1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2016 Broadcom Corporation
4  * Copyright (c) 2016-2019 Broadcom Limited
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation.
9  */
10 
11 #include <linux/module.h>
12 
13 #include <linux/stringify.h>
14 #include <linux/kernel.h>
15 #include <linux/timer.h>
16 #include <linux/errno.h>
17 #include <linux/ioport.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 #include <linux/interrupt.h>
21 #include <linux/pci.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/skbuff.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/bitops.h>
27 #include <linux/io.h>
28 #include <linux/irq.h>
29 #include <linux/delay.h>
30 #include <asm/byteorder.h>
31 #include <asm/page.h>
32 #include <linux/time.h>
33 #include <linux/mii.h>
34 #include <linux/mdio.h>
35 #include <linux/if.h>
36 #include <linux/if_vlan.h>
37 #include <linux/if_bridge.h>
38 #include <linux/rtc.h>
39 #include <linux/bpf.h>
40 #include <net/ip.h>
41 #include <net/tcp.h>
42 #include <net/udp.h>
43 #include <net/checksum.h>
44 #include <net/ip6_checksum.h>
45 #include <net/udp_tunnel.h>
46 #include <linux/workqueue.h>
47 #include <linux/prefetch.h>
48 #include <linux/cache.h>
49 #include <linux/log2.h>
50 #include <linux/aer.h>
51 #include <linux/bitmap.h>
52 #include <linux/cpu_rmap.h>
53 #include <linux/cpumask.h>
54 #include <net/pkt_cls.h>
55 #include <linux/hwmon.h>
56 #include <linux/hwmon-sysfs.h>
57 #include <net/page_pool.h>
58 
59 #include "bnxt_hsi.h"
60 #include "bnxt.h"
61 #include "bnxt_ulp.h"
62 #include "bnxt_sriov.h"
63 #include "bnxt_ethtool.h"
64 #include "bnxt_dcb.h"
65 #include "bnxt_xdp.h"
66 #include "bnxt_vfr.h"
67 #include "bnxt_tc.h"
68 #include "bnxt_devlink.h"
69 #include "bnxt_debugfs.h"
70 
71 #define BNXT_TX_TIMEOUT		(5 * HZ)
72 #define BNXT_DEF_MSG_ENABLE	(NETIF_MSG_DRV | NETIF_MSG_HW)
73 
74 MODULE_LICENSE("GPL");
75 MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
76 
77 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
78 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
79 #define BNXT_RX_COPY_THRESH 256
80 
81 #define BNXT_TX_PUSH_THRESH 164
82 
83 enum board_idx {
84 	BCM57301,
85 	BCM57302,
86 	BCM57304,
87 	BCM57417_NPAR,
88 	BCM58700,
89 	BCM57311,
90 	BCM57312,
91 	BCM57402,
92 	BCM57404,
93 	BCM57406,
94 	BCM57402_NPAR,
95 	BCM57407,
96 	BCM57412,
97 	BCM57414,
98 	BCM57416,
99 	BCM57417,
100 	BCM57412_NPAR,
101 	BCM57314,
102 	BCM57417_SFP,
103 	BCM57416_SFP,
104 	BCM57404_NPAR,
105 	BCM57406_NPAR,
106 	BCM57407_SFP,
107 	BCM57407_NPAR,
108 	BCM57414_NPAR,
109 	BCM57416_NPAR,
110 	BCM57452,
111 	BCM57454,
112 	BCM5745x_NPAR,
113 	BCM57508,
114 	BCM57504,
115 	BCM57502,
116 	BCM57508_NPAR,
117 	BCM57504_NPAR,
118 	BCM57502_NPAR,
119 	BCM58802,
120 	BCM58804,
121 	BCM58808,
122 	NETXTREME_E_VF,
123 	NETXTREME_C_VF,
124 	NETXTREME_S_VF,
125 	NETXTREME_E_P5_VF,
126 };
127 
128 /* indexed by enum above */
129 static const struct {
130 	char *name;
131 } board_info[] = {
132 	[BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" },
133 	[BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" },
134 	[BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
135 	[BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" },
136 	[BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" },
137 	[BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" },
138 	[BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" },
139 	[BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" },
140 	[BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" },
141 	[BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" },
142 	[BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" },
143 	[BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" },
144 	[BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" },
145 	[BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" },
146 	[BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" },
147 	[BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" },
148 	[BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" },
149 	[BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
150 	[BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" },
151 	[BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" },
152 	[BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" },
153 	[BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" },
154 	[BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" },
155 	[BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" },
156 	[BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" },
157 	[BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" },
158 	[BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" },
159 	[BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
160 	[BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" },
161 	[BCM57508] = { "Broadcom BCM57508 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
162 	[BCM57504] = { "Broadcom BCM57504 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
163 	[BCM57502] = { "Broadcom BCM57502 NetXtreme-E 10Gb/25Gb/50Gb Ethernet" },
164 	[BCM57508_NPAR] = { "Broadcom BCM57508 NetXtreme-E Ethernet Partition" },
165 	[BCM57504_NPAR] = { "Broadcom BCM57504 NetXtreme-E Ethernet Partition" },
166 	[BCM57502_NPAR] = { "Broadcom BCM57502 NetXtreme-E Ethernet Partition" },
167 	[BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" },
168 	[BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
169 	[BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
170 	[NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" },
171 	[NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" },
172 	[NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" },
173 	[NETXTREME_E_P5_VF] = { "Broadcom BCM5750X NetXtreme-E Ethernet Virtual Function" },
174 };
175 
176 static const struct pci_device_id bnxt_pci_tbl[] = {
177 	{ PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR },
178 	{ PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR },
179 	{ PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 },
180 	{ PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR },
181 	{ PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
182 	{ PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
183 	{ PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
184 	{ PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR },
185 	{ PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 },
186 	{ PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 },
187 	{ PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 },
188 	{ PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
189 	{ PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
190 	{ PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
191 	{ PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR },
192 	{ PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 },
193 	{ PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 },
194 	{ PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 },
195 	{ PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 },
196 	{ PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 },
197 	{ PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR },
198 	{ PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 },
199 	{ PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP },
200 	{ PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP },
201 	{ PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR },
202 	{ PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR },
203 	{ PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP },
204 	{ PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR },
205 	{ PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR },
206 	{ PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR },
207 	{ PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR },
208 	{ PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR },
209 	{ PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR },
210 	{ PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 },
211 	{ PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 },
212 	{ PCI_VDEVICE(BROADCOM, 0x1750), .driver_data = BCM57508 },
213 	{ PCI_VDEVICE(BROADCOM, 0x1751), .driver_data = BCM57504 },
214 	{ PCI_VDEVICE(BROADCOM, 0x1752), .driver_data = BCM57502 },
215 	{ PCI_VDEVICE(BROADCOM, 0x1800), .driver_data = BCM57508_NPAR },
216 	{ PCI_VDEVICE(BROADCOM, 0x1801), .driver_data = BCM57504_NPAR },
217 	{ PCI_VDEVICE(BROADCOM, 0x1802), .driver_data = BCM57502_NPAR },
218 	{ PCI_VDEVICE(BROADCOM, 0x1803), .driver_data = BCM57508_NPAR },
219 	{ PCI_VDEVICE(BROADCOM, 0x1804), .driver_data = BCM57504_NPAR },
220 	{ PCI_VDEVICE(BROADCOM, 0x1805), .driver_data = BCM57502_NPAR },
221 	{ PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 },
222 	{ PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 },
223 #ifdef CONFIG_BNXT_SRIOV
224 	{ PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF },
225 	{ PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF },
226 	{ PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF },
227 	{ PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF },
228 	{ PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF },
229 	{ PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF },
230 	{ PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF },
231 	{ PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF },
232 	{ PCI_VDEVICE(BROADCOM, 0x1806), .driver_data = NETXTREME_E_P5_VF },
233 	{ PCI_VDEVICE(BROADCOM, 0x1807), .driver_data = NETXTREME_E_P5_VF },
234 	{ PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF },
235 #endif
236 	{ 0 }
237 };
238 
239 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
240 
241 static const u16 bnxt_vf_req_snif[] = {
242 	HWRM_FUNC_CFG,
243 	HWRM_FUNC_VF_CFG,
244 	HWRM_PORT_PHY_QCFG,
245 	HWRM_CFA_L2_FILTER_ALLOC,
246 };
247 
248 static const u16 bnxt_async_events_arr[] = {
249 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE,
250 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE,
251 	ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD,
252 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED,
253 	ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE,
254 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE,
255 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE,
256 	ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY,
257 	ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY,
258 	ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG,
259 };
260 
261 static struct workqueue_struct *bnxt_pf_wq;
262 
263 static bool bnxt_vf_pciid(enum board_idx idx)
264 {
265 	return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF ||
266 		idx == NETXTREME_S_VF || idx == NETXTREME_E_P5_VF);
267 }
268 
269 #define DB_CP_REARM_FLAGS	(DB_KEY_CP | DB_IDX_VALID)
270 #define DB_CP_FLAGS		(DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
271 #define DB_CP_IRQ_DIS_FLAGS	(DB_KEY_CP | DB_IRQ_DIS)
272 
273 #define BNXT_CP_DB_IRQ_DIS(db)						\
274 		writel(DB_CP_IRQ_DIS_FLAGS, db)
275 
276 #define BNXT_DB_CQ(db, idx)						\
277 	writel(DB_CP_FLAGS | RING_CMP(idx), (db)->doorbell)
278 
279 #define BNXT_DB_NQ_P5(db, idx)						\
280 	writeq((db)->db_key64 | DBR_TYPE_NQ | RING_CMP(idx), (db)->doorbell)
281 
282 #define BNXT_DB_CQ_ARM(db, idx)						\
283 	writel(DB_CP_REARM_FLAGS | RING_CMP(idx), (db)->doorbell)
284 
285 #define BNXT_DB_NQ_ARM_P5(db, idx)					\
286 	writeq((db)->db_key64 | DBR_TYPE_NQ_ARM | RING_CMP(idx), (db)->doorbell)
287 
288 static void bnxt_db_nq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
289 {
290 	if (bp->flags & BNXT_FLAG_CHIP_P5)
291 		BNXT_DB_NQ_P5(db, idx);
292 	else
293 		BNXT_DB_CQ(db, idx);
294 }
295 
296 static void bnxt_db_nq_arm(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
297 {
298 	if (bp->flags & BNXT_FLAG_CHIP_P5)
299 		BNXT_DB_NQ_ARM_P5(db, idx);
300 	else
301 		BNXT_DB_CQ_ARM(db, idx);
302 }
303 
304 static void bnxt_db_cq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
305 {
306 	if (bp->flags & BNXT_FLAG_CHIP_P5)
307 		writeq(db->db_key64 | DBR_TYPE_CQ_ARMALL | RING_CMP(idx),
308 		       db->doorbell);
309 	else
310 		BNXT_DB_CQ(db, idx);
311 }
312 
313 const u16 bnxt_lhint_arr[] = {
314 	TX_BD_FLAGS_LHINT_512_AND_SMALLER,
315 	TX_BD_FLAGS_LHINT_512_TO_1023,
316 	TX_BD_FLAGS_LHINT_1024_TO_2047,
317 	TX_BD_FLAGS_LHINT_1024_TO_2047,
318 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
319 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
320 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
321 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
322 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
323 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
324 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
325 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
326 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
327 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
328 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
329 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
330 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
331 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
332 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
333 };
334 
335 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb)
336 {
337 	struct metadata_dst *md_dst = skb_metadata_dst(skb);
338 
339 	if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX)
340 		return 0;
341 
342 	return md_dst->u.port_info.port_id;
343 }
344 
345 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
346 {
347 	struct bnxt *bp = netdev_priv(dev);
348 	struct tx_bd *txbd;
349 	struct tx_bd_ext *txbd1;
350 	struct netdev_queue *txq;
351 	int i;
352 	dma_addr_t mapping;
353 	unsigned int length, pad = 0;
354 	u32 len, free_size, vlan_tag_flags, cfa_action, flags;
355 	u16 prod, last_frag;
356 	struct pci_dev *pdev = bp->pdev;
357 	struct bnxt_tx_ring_info *txr;
358 	struct bnxt_sw_tx_bd *tx_buf;
359 
360 	i = skb_get_queue_mapping(skb);
361 	if (unlikely(i >= bp->tx_nr_rings)) {
362 		dev_kfree_skb_any(skb);
363 		return NETDEV_TX_OK;
364 	}
365 
366 	txq = netdev_get_tx_queue(dev, i);
367 	txr = &bp->tx_ring[bp->tx_ring_map[i]];
368 	prod = txr->tx_prod;
369 
370 	free_size = bnxt_tx_avail(bp, txr);
371 	if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
372 		netif_tx_stop_queue(txq);
373 		return NETDEV_TX_BUSY;
374 	}
375 
376 	length = skb->len;
377 	len = skb_headlen(skb);
378 	last_frag = skb_shinfo(skb)->nr_frags;
379 
380 	txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
381 
382 	txbd->tx_bd_opaque = prod;
383 
384 	tx_buf = &txr->tx_buf_ring[prod];
385 	tx_buf->skb = skb;
386 	tx_buf->nr_frags = last_frag;
387 
388 	vlan_tag_flags = 0;
389 	cfa_action = bnxt_xmit_get_cfa_action(skb);
390 	if (skb_vlan_tag_present(skb)) {
391 		vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
392 				 skb_vlan_tag_get(skb);
393 		/* Currently supports 8021Q, 8021AD vlan offloads
394 		 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
395 		 */
396 		if (skb->vlan_proto == htons(ETH_P_8021Q))
397 			vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
398 	}
399 
400 	if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh) {
401 		struct tx_push_buffer *tx_push_buf = txr->tx_push;
402 		struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
403 		struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
404 		void __iomem *db = txr->tx_db.doorbell;
405 		void *pdata = tx_push_buf->data;
406 		u64 *end;
407 		int j, push_len;
408 
409 		/* Set COAL_NOW to be ready quickly for the next push */
410 		tx_push->tx_bd_len_flags_type =
411 			cpu_to_le32((length << TX_BD_LEN_SHIFT) |
412 					TX_BD_TYPE_LONG_TX_BD |
413 					TX_BD_FLAGS_LHINT_512_AND_SMALLER |
414 					TX_BD_FLAGS_COAL_NOW |
415 					TX_BD_FLAGS_PACKET_END |
416 					(2 << TX_BD_FLAGS_BD_CNT_SHIFT));
417 
418 		if (skb->ip_summed == CHECKSUM_PARTIAL)
419 			tx_push1->tx_bd_hsize_lflags =
420 					cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
421 		else
422 			tx_push1->tx_bd_hsize_lflags = 0;
423 
424 		tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
425 		tx_push1->tx_bd_cfa_action =
426 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
427 
428 		end = pdata + length;
429 		end = PTR_ALIGN(end, 8) - 1;
430 		*end = 0;
431 
432 		skb_copy_from_linear_data(skb, pdata, len);
433 		pdata += len;
434 		for (j = 0; j < last_frag; j++) {
435 			skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
436 			void *fptr;
437 
438 			fptr = skb_frag_address_safe(frag);
439 			if (!fptr)
440 				goto normal_tx;
441 
442 			memcpy(pdata, fptr, skb_frag_size(frag));
443 			pdata += skb_frag_size(frag);
444 		}
445 
446 		txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
447 		txbd->tx_bd_haddr = txr->data_mapping;
448 		prod = NEXT_TX(prod);
449 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
450 		memcpy(txbd, tx_push1, sizeof(*txbd));
451 		prod = NEXT_TX(prod);
452 		tx_push->doorbell =
453 			cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod);
454 		txr->tx_prod = prod;
455 
456 		tx_buf->is_push = 1;
457 		netdev_tx_sent_queue(txq, skb->len);
458 		wmb();	/* Sync is_push and byte queue before pushing data */
459 
460 		push_len = (length + sizeof(*tx_push) + 7) / 8;
461 		if (push_len > 16) {
462 			__iowrite64_copy(db, tx_push_buf, 16);
463 			__iowrite32_copy(db + 4, tx_push_buf + 1,
464 					 (push_len - 16) << 1);
465 		} else {
466 			__iowrite64_copy(db, tx_push_buf, push_len);
467 		}
468 
469 		goto tx_done;
470 	}
471 
472 normal_tx:
473 	if (length < BNXT_MIN_PKT_SIZE) {
474 		pad = BNXT_MIN_PKT_SIZE - length;
475 		if (skb_pad(skb, pad)) {
476 			/* SKB already freed. */
477 			tx_buf->skb = NULL;
478 			return NETDEV_TX_OK;
479 		}
480 		length = BNXT_MIN_PKT_SIZE;
481 	}
482 
483 	mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
484 
485 	if (unlikely(dma_mapping_error(&pdev->dev, mapping))) {
486 		dev_kfree_skb_any(skb);
487 		tx_buf->skb = NULL;
488 		return NETDEV_TX_OK;
489 	}
490 
491 	dma_unmap_addr_set(tx_buf, mapping, mapping);
492 	flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
493 		((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
494 
495 	txbd->tx_bd_haddr = cpu_to_le64(mapping);
496 
497 	prod = NEXT_TX(prod);
498 	txbd1 = (struct tx_bd_ext *)
499 		&txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
500 
501 	txbd1->tx_bd_hsize_lflags = 0;
502 	if (skb_is_gso(skb)) {
503 		u32 hdr_len;
504 
505 		if (skb->encapsulation)
506 			hdr_len = skb_inner_network_offset(skb) +
507 				skb_inner_network_header_len(skb) +
508 				inner_tcp_hdrlen(skb);
509 		else
510 			hdr_len = skb_transport_offset(skb) +
511 				tcp_hdrlen(skb);
512 
513 		txbd1->tx_bd_hsize_lflags = cpu_to_le32(TX_BD_FLAGS_LSO |
514 					TX_BD_FLAGS_T_IPID |
515 					(hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
516 		length = skb_shinfo(skb)->gso_size;
517 		txbd1->tx_bd_mss = cpu_to_le32(length);
518 		length += hdr_len;
519 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
520 		txbd1->tx_bd_hsize_lflags =
521 			cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
522 		txbd1->tx_bd_mss = 0;
523 	}
524 
525 	length >>= 9;
526 	if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) {
527 		dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n",
528 				     skb->len);
529 		i = 0;
530 		goto tx_dma_error;
531 	}
532 	flags |= bnxt_lhint_arr[length];
533 	txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
534 
535 	txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
536 	txbd1->tx_bd_cfa_action =
537 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
538 	for (i = 0; i < last_frag; i++) {
539 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
540 
541 		prod = NEXT_TX(prod);
542 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
543 
544 		len = skb_frag_size(frag);
545 		mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
546 					   DMA_TO_DEVICE);
547 
548 		if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
549 			goto tx_dma_error;
550 
551 		tx_buf = &txr->tx_buf_ring[prod];
552 		dma_unmap_addr_set(tx_buf, mapping, mapping);
553 
554 		txbd->tx_bd_haddr = cpu_to_le64(mapping);
555 
556 		flags = len << TX_BD_LEN_SHIFT;
557 		txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
558 	}
559 
560 	flags &= ~TX_BD_LEN;
561 	txbd->tx_bd_len_flags_type =
562 		cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
563 			    TX_BD_FLAGS_PACKET_END);
564 
565 	netdev_tx_sent_queue(txq, skb->len);
566 
567 	/* Sync BD data before updating doorbell */
568 	wmb();
569 
570 	prod = NEXT_TX(prod);
571 	txr->tx_prod = prod;
572 
573 	if (!netdev_xmit_more() || netif_xmit_stopped(txq))
574 		bnxt_db_write(bp, &txr->tx_db, prod);
575 
576 tx_done:
577 
578 	if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
579 		if (netdev_xmit_more() && !tx_buf->is_push)
580 			bnxt_db_write(bp, &txr->tx_db, prod);
581 
582 		netif_tx_stop_queue(txq);
583 
584 		/* netif_tx_stop_queue() must be done before checking
585 		 * tx index in bnxt_tx_avail() below, because in
586 		 * bnxt_tx_int(), we update tx index before checking for
587 		 * netif_tx_queue_stopped().
588 		 */
589 		smp_mb();
590 		if (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)
591 			netif_tx_wake_queue(txq);
592 	}
593 	return NETDEV_TX_OK;
594 
595 tx_dma_error:
596 	last_frag = i;
597 
598 	/* start back at beginning and unmap skb */
599 	prod = txr->tx_prod;
600 	tx_buf = &txr->tx_buf_ring[prod];
601 	tx_buf->skb = NULL;
602 	dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
603 			 skb_headlen(skb), PCI_DMA_TODEVICE);
604 	prod = NEXT_TX(prod);
605 
606 	/* unmap remaining mapped pages */
607 	for (i = 0; i < last_frag; i++) {
608 		prod = NEXT_TX(prod);
609 		tx_buf = &txr->tx_buf_ring[prod];
610 		dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
611 			       skb_frag_size(&skb_shinfo(skb)->frags[i]),
612 			       PCI_DMA_TODEVICE);
613 	}
614 
615 	dev_kfree_skb_any(skb);
616 	return NETDEV_TX_OK;
617 }
618 
619 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts)
620 {
621 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
622 	struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index);
623 	u16 cons = txr->tx_cons;
624 	struct pci_dev *pdev = bp->pdev;
625 	int i;
626 	unsigned int tx_bytes = 0;
627 
628 	for (i = 0; i < nr_pkts; i++) {
629 		struct bnxt_sw_tx_bd *tx_buf;
630 		struct sk_buff *skb;
631 		int j, last;
632 
633 		tx_buf = &txr->tx_buf_ring[cons];
634 		cons = NEXT_TX(cons);
635 		skb = tx_buf->skb;
636 		tx_buf->skb = NULL;
637 
638 		if (tx_buf->is_push) {
639 			tx_buf->is_push = 0;
640 			goto next_tx_int;
641 		}
642 
643 		dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
644 				 skb_headlen(skb), PCI_DMA_TODEVICE);
645 		last = tx_buf->nr_frags;
646 
647 		for (j = 0; j < last; j++) {
648 			cons = NEXT_TX(cons);
649 			tx_buf = &txr->tx_buf_ring[cons];
650 			dma_unmap_page(
651 				&pdev->dev,
652 				dma_unmap_addr(tx_buf, mapping),
653 				skb_frag_size(&skb_shinfo(skb)->frags[j]),
654 				PCI_DMA_TODEVICE);
655 		}
656 
657 next_tx_int:
658 		cons = NEXT_TX(cons);
659 
660 		tx_bytes += skb->len;
661 		dev_kfree_skb_any(skb);
662 	}
663 
664 	netdev_tx_completed_queue(txq, nr_pkts, tx_bytes);
665 	txr->tx_cons = cons;
666 
667 	/* Need to make the tx_cons update visible to bnxt_start_xmit()
668 	 * before checking for netif_tx_queue_stopped().  Without the
669 	 * memory barrier, there is a small possibility that bnxt_start_xmit()
670 	 * will miss it and cause the queue to be stopped forever.
671 	 */
672 	smp_mb();
673 
674 	if (unlikely(netif_tx_queue_stopped(txq)) &&
675 	    (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
676 		__netif_tx_lock(txq, smp_processor_id());
677 		if (netif_tx_queue_stopped(txq) &&
678 		    bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh &&
679 		    txr->dev_state != BNXT_DEV_STATE_CLOSING)
680 			netif_tx_wake_queue(txq);
681 		__netif_tx_unlock(txq);
682 	}
683 }
684 
685 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping,
686 					 struct bnxt_rx_ring_info *rxr,
687 					 gfp_t gfp)
688 {
689 	struct device *dev = &bp->pdev->dev;
690 	struct page *page;
691 
692 	page = page_pool_dev_alloc_pages(rxr->page_pool);
693 	if (!page)
694 		return NULL;
695 
696 	*mapping = dma_map_page_attrs(dev, page, 0, PAGE_SIZE, bp->rx_dir,
697 				      DMA_ATTR_WEAK_ORDERING);
698 	if (dma_mapping_error(dev, *mapping)) {
699 		page_pool_recycle_direct(rxr->page_pool, page);
700 		return NULL;
701 	}
702 	*mapping += bp->rx_dma_offset;
703 	return page;
704 }
705 
706 static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping,
707 				       gfp_t gfp)
708 {
709 	u8 *data;
710 	struct pci_dev *pdev = bp->pdev;
711 
712 	data = kmalloc(bp->rx_buf_size, gfp);
713 	if (!data)
714 		return NULL;
715 
716 	*mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset,
717 					bp->rx_buf_use_size, bp->rx_dir,
718 					DMA_ATTR_WEAK_ORDERING);
719 
720 	if (dma_mapping_error(&pdev->dev, *mapping)) {
721 		kfree(data);
722 		data = NULL;
723 	}
724 	return data;
725 }
726 
727 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
728 		       u16 prod, gfp_t gfp)
729 {
730 	struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
731 	struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
732 	dma_addr_t mapping;
733 
734 	if (BNXT_RX_PAGE_MODE(bp)) {
735 		struct page *page =
736 			__bnxt_alloc_rx_page(bp, &mapping, rxr, gfp);
737 
738 		if (!page)
739 			return -ENOMEM;
740 
741 		rx_buf->data = page;
742 		rx_buf->data_ptr = page_address(page) + bp->rx_offset;
743 	} else {
744 		u8 *data = __bnxt_alloc_rx_data(bp, &mapping, gfp);
745 
746 		if (!data)
747 			return -ENOMEM;
748 
749 		rx_buf->data = data;
750 		rx_buf->data_ptr = data + bp->rx_offset;
751 	}
752 	rx_buf->mapping = mapping;
753 
754 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
755 	return 0;
756 }
757 
758 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data)
759 {
760 	u16 prod = rxr->rx_prod;
761 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
762 	struct rx_bd *cons_bd, *prod_bd;
763 
764 	prod_rx_buf = &rxr->rx_buf_ring[prod];
765 	cons_rx_buf = &rxr->rx_buf_ring[cons];
766 
767 	prod_rx_buf->data = data;
768 	prod_rx_buf->data_ptr = cons_rx_buf->data_ptr;
769 
770 	prod_rx_buf->mapping = cons_rx_buf->mapping;
771 
772 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
773 	cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
774 
775 	prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
776 }
777 
778 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
779 {
780 	u16 next, max = rxr->rx_agg_bmap_size;
781 
782 	next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
783 	if (next >= max)
784 		next = find_first_zero_bit(rxr->rx_agg_bmap, max);
785 	return next;
786 }
787 
788 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
789 				     struct bnxt_rx_ring_info *rxr,
790 				     u16 prod, gfp_t gfp)
791 {
792 	struct rx_bd *rxbd =
793 		&rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
794 	struct bnxt_sw_rx_agg_bd *rx_agg_buf;
795 	struct pci_dev *pdev = bp->pdev;
796 	struct page *page;
797 	dma_addr_t mapping;
798 	u16 sw_prod = rxr->rx_sw_agg_prod;
799 	unsigned int offset = 0;
800 
801 	if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) {
802 		page = rxr->rx_page;
803 		if (!page) {
804 			page = alloc_page(gfp);
805 			if (!page)
806 				return -ENOMEM;
807 			rxr->rx_page = page;
808 			rxr->rx_page_offset = 0;
809 		}
810 		offset = rxr->rx_page_offset;
811 		rxr->rx_page_offset += BNXT_RX_PAGE_SIZE;
812 		if (rxr->rx_page_offset == PAGE_SIZE)
813 			rxr->rx_page = NULL;
814 		else
815 			get_page(page);
816 	} else {
817 		page = alloc_page(gfp);
818 		if (!page)
819 			return -ENOMEM;
820 	}
821 
822 	mapping = dma_map_page_attrs(&pdev->dev, page, offset,
823 				     BNXT_RX_PAGE_SIZE, PCI_DMA_FROMDEVICE,
824 				     DMA_ATTR_WEAK_ORDERING);
825 	if (dma_mapping_error(&pdev->dev, mapping)) {
826 		__free_page(page);
827 		return -EIO;
828 	}
829 
830 	if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
831 		sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
832 
833 	__set_bit(sw_prod, rxr->rx_agg_bmap);
834 	rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
835 	rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod);
836 
837 	rx_agg_buf->page = page;
838 	rx_agg_buf->offset = offset;
839 	rx_agg_buf->mapping = mapping;
840 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
841 	rxbd->rx_bd_opaque = sw_prod;
842 	return 0;
843 }
844 
845 static struct rx_agg_cmp *bnxt_get_agg(struct bnxt *bp,
846 				       struct bnxt_cp_ring_info *cpr,
847 				       u16 cp_cons, u16 curr)
848 {
849 	struct rx_agg_cmp *agg;
850 
851 	cp_cons = RING_CMP(ADV_RAW_CMP(cp_cons, curr));
852 	agg = (struct rx_agg_cmp *)
853 		&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
854 	return agg;
855 }
856 
857 static struct rx_agg_cmp *bnxt_get_tpa_agg_p5(struct bnxt *bp,
858 					      struct bnxt_rx_ring_info *rxr,
859 					      u16 agg_id, u16 curr)
860 {
861 	struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[agg_id];
862 
863 	return &tpa_info->agg_arr[curr];
864 }
865 
866 static void bnxt_reuse_rx_agg_bufs(struct bnxt_cp_ring_info *cpr, u16 idx,
867 				   u16 start, u32 agg_bufs, bool tpa)
868 {
869 	struct bnxt_napi *bnapi = cpr->bnapi;
870 	struct bnxt *bp = bnapi->bp;
871 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
872 	u16 prod = rxr->rx_agg_prod;
873 	u16 sw_prod = rxr->rx_sw_agg_prod;
874 	bool p5_tpa = false;
875 	u32 i;
876 
877 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa)
878 		p5_tpa = true;
879 
880 	for (i = 0; i < agg_bufs; i++) {
881 		u16 cons;
882 		struct rx_agg_cmp *agg;
883 		struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
884 		struct rx_bd *prod_bd;
885 		struct page *page;
886 
887 		if (p5_tpa)
888 			agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, start + i);
889 		else
890 			agg = bnxt_get_agg(bp, cpr, idx, start + i);
891 		cons = agg->rx_agg_cmp_opaque;
892 		__clear_bit(cons, rxr->rx_agg_bmap);
893 
894 		if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
895 			sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
896 
897 		__set_bit(sw_prod, rxr->rx_agg_bmap);
898 		prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
899 		cons_rx_buf = &rxr->rx_agg_ring[cons];
900 
901 		/* It is possible for sw_prod to be equal to cons, so
902 		 * set cons_rx_buf->page to NULL first.
903 		 */
904 		page = cons_rx_buf->page;
905 		cons_rx_buf->page = NULL;
906 		prod_rx_buf->page = page;
907 		prod_rx_buf->offset = cons_rx_buf->offset;
908 
909 		prod_rx_buf->mapping = cons_rx_buf->mapping;
910 
911 		prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
912 
913 		prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
914 		prod_bd->rx_bd_opaque = sw_prod;
915 
916 		prod = NEXT_RX_AGG(prod);
917 		sw_prod = NEXT_RX_AGG(sw_prod);
918 	}
919 	rxr->rx_agg_prod = prod;
920 	rxr->rx_sw_agg_prod = sw_prod;
921 }
922 
923 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp,
924 					struct bnxt_rx_ring_info *rxr,
925 					u16 cons, void *data, u8 *data_ptr,
926 					dma_addr_t dma_addr,
927 					unsigned int offset_and_len)
928 {
929 	unsigned int payload = offset_and_len >> 16;
930 	unsigned int len = offset_and_len & 0xffff;
931 	skb_frag_t *frag;
932 	struct page *page = data;
933 	u16 prod = rxr->rx_prod;
934 	struct sk_buff *skb;
935 	int off, err;
936 
937 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
938 	if (unlikely(err)) {
939 		bnxt_reuse_rx_data(rxr, cons, data);
940 		return NULL;
941 	}
942 	dma_addr -= bp->rx_dma_offset;
943 	dma_unmap_page_attrs(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir,
944 			     DMA_ATTR_WEAK_ORDERING);
945 	page_pool_release_page(rxr->page_pool, page);
946 
947 	if (unlikely(!payload))
948 		payload = eth_get_headlen(bp->dev, data_ptr, len);
949 
950 	skb = napi_alloc_skb(&rxr->bnapi->napi, payload);
951 	if (!skb) {
952 		__free_page(page);
953 		return NULL;
954 	}
955 
956 	off = (void *)data_ptr - page_address(page);
957 	skb_add_rx_frag(skb, 0, page, off, len, PAGE_SIZE);
958 	memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN,
959 	       payload + NET_IP_ALIGN);
960 
961 	frag = &skb_shinfo(skb)->frags[0];
962 	skb_frag_size_sub(frag, payload);
963 	skb_frag_off_add(frag, payload);
964 	skb->data_len -= payload;
965 	skb->tail += payload;
966 
967 	return skb;
968 }
969 
970 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
971 				   struct bnxt_rx_ring_info *rxr, u16 cons,
972 				   void *data, u8 *data_ptr,
973 				   dma_addr_t dma_addr,
974 				   unsigned int offset_and_len)
975 {
976 	u16 prod = rxr->rx_prod;
977 	struct sk_buff *skb;
978 	int err;
979 
980 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
981 	if (unlikely(err)) {
982 		bnxt_reuse_rx_data(rxr, cons, data);
983 		return NULL;
984 	}
985 
986 	skb = build_skb(data, 0);
987 	dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
988 			       bp->rx_dir, DMA_ATTR_WEAK_ORDERING);
989 	if (!skb) {
990 		kfree(data);
991 		return NULL;
992 	}
993 
994 	skb_reserve(skb, bp->rx_offset);
995 	skb_put(skb, offset_and_len & 0xffff);
996 	return skb;
997 }
998 
999 static struct sk_buff *bnxt_rx_pages(struct bnxt *bp,
1000 				     struct bnxt_cp_ring_info *cpr,
1001 				     struct sk_buff *skb, u16 idx,
1002 				     u32 agg_bufs, bool tpa)
1003 {
1004 	struct bnxt_napi *bnapi = cpr->bnapi;
1005 	struct pci_dev *pdev = bp->pdev;
1006 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1007 	u16 prod = rxr->rx_agg_prod;
1008 	bool p5_tpa = false;
1009 	u32 i;
1010 
1011 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa)
1012 		p5_tpa = true;
1013 
1014 	for (i = 0; i < agg_bufs; i++) {
1015 		u16 cons, frag_len;
1016 		struct rx_agg_cmp *agg;
1017 		struct bnxt_sw_rx_agg_bd *cons_rx_buf;
1018 		struct page *page;
1019 		dma_addr_t mapping;
1020 
1021 		if (p5_tpa)
1022 			agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, i);
1023 		else
1024 			agg = bnxt_get_agg(bp, cpr, idx, i);
1025 		cons = agg->rx_agg_cmp_opaque;
1026 		frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
1027 			    RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
1028 
1029 		cons_rx_buf = &rxr->rx_agg_ring[cons];
1030 		skb_fill_page_desc(skb, i, cons_rx_buf->page,
1031 				   cons_rx_buf->offset, frag_len);
1032 		__clear_bit(cons, rxr->rx_agg_bmap);
1033 
1034 		/* It is possible for bnxt_alloc_rx_page() to allocate
1035 		 * a sw_prod index that equals the cons index, so we
1036 		 * need to clear the cons entry now.
1037 		 */
1038 		mapping = cons_rx_buf->mapping;
1039 		page = cons_rx_buf->page;
1040 		cons_rx_buf->page = NULL;
1041 
1042 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
1043 			struct skb_shared_info *shinfo;
1044 			unsigned int nr_frags;
1045 
1046 			shinfo = skb_shinfo(skb);
1047 			nr_frags = --shinfo->nr_frags;
1048 			__skb_frag_set_page(&shinfo->frags[nr_frags], NULL);
1049 
1050 			dev_kfree_skb(skb);
1051 
1052 			cons_rx_buf->page = page;
1053 
1054 			/* Update prod since possibly some pages have been
1055 			 * allocated already.
1056 			 */
1057 			rxr->rx_agg_prod = prod;
1058 			bnxt_reuse_rx_agg_bufs(cpr, idx, i, agg_bufs - i, tpa);
1059 			return NULL;
1060 		}
1061 
1062 		dma_unmap_page_attrs(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE,
1063 				     PCI_DMA_FROMDEVICE,
1064 				     DMA_ATTR_WEAK_ORDERING);
1065 
1066 		skb->data_len += frag_len;
1067 		skb->len += frag_len;
1068 		skb->truesize += PAGE_SIZE;
1069 
1070 		prod = NEXT_RX_AGG(prod);
1071 	}
1072 	rxr->rx_agg_prod = prod;
1073 	return skb;
1074 }
1075 
1076 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1077 			       u8 agg_bufs, u32 *raw_cons)
1078 {
1079 	u16 last;
1080 	struct rx_agg_cmp *agg;
1081 
1082 	*raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
1083 	last = RING_CMP(*raw_cons);
1084 	agg = (struct rx_agg_cmp *)
1085 		&cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
1086 	return RX_AGG_CMP_VALID(agg, *raw_cons);
1087 }
1088 
1089 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
1090 					    unsigned int len,
1091 					    dma_addr_t mapping)
1092 {
1093 	struct bnxt *bp = bnapi->bp;
1094 	struct pci_dev *pdev = bp->pdev;
1095 	struct sk_buff *skb;
1096 
1097 	skb = napi_alloc_skb(&bnapi->napi, len);
1098 	if (!skb)
1099 		return NULL;
1100 
1101 	dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh,
1102 				bp->rx_dir);
1103 
1104 	memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN,
1105 	       len + NET_IP_ALIGN);
1106 
1107 	dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh,
1108 				   bp->rx_dir);
1109 
1110 	skb_put(skb, len);
1111 	return skb;
1112 }
1113 
1114 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1115 			   u32 *raw_cons, void *cmp)
1116 {
1117 	struct rx_cmp *rxcmp = cmp;
1118 	u32 tmp_raw_cons = *raw_cons;
1119 	u8 cmp_type, agg_bufs = 0;
1120 
1121 	cmp_type = RX_CMP_TYPE(rxcmp);
1122 
1123 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1124 		agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) &
1125 			    RX_CMP_AGG_BUFS) >>
1126 			   RX_CMP_AGG_BUFS_SHIFT;
1127 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1128 		struct rx_tpa_end_cmp *tpa_end = cmp;
1129 
1130 		if (bp->flags & BNXT_FLAG_CHIP_P5)
1131 			return 0;
1132 
1133 		agg_bufs = TPA_END_AGG_BUFS(tpa_end);
1134 	}
1135 
1136 	if (agg_bufs) {
1137 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1138 			return -EBUSY;
1139 	}
1140 	*raw_cons = tmp_raw_cons;
1141 	return 0;
1142 }
1143 
1144 static void bnxt_queue_fw_reset_work(struct bnxt *bp, unsigned long delay)
1145 {
1146 	if (!(test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)))
1147 		return;
1148 
1149 	if (BNXT_PF(bp))
1150 		queue_delayed_work(bnxt_pf_wq, &bp->fw_reset_task, delay);
1151 	else
1152 		schedule_delayed_work(&bp->fw_reset_task, delay);
1153 }
1154 
1155 static void bnxt_queue_sp_work(struct bnxt *bp)
1156 {
1157 	if (BNXT_PF(bp))
1158 		queue_work(bnxt_pf_wq, &bp->sp_task);
1159 	else
1160 		schedule_work(&bp->sp_task);
1161 }
1162 
1163 static void bnxt_cancel_sp_work(struct bnxt *bp)
1164 {
1165 	if (BNXT_PF(bp)) {
1166 		flush_workqueue(bnxt_pf_wq);
1167 	} else {
1168 		cancel_work_sync(&bp->sp_task);
1169 		cancel_delayed_work_sync(&bp->fw_reset_task);
1170 	}
1171 }
1172 
1173 static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
1174 {
1175 	if (!rxr->bnapi->in_reset) {
1176 		rxr->bnapi->in_reset = true;
1177 		if (bp->flags & BNXT_FLAG_CHIP_P5)
1178 			set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
1179 		else
1180 			set_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event);
1181 		bnxt_queue_sp_work(bp);
1182 	}
1183 	rxr->rx_next_cons = 0xffff;
1184 }
1185 
1186 static u16 bnxt_alloc_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id)
1187 {
1188 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1189 	u16 idx = agg_id & MAX_TPA_P5_MASK;
1190 
1191 	if (test_bit(idx, map->agg_idx_bmap))
1192 		idx = find_first_zero_bit(map->agg_idx_bmap,
1193 					  BNXT_AGG_IDX_BMAP_SIZE);
1194 	__set_bit(idx, map->agg_idx_bmap);
1195 	map->agg_id_tbl[agg_id] = idx;
1196 	return idx;
1197 }
1198 
1199 static void bnxt_free_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
1200 {
1201 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1202 
1203 	__clear_bit(idx, map->agg_idx_bmap);
1204 }
1205 
1206 static u16 bnxt_lookup_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id)
1207 {
1208 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1209 
1210 	return map->agg_id_tbl[agg_id];
1211 }
1212 
1213 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1214 			   struct rx_tpa_start_cmp *tpa_start,
1215 			   struct rx_tpa_start_cmp_ext *tpa_start1)
1216 {
1217 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
1218 	struct bnxt_tpa_info *tpa_info;
1219 	u16 cons, prod, agg_id;
1220 	struct rx_bd *prod_bd;
1221 	dma_addr_t mapping;
1222 
1223 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
1224 		agg_id = TPA_START_AGG_ID_P5(tpa_start);
1225 		agg_id = bnxt_alloc_agg_idx(rxr, agg_id);
1226 	} else {
1227 		agg_id = TPA_START_AGG_ID(tpa_start);
1228 	}
1229 	cons = tpa_start->rx_tpa_start_cmp_opaque;
1230 	prod = rxr->rx_prod;
1231 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1232 	prod_rx_buf = &rxr->rx_buf_ring[prod];
1233 	tpa_info = &rxr->rx_tpa[agg_id];
1234 
1235 	if (unlikely(cons != rxr->rx_next_cons ||
1236 		     TPA_START_ERROR(tpa_start))) {
1237 		netdev_warn(bp->dev, "TPA cons %x, expected cons %x, error code %x\n",
1238 			    cons, rxr->rx_next_cons,
1239 			    TPA_START_ERROR_CODE(tpa_start1));
1240 		bnxt_sched_reset(bp, rxr);
1241 		return;
1242 	}
1243 	/* Store cfa_code in tpa_info to use in tpa_end
1244 	 * completion processing.
1245 	 */
1246 	tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1);
1247 	prod_rx_buf->data = tpa_info->data;
1248 	prod_rx_buf->data_ptr = tpa_info->data_ptr;
1249 
1250 	mapping = tpa_info->mapping;
1251 	prod_rx_buf->mapping = mapping;
1252 
1253 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
1254 
1255 	prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
1256 
1257 	tpa_info->data = cons_rx_buf->data;
1258 	tpa_info->data_ptr = cons_rx_buf->data_ptr;
1259 	cons_rx_buf->data = NULL;
1260 	tpa_info->mapping = cons_rx_buf->mapping;
1261 
1262 	tpa_info->len =
1263 		le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
1264 				RX_TPA_START_CMP_LEN_SHIFT;
1265 	if (likely(TPA_START_HASH_VALID(tpa_start))) {
1266 		u32 hash_type = TPA_START_HASH_TYPE(tpa_start);
1267 
1268 		tpa_info->hash_type = PKT_HASH_TYPE_L4;
1269 		tpa_info->gso_type = SKB_GSO_TCPV4;
1270 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1271 		if (hash_type == 3 || TPA_START_IS_IPV6(tpa_start1))
1272 			tpa_info->gso_type = SKB_GSO_TCPV6;
1273 		tpa_info->rss_hash =
1274 			le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
1275 	} else {
1276 		tpa_info->hash_type = PKT_HASH_TYPE_NONE;
1277 		tpa_info->gso_type = 0;
1278 		if (netif_msg_rx_err(bp))
1279 			netdev_warn(bp->dev, "TPA packet without valid hash\n");
1280 	}
1281 	tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
1282 	tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
1283 	tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info);
1284 	tpa_info->agg_count = 0;
1285 
1286 	rxr->rx_prod = NEXT_RX(prod);
1287 	cons = NEXT_RX(cons);
1288 	rxr->rx_next_cons = NEXT_RX(cons);
1289 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1290 
1291 	bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
1292 	rxr->rx_prod = NEXT_RX(rxr->rx_prod);
1293 	cons_rx_buf->data = NULL;
1294 }
1295 
1296 static void bnxt_abort_tpa(struct bnxt_cp_ring_info *cpr, u16 idx, u32 agg_bufs)
1297 {
1298 	if (agg_bufs)
1299 		bnxt_reuse_rx_agg_bufs(cpr, idx, 0, agg_bufs, true);
1300 }
1301 
1302 #ifdef CONFIG_INET
1303 static void bnxt_gro_tunnel(struct sk_buff *skb, __be16 ip_proto)
1304 {
1305 	struct udphdr *uh = NULL;
1306 
1307 	if (ip_proto == htons(ETH_P_IP)) {
1308 		struct iphdr *iph = (struct iphdr *)skb->data;
1309 
1310 		if (iph->protocol == IPPROTO_UDP)
1311 			uh = (struct udphdr *)(iph + 1);
1312 	} else {
1313 		struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1314 
1315 		if (iph->nexthdr == IPPROTO_UDP)
1316 			uh = (struct udphdr *)(iph + 1);
1317 	}
1318 	if (uh) {
1319 		if (uh->check)
1320 			skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL_CSUM;
1321 		else
1322 			skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1323 	}
1324 }
1325 #endif
1326 
1327 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info,
1328 					   int payload_off, int tcp_ts,
1329 					   struct sk_buff *skb)
1330 {
1331 #ifdef CONFIG_INET
1332 	struct tcphdr *th;
1333 	int len, nw_off;
1334 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1335 	u32 hdr_info = tpa_info->hdr_info;
1336 	bool loopback = false;
1337 
1338 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1339 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1340 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1341 
1342 	/* If the packet is an internal loopback packet, the offsets will
1343 	 * have an extra 4 bytes.
1344 	 */
1345 	if (inner_mac_off == 4) {
1346 		loopback = true;
1347 	} else if (inner_mac_off > 4) {
1348 		__be16 proto = *((__be16 *)(skb->data + inner_ip_off -
1349 					    ETH_HLEN - 2));
1350 
1351 		/* We only support inner iPv4/ipv6.  If we don't see the
1352 		 * correct protocol ID, it must be a loopback packet where
1353 		 * the offsets are off by 4.
1354 		 */
1355 		if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6))
1356 			loopback = true;
1357 	}
1358 	if (loopback) {
1359 		/* internal loopback packet, subtract all offsets by 4 */
1360 		inner_ip_off -= 4;
1361 		inner_mac_off -= 4;
1362 		outer_ip_off -= 4;
1363 	}
1364 
1365 	nw_off = inner_ip_off - ETH_HLEN;
1366 	skb_set_network_header(skb, nw_off);
1367 	if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) {
1368 		struct ipv6hdr *iph = ipv6_hdr(skb);
1369 
1370 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1371 		len = skb->len - skb_transport_offset(skb);
1372 		th = tcp_hdr(skb);
1373 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1374 	} else {
1375 		struct iphdr *iph = ip_hdr(skb);
1376 
1377 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1378 		len = skb->len - skb_transport_offset(skb);
1379 		th = tcp_hdr(skb);
1380 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1381 	}
1382 
1383 	if (inner_mac_off) { /* tunnel */
1384 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1385 					    ETH_HLEN - 2));
1386 
1387 		bnxt_gro_tunnel(skb, proto);
1388 	}
1389 #endif
1390 	return skb;
1391 }
1392 
1393 static struct sk_buff *bnxt_gro_func_5750x(struct bnxt_tpa_info *tpa_info,
1394 					   int payload_off, int tcp_ts,
1395 					   struct sk_buff *skb)
1396 {
1397 #ifdef CONFIG_INET
1398 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1399 	u32 hdr_info = tpa_info->hdr_info;
1400 	int iphdr_len, nw_off;
1401 
1402 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1403 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1404 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1405 
1406 	nw_off = inner_ip_off - ETH_HLEN;
1407 	skb_set_network_header(skb, nw_off);
1408 	iphdr_len = (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) ?
1409 		     sizeof(struct ipv6hdr) : sizeof(struct iphdr);
1410 	skb_set_transport_header(skb, nw_off + iphdr_len);
1411 
1412 	if (inner_mac_off) { /* tunnel */
1413 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1414 					    ETH_HLEN - 2));
1415 
1416 		bnxt_gro_tunnel(skb, proto);
1417 	}
1418 #endif
1419 	return skb;
1420 }
1421 
1422 #define BNXT_IPV4_HDR_SIZE	(sizeof(struct iphdr) + sizeof(struct tcphdr))
1423 #define BNXT_IPV6_HDR_SIZE	(sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
1424 
1425 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info,
1426 					   int payload_off, int tcp_ts,
1427 					   struct sk_buff *skb)
1428 {
1429 #ifdef CONFIG_INET
1430 	struct tcphdr *th;
1431 	int len, nw_off, tcp_opt_len = 0;
1432 
1433 	if (tcp_ts)
1434 		tcp_opt_len = 12;
1435 
1436 	if (tpa_info->gso_type == SKB_GSO_TCPV4) {
1437 		struct iphdr *iph;
1438 
1439 		nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
1440 			 ETH_HLEN;
1441 		skb_set_network_header(skb, nw_off);
1442 		iph = ip_hdr(skb);
1443 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1444 		len = skb->len - skb_transport_offset(skb);
1445 		th = tcp_hdr(skb);
1446 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1447 	} else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
1448 		struct ipv6hdr *iph;
1449 
1450 		nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
1451 			 ETH_HLEN;
1452 		skb_set_network_header(skb, nw_off);
1453 		iph = ipv6_hdr(skb);
1454 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1455 		len = skb->len - skb_transport_offset(skb);
1456 		th = tcp_hdr(skb);
1457 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1458 	} else {
1459 		dev_kfree_skb_any(skb);
1460 		return NULL;
1461 	}
1462 
1463 	if (nw_off) /* tunnel */
1464 		bnxt_gro_tunnel(skb, skb->protocol);
1465 #endif
1466 	return skb;
1467 }
1468 
1469 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp,
1470 					   struct bnxt_tpa_info *tpa_info,
1471 					   struct rx_tpa_end_cmp *tpa_end,
1472 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1473 					   struct sk_buff *skb)
1474 {
1475 #ifdef CONFIG_INET
1476 	int payload_off;
1477 	u16 segs;
1478 
1479 	segs = TPA_END_TPA_SEGS(tpa_end);
1480 	if (segs == 1)
1481 		return skb;
1482 
1483 	NAPI_GRO_CB(skb)->count = segs;
1484 	skb_shinfo(skb)->gso_size =
1485 		le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
1486 	skb_shinfo(skb)->gso_type = tpa_info->gso_type;
1487 	if (bp->flags & BNXT_FLAG_CHIP_P5)
1488 		payload_off = TPA_END_PAYLOAD_OFF_P5(tpa_end1);
1489 	else
1490 		payload_off = TPA_END_PAYLOAD_OFF(tpa_end);
1491 	skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb);
1492 	if (likely(skb))
1493 		tcp_gro_complete(skb);
1494 #endif
1495 	return skb;
1496 }
1497 
1498 /* Given the cfa_code of a received packet determine which
1499  * netdev (vf-rep or PF) the packet is destined to.
1500  */
1501 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code)
1502 {
1503 	struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code);
1504 
1505 	/* if vf-rep dev is NULL, the must belongs to the PF */
1506 	return dev ? dev : bp->dev;
1507 }
1508 
1509 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
1510 					   struct bnxt_cp_ring_info *cpr,
1511 					   u32 *raw_cons,
1512 					   struct rx_tpa_end_cmp *tpa_end,
1513 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1514 					   u8 *event)
1515 {
1516 	struct bnxt_napi *bnapi = cpr->bnapi;
1517 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1518 	u8 *data_ptr, agg_bufs;
1519 	unsigned int len;
1520 	struct bnxt_tpa_info *tpa_info;
1521 	dma_addr_t mapping;
1522 	struct sk_buff *skb;
1523 	u16 idx = 0, agg_id;
1524 	void *data;
1525 	bool gro;
1526 
1527 	if (unlikely(bnapi->in_reset)) {
1528 		int rc = bnxt_discard_rx(bp, cpr, raw_cons, tpa_end);
1529 
1530 		if (rc < 0)
1531 			return ERR_PTR(-EBUSY);
1532 		return NULL;
1533 	}
1534 
1535 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
1536 		agg_id = TPA_END_AGG_ID_P5(tpa_end);
1537 		agg_id = bnxt_lookup_agg_idx(rxr, agg_id);
1538 		agg_bufs = TPA_END_AGG_BUFS_P5(tpa_end1);
1539 		tpa_info = &rxr->rx_tpa[agg_id];
1540 		if (unlikely(agg_bufs != tpa_info->agg_count)) {
1541 			netdev_warn(bp->dev, "TPA end agg_buf %d != expected agg_bufs %d\n",
1542 				    agg_bufs, tpa_info->agg_count);
1543 			agg_bufs = tpa_info->agg_count;
1544 		}
1545 		tpa_info->agg_count = 0;
1546 		*event |= BNXT_AGG_EVENT;
1547 		bnxt_free_agg_idx(rxr, agg_id);
1548 		idx = agg_id;
1549 		gro = !!(bp->flags & BNXT_FLAG_GRO);
1550 	} else {
1551 		agg_id = TPA_END_AGG_ID(tpa_end);
1552 		agg_bufs = TPA_END_AGG_BUFS(tpa_end);
1553 		tpa_info = &rxr->rx_tpa[agg_id];
1554 		idx = RING_CMP(*raw_cons);
1555 		if (agg_bufs) {
1556 			if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
1557 				return ERR_PTR(-EBUSY);
1558 
1559 			*event |= BNXT_AGG_EVENT;
1560 			idx = NEXT_CMP(idx);
1561 		}
1562 		gro = !!TPA_END_GRO(tpa_end);
1563 	}
1564 	data = tpa_info->data;
1565 	data_ptr = tpa_info->data_ptr;
1566 	prefetch(data_ptr);
1567 	len = tpa_info->len;
1568 	mapping = tpa_info->mapping;
1569 
1570 	if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) {
1571 		bnxt_abort_tpa(cpr, idx, agg_bufs);
1572 		if (agg_bufs > MAX_SKB_FRAGS)
1573 			netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
1574 				    agg_bufs, (int)MAX_SKB_FRAGS);
1575 		return NULL;
1576 	}
1577 
1578 	if (len <= bp->rx_copy_thresh) {
1579 		skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping);
1580 		if (!skb) {
1581 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1582 			return NULL;
1583 		}
1584 	} else {
1585 		u8 *new_data;
1586 		dma_addr_t new_mapping;
1587 
1588 		new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC);
1589 		if (!new_data) {
1590 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1591 			return NULL;
1592 		}
1593 
1594 		tpa_info->data = new_data;
1595 		tpa_info->data_ptr = new_data + bp->rx_offset;
1596 		tpa_info->mapping = new_mapping;
1597 
1598 		skb = build_skb(data, 0);
1599 		dma_unmap_single_attrs(&bp->pdev->dev, mapping,
1600 				       bp->rx_buf_use_size, bp->rx_dir,
1601 				       DMA_ATTR_WEAK_ORDERING);
1602 
1603 		if (!skb) {
1604 			kfree(data);
1605 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1606 			return NULL;
1607 		}
1608 		skb_reserve(skb, bp->rx_offset);
1609 		skb_put(skb, len);
1610 	}
1611 
1612 	if (agg_bufs) {
1613 		skb = bnxt_rx_pages(bp, cpr, skb, idx, agg_bufs, true);
1614 		if (!skb) {
1615 			/* Page reuse already handled by bnxt_rx_pages(). */
1616 			return NULL;
1617 		}
1618 	}
1619 
1620 	skb->protocol =
1621 		eth_type_trans(skb, bnxt_get_pkt_dev(bp, tpa_info->cfa_code));
1622 
1623 	if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1624 		skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1625 
1626 	if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) &&
1627 	    (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) {
1628 		u16 vlan_proto = tpa_info->metadata >>
1629 			RX_CMP_FLAGS2_METADATA_TPID_SFT;
1630 		u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1631 
1632 		__vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1633 	}
1634 
1635 	skb_checksum_none_assert(skb);
1636 	if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1637 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1638 		skb->csum_level =
1639 			(tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1640 	}
1641 
1642 	if (gro)
1643 		skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb);
1644 
1645 	return skb;
1646 }
1647 
1648 static void bnxt_tpa_agg(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1649 			 struct rx_agg_cmp *rx_agg)
1650 {
1651 	u16 agg_id = TPA_AGG_AGG_ID(rx_agg);
1652 	struct bnxt_tpa_info *tpa_info;
1653 
1654 	agg_id = bnxt_lookup_agg_idx(rxr, agg_id);
1655 	tpa_info = &rxr->rx_tpa[agg_id];
1656 	BUG_ON(tpa_info->agg_count >= MAX_SKB_FRAGS);
1657 	tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg;
1658 }
1659 
1660 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi,
1661 			     struct sk_buff *skb)
1662 {
1663 	if (skb->dev != bp->dev) {
1664 		/* this packet belongs to a vf-rep */
1665 		bnxt_vf_rep_rx(bp, skb);
1666 		return;
1667 	}
1668 	skb_record_rx_queue(skb, bnapi->index);
1669 	napi_gro_receive(&bnapi->napi, skb);
1670 }
1671 
1672 /* returns the following:
1673  * 1       - 1 packet successfully received
1674  * 0       - successful TPA_START, packet not completed yet
1675  * -EBUSY  - completion ring does not have all the agg buffers yet
1676  * -ENOMEM - packet aborted due to out of memory
1677  * -EIO    - packet aborted due to hw error indicated in BD
1678  */
1679 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1680 		       u32 *raw_cons, u8 *event)
1681 {
1682 	struct bnxt_napi *bnapi = cpr->bnapi;
1683 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1684 	struct net_device *dev = bp->dev;
1685 	struct rx_cmp *rxcmp;
1686 	struct rx_cmp_ext *rxcmp1;
1687 	u32 tmp_raw_cons = *raw_cons;
1688 	u16 cfa_code, cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
1689 	struct bnxt_sw_rx_bd *rx_buf;
1690 	unsigned int len;
1691 	u8 *data_ptr, agg_bufs, cmp_type;
1692 	dma_addr_t dma_addr;
1693 	struct sk_buff *skb;
1694 	void *data;
1695 	int rc = 0;
1696 	u32 misc;
1697 
1698 	rxcmp = (struct rx_cmp *)
1699 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1700 
1701 	cmp_type = RX_CMP_TYPE(rxcmp);
1702 
1703 	if (cmp_type == CMP_TYPE_RX_TPA_AGG_CMP) {
1704 		bnxt_tpa_agg(bp, rxr, (struct rx_agg_cmp *)rxcmp);
1705 		goto next_rx_no_prod_no_len;
1706 	}
1707 
1708 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1709 	cp_cons = RING_CMP(tmp_raw_cons);
1710 	rxcmp1 = (struct rx_cmp_ext *)
1711 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1712 
1713 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1714 		return -EBUSY;
1715 
1716 	prod = rxr->rx_prod;
1717 
1718 	if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) {
1719 		bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp,
1720 			       (struct rx_tpa_start_cmp_ext *)rxcmp1);
1721 
1722 		*event |= BNXT_RX_EVENT;
1723 		goto next_rx_no_prod_no_len;
1724 
1725 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1726 		skb = bnxt_tpa_end(bp, cpr, &tmp_raw_cons,
1727 				   (struct rx_tpa_end_cmp *)rxcmp,
1728 				   (struct rx_tpa_end_cmp_ext *)rxcmp1, event);
1729 
1730 		if (IS_ERR(skb))
1731 			return -EBUSY;
1732 
1733 		rc = -ENOMEM;
1734 		if (likely(skb)) {
1735 			bnxt_deliver_skb(bp, bnapi, skb);
1736 			rc = 1;
1737 		}
1738 		*event |= BNXT_RX_EVENT;
1739 		goto next_rx_no_prod_no_len;
1740 	}
1741 
1742 	cons = rxcmp->rx_cmp_opaque;
1743 	if (unlikely(cons != rxr->rx_next_cons)) {
1744 		int rc1 = bnxt_discard_rx(bp, cpr, raw_cons, rxcmp);
1745 
1746 		/* 0xffff is forced error, don't print it */
1747 		if (rxr->rx_next_cons != 0xffff)
1748 			netdev_warn(bp->dev, "RX cons %x != expected cons %x\n",
1749 				    cons, rxr->rx_next_cons);
1750 		bnxt_sched_reset(bp, rxr);
1751 		return rc1;
1752 	}
1753 	rx_buf = &rxr->rx_buf_ring[cons];
1754 	data = rx_buf->data;
1755 	data_ptr = rx_buf->data_ptr;
1756 	prefetch(data_ptr);
1757 
1758 	misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1);
1759 	agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT;
1760 
1761 	if (agg_bufs) {
1762 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1763 			return -EBUSY;
1764 
1765 		cp_cons = NEXT_CMP(cp_cons);
1766 		*event |= BNXT_AGG_EVENT;
1767 	}
1768 	*event |= BNXT_RX_EVENT;
1769 
1770 	rx_buf->data = NULL;
1771 	if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
1772 		u32 rx_err = le32_to_cpu(rxcmp1->rx_cmp_cfa_code_errors_v2);
1773 
1774 		bnxt_reuse_rx_data(rxr, cons, data);
1775 		if (agg_bufs)
1776 			bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, agg_bufs,
1777 					       false);
1778 
1779 		rc = -EIO;
1780 		if (rx_err & RX_CMPL_ERRORS_BUFFER_ERROR_MASK) {
1781 			bnapi->cp_ring.sw_stats.rx.rx_buf_errors++;
1782 			if (!(bp->flags & BNXT_FLAG_CHIP_P5) &&
1783 			    !(bp->fw_cap & BNXT_FW_CAP_RING_MONITOR)) {
1784 				netdev_warn_once(bp->dev, "RX buffer error %x\n",
1785 						 rx_err);
1786 				bnxt_sched_reset(bp, rxr);
1787 			}
1788 		}
1789 		goto next_rx_no_len;
1790 	}
1791 
1792 	len = le32_to_cpu(rxcmp->rx_cmp_len_flags_type) >> RX_CMP_LEN_SHIFT;
1793 	dma_addr = rx_buf->mapping;
1794 
1795 	if (bnxt_rx_xdp(bp, rxr, cons, data, &data_ptr, &len, event)) {
1796 		rc = 1;
1797 		goto next_rx;
1798 	}
1799 
1800 	if (len <= bp->rx_copy_thresh) {
1801 		skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr);
1802 		bnxt_reuse_rx_data(rxr, cons, data);
1803 		if (!skb) {
1804 			if (agg_bufs)
1805 				bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0,
1806 						       agg_bufs, false);
1807 			rc = -ENOMEM;
1808 			goto next_rx;
1809 		}
1810 	} else {
1811 		u32 payload;
1812 
1813 		if (rx_buf->data_ptr == data_ptr)
1814 			payload = misc & RX_CMP_PAYLOAD_OFFSET;
1815 		else
1816 			payload = 0;
1817 		skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr,
1818 				      payload | len);
1819 		if (!skb) {
1820 			rc = -ENOMEM;
1821 			goto next_rx;
1822 		}
1823 	}
1824 
1825 	if (agg_bufs) {
1826 		skb = bnxt_rx_pages(bp, cpr, skb, cp_cons, agg_bufs, false);
1827 		if (!skb) {
1828 			rc = -ENOMEM;
1829 			goto next_rx;
1830 		}
1831 	}
1832 
1833 	if (RX_CMP_HASH_VALID(rxcmp)) {
1834 		u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
1835 		enum pkt_hash_types type = PKT_HASH_TYPE_L4;
1836 
1837 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1838 		if (hash_type != 1 && hash_type != 3)
1839 			type = PKT_HASH_TYPE_L3;
1840 		skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
1841 	}
1842 
1843 	cfa_code = RX_CMP_CFA_CODE(rxcmp1);
1844 	skb->protocol = eth_type_trans(skb, bnxt_get_pkt_dev(bp, cfa_code));
1845 
1846 	if ((rxcmp1->rx_cmp_flags2 &
1847 	     cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) &&
1848 	    (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) {
1849 		u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
1850 		u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1851 		u16 vlan_proto = meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT;
1852 
1853 		__vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1854 	}
1855 
1856 	skb_checksum_none_assert(skb);
1857 	if (RX_CMP_L4_CS_OK(rxcmp1)) {
1858 		if (dev->features & NETIF_F_RXCSUM) {
1859 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1860 			skb->csum_level = RX_CMP_ENCAP(rxcmp1);
1861 		}
1862 	} else {
1863 		if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
1864 			if (dev->features & NETIF_F_RXCSUM)
1865 				bnapi->cp_ring.sw_stats.rx.rx_l4_csum_errors++;
1866 		}
1867 	}
1868 
1869 	bnxt_deliver_skb(bp, bnapi, skb);
1870 	rc = 1;
1871 
1872 next_rx:
1873 	cpr->rx_packets += 1;
1874 	cpr->rx_bytes += len;
1875 
1876 next_rx_no_len:
1877 	rxr->rx_prod = NEXT_RX(prod);
1878 	rxr->rx_next_cons = NEXT_RX(cons);
1879 
1880 next_rx_no_prod_no_len:
1881 	*raw_cons = tmp_raw_cons;
1882 
1883 	return rc;
1884 }
1885 
1886 /* In netpoll mode, if we are using a combined completion ring, we need to
1887  * discard the rx packets and recycle the buffers.
1888  */
1889 static int bnxt_force_rx_discard(struct bnxt *bp,
1890 				 struct bnxt_cp_ring_info *cpr,
1891 				 u32 *raw_cons, u8 *event)
1892 {
1893 	u32 tmp_raw_cons = *raw_cons;
1894 	struct rx_cmp_ext *rxcmp1;
1895 	struct rx_cmp *rxcmp;
1896 	u16 cp_cons;
1897 	u8 cmp_type;
1898 
1899 	cp_cons = RING_CMP(tmp_raw_cons);
1900 	rxcmp = (struct rx_cmp *)
1901 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1902 
1903 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1904 	cp_cons = RING_CMP(tmp_raw_cons);
1905 	rxcmp1 = (struct rx_cmp_ext *)
1906 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1907 
1908 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1909 		return -EBUSY;
1910 
1911 	cmp_type = RX_CMP_TYPE(rxcmp);
1912 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1913 		rxcmp1->rx_cmp_cfa_code_errors_v2 |=
1914 			cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
1915 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1916 		struct rx_tpa_end_cmp_ext *tpa_end1;
1917 
1918 		tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1;
1919 		tpa_end1->rx_tpa_end_cmp_errors_v2 |=
1920 			cpu_to_le32(RX_TPA_END_CMP_ERRORS);
1921 	}
1922 	return bnxt_rx_pkt(bp, cpr, raw_cons, event);
1923 }
1924 
1925 u32 bnxt_fw_health_readl(struct bnxt *bp, int reg_idx)
1926 {
1927 	struct bnxt_fw_health *fw_health = bp->fw_health;
1928 	u32 reg = fw_health->regs[reg_idx];
1929 	u32 reg_type, reg_off, val = 0;
1930 
1931 	reg_type = BNXT_FW_HEALTH_REG_TYPE(reg);
1932 	reg_off = BNXT_FW_HEALTH_REG_OFF(reg);
1933 	switch (reg_type) {
1934 	case BNXT_FW_HEALTH_REG_TYPE_CFG:
1935 		pci_read_config_dword(bp->pdev, reg_off, &val);
1936 		break;
1937 	case BNXT_FW_HEALTH_REG_TYPE_GRC:
1938 		reg_off = fw_health->mapped_regs[reg_idx];
1939 		fallthrough;
1940 	case BNXT_FW_HEALTH_REG_TYPE_BAR0:
1941 		val = readl(bp->bar0 + reg_off);
1942 		break;
1943 	case BNXT_FW_HEALTH_REG_TYPE_BAR1:
1944 		val = readl(bp->bar1 + reg_off);
1945 		break;
1946 	}
1947 	if (reg_idx == BNXT_FW_RESET_INPROG_REG)
1948 		val &= fw_health->fw_reset_inprog_reg_mask;
1949 	return val;
1950 }
1951 
1952 static u16 bnxt_agg_ring_id_to_grp_idx(struct bnxt *bp, u16 ring_id)
1953 {
1954 	int i;
1955 
1956 	for (i = 0; i < bp->rx_nr_rings; i++) {
1957 		u16 grp_idx = bp->rx_ring[i].bnapi->index;
1958 		struct bnxt_ring_grp_info *grp_info;
1959 
1960 		grp_info = &bp->grp_info[grp_idx];
1961 		if (grp_info->agg_fw_ring_id == ring_id)
1962 			return grp_idx;
1963 	}
1964 	return INVALID_HW_RING_ID;
1965 }
1966 
1967 #define BNXT_GET_EVENT_PORT(data)	\
1968 	((data) &			\
1969 	 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK)
1970 
1971 #define BNXT_EVENT_RING_TYPE(data2)	\
1972 	((data2) &			\
1973 	 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_MASK)
1974 
1975 #define BNXT_EVENT_RING_TYPE_RX(data2)	\
1976 	(BNXT_EVENT_RING_TYPE(data2) ==	\
1977 	 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_RX)
1978 
1979 static int bnxt_async_event_process(struct bnxt *bp,
1980 				    struct hwrm_async_event_cmpl *cmpl)
1981 {
1982 	u16 event_id = le16_to_cpu(cmpl->event_id);
1983 	u32 data1 = le32_to_cpu(cmpl->event_data1);
1984 	u32 data2 = le32_to_cpu(cmpl->event_data2);
1985 
1986 	/* TODO CHIMP_FW: Define event id's for link change, error etc */
1987 	switch (event_id) {
1988 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: {
1989 		struct bnxt_link_info *link_info = &bp->link_info;
1990 
1991 		if (BNXT_VF(bp))
1992 			goto async_event_process_exit;
1993 
1994 		/* print unsupported speed warning in forced speed mode only */
1995 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) &&
1996 		    (data1 & 0x20000)) {
1997 			u16 fw_speed = link_info->force_link_speed;
1998 			u32 speed = bnxt_fw_to_ethtool_speed(fw_speed);
1999 
2000 			if (speed != SPEED_UNKNOWN)
2001 				netdev_warn(bp->dev, "Link speed %d no longer supported\n",
2002 					    speed);
2003 		}
2004 		set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event);
2005 	}
2006 		fallthrough;
2007 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE:
2008 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE:
2009 		set_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, &bp->sp_event);
2010 		fallthrough;
2011 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
2012 		set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
2013 		break;
2014 	case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD:
2015 		set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event);
2016 		break;
2017 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: {
2018 		u16 port_id = BNXT_GET_EVENT_PORT(data1);
2019 
2020 		if (BNXT_VF(bp))
2021 			break;
2022 
2023 		if (bp->pf.port_id != port_id)
2024 			break;
2025 
2026 		set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event);
2027 		break;
2028 	}
2029 	case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE:
2030 		if (BNXT_PF(bp))
2031 			goto async_event_process_exit;
2032 		set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event);
2033 		break;
2034 	case ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY:
2035 		if (netif_msg_hw(bp))
2036 			netdev_warn(bp->dev, "Received RESET_NOTIFY event, data1: 0x%x, data2: 0x%x\n",
2037 				    data1, data2);
2038 		if (!bp->fw_health)
2039 			goto async_event_process_exit;
2040 
2041 		bp->fw_reset_timestamp = jiffies;
2042 		bp->fw_reset_min_dsecs = cmpl->timestamp_lo;
2043 		if (!bp->fw_reset_min_dsecs)
2044 			bp->fw_reset_min_dsecs = BNXT_DFLT_FW_RST_MIN_DSECS;
2045 		bp->fw_reset_max_dsecs = le16_to_cpu(cmpl->timestamp_hi);
2046 		if (!bp->fw_reset_max_dsecs)
2047 			bp->fw_reset_max_dsecs = BNXT_DFLT_FW_RST_MAX_DSECS;
2048 		if (EVENT_DATA1_RESET_NOTIFY_FATAL(data1)) {
2049 			netdev_warn(bp->dev, "Firmware fatal reset event received\n");
2050 			set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
2051 		} else {
2052 			netdev_warn(bp->dev, "Firmware non-fatal reset event received, max wait time %d msec\n",
2053 				    bp->fw_reset_max_dsecs * 100);
2054 		}
2055 		set_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event);
2056 		break;
2057 	case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY: {
2058 		struct bnxt_fw_health *fw_health = bp->fw_health;
2059 
2060 		if (!fw_health)
2061 			goto async_event_process_exit;
2062 
2063 		fw_health->enabled = EVENT_DATA1_RECOVERY_ENABLED(data1);
2064 		fw_health->master = EVENT_DATA1_RECOVERY_MASTER_FUNC(data1);
2065 		if (!fw_health->enabled)
2066 			break;
2067 
2068 		if (netif_msg_drv(bp))
2069 			netdev_info(bp->dev, "Error recovery info: error recovery[%d], master[%d], reset count[0x%x], health status: 0x%x\n",
2070 				    fw_health->enabled, fw_health->master,
2071 				    bnxt_fw_health_readl(bp,
2072 							 BNXT_FW_RESET_CNT_REG),
2073 				    bnxt_fw_health_readl(bp,
2074 							 BNXT_FW_HEALTH_REG));
2075 		fw_health->tmr_multiplier =
2076 			DIV_ROUND_UP(fw_health->polling_dsecs * HZ,
2077 				     bp->current_interval * 10);
2078 		fw_health->tmr_counter = fw_health->tmr_multiplier;
2079 		fw_health->last_fw_heartbeat =
2080 			bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
2081 		fw_health->last_fw_reset_cnt =
2082 			bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
2083 		goto async_event_process_exit;
2084 	}
2085 	case ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG: {
2086 		struct bnxt_rx_ring_info *rxr;
2087 		u16 grp_idx;
2088 
2089 		if (bp->flags & BNXT_FLAG_CHIP_P5)
2090 			goto async_event_process_exit;
2091 
2092 		netdev_warn(bp->dev, "Ring monitor event, ring type %lu id 0x%x\n",
2093 			    BNXT_EVENT_RING_TYPE(data2), data1);
2094 		if (!BNXT_EVENT_RING_TYPE_RX(data2))
2095 			goto async_event_process_exit;
2096 
2097 		grp_idx = bnxt_agg_ring_id_to_grp_idx(bp, data1);
2098 		if (grp_idx == INVALID_HW_RING_ID) {
2099 			netdev_warn(bp->dev, "Unknown RX agg ring id 0x%x\n",
2100 				    data1);
2101 			goto async_event_process_exit;
2102 		}
2103 		rxr = bp->bnapi[grp_idx]->rx_ring;
2104 		bnxt_sched_reset(bp, rxr);
2105 		goto async_event_process_exit;
2106 	}
2107 	default:
2108 		goto async_event_process_exit;
2109 	}
2110 	bnxt_queue_sp_work(bp);
2111 async_event_process_exit:
2112 	bnxt_ulp_async_events(bp, cmpl);
2113 	return 0;
2114 }
2115 
2116 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
2117 {
2118 	u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
2119 	struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
2120 	struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
2121 				(struct hwrm_fwd_req_cmpl *)txcmp;
2122 
2123 	switch (cmpl_type) {
2124 	case CMPL_BASE_TYPE_HWRM_DONE:
2125 		seq_id = le16_to_cpu(h_cmpl->sequence_id);
2126 		if (seq_id == bp->hwrm_intr_seq_id)
2127 			bp->hwrm_intr_seq_id = (u16)~bp->hwrm_intr_seq_id;
2128 		else
2129 			netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id);
2130 		break;
2131 
2132 	case CMPL_BASE_TYPE_HWRM_FWD_REQ:
2133 		vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
2134 
2135 		if ((vf_id < bp->pf.first_vf_id) ||
2136 		    (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
2137 			netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
2138 				   vf_id);
2139 			return -EINVAL;
2140 		}
2141 
2142 		set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
2143 		set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event);
2144 		bnxt_queue_sp_work(bp);
2145 		break;
2146 
2147 	case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
2148 		bnxt_async_event_process(bp,
2149 					 (struct hwrm_async_event_cmpl *)txcmp);
2150 
2151 	default:
2152 		break;
2153 	}
2154 
2155 	return 0;
2156 }
2157 
2158 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
2159 {
2160 	struct bnxt_napi *bnapi = dev_instance;
2161 	struct bnxt *bp = bnapi->bp;
2162 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2163 	u32 cons = RING_CMP(cpr->cp_raw_cons);
2164 
2165 	cpr->event_ctr++;
2166 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
2167 	napi_schedule(&bnapi->napi);
2168 	return IRQ_HANDLED;
2169 }
2170 
2171 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
2172 {
2173 	u32 raw_cons = cpr->cp_raw_cons;
2174 	u16 cons = RING_CMP(raw_cons);
2175 	struct tx_cmp *txcmp;
2176 
2177 	txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2178 
2179 	return TX_CMP_VALID(txcmp, raw_cons);
2180 }
2181 
2182 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
2183 {
2184 	struct bnxt_napi *bnapi = dev_instance;
2185 	struct bnxt *bp = bnapi->bp;
2186 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2187 	u32 cons = RING_CMP(cpr->cp_raw_cons);
2188 	u32 int_status;
2189 
2190 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
2191 
2192 	if (!bnxt_has_work(bp, cpr)) {
2193 		int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
2194 		/* return if erroneous interrupt */
2195 		if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
2196 			return IRQ_NONE;
2197 	}
2198 
2199 	/* disable ring IRQ */
2200 	BNXT_CP_DB_IRQ_DIS(cpr->cp_db.doorbell);
2201 
2202 	/* Return here if interrupt is shared and is disabled. */
2203 	if (unlikely(atomic_read(&bp->intr_sem) != 0))
2204 		return IRQ_HANDLED;
2205 
2206 	napi_schedule(&bnapi->napi);
2207 	return IRQ_HANDLED;
2208 }
2209 
2210 static int __bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2211 			    int budget)
2212 {
2213 	struct bnxt_napi *bnapi = cpr->bnapi;
2214 	u32 raw_cons = cpr->cp_raw_cons;
2215 	u32 cons;
2216 	int tx_pkts = 0;
2217 	int rx_pkts = 0;
2218 	u8 event = 0;
2219 	struct tx_cmp *txcmp;
2220 
2221 	cpr->has_more_work = 0;
2222 	cpr->had_work_done = 1;
2223 	while (1) {
2224 		int rc;
2225 
2226 		cons = RING_CMP(raw_cons);
2227 		txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2228 
2229 		if (!TX_CMP_VALID(txcmp, raw_cons))
2230 			break;
2231 
2232 		/* The valid test of the entry must be done first before
2233 		 * reading any further.
2234 		 */
2235 		dma_rmb();
2236 		if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) {
2237 			tx_pkts++;
2238 			/* return full budget so NAPI will complete. */
2239 			if (unlikely(tx_pkts > bp->tx_wake_thresh)) {
2240 				rx_pkts = budget;
2241 				raw_cons = NEXT_RAW_CMP(raw_cons);
2242 				if (budget)
2243 					cpr->has_more_work = 1;
2244 				break;
2245 			}
2246 		} else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
2247 			if (likely(budget))
2248 				rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
2249 			else
2250 				rc = bnxt_force_rx_discard(bp, cpr, &raw_cons,
2251 							   &event);
2252 			if (likely(rc >= 0))
2253 				rx_pkts += rc;
2254 			/* Increment rx_pkts when rc is -ENOMEM to count towards
2255 			 * the NAPI budget.  Otherwise, we may potentially loop
2256 			 * here forever if we consistently cannot allocate
2257 			 * buffers.
2258 			 */
2259 			else if (rc == -ENOMEM && budget)
2260 				rx_pkts++;
2261 			else if (rc == -EBUSY)	/* partial completion */
2262 				break;
2263 		} else if (unlikely((TX_CMP_TYPE(txcmp) ==
2264 				     CMPL_BASE_TYPE_HWRM_DONE) ||
2265 				    (TX_CMP_TYPE(txcmp) ==
2266 				     CMPL_BASE_TYPE_HWRM_FWD_REQ) ||
2267 				    (TX_CMP_TYPE(txcmp) ==
2268 				     CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) {
2269 			bnxt_hwrm_handler(bp, txcmp);
2270 		}
2271 		raw_cons = NEXT_RAW_CMP(raw_cons);
2272 
2273 		if (rx_pkts && rx_pkts == budget) {
2274 			cpr->has_more_work = 1;
2275 			break;
2276 		}
2277 	}
2278 
2279 	if (event & BNXT_REDIRECT_EVENT)
2280 		xdp_do_flush_map();
2281 
2282 	if (event & BNXT_TX_EVENT) {
2283 		struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
2284 		u16 prod = txr->tx_prod;
2285 
2286 		/* Sync BD data before updating doorbell */
2287 		wmb();
2288 
2289 		bnxt_db_write_relaxed(bp, &txr->tx_db, prod);
2290 	}
2291 
2292 	cpr->cp_raw_cons = raw_cons;
2293 	bnapi->tx_pkts += tx_pkts;
2294 	bnapi->events |= event;
2295 	return rx_pkts;
2296 }
2297 
2298 static void __bnxt_poll_work_done(struct bnxt *bp, struct bnxt_napi *bnapi)
2299 {
2300 	if (bnapi->tx_pkts) {
2301 		bnapi->tx_int(bp, bnapi, bnapi->tx_pkts);
2302 		bnapi->tx_pkts = 0;
2303 	}
2304 
2305 	if ((bnapi->events & BNXT_RX_EVENT) && !(bnapi->in_reset)) {
2306 		struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2307 
2308 		if (bnapi->events & BNXT_AGG_EVENT)
2309 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
2310 		bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
2311 	}
2312 	bnapi->events = 0;
2313 }
2314 
2315 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2316 			  int budget)
2317 {
2318 	struct bnxt_napi *bnapi = cpr->bnapi;
2319 	int rx_pkts;
2320 
2321 	rx_pkts = __bnxt_poll_work(bp, cpr, budget);
2322 
2323 	/* ACK completion ring before freeing tx ring and producing new
2324 	 * buffers in rx/agg rings to prevent overflowing the completion
2325 	 * ring.
2326 	 */
2327 	bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons);
2328 
2329 	__bnxt_poll_work_done(bp, bnapi);
2330 	return rx_pkts;
2331 }
2332 
2333 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget)
2334 {
2335 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2336 	struct bnxt *bp = bnapi->bp;
2337 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2338 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2339 	struct tx_cmp *txcmp;
2340 	struct rx_cmp_ext *rxcmp1;
2341 	u32 cp_cons, tmp_raw_cons;
2342 	u32 raw_cons = cpr->cp_raw_cons;
2343 	u32 rx_pkts = 0;
2344 	u8 event = 0;
2345 
2346 	while (1) {
2347 		int rc;
2348 
2349 		cp_cons = RING_CMP(raw_cons);
2350 		txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2351 
2352 		if (!TX_CMP_VALID(txcmp, raw_cons))
2353 			break;
2354 
2355 		if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
2356 			tmp_raw_cons = NEXT_RAW_CMP(raw_cons);
2357 			cp_cons = RING_CMP(tmp_raw_cons);
2358 			rxcmp1 = (struct rx_cmp_ext *)
2359 			  &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2360 
2361 			if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
2362 				break;
2363 
2364 			/* force an error to recycle the buffer */
2365 			rxcmp1->rx_cmp_cfa_code_errors_v2 |=
2366 				cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
2367 
2368 			rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
2369 			if (likely(rc == -EIO) && budget)
2370 				rx_pkts++;
2371 			else if (rc == -EBUSY)	/* partial completion */
2372 				break;
2373 		} else if (unlikely(TX_CMP_TYPE(txcmp) ==
2374 				    CMPL_BASE_TYPE_HWRM_DONE)) {
2375 			bnxt_hwrm_handler(bp, txcmp);
2376 		} else {
2377 			netdev_err(bp->dev,
2378 				   "Invalid completion received on special ring\n");
2379 		}
2380 		raw_cons = NEXT_RAW_CMP(raw_cons);
2381 
2382 		if (rx_pkts == budget)
2383 			break;
2384 	}
2385 
2386 	cpr->cp_raw_cons = raw_cons;
2387 	BNXT_DB_CQ(&cpr->cp_db, cpr->cp_raw_cons);
2388 	bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
2389 
2390 	if (event & BNXT_AGG_EVENT)
2391 		bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
2392 
2393 	if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) {
2394 		napi_complete_done(napi, rx_pkts);
2395 		BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2396 	}
2397 	return rx_pkts;
2398 }
2399 
2400 static int bnxt_poll(struct napi_struct *napi, int budget)
2401 {
2402 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2403 	struct bnxt *bp = bnapi->bp;
2404 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2405 	int work_done = 0;
2406 
2407 	while (1) {
2408 		work_done += bnxt_poll_work(bp, cpr, budget - work_done);
2409 
2410 		if (work_done >= budget) {
2411 			if (!budget)
2412 				BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2413 			break;
2414 		}
2415 
2416 		if (!bnxt_has_work(bp, cpr)) {
2417 			if (napi_complete_done(napi, work_done))
2418 				BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2419 			break;
2420 		}
2421 	}
2422 	if (bp->flags & BNXT_FLAG_DIM) {
2423 		struct dim_sample dim_sample = {};
2424 
2425 		dim_update_sample(cpr->event_ctr,
2426 				  cpr->rx_packets,
2427 				  cpr->rx_bytes,
2428 				  &dim_sample);
2429 		net_dim(&cpr->dim, dim_sample);
2430 	}
2431 	return work_done;
2432 }
2433 
2434 static int __bnxt_poll_cqs(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
2435 {
2436 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2437 	int i, work_done = 0;
2438 
2439 	for (i = 0; i < 2; i++) {
2440 		struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i];
2441 
2442 		if (cpr2) {
2443 			work_done += __bnxt_poll_work(bp, cpr2,
2444 						      budget - work_done);
2445 			cpr->has_more_work |= cpr2->has_more_work;
2446 		}
2447 	}
2448 	return work_done;
2449 }
2450 
2451 static void __bnxt_poll_cqs_done(struct bnxt *bp, struct bnxt_napi *bnapi,
2452 				 u64 dbr_type)
2453 {
2454 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2455 	int i;
2456 
2457 	for (i = 0; i < 2; i++) {
2458 		struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i];
2459 		struct bnxt_db_info *db;
2460 
2461 		if (cpr2 && cpr2->had_work_done) {
2462 			db = &cpr2->cp_db;
2463 			writeq(db->db_key64 | dbr_type |
2464 			       RING_CMP(cpr2->cp_raw_cons), db->doorbell);
2465 			cpr2->had_work_done = 0;
2466 		}
2467 	}
2468 	__bnxt_poll_work_done(bp, bnapi);
2469 }
2470 
2471 static int bnxt_poll_p5(struct napi_struct *napi, int budget)
2472 {
2473 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2474 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2475 	u32 raw_cons = cpr->cp_raw_cons;
2476 	struct bnxt *bp = bnapi->bp;
2477 	struct nqe_cn *nqcmp;
2478 	int work_done = 0;
2479 	u32 cons;
2480 
2481 	if (cpr->has_more_work) {
2482 		cpr->has_more_work = 0;
2483 		work_done = __bnxt_poll_cqs(bp, bnapi, budget);
2484 	}
2485 	while (1) {
2486 		cons = RING_CMP(raw_cons);
2487 		nqcmp = &cpr->nq_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2488 
2489 		if (!NQ_CMP_VALID(nqcmp, raw_cons)) {
2490 			if (cpr->has_more_work)
2491 				break;
2492 
2493 			__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL);
2494 			cpr->cp_raw_cons = raw_cons;
2495 			if (napi_complete_done(napi, work_done))
2496 				BNXT_DB_NQ_ARM_P5(&cpr->cp_db,
2497 						  cpr->cp_raw_cons);
2498 			return work_done;
2499 		}
2500 
2501 		/* The valid test of the entry must be done first before
2502 		 * reading any further.
2503 		 */
2504 		dma_rmb();
2505 
2506 		if (nqcmp->type == cpu_to_le16(NQ_CN_TYPE_CQ_NOTIFICATION)) {
2507 			u32 idx = le32_to_cpu(nqcmp->cq_handle_low);
2508 			struct bnxt_cp_ring_info *cpr2;
2509 
2510 			cpr2 = cpr->cp_ring_arr[idx];
2511 			work_done += __bnxt_poll_work(bp, cpr2,
2512 						      budget - work_done);
2513 			cpr->has_more_work |= cpr2->has_more_work;
2514 		} else {
2515 			bnxt_hwrm_handler(bp, (struct tx_cmp *)nqcmp);
2516 		}
2517 		raw_cons = NEXT_RAW_CMP(raw_cons);
2518 	}
2519 	__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ);
2520 	if (raw_cons != cpr->cp_raw_cons) {
2521 		cpr->cp_raw_cons = raw_cons;
2522 		BNXT_DB_NQ_P5(&cpr->cp_db, raw_cons);
2523 	}
2524 	return work_done;
2525 }
2526 
2527 static void bnxt_free_tx_skbs(struct bnxt *bp)
2528 {
2529 	int i, max_idx;
2530 	struct pci_dev *pdev = bp->pdev;
2531 
2532 	if (!bp->tx_ring)
2533 		return;
2534 
2535 	max_idx = bp->tx_nr_pages * TX_DESC_CNT;
2536 	for (i = 0; i < bp->tx_nr_rings; i++) {
2537 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2538 		int j;
2539 
2540 		for (j = 0; j < max_idx;) {
2541 			struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
2542 			struct sk_buff *skb;
2543 			int k, last;
2544 
2545 			if (i < bp->tx_nr_rings_xdp &&
2546 			    tx_buf->action == XDP_REDIRECT) {
2547 				dma_unmap_single(&pdev->dev,
2548 					dma_unmap_addr(tx_buf, mapping),
2549 					dma_unmap_len(tx_buf, len),
2550 					PCI_DMA_TODEVICE);
2551 				xdp_return_frame(tx_buf->xdpf);
2552 				tx_buf->action = 0;
2553 				tx_buf->xdpf = NULL;
2554 				j++;
2555 				continue;
2556 			}
2557 
2558 			skb = tx_buf->skb;
2559 			if (!skb) {
2560 				j++;
2561 				continue;
2562 			}
2563 
2564 			tx_buf->skb = NULL;
2565 
2566 			if (tx_buf->is_push) {
2567 				dev_kfree_skb(skb);
2568 				j += 2;
2569 				continue;
2570 			}
2571 
2572 			dma_unmap_single(&pdev->dev,
2573 					 dma_unmap_addr(tx_buf, mapping),
2574 					 skb_headlen(skb),
2575 					 PCI_DMA_TODEVICE);
2576 
2577 			last = tx_buf->nr_frags;
2578 			j += 2;
2579 			for (k = 0; k < last; k++, j++) {
2580 				int ring_idx = j & bp->tx_ring_mask;
2581 				skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2582 
2583 				tx_buf = &txr->tx_buf_ring[ring_idx];
2584 				dma_unmap_page(
2585 					&pdev->dev,
2586 					dma_unmap_addr(tx_buf, mapping),
2587 					skb_frag_size(frag), PCI_DMA_TODEVICE);
2588 			}
2589 			dev_kfree_skb(skb);
2590 		}
2591 		netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
2592 	}
2593 }
2594 
2595 static void bnxt_free_one_rx_ring_skbs(struct bnxt *bp, int ring_nr)
2596 {
2597 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
2598 	struct pci_dev *pdev = bp->pdev;
2599 	struct bnxt_tpa_idx_map *map;
2600 	int i, max_idx, max_agg_idx;
2601 
2602 	max_idx = bp->rx_nr_pages * RX_DESC_CNT;
2603 	max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
2604 	if (!rxr->rx_tpa)
2605 		goto skip_rx_tpa_free;
2606 
2607 	for (i = 0; i < bp->max_tpa; i++) {
2608 		struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[i];
2609 		u8 *data = tpa_info->data;
2610 
2611 		if (!data)
2612 			continue;
2613 
2614 		dma_unmap_single_attrs(&pdev->dev, tpa_info->mapping,
2615 				       bp->rx_buf_use_size, bp->rx_dir,
2616 				       DMA_ATTR_WEAK_ORDERING);
2617 
2618 		tpa_info->data = NULL;
2619 
2620 		kfree(data);
2621 	}
2622 
2623 skip_rx_tpa_free:
2624 	for (i = 0; i < max_idx; i++) {
2625 		struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[i];
2626 		dma_addr_t mapping = rx_buf->mapping;
2627 		void *data = rx_buf->data;
2628 
2629 		if (!data)
2630 			continue;
2631 
2632 		rx_buf->data = NULL;
2633 		if (BNXT_RX_PAGE_MODE(bp)) {
2634 			mapping -= bp->rx_dma_offset;
2635 			dma_unmap_page_attrs(&pdev->dev, mapping, PAGE_SIZE,
2636 					     bp->rx_dir,
2637 					     DMA_ATTR_WEAK_ORDERING);
2638 			page_pool_recycle_direct(rxr->page_pool, data);
2639 		} else {
2640 			dma_unmap_single_attrs(&pdev->dev, mapping,
2641 					       bp->rx_buf_use_size, bp->rx_dir,
2642 					       DMA_ATTR_WEAK_ORDERING);
2643 			kfree(data);
2644 		}
2645 	}
2646 	for (i = 0; i < max_agg_idx; i++) {
2647 		struct bnxt_sw_rx_agg_bd *rx_agg_buf = &rxr->rx_agg_ring[i];
2648 		struct page *page = rx_agg_buf->page;
2649 
2650 		if (!page)
2651 			continue;
2652 
2653 		dma_unmap_page_attrs(&pdev->dev, rx_agg_buf->mapping,
2654 				     BNXT_RX_PAGE_SIZE, PCI_DMA_FROMDEVICE,
2655 				     DMA_ATTR_WEAK_ORDERING);
2656 
2657 		rx_agg_buf->page = NULL;
2658 		__clear_bit(i, rxr->rx_agg_bmap);
2659 
2660 		__free_page(page);
2661 	}
2662 	if (rxr->rx_page) {
2663 		__free_page(rxr->rx_page);
2664 		rxr->rx_page = NULL;
2665 	}
2666 	map = rxr->rx_tpa_idx_map;
2667 	if (map)
2668 		memset(map->agg_idx_bmap, 0, sizeof(map->agg_idx_bmap));
2669 }
2670 
2671 static void bnxt_free_rx_skbs(struct bnxt *bp)
2672 {
2673 	int i;
2674 
2675 	if (!bp->rx_ring)
2676 		return;
2677 
2678 	for (i = 0; i < bp->rx_nr_rings; i++)
2679 		bnxt_free_one_rx_ring_skbs(bp, i);
2680 }
2681 
2682 static void bnxt_free_skbs(struct bnxt *bp)
2683 {
2684 	bnxt_free_tx_skbs(bp);
2685 	bnxt_free_rx_skbs(bp);
2686 }
2687 
2688 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
2689 {
2690 	struct pci_dev *pdev = bp->pdev;
2691 	int i;
2692 
2693 	for (i = 0; i < rmem->nr_pages; i++) {
2694 		if (!rmem->pg_arr[i])
2695 			continue;
2696 
2697 		dma_free_coherent(&pdev->dev, rmem->page_size,
2698 				  rmem->pg_arr[i], rmem->dma_arr[i]);
2699 
2700 		rmem->pg_arr[i] = NULL;
2701 	}
2702 	if (rmem->pg_tbl) {
2703 		size_t pg_tbl_size = rmem->nr_pages * 8;
2704 
2705 		if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
2706 			pg_tbl_size = rmem->page_size;
2707 		dma_free_coherent(&pdev->dev, pg_tbl_size,
2708 				  rmem->pg_tbl, rmem->pg_tbl_map);
2709 		rmem->pg_tbl = NULL;
2710 	}
2711 	if (rmem->vmem_size && *rmem->vmem) {
2712 		vfree(*rmem->vmem);
2713 		*rmem->vmem = NULL;
2714 	}
2715 }
2716 
2717 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
2718 {
2719 	struct pci_dev *pdev = bp->pdev;
2720 	u64 valid_bit = 0;
2721 	int i;
2722 
2723 	if (rmem->flags & (BNXT_RMEM_VALID_PTE_FLAG | BNXT_RMEM_RING_PTE_FLAG))
2724 		valid_bit = PTU_PTE_VALID;
2725 	if ((rmem->nr_pages > 1 || rmem->depth > 0) && !rmem->pg_tbl) {
2726 		size_t pg_tbl_size = rmem->nr_pages * 8;
2727 
2728 		if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
2729 			pg_tbl_size = rmem->page_size;
2730 		rmem->pg_tbl = dma_alloc_coherent(&pdev->dev, pg_tbl_size,
2731 						  &rmem->pg_tbl_map,
2732 						  GFP_KERNEL);
2733 		if (!rmem->pg_tbl)
2734 			return -ENOMEM;
2735 	}
2736 
2737 	for (i = 0; i < rmem->nr_pages; i++) {
2738 		u64 extra_bits = valid_bit;
2739 
2740 		rmem->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
2741 						     rmem->page_size,
2742 						     &rmem->dma_arr[i],
2743 						     GFP_KERNEL);
2744 		if (!rmem->pg_arr[i])
2745 			return -ENOMEM;
2746 
2747 		if (rmem->init_val)
2748 			memset(rmem->pg_arr[i], rmem->init_val,
2749 			       rmem->page_size);
2750 		if (rmem->nr_pages > 1 || rmem->depth > 0) {
2751 			if (i == rmem->nr_pages - 2 &&
2752 			    (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
2753 				extra_bits |= PTU_PTE_NEXT_TO_LAST;
2754 			else if (i == rmem->nr_pages - 1 &&
2755 				 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
2756 				extra_bits |= PTU_PTE_LAST;
2757 			rmem->pg_tbl[i] =
2758 				cpu_to_le64(rmem->dma_arr[i] | extra_bits);
2759 		}
2760 	}
2761 
2762 	if (rmem->vmem_size) {
2763 		*rmem->vmem = vzalloc(rmem->vmem_size);
2764 		if (!(*rmem->vmem))
2765 			return -ENOMEM;
2766 	}
2767 	return 0;
2768 }
2769 
2770 static void bnxt_free_tpa_info(struct bnxt *bp)
2771 {
2772 	int i;
2773 
2774 	for (i = 0; i < bp->rx_nr_rings; i++) {
2775 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2776 
2777 		kfree(rxr->rx_tpa_idx_map);
2778 		rxr->rx_tpa_idx_map = NULL;
2779 		if (rxr->rx_tpa) {
2780 			kfree(rxr->rx_tpa[0].agg_arr);
2781 			rxr->rx_tpa[0].agg_arr = NULL;
2782 		}
2783 		kfree(rxr->rx_tpa);
2784 		rxr->rx_tpa = NULL;
2785 	}
2786 }
2787 
2788 static int bnxt_alloc_tpa_info(struct bnxt *bp)
2789 {
2790 	int i, j, total_aggs = 0;
2791 
2792 	bp->max_tpa = MAX_TPA;
2793 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
2794 		if (!bp->max_tpa_v2)
2795 			return 0;
2796 		bp->max_tpa = max_t(u16, bp->max_tpa_v2, MAX_TPA_P5);
2797 		total_aggs = bp->max_tpa * MAX_SKB_FRAGS;
2798 	}
2799 
2800 	for (i = 0; i < bp->rx_nr_rings; i++) {
2801 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2802 		struct rx_agg_cmp *agg;
2803 
2804 		rxr->rx_tpa = kcalloc(bp->max_tpa, sizeof(struct bnxt_tpa_info),
2805 				      GFP_KERNEL);
2806 		if (!rxr->rx_tpa)
2807 			return -ENOMEM;
2808 
2809 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
2810 			continue;
2811 		agg = kcalloc(total_aggs, sizeof(*agg), GFP_KERNEL);
2812 		rxr->rx_tpa[0].agg_arr = agg;
2813 		if (!agg)
2814 			return -ENOMEM;
2815 		for (j = 1; j < bp->max_tpa; j++)
2816 			rxr->rx_tpa[j].agg_arr = agg + j * MAX_SKB_FRAGS;
2817 		rxr->rx_tpa_idx_map = kzalloc(sizeof(*rxr->rx_tpa_idx_map),
2818 					      GFP_KERNEL);
2819 		if (!rxr->rx_tpa_idx_map)
2820 			return -ENOMEM;
2821 	}
2822 	return 0;
2823 }
2824 
2825 static void bnxt_free_rx_rings(struct bnxt *bp)
2826 {
2827 	int i;
2828 
2829 	if (!bp->rx_ring)
2830 		return;
2831 
2832 	bnxt_free_tpa_info(bp);
2833 	for (i = 0; i < bp->rx_nr_rings; i++) {
2834 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2835 		struct bnxt_ring_struct *ring;
2836 
2837 		if (rxr->xdp_prog)
2838 			bpf_prog_put(rxr->xdp_prog);
2839 
2840 		if (xdp_rxq_info_is_reg(&rxr->xdp_rxq))
2841 			xdp_rxq_info_unreg(&rxr->xdp_rxq);
2842 
2843 		page_pool_destroy(rxr->page_pool);
2844 		rxr->page_pool = NULL;
2845 
2846 		kfree(rxr->rx_agg_bmap);
2847 		rxr->rx_agg_bmap = NULL;
2848 
2849 		ring = &rxr->rx_ring_struct;
2850 		bnxt_free_ring(bp, &ring->ring_mem);
2851 
2852 		ring = &rxr->rx_agg_ring_struct;
2853 		bnxt_free_ring(bp, &ring->ring_mem);
2854 	}
2855 }
2856 
2857 static int bnxt_alloc_rx_page_pool(struct bnxt *bp,
2858 				   struct bnxt_rx_ring_info *rxr)
2859 {
2860 	struct page_pool_params pp = { 0 };
2861 
2862 	pp.pool_size = bp->rx_ring_size;
2863 	pp.nid = dev_to_node(&bp->pdev->dev);
2864 	pp.dev = &bp->pdev->dev;
2865 	pp.dma_dir = DMA_BIDIRECTIONAL;
2866 
2867 	rxr->page_pool = page_pool_create(&pp);
2868 	if (IS_ERR(rxr->page_pool)) {
2869 		int err = PTR_ERR(rxr->page_pool);
2870 
2871 		rxr->page_pool = NULL;
2872 		return err;
2873 	}
2874 	return 0;
2875 }
2876 
2877 static int bnxt_alloc_rx_rings(struct bnxt *bp)
2878 {
2879 	int i, rc = 0, agg_rings = 0;
2880 
2881 	if (!bp->rx_ring)
2882 		return -ENOMEM;
2883 
2884 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
2885 		agg_rings = 1;
2886 
2887 	for (i = 0; i < bp->rx_nr_rings; i++) {
2888 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2889 		struct bnxt_ring_struct *ring;
2890 
2891 		ring = &rxr->rx_ring_struct;
2892 
2893 		rc = bnxt_alloc_rx_page_pool(bp, rxr);
2894 		if (rc)
2895 			return rc;
2896 
2897 		rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i);
2898 		if (rc < 0)
2899 			return rc;
2900 
2901 		rc = xdp_rxq_info_reg_mem_model(&rxr->xdp_rxq,
2902 						MEM_TYPE_PAGE_POOL,
2903 						rxr->page_pool);
2904 		if (rc) {
2905 			xdp_rxq_info_unreg(&rxr->xdp_rxq);
2906 			return rc;
2907 		}
2908 
2909 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
2910 		if (rc)
2911 			return rc;
2912 
2913 		ring->grp_idx = i;
2914 		if (agg_rings) {
2915 			u16 mem_size;
2916 
2917 			ring = &rxr->rx_agg_ring_struct;
2918 			rc = bnxt_alloc_ring(bp, &ring->ring_mem);
2919 			if (rc)
2920 				return rc;
2921 
2922 			ring->grp_idx = i;
2923 			rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
2924 			mem_size = rxr->rx_agg_bmap_size / 8;
2925 			rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
2926 			if (!rxr->rx_agg_bmap)
2927 				return -ENOMEM;
2928 		}
2929 	}
2930 	if (bp->flags & BNXT_FLAG_TPA)
2931 		rc = bnxt_alloc_tpa_info(bp);
2932 	return rc;
2933 }
2934 
2935 static void bnxt_free_tx_rings(struct bnxt *bp)
2936 {
2937 	int i;
2938 	struct pci_dev *pdev = bp->pdev;
2939 
2940 	if (!bp->tx_ring)
2941 		return;
2942 
2943 	for (i = 0; i < bp->tx_nr_rings; i++) {
2944 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2945 		struct bnxt_ring_struct *ring;
2946 
2947 		if (txr->tx_push) {
2948 			dma_free_coherent(&pdev->dev, bp->tx_push_size,
2949 					  txr->tx_push, txr->tx_push_mapping);
2950 			txr->tx_push = NULL;
2951 		}
2952 
2953 		ring = &txr->tx_ring_struct;
2954 
2955 		bnxt_free_ring(bp, &ring->ring_mem);
2956 	}
2957 }
2958 
2959 static int bnxt_alloc_tx_rings(struct bnxt *bp)
2960 {
2961 	int i, j, rc;
2962 	struct pci_dev *pdev = bp->pdev;
2963 
2964 	bp->tx_push_size = 0;
2965 	if (bp->tx_push_thresh) {
2966 		int push_size;
2967 
2968 		push_size  = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
2969 					bp->tx_push_thresh);
2970 
2971 		if (push_size > 256) {
2972 			push_size = 0;
2973 			bp->tx_push_thresh = 0;
2974 		}
2975 
2976 		bp->tx_push_size = push_size;
2977 	}
2978 
2979 	for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
2980 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2981 		struct bnxt_ring_struct *ring;
2982 		u8 qidx;
2983 
2984 		ring = &txr->tx_ring_struct;
2985 
2986 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
2987 		if (rc)
2988 			return rc;
2989 
2990 		ring->grp_idx = txr->bnapi->index;
2991 		if (bp->tx_push_size) {
2992 			dma_addr_t mapping;
2993 
2994 			/* One pre-allocated DMA buffer to backup
2995 			 * TX push operation
2996 			 */
2997 			txr->tx_push = dma_alloc_coherent(&pdev->dev,
2998 						bp->tx_push_size,
2999 						&txr->tx_push_mapping,
3000 						GFP_KERNEL);
3001 
3002 			if (!txr->tx_push)
3003 				return -ENOMEM;
3004 
3005 			mapping = txr->tx_push_mapping +
3006 				sizeof(struct tx_push_bd);
3007 			txr->data_mapping = cpu_to_le64(mapping);
3008 		}
3009 		qidx = bp->tc_to_qidx[j];
3010 		ring->queue_id = bp->q_info[qidx].queue_id;
3011 		if (i < bp->tx_nr_rings_xdp)
3012 			continue;
3013 		if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1))
3014 			j++;
3015 	}
3016 	return 0;
3017 }
3018 
3019 static void bnxt_free_cp_rings(struct bnxt *bp)
3020 {
3021 	int i;
3022 
3023 	if (!bp->bnapi)
3024 		return;
3025 
3026 	for (i = 0; i < bp->cp_nr_rings; i++) {
3027 		struct bnxt_napi *bnapi = bp->bnapi[i];
3028 		struct bnxt_cp_ring_info *cpr;
3029 		struct bnxt_ring_struct *ring;
3030 		int j;
3031 
3032 		if (!bnapi)
3033 			continue;
3034 
3035 		cpr = &bnapi->cp_ring;
3036 		ring = &cpr->cp_ring_struct;
3037 
3038 		bnxt_free_ring(bp, &ring->ring_mem);
3039 
3040 		for (j = 0; j < 2; j++) {
3041 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
3042 
3043 			if (cpr2) {
3044 				ring = &cpr2->cp_ring_struct;
3045 				bnxt_free_ring(bp, &ring->ring_mem);
3046 				kfree(cpr2);
3047 				cpr->cp_ring_arr[j] = NULL;
3048 			}
3049 		}
3050 	}
3051 }
3052 
3053 static struct bnxt_cp_ring_info *bnxt_alloc_cp_sub_ring(struct bnxt *bp)
3054 {
3055 	struct bnxt_ring_mem_info *rmem;
3056 	struct bnxt_ring_struct *ring;
3057 	struct bnxt_cp_ring_info *cpr;
3058 	int rc;
3059 
3060 	cpr = kzalloc(sizeof(*cpr), GFP_KERNEL);
3061 	if (!cpr)
3062 		return NULL;
3063 
3064 	ring = &cpr->cp_ring_struct;
3065 	rmem = &ring->ring_mem;
3066 	rmem->nr_pages = bp->cp_nr_pages;
3067 	rmem->page_size = HW_CMPD_RING_SIZE;
3068 	rmem->pg_arr = (void **)cpr->cp_desc_ring;
3069 	rmem->dma_arr = cpr->cp_desc_mapping;
3070 	rmem->flags = BNXT_RMEM_RING_PTE_FLAG;
3071 	rc = bnxt_alloc_ring(bp, rmem);
3072 	if (rc) {
3073 		bnxt_free_ring(bp, rmem);
3074 		kfree(cpr);
3075 		cpr = NULL;
3076 	}
3077 	return cpr;
3078 }
3079 
3080 static int bnxt_alloc_cp_rings(struct bnxt *bp)
3081 {
3082 	bool sh = !!(bp->flags & BNXT_FLAG_SHARED_RINGS);
3083 	int i, rc, ulp_base_vec, ulp_msix;
3084 
3085 	ulp_msix = bnxt_get_ulp_msix_num(bp);
3086 	ulp_base_vec = bnxt_get_ulp_msix_base(bp);
3087 	for (i = 0; i < bp->cp_nr_rings; i++) {
3088 		struct bnxt_napi *bnapi = bp->bnapi[i];
3089 		struct bnxt_cp_ring_info *cpr;
3090 		struct bnxt_ring_struct *ring;
3091 
3092 		if (!bnapi)
3093 			continue;
3094 
3095 		cpr = &bnapi->cp_ring;
3096 		cpr->bnapi = bnapi;
3097 		ring = &cpr->cp_ring_struct;
3098 
3099 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3100 		if (rc)
3101 			return rc;
3102 
3103 		if (ulp_msix && i >= ulp_base_vec)
3104 			ring->map_idx = i + ulp_msix;
3105 		else
3106 			ring->map_idx = i;
3107 
3108 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
3109 			continue;
3110 
3111 		if (i < bp->rx_nr_rings) {
3112 			struct bnxt_cp_ring_info *cpr2 =
3113 				bnxt_alloc_cp_sub_ring(bp);
3114 
3115 			cpr->cp_ring_arr[BNXT_RX_HDL] = cpr2;
3116 			if (!cpr2)
3117 				return -ENOMEM;
3118 			cpr2->bnapi = bnapi;
3119 		}
3120 		if ((sh && i < bp->tx_nr_rings) ||
3121 		    (!sh && i >= bp->rx_nr_rings)) {
3122 			struct bnxt_cp_ring_info *cpr2 =
3123 				bnxt_alloc_cp_sub_ring(bp);
3124 
3125 			cpr->cp_ring_arr[BNXT_TX_HDL] = cpr2;
3126 			if (!cpr2)
3127 				return -ENOMEM;
3128 			cpr2->bnapi = bnapi;
3129 		}
3130 	}
3131 	return 0;
3132 }
3133 
3134 static void bnxt_init_ring_struct(struct bnxt *bp)
3135 {
3136 	int i;
3137 
3138 	for (i = 0; i < bp->cp_nr_rings; i++) {
3139 		struct bnxt_napi *bnapi = bp->bnapi[i];
3140 		struct bnxt_ring_mem_info *rmem;
3141 		struct bnxt_cp_ring_info *cpr;
3142 		struct bnxt_rx_ring_info *rxr;
3143 		struct bnxt_tx_ring_info *txr;
3144 		struct bnxt_ring_struct *ring;
3145 
3146 		if (!bnapi)
3147 			continue;
3148 
3149 		cpr = &bnapi->cp_ring;
3150 		ring = &cpr->cp_ring_struct;
3151 		rmem = &ring->ring_mem;
3152 		rmem->nr_pages = bp->cp_nr_pages;
3153 		rmem->page_size = HW_CMPD_RING_SIZE;
3154 		rmem->pg_arr = (void **)cpr->cp_desc_ring;
3155 		rmem->dma_arr = cpr->cp_desc_mapping;
3156 		rmem->vmem_size = 0;
3157 
3158 		rxr = bnapi->rx_ring;
3159 		if (!rxr)
3160 			goto skip_rx;
3161 
3162 		ring = &rxr->rx_ring_struct;
3163 		rmem = &ring->ring_mem;
3164 		rmem->nr_pages = bp->rx_nr_pages;
3165 		rmem->page_size = HW_RXBD_RING_SIZE;
3166 		rmem->pg_arr = (void **)rxr->rx_desc_ring;
3167 		rmem->dma_arr = rxr->rx_desc_mapping;
3168 		rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
3169 		rmem->vmem = (void **)&rxr->rx_buf_ring;
3170 
3171 		ring = &rxr->rx_agg_ring_struct;
3172 		rmem = &ring->ring_mem;
3173 		rmem->nr_pages = bp->rx_agg_nr_pages;
3174 		rmem->page_size = HW_RXBD_RING_SIZE;
3175 		rmem->pg_arr = (void **)rxr->rx_agg_desc_ring;
3176 		rmem->dma_arr = rxr->rx_agg_desc_mapping;
3177 		rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
3178 		rmem->vmem = (void **)&rxr->rx_agg_ring;
3179 
3180 skip_rx:
3181 		txr = bnapi->tx_ring;
3182 		if (!txr)
3183 			continue;
3184 
3185 		ring = &txr->tx_ring_struct;
3186 		rmem = &ring->ring_mem;
3187 		rmem->nr_pages = bp->tx_nr_pages;
3188 		rmem->page_size = HW_RXBD_RING_SIZE;
3189 		rmem->pg_arr = (void **)txr->tx_desc_ring;
3190 		rmem->dma_arr = txr->tx_desc_mapping;
3191 		rmem->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
3192 		rmem->vmem = (void **)&txr->tx_buf_ring;
3193 	}
3194 }
3195 
3196 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
3197 {
3198 	int i;
3199 	u32 prod;
3200 	struct rx_bd **rx_buf_ring;
3201 
3202 	rx_buf_ring = (struct rx_bd **)ring->ring_mem.pg_arr;
3203 	for (i = 0, prod = 0; i < ring->ring_mem.nr_pages; i++) {
3204 		int j;
3205 		struct rx_bd *rxbd;
3206 
3207 		rxbd = rx_buf_ring[i];
3208 		if (!rxbd)
3209 			continue;
3210 
3211 		for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
3212 			rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
3213 			rxbd->rx_bd_opaque = prod;
3214 		}
3215 	}
3216 }
3217 
3218 static int bnxt_alloc_one_rx_ring(struct bnxt *bp, int ring_nr)
3219 {
3220 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
3221 	struct net_device *dev = bp->dev;
3222 	u32 prod;
3223 	int i;
3224 
3225 	prod = rxr->rx_prod;
3226 	for (i = 0; i < bp->rx_ring_size; i++) {
3227 		if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL)) {
3228 			netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
3229 				    ring_nr, i, bp->rx_ring_size);
3230 			break;
3231 		}
3232 		prod = NEXT_RX(prod);
3233 	}
3234 	rxr->rx_prod = prod;
3235 
3236 	if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
3237 		return 0;
3238 
3239 	prod = rxr->rx_agg_prod;
3240 	for (i = 0; i < bp->rx_agg_ring_size; i++) {
3241 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL)) {
3242 			netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
3243 				    ring_nr, i, bp->rx_ring_size);
3244 			break;
3245 		}
3246 		prod = NEXT_RX_AGG(prod);
3247 	}
3248 	rxr->rx_agg_prod = prod;
3249 
3250 	if (rxr->rx_tpa) {
3251 		dma_addr_t mapping;
3252 		u8 *data;
3253 
3254 		for (i = 0; i < bp->max_tpa; i++) {
3255 			data = __bnxt_alloc_rx_data(bp, &mapping, GFP_KERNEL);
3256 			if (!data)
3257 				return -ENOMEM;
3258 
3259 			rxr->rx_tpa[i].data = data;
3260 			rxr->rx_tpa[i].data_ptr = data + bp->rx_offset;
3261 			rxr->rx_tpa[i].mapping = mapping;
3262 		}
3263 	}
3264 	return 0;
3265 }
3266 
3267 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
3268 {
3269 	struct bnxt_rx_ring_info *rxr;
3270 	struct bnxt_ring_struct *ring;
3271 	u32 type;
3272 
3273 	type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
3274 		RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
3275 
3276 	if (NET_IP_ALIGN == 2)
3277 		type |= RX_BD_FLAGS_SOP;
3278 
3279 	rxr = &bp->rx_ring[ring_nr];
3280 	ring = &rxr->rx_ring_struct;
3281 	bnxt_init_rxbd_pages(ring, type);
3282 
3283 	if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) {
3284 		bpf_prog_add(bp->xdp_prog, 1);
3285 		rxr->xdp_prog = bp->xdp_prog;
3286 	}
3287 	ring->fw_ring_id = INVALID_HW_RING_ID;
3288 
3289 	ring = &rxr->rx_agg_ring_struct;
3290 	ring->fw_ring_id = INVALID_HW_RING_ID;
3291 
3292 	if ((bp->flags & BNXT_FLAG_AGG_RINGS)) {
3293 		type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) |
3294 			RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
3295 
3296 		bnxt_init_rxbd_pages(ring, type);
3297 	}
3298 
3299 	return bnxt_alloc_one_rx_ring(bp, ring_nr);
3300 }
3301 
3302 static void bnxt_init_cp_rings(struct bnxt *bp)
3303 {
3304 	int i, j;
3305 
3306 	for (i = 0; i < bp->cp_nr_rings; i++) {
3307 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
3308 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3309 
3310 		ring->fw_ring_id = INVALID_HW_RING_ID;
3311 		cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
3312 		cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
3313 		for (j = 0; j < 2; j++) {
3314 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
3315 
3316 			if (!cpr2)
3317 				continue;
3318 
3319 			ring = &cpr2->cp_ring_struct;
3320 			ring->fw_ring_id = INVALID_HW_RING_ID;
3321 			cpr2->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
3322 			cpr2->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
3323 		}
3324 	}
3325 }
3326 
3327 static int bnxt_init_rx_rings(struct bnxt *bp)
3328 {
3329 	int i, rc = 0;
3330 
3331 	if (BNXT_RX_PAGE_MODE(bp)) {
3332 		bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM;
3333 		bp->rx_dma_offset = XDP_PACKET_HEADROOM;
3334 	} else {
3335 		bp->rx_offset = BNXT_RX_OFFSET;
3336 		bp->rx_dma_offset = BNXT_RX_DMA_OFFSET;
3337 	}
3338 
3339 	for (i = 0; i < bp->rx_nr_rings; i++) {
3340 		rc = bnxt_init_one_rx_ring(bp, i);
3341 		if (rc)
3342 			break;
3343 	}
3344 
3345 	return rc;
3346 }
3347 
3348 static int bnxt_init_tx_rings(struct bnxt *bp)
3349 {
3350 	u16 i;
3351 
3352 	bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
3353 				   MAX_SKB_FRAGS + 1);
3354 
3355 	for (i = 0; i < bp->tx_nr_rings; i++) {
3356 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3357 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
3358 
3359 		ring->fw_ring_id = INVALID_HW_RING_ID;
3360 	}
3361 
3362 	return 0;
3363 }
3364 
3365 static void bnxt_free_ring_grps(struct bnxt *bp)
3366 {
3367 	kfree(bp->grp_info);
3368 	bp->grp_info = NULL;
3369 }
3370 
3371 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
3372 {
3373 	int i;
3374 
3375 	if (irq_re_init) {
3376 		bp->grp_info = kcalloc(bp->cp_nr_rings,
3377 				       sizeof(struct bnxt_ring_grp_info),
3378 				       GFP_KERNEL);
3379 		if (!bp->grp_info)
3380 			return -ENOMEM;
3381 	}
3382 	for (i = 0; i < bp->cp_nr_rings; i++) {
3383 		if (irq_re_init)
3384 			bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
3385 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
3386 		bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
3387 		bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
3388 		bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
3389 	}
3390 	return 0;
3391 }
3392 
3393 static void bnxt_free_vnics(struct bnxt *bp)
3394 {
3395 	kfree(bp->vnic_info);
3396 	bp->vnic_info = NULL;
3397 	bp->nr_vnics = 0;
3398 }
3399 
3400 static int bnxt_alloc_vnics(struct bnxt *bp)
3401 {
3402 	int num_vnics = 1;
3403 
3404 #ifdef CONFIG_RFS_ACCEL
3405 	if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS)
3406 		num_vnics += bp->rx_nr_rings;
3407 #endif
3408 
3409 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
3410 		num_vnics++;
3411 
3412 	bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
3413 				GFP_KERNEL);
3414 	if (!bp->vnic_info)
3415 		return -ENOMEM;
3416 
3417 	bp->nr_vnics = num_vnics;
3418 	return 0;
3419 }
3420 
3421 static void bnxt_init_vnics(struct bnxt *bp)
3422 {
3423 	int i;
3424 
3425 	for (i = 0; i < bp->nr_vnics; i++) {
3426 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3427 		int j;
3428 
3429 		vnic->fw_vnic_id = INVALID_HW_RING_ID;
3430 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++)
3431 			vnic->fw_rss_cos_lb_ctx[j] = INVALID_HW_RING_ID;
3432 
3433 		vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
3434 
3435 		if (bp->vnic_info[i].rss_hash_key) {
3436 			if (i == 0)
3437 				prandom_bytes(vnic->rss_hash_key,
3438 					      HW_HASH_KEY_SIZE);
3439 			else
3440 				memcpy(vnic->rss_hash_key,
3441 				       bp->vnic_info[0].rss_hash_key,
3442 				       HW_HASH_KEY_SIZE);
3443 		}
3444 	}
3445 }
3446 
3447 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
3448 {
3449 	int pages;
3450 
3451 	pages = ring_size / desc_per_pg;
3452 
3453 	if (!pages)
3454 		return 1;
3455 
3456 	pages++;
3457 
3458 	while (pages & (pages - 1))
3459 		pages++;
3460 
3461 	return pages;
3462 }
3463 
3464 void bnxt_set_tpa_flags(struct bnxt *bp)
3465 {
3466 	bp->flags &= ~BNXT_FLAG_TPA;
3467 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
3468 		return;
3469 	if (bp->dev->features & NETIF_F_LRO)
3470 		bp->flags |= BNXT_FLAG_LRO;
3471 	else if (bp->dev->features & NETIF_F_GRO_HW)
3472 		bp->flags |= BNXT_FLAG_GRO;
3473 }
3474 
3475 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
3476  * be set on entry.
3477  */
3478 void bnxt_set_ring_params(struct bnxt *bp)
3479 {
3480 	u32 ring_size, rx_size, rx_space, max_rx_cmpl;
3481 	u32 agg_factor = 0, agg_ring_size = 0;
3482 
3483 	/* 8 for CRC and VLAN */
3484 	rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
3485 
3486 	rx_space = rx_size + NET_SKB_PAD +
3487 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3488 
3489 	bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
3490 	ring_size = bp->rx_ring_size;
3491 	bp->rx_agg_ring_size = 0;
3492 	bp->rx_agg_nr_pages = 0;
3493 
3494 	if (bp->flags & BNXT_FLAG_TPA)
3495 		agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE);
3496 
3497 	bp->flags &= ~BNXT_FLAG_JUMBO;
3498 	if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) {
3499 		u32 jumbo_factor;
3500 
3501 		bp->flags |= BNXT_FLAG_JUMBO;
3502 		jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
3503 		if (jumbo_factor > agg_factor)
3504 			agg_factor = jumbo_factor;
3505 	}
3506 	agg_ring_size = ring_size * agg_factor;
3507 
3508 	if (agg_ring_size) {
3509 		bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
3510 							RX_DESC_CNT);
3511 		if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
3512 			u32 tmp = agg_ring_size;
3513 
3514 			bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
3515 			agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
3516 			netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
3517 				    tmp, agg_ring_size);
3518 		}
3519 		bp->rx_agg_ring_size = agg_ring_size;
3520 		bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
3521 		rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
3522 		rx_space = rx_size + NET_SKB_PAD +
3523 			SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3524 	}
3525 
3526 	bp->rx_buf_use_size = rx_size;
3527 	bp->rx_buf_size = rx_space;
3528 
3529 	bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
3530 	bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
3531 
3532 	ring_size = bp->tx_ring_size;
3533 	bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
3534 	bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
3535 
3536 	max_rx_cmpl = bp->rx_ring_size;
3537 	/* MAX TPA needs to be added because TPA_START completions are
3538 	 * immediately recycled, so the TPA completions are not bound by
3539 	 * the RX ring size.
3540 	 */
3541 	if (bp->flags & BNXT_FLAG_TPA)
3542 		max_rx_cmpl += bp->max_tpa;
3543 	/* RX and TPA completions are 32-byte, all others are 16-byte */
3544 	ring_size = max_rx_cmpl * 2 + agg_ring_size + bp->tx_ring_size;
3545 	bp->cp_ring_size = ring_size;
3546 
3547 	bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
3548 	if (bp->cp_nr_pages > MAX_CP_PAGES) {
3549 		bp->cp_nr_pages = MAX_CP_PAGES;
3550 		bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
3551 		netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
3552 			    ring_size, bp->cp_ring_size);
3553 	}
3554 	bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
3555 	bp->cp_ring_mask = bp->cp_bit - 1;
3556 }
3557 
3558 /* Changing allocation mode of RX rings.
3559  * TODO: Update when extending xdp_rxq_info to support allocation modes.
3560  */
3561 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode)
3562 {
3563 	if (page_mode) {
3564 		if (bp->dev->mtu > BNXT_MAX_PAGE_MODE_MTU)
3565 			return -EOPNOTSUPP;
3566 		bp->dev->max_mtu =
3567 			min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU);
3568 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
3569 		bp->flags |= BNXT_FLAG_NO_AGG_RINGS | BNXT_FLAG_RX_PAGE_MODE;
3570 		bp->rx_dir = DMA_BIDIRECTIONAL;
3571 		bp->rx_skb_func = bnxt_rx_page_skb;
3572 		/* Disable LRO or GRO_HW */
3573 		netdev_update_features(bp->dev);
3574 	} else {
3575 		bp->dev->max_mtu = bp->max_mtu;
3576 		bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE;
3577 		bp->rx_dir = DMA_FROM_DEVICE;
3578 		bp->rx_skb_func = bnxt_rx_skb;
3579 	}
3580 	return 0;
3581 }
3582 
3583 static void bnxt_free_vnic_attributes(struct bnxt *bp)
3584 {
3585 	int i;
3586 	struct bnxt_vnic_info *vnic;
3587 	struct pci_dev *pdev = bp->pdev;
3588 
3589 	if (!bp->vnic_info)
3590 		return;
3591 
3592 	for (i = 0; i < bp->nr_vnics; i++) {
3593 		vnic = &bp->vnic_info[i];
3594 
3595 		kfree(vnic->fw_grp_ids);
3596 		vnic->fw_grp_ids = NULL;
3597 
3598 		kfree(vnic->uc_list);
3599 		vnic->uc_list = NULL;
3600 
3601 		if (vnic->mc_list) {
3602 			dma_free_coherent(&pdev->dev, vnic->mc_list_size,
3603 					  vnic->mc_list, vnic->mc_list_mapping);
3604 			vnic->mc_list = NULL;
3605 		}
3606 
3607 		if (vnic->rss_table) {
3608 			dma_free_coherent(&pdev->dev, vnic->rss_table_size,
3609 					  vnic->rss_table,
3610 					  vnic->rss_table_dma_addr);
3611 			vnic->rss_table = NULL;
3612 		}
3613 
3614 		vnic->rss_hash_key = NULL;
3615 		vnic->flags = 0;
3616 	}
3617 }
3618 
3619 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
3620 {
3621 	int i, rc = 0, size;
3622 	struct bnxt_vnic_info *vnic;
3623 	struct pci_dev *pdev = bp->pdev;
3624 	int max_rings;
3625 
3626 	for (i = 0; i < bp->nr_vnics; i++) {
3627 		vnic = &bp->vnic_info[i];
3628 
3629 		if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
3630 			int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
3631 
3632 			if (mem_size > 0) {
3633 				vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
3634 				if (!vnic->uc_list) {
3635 					rc = -ENOMEM;
3636 					goto out;
3637 				}
3638 			}
3639 		}
3640 
3641 		if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
3642 			vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
3643 			vnic->mc_list =
3644 				dma_alloc_coherent(&pdev->dev,
3645 						   vnic->mc_list_size,
3646 						   &vnic->mc_list_mapping,
3647 						   GFP_KERNEL);
3648 			if (!vnic->mc_list) {
3649 				rc = -ENOMEM;
3650 				goto out;
3651 			}
3652 		}
3653 
3654 		if (bp->flags & BNXT_FLAG_CHIP_P5)
3655 			goto vnic_skip_grps;
3656 
3657 		if (vnic->flags & BNXT_VNIC_RSS_FLAG)
3658 			max_rings = bp->rx_nr_rings;
3659 		else
3660 			max_rings = 1;
3661 
3662 		vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
3663 		if (!vnic->fw_grp_ids) {
3664 			rc = -ENOMEM;
3665 			goto out;
3666 		}
3667 vnic_skip_grps:
3668 		if ((bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
3669 		    !(vnic->flags & BNXT_VNIC_RSS_FLAG))
3670 			continue;
3671 
3672 		/* Allocate rss table and hash key */
3673 		size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
3674 		if (bp->flags & BNXT_FLAG_CHIP_P5)
3675 			size = L1_CACHE_ALIGN(BNXT_MAX_RSS_TABLE_SIZE_P5);
3676 
3677 		vnic->rss_table_size = size + HW_HASH_KEY_SIZE;
3678 		vnic->rss_table = dma_alloc_coherent(&pdev->dev,
3679 						     vnic->rss_table_size,
3680 						     &vnic->rss_table_dma_addr,
3681 						     GFP_KERNEL);
3682 		if (!vnic->rss_table) {
3683 			rc = -ENOMEM;
3684 			goto out;
3685 		}
3686 
3687 		vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
3688 		vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
3689 	}
3690 	return 0;
3691 
3692 out:
3693 	return rc;
3694 }
3695 
3696 static void bnxt_free_hwrm_resources(struct bnxt *bp)
3697 {
3698 	struct pci_dev *pdev = bp->pdev;
3699 
3700 	if (bp->hwrm_cmd_resp_addr) {
3701 		dma_free_coherent(&pdev->dev, PAGE_SIZE, bp->hwrm_cmd_resp_addr,
3702 				  bp->hwrm_cmd_resp_dma_addr);
3703 		bp->hwrm_cmd_resp_addr = NULL;
3704 	}
3705 
3706 	if (bp->hwrm_cmd_kong_resp_addr) {
3707 		dma_free_coherent(&pdev->dev, PAGE_SIZE,
3708 				  bp->hwrm_cmd_kong_resp_addr,
3709 				  bp->hwrm_cmd_kong_resp_dma_addr);
3710 		bp->hwrm_cmd_kong_resp_addr = NULL;
3711 	}
3712 }
3713 
3714 static int bnxt_alloc_kong_hwrm_resources(struct bnxt *bp)
3715 {
3716 	struct pci_dev *pdev = bp->pdev;
3717 
3718 	if (bp->hwrm_cmd_kong_resp_addr)
3719 		return 0;
3720 
3721 	bp->hwrm_cmd_kong_resp_addr =
3722 		dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
3723 				   &bp->hwrm_cmd_kong_resp_dma_addr,
3724 				   GFP_KERNEL);
3725 	if (!bp->hwrm_cmd_kong_resp_addr)
3726 		return -ENOMEM;
3727 
3728 	return 0;
3729 }
3730 
3731 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
3732 {
3733 	struct pci_dev *pdev = bp->pdev;
3734 
3735 	bp->hwrm_cmd_resp_addr = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
3736 						   &bp->hwrm_cmd_resp_dma_addr,
3737 						   GFP_KERNEL);
3738 	if (!bp->hwrm_cmd_resp_addr)
3739 		return -ENOMEM;
3740 
3741 	return 0;
3742 }
3743 
3744 static void bnxt_free_hwrm_short_cmd_req(struct bnxt *bp)
3745 {
3746 	if (bp->hwrm_short_cmd_req_addr) {
3747 		struct pci_dev *pdev = bp->pdev;
3748 
3749 		dma_free_coherent(&pdev->dev, bp->hwrm_max_ext_req_len,
3750 				  bp->hwrm_short_cmd_req_addr,
3751 				  bp->hwrm_short_cmd_req_dma_addr);
3752 		bp->hwrm_short_cmd_req_addr = NULL;
3753 	}
3754 }
3755 
3756 static int bnxt_alloc_hwrm_short_cmd_req(struct bnxt *bp)
3757 {
3758 	struct pci_dev *pdev = bp->pdev;
3759 
3760 	if (bp->hwrm_short_cmd_req_addr)
3761 		return 0;
3762 
3763 	bp->hwrm_short_cmd_req_addr =
3764 		dma_alloc_coherent(&pdev->dev, bp->hwrm_max_ext_req_len,
3765 				   &bp->hwrm_short_cmd_req_dma_addr,
3766 				   GFP_KERNEL);
3767 	if (!bp->hwrm_short_cmd_req_addr)
3768 		return -ENOMEM;
3769 
3770 	return 0;
3771 }
3772 
3773 static void bnxt_free_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats)
3774 {
3775 	kfree(stats->hw_masks);
3776 	stats->hw_masks = NULL;
3777 	kfree(stats->sw_stats);
3778 	stats->sw_stats = NULL;
3779 	if (stats->hw_stats) {
3780 		dma_free_coherent(&bp->pdev->dev, stats->len, stats->hw_stats,
3781 				  stats->hw_stats_map);
3782 		stats->hw_stats = NULL;
3783 	}
3784 }
3785 
3786 static int bnxt_alloc_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats,
3787 				bool alloc_masks)
3788 {
3789 	stats->hw_stats = dma_alloc_coherent(&bp->pdev->dev, stats->len,
3790 					     &stats->hw_stats_map, GFP_KERNEL);
3791 	if (!stats->hw_stats)
3792 		return -ENOMEM;
3793 
3794 	stats->sw_stats = kzalloc(stats->len, GFP_KERNEL);
3795 	if (!stats->sw_stats)
3796 		goto stats_mem_err;
3797 
3798 	if (alloc_masks) {
3799 		stats->hw_masks = kzalloc(stats->len, GFP_KERNEL);
3800 		if (!stats->hw_masks)
3801 			goto stats_mem_err;
3802 	}
3803 	return 0;
3804 
3805 stats_mem_err:
3806 	bnxt_free_stats_mem(bp, stats);
3807 	return -ENOMEM;
3808 }
3809 
3810 static void bnxt_fill_masks(u64 *mask_arr, u64 mask, int count)
3811 {
3812 	int i;
3813 
3814 	for (i = 0; i < count; i++)
3815 		mask_arr[i] = mask;
3816 }
3817 
3818 static void bnxt_copy_hw_masks(u64 *mask_arr, __le64 *hw_mask_arr, int count)
3819 {
3820 	int i;
3821 
3822 	for (i = 0; i < count; i++)
3823 		mask_arr[i] = le64_to_cpu(hw_mask_arr[i]);
3824 }
3825 
3826 static int bnxt_hwrm_func_qstat_ext(struct bnxt *bp,
3827 				    struct bnxt_stats_mem *stats)
3828 {
3829 	struct hwrm_func_qstats_ext_output *resp = bp->hwrm_cmd_resp_addr;
3830 	struct hwrm_func_qstats_ext_input req = {0};
3831 	__le64 *hw_masks;
3832 	int rc;
3833 
3834 	if (!(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED) ||
3835 	    !(bp->flags & BNXT_FLAG_CHIP_P5))
3836 		return -EOPNOTSUPP;
3837 
3838 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QSTATS_EXT, -1, -1);
3839 	req.fid = cpu_to_le16(0xffff);
3840 	req.flags = FUNC_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK;
3841 	mutex_lock(&bp->hwrm_cmd_lock);
3842 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3843 	if (rc)
3844 		goto qstat_exit;
3845 
3846 	hw_masks = &resp->rx_ucast_pkts;
3847 	bnxt_copy_hw_masks(stats->hw_masks, hw_masks, stats->len / 8);
3848 
3849 qstat_exit:
3850 	mutex_unlock(&bp->hwrm_cmd_lock);
3851 	return rc;
3852 }
3853 
3854 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags);
3855 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags);
3856 
3857 static void bnxt_init_stats(struct bnxt *bp)
3858 {
3859 	struct bnxt_napi *bnapi = bp->bnapi[0];
3860 	struct bnxt_cp_ring_info *cpr;
3861 	struct bnxt_stats_mem *stats;
3862 	__le64 *rx_stats, *tx_stats;
3863 	int rc, rx_count, tx_count;
3864 	u64 *rx_masks, *tx_masks;
3865 	u64 mask;
3866 	u8 flags;
3867 
3868 	cpr = &bnapi->cp_ring;
3869 	stats = &cpr->stats;
3870 	rc = bnxt_hwrm_func_qstat_ext(bp, stats);
3871 	if (rc) {
3872 		if (bp->flags & BNXT_FLAG_CHIP_P5)
3873 			mask = (1ULL << 48) - 1;
3874 		else
3875 			mask = -1ULL;
3876 		bnxt_fill_masks(stats->hw_masks, mask, stats->len / 8);
3877 	}
3878 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
3879 		stats = &bp->port_stats;
3880 		rx_stats = stats->hw_stats;
3881 		rx_masks = stats->hw_masks;
3882 		rx_count = sizeof(struct rx_port_stats) / 8;
3883 		tx_stats = rx_stats + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
3884 		tx_masks = rx_masks + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
3885 		tx_count = sizeof(struct tx_port_stats) / 8;
3886 
3887 		flags = PORT_QSTATS_REQ_FLAGS_COUNTER_MASK;
3888 		rc = bnxt_hwrm_port_qstats(bp, flags);
3889 		if (rc) {
3890 			mask = (1ULL << 40) - 1;
3891 
3892 			bnxt_fill_masks(rx_masks, mask, rx_count);
3893 			bnxt_fill_masks(tx_masks, mask, tx_count);
3894 		} else {
3895 			bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count);
3896 			bnxt_copy_hw_masks(tx_masks, tx_stats, tx_count);
3897 			bnxt_hwrm_port_qstats(bp, 0);
3898 		}
3899 	}
3900 	if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) {
3901 		stats = &bp->rx_port_stats_ext;
3902 		rx_stats = stats->hw_stats;
3903 		rx_masks = stats->hw_masks;
3904 		rx_count = sizeof(struct rx_port_stats_ext) / 8;
3905 		stats = &bp->tx_port_stats_ext;
3906 		tx_stats = stats->hw_stats;
3907 		tx_masks = stats->hw_masks;
3908 		tx_count = sizeof(struct tx_port_stats_ext) / 8;
3909 
3910 		flags = PORT_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK;
3911 		rc = bnxt_hwrm_port_qstats_ext(bp, flags);
3912 		if (rc) {
3913 			mask = (1ULL << 40) - 1;
3914 
3915 			bnxt_fill_masks(rx_masks, mask, rx_count);
3916 			if (tx_stats)
3917 				bnxt_fill_masks(tx_masks, mask, tx_count);
3918 		} else {
3919 			bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count);
3920 			if (tx_stats)
3921 				bnxt_copy_hw_masks(tx_masks, tx_stats,
3922 						   tx_count);
3923 			bnxt_hwrm_port_qstats_ext(bp, 0);
3924 		}
3925 	}
3926 }
3927 
3928 static void bnxt_free_port_stats(struct bnxt *bp)
3929 {
3930 	bp->flags &= ~BNXT_FLAG_PORT_STATS;
3931 	bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT;
3932 
3933 	bnxt_free_stats_mem(bp, &bp->port_stats);
3934 	bnxt_free_stats_mem(bp, &bp->rx_port_stats_ext);
3935 	bnxt_free_stats_mem(bp, &bp->tx_port_stats_ext);
3936 }
3937 
3938 static void bnxt_free_ring_stats(struct bnxt *bp)
3939 {
3940 	int i;
3941 
3942 	if (!bp->bnapi)
3943 		return;
3944 
3945 	for (i = 0; i < bp->cp_nr_rings; i++) {
3946 		struct bnxt_napi *bnapi = bp->bnapi[i];
3947 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3948 
3949 		bnxt_free_stats_mem(bp, &cpr->stats);
3950 	}
3951 }
3952 
3953 static int bnxt_alloc_stats(struct bnxt *bp)
3954 {
3955 	u32 size, i;
3956 	int rc;
3957 
3958 	size = bp->hw_ring_stats_size;
3959 
3960 	for (i = 0; i < bp->cp_nr_rings; i++) {
3961 		struct bnxt_napi *bnapi = bp->bnapi[i];
3962 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3963 
3964 		cpr->stats.len = size;
3965 		rc = bnxt_alloc_stats_mem(bp, &cpr->stats, !i);
3966 		if (rc)
3967 			return rc;
3968 
3969 		cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
3970 	}
3971 
3972 	if (BNXT_VF(bp) || bp->chip_num == CHIP_NUM_58700)
3973 		return 0;
3974 
3975 	if (bp->port_stats.hw_stats)
3976 		goto alloc_ext_stats;
3977 
3978 	bp->port_stats.len = BNXT_PORT_STATS_SIZE;
3979 	rc = bnxt_alloc_stats_mem(bp, &bp->port_stats, true);
3980 	if (rc)
3981 		return rc;
3982 
3983 	bp->flags |= BNXT_FLAG_PORT_STATS;
3984 
3985 alloc_ext_stats:
3986 	/* Display extended statistics only if FW supports it */
3987 	if (bp->hwrm_spec_code < 0x10804 || bp->hwrm_spec_code == 0x10900)
3988 		if (!(bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED))
3989 			return 0;
3990 
3991 	if (bp->rx_port_stats_ext.hw_stats)
3992 		goto alloc_tx_ext_stats;
3993 
3994 	bp->rx_port_stats_ext.len = sizeof(struct rx_port_stats_ext);
3995 	rc = bnxt_alloc_stats_mem(bp, &bp->rx_port_stats_ext, true);
3996 	/* Extended stats are optional */
3997 	if (rc)
3998 		return 0;
3999 
4000 alloc_tx_ext_stats:
4001 	if (bp->tx_port_stats_ext.hw_stats)
4002 		return 0;
4003 
4004 	if (bp->hwrm_spec_code >= 0x10902 ||
4005 	    (bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) {
4006 		bp->tx_port_stats_ext.len = sizeof(struct tx_port_stats_ext);
4007 		rc = bnxt_alloc_stats_mem(bp, &bp->tx_port_stats_ext, true);
4008 		/* Extended stats are optional */
4009 		if (rc)
4010 			return 0;
4011 	}
4012 	bp->flags |= BNXT_FLAG_PORT_STATS_EXT;
4013 	return 0;
4014 }
4015 
4016 static void bnxt_clear_ring_indices(struct bnxt *bp)
4017 {
4018 	int i;
4019 
4020 	if (!bp->bnapi)
4021 		return;
4022 
4023 	for (i = 0; i < bp->cp_nr_rings; i++) {
4024 		struct bnxt_napi *bnapi = bp->bnapi[i];
4025 		struct bnxt_cp_ring_info *cpr;
4026 		struct bnxt_rx_ring_info *rxr;
4027 		struct bnxt_tx_ring_info *txr;
4028 
4029 		if (!bnapi)
4030 			continue;
4031 
4032 		cpr = &bnapi->cp_ring;
4033 		cpr->cp_raw_cons = 0;
4034 
4035 		txr = bnapi->tx_ring;
4036 		if (txr) {
4037 			txr->tx_prod = 0;
4038 			txr->tx_cons = 0;
4039 		}
4040 
4041 		rxr = bnapi->rx_ring;
4042 		if (rxr) {
4043 			rxr->rx_prod = 0;
4044 			rxr->rx_agg_prod = 0;
4045 			rxr->rx_sw_agg_prod = 0;
4046 			rxr->rx_next_cons = 0;
4047 		}
4048 	}
4049 }
4050 
4051 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
4052 {
4053 #ifdef CONFIG_RFS_ACCEL
4054 	int i;
4055 
4056 	/* Under rtnl_lock and all our NAPIs have been disabled.  It's
4057 	 * safe to delete the hash table.
4058 	 */
4059 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
4060 		struct hlist_head *head;
4061 		struct hlist_node *tmp;
4062 		struct bnxt_ntuple_filter *fltr;
4063 
4064 		head = &bp->ntp_fltr_hash_tbl[i];
4065 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
4066 			hlist_del(&fltr->hash);
4067 			kfree(fltr);
4068 		}
4069 	}
4070 	if (irq_reinit) {
4071 		kfree(bp->ntp_fltr_bmap);
4072 		bp->ntp_fltr_bmap = NULL;
4073 	}
4074 	bp->ntp_fltr_count = 0;
4075 #endif
4076 }
4077 
4078 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
4079 {
4080 #ifdef CONFIG_RFS_ACCEL
4081 	int i, rc = 0;
4082 
4083 	if (!(bp->flags & BNXT_FLAG_RFS))
4084 		return 0;
4085 
4086 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
4087 		INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
4088 
4089 	bp->ntp_fltr_count = 0;
4090 	bp->ntp_fltr_bmap = kcalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR),
4091 				    sizeof(long),
4092 				    GFP_KERNEL);
4093 
4094 	if (!bp->ntp_fltr_bmap)
4095 		rc = -ENOMEM;
4096 
4097 	return rc;
4098 #else
4099 	return 0;
4100 #endif
4101 }
4102 
4103 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
4104 {
4105 	bnxt_free_vnic_attributes(bp);
4106 	bnxt_free_tx_rings(bp);
4107 	bnxt_free_rx_rings(bp);
4108 	bnxt_free_cp_rings(bp);
4109 	bnxt_free_ntp_fltrs(bp, irq_re_init);
4110 	if (irq_re_init) {
4111 		bnxt_free_ring_stats(bp);
4112 		if (!(bp->fw_cap & BNXT_FW_CAP_PORT_STATS_NO_RESET))
4113 			bnxt_free_port_stats(bp);
4114 		bnxt_free_ring_grps(bp);
4115 		bnxt_free_vnics(bp);
4116 		kfree(bp->tx_ring_map);
4117 		bp->tx_ring_map = NULL;
4118 		kfree(bp->tx_ring);
4119 		bp->tx_ring = NULL;
4120 		kfree(bp->rx_ring);
4121 		bp->rx_ring = NULL;
4122 		kfree(bp->bnapi);
4123 		bp->bnapi = NULL;
4124 	} else {
4125 		bnxt_clear_ring_indices(bp);
4126 	}
4127 }
4128 
4129 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
4130 {
4131 	int i, j, rc, size, arr_size;
4132 	void *bnapi;
4133 
4134 	if (irq_re_init) {
4135 		/* Allocate bnapi mem pointer array and mem block for
4136 		 * all queues
4137 		 */
4138 		arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
4139 				bp->cp_nr_rings);
4140 		size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
4141 		bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
4142 		if (!bnapi)
4143 			return -ENOMEM;
4144 
4145 		bp->bnapi = bnapi;
4146 		bnapi += arr_size;
4147 		for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
4148 			bp->bnapi[i] = bnapi;
4149 			bp->bnapi[i]->index = i;
4150 			bp->bnapi[i]->bp = bp;
4151 			if (bp->flags & BNXT_FLAG_CHIP_P5) {
4152 				struct bnxt_cp_ring_info *cpr =
4153 					&bp->bnapi[i]->cp_ring;
4154 
4155 				cpr->cp_ring_struct.ring_mem.flags =
4156 					BNXT_RMEM_RING_PTE_FLAG;
4157 			}
4158 		}
4159 
4160 		bp->rx_ring = kcalloc(bp->rx_nr_rings,
4161 				      sizeof(struct bnxt_rx_ring_info),
4162 				      GFP_KERNEL);
4163 		if (!bp->rx_ring)
4164 			return -ENOMEM;
4165 
4166 		for (i = 0; i < bp->rx_nr_rings; i++) {
4167 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4168 
4169 			if (bp->flags & BNXT_FLAG_CHIP_P5) {
4170 				rxr->rx_ring_struct.ring_mem.flags =
4171 					BNXT_RMEM_RING_PTE_FLAG;
4172 				rxr->rx_agg_ring_struct.ring_mem.flags =
4173 					BNXT_RMEM_RING_PTE_FLAG;
4174 			}
4175 			rxr->bnapi = bp->bnapi[i];
4176 			bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
4177 		}
4178 
4179 		bp->tx_ring = kcalloc(bp->tx_nr_rings,
4180 				      sizeof(struct bnxt_tx_ring_info),
4181 				      GFP_KERNEL);
4182 		if (!bp->tx_ring)
4183 			return -ENOMEM;
4184 
4185 		bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16),
4186 					  GFP_KERNEL);
4187 
4188 		if (!bp->tx_ring_map)
4189 			return -ENOMEM;
4190 
4191 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
4192 			j = 0;
4193 		else
4194 			j = bp->rx_nr_rings;
4195 
4196 		for (i = 0; i < bp->tx_nr_rings; i++, j++) {
4197 			struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
4198 
4199 			if (bp->flags & BNXT_FLAG_CHIP_P5)
4200 				txr->tx_ring_struct.ring_mem.flags =
4201 					BNXT_RMEM_RING_PTE_FLAG;
4202 			txr->bnapi = bp->bnapi[j];
4203 			bp->bnapi[j]->tx_ring = txr;
4204 			bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i;
4205 			if (i >= bp->tx_nr_rings_xdp) {
4206 				txr->txq_index = i - bp->tx_nr_rings_xdp;
4207 				bp->bnapi[j]->tx_int = bnxt_tx_int;
4208 			} else {
4209 				bp->bnapi[j]->flags |= BNXT_NAPI_FLAG_XDP;
4210 				bp->bnapi[j]->tx_int = bnxt_tx_int_xdp;
4211 			}
4212 		}
4213 
4214 		rc = bnxt_alloc_stats(bp);
4215 		if (rc)
4216 			goto alloc_mem_err;
4217 		bnxt_init_stats(bp);
4218 
4219 		rc = bnxt_alloc_ntp_fltrs(bp);
4220 		if (rc)
4221 			goto alloc_mem_err;
4222 
4223 		rc = bnxt_alloc_vnics(bp);
4224 		if (rc)
4225 			goto alloc_mem_err;
4226 	}
4227 
4228 	bnxt_init_ring_struct(bp);
4229 
4230 	rc = bnxt_alloc_rx_rings(bp);
4231 	if (rc)
4232 		goto alloc_mem_err;
4233 
4234 	rc = bnxt_alloc_tx_rings(bp);
4235 	if (rc)
4236 		goto alloc_mem_err;
4237 
4238 	rc = bnxt_alloc_cp_rings(bp);
4239 	if (rc)
4240 		goto alloc_mem_err;
4241 
4242 	bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
4243 				  BNXT_VNIC_UCAST_FLAG;
4244 	rc = bnxt_alloc_vnic_attributes(bp);
4245 	if (rc)
4246 		goto alloc_mem_err;
4247 	return 0;
4248 
4249 alloc_mem_err:
4250 	bnxt_free_mem(bp, true);
4251 	return rc;
4252 }
4253 
4254 static void bnxt_disable_int(struct bnxt *bp)
4255 {
4256 	int i;
4257 
4258 	if (!bp->bnapi)
4259 		return;
4260 
4261 	for (i = 0; i < bp->cp_nr_rings; i++) {
4262 		struct bnxt_napi *bnapi = bp->bnapi[i];
4263 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4264 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
4265 
4266 		if (ring->fw_ring_id != INVALID_HW_RING_ID)
4267 			bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
4268 	}
4269 }
4270 
4271 static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n)
4272 {
4273 	struct bnxt_napi *bnapi = bp->bnapi[n];
4274 	struct bnxt_cp_ring_info *cpr;
4275 
4276 	cpr = &bnapi->cp_ring;
4277 	return cpr->cp_ring_struct.map_idx;
4278 }
4279 
4280 static void bnxt_disable_int_sync(struct bnxt *bp)
4281 {
4282 	int i;
4283 
4284 	atomic_inc(&bp->intr_sem);
4285 
4286 	bnxt_disable_int(bp);
4287 	for (i = 0; i < bp->cp_nr_rings; i++) {
4288 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
4289 
4290 		synchronize_irq(bp->irq_tbl[map_idx].vector);
4291 	}
4292 }
4293 
4294 static void bnxt_enable_int(struct bnxt *bp)
4295 {
4296 	int i;
4297 
4298 	atomic_set(&bp->intr_sem, 0);
4299 	for (i = 0; i < bp->cp_nr_rings; i++) {
4300 		struct bnxt_napi *bnapi = bp->bnapi[i];
4301 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4302 
4303 		bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons);
4304 	}
4305 }
4306 
4307 void bnxt_hwrm_cmd_hdr_init(struct bnxt *bp, void *request, u16 req_type,
4308 			    u16 cmpl_ring, u16 target_id)
4309 {
4310 	struct input *req = request;
4311 
4312 	req->req_type = cpu_to_le16(req_type);
4313 	req->cmpl_ring = cpu_to_le16(cmpl_ring);
4314 	req->target_id = cpu_to_le16(target_id);
4315 	if (bnxt_kong_hwrm_message(bp, req))
4316 		req->resp_addr = cpu_to_le64(bp->hwrm_cmd_kong_resp_dma_addr);
4317 	else
4318 		req->resp_addr = cpu_to_le64(bp->hwrm_cmd_resp_dma_addr);
4319 }
4320 
4321 static int bnxt_hwrm_to_stderr(u32 hwrm_err)
4322 {
4323 	switch (hwrm_err) {
4324 	case HWRM_ERR_CODE_SUCCESS:
4325 		return 0;
4326 	case HWRM_ERR_CODE_RESOURCE_LOCKED:
4327 		return -EROFS;
4328 	case HWRM_ERR_CODE_RESOURCE_ACCESS_DENIED:
4329 		return -EACCES;
4330 	case HWRM_ERR_CODE_RESOURCE_ALLOC_ERROR:
4331 		return -ENOSPC;
4332 	case HWRM_ERR_CODE_INVALID_PARAMS:
4333 	case HWRM_ERR_CODE_INVALID_FLAGS:
4334 	case HWRM_ERR_CODE_INVALID_ENABLES:
4335 	case HWRM_ERR_CODE_UNSUPPORTED_TLV:
4336 	case HWRM_ERR_CODE_UNSUPPORTED_OPTION_ERR:
4337 		return -EINVAL;
4338 	case HWRM_ERR_CODE_NO_BUFFER:
4339 		return -ENOMEM;
4340 	case HWRM_ERR_CODE_HOT_RESET_PROGRESS:
4341 	case HWRM_ERR_CODE_BUSY:
4342 		return -EAGAIN;
4343 	case HWRM_ERR_CODE_CMD_NOT_SUPPORTED:
4344 		return -EOPNOTSUPP;
4345 	default:
4346 		return -EIO;
4347 	}
4348 }
4349 
4350 static int bnxt_hwrm_do_send_msg(struct bnxt *bp, void *msg, u32 msg_len,
4351 				 int timeout, bool silent)
4352 {
4353 	int i, intr_process, rc, tmo_count;
4354 	struct input *req = msg;
4355 	u32 *data = msg;
4356 	u8 *valid;
4357 	u16 cp_ring_id, len = 0;
4358 	struct hwrm_err_output *resp = bp->hwrm_cmd_resp_addr;
4359 	u16 max_req_len = BNXT_HWRM_MAX_REQ_LEN;
4360 	struct hwrm_short_input short_input = {0};
4361 	u32 doorbell_offset = BNXT_GRCPF_REG_CHIMP_COMM_TRIGGER;
4362 	u32 bar_offset = BNXT_GRCPF_REG_CHIMP_COMM;
4363 	u16 dst = BNXT_HWRM_CHNL_CHIMP;
4364 
4365 	if (BNXT_NO_FW_ACCESS(bp))
4366 		return -EBUSY;
4367 
4368 	if (msg_len > BNXT_HWRM_MAX_REQ_LEN) {
4369 		if (msg_len > bp->hwrm_max_ext_req_len ||
4370 		    !bp->hwrm_short_cmd_req_addr)
4371 			return -EINVAL;
4372 	}
4373 
4374 	if (bnxt_hwrm_kong_chnl(bp, req)) {
4375 		dst = BNXT_HWRM_CHNL_KONG;
4376 		bar_offset = BNXT_GRCPF_REG_KONG_COMM;
4377 		doorbell_offset = BNXT_GRCPF_REG_KONG_COMM_TRIGGER;
4378 		resp = bp->hwrm_cmd_kong_resp_addr;
4379 	}
4380 
4381 	memset(resp, 0, PAGE_SIZE);
4382 	cp_ring_id = le16_to_cpu(req->cmpl_ring);
4383 	intr_process = (cp_ring_id == INVALID_HW_RING_ID) ? 0 : 1;
4384 
4385 	req->seq_id = cpu_to_le16(bnxt_get_hwrm_seq_id(bp, dst));
4386 	/* currently supports only one outstanding message */
4387 	if (intr_process)
4388 		bp->hwrm_intr_seq_id = le16_to_cpu(req->seq_id);
4389 
4390 	if ((bp->fw_cap & BNXT_FW_CAP_SHORT_CMD) ||
4391 	    msg_len > BNXT_HWRM_MAX_REQ_LEN) {
4392 		void *short_cmd_req = bp->hwrm_short_cmd_req_addr;
4393 		u16 max_msg_len;
4394 
4395 		/* Set boundary for maximum extended request length for short
4396 		 * cmd format. If passed up from device use the max supported
4397 		 * internal req length.
4398 		 */
4399 		max_msg_len = bp->hwrm_max_ext_req_len;
4400 
4401 		memcpy(short_cmd_req, req, msg_len);
4402 		if (msg_len < max_msg_len)
4403 			memset(short_cmd_req + msg_len, 0,
4404 			       max_msg_len - msg_len);
4405 
4406 		short_input.req_type = req->req_type;
4407 		short_input.signature =
4408 				cpu_to_le16(SHORT_REQ_SIGNATURE_SHORT_CMD);
4409 		short_input.size = cpu_to_le16(msg_len);
4410 		short_input.req_addr =
4411 			cpu_to_le64(bp->hwrm_short_cmd_req_dma_addr);
4412 
4413 		data = (u32 *)&short_input;
4414 		msg_len = sizeof(short_input);
4415 
4416 		/* Sync memory write before updating doorbell */
4417 		wmb();
4418 
4419 		max_req_len = BNXT_HWRM_SHORT_REQ_LEN;
4420 	}
4421 
4422 	/* Write request msg to hwrm channel */
4423 	__iowrite32_copy(bp->bar0 + bar_offset, data, msg_len / 4);
4424 
4425 	for (i = msg_len; i < max_req_len; i += 4)
4426 		writel(0, bp->bar0 + bar_offset + i);
4427 
4428 	/* Ring channel doorbell */
4429 	writel(1, bp->bar0 + doorbell_offset);
4430 
4431 	if (!pci_is_enabled(bp->pdev))
4432 		return 0;
4433 
4434 	if (!timeout)
4435 		timeout = DFLT_HWRM_CMD_TIMEOUT;
4436 	/* convert timeout to usec */
4437 	timeout *= 1000;
4438 
4439 	i = 0;
4440 	/* Short timeout for the first few iterations:
4441 	 * number of loops = number of loops for short timeout +
4442 	 * number of loops for standard timeout.
4443 	 */
4444 	tmo_count = HWRM_SHORT_TIMEOUT_COUNTER;
4445 	timeout = timeout - HWRM_SHORT_MIN_TIMEOUT * HWRM_SHORT_TIMEOUT_COUNTER;
4446 	tmo_count += DIV_ROUND_UP(timeout, HWRM_MIN_TIMEOUT);
4447 
4448 	if (intr_process) {
4449 		u16 seq_id = bp->hwrm_intr_seq_id;
4450 
4451 		/* Wait until hwrm response cmpl interrupt is processed */
4452 		while (bp->hwrm_intr_seq_id != (u16)~seq_id &&
4453 		       i++ < tmo_count) {
4454 			/* Abort the wait for completion if the FW health
4455 			 * check has failed.
4456 			 */
4457 			if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
4458 				return -EBUSY;
4459 			/* on first few passes, just barely sleep */
4460 			if (i < HWRM_SHORT_TIMEOUT_COUNTER)
4461 				usleep_range(HWRM_SHORT_MIN_TIMEOUT,
4462 					     HWRM_SHORT_MAX_TIMEOUT);
4463 			else
4464 				usleep_range(HWRM_MIN_TIMEOUT,
4465 					     HWRM_MAX_TIMEOUT);
4466 		}
4467 
4468 		if (bp->hwrm_intr_seq_id != (u16)~seq_id) {
4469 			if (!silent)
4470 				netdev_err(bp->dev, "Resp cmpl intr err msg: 0x%x\n",
4471 					   le16_to_cpu(req->req_type));
4472 			return -EBUSY;
4473 		}
4474 		len = le16_to_cpu(resp->resp_len);
4475 		valid = ((u8 *)resp) + len - 1;
4476 	} else {
4477 		int j;
4478 
4479 		/* Check if response len is updated */
4480 		for (i = 0; i < tmo_count; i++) {
4481 			/* Abort the wait for completion if the FW health
4482 			 * check has failed.
4483 			 */
4484 			if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
4485 				return -EBUSY;
4486 			len = le16_to_cpu(resp->resp_len);
4487 			if (len)
4488 				break;
4489 			/* on first few passes, just barely sleep */
4490 			if (i < HWRM_SHORT_TIMEOUT_COUNTER)
4491 				usleep_range(HWRM_SHORT_MIN_TIMEOUT,
4492 					     HWRM_SHORT_MAX_TIMEOUT);
4493 			else
4494 				usleep_range(HWRM_MIN_TIMEOUT,
4495 					     HWRM_MAX_TIMEOUT);
4496 		}
4497 
4498 		if (i >= tmo_count) {
4499 			if (!silent)
4500 				netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d\n",
4501 					   HWRM_TOTAL_TIMEOUT(i),
4502 					   le16_to_cpu(req->req_type),
4503 					   le16_to_cpu(req->seq_id), len);
4504 			return -EBUSY;
4505 		}
4506 
4507 		/* Last byte of resp contains valid bit */
4508 		valid = ((u8 *)resp) + len - 1;
4509 		for (j = 0; j < HWRM_VALID_BIT_DELAY_USEC; j++) {
4510 			/* make sure we read from updated DMA memory */
4511 			dma_rmb();
4512 			if (*valid)
4513 				break;
4514 			usleep_range(1, 5);
4515 		}
4516 
4517 		if (j >= HWRM_VALID_BIT_DELAY_USEC) {
4518 			if (!silent)
4519 				netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d v:%d\n",
4520 					   HWRM_TOTAL_TIMEOUT(i),
4521 					   le16_to_cpu(req->req_type),
4522 					   le16_to_cpu(req->seq_id), len,
4523 					   *valid);
4524 			return -EBUSY;
4525 		}
4526 	}
4527 
4528 	/* Zero valid bit for compatibility.  Valid bit in an older spec
4529 	 * may become a new field in a newer spec.  We must make sure that
4530 	 * a new field not implemented by old spec will read zero.
4531 	 */
4532 	*valid = 0;
4533 	rc = le16_to_cpu(resp->error_code);
4534 	if (rc && !silent)
4535 		netdev_err(bp->dev, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n",
4536 			   le16_to_cpu(resp->req_type),
4537 			   le16_to_cpu(resp->seq_id), rc);
4538 	return bnxt_hwrm_to_stderr(rc);
4539 }
4540 
4541 int _hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
4542 {
4543 	return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, false);
4544 }
4545 
4546 int _hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len,
4547 			      int timeout)
4548 {
4549 	return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true);
4550 }
4551 
4552 int hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
4553 {
4554 	int rc;
4555 
4556 	mutex_lock(&bp->hwrm_cmd_lock);
4557 	rc = _hwrm_send_message(bp, msg, msg_len, timeout);
4558 	mutex_unlock(&bp->hwrm_cmd_lock);
4559 	return rc;
4560 }
4561 
4562 int hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len,
4563 			     int timeout)
4564 {
4565 	int rc;
4566 
4567 	mutex_lock(&bp->hwrm_cmd_lock);
4568 	rc = bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true);
4569 	mutex_unlock(&bp->hwrm_cmd_lock);
4570 	return rc;
4571 }
4572 
4573 int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp, unsigned long *bmap, int bmap_size,
4574 			    bool async_only)
4575 {
4576 	struct hwrm_func_drv_rgtr_output *resp = bp->hwrm_cmd_resp_addr;
4577 	struct hwrm_func_drv_rgtr_input req = {0};
4578 	DECLARE_BITMAP(async_events_bmap, 256);
4579 	u32 *events = (u32 *)async_events_bmap;
4580 	u32 flags;
4581 	int rc, i;
4582 
4583 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
4584 
4585 	req.enables =
4586 		cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
4587 			    FUNC_DRV_RGTR_REQ_ENABLES_VER |
4588 			    FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
4589 
4590 	req.os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX);
4591 	flags = FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE;
4592 	if (bp->fw_cap & BNXT_FW_CAP_HOT_RESET)
4593 		flags |= FUNC_DRV_RGTR_REQ_FLAGS_HOT_RESET_SUPPORT;
4594 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
4595 		flags |= FUNC_DRV_RGTR_REQ_FLAGS_ERROR_RECOVERY_SUPPORT |
4596 			 FUNC_DRV_RGTR_REQ_FLAGS_MASTER_SUPPORT;
4597 	req.flags = cpu_to_le32(flags);
4598 	req.ver_maj_8b = DRV_VER_MAJ;
4599 	req.ver_min_8b = DRV_VER_MIN;
4600 	req.ver_upd_8b = DRV_VER_UPD;
4601 	req.ver_maj = cpu_to_le16(DRV_VER_MAJ);
4602 	req.ver_min = cpu_to_le16(DRV_VER_MIN);
4603 	req.ver_upd = cpu_to_le16(DRV_VER_UPD);
4604 
4605 	if (BNXT_PF(bp)) {
4606 		u32 data[8];
4607 		int i;
4608 
4609 		memset(data, 0, sizeof(data));
4610 		for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) {
4611 			u16 cmd = bnxt_vf_req_snif[i];
4612 			unsigned int bit, idx;
4613 
4614 			idx = cmd / 32;
4615 			bit = cmd % 32;
4616 			data[idx] |= 1 << bit;
4617 		}
4618 
4619 		for (i = 0; i < 8; i++)
4620 			req.vf_req_fwd[i] = cpu_to_le32(data[i]);
4621 
4622 		req.enables |=
4623 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
4624 	}
4625 
4626 	if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE)
4627 		req.flags |= cpu_to_le32(
4628 			FUNC_DRV_RGTR_REQ_FLAGS_FLOW_HANDLE_64BIT_MODE);
4629 
4630 	memset(async_events_bmap, 0, sizeof(async_events_bmap));
4631 	for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++) {
4632 		u16 event_id = bnxt_async_events_arr[i];
4633 
4634 		if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY &&
4635 		    !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
4636 			continue;
4637 		__set_bit(bnxt_async_events_arr[i], async_events_bmap);
4638 	}
4639 	if (bmap && bmap_size) {
4640 		for (i = 0; i < bmap_size; i++) {
4641 			if (test_bit(i, bmap))
4642 				__set_bit(i, async_events_bmap);
4643 		}
4644 	}
4645 	for (i = 0; i < 8; i++)
4646 		req.async_event_fwd[i] |= cpu_to_le32(events[i]);
4647 
4648 	if (async_only)
4649 		req.enables =
4650 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
4651 
4652 	mutex_lock(&bp->hwrm_cmd_lock);
4653 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4654 	if (!rc) {
4655 		set_bit(BNXT_STATE_DRV_REGISTERED, &bp->state);
4656 		if (resp->flags &
4657 		    cpu_to_le32(FUNC_DRV_RGTR_RESP_FLAGS_IF_CHANGE_SUPPORTED))
4658 			bp->fw_cap |= BNXT_FW_CAP_IF_CHANGE;
4659 	}
4660 	mutex_unlock(&bp->hwrm_cmd_lock);
4661 	return rc;
4662 }
4663 
4664 static int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
4665 {
4666 	struct hwrm_func_drv_unrgtr_input req = {0};
4667 
4668 	if (!test_and_clear_bit(BNXT_STATE_DRV_REGISTERED, &bp->state))
4669 		return 0;
4670 
4671 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_UNRGTR, -1, -1);
4672 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4673 }
4674 
4675 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
4676 {
4677 	u32 rc = 0;
4678 	struct hwrm_tunnel_dst_port_free_input req = {0};
4679 
4680 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_FREE, -1, -1);
4681 	req.tunnel_type = tunnel_type;
4682 
4683 	switch (tunnel_type) {
4684 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
4685 		req.tunnel_dst_port_id = cpu_to_le16(bp->vxlan_fw_dst_port_id);
4686 		bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID;
4687 		break;
4688 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
4689 		req.tunnel_dst_port_id = cpu_to_le16(bp->nge_fw_dst_port_id);
4690 		bp->nge_fw_dst_port_id = INVALID_HW_RING_ID;
4691 		break;
4692 	default:
4693 		break;
4694 	}
4695 
4696 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4697 	if (rc)
4698 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
4699 			   rc);
4700 	return rc;
4701 }
4702 
4703 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
4704 					   u8 tunnel_type)
4705 {
4706 	u32 rc = 0;
4707 	struct hwrm_tunnel_dst_port_alloc_input req = {0};
4708 	struct hwrm_tunnel_dst_port_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4709 
4710 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_ALLOC, -1, -1);
4711 
4712 	req.tunnel_type = tunnel_type;
4713 	req.tunnel_dst_port_val = port;
4714 
4715 	mutex_lock(&bp->hwrm_cmd_lock);
4716 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4717 	if (rc) {
4718 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
4719 			   rc);
4720 		goto err_out;
4721 	}
4722 
4723 	switch (tunnel_type) {
4724 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN:
4725 		bp->vxlan_fw_dst_port_id =
4726 			le16_to_cpu(resp->tunnel_dst_port_id);
4727 		break;
4728 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE:
4729 		bp->nge_fw_dst_port_id = le16_to_cpu(resp->tunnel_dst_port_id);
4730 		break;
4731 	default:
4732 		break;
4733 	}
4734 
4735 err_out:
4736 	mutex_unlock(&bp->hwrm_cmd_lock);
4737 	return rc;
4738 }
4739 
4740 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
4741 {
4742 	struct hwrm_cfa_l2_set_rx_mask_input req = {0};
4743 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4744 
4745 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_SET_RX_MASK, -1, -1);
4746 	req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
4747 
4748 	req.num_mc_entries = cpu_to_le32(vnic->mc_list_count);
4749 	req.mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
4750 	req.mask = cpu_to_le32(vnic->rx_mask);
4751 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4752 }
4753 
4754 #ifdef CONFIG_RFS_ACCEL
4755 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
4756 					    struct bnxt_ntuple_filter *fltr)
4757 {
4758 	struct hwrm_cfa_ntuple_filter_free_input req = {0};
4759 
4760 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_FREE, -1, -1);
4761 	req.ntuple_filter_id = fltr->filter_id;
4762 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4763 }
4764 
4765 #define BNXT_NTP_FLTR_FLAGS					\
4766 	(CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID |	\
4767 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE |	\
4768 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR |	\
4769 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE |	\
4770 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR |	\
4771 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK |	\
4772 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR |	\
4773 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK |	\
4774 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL |	\
4775 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT |		\
4776 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK |	\
4777 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT |		\
4778 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK |	\
4779 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
4780 
4781 #define BNXT_NTP_TUNNEL_FLTR_FLAG				\
4782 		CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE
4783 
4784 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
4785 					     struct bnxt_ntuple_filter *fltr)
4786 {
4787 	struct hwrm_cfa_ntuple_filter_alloc_input req = {0};
4788 	struct hwrm_cfa_ntuple_filter_alloc_output *resp;
4789 	struct flow_keys *keys = &fltr->fkeys;
4790 	struct bnxt_vnic_info *vnic;
4791 	u32 flags = 0;
4792 	int rc = 0;
4793 
4794 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_ALLOC, -1, -1);
4795 	req.l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx];
4796 
4797 	if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) {
4798 		flags = CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DEST_RFS_RING_IDX;
4799 		req.dst_id = cpu_to_le16(fltr->rxq);
4800 	} else {
4801 		vnic = &bp->vnic_info[fltr->rxq + 1];
4802 		req.dst_id = cpu_to_le16(vnic->fw_vnic_id);
4803 	}
4804 	req.flags = cpu_to_le32(flags);
4805 	req.enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
4806 
4807 	req.ethertype = htons(ETH_P_IP);
4808 	memcpy(req.src_macaddr, fltr->src_mac_addr, ETH_ALEN);
4809 	req.ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
4810 	req.ip_protocol = keys->basic.ip_proto;
4811 
4812 	if (keys->basic.n_proto == htons(ETH_P_IPV6)) {
4813 		int i;
4814 
4815 		req.ethertype = htons(ETH_P_IPV6);
4816 		req.ip_addr_type =
4817 			CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6;
4818 		*(struct in6_addr *)&req.src_ipaddr[0] =
4819 			keys->addrs.v6addrs.src;
4820 		*(struct in6_addr *)&req.dst_ipaddr[0] =
4821 			keys->addrs.v6addrs.dst;
4822 		for (i = 0; i < 4; i++) {
4823 			req.src_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
4824 			req.dst_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
4825 		}
4826 	} else {
4827 		req.src_ipaddr[0] = keys->addrs.v4addrs.src;
4828 		req.src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
4829 		req.dst_ipaddr[0] = keys->addrs.v4addrs.dst;
4830 		req.dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
4831 	}
4832 	if (keys->control.flags & FLOW_DIS_ENCAPSULATION) {
4833 		req.enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG);
4834 		req.tunnel_type =
4835 			CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL;
4836 	}
4837 
4838 	req.src_port = keys->ports.src;
4839 	req.src_port_mask = cpu_to_be16(0xffff);
4840 	req.dst_port = keys->ports.dst;
4841 	req.dst_port_mask = cpu_to_be16(0xffff);
4842 
4843 	mutex_lock(&bp->hwrm_cmd_lock);
4844 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4845 	if (!rc) {
4846 		resp = bnxt_get_hwrm_resp_addr(bp, &req);
4847 		fltr->filter_id = resp->ntuple_filter_id;
4848 	}
4849 	mutex_unlock(&bp->hwrm_cmd_lock);
4850 	return rc;
4851 }
4852 #endif
4853 
4854 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
4855 				     u8 *mac_addr)
4856 {
4857 	u32 rc = 0;
4858 	struct hwrm_cfa_l2_filter_alloc_input req = {0};
4859 	struct hwrm_cfa_l2_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4860 
4861 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_ALLOC, -1, -1);
4862 	req.flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX);
4863 	if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
4864 		req.flags |=
4865 			cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
4866 	req.dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
4867 	req.enables =
4868 		cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
4869 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
4870 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
4871 	memcpy(req.l2_addr, mac_addr, ETH_ALEN);
4872 	req.l2_addr_mask[0] = 0xff;
4873 	req.l2_addr_mask[1] = 0xff;
4874 	req.l2_addr_mask[2] = 0xff;
4875 	req.l2_addr_mask[3] = 0xff;
4876 	req.l2_addr_mask[4] = 0xff;
4877 	req.l2_addr_mask[5] = 0xff;
4878 
4879 	mutex_lock(&bp->hwrm_cmd_lock);
4880 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4881 	if (!rc)
4882 		bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
4883 							resp->l2_filter_id;
4884 	mutex_unlock(&bp->hwrm_cmd_lock);
4885 	return rc;
4886 }
4887 
4888 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
4889 {
4890 	u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
4891 	int rc = 0;
4892 
4893 	/* Any associated ntuple filters will also be cleared by firmware. */
4894 	mutex_lock(&bp->hwrm_cmd_lock);
4895 	for (i = 0; i < num_of_vnics; i++) {
4896 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
4897 
4898 		for (j = 0; j < vnic->uc_filter_count; j++) {
4899 			struct hwrm_cfa_l2_filter_free_input req = {0};
4900 
4901 			bnxt_hwrm_cmd_hdr_init(bp, &req,
4902 					       HWRM_CFA_L2_FILTER_FREE, -1, -1);
4903 
4904 			req.l2_filter_id = vnic->fw_l2_filter_id[j];
4905 
4906 			rc = _hwrm_send_message(bp, &req, sizeof(req),
4907 						HWRM_CMD_TIMEOUT);
4908 		}
4909 		vnic->uc_filter_count = 0;
4910 	}
4911 	mutex_unlock(&bp->hwrm_cmd_lock);
4912 
4913 	return rc;
4914 }
4915 
4916 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
4917 {
4918 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4919 	u16 max_aggs = VNIC_TPA_CFG_REQ_MAX_AGGS_MAX;
4920 	struct hwrm_vnic_tpa_cfg_input req = {0};
4921 
4922 	if (vnic->fw_vnic_id == INVALID_HW_RING_ID)
4923 		return 0;
4924 
4925 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_TPA_CFG, -1, -1);
4926 
4927 	if (tpa_flags) {
4928 		u16 mss = bp->dev->mtu - 40;
4929 		u32 nsegs, n, segs = 0, flags;
4930 
4931 		flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
4932 			VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
4933 			VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
4934 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
4935 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
4936 		if (tpa_flags & BNXT_FLAG_GRO)
4937 			flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
4938 
4939 		req.flags = cpu_to_le32(flags);
4940 
4941 		req.enables =
4942 			cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
4943 				    VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
4944 				    VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
4945 
4946 		/* Number of segs are log2 units, and first packet is not
4947 		 * included as part of this units.
4948 		 */
4949 		if (mss <= BNXT_RX_PAGE_SIZE) {
4950 			n = BNXT_RX_PAGE_SIZE / mss;
4951 			nsegs = (MAX_SKB_FRAGS - 1) * n;
4952 		} else {
4953 			n = mss / BNXT_RX_PAGE_SIZE;
4954 			if (mss & (BNXT_RX_PAGE_SIZE - 1))
4955 				n++;
4956 			nsegs = (MAX_SKB_FRAGS - n) / n;
4957 		}
4958 
4959 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
4960 			segs = MAX_TPA_SEGS_P5;
4961 			max_aggs = bp->max_tpa;
4962 		} else {
4963 			segs = ilog2(nsegs);
4964 		}
4965 		req.max_agg_segs = cpu_to_le16(segs);
4966 		req.max_aggs = cpu_to_le16(max_aggs);
4967 
4968 		req.min_agg_len = cpu_to_le32(512);
4969 	}
4970 	req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
4971 
4972 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4973 }
4974 
4975 static u16 bnxt_cp_ring_from_grp(struct bnxt *bp, struct bnxt_ring_struct *ring)
4976 {
4977 	struct bnxt_ring_grp_info *grp_info;
4978 
4979 	grp_info = &bp->grp_info[ring->grp_idx];
4980 	return grp_info->cp_fw_ring_id;
4981 }
4982 
4983 static u16 bnxt_cp_ring_for_rx(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
4984 {
4985 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
4986 		struct bnxt_napi *bnapi = rxr->bnapi;
4987 		struct bnxt_cp_ring_info *cpr;
4988 
4989 		cpr = bnapi->cp_ring.cp_ring_arr[BNXT_RX_HDL];
4990 		return cpr->cp_ring_struct.fw_ring_id;
4991 	} else {
4992 		return bnxt_cp_ring_from_grp(bp, &rxr->rx_ring_struct);
4993 	}
4994 }
4995 
4996 static u16 bnxt_cp_ring_for_tx(struct bnxt *bp, struct bnxt_tx_ring_info *txr)
4997 {
4998 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
4999 		struct bnxt_napi *bnapi = txr->bnapi;
5000 		struct bnxt_cp_ring_info *cpr;
5001 
5002 		cpr = bnapi->cp_ring.cp_ring_arr[BNXT_TX_HDL];
5003 		return cpr->cp_ring_struct.fw_ring_id;
5004 	} else {
5005 		return bnxt_cp_ring_from_grp(bp, &txr->tx_ring_struct);
5006 	}
5007 }
5008 
5009 static int bnxt_alloc_rss_indir_tbl(struct bnxt *bp)
5010 {
5011 	int entries;
5012 
5013 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5014 		entries = BNXT_MAX_RSS_TABLE_ENTRIES_P5;
5015 	else
5016 		entries = HW_HASH_INDEX_SIZE;
5017 
5018 	bp->rss_indir_tbl_entries = entries;
5019 	bp->rss_indir_tbl = kmalloc_array(entries, sizeof(*bp->rss_indir_tbl),
5020 					  GFP_KERNEL);
5021 	if (!bp->rss_indir_tbl)
5022 		return -ENOMEM;
5023 	return 0;
5024 }
5025 
5026 static void bnxt_set_dflt_rss_indir_tbl(struct bnxt *bp)
5027 {
5028 	u16 max_rings, max_entries, pad, i;
5029 
5030 	if (!bp->rx_nr_rings)
5031 		return;
5032 
5033 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5034 		max_rings = bp->rx_nr_rings - 1;
5035 	else
5036 		max_rings = bp->rx_nr_rings;
5037 
5038 	max_entries = bnxt_get_rxfh_indir_size(bp->dev);
5039 
5040 	for (i = 0; i < max_entries; i++)
5041 		bp->rss_indir_tbl[i] = ethtool_rxfh_indir_default(i, max_rings);
5042 
5043 	pad = bp->rss_indir_tbl_entries - max_entries;
5044 	if (pad)
5045 		memset(&bp->rss_indir_tbl[i], 0, pad * sizeof(u16));
5046 }
5047 
5048 static u16 bnxt_get_max_rss_ring(struct bnxt *bp)
5049 {
5050 	u16 i, tbl_size, max_ring = 0;
5051 
5052 	if (!bp->rss_indir_tbl)
5053 		return 0;
5054 
5055 	tbl_size = bnxt_get_rxfh_indir_size(bp->dev);
5056 	for (i = 0; i < tbl_size; i++)
5057 		max_ring = max(max_ring, bp->rss_indir_tbl[i]);
5058 	return max_ring;
5059 }
5060 
5061 int bnxt_get_nr_rss_ctxs(struct bnxt *bp, int rx_rings)
5062 {
5063 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5064 		return DIV_ROUND_UP(rx_rings, BNXT_RSS_TABLE_ENTRIES_P5);
5065 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5066 		return 2;
5067 	return 1;
5068 }
5069 
5070 static void __bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic)
5071 {
5072 	bool no_rss = !(vnic->flags & BNXT_VNIC_RSS_FLAG);
5073 	u16 i, j;
5074 
5075 	/* Fill the RSS indirection table with ring group ids */
5076 	for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++) {
5077 		if (!no_rss)
5078 			j = bp->rss_indir_tbl[i];
5079 		vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
5080 	}
5081 }
5082 
5083 static void __bnxt_fill_hw_rss_tbl_p5(struct bnxt *bp,
5084 				      struct bnxt_vnic_info *vnic)
5085 {
5086 	__le16 *ring_tbl = vnic->rss_table;
5087 	struct bnxt_rx_ring_info *rxr;
5088 	u16 tbl_size, i;
5089 
5090 	tbl_size = bnxt_get_rxfh_indir_size(bp->dev);
5091 
5092 	for (i = 0; i < tbl_size; i++) {
5093 		u16 ring_id, j;
5094 
5095 		j = bp->rss_indir_tbl[i];
5096 		rxr = &bp->rx_ring[j];
5097 
5098 		ring_id = rxr->rx_ring_struct.fw_ring_id;
5099 		*ring_tbl++ = cpu_to_le16(ring_id);
5100 		ring_id = bnxt_cp_ring_for_rx(bp, rxr);
5101 		*ring_tbl++ = cpu_to_le16(ring_id);
5102 	}
5103 }
5104 
5105 static void bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic)
5106 {
5107 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5108 		__bnxt_fill_hw_rss_tbl_p5(bp, vnic);
5109 	else
5110 		__bnxt_fill_hw_rss_tbl(bp, vnic);
5111 }
5112 
5113 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
5114 {
5115 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5116 	struct hwrm_vnic_rss_cfg_input req = {0};
5117 
5118 	if ((bp->flags & BNXT_FLAG_CHIP_P5) ||
5119 	    vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID)
5120 		return 0;
5121 
5122 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1);
5123 	if (set_rss) {
5124 		bnxt_fill_hw_rss_tbl(bp, vnic);
5125 		req.hash_type = cpu_to_le32(bp->rss_hash_cfg);
5126 		req.hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT;
5127 		req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
5128 		req.hash_key_tbl_addr =
5129 			cpu_to_le64(vnic->rss_hash_key_dma_addr);
5130 	}
5131 	req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
5132 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5133 }
5134 
5135 static int bnxt_hwrm_vnic_set_rss_p5(struct bnxt *bp, u16 vnic_id, bool set_rss)
5136 {
5137 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5138 	struct hwrm_vnic_rss_cfg_input req = {0};
5139 	dma_addr_t ring_tbl_map;
5140 	u32 i, nr_ctxs;
5141 
5142 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1);
5143 	req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5144 	if (!set_rss) {
5145 		hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5146 		return 0;
5147 	}
5148 	bnxt_fill_hw_rss_tbl(bp, vnic);
5149 	req.hash_type = cpu_to_le32(bp->rss_hash_cfg);
5150 	req.hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT;
5151 	req.hash_key_tbl_addr = cpu_to_le64(vnic->rss_hash_key_dma_addr);
5152 	ring_tbl_map = vnic->rss_table_dma_addr;
5153 	nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings);
5154 	for (i = 0; i < nr_ctxs; ring_tbl_map += BNXT_RSS_TABLE_SIZE_P5, i++) {
5155 		int rc;
5156 
5157 		req.ring_grp_tbl_addr = cpu_to_le64(ring_tbl_map);
5158 		req.ring_table_pair_index = i;
5159 		req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[i]);
5160 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5161 		if (rc)
5162 			return rc;
5163 	}
5164 	return 0;
5165 }
5166 
5167 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
5168 {
5169 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5170 	struct hwrm_vnic_plcmodes_cfg_input req = {0};
5171 
5172 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_PLCMODES_CFG, -1, -1);
5173 	req.flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT |
5174 				VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
5175 				VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
5176 	req.enables =
5177 		cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID |
5178 			    VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
5179 	/* thresholds not implemented in firmware yet */
5180 	req.jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
5181 	req.hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
5182 	req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
5183 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5184 }
5185 
5186 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id,
5187 					u16 ctx_idx)
5188 {
5189 	struct hwrm_vnic_rss_cos_lb_ctx_free_input req = {0};
5190 
5191 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_FREE, -1, -1);
5192 	req.rss_cos_lb_ctx_id =
5193 		cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]);
5194 
5195 	hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5196 	bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID;
5197 }
5198 
5199 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
5200 {
5201 	int i, j;
5202 
5203 	for (i = 0; i < bp->nr_vnics; i++) {
5204 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
5205 
5206 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) {
5207 			if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID)
5208 				bnxt_hwrm_vnic_ctx_free_one(bp, i, j);
5209 		}
5210 	}
5211 	bp->rsscos_nr_ctxs = 0;
5212 }
5213 
5214 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx)
5215 {
5216 	int rc;
5217 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_input req = {0};
5218 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp =
5219 						bp->hwrm_cmd_resp_addr;
5220 
5221 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC, -1,
5222 			       -1);
5223 
5224 	mutex_lock(&bp->hwrm_cmd_lock);
5225 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5226 	if (!rc)
5227 		bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] =
5228 			le16_to_cpu(resp->rss_cos_lb_ctx_id);
5229 	mutex_unlock(&bp->hwrm_cmd_lock);
5230 
5231 	return rc;
5232 }
5233 
5234 static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp)
5235 {
5236 	if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP)
5237 		return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE;
5238 	return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE;
5239 }
5240 
5241 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
5242 {
5243 	unsigned int ring = 0, grp_idx;
5244 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5245 	struct hwrm_vnic_cfg_input req = {0};
5246 	u16 def_vlan = 0;
5247 
5248 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_CFG, -1, -1);
5249 
5250 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5251 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0];
5252 
5253 		req.default_rx_ring_id =
5254 			cpu_to_le16(rxr->rx_ring_struct.fw_ring_id);
5255 		req.default_cmpl_ring_id =
5256 			cpu_to_le16(bnxt_cp_ring_for_rx(bp, rxr));
5257 		req.enables =
5258 			cpu_to_le32(VNIC_CFG_REQ_ENABLES_DEFAULT_RX_RING_ID |
5259 				    VNIC_CFG_REQ_ENABLES_DEFAULT_CMPL_RING_ID);
5260 		goto vnic_mru;
5261 	}
5262 	req.enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP);
5263 	/* Only RSS support for now TBD: COS & LB */
5264 	if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) {
5265 		req.rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
5266 		req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
5267 					   VNIC_CFG_REQ_ENABLES_MRU);
5268 	} else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) {
5269 		req.rss_rule =
5270 			cpu_to_le16(bp->vnic_info[0].fw_rss_cos_lb_ctx[0]);
5271 		req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
5272 					   VNIC_CFG_REQ_ENABLES_MRU);
5273 		req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE);
5274 	} else {
5275 		req.rss_rule = cpu_to_le16(0xffff);
5276 	}
5277 
5278 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) &&
5279 	    (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) {
5280 		req.cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]);
5281 		req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE);
5282 	} else {
5283 		req.cos_rule = cpu_to_le16(0xffff);
5284 	}
5285 
5286 	if (vnic->flags & BNXT_VNIC_RSS_FLAG)
5287 		ring = 0;
5288 	else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
5289 		ring = vnic_id - 1;
5290 	else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp))
5291 		ring = bp->rx_nr_rings - 1;
5292 
5293 	grp_idx = bp->rx_ring[ring].bnapi->index;
5294 	req.dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
5295 	req.lb_rule = cpu_to_le16(0xffff);
5296 vnic_mru:
5297 	req.mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + VLAN_HLEN);
5298 
5299 	req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5300 #ifdef CONFIG_BNXT_SRIOV
5301 	if (BNXT_VF(bp))
5302 		def_vlan = bp->vf.vlan;
5303 #endif
5304 	if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan)
5305 		req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
5306 	if (!vnic_id && bnxt_ulp_registered(bp->edev, BNXT_ROCE_ULP))
5307 		req.flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp));
5308 
5309 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5310 }
5311 
5312 static void bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
5313 {
5314 	if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
5315 		struct hwrm_vnic_free_input req = {0};
5316 
5317 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_FREE, -1, -1);
5318 		req.vnic_id =
5319 			cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
5320 
5321 		hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5322 		bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
5323 	}
5324 }
5325 
5326 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
5327 {
5328 	u16 i;
5329 
5330 	for (i = 0; i < bp->nr_vnics; i++)
5331 		bnxt_hwrm_vnic_free_one(bp, i);
5332 }
5333 
5334 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
5335 				unsigned int start_rx_ring_idx,
5336 				unsigned int nr_rings)
5337 {
5338 	int rc = 0;
5339 	unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
5340 	struct hwrm_vnic_alloc_input req = {0};
5341 	struct hwrm_vnic_alloc_output *resp = bp->hwrm_cmd_resp_addr;
5342 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5343 
5344 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5345 		goto vnic_no_ring_grps;
5346 
5347 	/* map ring groups to this vnic */
5348 	for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
5349 		grp_idx = bp->rx_ring[i].bnapi->index;
5350 		if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
5351 			netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
5352 				   j, nr_rings);
5353 			break;
5354 		}
5355 		vnic->fw_grp_ids[j] = bp->grp_info[grp_idx].fw_grp_id;
5356 	}
5357 
5358 vnic_no_ring_grps:
5359 	for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++)
5360 		vnic->fw_rss_cos_lb_ctx[i] = INVALID_HW_RING_ID;
5361 	if (vnic_id == 0)
5362 		req.flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
5363 
5364 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_ALLOC, -1, -1);
5365 
5366 	mutex_lock(&bp->hwrm_cmd_lock);
5367 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5368 	if (!rc)
5369 		vnic->fw_vnic_id = le32_to_cpu(resp->vnic_id);
5370 	mutex_unlock(&bp->hwrm_cmd_lock);
5371 	return rc;
5372 }
5373 
5374 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp)
5375 {
5376 	struct hwrm_vnic_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
5377 	struct hwrm_vnic_qcaps_input req = {0};
5378 	int rc;
5379 
5380 	bp->hw_ring_stats_size = sizeof(struct ctx_hw_stats);
5381 	bp->flags &= ~(BNXT_FLAG_NEW_RSS_CAP | BNXT_FLAG_ROCE_MIRROR_CAP);
5382 	if (bp->hwrm_spec_code < 0x10600)
5383 		return 0;
5384 
5385 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_QCAPS, -1, -1);
5386 	mutex_lock(&bp->hwrm_cmd_lock);
5387 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5388 	if (!rc) {
5389 		u32 flags = le32_to_cpu(resp->flags);
5390 
5391 		if (!(bp->flags & BNXT_FLAG_CHIP_P5) &&
5392 		    (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP))
5393 			bp->flags |= BNXT_FLAG_NEW_RSS_CAP;
5394 		if (flags &
5395 		    VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP)
5396 			bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP;
5397 
5398 		/* Older P5 fw before EXT_HW_STATS support did not set
5399 		 * VLAN_STRIP_CAP properly.
5400 		 */
5401 		if ((flags & VNIC_QCAPS_RESP_FLAGS_VLAN_STRIP_CAP) ||
5402 		    (BNXT_CHIP_P5_THOR(bp) &&
5403 		     !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)))
5404 			bp->fw_cap |= BNXT_FW_CAP_VLAN_RX_STRIP;
5405 		bp->max_tpa_v2 = le16_to_cpu(resp->max_aggs_supported);
5406 		if (bp->max_tpa_v2) {
5407 			if (BNXT_CHIP_P5_THOR(bp))
5408 				bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5;
5409 			else
5410 				bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5_SR2;
5411 		}
5412 	}
5413 	mutex_unlock(&bp->hwrm_cmd_lock);
5414 	return rc;
5415 }
5416 
5417 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
5418 {
5419 	u16 i;
5420 	u32 rc = 0;
5421 
5422 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5423 		return 0;
5424 
5425 	mutex_lock(&bp->hwrm_cmd_lock);
5426 	for (i = 0; i < bp->rx_nr_rings; i++) {
5427 		struct hwrm_ring_grp_alloc_input req = {0};
5428 		struct hwrm_ring_grp_alloc_output *resp =
5429 					bp->hwrm_cmd_resp_addr;
5430 		unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
5431 
5432 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_ALLOC, -1, -1);
5433 
5434 		req.cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
5435 		req.rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
5436 		req.ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
5437 		req.sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
5438 
5439 		rc = _hwrm_send_message(bp, &req, sizeof(req),
5440 					HWRM_CMD_TIMEOUT);
5441 		if (rc)
5442 			break;
5443 
5444 		bp->grp_info[grp_idx].fw_grp_id =
5445 			le32_to_cpu(resp->ring_group_id);
5446 	}
5447 	mutex_unlock(&bp->hwrm_cmd_lock);
5448 	return rc;
5449 }
5450 
5451 static void bnxt_hwrm_ring_grp_free(struct bnxt *bp)
5452 {
5453 	u16 i;
5454 	struct hwrm_ring_grp_free_input req = {0};
5455 
5456 	if (!bp->grp_info || (bp->flags & BNXT_FLAG_CHIP_P5))
5457 		return;
5458 
5459 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_FREE, -1, -1);
5460 
5461 	mutex_lock(&bp->hwrm_cmd_lock);
5462 	for (i = 0; i < bp->cp_nr_rings; i++) {
5463 		if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
5464 			continue;
5465 		req.ring_group_id =
5466 			cpu_to_le32(bp->grp_info[i].fw_grp_id);
5467 
5468 		_hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5469 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
5470 	}
5471 	mutex_unlock(&bp->hwrm_cmd_lock);
5472 }
5473 
5474 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
5475 				    struct bnxt_ring_struct *ring,
5476 				    u32 ring_type, u32 map_index)
5477 {
5478 	int rc = 0, err = 0;
5479 	struct hwrm_ring_alloc_input req = {0};
5480 	struct hwrm_ring_alloc_output *resp = bp->hwrm_cmd_resp_addr;
5481 	struct bnxt_ring_mem_info *rmem = &ring->ring_mem;
5482 	struct bnxt_ring_grp_info *grp_info;
5483 	u16 ring_id;
5484 
5485 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_ALLOC, -1, -1);
5486 
5487 	req.enables = 0;
5488 	if (rmem->nr_pages > 1) {
5489 		req.page_tbl_addr = cpu_to_le64(rmem->pg_tbl_map);
5490 		/* Page size is in log2 units */
5491 		req.page_size = BNXT_PAGE_SHIFT;
5492 		req.page_tbl_depth = 1;
5493 	} else {
5494 		req.page_tbl_addr =  cpu_to_le64(rmem->dma_arr[0]);
5495 	}
5496 	req.fbo = 0;
5497 	/* Association of ring index with doorbell index and MSIX number */
5498 	req.logical_id = cpu_to_le16(map_index);
5499 
5500 	switch (ring_type) {
5501 	case HWRM_RING_ALLOC_TX: {
5502 		struct bnxt_tx_ring_info *txr;
5503 
5504 		txr = container_of(ring, struct bnxt_tx_ring_info,
5505 				   tx_ring_struct);
5506 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
5507 		/* Association of transmit ring with completion ring */
5508 		grp_info = &bp->grp_info[ring->grp_idx];
5509 		req.cmpl_ring_id = cpu_to_le16(bnxt_cp_ring_for_tx(bp, txr));
5510 		req.length = cpu_to_le32(bp->tx_ring_mask + 1);
5511 		req.stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5512 		req.queue_id = cpu_to_le16(ring->queue_id);
5513 		break;
5514 	}
5515 	case HWRM_RING_ALLOC_RX:
5516 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
5517 		req.length = cpu_to_le32(bp->rx_ring_mask + 1);
5518 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5519 			u16 flags = 0;
5520 
5521 			/* Association of rx ring with stats context */
5522 			grp_info = &bp->grp_info[ring->grp_idx];
5523 			req.rx_buf_size = cpu_to_le16(bp->rx_buf_use_size);
5524 			req.stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5525 			req.enables |= cpu_to_le32(
5526 				RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
5527 			if (NET_IP_ALIGN == 2)
5528 				flags = RING_ALLOC_REQ_FLAGS_RX_SOP_PAD;
5529 			req.flags = cpu_to_le16(flags);
5530 		}
5531 		break;
5532 	case HWRM_RING_ALLOC_AGG:
5533 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5534 			req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX_AGG;
5535 			/* Association of agg ring with rx ring */
5536 			grp_info = &bp->grp_info[ring->grp_idx];
5537 			req.rx_ring_id = cpu_to_le16(grp_info->rx_fw_ring_id);
5538 			req.rx_buf_size = cpu_to_le16(BNXT_RX_PAGE_SIZE);
5539 			req.stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5540 			req.enables |= cpu_to_le32(
5541 				RING_ALLOC_REQ_ENABLES_RX_RING_ID_VALID |
5542 				RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
5543 		} else {
5544 			req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
5545 		}
5546 		req.length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
5547 		break;
5548 	case HWRM_RING_ALLOC_CMPL:
5549 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL;
5550 		req.length = cpu_to_le32(bp->cp_ring_mask + 1);
5551 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5552 			/* Association of cp ring with nq */
5553 			grp_info = &bp->grp_info[map_index];
5554 			req.nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id);
5555 			req.cq_handle = cpu_to_le64(ring->handle);
5556 			req.enables |= cpu_to_le32(
5557 				RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID);
5558 		} else if (bp->flags & BNXT_FLAG_USING_MSIX) {
5559 			req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
5560 		}
5561 		break;
5562 	case HWRM_RING_ALLOC_NQ:
5563 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_NQ;
5564 		req.length = cpu_to_le32(bp->cp_ring_mask + 1);
5565 		if (bp->flags & BNXT_FLAG_USING_MSIX)
5566 			req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
5567 		break;
5568 	default:
5569 		netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
5570 			   ring_type);
5571 		return -1;
5572 	}
5573 
5574 	mutex_lock(&bp->hwrm_cmd_lock);
5575 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5576 	err = le16_to_cpu(resp->error_code);
5577 	ring_id = le16_to_cpu(resp->ring_id);
5578 	mutex_unlock(&bp->hwrm_cmd_lock);
5579 
5580 	if (rc || err) {
5581 		netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n",
5582 			   ring_type, rc, err);
5583 		return -EIO;
5584 	}
5585 	ring->fw_ring_id = ring_id;
5586 	return rc;
5587 }
5588 
5589 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx)
5590 {
5591 	int rc;
5592 
5593 	if (BNXT_PF(bp)) {
5594 		struct hwrm_func_cfg_input req = {0};
5595 
5596 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
5597 		req.fid = cpu_to_le16(0xffff);
5598 		req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
5599 		req.async_event_cr = cpu_to_le16(idx);
5600 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5601 	} else {
5602 		struct hwrm_func_vf_cfg_input req = {0};
5603 
5604 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_CFG, -1, -1);
5605 		req.enables =
5606 			cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
5607 		req.async_event_cr = cpu_to_le16(idx);
5608 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5609 	}
5610 	return rc;
5611 }
5612 
5613 static void bnxt_set_db(struct bnxt *bp, struct bnxt_db_info *db, u32 ring_type,
5614 			u32 map_idx, u32 xid)
5615 {
5616 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5617 		if (BNXT_PF(bp))
5618 			db->doorbell = bp->bar1 + DB_PF_OFFSET_P5;
5619 		else
5620 			db->doorbell = bp->bar1 + DB_VF_OFFSET_P5;
5621 		switch (ring_type) {
5622 		case HWRM_RING_ALLOC_TX:
5623 			db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SQ;
5624 			break;
5625 		case HWRM_RING_ALLOC_RX:
5626 		case HWRM_RING_ALLOC_AGG:
5627 			db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SRQ;
5628 			break;
5629 		case HWRM_RING_ALLOC_CMPL:
5630 			db->db_key64 = DBR_PATH_L2;
5631 			break;
5632 		case HWRM_RING_ALLOC_NQ:
5633 			db->db_key64 = DBR_PATH_L2;
5634 			break;
5635 		}
5636 		db->db_key64 |= (u64)xid << DBR_XID_SFT;
5637 	} else {
5638 		db->doorbell = bp->bar1 + map_idx * 0x80;
5639 		switch (ring_type) {
5640 		case HWRM_RING_ALLOC_TX:
5641 			db->db_key32 = DB_KEY_TX;
5642 			break;
5643 		case HWRM_RING_ALLOC_RX:
5644 		case HWRM_RING_ALLOC_AGG:
5645 			db->db_key32 = DB_KEY_RX;
5646 			break;
5647 		case HWRM_RING_ALLOC_CMPL:
5648 			db->db_key32 = DB_KEY_CP;
5649 			break;
5650 		}
5651 	}
5652 }
5653 
5654 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
5655 {
5656 	bool agg_rings = !!(bp->flags & BNXT_FLAG_AGG_RINGS);
5657 	int i, rc = 0;
5658 	u32 type;
5659 
5660 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5661 		type = HWRM_RING_ALLOC_NQ;
5662 	else
5663 		type = HWRM_RING_ALLOC_CMPL;
5664 	for (i = 0; i < bp->cp_nr_rings; i++) {
5665 		struct bnxt_napi *bnapi = bp->bnapi[i];
5666 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5667 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
5668 		u32 map_idx = ring->map_idx;
5669 		unsigned int vector;
5670 
5671 		vector = bp->irq_tbl[map_idx].vector;
5672 		disable_irq_nosync(vector);
5673 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5674 		if (rc) {
5675 			enable_irq(vector);
5676 			goto err_out;
5677 		}
5678 		bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id);
5679 		bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
5680 		enable_irq(vector);
5681 		bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
5682 
5683 		if (!i) {
5684 			rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id);
5685 			if (rc)
5686 				netdev_warn(bp->dev, "Failed to set async event completion ring.\n");
5687 		}
5688 	}
5689 
5690 	type = HWRM_RING_ALLOC_TX;
5691 	for (i = 0; i < bp->tx_nr_rings; i++) {
5692 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
5693 		struct bnxt_ring_struct *ring;
5694 		u32 map_idx;
5695 
5696 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5697 			struct bnxt_napi *bnapi = txr->bnapi;
5698 			struct bnxt_cp_ring_info *cpr, *cpr2;
5699 			u32 type2 = HWRM_RING_ALLOC_CMPL;
5700 
5701 			cpr = &bnapi->cp_ring;
5702 			cpr2 = cpr->cp_ring_arr[BNXT_TX_HDL];
5703 			ring = &cpr2->cp_ring_struct;
5704 			ring->handle = BNXT_TX_HDL;
5705 			map_idx = bnapi->index;
5706 			rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
5707 			if (rc)
5708 				goto err_out;
5709 			bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
5710 				    ring->fw_ring_id);
5711 			bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
5712 		}
5713 		ring = &txr->tx_ring_struct;
5714 		map_idx = i;
5715 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5716 		if (rc)
5717 			goto err_out;
5718 		bnxt_set_db(bp, &txr->tx_db, type, map_idx, ring->fw_ring_id);
5719 	}
5720 
5721 	type = HWRM_RING_ALLOC_RX;
5722 	for (i = 0; i < bp->rx_nr_rings; i++) {
5723 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5724 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
5725 		struct bnxt_napi *bnapi = rxr->bnapi;
5726 		u32 map_idx = bnapi->index;
5727 
5728 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5729 		if (rc)
5730 			goto err_out;
5731 		bnxt_set_db(bp, &rxr->rx_db, type, map_idx, ring->fw_ring_id);
5732 		/* If we have agg rings, post agg buffers first. */
5733 		if (!agg_rings)
5734 			bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
5735 		bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
5736 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5737 			struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5738 			u32 type2 = HWRM_RING_ALLOC_CMPL;
5739 			struct bnxt_cp_ring_info *cpr2;
5740 
5741 			cpr2 = cpr->cp_ring_arr[BNXT_RX_HDL];
5742 			ring = &cpr2->cp_ring_struct;
5743 			ring->handle = BNXT_RX_HDL;
5744 			rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
5745 			if (rc)
5746 				goto err_out;
5747 			bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
5748 				    ring->fw_ring_id);
5749 			bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
5750 		}
5751 	}
5752 
5753 	if (agg_rings) {
5754 		type = HWRM_RING_ALLOC_AGG;
5755 		for (i = 0; i < bp->rx_nr_rings; i++) {
5756 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5757 			struct bnxt_ring_struct *ring =
5758 						&rxr->rx_agg_ring_struct;
5759 			u32 grp_idx = ring->grp_idx;
5760 			u32 map_idx = grp_idx + bp->rx_nr_rings;
5761 
5762 			rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5763 			if (rc)
5764 				goto err_out;
5765 
5766 			bnxt_set_db(bp, &rxr->rx_agg_db, type, map_idx,
5767 				    ring->fw_ring_id);
5768 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
5769 			bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
5770 			bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
5771 		}
5772 	}
5773 err_out:
5774 	return rc;
5775 }
5776 
5777 static int hwrm_ring_free_send_msg(struct bnxt *bp,
5778 				   struct bnxt_ring_struct *ring,
5779 				   u32 ring_type, int cmpl_ring_id)
5780 {
5781 	int rc;
5782 	struct hwrm_ring_free_input req = {0};
5783 	struct hwrm_ring_free_output *resp = bp->hwrm_cmd_resp_addr;
5784 	u16 error_code;
5785 
5786 	if (BNXT_NO_FW_ACCESS(bp))
5787 		return 0;
5788 
5789 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_FREE, cmpl_ring_id, -1);
5790 	req.ring_type = ring_type;
5791 	req.ring_id = cpu_to_le16(ring->fw_ring_id);
5792 
5793 	mutex_lock(&bp->hwrm_cmd_lock);
5794 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5795 	error_code = le16_to_cpu(resp->error_code);
5796 	mutex_unlock(&bp->hwrm_cmd_lock);
5797 
5798 	if (rc || error_code) {
5799 		netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n",
5800 			   ring_type, rc, error_code);
5801 		return -EIO;
5802 	}
5803 	return 0;
5804 }
5805 
5806 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
5807 {
5808 	u32 type;
5809 	int i;
5810 
5811 	if (!bp->bnapi)
5812 		return;
5813 
5814 	for (i = 0; i < bp->tx_nr_rings; i++) {
5815 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
5816 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
5817 
5818 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5819 			u32 cmpl_ring_id = bnxt_cp_ring_for_tx(bp, txr);
5820 
5821 			hwrm_ring_free_send_msg(bp, ring,
5822 						RING_FREE_REQ_RING_TYPE_TX,
5823 						close_path ? cmpl_ring_id :
5824 						INVALID_HW_RING_ID);
5825 			ring->fw_ring_id = INVALID_HW_RING_ID;
5826 		}
5827 	}
5828 
5829 	for (i = 0; i < bp->rx_nr_rings; i++) {
5830 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5831 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
5832 		u32 grp_idx = rxr->bnapi->index;
5833 
5834 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5835 			u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
5836 
5837 			hwrm_ring_free_send_msg(bp, ring,
5838 						RING_FREE_REQ_RING_TYPE_RX,
5839 						close_path ? cmpl_ring_id :
5840 						INVALID_HW_RING_ID);
5841 			ring->fw_ring_id = INVALID_HW_RING_ID;
5842 			bp->grp_info[grp_idx].rx_fw_ring_id =
5843 				INVALID_HW_RING_ID;
5844 		}
5845 	}
5846 
5847 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5848 		type = RING_FREE_REQ_RING_TYPE_RX_AGG;
5849 	else
5850 		type = RING_FREE_REQ_RING_TYPE_RX;
5851 	for (i = 0; i < bp->rx_nr_rings; i++) {
5852 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5853 		struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
5854 		u32 grp_idx = rxr->bnapi->index;
5855 
5856 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5857 			u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
5858 
5859 			hwrm_ring_free_send_msg(bp, ring, type,
5860 						close_path ? cmpl_ring_id :
5861 						INVALID_HW_RING_ID);
5862 			ring->fw_ring_id = INVALID_HW_RING_ID;
5863 			bp->grp_info[grp_idx].agg_fw_ring_id =
5864 				INVALID_HW_RING_ID;
5865 		}
5866 	}
5867 
5868 	/* The completion rings are about to be freed.  After that the
5869 	 * IRQ doorbell will not work anymore.  So we need to disable
5870 	 * IRQ here.
5871 	 */
5872 	bnxt_disable_int_sync(bp);
5873 
5874 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5875 		type = RING_FREE_REQ_RING_TYPE_NQ;
5876 	else
5877 		type = RING_FREE_REQ_RING_TYPE_L2_CMPL;
5878 	for (i = 0; i < bp->cp_nr_rings; i++) {
5879 		struct bnxt_napi *bnapi = bp->bnapi[i];
5880 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5881 		struct bnxt_ring_struct *ring;
5882 		int j;
5883 
5884 		for (j = 0; j < 2; j++) {
5885 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
5886 
5887 			if (cpr2) {
5888 				ring = &cpr2->cp_ring_struct;
5889 				if (ring->fw_ring_id == INVALID_HW_RING_ID)
5890 					continue;
5891 				hwrm_ring_free_send_msg(bp, ring,
5892 					RING_FREE_REQ_RING_TYPE_L2_CMPL,
5893 					INVALID_HW_RING_ID);
5894 				ring->fw_ring_id = INVALID_HW_RING_ID;
5895 			}
5896 		}
5897 		ring = &cpr->cp_ring_struct;
5898 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5899 			hwrm_ring_free_send_msg(bp, ring, type,
5900 						INVALID_HW_RING_ID);
5901 			ring->fw_ring_id = INVALID_HW_RING_ID;
5902 			bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
5903 		}
5904 	}
5905 }
5906 
5907 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
5908 			   bool shared);
5909 
5910 static int bnxt_hwrm_get_rings(struct bnxt *bp)
5911 {
5912 	struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
5913 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
5914 	struct hwrm_func_qcfg_input req = {0};
5915 	int rc;
5916 
5917 	if (bp->hwrm_spec_code < 0x10601)
5918 		return 0;
5919 
5920 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
5921 	req.fid = cpu_to_le16(0xffff);
5922 	mutex_lock(&bp->hwrm_cmd_lock);
5923 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5924 	if (rc) {
5925 		mutex_unlock(&bp->hwrm_cmd_lock);
5926 		return rc;
5927 	}
5928 
5929 	hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings);
5930 	if (BNXT_NEW_RM(bp)) {
5931 		u16 cp, stats;
5932 
5933 		hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings);
5934 		hw_resc->resv_hw_ring_grps =
5935 			le32_to_cpu(resp->alloc_hw_ring_grps);
5936 		hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics);
5937 		cp = le16_to_cpu(resp->alloc_cmpl_rings);
5938 		stats = le16_to_cpu(resp->alloc_stat_ctx);
5939 		hw_resc->resv_irqs = cp;
5940 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5941 			int rx = hw_resc->resv_rx_rings;
5942 			int tx = hw_resc->resv_tx_rings;
5943 
5944 			if (bp->flags & BNXT_FLAG_AGG_RINGS)
5945 				rx >>= 1;
5946 			if (cp < (rx + tx)) {
5947 				bnxt_trim_rings(bp, &rx, &tx, cp, false);
5948 				if (bp->flags & BNXT_FLAG_AGG_RINGS)
5949 					rx <<= 1;
5950 				hw_resc->resv_rx_rings = rx;
5951 				hw_resc->resv_tx_rings = tx;
5952 			}
5953 			hw_resc->resv_irqs = le16_to_cpu(resp->alloc_msix);
5954 			hw_resc->resv_hw_ring_grps = rx;
5955 		}
5956 		hw_resc->resv_cp_rings = cp;
5957 		hw_resc->resv_stat_ctxs = stats;
5958 	}
5959 	mutex_unlock(&bp->hwrm_cmd_lock);
5960 	return 0;
5961 }
5962 
5963 /* Caller must hold bp->hwrm_cmd_lock */
5964 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings)
5965 {
5966 	struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
5967 	struct hwrm_func_qcfg_input req = {0};
5968 	int rc;
5969 
5970 	if (bp->hwrm_spec_code < 0x10601)
5971 		return 0;
5972 
5973 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
5974 	req.fid = cpu_to_le16(fid);
5975 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5976 	if (!rc)
5977 		*tx_rings = le16_to_cpu(resp->alloc_tx_rings);
5978 
5979 	return rc;
5980 }
5981 
5982 static bool bnxt_rfs_supported(struct bnxt *bp);
5983 
5984 static void
5985 __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, struct hwrm_func_cfg_input *req,
5986 			     int tx_rings, int rx_rings, int ring_grps,
5987 			     int cp_rings, int stats, int vnics)
5988 {
5989 	u32 enables = 0;
5990 
5991 	bnxt_hwrm_cmd_hdr_init(bp, req, HWRM_FUNC_CFG, -1, -1);
5992 	req->fid = cpu_to_le16(0xffff);
5993 	enables |= tx_rings ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
5994 	req->num_tx_rings = cpu_to_le16(tx_rings);
5995 	if (BNXT_NEW_RM(bp)) {
5996 		enables |= rx_rings ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0;
5997 		enables |= stats ? FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
5998 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5999 			enables |= cp_rings ? FUNC_CFG_REQ_ENABLES_NUM_MSIX : 0;
6000 			enables |= tx_rings + ring_grps ?
6001 				   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6002 			enables |= rx_rings ?
6003 				FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
6004 		} else {
6005 			enables |= cp_rings ?
6006 				   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6007 			enables |= ring_grps ?
6008 				   FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS |
6009 				   FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
6010 		}
6011 		enables |= vnics ? FUNC_CFG_REQ_ENABLES_NUM_VNICS : 0;
6012 
6013 		req->num_rx_rings = cpu_to_le16(rx_rings);
6014 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
6015 			req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps);
6016 			req->num_msix = cpu_to_le16(cp_rings);
6017 			req->num_rsscos_ctxs =
6018 				cpu_to_le16(DIV_ROUND_UP(ring_grps, 64));
6019 		} else {
6020 			req->num_cmpl_rings = cpu_to_le16(cp_rings);
6021 			req->num_hw_ring_grps = cpu_to_le16(ring_grps);
6022 			req->num_rsscos_ctxs = cpu_to_le16(1);
6023 			if (!(bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
6024 			    bnxt_rfs_supported(bp))
6025 				req->num_rsscos_ctxs =
6026 					cpu_to_le16(ring_grps + 1);
6027 		}
6028 		req->num_stat_ctxs = cpu_to_le16(stats);
6029 		req->num_vnics = cpu_to_le16(vnics);
6030 	}
6031 	req->enables = cpu_to_le32(enables);
6032 }
6033 
6034 static void
6035 __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp,
6036 			     struct hwrm_func_vf_cfg_input *req, int tx_rings,
6037 			     int rx_rings, int ring_grps, int cp_rings,
6038 			     int stats, int vnics)
6039 {
6040 	u32 enables = 0;
6041 
6042 	bnxt_hwrm_cmd_hdr_init(bp, req, HWRM_FUNC_VF_CFG, -1, -1);
6043 	enables |= tx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
6044 	enables |= rx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS |
6045 			      FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
6046 	enables |= stats ? FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
6047 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
6048 		enables |= tx_rings + ring_grps ?
6049 			   FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6050 	} else {
6051 		enables |= cp_rings ?
6052 			   FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6053 		enables |= ring_grps ?
6054 			   FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0;
6055 	}
6056 	enables |= vnics ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0;
6057 	enables |= FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS;
6058 
6059 	req->num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX);
6060 	req->num_tx_rings = cpu_to_le16(tx_rings);
6061 	req->num_rx_rings = cpu_to_le16(rx_rings);
6062 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
6063 		req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps);
6064 		req->num_rsscos_ctxs = cpu_to_le16(DIV_ROUND_UP(ring_grps, 64));
6065 	} else {
6066 		req->num_cmpl_rings = cpu_to_le16(cp_rings);
6067 		req->num_hw_ring_grps = cpu_to_le16(ring_grps);
6068 		req->num_rsscos_ctxs = cpu_to_le16(BNXT_VF_MAX_RSS_CTX);
6069 	}
6070 	req->num_stat_ctxs = cpu_to_le16(stats);
6071 	req->num_vnics = cpu_to_le16(vnics);
6072 
6073 	req->enables = cpu_to_le32(enables);
6074 }
6075 
6076 static int
6077 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6078 			   int ring_grps, int cp_rings, int stats, int vnics)
6079 {
6080 	struct hwrm_func_cfg_input req = {0};
6081 	int rc;
6082 
6083 	__bnxt_hwrm_reserve_pf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
6084 				     cp_rings, stats, vnics);
6085 	if (!req.enables)
6086 		return 0;
6087 
6088 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6089 	if (rc)
6090 		return rc;
6091 
6092 	if (bp->hwrm_spec_code < 0x10601)
6093 		bp->hw_resc.resv_tx_rings = tx_rings;
6094 
6095 	return bnxt_hwrm_get_rings(bp);
6096 }
6097 
6098 static int
6099 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6100 			   int ring_grps, int cp_rings, int stats, int vnics)
6101 {
6102 	struct hwrm_func_vf_cfg_input req = {0};
6103 	int rc;
6104 
6105 	if (!BNXT_NEW_RM(bp)) {
6106 		bp->hw_resc.resv_tx_rings = tx_rings;
6107 		return 0;
6108 	}
6109 
6110 	__bnxt_hwrm_reserve_vf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
6111 				     cp_rings, stats, vnics);
6112 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6113 	if (rc)
6114 		return rc;
6115 
6116 	return bnxt_hwrm_get_rings(bp);
6117 }
6118 
6119 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, int tx, int rx, int grp,
6120 				   int cp, int stat, int vnic)
6121 {
6122 	if (BNXT_PF(bp))
6123 		return bnxt_hwrm_reserve_pf_rings(bp, tx, rx, grp, cp, stat,
6124 						  vnic);
6125 	else
6126 		return bnxt_hwrm_reserve_vf_rings(bp, tx, rx, grp, cp, stat,
6127 						  vnic);
6128 }
6129 
6130 int bnxt_nq_rings_in_use(struct bnxt *bp)
6131 {
6132 	int cp = bp->cp_nr_rings;
6133 	int ulp_msix, ulp_base;
6134 
6135 	ulp_msix = bnxt_get_ulp_msix_num(bp);
6136 	if (ulp_msix) {
6137 		ulp_base = bnxt_get_ulp_msix_base(bp);
6138 		cp += ulp_msix;
6139 		if ((ulp_base + ulp_msix) > cp)
6140 			cp = ulp_base + ulp_msix;
6141 	}
6142 	return cp;
6143 }
6144 
6145 static int bnxt_cp_rings_in_use(struct bnxt *bp)
6146 {
6147 	int cp;
6148 
6149 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
6150 		return bnxt_nq_rings_in_use(bp);
6151 
6152 	cp = bp->tx_nr_rings + bp->rx_nr_rings;
6153 	return cp;
6154 }
6155 
6156 static int bnxt_get_func_stat_ctxs(struct bnxt *bp)
6157 {
6158 	int ulp_stat = bnxt_get_ulp_stat_ctxs(bp);
6159 	int cp = bp->cp_nr_rings;
6160 
6161 	if (!ulp_stat)
6162 		return cp;
6163 
6164 	if (bnxt_nq_rings_in_use(bp) > cp + bnxt_get_ulp_msix_num(bp))
6165 		return bnxt_get_ulp_msix_base(bp) + ulp_stat;
6166 
6167 	return cp + ulp_stat;
6168 }
6169 
6170 /* Check if a default RSS map needs to be setup.  This function is only
6171  * used on older firmware that does not require reserving RX rings.
6172  */
6173 static void bnxt_check_rss_tbl_no_rmgr(struct bnxt *bp)
6174 {
6175 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6176 
6177 	/* The RSS map is valid for RX rings set to resv_rx_rings */
6178 	if (hw_resc->resv_rx_rings != bp->rx_nr_rings) {
6179 		hw_resc->resv_rx_rings = bp->rx_nr_rings;
6180 		if (!netif_is_rxfh_configured(bp->dev))
6181 			bnxt_set_dflt_rss_indir_tbl(bp);
6182 	}
6183 }
6184 
6185 static bool bnxt_need_reserve_rings(struct bnxt *bp)
6186 {
6187 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6188 	int cp = bnxt_cp_rings_in_use(bp);
6189 	int nq = bnxt_nq_rings_in_use(bp);
6190 	int rx = bp->rx_nr_rings, stat;
6191 	int vnic = 1, grp = rx;
6192 
6193 	if (hw_resc->resv_tx_rings != bp->tx_nr_rings &&
6194 	    bp->hwrm_spec_code >= 0x10601)
6195 		return true;
6196 
6197 	/* Old firmware does not need RX ring reservations but we still
6198 	 * need to setup a default RSS map when needed.  With new firmware
6199 	 * we go through RX ring reservations first and then set up the
6200 	 * RSS map for the successfully reserved RX rings when needed.
6201 	 */
6202 	if (!BNXT_NEW_RM(bp)) {
6203 		bnxt_check_rss_tbl_no_rmgr(bp);
6204 		return false;
6205 	}
6206 	if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5))
6207 		vnic = rx + 1;
6208 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
6209 		rx <<= 1;
6210 	stat = bnxt_get_func_stat_ctxs(bp);
6211 	if (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp ||
6212 	    hw_resc->resv_vnics != vnic || hw_resc->resv_stat_ctxs != stat ||
6213 	    (hw_resc->resv_hw_ring_grps != grp &&
6214 	     !(bp->flags & BNXT_FLAG_CHIP_P5)))
6215 		return true;
6216 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && BNXT_PF(bp) &&
6217 	    hw_resc->resv_irqs != nq)
6218 		return true;
6219 	return false;
6220 }
6221 
6222 static int __bnxt_reserve_rings(struct bnxt *bp)
6223 {
6224 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6225 	int cp = bnxt_nq_rings_in_use(bp);
6226 	int tx = bp->tx_nr_rings;
6227 	int rx = bp->rx_nr_rings;
6228 	int grp, rx_rings, rc;
6229 	int vnic = 1, stat;
6230 	bool sh = false;
6231 
6232 	if (!bnxt_need_reserve_rings(bp))
6233 		return 0;
6234 
6235 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
6236 		sh = true;
6237 	if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5))
6238 		vnic = rx + 1;
6239 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
6240 		rx <<= 1;
6241 	grp = bp->rx_nr_rings;
6242 	stat = bnxt_get_func_stat_ctxs(bp);
6243 
6244 	rc = bnxt_hwrm_reserve_rings(bp, tx, rx, grp, cp, stat, vnic);
6245 	if (rc)
6246 		return rc;
6247 
6248 	tx = hw_resc->resv_tx_rings;
6249 	if (BNXT_NEW_RM(bp)) {
6250 		rx = hw_resc->resv_rx_rings;
6251 		cp = hw_resc->resv_irqs;
6252 		grp = hw_resc->resv_hw_ring_grps;
6253 		vnic = hw_resc->resv_vnics;
6254 		stat = hw_resc->resv_stat_ctxs;
6255 	}
6256 
6257 	rx_rings = rx;
6258 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
6259 		if (rx >= 2) {
6260 			rx_rings = rx >> 1;
6261 		} else {
6262 			if (netif_running(bp->dev))
6263 				return -ENOMEM;
6264 
6265 			bp->flags &= ~BNXT_FLAG_AGG_RINGS;
6266 			bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
6267 			bp->dev->hw_features &= ~NETIF_F_LRO;
6268 			bp->dev->features &= ~NETIF_F_LRO;
6269 			bnxt_set_ring_params(bp);
6270 		}
6271 	}
6272 	rx_rings = min_t(int, rx_rings, grp);
6273 	cp = min_t(int, cp, bp->cp_nr_rings);
6274 	if (stat > bnxt_get_ulp_stat_ctxs(bp))
6275 		stat -= bnxt_get_ulp_stat_ctxs(bp);
6276 	cp = min_t(int, cp, stat);
6277 	rc = bnxt_trim_rings(bp, &rx_rings, &tx, cp, sh);
6278 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
6279 		rx = rx_rings << 1;
6280 	cp = sh ? max_t(int, tx, rx_rings) : tx + rx_rings;
6281 	bp->tx_nr_rings = tx;
6282 
6283 	/* If we cannot reserve all the RX rings, reset the RSS map only
6284 	 * if absolutely necessary
6285 	 */
6286 	if (rx_rings != bp->rx_nr_rings) {
6287 		netdev_warn(bp->dev, "Able to reserve only %d out of %d requested RX rings\n",
6288 			    rx_rings, bp->rx_nr_rings);
6289 		if ((bp->dev->priv_flags & IFF_RXFH_CONFIGURED) &&
6290 		    (bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings) !=
6291 		     bnxt_get_nr_rss_ctxs(bp, rx_rings) ||
6292 		     bnxt_get_max_rss_ring(bp) >= rx_rings)) {
6293 			netdev_warn(bp->dev, "RSS table entries reverting to default\n");
6294 			bp->dev->priv_flags &= ~IFF_RXFH_CONFIGURED;
6295 		}
6296 	}
6297 	bp->rx_nr_rings = rx_rings;
6298 	bp->cp_nr_rings = cp;
6299 
6300 	if (!tx || !rx || !cp || !grp || !vnic || !stat)
6301 		return -ENOMEM;
6302 
6303 	if (!netif_is_rxfh_configured(bp->dev))
6304 		bnxt_set_dflt_rss_indir_tbl(bp);
6305 
6306 	return rc;
6307 }
6308 
6309 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6310 				    int ring_grps, int cp_rings, int stats,
6311 				    int vnics)
6312 {
6313 	struct hwrm_func_vf_cfg_input req = {0};
6314 	u32 flags;
6315 
6316 	if (!BNXT_NEW_RM(bp))
6317 		return 0;
6318 
6319 	__bnxt_hwrm_reserve_vf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
6320 				     cp_rings, stats, vnics);
6321 	flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST |
6322 		FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST |
6323 		FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
6324 		FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
6325 		FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST |
6326 		FUNC_VF_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST;
6327 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
6328 		flags |= FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
6329 
6330 	req.flags = cpu_to_le32(flags);
6331 	return hwrm_send_message_silent(bp, &req, sizeof(req),
6332 					HWRM_CMD_TIMEOUT);
6333 }
6334 
6335 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6336 				    int ring_grps, int cp_rings, int stats,
6337 				    int vnics)
6338 {
6339 	struct hwrm_func_cfg_input req = {0};
6340 	u32 flags;
6341 
6342 	__bnxt_hwrm_reserve_pf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
6343 				     cp_rings, stats, vnics);
6344 	flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST;
6345 	if (BNXT_NEW_RM(bp)) {
6346 		flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST |
6347 			 FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
6348 			 FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
6349 			 FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST;
6350 		if (bp->flags & BNXT_FLAG_CHIP_P5)
6351 			flags |= FUNC_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST |
6352 				 FUNC_CFG_REQ_FLAGS_NQ_ASSETS_TEST;
6353 		else
6354 			flags |= FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
6355 	}
6356 
6357 	req.flags = cpu_to_le32(flags);
6358 	return hwrm_send_message_silent(bp, &req, sizeof(req),
6359 					HWRM_CMD_TIMEOUT);
6360 }
6361 
6362 static int bnxt_hwrm_check_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6363 				 int ring_grps, int cp_rings, int stats,
6364 				 int vnics)
6365 {
6366 	if (bp->hwrm_spec_code < 0x10801)
6367 		return 0;
6368 
6369 	if (BNXT_PF(bp))
6370 		return bnxt_hwrm_check_pf_rings(bp, tx_rings, rx_rings,
6371 						ring_grps, cp_rings, stats,
6372 						vnics);
6373 
6374 	return bnxt_hwrm_check_vf_rings(bp, tx_rings, rx_rings, ring_grps,
6375 					cp_rings, stats, vnics);
6376 }
6377 
6378 static void bnxt_hwrm_coal_params_qcaps(struct bnxt *bp)
6379 {
6380 	struct hwrm_ring_aggint_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
6381 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6382 	struct hwrm_ring_aggint_qcaps_input req = {0};
6383 	int rc;
6384 
6385 	coal_cap->cmpl_params = BNXT_LEGACY_COAL_CMPL_PARAMS;
6386 	coal_cap->num_cmpl_dma_aggr_max = 63;
6387 	coal_cap->num_cmpl_dma_aggr_during_int_max = 63;
6388 	coal_cap->cmpl_aggr_dma_tmr_max = 65535;
6389 	coal_cap->cmpl_aggr_dma_tmr_during_int_max = 65535;
6390 	coal_cap->int_lat_tmr_min_max = 65535;
6391 	coal_cap->int_lat_tmr_max_max = 65535;
6392 	coal_cap->num_cmpl_aggr_int_max = 65535;
6393 	coal_cap->timer_units = 80;
6394 
6395 	if (bp->hwrm_spec_code < 0x10902)
6396 		return;
6397 
6398 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_AGGINT_QCAPS, -1, -1);
6399 	mutex_lock(&bp->hwrm_cmd_lock);
6400 	rc = _hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6401 	if (!rc) {
6402 		coal_cap->cmpl_params = le32_to_cpu(resp->cmpl_params);
6403 		coal_cap->nq_params = le32_to_cpu(resp->nq_params);
6404 		coal_cap->num_cmpl_dma_aggr_max =
6405 			le16_to_cpu(resp->num_cmpl_dma_aggr_max);
6406 		coal_cap->num_cmpl_dma_aggr_during_int_max =
6407 			le16_to_cpu(resp->num_cmpl_dma_aggr_during_int_max);
6408 		coal_cap->cmpl_aggr_dma_tmr_max =
6409 			le16_to_cpu(resp->cmpl_aggr_dma_tmr_max);
6410 		coal_cap->cmpl_aggr_dma_tmr_during_int_max =
6411 			le16_to_cpu(resp->cmpl_aggr_dma_tmr_during_int_max);
6412 		coal_cap->int_lat_tmr_min_max =
6413 			le16_to_cpu(resp->int_lat_tmr_min_max);
6414 		coal_cap->int_lat_tmr_max_max =
6415 			le16_to_cpu(resp->int_lat_tmr_max_max);
6416 		coal_cap->num_cmpl_aggr_int_max =
6417 			le16_to_cpu(resp->num_cmpl_aggr_int_max);
6418 		coal_cap->timer_units = le16_to_cpu(resp->timer_units);
6419 	}
6420 	mutex_unlock(&bp->hwrm_cmd_lock);
6421 }
6422 
6423 static u16 bnxt_usec_to_coal_tmr(struct bnxt *bp, u16 usec)
6424 {
6425 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6426 
6427 	return usec * 1000 / coal_cap->timer_units;
6428 }
6429 
6430 static void bnxt_hwrm_set_coal_params(struct bnxt *bp,
6431 	struct bnxt_coal *hw_coal,
6432 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
6433 {
6434 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6435 	u32 cmpl_params = coal_cap->cmpl_params;
6436 	u16 val, tmr, max, flags = 0;
6437 
6438 	max = hw_coal->bufs_per_record * 128;
6439 	if (hw_coal->budget)
6440 		max = hw_coal->bufs_per_record * hw_coal->budget;
6441 	max = min_t(u16, max, coal_cap->num_cmpl_aggr_int_max);
6442 
6443 	val = clamp_t(u16, hw_coal->coal_bufs, 1, max);
6444 	req->num_cmpl_aggr_int = cpu_to_le16(val);
6445 
6446 	val = min_t(u16, val, coal_cap->num_cmpl_dma_aggr_max);
6447 	req->num_cmpl_dma_aggr = cpu_to_le16(val);
6448 
6449 	val = clamp_t(u16, hw_coal->coal_bufs_irq, 1,
6450 		      coal_cap->num_cmpl_dma_aggr_during_int_max);
6451 	req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val);
6452 
6453 	tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks);
6454 	tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_max_max);
6455 	req->int_lat_tmr_max = cpu_to_le16(tmr);
6456 
6457 	/* min timer set to 1/2 of interrupt timer */
6458 	if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_INT_LAT_TMR_MIN) {
6459 		val = tmr / 2;
6460 		val = clamp_t(u16, val, 1, coal_cap->int_lat_tmr_min_max);
6461 		req->int_lat_tmr_min = cpu_to_le16(val);
6462 		req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
6463 	}
6464 
6465 	/* buf timer set to 1/4 of interrupt timer */
6466 	val = clamp_t(u16, tmr / 4, 1, coal_cap->cmpl_aggr_dma_tmr_max);
6467 	req->cmpl_aggr_dma_tmr = cpu_to_le16(val);
6468 
6469 	if (cmpl_params &
6470 	    RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_NUM_CMPL_DMA_AGGR_DURING_INT) {
6471 		tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks_irq);
6472 		val = clamp_t(u16, tmr, 1,
6473 			      coal_cap->cmpl_aggr_dma_tmr_during_int_max);
6474 		req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(val);
6475 		req->enables |=
6476 			cpu_to_le16(BNXT_COAL_CMPL_AGGR_TMR_DURING_INT_ENABLE);
6477 	}
6478 
6479 	if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_TIMER_RESET)
6480 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
6481 	if ((cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_RING_IDLE) &&
6482 	    hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh)
6483 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
6484 	req->flags = cpu_to_le16(flags);
6485 	req->enables |= cpu_to_le16(BNXT_COAL_CMPL_ENABLES);
6486 }
6487 
6488 /* Caller holds bp->hwrm_cmd_lock */
6489 static int __bnxt_hwrm_set_coal_nq(struct bnxt *bp, struct bnxt_napi *bnapi,
6490 				   struct bnxt_coal *hw_coal)
6491 {
6492 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req = {0};
6493 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6494 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6495 	u32 nq_params = coal_cap->nq_params;
6496 	u16 tmr;
6497 
6498 	if (!(nq_params & RING_AGGINT_QCAPS_RESP_NQ_PARAMS_INT_LAT_TMR_MIN))
6499 		return 0;
6500 
6501 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS,
6502 			       -1, -1);
6503 	req.ring_id = cpu_to_le16(cpr->cp_ring_struct.fw_ring_id);
6504 	req.flags =
6505 		cpu_to_le16(RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_IS_NQ);
6506 
6507 	tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks) / 2;
6508 	tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_min_max);
6509 	req.int_lat_tmr_min = cpu_to_le16(tmr);
6510 	req.enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
6511 	return _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6512 }
6513 
6514 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi)
6515 {
6516 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0};
6517 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6518 	struct bnxt_coal coal;
6519 
6520 	/* Tick values in micro seconds.
6521 	 * 1 coal_buf x bufs_per_record = 1 completion record.
6522 	 */
6523 	memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal));
6524 
6525 	coal.coal_ticks = cpr->rx_ring_coal.coal_ticks;
6526 	coal.coal_bufs = cpr->rx_ring_coal.coal_bufs;
6527 
6528 	if (!bnapi->rx_ring)
6529 		return -ENODEV;
6530 
6531 	bnxt_hwrm_cmd_hdr_init(bp, &req_rx,
6532 			       HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
6533 
6534 	bnxt_hwrm_set_coal_params(bp, &coal, &req_rx);
6535 
6536 	req_rx.ring_id = cpu_to_le16(bnxt_cp_ring_for_rx(bp, bnapi->rx_ring));
6537 
6538 	return hwrm_send_message(bp, &req_rx, sizeof(req_rx),
6539 				 HWRM_CMD_TIMEOUT);
6540 }
6541 
6542 int bnxt_hwrm_set_coal(struct bnxt *bp)
6543 {
6544 	int i, rc = 0;
6545 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0},
6546 							   req_tx = {0}, *req;
6547 
6548 	bnxt_hwrm_cmd_hdr_init(bp, &req_rx,
6549 			       HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
6550 	bnxt_hwrm_cmd_hdr_init(bp, &req_tx,
6551 			       HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
6552 
6553 	bnxt_hwrm_set_coal_params(bp, &bp->rx_coal, &req_rx);
6554 	bnxt_hwrm_set_coal_params(bp, &bp->tx_coal, &req_tx);
6555 
6556 	mutex_lock(&bp->hwrm_cmd_lock);
6557 	for (i = 0; i < bp->cp_nr_rings; i++) {
6558 		struct bnxt_napi *bnapi = bp->bnapi[i];
6559 		struct bnxt_coal *hw_coal;
6560 		u16 ring_id;
6561 
6562 		req = &req_rx;
6563 		if (!bnapi->rx_ring) {
6564 			ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring);
6565 			req = &req_tx;
6566 		} else {
6567 			ring_id = bnxt_cp_ring_for_rx(bp, bnapi->rx_ring);
6568 		}
6569 		req->ring_id = cpu_to_le16(ring_id);
6570 
6571 		rc = _hwrm_send_message(bp, req, sizeof(*req),
6572 					HWRM_CMD_TIMEOUT);
6573 		if (rc)
6574 			break;
6575 
6576 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
6577 			continue;
6578 
6579 		if (bnapi->rx_ring && bnapi->tx_ring) {
6580 			req = &req_tx;
6581 			ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring);
6582 			req->ring_id = cpu_to_le16(ring_id);
6583 			rc = _hwrm_send_message(bp, req, sizeof(*req),
6584 						HWRM_CMD_TIMEOUT);
6585 			if (rc)
6586 				break;
6587 		}
6588 		if (bnapi->rx_ring)
6589 			hw_coal = &bp->rx_coal;
6590 		else
6591 			hw_coal = &bp->tx_coal;
6592 		__bnxt_hwrm_set_coal_nq(bp, bnapi, hw_coal);
6593 	}
6594 	mutex_unlock(&bp->hwrm_cmd_lock);
6595 	return rc;
6596 }
6597 
6598 static void bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
6599 {
6600 	struct hwrm_stat_ctx_clr_stats_input req0 = {0};
6601 	struct hwrm_stat_ctx_free_input req = {0};
6602 	int i;
6603 
6604 	if (!bp->bnapi)
6605 		return;
6606 
6607 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
6608 		return;
6609 
6610 	bnxt_hwrm_cmd_hdr_init(bp, &req0, HWRM_STAT_CTX_CLR_STATS, -1, -1);
6611 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_FREE, -1, -1);
6612 
6613 	mutex_lock(&bp->hwrm_cmd_lock);
6614 	for (i = 0; i < bp->cp_nr_rings; i++) {
6615 		struct bnxt_napi *bnapi = bp->bnapi[i];
6616 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6617 
6618 		if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
6619 			req.stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
6620 			if (BNXT_FW_MAJ(bp) <= 20) {
6621 				req0.stat_ctx_id = req.stat_ctx_id;
6622 				_hwrm_send_message(bp, &req0, sizeof(req0),
6623 						   HWRM_CMD_TIMEOUT);
6624 			}
6625 			_hwrm_send_message(bp, &req, sizeof(req),
6626 					   HWRM_CMD_TIMEOUT);
6627 
6628 			cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
6629 		}
6630 	}
6631 	mutex_unlock(&bp->hwrm_cmd_lock);
6632 }
6633 
6634 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
6635 {
6636 	int rc = 0, i;
6637 	struct hwrm_stat_ctx_alloc_input req = {0};
6638 	struct hwrm_stat_ctx_alloc_output *resp = bp->hwrm_cmd_resp_addr;
6639 
6640 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
6641 		return 0;
6642 
6643 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_ALLOC, -1, -1);
6644 
6645 	req.stats_dma_length = cpu_to_le16(bp->hw_ring_stats_size);
6646 	req.update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000);
6647 
6648 	mutex_lock(&bp->hwrm_cmd_lock);
6649 	for (i = 0; i < bp->cp_nr_rings; i++) {
6650 		struct bnxt_napi *bnapi = bp->bnapi[i];
6651 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6652 
6653 		req.stats_dma_addr = cpu_to_le64(cpr->stats.hw_stats_map);
6654 
6655 		rc = _hwrm_send_message(bp, &req, sizeof(req),
6656 					HWRM_CMD_TIMEOUT);
6657 		if (rc)
6658 			break;
6659 
6660 		cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
6661 
6662 		bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
6663 	}
6664 	mutex_unlock(&bp->hwrm_cmd_lock);
6665 	return rc;
6666 }
6667 
6668 static int bnxt_hwrm_func_qcfg(struct bnxt *bp)
6669 {
6670 	struct hwrm_func_qcfg_input req = {0};
6671 	struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
6672 	u32 min_db_offset = 0;
6673 	u16 flags;
6674 	int rc;
6675 
6676 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
6677 	req.fid = cpu_to_le16(0xffff);
6678 	mutex_lock(&bp->hwrm_cmd_lock);
6679 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6680 	if (rc)
6681 		goto func_qcfg_exit;
6682 
6683 #ifdef CONFIG_BNXT_SRIOV
6684 	if (BNXT_VF(bp)) {
6685 		struct bnxt_vf_info *vf = &bp->vf;
6686 
6687 		vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK;
6688 	} else {
6689 		bp->pf.registered_vfs = le16_to_cpu(resp->registered_vfs);
6690 	}
6691 #endif
6692 	flags = le16_to_cpu(resp->flags);
6693 	if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED |
6694 		     FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) {
6695 		bp->fw_cap |= BNXT_FW_CAP_LLDP_AGENT;
6696 		if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED)
6697 			bp->fw_cap |= BNXT_FW_CAP_DCBX_AGENT;
6698 	}
6699 	if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST))
6700 		bp->flags |= BNXT_FLAG_MULTI_HOST;
6701 	if (flags & FUNC_QCFG_RESP_FLAGS_RING_MONITOR_ENABLED)
6702 		bp->fw_cap |= BNXT_FW_CAP_RING_MONITOR;
6703 
6704 	switch (resp->port_partition_type) {
6705 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0:
6706 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5:
6707 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0:
6708 		bp->port_partition_type = resp->port_partition_type;
6709 		break;
6710 	}
6711 	if (bp->hwrm_spec_code < 0x10707 ||
6712 	    resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB)
6713 		bp->br_mode = BRIDGE_MODE_VEB;
6714 	else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA)
6715 		bp->br_mode = BRIDGE_MODE_VEPA;
6716 	else
6717 		bp->br_mode = BRIDGE_MODE_UNDEF;
6718 
6719 	bp->max_mtu = le16_to_cpu(resp->max_mtu_configured);
6720 	if (!bp->max_mtu)
6721 		bp->max_mtu = BNXT_MAX_MTU;
6722 
6723 	if (bp->db_size)
6724 		goto func_qcfg_exit;
6725 
6726 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
6727 		if (BNXT_PF(bp))
6728 			min_db_offset = DB_PF_OFFSET_P5;
6729 		else
6730 			min_db_offset = DB_VF_OFFSET_P5;
6731 	}
6732 	bp->db_size = PAGE_ALIGN(le16_to_cpu(resp->l2_doorbell_bar_size_kb) *
6733 				 1024);
6734 	if (!bp->db_size || bp->db_size > pci_resource_len(bp->pdev, 2) ||
6735 	    bp->db_size <= min_db_offset)
6736 		bp->db_size = pci_resource_len(bp->pdev, 2);
6737 
6738 func_qcfg_exit:
6739 	mutex_unlock(&bp->hwrm_cmd_lock);
6740 	return rc;
6741 }
6742 
6743 static int bnxt_hwrm_func_backing_store_qcaps(struct bnxt *bp)
6744 {
6745 	struct hwrm_func_backing_store_qcaps_input req = {0};
6746 	struct hwrm_func_backing_store_qcaps_output *resp =
6747 		bp->hwrm_cmd_resp_addr;
6748 	int rc;
6749 
6750 	if (bp->hwrm_spec_code < 0x10902 || BNXT_VF(bp) || bp->ctx)
6751 		return 0;
6752 
6753 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_BACKING_STORE_QCAPS, -1, -1);
6754 	mutex_lock(&bp->hwrm_cmd_lock);
6755 	rc = _hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6756 	if (!rc) {
6757 		struct bnxt_ctx_pg_info *ctx_pg;
6758 		struct bnxt_ctx_mem_info *ctx;
6759 		int i, tqm_rings;
6760 
6761 		ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
6762 		if (!ctx) {
6763 			rc = -ENOMEM;
6764 			goto ctx_err;
6765 		}
6766 		ctx->qp_max_entries = le32_to_cpu(resp->qp_max_entries);
6767 		ctx->qp_min_qp1_entries = le16_to_cpu(resp->qp_min_qp1_entries);
6768 		ctx->qp_max_l2_entries = le16_to_cpu(resp->qp_max_l2_entries);
6769 		ctx->qp_entry_size = le16_to_cpu(resp->qp_entry_size);
6770 		ctx->srq_max_l2_entries = le16_to_cpu(resp->srq_max_l2_entries);
6771 		ctx->srq_max_entries = le32_to_cpu(resp->srq_max_entries);
6772 		ctx->srq_entry_size = le16_to_cpu(resp->srq_entry_size);
6773 		ctx->cq_max_l2_entries = le16_to_cpu(resp->cq_max_l2_entries);
6774 		ctx->cq_max_entries = le32_to_cpu(resp->cq_max_entries);
6775 		ctx->cq_entry_size = le16_to_cpu(resp->cq_entry_size);
6776 		ctx->vnic_max_vnic_entries =
6777 			le16_to_cpu(resp->vnic_max_vnic_entries);
6778 		ctx->vnic_max_ring_table_entries =
6779 			le16_to_cpu(resp->vnic_max_ring_table_entries);
6780 		ctx->vnic_entry_size = le16_to_cpu(resp->vnic_entry_size);
6781 		ctx->stat_max_entries = le32_to_cpu(resp->stat_max_entries);
6782 		ctx->stat_entry_size = le16_to_cpu(resp->stat_entry_size);
6783 		ctx->tqm_entry_size = le16_to_cpu(resp->tqm_entry_size);
6784 		ctx->tqm_min_entries_per_ring =
6785 			le32_to_cpu(resp->tqm_min_entries_per_ring);
6786 		ctx->tqm_max_entries_per_ring =
6787 			le32_to_cpu(resp->tqm_max_entries_per_ring);
6788 		ctx->tqm_entries_multiple = resp->tqm_entries_multiple;
6789 		if (!ctx->tqm_entries_multiple)
6790 			ctx->tqm_entries_multiple = 1;
6791 		ctx->mrav_max_entries = le32_to_cpu(resp->mrav_max_entries);
6792 		ctx->mrav_entry_size = le16_to_cpu(resp->mrav_entry_size);
6793 		ctx->mrav_num_entries_units =
6794 			le16_to_cpu(resp->mrav_num_entries_units);
6795 		ctx->tim_entry_size = le16_to_cpu(resp->tim_entry_size);
6796 		ctx->tim_max_entries = le32_to_cpu(resp->tim_max_entries);
6797 		ctx->ctx_kind_initializer = resp->ctx_kind_initializer;
6798 		ctx->tqm_fp_rings_count = resp->tqm_fp_rings_count;
6799 		if (!ctx->tqm_fp_rings_count)
6800 			ctx->tqm_fp_rings_count = bp->max_q;
6801 
6802 		tqm_rings = ctx->tqm_fp_rings_count + 1;
6803 		ctx_pg = kcalloc(tqm_rings, sizeof(*ctx_pg), GFP_KERNEL);
6804 		if (!ctx_pg) {
6805 			kfree(ctx);
6806 			rc = -ENOMEM;
6807 			goto ctx_err;
6808 		}
6809 		for (i = 0; i < tqm_rings; i++, ctx_pg++)
6810 			ctx->tqm_mem[i] = ctx_pg;
6811 		bp->ctx = ctx;
6812 	} else {
6813 		rc = 0;
6814 	}
6815 ctx_err:
6816 	mutex_unlock(&bp->hwrm_cmd_lock);
6817 	return rc;
6818 }
6819 
6820 static void bnxt_hwrm_set_pg_attr(struct bnxt_ring_mem_info *rmem, u8 *pg_attr,
6821 				  __le64 *pg_dir)
6822 {
6823 	u8 pg_size = 0;
6824 
6825 	if (BNXT_PAGE_SHIFT == 13)
6826 		pg_size = 1 << 4;
6827 	else if (BNXT_PAGE_SIZE == 16)
6828 		pg_size = 2 << 4;
6829 
6830 	*pg_attr = pg_size;
6831 	if (rmem->depth >= 1) {
6832 		if (rmem->depth == 2)
6833 			*pg_attr |= 2;
6834 		else
6835 			*pg_attr |= 1;
6836 		*pg_dir = cpu_to_le64(rmem->pg_tbl_map);
6837 	} else {
6838 		*pg_dir = cpu_to_le64(rmem->dma_arr[0]);
6839 	}
6840 }
6841 
6842 #define FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES			\
6843 	(FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP |		\
6844 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ |		\
6845 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ |		\
6846 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC |		\
6847 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT)
6848 
6849 static int bnxt_hwrm_func_backing_store_cfg(struct bnxt *bp, u32 enables)
6850 {
6851 	struct hwrm_func_backing_store_cfg_input req = {0};
6852 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
6853 	struct bnxt_ctx_pg_info *ctx_pg;
6854 	__le32 *num_entries;
6855 	__le64 *pg_dir;
6856 	u32 flags = 0;
6857 	u8 *pg_attr;
6858 	u32 ena;
6859 	int i;
6860 
6861 	if (!ctx)
6862 		return 0;
6863 
6864 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_BACKING_STORE_CFG, -1, -1);
6865 	req.enables = cpu_to_le32(enables);
6866 
6867 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP) {
6868 		ctx_pg = &ctx->qp_mem;
6869 		req.qp_num_entries = cpu_to_le32(ctx_pg->entries);
6870 		req.qp_num_qp1_entries = cpu_to_le16(ctx->qp_min_qp1_entries);
6871 		req.qp_num_l2_entries = cpu_to_le16(ctx->qp_max_l2_entries);
6872 		req.qp_entry_size = cpu_to_le16(ctx->qp_entry_size);
6873 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6874 				      &req.qpc_pg_size_qpc_lvl,
6875 				      &req.qpc_page_dir);
6876 	}
6877 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ) {
6878 		ctx_pg = &ctx->srq_mem;
6879 		req.srq_num_entries = cpu_to_le32(ctx_pg->entries);
6880 		req.srq_num_l2_entries = cpu_to_le16(ctx->srq_max_l2_entries);
6881 		req.srq_entry_size = cpu_to_le16(ctx->srq_entry_size);
6882 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6883 				      &req.srq_pg_size_srq_lvl,
6884 				      &req.srq_page_dir);
6885 	}
6886 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ) {
6887 		ctx_pg = &ctx->cq_mem;
6888 		req.cq_num_entries = cpu_to_le32(ctx_pg->entries);
6889 		req.cq_num_l2_entries = cpu_to_le16(ctx->cq_max_l2_entries);
6890 		req.cq_entry_size = cpu_to_le16(ctx->cq_entry_size);
6891 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, &req.cq_pg_size_cq_lvl,
6892 				      &req.cq_page_dir);
6893 	}
6894 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC) {
6895 		ctx_pg = &ctx->vnic_mem;
6896 		req.vnic_num_vnic_entries =
6897 			cpu_to_le16(ctx->vnic_max_vnic_entries);
6898 		req.vnic_num_ring_table_entries =
6899 			cpu_to_le16(ctx->vnic_max_ring_table_entries);
6900 		req.vnic_entry_size = cpu_to_le16(ctx->vnic_entry_size);
6901 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6902 				      &req.vnic_pg_size_vnic_lvl,
6903 				      &req.vnic_page_dir);
6904 	}
6905 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) {
6906 		ctx_pg = &ctx->stat_mem;
6907 		req.stat_num_entries = cpu_to_le32(ctx->stat_max_entries);
6908 		req.stat_entry_size = cpu_to_le16(ctx->stat_entry_size);
6909 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6910 				      &req.stat_pg_size_stat_lvl,
6911 				      &req.stat_page_dir);
6912 	}
6913 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV) {
6914 		ctx_pg = &ctx->mrav_mem;
6915 		req.mrav_num_entries = cpu_to_le32(ctx_pg->entries);
6916 		if (ctx->mrav_num_entries_units)
6917 			flags |=
6918 			FUNC_BACKING_STORE_CFG_REQ_FLAGS_MRAV_RESERVATION_SPLIT;
6919 		req.mrav_entry_size = cpu_to_le16(ctx->mrav_entry_size);
6920 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6921 				      &req.mrav_pg_size_mrav_lvl,
6922 				      &req.mrav_page_dir);
6923 	}
6924 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) {
6925 		ctx_pg = &ctx->tim_mem;
6926 		req.tim_num_entries = cpu_to_le32(ctx_pg->entries);
6927 		req.tim_entry_size = cpu_to_le16(ctx->tim_entry_size);
6928 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6929 				      &req.tim_pg_size_tim_lvl,
6930 				      &req.tim_page_dir);
6931 	}
6932 	for (i = 0, num_entries = &req.tqm_sp_num_entries,
6933 	     pg_attr = &req.tqm_sp_pg_size_tqm_sp_lvl,
6934 	     pg_dir = &req.tqm_sp_page_dir,
6935 	     ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP;
6936 	     i < 9; i++, num_entries++, pg_attr++, pg_dir++, ena <<= 1) {
6937 		if (!(enables & ena))
6938 			continue;
6939 
6940 		req.tqm_entry_size = cpu_to_le16(ctx->tqm_entry_size);
6941 		ctx_pg = ctx->tqm_mem[i];
6942 		*num_entries = cpu_to_le32(ctx_pg->entries);
6943 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, pg_attr, pg_dir);
6944 	}
6945 	req.flags = cpu_to_le32(flags);
6946 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6947 }
6948 
6949 static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp,
6950 				  struct bnxt_ctx_pg_info *ctx_pg)
6951 {
6952 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
6953 
6954 	rmem->page_size = BNXT_PAGE_SIZE;
6955 	rmem->pg_arr = ctx_pg->ctx_pg_arr;
6956 	rmem->dma_arr = ctx_pg->ctx_dma_arr;
6957 	rmem->flags = BNXT_RMEM_VALID_PTE_FLAG;
6958 	if (rmem->depth >= 1)
6959 		rmem->flags |= BNXT_RMEM_USE_FULL_PAGE_FLAG;
6960 	return bnxt_alloc_ring(bp, rmem);
6961 }
6962 
6963 static int bnxt_alloc_ctx_pg_tbls(struct bnxt *bp,
6964 				  struct bnxt_ctx_pg_info *ctx_pg, u32 mem_size,
6965 				  u8 depth, bool use_init_val)
6966 {
6967 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
6968 	int rc;
6969 
6970 	if (!mem_size)
6971 		return -EINVAL;
6972 
6973 	ctx_pg->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
6974 	if (ctx_pg->nr_pages > MAX_CTX_TOTAL_PAGES) {
6975 		ctx_pg->nr_pages = 0;
6976 		return -EINVAL;
6977 	}
6978 	if (ctx_pg->nr_pages > MAX_CTX_PAGES || depth > 1) {
6979 		int nr_tbls, i;
6980 
6981 		rmem->depth = 2;
6982 		ctx_pg->ctx_pg_tbl = kcalloc(MAX_CTX_PAGES, sizeof(ctx_pg),
6983 					     GFP_KERNEL);
6984 		if (!ctx_pg->ctx_pg_tbl)
6985 			return -ENOMEM;
6986 		nr_tbls = DIV_ROUND_UP(ctx_pg->nr_pages, MAX_CTX_PAGES);
6987 		rmem->nr_pages = nr_tbls;
6988 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
6989 		if (rc)
6990 			return rc;
6991 		for (i = 0; i < nr_tbls; i++) {
6992 			struct bnxt_ctx_pg_info *pg_tbl;
6993 
6994 			pg_tbl = kzalloc(sizeof(*pg_tbl), GFP_KERNEL);
6995 			if (!pg_tbl)
6996 				return -ENOMEM;
6997 			ctx_pg->ctx_pg_tbl[i] = pg_tbl;
6998 			rmem = &pg_tbl->ring_mem;
6999 			rmem->pg_tbl = ctx_pg->ctx_pg_arr[i];
7000 			rmem->pg_tbl_map = ctx_pg->ctx_dma_arr[i];
7001 			rmem->depth = 1;
7002 			rmem->nr_pages = MAX_CTX_PAGES;
7003 			if (use_init_val)
7004 				rmem->init_val = bp->ctx->ctx_kind_initializer;
7005 			if (i == (nr_tbls - 1)) {
7006 				int rem = ctx_pg->nr_pages % MAX_CTX_PAGES;
7007 
7008 				if (rem)
7009 					rmem->nr_pages = rem;
7010 			}
7011 			rc = bnxt_alloc_ctx_mem_blk(bp, pg_tbl);
7012 			if (rc)
7013 				break;
7014 		}
7015 	} else {
7016 		rmem->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
7017 		if (rmem->nr_pages > 1 || depth)
7018 			rmem->depth = 1;
7019 		if (use_init_val)
7020 			rmem->init_val = bp->ctx->ctx_kind_initializer;
7021 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
7022 	}
7023 	return rc;
7024 }
7025 
7026 static void bnxt_free_ctx_pg_tbls(struct bnxt *bp,
7027 				  struct bnxt_ctx_pg_info *ctx_pg)
7028 {
7029 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
7030 
7031 	if (rmem->depth > 1 || ctx_pg->nr_pages > MAX_CTX_PAGES ||
7032 	    ctx_pg->ctx_pg_tbl) {
7033 		int i, nr_tbls = rmem->nr_pages;
7034 
7035 		for (i = 0; i < nr_tbls; i++) {
7036 			struct bnxt_ctx_pg_info *pg_tbl;
7037 			struct bnxt_ring_mem_info *rmem2;
7038 
7039 			pg_tbl = ctx_pg->ctx_pg_tbl[i];
7040 			if (!pg_tbl)
7041 				continue;
7042 			rmem2 = &pg_tbl->ring_mem;
7043 			bnxt_free_ring(bp, rmem2);
7044 			ctx_pg->ctx_pg_arr[i] = NULL;
7045 			kfree(pg_tbl);
7046 			ctx_pg->ctx_pg_tbl[i] = NULL;
7047 		}
7048 		kfree(ctx_pg->ctx_pg_tbl);
7049 		ctx_pg->ctx_pg_tbl = NULL;
7050 	}
7051 	bnxt_free_ring(bp, rmem);
7052 	ctx_pg->nr_pages = 0;
7053 }
7054 
7055 static void bnxt_free_ctx_mem(struct bnxt *bp)
7056 {
7057 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
7058 	int i;
7059 
7060 	if (!ctx)
7061 		return;
7062 
7063 	if (ctx->tqm_mem[0]) {
7064 		for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++)
7065 			bnxt_free_ctx_pg_tbls(bp, ctx->tqm_mem[i]);
7066 		kfree(ctx->tqm_mem[0]);
7067 		ctx->tqm_mem[0] = NULL;
7068 	}
7069 
7070 	bnxt_free_ctx_pg_tbls(bp, &ctx->tim_mem);
7071 	bnxt_free_ctx_pg_tbls(bp, &ctx->mrav_mem);
7072 	bnxt_free_ctx_pg_tbls(bp, &ctx->stat_mem);
7073 	bnxt_free_ctx_pg_tbls(bp, &ctx->vnic_mem);
7074 	bnxt_free_ctx_pg_tbls(bp, &ctx->cq_mem);
7075 	bnxt_free_ctx_pg_tbls(bp, &ctx->srq_mem);
7076 	bnxt_free_ctx_pg_tbls(bp, &ctx->qp_mem);
7077 	ctx->flags &= ~BNXT_CTX_FLAG_INITED;
7078 }
7079 
7080 static int bnxt_alloc_ctx_mem(struct bnxt *bp)
7081 {
7082 	struct bnxt_ctx_pg_info *ctx_pg;
7083 	struct bnxt_ctx_mem_info *ctx;
7084 	u32 mem_size, ena, entries;
7085 	u32 entries_sp, min;
7086 	u32 num_mr, num_ah;
7087 	u32 extra_srqs = 0;
7088 	u32 extra_qps = 0;
7089 	u8 pg_lvl = 1;
7090 	int i, rc;
7091 
7092 	rc = bnxt_hwrm_func_backing_store_qcaps(bp);
7093 	if (rc) {
7094 		netdev_err(bp->dev, "Failed querying context mem capability, rc = %d.\n",
7095 			   rc);
7096 		return rc;
7097 	}
7098 	ctx = bp->ctx;
7099 	if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED))
7100 		return 0;
7101 
7102 	if ((bp->flags & BNXT_FLAG_ROCE_CAP) && !is_kdump_kernel()) {
7103 		pg_lvl = 2;
7104 		extra_qps = 65536;
7105 		extra_srqs = 8192;
7106 	}
7107 
7108 	ctx_pg = &ctx->qp_mem;
7109 	ctx_pg->entries = ctx->qp_min_qp1_entries + ctx->qp_max_l2_entries +
7110 			  extra_qps;
7111 	mem_size = ctx->qp_entry_size * ctx_pg->entries;
7112 	rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, true);
7113 	if (rc)
7114 		return rc;
7115 
7116 	ctx_pg = &ctx->srq_mem;
7117 	ctx_pg->entries = ctx->srq_max_l2_entries + extra_srqs;
7118 	mem_size = ctx->srq_entry_size * ctx_pg->entries;
7119 	rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, true);
7120 	if (rc)
7121 		return rc;
7122 
7123 	ctx_pg = &ctx->cq_mem;
7124 	ctx_pg->entries = ctx->cq_max_l2_entries + extra_qps * 2;
7125 	mem_size = ctx->cq_entry_size * ctx_pg->entries;
7126 	rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, true);
7127 	if (rc)
7128 		return rc;
7129 
7130 	ctx_pg = &ctx->vnic_mem;
7131 	ctx_pg->entries = ctx->vnic_max_vnic_entries +
7132 			  ctx->vnic_max_ring_table_entries;
7133 	mem_size = ctx->vnic_entry_size * ctx_pg->entries;
7134 	rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, true);
7135 	if (rc)
7136 		return rc;
7137 
7138 	ctx_pg = &ctx->stat_mem;
7139 	ctx_pg->entries = ctx->stat_max_entries;
7140 	mem_size = ctx->stat_entry_size * ctx_pg->entries;
7141 	rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, true);
7142 	if (rc)
7143 		return rc;
7144 
7145 	ena = 0;
7146 	if (!(bp->flags & BNXT_FLAG_ROCE_CAP))
7147 		goto skip_rdma;
7148 
7149 	ctx_pg = &ctx->mrav_mem;
7150 	/* 128K extra is needed to accommodate static AH context
7151 	 * allocation by f/w.
7152 	 */
7153 	num_mr = 1024 * 256;
7154 	num_ah = 1024 * 128;
7155 	ctx_pg->entries = num_mr + num_ah;
7156 	mem_size = ctx->mrav_entry_size * ctx_pg->entries;
7157 	rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 2, true);
7158 	if (rc)
7159 		return rc;
7160 	ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV;
7161 	if (ctx->mrav_num_entries_units)
7162 		ctx_pg->entries =
7163 			((num_mr / ctx->mrav_num_entries_units) << 16) |
7164 			 (num_ah / ctx->mrav_num_entries_units);
7165 
7166 	ctx_pg = &ctx->tim_mem;
7167 	ctx_pg->entries = ctx->qp_mem.entries;
7168 	mem_size = ctx->tim_entry_size * ctx_pg->entries;
7169 	rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, false);
7170 	if (rc)
7171 		return rc;
7172 	ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM;
7173 
7174 skip_rdma:
7175 	min = ctx->tqm_min_entries_per_ring;
7176 	entries_sp = ctx->vnic_max_vnic_entries + ctx->qp_max_l2_entries +
7177 		     2 * (extra_qps + ctx->qp_min_qp1_entries) + min;
7178 	entries_sp = roundup(entries_sp, ctx->tqm_entries_multiple);
7179 	entries = ctx->qp_max_l2_entries + extra_qps + ctx->qp_min_qp1_entries;
7180 	entries = roundup(entries, ctx->tqm_entries_multiple);
7181 	entries = clamp_t(u32, entries, min, ctx->tqm_max_entries_per_ring);
7182 	for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++) {
7183 		ctx_pg = ctx->tqm_mem[i];
7184 		ctx_pg->entries = i ? entries : entries_sp;
7185 		mem_size = ctx->tqm_entry_size * ctx_pg->entries;
7186 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, false);
7187 		if (rc)
7188 			return rc;
7189 		ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP << i;
7190 	}
7191 	ena |= FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES;
7192 	rc = bnxt_hwrm_func_backing_store_cfg(bp, ena);
7193 	if (rc) {
7194 		netdev_err(bp->dev, "Failed configuring context mem, rc = %d.\n",
7195 			   rc);
7196 		return rc;
7197 	}
7198 	ctx->flags |= BNXT_CTX_FLAG_INITED;
7199 	return 0;
7200 }
7201 
7202 int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all)
7203 {
7204 	struct hwrm_func_resource_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
7205 	struct hwrm_func_resource_qcaps_input req = {0};
7206 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7207 	int rc;
7208 
7209 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESOURCE_QCAPS, -1, -1);
7210 	req.fid = cpu_to_le16(0xffff);
7211 
7212 	mutex_lock(&bp->hwrm_cmd_lock);
7213 	rc = _hwrm_send_message_silent(bp, &req, sizeof(req),
7214 				       HWRM_CMD_TIMEOUT);
7215 	if (rc)
7216 		goto hwrm_func_resc_qcaps_exit;
7217 
7218 	hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs);
7219 	if (!all)
7220 		goto hwrm_func_resc_qcaps_exit;
7221 
7222 	hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx);
7223 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
7224 	hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings);
7225 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
7226 	hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings);
7227 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
7228 	hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings);
7229 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
7230 	hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps);
7231 	hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps);
7232 	hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs);
7233 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
7234 	hw_resc->min_vnics = le16_to_cpu(resp->min_vnics);
7235 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
7236 	hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx);
7237 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
7238 
7239 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
7240 		u16 max_msix = le16_to_cpu(resp->max_msix);
7241 
7242 		hw_resc->max_nqs = max_msix;
7243 		hw_resc->max_hw_ring_grps = hw_resc->max_rx_rings;
7244 	}
7245 
7246 	if (BNXT_PF(bp)) {
7247 		struct bnxt_pf_info *pf = &bp->pf;
7248 
7249 		pf->vf_resv_strategy =
7250 			le16_to_cpu(resp->vf_reservation_strategy);
7251 		if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC)
7252 			pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL;
7253 	}
7254 hwrm_func_resc_qcaps_exit:
7255 	mutex_unlock(&bp->hwrm_cmd_lock);
7256 	return rc;
7257 }
7258 
7259 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp)
7260 {
7261 	int rc = 0;
7262 	struct hwrm_func_qcaps_input req = {0};
7263 	struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
7264 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7265 	u32 flags, flags_ext;
7266 
7267 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1);
7268 	req.fid = cpu_to_le16(0xffff);
7269 
7270 	mutex_lock(&bp->hwrm_cmd_lock);
7271 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7272 	if (rc)
7273 		goto hwrm_func_qcaps_exit;
7274 
7275 	flags = le32_to_cpu(resp->flags);
7276 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED)
7277 		bp->flags |= BNXT_FLAG_ROCEV1_CAP;
7278 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED)
7279 		bp->flags |= BNXT_FLAG_ROCEV2_CAP;
7280 	if (flags & FUNC_QCAPS_RESP_FLAGS_PCIE_STATS_SUPPORTED)
7281 		bp->fw_cap |= BNXT_FW_CAP_PCIE_STATS_SUPPORTED;
7282 	if (flags & FUNC_QCAPS_RESP_FLAGS_HOT_RESET_CAPABLE)
7283 		bp->fw_cap |= BNXT_FW_CAP_HOT_RESET;
7284 	if (flags & FUNC_QCAPS_RESP_FLAGS_EXT_STATS_SUPPORTED)
7285 		bp->fw_cap |= BNXT_FW_CAP_EXT_STATS_SUPPORTED;
7286 	if (flags &  FUNC_QCAPS_RESP_FLAGS_ERROR_RECOVERY_CAPABLE)
7287 		bp->fw_cap |= BNXT_FW_CAP_ERROR_RECOVERY;
7288 	if (flags & FUNC_QCAPS_RESP_FLAGS_ERR_RECOVER_RELOAD)
7289 		bp->fw_cap |= BNXT_FW_CAP_ERR_RECOVER_RELOAD;
7290 	if (!(flags & FUNC_QCAPS_RESP_FLAGS_VLAN_ACCELERATION_TX_DISABLED))
7291 		bp->fw_cap |= BNXT_FW_CAP_VLAN_TX_INSERT;
7292 
7293 	flags_ext = le32_to_cpu(resp->flags_ext);
7294 	if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_EXT_HW_STATS_SUPPORTED)
7295 		bp->fw_cap |= BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED;
7296 
7297 	bp->tx_push_thresh = 0;
7298 	if ((flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED) &&
7299 	    BNXT_FW_MAJ(bp) > 217)
7300 		bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
7301 
7302 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
7303 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
7304 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
7305 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
7306 	hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
7307 	if (!hw_resc->max_hw_ring_grps)
7308 		hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings;
7309 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
7310 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
7311 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
7312 
7313 	if (BNXT_PF(bp)) {
7314 		struct bnxt_pf_info *pf = &bp->pf;
7315 
7316 		pf->fw_fid = le16_to_cpu(resp->fid);
7317 		pf->port_id = le16_to_cpu(resp->port_id);
7318 		memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN);
7319 		pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
7320 		pf->max_vfs = le16_to_cpu(resp->max_vfs);
7321 		pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
7322 		pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
7323 		pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
7324 		pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
7325 		pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
7326 		pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
7327 		bp->flags &= ~BNXT_FLAG_WOL_CAP;
7328 		if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED)
7329 			bp->flags |= BNXT_FLAG_WOL_CAP;
7330 	} else {
7331 #ifdef CONFIG_BNXT_SRIOV
7332 		struct bnxt_vf_info *vf = &bp->vf;
7333 
7334 		vf->fw_fid = le16_to_cpu(resp->fid);
7335 		memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN);
7336 #endif
7337 	}
7338 
7339 hwrm_func_qcaps_exit:
7340 	mutex_unlock(&bp->hwrm_cmd_lock);
7341 	return rc;
7342 }
7343 
7344 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp);
7345 
7346 static int bnxt_hwrm_func_qcaps(struct bnxt *bp)
7347 {
7348 	int rc;
7349 
7350 	rc = __bnxt_hwrm_func_qcaps(bp);
7351 	if (rc)
7352 		return rc;
7353 	rc = bnxt_hwrm_queue_qportcfg(bp);
7354 	if (rc) {
7355 		netdev_err(bp->dev, "hwrm query qportcfg failure rc: %d\n", rc);
7356 		return rc;
7357 	}
7358 	if (bp->hwrm_spec_code >= 0x10803) {
7359 		rc = bnxt_alloc_ctx_mem(bp);
7360 		if (rc)
7361 			return rc;
7362 		rc = bnxt_hwrm_func_resc_qcaps(bp, true);
7363 		if (!rc)
7364 			bp->fw_cap |= BNXT_FW_CAP_NEW_RM;
7365 	}
7366 	return 0;
7367 }
7368 
7369 static int bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(struct bnxt *bp)
7370 {
7371 	struct hwrm_cfa_adv_flow_mgnt_qcaps_input req = {0};
7372 	struct hwrm_cfa_adv_flow_mgnt_qcaps_output *resp;
7373 	int rc = 0;
7374 	u32 flags;
7375 
7376 	if (!(bp->fw_cap & BNXT_FW_CAP_CFA_ADV_FLOW))
7377 		return 0;
7378 
7379 	resp = bp->hwrm_cmd_resp_addr;
7380 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_ADV_FLOW_MGNT_QCAPS, -1, -1);
7381 
7382 	mutex_lock(&bp->hwrm_cmd_lock);
7383 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7384 	if (rc)
7385 		goto hwrm_cfa_adv_qcaps_exit;
7386 
7387 	flags = le32_to_cpu(resp->flags);
7388 	if (flags &
7389 	    CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V2_SUPPORTED)
7390 		bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2;
7391 
7392 hwrm_cfa_adv_qcaps_exit:
7393 	mutex_unlock(&bp->hwrm_cmd_lock);
7394 	return rc;
7395 }
7396 
7397 static int __bnxt_alloc_fw_health(struct bnxt *bp)
7398 {
7399 	if (bp->fw_health)
7400 		return 0;
7401 
7402 	bp->fw_health = kzalloc(sizeof(*bp->fw_health), GFP_KERNEL);
7403 	if (!bp->fw_health)
7404 		return -ENOMEM;
7405 
7406 	return 0;
7407 }
7408 
7409 static int bnxt_alloc_fw_health(struct bnxt *bp)
7410 {
7411 	int rc;
7412 
7413 	if (!(bp->fw_cap & BNXT_FW_CAP_HOT_RESET) &&
7414 	    !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
7415 		return 0;
7416 
7417 	rc = __bnxt_alloc_fw_health(bp);
7418 	if (rc) {
7419 		bp->fw_cap &= ~BNXT_FW_CAP_HOT_RESET;
7420 		bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
7421 		return rc;
7422 	}
7423 
7424 	return 0;
7425 }
7426 
7427 static void __bnxt_map_fw_health_reg(struct bnxt *bp, u32 reg)
7428 {
7429 	writel(reg & BNXT_GRC_BASE_MASK, bp->bar0 +
7430 					 BNXT_GRCPF_REG_WINDOW_BASE_OUT +
7431 					 BNXT_FW_HEALTH_WIN_MAP_OFF);
7432 }
7433 
7434 static void bnxt_try_map_fw_health_reg(struct bnxt *bp)
7435 {
7436 	void __iomem *hs;
7437 	u32 status_loc;
7438 	u32 reg_type;
7439 	u32 sig;
7440 
7441 	__bnxt_map_fw_health_reg(bp, HCOMM_STATUS_STRUCT_LOC);
7442 	hs = bp->bar0 + BNXT_FW_HEALTH_WIN_OFF(HCOMM_STATUS_STRUCT_LOC);
7443 
7444 	sig = readl(hs + offsetof(struct hcomm_status, sig_ver));
7445 	if ((sig & HCOMM_STATUS_SIGNATURE_MASK) != HCOMM_STATUS_SIGNATURE_VAL) {
7446 		if (bp->fw_health)
7447 			bp->fw_health->status_reliable = false;
7448 		return;
7449 	}
7450 
7451 	if (__bnxt_alloc_fw_health(bp)) {
7452 		netdev_warn(bp->dev, "no memory for firmware status checks\n");
7453 		return;
7454 	}
7455 
7456 	status_loc = readl(hs + offsetof(struct hcomm_status, fw_status_loc));
7457 	bp->fw_health->regs[BNXT_FW_HEALTH_REG] = status_loc;
7458 	reg_type = BNXT_FW_HEALTH_REG_TYPE(status_loc);
7459 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) {
7460 		__bnxt_map_fw_health_reg(bp, status_loc);
7461 		bp->fw_health->mapped_regs[BNXT_FW_HEALTH_REG] =
7462 			BNXT_FW_HEALTH_WIN_OFF(status_loc);
7463 	}
7464 
7465 	bp->fw_health->status_reliable = true;
7466 }
7467 
7468 static int bnxt_map_fw_health_regs(struct bnxt *bp)
7469 {
7470 	struct bnxt_fw_health *fw_health = bp->fw_health;
7471 	u32 reg_base = 0xffffffff;
7472 	int i;
7473 
7474 	/* Only pre-map the monitoring GRC registers using window 3 */
7475 	for (i = 0; i < 4; i++) {
7476 		u32 reg = fw_health->regs[i];
7477 
7478 		if (BNXT_FW_HEALTH_REG_TYPE(reg) != BNXT_FW_HEALTH_REG_TYPE_GRC)
7479 			continue;
7480 		if (reg_base == 0xffffffff)
7481 			reg_base = reg & BNXT_GRC_BASE_MASK;
7482 		if ((reg & BNXT_GRC_BASE_MASK) != reg_base)
7483 			return -ERANGE;
7484 		fw_health->mapped_regs[i] = BNXT_FW_HEALTH_WIN_OFF(reg);
7485 	}
7486 	if (reg_base == 0xffffffff)
7487 		return 0;
7488 
7489 	__bnxt_map_fw_health_reg(bp, reg_base);
7490 	return 0;
7491 }
7492 
7493 static int bnxt_hwrm_error_recovery_qcfg(struct bnxt *bp)
7494 {
7495 	struct hwrm_error_recovery_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
7496 	struct bnxt_fw_health *fw_health = bp->fw_health;
7497 	struct hwrm_error_recovery_qcfg_input req = {0};
7498 	int rc, i;
7499 
7500 	if (!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
7501 		return 0;
7502 
7503 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_ERROR_RECOVERY_QCFG, -1, -1);
7504 	mutex_lock(&bp->hwrm_cmd_lock);
7505 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7506 	if (rc)
7507 		goto err_recovery_out;
7508 	fw_health->flags = le32_to_cpu(resp->flags);
7509 	if ((fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) &&
7510 	    !(bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL)) {
7511 		rc = -EINVAL;
7512 		goto err_recovery_out;
7513 	}
7514 	fw_health->polling_dsecs = le32_to_cpu(resp->driver_polling_freq);
7515 	fw_health->master_func_wait_dsecs =
7516 		le32_to_cpu(resp->master_func_wait_period);
7517 	fw_health->normal_func_wait_dsecs =
7518 		le32_to_cpu(resp->normal_func_wait_period);
7519 	fw_health->post_reset_wait_dsecs =
7520 		le32_to_cpu(resp->master_func_wait_period_after_reset);
7521 	fw_health->post_reset_max_wait_dsecs =
7522 		le32_to_cpu(resp->max_bailout_time_after_reset);
7523 	fw_health->regs[BNXT_FW_HEALTH_REG] =
7524 		le32_to_cpu(resp->fw_health_status_reg);
7525 	fw_health->regs[BNXT_FW_HEARTBEAT_REG] =
7526 		le32_to_cpu(resp->fw_heartbeat_reg);
7527 	fw_health->regs[BNXT_FW_RESET_CNT_REG] =
7528 		le32_to_cpu(resp->fw_reset_cnt_reg);
7529 	fw_health->regs[BNXT_FW_RESET_INPROG_REG] =
7530 		le32_to_cpu(resp->reset_inprogress_reg);
7531 	fw_health->fw_reset_inprog_reg_mask =
7532 		le32_to_cpu(resp->reset_inprogress_reg_mask);
7533 	fw_health->fw_reset_seq_cnt = resp->reg_array_cnt;
7534 	if (fw_health->fw_reset_seq_cnt >= 16) {
7535 		rc = -EINVAL;
7536 		goto err_recovery_out;
7537 	}
7538 	for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) {
7539 		fw_health->fw_reset_seq_regs[i] =
7540 			le32_to_cpu(resp->reset_reg[i]);
7541 		fw_health->fw_reset_seq_vals[i] =
7542 			le32_to_cpu(resp->reset_reg_val[i]);
7543 		fw_health->fw_reset_seq_delay_msec[i] =
7544 			resp->delay_after_reset[i];
7545 	}
7546 err_recovery_out:
7547 	mutex_unlock(&bp->hwrm_cmd_lock);
7548 	if (!rc)
7549 		rc = bnxt_map_fw_health_regs(bp);
7550 	if (rc)
7551 		bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
7552 	return rc;
7553 }
7554 
7555 static int bnxt_hwrm_func_reset(struct bnxt *bp)
7556 {
7557 	struct hwrm_func_reset_input req = {0};
7558 
7559 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESET, -1, -1);
7560 	req.enables = 0;
7561 
7562 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_RESET_TIMEOUT);
7563 }
7564 
7565 static void bnxt_nvm_cfg_ver_get(struct bnxt *bp)
7566 {
7567 	struct hwrm_nvm_get_dev_info_output nvm_info;
7568 
7569 	if (!bnxt_hwrm_nvm_get_dev_info(bp, &nvm_info))
7570 		snprintf(bp->nvm_cfg_ver, FW_VER_STR_LEN, "%d.%d.%d",
7571 			 nvm_info.nvm_cfg_ver_maj, nvm_info.nvm_cfg_ver_min,
7572 			 nvm_info.nvm_cfg_ver_upd);
7573 }
7574 
7575 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
7576 {
7577 	int rc = 0;
7578 	struct hwrm_queue_qportcfg_input req = {0};
7579 	struct hwrm_queue_qportcfg_output *resp = bp->hwrm_cmd_resp_addr;
7580 	u8 i, j, *qptr;
7581 	bool no_rdma;
7582 
7583 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_QUEUE_QPORTCFG, -1, -1);
7584 
7585 	mutex_lock(&bp->hwrm_cmd_lock);
7586 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7587 	if (rc)
7588 		goto qportcfg_exit;
7589 
7590 	if (!resp->max_configurable_queues) {
7591 		rc = -EINVAL;
7592 		goto qportcfg_exit;
7593 	}
7594 	bp->max_tc = resp->max_configurable_queues;
7595 	bp->max_lltc = resp->max_configurable_lossless_queues;
7596 	if (bp->max_tc > BNXT_MAX_QUEUE)
7597 		bp->max_tc = BNXT_MAX_QUEUE;
7598 
7599 	no_rdma = !(bp->flags & BNXT_FLAG_ROCE_CAP);
7600 	qptr = &resp->queue_id0;
7601 	for (i = 0, j = 0; i < bp->max_tc; i++) {
7602 		bp->q_info[j].queue_id = *qptr;
7603 		bp->q_ids[i] = *qptr++;
7604 		bp->q_info[j].queue_profile = *qptr++;
7605 		bp->tc_to_qidx[j] = j;
7606 		if (!BNXT_CNPQ(bp->q_info[j].queue_profile) ||
7607 		    (no_rdma && BNXT_PF(bp)))
7608 			j++;
7609 	}
7610 	bp->max_q = bp->max_tc;
7611 	bp->max_tc = max_t(u8, j, 1);
7612 
7613 	if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG)
7614 		bp->max_tc = 1;
7615 
7616 	if (bp->max_lltc > bp->max_tc)
7617 		bp->max_lltc = bp->max_tc;
7618 
7619 qportcfg_exit:
7620 	mutex_unlock(&bp->hwrm_cmd_lock);
7621 	return rc;
7622 }
7623 
7624 static int __bnxt_hwrm_ver_get(struct bnxt *bp, bool silent)
7625 {
7626 	struct hwrm_ver_get_input req = {0};
7627 	int rc;
7628 
7629 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VER_GET, -1, -1);
7630 	req.hwrm_intf_maj = HWRM_VERSION_MAJOR;
7631 	req.hwrm_intf_min = HWRM_VERSION_MINOR;
7632 	req.hwrm_intf_upd = HWRM_VERSION_UPDATE;
7633 
7634 	rc = bnxt_hwrm_do_send_msg(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT,
7635 				   silent);
7636 	return rc;
7637 }
7638 
7639 static int bnxt_hwrm_ver_get(struct bnxt *bp)
7640 {
7641 	struct hwrm_ver_get_output *resp = bp->hwrm_cmd_resp_addr;
7642 	u16 fw_maj, fw_min, fw_bld, fw_rsv;
7643 	u32 dev_caps_cfg, hwrm_ver;
7644 	int rc, len;
7645 
7646 	bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN;
7647 	mutex_lock(&bp->hwrm_cmd_lock);
7648 	rc = __bnxt_hwrm_ver_get(bp, false);
7649 	if (rc)
7650 		goto hwrm_ver_get_exit;
7651 
7652 	memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
7653 
7654 	bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 |
7655 			     resp->hwrm_intf_min_8b << 8 |
7656 			     resp->hwrm_intf_upd_8b;
7657 	if (resp->hwrm_intf_maj_8b < 1) {
7658 		netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
7659 			    resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
7660 			    resp->hwrm_intf_upd_8b);
7661 		netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
7662 	}
7663 
7664 	hwrm_ver = HWRM_VERSION_MAJOR << 16 | HWRM_VERSION_MINOR << 8 |
7665 			HWRM_VERSION_UPDATE;
7666 
7667 	if (bp->hwrm_spec_code > hwrm_ver)
7668 		snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d",
7669 			 HWRM_VERSION_MAJOR, HWRM_VERSION_MINOR,
7670 			 HWRM_VERSION_UPDATE);
7671 	else
7672 		snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d",
7673 			 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
7674 			 resp->hwrm_intf_upd_8b);
7675 
7676 	fw_maj = le16_to_cpu(resp->hwrm_fw_major);
7677 	if (bp->hwrm_spec_code > 0x10803 && fw_maj) {
7678 		fw_min = le16_to_cpu(resp->hwrm_fw_minor);
7679 		fw_bld = le16_to_cpu(resp->hwrm_fw_build);
7680 		fw_rsv = le16_to_cpu(resp->hwrm_fw_patch);
7681 		len = FW_VER_STR_LEN;
7682 	} else {
7683 		fw_maj = resp->hwrm_fw_maj_8b;
7684 		fw_min = resp->hwrm_fw_min_8b;
7685 		fw_bld = resp->hwrm_fw_bld_8b;
7686 		fw_rsv = resp->hwrm_fw_rsvd_8b;
7687 		len = BC_HWRM_STR_LEN;
7688 	}
7689 	bp->fw_ver_code = BNXT_FW_VER_CODE(fw_maj, fw_min, fw_bld, fw_rsv);
7690 	snprintf(bp->fw_ver_str, len, "%d.%d.%d.%d", fw_maj, fw_min, fw_bld,
7691 		 fw_rsv);
7692 
7693 	if (strlen(resp->active_pkg_name)) {
7694 		int fw_ver_len = strlen(bp->fw_ver_str);
7695 
7696 		snprintf(bp->fw_ver_str + fw_ver_len,
7697 			 FW_VER_STR_LEN - fw_ver_len - 1, "/pkg %s",
7698 			 resp->active_pkg_name);
7699 		bp->fw_cap |= BNXT_FW_CAP_PKG_VER;
7700 	}
7701 
7702 	bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout);
7703 	if (!bp->hwrm_cmd_timeout)
7704 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
7705 
7706 	if (resp->hwrm_intf_maj_8b >= 1) {
7707 		bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len);
7708 		bp->hwrm_max_ext_req_len = le16_to_cpu(resp->max_ext_req_len);
7709 	}
7710 	if (bp->hwrm_max_ext_req_len < HWRM_MAX_REQ_LEN)
7711 		bp->hwrm_max_ext_req_len = HWRM_MAX_REQ_LEN;
7712 
7713 	bp->chip_num = le16_to_cpu(resp->chip_num);
7714 	bp->chip_rev = resp->chip_rev;
7715 	if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev &&
7716 	    !resp->chip_metal)
7717 		bp->flags |= BNXT_FLAG_CHIP_NITRO_A0;
7718 
7719 	dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg);
7720 	if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) &&
7721 	    (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED))
7722 		bp->fw_cap |= BNXT_FW_CAP_SHORT_CMD;
7723 
7724 	if (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_KONG_MB_CHNL_SUPPORTED)
7725 		bp->fw_cap |= BNXT_FW_CAP_KONG_MB_CHNL;
7726 
7727 	if (dev_caps_cfg &
7728 	    VER_GET_RESP_DEV_CAPS_CFG_FLOW_HANDLE_64BIT_SUPPORTED)
7729 		bp->fw_cap |= BNXT_FW_CAP_OVS_64BIT_HANDLE;
7730 
7731 	if (dev_caps_cfg &
7732 	    VER_GET_RESP_DEV_CAPS_CFG_TRUSTED_VF_SUPPORTED)
7733 		bp->fw_cap |= BNXT_FW_CAP_TRUSTED_VF;
7734 
7735 	if (dev_caps_cfg &
7736 	    VER_GET_RESP_DEV_CAPS_CFG_CFA_ADV_FLOW_MGNT_SUPPORTED)
7737 		bp->fw_cap |= BNXT_FW_CAP_CFA_ADV_FLOW;
7738 
7739 hwrm_ver_get_exit:
7740 	mutex_unlock(&bp->hwrm_cmd_lock);
7741 	return rc;
7742 }
7743 
7744 int bnxt_hwrm_fw_set_time(struct bnxt *bp)
7745 {
7746 	struct hwrm_fw_set_time_input req = {0};
7747 	struct tm tm;
7748 	time64_t now = ktime_get_real_seconds();
7749 
7750 	if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) ||
7751 	    bp->hwrm_spec_code < 0x10400)
7752 		return -EOPNOTSUPP;
7753 
7754 	time64_to_tm(now, 0, &tm);
7755 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FW_SET_TIME, -1, -1);
7756 	req.year = cpu_to_le16(1900 + tm.tm_year);
7757 	req.month = 1 + tm.tm_mon;
7758 	req.day = tm.tm_mday;
7759 	req.hour = tm.tm_hour;
7760 	req.minute = tm.tm_min;
7761 	req.second = tm.tm_sec;
7762 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7763 }
7764 
7765 static void bnxt_add_one_ctr(u64 hw, u64 *sw, u64 mask)
7766 {
7767 	u64 sw_tmp;
7768 
7769 	sw_tmp = (*sw & ~mask) | hw;
7770 	if (hw < (*sw & mask))
7771 		sw_tmp += mask + 1;
7772 	WRITE_ONCE(*sw, sw_tmp);
7773 }
7774 
7775 static void __bnxt_accumulate_stats(__le64 *hw_stats, u64 *sw_stats, u64 *masks,
7776 				    int count, bool ignore_zero)
7777 {
7778 	int i;
7779 
7780 	for (i = 0; i < count; i++) {
7781 		u64 hw = le64_to_cpu(READ_ONCE(hw_stats[i]));
7782 
7783 		if (ignore_zero && !hw)
7784 			continue;
7785 
7786 		if (masks[i] == -1ULL)
7787 			sw_stats[i] = hw;
7788 		else
7789 			bnxt_add_one_ctr(hw, &sw_stats[i], masks[i]);
7790 	}
7791 }
7792 
7793 static void bnxt_accumulate_stats(struct bnxt_stats_mem *stats)
7794 {
7795 	if (!stats->hw_stats)
7796 		return;
7797 
7798 	__bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats,
7799 				stats->hw_masks, stats->len / 8, false);
7800 }
7801 
7802 static void bnxt_accumulate_all_stats(struct bnxt *bp)
7803 {
7804 	struct bnxt_stats_mem *ring0_stats;
7805 	bool ignore_zero = false;
7806 	int i;
7807 
7808 	/* Chip bug.  Counter intermittently becomes 0. */
7809 	if (bp->flags & BNXT_FLAG_CHIP_P5)
7810 		ignore_zero = true;
7811 
7812 	for (i = 0; i < bp->cp_nr_rings; i++) {
7813 		struct bnxt_napi *bnapi = bp->bnapi[i];
7814 		struct bnxt_cp_ring_info *cpr;
7815 		struct bnxt_stats_mem *stats;
7816 
7817 		cpr = &bnapi->cp_ring;
7818 		stats = &cpr->stats;
7819 		if (!i)
7820 			ring0_stats = stats;
7821 		__bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats,
7822 					ring0_stats->hw_masks,
7823 					ring0_stats->len / 8, ignore_zero);
7824 	}
7825 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
7826 		struct bnxt_stats_mem *stats = &bp->port_stats;
7827 		__le64 *hw_stats = stats->hw_stats;
7828 		u64 *sw_stats = stats->sw_stats;
7829 		u64 *masks = stats->hw_masks;
7830 		int cnt;
7831 
7832 		cnt = sizeof(struct rx_port_stats) / 8;
7833 		__bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false);
7834 
7835 		hw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
7836 		sw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
7837 		masks += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
7838 		cnt = sizeof(struct tx_port_stats) / 8;
7839 		__bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false);
7840 	}
7841 	if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) {
7842 		bnxt_accumulate_stats(&bp->rx_port_stats_ext);
7843 		bnxt_accumulate_stats(&bp->tx_port_stats_ext);
7844 	}
7845 }
7846 
7847 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags)
7848 {
7849 	struct bnxt_pf_info *pf = &bp->pf;
7850 	struct hwrm_port_qstats_input req = {0};
7851 
7852 	if (!(bp->flags & BNXT_FLAG_PORT_STATS))
7853 		return 0;
7854 
7855 	if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))
7856 		return -EOPNOTSUPP;
7857 
7858 	req.flags = flags;
7859 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS, -1, -1);
7860 	req.port_id = cpu_to_le16(pf->port_id);
7861 	req.tx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map +
7862 					    BNXT_TX_PORT_STATS_BYTE_OFFSET);
7863 	req.rx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map);
7864 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7865 }
7866 
7867 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags)
7868 {
7869 	struct hwrm_port_qstats_ext_output *resp = bp->hwrm_cmd_resp_addr;
7870 	struct hwrm_queue_pri2cos_qcfg_input req2 = {0};
7871 	struct hwrm_port_qstats_ext_input req = {0};
7872 	struct bnxt_pf_info *pf = &bp->pf;
7873 	u32 tx_stat_size;
7874 	int rc;
7875 
7876 	if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT))
7877 		return 0;
7878 
7879 	if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))
7880 		return -EOPNOTSUPP;
7881 
7882 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS_EXT, -1, -1);
7883 	req.flags = flags;
7884 	req.port_id = cpu_to_le16(pf->port_id);
7885 	req.rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext));
7886 	req.rx_stat_host_addr = cpu_to_le64(bp->rx_port_stats_ext.hw_stats_map);
7887 	tx_stat_size = bp->tx_port_stats_ext.hw_stats ?
7888 		       sizeof(struct tx_port_stats_ext) : 0;
7889 	req.tx_stat_size = cpu_to_le16(tx_stat_size);
7890 	req.tx_stat_host_addr = cpu_to_le64(bp->tx_port_stats_ext.hw_stats_map);
7891 	mutex_lock(&bp->hwrm_cmd_lock);
7892 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7893 	if (!rc) {
7894 		bp->fw_rx_stats_ext_size = le16_to_cpu(resp->rx_stat_size) / 8;
7895 		bp->fw_tx_stats_ext_size = tx_stat_size ?
7896 			le16_to_cpu(resp->tx_stat_size) / 8 : 0;
7897 	} else {
7898 		bp->fw_rx_stats_ext_size = 0;
7899 		bp->fw_tx_stats_ext_size = 0;
7900 	}
7901 	if (flags)
7902 		goto qstats_done;
7903 
7904 	if (bp->fw_tx_stats_ext_size <=
7905 	    offsetof(struct tx_port_stats_ext, pfc_pri0_tx_duration_us) / 8) {
7906 		mutex_unlock(&bp->hwrm_cmd_lock);
7907 		bp->pri2cos_valid = 0;
7908 		return rc;
7909 	}
7910 
7911 	bnxt_hwrm_cmd_hdr_init(bp, &req2, HWRM_QUEUE_PRI2COS_QCFG, -1, -1);
7912 	req2.flags = cpu_to_le32(QUEUE_PRI2COS_QCFG_REQ_FLAGS_IVLAN);
7913 
7914 	rc = _hwrm_send_message(bp, &req2, sizeof(req2), HWRM_CMD_TIMEOUT);
7915 	if (!rc) {
7916 		struct hwrm_queue_pri2cos_qcfg_output *resp2;
7917 		u8 *pri2cos;
7918 		int i, j;
7919 
7920 		resp2 = bp->hwrm_cmd_resp_addr;
7921 		pri2cos = &resp2->pri0_cos_queue_id;
7922 		for (i = 0; i < 8; i++) {
7923 			u8 queue_id = pri2cos[i];
7924 			u8 queue_idx;
7925 
7926 			/* Per port queue IDs start from 0, 10, 20, etc */
7927 			queue_idx = queue_id % 10;
7928 			if (queue_idx > BNXT_MAX_QUEUE) {
7929 				bp->pri2cos_valid = false;
7930 				goto qstats_done;
7931 			}
7932 			for (j = 0; j < bp->max_q; j++) {
7933 				if (bp->q_ids[j] == queue_id)
7934 					bp->pri2cos_idx[i] = queue_idx;
7935 			}
7936 		}
7937 		bp->pri2cos_valid = 1;
7938 	}
7939 qstats_done:
7940 	mutex_unlock(&bp->hwrm_cmd_lock);
7941 	return rc;
7942 }
7943 
7944 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
7945 {
7946 	if (bp->vxlan_fw_dst_port_id != INVALID_HW_RING_ID)
7947 		bnxt_hwrm_tunnel_dst_port_free(
7948 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
7949 	if (bp->nge_fw_dst_port_id != INVALID_HW_RING_ID)
7950 		bnxt_hwrm_tunnel_dst_port_free(
7951 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
7952 }
7953 
7954 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
7955 {
7956 	int rc, i;
7957 	u32 tpa_flags = 0;
7958 
7959 	if (set_tpa)
7960 		tpa_flags = bp->flags & BNXT_FLAG_TPA;
7961 	else if (BNXT_NO_FW_ACCESS(bp))
7962 		return 0;
7963 	for (i = 0; i < bp->nr_vnics; i++) {
7964 		rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
7965 		if (rc) {
7966 			netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
7967 				   i, rc);
7968 			return rc;
7969 		}
7970 	}
7971 	return 0;
7972 }
7973 
7974 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
7975 {
7976 	int i;
7977 
7978 	for (i = 0; i < bp->nr_vnics; i++)
7979 		bnxt_hwrm_vnic_set_rss(bp, i, false);
7980 }
7981 
7982 static void bnxt_clear_vnic(struct bnxt *bp)
7983 {
7984 	if (!bp->vnic_info)
7985 		return;
7986 
7987 	bnxt_hwrm_clear_vnic_filter(bp);
7988 	if (!(bp->flags & BNXT_FLAG_CHIP_P5)) {
7989 		/* clear all RSS setting before free vnic ctx */
7990 		bnxt_hwrm_clear_vnic_rss(bp);
7991 		bnxt_hwrm_vnic_ctx_free(bp);
7992 	}
7993 	/* before free the vnic, undo the vnic tpa settings */
7994 	if (bp->flags & BNXT_FLAG_TPA)
7995 		bnxt_set_tpa(bp, false);
7996 	bnxt_hwrm_vnic_free(bp);
7997 	if (bp->flags & BNXT_FLAG_CHIP_P5)
7998 		bnxt_hwrm_vnic_ctx_free(bp);
7999 }
8000 
8001 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
8002 				    bool irq_re_init)
8003 {
8004 	bnxt_clear_vnic(bp);
8005 	bnxt_hwrm_ring_free(bp, close_path);
8006 	bnxt_hwrm_ring_grp_free(bp);
8007 	if (irq_re_init) {
8008 		bnxt_hwrm_stat_ctx_free(bp);
8009 		bnxt_hwrm_free_tunnel_ports(bp);
8010 	}
8011 }
8012 
8013 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode)
8014 {
8015 	struct hwrm_func_cfg_input req = {0};
8016 
8017 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
8018 	req.fid = cpu_to_le16(0xffff);
8019 	req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE);
8020 	if (br_mode == BRIDGE_MODE_VEB)
8021 		req.evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB;
8022 	else if (br_mode == BRIDGE_MODE_VEPA)
8023 		req.evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA;
8024 	else
8025 		return -EINVAL;
8026 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8027 }
8028 
8029 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size)
8030 {
8031 	struct hwrm_func_cfg_input req = {0};
8032 
8033 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803)
8034 		return 0;
8035 
8036 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
8037 	req.fid = cpu_to_le16(0xffff);
8038 	req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE);
8039 	req.options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64;
8040 	if (size == 128)
8041 		req.options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128;
8042 
8043 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8044 }
8045 
8046 static int __bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
8047 {
8048 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
8049 	int rc;
8050 
8051 	if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG)
8052 		goto skip_rss_ctx;
8053 
8054 	/* allocate context for vnic */
8055 	rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0);
8056 	if (rc) {
8057 		netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
8058 			   vnic_id, rc);
8059 		goto vnic_setup_err;
8060 	}
8061 	bp->rsscos_nr_ctxs++;
8062 
8063 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
8064 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1);
8065 		if (rc) {
8066 			netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n",
8067 				   vnic_id, rc);
8068 			goto vnic_setup_err;
8069 		}
8070 		bp->rsscos_nr_ctxs++;
8071 	}
8072 
8073 skip_rss_ctx:
8074 	/* configure default vnic, ring grp */
8075 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
8076 	if (rc) {
8077 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
8078 			   vnic_id, rc);
8079 		goto vnic_setup_err;
8080 	}
8081 
8082 	/* Enable RSS hashing on vnic */
8083 	rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
8084 	if (rc) {
8085 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
8086 			   vnic_id, rc);
8087 		goto vnic_setup_err;
8088 	}
8089 
8090 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
8091 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
8092 		if (rc) {
8093 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
8094 				   vnic_id, rc);
8095 		}
8096 	}
8097 
8098 vnic_setup_err:
8099 	return rc;
8100 }
8101 
8102 static int __bnxt_setup_vnic_p5(struct bnxt *bp, u16 vnic_id)
8103 {
8104 	int rc, i, nr_ctxs;
8105 
8106 	nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings);
8107 	for (i = 0; i < nr_ctxs; i++) {
8108 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, i);
8109 		if (rc) {
8110 			netdev_err(bp->dev, "hwrm vnic %d ctx %d alloc failure rc: %x\n",
8111 				   vnic_id, i, rc);
8112 			break;
8113 		}
8114 		bp->rsscos_nr_ctxs++;
8115 	}
8116 	if (i < nr_ctxs)
8117 		return -ENOMEM;
8118 
8119 	rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic_id, true);
8120 	if (rc) {
8121 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n",
8122 			   vnic_id, rc);
8123 		return rc;
8124 	}
8125 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
8126 	if (rc) {
8127 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
8128 			   vnic_id, rc);
8129 		return rc;
8130 	}
8131 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
8132 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
8133 		if (rc) {
8134 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
8135 				   vnic_id, rc);
8136 		}
8137 	}
8138 	return rc;
8139 }
8140 
8141 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
8142 {
8143 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8144 		return __bnxt_setup_vnic_p5(bp, vnic_id);
8145 	else
8146 		return __bnxt_setup_vnic(bp, vnic_id);
8147 }
8148 
8149 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
8150 {
8151 #ifdef CONFIG_RFS_ACCEL
8152 	int i, rc = 0;
8153 
8154 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8155 		return 0;
8156 
8157 	for (i = 0; i < bp->rx_nr_rings; i++) {
8158 		struct bnxt_vnic_info *vnic;
8159 		u16 vnic_id = i + 1;
8160 		u16 ring_id = i;
8161 
8162 		if (vnic_id >= bp->nr_vnics)
8163 			break;
8164 
8165 		vnic = &bp->vnic_info[vnic_id];
8166 		vnic->flags |= BNXT_VNIC_RFS_FLAG;
8167 		if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
8168 			vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG;
8169 		rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1);
8170 		if (rc) {
8171 			netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
8172 				   vnic_id, rc);
8173 			break;
8174 		}
8175 		rc = bnxt_setup_vnic(bp, vnic_id);
8176 		if (rc)
8177 			break;
8178 	}
8179 	return rc;
8180 #else
8181 	return 0;
8182 #endif
8183 }
8184 
8185 /* Allow PF and VF with default VLAN to be in promiscuous mode */
8186 static bool bnxt_promisc_ok(struct bnxt *bp)
8187 {
8188 #ifdef CONFIG_BNXT_SRIOV
8189 	if (BNXT_VF(bp) && !bp->vf.vlan)
8190 		return false;
8191 #endif
8192 	return true;
8193 }
8194 
8195 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp)
8196 {
8197 	unsigned int rc = 0;
8198 
8199 	rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1);
8200 	if (rc) {
8201 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
8202 			   rc);
8203 		return rc;
8204 	}
8205 
8206 	rc = bnxt_hwrm_vnic_cfg(bp, 1);
8207 	if (rc) {
8208 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
8209 			   rc);
8210 		return rc;
8211 	}
8212 	return rc;
8213 }
8214 
8215 static int bnxt_cfg_rx_mode(struct bnxt *);
8216 static bool bnxt_mc_list_updated(struct bnxt *, u32 *);
8217 
8218 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
8219 {
8220 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
8221 	int rc = 0;
8222 	unsigned int rx_nr_rings = bp->rx_nr_rings;
8223 
8224 	if (irq_re_init) {
8225 		rc = bnxt_hwrm_stat_ctx_alloc(bp);
8226 		if (rc) {
8227 			netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
8228 				   rc);
8229 			goto err_out;
8230 		}
8231 	}
8232 
8233 	rc = bnxt_hwrm_ring_alloc(bp);
8234 	if (rc) {
8235 		netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
8236 		goto err_out;
8237 	}
8238 
8239 	rc = bnxt_hwrm_ring_grp_alloc(bp);
8240 	if (rc) {
8241 		netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
8242 		goto err_out;
8243 	}
8244 
8245 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
8246 		rx_nr_rings--;
8247 
8248 	/* default vnic 0 */
8249 	rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings);
8250 	if (rc) {
8251 		netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
8252 		goto err_out;
8253 	}
8254 
8255 	rc = bnxt_setup_vnic(bp, 0);
8256 	if (rc)
8257 		goto err_out;
8258 
8259 	if (bp->flags & BNXT_FLAG_RFS) {
8260 		rc = bnxt_alloc_rfs_vnics(bp);
8261 		if (rc)
8262 			goto err_out;
8263 	}
8264 
8265 	if (bp->flags & BNXT_FLAG_TPA) {
8266 		rc = bnxt_set_tpa(bp, true);
8267 		if (rc)
8268 			goto err_out;
8269 	}
8270 
8271 	if (BNXT_VF(bp))
8272 		bnxt_update_vf_mac(bp);
8273 
8274 	/* Filter for default vnic 0 */
8275 	rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
8276 	if (rc) {
8277 		netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
8278 		goto err_out;
8279 	}
8280 	vnic->uc_filter_count = 1;
8281 
8282 	vnic->rx_mask = 0;
8283 	if (bp->dev->flags & IFF_BROADCAST)
8284 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
8285 
8286 	if ((bp->dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
8287 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
8288 
8289 	if (bp->dev->flags & IFF_ALLMULTI) {
8290 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
8291 		vnic->mc_list_count = 0;
8292 	} else {
8293 		u32 mask = 0;
8294 
8295 		bnxt_mc_list_updated(bp, &mask);
8296 		vnic->rx_mask |= mask;
8297 	}
8298 
8299 	rc = bnxt_cfg_rx_mode(bp);
8300 	if (rc)
8301 		goto err_out;
8302 
8303 	rc = bnxt_hwrm_set_coal(bp);
8304 	if (rc)
8305 		netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
8306 				rc);
8307 
8308 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
8309 		rc = bnxt_setup_nitroa0_vnic(bp);
8310 		if (rc)
8311 			netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n",
8312 				   rc);
8313 	}
8314 
8315 	if (BNXT_VF(bp)) {
8316 		bnxt_hwrm_func_qcfg(bp);
8317 		netdev_update_features(bp->dev);
8318 	}
8319 
8320 	return 0;
8321 
8322 err_out:
8323 	bnxt_hwrm_resource_free(bp, 0, true);
8324 
8325 	return rc;
8326 }
8327 
8328 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
8329 {
8330 	bnxt_hwrm_resource_free(bp, 1, irq_re_init);
8331 	return 0;
8332 }
8333 
8334 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
8335 {
8336 	bnxt_init_cp_rings(bp);
8337 	bnxt_init_rx_rings(bp);
8338 	bnxt_init_tx_rings(bp);
8339 	bnxt_init_ring_grps(bp, irq_re_init);
8340 	bnxt_init_vnics(bp);
8341 
8342 	return bnxt_init_chip(bp, irq_re_init);
8343 }
8344 
8345 static int bnxt_set_real_num_queues(struct bnxt *bp)
8346 {
8347 	int rc;
8348 	struct net_device *dev = bp->dev;
8349 
8350 	rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings -
8351 					  bp->tx_nr_rings_xdp);
8352 	if (rc)
8353 		return rc;
8354 
8355 	rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
8356 	if (rc)
8357 		return rc;
8358 
8359 #ifdef CONFIG_RFS_ACCEL
8360 	if (bp->flags & BNXT_FLAG_RFS)
8361 		dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
8362 #endif
8363 
8364 	return rc;
8365 }
8366 
8367 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
8368 			   bool shared)
8369 {
8370 	int _rx = *rx, _tx = *tx;
8371 
8372 	if (shared) {
8373 		*rx = min_t(int, _rx, max);
8374 		*tx = min_t(int, _tx, max);
8375 	} else {
8376 		if (max < 2)
8377 			return -ENOMEM;
8378 
8379 		while (_rx + _tx > max) {
8380 			if (_rx > _tx && _rx > 1)
8381 				_rx--;
8382 			else if (_tx > 1)
8383 				_tx--;
8384 		}
8385 		*rx = _rx;
8386 		*tx = _tx;
8387 	}
8388 	return 0;
8389 }
8390 
8391 static void bnxt_setup_msix(struct bnxt *bp)
8392 {
8393 	const int len = sizeof(bp->irq_tbl[0].name);
8394 	struct net_device *dev = bp->dev;
8395 	int tcs, i;
8396 
8397 	tcs = netdev_get_num_tc(dev);
8398 	if (tcs) {
8399 		int i, off, count;
8400 
8401 		for (i = 0; i < tcs; i++) {
8402 			count = bp->tx_nr_rings_per_tc;
8403 			off = i * count;
8404 			netdev_set_tc_queue(dev, i, count, off);
8405 		}
8406 	}
8407 
8408 	for (i = 0; i < bp->cp_nr_rings; i++) {
8409 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
8410 		char *attr;
8411 
8412 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
8413 			attr = "TxRx";
8414 		else if (i < bp->rx_nr_rings)
8415 			attr = "rx";
8416 		else
8417 			attr = "tx";
8418 
8419 		snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name,
8420 			 attr, i);
8421 		bp->irq_tbl[map_idx].handler = bnxt_msix;
8422 	}
8423 }
8424 
8425 static void bnxt_setup_inta(struct bnxt *bp)
8426 {
8427 	const int len = sizeof(bp->irq_tbl[0].name);
8428 
8429 	if (netdev_get_num_tc(bp->dev))
8430 		netdev_reset_tc(bp->dev);
8431 
8432 	snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx",
8433 		 0);
8434 	bp->irq_tbl[0].handler = bnxt_inta;
8435 }
8436 
8437 static int bnxt_setup_int_mode(struct bnxt *bp)
8438 {
8439 	int rc;
8440 
8441 	if (bp->flags & BNXT_FLAG_USING_MSIX)
8442 		bnxt_setup_msix(bp);
8443 	else
8444 		bnxt_setup_inta(bp);
8445 
8446 	rc = bnxt_set_real_num_queues(bp);
8447 	return rc;
8448 }
8449 
8450 #ifdef CONFIG_RFS_ACCEL
8451 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp)
8452 {
8453 	return bp->hw_resc.max_rsscos_ctxs;
8454 }
8455 
8456 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp)
8457 {
8458 	return bp->hw_resc.max_vnics;
8459 }
8460 #endif
8461 
8462 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp)
8463 {
8464 	return bp->hw_resc.max_stat_ctxs;
8465 }
8466 
8467 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp)
8468 {
8469 	return bp->hw_resc.max_cp_rings;
8470 }
8471 
8472 static unsigned int bnxt_get_max_func_cp_rings_for_en(struct bnxt *bp)
8473 {
8474 	unsigned int cp = bp->hw_resc.max_cp_rings;
8475 
8476 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
8477 		cp -= bnxt_get_ulp_msix_num(bp);
8478 
8479 	return cp;
8480 }
8481 
8482 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp)
8483 {
8484 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
8485 
8486 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8487 		return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_nqs);
8488 
8489 	return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings);
8490 }
8491 
8492 static void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs)
8493 {
8494 	bp->hw_resc.max_irqs = max_irqs;
8495 }
8496 
8497 unsigned int bnxt_get_avail_cp_rings_for_en(struct bnxt *bp)
8498 {
8499 	unsigned int cp;
8500 
8501 	cp = bnxt_get_max_func_cp_rings_for_en(bp);
8502 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8503 		return cp - bp->rx_nr_rings - bp->tx_nr_rings;
8504 	else
8505 		return cp - bp->cp_nr_rings;
8506 }
8507 
8508 unsigned int bnxt_get_avail_stat_ctxs_for_en(struct bnxt *bp)
8509 {
8510 	return bnxt_get_max_func_stat_ctxs(bp) - bnxt_get_func_stat_ctxs(bp);
8511 }
8512 
8513 int bnxt_get_avail_msix(struct bnxt *bp, int num)
8514 {
8515 	int max_cp = bnxt_get_max_func_cp_rings(bp);
8516 	int max_irq = bnxt_get_max_func_irqs(bp);
8517 	int total_req = bp->cp_nr_rings + num;
8518 	int max_idx, avail_msix;
8519 
8520 	max_idx = bp->total_irqs;
8521 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
8522 		max_idx = min_t(int, bp->total_irqs, max_cp);
8523 	avail_msix = max_idx - bp->cp_nr_rings;
8524 	if (!BNXT_NEW_RM(bp) || avail_msix >= num)
8525 		return avail_msix;
8526 
8527 	if (max_irq < total_req) {
8528 		num = max_irq - bp->cp_nr_rings;
8529 		if (num <= 0)
8530 			return 0;
8531 	}
8532 	return num;
8533 }
8534 
8535 static int bnxt_get_num_msix(struct bnxt *bp)
8536 {
8537 	if (!BNXT_NEW_RM(bp))
8538 		return bnxt_get_max_func_irqs(bp);
8539 
8540 	return bnxt_nq_rings_in_use(bp);
8541 }
8542 
8543 static int bnxt_init_msix(struct bnxt *bp)
8544 {
8545 	int i, total_vecs, max, rc = 0, min = 1, ulp_msix;
8546 	struct msix_entry *msix_ent;
8547 
8548 	total_vecs = bnxt_get_num_msix(bp);
8549 	max = bnxt_get_max_func_irqs(bp);
8550 	if (total_vecs > max)
8551 		total_vecs = max;
8552 
8553 	if (!total_vecs)
8554 		return 0;
8555 
8556 	msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
8557 	if (!msix_ent)
8558 		return -ENOMEM;
8559 
8560 	for (i = 0; i < total_vecs; i++) {
8561 		msix_ent[i].entry = i;
8562 		msix_ent[i].vector = 0;
8563 	}
8564 
8565 	if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
8566 		min = 2;
8567 
8568 	total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
8569 	ulp_msix = bnxt_get_ulp_msix_num(bp);
8570 	if (total_vecs < 0 || total_vecs < ulp_msix) {
8571 		rc = -ENODEV;
8572 		goto msix_setup_exit;
8573 	}
8574 
8575 	bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
8576 	if (bp->irq_tbl) {
8577 		for (i = 0; i < total_vecs; i++)
8578 			bp->irq_tbl[i].vector = msix_ent[i].vector;
8579 
8580 		bp->total_irqs = total_vecs;
8581 		/* Trim rings based upon num of vectors allocated */
8582 		rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
8583 				     total_vecs - ulp_msix, min == 1);
8584 		if (rc)
8585 			goto msix_setup_exit;
8586 
8587 		bp->cp_nr_rings = (min == 1) ?
8588 				  max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
8589 				  bp->tx_nr_rings + bp->rx_nr_rings;
8590 
8591 	} else {
8592 		rc = -ENOMEM;
8593 		goto msix_setup_exit;
8594 	}
8595 	bp->flags |= BNXT_FLAG_USING_MSIX;
8596 	kfree(msix_ent);
8597 	return 0;
8598 
8599 msix_setup_exit:
8600 	netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc);
8601 	kfree(bp->irq_tbl);
8602 	bp->irq_tbl = NULL;
8603 	pci_disable_msix(bp->pdev);
8604 	kfree(msix_ent);
8605 	return rc;
8606 }
8607 
8608 static int bnxt_init_inta(struct bnxt *bp)
8609 {
8610 	bp->irq_tbl = kcalloc(1, sizeof(struct bnxt_irq), GFP_KERNEL);
8611 	if (!bp->irq_tbl)
8612 		return -ENOMEM;
8613 
8614 	bp->total_irqs = 1;
8615 	bp->rx_nr_rings = 1;
8616 	bp->tx_nr_rings = 1;
8617 	bp->cp_nr_rings = 1;
8618 	bp->flags |= BNXT_FLAG_SHARED_RINGS;
8619 	bp->irq_tbl[0].vector = bp->pdev->irq;
8620 	return 0;
8621 }
8622 
8623 static int bnxt_init_int_mode(struct bnxt *bp)
8624 {
8625 	int rc = 0;
8626 
8627 	if (bp->flags & BNXT_FLAG_MSIX_CAP)
8628 		rc = bnxt_init_msix(bp);
8629 
8630 	if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) {
8631 		/* fallback to INTA */
8632 		rc = bnxt_init_inta(bp);
8633 	}
8634 	return rc;
8635 }
8636 
8637 static void bnxt_clear_int_mode(struct bnxt *bp)
8638 {
8639 	if (bp->flags & BNXT_FLAG_USING_MSIX)
8640 		pci_disable_msix(bp->pdev);
8641 
8642 	kfree(bp->irq_tbl);
8643 	bp->irq_tbl = NULL;
8644 	bp->flags &= ~BNXT_FLAG_USING_MSIX;
8645 }
8646 
8647 int bnxt_reserve_rings(struct bnxt *bp, bool irq_re_init)
8648 {
8649 	int tcs = netdev_get_num_tc(bp->dev);
8650 	bool irq_cleared = false;
8651 	int rc;
8652 
8653 	if (!bnxt_need_reserve_rings(bp))
8654 		return 0;
8655 
8656 	if (irq_re_init && BNXT_NEW_RM(bp) &&
8657 	    bnxt_get_num_msix(bp) != bp->total_irqs) {
8658 		bnxt_ulp_irq_stop(bp);
8659 		bnxt_clear_int_mode(bp);
8660 		irq_cleared = true;
8661 	}
8662 	rc = __bnxt_reserve_rings(bp);
8663 	if (irq_cleared) {
8664 		if (!rc)
8665 			rc = bnxt_init_int_mode(bp);
8666 		bnxt_ulp_irq_restart(bp, rc);
8667 	}
8668 	if (rc) {
8669 		netdev_err(bp->dev, "ring reservation/IRQ init failure rc: %d\n", rc);
8670 		return rc;
8671 	}
8672 	if (tcs && (bp->tx_nr_rings_per_tc * tcs != bp->tx_nr_rings)) {
8673 		netdev_err(bp->dev, "tx ring reservation failure\n");
8674 		netdev_reset_tc(bp->dev);
8675 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
8676 		return -ENOMEM;
8677 	}
8678 	return 0;
8679 }
8680 
8681 static void bnxt_free_irq(struct bnxt *bp)
8682 {
8683 	struct bnxt_irq *irq;
8684 	int i;
8685 
8686 #ifdef CONFIG_RFS_ACCEL
8687 	free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
8688 	bp->dev->rx_cpu_rmap = NULL;
8689 #endif
8690 	if (!bp->irq_tbl || !bp->bnapi)
8691 		return;
8692 
8693 	for (i = 0; i < bp->cp_nr_rings; i++) {
8694 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
8695 
8696 		irq = &bp->irq_tbl[map_idx];
8697 		if (irq->requested) {
8698 			if (irq->have_cpumask) {
8699 				irq_set_affinity_hint(irq->vector, NULL);
8700 				free_cpumask_var(irq->cpu_mask);
8701 				irq->have_cpumask = 0;
8702 			}
8703 			free_irq(irq->vector, bp->bnapi[i]);
8704 		}
8705 
8706 		irq->requested = 0;
8707 	}
8708 }
8709 
8710 static int bnxt_request_irq(struct bnxt *bp)
8711 {
8712 	int i, j, rc = 0;
8713 	unsigned long flags = 0;
8714 #ifdef CONFIG_RFS_ACCEL
8715 	struct cpu_rmap *rmap;
8716 #endif
8717 
8718 	rc = bnxt_setup_int_mode(bp);
8719 	if (rc) {
8720 		netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
8721 			   rc);
8722 		return rc;
8723 	}
8724 #ifdef CONFIG_RFS_ACCEL
8725 	rmap = bp->dev->rx_cpu_rmap;
8726 #endif
8727 	if (!(bp->flags & BNXT_FLAG_USING_MSIX))
8728 		flags = IRQF_SHARED;
8729 
8730 	for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
8731 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
8732 		struct bnxt_irq *irq = &bp->irq_tbl[map_idx];
8733 
8734 #ifdef CONFIG_RFS_ACCEL
8735 		if (rmap && bp->bnapi[i]->rx_ring) {
8736 			rc = irq_cpu_rmap_add(rmap, irq->vector);
8737 			if (rc)
8738 				netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
8739 					    j);
8740 			j++;
8741 		}
8742 #endif
8743 		rc = request_irq(irq->vector, irq->handler, flags, irq->name,
8744 				 bp->bnapi[i]);
8745 		if (rc)
8746 			break;
8747 
8748 		irq->requested = 1;
8749 
8750 		if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) {
8751 			int numa_node = dev_to_node(&bp->pdev->dev);
8752 
8753 			irq->have_cpumask = 1;
8754 			cpumask_set_cpu(cpumask_local_spread(i, numa_node),
8755 					irq->cpu_mask);
8756 			rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask);
8757 			if (rc) {
8758 				netdev_warn(bp->dev,
8759 					    "Set affinity failed, IRQ = %d\n",
8760 					    irq->vector);
8761 				break;
8762 			}
8763 		}
8764 	}
8765 	return rc;
8766 }
8767 
8768 static void bnxt_del_napi(struct bnxt *bp)
8769 {
8770 	int i;
8771 
8772 	if (!bp->bnapi)
8773 		return;
8774 
8775 	for (i = 0; i < bp->cp_nr_rings; i++) {
8776 		struct bnxt_napi *bnapi = bp->bnapi[i];
8777 
8778 		__netif_napi_del(&bnapi->napi);
8779 	}
8780 	/* We called __netif_napi_del(), we need
8781 	 * to respect an RCU grace period before freeing napi structures.
8782 	 */
8783 	synchronize_net();
8784 }
8785 
8786 static void bnxt_init_napi(struct bnxt *bp)
8787 {
8788 	int i;
8789 	unsigned int cp_nr_rings = bp->cp_nr_rings;
8790 	struct bnxt_napi *bnapi;
8791 
8792 	if (bp->flags & BNXT_FLAG_USING_MSIX) {
8793 		int (*poll_fn)(struct napi_struct *, int) = bnxt_poll;
8794 
8795 		if (bp->flags & BNXT_FLAG_CHIP_P5)
8796 			poll_fn = bnxt_poll_p5;
8797 		else if (BNXT_CHIP_TYPE_NITRO_A0(bp))
8798 			cp_nr_rings--;
8799 		for (i = 0; i < cp_nr_rings; i++) {
8800 			bnapi = bp->bnapi[i];
8801 			netif_napi_add(bp->dev, &bnapi->napi, poll_fn, 64);
8802 		}
8803 		if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
8804 			bnapi = bp->bnapi[cp_nr_rings];
8805 			netif_napi_add(bp->dev, &bnapi->napi,
8806 				       bnxt_poll_nitroa0, 64);
8807 		}
8808 	} else {
8809 		bnapi = bp->bnapi[0];
8810 		netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64);
8811 	}
8812 }
8813 
8814 static void bnxt_disable_napi(struct bnxt *bp)
8815 {
8816 	int i;
8817 
8818 	if (!bp->bnapi)
8819 		return;
8820 
8821 	for (i = 0; i < bp->cp_nr_rings; i++) {
8822 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
8823 
8824 		if (bp->bnapi[i]->rx_ring)
8825 			cancel_work_sync(&cpr->dim.work);
8826 
8827 		napi_disable(&bp->bnapi[i]->napi);
8828 	}
8829 }
8830 
8831 static void bnxt_enable_napi(struct bnxt *bp)
8832 {
8833 	int i;
8834 
8835 	for (i = 0; i < bp->cp_nr_rings; i++) {
8836 		struct bnxt_napi *bnapi = bp->bnapi[i];
8837 		struct bnxt_cp_ring_info *cpr;
8838 
8839 		cpr = &bnapi->cp_ring;
8840 		if (bnapi->in_reset)
8841 			cpr->sw_stats.rx.rx_resets++;
8842 		bnapi->in_reset = false;
8843 
8844 		if (bnapi->rx_ring) {
8845 			INIT_WORK(&cpr->dim.work, bnxt_dim_work);
8846 			cpr->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
8847 		}
8848 		napi_enable(&bnapi->napi);
8849 	}
8850 }
8851 
8852 void bnxt_tx_disable(struct bnxt *bp)
8853 {
8854 	int i;
8855 	struct bnxt_tx_ring_info *txr;
8856 
8857 	if (bp->tx_ring) {
8858 		for (i = 0; i < bp->tx_nr_rings; i++) {
8859 			txr = &bp->tx_ring[i];
8860 			txr->dev_state = BNXT_DEV_STATE_CLOSING;
8861 		}
8862 	}
8863 	/* Stop all TX queues */
8864 	netif_tx_disable(bp->dev);
8865 	netif_carrier_off(bp->dev);
8866 }
8867 
8868 void bnxt_tx_enable(struct bnxt *bp)
8869 {
8870 	int i;
8871 	struct bnxt_tx_ring_info *txr;
8872 
8873 	for (i = 0; i < bp->tx_nr_rings; i++) {
8874 		txr = &bp->tx_ring[i];
8875 		txr->dev_state = 0;
8876 	}
8877 	netif_tx_wake_all_queues(bp->dev);
8878 	if (bp->link_info.link_up)
8879 		netif_carrier_on(bp->dev);
8880 }
8881 
8882 static char *bnxt_report_fec(struct bnxt_link_info *link_info)
8883 {
8884 	u8 active_fec = link_info->active_fec_sig_mode &
8885 			PORT_PHY_QCFG_RESP_ACTIVE_FEC_MASK;
8886 
8887 	switch (active_fec) {
8888 	default:
8889 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_NONE_ACTIVE:
8890 		return "None";
8891 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE74_ACTIVE:
8892 		return "Clause 74 BaseR";
8893 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE91_ACTIVE:
8894 		return "Clause 91 RS(528,514)";
8895 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_1XN_ACTIVE:
8896 		return "Clause 91 RS544_1XN";
8897 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_IEEE_ACTIVE:
8898 		return "Clause 91 RS(544,514)";
8899 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_1XN_ACTIVE:
8900 		return "Clause 91 RS272_1XN";
8901 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_IEEE_ACTIVE:
8902 		return "Clause 91 RS(272,257)";
8903 	}
8904 }
8905 
8906 static void bnxt_report_link(struct bnxt *bp)
8907 {
8908 	if (bp->link_info.link_up) {
8909 		const char *duplex;
8910 		const char *flow_ctrl;
8911 		u32 speed;
8912 		u16 fec;
8913 
8914 		netif_carrier_on(bp->dev);
8915 		speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
8916 		if (speed == SPEED_UNKNOWN) {
8917 			netdev_info(bp->dev, "NIC Link is Up, speed unknown\n");
8918 			return;
8919 		}
8920 		if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
8921 			duplex = "full";
8922 		else
8923 			duplex = "half";
8924 		if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
8925 			flow_ctrl = "ON - receive & transmit";
8926 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
8927 			flow_ctrl = "ON - transmit";
8928 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
8929 			flow_ctrl = "ON - receive";
8930 		else
8931 			flow_ctrl = "none";
8932 		netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s duplex, Flow control: %s\n",
8933 			    speed, duplex, flow_ctrl);
8934 		if (bp->flags & BNXT_FLAG_EEE_CAP)
8935 			netdev_info(bp->dev, "EEE is %s\n",
8936 				    bp->eee.eee_active ? "active" :
8937 							 "not active");
8938 		fec = bp->link_info.fec_cfg;
8939 		if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED))
8940 			netdev_info(bp->dev, "FEC autoneg %s encoding: %s\n",
8941 				    (fec & BNXT_FEC_AUTONEG) ? "on" : "off",
8942 				    bnxt_report_fec(&bp->link_info));
8943 	} else {
8944 		netif_carrier_off(bp->dev);
8945 		netdev_err(bp->dev, "NIC Link is Down\n");
8946 	}
8947 }
8948 
8949 static bool bnxt_phy_qcaps_no_speed(struct hwrm_port_phy_qcaps_output *resp)
8950 {
8951 	if (!resp->supported_speeds_auto_mode &&
8952 	    !resp->supported_speeds_force_mode &&
8953 	    !resp->supported_pam4_speeds_auto_mode &&
8954 	    !resp->supported_pam4_speeds_force_mode)
8955 		return true;
8956 	return false;
8957 }
8958 
8959 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp)
8960 {
8961 	int rc = 0;
8962 	struct hwrm_port_phy_qcaps_input req = {0};
8963 	struct hwrm_port_phy_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
8964 	struct bnxt_link_info *link_info = &bp->link_info;
8965 
8966 	bp->flags &= ~BNXT_FLAG_EEE_CAP;
8967 	if (bp->test_info)
8968 		bp->test_info->flags &= ~(BNXT_TEST_FL_EXT_LPBK |
8969 					  BNXT_TEST_FL_AN_PHY_LPBK);
8970 	if (bp->hwrm_spec_code < 0x10201)
8971 		return 0;
8972 
8973 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCAPS, -1, -1);
8974 
8975 	mutex_lock(&bp->hwrm_cmd_lock);
8976 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8977 	if (rc)
8978 		goto hwrm_phy_qcaps_exit;
8979 
8980 	if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) {
8981 		struct ethtool_eee *eee = &bp->eee;
8982 		u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode);
8983 
8984 		bp->flags |= BNXT_FLAG_EEE_CAP;
8985 		eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
8986 		bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) &
8987 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK;
8988 		bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) &
8989 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK;
8990 	}
8991 	if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EXTERNAL_LPBK_SUPPORTED) {
8992 		if (bp->test_info)
8993 			bp->test_info->flags |= BNXT_TEST_FL_EXT_LPBK;
8994 	}
8995 	if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_AUTONEG_LPBK_SUPPORTED) {
8996 		if (bp->test_info)
8997 			bp->test_info->flags |= BNXT_TEST_FL_AN_PHY_LPBK;
8998 	}
8999 	if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_SHARED_PHY_CFG_SUPPORTED) {
9000 		if (BNXT_PF(bp))
9001 			bp->fw_cap |= BNXT_FW_CAP_SHARED_PORT_CFG;
9002 	}
9003 	if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_CUMULATIVE_COUNTERS_ON_RESET)
9004 		bp->fw_cap |= BNXT_FW_CAP_PORT_STATS_NO_RESET;
9005 
9006 	if (bp->hwrm_spec_code >= 0x10a01) {
9007 		if (bnxt_phy_qcaps_no_speed(resp)) {
9008 			link_info->phy_state = BNXT_PHY_STATE_DISABLED;
9009 			netdev_warn(bp->dev, "Ethernet link disabled\n");
9010 		} else if (link_info->phy_state == BNXT_PHY_STATE_DISABLED) {
9011 			link_info->phy_state = BNXT_PHY_STATE_ENABLED;
9012 			netdev_info(bp->dev, "Ethernet link enabled\n");
9013 			/* Phy re-enabled, reprobe the speeds */
9014 			link_info->support_auto_speeds = 0;
9015 			link_info->support_pam4_auto_speeds = 0;
9016 		}
9017 	}
9018 	if (resp->supported_speeds_auto_mode)
9019 		link_info->support_auto_speeds =
9020 			le16_to_cpu(resp->supported_speeds_auto_mode);
9021 	if (resp->supported_pam4_speeds_auto_mode)
9022 		link_info->support_pam4_auto_speeds =
9023 			le16_to_cpu(resp->supported_pam4_speeds_auto_mode);
9024 
9025 	bp->port_count = resp->port_cnt;
9026 
9027 hwrm_phy_qcaps_exit:
9028 	mutex_unlock(&bp->hwrm_cmd_lock);
9029 	return rc;
9030 }
9031 
9032 static bool bnxt_support_dropped(u16 advertising, u16 supported)
9033 {
9034 	u16 diff = advertising ^ supported;
9035 
9036 	return ((supported | diff) != supported);
9037 }
9038 
9039 int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
9040 {
9041 	int rc = 0;
9042 	struct bnxt_link_info *link_info = &bp->link_info;
9043 	struct hwrm_port_phy_qcfg_input req = {0};
9044 	struct hwrm_port_phy_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
9045 	u8 link_up = link_info->link_up;
9046 	bool support_changed = false;
9047 
9048 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCFG, -1, -1);
9049 
9050 	mutex_lock(&bp->hwrm_cmd_lock);
9051 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9052 	if (rc) {
9053 		mutex_unlock(&bp->hwrm_cmd_lock);
9054 		return rc;
9055 	}
9056 
9057 	memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
9058 	link_info->phy_link_status = resp->link;
9059 	link_info->duplex = resp->duplex_cfg;
9060 	if (bp->hwrm_spec_code >= 0x10800)
9061 		link_info->duplex = resp->duplex_state;
9062 	link_info->pause = resp->pause;
9063 	link_info->auto_mode = resp->auto_mode;
9064 	link_info->auto_pause_setting = resp->auto_pause;
9065 	link_info->lp_pause = resp->link_partner_adv_pause;
9066 	link_info->force_pause_setting = resp->force_pause;
9067 	link_info->duplex_setting = resp->duplex_cfg;
9068 	if (link_info->phy_link_status == BNXT_LINK_LINK)
9069 		link_info->link_speed = le16_to_cpu(resp->link_speed);
9070 	else
9071 		link_info->link_speed = 0;
9072 	link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
9073 	link_info->force_pam4_link_speed =
9074 		le16_to_cpu(resp->force_pam4_link_speed);
9075 	link_info->support_speeds = le16_to_cpu(resp->support_speeds);
9076 	link_info->support_pam4_speeds = le16_to_cpu(resp->support_pam4_speeds);
9077 	link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
9078 	link_info->auto_pam4_link_speeds =
9079 		le16_to_cpu(resp->auto_pam4_link_speed_mask);
9080 	link_info->lp_auto_link_speeds =
9081 		le16_to_cpu(resp->link_partner_adv_speeds);
9082 	link_info->lp_auto_pam4_link_speeds =
9083 		resp->link_partner_pam4_adv_speeds;
9084 	link_info->preemphasis = le32_to_cpu(resp->preemphasis);
9085 	link_info->phy_ver[0] = resp->phy_maj;
9086 	link_info->phy_ver[1] = resp->phy_min;
9087 	link_info->phy_ver[2] = resp->phy_bld;
9088 	link_info->media_type = resp->media_type;
9089 	link_info->phy_type = resp->phy_type;
9090 	link_info->transceiver = resp->xcvr_pkg_type;
9091 	link_info->phy_addr = resp->eee_config_phy_addr &
9092 			      PORT_PHY_QCFG_RESP_PHY_ADDR_MASK;
9093 	link_info->module_status = resp->module_status;
9094 
9095 	if (bp->flags & BNXT_FLAG_EEE_CAP) {
9096 		struct ethtool_eee *eee = &bp->eee;
9097 		u16 fw_speeds;
9098 
9099 		eee->eee_active = 0;
9100 		if (resp->eee_config_phy_addr &
9101 		    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) {
9102 			eee->eee_active = 1;
9103 			fw_speeds = le16_to_cpu(
9104 				resp->link_partner_adv_eee_link_speed_mask);
9105 			eee->lp_advertised =
9106 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
9107 		}
9108 
9109 		/* Pull initial EEE config */
9110 		if (!chng_link_state) {
9111 			if (resp->eee_config_phy_addr &
9112 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED)
9113 				eee->eee_enabled = 1;
9114 
9115 			fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask);
9116 			eee->advertised =
9117 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
9118 
9119 			if (resp->eee_config_phy_addr &
9120 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) {
9121 				__le32 tmr;
9122 
9123 				eee->tx_lpi_enabled = 1;
9124 				tmr = resp->xcvr_identifier_type_tx_lpi_timer;
9125 				eee->tx_lpi_timer = le32_to_cpu(tmr) &
9126 					PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK;
9127 			}
9128 		}
9129 	}
9130 
9131 	link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED;
9132 	if (bp->hwrm_spec_code >= 0x10504) {
9133 		link_info->fec_cfg = le16_to_cpu(resp->fec_cfg);
9134 		link_info->active_fec_sig_mode = resp->active_fec_signal_mode;
9135 	}
9136 	/* TODO: need to add more logic to report VF link */
9137 	if (chng_link_state) {
9138 		if (link_info->phy_link_status == BNXT_LINK_LINK)
9139 			link_info->link_up = 1;
9140 		else
9141 			link_info->link_up = 0;
9142 		if (link_up != link_info->link_up)
9143 			bnxt_report_link(bp);
9144 	} else {
9145 		/* alwasy link down if not require to update link state */
9146 		link_info->link_up = 0;
9147 	}
9148 	mutex_unlock(&bp->hwrm_cmd_lock);
9149 
9150 	if (!BNXT_PHY_CFG_ABLE(bp))
9151 		return 0;
9152 
9153 	/* Check if any advertised speeds are no longer supported. The caller
9154 	 * holds the link_lock mutex, so we can modify link_info settings.
9155 	 */
9156 	if (bnxt_support_dropped(link_info->advertising,
9157 				 link_info->support_auto_speeds)) {
9158 		link_info->advertising = link_info->support_auto_speeds;
9159 		support_changed = true;
9160 	}
9161 	if (bnxt_support_dropped(link_info->advertising_pam4,
9162 				 link_info->support_pam4_auto_speeds)) {
9163 		link_info->advertising_pam4 = link_info->support_pam4_auto_speeds;
9164 		support_changed = true;
9165 	}
9166 	if (support_changed && (link_info->autoneg & BNXT_AUTONEG_SPEED))
9167 		bnxt_hwrm_set_link_setting(bp, true, false);
9168 	return 0;
9169 }
9170 
9171 static void bnxt_get_port_module_status(struct bnxt *bp)
9172 {
9173 	struct bnxt_link_info *link_info = &bp->link_info;
9174 	struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp;
9175 	u8 module_status;
9176 
9177 	if (bnxt_update_link(bp, true))
9178 		return;
9179 
9180 	module_status = link_info->module_status;
9181 	switch (module_status) {
9182 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX:
9183 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN:
9184 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG:
9185 		netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n",
9186 			    bp->pf.port_id);
9187 		if (bp->hwrm_spec_code >= 0x10201) {
9188 			netdev_warn(bp->dev, "Module part number %s\n",
9189 				    resp->phy_vendor_partnumber);
9190 		}
9191 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX)
9192 			netdev_warn(bp->dev, "TX is disabled\n");
9193 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN)
9194 			netdev_warn(bp->dev, "SFP+ module is shutdown\n");
9195 	}
9196 }
9197 
9198 static void
9199 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
9200 {
9201 	if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
9202 		if (bp->hwrm_spec_code >= 0x10201)
9203 			req->auto_pause =
9204 				PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE;
9205 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
9206 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
9207 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
9208 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX;
9209 		req->enables |=
9210 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
9211 	} else {
9212 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
9213 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
9214 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
9215 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
9216 		req->enables |=
9217 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
9218 		if (bp->hwrm_spec_code >= 0x10201) {
9219 			req->auto_pause = req->force_pause;
9220 			req->enables |= cpu_to_le32(
9221 				PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
9222 		}
9223 	}
9224 }
9225 
9226 static void bnxt_hwrm_set_link_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
9227 {
9228 	if (bp->link_info.autoneg & BNXT_AUTONEG_SPEED) {
9229 		req->auto_mode |= PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK;
9230 		if (bp->link_info.advertising) {
9231 			req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
9232 			req->auto_link_speed_mask = cpu_to_le16(bp->link_info.advertising);
9233 		}
9234 		if (bp->link_info.advertising_pam4) {
9235 			req->enables |=
9236 				cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAM4_LINK_SPEED_MASK);
9237 			req->auto_link_pam4_speed_mask =
9238 				cpu_to_le16(bp->link_info.advertising_pam4);
9239 		}
9240 		req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
9241 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
9242 	} else {
9243 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
9244 		if (bp->link_info.req_signal_mode == BNXT_SIG_MODE_PAM4) {
9245 			req->force_pam4_link_speed = cpu_to_le16(bp->link_info.req_link_speed);
9246 			req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAM4_LINK_SPEED);
9247 		} else {
9248 			req->force_link_speed = cpu_to_le16(bp->link_info.req_link_speed);
9249 		}
9250 	}
9251 
9252 	/* tell chimp that the setting takes effect immediately */
9253 	req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
9254 }
9255 
9256 int bnxt_hwrm_set_pause(struct bnxt *bp)
9257 {
9258 	struct hwrm_port_phy_cfg_input req = {0};
9259 	int rc;
9260 
9261 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
9262 	bnxt_hwrm_set_pause_common(bp, &req);
9263 
9264 	if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
9265 	    bp->link_info.force_link_chng)
9266 		bnxt_hwrm_set_link_common(bp, &req);
9267 
9268 	mutex_lock(&bp->hwrm_cmd_lock);
9269 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9270 	if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
9271 		/* since changing of pause setting doesn't trigger any link
9272 		 * change event, the driver needs to update the current pause
9273 		 * result upon successfully return of the phy_cfg command
9274 		 */
9275 		bp->link_info.pause =
9276 		bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
9277 		bp->link_info.auto_pause_setting = 0;
9278 		if (!bp->link_info.force_link_chng)
9279 			bnxt_report_link(bp);
9280 	}
9281 	bp->link_info.force_link_chng = false;
9282 	mutex_unlock(&bp->hwrm_cmd_lock);
9283 	return rc;
9284 }
9285 
9286 static void bnxt_hwrm_set_eee(struct bnxt *bp,
9287 			      struct hwrm_port_phy_cfg_input *req)
9288 {
9289 	struct ethtool_eee *eee = &bp->eee;
9290 
9291 	if (eee->eee_enabled) {
9292 		u16 eee_speeds;
9293 		u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE;
9294 
9295 		if (eee->tx_lpi_enabled)
9296 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE;
9297 		else
9298 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE;
9299 
9300 		req->flags |= cpu_to_le32(flags);
9301 		eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised);
9302 		req->eee_link_speed_mask = cpu_to_le16(eee_speeds);
9303 		req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer);
9304 	} else {
9305 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE);
9306 	}
9307 }
9308 
9309 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee)
9310 {
9311 	struct hwrm_port_phy_cfg_input req = {0};
9312 
9313 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
9314 	if (set_pause)
9315 		bnxt_hwrm_set_pause_common(bp, &req);
9316 
9317 	bnxt_hwrm_set_link_common(bp, &req);
9318 
9319 	if (set_eee)
9320 		bnxt_hwrm_set_eee(bp, &req);
9321 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9322 }
9323 
9324 static int bnxt_hwrm_shutdown_link(struct bnxt *bp)
9325 {
9326 	struct hwrm_port_phy_cfg_input req = {0};
9327 
9328 	if (!BNXT_SINGLE_PF(bp))
9329 		return 0;
9330 
9331 	if (pci_num_vf(bp->pdev))
9332 		return 0;
9333 
9334 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
9335 	req.flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN);
9336 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9337 }
9338 
9339 static int bnxt_fw_init_one(struct bnxt *bp);
9340 
9341 static int bnxt_hwrm_if_change(struct bnxt *bp, bool up)
9342 {
9343 	struct hwrm_func_drv_if_change_output *resp = bp->hwrm_cmd_resp_addr;
9344 	struct hwrm_func_drv_if_change_input req = {0};
9345 	bool resc_reinit = false, fw_reset = false;
9346 	u32 flags = 0;
9347 	int rc;
9348 
9349 	if (!(bp->fw_cap & BNXT_FW_CAP_IF_CHANGE))
9350 		return 0;
9351 
9352 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_IF_CHANGE, -1, -1);
9353 	if (up)
9354 		req.flags = cpu_to_le32(FUNC_DRV_IF_CHANGE_REQ_FLAGS_UP);
9355 	mutex_lock(&bp->hwrm_cmd_lock);
9356 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9357 	if (!rc)
9358 		flags = le32_to_cpu(resp->flags);
9359 	mutex_unlock(&bp->hwrm_cmd_lock);
9360 	if (rc)
9361 		return rc;
9362 
9363 	if (!up)
9364 		return 0;
9365 
9366 	if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_RESC_CHANGE)
9367 		resc_reinit = true;
9368 	if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_HOT_FW_RESET_DONE)
9369 		fw_reset = true;
9370 
9371 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state) && !fw_reset) {
9372 		netdev_err(bp->dev, "RESET_DONE not set during FW reset.\n");
9373 		return -ENODEV;
9374 	}
9375 	if (resc_reinit || fw_reset) {
9376 		if (fw_reset) {
9377 			if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
9378 				bnxt_ulp_stop(bp);
9379 			bnxt_free_ctx_mem(bp);
9380 			kfree(bp->ctx);
9381 			bp->ctx = NULL;
9382 			bnxt_dcb_free(bp);
9383 			rc = bnxt_fw_init_one(bp);
9384 			if (rc) {
9385 				set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
9386 				return rc;
9387 			}
9388 			bnxt_clear_int_mode(bp);
9389 			rc = bnxt_init_int_mode(bp);
9390 			if (rc) {
9391 				netdev_err(bp->dev, "init int mode failed\n");
9392 				return rc;
9393 			}
9394 			set_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
9395 		}
9396 		if (BNXT_NEW_RM(bp)) {
9397 			struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
9398 
9399 			rc = bnxt_hwrm_func_resc_qcaps(bp, true);
9400 			hw_resc->resv_cp_rings = 0;
9401 			hw_resc->resv_stat_ctxs = 0;
9402 			hw_resc->resv_irqs = 0;
9403 			hw_resc->resv_tx_rings = 0;
9404 			hw_resc->resv_rx_rings = 0;
9405 			hw_resc->resv_hw_ring_grps = 0;
9406 			hw_resc->resv_vnics = 0;
9407 			if (!fw_reset) {
9408 				bp->tx_nr_rings = 0;
9409 				bp->rx_nr_rings = 0;
9410 			}
9411 		}
9412 	}
9413 	return 0;
9414 }
9415 
9416 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp)
9417 {
9418 	struct hwrm_port_led_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
9419 	struct hwrm_port_led_qcaps_input req = {0};
9420 	struct bnxt_pf_info *pf = &bp->pf;
9421 	int rc;
9422 
9423 	bp->num_leds = 0;
9424 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601)
9425 		return 0;
9426 
9427 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_LED_QCAPS, -1, -1);
9428 	req.port_id = cpu_to_le16(pf->port_id);
9429 	mutex_lock(&bp->hwrm_cmd_lock);
9430 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9431 	if (rc) {
9432 		mutex_unlock(&bp->hwrm_cmd_lock);
9433 		return rc;
9434 	}
9435 	if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) {
9436 		int i;
9437 
9438 		bp->num_leds = resp->num_leds;
9439 		memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) *
9440 						 bp->num_leds);
9441 		for (i = 0; i < bp->num_leds; i++) {
9442 			struct bnxt_led_info *led = &bp->leds[i];
9443 			__le16 caps = led->led_state_caps;
9444 
9445 			if (!led->led_group_id ||
9446 			    !BNXT_LED_ALT_BLINK_CAP(caps)) {
9447 				bp->num_leds = 0;
9448 				break;
9449 			}
9450 		}
9451 	}
9452 	mutex_unlock(&bp->hwrm_cmd_lock);
9453 	return 0;
9454 }
9455 
9456 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp)
9457 {
9458 	struct hwrm_wol_filter_alloc_input req = {0};
9459 	struct hwrm_wol_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
9460 	int rc;
9461 
9462 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_ALLOC, -1, -1);
9463 	req.port_id = cpu_to_le16(bp->pf.port_id);
9464 	req.wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT;
9465 	req.enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS);
9466 	memcpy(req.mac_address, bp->dev->dev_addr, ETH_ALEN);
9467 	mutex_lock(&bp->hwrm_cmd_lock);
9468 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9469 	if (!rc)
9470 		bp->wol_filter_id = resp->wol_filter_id;
9471 	mutex_unlock(&bp->hwrm_cmd_lock);
9472 	return rc;
9473 }
9474 
9475 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp)
9476 {
9477 	struct hwrm_wol_filter_free_input req = {0};
9478 
9479 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_FREE, -1, -1);
9480 	req.port_id = cpu_to_le16(bp->pf.port_id);
9481 	req.enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID);
9482 	req.wol_filter_id = bp->wol_filter_id;
9483 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9484 }
9485 
9486 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle)
9487 {
9488 	struct hwrm_wol_filter_qcfg_input req = {0};
9489 	struct hwrm_wol_filter_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
9490 	u16 next_handle = 0;
9491 	int rc;
9492 
9493 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_QCFG, -1, -1);
9494 	req.port_id = cpu_to_le16(bp->pf.port_id);
9495 	req.handle = cpu_to_le16(handle);
9496 	mutex_lock(&bp->hwrm_cmd_lock);
9497 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9498 	if (!rc) {
9499 		next_handle = le16_to_cpu(resp->next_handle);
9500 		if (next_handle != 0) {
9501 			if (resp->wol_type ==
9502 			    WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) {
9503 				bp->wol = 1;
9504 				bp->wol_filter_id = resp->wol_filter_id;
9505 			}
9506 		}
9507 	}
9508 	mutex_unlock(&bp->hwrm_cmd_lock);
9509 	return next_handle;
9510 }
9511 
9512 static void bnxt_get_wol_settings(struct bnxt *bp)
9513 {
9514 	u16 handle = 0;
9515 
9516 	bp->wol = 0;
9517 	if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP))
9518 		return;
9519 
9520 	do {
9521 		handle = bnxt_hwrm_get_wol_fltrs(bp, handle);
9522 	} while (handle && handle != 0xffff);
9523 }
9524 
9525 #ifdef CONFIG_BNXT_HWMON
9526 static ssize_t bnxt_show_temp(struct device *dev,
9527 			      struct device_attribute *devattr, char *buf)
9528 {
9529 	struct hwrm_temp_monitor_query_input req = {0};
9530 	struct hwrm_temp_monitor_query_output *resp;
9531 	struct bnxt *bp = dev_get_drvdata(dev);
9532 	u32 len = 0;
9533 	int rc;
9534 
9535 	resp = bp->hwrm_cmd_resp_addr;
9536 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TEMP_MONITOR_QUERY, -1, -1);
9537 	mutex_lock(&bp->hwrm_cmd_lock);
9538 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9539 	if (!rc)
9540 		len = sprintf(buf, "%u\n", resp->temp * 1000); /* display millidegree */
9541 	mutex_unlock(&bp->hwrm_cmd_lock);
9542 	return rc ?: len;
9543 }
9544 static SENSOR_DEVICE_ATTR(temp1_input, 0444, bnxt_show_temp, NULL, 0);
9545 
9546 static struct attribute *bnxt_attrs[] = {
9547 	&sensor_dev_attr_temp1_input.dev_attr.attr,
9548 	NULL
9549 };
9550 ATTRIBUTE_GROUPS(bnxt);
9551 
9552 static void bnxt_hwmon_close(struct bnxt *bp)
9553 {
9554 	if (bp->hwmon_dev) {
9555 		hwmon_device_unregister(bp->hwmon_dev);
9556 		bp->hwmon_dev = NULL;
9557 	}
9558 }
9559 
9560 static void bnxt_hwmon_open(struct bnxt *bp)
9561 {
9562 	struct hwrm_temp_monitor_query_input req = {0};
9563 	struct pci_dev *pdev = bp->pdev;
9564 	int rc;
9565 
9566 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TEMP_MONITOR_QUERY, -1, -1);
9567 	rc = hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9568 	if (rc == -EACCES || rc == -EOPNOTSUPP) {
9569 		bnxt_hwmon_close(bp);
9570 		return;
9571 	}
9572 
9573 	if (bp->hwmon_dev)
9574 		return;
9575 
9576 	bp->hwmon_dev = hwmon_device_register_with_groups(&pdev->dev,
9577 							  DRV_MODULE_NAME, bp,
9578 							  bnxt_groups);
9579 	if (IS_ERR(bp->hwmon_dev)) {
9580 		bp->hwmon_dev = NULL;
9581 		dev_warn(&pdev->dev, "Cannot register hwmon device\n");
9582 	}
9583 }
9584 #else
9585 static void bnxt_hwmon_close(struct bnxt *bp)
9586 {
9587 }
9588 
9589 static void bnxt_hwmon_open(struct bnxt *bp)
9590 {
9591 }
9592 #endif
9593 
9594 static bool bnxt_eee_config_ok(struct bnxt *bp)
9595 {
9596 	struct ethtool_eee *eee = &bp->eee;
9597 	struct bnxt_link_info *link_info = &bp->link_info;
9598 
9599 	if (!(bp->flags & BNXT_FLAG_EEE_CAP))
9600 		return true;
9601 
9602 	if (eee->eee_enabled) {
9603 		u32 advertising =
9604 			_bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0);
9605 
9606 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
9607 			eee->eee_enabled = 0;
9608 			return false;
9609 		}
9610 		if (eee->advertised & ~advertising) {
9611 			eee->advertised = advertising & eee->supported;
9612 			return false;
9613 		}
9614 	}
9615 	return true;
9616 }
9617 
9618 static int bnxt_update_phy_setting(struct bnxt *bp)
9619 {
9620 	int rc;
9621 	bool update_link = false;
9622 	bool update_pause = false;
9623 	bool update_eee = false;
9624 	struct bnxt_link_info *link_info = &bp->link_info;
9625 
9626 	rc = bnxt_update_link(bp, true);
9627 	if (rc) {
9628 		netdev_err(bp->dev, "failed to update link (rc: %x)\n",
9629 			   rc);
9630 		return rc;
9631 	}
9632 	if (!BNXT_SINGLE_PF(bp))
9633 		return 0;
9634 
9635 	if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
9636 	    (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) !=
9637 	    link_info->req_flow_ctrl)
9638 		update_pause = true;
9639 	if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
9640 	    link_info->force_pause_setting != link_info->req_flow_ctrl)
9641 		update_pause = true;
9642 	if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
9643 		if (BNXT_AUTO_MODE(link_info->auto_mode))
9644 			update_link = true;
9645 		if (link_info->req_signal_mode == BNXT_SIG_MODE_NRZ &&
9646 		    link_info->req_link_speed != link_info->force_link_speed)
9647 			update_link = true;
9648 		else if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4 &&
9649 			 link_info->req_link_speed != link_info->force_pam4_link_speed)
9650 			update_link = true;
9651 		if (link_info->req_duplex != link_info->duplex_setting)
9652 			update_link = true;
9653 	} else {
9654 		if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
9655 			update_link = true;
9656 		if (link_info->advertising != link_info->auto_link_speeds ||
9657 		    link_info->advertising_pam4 != link_info->auto_pam4_link_speeds)
9658 			update_link = true;
9659 	}
9660 
9661 	/* The last close may have shutdown the link, so need to call
9662 	 * PHY_CFG to bring it back up.
9663 	 */
9664 	if (!bp->link_info.link_up)
9665 		update_link = true;
9666 
9667 	if (!bnxt_eee_config_ok(bp))
9668 		update_eee = true;
9669 
9670 	if (update_link)
9671 		rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee);
9672 	else if (update_pause)
9673 		rc = bnxt_hwrm_set_pause(bp);
9674 	if (rc) {
9675 		netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
9676 			   rc);
9677 		return rc;
9678 	}
9679 
9680 	return rc;
9681 }
9682 
9683 /* Common routine to pre-map certain register block to different GRC window.
9684  * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
9685  * in PF and 3 windows in VF that can be customized to map in different
9686  * register blocks.
9687  */
9688 static void bnxt_preset_reg_win(struct bnxt *bp)
9689 {
9690 	if (BNXT_PF(bp)) {
9691 		/* CAG registers map to GRC window #4 */
9692 		writel(BNXT_CAG_REG_BASE,
9693 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
9694 	}
9695 }
9696 
9697 static int bnxt_init_dflt_ring_mode(struct bnxt *bp);
9698 
9699 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
9700 {
9701 	int rc = 0;
9702 
9703 	bnxt_preset_reg_win(bp);
9704 	netif_carrier_off(bp->dev);
9705 	if (irq_re_init) {
9706 		/* Reserve rings now if none were reserved at driver probe. */
9707 		rc = bnxt_init_dflt_ring_mode(bp);
9708 		if (rc) {
9709 			netdev_err(bp->dev, "Failed to reserve default rings at open\n");
9710 			return rc;
9711 		}
9712 	}
9713 	rc = bnxt_reserve_rings(bp, irq_re_init);
9714 	if (rc)
9715 		return rc;
9716 	if ((bp->flags & BNXT_FLAG_RFS) &&
9717 	    !(bp->flags & BNXT_FLAG_USING_MSIX)) {
9718 		/* disable RFS if falling back to INTA */
9719 		bp->dev->hw_features &= ~NETIF_F_NTUPLE;
9720 		bp->flags &= ~BNXT_FLAG_RFS;
9721 	}
9722 
9723 	rc = bnxt_alloc_mem(bp, irq_re_init);
9724 	if (rc) {
9725 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
9726 		goto open_err_free_mem;
9727 	}
9728 
9729 	if (irq_re_init) {
9730 		bnxt_init_napi(bp);
9731 		rc = bnxt_request_irq(bp);
9732 		if (rc) {
9733 			netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
9734 			goto open_err_irq;
9735 		}
9736 	}
9737 
9738 	rc = bnxt_init_nic(bp, irq_re_init);
9739 	if (rc) {
9740 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
9741 		goto open_err_irq;
9742 	}
9743 
9744 	bnxt_enable_napi(bp);
9745 	bnxt_debug_dev_init(bp);
9746 
9747 	if (link_re_init) {
9748 		mutex_lock(&bp->link_lock);
9749 		rc = bnxt_update_phy_setting(bp);
9750 		mutex_unlock(&bp->link_lock);
9751 		if (rc) {
9752 			netdev_warn(bp->dev, "failed to update phy settings\n");
9753 			if (BNXT_SINGLE_PF(bp)) {
9754 				bp->link_info.phy_retry = true;
9755 				bp->link_info.phy_retry_expires =
9756 					jiffies + 5 * HZ;
9757 			}
9758 		}
9759 	}
9760 
9761 	if (irq_re_init)
9762 		udp_tunnel_nic_reset_ntf(bp->dev);
9763 
9764 	set_bit(BNXT_STATE_OPEN, &bp->state);
9765 	bnxt_enable_int(bp);
9766 	/* Enable TX queues */
9767 	bnxt_tx_enable(bp);
9768 	mod_timer(&bp->timer, jiffies + bp->current_interval);
9769 	/* Poll link status and check for SFP+ module status */
9770 	bnxt_get_port_module_status(bp);
9771 
9772 	/* VF-reps may need to be re-opened after the PF is re-opened */
9773 	if (BNXT_PF(bp))
9774 		bnxt_vf_reps_open(bp);
9775 	return 0;
9776 
9777 open_err_irq:
9778 	bnxt_del_napi(bp);
9779 
9780 open_err_free_mem:
9781 	bnxt_free_skbs(bp);
9782 	bnxt_free_irq(bp);
9783 	bnxt_free_mem(bp, true);
9784 	return rc;
9785 }
9786 
9787 /* rtnl_lock held */
9788 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
9789 {
9790 	int rc = 0;
9791 
9792 	rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
9793 	if (rc) {
9794 		netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
9795 		dev_close(bp->dev);
9796 	}
9797 	return rc;
9798 }
9799 
9800 /* rtnl_lock held, open the NIC half way by allocating all resources, but
9801  * NAPI, IRQ, and TX are not enabled.  This is mainly used for offline
9802  * self tests.
9803  */
9804 int bnxt_half_open_nic(struct bnxt *bp)
9805 {
9806 	int rc = 0;
9807 
9808 	rc = bnxt_alloc_mem(bp, false);
9809 	if (rc) {
9810 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
9811 		goto half_open_err;
9812 	}
9813 	rc = bnxt_init_nic(bp, false);
9814 	if (rc) {
9815 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
9816 		goto half_open_err;
9817 	}
9818 	return 0;
9819 
9820 half_open_err:
9821 	bnxt_free_skbs(bp);
9822 	bnxt_free_mem(bp, false);
9823 	dev_close(bp->dev);
9824 	return rc;
9825 }
9826 
9827 /* rtnl_lock held, this call can only be made after a previous successful
9828  * call to bnxt_half_open_nic().
9829  */
9830 void bnxt_half_close_nic(struct bnxt *bp)
9831 {
9832 	bnxt_hwrm_resource_free(bp, false, false);
9833 	bnxt_free_skbs(bp);
9834 	bnxt_free_mem(bp, false);
9835 }
9836 
9837 static void bnxt_reenable_sriov(struct bnxt *bp)
9838 {
9839 	if (BNXT_PF(bp)) {
9840 		struct bnxt_pf_info *pf = &bp->pf;
9841 		int n = pf->active_vfs;
9842 
9843 		if (n)
9844 			bnxt_cfg_hw_sriov(bp, &n, true);
9845 	}
9846 }
9847 
9848 static int bnxt_open(struct net_device *dev)
9849 {
9850 	struct bnxt *bp = netdev_priv(dev);
9851 	int rc;
9852 
9853 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
9854 		netdev_err(bp->dev, "A previous firmware reset did not complete, aborting\n");
9855 		return -ENODEV;
9856 	}
9857 
9858 	rc = bnxt_hwrm_if_change(bp, true);
9859 	if (rc)
9860 		return rc;
9861 	rc = __bnxt_open_nic(bp, true, true);
9862 	if (rc) {
9863 		bnxt_hwrm_if_change(bp, false);
9864 	} else {
9865 		if (test_and_clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) {
9866 			if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
9867 				bnxt_ulp_start(bp, 0);
9868 				bnxt_reenable_sriov(bp);
9869 			}
9870 		}
9871 		bnxt_hwmon_open(bp);
9872 	}
9873 
9874 	return rc;
9875 }
9876 
9877 static bool bnxt_drv_busy(struct bnxt *bp)
9878 {
9879 	return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) ||
9880 		test_bit(BNXT_STATE_READ_STATS, &bp->state));
9881 }
9882 
9883 static void bnxt_get_ring_stats(struct bnxt *bp,
9884 				struct rtnl_link_stats64 *stats);
9885 
9886 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init,
9887 			     bool link_re_init)
9888 {
9889 	/* Close the VF-reps before closing PF */
9890 	if (BNXT_PF(bp))
9891 		bnxt_vf_reps_close(bp);
9892 
9893 	/* Change device state to avoid TX queue wake up's */
9894 	bnxt_tx_disable(bp);
9895 
9896 	clear_bit(BNXT_STATE_OPEN, &bp->state);
9897 	smp_mb__after_atomic();
9898 	while (bnxt_drv_busy(bp))
9899 		msleep(20);
9900 
9901 	/* Flush rings and and disable interrupts */
9902 	bnxt_shutdown_nic(bp, irq_re_init);
9903 
9904 	/* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
9905 
9906 	bnxt_debug_dev_exit(bp);
9907 	bnxt_disable_napi(bp);
9908 	del_timer_sync(&bp->timer);
9909 	bnxt_free_skbs(bp);
9910 
9911 	/* Save ring stats before shutdown */
9912 	if (bp->bnapi && irq_re_init)
9913 		bnxt_get_ring_stats(bp, &bp->net_stats_prev);
9914 	if (irq_re_init) {
9915 		bnxt_free_irq(bp);
9916 		bnxt_del_napi(bp);
9917 	}
9918 	bnxt_free_mem(bp, irq_re_init);
9919 }
9920 
9921 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
9922 {
9923 	int rc = 0;
9924 
9925 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
9926 		/* If we get here, it means firmware reset is in progress
9927 		 * while we are trying to close.  We can safely proceed with
9928 		 * the close because we are holding rtnl_lock().  Some firmware
9929 		 * messages may fail as we proceed to close.  We set the
9930 		 * ABORT_ERR flag here so that the FW reset thread will later
9931 		 * abort when it gets the rtnl_lock() and sees the flag.
9932 		 */
9933 		netdev_warn(bp->dev, "FW reset in progress during close, FW reset will be aborted\n");
9934 		set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
9935 	}
9936 
9937 #ifdef CONFIG_BNXT_SRIOV
9938 	if (bp->sriov_cfg) {
9939 		rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
9940 						      !bp->sriov_cfg,
9941 						      BNXT_SRIOV_CFG_WAIT_TMO);
9942 		if (rc)
9943 			netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
9944 	}
9945 #endif
9946 	__bnxt_close_nic(bp, irq_re_init, link_re_init);
9947 	return rc;
9948 }
9949 
9950 static int bnxt_close(struct net_device *dev)
9951 {
9952 	struct bnxt *bp = netdev_priv(dev);
9953 
9954 	bnxt_hwmon_close(bp);
9955 	bnxt_close_nic(bp, true, true);
9956 	bnxt_hwrm_shutdown_link(bp);
9957 	bnxt_hwrm_if_change(bp, false);
9958 	return 0;
9959 }
9960 
9961 static int bnxt_hwrm_port_phy_read(struct bnxt *bp, u16 phy_addr, u16 reg,
9962 				   u16 *val)
9963 {
9964 	struct hwrm_port_phy_mdio_read_output *resp = bp->hwrm_cmd_resp_addr;
9965 	struct hwrm_port_phy_mdio_read_input req = {0};
9966 	int rc;
9967 
9968 	if (bp->hwrm_spec_code < 0x10a00)
9969 		return -EOPNOTSUPP;
9970 
9971 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_MDIO_READ, -1, -1);
9972 	req.port_id = cpu_to_le16(bp->pf.port_id);
9973 	req.phy_addr = phy_addr;
9974 	req.reg_addr = cpu_to_le16(reg & 0x1f);
9975 	if (mdio_phy_id_is_c45(phy_addr)) {
9976 		req.cl45_mdio = 1;
9977 		req.phy_addr = mdio_phy_id_prtad(phy_addr);
9978 		req.dev_addr = mdio_phy_id_devad(phy_addr);
9979 		req.reg_addr = cpu_to_le16(reg);
9980 	}
9981 
9982 	mutex_lock(&bp->hwrm_cmd_lock);
9983 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9984 	if (!rc)
9985 		*val = le16_to_cpu(resp->reg_data);
9986 	mutex_unlock(&bp->hwrm_cmd_lock);
9987 	return rc;
9988 }
9989 
9990 static int bnxt_hwrm_port_phy_write(struct bnxt *bp, u16 phy_addr, u16 reg,
9991 				    u16 val)
9992 {
9993 	struct hwrm_port_phy_mdio_write_input req = {0};
9994 
9995 	if (bp->hwrm_spec_code < 0x10a00)
9996 		return -EOPNOTSUPP;
9997 
9998 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_MDIO_WRITE, -1, -1);
9999 	req.port_id = cpu_to_le16(bp->pf.port_id);
10000 	req.phy_addr = phy_addr;
10001 	req.reg_addr = cpu_to_le16(reg & 0x1f);
10002 	if (mdio_phy_id_is_c45(phy_addr)) {
10003 		req.cl45_mdio = 1;
10004 		req.phy_addr = mdio_phy_id_prtad(phy_addr);
10005 		req.dev_addr = mdio_phy_id_devad(phy_addr);
10006 		req.reg_addr = cpu_to_le16(reg);
10007 	}
10008 	req.reg_data = cpu_to_le16(val);
10009 
10010 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
10011 }
10012 
10013 /* rtnl_lock held */
10014 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
10015 {
10016 	struct mii_ioctl_data *mdio = if_mii(ifr);
10017 	struct bnxt *bp = netdev_priv(dev);
10018 	int rc;
10019 
10020 	switch (cmd) {
10021 	case SIOCGMIIPHY:
10022 		mdio->phy_id = bp->link_info.phy_addr;
10023 
10024 		fallthrough;
10025 	case SIOCGMIIREG: {
10026 		u16 mii_regval = 0;
10027 
10028 		if (!netif_running(dev))
10029 			return -EAGAIN;
10030 
10031 		rc = bnxt_hwrm_port_phy_read(bp, mdio->phy_id, mdio->reg_num,
10032 					     &mii_regval);
10033 		mdio->val_out = mii_regval;
10034 		return rc;
10035 	}
10036 
10037 	case SIOCSMIIREG:
10038 		if (!netif_running(dev))
10039 			return -EAGAIN;
10040 
10041 		return bnxt_hwrm_port_phy_write(bp, mdio->phy_id, mdio->reg_num,
10042 						mdio->val_in);
10043 
10044 	default:
10045 		/* do nothing */
10046 		break;
10047 	}
10048 	return -EOPNOTSUPP;
10049 }
10050 
10051 static void bnxt_get_ring_stats(struct bnxt *bp,
10052 				struct rtnl_link_stats64 *stats)
10053 {
10054 	int i;
10055 
10056 	for (i = 0; i < bp->cp_nr_rings; i++) {
10057 		struct bnxt_napi *bnapi = bp->bnapi[i];
10058 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
10059 		u64 *sw = cpr->stats.sw_stats;
10060 
10061 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts);
10062 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts);
10063 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts);
10064 
10065 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts);
10066 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts);
10067 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts);
10068 
10069 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes);
10070 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes);
10071 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes);
10072 
10073 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes);
10074 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes);
10075 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes);
10076 
10077 		stats->rx_missed_errors +=
10078 			BNXT_GET_RING_STATS64(sw, rx_discard_pkts);
10079 
10080 		stats->multicast += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts);
10081 
10082 		stats->tx_dropped += BNXT_GET_RING_STATS64(sw, tx_error_pkts);
10083 	}
10084 }
10085 
10086 static void bnxt_add_prev_stats(struct bnxt *bp,
10087 				struct rtnl_link_stats64 *stats)
10088 {
10089 	struct rtnl_link_stats64 *prev_stats = &bp->net_stats_prev;
10090 
10091 	stats->rx_packets += prev_stats->rx_packets;
10092 	stats->tx_packets += prev_stats->tx_packets;
10093 	stats->rx_bytes += prev_stats->rx_bytes;
10094 	stats->tx_bytes += prev_stats->tx_bytes;
10095 	stats->rx_missed_errors += prev_stats->rx_missed_errors;
10096 	stats->multicast += prev_stats->multicast;
10097 	stats->tx_dropped += prev_stats->tx_dropped;
10098 }
10099 
10100 static void
10101 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
10102 {
10103 	struct bnxt *bp = netdev_priv(dev);
10104 
10105 	set_bit(BNXT_STATE_READ_STATS, &bp->state);
10106 	/* Make sure bnxt_close_nic() sees that we are reading stats before
10107 	 * we check the BNXT_STATE_OPEN flag.
10108 	 */
10109 	smp_mb__after_atomic();
10110 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
10111 		clear_bit(BNXT_STATE_READ_STATS, &bp->state);
10112 		*stats = bp->net_stats_prev;
10113 		return;
10114 	}
10115 
10116 	bnxt_get_ring_stats(bp, stats);
10117 	bnxt_add_prev_stats(bp, stats);
10118 
10119 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
10120 		u64 *rx = bp->port_stats.sw_stats;
10121 		u64 *tx = bp->port_stats.sw_stats +
10122 			  BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
10123 
10124 		stats->rx_crc_errors =
10125 			BNXT_GET_RX_PORT_STATS64(rx, rx_fcs_err_frames);
10126 		stats->rx_frame_errors =
10127 			BNXT_GET_RX_PORT_STATS64(rx, rx_align_err_frames);
10128 		stats->rx_length_errors =
10129 			BNXT_GET_RX_PORT_STATS64(rx, rx_undrsz_frames) +
10130 			BNXT_GET_RX_PORT_STATS64(rx, rx_ovrsz_frames) +
10131 			BNXT_GET_RX_PORT_STATS64(rx, rx_runt_frames);
10132 		stats->rx_errors =
10133 			BNXT_GET_RX_PORT_STATS64(rx, rx_false_carrier_frames) +
10134 			BNXT_GET_RX_PORT_STATS64(rx, rx_jbr_frames);
10135 		stats->collisions =
10136 			BNXT_GET_TX_PORT_STATS64(tx, tx_total_collisions);
10137 		stats->tx_fifo_errors =
10138 			BNXT_GET_TX_PORT_STATS64(tx, tx_fifo_underruns);
10139 		stats->tx_errors = BNXT_GET_TX_PORT_STATS64(tx, tx_err);
10140 	}
10141 	clear_bit(BNXT_STATE_READ_STATS, &bp->state);
10142 }
10143 
10144 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
10145 {
10146 	struct net_device *dev = bp->dev;
10147 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
10148 	struct netdev_hw_addr *ha;
10149 	u8 *haddr;
10150 	int mc_count = 0;
10151 	bool update = false;
10152 	int off = 0;
10153 
10154 	netdev_for_each_mc_addr(ha, dev) {
10155 		if (mc_count >= BNXT_MAX_MC_ADDRS) {
10156 			*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
10157 			vnic->mc_list_count = 0;
10158 			return false;
10159 		}
10160 		haddr = ha->addr;
10161 		if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
10162 			memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
10163 			update = true;
10164 		}
10165 		off += ETH_ALEN;
10166 		mc_count++;
10167 	}
10168 	if (mc_count)
10169 		*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
10170 
10171 	if (mc_count != vnic->mc_list_count) {
10172 		vnic->mc_list_count = mc_count;
10173 		update = true;
10174 	}
10175 	return update;
10176 }
10177 
10178 static bool bnxt_uc_list_updated(struct bnxt *bp)
10179 {
10180 	struct net_device *dev = bp->dev;
10181 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
10182 	struct netdev_hw_addr *ha;
10183 	int off = 0;
10184 
10185 	if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
10186 		return true;
10187 
10188 	netdev_for_each_uc_addr(ha, dev) {
10189 		if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
10190 			return true;
10191 
10192 		off += ETH_ALEN;
10193 	}
10194 	return false;
10195 }
10196 
10197 static void bnxt_set_rx_mode(struct net_device *dev)
10198 {
10199 	struct bnxt *bp = netdev_priv(dev);
10200 	struct bnxt_vnic_info *vnic;
10201 	bool mc_update = false;
10202 	bool uc_update;
10203 	u32 mask;
10204 
10205 	if (!test_bit(BNXT_STATE_OPEN, &bp->state))
10206 		return;
10207 
10208 	vnic = &bp->vnic_info[0];
10209 	mask = vnic->rx_mask;
10210 	mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
10211 		  CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
10212 		  CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST |
10213 		  CFA_L2_SET_RX_MASK_REQ_MASK_BCAST);
10214 
10215 	if ((dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
10216 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
10217 
10218 	uc_update = bnxt_uc_list_updated(bp);
10219 
10220 	if (dev->flags & IFF_BROADCAST)
10221 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
10222 	if (dev->flags & IFF_ALLMULTI) {
10223 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
10224 		vnic->mc_list_count = 0;
10225 	} else {
10226 		mc_update = bnxt_mc_list_updated(bp, &mask);
10227 	}
10228 
10229 	if (mask != vnic->rx_mask || uc_update || mc_update) {
10230 		vnic->rx_mask = mask;
10231 
10232 		set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
10233 		bnxt_queue_sp_work(bp);
10234 	}
10235 }
10236 
10237 static int bnxt_cfg_rx_mode(struct bnxt *bp)
10238 {
10239 	struct net_device *dev = bp->dev;
10240 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
10241 	struct netdev_hw_addr *ha;
10242 	int i, off = 0, rc;
10243 	bool uc_update;
10244 
10245 	netif_addr_lock_bh(dev);
10246 	uc_update = bnxt_uc_list_updated(bp);
10247 	netif_addr_unlock_bh(dev);
10248 
10249 	if (!uc_update)
10250 		goto skip_uc;
10251 
10252 	mutex_lock(&bp->hwrm_cmd_lock);
10253 	for (i = 1; i < vnic->uc_filter_count; i++) {
10254 		struct hwrm_cfa_l2_filter_free_input req = {0};
10255 
10256 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_FREE, -1,
10257 				       -1);
10258 
10259 		req.l2_filter_id = vnic->fw_l2_filter_id[i];
10260 
10261 		rc = _hwrm_send_message(bp, &req, sizeof(req),
10262 					HWRM_CMD_TIMEOUT);
10263 	}
10264 	mutex_unlock(&bp->hwrm_cmd_lock);
10265 
10266 	vnic->uc_filter_count = 1;
10267 
10268 	netif_addr_lock_bh(dev);
10269 	if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
10270 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
10271 	} else {
10272 		netdev_for_each_uc_addr(ha, dev) {
10273 			memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
10274 			off += ETH_ALEN;
10275 			vnic->uc_filter_count++;
10276 		}
10277 	}
10278 	netif_addr_unlock_bh(dev);
10279 
10280 	for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
10281 		rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
10282 		if (rc) {
10283 			netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n",
10284 				   rc);
10285 			vnic->uc_filter_count = i;
10286 			return rc;
10287 		}
10288 	}
10289 
10290 skip_uc:
10291 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
10292 	if (rc && vnic->mc_list_count) {
10293 		netdev_info(bp->dev, "Failed setting MC filters rc: %d, turning on ALL_MCAST mode\n",
10294 			    rc);
10295 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
10296 		vnic->mc_list_count = 0;
10297 		rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
10298 	}
10299 	if (rc)
10300 		netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %d\n",
10301 			   rc);
10302 
10303 	return rc;
10304 }
10305 
10306 static bool bnxt_can_reserve_rings(struct bnxt *bp)
10307 {
10308 #ifdef CONFIG_BNXT_SRIOV
10309 	if (BNXT_NEW_RM(bp) && BNXT_VF(bp)) {
10310 		struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
10311 
10312 		/* No minimum rings were provisioned by the PF.  Don't
10313 		 * reserve rings by default when device is down.
10314 		 */
10315 		if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings)
10316 			return true;
10317 
10318 		if (!netif_running(bp->dev))
10319 			return false;
10320 	}
10321 #endif
10322 	return true;
10323 }
10324 
10325 /* If the chip and firmware supports RFS */
10326 static bool bnxt_rfs_supported(struct bnxt *bp)
10327 {
10328 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
10329 		if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2)
10330 			return true;
10331 		return false;
10332 	}
10333 	if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
10334 		return true;
10335 	if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
10336 		return true;
10337 	return false;
10338 }
10339 
10340 /* If runtime conditions support RFS */
10341 static bool bnxt_rfs_capable(struct bnxt *bp)
10342 {
10343 #ifdef CONFIG_RFS_ACCEL
10344 	int vnics, max_vnics, max_rss_ctxs;
10345 
10346 	if (bp->flags & BNXT_FLAG_CHIP_P5)
10347 		return bnxt_rfs_supported(bp);
10348 	if (!(bp->flags & BNXT_FLAG_MSIX_CAP) || !bnxt_can_reserve_rings(bp))
10349 		return false;
10350 
10351 	vnics = 1 + bp->rx_nr_rings;
10352 	max_vnics = bnxt_get_max_func_vnics(bp);
10353 	max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp);
10354 
10355 	/* RSS contexts not a limiting factor */
10356 	if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
10357 		max_rss_ctxs = max_vnics;
10358 	if (vnics > max_vnics || vnics > max_rss_ctxs) {
10359 		if (bp->rx_nr_rings > 1)
10360 			netdev_warn(bp->dev,
10361 				    "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n",
10362 				    min(max_rss_ctxs - 1, max_vnics - 1));
10363 		return false;
10364 	}
10365 
10366 	if (!BNXT_NEW_RM(bp))
10367 		return true;
10368 
10369 	if (vnics == bp->hw_resc.resv_vnics)
10370 		return true;
10371 
10372 	bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, vnics);
10373 	if (vnics <= bp->hw_resc.resv_vnics)
10374 		return true;
10375 
10376 	netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n");
10377 	bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, 1);
10378 	return false;
10379 #else
10380 	return false;
10381 #endif
10382 }
10383 
10384 static netdev_features_t bnxt_fix_features(struct net_device *dev,
10385 					   netdev_features_t features)
10386 {
10387 	struct bnxt *bp = netdev_priv(dev);
10388 	netdev_features_t vlan_features;
10389 
10390 	if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp))
10391 		features &= ~NETIF_F_NTUPLE;
10392 
10393 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
10394 		features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
10395 
10396 	if (!(features & NETIF_F_GRO))
10397 		features &= ~NETIF_F_GRO_HW;
10398 
10399 	if (features & NETIF_F_GRO_HW)
10400 		features &= ~NETIF_F_LRO;
10401 
10402 	/* Both CTAG and STAG VLAN accelaration on the RX side have to be
10403 	 * turned on or off together.
10404 	 */
10405 	vlan_features = features & BNXT_HW_FEATURE_VLAN_ALL_RX;
10406 	if (vlan_features != BNXT_HW_FEATURE_VLAN_ALL_RX) {
10407 		if (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)
10408 			features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX;
10409 		else if (vlan_features)
10410 			features |= BNXT_HW_FEATURE_VLAN_ALL_RX;
10411 	}
10412 #ifdef CONFIG_BNXT_SRIOV
10413 	if (BNXT_VF(bp) && bp->vf.vlan)
10414 		features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX;
10415 #endif
10416 	return features;
10417 }
10418 
10419 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
10420 {
10421 	struct bnxt *bp = netdev_priv(dev);
10422 	u32 flags = bp->flags;
10423 	u32 changes;
10424 	int rc = 0;
10425 	bool re_init = false;
10426 	bool update_tpa = false;
10427 
10428 	flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
10429 	if (features & NETIF_F_GRO_HW)
10430 		flags |= BNXT_FLAG_GRO;
10431 	else if (features & NETIF_F_LRO)
10432 		flags |= BNXT_FLAG_LRO;
10433 
10434 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
10435 		flags &= ~BNXT_FLAG_TPA;
10436 
10437 	if (features & BNXT_HW_FEATURE_VLAN_ALL_RX)
10438 		flags |= BNXT_FLAG_STRIP_VLAN;
10439 
10440 	if (features & NETIF_F_NTUPLE)
10441 		flags |= BNXT_FLAG_RFS;
10442 
10443 	changes = flags ^ bp->flags;
10444 	if (changes & BNXT_FLAG_TPA) {
10445 		update_tpa = true;
10446 		if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
10447 		    (flags & BNXT_FLAG_TPA) == 0 ||
10448 		    (bp->flags & BNXT_FLAG_CHIP_P5))
10449 			re_init = true;
10450 	}
10451 
10452 	if (changes & ~BNXT_FLAG_TPA)
10453 		re_init = true;
10454 
10455 	if (flags != bp->flags) {
10456 		u32 old_flags = bp->flags;
10457 
10458 		if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
10459 			bp->flags = flags;
10460 			if (update_tpa)
10461 				bnxt_set_ring_params(bp);
10462 			return rc;
10463 		}
10464 
10465 		if (re_init) {
10466 			bnxt_close_nic(bp, false, false);
10467 			bp->flags = flags;
10468 			if (update_tpa)
10469 				bnxt_set_ring_params(bp);
10470 
10471 			return bnxt_open_nic(bp, false, false);
10472 		}
10473 		if (update_tpa) {
10474 			bp->flags = flags;
10475 			rc = bnxt_set_tpa(bp,
10476 					  (flags & BNXT_FLAG_TPA) ?
10477 					  true : false);
10478 			if (rc)
10479 				bp->flags = old_flags;
10480 		}
10481 	}
10482 	return rc;
10483 }
10484 
10485 int bnxt_dbg_hwrm_rd_reg(struct bnxt *bp, u32 reg_off, u16 num_words,
10486 			 u32 *reg_buf)
10487 {
10488 	struct hwrm_dbg_read_direct_output *resp = bp->hwrm_cmd_resp_addr;
10489 	struct hwrm_dbg_read_direct_input req = {0};
10490 	__le32 *dbg_reg_buf;
10491 	dma_addr_t mapping;
10492 	int rc, i;
10493 
10494 	dbg_reg_buf = dma_alloc_coherent(&bp->pdev->dev, num_words * 4,
10495 					 &mapping, GFP_KERNEL);
10496 	if (!dbg_reg_buf)
10497 		return -ENOMEM;
10498 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_DBG_READ_DIRECT, -1, -1);
10499 	req.host_dest_addr = cpu_to_le64(mapping);
10500 	req.read_addr = cpu_to_le32(reg_off + CHIMP_REG_VIEW_ADDR);
10501 	req.read_len32 = cpu_to_le32(num_words);
10502 	mutex_lock(&bp->hwrm_cmd_lock);
10503 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
10504 	if (rc || resp->error_code) {
10505 		rc = -EIO;
10506 		goto dbg_rd_reg_exit;
10507 	}
10508 	for (i = 0; i < num_words; i++)
10509 		reg_buf[i] = le32_to_cpu(dbg_reg_buf[i]);
10510 
10511 dbg_rd_reg_exit:
10512 	mutex_unlock(&bp->hwrm_cmd_lock);
10513 	dma_free_coherent(&bp->pdev->dev, num_words * 4, dbg_reg_buf, mapping);
10514 	return rc;
10515 }
10516 
10517 static int bnxt_dbg_hwrm_ring_info_get(struct bnxt *bp, u8 ring_type,
10518 				       u32 ring_id, u32 *prod, u32 *cons)
10519 {
10520 	struct hwrm_dbg_ring_info_get_output *resp = bp->hwrm_cmd_resp_addr;
10521 	struct hwrm_dbg_ring_info_get_input req = {0};
10522 	int rc;
10523 
10524 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_DBG_RING_INFO_GET, -1, -1);
10525 	req.ring_type = ring_type;
10526 	req.fw_ring_id = cpu_to_le32(ring_id);
10527 	mutex_lock(&bp->hwrm_cmd_lock);
10528 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
10529 	if (!rc) {
10530 		*prod = le32_to_cpu(resp->producer_index);
10531 		*cons = le32_to_cpu(resp->consumer_index);
10532 	}
10533 	mutex_unlock(&bp->hwrm_cmd_lock);
10534 	return rc;
10535 }
10536 
10537 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
10538 {
10539 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
10540 	int i = bnapi->index;
10541 
10542 	if (!txr)
10543 		return;
10544 
10545 	netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
10546 		    i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
10547 		    txr->tx_cons);
10548 }
10549 
10550 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
10551 {
10552 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
10553 	int i = bnapi->index;
10554 
10555 	if (!rxr)
10556 		return;
10557 
10558 	netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
10559 		    i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
10560 		    rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
10561 		    rxr->rx_sw_agg_prod);
10562 }
10563 
10564 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
10565 {
10566 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
10567 	int i = bnapi->index;
10568 
10569 	netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
10570 		    i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
10571 }
10572 
10573 static void bnxt_dbg_dump_states(struct bnxt *bp)
10574 {
10575 	int i;
10576 	struct bnxt_napi *bnapi;
10577 
10578 	for (i = 0; i < bp->cp_nr_rings; i++) {
10579 		bnapi = bp->bnapi[i];
10580 		if (netif_msg_drv(bp)) {
10581 			bnxt_dump_tx_sw_state(bnapi);
10582 			bnxt_dump_rx_sw_state(bnapi);
10583 			bnxt_dump_cp_sw_state(bnapi);
10584 		}
10585 	}
10586 }
10587 
10588 static int bnxt_hwrm_rx_ring_reset(struct bnxt *bp, int ring_nr)
10589 {
10590 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
10591 	struct hwrm_ring_reset_input req = {0};
10592 	struct bnxt_napi *bnapi = rxr->bnapi;
10593 	struct bnxt_cp_ring_info *cpr;
10594 	u16 cp_ring_id;
10595 
10596 	cpr = &bnapi->cp_ring;
10597 	cp_ring_id = cpr->cp_ring_struct.fw_ring_id;
10598 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_RESET, cp_ring_id, -1);
10599 	req.ring_type = RING_RESET_REQ_RING_TYPE_RX_RING_GRP;
10600 	req.ring_id = cpu_to_le16(bp->grp_info[bnapi->index].fw_grp_id);
10601 	return hwrm_send_message_silent(bp, &req, sizeof(req),
10602 					HWRM_CMD_TIMEOUT);
10603 }
10604 
10605 static void bnxt_reset_task(struct bnxt *bp, bool silent)
10606 {
10607 	if (!silent)
10608 		bnxt_dbg_dump_states(bp);
10609 	if (netif_running(bp->dev)) {
10610 		int rc;
10611 
10612 		if (silent) {
10613 			bnxt_close_nic(bp, false, false);
10614 			bnxt_open_nic(bp, false, false);
10615 		} else {
10616 			bnxt_ulp_stop(bp);
10617 			bnxt_close_nic(bp, true, false);
10618 			rc = bnxt_open_nic(bp, true, false);
10619 			bnxt_ulp_start(bp, rc);
10620 		}
10621 	}
10622 }
10623 
10624 static void bnxt_tx_timeout(struct net_device *dev, unsigned int txqueue)
10625 {
10626 	struct bnxt *bp = netdev_priv(dev);
10627 
10628 	netdev_err(bp->dev,  "TX timeout detected, starting reset task!\n");
10629 	set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
10630 	bnxt_queue_sp_work(bp);
10631 }
10632 
10633 static void bnxt_fw_health_check(struct bnxt *bp)
10634 {
10635 	struct bnxt_fw_health *fw_health = bp->fw_health;
10636 	u32 val;
10637 
10638 	if (!fw_health->enabled || test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
10639 		return;
10640 
10641 	if (fw_health->tmr_counter) {
10642 		fw_health->tmr_counter--;
10643 		return;
10644 	}
10645 
10646 	val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
10647 	if (val == fw_health->last_fw_heartbeat)
10648 		goto fw_reset;
10649 
10650 	fw_health->last_fw_heartbeat = val;
10651 
10652 	val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
10653 	if (val != fw_health->last_fw_reset_cnt)
10654 		goto fw_reset;
10655 
10656 	fw_health->tmr_counter = fw_health->tmr_multiplier;
10657 	return;
10658 
10659 fw_reset:
10660 	set_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event);
10661 	bnxt_queue_sp_work(bp);
10662 }
10663 
10664 static void bnxt_timer(struct timer_list *t)
10665 {
10666 	struct bnxt *bp = from_timer(bp, t, timer);
10667 	struct net_device *dev = bp->dev;
10668 
10669 	if (!netif_running(dev) || !test_bit(BNXT_STATE_OPEN, &bp->state))
10670 		return;
10671 
10672 	if (atomic_read(&bp->intr_sem) != 0)
10673 		goto bnxt_restart_timer;
10674 
10675 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
10676 		bnxt_fw_health_check(bp);
10677 
10678 	if (bp->link_info.link_up && bp->stats_coal_ticks) {
10679 		set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event);
10680 		bnxt_queue_sp_work(bp);
10681 	}
10682 
10683 	if (bnxt_tc_flower_enabled(bp)) {
10684 		set_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event);
10685 		bnxt_queue_sp_work(bp);
10686 	}
10687 
10688 #ifdef CONFIG_RFS_ACCEL
10689 	if ((bp->flags & BNXT_FLAG_RFS) && bp->ntp_fltr_count) {
10690 		set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
10691 		bnxt_queue_sp_work(bp);
10692 	}
10693 #endif /*CONFIG_RFS_ACCEL*/
10694 
10695 	if (bp->link_info.phy_retry) {
10696 		if (time_after(jiffies, bp->link_info.phy_retry_expires)) {
10697 			bp->link_info.phy_retry = false;
10698 			netdev_warn(bp->dev, "failed to update phy settings after maximum retries.\n");
10699 		} else {
10700 			set_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event);
10701 			bnxt_queue_sp_work(bp);
10702 		}
10703 	}
10704 
10705 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && !bp->chip_rev &&
10706 	    netif_carrier_ok(dev)) {
10707 		set_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event);
10708 		bnxt_queue_sp_work(bp);
10709 	}
10710 bnxt_restart_timer:
10711 	mod_timer(&bp->timer, jiffies + bp->current_interval);
10712 }
10713 
10714 static void bnxt_rtnl_lock_sp(struct bnxt *bp)
10715 {
10716 	/* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK
10717 	 * set.  If the device is being closed, bnxt_close() may be holding
10718 	 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear.  So we
10719 	 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl().
10720 	 */
10721 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
10722 	rtnl_lock();
10723 }
10724 
10725 static void bnxt_rtnl_unlock_sp(struct bnxt *bp)
10726 {
10727 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
10728 	rtnl_unlock();
10729 }
10730 
10731 /* Only called from bnxt_sp_task() */
10732 static void bnxt_reset(struct bnxt *bp, bool silent)
10733 {
10734 	bnxt_rtnl_lock_sp(bp);
10735 	if (test_bit(BNXT_STATE_OPEN, &bp->state))
10736 		bnxt_reset_task(bp, silent);
10737 	bnxt_rtnl_unlock_sp(bp);
10738 }
10739 
10740 /* Only called from bnxt_sp_task() */
10741 static void bnxt_rx_ring_reset(struct bnxt *bp)
10742 {
10743 	int i;
10744 
10745 	bnxt_rtnl_lock_sp(bp);
10746 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
10747 		bnxt_rtnl_unlock_sp(bp);
10748 		return;
10749 	}
10750 	/* Disable and flush TPA before resetting the RX ring */
10751 	if (bp->flags & BNXT_FLAG_TPA)
10752 		bnxt_set_tpa(bp, false);
10753 	for (i = 0; i < bp->rx_nr_rings; i++) {
10754 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
10755 		struct bnxt_cp_ring_info *cpr;
10756 		int rc;
10757 
10758 		if (!rxr->bnapi->in_reset)
10759 			continue;
10760 
10761 		rc = bnxt_hwrm_rx_ring_reset(bp, i);
10762 		if (rc) {
10763 			if (rc == -EINVAL || rc == -EOPNOTSUPP)
10764 				netdev_info_once(bp->dev, "RX ring reset not supported by firmware, falling back to global reset\n");
10765 			else
10766 				netdev_warn(bp->dev, "RX ring reset failed, rc = %d, falling back to global reset\n",
10767 					    rc);
10768 			bnxt_reset_task(bp, true);
10769 			break;
10770 		}
10771 		bnxt_free_one_rx_ring_skbs(bp, i);
10772 		rxr->rx_prod = 0;
10773 		rxr->rx_agg_prod = 0;
10774 		rxr->rx_sw_agg_prod = 0;
10775 		rxr->rx_next_cons = 0;
10776 		rxr->bnapi->in_reset = false;
10777 		bnxt_alloc_one_rx_ring(bp, i);
10778 		cpr = &rxr->bnapi->cp_ring;
10779 		cpr->sw_stats.rx.rx_resets++;
10780 		if (bp->flags & BNXT_FLAG_AGG_RINGS)
10781 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
10782 		bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
10783 	}
10784 	if (bp->flags & BNXT_FLAG_TPA)
10785 		bnxt_set_tpa(bp, true);
10786 	bnxt_rtnl_unlock_sp(bp);
10787 }
10788 
10789 static void bnxt_fw_reset_close(struct bnxt *bp)
10790 {
10791 	bnxt_ulp_stop(bp);
10792 	/* When firmware is fatal state, disable PCI device to prevent
10793 	 * any potential bad DMAs before freeing kernel memory.
10794 	 */
10795 	if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
10796 		pci_disable_device(bp->pdev);
10797 	__bnxt_close_nic(bp, true, false);
10798 	bnxt_clear_int_mode(bp);
10799 	bnxt_hwrm_func_drv_unrgtr(bp);
10800 	if (pci_is_enabled(bp->pdev))
10801 		pci_disable_device(bp->pdev);
10802 	bnxt_free_ctx_mem(bp);
10803 	kfree(bp->ctx);
10804 	bp->ctx = NULL;
10805 }
10806 
10807 static bool is_bnxt_fw_ok(struct bnxt *bp)
10808 {
10809 	struct bnxt_fw_health *fw_health = bp->fw_health;
10810 	bool no_heartbeat = false, has_reset = false;
10811 	u32 val;
10812 
10813 	val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
10814 	if (val == fw_health->last_fw_heartbeat)
10815 		no_heartbeat = true;
10816 
10817 	val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
10818 	if (val != fw_health->last_fw_reset_cnt)
10819 		has_reset = true;
10820 
10821 	if (!no_heartbeat && has_reset)
10822 		return true;
10823 
10824 	return false;
10825 }
10826 
10827 /* rtnl_lock is acquired before calling this function */
10828 static void bnxt_force_fw_reset(struct bnxt *bp)
10829 {
10830 	struct bnxt_fw_health *fw_health = bp->fw_health;
10831 	u32 wait_dsecs;
10832 
10833 	if (!test_bit(BNXT_STATE_OPEN, &bp->state) ||
10834 	    test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
10835 		return;
10836 
10837 	set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
10838 	bnxt_fw_reset_close(bp);
10839 	wait_dsecs = fw_health->master_func_wait_dsecs;
10840 	if (fw_health->master) {
10841 		if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU)
10842 			wait_dsecs = 0;
10843 		bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW;
10844 	} else {
10845 		bp->fw_reset_timestamp = jiffies + wait_dsecs * HZ / 10;
10846 		wait_dsecs = fw_health->normal_func_wait_dsecs;
10847 		bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
10848 	}
10849 
10850 	bp->fw_reset_min_dsecs = fw_health->post_reset_wait_dsecs;
10851 	bp->fw_reset_max_dsecs = fw_health->post_reset_max_wait_dsecs;
10852 	bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10);
10853 }
10854 
10855 void bnxt_fw_exception(struct bnxt *bp)
10856 {
10857 	netdev_warn(bp->dev, "Detected firmware fatal condition, initiating reset\n");
10858 	set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
10859 	bnxt_rtnl_lock_sp(bp);
10860 	bnxt_force_fw_reset(bp);
10861 	bnxt_rtnl_unlock_sp(bp);
10862 }
10863 
10864 /* Returns the number of registered VFs, or 1 if VF configuration is pending, or
10865  * < 0 on error.
10866  */
10867 static int bnxt_get_registered_vfs(struct bnxt *bp)
10868 {
10869 #ifdef CONFIG_BNXT_SRIOV
10870 	int rc;
10871 
10872 	if (!BNXT_PF(bp))
10873 		return 0;
10874 
10875 	rc = bnxt_hwrm_func_qcfg(bp);
10876 	if (rc) {
10877 		netdev_err(bp->dev, "func_qcfg cmd failed, rc = %d\n", rc);
10878 		return rc;
10879 	}
10880 	if (bp->pf.registered_vfs)
10881 		return bp->pf.registered_vfs;
10882 	if (bp->sriov_cfg)
10883 		return 1;
10884 #endif
10885 	return 0;
10886 }
10887 
10888 void bnxt_fw_reset(struct bnxt *bp)
10889 {
10890 	bnxt_rtnl_lock_sp(bp);
10891 	if (test_bit(BNXT_STATE_OPEN, &bp->state) &&
10892 	    !test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
10893 		int n = 0, tmo;
10894 
10895 		set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
10896 		if (bp->pf.active_vfs &&
10897 		    !test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
10898 			n = bnxt_get_registered_vfs(bp);
10899 		if (n < 0) {
10900 			netdev_err(bp->dev, "Firmware reset aborted, rc = %d\n",
10901 				   n);
10902 			clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
10903 			dev_close(bp->dev);
10904 			goto fw_reset_exit;
10905 		} else if (n > 0) {
10906 			u16 vf_tmo_dsecs = n * 10;
10907 
10908 			if (bp->fw_reset_max_dsecs < vf_tmo_dsecs)
10909 				bp->fw_reset_max_dsecs = vf_tmo_dsecs;
10910 			bp->fw_reset_state =
10911 				BNXT_FW_RESET_STATE_POLL_VF;
10912 			bnxt_queue_fw_reset_work(bp, HZ / 10);
10913 			goto fw_reset_exit;
10914 		}
10915 		bnxt_fw_reset_close(bp);
10916 		if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
10917 			bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN;
10918 			tmo = HZ / 10;
10919 		} else {
10920 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
10921 			tmo = bp->fw_reset_min_dsecs * HZ / 10;
10922 		}
10923 		bnxt_queue_fw_reset_work(bp, tmo);
10924 	}
10925 fw_reset_exit:
10926 	bnxt_rtnl_unlock_sp(bp);
10927 }
10928 
10929 static void bnxt_chk_missed_irq(struct bnxt *bp)
10930 {
10931 	int i;
10932 
10933 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
10934 		return;
10935 
10936 	for (i = 0; i < bp->cp_nr_rings; i++) {
10937 		struct bnxt_napi *bnapi = bp->bnapi[i];
10938 		struct bnxt_cp_ring_info *cpr;
10939 		u32 fw_ring_id;
10940 		int j;
10941 
10942 		if (!bnapi)
10943 			continue;
10944 
10945 		cpr = &bnapi->cp_ring;
10946 		for (j = 0; j < 2; j++) {
10947 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
10948 			u32 val[2];
10949 
10950 			if (!cpr2 || cpr2->has_more_work ||
10951 			    !bnxt_has_work(bp, cpr2))
10952 				continue;
10953 
10954 			if (cpr2->cp_raw_cons != cpr2->last_cp_raw_cons) {
10955 				cpr2->last_cp_raw_cons = cpr2->cp_raw_cons;
10956 				continue;
10957 			}
10958 			fw_ring_id = cpr2->cp_ring_struct.fw_ring_id;
10959 			bnxt_dbg_hwrm_ring_info_get(bp,
10960 				DBG_RING_INFO_GET_REQ_RING_TYPE_L2_CMPL,
10961 				fw_ring_id, &val[0], &val[1]);
10962 			cpr->sw_stats.cmn.missed_irqs++;
10963 		}
10964 	}
10965 }
10966 
10967 static void bnxt_cfg_ntp_filters(struct bnxt *);
10968 
10969 static void bnxt_init_ethtool_link_settings(struct bnxt *bp)
10970 {
10971 	struct bnxt_link_info *link_info = &bp->link_info;
10972 
10973 	if (BNXT_AUTO_MODE(link_info->auto_mode)) {
10974 		link_info->autoneg = BNXT_AUTONEG_SPEED;
10975 		if (bp->hwrm_spec_code >= 0x10201) {
10976 			if (link_info->auto_pause_setting &
10977 			    PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE)
10978 				link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
10979 		} else {
10980 			link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
10981 		}
10982 		link_info->advertising = link_info->auto_link_speeds;
10983 		link_info->advertising_pam4 = link_info->auto_pam4_link_speeds;
10984 	} else {
10985 		link_info->req_link_speed = link_info->force_link_speed;
10986 		link_info->req_signal_mode = BNXT_SIG_MODE_NRZ;
10987 		if (link_info->force_pam4_link_speed) {
10988 			link_info->req_link_speed =
10989 				link_info->force_pam4_link_speed;
10990 			link_info->req_signal_mode = BNXT_SIG_MODE_PAM4;
10991 		}
10992 		link_info->req_duplex = link_info->duplex_setting;
10993 	}
10994 	if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL)
10995 		link_info->req_flow_ctrl =
10996 			link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH;
10997 	else
10998 		link_info->req_flow_ctrl = link_info->force_pause_setting;
10999 }
11000 
11001 static void bnxt_sp_task(struct work_struct *work)
11002 {
11003 	struct bnxt *bp = container_of(work, struct bnxt, sp_task);
11004 
11005 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
11006 	smp_mb__after_atomic();
11007 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
11008 		clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
11009 		return;
11010 	}
11011 
11012 	if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
11013 		bnxt_cfg_rx_mode(bp);
11014 
11015 	if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
11016 		bnxt_cfg_ntp_filters(bp);
11017 	if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
11018 		bnxt_hwrm_exec_fwd_req(bp);
11019 	if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) {
11020 		bnxt_hwrm_port_qstats(bp, 0);
11021 		bnxt_hwrm_port_qstats_ext(bp, 0);
11022 		bnxt_accumulate_all_stats(bp);
11023 	}
11024 
11025 	if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
11026 		int rc;
11027 
11028 		mutex_lock(&bp->link_lock);
11029 		if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT,
11030 				       &bp->sp_event))
11031 			bnxt_hwrm_phy_qcaps(bp);
11032 
11033 		rc = bnxt_update_link(bp, true);
11034 		if (rc)
11035 			netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
11036 				   rc);
11037 
11038 		if (test_and_clear_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT,
11039 				       &bp->sp_event))
11040 			bnxt_init_ethtool_link_settings(bp);
11041 		mutex_unlock(&bp->link_lock);
11042 	}
11043 	if (test_and_clear_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event)) {
11044 		int rc;
11045 
11046 		mutex_lock(&bp->link_lock);
11047 		rc = bnxt_update_phy_setting(bp);
11048 		mutex_unlock(&bp->link_lock);
11049 		if (rc) {
11050 			netdev_warn(bp->dev, "update phy settings retry failed\n");
11051 		} else {
11052 			bp->link_info.phy_retry = false;
11053 			netdev_info(bp->dev, "update phy settings retry succeeded\n");
11054 		}
11055 	}
11056 	if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) {
11057 		mutex_lock(&bp->link_lock);
11058 		bnxt_get_port_module_status(bp);
11059 		mutex_unlock(&bp->link_lock);
11060 	}
11061 
11062 	if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event))
11063 		bnxt_tc_flow_stats_work(bp);
11064 
11065 	if (test_and_clear_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event))
11066 		bnxt_chk_missed_irq(bp);
11067 
11068 	/* These functions below will clear BNXT_STATE_IN_SP_TASK.  They
11069 	 * must be the last functions to be called before exiting.
11070 	 */
11071 	if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event))
11072 		bnxt_reset(bp, false);
11073 
11074 	if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event))
11075 		bnxt_reset(bp, true);
11076 
11077 	if (test_and_clear_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event))
11078 		bnxt_rx_ring_reset(bp);
11079 
11080 	if (test_and_clear_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event))
11081 		bnxt_devlink_health_report(bp, BNXT_FW_RESET_NOTIFY_SP_EVENT);
11082 
11083 	if (test_and_clear_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event)) {
11084 		if (!is_bnxt_fw_ok(bp))
11085 			bnxt_devlink_health_report(bp,
11086 						   BNXT_FW_EXCEPTION_SP_EVENT);
11087 	}
11088 
11089 	smp_mb__before_atomic();
11090 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
11091 }
11092 
11093 /* Under rtnl_lock */
11094 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs,
11095 		     int tx_xdp)
11096 {
11097 	int max_rx, max_tx, tx_sets = 1;
11098 	int tx_rings_needed, stats;
11099 	int rx_rings = rx;
11100 	int cp, vnics, rc;
11101 
11102 	if (tcs)
11103 		tx_sets = tcs;
11104 
11105 	rc = bnxt_get_max_rings(bp, &max_rx, &max_tx, sh);
11106 	if (rc)
11107 		return rc;
11108 
11109 	if (max_rx < rx)
11110 		return -ENOMEM;
11111 
11112 	tx_rings_needed = tx * tx_sets + tx_xdp;
11113 	if (max_tx < tx_rings_needed)
11114 		return -ENOMEM;
11115 
11116 	vnics = 1;
11117 	if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS)
11118 		vnics += rx_rings;
11119 
11120 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
11121 		rx_rings <<= 1;
11122 	cp = sh ? max_t(int, tx_rings_needed, rx) : tx_rings_needed + rx;
11123 	stats = cp;
11124 	if (BNXT_NEW_RM(bp)) {
11125 		cp += bnxt_get_ulp_msix_num(bp);
11126 		stats += bnxt_get_ulp_stat_ctxs(bp);
11127 	}
11128 	return bnxt_hwrm_check_rings(bp, tx_rings_needed, rx_rings, rx, cp,
11129 				     stats, vnics);
11130 }
11131 
11132 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev)
11133 {
11134 	if (bp->bar2) {
11135 		pci_iounmap(pdev, bp->bar2);
11136 		bp->bar2 = NULL;
11137 	}
11138 
11139 	if (bp->bar1) {
11140 		pci_iounmap(pdev, bp->bar1);
11141 		bp->bar1 = NULL;
11142 	}
11143 
11144 	if (bp->bar0) {
11145 		pci_iounmap(pdev, bp->bar0);
11146 		bp->bar0 = NULL;
11147 	}
11148 }
11149 
11150 static void bnxt_cleanup_pci(struct bnxt *bp)
11151 {
11152 	bnxt_unmap_bars(bp, bp->pdev);
11153 	pci_release_regions(bp->pdev);
11154 	if (pci_is_enabled(bp->pdev))
11155 		pci_disable_device(bp->pdev);
11156 }
11157 
11158 static void bnxt_init_dflt_coal(struct bnxt *bp)
11159 {
11160 	struct bnxt_coal *coal;
11161 
11162 	/* Tick values in micro seconds.
11163 	 * 1 coal_buf x bufs_per_record = 1 completion record.
11164 	 */
11165 	coal = &bp->rx_coal;
11166 	coal->coal_ticks = 10;
11167 	coal->coal_bufs = 30;
11168 	coal->coal_ticks_irq = 1;
11169 	coal->coal_bufs_irq = 2;
11170 	coal->idle_thresh = 50;
11171 	coal->bufs_per_record = 2;
11172 	coal->budget = 64;		/* NAPI budget */
11173 
11174 	coal = &bp->tx_coal;
11175 	coal->coal_ticks = 28;
11176 	coal->coal_bufs = 30;
11177 	coal->coal_ticks_irq = 2;
11178 	coal->coal_bufs_irq = 2;
11179 	coal->bufs_per_record = 1;
11180 
11181 	bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS;
11182 }
11183 
11184 static int bnxt_fw_reset_via_optee(struct bnxt *bp)
11185 {
11186 #ifdef CONFIG_TEE_BNXT_FW
11187 	int rc = tee_bnxt_fw_load();
11188 
11189 	if (rc)
11190 		netdev_err(bp->dev, "Failed FW reset via OP-TEE, rc=%d\n", rc);
11191 
11192 	return rc;
11193 #else
11194 	netdev_err(bp->dev, "OP-TEE not supported\n");
11195 	return -ENODEV;
11196 #endif
11197 }
11198 
11199 static int bnxt_fw_init_one_p1(struct bnxt *bp)
11200 {
11201 	int rc;
11202 
11203 	bp->fw_cap = 0;
11204 	rc = bnxt_hwrm_ver_get(bp);
11205 	bnxt_try_map_fw_health_reg(bp);
11206 	if (rc) {
11207 		if (bp->fw_health && bp->fw_health->status_reliable) {
11208 			u32 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
11209 
11210 			netdev_err(bp->dev,
11211 				   "Firmware not responding, status: 0x%x\n",
11212 				   sts);
11213 			if (sts & FW_STATUS_REG_CRASHED_NO_MASTER) {
11214 				netdev_warn(bp->dev, "Firmware recover via OP-TEE requested\n");
11215 				rc = bnxt_fw_reset_via_optee(bp);
11216 				if (!rc)
11217 					rc = bnxt_hwrm_ver_get(bp);
11218 			}
11219 		}
11220 		if (rc)
11221 			return rc;
11222 	}
11223 
11224 	if (bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL) {
11225 		rc = bnxt_alloc_kong_hwrm_resources(bp);
11226 		if (rc)
11227 			bp->fw_cap &= ~BNXT_FW_CAP_KONG_MB_CHNL;
11228 	}
11229 
11230 	if ((bp->fw_cap & BNXT_FW_CAP_SHORT_CMD) ||
11231 	    bp->hwrm_max_ext_req_len > BNXT_HWRM_MAX_REQ_LEN) {
11232 		rc = bnxt_alloc_hwrm_short_cmd_req(bp);
11233 		if (rc)
11234 			return rc;
11235 	}
11236 	bnxt_nvm_cfg_ver_get(bp);
11237 
11238 	rc = bnxt_hwrm_func_reset(bp);
11239 	if (rc)
11240 		return -ENODEV;
11241 
11242 	bnxt_hwrm_fw_set_time(bp);
11243 	return 0;
11244 }
11245 
11246 static int bnxt_fw_init_one_p2(struct bnxt *bp)
11247 {
11248 	int rc;
11249 
11250 	/* Get the MAX capabilities for this function */
11251 	rc = bnxt_hwrm_func_qcaps(bp);
11252 	if (rc) {
11253 		netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
11254 			   rc);
11255 		return -ENODEV;
11256 	}
11257 
11258 	rc = bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(bp);
11259 	if (rc)
11260 		netdev_warn(bp->dev, "hwrm query adv flow mgnt failure rc: %d\n",
11261 			    rc);
11262 
11263 	if (bnxt_alloc_fw_health(bp)) {
11264 		netdev_warn(bp->dev, "no memory for firmware error recovery\n");
11265 	} else {
11266 		rc = bnxt_hwrm_error_recovery_qcfg(bp);
11267 		if (rc)
11268 			netdev_warn(bp->dev, "hwrm query error recovery failure rc: %d\n",
11269 				    rc);
11270 	}
11271 
11272 	rc = bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false);
11273 	if (rc)
11274 		return -ENODEV;
11275 
11276 	bnxt_hwrm_func_qcfg(bp);
11277 	bnxt_hwrm_vnic_qcaps(bp);
11278 	bnxt_hwrm_port_led_qcaps(bp);
11279 	bnxt_ethtool_init(bp);
11280 	bnxt_dcb_init(bp);
11281 	return 0;
11282 }
11283 
11284 static void bnxt_set_dflt_rss_hash_type(struct bnxt *bp)
11285 {
11286 	bp->flags &= ~BNXT_FLAG_UDP_RSS_CAP;
11287 	bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 |
11288 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 |
11289 			   VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 |
11290 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6;
11291 	if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) {
11292 		bp->flags |= BNXT_FLAG_UDP_RSS_CAP;
11293 		bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 |
11294 				    VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6;
11295 	}
11296 }
11297 
11298 static void bnxt_set_dflt_rfs(struct bnxt *bp)
11299 {
11300 	struct net_device *dev = bp->dev;
11301 
11302 	dev->hw_features &= ~NETIF_F_NTUPLE;
11303 	dev->features &= ~NETIF_F_NTUPLE;
11304 	bp->flags &= ~BNXT_FLAG_RFS;
11305 	if (bnxt_rfs_supported(bp)) {
11306 		dev->hw_features |= NETIF_F_NTUPLE;
11307 		if (bnxt_rfs_capable(bp)) {
11308 			bp->flags |= BNXT_FLAG_RFS;
11309 			dev->features |= NETIF_F_NTUPLE;
11310 		}
11311 	}
11312 }
11313 
11314 static void bnxt_fw_init_one_p3(struct bnxt *bp)
11315 {
11316 	struct pci_dev *pdev = bp->pdev;
11317 
11318 	bnxt_set_dflt_rss_hash_type(bp);
11319 	bnxt_set_dflt_rfs(bp);
11320 
11321 	bnxt_get_wol_settings(bp);
11322 	if (bp->flags & BNXT_FLAG_WOL_CAP)
11323 		device_set_wakeup_enable(&pdev->dev, bp->wol);
11324 	else
11325 		device_set_wakeup_capable(&pdev->dev, false);
11326 
11327 	bnxt_hwrm_set_cache_line_size(bp, cache_line_size());
11328 	bnxt_hwrm_coal_params_qcaps(bp);
11329 }
11330 
11331 static int bnxt_fw_init_one(struct bnxt *bp)
11332 {
11333 	int rc;
11334 
11335 	rc = bnxt_fw_init_one_p1(bp);
11336 	if (rc) {
11337 		netdev_err(bp->dev, "Firmware init phase 1 failed\n");
11338 		return rc;
11339 	}
11340 	rc = bnxt_fw_init_one_p2(bp);
11341 	if (rc) {
11342 		netdev_err(bp->dev, "Firmware init phase 2 failed\n");
11343 		return rc;
11344 	}
11345 	rc = bnxt_approve_mac(bp, bp->dev->dev_addr, false);
11346 	if (rc)
11347 		return rc;
11348 
11349 	/* In case fw capabilities have changed, destroy the unneeded
11350 	 * reporters and create newly capable ones.
11351 	 */
11352 	bnxt_dl_fw_reporters_destroy(bp, false);
11353 	bnxt_dl_fw_reporters_create(bp);
11354 	bnxt_fw_init_one_p3(bp);
11355 	return 0;
11356 }
11357 
11358 static void bnxt_fw_reset_writel(struct bnxt *bp, int reg_idx)
11359 {
11360 	struct bnxt_fw_health *fw_health = bp->fw_health;
11361 	u32 reg = fw_health->fw_reset_seq_regs[reg_idx];
11362 	u32 val = fw_health->fw_reset_seq_vals[reg_idx];
11363 	u32 reg_type, reg_off, delay_msecs;
11364 
11365 	delay_msecs = fw_health->fw_reset_seq_delay_msec[reg_idx];
11366 	reg_type = BNXT_FW_HEALTH_REG_TYPE(reg);
11367 	reg_off = BNXT_FW_HEALTH_REG_OFF(reg);
11368 	switch (reg_type) {
11369 	case BNXT_FW_HEALTH_REG_TYPE_CFG:
11370 		pci_write_config_dword(bp->pdev, reg_off, val);
11371 		break;
11372 	case BNXT_FW_HEALTH_REG_TYPE_GRC:
11373 		writel(reg_off & BNXT_GRC_BASE_MASK,
11374 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4);
11375 		reg_off = (reg_off & BNXT_GRC_OFFSET_MASK) + 0x2000;
11376 		fallthrough;
11377 	case BNXT_FW_HEALTH_REG_TYPE_BAR0:
11378 		writel(val, bp->bar0 + reg_off);
11379 		break;
11380 	case BNXT_FW_HEALTH_REG_TYPE_BAR1:
11381 		writel(val, bp->bar1 + reg_off);
11382 		break;
11383 	}
11384 	if (delay_msecs) {
11385 		pci_read_config_dword(bp->pdev, 0, &val);
11386 		msleep(delay_msecs);
11387 	}
11388 }
11389 
11390 static void bnxt_reset_all(struct bnxt *bp)
11391 {
11392 	struct bnxt_fw_health *fw_health = bp->fw_health;
11393 	int i, rc;
11394 
11395 	if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
11396 		bnxt_fw_reset_via_optee(bp);
11397 		bp->fw_reset_timestamp = jiffies;
11398 		return;
11399 	}
11400 
11401 	if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_HOST) {
11402 		for (i = 0; i < fw_health->fw_reset_seq_cnt; i++)
11403 			bnxt_fw_reset_writel(bp, i);
11404 	} else if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) {
11405 		struct hwrm_fw_reset_input req = {0};
11406 
11407 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FW_RESET, -1, -1);
11408 		req.resp_addr = cpu_to_le64(bp->hwrm_cmd_kong_resp_dma_addr);
11409 		req.embedded_proc_type = FW_RESET_REQ_EMBEDDED_PROC_TYPE_CHIP;
11410 		req.selfrst_status = FW_RESET_REQ_SELFRST_STATUS_SELFRSTASAP;
11411 		req.flags = FW_RESET_REQ_FLAGS_RESET_GRACEFUL;
11412 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
11413 		if (rc)
11414 			netdev_warn(bp->dev, "Unable to reset FW rc=%d\n", rc);
11415 	}
11416 	bp->fw_reset_timestamp = jiffies;
11417 }
11418 
11419 static void bnxt_fw_reset_task(struct work_struct *work)
11420 {
11421 	struct bnxt *bp = container_of(work, struct bnxt, fw_reset_task.work);
11422 	int rc;
11423 
11424 	if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
11425 		netdev_err(bp->dev, "bnxt_fw_reset_task() called when not in fw reset mode!\n");
11426 		return;
11427 	}
11428 
11429 	switch (bp->fw_reset_state) {
11430 	case BNXT_FW_RESET_STATE_POLL_VF: {
11431 		int n = bnxt_get_registered_vfs(bp);
11432 		int tmo;
11433 
11434 		if (n < 0) {
11435 			netdev_err(bp->dev, "Firmware reset aborted, subsequent func_qcfg cmd failed, rc = %d, %d msecs since reset timestamp\n",
11436 				   n, jiffies_to_msecs(jiffies -
11437 				   bp->fw_reset_timestamp));
11438 			goto fw_reset_abort;
11439 		} else if (n > 0) {
11440 			if (time_after(jiffies, bp->fw_reset_timestamp +
11441 				       (bp->fw_reset_max_dsecs * HZ / 10))) {
11442 				clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11443 				bp->fw_reset_state = 0;
11444 				netdev_err(bp->dev, "Firmware reset aborted, bnxt_get_registered_vfs() returns %d\n",
11445 					   n);
11446 				return;
11447 			}
11448 			bnxt_queue_fw_reset_work(bp, HZ / 10);
11449 			return;
11450 		}
11451 		bp->fw_reset_timestamp = jiffies;
11452 		rtnl_lock();
11453 		bnxt_fw_reset_close(bp);
11454 		if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
11455 			bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN;
11456 			tmo = HZ / 10;
11457 		} else {
11458 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
11459 			tmo = bp->fw_reset_min_dsecs * HZ / 10;
11460 		}
11461 		rtnl_unlock();
11462 		bnxt_queue_fw_reset_work(bp, tmo);
11463 		return;
11464 	}
11465 	case BNXT_FW_RESET_STATE_POLL_FW_DOWN: {
11466 		u32 val;
11467 
11468 		val = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
11469 		if (!(val & BNXT_FW_STATUS_SHUTDOWN) &&
11470 		    !time_after(jiffies, bp->fw_reset_timestamp +
11471 		    (bp->fw_reset_max_dsecs * HZ / 10))) {
11472 			bnxt_queue_fw_reset_work(bp, HZ / 5);
11473 			return;
11474 		}
11475 
11476 		if (!bp->fw_health->master) {
11477 			u32 wait_dsecs = bp->fw_health->normal_func_wait_dsecs;
11478 
11479 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
11480 			bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10);
11481 			return;
11482 		}
11483 		bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW;
11484 	}
11485 		fallthrough;
11486 	case BNXT_FW_RESET_STATE_RESET_FW:
11487 		bnxt_reset_all(bp);
11488 		bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
11489 		bnxt_queue_fw_reset_work(bp, bp->fw_reset_min_dsecs * HZ / 10);
11490 		return;
11491 	case BNXT_FW_RESET_STATE_ENABLE_DEV:
11492 		if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) {
11493 			u32 val;
11494 
11495 			val = bnxt_fw_health_readl(bp,
11496 						   BNXT_FW_RESET_INPROG_REG);
11497 			if (val)
11498 				netdev_warn(bp->dev, "FW reset inprog %x after min wait time.\n",
11499 					    val);
11500 		}
11501 		clear_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
11502 		if (pci_enable_device(bp->pdev)) {
11503 			netdev_err(bp->dev, "Cannot re-enable PCI device\n");
11504 			goto fw_reset_abort;
11505 		}
11506 		pci_set_master(bp->pdev);
11507 		bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW;
11508 		fallthrough;
11509 	case BNXT_FW_RESET_STATE_POLL_FW:
11510 		bp->hwrm_cmd_timeout = SHORT_HWRM_CMD_TIMEOUT;
11511 		rc = __bnxt_hwrm_ver_get(bp, true);
11512 		if (rc) {
11513 			if (time_after(jiffies, bp->fw_reset_timestamp +
11514 				       (bp->fw_reset_max_dsecs * HZ / 10))) {
11515 				netdev_err(bp->dev, "Firmware reset aborted\n");
11516 				goto fw_reset_abort_status;
11517 			}
11518 			bnxt_queue_fw_reset_work(bp, HZ / 5);
11519 			return;
11520 		}
11521 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
11522 		bp->fw_reset_state = BNXT_FW_RESET_STATE_OPENING;
11523 		fallthrough;
11524 	case BNXT_FW_RESET_STATE_OPENING:
11525 		while (!rtnl_trylock()) {
11526 			bnxt_queue_fw_reset_work(bp, HZ / 10);
11527 			return;
11528 		}
11529 		rc = bnxt_open(bp->dev);
11530 		if (rc) {
11531 			netdev_err(bp->dev, "bnxt_open_nic() failed\n");
11532 			clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11533 			dev_close(bp->dev);
11534 		}
11535 
11536 		bp->fw_reset_state = 0;
11537 		/* Make sure fw_reset_state is 0 before clearing the flag */
11538 		smp_mb__before_atomic();
11539 		clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11540 		bnxt_ulp_start(bp, rc);
11541 		if (!rc)
11542 			bnxt_reenable_sriov(bp);
11543 		bnxt_dl_health_recovery_done(bp);
11544 		bnxt_dl_health_status_update(bp, true);
11545 		rtnl_unlock();
11546 		break;
11547 	}
11548 	return;
11549 
11550 fw_reset_abort_status:
11551 	if (bp->fw_health->status_reliable ||
11552 	    (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) {
11553 		u32 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
11554 
11555 		netdev_err(bp->dev, "fw_health_status 0x%x\n", sts);
11556 	}
11557 fw_reset_abort:
11558 	clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11559 	if (bp->fw_reset_state != BNXT_FW_RESET_STATE_POLL_VF)
11560 		bnxt_dl_health_status_update(bp, false);
11561 	bp->fw_reset_state = 0;
11562 	rtnl_lock();
11563 	dev_close(bp->dev);
11564 	rtnl_unlock();
11565 }
11566 
11567 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
11568 {
11569 	int rc;
11570 	struct bnxt *bp = netdev_priv(dev);
11571 
11572 	SET_NETDEV_DEV(dev, &pdev->dev);
11573 
11574 	/* enable device (incl. PCI PM wakeup), and bus-mastering */
11575 	rc = pci_enable_device(pdev);
11576 	if (rc) {
11577 		dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
11578 		goto init_err;
11579 	}
11580 
11581 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
11582 		dev_err(&pdev->dev,
11583 			"Cannot find PCI device base address, aborting\n");
11584 		rc = -ENODEV;
11585 		goto init_err_disable;
11586 	}
11587 
11588 	rc = pci_request_regions(pdev, DRV_MODULE_NAME);
11589 	if (rc) {
11590 		dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
11591 		goto init_err_disable;
11592 	}
11593 
11594 	if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
11595 	    dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
11596 		dev_err(&pdev->dev, "System does not support DMA, aborting\n");
11597 		goto init_err_disable;
11598 	}
11599 
11600 	pci_set_master(pdev);
11601 
11602 	bp->dev = dev;
11603 	bp->pdev = pdev;
11604 
11605 	/* Doorbell BAR bp->bar1 is mapped after bnxt_fw_init_one_p2()
11606 	 * determines the BAR size.
11607 	 */
11608 	bp->bar0 = pci_ioremap_bar(pdev, 0);
11609 	if (!bp->bar0) {
11610 		dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
11611 		rc = -ENOMEM;
11612 		goto init_err_release;
11613 	}
11614 
11615 	bp->bar2 = pci_ioremap_bar(pdev, 4);
11616 	if (!bp->bar2) {
11617 		dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
11618 		rc = -ENOMEM;
11619 		goto init_err_release;
11620 	}
11621 
11622 	pci_enable_pcie_error_reporting(pdev);
11623 
11624 	INIT_WORK(&bp->sp_task, bnxt_sp_task);
11625 	INIT_DELAYED_WORK(&bp->fw_reset_task, bnxt_fw_reset_task);
11626 
11627 	spin_lock_init(&bp->ntp_fltr_lock);
11628 #if BITS_PER_LONG == 32
11629 	spin_lock_init(&bp->db_lock);
11630 #endif
11631 
11632 	bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
11633 	bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
11634 
11635 	bnxt_init_dflt_coal(bp);
11636 
11637 	timer_setup(&bp->timer, bnxt_timer, 0);
11638 	bp->current_interval = BNXT_TIMER_INTERVAL;
11639 
11640 	bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID;
11641 	bp->nge_fw_dst_port_id = INVALID_HW_RING_ID;
11642 
11643 	clear_bit(BNXT_STATE_OPEN, &bp->state);
11644 	return 0;
11645 
11646 init_err_release:
11647 	bnxt_unmap_bars(bp, pdev);
11648 	pci_release_regions(pdev);
11649 
11650 init_err_disable:
11651 	pci_disable_device(pdev);
11652 
11653 init_err:
11654 	return rc;
11655 }
11656 
11657 /* rtnl_lock held */
11658 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
11659 {
11660 	struct sockaddr *addr = p;
11661 	struct bnxt *bp = netdev_priv(dev);
11662 	int rc = 0;
11663 
11664 	if (!is_valid_ether_addr(addr->sa_data))
11665 		return -EADDRNOTAVAIL;
11666 
11667 	if (ether_addr_equal(addr->sa_data, dev->dev_addr))
11668 		return 0;
11669 
11670 	rc = bnxt_approve_mac(bp, addr->sa_data, true);
11671 	if (rc)
11672 		return rc;
11673 
11674 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
11675 	if (netif_running(dev)) {
11676 		bnxt_close_nic(bp, false, false);
11677 		rc = bnxt_open_nic(bp, false, false);
11678 	}
11679 
11680 	return rc;
11681 }
11682 
11683 /* rtnl_lock held */
11684 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
11685 {
11686 	struct bnxt *bp = netdev_priv(dev);
11687 
11688 	if (netif_running(dev))
11689 		bnxt_close_nic(bp, true, false);
11690 
11691 	dev->mtu = new_mtu;
11692 	bnxt_set_ring_params(bp);
11693 
11694 	if (netif_running(dev))
11695 		return bnxt_open_nic(bp, true, false);
11696 
11697 	return 0;
11698 }
11699 
11700 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc)
11701 {
11702 	struct bnxt *bp = netdev_priv(dev);
11703 	bool sh = false;
11704 	int rc;
11705 
11706 	if (tc > bp->max_tc) {
11707 		netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n",
11708 			   tc, bp->max_tc);
11709 		return -EINVAL;
11710 	}
11711 
11712 	if (netdev_get_num_tc(dev) == tc)
11713 		return 0;
11714 
11715 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
11716 		sh = true;
11717 
11718 	rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings,
11719 			      sh, tc, bp->tx_nr_rings_xdp);
11720 	if (rc)
11721 		return rc;
11722 
11723 	/* Needs to close the device and do hw resource re-allocations */
11724 	if (netif_running(bp->dev))
11725 		bnxt_close_nic(bp, true, false);
11726 
11727 	if (tc) {
11728 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
11729 		netdev_set_num_tc(dev, tc);
11730 	} else {
11731 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
11732 		netdev_reset_tc(dev);
11733 	}
11734 	bp->tx_nr_rings += bp->tx_nr_rings_xdp;
11735 	bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
11736 			       bp->tx_nr_rings + bp->rx_nr_rings;
11737 
11738 	if (netif_running(bp->dev))
11739 		return bnxt_open_nic(bp, true, false);
11740 
11741 	return 0;
11742 }
11743 
11744 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
11745 				  void *cb_priv)
11746 {
11747 	struct bnxt *bp = cb_priv;
11748 
11749 	if (!bnxt_tc_flower_enabled(bp) ||
11750 	    !tc_cls_can_offload_and_chain0(bp->dev, type_data))
11751 		return -EOPNOTSUPP;
11752 
11753 	switch (type) {
11754 	case TC_SETUP_CLSFLOWER:
11755 		return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data);
11756 	default:
11757 		return -EOPNOTSUPP;
11758 	}
11759 }
11760 
11761 LIST_HEAD(bnxt_block_cb_list);
11762 
11763 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type,
11764 			 void *type_data)
11765 {
11766 	struct bnxt *bp = netdev_priv(dev);
11767 
11768 	switch (type) {
11769 	case TC_SETUP_BLOCK:
11770 		return flow_block_cb_setup_simple(type_data,
11771 						  &bnxt_block_cb_list,
11772 						  bnxt_setup_tc_block_cb,
11773 						  bp, bp, true);
11774 	case TC_SETUP_QDISC_MQPRIO: {
11775 		struct tc_mqprio_qopt *mqprio = type_data;
11776 
11777 		mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
11778 
11779 		return bnxt_setup_mq_tc(dev, mqprio->num_tc);
11780 	}
11781 	default:
11782 		return -EOPNOTSUPP;
11783 	}
11784 }
11785 
11786 #ifdef CONFIG_RFS_ACCEL
11787 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
11788 			    struct bnxt_ntuple_filter *f2)
11789 {
11790 	struct flow_keys *keys1 = &f1->fkeys;
11791 	struct flow_keys *keys2 = &f2->fkeys;
11792 
11793 	if (keys1->basic.n_proto != keys2->basic.n_proto ||
11794 	    keys1->basic.ip_proto != keys2->basic.ip_proto)
11795 		return false;
11796 
11797 	if (keys1->basic.n_proto == htons(ETH_P_IP)) {
11798 		if (keys1->addrs.v4addrs.src != keys2->addrs.v4addrs.src ||
11799 		    keys1->addrs.v4addrs.dst != keys2->addrs.v4addrs.dst)
11800 			return false;
11801 	} else {
11802 		if (memcmp(&keys1->addrs.v6addrs.src, &keys2->addrs.v6addrs.src,
11803 			   sizeof(keys1->addrs.v6addrs.src)) ||
11804 		    memcmp(&keys1->addrs.v6addrs.dst, &keys2->addrs.v6addrs.dst,
11805 			   sizeof(keys1->addrs.v6addrs.dst)))
11806 			return false;
11807 	}
11808 
11809 	if (keys1->ports.ports == keys2->ports.ports &&
11810 	    keys1->control.flags == keys2->control.flags &&
11811 	    ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) &&
11812 	    ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr))
11813 		return true;
11814 
11815 	return false;
11816 }
11817 
11818 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
11819 			      u16 rxq_index, u32 flow_id)
11820 {
11821 	struct bnxt *bp = netdev_priv(dev);
11822 	struct bnxt_ntuple_filter *fltr, *new_fltr;
11823 	struct flow_keys *fkeys;
11824 	struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
11825 	int rc = 0, idx, bit_id, l2_idx = 0;
11826 	struct hlist_head *head;
11827 	u32 flags;
11828 
11829 	if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) {
11830 		struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
11831 		int off = 0, j;
11832 
11833 		netif_addr_lock_bh(dev);
11834 		for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) {
11835 			if (ether_addr_equal(eth->h_dest,
11836 					     vnic->uc_list + off)) {
11837 				l2_idx = j + 1;
11838 				break;
11839 			}
11840 		}
11841 		netif_addr_unlock_bh(dev);
11842 		if (!l2_idx)
11843 			return -EINVAL;
11844 	}
11845 	new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
11846 	if (!new_fltr)
11847 		return -ENOMEM;
11848 
11849 	fkeys = &new_fltr->fkeys;
11850 	if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
11851 		rc = -EPROTONOSUPPORT;
11852 		goto err_free;
11853 	}
11854 
11855 	if ((fkeys->basic.n_proto != htons(ETH_P_IP) &&
11856 	     fkeys->basic.n_proto != htons(ETH_P_IPV6)) ||
11857 	    ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
11858 	     (fkeys->basic.ip_proto != IPPROTO_UDP))) {
11859 		rc = -EPROTONOSUPPORT;
11860 		goto err_free;
11861 	}
11862 	if (fkeys->basic.n_proto == htons(ETH_P_IPV6) &&
11863 	    bp->hwrm_spec_code < 0x10601) {
11864 		rc = -EPROTONOSUPPORT;
11865 		goto err_free;
11866 	}
11867 	flags = fkeys->control.flags;
11868 	if (((flags & FLOW_DIS_ENCAPSULATION) &&
11869 	     bp->hwrm_spec_code < 0x10601) || (flags & FLOW_DIS_IS_FRAGMENT)) {
11870 		rc = -EPROTONOSUPPORT;
11871 		goto err_free;
11872 	}
11873 
11874 	memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN);
11875 	memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
11876 
11877 	idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
11878 	head = &bp->ntp_fltr_hash_tbl[idx];
11879 	rcu_read_lock();
11880 	hlist_for_each_entry_rcu(fltr, head, hash) {
11881 		if (bnxt_fltr_match(fltr, new_fltr)) {
11882 			rcu_read_unlock();
11883 			rc = 0;
11884 			goto err_free;
11885 		}
11886 	}
11887 	rcu_read_unlock();
11888 
11889 	spin_lock_bh(&bp->ntp_fltr_lock);
11890 	bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
11891 					 BNXT_NTP_FLTR_MAX_FLTR, 0);
11892 	if (bit_id < 0) {
11893 		spin_unlock_bh(&bp->ntp_fltr_lock);
11894 		rc = -ENOMEM;
11895 		goto err_free;
11896 	}
11897 
11898 	new_fltr->sw_id = (u16)bit_id;
11899 	new_fltr->flow_id = flow_id;
11900 	new_fltr->l2_fltr_idx = l2_idx;
11901 	new_fltr->rxq = rxq_index;
11902 	hlist_add_head_rcu(&new_fltr->hash, head);
11903 	bp->ntp_fltr_count++;
11904 	spin_unlock_bh(&bp->ntp_fltr_lock);
11905 
11906 	set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
11907 	bnxt_queue_sp_work(bp);
11908 
11909 	return new_fltr->sw_id;
11910 
11911 err_free:
11912 	kfree(new_fltr);
11913 	return rc;
11914 }
11915 
11916 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
11917 {
11918 	int i;
11919 
11920 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
11921 		struct hlist_head *head;
11922 		struct hlist_node *tmp;
11923 		struct bnxt_ntuple_filter *fltr;
11924 		int rc;
11925 
11926 		head = &bp->ntp_fltr_hash_tbl[i];
11927 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
11928 			bool del = false;
11929 
11930 			if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
11931 				if (rps_may_expire_flow(bp->dev, fltr->rxq,
11932 							fltr->flow_id,
11933 							fltr->sw_id)) {
11934 					bnxt_hwrm_cfa_ntuple_filter_free(bp,
11935 									 fltr);
11936 					del = true;
11937 				}
11938 			} else {
11939 				rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
11940 								       fltr);
11941 				if (rc)
11942 					del = true;
11943 				else
11944 					set_bit(BNXT_FLTR_VALID, &fltr->state);
11945 			}
11946 
11947 			if (del) {
11948 				spin_lock_bh(&bp->ntp_fltr_lock);
11949 				hlist_del_rcu(&fltr->hash);
11950 				bp->ntp_fltr_count--;
11951 				spin_unlock_bh(&bp->ntp_fltr_lock);
11952 				synchronize_rcu();
11953 				clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
11954 				kfree(fltr);
11955 			}
11956 		}
11957 	}
11958 	if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event))
11959 		netdev_info(bp->dev, "Receive PF driver unload event!\n");
11960 }
11961 
11962 #else
11963 
11964 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
11965 {
11966 }
11967 
11968 #endif /* CONFIG_RFS_ACCEL */
11969 
11970 static int bnxt_udp_tunnel_sync(struct net_device *netdev, unsigned int table)
11971 {
11972 	struct bnxt *bp = netdev_priv(netdev);
11973 	struct udp_tunnel_info ti;
11974 	unsigned int cmd;
11975 
11976 	udp_tunnel_nic_get_port(netdev, table, 0, &ti);
11977 	if (ti.type == UDP_TUNNEL_TYPE_VXLAN)
11978 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN;
11979 	else
11980 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE;
11981 
11982 	if (ti.port)
11983 		return bnxt_hwrm_tunnel_dst_port_alloc(bp, ti.port, cmd);
11984 
11985 	return bnxt_hwrm_tunnel_dst_port_free(bp, cmd);
11986 }
11987 
11988 static const struct udp_tunnel_nic_info bnxt_udp_tunnels = {
11989 	.sync_table	= bnxt_udp_tunnel_sync,
11990 	.flags		= UDP_TUNNEL_NIC_INFO_MAY_SLEEP |
11991 			  UDP_TUNNEL_NIC_INFO_OPEN_ONLY,
11992 	.tables		= {
11993 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN,  },
11994 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
11995 	},
11996 };
11997 
11998 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
11999 			       struct net_device *dev, u32 filter_mask,
12000 			       int nlflags)
12001 {
12002 	struct bnxt *bp = netdev_priv(dev);
12003 
12004 	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0,
12005 				       nlflags, filter_mask, NULL);
12006 }
12007 
12008 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
12009 			       u16 flags, struct netlink_ext_ack *extack)
12010 {
12011 	struct bnxt *bp = netdev_priv(dev);
12012 	struct nlattr *attr, *br_spec;
12013 	int rem, rc = 0;
12014 
12015 	if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp))
12016 		return -EOPNOTSUPP;
12017 
12018 	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
12019 	if (!br_spec)
12020 		return -EINVAL;
12021 
12022 	nla_for_each_nested(attr, br_spec, rem) {
12023 		u16 mode;
12024 
12025 		if (nla_type(attr) != IFLA_BRIDGE_MODE)
12026 			continue;
12027 
12028 		if (nla_len(attr) < sizeof(mode))
12029 			return -EINVAL;
12030 
12031 		mode = nla_get_u16(attr);
12032 		if (mode == bp->br_mode)
12033 			break;
12034 
12035 		rc = bnxt_hwrm_set_br_mode(bp, mode);
12036 		if (!rc)
12037 			bp->br_mode = mode;
12038 		break;
12039 	}
12040 	return rc;
12041 }
12042 
12043 int bnxt_get_port_parent_id(struct net_device *dev,
12044 			    struct netdev_phys_item_id *ppid)
12045 {
12046 	struct bnxt *bp = netdev_priv(dev);
12047 
12048 	if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV)
12049 		return -EOPNOTSUPP;
12050 
12051 	/* The PF and it's VF-reps only support the switchdev framework */
12052 	if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_DSN_VALID))
12053 		return -EOPNOTSUPP;
12054 
12055 	ppid->id_len = sizeof(bp->dsn);
12056 	memcpy(ppid->id, bp->dsn, ppid->id_len);
12057 
12058 	return 0;
12059 }
12060 
12061 static struct devlink_port *bnxt_get_devlink_port(struct net_device *dev)
12062 {
12063 	struct bnxt *bp = netdev_priv(dev);
12064 
12065 	return &bp->dl_port;
12066 }
12067 
12068 static const struct net_device_ops bnxt_netdev_ops = {
12069 	.ndo_open		= bnxt_open,
12070 	.ndo_start_xmit		= bnxt_start_xmit,
12071 	.ndo_stop		= bnxt_close,
12072 	.ndo_get_stats64	= bnxt_get_stats64,
12073 	.ndo_set_rx_mode	= bnxt_set_rx_mode,
12074 	.ndo_do_ioctl		= bnxt_ioctl,
12075 	.ndo_validate_addr	= eth_validate_addr,
12076 	.ndo_set_mac_address	= bnxt_change_mac_addr,
12077 	.ndo_change_mtu		= bnxt_change_mtu,
12078 	.ndo_fix_features	= bnxt_fix_features,
12079 	.ndo_set_features	= bnxt_set_features,
12080 	.ndo_tx_timeout		= bnxt_tx_timeout,
12081 #ifdef CONFIG_BNXT_SRIOV
12082 	.ndo_get_vf_config	= bnxt_get_vf_config,
12083 	.ndo_set_vf_mac		= bnxt_set_vf_mac,
12084 	.ndo_set_vf_vlan	= bnxt_set_vf_vlan,
12085 	.ndo_set_vf_rate	= bnxt_set_vf_bw,
12086 	.ndo_set_vf_link_state	= bnxt_set_vf_link_state,
12087 	.ndo_set_vf_spoofchk	= bnxt_set_vf_spoofchk,
12088 	.ndo_set_vf_trust	= bnxt_set_vf_trust,
12089 #endif
12090 	.ndo_setup_tc           = bnxt_setup_tc,
12091 #ifdef CONFIG_RFS_ACCEL
12092 	.ndo_rx_flow_steer	= bnxt_rx_flow_steer,
12093 #endif
12094 	.ndo_udp_tunnel_add	= udp_tunnel_nic_add_port,
12095 	.ndo_udp_tunnel_del	= udp_tunnel_nic_del_port,
12096 	.ndo_bpf		= bnxt_xdp,
12097 	.ndo_xdp_xmit		= bnxt_xdp_xmit,
12098 	.ndo_bridge_getlink	= bnxt_bridge_getlink,
12099 	.ndo_bridge_setlink	= bnxt_bridge_setlink,
12100 	.ndo_get_devlink_port	= bnxt_get_devlink_port,
12101 };
12102 
12103 static void bnxt_remove_one(struct pci_dev *pdev)
12104 {
12105 	struct net_device *dev = pci_get_drvdata(pdev);
12106 	struct bnxt *bp = netdev_priv(dev);
12107 
12108 	if (BNXT_PF(bp))
12109 		bnxt_sriov_disable(bp);
12110 
12111 	clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12112 	bnxt_cancel_sp_work(bp);
12113 	bp->sp_event = 0;
12114 
12115 	bnxt_dl_fw_reporters_destroy(bp, true);
12116 	if (BNXT_PF(bp))
12117 		devlink_port_type_clear(&bp->dl_port);
12118 	pci_disable_pcie_error_reporting(pdev);
12119 	unregister_netdev(dev);
12120 	bnxt_dl_unregister(bp);
12121 	bnxt_shutdown_tc(bp);
12122 
12123 	bnxt_clear_int_mode(bp);
12124 	bnxt_hwrm_func_drv_unrgtr(bp);
12125 	bnxt_free_hwrm_resources(bp);
12126 	bnxt_free_hwrm_short_cmd_req(bp);
12127 	bnxt_ethtool_free(bp);
12128 	bnxt_dcb_free(bp);
12129 	kfree(bp->edev);
12130 	bp->edev = NULL;
12131 	kfree(bp->fw_health);
12132 	bp->fw_health = NULL;
12133 	bnxt_cleanup_pci(bp);
12134 	bnxt_free_ctx_mem(bp);
12135 	kfree(bp->ctx);
12136 	bp->ctx = NULL;
12137 	kfree(bp->rss_indir_tbl);
12138 	bp->rss_indir_tbl = NULL;
12139 	bnxt_free_port_stats(bp);
12140 	free_netdev(dev);
12141 }
12142 
12143 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt)
12144 {
12145 	int rc = 0;
12146 	struct bnxt_link_info *link_info = &bp->link_info;
12147 
12148 	rc = bnxt_hwrm_phy_qcaps(bp);
12149 	if (rc) {
12150 		netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n",
12151 			   rc);
12152 		return rc;
12153 	}
12154 	if (!fw_dflt)
12155 		return 0;
12156 
12157 	rc = bnxt_update_link(bp, false);
12158 	if (rc) {
12159 		netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
12160 			   rc);
12161 		return rc;
12162 	}
12163 
12164 	/* Older firmware does not have supported_auto_speeds, so assume
12165 	 * that all supported speeds can be autonegotiated.
12166 	 */
12167 	if (link_info->auto_link_speeds && !link_info->support_auto_speeds)
12168 		link_info->support_auto_speeds = link_info->support_speeds;
12169 
12170 	bnxt_init_ethtool_link_settings(bp);
12171 	return 0;
12172 }
12173 
12174 static int bnxt_get_max_irq(struct pci_dev *pdev)
12175 {
12176 	u16 ctrl;
12177 
12178 	if (!pdev->msix_cap)
12179 		return 1;
12180 
12181 	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
12182 	return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
12183 }
12184 
12185 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
12186 				int *max_cp)
12187 {
12188 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
12189 	int max_ring_grps = 0, max_irq;
12190 
12191 	*max_tx = hw_resc->max_tx_rings;
12192 	*max_rx = hw_resc->max_rx_rings;
12193 	*max_cp = bnxt_get_max_func_cp_rings_for_en(bp);
12194 	max_irq = min_t(int, bnxt_get_max_func_irqs(bp) -
12195 			bnxt_get_ulp_msix_num(bp),
12196 			hw_resc->max_stat_ctxs - bnxt_get_ulp_stat_ctxs(bp));
12197 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
12198 		*max_cp = min_t(int, *max_cp, max_irq);
12199 	max_ring_grps = hw_resc->max_hw_ring_grps;
12200 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) {
12201 		*max_cp -= 1;
12202 		*max_rx -= 2;
12203 	}
12204 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
12205 		*max_rx >>= 1;
12206 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
12207 		bnxt_trim_rings(bp, max_rx, max_tx, *max_cp, false);
12208 		/* On P5 chips, max_cp output param should be available NQs */
12209 		*max_cp = max_irq;
12210 	}
12211 	*max_rx = min_t(int, *max_rx, max_ring_grps);
12212 }
12213 
12214 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
12215 {
12216 	int rx, tx, cp;
12217 
12218 	_bnxt_get_max_rings(bp, &rx, &tx, &cp);
12219 	*max_rx = rx;
12220 	*max_tx = tx;
12221 	if (!rx || !tx || !cp)
12222 		return -ENOMEM;
12223 
12224 	return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
12225 }
12226 
12227 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx,
12228 			       bool shared)
12229 {
12230 	int rc;
12231 
12232 	rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
12233 	if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) {
12234 		/* Not enough rings, try disabling agg rings. */
12235 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
12236 		rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
12237 		if (rc) {
12238 			/* set BNXT_FLAG_AGG_RINGS back for consistency */
12239 			bp->flags |= BNXT_FLAG_AGG_RINGS;
12240 			return rc;
12241 		}
12242 		bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
12243 		bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
12244 		bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
12245 		bnxt_set_ring_params(bp);
12246 	}
12247 
12248 	if (bp->flags & BNXT_FLAG_ROCE_CAP) {
12249 		int max_cp, max_stat, max_irq;
12250 
12251 		/* Reserve minimum resources for RoCE */
12252 		max_cp = bnxt_get_max_func_cp_rings(bp);
12253 		max_stat = bnxt_get_max_func_stat_ctxs(bp);
12254 		max_irq = bnxt_get_max_func_irqs(bp);
12255 		if (max_cp <= BNXT_MIN_ROCE_CP_RINGS ||
12256 		    max_irq <= BNXT_MIN_ROCE_CP_RINGS ||
12257 		    max_stat <= BNXT_MIN_ROCE_STAT_CTXS)
12258 			return 0;
12259 
12260 		max_cp -= BNXT_MIN_ROCE_CP_RINGS;
12261 		max_irq -= BNXT_MIN_ROCE_CP_RINGS;
12262 		max_stat -= BNXT_MIN_ROCE_STAT_CTXS;
12263 		max_cp = min_t(int, max_cp, max_irq);
12264 		max_cp = min_t(int, max_cp, max_stat);
12265 		rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared);
12266 		if (rc)
12267 			rc = 0;
12268 	}
12269 	return rc;
12270 }
12271 
12272 /* In initial default shared ring setting, each shared ring must have a
12273  * RX/TX ring pair.
12274  */
12275 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp)
12276 {
12277 	bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings);
12278 	bp->rx_nr_rings = bp->cp_nr_rings;
12279 	bp->tx_nr_rings_per_tc = bp->cp_nr_rings;
12280 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
12281 }
12282 
12283 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh)
12284 {
12285 	int dflt_rings, max_rx_rings, max_tx_rings, rc;
12286 
12287 	if (!bnxt_can_reserve_rings(bp))
12288 		return 0;
12289 
12290 	if (sh)
12291 		bp->flags |= BNXT_FLAG_SHARED_RINGS;
12292 	dflt_rings = is_kdump_kernel() ? 1 : netif_get_num_default_rss_queues();
12293 	/* Reduce default rings on multi-port cards so that total default
12294 	 * rings do not exceed CPU count.
12295 	 */
12296 	if (bp->port_count > 1) {
12297 		int max_rings =
12298 			max_t(int, num_online_cpus() / bp->port_count, 1);
12299 
12300 		dflt_rings = min_t(int, dflt_rings, max_rings);
12301 	}
12302 	rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh);
12303 	if (rc)
12304 		return rc;
12305 	bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
12306 	bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
12307 	if (sh)
12308 		bnxt_trim_dflt_sh_rings(bp);
12309 	else
12310 		bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings;
12311 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
12312 
12313 	rc = __bnxt_reserve_rings(bp);
12314 	if (rc)
12315 		netdev_warn(bp->dev, "Unable to reserve tx rings\n");
12316 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
12317 	if (sh)
12318 		bnxt_trim_dflt_sh_rings(bp);
12319 
12320 	/* Rings may have been trimmed, re-reserve the trimmed rings. */
12321 	if (bnxt_need_reserve_rings(bp)) {
12322 		rc = __bnxt_reserve_rings(bp);
12323 		if (rc)
12324 			netdev_warn(bp->dev, "2nd rings reservation failed.\n");
12325 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
12326 	}
12327 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
12328 		bp->rx_nr_rings++;
12329 		bp->cp_nr_rings++;
12330 	}
12331 	if (rc) {
12332 		bp->tx_nr_rings = 0;
12333 		bp->rx_nr_rings = 0;
12334 	}
12335 	return rc;
12336 }
12337 
12338 static int bnxt_init_dflt_ring_mode(struct bnxt *bp)
12339 {
12340 	int rc;
12341 
12342 	if (bp->tx_nr_rings)
12343 		return 0;
12344 
12345 	bnxt_ulp_irq_stop(bp);
12346 	bnxt_clear_int_mode(bp);
12347 	rc = bnxt_set_dflt_rings(bp, true);
12348 	if (rc) {
12349 		netdev_err(bp->dev, "Not enough rings available.\n");
12350 		goto init_dflt_ring_err;
12351 	}
12352 	rc = bnxt_init_int_mode(bp);
12353 	if (rc)
12354 		goto init_dflt_ring_err;
12355 
12356 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
12357 	if (bnxt_rfs_supported(bp) && bnxt_rfs_capable(bp)) {
12358 		bp->flags |= BNXT_FLAG_RFS;
12359 		bp->dev->features |= NETIF_F_NTUPLE;
12360 	}
12361 init_dflt_ring_err:
12362 	bnxt_ulp_irq_restart(bp, rc);
12363 	return rc;
12364 }
12365 
12366 int bnxt_restore_pf_fw_resources(struct bnxt *bp)
12367 {
12368 	int rc;
12369 
12370 	ASSERT_RTNL();
12371 	bnxt_hwrm_func_qcaps(bp);
12372 
12373 	if (netif_running(bp->dev))
12374 		__bnxt_close_nic(bp, true, false);
12375 
12376 	bnxt_ulp_irq_stop(bp);
12377 	bnxt_clear_int_mode(bp);
12378 	rc = bnxt_init_int_mode(bp);
12379 	bnxt_ulp_irq_restart(bp, rc);
12380 
12381 	if (netif_running(bp->dev)) {
12382 		if (rc)
12383 			dev_close(bp->dev);
12384 		else
12385 			rc = bnxt_open_nic(bp, true, false);
12386 	}
12387 
12388 	return rc;
12389 }
12390 
12391 static int bnxt_init_mac_addr(struct bnxt *bp)
12392 {
12393 	int rc = 0;
12394 
12395 	if (BNXT_PF(bp)) {
12396 		memcpy(bp->dev->dev_addr, bp->pf.mac_addr, ETH_ALEN);
12397 	} else {
12398 #ifdef CONFIG_BNXT_SRIOV
12399 		struct bnxt_vf_info *vf = &bp->vf;
12400 		bool strict_approval = true;
12401 
12402 		if (is_valid_ether_addr(vf->mac_addr)) {
12403 			/* overwrite netdev dev_addr with admin VF MAC */
12404 			memcpy(bp->dev->dev_addr, vf->mac_addr, ETH_ALEN);
12405 			/* Older PF driver or firmware may not approve this
12406 			 * correctly.
12407 			 */
12408 			strict_approval = false;
12409 		} else {
12410 			eth_hw_addr_random(bp->dev);
12411 		}
12412 		rc = bnxt_approve_mac(bp, bp->dev->dev_addr, strict_approval);
12413 #endif
12414 	}
12415 	return rc;
12416 }
12417 
12418 #define BNXT_VPD_LEN	512
12419 static void bnxt_vpd_read_info(struct bnxt *bp)
12420 {
12421 	struct pci_dev *pdev = bp->pdev;
12422 	int i, len, pos, ro_size, size;
12423 	ssize_t vpd_size;
12424 	u8 *vpd_data;
12425 
12426 	vpd_data = kmalloc(BNXT_VPD_LEN, GFP_KERNEL);
12427 	if (!vpd_data)
12428 		return;
12429 
12430 	vpd_size = pci_read_vpd(pdev, 0, BNXT_VPD_LEN, vpd_data);
12431 	if (vpd_size <= 0) {
12432 		netdev_err(bp->dev, "Unable to read VPD\n");
12433 		goto exit;
12434 	}
12435 
12436 	i = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
12437 	if (i < 0) {
12438 		netdev_err(bp->dev, "VPD READ-Only not found\n");
12439 		goto exit;
12440 	}
12441 
12442 	ro_size = pci_vpd_lrdt_size(&vpd_data[i]);
12443 	i += PCI_VPD_LRDT_TAG_SIZE;
12444 	if (i + ro_size > vpd_size)
12445 		goto exit;
12446 
12447 	pos = pci_vpd_find_info_keyword(vpd_data, i, ro_size,
12448 					PCI_VPD_RO_KEYWORD_PARTNO);
12449 	if (pos < 0)
12450 		goto read_sn;
12451 
12452 	len = pci_vpd_info_field_size(&vpd_data[pos]);
12453 	pos += PCI_VPD_INFO_FLD_HDR_SIZE;
12454 	if (len + pos > vpd_size)
12455 		goto read_sn;
12456 
12457 	size = min(len, BNXT_VPD_FLD_LEN - 1);
12458 	memcpy(bp->board_partno, &vpd_data[pos], size);
12459 
12460 read_sn:
12461 	pos = pci_vpd_find_info_keyword(vpd_data, i, ro_size,
12462 					PCI_VPD_RO_KEYWORD_SERIALNO);
12463 	if (pos < 0)
12464 		goto exit;
12465 
12466 	len = pci_vpd_info_field_size(&vpd_data[pos]);
12467 	pos += PCI_VPD_INFO_FLD_HDR_SIZE;
12468 	if (len + pos > vpd_size)
12469 		goto exit;
12470 
12471 	size = min(len, BNXT_VPD_FLD_LEN - 1);
12472 	memcpy(bp->board_serialno, &vpd_data[pos], size);
12473 exit:
12474 	kfree(vpd_data);
12475 }
12476 
12477 static int bnxt_pcie_dsn_get(struct bnxt *bp, u8 dsn[])
12478 {
12479 	struct pci_dev *pdev = bp->pdev;
12480 	u64 qword;
12481 
12482 	qword = pci_get_dsn(pdev);
12483 	if (!qword) {
12484 		netdev_info(bp->dev, "Unable to read adapter's DSN\n");
12485 		return -EOPNOTSUPP;
12486 	}
12487 
12488 	put_unaligned_le64(qword, dsn);
12489 
12490 	bp->flags |= BNXT_FLAG_DSN_VALID;
12491 	return 0;
12492 }
12493 
12494 static int bnxt_map_db_bar(struct bnxt *bp)
12495 {
12496 	if (!bp->db_size)
12497 		return -ENODEV;
12498 	bp->bar1 = pci_iomap(bp->pdev, 2, bp->db_size);
12499 	if (!bp->bar1)
12500 		return -ENOMEM;
12501 	return 0;
12502 }
12503 
12504 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
12505 {
12506 	struct net_device *dev;
12507 	struct bnxt *bp;
12508 	int rc, max_irqs;
12509 
12510 	if (pci_is_bridge(pdev))
12511 		return -ENODEV;
12512 
12513 	/* Clear any pending DMA transactions from crash kernel
12514 	 * while loading driver in capture kernel.
12515 	 */
12516 	if (is_kdump_kernel()) {
12517 		pci_clear_master(pdev);
12518 		pcie_flr(pdev);
12519 	}
12520 
12521 	max_irqs = bnxt_get_max_irq(pdev);
12522 	dev = alloc_etherdev_mq(sizeof(*bp), max_irqs);
12523 	if (!dev)
12524 		return -ENOMEM;
12525 
12526 	bp = netdev_priv(dev);
12527 	bp->msg_enable = BNXT_DEF_MSG_ENABLE;
12528 	bnxt_set_max_func_irqs(bp, max_irqs);
12529 
12530 	if (bnxt_vf_pciid(ent->driver_data))
12531 		bp->flags |= BNXT_FLAG_VF;
12532 
12533 	if (pdev->msix_cap)
12534 		bp->flags |= BNXT_FLAG_MSIX_CAP;
12535 
12536 	rc = bnxt_init_board(pdev, dev);
12537 	if (rc < 0)
12538 		goto init_err_free;
12539 
12540 	dev->netdev_ops = &bnxt_netdev_ops;
12541 	dev->watchdog_timeo = BNXT_TX_TIMEOUT;
12542 	dev->ethtool_ops = &bnxt_ethtool_ops;
12543 	pci_set_drvdata(pdev, dev);
12544 
12545 	if (BNXT_PF(bp))
12546 		bnxt_vpd_read_info(bp);
12547 
12548 	rc = bnxt_alloc_hwrm_resources(bp);
12549 	if (rc)
12550 		goto init_err_pci_clean;
12551 
12552 	mutex_init(&bp->hwrm_cmd_lock);
12553 	mutex_init(&bp->link_lock);
12554 
12555 	rc = bnxt_fw_init_one_p1(bp);
12556 	if (rc)
12557 		goto init_err_pci_clean;
12558 
12559 	if (BNXT_CHIP_P5(bp)) {
12560 		bp->flags |= BNXT_FLAG_CHIP_P5;
12561 		if (BNXT_CHIP_SR2(bp))
12562 			bp->flags |= BNXT_FLAG_CHIP_SR2;
12563 	}
12564 
12565 	rc = bnxt_alloc_rss_indir_tbl(bp);
12566 	if (rc)
12567 		goto init_err_pci_clean;
12568 
12569 	rc = bnxt_fw_init_one_p2(bp);
12570 	if (rc)
12571 		goto init_err_pci_clean;
12572 
12573 	rc = bnxt_map_db_bar(bp);
12574 	if (rc) {
12575 		dev_err(&pdev->dev, "Cannot map doorbell BAR rc = %d, aborting\n",
12576 			rc);
12577 		goto init_err_pci_clean;
12578 	}
12579 
12580 	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
12581 			   NETIF_F_TSO | NETIF_F_TSO6 |
12582 			   NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
12583 			   NETIF_F_GSO_IPXIP4 |
12584 			   NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
12585 			   NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH |
12586 			   NETIF_F_RXCSUM | NETIF_F_GRO;
12587 
12588 	if (BNXT_SUPPORTS_TPA(bp))
12589 		dev->hw_features |= NETIF_F_LRO;
12590 
12591 	dev->hw_enc_features =
12592 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
12593 			NETIF_F_TSO | NETIF_F_TSO6 |
12594 			NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
12595 			NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
12596 			NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL;
12597 	dev->udp_tunnel_nic_info = &bnxt_udp_tunnels;
12598 
12599 	dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM |
12600 				    NETIF_F_GSO_GRE_CSUM;
12601 	dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
12602 	if (bp->fw_cap & BNXT_FW_CAP_VLAN_RX_STRIP)
12603 		dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_RX;
12604 	if (bp->fw_cap & BNXT_FW_CAP_VLAN_TX_INSERT)
12605 		dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_TX;
12606 	if (BNXT_SUPPORTS_TPA(bp))
12607 		dev->hw_features |= NETIF_F_GRO_HW;
12608 	dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
12609 	if (dev->features & NETIF_F_GRO_HW)
12610 		dev->features &= ~NETIF_F_LRO;
12611 	dev->priv_flags |= IFF_UNICAST_FLT;
12612 
12613 #ifdef CONFIG_BNXT_SRIOV
12614 	init_waitqueue_head(&bp->sriov_cfg_wait);
12615 	mutex_init(&bp->sriov_lock);
12616 #endif
12617 	if (BNXT_SUPPORTS_TPA(bp)) {
12618 		bp->gro_func = bnxt_gro_func_5730x;
12619 		if (BNXT_CHIP_P4(bp))
12620 			bp->gro_func = bnxt_gro_func_5731x;
12621 		else if (BNXT_CHIP_P5(bp))
12622 			bp->gro_func = bnxt_gro_func_5750x;
12623 	}
12624 	if (!BNXT_CHIP_P4_PLUS(bp))
12625 		bp->flags |= BNXT_FLAG_DOUBLE_DB;
12626 
12627 	bp->ulp_probe = bnxt_ulp_probe;
12628 
12629 	rc = bnxt_init_mac_addr(bp);
12630 	if (rc) {
12631 		dev_err(&pdev->dev, "Unable to initialize mac address.\n");
12632 		rc = -EADDRNOTAVAIL;
12633 		goto init_err_pci_clean;
12634 	}
12635 
12636 	if (BNXT_PF(bp)) {
12637 		/* Read the adapter's DSN to use as the eswitch switch_id */
12638 		rc = bnxt_pcie_dsn_get(bp, bp->dsn);
12639 	}
12640 
12641 	/* MTU range: 60 - FW defined max */
12642 	dev->min_mtu = ETH_ZLEN;
12643 	dev->max_mtu = bp->max_mtu;
12644 
12645 	rc = bnxt_probe_phy(bp, true);
12646 	if (rc)
12647 		goto init_err_pci_clean;
12648 
12649 	bnxt_set_rx_skb_mode(bp, false);
12650 	bnxt_set_tpa_flags(bp);
12651 	bnxt_set_ring_params(bp);
12652 	rc = bnxt_set_dflt_rings(bp, true);
12653 	if (rc) {
12654 		netdev_err(bp->dev, "Not enough rings available.\n");
12655 		rc = -ENOMEM;
12656 		goto init_err_pci_clean;
12657 	}
12658 
12659 	bnxt_fw_init_one_p3(bp);
12660 
12661 	if (dev->hw_features & BNXT_HW_FEATURE_VLAN_ALL_RX)
12662 		bp->flags |= BNXT_FLAG_STRIP_VLAN;
12663 
12664 	rc = bnxt_init_int_mode(bp);
12665 	if (rc)
12666 		goto init_err_pci_clean;
12667 
12668 	/* No TC has been set yet and rings may have been trimmed due to
12669 	 * limited MSIX, so we re-initialize the TX rings per TC.
12670 	 */
12671 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
12672 
12673 	if (BNXT_PF(bp)) {
12674 		if (!bnxt_pf_wq) {
12675 			bnxt_pf_wq =
12676 				create_singlethread_workqueue("bnxt_pf_wq");
12677 			if (!bnxt_pf_wq) {
12678 				dev_err(&pdev->dev, "Unable to create workqueue.\n");
12679 				goto init_err_pci_clean;
12680 			}
12681 		}
12682 		rc = bnxt_init_tc(bp);
12683 		if (rc)
12684 			netdev_err(dev, "Failed to initialize TC flower offload, err = %d.\n",
12685 				   rc);
12686 	}
12687 
12688 	bnxt_dl_register(bp);
12689 
12690 	rc = register_netdev(dev);
12691 	if (rc)
12692 		goto init_err_cleanup;
12693 
12694 	if (BNXT_PF(bp))
12695 		devlink_port_type_eth_set(&bp->dl_port, bp->dev);
12696 	bnxt_dl_fw_reporters_create(bp);
12697 
12698 	netdev_info(dev, "%s found at mem %lx, node addr %pM\n",
12699 		    board_info[ent->driver_data].name,
12700 		    (long)pci_resource_start(pdev, 0), dev->dev_addr);
12701 	pcie_print_link_status(pdev);
12702 
12703 	pci_save_state(pdev);
12704 	return 0;
12705 
12706 init_err_cleanup:
12707 	bnxt_dl_unregister(bp);
12708 	bnxt_shutdown_tc(bp);
12709 	bnxt_clear_int_mode(bp);
12710 
12711 init_err_pci_clean:
12712 	bnxt_hwrm_func_drv_unrgtr(bp);
12713 	bnxt_free_hwrm_short_cmd_req(bp);
12714 	bnxt_free_hwrm_resources(bp);
12715 	kfree(bp->fw_health);
12716 	bp->fw_health = NULL;
12717 	bnxt_cleanup_pci(bp);
12718 	bnxt_free_ctx_mem(bp);
12719 	kfree(bp->ctx);
12720 	bp->ctx = NULL;
12721 	kfree(bp->rss_indir_tbl);
12722 	bp->rss_indir_tbl = NULL;
12723 
12724 init_err_free:
12725 	free_netdev(dev);
12726 	return rc;
12727 }
12728 
12729 static void bnxt_shutdown(struct pci_dev *pdev)
12730 {
12731 	struct net_device *dev = pci_get_drvdata(pdev);
12732 	struct bnxt *bp;
12733 
12734 	if (!dev)
12735 		return;
12736 
12737 	rtnl_lock();
12738 	bp = netdev_priv(dev);
12739 	if (!bp)
12740 		goto shutdown_exit;
12741 
12742 	if (netif_running(dev))
12743 		dev_close(dev);
12744 
12745 	bnxt_ulp_shutdown(bp);
12746 	bnxt_clear_int_mode(bp);
12747 	pci_disable_device(pdev);
12748 
12749 	if (system_state == SYSTEM_POWER_OFF) {
12750 		pci_wake_from_d3(pdev, bp->wol);
12751 		pci_set_power_state(pdev, PCI_D3hot);
12752 	}
12753 
12754 shutdown_exit:
12755 	rtnl_unlock();
12756 }
12757 
12758 #ifdef CONFIG_PM_SLEEP
12759 static int bnxt_suspend(struct device *device)
12760 {
12761 	struct net_device *dev = dev_get_drvdata(device);
12762 	struct bnxt *bp = netdev_priv(dev);
12763 	int rc = 0;
12764 
12765 	rtnl_lock();
12766 	bnxt_ulp_stop(bp);
12767 	if (netif_running(dev)) {
12768 		netif_device_detach(dev);
12769 		rc = bnxt_close(dev);
12770 	}
12771 	bnxt_hwrm_func_drv_unrgtr(bp);
12772 	pci_disable_device(bp->pdev);
12773 	bnxt_free_ctx_mem(bp);
12774 	kfree(bp->ctx);
12775 	bp->ctx = NULL;
12776 	rtnl_unlock();
12777 	return rc;
12778 }
12779 
12780 static int bnxt_resume(struct device *device)
12781 {
12782 	struct net_device *dev = dev_get_drvdata(device);
12783 	struct bnxt *bp = netdev_priv(dev);
12784 	int rc = 0;
12785 
12786 	rtnl_lock();
12787 	rc = pci_enable_device(bp->pdev);
12788 	if (rc) {
12789 		netdev_err(dev, "Cannot re-enable PCI device during resume, err = %d\n",
12790 			   rc);
12791 		goto resume_exit;
12792 	}
12793 	pci_set_master(bp->pdev);
12794 	if (bnxt_hwrm_ver_get(bp)) {
12795 		rc = -ENODEV;
12796 		goto resume_exit;
12797 	}
12798 	rc = bnxt_hwrm_func_reset(bp);
12799 	if (rc) {
12800 		rc = -EBUSY;
12801 		goto resume_exit;
12802 	}
12803 
12804 	rc = bnxt_hwrm_func_qcaps(bp);
12805 	if (rc)
12806 		goto resume_exit;
12807 
12808 	if (bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false)) {
12809 		rc = -ENODEV;
12810 		goto resume_exit;
12811 	}
12812 
12813 	bnxt_get_wol_settings(bp);
12814 	if (netif_running(dev)) {
12815 		rc = bnxt_open(dev);
12816 		if (!rc)
12817 			netif_device_attach(dev);
12818 	}
12819 
12820 resume_exit:
12821 	bnxt_ulp_start(bp, rc);
12822 	if (!rc)
12823 		bnxt_reenable_sriov(bp);
12824 	rtnl_unlock();
12825 	return rc;
12826 }
12827 
12828 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume);
12829 #define BNXT_PM_OPS (&bnxt_pm_ops)
12830 
12831 #else
12832 
12833 #define BNXT_PM_OPS NULL
12834 
12835 #endif /* CONFIG_PM_SLEEP */
12836 
12837 /**
12838  * bnxt_io_error_detected - called when PCI error is detected
12839  * @pdev: Pointer to PCI device
12840  * @state: The current pci connection state
12841  *
12842  * This function is called after a PCI bus error affecting
12843  * this device has been detected.
12844  */
12845 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev,
12846 					       pci_channel_state_t state)
12847 {
12848 	struct net_device *netdev = pci_get_drvdata(pdev);
12849 	struct bnxt *bp = netdev_priv(netdev);
12850 
12851 	netdev_info(netdev, "PCI I/O error detected\n");
12852 
12853 	rtnl_lock();
12854 	netif_device_detach(netdev);
12855 
12856 	bnxt_ulp_stop(bp);
12857 
12858 	if (state == pci_channel_io_perm_failure) {
12859 		rtnl_unlock();
12860 		return PCI_ERS_RESULT_DISCONNECT;
12861 	}
12862 
12863 	if (netif_running(netdev))
12864 		bnxt_close(netdev);
12865 
12866 	pci_disable_device(pdev);
12867 	bnxt_free_ctx_mem(bp);
12868 	kfree(bp->ctx);
12869 	bp->ctx = NULL;
12870 	rtnl_unlock();
12871 
12872 	/* Request a slot slot reset. */
12873 	return PCI_ERS_RESULT_NEED_RESET;
12874 }
12875 
12876 /**
12877  * bnxt_io_slot_reset - called after the pci bus has been reset.
12878  * @pdev: Pointer to PCI device
12879  *
12880  * Restart the card from scratch, as if from a cold-boot.
12881  * At this point, the card has exprienced a hard reset,
12882  * followed by fixups by BIOS, and has its config space
12883  * set up identically to what it was at cold boot.
12884  */
12885 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev)
12886 {
12887 	struct net_device *netdev = pci_get_drvdata(pdev);
12888 	struct bnxt *bp = netdev_priv(netdev);
12889 	int err = 0;
12890 	pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
12891 
12892 	netdev_info(bp->dev, "PCI Slot Reset\n");
12893 
12894 	rtnl_lock();
12895 
12896 	if (pci_enable_device(pdev)) {
12897 		dev_err(&pdev->dev,
12898 			"Cannot re-enable PCI device after reset.\n");
12899 	} else {
12900 		pci_set_master(pdev);
12901 		pci_restore_state(pdev);
12902 		pci_save_state(pdev);
12903 
12904 		err = bnxt_hwrm_func_reset(bp);
12905 		if (!err) {
12906 			err = bnxt_hwrm_func_qcaps(bp);
12907 			if (!err && netif_running(netdev))
12908 				err = bnxt_open(netdev);
12909 		}
12910 		bnxt_ulp_start(bp, err);
12911 		if (!err) {
12912 			bnxt_reenable_sriov(bp);
12913 			result = PCI_ERS_RESULT_RECOVERED;
12914 		}
12915 	}
12916 
12917 	if (result != PCI_ERS_RESULT_RECOVERED) {
12918 		if (netif_running(netdev))
12919 			dev_close(netdev);
12920 		pci_disable_device(pdev);
12921 	}
12922 
12923 	rtnl_unlock();
12924 
12925 	return result;
12926 }
12927 
12928 /**
12929  * bnxt_io_resume - called when traffic can start flowing again.
12930  * @pdev: Pointer to PCI device
12931  *
12932  * This callback is called when the error recovery driver tells
12933  * us that its OK to resume normal operation.
12934  */
12935 static void bnxt_io_resume(struct pci_dev *pdev)
12936 {
12937 	struct net_device *netdev = pci_get_drvdata(pdev);
12938 
12939 	rtnl_lock();
12940 
12941 	netif_device_attach(netdev);
12942 
12943 	rtnl_unlock();
12944 }
12945 
12946 static const struct pci_error_handlers bnxt_err_handler = {
12947 	.error_detected	= bnxt_io_error_detected,
12948 	.slot_reset	= bnxt_io_slot_reset,
12949 	.resume		= bnxt_io_resume
12950 };
12951 
12952 static struct pci_driver bnxt_pci_driver = {
12953 	.name		= DRV_MODULE_NAME,
12954 	.id_table	= bnxt_pci_tbl,
12955 	.probe		= bnxt_init_one,
12956 	.remove		= bnxt_remove_one,
12957 	.shutdown	= bnxt_shutdown,
12958 	.driver.pm	= BNXT_PM_OPS,
12959 	.err_handler	= &bnxt_err_handler,
12960 #if defined(CONFIG_BNXT_SRIOV)
12961 	.sriov_configure = bnxt_sriov_configure,
12962 #endif
12963 };
12964 
12965 static int __init bnxt_init(void)
12966 {
12967 	bnxt_debug_init();
12968 	return pci_register_driver(&bnxt_pci_driver);
12969 }
12970 
12971 static void __exit bnxt_exit(void)
12972 {
12973 	pci_unregister_driver(&bnxt_pci_driver);
12974 	if (bnxt_pf_wq)
12975 		destroy_workqueue(bnxt_pf_wq);
12976 	bnxt_debug_exit();
12977 }
12978 
12979 module_init(bnxt_init);
12980 module_exit(bnxt_exit);
12981