1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2016 Broadcom Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation.
8  */
9 
10 #include <linux/module.h>
11 
12 #include <linux/stringify.h>
13 #include <linux/kernel.h>
14 #include <linux/timer.h>
15 #include <linux/errno.h>
16 #include <linux/ioport.h>
17 #include <linux/slab.h>
18 #include <linux/vmalloc.h>
19 #include <linux/interrupt.h>
20 #include <linux/pci.h>
21 #include <linux/netdevice.h>
22 #include <linux/etherdevice.h>
23 #include <linux/skbuff.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/bitops.h>
26 #include <linux/io.h>
27 #include <linux/irq.h>
28 #include <linux/delay.h>
29 #include <asm/byteorder.h>
30 #include <asm/page.h>
31 #include <linux/time.h>
32 #include <linux/mii.h>
33 #include <linux/if.h>
34 #include <linux/if_vlan.h>
35 #include <linux/rtc.h>
36 #include <net/ip.h>
37 #include <net/tcp.h>
38 #include <net/udp.h>
39 #include <net/checksum.h>
40 #include <net/ip6_checksum.h>
41 #include <net/udp_tunnel.h>
42 #ifdef CONFIG_NET_RX_BUSY_POLL
43 #include <net/busy_poll.h>
44 #endif
45 #include <linux/workqueue.h>
46 #include <linux/prefetch.h>
47 #include <linux/cache.h>
48 #include <linux/log2.h>
49 #include <linux/aer.h>
50 #include <linux/bitmap.h>
51 #include <linux/cpu_rmap.h>
52 
53 #include "bnxt_hsi.h"
54 #include "bnxt.h"
55 #include "bnxt_sriov.h"
56 #include "bnxt_ethtool.h"
57 
58 #define BNXT_TX_TIMEOUT		(5 * HZ)
59 
60 static const char version[] =
61 	"Broadcom NetXtreme-C/E driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION "\n";
62 
63 MODULE_LICENSE("GPL");
64 MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
65 MODULE_VERSION(DRV_MODULE_VERSION);
66 
67 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
68 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
69 #define BNXT_RX_COPY_THRESH 256
70 
71 #define BNXT_TX_PUSH_THRESH 164
72 
73 enum board_idx {
74 	BCM57301,
75 	BCM57302,
76 	BCM57304,
77 	BCM57417_NPAR,
78 	BCM58700,
79 	BCM57311,
80 	BCM57312,
81 	BCM57402,
82 	BCM57404,
83 	BCM57406,
84 	BCM57402_NPAR,
85 	BCM57407,
86 	BCM57412,
87 	BCM57414,
88 	BCM57416,
89 	BCM57417,
90 	BCM57412_NPAR,
91 	BCM57314,
92 	BCM57417_SFP,
93 	BCM57416_SFP,
94 	BCM57404_NPAR,
95 	BCM57406_NPAR,
96 	BCM57407_SFP,
97 	BCM57407_NPAR,
98 	BCM57414_NPAR,
99 	BCM57416_NPAR,
100 	NETXTREME_E_VF,
101 	NETXTREME_C_VF,
102 };
103 
104 /* indexed by enum above */
105 static const struct {
106 	char *name;
107 } board_info[] = {
108 	{ "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" },
109 	{ "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" },
110 	{ "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
111 	{ "Broadcom BCM57417 NetXtreme-E Ethernet Partition" },
112 	{ "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" },
113 	{ "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" },
114 	{ "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" },
115 	{ "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" },
116 	{ "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" },
117 	{ "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" },
118 	{ "Broadcom BCM57402 NetXtreme-E Ethernet Partition" },
119 	{ "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" },
120 	{ "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" },
121 	{ "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" },
122 	{ "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" },
123 	{ "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" },
124 	{ "Broadcom BCM57412 NetXtreme-E Ethernet Partition" },
125 	{ "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
126 	{ "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" },
127 	{ "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" },
128 	{ "Broadcom BCM57404 NetXtreme-E Ethernet Partition" },
129 	{ "Broadcom BCM57406 NetXtreme-E Ethernet Partition" },
130 	{ "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" },
131 	{ "Broadcom BCM57407 NetXtreme-E Ethernet Partition" },
132 	{ "Broadcom BCM57414 NetXtreme-E Ethernet Partition" },
133 	{ "Broadcom BCM57416 NetXtreme-E Ethernet Partition" },
134 	{ "Broadcom NetXtreme-E Ethernet Virtual Function" },
135 	{ "Broadcom NetXtreme-C Ethernet Virtual Function" },
136 };
137 
138 static const struct pci_device_id bnxt_pci_tbl[] = {
139 	{ PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR },
140 	{ PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
141 	{ PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
142 	{ PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
143 	{ PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR },
144 	{ PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 },
145 	{ PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 },
146 	{ PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 },
147 	{ PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
148 	{ PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
149 	{ PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
150 	{ PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR },
151 	{ PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 },
152 	{ PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 },
153 	{ PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 },
154 	{ PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 },
155 	{ PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 },
156 	{ PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR },
157 	{ PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 },
158 	{ PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP },
159 	{ PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP },
160 	{ PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR },
161 	{ PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR },
162 	{ PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP },
163 	{ PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR },
164 	{ PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR },
165 	{ PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR },
166 	{ PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR },
167 	{ PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR },
168 	{ PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR },
169 #ifdef CONFIG_BNXT_SRIOV
170 	{ PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF },
171 	{ PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF },
172 	{ PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF },
173 	{ PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF },
174 	{ PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF },
175 	{ PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF },
176 #endif
177 	{ 0 }
178 };
179 
180 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
181 
182 static const u16 bnxt_vf_req_snif[] = {
183 	HWRM_FUNC_CFG,
184 	HWRM_PORT_PHY_QCFG,
185 	HWRM_CFA_L2_FILTER_ALLOC,
186 };
187 
188 static const u16 bnxt_async_events_arr[] = {
189 	HWRM_ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE,
190 	HWRM_ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD,
191 	HWRM_ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED,
192 	HWRM_ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE,
193 	HWRM_ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE,
194 };
195 
196 static bool bnxt_vf_pciid(enum board_idx idx)
197 {
198 	return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF);
199 }
200 
201 #define DB_CP_REARM_FLAGS	(DB_KEY_CP | DB_IDX_VALID)
202 #define DB_CP_FLAGS		(DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
203 #define DB_CP_IRQ_DIS_FLAGS	(DB_KEY_CP | DB_IRQ_DIS)
204 
205 #define BNXT_CP_DB_REARM(db, raw_cons)					\
206 		writel(DB_CP_REARM_FLAGS | RING_CMP(raw_cons), db)
207 
208 #define BNXT_CP_DB(db, raw_cons)					\
209 		writel(DB_CP_FLAGS | RING_CMP(raw_cons), db)
210 
211 #define BNXT_CP_DB_IRQ_DIS(db)						\
212 		writel(DB_CP_IRQ_DIS_FLAGS, db)
213 
214 static inline u32 bnxt_tx_avail(struct bnxt *bp, struct bnxt_tx_ring_info *txr)
215 {
216 	/* Tell compiler to fetch tx indices from memory. */
217 	barrier();
218 
219 	return bp->tx_ring_size -
220 		((txr->tx_prod - txr->tx_cons) & bp->tx_ring_mask);
221 }
222 
223 static const u16 bnxt_lhint_arr[] = {
224 	TX_BD_FLAGS_LHINT_512_AND_SMALLER,
225 	TX_BD_FLAGS_LHINT_512_TO_1023,
226 	TX_BD_FLAGS_LHINT_1024_TO_2047,
227 	TX_BD_FLAGS_LHINT_1024_TO_2047,
228 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
229 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
230 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
231 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
232 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
233 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
234 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
235 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
236 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
237 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
238 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
239 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
240 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
241 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
242 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
243 };
244 
245 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
246 {
247 	struct bnxt *bp = netdev_priv(dev);
248 	struct tx_bd *txbd;
249 	struct tx_bd_ext *txbd1;
250 	struct netdev_queue *txq;
251 	int i;
252 	dma_addr_t mapping;
253 	unsigned int length, pad = 0;
254 	u32 len, free_size, vlan_tag_flags, cfa_action, flags;
255 	u16 prod, last_frag;
256 	struct pci_dev *pdev = bp->pdev;
257 	struct bnxt_tx_ring_info *txr;
258 	struct bnxt_sw_tx_bd *tx_buf;
259 
260 	i = skb_get_queue_mapping(skb);
261 	if (unlikely(i >= bp->tx_nr_rings)) {
262 		dev_kfree_skb_any(skb);
263 		return NETDEV_TX_OK;
264 	}
265 
266 	txr = &bp->tx_ring[i];
267 	txq = netdev_get_tx_queue(dev, i);
268 	prod = txr->tx_prod;
269 
270 	free_size = bnxt_tx_avail(bp, txr);
271 	if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
272 		netif_tx_stop_queue(txq);
273 		return NETDEV_TX_BUSY;
274 	}
275 
276 	length = skb->len;
277 	len = skb_headlen(skb);
278 	last_frag = skb_shinfo(skb)->nr_frags;
279 
280 	txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
281 
282 	txbd->tx_bd_opaque = prod;
283 
284 	tx_buf = &txr->tx_buf_ring[prod];
285 	tx_buf->skb = skb;
286 	tx_buf->nr_frags = last_frag;
287 
288 	vlan_tag_flags = 0;
289 	cfa_action = 0;
290 	if (skb_vlan_tag_present(skb)) {
291 		vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
292 				 skb_vlan_tag_get(skb);
293 		/* Currently supports 8021Q, 8021AD vlan offloads
294 		 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
295 		 */
296 		if (skb->vlan_proto == htons(ETH_P_8021Q))
297 			vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
298 	}
299 
300 	if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh) {
301 		struct tx_push_buffer *tx_push_buf = txr->tx_push;
302 		struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
303 		struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
304 		void *pdata = tx_push_buf->data;
305 		u64 *end;
306 		int j, push_len;
307 
308 		/* Set COAL_NOW to be ready quickly for the next push */
309 		tx_push->tx_bd_len_flags_type =
310 			cpu_to_le32((length << TX_BD_LEN_SHIFT) |
311 					TX_BD_TYPE_LONG_TX_BD |
312 					TX_BD_FLAGS_LHINT_512_AND_SMALLER |
313 					TX_BD_FLAGS_COAL_NOW |
314 					TX_BD_FLAGS_PACKET_END |
315 					(2 << TX_BD_FLAGS_BD_CNT_SHIFT));
316 
317 		if (skb->ip_summed == CHECKSUM_PARTIAL)
318 			tx_push1->tx_bd_hsize_lflags =
319 					cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
320 		else
321 			tx_push1->tx_bd_hsize_lflags = 0;
322 
323 		tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
324 		tx_push1->tx_bd_cfa_action = cpu_to_le32(cfa_action);
325 
326 		end = pdata + length;
327 		end = PTR_ALIGN(end, 8) - 1;
328 		*end = 0;
329 
330 		skb_copy_from_linear_data(skb, pdata, len);
331 		pdata += len;
332 		for (j = 0; j < last_frag; j++) {
333 			skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
334 			void *fptr;
335 
336 			fptr = skb_frag_address_safe(frag);
337 			if (!fptr)
338 				goto normal_tx;
339 
340 			memcpy(pdata, fptr, skb_frag_size(frag));
341 			pdata += skb_frag_size(frag);
342 		}
343 
344 		txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
345 		txbd->tx_bd_haddr = txr->data_mapping;
346 		prod = NEXT_TX(prod);
347 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
348 		memcpy(txbd, tx_push1, sizeof(*txbd));
349 		prod = NEXT_TX(prod);
350 		tx_push->doorbell =
351 			cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod);
352 		txr->tx_prod = prod;
353 
354 		tx_buf->is_push = 1;
355 		netdev_tx_sent_queue(txq, skb->len);
356 		wmb();	/* Sync is_push and byte queue before pushing data */
357 
358 		push_len = (length + sizeof(*tx_push) + 7) / 8;
359 		if (push_len > 16) {
360 			__iowrite64_copy(txr->tx_doorbell, tx_push_buf, 16);
361 			__iowrite32_copy(txr->tx_doorbell + 4, tx_push_buf + 1,
362 					 (push_len - 16) << 1);
363 		} else {
364 			__iowrite64_copy(txr->tx_doorbell, tx_push_buf,
365 					 push_len);
366 		}
367 
368 		goto tx_done;
369 	}
370 
371 normal_tx:
372 	if (length < BNXT_MIN_PKT_SIZE) {
373 		pad = BNXT_MIN_PKT_SIZE - length;
374 		if (skb_pad(skb, pad)) {
375 			/* SKB already freed. */
376 			tx_buf->skb = NULL;
377 			return NETDEV_TX_OK;
378 		}
379 		length = BNXT_MIN_PKT_SIZE;
380 	}
381 
382 	mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
383 
384 	if (unlikely(dma_mapping_error(&pdev->dev, mapping))) {
385 		dev_kfree_skb_any(skb);
386 		tx_buf->skb = NULL;
387 		return NETDEV_TX_OK;
388 	}
389 
390 	dma_unmap_addr_set(tx_buf, mapping, mapping);
391 	flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
392 		((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
393 
394 	txbd->tx_bd_haddr = cpu_to_le64(mapping);
395 
396 	prod = NEXT_TX(prod);
397 	txbd1 = (struct tx_bd_ext *)
398 		&txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
399 
400 	txbd1->tx_bd_hsize_lflags = 0;
401 	if (skb_is_gso(skb)) {
402 		u32 hdr_len;
403 
404 		if (skb->encapsulation)
405 			hdr_len = skb_inner_network_offset(skb) +
406 				skb_inner_network_header_len(skb) +
407 				inner_tcp_hdrlen(skb);
408 		else
409 			hdr_len = skb_transport_offset(skb) +
410 				tcp_hdrlen(skb);
411 
412 		txbd1->tx_bd_hsize_lflags = cpu_to_le32(TX_BD_FLAGS_LSO |
413 					TX_BD_FLAGS_T_IPID |
414 					(hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
415 		length = skb_shinfo(skb)->gso_size;
416 		txbd1->tx_bd_mss = cpu_to_le32(length);
417 		length += hdr_len;
418 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
419 		txbd1->tx_bd_hsize_lflags =
420 			cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
421 		txbd1->tx_bd_mss = 0;
422 	}
423 
424 	length >>= 9;
425 	flags |= bnxt_lhint_arr[length];
426 	txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
427 
428 	txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
429 	txbd1->tx_bd_cfa_action = cpu_to_le32(cfa_action);
430 	for (i = 0; i < last_frag; i++) {
431 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
432 
433 		prod = NEXT_TX(prod);
434 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
435 
436 		len = skb_frag_size(frag);
437 		mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
438 					   DMA_TO_DEVICE);
439 
440 		if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
441 			goto tx_dma_error;
442 
443 		tx_buf = &txr->tx_buf_ring[prod];
444 		dma_unmap_addr_set(tx_buf, mapping, mapping);
445 
446 		txbd->tx_bd_haddr = cpu_to_le64(mapping);
447 
448 		flags = len << TX_BD_LEN_SHIFT;
449 		txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
450 	}
451 
452 	flags &= ~TX_BD_LEN;
453 	txbd->tx_bd_len_flags_type =
454 		cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
455 			    TX_BD_FLAGS_PACKET_END);
456 
457 	netdev_tx_sent_queue(txq, skb->len);
458 
459 	/* Sync BD data before updating doorbell */
460 	wmb();
461 
462 	prod = NEXT_TX(prod);
463 	txr->tx_prod = prod;
464 
465 	writel(DB_KEY_TX | prod, txr->tx_doorbell);
466 	writel(DB_KEY_TX | prod, txr->tx_doorbell);
467 
468 tx_done:
469 
470 	mmiowb();
471 
472 	if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
473 		netif_tx_stop_queue(txq);
474 
475 		/* netif_tx_stop_queue() must be done before checking
476 		 * tx index in bnxt_tx_avail() below, because in
477 		 * bnxt_tx_int(), we update tx index before checking for
478 		 * netif_tx_queue_stopped().
479 		 */
480 		smp_mb();
481 		if (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)
482 			netif_tx_wake_queue(txq);
483 	}
484 	return NETDEV_TX_OK;
485 
486 tx_dma_error:
487 	last_frag = i;
488 
489 	/* start back at beginning and unmap skb */
490 	prod = txr->tx_prod;
491 	tx_buf = &txr->tx_buf_ring[prod];
492 	tx_buf->skb = NULL;
493 	dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
494 			 skb_headlen(skb), PCI_DMA_TODEVICE);
495 	prod = NEXT_TX(prod);
496 
497 	/* unmap remaining mapped pages */
498 	for (i = 0; i < last_frag; i++) {
499 		prod = NEXT_TX(prod);
500 		tx_buf = &txr->tx_buf_ring[prod];
501 		dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
502 			       skb_frag_size(&skb_shinfo(skb)->frags[i]),
503 			       PCI_DMA_TODEVICE);
504 	}
505 
506 	dev_kfree_skb_any(skb);
507 	return NETDEV_TX_OK;
508 }
509 
510 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts)
511 {
512 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
513 	int index = txr - &bp->tx_ring[0];
514 	struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, index);
515 	u16 cons = txr->tx_cons;
516 	struct pci_dev *pdev = bp->pdev;
517 	int i;
518 	unsigned int tx_bytes = 0;
519 
520 	for (i = 0; i < nr_pkts; i++) {
521 		struct bnxt_sw_tx_bd *tx_buf;
522 		struct sk_buff *skb;
523 		int j, last;
524 
525 		tx_buf = &txr->tx_buf_ring[cons];
526 		cons = NEXT_TX(cons);
527 		skb = tx_buf->skb;
528 		tx_buf->skb = NULL;
529 
530 		if (tx_buf->is_push) {
531 			tx_buf->is_push = 0;
532 			goto next_tx_int;
533 		}
534 
535 		dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
536 				 skb_headlen(skb), PCI_DMA_TODEVICE);
537 		last = tx_buf->nr_frags;
538 
539 		for (j = 0; j < last; j++) {
540 			cons = NEXT_TX(cons);
541 			tx_buf = &txr->tx_buf_ring[cons];
542 			dma_unmap_page(
543 				&pdev->dev,
544 				dma_unmap_addr(tx_buf, mapping),
545 				skb_frag_size(&skb_shinfo(skb)->frags[j]),
546 				PCI_DMA_TODEVICE);
547 		}
548 
549 next_tx_int:
550 		cons = NEXT_TX(cons);
551 
552 		tx_bytes += skb->len;
553 		dev_kfree_skb_any(skb);
554 	}
555 
556 	netdev_tx_completed_queue(txq, nr_pkts, tx_bytes);
557 	txr->tx_cons = cons;
558 
559 	/* Need to make the tx_cons update visible to bnxt_start_xmit()
560 	 * before checking for netif_tx_queue_stopped().  Without the
561 	 * memory barrier, there is a small possibility that bnxt_start_xmit()
562 	 * will miss it and cause the queue to be stopped forever.
563 	 */
564 	smp_mb();
565 
566 	if (unlikely(netif_tx_queue_stopped(txq)) &&
567 	    (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
568 		__netif_tx_lock(txq, smp_processor_id());
569 		if (netif_tx_queue_stopped(txq) &&
570 		    bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh &&
571 		    txr->dev_state != BNXT_DEV_STATE_CLOSING)
572 			netif_tx_wake_queue(txq);
573 		__netif_tx_unlock(txq);
574 	}
575 }
576 
577 static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping,
578 				       gfp_t gfp)
579 {
580 	u8 *data;
581 	struct pci_dev *pdev = bp->pdev;
582 
583 	data = kmalloc(bp->rx_buf_size, gfp);
584 	if (!data)
585 		return NULL;
586 
587 	*mapping = dma_map_single(&pdev->dev, data + BNXT_RX_DMA_OFFSET,
588 				  bp->rx_buf_use_size, PCI_DMA_FROMDEVICE);
589 
590 	if (dma_mapping_error(&pdev->dev, *mapping)) {
591 		kfree(data);
592 		data = NULL;
593 	}
594 	return data;
595 }
596 
597 static inline int bnxt_alloc_rx_data(struct bnxt *bp,
598 				     struct bnxt_rx_ring_info *rxr,
599 				     u16 prod, gfp_t gfp)
600 {
601 	struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
602 	struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
603 	u8 *data;
604 	dma_addr_t mapping;
605 
606 	data = __bnxt_alloc_rx_data(bp, &mapping, gfp);
607 	if (!data)
608 		return -ENOMEM;
609 
610 	rx_buf->data = data;
611 	dma_unmap_addr_set(rx_buf, mapping, mapping);
612 
613 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
614 
615 	return 0;
616 }
617 
618 static void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons,
619 			       u8 *data)
620 {
621 	u16 prod = rxr->rx_prod;
622 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
623 	struct rx_bd *cons_bd, *prod_bd;
624 
625 	prod_rx_buf = &rxr->rx_buf_ring[prod];
626 	cons_rx_buf = &rxr->rx_buf_ring[cons];
627 
628 	prod_rx_buf->data = data;
629 
630 	dma_unmap_addr_set(prod_rx_buf, mapping,
631 			   dma_unmap_addr(cons_rx_buf, mapping));
632 
633 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
634 	cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
635 
636 	prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
637 }
638 
639 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
640 {
641 	u16 next, max = rxr->rx_agg_bmap_size;
642 
643 	next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
644 	if (next >= max)
645 		next = find_first_zero_bit(rxr->rx_agg_bmap, max);
646 	return next;
647 }
648 
649 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
650 				     struct bnxt_rx_ring_info *rxr,
651 				     u16 prod, gfp_t gfp)
652 {
653 	struct rx_bd *rxbd =
654 		&rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
655 	struct bnxt_sw_rx_agg_bd *rx_agg_buf;
656 	struct pci_dev *pdev = bp->pdev;
657 	struct page *page;
658 	dma_addr_t mapping;
659 	u16 sw_prod = rxr->rx_sw_agg_prod;
660 	unsigned int offset = 0;
661 
662 	if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) {
663 		page = rxr->rx_page;
664 		if (!page) {
665 			page = alloc_page(gfp);
666 			if (!page)
667 				return -ENOMEM;
668 			rxr->rx_page = page;
669 			rxr->rx_page_offset = 0;
670 		}
671 		offset = rxr->rx_page_offset;
672 		rxr->rx_page_offset += BNXT_RX_PAGE_SIZE;
673 		if (rxr->rx_page_offset == PAGE_SIZE)
674 			rxr->rx_page = NULL;
675 		else
676 			get_page(page);
677 	} else {
678 		page = alloc_page(gfp);
679 		if (!page)
680 			return -ENOMEM;
681 	}
682 
683 	mapping = dma_map_page(&pdev->dev, page, offset, BNXT_RX_PAGE_SIZE,
684 			       PCI_DMA_FROMDEVICE);
685 	if (dma_mapping_error(&pdev->dev, mapping)) {
686 		__free_page(page);
687 		return -EIO;
688 	}
689 
690 	if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
691 		sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
692 
693 	__set_bit(sw_prod, rxr->rx_agg_bmap);
694 	rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
695 	rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod);
696 
697 	rx_agg_buf->page = page;
698 	rx_agg_buf->offset = offset;
699 	rx_agg_buf->mapping = mapping;
700 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
701 	rxbd->rx_bd_opaque = sw_prod;
702 	return 0;
703 }
704 
705 static void bnxt_reuse_rx_agg_bufs(struct bnxt_napi *bnapi, u16 cp_cons,
706 				   u32 agg_bufs)
707 {
708 	struct bnxt *bp = bnapi->bp;
709 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
710 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
711 	u16 prod = rxr->rx_agg_prod;
712 	u16 sw_prod = rxr->rx_sw_agg_prod;
713 	u32 i;
714 
715 	for (i = 0; i < agg_bufs; i++) {
716 		u16 cons;
717 		struct rx_agg_cmp *agg;
718 		struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
719 		struct rx_bd *prod_bd;
720 		struct page *page;
721 
722 		agg = (struct rx_agg_cmp *)
723 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
724 		cons = agg->rx_agg_cmp_opaque;
725 		__clear_bit(cons, rxr->rx_agg_bmap);
726 
727 		if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
728 			sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
729 
730 		__set_bit(sw_prod, rxr->rx_agg_bmap);
731 		prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
732 		cons_rx_buf = &rxr->rx_agg_ring[cons];
733 
734 		/* It is possible for sw_prod to be equal to cons, so
735 		 * set cons_rx_buf->page to NULL first.
736 		 */
737 		page = cons_rx_buf->page;
738 		cons_rx_buf->page = NULL;
739 		prod_rx_buf->page = page;
740 		prod_rx_buf->offset = cons_rx_buf->offset;
741 
742 		prod_rx_buf->mapping = cons_rx_buf->mapping;
743 
744 		prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
745 
746 		prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
747 		prod_bd->rx_bd_opaque = sw_prod;
748 
749 		prod = NEXT_RX_AGG(prod);
750 		sw_prod = NEXT_RX_AGG(sw_prod);
751 		cp_cons = NEXT_CMP(cp_cons);
752 	}
753 	rxr->rx_agg_prod = prod;
754 	rxr->rx_sw_agg_prod = sw_prod;
755 }
756 
757 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
758 				   struct bnxt_rx_ring_info *rxr, u16 cons,
759 				   u16 prod, u8 *data, dma_addr_t dma_addr,
760 				   unsigned int len)
761 {
762 	int err;
763 	struct sk_buff *skb;
764 
765 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
766 	if (unlikely(err)) {
767 		bnxt_reuse_rx_data(rxr, cons, data);
768 		return NULL;
769 	}
770 
771 	skb = build_skb(data, 0);
772 	dma_unmap_single(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
773 			 PCI_DMA_FROMDEVICE);
774 	if (!skb) {
775 		kfree(data);
776 		return NULL;
777 	}
778 
779 	skb_reserve(skb, BNXT_RX_OFFSET);
780 	skb_put(skb, len);
781 	return skb;
782 }
783 
784 static struct sk_buff *bnxt_rx_pages(struct bnxt *bp, struct bnxt_napi *bnapi,
785 				     struct sk_buff *skb, u16 cp_cons,
786 				     u32 agg_bufs)
787 {
788 	struct pci_dev *pdev = bp->pdev;
789 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
790 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
791 	u16 prod = rxr->rx_agg_prod;
792 	u32 i;
793 
794 	for (i = 0; i < agg_bufs; i++) {
795 		u16 cons, frag_len;
796 		struct rx_agg_cmp *agg;
797 		struct bnxt_sw_rx_agg_bd *cons_rx_buf;
798 		struct page *page;
799 		dma_addr_t mapping;
800 
801 		agg = (struct rx_agg_cmp *)
802 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
803 		cons = agg->rx_agg_cmp_opaque;
804 		frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
805 			    RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
806 
807 		cons_rx_buf = &rxr->rx_agg_ring[cons];
808 		skb_fill_page_desc(skb, i, cons_rx_buf->page,
809 				   cons_rx_buf->offset, frag_len);
810 		__clear_bit(cons, rxr->rx_agg_bmap);
811 
812 		/* It is possible for bnxt_alloc_rx_page() to allocate
813 		 * a sw_prod index that equals the cons index, so we
814 		 * need to clear the cons entry now.
815 		 */
816 		mapping = dma_unmap_addr(cons_rx_buf, mapping);
817 		page = cons_rx_buf->page;
818 		cons_rx_buf->page = NULL;
819 
820 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
821 			struct skb_shared_info *shinfo;
822 			unsigned int nr_frags;
823 
824 			shinfo = skb_shinfo(skb);
825 			nr_frags = --shinfo->nr_frags;
826 			__skb_frag_set_page(&shinfo->frags[nr_frags], NULL);
827 
828 			dev_kfree_skb(skb);
829 
830 			cons_rx_buf->page = page;
831 
832 			/* Update prod since possibly some pages have been
833 			 * allocated already.
834 			 */
835 			rxr->rx_agg_prod = prod;
836 			bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs - i);
837 			return NULL;
838 		}
839 
840 		dma_unmap_page(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE,
841 			       PCI_DMA_FROMDEVICE);
842 
843 		skb->data_len += frag_len;
844 		skb->len += frag_len;
845 		skb->truesize += PAGE_SIZE;
846 
847 		prod = NEXT_RX_AGG(prod);
848 		cp_cons = NEXT_CMP(cp_cons);
849 	}
850 	rxr->rx_agg_prod = prod;
851 	return skb;
852 }
853 
854 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
855 			       u8 agg_bufs, u32 *raw_cons)
856 {
857 	u16 last;
858 	struct rx_agg_cmp *agg;
859 
860 	*raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
861 	last = RING_CMP(*raw_cons);
862 	agg = (struct rx_agg_cmp *)
863 		&cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
864 	return RX_AGG_CMP_VALID(agg, *raw_cons);
865 }
866 
867 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
868 					    unsigned int len,
869 					    dma_addr_t mapping)
870 {
871 	struct bnxt *bp = bnapi->bp;
872 	struct pci_dev *pdev = bp->pdev;
873 	struct sk_buff *skb;
874 
875 	skb = napi_alloc_skb(&bnapi->napi, len);
876 	if (!skb)
877 		return NULL;
878 
879 	dma_sync_single_for_cpu(&pdev->dev, mapping,
880 				bp->rx_copy_thresh, PCI_DMA_FROMDEVICE);
881 
882 	memcpy(skb->data - BNXT_RX_OFFSET, data, len + BNXT_RX_OFFSET);
883 
884 	dma_sync_single_for_device(&pdev->dev, mapping,
885 				   bp->rx_copy_thresh,
886 				   PCI_DMA_FROMDEVICE);
887 
888 	skb_put(skb, len);
889 	return skb;
890 }
891 
892 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_napi *bnapi,
893 			   u32 *raw_cons, void *cmp)
894 {
895 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
896 	struct rx_cmp *rxcmp = cmp;
897 	u32 tmp_raw_cons = *raw_cons;
898 	u8 cmp_type, agg_bufs = 0;
899 
900 	cmp_type = RX_CMP_TYPE(rxcmp);
901 
902 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
903 		agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) &
904 			    RX_CMP_AGG_BUFS) >>
905 			   RX_CMP_AGG_BUFS_SHIFT;
906 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
907 		struct rx_tpa_end_cmp *tpa_end = cmp;
908 
909 		agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
910 			    RX_TPA_END_CMP_AGG_BUFS) >>
911 			   RX_TPA_END_CMP_AGG_BUFS_SHIFT;
912 	}
913 
914 	if (agg_bufs) {
915 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
916 			return -EBUSY;
917 	}
918 	*raw_cons = tmp_raw_cons;
919 	return 0;
920 }
921 
922 static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
923 {
924 	if (!rxr->bnapi->in_reset) {
925 		rxr->bnapi->in_reset = true;
926 		set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
927 		schedule_work(&bp->sp_task);
928 	}
929 	rxr->rx_next_cons = 0xffff;
930 }
931 
932 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
933 			   struct rx_tpa_start_cmp *tpa_start,
934 			   struct rx_tpa_start_cmp_ext *tpa_start1)
935 {
936 	u8 agg_id = TPA_START_AGG_ID(tpa_start);
937 	u16 cons, prod;
938 	struct bnxt_tpa_info *tpa_info;
939 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
940 	struct rx_bd *prod_bd;
941 	dma_addr_t mapping;
942 
943 	cons = tpa_start->rx_tpa_start_cmp_opaque;
944 	prod = rxr->rx_prod;
945 	cons_rx_buf = &rxr->rx_buf_ring[cons];
946 	prod_rx_buf = &rxr->rx_buf_ring[prod];
947 	tpa_info = &rxr->rx_tpa[agg_id];
948 
949 	if (unlikely(cons != rxr->rx_next_cons)) {
950 		bnxt_sched_reset(bp, rxr);
951 		return;
952 	}
953 
954 	prod_rx_buf->data = tpa_info->data;
955 
956 	mapping = tpa_info->mapping;
957 	dma_unmap_addr_set(prod_rx_buf, mapping, mapping);
958 
959 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
960 
961 	prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
962 
963 	tpa_info->data = cons_rx_buf->data;
964 	cons_rx_buf->data = NULL;
965 	tpa_info->mapping = dma_unmap_addr(cons_rx_buf, mapping);
966 
967 	tpa_info->len =
968 		le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
969 				RX_TPA_START_CMP_LEN_SHIFT;
970 	if (likely(TPA_START_HASH_VALID(tpa_start))) {
971 		u32 hash_type = TPA_START_HASH_TYPE(tpa_start);
972 
973 		tpa_info->hash_type = PKT_HASH_TYPE_L4;
974 		tpa_info->gso_type = SKB_GSO_TCPV4;
975 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
976 		if (hash_type == 3)
977 			tpa_info->gso_type = SKB_GSO_TCPV6;
978 		tpa_info->rss_hash =
979 			le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
980 	} else {
981 		tpa_info->hash_type = PKT_HASH_TYPE_NONE;
982 		tpa_info->gso_type = 0;
983 		if (netif_msg_rx_err(bp))
984 			netdev_warn(bp->dev, "TPA packet without valid hash\n");
985 	}
986 	tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
987 	tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
988 	tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info);
989 
990 	rxr->rx_prod = NEXT_RX(prod);
991 	cons = NEXT_RX(cons);
992 	rxr->rx_next_cons = NEXT_RX(cons);
993 	cons_rx_buf = &rxr->rx_buf_ring[cons];
994 
995 	bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
996 	rxr->rx_prod = NEXT_RX(rxr->rx_prod);
997 	cons_rx_buf->data = NULL;
998 }
999 
1000 static void bnxt_abort_tpa(struct bnxt *bp, struct bnxt_napi *bnapi,
1001 			   u16 cp_cons, u32 agg_bufs)
1002 {
1003 	if (agg_bufs)
1004 		bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
1005 }
1006 
1007 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info,
1008 					   int payload_off, int tcp_ts,
1009 					   struct sk_buff *skb)
1010 {
1011 #ifdef CONFIG_INET
1012 	struct tcphdr *th;
1013 	int len, nw_off;
1014 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1015 	u32 hdr_info = tpa_info->hdr_info;
1016 	bool loopback = false;
1017 
1018 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1019 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1020 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1021 
1022 	/* If the packet is an internal loopback packet, the offsets will
1023 	 * have an extra 4 bytes.
1024 	 */
1025 	if (inner_mac_off == 4) {
1026 		loopback = true;
1027 	} else if (inner_mac_off > 4) {
1028 		__be16 proto = *((__be16 *)(skb->data + inner_ip_off -
1029 					    ETH_HLEN - 2));
1030 
1031 		/* We only support inner iPv4/ipv6.  If we don't see the
1032 		 * correct protocol ID, it must be a loopback packet where
1033 		 * the offsets are off by 4.
1034 		 */
1035 		if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6))
1036 			loopback = true;
1037 	}
1038 	if (loopback) {
1039 		/* internal loopback packet, subtract all offsets by 4 */
1040 		inner_ip_off -= 4;
1041 		inner_mac_off -= 4;
1042 		outer_ip_off -= 4;
1043 	}
1044 
1045 	nw_off = inner_ip_off - ETH_HLEN;
1046 	skb_set_network_header(skb, nw_off);
1047 	if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) {
1048 		struct ipv6hdr *iph = ipv6_hdr(skb);
1049 
1050 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1051 		len = skb->len - skb_transport_offset(skb);
1052 		th = tcp_hdr(skb);
1053 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1054 	} else {
1055 		struct iphdr *iph = ip_hdr(skb);
1056 
1057 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1058 		len = skb->len - skb_transport_offset(skb);
1059 		th = tcp_hdr(skb);
1060 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1061 	}
1062 
1063 	if (inner_mac_off) { /* tunnel */
1064 		struct udphdr *uh = NULL;
1065 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1066 					    ETH_HLEN - 2));
1067 
1068 		if (proto == htons(ETH_P_IP)) {
1069 			struct iphdr *iph = (struct iphdr *)skb->data;
1070 
1071 			if (iph->protocol == IPPROTO_UDP)
1072 				uh = (struct udphdr *)(iph + 1);
1073 		} else {
1074 			struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1075 
1076 			if (iph->nexthdr == IPPROTO_UDP)
1077 				uh = (struct udphdr *)(iph + 1);
1078 		}
1079 		if (uh) {
1080 			if (uh->check)
1081 				skb_shinfo(skb)->gso_type |=
1082 					SKB_GSO_UDP_TUNNEL_CSUM;
1083 			else
1084 				skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1085 		}
1086 	}
1087 #endif
1088 	return skb;
1089 }
1090 
1091 #define BNXT_IPV4_HDR_SIZE	(sizeof(struct iphdr) + sizeof(struct tcphdr))
1092 #define BNXT_IPV6_HDR_SIZE	(sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
1093 
1094 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info,
1095 					   int payload_off, int tcp_ts,
1096 					   struct sk_buff *skb)
1097 {
1098 #ifdef CONFIG_INET
1099 	struct tcphdr *th;
1100 	int len, nw_off, tcp_opt_len;
1101 
1102 	if (tcp_ts)
1103 		tcp_opt_len = 12;
1104 
1105 	if (tpa_info->gso_type == SKB_GSO_TCPV4) {
1106 		struct iphdr *iph;
1107 
1108 		nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
1109 			 ETH_HLEN;
1110 		skb_set_network_header(skb, nw_off);
1111 		iph = ip_hdr(skb);
1112 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1113 		len = skb->len - skb_transport_offset(skb);
1114 		th = tcp_hdr(skb);
1115 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1116 	} else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
1117 		struct ipv6hdr *iph;
1118 
1119 		nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
1120 			 ETH_HLEN;
1121 		skb_set_network_header(skb, nw_off);
1122 		iph = ipv6_hdr(skb);
1123 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1124 		len = skb->len - skb_transport_offset(skb);
1125 		th = tcp_hdr(skb);
1126 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1127 	} else {
1128 		dev_kfree_skb_any(skb);
1129 		return NULL;
1130 	}
1131 	tcp_gro_complete(skb);
1132 
1133 	if (nw_off) { /* tunnel */
1134 		struct udphdr *uh = NULL;
1135 
1136 		if (skb->protocol == htons(ETH_P_IP)) {
1137 			struct iphdr *iph = (struct iphdr *)skb->data;
1138 
1139 			if (iph->protocol == IPPROTO_UDP)
1140 				uh = (struct udphdr *)(iph + 1);
1141 		} else {
1142 			struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1143 
1144 			if (iph->nexthdr == IPPROTO_UDP)
1145 				uh = (struct udphdr *)(iph + 1);
1146 		}
1147 		if (uh) {
1148 			if (uh->check)
1149 				skb_shinfo(skb)->gso_type |=
1150 					SKB_GSO_UDP_TUNNEL_CSUM;
1151 			else
1152 				skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1153 		}
1154 	}
1155 #endif
1156 	return skb;
1157 }
1158 
1159 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp,
1160 					   struct bnxt_tpa_info *tpa_info,
1161 					   struct rx_tpa_end_cmp *tpa_end,
1162 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1163 					   struct sk_buff *skb)
1164 {
1165 #ifdef CONFIG_INET
1166 	int payload_off;
1167 	u16 segs;
1168 
1169 	segs = TPA_END_TPA_SEGS(tpa_end);
1170 	if (segs == 1)
1171 		return skb;
1172 
1173 	NAPI_GRO_CB(skb)->count = segs;
1174 	skb_shinfo(skb)->gso_size =
1175 		le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
1176 	skb_shinfo(skb)->gso_type = tpa_info->gso_type;
1177 	payload_off = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
1178 		       RX_TPA_END_CMP_PAYLOAD_OFFSET) >>
1179 		      RX_TPA_END_CMP_PAYLOAD_OFFSET_SHIFT;
1180 	skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb);
1181 #endif
1182 	return skb;
1183 }
1184 
1185 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
1186 					   struct bnxt_napi *bnapi,
1187 					   u32 *raw_cons,
1188 					   struct rx_tpa_end_cmp *tpa_end,
1189 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1190 					   bool *agg_event)
1191 {
1192 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1193 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1194 	u8 agg_id = TPA_END_AGG_ID(tpa_end);
1195 	u8 *data, agg_bufs;
1196 	u16 cp_cons = RING_CMP(*raw_cons);
1197 	unsigned int len;
1198 	struct bnxt_tpa_info *tpa_info;
1199 	dma_addr_t mapping;
1200 	struct sk_buff *skb;
1201 
1202 	if (unlikely(bnapi->in_reset)) {
1203 		int rc = bnxt_discard_rx(bp, bnapi, raw_cons, tpa_end);
1204 
1205 		if (rc < 0)
1206 			return ERR_PTR(-EBUSY);
1207 		return NULL;
1208 	}
1209 
1210 	tpa_info = &rxr->rx_tpa[agg_id];
1211 	data = tpa_info->data;
1212 	prefetch(data);
1213 	len = tpa_info->len;
1214 	mapping = tpa_info->mapping;
1215 
1216 	agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
1217 		    RX_TPA_END_CMP_AGG_BUFS) >> RX_TPA_END_CMP_AGG_BUFS_SHIFT;
1218 
1219 	if (agg_bufs) {
1220 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
1221 			return ERR_PTR(-EBUSY);
1222 
1223 		*agg_event = true;
1224 		cp_cons = NEXT_CMP(cp_cons);
1225 	}
1226 
1227 	if (unlikely(agg_bufs > MAX_SKB_FRAGS)) {
1228 		bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1229 		netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
1230 			    agg_bufs, (int)MAX_SKB_FRAGS);
1231 		return NULL;
1232 	}
1233 
1234 	if (len <= bp->rx_copy_thresh) {
1235 		skb = bnxt_copy_skb(bnapi, data, len, mapping);
1236 		if (!skb) {
1237 			bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1238 			return NULL;
1239 		}
1240 	} else {
1241 		u8 *new_data;
1242 		dma_addr_t new_mapping;
1243 
1244 		new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC);
1245 		if (!new_data) {
1246 			bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1247 			return NULL;
1248 		}
1249 
1250 		tpa_info->data = new_data;
1251 		tpa_info->mapping = new_mapping;
1252 
1253 		skb = build_skb(data, 0);
1254 		dma_unmap_single(&bp->pdev->dev, mapping, bp->rx_buf_use_size,
1255 				 PCI_DMA_FROMDEVICE);
1256 
1257 		if (!skb) {
1258 			kfree(data);
1259 			bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1260 			return NULL;
1261 		}
1262 		skb_reserve(skb, BNXT_RX_OFFSET);
1263 		skb_put(skb, len);
1264 	}
1265 
1266 	if (agg_bufs) {
1267 		skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
1268 		if (!skb) {
1269 			/* Page reuse already handled by bnxt_rx_pages(). */
1270 			return NULL;
1271 		}
1272 	}
1273 	skb->protocol = eth_type_trans(skb, bp->dev);
1274 
1275 	if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1276 		skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1277 
1278 	if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) &&
1279 	    (skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
1280 		u16 vlan_proto = tpa_info->metadata >>
1281 			RX_CMP_FLAGS2_METADATA_TPID_SFT;
1282 		u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_VID_MASK;
1283 
1284 		__vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1285 	}
1286 
1287 	skb_checksum_none_assert(skb);
1288 	if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1289 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1290 		skb->csum_level =
1291 			(tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1292 	}
1293 
1294 	if (TPA_END_GRO(tpa_end))
1295 		skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb);
1296 
1297 	return skb;
1298 }
1299 
1300 /* returns the following:
1301  * 1       - 1 packet successfully received
1302  * 0       - successful TPA_START, packet not completed yet
1303  * -EBUSY  - completion ring does not have all the agg buffers yet
1304  * -ENOMEM - packet aborted due to out of memory
1305  * -EIO    - packet aborted due to hw error indicated in BD
1306  */
1307 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_napi *bnapi, u32 *raw_cons,
1308 		       bool *agg_event)
1309 {
1310 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1311 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1312 	struct net_device *dev = bp->dev;
1313 	struct rx_cmp *rxcmp;
1314 	struct rx_cmp_ext *rxcmp1;
1315 	u32 tmp_raw_cons = *raw_cons;
1316 	u16 cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
1317 	struct bnxt_sw_rx_bd *rx_buf;
1318 	unsigned int len;
1319 	u8 *data, agg_bufs, cmp_type;
1320 	dma_addr_t dma_addr;
1321 	struct sk_buff *skb;
1322 	int rc = 0;
1323 
1324 	rxcmp = (struct rx_cmp *)
1325 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1326 
1327 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1328 	cp_cons = RING_CMP(tmp_raw_cons);
1329 	rxcmp1 = (struct rx_cmp_ext *)
1330 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1331 
1332 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1333 		return -EBUSY;
1334 
1335 	cmp_type = RX_CMP_TYPE(rxcmp);
1336 
1337 	prod = rxr->rx_prod;
1338 
1339 	if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) {
1340 		bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp,
1341 			       (struct rx_tpa_start_cmp_ext *)rxcmp1);
1342 
1343 		goto next_rx_no_prod;
1344 
1345 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1346 		skb = bnxt_tpa_end(bp, bnapi, &tmp_raw_cons,
1347 				   (struct rx_tpa_end_cmp *)rxcmp,
1348 				   (struct rx_tpa_end_cmp_ext *)rxcmp1,
1349 				   agg_event);
1350 
1351 		if (unlikely(IS_ERR(skb)))
1352 			return -EBUSY;
1353 
1354 		rc = -ENOMEM;
1355 		if (likely(skb)) {
1356 			skb_record_rx_queue(skb, bnapi->index);
1357 			skb_mark_napi_id(skb, &bnapi->napi);
1358 			if (bnxt_busy_polling(bnapi))
1359 				netif_receive_skb(skb);
1360 			else
1361 				napi_gro_receive(&bnapi->napi, skb);
1362 			rc = 1;
1363 		}
1364 		goto next_rx_no_prod;
1365 	}
1366 
1367 	cons = rxcmp->rx_cmp_opaque;
1368 	rx_buf = &rxr->rx_buf_ring[cons];
1369 	data = rx_buf->data;
1370 	if (unlikely(cons != rxr->rx_next_cons)) {
1371 		int rc1 = bnxt_discard_rx(bp, bnapi, raw_cons, rxcmp);
1372 
1373 		bnxt_sched_reset(bp, rxr);
1374 		return rc1;
1375 	}
1376 	prefetch(data);
1377 
1378 	agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) & RX_CMP_AGG_BUFS) >>
1379 				RX_CMP_AGG_BUFS_SHIFT;
1380 
1381 	if (agg_bufs) {
1382 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1383 			return -EBUSY;
1384 
1385 		cp_cons = NEXT_CMP(cp_cons);
1386 		*agg_event = true;
1387 	}
1388 
1389 	rx_buf->data = NULL;
1390 	if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
1391 		bnxt_reuse_rx_data(rxr, cons, data);
1392 		if (agg_bufs)
1393 			bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
1394 
1395 		rc = -EIO;
1396 		goto next_rx;
1397 	}
1398 
1399 	len = le32_to_cpu(rxcmp->rx_cmp_len_flags_type) >> RX_CMP_LEN_SHIFT;
1400 	dma_addr = dma_unmap_addr(rx_buf, mapping);
1401 
1402 	if (len <= bp->rx_copy_thresh) {
1403 		skb = bnxt_copy_skb(bnapi, data, len, dma_addr);
1404 		bnxt_reuse_rx_data(rxr, cons, data);
1405 		if (!skb) {
1406 			rc = -ENOMEM;
1407 			goto next_rx;
1408 		}
1409 	} else {
1410 		skb = bnxt_rx_skb(bp, rxr, cons, prod, data, dma_addr, len);
1411 		if (!skb) {
1412 			rc = -ENOMEM;
1413 			goto next_rx;
1414 		}
1415 	}
1416 
1417 	if (agg_bufs) {
1418 		skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
1419 		if (!skb) {
1420 			rc = -ENOMEM;
1421 			goto next_rx;
1422 		}
1423 	}
1424 
1425 	if (RX_CMP_HASH_VALID(rxcmp)) {
1426 		u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
1427 		enum pkt_hash_types type = PKT_HASH_TYPE_L4;
1428 
1429 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1430 		if (hash_type != 1 && hash_type != 3)
1431 			type = PKT_HASH_TYPE_L3;
1432 		skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
1433 	}
1434 
1435 	skb->protocol = eth_type_trans(skb, dev);
1436 
1437 	if ((rxcmp1->rx_cmp_flags2 &
1438 	     cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) &&
1439 	    (skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
1440 		u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
1441 		u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_VID_MASK;
1442 		u16 vlan_proto = meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT;
1443 
1444 		__vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1445 	}
1446 
1447 	skb_checksum_none_assert(skb);
1448 	if (RX_CMP_L4_CS_OK(rxcmp1)) {
1449 		if (dev->features & NETIF_F_RXCSUM) {
1450 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1451 			skb->csum_level = RX_CMP_ENCAP(rxcmp1);
1452 		}
1453 	} else {
1454 		if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
1455 			if (dev->features & NETIF_F_RXCSUM)
1456 				cpr->rx_l4_csum_errors++;
1457 		}
1458 	}
1459 
1460 	skb_record_rx_queue(skb, bnapi->index);
1461 	skb_mark_napi_id(skb, &bnapi->napi);
1462 	if (bnxt_busy_polling(bnapi))
1463 		netif_receive_skb(skb);
1464 	else
1465 		napi_gro_receive(&bnapi->napi, skb);
1466 	rc = 1;
1467 
1468 next_rx:
1469 	rxr->rx_prod = NEXT_RX(prod);
1470 	rxr->rx_next_cons = NEXT_RX(cons);
1471 
1472 next_rx_no_prod:
1473 	*raw_cons = tmp_raw_cons;
1474 
1475 	return rc;
1476 }
1477 
1478 #define BNXT_GET_EVENT_PORT(data)	\
1479 	((data) &				\
1480 	 HWRM_ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK)
1481 
1482 static int bnxt_async_event_process(struct bnxt *bp,
1483 				    struct hwrm_async_event_cmpl *cmpl)
1484 {
1485 	u16 event_id = le16_to_cpu(cmpl->event_id);
1486 
1487 	/* TODO CHIMP_FW: Define event id's for link change, error etc */
1488 	switch (event_id) {
1489 	case HWRM_ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: {
1490 		u32 data1 = le32_to_cpu(cmpl->event_data1);
1491 		struct bnxt_link_info *link_info = &bp->link_info;
1492 
1493 		if (BNXT_VF(bp))
1494 			goto async_event_process_exit;
1495 		if (data1 & 0x20000) {
1496 			u16 fw_speed = link_info->force_link_speed;
1497 			u32 speed = bnxt_fw_to_ethtool_speed(fw_speed);
1498 
1499 			netdev_warn(bp->dev, "Link speed %d no longer supported\n",
1500 				    speed);
1501 		}
1502 		/* fall thru */
1503 	}
1504 	case HWRM_ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
1505 		set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
1506 		break;
1507 	case HWRM_ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD:
1508 		set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event);
1509 		break;
1510 	case HWRM_ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: {
1511 		u32 data1 = le32_to_cpu(cmpl->event_data1);
1512 		u16 port_id = BNXT_GET_EVENT_PORT(data1);
1513 
1514 		if (BNXT_VF(bp))
1515 			break;
1516 
1517 		if (bp->pf.port_id != port_id)
1518 			break;
1519 
1520 		set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event);
1521 		break;
1522 	}
1523 	case HWRM_ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE:
1524 		if (BNXT_PF(bp))
1525 			goto async_event_process_exit;
1526 		set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event);
1527 		break;
1528 	default:
1529 		netdev_err(bp->dev, "unhandled ASYNC event (id 0x%x)\n",
1530 			   event_id);
1531 		goto async_event_process_exit;
1532 	}
1533 	schedule_work(&bp->sp_task);
1534 async_event_process_exit:
1535 	return 0;
1536 }
1537 
1538 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
1539 {
1540 	u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
1541 	struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
1542 	struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
1543 				(struct hwrm_fwd_req_cmpl *)txcmp;
1544 
1545 	switch (cmpl_type) {
1546 	case CMPL_BASE_TYPE_HWRM_DONE:
1547 		seq_id = le16_to_cpu(h_cmpl->sequence_id);
1548 		if (seq_id == bp->hwrm_intr_seq_id)
1549 			bp->hwrm_intr_seq_id = HWRM_SEQ_ID_INVALID;
1550 		else
1551 			netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id);
1552 		break;
1553 
1554 	case CMPL_BASE_TYPE_HWRM_FWD_REQ:
1555 		vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
1556 
1557 		if ((vf_id < bp->pf.first_vf_id) ||
1558 		    (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
1559 			netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
1560 				   vf_id);
1561 			return -EINVAL;
1562 		}
1563 
1564 		set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
1565 		set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event);
1566 		schedule_work(&bp->sp_task);
1567 		break;
1568 
1569 	case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
1570 		bnxt_async_event_process(bp,
1571 					 (struct hwrm_async_event_cmpl *)txcmp);
1572 
1573 	default:
1574 		break;
1575 	}
1576 
1577 	return 0;
1578 }
1579 
1580 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
1581 {
1582 	struct bnxt_napi *bnapi = dev_instance;
1583 	struct bnxt *bp = bnapi->bp;
1584 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1585 	u32 cons = RING_CMP(cpr->cp_raw_cons);
1586 
1587 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1588 	napi_schedule(&bnapi->napi);
1589 	return IRQ_HANDLED;
1590 }
1591 
1592 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
1593 {
1594 	u32 raw_cons = cpr->cp_raw_cons;
1595 	u16 cons = RING_CMP(raw_cons);
1596 	struct tx_cmp *txcmp;
1597 
1598 	txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1599 
1600 	return TX_CMP_VALID(txcmp, raw_cons);
1601 }
1602 
1603 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
1604 {
1605 	struct bnxt_napi *bnapi = dev_instance;
1606 	struct bnxt *bp = bnapi->bp;
1607 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1608 	u32 cons = RING_CMP(cpr->cp_raw_cons);
1609 	u32 int_status;
1610 
1611 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1612 
1613 	if (!bnxt_has_work(bp, cpr)) {
1614 		int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
1615 		/* return if erroneous interrupt */
1616 		if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
1617 			return IRQ_NONE;
1618 	}
1619 
1620 	/* disable ring IRQ */
1621 	BNXT_CP_DB_IRQ_DIS(cpr->cp_doorbell);
1622 
1623 	/* Return here if interrupt is shared and is disabled. */
1624 	if (unlikely(atomic_read(&bp->intr_sem) != 0))
1625 		return IRQ_HANDLED;
1626 
1627 	napi_schedule(&bnapi->napi);
1628 	return IRQ_HANDLED;
1629 }
1630 
1631 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
1632 {
1633 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1634 	u32 raw_cons = cpr->cp_raw_cons;
1635 	u32 cons;
1636 	int tx_pkts = 0;
1637 	int rx_pkts = 0;
1638 	bool rx_event = false;
1639 	bool agg_event = false;
1640 	struct tx_cmp *txcmp;
1641 
1642 	while (1) {
1643 		int rc;
1644 
1645 		cons = RING_CMP(raw_cons);
1646 		txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1647 
1648 		if (!TX_CMP_VALID(txcmp, raw_cons))
1649 			break;
1650 
1651 		/* The valid test of the entry must be done first before
1652 		 * reading any further.
1653 		 */
1654 		dma_rmb();
1655 		if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) {
1656 			tx_pkts++;
1657 			/* return full budget so NAPI will complete. */
1658 			if (unlikely(tx_pkts > bp->tx_wake_thresh))
1659 				rx_pkts = budget;
1660 		} else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
1661 			rc = bnxt_rx_pkt(bp, bnapi, &raw_cons, &agg_event);
1662 			if (likely(rc >= 0))
1663 				rx_pkts += rc;
1664 			else if (rc == -EBUSY)	/* partial completion */
1665 				break;
1666 			rx_event = true;
1667 		} else if (unlikely((TX_CMP_TYPE(txcmp) ==
1668 				     CMPL_BASE_TYPE_HWRM_DONE) ||
1669 				    (TX_CMP_TYPE(txcmp) ==
1670 				     CMPL_BASE_TYPE_HWRM_FWD_REQ) ||
1671 				    (TX_CMP_TYPE(txcmp) ==
1672 				     CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) {
1673 			bnxt_hwrm_handler(bp, txcmp);
1674 		}
1675 		raw_cons = NEXT_RAW_CMP(raw_cons);
1676 
1677 		if (rx_pkts == budget)
1678 			break;
1679 	}
1680 
1681 	cpr->cp_raw_cons = raw_cons;
1682 	/* ACK completion ring before freeing tx ring and producing new
1683 	 * buffers in rx/agg rings to prevent overflowing the completion
1684 	 * ring.
1685 	 */
1686 	BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
1687 
1688 	if (tx_pkts)
1689 		bnxt_tx_int(bp, bnapi, tx_pkts);
1690 
1691 	if (rx_event) {
1692 		struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1693 
1694 		writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
1695 		writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
1696 		if (agg_event) {
1697 			writel(DB_KEY_RX | rxr->rx_agg_prod,
1698 			       rxr->rx_agg_doorbell);
1699 			writel(DB_KEY_RX | rxr->rx_agg_prod,
1700 			       rxr->rx_agg_doorbell);
1701 		}
1702 	}
1703 	return rx_pkts;
1704 }
1705 
1706 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget)
1707 {
1708 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
1709 	struct bnxt *bp = bnapi->bp;
1710 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1711 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1712 	struct tx_cmp *txcmp;
1713 	struct rx_cmp_ext *rxcmp1;
1714 	u32 cp_cons, tmp_raw_cons;
1715 	u32 raw_cons = cpr->cp_raw_cons;
1716 	u32 rx_pkts = 0;
1717 	bool agg_event = false;
1718 
1719 	while (1) {
1720 		int rc;
1721 
1722 		cp_cons = RING_CMP(raw_cons);
1723 		txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1724 
1725 		if (!TX_CMP_VALID(txcmp, raw_cons))
1726 			break;
1727 
1728 		if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
1729 			tmp_raw_cons = NEXT_RAW_CMP(raw_cons);
1730 			cp_cons = RING_CMP(tmp_raw_cons);
1731 			rxcmp1 = (struct rx_cmp_ext *)
1732 			  &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1733 
1734 			if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1735 				break;
1736 
1737 			/* force an error to recycle the buffer */
1738 			rxcmp1->rx_cmp_cfa_code_errors_v2 |=
1739 				cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
1740 
1741 			rc = bnxt_rx_pkt(bp, bnapi, &raw_cons, &agg_event);
1742 			if (likely(rc == -EIO))
1743 				rx_pkts++;
1744 			else if (rc == -EBUSY)	/* partial completion */
1745 				break;
1746 		} else if (unlikely(TX_CMP_TYPE(txcmp) ==
1747 				    CMPL_BASE_TYPE_HWRM_DONE)) {
1748 			bnxt_hwrm_handler(bp, txcmp);
1749 		} else {
1750 			netdev_err(bp->dev,
1751 				   "Invalid completion received on special ring\n");
1752 		}
1753 		raw_cons = NEXT_RAW_CMP(raw_cons);
1754 
1755 		if (rx_pkts == budget)
1756 			break;
1757 	}
1758 
1759 	cpr->cp_raw_cons = raw_cons;
1760 	BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
1761 	writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
1762 	writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
1763 
1764 	if (agg_event) {
1765 		writel(DB_KEY_RX | rxr->rx_agg_prod, rxr->rx_agg_doorbell);
1766 		writel(DB_KEY_RX | rxr->rx_agg_prod, rxr->rx_agg_doorbell);
1767 	}
1768 
1769 	if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) {
1770 		napi_complete(napi);
1771 		BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
1772 	}
1773 	return rx_pkts;
1774 }
1775 
1776 static int bnxt_poll(struct napi_struct *napi, int budget)
1777 {
1778 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
1779 	struct bnxt *bp = bnapi->bp;
1780 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1781 	int work_done = 0;
1782 
1783 	if (!bnxt_lock_napi(bnapi))
1784 		return budget;
1785 
1786 	while (1) {
1787 		work_done += bnxt_poll_work(bp, bnapi, budget - work_done);
1788 
1789 		if (work_done >= budget)
1790 			break;
1791 
1792 		if (!bnxt_has_work(bp, cpr)) {
1793 			napi_complete(napi);
1794 			BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
1795 			break;
1796 		}
1797 	}
1798 	mmiowb();
1799 	bnxt_unlock_napi(bnapi);
1800 	return work_done;
1801 }
1802 
1803 #ifdef CONFIG_NET_RX_BUSY_POLL
1804 static int bnxt_busy_poll(struct napi_struct *napi)
1805 {
1806 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
1807 	struct bnxt *bp = bnapi->bp;
1808 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1809 	int rx_work, budget = 4;
1810 
1811 	if (atomic_read(&bp->intr_sem) != 0)
1812 		return LL_FLUSH_FAILED;
1813 
1814 	if (!bnxt_lock_poll(bnapi))
1815 		return LL_FLUSH_BUSY;
1816 
1817 	rx_work = bnxt_poll_work(bp, bnapi, budget);
1818 
1819 	BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
1820 
1821 	bnxt_unlock_poll(bnapi);
1822 	return rx_work;
1823 }
1824 #endif
1825 
1826 static void bnxt_free_tx_skbs(struct bnxt *bp)
1827 {
1828 	int i, max_idx;
1829 	struct pci_dev *pdev = bp->pdev;
1830 
1831 	if (!bp->tx_ring)
1832 		return;
1833 
1834 	max_idx = bp->tx_nr_pages * TX_DESC_CNT;
1835 	for (i = 0; i < bp->tx_nr_rings; i++) {
1836 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
1837 		int j;
1838 
1839 		for (j = 0; j < max_idx;) {
1840 			struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
1841 			struct sk_buff *skb = tx_buf->skb;
1842 			int k, last;
1843 
1844 			if (!skb) {
1845 				j++;
1846 				continue;
1847 			}
1848 
1849 			tx_buf->skb = NULL;
1850 
1851 			if (tx_buf->is_push) {
1852 				dev_kfree_skb(skb);
1853 				j += 2;
1854 				continue;
1855 			}
1856 
1857 			dma_unmap_single(&pdev->dev,
1858 					 dma_unmap_addr(tx_buf, mapping),
1859 					 skb_headlen(skb),
1860 					 PCI_DMA_TODEVICE);
1861 
1862 			last = tx_buf->nr_frags;
1863 			j += 2;
1864 			for (k = 0; k < last; k++, j++) {
1865 				int ring_idx = j & bp->tx_ring_mask;
1866 				skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
1867 
1868 				tx_buf = &txr->tx_buf_ring[ring_idx];
1869 				dma_unmap_page(
1870 					&pdev->dev,
1871 					dma_unmap_addr(tx_buf, mapping),
1872 					skb_frag_size(frag), PCI_DMA_TODEVICE);
1873 			}
1874 			dev_kfree_skb(skb);
1875 		}
1876 		netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
1877 	}
1878 }
1879 
1880 static void bnxt_free_rx_skbs(struct bnxt *bp)
1881 {
1882 	int i, max_idx, max_agg_idx;
1883 	struct pci_dev *pdev = bp->pdev;
1884 
1885 	if (!bp->rx_ring)
1886 		return;
1887 
1888 	max_idx = bp->rx_nr_pages * RX_DESC_CNT;
1889 	max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
1890 	for (i = 0; i < bp->rx_nr_rings; i++) {
1891 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
1892 		int j;
1893 
1894 		if (rxr->rx_tpa) {
1895 			for (j = 0; j < MAX_TPA; j++) {
1896 				struct bnxt_tpa_info *tpa_info =
1897 							&rxr->rx_tpa[j];
1898 				u8 *data = tpa_info->data;
1899 
1900 				if (!data)
1901 					continue;
1902 
1903 				dma_unmap_single(
1904 					&pdev->dev,
1905 					dma_unmap_addr(tpa_info, mapping),
1906 					bp->rx_buf_use_size,
1907 					PCI_DMA_FROMDEVICE);
1908 
1909 				tpa_info->data = NULL;
1910 
1911 				kfree(data);
1912 			}
1913 		}
1914 
1915 		for (j = 0; j < max_idx; j++) {
1916 			struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[j];
1917 			u8 *data = rx_buf->data;
1918 
1919 			if (!data)
1920 				continue;
1921 
1922 			dma_unmap_single(&pdev->dev,
1923 					 dma_unmap_addr(rx_buf, mapping),
1924 					 bp->rx_buf_use_size,
1925 					 PCI_DMA_FROMDEVICE);
1926 
1927 			rx_buf->data = NULL;
1928 
1929 			kfree(data);
1930 		}
1931 
1932 		for (j = 0; j < max_agg_idx; j++) {
1933 			struct bnxt_sw_rx_agg_bd *rx_agg_buf =
1934 				&rxr->rx_agg_ring[j];
1935 			struct page *page = rx_agg_buf->page;
1936 
1937 			if (!page)
1938 				continue;
1939 
1940 			dma_unmap_page(&pdev->dev,
1941 				       dma_unmap_addr(rx_agg_buf, mapping),
1942 				       BNXT_RX_PAGE_SIZE, PCI_DMA_FROMDEVICE);
1943 
1944 			rx_agg_buf->page = NULL;
1945 			__clear_bit(j, rxr->rx_agg_bmap);
1946 
1947 			__free_page(page);
1948 		}
1949 		if (rxr->rx_page) {
1950 			__free_page(rxr->rx_page);
1951 			rxr->rx_page = NULL;
1952 		}
1953 	}
1954 }
1955 
1956 static void bnxt_free_skbs(struct bnxt *bp)
1957 {
1958 	bnxt_free_tx_skbs(bp);
1959 	bnxt_free_rx_skbs(bp);
1960 }
1961 
1962 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
1963 {
1964 	struct pci_dev *pdev = bp->pdev;
1965 	int i;
1966 
1967 	for (i = 0; i < ring->nr_pages; i++) {
1968 		if (!ring->pg_arr[i])
1969 			continue;
1970 
1971 		dma_free_coherent(&pdev->dev, ring->page_size,
1972 				  ring->pg_arr[i], ring->dma_arr[i]);
1973 
1974 		ring->pg_arr[i] = NULL;
1975 	}
1976 	if (ring->pg_tbl) {
1977 		dma_free_coherent(&pdev->dev, ring->nr_pages * 8,
1978 				  ring->pg_tbl, ring->pg_tbl_map);
1979 		ring->pg_tbl = NULL;
1980 	}
1981 	if (ring->vmem_size && *ring->vmem) {
1982 		vfree(*ring->vmem);
1983 		*ring->vmem = NULL;
1984 	}
1985 }
1986 
1987 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
1988 {
1989 	int i;
1990 	struct pci_dev *pdev = bp->pdev;
1991 
1992 	if (ring->nr_pages > 1) {
1993 		ring->pg_tbl = dma_alloc_coherent(&pdev->dev,
1994 						  ring->nr_pages * 8,
1995 						  &ring->pg_tbl_map,
1996 						  GFP_KERNEL);
1997 		if (!ring->pg_tbl)
1998 			return -ENOMEM;
1999 	}
2000 
2001 	for (i = 0; i < ring->nr_pages; i++) {
2002 		ring->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
2003 						     ring->page_size,
2004 						     &ring->dma_arr[i],
2005 						     GFP_KERNEL);
2006 		if (!ring->pg_arr[i])
2007 			return -ENOMEM;
2008 
2009 		if (ring->nr_pages > 1)
2010 			ring->pg_tbl[i] = cpu_to_le64(ring->dma_arr[i]);
2011 	}
2012 
2013 	if (ring->vmem_size) {
2014 		*ring->vmem = vzalloc(ring->vmem_size);
2015 		if (!(*ring->vmem))
2016 			return -ENOMEM;
2017 	}
2018 	return 0;
2019 }
2020 
2021 static void bnxt_free_rx_rings(struct bnxt *bp)
2022 {
2023 	int i;
2024 
2025 	if (!bp->rx_ring)
2026 		return;
2027 
2028 	for (i = 0; i < bp->rx_nr_rings; i++) {
2029 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2030 		struct bnxt_ring_struct *ring;
2031 
2032 		kfree(rxr->rx_tpa);
2033 		rxr->rx_tpa = NULL;
2034 
2035 		kfree(rxr->rx_agg_bmap);
2036 		rxr->rx_agg_bmap = NULL;
2037 
2038 		ring = &rxr->rx_ring_struct;
2039 		bnxt_free_ring(bp, ring);
2040 
2041 		ring = &rxr->rx_agg_ring_struct;
2042 		bnxt_free_ring(bp, ring);
2043 	}
2044 }
2045 
2046 static int bnxt_alloc_rx_rings(struct bnxt *bp)
2047 {
2048 	int i, rc, agg_rings = 0, tpa_rings = 0;
2049 
2050 	if (!bp->rx_ring)
2051 		return -ENOMEM;
2052 
2053 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
2054 		agg_rings = 1;
2055 
2056 	if (bp->flags & BNXT_FLAG_TPA)
2057 		tpa_rings = 1;
2058 
2059 	for (i = 0; i < bp->rx_nr_rings; i++) {
2060 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2061 		struct bnxt_ring_struct *ring;
2062 
2063 		ring = &rxr->rx_ring_struct;
2064 
2065 		rc = bnxt_alloc_ring(bp, ring);
2066 		if (rc)
2067 			return rc;
2068 
2069 		if (agg_rings) {
2070 			u16 mem_size;
2071 
2072 			ring = &rxr->rx_agg_ring_struct;
2073 			rc = bnxt_alloc_ring(bp, ring);
2074 			if (rc)
2075 				return rc;
2076 
2077 			rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
2078 			mem_size = rxr->rx_agg_bmap_size / 8;
2079 			rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
2080 			if (!rxr->rx_agg_bmap)
2081 				return -ENOMEM;
2082 
2083 			if (tpa_rings) {
2084 				rxr->rx_tpa = kcalloc(MAX_TPA,
2085 						sizeof(struct bnxt_tpa_info),
2086 						GFP_KERNEL);
2087 				if (!rxr->rx_tpa)
2088 					return -ENOMEM;
2089 			}
2090 		}
2091 	}
2092 	return 0;
2093 }
2094 
2095 static void bnxt_free_tx_rings(struct bnxt *bp)
2096 {
2097 	int i;
2098 	struct pci_dev *pdev = bp->pdev;
2099 
2100 	if (!bp->tx_ring)
2101 		return;
2102 
2103 	for (i = 0; i < bp->tx_nr_rings; i++) {
2104 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2105 		struct bnxt_ring_struct *ring;
2106 
2107 		if (txr->tx_push) {
2108 			dma_free_coherent(&pdev->dev, bp->tx_push_size,
2109 					  txr->tx_push, txr->tx_push_mapping);
2110 			txr->tx_push = NULL;
2111 		}
2112 
2113 		ring = &txr->tx_ring_struct;
2114 
2115 		bnxt_free_ring(bp, ring);
2116 	}
2117 }
2118 
2119 static int bnxt_alloc_tx_rings(struct bnxt *bp)
2120 {
2121 	int i, j, rc;
2122 	struct pci_dev *pdev = bp->pdev;
2123 
2124 	bp->tx_push_size = 0;
2125 	if (bp->tx_push_thresh) {
2126 		int push_size;
2127 
2128 		push_size  = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
2129 					bp->tx_push_thresh);
2130 
2131 		if (push_size > 256) {
2132 			push_size = 0;
2133 			bp->tx_push_thresh = 0;
2134 		}
2135 
2136 		bp->tx_push_size = push_size;
2137 	}
2138 
2139 	for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
2140 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2141 		struct bnxt_ring_struct *ring;
2142 
2143 		ring = &txr->tx_ring_struct;
2144 
2145 		rc = bnxt_alloc_ring(bp, ring);
2146 		if (rc)
2147 			return rc;
2148 
2149 		if (bp->tx_push_size) {
2150 			dma_addr_t mapping;
2151 
2152 			/* One pre-allocated DMA buffer to backup
2153 			 * TX push operation
2154 			 */
2155 			txr->tx_push = dma_alloc_coherent(&pdev->dev,
2156 						bp->tx_push_size,
2157 						&txr->tx_push_mapping,
2158 						GFP_KERNEL);
2159 
2160 			if (!txr->tx_push)
2161 				return -ENOMEM;
2162 
2163 			mapping = txr->tx_push_mapping +
2164 				sizeof(struct tx_push_bd);
2165 			txr->data_mapping = cpu_to_le64(mapping);
2166 
2167 			memset(txr->tx_push, 0, sizeof(struct tx_push_bd));
2168 		}
2169 		ring->queue_id = bp->q_info[j].queue_id;
2170 		if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1))
2171 			j++;
2172 	}
2173 	return 0;
2174 }
2175 
2176 static void bnxt_free_cp_rings(struct bnxt *bp)
2177 {
2178 	int i;
2179 
2180 	if (!bp->bnapi)
2181 		return;
2182 
2183 	for (i = 0; i < bp->cp_nr_rings; i++) {
2184 		struct bnxt_napi *bnapi = bp->bnapi[i];
2185 		struct bnxt_cp_ring_info *cpr;
2186 		struct bnxt_ring_struct *ring;
2187 
2188 		if (!bnapi)
2189 			continue;
2190 
2191 		cpr = &bnapi->cp_ring;
2192 		ring = &cpr->cp_ring_struct;
2193 
2194 		bnxt_free_ring(bp, ring);
2195 	}
2196 }
2197 
2198 static int bnxt_alloc_cp_rings(struct bnxt *bp)
2199 {
2200 	int i, rc;
2201 
2202 	for (i = 0; i < bp->cp_nr_rings; i++) {
2203 		struct bnxt_napi *bnapi = bp->bnapi[i];
2204 		struct bnxt_cp_ring_info *cpr;
2205 		struct bnxt_ring_struct *ring;
2206 
2207 		if (!bnapi)
2208 			continue;
2209 
2210 		cpr = &bnapi->cp_ring;
2211 		ring = &cpr->cp_ring_struct;
2212 
2213 		rc = bnxt_alloc_ring(bp, ring);
2214 		if (rc)
2215 			return rc;
2216 	}
2217 	return 0;
2218 }
2219 
2220 static void bnxt_init_ring_struct(struct bnxt *bp)
2221 {
2222 	int i;
2223 
2224 	for (i = 0; i < bp->cp_nr_rings; i++) {
2225 		struct bnxt_napi *bnapi = bp->bnapi[i];
2226 		struct bnxt_cp_ring_info *cpr;
2227 		struct bnxt_rx_ring_info *rxr;
2228 		struct bnxt_tx_ring_info *txr;
2229 		struct bnxt_ring_struct *ring;
2230 
2231 		if (!bnapi)
2232 			continue;
2233 
2234 		cpr = &bnapi->cp_ring;
2235 		ring = &cpr->cp_ring_struct;
2236 		ring->nr_pages = bp->cp_nr_pages;
2237 		ring->page_size = HW_CMPD_RING_SIZE;
2238 		ring->pg_arr = (void **)cpr->cp_desc_ring;
2239 		ring->dma_arr = cpr->cp_desc_mapping;
2240 		ring->vmem_size = 0;
2241 
2242 		rxr = bnapi->rx_ring;
2243 		if (!rxr)
2244 			goto skip_rx;
2245 
2246 		ring = &rxr->rx_ring_struct;
2247 		ring->nr_pages = bp->rx_nr_pages;
2248 		ring->page_size = HW_RXBD_RING_SIZE;
2249 		ring->pg_arr = (void **)rxr->rx_desc_ring;
2250 		ring->dma_arr = rxr->rx_desc_mapping;
2251 		ring->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
2252 		ring->vmem = (void **)&rxr->rx_buf_ring;
2253 
2254 		ring = &rxr->rx_agg_ring_struct;
2255 		ring->nr_pages = bp->rx_agg_nr_pages;
2256 		ring->page_size = HW_RXBD_RING_SIZE;
2257 		ring->pg_arr = (void **)rxr->rx_agg_desc_ring;
2258 		ring->dma_arr = rxr->rx_agg_desc_mapping;
2259 		ring->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
2260 		ring->vmem = (void **)&rxr->rx_agg_ring;
2261 
2262 skip_rx:
2263 		txr = bnapi->tx_ring;
2264 		if (!txr)
2265 			continue;
2266 
2267 		ring = &txr->tx_ring_struct;
2268 		ring->nr_pages = bp->tx_nr_pages;
2269 		ring->page_size = HW_RXBD_RING_SIZE;
2270 		ring->pg_arr = (void **)txr->tx_desc_ring;
2271 		ring->dma_arr = txr->tx_desc_mapping;
2272 		ring->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
2273 		ring->vmem = (void **)&txr->tx_buf_ring;
2274 	}
2275 }
2276 
2277 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
2278 {
2279 	int i;
2280 	u32 prod;
2281 	struct rx_bd **rx_buf_ring;
2282 
2283 	rx_buf_ring = (struct rx_bd **)ring->pg_arr;
2284 	for (i = 0, prod = 0; i < ring->nr_pages; i++) {
2285 		int j;
2286 		struct rx_bd *rxbd;
2287 
2288 		rxbd = rx_buf_ring[i];
2289 		if (!rxbd)
2290 			continue;
2291 
2292 		for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
2293 			rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
2294 			rxbd->rx_bd_opaque = prod;
2295 		}
2296 	}
2297 }
2298 
2299 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
2300 {
2301 	struct net_device *dev = bp->dev;
2302 	struct bnxt_rx_ring_info *rxr;
2303 	struct bnxt_ring_struct *ring;
2304 	u32 prod, type;
2305 	int i;
2306 
2307 	type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
2308 		RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
2309 
2310 	if (NET_IP_ALIGN == 2)
2311 		type |= RX_BD_FLAGS_SOP;
2312 
2313 	rxr = &bp->rx_ring[ring_nr];
2314 	ring = &rxr->rx_ring_struct;
2315 	bnxt_init_rxbd_pages(ring, type);
2316 
2317 	prod = rxr->rx_prod;
2318 	for (i = 0; i < bp->rx_ring_size; i++) {
2319 		if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL) != 0) {
2320 			netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
2321 				    ring_nr, i, bp->rx_ring_size);
2322 			break;
2323 		}
2324 		prod = NEXT_RX(prod);
2325 	}
2326 	rxr->rx_prod = prod;
2327 	ring->fw_ring_id = INVALID_HW_RING_ID;
2328 
2329 	ring = &rxr->rx_agg_ring_struct;
2330 	ring->fw_ring_id = INVALID_HW_RING_ID;
2331 
2332 	if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
2333 		return 0;
2334 
2335 	type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) |
2336 		RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
2337 
2338 	bnxt_init_rxbd_pages(ring, type);
2339 
2340 	prod = rxr->rx_agg_prod;
2341 	for (i = 0; i < bp->rx_agg_ring_size; i++) {
2342 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL) != 0) {
2343 			netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
2344 				    ring_nr, i, bp->rx_ring_size);
2345 			break;
2346 		}
2347 		prod = NEXT_RX_AGG(prod);
2348 	}
2349 	rxr->rx_agg_prod = prod;
2350 
2351 	if (bp->flags & BNXT_FLAG_TPA) {
2352 		if (rxr->rx_tpa) {
2353 			u8 *data;
2354 			dma_addr_t mapping;
2355 
2356 			for (i = 0; i < MAX_TPA; i++) {
2357 				data = __bnxt_alloc_rx_data(bp, &mapping,
2358 							    GFP_KERNEL);
2359 				if (!data)
2360 					return -ENOMEM;
2361 
2362 				rxr->rx_tpa[i].data = data;
2363 				rxr->rx_tpa[i].mapping = mapping;
2364 			}
2365 		} else {
2366 			netdev_err(bp->dev, "No resource allocated for LRO/GRO\n");
2367 			return -ENOMEM;
2368 		}
2369 	}
2370 
2371 	return 0;
2372 }
2373 
2374 static int bnxt_init_rx_rings(struct bnxt *bp)
2375 {
2376 	int i, rc = 0;
2377 
2378 	for (i = 0; i < bp->rx_nr_rings; i++) {
2379 		rc = bnxt_init_one_rx_ring(bp, i);
2380 		if (rc)
2381 			break;
2382 	}
2383 
2384 	return rc;
2385 }
2386 
2387 static int bnxt_init_tx_rings(struct bnxt *bp)
2388 {
2389 	u16 i;
2390 
2391 	bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
2392 				   MAX_SKB_FRAGS + 1);
2393 
2394 	for (i = 0; i < bp->tx_nr_rings; i++) {
2395 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2396 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
2397 
2398 		ring->fw_ring_id = INVALID_HW_RING_ID;
2399 	}
2400 
2401 	return 0;
2402 }
2403 
2404 static void bnxt_free_ring_grps(struct bnxt *bp)
2405 {
2406 	kfree(bp->grp_info);
2407 	bp->grp_info = NULL;
2408 }
2409 
2410 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
2411 {
2412 	int i;
2413 
2414 	if (irq_re_init) {
2415 		bp->grp_info = kcalloc(bp->cp_nr_rings,
2416 				       sizeof(struct bnxt_ring_grp_info),
2417 				       GFP_KERNEL);
2418 		if (!bp->grp_info)
2419 			return -ENOMEM;
2420 	}
2421 	for (i = 0; i < bp->cp_nr_rings; i++) {
2422 		if (irq_re_init)
2423 			bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
2424 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
2425 		bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
2426 		bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
2427 		bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
2428 	}
2429 	return 0;
2430 }
2431 
2432 static void bnxt_free_vnics(struct bnxt *bp)
2433 {
2434 	kfree(bp->vnic_info);
2435 	bp->vnic_info = NULL;
2436 	bp->nr_vnics = 0;
2437 }
2438 
2439 static int bnxt_alloc_vnics(struct bnxt *bp)
2440 {
2441 	int num_vnics = 1;
2442 
2443 #ifdef CONFIG_RFS_ACCEL
2444 	if (bp->flags & BNXT_FLAG_RFS)
2445 		num_vnics += bp->rx_nr_rings;
2446 #endif
2447 
2448 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
2449 		num_vnics++;
2450 
2451 	bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
2452 				GFP_KERNEL);
2453 	if (!bp->vnic_info)
2454 		return -ENOMEM;
2455 
2456 	bp->nr_vnics = num_vnics;
2457 	return 0;
2458 }
2459 
2460 static void bnxt_init_vnics(struct bnxt *bp)
2461 {
2462 	int i;
2463 
2464 	for (i = 0; i < bp->nr_vnics; i++) {
2465 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2466 
2467 		vnic->fw_vnic_id = INVALID_HW_RING_ID;
2468 		vnic->fw_rss_cos_lb_ctx[0] = INVALID_HW_RING_ID;
2469 		vnic->fw_rss_cos_lb_ctx[1] = INVALID_HW_RING_ID;
2470 		vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
2471 
2472 		if (bp->vnic_info[i].rss_hash_key) {
2473 			if (i == 0)
2474 				prandom_bytes(vnic->rss_hash_key,
2475 					      HW_HASH_KEY_SIZE);
2476 			else
2477 				memcpy(vnic->rss_hash_key,
2478 				       bp->vnic_info[0].rss_hash_key,
2479 				       HW_HASH_KEY_SIZE);
2480 		}
2481 	}
2482 }
2483 
2484 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
2485 {
2486 	int pages;
2487 
2488 	pages = ring_size / desc_per_pg;
2489 
2490 	if (!pages)
2491 		return 1;
2492 
2493 	pages++;
2494 
2495 	while (pages & (pages - 1))
2496 		pages++;
2497 
2498 	return pages;
2499 }
2500 
2501 static void bnxt_set_tpa_flags(struct bnxt *bp)
2502 {
2503 	bp->flags &= ~BNXT_FLAG_TPA;
2504 	if (bp->dev->features & NETIF_F_LRO)
2505 		bp->flags |= BNXT_FLAG_LRO;
2506 	if (bp->dev->features & NETIF_F_GRO)
2507 		bp->flags |= BNXT_FLAG_GRO;
2508 }
2509 
2510 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
2511  * be set on entry.
2512  */
2513 void bnxt_set_ring_params(struct bnxt *bp)
2514 {
2515 	u32 ring_size, rx_size, rx_space;
2516 	u32 agg_factor = 0, agg_ring_size = 0;
2517 
2518 	/* 8 for CRC and VLAN */
2519 	rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
2520 
2521 	rx_space = rx_size + NET_SKB_PAD +
2522 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2523 
2524 	bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
2525 	ring_size = bp->rx_ring_size;
2526 	bp->rx_agg_ring_size = 0;
2527 	bp->rx_agg_nr_pages = 0;
2528 
2529 	if (bp->flags & BNXT_FLAG_TPA)
2530 		agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE);
2531 
2532 	bp->flags &= ~BNXT_FLAG_JUMBO;
2533 	if (rx_space > PAGE_SIZE) {
2534 		u32 jumbo_factor;
2535 
2536 		bp->flags |= BNXT_FLAG_JUMBO;
2537 		jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
2538 		if (jumbo_factor > agg_factor)
2539 			agg_factor = jumbo_factor;
2540 	}
2541 	agg_ring_size = ring_size * agg_factor;
2542 
2543 	if (agg_ring_size) {
2544 		bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
2545 							RX_DESC_CNT);
2546 		if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
2547 			u32 tmp = agg_ring_size;
2548 
2549 			bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
2550 			agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
2551 			netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
2552 				    tmp, agg_ring_size);
2553 		}
2554 		bp->rx_agg_ring_size = agg_ring_size;
2555 		bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
2556 		rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
2557 		rx_space = rx_size + NET_SKB_PAD +
2558 			SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2559 	}
2560 
2561 	bp->rx_buf_use_size = rx_size;
2562 	bp->rx_buf_size = rx_space;
2563 
2564 	bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
2565 	bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
2566 
2567 	ring_size = bp->tx_ring_size;
2568 	bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
2569 	bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
2570 
2571 	ring_size = bp->rx_ring_size * (2 + agg_factor) + bp->tx_ring_size;
2572 	bp->cp_ring_size = ring_size;
2573 
2574 	bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
2575 	if (bp->cp_nr_pages > MAX_CP_PAGES) {
2576 		bp->cp_nr_pages = MAX_CP_PAGES;
2577 		bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
2578 		netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
2579 			    ring_size, bp->cp_ring_size);
2580 	}
2581 	bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
2582 	bp->cp_ring_mask = bp->cp_bit - 1;
2583 }
2584 
2585 static void bnxt_free_vnic_attributes(struct bnxt *bp)
2586 {
2587 	int i;
2588 	struct bnxt_vnic_info *vnic;
2589 	struct pci_dev *pdev = bp->pdev;
2590 
2591 	if (!bp->vnic_info)
2592 		return;
2593 
2594 	for (i = 0; i < bp->nr_vnics; i++) {
2595 		vnic = &bp->vnic_info[i];
2596 
2597 		kfree(vnic->fw_grp_ids);
2598 		vnic->fw_grp_ids = NULL;
2599 
2600 		kfree(vnic->uc_list);
2601 		vnic->uc_list = NULL;
2602 
2603 		if (vnic->mc_list) {
2604 			dma_free_coherent(&pdev->dev, vnic->mc_list_size,
2605 					  vnic->mc_list, vnic->mc_list_mapping);
2606 			vnic->mc_list = NULL;
2607 		}
2608 
2609 		if (vnic->rss_table) {
2610 			dma_free_coherent(&pdev->dev, PAGE_SIZE,
2611 					  vnic->rss_table,
2612 					  vnic->rss_table_dma_addr);
2613 			vnic->rss_table = NULL;
2614 		}
2615 
2616 		vnic->rss_hash_key = NULL;
2617 		vnic->flags = 0;
2618 	}
2619 }
2620 
2621 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
2622 {
2623 	int i, rc = 0, size;
2624 	struct bnxt_vnic_info *vnic;
2625 	struct pci_dev *pdev = bp->pdev;
2626 	int max_rings;
2627 
2628 	for (i = 0; i < bp->nr_vnics; i++) {
2629 		vnic = &bp->vnic_info[i];
2630 
2631 		if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
2632 			int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
2633 
2634 			if (mem_size > 0) {
2635 				vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
2636 				if (!vnic->uc_list) {
2637 					rc = -ENOMEM;
2638 					goto out;
2639 				}
2640 			}
2641 		}
2642 
2643 		if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
2644 			vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
2645 			vnic->mc_list =
2646 				dma_alloc_coherent(&pdev->dev,
2647 						   vnic->mc_list_size,
2648 						   &vnic->mc_list_mapping,
2649 						   GFP_KERNEL);
2650 			if (!vnic->mc_list) {
2651 				rc = -ENOMEM;
2652 				goto out;
2653 			}
2654 		}
2655 
2656 		if (vnic->flags & BNXT_VNIC_RSS_FLAG)
2657 			max_rings = bp->rx_nr_rings;
2658 		else
2659 			max_rings = 1;
2660 
2661 		vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
2662 		if (!vnic->fw_grp_ids) {
2663 			rc = -ENOMEM;
2664 			goto out;
2665 		}
2666 
2667 		/* Allocate rss table and hash key */
2668 		vnic->rss_table = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
2669 						     &vnic->rss_table_dma_addr,
2670 						     GFP_KERNEL);
2671 		if (!vnic->rss_table) {
2672 			rc = -ENOMEM;
2673 			goto out;
2674 		}
2675 
2676 		size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
2677 
2678 		vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
2679 		vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
2680 	}
2681 	return 0;
2682 
2683 out:
2684 	return rc;
2685 }
2686 
2687 static void bnxt_free_hwrm_resources(struct bnxt *bp)
2688 {
2689 	struct pci_dev *pdev = bp->pdev;
2690 
2691 	dma_free_coherent(&pdev->dev, PAGE_SIZE, bp->hwrm_cmd_resp_addr,
2692 			  bp->hwrm_cmd_resp_dma_addr);
2693 
2694 	bp->hwrm_cmd_resp_addr = NULL;
2695 	if (bp->hwrm_dbg_resp_addr) {
2696 		dma_free_coherent(&pdev->dev, HWRM_DBG_REG_BUF_SIZE,
2697 				  bp->hwrm_dbg_resp_addr,
2698 				  bp->hwrm_dbg_resp_dma_addr);
2699 
2700 		bp->hwrm_dbg_resp_addr = NULL;
2701 	}
2702 }
2703 
2704 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
2705 {
2706 	struct pci_dev *pdev = bp->pdev;
2707 
2708 	bp->hwrm_cmd_resp_addr = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
2709 						   &bp->hwrm_cmd_resp_dma_addr,
2710 						   GFP_KERNEL);
2711 	if (!bp->hwrm_cmd_resp_addr)
2712 		return -ENOMEM;
2713 	bp->hwrm_dbg_resp_addr = dma_alloc_coherent(&pdev->dev,
2714 						    HWRM_DBG_REG_BUF_SIZE,
2715 						    &bp->hwrm_dbg_resp_dma_addr,
2716 						    GFP_KERNEL);
2717 	if (!bp->hwrm_dbg_resp_addr)
2718 		netdev_warn(bp->dev, "fail to alloc debug register dma mem\n");
2719 
2720 	return 0;
2721 }
2722 
2723 static void bnxt_free_stats(struct bnxt *bp)
2724 {
2725 	u32 size, i;
2726 	struct pci_dev *pdev = bp->pdev;
2727 
2728 	if (bp->hw_rx_port_stats) {
2729 		dma_free_coherent(&pdev->dev, bp->hw_port_stats_size,
2730 				  bp->hw_rx_port_stats,
2731 				  bp->hw_rx_port_stats_map);
2732 		bp->hw_rx_port_stats = NULL;
2733 		bp->flags &= ~BNXT_FLAG_PORT_STATS;
2734 	}
2735 
2736 	if (!bp->bnapi)
2737 		return;
2738 
2739 	size = sizeof(struct ctx_hw_stats);
2740 
2741 	for (i = 0; i < bp->cp_nr_rings; i++) {
2742 		struct bnxt_napi *bnapi = bp->bnapi[i];
2743 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2744 
2745 		if (cpr->hw_stats) {
2746 			dma_free_coherent(&pdev->dev, size, cpr->hw_stats,
2747 					  cpr->hw_stats_map);
2748 			cpr->hw_stats = NULL;
2749 		}
2750 	}
2751 }
2752 
2753 static int bnxt_alloc_stats(struct bnxt *bp)
2754 {
2755 	u32 size, i;
2756 	struct pci_dev *pdev = bp->pdev;
2757 
2758 	size = sizeof(struct ctx_hw_stats);
2759 
2760 	for (i = 0; i < bp->cp_nr_rings; i++) {
2761 		struct bnxt_napi *bnapi = bp->bnapi[i];
2762 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2763 
2764 		cpr->hw_stats = dma_alloc_coherent(&pdev->dev, size,
2765 						   &cpr->hw_stats_map,
2766 						   GFP_KERNEL);
2767 		if (!cpr->hw_stats)
2768 			return -ENOMEM;
2769 
2770 		cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
2771 	}
2772 
2773 	if (BNXT_PF(bp) && bp->chip_num != CHIP_NUM_58700) {
2774 		bp->hw_port_stats_size = sizeof(struct rx_port_stats) +
2775 					 sizeof(struct tx_port_stats) + 1024;
2776 
2777 		bp->hw_rx_port_stats =
2778 			dma_alloc_coherent(&pdev->dev, bp->hw_port_stats_size,
2779 					   &bp->hw_rx_port_stats_map,
2780 					   GFP_KERNEL);
2781 		if (!bp->hw_rx_port_stats)
2782 			return -ENOMEM;
2783 
2784 		bp->hw_tx_port_stats = (void *)(bp->hw_rx_port_stats + 1) +
2785 				       512;
2786 		bp->hw_tx_port_stats_map = bp->hw_rx_port_stats_map +
2787 					   sizeof(struct rx_port_stats) + 512;
2788 		bp->flags |= BNXT_FLAG_PORT_STATS;
2789 	}
2790 	return 0;
2791 }
2792 
2793 static void bnxt_clear_ring_indices(struct bnxt *bp)
2794 {
2795 	int i;
2796 
2797 	if (!bp->bnapi)
2798 		return;
2799 
2800 	for (i = 0; i < bp->cp_nr_rings; i++) {
2801 		struct bnxt_napi *bnapi = bp->bnapi[i];
2802 		struct bnxt_cp_ring_info *cpr;
2803 		struct bnxt_rx_ring_info *rxr;
2804 		struct bnxt_tx_ring_info *txr;
2805 
2806 		if (!bnapi)
2807 			continue;
2808 
2809 		cpr = &bnapi->cp_ring;
2810 		cpr->cp_raw_cons = 0;
2811 
2812 		txr = bnapi->tx_ring;
2813 		if (txr) {
2814 			txr->tx_prod = 0;
2815 			txr->tx_cons = 0;
2816 		}
2817 
2818 		rxr = bnapi->rx_ring;
2819 		if (rxr) {
2820 			rxr->rx_prod = 0;
2821 			rxr->rx_agg_prod = 0;
2822 			rxr->rx_sw_agg_prod = 0;
2823 			rxr->rx_next_cons = 0;
2824 		}
2825 	}
2826 }
2827 
2828 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
2829 {
2830 #ifdef CONFIG_RFS_ACCEL
2831 	int i;
2832 
2833 	/* Under rtnl_lock and all our NAPIs have been disabled.  It's
2834 	 * safe to delete the hash table.
2835 	 */
2836 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
2837 		struct hlist_head *head;
2838 		struct hlist_node *tmp;
2839 		struct bnxt_ntuple_filter *fltr;
2840 
2841 		head = &bp->ntp_fltr_hash_tbl[i];
2842 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
2843 			hlist_del(&fltr->hash);
2844 			kfree(fltr);
2845 		}
2846 	}
2847 	if (irq_reinit) {
2848 		kfree(bp->ntp_fltr_bmap);
2849 		bp->ntp_fltr_bmap = NULL;
2850 	}
2851 	bp->ntp_fltr_count = 0;
2852 #endif
2853 }
2854 
2855 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
2856 {
2857 #ifdef CONFIG_RFS_ACCEL
2858 	int i, rc = 0;
2859 
2860 	if (!(bp->flags & BNXT_FLAG_RFS))
2861 		return 0;
2862 
2863 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
2864 		INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
2865 
2866 	bp->ntp_fltr_count = 0;
2867 	bp->ntp_fltr_bmap = kzalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR),
2868 				    GFP_KERNEL);
2869 
2870 	if (!bp->ntp_fltr_bmap)
2871 		rc = -ENOMEM;
2872 
2873 	return rc;
2874 #else
2875 	return 0;
2876 #endif
2877 }
2878 
2879 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
2880 {
2881 	bnxt_free_vnic_attributes(bp);
2882 	bnxt_free_tx_rings(bp);
2883 	bnxt_free_rx_rings(bp);
2884 	bnxt_free_cp_rings(bp);
2885 	bnxt_free_ntp_fltrs(bp, irq_re_init);
2886 	if (irq_re_init) {
2887 		bnxt_free_stats(bp);
2888 		bnxt_free_ring_grps(bp);
2889 		bnxt_free_vnics(bp);
2890 		kfree(bp->tx_ring);
2891 		bp->tx_ring = NULL;
2892 		kfree(bp->rx_ring);
2893 		bp->rx_ring = NULL;
2894 		kfree(bp->bnapi);
2895 		bp->bnapi = NULL;
2896 	} else {
2897 		bnxt_clear_ring_indices(bp);
2898 	}
2899 }
2900 
2901 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
2902 {
2903 	int i, j, rc, size, arr_size;
2904 	void *bnapi;
2905 
2906 	if (irq_re_init) {
2907 		/* Allocate bnapi mem pointer array and mem block for
2908 		 * all queues
2909 		 */
2910 		arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
2911 				bp->cp_nr_rings);
2912 		size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
2913 		bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
2914 		if (!bnapi)
2915 			return -ENOMEM;
2916 
2917 		bp->bnapi = bnapi;
2918 		bnapi += arr_size;
2919 		for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
2920 			bp->bnapi[i] = bnapi;
2921 			bp->bnapi[i]->index = i;
2922 			bp->bnapi[i]->bp = bp;
2923 		}
2924 
2925 		bp->rx_ring = kcalloc(bp->rx_nr_rings,
2926 				      sizeof(struct bnxt_rx_ring_info),
2927 				      GFP_KERNEL);
2928 		if (!bp->rx_ring)
2929 			return -ENOMEM;
2930 
2931 		for (i = 0; i < bp->rx_nr_rings; i++) {
2932 			bp->rx_ring[i].bnapi = bp->bnapi[i];
2933 			bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
2934 		}
2935 
2936 		bp->tx_ring = kcalloc(bp->tx_nr_rings,
2937 				      sizeof(struct bnxt_tx_ring_info),
2938 				      GFP_KERNEL);
2939 		if (!bp->tx_ring)
2940 			return -ENOMEM;
2941 
2942 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
2943 			j = 0;
2944 		else
2945 			j = bp->rx_nr_rings;
2946 
2947 		for (i = 0; i < bp->tx_nr_rings; i++, j++) {
2948 			bp->tx_ring[i].bnapi = bp->bnapi[j];
2949 			bp->bnapi[j]->tx_ring = &bp->tx_ring[i];
2950 		}
2951 
2952 		rc = bnxt_alloc_stats(bp);
2953 		if (rc)
2954 			goto alloc_mem_err;
2955 
2956 		rc = bnxt_alloc_ntp_fltrs(bp);
2957 		if (rc)
2958 			goto alloc_mem_err;
2959 
2960 		rc = bnxt_alloc_vnics(bp);
2961 		if (rc)
2962 			goto alloc_mem_err;
2963 	}
2964 
2965 	bnxt_init_ring_struct(bp);
2966 
2967 	rc = bnxt_alloc_rx_rings(bp);
2968 	if (rc)
2969 		goto alloc_mem_err;
2970 
2971 	rc = bnxt_alloc_tx_rings(bp);
2972 	if (rc)
2973 		goto alloc_mem_err;
2974 
2975 	rc = bnxt_alloc_cp_rings(bp);
2976 	if (rc)
2977 		goto alloc_mem_err;
2978 
2979 	bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
2980 				  BNXT_VNIC_UCAST_FLAG;
2981 	rc = bnxt_alloc_vnic_attributes(bp);
2982 	if (rc)
2983 		goto alloc_mem_err;
2984 	return 0;
2985 
2986 alloc_mem_err:
2987 	bnxt_free_mem(bp, true);
2988 	return rc;
2989 }
2990 
2991 void bnxt_hwrm_cmd_hdr_init(struct bnxt *bp, void *request, u16 req_type,
2992 			    u16 cmpl_ring, u16 target_id)
2993 {
2994 	struct input *req = request;
2995 
2996 	req->req_type = cpu_to_le16(req_type);
2997 	req->cmpl_ring = cpu_to_le16(cmpl_ring);
2998 	req->target_id = cpu_to_le16(target_id);
2999 	req->resp_addr = cpu_to_le64(bp->hwrm_cmd_resp_dma_addr);
3000 }
3001 
3002 static int bnxt_hwrm_do_send_msg(struct bnxt *bp, void *msg, u32 msg_len,
3003 				 int timeout, bool silent)
3004 {
3005 	int i, intr_process, rc, tmo_count;
3006 	struct input *req = msg;
3007 	u32 *data = msg;
3008 	__le32 *resp_len, *valid;
3009 	u16 cp_ring_id, len = 0;
3010 	struct hwrm_err_output *resp = bp->hwrm_cmd_resp_addr;
3011 
3012 	req->seq_id = cpu_to_le16(bp->hwrm_cmd_seq++);
3013 	memset(resp, 0, PAGE_SIZE);
3014 	cp_ring_id = le16_to_cpu(req->cmpl_ring);
3015 	intr_process = (cp_ring_id == INVALID_HW_RING_ID) ? 0 : 1;
3016 
3017 	/* Write request msg to hwrm channel */
3018 	__iowrite32_copy(bp->bar0, data, msg_len / 4);
3019 
3020 	for (i = msg_len; i < BNXT_HWRM_MAX_REQ_LEN; i += 4)
3021 		writel(0, bp->bar0 + i);
3022 
3023 	/* currently supports only one outstanding message */
3024 	if (intr_process)
3025 		bp->hwrm_intr_seq_id = le16_to_cpu(req->seq_id);
3026 
3027 	/* Ring channel doorbell */
3028 	writel(1, bp->bar0 + 0x100);
3029 
3030 	if (!timeout)
3031 		timeout = DFLT_HWRM_CMD_TIMEOUT;
3032 
3033 	i = 0;
3034 	tmo_count = timeout * 40;
3035 	if (intr_process) {
3036 		/* Wait until hwrm response cmpl interrupt is processed */
3037 		while (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID &&
3038 		       i++ < tmo_count) {
3039 			usleep_range(25, 40);
3040 		}
3041 
3042 		if (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID) {
3043 			netdev_err(bp->dev, "Resp cmpl intr err msg: 0x%x\n",
3044 				   le16_to_cpu(req->req_type));
3045 			return -1;
3046 		}
3047 	} else {
3048 		/* Check if response len is updated */
3049 		resp_len = bp->hwrm_cmd_resp_addr + HWRM_RESP_LEN_OFFSET;
3050 		for (i = 0; i < tmo_count; i++) {
3051 			len = (le32_to_cpu(*resp_len) & HWRM_RESP_LEN_MASK) >>
3052 			      HWRM_RESP_LEN_SFT;
3053 			if (len)
3054 				break;
3055 			usleep_range(25, 40);
3056 		}
3057 
3058 		if (i >= tmo_count) {
3059 			netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d\n",
3060 				   timeout, le16_to_cpu(req->req_type),
3061 				   le16_to_cpu(req->seq_id), len);
3062 			return -1;
3063 		}
3064 
3065 		/* Last word of resp contains valid bit */
3066 		valid = bp->hwrm_cmd_resp_addr + len - 4;
3067 		for (i = 0; i < 5; i++) {
3068 			if (le32_to_cpu(*valid) & HWRM_RESP_VALID_MASK)
3069 				break;
3070 			udelay(1);
3071 		}
3072 
3073 		if (i >= 5) {
3074 			netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d v:%d\n",
3075 				   timeout, le16_to_cpu(req->req_type),
3076 				   le16_to_cpu(req->seq_id), len, *valid);
3077 			return -1;
3078 		}
3079 	}
3080 
3081 	rc = le16_to_cpu(resp->error_code);
3082 	if (rc && !silent)
3083 		netdev_err(bp->dev, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n",
3084 			   le16_to_cpu(resp->req_type),
3085 			   le16_to_cpu(resp->seq_id), rc);
3086 	return rc;
3087 }
3088 
3089 int _hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
3090 {
3091 	return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, false);
3092 }
3093 
3094 int hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
3095 {
3096 	int rc;
3097 
3098 	mutex_lock(&bp->hwrm_cmd_lock);
3099 	rc = _hwrm_send_message(bp, msg, msg_len, timeout);
3100 	mutex_unlock(&bp->hwrm_cmd_lock);
3101 	return rc;
3102 }
3103 
3104 int hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len,
3105 			     int timeout)
3106 {
3107 	int rc;
3108 
3109 	mutex_lock(&bp->hwrm_cmd_lock);
3110 	rc = bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true);
3111 	mutex_unlock(&bp->hwrm_cmd_lock);
3112 	return rc;
3113 }
3114 
3115 static int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp)
3116 {
3117 	struct hwrm_func_drv_rgtr_input req = {0};
3118 	int i;
3119 	DECLARE_BITMAP(async_events_bmap, 256);
3120 	u32 *events = (u32 *)async_events_bmap;
3121 
3122 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
3123 
3124 	req.enables =
3125 		cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
3126 			    FUNC_DRV_RGTR_REQ_ENABLES_VER |
3127 			    FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
3128 
3129 	memset(async_events_bmap, 0, sizeof(async_events_bmap));
3130 	for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++)
3131 		__set_bit(bnxt_async_events_arr[i], async_events_bmap);
3132 
3133 	for (i = 0; i < 8; i++)
3134 		req.async_event_fwd[i] |= cpu_to_le32(events[i]);
3135 
3136 	req.os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX);
3137 	req.ver_maj = DRV_VER_MAJ;
3138 	req.ver_min = DRV_VER_MIN;
3139 	req.ver_upd = DRV_VER_UPD;
3140 
3141 	if (BNXT_PF(bp)) {
3142 		DECLARE_BITMAP(vf_req_snif_bmap, 256);
3143 		u32 *data = (u32 *)vf_req_snif_bmap;
3144 
3145 		memset(vf_req_snif_bmap, 0, sizeof(vf_req_snif_bmap));
3146 		for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++)
3147 			__set_bit(bnxt_vf_req_snif[i], vf_req_snif_bmap);
3148 
3149 		for (i = 0; i < 8; i++)
3150 			req.vf_req_fwd[i] = cpu_to_le32(data[i]);
3151 
3152 		req.enables |=
3153 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
3154 	}
3155 
3156 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3157 }
3158 
3159 static int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
3160 {
3161 	struct hwrm_func_drv_unrgtr_input req = {0};
3162 
3163 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_UNRGTR, -1, -1);
3164 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3165 }
3166 
3167 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
3168 {
3169 	u32 rc = 0;
3170 	struct hwrm_tunnel_dst_port_free_input req = {0};
3171 
3172 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_FREE, -1, -1);
3173 	req.tunnel_type = tunnel_type;
3174 
3175 	switch (tunnel_type) {
3176 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
3177 		req.tunnel_dst_port_id = bp->vxlan_fw_dst_port_id;
3178 		break;
3179 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
3180 		req.tunnel_dst_port_id = bp->nge_fw_dst_port_id;
3181 		break;
3182 	default:
3183 		break;
3184 	}
3185 
3186 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3187 	if (rc)
3188 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
3189 			   rc);
3190 	return rc;
3191 }
3192 
3193 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
3194 					   u8 tunnel_type)
3195 {
3196 	u32 rc = 0;
3197 	struct hwrm_tunnel_dst_port_alloc_input req = {0};
3198 	struct hwrm_tunnel_dst_port_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3199 
3200 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_ALLOC, -1, -1);
3201 
3202 	req.tunnel_type = tunnel_type;
3203 	req.tunnel_dst_port_val = port;
3204 
3205 	mutex_lock(&bp->hwrm_cmd_lock);
3206 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3207 	if (rc) {
3208 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
3209 			   rc);
3210 		goto err_out;
3211 	}
3212 
3213 	if (tunnel_type & TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN)
3214 		bp->vxlan_fw_dst_port_id = resp->tunnel_dst_port_id;
3215 
3216 	else if (tunnel_type & TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE)
3217 		bp->nge_fw_dst_port_id = resp->tunnel_dst_port_id;
3218 err_out:
3219 	mutex_unlock(&bp->hwrm_cmd_lock);
3220 	return rc;
3221 }
3222 
3223 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
3224 {
3225 	struct hwrm_cfa_l2_set_rx_mask_input req = {0};
3226 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3227 
3228 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_SET_RX_MASK, -1, -1);
3229 	req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
3230 
3231 	req.num_mc_entries = cpu_to_le32(vnic->mc_list_count);
3232 	req.mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
3233 	req.mask = cpu_to_le32(vnic->rx_mask);
3234 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3235 }
3236 
3237 #ifdef CONFIG_RFS_ACCEL
3238 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
3239 					    struct bnxt_ntuple_filter *fltr)
3240 {
3241 	struct hwrm_cfa_ntuple_filter_free_input req = {0};
3242 
3243 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_FREE, -1, -1);
3244 	req.ntuple_filter_id = fltr->filter_id;
3245 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3246 }
3247 
3248 #define BNXT_NTP_FLTR_FLAGS					\
3249 	(CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID |	\
3250 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE |	\
3251 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR |	\
3252 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE |	\
3253 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR |	\
3254 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK |	\
3255 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR |	\
3256 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK |	\
3257 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL |	\
3258 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT |		\
3259 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK |	\
3260 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT |		\
3261 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK |	\
3262 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
3263 
3264 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
3265 					     struct bnxt_ntuple_filter *fltr)
3266 {
3267 	int rc = 0;
3268 	struct hwrm_cfa_ntuple_filter_alloc_input req = {0};
3269 	struct hwrm_cfa_ntuple_filter_alloc_output *resp =
3270 		bp->hwrm_cmd_resp_addr;
3271 	struct flow_keys *keys = &fltr->fkeys;
3272 	struct bnxt_vnic_info *vnic = &bp->vnic_info[fltr->rxq + 1];
3273 
3274 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_ALLOC, -1, -1);
3275 	req.l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx];
3276 
3277 	req.enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
3278 
3279 	req.ethertype = htons(ETH_P_IP);
3280 	memcpy(req.src_macaddr, fltr->src_mac_addr, ETH_ALEN);
3281 	req.ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
3282 	req.ip_protocol = keys->basic.ip_proto;
3283 
3284 	req.src_ipaddr[0] = keys->addrs.v4addrs.src;
3285 	req.src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
3286 	req.dst_ipaddr[0] = keys->addrs.v4addrs.dst;
3287 	req.dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
3288 
3289 	req.src_port = keys->ports.src;
3290 	req.src_port_mask = cpu_to_be16(0xffff);
3291 	req.dst_port = keys->ports.dst;
3292 	req.dst_port_mask = cpu_to_be16(0xffff);
3293 
3294 	req.dst_id = cpu_to_le16(vnic->fw_vnic_id);
3295 	mutex_lock(&bp->hwrm_cmd_lock);
3296 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3297 	if (!rc)
3298 		fltr->filter_id = resp->ntuple_filter_id;
3299 	mutex_unlock(&bp->hwrm_cmd_lock);
3300 	return rc;
3301 }
3302 #endif
3303 
3304 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
3305 				     u8 *mac_addr)
3306 {
3307 	u32 rc = 0;
3308 	struct hwrm_cfa_l2_filter_alloc_input req = {0};
3309 	struct hwrm_cfa_l2_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3310 
3311 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_ALLOC, -1, -1);
3312 	req.flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX);
3313 	if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
3314 		req.flags |=
3315 			cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
3316 	req.dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
3317 	req.enables =
3318 		cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
3319 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
3320 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
3321 	memcpy(req.l2_addr, mac_addr, ETH_ALEN);
3322 	req.l2_addr_mask[0] = 0xff;
3323 	req.l2_addr_mask[1] = 0xff;
3324 	req.l2_addr_mask[2] = 0xff;
3325 	req.l2_addr_mask[3] = 0xff;
3326 	req.l2_addr_mask[4] = 0xff;
3327 	req.l2_addr_mask[5] = 0xff;
3328 
3329 	mutex_lock(&bp->hwrm_cmd_lock);
3330 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3331 	if (!rc)
3332 		bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
3333 							resp->l2_filter_id;
3334 	mutex_unlock(&bp->hwrm_cmd_lock);
3335 	return rc;
3336 }
3337 
3338 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
3339 {
3340 	u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
3341 	int rc = 0;
3342 
3343 	/* Any associated ntuple filters will also be cleared by firmware. */
3344 	mutex_lock(&bp->hwrm_cmd_lock);
3345 	for (i = 0; i < num_of_vnics; i++) {
3346 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3347 
3348 		for (j = 0; j < vnic->uc_filter_count; j++) {
3349 			struct hwrm_cfa_l2_filter_free_input req = {0};
3350 
3351 			bnxt_hwrm_cmd_hdr_init(bp, &req,
3352 					       HWRM_CFA_L2_FILTER_FREE, -1, -1);
3353 
3354 			req.l2_filter_id = vnic->fw_l2_filter_id[j];
3355 
3356 			rc = _hwrm_send_message(bp, &req, sizeof(req),
3357 						HWRM_CMD_TIMEOUT);
3358 		}
3359 		vnic->uc_filter_count = 0;
3360 	}
3361 	mutex_unlock(&bp->hwrm_cmd_lock);
3362 
3363 	return rc;
3364 }
3365 
3366 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
3367 {
3368 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3369 	struct hwrm_vnic_tpa_cfg_input req = {0};
3370 
3371 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_TPA_CFG, -1, -1);
3372 
3373 	if (tpa_flags) {
3374 		u16 mss = bp->dev->mtu - 40;
3375 		u32 nsegs, n, segs = 0, flags;
3376 
3377 		flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
3378 			VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
3379 			VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
3380 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
3381 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
3382 		if (tpa_flags & BNXT_FLAG_GRO)
3383 			flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
3384 
3385 		req.flags = cpu_to_le32(flags);
3386 
3387 		req.enables =
3388 			cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
3389 				    VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
3390 				    VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
3391 
3392 		/* Number of segs are log2 units, and first packet is not
3393 		 * included as part of this units.
3394 		 */
3395 		if (mss <= BNXT_RX_PAGE_SIZE) {
3396 			n = BNXT_RX_PAGE_SIZE / mss;
3397 			nsegs = (MAX_SKB_FRAGS - 1) * n;
3398 		} else {
3399 			n = mss / BNXT_RX_PAGE_SIZE;
3400 			if (mss & (BNXT_RX_PAGE_SIZE - 1))
3401 				n++;
3402 			nsegs = (MAX_SKB_FRAGS - n) / n;
3403 		}
3404 
3405 		segs = ilog2(nsegs);
3406 		req.max_agg_segs = cpu_to_le16(segs);
3407 		req.max_aggs = cpu_to_le16(VNIC_TPA_CFG_REQ_MAX_AGGS_MAX);
3408 
3409 		req.min_agg_len = cpu_to_le32(512);
3410 	}
3411 	req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
3412 
3413 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3414 }
3415 
3416 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
3417 {
3418 	u32 i, j, max_rings;
3419 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3420 	struct hwrm_vnic_rss_cfg_input req = {0};
3421 
3422 	if (vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID)
3423 		return 0;
3424 
3425 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1);
3426 	if (set_rss) {
3427 		vnic->hash_type = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 |
3428 				  VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 |
3429 				  VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 |
3430 				  VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6;
3431 
3432 		req.hash_type = cpu_to_le32(vnic->hash_type);
3433 
3434 		if (vnic->flags & BNXT_VNIC_RSS_FLAG) {
3435 			if (BNXT_CHIP_TYPE_NITRO_A0(bp))
3436 				max_rings = bp->rx_nr_rings - 1;
3437 			else
3438 				max_rings = bp->rx_nr_rings;
3439 		} else {
3440 			max_rings = 1;
3441 		}
3442 
3443 		/* Fill the RSS indirection table with ring group ids */
3444 		for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++, j++) {
3445 			if (j == max_rings)
3446 				j = 0;
3447 			vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
3448 		}
3449 
3450 		req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
3451 		req.hash_key_tbl_addr =
3452 			cpu_to_le64(vnic->rss_hash_key_dma_addr);
3453 	}
3454 	req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
3455 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3456 }
3457 
3458 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
3459 {
3460 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3461 	struct hwrm_vnic_plcmodes_cfg_input req = {0};
3462 
3463 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_PLCMODES_CFG, -1, -1);
3464 	req.flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT |
3465 				VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
3466 				VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
3467 	req.enables =
3468 		cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID |
3469 			    VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
3470 	/* thresholds not implemented in firmware yet */
3471 	req.jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
3472 	req.hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
3473 	req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
3474 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3475 }
3476 
3477 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id,
3478 					u16 ctx_idx)
3479 {
3480 	struct hwrm_vnic_rss_cos_lb_ctx_free_input req = {0};
3481 
3482 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_FREE, -1, -1);
3483 	req.rss_cos_lb_ctx_id =
3484 		cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]);
3485 
3486 	hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3487 	bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID;
3488 }
3489 
3490 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
3491 {
3492 	int i, j;
3493 
3494 	for (i = 0; i < bp->nr_vnics; i++) {
3495 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3496 
3497 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) {
3498 			if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID)
3499 				bnxt_hwrm_vnic_ctx_free_one(bp, i, j);
3500 		}
3501 	}
3502 	bp->rsscos_nr_ctxs = 0;
3503 }
3504 
3505 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx)
3506 {
3507 	int rc;
3508 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_input req = {0};
3509 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp =
3510 						bp->hwrm_cmd_resp_addr;
3511 
3512 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC, -1,
3513 			       -1);
3514 
3515 	mutex_lock(&bp->hwrm_cmd_lock);
3516 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3517 	if (!rc)
3518 		bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] =
3519 			le16_to_cpu(resp->rss_cos_lb_ctx_id);
3520 	mutex_unlock(&bp->hwrm_cmd_lock);
3521 
3522 	return rc;
3523 }
3524 
3525 static int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
3526 {
3527 	unsigned int ring = 0, grp_idx;
3528 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3529 	struct hwrm_vnic_cfg_input req = {0};
3530 	u16 def_vlan = 0;
3531 
3532 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_CFG, -1, -1);
3533 
3534 	req.enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP);
3535 	/* Only RSS support for now TBD: COS & LB */
3536 	if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) {
3537 		req.rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
3538 		req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
3539 					   VNIC_CFG_REQ_ENABLES_MRU);
3540 	} else {
3541 		req.rss_rule = cpu_to_le16(0xffff);
3542 	}
3543 
3544 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) &&
3545 	    (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) {
3546 		req.cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]);
3547 		req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE);
3548 	} else {
3549 		req.cos_rule = cpu_to_le16(0xffff);
3550 	}
3551 
3552 	if (vnic->flags & BNXT_VNIC_RSS_FLAG)
3553 		ring = 0;
3554 	else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
3555 		ring = vnic_id - 1;
3556 	else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp))
3557 		ring = bp->rx_nr_rings - 1;
3558 
3559 	grp_idx = bp->rx_ring[ring].bnapi->index;
3560 	req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
3561 	req.dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
3562 
3563 	req.lb_rule = cpu_to_le16(0xffff);
3564 	req.mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + ETH_FCS_LEN +
3565 			      VLAN_HLEN);
3566 
3567 #ifdef CONFIG_BNXT_SRIOV
3568 	if (BNXT_VF(bp))
3569 		def_vlan = bp->vf.vlan;
3570 #endif
3571 	if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan)
3572 		req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
3573 
3574 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3575 }
3576 
3577 static int bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
3578 {
3579 	u32 rc = 0;
3580 
3581 	if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
3582 		struct hwrm_vnic_free_input req = {0};
3583 
3584 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_FREE, -1, -1);
3585 		req.vnic_id =
3586 			cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
3587 
3588 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3589 		if (rc)
3590 			return rc;
3591 		bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
3592 	}
3593 	return rc;
3594 }
3595 
3596 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
3597 {
3598 	u16 i;
3599 
3600 	for (i = 0; i < bp->nr_vnics; i++)
3601 		bnxt_hwrm_vnic_free_one(bp, i);
3602 }
3603 
3604 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
3605 				unsigned int start_rx_ring_idx,
3606 				unsigned int nr_rings)
3607 {
3608 	int rc = 0;
3609 	unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
3610 	struct hwrm_vnic_alloc_input req = {0};
3611 	struct hwrm_vnic_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3612 
3613 	/* map ring groups to this vnic */
3614 	for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
3615 		grp_idx = bp->rx_ring[i].bnapi->index;
3616 		if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
3617 			netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
3618 				   j, nr_rings);
3619 			break;
3620 		}
3621 		bp->vnic_info[vnic_id].fw_grp_ids[j] =
3622 					bp->grp_info[grp_idx].fw_grp_id;
3623 	}
3624 
3625 	bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[0] = INVALID_HW_RING_ID;
3626 	bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[1] = INVALID_HW_RING_ID;
3627 	if (vnic_id == 0)
3628 		req.flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
3629 
3630 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_ALLOC, -1, -1);
3631 
3632 	mutex_lock(&bp->hwrm_cmd_lock);
3633 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3634 	if (!rc)
3635 		bp->vnic_info[vnic_id].fw_vnic_id = le32_to_cpu(resp->vnic_id);
3636 	mutex_unlock(&bp->hwrm_cmd_lock);
3637 	return rc;
3638 }
3639 
3640 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
3641 {
3642 	u16 i;
3643 	u32 rc = 0;
3644 
3645 	mutex_lock(&bp->hwrm_cmd_lock);
3646 	for (i = 0; i < bp->rx_nr_rings; i++) {
3647 		struct hwrm_ring_grp_alloc_input req = {0};
3648 		struct hwrm_ring_grp_alloc_output *resp =
3649 					bp->hwrm_cmd_resp_addr;
3650 		unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
3651 
3652 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_ALLOC, -1, -1);
3653 
3654 		req.cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
3655 		req.rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
3656 		req.ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
3657 		req.sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
3658 
3659 		rc = _hwrm_send_message(bp, &req, sizeof(req),
3660 					HWRM_CMD_TIMEOUT);
3661 		if (rc)
3662 			break;
3663 
3664 		bp->grp_info[grp_idx].fw_grp_id =
3665 			le32_to_cpu(resp->ring_group_id);
3666 	}
3667 	mutex_unlock(&bp->hwrm_cmd_lock);
3668 	return rc;
3669 }
3670 
3671 static int bnxt_hwrm_ring_grp_free(struct bnxt *bp)
3672 {
3673 	u16 i;
3674 	u32 rc = 0;
3675 	struct hwrm_ring_grp_free_input req = {0};
3676 
3677 	if (!bp->grp_info)
3678 		return 0;
3679 
3680 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_FREE, -1, -1);
3681 
3682 	mutex_lock(&bp->hwrm_cmd_lock);
3683 	for (i = 0; i < bp->cp_nr_rings; i++) {
3684 		if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
3685 			continue;
3686 		req.ring_group_id =
3687 			cpu_to_le32(bp->grp_info[i].fw_grp_id);
3688 
3689 		rc = _hwrm_send_message(bp, &req, sizeof(req),
3690 					HWRM_CMD_TIMEOUT);
3691 		if (rc)
3692 			break;
3693 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
3694 	}
3695 	mutex_unlock(&bp->hwrm_cmd_lock);
3696 	return rc;
3697 }
3698 
3699 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
3700 				    struct bnxt_ring_struct *ring,
3701 				    u32 ring_type, u32 map_index,
3702 				    u32 stats_ctx_id)
3703 {
3704 	int rc = 0, err = 0;
3705 	struct hwrm_ring_alloc_input req = {0};
3706 	struct hwrm_ring_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3707 	u16 ring_id;
3708 
3709 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_ALLOC, -1, -1);
3710 
3711 	req.enables = 0;
3712 	if (ring->nr_pages > 1) {
3713 		req.page_tbl_addr = cpu_to_le64(ring->pg_tbl_map);
3714 		/* Page size is in log2 units */
3715 		req.page_size = BNXT_PAGE_SHIFT;
3716 		req.page_tbl_depth = 1;
3717 	} else {
3718 		req.page_tbl_addr =  cpu_to_le64(ring->dma_arr[0]);
3719 	}
3720 	req.fbo = 0;
3721 	/* Association of ring index with doorbell index and MSIX number */
3722 	req.logical_id = cpu_to_le16(map_index);
3723 
3724 	switch (ring_type) {
3725 	case HWRM_RING_ALLOC_TX:
3726 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
3727 		/* Association of transmit ring with completion ring */
3728 		req.cmpl_ring_id =
3729 			cpu_to_le16(bp->grp_info[map_index].cp_fw_ring_id);
3730 		req.length = cpu_to_le32(bp->tx_ring_mask + 1);
3731 		req.stat_ctx_id = cpu_to_le32(stats_ctx_id);
3732 		req.queue_id = cpu_to_le16(ring->queue_id);
3733 		break;
3734 	case HWRM_RING_ALLOC_RX:
3735 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
3736 		req.length = cpu_to_le32(bp->rx_ring_mask + 1);
3737 		break;
3738 	case HWRM_RING_ALLOC_AGG:
3739 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
3740 		req.length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
3741 		break;
3742 	case HWRM_RING_ALLOC_CMPL:
3743 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_CMPL;
3744 		req.length = cpu_to_le32(bp->cp_ring_mask + 1);
3745 		if (bp->flags & BNXT_FLAG_USING_MSIX)
3746 			req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
3747 		break;
3748 	default:
3749 		netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
3750 			   ring_type);
3751 		return -1;
3752 	}
3753 
3754 	mutex_lock(&bp->hwrm_cmd_lock);
3755 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3756 	err = le16_to_cpu(resp->error_code);
3757 	ring_id = le16_to_cpu(resp->ring_id);
3758 	mutex_unlock(&bp->hwrm_cmd_lock);
3759 
3760 	if (rc || err) {
3761 		switch (ring_type) {
3762 		case RING_FREE_REQ_RING_TYPE_CMPL:
3763 			netdev_err(bp->dev, "hwrm_ring_alloc cp failed. rc:%x err:%x\n",
3764 				   rc, err);
3765 			return -1;
3766 
3767 		case RING_FREE_REQ_RING_TYPE_RX:
3768 			netdev_err(bp->dev, "hwrm_ring_alloc rx failed. rc:%x err:%x\n",
3769 				   rc, err);
3770 			return -1;
3771 
3772 		case RING_FREE_REQ_RING_TYPE_TX:
3773 			netdev_err(bp->dev, "hwrm_ring_alloc tx failed. rc:%x err:%x\n",
3774 				   rc, err);
3775 			return -1;
3776 
3777 		default:
3778 			netdev_err(bp->dev, "Invalid ring\n");
3779 			return -1;
3780 		}
3781 	}
3782 	ring->fw_ring_id = ring_id;
3783 	return rc;
3784 }
3785 
3786 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
3787 {
3788 	int i, rc = 0;
3789 
3790 	for (i = 0; i < bp->cp_nr_rings; i++) {
3791 		struct bnxt_napi *bnapi = bp->bnapi[i];
3792 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3793 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3794 
3795 		cpr->cp_doorbell = bp->bar1 + i * 0x80;
3796 		rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_CMPL, i,
3797 					      INVALID_STATS_CTX_ID);
3798 		if (rc)
3799 			goto err_out;
3800 		BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
3801 		bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
3802 	}
3803 
3804 	for (i = 0; i < bp->tx_nr_rings; i++) {
3805 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3806 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
3807 		u32 map_idx = txr->bnapi->index;
3808 		u16 fw_stats_ctx = bp->grp_info[map_idx].fw_stats_ctx;
3809 
3810 		rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_TX,
3811 					      map_idx, fw_stats_ctx);
3812 		if (rc)
3813 			goto err_out;
3814 		txr->tx_doorbell = bp->bar1 + map_idx * 0x80;
3815 	}
3816 
3817 	for (i = 0; i < bp->rx_nr_rings; i++) {
3818 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3819 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
3820 		u32 map_idx = rxr->bnapi->index;
3821 
3822 		rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_RX,
3823 					      map_idx, INVALID_STATS_CTX_ID);
3824 		if (rc)
3825 			goto err_out;
3826 		rxr->rx_doorbell = bp->bar1 + map_idx * 0x80;
3827 		writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
3828 		bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
3829 	}
3830 
3831 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
3832 		for (i = 0; i < bp->rx_nr_rings; i++) {
3833 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3834 			struct bnxt_ring_struct *ring =
3835 						&rxr->rx_agg_ring_struct;
3836 			u32 grp_idx = rxr->bnapi->index;
3837 			u32 map_idx = grp_idx + bp->rx_nr_rings;
3838 
3839 			rc = hwrm_ring_alloc_send_msg(bp, ring,
3840 						      HWRM_RING_ALLOC_AGG,
3841 						      map_idx,
3842 						      INVALID_STATS_CTX_ID);
3843 			if (rc)
3844 				goto err_out;
3845 
3846 			rxr->rx_agg_doorbell = bp->bar1 + map_idx * 0x80;
3847 			writel(DB_KEY_RX | rxr->rx_agg_prod,
3848 			       rxr->rx_agg_doorbell);
3849 			bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
3850 		}
3851 	}
3852 err_out:
3853 	return rc;
3854 }
3855 
3856 static int hwrm_ring_free_send_msg(struct bnxt *bp,
3857 				   struct bnxt_ring_struct *ring,
3858 				   u32 ring_type, int cmpl_ring_id)
3859 {
3860 	int rc;
3861 	struct hwrm_ring_free_input req = {0};
3862 	struct hwrm_ring_free_output *resp = bp->hwrm_cmd_resp_addr;
3863 	u16 error_code;
3864 
3865 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_FREE, cmpl_ring_id, -1);
3866 	req.ring_type = ring_type;
3867 	req.ring_id = cpu_to_le16(ring->fw_ring_id);
3868 
3869 	mutex_lock(&bp->hwrm_cmd_lock);
3870 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3871 	error_code = le16_to_cpu(resp->error_code);
3872 	mutex_unlock(&bp->hwrm_cmd_lock);
3873 
3874 	if (rc || error_code) {
3875 		switch (ring_type) {
3876 		case RING_FREE_REQ_RING_TYPE_CMPL:
3877 			netdev_err(bp->dev, "hwrm_ring_free cp failed. rc:%d\n",
3878 				   rc);
3879 			return rc;
3880 		case RING_FREE_REQ_RING_TYPE_RX:
3881 			netdev_err(bp->dev, "hwrm_ring_free rx failed. rc:%d\n",
3882 				   rc);
3883 			return rc;
3884 		case RING_FREE_REQ_RING_TYPE_TX:
3885 			netdev_err(bp->dev, "hwrm_ring_free tx failed. rc:%d\n",
3886 				   rc);
3887 			return rc;
3888 		default:
3889 			netdev_err(bp->dev, "Invalid ring\n");
3890 			return -1;
3891 		}
3892 	}
3893 	return 0;
3894 }
3895 
3896 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
3897 {
3898 	int i;
3899 
3900 	if (!bp->bnapi)
3901 		return;
3902 
3903 	for (i = 0; i < bp->tx_nr_rings; i++) {
3904 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3905 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
3906 		u32 grp_idx = txr->bnapi->index;
3907 		u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
3908 
3909 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3910 			hwrm_ring_free_send_msg(bp, ring,
3911 						RING_FREE_REQ_RING_TYPE_TX,
3912 						close_path ? cmpl_ring_id :
3913 						INVALID_HW_RING_ID);
3914 			ring->fw_ring_id = INVALID_HW_RING_ID;
3915 		}
3916 	}
3917 
3918 	for (i = 0; i < bp->rx_nr_rings; i++) {
3919 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3920 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
3921 		u32 grp_idx = rxr->bnapi->index;
3922 		u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
3923 
3924 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3925 			hwrm_ring_free_send_msg(bp, ring,
3926 						RING_FREE_REQ_RING_TYPE_RX,
3927 						close_path ? cmpl_ring_id :
3928 						INVALID_HW_RING_ID);
3929 			ring->fw_ring_id = INVALID_HW_RING_ID;
3930 			bp->grp_info[grp_idx].rx_fw_ring_id =
3931 				INVALID_HW_RING_ID;
3932 		}
3933 	}
3934 
3935 	for (i = 0; i < bp->rx_nr_rings; i++) {
3936 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3937 		struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
3938 		u32 grp_idx = rxr->bnapi->index;
3939 		u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
3940 
3941 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3942 			hwrm_ring_free_send_msg(bp, ring,
3943 						RING_FREE_REQ_RING_TYPE_RX,
3944 						close_path ? cmpl_ring_id :
3945 						INVALID_HW_RING_ID);
3946 			ring->fw_ring_id = INVALID_HW_RING_ID;
3947 			bp->grp_info[grp_idx].agg_fw_ring_id =
3948 				INVALID_HW_RING_ID;
3949 		}
3950 	}
3951 
3952 	for (i = 0; i < bp->cp_nr_rings; i++) {
3953 		struct bnxt_napi *bnapi = bp->bnapi[i];
3954 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3955 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3956 
3957 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3958 			hwrm_ring_free_send_msg(bp, ring,
3959 						RING_FREE_REQ_RING_TYPE_CMPL,
3960 						INVALID_HW_RING_ID);
3961 			ring->fw_ring_id = INVALID_HW_RING_ID;
3962 			bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
3963 		}
3964 	}
3965 }
3966 
3967 static void bnxt_hwrm_set_coal_params(struct bnxt *bp, u32 max_bufs,
3968 	u32 buf_tmrs, u16 flags,
3969 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
3970 {
3971 	req->flags = cpu_to_le16(flags);
3972 	req->num_cmpl_dma_aggr = cpu_to_le16((u16)max_bufs);
3973 	req->num_cmpl_dma_aggr_during_int = cpu_to_le16(max_bufs >> 16);
3974 	req->cmpl_aggr_dma_tmr = cpu_to_le16((u16)buf_tmrs);
3975 	req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(buf_tmrs >> 16);
3976 	/* Minimum time between 2 interrupts set to buf_tmr x 2 */
3977 	req->int_lat_tmr_min = cpu_to_le16((u16)buf_tmrs * 2);
3978 	req->int_lat_tmr_max = cpu_to_le16((u16)buf_tmrs * 4);
3979 	req->num_cmpl_aggr_int = cpu_to_le16((u16)max_bufs * 4);
3980 }
3981 
3982 int bnxt_hwrm_set_coal(struct bnxt *bp)
3983 {
3984 	int i, rc = 0;
3985 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0},
3986 							   req_tx = {0}, *req;
3987 	u16 max_buf, max_buf_irq;
3988 	u16 buf_tmr, buf_tmr_irq;
3989 	u32 flags;
3990 
3991 	bnxt_hwrm_cmd_hdr_init(bp, &req_rx,
3992 			       HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
3993 	bnxt_hwrm_cmd_hdr_init(bp, &req_tx,
3994 			       HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
3995 
3996 	/* Each rx completion (2 records) should be DMAed immediately.
3997 	 * DMA 1/4 of the completion buffers at a time.
3998 	 */
3999 	max_buf = min_t(u16, bp->rx_coal_bufs / 4, 2);
4000 	/* max_buf must not be zero */
4001 	max_buf = clamp_t(u16, max_buf, 1, 63);
4002 	max_buf_irq = clamp_t(u16, bp->rx_coal_bufs_irq, 1, 63);
4003 	buf_tmr = BNXT_USEC_TO_COAL_TIMER(bp->rx_coal_ticks);
4004 	/* buf timer set to 1/4 of interrupt timer */
4005 	buf_tmr = max_t(u16, buf_tmr / 4, 1);
4006 	buf_tmr_irq = BNXT_USEC_TO_COAL_TIMER(bp->rx_coal_ticks_irq);
4007 	buf_tmr_irq = max_t(u16, buf_tmr_irq, 1);
4008 
4009 	flags = RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
4010 
4011 	/* RING_IDLE generates more IRQs for lower latency.  Enable it only
4012 	 * if coal_ticks is less than 25 us.
4013 	 */
4014 	if (bp->rx_coal_ticks < 25)
4015 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
4016 
4017 	bnxt_hwrm_set_coal_params(bp, max_buf_irq << 16 | max_buf,
4018 				  buf_tmr_irq << 16 | buf_tmr, flags, &req_rx);
4019 
4020 	/* max_buf must not be zero */
4021 	max_buf = clamp_t(u16, bp->tx_coal_bufs, 1, 63);
4022 	max_buf_irq = clamp_t(u16, bp->tx_coal_bufs_irq, 1, 63);
4023 	buf_tmr = BNXT_USEC_TO_COAL_TIMER(bp->tx_coal_ticks);
4024 	/* buf timer set to 1/4 of interrupt timer */
4025 	buf_tmr = max_t(u16, buf_tmr / 4, 1);
4026 	buf_tmr_irq = BNXT_USEC_TO_COAL_TIMER(bp->tx_coal_ticks_irq);
4027 	buf_tmr_irq = max_t(u16, buf_tmr_irq, 1);
4028 
4029 	flags = RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
4030 	bnxt_hwrm_set_coal_params(bp, max_buf_irq << 16 | max_buf,
4031 				  buf_tmr_irq << 16 | buf_tmr, flags, &req_tx);
4032 
4033 	mutex_lock(&bp->hwrm_cmd_lock);
4034 	for (i = 0; i < bp->cp_nr_rings; i++) {
4035 		struct bnxt_napi *bnapi = bp->bnapi[i];
4036 
4037 		req = &req_rx;
4038 		if (!bnapi->rx_ring)
4039 			req = &req_tx;
4040 		req->ring_id = cpu_to_le16(bp->grp_info[i].cp_fw_ring_id);
4041 
4042 		rc = _hwrm_send_message(bp, req, sizeof(*req),
4043 					HWRM_CMD_TIMEOUT);
4044 		if (rc)
4045 			break;
4046 	}
4047 	mutex_unlock(&bp->hwrm_cmd_lock);
4048 	return rc;
4049 }
4050 
4051 static int bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
4052 {
4053 	int rc = 0, i;
4054 	struct hwrm_stat_ctx_free_input req = {0};
4055 
4056 	if (!bp->bnapi)
4057 		return 0;
4058 
4059 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
4060 		return 0;
4061 
4062 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_FREE, -1, -1);
4063 
4064 	mutex_lock(&bp->hwrm_cmd_lock);
4065 	for (i = 0; i < bp->cp_nr_rings; i++) {
4066 		struct bnxt_napi *bnapi = bp->bnapi[i];
4067 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4068 
4069 		if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
4070 			req.stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
4071 
4072 			rc = _hwrm_send_message(bp, &req, sizeof(req),
4073 						HWRM_CMD_TIMEOUT);
4074 			if (rc)
4075 				break;
4076 
4077 			cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
4078 		}
4079 	}
4080 	mutex_unlock(&bp->hwrm_cmd_lock);
4081 	return rc;
4082 }
4083 
4084 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
4085 {
4086 	int rc = 0, i;
4087 	struct hwrm_stat_ctx_alloc_input req = {0};
4088 	struct hwrm_stat_ctx_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4089 
4090 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
4091 		return 0;
4092 
4093 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_ALLOC, -1, -1);
4094 
4095 	req.update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000);
4096 
4097 	mutex_lock(&bp->hwrm_cmd_lock);
4098 	for (i = 0; i < bp->cp_nr_rings; i++) {
4099 		struct bnxt_napi *bnapi = bp->bnapi[i];
4100 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4101 
4102 		req.stats_dma_addr = cpu_to_le64(cpr->hw_stats_map);
4103 
4104 		rc = _hwrm_send_message(bp, &req, sizeof(req),
4105 					HWRM_CMD_TIMEOUT);
4106 		if (rc)
4107 			break;
4108 
4109 		cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
4110 
4111 		bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
4112 	}
4113 	mutex_unlock(&bp->hwrm_cmd_lock);
4114 	return 0;
4115 }
4116 
4117 static int bnxt_hwrm_func_qcfg(struct bnxt *bp)
4118 {
4119 	struct hwrm_func_qcfg_input req = {0};
4120 	struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
4121 	int rc;
4122 
4123 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
4124 	req.fid = cpu_to_le16(0xffff);
4125 	mutex_lock(&bp->hwrm_cmd_lock);
4126 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4127 	if (rc)
4128 		goto func_qcfg_exit;
4129 
4130 #ifdef CONFIG_BNXT_SRIOV
4131 	if (BNXT_VF(bp)) {
4132 		struct bnxt_vf_info *vf = &bp->vf;
4133 
4134 		vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK;
4135 	}
4136 #endif
4137 	switch (resp->port_partition_type) {
4138 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0:
4139 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5:
4140 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0:
4141 		bp->port_partition_type = resp->port_partition_type;
4142 		break;
4143 	}
4144 
4145 func_qcfg_exit:
4146 	mutex_unlock(&bp->hwrm_cmd_lock);
4147 	return rc;
4148 }
4149 
4150 int bnxt_hwrm_func_qcaps(struct bnxt *bp)
4151 {
4152 	int rc = 0;
4153 	struct hwrm_func_qcaps_input req = {0};
4154 	struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
4155 
4156 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1);
4157 	req.fid = cpu_to_le16(0xffff);
4158 
4159 	mutex_lock(&bp->hwrm_cmd_lock);
4160 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4161 	if (rc)
4162 		goto hwrm_func_qcaps_exit;
4163 
4164 	bp->tx_push_thresh = 0;
4165 	if (resp->flags &
4166 	    cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED))
4167 		bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
4168 
4169 	if (BNXT_PF(bp)) {
4170 		struct bnxt_pf_info *pf = &bp->pf;
4171 
4172 		pf->fw_fid = le16_to_cpu(resp->fid);
4173 		pf->port_id = le16_to_cpu(resp->port_id);
4174 		bp->dev->dev_port = pf->port_id;
4175 		memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN);
4176 		memcpy(bp->dev->dev_addr, pf->mac_addr, ETH_ALEN);
4177 		pf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
4178 		pf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
4179 		pf->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
4180 		pf->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
4181 		pf->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
4182 		if (!pf->max_hw_ring_grps)
4183 			pf->max_hw_ring_grps = pf->max_tx_rings;
4184 		pf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
4185 		pf->max_vnics = le16_to_cpu(resp->max_vnics);
4186 		pf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
4187 		pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
4188 		pf->max_vfs = le16_to_cpu(resp->max_vfs);
4189 		pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
4190 		pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
4191 		pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
4192 		pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
4193 		pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
4194 		pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
4195 	} else {
4196 #ifdef CONFIG_BNXT_SRIOV
4197 		struct bnxt_vf_info *vf = &bp->vf;
4198 
4199 		vf->fw_fid = le16_to_cpu(resp->fid);
4200 
4201 		vf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
4202 		vf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
4203 		vf->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
4204 		vf->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
4205 		vf->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
4206 		if (!vf->max_hw_ring_grps)
4207 			vf->max_hw_ring_grps = vf->max_tx_rings;
4208 		vf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
4209 		vf->max_vnics = le16_to_cpu(resp->max_vnics);
4210 		vf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
4211 
4212 		memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN);
4213 		mutex_unlock(&bp->hwrm_cmd_lock);
4214 
4215 		if (is_valid_ether_addr(vf->mac_addr)) {
4216 			/* overwrite netdev dev_adr with admin VF MAC */
4217 			memcpy(bp->dev->dev_addr, vf->mac_addr, ETH_ALEN);
4218 		} else {
4219 			random_ether_addr(bp->dev->dev_addr);
4220 			rc = bnxt_approve_mac(bp, bp->dev->dev_addr);
4221 		}
4222 		return rc;
4223 #endif
4224 	}
4225 
4226 hwrm_func_qcaps_exit:
4227 	mutex_unlock(&bp->hwrm_cmd_lock);
4228 	return rc;
4229 }
4230 
4231 static int bnxt_hwrm_func_reset(struct bnxt *bp)
4232 {
4233 	struct hwrm_func_reset_input req = {0};
4234 
4235 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESET, -1, -1);
4236 	req.enables = 0;
4237 
4238 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_RESET_TIMEOUT);
4239 }
4240 
4241 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
4242 {
4243 	int rc = 0;
4244 	struct hwrm_queue_qportcfg_input req = {0};
4245 	struct hwrm_queue_qportcfg_output *resp = bp->hwrm_cmd_resp_addr;
4246 	u8 i, *qptr;
4247 
4248 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_QUEUE_QPORTCFG, -1, -1);
4249 
4250 	mutex_lock(&bp->hwrm_cmd_lock);
4251 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4252 	if (rc)
4253 		goto qportcfg_exit;
4254 
4255 	if (!resp->max_configurable_queues) {
4256 		rc = -EINVAL;
4257 		goto qportcfg_exit;
4258 	}
4259 	bp->max_tc = resp->max_configurable_queues;
4260 	if (bp->max_tc > BNXT_MAX_QUEUE)
4261 		bp->max_tc = BNXT_MAX_QUEUE;
4262 
4263 	if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG)
4264 		bp->max_tc = 1;
4265 
4266 	qptr = &resp->queue_id0;
4267 	for (i = 0; i < bp->max_tc; i++) {
4268 		bp->q_info[i].queue_id = *qptr++;
4269 		bp->q_info[i].queue_profile = *qptr++;
4270 	}
4271 
4272 qportcfg_exit:
4273 	mutex_unlock(&bp->hwrm_cmd_lock);
4274 	return rc;
4275 }
4276 
4277 static int bnxt_hwrm_ver_get(struct bnxt *bp)
4278 {
4279 	int rc;
4280 	struct hwrm_ver_get_input req = {0};
4281 	struct hwrm_ver_get_output *resp = bp->hwrm_cmd_resp_addr;
4282 
4283 	bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN;
4284 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VER_GET, -1, -1);
4285 	req.hwrm_intf_maj = HWRM_VERSION_MAJOR;
4286 	req.hwrm_intf_min = HWRM_VERSION_MINOR;
4287 	req.hwrm_intf_upd = HWRM_VERSION_UPDATE;
4288 	mutex_lock(&bp->hwrm_cmd_lock);
4289 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4290 	if (rc)
4291 		goto hwrm_ver_get_exit;
4292 
4293 	memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
4294 
4295 	bp->hwrm_spec_code = resp->hwrm_intf_maj << 16 |
4296 			     resp->hwrm_intf_min << 8 | resp->hwrm_intf_upd;
4297 	if (resp->hwrm_intf_maj < 1) {
4298 		netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
4299 			    resp->hwrm_intf_maj, resp->hwrm_intf_min,
4300 			    resp->hwrm_intf_upd);
4301 		netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
4302 	}
4303 	snprintf(bp->fw_ver_str, BC_HWRM_STR_LEN, "%d.%d.%d/%d.%d.%d",
4304 		 resp->hwrm_fw_maj, resp->hwrm_fw_min, resp->hwrm_fw_bld,
4305 		 resp->hwrm_intf_maj, resp->hwrm_intf_min, resp->hwrm_intf_upd);
4306 
4307 	bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout);
4308 	if (!bp->hwrm_cmd_timeout)
4309 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
4310 
4311 	if (resp->hwrm_intf_maj >= 1)
4312 		bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len);
4313 
4314 	bp->chip_num = le16_to_cpu(resp->chip_num);
4315 	if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev &&
4316 	    !resp->chip_metal)
4317 		bp->flags |= BNXT_FLAG_CHIP_NITRO_A0;
4318 
4319 hwrm_ver_get_exit:
4320 	mutex_unlock(&bp->hwrm_cmd_lock);
4321 	return rc;
4322 }
4323 
4324 int bnxt_hwrm_fw_set_time(struct bnxt *bp)
4325 {
4326 #if IS_ENABLED(CONFIG_RTC_LIB)
4327 	struct hwrm_fw_set_time_input req = {0};
4328 	struct rtc_time tm;
4329 	struct timeval tv;
4330 
4331 	if (bp->hwrm_spec_code < 0x10400)
4332 		return -EOPNOTSUPP;
4333 
4334 	do_gettimeofday(&tv);
4335 	rtc_time_to_tm(tv.tv_sec, &tm);
4336 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FW_SET_TIME, -1, -1);
4337 	req.year = cpu_to_le16(1900 + tm.tm_year);
4338 	req.month = 1 + tm.tm_mon;
4339 	req.day = tm.tm_mday;
4340 	req.hour = tm.tm_hour;
4341 	req.minute = tm.tm_min;
4342 	req.second = tm.tm_sec;
4343 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4344 #else
4345 	return -EOPNOTSUPP;
4346 #endif
4347 }
4348 
4349 static int bnxt_hwrm_port_qstats(struct bnxt *bp)
4350 {
4351 	int rc;
4352 	struct bnxt_pf_info *pf = &bp->pf;
4353 	struct hwrm_port_qstats_input req = {0};
4354 
4355 	if (!(bp->flags & BNXT_FLAG_PORT_STATS))
4356 		return 0;
4357 
4358 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS, -1, -1);
4359 	req.port_id = cpu_to_le16(pf->port_id);
4360 	req.tx_stat_host_addr = cpu_to_le64(bp->hw_tx_port_stats_map);
4361 	req.rx_stat_host_addr = cpu_to_le64(bp->hw_rx_port_stats_map);
4362 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4363 	return rc;
4364 }
4365 
4366 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
4367 {
4368 	if (bp->vxlan_port_cnt) {
4369 		bnxt_hwrm_tunnel_dst_port_free(
4370 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
4371 	}
4372 	bp->vxlan_port_cnt = 0;
4373 	if (bp->nge_port_cnt) {
4374 		bnxt_hwrm_tunnel_dst_port_free(
4375 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
4376 	}
4377 	bp->nge_port_cnt = 0;
4378 }
4379 
4380 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
4381 {
4382 	int rc, i;
4383 	u32 tpa_flags = 0;
4384 
4385 	if (set_tpa)
4386 		tpa_flags = bp->flags & BNXT_FLAG_TPA;
4387 	for (i = 0; i < bp->nr_vnics; i++) {
4388 		rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
4389 		if (rc) {
4390 			netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
4391 				   rc, i);
4392 			return rc;
4393 		}
4394 	}
4395 	return 0;
4396 }
4397 
4398 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
4399 {
4400 	int i;
4401 
4402 	for (i = 0; i < bp->nr_vnics; i++)
4403 		bnxt_hwrm_vnic_set_rss(bp, i, false);
4404 }
4405 
4406 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
4407 				    bool irq_re_init)
4408 {
4409 	if (bp->vnic_info) {
4410 		bnxt_hwrm_clear_vnic_filter(bp);
4411 		/* clear all RSS setting before free vnic ctx */
4412 		bnxt_hwrm_clear_vnic_rss(bp);
4413 		bnxt_hwrm_vnic_ctx_free(bp);
4414 		/* before free the vnic, undo the vnic tpa settings */
4415 		if (bp->flags & BNXT_FLAG_TPA)
4416 			bnxt_set_tpa(bp, false);
4417 		bnxt_hwrm_vnic_free(bp);
4418 	}
4419 	bnxt_hwrm_ring_free(bp, close_path);
4420 	bnxt_hwrm_ring_grp_free(bp);
4421 	if (irq_re_init) {
4422 		bnxt_hwrm_stat_ctx_free(bp);
4423 		bnxt_hwrm_free_tunnel_ports(bp);
4424 	}
4425 }
4426 
4427 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
4428 {
4429 	int rc;
4430 
4431 	/* allocate context for vnic */
4432 	rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0);
4433 	if (rc) {
4434 		netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
4435 			   vnic_id, rc);
4436 		goto vnic_setup_err;
4437 	}
4438 	bp->rsscos_nr_ctxs++;
4439 
4440 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
4441 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1);
4442 		if (rc) {
4443 			netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n",
4444 				   vnic_id, rc);
4445 			goto vnic_setup_err;
4446 		}
4447 		bp->rsscos_nr_ctxs++;
4448 	}
4449 
4450 	/* configure default vnic, ring grp */
4451 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
4452 	if (rc) {
4453 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
4454 			   vnic_id, rc);
4455 		goto vnic_setup_err;
4456 	}
4457 
4458 	/* Enable RSS hashing on vnic */
4459 	rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
4460 	if (rc) {
4461 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
4462 			   vnic_id, rc);
4463 		goto vnic_setup_err;
4464 	}
4465 
4466 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
4467 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
4468 		if (rc) {
4469 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
4470 				   vnic_id, rc);
4471 		}
4472 	}
4473 
4474 vnic_setup_err:
4475 	return rc;
4476 }
4477 
4478 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
4479 {
4480 #ifdef CONFIG_RFS_ACCEL
4481 	int i, rc = 0;
4482 
4483 	for (i = 0; i < bp->rx_nr_rings; i++) {
4484 		u16 vnic_id = i + 1;
4485 		u16 ring_id = i;
4486 
4487 		if (vnic_id >= bp->nr_vnics)
4488 			break;
4489 
4490 		bp->vnic_info[vnic_id].flags |= BNXT_VNIC_RFS_FLAG;
4491 		rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1);
4492 		if (rc) {
4493 			netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
4494 				   vnic_id, rc);
4495 			break;
4496 		}
4497 		rc = bnxt_setup_vnic(bp, vnic_id);
4498 		if (rc)
4499 			break;
4500 	}
4501 	return rc;
4502 #else
4503 	return 0;
4504 #endif
4505 }
4506 
4507 /* Allow PF and VF with default VLAN to be in promiscuous mode */
4508 static bool bnxt_promisc_ok(struct bnxt *bp)
4509 {
4510 #ifdef CONFIG_BNXT_SRIOV
4511 	if (BNXT_VF(bp) && !bp->vf.vlan)
4512 		return false;
4513 #endif
4514 	return true;
4515 }
4516 
4517 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp)
4518 {
4519 	unsigned int rc = 0;
4520 
4521 	rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1);
4522 	if (rc) {
4523 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
4524 			   rc);
4525 		return rc;
4526 	}
4527 
4528 	rc = bnxt_hwrm_vnic_cfg(bp, 1);
4529 	if (rc) {
4530 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
4531 			   rc);
4532 		return rc;
4533 	}
4534 	return rc;
4535 }
4536 
4537 static int bnxt_cfg_rx_mode(struct bnxt *);
4538 static bool bnxt_mc_list_updated(struct bnxt *, u32 *);
4539 
4540 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
4541 {
4542 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
4543 	int rc = 0;
4544 	unsigned int rx_nr_rings = bp->rx_nr_rings;
4545 
4546 	if (irq_re_init) {
4547 		rc = bnxt_hwrm_stat_ctx_alloc(bp);
4548 		if (rc) {
4549 			netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
4550 				   rc);
4551 			goto err_out;
4552 		}
4553 	}
4554 
4555 	rc = bnxt_hwrm_ring_alloc(bp);
4556 	if (rc) {
4557 		netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
4558 		goto err_out;
4559 	}
4560 
4561 	rc = bnxt_hwrm_ring_grp_alloc(bp);
4562 	if (rc) {
4563 		netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
4564 		goto err_out;
4565 	}
4566 
4567 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
4568 		rx_nr_rings--;
4569 
4570 	/* default vnic 0 */
4571 	rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings);
4572 	if (rc) {
4573 		netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
4574 		goto err_out;
4575 	}
4576 
4577 	rc = bnxt_setup_vnic(bp, 0);
4578 	if (rc)
4579 		goto err_out;
4580 
4581 	if (bp->flags & BNXT_FLAG_RFS) {
4582 		rc = bnxt_alloc_rfs_vnics(bp);
4583 		if (rc)
4584 			goto err_out;
4585 	}
4586 
4587 	if (bp->flags & BNXT_FLAG_TPA) {
4588 		rc = bnxt_set_tpa(bp, true);
4589 		if (rc)
4590 			goto err_out;
4591 	}
4592 
4593 	if (BNXT_VF(bp))
4594 		bnxt_update_vf_mac(bp);
4595 
4596 	/* Filter for default vnic 0 */
4597 	rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
4598 	if (rc) {
4599 		netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
4600 		goto err_out;
4601 	}
4602 	vnic->uc_filter_count = 1;
4603 
4604 	vnic->rx_mask = CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
4605 
4606 	if ((bp->dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
4607 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
4608 
4609 	if (bp->dev->flags & IFF_ALLMULTI) {
4610 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
4611 		vnic->mc_list_count = 0;
4612 	} else {
4613 		u32 mask = 0;
4614 
4615 		bnxt_mc_list_updated(bp, &mask);
4616 		vnic->rx_mask |= mask;
4617 	}
4618 
4619 	rc = bnxt_cfg_rx_mode(bp);
4620 	if (rc)
4621 		goto err_out;
4622 
4623 	rc = bnxt_hwrm_set_coal(bp);
4624 	if (rc)
4625 		netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
4626 				rc);
4627 
4628 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
4629 		rc = bnxt_setup_nitroa0_vnic(bp);
4630 		if (rc)
4631 			netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n",
4632 				   rc);
4633 	}
4634 
4635 	if (BNXT_VF(bp)) {
4636 		bnxt_hwrm_func_qcfg(bp);
4637 		netdev_update_features(bp->dev);
4638 	}
4639 
4640 	return 0;
4641 
4642 err_out:
4643 	bnxt_hwrm_resource_free(bp, 0, true);
4644 
4645 	return rc;
4646 }
4647 
4648 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
4649 {
4650 	bnxt_hwrm_resource_free(bp, 1, irq_re_init);
4651 	return 0;
4652 }
4653 
4654 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
4655 {
4656 	bnxt_init_rx_rings(bp);
4657 	bnxt_init_tx_rings(bp);
4658 	bnxt_init_ring_grps(bp, irq_re_init);
4659 	bnxt_init_vnics(bp);
4660 
4661 	return bnxt_init_chip(bp, irq_re_init);
4662 }
4663 
4664 static void bnxt_disable_int(struct bnxt *bp)
4665 {
4666 	int i;
4667 
4668 	if (!bp->bnapi)
4669 		return;
4670 
4671 	for (i = 0; i < bp->cp_nr_rings; i++) {
4672 		struct bnxt_napi *bnapi = bp->bnapi[i];
4673 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4674 
4675 		BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
4676 	}
4677 }
4678 
4679 static void bnxt_enable_int(struct bnxt *bp)
4680 {
4681 	int i;
4682 
4683 	atomic_set(&bp->intr_sem, 0);
4684 	for (i = 0; i < bp->cp_nr_rings; i++) {
4685 		struct bnxt_napi *bnapi = bp->bnapi[i];
4686 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4687 
4688 		BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
4689 	}
4690 }
4691 
4692 static int bnxt_set_real_num_queues(struct bnxt *bp)
4693 {
4694 	int rc;
4695 	struct net_device *dev = bp->dev;
4696 
4697 	rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings);
4698 	if (rc)
4699 		return rc;
4700 
4701 	rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
4702 	if (rc)
4703 		return rc;
4704 
4705 #ifdef CONFIG_RFS_ACCEL
4706 	if (bp->flags & BNXT_FLAG_RFS)
4707 		dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
4708 #endif
4709 
4710 	return rc;
4711 }
4712 
4713 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
4714 			   bool shared)
4715 {
4716 	int _rx = *rx, _tx = *tx;
4717 
4718 	if (shared) {
4719 		*rx = min_t(int, _rx, max);
4720 		*tx = min_t(int, _tx, max);
4721 	} else {
4722 		if (max < 2)
4723 			return -ENOMEM;
4724 
4725 		while (_rx + _tx > max) {
4726 			if (_rx > _tx && _rx > 1)
4727 				_rx--;
4728 			else if (_tx > 1)
4729 				_tx--;
4730 		}
4731 		*rx = _rx;
4732 		*tx = _tx;
4733 	}
4734 	return 0;
4735 }
4736 
4737 static int bnxt_setup_msix(struct bnxt *bp)
4738 {
4739 	struct msix_entry *msix_ent;
4740 	struct net_device *dev = bp->dev;
4741 	int i, total_vecs, rc = 0, min = 1;
4742 	const int len = sizeof(bp->irq_tbl[0].name);
4743 
4744 	bp->flags &= ~BNXT_FLAG_USING_MSIX;
4745 	total_vecs = bp->cp_nr_rings;
4746 
4747 	msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
4748 	if (!msix_ent)
4749 		return -ENOMEM;
4750 
4751 	for (i = 0; i < total_vecs; i++) {
4752 		msix_ent[i].entry = i;
4753 		msix_ent[i].vector = 0;
4754 	}
4755 
4756 	if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
4757 		min = 2;
4758 
4759 	total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
4760 	if (total_vecs < 0) {
4761 		rc = -ENODEV;
4762 		goto msix_setup_exit;
4763 	}
4764 
4765 	bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
4766 	if (bp->irq_tbl) {
4767 		int tcs;
4768 
4769 		/* Trim rings based upon num of vectors allocated */
4770 		rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
4771 				     total_vecs, min == 1);
4772 		if (rc)
4773 			goto msix_setup_exit;
4774 
4775 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
4776 		tcs = netdev_get_num_tc(dev);
4777 		if (tcs > 1) {
4778 			bp->tx_nr_rings_per_tc = bp->tx_nr_rings / tcs;
4779 			if (bp->tx_nr_rings_per_tc == 0) {
4780 				netdev_reset_tc(dev);
4781 				bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
4782 			} else {
4783 				int i, off, count;
4784 
4785 				bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tcs;
4786 				for (i = 0; i < tcs; i++) {
4787 					count = bp->tx_nr_rings_per_tc;
4788 					off = i * count;
4789 					netdev_set_tc_queue(dev, i, count, off);
4790 				}
4791 			}
4792 		}
4793 		bp->cp_nr_rings = total_vecs;
4794 
4795 		for (i = 0; i < bp->cp_nr_rings; i++) {
4796 			char *attr;
4797 
4798 			bp->irq_tbl[i].vector = msix_ent[i].vector;
4799 			if (bp->flags & BNXT_FLAG_SHARED_RINGS)
4800 				attr = "TxRx";
4801 			else if (i < bp->rx_nr_rings)
4802 				attr = "rx";
4803 			else
4804 				attr = "tx";
4805 
4806 			snprintf(bp->irq_tbl[i].name, len,
4807 				 "%s-%s-%d", dev->name, attr, i);
4808 			bp->irq_tbl[i].handler = bnxt_msix;
4809 		}
4810 		rc = bnxt_set_real_num_queues(bp);
4811 		if (rc)
4812 			goto msix_setup_exit;
4813 	} else {
4814 		rc = -ENOMEM;
4815 		goto msix_setup_exit;
4816 	}
4817 	bp->flags |= BNXT_FLAG_USING_MSIX;
4818 	kfree(msix_ent);
4819 	return 0;
4820 
4821 msix_setup_exit:
4822 	netdev_err(bp->dev, "bnxt_setup_msix err: %x\n", rc);
4823 	pci_disable_msix(bp->pdev);
4824 	kfree(msix_ent);
4825 	return rc;
4826 }
4827 
4828 static int bnxt_setup_inta(struct bnxt *bp)
4829 {
4830 	int rc;
4831 	const int len = sizeof(bp->irq_tbl[0].name);
4832 
4833 	if (netdev_get_num_tc(bp->dev))
4834 		netdev_reset_tc(bp->dev);
4835 
4836 	bp->irq_tbl = kcalloc(1, sizeof(struct bnxt_irq), GFP_KERNEL);
4837 	if (!bp->irq_tbl) {
4838 		rc = -ENOMEM;
4839 		return rc;
4840 	}
4841 	bp->rx_nr_rings = 1;
4842 	bp->tx_nr_rings = 1;
4843 	bp->cp_nr_rings = 1;
4844 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
4845 	bp->flags |= BNXT_FLAG_SHARED_RINGS;
4846 	bp->irq_tbl[0].vector = bp->pdev->irq;
4847 	snprintf(bp->irq_tbl[0].name, len,
4848 		 "%s-%s-%d", bp->dev->name, "TxRx", 0);
4849 	bp->irq_tbl[0].handler = bnxt_inta;
4850 	rc = bnxt_set_real_num_queues(bp);
4851 	return rc;
4852 }
4853 
4854 static int bnxt_setup_int_mode(struct bnxt *bp)
4855 {
4856 	int rc = 0;
4857 
4858 	if (bp->flags & BNXT_FLAG_MSIX_CAP)
4859 		rc = bnxt_setup_msix(bp);
4860 
4861 	if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) {
4862 		/* fallback to INTA */
4863 		rc = bnxt_setup_inta(bp);
4864 	}
4865 	return rc;
4866 }
4867 
4868 static void bnxt_free_irq(struct bnxt *bp)
4869 {
4870 	struct bnxt_irq *irq;
4871 	int i;
4872 
4873 #ifdef CONFIG_RFS_ACCEL
4874 	free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
4875 	bp->dev->rx_cpu_rmap = NULL;
4876 #endif
4877 	if (!bp->irq_tbl)
4878 		return;
4879 
4880 	for (i = 0; i < bp->cp_nr_rings; i++) {
4881 		irq = &bp->irq_tbl[i];
4882 		if (irq->requested)
4883 			free_irq(irq->vector, bp->bnapi[i]);
4884 		irq->requested = 0;
4885 	}
4886 	if (bp->flags & BNXT_FLAG_USING_MSIX)
4887 		pci_disable_msix(bp->pdev);
4888 	kfree(bp->irq_tbl);
4889 	bp->irq_tbl = NULL;
4890 }
4891 
4892 static int bnxt_request_irq(struct bnxt *bp)
4893 {
4894 	int i, j, rc = 0;
4895 	unsigned long flags = 0;
4896 #ifdef CONFIG_RFS_ACCEL
4897 	struct cpu_rmap *rmap = bp->dev->rx_cpu_rmap;
4898 #endif
4899 
4900 	if (!(bp->flags & BNXT_FLAG_USING_MSIX))
4901 		flags = IRQF_SHARED;
4902 
4903 	for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
4904 		struct bnxt_irq *irq = &bp->irq_tbl[i];
4905 #ifdef CONFIG_RFS_ACCEL
4906 		if (rmap && bp->bnapi[i]->rx_ring) {
4907 			rc = irq_cpu_rmap_add(rmap, irq->vector);
4908 			if (rc)
4909 				netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
4910 					    j);
4911 			j++;
4912 		}
4913 #endif
4914 		rc = request_irq(irq->vector, irq->handler, flags, irq->name,
4915 				 bp->bnapi[i]);
4916 		if (rc)
4917 			break;
4918 
4919 		irq->requested = 1;
4920 	}
4921 	return rc;
4922 }
4923 
4924 static void bnxt_del_napi(struct bnxt *bp)
4925 {
4926 	int i;
4927 
4928 	if (!bp->bnapi)
4929 		return;
4930 
4931 	for (i = 0; i < bp->cp_nr_rings; i++) {
4932 		struct bnxt_napi *bnapi = bp->bnapi[i];
4933 
4934 		napi_hash_del(&bnapi->napi);
4935 		netif_napi_del(&bnapi->napi);
4936 	}
4937 }
4938 
4939 static void bnxt_init_napi(struct bnxt *bp)
4940 {
4941 	int i;
4942 	unsigned int cp_nr_rings = bp->cp_nr_rings;
4943 	struct bnxt_napi *bnapi;
4944 
4945 	if (bp->flags & BNXT_FLAG_USING_MSIX) {
4946 		if (BNXT_CHIP_TYPE_NITRO_A0(bp))
4947 			cp_nr_rings--;
4948 		for (i = 0; i < cp_nr_rings; i++) {
4949 			bnapi = bp->bnapi[i];
4950 			netif_napi_add(bp->dev, &bnapi->napi,
4951 				       bnxt_poll, 64);
4952 		}
4953 		if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
4954 			bnapi = bp->bnapi[cp_nr_rings];
4955 			netif_napi_add(bp->dev, &bnapi->napi,
4956 				       bnxt_poll_nitroa0, 64);
4957 			napi_hash_add(&bnapi->napi);
4958 		}
4959 	} else {
4960 		bnapi = bp->bnapi[0];
4961 		netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64);
4962 	}
4963 }
4964 
4965 static void bnxt_disable_napi(struct bnxt *bp)
4966 {
4967 	int i;
4968 
4969 	if (!bp->bnapi)
4970 		return;
4971 
4972 	for (i = 0; i < bp->cp_nr_rings; i++) {
4973 		napi_disable(&bp->bnapi[i]->napi);
4974 		bnxt_disable_poll(bp->bnapi[i]);
4975 	}
4976 }
4977 
4978 static void bnxt_enable_napi(struct bnxt *bp)
4979 {
4980 	int i;
4981 
4982 	for (i = 0; i < bp->cp_nr_rings; i++) {
4983 		bp->bnapi[i]->in_reset = false;
4984 		bnxt_enable_poll(bp->bnapi[i]);
4985 		napi_enable(&bp->bnapi[i]->napi);
4986 	}
4987 }
4988 
4989 static void bnxt_tx_disable(struct bnxt *bp)
4990 {
4991 	int i;
4992 	struct bnxt_tx_ring_info *txr;
4993 	struct netdev_queue *txq;
4994 
4995 	if (bp->tx_ring) {
4996 		for (i = 0; i < bp->tx_nr_rings; i++) {
4997 			txr = &bp->tx_ring[i];
4998 			txq = netdev_get_tx_queue(bp->dev, i);
4999 			txr->dev_state = BNXT_DEV_STATE_CLOSING;
5000 		}
5001 	}
5002 	/* Stop all TX queues */
5003 	netif_tx_disable(bp->dev);
5004 	netif_carrier_off(bp->dev);
5005 }
5006 
5007 static void bnxt_tx_enable(struct bnxt *bp)
5008 {
5009 	int i;
5010 	struct bnxt_tx_ring_info *txr;
5011 	struct netdev_queue *txq;
5012 
5013 	for (i = 0; i < bp->tx_nr_rings; i++) {
5014 		txr = &bp->tx_ring[i];
5015 		txq = netdev_get_tx_queue(bp->dev, i);
5016 		txr->dev_state = 0;
5017 	}
5018 	netif_tx_wake_all_queues(bp->dev);
5019 	if (bp->link_info.link_up)
5020 		netif_carrier_on(bp->dev);
5021 }
5022 
5023 static void bnxt_report_link(struct bnxt *bp)
5024 {
5025 	if (bp->link_info.link_up) {
5026 		const char *duplex;
5027 		const char *flow_ctrl;
5028 		u16 speed;
5029 
5030 		netif_carrier_on(bp->dev);
5031 		if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
5032 			duplex = "full";
5033 		else
5034 			duplex = "half";
5035 		if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
5036 			flow_ctrl = "ON - receive & transmit";
5037 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
5038 			flow_ctrl = "ON - transmit";
5039 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
5040 			flow_ctrl = "ON - receive";
5041 		else
5042 			flow_ctrl = "none";
5043 		speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
5044 		netdev_info(bp->dev, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
5045 			    speed, duplex, flow_ctrl);
5046 		if (bp->flags & BNXT_FLAG_EEE_CAP)
5047 			netdev_info(bp->dev, "EEE is %s\n",
5048 				    bp->eee.eee_active ? "active" :
5049 							 "not active");
5050 	} else {
5051 		netif_carrier_off(bp->dev);
5052 		netdev_err(bp->dev, "NIC Link is Down\n");
5053 	}
5054 }
5055 
5056 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp)
5057 {
5058 	int rc = 0;
5059 	struct hwrm_port_phy_qcaps_input req = {0};
5060 	struct hwrm_port_phy_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
5061 	struct bnxt_link_info *link_info = &bp->link_info;
5062 
5063 	if (bp->hwrm_spec_code < 0x10201)
5064 		return 0;
5065 
5066 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCAPS, -1, -1);
5067 
5068 	mutex_lock(&bp->hwrm_cmd_lock);
5069 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5070 	if (rc)
5071 		goto hwrm_phy_qcaps_exit;
5072 
5073 	if (resp->eee_supported & PORT_PHY_QCAPS_RESP_EEE_SUPPORTED) {
5074 		struct ethtool_eee *eee = &bp->eee;
5075 		u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode);
5076 
5077 		bp->flags |= BNXT_FLAG_EEE_CAP;
5078 		eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
5079 		bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) &
5080 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK;
5081 		bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) &
5082 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK;
5083 	}
5084 	link_info->support_auto_speeds =
5085 		le16_to_cpu(resp->supported_speeds_auto_mode);
5086 
5087 hwrm_phy_qcaps_exit:
5088 	mutex_unlock(&bp->hwrm_cmd_lock);
5089 	return rc;
5090 }
5091 
5092 static int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
5093 {
5094 	int rc = 0;
5095 	struct bnxt_link_info *link_info = &bp->link_info;
5096 	struct hwrm_port_phy_qcfg_input req = {0};
5097 	struct hwrm_port_phy_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
5098 	u8 link_up = link_info->link_up;
5099 
5100 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCFG, -1, -1);
5101 
5102 	mutex_lock(&bp->hwrm_cmd_lock);
5103 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5104 	if (rc) {
5105 		mutex_unlock(&bp->hwrm_cmd_lock);
5106 		return rc;
5107 	}
5108 
5109 	memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
5110 	link_info->phy_link_status = resp->link;
5111 	link_info->duplex =  resp->duplex;
5112 	link_info->pause = resp->pause;
5113 	link_info->auto_mode = resp->auto_mode;
5114 	link_info->auto_pause_setting = resp->auto_pause;
5115 	link_info->lp_pause = resp->link_partner_adv_pause;
5116 	link_info->force_pause_setting = resp->force_pause;
5117 	link_info->duplex_setting = resp->duplex;
5118 	if (link_info->phy_link_status == BNXT_LINK_LINK)
5119 		link_info->link_speed = le16_to_cpu(resp->link_speed);
5120 	else
5121 		link_info->link_speed = 0;
5122 	link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
5123 	link_info->support_speeds = le16_to_cpu(resp->support_speeds);
5124 	link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
5125 	link_info->lp_auto_link_speeds =
5126 		le16_to_cpu(resp->link_partner_adv_speeds);
5127 	link_info->preemphasis = le32_to_cpu(resp->preemphasis);
5128 	link_info->phy_ver[0] = resp->phy_maj;
5129 	link_info->phy_ver[1] = resp->phy_min;
5130 	link_info->phy_ver[2] = resp->phy_bld;
5131 	link_info->media_type = resp->media_type;
5132 	link_info->phy_type = resp->phy_type;
5133 	link_info->transceiver = resp->xcvr_pkg_type;
5134 	link_info->phy_addr = resp->eee_config_phy_addr &
5135 			      PORT_PHY_QCFG_RESP_PHY_ADDR_MASK;
5136 	link_info->module_status = resp->module_status;
5137 
5138 	if (bp->flags & BNXT_FLAG_EEE_CAP) {
5139 		struct ethtool_eee *eee = &bp->eee;
5140 		u16 fw_speeds;
5141 
5142 		eee->eee_active = 0;
5143 		if (resp->eee_config_phy_addr &
5144 		    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) {
5145 			eee->eee_active = 1;
5146 			fw_speeds = le16_to_cpu(
5147 				resp->link_partner_adv_eee_link_speed_mask);
5148 			eee->lp_advertised =
5149 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
5150 		}
5151 
5152 		/* Pull initial EEE config */
5153 		if (!chng_link_state) {
5154 			if (resp->eee_config_phy_addr &
5155 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED)
5156 				eee->eee_enabled = 1;
5157 
5158 			fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask);
5159 			eee->advertised =
5160 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
5161 
5162 			if (resp->eee_config_phy_addr &
5163 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) {
5164 				__le32 tmr;
5165 
5166 				eee->tx_lpi_enabled = 1;
5167 				tmr = resp->xcvr_identifier_type_tx_lpi_timer;
5168 				eee->tx_lpi_timer = le32_to_cpu(tmr) &
5169 					PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK;
5170 			}
5171 		}
5172 	}
5173 	/* TODO: need to add more logic to report VF link */
5174 	if (chng_link_state) {
5175 		if (link_info->phy_link_status == BNXT_LINK_LINK)
5176 			link_info->link_up = 1;
5177 		else
5178 			link_info->link_up = 0;
5179 		if (link_up != link_info->link_up)
5180 			bnxt_report_link(bp);
5181 	} else {
5182 		/* alwasy link down if not require to update link state */
5183 		link_info->link_up = 0;
5184 	}
5185 	mutex_unlock(&bp->hwrm_cmd_lock);
5186 	return 0;
5187 }
5188 
5189 static void bnxt_get_port_module_status(struct bnxt *bp)
5190 {
5191 	struct bnxt_link_info *link_info = &bp->link_info;
5192 	struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp;
5193 	u8 module_status;
5194 
5195 	if (bnxt_update_link(bp, true))
5196 		return;
5197 
5198 	module_status = link_info->module_status;
5199 	switch (module_status) {
5200 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX:
5201 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN:
5202 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG:
5203 		netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n",
5204 			    bp->pf.port_id);
5205 		if (bp->hwrm_spec_code >= 0x10201) {
5206 			netdev_warn(bp->dev, "Module part number %s\n",
5207 				    resp->phy_vendor_partnumber);
5208 		}
5209 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX)
5210 			netdev_warn(bp->dev, "TX is disabled\n");
5211 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN)
5212 			netdev_warn(bp->dev, "SFP+ module is shutdown\n");
5213 	}
5214 }
5215 
5216 static void
5217 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
5218 {
5219 	if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
5220 		if (bp->hwrm_spec_code >= 0x10201)
5221 			req->auto_pause =
5222 				PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE;
5223 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
5224 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
5225 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
5226 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX;
5227 		req->enables |=
5228 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
5229 	} else {
5230 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
5231 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
5232 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
5233 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
5234 		req->enables |=
5235 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
5236 		if (bp->hwrm_spec_code >= 0x10201) {
5237 			req->auto_pause = req->force_pause;
5238 			req->enables |= cpu_to_le32(
5239 				PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
5240 		}
5241 	}
5242 }
5243 
5244 static void bnxt_hwrm_set_link_common(struct bnxt *bp,
5245 				      struct hwrm_port_phy_cfg_input *req)
5246 {
5247 	u8 autoneg = bp->link_info.autoneg;
5248 	u16 fw_link_speed = bp->link_info.req_link_speed;
5249 	u32 advertising = bp->link_info.advertising;
5250 
5251 	if (autoneg & BNXT_AUTONEG_SPEED) {
5252 		req->auto_mode |=
5253 			PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK;
5254 
5255 		req->enables |= cpu_to_le32(
5256 			PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
5257 		req->auto_link_speed_mask = cpu_to_le16(advertising);
5258 
5259 		req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
5260 		req->flags |=
5261 			cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
5262 	} else {
5263 		req->force_link_speed = cpu_to_le16(fw_link_speed);
5264 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
5265 	}
5266 
5267 	/* tell chimp that the setting takes effect immediately */
5268 	req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
5269 }
5270 
5271 int bnxt_hwrm_set_pause(struct bnxt *bp)
5272 {
5273 	struct hwrm_port_phy_cfg_input req = {0};
5274 	int rc;
5275 
5276 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
5277 	bnxt_hwrm_set_pause_common(bp, &req);
5278 
5279 	if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
5280 	    bp->link_info.force_link_chng)
5281 		bnxt_hwrm_set_link_common(bp, &req);
5282 
5283 	mutex_lock(&bp->hwrm_cmd_lock);
5284 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5285 	if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
5286 		/* since changing of pause setting doesn't trigger any link
5287 		 * change event, the driver needs to update the current pause
5288 		 * result upon successfully return of the phy_cfg command
5289 		 */
5290 		bp->link_info.pause =
5291 		bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
5292 		bp->link_info.auto_pause_setting = 0;
5293 		if (!bp->link_info.force_link_chng)
5294 			bnxt_report_link(bp);
5295 	}
5296 	bp->link_info.force_link_chng = false;
5297 	mutex_unlock(&bp->hwrm_cmd_lock);
5298 	return rc;
5299 }
5300 
5301 static void bnxt_hwrm_set_eee(struct bnxt *bp,
5302 			      struct hwrm_port_phy_cfg_input *req)
5303 {
5304 	struct ethtool_eee *eee = &bp->eee;
5305 
5306 	if (eee->eee_enabled) {
5307 		u16 eee_speeds;
5308 		u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE;
5309 
5310 		if (eee->tx_lpi_enabled)
5311 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE;
5312 		else
5313 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE;
5314 
5315 		req->flags |= cpu_to_le32(flags);
5316 		eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised);
5317 		req->eee_link_speed_mask = cpu_to_le16(eee_speeds);
5318 		req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer);
5319 	} else {
5320 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE);
5321 	}
5322 }
5323 
5324 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee)
5325 {
5326 	struct hwrm_port_phy_cfg_input req = {0};
5327 
5328 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
5329 	if (set_pause)
5330 		bnxt_hwrm_set_pause_common(bp, &req);
5331 
5332 	bnxt_hwrm_set_link_common(bp, &req);
5333 
5334 	if (set_eee)
5335 		bnxt_hwrm_set_eee(bp, &req);
5336 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5337 }
5338 
5339 static int bnxt_hwrm_shutdown_link(struct bnxt *bp)
5340 {
5341 	struct hwrm_port_phy_cfg_input req = {0};
5342 
5343 	if (!BNXT_SINGLE_PF(bp))
5344 		return 0;
5345 
5346 	if (pci_num_vf(bp->pdev))
5347 		return 0;
5348 
5349 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
5350 	req.flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DOWN);
5351 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5352 }
5353 
5354 static bool bnxt_eee_config_ok(struct bnxt *bp)
5355 {
5356 	struct ethtool_eee *eee = &bp->eee;
5357 	struct bnxt_link_info *link_info = &bp->link_info;
5358 
5359 	if (!(bp->flags & BNXT_FLAG_EEE_CAP))
5360 		return true;
5361 
5362 	if (eee->eee_enabled) {
5363 		u32 advertising =
5364 			_bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0);
5365 
5366 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
5367 			eee->eee_enabled = 0;
5368 			return false;
5369 		}
5370 		if (eee->advertised & ~advertising) {
5371 			eee->advertised = advertising & eee->supported;
5372 			return false;
5373 		}
5374 	}
5375 	return true;
5376 }
5377 
5378 static int bnxt_update_phy_setting(struct bnxt *bp)
5379 {
5380 	int rc;
5381 	bool update_link = false;
5382 	bool update_pause = false;
5383 	bool update_eee = false;
5384 	struct bnxt_link_info *link_info = &bp->link_info;
5385 
5386 	rc = bnxt_update_link(bp, true);
5387 	if (rc) {
5388 		netdev_err(bp->dev, "failed to update link (rc: %x)\n",
5389 			   rc);
5390 		return rc;
5391 	}
5392 	if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
5393 	    (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) !=
5394 	    link_info->req_flow_ctrl)
5395 		update_pause = true;
5396 	if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
5397 	    link_info->force_pause_setting != link_info->req_flow_ctrl)
5398 		update_pause = true;
5399 	if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
5400 		if (BNXT_AUTO_MODE(link_info->auto_mode))
5401 			update_link = true;
5402 		if (link_info->req_link_speed != link_info->force_link_speed)
5403 			update_link = true;
5404 		if (link_info->req_duplex != link_info->duplex_setting)
5405 			update_link = true;
5406 	} else {
5407 		if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
5408 			update_link = true;
5409 		if (link_info->advertising != link_info->auto_link_speeds)
5410 			update_link = true;
5411 	}
5412 
5413 	if (!bnxt_eee_config_ok(bp))
5414 		update_eee = true;
5415 
5416 	if (update_link)
5417 		rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee);
5418 	else if (update_pause)
5419 		rc = bnxt_hwrm_set_pause(bp);
5420 	if (rc) {
5421 		netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
5422 			   rc);
5423 		return rc;
5424 	}
5425 
5426 	return rc;
5427 }
5428 
5429 /* Common routine to pre-map certain register block to different GRC window.
5430  * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
5431  * in PF and 3 windows in VF that can be customized to map in different
5432  * register blocks.
5433  */
5434 static void bnxt_preset_reg_win(struct bnxt *bp)
5435 {
5436 	if (BNXT_PF(bp)) {
5437 		/* CAG registers map to GRC window #4 */
5438 		writel(BNXT_CAG_REG_BASE,
5439 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
5440 	}
5441 }
5442 
5443 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
5444 {
5445 	int rc = 0;
5446 
5447 	bnxt_preset_reg_win(bp);
5448 	netif_carrier_off(bp->dev);
5449 	if (irq_re_init) {
5450 		rc = bnxt_setup_int_mode(bp);
5451 		if (rc) {
5452 			netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
5453 				   rc);
5454 			return rc;
5455 		}
5456 	}
5457 	if ((bp->flags & BNXT_FLAG_RFS) &&
5458 	    !(bp->flags & BNXT_FLAG_USING_MSIX)) {
5459 		/* disable RFS if falling back to INTA */
5460 		bp->dev->hw_features &= ~NETIF_F_NTUPLE;
5461 		bp->flags &= ~BNXT_FLAG_RFS;
5462 	}
5463 
5464 	rc = bnxt_alloc_mem(bp, irq_re_init);
5465 	if (rc) {
5466 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
5467 		goto open_err_free_mem;
5468 	}
5469 
5470 	if (irq_re_init) {
5471 		bnxt_init_napi(bp);
5472 		rc = bnxt_request_irq(bp);
5473 		if (rc) {
5474 			netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
5475 			goto open_err;
5476 		}
5477 	}
5478 
5479 	bnxt_enable_napi(bp);
5480 
5481 	rc = bnxt_init_nic(bp, irq_re_init);
5482 	if (rc) {
5483 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
5484 		goto open_err;
5485 	}
5486 
5487 	if (link_re_init) {
5488 		rc = bnxt_update_phy_setting(bp);
5489 		if (rc)
5490 			netdev_warn(bp->dev, "failed to update phy settings\n");
5491 	}
5492 
5493 	if (irq_re_init)
5494 		udp_tunnel_get_rx_info(bp->dev);
5495 
5496 	set_bit(BNXT_STATE_OPEN, &bp->state);
5497 	bnxt_enable_int(bp);
5498 	/* Enable TX queues */
5499 	bnxt_tx_enable(bp);
5500 	mod_timer(&bp->timer, jiffies + bp->current_interval);
5501 	/* Poll link status and check for SFP+ module status */
5502 	bnxt_get_port_module_status(bp);
5503 
5504 	return 0;
5505 
5506 open_err:
5507 	bnxt_disable_napi(bp);
5508 	bnxt_del_napi(bp);
5509 
5510 open_err_free_mem:
5511 	bnxt_free_skbs(bp);
5512 	bnxt_free_irq(bp);
5513 	bnxt_free_mem(bp, true);
5514 	return rc;
5515 }
5516 
5517 /* rtnl_lock held */
5518 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
5519 {
5520 	int rc = 0;
5521 
5522 	rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
5523 	if (rc) {
5524 		netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
5525 		dev_close(bp->dev);
5526 	}
5527 	return rc;
5528 }
5529 
5530 static int bnxt_open(struct net_device *dev)
5531 {
5532 	struct bnxt *bp = netdev_priv(dev);
5533 	int rc = 0;
5534 
5535 	if (!test_bit(BNXT_STATE_FN_RST_DONE, &bp->state)) {
5536 		rc = bnxt_hwrm_func_reset(bp);
5537 		if (rc) {
5538 			netdev_err(bp->dev, "hwrm chip reset failure rc: %x\n",
5539 				   rc);
5540 			rc = -EBUSY;
5541 			return rc;
5542 		}
5543 		/* Do func_reset during the 1st PF open only to prevent killing
5544 		 * the VFs when the PF is brought down and up.
5545 		 */
5546 		if (BNXT_PF(bp))
5547 			set_bit(BNXT_STATE_FN_RST_DONE, &bp->state);
5548 	}
5549 	return __bnxt_open_nic(bp, true, true);
5550 }
5551 
5552 static void bnxt_disable_int_sync(struct bnxt *bp)
5553 {
5554 	int i;
5555 
5556 	atomic_inc(&bp->intr_sem);
5557 	if (!netif_running(bp->dev))
5558 		return;
5559 
5560 	bnxt_disable_int(bp);
5561 	for (i = 0; i < bp->cp_nr_rings; i++)
5562 		synchronize_irq(bp->irq_tbl[i].vector);
5563 }
5564 
5565 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
5566 {
5567 	int rc = 0;
5568 
5569 #ifdef CONFIG_BNXT_SRIOV
5570 	if (bp->sriov_cfg) {
5571 		rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
5572 						      !bp->sriov_cfg,
5573 						      BNXT_SRIOV_CFG_WAIT_TMO);
5574 		if (rc)
5575 			netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
5576 	}
5577 #endif
5578 	/* Change device state to avoid TX queue wake up's */
5579 	bnxt_tx_disable(bp);
5580 
5581 	clear_bit(BNXT_STATE_OPEN, &bp->state);
5582 	smp_mb__after_atomic();
5583 	while (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state))
5584 		msleep(20);
5585 
5586 	/* Flush rings before disabling interrupts */
5587 	bnxt_shutdown_nic(bp, irq_re_init);
5588 
5589 	/* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
5590 
5591 	bnxt_disable_napi(bp);
5592 	bnxt_disable_int_sync(bp);
5593 	del_timer_sync(&bp->timer);
5594 	bnxt_free_skbs(bp);
5595 
5596 	if (irq_re_init) {
5597 		bnxt_free_irq(bp);
5598 		bnxt_del_napi(bp);
5599 	}
5600 	bnxt_free_mem(bp, irq_re_init);
5601 	return rc;
5602 }
5603 
5604 static int bnxt_close(struct net_device *dev)
5605 {
5606 	struct bnxt *bp = netdev_priv(dev);
5607 
5608 	bnxt_close_nic(bp, true, true);
5609 	bnxt_hwrm_shutdown_link(bp);
5610 	return 0;
5611 }
5612 
5613 /* rtnl_lock held */
5614 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
5615 {
5616 	switch (cmd) {
5617 	case SIOCGMIIPHY:
5618 		/* fallthru */
5619 	case SIOCGMIIREG: {
5620 		if (!netif_running(dev))
5621 			return -EAGAIN;
5622 
5623 		return 0;
5624 	}
5625 
5626 	case SIOCSMIIREG:
5627 		if (!netif_running(dev))
5628 			return -EAGAIN;
5629 
5630 		return 0;
5631 
5632 	default:
5633 		/* do nothing */
5634 		break;
5635 	}
5636 	return -EOPNOTSUPP;
5637 }
5638 
5639 static struct rtnl_link_stats64 *
5640 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
5641 {
5642 	u32 i;
5643 	struct bnxt *bp = netdev_priv(dev);
5644 
5645 	memset(stats, 0, sizeof(struct rtnl_link_stats64));
5646 
5647 	if (!bp->bnapi)
5648 		return stats;
5649 
5650 	/* TODO check if we need to synchronize with bnxt_close path */
5651 	for (i = 0; i < bp->cp_nr_rings; i++) {
5652 		struct bnxt_napi *bnapi = bp->bnapi[i];
5653 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5654 		struct ctx_hw_stats *hw_stats = cpr->hw_stats;
5655 
5656 		stats->rx_packets += le64_to_cpu(hw_stats->rx_ucast_pkts);
5657 		stats->rx_packets += le64_to_cpu(hw_stats->rx_mcast_pkts);
5658 		stats->rx_packets += le64_to_cpu(hw_stats->rx_bcast_pkts);
5659 
5660 		stats->tx_packets += le64_to_cpu(hw_stats->tx_ucast_pkts);
5661 		stats->tx_packets += le64_to_cpu(hw_stats->tx_mcast_pkts);
5662 		stats->tx_packets += le64_to_cpu(hw_stats->tx_bcast_pkts);
5663 
5664 		stats->rx_bytes += le64_to_cpu(hw_stats->rx_ucast_bytes);
5665 		stats->rx_bytes += le64_to_cpu(hw_stats->rx_mcast_bytes);
5666 		stats->rx_bytes += le64_to_cpu(hw_stats->rx_bcast_bytes);
5667 
5668 		stats->tx_bytes += le64_to_cpu(hw_stats->tx_ucast_bytes);
5669 		stats->tx_bytes += le64_to_cpu(hw_stats->tx_mcast_bytes);
5670 		stats->tx_bytes += le64_to_cpu(hw_stats->tx_bcast_bytes);
5671 
5672 		stats->rx_missed_errors +=
5673 			le64_to_cpu(hw_stats->rx_discard_pkts);
5674 
5675 		stats->multicast += le64_to_cpu(hw_stats->rx_mcast_pkts);
5676 
5677 		stats->tx_dropped += le64_to_cpu(hw_stats->tx_drop_pkts);
5678 	}
5679 
5680 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
5681 		struct rx_port_stats *rx = bp->hw_rx_port_stats;
5682 		struct tx_port_stats *tx = bp->hw_tx_port_stats;
5683 
5684 		stats->rx_crc_errors = le64_to_cpu(rx->rx_fcs_err_frames);
5685 		stats->rx_frame_errors = le64_to_cpu(rx->rx_align_err_frames);
5686 		stats->rx_length_errors = le64_to_cpu(rx->rx_undrsz_frames) +
5687 					  le64_to_cpu(rx->rx_ovrsz_frames) +
5688 					  le64_to_cpu(rx->rx_runt_frames);
5689 		stats->rx_errors = le64_to_cpu(rx->rx_false_carrier_frames) +
5690 				   le64_to_cpu(rx->rx_jbr_frames);
5691 		stats->collisions = le64_to_cpu(tx->tx_total_collisions);
5692 		stats->tx_fifo_errors = le64_to_cpu(tx->tx_fifo_underruns);
5693 		stats->tx_errors = le64_to_cpu(tx->tx_err);
5694 	}
5695 
5696 	return stats;
5697 }
5698 
5699 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
5700 {
5701 	struct net_device *dev = bp->dev;
5702 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
5703 	struct netdev_hw_addr *ha;
5704 	u8 *haddr;
5705 	int mc_count = 0;
5706 	bool update = false;
5707 	int off = 0;
5708 
5709 	netdev_for_each_mc_addr(ha, dev) {
5710 		if (mc_count >= BNXT_MAX_MC_ADDRS) {
5711 			*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
5712 			vnic->mc_list_count = 0;
5713 			return false;
5714 		}
5715 		haddr = ha->addr;
5716 		if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
5717 			memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
5718 			update = true;
5719 		}
5720 		off += ETH_ALEN;
5721 		mc_count++;
5722 	}
5723 	if (mc_count)
5724 		*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
5725 
5726 	if (mc_count != vnic->mc_list_count) {
5727 		vnic->mc_list_count = mc_count;
5728 		update = true;
5729 	}
5730 	return update;
5731 }
5732 
5733 static bool bnxt_uc_list_updated(struct bnxt *bp)
5734 {
5735 	struct net_device *dev = bp->dev;
5736 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
5737 	struct netdev_hw_addr *ha;
5738 	int off = 0;
5739 
5740 	if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
5741 		return true;
5742 
5743 	netdev_for_each_uc_addr(ha, dev) {
5744 		if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
5745 			return true;
5746 
5747 		off += ETH_ALEN;
5748 	}
5749 	return false;
5750 }
5751 
5752 static void bnxt_set_rx_mode(struct net_device *dev)
5753 {
5754 	struct bnxt *bp = netdev_priv(dev);
5755 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
5756 	u32 mask = vnic->rx_mask;
5757 	bool mc_update = false;
5758 	bool uc_update;
5759 
5760 	if (!netif_running(dev))
5761 		return;
5762 
5763 	mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
5764 		  CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
5765 		  CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST);
5766 
5767 	if ((dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
5768 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
5769 
5770 	uc_update = bnxt_uc_list_updated(bp);
5771 
5772 	if (dev->flags & IFF_ALLMULTI) {
5773 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
5774 		vnic->mc_list_count = 0;
5775 	} else {
5776 		mc_update = bnxt_mc_list_updated(bp, &mask);
5777 	}
5778 
5779 	if (mask != vnic->rx_mask || uc_update || mc_update) {
5780 		vnic->rx_mask = mask;
5781 
5782 		set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
5783 		schedule_work(&bp->sp_task);
5784 	}
5785 }
5786 
5787 static int bnxt_cfg_rx_mode(struct bnxt *bp)
5788 {
5789 	struct net_device *dev = bp->dev;
5790 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
5791 	struct netdev_hw_addr *ha;
5792 	int i, off = 0, rc;
5793 	bool uc_update;
5794 
5795 	netif_addr_lock_bh(dev);
5796 	uc_update = bnxt_uc_list_updated(bp);
5797 	netif_addr_unlock_bh(dev);
5798 
5799 	if (!uc_update)
5800 		goto skip_uc;
5801 
5802 	mutex_lock(&bp->hwrm_cmd_lock);
5803 	for (i = 1; i < vnic->uc_filter_count; i++) {
5804 		struct hwrm_cfa_l2_filter_free_input req = {0};
5805 
5806 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_FREE, -1,
5807 				       -1);
5808 
5809 		req.l2_filter_id = vnic->fw_l2_filter_id[i];
5810 
5811 		rc = _hwrm_send_message(bp, &req, sizeof(req),
5812 					HWRM_CMD_TIMEOUT);
5813 	}
5814 	mutex_unlock(&bp->hwrm_cmd_lock);
5815 
5816 	vnic->uc_filter_count = 1;
5817 
5818 	netif_addr_lock_bh(dev);
5819 	if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
5820 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
5821 	} else {
5822 		netdev_for_each_uc_addr(ha, dev) {
5823 			memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
5824 			off += ETH_ALEN;
5825 			vnic->uc_filter_count++;
5826 		}
5827 	}
5828 	netif_addr_unlock_bh(dev);
5829 
5830 	for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
5831 		rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
5832 		if (rc) {
5833 			netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n",
5834 				   rc);
5835 			vnic->uc_filter_count = i;
5836 			return rc;
5837 		}
5838 	}
5839 
5840 skip_uc:
5841 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
5842 	if (rc)
5843 		netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %x\n",
5844 			   rc);
5845 
5846 	return rc;
5847 }
5848 
5849 static bool bnxt_rfs_capable(struct bnxt *bp)
5850 {
5851 #ifdef CONFIG_RFS_ACCEL
5852 	struct bnxt_pf_info *pf = &bp->pf;
5853 	int vnics;
5854 
5855 	if (BNXT_VF(bp) || !(bp->flags & BNXT_FLAG_MSIX_CAP))
5856 		return false;
5857 
5858 	vnics = 1 + bp->rx_nr_rings;
5859 	if (vnics > pf->max_rsscos_ctxs || vnics > pf->max_vnics) {
5860 		netdev_warn(bp->dev,
5861 			    "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n",
5862 			    min(pf->max_rsscos_ctxs - 1, pf->max_vnics - 1));
5863 		return false;
5864 	}
5865 
5866 	return true;
5867 #else
5868 	return false;
5869 #endif
5870 }
5871 
5872 static netdev_features_t bnxt_fix_features(struct net_device *dev,
5873 					   netdev_features_t features)
5874 {
5875 	struct bnxt *bp = netdev_priv(dev);
5876 
5877 	if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp))
5878 		features &= ~NETIF_F_NTUPLE;
5879 
5880 	/* Both CTAG and STAG VLAN accelaration on the RX side have to be
5881 	 * turned on or off together.
5882 	 */
5883 	if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) !=
5884 	    (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) {
5885 		if (dev->features & NETIF_F_HW_VLAN_CTAG_RX)
5886 			features &= ~(NETIF_F_HW_VLAN_CTAG_RX |
5887 				      NETIF_F_HW_VLAN_STAG_RX);
5888 		else
5889 			features |= NETIF_F_HW_VLAN_CTAG_RX |
5890 				    NETIF_F_HW_VLAN_STAG_RX;
5891 	}
5892 #ifdef CONFIG_BNXT_SRIOV
5893 	if (BNXT_VF(bp)) {
5894 		if (bp->vf.vlan) {
5895 			features &= ~(NETIF_F_HW_VLAN_CTAG_RX |
5896 				      NETIF_F_HW_VLAN_STAG_RX);
5897 		}
5898 	}
5899 #endif
5900 	return features;
5901 }
5902 
5903 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
5904 {
5905 	struct bnxt *bp = netdev_priv(dev);
5906 	u32 flags = bp->flags;
5907 	u32 changes;
5908 	int rc = 0;
5909 	bool re_init = false;
5910 	bool update_tpa = false;
5911 
5912 	flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
5913 	if ((features & NETIF_F_GRO) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
5914 		flags |= BNXT_FLAG_GRO;
5915 	if (features & NETIF_F_LRO)
5916 		flags |= BNXT_FLAG_LRO;
5917 
5918 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
5919 		flags |= BNXT_FLAG_STRIP_VLAN;
5920 
5921 	if (features & NETIF_F_NTUPLE)
5922 		flags |= BNXT_FLAG_RFS;
5923 
5924 	changes = flags ^ bp->flags;
5925 	if (changes & BNXT_FLAG_TPA) {
5926 		update_tpa = true;
5927 		if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
5928 		    (flags & BNXT_FLAG_TPA) == 0)
5929 			re_init = true;
5930 	}
5931 
5932 	if (changes & ~BNXT_FLAG_TPA)
5933 		re_init = true;
5934 
5935 	if (flags != bp->flags) {
5936 		u32 old_flags = bp->flags;
5937 
5938 		bp->flags = flags;
5939 
5940 		if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
5941 			if (update_tpa)
5942 				bnxt_set_ring_params(bp);
5943 			return rc;
5944 		}
5945 
5946 		if (re_init) {
5947 			bnxt_close_nic(bp, false, false);
5948 			if (update_tpa)
5949 				bnxt_set_ring_params(bp);
5950 
5951 			return bnxt_open_nic(bp, false, false);
5952 		}
5953 		if (update_tpa) {
5954 			rc = bnxt_set_tpa(bp,
5955 					  (flags & BNXT_FLAG_TPA) ?
5956 					  true : false);
5957 			if (rc)
5958 				bp->flags = old_flags;
5959 		}
5960 	}
5961 	return rc;
5962 }
5963 
5964 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
5965 {
5966 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
5967 	int i = bnapi->index;
5968 
5969 	if (!txr)
5970 		return;
5971 
5972 	netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
5973 		    i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
5974 		    txr->tx_cons);
5975 }
5976 
5977 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
5978 {
5979 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
5980 	int i = bnapi->index;
5981 
5982 	if (!rxr)
5983 		return;
5984 
5985 	netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
5986 		    i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
5987 		    rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
5988 		    rxr->rx_sw_agg_prod);
5989 }
5990 
5991 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
5992 {
5993 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5994 	int i = bnapi->index;
5995 
5996 	netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
5997 		    i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
5998 }
5999 
6000 static void bnxt_dbg_dump_states(struct bnxt *bp)
6001 {
6002 	int i;
6003 	struct bnxt_napi *bnapi;
6004 
6005 	for (i = 0; i < bp->cp_nr_rings; i++) {
6006 		bnapi = bp->bnapi[i];
6007 		if (netif_msg_drv(bp)) {
6008 			bnxt_dump_tx_sw_state(bnapi);
6009 			bnxt_dump_rx_sw_state(bnapi);
6010 			bnxt_dump_cp_sw_state(bnapi);
6011 		}
6012 	}
6013 }
6014 
6015 static void bnxt_reset_task(struct bnxt *bp, bool silent)
6016 {
6017 	if (!silent)
6018 		bnxt_dbg_dump_states(bp);
6019 	if (netif_running(bp->dev)) {
6020 		bnxt_close_nic(bp, false, false);
6021 		bnxt_open_nic(bp, false, false);
6022 	}
6023 }
6024 
6025 static void bnxt_tx_timeout(struct net_device *dev)
6026 {
6027 	struct bnxt *bp = netdev_priv(dev);
6028 
6029 	netdev_err(bp->dev,  "TX timeout detected, starting reset task!\n");
6030 	set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
6031 	schedule_work(&bp->sp_task);
6032 }
6033 
6034 #ifdef CONFIG_NET_POLL_CONTROLLER
6035 static void bnxt_poll_controller(struct net_device *dev)
6036 {
6037 	struct bnxt *bp = netdev_priv(dev);
6038 	int i;
6039 
6040 	for (i = 0; i < bp->cp_nr_rings; i++) {
6041 		struct bnxt_irq *irq = &bp->irq_tbl[i];
6042 
6043 		disable_irq(irq->vector);
6044 		irq->handler(irq->vector, bp->bnapi[i]);
6045 		enable_irq(irq->vector);
6046 	}
6047 }
6048 #endif
6049 
6050 static void bnxt_timer(unsigned long data)
6051 {
6052 	struct bnxt *bp = (struct bnxt *)data;
6053 	struct net_device *dev = bp->dev;
6054 
6055 	if (!netif_running(dev))
6056 		return;
6057 
6058 	if (atomic_read(&bp->intr_sem) != 0)
6059 		goto bnxt_restart_timer;
6060 
6061 	if (bp->link_info.link_up && (bp->flags & BNXT_FLAG_PORT_STATS)) {
6062 		set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event);
6063 		schedule_work(&bp->sp_task);
6064 	}
6065 bnxt_restart_timer:
6066 	mod_timer(&bp->timer, jiffies + bp->current_interval);
6067 }
6068 
6069 /* Only called from bnxt_sp_task() */
6070 static void bnxt_reset(struct bnxt *bp, bool silent)
6071 {
6072 	/* bnxt_reset_task() calls bnxt_close_nic() which waits
6073 	 * for BNXT_STATE_IN_SP_TASK to clear.
6074 	 * If there is a parallel dev_close(), bnxt_close() may be holding
6075 	 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear.  So we
6076 	 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl().
6077 	 */
6078 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
6079 	rtnl_lock();
6080 	if (test_bit(BNXT_STATE_OPEN, &bp->state))
6081 		bnxt_reset_task(bp, silent);
6082 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
6083 	rtnl_unlock();
6084 }
6085 
6086 static void bnxt_cfg_ntp_filters(struct bnxt *);
6087 
6088 static void bnxt_sp_task(struct work_struct *work)
6089 {
6090 	struct bnxt *bp = container_of(work, struct bnxt, sp_task);
6091 	int rc;
6092 
6093 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
6094 	smp_mb__after_atomic();
6095 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
6096 		clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
6097 		return;
6098 	}
6099 
6100 	if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
6101 		bnxt_cfg_rx_mode(bp);
6102 
6103 	if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
6104 		bnxt_cfg_ntp_filters(bp);
6105 	if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
6106 		rc = bnxt_update_link(bp, true);
6107 		if (rc)
6108 			netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
6109 				   rc);
6110 	}
6111 	if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
6112 		bnxt_hwrm_exec_fwd_req(bp);
6113 	if (test_and_clear_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event)) {
6114 		bnxt_hwrm_tunnel_dst_port_alloc(
6115 			bp, bp->vxlan_port,
6116 			TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
6117 	}
6118 	if (test_and_clear_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event)) {
6119 		bnxt_hwrm_tunnel_dst_port_free(
6120 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
6121 	}
6122 	if (test_and_clear_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event)) {
6123 		bnxt_hwrm_tunnel_dst_port_alloc(
6124 			bp, bp->nge_port,
6125 			TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
6126 	}
6127 	if (test_and_clear_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event)) {
6128 		bnxt_hwrm_tunnel_dst_port_free(
6129 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
6130 	}
6131 	if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event))
6132 		bnxt_reset(bp, false);
6133 
6134 	if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event))
6135 		bnxt_reset(bp, true);
6136 
6137 	if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event))
6138 		bnxt_get_port_module_status(bp);
6139 
6140 	if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event))
6141 		bnxt_hwrm_port_qstats(bp);
6142 
6143 	smp_mb__before_atomic();
6144 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
6145 }
6146 
6147 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
6148 {
6149 	int rc;
6150 	struct bnxt *bp = netdev_priv(dev);
6151 
6152 	SET_NETDEV_DEV(dev, &pdev->dev);
6153 
6154 	/* enable device (incl. PCI PM wakeup), and bus-mastering */
6155 	rc = pci_enable_device(pdev);
6156 	if (rc) {
6157 		dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
6158 		goto init_err;
6159 	}
6160 
6161 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
6162 		dev_err(&pdev->dev,
6163 			"Cannot find PCI device base address, aborting\n");
6164 		rc = -ENODEV;
6165 		goto init_err_disable;
6166 	}
6167 
6168 	rc = pci_request_regions(pdev, DRV_MODULE_NAME);
6169 	if (rc) {
6170 		dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
6171 		goto init_err_disable;
6172 	}
6173 
6174 	if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
6175 	    dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
6176 		dev_err(&pdev->dev, "System does not support DMA, aborting\n");
6177 		goto init_err_disable;
6178 	}
6179 
6180 	pci_set_master(pdev);
6181 
6182 	bp->dev = dev;
6183 	bp->pdev = pdev;
6184 
6185 	bp->bar0 = pci_ioremap_bar(pdev, 0);
6186 	if (!bp->bar0) {
6187 		dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
6188 		rc = -ENOMEM;
6189 		goto init_err_release;
6190 	}
6191 
6192 	bp->bar1 = pci_ioremap_bar(pdev, 2);
6193 	if (!bp->bar1) {
6194 		dev_err(&pdev->dev, "Cannot map doorbell registers, aborting\n");
6195 		rc = -ENOMEM;
6196 		goto init_err_release;
6197 	}
6198 
6199 	bp->bar2 = pci_ioremap_bar(pdev, 4);
6200 	if (!bp->bar2) {
6201 		dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
6202 		rc = -ENOMEM;
6203 		goto init_err_release;
6204 	}
6205 
6206 	pci_enable_pcie_error_reporting(pdev);
6207 
6208 	INIT_WORK(&bp->sp_task, bnxt_sp_task);
6209 
6210 	spin_lock_init(&bp->ntp_fltr_lock);
6211 
6212 	bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
6213 	bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
6214 
6215 	/* tick values in micro seconds */
6216 	bp->rx_coal_ticks = 12;
6217 	bp->rx_coal_bufs = 30;
6218 	bp->rx_coal_ticks_irq = 1;
6219 	bp->rx_coal_bufs_irq = 2;
6220 
6221 	bp->tx_coal_ticks = 25;
6222 	bp->tx_coal_bufs = 30;
6223 	bp->tx_coal_ticks_irq = 2;
6224 	bp->tx_coal_bufs_irq = 2;
6225 
6226 	bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS;
6227 
6228 	init_timer(&bp->timer);
6229 	bp->timer.data = (unsigned long)bp;
6230 	bp->timer.function = bnxt_timer;
6231 	bp->current_interval = BNXT_TIMER_INTERVAL;
6232 
6233 	clear_bit(BNXT_STATE_OPEN, &bp->state);
6234 
6235 	return 0;
6236 
6237 init_err_release:
6238 	if (bp->bar2) {
6239 		pci_iounmap(pdev, bp->bar2);
6240 		bp->bar2 = NULL;
6241 	}
6242 
6243 	if (bp->bar1) {
6244 		pci_iounmap(pdev, bp->bar1);
6245 		bp->bar1 = NULL;
6246 	}
6247 
6248 	if (bp->bar0) {
6249 		pci_iounmap(pdev, bp->bar0);
6250 		bp->bar0 = NULL;
6251 	}
6252 
6253 	pci_release_regions(pdev);
6254 
6255 init_err_disable:
6256 	pci_disable_device(pdev);
6257 
6258 init_err:
6259 	return rc;
6260 }
6261 
6262 /* rtnl_lock held */
6263 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
6264 {
6265 	struct sockaddr *addr = p;
6266 	struct bnxt *bp = netdev_priv(dev);
6267 	int rc = 0;
6268 
6269 	if (!is_valid_ether_addr(addr->sa_data))
6270 		return -EADDRNOTAVAIL;
6271 
6272 	rc = bnxt_approve_mac(bp, addr->sa_data);
6273 	if (rc)
6274 		return rc;
6275 
6276 	if (ether_addr_equal(addr->sa_data, dev->dev_addr))
6277 		return 0;
6278 
6279 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
6280 	if (netif_running(dev)) {
6281 		bnxt_close_nic(bp, false, false);
6282 		rc = bnxt_open_nic(bp, false, false);
6283 	}
6284 
6285 	return rc;
6286 }
6287 
6288 /* rtnl_lock held */
6289 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
6290 {
6291 	struct bnxt *bp = netdev_priv(dev);
6292 
6293 	if (new_mtu < 60 || new_mtu > 9500)
6294 		return -EINVAL;
6295 
6296 	if (netif_running(dev))
6297 		bnxt_close_nic(bp, false, false);
6298 
6299 	dev->mtu = new_mtu;
6300 	bnxt_set_ring_params(bp);
6301 
6302 	if (netif_running(dev))
6303 		return bnxt_open_nic(bp, false, false);
6304 
6305 	return 0;
6306 }
6307 
6308 static int bnxt_setup_tc(struct net_device *dev, u32 handle, __be16 proto,
6309 			 struct tc_to_netdev *ntc)
6310 {
6311 	struct bnxt *bp = netdev_priv(dev);
6312 	u8 tc;
6313 
6314 	if (ntc->type != TC_SETUP_MQPRIO)
6315 		return -EINVAL;
6316 
6317 	tc = ntc->tc;
6318 
6319 	if (tc > bp->max_tc) {
6320 		netdev_err(dev, "too many traffic classes requested: %d Max supported is %d\n",
6321 			   tc, bp->max_tc);
6322 		return -EINVAL;
6323 	}
6324 
6325 	if (netdev_get_num_tc(dev) == tc)
6326 		return 0;
6327 
6328 	if (tc) {
6329 		int max_rx_rings, max_tx_rings, rc;
6330 		bool sh = false;
6331 
6332 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
6333 			sh = true;
6334 
6335 		rc = bnxt_get_max_rings(bp, &max_rx_rings, &max_tx_rings, sh);
6336 		if (rc || bp->tx_nr_rings_per_tc * tc > max_tx_rings)
6337 			return -ENOMEM;
6338 	}
6339 
6340 	/* Needs to close the device and do hw resource re-allocations */
6341 	if (netif_running(bp->dev))
6342 		bnxt_close_nic(bp, true, false);
6343 
6344 	if (tc) {
6345 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
6346 		netdev_set_num_tc(dev, tc);
6347 	} else {
6348 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
6349 		netdev_reset_tc(dev);
6350 	}
6351 	bp->cp_nr_rings = max_t(int, bp->tx_nr_rings, bp->rx_nr_rings);
6352 	bp->num_stat_ctxs = bp->cp_nr_rings;
6353 
6354 	if (netif_running(bp->dev))
6355 		return bnxt_open_nic(bp, true, false);
6356 
6357 	return 0;
6358 }
6359 
6360 #ifdef CONFIG_RFS_ACCEL
6361 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
6362 			    struct bnxt_ntuple_filter *f2)
6363 {
6364 	struct flow_keys *keys1 = &f1->fkeys;
6365 	struct flow_keys *keys2 = &f2->fkeys;
6366 
6367 	if (keys1->addrs.v4addrs.src == keys2->addrs.v4addrs.src &&
6368 	    keys1->addrs.v4addrs.dst == keys2->addrs.v4addrs.dst &&
6369 	    keys1->ports.ports == keys2->ports.ports &&
6370 	    keys1->basic.ip_proto == keys2->basic.ip_proto &&
6371 	    keys1->basic.n_proto == keys2->basic.n_proto &&
6372 	    ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) &&
6373 	    ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr))
6374 		return true;
6375 
6376 	return false;
6377 }
6378 
6379 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
6380 			      u16 rxq_index, u32 flow_id)
6381 {
6382 	struct bnxt *bp = netdev_priv(dev);
6383 	struct bnxt_ntuple_filter *fltr, *new_fltr;
6384 	struct flow_keys *fkeys;
6385 	struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
6386 	int rc = 0, idx, bit_id, l2_idx = 0;
6387 	struct hlist_head *head;
6388 
6389 	if (skb->encapsulation)
6390 		return -EPROTONOSUPPORT;
6391 
6392 	if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) {
6393 		struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
6394 		int off = 0, j;
6395 
6396 		netif_addr_lock_bh(dev);
6397 		for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) {
6398 			if (ether_addr_equal(eth->h_dest,
6399 					     vnic->uc_list + off)) {
6400 				l2_idx = j + 1;
6401 				break;
6402 			}
6403 		}
6404 		netif_addr_unlock_bh(dev);
6405 		if (!l2_idx)
6406 			return -EINVAL;
6407 	}
6408 	new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
6409 	if (!new_fltr)
6410 		return -ENOMEM;
6411 
6412 	fkeys = &new_fltr->fkeys;
6413 	if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
6414 		rc = -EPROTONOSUPPORT;
6415 		goto err_free;
6416 	}
6417 
6418 	if ((fkeys->basic.n_proto != htons(ETH_P_IP)) ||
6419 	    ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
6420 	     (fkeys->basic.ip_proto != IPPROTO_UDP))) {
6421 		rc = -EPROTONOSUPPORT;
6422 		goto err_free;
6423 	}
6424 
6425 	memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN);
6426 	memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
6427 
6428 	idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
6429 	head = &bp->ntp_fltr_hash_tbl[idx];
6430 	rcu_read_lock();
6431 	hlist_for_each_entry_rcu(fltr, head, hash) {
6432 		if (bnxt_fltr_match(fltr, new_fltr)) {
6433 			rcu_read_unlock();
6434 			rc = 0;
6435 			goto err_free;
6436 		}
6437 	}
6438 	rcu_read_unlock();
6439 
6440 	spin_lock_bh(&bp->ntp_fltr_lock);
6441 	bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
6442 					 BNXT_NTP_FLTR_MAX_FLTR, 0);
6443 	if (bit_id < 0) {
6444 		spin_unlock_bh(&bp->ntp_fltr_lock);
6445 		rc = -ENOMEM;
6446 		goto err_free;
6447 	}
6448 
6449 	new_fltr->sw_id = (u16)bit_id;
6450 	new_fltr->flow_id = flow_id;
6451 	new_fltr->l2_fltr_idx = l2_idx;
6452 	new_fltr->rxq = rxq_index;
6453 	hlist_add_head_rcu(&new_fltr->hash, head);
6454 	bp->ntp_fltr_count++;
6455 	spin_unlock_bh(&bp->ntp_fltr_lock);
6456 
6457 	set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
6458 	schedule_work(&bp->sp_task);
6459 
6460 	return new_fltr->sw_id;
6461 
6462 err_free:
6463 	kfree(new_fltr);
6464 	return rc;
6465 }
6466 
6467 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
6468 {
6469 	int i;
6470 
6471 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
6472 		struct hlist_head *head;
6473 		struct hlist_node *tmp;
6474 		struct bnxt_ntuple_filter *fltr;
6475 		int rc;
6476 
6477 		head = &bp->ntp_fltr_hash_tbl[i];
6478 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
6479 			bool del = false;
6480 
6481 			if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
6482 				if (rps_may_expire_flow(bp->dev, fltr->rxq,
6483 							fltr->flow_id,
6484 							fltr->sw_id)) {
6485 					bnxt_hwrm_cfa_ntuple_filter_free(bp,
6486 									 fltr);
6487 					del = true;
6488 				}
6489 			} else {
6490 				rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
6491 								       fltr);
6492 				if (rc)
6493 					del = true;
6494 				else
6495 					set_bit(BNXT_FLTR_VALID, &fltr->state);
6496 			}
6497 
6498 			if (del) {
6499 				spin_lock_bh(&bp->ntp_fltr_lock);
6500 				hlist_del_rcu(&fltr->hash);
6501 				bp->ntp_fltr_count--;
6502 				spin_unlock_bh(&bp->ntp_fltr_lock);
6503 				synchronize_rcu();
6504 				clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
6505 				kfree(fltr);
6506 			}
6507 		}
6508 	}
6509 	if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event))
6510 		netdev_info(bp->dev, "Receive PF driver unload event!");
6511 }
6512 
6513 #else
6514 
6515 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
6516 {
6517 }
6518 
6519 #endif /* CONFIG_RFS_ACCEL */
6520 
6521 static void bnxt_udp_tunnel_add(struct net_device *dev,
6522 				struct udp_tunnel_info *ti)
6523 {
6524 	struct bnxt *bp = netdev_priv(dev);
6525 
6526 	if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET)
6527 		return;
6528 
6529 	if (!netif_running(dev))
6530 		return;
6531 
6532 	switch (ti->type) {
6533 	case UDP_TUNNEL_TYPE_VXLAN:
6534 		if (bp->vxlan_port_cnt && bp->vxlan_port != ti->port)
6535 			return;
6536 
6537 		bp->vxlan_port_cnt++;
6538 		if (bp->vxlan_port_cnt == 1) {
6539 			bp->vxlan_port = ti->port;
6540 			set_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event);
6541 			schedule_work(&bp->sp_task);
6542 		}
6543 		break;
6544 	case UDP_TUNNEL_TYPE_GENEVE:
6545 		if (bp->nge_port_cnt && bp->nge_port != ti->port)
6546 			return;
6547 
6548 		bp->nge_port_cnt++;
6549 		if (bp->nge_port_cnt == 1) {
6550 			bp->nge_port = ti->port;
6551 			set_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event);
6552 		}
6553 		break;
6554 	default:
6555 		return;
6556 	}
6557 
6558 	schedule_work(&bp->sp_task);
6559 }
6560 
6561 static void bnxt_udp_tunnel_del(struct net_device *dev,
6562 				struct udp_tunnel_info *ti)
6563 {
6564 	struct bnxt *bp = netdev_priv(dev);
6565 
6566 	if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET)
6567 		return;
6568 
6569 	if (!netif_running(dev))
6570 		return;
6571 
6572 	switch (ti->type) {
6573 	case UDP_TUNNEL_TYPE_VXLAN:
6574 		if (!bp->vxlan_port_cnt || bp->vxlan_port != ti->port)
6575 			return;
6576 		bp->vxlan_port_cnt--;
6577 
6578 		if (bp->vxlan_port_cnt != 0)
6579 			return;
6580 
6581 		set_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event);
6582 		break;
6583 	case UDP_TUNNEL_TYPE_GENEVE:
6584 		if (!bp->nge_port_cnt || bp->nge_port != ti->port)
6585 			return;
6586 		bp->nge_port_cnt--;
6587 
6588 		if (bp->nge_port_cnt != 0)
6589 			return;
6590 
6591 		set_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event);
6592 		break;
6593 	default:
6594 		return;
6595 	}
6596 
6597 	schedule_work(&bp->sp_task);
6598 }
6599 
6600 static const struct net_device_ops bnxt_netdev_ops = {
6601 	.ndo_open		= bnxt_open,
6602 	.ndo_start_xmit		= bnxt_start_xmit,
6603 	.ndo_stop		= bnxt_close,
6604 	.ndo_get_stats64	= bnxt_get_stats64,
6605 	.ndo_set_rx_mode	= bnxt_set_rx_mode,
6606 	.ndo_do_ioctl		= bnxt_ioctl,
6607 	.ndo_validate_addr	= eth_validate_addr,
6608 	.ndo_set_mac_address	= bnxt_change_mac_addr,
6609 	.ndo_change_mtu		= bnxt_change_mtu,
6610 	.ndo_fix_features	= bnxt_fix_features,
6611 	.ndo_set_features	= bnxt_set_features,
6612 	.ndo_tx_timeout		= bnxt_tx_timeout,
6613 #ifdef CONFIG_BNXT_SRIOV
6614 	.ndo_get_vf_config	= bnxt_get_vf_config,
6615 	.ndo_set_vf_mac		= bnxt_set_vf_mac,
6616 	.ndo_set_vf_vlan	= bnxt_set_vf_vlan,
6617 	.ndo_set_vf_rate	= bnxt_set_vf_bw,
6618 	.ndo_set_vf_link_state	= bnxt_set_vf_link_state,
6619 	.ndo_set_vf_spoofchk	= bnxt_set_vf_spoofchk,
6620 #endif
6621 #ifdef CONFIG_NET_POLL_CONTROLLER
6622 	.ndo_poll_controller	= bnxt_poll_controller,
6623 #endif
6624 	.ndo_setup_tc           = bnxt_setup_tc,
6625 #ifdef CONFIG_RFS_ACCEL
6626 	.ndo_rx_flow_steer	= bnxt_rx_flow_steer,
6627 #endif
6628 	.ndo_udp_tunnel_add	= bnxt_udp_tunnel_add,
6629 	.ndo_udp_tunnel_del	= bnxt_udp_tunnel_del,
6630 #ifdef CONFIG_NET_RX_BUSY_POLL
6631 	.ndo_busy_poll		= bnxt_busy_poll,
6632 #endif
6633 };
6634 
6635 static void bnxt_remove_one(struct pci_dev *pdev)
6636 {
6637 	struct net_device *dev = pci_get_drvdata(pdev);
6638 	struct bnxt *bp = netdev_priv(dev);
6639 
6640 	if (BNXT_PF(bp))
6641 		bnxt_sriov_disable(bp);
6642 
6643 	pci_disable_pcie_error_reporting(pdev);
6644 	unregister_netdev(dev);
6645 	cancel_work_sync(&bp->sp_task);
6646 	bp->sp_event = 0;
6647 
6648 	bnxt_hwrm_func_drv_unrgtr(bp);
6649 	bnxt_free_hwrm_resources(bp);
6650 	pci_iounmap(pdev, bp->bar2);
6651 	pci_iounmap(pdev, bp->bar1);
6652 	pci_iounmap(pdev, bp->bar0);
6653 	free_netdev(dev);
6654 
6655 	pci_release_regions(pdev);
6656 	pci_disable_device(pdev);
6657 }
6658 
6659 static int bnxt_probe_phy(struct bnxt *bp)
6660 {
6661 	int rc = 0;
6662 	struct bnxt_link_info *link_info = &bp->link_info;
6663 
6664 	rc = bnxt_hwrm_phy_qcaps(bp);
6665 	if (rc) {
6666 		netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n",
6667 			   rc);
6668 		return rc;
6669 	}
6670 
6671 	rc = bnxt_update_link(bp, false);
6672 	if (rc) {
6673 		netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
6674 			   rc);
6675 		return rc;
6676 	}
6677 
6678 	/* Older firmware does not have supported_auto_speeds, so assume
6679 	 * that all supported speeds can be autonegotiated.
6680 	 */
6681 	if (link_info->auto_link_speeds && !link_info->support_auto_speeds)
6682 		link_info->support_auto_speeds = link_info->support_speeds;
6683 
6684 	/*initialize the ethool setting copy with NVM settings */
6685 	if (BNXT_AUTO_MODE(link_info->auto_mode)) {
6686 		link_info->autoneg = BNXT_AUTONEG_SPEED;
6687 		if (bp->hwrm_spec_code >= 0x10201) {
6688 			if (link_info->auto_pause_setting &
6689 			    PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE)
6690 				link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
6691 		} else {
6692 			link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
6693 		}
6694 		link_info->advertising = link_info->auto_link_speeds;
6695 	} else {
6696 		link_info->req_link_speed = link_info->force_link_speed;
6697 		link_info->req_duplex = link_info->duplex_setting;
6698 	}
6699 	if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL)
6700 		link_info->req_flow_ctrl =
6701 			link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH;
6702 	else
6703 		link_info->req_flow_ctrl = link_info->force_pause_setting;
6704 	return rc;
6705 }
6706 
6707 static int bnxt_get_max_irq(struct pci_dev *pdev)
6708 {
6709 	u16 ctrl;
6710 
6711 	if (!pdev->msix_cap)
6712 		return 1;
6713 
6714 	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
6715 	return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
6716 }
6717 
6718 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
6719 				int *max_cp)
6720 {
6721 	int max_ring_grps = 0;
6722 
6723 #ifdef CONFIG_BNXT_SRIOV
6724 	if (!BNXT_PF(bp)) {
6725 		*max_tx = bp->vf.max_tx_rings;
6726 		*max_rx = bp->vf.max_rx_rings;
6727 		*max_cp = min_t(int, bp->vf.max_irqs, bp->vf.max_cp_rings);
6728 		*max_cp = min_t(int, *max_cp, bp->vf.max_stat_ctxs);
6729 		max_ring_grps = bp->vf.max_hw_ring_grps;
6730 	} else
6731 #endif
6732 	{
6733 		*max_tx = bp->pf.max_tx_rings;
6734 		*max_rx = bp->pf.max_rx_rings;
6735 		*max_cp = min_t(int, bp->pf.max_irqs, bp->pf.max_cp_rings);
6736 		*max_cp = min_t(int, *max_cp, bp->pf.max_stat_ctxs);
6737 		max_ring_grps = bp->pf.max_hw_ring_grps;
6738 	}
6739 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) {
6740 		*max_cp -= 1;
6741 		*max_rx -= 2;
6742 	}
6743 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
6744 		*max_rx >>= 1;
6745 	*max_rx = min_t(int, *max_rx, max_ring_grps);
6746 }
6747 
6748 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
6749 {
6750 	int rx, tx, cp;
6751 
6752 	_bnxt_get_max_rings(bp, &rx, &tx, &cp);
6753 	if (!rx || !tx || !cp)
6754 		return -ENOMEM;
6755 
6756 	*max_rx = rx;
6757 	*max_tx = tx;
6758 	return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
6759 }
6760 
6761 static int bnxt_set_dflt_rings(struct bnxt *bp)
6762 {
6763 	int dflt_rings, max_rx_rings, max_tx_rings, rc;
6764 	bool sh = true;
6765 
6766 	if (sh)
6767 		bp->flags |= BNXT_FLAG_SHARED_RINGS;
6768 	dflt_rings = netif_get_num_default_rss_queues();
6769 	rc = bnxt_get_max_rings(bp, &max_rx_rings, &max_tx_rings, sh);
6770 	if (rc)
6771 		return rc;
6772 	bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
6773 	bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
6774 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
6775 	bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
6776 			       bp->tx_nr_rings + bp->rx_nr_rings;
6777 	bp->num_stat_ctxs = bp->cp_nr_rings;
6778 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
6779 		bp->rx_nr_rings++;
6780 		bp->cp_nr_rings++;
6781 	}
6782 	return rc;
6783 }
6784 
6785 static void bnxt_parse_log_pcie_link(struct bnxt *bp)
6786 {
6787 	enum pcie_link_width width = PCIE_LNK_WIDTH_UNKNOWN;
6788 	enum pci_bus_speed speed = PCI_SPEED_UNKNOWN;
6789 
6790 	if (pcie_get_minimum_link(bp->pdev, &speed, &width) ||
6791 	    speed == PCI_SPEED_UNKNOWN || width == PCIE_LNK_WIDTH_UNKNOWN)
6792 		netdev_info(bp->dev, "Failed to determine PCIe Link Info\n");
6793 	else
6794 		netdev_info(bp->dev, "PCIe: Speed %s Width x%d\n",
6795 			    speed == PCIE_SPEED_2_5GT ? "2.5GT/s" :
6796 			    speed == PCIE_SPEED_5_0GT ? "5.0GT/s" :
6797 			    speed == PCIE_SPEED_8_0GT ? "8.0GT/s" :
6798 			    "Unknown", width);
6799 }
6800 
6801 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
6802 {
6803 	static int version_printed;
6804 	struct net_device *dev;
6805 	struct bnxt *bp;
6806 	int rc, max_irqs;
6807 
6808 	if (pdev->device == 0x16cd && pci_is_bridge(pdev))
6809 		return -ENODEV;
6810 
6811 	if (version_printed++ == 0)
6812 		pr_info("%s", version);
6813 
6814 	max_irqs = bnxt_get_max_irq(pdev);
6815 	dev = alloc_etherdev_mq(sizeof(*bp), max_irqs);
6816 	if (!dev)
6817 		return -ENOMEM;
6818 
6819 	bp = netdev_priv(dev);
6820 
6821 	if (bnxt_vf_pciid(ent->driver_data))
6822 		bp->flags |= BNXT_FLAG_VF;
6823 
6824 	if (pdev->msix_cap)
6825 		bp->flags |= BNXT_FLAG_MSIX_CAP;
6826 
6827 	rc = bnxt_init_board(pdev, dev);
6828 	if (rc < 0)
6829 		goto init_err_free;
6830 
6831 	dev->netdev_ops = &bnxt_netdev_ops;
6832 	dev->watchdog_timeo = BNXT_TX_TIMEOUT;
6833 	dev->ethtool_ops = &bnxt_ethtool_ops;
6834 
6835 	pci_set_drvdata(pdev, dev);
6836 
6837 	rc = bnxt_alloc_hwrm_resources(bp);
6838 	if (rc)
6839 		goto init_err;
6840 
6841 	mutex_init(&bp->hwrm_cmd_lock);
6842 	rc = bnxt_hwrm_ver_get(bp);
6843 	if (rc)
6844 		goto init_err;
6845 
6846 	bnxt_hwrm_fw_set_time(bp);
6847 
6848 	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
6849 			   NETIF_F_TSO | NETIF_F_TSO6 |
6850 			   NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
6851 			   NETIF_F_GSO_IPXIP4 |
6852 			   NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
6853 			   NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH |
6854 			   NETIF_F_RXCSUM | NETIF_F_GRO;
6855 
6856 	if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
6857 		dev->hw_features |= NETIF_F_LRO;
6858 
6859 	dev->hw_enc_features =
6860 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
6861 			NETIF_F_TSO | NETIF_F_TSO6 |
6862 			NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
6863 			NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
6864 			NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL;
6865 	dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM |
6866 				    NETIF_F_GSO_GRE_CSUM;
6867 	dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
6868 	dev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
6869 			    NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX;
6870 	dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
6871 	dev->priv_flags |= IFF_UNICAST_FLT;
6872 
6873 #ifdef CONFIG_BNXT_SRIOV
6874 	init_waitqueue_head(&bp->sriov_cfg_wait);
6875 #endif
6876 	bp->gro_func = bnxt_gro_func_5730x;
6877 	if (BNXT_CHIP_NUM_57X1X(bp->chip_num))
6878 		bp->gro_func = bnxt_gro_func_5731x;
6879 
6880 	rc = bnxt_hwrm_func_drv_rgtr(bp);
6881 	if (rc)
6882 		goto init_err;
6883 
6884 	/* Get the MAX capabilities for this function */
6885 	rc = bnxt_hwrm_func_qcaps(bp);
6886 	if (rc) {
6887 		netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
6888 			   rc);
6889 		rc = -1;
6890 		goto init_err;
6891 	}
6892 
6893 	rc = bnxt_hwrm_queue_qportcfg(bp);
6894 	if (rc) {
6895 		netdev_err(bp->dev, "hwrm query qportcfg failure rc: %x\n",
6896 			   rc);
6897 		rc = -1;
6898 		goto init_err;
6899 	}
6900 
6901 	bnxt_hwrm_func_qcfg(bp);
6902 
6903 	bnxt_set_tpa_flags(bp);
6904 	bnxt_set_ring_params(bp);
6905 	if (BNXT_PF(bp))
6906 		bp->pf.max_irqs = max_irqs;
6907 #if defined(CONFIG_BNXT_SRIOV)
6908 	else
6909 		bp->vf.max_irqs = max_irqs;
6910 #endif
6911 	bnxt_set_dflt_rings(bp);
6912 
6913 	if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp)) {
6914 		dev->hw_features |= NETIF_F_NTUPLE;
6915 		if (bnxt_rfs_capable(bp)) {
6916 			bp->flags |= BNXT_FLAG_RFS;
6917 			dev->features |= NETIF_F_NTUPLE;
6918 		}
6919 	}
6920 
6921 	if (dev->hw_features & NETIF_F_HW_VLAN_CTAG_RX)
6922 		bp->flags |= BNXT_FLAG_STRIP_VLAN;
6923 
6924 	rc = bnxt_probe_phy(bp);
6925 	if (rc)
6926 		goto init_err;
6927 
6928 	rc = register_netdev(dev);
6929 	if (rc)
6930 		goto init_err;
6931 
6932 	netdev_info(dev, "%s found at mem %lx, node addr %pM\n",
6933 		    board_info[ent->driver_data].name,
6934 		    (long)pci_resource_start(pdev, 0), dev->dev_addr);
6935 
6936 	bnxt_parse_log_pcie_link(bp);
6937 
6938 	return 0;
6939 
6940 init_err:
6941 	pci_iounmap(pdev, bp->bar0);
6942 	pci_release_regions(pdev);
6943 	pci_disable_device(pdev);
6944 
6945 init_err_free:
6946 	free_netdev(dev);
6947 	return rc;
6948 }
6949 
6950 /**
6951  * bnxt_io_error_detected - called when PCI error is detected
6952  * @pdev: Pointer to PCI device
6953  * @state: The current pci connection state
6954  *
6955  * This function is called after a PCI bus error affecting
6956  * this device has been detected.
6957  */
6958 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev,
6959 					       pci_channel_state_t state)
6960 {
6961 	struct net_device *netdev = pci_get_drvdata(pdev);
6962 	struct bnxt *bp = netdev_priv(netdev);
6963 
6964 	netdev_info(netdev, "PCI I/O error detected\n");
6965 
6966 	rtnl_lock();
6967 	netif_device_detach(netdev);
6968 
6969 	if (state == pci_channel_io_perm_failure) {
6970 		rtnl_unlock();
6971 		return PCI_ERS_RESULT_DISCONNECT;
6972 	}
6973 
6974 	if (netif_running(netdev))
6975 		bnxt_close(netdev);
6976 
6977 	/* So that func_reset will be done during slot_reset */
6978 	clear_bit(BNXT_STATE_FN_RST_DONE, &bp->state);
6979 	pci_disable_device(pdev);
6980 	rtnl_unlock();
6981 
6982 	/* Request a slot slot reset. */
6983 	return PCI_ERS_RESULT_NEED_RESET;
6984 }
6985 
6986 /**
6987  * bnxt_io_slot_reset - called after the pci bus has been reset.
6988  * @pdev: Pointer to PCI device
6989  *
6990  * Restart the card from scratch, as if from a cold-boot.
6991  * At this point, the card has exprienced a hard reset,
6992  * followed by fixups by BIOS, and has its config space
6993  * set up identically to what it was at cold boot.
6994  */
6995 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev)
6996 {
6997 	struct net_device *netdev = pci_get_drvdata(pdev);
6998 	struct bnxt *bp = netdev_priv(netdev);
6999 	int err = 0;
7000 	pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
7001 
7002 	netdev_info(bp->dev, "PCI Slot Reset\n");
7003 
7004 	rtnl_lock();
7005 
7006 	if (pci_enable_device(pdev)) {
7007 		dev_err(&pdev->dev,
7008 			"Cannot re-enable PCI device after reset.\n");
7009 	} else {
7010 		pci_set_master(pdev);
7011 
7012 		if (netif_running(netdev))
7013 			err = bnxt_open(netdev);
7014 
7015 		if (!err)
7016 			result = PCI_ERS_RESULT_RECOVERED;
7017 	}
7018 
7019 	if (result != PCI_ERS_RESULT_RECOVERED && netif_running(netdev))
7020 		dev_close(netdev);
7021 
7022 	rtnl_unlock();
7023 
7024 	err = pci_cleanup_aer_uncorrect_error_status(pdev);
7025 	if (err) {
7026 		dev_err(&pdev->dev,
7027 			"pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7028 			 err); /* non-fatal, continue */
7029 	}
7030 
7031 	return PCI_ERS_RESULT_RECOVERED;
7032 }
7033 
7034 /**
7035  * bnxt_io_resume - called when traffic can start flowing again.
7036  * @pdev: Pointer to PCI device
7037  *
7038  * This callback is called when the error recovery driver tells
7039  * us that its OK to resume normal operation.
7040  */
7041 static void bnxt_io_resume(struct pci_dev *pdev)
7042 {
7043 	struct net_device *netdev = pci_get_drvdata(pdev);
7044 
7045 	rtnl_lock();
7046 
7047 	netif_device_attach(netdev);
7048 
7049 	rtnl_unlock();
7050 }
7051 
7052 static const struct pci_error_handlers bnxt_err_handler = {
7053 	.error_detected	= bnxt_io_error_detected,
7054 	.slot_reset	= bnxt_io_slot_reset,
7055 	.resume		= bnxt_io_resume
7056 };
7057 
7058 static struct pci_driver bnxt_pci_driver = {
7059 	.name		= DRV_MODULE_NAME,
7060 	.id_table	= bnxt_pci_tbl,
7061 	.probe		= bnxt_init_one,
7062 	.remove		= bnxt_remove_one,
7063 	.err_handler	= &bnxt_err_handler,
7064 #if defined(CONFIG_BNXT_SRIOV)
7065 	.sriov_configure = bnxt_sriov_configure,
7066 #endif
7067 };
7068 
7069 module_pci_driver(bnxt_pci_driver);
7070