;
4515 		break;
4516 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
4517 		req.tunnel_dst_port_id = bp->nge_fw_dst_port_id;
4518 		break;
4519 	default:
4520 		break;
4521 	}
4522 
4523 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4524 	if (rc)
4525 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
4526 			   rc);
4527 	return rc;
4528 }
4529 
4530 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
4531 					   u8 tunnel_type)
4532 {
4533 	u32 rc = 0;
4534 	struct hwrm_tunnel_dst_port_alloc_input req = {0};
4535 	struct hwrm_tunnel_dst_port_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4536 
4537 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_ALLOC, -1, -1);
4538 
4539 	req.tunnel_type = tunnel_type;
4540 	req.tunnel_dst_port_val = port;
4541 
4542 	mutex_lock(&bp->hwrm_cmd_lock);
4543 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4544 	if (rc) {
4545 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
4546 			   rc);
4547 		goto err_out;
4548 	}
4549 
4550 	switch (tunnel_type) {
4551 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN:
4552 		bp->vxlan_fw_dst_port_id = resp->tunnel_dst_port_id;
4553 		break;
4554 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE:
4555 		bp->nge_fw_dst_port_id = resp->tunnel_dst_port_id;
4556 		break;
4557 	default:
4558 		break;
4559 	}
4560 
4561 err_out:
4562 	mutex_unlock(&bp->hwrm_cmd_lock);
4563 	return rc;
4564 }
4565 
4566 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
4567 {
4568 	struct hwrm_cfa_l2_set_rx_mask_input req = {0};
4569 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4570 
4571 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_SET_RX_MASK, -1, -1);
4572 	req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
4573 
4574 	req.num_mc_entries = cpu_to_le32(vnic->mc_list_count);
4575 	req.mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
4576 	req.mask = cpu_to_le32(vnic->rx_mask);
4577 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4578 }
4579 
4580 #ifdef CONFIG_RFS_ACCEL
4581 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
4582 					    struct bnxt_ntuple_filter *fltr)
4583 {
4584 	struct hwrm_cfa_ntuple_filter_free_input req = {0};
4585 
4586 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_FREE, -1, -1);
4587 	req.ntuple_filter_id = fltr->filter_id;
4588 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4589 }
4590 
4591 #define BNXT_NTP_FLTR_FLAGS					\
4592 	(CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID |	\
4593 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE |	\
4594 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR |	\
4595 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE |	\
4596 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR |	\
4597 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK |	\
4598 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR |	\
4599 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK |	\
4600 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL |	\
4601 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT |		\
4602 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK |	\
4603 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT |		\
4604 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK |	\
4605 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
4606 
4607 #define BNXT_NTP_TUNNEL_FLTR_FLAG				\
4608 		CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE
4609 
4610 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
4611 					     struct bnxt_ntuple_filter *fltr)
4612 {
4613 	struct hwrm_cfa_ntuple_filter_alloc_input req = {0};
4614 	struct hwrm_cfa_ntuple_filter_alloc_output *resp;
4615 	struct flow_keys *keys = &fltr->fkeys;
4616 	struct bnxt_vnic_info *vnic;
4617 	u32 flags = 0;
4618 	int rc = 0;
4619 
4620 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_ALLOC, -1, -1);
4621 	req.l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx];
4622 
4623 	if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) {
4624 		flags = CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DEST_RFS_RING_IDX;
4625 		req.dst_id = cpu_to_le16(fltr->rxq);
4626 	} else {
4627 		vnic = &bp->vnic_info[fltr->rxq + 1];
4628 		req.dst_id = cpu_to_le16(vnic->fw_vnic_id);
4629 	}
4630 	req.flags = cpu_to_le32(flags);
4631 	req.enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
4632 
4633 	req.ethertype = htons(ETH_P_IP);
4634 	memcpy(req.src_macaddr, fltr->src_mac_addr, ETH_ALEN);
4635 	req.ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
4636 	req.ip_protocol = keys->basic.ip_proto;
4637 
4638 	if (keys->basic.n_proto == htons(ETH_P_IPV6)) {
4639 		int i;
4640 
4641 		req.ethertype = htons(ETH_P_IPV6);
4642 		req.ip_addr_type =
4643 			CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6;
4644 		*(struct in6_addr *)&req.src_ipaddr[0] =
4645 			keys->addrs.v6addrs.src;
4646 		*(struct in6_addr *)&req.dst_ipaddr[0] =
4647 			keys->addrs.v6addrs.dst;
4648 		for (i = 0; i < 4; i++) {
4649 			req.src_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
4650 			req.dst_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
4651 		}
4652 	} else {
4653 		req.src_ipaddr[0] = keys->addrs.v4addrs.src;
4654 		req.src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
4655 		req.dst_ipaddr[0] = keys->addrs.v4addrs.dst;
4656 		req.dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
4657 	}
4658 	if (keys->control.flags & FLOW_DIS_ENCAPSULATION) {
4659 		req.enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG);
4660 		req.tunnel_type =
4661 			CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL;
4662 	}
4663 
4664 	req.src_port = keys->ports.src;
4665 	req.src_port_mask = cpu_to_be16(0xffff);
4666 	req.dst_port = keys->ports.dst;
4667 	req.dst_port_mask = cpu_to_be16(0xffff);
4668 
4669 	mutex_lock(&bp->hwrm_cmd_lock);
4670 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4671 	if (!rc) {
4672 		resp = bnxt_get_hwrm_resp_addr(bp, &req);
4673 		fltr->filter_id = resp->ntuple_filter_id;
4674 	}
4675 	mutex_unlock(&bp->hwrm_cmd_lock);
4676 	return rc;
4677 }
4678 #endif
4679 
4680 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
4681 				     u8 *mac_addr)
4682 {
4683 	u32 rc = 0;
4684 	struct hwrm_cfa_l2_filter_alloc_input req = {0};
4685 	struct hwrm_cfa_l2_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4686 
4687 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_ALLOC, -1, -1);
4688 	req.flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX);
4689 	if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
4690 		req.flags |=
4691 			cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
4692 	req.dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
4693 	req.enables =
4694 		cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
4695 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
4696 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
4697 	memcpy(req.l2_addr, mac_addr, ETH_ALEN);
4698 	req.l2_addr_mask[0] = 0xff;
4699 	req.l2_addr_mask[1] = 0xff;
4700 	req.l2_addr_mask[2] = 0xff;
4701 	req.l2_addr_mask[3] = 0xff;
4702 	req.l2_addr_mask[4] = 0xff;
4703 	req.l2_addr_mask[5] = 0xff;
4704 
4705 	mutex_lock(&bp->hwrm_cmd_lock);
4706 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4707 	if (!rc)
4708 		bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
4709 							resp->l2_filter_id;
4710 	mutex_unlock(&bp->hwrm_cmd_lock);
4711 	return rc;
4712 }
4713 
4714 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
4715 {
4716 	u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
4717 	int rc = 0;
4718 
4719 	/* Any associated ntuple filters will also be cleared by firmware. */
4720 	mutex_lock(&bp->hwrm_cmd_lock);
4721 	for (i = 0; i < num_of_vnics; i++) {
4722 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
4723 
4724 		for (j = 0; j < vnic->uc_filter_count; j++) {
4725 			struct hwrm_cfa_l2_filter_free_input req = {0};
4726 
4727 			bnxt_hwrm_cmd_hdr_init(bp, &req,
4728 					       HWRM_CFA_L2_FILTER_FREE, -1, -1);
4729 
4730 			req.l2_filter_id = vnic->fw_l2_filter_id[j];
4731 
4732 			rc = _hwrm_send_message(bp, &req, sizeof(req),
4733 						HWRM_CMD_TIMEOUT);
4734 		}
4735 		vnic->uc_filter_count = 0;
4736 	}
4737 	mutex_unlock(&bp->hwrm_cmd_lock);
4738 
4739 	return rc;
4740 }
4741 
4742 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
4743 {
4744 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4745 	u16 max_aggs = VNIC_TPA_CFG_REQ_MAX_AGGS_MAX;
4746 	struct hwrm_vnic_tpa_cfg_input req = {0};
4747 
4748 	if (vnic->fw_vnic_id == INVALID_HW_RING_ID)
4749 		return 0;
4750 
4751 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_TPA_CFG, -1, -1);
4752 
4753 	if (tpa_flags) {
4754 		u16 mss = bp->dev->mtu - 40;
4755 		u32 nsegs, n, segs = 0, flags;
4756 
4757 		flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
4758 			VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
4759 			VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
4760 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
4761 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
4762 		if (tpa_flags & BNXT_FLAG_GRO)
4763 			flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
4764 
4765 		req.flags = cpu_to_le32(flags);
4766 
4767 		req.enables =
4768 			cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
4769 				    VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
4770 				    VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
4771 
4772 		/* Number of segs are log2 units, and first packet is not
4773 		 * included as part of this units.
4774 		 */
4775 		if (mss <= BNXT_RX_PAGE_SIZE) {
4776 			n = BNXT_RX_PAGE_SIZE / mss;
4777 			nsegs = (MAX_SKB_FRAGS - 1) * n;
4778 		} else {
4779 			n = mss / BNXT_RX_PAGE_SIZE;
4780 			if (mss & (BNXT_RX_PAGE_SIZE - 1))
4781 				n++;
4782 			nsegs = (MAX_SKB_FRAGS - n) / n;
4783 		}
4784 
4785 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
4786 			segs = MAX_TPA_SEGS_P5;
4787 			max_aggs = bp->max_tpa;
4788 		} else {
4789 			segs = ilog2(nsegs);
4790 		}
4791 		req.max_agg_segs = cpu_to_le16(segs);
4792 		req.max_aggs = cpu_to_le16(max_aggs);
4793 
4794 		req.min_agg_len = cpu_to_le32(512);
4795 	}
4796 	req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
4797 
4798 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4799 }
4800 
4801 static u16 bnxt_cp_ring_from_grp(struct bnxt *bp, struct bnxt_ring_struct *ring)
4802 {
4803 	struct bnxt_ring_grp_info *grp_info;
4804 
4805 	grp_info = &bp->grp_info[ring->grp_idx];
4806 	return grp_info->cp_fw_ring_id;
4807 }
4808 
4809 static u16 bnxt_cp_ring_for_rx(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
4810 {
4811 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
4812 		struct bnxt_napi *bnapi = rxr->bnapi;
4813 		struct bnxt_cp_ring_info *cpr;
4814 
4815 		cpr = bnapi->cp_ring.cp_ring_arr[BNXT_RX_HDL];
4816 		return cpr->cp_ring_struct.fw_ring_id;
4817 	} else {
4818 		return bnxt_cp_ring_from_grp(bp, &rxr->rx_ring_struct);
4819 	}
4820 }
4821 
4822 static u16 bnxt_cp_ring_for_tx(struct bnxt *bp, struct bnxt_tx_ring_info *txr)
4823 {
4824 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
4825 		struct bnxt_napi *bnapi = txr->bnapi;
4826 		struct bnxt_cp_ring_info *cpr;
4827 
4828 		cpr = bnapi->cp_ring.cp_ring_arr[BNXT_TX_HDL];
4829 		return cpr->cp_ring_struct.fw_ring_id;
4830 	} else {
4831 		return bnxt_cp_ring_from_grp(bp, &txr->tx_ring_struct);
4832 	}
4833 }
4834 
4835 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
4836 {
4837 	u32 i, j, max_rings;
4838 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4839 	struct hwrm_vnic_rss_cfg_input req = {0};
4840 
4841 	if ((bp->flags & BNXT_FLAG_CHIP_P5) ||
4842 	    vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID)
4843 		return 0;
4844 
4845 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1);
4846 	if (set_rss) {
4847 		req.hash_type = cpu_to_le32(bp->rss_hash_cfg);
4848 		req.hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT;
4849 		if (vnic->flags & BNXT_VNIC_RSS_FLAG) {
4850 			if (BNXT_CHIP_TYPE_NITRO_A0(bp))
4851 				max_rings = bp->rx_nr_rings - 1;
4852 			else
4853 				max_rings = bp->rx_nr_rings;
4854 		} else {
4855 			max_rings = 1;
4856 		}
4857 
4858 		/* Fill the RSS indirection table with ring group ids */
4859 		for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++, j++) {
4860 			if (j == max_rings)
4861 				j = 0;
4862 			vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
4863 		}
4864 
4865 		req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
4866 		req.hash_key_tbl_addr =
4867 			cpu_to_le64(vnic->rss_hash_key_dma_addr);
4868 	}
4869 	req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
4870 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4871 }
4872 
4873 static int bnxt_hwrm_vnic_set_rss_p5(struct bnxt *bp, u16 vnic_id, bool set_rss)
4874 {
4875 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4876 	u32 i, j, k, nr_ctxs, max_rings = bp->rx_nr_rings;
4877 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0];
4878 	struct hwrm_vnic_rss_cfg_input req = {0};
4879 
4880 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1);
4881 	req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
4882 	if (!set_rss) {
4883 		hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4884 		return 0;
4885 	}
4886 	req.hash_type = cpu_to_le32(bp->rss_hash_cfg);
4887 	req.hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT;
4888 	req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
4889 	req.hash_key_tbl_addr = cpu_to_le64(vnic->rss_hash_key_dma_addr);
4890 	nr_ctxs = DIV_ROUND_UP(bp->rx_nr_rings, 64);
4891 	for (i = 0, k = 0; i < nr_ctxs; i++) {
4892 		__le16 *ring_tbl = vnic->rss_table;
4893 		int rc;
4894 
4895 		req.ring_table_pair_index = i;
4896 		req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[i]);
4897 		for (j = 0; j < 64; j++) {
4898 			u16 ring_id;
4899 
4900 			ring_id = rxr->rx_ring_struct.fw_ring_id;
4901 			*ring_tbl++ = cpu_to_le16(ring_id);
4902 			ring_id = bnxt_cp_ring_for_rx(bp, rxr);
4903 			*ring_tbl++ = cpu_to_le16(ring_id);
4904 			rxr++;
4905 			k++;
4906 			if (k == max_rings) {
4907 				k = 0;
4908 				rxr = &bp->rx_ring[0];
4909 			}
4910 		}
4911 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4912 		if (rc)
4913 			return rc;
4914 	}
4915 	return 0;
4916 }
4917 
4918 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
4919 {
4920 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4921 	struct hwrm_vnic_plcmodes_cfg_input req = {0};
4922 
4923 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_PLCMODES_CFG, -1, -1);
4924 	req.flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT |
4925 				VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
4926 				VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
4927 	req.enables =
4928 		cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID |
4929 			    VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
4930 	/* thresholds not implemented in firmware yet */
4931 	req.jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
4932 	req.hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
4933 	req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
4934 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4935 }
4936 
4937 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id,
4938 					u16 ctx_idx)
4939 {
4940 	struct hwrm_vnic_rss_cos_lb_ctx_free_input req = {0};
4941 
4942 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_FREE, -1, -1);
4943 	req.rss_cos_lb_ctx_id =
4944 		cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]);
4945 
4946 	hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4947 	bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID;
4948 }
4949 
4950 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
4951 {
4952 	int i, j;
4953 
4954 	for (i = 0; i < bp->nr_vnics; i++) {
4955 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
4956 
4957 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) {
4958 			if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID)
4959 				bnxt_hwrm_vnic_ctx_free_one(bp, i, j);
4960 		}
4961 	}
4962 	bp->rsscos_nr_ctxs = 0;
4963 }
4964 
4965 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx)
4966 {
4967 	int rc;
4968 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_input req = {0};
4969 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp =
4970 						bp->hwrm_cmd_resp_addr;
4971 
4972 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC, -1,
4973 			       -1);
4974 
4975 	mutex_lock(&bp->hwrm_cmd_lock);
4976 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4977 	if (!rc)
4978 		bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] =
4979 			le16_to_cpu(resp->rss_cos_lb_ctx_id);
4980 	mutex_unlock(&bp->hwrm_cmd_lock);
4981 
4982 	return rc;
4983 }
4984 
4985 static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp)
4986 {
4987 	if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP)
4988 		return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE;
4989 	return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE;
4990 }
4991 
4992 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
4993 {
4994 	unsigned int ring = 0, grp_idx;
4995 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4996 	struct hwrm_vnic_cfg_input req = {0};
4997 	u16 def_vlan = 0;
4998 
4999 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_CFG, -1, -1);
5000 
5001 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5002 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0];
5003 
5004 		req.default_rx_ring_id =
5005 			cpu_to_le16(rxr->rx_ring_struct.fw_ring_id);
5006 		req.default_cmpl_ring_id =
5007 			cpu_to_le16(bnxt_cp_ring_for_rx(bp, rxr));
5008 		req.enables =
5009 			cpu_to_le32(VNIC_CFG_REQ_ENABLES_DEFAULT_RX_RING_ID |
5010 				    VNIC_CFG_REQ_ENABLES_DEFAULT_CMPL_RING_ID);
5011 		goto vnic_mru;
5012 	}
5013 	req.enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP);
5014 	/* Only RSS support for now TBD: COS & LB */
5015 	if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) {
5016 		req.rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
5017 		req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
5018 					   VNIC_CFG_REQ_ENABLES_MRU);
5019 	} else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) {
5020 		req.rss_rule =
5021 			cpu_to_le16(bp->vnic_info[0].fw_rss_cos_lb_ctx[0]);
5022 		req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
5023 					   VNIC_CFG_REQ_ENABLES_MRU);
5024 		req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE);
5025 	} else {
5026 		req.rss_rule = cpu_to_le16(0xffff);
5027 	}
5028 
5029 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) &&
5030 	    (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) {
5031 		req.cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]);
5032 		req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE);
5033 	} else {
5034 		req.cos_rule = cpu_to_le16(0xffff);
5035 	}
5036 
5037 	if (vnic->flags & BNXT_VNIC_RSS_FLAG)
5038 		ring = 0;
5039 	else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
5040 		ring = vnic_id - 1;
5041 	else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp))
5042 		ring = bp->rx_nr_rings - 1;
5043 
5044 	grp_idx = bp->rx_ring[ring].bnapi->index;
5045 	req.dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
5046 	req.lb_rule = cpu_to_le16(0xffff);
5047 vnic_mru:
5048 	req.mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + ETH_FCS_LEN +
5049 			      VLAN_HLEN);
5050 
5051 	req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5052 #ifdef CONFIG_BNXT_SRIOV
5053 	if (BNXT_VF(bp))
5054 		def_vlan = bp->vf.vlan;
5055 #endif
5056 	if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan)
5057 		req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
5058 	if (!vnic_id && bnxt_ulp_registered(bp->edev, BNXT_ROCE_ULP))
5059 		req.flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp));
5060 
5061 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5062 }
5063 
5064 static void bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
5065 {
5066 	if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
5067 		struct hwrm_vnic_free_input req = {0};
5068 
5069 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_FREE, -1, -1);
5070 		req.vnic_id =
5071 			cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
5072 
5073 		hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5074 		bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
5075 	}
5076 }
5077 
5078 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
5079 {
5080 	u16 i;
5081 
5082 	for (i = 0; i < bp->nr_vnics; i++)
5083 		bnxt_hwrm_vnic_free_one(bp, i);
5084 }
5085 
5086 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
5087 				unsigned int start_rx_ring_idx,
5088 				unsigned int nr_rings)
5089 {
5090 	int rc = 0;
5091 	unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
5092 	struct hwrm_vnic_alloc_input req = {0};
5093 	struct hwrm_vnic_alloc_output *resp = bp->hwrm_cmd_resp_addr;
5094 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5095 
5096 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5097 		goto vnic_no_ring_grps;
5098 
5099 	/* map ring groups to this vnic */
5100 	for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
5101 		grp_idx = bp->rx_ring[i].bnapi->index;
5102 		if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
5103 			netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
5104 				   j, nr_rings);
5105 			break;
5106 		}
5107 		vnic->fw_grp_ids[j] = bp->grp_info[grp_idx].fw_grp_id;
5108 	}
5109 
5110 vnic_no_ring_grps:
5111 	for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++)
5112 		vnic->fw_rss_cos_lb_ctx[i] = INVALID_HW_RING_ID;
5113 	if (vnic_id == 0)
5114 		req.flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
5115 
5116 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_ALLOC, -1, -1);
5117 
5118 	mutex_lock(&bp->hwrm_cmd_lock);
5119 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5120 	if (!rc)
5121 		vnic->fw_vnic_id = le32_to_cpu(resp->vnic_id);
5122 	mutex_unlock(&bp->hwrm_cmd_lock);
5123 	return rc;
5124 }
5125 
5126 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp)
5127 {
5128 	struct hwrm_vnic_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
5129 	struct hwrm_vnic_qcaps_input req = {0};
5130 	int rc;
5131 
5132 	bp->hw_ring_stats_size = sizeof(struct ctx_hw_stats);
5133 	bp->flags &= ~(BNXT_FLAG_NEW_RSS_CAP | BNXT_FLAG_ROCE_MIRROR_CAP);
5134 	if (bp->hwrm_spec_code < 0x10600)
5135 		return 0;
5136 
5137 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_QCAPS, -1, -1);
5138 	mutex_lock(&bp->hwrm_cmd_lock);
5139 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5140 	if (!rc) {
5141 		u32 flags = le32_to_cpu(resp->flags);
5142 
5143 		if (!(bp->flags & BNXT_FLAG_CHIP_P5) &&
5144 		    (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP))
5145 			bp->flags |= BNXT_FLAG_NEW_RSS_CAP;
5146 		if (flags &
5147 		    VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP)
5148 			bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP;
5149 		bp->max_tpa_v2 = le16_to_cpu(resp->max_aggs_supported);
5150 		if (bp->max_tpa_v2)
5151 			bp->hw_ring_stats_size =
5152 				sizeof(struct ctx_hw_stats_ext);
5153 	}
5154 	mutex_unlock(&bp->hwrm_cmd_lock);
5155 	return rc;
5156 }
5157 
5158 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
5159 {
5160 	u16 i;
5161 	u32 rc = 0;
5162 
5163 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5164 		return 0;
5165 
5166 	mutex_lock(&bp->hwrm_cmd_lock);
5167 	for (i = 0; i < bp->rx_nr_rings; i++) {
5168 		struct hwrm_ring_grp_alloc_input req = {0};
5169 		struct hwrm_ring_grp_alloc_output *resp =
5170 					bp->hwrm_cmd_resp_addr;
5171 		unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
5172 
5173 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_ALLOC, -1, -1);
5174 
5175 		req.cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
5176 		req.rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
5177 		req.ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
5178 		req.sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
5179 
5180 		rc = _hwrm_send_message(bp, &req, sizeof(req),
5181 					HWRM_CMD_TIMEOUT);
5182 		if (rc)
5183 			break;
5184 
5185 		bp->grp_info[grp_idx].fw_grp_id =
5186 			le32_to_cpu(resp->ring_group_id);
5187 	}
5188 	mutex_unlock(&bp->hwrm_cmd_lock);
5189 	return rc;
5190 }
5191 
5192 static void bnxt_hwrm_ring_grp_free(struct bnxt *bp)
5193 {
5194 	u16 i;
5195 	struct hwrm_ring_grp_free_input req = {0};
5196 
5197 	if (!bp->grp_info || (bp->flags & BNXT_FLAG_CHIP_P5))
5198 		return;
5199 
5200 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_FREE, -1, -1);
5201 
5202 	mutex_lock(&bp->hwrm_cmd_lock);
5203 	for (i = 0; i < bp->cp_nr_rings; i++) {
5204 		if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
5205 			continue;
5206 		req.ring_group_id =
5207 			cpu_to_le32(bp->grp_info[i].fw_grp_id);
5208 
5209 		_hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5210 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
5211 	}
5212 	mutex_unlock(&bp->hwrm_cmd_lock);
5213 }
5214 
5215 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
5216 				    struct bnxt_ring_struct *ring,
5217 				    u32 ring_type, u32 map_index)
5218 {
5219 	int rc = 0, err = 0;
5220 	struct hwrm_ring_alloc_input req = {0};
5221 	struct hwrm_ring_alloc_output *resp = bp->hwrm_cmd_resp_addr;
5222 	struct bnxt_ring_mem_info *rmem = &ring->ring_mem;
5223 	struct bnxt_ring_grp_info *grp_info;
5224 	u16 ring_id;
5225 
5226 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_ALLOC, -1, -1);
5227 
5228 	req.enables = 0;
5229 	if (rmem->nr_pages > 1) {
5230 		req.page_tbl_addr = cpu_to_le64(rmem->pg_tbl_map);
5231 		/* Page size is in log2 units */
5232 		req.page_size = BNXT_PAGE_SHIFT;
5233 		req.page_tbl_depth = 1;
5234 	} else {
5235 		req.page_tbl_addr =  cpu_to_le64(rmem->dma_arr[0]);
5236 	}
5237 	req.fbo = 0;
5238 	/* Association of ring index with doorbell index and MSIX number */
5239 	req.logical_id = cpu_to_le16(map_index);
5240 
5241 	switch (ring_type) {
5242 	case HWRM_RING_ALLOC_TX: {
5243 		struct bnxt_tx_ring_info *txr;
5244 
5245 		txr = container_of(ring, struct bnxt_tx_ring_info,
5246 				   tx_ring_struct);
5247 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
5248 		/* Association of transmit ring with completion ring */
5249 		grp_info = &bp->grp_info[ring->grp_idx];
5250 		req.cmpl_ring_id = cpu_to_le16(bnxt_cp_ring_for_tx(bp, txr));
5251 		req.length = cpu_to_le32(bp->tx_ring_mask + 1);
5252 		req.stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5253 		req.queue_id = cpu_to_le16(ring->queue_id);
5254 		break;
5255 	}
5256 	case HWRM_RING_ALLOC_RX:
5257 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
5258 		req.length = cpu_to_le32(bp->rx_ring_mask + 1);
5259 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5260 			u16 flags = 0;
5261 
5262 			/* Association of rx ring with stats context */
5263 			grp_info = &bp->grp_info[ring->grp_idx];
5264 			req.rx_buf_size = cpu_to_le16(bp->rx_buf_use_size);
5265 			req.stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5266 			req.enables |= cpu_to_le32(
5267 				RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
5268 			if (NET_IP_ALIGN == 2)
5269 				flags = RING_ALLOC_REQ_FLAGS_RX_SOP_PAD;
5270 			req.flags = cpu_to_le16(flags);
5271 		}
5272 		break;
5273 	case HWRM_RING_ALLOC_AGG:
5274 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5275 			req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX_AGG;
5276 			/* Association of agg ring with rx ring */
5277 			grp_info = &bp->grp_info[ring->grp_idx];
5278 			req.rx_ring_id = cpu_to_le16(grp_info->rx_fw_ring_id);
5279 			req.rx_buf_size = cpu_to_le16(BNXT_RX_PAGE_SIZE);
5280 			req.stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5281 			req.enables |= cpu_to_le32(
5282 				RING_ALLOC_REQ_ENABLES_RX_RING_ID_VALID |
5283 				RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
5284 		} else {
5285 			req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
5286 		}
5287 		req.length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
5288 		break;
5289 	case HWRM_RING_ALLOC_CMPL:
5290 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL;
5291 		req.length = cpu_to_le32(bp->cp_ring_mask + 1);
5292 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5293 			/* Association of cp ring with nq */
5294 			grp_info = &bp->grp_info[map_index];
5295 			req.nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id);
5296 			req.cq_handle = cpu_to_le64(ring->handle);
5297 			req.enables |= cpu_to_le32(
5298 				RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID);
5299 		} else if (bp->flags & BNXT_FLAG_USING_MSIX) {
5300 			req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
5301 		}
5302 		break;
5303 	case HWRM_RING_ALLOC_NQ:
5304 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_NQ;
5305 		req.length = cpu_to_le32(bp->cp_ring_mask + 1);
5306 		if (bp->flags & BNXT_FLAG_USING_MSIX)
5307 			req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
5308 		break;
5309 	default:
5310 		netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
5311 			   ring_type);
5312 		return -1;
5313 	}
5314 
5315 	mutex_lock(&bp->hwrm_cmd_lock);
5316 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5317 	err = le16_to_cpu(resp->error_code);
5318 	ring_id = le16_to_cpu(resp->ring_id);
5319 	mutex_unlock(&bp->hwrm_cmd_lock);
5320 
5321 	if (rc || err) {
5322 		netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n",
5323 			   ring_type, rc, err);
5324 		return -EIO;
5325 	}
5326 	ring->fw_ring_id = ring_id;
5327 	return rc;
5328 }
5329 
5330 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx)
5331 {
5332 	int rc;
5333 
5334 	if (BNXT_PF(bp)) {
5335 		struct hwrm_func_cfg_input req = {0};
5336 
5337 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
5338 		req.fid = cpu_to_le16(0xffff);
5339 		req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
5340 		req.async_event_cr = cpu_to_le16(idx);
5341 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5342 	} else {
5343 		struct hwrm_func_vf_cfg_input req = {0};
5344 
5345 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_CFG, -1, -1);
5346 		req.enables =
5347 			cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
5348 		req.async_event_cr = cpu_to_le16(idx);
5349 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5350 	}
5351 	return rc;
5352 }
5353 
5354 static void bnxt_set_db(struct bnxt *bp, struct bnxt_db_info *db, u32 ring_type,
5355 			u32 map_idx, u32 xid)
5356 {
5357 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5358 		if (BNXT_PF(bp))
5359 			db->doorbell = bp->bar1 + 0x10000;
5360 		else
5361 			db->doorbell = bp->bar1 + 0x4000;
5362 		switch (ring_type) {
5363 		case HWRM_RING_ALLOC_TX:
5364 			db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SQ;
5365 			break;
5366 		case HWRM_RING_ALLOC_RX:
5367 		case HWRM_RING_ALLOC_AGG:
5368 			db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SRQ;
5369 			break;
5370 		case HWRM_RING_ALLOC_CMPL:
5371 			db->db_key64 = DBR_PATH_L2;
5372 			break;
5373 		case HWRM_RING_ALLOC_NQ:
5374 			db->db_key64 = DBR_PATH_L2;
5375 			break;
5376 		}
5377 		db->db_key64 |= (u64)xid << DBR_XID_SFT;
5378 	} else {
5379 		db->doorbell = bp->bar1 + map_idx * 0x80;
5380 		switch (ring_type) {
5381 		case HWRM_RING_ALLOC_TX:
5382 			db->db_key32 = DB_KEY_TX;
5383 			break;
5384 		case HWRM_RING_ALLOC_RX:
5385 		case HWRM_RING_ALLOC_AGG:
5386 			db->db_key32 = DB_KEY_RX;
5387 			break;
5388 		case HWRM_RING_ALLOC_CMPL:
5389 			db->db_key32 = DB_KEY_CP;
5390 			break;
5391 		}
5392 	}
5393 }
5394 
5395 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
5396 {
5397 	bool agg_rings = !!(bp->flags & BNXT_FLAG_AGG_RINGS);
5398 	int i, rc = 0;
5399 	u32 type;
5400 
5401 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5402 		type = HWRM_RING_ALLOC_NQ;
5403 	else
5404 		type = HWRM_RING_ALLOC_CMPL;
5405 	for (i = 0; i < bp->cp_nr_rings; i++) {
5406 		struct bnxt_napi *bnapi = bp->bnapi[i];
5407 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5408 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
5409 		u32 map_idx = ring->map_idx;
5410 		unsigned int vector;
5411 
5412 		vector = bp->irq_tbl[map_idx].vector;
5413 		disable_irq_nosync(vector);
5414 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5415 		if (rc) {
5416 			enable_irq(vector);
5417 			goto err_out;
5418 		}
5419 		bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id);
5420 		bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
5421 		enable_irq(vector);
5422 		bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
5423 
5424 		if (!i) {
5425 			rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id);
5426 			if (rc)
5427 				netdev_warn(bp->dev, "Failed to set async event completion ring.\n");
5428 		}
5429 	}
5430 
5431 	type = HWRM_RING_ALLOC_TX;
5432 	for (i = 0; i < bp->tx_nr_rings; i++) {
5433 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
5434 		struct bnxt_ring_struct *ring;
5435 		u32 map_idx;
5436 
5437 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5438 			struct bnxt_napi *bnapi = txr->bnapi;
5439 			struct bnxt_cp_ring_info *cpr, *cpr2;
5440 			u32 type2 = HWRM_RING_ALLOC_CMPL;
5441 
5442 			cpr = &bnapi->cp_ring;
5443 			cpr2 = cpr->cp_ring_arr[BNXT_TX_HDL];
5444 			ring = &cpr2->cp_ring_struct;
5445 			ring->handle = BNXT_TX_HDL;
5446 			map_idx = bnapi->index;
5447 			rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
5448 			if (rc)
5449 				goto err_out;
5450 			bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
5451 				    ring->fw_ring_id);
5452 			bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
5453 		}
5454 		ring = &txr->tx_ring_struct;
5455 		map_idx = i;
5456 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5457 		if (rc)
5458 			goto err_out;
5459 		bnxt_set_db(bp, &txr->tx_db, type, map_idx, ring->fw_ring_id);
5460 	}
5461 
5462 	type = HWRM_RING_ALLOC_RX;
5463 	for (i = 0; i < bp->rx_nr_rings; i++) {
5464 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5465 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
5466 		struct bnxt_napi *bnapi = rxr->bnapi;
5467 		u32 map_idx = bnapi->index;
5468 
5469 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5470 		if (rc)
5471 			goto err_out;
5472 		bnxt_set_db(bp, &rxr->rx_db, type, map_idx, ring->fw_ring_id);
5473 		/* If we have agg rings, post agg buffers first. */
5474 		if (!agg_rings)
5475 			bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
5476 		bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
5477 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5478 			struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5479 			u32 type2 = HWRM_RING_ALLOC_CMPL;
5480 			struct bnxt_cp_ring_info *cpr2;
5481 
5482 			cpr2 = cpr->cp_ring_arr[BNXT_RX_HDL];
5483 			ring = &cpr2->cp_ring_struct;
5484 			ring->handle = BNXT_RX_HDL;
5485 			rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
5486 			if (rc)
5487 				goto err_out;
5488 			bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
5489 				    ring->fw_ring_id);
5490 			bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
5491 		}
5492 	}
5493 
5494 	if (agg_rings) {
5495 		type = HWRM_RING_ALLOC_AGG;
5496 		for (i = 0; i < bp->rx_nr_rings; i++) {
5497 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5498 			struct bnxt_ring_struct *ring =
5499 						&rxr->rx_agg_ring_struct;
5500 			u32 grp_idx = ring->grp_idx;
5501 			u32 map_idx = grp_idx + bp->rx_nr_rings;
5502 
5503 			rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5504 			if (rc)
5505 				goto err_out;
5506 
5507 			bnxt_set_db(bp, &rxr->rx_agg_db, type, map_idx,
5508 				    ring->fw_ring_id);
5509 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
5510 			bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
5511 			bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
5512 		}
5513 	}
5514 err_out:
5515 	return rc;
5516 }
5517 
5518 static int hwrm_ring_free_send_msg(struct bnxt *bp,
5519 				   struct bnxt_ring_struct *ring,
5520 				   u32 ring_type, int cmpl_ring_id)
5521 {
5522 	int rc;
5523 	struct hwrm_ring_free_input req = {0};
5524 	struct hwrm_ring_free_output *resp = bp->hwrm_cmd_resp_addr;
5525 	u16 error_code;
5526 
5527 	if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
5528 		return 0;
5529 
5530 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_FREE, cmpl_ring_id, -1);
5531 	req.ring_type = ring_type;
5532 	req.ring_id = cpu_to_le16(ring->fw_ring_id);
5533 
5534 	mutex_lock(&bp->hwrm_cmd_lock);
5535 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5536 	error_code = le16_to_cpu(resp->error_code);
5537 	mutex_unlock(&bp->hwrm_cmd_lock);
5538 
5539 	if (rc || error_code) {
5540 		netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n",
5541 			   ring_type, rc, error_code);
5542 		return -EIO;
5543 	}
5544 	return 0;
5545 }
5546 
5547 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
5548 {
5549 	u32 type;
5550 	int i;
5551 
5552 	if (!bp->bnapi)
5553 		return;
5554 
5555 	for (i = 0; i < bp->tx_nr_rings; i++) {
5556 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
5557 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
5558 
5559 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5560 			u32 cmpl_ring_id = bnxt_cp_ring_for_tx(bp, txr);
5561 
5562 			hwrm_ring_free_send_msg(bp, ring,
5563 						RING_FREE_REQ_RING_TYPE_TX,
5564 						close_path ? cmpl_ring_id :
5565 						INVALID_HW_RING_ID);
5566 			ring->fw_ring_id = INVALID_HW_RING_ID;
5567 		}
5568 	}
5569 
5570 	for (i = 0; i < bp->rx_nr_rings; i++) {
5571 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5572 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
5573 		u32 grp_idx = rxr->bnapi->index;
5574 
5575 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5576 			u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
5577 
5578 			hwrm_ring_free_send_msg(bp, ring,
5579 						RING_FREE_REQ_RING_TYPE_RX,
5580 						close_path ? cmpl_ring_id :
5581 						INVALID_HW_RING_ID);
5582 			ring->fw_ring_id = INVALID_HW_RING_ID;
5583 			bp->grp_info[grp_idx].rx_fw_ring_id =
5584 				INVALID_HW_RING_ID;
5585 		}
5586 	}
5587 
5588 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5589 		type = RING_FREE_REQ_RING_TYPE_RX_AGG;
5590 	else
5591 		type = RING_FREE_REQ_RING_TYPE_RX;
5592 	for (i = 0; i < bp->rx_nr_rings; i++) {
5593 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5594 		struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
5595 		u32 grp_idx = rxr->bnapi->index;
5596 
5597 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5598 			u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
5599 
5600 			hwrm_ring_free_send_msg(bp, ring, type,
5601 						close_path ? cmpl_ring_id :
5602 						INVALID_HW_RING_ID);
5603 			ring->fw_ring_id = INVALID_HW_RING_ID;
5604 			bp->grp_info[grp_idx].agg_fw_ring_id =
5605 				INVALID_HW_RING_ID;
5606 		}
5607 	}
5608 
5609 	/* The completion rings are about to be freed.  After that the
5610 	 * IRQ doorbell will not work anymore.  So we need to disable
5611 	 * IRQ here.
5612 	 */
5613 	bnxt_disable_int_sync(bp);
5614 
5615 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5616 		type = RING_FREE_REQ_RING_TYPE_NQ;
5617 	else
5618 		type = RING_FREE_REQ_RING_TYPE_L2_CMPL;
5619 	for (i = 0; i < bp->cp_nr_rings; i++) {
5620 		struct bnxt_napi *bnapi = bp->bnapi[i];
5621 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5622 		struct bnxt_ring_struct *ring;
5623 		int j;
5624 
5625 		for (j = 0; j < 2; j++) {
5626 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
5627 
5628 			if (cpr2) {
5629 				ring = &cpr2->cp_ring_struct;
5630 				if (ring->fw_ring_id == INVALID_HW_RING_ID)
5631 					continue;
5632 				hwrm_ring_free_send_msg(bp, ring,
5633 					RING_FREE_REQ_RING_TYPE_L2_CMPL,
5634 					INVALID_HW_RING_ID);
5635 				ring->fw_ring_id = INVALID_HW_RING_ID;
5636 			}
5637 		}
5638 		ring = &cpr->cp_ring_struct;
5639 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5640 			hwrm_ring_free_send_msg(bp, ring, type,
5641 						INVALID_HW_RING_ID);
5642 			ring->fw_ring_id = INVALID_HW_RING_ID;
5643 			bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
5644 		}
5645 	}
5646 }
5647 
5648 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
5649 			   bool shared);
5650 
5651 static int bnxt_hwrm_get_rings(struct bnxt *bp)
5652 {
5653 	struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
5654 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
5655 	struct hwrm_func_qcfg_input req = {0};
5656 	int rc;
5657 
5658 	if (bp->hwrm_spec_code < 0x10601)
5659 		return 0;
5660 
5661 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
5662 	req.fid = cpu_to_le16(0xffff);
5663 	mutex_lock(&bp->hwrm_cmd_lock);
5664 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5665 	if (rc) {
5666 		mutex_unlock(&bp->hwrm_cmd_lock);
5667 		return rc;
5668 	}
5669 
5670 	hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings);
5671 	if (BNXT_NEW_RM(bp)) {
5672 		u16 cp, stats;
5673 
5674 		hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings);
5675 		hw_resc->resv_hw_ring_grps =
5676 			le32_to_cpu(resp->alloc_hw_ring_grps);
5677 		hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics);
5678 		cp = le16_to_cpu(resp->alloc_cmpl_rings);
5679 		stats = le16_to_cpu(resp->alloc_stat_ctx);
5680 		hw_resc->resv_irqs = cp;
5681 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5682 			int rx = hw_resc->resv_rx_rings;
5683 			int tx = hw_resc->resv_tx_rings;
5684 
5685 			if (bp->flags & BNXT_FLAG_AGG_RINGS)
5686 				rx >>= 1;
5687 			if (cp < (rx + tx)) {
5688 				bnxt_trim_rings(bp, &rx, &tx, cp, false);
5689 				if (bp->flags & BNXT_FLAG_AGG_RINGS)
5690 					rx <<= 1;
5691 				hw_resc->resv_rx_rings = rx;
5692 				hw_resc->resv_tx_rings = tx;
5693 			}
5694 			hw_resc->resv_irqs = le16_to_cpu(resp->alloc_msix);
5695 			hw_resc->resv_hw_ring_grps = rx;
5696 		}
5697 		hw_resc->resv_cp_rings = cp;
5698 		hw_resc->resv_stat_ctxs = stats;
5699 	}
5700 	mutex_unlock(&bp->hwrm_cmd_lock);
5701 	return 0;
5702 }
5703 
5704 /* Caller must hold bp->hwrm_cmd_lock */
5705 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings)
5706 {
5707 	struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
5708 	struct hwrm_func_qcfg_input req = {0};
5709 	int rc;
5710 
5711 	if (bp->hwrm_spec_code < 0x10601)
5712 		return 0;
5713 
5714 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
5715 	req.fid = cpu_to_le16(fid);
5716 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5717 	if (!rc)
5718 		*tx_rings = le16_to_cpu(resp->alloc_tx_rings);
5719 
5720 	return rc;
5721 }
5722 
5723 static bool bnxt_rfs_supported(struct bnxt *bp);
5724 
5725 static void
5726 __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, struct hwrm_func_cfg_input *req,
5727 			     int tx_rings, int rx_rings, int ring_grps,
5728 			     int cp_rings, int stats, int vnics)
5729 {
5730 	u32 enables = 0;
5731 
5732 	bnxt_hwrm_cmd_hdr_init(bp, req, HWRM_FUNC_CFG, -1, -1);
5733 	req->fid = cpu_to_le16(0xffff);
5734 	enables |= tx_rings ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
5735 	req->num_tx_rings = cpu_to_le16(tx_rings);
5736 	if (BNXT_NEW_RM(bp)) {
5737 		enables |= rx_rings ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0;
5738 		enables |= stats ? FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
5739 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5740 			enables |= cp_rings ? FUNC_CFG_REQ_ENABLES_NUM_MSIX : 0;
5741 			enables |= tx_rings + ring_grps ?
5742 				   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
5743 			enables |= rx_rings ?
5744 				FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
5745 		} else {
5746 			enables |= cp_rings ?
5747 				   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
5748 			enables |= ring_grps ?
5749 				   FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS |
5750 				   FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
5751 		}
5752 		enables |= vnics ? FUNC_CFG_REQ_ENABLES_NUM_VNICS : 0;
5753 
5754 		req->num_rx_rings = cpu_to_le16(rx_rings);
5755 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5756 			req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps);
5757 			req->num_msix = cpu_to_le16(cp_rings);
5758 			req->num_rsscos_ctxs =
5759 				cpu_to_le16(DIV_ROUND_UP(ring_grps, 64));
5760 		} else {
5761 			req->num_cmpl_rings = cpu_to_le16(cp_rings);
5762 			req->num_hw_ring_grps = cpu_to_le16(ring_grps);
5763 			req->num_rsscos_ctxs = cpu_to_le16(1);
5764 			if (!(bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
5765 			    bnxt_rfs_supported(bp))
5766 				req->num_rsscos_ctxs =
5767 					cpu_to_le16(ring_grps + 1);
5768 		}
5769 		req->num_stat_ctxs = cpu_to_le16(stats);
5770 		req->num_vnics = cpu_to_le16(vnics);
5771 	}
5772 	req->enables = cpu_to_le32(enables);
5773 }
5774 
5775 static void
5776 __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp,
5777 			     struct hwrm_func_vf_cfg_input *req, int tx_rings,
5778 			     int rx_rings, int ring_grps, int cp_rings,
5779 			     int stats, int vnics)
5780 {
5781 	u32 enables = 0;
5782 
5783 	bnxt_hwrm_cmd_hdr_init(bp, req, HWRM_FUNC_VF_CFG, -1, -1);
5784 	enables |= tx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
5785 	enables |= rx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS |
5786 			      FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
5787 	enables |= stats ? FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
5788 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5789 		enables |= tx_rings + ring_grps ?
5790 			   FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
5791 	} else {
5792 		enables |= cp_rings ?
5793 			   FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
5794 		enables |= ring_grps ?
5795 			   FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0;
5796 	}
5797 	enables |= vnics ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0;
5798 	enables |= FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS;
5799 
5800 	req->num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX);
5801 	req->num_tx_rings = cpu_to_le16(tx_rings);
5802 	req->num_rx_rings = cpu_to_le16(rx_rings);
5803 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5804 		req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps);
5805 		req->num_rsscos_ctxs = cpu_to_le16(DIV_ROUND_UP(ring_grps, 64));
5806 	} else {
5807 		req->num_cmpl_rings = cpu_to_le16(cp_rings);
5808 		req->num_hw_ring_grps = cpu_to_le16(ring_grps);
5809 		req->num_rsscos_ctxs = cpu_to_le16(BNXT_VF_MAX_RSS_CTX);
5810 	}
5811 	req->num_stat_ctxs = cpu_to_le16(stats);
5812 	req->num_vnics = cpu_to_le16(vnics);
5813 
5814 	req->enables = cpu_to_le32(enables);
5815 }
5816 
5817 static int
5818 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
5819 			   int ring_grps, int cp_rings, int stats, int vnics)
5820 {
5821 	struct hwrm_func_cfg_input req = {0};
5822 	int rc;
5823 
5824 	__bnxt_hwrm_reserve_pf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
5825 				     cp_rings, stats, vnics);
5826 	if (!req.enables)
5827 		return 0;
5828 
5829 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5830 	if (rc)
5831 		return rc;
5832 
5833 	if (bp->hwrm_spec_code < 0x10601)
5834 		bp->hw_resc.resv_tx_rings = tx_rings;
5835 
5836 	return bnxt_hwrm_get_rings(bp);
5837 }
5838 
5839 static int
5840 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
5841 			   int ring_grps, int cp_rings, int stats, int vnics)
5842 {
5843 	struct hwrm_func_vf_cfg_input req = {0};
5844 	int rc;
5845 
5846 	if (!BNXT_NEW_RM(bp)) {
5847 		bp->hw_resc.resv_tx_rings = tx_rings;
5848 		return 0;
5849 	}
5850 
5851 	__bnxt_hwrm_reserve_vf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
5852 				     cp_rings, stats, vnics);
5853 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5854 	if (rc)
5855 		return rc;
5856 
5857 	return bnxt_hwrm_get_rings(bp);
5858 }
5859 
5860 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, int tx, int rx, int grp,
5861 				   int cp, int stat, int vnic)
5862 {
5863 	if (BNXT_PF(bp))
5864 		return bnxt_hwrm_reserve_pf_rings(bp, tx, rx, grp, cp, stat,
5865 						  vnic);
5866 	else
5867 		return bnxt_hwrm_reserve_vf_rings(bp, tx, rx, grp, cp, stat,
5868 						  vnic);
5869 }
5870 
5871 int bnxt_nq_rings_in_use(struct bnxt *bp)
5872 {
5873 	int cp = bp->cp_nr_rings;
5874 	int ulp_msix, ulp_base;
5875 
5876 	ulp_msix = bnxt_get_ulp_msix_num(bp);
5877 	if (ulp_msix) {
5878 		ulp_base = bnxt_get_ulp_msix_base(bp);
5879 		cp += ulp_msix;
5880 		if ((ulp_base + ulp_msix) > cp)
5881 			cp = ulp_base + ulp_msix;
5882 	}
5883 	return cp;
5884 }
5885 
5886 static int bnxt_cp_rings_in_use(struct bnxt *bp)
5887 {
5888 	int cp;
5889 
5890 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
5891 		return bnxt_nq_rings_in_use(bp);
5892 
5893 	cp = bp->tx_nr_rings + bp->rx_nr_rings;
5894 	return cp;
5895 }
5896 
5897 static int bnxt_get_func_stat_ctxs(struct bnxt *bp)
5898 {
5899 	int ulp_stat = bnxt_get_ulp_stat_ctxs(bp);
5900 	int cp = bp->cp_nr_rings;
5901 
5902 	if (!ulp_stat)
5903 		return cp;
5904 
5905 	if (bnxt_nq_rings_in_use(bp) > cp + bnxt_get_ulp_msix_num(bp))
5906 		return bnxt_get_ulp_msix_base(bp) + ulp_stat;
5907 
5908 	return cp + ulp_stat;
5909 }
5910 
5911 static bool bnxt_need_reserve_rings(struct bnxt *bp)
5912 {
5913 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
5914 	int cp = bnxt_cp_rings_in_use(bp);
5915 	int nq = bnxt_nq_rings_in_use(bp);
5916 	int rx = bp->rx_nr_rings, stat;
5917 	int vnic = 1, grp = rx;
5918 
5919 	if (bp->hwrm_spec_code < 0x10601)
5920 		return false;
5921 
5922 	if (hw_resc->resv_tx_rings != bp->tx_nr_rings)
5923 		return true;
5924 
5925 	if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5))
5926 		vnic = rx + 1;
5927 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
5928 		rx <<= 1;
5929 	stat = bnxt_get_func_stat_ctxs(bp);
5930 	if (BNXT_NEW_RM(bp) &&
5931 	    (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp ||
5932 	     hw_resc->resv_vnics != vnic || hw_resc->resv_stat_ctxs != stat ||
5933 	     (hw_resc->resv_hw_ring_grps != grp &&
5934 	      !(bp->flags & BNXT_FLAG_CHIP_P5))))
5935 		return true;
5936 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && BNXT_PF(bp) &&
5937 	    hw_resc->resv_irqs != nq)
5938 		return true;
5939 	return false;
5940 }
5941 
5942 static int __bnxt_reserve_rings(struct bnxt *bp)
5943 {
5944 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
5945 	int cp = bnxt_nq_rings_in_use(bp);
5946 	int tx = bp->tx_nr_rings;
5947 	int rx = bp->rx_nr_rings;
5948 	int grp, rx_rings, rc;
5949 	int vnic = 1, stat;
5950 	bool sh = false;
5951 
5952 	if (!bnxt_need_reserve_rings(bp))
5953 		return 0;
5954 
5955 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
5956 		sh = true;
5957 	if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5))
5958 		vnic = rx + 1;
5959 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
5960 		rx <<= 1;
5961 	grp = bp->rx_nr_rings;
5962 	stat = bnxt_get_func_stat_ctxs(bp);
5963 
5964 	rc = bnxt_hwrm_reserve_rings(bp, tx, rx, grp, cp, stat, vnic);
5965 	if (rc)
5966 		return rc;
5967 
5968 	tx = hw_resc->resv_tx_rings;
5969 	if (BNXT_NEW_RM(bp)) {
5970 		rx = hw_resc->resv_rx_rings;
5971 		cp = hw_resc->resv_irqs;
5972 		grp = hw_resc->resv_hw_ring_grps;
5973 		vnic = hw_resc->resv_vnics;
5974 		stat = hw_resc->resv_stat_ctxs;
5975 	}
5976 
5977 	rx_rings = rx;
5978 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
5979 		if (rx >= 2) {
5980 			rx_rings = rx >> 1;
5981 		} else {
5982 			if (netif_running(bp->dev))
5983 				return -ENOMEM;
5984 
5985 			bp->flags &= ~BNXT_FLAG_AGG_RINGS;
5986 			bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
5987 			bp->dev->hw_features &= ~NETIF_F_LRO;
5988 			bp->dev->features &= ~NETIF_F_LRO;
5989 			bnxt_set_ring_params(bp);
5990 		}
5991 	}
5992 	rx_rings = min_t(int, rx_rings, grp);
5993 	cp = min_t(int, cp, bp->cp_nr_rings);
5994 	if (stat > bnxt_get_ulp_stat_ctxs(bp))
5995 		stat -= bnxt_get_ulp_stat_ctxs(bp);
5996 	cp = min_t(int, cp, stat);
5997 	rc = bnxt_trim_rings(bp, &rx_rings, &tx, cp, sh);
5998 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
5999 		rx = rx_rings << 1;
6000 	cp = sh ? max_t(int, tx, rx_rings) : tx + rx_rings;
6001 	bp->tx_nr_rings = tx;
6002 	bp->rx_nr_rings = rx_rings;
6003 	bp->cp_nr_rings = cp;
6004 
6005 	if (!tx || !rx || !cp || !grp || !vnic || !stat)
6006 		return -ENOMEM;
6007 
6008 	return rc;
6009 }
6010 
6011 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6012 				    int ring_grps, int cp_rings, int stats,
6013 				    int vnics)
6014 {
6015 	struct hwrm_func_vf_cfg_input req = {0};
6016 	u32 flags;
6017 
6018 	if (!BNXT_NEW_RM(bp))
6019 		return 0;
6020 
6021 	__bnxt_hwrm_reserve_vf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
6022 				     cp_rings, stats, vnics);
6023 	flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST |
6024 		FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST |
6025 		FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
6026 		FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
6027 		FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST |
6028 		FUNC_VF_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST;
6029 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
6030 		flags |= FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
6031 
6032 	req.flags = cpu_to_le32(flags);
6033 	return hwrm_send_message_silent(bp, &req, sizeof(req),
6034 					HWRM_CMD_TIMEOUT);
6035 }
6036 
6037 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6038 				    int ring_grps, int cp_rings, int stats,
6039 				    int vnics)
6040 {
6041 	struct hwrm_func_cfg_input req = {0};
6042 	u32 flags;
6043 
6044 	__bnxt_hwrm_reserve_pf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
6045 				     cp_rings, stats, vnics);
6046 	flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST;
6047 	if (BNXT_NEW_RM(bp)) {
6048 		flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST |
6049 			 FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
6050 			 FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
6051 			 FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST;
6052 		if (bp->flags & BNXT_FLAG_CHIP_P5)
6053 			flags |= FUNC_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST |
6054 				 FUNC_CFG_REQ_FLAGS_NQ_ASSETS_TEST;
6055 		else
6056 			flags |= FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
6057 	}
6058 
6059 	req.flags = cpu_to_le32(flags);
6060 	return hwrm_send_message_silent(bp, &req, sizeof(req),
6061 					HWRM_CMD_TIMEOUT);
6062 }
6063 
6064 static int bnxt_hwrm_check_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6065 				 int ring_grps, int cp_rings, int stats,
6066 				 int vnics)
6067 {
6068 	if (bp->hwrm_spec_code < 0x10801)
6069 		return 0;
6070 
6071 	if (BNXT_PF(bp))
6072 		return bnxt_hwrm_check_pf_rings(bp, tx_rings, rx_rings,
6073 						ring_grps, cp_rings, stats,
6074 						vnics);
6075 
6076 	return bnxt_hwrm_check_vf_rings(bp, tx_rings, rx_rings, ring_grps,
6077 					cp_rings, stats, vnics);
6078 }
6079 
6080 static void bnxt_hwrm_coal_params_qcaps(struct bnxt *bp)
6081 {
6082 	struct hwrm_ring_aggint_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
6083 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6084 	struct hwrm_ring_aggint_qcaps_input req = {0};
6085 	int rc;
6086 
6087 	coal_cap->cmpl_params = BNXT_LEGACY_COAL_CMPL_PARAMS;
6088 	coal_cap->num_cmpl_dma_aggr_max = 63;
6089 	coal_cap->num_cmpl_dma_aggr_during_int_max = 63;
6090 	coal_cap->cmpl_aggr_dma_tmr_max = 65535;
6091 	coal_cap->cmpl_aggr_dma_tmr_during_int_max = 65535;
6092 	coal_cap->int_lat_tmr_min_max = 65535;
6093 	coal_cap->int_lat_tmr_max_max = 65535;
6094 	coal_cap->num_cmpl_aggr_int_max = 65535;
6095 	coal_cap->timer_units = 80;
6096 
6097 	if (bp->hwrm_spec_code < 0x10902)
6098 		return;
6099 
6100 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_AGGINT_QCAPS, -1, -1);
6101 	mutex_lock(&bp->hwrm_cmd_lock);
6102 	rc = _hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6103 	if (!rc) {
6104 		coal_cap->cmpl_params = le32_to_cpu(resp->cmpl_params);
6105 		coal_cap->nq_params = le32_to_cpu(resp->nq_params);
6106 		coal_cap->num_cmpl_dma_aggr_max =
6107 			le16_to_cpu(resp->num_cmpl_dma_aggr_max);
6108 		coal_cap->num_cmpl_dma_aggr_during_int_max =
6109 			le16_to_cpu(resp->num_cmpl_dma_aggr_during_int_max);
6110 		coal_cap->cmpl_aggr_dma_tmr_max =
6111 			le16_to_cpu(resp->cmpl_aggr_dma_tmr_max);
6112 		coal_cap->cmpl_aggr_dma_tmr_during_int_max =
6113 			le16_to_cpu(resp->cmpl_aggr_dma_tmr_during_int_max);
6114 		coal_cap->int_lat_tmr_min_max =
6115 			le16_to_cpu(resp->int_lat_tmr_min_max);
6116 		coal_cap->int_lat_tmr_max_max =
6117 			le16_to_cpu(resp->int_lat_tmr_max_max);
6118 		coal_cap->num_cmpl_aggr_int_max =
6119 			le16_to_cpu(resp->num_cmpl_aggr_int_max);
6120 		coal_cap->timer_units = le16_to_cpu(resp->timer_units);
6121 	}
6122 	mutex_unlock(&bp->hwrm_cmd_lock);
6123 }
6124 
6125 static u16 bnxt_usec_to_coal_tmr(struct bnxt *bp, u16 usec)
6126 {
6127 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6128 
6129 	return usec * 1000 / coal_cap->timer_units;
6130 }
6131 
6132 static void bnxt_hwrm_set_coal_params(struct bnxt *bp,
6133 	struct bnxt_coal *hw_coal,
6134 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
6135 {
6136 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6137 	u32 cmpl_params = coal_cap->cmpl_params;
6138 	u16 val, tmr, max, flags = 0;
6139 
6140 	max = hw_coal->bufs_per_record * 128;
6141 	if (hw_coal->budget)
6142 		max = hw_coal->bufs_per_record * hw_coal->budget;
6143 	max = min_t(u16, max, coal_cap->num_cmpl_aggr_int_max);
6144 
6145 	val = clamp_t(u16, hw_coal->coal_bufs, 1, max);
6146 	req->num_cmpl_aggr_int = cpu_to_le16(val);
6147 
6148 	val = min_t(u16, val, coal_cap->num_cmpl_dma_aggr_max);
6149 	req->num_cmpl_dma_aggr = cpu_to_le16(val);
6150 
6151 	val = clamp_t(u16, hw_coal->coal_bufs_irq, 1,
6152 		      coal_cap->num_cmpl_dma_aggr_during_int_max);
6153 	req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val);
6154 
6155 	tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks);
6156 	tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_max_max);
6157 	req->int_lat_tmr_max = cpu_to_le16(tmr);
6158 
6159 	/* min timer set to 1/2 of interrupt timer */
6160 	if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_INT_LAT_TMR_MIN) {
6161 		val = tmr / 2;
6162 		val = clamp_t(u16, val, 1, coal_cap->int_lat_tmr_min_max);
6163 		req->int_lat_tmr_min = cpu_to_le16(val);
6164 		req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
6165 	}
6166 
6167 	/* buf timer set to 1/4 of interrupt timer */
6168 	val = clamp_t(u16, tmr / 4, 1, coal_cap->cmpl_aggr_dma_tmr_max);
6169 	req->cmpl_aggr_dma_tmr = cpu_to_le16(val);
6170 
6171 	if (cmpl_params &
6172 	    RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_NUM_CMPL_DMA_AGGR_DURING_INT) {
6173 		tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks_irq);
6174 		val = clamp_t(u16, tmr, 1,
6175 			      coal_cap->cmpl_aggr_dma_tmr_during_int_max);
6176 		req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(val);
6177 		req->enables |=
6178 			cpu_to_le16(BNXT_COAL_CMPL_AGGR_TMR_DURING_INT_ENABLE);
6179 	}
6180 
6181 	if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_TIMER_RESET)
6182 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
6183 	if ((cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_RING_IDLE) &&
6184 	    hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh)
6185 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
6186 	req->flags = cpu_to_le16(flags);
6187 	req->enables |= cpu_to_le16(BNXT_COAL_CMPL_ENABLES);
6188 }
6189 
6190 /* Caller holds bp->hwrm_cmd_lock */
6191 static int __bnxt_hwrm_set_coal_nq(struct bnxt *bp, struct bnxt_napi *bnapi,
6192 				   struct bnxt_coal *hw_coal)
6193 {
6194 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req = {0};
6195 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6196 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6197 	u32 nq_params = coal_cap->nq_params;
6198 	u16 tmr;
6199 
6200 	if (!(nq_params & RING_AGGINT_QCAPS_RESP_NQ_PARAMS_INT_LAT_TMR_MIN))
6201 		return 0;
6202 
6203 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS,
6204 			       -1, -1);
6205 	req.ring_id = cpu_to_le16(cpr->cp_ring_struct.fw_ring_id);
6206 	req.flags =
6207 		cpu_to_le16(RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_IS_NQ);
6208 
6209 	tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks) / 2;
6210 	tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_min_max);
6211 	req.int_lat_tmr_min = cpu_to_le16(tmr);
6212 	req.enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
6213 	return _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6214 }
6215 
6216 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi)
6217 {
6218 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0};
6219 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6220 	struct bnxt_coal coal;
6221 
6222 	/* Tick values in micro seconds.
6223 	 * 1 coal_buf x bufs_per_record = 1 completion record.
6224 	 */
6225 	memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal));
6226 
6227 	coal.coal_ticks = cpr->rx_ring_coal.coal_ticks;
6228 	coal.coal_bufs = cpr->rx_ring_coal.coal_bufs;
6229 
6230 	if (!bnapi->rx_ring)
6231 		return -ENODEV;
6232 
6233 	bnxt_hwrm_cmd_hdr_init(bp, &req_rx,
6234 			       HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
6235 
6236 	bnxt_hwrm_set_coal_params(bp, &coal, &req_rx);
6237 
6238 	req_rx.ring_id = cpu_to_le16(bnxt_cp_ring_for_rx(bp, bnapi->rx_ring));
6239 
6240 	return hwrm_send_message(bp, &req_rx, sizeof(req_rx),
6241 				 HWRM_CMD_TIMEOUT);
6242 }
6243 
6244 int bnxt_hwrm_set_coal(struct bnxt *bp)
6245 {
6246 	int i, rc = 0;
6247 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0},
6248 							   req_tx = {0}, *req;
6249 
6250 	bnxt_hwrm_cmd_hdr_init(bp, &req_rx,
6251 			       HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
6252 	bnxt_hwrm_cmd_hdr_init(bp, &req_tx,
6253 			       HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
6254 
6255 	bnxt_hwrm_set_coal_params(bp, &bp->rx_coal, &req_rx);
6256 	bnxt_hwrm_set_coal_params(bp, &bp->tx_coal, &req_tx);
6257 
6258 	mutex_lock(&bp->hwrm_cmd_lock);
6259 	for (i = 0; i < bp->cp_nr_rings; i++) {
6260 		struct bnxt_napi *bnapi = bp->bnapi[i];
6261 		struct bnxt_coal *hw_coal;
6262 		u16 ring_id;
6263 
6264 		req = &req_rx;
6265 		if (!bnapi->rx_ring) {
6266 			ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring);
6267 			req = &req_tx;
6268 		} else {
6269 			ring_id = bnxt_cp_ring_for_rx(bp, bnapi->rx_ring);
6270 		}
6271 		req->ring_id = cpu_to_le16(ring_id);
6272 
6273 		rc = _hwrm_send_message(bp, req, sizeof(*req),
6274 					HWRM_CMD_TIMEOUT);
6275 		if (rc)
6276 			break;
6277 
6278 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
6279 			continue;
6280 
6281 		if (bnapi->rx_ring && bnapi->tx_ring) {
6282 			req = &req_tx;
6283 			ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring);
6284 			req->ring_id = cpu_to_le16(ring_id);
6285 			rc = _hwrm_send_message(bp, req, sizeof(*req),
6286 						HWRM_CMD_TIMEOUT);
6287 			if (rc)
6288 				break;
6289 		}
6290 		if (bnapi->rx_ring)
6291 			hw_coal = &bp->rx_coal;
6292 		else
6293 			hw_coal = &bp->tx_coal;
6294 		__bnxt_hwrm_set_coal_nq(bp, bnapi, hw_coal);
6295 	}
6296 	mutex_unlock(&bp->hwrm_cmd_lock);
6297 	return rc;
6298 }
6299 
6300 static void bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
6301 {
6302 	struct hwrm_stat_ctx_free_input req = {0};
6303 	int i;
6304 
6305 	if (!bp->bnapi)
6306 		return;
6307 
6308 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
6309 		return;
6310 
6311 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_FREE, -1, -1);
6312 
6313 	mutex_lock(&bp->hwrm_cmd_lock);
6314 	for (i = 0; i < bp->cp_nr_rings; i++) {
6315 		struct bnxt_napi *bnapi = bp->bnapi[i];
6316 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6317 
6318 		if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
6319 			req.stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
6320 
6321 			_hwrm_send_message(bp, &req, sizeof(req),
6322 					   HWRM_CMD_TIMEOUT);
6323 
6324 			cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
6325 		}
6326 	}
6327 	mutex_unlock(&bp->hwrm_cmd_lock);
6328 }
6329 
6330 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
6331 {
6332 	int rc = 0, i;
6333 	struct hwrm_stat_ctx_alloc_input req = {0};
6334 	struct hwrm_stat_ctx_alloc_output *resp = bp->hwrm_cmd_resp_addr;
6335 
6336 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
6337 		return 0;
6338 
6339 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_ALLOC, -1, -1);
6340 
6341 	req.stats_dma_length = cpu_to_le16(bp->hw_ring_stats_size);
6342 	req.update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000);
6343 
6344 	mutex_lock(&bp->hwrm_cmd_lock);
6345 	for (i = 0; i < bp->cp_nr_rings; i++) {
6346 		struct bnxt_napi *bnapi = bp->bnapi[i];
6347 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6348 
6349 		req.stats_dma_addr = cpu_to_le64(cpr->hw_stats_map);
6350 
6351 		rc = _hwrm_send_message(bp, &req, sizeof(req),
6352 					HWRM_CMD_TIMEOUT);
6353 		if (rc)
6354 			break;
6355 
6356 		cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
6357 
6358 		bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
6359 	}
6360 	mutex_unlock(&bp->hwrm_cmd_lock);
6361 	return rc;
6362 }
6363 
6364 static int bnxt_hwrm_func_qcfg(struct bnxt *bp)
6365 {
6366 	struct hwrm_func_qcfg_input req = {0};
6367 	struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
6368 	u16 flags;
6369 	int rc;
6370 
6371 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
6372 	req.fid = cpu_to_le16(0xffff);
6373 	mutex_lock(&bp->hwrm_cmd_lock);
6374 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6375 	if (rc)
6376 		goto func_qcfg_exit;
6377 
6378 #ifdef CONFIG_BNXT_SRIOV
6379 	if (BNXT_VF(bp)) {
6380 		struct bnxt_vf_info *vf = &bp->vf;
6381 
6382 		vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK;
6383 	} else {
6384 		bp->pf.registered_vfs = le16_to_cpu(resp->registered_vfs);
6385 	}
6386 #endif
6387 	flags = le16_to_cpu(resp->flags);
6388 	if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED |
6389 		     FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) {
6390 		bp->fw_cap |= BNXT_FW_CAP_LLDP_AGENT;
6391 		if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED)
6392 			bp->fw_cap |= BNXT_FW_CAP_DCBX_AGENT;
6393 	}
6394 	if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST))
6395 		bp->flags |= BNXT_FLAG_MULTI_HOST;
6396 
6397 	switch (resp->port_partition_type) {
6398 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0:
6399 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5:
6400 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0:
6401 		bp->port_partition_type = resp->port_partition_type;
6402 		break;
6403 	}
6404 	if (bp->hwrm_spec_code < 0x10707 ||
6405 	    resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB)
6406 		bp->br_mode = BRIDGE_MODE_VEB;
6407 	else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA)
6408 		bp->br_mode = BRIDGE_MODE_VEPA;
6409 	else
6410 		bp->br_mode = BRIDGE_MODE_UNDEF;
6411 
6412 	bp->max_mtu = le16_to_cpu(resp->max_mtu_configured);
6413 	if (!bp->max_mtu)
6414 		bp->max_mtu = BNXT_MAX_MTU;
6415 
6416 func_qcfg_exit:
6417 	mutex_unlock(&bp->hwrm_cmd_lock);
6418 	return rc;
6419 }
6420 
6421 static int bnxt_hwrm_func_backing_store_qcaps(struct bnxt *bp)
6422 {
6423 	struct hwrm_func_backing_store_qcaps_input req = {0};
6424 	struct hwrm_func_backing_store_qcaps_output *resp =
6425 		bp->hwrm_cmd_resp_addr;
6426 	int rc;
6427 
6428 	if (bp->hwrm_spec_code < 0x10902 || BNXT_VF(bp) || bp->ctx)
6429 		return 0;
6430 
6431 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_BACKING_STORE_QCAPS, -1, -1);
6432 	mutex_lock(&bp->hwrm_cmd_lock);
6433 	rc = _hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6434 	if (!rc) {
6435 		struct bnxt_ctx_pg_info *ctx_pg;
6436 		struct bnxt_ctx_mem_info *ctx;
6437 		int i;
6438 
6439 		ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
6440 		if (!ctx) {
6441 			rc = -ENOMEM;
6442 			goto ctx_err;
6443 		}
6444 		ctx_pg = kzalloc(sizeof(*ctx_pg) * (bp->max_q + 1), GFP_KERNEL);
6445 		if (!ctx_pg) {
6446 			kfree(ctx);
6447 			rc = -ENOMEM;
6448 			goto ctx_err;
6449 		}
6450 		for (i = 0; i < bp->max_q + 1; i++, ctx_pg++)
6451 			ctx->tqm_mem[i] = ctx_pg;
6452 
6453 		bp->ctx = ctx;
6454 		ctx->qp_max_entries = le32_to_cpu(resp->qp_max_entries);
6455 		ctx->qp_min_qp1_entries = le16_to_cpu(resp->qp_min_qp1_entries);
6456 		ctx->qp_max_l2_entries = le16_to_cpu(resp->qp_max_l2_entries);
6457 		ctx->qp_entry_size = le16_to_cpu(resp->qp_entry_size);
6458 		ctx->srq_max_l2_entries = le16_to_cpu(resp->srq_max_l2_entries);
6459 		ctx->srq_max_entries = le32_to_cpu(resp->srq_max_entries);
6460 		ctx->srq_entry_size = le16_to_cpu(resp->srq_entry_size);
6461 		ctx->cq_max_l2_entries = le16_to_cpu(resp->cq_max_l2_entries);
6462 		ctx->cq_max_entries = le32_to_cpu(resp->cq_max_entries);
6463 		ctx->cq_entry_size = le16_to_cpu(resp->cq_entry_size);
6464 		ctx->vnic_max_vnic_entries =
6465 			le16_to_cpu(resp->vnic_max_vnic_entries);
6466 		ctx->vnic_max_ring_table_entries =
6467 			le16_to_cpu(resp->vnic_max_ring_table_entries);
6468 		ctx->vnic_entry_size = le16_to_cpu(resp->vnic_entry_size);
6469 		ctx->stat_max_entries = le32_to_cpu(resp->stat_max_entries);
6470 		ctx->stat_entry_size = le16_to_cpu(resp->stat_entry_size);
6471 		ctx->tqm_entry_size = le16_to_cpu(resp->tqm_entry_size);
6472 		ctx->tqm_min_entries_per_ring =
6473 			le32_to_cpu(resp->tqm_min_entries_per_ring);
6474 		ctx->tqm_max_entries_per_ring =
6475 			le32_to_cpu(resp->tqm_max_entries_per_ring);
6476 		ctx->tqm_entries_multiple = resp->tqm_entries_multiple;
6477 		if (!ctx->tqm_entries_multiple)
6478 			ctx->tqm_entries_multiple = 1;
6479 		ctx->mrav_max_entries = le32_to_cpu(resp->mrav_max_entries);
6480 		ctx->mrav_entry_size = le16_to_cpu(resp->mrav_entry_size);
6481 		ctx->mrav_num_entries_units =
6482 			le16_to_cpu(resp->mrav_num_entries_units);
6483 		ctx->tim_entry_size = le16_to_cpu(resp->tim_entry_size);
6484 		ctx->tim_max_entries = le32_to_cpu(resp->tim_max_entries);
6485 		ctx->ctx_kind_initializer = resp->ctx_kind_initializer;
6486 	} else {
6487 		rc = 0;
6488 	}
6489 ctx_err:
6490 	mutex_unlock(&bp->hwrm_cmd_lock);
6491 	return rc;
6492 }
6493 
6494 static void bnxt_hwrm_set_pg_attr(struct bnxt_ring_mem_info *rmem, u8 *pg_attr,
6495 				  __le64 *pg_dir)
6496 {
6497 	u8 pg_size = 0;
6498 
6499 	if (BNXT_PAGE_SHIFT == 13)
6500 		pg_size = 1 << 4;
6501 	else if (BNXT_PAGE_SIZE == 16)
6502 		pg_size = 2 << 4;
6503 
6504 	*pg_attr = pg_size;
6505 	if (rmem->depth >= 1) {
6506 		if (rmem->depth == 2)
6507 			*pg_attr |= 2;
6508 		else
6509 			*pg_attr |= 1;
6510 		*pg_dir = cpu_to_le64(rmem->pg_tbl_map);
6511 	} else {
6512 		*pg_dir = cpu_to_le64(rmem->dma_arr[0]);
6513 	}
6514 }
6515 
6516 #define FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES			\
6517 	(FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP |		\
6518 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ |		\
6519 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ |		\
6520 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC |		\
6521 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT)
6522 
6523 static int bnxt_hwrm_func_backing_store_cfg(struct bnxt *bp, u32 enables)
6524 {
6525 	struct hwrm_func_backing_store_cfg_input req = {0};
6526 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
6527 	struct bnxt_ctx_pg_info *ctx_pg;
6528 	__le32 *num_entries;
6529 	__le64 *pg_dir;
6530 	u32 flags = 0;
6531 	u8 *pg_attr;
6532 	u32 ena;
6533 	int i;
6534 
6535 	if (!ctx)
6536 		return 0;
6537 
6538 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_BACKING_STORE_CFG, -1, -1);
6539 	req.enables = cpu_to_le32(enables);
6540 
6541 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP) {
6542 		ctx_pg = &ctx->qp_mem;
6543 		req.qp_num_entries = cpu_to_le32(ctx_pg->entries);
6544 		req.qp_num_qp1_entries = cpu_to_le16(ctx->qp_min_qp1_entries);
6545 		req.qp_num_l2_entries = cpu_to_le16(ctx->qp_max_l2_entries);
6546 		req.qp_entry_size = cpu_to_le16(ctx->qp_entry_size);
6547 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6548 				      &req.qpc_pg_size_qpc_lvl,
6549 				      &req.qpc_page_dir);
6550 	}
6551 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ) {
6552 		ctx_pg = &ctx->srq_mem;
6553 		req.srq_num_entries = cpu_to_le32(ctx_pg->entries);
6554 		req.srq_num_l2_entries = cpu_to_le16(ctx->srq_max_l2_entries);
6555 		req.srq_entry_size = cpu_to_le16(ctx->srq_entry_size);
6556 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6557 				      &req.srq_pg_size_srq_lvl,
6558 				      &req.srq_page_dir);
6559 	}
6560 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ) {
6561 		ctx_pg = &ctx->cq_mem;
6562 		req.cq_num_entries = cpu_to_le32(ctx_pg->entries);
6563 		req.cq_num_l2_entries = cpu_to_le16(ctx->cq_max_l2_entries);
6564 		req.cq_entry_size = cpu_to_le16(ctx->cq_entry_size);
6565 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, &req.cq_pg_size_cq_lvl,
6566 				      &req.cq_page_dir);
6567 	}
6568 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC) {
6569 		ctx_pg = &ctx->vnic_mem;
6570 		req.vnic_num_vnic_entries =
6571 			cpu_to_le16(ctx->vnic_max_vnic_entries);
6572 		req.vnic_num_ring_table_entries =
6573 			cpu_to_le16(ctx->vnic_max_ring_table_entries);
6574 		req.vnic_entry_size = cpu_to_le16(ctx->vnic_entry_size);
6575 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6576 				      &req.vnic_pg_size_vnic_lvl,
6577 				      &req.vnic_page_dir);
6578 	}
6579 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) {
6580 		ctx_pg = &ctx->stat_mem;
6581 		req.stat_num_entries = cpu_to_le32(ctx->stat_max_entries);
6582 		req.stat_entry_size = cpu_to_le16(ctx->stat_entry_size);
6583 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6584 				      &req.stat_pg_size_stat_lvl,
6585 				      &req.stat_page_dir);
6586 	}
6587 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV) {
6588 		ctx_pg = &ctx->mrav_mem;
6589 		req.mrav_num_entries = cpu_to_le32(ctx_pg->entries);
6590 		if (ctx->mrav_num_entries_units)
6591 			flags |=
6592 			FUNC_BACKING_STORE_CFG_REQ_FLAGS_MRAV_RESERVATION_SPLIT;
6593 		req.mrav_entry_size = cpu_to_le16(ctx->mrav_entry_size);
6594 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6595 				      &req.mrav_pg_size_mrav_lvl,
6596 				      &req.mrav_page_dir);
6597 	}
6598 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) {
6599 		ctx_pg = &ctx->tim_mem;
6600 		req.tim_num_entries = cpu_to_le32(ctx_pg->entries);
6601 		req.tim_entry_size = cpu_to_le16(ctx->tim_entry_size);
6602 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6603 				      &req.tim_pg_size_tim_lvl,
6604 				      &req.tim_page_dir);
6605 	}
6606 	for (i = 0, num_entries = &req.tqm_sp_num_entries,
6607 	     pg_attr = &req.tqm_sp_pg_size_tqm_sp_lvl,
6608 	     pg_dir = &req.tqm_sp_page_dir,
6609 	     ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP;
6610 	     i < 9; i++, num_entries++, pg_attr++, pg_dir++, ena <<= 1) {
6611 		if (!(enables & ena))
6612 			continue;
6613 
6614 		req.tqm_entry_size = cpu_to_le16(ctx->tqm_entry_size);
6615 		ctx_pg = ctx->tqm_mem[i];
6616 		*num_entries = cpu_to_le32(ctx_pg->entries);
6617 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, pg_attr, pg_dir);
6618 	}
6619 	req.flags = cpu_to_le32(flags);
6620 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6621 }
6622 
6623 static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp,
6624 				  struct bnxt_ctx_pg_info *ctx_pg)
6625 {
6626 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
6627 
6628 	rmem->page_size = BNXT_PAGE_SIZE;
6629 	rmem->pg_arr = ctx_pg->ctx_pg_arr;
6630 	rmem->dma_arr = ctx_pg->ctx_dma_arr;
6631 	rmem->flags = BNXT_RMEM_VALID_PTE_FLAG;
6632 	if (rmem->depth >= 1)
6633 		rmem->flags |= BNXT_RMEM_USE_FULL_PAGE_FLAG;
6634 	return bnxt_alloc_ring(bp, rmem);
6635 }
6636 
6637 static int bnxt_alloc_ctx_pg_tbls(struct bnxt *bp,
6638 				  struct bnxt_ctx_pg_info *ctx_pg, u32 mem_size,
6639 				  u8 depth, bool use_init_val)
6640 {
6641 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
6642 	int rc;
6643 
6644 	if (!mem_size)
6645 		return 0;
6646 
6647 	ctx_pg->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
6648 	if (ctx_pg->nr_pages > MAX_CTX_TOTAL_PAGES) {
6649 		ctx_pg->nr_pages = 0;
6650 		return -EINVAL;
6651 	}
6652 	if (ctx_pg->nr_pages > MAX_CTX_PAGES || depth > 1) {
6653 		int nr_tbls, i;
6654 
6655 		rmem->depth = 2;
6656 		ctx_pg->ctx_pg_tbl = kcalloc(MAX_CTX_PAGES, sizeof(ctx_pg),
6657 					     GFP_KERNEL);
6658 		if (!ctx_pg->ctx_pg_tbl)
6659 			return -ENOMEM;
6660 		nr_tbls = DIV_ROUND_UP(ctx_pg->nr_pages, MAX_CTX_PAGES);
6661 		rmem->nr_pages = nr_tbls;
6662 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
6663 		if (rc)
6664 			return rc;
6665 		for (i = 0; i < nr_tbls; i++) {
6666 			struct bnxt_ctx_pg_info *pg_tbl;
6667 
6668 			pg_tbl = kzalloc(sizeof(*pg_tbl), GFP_KERNEL);
6669 			if (!pg_tbl)
6670 				return -ENOMEM;
6671 			ctx_pg->ctx_pg_tbl[i] = pg_tbl;
6672 			rmem = &pg_tbl->ring_mem;
6673 			rmem->pg_tbl = ctx_pg->ctx_pg_arr[i];
6674 			rmem->pg_tbl_map = ctx_pg->ctx_dma_arr[i];
6675 			rmem->depth = 1;
6676 			rmem->nr_pages = MAX_CTX_PAGES;
6677 			if (use_init_val)
6678 				rmem->init_val = bp->ctx->ctx_kind_initializer;
6679 			if (i == (nr_tbls - 1)) {
6680 				int rem = ctx_pg->nr_pages % MAX_CTX_PAGES;
6681 
6682 				if (rem)
6683 					rmem->nr_pages = rem;
6684 			}
6685 			rc = bnxt_alloc_ctx_mem_blk(bp, pg_tbl);
6686 			if (rc)
6687 				break;
6688 		}
6689 	} else {
6690 		rmem->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
6691 		if (rmem->nr_pages > 1 || depth)
6692 			rmem->depth = 1;
6693 		if (use_init_val)
6694 			rmem->init_val = bp->ctx->ctx_kind_initializer;
6695 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
6696 	}
6697 	return rc;
6698 }
6699 
6700 static void bnxt_free_ctx_pg_tbls(struct bnxt *bp,
6701 				  struct bnxt_ctx_pg_info *ctx_pg)
6702 {
6703 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
6704 
6705 	if (rmem->depth > 1 || ctx_pg->nr_pages > MAX_CTX_PAGES ||
6706 	    ctx_pg->ctx_pg_tbl) {
6707 		int i, nr_tbls = rmem->nr_pages;
6708 
6709 		for (i = 0; i < nr_tbls; i++) {
6710 			struct bnxt_ctx_pg_info *pg_tbl;
6711 			struct bnxt_ring_mem_info *rmem2;
6712 
6713 			pg_tbl = ctx_pg->ctx_pg_tbl[i];
6714 			if (!pg_tbl)
6715 				continue;
6716 			rmem2 = &pg_tbl->ring_mem;
6717 			bnxt_free_ring(bp, rmem2);
6718 			ctx_pg->ctx_pg_arr[i] = NULL;
6719 			kfree(pg_tbl);
6720 			ctx_pg->ctx_pg_tbl[i] = NULL;
6721 		}
6722 		kfree(ctx_pg->ctx_pg_tbl);
6723 		ctx_pg->ctx_pg_tbl = NULL;
6724 	}
6725 	bnxt_free_ring(bp, rmem);
6726 	ctx_pg->nr_pages = 0;
6727 }
6728 
6729 static void bnxt_free_ctx_mem(struct bnxt *bp)
6730 {
6731 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
6732 	int i;
6733 
6734 	if (!ctx)
6735 		return;
6736 
6737 	if (ctx->tqm_mem[0]) {
6738 		for (i = 0; i < bp->max_q + 1; i++)
6739 			bnxt_free_ctx_pg_tbls(bp, ctx->tqm_mem[i]);
6740 		kfree(ctx->tqm_mem[0]);
6741 		ctx->tqm_mem[0] = NULL;
6742 	}
6743 
6744 	bnxt_free_ctx_pg_tbls(bp, &ctx->tim_mem);
6745 	bnxt_free_ctx_pg_tbls(bp, &ctx->mrav_mem);
6746 	bnxt_free_ctx_pg_tbls(bp, &ctx->stat_mem);
6747 	bnxt_free_ctx_pg_tbls(bp, &ctx->vnic_mem);
6748 	bnxt_free_ctx_pg_tbls(bp, &ctx->cq_mem);
6749 	bnxt_free_ctx_pg_tbls(bp, &ctx->srq_mem);
6750 	bnxt_free_ctx_pg_tbls(bp, &ctx->qp_mem);
6751 	ctx->flags &= ~BNXT_CTX_FLAG_INITED;
6752 }
6753 
6754 static int bnxt_alloc_ctx_mem(struct bnxt *bp)
6755 {
6756 	struct bnxt_ctx_pg_info *ctx_pg;
6757 	struct bnxt_ctx_mem_info *ctx;
6758 	u32 mem_size, ena, entries;
6759 	u32 num_mr, num_ah;
6760 	u32 extra_srqs = 0;
6761 	u32 extra_qps = 0;
6762 	u8 pg_lvl = 1;
6763 	int i, rc;
6764 
6765 	rc = bnxt_hwrm_func_backing_store_qcaps(bp);
6766 	if (rc) {
6767 		netdev_err(bp->dev, "Failed querying context mem capability, rc = %d.\n",
6768 			   rc);
6769 		return rc;
6770 	}
6771 	ctx = bp->ctx;
6772 	if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED))
6773 		return 0;
6774 
6775 	if ((bp->flags & BNXT_FLAG_ROCE_CAP) && !is_kdump_kernel()) {
6776 		pg_lvl = 2;
6777 		extra_qps = 65536;
6778 		extra_srqs = 8192;
6779 	}
6780 
6781 	ctx_pg = &ctx->qp_mem;
6782 	ctx_pg->entries = ctx->qp_min_qp1_entries + ctx->qp_max_l2_entries +
6783 			  extra_qps;
6784 	mem_size = ctx->qp_entry_size * ctx_pg->entries;
6785 	rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, true);
6786 	if (rc)
6787 		return rc;
6788 
6789 	ctx_pg = &ctx->srq_mem;
6790 	ctx_pg->entries = ctx->srq_max_l2_entries + extra_srqs;
6791 	mem_size = ctx->srq_entry_size * ctx_pg->entries;
6792 	rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, true);
6793 	if (rc)
6794 		return rc;
6795 
6796 	ctx_pg = &ctx->cq_mem;
6797 	ctx_pg->entries = ctx->cq_max_l2_entries + extra_qps * 2;
6798 	mem_size = ctx->cq_entry_size * ctx_pg->entries;
6799 	rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, true);
6800 	if (rc)
6801 		return rc;
6802 
6803 	ctx_pg = &ctx->vnic_mem;
6804 	ctx_pg->entries = ctx->vnic_max_vnic_entries +
6805 			  ctx->vnic_max_ring_table_entries;
6806 	mem_size = ctx->vnic_entry_size * ctx_pg->entries;
6807 	rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, true);
6808 	if (rc)
6809 		return rc;
6810 
6811 	ctx_pg = &ctx->stat_mem;
6812 	ctx_pg->entries = ctx->stat_max_entries;
6813 	mem_size = ctx->stat_entry_size * ctx_pg->entries;
6814 	rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, true);
6815 	if (rc)
6816 		return rc;
6817 
6818 	ena = 0;
6819 	if (!(bp->flags & BNXT_FLAG_ROCE_CAP))
6820 		goto skip_rdma;
6821 
6822 	ctx_pg = &ctx->mrav_mem;
6823 	/* 128K extra is needed to accommodate static AH context
6824 	 * allocation by f/w.
6825 	 */
6826 	num_mr = 1024 * 256;
6827 	num_ah = 1024 * 128;
6828 	ctx_pg->entries = num_mr + num_ah;
6829 	mem_size = ctx->mrav_entry_size * ctx_pg->entries;
6830 	rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 2, true);
6831 	if (rc)
6832 		return rc;
6833 	ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV;
6834 	if (ctx->mrav_num_entries_units)
6835 		ctx_pg->entries =
6836 			((num_mr / ctx->mrav_num_entries_units) << 16) |
6837 			 (num_ah / ctx->mrav_num_entries_units);
6838 
6839 	ctx_pg = &ctx->tim_mem;
6840 	ctx_pg->entries = ctx->qp_mem.entries;
6841 	mem_size = ctx->tim_entry_size * ctx_pg->entries;
6842 	rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, false);
6843 	if (rc)
6844 		return rc;
6845 	ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM;
6846 
6847 skip_rdma:
6848 	entries = ctx->qp_max_l2_entries + extra_qps;
6849 	entries = roundup(entries, ctx->tqm_entries_multiple);
6850 	entries = clamp_t(u32, entries, ctx->tqm_min_entries_per_ring,
6851 			  ctx->tqm_max_entries_per_ring);
6852 	for (i = 0; i < bp->max_q + 1; i++) {
6853 		ctx_pg = ctx->tqm_mem[i];
6854 		ctx_pg->entries = entries;
6855 		mem_size = ctx->tqm_entry_size * entries;
6856 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, false);
6857 		if (rc)
6858 			return rc;
6859 		ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP << i;
6860 	}
6861 	ena |= FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES;
6862 	rc = bnxt_hwrm_func_backing_store_cfg(bp, ena);
6863 	if (rc)
6864 		netdev_err(bp->dev, "Failed configuring context mem, rc = %d.\n",
6865 			   rc);
6866 	else
6867 		ctx->flags |= BNXT_CTX_FLAG_INITED;
6868 
6869 	return 0;
6870 }
6871 
6872 int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all)
6873 {
6874 	struct hwrm_func_resource_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
6875 	struct hwrm_func_resource_qcaps_input req = {0};
6876 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6877 	int rc;
6878 
6879 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESOURCE_QCAPS, -1, -1);
6880 	req.fid = cpu_to_le16(0xffff);
6881 
6882 	mutex_lock(&bp->hwrm_cmd_lock);
6883 	rc = _hwrm_send_message_silent(bp, &req, sizeof(req),
6884 				       HWRM_CMD_TIMEOUT);
6885 	if (rc)
6886 		goto hwrm_func_resc_qcaps_exit;
6887 
6888 	hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs);
6889 	if (!all)
6890 		goto hwrm_func_resc_qcaps_exit;
6891 
6892 	hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx);
6893 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
6894 	hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings);
6895 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
6896 	hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings);
6897 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
6898 	hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings);
6899 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
6900 	hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps);
6901 	hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps);
6902 	hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs);
6903 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
6904 	hw_resc->min_vnics = le16_to_cpu(resp->min_vnics);
6905 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
6906 	hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx);
6907 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
6908 
6909 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
6910 		u16 max_msix = le16_to_cpu(resp->max_msix);
6911 
6912 		hw_resc->max_nqs = max_msix;
6913 		hw_resc->max_hw_ring_grps = hw_resc->max_rx_rings;
6914 	}
6915 
6916 	if (BNXT_PF(bp)) {
6917 		struct bnxt_pf_info *pf = &bp->pf;
6918 
6919 		pf->vf_resv_strategy =
6920 			le16_to_cpu(resp->vf_reservation_strategy);
6921 		if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC)
6922 			pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL;
6923 	}
6924 hwrm_func_resc_qcaps_exit:
6925 	mutex_unlock(&bp->hwrm_cmd_lock);
6926 	return rc;
6927 }
6928 
6929 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp)
6930 {
6931 	int rc = 0;
6932 	struct hwrm_func_qcaps_input req = {0};
6933 	struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
6934 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6935 	u32 flags;
6936 
6937 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1);
6938 	req.fid = cpu_to_le16(0xffff);
6939 
6940 	mutex_lock(&bp->hwrm_cmd_lock);
6941 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6942 	if (rc)
6943 		goto hwrm_func_qcaps_exit;
6944 
6945 	flags = le32_to_cpu(resp->flags);
6946 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED)
6947 		bp->flags |= BNXT_FLAG_ROCEV1_CAP;
6948 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED)
6949 		bp->flags |= BNXT_FLAG_ROCEV2_CAP;
6950 	if (flags & FUNC_QCAPS_RESP_FLAGS_PCIE_STATS_SUPPORTED)
6951 		bp->fw_cap |= BNXT_FW_CAP_PCIE_STATS_SUPPORTED;
6952 	if (flags & FUNC_QCAPS_RESP_FLAGS_HOT_RESET_CAPABLE)
6953 		bp->fw_cap |= BNXT_FW_CAP_HOT_RESET;
6954 	if (flags & FUNC_QCAPS_RESP_FLAGS_EXT_STATS_SUPPORTED)
6955 		bp->fw_cap |= BNXT_FW_CAP_EXT_STATS_SUPPORTED;
6956 	if (flags &  FUNC_QCAPS_RESP_FLAGS_ERROR_RECOVERY_CAPABLE)
6957 		bp->fw_cap |= BNXT_FW_CAP_ERROR_RECOVERY;
6958 	if (flags & FUNC_QCAPS_RESP_FLAGS_ERR_RECOVER_RELOAD)
6959 		bp->fw_cap |= BNXT_FW_CAP_ERR_RECOVER_RELOAD;
6960 
6961 	bp->tx_push_thresh = 0;
6962 	if (flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED)
6963 		bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
6964 
6965 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
6966 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
6967 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
6968 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
6969 	hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
6970 	if (!hw_resc->max_hw_ring_grps)
6971 		hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings;
6972 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
6973 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
6974 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
6975 
6976 	if (BNXT_PF(bp)) {
6977 		struct bnxt_pf_info *pf = &bp->pf;
6978 
6979 		pf->fw_fid = le16_to_cpu(resp->fid);
6980 		pf->port_id = le16_to_cpu(resp->port_id);
6981 		memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN);
6982 		pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
6983 		pf->max_vfs = le16_to_cpu(resp->max_vfs);
6984 		pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
6985 		pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
6986 		pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
6987 		pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
6988 		pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
6989 		pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
6990 		bp->flags &= ~BNXT_FLAG_WOL_CAP;
6991 		if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED)
6992 			bp->flags |= BNXT_FLAG_WOL_CAP;
6993 	} else {
6994 #ifdef CONFIG_BNXT_SRIOV
6995 		struct bnxt_vf_info *vf = &bp->vf;
6996 
6997 		vf->fw_fid = le16_to_cpu(resp->fid);
6998 		memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN);
6999 #endif
7000 	}
7001 
7002 hwrm_func_qcaps_exit:
7003 	mutex_unlock(&bp->hwrm_cmd_lock);
7004 	return rc;
7005 }
7006 
7007 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp);
7008 
7009 static int bnxt_hwrm_func_qcaps(struct bnxt *bp)
7010 {
7011 	int rc;
7012 
7013 	rc = __bnxt_hwrm_func_qcaps(bp);
7014 	if (rc)
7015 		return rc;
7016 	rc = bnxt_hwrm_queue_qportcfg(bp);
7017 	if (rc) {
7018 		netdev_err(bp->dev, "hwrm query qportcfg failure rc: %d\n", rc);
7019 		return rc;
7020 	}
7021 	if (bp->hwrm_spec_code >= 0x10803) {
7022 		rc = bnxt_alloc_ctx_mem(bp);
7023 		if (rc)
7024 			return rc;
7025 		rc = bnxt_hwrm_func_resc_qcaps(bp, true);
7026 		if (!rc)
7027 			bp->fw_cap |= BNXT_FW_CAP_NEW_RM;
7028 	}
7029 	return 0;
7030 }
7031 
7032 static int bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(struct bnxt *bp)
7033 {
7034 	struct hwrm_cfa_adv_flow_mgnt_qcaps_input req = {0};
7035 	struct hwrm_cfa_adv_flow_mgnt_qcaps_output *resp;
7036 	int rc = 0;
7037 	u32 flags;
7038 
7039 	if (!(bp->fw_cap & BNXT_FW_CAP_CFA_ADV_FLOW))
7040 		return 0;
7041 
7042 	resp = bp->hwrm_cmd_resp_addr;
7043 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_ADV_FLOW_MGNT_QCAPS, -1, -1);
7044 
7045 	mutex_lock(&bp->hwrm_cmd_lock);
7046 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7047 	if (rc)
7048 		goto hwrm_cfa_adv_qcaps_exit;
7049 
7050 	flags = le32_to_cpu(resp->flags);
7051 	if (flags &
7052 	    CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V2_SUPPORTED)
7053 		bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2;
7054 
7055 hwrm_cfa_adv_qcaps_exit:
7056 	mutex_unlock(&bp->hwrm_cmd_lock);
7057 	return rc;
7058 }
7059 
7060 static int bnxt_map_fw_health_regs(struct bnxt *bp)
7061 {
7062 	struct bnxt_fw_health *fw_health = bp->fw_health;
7063 	u32 reg_base = 0xffffffff;
7064 	int i;
7065 
7066 	/* Only pre-map the monitoring GRC registers using window 3 */
7067 	for (i = 0; i < 4; i++) {
7068 		u32 reg = fw_health->regs[i];
7069 
7070 		if (BNXT_FW_HEALTH_REG_TYPE(reg) != BNXT_FW_HEALTH_REG_TYPE_GRC)
7071 			continue;
7072 		if (reg_base == 0xffffffff)
7073 			reg_base = reg & BNXT_GRC_BASE_MASK;
7074 		if ((reg & BNXT_GRC_BASE_MASK) != reg_base)
7075 			return -ERANGE;
7076 		fw_health->mapped_regs[i] = BNXT_FW_HEALTH_WIN_BASE +
7077 					    (reg & BNXT_GRC_OFFSET_MASK);
7078 	}
7079 	if (reg_base == 0xffffffff)
7080 		return 0;
7081 
7082 	writel(reg_base, bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT +
7083 			 BNXT_FW_HEALTH_WIN_MAP_OFF);
7084 	return 0;
7085 }
7086 
7087 static int bnxt_hwrm_error_recovery_qcfg(struct bnxt *bp)
7088 {
7089 	struct hwrm_error_recovery_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
7090 	struct bnxt_fw_health *fw_health = bp->fw_health;
7091 	struct hwrm_error_recovery_qcfg_input req = {0};
7092 	int rc, i;
7093 
7094 	if (!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
7095 		return 0;
7096 
7097 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_ERROR_RECOVERY_QCFG, -1, -1);
7098 	mutex_lock(&bp->hwrm_cmd_lock);
7099 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7100 	if (rc)
7101 		goto err_recovery_out;
7102 	fw_health->flags = le32_to_cpu(resp->flags);
7103 	if ((fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) &&
7104 	    !(bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL)) {
7105 		rc = -EINVAL;
7106 		goto err_recovery_out;
7107 	}
7108 	fw_health->polling_dsecs = le32_to_cpu(resp->driver_polling_freq);
7109 	fw_health->master_func_wait_dsecs =
7110 		le32_to_cpu(resp->master_func_wait_period);
7111 	fw_health->normal_func_wait_dsecs =
7112 		le32_to_cpu(resp->normal_func_wait_period);
7113 	fw_health->post_reset_wait_dsecs =
7114 		le32_to_cpu(resp->master_func_wait_period_after_reset);
7115 	fw_health->post_reset_max_wait_dsecs =
7116 		le32_to_cpu(resp->max_bailout_time_after_reset);
7117 	fw_health->regs[BNXT_FW_HEALTH_REG] =
7118 		le32_to_cpu(resp->fw_health_status_reg);
7119 	fw_health->regs[BNXT_FW_HEARTBEAT_REG] =
7120 		le32_to_cpu(resp->fw_heartbeat_reg);
7121 	fw_health->regs[BNXT_FW_RESET_CNT_REG] =
7122 		le32_to_cpu(resp->fw_reset_cnt_reg);
7123 	fw_health->regs[BNXT_FW_RESET_INPROG_REG] =
7124 		le32_to_cpu(resp->reset_inprogress_reg);
7125 	fw_health->fw_reset_inprog_reg_mask =
7126 		le32_to_cpu(resp->reset_inprogress_reg_mask);
7127 	fw_health->fw_reset_seq_cnt = resp->reg_array_cnt;
7128 	if (fw_health->fw_reset_seq_cnt >= 16) {
7129 		rc = -EINVAL;
7130 		goto err_recovery_out;
7131 	}
7132 	for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) {
7133 		fw_health->fw_reset_seq_regs[i] =
7134 			le32_to_cpu(resp->reset_reg[i]);
7135 		fw_health->fw_reset_seq_vals[i] =
7136 			le32_to_cpu(resp->reset_reg_val[i]);
7137 		fw_health->fw_reset_seq_delay_msec[i] =
7138 			resp->delay_after_reset[i];
7139 	}
7140 err_recovery_out:
7141 	mutex_unlock(&bp->hwrm_cmd_lock);
7142 	if (!rc)
7143 		rc = bnxt_map_fw_health_regs(bp);
7144 	if (rc)
7145 		bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
7146 	return rc;
7147 }
7148 
7149 static int bnxt_hwrm_func_reset(struct bnxt *bp)
7150 {
7151 	struct hwrm_func_reset_input req = {0};
7152 
7153 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESET, -1, -1);
7154 	req.enables = 0;
7155 
7156 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_RESET_TIMEOUT);
7157 }
7158 
7159 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
7160 {
7161 	int rc = 0;
7162 	struct hwrm_queue_qportcfg_input req = {0};
7163 	struct hwrm_queue_qportcfg_output *resp = bp->hwrm_cmd_resp_addr;
7164 	u8 i, j, *qptr;
7165 	bool no_rdma;
7166 
7167 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_QUEUE_QPORTCFG, -1, -1);
7168 
7169 	mutex_lock(&bp->hwrm_cmd_lock);
7170 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7171 	if (rc)
7172 		goto qportcfg_exit;
7173 
7174 	if (!resp->max_configurable_queues) {
7175 		rc = -EINVAL;
7176 		goto qportcfg_exit;
7177 	}
7178 	bp->max_tc = resp->max_configurable_queues;
7179 	bp->max_lltc = resp->max_configurable_lossless_queues;
7180 	if (bp->max_tc > BNXT_MAX_QUEUE)
7181 		bp->max_tc = BNXT_MAX_QUEUE;
7182 
7183 	no_rdma = !(bp->flags & BNXT_FLAG_ROCE_CAP);
7184 	qptr = &resp->queue_id0;
7185 	for (i = 0, j = 0; i < bp->max_tc; i++) {
7186 		bp->q_info[j].queue_id = *qptr;
7187 		bp->q_ids[i] = *qptr++;
7188 		bp->q_info[j].queue_profile = *qptr++;
7189 		bp->tc_to_qidx[j] = j;
7190 		if (!BNXT_CNPQ(bp->q_info[j].queue_profile) ||
7191 		    (no_rdma && BNXT_PF(bp)))
7192 			j++;
7193 	}
7194 	bp->max_q = bp->max_tc;
7195 	bp->max_tc = max_t(u8, j, 1);
7196 
7197 	if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG)
7198 		bp->max_tc = 1;
7199 
7200 	if (bp->max_lltc > bp->max_tc)
7201 		bp->max_lltc = bp->max_tc;
7202 
7203 qportcfg_exit:
7204 	mutex_unlock(&bp->hwrm_cmd_lock);
7205 	return rc;
7206 }
7207 
7208 static int __bnxt_hwrm_ver_get(struct bnxt *bp, bool silent)
7209 {
7210 	struct hwrm_ver_get_input req = {0};
7211 	int rc;
7212 
7213 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VER_GET, -1, -1);
7214 	req.hwrm_intf_maj = HWRM_VERSION_MAJOR;
7215 	req.hwrm_intf_min = HWRM_VERSION_MINOR;
7216 	req.hwrm_intf_upd = HWRM_VERSION_UPDATE;
7217 
7218 	rc = bnxt_hwrm_do_send_msg(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT,
7219 				   silent);
7220 	return rc;
7221 }
7222 
7223 static int bnxt_hwrm_ver_get(struct bnxt *bp)
7224 {
7225 	struct hwrm_ver_get_output *resp = bp->hwrm_cmd_resp_addr;
7226 	u32 dev_caps_cfg;
7227 	int rc;
7228 
7229 	bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN;
7230 	mutex_lock(&bp->hwrm_cmd_lock);
7231 	rc = __bnxt_hwrm_ver_get(bp, false);
7232 	if (rc)
7233 		goto hwrm_ver_get_exit;
7234 
7235 	memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
7236 
7237 	bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 |
7238 			     resp->hwrm_intf_min_8b << 8 |
7239 			     resp->hwrm_intf_upd_8b;
7240 	if (resp->hwrm_intf_maj_8b < 1) {
7241 		netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
7242 			    resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
7243 			    resp->hwrm_intf_upd_8b);
7244 		netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
7245 	}
7246 	snprintf(bp->fw_ver_str, BC_HWRM_STR_LEN, "%d.%d.%d.%d",
7247 		 resp->hwrm_fw_maj_8b, resp->hwrm_fw_min_8b,
7248 		 resp->hwrm_fw_bld_8b, resp->hwrm_fw_rsvd_8b);
7249 
7250 	if (strlen(resp->active_pkg_name)) {
7251 		int fw_ver_len = strlen(bp->fw_ver_str);
7252 
7253 		snprintf(bp->fw_ver_str + fw_ver_len,
7254 			 FW_VER_STR_LEN - fw_ver_len - 1, "/pkg %s",
7255 			 resp->active_pkg_name);
7256 		bp->fw_cap |= BNXT_FW_CAP_PKG_VER;
7257 	}
7258 
7259 	bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout);
7260 	if (!bp->hwrm_cmd_timeout)
7261 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
7262 
7263 	if (resp->hwrm_intf_maj_8b >= 1) {
7264 		bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len);
7265 		bp->hwrm_max_ext_req_len = le16_to_cpu(resp->max_ext_req_len);
7266 	}
7267 	if (bp->hwrm_max_ext_req_len < HWRM_MAX_REQ_LEN)
7268 		bp->hwrm_max_ext_req_len = HWRM_MAX_REQ_LEN;
7269 
7270 	bp->chip_num = le16_to_cpu(resp->chip_num);
7271 	bp->chip_rev = resp->chip_rev;
7272 	if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev &&
7273 	    !resp->chip_metal)
7274 		bp->flags |= BNXT_FLAG_CHIP_NITRO_A0;
7275 
7276 	dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg);
7277 	if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) &&
7278 	    (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED))
7279 		bp->fw_cap |= BNXT_FW_CAP_SHORT_CMD;
7280 
7281 	if (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_KONG_MB_CHNL_SUPPORTED)
7282 		bp->fw_cap |= BNXT_FW_CAP_KONG_MB_CHNL;
7283 
7284 	if (dev_caps_cfg &
7285 	    VER_GET_RESP_DEV_CAPS_CFG_FLOW_HANDLE_64BIT_SUPPORTED)
7286 		bp->fw_cap |= BNXT_FW_CAP_OVS_64BIT_HANDLE;
7287 
7288 	if (dev_caps_cfg &
7289 	    VER_GET_RESP_DEV_CAPS_CFG_TRUSTED_VF_SUPPORTED)
7290 		bp->fw_cap |= BNXT_FW_CAP_TRUSTED_VF;
7291 
7292 	if (dev_caps_cfg &
7293 	    VER_GET_RESP_DEV_CAPS_CFG_CFA_ADV_FLOW_MGNT_SUPPORTED)
7294 		bp->fw_cap |= BNXT_FW_CAP_CFA_ADV_FLOW;
7295 
7296 hwrm_ver_get_exit:
7297 	mutex_unlock(&bp->hwrm_cmd_lock);
7298 	return rc;
7299 }
7300 
7301 int bnxt_hwrm_fw_set_time(struct bnxt *bp)
7302 {
7303 	struct hwrm_fw_set_time_input req = {0};
7304 	struct tm tm;
7305 	time64_t now = ktime_get_real_seconds();
7306 
7307 	if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) ||
7308 	    bp->hwrm_spec_code < 0x10400)
7309 		return -EOPNOTSUPP;
7310 
7311 	time64_to_tm(now, 0, &tm);
7312 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FW_SET_TIME, -1, -1);
7313 	req.year = cpu_to_le16(1900 + tm.tm_year);
7314 	req.month = 1 + tm.tm_mon;
7315 	req.day = tm.tm_mday;
7316 	req.hour = tm.tm_hour;
7317 	req.minute = tm.tm_min;
7318 	req.second = tm.tm_sec;
7319 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7320 }
7321 
7322 static int bnxt_hwrm_port_qstats(struct bnxt *bp)
7323 {
7324 	struct bnxt_pf_info *pf = &bp->pf;
7325 	struct hwrm_port_qstats_input req = {0};
7326 
7327 	if (!(bp->flags & BNXT_FLAG_PORT_STATS))
7328 		return 0;
7329 
7330 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS, -1, -1);
7331 	req.port_id = cpu_to_le16(pf->port_id);
7332 	req.tx_stat_host_addr = cpu_to_le64(bp->hw_tx_port_stats_map);
7333 	req.rx_stat_host_addr = cpu_to_le64(bp->hw_rx_port_stats_map);
7334 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7335 }
7336 
7337 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp)
7338 {
7339 	struct hwrm_port_qstats_ext_output *resp = bp->hwrm_cmd_resp_addr;
7340 	struct hwrm_queue_pri2cos_qcfg_input req2 = {0};
7341 	struct hwrm_port_qstats_ext_input req = {0};
7342 	struct bnxt_pf_info *pf = &bp->pf;
7343 	u32 tx_stat_size;
7344 	int rc;
7345 
7346 	if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT))
7347 		return 0;
7348 
7349 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS_EXT, -1, -1);
7350 	req.port_id = cpu_to_le16(pf->port_id);
7351 	req.rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext));
7352 	req.rx_stat_host_addr = cpu_to_le64(bp->hw_rx_port_stats_ext_map);
7353 	tx_stat_size = bp->hw_tx_port_stats_ext ?
7354 		       sizeof(*bp->hw_tx_port_stats_ext) : 0;
7355 	req.tx_stat_size = cpu_to_le16(tx_stat_size);
7356 	req.tx_stat_host_addr = cpu_to_le64(bp->hw_tx_port_stats_ext_map);
7357 	mutex_lock(&bp->hwrm_cmd_lock);
7358 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7359 	if (!rc) {
7360 		bp->fw_rx_stats_ext_size = le16_to_cpu(resp->rx_stat_size) / 8;
7361 		bp->fw_tx_stats_ext_size = tx_stat_size ?
7362 			le16_to_cpu(resp->tx_stat_size) / 8 : 0;
7363 	} else {
7364 		bp->fw_rx_stats_ext_size = 0;
7365 		bp->fw_tx_stats_ext_size = 0;
7366 	}
7367 	if (bp->fw_tx_stats_ext_size <=
7368 	    offsetof(struct tx_port_stats_ext, pfc_pri0_tx_duration_us) / 8) {
7369 		mutex_unlock(&bp->hwrm_cmd_lock);
7370 		bp->pri2cos_valid = 0;
7371 		return rc;
7372 	}
7373 
7374 	bnxt_hwrm_cmd_hdr_init(bp, &req2, HWRM_QUEUE_PRI2COS_QCFG, -1, -1);
7375 	req2.flags = cpu_to_le32(QUEUE_PRI2COS_QCFG_REQ_FLAGS_IVLAN);
7376 
7377 	rc = _hwrm_send_message(bp, &req2, sizeof(req2), HWRM_CMD_TIMEOUT);
7378 	if (!rc) {
7379 		struct hwrm_queue_pri2cos_qcfg_output *resp2;
7380 		u8 *pri2cos;
7381 		int i, j;
7382 
7383 		resp2 = bp->hwrm_cmd_resp_addr;
7384 		pri2cos = &resp2->pri0_cos_queue_id;
7385 		for (i = 0; i < 8; i++) {
7386 			u8 queue_id = pri2cos[i];
7387 
7388 			for (j = 0; j < bp->max_q; j++) {
7389 				if (bp->q_ids[j] == queue_id)
7390 					bp->pri2cos[i] = j;
7391 			}
7392 		}
7393 		bp->pri2cos_valid = 1;
7394 	}
7395 	mutex_unlock(&bp->hwrm_cmd_lock);
7396 	return rc;
7397 }
7398 
7399 static int bnxt_hwrm_pcie_qstats(struct bnxt *bp)
7400 {
7401 	struct hwrm_pcie_qstats_input req = {0};
7402 
7403 	if (!(bp->flags & BNXT_FLAG_PCIE_STATS))
7404 		return 0;
7405 
7406 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PCIE_QSTATS, -1, -1);
7407 	req.pcie_stat_size = cpu_to_le16(sizeof(struct pcie_ctx_hw_stats));
7408 	req.pcie_stat_host_addr = cpu_to_le64(bp->hw_pcie_stats_map);
7409 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7410 }
7411 
7412 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
7413 {
7414 	if (bp->vxlan_port_cnt) {
7415 		bnxt_hwrm_tunnel_dst_port_free(
7416 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
7417 	}
7418 	bp->vxlan_port_cnt = 0;
7419 	if (bp->nge_port_cnt) {
7420 		bnxt_hwrm_tunnel_dst_port_free(
7421 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
7422 	}
7423 	bp->nge_port_cnt = 0;
7424 }
7425 
7426 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
7427 {
7428 	int rc, i;
7429 	u32 tpa_flags = 0;
7430 
7431 	if (set_tpa)
7432 		tpa_flags = bp->flags & BNXT_FLAG_TPA;
7433 	else if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
7434 		return 0;
7435 	for (i = 0; i < bp->nr_vnics; i++) {
7436 		rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
7437 		if (rc) {
7438 			netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
7439 				   i, rc);
7440 			return rc;
7441 		}
7442 	}
7443 	return 0;
7444 }
7445 
7446 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
7447 {
7448 	int i;
7449 
7450 	for (i = 0; i < bp->nr_vnics; i++)
7451 		bnxt_hwrm_vnic_set_rss(bp, i, false);
7452 }
7453 
7454 static void bnxt_clear_vnic(struct bnxt *bp)
7455 {
7456 	if (!bp->vnic_info)
7457 		return;
7458 
7459 	bnxt_hwrm_clear_vnic_filter(bp);
7460 	if (!(bp->flags & BNXT_FLAG_CHIP_P5)) {
7461 		/* clear all RSS setting before free vnic ctx */
7462 		bnxt_hwrm_clear_vnic_rss(bp);
7463 		bnxt_hwrm_vnic_ctx_free(bp);
7464 	}
7465 	/* before free the vnic, undo the vnic tpa settings */
7466 	if (bp->flags & BNXT_FLAG_TPA)
7467 		bnxt_set_tpa(bp, false);
7468 	bnxt_hwrm_vnic_free(bp);
7469 	if (bp->flags & BNXT_FLAG_CHIP_P5)
7470 		bnxt_hwrm_vnic_ctx_free(bp);
7471 }
7472 
7473 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
7474 				    bool irq_re_init)
7475 {
7476 	bnxt_clear_vnic(bp);
7477 	bnxt_hwrm_ring_free(bp, close_path);
7478 	bnxt_hwrm_ring_grp_free(bp);
7479 	if (irq_re_init) {
7480 		bnxt_hwrm_stat_ctx_free(bp);
7481 		bnxt_hwrm_free_tunnel_ports(bp);
7482 	}
7483 }
7484 
7485 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode)
7486 {
7487 	struct hwrm_func_cfg_input req = {0};
7488 
7489 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
7490 	req.fid = cpu_to_le16(0xffff);
7491 	req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE);
7492 	if (br_mode == BRIDGE_MODE_VEB)
7493 		req.evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB;
7494 	else if (br_mode == BRIDGE_MODE_VEPA)
7495 		req.evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA;
7496 	else
7497 		return -EINVAL;
7498 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7499 }
7500 
7501 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size)
7502 {
7503 	struct hwrm_func_cfg_input req = {0};
7504 
7505 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803)
7506 		return 0;
7507 
7508 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
7509 	req.fid = cpu_to_le16(0xffff);
7510 	req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE);
7511 	req.options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64;
7512 	if (size == 128)
7513 		req.options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128;
7514 
7515 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7516 }
7517 
7518 static int __bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
7519 {
7520 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
7521 	int rc;
7522 
7523 	if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG)
7524 		goto skip_rss_ctx;
7525 
7526 	/* allocate context for vnic */
7527 	rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0);
7528 	if (rc) {
7529 		netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
7530 			   vnic_id, rc);
7531 		goto vnic_setup_err;
7532 	}
7533 	bp->rsscos_nr_ctxs++;
7534 
7535 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
7536 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1);
7537 		if (rc) {
7538 			netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n",
7539 				   vnic_id, rc);
7540 			goto vnic_setup_err;
7541 		}
7542 		bp->rsscos_nr_ctxs++;
7543 	}
7544 
7545 skip_rss_ctx:
7546 	/* configure default vnic, ring grp */
7547 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
7548 	if (rc) {
7549 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
7550 			   vnic_id, rc);
7551 		goto vnic_setup_err;
7552 	}
7553 
7554 	/* Enable RSS hashing on vnic */
7555 	rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
7556 	if (rc) {
7557 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
7558 			   vnic_id, rc);
7559 		goto vnic_setup_err;
7560 	}
7561 
7562 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
7563 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
7564 		if (rc) {
7565 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
7566 				   vnic_id, rc);
7567 		}
7568 	}
7569 
7570 vnic_setup_err:
7571 	return rc;
7572 }
7573 
7574 static int __bnxt_setup_vnic_p5(struct bnxt *bp, u16 vnic_id)
7575 {
7576 	int rc, i, nr_ctxs;
7577 
7578 	nr_ctxs = DIV_ROUND_UP(bp->rx_nr_rings, 64);
7579 	for (i = 0; i < nr_ctxs; i++) {
7580 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, i);
7581 		if (rc) {
7582 			netdev_err(bp->dev, "hwrm vnic %d ctx %d alloc failure rc: %x\n",
7583 				   vnic_id, i, rc);
7584 			break;
7585 		}
7586 		bp->rsscos_nr_ctxs++;
7587 	}
7588 	if (i < nr_ctxs)
7589 		return -ENOMEM;
7590 
7591 	rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic_id, true);
7592 	if (rc) {
7593 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n",
7594 			   vnic_id, rc);
7595 		return rc;
7596 	}
7597 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
7598 	if (rc) {
7599 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
7600 			   vnic_id, rc);
7601 		return rc;
7602 	}
7603 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
7604 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
7605 		if (rc) {
7606 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
7607 				   vnic_id, rc);
7608 		}
7609 	}
7610 	return rc;
7611 }
7612 
7613 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
7614 {
7615 	if (bp->flags & BNXT_FLAG_CHIP_P5)
7616 		return __bnxt_setup_vnic_p5(bp, vnic_id);
7617 	else
7618 		return __bnxt_setup_vnic(bp, vnic_id);
7619 }
7620 
7621 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
7622 {
7623 #ifdef CONFIG_RFS_ACCEL
7624 	int i, rc = 0;
7625 
7626 	if (bp->flags & BNXT_FLAG_CHIP_P5)
7627 		return 0;
7628 
7629 	for (i = 0; i < bp->rx_nr_rings; i++) {
7630 		struct bnxt_vnic_info *vnic;
7631 		u16 vnic_id = i + 1;
7632 		u16 ring_id = i;
7633 
7634 		if (vnic_id >= bp->nr_vnics)
7635 			break;
7636 
7637 		vnic = &bp->vnic_info[vnic_id];
7638 		vnic->flags |= BNXT_VNIC_RFS_FLAG;
7639 		if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
7640 			vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG;
7641 		rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1);
7642 		if (rc) {
7643 			netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
7644 				   vnic_id, rc);
7645 			break;
7646 		}
7647 		rc = bnxt_setup_vnic(bp, vnic_id);
7648 		if (rc)
7649 			break;
7650 	}
7651 	return rc;
7652 #else
7653 	return 0;
7654 #endif
7655 }
7656 
7657 /* Allow PF and VF with default VLAN to be in promiscuous mode */
7658 static bool bnxt_promisc_ok(struct bnxt *bp)
7659 {
7660 #ifdef CONFIG_BNXT_SRIOV
7661 	if (BNXT_VF(bp) && !bp->vf.vlan)
7662 		return false;
7663 #endif
7664 	return true;
7665 }
7666 
7667 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp)
7668 {
7669 	unsigned int rc = 0;
7670 
7671 	rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1);
7672 	if (rc) {
7673 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
7674 			   rc);
7675 		return rc;
7676 	}
7677 
7678 	rc = bnxt_hwrm_vnic_cfg(bp, 1);
7679 	if (rc) {
7680 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
7681 			   rc);
7682 		return rc;
7683 	}
7684 	return rc;
7685 }
7686 
7687 static int bnxt_cfg_rx_mode(struct bnxt *);
7688 static bool bnxt_mc_list_updated(struct bnxt *, u32 *);
7689 
7690 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
7691 {
7692 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
7693 	int rc = 0;
7694 	unsigned int rx_nr_rings = bp->rx_nr_rings;
7695 
7696 	if (irq_re_init) {
7697 		rc = bnxt_hwrm_stat_ctx_alloc(bp);
7698 		if (rc) {
7699 			netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
7700 				   rc);
7701 			goto err_out;
7702 		}
7703 	}
7704 
7705 	rc = bnxt_hwrm_ring_alloc(bp);
7706 	if (rc) {
7707 		netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
7708 		goto err_out;
7709 	}
7710 
7711 	rc = bnxt_hwrm_ring_grp_alloc(bp);
7712 	if (rc) {
7713 		netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
7714 		goto err_out;
7715 	}
7716 
7717 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
7718 		rx_nr_rings--;
7719 
7720 	/* default vnic 0 */
7721 	rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings);
7722 	if (rc) {
7723 		netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
7724 		goto err_out;
7725 	}
7726 
7727 	rc = bnxt_setup_vnic(bp, 0);
7728 	if (rc)
7729 		goto err_out;
7730 
7731 	if (bp->flags & BNXT_FLAG_RFS) {
7732 		rc = bnxt_alloc_rfs_vnics(bp);
7733 		if (rc)
7734 			goto err_out;
7735 	}
7736 
7737 	if (bp->flags & BNXT_FLAG_TPA) {
7738 		rc = bnxt_set_tpa(bp, true);
7739 		if (rc)
7740 			goto err_out;
7741 	}
7742 
7743 	if (BNXT_VF(bp))
7744 		bnxt_update_vf_mac(bp);
7745 
7746 	/* Filter for default vnic 0 */
7747 	rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
7748 	if (rc) {
7749 		netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
7750 		goto err_out;
7751 	}
7752 	vnic->uc_filter_count = 1;
7753 
7754 	vnic->rx_mask = 0;
7755 	if (bp->dev->flags & IFF_BROADCAST)
7756 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
7757 
7758 	if ((bp->dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
7759 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
7760 
7761 	if (bp->dev->flags & IFF_ALLMULTI) {
7762 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
7763 		vnic->mc_list_count = 0;
7764 	} else {
7765 		u32 mask = 0;
7766 
7767 		bnxt_mc_list_updated(bp, &mask);
7768 		vnic->rx_mask |= mask;
7769 	}
7770 
7771 	rc = bnxt_cfg_rx_mode(bp);
7772 	if (rc)
7773 		goto err_out;
7774 
7775 	rc = bnxt_hwrm_set_coal(bp);
7776 	if (rc)
7777 		netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
7778 				rc);
7779 
7780 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
7781 		rc = bnxt_setup_nitroa0_vnic(bp);
7782 		if (rc)
7783 			netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n",
7784 				   rc);
7785 	}
7786 
7787 	if (BNXT_VF(bp)) {
7788 		bnxt_hwrm_func_qcfg(bp);
7789 		netdev_update_features(bp->dev);
7790 	}
7791 
7792 	return 0;
7793 
7794 err_out:
7795 	bnxt_hwrm_resource_free(bp, 0, true);
7796 
7797 	return rc;
7798 }
7799 
7800 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
7801 {
7802 	bnxt_hwrm_resource_free(bp, 1, irq_re_init);
7803 	return 0;
7804 }
7805 
7806 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
7807 {
7808 	bnxt_init_cp_rings(bp);
7809 	bnxt_init_rx_rings(bp);
7810 	bnxt_init_tx_rings(bp);
7811 	bnxt_init_ring_grps(bp, irq_re_init);
7812 	bnxt_init_vnics(bp);
7813 
7814 	return bnxt_init_chip(bp, irq_re_init);
7815 }
7816 
7817 static int bnxt_set_real_num_queues(struct bnxt *bp)
7818 {
7819 	int rc;
7820 	struct net_device *dev = bp->dev;
7821 
7822 	rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings -
7823 					  bp->tx_nr_rings_xdp);
7824 	if (rc)
7825 		return rc;
7826 
7827 	rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
7828 	if (rc)
7829 		return rc;
7830 
7831 #ifdef CONFIG_RFS_ACCEL
7832 	if (bp->flags & BNXT_FLAG_RFS)
7833 		dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
7834 #endif
7835 
7836 	return rc;
7837 }
7838 
7839 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
7840 			   bool shared)
7841 {
7842 	int _rx = *rx, _tx = *tx;
7843 
7844 	if (shared) {
7845 		*rx = min_t(int, _rx, max);
7846 		*tx = min_t(int, _tx, max);
7847 	} else {
7848 		if (max < 2)
7849 			return -ENOMEM;
7850 
7851 		while (_rx + _tx > max) {
7852 			if (_rx > _tx && _rx > 1)
7853 				_rx--;
7854 			else if (_tx > 1)
7855 				_tx--;
7856 		}
7857 		*rx = _rx;
7858 		*tx = _tx;
7859 	}
7860 	return 0;
7861 }
7862 
7863 static void bnxt_setup_msix(struct bnxt *bp)
7864 {
7865 	const int len = sizeof(bp->irq_tbl[0].name);
7866 	struct net_device *dev = bp->dev;
7867 	int tcs, i;
7868 
7869 	tcs = netdev_get_num_tc(dev);
7870 	if (tcs) {
7871 		int i, off, count;
7872 
7873 		for (i = 0; i < tcs; i++) {
7874 			count = bp->tx_nr_rings_per_tc;
7875 			off = i * count;
7876 			netdev_set_tc_queue(dev, i, count, off);
7877 		}
7878 	}
7879 
7880 	for (i = 0; i < bp->cp_nr_rings; i++) {
7881 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
7882 		char *attr;
7883 
7884 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
7885 			attr = "TxRx";
7886 		else if (i < bp->rx_nr_rings)
7887 			attr = "rx";
7888 		else
7889 			attr = "tx";
7890 
7891 		snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name,
7892 			 attr, i);
7893 		bp->irq_tbl[map_idx].handler = bnxt_msix;
7894 	}
7895 }
7896 
7897 static void bnxt_setup_inta(struct bnxt *bp)
7898 {
7899 	const int len = sizeof(bp->irq_tbl[0].name);
7900 
7901 	if (netdev_get_num_tc(bp->dev))
7902 		netdev_reset_tc(bp->dev);
7903 
7904 	snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx",
7905 		 0);
7906 	bp->irq_tbl[0].handler = bnxt_inta;
7907 }
7908 
7909 static int bnxt_setup_int_mode(struct bnxt *bp)
7910 {
7911 	int rc;
7912 
7913 	if (bp->flags & BNXT_FLAG_USING_MSIX)
7914 		bnxt_setup_msix(bp);
7915 	else
7916 		bnxt_setup_inta(bp);
7917 
7918 	rc = bnxt_set_real_num_queues(bp);
7919 	return rc;
7920 }
7921 
7922 #ifdef CONFIG_RFS_ACCEL
7923 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp)
7924 {
7925 	return bp->hw_resc.max_rsscos_ctxs;
7926 }
7927 
7928 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp)
7929 {
7930 	return bp->hw_resc.max_vnics;
7931 }
7932 #endif
7933 
7934 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp)
7935 {
7936 	return bp->hw_resc.max_stat_ctxs;
7937 }
7938 
7939 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp)
7940 {
7941 	return bp->hw_resc.max_cp_rings;
7942 }
7943 
7944 static unsigned int bnxt_get_max_func_cp_rings_for_en(struct bnxt *bp)
7945 {
7946 	unsigned int cp = bp->hw_resc.max_cp_rings;
7947 
7948 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
7949 		cp -= bnxt_get_ulp_msix_num(bp);
7950 
7951 	return cp;
7952 }
7953 
7954 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp)
7955 {
7956 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7957 
7958 	if (bp->flags & BNXT_FLAG_CHIP_P5)
7959 		return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_nqs);
7960 
7961 	return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings);
7962 }
7963 
7964 static void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs)
7965 {
7966 	bp->hw_resc.max_irqs = max_irqs;
7967 }
7968 
7969 unsigned int bnxt_get_avail_cp_rings_for_en(struct bnxt *bp)
7970 {
7971 	unsigned int cp;
7972 
7973 	cp = bnxt_get_max_func_cp_rings_for_en(bp);
7974 	if (bp->flags & BNXT_FLAG_CHIP_P5)
7975 		return cp - bp->rx_nr_rings - bp->tx_nr_rings;
7976 	else
7977 		return cp - bp->cp_nr_rings;
7978 }
7979 
7980 unsigned int bnxt_get_avail_stat_ctxs_for_en(struct bnxt *bp)
7981 {
7982 	return bnxt_get_max_func_stat_ctxs(bp) - bnxt_get_func_stat_ctxs(bp);
7983 }
7984 
7985 int bnxt_get_avail_msix(struct bnxt *bp, int num)
7986 {
7987 	int max_cp = bnxt_get_max_func_cp_rings(bp);
7988 	int max_irq = bnxt_get_max_func_irqs(bp);
7989 	int total_req = bp->cp_nr_rings + num;
7990 	int max_idx, avail_msix;
7991 
7992 	max_idx = bp->total_irqs;
7993 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
7994 		max_idx = min_t(int, bp->total_irqs, max_cp);
7995 	avail_msix = max_idx - bp->cp_nr_rings;
7996 	if (!BNXT_NEW_RM(bp) || avail_msix >= num)
7997 		return avail_msix;
7998 
7999 	if (max_irq < total_req) {
8000 		num = max_irq - bp->cp_nr_rings;
8001 		if (num <= 0)
8002 			return 0;
8003 	}
8004 	return num;
8005 }
8006 
8007 static int bnxt_get_num_msix(struct bnxt *bp)
8008 {
8009 	if (!BNXT_NEW_RM(bp))
8010 		return bnxt_get_max_func_irqs(bp);
8011 
8012 	return bnxt_nq_rings_in_use(bp);
8013 }
8014 
8015 static int bnxt_init_msix(struct bnxt *bp)
8016 {
8017 	int i, total_vecs, max, rc = 0, min = 1, ulp_msix;
8018 	struct msix_entry *msix_ent;
8019 
8020 	total_vecs = bnxt_get_num_msix(bp);
8021 	max = bnxt_get_max_func_irqs(bp);
8022 	if (total_vecs > max)
8023 		total_vecs = max;
8024 
8025 	if (!total_vecs)
8026 		return 0;
8027 
8028 	msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
8029 	if (!msix_ent)
8030 		return -ENOMEM;
8031 
8032 	for (i = 0; i < total_vecs; i++) {
8033 		msix_ent[i].entry = i;
8034 		msix_ent[i].vector = 0;
8035 	}
8036 
8037 	if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
8038 		min = 2;
8039 
8040 	total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
8041 	ulp_msix = bnxt_get_ulp_msix_num(bp);
8042 	if (total_vecs < 0 || total_vecs < ulp_msix) {
8043 		rc = -ENODEV;
8044 		goto msix_setup_exit;
8045 	}
8046 
8047 	bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
8048 	if (bp->irq_tbl) {
8049 		for (i = 0; i < total_vecs; i++)
8050 			bp->irq_tbl[i].vector = msix_ent[i].vector;
8051 
8052 		bp->total_irqs = total_vecs;
8053 		/* Trim rings based upon num of vectors allocated */
8054 		rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
8055 				     total_vecs - ulp_msix, min == 1);
8056 		if (rc)
8057 			goto msix_setup_exit;
8058 
8059 		bp->cp_nr_rings = (min == 1) ?
8060 				  max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
8061 				  bp->tx_nr_rings + bp->rx_nr_rings;
8062 
8063 	} else {
8064 		rc = -ENOMEM;
8065 		goto msix_setup_exit;
8066 	}
8067 	bp->flags |= BNXT_FLAG_USING_MSIX;
8068 	kfree(msix_ent);
8069 	return 0;
8070 
8071 msix_setup_exit:
8072 	netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc);
8073 	kfree(bp->irq_tbl);
8074 	bp->irq_tbl = NULL;
8075 	pci_disable_msix(bp->pdev);
8076 	kfree(msix_ent);
8077 	return rc;
8078 }
8079 
8080 static int bnxt_init_inta(struct bnxt *bp)
8081 {
8082 	bp->irq_tbl = kcalloc(1, sizeof(struct bnxt_irq), GFP_KERNEL);
8083 	if (!bp->irq_tbl)
8084 		return -ENOMEM;
8085 
8086 	bp->total_irqs = 1;
8087 	bp->rx_nr_rings = 1;
8088 	bp->tx_nr_rings = 1;
8089 	bp->cp_nr_rings = 1;
8090 	bp->flags |= BNXT_FLAG_SHARED_RINGS;
8091 	bp->irq_tbl[0].vector = bp->pdev->irq;
8092 	return 0;
8093 }
8094 
8095 static int bnxt_init_int_mode(struct bnxt *bp)
8096 {
8097 	int rc = 0;
8098 
8099 	if (bp->flags & BNXT_FLAG_MSIX_CAP)
8100 		rc = bnxt_init_msix(bp);
8101 
8102 	if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) {
8103 		/* fallback to INTA */
8104 		rc = bnxt_init_inta(bp);
8105 	}
8106 	return rc;
8107 }
8108 
8109 static void bnxt_clear_int_mode(struct bnxt *bp)
8110 {
8111 	if (bp->flags & BNXT_FLAG_USING_MSIX)
8112 		pci_disable_msix(bp->pdev);
8113 
8114 	kfree(bp->irq_tbl);
8115 	bp->irq_tbl = NULL;
8116 	bp->flags &= ~BNXT_FLAG_USING_MSIX;
8117 }
8118 
8119 int bnxt_reserve_rings(struct bnxt *bp, bool irq_re_init)
8120 {
8121 	int tcs = netdev_get_num_tc(bp->dev);
8122 	bool irq_cleared = false;
8123 	int rc;
8124 
8125 	if (!bnxt_need_reserve_rings(bp))
8126 		return 0;
8127 
8128 	if (irq_re_init && BNXT_NEW_RM(bp) &&
8129 	    bnxt_get_num_msix(bp) != bp->total_irqs) {
8130 		bnxt_ulp_irq_stop(bp);
8131 		bnxt_clear_int_mode(bp);
8132 		irq_cleared = true;
8133 	}
8134 	rc = __bnxt_reserve_rings(bp);
8135 	if (irq_cleared) {
8136 		if (!rc)
8137 			rc = bnxt_init_int_mode(bp);
8138 		bnxt_ulp_irq_restart(bp, rc);
8139 	}
8140 	if (rc) {
8141 		netdev_err(bp->dev, "ring reservation/IRQ init failure rc: %d\n", rc);
8142 		return rc;
8143 	}
8144 	if (tcs && (bp->tx_nr_rings_per_tc * tcs != bp->tx_nr_rings)) {
8145 		netdev_err(bp->dev, "tx ring reservation failure\n");
8146 		netdev_reset_tc(bp->dev);
8147 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
8148 		return -ENOMEM;
8149 	}
8150 	return 0;
8151 }
8152 
8153 static void bnxt_free_irq(struct bnxt *bp)
8154 {
8155 	struct bnxt_irq *irq;
8156 	int i;
8157 
8158 #ifdef CONFIG_RFS_ACCEL
8159 	free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
8160 	bp->dev->rx_cpu_rmap = NULL;
8161 #endif
8162 	if (!bp->irq_tbl || !bp->bnapi)
8163 		return;
8164 
8165 	for (i = 0; i < bp->cp_nr_rings; i++) {
8166 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
8167 
8168 		irq = &bp->irq_tbl[map_idx];
8169 		if (irq->requested) {
8170 			if (irq->have_cpumask) {
8171 				irq_set_affinity_hint(irq->vector, NULL);
8172 				free_cpumask_var(irq->cpu_mask);
8173 				irq->have_cpumask = 0;
8174 			}
8175 			free_irq(irq->vector, bp->bnapi[i]);
8176 		}
8177 
8178 		irq->requested = 0;
8179 	}
8180 }
8181 
8182 static int bnxt_request_irq(struct bnxt *bp)
8183 {
8184 	int i, j, rc = 0;
8185 	unsigned long flags = 0;
8186 #ifdef CONFIG_RFS_ACCEL
8187 	struct cpu_rmap *rmap;
8188 #endif
8189 
8190 	rc = bnxt_setup_int_mode(bp);
8191 	if (rc) {
8192 		netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
8193 			   rc);
8194 		return rc;
8195 	}
8196 #ifdef CONFIG_RFS_ACCEL
8197 	rmap = bp->dev->rx_cpu_rmap;
8198 #endif
8199 	if (!(bp->flags & BNXT_FLAG_USING_MSIX))
8200 		flags = IRQF_SHARED;
8201 
8202 	for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
8203 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
8204 		struct bnxt_irq *irq = &bp->irq_tbl[map_idx];
8205 
8206 #ifdef CONFIG_RFS_ACCEL
8207 		if (rmap && bp->bnapi[i]->rx_ring) {
8208 			rc = irq_cpu_rmap_add(rmap, irq->vector);
8209 			if (rc)
8210 				netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
8211 					    j);
8212 			j++;
8213 		}
8214 #endif
8215 		rc = request_irq(irq->vector, irq->handler, flags, irq->name,
8216 				 bp->bnapi[i]);
8217 		if (rc)
8218 			break;
8219 
8220 		irq->requested = 1;
8221 
8222 		if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) {
8223 			int numa_node = dev_to_node(&bp->pdev->dev);
8224 
8225 			irq->have_cpumask = 1;
8226 			cpumask_set_cpu(cpumask_local_spread(i, numa_node),
8227 					irq->cpu_mask);
8228 			rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask);
8229 			if (rc) {
8230 				netdev_warn(bp->dev,
8231 					    "Set affinity failed, IRQ = %d\n",
8232 					    irq->vector);
8233 				break;
8234 			}
8235 		}
8236 	}
8237 	return rc;
8238 }
8239 
8240 static void bnxt_del_napi(struct bnxt *bp)
8241 {
8242 	int i;
8243 
8244 	if (!bp->bnapi)
8245 		return;
8246 
8247 	for (i = 0; i < bp->cp_nr_rings; i++) {
8248 		struct bnxt_napi *bnapi = bp->bnapi[i];
8249 
8250 		napi_hash_del(&bnapi->napi);
8251 		netif_napi_del(&bnapi->napi);
8252 	}
8253 	/* We called napi_hash_del() before netif_napi_del(), we need
8254 	 * to respect an RCU grace period before freeing napi structures.
8255 	 */
8256 	synchronize_net();
8257 }
8258 
8259 static void bnxt_init_napi(struct bnxt *bp)
8260 {
8261 	int i;
8262 	unsigned int cp_nr_rings = bp->cp_nr_rings;
8263 	struct bnxt_napi *bnapi;
8264 
8265 	if (bp->flags & BNXT_FLAG_USING_MSIX) {
8266 		int (*poll_fn)(struct napi_struct *, int) = bnxt_poll;
8267 
8268 		if (bp->flags & BNXT_FLAG_CHIP_P5)
8269 			poll_fn = bnxt_poll_p5;
8270 		else if (BNXT_CHIP_TYPE_NITRO_A0(bp))
8271 			cp_nr_rings--;
8272 		for (i = 0; i < cp_nr_rings; i++) {
8273 			bnapi = bp->bnapi[i];
8274 			netif_napi_add(bp->dev, &bnapi->napi, poll_fn, 64);
8275 		}
8276 		if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
8277 			bnapi = bp->bnapi[cp_nr_rings];
8278 			netif_napi_add(bp->dev, &bnapi->napi,
8279 				       bnxt_poll_nitroa0, 64);
8280 		}
8281 	} else {
8282 		bnapi = bp->bnapi[0];
8283 		netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64);
8284 	}
8285 }
8286 
8287 static void bnxt_disable_napi(struct bnxt *bp)
8288 {
8289 	int i;
8290 
8291 	if (!bp->bnapi)
8292 		return;
8293 
8294 	for (i = 0; i < bp->cp_nr_rings; i++) {
8295 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
8296 
8297 		if (bp->bnapi[i]->rx_ring)
8298 			cancel_work_sync(&cpr->dim.work);
8299 
8300 		napi_disable(&bp->bnapi[i]->napi);
8301 	}
8302 }
8303 
8304 static void bnxt_enable_napi(struct bnxt *bp)
8305 {
8306 	int i;
8307 
8308 	for (i = 0; i < bp->cp_nr_rings; i++) {
8309 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
8310 		bp->bnapi[i]->in_reset = false;
8311 
8312 		if (bp->bnapi[i]->rx_ring) {
8313 			INIT_WORK(&cpr->dim.work, bnxt_dim_work);
8314 			cpr->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
8315 		}
8316 		napi_enable(&bp->bnapi[i]->napi);
8317 	}
8318 }
8319 
8320 void bnxt_tx_disable(struct bnxt *bp)
8321 {
8322 	int i;
8323 	struct bnxt_tx_ring_info *txr;
8324 
8325 	if (bp->tx_ring) {
8326 		for (i = 0; i < bp->tx_nr_rings; i++) {
8327 			txr = &bp->tx_ring[i];
8328 			txr->dev_state = BNXT_DEV_STATE_CLOSING;
8329 		}
8330 	}
8331 	/* Stop all TX queues */
8332 	netif_tx_disable(bp->dev);
8333 	netif_carrier_off(bp->dev);
8334 }
8335 
8336 void bnxt_tx_enable(struct bnxt *bp)
8337 {
8338 	int i;
8339 	struct bnxt_tx_ring_info *txr;
8340 
8341 	for (i = 0; i < bp->tx_nr_rings; i++) {
8342 		txr = &bp->tx_ring[i];
8343 		txr->dev_state = 0;
8344 	}
8345 	netif_tx_wake_all_queues(bp->dev);
8346 	if (bp->link_info.link_up)
8347 		netif_carrier_on(bp->dev);
8348 }
8349 
8350 static void bnxt_report_link(struct bnxt *bp)
8351 {
8352 	if (bp->link_info.link_up) {
8353 		const char *duplex;
8354 		const char *flow_ctrl;
8355 		u32 speed;
8356 		u16 fec;
8357 
8358 		netif_carrier_on(bp->dev);
8359 		if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
8360 			duplex = "full";
8361 		else
8362 			duplex = "half";
8363 		if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
8364 			flow_ctrl = "ON - receive & transmit";
8365 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
8366 			flow_ctrl = "ON - transmit";
8367 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
8368 			flow_ctrl = "ON - receive";
8369 		else
8370 			flow_ctrl = "none";
8371 		speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
8372 		netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s duplex, Flow control: %s\n",
8373 			    speed, duplex, flow_ctrl);
8374 		if (bp->flags & BNXT_FLAG_EEE_CAP)
8375 			netdev_info(bp->dev, "EEE is %s\n",
8376 				    bp->eee.eee_active ? "active" :
8377 							 "not active");
8378 		fec = bp->link_info.fec_cfg;
8379 		if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED))
8380 			netdev_info(bp->dev, "FEC autoneg %s encodings: %s\n",
8381 				    (fec & BNXT_FEC_AUTONEG) ? "on" : "off",
8382 				    (fec & BNXT_FEC_ENC_BASE_R) ? "BaseR" :
8383 				     (fec & BNXT_FEC_ENC_RS) ? "RS" : "None");
8384 	} else {
8385 		netif_carrier_off(bp->dev);
8386 		netdev_err(bp->dev, "NIC Link is Down\n");
8387 	}
8388 }
8389 
8390 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp)
8391 {
8392 	int rc = 0;
8393 	struct hwrm_port_phy_qcaps_input req = {0};
8394 	struct hwrm_port_phy_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
8395 	struct bnxt_link_info *link_info = &bp->link_info;
8396 
8397 	bp->flags &= ~BNXT_FLAG_EEE_CAP;
8398 	if (bp->test_info)
8399 		bp->test_info->flags &= ~(BNXT_TEST_FL_EXT_LPBK |
8400 					  BNXT_TEST_FL_AN_PHY_LPBK);
8401 	if (bp->hwrm_spec_code < 0x10201)
8402 		return 0;
8403 
8404 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCAPS, -1, -1);
8405 
8406 	mutex_lock(&bp->hwrm_cmd_lock);
8407 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8408 	if (rc)
8409 		goto hwrm_phy_qcaps_exit;
8410 
8411 	if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) {
8412 		struct ethtool_eee *eee = &bp->eee;
8413 		u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode);
8414 
8415 		bp->flags |= BNXT_FLAG_EEE_CAP;
8416 		eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
8417 		bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) &
8418 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK;
8419 		bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) &
8420 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK;
8421 	}
8422 	if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EXTERNAL_LPBK_SUPPORTED) {
8423 		if (bp->test_info)
8424 			bp->test_info->flags |= BNXT_TEST_FL_EXT_LPBK;
8425 	}
8426 	if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_AUTONEG_LPBK_SUPPORTED) {
8427 		if (bp->test_info)
8428 			bp->test_info->flags |= BNXT_TEST_FL_AN_PHY_LPBK;
8429 	}
8430 	if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_SHARED_PHY_CFG_SUPPORTED) {
8431 		if (BNXT_PF(bp))
8432 			bp->fw_cap |= BNXT_FW_CAP_SHARED_PORT_CFG;
8433 	}
8434 	if (resp->supported_speeds_auto_mode)
8435 		link_info->support_auto_speeds =
8436 			le16_to_cpu(resp->supported_speeds_auto_mode);
8437 
8438 	bp->port_count = resp->port_cnt;
8439 
8440 hwrm_phy_qcaps_exit:
8441 	mutex_unlock(&bp->hwrm_cmd_lock);
8442 	return rc;
8443 }
8444 
8445 static int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
8446 {
8447 	int rc = 0;
8448 	struct bnxt_link_info *link_info = &bp->link_info;
8449 	struct hwrm_port_phy_qcfg_input req = {0};
8450 	struct hwrm_port_phy_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
8451 	u8 link_up = link_info->link_up;
8452 	u16 diff;
8453 
8454 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCFG, -1, -1);
8455 
8456 	mutex_lock(&bp->hwrm_cmd_lock);
8457 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8458 	if (rc) {
8459 		mutex_unlock(&bp->hwrm_cmd_lock);
8460 		return rc;
8461 	}
8462 
8463 	memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
8464 	link_info->phy_link_status = resp->link;
8465 	link_info->duplex = resp->duplex_cfg;
8466 	if (bp->hwrm_spec_code >= 0x10800)
8467 		link_info->duplex = resp->duplex_state;
8468 	link_info->pause = resp->pause;
8469 	link_info->auto_mode = resp->auto_mode;
8470 	link_info->auto_pause_setting = resp->auto_pause;
8471 	link_info->lp_pause = resp->link_partner_adv_pause;
8472 	link_info->force_pause_setting = resp->force_pause;
8473 	link_info->duplex_setting = resp->duplex_cfg;
8474 	if (link_info->phy_link_status == BNXT_LINK_LINK)
8475 		link_info->link_speed = le16_to_cpu(resp->link_speed);
8476 	else
8477 		link_info->link_speed = 0;
8478 	link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
8479 	link_info->support_speeds = le16_to_cpu(resp->support_speeds);
8480 	link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
8481 	link_info->lp_auto_link_speeds =
8482 		le16_to_cpu(resp->link_partner_adv_speeds);
8483 	link_info->preemphasis = le32_to_cpu(resp->preemphasis);
8484 	link_info->phy_ver[0] = resp->phy_maj;
8485 	link_info->phy_ver[1] = resp->phy_min;
8486 	link_info->phy_ver[2] = resp->phy_bld;
8487 	link_info->media_type = resp->media_type;
8488 	link_info->phy_type = resp->phy_type;
8489 	link_info->transceiver = resp->xcvr_pkg_type;
8490 	link_info->phy_addr = resp->eee_config_phy_addr &
8491 			      PORT_PHY_QCFG_RESP_PHY_ADDR_MASK;
8492 	link_info->module_status = resp->module_status;
8493 
8494 	if (bp->flags & BNXT_FLAG_EEE_CAP) {
8495 		struct ethtool_eee *eee = &bp->eee;
8496 		u16 fw_speeds;
8497 
8498 		eee->eee_active = 0;
8499 		if (resp->eee_config_phy_addr &
8500 		    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) {
8501 			eee->eee_active = 1;
8502 			fw_speeds = le16_to_cpu(
8503 				resp->link_partner_adv_eee_link_speed_mask);
8504 			eee->lp_advertised =
8505 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
8506 		}
8507 
8508 		/* Pull initial EEE config */
8509 		if (!chng_link_state) {
8510 			if (resp->eee_config_phy_addr &
8511 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED)
8512 				eee->eee_enabled = 1;
8513 
8514 			fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask);
8515 			eee->advertised =
8516 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
8517 
8518 			if (resp->eee_config_phy_addr &
8519 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) {
8520 				__le32 tmr;
8521 
8522 				eee->tx_lpi_enabled = 1;
8523 				tmr = resp->xcvr_identifier_type_tx_lpi_timer;
8524 				eee->tx_lpi_timer = le32_to_cpu(tmr) &
8525 					PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK;
8526 			}
8527 		}
8528 	}
8529 
8530 	link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED;
8531 	if (bp->hwrm_spec_code >= 0x10504)
8532 		link_info->fec_cfg = le16_to_cpu(resp->fec_cfg);
8533 
8534 	/* TODO: need to add more logic to report VF link */
8535 	if (chng_link_state) {
8536 		if (link_info->phy_link_status == BNXT_LINK_LINK)
8537 			link_info->link_up = 1;
8538 		else
8539 			link_info->link_up = 0;
8540 		if (link_up != link_info->link_up)
8541 			bnxt_report_link(bp);
8542 	} else {
8543 		/* alwasy link down if not require to update link state */
8544 		link_info->link_up = 0;
8545 	}
8546 	mutex_unlock(&bp->hwrm_cmd_lock);
8547 
8548 	if (!BNXT_PHY_CFG_ABLE(bp))
8549 		return 0;
8550 
8551 	diff = link_info->support_auto_speeds ^ link_info->advertising;
8552 	if ((link_info->support_auto_speeds | diff) !=
8553 	    link_info->support_auto_speeds) {
8554 		/* An advertised speed is no longer supported, so we need to
8555 		 * update the advertisement settings.  Caller holds RTNL
8556 		 * so we can modify link settings.
8557 		 */
8558 		link_info->advertising = link_info->support_auto_speeds;
8559 		if (link_info->autoneg & BNXT_AUTONEG_SPEED)
8560 			bnxt_hwrm_set_link_setting(bp, true, false);
8561 	}
8562 	return 0;
8563 }
8564 
8565 static void bnxt_get_port_module_status(struct bnxt *bp)
8566 {
8567 	struct bnxt_link_info *link_info = &bp->link_info;
8568 	struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp;
8569 	u8 module_status;
8570 
8571 	if (bnxt_update_link(bp, true))
8572 		return;
8573 
8574 	module_status = link_info->module_status;
8575 	switch (module_status) {
8576 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX:
8577 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN:
8578 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG:
8579 		netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n",
8580 			    bp->pf.port_id);
8581 		if (bp->hwrm_spec_code >= 0x10201) {
8582 			netdev_warn(bp->dev, "Module part number %s\n",
8583 				    resp->phy_vendor_partnumber);
8584 		}
8585 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX)
8586 			netdev_warn(bp->dev, "TX is disabled\n");
8587 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN)
8588 			netdev_warn(bp->dev, "SFP+ module is shutdown\n");
8589 	}
8590 }
8591 
8592 static void
8593 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
8594 {
8595 	if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
8596 		if (bp->hwrm_spec_code >= 0x10201)
8597 			req->auto_pause =
8598 				PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE;
8599 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
8600 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
8601 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
8602 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX;
8603 		req->enables |=
8604 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
8605 	} else {
8606 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
8607 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
8608 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
8609 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
8610 		req->enables |=
8611 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
8612 		if (bp->hwrm_spec_code >= 0x10201) {
8613 			req->auto_pause = req->force_pause;
8614 			req->enables |= cpu_to_le32(
8615 				PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
8616 		}
8617 	}
8618 }
8619 
8620 static void bnxt_hwrm_set_link_common(struct bnxt *bp,
8621 				      struct hwrm_port_phy_cfg_input *req)
8622 {
8623 	u8 autoneg = bp->link_info.autoneg;
8624 	u16 fw_link_speed = bp->link_info.req_link_speed;
8625 	u16 advertising = bp->link_info.advertising;
8626 
8627 	if (autoneg & BNXT_AUTONEG_SPEED) {
8628 		req->auto_mode |=
8629 			PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK;
8630 
8631 		req->enables |= cpu_to_le32(
8632 			PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
8633 		req->auto_link_speed_mask = cpu_to_le16(advertising);
8634 
8635 		req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
8636 		req->flags |=
8637 			cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
8638 	} else {
8639 		req->force_link_speed = cpu_to_le16(fw_link_speed);
8640 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
8641 	}
8642 
8643 	/* tell chimp that the setting takes effect immediately */
8644 	req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
8645 }
8646 
8647 int bnxt_hwrm_set_pause(struct bnxt *bp)
8648 {
8649 	struct hwrm_port_phy_cfg_input req = {0};
8650 	int rc;
8651 
8652 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
8653 	bnxt_hwrm_set_pause_common(bp, &req);
8654 
8655 	if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
8656 	    bp->link_info.force_link_chng)
8657 		bnxt_hwrm_set_link_common(bp, &req);
8658 
8659 	mutex_lock(&bp->hwrm_cmd_lock);
8660 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8661 	if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
8662 		/* since changing of pause setting doesn't trigger any link
8663 		 * change event, the driver needs to update the current pause
8664 		 * result upon successfully return of the phy_cfg command
8665 		 */
8666 		bp->link_info.pause =
8667 		bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
8668 		bp->link_info.auto_pause_setting = 0;
8669 		if (!bp->link_info.force_link_chng)
8670 			bnxt_report_link(bp);
8671 	}
8672 	bp->link_info.force_link_chng = false;
8673 	mutex_unlock(&bp->hwrm_cmd_lock);
8674 	return rc;
8675 }
8676 
8677 static void bnxt_hwrm_set_eee(struct bnxt *bp,
8678 			      struct hwrm_port_phy_cfg_input *req)
8679 {
8680 	struct ethtool_eee *eee = &bp->eee;
8681 
8682 	if (eee->eee_enabled) {
8683 		u16 eee_speeds;
8684 		u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE;
8685 
8686 		if (eee->tx_lpi_enabled)
8687 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE;
8688 		else
8689 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE;
8690 
8691 		req->flags |= cpu_to_le32(flags);
8692 		eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised);
8693 		req->eee_link_speed_mask = cpu_to_le16(eee_speeds);
8694 		req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer);
8695 	} else {
8696 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE);
8697 	}
8698 }
8699 
8700 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee)
8701 {
8702 	struct hwrm_port_phy_cfg_input req = {0};
8703 
8704 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
8705 	if (set_pause)
8706 		bnxt_hwrm_set_pause_common(bp, &req);
8707 
8708 	bnxt_hwrm_set_link_common(bp, &req);
8709 
8710 	if (set_eee)
8711 		bnxt_hwrm_set_eee(bp, &req);
8712 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8713 }
8714 
8715 static int bnxt_hwrm_shutdown_link(struct bnxt *bp)
8716 {
8717 	struct hwrm_port_phy_cfg_input req = {0};
8718 
8719 	if (!BNXT_SINGLE_PF(bp))
8720 		return 0;
8721 
8722 	if (pci_num_vf(bp->pdev))
8723 		return 0;
8724 
8725 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
8726 	req.flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN);
8727 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8728 }
8729 
8730 static int bnxt_fw_init_one(struct bnxt *bp);
8731 
8732 static int bnxt_hwrm_if_change(struct bnxt *bp, bool up)
8733 {
8734 	struct hwrm_func_drv_if_change_output *resp = bp->hwrm_cmd_resp_addr;
8735 	struct hwrm_func_drv_if_change_input req = {0};
8736 	bool resc_reinit = false, fw_reset = false;
8737 	u32 flags = 0;
8738 	int rc;
8739 
8740 	if (!(bp->fw_cap & BNXT_FW_CAP_IF_CHANGE))
8741 		return 0;
8742 
8743 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_IF_CHANGE, -1, -1);
8744 	if (up)
8745 		req.flags = cpu_to_le32(FUNC_DRV_IF_CHANGE_REQ_FLAGS_UP);
8746 	mutex_lock(&bp->hwrm_cmd_lock);
8747 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8748 	if (!rc)
8749 		flags = le32_to_cpu(resp->flags);
8750 	mutex_unlock(&bp->hwrm_cmd_lock);
8751 	if (rc)
8752 		return rc;
8753 
8754 	if (!up)
8755 		return 0;
8756 
8757 	if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_RESC_CHANGE)
8758 		resc_reinit = true;
8759 	if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_HOT_FW_RESET_DONE)
8760 		fw_reset = true;
8761 
8762 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state) && !fw_reset) {
8763 		netdev_err(bp->dev, "RESET_DONE not set during FW reset.\n");
8764 		return -ENODEV;
8765 	}
8766 	if (resc_reinit || fw_reset) {
8767 		if (fw_reset) {
8768 			if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
8769 				bnxt_ulp_stop(bp);
8770 			bnxt_free_ctx_mem(bp);
8771 			kfree(bp->ctx);
8772 			bp->ctx = NULL;
8773 			bnxt_dcb_free(bp);
8774 			rc = bnxt_fw_init_one(bp);
8775 			if (rc) {
8776 				set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
8777 				return rc;
8778 			}
8779 			bnxt_clear_int_mode(bp);
8780 			rc = bnxt_init_int_mode(bp);
8781 			if (rc) {
8782 				netdev_err(bp->dev, "init int mode failed\n");
8783 				return rc;
8784 			}
8785 			set_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
8786 		}
8787 		if (BNXT_NEW_RM(bp)) {
8788 			struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
8789 
8790 			rc = bnxt_hwrm_func_resc_qcaps(bp, true);
8791 			hw_resc->resv_cp_rings = 0;
8792 			hw_resc->resv_stat_ctxs = 0;
8793 			hw_resc->resv_irqs = 0;
8794 			hw_resc->resv_tx_rings = 0;
8795 			hw_resc->resv_rx_rings = 0;
8796 			hw_resc->resv_hw_ring_grps = 0;
8797 			hw_resc->resv_vnics = 0;
8798 			if (!fw_reset) {
8799 				bp->tx_nr_rings = 0;
8800 				bp->rx_nr_rings = 0;
8801 			}
8802 		}
8803 	}
8804 	return 0;
8805 }
8806 
8807 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp)
8808 {
8809 	struct hwrm_port_led_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
8810 	struct hwrm_port_led_qcaps_input req = {0};
8811 	struct bnxt_pf_info *pf = &bp->pf;
8812 	int rc;
8813 
8814 	bp->num_leds = 0;
8815 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601)
8816 		return 0;
8817 
8818 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_LED_QCAPS, -1, -1);
8819 	req.port_id = cpu_to_le16(pf->port_id);
8820 	mutex_lock(&bp->hwrm_cmd_lock);
8821 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8822 	if (rc) {
8823 		mutex_unlock(&bp->hwrm_cmd_lock);
8824 		return rc;
8825 	}
8826 	if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) {
8827 		int i;
8828 
8829 		bp->num_leds = resp->num_leds;
8830 		memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) *
8831 						 bp->num_leds);
8832 		for (i = 0; i < bp->num_leds; i++) {
8833 			struct bnxt_led_info *led = &bp->leds[i];
8834 			__le16 caps = led->led_state_caps;
8835 
8836 			if (!led->led_group_id ||
8837 			    !BNXT_LED_ALT_BLINK_CAP(caps)) {
8838 				bp->num_leds = 0;
8839 				break;
8840 			}
8841 		}
8842 	}
8843 	mutex_unlock(&bp->hwrm_cmd_lock);
8844 	return 0;
8845 }
8846 
8847 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp)
8848 {
8849 	struct hwrm_wol_filter_alloc_input req = {0};
8850 	struct hwrm_wol_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
8851 	int rc;
8852 
8853 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_ALLOC, -1, -1);
8854 	req.port_id = cpu_to_le16(bp->pf.port_id);
8855 	req.wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT;
8856 	req.enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS);
8857 	memcpy(req.mac_address, bp->dev->dev_addr, ETH_ALEN);
8858 	mutex_lock(&bp->hwrm_cmd_lock);
8859 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8860 	if (!rc)
8861 		bp->wol_filter_id = resp->wol_filter_id;
8862 	mutex_unlock(&bp->hwrm_cmd_lock);
8863 	return rc;
8864 }
8865 
8866 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp)
8867 {
8868 	struct hwrm_wol_filter_free_input req = {0};
8869 
8870 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_FREE, -1, -1);
8871 	req.port_id = cpu_to_le16(bp->pf.port_id);
8872 	req.enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID);
8873 	req.wol_filter_id = bp->wol_filter_id;
8874 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8875 }
8876 
8877 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle)
8878 {
8879 	struct hwrm_wol_filter_qcfg_input req = {0};
8880 	struct hwrm_wol_filter_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
8881 	u16 next_handle = 0;
8882 	int rc;
8883 
8884 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_QCFG, -1, -1);
8885 	req.port_id = cpu_to_le16(bp->pf.port_id);
8886 	req.handle = cpu_to_le16(handle);
8887 	mutex_lock(&bp->hwrm_cmd_lock);
8888 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8889 	if (!rc) {
8890 		next_handle = le16_to_cpu(resp->next_handle);
8891 		if (next_handle != 0) {
8892 			if (resp->wol_type ==
8893 			    WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) {
8894 				bp->wol = 1;
8895 				bp->wol_filter_id = resp->wol_filter_id;
8896 			}
8897 		}
8898 	}
8899 	mutex_unlock(&bp->hwrm_cmd_lock);
8900 	return next_handle;
8901 }
8902 
8903 static void bnxt_get_wol_settings(struct bnxt *bp)
8904 {
8905 	u16 handle = 0;
8906 
8907 	bp->wol = 0;
8908 	if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP))
8909 		return;
8910 
8911 	do {
8912 		handle = bnxt_hwrm_get_wol_fltrs(bp, handle);
8913 	} while (handle && handle != 0xffff);
8914 }
8915 
8916 #ifdef CONFIG_BNXT_HWMON
8917 static ssize_t bnxt_show_temp(struct device *dev,
8918 			      struct device_attribute *devattr, char *buf)
8919 {
8920 	struct hwrm_temp_monitor_query_input req = {0};
8921 	struct hwrm_temp_monitor_query_output *resp;
8922 	struct bnxt *bp = dev_get_drvdata(dev);
8923 	u32 temp = 0;
8924 
8925 	resp = bp->hwrm_cmd_resp_addr;
8926 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TEMP_MONITOR_QUERY, -1, -1);
8927 	mutex_lock(&bp->hwrm_cmd_lock);
8928 	if (!_hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT))
8929 		temp = resp->temp * 1000; /* display millidegree */
8930 	mutex_unlock(&bp->hwrm_cmd_lock);
8931 
8932 	return sprintf(buf, "%u\n", temp);
8933 }
8934 static SENSOR_DEVICE_ATTR(temp1_input, 0444, bnxt_show_temp, NULL, 0);
8935 
8936 static struct attribute *bnxt_attrs[] = {
8937 	&sensor_dev_attr_temp1_input.dev_attr.attr,
8938 	NULL
8939 };
8940 ATTRIBUTE_GROUPS(bnxt);
8941 
8942 static void bnxt_hwmon_close(struct bnxt *bp)
8943 {
8944 	if (bp->hwmon_dev) {
8945 		hwmon_device_unregister(bp->hwmon_dev);
8946 		bp->hwmon_dev = NULL;
8947 	}
8948 }
8949 
8950 static void bnxt_hwmon_open(struct bnxt *bp)
8951 {
8952 	struct pci_dev *pdev = bp->pdev;
8953 
8954 	if (bp->hwmon_dev)
8955 		return;
8956 
8957 	bp->hwmon_dev = hwmon_device_register_with_groups(&pdev->dev,
8958 							  DRV_MODULE_NAME, bp,
8959 							  bnxt_groups);
8960 	if (IS_ERR(bp->hwmon_dev)) {
8961 		bp->hwmon_dev = NULL;
8962 		dev_warn(&pdev->dev, "Cannot register hwmon device\n");
8963 	}
8964 }
8965 #else
8966 static void bnxt_hwmon_close(struct bnxt *bp)
8967 {
8968 }
8969 
8970 static void bnxt_hwmon_open(struct bnxt *bp)
8971 {
8972 }
8973 #endif
8974 
8975 static bool bnxt_eee_config_ok(struct bnxt *bp)
8976 {
8977 	struct ethtool_eee *eee = &bp->eee;
8978 	struct bnxt_link_info *link_info = &bp->link_info;
8979 
8980 	if (!(bp->flags & BNXT_FLAG_EEE_CAP))
8981 		return true;
8982 
8983 	if (eee->eee_enabled) {
8984 		u32 advertising =
8985 			_bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0);
8986 
8987 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
8988 			eee->eee_enabled = 0;
8989 			return false;
8990 		}
8991 		if (eee->advertised & ~advertising) {
8992 			eee->advertised = advertising & eee->supported;
8993 			return false;
8994 		}
8995 	}
8996 	return true;
8997 }
8998 
8999 static int bnxt_update_phy_setting(struct bnxt *bp)
9000 {
9001 	int rc;
9002 	bool update_link = false;
9003 	bool update_pause = false;
9004 	bool update_eee = false;
9005 	struct bnxt_link_info *link_info = &bp->link_info;
9006 
9007 	rc = bnxt_update_link(bp, true);
9008 	if (rc) {
9009 		netdev_err(bp->dev, "failed to update link (rc: %x)\n",
9010 			   rc);
9011 		return rc;
9012 	}
9013 	if (!BNXT_SINGLE_PF(bp))
9014 		return 0;
9015 
9016 	if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
9017 	    (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) !=
9018 	    link_info->req_flow_ctrl)
9019 		update_pause = true;
9020 	if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
9021 	    link_info->force_pause_setting != link_info->req_flow_ctrl)
9022 		update_pause = true;
9023 	if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
9024 		if (BNXT_AUTO_MODE(link_info->auto_mode))
9025 			update_link = true;
9026 		if (link_info->req_link_speed != link_info->force_link_speed)
9027 			update_link = true;
9028 		if (link_info->req_duplex != link_info->duplex_setting)
9029 			update_link = true;
9030 	} else {
9031 		if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
9032 			update_link = true;
9033 		if (link_info->advertising != link_info->auto_link_speeds)
9034 			update_link = true;
9035 	}
9036 
9037 	/* The last close may have shutdown the link, so need to call
9038 	 * PHY_CFG to bring it back up.
9039 	 */
9040 	if (!bp->link_info.link_up)
9041 		update_link = true;
9042 
9043 	if (!bnxt_eee_config_ok(bp))
9044 		update_eee = true;
9045 
9046 	if (update_link)
9047 		rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee);
9048 	else if (update_pause)
9049 		rc = bnxt_hwrm_set_pause(bp);
9050 	if (rc) {
9051 		netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
9052 			   rc);
9053 		return rc;
9054 	}
9055 
9056 	return rc;
9057 }
9058 
9059 /* Common routine to pre-map certain register block to different GRC window.
9060  * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
9061  * in PF and 3 windows in VF that can be customized to map in different
9062  * register blocks.
9063  */
9064 static void bnxt_preset_reg_win(struct bnxt *bp)
9065 {
9066 	if (BNXT_PF(bp)) {
9067 		/* CAG registers map to GRC window #4 */
9068 		writel(BNXT_CAG_REG_BASE,
9069 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
9070 	}
9071 }
9072 
9073 static int bnxt_init_dflt_ring_mode(struct bnxt *bp);
9074 
9075 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
9076 {
9077 	int rc = 0;
9078 
9079 	bnxt_preset_reg_win(bp);
9080 	netif_carrier_off(bp->dev);
9081 	if (irq_re_init) {
9082 		/* Reserve rings now if none were reserved at driver probe. */
9083 		rc = bnxt_init_dflt_ring_mode(bp);
9084 		if (rc) {
9085 			netdev_err(bp->dev, "Failed to reserve default rings at open\n");
9086 			return rc;
9087 		}
9088 	}
9089 	rc = bnxt_reserve_rings(bp, irq_re_init);
9090 	if (rc)
9091 		return rc;
9092 	if ((bp->flags & BNXT_FLAG_RFS) &&
9093 	    !(bp->flags & BNXT_FLAG_USING_MSIX)) {
9094 		/* disable RFS if falling back to INTA */
9095 		bp->dev->hw_features &= ~NETIF_F_NTUPLE;
9096 		bp->flags &= ~BNXT_FLAG_RFS;
9097 	}
9098 
9099 	rc = bnxt_alloc_mem(bp, irq_re_init);
9100 	if (rc) {
9101 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
9102 		goto open_err_free_mem;
9103 	}
9104 
9105 	if (irq_re_init) {
9106 		bnxt_init_napi(bp);
9107 		rc = bnxt_request_irq(bp);
9108 		if (rc) {
9109 			netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
9110 			goto open_err_irq;
9111 		}
9112 	}
9113 
9114 	bnxt_enable_napi(bp);
9115 	bnxt_debug_dev_init(bp);
9116 
9117 	rc = bnxt_init_nic(bp, irq_re_init);
9118 	if (rc) {
9119 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
9120 		goto open_err;
9121 	}
9122 
9123 	if (link_re_init) {
9124 		mutex_lock(&bp->link_lock);
9125 		rc = bnxt_update_phy_setting(bp);
9126 		mutex_unlock(&bp->link_lock);
9127 		if (rc) {
9128 			netdev_warn(bp->dev, "failed to update phy settings\n");
9129 			if (BNXT_SINGLE_PF(bp)) {
9130 				bp->link_info.phy_retry = true;
9131 				bp->link_info.phy_retry_expires =
9132 					jiffies + 5 * HZ;
9133 			}
9134 		}
9135 	}
9136 
9137 	if (irq_re_init)
9138 		udp_tunnel_get_rx_info(bp->dev);
9139 
9140 	set_bit(BNXT_STATE_OPEN, &bp->state);
9141 	bnxt_enable_int(bp);
9142 	/* Enable TX queues */
9143 	bnxt_tx_enable(bp);
9144 	mod_timer(&bp->timer, jiffies + bp->current_interval);
9145 	/* Poll link status and check for SFP+ module status */
9146 	bnxt_get_port_module_status(bp);
9147 
9148 	/* VF-reps may need to be re-opened after the PF is re-opened */
9149 	if (BNXT_PF(bp))
9150 		bnxt_vf_reps_open(bp);
9151 	return 0;
9152 
9153 open_err:
9154 	bnxt_debug_dev_exit(bp);
9155 	bnxt_disable_napi(bp);
9156 
9157 open_err_irq:
9158 	bnxt_del_napi(bp);
9159 
9160 open_err_free_mem:
9161 	bnxt_free_skbs(bp);
9162 	bnxt_free_irq(bp);
9163 	bnxt_free_mem(bp, true);
9164 	return rc;
9165 }
9166 
9167 /* rtnl_lock held */
9168 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
9169 {
9170 	int rc = 0;
9171 
9172 	rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
9173 	if (rc) {
9174 		netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
9175 		dev_close(bp->dev);
9176 	}
9177 	return rc;
9178 }
9179 
9180 /* rtnl_lock held, open the NIC half way by allocating all resources, but
9181  * NAPI, IRQ, and TX are not enabled.  This is mainly used for offline
9182  * self tests.
9183  */
9184 int bnxt_half_open_nic(struct bnxt *bp)
9185 {
9186 	int rc = 0;
9187 
9188 	rc = bnxt_alloc_mem(bp, false);
9189 	if (rc) {
9190 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
9191 		goto half_open_err;
9192 	}
9193 	rc = bnxt_init_nic(bp, false);
9194 	if (rc) {
9195 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
9196 		goto half_open_err;
9197 	}
9198 	return 0;
9199 
9200 half_open_err:
9201 	bnxt_free_skbs(bp);
9202 	bnxt_free_mem(bp, false);
9203 	dev_close(bp->dev);
9204 	return rc;
9205 }
9206 
9207 /* rtnl_lock held, this call can only be made after a previous successful
9208  * call to bnxt_half_open_nic().
9209  */
9210 void bnxt_half_close_nic(struct bnxt *bp)
9211 {
9212 	bnxt_hwrm_resource_free(bp, false, false);
9213 	bnxt_free_skbs(bp);
9214 	bnxt_free_mem(bp, false);
9215 }
9216 
9217 static void bnxt_reenable_sriov(struct bnxt *bp)
9218 {
9219 	if (BNXT_PF(bp)) {
9220 		struct bnxt_pf_info *pf = &bp->pf;
9221 		int n = pf->active_vfs;
9222 
9223 		if (n)
9224 			bnxt_cfg_hw_sriov(bp, &n, true);
9225 	}
9226 }
9227 
9228 static int bnxt_open(struct net_device *dev)
9229 {
9230 	struct bnxt *bp = netdev_priv(dev);
9231 	int rc;
9232 
9233 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
9234 		netdev_err(bp->dev, "A previous firmware reset did not complete, aborting\n");
9235 		return -ENODEV;
9236 	}
9237 
9238 	rc = bnxt_hwrm_if_change(bp, true);
9239 	if (rc)
9240 		return rc;
9241 	rc = __bnxt_open_nic(bp, true, true);
9242 	if (rc) {
9243 		bnxt_hwrm_if_change(bp, false);
9244 	} else {
9245 		if (test_and_clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) {
9246 			if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
9247 				bnxt_ulp_start(bp, 0);
9248 				bnxt_reenable_sriov(bp);
9249 			}
9250 		}
9251 		bnxt_hwmon_open(bp);
9252 	}
9253 
9254 	return rc;
9255 }
9256 
9257 static bool bnxt_drv_busy(struct bnxt *bp)
9258 {
9259 	return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) ||
9260 		test_bit(BNXT_STATE_READ_STATS, &bp->state));
9261 }
9262 
9263 static void bnxt_get_ring_stats(struct bnxt *bp,
9264 				struct rtnl_link_stats64 *stats);
9265 
9266 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init,
9267 			     bool link_re_init)
9268 {
9269 	/* Close the VF-reps before closing PF */
9270 	if (BNXT_PF(bp))
9271 		bnxt_vf_reps_close(bp);
9272 
9273 	/* Change device state to avoid TX queue wake up's */
9274 	bnxt_tx_disable(bp);
9275 
9276 	clear_bit(BNXT_STATE_OPEN, &bp->state);
9277 	smp_mb__after_atomic();
9278 	while (bnxt_drv_busy(bp))
9279 		msleep(20);
9280 
9281 	/* Flush rings and and disable interrupts */
9282 	bnxt_shutdown_nic(bp, irq_re_init);
9283 
9284 	/* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
9285 
9286 	bnxt_debug_dev_exit(bp);
9287 	bnxt_disable_napi(bp);
9288 	del_timer_sync(&bp->timer);
9289 	bnxt_free_skbs(bp);
9290 
9291 	/* Save ring stats before shutdown */
9292 	if (bp->bnapi)
9293 		bnxt_get_ring_stats(bp, &bp->net_stats_prev);
9294 	if (irq_re_init) {
9295 		bnxt_free_irq(bp);
9296 		bnxt_del_napi(bp);
9297 	}
9298 	bnxt_free_mem(bp, irq_re_init);
9299 }
9300 
9301 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
9302 {
9303 	int rc = 0;
9304 
9305 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
9306 		/* If we get here, it means firmware reset is in progress
9307 		 * while we are trying to close.  We can safely proceed with
9308 		 * the close because we are holding rtnl_lock().  Some firmware
9309 		 * messages may fail as we proceed to close.  We set the
9310 		 * ABORT_ERR flag here so that the FW reset thread will later
9311 		 * abort when it gets the rtnl_lock() and sees the flag.
9312 		 */
9313 		netdev_warn(bp->dev, "FW reset in progress during close, FW reset will be aborted\n");
9314 		set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
9315 	}
9316 
9317 #ifdef CONFIG_BNXT_SRIOV
9318 	if (bp->sriov_cfg) {
9319 		rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
9320 						      !bp->sriov_cfg,
9321 						      BNXT_SRIOV_CFG_WAIT_TMO);
9322 		if (rc)
9323 			netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
9324 	}
9325 #endif
9326 	__bnxt_close_nic(bp, irq_re_init, link_re_init);
9327 	return rc;
9328 }
9329 
9330 static int bnxt_close(struct net_device *dev)
9331 {
9332 	struct bnxt *bp = netdev_priv(dev);
9333 
9334 	bnxt_hwmon_close(bp);
9335 	bnxt_close_nic(bp, true, true);
9336 	bnxt_hwrm_shutdown_link(bp);
9337 	bnxt_hwrm_if_change(bp, false);
9338 	return 0;
9339 }
9340 
9341 static int bnxt_hwrm_port_phy_read(struct bnxt *bp, u16 phy_addr, u16 reg,
9342 				   u16 *val)
9343 {
9344 	struct hwrm_port_phy_mdio_read_output *resp = bp->hwrm_cmd_resp_addr;
9345 	struct hwrm_port_phy_mdio_read_input req = {0};
9346 	int rc;
9347 
9348 	if (bp->hwrm_spec_code < 0x10a00)
9349 		return -EOPNOTSUPP;
9350 
9351 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_MDIO_READ, -1, -1);
9352 	req.port_id = cpu_to_le16(bp->pf.port_id);
9353 	req.phy_addr = phy_addr;
9354 	req.reg_addr = cpu_to_le16(reg & 0x1f);
9355 	if (mdio_phy_id_is_c45(phy_addr)) {
9356 		req.cl45_mdio = 1;
9357 		req.phy_addr = mdio_phy_id_prtad(phy_addr);
9358 		req.dev_addr = mdio_phy_id_devad(phy_addr);
9359 		req.reg_addr = cpu_to_le16(reg);
9360 	}
9361 
9362 	mutex_lock(&bp->hwrm_cmd_lock);
9363 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9364 	if (!rc)
9365 		*val = le16_to_cpu(resp->reg_data);
9366 	mutex_unlock(&bp->hwrm_cmd_lock);
9367 	return rc;
9368 }
9369 
9370 static int bnxt_hwrm_port_phy_write(struct bnxt *bp, u16 phy_addr, u16 reg,
9371 				    u16 val)
9372 {
9373 	struct hwrm_port_phy_mdio_write_input req = {0};
9374 
9375 	if (bp->hwrm_spec_code < 0x10a00)
9376 		return -EOPNOTSUPP;
9377 
9378 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_MDIO_WRITE, -1, -1);
9379 	req.port_id = cpu_to_le16(bp->pf.port_id);
9380 	req.phy_addr = phy_addr;
9381 	req.reg_addr = cpu_to_le16(reg & 0x1f);
9382 	if (mdio_phy_id_is_c45(phy_addr)) {
9383 		req.cl45_mdio = 1;
9384 		req.phy_addr = mdio_phy_id_prtad(phy_addr);
9385 		req.dev_addr = mdio_phy_id_devad(phy_addr);
9386 		req.reg_addr = cpu_to_le16(reg);
9387 	}
9388 	req.reg_data = cpu_to_le16(val);
9389 
9390 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9391 }
9392 
9393 /* rtnl_lock held */
9394 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
9395 {
9396 	struct mii_ioctl_data *mdio = if_mii(ifr);
9397 	struct bnxt *bp = netdev_priv(dev);
9398 	int rc;
9399 
9400 	switch (cmd) {
9401 	case SIOCGMIIPHY:
9402 		mdio->phy_id = bp->link_info.phy_addr;
9403 
9404 		/* fallthru */
9405 	case SIOCGMIIREG: {
9406 		u16 mii_regval = 0;
9407 
9408 		if (!netif_running(dev))
9409 			return -EAGAIN;
9410 
9411 		rc = bnxt_hwrm_port_phy_read(bp, mdio->phy_id, mdio->reg_num,
9412 					     &mii_regval);
9413 		mdio->val_out = mii_regval;
9414 		return rc;
9415 	}
9416 
9417 	case SIOCSMIIREG:
9418 		if (!netif_running(dev))
9419 			return -EAGAIN;
9420 
9421 		return bnxt_hwrm_port_phy_write(bp, mdio->phy_id, mdio->reg_num,
9422 						mdio->val_in);
9423 
9424 	default:
9425 		/* do nothing */
9426 		break;
9427 	}
9428 	return -EOPNOTSUPP;
9429 }
9430 
9431 static void bnxt_get_ring_stats(struct bnxt *bp,
9432 				struct rtnl_link_stats64 *stats)
9433 {
9434 	int i;
9435 
9436 
9437 	for (i = 0; i < bp->cp_nr_rings; i++) {
9438 		struct bnxt_napi *bnapi = bp->bnapi[i];
9439 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
9440 		struct ctx_hw_stats *hw_stats = cpr->hw_stats;
9441 
9442 		stats->rx_packets += le64_to_cpu(hw_stats->rx_ucast_pkts);
9443 		stats->rx_packets += le64_to_cpu(hw_stats->rx_mcast_pkts);
9444 		stats->rx_packets += le64_to_cpu(hw_stats->rx_bcast_pkts);
9445 
9446 		stats->tx_packets += le64_to_cpu(hw_stats->tx_ucast_pkts);
9447 		stats->tx_packets += le64_to_cpu(hw_stats->tx_mcast_pkts);
9448 		stats->tx_packets += le64_to_cpu(hw_stats->tx_bcast_pkts);
9449 
9450 		stats->rx_bytes += le64_to_cpu(hw_stats->rx_ucast_bytes);
9451 		stats->rx_bytes += le64_to_cpu(hw_stats->rx_mcast_bytes);
9452 		stats->rx_bytes += le64_to_cpu(hw_stats->rx_bcast_bytes);
9453 
9454 		stats->tx_bytes += le64_to_cpu(hw_stats->tx_ucast_bytes);
9455 		stats->tx_bytes += le64_to_cpu(hw_stats->tx_mcast_bytes);
9456 		stats->tx_bytes += le64_to_cpu(hw_stats->tx_bcast_bytes);
9457 
9458 		stats->rx_missed_errors +=
9459 			le64_to_cpu(hw_stats->rx_discard_pkts);
9460 
9461 		stats->multicast += le64_to_cpu(hw_stats->rx_mcast_pkts);
9462 
9463 		stats->tx_dropped += le64_to_cpu(hw_stats->tx_drop_pkts);
9464 	}
9465 }
9466 
9467 static void bnxt_add_prev_stats(struct bnxt *bp,
9468 				struct rtnl_link_stats64 *stats)
9469 {
9470 	struct rtnl_link_stats64 *prev_stats = &bp->net_stats_prev;
9471 
9472 	stats->rx_packets += prev_stats->rx_packets;
9473 	stats->tx_packets += prev_stats->tx_packets;
9474 	stats->rx_bytes += prev_stats->rx_bytes;
9475 	stats->tx_bytes += prev_stats->tx_bytes;
9476 	stats->rx_missed_errors += prev_stats->rx_missed_errors;
9477 	stats->multicast += prev_stats->multicast;
9478 	stats->tx_dropped += prev_stats->tx_dropped;
9479 }
9480 
9481 static void
9482 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
9483 {
9484 	struct bnxt *bp = netdev_priv(dev);
9485 
9486 	set_bit(BNXT_STATE_READ_STATS, &bp->state);
9487 	/* Make sure bnxt_close_nic() sees that we are reading stats before
9488 	 * we check the BNXT_STATE_OPEN flag.
9489 	 */
9490 	smp_mb__after_atomic();
9491 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
9492 		clear_bit(BNXT_STATE_READ_STATS, &bp->state);
9493 		*stats = bp->net_stats_prev;
9494 		return;
9495 	}
9496 
9497 	bnxt_get_ring_stats(bp, stats);
9498 	bnxt_add_prev_stats(bp, stats);
9499 
9500 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
9501 		struct rx_port_stats *rx = bp->hw_rx_port_stats;
9502 		struct tx_port_stats *tx = bp->hw_tx_port_stats;
9503 
9504 		stats->rx_crc_errors = le64_to_cpu(rx->rx_fcs_err_frames);
9505 		stats->rx_frame_errors = le64_to_cpu(rx->rx_align_err_frames);
9506 		stats->rx_length_errors = le64_to_cpu(rx->rx_undrsz_frames) +
9507 					  le64_to_cpu(rx->rx_ovrsz_frames) +
9508 					  le64_to_cpu(rx->rx_runt_frames);
9509 		stats->rx_errors = le64_to_cpu(rx->rx_false_carrier_frames) +
9510 				   le64_to_cpu(rx->rx_jbr_frames);
9511 		stats->collisions = le64_to_cpu(tx->tx_total_collisions);
9512 		stats->tx_fifo_errors = le64_to_cpu(tx->tx_fifo_underruns);
9513 		stats->tx_errors = le64_to_cpu(tx->tx_err);
9514 	}
9515 	clear_bit(BNXT_STATE_READ_STATS, &bp->state);
9516 }
9517 
9518 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
9519 {
9520 	struct net_device *dev = bp->dev;
9521 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
9522 	struct netdev_hw_addr *ha;
9523 	u8 *haddr;
9524 	int mc_count = 0;
9525 	bool update = false;
9526 	int off = 0;
9527 
9528 	netdev_for_each_mc_addr(ha, dev) {
9529 		if (mc_count >= BNXT_MAX_MC_ADDRS) {
9530 			*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
9531 			vnic->mc_list_count = 0;
9532 			return false;
9533 		}
9534 		haddr = ha->addr;
9535 		if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
9536 			memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
9537 			update = true;
9538 		}
9539 		off += ETH_ALEN;
9540 		mc_count++;
9541 	}
9542 	if (mc_count)
9543 		*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
9544 
9545 	if (mc_count != vnic->mc_list_count) {
9546 		vnic->mc_list_count = mc_count;
9547 		update = true;
9548 	}
9549 	return update;
9550 }
9551 
9552 static bool bnxt_uc_list_updated(struct bnxt *bp)
9553 {
9554 	struct net_device *dev = bp->dev;
9555 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
9556 	struct netdev_hw_addr *ha;
9557 	int off = 0;
9558 
9559 	if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
9560 		return true;
9561 
9562 	netdev_for_each_uc_addr(ha, dev) {
9563 		if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
9564 			return true;
9565 
9566 		off += ETH_ALEN;
9567 	}
9568 	return false;
9569 }
9570 
9571 static void bnxt_set_rx_mode(struct net_device *dev)
9572 {
9573 	struct bnxt *bp = netdev_priv(dev);
9574 	struct bnxt_vnic_info *vnic;
9575 	bool mc_update = false;
9576 	bool uc_update;
9577 	u32 mask;
9578 
9579 	if (!test_bit(BNXT_STATE_OPEN, &bp->state))
9580 		return;
9581 
9582 	vnic = &bp->vnic_info[0];
9583 	mask = vnic->rx_mask;
9584 	mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
9585 		  CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
9586 		  CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST |
9587 		  CFA_L2_SET_RX_MASK_REQ_MASK_BCAST);
9588 
9589 	if ((dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
9590 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
9591 
9592 	uc_update = bnxt_uc_list_updated(bp);
9593 
9594 	if (dev->flags & IFF_BROADCAST)
9595 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
9596 	if (dev->flags & IFF_ALLMULTI) {
9597 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
9598 		vnic->mc_list_count = 0;
9599 	} else {
9600 		mc_update = bnxt_mc_list_updated(bp, &mask);
9601 	}
9602 
9603 	if (mask != vnic->rx_mask || uc_update || mc_update) {
9604 		vnic->rx_mask = mask;
9605 
9606 		set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
9607 		bnxt_queue_sp_work(bp);
9608 	}
9609 }
9610 
9611 static int bnxt_cfg_rx_mode(struct bnxt *bp)
9612 {
9613 	struct net_device *dev = bp->dev;
9614 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
9615 	struct netdev_hw_addr *ha;
9616 	int i, off = 0, rc;
9617 	bool uc_update;
9618 
9619 	netif_addr_lock_bh(dev);
9620 	uc_update = bnxt_uc_list_updated(bp);
9621 	netif_addr_unlock_bh(dev);
9622 
9623 	if (!uc_update)
9624 		goto skip_uc;
9625 
9626 	mutex_lock(&bp->hwrm_cmd_lock);
9627 	for (i = 1; i < vnic->uc_filter_count; i++) {
9628 		struct hwrm_cfa_l2_filter_free_input req = {0};
9629 
9630 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_FREE, -1,
9631 				       -1);
9632 
9633 		req.l2_filter_id = vnic->fw_l2_filter_id[i];
9634 
9635 		rc = _hwrm_send_message(bp, &req, sizeof(req),
9636 					HWRM_CMD_TIMEOUT);
9637 	}
9638 	mutex_unlock(&bp->hwrm_cmd_lock);
9639 
9640 	vnic->uc_filter_count = 1;
9641 
9642 	netif_addr_lock_bh(dev);
9643 	if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
9644 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
9645 	} else {
9646 		netdev_for_each_uc_addr(ha, dev) {
9647 			memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
9648 			off += ETH_ALEN;
9649 			vnic->uc_filter_count++;
9650 		}
9651 	}
9652 	netif_addr_unlock_bh(dev);
9653 
9654 	for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
9655 		rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
9656 		if (rc) {
9657 			netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n",
9658 				   rc);
9659 			vnic->uc_filter_count = i;
9660 			return rc;
9661 		}
9662 	}
9663 
9664 skip_uc:
9665 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
9666 	if (rc && vnic->mc_list_count) {
9667 		netdev_info(bp->dev, "Failed setting MC filters rc: %d, turning on ALL_MCAST mode\n",
9668 			    rc);
9669 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
9670 		vnic->mc_list_count = 0;
9671 		rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
9672 	}
9673 	if (rc)
9674 		netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %d\n",
9675 			   rc);
9676 
9677 	return rc;
9678 }
9679 
9680 static bool bnxt_can_reserve_rings(struct bnxt *bp)
9681 {
9682 #ifdef CONFIG_BNXT_SRIOV
9683 	if (BNXT_NEW_RM(bp) && BNXT_VF(bp)) {
9684 		struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
9685 
9686 		/* No minimum rings were provisioned by the PF.  Don't
9687 		 * reserve rings by default when device is down.
9688 		 */
9689 		if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings)
9690 			return true;
9691 
9692 		if (!netif_running(bp->dev))
9693 			return false;
9694 	}
9695 #endif
9696 	return true;
9697 }
9698 
9699 /* If the chip and firmware supports RFS */
9700 static bool bnxt_rfs_supported(struct bnxt *bp)
9701 {
9702 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
9703 		if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2)
9704 			return true;
9705 		return false;
9706 	}
9707 	if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
9708 		return true;
9709 	if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
9710 		return true;
9711 	return false;
9712 }
9713 
9714 /* If runtime conditions support RFS */
9715 static bool bnxt_rfs_capable(struct bnxt *bp)
9716 {
9717 #ifdef CONFIG_RFS_ACCEL
9718 	int vnics, max_vnics, max_rss_ctxs;
9719 
9720 	if (bp->flags & BNXT_FLAG_CHIP_P5)
9721 		return bnxt_rfs_supported(bp);
9722 	if (!(bp->flags & BNXT_FLAG_MSIX_CAP) || !bnxt_can_reserve_rings(bp))
9723 		return false;
9724 
9725 	vnics = 1 + bp->rx_nr_rings;
9726 	max_vnics = bnxt_get_max_func_vnics(bp);
9727 	max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp);
9728 
9729 	/* RSS contexts not a limiting factor */
9730 	if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
9731 		max_rss_ctxs = max_vnics;
9732 	if (vnics > max_vnics || vnics > max_rss_ctxs) {
9733 		if (bp->rx_nr_rings > 1)
9734 			netdev_warn(bp->dev,
9735 				    "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n",
9736 				    min(max_rss_ctxs - 1, max_vnics - 1));
9737 		return false;
9738 	}
9739 
9740 	if (!BNXT_NEW_RM(bp))
9741 		return true;
9742 
9743 	if (vnics == bp->hw_resc.resv_vnics)
9744 		return true;
9745 
9746 	bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, vnics);
9747 	if (vnics <= bp->hw_resc.resv_vnics)
9748 		return true;
9749 
9750 	netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n");
9751 	bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, 1);
9752 	return false;
9753 #else
9754 	return false;
9755 #endif
9756 }
9757 
9758 static netdev_features_t bnxt_fix_features(struct net_device *dev,
9759 					   netdev_features_t features)
9760 {
9761 	struct bnxt *bp = netdev_priv(dev);
9762 
9763 	if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp))
9764 		features &= ~NETIF_F_NTUPLE;
9765 
9766 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
9767 		features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
9768 
9769 	if (!(features & NETIF_F_GRO))
9770 		features &= ~NETIF_F_GRO_HW;
9771 
9772 	if (features & NETIF_F_GRO_HW)
9773 		features &= ~NETIF_F_LRO;
9774 
9775 	/* Both CTAG and STAG VLAN accelaration on the RX side have to be
9776 	 * turned on or off together.
9777 	 */
9778 	if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) !=
9779 	    (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) {
9780 		if (dev->features & NETIF_F_HW_VLAN_CTAG_RX)
9781 			features &= ~(NETIF_F_HW_VLAN_CTAG_RX |
9782 				      NETIF_F_HW_VLAN_STAG_RX);
9783 		else
9784 			features |= NETIF_F_HW_VLAN_CTAG_RX |
9785 				    NETIF_F_HW_VLAN_STAG_RX;
9786 	}
9787 #ifdef CONFIG_BNXT_SRIOV
9788 	if (BNXT_VF(bp)) {
9789 		if (bp->vf.vlan) {
9790 			features &= ~(NETIF_F_HW_VLAN_CTAG_RX |
9791 				      NETIF_F_HW_VLAN_STAG_RX);
9792 		}
9793 	}
9794 #endif
9795 	return features;
9796 }
9797 
9798 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
9799 {
9800 	struct bnxt *bp = netdev_priv(dev);
9801 	u32 flags = bp->flags;
9802 	u32 changes;
9803 	int rc = 0;
9804 	bool re_init = false;
9805 	bool update_tpa = false;
9806 
9807 	flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
9808 	if (features & NETIF_F_GRO_HW)
9809 		flags |= BNXT_FLAG_GRO;
9810 	else if (features & NETIF_F_LRO)
9811 		flags |= BNXT_FLAG_LRO;
9812 
9813 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
9814 		flags &= ~BNXT_FLAG_TPA;
9815 
9816 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
9817 		flags |= BNXT_FLAG_STRIP_VLAN;
9818 
9819 	if (features & NETIF_F_NTUPLE)
9820 		flags |= BNXT_FLAG_RFS;
9821 
9822 	changes = flags ^ bp->flags;
9823 	if (changes & BNXT_FLAG_TPA) {
9824 		update_tpa = true;
9825 		if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
9826 		    (flags & BNXT_FLAG_TPA) == 0 ||
9827 		    (bp->flags & BNXT_FLAG_CHIP_P5))
9828 			re_init = true;
9829 	}
9830 
9831 	if (changes & ~BNXT_FLAG_TPA)
9832 		re_init = true;
9833 
9834 	if (flags != bp->flags) {
9835 		u32 old_flags = bp->flags;
9836 
9837 		if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
9838 			bp->flags = flags;
9839 			if (update_tpa)
9840 				bnxt_set_ring_params(bp);
9841 			return rc;
9842 		}
9843 
9844 		if (re_init) {
9845 			bnxt_close_nic(bp, false, false);
9846 			bp->flags = flags;
9847 			if (update_tpa)
9848 				bnxt_set_ring_params(bp);
9849 
9850 			return bnxt_open_nic(bp, false, false);
9851 		}
9852 		if (update_tpa) {
9853 			bp->flags = flags;
9854 			rc = bnxt_set_tpa(bp,
9855 					  (flags & BNXT_FLAG_TPA) ?
9856 					  true : false);
9857 			if (rc)
9858 				bp->flags = old_flags;
9859 		}
9860 	}
9861 	return rc;
9862 }
9863 
9864 static int bnxt_dbg_hwrm_ring_info_get(struct bnxt *bp, u8 ring_type,
9865 				       u32 ring_id, u32 *prod, u32 *cons)
9866 {
9867 	struct hwrm_dbg_ring_info_get_output *resp = bp->hwrm_cmd_resp_addr;
9868 	struct hwrm_dbg_ring_info_get_input req = {0};
9869 	int rc;
9870 
9871 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_DBG_RING_INFO_GET, -1, -1);
9872 	req.ring_type = ring_type;
9873 	req.fw_ring_id = cpu_to_le32(ring_id);
9874 	mutex_lock(&bp->hwrm_cmd_lock);
9875 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9876 	if (!rc) {
9877 		*prod = le32_to_cpu(resp->producer_index);
9878 		*cons = le32_to_cpu(resp->consumer_index);
9879 	}
9880 	mutex_unlock(&bp->hwrm_cmd_lock);
9881 	return rc;
9882 }
9883 
9884 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
9885 {
9886 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
9887 	int i = bnapi->index;
9888 
9889 	if (!txr)
9890 		return;
9891 
9892 	netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
9893 		    i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
9894 		    txr->tx_cons);
9895 }
9896 
9897 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
9898 {
9899 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
9900 	int i = bnapi->index;
9901 
9902 	if (!rxr)
9903 		return;
9904 
9905 	netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
9906 		    i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
9907 		    rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
9908 		    rxr->rx_sw_agg_prod);
9909 }
9910 
9911 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
9912 {
9913 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
9914 	int i = bnapi->index;
9915 
9916 	netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
9917 		    i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
9918 }
9919 
9920 static void bnxt_dbg_dump_states(struct bnxt *bp)
9921 {
9922 	int i;
9923 	struct bnxt_napi *bnapi;
9924 
9925 	for (i = 0; i < bp->cp_nr_rings; i++) {
9926 		bnapi = bp->bnapi[i];
9927 		if (netif_msg_drv(bp)) {
9928 			bnxt_dump_tx_sw_state(bnapi);
9929 			bnxt_dump_rx_sw_state(bnapi);
9930 			bnxt_dump_cp_sw_state(bnapi);
9931 		}
9932 	}
9933 }
9934 
9935 static void bnxt_reset_task(struct bnxt *bp, bool silent)
9936 {
9937 	if (!silent)
9938 		bnxt_dbg_dump_states(bp);
9939 	if (netif_running(bp->dev)) {
9940 		int rc;
9941 
9942 		if (silent) {
9943 			bnxt_close_nic(bp, false, false);
9944 			bnxt_open_nic(bp, false, false);
9945 		} else {
9946 			bnxt_ulp_stop(bp);
9947 			bnxt_close_nic(bp, true, false);
9948 			rc = bnxt_open_nic(bp, true, false);
9949 			bnxt_ulp_start(bp, rc);
9950 		}
9951 	}
9952 }
9953 
9954 static void bnxt_tx_timeout(struct net_device *dev, unsigned int txqueue)
9955 {
9956 	struct bnxt *bp = netdev_priv(dev);
9957 
9958 	netdev_err(bp->dev,  "TX timeout detected, starting reset task!\n");
9959 	set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
9960 	bnxt_queue_sp_work(bp);
9961 }
9962 
9963 static void bnxt_fw_health_check(struct bnxt *bp)
9964 {
9965 	struct bnxt_fw_health *fw_health = bp->fw_health;
9966 	u32 val;
9967 
9968 	if (!fw_health->enabled || test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
9969 		return;
9970 
9971 	if (fw_health->tmr_counter) {
9972 		fw_health->tmr_counter--;
9973 		return;
9974 	}
9975 
9976 	val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
9977 	if (val == fw_health->last_fw_heartbeat)
9978 		goto fw_reset;
9979 
9980 	fw_health->last_fw_heartbeat = val;
9981 
9982 	val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
9983 	if (val != fw_health->last_fw_reset_cnt)
9984 		goto fw_reset;
9985 
9986 	fw_health->tmr_counter = fw_health->tmr_multiplier;
9987 	return;
9988 
9989 fw_reset:
9990 	set_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event);
9991 	bnxt_queue_sp_work(bp);
9992 }
9993 
9994 static void bnxt_timer(struct timer_list *t)
9995 {
9996 	struct bnxt *bp = from_timer(bp, t, timer);
9997 	struct net_device *dev = bp->dev;
9998 
9999 	if (!netif_running(dev))
10000 		return;
10001 
10002 	if (atomic_read(&bp->intr_sem) != 0)
10003 		goto bnxt_restart_timer;
10004 
10005 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
10006 		bnxt_fw_health_check(bp);
10007 
10008 	if (bp->link_info.link_up && (bp->flags & BNXT_FLAG_PORT_STATS) &&
10009 	    bp->stats_coal_ticks) {
10010 		set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event);
10011 		bnxt_queue_sp_work(bp);
10012 	}
10013 
10014 	if (bnxt_tc_flower_enabled(bp)) {
10015 		set_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event);
10016 		bnxt_queue_sp_work(bp);
10017 	}
10018 
10019 #ifdef CONFIG_RFS_ACCEL
10020 	if ((bp->flags & BNXT_FLAG_RFS) && bp->ntp_fltr_count) {
10021 		set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
10022 		bnxt_queue_sp_work(bp);
10023 	}
10024 #endif /*CONFIG_RFS_ACCEL*/
10025 
10026 	if (bp->link_info.phy_retry) {
10027 		if (time_after(jiffies, bp->link_info.phy_retry_expires)) {
10028 			bp->link_info.phy_retry = false;
10029 			netdev_warn(bp->dev, "failed to update phy settings after maximum retries.\n");
10030 		} else {
10031 			set_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event);
10032 			bnxt_queue_sp_work(bp);
10033 		}
10034 	}
10035 
10036 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && !bp->chip_rev &&
10037 	    netif_carrier_ok(dev)) {
10038 		set_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event);
10039 		bnxt_queue_sp_work(bp);
10040 	}
10041 bnxt_restart_timer:
10042 	mod_timer(&bp->timer, jiffies + bp->current_interval);
10043 }
10044 
10045 static void bnxt_rtnl_lock_sp(struct bnxt *bp)
10046 {
10047 	/* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK
10048 	 * set.  If the device is being closed, bnxt_close() may be holding
10049 	 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear.  So we
10050 	 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl().
10051 	 */
10052 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
10053 	rtnl_lock();
10054 }
10055 
10056 static void bnxt_rtnl_unlock_sp(struct bnxt *bp)
10057 {
10058 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
10059 	rtnl_unlock();
10060 }
10061 
10062 /* Only called from bnxt_sp_task() */
10063 static void bnxt_reset(struct bnxt *bp, bool silent)
10064 {
10065 	bnxt_rtnl_lock_sp(bp);
10066 	if (test_bit(BNXT_STATE_OPEN, &bp->state))
10067 		bnxt_reset_task(bp, silent);
10068 	bnxt_rtnl_unlock_sp(bp);
10069 }
10070 
10071 static void bnxt_fw_reset_close(struct bnxt *bp)
10072 {
10073 	bnxt_ulp_stop(bp);
10074 	/* When firmware is fatal state, disable PCI device to prevent
10075 	 * any potential bad DMAs before freeing kernel memory.
10076 	 */
10077 	if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
10078 		pci_disable_device(bp->pdev);
10079 	__bnxt_close_nic(bp, true, false);
10080 	bnxt_clear_int_mode(bp);
10081 	bnxt_hwrm_func_drv_unrgtr(bp);
10082 	if (pci_is_enabled(bp->pdev))
10083 		pci_disable_device(bp->pdev);
10084 	bnxt_free_ctx_mem(bp);
10085 	kfree(bp->ctx);
10086 	bp->ctx = NULL;
10087 }
10088 
10089 static bool is_bnxt_fw_ok(struct bnxt *bp)
10090 {
10091 	struct bnxt_fw_health *fw_health = bp->fw_health;
10092 	bool no_heartbeat = false, has_reset = false;
10093 	u32 val;
10094 
10095 	val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
10096 	if (val == fw_health->last_fw_heartbeat)
10097 		no_heartbeat = true;
10098 
10099 	val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
10100 	if (val != fw_health->last_fw_reset_cnt)
10101 		has_reset = true;
10102 
10103 	if (!no_heartbeat && has_reset)
10104 		return true;
10105 
10106 	return false;
10107 }
10108 
10109 /* rtnl_lock is acquired before calling this function */
10110 static void bnxt_force_fw_reset(struct bnxt *bp)
10111 {
10112 	struct bnxt_fw_health *fw_health = bp->fw_health;
10113 	u32 wait_dsecs;
10114 
10115 	if (!test_bit(BNXT_STATE_OPEN, &bp->state) ||
10116 	    test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
10117 		return;
10118 
10119 	set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
10120 	bnxt_fw_reset_close(bp);
10121 	wait_dsecs = fw_health->master_func_wait_dsecs;
10122 	if (fw_health->master) {
10123 		if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU)
10124 			wait_dsecs = 0;
10125 		bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW;
10126 	} else {
10127 		bp->fw_reset_timestamp = jiffies + wait_dsecs * HZ / 10;
10128 		wait_dsecs = fw_health->normal_func_wait_dsecs;
10129 		bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
10130 	}
10131 
10132 	bp->fw_reset_min_dsecs = fw_health->post_reset_wait_dsecs;
10133 	bp->fw_reset_max_dsecs = fw_health->post_reset_max_wait_dsecs;
10134 	bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10);
10135 }
10136 
10137 void bnxt_fw_exception(struct bnxt *bp)
10138 {
10139 	netdev_warn(bp->dev, "Detected firmware fatal condition, initiating reset\n");
10140 	set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
10141 	bnxt_rtnl_lock_sp(bp);
10142 	bnxt_force_fw_reset(bp);
10143 	bnxt_rtnl_unlock_sp(bp);
10144 }
10145 
10146 /* Returns the number of registered VFs, or 1 if VF configuration is pending, or
10147  * < 0 on error.
10148  */
10149 static int bnxt_get_registered_vfs(struct bnxt *bp)
10150 {
10151 #ifdef CONFIG_BNXT_SRIOV
10152 	int rc;
10153 
10154 	if (!BNXT_PF(bp))
10155 		return 0;
10156 
10157 	rc = bnxt_hwrm_func_qcfg(bp);
10158 	if (rc) {
10159 		netdev_err(bp->dev, "func_qcfg cmd failed, rc = %d\n", rc);
10160 		return rc;
10161 	}
10162 	if (bp->pf.registered_vfs)
10163 		return bp->pf.registered_vfs;
10164 	if (bp->sriov_cfg)
10165 		return 1;
10166 #endif
10167 	return 0;
10168 }
10169 
10170 void bnxt_fw_reset(struct bnxt *bp)
10171 {
10172 	bnxt_rtnl_lock_sp(bp);
10173 	if (test_bit(BNXT_STATE_OPEN, &bp->state) &&
10174 	    !test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
10175 		int n = 0, tmo;
10176 
10177 		set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
10178 		if (bp->pf.active_vfs &&
10179 		    !test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
10180 			n = bnxt_get_registered_vfs(bp);
10181 		if (n < 0) {
10182 			netdev_err(bp->dev, "Firmware reset aborted, rc = %d\n",
10183 				   n);
10184 			clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
10185 			dev_close(bp->dev);
10186 			goto fw_reset_exit;
10187 		} else if (n > 0) {
10188 			u16 vf_tmo_dsecs = n * 10;
10189 
10190 			if (bp->fw_reset_max_dsecs < vf_tmo_dsecs)
10191 				bp->fw_reset_max_dsecs = vf_tmo_dsecs;
10192 			bp->fw_reset_state =
10193 				BNXT_FW_RESET_STATE_POLL_VF;
10194 			bnxt_queue_fw_reset_work(bp, HZ / 10);
10195 			goto fw_reset_exit;
10196 		}
10197 		bnxt_fw_reset_close(bp);
10198 		if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
10199 			bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN;
10200 			tmo = HZ / 10;
10201 		} else {
10202 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
10203 			tmo = bp->fw_reset_min_dsecs * HZ / 10;
10204 		}
10205 		bnxt_queue_fw_reset_work(bp, tmo);
10206 	}
10207 fw_reset_exit:
10208 	bnxt_rtnl_unlock_sp(bp);
10209 }
10210 
10211 static void bnxt_chk_missed_irq(struct bnxt *bp)
10212 {
10213 	int i;
10214 
10215 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
10216 		return;
10217 
10218 	for (i = 0; i < bp->cp_nr_rings; i++) {
10219 		struct bnxt_napi *bnapi = bp->bnapi[i];
10220 		struct bnxt_cp_ring_info *cpr;
10221 		u32 fw_ring_id;
10222 		int j;
10223 
10224 		if (!bnapi)
10225 			continue;
10226 
10227 		cpr = &bnapi->cp_ring;
10228 		for (j = 0; j < 2; j++) {
10229 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
10230 			u32 val[2];
10231 
10232 			if (!cpr2 || cpr2->has_more_work ||
10233 			    !bnxt_has_work(bp, cpr2))
10234 				continue;
10235 
10236 			if (cpr2->cp_raw_cons != cpr2->last_cp_raw_cons) {
10237 				cpr2->last_cp_raw_cons = cpr2->cp_raw_cons;
10238 				continue;
10239 			}
10240 			fw_ring_id = cpr2->cp_ring_struct.fw_ring_id;
10241 			bnxt_dbg_hwrm_ring_info_get(bp,
10242 				DBG_RING_INFO_GET_REQ_RING_TYPE_L2_CMPL,
10243 				fw_ring_id, &val[0], &val[1]);
10244 			cpr->missed_irqs++;
10245 		}
10246 	}
10247 }
10248 
10249 static void bnxt_cfg_ntp_filters(struct bnxt *);
10250 
10251 static void bnxt_init_ethtool_link_settings(struct bnxt *bp)
10252 {
10253 	struct bnxt_link_info *link_info = &bp->link_info;
10254 
10255 	if (BNXT_AUTO_MODE(link_info->auto_mode)) {
10256 		link_info->autoneg = BNXT_AUTONEG_SPEED;
10257 		if (bp->hwrm_spec_code >= 0x10201) {
10258 			if (link_info->auto_pause_setting &
10259 			    PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE)
10260 				link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
10261 		} else {
10262 			link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
10263 		}
10264 		link_info->advertising = link_info->auto_link_speeds;
10265 	} else {
10266 		link_info->req_link_speed = link_info->force_link_speed;
10267 		link_info->req_duplex = link_info->duplex_setting;
10268 	}
10269 	if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL)
10270 		link_info->req_flow_ctrl =
10271 			link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH;
10272 	else
10273 		link_info->req_flow_ctrl = link_info->force_pause_setting;
10274 }
10275 
10276 static void bnxt_sp_task(struct work_struct *work)
10277 {
10278 	struct bnxt *bp = container_of(work, struct bnxt, sp_task);
10279 
10280 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
10281 	smp_mb__after_atomic();
10282 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
10283 		clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
10284 		return;
10285 	}
10286 
10287 	if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
10288 		bnxt_cfg_rx_mode(bp);
10289 
10290 	if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
10291 		bnxt_cfg_ntp_filters(bp);
10292 	if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
10293 		bnxt_hwrm_exec_fwd_req(bp);
10294 	if (test_and_clear_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event)) {
10295 		bnxt_hwrm_tunnel_dst_port_alloc(
10296 			bp, bp->vxlan_port,
10297 			TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
10298 	}
10299 	if (test_and_clear_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event)) {
10300 		bnxt_hwrm_tunnel_dst_port_free(
10301 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
10302 	}
10303 	if (test_and_clear_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event)) {
10304 		bnxt_hwrm_tunnel_dst_port_alloc(
10305 			bp, bp->nge_port,
10306 			TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
10307 	}
10308 	if (test_and_clear_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event)) {
10309 		bnxt_hwrm_tunnel_dst_port_free(
10310 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
10311 	}
10312 	if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) {
10313 		bnxt_hwrm_port_qstats(bp);
10314 		bnxt_hwrm_port_qstats_ext(bp);
10315 		bnxt_hwrm_pcie_qstats(bp);
10316 	}
10317 
10318 	if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
10319 		int rc;
10320 
10321 		mutex_lock(&bp->link_lock);
10322 		if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT,
10323 				       &bp->sp_event))
10324 			bnxt_hwrm_phy_qcaps(bp);
10325 
10326 		if (test_and_clear_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT,
10327 				       &bp->sp_event))
10328 			bnxt_init_ethtool_link_settings(bp);
10329 
10330 		rc = bnxt_update_link(bp, true);
10331 		mutex_unlock(&bp->link_lock);
10332 		if (rc)
10333 			netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
10334 				   rc);
10335 	}
10336 	if (test_and_clear_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event)) {
10337 		int rc;
10338 
10339 		mutex_lock(&bp->link_lock);
10340 		rc = bnxt_update_phy_setting(bp);
10341 		mutex_unlock(&bp->link_lock);
10342 		if (rc) {
10343 			netdev_warn(bp->dev, "update phy settings retry failed\n");
10344 		} else {
10345 			bp->link_info.phy_retry = false;
10346 			netdev_info(bp->dev, "update phy settings retry succeeded\n");
10347 		}
10348 	}
10349 	if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) {
10350 		mutex_lock(&bp->link_lock);
10351 		bnxt_get_port_module_status(bp);
10352 		mutex_unlock(&bp->link_lock);
10353 	}
10354 
10355 	if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event))
10356 		bnxt_tc_flow_stats_work(bp);
10357 
10358 	if (test_and_clear_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event))
10359 		bnxt_chk_missed_irq(bp);
10360 
10361 	/* These functions below will clear BNXT_STATE_IN_SP_TASK.  They
10362 	 * must be the last functions to be called before exiting.
10363 	 */
10364 	if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event))
10365 		bnxt_reset(bp, false);
10366 
10367 	if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event))
10368 		bnxt_reset(bp, true);
10369 
10370 	if (test_and_clear_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event))
10371 		bnxt_devlink_health_report(bp, BNXT_FW_RESET_NOTIFY_SP_EVENT);
10372 
10373 	if (test_and_clear_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event)) {
10374 		if (!is_bnxt_fw_ok(bp))
10375 			bnxt_devlink_health_report(bp,
10376 						   BNXT_FW_EXCEPTION_SP_EVENT);
10377 	}
10378 
10379 	smp_mb__before_atomic();
10380 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
10381 }
10382 
10383 /* Under rtnl_lock */
10384 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs,
10385 		     int tx_xdp)
10386 {
10387 	int max_rx, max_tx, tx_sets = 1;
10388 	int tx_rings_needed, stats;
10389 	int rx_rings = rx;
10390 	int cp, vnics, rc;
10391 
10392 	if (tcs)
10393 		tx_sets = tcs;
10394 
10395 	rc = bnxt_get_max_rings(bp, &max_rx, &max_tx, sh);
10396 	if (rc)
10397 		return rc;
10398 
10399 	if (max_rx < rx)
10400 		return -ENOMEM;
10401 
10402 	tx_rings_needed = tx * tx_sets + tx_xdp;
10403 	if (max_tx < tx_rings_needed)
10404 		return -ENOMEM;
10405 
10406 	vnics = 1;
10407 	if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS)
10408 		vnics += rx_rings;
10409 
10410 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
10411 		rx_rings <<= 1;
10412 	cp = sh ? max_t(int, tx_rings_needed, rx) : tx_rings_needed + rx;
10413 	stats = cp;
10414 	if (BNXT_NEW_RM(bp)) {
10415 		cp += bnxt_get_ulp_msix_num(bp);
10416 		stats += bnxt_get_ulp_stat_ctxs(bp);
10417 	}
10418 	return bnxt_hwrm_check_rings(bp, tx_rings_needed, rx_rings, rx, cp,
10419 				     stats, vnics);
10420 }
10421 
10422 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev)
10423 {
10424 	if (bp->bar2) {
10425 		pci_iounmap(pdev, bp->bar2);
10426 		bp->bar2 = NULL;
10427 	}
10428 
10429 	if (bp->bar1) {
10430 		pci_iounmap(pdev, bp->bar1);
10431 		bp->bar1 = NULL;
10432 	}
10433 
10434 	if (bp->bar0) {
10435 		pci_iounmap(pdev, bp->bar0);
10436 		bp->bar0 = NULL;
10437 	}
10438 }
10439 
10440 static void bnxt_cleanup_pci(struct bnxt *bp)
10441 {
10442 	bnxt_unmap_bars(bp, bp->pdev);
10443 	pci_release_regions(bp->pdev);
10444 	if (pci_is_enabled(bp->pdev))
10445 		pci_disable_device(bp->pdev);
10446 }
10447 
10448 static void bnxt_init_dflt_coal(struct bnxt *bp)
10449 {
10450 	struct bnxt_coal *coal;
10451 
10452 	/* Tick values in micro seconds.
10453 	 * 1 coal_buf x bufs_per_record = 1 completion record.
10454 	 */
10455 	coal = &bp->rx_coal;
10456 	coal->coal_ticks = 10;
10457 	coal->coal_bufs = 30;
10458 	coal->coal_ticks_irq = 1;
10459 	coal->coal_bufs_irq = 2;
10460 	coal->idle_thresh = 50;
10461 	coal->bufs_per_record = 2;
10462 	coal->budget = 64;		/* NAPI budget */
10463 
10464 	coal = &bp->tx_coal;
10465 	coal->coal_ticks = 28;
10466 	coal->coal_bufs = 30;
10467 	coal->coal_ticks_irq = 2;
10468 	coal->coal_bufs_irq = 2;
10469 	coal->bufs_per_record = 1;
10470 
10471 	bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS;
10472 }
10473 
10474 static void bnxt_alloc_fw_health(struct bnxt *bp)
10475 {
10476 	if (bp->fw_health)
10477 		return;
10478 
10479 	if (!(bp->fw_cap & BNXT_FW_CAP_HOT_RESET) &&
10480 	    !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
10481 		return;
10482 
10483 	bp->fw_health = kzalloc(sizeof(*bp->fw_health), GFP_KERNEL);
10484 	if (!bp->fw_health) {
10485 		netdev_warn(bp->dev, "Failed to allocate fw_health\n");
10486 		bp->fw_cap &= ~BNXT_FW_CAP_HOT_RESET;
10487 		bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
10488 	}
10489 }
10490 
10491 static int bnxt_fw_init_one_p1(struct bnxt *bp)
10492 {
10493 	int rc;
10494 
10495 	bp->fw_cap = 0;
10496 	rc = bnxt_hwrm_ver_get(bp);
10497 	if (rc)
10498 		return rc;
10499 
10500 	if (bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL) {
10501 		rc = bnxt_alloc_kong_hwrm_resources(bp);
10502 		if (rc)
10503 			bp->fw_cap &= ~BNXT_FW_CAP_KONG_MB_CHNL;
10504 	}
10505 
10506 	if ((bp->fw_cap & BNXT_FW_CAP_SHORT_CMD) ||
10507 	    bp->hwrm_max_ext_req_len > BNXT_HWRM_MAX_REQ_LEN) {
10508 		rc = bnxt_alloc_hwrm_short_cmd_req(bp);
10509 		if (rc)
10510 			return rc;
10511 	}
10512 	rc = bnxt_hwrm_func_reset(bp);
10513 	if (rc)
10514 		return -ENODEV;
10515 
10516 	bnxt_hwrm_fw_set_time(bp);
10517 	return 0;
10518 }
10519 
10520 static int bnxt_fw_init_one_p2(struct bnxt *bp)
10521 {
10522 	int rc;
10523 
10524 	/* Get the MAX capabilities for this function */
10525 	rc = bnxt_hwrm_func_qcaps(bp);
10526 	if (rc) {
10527 		netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
10528 			   rc);
10529 		return -ENODEV;
10530 	}
10531 
10532 	rc = bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(bp);
10533 	if (rc)
10534 		netdev_warn(bp->dev, "hwrm query adv flow mgnt failure rc: %d\n",
10535 			    rc);
10536 
10537 	bnxt_alloc_fw_health(bp);
10538 	rc = bnxt_hwrm_error_recovery_qcfg(bp);
10539 	if (rc)
10540 		netdev_warn(bp->dev, "hwrm query error recovery failure rc: %d\n",
10541 			    rc);
10542 
10543 	rc = bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false);
10544 	if (rc)
10545 		return -ENODEV;
10546 
10547 	bnxt_hwrm_func_qcfg(bp);
10548 	bnxt_hwrm_vnic_qcaps(bp);
10549 	bnxt_hwrm_port_led_qcaps(bp);
10550 	bnxt_ethtool_init(bp);
10551 	bnxt_dcb_init(bp);
10552 	return 0;
10553 }
10554 
10555 static void bnxt_set_dflt_rss_hash_type(struct bnxt *bp)
10556 {
10557 	bp->flags &= ~BNXT_FLAG_UDP_RSS_CAP;
10558 	bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 |
10559 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 |
10560 			   VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 |
10561 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6;
10562 	if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) {
10563 		bp->flags |= BNXT_FLAG_UDP_RSS_CAP;
10564 		bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 |
10565 				    VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6;
10566 	}
10567 }
10568 
10569 static void bnxt_set_dflt_rfs(struct bnxt *bp)
10570 {
10571 	struct net_device *dev = bp->dev;
10572 
10573 	dev->hw_features &= ~NETIF_F_NTUPLE;
10574 	dev->features &= ~NETIF_F_NTUPLE;
10575 	bp->flags &= ~BNXT_FLAG_RFS;
10576 	if (bnxt_rfs_supported(bp)) {
10577 		dev->hw_features |= NETIF_F_NTUPLE;
10578 		if (bnxt_rfs_capable(bp)) {
10579 			bp->flags |= BNXT_FLAG_RFS;
10580 			dev->features |= NETIF_F_NTUPLE;
10581 		}
10582 	}
10583 }
10584 
10585 static void bnxt_fw_init_one_p3(struct bnxt *bp)
10586 {
10587 	struct pci_dev *pdev = bp->pdev;
10588 
10589 	bnxt_set_dflt_rss_hash_type(bp);
10590 	bnxt_set_dflt_rfs(bp);
10591 
10592 	bnxt_get_wol_settings(bp);
10593 	if (bp->flags & BNXT_FLAG_WOL_CAP)
10594 		device_set_wakeup_enable(&pdev->dev, bp->wol);
10595 	else
10596 		device_set_wakeup_capable(&pdev->dev, false);
10597 
10598 	bnxt_hwrm_set_cache_line_size(bp, cache_line_size());
10599 	bnxt_hwrm_coal_params_qcaps(bp);
10600 }
10601 
10602 static int bnxt_fw_init_one(struct bnxt *bp)
10603 {
10604 	int rc;
10605 
10606 	rc = bnxt_fw_init_one_p1(bp);
10607 	if (rc) {
10608 		netdev_err(bp->dev, "Firmware init phase 1 failed\n");
10609 		return rc;
10610 	}
10611 	rc = bnxt_fw_init_one_p2(bp);
10612 	if (rc) {
10613 		netdev_err(bp->dev, "Firmware init phase 2 failed\n");
10614 		return rc;
10615 	}
10616 	rc = bnxt_approve_mac(bp, bp->dev->dev_addr, false);
10617 	if (rc)
10618 		return rc;
10619 
10620 	/* In case fw capabilities have changed, destroy the unneeded
10621 	 * reporters and create newly capable ones.
10622 	 */
10623 	bnxt_dl_fw_reporters_destroy(bp, false);
10624 	bnxt_dl_fw_reporters_create(bp);
10625 	bnxt_fw_init_one_p3(bp);
10626 	return 0;
10627 }
10628 
10629 static void bnxt_fw_reset_writel(struct bnxt *bp, int reg_idx)
10630 {
10631 	struct bnxt_fw_health *fw_health = bp->fw_health;
10632 	u32 reg = fw_health->fw_reset_seq_regs[reg_idx];
10633 	u32 val = fw_health->fw_reset_seq_vals[reg_idx];
10634 	u32 reg_type, reg_off, delay_msecs;
10635 
10636 	delay_msecs = fw_health->fw_reset_seq_delay_msec[reg_idx];
10637 	reg_type = BNXT_FW_HEALTH_REG_TYPE(reg);
10638 	reg_off = BNXT_FW_HEALTH_REG_OFF(reg);
10639 	switch (reg_type) {
10640 	case BNXT_FW_HEALTH_REG_TYPE_CFG:
10641 		pci_write_config_dword(bp->pdev, reg_off, val);
10642 		break;
10643 	case BNXT_FW_HEALTH_REG_TYPE_GRC:
10644 		writel(reg_off & BNXT_GRC_BASE_MASK,
10645 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4);
10646 		reg_off = (reg_off & BNXT_GRC_OFFSET_MASK) + 0x2000;
10647 		/* fall through */
10648 	case BNXT_FW_HEALTH_REG_TYPE_BAR0:
10649 		writel(val, bp->bar0 + reg_off);
10650 		break;
10651 	case BNXT_FW_HEALTH_REG_TYPE_BAR1:
10652 		writel(val, bp->bar1 + reg_off);
10653 		break;
10654 	}
10655 	if (delay_msecs) {
10656 		pci_read_config_dword(bp->pdev, 0, &val);
10657 		msleep(delay_msecs);
10658 	}
10659 }
10660 
10661 static void bnxt_reset_all(struct bnxt *bp)
10662 {
10663 	struct bnxt_fw_health *fw_health = bp->fw_health;
10664 	int i, rc;
10665 
10666 	if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
10667 #ifdef CONFIG_TEE_BNXT_FW
10668 		rc = tee_bnxt_fw_load();
10669 		if (rc)
10670 			netdev_err(bp->dev, "Unable to reset FW rc=%d\n", rc);
10671 		bp->fw_reset_timestamp = jiffies;
10672 #endif
10673 		return;
10674 	}
10675 
10676 	if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_HOST) {
10677 		for (i = 0; i < fw_health->fw_reset_seq_cnt; i++)
10678 			bnxt_fw_reset_writel(bp, i);
10679 	} else if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) {
10680 		struct hwrm_fw_reset_input req = {0};
10681 
10682 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FW_RESET, -1, -1);
10683 		req.resp_addr = cpu_to_le64(bp->hwrm_cmd_kong_resp_dma_addr);
10684 		req.embedded_proc_type = FW_RESET_REQ_EMBEDDED_PROC_TYPE_CHIP;
10685 		req.selfrst_status = FW_RESET_REQ_SELFRST_STATUS_SELFRSTASAP;
10686 		req.flags = FW_RESET_REQ_FLAGS_RESET_GRACEFUL;
10687 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
10688 		if (rc)
10689 			netdev_warn(bp->dev, "Unable to reset FW rc=%d\n", rc);
10690 	}
10691 	bp->fw_reset_timestamp = jiffies;
10692 }
10693 
10694 static void bnxt_fw_reset_task(struct work_struct *work)
10695 {
10696 	struct bnxt *bp = container_of(work, struct bnxt, fw_reset_task.work);
10697 	int rc;
10698 
10699 	if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
10700 		netdev_err(bp->dev, "bnxt_fw_reset_task() called when not in fw reset mode!\n");
10701 		return;
10702 	}
10703 
10704 	switch (bp->fw_reset_state) {
10705 	case BNXT_FW_RESET_STATE_POLL_VF: {
10706 		int n = bnxt_get_registered_vfs(bp);
10707 		int tmo;
10708 
10709 		if (n < 0) {
10710 			netdev_err(bp->dev, "Firmware reset aborted, subsequent func_qcfg cmd failed, rc = %d, %d msecs since reset timestamp\n",
10711 				   n, jiffies_to_msecs(jiffies -
10712 				   bp->fw_reset_timestamp));
10713 			goto fw_reset_abort;
10714 		} else if (n > 0) {
10715 			if (time_after(jiffies, bp->fw_reset_timestamp +
10716 				       (bp->fw_reset_max_dsecs * HZ / 10))) {
10717 				clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
10718 				bp->fw_reset_state = 0;
10719 				netdev_err(bp->dev, "Firmware reset aborted, bnxt_get_registered_vfs() returns %d\n",
10720 					   n);
10721 				return;
10722 			}
10723 			bnxt_queue_fw_reset_work(bp, HZ / 10);
10724 			return;
10725 		}
10726 		bp->fw_reset_timestamp = jiffies;
10727 		rtnl_lock();
10728 		bnxt_fw_reset_close(bp);
10729 		if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
10730 			bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN;
10731 			tmo = HZ / 10;
10732 		} else {
10733 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
10734 			tmo = bp->fw_reset_min_dsecs * HZ / 10;
10735 		}
10736 		rtnl_unlock();
10737 		bnxt_queue_fw_reset_work(bp, tmo);
10738 		return;
10739 	}
10740 	case BNXT_FW_RESET_STATE_POLL_FW_DOWN: {
10741 		u32 val;
10742 
10743 		val = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
10744 		if (!(val & BNXT_FW_STATUS_SHUTDOWN) &&
10745 		    !time_after(jiffies, bp->fw_reset_timestamp +
10746 		    (bp->fw_reset_max_dsecs * HZ / 10))) {
10747 			bnxt_queue_fw_reset_work(bp, HZ / 5);
10748 			return;
10749 		}
10750 
10751 		if (!bp->fw_health->master) {
10752 			u32 wait_dsecs = bp->fw_health->normal_func_wait_dsecs;
10753 
10754 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
10755 			bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10);
10756 			return;
10757 		}
10758 		bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW;
10759 	}
10760 	/* fall through */
10761 	case BNXT_FW_RESET_STATE_RESET_FW:
10762 		bnxt_reset_all(bp);
10763 		bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
10764 		bnxt_queue_fw_reset_work(bp, bp->fw_reset_min_dsecs * HZ / 10);
10765 		return;
10766 	case BNXT_FW_RESET_STATE_ENABLE_DEV:
10767 		if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) {
10768 			u32 val;
10769 
10770 			val = bnxt_fw_health_readl(bp,
10771 						   BNXT_FW_RESET_INPROG_REG);
10772 			if (val)
10773 				netdev_warn(bp->dev, "FW reset inprog %x after min wait time.\n",
10774 					    val);
10775 		}
10776 		clear_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
10777 		if (pci_enable_device(bp->pdev)) {
10778 			netdev_err(bp->dev, "Cannot re-enable PCI device\n");
10779 			goto fw_reset_abort;
10780 		}
10781 		pci_set_master(bp->pdev);
10782 		bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW;
10783 		/* fall through */
10784 	case BNXT_FW_RESET_STATE_POLL_FW:
10785 		bp->hwrm_cmd_timeout = SHORT_HWRM_CMD_TIMEOUT;
10786 		rc = __bnxt_hwrm_ver_get(bp, true);
10787 		if (rc) {
10788 			if (time_after(jiffies, bp->fw_reset_timestamp +
10789 				       (bp->fw_reset_max_dsecs * HZ / 10))) {
10790 				netdev_err(bp->dev, "Firmware reset aborted\n");
10791 				goto fw_reset_abort;
10792 			}
10793 			bnxt_queue_fw_reset_work(bp, HZ / 5);
10794 			return;
10795 		}
10796 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
10797 		bp->fw_reset_state = BNXT_FW_RESET_STATE_OPENING;
10798 		/* fall through */
10799 	case BNXT_FW_RESET_STATE_OPENING:
10800 		while (!rtnl_trylock()) {
10801 			bnxt_queue_fw_reset_work(bp, HZ / 10);
10802 			return;
10803 		}
10804 		rc = bnxt_open(bp->dev);
10805 		if (rc) {
10806 			netdev_err(bp->dev, "bnxt_open_nic() failed\n");
10807 			clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
10808 			dev_close(bp->dev);
10809 		}
10810 
10811 		bp->fw_reset_state = 0;
10812 		/* Make sure fw_reset_state is 0 before clearing the flag */
10813 		smp_mb__before_atomic();
10814 		clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
10815 		bnxt_ulp_start(bp, rc);
10816 		if (!rc)
10817 			bnxt_reenable_sriov(bp);
10818 		bnxt_dl_health_recovery_done(bp);
10819 		bnxt_dl_health_status_update(bp, true);
10820 		rtnl_unlock();
10821 		break;
10822 	}
10823 	return;
10824 
10825 fw_reset_abort:
10826 	clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
10827 	if (bp->fw_reset_state != BNXT_FW_RESET_STATE_POLL_VF)
10828 		bnxt_dl_health_status_update(bp, false);
10829 	bp->fw_reset_state = 0;
10830 	rtnl_lock();
10831 	dev_close(bp->dev);
10832 	rtnl_unlock();
10833 }
10834 
10835 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
10836 {
10837 	int rc;
10838 	struct bnxt *bp = netdev_priv(dev);
10839 
10840 	SET_NETDEV_DEV(dev, &pdev->dev);
10841 
10842 	/* enable device (incl. PCI PM wakeup), and bus-mastering */
10843 	rc = pci_enable_device(pdev);
10844 	if (rc) {
10845 		dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
10846 		goto init_err;
10847 	}
10848 
10849 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
10850 		dev_err(&pdev->dev,
10851 			"Cannot find PCI device base address, aborting\n");
10852 		rc = -ENODEV;
10853 		goto init_err_disable;
10854 	}
10855 
10856 	rc = pci_request_regions(pdev, DRV_MODULE_NAME);
10857 	if (rc) {
10858 		dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
10859 		goto init_err_disable;
10860 	}
10861 
10862 	if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
10863 	    dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
10864 		dev_err(&pdev->dev, "System does not support DMA, aborting\n");
10865 		goto init_err_disable;
10866 	}
10867 
10868 	pci_set_master(pdev);
10869 
10870 	bp->dev = dev;
10871 	bp->pdev = pdev;
10872 
10873 	bp->bar0 = pci_ioremap_bar(pdev, 0);
10874 	if (!bp->bar0) {
10875 		dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
10876 		rc = -ENOMEM;
10877 		goto init_err_release;
10878 	}
10879 
10880 	bp->bar1 = pci_ioremap_bar(pdev, 2);
10881 	if (!bp->bar1) {
10882 		dev_err(&pdev->dev, "Cannot map doorbell registers, aborting\n");
10883 		rc = -ENOMEM;
10884 		goto init_err_release;
10885 	}
10886 
10887 	bp->bar2 = pci_ioremap_bar(pdev, 4);
10888 	if (!bp->bar2) {
10889 		dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
10890 		rc = -ENOMEM;
10891 		goto init_err_release;
10892 	}
10893 
10894 	pci_enable_pcie_error_reporting(pdev);
10895 
10896 	INIT_WORK(&bp->sp_task, bnxt_sp_task);
10897 	INIT_DELAYED_WORK(&bp->fw_reset_task, bnxt_fw_reset_task);
10898 
10899 	spin_lock_init(&bp->ntp_fltr_lock);
10900 #if BITS_PER_LONG == 32
10901 	spin_lock_init(&bp->db_lock);
10902 #endif
10903 
10904 	bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
10905 	bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
10906 
10907 	bnxt_init_dflt_coal(bp);
10908 
10909 	timer_setup(&bp->timer, bnxt_timer, 0);
10910 	bp->current_interval = BNXT_TIMER_INTERVAL;
10911 
10912 	clear_bit(BNXT_STATE_OPEN, &bp->state);
10913 	return 0;
10914 
10915 init_err_release:
10916 	bnxt_unmap_bars(bp, pdev);
10917 	pci_release_regions(pdev);
10918 
10919 init_err_disable:
10920 	pci_disable_device(pdev);
10921 
10922 init_err:
10923 	return rc;
10924 }
10925 
10926 /* rtnl_lock held */
10927 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
10928 {
10929 	struct sockaddr *addr = p;
10930 	struct bnxt *bp = netdev_priv(dev);
10931 	int rc = 0;
10932 
10933 	if (!is_valid_ether_addr(addr->sa_data))
10934 		return -EADDRNOTAVAIL;
10935 
10936 	if (ether_addr_equal(addr->sa_data, dev->dev_addr))
10937 		return 0;
10938 
10939 	rc = bnxt_approve_mac(bp, addr->sa_data, true);
10940 	if (rc)
10941 		return rc;
10942 
10943 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
10944 	if (netif_running(dev)) {
10945 		bnxt_close_nic(bp, false, false);
10946 		rc = bnxt_open_nic(bp, false, false);
10947 	}
10948 
10949 	return rc;
10950 }
10951 
10952 /* rtnl_lock held */
10953 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
10954 {
10955 	struct bnxt *bp = netdev_priv(dev);
10956 
10957 	if (netif_running(dev))
10958 		bnxt_close_nic(bp, false, false);
10959 
10960 	dev->mtu = new_mtu;
10961 	bnxt_set_ring_params(bp);
10962 
10963 	if (netif_running(dev))
10964 		return bnxt_open_nic(bp, false, false);
10965 
10966 	return 0;
10967 }
10968 
10969 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc)
10970 {
10971 	struct bnxt *bp = netdev_priv(dev);
10972 	bool sh = false;
10973 	int rc;
10974 
10975 	if (tc > bp->max_tc) {
10976 		netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n",
10977 			   tc, bp->max_tc);
10978 		return -EINVAL;
10979 	}
10980 
10981 	if (netdev_get_num_tc(dev) == tc)
10982 		return 0;
10983 
10984 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
10985 		sh = true;
10986 
10987 	rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings,
10988 			      sh, tc, bp->tx_nr_rings_xdp);
10989 	if (rc)
10990 		return rc;
10991 
10992 	/* Needs to close the device and do hw resource re-allocations */
10993 	if (netif_running(bp->dev))
10994 		bnxt_close_nic(bp, true, false);
10995 
10996 	if (tc) {
10997 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
10998 		netdev_set_num_tc(dev, tc);
10999 	} else {
11000 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
11001 		netdev_reset_tc(dev);
11002 	}
11003 	bp->tx_nr_rings += bp->tx_nr_rings_xdp;
11004 	bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
11005 			       bp->tx_nr_rings + bp->rx_nr_rings;
11006 
11007 	if (netif_running(bp->dev))
11008 		return bnxt_open_nic(bp, true, false);
11009 
11010 	return 0;
11011 }
11012 
11013 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
11014 				  void *cb_priv)
11015 {
11016 	struct bnxt *bp = cb_priv;
11017 
11018 	if (!bnxt_tc_flower_enabled(bp) ||
11019 	    !tc_cls_can_offload_and_chain0(bp->dev, type_data))
11020 		return -EOPNOTSUPP;
11021 
11022 	switch (type) {
11023 	case TC_SETUP_CLSFLOWER:
11024 		return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data);
11025 	default:
11026 		return -EOPNOTSUPP;
11027 	}
11028 }
11029 
11030 LIST_HEAD(bnxt_block_cb_list);
11031 
11032 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type,
11033 			 void *type_data)
11034 {
11035 	struct bnxt *bp = netdev_priv(dev);
11036 
11037 	switch (type) {
11038 	case TC_SETUP_BLOCK:
11039 		return flow_block_cb_setup_simple(type_data,
11040 						  &bnxt_block_cb_list,
11041 						  bnxt_setup_tc_block_cb,
11042 						  bp, bp, true);
11043 	case TC_SETUP_QDISC_MQPRIO: {
11044 		struct tc_mqprio_qopt *mqprio = type_data;
11045 
11046 		mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
11047 
11048 		return bnxt_setup_mq_tc(dev, mqprio->num_tc);
11049 	}
11050 	default:
11051 		return -EOPNOTSUPP;
11052 	}
11053 }
11054 
11055 #ifdef CONFIG_RFS_ACCEL
11056 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
11057 			    struct bnxt_ntuple_filter *f2)
11058 {
11059 	struct flow_keys *keys1 = &f1->fkeys;
11060 	struct flow_keys *keys2 = &f2->fkeys;
11061 
11062 	if (keys1->basic.n_proto != keys2->basic.n_proto ||
11063 	    keys1->basic.ip_proto != keys2->basic.ip_proto)
11064 		return false;
11065 
11066 	if (keys1->basic.n_proto == htons(ETH_P_IP)) {
11067 		if (keys1->addrs.v4addrs.src != keys2->addrs.v4addrs.src ||
11068 		    keys1->addrs.v4addrs.dst != keys2->addrs.v4addrs.dst)
11069 			return false;
11070 	} else {
11071 		if (memcmp(&keys1->addrs.v6addrs.src, &keys2->addrs.v6addrs.src,
11072 			   sizeof(keys1->addrs.v6addrs.src)) ||
11073 		    memcmp(&keys1->addrs.v6addrs.dst, &keys2->addrs.v6addrs.dst,
11074 			   sizeof(keys1->addrs.v6addrs.dst)))
11075 			return false;
11076 	}
11077 
11078 	if (keys1->ports.ports == keys2->ports.ports &&
11079 	    keys1->control.flags == keys2->control.flags &&
11080 	    ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) &&
11081 	    ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr))
11082 		return true;
11083 
11084 	return false;
11085 }
11086 
11087 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
11088 			      u16 rxq_index, u32 flow_id)
11089 {
11090 	struct bnxt *bp = netdev_priv(dev);
11091 	struct bnxt_ntuple_filter *fltr, *new_fltr;
11092 	struct flow_keys *fkeys;
11093 	struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
11094 	int rc = 0, idx, bit_id, l2_idx = 0;
11095 	struct hlist_head *head;
11096 	u32 flags;
11097 
11098 	if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) {
11099 		struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
11100 		int off = 0, j;
11101 
11102 		netif_addr_lock_bh(dev);
11103 		for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) {
11104 			if (ether_addr_equal(eth->h_dest,
11105 					     vnic->uc_list + off)) {
11106 				l2_idx = j + 1;
11107 				break;
11108 			}
11109 		}
11110 		netif_addr_unlock_bh(dev);
11111 		if (!l2_idx)
11112 			return -EINVAL;
11113 	}
11114 	new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
11115 	if (!new_fltr)
11116 		return -ENOMEM;
11117 
11118 	fkeys = &new_fltr->fkeys;
11119 	if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
11120 		rc = -EPROTONOSUPPORT;
11121 		goto err_free;
11122 	}
11123 
11124 	if ((fkeys->basic.n_proto != htons(ETH_P_IP) &&
11125 	     fkeys->basic.n_proto != htons(ETH_P_IPV6)) ||
11126 	    ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
11127 	     (fkeys->basic.ip_proto != IPPROTO_UDP))) {
11128 		rc = -EPROTONOSUPPORT;
11129 		goto err_free;
11130 	}
11131 	if (fkeys->basic.n_proto == htons(ETH_P_IPV6) &&
11132 	    bp->hwrm_spec_code < 0x10601) {
11133 		rc = -EPROTONOSUPPORT;
11134 		goto err_free;
11135 	}
11136 	flags = fkeys->control.flags;
11137 	if (((flags & FLOW_DIS_ENCAPSULATION) &&
11138 	     bp->hwrm_spec_code < 0x10601) || (flags & FLOW_DIS_IS_FRAGMENT)) {
11139 		rc = -EPROTONOSUPPORT;
11140 		goto err_free;
11141 	}
11142 
11143 	memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN);
11144 	memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
11145 
11146 	idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
11147 	head = &bp->ntp_fltr_hash_tbl[idx];
11148 	rcu_read_lock();
11149 	hlist_for_each_entry_rcu(fltr, head, hash) {
11150 		if (bnxt_fltr_match(fltr, new_fltr)) {
11151 			rcu_read_unlock();
11152 			rc = 0;
11153 			goto err_free;
11154 		}
11155 	}
11156 	rcu_read_unlock();
11157 
11158 	spin_lock_bh(&bp->ntp_fltr_lock);
11159 	bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
11160 					 BNXT_NTP_FLTR_MAX_FLTR, 0);
11161 	if (bit_id < 0) {
11162 		spin_unlock_bh(&bp->ntp_fltr_lock);
11163 		rc = -ENOMEM;
11164 		goto err_free;
11165 	}
11166 
11167 	new_fltr->sw_id = (u16)bit_id;
11168 	new_fltr->flow_id = flow_id;
11169 	new_fltr->l2_fltr_idx = l2_idx;
11170 	new_fltr->rxq = rxq_index;
11171 	hlist_add_head_rcu(&new_fltr->hash, head);
11172 	bp->ntp_fltr_count++;
11173 	spin_unlock_bh(&bp->ntp_fltr_lock);
11174 
11175 	set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
11176 	bnxt_queue_sp_work(bp);
11177 
11178 	return new_fltr->sw_id;
11179 
11180 err_free:
11181 	kfree(new_fltr);
11182 	return rc;
11183 }
11184 
11185 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
11186 {
11187 	int i;
11188 
11189 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
11190 		struct hlist_head *head;
11191 		struct hlist_node *tmp;
11192 		struct bnxt_ntuple_filter *fltr;
11193 		int rc;
11194 
11195 		head = &bp->ntp_fltr_hash_tbl[i];
11196 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
11197 			bool del = false;
11198 
11199 			if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
11200 				if (rps_may_expire_flow(bp->dev, fltr->rxq,
11201 							fltr->flow_id,
11202 							fltr->sw_id)) {
11203 					bnxt_hwrm_cfa_ntuple_filter_free(bp,
11204 									 fltr);
11205 					del = true;
11206 				}
11207 			} else {
11208 				rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
11209 								       fltr);
11210 				if (rc)
11211 					del = true;
11212 				else
11213 					set_bit(BNXT_FLTR_VALID, &fltr->state);
11214 			}
11215 
11216 			if (del) {
11217 				spin_lock_bh(&bp->ntp_fltr_lock);
11218 				hlist_del_rcu(&fltr->hash);
11219 				bp->ntp_fltr_count--;
11220 				spin_unlock_bh(&bp->ntp_fltr_lock);
11221 				synchronize_rcu();
11222 				clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
11223 				kfree(fltr);
11224 			}
11225 		}
11226 	}
11227 	if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event))
11228 		netdev_info(bp->dev, "Receive PF driver unload event!\n");
11229 }
11230 
11231 #else
11232 
11233 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
11234 {
11235 }
11236 
11237 #endif /* CONFIG_RFS_ACCEL */
11238 
11239 static void bnxt_udp_tunnel_add(struct net_device *dev,
11240 				struct udp_tunnel_info *ti)
11241 {
11242 	struct bnxt *bp = netdev_priv(dev);
11243 
11244 	if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET)
11245 		return;
11246 
11247 	if (!netif_running(dev))
11248 		return;
11249 
11250 	switch (ti->type) {
11251 	case UDP_TUNNEL_TYPE_VXLAN:
11252 		if (bp->vxlan_port_cnt && bp->vxlan_port != ti->port)
11253 			return;
11254 
11255 		bp->vxlan_port_cnt++;
11256 		if (bp->vxlan_port_cnt == 1) {
11257 			bp->vxlan_port = ti->port;
11258 			set_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event);
11259 			bnxt_queue_sp_work(bp);
11260 		}
11261 		break;
11262 	case UDP_TUNNEL_TYPE_GENEVE:
11263 		if (bp->nge_port_cnt && bp->nge_port != ti->port)
11264 			return;
11265 
11266 		bp->nge_port_cnt++;
11267 		if (bp->nge_port_cnt == 1) {
11268 			bp->nge_port = ti->port;
11269 			set_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event);
11270 		}
11271 		break;
11272 	default:
11273 		return;
11274 	}
11275 
11276 	bnxt_queue_sp_work(bp);
11277 }
11278 
11279 static void bnxt_udp_tunnel_del(struct net_device *dev,
11280 				struct udp_tunnel_info *ti)
11281 {
11282 	struct bnxt *bp = netdev_priv(dev);
11283 
11284 	if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET)
11285 		return;
11286 
11287 	if (!netif_running(dev))
11288 		return;
11289 
11290 	switch (ti->type) {
11291 	case UDP_TUNNEL_TYPE_VXLAN:
11292 		if (!bp->vxlan_port_cnt || bp->vxlan_port != ti->port)
11293 			return;
11294 		bp->vxlan_port_cnt--;
11295 
11296 		if (bp->vxlan_port_cnt != 0)
11297 			return;
11298 
11299 		set_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event);
11300 		break;
11301 	case UDP_TUNNEL_TYPE_GENEVE:
11302 		if (!bp->nge_port_cnt || bp->nge_port != ti->port)
11303 			return;
11304 		bp->nge_port_cnt--;
11305 
11306 		if (bp->nge_port_cnt != 0)
11307 			return;
11308 
11309 		set_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event);
11310 		break;
11311 	default:
11312 		return;
11313 	}
11314 
11315 	bnxt_queue_sp_work(bp);
11316 }
11317 
11318 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
11319 			       struct net_device *dev, u32 filter_mask,
11320 			       int nlflags)
11321 {
11322 	struct bnxt *bp = netdev_priv(dev);
11323 
11324 	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0,
11325 				       nlflags, filter_mask, NULL);
11326 }
11327 
11328 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
11329 			       u16 flags, struct netlink_ext_ack *extack)
11330 {
11331 	struct bnxt *bp = netdev_priv(dev);
11332 	struct nlattr *attr, *br_spec;
11333 	int rem, rc = 0;
11334 
11335 	if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp))
11336 		return -EOPNOTSUPP;
11337 
11338 	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
11339 	if (!br_spec)
11340 		return -EINVAL;
11341 
11342 	nla_for_each_nested(attr, br_spec, rem) {
11343 		u16 mode;
11344 
11345 		if (nla_type(attr) != IFLA_BRIDGE_MODE)
11346 			continue;
11347 
11348 		if (nla_len(attr) < sizeof(mode))
11349 			return -EINVAL;
11350 
11351 		mode = nla_get_u16(attr);
11352 		if (mode == bp->br_mode)
11353 			break;
11354 
11355 		rc = bnxt_hwrm_set_br_mode(bp, mode);
11356 		if (!rc)
11357 			bp->br_mode = mode;
11358 		break;
11359 	}
11360 	return rc;
11361 }
11362 
11363 int bnxt_get_port_parent_id(struct net_device *dev,
11364 			    struct netdev_phys_item_id *ppid)
11365 {
11366 	struct bnxt *bp = netdev_priv(dev);
11367 
11368 	if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV)
11369 		return -EOPNOTSUPP;
11370 
11371 	/* The PF and it's VF-reps only support the switchdev framework */
11372 	if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_DSN_VALID))
11373 		return -EOPNOTSUPP;
11374 
11375 	ppid->id_len = sizeof(bp->dsn);
11376 	memcpy(ppid->id, bp->dsn, ppid->id_len);
11377 
11378 	return 0;
11379 }
11380 
11381 static struct devlink_port *bnxt_get_devlink_port(struct net_device *dev)
11382 {
11383 	struct bnxt *bp = netdev_priv(dev);
11384 
11385 	return &bp->dl_port;
11386 }
11387 
11388 static const struct net_device_ops bnxt_netdev_ops = {
11389 	.ndo_open		= bnxt_open,
11390 	.ndo_start_xmit		= bnxt_start_xmit,
11391 	.ndo_stop		= bnxt_close,
11392 	.ndo_get_stats64	= bnxt_get_stats64,
11393 	.ndo_set_rx_mode	= bnxt_set_rx_mode,
11394 	.ndo_do_ioctl		= bnxt_ioctl,
11395 	.ndo_validate_addr	= eth_validate_addr,
11396 	.ndo_set_mac_address	= bnxt_change_mac_addr,
11397 	.ndo_change_mtu		= bnxt_change_mtu,
11398 	.ndo_fix_features	= bnxt_fix_features,
11399 	.ndo_set_features	= bnxt_set_features,
11400 	.ndo_tx_timeout		= bnxt_tx_timeout,
11401 #ifdef CONFIG_BNXT_SRIOV
11402 	.ndo_get_vf_config	= bnxt_get_vf_config,
11403 	.ndo_set_vf_mac		= bnxt_set_vf_mac,
11404 	.ndo_set_vf_vlan	= bnxt_set_vf_vlan,
11405 	.ndo_set_vf_rate	= bnxt_set_vf_bw,
11406 	.ndo_set_vf_link_state	= bnxt_set_vf_link_state,
11407 	.ndo_set_vf_spoofchk	= bnxt_set_vf_spoofchk,
11408 	.ndo_set_vf_trust	= bnxt_set_vf_trust,
11409 #endif
11410 	.ndo_setup_tc           = bnxt_setup_tc,
11411 #ifdef CONFIG_RFS_ACCEL
11412 	.ndo_rx_flow_steer	= bnxt_rx_flow_steer,
11413 #endif
11414 	.ndo_udp_tunnel_add	= bnxt_udp_tunnel_add,
11415 	.ndo_udp_tunnel_del	= bnxt_udp_tunnel_del,
11416 	.ndo_bpf		= bnxt_xdp,
11417 	.ndo_xdp_xmit		= bnxt_xdp_xmit,
11418 	.ndo_bridge_getlink	= bnxt_bridge_getlink,
11419 	.ndo_bridge_setlink	= bnxt_bridge_setlink,
11420 	.ndo_get_devlink_port	= bnxt_get_devlink_port,
11421 };
11422 
11423 static void bnxt_remove_one(struct pci_dev *pdev)
11424 {
11425 	struct net_device *dev = pci_get_drvdata(pdev);
11426 	struct bnxt *bp = netdev_priv(dev);
11427 
11428 	if (BNXT_PF(bp))
11429 		bnxt_sriov_disable(bp);
11430 
11431 	bnxt_dl_fw_reporters_destroy(bp, true);
11432 	if (BNXT_PF(bp))
11433 		devlink_port_type_clear(&bp->dl_port);
11434 	pci_disable_pcie_error_reporting(pdev);
11435 	unregister_netdev(dev);
11436 	bnxt_dl_unregister(bp);
11437 	bnxt_shutdown_tc(bp);
11438 	bnxt_cancel_sp_work(bp);
11439 	bp->sp_event = 0;
11440 
11441 	bnxt_clear_int_mode(bp);
11442 	bnxt_hwrm_func_drv_unrgtr(bp);
11443 	bnxt_free_hwrm_resources(bp);
11444 	bnxt_free_hwrm_short_cmd_req(bp);
11445 	bnxt_ethtool_free(bp);
11446 	bnxt_dcb_free(bp);
11447 	kfree(bp->edev);
11448 	bp->edev = NULL;
11449 	kfree(bp->fw_health);
11450 	bp->fw_health = NULL;
11451 	bnxt_cleanup_pci(bp);
11452 	bnxt_free_ctx_mem(bp);
11453 	kfree(bp->ctx);
11454 	bp->ctx = NULL;
11455 	bnxt_free_port_stats(bp);
11456 	free_netdev(dev);
11457 }
11458 
11459 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt)
11460 {
11461 	int rc = 0;
11462 	struct bnxt_link_info *link_info = &bp->link_info;
11463 
11464 	rc = bnxt_hwrm_phy_qcaps(bp);
11465 	if (rc) {
11466 		netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n",
11467 			   rc);
11468 		return rc;
11469 	}
11470 	if (!fw_dflt)
11471 		return 0;
11472 
11473 	rc = bnxt_update_link(bp, false);
11474 	if (rc) {
11475 		netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
11476 			   rc);
11477 		return rc;
11478 	}
11479 
11480 	/* Older firmware does not have supported_auto_speeds, so assume
11481 	 * that all supported speeds can be autonegotiated.
11482 	 */
11483 	if (link_info->auto_link_speeds && !link_info->support_auto_speeds)
11484 		link_info->support_auto_speeds = link_info->support_speeds;
11485 
11486 	bnxt_init_ethtool_link_settings(bp);
11487 	return 0;
11488 }
11489 
11490 static int bnxt_get_max_irq(struct pci_dev *pdev)
11491 {
11492 	u16 ctrl;
11493 
11494 	if (!pdev->msix_cap)
11495 		return 1;
11496 
11497 	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
11498 	return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
11499 }
11500 
11501 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
11502 				int *max_cp)
11503 {
11504 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
11505 	int max_ring_grps = 0, max_irq;
11506 
11507 	*max_tx = hw_resc->max_tx_rings;
11508 	*max_rx = hw_resc->max_rx_rings;
11509 	*max_cp = bnxt_get_max_func_cp_rings_for_en(bp);
11510 	max_irq = min_t(int, bnxt_get_max_func_irqs(bp) -
11511 			bnxt_get_ulp_msix_num(bp),
11512 			hw_resc->max_stat_ctxs - bnxt_get_ulp_stat_ctxs(bp));
11513 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
11514 		*max_cp = min_t(int, *max_cp, max_irq);
11515 	max_ring_grps = hw_resc->max_hw_ring_grps;
11516 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) {
11517 		*max_cp -= 1;
11518 		*max_rx -= 2;
11519 	}
11520 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
11521 		*max_rx >>= 1;
11522 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
11523 		bnxt_trim_rings(bp, max_rx, max_tx, *max_cp, false);
11524 		/* On P5 chips, max_cp output param should be available NQs */
11525 		*max_cp = max_irq;
11526 	}
11527 	*max_rx = min_t(int, *max_rx, max_ring_grps);
11528 }
11529 
11530 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
11531 {
11532 	int rx, tx, cp;
11533 
11534 	_bnxt_get_max_rings(bp, &rx, &tx, &cp);
11535 	*max_rx = rx;
11536 	*max_tx = tx;
11537 	if (!rx || !tx || !cp)
11538 		return -ENOMEM;
11539 
11540 	return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
11541 }
11542 
11543 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx,
11544 			       bool shared)
11545 {
11546 	int rc;
11547 
11548 	rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
11549 	if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) {
11550 		/* Not enough rings, try disabling agg rings. */
11551 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
11552 		rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
11553 		if (rc) {
11554 			/* set BNXT_FLAG_AGG_RINGS back for consistency */
11555 			bp->flags |= BNXT_FLAG_AGG_RINGS;
11556 			return rc;
11557 		}
11558 		bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
11559 		bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
11560 		bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
11561 		bnxt_set_ring_params(bp);
11562 	}
11563 
11564 	if (bp->flags & BNXT_FLAG_ROCE_CAP) {
11565 		int max_cp, max_stat, max_irq;
11566 
11567 		/* Reserve minimum resources for RoCE */
11568 		max_cp = bnxt_get_max_func_cp_rings(bp);
11569 		max_stat = bnxt_get_max_func_stat_ctxs(bp);
11570 		max_irq = bnxt_get_max_func_irqs(bp);
11571 		if (max_cp <= BNXT_MIN_ROCE_CP_RINGS ||
11572 		    max_irq <= BNXT_MIN_ROCE_CP_RINGS ||
11573 		    max_stat <= BNXT_MIN_ROCE_STAT_CTXS)
11574 			return 0;
11575 
11576 		max_cp -= BNXT_MIN_ROCE_CP_RINGS;
11577 		max_irq -= BNXT_MIN_ROCE_CP_RINGS;
11578 		max_stat -= BNXT_MIN_ROCE_STAT_CTXS;
11579 		max_cp = min_t(int, max_cp, max_irq);
11580 		max_cp = min_t(int, max_cp, max_stat);
11581 		rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared);
11582 		if (rc)
11583 			rc = 0;
11584 	}
11585 	return rc;
11586 }
11587 
11588 /* In initial default shared ring setting, each shared ring must have a
11589  * RX/TX ring pair.
11590  */
11591 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp)
11592 {
11593 	bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings);
11594 	bp->rx_nr_rings = bp->cp_nr_rings;
11595 	bp->tx_nr_rings_per_tc = bp->cp_nr_rings;
11596 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
11597 }
11598 
11599 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh)
11600 {
11601 	int dflt_rings, max_rx_rings, max_tx_rings, rc;
11602 
11603 	if (!bnxt_can_reserve_rings(bp))
11604 		return 0;
11605 
11606 	if (sh)
11607 		bp->flags |= BNXT_FLAG_SHARED_RINGS;
11608 	dflt_rings = is_kdump_kernel() ? 1 : netif_get_num_default_rss_queues();
11609 	/* Reduce default rings on multi-port cards so that total default
11610 	 * rings do not exceed CPU count.
11611 	 */
11612 	if (bp->port_count > 1) {
11613 		int max_rings =
11614 			max_t(int, num_online_cpus() / bp->port_count, 1);
11615 
11616 		dflt_rings = min_t(int, dflt_rings, max_rings);
11617 	}
11618 	rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh);
11619 	if (rc)
11620 		return rc;
11621 	bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
11622 	bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
11623 	if (sh)
11624 		bnxt_trim_dflt_sh_rings(bp);
11625 	else
11626 		bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings;
11627 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
11628 
11629 	rc = __bnxt_reserve_rings(bp);
11630 	if (rc)
11631 		netdev_warn(bp->dev, "Unable to reserve tx rings\n");
11632 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
11633 	if (sh)
11634 		bnxt_trim_dflt_sh_rings(bp);
11635 
11636 	/* Rings may have been trimmed, re-reserve the trimmed rings. */
11637 	if (bnxt_need_reserve_rings(bp)) {
11638 		rc = __bnxt_reserve_rings(bp);
11639 		if (rc)
11640 			netdev_warn(bp->dev, "2nd rings reservation failed.\n");
11641 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
11642 	}
11643 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
11644 		bp->rx_nr_rings++;
11645 		bp->cp_nr_rings++;
11646 	}
11647 	return rc;
11648 }
11649 
11650 static int bnxt_init_dflt_ring_mode(struct bnxt *bp)
11651 {
11652 	int rc;
11653 
11654 	if (bp->tx_nr_rings)
11655 		return 0;
11656 
11657 	bnxt_ulp_irq_stop(bp);
11658 	bnxt_clear_int_mode(bp);
11659 	rc = bnxt_set_dflt_rings(bp, true);
11660 	if (rc) {
11661 		netdev_err(bp->dev, "Not enough rings available.\n");
11662 		goto init_dflt_ring_err;
11663 	}
11664 	rc = bnxt_init_int_mode(bp);
11665 	if (rc)
11666 		goto init_dflt_ring_err;
11667 
11668 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
11669 	if (bnxt_rfs_supported(bp) && bnxt_rfs_capable(bp)) {
11670 		bp->flags |= BNXT_FLAG_RFS;
11671 		bp->dev->features |= NETIF_F_NTUPLE;
11672 	}
11673 init_dflt_ring_err:
11674 	bnxt_ulp_irq_restart(bp, rc);
11675 	return rc;
11676 }
11677 
11678 int bnxt_restore_pf_fw_resources(struct bnxt *bp)
11679 {
11680 	int rc;
11681 
11682 	ASSERT_RTNL();
11683 	bnxt_hwrm_func_qcaps(bp);
11684 
11685 	if (netif_running(bp->dev))
11686 		__bnxt_close_nic(bp, true, false);
11687 
11688 	bnxt_ulp_irq_stop(bp);
11689 	bnxt_clear_int_mode(bp);
11690 	rc = bnxt_init_int_mode(bp);
11691 	bnxt_ulp_irq_restart(bp, rc);
11692 
11693 	if (netif_running(bp->dev)) {
11694 		if (rc)
11695 			dev_close(bp->dev);
11696 		else
11697 			rc = bnxt_open_nic(bp, true, false);
11698 	}
11699 
11700 	return rc;
11701 }
11702 
11703 static int bnxt_init_mac_addr(struct bnxt *bp)
11704 {
11705 	int rc = 0;
11706 
11707 	if (BNXT_PF(bp)) {
11708 		memcpy(bp->dev->dev_addr, bp->pf.mac_addr, ETH_ALEN);
11709 	} else {
11710 #ifdef CONFIG_BNXT_SRIOV
11711 		struct bnxt_vf_info *vf = &bp->vf;
11712 		bool strict_approval = true;
11713 
11714 		if (is_valid_ether_addr(vf->mac_addr)) {
11715 			/* overwrite netdev dev_addr with admin VF MAC */
11716 			memcpy(bp->dev->dev_addr, vf->mac_addr, ETH_ALEN);
11717 			/* Older PF driver or firmware may not approve this
11718 			 * correctly.
11719 			 */
11720 			strict_approval = false;
11721 		} else {
11722 			eth_hw_addr_random(bp->dev);
11723 		}
11724 		rc = bnxt_approve_mac(bp, bp->dev->dev_addr, strict_approval);
11725 #endif
11726 	}
11727 	return rc;
11728 }
11729 
11730 static int bnxt_pcie_dsn_get(struct bnxt *bp, u8 dsn[])
11731 {
11732 	struct pci_dev *pdev = bp->pdev;
11733 	u64 qword;
11734 
11735 	qword = pci_get_dsn(pdev);
11736 	if (!qword) {
11737 		netdev_info(bp->dev, "Unable to read adapter's DSN\n");
11738 		return -EOPNOTSUPP;
11739 	}
11740 
11741 	put_unaligned_le64(qword, dsn);
11742 
11743 	bp->flags |= BNXT_FLAG_DSN_VALID;
11744 	return 0;
11745 }
11746 
11747 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
11748 {
11749 	struct net_device *dev;
11750 	struct bnxt *bp;
11751 	int rc, max_irqs;
11752 
11753 	if (pci_is_bridge(pdev))
11754 		return -ENODEV;
11755 
11756 	/* Clear any pending DMA transactions from crash kernel
11757 	 * while loading driver in capture kernel.
11758 	 */
11759 	if (is_kdump_kernel()) {
11760 		pci_clear_master(pdev);
11761 		pcie_flr(pdev);
11762 	}
11763 
11764 	max_irqs = bnxt_get_max_irq(pdev);
11765 	dev = alloc_etherdev_mq(sizeof(*bp), max_irqs);
11766 	if (!dev)
11767 		return -ENOMEM;
11768 
11769 	bp = netdev_priv(dev);
11770 	bnxt_set_max_func_irqs(bp, max_irqs);
11771 
11772 	if (bnxt_vf_pciid(ent->driver_data))
11773 		bp->flags |= BNXT_FLAG_VF;
11774 
11775 	if (pdev->msix_cap)
11776 		bp->flags |= BNXT_FLAG_MSIX_CAP;
11777 
11778 	rc = bnxt_init_board(pdev, dev);
11779 	if (rc < 0)
11780 		goto init_err_free;
11781 
11782 	dev->netdev_ops = &bnxt_netdev_ops;
11783 	dev->watchdog_timeo = BNXT_TX_TIMEOUT;
11784 	dev->ethtool_ops = &bnxt_ethtool_ops;
11785 	pci_set_drvdata(pdev, dev);
11786 
11787 	rc = bnxt_alloc_hwrm_resources(bp);
11788 	if (rc)
11789 		goto init_err_pci_clean;
11790 
11791 	mutex_init(&bp->hwrm_cmd_lock);
11792 	mutex_init(&bp->link_lock);
11793 
11794 	rc = bnxt_fw_init_one_p1(bp);
11795 	if (rc)
11796 		goto init_err_pci_clean;
11797 
11798 	if (BNXT_CHIP_P5(bp))
11799 		bp->flags |= BNXT_FLAG_CHIP_P5;
11800 
11801 	rc = bnxt_fw_init_one_p2(bp);
11802 	if (rc)
11803 		goto init_err_pci_clean;
11804 
11805 	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
11806 			   NETIF_F_TSO | NETIF_F_TSO6 |
11807 			   NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
11808 			   NETIF_F_GSO_IPXIP4 |
11809 			   NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
11810 			   NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH |
11811 			   NETIF_F_RXCSUM | NETIF_F_GRO;
11812 
11813 	if (BNXT_SUPPORTS_TPA(bp))
11814 		dev->hw_features |= NETIF_F_LRO;
11815 
11816 	dev->hw_enc_features =
11817 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
11818 			NETIF_F_TSO | NETIF_F_TSO6 |
11819 			NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
11820 			NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
11821 			NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL;
11822 	dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM |
11823 				    NETIF_F_GSO_GRE_CSUM;
11824 	dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
11825 	dev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
11826 			    NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX;
11827 	if (BNXT_SUPPORTS_TPA(bp))
11828 		dev->hw_features |= NETIF_F_GRO_HW;
11829 	dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
11830 	if (dev->features & NETIF_F_GRO_HW)
11831 		dev->features &= ~NETIF_F_LRO;
11832 	dev->priv_flags |= IFF_UNICAST_FLT;
11833 
11834 #ifdef CONFIG_BNXT_SRIOV
11835 	init_waitqueue_head(&bp->sriov_cfg_wait);
11836 	mutex_init(&bp->sriov_lock);
11837 #endif
11838 	if (BNXT_SUPPORTS_TPA(bp)) {
11839 		bp->gro_func = bnxt_gro_func_5730x;
11840 		if (BNXT_CHIP_P4(bp))
11841 			bp->gro_func = bnxt_gro_func_5731x;
11842 		else if (BNXT_CHIP_P5(bp))
11843 			bp->gro_func = bnxt_gro_func_5750x;
11844 	}
11845 	if (!BNXT_CHIP_P4_PLUS(bp))
11846 		bp->flags |= BNXT_FLAG_DOUBLE_DB;
11847 
11848 	bp->ulp_probe = bnxt_ulp_probe;
11849 
11850 	rc = bnxt_init_mac_addr(bp);
11851 	if (rc) {
11852 		dev_err(&pdev->dev, "Unable to initialize mac address.\n");
11853 		rc = -EADDRNOTAVAIL;
11854 		goto init_err_pci_clean;
11855 	}
11856 
11857 	if (BNXT_PF(bp)) {
11858 		/* Read the adapter's DSN to use as the eswitch switch_id */
11859 		rc = bnxt_pcie_dsn_get(bp, bp->dsn);
11860 	}
11861 
11862 	/* MTU range: 60 - FW defined max */
11863 	dev->min_mtu = ETH_ZLEN;
11864 	dev->max_mtu = bp->max_mtu;
11865 
11866 	rc = bnxt_probe_phy(bp, true);
11867 	if (rc)
11868 		goto init_err_pci_clean;
11869 
11870 	bnxt_set_rx_skb_mode(bp, false);
11871 	bnxt_set_tpa_flags(bp);
11872 	bnxt_set_ring_params(bp);
11873 	rc = bnxt_set_dflt_rings(bp, true);
11874 	if (rc) {
11875 		netdev_err(bp->dev, "Not enough rings available.\n");
11876 		rc = -ENOMEM;
11877 		goto init_err_pci_clean;
11878 	}
11879 
11880 	bnxt_fw_init_one_p3(bp);
11881 
11882 	if (dev->hw_features & NETIF_F_HW_VLAN_CTAG_RX)
11883 		bp->flags |= BNXT_FLAG_STRIP_VLAN;
11884 
11885 	rc = bnxt_init_int_mode(bp);
11886 	if (rc)
11887 		goto init_err_pci_clean;
11888 
11889 	/* No TC has been set yet and rings may have been trimmed due to
11890 	 * limited MSIX, so we re-initialize the TX rings per TC.
11891 	 */
11892 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
11893 
11894 	if (BNXT_PF(bp)) {
11895 		if (!bnxt_pf_wq) {
11896 			bnxt_pf_wq =
11897 				create_singlethread_workqueue("bnxt_pf_wq");
11898 			if (!bnxt_pf_wq) {
11899 				dev_err(&pdev->dev, "Unable to create workqueue.\n");
11900 				goto init_err_pci_clean;
11901 			}
11902 		}
11903 		bnxt_init_tc(bp);
11904 	}
11905 
11906 	bnxt_dl_register(bp);
11907 
11908 	rc = register_netdev(dev);
11909 	if (rc)
11910 		goto init_err_cleanup;
11911 
11912 	if (BNXT_PF(bp))
11913 		devlink_port_type_eth_set(&bp->dl_port, bp->dev);
11914 	bnxt_dl_fw_reporters_create(bp);
11915 
11916 	netdev_info(dev, "%s found at mem %lx, node addr %pM\n",
11917 		    board_info[ent->driver_data].name,
11918 		    (long)pci_resource_start(pdev, 0), dev->dev_addr);
11919 	pcie_print_link_status(pdev);
11920 
11921 	return 0;
11922 
11923 init_err_cleanup:
11924 	bnxt_dl_unregister(bp);
11925 	bnxt_shutdown_tc(bp);
11926 	bnxt_clear_int_mode(bp);
11927 
11928 init_err_pci_clean:
11929 	bnxt_hwrm_func_drv_unrgtr(bp);
11930 	bnxt_free_hwrm_short_cmd_req(bp);
11931 	bnxt_free_hwrm_resources(bp);
11932 	bnxt_free_ctx_mem(bp);
11933 	kfree(bp->ctx);
11934 	bp->ctx = NULL;
11935 	kfree(bp->fw_health);
11936 	bp->fw_health = NULL;
11937 	bnxt_cleanup_pci(bp);
11938 
11939 init_err_free:
11940 	free_netdev(dev);
11941 	return rc;
11942 }
11943 
11944 static void bnxt_shutdown(struct pci_dev *pdev)
11945 {
11946 	struct net_device *dev = pci_get_drvdata(pdev);
11947 	struct bnxt *bp;
11948 
11949 	if (!dev)
11950 		return;
11951 
11952 	rtnl_lock();
11953 	bp = netdev_priv(dev);
11954 	if (!bp)
11955 		goto shutdown_exit;
11956 
11957 	if (netif_running(dev))
11958 		dev_close(dev);
11959 
11960 	bnxt_ulp_shutdown(bp);
11961 	bnxt_clear_int_mode(bp);
11962 	pci_disable_device(pdev);
11963 
11964 	if (system_state == SYSTEM_POWER_OFF) {
11965 		pci_wake_from_d3(pdev, bp->wol);
11966 		pci_set_power_state(pdev, PCI_D3hot);
11967 	}
11968 
11969 shutdown_exit:
11970 	rtnl_unlock();
11971 }
11972 
11973 #ifdef CONFIG_PM_SLEEP
11974 static int bnxt_suspend(struct device *device)
11975 {
11976 	struct net_device *dev = dev_get_drvdata(device);
11977 	struct bnxt *bp = netdev_priv(dev);
11978 	int rc = 0;
11979 
11980 	rtnl_lock();
11981 	bnxt_ulp_stop(bp);
11982 	if (netif_running(dev)) {
11983 		netif_device_detach(dev);
11984 		rc = bnxt_close(dev);
11985 	}
11986 	bnxt_hwrm_func_drv_unrgtr(bp);
11987 	pci_disable_device(bp->pdev);
11988 	bnxt_free_ctx_mem(bp);
11989 	kfree(bp->ctx);
11990 	bp->ctx = NULL;
11991 	rtnl_unlock();
11992 	return rc;
11993 }
11994 
11995 static int bnxt_resume(struct device *device)
11996 {
11997 	struct net_device *dev = dev_get_drvdata(device);
11998 	struct bnxt *bp = netdev_priv(dev);
11999 	int rc = 0;
12000 
12001 	rtnl_lock();
12002 	rc = pci_enable_device(bp->pdev);
12003 	if (rc) {
12004 		netdev_err(dev, "Cannot re-enable PCI device during resume, err = %d\n",
12005 			   rc);
12006 		goto resume_exit;
12007 	}
12008 	pci_set_master(bp->pdev);
12009 	if (bnxt_hwrm_ver_get(bp)) {
12010 		rc = -ENODEV;
12011 		goto resume_exit;
12012 	}
12013 	rc = bnxt_hwrm_func_reset(bp);
12014 	if (rc) {
12015 		rc = -EBUSY;
12016 		goto resume_exit;
12017 	}
12018 
12019 	if (bnxt_hwrm_queue_qportcfg(bp)) {
12020 		rc = -ENODEV;
12021 		goto resume_exit;
12022 	}
12023 
12024 	if (bp->hwrm_spec_code >= 0x10803) {
12025 		if (bnxt_alloc_ctx_mem(bp)) {
12026 			rc = -ENODEV;
12027 			goto resume_exit;
12028 		}
12029 	}
12030 	if (BNXT_NEW_RM(bp))
12031 		bnxt_hwrm_func_resc_qcaps(bp, false);
12032 
12033 	if (bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false)) {
12034 		rc = -ENODEV;
12035 		goto resume_exit;
12036 	}
12037 
12038 	bnxt_get_wol_settings(bp);
12039 	if (netif_running(dev)) {
12040 		rc = bnxt_open(dev);
12041 		if (!rc)
12042 			netif_device_attach(dev);
12043 	}
12044 
12045 resume_exit:
12046 	bnxt_ulp_start(bp, rc);
12047 	rtnl_unlock();
12048 	return rc;
12049 }
12050 
12051 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume);
12052 #define BNXT_PM_OPS (&bnxt_pm_ops)
12053 
12054 #else
12055 
12056 #define BNXT_PM_OPS NULL
12057 
12058 #endif /* CONFIG_PM_SLEEP */
12059 
12060 /**
12061  * bnxt_io_error_detected - called when PCI error is detected
12062  * @pdev: Pointer to PCI device
12063  * @state: The current pci connection state
12064  *
12065  * This function is called after a PCI bus error affecting
12066  * this device has been detected.
12067  */
12068 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev,
12069 					       pci_channel_state_t state)
12070 {
12071 	struct net_device *netdev = pci_get_drvdata(pdev);
12072 	struct bnxt *bp = netdev_priv(netdev);
12073 
12074 	netdev_info(netdev, "PCI I/O error detected\n");
12075 
12076 	rtnl_lock();
12077 	netif_device_detach(netdev);
12078 
12079 	bnxt_ulp_stop(bp);
12080 
12081 	if (state == pci_channel_io_perm_failure) {
12082 		rtnl_unlock();
12083 		return PCI_ERS_RESULT_DISCONNECT;
12084 	}
12085 
12086 	if (netif_running(netdev))
12087 		bnxt_close(netdev);
12088 
12089 	pci_disable_device(pdev);
12090 	rtnl_unlock();
12091 
12092 	/* Request a slot slot reset. */
12093 	return PCI_ERS_RESULT_NEED_RESET;
12094 }
12095 
12096 /**
12097  * bnxt_io_slot_reset - called after the pci bus has been reset.
12098  * @pdev: Pointer to PCI device
12099  *
12100  * Restart the card from scratch, as if from a cold-boot.
12101  * At this point, the card has exprienced a hard reset,
12102  * followed by fixups by BIOS, and has its config space
12103  * set up identically to what it was at cold boot.
12104  */
12105 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev)
12106 {
12107 	struct net_device *netdev = pci_get_drvdata(pdev);
12108 	struct bnxt *bp = netdev_priv(netdev);
12109 	int err = 0;
12110 	pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
12111 
12112 	netdev_info(bp->dev, "PCI Slot Reset\n");
12113 
12114 	rtnl_lock();
12115 
12116 	if (pci_enable_device(pdev)) {
12117 		dev_err(&pdev->dev,
12118 			"Cannot re-enable PCI device after reset.\n");
12119 	} else {
12120 		pci_set_master(pdev);
12121 
12122 		err = bnxt_hwrm_func_reset(bp);
12123 		if (!err && netif_running(netdev))
12124 			err = bnxt_open(netdev);
12125 
12126 		if (!err)
12127 			result = PCI_ERS_RESULT_RECOVERED;
12128 		bnxt_ulp_start(bp, err);
12129 	}
12130 
12131 	if (result != PCI_ERS_RESULT_RECOVERED && netif_running(netdev))
12132 		dev_close(netdev);
12133 
12134 	rtnl_unlock();
12135 
12136 	return PCI_ERS_RESULT_RECOVERED;
12137 }
12138 
12139 /**
12140  * bnxt_io_resume - called when traffic can start flowing again.
12141  * @pdev: Pointer to PCI device
12142  *
12143  * This callback is called when the error recovery driver tells
12144  * us that its OK to resume normal operation.
12145  */
12146 static void bnxt_io_resume(struct pci_dev *pdev)
12147 {
12148 	struct net_device *netdev = pci_get_drvdata(pdev);
12149 
12150 	rtnl_lock();
12151 
12152 	netif_device_attach(netdev);
12153 
12154 	rtnl_unlock();
12155 }
12156 
12157 static const struct pci_error_handlers bnxt_err_handler = {
12158 	.error_detected	= bnxt_io_error_detected,
12159 	.slot_reset	= bnxt_io_slot_reset,
12160 	.resume		= bnxt_io_resume
12161 };
12162 
12163 static struct pci_driver bnxt_pci_driver = {
12164 	.name		= DRV_MODULE_NAME,
12165 	.id_table	= bnxt_pci_tbl,
12166 	.probe		= bnxt_init_one,
12167 	.remove		= bnxt_remove_one,
12168 	.shutdown	= bnxt_shutdown,
12169 	.driver.pm	= BNXT_PM_OPS,
12170 	.err_handler	= &bnxt_err_handler,
12171 #if defined(CONFIG_BNXT_SRIOV)
12172 	.sriov_configure = bnxt_sriov_configure,
12173 #endif
12174 };
12175 
12176 static int __init bnxt_init(void)
12177 {
12178 	bnxt_debug_init();
12179 	return pci_register_driver(&bnxt_pci_driver);
12180 }
12181 
12182 static void __exit bnxt_exit(void)
12183 {
12184 	pci_unregister_driver(&bnxt_pci_driver);
12185 	if (bnxt_pf_wq)
12186 		destroy_workqueue(bnxt_pf_wq);
12187 	bnxt_debug_exit();
12188 }
12189 
12190 module_init(bnxt_init);
12191 module_exit(bnxt_exit);
12192