1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2016 Broadcom Corporation
4  * Copyright (c) 2016-2017 Broadcom Limited
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation.
9  */
10 
11 #include <linux/module.h>
12 
13 #include <linux/stringify.h>
14 #include <linux/kernel.h>
15 #include <linux/timer.h>
16 #include <linux/errno.h>
17 #include <linux/ioport.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 #include <linux/interrupt.h>
21 #include <linux/pci.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/skbuff.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/bitops.h>
27 #include <linux/io.h>
28 #include <linux/irq.h>
29 #include <linux/delay.h>
30 #include <asm/byteorder.h>
31 #include <asm/page.h>
32 #include <linux/time.h>
33 #include <linux/mii.h>
34 #include <linux/if.h>
35 #include <linux/if_vlan.h>
36 #include <linux/rtc.h>
37 #include <linux/bpf.h>
38 #include <net/ip.h>
39 #include <net/tcp.h>
40 #include <net/udp.h>
41 #include <net/checksum.h>
42 #include <net/ip6_checksum.h>
43 #include <net/udp_tunnel.h>
44 #include <linux/workqueue.h>
45 #include <linux/prefetch.h>
46 #include <linux/cache.h>
47 #include <linux/log2.h>
48 #include <linux/aer.h>
49 #include <linux/bitmap.h>
50 #include <linux/cpu_rmap.h>
51 
52 #include "bnxt_hsi.h"
53 #include "bnxt.h"
54 #include "bnxt_ulp.h"
55 #include "bnxt_sriov.h"
56 #include "bnxt_ethtool.h"
57 #include "bnxt_dcb.h"
58 #include "bnxt_xdp.h"
59 
60 #define BNXT_TX_TIMEOUT		(5 * HZ)
61 
62 static const char version[] =
63 	"Broadcom NetXtreme-C/E driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION "\n";
64 
65 MODULE_LICENSE("GPL");
66 MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
67 MODULE_VERSION(DRV_MODULE_VERSION);
68 
69 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
70 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
71 #define BNXT_RX_COPY_THRESH 256
72 
73 #define BNXT_TX_PUSH_THRESH 164
74 
75 enum board_idx {
76 	BCM57301,
77 	BCM57302,
78 	BCM57304,
79 	BCM57417_NPAR,
80 	BCM58700,
81 	BCM57311,
82 	BCM57312,
83 	BCM57402,
84 	BCM57404,
85 	BCM57406,
86 	BCM57402_NPAR,
87 	BCM57407,
88 	BCM57412,
89 	BCM57414,
90 	BCM57416,
91 	BCM57417,
92 	BCM57412_NPAR,
93 	BCM57314,
94 	BCM57417_SFP,
95 	BCM57416_SFP,
96 	BCM57404_NPAR,
97 	BCM57406_NPAR,
98 	BCM57407_SFP,
99 	BCM57407_NPAR,
100 	BCM57414_NPAR,
101 	BCM57416_NPAR,
102 	BCM57452,
103 	BCM57454,
104 	NETXTREME_E_VF,
105 	NETXTREME_C_VF,
106 };
107 
108 /* indexed by enum above */
109 static const struct {
110 	char *name;
111 } board_info[] = {
112 	{ "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" },
113 	{ "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" },
114 	{ "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
115 	{ "Broadcom BCM57417 NetXtreme-E Ethernet Partition" },
116 	{ "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" },
117 	{ "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" },
118 	{ "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" },
119 	{ "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" },
120 	{ "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" },
121 	{ "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" },
122 	{ "Broadcom BCM57402 NetXtreme-E Ethernet Partition" },
123 	{ "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" },
124 	{ "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" },
125 	{ "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" },
126 	{ "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" },
127 	{ "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" },
128 	{ "Broadcom BCM57412 NetXtreme-E Ethernet Partition" },
129 	{ "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
130 	{ "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" },
131 	{ "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" },
132 	{ "Broadcom BCM57404 NetXtreme-E Ethernet Partition" },
133 	{ "Broadcom BCM57406 NetXtreme-E Ethernet Partition" },
134 	{ "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" },
135 	{ "Broadcom BCM57407 NetXtreme-E Ethernet Partition" },
136 	{ "Broadcom BCM57414 NetXtreme-E Ethernet Partition" },
137 	{ "Broadcom BCM57416 NetXtreme-E Ethernet Partition" },
138 	{ "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" },
139 	{ "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
140 	{ "Broadcom NetXtreme-E Ethernet Virtual Function" },
141 	{ "Broadcom NetXtreme-C Ethernet Virtual Function" },
142 };
143 
144 static const struct pci_device_id bnxt_pci_tbl[] = {
145 	{ PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR },
146 	{ PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
147 	{ PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
148 	{ PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
149 	{ PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR },
150 	{ PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 },
151 	{ PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 },
152 	{ PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 },
153 	{ PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
154 	{ PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
155 	{ PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
156 	{ PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR },
157 	{ PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 },
158 	{ PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 },
159 	{ PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 },
160 	{ PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 },
161 	{ PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 },
162 	{ PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR },
163 	{ PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 },
164 	{ PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP },
165 	{ PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP },
166 	{ PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR },
167 	{ PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR },
168 	{ PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP },
169 	{ PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR },
170 	{ PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR },
171 	{ PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR },
172 	{ PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR },
173 	{ PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR },
174 	{ PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR },
175 	{ PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 },
176 	{ PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 },
177 #ifdef CONFIG_BNXT_SRIOV
178 	{ PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF },
179 	{ PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF },
180 	{ PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF },
181 	{ PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF },
182 	{ PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF },
183 	{ PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF },
184 #endif
185 	{ 0 }
186 };
187 
188 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
189 
190 static const u16 bnxt_vf_req_snif[] = {
191 	HWRM_FUNC_CFG,
192 	HWRM_PORT_PHY_QCFG,
193 	HWRM_CFA_L2_FILTER_ALLOC,
194 };
195 
196 static const u16 bnxt_async_events_arr[] = {
197 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE,
198 	ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD,
199 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED,
200 	ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE,
201 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE,
202 };
203 
204 static bool bnxt_vf_pciid(enum board_idx idx)
205 {
206 	return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF);
207 }
208 
209 #define DB_CP_REARM_FLAGS	(DB_KEY_CP | DB_IDX_VALID)
210 #define DB_CP_FLAGS		(DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
211 #define DB_CP_IRQ_DIS_FLAGS	(DB_KEY_CP | DB_IRQ_DIS)
212 
213 #define BNXT_CP_DB_REARM(db, raw_cons)					\
214 		writel(DB_CP_REARM_FLAGS | RING_CMP(raw_cons), db)
215 
216 #define BNXT_CP_DB(db, raw_cons)					\
217 		writel(DB_CP_FLAGS | RING_CMP(raw_cons), db)
218 
219 #define BNXT_CP_DB_IRQ_DIS(db)						\
220 		writel(DB_CP_IRQ_DIS_FLAGS, db)
221 
222 const u16 bnxt_lhint_arr[] = {
223 	TX_BD_FLAGS_LHINT_512_AND_SMALLER,
224 	TX_BD_FLAGS_LHINT_512_TO_1023,
225 	TX_BD_FLAGS_LHINT_1024_TO_2047,
226 	TX_BD_FLAGS_LHINT_1024_TO_2047,
227 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
228 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
229 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
230 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
231 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
232 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
233 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
234 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
235 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
236 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
237 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
238 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
239 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
240 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
241 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
242 };
243 
244 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
245 {
246 	struct bnxt *bp = netdev_priv(dev);
247 	struct tx_bd *txbd;
248 	struct tx_bd_ext *txbd1;
249 	struct netdev_queue *txq;
250 	int i;
251 	dma_addr_t mapping;
252 	unsigned int length, pad = 0;
253 	u32 len, free_size, vlan_tag_flags, cfa_action, flags;
254 	u16 prod, last_frag;
255 	struct pci_dev *pdev = bp->pdev;
256 	struct bnxt_tx_ring_info *txr;
257 	struct bnxt_sw_tx_bd *tx_buf;
258 
259 	i = skb_get_queue_mapping(skb);
260 	if (unlikely(i >= bp->tx_nr_rings)) {
261 		dev_kfree_skb_any(skb);
262 		return NETDEV_TX_OK;
263 	}
264 
265 	txq = netdev_get_tx_queue(dev, i);
266 	txr = &bp->tx_ring[bp->tx_ring_map[i]];
267 	prod = txr->tx_prod;
268 
269 	free_size = bnxt_tx_avail(bp, txr);
270 	if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
271 		netif_tx_stop_queue(txq);
272 		return NETDEV_TX_BUSY;
273 	}
274 
275 	length = skb->len;
276 	len = skb_headlen(skb);
277 	last_frag = skb_shinfo(skb)->nr_frags;
278 
279 	txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
280 
281 	txbd->tx_bd_opaque = prod;
282 
283 	tx_buf = &txr->tx_buf_ring[prod];
284 	tx_buf->skb = skb;
285 	tx_buf->nr_frags = last_frag;
286 
287 	vlan_tag_flags = 0;
288 	cfa_action = 0;
289 	if (skb_vlan_tag_present(skb)) {
290 		vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
291 				 skb_vlan_tag_get(skb);
292 		/* Currently supports 8021Q, 8021AD vlan offloads
293 		 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
294 		 */
295 		if (skb->vlan_proto == htons(ETH_P_8021Q))
296 			vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
297 	}
298 
299 	if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh) {
300 		struct tx_push_buffer *tx_push_buf = txr->tx_push;
301 		struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
302 		struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
303 		void *pdata = tx_push_buf->data;
304 		u64 *end;
305 		int j, push_len;
306 
307 		/* Set COAL_NOW to be ready quickly for the next push */
308 		tx_push->tx_bd_len_flags_type =
309 			cpu_to_le32((length << TX_BD_LEN_SHIFT) |
310 					TX_BD_TYPE_LONG_TX_BD |
311 					TX_BD_FLAGS_LHINT_512_AND_SMALLER |
312 					TX_BD_FLAGS_COAL_NOW |
313 					TX_BD_FLAGS_PACKET_END |
314 					(2 << TX_BD_FLAGS_BD_CNT_SHIFT));
315 
316 		if (skb->ip_summed == CHECKSUM_PARTIAL)
317 			tx_push1->tx_bd_hsize_lflags =
318 					cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
319 		else
320 			tx_push1->tx_bd_hsize_lflags = 0;
321 
322 		tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
323 		tx_push1->tx_bd_cfa_action = cpu_to_le32(cfa_action);
324 
325 		end = pdata + length;
326 		end = PTR_ALIGN(end, 8) - 1;
327 		*end = 0;
328 
329 		skb_copy_from_linear_data(skb, pdata, len);
330 		pdata += len;
331 		for (j = 0; j < last_frag; j++) {
332 			skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
333 			void *fptr;
334 
335 			fptr = skb_frag_address_safe(frag);
336 			if (!fptr)
337 				goto normal_tx;
338 
339 			memcpy(pdata, fptr, skb_frag_size(frag));
340 			pdata += skb_frag_size(frag);
341 		}
342 
343 		txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
344 		txbd->tx_bd_haddr = txr->data_mapping;
345 		prod = NEXT_TX(prod);
346 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
347 		memcpy(txbd, tx_push1, sizeof(*txbd));
348 		prod = NEXT_TX(prod);
349 		tx_push->doorbell =
350 			cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod);
351 		txr->tx_prod = prod;
352 
353 		tx_buf->is_push = 1;
354 		netdev_tx_sent_queue(txq, skb->len);
355 		wmb();	/* Sync is_push and byte queue before pushing data */
356 
357 		push_len = (length + sizeof(*tx_push) + 7) / 8;
358 		if (push_len > 16) {
359 			__iowrite64_copy(txr->tx_doorbell, tx_push_buf, 16);
360 			__iowrite32_copy(txr->tx_doorbell + 4, tx_push_buf + 1,
361 					 (push_len - 16) << 1);
362 		} else {
363 			__iowrite64_copy(txr->tx_doorbell, tx_push_buf,
364 					 push_len);
365 		}
366 
367 		goto tx_done;
368 	}
369 
370 normal_tx:
371 	if (length < BNXT_MIN_PKT_SIZE) {
372 		pad = BNXT_MIN_PKT_SIZE - length;
373 		if (skb_pad(skb, pad)) {
374 			/* SKB already freed. */
375 			tx_buf->skb = NULL;
376 			return NETDEV_TX_OK;
377 		}
378 		length = BNXT_MIN_PKT_SIZE;
379 	}
380 
381 	mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
382 
383 	if (unlikely(dma_mapping_error(&pdev->dev, mapping))) {
384 		dev_kfree_skb_any(skb);
385 		tx_buf->skb = NULL;
386 		return NETDEV_TX_OK;
387 	}
388 
389 	dma_unmap_addr_set(tx_buf, mapping, mapping);
390 	flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
391 		((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
392 
393 	txbd->tx_bd_haddr = cpu_to_le64(mapping);
394 
395 	prod = NEXT_TX(prod);
396 	txbd1 = (struct tx_bd_ext *)
397 		&txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
398 
399 	txbd1->tx_bd_hsize_lflags = 0;
400 	if (skb_is_gso(skb)) {
401 		u32 hdr_len;
402 
403 		if (skb->encapsulation)
404 			hdr_len = skb_inner_network_offset(skb) +
405 				skb_inner_network_header_len(skb) +
406 				inner_tcp_hdrlen(skb);
407 		else
408 			hdr_len = skb_transport_offset(skb) +
409 				tcp_hdrlen(skb);
410 
411 		txbd1->tx_bd_hsize_lflags = cpu_to_le32(TX_BD_FLAGS_LSO |
412 					TX_BD_FLAGS_T_IPID |
413 					(hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
414 		length = skb_shinfo(skb)->gso_size;
415 		txbd1->tx_bd_mss = cpu_to_le32(length);
416 		length += hdr_len;
417 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
418 		txbd1->tx_bd_hsize_lflags =
419 			cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
420 		txbd1->tx_bd_mss = 0;
421 	}
422 
423 	length >>= 9;
424 	flags |= bnxt_lhint_arr[length];
425 	txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
426 
427 	txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
428 	txbd1->tx_bd_cfa_action = cpu_to_le32(cfa_action);
429 	for (i = 0; i < last_frag; i++) {
430 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
431 
432 		prod = NEXT_TX(prod);
433 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
434 
435 		len = skb_frag_size(frag);
436 		mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
437 					   DMA_TO_DEVICE);
438 
439 		if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
440 			goto tx_dma_error;
441 
442 		tx_buf = &txr->tx_buf_ring[prod];
443 		dma_unmap_addr_set(tx_buf, mapping, mapping);
444 
445 		txbd->tx_bd_haddr = cpu_to_le64(mapping);
446 
447 		flags = len << TX_BD_LEN_SHIFT;
448 		txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
449 	}
450 
451 	flags &= ~TX_BD_LEN;
452 	txbd->tx_bd_len_flags_type =
453 		cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
454 			    TX_BD_FLAGS_PACKET_END);
455 
456 	netdev_tx_sent_queue(txq, skb->len);
457 
458 	/* Sync BD data before updating doorbell */
459 	wmb();
460 
461 	prod = NEXT_TX(prod);
462 	txr->tx_prod = prod;
463 
464 	writel(DB_KEY_TX | prod, txr->tx_doorbell);
465 	writel(DB_KEY_TX | prod, txr->tx_doorbell);
466 
467 tx_done:
468 
469 	mmiowb();
470 
471 	if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
472 		netif_tx_stop_queue(txq);
473 
474 		/* netif_tx_stop_queue() must be done before checking
475 		 * tx index in bnxt_tx_avail() below, because in
476 		 * bnxt_tx_int(), we update tx index before checking for
477 		 * netif_tx_queue_stopped().
478 		 */
479 		smp_mb();
480 		if (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)
481 			netif_tx_wake_queue(txq);
482 	}
483 	return NETDEV_TX_OK;
484 
485 tx_dma_error:
486 	last_frag = i;
487 
488 	/* start back at beginning and unmap skb */
489 	prod = txr->tx_prod;
490 	tx_buf = &txr->tx_buf_ring[prod];
491 	tx_buf->skb = NULL;
492 	dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
493 			 skb_headlen(skb), PCI_DMA_TODEVICE);
494 	prod = NEXT_TX(prod);
495 
496 	/* unmap remaining mapped pages */
497 	for (i = 0; i < last_frag; i++) {
498 		prod = NEXT_TX(prod);
499 		tx_buf = &txr->tx_buf_ring[prod];
500 		dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
501 			       skb_frag_size(&skb_shinfo(skb)->frags[i]),
502 			       PCI_DMA_TODEVICE);
503 	}
504 
505 	dev_kfree_skb_any(skb);
506 	return NETDEV_TX_OK;
507 }
508 
509 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts)
510 {
511 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
512 	struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index);
513 	u16 cons = txr->tx_cons;
514 	struct pci_dev *pdev = bp->pdev;
515 	int i;
516 	unsigned int tx_bytes = 0;
517 
518 	for (i = 0; i < nr_pkts; i++) {
519 		struct bnxt_sw_tx_bd *tx_buf;
520 		struct sk_buff *skb;
521 		int j, last;
522 
523 		tx_buf = &txr->tx_buf_ring[cons];
524 		cons = NEXT_TX(cons);
525 		skb = tx_buf->skb;
526 		tx_buf->skb = NULL;
527 
528 		if (tx_buf->is_push) {
529 			tx_buf->is_push = 0;
530 			goto next_tx_int;
531 		}
532 
533 		dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
534 				 skb_headlen(skb), PCI_DMA_TODEVICE);
535 		last = tx_buf->nr_frags;
536 
537 		for (j = 0; j < last; j++) {
538 			cons = NEXT_TX(cons);
539 			tx_buf = &txr->tx_buf_ring[cons];
540 			dma_unmap_page(
541 				&pdev->dev,
542 				dma_unmap_addr(tx_buf, mapping),
543 				skb_frag_size(&skb_shinfo(skb)->frags[j]),
544 				PCI_DMA_TODEVICE);
545 		}
546 
547 next_tx_int:
548 		cons = NEXT_TX(cons);
549 
550 		tx_bytes += skb->len;
551 		dev_kfree_skb_any(skb);
552 	}
553 
554 	netdev_tx_completed_queue(txq, nr_pkts, tx_bytes);
555 	txr->tx_cons = cons;
556 
557 	/* Need to make the tx_cons update visible to bnxt_start_xmit()
558 	 * before checking for netif_tx_queue_stopped().  Without the
559 	 * memory barrier, there is a small possibility that bnxt_start_xmit()
560 	 * will miss it and cause the queue to be stopped forever.
561 	 */
562 	smp_mb();
563 
564 	if (unlikely(netif_tx_queue_stopped(txq)) &&
565 	    (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
566 		__netif_tx_lock(txq, smp_processor_id());
567 		if (netif_tx_queue_stopped(txq) &&
568 		    bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh &&
569 		    txr->dev_state != BNXT_DEV_STATE_CLOSING)
570 			netif_tx_wake_queue(txq);
571 		__netif_tx_unlock(txq);
572 	}
573 }
574 
575 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping,
576 					 gfp_t gfp)
577 {
578 	struct device *dev = &bp->pdev->dev;
579 	struct page *page;
580 
581 	page = alloc_page(gfp);
582 	if (!page)
583 		return NULL;
584 
585 	*mapping = dma_map_page(dev, page, 0, PAGE_SIZE, bp->rx_dir);
586 	if (dma_mapping_error(dev, *mapping)) {
587 		__free_page(page);
588 		return NULL;
589 	}
590 	*mapping += bp->rx_dma_offset;
591 	return page;
592 }
593 
594 static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping,
595 				       gfp_t gfp)
596 {
597 	u8 *data;
598 	struct pci_dev *pdev = bp->pdev;
599 
600 	data = kmalloc(bp->rx_buf_size, gfp);
601 	if (!data)
602 		return NULL;
603 
604 	*mapping = dma_map_single(&pdev->dev, data + bp->rx_dma_offset,
605 				  bp->rx_buf_use_size, bp->rx_dir);
606 
607 	if (dma_mapping_error(&pdev->dev, *mapping)) {
608 		kfree(data);
609 		data = NULL;
610 	}
611 	return data;
612 }
613 
614 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
615 		       u16 prod, gfp_t gfp)
616 {
617 	struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
618 	struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
619 	dma_addr_t mapping;
620 
621 	if (BNXT_RX_PAGE_MODE(bp)) {
622 		struct page *page = __bnxt_alloc_rx_page(bp, &mapping, gfp);
623 
624 		if (!page)
625 			return -ENOMEM;
626 
627 		rx_buf->data = page;
628 		rx_buf->data_ptr = page_address(page) + bp->rx_offset;
629 	} else {
630 		u8 *data = __bnxt_alloc_rx_data(bp, &mapping, gfp);
631 
632 		if (!data)
633 			return -ENOMEM;
634 
635 		rx_buf->data = data;
636 		rx_buf->data_ptr = data + bp->rx_offset;
637 	}
638 	rx_buf->mapping = mapping;
639 
640 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
641 	return 0;
642 }
643 
644 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data)
645 {
646 	u16 prod = rxr->rx_prod;
647 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
648 	struct rx_bd *cons_bd, *prod_bd;
649 
650 	prod_rx_buf = &rxr->rx_buf_ring[prod];
651 	cons_rx_buf = &rxr->rx_buf_ring[cons];
652 
653 	prod_rx_buf->data = data;
654 	prod_rx_buf->data_ptr = cons_rx_buf->data_ptr;
655 
656 	prod_rx_buf->mapping = cons_rx_buf->mapping;
657 
658 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
659 	cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
660 
661 	prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
662 }
663 
664 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
665 {
666 	u16 next, max = rxr->rx_agg_bmap_size;
667 
668 	next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
669 	if (next >= max)
670 		next = find_first_zero_bit(rxr->rx_agg_bmap, max);
671 	return next;
672 }
673 
674 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
675 				     struct bnxt_rx_ring_info *rxr,
676 				     u16 prod, gfp_t gfp)
677 {
678 	struct rx_bd *rxbd =
679 		&rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
680 	struct bnxt_sw_rx_agg_bd *rx_agg_buf;
681 	struct pci_dev *pdev = bp->pdev;
682 	struct page *page;
683 	dma_addr_t mapping;
684 	u16 sw_prod = rxr->rx_sw_agg_prod;
685 	unsigned int offset = 0;
686 
687 	if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) {
688 		page = rxr->rx_page;
689 		if (!page) {
690 			page = alloc_page(gfp);
691 			if (!page)
692 				return -ENOMEM;
693 			rxr->rx_page = page;
694 			rxr->rx_page_offset = 0;
695 		}
696 		offset = rxr->rx_page_offset;
697 		rxr->rx_page_offset += BNXT_RX_PAGE_SIZE;
698 		if (rxr->rx_page_offset == PAGE_SIZE)
699 			rxr->rx_page = NULL;
700 		else
701 			get_page(page);
702 	} else {
703 		page = alloc_page(gfp);
704 		if (!page)
705 			return -ENOMEM;
706 	}
707 
708 	mapping = dma_map_page(&pdev->dev, page, offset, BNXT_RX_PAGE_SIZE,
709 			       PCI_DMA_FROMDEVICE);
710 	if (dma_mapping_error(&pdev->dev, mapping)) {
711 		__free_page(page);
712 		return -EIO;
713 	}
714 
715 	if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
716 		sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
717 
718 	__set_bit(sw_prod, rxr->rx_agg_bmap);
719 	rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
720 	rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod);
721 
722 	rx_agg_buf->page = page;
723 	rx_agg_buf->offset = offset;
724 	rx_agg_buf->mapping = mapping;
725 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
726 	rxbd->rx_bd_opaque = sw_prod;
727 	return 0;
728 }
729 
730 static void bnxt_reuse_rx_agg_bufs(struct bnxt_napi *bnapi, u16 cp_cons,
731 				   u32 agg_bufs)
732 {
733 	struct bnxt *bp = bnapi->bp;
734 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
735 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
736 	u16 prod = rxr->rx_agg_prod;
737 	u16 sw_prod = rxr->rx_sw_agg_prod;
738 	u32 i;
739 
740 	for (i = 0; i < agg_bufs; i++) {
741 		u16 cons;
742 		struct rx_agg_cmp *agg;
743 		struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
744 		struct rx_bd *prod_bd;
745 		struct page *page;
746 
747 		agg = (struct rx_agg_cmp *)
748 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
749 		cons = agg->rx_agg_cmp_opaque;
750 		__clear_bit(cons, rxr->rx_agg_bmap);
751 
752 		if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
753 			sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
754 
755 		__set_bit(sw_prod, rxr->rx_agg_bmap);
756 		prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
757 		cons_rx_buf = &rxr->rx_agg_ring[cons];
758 
759 		/* It is possible for sw_prod to be equal to cons, so
760 		 * set cons_rx_buf->page to NULL first.
761 		 */
762 		page = cons_rx_buf->page;
763 		cons_rx_buf->page = NULL;
764 		prod_rx_buf->page = page;
765 		prod_rx_buf->offset = cons_rx_buf->offset;
766 
767 		prod_rx_buf->mapping = cons_rx_buf->mapping;
768 
769 		prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
770 
771 		prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
772 		prod_bd->rx_bd_opaque = sw_prod;
773 
774 		prod = NEXT_RX_AGG(prod);
775 		sw_prod = NEXT_RX_AGG(sw_prod);
776 		cp_cons = NEXT_CMP(cp_cons);
777 	}
778 	rxr->rx_agg_prod = prod;
779 	rxr->rx_sw_agg_prod = sw_prod;
780 }
781 
782 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp,
783 					struct bnxt_rx_ring_info *rxr,
784 					u16 cons, void *data, u8 *data_ptr,
785 					dma_addr_t dma_addr,
786 					unsigned int offset_and_len)
787 {
788 	unsigned int payload = offset_and_len >> 16;
789 	unsigned int len = offset_and_len & 0xffff;
790 	struct skb_frag_struct *frag;
791 	struct page *page = data;
792 	u16 prod = rxr->rx_prod;
793 	struct sk_buff *skb;
794 	int off, err;
795 
796 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
797 	if (unlikely(err)) {
798 		bnxt_reuse_rx_data(rxr, cons, data);
799 		return NULL;
800 	}
801 	dma_addr -= bp->rx_dma_offset;
802 	dma_unmap_page(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir);
803 
804 	if (unlikely(!payload))
805 		payload = eth_get_headlen(data_ptr, len);
806 
807 	skb = napi_alloc_skb(&rxr->bnapi->napi, payload);
808 	if (!skb) {
809 		__free_page(page);
810 		return NULL;
811 	}
812 
813 	off = (void *)data_ptr - page_address(page);
814 	skb_add_rx_frag(skb, 0, page, off, len, PAGE_SIZE);
815 	memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN,
816 	       payload + NET_IP_ALIGN);
817 
818 	frag = &skb_shinfo(skb)->frags[0];
819 	skb_frag_size_sub(frag, payload);
820 	frag->page_offset += payload;
821 	skb->data_len -= payload;
822 	skb->tail += payload;
823 
824 	return skb;
825 }
826 
827 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
828 				   struct bnxt_rx_ring_info *rxr, u16 cons,
829 				   void *data, u8 *data_ptr,
830 				   dma_addr_t dma_addr,
831 				   unsigned int offset_and_len)
832 {
833 	u16 prod = rxr->rx_prod;
834 	struct sk_buff *skb;
835 	int err;
836 
837 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
838 	if (unlikely(err)) {
839 		bnxt_reuse_rx_data(rxr, cons, data);
840 		return NULL;
841 	}
842 
843 	skb = build_skb(data, 0);
844 	dma_unmap_single(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
845 			 bp->rx_dir);
846 	if (!skb) {
847 		kfree(data);
848 		return NULL;
849 	}
850 
851 	skb_reserve(skb, bp->rx_offset);
852 	skb_put(skb, offset_and_len & 0xffff);
853 	return skb;
854 }
855 
856 static struct sk_buff *bnxt_rx_pages(struct bnxt *bp, struct bnxt_napi *bnapi,
857 				     struct sk_buff *skb, u16 cp_cons,
858 				     u32 agg_bufs)
859 {
860 	struct pci_dev *pdev = bp->pdev;
861 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
862 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
863 	u16 prod = rxr->rx_agg_prod;
864 	u32 i;
865 
866 	for (i = 0; i < agg_bufs; i++) {
867 		u16 cons, frag_len;
868 		struct rx_agg_cmp *agg;
869 		struct bnxt_sw_rx_agg_bd *cons_rx_buf;
870 		struct page *page;
871 		dma_addr_t mapping;
872 
873 		agg = (struct rx_agg_cmp *)
874 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
875 		cons = agg->rx_agg_cmp_opaque;
876 		frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
877 			    RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
878 
879 		cons_rx_buf = &rxr->rx_agg_ring[cons];
880 		skb_fill_page_desc(skb, i, cons_rx_buf->page,
881 				   cons_rx_buf->offset, frag_len);
882 		__clear_bit(cons, rxr->rx_agg_bmap);
883 
884 		/* It is possible for bnxt_alloc_rx_page() to allocate
885 		 * a sw_prod index that equals the cons index, so we
886 		 * need to clear the cons entry now.
887 		 */
888 		mapping = cons_rx_buf->mapping;
889 		page = cons_rx_buf->page;
890 		cons_rx_buf->page = NULL;
891 
892 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
893 			struct skb_shared_info *shinfo;
894 			unsigned int nr_frags;
895 
896 			shinfo = skb_shinfo(skb);
897 			nr_frags = --shinfo->nr_frags;
898 			__skb_frag_set_page(&shinfo->frags[nr_frags], NULL);
899 
900 			dev_kfree_skb(skb);
901 
902 			cons_rx_buf->page = page;
903 
904 			/* Update prod since possibly some pages have been
905 			 * allocated already.
906 			 */
907 			rxr->rx_agg_prod = prod;
908 			bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs - i);
909 			return NULL;
910 		}
911 
912 		dma_unmap_page(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE,
913 			       PCI_DMA_FROMDEVICE);
914 
915 		skb->data_len += frag_len;
916 		skb->len += frag_len;
917 		skb->truesize += PAGE_SIZE;
918 
919 		prod = NEXT_RX_AGG(prod);
920 		cp_cons = NEXT_CMP(cp_cons);
921 	}
922 	rxr->rx_agg_prod = prod;
923 	return skb;
924 }
925 
926 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
927 			       u8 agg_bufs, u32 *raw_cons)
928 {
929 	u16 last;
930 	struct rx_agg_cmp *agg;
931 
932 	*raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
933 	last = RING_CMP(*raw_cons);
934 	agg = (struct rx_agg_cmp *)
935 		&cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
936 	return RX_AGG_CMP_VALID(agg, *raw_cons);
937 }
938 
939 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
940 					    unsigned int len,
941 					    dma_addr_t mapping)
942 {
943 	struct bnxt *bp = bnapi->bp;
944 	struct pci_dev *pdev = bp->pdev;
945 	struct sk_buff *skb;
946 
947 	skb = napi_alloc_skb(&bnapi->napi, len);
948 	if (!skb)
949 		return NULL;
950 
951 	dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh,
952 				bp->rx_dir);
953 
954 	memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN,
955 	       len + NET_IP_ALIGN);
956 
957 	dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh,
958 				   bp->rx_dir);
959 
960 	skb_put(skb, len);
961 	return skb;
962 }
963 
964 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_napi *bnapi,
965 			   u32 *raw_cons, void *cmp)
966 {
967 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
968 	struct rx_cmp *rxcmp = cmp;
969 	u32 tmp_raw_cons = *raw_cons;
970 	u8 cmp_type, agg_bufs = 0;
971 
972 	cmp_type = RX_CMP_TYPE(rxcmp);
973 
974 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
975 		agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) &
976 			    RX_CMP_AGG_BUFS) >>
977 			   RX_CMP_AGG_BUFS_SHIFT;
978 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
979 		struct rx_tpa_end_cmp *tpa_end = cmp;
980 
981 		agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
982 			    RX_TPA_END_CMP_AGG_BUFS) >>
983 			   RX_TPA_END_CMP_AGG_BUFS_SHIFT;
984 	}
985 
986 	if (agg_bufs) {
987 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
988 			return -EBUSY;
989 	}
990 	*raw_cons = tmp_raw_cons;
991 	return 0;
992 }
993 
994 static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
995 {
996 	if (!rxr->bnapi->in_reset) {
997 		rxr->bnapi->in_reset = true;
998 		set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
999 		schedule_work(&bp->sp_task);
1000 	}
1001 	rxr->rx_next_cons = 0xffff;
1002 }
1003 
1004 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1005 			   struct rx_tpa_start_cmp *tpa_start,
1006 			   struct rx_tpa_start_cmp_ext *tpa_start1)
1007 {
1008 	u8 agg_id = TPA_START_AGG_ID(tpa_start);
1009 	u16 cons, prod;
1010 	struct bnxt_tpa_info *tpa_info;
1011 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
1012 	struct rx_bd *prod_bd;
1013 	dma_addr_t mapping;
1014 
1015 	cons = tpa_start->rx_tpa_start_cmp_opaque;
1016 	prod = rxr->rx_prod;
1017 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1018 	prod_rx_buf = &rxr->rx_buf_ring[prod];
1019 	tpa_info = &rxr->rx_tpa[agg_id];
1020 
1021 	if (unlikely(cons != rxr->rx_next_cons)) {
1022 		bnxt_sched_reset(bp, rxr);
1023 		return;
1024 	}
1025 
1026 	prod_rx_buf->data = tpa_info->data;
1027 	prod_rx_buf->data_ptr = tpa_info->data_ptr;
1028 
1029 	mapping = tpa_info->mapping;
1030 	prod_rx_buf->mapping = mapping;
1031 
1032 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
1033 
1034 	prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
1035 
1036 	tpa_info->data = cons_rx_buf->data;
1037 	tpa_info->data_ptr = cons_rx_buf->data_ptr;
1038 	cons_rx_buf->data = NULL;
1039 	tpa_info->mapping = cons_rx_buf->mapping;
1040 
1041 	tpa_info->len =
1042 		le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
1043 				RX_TPA_START_CMP_LEN_SHIFT;
1044 	if (likely(TPA_START_HASH_VALID(tpa_start))) {
1045 		u32 hash_type = TPA_START_HASH_TYPE(tpa_start);
1046 
1047 		tpa_info->hash_type = PKT_HASH_TYPE_L4;
1048 		tpa_info->gso_type = SKB_GSO_TCPV4;
1049 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1050 		if (hash_type == 3)
1051 			tpa_info->gso_type = SKB_GSO_TCPV6;
1052 		tpa_info->rss_hash =
1053 			le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
1054 	} else {
1055 		tpa_info->hash_type = PKT_HASH_TYPE_NONE;
1056 		tpa_info->gso_type = 0;
1057 		if (netif_msg_rx_err(bp))
1058 			netdev_warn(bp->dev, "TPA packet without valid hash\n");
1059 	}
1060 	tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
1061 	tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
1062 	tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info);
1063 
1064 	rxr->rx_prod = NEXT_RX(prod);
1065 	cons = NEXT_RX(cons);
1066 	rxr->rx_next_cons = NEXT_RX(cons);
1067 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1068 
1069 	bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
1070 	rxr->rx_prod = NEXT_RX(rxr->rx_prod);
1071 	cons_rx_buf->data = NULL;
1072 }
1073 
1074 static void bnxt_abort_tpa(struct bnxt *bp, struct bnxt_napi *bnapi,
1075 			   u16 cp_cons, u32 agg_bufs)
1076 {
1077 	if (agg_bufs)
1078 		bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
1079 }
1080 
1081 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info,
1082 					   int payload_off, int tcp_ts,
1083 					   struct sk_buff *skb)
1084 {
1085 #ifdef CONFIG_INET
1086 	struct tcphdr *th;
1087 	int len, nw_off;
1088 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1089 	u32 hdr_info = tpa_info->hdr_info;
1090 	bool loopback = false;
1091 
1092 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1093 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1094 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1095 
1096 	/* If the packet is an internal loopback packet, the offsets will
1097 	 * have an extra 4 bytes.
1098 	 */
1099 	if (inner_mac_off == 4) {
1100 		loopback = true;
1101 	} else if (inner_mac_off > 4) {
1102 		__be16 proto = *((__be16 *)(skb->data + inner_ip_off -
1103 					    ETH_HLEN - 2));
1104 
1105 		/* We only support inner iPv4/ipv6.  If we don't see the
1106 		 * correct protocol ID, it must be a loopback packet where
1107 		 * the offsets are off by 4.
1108 		 */
1109 		if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6))
1110 			loopback = true;
1111 	}
1112 	if (loopback) {
1113 		/* internal loopback packet, subtract all offsets by 4 */
1114 		inner_ip_off -= 4;
1115 		inner_mac_off -= 4;
1116 		outer_ip_off -= 4;
1117 	}
1118 
1119 	nw_off = inner_ip_off - ETH_HLEN;
1120 	skb_set_network_header(skb, nw_off);
1121 	if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) {
1122 		struct ipv6hdr *iph = ipv6_hdr(skb);
1123 
1124 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1125 		len = skb->len - skb_transport_offset(skb);
1126 		th = tcp_hdr(skb);
1127 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1128 	} else {
1129 		struct iphdr *iph = ip_hdr(skb);
1130 
1131 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1132 		len = skb->len - skb_transport_offset(skb);
1133 		th = tcp_hdr(skb);
1134 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1135 	}
1136 
1137 	if (inner_mac_off) { /* tunnel */
1138 		struct udphdr *uh = NULL;
1139 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1140 					    ETH_HLEN - 2));
1141 
1142 		if (proto == htons(ETH_P_IP)) {
1143 			struct iphdr *iph = (struct iphdr *)skb->data;
1144 
1145 			if (iph->protocol == IPPROTO_UDP)
1146 				uh = (struct udphdr *)(iph + 1);
1147 		} else {
1148 			struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1149 
1150 			if (iph->nexthdr == IPPROTO_UDP)
1151 				uh = (struct udphdr *)(iph + 1);
1152 		}
1153 		if (uh) {
1154 			if (uh->check)
1155 				skb_shinfo(skb)->gso_type |=
1156 					SKB_GSO_UDP_TUNNEL_CSUM;
1157 			else
1158 				skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1159 		}
1160 	}
1161 #endif
1162 	return skb;
1163 }
1164 
1165 #define BNXT_IPV4_HDR_SIZE	(sizeof(struct iphdr) + sizeof(struct tcphdr))
1166 #define BNXT_IPV6_HDR_SIZE	(sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
1167 
1168 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info,
1169 					   int payload_off, int tcp_ts,
1170 					   struct sk_buff *skb)
1171 {
1172 #ifdef CONFIG_INET
1173 	struct tcphdr *th;
1174 	int len, nw_off, tcp_opt_len = 0;
1175 
1176 	if (tcp_ts)
1177 		tcp_opt_len = 12;
1178 
1179 	if (tpa_info->gso_type == SKB_GSO_TCPV4) {
1180 		struct iphdr *iph;
1181 
1182 		nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
1183 			 ETH_HLEN;
1184 		skb_set_network_header(skb, nw_off);
1185 		iph = ip_hdr(skb);
1186 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1187 		len = skb->len - skb_transport_offset(skb);
1188 		th = tcp_hdr(skb);
1189 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1190 	} else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
1191 		struct ipv6hdr *iph;
1192 
1193 		nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
1194 			 ETH_HLEN;
1195 		skb_set_network_header(skb, nw_off);
1196 		iph = ipv6_hdr(skb);
1197 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1198 		len = skb->len - skb_transport_offset(skb);
1199 		th = tcp_hdr(skb);
1200 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1201 	} else {
1202 		dev_kfree_skb_any(skb);
1203 		return NULL;
1204 	}
1205 
1206 	if (nw_off) { /* tunnel */
1207 		struct udphdr *uh = NULL;
1208 
1209 		if (skb->protocol == htons(ETH_P_IP)) {
1210 			struct iphdr *iph = (struct iphdr *)skb->data;
1211 
1212 			if (iph->protocol == IPPROTO_UDP)
1213 				uh = (struct udphdr *)(iph + 1);
1214 		} else {
1215 			struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1216 
1217 			if (iph->nexthdr == IPPROTO_UDP)
1218 				uh = (struct udphdr *)(iph + 1);
1219 		}
1220 		if (uh) {
1221 			if (uh->check)
1222 				skb_shinfo(skb)->gso_type |=
1223 					SKB_GSO_UDP_TUNNEL_CSUM;
1224 			else
1225 				skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1226 		}
1227 	}
1228 #endif
1229 	return skb;
1230 }
1231 
1232 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp,
1233 					   struct bnxt_tpa_info *tpa_info,
1234 					   struct rx_tpa_end_cmp *tpa_end,
1235 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1236 					   struct sk_buff *skb)
1237 {
1238 #ifdef CONFIG_INET
1239 	int payload_off;
1240 	u16 segs;
1241 
1242 	segs = TPA_END_TPA_SEGS(tpa_end);
1243 	if (segs == 1)
1244 		return skb;
1245 
1246 	NAPI_GRO_CB(skb)->count = segs;
1247 	skb_shinfo(skb)->gso_size =
1248 		le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
1249 	skb_shinfo(skb)->gso_type = tpa_info->gso_type;
1250 	payload_off = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
1251 		       RX_TPA_END_CMP_PAYLOAD_OFFSET) >>
1252 		      RX_TPA_END_CMP_PAYLOAD_OFFSET_SHIFT;
1253 	skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb);
1254 	if (likely(skb))
1255 		tcp_gro_complete(skb);
1256 #endif
1257 	return skb;
1258 }
1259 
1260 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
1261 					   struct bnxt_napi *bnapi,
1262 					   u32 *raw_cons,
1263 					   struct rx_tpa_end_cmp *tpa_end,
1264 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1265 					   u8 *event)
1266 {
1267 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1268 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1269 	u8 agg_id = TPA_END_AGG_ID(tpa_end);
1270 	u8 *data_ptr, agg_bufs;
1271 	u16 cp_cons = RING_CMP(*raw_cons);
1272 	unsigned int len;
1273 	struct bnxt_tpa_info *tpa_info;
1274 	dma_addr_t mapping;
1275 	struct sk_buff *skb;
1276 	void *data;
1277 
1278 	if (unlikely(bnapi->in_reset)) {
1279 		int rc = bnxt_discard_rx(bp, bnapi, raw_cons, tpa_end);
1280 
1281 		if (rc < 0)
1282 			return ERR_PTR(-EBUSY);
1283 		return NULL;
1284 	}
1285 
1286 	tpa_info = &rxr->rx_tpa[agg_id];
1287 	data = tpa_info->data;
1288 	data_ptr = tpa_info->data_ptr;
1289 	prefetch(data_ptr);
1290 	len = tpa_info->len;
1291 	mapping = tpa_info->mapping;
1292 
1293 	agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
1294 		    RX_TPA_END_CMP_AGG_BUFS) >> RX_TPA_END_CMP_AGG_BUFS_SHIFT;
1295 
1296 	if (agg_bufs) {
1297 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
1298 			return ERR_PTR(-EBUSY);
1299 
1300 		*event |= BNXT_AGG_EVENT;
1301 		cp_cons = NEXT_CMP(cp_cons);
1302 	}
1303 
1304 	if (unlikely(agg_bufs > MAX_SKB_FRAGS)) {
1305 		bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1306 		netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
1307 			    agg_bufs, (int)MAX_SKB_FRAGS);
1308 		return NULL;
1309 	}
1310 
1311 	if (len <= bp->rx_copy_thresh) {
1312 		skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping);
1313 		if (!skb) {
1314 			bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1315 			return NULL;
1316 		}
1317 	} else {
1318 		u8 *new_data;
1319 		dma_addr_t new_mapping;
1320 
1321 		new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC);
1322 		if (!new_data) {
1323 			bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1324 			return NULL;
1325 		}
1326 
1327 		tpa_info->data = new_data;
1328 		tpa_info->data_ptr = new_data + bp->rx_offset;
1329 		tpa_info->mapping = new_mapping;
1330 
1331 		skb = build_skb(data, 0);
1332 		dma_unmap_single(&bp->pdev->dev, mapping, bp->rx_buf_use_size,
1333 				 bp->rx_dir);
1334 
1335 		if (!skb) {
1336 			kfree(data);
1337 			bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1338 			return NULL;
1339 		}
1340 		skb_reserve(skb, bp->rx_offset);
1341 		skb_put(skb, len);
1342 	}
1343 
1344 	if (agg_bufs) {
1345 		skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
1346 		if (!skb) {
1347 			/* Page reuse already handled by bnxt_rx_pages(). */
1348 			return NULL;
1349 		}
1350 	}
1351 	skb->protocol = eth_type_trans(skb, bp->dev);
1352 
1353 	if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1354 		skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1355 
1356 	if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) &&
1357 	    (skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
1358 		u16 vlan_proto = tpa_info->metadata >>
1359 			RX_CMP_FLAGS2_METADATA_TPID_SFT;
1360 		u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_VID_MASK;
1361 
1362 		__vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1363 	}
1364 
1365 	skb_checksum_none_assert(skb);
1366 	if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1367 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1368 		skb->csum_level =
1369 			(tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1370 	}
1371 
1372 	if (TPA_END_GRO(tpa_end))
1373 		skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb);
1374 
1375 	return skb;
1376 }
1377 
1378 /* returns the following:
1379  * 1       - 1 packet successfully received
1380  * 0       - successful TPA_START, packet not completed yet
1381  * -EBUSY  - completion ring does not have all the agg buffers yet
1382  * -ENOMEM - packet aborted due to out of memory
1383  * -EIO    - packet aborted due to hw error indicated in BD
1384  */
1385 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_napi *bnapi, u32 *raw_cons,
1386 		       u8 *event)
1387 {
1388 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1389 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1390 	struct net_device *dev = bp->dev;
1391 	struct rx_cmp *rxcmp;
1392 	struct rx_cmp_ext *rxcmp1;
1393 	u32 tmp_raw_cons = *raw_cons;
1394 	u16 cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
1395 	struct bnxt_sw_rx_bd *rx_buf;
1396 	unsigned int len;
1397 	u8 *data_ptr, agg_bufs, cmp_type;
1398 	dma_addr_t dma_addr;
1399 	struct sk_buff *skb;
1400 	void *data;
1401 	int rc = 0;
1402 	u32 misc;
1403 
1404 	rxcmp = (struct rx_cmp *)
1405 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1406 
1407 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1408 	cp_cons = RING_CMP(tmp_raw_cons);
1409 	rxcmp1 = (struct rx_cmp_ext *)
1410 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1411 
1412 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1413 		return -EBUSY;
1414 
1415 	cmp_type = RX_CMP_TYPE(rxcmp);
1416 
1417 	prod = rxr->rx_prod;
1418 
1419 	if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) {
1420 		bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp,
1421 			       (struct rx_tpa_start_cmp_ext *)rxcmp1);
1422 
1423 		*event |= BNXT_RX_EVENT;
1424 		goto next_rx_no_prod;
1425 
1426 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1427 		skb = bnxt_tpa_end(bp, bnapi, &tmp_raw_cons,
1428 				   (struct rx_tpa_end_cmp *)rxcmp,
1429 				   (struct rx_tpa_end_cmp_ext *)rxcmp1, event);
1430 
1431 		if (unlikely(IS_ERR(skb)))
1432 			return -EBUSY;
1433 
1434 		rc = -ENOMEM;
1435 		if (likely(skb)) {
1436 			skb_record_rx_queue(skb, bnapi->index);
1437 			napi_gro_receive(&bnapi->napi, skb);
1438 			rc = 1;
1439 		}
1440 		*event |= BNXT_RX_EVENT;
1441 		goto next_rx_no_prod;
1442 	}
1443 
1444 	cons = rxcmp->rx_cmp_opaque;
1445 	rx_buf = &rxr->rx_buf_ring[cons];
1446 	data = rx_buf->data;
1447 	data_ptr = rx_buf->data_ptr;
1448 	if (unlikely(cons != rxr->rx_next_cons)) {
1449 		int rc1 = bnxt_discard_rx(bp, bnapi, raw_cons, rxcmp);
1450 
1451 		bnxt_sched_reset(bp, rxr);
1452 		return rc1;
1453 	}
1454 	prefetch(data_ptr);
1455 
1456 	misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1);
1457 	agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT;
1458 
1459 	if (agg_bufs) {
1460 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1461 			return -EBUSY;
1462 
1463 		cp_cons = NEXT_CMP(cp_cons);
1464 		*event |= BNXT_AGG_EVENT;
1465 	}
1466 	*event |= BNXT_RX_EVENT;
1467 
1468 	rx_buf->data = NULL;
1469 	if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
1470 		bnxt_reuse_rx_data(rxr, cons, data);
1471 		if (agg_bufs)
1472 			bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
1473 
1474 		rc = -EIO;
1475 		goto next_rx;
1476 	}
1477 
1478 	len = le32_to_cpu(rxcmp->rx_cmp_len_flags_type) >> RX_CMP_LEN_SHIFT;
1479 	dma_addr = rx_buf->mapping;
1480 
1481 	if (bnxt_rx_xdp(bp, rxr, cons, data, &data_ptr, &len, event)) {
1482 		rc = 1;
1483 		goto next_rx;
1484 	}
1485 
1486 	if (len <= bp->rx_copy_thresh) {
1487 		skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr);
1488 		bnxt_reuse_rx_data(rxr, cons, data);
1489 		if (!skb) {
1490 			rc = -ENOMEM;
1491 			goto next_rx;
1492 		}
1493 	} else {
1494 		u32 payload;
1495 
1496 		if (rx_buf->data_ptr == data_ptr)
1497 			payload = misc & RX_CMP_PAYLOAD_OFFSET;
1498 		else
1499 			payload = 0;
1500 		skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr,
1501 				      payload | len);
1502 		if (!skb) {
1503 			rc = -ENOMEM;
1504 			goto next_rx;
1505 		}
1506 	}
1507 
1508 	if (agg_bufs) {
1509 		skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
1510 		if (!skb) {
1511 			rc = -ENOMEM;
1512 			goto next_rx;
1513 		}
1514 	}
1515 
1516 	if (RX_CMP_HASH_VALID(rxcmp)) {
1517 		u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
1518 		enum pkt_hash_types type = PKT_HASH_TYPE_L4;
1519 
1520 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1521 		if (hash_type != 1 && hash_type != 3)
1522 			type = PKT_HASH_TYPE_L3;
1523 		skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
1524 	}
1525 
1526 	skb->protocol = eth_type_trans(skb, dev);
1527 
1528 	if ((rxcmp1->rx_cmp_flags2 &
1529 	     cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) &&
1530 	    (skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
1531 		u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
1532 		u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_VID_MASK;
1533 		u16 vlan_proto = meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT;
1534 
1535 		__vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1536 	}
1537 
1538 	skb_checksum_none_assert(skb);
1539 	if (RX_CMP_L4_CS_OK(rxcmp1)) {
1540 		if (dev->features & NETIF_F_RXCSUM) {
1541 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1542 			skb->csum_level = RX_CMP_ENCAP(rxcmp1);
1543 		}
1544 	} else {
1545 		if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
1546 			if (dev->features & NETIF_F_RXCSUM)
1547 				cpr->rx_l4_csum_errors++;
1548 		}
1549 	}
1550 
1551 	skb_record_rx_queue(skb, bnapi->index);
1552 	napi_gro_receive(&bnapi->napi, skb);
1553 	rc = 1;
1554 
1555 next_rx:
1556 	rxr->rx_prod = NEXT_RX(prod);
1557 	rxr->rx_next_cons = NEXT_RX(cons);
1558 
1559 next_rx_no_prod:
1560 	*raw_cons = tmp_raw_cons;
1561 
1562 	return rc;
1563 }
1564 
1565 #define BNXT_GET_EVENT_PORT(data)	\
1566 	((data) &			\
1567 	 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK)
1568 
1569 static int bnxt_async_event_process(struct bnxt *bp,
1570 				    struct hwrm_async_event_cmpl *cmpl)
1571 {
1572 	u16 event_id = le16_to_cpu(cmpl->event_id);
1573 
1574 	/* TODO CHIMP_FW: Define event id's for link change, error etc */
1575 	switch (event_id) {
1576 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: {
1577 		u32 data1 = le32_to_cpu(cmpl->event_data1);
1578 		struct bnxt_link_info *link_info = &bp->link_info;
1579 
1580 		if (BNXT_VF(bp))
1581 			goto async_event_process_exit;
1582 		if (data1 & 0x20000) {
1583 			u16 fw_speed = link_info->force_link_speed;
1584 			u32 speed = bnxt_fw_to_ethtool_speed(fw_speed);
1585 
1586 			netdev_warn(bp->dev, "Link speed %d no longer supported\n",
1587 				    speed);
1588 		}
1589 		set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event);
1590 		/* fall thru */
1591 	}
1592 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
1593 		set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
1594 		break;
1595 	case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD:
1596 		set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event);
1597 		break;
1598 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: {
1599 		u32 data1 = le32_to_cpu(cmpl->event_data1);
1600 		u16 port_id = BNXT_GET_EVENT_PORT(data1);
1601 
1602 		if (BNXT_VF(bp))
1603 			break;
1604 
1605 		if (bp->pf.port_id != port_id)
1606 			break;
1607 
1608 		set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event);
1609 		break;
1610 	}
1611 	case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE:
1612 		if (BNXT_PF(bp))
1613 			goto async_event_process_exit;
1614 		set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event);
1615 		break;
1616 	default:
1617 		goto async_event_process_exit;
1618 	}
1619 	schedule_work(&bp->sp_task);
1620 async_event_process_exit:
1621 	bnxt_ulp_async_events(bp, cmpl);
1622 	return 0;
1623 }
1624 
1625 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
1626 {
1627 	u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
1628 	struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
1629 	struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
1630 				(struct hwrm_fwd_req_cmpl *)txcmp;
1631 
1632 	switch (cmpl_type) {
1633 	case CMPL_BASE_TYPE_HWRM_DONE:
1634 		seq_id = le16_to_cpu(h_cmpl->sequence_id);
1635 		if (seq_id == bp->hwrm_intr_seq_id)
1636 			bp->hwrm_intr_seq_id = HWRM_SEQ_ID_INVALID;
1637 		else
1638 			netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id);
1639 		break;
1640 
1641 	case CMPL_BASE_TYPE_HWRM_FWD_REQ:
1642 		vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
1643 
1644 		if ((vf_id < bp->pf.first_vf_id) ||
1645 		    (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
1646 			netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
1647 				   vf_id);
1648 			return -EINVAL;
1649 		}
1650 
1651 		set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
1652 		set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event);
1653 		schedule_work(&bp->sp_task);
1654 		break;
1655 
1656 	case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
1657 		bnxt_async_event_process(bp,
1658 					 (struct hwrm_async_event_cmpl *)txcmp);
1659 
1660 	default:
1661 		break;
1662 	}
1663 
1664 	return 0;
1665 }
1666 
1667 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
1668 {
1669 	struct bnxt_napi *bnapi = dev_instance;
1670 	struct bnxt *bp = bnapi->bp;
1671 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1672 	u32 cons = RING_CMP(cpr->cp_raw_cons);
1673 
1674 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1675 	napi_schedule(&bnapi->napi);
1676 	return IRQ_HANDLED;
1677 }
1678 
1679 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
1680 {
1681 	u32 raw_cons = cpr->cp_raw_cons;
1682 	u16 cons = RING_CMP(raw_cons);
1683 	struct tx_cmp *txcmp;
1684 
1685 	txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1686 
1687 	return TX_CMP_VALID(txcmp, raw_cons);
1688 }
1689 
1690 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
1691 {
1692 	struct bnxt_napi *bnapi = dev_instance;
1693 	struct bnxt *bp = bnapi->bp;
1694 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1695 	u32 cons = RING_CMP(cpr->cp_raw_cons);
1696 	u32 int_status;
1697 
1698 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1699 
1700 	if (!bnxt_has_work(bp, cpr)) {
1701 		int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
1702 		/* return if erroneous interrupt */
1703 		if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
1704 			return IRQ_NONE;
1705 	}
1706 
1707 	/* disable ring IRQ */
1708 	BNXT_CP_DB_IRQ_DIS(cpr->cp_doorbell);
1709 
1710 	/* Return here if interrupt is shared and is disabled. */
1711 	if (unlikely(atomic_read(&bp->intr_sem) != 0))
1712 		return IRQ_HANDLED;
1713 
1714 	napi_schedule(&bnapi->napi);
1715 	return IRQ_HANDLED;
1716 }
1717 
1718 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
1719 {
1720 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1721 	u32 raw_cons = cpr->cp_raw_cons;
1722 	u32 cons;
1723 	int tx_pkts = 0;
1724 	int rx_pkts = 0;
1725 	u8 event = 0;
1726 	struct tx_cmp *txcmp;
1727 
1728 	while (1) {
1729 		int rc;
1730 
1731 		cons = RING_CMP(raw_cons);
1732 		txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1733 
1734 		if (!TX_CMP_VALID(txcmp, raw_cons))
1735 			break;
1736 
1737 		/* The valid test of the entry must be done first before
1738 		 * reading any further.
1739 		 */
1740 		dma_rmb();
1741 		if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) {
1742 			tx_pkts++;
1743 			/* return full budget so NAPI will complete. */
1744 			if (unlikely(tx_pkts > bp->tx_wake_thresh))
1745 				rx_pkts = budget;
1746 		} else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
1747 			rc = bnxt_rx_pkt(bp, bnapi, &raw_cons, &event);
1748 			if (likely(rc >= 0))
1749 				rx_pkts += rc;
1750 			else if (rc == -EBUSY)	/* partial completion */
1751 				break;
1752 		} else if (unlikely((TX_CMP_TYPE(txcmp) ==
1753 				     CMPL_BASE_TYPE_HWRM_DONE) ||
1754 				    (TX_CMP_TYPE(txcmp) ==
1755 				     CMPL_BASE_TYPE_HWRM_FWD_REQ) ||
1756 				    (TX_CMP_TYPE(txcmp) ==
1757 				     CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) {
1758 			bnxt_hwrm_handler(bp, txcmp);
1759 		}
1760 		raw_cons = NEXT_RAW_CMP(raw_cons);
1761 
1762 		if (rx_pkts == budget)
1763 			break;
1764 	}
1765 
1766 	if (event & BNXT_TX_EVENT) {
1767 		struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
1768 		void __iomem *db = txr->tx_doorbell;
1769 		u16 prod = txr->tx_prod;
1770 
1771 		/* Sync BD data before updating doorbell */
1772 		wmb();
1773 
1774 		writel(DB_KEY_TX | prod, db);
1775 		writel(DB_KEY_TX | prod, db);
1776 	}
1777 
1778 	cpr->cp_raw_cons = raw_cons;
1779 	/* ACK completion ring before freeing tx ring and producing new
1780 	 * buffers in rx/agg rings to prevent overflowing the completion
1781 	 * ring.
1782 	 */
1783 	BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
1784 
1785 	if (tx_pkts)
1786 		bnapi->tx_int(bp, bnapi, tx_pkts);
1787 
1788 	if (event & BNXT_RX_EVENT) {
1789 		struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1790 
1791 		writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
1792 		writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
1793 		if (event & BNXT_AGG_EVENT) {
1794 			writel(DB_KEY_RX | rxr->rx_agg_prod,
1795 			       rxr->rx_agg_doorbell);
1796 			writel(DB_KEY_RX | rxr->rx_agg_prod,
1797 			       rxr->rx_agg_doorbell);
1798 		}
1799 	}
1800 	return rx_pkts;
1801 }
1802 
1803 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget)
1804 {
1805 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
1806 	struct bnxt *bp = bnapi->bp;
1807 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1808 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1809 	struct tx_cmp *txcmp;
1810 	struct rx_cmp_ext *rxcmp1;
1811 	u32 cp_cons, tmp_raw_cons;
1812 	u32 raw_cons = cpr->cp_raw_cons;
1813 	u32 rx_pkts = 0;
1814 	u8 event = 0;
1815 
1816 	while (1) {
1817 		int rc;
1818 
1819 		cp_cons = RING_CMP(raw_cons);
1820 		txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1821 
1822 		if (!TX_CMP_VALID(txcmp, raw_cons))
1823 			break;
1824 
1825 		if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
1826 			tmp_raw_cons = NEXT_RAW_CMP(raw_cons);
1827 			cp_cons = RING_CMP(tmp_raw_cons);
1828 			rxcmp1 = (struct rx_cmp_ext *)
1829 			  &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1830 
1831 			if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1832 				break;
1833 
1834 			/* force an error to recycle the buffer */
1835 			rxcmp1->rx_cmp_cfa_code_errors_v2 |=
1836 				cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
1837 
1838 			rc = bnxt_rx_pkt(bp, bnapi, &raw_cons, &event);
1839 			if (likely(rc == -EIO))
1840 				rx_pkts++;
1841 			else if (rc == -EBUSY)	/* partial completion */
1842 				break;
1843 		} else if (unlikely(TX_CMP_TYPE(txcmp) ==
1844 				    CMPL_BASE_TYPE_HWRM_DONE)) {
1845 			bnxt_hwrm_handler(bp, txcmp);
1846 		} else {
1847 			netdev_err(bp->dev,
1848 				   "Invalid completion received on special ring\n");
1849 		}
1850 		raw_cons = NEXT_RAW_CMP(raw_cons);
1851 
1852 		if (rx_pkts == budget)
1853 			break;
1854 	}
1855 
1856 	cpr->cp_raw_cons = raw_cons;
1857 	BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
1858 	writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
1859 	writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
1860 
1861 	if (event & BNXT_AGG_EVENT) {
1862 		writel(DB_KEY_RX | rxr->rx_agg_prod, rxr->rx_agg_doorbell);
1863 		writel(DB_KEY_RX | rxr->rx_agg_prod, rxr->rx_agg_doorbell);
1864 	}
1865 
1866 	if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) {
1867 		napi_complete_done(napi, rx_pkts);
1868 		BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
1869 	}
1870 	return rx_pkts;
1871 }
1872 
1873 static int bnxt_poll(struct napi_struct *napi, int budget)
1874 {
1875 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
1876 	struct bnxt *bp = bnapi->bp;
1877 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1878 	int work_done = 0;
1879 
1880 	while (1) {
1881 		work_done += bnxt_poll_work(bp, bnapi, budget - work_done);
1882 
1883 		if (work_done >= budget)
1884 			break;
1885 
1886 		if (!bnxt_has_work(bp, cpr)) {
1887 			if (napi_complete_done(napi, work_done))
1888 				BNXT_CP_DB_REARM(cpr->cp_doorbell,
1889 						 cpr->cp_raw_cons);
1890 			break;
1891 		}
1892 	}
1893 	mmiowb();
1894 	return work_done;
1895 }
1896 
1897 static void bnxt_free_tx_skbs(struct bnxt *bp)
1898 {
1899 	int i, max_idx;
1900 	struct pci_dev *pdev = bp->pdev;
1901 
1902 	if (!bp->tx_ring)
1903 		return;
1904 
1905 	max_idx = bp->tx_nr_pages * TX_DESC_CNT;
1906 	for (i = 0; i < bp->tx_nr_rings; i++) {
1907 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
1908 		int j;
1909 
1910 		for (j = 0; j < max_idx;) {
1911 			struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
1912 			struct sk_buff *skb = tx_buf->skb;
1913 			int k, last;
1914 
1915 			if (!skb) {
1916 				j++;
1917 				continue;
1918 			}
1919 
1920 			tx_buf->skb = NULL;
1921 
1922 			if (tx_buf->is_push) {
1923 				dev_kfree_skb(skb);
1924 				j += 2;
1925 				continue;
1926 			}
1927 
1928 			dma_unmap_single(&pdev->dev,
1929 					 dma_unmap_addr(tx_buf, mapping),
1930 					 skb_headlen(skb),
1931 					 PCI_DMA_TODEVICE);
1932 
1933 			last = tx_buf->nr_frags;
1934 			j += 2;
1935 			for (k = 0; k < last; k++, j++) {
1936 				int ring_idx = j & bp->tx_ring_mask;
1937 				skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
1938 
1939 				tx_buf = &txr->tx_buf_ring[ring_idx];
1940 				dma_unmap_page(
1941 					&pdev->dev,
1942 					dma_unmap_addr(tx_buf, mapping),
1943 					skb_frag_size(frag), PCI_DMA_TODEVICE);
1944 			}
1945 			dev_kfree_skb(skb);
1946 		}
1947 		netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
1948 	}
1949 }
1950 
1951 static void bnxt_free_rx_skbs(struct bnxt *bp)
1952 {
1953 	int i, max_idx, max_agg_idx;
1954 	struct pci_dev *pdev = bp->pdev;
1955 
1956 	if (!bp->rx_ring)
1957 		return;
1958 
1959 	max_idx = bp->rx_nr_pages * RX_DESC_CNT;
1960 	max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
1961 	for (i = 0; i < bp->rx_nr_rings; i++) {
1962 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
1963 		int j;
1964 
1965 		if (rxr->rx_tpa) {
1966 			for (j = 0; j < MAX_TPA; j++) {
1967 				struct bnxt_tpa_info *tpa_info =
1968 							&rxr->rx_tpa[j];
1969 				u8 *data = tpa_info->data;
1970 
1971 				if (!data)
1972 					continue;
1973 
1974 				dma_unmap_single(&pdev->dev, tpa_info->mapping,
1975 						 bp->rx_buf_use_size,
1976 						 bp->rx_dir);
1977 
1978 				tpa_info->data = NULL;
1979 
1980 				kfree(data);
1981 			}
1982 		}
1983 
1984 		for (j = 0; j < max_idx; j++) {
1985 			struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[j];
1986 			void *data = rx_buf->data;
1987 
1988 			if (!data)
1989 				continue;
1990 
1991 			dma_unmap_single(&pdev->dev, rx_buf->mapping,
1992 					 bp->rx_buf_use_size, bp->rx_dir);
1993 
1994 			rx_buf->data = NULL;
1995 
1996 			if (BNXT_RX_PAGE_MODE(bp))
1997 				__free_page(data);
1998 			else
1999 				kfree(data);
2000 		}
2001 
2002 		for (j = 0; j < max_agg_idx; j++) {
2003 			struct bnxt_sw_rx_agg_bd *rx_agg_buf =
2004 				&rxr->rx_agg_ring[j];
2005 			struct page *page = rx_agg_buf->page;
2006 
2007 			if (!page)
2008 				continue;
2009 
2010 			dma_unmap_page(&pdev->dev, rx_agg_buf->mapping,
2011 				       BNXT_RX_PAGE_SIZE, PCI_DMA_FROMDEVICE);
2012 
2013 			rx_agg_buf->page = NULL;
2014 			__clear_bit(j, rxr->rx_agg_bmap);
2015 
2016 			__free_page(page);
2017 		}
2018 		if (rxr->rx_page) {
2019 			__free_page(rxr->rx_page);
2020 			rxr->rx_page = NULL;
2021 		}
2022 	}
2023 }
2024 
2025 static void bnxt_free_skbs(struct bnxt *bp)
2026 {
2027 	bnxt_free_tx_skbs(bp);
2028 	bnxt_free_rx_skbs(bp);
2029 }
2030 
2031 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
2032 {
2033 	struct pci_dev *pdev = bp->pdev;
2034 	int i;
2035 
2036 	for (i = 0; i < ring->nr_pages; i++) {
2037 		if (!ring->pg_arr[i])
2038 			continue;
2039 
2040 		dma_free_coherent(&pdev->dev, ring->page_size,
2041 				  ring->pg_arr[i], ring->dma_arr[i]);
2042 
2043 		ring->pg_arr[i] = NULL;
2044 	}
2045 	if (ring->pg_tbl) {
2046 		dma_free_coherent(&pdev->dev, ring->nr_pages * 8,
2047 				  ring->pg_tbl, ring->pg_tbl_map);
2048 		ring->pg_tbl = NULL;
2049 	}
2050 	if (ring->vmem_size && *ring->vmem) {
2051 		vfree(*ring->vmem);
2052 		*ring->vmem = NULL;
2053 	}
2054 }
2055 
2056 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
2057 {
2058 	int i;
2059 	struct pci_dev *pdev = bp->pdev;
2060 
2061 	if (ring->nr_pages > 1) {
2062 		ring->pg_tbl = dma_alloc_coherent(&pdev->dev,
2063 						  ring->nr_pages * 8,
2064 						  &ring->pg_tbl_map,
2065 						  GFP_KERNEL);
2066 		if (!ring->pg_tbl)
2067 			return -ENOMEM;
2068 	}
2069 
2070 	for (i = 0; i < ring->nr_pages; i++) {
2071 		ring->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
2072 						     ring->page_size,
2073 						     &ring->dma_arr[i],
2074 						     GFP_KERNEL);
2075 		if (!ring->pg_arr[i])
2076 			return -ENOMEM;
2077 
2078 		if (ring->nr_pages > 1)
2079 			ring->pg_tbl[i] = cpu_to_le64(ring->dma_arr[i]);
2080 	}
2081 
2082 	if (ring->vmem_size) {
2083 		*ring->vmem = vzalloc(ring->vmem_size);
2084 		if (!(*ring->vmem))
2085 			return -ENOMEM;
2086 	}
2087 	return 0;
2088 }
2089 
2090 static void bnxt_free_rx_rings(struct bnxt *bp)
2091 {
2092 	int i;
2093 
2094 	if (!bp->rx_ring)
2095 		return;
2096 
2097 	for (i = 0; i < bp->rx_nr_rings; i++) {
2098 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2099 		struct bnxt_ring_struct *ring;
2100 
2101 		if (rxr->xdp_prog)
2102 			bpf_prog_put(rxr->xdp_prog);
2103 
2104 		kfree(rxr->rx_tpa);
2105 		rxr->rx_tpa = NULL;
2106 
2107 		kfree(rxr->rx_agg_bmap);
2108 		rxr->rx_agg_bmap = NULL;
2109 
2110 		ring = &rxr->rx_ring_struct;
2111 		bnxt_free_ring(bp, ring);
2112 
2113 		ring = &rxr->rx_agg_ring_struct;
2114 		bnxt_free_ring(bp, ring);
2115 	}
2116 }
2117 
2118 static int bnxt_alloc_rx_rings(struct bnxt *bp)
2119 {
2120 	int i, rc, agg_rings = 0, tpa_rings = 0;
2121 
2122 	if (!bp->rx_ring)
2123 		return -ENOMEM;
2124 
2125 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
2126 		agg_rings = 1;
2127 
2128 	if (bp->flags & BNXT_FLAG_TPA)
2129 		tpa_rings = 1;
2130 
2131 	for (i = 0; i < bp->rx_nr_rings; i++) {
2132 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2133 		struct bnxt_ring_struct *ring;
2134 
2135 		ring = &rxr->rx_ring_struct;
2136 
2137 		rc = bnxt_alloc_ring(bp, ring);
2138 		if (rc)
2139 			return rc;
2140 
2141 		if (agg_rings) {
2142 			u16 mem_size;
2143 
2144 			ring = &rxr->rx_agg_ring_struct;
2145 			rc = bnxt_alloc_ring(bp, ring);
2146 			if (rc)
2147 				return rc;
2148 
2149 			rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
2150 			mem_size = rxr->rx_agg_bmap_size / 8;
2151 			rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
2152 			if (!rxr->rx_agg_bmap)
2153 				return -ENOMEM;
2154 
2155 			if (tpa_rings) {
2156 				rxr->rx_tpa = kcalloc(MAX_TPA,
2157 						sizeof(struct bnxt_tpa_info),
2158 						GFP_KERNEL);
2159 				if (!rxr->rx_tpa)
2160 					return -ENOMEM;
2161 			}
2162 		}
2163 	}
2164 	return 0;
2165 }
2166 
2167 static void bnxt_free_tx_rings(struct bnxt *bp)
2168 {
2169 	int i;
2170 	struct pci_dev *pdev = bp->pdev;
2171 
2172 	if (!bp->tx_ring)
2173 		return;
2174 
2175 	for (i = 0; i < bp->tx_nr_rings; i++) {
2176 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2177 		struct bnxt_ring_struct *ring;
2178 
2179 		if (txr->tx_push) {
2180 			dma_free_coherent(&pdev->dev, bp->tx_push_size,
2181 					  txr->tx_push, txr->tx_push_mapping);
2182 			txr->tx_push = NULL;
2183 		}
2184 
2185 		ring = &txr->tx_ring_struct;
2186 
2187 		bnxt_free_ring(bp, ring);
2188 	}
2189 }
2190 
2191 static int bnxt_alloc_tx_rings(struct bnxt *bp)
2192 {
2193 	int i, j, rc;
2194 	struct pci_dev *pdev = bp->pdev;
2195 
2196 	bp->tx_push_size = 0;
2197 	if (bp->tx_push_thresh) {
2198 		int push_size;
2199 
2200 		push_size  = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
2201 					bp->tx_push_thresh);
2202 
2203 		if (push_size > 256) {
2204 			push_size = 0;
2205 			bp->tx_push_thresh = 0;
2206 		}
2207 
2208 		bp->tx_push_size = push_size;
2209 	}
2210 
2211 	for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
2212 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2213 		struct bnxt_ring_struct *ring;
2214 
2215 		ring = &txr->tx_ring_struct;
2216 
2217 		rc = bnxt_alloc_ring(bp, ring);
2218 		if (rc)
2219 			return rc;
2220 
2221 		if (bp->tx_push_size) {
2222 			dma_addr_t mapping;
2223 
2224 			/* One pre-allocated DMA buffer to backup
2225 			 * TX push operation
2226 			 */
2227 			txr->tx_push = dma_alloc_coherent(&pdev->dev,
2228 						bp->tx_push_size,
2229 						&txr->tx_push_mapping,
2230 						GFP_KERNEL);
2231 
2232 			if (!txr->tx_push)
2233 				return -ENOMEM;
2234 
2235 			mapping = txr->tx_push_mapping +
2236 				sizeof(struct tx_push_bd);
2237 			txr->data_mapping = cpu_to_le64(mapping);
2238 
2239 			memset(txr->tx_push, 0, sizeof(struct tx_push_bd));
2240 		}
2241 		ring->queue_id = bp->q_info[j].queue_id;
2242 		if (i < bp->tx_nr_rings_xdp)
2243 			continue;
2244 		if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1))
2245 			j++;
2246 	}
2247 	return 0;
2248 }
2249 
2250 static void bnxt_free_cp_rings(struct bnxt *bp)
2251 {
2252 	int i;
2253 
2254 	if (!bp->bnapi)
2255 		return;
2256 
2257 	for (i = 0; i < bp->cp_nr_rings; i++) {
2258 		struct bnxt_napi *bnapi = bp->bnapi[i];
2259 		struct bnxt_cp_ring_info *cpr;
2260 		struct bnxt_ring_struct *ring;
2261 
2262 		if (!bnapi)
2263 			continue;
2264 
2265 		cpr = &bnapi->cp_ring;
2266 		ring = &cpr->cp_ring_struct;
2267 
2268 		bnxt_free_ring(bp, ring);
2269 	}
2270 }
2271 
2272 static int bnxt_alloc_cp_rings(struct bnxt *bp)
2273 {
2274 	int i, rc;
2275 
2276 	for (i = 0; i < bp->cp_nr_rings; i++) {
2277 		struct bnxt_napi *bnapi = bp->bnapi[i];
2278 		struct bnxt_cp_ring_info *cpr;
2279 		struct bnxt_ring_struct *ring;
2280 
2281 		if (!bnapi)
2282 			continue;
2283 
2284 		cpr = &bnapi->cp_ring;
2285 		ring = &cpr->cp_ring_struct;
2286 
2287 		rc = bnxt_alloc_ring(bp, ring);
2288 		if (rc)
2289 			return rc;
2290 	}
2291 	return 0;
2292 }
2293 
2294 static void bnxt_init_ring_struct(struct bnxt *bp)
2295 {
2296 	int i;
2297 
2298 	for (i = 0; i < bp->cp_nr_rings; i++) {
2299 		struct bnxt_napi *bnapi = bp->bnapi[i];
2300 		struct bnxt_cp_ring_info *cpr;
2301 		struct bnxt_rx_ring_info *rxr;
2302 		struct bnxt_tx_ring_info *txr;
2303 		struct bnxt_ring_struct *ring;
2304 
2305 		if (!bnapi)
2306 			continue;
2307 
2308 		cpr = &bnapi->cp_ring;
2309 		ring = &cpr->cp_ring_struct;
2310 		ring->nr_pages = bp->cp_nr_pages;
2311 		ring->page_size = HW_CMPD_RING_SIZE;
2312 		ring->pg_arr = (void **)cpr->cp_desc_ring;
2313 		ring->dma_arr = cpr->cp_desc_mapping;
2314 		ring->vmem_size = 0;
2315 
2316 		rxr = bnapi->rx_ring;
2317 		if (!rxr)
2318 			goto skip_rx;
2319 
2320 		ring = &rxr->rx_ring_struct;
2321 		ring->nr_pages = bp->rx_nr_pages;
2322 		ring->page_size = HW_RXBD_RING_SIZE;
2323 		ring->pg_arr = (void **)rxr->rx_desc_ring;
2324 		ring->dma_arr = rxr->rx_desc_mapping;
2325 		ring->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
2326 		ring->vmem = (void **)&rxr->rx_buf_ring;
2327 
2328 		ring = &rxr->rx_agg_ring_struct;
2329 		ring->nr_pages = bp->rx_agg_nr_pages;
2330 		ring->page_size = HW_RXBD_RING_SIZE;
2331 		ring->pg_arr = (void **)rxr->rx_agg_desc_ring;
2332 		ring->dma_arr = rxr->rx_agg_desc_mapping;
2333 		ring->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
2334 		ring->vmem = (void **)&rxr->rx_agg_ring;
2335 
2336 skip_rx:
2337 		txr = bnapi->tx_ring;
2338 		if (!txr)
2339 			continue;
2340 
2341 		ring = &txr->tx_ring_struct;
2342 		ring->nr_pages = bp->tx_nr_pages;
2343 		ring->page_size = HW_RXBD_RING_SIZE;
2344 		ring->pg_arr = (void **)txr->tx_desc_ring;
2345 		ring->dma_arr = txr->tx_desc_mapping;
2346 		ring->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
2347 		ring->vmem = (void **)&txr->tx_buf_ring;
2348 	}
2349 }
2350 
2351 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
2352 {
2353 	int i;
2354 	u32 prod;
2355 	struct rx_bd **rx_buf_ring;
2356 
2357 	rx_buf_ring = (struct rx_bd **)ring->pg_arr;
2358 	for (i = 0, prod = 0; i < ring->nr_pages; i++) {
2359 		int j;
2360 		struct rx_bd *rxbd;
2361 
2362 		rxbd = rx_buf_ring[i];
2363 		if (!rxbd)
2364 			continue;
2365 
2366 		for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
2367 			rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
2368 			rxbd->rx_bd_opaque = prod;
2369 		}
2370 	}
2371 }
2372 
2373 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
2374 {
2375 	struct net_device *dev = bp->dev;
2376 	struct bnxt_rx_ring_info *rxr;
2377 	struct bnxt_ring_struct *ring;
2378 	u32 prod, type;
2379 	int i;
2380 
2381 	type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
2382 		RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
2383 
2384 	if (NET_IP_ALIGN == 2)
2385 		type |= RX_BD_FLAGS_SOP;
2386 
2387 	rxr = &bp->rx_ring[ring_nr];
2388 	ring = &rxr->rx_ring_struct;
2389 	bnxt_init_rxbd_pages(ring, type);
2390 
2391 	if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) {
2392 		rxr->xdp_prog = bpf_prog_add(bp->xdp_prog, 1);
2393 		if (IS_ERR(rxr->xdp_prog)) {
2394 			int rc = PTR_ERR(rxr->xdp_prog);
2395 
2396 			rxr->xdp_prog = NULL;
2397 			return rc;
2398 		}
2399 	}
2400 	prod = rxr->rx_prod;
2401 	for (i = 0; i < bp->rx_ring_size; i++) {
2402 		if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL) != 0) {
2403 			netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
2404 				    ring_nr, i, bp->rx_ring_size);
2405 			break;
2406 		}
2407 		prod = NEXT_RX(prod);
2408 	}
2409 	rxr->rx_prod = prod;
2410 	ring->fw_ring_id = INVALID_HW_RING_ID;
2411 
2412 	ring = &rxr->rx_agg_ring_struct;
2413 	ring->fw_ring_id = INVALID_HW_RING_ID;
2414 
2415 	if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
2416 		return 0;
2417 
2418 	type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) |
2419 		RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
2420 
2421 	bnxt_init_rxbd_pages(ring, type);
2422 
2423 	prod = rxr->rx_agg_prod;
2424 	for (i = 0; i < bp->rx_agg_ring_size; i++) {
2425 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL) != 0) {
2426 			netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
2427 				    ring_nr, i, bp->rx_ring_size);
2428 			break;
2429 		}
2430 		prod = NEXT_RX_AGG(prod);
2431 	}
2432 	rxr->rx_agg_prod = prod;
2433 
2434 	if (bp->flags & BNXT_FLAG_TPA) {
2435 		if (rxr->rx_tpa) {
2436 			u8 *data;
2437 			dma_addr_t mapping;
2438 
2439 			for (i = 0; i < MAX_TPA; i++) {
2440 				data = __bnxt_alloc_rx_data(bp, &mapping,
2441 							    GFP_KERNEL);
2442 				if (!data)
2443 					return -ENOMEM;
2444 
2445 				rxr->rx_tpa[i].data = data;
2446 				rxr->rx_tpa[i].data_ptr = data + bp->rx_offset;
2447 				rxr->rx_tpa[i].mapping = mapping;
2448 			}
2449 		} else {
2450 			netdev_err(bp->dev, "No resource allocated for LRO/GRO\n");
2451 			return -ENOMEM;
2452 		}
2453 	}
2454 
2455 	return 0;
2456 }
2457 
2458 static int bnxt_init_rx_rings(struct bnxt *bp)
2459 {
2460 	int i, rc = 0;
2461 
2462 	if (BNXT_RX_PAGE_MODE(bp)) {
2463 		bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM;
2464 		bp->rx_dma_offset = XDP_PACKET_HEADROOM;
2465 	} else {
2466 		bp->rx_offset = BNXT_RX_OFFSET;
2467 		bp->rx_dma_offset = BNXT_RX_DMA_OFFSET;
2468 	}
2469 
2470 	for (i = 0; i < bp->rx_nr_rings; i++) {
2471 		rc = bnxt_init_one_rx_ring(bp, i);
2472 		if (rc)
2473 			break;
2474 	}
2475 
2476 	return rc;
2477 }
2478 
2479 static int bnxt_init_tx_rings(struct bnxt *bp)
2480 {
2481 	u16 i;
2482 
2483 	bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
2484 				   MAX_SKB_FRAGS + 1);
2485 
2486 	for (i = 0; i < bp->tx_nr_rings; i++) {
2487 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2488 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
2489 
2490 		ring->fw_ring_id = INVALID_HW_RING_ID;
2491 	}
2492 
2493 	return 0;
2494 }
2495 
2496 static void bnxt_free_ring_grps(struct bnxt *bp)
2497 {
2498 	kfree(bp->grp_info);
2499 	bp->grp_info = NULL;
2500 }
2501 
2502 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
2503 {
2504 	int i;
2505 
2506 	if (irq_re_init) {
2507 		bp->grp_info = kcalloc(bp->cp_nr_rings,
2508 				       sizeof(struct bnxt_ring_grp_info),
2509 				       GFP_KERNEL);
2510 		if (!bp->grp_info)
2511 			return -ENOMEM;
2512 	}
2513 	for (i = 0; i < bp->cp_nr_rings; i++) {
2514 		if (irq_re_init)
2515 			bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
2516 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
2517 		bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
2518 		bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
2519 		bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
2520 	}
2521 	return 0;
2522 }
2523 
2524 static void bnxt_free_vnics(struct bnxt *bp)
2525 {
2526 	kfree(bp->vnic_info);
2527 	bp->vnic_info = NULL;
2528 	bp->nr_vnics = 0;
2529 }
2530 
2531 static int bnxt_alloc_vnics(struct bnxt *bp)
2532 {
2533 	int num_vnics = 1;
2534 
2535 #ifdef CONFIG_RFS_ACCEL
2536 	if (bp->flags & BNXT_FLAG_RFS)
2537 		num_vnics += bp->rx_nr_rings;
2538 #endif
2539 
2540 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
2541 		num_vnics++;
2542 
2543 	bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
2544 				GFP_KERNEL);
2545 	if (!bp->vnic_info)
2546 		return -ENOMEM;
2547 
2548 	bp->nr_vnics = num_vnics;
2549 	return 0;
2550 }
2551 
2552 static void bnxt_init_vnics(struct bnxt *bp)
2553 {
2554 	int i;
2555 
2556 	for (i = 0; i < bp->nr_vnics; i++) {
2557 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2558 
2559 		vnic->fw_vnic_id = INVALID_HW_RING_ID;
2560 		vnic->fw_rss_cos_lb_ctx[0] = INVALID_HW_RING_ID;
2561 		vnic->fw_rss_cos_lb_ctx[1] = INVALID_HW_RING_ID;
2562 		vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
2563 
2564 		if (bp->vnic_info[i].rss_hash_key) {
2565 			if (i == 0)
2566 				prandom_bytes(vnic->rss_hash_key,
2567 					      HW_HASH_KEY_SIZE);
2568 			else
2569 				memcpy(vnic->rss_hash_key,
2570 				       bp->vnic_info[0].rss_hash_key,
2571 				       HW_HASH_KEY_SIZE);
2572 		}
2573 	}
2574 }
2575 
2576 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
2577 {
2578 	int pages;
2579 
2580 	pages = ring_size / desc_per_pg;
2581 
2582 	if (!pages)
2583 		return 1;
2584 
2585 	pages++;
2586 
2587 	while (pages & (pages - 1))
2588 		pages++;
2589 
2590 	return pages;
2591 }
2592 
2593 void bnxt_set_tpa_flags(struct bnxt *bp)
2594 {
2595 	bp->flags &= ~BNXT_FLAG_TPA;
2596 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
2597 		return;
2598 	if (bp->dev->features & NETIF_F_LRO)
2599 		bp->flags |= BNXT_FLAG_LRO;
2600 	if (bp->dev->features & NETIF_F_GRO)
2601 		bp->flags |= BNXT_FLAG_GRO;
2602 }
2603 
2604 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
2605  * be set on entry.
2606  */
2607 void bnxt_set_ring_params(struct bnxt *bp)
2608 {
2609 	u32 ring_size, rx_size, rx_space;
2610 	u32 agg_factor = 0, agg_ring_size = 0;
2611 
2612 	/* 8 for CRC and VLAN */
2613 	rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
2614 
2615 	rx_space = rx_size + NET_SKB_PAD +
2616 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2617 
2618 	bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
2619 	ring_size = bp->rx_ring_size;
2620 	bp->rx_agg_ring_size = 0;
2621 	bp->rx_agg_nr_pages = 0;
2622 
2623 	if (bp->flags & BNXT_FLAG_TPA)
2624 		agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE);
2625 
2626 	bp->flags &= ~BNXT_FLAG_JUMBO;
2627 	if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) {
2628 		u32 jumbo_factor;
2629 
2630 		bp->flags |= BNXT_FLAG_JUMBO;
2631 		jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
2632 		if (jumbo_factor > agg_factor)
2633 			agg_factor = jumbo_factor;
2634 	}
2635 	agg_ring_size = ring_size * agg_factor;
2636 
2637 	if (agg_ring_size) {
2638 		bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
2639 							RX_DESC_CNT);
2640 		if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
2641 			u32 tmp = agg_ring_size;
2642 
2643 			bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
2644 			agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
2645 			netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
2646 				    tmp, agg_ring_size);
2647 		}
2648 		bp->rx_agg_ring_size = agg_ring_size;
2649 		bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
2650 		rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
2651 		rx_space = rx_size + NET_SKB_PAD +
2652 			SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2653 	}
2654 
2655 	bp->rx_buf_use_size = rx_size;
2656 	bp->rx_buf_size = rx_space;
2657 
2658 	bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
2659 	bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
2660 
2661 	ring_size = bp->tx_ring_size;
2662 	bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
2663 	bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
2664 
2665 	ring_size = bp->rx_ring_size * (2 + agg_factor) + bp->tx_ring_size;
2666 	bp->cp_ring_size = ring_size;
2667 
2668 	bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
2669 	if (bp->cp_nr_pages > MAX_CP_PAGES) {
2670 		bp->cp_nr_pages = MAX_CP_PAGES;
2671 		bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
2672 		netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
2673 			    ring_size, bp->cp_ring_size);
2674 	}
2675 	bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
2676 	bp->cp_ring_mask = bp->cp_bit - 1;
2677 }
2678 
2679 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode)
2680 {
2681 	if (page_mode) {
2682 		if (bp->dev->mtu > BNXT_MAX_PAGE_MODE_MTU)
2683 			return -EOPNOTSUPP;
2684 		bp->dev->max_mtu = BNXT_MAX_PAGE_MODE_MTU;
2685 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
2686 		bp->flags |= BNXT_FLAG_NO_AGG_RINGS | BNXT_FLAG_RX_PAGE_MODE;
2687 		bp->dev->hw_features &= ~NETIF_F_LRO;
2688 		bp->dev->features &= ~NETIF_F_LRO;
2689 		bp->rx_dir = DMA_BIDIRECTIONAL;
2690 		bp->rx_skb_func = bnxt_rx_page_skb;
2691 	} else {
2692 		bp->dev->max_mtu = BNXT_MAX_MTU;
2693 		bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE;
2694 		bp->rx_dir = DMA_FROM_DEVICE;
2695 		bp->rx_skb_func = bnxt_rx_skb;
2696 	}
2697 	return 0;
2698 }
2699 
2700 static void bnxt_free_vnic_attributes(struct bnxt *bp)
2701 {
2702 	int i;
2703 	struct bnxt_vnic_info *vnic;
2704 	struct pci_dev *pdev = bp->pdev;
2705 
2706 	if (!bp->vnic_info)
2707 		return;
2708 
2709 	for (i = 0; i < bp->nr_vnics; i++) {
2710 		vnic = &bp->vnic_info[i];
2711 
2712 		kfree(vnic->fw_grp_ids);
2713 		vnic->fw_grp_ids = NULL;
2714 
2715 		kfree(vnic->uc_list);
2716 		vnic->uc_list = NULL;
2717 
2718 		if (vnic->mc_list) {
2719 			dma_free_coherent(&pdev->dev, vnic->mc_list_size,
2720 					  vnic->mc_list, vnic->mc_list_mapping);
2721 			vnic->mc_list = NULL;
2722 		}
2723 
2724 		if (vnic->rss_table) {
2725 			dma_free_coherent(&pdev->dev, PAGE_SIZE,
2726 					  vnic->rss_table,
2727 					  vnic->rss_table_dma_addr);
2728 			vnic->rss_table = NULL;
2729 		}
2730 
2731 		vnic->rss_hash_key = NULL;
2732 		vnic->flags = 0;
2733 	}
2734 }
2735 
2736 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
2737 {
2738 	int i, rc = 0, size;
2739 	struct bnxt_vnic_info *vnic;
2740 	struct pci_dev *pdev = bp->pdev;
2741 	int max_rings;
2742 
2743 	for (i = 0; i < bp->nr_vnics; i++) {
2744 		vnic = &bp->vnic_info[i];
2745 
2746 		if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
2747 			int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
2748 
2749 			if (mem_size > 0) {
2750 				vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
2751 				if (!vnic->uc_list) {
2752 					rc = -ENOMEM;
2753 					goto out;
2754 				}
2755 			}
2756 		}
2757 
2758 		if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
2759 			vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
2760 			vnic->mc_list =
2761 				dma_alloc_coherent(&pdev->dev,
2762 						   vnic->mc_list_size,
2763 						   &vnic->mc_list_mapping,
2764 						   GFP_KERNEL);
2765 			if (!vnic->mc_list) {
2766 				rc = -ENOMEM;
2767 				goto out;
2768 			}
2769 		}
2770 
2771 		if (vnic->flags & BNXT_VNIC_RSS_FLAG)
2772 			max_rings = bp->rx_nr_rings;
2773 		else
2774 			max_rings = 1;
2775 
2776 		vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
2777 		if (!vnic->fw_grp_ids) {
2778 			rc = -ENOMEM;
2779 			goto out;
2780 		}
2781 
2782 		if ((bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
2783 		    !(vnic->flags & BNXT_VNIC_RSS_FLAG))
2784 			continue;
2785 
2786 		/* Allocate rss table and hash key */
2787 		vnic->rss_table = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
2788 						     &vnic->rss_table_dma_addr,
2789 						     GFP_KERNEL);
2790 		if (!vnic->rss_table) {
2791 			rc = -ENOMEM;
2792 			goto out;
2793 		}
2794 
2795 		size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
2796 
2797 		vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
2798 		vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
2799 	}
2800 	return 0;
2801 
2802 out:
2803 	return rc;
2804 }
2805 
2806 static void bnxt_free_hwrm_resources(struct bnxt *bp)
2807 {
2808 	struct pci_dev *pdev = bp->pdev;
2809 
2810 	dma_free_coherent(&pdev->dev, PAGE_SIZE, bp->hwrm_cmd_resp_addr,
2811 			  bp->hwrm_cmd_resp_dma_addr);
2812 
2813 	bp->hwrm_cmd_resp_addr = NULL;
2814 	if (bp->hwrm_dbg_resp_addr) {
2815 		dma_free_coherent(&pdev->dev, HWRM_DBG_REG_BUF_SIZE,
2816 				  bp->hwrm_dbg_resp_addr,
2817 				  bp->hwrm_dbg_resp_dma_addr);
2818 
2819 		bp->hwrm_dbg_resp_addr = NULL;
2820 	}
2821 }
2822 
2823 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
2824 {
2825 	struct pci_dev *pdev = bp->pdev;
2826 
2827 	bp->hwrm_cmd_resp_addr = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
2828 						   &bp->hwrm_cmd_resp_dma_addr,
2829 						   GFP_KERNEL);
2830 	if (!bp->hwrm_cmd_resp_addr)
2831 		return -ENOMEM;
2832 	bp->hwrm_dbg_resp_addr = dma_alloc_coherent(&pdev->dev,
2833 						    HWRM_DBG_REG_BUF_SIZE,
2834 						    &bp->hwrm_dbg_resp_dma_addr,
2835 						    GFP_KERNEL);
2836 	if (!bp->hwrm_dbg_resp_addr)
2837 		netdev_warn(bp->dev, "fail to alloc debug register dma mem\n");
2838 
2839 	return 0;
2840 }
2841 
2842 static void bnxt_free_stats(struct bnxt *bp)
2843 {
2844 	u32 size, i;
2845 	struct pci_dev *pdev = bp->pdev;
2846 
2847 	if (bp->hw_rx_port_stats) {
2848 		dma_free_coherent(&pdev->dev, bp->hw_port_stats_size,
2849 				  bp->hw_rx_port_stats,
2850 				  bp->hw_rx_port_stats_map);
2851 		bp->hw_rx_port_stats = NULL;
2852 		bp->flags &= ~BNXT_FLAG_PORT_STATS;
2853 	}
2854 
2855 	if (!bp->bnapi)
2856 		return;
2857 
2858 	size = sizeof(struct ctx_hw_stats);
2859 
2860 	for (i = 0; i < bp->cp_nr_rings; i++) {
2861 		struct bnxt_napi *bnapi = bp->bnapi[i];
2862 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2863 
2864 		if (cpr->hw_stats) {
2865 			dma_free_coherent(&pdev->dev, size, cpr->hw_stats,
2866 					  cpr->hw_stats_map);
2867 			cpr->hw_stats = NULL;
2868 		}
2869 	}
2870 }
2871 
2872 static int bnxt_alloc_stats(struct bnxt *bp)
2873 {
2874 	u32 size, i;
2875 	struct pci_dev *pdev = bp->pdev;
2876 
2877 	size = sizeof(struct ctx_hw_stats);
2878 
2879 	for (i = 0; i < bp->cp_nr_rings; i++) {
2880 		struct bnxt_napi *bnapi = bp->bnapi[i];
2881 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2882 
2883 		cpr->hw_stats = dma_alloc_coherent(&pdev->dev, size,
2884 						   &cpr->hw_stats_map,
2885 						   GFP_KERNEL);
2886 		if (!cpr->hw_stats)
2887 			return -ENOMEM;
2888 
2889 		cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
2890 	}
2891 
2892 	if (BNXT_PF(bp) && bp->chip_num != CHIP_NUM_58700) {
2893 		bp->hw_port_stats_size = sizeof(struct rx_port_stats) +
2894 					 sizeof(struct tx_port_stats) + 1024;
2895 
2896 		bp->hw_rx_port_stats =
2897 			dma_alloc_coherent(&pdev->dev, bp->hw_port_stats_size,
2898 					   &bp->hw_rx_port_stats_map,
2899 					   GFP_KERNEL);
2900 		if (!bp->hw_rx_port_stats)
2901 			return -ENOMEM;
2902 
2903 		bp->hw_tx_port_stats = (void *)(bp->hw_rx_port_stats + 1) +
2904 				       512;
2905 		bp->hw_tx_port_stats_map = bp->hw_rx_port_stats_map +
2906 					   sizeof(struct rx_port_stats) + 512;
2907 		bp->flags |= BNXT_FLAG_PORT_STATS;
2908 	}
2909 	return 0;
2910 }
2911 
2912 static void bnxt_clear_ring_indices(struct bnxt *bp)
2913 {
2914 	int i;
2915 
2916 	if (!bp->bnapi)
2917 		return;
2918 
2919 	for (i = 0; i < bp->cp_nr_rings; i++) {
2920 		struct bnxt_napi *bnapi = bp->bnapi[i];
2921 		struct bnxt_cp_ring_info *cpr;
2922 		struct bnxt_rx_ring_info *rxr;
2923 		struct bnxt_tx_ring_info *txr;
2924 
2925 		if (!bnapi)
2926 			continue;
2927 
2928 		cpr = &bnapi->cp_ring;
2929 		cpr->cp_raw_cons = 0;
2930 
2931 		txr = bnapi->tx_ring;
2932 		if (txr) {
2933 			txr->tx_prod = 0;
2934 			txr->tx_cons = 0;
2935 		}
2936 
2937 		rxr = bnapi->rx_ring;
2938 		if (rxr) {
2939 			rxr->rx_prod = 0;
2940 			rxr->rx_agg_prod = 0;
2941 			rxr->rx_sw_agg_prod = 0;
2942 			rxr->rx_next_cons = 0;
2943 		}
2944 	}
2945 }
2946 
2947 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
2948 {
2949 #ifdef CONFIG_RFS_ACCEL
2950 	int i;
2951 
2952 	/* Under rtnl_lock and all our NAPIs have been disabled.  It's
2953 	 * safe to delete the hash table.
2954 	 */
2955 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
2956 		struct hlist_head *head;
2957 		struct hlist_node *tmp;
2958 		struct bnxt_ntuple_filter *fltr;
2959 
2960 		head = &bp->ntp_fltr_hash_tbl[i];
2961 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
2962 			hlist_del(&fltr->hash);
2963 			kfree(fltr);
2964 		}
2965 	}
2966 	if (irq_reinit) {
2967 		kfree(bp->ntp_fltr_bmap);
2968 		bp->ntp_fltr_bmap = NULL;
2969 	}
2970 	bp->ntp_fltr_count = 0;
2971 #endif
2972 }
2973 
2974 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
2975 {
2976 #ifdef CONFIG_RFS_ACCEL
2977 	int i, rc = 0;
2978 
2979 	if (!(bp->flags & BNXT_FLAG_RFS))
2980 		return 0;
2981 
2982 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
2983 		INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
2984 
2985 	bp->ntp_fltr_count = 0;
2986 	bp->ntp_fltr_bmap = kzalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR),
2987 				    GFP_KERNEL);
2988 
2989 	if (!bp->ntp_fltr_bmap)
2990 		rc = -ENOMEM;
2991 
2992 	return rc;
2993 #else
2994 	return 0;
2995 #endif
2996 }
2997 
2998 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
2999 {
3000 	bnxt_free_vnic_attributes(bp);
3001 	bnxt_free_tx_rings(bp);
3002 	bnxt_free_rx_rings(bp);
3003 	bnxt_free_cp_rings(bp);
3004 	bnxt_free_ntp_fltrs(bp, irq_re_init);
3005 	if (irq_re_init) {
3006 		bnxt_free_stats(bp);
3007 		bnxt_free_ring_grps(bp);
3008 		bnxt_free_vnics(bp);
3009 		kfree(bp->tx_ring_map);
3010 		bp->tx_ring_map = NULL;
3011 		kfree(bp->tx_ring);
3012 		bp->tx_ring = NULL;
3013 		kfree(bp->rx_ring);
3014 		bp->rx_ring = NULL;
3015 		kfree(bp->bnapi);
3016 		bp->bnapi = NULL;
3017 	} else {
3018 		bnxt_clear_ring_indices(bp);
3019 	}
3020 }
3021 
3022 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
3023 {
3024 	int i, j, rc, size, arr_size;
3025 	void *bnapi;
3026 
3027 	if (irq_re_init) {
3028 		/* Allocate bnapi mem pointer array and mem block for
3029 		 * all queues
3030 		 */
3031 		arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
3032 				bp->cp_nr_rings);
3033 		size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
3034 		bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
3035 		if (!bnapi)
3036 			return -ENOMEM;
3037 
3038 		bp->bnapi = bnapi;
3039 		bnapi += arr_size;
3040 		for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
3041 			bp->bnapi[i] = bnapi;
3042 			bp->bnapi[i]->index = i;
3043 			bp->bnapi[i]->bp = bp;
3044 		}
3045 
3046 		bp->rx_ring = kcalloc(bp->rx_nr_rings,
3047 				      sizeof(struct bnxt_rx_ring_info),
3048 				      GFP_KERNEL);
3049 		if (!bp->rx_ring)
3050 			return -ENOMEM;
3051 
3052 		for (i = 0; i < bp->rx_nr_rings; i++) {
3053 			bp->rx_ring[i].bnapi = bp->bnapi[i];
3054 			bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
3055 		}
3056 
3057 		bp->tx_ring = kcalloc(bp->tx_nr_rings,
3058 				      sizeof(struct bnxt_tx_ring_info),
3059 				      GFP_KERNEL);
3060 		if (!bp->tx_ring)
3061 			return -ENOMEM;
3062 
3063 		bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16),
3064 					  GFP_KERNEL);
3065 
3066 		if (!bp->tx_ring_map)
3067 			return -ENOMEM;
3068 
3069 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
3070 			j = 0;
3071 		else
3072 			j = bp->rx_nr_rings;
3073 
3074 		for (i = 0; i < bp->tx_nr_rings; i++, j++) {
3075 			bp->tx_ring[i].bnapi = bp->bnapi[j];
3076 			bp->bnapi[j]->tx_ring = &bp->tx_ring[i];
3077 			bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i;
3078 			if (i >= bp->tx_nr_rings_xdp) {
3079 				bp->tx_ring[i].txq_index = i -
3080 					bp->tx_nr_rings_xdp;
3081 				bp->bnapi[j]->tx_int = bnxt_tx_int;
3082 			} else {
3083 				bp->bnapi[j]->flags |= BNXT_NAPI_FLAG_XDP;
3084 				bp->bnapi[j]->tx_int = bnxt_tx_int_xdp;
3085 			}
3086 		}
3087 
3088 		rc = bnxt_alloc_stats(bp);
3089 		if (rc)
3090 			goto alloc_mem_err;
3091 
3092 		rc = bnxt_alloc_ntp_fltrs(bp);
3093 		if (rc)
3094 			goto alloc_mem_err;
3095 
3096 		rc = bnxt_alloc_vnics(bp);
3097 		if (rc)
3098 			goto alloc_mem_err;
3099 	}
3100 
3101 	bnxt_init_ring_struct(bp);
3102 
3103 	rc = bnxt_alloc_rx_rings(bp);
3104 	if (rc)
3105 		goto alloc_mem_err;
3106 
3107 	rc = bnxt_alloc_tx_rings(bp);
3108 	if (rc)
3109 		goto alloc_mem_err;
3110 
3111 	rc = bnxt_alloc_cp_rings(bp);
3112 	if (rc)
3113 		goto alloc_mem_err;
3114 
3115 	bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
3116 				  BNXT_VNIC_UCAST_FLAG;
3117 	rc = bnxt_alloc_vnic_attributes(bp);
3118 	if (rc)
3119 		goto alloc_mem_err;
3120 	return 0;
3121 
3122 alloc_mem_err:
3123 	bnxt_free_mem(bp, true);
3124 	return rc;
3125 }
3126 
3127 static void bnxt_disable_int(struct bnxt *bp)
3128 {
3129 	int i;
3130 
3131 	if (!bp->bnapi)
3132 		return;
3133 
3134 	for (i = 0; i < bp->cp_nr_rings; i++) {
3135 		struct bnxt_napi *bnapi = bp->bnapi[i];
3136 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3137 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3138 
3139 		if (ring->fw_ring_id != INVALID_HW_RING_ID)
3140 			BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
3141 	}
3142 }
3143 
3144 static void bnxt_disable_int_sync(struct bnxt *bp)
3145 {
3146 	int i;
3147 
3148 	atomic_inc(&bp->intr_sem);
3149 
3150 	bnxt_disable_int(bp);
3151 	for (i = 0; i < bp->cp_nr_rings; i++)
3152 		synchronize_irq(bp->irq_tbl[i].vector);
3153 }
3154 
3155 static void bnxt_enable_int(struct bnxt *bp)
3156 {
3157 	int i;
3158 
3159 	atomic_set(&bp->intr_sem, 0);
3160 	for (i = 0; i < bp->cp_nr_rings; i++) {
3161 		struct bnxt_napi *bnapi = bp->bnapi[i];
3162 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3163 
3164 		BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
3165 	}
3166 }
3167 
3168 void bnxt_hwrm_cmd_hdr_init(struct bnxt *bp, void *request, u16 req_type,
3169 			    u16 cmpl_ring, u16 target_id)
3170 {
3171 	struct input *req = request;
3172 
3173 	req->req_type = cpu_to_le16(req_type);
3174 	req->cmpl_ring = cpu_to_le16(cmpl_ring);
3175 	req->target_id = cpu_to_le16(target_id);
3176 	req->resp_addr = cpu_to_le64(bp->hwrm_cmd_resp_dma_addr);
3177 }
3178 
3179 static int bnxt_hwrm_do_send_msg(struct bnxt *bp, void *msg, u32 msg_len,
3180 				 int timeout, bool silent)
3181 {
3182 	int i, intr_process, rc, tmo_count;
3183 	struct input *req = msg;
3184 	u32 *data = msg;
3185 	__le32 *resp_len, *valid;
3186 	u16 cp_ring_id, len = 0;
3187 	struct hwrm_err_output *resp = bp->hwrm_cmd_resp_addr;
3188 
3189 	req->seq_id = cpu_to_le16(bp->hwrm_cmd_seq++);
3190 	memset(resp, 0, PAGE_SIZE);
3191 	cp_ring_id = le16_to_cpu(req->cmpl_ring);
3192 	intr_process = (cp_ring_id == INVALID_HW_RING_ID) ? 0 : 1;
3193 
3194 	/* Write request msg to hwrm channel */
3195 	__iowrite32_copy(bp->bar0, data, msg_len / 4);
3196 
3197 	for (i = msg_len; i < BNXT_HWRM_MAX_REQ_LEN; i += 4)
3198 		writel(0, bp->bar0 + i);
3199 
3200 	/* currently supports only one outstanding message */
3201 	if (intr_process)
3202 		bp->hwrm_intr_seq_id = le16_to_cpu(req->seq_id);
3203 
3204 	/* Ring channel doorbell */
3205 	writel(1, bp->bar0 + 0x100);
3206 
3207 	if (!timeout)
3208 		timeout = DFLT_HWRM_CMD_TIMEOUT;
3209 
3210 	i = 0;
3211 	tmo_count = timeout * 40;
3212 	if (intr_process) {
3213 		/* Wait until hwrm response cmpl interrupt is processed */
3214 		while (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID &&
3215 		       i++ < tmo_count) {
3216 			usleep_range(25, 40);
3217 		}
3218 
3219 		if (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID) {
3220 			netdev_err(bp->dev, "Resp cmpl intr err msg: 0x%x\n",
3221 				   le16_to_cpu(req->req_type));
3222 			return -1;
3223 		}
3224 	} else {
3225 		/* Check if response len is updated */
3226 		resp_len = bp->hwrm_cmd_resp_addr + HWRM_RESP_LEN_OFFSET;
3227 		for (i = 0; i < tmo_count; i++) {
3228 			len = (le32_to_cpu(*resp_len) & HWRM_RESP_LEN_MASK) >>
3229 			      HWRM_RESP_LEN_SFT;
3230 			if (len)
3231 				break;
3232 			usleep_range(25, 40);
3233 		}
3234 
3235 		if (i >= tmo_count) {
3236 			netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d\n",
3237 				   timeout, le16_to_cpu(req->req_type),
3238 				   le16_to_cpu(req->seq_id), len);
3239 			return -1;
3240 		}
3241 
3242 		/* Last word of resp contains valid bit */
3243 		valid = bp->hwrm_cmd_resp_addr + len - 4;
3244 		for (i = 0; i < 5; i++) {
3245 			if (le32_to_cpu(*valid) & HWRM_RESP_VALID_MASK)
3246 				break;
3247 			udelay(1);
3248 		}
3249 
3250 		if (i >= 5) {
3251 			netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d v:%d\n",
3252 				   timeout, le16_to_cpu(req->req_type),
3253 				   le16_to_cpu(req->seq_id), len, *valid);
3254 			return -1;
3255 		}
3256 	}
3257 
3258 	rc = le16_to_cpu(resp->error_code);
3259 	if (rc && !silent)
3260 		netdev_err(bp->dev, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n",
3261 			   le16_to_cpu(resp->req_type),
3262 			   le16_to_cpu(resp->seq_id), rc);
3263 	return rc;
3264 }
3265 
3266 int _hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
3267 {
3268 	return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, false);
3269 }
3270 
3271 int hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
3272 {
3273 	int rc;
3274 
3275 	mutex_lock(&bp->hwrm_cmd_lock);
3276 	rc = _hwrm_send_message(bp, msg, msg_len, timeout);
3277 	mutex_unlock(&bp->hwrm_cmd_lock);
3278 	return rc;
3279 }
3280 
3281 int hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len,
3282 			     int timeout)
3283 {
3284 	int rc;
3285 
3286 	mutex_lock(&bp->hwrm_cmd_lock);
3287 	rc = bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true);
3288 	mutex_unlock(&bp->hwrm_cmd_lock);
3289 	return rc;
3290 }
3291 
3292 int bnxt_hwrm_func_rgtr_async_events(struct bnxt *bp, unsigned long *bmap,
3293 				     int bmap_size)
3294 {
3295 	struct hwrm_func_drv_rgtr_input req = {0};
3296 	DECLARE_BITMAP(async_events_bmap, 256);
3297 	u32 *events = (u32 *)async_events_bmap;
3298 	int i;
3299 
3300 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
3301 
3302 	req.enables =
3303 		cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
3304 
3305 	memset(async_events_bmap, 0, sizeof(async_events_bmap));
3306 	for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++)
3307 		__set_bit(bnxt_async_events_arr[i], async_events_bmap);
3308 
3309 	if (bmap && bmap_size) {
3310 		for (i = 0; i < bmap_size; i++) {
3311 			if (test_bit(i, bmap))
3312 				__set_bit(i, async_events_bmap);
3313 		}
3314 	}
3315 
3316 	for (i = 0; i < 8; i++)
3317 		req.async_event_fwd[i] |= cpu_to_le32(events[i]);
3318 
3319 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3320 }
3321 
3322 static int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp)
3323 {
3324 	struct hwrm_func_drv_rgtr_input req = {0};
3325 
3326 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
3327 
3328 	req.enables =
3329 		cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
3330 			    FUNC_DRV_RGTR_REQ_ENABLES_VER);
3331 
3332 	req.os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX);
3333 	req.ver_maj = DRV_VER_MAJ;
3334 	req.ver_min = DRV_VER_MIN;
3335 	req.ver_upd = DRV_VER_UPD;
3336 
3337 	if (BNXT_PF(bp)) {
3338 		DECLARE_BITMAP(vf_req_snif_bmap, 256);
3339 		u32 *data = (u32 *)vf_req_snif_bmap;
3340 		int i;
3341 
3342 		memset(vf_req_snif_bmap, 0, sizeof(vf_req_snif_bmap));
3343 		for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++)
3344 			__set_bit(bnxt_vf_req_snif[i], vf_req_snif_bmap);
3345 
3346 		for (i = 0; i < 8; i++)
3347 			req.vf_req_fwd[i] = cpu_to_le32(data[i]);
3348 
3349 		req.enables |=
3350 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
3351 	}
3352 
3353 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3354 }
3355 
3356 static int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
3357 {
3358 	struct hwrm_func_drv_unrgtr_input req = {0};
3359 
3360 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_UNRGTR, -1, -1);
3361 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3362 }
3363 
3364 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
3365 {
3366 	u32 rc = 0;
3367 	struct hwrm_tunnel_dst_port_free_input req = {0};
3368 
3369 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_FREE, -1, -1);
3370 	req.tunnel_type = tunnel_type;
3371 
3372 	switch (tunnel_type) {
3373 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
3374 		req.tunnel_dst_port_id = bp->vxlan_fw_dst_port_id;
3375 		break;
3376 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
3377 		req.tunnel_dst_port_id = bp->nge_fw_dst_port_id;
3378 		break;
3379 	default:
3380 		break;
3381 	}
3382 
3383 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3384 	if (rc)
3385 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
3386 			   rc);
3387 	return rc;
3388 }
3389 
3390 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
3391 					   u8 tunnel_type)
3392 {
3393 	u32 rc = 0;
3394 	struct hwrm_tunnel_dst_port_alloc_input req = {0};
3395 	struct hwrm_tunnel_dst_port_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3396 
3397 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_ALLOC, -1, -1);
3398 
3399 	req.tunnel_type = tunnel_type;
3400 	req.tunnel_dst_port_val = port;
3401 
3402 	mutex_lock(&bp->hwrm_cmd_lock);
3403 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3404 	if (rc) {
3405 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
3406 			   rc);
3407 		goto err_out;
3408 	}
3409 
3410 	switch (tunnel_type) {
3411 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN:
3412 		bp->vxlan_fw_dst_port_id = resp->tunnel_dst_port_id;
3413 		break;
3414 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE:
3415 		bp->nge_fw_dst_port_id = resp->tunnel_dst_port_id;
3416 		break;
3417 	default:
3418 		break;
3419 	}
3420 
3421 err_out:
3422 	mutex_unlock(&bp->hwrm_cmd_lock);
3423 	return rc;
3424 }
3425 
3426 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
3427 {
3428 	struct hwrm_cfa_l2_set_rx_mask_input req = {0};
3429 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3430 
3431 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_SET_RX_MASK, -1, -1);
3432 	req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
3433 
3434 	req.num_mc_entries = cpu_to_le32(vnic->mc_list_count);
3435 	req.mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
3436 	req.mask = cpu_to_le32(vnic->rx_mask);
3437 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3438 }
3439 
3440 #ifdef CONFIG_RFS_ACCEL
3441 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
3442 					    struct bnxt_ntuple_filter *fltr)
3443 {
3444 	struct hwrm_cfa_ntuple_filter_free_input req = {0};
3445 
3446 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_FREE, -1, -1);
3447 	req.ntuple_filter_id = fltr->filter_id;
3448 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3449 }
3450 
3451 #define BNXT_NTP_FLTR_FLAGS					\
3452 	(CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID |	\
3453 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE |	\
3454 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR |	\
3455 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE |	\
3456 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR |	\
3457 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK |	\
3458 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR |	\
3459 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK |	\
3460 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL |	\
3461 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT |		\
3462 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK |	\
3463 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT |		\
3464 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK |	\
3465 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
3466 
3467 #define BNXT_NTP_TUNNEL_FLTR_FLAG				\
3468 		CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE
3469 
3470 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
3471 					     struct bnxt_ntuple_filter *fltr)
3472 {
3473 	int rc = 0;
3474 	struct hwrm_cfa_ntuple_filter_alloc_input req = {0};
3475 	struct hwrm_cfa_ntuple_filter_alloc_output *resp =
3476 		bp->hwrm_cmd_resp_addr;
3477 	struct flow_keys *keys = &fltr->fkeys;
3478 	struct bnxt_vnic_info *vnic = &bp->vnic_info[fltr->rxq + 1];
3479 
3480 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_ALLOC, -1, -1);
3481 	req.l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx];
3482 
3483 	req.enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
3484 
3485 	req.ethertype = htons(ETH_P_IP);
3486 	memcpy(req.src_macaddr, fltr->src_mac_addr, ETH_ALEN);
3487 	req.ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
3488 	req.ip_protocol = keys->basic.ip_proto;
3489 
3490 	if (keys->basic.n_proto == htons(ETH_P_IPV6)) {
3491 		int i;
3492 
3493 		req.ethertype = htons(ETH_P_IPV6);
3494 		req.ip_addr_type =
3495 			CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6;
3496 		*(struct in6_addr *)&req.src_ipaddr[0] =
3497 			keys->addrs.v6addrs.src;
3498 		*(struct in6_addr *)&req.dst_ipaddr[0] =
3499 			keys->addrs.v6addrs.dst;
3500 		for (i = 0; i < 4; i++) {
3501 			req.src_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
3502 			req.dst_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
3503 		}
3504 	} else {
3505 		req.src_ipaddr[0] = keys->addrs.v4addrs.src;
3506 		req.src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
3507 		req.dst_ipaddr[0] = keys->addrs.v4addrs.dst;
3508 		req.dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
3509 	}
3510 	if (keys->control.flags & FLOW_DIS_ENCAPSULATION) {
3511 		req.enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG);
3512 		req.tunnel_type =
3513 			CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL;
3514 	}
3515 
3516 	req.src_port = keys->ports.src;
3517 	req.src_port_mask = cpu_to_be16(0xffff);
3518 	req.dst_port = keys->ports.dst;
3519 	req.dst_port_mask = cpu_to_be16(0xffff);
3520 
3521 	req.dst_id = cpu_to_le16(vnic->fw_vnic_id);
3522 	mutex_lock(&bp->hwrm_cmd_lock);
3523 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3524 	if (!rc)
3525 		fltr->filter_id = resp->ntuple_filter_id;
3526 	mutex_unlock(&bp->hwrm_cmd_lock);
3527 	return rc;
3528 }
3529 #endif
3530 
3531 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
3532 				     u8 *mac_addr)
3533 {
3534 	u32 rc = 0;
3535 	struct hwrm_cfa_l2_filter_alloc_input req = {0};
3536 	struct hwrm_cfa_l2_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3537 
3538 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_ALLOC, -1, -1);
3539 	req.flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX);
3540 	if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
3541 		req.flags |=
3542 			cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
3543 	req.dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
3544 	req.enables =
3545 		cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
3546 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
3547 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
3548 	memcpy(req.l2_addr, mac_addr, ETH_ALEN);
3549 	req.l2_addr_mask[0] = 0xff;
3550 	req.l2_addr_mask[1] = 0xff;
3551 	req.l2_addr_mask[2] = 0xff;
3552 	req.l2_addr_mask[3] = 0xff;
3553 	req.l2_addr_mask[4] = 0xff;
3554 	req.l2_addr_mask[5] = 0xff;
3555 
3556 	mutex_lock(&bp->hwrm_cmd_lock);
3557 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3558 	if (!rc)
3559 		bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
3560 							resp->l2_filter_id;
3561 	mutex_unlock(&bp->hwrm_cmd_lock);
3562 	return rc;
3563 }
3564 
3565 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
3566 {
3567 	u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
3568 	int rc = 0;
3569 
3570 	/* Any associated ntuple filters will also be cleared by firmware. */
3571 	mutex_lock(&bp->hwrm_cmd_lock);
3572 	for (i = 0; i < num_of_vnics; i++) {
3573 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3574 
3575 		for (j = 0; j < vnic->uc_filter_count; j++) {
3576 			struct hwrm_cfa_l2_filter_free_input req = {0};
3577 
3578 			bnxt_hwrm_cmd_hdr_init(bp, &req,
3579 					       HWRM_CFA_L2_FILTER_FREE, -1, -1);
3580 
3581 			req.l2_filter_id = vnic->fw_l2_filter_id[j];
3582 
3583 			rc = _hwrm_send_message(bp, &req, sizeof(req),
3584 						HWRM_CMD_TIMEOUT);
3585 		}
3586 		vnic->uc_filter_count = 0;
3587 	}
3588 	mutex_unlock(&bp->hwrm_cmd_lock);
3589 
3590 	return rc;
3591 }
3592 
3593 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
3594 {
3595 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3596 	struct hwrm_vnic_tpa_cfg_input req = {0};
3597 
3598 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_TPA_CFG, -1, -1);
3599 
3600 	if (tpa_flags) {
3601 		u16 mss = bp->dev->mtu - 40;
3602 		u32 nsegs, n, segs = 0, flags;
3603 
3604 		flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
3605 			VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
3606 			VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
3607 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
3608 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
3609 		if (tpa_flags & BNXT_FLAG_GRO)
3610 			flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
3611 
3612 		req.flags = cpu_to_le32(flags);
3613 
3614 		req.enables =
3615 			cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
3616 				    VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
3617 				    VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
3618 
3619 		/* Number of segs are log2 units, and first packet is not
3620 		 * included as part of this units.
3621 		 */
3622 		if (mss <= BNXT_RX_PAGE_SIZE) {
3623 			n = BNXT_RX_PAGE_SIZE / mss;
3624 			nsegs = (MAX_SKB_FRAGS - 1) * n;
3625 		} else {
3626 			n = mss / BNXT_RX_PAGE_SIZE;
3627 			if (mss & (BNXT_RX_PAGE_SIZE - 1))
3628 				n++;
3629 			nsegs = (MAX_SKB_FRAGS - n) / n;
3630 		}
3631 
3632 		segs = ilog2(nsegs);
3633 		req.max_agg_segs = cpu_to_le16(segs);
3634 		req.max_aggs = cpu_to_le16(VNIC_TPA_CFG_REQ_MAX_AGGS_MAX);
3635 
3636 		req.min_agg_len = cpu_to_le32(512);
3637 	}
3638 	req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
3639 
3640 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3641 }
3642 
3643 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
3644 {
3645 	u32 i, j, max_rings;
3646 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3647 	struct hwrm_vnic_rss_cfg_input req = {0};
3648 
3649 	if (vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID)
3650 		return 0;
3651 
3652 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1);
3653 	if (set_rss) {
3654 		req.hash_type = cpu_to_le32(bp->rss_hash_cfg);
3655 		if (vnic->flags & BNXT_VNIC_RSS_FLAG) {
3656 			if (BNXT_CHIP_TYPE_NITRO_A0(bp))
3657 				max_rings = bp->rx_nr_rings - 1;
3658 			else
3659 				max_rings = bp->rx_nr_rings;
3660 		} else {
3661 			max_rings = 1;
3662 		}
3663 
3664 		/* Fill the RSS indirection table with ring group ids */
3665 		for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++, j++) {
3666 			if (j == max_rings)
3667 				j = 0;
3668 			vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
3669 		}
3670 
3671 		req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
3672 		req.hash_key_tbl_addr =
3673 			cpu_to_le64(vnic->rss_hash_key_dma_addr);
3674 	}
3675 	req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
3676 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3677 }
3678 
3679 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
3680 {
3681 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3682 	struct hwrm_vnic_plcmodes_cfg_input req = {0};
3683 
3684 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_PLCMODES_CFG, -1, -1);
3685 	req.flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT |
3686 				VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
3687 				VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
3688 	req.enables =
3689 		cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID |
3690 			    VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
3691 	/* thresholds not implemented in firmware yet */
3692 	req.jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
3693 	req.hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
3694 	req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
3695 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3696 }
3697 
3698 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id,
3699 					u16 ctx_idx)
3700 {
3701 	struct hwrm_vnic_rss_cos_lb_ctx_free_input req = {0};
3702 
3703 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_FREE, -1, -1);
3704 	req.rss_cos_lb_ctx_id =
3705 		cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]);
3706 
3707 	hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3708 	bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID;
3709 }
3710 
3711 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
3712 {
3713 	int i, j;
3714 
3715 	for (i = 0; i < bp->nr_vnics; i++) {
3716 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3717 
3718 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) {
3719 			if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID)
3720 				bnxt_hwrm_vnic_ctx_free_one(bp, i, j);
3721 		}
3722 	}
3723 	bp->rsscos_nr_ctxs = 0;
3724 }
3725 
3726 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx)
3727 {
3728 	int rc;
3729 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_input req = {0};
3730 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp =
3731 						bp->hwrm_cmd_resp_addr;
3732 
3733 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC, -1,
3734 			       -1);
3735 
3736 	mutex_lock(&bp->hwrm_cmd_lock);
3737 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3738 	if (!rc)
3739 		bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] =
3740 			le16_to_cpu(resp->rss_cos_lb_ctx_id);
3741 	mutex_unlock(&bp->hwrm_cmd_lock);
3742 
3743 	return rc;
3744 }
3745 
3746 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
3747 {
3748 	unsigned int ring = 0, grp_idx;
3749 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3750 	struct hwrm_vnic_cfg_input req = {0};
3751 	u16 def_vlan = 0;
3752 
3753 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_CFG, -1, -1);
3754 
3755 	req.enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP);
3756 	/* Only RSS support for now TBD: COS & LB */
3757 	if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) {
3758 		req.rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
3759 		req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
3760 					   VNIC_CFG_REQ_ENABLES_MRU);
3761 	} else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) {
3762 		req.rss_rule =
3763 			cpu_to_le16(bp->vnic_info[0].fw_rss_cos_lb_ctx[0]);
3764 		req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
3765 					   VNIC_CFG_REQ_ENABLES_MRU);
3766 		req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE);
3767 	} else {
3768 		req.rss_rule = cpu_to_le16(0xffff);
3769 	}
3770 
3771 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) &&
3772 	    (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) {
3773 		req.cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]);
3774 		req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE);
3775 	} else {
3776 		req.cos_rule = cpu_to_le16(0xffff);
3777 	}
3778 
3779 	if (vnic->flags & BNXT_VNIC_RSS_FLAG)
3780 		ring = 0;
3781 	else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
3782 		ring = vnic_id - 1;
3783 	else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp))
3784 		ring = bp->rx_nr_rings - 1;
3785 
3786 	grp_idx = bp->rx_ring[ring].bnapi->index;
3787 	req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
3788 	req.dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
3789 
3790 	req.lb_rule = cpu_to_le16(0xffff);
3791 	req.mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + ETH_FCS_LEN +
3792 			      VLAN_HLEN);
3793 
3794 #ifdef CONFIG_BNXT_SRIOV
3795 	if (BNXT_VF(bp))
3796 		def_vlan = bp->vf.vlan;
3797 #endif
3798 	if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan)
3799 		req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
3800 	if (!vnic_id && bnxt_ulp_registered(bp->edev, BNXT_ROCE_ULP))
3801 		req.flags |=
3802 			cpu_to_le32(VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE);
3803 
3804 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3805 }
3806 
3807 static int bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
3808 {
3809 	u32 rc = 0;
3810 
3811 	if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
3812 		struct hwrm_vnic_free_input req = {0};
3813 
3814 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_FREE, -1, -1);
3815 		req.vnic_id =
3816 			cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
3817 
3818 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3819 		if (rc)
3820 			return rc;
3821 		bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
3822 	}
3823 	return rc;
3824 }
3825 
3826 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
3827 {
3828 	u16 i;
3829 
3830 	for (i = 0; i < bp->nr_vnics; i++)
3831 		bnxt_hwrm_vnic_free_one(bp, i);
3832 }
3833 
3834 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
3835 				unsigned int start_rx_ring_idx,
3836 				unsigned int nr_rings)
3837 {
3838 	int rc = 0;
3839 	unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
3840 	struct hwrm_vnic_alloc_input req = {0};
3841 	struct hwrm_vnic_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3842 
3843 	/* map ring groups to this vnic */
3844 	for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
3845 		grp_idx = bp->rx_ring[i].bnapi->index;
3846 		if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
3847 			netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
3848 				   j, nr_rings);
3849 			break;
3850 		}
3851 		bp->vnic_info[vnic_id].fw_grp_ids[j] =
3852 					bp->grp_info[grp_idx].fw_grp_id;
3853 	}
3854 
3855 	bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[0] = INVALID_HW_RING_ID;
3856 	bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[1] = INVALID_HW_RING_ID;
3857 	if (vnic_id == 0)
3858 		req.flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
3859 
3860 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_ALLOC, -1, -1);
3861 
3862 	mutex_lock(&bp->hwrm_cmd_lock);
3863 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3864 	if (!rc)
3865 		bp->vnic_info[vnic_id].fw_vnic_id = le32_to_cpu(resp->vnic_id);
3866 	mutex_unlock(&bp->hwrm_cmd_lock);
3867 	return rc;
3868 }
3869 
3870 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp)
3871 {
3872 	struct hwrm_vnic_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
3873 	struct hwrm_vnic_qcaps_input req = {0};
3874 	int rc;
3875 
3876 	if (bp->hwrm_spec_code < 0x10600)
3877 		return 0;
3878 
3879 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_QCAPS, -1, -1);
3880 	mutex_lock(&bp->hwrm_cmd_lock);
3881 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3882 	if (!rc) {
3883 		if (resp->flags &
3884 		    cpu_to_le32(VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP))
3885 			bp->flags |= BNXT_FLAG_NEW_RSS_CAP;
3886 	}
3887 	mutex_unlock(&bp->hwrm_cmd_lock);
3888 	return rc;
3889 }
3890 
3891 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
3892 {
3893 	u16 i;
3894 	u32 rc = 0;
3895 
3896 	mutex_lock(&bp->hwrm_cmd_lock);
3897 	for (i = 0; i < bp->rx_nr_rings; i++) {
3898 		struct hwrm_ring_grp_alloc_input req = {0};
3899 		struct hwrm_ring_grp_alloc_output *resp =
3900 					bp->hwrm_cmd_resp_addr;
3901 		unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
3902 
3903 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_ALLOC, -1, -1);
3904 
3905 		req.cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
3906 		req.rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
3907 		req.ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
3908 		req.sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
3909 
3910 		rc = _hwrm_send_message(bp, &req, sizeof(req),
3911 					HWRM_CMD_TIMEOUT);
3912 		if (rc)
3913 			break;
3914 
3915 		bp->grp_info[grp_idx].fw_grp_id =
3916 			le32_to_cpu(resp->ring_group_id);
3917 	}
3918 	mutex_unlock(&bp->hwrm_cmd_lock);
3919 	return rc;
3920 }
3921 
3922 static int bnxt_hwrm_ring_grp_free(struct bnxt *bp)
3923 {
3924 	u16 i;
3925 	u32 rc = 0;
3926 	struct hwrm_ring_grp_free_input req = {0};
3927 
3928 	if (!bp->grp_info)
3929 		return 0;
3930 
3931 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_FREE, -1, -1);
3932 
3933 	mutex_lock(&bp->hwrm_cmd_lock);
3934 	for (i = 0; i < bp->cp_nr_rings; i++) {
3935 		if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
3936 			continue;
3937 		req.ring_group_id =
3938 			cpu_to_le32(bp->grp_info[i].fw_grp_id);
3939 
3940 		rc = _hwrm_send_message(bp, &req, sizeof(req),
3941 					HWRM_CMD_TIMEOUT);
3942 		if (rc)
3943 			break;
3944 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
3945 	}
3946 	mutex_unlock(&bp->hwrm_cmd_lock);
3947 	return rc;
3948 }
3949 
3950 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
3951 				    struct bnxt_ring_struct *ring,
3952 				    u32 ring_type, u32 map_index,
3953 				    u32 stats_ctx_id)
3954 {
3955 	int rc = 0, err = 0;
3956 	struct hwrm_ring_alloc_input req = {0};
3957 	struct hwrm_ring_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3958 	u16 ring_id;
3959 
3960 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_ALLOC, -1, -1);
3961 
3962 	req.enables = 0;
3963 	if (ring->nr_pages > 1) {
3964 		req.page_tbl_addr = cpu_to_le64(ring->pg_tbl_map);
3965 		/* Page size is in log2 units */
3966 		req.page_size = BNXT_PAGE_SHIFT;
3967 		req.page_tbl_depth = 1;
3968 	} else {
3969 		req.page_tbl_addr =  cpu_to_le64(ring->dma_arr[0]);
3970 	}
3971 	req.fbo = 0;
3972 	/* Association of ring index with doorbell index and MSIX number */
3973 	req.logical_id = cpu_to_le16(map_index);
3974 
3975 	switch (ring_type) {
3976 	case HWRM_RING_ALLOC_TX:
3977 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
3978 		/* Association of transmit ring with completion ring */
3979 		req.cmpl_ring_id =
3980 			cpu_to_le16(bp->grp_info[map_index].cp_fw_ring_id);
3981 		req.length = cpu_to_le32(bp->tx_ring_mask + 1);
3982 		req.stat_ctx_id = cpu_to_le32(stats_ctx_id);
3983 		req.queue_id = cpu_to_le16(ring->queue_id);
3984 		break;
3985 	case HWRM_RING_ALLOC_RX:
3986 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
3987 		req.length = cpu_to_le32(bp->rx_ring_mask + 1);
3988 		break;
3989 	case HWRM_RING_ALLOC_AGG:
3990 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
3991 		req.length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
3992 		break;
3993 	case HWRM_RING_ALLOC_CMPL:
3994 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL;
3995 		req.length = cpu_to_le32(bp->cp_ring_mask + 1);
3996 		if (bp->flags & BNXT_FLAG_USING_MSIX)
3997 			req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
3998 		break;
3999 	default:
4000 		netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
4001 			   ring_type);
4002 		return -1;
4003 	}
4004 
4005 	mutex_lock(&bp->hwrm_cmd_lock);
4006 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4007 	err = le16_to_cpu(resp->error_code);
4008 	ring_id = le16_to_cpu(resp->ring_id);
4009 	mutex_unlock(&bp->hwrm_cmd_lock);
4010 
4011 	if (rc || err) {
4012 		switch (ring_type) {
4013 		case RING_FREE_REQ_RING_TYPE_L2_CMPL:
4014 			netdev_err(bp->dev, "hwrm_ring_alloc cp failed. rc:%x err:%x\n",
4015 				   rc, err);
4016 			return -1;
4017 
4018 		case RING_FREE_REQ_RING_TYPE_RX:
4019 			netdev_err(bp->dev, "hwrm_ring_alloc rx failed. rc:%x err:%x\n",
4020 				   rc, err);
4021 			return -1;
4022 
4023 		case RING_FREE_REQ_RING_TYPE_TX:
4024 			netdev_err(bp->dev, "hwrm_ring_alloc tx failed. rc:%x err:%x\n",
4025 				   rc, err);
4026 			return -1;
4027 
4028 		default:
4029 			netdev_err(bp->dev, "Invalid ring\n");
4030 			return -1;
4031 		}
4032 	}
4033 	ring->fw_ring_id = ring_id;
4034 	return rc;
4035 }
4036 
4037 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx)
4038 {
4039 	int rc;
4040 
4041 	if (BNXT_PF(bp)) {
4042 		struct hwrm_func_cfg_input req = {0};
4043 
4044 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
4045 		req.fid = cpu_to_le16(0xffff);
4046 		req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
4047 		req.async_event_cr = cpu_to_le16(idx);
4048 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4049 	} else {
4050 		struct hwrm_func_vf_cfg_input req = {0};
4051 
4052 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_CFG, -1, -1);
4053 		req.enables =
4054 			cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
4055 		req.async_event_cr = cpu_to_le16(idx);
4056 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4057 	}
4058 	return rc;
4059 }
4060 
4061 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
4062 {
4063 	int i, rc = 0;
4064 
4065 	for (i = 0; i < bp->cp_nr_rings; i++) {
4066 		struct bnxt_napi *bnapi = bp->bnapi[i];
4067 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4068 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
4069 
4070 		cpr->cp_doorbell = bp->bar1 + i * 0x80;
4071 		rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_CMPL, i,
4072 					      INVALID_STATS_CTX_ID);
4073 		if (rc)
4074 			goto err_out;
4075 		BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
4076 		bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
4077 
4078 		if (!i) {
4079 			rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id);
4080 			if (rc)
4081 				netdev_warn(bp->dev, "Failed to set async event completion ring.\n");
4082 		}
4083 	}
4084 
4085 	for (i = 0; i < bp->tx_nr_rings; i++) {
4086 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
4087 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
4088 		u32 map_idx = txr->bnapi->index;
4089 		u16 fw_stats_ctx = bp->grp_info[map_idx].fw_stats_ctx;
4090 
4091 		rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_TX,
4092 					      map_idx, fw_stats_ctx);
4093 		if (rc)
4094 			goto err_out;
4095 		txr->tx_doorbell = bp->bar1 + map_idx * 0x80;
4096 	}
4097 
4098 	for (i = 0; i < bp->rx_nr_rings; i++) {
4099 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4100 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
4101 		u32 map_idx = rxr->bnapi->index;
4102 
4103 		rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_RX,
4104 					      map_idx, INVALID_STATS_CTX_ID);
4105 		if (rc)
4106 			goto err_out;
4107 		rxr->rx_doorbell = bp->bar1 + map_idx * 0x80;
4108 		writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
4109 		bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
4110 	}
4111 
4112 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
4113 		for (i = 0; i < bp->rx_nr_rings; i++) {
4114 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4115 			struct bnxt_ring_struct *ring =
4116 						&rxr->rx_agg_ring_struct;
4117 			u32 grp_idx = rxr->bnapi->index;
4118 			u32 map_idx = grp_idx + bp->rx_nr_rings;
4119 
4120 			rc = hwrm_ring_alloc_send_msg(bp, ring,
4121 						      HWRM_RING_ALLOC_AGG,
4122 						      map_idx,
4123 						      INVALID_STATS_CTX_ID);
4124 			if (rc)
4125 				goto err_out;
4126 
4127 			rxr->rx_agg_doorbell = bp->bar1 + map_idx * 0x80;
4128 			writel(DB_KEY_RX | rxr->rx_agg_prod,
4129 			       rxr->rx_agg_doorbell);
4130 			bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
4131 		}
4132 	}
4133 err_out:
4134 	return rc;
4135 }
4136 
4137 static int hwrm_ring_free_send_msg(struct bnxt *bp,
4138 				   struct bnxt_ring_struct *ring,
4139 				   u32 ring_type, int cmpl_ring_id)
4140 {
4141 	int rc;
4142 	struct hwrm_ring_free_input req = {0};
4143 	struct hwrm_ring_free_output *resp = bp->hwrm_cmd_resp_addr;
4144 	u16 error_code;
4145 
4146 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_FREE, cmpl_ring_id, -1);
4147 	req.ring_type = ring_type;
4148 	req.ring_id = cpu_to_le16(ring->fw_ring_id);
4149 
4150 	mutex_lock(&bp->hwrm_cmd_lock);
4151 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4152 	error_code = le16_to_cpu(resp->error_code);
4153 	mutex_unlock(&bp->hwrm_cmd_lock);
4154 
4155 	if (rc || error_code) {
4156 		switch (ring_type) {
4157 		case RING_FREE_REQ_RING_TYPE_L2_CMPL:
4158 			netdev_err(bp->dev, "hwrm_ring_free cp failed. rc:%d\n",
4159 				   rc);
4160 			return rc;
4161 		case RING_FREE_REQ_RING_TYPE_RX:
4162 			netdev_err(bp->dev, "hwrm_ring_free rx failed. rc:%d\n",
4163 				   rc);
4164 			return rc;
4165 		case RING_FREE_REQ_RING_TYPE_TX:
4166 			netdev_err(bp->dev, "hwrm_ring_free tx failed. rc:%d\n",
4167 				   rc);
4168 			return rc;
4169 		default:
4170 			netdev_err(bp->dev, "Invalid ring\n");
4171 			return -1;
4172 		}
4173 	}
4174 	return 0;
4175 }
4176 
4177 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
4178 {
4179 	int i;
4180 
4181 	if (!bp->bnapi)
4182 		return;
4183 
4184 	for (i = 0; i < bp->tx_nr_rings; i++) {
4185 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
4186 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
4187 		u32 grp_idx = txr->bnapi->index;
4188 		u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
4189 
4190 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
4191 			hwrm_ring_free_send_msg(bp, ring,
4192 						RING_FREE_REQ_RING_TYPE_TX,
4193 						close_path ? cmpl_ring_id :
4194 						INVALID_HW_RING_ID);
4195 			ring->fw_ring_id = INVALID_HW_RING_ID;
4196 		}
4197 	}
4198 
4199 	for (i = 0; i < bp->rx_nr_rings; i++) {
4200 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4201 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
4202 		u32 grp_idx = rxr->bnapi->index;
4203 		u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
4204 
4205 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
4206 			hwrm_ring_free_send_msg(bp, ring,
4207 						RING_FREE_REQ_RING_TYPE_RX,
4208 						close_path ? cmpl_ring_id :
4209 						INVALID_HW_RING_ID);
4210 			ring->fw_ring_id = INVALID_HW_RING_ID;
4211 			bp->grp_info[grp_idx].rx_fw_ring_id =
4212 				INVALID_HW_RING_ID;
4213 		}
4214 	}
4215 
4216 	for (i = 0; i < bp->rx_nr_rings; i++) {
4217 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4218 		struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
4219 		u32 grp_idx = rxr->bnapi->index;
4220 		u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
4221 
4222 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
4223 			hwrm_ring_free_send_msg(bp, ring,
4224 						RING_FREE_REQ_RING_TYPE_RX,
4225 						close_path ? cmpl_ring_id :
4226 						INVALID_HW_RING_ID);
4227 			ring->fw_ring_id = INVALID_HW_RING_ID;
4228 			bp->grp_info[grp_idx].agg_fw_ring_id =
4229 				INVALID_HW_RING_ID;
4230 		}
4231 	}
4232 
4233 	/* The completion rings are about to be freed.  After that the
4234 	 * IRQ doorbell will not work anymore.  So we need to disable
4235 	 * IRQ here.
4236 	 */
4237 	bnxt_disable_int_sync(bp);
4238 
4239 	for (i = 0; i < bp->cp_nr_rings; i++) {
4240 		struct bnxt_napi *bnapi = bp->bnapi[i];
4241 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4242 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
4243 
4244 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
4245 			hwrm_ring_free_send_msg(bp, ring,
4246 						RING_FREE_REQ_RING_TYPE_L2_CMPL,
4247 						INVALID_HW_RING_ID);
4248 			ring->fw_ring_id = INVALID_HW_RING_ID;
4249 			bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
4250 		}
4251 	}
4252 }
4253 
4254 /* Caller must hold bp->hwrm_cmd_lock */
4255 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings)
4256 {
4257 	struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
4258 	struct hwrm_func_qcfg_input req = {0};
4259 	int rc;
4260 
4261 	if (bp->hwrm_spec_code < 0x10601)
4262 		return 0;
4263 
4264 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
4265 	req.fid = cpu_to_le16(fid);
4266 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4267 	if (!rc)
4268 		*tx_rings = le16_to_cpu(resp->alloc_tx_rings);
4269 
4270 	return rc;
4271 }
4272 
4273 static int bnxt_hwrm_reserve_tx_rings(struct bnxt *bp, int *tx_rings)
4274 {
4275 	struct hwrm_func_cfg_input req = {0};
4276 	int rc;
4277 
4278 	if (bp->hwrm_spec_code < 0x10601)
4279 		return 0;
4280 
4281 	if (BNXT_VF(bp))
4282 		return 0;
4283 
4284 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
4285 	req.fid = cpu_to_le16(0xffff);
4286 	req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS);
4287 	req.num_tx_rings = cpu_to_le16(*tx_rings);
4288 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4289 	if (rc)
4290 		return rc;
4291 
4292 	mutex_lock(&bp->hwrm_cmd_lock);
4293 	rc = __bnxt_hwrm_get_tx_rings(bp, 0xffff, tx_rings);
4294 	mutex_unlock(&bp->hwrm_cmd_lock);
4295 	return rc;
4296 }
4297 
4298 static void bnxt_hwrm_set_coal_params(struct bnxt *bp, u32 max_bufs,
4299 	u32 buf_tmrs, u16 flags,
4300 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
4301 {
4302 	req->flags = cpu_to_le16(flags);
4303 	req->num_cmpl_dma_aggr = cpu_to_le16((u16)max_bufs);
4304 	req->num_cmpl_dma_aggr_during_int = cpu_to_le16(max_bufs >> 16);
4305 	req->cmpl_aggr_dma_tmr = cpu_to_le16((u16)buf_tmrs);
4306 	req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(buf_tmrs >> 16);
4307 	/* Minimum time between 2 interrupts set to buf_tmr x 2 */
4308 	req->int_lat_tmr_min = cpu_to_le16((u16)buf_tmrs * 2);
4309 	req->int_lat_tmr_max = cpu_to_le16((u16)buf_tmrs * 4);
4310 	req->num_cmpl_aggr_int = cpu_to_le16((u16)max_bufs * 4);
4311 }
4312 
4313 int bnxt_hwrm_set_coal(struct bnxt *bp)
4314 {
4315 	int i, rc = 0;
4316 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0},
4317 							   req_tx = {0}, *req;
4318 	u16 max_buf, max_buf_irq;
4319 	u16 buf_tmr, buf_tmr_irq;
4320 	u32 flags;
4321 
4322 	bnxt_hwrm_cmd_hdr_init(bp, &req_rx,
4323 			       HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
4324 	bnxt_hwrm_cmd_hdr_init(bp, &req_tx,
4325 			       HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
4326 
4327 	/* Each rx completion (2 records) should be DMAed immediately.
4328 	 * DMA 1/4 of the completion buffers at a time.
4329 	 */
4330 	max_buf = min_t(u16, bp->rx_coal_bufs / 4, 2);
4331 	/* max_buf must not be zero */
4332 	max_buf = clamp_t(u16, max_buf, 1, 63);
4333 	max_buf_irq = clamp_t(u16, bp->rx_coal_bufs_irq, 1, 63);
4334 	buf_tmr = BNXT_USEC_TO_COAL_TIMER(bp->rx_coal_ticks);
4335 	/* buf timer set to 1/4 of interrupt timer */
4336 	buf_tmr = max_t(u16, buf_tmr / 4, 1);
4337 	buf_tmr_irq = BNXT_USEC_TO_COAL_TIMER(bp->rx_coal_ticks_irq);
4338 	buf_tmr_irq = max_t(u16, buf_tmr_irq, 1);
4339 
4340 	flags = RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
4341 
4342 	/* RING_IDLE generates more IRQs for lower latency.  Enable it only
4343 	 * if coal_ticks is less than 25 us.
4344 	 */
4345 	if (bp->rx_coal_ticks < 25)
4346 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
4347 
4348 	bnxt_hwrm_set_coal_params(bp, max_buf_irq << 16 | max_buf,
4349 				  buf_tmr_irq << 16 | buf_tmr, flags, &req_rx);
4350 
4351 	/* max_buf must not be zero */
4352 	max_buf = clamp_t(u16, bp->tx_coal_bufs, 1, 63);
4353 	max_buf_irq = clamp_t(u16, bp->tx_coal_bufs_irq, 1, 63);
4354 	buf_tmr = BNXT_USEC_TO_COAL_TIMER(bp->tx_coal_ticks);
4355 	/* buf timer set to 1/4 of interrupt timer */
4356 	buf_tmr = max_t(u16, buf_tmr / 4, 1);
4357 	buf_tmr_irq = BNXT_USEC_TO_COAL_TIMER(bp->tx_coal_ticks_irq);
4358 	buf_tmr_irq = max_t(u16, buf_tmr_irq, 1);
4359 
4360 	flags = RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
4361 	bnxt_hwrm_set_coal_params(bp, max_buf_irq << 16 | max_buf,
4362 				  buf_tmr_irq << 16 | buf_tmr, flags, &req_tx);
4363 
4364 	mutex_lock(&bp->hwrm_cmd_lock);
4365 	for (i = 0; i < bp->cp_nr_rings; i++) {
4366 		struct bnxt_napi *bnapi = bp->bnapi[i];
4367 
4368 		req = &req_rx;
4369 		if (!bnapi->rx_ring)
4370 			req = &req_tx;
4371 		req->ring_id = cpu_to_le16(bp->grp_info[i].cp_fw_ring_id);
4372 
4373 		rc = _hwrm_send_message(bp, req, sizeof(*req),
4374 					HWRM_CMD_TIMEOUT);
4375 		if (rc)
4376 			break;
4377 	}
4378 	mutex_unlock(&bp->hwrm_cmd_lock);
4379 	return rc;
4380 }
4381 
4382 static int bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
4383 {
4384 	int rc = 0, i;
4385 	struct hwrm_stat_ctx_free_input req = {0};
4386 
4387 	if (!bp->bnapi)
4388 		return 0;
4389 
4390 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
4391 		return 0;
4392 
4393 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_FREE, -1, -1);
4394 
4395 	mutex_lock(&bp->hwrm_cmd_lock);
4396 	for (i = 0; i < bp->cp_nr_rings; i++) {
4397 		struct bnxt_napi *bnapi = bp->bnapi[i];
4398 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4399 
4400 		if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
4401 			req.stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
4402 
4403 			rc = _hwrm_send_message(bp, &req, sizeof(req),
4404 						HWRM_CMD_TIMEOUT);
4405 			if (rc)
4406 				break;
4407 
4408 			cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
4409 		}
4410 	}
4411 	mutex_unlock(&bp->hwrm_cmd_lock);
4412 	return rc;
4413 }
4414 
4415 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
4416 {
4417 	int rc = 0, i;
4418 	struct hwrm_stat_ctx_alloc_input req = {0};
4419 	struct hwrm_stat_ctx_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4420 
4421 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
4422 		return 0;
4423 
4424 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_ALLOC, -1, -1);
4425 
4426 	req.update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000);
4427 
4428 	mutex_lock(&bp->hwrm_cmd_lock);
4429 	for (i = 0; i < bp->cp_nr_rings; i++) {
4430 		struct bnxt_napi *bnapi = bp->bnapi[i];
4431 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4432 
4433 		req.stats_dma_addr = cpu_to_le64(cpr->hw_stats_map);
4434 
4435 		rc = _hwrm_send_message(bp, &req, sizeof(req),
4436 					HWRM_CMD_TIMEOUT);
4437 		if (rc)
4438 			break;
4439 
4440 		cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
4441 
4442 		bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
4443 	}
4444 	mutex_unlock(&bp->hwrm_cmd_lock);
4445 	return rc;
4446 }
4447 
4448 static int bnxt_hwrm_func_qcfg(struct bnxt *bp)
4449 {
4450 	struct hwrm_func_qcfg_input req = {0};
4451 	struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
4452 	int rc;
4453 
4454 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
4455 	req.fid = cpu_to_le16(0xffff);
4456 	mutex_lock(&bp->hwrm_cmd_lock);
4457 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4458 	if (rc)
4459 		goto func_qcfg_exit;
4460 
4461 #ifdef CONFIG_BNXT_SRIOV
4462 	if (BNXT_VF(bp)) {
4463 		struct bnxt_vf_info *vf = &bp->vf;
4464 
4465 		vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK;
4466 	}
4467 #endif
4468 	switch (resp->port_partition_type) {
4469 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0:
4470 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5:
4471 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0:
4472 		bp->port_partition_type = resp->port_partition_type;
4473 		break;
4474 	}
4475 
4476 func_qcfg_exit:
4477 	mutex_unlock(&bp->hwrm_cmd_lock);
4478 	return rc;
4479 }
4480 
4481 static int bnxt_hwrm_func_qcaps(struct bnxt *bp)
4482 {
4483 	int rc = 0;
4484 	struct hwrm_func_qcaps_input req = {0};
4485 	struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
4486 
4487 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1);
4488 	req.fid = cpu_to_le16(0xffff);
4489 
4490 	mutex_lock(&bp->hwrm_cmd_lock);
4491 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4492 	if (rc)
4493 		goto hwrm_func_qcaps_exit;
4494 
4495 	if (resp->flags & cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED))
4496 		bp->flags |= BNXT_FLAG_ROCEV1_CAP;
4497 	if (resp->flags & cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED))
4498 		bp->flags |= BNXT_FLAG_ROCEV2_CAP;
4499 
4500 	bp->tx_push_thresh = 0;
4501 	if (resp->flags &
4502 	    cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED))
4503 		bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
4504 
4505 	if (BNXT_PF(bp)) {
4506 		struct bnxt_pf_info *pf = &bp->pf;
4507 
4508 		pf->fw_fid = le16_to_cpu(resp->fid);
4509 		pf->port_id = le16_to_cpu(resp->port_id);
4510 		bp->dev->dev_port = pf->port_id;
4511 		memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN);
4512 		memcpy(bp->dev->dev_addr, pf->mac_addr, ETH_ALEN);
4513 		pf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
4514 		pf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
4515 		pf->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
4516 		pf->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
4517 		pf->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
4518 		if (!pf->max_hw_ring_grps)
4519 			pf->max_hw_ring_grps = pf->max_tx_rings;
4520 		pf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
4521 		pf->max_vnics = le16_to_cpu(resp->max_vnics);
4522 		pf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
4523 		pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
4524 		pf->max_vfs = le16_to_cpu(resp->max_vfs);
4525 		pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
4526 		pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
4527 		pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
4528 		pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
4529 		pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
4530 		pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
4531 	} else {
4532 #ifdef CONFIG_BNXT_SRIOV
4533 		struct bnxt_vf_info *vf = &bp->vf;
4534 
4535 		vf->fw_fid = le16_to_cpu(resp->fid);
4536 
4537 		vf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
4538 		vf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
4539 		vf->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
4540 		vf->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
4541 		vf->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
4542 		if (!vf->max_hw_ring_grps)
4543 			vf->max_hw_ring_grps = vf->max_tx_rings;
4544 		vf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
4545 		vf->max_vnics = le16_to_cpu(resp->max_vnics);
4546 		vf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
4547 
4548 		memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN);
4549 		mutex_unlock(&bp->hwrm_cmd_lock);
4550 
4551 		if (is_valid_ether_addr(vf->mac_addr)) {
4552 			/* overwrite netdev dev_adr with admin VF MAC */
4553 			memcpy(bp->dev->dev_addr, vf->mac_addr, ETH_ALEN);
4554 		} else {
4555 			eth_hw_addr_random(bp->dev);
4556 			rc = bnxt_approve_mac(bp, bp->dev->dev_addr);
4557 		}
4558 		return rc;
4559 #endif
4560 	}
4561 
4562 hwrm_func_qcaps_exit:
4563 	mutex_unlock(&bp->hwrm_cmd_lock);
4564 	return rc;
4565 }
4566 
4567 static int bnxt_hwrm_func_reset(struct bnxt *bp)
4568 {
4569 	struct hwrm_func_reset_input req = {0};
4570 
4571 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESET, -1, -1);
4572 	req.enables = 0;
4573 
4574 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_RESET_TIMEOUT);
4575 }
4576 
4577 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
4578 {
4579 	int rc = 0;
4580 	struct hwrm_queue_qportcfg_input req = {0};
4581 	struct hwrm_queue_qportcfg_output *resp = bp->hwrm_cmd_resp_addr;
4582 	u8 i, *qptr;
4583 
4584 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_QUEUE_QPORTCFG, -1, -1);
4585 
4586 	mutex_lock(&bp->hwrm_cmd_lock);
4587 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4588 	if (rc)
4589 		goto qportcfg_exit;
4590 
4591 	if (!resp->max_configurable_queues) {
4592 		rc = -EINVAL;
4593 		goto qportcfg_exit;
4594 	}
4595 	bp->max_tc = resp->max_configurable_queues;
4596 	bp->max_lltc = resp->max_configurable_lossless_queues;
4597 	if (bp->max_tc > BNXT_MAX_QUEUE)
4598 		bp->max_tc = BNXT_MAX_QUEUE;
4599 
4600 	if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG)
4601 		bp->max_tc = 1;
4602 
4603 	if (bp->max_lltc > bp->max_tc)
4604 		bp->max_lltc = bp->max_tc;
4605 
4606 	qptr = &resp->queue_id0;
4607 	for (i = 0; i < bp->max_tc; i++) {
4608 		bp->q_info[i].queue_id = *qptr++;
4609 		bp->q_info[i].queue_profile = *qptr++;
4610 	}
4611 
4612 qportcfg_exit:
4613 	mutex_unlock(&bp->hwrm_cmd_lock);
4614 	return rc;
4615 }
4616 
4617 static int bnxt_hwrm_ver_get(struct bnxt *bp)
4618 {
4619 	int rc;
4620 	struct hwrm_ver_get_input req = {0};
4621 	struct hwrm_ver_get_output *resp = bp->hwrm_cmd_resp_addr;
4622 
4623 	bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN;
4624 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VER_GET, -1, -1);
4625 	req.hwrm_intf_maj = HWRM_VERSION_MAJOR;
4626 	req.hwrm_intf_min = HWRM_VERSION_MINOR;
4627 	req.hwrm_intf_upd = HWRM_VERSION_UPDATE;
4628 	mutex_lock(&bp->hwrm_cmd_lock);
4629 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4630 	if (rc)
4631 		goto hwrm_ver_get_exit;
4632 
4633 	memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
4634 
4635 	bp->hwrm_spec_code = resp->hwrm_intf_maj << 16 |
4636 			     resp->hwrm_intf_min << 8 | resp->hwrm_intf_upd;
4637 	if (resp->hwrm_intf_maj < 1) {
4638 		netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
4639 			    resp->hwrm_intf_maj, resp->hwrm_intf_min,
4640 			    resp->hwrm_intf_upd);
4641 		netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
4642 	}
4643 	snprintf(bp->fw_ver_str, BC_HWRM_STR_LEN, "%d.%d.%d/%d.%d.%d",
4644 		 resp->hwrm_fw_maj, resp->hwrm_fw_min, resp->hwrm_fw_bld,
4645 		 resp->hwrm_intf_maj, resp->hwrm_intf_min, resp->hwrm_intf_upd);
4646 
4647 	bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout);
4648 	if (!bp->hwrm_cmd_timeout)
4649 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
4650 
4651 	if (resp->hwrm_intf_maj >= 1)
4652 		bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len);
4653 
4654 	bp->chip_num = le16_to_cpu(resp->chip_num);
4655 	if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev &&
4656 	    !resp->chip_metal)
4657 		bp->flags |= BNXT_FLAG_CHIP_NITRO_A0;
4658 
4659 hwrm_ver_get_exit:
4660 	mutex_unlock(&bp->hwrm_cmd_lock);
4661 	return rc;
4662 }
4663 
4664 int bnxt_hwrm_fw_set_time(struct bnxt *bp)
4665 {
4666 #if IS_ENABLED(CONFIG_RTC_LIB)
4667 	struct hwrm_fw_set_time_input req = {0};
4668 	struct rtc_time tm;
4669 	struct timeval tv;
4670 
4671 	if (bp->hwrm_spec_code < 0x10400)
4672 		return -EOPNOTSUPP;
4673 
4674 	do_gettimeofday(&tv);
4675 	rtc_time_to_tm(tv.tv_sec, &tm);
4676 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FW_SET_TIME, -1, -1);
4677 	req.year = cpu_to_le16(1900 + tm.tm_year);
4678 	req.month = 1 + tm.tm_mon;
4679 	req.day = tm.tm_mday;
4680 	req.hour = tm.tm_hour;
4681 	req.minute = tm.tm_min;
4682 	req.second = tm.tm_sec;
4683 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4684 #else
4685 	return -EOPNOTSUPP;
4686 #endif
4687 }
4688 
4689 static int bnxt_hwrm_port_qstats(struct bnxt *bp)
4690 {
4691 	int rc;
4692 	struct bnxt_pf_info *pf = &bp->pf;
4693 	struct hwrm_port_qstats_input req = {0};
4694 
4695 	if (!(bp->flags & BNXT_FLAG_PORT_STATS))
4696 		return 0;
4697 
4698 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS, -1, -1);
4699 	req.port_id = cpu_to_le16(pf->port_id);
4700 	req.tx_stat_host_addr = cpu_to_le64(bp->hw_tx_port_stats_map);
4701 	req.rx_stat_host_addr = cpu_to_le64(bp->hw_rx_port_stats_map);
4702 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4703 	return rc;
4704 }
4705 
4706 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
4707 {
4708 	if (bp->vxlan_port_cnt) {
4709 		bnxt_hwrm_tunnel_dst_port_free(
4710 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
4711 	}
4712 	bp->vxlan_port_cnt = 0;
4713 	if (bp->nge_port_cnt) {
4714 		bnxt_hwrm_tunnel_dst_port_free(
4715 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
4716 	}
4717 	bp->nge_port_cnt = 0;
4718 }
4719 
4720 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
4721 {
4722 	int rc, i;
4723 	u32 tpa_flags = 0;
4724 
4725 	if (set_tpa)
4726 		tpa_flags = bp->flags & BNXT_FLAG_TPA;
4727 	for (i = 0; i < bp->nr_vnics; i++) {
4728 		rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
4729 		if (rc) {
4730 			netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
4731 				   rc, i);
4732 			return rc;
4733 		}
4734 	}
4735 	return 0;
4736 }
4737 
4738 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
4739 {
4740 	int i;
4741 
4742 	for (i = 0; i < bp->nr_vnics; i++)
4743 		bnxt_hwrm_vnic_set_rss(bp, i, false);
4744 }
4745 
4746 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
4747 				    bool irq_re_init)
4748 {
4749 	if (bp->vnic_info) {
4750 		bnxt_hwrm_clear_vnic_filter(bp);
4751 		/* clear all RSS setting before free vnic ctx */
4752 		bnxt_hwrm_clear_vnic_rss(bp);
4753 		bnxt_hwrm_vnic_ctx_free(bp);
4754 		/* before free the vnic, undo the vnic tpa settings */
4755 		if (bp->flags & BNXT_FLAG_TPA)
4756 			bnxt_set_tpa(bp, false);
4757 		bnxt_hwrm_vnic_free(bp);
4758 	}
4759 	bnxt_hwrm_ring_free(bp, close_path);
4760 	bnxt_hwrm_ring_grp_free(bp);
4761 	if (irq_re_init) {
4762 		bnxt_hwrm_stat_ctx_free(bp);
4763 		bnxt_hwrm_free_tunnel_ports(bp);
4764 	}
4765 }
4766 
4767 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
4768 {
4769 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4770 	int rc;
4771 
4772 	if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG)
4773 		goto skip_rss_ctx;
4774 
4775 	/* allocate context for vnic */
4776 	rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0);
4777 	if (rc) {
4778 		netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
4779 			   vnic_id, rc);
4780 		goto vnic_setup_err;
4781 	}
4782 	bp->rsscos_nr_ctxs++;
4783 
4784 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
4785 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1);
4786 		if (rc) {
4787 			netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n",
4788 				   vnic_id, rc);
4789 			goto vnic_setup_err;
4790 		}
4791 		bp->rsscos_nr_ctxs++;
4792 	}
4793 
4794 skip_rss_ctx:
4795 	/* configure default vnic, ring grp */
4796 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
4797 	if (rc) {
4798 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
4799 			   vnic_id, rc);
4800 		goto vnic_setup_err;
4801 	}
4802 
4803 	/* Enable RSS hashing on vnic */
4804 	rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
4805 	if (rc) {
4806 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
4807 			   vnic_id, rc);
4808 		goto vnic_setup_err;
4809 	}
4810 
4811 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
4812 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
4813 		if (rc) {
4814 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
4815 				   vnic_id, rc);
4816 		}
4817 	}
4818 
4819 vnic_setup_err:
4820 	return rc;
4821 }
4822 
4823 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
4824 {
4825 #ifdef CONFIG_RFS_ACCEL
4826 	int i, rc = 0;
4827 
4828 	for (i = 0; i < bp->rx_nr_rings; i++) {
4829 		struct bnxt_vnic_info *vnic;
4830 		u16 vnic_id = i + 1;
4831 		u16 ring_id = i;
4832 
4833 		if (vnic_id >= bp->nr_vnics)
4834 			break;
4835 
4836 		vnic = &bp->vnic_info[vnic_id];
4837 		vnic->flags |= BNXT_VNIC_RFS_FLAG;
4838 		if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
4839 			vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG;
4840 		rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1);
4841 		if (rc) {
4842 			netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
4843 				   vnic_id, rc);
4844 			break;
4845 		}
4846 		rc = bnxt_setup_vnic(bp, vnic_id);
4847 		if (rc)
4848 			break;
4849 	}
4850 	return rc;
4851 #else
4852 	return 0;
4853 #endif
4854 }
4855 
4856 /* Allow PF and VF with default VLAN to be in promiscuous mode */
4857 static bool bnxt_promisc_ok(struct bnxt *bp)
4858 {
4859 #ifdef CONFIG_BNXT_SRIOV
4860 	if (BNXT_VF(bp) && !bp->vf.vlan)
4861 		return false;
4862 #endif
4863 	return true;
4864 }
4865 
4866 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp)
4867 {
4868 	unsigned int rc = 0;
4869 
4870 	rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1);
4871 	if (rc) {
4872 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
4873 			   rc);
4874 		return rc;
4875 	}
4876 
4877 	rc = bnxt_hwrm_vnic_cfg(bp, 1);
4878 	if (rc) {
4879 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
4880 			   rc);
4881 		return rc;
4882 	}
4883 	return rc;
4884 }
4885 
4886 static int bnxt_cfg_rx_mode(struct bnxt *);
4887 static bool bnxt_mc_list_updated(struct bnxt *, u32 *);
4888 
4889 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
4890 {
4891 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
4892 	int rc = 0;
4893 	unsigned int rx_nr_rings = bp->rx_nr_rings;
4894 
4895 	if (irq_re_init) {
4896 		rc = bnxt_hwrm_stat_ctx_alloc(bp);
4897 		if (rc) {
4898 			netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
4899 				   rc);
4900 			goto err_out;
4901 		}
4902 	}
4903 
4904 	rc = bnxt_hwrm_ring_alloc(bp);
4905 	if (rc) {
4906 		netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
4907 		goto err_out;
4908 	}
4909 
4910 	rc = bnxt_hwrm_ring_grp_alloc(bp);
4911 	if (rc) {
4912 		netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
4913 		goto err_out;
4914 	}
4915 
4916 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
4917 		rx_nr_rings--;
4918 
4919 	/* default vnic 0 */
4920 	rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings);
4921 	if (rc) {
4922 		netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
4923 		goto err_out;
4924 	}
4925 
4926 	rc = bnxt_setup_vnic(bp, 0);
4927 	if (rc)
4928 		goto err_out;
4929 
4930 	if (bp->flags & BNXT_FLAG_RFS) {
4931 		rc = bnxt_alloc_rfs_vnics(bp);
4932 		if (rc)
4933 			goto err_out;
4934 	}
4935 
4936 	if (bp->flags & BNXT_FLAG_TPA) {
4937 		rc = bnxt_set_tpa(bp, true);
4938 		if (rc)
4939 			goto err_out;
4940 	}
4941 
4942 	if (BNXT_VF(bp))
4943 		bnxt_update_vf_mac(bp);
4944 
4945 	/* Filter for default vnic 0 */
4946 	rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
4947 	if (rc) {
4948 		netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
4949 		goto err_out;
4950 	}
4951 	vnic->uc_filter_count = 1;
4952 
4953 	vnic->rx_mask = CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
4954 
4955 	if ((bp->dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
4956 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
4957 
4958 	if (bp->dev->flags & IFF_ALLMULTI) {
4959 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
4960 		vnic->mc_list_count = 0;
4961 	} else {
4962 		u32 mask = 0;
4963 
4964 		bnxt_mc_list_updated(bp, &mask);
4965 		vnic->rx_mask |= mask;
4966 	}
4967 
4968 	rc = bnxt_cfg_rx_mode(bp);
4969 	if (rc)
4970 		goto err_out;
4971 
4972 	rc = bnxt_hwrm_set_coal(bp);
4973 	if (rc)
4974 		netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
4975 				rc);
4976 
4977 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
4978 		rc = bnxt_setup_nitroa0_vnic(bp);
4979 		if (rc)
4980 			netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n",
4981 				   rc);
4982 	}
4983 
4984 	if (BNXT_VF(bp)) {
4985 		bnxt_hwrm_func_qcfg(bp);
4986 		netdev_update_features(bp->dev);
4987 	}
4988 
4989 	return 0;
4990 
4991 err_out:
4992 	bnxt_hwrm_resource_free(bp, 0, true);
4993 
4994 	return rc;
4995 }
4996 
4997 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
4998 {
4999 	bnxt_hwrm_resource_free(bp, 1, irq_re_init);
5000 	return 0;
5001 }
5002 
5003 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
5004 {
5005 	bnxt_init_rx_rings(bp);
5006 	bnxt_init_tx_rings(bp);
5007 	bnxt_init_ring_grps(bp, irq_re_init);
5008 	bnxt_init_vnics(bp);
5009 
5010 	return bnxt_init_chip(bp, irq_re_init);
5011 }
5012 
5013 static int bnxt_set_real_num_queues(struct bnxt *bp)
5014 {
5015 	int rc;
5016 	struct net_device *dev = bp->dev;
5017 
5018 	rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings -
5019 					  bp->tx_nr_rings_xdp);
5020 	if (rc)
5021 		return rc;
5022 
5023 	rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
5024 	if (rc)
5025 		return rc;
5026 
5027 #ifdef CONFIG_RFS_ACCEL
5028 	if (bp->flags & BNXT_FLAG_RFS)
5029 		dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
5030 #endif
5031 
5032 	return rc;
5033 }
5034 
5035 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
5036 			   bool shared)
5037 {
5038 	int _rx = *rx, _tx = *tx;
5039 
5040 	if (shared) {
5041 		*rx = min_t(int, _rx, max);
5042 		*tx = min_t(int, _tx, max);
5043 	} else {
5044 		if (max < 2)
5045 			return -ENOMEM;
5046 
5047 		while (_rx + _tx > max) {
5048 			if (_rx > _tx && _rx > 1)
5049 				_rx--;
5050 			else if (_tx > 1)
5051 				_tx--;
5052 		}
5053 		*rx = _rx;
5054 		*tx = _tx;
5055 	}
5056 	return 0;
5057 }
5058 
5059 static void bnxt_setup_msix(struct bnxt *bp)
5060 {
5061 	const int len = sizeof(bp->irq_tbl[0].name);
5062 	struct net_device *dev = bp->dev;
5063 	int tcs, i;
5064 
5065 	tcs = netdev_get_num_tc(dev);
5066 	if (tcs > 1) {
5067 		int i, off, count;
5068 
5069 		for (i = 0; i < tcs; i++) {
5070 			count = bp->tx_nr_rings_per_tc;
5071 			off = i * count;
5072 			netdev_set_tc_queue(dev, i, count, off);
5073 		}
5074 	}
5075 
5076 	for (i = 0; i < bp->cp_nr_rings; i++) {
5077 		char *attr;
5078 
5079 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
5080 			attr = "TxRx";
5081 		else if (i < bp->rx_nr_rings)
5082 			attr = "rx";
5083 		else
5084 			attr = "tx";
5085 
5086 		snprintf(bp->irq_tbl[i].name, len, "%s-%s-%d", dev->name, attr,
5087 			 i);
5088 		bp->irq_tbl[i].handler = bnxt_msix;
5089 	}
5090 }
5091 
5092 static void bnxt_setup_inta(struct bnxt *bp)
5093 {
5094 	const int len = sizeof(bp->irq_tbl[0].name);
5095 
5096 	if (netdev_get_num_tc(bp->dev))
5097 		netdev_reset_tc(bp->dev);
5098 
5099 	snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx",
5100 		 0);
5101 	bp->irq_tbl[0].handler = bnxt_inta;
5102 }
5103 
5104 static int bnxt_setup_int_mode(struct bnxt *bp)
5105 {
5106 	int rc;
5107 
5108 	if (bp->flags & BNXT_FLAG_USING_MSIX)
5109 		bnxt_setup_msix(bp);
5110 	else
5111 		bnxt_setup_inta(bp);
5112 
5113 	rc = bnxt_set_real_num_queues(bp);
5114 	return rc;
5115 }
5116 
5117 #ifdef CONFIG_RFS_ACCEL
5118 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp)
5119 {
5120 #if defined(CONFIG_BNXT_SRIOV)
5121 	if (BNXT_VF(bp))
5122 		return bp->vf.max_rsscos_ctxs;
5123 #endif
5124 	return bp->pf.max_rsscos_ctxs;
5125 }
5126 
5127 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp)
5128 {
5129 #if defined(CONFIG_BNXT_SRIOV)
5130 	if (BNXT_VF(bp))
5131 		return bp->vf.max_vnics;
5132 #endif
5133 	return bp->pf.max_vnics;
5134 }
5135 #endif
5136 
5137 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp)
5138 {
5139 #if defined(CONFIG_BNXT_SRIOV)
5140 	if (BNXT_VF(bp))
5141 		return bp->vf.max_stat_ctxs;
5142 #endif
5143 	return bp->pf.max_stat_ctxs;
5144 }
5145 
5146 void bnxt_set_max_func_stat_ctxs(struct bnxt *bp, unsigned int max)
5147 {
5148 #if defined(CONFIG_BNXT_SRIOV)
5149 	if (BNXT_VF(bp))
5150 		bp->vf.max_stat_ctxs = max;
5151 	else
5152 #endif
5153 		bp->pf.max_stat_ctxs = max;
5154 }
5155 
5156 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp)
5157 {
5158 #if defined(CONFIG_BNXT_SRIOV)
5159 	if (BNXT_VF(bp))
5160 		return bp->vf.max_cp_rings;
5161 #endif
5162 	return bp->pf.max_cp_rings;
5163 }
5164 
5165 void bnxt_set_max_func_cp_rings(struct bnxt *bp, unsigned int max)
5166 {
5167 #if defined(CONFIG_BNXT_SRIOV)
5168 	if (BNXT_VF(bp))
5169 		bp->vf.max_cp_rings = max;
5170 	else
5171 #endif
5172 		bp->pf.max_cp_rings = max;
5173 }
5174 
5175 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp)
5176 {
5177 #if defined(CONFIG_BNXT_SRIOV)
5178 	if (BNXT_VF(bp))
5179 		return bp->vf.max_irqs;
5180 #endif
5181 	return bp->pf.max_irqs;
5182 }
5183 
5184 void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs)
5185 {
5186 #if defined(CONFIG_BNXT_SRIOV)
5187 	if (BNXT_VF(bp))
5188 		bp->vf.max_irqs = max_irqs;
5189 	else
5190 #endif
5191 		bp->pf.max_irqs = max_irqs;
5192 }
5193 
5194 static int bnxt_init_msix(struct bnxt *bp)
5195 {
5196 	int i, total_vecs, rc = 0, min = 1;
5197 	struct msix_entry *msix_ent;
5198 
5199 	total_vecs = bnxt_get_max_func_irqs(bp);
5200 	msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
5201 	if (!msix_ent)
5202 		return -ENOMEM;
5203 
5204 	for (i = 0; i < total_vecs; i++) {
5205 		msix_ent[i].entry = i;
5206 		msix_ent[i].vector = 0;
5207 	}
5208 
5209 	if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
5210 		min = 2;
5211 
5212 	total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
5213 	if (total_vecs < 0) {
5214 		rc = -ENODEV;
5215 		goto msix_setup_exit;
5216 	}
5217 
5218 	bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
5219 	if (bp->irq_tbl) {
5220 		for (i = 0; i < total_vecs; i++)
5221 			bp->irq_tbl[i].vector = msix_ent[i].vector;
5222 
5223 		bp->total_irqs = total_vecs;
5224 		/* Trim rings based upon num of vectors allocated */
5225 		rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
5226 				     total_vecs, min == 1);
5227 		if (rc)
5228 			goto msix_setup_exit;
5229 
5230 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
5231 		bp->cp_nr_rings = (min == 1) ?
5232 				  max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
5233 				  bp->tx_nr_rings + bp->rx_nr_rings;
5234 
5235 	} else {
5236 		rc = -ENOMEM;
5237 		goto msix_setup_exit;
5238 	}
5239 	bp->flags |= BNXT_FLAG_USING_MSIX;
5240 	kfree(msix_ent);
5241 	return 0;
5242 
5243 msix_setup_exit:
5244 	netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc);
5245 	kfree(bp->irq_tbl);
5246 	bp->irq_tbl = NULL;
5247 	pci_disable_msix(bp->pdev);
5248 	kfree(msix_ent);
5249 	return rc;
5250 }
5251 
5252 static int bnxt_init_inta(struct bnxt *bp)
5253 {
5254 	bp->irq_tbl = kcalloc(1, sizeof(struct bnxt_irq), GFP_KERNEL);
5255 	if (!bp->irq_tbl)
5256 		return -ENOMEM;
5257 
5258 	bp->total_irqs = 1;
5259 	bp->rx_nr_rings = 1;
5260 	bp->tx_nr_rings = 1;
5261 	bp->cp_nr_rings = 1;
5262 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
5263 	bp->flags |= BNXT_FLAG_SHARED_RINGS;
5264 	bp->irq_tbl[0].vector = bp->pdev->irq;
5265 	return 0;
5266 }
5267 
5268 static int bnxt_init_int_mode(struct bnxt *bp)
5269 {
5270 	int rc = 0;
5271 
5272 	if (bp->flags & BNXT_FLAG_MSIX_CAP)
5273 		rc = bnxt_init_msix(bp);
5274 
5275 	if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) {
5276 		/* fallback to INTA */
5277 		rc = bnxt_init_inta(bp);
5278 	}
5279 	return rc;
5280 }
5281 
5282 static void bnxt_clear_int_mode(struct bnxt *bp)
5283 {
5284 	if (bp->flags & BNXT_FLAG_USING_MSIX)
5285 		pci_disable_msix(bp->pdev);
5286 
5287 	kfree(bp->irq_tbl);
5288 	bp->irq_tbl = NULL;
5289 	bp->flags &= ~BNXT_FLAG_USING_MSIX;
5290 }
5291 
5292 static void bnxt_free_irq(struct bnxt *bp)
5293 {
5294 	struct bnxt_irq *irq;
5295 	int i;
5296 
5297 #ifdef CONFIG_RFS_ACCEL
5298 	free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
5299 	bp->dev->rx_cpu_rmap = NULL;
5300 #endif
5301 	if (!bp->irq_tbl)
5302 		return;
5303 
5304 	for (i = 0; i < bp->cp_nr_rings; i++) {
5305 		irq = &bp->irq_tbl[i];
5306 		if (irq->requested)
5307 			free_irq(irq->vector, bp->bnapi[i]);
5308 		irq->requested = 0;
5309 	}
5310 }
5311 
5312 static int bnxt_request_irq(struct bnxt *bp)
5313 {
5314 	int i, j, rc = 0;
5315 	unsigned long flags = 0;
5316 #ifdef CONFIG_RFS_ACCEL
5317 	struct cpu_rmap *rmap = bp->dev->rx_cpu_rmap;
5318 #endif
5319 
5320 	if (!(bp->flags & BNXT_FLAG_USING_MSIX))
5321 		flags = IRQF_SHARED;
5322 
5323 	for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
5324 		struct bnxt_irq *irq = &bp->irq_tbl[i];
5325 #ifdef CONFIG_RFS_ACCEL
5326 		if (rmap && bp->bnapi[i]->rx_ring) {
5327 			rc = irq_cpu_rmap_add(rmap, irq->vector);
5328 			if (rc)
5329 				netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
5330 					    j);
5331 			j++;
5332 		}
5333 #endif
5334 		rc = request_irq(irq->vector, irq->handler, flags, irq->name,
5335 				 bp->bnapi[i]);
5336 		if (rc)
5337 			break;
5338 
5339 		irq->requested = 1;
5340 	}
5341 	return rc;
5342 }
5343 
5344 static void bnxt_del_napi(struct bnxt *bp)
5345 {
5346 	int i;
5347 
5348 	if (!bp->bnapi)
5349 		return;
5350 
5351 	for (i = 0; i < bp->cp_nr_rings; i++) {
5352 		struct bnxt_napi *bnapi = bp->bnapi[i];
5353 
5354 		napi_hash_del(&bnapi->napi);
5355 		netif_napi_del(&bnapi->napi);
5356 	}
5357 	/* We called napi_hash_del() before netif_napi_del(), we need
5358 	 * to respect an RCU grace period before freeing napi structures.
5359 	 */
5360 	synchronize_net();
5361 }
5362 
5363 static void bnxt_init_napi(struct bnxt *bp)
5364 {
5365 	int i;
5366 	unsigned int cp_nr_rings = bp->cp_nr_rings;
5367 	struct bnxt_napi *bnapi;
5368 
5369 	if (bp->flags & BNXT_FLAG_USING_MSIX) {
5370 		if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5371 			cp_nr_rings--;
5372 		for (i = 0; i < cp_nr_rings; i++) {
5373 			bnapi = bp->bnapi[i];
5374 			netif_napi_add(bp->dev, &bnapi->napi,
5375 				       bnxt_poll, 64);
5376 		}
5377 		if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
5378 			bnapi = bp->bnapi[cp_nr_rings];
5379 			netif_napi_add(bp->dev, &bnapi->napi,
5380 				       bnxt_poll_nitroa0, 64);
5381 		}
5382 	} else {
5383 		bnapi = bp->bnapi[0];
5384 		netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64);
5385 	}
5386 }
5387 
5388 static void bnxt_disable_napi(struct bnxt *bp)
5389 {
5390 	int i;
5391 
5392 	if (!bp->bnapi)
5393 		return;
5394 
5395 	for (i = 0; i < bp->cp_nr_rings; i++)
5396 		napi_disable(&bp->bnapi[i]->napi);
5397 }
5398 
5399 static void bnxt_enable_napi(struct bnxt *bp)
5400 {
5401 	int i;
5402 
5403 	for (i = 0; i < bp->cp_nr_rings; i++) {
5404 		bp->bnapi[i]->in_reset = false;
5405 		napi_enable(&bp->bnapi[i]->napi);
5406 	}
5407 }
5408 
5409 void bnxt_tx_disable(struct bnxt *bp)
5410 {
5411 	int i;
5412 	struct bnxt_tx_ring_info *txr;
5413 	struct netdev_queue *txq;
5414 
5415 	if (bp->tx_ring) {
5416 		for (i = 0; i < bp->tx_nr_rings; i++) {
5417 			txr = &bp->tx_ring[i];
5418 			txq = netdev_get_tx_queue(bp->dev, i);
5419 			txr->dev_state = BNXT_DEV_STATE_CLOSING;
5420 		}
5421 	}
5422 	/* Stop all TX queues */
5423 	netif_tx_disable(bp->dev);
5424 	netif_carrier_off(bp->dev);
5425 }
5426 
5427 void bnxt_tx_enable(struct bnxt *bp)
5428 {
5429 	int i;
5430 	struct bnxt_tx_ring_info *txr;
5431 	struct netdev_queue *txq;
5432 
5433 	for (i = 0; i < bp->tx_nr_rings; i++) {
5434 		txr = &bp->tx_ring[i];
5435 		txq = netdev_get_tx_queue(bp->dev, i);
5436 		txr->dev_state = 0;
5437 	}
5438 	netif_tx_wake_all_queues(bp->dev);
5439 	if (bp->link_info.link_up)
5440 		netif_carrier_on(bp->dev);
5441 }
5442 
5443 static void bnxt_report_link(struct bnxt *bp)
5444 {
5445 	if (bp->link_info.link_up) {
5446 		const char *duplex;
5447 		const char *flow_ctrl;
5448 		u16 speed, fec;
5449 
5450 		netif_carrier_on(bp->dev);
5451 		if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
5452 			duplex = "full";
5453 		else
5454 			duplex = "half";
5455 		if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
5456 			flow_ctrl = "ON - receive & transmit";
5457 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
5458 			flow_ctrl = "ON - transmit";
5459 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
5460 			flow_ctrl = "ON - receive";
5461 		else
5462 			flow_ctrl = "none";
5463 		speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
5464 		netdev_info(bp->dev, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
5465 			    speed, duplex, flow_ctrl);
5466 		if (bp->flags & BNXT_FLAG_EEE_CAP)
5467 			netdev_info(bp->dev, "EEE is %s\n",
5468 				    bp->eee.eee_active ? "active" :
5469 							 "not active");
5470 		fec = bp->link_info.fec_cfg;
5471 		if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED))
5472 			netdev_info(bp->dev, "FEC autoneg %s encodings: %s\n",
5473 				    (fec & BNXT_FEC_AUTONEG) ? "on" : "off",
5474 				    (fec & BNXT_FEC_ENC_BASE_R) ? "BaseR" :
5475 				     (fec & BNXT_FEC_ENC_RS) ? "RS" : "None");
5476 	} else {
5477 		netif_carrier_off(bp->dev);
5478 		netdev_err(bp->dev, "NIC Link is Down\n");
5479 	}
5480 }
5481 
5482 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp)
5483 {
5484 	int rc = 0;
5485 	struct hwrm_port_phy_qcaps_input req = {0};
5486 	struct hwrm_port_phy_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
5487 	struct bnxt_link_info *link_info = &bp->link_info;
5488 
5489 	if (bp->hwrm_spec_code < 0x10201)
5490 		return 0;
5491 
5492 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCAPS, -1, -1);
5493 
5494 	mutex_lock(&bp->hwrm_cmd_lock);
5495 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5496 	if (rc)
5497 		goto hwrm_phy_qcaps_exit;
5498 
5499 	if (resp->eee_supported & PORT_PHY_QCAPS_RESP_EEE_SUPPORTED) {
5500 		struct ethtool_eee *eee = &bp->eee;
5501 		u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode);
5502 
5503 		bp->flags |= BNXT_FLAG_EEE_CAP;
5504 		eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
5505 		bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) &
5506 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK;
5507 		bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) &
5508 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK;
5509 	}
5510 	link_info->support_auto_speeds =
5511 		le16_to_cpu(resp->supported_speeds_auto_mode);
5512 
5513 hwrm_phy_qcaps_exit:
5514 	mutex_unlock(&bp->hwrm_cmd_lock);
5515 	return rc;
5516 }
5517 
5518 static int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
5519 {
5520 	int rc = 0;
5521 	struct bnxt_link_info *link_info = &bp->link_info;
5522 	struct hwrm_port_phy_qcfg_input req = {0};
5523 	struct hwrm_port_phy_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
5524 	u8 link_up = link_info->link_up;
5525 	u16 diff;
5526 
5527 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCFG, -1, -1);
5528 
5529 	mutex_lock(&bp->hwrm_cmd_lock);
5530 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5531 	if (rc) {
5532 		mutex_unlock(&bp->hwrm_cmd_lock);
5533 		return rc;
5534 	}
5535 
5536 	memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
5537 	link_info->phy_link_status = resp->link;
5538 	link_info->duplex =  resp->duplex;
5539 	link_info->pause = resp->pause;
5540 	link_info->auto_mode = resp->auto_mode;
5541 	link_info->auto_pause_setting = resp->auto_pause;
5542 	link_info->lp_pause = resp->link_partner_adv_pause;
5543 	link_info->force_pause_setting = resp->force_pause;
5544 	link_info->duplex_setting = resp->duplex;
5545 	if (link_info->phy_link_status == BNXT_LINK_LINK)
5546 		link_info->link_speed = le16_to_cpu(resp->link_speed);
5547 	else
5548 		link_info->link_speed = 0;
5549 	link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
5550 	link_info->support_speeds = le16_to_cpu(resp->support_speeds);
5551 	link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
5552 	link_info->lp_auto_link_speeds =
5553 		le16_to_cpu(resp->link_partner_adv_speeds);
5554 	link_info->preemphasis = le32_to_cpu(resp->preemphasis);
5555 	link_info->phy_ver[0] = resp->phy_maj;
5556 	link_info->phy_ver[1] = resp->phy_min;
5557 	link_info->phy_ver[2] = resp->phy_bld;
5558 	link_info->media_type = resp->media_type;
5559 	link_info->phy_type = resp->phy_type;
5560 	link_info->transceiver = resp->xcvr_pkg_type;
5561 	link_info->phy_addr = resp->eee_config_phy_addr &
5562 			      PORT_PHY_QCFG_RESP_PHY_ADDR_MASK;
5563 	link_info->module_status = resp->module_status;
5564 
5565 	if (bp->flags & BNXT_FLAG_EEE_CAP) {
5566 		struct ethtool_eee *eee = &bp->eee;
5567 		u16 fw_speeds;
5568 
5569 		eee->eee_active = 0;
5570 		if (resp->eee_config_phy_addr &
5571 		    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) {
5572 			eee->eee_active = 1;
5573 			fw_speeds = le16_to_cpu(
5574 				resp->link_partner_adv_eee_link_speed_mask);
5575 			eee->lp_advertised =
5576 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
5577 		}
5578 
5579 		/* Pull initial EEE config */
5580 		if (!chng_link_state) {
5581 			if (resp->eee_config_phy_addr &
5582 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED)
5583 				eee->eee_enabled = 1;
5584 
5585 			fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask);
5586 			eee->advertised =
5587 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
5588 
5589 			if (resp->eee_config_phy_addr &
5590 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) {
5591 				__le32 tmr;
5592 
5593 				eee->tx_lpi_enabled = 1;
5594 				tmr = resp->xcvr_identifier_type_tx_lpi_timer;
5595 				eee->tx_lpi_timer = le32_to_cpu(tmr) &
5596 					PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK;
5597 			}
5598 		}
5599 	}
5600 
5601 	link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED;
5602 	if (bp->hwrm_spec_code >= 0x10504)
5603 		link_info->fec_cfg = le16_to_cpu(resp->fec_cfg);
5604 
5605 	/* TODO: need to add more logic to report VF link */
5606 	if (chng_link_state) {
5607 		if (link_info->phy_link_status == BNXT_LINK_LINK)
5608 			link_info->link_up = 1;
5609 		else
5610 			link_info->link_up = 0;
5611 		if (link_up != link_info->link_up)
5612 			bnxt_report_link(bp);
5613 	} else {
5614 		/* alwasy link down if not require to update link state */
5615 		link_info->link_up = 0;
5616 	}
5617 	mutex_unlock(&bp->hwrm_cmd_lock);
5618 
5619 	diff = link_info->support_auto_speeds ^ link_info->advertising;
5620 	if ((link_info->support_auto_speeds | diff) !=
5621 	    link_info->support_auto_speeds) {
5622 		/* An advertised speed is no longer supported, so we need to
5623 		 * update the advertisement settings.  Caller holds RTNL
5624 		 * so we can modify link settings.
5625 		 */
5626 		link_info->advertising = link_info->support_auto_speeds;
5627 		if (link_info->autoneg & BNXT_AUTONEG_SPEED)
5628 			bnxt_hwrm_set_link_setting(bp, true, false);
5629 	}
5630 	return 0;
5631 }
5632 
5633 static void bnxt_get_port_module_status(struct bnxt *bp)
5634 {
5635 	struct bnxt_link_info *link_info = &bp->link_info;
5636 	struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp;
5637 	u8 module_status;
5638 
5639 	if (bnxt_update_link(bp, true))
5640 		return;
5641 
5642 	module_status = link_info->module_status;
5643 	switch (module_status) {
5644 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX:
5645 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN:
5646 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG:
5647 		netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n",
5648 			    bp->pf.port_id);
5649 		if (bp->hwrm_spec_code >= 0x10201) {
5650 			netdev_warn(bp->dev, "Module part number %s\n",
5651 				    resp->phy_vendor_partnumber);
5652 		}
5653 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX)
5654 			netdev_warn(bp->dev, "TX is disabled\n");
5655 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN)
5656 			netdev_warn(bp->dev, "SFP+ module is shutdown\n");
5657 	}
5658 }
5659 
5660 static void
5661 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
5662 {
5663 	if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
5664 		if (bp->hwrm_spec_code >= 0x10201)
5665 			req->auto_pause =
5666 				PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE;
5667 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
5668 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
5669 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
5670 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX;
5671 		req->enables |=
5672 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
5673 	} else {
5674 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
5675 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
5676 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
5677 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
5678 		req->enables |=
5679 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
5680 		if (bp->hwrm_spec_code >= 0x10201) {
5681 			req->auto_pause = req->force_pause;
5682 			req->enables |= cpu_to_le32(
5683 				PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
5684 		}
5685 	}
5686 }
5687 
5688 static void bnxt_hwrm_set_link_common(struct bnxt *bp,
5689 				      struct hwrm_port_phy_cfg_input *req)
5690 {
5691 	u8 autoneg = bp->link_info.autoneg;
5692 	u16 fw_link_speed = bp->link_info.req_link_speed;
5693 	u16 advertising = bp->link_info.advertising;
5694 
5695 	if (autoneg & BNXT_AUTONEG_SPEED) {
5696 		req->auto_mode |=
5697 			PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK;
5698 
5699 		req->enables |= cpu_to_le32(
5700 			PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
5701 		req->auto_link_speed_mask = cpu_to_le16(advertising);
5702 
5703 		req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
5704 		req->flags |=
5705 			cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
5706 	} else {
5707 		req->force_link_speed = cpu_to_le16(fw_link_speed);
5708 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
5709 	}
5710 
5711 	/* tell chimp that the setting takes effect immediately */
5712 	req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
5713 }
5714 
5715 int bnxt_hwrm_set_pause(struct bnxt *bp)
5716 {
5717 	struct hwrm_port_phy_cfg_input req = {0};
5718 	int rc;
5719 
5720 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
5721 	bnxt_hwrm_set_pause_common(bp, &req);
5722 
5723 	if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
5724 	    bp->link_info.force_link_chng)
5725 		bnxt_hwrm_set_link_common(bp, &req);
5726 
5727 	mutex_lock(&bp->hwrm_cmd_lock);
5728 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5729 	if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
5730 		/* since changing of pause setting doesn't trigger any link
5731 		 * change event, the driver needs to update the current pause
5732 		 * result upon successfully return of the phy_cfg command
5733 		 */
5734 		bp->link_info.pause =
5735 		bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
5736 		bp->link_info.auto_pause_setting = 0;
5737 		if (!bp->link_info.force_link_chng)
5738 			bnxt_report_link(bp);
5739 	}
5740 	bp->link_info.force_link_chng = false;
5741 	mutex_unlock(&bp->hwrm_cmd_lock);
5742 	return rc;
5743 }
5744 
5745 static void bnxt_hwrm_set_eee(struct bnxt *bp,
5746 			      struct hwrm_port_phy_cfg_input *req)
5747 {
5748 	struct ethtool_eee *eee = &bp->eee;
5749 
5750 	if (eee->eee_enabled) {
5751 		u16 eee_speeds;
5752 		u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE;
5753 
5754 		if (eee->tx_lpi_enabled)
5755 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE;
5756 		else
5757 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE;
5758 
5759 		req->flags |= cpu_to_le32(flags);
5760 		eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised);
5761 		req->eee_link_speed_mask = cpu_to_le16(eee_speeds);
5762 		req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer);
5763 	} else {
5764 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE);
5765 	}
5766 }
5767 
5768 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee)
5769 {
5770 	struct hwrm_port_phy_cfg_input req = {0};
5771 
5772 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
5773 	if (set_pause)
5774 		bnxt_hwrm_set_pause_common(bp, &req);
5775 
5776 	bnxt_hwrm_set_link_common(bp, &req);
5777 
5778 	if (set_eee)
5779 		bnxt_hwrm_set_eee(bp, &req);
5780 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5781 }
5782 
5783 static int bnxt_hwrm_shutdown_link(struct bnxt *bp)
5784 {
5785 	struct hwrm_port_phy_cfg_input req = {0};
5786 
5787 	if (!BNXT_SINGLE_PF(bp))
5788 		return 0;
5789 
5790 	if (pci_num_vf(bp->pdev))
5791 		return 0;
5792 
5793 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
5794 	req.flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN);
5795 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5796 }
5797 
5798 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp)
5799 {
5800 	struct hwrm_port_led_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
5801 	struct hwrm_port_led_qcaps_input req = {0};
5802 	struct bnxt_pf_info *pf = &bp->pf;
5803 	int rc;
5804 
5805 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601)
5806 		return 0;
5807 
5808 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_LED_QCAPS, -1, -1);
5809 	req.port_id = cpu_to_le16(pf->port_id);
5810 	mutex_lock(&bp->hwrm_cmd_lock);
5811 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5812 	if (rc) {
5813 		mutex_unlock(&bp->hwrm_cmd_lock);
5814 		return rc;
5815 	}
5816 	if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) {
5817 		int i;
5818 
5819 		bp->num_leds = resp->num_leds;
5820 		memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) *
5821 						 bp->num_leds);
5822 		for (i = 0; i < bp->num_leds; i++) {
5823 			struct bnxt_led_info *led = &bp->leds[i];
5824 			__le16 caps = led->led_state_caps;
5825 
5826 			if (!led->led_group_id ||
5827 			    !BNXT_LED_ALT_BLINK_CAP(caps)) {
5828 				bp->num_leds = 0;
5829 				break;
5830 			}
5831 		}
5832 	}
5833 	mutex_unlock(&bp->hwrm_cmd_lock);
5834 	return 0;
5835 }
5836 
5837 static bool bnxt_eee_config_ok(struct bnxt *bp)
5838 {
5839 	struct ethtool_eee *eee = &bp->eee;
5840 	struct bnxt_link_info *link_info = &bp->link_info;
5841 
5842 	if (!(bp->flags & BNXT_FLAG_EEE_CAP))
5843 		return true;
5844 
5845 	if (eee->eee_enabled) {
5846 		u32 advertising =
5847 			_bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0);
5848 
5849 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
5850 			eee->eee_enabled = 0;
5851 			return false;
5852 		}
5853 		if (eee->advertised & ~advertising) {
5854 			eee->advertised = advertising & eee->supported;
5855 			return false;
5856 		}
5857 	}
5858 	return true;
5859 }
5860 
5861 static int bnxt_update_phy_setting(struct bnxt *bp)
5862 {
5863 	int rc;
5864 	bool update_link = false;
5865 	bool update_pause = false;
5866 	bool update_eee = false;
5867 	struct bnxt_link_info *link_info = &bp->link_info;
5868 
5869 	rc = bnxt_update_link(bp, true);
5870 	if (rc) {
5871 		netdev_err(bp->dev, "failed to update link (rc: %x)\n",
5872 			   rc);
5873 		return rc;
5874 	}
5875 	if (!BNXT_SINGLE_PF(bp))
5876 		return 0;
5877 
5878 	if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
5879 	    (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) !=
5880 	    link_info->req_flow_ctrl)
5881 		update_pause = true;
5882 	if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
5883 	    link_info->force_pause_setting != link_info->req_flow_ctrl)
5884 		update_pause = true;
5885 	if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
5886 		if (BNXT_AUTO_MODE(link_info->auto_mode))
5887 			update_link = true;
5888 		if (link_info->req_link_speed != link_info->force_link_speed)
5889 			update_link = true;
5890 		if (link_info->req_duplex != link_info->duplex_setting)
5891 			update_link = true;
5892 	} else {
5893 		if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
5894 			update_link = true;
5895 		if (link_info->advertising != link_info->auto_link_speeds)
5896 			update_link = true;
5897 	}
5898 
5899 	/* The last close may have shutdown the link, so need to call
5900 	 * PHY_CFG to bring it back up.
5901 	 */
5902 	if (!netif_carrier_ok(bp->dev))
5903 		update_link = true;
5904 
5905 	if (!bnxt_eee_config_ok(bp))
5906 		update_eee = true;
5907 
5908 	if (update_link)
5909 		rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee);
5910 	else if (update_pause)
5911 		rc = bnxt_hwrm_set_pause(bp);
5912 	if (rc) {
5913 		netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
5914 			   rc);
5915 		return rc;
5916 	}
5917 
5918 	return rc;
5919 }
5920 
5921 /* Common routine to pre-map certain register block to different GRC window.
5922  * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
5923  * in PF and 3 windows in VF that can be customized to map in different
5924  * register blocks.
5925  */
5926 static void bnxt_preset_reg_win(struct bnxt *bp)
5927 {
5928 	if (BNXT_PF(bp)) {
5929 		/* CAG registers map to GRC window #4 */
5930 		writel(BNXT_CAG_REG_BASE,
5931 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
5932 	}
5933 }
5934 
5935 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
5936 {
5937 	int rc = 0;
5938 
5939 	bnxt_preset_reg_win(bp);
5940 	netif_carrier_off(bp->dev);
5941 	if (irq_re_init) {
5942 		rc = bnxt_setup_int_mode(bp);
5943 		if (rc) {
5944 			netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
5945 				   rc);
5946 			return rc;
5947 		}
5948 	}
5949 	if ((bp->flags & BNXT_FLAG_RFS) &&
5950 	    !(bp->flags & BNXT_FLAG_USING_MSIX)) {
5951 		/* disable RFS if falling back to INTA */
5952 		bp->dev->hw_features &= ~NETIF_F_NTUPLE;
5953 		bp->flags &= ~BNXT_FLAG_RFS;
5954 	}
5955 
5956 	rc = bnxt_alloc_mem(bp, irq_re_init);
5957 	if (rc) {
5958 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
5959 		goto open_err_free_mem;
5960 	}
5961 
5962 	if (irq_re_init) {
5963 		bnxt_init_napi(bp);
5964 		rc = bnxt_request_irq(bp);
5965 		if (rc) {
5966 			netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
5967 			goto open_err;
5968 		}
5969 	}
5970 
5971 	bnxt_enable_napi(bp);
5972 
5973 	rc = bnxt_init_nic(bp, irq_re_init);
5974 	if (rc) {
5975 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
5976 		goto open_err;
5977 	}
5978 
5979 	if (link_re_init) {
5980 		rc = bnxt_update_phy_setting(bp);
5981 		if (rc)
5982 			netdev_warn(bp->dev, "failed to update phy settings\n");
5983 	}
5984 
5985 	if (irq_re_init)
5986 		udp_tunnel_get_rx_info(bp->dev);
5987 
5988 	set_bit(BNXT_STATE_OPEN, &bp->state);
5989 	bnxt_enable_int(bp);
5990 	/* Enable TX queues */
5991 	bnxt_tx_enable(bp);
5992 	mod_timer(&bp->timer, jiffies + bp->current_interval);
5993 	/* Poll link status and check for SFP+ module status */
5994 	bnxt_get_port_module_status(bp);
5995 
5996 	return 0;
5997 
5998 open_err:
5999 	bnxt_disable_napi(bp);
6000 	bnxt_del_napi(bp);
6001 
6002 open_err_free_mem:
6003 	bnxt_free_skbs(bp);
6004 	bnxt_free_irq(bp);
6005 	bnxt_free_mem(bp, true);
6006 	return rc;
6007 }
6008 
6009 /* rtnl_lock held */
6010 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
6011 {
6012 	int rc = 0;
6013 
6014 	rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
6015 	if (rc) {
6016 		netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
6017 		dev_close(bp->dev);
6018 	}
6019 	return rc;
6020 }
6021 
6022 static int bnxt_open(struct net_device *dev)
6023 {
6024 	struct bnxt *bp = netdev_priv(dev);
6025 
6026 	return __bnxt_open_nic(bp, true, true);
6027 }
6028 
6029 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
6030 {
6031 	int rc = 0;
6032 
6033 #ifdef CONFIG_BNXT_SRIOV
6034 	if (bp->sriov_cfg) {
6035 		rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
6036 						      !bp->sriov_cfg,
6037 						      BNXT_SRIOV_CFG_WAIT_TMO);
6038 		if (rc)
6039 			netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
6040 	}
6041 #endif
6042 	/* Change device state to avoid TX queue wake up's */
6043 	bnxt_tx_disable(bp);
6044 
6045 	clear_bit(BNXT_STATE_OPEN, &bp->state);
6046 	smp_mb__after_atomic();
6047 	while (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state))
6048 		msleep(20);
6049 
6050 	/* Flush rings and and disable interrupts */
6051 	bnxt_shutdown_nic(bp, irq_re_init);
6052 
6053 	/* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
6054 
6055 	bnxt_disable_napi(bp);
6056 	del_timer_sync(&bp->timer);
6057 	bnxt_free_skbs(bp);
6058 
6059 	if (irq_re_init) {
6060 		bnxt_free_irq(bp);
6061 		bnxt_del_napi(bp);
6062 	}
6063 	bnxt_free_mem(bp, irq_re_init);
6064 	return rc;
6065 }
6066 
6067 static int bnxt_close(struct net_device *dev)
6068 {
6069 	struct bnxt *bp = netdev_priv(dev);
6070 
6071 	bnxt_close_nic(bp, true, true);
6072 	bnxt_hwrm_shutdown_link(bp);
6073 	return 0;
6074 }
6075 
6076 /* rtnl_lock held */
6077 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
6078 {
6079 	switch (cmd) {
6080 	case SIOCGMIIPHY:
6081 		/* fallthru */
6082 	case SIOCGMIIREG: {
6083 		if (!netif_running(dev))
6084 			return -EAGAIN;
6085 
6086 		return 0;
6087 	}
6088 
6089 	case SIOCSMIIREG:
6090 		if (!netif_running(dev))
6091 			return -EAGAIN;
6092 
6093 		return 0;
6094 
6095 	default:
6096 		/* do nothing */
6097 		break;
6098 	}
6099 	return -EOPNOTSUPP;
6100 }
6101 
6102 static void
6103 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
6104 {
6105 	u32 i;
6106 	struct bnxt *bp = netdev_priv(dev);
6107 
6108 	if (!bp->bnapi)
6109 		return;
6110 
6111 	/* TODO check if we need to synchronize with bnxt_close path */
6112 	for (i = 0; i < bp->cp_nr_rings; i++) {
6113 		struct bnxt_napi *bnapi = bp->bnapi[i];
6114 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6115 		struct ctx_hw_stats *hw_stats = cpr->hw_stats;
6116 
6117 		stats->rx_packets += le64_to_cpu(hw_stats->rx_ucast_pkts);
6118 		stats->rx_packets += le64_to_cpu(hw_stats->rx_mcast_pkts);
6119 		stats->rx_packets += le64_to_cpu(hw_stats->rx_bcast_pkts);
6120 
6121 		stats->tx_packets += le64_to_cpu(hw_stats->tx_ucast_pkts);
6122 		stats->tx_packets += le64_to_cpu(hw_stats->tx_mcast_pkts);
6123 		stats->tx_packets += le64_to_cpu(hw_stats->tx_bcast_pkts);
6124 
6125 		stats->rx_bytes += le64_to_cpu(hw_stats->rx_ucast_bytes);
6126 		stats->rx_bytes += le64_to_cpu(hw_stats->rx_mcast_bytes);
6127 		stats->rx_bytes += le64_to_cpu(hw_stats->rx_bcast_bytes);
6128 
6129 		stats->tx_bytes += le64_to_cpu(hw_stats->tx_ucast_bytes);
6130 		stats->tx_bytes += le64_to_cpu(hw_stats->tx_mcast_bytes);
6131 		stats->tx_bytes += le64_to_cpu(hw_stats->tx_bcast_bytes);
6132 
6133 		stats->rx_missed_errors +=
6134 			le64_to_cpu(hw_stats->rx_discard_pkts);
6135 
6136 		stats->multicast += le64_to_cpu(hw_stats->rx_mcast_pkts);
6137 
6138 		stats->tx_dropped += le64_to_cpu(hw_stats->tx_drop_pkts);
6139 	}
6140 
6141 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
6142 		struct rx_port_stats *rx = bp->hw_rx_port_stats;
6143 		struct tx_port_stats *tx = bp->hw_tx_port_stats;
6144 
6145 		stats->rx_crc_errors = le64_to_cpu(rx->rx_fcs_err_frames);
6146 		stats->rx_frame_errors = le64_to_cpu(rx->rx_align_err_frames);
6147 		stats->rx_length_errors = le64_to_cpu(rx->rx_undrsz_frames) +
6148 					  le64_to_cpu(rx->rx_ovrsz_frames) +
6149 					  le64_to_cpu(rx->rx_runt_frames);
6150 		stats->rx_errors = le64_to_cpu(rx->rx_false_carrier_frames) +
6151 				   le64_to_cpu(rx->rx_jbr_frames);
6152 		stats->collisions = le64_to_cpu(tx->tx_total_collisions);
6153 		stats->tx_fifo_errors = le64_to_cpu(tx->tx_fifo_underruns);
6154 		stats->tx_errors = le64_to_cpu(tx->tx_err);
6155 	}
6156 }
6157 
6158 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
6159 {
6160 	struct net_device *dev = bp->dev;
6161 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
6162 	struct netdev_hw_addr *ha;
6163 	u8 *haddr;
6164 	int mc_count = 0;
6165 	bool update = false;
6166 	int off = 0;
6167 
6168 	netdev_for_each_mc_addr(ha, dev) {
6169 		if (mc_count >= BNXT_MAX_MC_ADDRS) {
6170 			*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
6171 			vnic->mc_list_count = 0;
6172 			return false;
6173 		}
6174 		haddr = ha->addr;
6175 		if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
6176 			memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
6177 			update = true;
6178 		}
6179 		off += ETH_ALEN;
6180 		mc_count++;
6181 	}
6182 	if (mc_count)
6183 		*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
6184 
6185 	if (mc_count != vnic->mc_list_count) {
6186 		vnic->mc_list_count = mc_count;
6187 		update = true;
6188 	}
6189 	return update;
6190 }
6191 
6192 static bool bnxt_uc_list_updated(struct bnxt *bp)
6193 {
6194 	struct net_device *dev = bp->dev;
6195 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
6196 	struct netdev_hw_addr *ha;
6197 	int off = 0;
6198 
6199 	if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
6200 		return true;
6201 
6202 	netdev_for_each_uc_addr(ha, dev) {
6203 		if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
6204 			return true;
6205 
6206 		off += ETH_ALEN;
6207 	}
6208 	return false;
6209 }
6210 
6211 static void bnxt_set_rx_mode(struct net_device *dev)
6212 {
6213 	struct bnxt *bp = netdev_priv(dev);
6214 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
6215 	u32 mask = vnic->rx_mask;
6216 	bool mc_update = false;
6217 	bool uc_update;
6218 
6219 	if (!netif_running(dev))
6220 		return;
6221 
6222 	mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
6223 		  CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
6224 		  CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST);
6225 
6226 	if ((dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
6227 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
6228 
6229 	uc_update = bnxt_uc_list_updated(bp);
6230 
6231 	if (dev->flags & IFF_ALLMULTI) {
6232 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
6233 		vnic->mc_list_count = 0;
6234 	} else {
6235 		mc_update = bnxt_mc_list_updated(bp, &mask);
6236 	}
6237 
6238 	if (mask != vnic->rx_mask || uc_update || mc_update) {
6239 		vnic->rx_mask = mask;
6240 
6241 		set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
6242 		schedule_work(&bp->sp_task);
6243 	}
6244 }
6245 
6246 static int bnxt_cfg_rx_mode(struct bnxt *bp)
6247 {
6248 	struct net_device *dev = bp->dev;
6249 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
6250 	struct netdev_hw_addr *ha;
6251 	int i, off = 0, rc;
6252 	bool uc_update;
6253 
6254 	netif_addr_lock_bh(dev);
6255 	uc_update = bnxt_uc_list_updated(bp);
6256 	netif_addr_unlock_bh(dev);
6257 
6258 	if (!uc_update)
6259 		goto skip_uc;
6260 
6261 	mutex_lock(&bp->hwrm_cmd_lock);
6262 	for (i = 1; i < vnic->uc_filter_count; i++) {
6263 		struct hwrm_cfa_l2_filter_free_input req = {0};
6264 
6265 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_FREE, -1,
6266 				       -1);
6267 
6268 		req.l2_filter_id = vnic->fw_l2_filter_id[i];
6269 
6270 		rc = _hwrm_send_message(bp, &req, sizeof(req),
6271 					HWRM_CMD_TIMEOUT);
6272 	}
6273 	mutex_unlock(&bp->hwrm_cmd_lock);
6274 
6275 	vnic->uc_filter_count = 1;
6276 
6277 	netif_addr_lock_bh(dev);
6278 	if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
6279 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
6280 	} else {
6281 		netdev_for_each_uc_addr(ha, dev) {
6282 			memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
6283 			off += ETH_ALEN;
6284 			vnic->uc_filter_count++;
6285 		}
6286 	}
6287 	netif_addr_unlock_bh(dev);
6288 
6289 	for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
6290 		rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
6291 		if (rc) {
6292 			netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n",
6293 				   rc);
6294 			vnic->uc_filter_count = i;
6295 			return rc;
6296 		}
6297 	}
6298 
6299 skip_uc:
6300 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
6301 	if (rc)
6302 		netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %x\n",
6303 			   rc);
6304 
6305 	return rc;
6306 }
6307 
6308 /* If the chip and firmware supports RFS */
6309 static bool bnxt_rfs_supported(struct bnxt *bp)
6310 {
6311 	if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
6312 		return true;
6313 	if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
6314 		return true;
6315 	return false;
6316 }
6317 
6318 /* If runtime conditions support RFS */
6319 static bool bnxt_rfs_capable(struct bnxt *bp)
6320 {
6321 #ifdef CONFIG_RFS_ACCEL
6322 	int vnics, max_vnics, max_rss_ctxs;
6323 
6324 	if (!(bp->flags & BNXT_FLAG_MSIX_CAP))
6325 		return false;
6326 
6327 	vnics = 1 + bp->rx_nr_rings;
6328 	max_vnics = bnxt_get_max_func_vnics(bp);
6329 	max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp);
6330 
6331 	/* RSS contexts not a limiting factor */
6332 	if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
6333 		max_rss_ctxs = max_vnics;
6334 	if (vnics > max_vnics || vnics > max_rss_ctxs) {
6335 		netdev_warn(bp->dev,
6336 			    "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n",
6337 			    min(max_rss_ctxs - 1, max_vnics - 1));
6338 		return false;
6339 	}
6340 
6341 	return true;
6342 #else
6343 	return false;
6344 #endif
6345 }
6346 
6347 static netdev_features_t bnxt_fix_features(struct net_device *dev,
6348 					   netdev_features_t features)
6349 {
6350 	struct bnxt *bp = netdev_priv(dev);
6351 
6352 	if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp))
6353 		features &= ~NETIF_F_NTUPLE;
6354 
6355 	/* Both CTAG and STAG VLAN accelaration on the RX side have to be
6356 	 * turned on or off together.
6357 	 */
6358 	if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) !=
6359 	    (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) {
6360 		if (dev->features & NETIF_F_HW_VLAN_CTAG_RX)
6361 			features &= ~(NETIF_F_HW_VLAN_CTAG_RX |
6362 				      NETIF_F_HW_VLAN_STAG_RX);
6363 		else
6364 			features |= NETIF_F_HW_VLAN_CTAG_RX |
6365 				    NETIF_F_HW_VLAN_STAG_RX;
6366 	}
6367 #ifdef CONFIG_BNXT_SRIOV
6368 	if (BNXT_VF(bp)) {
6369 		if (bp->vf.vlan) {
6370 			features &= ~(NETIF_F_HW_VLAN_CTAG_RX |
6371 				      NETIF_F_HW_VLAN_STAG_RX);
6372 		}
6373 	}
6374 #endif
6375 	return features;
6376 }
6377 
6378 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
6379 {
6380 	struct bnxt *bp = netdev_priv(dev);
6381 	u32 flags = bp->flags;
6382 	u32 changes;
6383 	int rc = 0;
6384 	bool re_init = false;
6385 	bool update_tpa = false;
6386 
6387 	flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
6388 	if ((features & NETIF_F_GRO) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
6389 		flags |= BNXT_FLAG_GRO;
6390 	if (features & NETIF_F_LRO)
6391 		flags |= BNXT_FLAG_LRO;
6392 
6393 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
6394 		flags &= ~BNXT_FLAG_TPA;
6395 
6396 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
6397 		flags |= BNXT_FLAG_STRIP_VLAN;
6398 
6399 	if (features & NETIF_F_NTUPLE)
6400 		flags |= BNXT_FLAG_RFS;
6401 
6402 	changes = flags ^ bp->flags;
6403 	if (changes & BNXT_FLAG_TPA) {
6404 		update_tpa = true;
6405 		if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
6406 		    (flags & BNXT_FLAG_TPA) == 0)
6407 			re_init = true;
6408 	}
6409 
6410 	if (changes & ~BNXT_FLAG_TPA)
6411 		re_init = true;
6412 
6413 	if (flags != bp->flags) {
6414 		u32 old_flags = bp->flags;
6415 
6416 		bp->flags = flags;
6417 
6418 		if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
6419 			if (update_tpa)
6420 				bnxt_set_ring_params(bp);
6421 			return rc;
6422 		}
6423 
6424 		if (re_init) {
6425 			bnxt_close_nic(bp, false, false);
6426 			if (update_tpa)
6427 				bnxt_set_ring_params(bp);
6428 
6429 			return bnxt_open_nic(bp, false, false);
6430 		}
6431 		if (update_tpa) {
6432 			rc = bnxt_set_tpa(bp,
6433 					  (flags & BNXT_FLAG_TPA) ?
6434 					  true : false);
6435 			if (rc)
6436 				bp->flags = old_flags;
6437 		}
6438 	}
6439 	return rc;
6440 }
6441 
6442 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
6443 {
6444 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
6445 	int i = bnapi->index;
6446 
6447 	if (!txr)
6448 		return;
6449 
6450 	netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
6451 		    i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
6452 		    txr->tx_cons);
6453 }
6454 
6455 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
6456 {
6457 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
6458 	int i = bnapi->index;
6459 
6460 	if (!rxr)
6461 		return;
6462 
6463 	netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
6464 		    i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
6465 		    rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
6466 		    rxr->rx_sw_agg_prod);
6467 }
6468 
6469 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
6470 {
6471 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6472 	int i = bnapi->index;
6473 
6474 	netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
6475 		    i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
6476 }
6477 
6478 static void bnxt_dbg_dump_states(struct bnxt *bp)
6479 {
6480 	int i;
6481 	struct bnxt_napi *bnapi;
6482 
6483 	for (i = 0; i < bp->cp_nr_rings; i++) {
6484 		bnapi = bp->bnapi[i];
6485 		if (netif_msg_drv(bp)) {
6486 			bnxt_dump_tx_sw_state(bnapi);
6487 			bnxt_dump_rx_sw_state(bnapi);
6488 			bnxt_dump_cp_sw_state(bnapi);
6489 		}
6490 	}
6491 }
6492 
6493 static void bnxt_reset_task(struct bnxt *bp, bool silent)
6494 {
6495 	if (!silent)
6496 		bnxt_dbg_dump_states(bp);
6497 	if (netif_running(bp->dev)) {
6498 		bnxt_close_nic(bp, false, false);
6499 		bnxt_open_nic(bp, false, false);
6500 	}
6501 }
6502 
6503 static void bnxt_tx_timeout(struct net_device *dev)
6504 {
6505 	struct bnxt *bp = netdev_priv(dev);
6506 
6507 	netdev_err(bp->dev,  "TX timeout detected, starting reset task!\n");
6508 	set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
6509 	schedule_work(&bp->sp_task);
6510 }
6511 
6512 #ifdef CONFIG_NET_POLL_CONTROLLER
6513 static void bnxt_poll_controller(struct net_device *dev)
6514 {
6515 	struct bnxt *bp = netdev_priv(dev);
6516 	int i;
6517 
6518 	for (i = 0; i < bp->cp_nr_rings; i++) {
6519 		struct bnxt_irq *irq = &bp->irq_tbl[i];
6520 
6521 		disable_irq(irq->vector);
6522 		irq->handler(irq->vector, bp->bnapi[i]);
6523 		enable_irq(irq->vector);
6524 	}
6525 }
6526 #endif
6527 
6528 static void bnxt_timer(unsigned long data)
6529 {
6530 	struct bnxt *bp = (struct bnxt *)data;
6531 	struct net_device *dev = bp->dev;
6532 
6533 	if (!netif_running(dev))
6534 		return;
6535 
6536 	if (atomic_read(&bp->intr_sem) != 0)
6537 		goto bnxt_restart_timer;
6538 
6539 	if (bp->link_info.link_up && (bp->flags & BNXT_FLAG_PORT_STATS)) {
6540 		set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event);
6541 		schedule_work(&bp->sp_task);
6542 	}
6543 bnxt_restart_timer:
6544 	mod_timer(&bp->timer, jiffies + bp->current_interval);
6545 }
6546 
6547 static void bnxt_rtnl_lock_sp(struct bnxt *bp)
6548 {
6549 	/* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK
6550 	 * set.  If the device is being closed, bnxt_close() may be holding
6551 	 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear.  So we
6552 	 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl().
6553 	 */
6554 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
6555 	rtnl_lock();
6556 }
6557 
6558 static void bnxt_rtnl_unlock_sp(struct bnxt *bp)
6559 {
6560 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
6561 	rtnl_unlock();
6562 }
6563 
6564 /* Only called from bnxt_sp_task() */
6565 static void bnxt_reset(struct bnxt *bp, bool silent)
6566 {
6567 	bnxt_rtnl_lock_sp(bp);
6568 	if (test_bit(BNXT_STATE_OPEN, &bp->state))
6569 		bnxt_reset_task(bp, silent);
6570 	bnxt_rtnl_unlock_sp(bp);
6571 }
6572 
6573 static void bnxt_cfg_ntp_filters(struct bnxt *);
6574 
6575 static void bnxt_sp_task(struct work_struct *work)
6576 {
6577 	struct bnxt *bp = container_of(work, struct bnxt, sp_task);
6578 
6579 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
6580 	smp_mb__after_atomic();
6581 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
6582 		clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
6583 		return;
6584 	}
6585 
6586 	if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
6587 		bnxt_cfg_rx_mode(bp);
6588 
6589 	if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
6590 		bnxt_cfg_ntp_filters(bp);
6591 	if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
6592 		bnxt_hwrm_exec_fwd_req(bp);
6593 	if (test_and_clear_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event)) {
6594 		bnxt_hwrm_tunnel_dst_port_alloc(
6595 			bp, bp->vxlan_port,
6596 			TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
6597 	}
6598 	if (test_and_clear_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event)) {
6599 		bnxt_hwrm_tunnel_dst_port_free(
6600 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
6601 	}
6602 	if (test_and_clear_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event)) {
6603 		bnxt_hwrm_tunnel_dst_port_alloc(
6604 			bp, bp->nge_port,
6605 			TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
6606 	}
6607 	if (test_and_clear_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event)) {
6608 		bnxt_hwrm_tunnel_dst_port_free(
6609 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
6610 	}
6611 	if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event))
6612 		bnxt_hwrm_port_qstats(bp);
6613 
6614 	/* These functions below will clear BNXT_STATE_IN_SP_TASK.  They
6615 	 * must be the last functions to be called before exiting.
6616 	 */
6617 	if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
6618 		int rc = 0;
6619 
6620 		if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT,
6621 				       &bp->sp_event))
6622 			bnxt_hwrm_phy_qcaps(bp);
6623 
6624 		bnxt_rtnl_lock_sp(bp);
6625 		if (test_bit(BNXT_STATE_OPEN, &bp->state))
6626 			rc = bnxt_update_link(bp, true);
6627 		bnxt_rtnl_unlock_sp(bp);
6628 		if (rc)
6629 			netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
6630 				   rc);
6631 	}
6632 	if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) {
6633 		bnxt_rtnl_lock_sp(bp);
6634 		if (test_bit(BNXT_STATE_OPEN, &bp->state))
6635 			bnxt_get_port_module_status(bp);
6636 		bnxt_rtnl_unlock_sp(bp);
6637 	}
6638 	if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event))
6639 		bnxt_reset(bp, false);
6640 
6641 	if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event))
6642 		bnxt_reset(bp, true);
6643 
6644 	smp_mb__before_atomic();
6645 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
6646 }
6647 
6648 /* Under rtnl_lock */
6649 int bnxt_reserve_rings(struct bnxt *bp, int tx, int rx, int tcs, int tx_xdp)
6650 {
6651 	int max_rx, max_tx, tx_sets = 1;
6652 	int tx_rings_needed;
6653 	bool sh = true;
6654 	int rc;
6655 
6656 	if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
6657 		sh = false;
6658 
6659 	if (tcs)
6660 		tx_sets = tcs;
6661 
6662 	rc = bnxt_get_max_rings(bp, &max_rx, &max_tx, sh);
6663 	if (rc)
6664 		return rc;
6665 
6666 	if (max_rx < rx)
6667 		return -ENOMEM;
6668 
6669 	tx_rings_needed = tx * tx_sets + tx_xdp;
6670 	if (max_tx < tx_rings_needed)
6671 		return -ENOMEM;
6672 
6673 	if (bnxt_hwrm_reserve_tx_rings(bp, &tx_rings_needed) ||
6674 	    tx_rings_needed < (tx * tx_sets + tx_xdp))
6675 		return -ENOMEM;
6676 	return 0;
6677 }
6678 
6679 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev)
6680 {
6681 	if (bp->bar2) {
6682 		pci_iounmap(pdev, bp->bar2);
6683 		bp->bar2 = NULL;
6684 	}
6685 
6686 	if (bp->bar1) {
6687 		pci_iounmap(pdev, bp->bar1);
6688 		bp->bar1 = NULL;
6689 	}
6690 
6691 	if (bp->bar0) {
6692 		pci_iounmap(pdev, bp->bar0);
6693 		bp->bar0 = NULL;
6694 	}
6695 }
6696 
6697 static void bnxt_cleanup_pci(struct bnxt *bp)
6698 {
6699 	bnxt_unmap_bars(bp, bp->pdev);
6700 	pci_release_regions(bp->pdev);
6701 	pci_disable_device(bp->pdev);
6702 }
6703 
6704 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
6705 {
6706 	int rc;
6707 	struct bnxt *bp = netdev_priv(dev);
6708 
6709 	SET_NETDEV_DEV(dev, &pdev->dev);
6710 
6711 	/* enable device (incl. PCI PM wakeup), and bus-mastering */
6712 	rc = pci_enable_device(pdev);
6713 	if (rc) {
6714 		dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
6715 		goto init_err;
6716 	}
6717 
6718 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
6719 		dev_err(&pdev->dev,
6720 			"Cannot find PCI device base address, aborting\n");
6721 		rc = -ENODEV;
6722 		goto init_err_disable;
6723 	}
6724 
6725 	rc = pci_request_regions(pdev, DRV_MODULE_NAME);
6726 	if (rc) {
6727 		dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
6728 		goto init_err_disable;
6729 	}
6730 
6731 	if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
6732 	    dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
6733 		dev_err(&pdev->dev, "System does not support DMA, aborting\n");
6734 		goto init_err_disable;
6735 	}
6736 
6737 	pci_set_master(pdev);
6738 
6739 	bp->dev = dev;
6740 	bp->pdev = pdev;
6741 
6742 	bp->bar0 = pci_ioremap_bar(pdev, 0);
6743 	if (!bp->bar0) {
6744 		dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
6745 		rc = -ENOMEM;
6746 		goto init_err_release;
6747 	}
6748 
6749 	bp->bar1 = pci_ioremap_bar(pdev, 2);
6750 	if (!bp->bar1) {
6751 		dev_err(&pdev->dev, "Cannot map doorbell registers, aborting\n");
6752 		rc = -ENOMEM;
6753 		goto init_err_release;
6754 	}
6755 
6756 	bp->bar2 = pci_ioremap_bar(pdev, 4);
6757 	if (!bp->bar2) {
6758 		dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
6759 		rc = -ENOMEM;
6760 		goto init_err_release;
6761 	}
6762 
6763 	pci_enable_pcie_error_reporting(pdev);
6764 
6765 	INIT_WORK(&bp->sp_task, bnxt_sp_task);
6766 
6767 	spin_lock_init(&bp->ntp_fltr_lock);
6768 
6769 	bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
6770 	bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
6771 
6772 	/* tick values in micro seconds */
6773 	bp->rx_coal_ticks = 12;
6774 	bp->rx_coal_bufs = 30;
6775 	bp->rx_coal_ticks_irq = 1;
6776 	bp->rx_coal_bufs_irq = 2;
6777 
6778 	bp->tx_coal_ticks = 25;
6779 	bp->tx_coal_bufs = 30;
6780 	bp->tx_coal_ticks_irq = 2;
6781 	bp->tx_coal_bufs_irq = 2;
6782 
6783 	bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS;
6784 
6785 	init_timer(&bp->timer);
6786 	bp->timer.data = (unsigned long)bp;
6787 	bp->timer.function = bnxt_timer;
6788 	bp->current_interval = BNXT_TIMER_INTERVAL;
6789 
6790 	clear_bit(BNXT_STATE_OPEN, &bp->state);
6791 	return 0;
6792 
6793 init_err_release:
6794 	bnxt_unmap_bars(bp, pdev);
6795 	pci_release_regions(pdev);
6796 
6797 init_err_disable:
6798 	pci_disable_device(pdev);
6799 
6800 init_err:
6801 	return rc;
6802 }
6803 
6804 /* rtnl_lock held */
6805 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
6806 {
6807 	struct sockaddr *addr = p;
6808 	struct bnxt *bp = netdev_priv(dev);
6809 	int rc = 0;
6810 
6811 	if (!is_valid_ether_addr(addr->sa_data))
6812 		return -EADDRNOTAVAIL;
6813 
6814 	rc = bnxt_approve_mac(bp, addr->sa_data);
6815 	if (rc)
6816 		return rc;
6817 
6818 	if (ether_addr_equal(addr->sa_data, dev->dev_addr))
6819 		return 0;
6820 
6821 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
6822 	if (netif_running(dev)) {
6823 		bnxt_close_nic(bp, false, false);
6824 		rc = bnxt_open_nic(bp, false, false);
6825 	}
6826 
6827 	return rc;
6828 }
6829 
6830 /* rtnl_lock held */
6831 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
6832 {
6833 	struct bnxt *bp = netdev_priv(dev);
6834 
6835 	if (netif_running(dev))
6836 		bnxt_close_nic(bp, false, false);
6837 
6838 	dev->mtu = new_mtu;
6839 	bnxt_set_ring_params(bp);
6840 
6841 	if (netif_running(dev))
6842 		return bnxt_open_nic(bp, false, false);
6843 
6844 	return 0;
6845 }
6846 
6847 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc)
6848 {
6849 	struct bnxt *bp = netdev_priv(dev);
6850 	bool sh = false;
6851 	int rc;
6852 
6853 	if (tc > bp->max_tc) {
6854 		netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n",
6855 			   tc, bp->max_tc);
6856 		return -EINVAL;
6857 	}
6858 
6859 	if (netdev_get_num_tc(dev) == tc)
6860 		return 0;
6861 
6862 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
6863 		sh = true;
6864 
6865 	rc = bnxt_reserve_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings,
6866 				tc, bp->tx_nr_rings_xdp);
6867 	if (rc)
6868 		return rc;
6869 
6870 	/* Needs to close the device and do hw resource re-allocations */
6871 	if (netif_running(bp->dev))
6872 		bnxt_close_nic(bp, true, false);
6873 
6874 	if (tc) {
6875 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
6876 		netdev_set_num_tc(dev, tc);
6877 	} else {
6878 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
6879 		netdev_reset_tc(dev);
6880 	}
6881 	bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
6882 			       bp->tx_nr_rings + bp->rx_nr_rings;
6883 	bp->num_stat_ctxs = bp->cp_nr_rings;
6884 
6885 	if (netif_running(bp->dev))
6886 		return bnxt_open_nic(bp, true, false);
6887 
6888 	return 0;
6889 }
6890 
6891 static int bnxt_setup_tc(struct net_device *dev, u32 handle, __be16 proto,
6892 			 struct tc_to_netdev *ntc)
6893 {
6894 	if (ntc->type != TC_SETUP_MQPRIO)
6895 		return -EINVAL;
6896 
6897 	return bnxt_setup_mq_tc(dev, ntc->tc);
6898 }
6899 
6900 #ifdef CONFIG_RFS_ACCEL
6901 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
6902 			    struct bnxt_ntuple_filter *f2)
6903 {
6904 	struct flow_keys *keys1 = &f1->fkeys;
6905 	struct flow_keys *keys2 = &f2->fkeys;
6906 
6907 	if (keys1->addrs.v4addrs.src == keys2->addrs.v4addrs.src &&
6908 	    keys1->addrs.v4addrs.dst == keys2->addrs.v4addrs.dst &&
6909 	    keys1->ports.ports == keys2->ports.ports &&
6910 	    keys1->basic.ip_proto == keys2->basic.ip_proto &&
6911 	    keys1->basic.n_proto == keys2->basic.n_proto &&
6912 	    keys1->control.flags == keys2->control.flags &&
6913 	    ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) &&
6914 	    ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr))
6915 		return true;
6916 
6917 	return false;
6918 }
6919 
6920 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
6921 			      u16 rxq_index, u32 flow_id)
6922 {
6923 	struct bnxt *bp = netdev_priv(dev);
6924 	struct bnxt_ntuple_filter *fltr, *new_fltr;
6925 	struct flow_keys *fkeys;
6926 	struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
6927 	int rc = 0, idx, bit_id, l2_idx = 0;
6928 	struct hlist_head *head;
6929 
6930 	if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) {
6931 		struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
6932 		int off = 0, j;
6933 
6934 		netif_addr_lock_bh(dev);
6935 		for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) {
6936 			if (ether_addr_equal(eth->h_dest,
6937 					     vnic->uc_list + off)) {
6938 				l2_idx = j + 1;
6939 				break;
6940 			}
6941 		}
6942 		netif_addr_unlock_bh(dev);
6943 		if (!l2_idx)
6944 			return -EINVAL;
6945 	}
6946 	new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
6947 	if (!new_fltr)
6948 		return -ENOMEM;
6949 
6950 	fkeys = &new_fltr->fkeys;
6951 	if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
6952 		rc = -EPROTONOSUPPORT;
6953 		goto err_free;
6954 	}
6955 
6956 	if ((fkeys->basic.n_proto != htons(ETH_P_IP) &&
6957 	     fkeys->basic.n_proto != htons(ETH_P_IPV6)) ||
6958 	    ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
6959 	     (fkeys->basic.ip_proto != IPPROTO_UDP))) {
6960 		rc = -EPROTONOSUPPORT;
6961 		goto err_free;
6962 	}
6963 	if (fkeys->basic.n_proto == htons(ETH_P_IPV6) &&
6964 	    bp->hwrm_spec_code < 0x10601) {
6965 		rc = -EPROTONOSUPPORT;
6966 		goto err_free;
6967 	}
6968 	if ((fkeys->control.flags & FLOW_DIS_ENCAPSULATION) &&
6969 	    bp->hwrm_spec_code < 0x10601) {
6970 		rc = -EPROTONOSUPPORT;
6971 		goto err_free;
6972 	}
6973 
6974 	memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN);
6975 	memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
6976 
6977 	idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
6978 	head = &bp->ntp_fltr_hash_tbl[idx];
6979 	rcu_read_lock();
6980 	hlist_for_each_entry_rcu(fltr, head, hash) {
6981 		if (bnxt_fltr_match(fltr, new_fltr)) {
6982 			rcu_read_unlock();
6983 			rc = 0;
6984 			goto err_free;
6985 		}
6986 	}
6987 	rcu_read_unlock();
6988 
6989 	spin_lock_bh(&bp->ntp_fltr_lock);
6990 	bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
6991 					 BNXT_NTP_FLTR_MAX_FLTR, 0);
6992 	if (bit_id < 0) {
6993 		spin_unlock_bh(&bp->ntp_fltr_lock);
6994 		rc = -ENOMEM;
6995 		goto err_free;
6996 	}
6997 
6998 	new_fltr->sw_id = (u16)bit_id;
6999 	new_fltr->flow_id = flow_id;
7000 	new_fltr->l2_fltr_idx = l2_idx;
7001 	new_fltr->rxq = rxq_index;
7002 	hlist_add_head_rcu(&new_fltr->hash, head);
7003 	bp->ntp_fltr_count++;
7004 	spin_unlock_bh(&bp->ntp_fltr_lock);
7005 
7006 	set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
7007 	schedule_work(&bp->sp_task);
7008 
7009 	return new_fltr->sw_id;
7010 
7011 err_free:
7012 	kfree(new_fltr);
7013 	return rc;
7014 }
7015 
7016 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
7017 {
7018 	int i;
7019 
7020 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
7021 		struct hlist_head *head;
7022 		struct hlist_node *tmp;
7023 		struct bnxt_ntuple_filter *fltr;
7024 		int rc;
7025 
7026 		head = &bp->ntp_fltr_hash_tbl[i];
7027 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
7028 			bool del = false;
7029 
7030 			if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
7031 				if (rps_may_expire_flow(bp->dev, fltr->rxq,
7032 							fltr->flow_id,
7033 							fltr->sw_id)) {
7034 					bnxt_hwrm_cfa_ntuple_filter_free(bp,
7035 									 fltr);
7036 					del = true;
7037 				}
7038 			} else {
7039 				rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
7040 								       fltr);
7041 				if (rc)
7042 					del = true;
7043 				else
7044 					set_bit(BNXT_FLTR_VALID, &fltr->state);
7045 			}
7046 
7047 			if (del) {
7048 				spin_lock_bh(&bp->ntp_fltr_lock);
7049 				hlist_del_rcu(&fltr->hash);
7050 				bp->ntp_fltr_count--;
7051 				spin_unlock_bh(&bp->ntp_fltr_lock);
7052 				synchronize_rcu();
7053 				clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
7054 				kfree(fltr);
7055 			}
7056 		}
7057 	}
7058 	if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event))
7059 		netdev_info(bp->dev, "Receive PF driver unload event!");
7060 }
7061 
7062 #else
7063 
7064 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
7065 {
7066 }
7067 
7068 #endif /* CONFIG_RFS_ACCEL */
7069 
7070 static void bnxt_udp_tunnel_add(struct net_device *dev,
7071 				struct udp_tunnel_info *ti)
7072 {
7073 	struct bnxt *bp = netdev_priv(dev);
7074 
7075 	if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET)
7076 		return;
7077 
7078 	if (!netif_running(dev))
7079 		return;
7080 
7081 	switch (ti->type) {
7082 	case UDP_TUNNEL_TYPE_VXLAN:
7083 		if (bp->vxlan_port_cnt && bp->vxlan_port != ti->port)
7084 			return;
7085 
7086 		bp->vxlan_port_cnt++;
7087 		if (bp->vxlan_port_cnt == 1) {
7088 			bp->vxlan_port = ti->port;
7089 			set_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event);
7090 			schedule_work(&bp->sp_task);
7091 		}
7092 		break;
7093 	case UDP_TUNNEL_TYPE_GENEVE:
7094 		if (bp->nge_port_cnt && bp->nge_port != ti->port)
7095 			return;
7096 
7097 		bp->nge_port_cnt++;
7098 		if (bp->nge_port_cnt == 1) {
7099 			bp->nge_port = ti->port;
7100 			set_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event);
7101 		}
7102 		break;
7103 	default:
7104 		return;
7105 	}
7106 
7107 	schedule_work(&bp->sp_task);
7108 }
7109 
7110 static void bnxt_udp_tunnel_del(struct net_device *dev,
7111 				struct udp_tunnel_info *ti)
7112 {
7113 	struct bnxt *bp = netdev_priv(dev);
7114 
7115 	if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET)
7116 		return;
7117 
7118 	if (!netif_running(dev))
7119 		return;
7120 
7121 	switch (ti->type) {
7122 	case UDP_TUNNEL_TYPE_VXLAN:
7123 		if (!bp->vxlan_port_cnt || bp->vxlan_port != ti->port)
7124 			return;
7125 		bp->vxlan_port_cnt--;
7126 
7127 		if (bp->vxlan_port_cnt != 0)
7128 			return;
7129 
7130 		set_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event);
7131 		break;
7132 	case UDP_TUNNEL_TYPE_GENEVE:
7133 		if (!bp->nge_port_cnt || bp->nge_port != ti->port)
7134 			return;
7135 		bp->nge_port_cnt--;
7136 
7137 		if (bp->nge_port_cnt != 0)
7138 			return;
7139 
7140 		set_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event);
7141 		break;
7142 	default:
7143 		return;
7144 	}
7145 
7146 	schedule_work(&bp->sp_task);
7147 }
7148 
7149 static const struct net_device_ops bnxt_netdev_ops = {
7150 	.ndo_open		= bnxt_open,
7151 	.ndo_start_xmit		= bnxt_start_xmit,
7152 	.ndo_stop		= bnxt_close,
7153 	.ndo_get_stats64	= bnxt_get_stats64,
7154 	.ndo_set_rx_mode	= bnxt_set_rx_mode,
7155 	.ndo_do_ioctl		= bnxt_ioctl,
7156 	.ndo_validate_addr	= eth_validate_addr,
7157 	.ndo_set_mac_address	= bnxt_change_mac_addr,
7158 	.ndo_change_mtu		= bnxt_change_mtu,
7159 	.ndo_fix_features	= bnxt_fix_features,
7160 	.ndo_set_features	= bnxt_set_features,
7161 	.ndo_tx_timeout		= bnxt_tx_timeout,
7162 #ifdef CONFIG_BNXT_SRIOV
7163 	.ndo_get_vf_config	= bnxt_get_vf_config,
7164 	.ndo_set_vf_mac		= bnxt_set_vf_mac,
7165 	.ndo_set_vf_vlan	= bnxt_set_vf_vlan,
7166 	.ndo_set_vf_rate	= bnxt_set_vf_bw,
7167 	.ndo_set_vf_link_state	= bnxt_set_vf_link_state,
7168 	.ndo_set_vf_spoofchk	= bnxt_set_vf_spoofchk,
7169 #endif
7170 #ifdef CONFIG_NET_POLL_CONTROLLER
7171 	.ndo_poll_controller	= bnxt_poll_controller,
7172 #endif
7173 	.ndo_setup_tc           = bnxt_setup_tc,
7174 #ifdef CONFIG_RFS_ACCEL
7175 	.ndo_rx_flow_steer	= bnxt_rx_flow_steer,
7176 #endif
7177 	.ndo_udp_tunnel_add	= bnxt_udp_tunnel_add,
7178 	.ndo_udp_tunnel_del	= bnxt_udp_tunnel_del,
7179 	.ndo_xdp		= bnxt_xdp,
7180 };
7181 
7182 static void bnxt_remove_one(struct pci_dev *pdev)
7183 {
7184 	struct net_device *dev = pci_get_drvdata(pdev);
7185 	struct bnxt *bp = netdev_priv(dev);
7186 
7187 	if (BNXT_PF(bp))
7188 		bnxt_sriov_disable(bp);
7189 
7190 	pci_disable_pcie_error_reporting(pdev);
7191 	unregister_netdev(dev);
7192 	cancel_work_sync(&bp->sp_task);
7193 	bp->sp_event = 0;
7194 
7195 	bnxt_clear_int_mode(bp);
7196 	bnxt_hwrm_func_drv_unrgtr(bp);
7197 	bnxt_free_hwrm_resources(bp);
7198 	bnxt_dcb_free(bp);
7199 	kfree(bp->edev);
7200 	bp->edev = NULL;
7201 	if (bp->xdp_prog)
7202 		bpf_prog_put(bp->xdp_prog);
7203 	bnxt_cleanup_pci(bp);
7204 	free_netdev(dev);
7205 }
7206 
7207 static int bnxt_probe_phy(struct bnxt *bp)
7208 {
7209 	int rc = 0;
7210 	struct bnxt_link_info *link_info = &bp->link_info;
7211 
7212 	rc = bnxt_hwrm_phy_qcaps(bp);
7213 	if (rc) {
7214 		netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n",
7215 			   rc);
7216 		return rc;
7217 	}
7218 
7219 	rc = bnxt_update_link(bp, false);
7220 	if (rc) {
7221 		netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
7222 			   rc);
7223 		return rc;
7224 	}
7225 
7226 	/* Older firmware does not have supported_auto_speeds, so assume
7227 	 * that all supported speeds can be autonegotiated.
7228 	 */
7229 	if (link_info->auto_link_speeds && !link_info->support_auto_speeds)
7230 		link_info->support_auto_speeds = link_info->support_speeds;
7231 
7232 	/*initialize the ethool setting copy with NVM settings */
7233 	if (BNXT_AUTO_MODE(link_info->auto_mode)) {
7234 		link_info->autoneg = BNXT_AUTONEG_SPEED;
7235 		if (bp->hwrm_spec_code >= 0x10201) {
7236 			if (link_info->auto_pause_setting &
7237 			    PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE)
7238 				link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
7239 		} else {
7240 			link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
7241 		}
7242 		link_info->advertising = link_info->auto_link_speeds;
7243 	} else {
7244 		link_info->req_link_speed = link_info->force_link_speed;
7245 		link_info->req_duplex = link_info->duplex_setting;
7246 	}
7247 	if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL)
7248 		link_info->req_flow_ctrl =
7249 			link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH;
7250 	else
7251 		link_info->req_flow_ctrl = link_info->force_pause_setting;
7252 	return rc;
7253 }
7254 
7255 static int bnxt_get_max_irq(struct pci_dev *pdev)
7256 {
7257 	u16 ctrl;
7258 
7259 	if (!pdev->msix_cap)
7260 		return 1;
7261 
7262 	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
7263 	return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
7264 }
7265 
7266 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
7267 				int *max_cp)
7268 {
7269 	int max_ring_grps = 0;
7270 
7271 #ifdef CONFIG_BNXT_SRIOV
7272 	if (!BNXT_PF(bp)) {
7273 		*max_tx = bp->vf.max_tx_rings;
7274 		*max_rx = bp->vf.max_rx_rings;
7275 		*max_cp = min_t(int, bp->vf.max_irqs, bp->vf.max_cp_rings);
7276 		*max_cp = min_t(int, *max_cp, bp->vf.max_stat_ctxs);
7277 		max_ring_grps = bp->vf.max_hw_ring_grps;
7278 	} else
7279 #endif
7280 	{
7281 		*max_tx = bp->pf.max_tx_rings;
7282 		*max_rx = bp->pf.max_rx_rings;
7283 		*max_cp = min_t(int, bp->pf.max_irqs, bp->pf.max_cp_rings);
7284 		*max_cp = min_t(int, *max_cp, bp->pf.max_stat_ctxs);
7285 		max_ring_grps = bp->pf.max_hw_ring_grps;
7286 	}
7287 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) {
7288 		*max_cp -= 1;
7289 		*max_rx -= 2;
7290 	}
7291 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
7292 		*max_rx >>= 1;
7293 	*max_rx = min_t(int, *max_rx, max_ring_grps);
7294 }
7295 
7296 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
7297 {
7298 	int rx, tx, cp;
7299 
7300 	_bnxt_get_max_rings(bp, &rx, &tx, &cp);
7301 	if (!rx || !tx || !cp)
7302 		return -ENOMEM;
7303 
7304 	*max_rx = rx;
7305 	*max_tx = tx;
7306 	return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
7307 }
7308 
7309 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx,
7310 			       bool shared)
7311 {
7312 	int rc;
7313 
7314 	rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
7315 	if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) {
7316 		/* Not enough rings, try disabling agg rings. */
7317 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
7318 		rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
7319 		if (rc)
7320 			return rc;
7321 		bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
7322 		bp->dev->hw_features &= ~NETIF_F_LRO;
7323 		bp->dev->features &= ~NETIF_F_LRO;
7324 		bnxt_set_ring_params(bp);
7325 	}
7326 
7327 	if (bp->flags & BNXT_FLAG_ROCE_CAP) {
7328 		int max_cp, max_stat, max_irq;
7329 
7330 		/* Reserve minimum resources for RoCE */
7331 		max_cp = bnxt_get_max_func_cp_rings(bp);
7332 		max_stat = bnxt_get_max_func_stat_ctxs(bp);
7333 		max_irq = bnxt_get_max_func_irqs(bp);
7334 		if (max_cp <= BNXT_MIN_ROCE_CP_RINGS ||
7335 		    max_irq <= BNXT_MIN_ROCE_CP_RINGS ||
7336 		    max_stat <= BNXT_MIN_ROCE_STAT_CTXS)
7337 			return 0;
7338 
7339 		max_cp -= BNXT_MIN_ROCE_CP_RINGS;
7340 		max_irq -= BNXT_MIN_ROCE_CP_RINGS;
7341 		max_stat -= BNXT_MIN_ROCE_STAT_CTXS;
7342 		max_cp = min_t(int, max_cp, max_irq);
7343 		max_cp = min_t(int, max_cp, max_stat);
7344 		rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared);
7345 		if (rc)
7346 			rc = 0;
7347 	}
7348 	return rc;
7349 }
7350 
7351 static int bnxt_set_dflt_rings(struct bnxt *bp)
7352 {
7353 	int dflt_rings, max_rx_rings, max_tx_rings, rc;
7354 	bool sh = true;
7355 
7356 	if (sh)
7357 		bp->flags |= BNXT_FLAG_SHARED_RINGS;
7358 	dflt_rings = netif_get_num_default_rss_queues();
7359 	rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh);
7360 	if (rc)
7361 		return rc;
7362 	bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
7363 	bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
7364 
7365 	rc = bnxt_hwrm_reserve_tx_rings(bp, &bp->tx_nr_rings_per_tc);
7366 	if (rc)
7367 		netdev_warn(bp->dev, "Unable to reserve tx rings\n");
7368 
7369 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
7370 	bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
7371 			       bp->tx_nr_rings + bp->rx_nr_rings;
7372 	bp->num_stat_ctxs = bp->cp_nr_rings;
7373 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
7374 		bp->rx_nr_rings++;
7375 		bp->cp_nr_rings++;
7376 	}
7377 	return rc;
7378 }
7379 
7380 void bnxt_restore_pf_fw_resources(struct bnxt *bp)
7381 {
7382 	ASSERT_RTNL();
7383 	bnxt_hwrm_func_qcaps(bp);
7384 	bnxt_subtract_ulp_resources(bp, BNXT_ROCE_ULP);
7385 }
7386 
7387 static void bnxt_parse_log_pcie_link(struct bnxt *bp)
7388 {
7389 	enum pcie_link_width width = PCIE_LNK_WIDTH_UNKNOWN;
7390 	enum pci_bus_speed speed = PCI_SPEED_UNKNOWN;
7391 
7392 	if (pcie_get_minimum_link(bp->pdev, &speed, &width) ||
7393 	    speed == PCI_SPEED_UNKNOWN || width == PCIE_LNK_WIDTH_UNKNOWN)
7394 		netdev_info(bp->dev, "Failed to determine PCIe Link Info\n");
7395 	else
7396 		netdev_info(bp->dev, "PCIe: Speed %s Width x%d\n",
7397 			    speed == PCIE_SPEED_2_5GT ? "2.5GT/s" :
7398 			    speed == PCIE_SPEED_5_0GT ? "5.0GT/s" :
7399 			    speed == PCIE_SPEED_8_0GT ? "8.0GT/s" :
7400 			    "Unknown", width);
7401 }
7402 
7403 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
7404 {
7405 	static int version_printed;
7406 	struct net_device *dev;
7407 	struct bnxt *bp;
7408 	int rc, max_irqs;
7409 
7410 	if (pci_is_bridge(pdev))
7411 		return -ENODEV;
7412 
7413 	if (version_printed++ == 0)
7414 		pr_info("%s", version);
7415 
7416 	max_irqs = bnxt_get_max_irq(pdev);
7417 	dev = alloc_etherdev_mq(sizeof(*bp), max_irqs);
7418 	if (!dev)
7419 		return -ENOMEM;
7420 
7421 	bp = netdev_priv(dev);
7422 
7423 	if (bnxt_vf_pciid(ent->driver_data))
7424 		bp->flags |= BNXT_FLAG_VF;
7425 
7426 	if (pdev->msix_cap)
7427 		bp->flags |= BNXT_FLAG_MSIX_CAP;
7428 
7429 	rc = bnxt_init_board(pdev, dev);
7430 	if (rc < 0)
7431 		goto init_err_free;
7432 
7433 	dev->netdev_ops = &bnxt_netdev_ops;
7434 	dev->watchdog_timeo = BNXT_TX_TIMEOUT;
7435 	dev->ethtool_ops = &bnxt_ethtool_ops;
7436 	pci_set_drvdata(pdev, dev);
7437 
7438 	rc = bnxt_alloc_hwrm_resources(bp);
7439 	if (rc)
7440 		goto init_err_pci_clean;
7441 
7442 	mutex_init(&bp->hwrm_cmd_lock);
7443 	rc = bnxt_hwrm_ver_get(bp);
7444 	if (rc)
7445 		goto init_err_pci_clean;
7446 
7447 	bnxt_hwrm_fw_set_time(bp);
7448 
7449 	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
7450 			   NETIF_F_TSO | NETIF_F_TSO6 |
7451 			   NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
7452 			   NETIF_F_GSO_IPXIP4 |
7453 			   NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
7454 			   NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH |
7455 			   NETIF_F_RXCSUM | NETIF_F_GRO;
7456 
7457 	if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
7458 		dev->hw_features |= NETIF_F_LRO;
7459 
7460 	dev->hw_enc_features =
7461 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
7462 			NETIF_F_TSO | NETIF_F_TSO6 |
7463 			NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
7464 			NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
7465 			NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL;
7466 	dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM |
7467 				    NETIF_F_GSO_GRE_CSUM;
7468 	dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
7469 	dev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
7470 			    NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX;
7471 	dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
7472 	dev->priv_flags |= IFF_UNICAST_FLT;
7473 
7474 	/* MTU range: 60 - 9500 */
7475 	dev->min_mtu = ETH_ZLEN;
7476 	dev->max_mtu = BNXT_MAX_MTU;
7477 
7478 	bnxt_dcb_init(bp);
7479 
7480 #ifdef CONFIG_BNXT_SRIOV
7481 	init_waitqueue_head(&bp->sriov_cfg_wait);
7482 #endif
7483 	bp->gro_func = bnxt_gro_func_5730x;
7484 	if (BNXT_CHIP_NUM_57X1X(bp->chip_num))
7485 		bp->gro_func = bnxt_gro_func_5731x;
7486 
7487 	rc = bnxt_hwrm_func_drv_rgtr(bp);
7488 	if (rc)
7489 		goto init_err_pci_clean;
7490 
7491 	rc = bnxt_hwrm_func_rgtr_async_events(bp, NULL, 0);
7492 	if (rc)
7493 		goto init_err_pci_clean;
7494 
7495 	bp->ulp_probe = bnxt_ulp_probe;
7496 
7497 	/* Get the MAX capabilities for this function */
7498 	rc = bnxt_hwrm_func_qcaps(bp);
7499 	if (rc) {
7500 		netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
7501 			   rc);
7502 		rc = -1;
7503 		goto init_err_pci_clean;
7504 	}
7505 
7506 	rc = bnxt_hwrm_queue_qportcfg(bp);
7507 	if (rc) {
7508 		netdev_err(bp->dev, "hwrm query qportcfg failure rc: %x\n",
7509 			   rc);
7510 		rc = -1;
7511 		goto init_err_pci_clean;
7512 	}
7513 
7514 	bnxt_hwrm_func_qcfg(bp);
7515 	bnxt_hwrm_port_led_qcaps(bp);
7516 
7517 	bnxt_set_rx_skb_mode(bp, false);
7518 	bnxt_set_tpa_flags(bp);
7519 	bnxt_set_ring_params(bp);
7520 	bnxt_set_max_func_irqs(bp, max_irqs);
7521 	rc = bnxt_set_dflt_rings(bp);
7522 	if (rc) {
7523 		netdev_err(bp->dev, "Not enough rings available.\n");
7524 		rc = -ENOMEM;
7525 		goto init_err_pci_clean;
7526 	}
7527 
7528 	/* Default RSS hash cfg. */
7529 	bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 |
7530 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 |
7531 			   VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 |
7532 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6;
7533 	if (!BNXT_CHIP_NUM_57X0X(bp->chip_num) &&
7534 	    !BNXT_CHIP_TYPE_NITRO_A0(bp) &&
7535 	    bp->hwrm_spec_code >= 0x10501) {
7536 		bp->flags |= BNXT_FLAG_UDP_RSS_CAP;
7537 		bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 |
7538 				    VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6;
7539 	}
7540 
7541 	bnxt_hwrm_vnic_qcaps(bp);
7542 	if (bnxt_rfs_supported(bp)) {
7543 		dev->hw_features |= NETIF_F_NTUPLE;
7544 		if (bnxt_rfs_capable(bp)) {
7545 			bp->flags |= BNXT_FLAG_RFS;
7546 			dev->features |= NETIF_F_NTUPLE;
7547 		}
7548 	}
7549 
7550 	if (dev->hw_features & NETIF_F_HW_VLAN_CTAG_RX)
7551 		bp->flags |= BNXT_FLAG_STRIP_VLAN;
7552 
7553 	rc = bnxt_probe_phy(bp);
7554 	if (rc)
7555 		goto init_err_pci_clean;
7556 
7557 	rc = bnxt_hwrm_func_reset(bp);
7558 	if (rc)
7559 		goto init_err_pci_clean;
7560 
7561 	rc = bnxt_init_int_mode(bp);
7562 	if (rc)
7563 		goto init_err_pci_clean;
7564 
7565 	rc = register_netdev(dev);
7566 	if (rc)
7567 		goto init_err_clr_int;
7568 
7569 	netdev_info(dev, "%s found at mem %lx, node addr %pM\n",
7570 		    board_info[ent->driver_data].name,
7571 		    (long)pci_resource_start(pdev, 0), dev->dev_addr);
7572 
7573 	bnxt_parse_log_pcie_link(bp);
7574 
7575 	return 0;
7576 
7577 init_err_clr_int:
7578 	bnxt_clear_int_mode(bp);
7579 
7580 init_err_pci_clean:
7581 	bnxt_cleanup_pci(bp);
7582 
7583 init_err_free:
7584 	free_netdev(dev);
7585 	return rc;
7586 }
7587 
7588 /**
7589  * bnxt_io_error_detected - called when PCI error is detected
7590  * @pdev: Pointer to PCI device
7591  * @state: The current pci connection state
7592  *
7593  * This function is called after a PCI bus error affecting
7594  * this device has been detected.
7595  */
7596 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev,
7597 					       pci_channel_state_t state)
7598 {
7599 	struct net_device *netdev = pci_get_drvdata(pdev);
7600 	struct bnxt *bp = netdev_priv(netdev);
7601 
7602 	netdev_info(netdev, "PCI I/O error detected\n");
7603 
7604 	rtnl_lock();
7605 	netif_device_detach(netdev);
7606 
7607 	bnxt_ulp_stop(bp);
7608 
7609 	if (state == pci_channel_io_perm_failure) {
7610 		rtnl_unlock();
7611 		return PCI_ERS_RESULT_DISCONNECT;
7612 	}
7613 
7614 	if (netif_running(netdev))
7615 		bnxt_close(netdev);
7616 
7617 	pci_disable_device(pdev);
7618 	rtnl_unlock();
7619 
7620 	/* Request a slot slot reset. */
7621 	return PCI_ERS_RESULT_NEED_RESET;
7622 }
7623 
7624 /**
7625  * bnxt_io_slot_reset - called after the pci bus has been reset.
7626  * @pdev: Pointer to PCI device
7627  *
7628  * Restart the card from scratch, as if from a cold-boot.
7629  * At this point, the card has exprienced a hard reset,
7630  * followed by fixups by BIOS, and has its config space
7631  * set up identically to what it was at cold boot.
7632  */
7633 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev)
7634 {
7635 	struct net_device *netdev = pci_get_drvdata(pdev);
7636 	struct bnxt *bp = netdev_priv(netdev);
7637 	int err = 0;
7638 	pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
7639 
7640 	netdev_info(bp->dev, "PCI Slot Reset\n");
7641 
7642 	rtnl_lock();
7643 
7644 	if (pci_enable_device(pdev)) {
7645 		dev_err(&pdev->dev,
7646 			"Cannot re-enable PCI device after reset.\n");
7647 	} else {
7648 		pci_set_master(pdev);
7649 
7650 		err = bnxt_hwrm_func_reset(bp);
7651 		if (!err && netif_running(netdev))
7652 			err = bnxt_open(netdev);
7653 
7654 		if (!err) {
7655 			result = PCI_ERS_RESULT_RECOVERED;
7656 			bnxt_ulp_start(bp);
7657 		}
7658 	}
7659 
7660 	if (result != PCI_ERS_RESULT_RECOVERED && netif_running(netdev))
7661 		dev_close(netdev);
7662 
7663 	rtnl_unlock();
7664 
7665 	err = pci_cleanup_aer_uncorrect_error_status(pdev);
7666 	if (err) {
7667 		dev_err(&pdev->dev,
7668 			"pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7669 			 err); /* non-fatal, continue */
7670 	}
7671 
7672 	return PCI_ERS_RESULT_RECOVERED;
7673 }
7674 
7675 /**
7676  * bnxt_io_resume - called when traffic can start flowing again.
7677  * @pdev: Pointer to PCI device
7678  *
7679  * This callback is called when the error recovery driver tells
7680  * us that its OK to resume normal operation.
7681  */
7682 static void bnxt_io_resume(struct pci_dev *pdev)
7683 {
7684 	struct net_device *netdev = pci_get_drvdata(pdev);
7685 
7686 	rtnl_lock();
7687 
7688 	netif_device_attach(netdev);
7689 
7690 	rtnl_unlock();
7691 }
7692 
7693 static const struct pci_error_handlers bnxt_err_handler = {
7694 	.error_detected	= bnxt_io_error_detected,
7695 	.slot_reset	= bnxt_io_slot_reset,
7696 	.resume		= bnxt_io_resume
7697 };
7698 
7699 static struct pci_driver bnxt_pci_driver = {
7700 	.name		= DRV_MODULE_NAME,
7701 	.id_table	= bnxt_pci_tbl,
7702 	.probe		= bnxt_init_one,
7703 	.remove		= bnxt_remove_one,
7704 	.err_handler	= &bnxt_err_handler,
7705 #if defined(CONFIG_BNXT_SRIOV)
7706 	.sriov_configure = bnxt_sriov_configure,
7707 #endif
7708 };
7709 
7710 module_pci_driver(bnxt_pci_driver);
7711