1 /* Broadcom NetXtreme-C/E network driver. 2 * 3 * Copyright (c) 2014-2016 Broadcom Corporation 4 * Copyright (c) 2016-2019 Broadcom Limited 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation. 9 */ 10 11 #include <linux/module.h> 12 13 #include <linux/stringify.h> 14 #include <linux/kernel.h> 15 #include <linux/timer.h> 16 #include <linux/errno.h> 17 #include <linux/ioport.h> 18 #include <linux/slab.h> 19 #include <linux/vmalloc.h> 20 #include <linux/interrupt.h> 21 #include <linux/pci.h> 22 #include <linux/netdevice.h> 23 #include <linux/etherdevice.h> 24 #include <linux/skbuff.h> 25 #include <linux/dma-mapping.h> 26 #include <linux/bitops.h> 27 #include <linux/io.h> 28 #include <linux/irq.h> 29 #include <linux/delay.h> 30 #include <asm/byteorder.h> 31 #include <asm/page.h> 32 #include <linux/time.h> 33 #include <linux/mii.h> 34 #include <linux/mdio.h> 35 #include <linux/if.h> 36 #include <linux/if_vlan.h> 37 #include <linux/if_bridge.h> 38 #include <linux/rtc.h> 39 #include <linux/bpf.h> 40 #include <net/ip.h> 41 #include <net/tcp.h> 42 #include <net/udp.h> 43 #include <net/checksum.h> 44 #include <net/ip6_checksum.h> 45 #include <net/udp_tunnel.h> 46 #include <linux/workqueue.h> 47 #include <linux/prefetch.h> 48 #include <linux/cache.h> 49 #include <linux/log2.h> 50 #include <linux/aer.h> 51 #include <linux/bitmap.h> 52 #include <linux/cpu_rmap.h> 53 #include <linux/cpumask.h> 54 #include <net/pkt_cls.h> 55 #include <linux/hwmon.h> 56 #include <linux/hwmon-sysfs.h> 57 #include <net/page_pool.h> 58 59 #include "bnxt_hsi.h" 60 #include "bnxt.h" 61 #include "bnxt_ulp.h" 62 #include "bnxt_sriov.h" 63 #include "bnxt_ethtool.h" 64 #include "bnxt_dcb.h" 65 #include "bnxt_xdp.h" 66 #include "bnxt_vfr.h" 67 #include "bnxt_tc.h" 68 #include "bnxt_devlink.h" 69 #include "bnxt_debugfs.h" 70 71 #define BNXT_TX_TIMEOUT (5 * HZ) 72 73 MODULE_LICENSE("GPL"); 74 MODULE_DESCRIPTION("Broadcom BCM573xx network driver"); 75 76 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN) 77 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD 78 #define BNXT_RX_COPY_THRESH 256 79 80 #define BNXT_TX_PUSH_THRESH 164 81 82 enum board_idx { 83 BCM57301, 84 BCM57302, 85 BCM57304, 86 BCM57417_NPAR, 87 BCM58700, 88 BCM57311, 89 BCM57312, 90 BCM57402, 91 BCM57404, 92 BCM57406, 93 BCM57402_NPAR, 94 BCM57407, 95 BCM57412, 96 BCM57414, 97 BCM57416, 98 BCM57417, 99 BCM57412_NPAR, 100 BCM57314, 101 BCM57417_SFP, 102 BCM57416_SFP, 103 BCM57404_NPAR, 104 BCM57406_NPAR, 105 BCM57407_SFP, 106 BCM57407_NPAR, 107 BCM57414_NPAR, 108 BCM57416_NPAR, 109 BCM57452, 110 BCM57454, 111 BCM5745x_NPAR, 112 BCM57508, 113 BCM57504, 114 BCM57502, 115 BCM57508_NPAR, 116 BCM57504_NPAR, 117 BCM57502_NPAR, 118 BCM58802, 119 BCM58804, 120 BCM58808, 121 NETXTREME_E_VF, 122 NETXTREME_C_VF, 123 NETXTREME_S_VF, 124 NETXTREME_E_P5_VF, 125 }; 126 127 /* indexed by enum above */ 128 static const struct { 129 char *name; 130 } board_info[] = { 131 [BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" }, 132 [BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" }, 133 [BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" }, 134 [BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" }, 135 [BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" }, 136 [BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" }, 137 [BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" }, 138 [BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" }, 139 [BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" }, 140 [BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" }, 141 [BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" }, 142 [BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" }, 143 [BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" }, 144 [BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" }, 145 [BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" }, 146 [BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" }, 147 [BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" }, 148 [BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" }, 149 [BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" }, 150 [BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" }, 151 [BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" }, 152 [BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" }, 153 [BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" }, 154 [BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" }, 155 [BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" }, 156 [BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" }, 157 [BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" }, 158 [BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 159 [BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" }, 160 [BCM57508] = { "Broadcom BCM57508 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" }, 161 [BCM57504] = { "Broadcom BCM57504 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" }, 162 [BCM57502] = { "Broadcom BCM57502 NetXtreme-E 10Gb/25Gb/50Gb Ethernet" }, 163 [BCM57508_NPAR] = { "Broadcom BCM57508 NetXtreme-E Ethernet Partition" }, 164 [BCM57504_NPAR] = { "Broadcom BCM57504 NetXtreme-E Ethernet Partition" }, 165 [BCM57502_NPAR] = { "Broadcom BCM57502 NetXtreme-E Ethernet Partition" }, 166 [BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" }, 167 [BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 168 [BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 169 [NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" }, 170 [NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" }, 171 [NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" }, 172 [NETXTREME_E_P5_VF] = { "Broadcom BCM5750X NetXtreme-E Ethernet Virtual Function" }, 173 }; 174 175 static const struct pci_device_id bnxt_pci_tbl[] = { 176 { PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR }, 177 { PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR }, 178 { PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 }, 179 { PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR }, 180 { PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 }, 181 { PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 }, 182 { PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 }, 183 { PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR }, 184 { PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 }, 185 { PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 }, 186 { PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 }, 187 { PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 }, 188 { PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 }, 189 { PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 }, 190 { PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR }, 191 { PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 }, 192 { PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 }, 193 { PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 }, 194 { PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 }, 195 { PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 }, 196 { PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR }, 197 { PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 }, 198 { PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP }, 199 { PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP }, 200 { PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR }, 201 { PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR }, 202 { PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP }, 203 { PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR }, 204 { PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR }, 205 { PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR }, 206 { PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR }, 207 { PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR }, 208 { PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR }, 209 { PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 }, 210 { PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 }, 211 { PCI_VDEVICE(BROADCOM, 0x1750), .driver_data = BCM57508 }, 212 { PCI_VDEVICE(BROADCOM, 0x1751), .driver_data = BCM57504 }, 213 { PCI_VDEVICE(BROADCOM, 0x1752), .driver_data = BCM57502 }, 214 { PCI_VDEVICE(BROADCOM, 0x1800), .driver_data = BCM57508_NPAR }, 215 { PCI_VDEVICE(BROADCOM, 0x1801), .driver_data = BCM57504_NPAR }, 216 { PCI_VDEVICE(BROADCOM, 0x1802), .driver_data = BCM57502_NPAR }, 217 { PCI_VDEVICE(BROADCOM, 0x1803), .driver_data = BCM57508_NPAR }, 218 { PCI_VDEVICE(BROADCOM, 0x1804), .driver_data = BCM57504_NPAR }, 219 { PCI_VDEVICE(BROADCOM, 0x1805), .driver_data = BCM57502_NPAR }, 220 { PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 }, 221 { PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 }, 222 #ifdef CONFIG_BNXT_SRIOV 223 { PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF }, 224 { PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF }, 225 { PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF }, 226 { PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF }, 227 { PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF }, 228 { PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF }, 229 { PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF }, 230 { PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF }, 231 { PCI_VDEVICE(BROADCOM, 0x1806), .driver_data = NETXTREME_E_P5_VF }, 232 { PCI_VDEVICE(BROADCOM, 0x1807), .driver_data = NETXTREME_E_P5_VF }, 233 { PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF }, 234 #endif 235 { 0 } 236 }; 237 238 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl); 239 240 static const u16 bnxt_vf_req_snif[] = { 241 HWRM_FUNC_CFG, 242 HWRM_FUNC_VF_CFG, 243 HWRM_PORT_PHY_QCFG, 244 HWRM_CFA_L2_FILTER_ALLOC, 245 }; 246 247 static const u16 bnxt_async_events_arr[] = { 248 ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE, 249 ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE, 250 ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD, 251 ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED, 252 ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE, 253 ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE, 254 ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE, 255 ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY, 256 ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY, 257 }; 258 259 static struct workqueue_struct *bnxt_pf_wq; 260 261 static bool bnxt_vf_pciid(enum board_idx idx) 262 { 263 return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF || 264 idx == NETXTREME_S_VF || idx == NETXTREME_E_P5_VF); 265 } 266 267 #define DB_CP_REARM_FLAGS (DB_KEY_CP | DB_IDX_VALID) 268 #define DB_CP_FLAGS (DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS) 269 #define DB_CP_IRQ_DIS_FLAGS (DB_KEY_CP | DB_IRQ_DIS) 270 271 #define BNXT_CP_DB_IRQ_DIS(db) \ 272 writel(DB_CP_IRQ_DIS_FLAGS, db) 273 274 #define BNXT_DB_CQ(db, idx) \ 275 writel(DB_CP_FLAGS | RING_CMP(idx), (db)->doorbell) 276 277 #define BNXT_DB_NQ_P5(db, idx) \ 278 writeq((db)->db_key64 | DBR_TYPE_NQ | RING_CMP(idx), (db)->doorbell) 279 280 #define BNXT_DB_CQ_ARM(db, idx) \ 281 writel(DB_CP_REARM_FLAGS | RING_CMP(idx), (db)->doorbell) 282 283 #define BNXT_DB_NQ_ARM_P5(db, idx) \ 284 writeq((db)->db_key64 | DBR_TYPE_NQ_ARM | RING_CMP(idx), (db)->doorbell) 285 286 static void bnxt_db_nq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 287 { 288 if (bp->flags & BNXT_FLAG_CHIP_P5) 289 BNXT_DB_NQ_P5(db, idx); 290 else 291 BNXT_DB_CQ(db, idx); 292 } 293 294 static void bnxt_db_nq_arm(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 295 { 296 if (bp->flags & BNXT_FLAG_CHIP_P5) 297 BNXT_DB_NQ_ARM_P5(db, idx); 298 else 299 BNXT_DB_CQ_ARM(db, idx); 300 } 301 302 static void bnxt_db_cq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 303 { 304 if (bp->flags & BNXT_FLAG_CHIP_P5) 305 writeq(db->db_key64 | DBR_TYPE_CQ_ARMALL | RING_CMP(idx), 306 db->doorbell); 307 else 308 BNXT_DB_CQ(db, idx); 309 } 310 311 const u16 bnxt_lhint_arr[] = { 312 TX_BD_FLAGS_LHINT_512_AND_SMALLER, 313 TX_BD_FLAGS_LHINT_512_TO_1023, 314 TX_BD_FLAGS_LHINT_1024_TO_2047, 315 TX_BD_FLAGS_LHINT_1024_TO_2047, 316 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 317 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 318 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 319 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 320 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 321 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 322 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 323 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 324 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 325 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 326 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 327 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 328 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 329 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 330 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 331 }; 332 333 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb) 334 { 335 struct metadata_dst *md_dst = skb_metadata_dst(skb); 336 337 if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX) 338 return 0; 339 340 return md_dst->u.port_info.port_id; 341 } 342 343 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev) 344 { 345 struct bnxt *bp = netdev_priv(dev); 346 struct tx_bd *txbd; 347 struct tx_bd_ext *txbd1; 348 struct netdev_queue *txq; 349 int i; 350 dma_addr_t mapping; 351 unsigned int length, pad = 0; 352 u32 len, free_size, vlan_tag_flags, cfa_action, flags; 353 u16 prod, last_frag; 354 struct pci_dev *pdev = bp->pdev; 355 struct bnxt_tx_ring_info *txr; 356 struct bnxt_sw_tx_bd *tx_buf; 357 358 i = skb_get_queue_mapping(skb); 359 if (unlikely(i >= bp->tx_nr_rings)) { 360 dev_kfree_skb_any(skb); 361 return NETDEV_TX_OK; 362 } 363 364 txq = netdev_get_tx_queue(dev, i); 365 txr = &bp->tx_ring[bp->tx_ring_map[i]]; 366 prod = txr->tx_prod; 367 368 free_size = bnxt_tx_avail(bp, txr); 369 if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) { 370 netif_tx_stop_queue(txq); 371 return NETDEV_TX_BUSY; 372 } 373 374 length = skb->len; 375 len = skb_headlen(skb); 376 last_frag = skb_shinfo(skb)->nr_frags; 377 378 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; 379 380 txbd->tx_bd_opaque = prod; 381 382 tx_buf = &txr->tx_buf_ring[prod]; 383 tx_buf->skb = skb; 384 tx_buf->nr_frags = last_frag; 385 386 vlan_tag_flags = 0; 387 cfa_action = bnxt_xmit_get_cfa_action(skb); 388 if (skb_vlan_tag_present(skb)) { 389 vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN | 390 skb_vlan_tag_get(skb); 391 /* Currently supports 8021Q, 8021AD vlan offloads 392 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated 393 */ 394 if (skb->vlan_proto == htons(ETH_P_8021Q)) 395 vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT; 396 } 397 398 if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh) { 399 struct tx_push_buffer *tx_push_buf = txr->tx_push; 400 struct tx_push_bd *tx_push = &tx_push_buf->push_bd; 401 struct tx_bd_ext *tx_push1 = &tx_push->txbd2; 402 void __iomem *db = txr->tx_db.doorbell; 403 void *pdata = tx_push_buf->data; 404 u64 *end; 405 int j, push_len; 406 407 /* Set COAL_NOW to be ready quickly for the next push */ 408 tx_push->tx_bd_len_flags_type = 409 cpu_to_le32((length << TX_BD_LEN_SHIFT) | 410 TX_BD_TYPE_LONG_TX_BD | 411 TX_BD_FLAGS_LHINT_512_AND_SMALLER | 412 TX_BD_FLAGS_COAL_NOW | 413 TX_BD_FLAGS_PACKET_END | 414 (2 << TX_BD_FLAGS_BD_CNT_SHIFT)); 415 416 if (skb->ip_summed == CHECKSUM_PARTIAL) 417 tx_push1->tx_bd_hsize_lflags = 418 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM); 419 else 420 tx_push1->tx_bd_hsize_lflags = 0; 421 422 tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags); 423 tx_push1->tx_bd_cfa_action = 424 cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT); 425 426 end = pdata + length; 427 end = PTR_ALIGN(end, 8) - 1; 428 *end = 0; 429 430 skb_copy_from_linear_data(skb, pdata, len); 431 pdata += len; 432 for (j = 0; j < last_frag; j++) { 433 skb_frag_t *frag = &skb_shinfo(skb)->frags[j]; 434 void *fptr; 435 436 fptr = skb_frag_address_safe(frag); 437 if (!fptr) 438 goto normal_tx; 439 440 memcpy(pdata, fptr, skb_frag_size(frag)); 441 pdata += skb_frag_size(frag); 442 } 443 444 txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type; 445 txbd->tx_bd_haddr = txr->data_mapping; 446 prod = NEXT_TX(prod); 447 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; 448 memcpy(txbd, tx_push1, sizeof(*txbd)); 449 prod = NEXT_TX(prod); 450 tx_push->doorbell = 451 cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod); 452 txr->tx_prod = prod; 453 454 tx_buf->is_push = 1; 455 netdev_tx_sent_queue(txq, skb->len); 456 wmb(); /* Sync is_push and byte queue before pushing data */ 457 458 push_len = (length + sizeof(*tx_push) + 7) / 8; 459 if (push_len > 16) { 460 __iowrite64_copy(db, tx_push_buf, 16); 461 __iowrite32_copy(db + 4, tx_push_buf + 1, 462 (push_len - 16) << 1); 463 } else { 464 __iowrite64_copy(db, tx_push_buf, push_len); 465 } 466 467 goto tx_done; 468 } 469 470 normal_tx: 471 if (length < BNXT_MIN_PKT_SIZE) { 472 pad = BNXT_MIN_PKT_SIZE - length; 473 if (skb_pad(skb, pad)) { 474 /* SKB already freed. */ 475 tx_buf->skb = NULL; 476 return NETDEV_TX_OK; 477 } 478 length = BNXT_MIN_PKT_SIZE; 479 } 480 481 mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE); 482 483 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) { 484 dev_kfree_skb_any(skb); 485 tx_buf->skb = NULL; 486 return NETDEV_TX_OK; 487 } 488 489 dma_unmap_addr_set(tx_buf, mapping, mapping); 490 flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD | 491 ((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT); 492 493 txbd->tx_bd_haddr = cpu_to_le64(mapping); 494 495 prod = NEXT_TX(prod); 496 txbd1 = (struct tx_bd_ext *) 497 &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; 498 499 txbd1->tx_bd_hsize_lflags = 0; 500 if (skb_is_gso(skb)) { 501 u32 hdr_len; 502 503 if (skb->encapsulation) 504 hdr_len = skb_inner_network_offset(skb) + 505 skb_inner_network_header_len(skb) + 506 inner_tcp_hdrlen(skb); 507 else 508 hdr_len = skb_transport_offset(skb) + 509 tcp_hdrlen(skb); 510 511 txbd1->tx_bd_hsize_lflags = cpu_to_le32(TX_BD_FLAGS_LSO | 512 TX_BD_FLAGS_T_IPID | 513 (hdr_len << (TX_BD_HSIZE_SHIFT - 1))); 514 length = skb_shinfo(skb)->gso_size; 515 txbd1->tx_bd_mss = cpu_to_le32(length); 516 length += hdr_len; 517 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 518 txbd1->tx_bd_hsize_lflags = 519 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM); 520 txbd1->tx_bd_mss = 0; 521 } 522 523 length >>= 9; 524 if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) { 525 dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n", 526 skb->len); 527 i = 0; 528 goto tx_dma_error; 529 } 530 flags |= bnxt_lhint_arr[length]; 531 txbd->tx_bd_len_flags_type = cpu_to_le32(flags); 532 533 txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags); 534 txbd1->tx_bd_cfa_action = 535 cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT); 536 for (i = 0; i < last_frag; i++) { 537 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 538 539 prod = NEXT_TX(prod); 540 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; 541 542 len = skb_frag_size(frag); 543 mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len, 544 DMA_TO_DEVICE); 545 546 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) 547 goto tx_dma_error; 548 549 tx_buf = &txr->tx_buf_ring[prod]; 550 dma_unmap_addr_set(tx_buf, mapping, mapping); 551 552 txbd->tx_bd_haddr = cpu_to_le64(mapping); 553 554 flags = len << TX_BD_LEN_SHIFT; 555 txbd->tx_bd_len_flags_type = cpu_to_le32(flags); 556 } 557 558 flags &= ~TX_BD_LEN; 559 txbd->tx_bd_len_flags_type = 560 cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags | 561 TX_BD_FLAGS_PACKET_END); 562 563 netdev_tx_sent_queue(txq, skb->len); 564 565 /* Sync BD data before updating doorbell */ 566 wmb(); 567 568 prod = NEXT_TX(prod); 569 txr->tx_prod = prod; 570 571 if (!netdev_xmit_more() || netif_xmit_stopped(txq)) 572 bnxt_db_write(bp, &txr->tx_db, prod); 573 574 tx_done: 575 576 if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) { 577 if (netdev_xmit_more() && !tx_buf->is_push) 578 bnxt_db_write(bp, &txr->tx_db, prod); 579 580 netif_tx_stop_queue(txq); 581 582 /* netif_tx_stop_queue() must be done before checking 583 * tx index in bnxt_tx_avail() below, because in 584 * bnxt_tx_int(), we update tx index before checking for 585 * netif_tx_queue_stopped(). 586 */ 587 smp_mb(); 588 if (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh) 589 netif_tx_wake_queue(txq); 590 } 591 return NETDEV_TX_OK; 592 593 tx_dma_error: 594 last_frag = i; 595 596 /* start back at beginning and unmap skb */ 597 prod = txr->tx_prod; 598 tx_buf = &txr->tx_buf_ring[prod]; 599 tx_buf->skb = NULL; 600 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 601 skb_headlen(skb), PCI_DMA_TODEVICE); 602 prod = NEXT_TX(prod); 603 604 /* unmap remaining mapped pages */ 605 for (i = 0; i < last_frag; i++) { 606 prod = NEXT_TX(prod); 607 tx_buf = &txr->tx_buf_ring[prod]; 608 dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 609 skb_frag_size(&skb_shinfo(skb)->frags[i]), 610 PCI_DMA_TODEVICE); 611 } 612 613 dev_kfree_skb_any(skb); 614 return NETDEV_TX_OK; 615 } 616 617 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts) 618 { 619 struct bnxt_tx_ring_info *txr = bnapi->tx_ring; 620 struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index); 621 u16 cons = txr->tx_cons; 622 struct pci_dev *pdev = bp->pdev; 623 int i; 624 unsigned int tx_bytes = 0; 625 626 for (i = 0; i < nr_pkts; i++) { 627 struct bnxt_sw_tx_bd *tx_buf; 628 struct sk_buff *skb; 629 int j, last; 630 631 tx_buf = &txr->tx_buf_ring[cons]; 632 cons = NEXT_TX(cons); 633 skb = tx_buf->skb; 634 tx_buf->skb = NULL; 635 636 if (tx_buf->is_push) { 637 tx_buf->is_push = 0; 638 goto next_tx_int; 639 } 640 641 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 642 skb_headlen(skb), PCI_DMA_TODEVICE); 643 last = tx_buf->nr_frags; 644 645 for (j = 0; j < last; j++) { 646 cons = NEXT_TX(cons); 647 tx_buf = &txr->tx_buf_ring[cons]; 648 dma_unmap_page( 649 &pdev->dev, 650 dma_unmap_addr(tx_buf, mapping), 651 skb_frag_size(&skb_shinfo(skb)->frags[j]), 652 PCI_DMA_TODEVICE); 653 } 654 655 next_tx_int: 656 cons = NEXT_TX(cons); 657 658 tx_bytes += skb->len; 659 dev_kfree_skb_any(skb); 660 } 661 662 netdev_tx_completed_queue(txq, nr_pkts, tx_bytes); 663 txr->tx_cons = cons; 664 665 /* Need to make the tx_cons update visible to bnxt_start_xmit() 666 * before checking for netif_tx_queue_stopped(). Without the 667 * memory barrier, there is a small possibility that bnxt_start_xmit() 668 * will miss it and cause the queue to be stopped forever. 669 */ 670 smp_mb(); 671 672 if (unlikely(netif_tx_queue_stopped(txq)) && 673 (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)) { 674 __netif_tx_lock(txq, smp_processor_id()); 675 if (netif_tx_queue_stopped(txq) && 676 bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh && 677 txr->dev_state != BNXT_DEV_STATE_CLOSING) 678 netif_tx_wake_queue(txq); 679 __netif_tx_unlock(txq); 680 } 681 } 682 683 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping, 684 struct bnxt_rx_ring_info *rxr, 685 gfp_t gfp) 686 { 687 struct device *dev = &bp->pdev->dev; 688 struct page *page; 689 690 page = page_pool_dev_alloc_pages(rxr->page_pool); 691 if (!page) 692 return NULL; 693 694 *mapping = dma_map_page_attrs(dev, page, 0, PAGE_SIZE, bp->rx_dir, 695 DMA_ATTR_WEAK_ORDERING); 696 if (dma_mapping_error(dev, *mapping)) { 697 page_pool_recycle_direct(rxr->page_pool, page); 698 return NULL; 699 } 700 *mapping += bp->rx_dma_offset; 701 return page; 702 } 703 704 static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping, 705 gfp_t gfp) 706 { 707 u8 *data; 708 struct pci_dev *pdev = bp->pdev; 709 710 data = kmalloc(bp->rx_buf_size, gfp); 711 if (!data) 712 return NULL; 713 714 *mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset, 715 bp->rx_buf_use_size, bp->rx_dir, 716 DMA_ATTR_WEAK_ORDERING); 717 718 if (dma_mapping_error(&pdev->dev, *mapping)) { 719 kfree(data); 720 data = NULL; 721 } 722 return data; 723 } 724 725 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 726 u16 prod, gfp_t gfp) 727 { 728 struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 729 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod]; 730 dma_addr_t mapping; 731 732 if (BNXT_RX_PAGE_MODE(bp)) { 733 struct page *page = 734 __bnxt_alloc_rx_page(bp, &mapping, rxr, gfp); 735 736 if (!page) 737 return -ENOMEM; 738 739 rx_buf->data = page; 740 rx_buf->data_ptr = page_address(page) + bp->rx_offset; 741 } else { 742 u8 *data = __bnxt_alloc_rx_data(bp, &mapping, gfp); 743 744 if (!data) 745 return -ENOMEM; 746 747 rx_buf->data = data; 748 rx_buf->data_ptr = data + bp->rx_offset; 749 } 750 rx_buf->mapping = mapping; 751 752 rxbd->rx_bd_haddr = cpu_to_le64(mapping); 753 return 0; 754 } 755 756 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data) 757 { 758 u16 prod = rxr->rx_prod; 759 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf; 760 struct rx_bd *cons_bd, *prod_bd; 761 762 prod_rx_buf = &rxr->rx_buf_ring[prod]; 763 cons_rx_buf = &rxr->rx_buf_ring[cons]; 764 765 prod_rx_buf->data = data; 766 prod_rx_buf->data_ptr = cons_rx_buf->data_ptr; 767 768 prod_rx_buf->mapping = cons_rx_buf->mapping; 769 770 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 771 cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)]; 772 773 prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr; 774 } 775 776 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx) 777 { 778 u16 next, max = rxr->rx_agg_bmap_size; 779 780 next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx); 781 if (next >= max) 782 next = find_first_zero_bit(rxr->rx_agg_bmap, max); 783 return next; 784 } 785 786 static inline int bnxt_alloc_rx_page(struct bnxt *bp, 787 struct bnxt_rx_ring_info *rxr, 788 u16 prod, gfp_t gfp) 789 { 790 struct rx_bd *rxbd = 791 &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 792 struct bnxt_sw_rx_agg_bd *rx_agg_buf; 793 struct pci_dev *pdev = bp->pdev; 794 struct page *page; 795 dma_addr_t mapping; 796 u16 sw_prod = rxr->rx_sw_agg_prod; 797 unsigned int offset = 0; 798 799 if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) { 800 page = rxr->rx_page; 801 if (!page) { 802 page = alloc_page(gfp); 803 if (!page) 804 return -ENOMEM; 805 rxr->rx_page = page; 806 rxr->rx_page_offset = 0; 807 } 808 offset = rxr->rx_page_offset; 809 rxr->rx_page_offset += BNXT_RX_PAGE_SIZE; 810 if (rxr->rx_page_offset == PAGE_SIZE) 811 rxr->rx_page = NULL; 812 else 813 get_page(page); 814 } else { 815 page = alloc_page(gfp); 816 if (!page) 817 return -ENOMEM; 818 } 819 820 mapping = dma_map_page_attrs(&pdev->dev, page, offset, 821 BNXT_RX_PAGE_SIZE, PCI_DMA_FROMDEVICE, 822 DMA_ATTR_WEAK_ORDERING); 823 if (dma_mapping_error(&pdev->dev, mapping)) { 824 __free_page(page); 825 return -EIO; 826 } 827 828 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap))) 829 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod); 830 831 __set_bit(sw_prod, rxr->rx_agg_bmap); 832 rx_agg_buf = &rxr->rx_agg_ring[sw_prod]; 833 rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod); 834 835 rx_agg_buf->page = page; 836 rx_agg_buf->offset = offset; 837 rx_agg_buf->mapping = mapping; 838 rxbd->rx_bd_haddr = cpu_to_le64(mapping); 839 rxbd->rx_bd_opaque = sw_prod; 840 return 0; 841 } 842 843 static struct rx_agg_cmp *bnxt_get_agg(struct bnxt *bp, 844 struct bnxt_cp_ring_info *cpr, 845 u16 cp_cons, u16 curr) 846 { 847 struct rx_agg_cmp *agg; 848 849 cp_cons = RING_CMP(ADV_RAW_CMP(cp_cons, curr)); 850 agg = (struct rx_agg_cmp *) 851 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 852 return agg; 853 } 854 855 static struct rx_agg_cmp *bnxt_get_tpa_agg_p5(struct bnxt *bp, 856 struct bnxt_rx_ring_info *rxr, 857 u16 agg_id, u16 curr) 858 { 859 struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[agg_id]; 860 861 return &tpa_info->agg_arr[curr]; 862 } 863 864 static void bnxt_reuse_rx_agg_bufs(struct bnxt_cp_ring_info *cpr, u16 idx, 865 u16 start, u32 agg_bufs, bool tpa) 866 { 867 struct bnxt_napi *bnapi = cpr->bnapi; 868 struct bnxt *bp = bnapi->bp; 869 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 870 u16 prod = rxr->rx_agg_prod; 871 u16 sw_prod = rxr->rx_sw_agg_prod; 872 bool p5_tpa = false; 873 u32 i; 874 875 if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa) 876 p5_tpa = true; 877 878 for (i = 0; i < agg_bufs; i++) { 879 u16 cons; 880 struct rx_agg_cmp *agg; 881 struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf; 882 struct rx_bd *prod_bd; 883 struct page *page; 884 885 if (p5_tpa) 886 agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, start + i); 887 else 888 agg = bnxt_get_agg(bp, cpr, idx, start + i); 889 cons = agg->rx_agg_cmp_opaque; 890 __clear_bit(cons, rxr->rx_agg_bmap); 891 892 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap))) 893 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod); 894 895 __set_bit(sw_prod, rxr->rx_agg_bmap); 896 prod_rx_buf = &rxr->rx_agg_ring[sw_prod]; 897 cons_rx_buf = &rxr->rx_agg_ring[cons]; 898 899 /* It is possible for sw_prod to be equal to cons, so 900 * set cons_rx_buf->page to NULL first. 901 */ 902 page = cons_rx_buf->page; 903 cons_rx_buf->page = NULL; 904 prod_rx_buf->page = page; 905 prod_rx_buf->offset = cons_rx_buf->offset; 906 907 prod_rx_buf->mapping = cons_rx_buf->mapping; 908 909 prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 910 911 prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping); 912 prod_bd->rx_bd_opaque = sw_prod; 913 914 prod = NEXT_RX_AGG(prod); 915 sw_prod = NEXT_RX_AGG(sw_prod); 916 } 917 rxr->rx_agg_prod = prod; 918 rxr->rx_sw_agg_prod = sw_prod; 919 } 920 921 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp, 922 struct bnxt_rx_ring_info *rxr, 923 u16 cons, void *data, u8 *data_ptr, 924 dma_addr_t dma_addr, 925 unsigned int offset_and_len) 926 { 927 unsigned int payload = offset_and_len >> 16; 928 unsigned int len = offset_and_len & 0xffff; 929 skb_frag_t *frag; 930 struct page *page = data; 931 u16 prod = rxr->rx_prod; 932 struct sk_buff *skb; 933 int off, err; 934 935 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 936 if (unlikely(err)) { 937 bnxt_reuse_rx_data(rxr, cons, data); 938 return NULL; 939 } 940 dma_addr -= bp->rx_dma_offset; 941 dma_unmap_page_attrs(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir, 942 DMA_ATTR_WEAK_ORDERING); 943 page_pool_release_page(rxr->page_pool, page); 944 945 if (unlikely(!payload)) 946 payload = eth_get_headlen(bp->dev, data_ptr, len); 947 948 skb = napi_alloc_skb(&rxr->bnapi->napi, payload); 949 if (!skb) { 950 __free_page(page); 951 return NULL; 952 } 953 954 off = (void *)data_ptr - page_address(page); 955 skb_add_rx_frag(skb, 0, page, off, len, PAGE_SIZE); 956 memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN, 957 payload + NET_IP_ALIGN); 958 959 frag = &skb_shinfo(skb)->frags[0]; 960 skb_frag_size_sub(frag, payload); 961 skb_frag_off_add(frag, payload); 962 skb->data_len -= payload; 963 skb->tail += payload; 964 965 return skb; 966 } 967 968 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp, 969 struct bnxt_rx_ring_info *rxr, u16 cons, 970 void *data, u8 *data_ptr, 971 dma_addr_t dma_addr, 972 unsigned int offset_and_len) 973 { 974 u16 prod = rxr->rx_prod; 975 struct sk_buff *skb; 976 int err; 977 978 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 979 if (unlikely(err)) { 980 bnxt_reuse_rx_data(rxr, cons, data); 981 return NULL; 982 } 983 984 skb = build_skb(data, 0); 985 dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size, 986 bp->rx_dir, DMA_ATTR_WEAK_ORDERING); 987 if (!skb) { 988 kfree(data); 989 return NULL; 990 } 991 992 skb_reserve(skb, bp->rx_offset); 993 skb_put(skb, offset_and_len & 0xffff); 994 return skb; 995 } 996 997 static struct sk_buff *bnxt_rx_pages(struct bnxt *bp, 998 struct bnxt_cp_ring_info *cpr, 999 struct sk_buff *skb, u16 idx, 1000 u32 agg_bufs, bool tpa) 1001 { 1002 struct bnxt_napi *bnapi = cpr->bnapi; 1003 struct pci_dev *pdev = bp->pdev; 1004 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1005 u16 prod = rxr->rx_agg_prod; 1006 bool p5_tpa = false; 1007 u32 i; 1008 1009 if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa) 1010 p5_tpa = true; 1011 1012 for (i = 0; i < agg_bufs; i++) { 1013 u16 cons, frag_len; 1014 struct rx_agg_cmp *agg; 1015 struct bnxt_sw_rx_agg_bd *cons_rx_buf; 1016 struct page *page; 1017 dma_addr_t mapping; 1018 1019 if (p5_tpa) 1020 agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, i); 1021 else 1022 agg = bnxt_get_agg(bp, cpr, idx, i); 1023 cons = agg->rx_agg_cmp_opaque; 1024 frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) & 1025 RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT; 1026 1027 cons_rx_buf = &rxr->rx_agg_ring[cons]; 1028 skb_fill_page_desc(skb, i, cons_rx_buf->page, 1029 cons_rx_buf->offset, frag_len); 1030 __clear_bit(cons, rxr->rx_agg_bmap); 1031 1032 /* It is possible for bnxt_alloc_rx_page() to allocate 1033 * a sw_prod index that equals the cons index, so we 1034 * need to clear the cons entry now. 1035 */ 1036 mapping = cons_rx_buf->mapping; 1037 page = cons_rx_buf->page; 1038 cons_rx_buf->page = NULL; 1039 1040 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) { 1041 struct skb_shared_info *shinfo; 1042 unsigned int nr_frags; 1043 1044 shinfo = skb_shinfo(skb); 1045 nr_frags = --shinfo->nr_frags; 1046 __skb_frag_set_page(&shinfo->frags[nr_frags], NULL); 1047 1048 dev_kfree_skb(skb); 1049 1050 cons_rx_buf->page = page; 1051 1052 /* Update prod since possibly some pages have been 1053 * allocated already. 1054 */ 1055 rxr->rx_agg_prod = prod; 1056 bnxt_reuse_rx_agg_bufs(cpr, idx, i, agg_bufs - i, tpa); 1057 return NULL; 1058 } 1059 1060 dma_unmap_page_attrs(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE, 1061 PCI_DMA_FROMDEVICE, 1062 DMA_ATTR_WEAK_ORDERING); 1063 1064 skb->data_len += frag_len; 1065 skb->len += frag_len; 1066 skb->truesize += PAGE_SIZE; 1067 1068 prod = NEXT_RX_AGG(prod); 1069 } 1070 rxr->rx_agg_prod = prod; 1071 return skb; 1072 } 1073 1074 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1075 u8 agg_bufs, u32 *raw_cons) 1076 { 1077 u16 last; 1078 struct rx_agg_cmp *agg; 1079 1080 *raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs); 1081 last = RING_CMP(*raw_cons); 1082 agg = (struct rx_agg_cmp *) 1083 &cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)]; 1084 return RX_AGG_CMP_VALID(agg, *raw_cons); 1085 } 1086 1087 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data, 1088 unsigned int len, 1089 dma_addr_t mapping) 1090 { 1091 struct bnxt *bp = bnapi->bp; 1092 struct pci_dev *pdev = bp->pdev; 1093 struct sk_buff *skb; 1094 1095 skb = napi_alloc_skb(&bnapi->napi, len); 1096 if (!skb) 1097 return NULL; 1098 1099 dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh, 1100 bp->rx_dir); 1101 1102 memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN, 1103 len + NET_IP_ALIGN); 1104 1105 dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh, 1106 bp->rx_dir); 1107 1108 skb_put(skb, len); 1109 return skb; 1110 } 1111 1112 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1113 u32 *raw_cons, void *cmp) 1114 { 1115 struct rx_cmp *rxcmp = cmp; 1116 u32 tmp_raw_cons = *raw_cons; 1117 u8 cmp_type, agg_bufs = 0; 1118 1119 cmp_type = RX_CMP_TYPE(rxcmp); 1120 1121 if (cmp_type == CMP_TYPE_RX_L2_CMP) { 1122 agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) & 1123 RX_CMP_AGG_BUFS) >> 1124 RX_CMP_AGG_BUFS_SHIFT; 1125 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 1126 struct rx_tpa_end_cmp *tpa_end = cmp; 1127 1128 if (bp->flags & BNXT_FLAG_CHIP_P5) 1129 return 0; 1130 1131 agg_bufs = TPA_END_AGG_BUFS(tpa_end); 1132 } 1133 1134 if (agg_bufs) { 1135 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons)) 1136 return -EBUSY; 1137 } 1138 *raw_cons = tmp_raw_cons; 1139 return 0; 1140 } 1141 1142 static void bnxt_queue_fw_reset_work(struct bnxt *bp, unsigned long delay) 1143 { 1144 if (BNXT_PF(bp)) 1145 queue_delayed_work(bnxt_pf_wq, &bp->fw_reset_task, delay); 1146 else 1147 schedule_delayed_work(&bp->fw_reset_task, delay); 1148 } 1149 1150 static void bnxt_queue_sp_work(struct bnxt *bp) 1151 { 1152 if (BNXT_PF(bp)) 1153 queue_work(bnxt_pf_wq, &bp->sp_task); 1154 else 1155 schedule_work(&bp->sp_task); 1156 } 1157 1158 static void bnxt_cancel_sp_work(struct bnxt *bp) 1159 { 1160 if (BNXT_PF(bp)) 1161 flush_workqueue(bnxt_pf_wq); 1162 else 1163 cancel_work_sync(&bp->sp_task); 1164 } 1165 1166 static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 1167 { 1168 if (!rxr->bnapi->in_reset) { 1169 rxr->bnapi->in_reset = true; 1170 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event); 1171 bnxt_queue_sp_work(bp); 1172 } 1173 rxr->rx_next_cons = 0xffff; 1174 } 1175 1176 static u16 bnxt_alloc_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id) 1177 { 1178 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1179 u16 idx = agg_id & MAX_TPA_P5_MASK; 1180 1181 if (test_bit(idx, map->agg_idx_bmap)) 1182 idx = find_first_zero_bit(map->agg_idx_bmap, 1183 BNXT_AGG_IDX_BMAP_SIZE); 1184 __set_bit(idx, map->agg_idx_bmap); 1185 map->agg_id_tbl[agg_id] = idx; 1186 return idx; 1187 } 1188 1189 static void bnxt_free_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx) 1190 { 1191 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1192 1193 __clear_bit(idx, map->agg_idx_bmap); 1194 } 1195 1196 static u16 bnxt_lookup_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id) 1197 { 1198 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1199 1200 return map->agg_id_tbl[agg_id]; 1201 } 1202 1203 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 1204 struct rx_tpa_start_cmp *tpa_start, 1205 struct rx_tpa_start_cmp_ext *tpa_start1) 1206 { 1207 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf; 1208 struct bnxt_tpa_info *tpa_info; 1209 u16 cons, prod, agg_id; 1210 struct rx_bd *prod_bd; 1211 dma_addr_t mapping; 1212 1213 if (bp->flags & BNXT_FLAG_CHIP_P5) { 1214 agg_id = TPA_START_AGG_ID_P5(tpa_start); 1215 agg_id = bnxt_alloc_agg_idx(rxr, agg_id); 1216 } else { 1217 agg_id = TPA_START_AGG_ID(tpa_start); 1218 } 1219 cons = tpa_start->rx_tpa_start_cmp_opaque; 1220 prod = rxr->rx_prod; 1221 cons_rx_buf = &rxr->rx_buf_ring[cons]; 1222 prod_rx_buf = &rxr->rx_buf_ring[prod]; 1223 tpa_info = &rxr->rx_tpa[agg_id]; 1224 1225 if (unlikely(cons != rxr->rx_next_cons || 1226 TPA_START_ERROR(tpa_start))) { 1227 netdev_warn(bp->dev, "TPA cons %x, expected cons %x, error code %x\n", 1228 cons, rxr->rx_next_cons, 1229 TPA_START_ERROR_CODE(tpa_start1)); 1230 bnxt_sched_reset(bp, rxr); 1231 return; 1232 } 1233 /* Store cfa_code in tpa_info to use in tpa_end 1234 * completion processing. 1235 */ 1236 tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1); 1237 prod_rx_buf->data = tpa_info->data; 1238 prod_rx_buf->data_ptr = tpa_info->data_ptr; 1239 1240 mapping = tpa_info->mapping; 1241 prod_rx_buf->mapping = mapping; 1242 1243 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 1244 1245 prod_bd->rx_bd_haddr = cpu_to_le64(mapping); 1246 1247 tpa_info->data = cons_rx_buf->data; 1248 tpa_info->data_ptr = cons_rx_buf->data_ptr; 1249 cons_rx_buf->data = NULL; 1250 tpa_info->mapping = cons_rx_buf->mapping; 1251 1252 tpa_info->len = 1253 le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >> 1254 RX_TPA_START_CMP_LEN_SHIFT; 1255 if (likely(TPA_START_HASH_VALID(tpa_start))) { 1256 u32 hash_type = TPA_START_HASH_TYPE(tpa_start); 1257 1258 tpa_info->hash_type = PKT_HASH_TYPE_L4; 1259 tpa_info->gso_type = SKB_GSO_TCPV4; 1260 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */ 1261 if (hash_type == 3 || TPA_START_IS_IPV6(tpa_start1)) 1262 tpa_info->gso_type = SKB_GSO_TCPV6; 1263 tpa_info->rss_hash = 1264 le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash); 1265 } else { 1266 tpa_info->hash_type = PKT_HASH_TYPE_NONE; 1267 tpa_info->gso_type = 0; 1268 if (netif_msg_rx_err(bp)) 1269 netdev_warn(bp->dev, "TPA packet without valid hash\n"); 1270 } 1271 tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2); 1272 tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata); 1273 tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info); 1274 tpa_info->agg_count = 0; 1275 1276 rxr->rx_prod = NEXT_RX(prod); 1277 cons = NEXT_RX(cons); 1278 rxr->rx_next_cons = NEXT_RX(cons); 1279 cons_rx_buf = &rxr->rx_buf_ring[cons]; 1280 1281 bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data); 1282 rxr->rx_prod = NEXT_RX(rxr->rx_prod); 1283 cons_rx_buf->data = NULL; 1284 } 1285 1286 static void bnxt_abort_tpa(struct bnxt_cp_ring_info *cpr, u16 idx, u32 agg_bufs) 1287 { 1288 if (agg_bufs) 1289 bnxt_reuse_rx_agg_bufs(cpr, idx, 0, agg_bufs, true); 1290 } 1291 1292 #ifdef CONFIG_INET 1293 static void bnxt_gro_tunnel(struct sk_buff *skb, __be16 ip_proto) 1294 { 1295 struct udphdr *uh = NULL; 1296 1297 if (ip_proto == htons(ETH_P_IP)) { 1298 struct iphdr *iph = (struct iphdr *)skb->data; 1299 1300 if (iph->protocol == IPPROTO_UDP) 1301 uh = (struct udphdr *)(iph + 1); 1302 } else { 1303 struct ipv6hdr *iph = (struct ipv6hdr *)skb->data; 1304 1305 if (iph->nexthdr == IPPROTO_UDP) 1306 uh = (struct udphdr *)(iph + 1); 1307 } 1308 if (uh) { 1309 if (uh->check) 1310 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL_CSUM; 1311 else 1312 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL; 1313 } 1314 } 1315 #endif 1316 1317 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info, 1318 int payload_off, int tcp_ts, 1319 struct sk_buff *skb) 1320 { 1321 #ifdef CONFIG_INET 1322 struct tcphdr *th; 1323 int len, nw_off; 1324 u16 outer_ip_off, inner_ip_off, inner_mac_off; 1325 u32 hdr_info = tpa_info->hdr_info; 1326 bool loopback = false; 1327 1328 inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info); 1329 inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info); 1330 outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info); 1331 1332 /* If the packet is an internal loopback packet, the offsets will 1333 * have an extra 4 bytes. 1334 */ 1335 if (inner_mac_off == 4) { 1336 loopback = true; 1337 } else if (inner_mac_off > 4) { 1338 __be16 proto = *((__be16 *)(skb->data + inner_ip_off - 1339 ETH_HLEN - 2)); 1340 1341 /* We only support inner iPv4/ipv6. If we don't see the 1342 * correct protocol ID, it must be a loopback packet where 1343 * the offsets are off by 4. 1344 */ 1345 if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6)) 1346 loopback = true; 1347 } 1348 if (loopback) { 1349 /* internal loopback packet, subtract all offsets by 4 */ 1350 inner_ip_off -= 4; 1351 inner_mac_off -= 4; 1352 outer_ip_off -= 4; 1353 } 1354 1355 nw_off = inner_ip_off - ETH_HLEN; 1356 skb_set_network_header(skb, nw_off); 1357 if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) { 1358 struct ipv6hdr *iph = ipv6_hdr(skb); 1359 1360 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr)); 1361 len = skb->len - skb_transport_offset(skb); 1362 th = tcp_hdr(skb); 1363 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0); 1364 } else { 1365 struct iphdr *iph = ip_hdr(skb); 1366 1367 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr)); 1368 len = skb->len - skb_transport_offset(skb); 1369 th = tcp_hdr(skb); 1370 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0); 1371 } 1372 1373 if (inner_mac_off) { /* tunnel */ 1374 __be16 proto = *((__be16 *)(skb->data + outer_ip_off - 1375 ETH_HLEN - 2)); 1376 1377 bnxt_gro_tunnel(skb, proto); 1378 } 1379 #endif 1380 return skb; 1381 } 1382 1383 static struct sk_buff *bnxt_gro_func_5750x(struct bnxt_tpa_info *tpa_info, 1384 int payload_off, int tcp_ts, 1385 struct sk_buff *skb) 1386 { 1387 #ifdef CONFIG_INET 1388 u16 outer_ip_off, inner_ip_off, inner_mac_off; 1389 u32 hdr_info = tpa_info->hdr_info; 1390 int iphdr_len, nw_off; 1391 1392 inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info); 1393 inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info); 1394 outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info); 1395 1396 nw_off = inner_ip_off - ETH_HLEN; 1397 skb_set_network_header(skb, nw_off); 1398 iphdr_len = (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) ? 1399 sizeof(struct ipv6hdr) : sizeof(struct iphdr); 1400 skb_set_transport_header(skb, nw_off + iphdr_len); 1401 1402 if (inner_mac_off) { /* tunnel */ 1403 __be16 proto = *((__be16 *)(skb->data + outer_ip_off - 1404 ETH_HLEN - 2)); 1405 1406 bnxt_gro_tunnel(skb, proto); 1407 } 1408 #endif 1409 return skb; 1410 } 1411 1412 #define BNXT_IPV4_HDR_SIZE (sizeof(struct iphdr) + sizeof(struct tcphdr)) 1413 #define BNXT_IPV6_HDR_SIZE (sizeof(struct ipv6hdr) + sizeof(struct tcphdr)) 1414 1415 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info, 1416 int payload_off, int tcp_ts, 1417 struct sk_buff *skb) 1418 { 1419 #ifdef CONFIG_INET 1420 struct tcphdr *th; 1421 int len, nw_off, tcp_opt_len = 0; 1422 1423 if (tcp_ts) 1424 tcp_opt_len = 12; 1425 1426 if (tpa_info->gso_type == SKB_GSO_TCPV4) { 1427 struct iphdr *iph; 1428 1429 nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len - 1430 ETH_HLEN; 1431 skb_set_network_header(skb, nw_off); 1432 iph = ip_hdr(skb); 1433 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr)); 1434 len = skb->len - skb_transport_offset(skb); 1435 th = tcp_hdr(skb); 1436 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0); 1437 } else if (tpa_info->gso_type == SKB_GSO_TCPV6) { 1438 struct ipv6hdr *iph; 1439 1440 nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len - 1441 ETH_HLEN; 1442 skb_set_network_header(skb, nw_off); 1443 iph = ipv6_hdr(skb); 1444 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr)); 1445 len = skb->len - skb_transport_offset(skb); 1446 th = tcp_hdr(skb); 1447 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0); 1448 } else { 1449 dev_kfree_skb_any(skb); 1450 return NULL; 1451 } 1452 1453 if (nw_off) /* tunnel */ 1454 bnxt_gro_tunnel(skb, skb->protocol); 1455 #endif 1456 return skb; 1457 } 1458 1459 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp, 1460 struct bnxt_tpa_info *tpa_info, 1461 struct rx_tpa_end_cmp *tpa_end, 1462 struct rx_tpa_end_cmp_ext *tpa_end1, 1463 struct sk_buff *skb) 1464 { 1465 #ifdef CONFIG_INET 1466 int payload_off; 1467 u16 segs; 1468 1469 segs = TPA_END_TPA_SEGS(tpa_end); 1470 if (segs == 1) 1471 return skb; 1472 1473 NAPI_GRO_CB(skb)->count = segs; 1474 skb_shinfo(skb)->gso_size = 1475 le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len); 1476 skb_shinfo(skb)->gso_type = tpa_info->gso_type; 1477 if (bp->flags & BNXT_FLAG_CHIP_P5) 1478 payload_off = TPA_END_PAYLOAD_OFF_P5(tpa_end1); 1479 else 1480 payload_off = TPA_END_PAYLOAD_OFF(tpa_end); 1481 skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb); 1482 if (likely(skb)) 1483 tcp_gro_complete(skb); 1484 #endif 1485 return skb; 1486 } 1487 1488 /* Given the cfa_code of a received packet determine which 1489 * netdev (vf-rep or PF) the packet is destined to. 1490 */ 1491 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code) 1492 { 1493 struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code); 1494 1495 /* if vf-rep dev is NULL, the must belongs to the PF */ 1496 return dev ? dev : bp->dev; 1497 } 1498 1499 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp, 1500 struct bnxt_cp_ring_info *cpr, 1501 u32 *raw_cons, 1502 struct rx_tpa_end_cmp *tpa_end, 1503 struct rx_tpa_end_cmp_ext *tpa_end1, 1504 u8 *event) 1505 { 1506 struct bnxt_napi *bnapi = cpr->bnapi; 1507 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1508 u8 *data_ptr, agg_bufs; 1509 unsigned int len; 1510 struct bnxt_tpa_info *tpa_info; 1511 dma_addr_t mapping; 1512 struct sk_buff *skb; 1513 u16 idx = 0, agg_id; 1514 void *data; 1515 bool gro; 1516 1517 if (unlikely(bnapi->in_reset)) { 1518 int rc = bnxt_discard_rx(bp, cpr, raw_cons, tpa_end); 1519 1520 if (rc < 0) 1521 return ERR_PTR(-EBUSY); 1522 return NULL; 1523 } 1524 1525 if (bp->flags & BNXT_FLAG_CHIP_P5) { 1526 agg_id = TPA_END_AGG_ID_P5(tpa_end); 1527 agg_id = bnxt_lookup_agg_idx(rxr, agg_id); 1528 agg_bufs = TPA_END_AGG_BUFS_P5(tpa_end1); 1529 tpa_info = &rxr->rx_tpa[agg_id]; 1530 if (unlikely(agg_bufs != tpa_info->agg_count)) { 1531 netdev_warn(bp->dev, "TPA end agg_buf %d != expected agg_bufs %d\n", 1532 agg_bufs, tpa_info->agg_count); 1533 agg_bufs = tpa_info->agg_count; 1534 } 1535 tpa_info->agg_count = 0; 1536 *event |= BNXT_AGG_EVENT; 1537 bnxt_free_agg_idx(rxr, agg_id); 1538 idx = agg_id; 1539 gro = !!(bp->flags & BNXT_FLAG_GRO); 1540 } else { 1541 agg_id = TPA_END_AGG_ID(tpa_end); 1542 agg_bufs = TPA_END_AGG_BUFS(tpa_end); 1543 tpa_info = &rxr->rx_tpa[agg_id]; 1544 idx = RING_CMP(*raw_cons); 1545 if (agg_bufs) { 1546 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons)) 1547 return ERR_PTR(-EBUSY); 1548 1549 *event |= BNXT_AGG_EVENT; 1550 idx = NEXT_CMP(idx); 1551 } 1552 gro = !!TPA_END_GRO(tpa_end); 1553 } 1554 data = tpa_info->data; 1555 data_ptr = tpa_info->data_ptr; 1556 prefetch(data_ptr); 1557 len = tpa_info->len; 1558 mapping = tpa_info->mapping; 1559 1560 if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) { 1561 bnxt_abort_tpa(cpr, idx, agg_bufs); 1562 if (agg_bufs > MAX_SKB_FRAGS) 1563 netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n", 1564 agg_bufs, (int)MAX_SKB_FRAGS); 1565 return NULL; 1566 } 1567 1568 if (len <= bp->rx_copy_thresh) { 1569 skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping); 1570 if (!skb) { 1571 bnxt_abort_tpa(cpr, idx, agg_bufs); 1572 return NULL; 1573 } 1574 } else { 1575 u8 *new_data; 1576 dma_addr_t new_mapping; 1577 1578 new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC); 1579 if (!new_data) { 1580 bnxt_abort_tpa(cpr, idx, agg_bufs); 1581 return NULL; 1582 } 1583 1584 tpa_info->data = new_data; 1585 tpa_info->data_ptr = new_data + bp->rx_offset; 1586 tpa_info->mapping = new_mapping; 1587 1588 skb = build_skb(data, 0); 1589 dma_unmap_single_attrs(&bp->pdev->dev, mapping, 1590 bp->rx_buf_use_size, bp->rx_dir, 1591 DMA_ATTR_WEAK_ORDERING); 1592 1593 if (!skb) { 1594 kfree(data); 1595 bnxt_abort_tpa(cpr, idx, agg_bufs); 1596 return NULL; 1597 } 1598 skb_reserve(skb, bp->rx_offset); 1599 skb_put(skb, len); 1600 } 1601 1602 if (agg_bufs) { 1603 skb = bnxt_rx_pages(bp, cpr, skb, idx, agg_bufs, true); 1604 if (!skb) { 1605 /* Page reuse already handled by bnxt_rx_pages(). */ 1606 return NULL; 1607 } 1608 } 1609 1610 skb->protocol = 1611 eth_type_trans(skb, bnxt_get_pkt_dev(bp, tpa_info->cfa_code)); 1612 1613 if (tpa_info->hash_type != PKT_HASH_TYPE_NONE) 1614 skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type); 1615 1616 if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) && 1617 (skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) { 1618 u16 vlan_proto = tpa_info->metadata >> 1619 RX_CMP_FLAGS2_METADATA_TPID_SFT; 1620 u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK; 1621 1622 __vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag); 1623 } 1624 1625 skb_checksum_none_assert(skb); 1626 if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) { 1627 skb->ip_summed = CHECKSUM_UNNECESSARY; 1628 skb->csum_level = 1629 (tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3; 1630 } 1631 1632 if (gro) 1633 skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb); 1634 1635 return skb; 1636 } 1637 1638 static void bnxt_tpa_agg(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 1639 struct rx_agg_cmp *rx_agg) 1640 { 1641 u16 agg_id = TPA_AGG_AGG_ID(rx_agg); 1642 struct bnxt_tpa_info *tpa_info; 1643 1644 agg_id = bnxt_lookup_agg_idx(rxr, agg_id); 1645 tpa_info = &rxr->rx_tpa[agg_id]; 1646 BUG_ON(tpa_info->agg_count >= MAX_SKB_FRAGS); 1647 tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg; 1648 } 1649 1650 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi, 1651 struct sk_buff *skb) 1652 { 1653 if (skb->dev != bp->dev) { 1654 /* this packet belongs to a vf-rep */ 1655 bnxt_vf_rep_rx(bp, skb); 1656 return; 1657 } 1658 skb_record_rx_queue(skb, bnapi->index); 1659 napi_gro_receive(&bnapi->napi, skb); 1660 } 1661 1662 /* returns the following: 1663 * 1 - 1 packet successfully received 1664 * 0 - successful TPA_START, packet not completed yet 1665 * -EBUSY - completion ring does not have all the agg buffers yet 1666 * -ENOMEM - packet aborted due to out of memory 1667 * -EIO - packet aborted due to hw error indicated in BD 1668 */ 1669 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1670 u32 *raw_cons, u8 *event) 1671 { 1672 struct bnxt_napi *bnapi = cpr->bnapi; 1673 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1674 struct net_device *dev = bp->dev; 1675 struct rx_cmp *rxcmp; 1676 struct rx_cmp_ext *rxcmp1; 1677 u32 tmp_raw_cons = *raw_cons; 1678 u16 cfa_code, cons, prod, cp_cons = RING_CMP(tmp_raw_cons); 1679 struct bnxt_sw_rx_bd *rx_buf; 1680 unsigned int len; 1681 u8 *data_ptr, agg_bufs, cmp_type; 1682 dma_addr_t dma_addr; 1683 struct sk_buff *skb; 1684 void *data; 1685 int rc = 0; 1686 u32 misc; 1687 1688 rxcmp = (struct rx_cmp *) 1689 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 1690 1691 cmp_type = RX_CMP_TYPE(rxcmp); 1692 1693 if (cmp_type == CMP_TYPE_RX_TPA_AGG_CMP) { 1694 bnxt_tpa_agg(bp, rxr, (struct rx_agg_cmp *)rxcmp); 1695 goto next_rx_no_prod_no_len; 1696 } 1697 1698 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons); 1699 cp_cons = RING_CMP(tmp_raw_cons); 1700 rxcmp1 = (struct rx_cmp_ext *) 1701 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 1702 1703 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 1704 return -EBUSY; 1705 1706 prod = rxr->rx_prod; 1707 1708 if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) { 1709 bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp, 1710 (struct rx_tpa_start_cmp_ext *)rxcmp1); 1711 1712 *event |= BNXT_RX_EVENT; 1713 goto next_rx_no_prod_no_len; 1714 1715 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 1716 skb = bnxt_tpa_end(bp, cpr, &tmp_raw_cons, 1717 (struct rx_tpa_end_cmp *)rxcmp, 1718 (struct rx_tpa_end_cmp_ext *)rxcmp1, event); 1719 1720 if (IS_ERR(skb)) 1721 return -EBUSY; 1722 1723 rc = -ENOMEM; 1724 if (likely(skb)) { 1725 bnxt_deliver_skb(bp, bnapi, skb); 1726 rc = 1; 1727 } 1728 *event |= BNXT_RX_EVENT; 1729 goto next_rx_no_prod_no_len; 1730 } 1731 1732 cons = rxcmp->rx_cmp_opaque; 1733 if (unlikely(cons != rxr->rx_next_cons)) { 1734 int rc1 = bnxt_discard_rx(bp, cpr, raw_cons, rxcmp); 1735 1736 netdev_warn(bp->dev, "RX cons %x != expected cons %x\n", 1737 cons, rxr->rx_next_cons); 1738 bnxt_sched_reset(bp, rxr); 1739 return rc1; 1740 } 1741 rx_buf = &rxr->rx_buf_ring[cons]; 1742 data = rx_buf->data; 1743 data_ptr = rx_buf->data_ptr; 1744 prefetch(data_ptr); 1745 1746 misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1); 1747 agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT; 1748 1749 if (agg_bufs) { 1750 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons)) 1751 return -EBUSY; 1752 1753 cp_cons = NEXT_CMP(cp_cons); 1754 *event |= BNXT_AGG_EVENT; 1755 } 1756 *event |= BNXT_RX_EVENT; 1757 1758 rx_buf->data = NULL; 1759 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) { 1760 u32 rx_err = le32_to_cpu(rxcmp1->rx_cmp_cfa_code_errors_v2); 1761 1762 bnxt_reuse_rx_data(rxr, cons, data); 1763 if (agg_bufs) 1764 bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, agg_bufs, 1765 false); 1766 1767 rc = -EIO; 1768 if (rx_err & RX_CMPL_ERRORS_BUFFER_ERROR_MASK) { 1769 bnapi->cp_ring.sw_stats.rx.rx_buf_errors++; 1770 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) { 1771 netdev_warn(bp->dev, "RX buffer error %x\n", 1772 rx_err); 1773 bnxt_sched_reset(bp, rxr); 1774 } 1775 } 1776 goto next_rx_no_len; 1777 } 1778 1779 len = le32_to_cpu(rxcmp->rx_cmp_len_flags_type) >> RX_CMP_LEN_SHIFT; 1780 dma_addr = rx_buf->mapping; 1781 1782 if (bnxt_rx_xdp(bp, rxr, cons, data, &data_ptr, &len, event)) { 1783 rc = 1; 1784 goto next_rx; 1785 } 1786 1787 if (len <= bp->rx_copy_thresh) { 1788 skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr); 1789 bnxt_reuse_rx_data(rxr, cons, data); 1790 if (!skb) { 1791 if (agg_bufs) 1792 bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, 1793 agg_bufs, false); 1794 rc = -ENOMEM; 1795 goto next_rx; 1796 } 1797 } else { 1798 u32 payload; 1799 1800 if (rx_buf->data_ptr == data_ptr) 1801 payload = misc & RX_CMP_PAYLOAD_OFFSET; 1802 else 1803 payload = 0; 1804 skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr, 1805 payload | len); 1806 if (!skb) { 1807 rc = -ENOMEM; 1808 goto next_rx; 1809 } 1810 } 1811 1812 if (agg_bufs) { 1813 skb = bnxt_rx_pages(bp, cpr, skb, cp_cons, agg_bufs, false); 1814 if (!skb) { 1815 rc = -ENOMEM; 1816 goto next_rx; 1817 } 1818 } 1819 1820 if (RX_CMP_HASH_VALID(rxcmp)) { 1821 u32 hash_type = RX_CMP_HASH_TYPE(rxcmp); 1822 enum pkt_hash_types type = PKT_HASH_TYPE_L4; 1823 1824 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */ 1825 if (hash_type != 1 && hash_type != 3) 1826 type = PKT_HASH_TYPE_L3; 1827 skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type); 1828 } 1829 1830 cfa_code = RX_CMP_CFA_CODE(rxcmp1); 1831 skb->protocol = eth_type_trans(skb, bnxt_get_pkt_dev(bp, cfa_code)); 1832 1833 if ((rxcmp1->rx_cmp_flags2 & 1834 cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) && 1835 (skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) { 1836 u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data); 1837 u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK; 1838 u16 vlan_proto = meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT; 1839 1840 __vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag); 1841 } 1842 1843 skb_checksum_none_assert(skb); 1844 if (RX_CMP_L4_CS_OK(rxcmp1)) { 1845 if (dev->features & NETIF_F_RXCSUM) { 1846 skb->ip_summed = CHECKSUM_UNNECESSARY; 1847 skb->csum_level = RX_CMP_ENCAP(rxcmp1); 1848 } 1849 } else { 1850 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) { 1851 if (dev->features & NETIF_F_RXCSUM) 1852 bnapi->cp_ring.sw_stats.rx.rx_l4_csum_errors++; 1853 } 1854 } 1855 1856 bnxt_deliver_skb(bp, bnapi, skb); 1857 rc = 1; 1858 1859 next_rx: 1860 cpr->rx_packets += 1; 1861 cpr->rx_bytes += len; 1862 1863 next_rx_no_len: 1864 rxr->rx_prod = NEXT_RX(prod); 1865 rxr->rx_next_cons = NEXT_RX(cons); 1866 1867 next_rx_no_prod_no_len: 1868 *raw_cons = tmp_raw_cons; 1869 1870 return rc; 1871 } 1872 1873 /* In netpoll mode, if we are using a combined completion ring, we need to 1874 * discard the rx packets and recycle the buffers. 1875 */ 1876 static int bnxt_force_rx_discard(struct bnxt *bp, 1877 struct bnxt_cp_ring_info *cpr, 1878 u32 *raw_cons, u8 *event) 1879 { 1880 u32 tmp_raw_cons = *raw_cons; 1881 struct rx_cmp_ext *rxcmp1; 1882 struct rx_cmp *rxcmp; 1883 u16 cp_cons; 1884 u8 cmp_type; 1885 1886 cp_cons = RING_CMP(tmp_raw_cons); 1887 rxcmp = (struct rx_cmp *) 1888 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 1889 1890 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons); 1891 cp_cons = RING_CMP(tmp_raw_cons); 1892 rxcmp1 = (struct rx_cmp_ext *) 1893 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 1894 1895 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 1896 return -EBUSY; 1897 1898 cmp_type = RX_CMP_TYPE(rxcmp); 1899 if (cmp_type == CMP_TYPE_RX_L2_CMP) { 1900 rxcmp1->rx_cmp_cfa_code_errors_v2 |= 1901 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR); 1902 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 1903 struct rx_tpa_end_cmp_ext *tpa_end1; 1904 1905 tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1; 1906 tpa_end1->rx_tpa_end_cmp_errors_v2 |= 1907 cpu_to_le32(RX_TPA_END_CMP_ERRORS); 1908 } 1909 return bnxt_rx_pkt(bp, cpr, raw_cons, event); 1910 } 1911 1912 u32 bnxt_fw_health_readl(struct bnxt *bp, int reg_idx) 1913 { 1914 struct bnxt_fw_health *fw_health = bp->fw_health; 1915 u32 reg = fw_health->regs[reg_idx]; 1916 u32 reg_type, reg_off, val = 0; 1917 1918 reg_type = BNXT_FW_HEALTH_REG_TYPE(reg); 1919 reg_off = BNXT_FW_HEALTH_REG_OFF(reg); 1920 switch (reg_type) { 1921 case BNXT_FW_HEALTH_REG_TYPE_CFG: 1922 pci_read_config_dword(bp->pdev, reg_off, &val); 1923 break; 1924 case BNXT_FW_HEALTH_REG_TYPE_GRC: 1925 reg_off = fw_health->mapped_regs[reg_idx]; 1926 /* fall through */ 1927 case BNXT_FW_HEALTH_REG_TYPE_BAR0: 1928 val = readl(bp->bar0 + reg_off); 1929 break; 1930 case BNXT_FW_HEALTH_REG_TYPE_BAR1: 1931 val = readl(bp->bar1 + reg_off); 1932 break; 1933 } 1934 if (reg_idx == BNXT_FW_RESET_INPROG_REG) 1935 val &= fw_health->fw_reset_inprog_reg_mask; 1936 return val; 1937 } 1938 1939 #define BNXT_GET_EVENT_PORT(data) \ 1940 ((data) & \ 1941 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK) 1942 1943 static int bnxt_async_event_process(struct bnxt *bp, 1944 struct hwrm_async_event_cmpl *cmpl) 1945 { 1946 u16 event_id = le16_to_cpu(cmpl->event_id); 1947 1948 /* TODO CHIMP_FW: Define event id's for link change, error etc */ 1949 switch (event_id) { 1950 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: { 1951 u32 data1 = le32_to_cpu(cmpl->event_data1); 1952 struct bnxt_link_info *link_info = &bp->link_info; 1953 1954 if (BNXT_VF(bp)) 1955 goto async_event_process_exit; 1956 1957 /* print unsupported speed warning in forced speed mode only */ 1958 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) && 1959 (data1 & 0x20000)) { 1960 u16 fw_speed = link_info->force_link_speed; 1961 u32 speed = bnxt_fw_to_ethtool_speed(fw_speed); 1962 1963 if (speed != SPEED_UNKNOWN) 1964 netdev_warn(bp->dev, "Link speed %d no longer supported\n", 1965 speed); 1966 } 1967 set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event); 1968 } 1969 /* fall through */ 1970 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE: 1971 case ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE: 1972 set_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, &bp->sp_event); 1973 /* fall through */ 1974 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE: 1975 set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event); 1976 break; 1977 case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD: 1978 set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event); 1979 break; 1980 case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: { 1981 u32 data1 = le32_to_cpu(cmpl->event_data1); 1982 u16 port_id = BNXT_GET_EVENT_PORT(data1); 1983 1984 if (BNXT_VF(bp)) 1985 break; 1986 1987 if (bp->pf.port_id != port_id) 1988 break; 1989 1990 set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event); 1991 break; 1992 } 1993 case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE: 1994 if (BNXT_PF(bp)) 1995 goto async_event_process_exit; 1996 set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event); 1997 break; 1998 case ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY: { 1999 u32 data1 = le32_to_cpu(cmpl->event_data1); 2000 2001 if (!bp->fw_health) 2002 goto async_event_process_exit; 2003 2004 bp->fw_reset_timestamp = jiffies; 2005 bp->fw_reset_min_dsecs = cmpl->timestamp_lo; 2006 if (!bp->fw_reset_min_dsecs) 2007 bp->fw_reset_min_dsecs = BNXT_DFLT_FW_RST_MIN_DSECS; 2008 bp->fw_reset_max_dsecs = le16_to_cpu(cmpl->timestamp_hi); 2009 if (!bp->fw_reset_max_dsecs) 2010 bp->fw_reset_max_dsecs = BNXT_DFLT_FW_RST_MAX_DSECS; 2011 if (EVENT_DATA1_RESET_NOTIFY_FATAL(data1)) { 2012 netdev_warn(bp->dev, "Firmware fatal reset event received\n"); 2013 set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 2014 } else { 2015 netdev_warn(bp->dev, "Firmware non-fatal reset event received, max wait time %d msec\n", 2016 bp->fw_reset_max_dsecs * 100); 2017 } 2018 set_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event); 2019 break; 2020 } 2021 case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY: { 2022 struct bnxt_fw_health *fw_health = bp->fw_health; 2023 u32 data1 = le32_to_cpu(cmpl->event_data1); 2024 2025 if (!fw_health) 2026 goto async_event_process_exit; 2027 2028 fw_health->enabled = EVENT_DATA1_RECOVERY_ENABLED(data1); 2029 fw_health->master = EVENT_DATA1_RECOVERY_MASTER_FUNC(data1); 2030 if (!fw_health->enabled) 2031 break; 2032 2033 if (netif_msg_drv(bp)) 2034 netdev_info(bp->dev, "Error recovery info: error recovery[%d], master[%d], reset count[0x%x], health status: 0x%x\n", 2035 fw_health->enabled, fw_health->master, 2036 bnxt_fw_health_readl(bp, 2037 BNXT_FW_RESET_CNT_REG), 2038 bnxt_fw_health_readl(bp, 2039 BNXT_FW_HEALTH_REG)); 2040 fw_health->tmr_multiplier = 2041 DIV_ROUND_UP(fw_health->polling_dsecs * HZ, 2042 bp->current_interval * 10); 2043 fw_health->tmr_counter = fw_health->tmr_multiplier; 2044 fw_health->last_fw_heartbeat = 2045 bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 2046 fw_health->last_fw_reset_cnt = 2047 bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 2048 goto async_event_process_exit; 2049 } 2050 default: 2051 goto async_event_process_exit; 2052 } 2053 bnxt_queue_sp_work(bp); 2054 async_event_process_exit: 2055 bnxt_ulp_async_events(bp, cmpl); 2056 return 0; 2057 } 2058 2059 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp) 2060 { 2061 u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id; 2062 struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp; 2063 struct hwrm_fwd_req_cmpl *fwd_req_cmpl = 2064 (struct hwrm_fwd_req_cmpl *)txcmp; 2065 2066 switch (cmpl_type) { 2067 case CMPL_BASE_TYPE_HWRM_DONE: 2068 seq_id = le16_to_cpu(h_cmpl->sequence_id); 2069 if (seq_id == bp->hwrm_intr_seq_id) 2070 bp->hwrm_intr_seq_id = (u16)~bp->hwrm_intr_seq_id; 2071 else 2072 netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id); 2073 break; 2074 2075 case CMPL_BASE_TYPE_HWRM_FWD_REQ: 2076 vf_id = le16_to_cpu(fwd_req_cmpl->source_id); 2077 2078 if ((vf_id < bp->pf.first_vf_id) || 2079 (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) { 2080 netdev_err(bp->dev, "Msg contains invalid VF id %x\n", 2081 vf_id); 2082 return -EINVAL; 2083 } 2084 2085 set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap); 2086 set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event); 2087 bnxt_queue_sp_work(bp); 2088 break; 2089 2090 case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT: 2091 bnxt_async_event_process(bp, 2092 (struct hwrm_async_event_cmpl *)txcmp); 2093 2094 default: 2095 break; 2096 } 2097 2098 return 0; 2099 } 2100 2101 static irqreturn_t bnxt_msix(int irq, void *dev_instance) 2102 { 2103 struct bnxt_napi *bnapi = dev_instance; 2104 struct bnxt *bp = bnapi->bp; 2105 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2106 u32 cons = RING_CMP(cpr->cp_raw_cons); 2107 2108 cpr->event_ctr++; 2109 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]); 2110 napi_schedule(&bnapi->napi); 2111 return IRQ_HANDLED; 2112 } 2113 2114 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr) 2115 { 2116 u32 raw_cons = cpr->cp_raw_cons; 2117 u16 cons = RING_CMP(raw_cons); 2118 struct tx_cmp *txcmp; 2119 2120 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 2121 2122 return TX_CMP_VALID(txcmp, raw_cons); 2123 } 2124 2125 static irqreturn_t bnxt_inta(int irq, void *dev_instance) 2126 { 2127 struct bnxt_napi *bnapi = dev_instance; 2128 struct bnxt *bp = bnapi->bp; 2129 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2130 u32 cons = RING_CMP(cpr->cp_raw_cons); 2131 u32 int_status; 2132 2133 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]); 2134 2135 if (!bnxt_has_work(bp, cpr)) { 2136 int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS); 2137 /* return if erroneous interrupt */ 2138 if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id))) 2139 return IRQ_NONE; 2140 } 2141 2142 /* disable ring IRQ */ 2143 BNXT_CP_DB_IRQ_DIS(cpr->cp_db.doorbell); 2144 2145 /* Return here if interrupt is shared and is disabled. */ 2146 if (unlikely(atomic_read(&bp->intr_sem) != 0)) 2147 return IRQ_HANDLED; 2148 2149 napi_schedule(&bnapi->napi); 2150 return IRQ_HANDLED; 2151 } 2152 2153 static int __bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 2154 int budget) 2155 { 2156 struct bnxt_napi *bnapi = cpr->bnapi; 2157 u32 raw_cons = cpr->cp_raw_cons; 2158 u32 cons; 2159 int tx_pkts = 0; 2160 int rx_pkts = 0; 2161 u8 event = 0; 2162 struct tx_cmp *txcmp; 2163 2164 cpr->has_more_work = 0; 2165 cpr->had_work_done = 1; 2166 while (1) { 2167 int rc; 2168 2169 cons = RING_CMP(raw_cons); 2170 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 2171 2172 if (!TX_CMP_VALID(txcmp, raw_cons)) 2173 break; 2174 2175 /* The valid test of the entry must be done first before 2176 * reading any further. 2177 */ 2178 dma_rmb(); 2179 if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) { 2180 tx_pkts++; 2181 /* return full budget so NAPI will complete. */ 2182 if (unlikely(tx_pkts > bp->tx_wake_thresh)) { 2183 rx_pkts = budget; 2184 raw_cons = NEXT_RAW_CMP(raw_cons); 2185 if (budget) 2186 cpr->has_more_work = 1; 2187 break; 2188 } 2189 } else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) { 2190 if (likely(budget)) 2191 rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event); 2192 else 2193 rc = bnxt_force_rx_discard(bp, cpr, &raw_cons, 2194 &event); 2195 if (likely(rc >= 0)) 2196 rx_pkts += rc; 2197 /* Increment rx_pkts when rc is -ENOMEM to count towards 2198 * the NAPI budget. Otherwise, we may potentially loop 2199 * here forever if we consistently cannot allocate 2200 * buffers. 2201 */ 2202 else if (rc == -ENOMEM && budget) 2203 rx_pkts++; 2204 else if (rc == -EBUSY) /* partial completion */ 2205 break; 2206 } else if (unlikely((TX_CMP_TYPE(txcmp) == 2207 CMPL_BASE_TYPE_HWRM_DONE) || 2208 (TX_CMP_TYPE(txcmp) == 2209 CMPL_BASE_TYPE_HWRM_FWD_REQ) || 2210 (TX_CMP_TYPE(txcmp) == 2211 CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) { 2212 bnxt_hwrm_handler(bp, txcmp); 2213 } 2214 raw_cons = NEXT_RAW_CMP(raw_cons); 2215 2216 if (rx_pkts && rx_pkts == budget) { 2217 cpr->has_more_work = 1; 2218 break; 2219 } 2220 } 2221 2222 if (event & BNXT_REDIRECT_EVENT) 2223 xdp_do_flush_map(); 2224 2225 if (event & BNXT_TX_EVENT) { 2226 struct bnxt_tx_ring_info *txr = bnapi->tx_ring; 2227 u16 prod = txr->tx_prod; 2228 2229 /* Sync BD data before updating doorbell */ 2230 wmb(); 2231 2232 bnxt_db_write_relaxed(bp, &txr->tx_db, prod); 2233 } 2234 2235 cpr->cp_raw_cons = raw_cons; 2236 bnapi->tx_pkts += tx_pkts; 2237 bnapi->events |= event; 2238 return rx_pkts; 2239 } 2240 2241 static void __bnxt_poll_work_done(struct bnxt *bp, struct bnxt_napi *bnapi) 2242 { 2243 if (bnapi->tx_pkts) { 2244 bnapi->tx_int(bp, bnapi, bnapi->tx_pkts); 2245 bnapi->tx_pkts = 0; 2246 } 2247 2248 if (bnapi->events & BNXT_RX_EVENT) { 2249 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 2250 2251 if (bnapi->events & BNXT_AGG_EVENT) 2252 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 2253 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 2254 } 2255 bnapi->events = 0; 2256 } 2257 2258 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 2259 int budget) 2260 { 2261 struct bnxt_napi *bnapi = cpr->bnapi; 2262 int rx_pkts; 2263 2264 rx_pkts = __bnxt_poll_work(bp, cpr, budget); 2265 2266 /* ACK completion ring before freeing tx ring and producing new 2267 * buffers in rx/agg rings to prevent overflowing the completion 2268 * ring. 2269 */ 2270 bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons); 2271 2272 __bnxt_poll_work_done(bp, bnapi); 2273 return rx_pkts; 2274 } 2275 2276 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget) 2277 { 2278 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 2279 struct bnxt *bp = bnapi->bp; 2280 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2281 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 2282 struct tx_cmp *txcmp; 2283 struct rx_cmp_ext *rxcmp1; 2284 u32 cp_cons, tmp_raw_cons; 2285 u32 raw_cons = cpr->cp_raw_cons; 2286 u32 rx_pkts = 0; 2287 u8 event = 0; 2288 2289 while (1) { 2290 int rc; 2291 2292 cp_cons = RING_CMP(raw_cons); 2293 txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2294 2295 if (!TX_CMP_VALID(txcmp, raw_cons)) 2296 break; 2297 2298 if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) { 2299 tmp_raw_cons = NEXT_RAW_CMP(raw_cons); 2300 cp_cons = RING_CMP(tmp_raw_cons); 2301 rxcmp1 = (struct rx_cmp_ext *) 2302 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2303 2304 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 2305 break; 2306 2307 /* force an error to recycle the buffer */ 2308 rxcmp1->rx_cmp_cfa_code_errors_v2 |= 2309 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR); 2310 2311 rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event); 2312 if (likely(rc == -EIO) && budget) 2313 rx_pkts++; 2314 else if (rc == -EBUSY) /* partial completion */ 2315 break; 2316 } else if (unlikely(TX_CMP_TYPE(txcmp) == 2317 CMPL_BASE_TYPE_HWRM_DONE)) { 2318 bnxt_hwrm_handler(bp, txcmp); 2319 } else { 2320 netdev_err(bp->dev, 2321 "Invalid completion received on special ring\n"); 2322 } 2323 raw_cons = NEXT_RAW_CMP(raw_cons); 2324 2325 if (rx_pkts == budget) 2326 break; 2327 } 2328 2329 cpr->cp_raw_cons = raw_cons; 2330 BNXT_DB_CQ(&cpr->cp_db, cpr->cp_raw_cons); 2331 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 2332 2333 if (event & BNXT_AGG_EVENT) 2334 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 2335 2336 if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) { 2337 napi_complete_done(napi, rx_pkts); 2338 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 2339 } 2340 return rx_pkts; 2341 } 2342 2343 static int bnxt_poll(struct napi_struct *napi, int budget) 2344 { 2345 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 2346 struct bnxt *bp = bnapi->bp; 2347 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2348 int work_done = 0; 2349 2350 while (1) { 2351 work_done += bnxt_poll_work(bp, cpr, budget - work_done); 2352 2353 if (work_done >= budget) { 2354 if (!budget) 2355 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 2356 break; 2357 } 2358 2359 if (!bnxt_has_work(bp, cpr)) { 2360 if (napi_complete_done(napi, work_done)) 2361 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 2362 break; 2363 } 2364 } 2365 if (bp->flags & BNXT_FLAG_DIM) { 2366 struct dim_sample dim_sample = {}; 2367 2368 dim_update_sample(cpr->event_ctr, 2369 cpr->rx_packets, 2370 cpr->rx_bytes, 2371 &dim_sample); 2372 net_dim(&cpr->dim, dim_sample); 2373 } 2374 return work_done; 2375 } 2376 2377 static int __bnxt_poll_cqs(struct bnxt *bp, struct bnxt_napi *bnapi, int budget) 2378 { 2379 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2380 int i, work_done = 0; 2381 2382 for (i = 0; i < 2; i++) { 2383 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i]; 2384 2385 if (cpr2) { 2386 work_done += __bnxt_poll_work(bp, cpr2, 2387 budget - work_done); 2388 cpr->has_more_work |= cpr2->has_more_work; 2389 } 2390 } 2391 return work_done; 2392 } 2393 2394 static void __bnxt_poll_cqs_done(struct bnxt *bp, struct bnxt_napi *bnapi, 2395 u64 dbr_type) 2396 { 2397 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2398 int i; 2399 2400 for (i = 0; i < 2; i++) { 2401 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i]; 2402 struct bnxt_db_info *db; 2403 2404 if (cpr2 && cpr2->had_work_done) { 2405 db = &cpr2->cp_db; 2406 writeq(db->db_key64 | dbr_type | 2407 RING_CMP(cpr2->cp_raw_cons), db->doorbell); 2408 cpr2->had_work_done = 0; 2409 } 2410 } 2411 __bnxt_poll_work_done(bp, bnapi); 2412 } 2413 2414 static int bnxt_poll_p5(struct napi_struct *napi, int budget) 2415 { 2416 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 2417 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2418 u32 raw_cons = cpr->cp_raw_cons; 2419 struct bnxt *bp = bnapi->bp; 2420 struct nqe_cn *nqcmp; 2421 int work_done = 0; 2422 u32 cons; 2423 2424 if (cpr->has_more_work) { 2425 cpr->has_more_work = 0; 2426 work_done = __bnxt_poll_cqs(bp, bnapi, budget); 2427 } 2428 while (1) { 2429 cons = RING_CMP(raw_cons); 2430 nqcmp = &cpr->nq_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 2431 2432 if (!NQ_CMP_VALID(nqcmp, raw_cons)) { 2433 if (cpr->has_more_work) 2434 break; 2435 2436 __bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL); 2437 cpr->cp_raw_cons = raw_cons; 2438 if (napi_complete_done(napi, work_done)) 2439 BNXT_DB_NQ_ARM_P5(&cpr->cp_db, 2440 cpr->cp_raw_cons); 2441 return work_done; 2442 } 2443 2444 /* The valid test of the entry must be done first before 2445 * reading any further. 2446 */ 2447 dma_rmb(); 2448 2449 if (nqcmp->type == cpu_to_le16(NQ_CN_TYPE_CQ_NOTIFICATION)) { 2450 u32 idx = le32_to_cpu(nqcmp->cq_handle_low); 2451 struct bnxt_cp_ring_info *cpr2; 2452 2453 cpr2 = cpr->cp_ring_arr[idx]; 2454 work_done += __bnxt_poll_work(bp, cpr2, 2455 budget - work_done); 2456 cpr->has_more_work |= cpr2->has_more_work; 2457 } else { 2458 bnxt_hwrm_handler(bp, (struct tx_cmp *)nqcmp); 2459 } 2460 raw_cons = NEXT_RAW_CMP(raw_cons); 2461 } 2462 __bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ); 2463 if (raw_cons != cpr->cp_raw_cons) { 2464 cpr->cp_raw_cons = raw_cons; 2465 BNXT_DB_NQ_P5(&cpr->cp_db, raw_cons); 2466 } 2467 return work_done; 2468 } 2469 2470 static void bnxt_free_tx_skbs(struct bnxt *bp) 2471 { 2472 int i, max_idx; 2473 struct pci_dev *pdev = bp->pdev; 2474 2475 if (!bp->tx_ring) 2476 return; 2477 2478 max_idx = bp->tx_nr_pages * TX_DESC_CNT; 2479 for (i = 0; i < bp->tx_nr_rings; i++) { 2480 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 2481 int j; 2482 2483 for (j = 0; j < max_idx;) { 2484 struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j]; 2485 struct sk_buff *skb; 2486 int k, last; 2487 2488 if (i < bp->tx_nr_rings_xdp && 2489 tx_buf->action == XDP_REDIRECT) { 2490 dma_unmap_single(&pdev->dev, 2491 dma_unmap_addr(tx_buf, mapping), 2492 dma_unmap_len(tx_buf, len), 2493 PCI_DMA_TODEVICE); 2494 xdp_return_frame(tx_buf->xdpf); 2495 tx_buf->action = 0; 2496 tx_buf->xdpf = NULL; 2497 j++; 2498 continue; 2499 } 2500 2501 skb = tx_buf->skb; 2502 if (!skb) { 2503 j++; 2504 continue; 2505 } 2506 2507 tx_buf->skb = NULL; 2508 2509 if (tx_buf->is_push) { 2510 dev_kfree_skb(skb); 2511 j += 2; 2512 continue; 2513 } 2514 2515 dma_unmap_single(&pdev->dev, 2516 dma_unmap_addr(tx_buf, mapping), 2517 skb_headlen(skb), 2518 PCI_DMA_TODEVICE); 2519 2520 last = tx_buf->nr_frags; 2521 j += 2; 2522 for (k = 0; k < last; k++, j++) { 2523 int ring_idx = j & bp->tx_ring_mask; 2524 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 2525 2526 tx_buf = &txr->tx_buf_ring[ring_idx]; 2527 dma_unmap_page( 2528 &pdev->dev, 2529 dma_unmap_addr(tx_buf, mapping), 2530 skb_frag_size(frag), PCI_DMA_TODEVICE); 2531 } 2532 dev_kfree_skb(skb); 2533 } 2534 netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i)); 2535 } 2536 } 2537 2538 static void bnxt_free_rx_skbs(struct bnxt *bp) 2539 { 2540 int i, max_idx, max_agg_idx; 2541 struct pci_dev *pdev = bp->pdev; 2542 2543 if (!bp->rx_ring) 2544 return; 2545 2546 max_idx = bp->rx_nr_pages * RX_DESC_CNT; 2547 max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT; 2548 for (i = 0; i < bp->rx_nr_rings; i++) { 2549 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 2550 struct bnxt_tpa_idx_map *map; 2551 int j; 2552 2553 if (rxr->rx_tpa) { 2554 for (j = 0; j < bp->max_tpa; j++) { 2555 struct bnxt_tpa_info *tpa_info = 2556 &rxr->rx_tpa[j]; 2557 u8 *data = tpa_info->data; 2558 2559 if (!data) 2560 continue; 2561 2562 dma_unmap_single_attrs(&pdev->dev, 2563 tpa_info->mapping, 2564 bp->rx_buf_use_size, 2565 bp->rx_dir, 2566 DMA_ATTR_WEAK_ORDERING); 2567 2568 tpa_info->data = NULL; 2569 2570 kfree(data); 2571 } 2572 } 2573 2574 for (j = 0; j < max_idx; j++) { 2575 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[j]; 2576 dma_addr_t mapping = rx_buf->mapping; 2577 void *data = rx_buf->data; 2578 2579 if (!data) 2580 continue; 2581 2582 rx_buf->data = NULL; 2583 2584 if (BNXT_RX_PAGE_MODE(bp)) { 2585 mapping -= bp->rx_dma_offset; 2586 dma_unmap_page_attrs(&pdev->dev, mapping, 2587 PAGE_SIZE, bp->rx_dir, 2588 DMA_ATTR_WEAK_ORDERING); 2589 page_pool_recycle_direct(rxr->page_pool, data); 2590 } else { 2591 dma_unmap_single_attrs(&pdev->dev, mapping, 2592 bp->rx_buf_use_size, 2593 bp->rx_dir, 2594 DMA_ATTR_WEAK_ORDERING); 2595 kfree(data); 2596 } 2597 } 2598 2599 for (j = 0; j < max_agg_idx; j++) { 2600 struct bnxt_sw_rx_agg_bd *rx_agg_buf = 2601 &rxr->rx_agg_ring[j]; 2602 struct page *page = rx_agg_buf->page; 2603 2604 if (!page) 2605 continue; 2606 2607 dma_unmap_page_attrs(&pdev->dev, rx_agg_buf->mapping, 2608 BNXT_RX_PAGE_SIZE, 2609 PCI_DMA_FROMDEVICE, 2610 DMA_ATTR_WEAK_ORDERING); 2611 2612 rx_agg_buf->page = NULL; 2613 __clear_bit(j, rxr->rx_agg_bmap); 2614 2615 __free_page(page); 2616 } 2617 if (rxr->rx_page) { 2618 __free_page(rxr->rx_page); 2619 rxr->rx_page = NULL; 2620 } 2621 map = rxr->rx_tpa_idx_map; 2622 if (map) 2623 memset(map->agg_idx_bmap, 0, sizeof(map->agg_idx_bmap)); 2624 } 2625 } 2626 2627 static void bnxt_free_skbs(struct bnxt *bp) 2628 { 2629 bnxt_free_tx_skbs(bp); 2630 bnxt_free_rx_skbs(bp); 2631 } 2632 2633 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem) 2634 { 2635 struct pci_dev *pdev = bp->pdev; 2636 int i; 2637 2638 for (i = 0; i < rmem->nr_pages; i++) { 2639 if (!rmem->pg_arr[i]) 2640 continue; 2641 2642 dma_free_coherent(&pdev->dev, rmem->page_size, 2643 rmem->pg_arr[i], rmem->dma_arr[i]); 2644 2645 rmem->pg_arr[i] = NULL; 2646 } 2647 if (rmem->pg_tbl) { 2648 size_t pg_tbl_size = rmem->nr_pages * 8; 2649 2650 if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG) 2651 pg_tbl_size = rmem->page_size; 2652 dma_free_coherent(&pdev->dev, pg_tbl_size, 2653 rmem->pg_tbl, rmem->pg_tbl_map); 2654 rmem->pg_tbl = NULL; 2655 } 2656 if (rmem->vmem_size && *rmem->vmem) { 2657 vfree(*rmem->vmem); 2658 *rmem->vmem = NULL; 2659 } 2660 } 2661 2662 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem) 2663 { 2664 struct pci_dev *pdev = bp->pdev; 2665 u64 valid_bit = 0; 2666 int i; 2667 2668 if (rmem->flags & (BNXT_RMEM_VALID_PTE_FLAG | BNXT_RMEM_RING_PTE_FLAG)) 2669 valid_bit = PTU_PTE_VALID; 2670 if ((rmem->nr_pages > 1 || rmem->depth > 0) && !rmem->pg_tbl) { 2671 size_t pg_tbl_size = rmem->nr_pages * 8; 2672 2673 if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG) 2674 pg_tbl_size = rmem->page_size; 2675 rmem->pg_tbl = dma_alloc_coherent(&pdev->dev, pg_tbl_size, 2676 &rmem->pg_tbl_map, 2677 GFP_KERNEL); 2678 if (!rmem->pg_tbl) 2679 return -ENOMEM; 2680 } 2681 2682 for (i = 0; i < rmem->nr_pages; i++) { 2683 u64 extra_bits = valid_bit; 2684 2685 rmem->pg_arr[i] = dma_alloc_coherent(&pdev->dev, 2686 rmem->page_size, 2687 &rmem->dma_arr[i], 2688 GFP_KERNEL); 2689 if (!rmem->pg_arr[i]) 2690 return -ENOMEM; 2691 2692 if (rmem->init_val) 2693 memset(rmem->pg_arr[i], rmem->init_val, 2694 rmem->page_size); 2695 if (rmem->nr_pages > 1 || rmem->depth > 0) { 2696 if (i == rmem->nr_pages - 2 && 2697 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG)) 2698 extra_bits |= PTU_PTE_NEXT_TO_LAST; 2699 else if (i == rmem->nr_pages - 1 && 2700 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG)) 2701 extra_bits |= PTU_PTE_LAST; 2702 rmem->pg_tbl[i] = 2703 cpu_to_le64(rmem->dma_arr[i] | extra_bits); 2704 } 2705 } 2706 2707 if (rmem->vmem_size) { 2708 *rmem->vmem = vzalloc(rmem->vmem_size); 2709 if (!(*rmem->vmem)) 2710 return -ENOMEM; 2711 } 2712 return 0; 2713 } 2714 2715 static void bnxt_free_tpa_info(struct bnxt *bp) 2716 { 2717 int i; 2718 2719 for (i = 0; i < bp->rx_nr_rings; i++) { 2720 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 2721 2722 kfree(rxr->rx_tpa_idx_map); 2723 rxr->rx_tpa_idx_map = NULL; 2724 if (rxr->rx_tpa) { 2725 kfree(rxr->rx_tpa[0].agg_arr); 2726 rxr->rx_tpa[0].agg_arr = NULL; 2727 } 2728 kfree(rxr->rx_tpa); 2729 rxr->rx_tpa = NULL; 2730 } 2731 } 2732 2733 static int bnxt_alloc_tpa_info(struct bnxt *bp) 2734 { 2735 int i, j, total_aggs = 0; 2736 2737 bp->max_tpa = MAX_TPA; 2738 if (bp->flags & BNXT_FLAG_CHIP_P5) { 2739 if (!bp->max_tpa_v2) 2740 return 0; 2741 bp->max_tpa = max_t(u16, bp->max_tpa_v2, MAX_TPA_P5); 2742 total_aggs = bp->max_tpa * MAX_SKB_FRAGS; 2743 } 2744 2745 for (i = 0; i < bp->rx_nr_rings; i++) { 2746 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 2747 struct rx_agg_cmp *agg; 2748 2749 rxr->rx_tpa = kcalloc(bp->max_tpa, sizeof(struct bnxt_tpa_info), 2750 GFP_KERNEL); 2751 if (!rxr->rx_tpa) 2752 return -ENOMEM; 2753 2754 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 2755 continue; 2756 agg = kcalloc(total_aggs, sizeof(*agg), GFP_KERNEL); 2757 rxr->rx_tpa[0].agg_arr = agg; 2758 if (!agg) 2759 return -ENOMEM; 2760 for (j = 1; j < bp->max_tpa; j++) 2761 rxr->rx_tpa[j].agg_arr = agg + j * MAX_SKB_FRAGS; 2762 rxr->rx_tpa_idx_map = kzalloc(sizeof(*rxr->rx_tpa_idx_map), 2763 GFP_KERNEL); 2764 if (!rxr->rx_tpa_idx_map) 2765 return -ENOMEM; 2766 } 2767 return 0; 2768 } 2769 2770 static void bnxt_free_rx_rings(struct bnxt *bp) 2771 { 2772 int i; 2773 2774 if (!bp->rx_ring) 2775 return; 2776 2777 bnxt_free_tpa_info(bp); 2778 for (i = 0; i < bp->rx_nr_rings; i++) { 2779 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 2780 struct bnxt_ring_struct *ring; 2781 2782 if (rxr->xdp_prog) 2783 bpf_prog_put(rxr->xdp_prog); 2784 2785 if (xdp_rxq_info_is_reg(&rxr->xdp_rxq)) 2786 xdp_rxq_info_unreg(&rxr->xdp_rxq); 2787 2788 page_pool_destroy(rxr->page_pool); 2789 rxr->page_pool = NULL; 2790 2791 kfree(rxr->rx_agg_bmap); 2792 rxr->rx_agg_bmap = NULL; 2793 2794 ring = &rxr->rx_ring_struct; 2795 bnxt_free_ring(bp, &ring->ring_mem); 2796 2797 ring = &rxr->rx_agg_ring_struct; 2798 bnxt_free_ring(bp, &ring->ring_mem); 2799 } 2800 } 2801 2802 static int bnxt_alloc_rx_page_pool(struct bnxt *bp, 2803 struct bnxt_rx_ring_info *rxr) 2804 { 2805 struct page_pool_params pp = { 0 }; 2806 2807 pp.pool_size = bp->rx_ring_size; 2808 pp.nid = dev_to_node(&bp->pdev->dev); 2809 pp.dev = &bp->pdev->dev; 2810 pp.dma_dir = DMA_BIDIRECTIONAL; 2811 2812 rxr->page_pool = page_pool_create(&pp); 2813 if (IS_ERR(rxr->page_pool)) { 2814 int err = PTR_ERR(rxr->page_pool); 2815 2816 rxr->page_pool = NULL; 2817 return err; 2818 } 2819 return 0; 2820 } 2821 2822 static int bnxt_alloc_rx_rings(struct bnxt *bp) 2823 { 2824 int i, rc = 0, agg_rings = 0; 2825 2826 if (!bp->rx_ring) 2827 return -ENOMEM; 2828 2829 if (bp->flags & BNXT_FLAG_AGG_RINGS) 2830 agg_rings = 1; 2831 2832 for (i = 0; i < bp->rx_nr_rings; i++) { 2833 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 2834 struct bnxt_ring_struct *ring; 2835 2836 ring = &rxr->rx_ring_struct; 2837 2838 rc = bnxt_alloc_rx_page_pool(bp, rxr); 2839 if (rc) 2840 return rc; 2841 2842 rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i); 2843 if (rc < 0) 2844 return rc; 2845 2846 rc = xdp_rxq_info_reg_mem_model(&rxr->xdp_rxq, 2847 MEM_TYPE_PAGE_POOL, 2848 rxr->page_pool); 2849 if (rc) { 2850 xdp_rxq_info_unreg(&rxr->xdp_rxq); 2851 return rc; 2852 } 2853 2854 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 2855 if (rc) 2856 return rc; 2857 2858 ring->grp_idx = i; 2859 if (agg_rings) { 2860 u16 mem_size; 2861 2862 ring = &rxr->rx_agg_ring_struct; 2863 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 2864 if (rc) 2865 return rc; 2866 2867 ring->grp_idx = i; 2868 rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1; 2869 mem_size = rxr->rx_agg_bmap_size / 8; 2870 rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL); 2871 if (!rxr->rx_agg_bmap) 2872 return -ENOMEM; 2873 } 2874 } 2875 if (bp->flags & BNXT_FLAG_TPA) 2876 rc = bnxt_alloc_tpa_info(bp); 2877 return rc; 2878 } 2879 2880 static void bnxt_free_tx_rings(struct bnxt *bp) 2881 { 2882 int i; 2883 struct pci_dev *pdev = bp->pdev; 2884 2885 if (!bp->tx_ring) 2886 return; 2887 2888 for (i = 0; i < bp->tx_nr_rings; i++) { 2889 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 2890 struct bnxt_ring_struct *ring; 2891 2892 if (txr->tx_push) { 2893 dma_free_coherent(&pdev->dev, bp->tx_push_size, 2894 txr->tx_push, txr->tx_push_mapping); 2895 txr->tx_push = NULL; 2896 } 2897 2898 ring = &txr->tx_ring_struct; 2899 2900 bnxt_free_ring(bp, &ring->ring_mem); 2901 } 2902 } 2903 2904 static int bnxt_alloc_tx_rings(struct bnxt *bp) 2905 { 2906 int i, j, rc; 2907 struct pci_dev *pdev = bp->pdev; 2908 2909 bp->tx_push_size = 0; 2910 if (bp->tx_push_thresh) { 2911 int push_size; 2912 2913 push_size = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) + 2914 bp->tx_push_thresh); 2915 2916 if (push_size > 256) { 2917 push_size = 0; 2918 bp->tx_push_thresh = 0; 2919 } 2920 2921 bp->tx_push_size = push_size; 2922 } 2923 2924 for (i = 0, j = 0; i < bp->tx_nr_rings; i++) { 2925 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 2926 struct bnxt_ring_struct *ring; 2927 u8 qidx; 2928 2929 ring = &txr->tx_ring_struct; 2930 2931 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 2932 if (rc) 2933 return rc; 2934 2935 ring->grp_idx = txr->bnapi->index; 2936 if (bp->tx_push_size) { 2937 dma_addr_t mapping; 2938 2939 /* One pre-allocated DMA buffer to backup 2940 * TX push operation 2941 */ 2942 txr->tx_push = dma_alloc_coherent(&pdev->dev, 2943 bp->tx_push_size, 2944 &txr->tx_push_mapping, 2945 GFP_KERNEL); 2946 2947 if (!txr->tx_push) 2948 return -ENOMEM; 2949 2950 mapping = txr->tx_push_mapping + 2951 sizeof(struct tx_push_bd); 2952 txr->data_mapping = cpu_to_le64(mapping); 2953 } 2954 qidx = bp->tc_to_qidx[j]; 2955 ring->queue_id = bp->q_info[qidx].queue_id; 2956 if (i < bp->tx_nr_rings_xdp) 2957 continue; 2958 if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1)) 2959 j++; 2960 } 2961 return 0; 2962 } 2963 2964 static void bnxt_free_cp_rings(struct bnxt *bp) 2965 { 2966 int i; 2967 2968 if (!bp->bnapi) 2969 return; 2970 2971 for (i = 0; i < bp->cp_nr_rings; i++) { 2972 struct bnxt_napi *bnapi = bp->bnapi[i]; 2973 struct bnxt_cp_ring_info *cpr; 2974 struct bnxt_ring_struct *ring; 2975 int j; 2976 2977 if (!bnapi) 2978 continue; 2979 2980 cpr = &bnapi->cp_ring; 2981 ring = &cpr->cp_ring_struct; 2982 2983 bnxt_free_ring(bp, &ring->ring_mem); 2984 2985 for (j = 0; j < 2; j++) { 2986 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j]; 2987 2988 if (cpr2) { 2989 ring = &cpr2->cp_ring_struct; 2990 bnxt_free_ring(bp, &ring->ring_mem); 2991 kfree(cpr2); 2992 cpr->cp_ring_arr[j] = NULL; 2993 } 2994 } 2995 } 2996 } 2997 2998 static struct bnxt_cp_ring_info *bnxt_alloc_cp_sub_ring(struct bnxt *bp) 2999 { 3000 struct bnxt_ring_mem_info *rmem; 3001 struct bnxt_ring_struct *ring; 3002 struct bnxt_cp_ring_info *cpr; 3003 int rc; 3004 3005 cpr = kzalloc(sizeof(*cpr), GFP_KERNEL); 3006 if (!cpr) 3007 return NULL; 3008 3009 ring = &cpr->cp_ring_struct; 3010 rmem = &ring->ring_mem; 3011 rmem->nr_pages = bp->cp_nr_pages; 3012 rmem->page_size = HW_CMPD_RING_SIZE; 3013 rmem->pg_arr = (void **)cpr->cp_desc_ring; 3014 rmem->dma_arr = cpr->cp_desc_mapping; 3015 rmem->flags = BNXT_RMEM_RING_PTE_FLAG; 3016 rc = bnxt_alloc_ring(bp, rmem); 3017 if (rc) { 3018 bnxt_free_ring(bp, rmem); 3019 kfree(cpr); 3020 cpr = NULL; 3021 } 3022 return cpr; 3023 } 3024 3025 static int bnxt_alloc_cp_rings(struct bnxt *bp) 3026 { 3027 bool sh = !!(bp->flags & BNXT_FLAG_SHARED_RINGS); 3028 int i, rc, ulp_base_vec, ulp_msix; 3029 3030 ulp_msix = bnxt_get_ulp_msix_num(bp); 3031 ulp_base_vec = bnxt_get_ulp_msix_base(bp); 3032 for (i = 0; i < bp->cp_nr_rings; i++) { 3033 struct bnxt_napi *bnapi = bp->bnapi[i]; 3034 struct bnxt_cp_ring_info *cpr; 3035 struct bnxt_ring_struct *ring; 3036 3037 if (!bnapi) 3038 continue; 3039 3040 cpr = &bnapi->cp_ring; 3041 cpr->bnapi = bnapi; 3042 ring = &cpr->cp_ring_struct; 3043 3044 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3045 if (rc) 3046 return rc; 3047 3048 if (ulp_msix && i >= ulp_base_vec) 3049 ring->map_idx = i + ulp_msix; 3050 else 3051 ring->map_idx = i; 3052 3053 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 3054 continue; 3055 3056 if (i < bp->rx_nr_rings) { 3057 struct bnxt_cp_ring_info *cpr2 = 3058 bnxt_alloc_cp_sub_ring(bp); 3059 3060 cpr->cp_ring_arr[BNXT_RX_HDL] = cpr2; 3061 if (!cpr2) 3062 return -ENOMEM; 3063 cpr2->bnapi = bnapi; 3064 } 3065 if ((sh && i < bp->tx_nr_rings) || 3066 (!sh && i >= bp->rx_nr_rings)) { 3067 struct bnxt_cp_ring_info *cpr2 = 3068 bnxt_alloc_cp_sub_ring(bp); 3069 3070 cpr->cp_ring_arr[BNXT_TX_HDL] = cpr2; 3071 if (!cpr2) 3072 return -ENOMEM; 3073 cpr2->bnapi = bnapi; 3074 } 3075 } 3076 return 0; 3077 } 3078 3079 static void bnxt_init_ring_struct(struct bnxt *bp) 3080 { 3081 int i; 3082 3083 for (i = 0; i < bp->cp_nr_rings; i++) { 3084 struct bnxt_napi *bnapi = bp->bnapi[i]; 3085 struct bnxt_ring_mem_info *rmem; 3086 struct bnxt_cp_ring_info *cpr; 3087 struct bnxt_rx_ring_info *rxr; 3088 struct bnxt_tx_ring_info *txr; 3089 struct bnxt_ring_struct *ring; 3090 3091 if (!bnapi) 3092 continue; 3093 3094 cpr = &bnapi->cp_ring; 3095 ring = &cpr->cp_ring_struct; 3096 rmem = &ring->ring_mem; 3097 rmem->nr_pages = bp->cp_nr_pages; 3098 rmem->page_size = HW_CMPD_RING_SIZE; 3099 rmem->pg_arr = (void **)cpr->cp_desc_ring; 3100 rmem->dma_arr = cpr->cp_desc_mapping; 3101 rmem->vmem_size = 0; 3102 3103 rxr = bnapi->rx_ring; 3104 if (!rxr) 3105 goto skip_rx; 3106 3107 ring = &rxr->rx_ring_struct; 3108 rmem = &ring->ring_mem; 3109 rmem->nr_pages = bp->rx_nr_pages; 3110 rmem->page_size = HW_RXBD_RING_SIZE; 3111 rmem->pg_arr = (void **)rxr->rx_desc_ring; 3112 rmem->dma_arr = rxr->rx_desc_mapping; 3113 rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages; 3114 rmem->vmem = (void **)&rxr->rx_buf_ring; 3115 3116 ring = &rxr->rx_agg_ring_struct; 3117 rmem = &ring->ring_mem; 3118 rmem->nr_pages = bp->rx_agg_nr_pages; 3119 rmem->page_size = HW_RXBD_RING_SIZE; 3120 rmem->pg_arr = (void **)rxr->rx_agg_desc_ring; 3121 rmem->dma_arr = rxr->rx_agg_desc_mapping; 3122 rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages; 3123 rmem->vmem = (void **)&rxr->rx_agg_ring; 3124 3125 skip_rx: 3126 txr = bnapi->tx_ring; 3127 if (!txr) 3128 continue; 3129 3130 ring = &txr->tx_ring_struct; 3131 rmem = &ring->ring_mem; 3132 rmem->nr_pages = bp->tx_nr_pages; 3133 rmem->page_size = HW_RXBD_RING_SIZE; 3134 rmem->pg_arr = (void **)txr->tx_desc_ring; 3135 rmem->dma_arr = txr->tx_desc_mapping; 3136 rmem->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages; 3137 rmem->vmem = (void **)&txr->tx_buf_ring; 3138 } 3139 } 3140 3141 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type) 3142 { 3143 int i; 3144 u32 prod; 3145 struct rx_bd **rx_buf_ring; 3146 3147 rx_buf_ring = (struct rx_bd **)ring->ring_mem.pg_arr; 3148 for (i = 0, prod = 0; i < ring->ring_mem.nr_pages; i++) { 3149 int j; 3150 struct rx_bd *rxbd; 3151 3152 rxbd = rx_buf_ring[i]; 3153 if (!rxbd) 3154 continue; 3155 3156 for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) { 3157 rxbd->rx_bd_len_flags_type = cpu_to_le32(type); 3158 rxbd->rx_bd_opaque = prod; 3159 } 3160 } 3161 } 3162 3163 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr) 3164 { 3165 struct net_device *dev = bp->dev; 3166 struct bnxt_rx_ring_info *rxr; 3167 struct bnxt_ring_struct *ring; 3168 u32 prod, type; 3169 int i; 3170 3171 type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) | 3172 RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP; 3173 3174 if (NET_IP_ALIGN == 2) 3175 type |= RX_BD_FLAGS_SOP; 3176 3177 rxr = &bp->rx_ring[ring_nr]; 3178 ring = &rxr->rx_ring_struct; 3179 bnxt_init_rxbd_pages(ring, type); 3180 3181 if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) { 3182 bpf_prog_add(bp->xdp_prog, 1); 3183 rxr->xdp_prog = bp->xdp_prog; 3184 } 3185 prod = rxr->rx_prod; 3186 for (i = 0; i < bp->rx_ring_size; i++) { 3187 if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL) != 0) { 3188 netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n", 3189 ring_nr, i, bp->rx_ring_size); 3190 break; 3191 } 3192 prod = NEXT_RX(prod); 3193 } 3194 rxr->rx_prod = prod; 3195 ring->fw_ring_id = INVALID_HW_RING_ID; 3196 3197 ring = &rxr->rx_agg_ring_struct; 3198 ring->fw_ring_id = INVALID_HW_RING_ID; 3199 3200 if (!(bp->flags & BNXT_FLAG_AGG_RINGS)) 3201 return 0; 3202 3203 type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) | 3204 RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP; 3205 3206 bnxt_init_rxbd_pages(ring, type); 3207 3208 prod = rxr->rx_agg_prod; 3209 for (i = 0; i < bp->rx_agg_ring_size; i++) { 3210 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL) != 0) { 3211 netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n", 3212 ring_nr, i, bp->rx_ring_size); 3213 break; 3214 } 3215 prod = NEXT_RX_AGG(prod); 3216 } 3217 rxr->rx_agg_prod = prod; 3218 3219 if (bp->flags & BNXT_FLAG_TPA) { 3220 if (rxr->rx_tpa) { 3221 u8 *data; 3222 dma_addr_t mapping; 3223 3224 for (i = 0; i < bp->max_tpa; i++) { 3225 data = __bnxt_alloc_rx_data(bp, &mapping, 3226 GFP_KERNEL); 3227 if (!data) 3228 return -ENOMEM; 3229 3230 rxr->rx_tpa[i].data = data; 3231 rxr->rx_tpa[i].data_ptr = data + bp->rx_offset; 3232 rxr->rx_tpa[i].mapping = mapping; 3233 } 3234 } else { 3235 netdev_err(bp->dev, "No resource allocated for LRO/GRO\n"); 3236 return -ENOMEM; 3237 } 3238 } 3239 3240 return 0; 3241 } 3242 3243 static void bnxt_init_cp_rings(struct bnxt *bp) 3244 { 3245 int i, j; 3246 3247 for (i = 0; i < bp->cp_nr_rings; i++) { 3248 struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring; 3249 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 3250 3251 ring->fw_ring_id = INVALID_HW_RING_ID; 3252 cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks; 3253 cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs; 3254 for (j = 0; j < 2; j++) { 3255 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j]; 3256 3257 if (!cpr2) 3258 continue; 3259 3260 ring = &cpr2->cp_ring_struct; 3261 ring->fw_ring_id = INVALID_HW_RING_ID; 3262 cpr2->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks; 3263 cpr2->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs; 3264 } 3265 } 3266 } 3267 3268 static int bnxt_init_rx_rings(struct bnxt *bp) 3269 { 3270 int i, rc = 0; 3271 3272 if (BNXT_RX_PAGE_MODE(bp)) { 3273 bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM; 3274 bp->rx_dma_offset = XDP_PACKET_HEADROOM; 3275 } else { 3276 bp->rx_offset = BNXT_RX_OFFSET; 3277 bp->rx_dma_offset = BNXT_RX_DMA_OFFSET; 3278 } 3279 3280 for (i = 0; i < bp->rx_nr_rings; i++) { 3281 rc = bnxt_init_one_rx_ring(bp, i); 3282 if (rc) 3283 break; 3284 } 3285 3286 return rc; 3287 } 3288 3289 static int bnxt_init_tx_rings(struct bnxt *bp) 3290 { 3291 u16 i; 3292 3293 bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2, 3294 MAX_SKB_FRAGS + 1); 3295 3296 for (i = 0; i < bp->tx_nr_rings; i++) { 3297 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3298 struct bnxt_ring_struct *ring = &txr->tx_ring_struct; 3299 3300 ring->fw_ring_id = INVALID_HW_RING_ID; 3301 } 3302 3303 return 0; 3304 } 3305 3306 static void bnxt_free_ring_grps(struct bnxt *bp) 3307 { 3308 kfree(bp->grp_info); 3309 bp->grp_info = NULL; 3310 } 3311 3312 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init) 3313 { 3314 int i; 3315 3316 if (irq_re_init) { 3317 bp->grp_info = kcalloc(bp->cp_nr_rings, 3318 sizeof(struct bnxt_ring_grp_info), 3319 GFP_KERNEL); 3320 if (!bp->grp_info) 3321 return -ENOMEM; 3322 } 3323 for (i = 0; i < bp->cp_nr_rings; i++) { 3324 if (irq_re_init) 3325 bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID; 3326 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID; 3327 bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID; 3328 bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID; 3329 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID; 3330 } 3331 return 0; 3332 } 3333 3334 static void bnxt_free_vnics(struct bnxt *bp) 3335 { 3336 kfree(bp->vnic_info); 3337 bp->vnic_info = NULL; 3338 bp->nr_vnics = 0; 3339 } 3340 3341 static int bnxt_alloc_vnics(struct bnxt *bp) 3342 { 3343 int num_vnics = 1; 3344 3345 #ifdef CONFIG_RFS_ACCEL 3346 if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS) 3347 num_vnics += bp->rx_nr_rings; 3348 #endif 3349 3350 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 3351 num_vnics++; 3352 3353 bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info), 3354 GFP_KERNEL); 3355 if (!bp->vnic_info) 3356 return -ENOMEM; 3357 3358 bp->nr_vnics = num_vnics; 3359 return 0; 3360 } 3361 3362 static void bnxt_init_vnics(struct bnxt *bp) 3363 { 3364 int i; 3365 3366 for (i = 0; i < bp->nr_vnics; i++) { 3367 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 3368 int j; 3369 3370 vnic->fw_vnic_id = INVALID_HW_RING_ID; 3371 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) 3372 vnic->fw_rss_cos_lb_ctx[j] = INVALID_HW_RING_ID; 3373 3374 vnic->fw_l2_ctx_id = INVALID_HW_RING_ID; 3375 3376 if (bp->vnic_info[i].rss_hash_key) { 3377 if (i == 0) 3378 prandom_bytes(vnic->rss_hash_key, 3379 HW_HASH_KEY_SIZE); 3380 else 3381 memcpy(vnic->rss_hash_key, 3382 bp->vnic_info[0].rss_hash_key, 3383 HW_HASH_KEY_SIZE); 3384 } 3385 } 3386 } 3387 3388 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg) 3389 { 3390 int pages; 3391 3392 pages = ring_size / desc_per_pg; 3393 3394 if (!pages) 3395 return 1; 3396 3397 pages++; 3398 3399 while (pages & (pages - 1)) 3400 pages++; 3401 3402 return pages; 3403 } 3404 3405 void bnxt_set_tpa_flags(struct bnxt *bp) 3406 { 3407 bp->flags &= ~BNXT_FLAG_TPA; 3408 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) 3409 return; 3410 if (bp->dev->features & NETIF_F_LRO) 3411 bp->flags |= BNXT_FLAG_LRO; 3412 else if (bp->dev->features & NETIF_F_GRO_HW) 3413 bp->flags |= BNXT_FLAG_GRO; 3414 } 3415 3416 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must 3417 * be set on entry. 3418 */ 3419 void bnxt_set_ring_params(struct bnxt *bp) 3420 { 3421 u32 ring_size, rx_size, rx_space; 3422 u32 agg_factor = 0, agg_ring_size = 0; 3423 3424 /* 8 for CRC and VLAN */ 3425 rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8); 3426 3427 rx_space = rx_size + NET_SKB_PAD + 3428 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 3429 3430 bp->rx_copy_thresh = BNXT_RX_COPY_THRESH; 3431 ring_size = bp->rx_ring_size; 3432 bp->rx_agg_ring_size = 0; 3433 bp->rx_agg_nr_pages = 0; 3434 3435 if (bp->flags & BNXT_FLAG_TPA) 3436 agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE); 3437 3438 bp->flags &= ~BNXT_FLAG_JUMBO; 3439 if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) { 3440 u32 jumbo_factor; 3441 3442 bp->flags |= BNXT_FLAG_JUMBO; 3443 jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT; 3444 if (jumbo_factor > agg_factor) 3445 agg_factor = jumbo_factor; 3446 } 3447 agg_ring_size = ring_size * agg_factor; 3448 3449 if (agg_ring_size) { 3450 bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size, 3451 RX_DESC_CNT); 3452 if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) { 3453 u32 tmp = agg_ring_size; 3454 3455 bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES; 3456 agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1; 3457 netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n", 3458 tmp, agg_ring_size); 3459 } 3460 bp->rx_agg_ring_size = agg_ring_size; 3461 bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1; 3462 rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN); 3463 rx_space = rx_size + NET_SKB_PAD + 3464 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 3465 } 3466 3467 bp->rx_buf_use_size = rx_size; 3468 bp->rx_buf_size = rx_space; 3469 3470 bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT); 3471 bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1; 3472 3473 ring_size = bp->tx_ring_size; 3474 bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT); 3475 bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1; 3476 3477 ring_size = bp->rx_ring_size * (2 + agg_factor) + bp->tx_ring_size; 3478 bp->cp_ring_size = ring_size; 3479 3480 bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT); 3481 if (bp->cp_nr_pages > MAX_CP_PAGES) { 3482 bp->cp_nr_pages = MAX_CP_PAGES; 3483 bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1; 3484 netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n", 3485 ring_size, bp->cp_ring_size); 3486 } 3487 bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT; 3488 bp->cp_ring_mask = bp->cp_bit - 1; 3489 } 3490 3491 /* Changing allocation mode of RX rings. 3492 * TODO: Update when extending xdp_rxq_info to support allocation modes. 3493 */ 3494 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode) 3495 { 3496 if (page_mode) { 3497 if (bp->dev->mtu > BNXT_MAX_PAGE_MODE_MTU) 3498 return -EOPNOTSUPP; 3499 bp->dev->max_mtu = 3500 min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU); 3501 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 3502 bp->flags |= BNXT_FLAG_NO_AGG_RINGS | BNXT_FLAG_RX_PAGE_MODE; 3503 bp->rx_dir = DMA_BIDIRECTIONAL; 3504 bp->rx_skb_func = bnxt_rx_page_skb; 3505 /* Disable LRO or GRO_HW */ 3506 netdev_update_features(bp->dev); 3507 } else { 3508 bp->dev->max_mtu = bp->max_mtu; 3509 bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE; 3510 bp->rx_dir = DMA_FROM_DEVICE; 3511 bp->rx_skb_func = bnxt_rx_skb; 3512 } 3513 return 0; 3514 } 3515 3516 static void bnxt_free_vnic_attributes(struct bnxt *bp) 3517 { 3518 int i; 3519 struct bnxt_vnic_info *vnic; 3520 struct pci_dev *pdev = bp->pdev; 3521 3522 if (!bp->vnic_info) 3523 return; 3524 3525 for (i = 0; i < bp->nr_vnics; i++) { 3526 vnic = &bp->vnic_info[i]; 3527 3528 kfree(vnic->fw_grp_ids); 3529 vnic->fw_grp_ids = NULL; 3530 3531 kfree(vnic->uc_list); 3532 vnic->uc_list = NULL; 3533 3534 if (vnic->mc_list) { 3535 dma_free_coherent(&pdev->dev, vnic->mc_list_size, 3536 vnic->mc_list, vnic->mc_list_mapping); 3537 vnic->mc_list = NULL; 3538 } 3539 3540 if (vnic->rss_table) { 3541 dma_free_coherent(&pdev->dev, PAGE_SIZE, 3542 vnic->rss_table, 3543 vnic->rss_table_dma_addr); 3544 vnic->rss_table = NULL; 3545 } 3546 3547 vnic->rss_hash_key = NULL; 3548 vnic->flags = 0; 3549 } 3550 } 3551 3552 static int bnxt_alloc_vnic_attributes(struct bnxt *bp) 3553 { 3554 int i, rc = 0, size; 3555 struct bnxt_vnic_info *vnic; 3556 struct pci_dev *pdev = bp->pdev; 3557 int max_rings; 3558 3559 for (i = 0; i < bp->nr_vnics; i++) { 3560 vnic = &bp->vnic_info[i]; 3561 3562 if (vnic->flags & BNXT_VNIC_UCAST_FLAG) { 3563 int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN; 3564 3565 if (mem_size > 0) { 3566 vnic->uc_list = kmalloc(mem_size, GFP_KERNEL); 3567 if (!vnic->uc_list) { 3568 rc = -ENOMEM; 3569 goto out; 3570 } 3571 } 3572 } 3573 3574 if (vnic->flags & BNXT_VNIC_MCAST_FLAG) { 3575 vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN; 3576 vnic->mc_list = 3577 dma_alloc_coherent(&pdev->dev, 3578 vnic->mc_list_size, 3579 &vnic->mc_list_mapping, 3580 GFP_KERNEL); 3581 if (!vnic->mc_list) { 3582 rc = -ENOMEM; 3583 goto out; 3584 } 3585 } 3586 3587 if (bp->flags & BNXT_FLAG_CHIP_P5) 3588 goto vnic_skip_grps; 3589 3590 if (vnic->flags & BNXT_VNIC_RSS_FLAG) 3591 max_rings = bp->rx_nr_rings; 3592 else 3593 max_rings = 1; 3594 3595 vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL); 3596 if (!vnic->fw_grp_ids) { 3597 rc = -ENOMEM; 3598 goto out; 3599 } 3600 vnic_skip_grps: 3601 if ((bp->flags & BNXT_FLAG_NEW_RSS_CAP) && 3602 !(vnic->flags & BNXT_VNIC_RSS_FLAG)) 3603 continue; 3604 3605 /* Allocate rss table and hash key */ 3606 vnic->rss_table = dma_alloc_coherent(&pdev->dev, PAGE_SIZE, 3607 &vnic->rss_table_dma_addr, 3608 GFP_KERNEL); 3609 if (!vnic->rss_table) { 3610 rc = -ENOMEM; 3611 goto out; 3612 } 3613 3614 size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16)); 3615 3616 vnic->rss_hash_key = ((void *)vnic->rss_table) + size; 3617 vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size; 3618 } 3619 return 0; 3620 3621 out: 3622 return rc; 3623 } 3624 3625 static void bnxt_free_hwrm_resources(struct bnxt *bp) 3626 { 3627 struct pci_dev *pdev = bp->pdev; 3628 3629 if (bp->hwrm_cmd_resp_addr) { 3630 dma_free_coherent(&pdev->dev, PAGE_SIZE, bp->hwrm_cmd_resp_addr, 3631 bp->hwrm_cmd_resp_dma_addr); 3632 bp->hwrm_cmd_resp_addr = NULL; 3633 } 3634 3635 if (bp->hwrm_cmd_kong_resp_addr) { 3636 dma_free_coherent(&pdev->dev, PAGE_SIZE, 3637 bp->hwrm_cmd_kong_resp_addr, 3638 bp->hwrm_cmd_kong_resp_dma_addr); 3639 bp->hwrm_cmd_kong_resp_addr = NULL; 3640 } 3641 } 3642 3643 static int bnxt_alloc_kong_hwrm_resources(struct bnxt *bp) 3644 { 3645 struct pci_dev *pdev = bp->pdev; 3646 3647 if (bp->hwrm_cmd_kong_resp_addr) 3648 return 0; 3649 3650 bp->hwrm_cmd_kong_resp_addr = 3651 dma_alloc_coherent(&pdev->dev, PAGE_SIZE, 3652 &bp->hwrm_cmd_kong_resp_dma_addr, 3653 GFP_KERNEL); 3654 if (!bp->hwrm_cmd_kong_resp_addr) 3655 return -ENOMEM; 3656 3657 return 0; 3658 } 3659 3660 static int bnxt_alloc_hwrm_resources(struct bnxt *bp) 3661 { 3662 struct pci_dev *pdev = bp->pdev; 3663 3664 bp->hwrm_cmd_resp_addr = dma_alloc_coherent(&pdev->dev, PAGE_SIZE, 3665 &bp->hwrm_cmd_resp_dma_addr, 3666 GFP_KERNEL); 3667 if (!bp->hwrm_cmd_resp_addr) 3668 return -ENOMEM; 3669 3670 return 0; 3671 } 3672 3673 static void bnxt_free_hwrm_short_cmd_req(struct bnxt *bp) 3674 { 3675 if (bp->hwrm_short_cmd_req_addr) { 3676 struct pci_dev *pdev = bp->pdev; 3677 3678 dma_free_coherent(&pdev->dev, bp->hwrm_max_ext_req_len, 3679 bp->hwrm_short_cmd_req_addr, 3680 bp->hwrm_short_cmd_req_dma_addr); 3681 bp->hwrm_short_cmd_req_addr = NULL; 3682 } 3683 } 3684 3685 static int bnxt_alloc_hwrm_short_cmd_req(struct bnxt *bp) 3686 { 3687 struct pci_dev *pdev = bp->pdev; 3688 3689 if (bp->hwrm_short_cmd_req_addr) 3690 return 0; 3691 3692 bp->hwrm_short_cmd_req_addr = 3693 dma_alloc_coherent(&pdev->dev, bp->hwrm_max_ext_req_len, 3694 &bp->hwrm_short_cmd_req_dma_addr, 3695 GFP_KERNEL); 3696 if (!bp->hwrm_short_cmd_req_addr) 3697 return -ENOMEM; 3698 3699 return 0; 3700 } 3701 3702 static void bnxt_free_port_stats(struct bnxt *bp) 3703 { 3704 struct pci_dev *pdev = bp->pdev; 3705 3706 bp->flags &= ~BNXT_FLAG_PORT_STATS; 3707 bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT; 3708 3709 if (bp->hw_rx_port_stats) { 3710 dma_free_coherent(&pdev->dev, bp->hw_port_stats_size, 3711 bp->hw_rx_port_stats, 3712 bp->hw_rx_port_stats_map); 3713 bp->hw_rx_port_stats = NULL; 3714 } 3715 3716 if (bp->hw_tx_port_stats_ext) { 3717 dma_free_coherent(&pdev->dev, sizeof(struct tx_port_stats_ext), 3718 bp->hw_tx_port_stats_ext, 3719 bp->hw_tx_port_stats_ext_map); 3720 bp->hw_tx_port_stats_ext = NULL; 3721 } 3722 3723 if (bp->hw_rx_port_stats_ext) { 3724 dma_free_coherent(&pdev->dev, sizeof(struct rx_port_stats_ext), 3725 bp->hw_rx_port_stats_ext, 3726 bp->hw_rx_port_stats_ext_map); 3727 bp->hw_rx_port_stats_ext = NULL; 3728 } 3729 3730 if (bp->hw_pcie_stats) { 3731 dma_free_coherent(&pdev->dev, sizeof(struct pcie_ctx_hw_stats), 3732 bp->hw_pcie_stats, bp->hw_pcie_stats_map); 3733 bp->hw_pcie_stats = NULL; 3734 } 3735 } 3736 3737 static void bnxt_free_ring_stats(struct bnxt *bp) 3738 { 3739 struct pci_dev *pdev = bp->pdev; 3740 int size, i; 3741 3742 if (!bp->bnapi) 3743 return; 3744 3745 size = bp->hw_ring_stats_size; 3746 3747 for (i = 0; i < bp->cp_nr_rings; i++) { 3748 struct bnxt_napi *bnapi = bp->bnapi[i]; 3749 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3750 3751 if (cpr->hw_stats) { 3752 dma_free_coherent(&pdev->dev, size, cpr->hw_stats, 3753 cpr->hw_stats_map); 3754 cpr->hw_stats = NULL; 3755 } 3756 } 3757 } 3758 3759 static int bnxt_alloc_stats(struct bnxt *bp) 3760 { 3761 u32 size, i; 3762 struct pci_dev *pdev = bp->pdev; 3763 3764 size = bp->hw_ring_stats_size; 3765 3766 for (i = 0; i < bp->cp_nr_rings; i++) { 3767 struct bnxt_napi *bnapi = bp->bnapi[i]; 3768 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3769 3770 cpr->hw_stats = dma_alloc_coherent(&pdev->dev, size, 3771 &cpr->hw_stats_map, 3772 GFP_KERNEL); 3773 if (!cpr->hw_stats) 3774 return -ENOMEM; 3775 3776 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID; 3777 } 3778 3779 if (BNXT_VF(bp) || bp->chip_num == CHIP_NUM_58700) 3780 return 0; 3781 3782 if (bp->hw_rx_port_stats) 3783 goto alloc_ext_stats; 3784 3785 bp->hw_port_stats_size = sizeof(struct rx_port_stats) + 3786 sizeof(struct tx_port_stats) + 1024; 3787 3788 bp->hw_rx_port_stats = 3789 dma_alloc_coherent(&pdev->dev, bp->hw_port_stats_size, 3790 &bp->hw_rx_port_stats_map, 3791 GFP_KERNEL); 3792 if (!bp->hw_rx_port_stats) 3793 return -ENOMEM; 3794 3795 bp->hw_tx_port_stats = (void *)(bp->hw_rx_port_stats + 1) + 512; 3796 bp->hw_tx_port_stats_map = bp->hw_rx_port_stats_map + 3797 sizeof(struct rx_port_stats) + 512; 3798 bp->flags |= BNXT_FLAG_PORT_STATS; 3799 3800 alloc_ext_stats: 3801 /* Display extended statistics only if FW supports it */ 3802 if (bp->hwrm_spec_code < 0x10804 || bp->hwrm_spec_code == 0x10900) 3803 if (!(bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) 3804 return 0; 3805 3806 if (bp->hw_rx_port_stats_ext) 3807 goto alloc_tx_ext_stats; 3808 3809 bp->hw_rx_port_stats_ext = 3810 dma_alloc_coherent(&pdev->dev, sizeof(struct rx_port_stats_ext), 3811 &bp->hw_rx_port_stats_ext_map, GFP_KERNEL); 3812 if (!bp->hw_rx_port_stats_ext) 3813 return 0; 3814 3815 alloc_tx_ext_stats: 3816 if (bp->hw_tx_port_stats_ext) 3817 goto alloc_pcie_stats; 3818 3819 if (bp->hwrm_spec_code >= 0x10902 || 3820 (bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) { 3821 bp->hw_tx_port_stats_ext = 3822 dma_alloc_coherent(&pdev->dev, 3823 sizeof(struct tx_port_stats_ext), 3824 &bp->hw_tx_port_stats_ext_map, 3825 GFP_KERNEL); 3826 } 3827 bp->flags |= BNXT_FLAG_PORT_STATS_EXT; 3828 3829 alloc_pcie_stats: 3830 if (bp->hw_pcie_stats || 3831 !(bp->fw_cap & BNXT_FW_CAP_PCIE_STATS_SUPPORTED)) 3832 return 0; 3833 3834 bp->hw_pcie_stats = 3835 dma_alloc_coherent(&pdev->dev, sizeof(struct pcie_ctx_hw_stats), 3836 &bp->hw_pcie_stats_map, GFP_KERNEL); 3837 if (!bp->hw_pcie_stats) 3838 return 0; 3839 3840 bp->flags |= BNXT_FLAG_PCIE_STATS; 3841 return 0; 3842 } 3843 3844 static void bnxt_clear_ring_indices(struct bnxt *bp) 3845 { 3846 int i; 3847 3848 if (!bp->bnapi) 3849 return; 3850 3851 for (i = 0; i < bp->cp_nr_rings; i++) { 3852 struct bnxt_napi *bnapi = bp->bnapi[i]; 3853 struct bnxt_cp_ring_info *cpr; 3854 struct bnxt_rx_ring_info *rxr; 3855 struct bnxt_tx_ring_info *txr; 3856 3857 if (!bnapi) 3858 continue; 3859 3860 cpr = &bnapi->cp_ring; 3861 cpr->cp_raw_cons = 0; 3862 3863 txr = bnapi->tx_ring; 3864 if (txr) { 3865 txr->tx_prod = 0; 3866 txr->tx_cons = 0; 3867 } 3868 3869 rxr = bnapi->rx_ring; 3870 if (rxr) { 3871 rxr->rx_prod = 0; 3872 rxr->rx_agg_prod = 0; 3873 rxr->rx_sw_agg_prod = 0; 3874 rxr->rx_next_cons = 0; 3875 } 3876 } 3877 } 3878 3879 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit) 3880 { 3881 #ifdef CONFIG_RFS_ACCEL 3882 int i; 3883 3884 /* Under rtnl_lock and all our NAPIs have been disabled. It's 3885 * safe to delete the hash table. 3886 */ 3887 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) { 3888 struct hlist_head *head; 3889 struct hlist_node *tmp; 3890 struct bnxt_ntuple_filter *fltr; 3891 3892 head = &bp->ntp_fltr_hash_tbl[i]; 3893 hlist_for_each_entry_safe(fltr, tmp, head, hash) { 3894 hlist_del(&fltr->hash); 3895 kfree(fltr); 3896 } 3897 } 3898 if (irq_reinit) { 3899 kfree(bp->ntp_fltr_bmap); 3900 bp->ntp_fltr_bmap = NULL; 3901 } 3902 bp->ntp_fltr_count = 0; 3903 #endif 3904 } 3905 3906 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp) 3907 { 3908 #ifdef CONFIG_RFS_ACCEL 3909 int i, rc = 0; 3910 3911 if (!(bp->flags & BNXT_FLAG_RFS)) 3912 return 0; 3913 3914 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) 3915 INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]); 3916 3917 bp->ntp_fltr_count = 0; 3918 bp->ntp_fltr_bmap = kcalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR), 3919 sizeof(long), 3920 GFP_KERNEL); 3921 3922 if (!bp->ntp_fltr_bmap) 3923 rc = -ENOMEM; 3924 3925 return rc; 3926 #else 3927 return 0; 3928 #endif 3929 } 3930 3931 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init) 3932 { 3933 bnxt_free_vnic_attributes(bp); 3934 bnxt_free_tx_rings(bp); 3935 bnxt_free_rx_rings(bp); 3936 bnxt_free_cp_rings(bp); 3937 bnxt_free_ntp_fltrs(bp, irq_re_init); 3938 if (irq_re_init) { 3939 bnxt_free_ring_stats(bp); 3940 bnxt_free_ring_grps(bp); 3941 bnxt_free_vnics(bp); 3942 kfree(bp->tx_ring_map); 3943 bp->tx_ring_map = NULL; 3944 kfree(bp->tx_ring); 3945 bp->tx_ring = NULL; 3946 kfree(bp->rx_ring); 3947 bp->rx_ring = NULL; 3948 kfree(bp->bnapi); 3949 bp->bnapi = NULL; 3950 } else { 3951 bnxt_clear_ring_indices(bp); 3952 } 3953 } 3954 3955 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init) 3956 { 3957 int i, j, rc, size, arr_size; 3958 void *bnapi; 3959 3960 if (irq_re_init) { 3961 /* Allocate bnapi mem pointer array and mem block for 3962 * all queues 3963 */ 3964 arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) * 3965 bp->cp_nr_rings); 3966 size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi)); 3967 bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL); 3968 if (!bnapi) 3969 return -ENOMEM; 3970 3971 bp->bnapi = bnapi; 3972 bnapi += arr_size; 3973 for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) { 3974 bp->bnapi[i] = bnapi; 3975 bp->bnapi[i]->index = i; 3976 bp->bnapi[i]->bp = bp; 3977 if (bp->flags & BNXT_FLAG_CHIP_P5) { 3978 struct bnxt_cp_ring_info *cpr = 3979 &bp->bnapi[i]->cp_ring; 3980 3981 cpr->cp_ring_struct.ring_mem.flags = 3982 BNXT_RMEM_RING_PTE_FLAG; 3983 } 3984 } 3985 3986 bp->rx_ring = kcalloc(bp->rx_nr_rings, 3987 sizeof(struct bnxt_rx_ring_info), 3988 GFP_KERNEL); 3989 if (!bp->rx_ring) 3990 return -ENOMEM; 3991 3992 for (i = 0; i < bp->rx_nr_rings; i++) { 3993 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3994 3995 if (bp->flags & BNXT_FLAG_CHIP_P5) { 3996 rxr->rx_ring_struct.ring_mem.flags = 3997 BNXT_RMEM_RING_PTE_FLAG; 3998 rxr->rx_agg_ring_struct.ring_mem.flags = 3999 BNXT_RMEM_RING_PTE_FLAG; 4000 } 4001 rxr->bnapi = bp->bnapi[i]; 4002 bp->bnapi[i]->rx_ring = &bp->rx_ring[i]; 4003 } 4004 4005 bp->tx_ring = kcalloc(bp->tx_nr_rings, 4006 sizeof(struct bnxt_tx_ring_info), 4007 GFP_KERNEL); 4008 if (!bp->tx_ring) 4009 return -ENOMEM; 4010 4011 bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16), 4012 GFP_KERNEL); 4013 4014 if (!bp->tx_ring_map) 4015 return -ENOMEM; 4016 4017 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 4018 j = 0; 4019 else 4020 j = bp->rx_nr_rings; 4021 4022 for (i = 0; i < bp->tx_nr_rings; i++, j++) { 4023 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 4024 4025 if (bp->flags & BNXT_FLAG_CHIP_P5) 4026 txr->tx_ring_struct.ring_mem.flags = 4027 BNXT_RMEM_RING_PTE_FLAG; 4028 txr->bnapi = bp->bnapi[j]; 4029 bp->bnapi[j]->tx_ring = txr; 4030 bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i; 4031 if (i >= bp->tx_nr_rings_xdp) { 4032 txr->txq_index = i - bp->tx_nr_rings_xdp; 4033 bp->bnapi[j]->tx_int = bnxt_tx_int; 4034 } else { 4035 bp->bnapi[j]->flags |= BNXT_NAPI_FLAG_XDP; 4036 bp->bnapi[j]->tx_int = bnxt_tx_int_xdp; 4037 } 4038 } 4039 4040 rc = bnxt_alloc_stats(bp); 4041 if (rc) 4042 goto alloc_mem_err; 4043 4044 rc = bnxt_alloc_ntp_fltrs(bp); 4045 if (rc) 4046 goto alloc_mem_err; 4047 4048 rc = bnxt_alloc_vnics(bp); 4049 if (rc) 4050 goto alloc_mem_err; 4051 } 4052 4053 bnxt_init_ring_struct(bp); 4054 4055 rc = bnxt_alloc_rx_rings(bp); 4056 if (rc) 4057 goto alloc_mem_err; 4058 4059 rc = bnxt_alloc_tx_rings(bp); 4060 if (rc) 4061 goto alloc_mem_err; 4062 4063 rc = bnxt_alloc_cp_rings(bp); 4064 if (rc) 4065 goto alloc_mem_err; 4066 4067 bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG | 4068 BNXT_VNIC_UCAST_FLAG; 4069 rc = bnxt_alloc_vnic_attributes(bp); 4070 if (rc) 4071 goto alloc_mem_err; 4072 return 0; 4073 4074 alloc_mem_err: 4075 bnxt_free_mem(bp, true); 4076 return rc; 4077 } 4078 4079 static void bnxt_disable_int(struct bnxt *bp) 4080 { 4081 int i; 4082 4083 if (!bp->bnapi) 4084 return; 4085 4086 for (i = 0; i < bp->cp_nr_rings; i++) { 4087 struct bnxt_napi *bnapi = bp->bnapi[i]; 4088 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4089 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 4090 4091 if (ring->fw_ring_id != INVALID_HW_RING_ID) 4092 bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons); 4093 } 4094 } 4095 4096 static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n) 4097 { 4098 struct bnxt_napi *bnapi = bp->bnapi[n]; 4099 struct bnxt_cp_ring_info *cpr; 4100 4101 cpr = &bnapi->cp_ring; 4102 return cpr->cp_ring_struct.map_idx; 4103 } 4104 4105 static void bnxt_disable_int_sync(struct bnxt *bp) 4106 { 4107 int i; 4108 4109 atomic_inc(&bp->intr_sem); 4110 4111 bnxt_disable_int(bp); 4112 for (i = 0; i < bp->cp_nr_rings; i++) { 4113 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 4114 4115 synchronize_irq(bp->irq_tbl[map_idx].vector); 4116 } 4117 } 4118 4119 static void bnxt_enable_int(struct bnxt *bp) 4120 { 4121 int i; 4122 4123 atomic_set(&bp->intr_sem, 0); 4124 for (i = 0; i < bp->cp_nr_rings; i++) { 4125 struct bnxt_napi *bnapi = bp->bnapi[i]; 4126 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4127 4128 bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons); 4129 } 4130 } 4131 4132 void bnxt_hwrm_cmd_hdr_init(struct bnxt *bp, void *request, u16 req_type, 4133 u16 cmpl_ring, u16 target_id) 4134 { 4135 struct input *req = request; 4136 4137 req->req_type = cpu_to_le16(req_type); 4138 req->cmpl_ring = cpu_to_le16(cmpl_ring); 4139 req->target_id = cpu_to_le16(target_id); 4140 if (bnxt_kong_hwrm_message(bp, req)) 4141 req->resp_addr = cpu_to_le64(bp->hwrm_cmd_kong_resp_dma_addr); 4142 else 4143 req->resp_addr = cpu_to_le64(bp->hwrm_cmd_resp_dma_addr); 4144 } 4145 4146 static int bnxt_hwrm_to_stderr(u32 hwrm_err) 4147 { 4148 switch (hwrm_err) { 4149 case HWRM_ERR_CODE_SUCCESS: 4150 return 0; 4151 case HWRM_ERR_CODE_RESOURCE_ACCESS_DENIED: 4152 return -EACCES; 4153 case HWRM_ERR_CODE_RESOURCE_ALLOC_ERROR: 4154 return -ENOSPC; 4155 case HWRM_ERR_CODE_INVALID_PARAMS: 4156 case HWRM_ERR_CODE_INVALID_FLAGS: 4157 case HWRM_ERR_CODE_INVALID_ENABLES: 4158 case HWRM_ERR_CODE_UNSUPPORTED_TLV: 4159 case HWRM_ERR_CODE_UNSUPPORTED_OPTION_ERR: 4160 return -EINVAL; 4161 case HWRM_ERR_CODE_NO_BUFFER: 4162 return -ENOMEM; 4163 case HWRM_ERR_CODE_HOT_RESET_PROGRESS: 4164 case HWRM_ERR_CODE_BUSY: 4165 return -EAGAIN; 4166 case HWRM_ERR_CODE_CMD_NOT_SUPPORTED: 4167 return -EOPNOTSUPP; 4168 default: 4169 return -EIO; 4170 } 4171 } 4172 4173 static int bnxt_hwrm_do_send_msg(struct bnxt *bp, void *msg, u32 msg_len, 4174 int timeout, bool silent) 4175 { 4176 int i, intr_process, rc, tmo_count; 4177 struct input *req = msg; 4178 u32 *data = msg; 4179 u8 *valid; 4180 u16 cp_ring_id, len = 0; 4181 struct hwrm_err_output *resp = bp->hwrm_cmd_resp_addr; 4182 u16 max_req_len = BNXT_HWRM_MAX_REQ_LEN; 4183 struct hwrm_short_input short_input = {0}; 4184 u32 doorbell_offset = BNXT_GRCPF_REG_CHIMP_COMM_TRIGGER; 4185 u32 bar_offset = BNXT_GRCPF_REG_CHIMP_COMM; 4186 u16 dst = BNXT_HWRM_CHNL_CHIMP; 4187 4188 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) 4189 return -EBUSY; 4190 4191 if (msg_len > BNXT_HWRM_MAX_REQ_LEN) { 4192 if (msg_len > bp->hwrm_max_ext_req_len || 4193 !bp->hwrm_short_cmd_req_addr) 4194 return -EINVAL; 4195 } 4196 4197 if (bnxt_hwrm_kong_chnl(bp, req)) { 4198 dst = BNXT_HWRM_CHNL_KONG; 4199 bar_offset = BNXT_GRCPF_REG_KONG_COMM; 4200 doorbell_offset = BNXT_GRCPF_REG_KONG_COMM_TRIGGER; 4201 resp = bp->hwrm_cmd_kong_resp_addr; 4202 } 4203 4204 memset(resp, 0, PAGE_SIZE); 4205 cp_ring_id = le16_to_cpu(req->cmpl_ring); 4206 intr_process = (cp_ring_id == INVALID_HW_RING_ID) ? 0 : 1; 4207 4208 req->seq_id = cpu_to_le16(bnxt_get_hwrm_seq_id(bp, dst)); 4209 /* currently supports only one outstanding message */ 4210 if (intr_process) 4211 bp->hwrm_intr_seq_id = le16_to_cpu(req->seq_id); 4212 4213 if ((bp->fw_cap & BNXT_FW_CAP_SHORT_CMD) || 4214 msg_len > BNXT_HWRM_MAX_REQ_LEN) { 4215 void *short_cmd_req = bp->hwrm_short_cmd_req_addr; 4216 u16 max_msg_len; 4217 4218 /* Set boundary for maximum extended request length for short 4219 * cmd format. If passed up from device use the max supported 4220 * internal req length. 4221 */ 4222 max_msg_len = bp->hwrm_max_ext_req_len; 4223 4224 memcpy(short_cmd_req, req, msg_len); 4225 if (msg_len < max_msg_len) 4226 memset(short_cmd_req + msg_len, 0, 4227 max_msg_len - msg_len); 4228 4229 short_input.req_type = req->req_type; 4230 short_input.signature = 4231 cpu_to_le16(SHORT_REQ_SIGNATURE_SHORT_CMD); 4232 short_input.size = cpu_to_le16(msg_len); 4233 short_input.req_addr = 4234 cpu_to_le64(bp->hwrm_short_cmd_req_dma_addr); 4235 4236 data = (u32 *)&short_input; 4237 msg_len = sizeof(short_input); 4238 4239 /* Sync memory write before updating doorbell */ 4240 wmb(); 4241 4242 max_req_len = BNXT_HWRM_SHORT_REQ_LEN; 4243 } 4244 4245 /* Write request msg to hwrm channel */ 4246 __iowrite32_copy(bp->bar0 + bar_offset, data, msg_len / 4); 4247 4248 for (i = msg_len; i < max_req_len; i += 4) 4249 writel(0, bp->bar0 + bar_offset + i); 4250 4251 /* Ring channel doorbell */ 4252 writel(1, bp->bar0 + doorbell_offset); 4253 4254 if (!pci_is_enabled(bp->pdev)) 4255 return 0; 4256 4257 if (!timeout) 4258 timeout = DFLT_HWRM_CMD_TIMEOUT; 4259 /* convert timeout to usec */ 4260 timeout *= 1000; 4261 4262 i = 0; 4263 /* Short timeout for the first few iterations: 4264 * number of loops = number of loops for short timeout + 4265 * number of loops for standard timeout. 4266 */ 4267 tmo_count = HWRM_SHORT_TIMEOUT_COUNTER; 4268 timeout = timeout - HWRM_SHORT_MIN_TIMEOUT * HWRM_SHORT_TIMEOUT_COUNTER; 4269 tmo_count += DIV_ROUND_UP(timeout, HWRM_MIN_TIMEOUT); 4270 4271 if (intr_process) { 4272 u16 seq_id = bp->hwrm_intr_seq_id; 4273 4274 /* Wait until hwrm response cmpl interrupt is processed */ 4275 while (bp->hwrm_intr_seq_id != (u16)~seq_id && 4276 i++ < tmo_count) { 4277 /* Abort the wait for completion if the FW health 4278 * check has failed. 4279 */ 4280 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) 4281 return -EBUSY; 4282 /* on first few passes, just barely sleep */ 4283 if (i < HWRM_SHORT_TIMEOUT_COUNTER) 4284 usleep_range(HWRM_SHORT_MIN_TIMEOUT, 4285 HWRM_SHORT_MAX_TIMEOUT); 4286 else 4287 usleep_range(HWRM_MIN_TIMEOUT, 4288 HWRM_MAX_TIMEOUT); 4289 } 4290 4291 if (bp->hwrm_intr_seq_id != (u16)~seq_id) { 4292 if (!silent) 4293 netdev_err(bp->dev, "Resp cmpl intr err msg: 0x%x\n", 4294 le16_to_cpu(req->req_type)); 4295 return -EBUSY; 4296 } 4297 len = le16_to_cpu(resp->resp_len); 4298 valid = ((u8 *)resp) + len - 1; 4299 } else { 4300 int j; 4301 4302 /* Check if response len is updated */ 4303 for (i = 0; i < tmo_count; i++) { 4304 /* Abort the wait for completion if the FW health 4305 * check has failed. 4306 */ 4307 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) 4308 return -EBUSY; 4309 len = le16_to_cpu(resp->resp_len); 4310 if (len) 4311 break; 4312 /* on first few passes, just barely sleep */ 4313 if (i < HWRM_SHORT_TIMEOUT_COUNTER) 4314 usleep_range(HWRM_SHORT_MIN_TIMEOUT, 4315 HWRM_SHORT_MAX_TIMEOUT); 4316 else 4317 usleep_range(HWRM_MIN_TIMEOUT, 4318 HWRM_MAX_TIMEOUT); 4319 } 4320 4321 if (i >= tmo_count) { 4322 if (!silent) 4323 netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d\n", 4324 HWRM_TOTAL_TIMEOUT(i), 4325 le16_to_cpu(req->req_type), 4326 le16_to_cpu(req->seq_id), len); 4327 return -EBUSY; 4328 } 4329 4330 /* Last byte of resp contains valid bit */ 4331 valid = ((u8 *)resp) + len - 1; 4332 for (j = 0; j < HWRM_VALID_BIT_DELAY_USEC; j++) { 4333 /* make sure we read from updated DMA memory */ 4334 dma_rmb(); 4335 if (*valid) 4336 break; 4337 usleep_range(1, 5); 4338 } 4339 4340 if (j >= HWRM_VALID_BIT_DELAY_USEC) { 4341 if (!silent) 4342 netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d v:%d\n", 4343 HWRM_TOTAL_TIMEOUT(i), 4344 le16_to_cpu(req->req_type), 4345 le16_to_cpu(req->seq_id), len, 4346 *valid); 4347 return -EBUSY; 4348 } 4349 } 4350 4351 /* Zero valid bit for compatibility. Valid bit in an older spec 4352 * may become a new field in a newer spec. We must make sure that 4353 * a new field not implemented by old spec will read zero. 4354 */ 4355 *valid = 0; 4356 rc = le16_to_cpu(resp->error_code); 4357 if (rc && !silent) 4358 netdev_err(bp->dev, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n", 4359 le16_to_cpu(resp->req_type), 4360 le16_to_cpu(resp->seq_id), rc); 4361 return bnxt_hwrm_to_stderr(rc); 4362 } 4363 4364 int _hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout) 4365 { 4366 return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, false); 4367 } 4368 4369 int _hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len, 4370 int timeout) 4371 { 4372 return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true); 4373 } 4374 4375 int hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout) 4376 { 4377 int rc; 4378 4379 mutex_lock(&bp->hwrm_cmd_lock); 4380 rc = _hwrm_send_message(bp, msg, msg_len, timeout); 4381 mutex_unlock(&bp->hwrm_cmd_lock); 4382 return rc; 4383 } 4384 4385 int hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len, 4386 int timeout) 4387 { 4388 int rc; 4389 4390 mutex_lock(&bp->hwrm_cmd_lock); 4391 rc = bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true); 4392 mutex_unlock(&bp->hwrm_cmd_lock); 4393 return rc; 4394 } 4395 4396 int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp, unsigned long *bmap, int bmap_size, 4397 bool async_only) 4398 { 4399 struct hwrm_func_drv_rgtr_output *resp = bp->hwrm_cmd_resp_addr; 4400 struct hwrm_func_drv_rgtr_input req = {0}; 4401 DECLARE_BITMAP(async_events_bmap, 256); 4402 u32 *events = (u32 *)async_events_bmap; 4403 u32 flags; 4404 int rc, i; 4405 4406 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1); 4407 4408 req.enables = 4409 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE | 4410 FUNC_DRV_RGTR_REQ_ENABLES_VER | 4411 FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD); 4412 4413 req.os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX); 4414 flags = FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE; 4415 if (bp->fw_cap & BNXT_FW_CAP_HOT_RESET) 4416 flags |= FUNC_DRV_RGTR_REQ_FLAGS_HOT_RESET_SUPPORT; 4417 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) 4418 flags |= FUNC_DRV_RGTR_REQ_FLAGS_ERROR_RECOVERY_SUPPORT | 4419 FUNC_DRV_RGTR_REQ_FLAGS_MASTER_SUPPORT; 4420 req.flags = cpu_to_le32(flags); 4421 req.ver_maj_8b = DRV_VER_MAJ; 4422 req.ver_min_8b = DRV_VER_MIN; 4423 req.ver_upd_8b = DRV_VER_UPD; 4424 req.ver_maj = cpu_to_le16(DRV_VER_MAJ); 4425 req.ver_min = cpu_to_le16(DRV_VER_MIN); 4426 req.ver_upd = cpu_to_le16(DRV_VER_UPD); 4427 4428 if (BNXT_PF(bp)) { 4429 u32 data[8]; 4430 int i; 4431 4432 memset(data, 0, sizeof(data)); 4433 for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) { 4434 u16 cmd = bnxt_vf_req_snif[i]; 4435 unsigned int bit, idx; 4436 4437 idx = cmd / 32; 4438 bit = cmd % 32; 4439 data[idx] |= 1 << bit; 4440 } 4441 4442 for (i = 0; i < 8; i++) 4443 req.vf_req_fwd[i] = cpu_to_le32(data[i]); 4444 4445 req.enables |= 4446 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD); 4447 } 4448 4449 if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE) 4450 req.flags |= cpu_to_le32( 4451 FUNC_DRV_RGTR_REQ_FLAGS_FLOW_HANDLE_64BIT_MODE); 4452 4453 memset(async_events_bmap, 0, sizeof(async_events_bmap)); 4454 for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++) { 4455 u16 event_id = bnxt_async_events_arr[i]; 4456 4457 if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY && 4458 !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 4459 continue; 4460 __set_bit(bnxt_async_events_arr[i], async_events_bmap); 4461 } 4462 if (bmap && bmap_size) { 4463 for (i = 0; i < bmap_size; i++) { 4464 if (test_bit(i, bmap)) 4465 __set_bit(i, async_events_bmap); 4466 } 4467 } 4468 for (i = 0; i < 8; i++) 4469 req.async_event_fwd[i] |= cpu_to_le32(events[i]); 4470 4471 if (async_only) 4472 req.enables = 4473 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD); 4474 4475 mutex_lock(&bp->hwrm_cmd_lock); 4476 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 4477 if (!rc) { 4478 set_bit(BNXT_STATE_DRV_REGISTERED, &bp->state); 4479 if (resp->flags & 4480 cpu_to_le32(FUNC_DRV_RGTR_RESP_FLAGS_IF_CHANGE_SUPPORTED)) 4481 bp->fw_cap |= BNXT_FW_CAP_IF_CHANGE; 4482 } 4483 mutex_unlock(&bp->hwrm_cmd_lock); 4484 return rc; 4485 } 4486 4487 static int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp) 4488 { 4489 struct hwrm_func_drv_unrgtr_input req = {0}; 4490 4491 if (!test_and_clear_bit(BNXT_STATE_DRV_REGISTERED, &bp->state)) 4492 return 0; 4493 4494 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_UNRGTR, -1, -1); 4495 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 4496 } 4497 4498 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type) 4499 { 4500 u32 rc = 0; 4501 struct hwrm_tunnel_dst_port_free_input req = {0}; 4502 4503 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_FREE, -1, -1); 4504 req.tunnel_type = tunnel_type; 4505 4506 switch (tunnel_type) { 4507 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN: 4508 req.tunnel_dst_port_id = bp->vxlan_fw_dst_port_id; 4509 break; 4510 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE: 4511 req.tunnel_dst_port_id = bp->nge_fw_dst_port_id; 4512 break; 4513 default: 4514 break; 4515 } 4516 4517 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 4518 if (rc) 4519 netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n", 4520 rc); 4521 return rc; 4522 } 4523 4524 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port, 4525 u8 tunnel_type) 4526 { 4527 u32 rc = 0; 4528 struct hwrm_tunnel_dst_port_alloc_input req = {0}; 4529 struct hwrm_tunnel_dst_port_alloc_output *resp = bp->hwrm_cmd_resp_addr; 4530 4531 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_ALLOC, -1, -1); 4532 4533 req.tunnel_type = tunnel_type; 4534 req.tunnel_dst_port_val = port; 4535 4536 mutex_lock(&bp->hwrm_cmd_lock); 4537 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 4538 if (rc) { 4539 netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n", 4540 rc); 4541 goto err_out; 4542 } 4543 4544 switch (tunnel_type) { 4545 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN: 4546 bp->vxlan_fw_dst_port_id = resp->tunnel_dst_port_id; 4547 break; 4548 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE: 4549 bp->nge_fw_dst_port_id = resp->tunnel_dst_port_id; 4550 break; 4551 default: 4552 break; 4553 } 4554 4555 err_out: 4556 mutex_unlock(&bp->hwrm_cmd_lock); 4557 return rc; 4558 } 4559 4560 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id) 4561 { 4562 struct hwrm_cfa_l2_set_rx_mask_input req = {0}; 4563 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 4564 4565 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_SET_RX_MASK, -1, -1); 4566 req.vnic_id = cpu_to_le32(vnic->fw_vnic_id); 4567 4568 req.num_mc_entries = cpu_to_le32(vnic->mc_list_count); 4569 req.mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping); 4570 req.mask = cpu_to_le32(vnic->rx_mask); 4571 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 4572 } 4573 4574 #ifdef CONFIG_RFS_ACCEL 4575 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp, 4576 struct bnxt_ntuple_filter *fltr) 4577 { 4578 struct hwrm_cfa_ntuple_filter_free_input req = {0}; 4579 4580 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_FREE, -1, -1); 4581 req.ntuple_filter_id = fltr->filter_id; 4582 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 4583 } 4584 4585 #define BNXT_NTP_FLTR_FLAGS \ 4586 (CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID | \ 4587 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE | \ 4588 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR | \ 4589 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE | \ 4590 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR | \ 4591 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK | \ 4592 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR | \ 4593 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK | \ 4594 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL | \ 4595 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT | \ 4596 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK | \ 4597 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT | \ 4598 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK | \ 4599 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID) 4600 4601 #define BNXT_NTP_TUNNEL_FLTR_FLAG \ 4602 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE 4603 4604 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp, 4605 struct bnxt_ntuple_filter *fltr) 4606 { 4607 struct hwrm_cfa_ntuple_filter_alloc_input req = {0}; 4608 struct hwrm_cfa_ntuple_filter_alloc_output *resp; 4609 struct flow_keys *keys = &fltr->fkeys; 4610 struct bnxt_vnic_info *vnic; 4611 u32 flags = 0; 4612 int rc = 0; 4613 4614 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_ALLOC, -1, -1); 4615 req.l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx]; 4616 4617 if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) { 4618 flags = CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DEST_RFS_RING_IDX; 4619 req.dst_id = cpu_to_le16(fltr->rxq); 4620 } else { 4621 vnic = &bp->vnic_info[fltr->rxq + 1]; 4622 req.dst_id = cpu_to_le16(vnic->fw_vnic_id); 4623 } 4624 req.flags = cpu_to_le32(flags); 4625 req.enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS); 4626 4627 req.ethertype = htons(ETH_P_IP); 4628 memcpy(req.src_macaddr, fltr->src_mac_addr, ETH_ALEN); 4629 req.ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4; 4630 req.ip_protocol = keys->basic.ip_proto; 4631 4632 if (keys->basic.n_proto == htons(ETH_P_IPV6)) { 4633 int i; 4634 4635 req.ethertype = htons(ETH_P_IPV6); 4636 req.ip_addr_type = 4637 CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6; 4638 *(struct in6_addr *)&req.src_ipaddr[0] = 4639 keys->addrs.v6addrs.src; 4640 *(struct in6_addr *)&req.dst_ipaddr[0] = 4641 keys->addrs.v6addrs.dst; 4642 for (i = 0; i < 4; i++) { 4643 req.src_ipaddr_mask[i] = cpu_to_be32(0xffffffff); 4644 req.dst_ipaddr_mask[i] = cpu_to_be32(0xffffffff); 4645 } 4646 } else { 4647 req.src_ipaddr[0] = keys->addrs.v4addrs.src; 4648 req.src_ipaddr_mask[0] = cpu_to_be32(0xffffffff); 4649 req.dst_ipaddr[0] = keys->addrs.v4addrs.dst; 4650 req.dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff); 4651 } 4652 if (keys->control.flags & FLOW_DIS_ENCAPSULATION) { 4653 req.enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG); 4654 req.tunnel_type = 4655 CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL; 4656 } 4657 4658 req.src_port = keys->ports.src; 4659 req.src_port_mask = cpu_to_be16(0xffff); 4660 req.dst_port = keys->ports.dst; 4661 req.dst_port_mask = cpu_to_be16(0xffff); 4662 4663 mutex_lock(&bp->hwrm_cmd_lock); 4664 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 4665 if (!rc) { 4666 resp = bnxt_get_hwrm_resp_addr(bp, &req); 4667 fltr->filter_id = resp->ntuple_filter_id; 4668 } 4669 mutex_unlock(&bp->hwrm_cmd_lock); 4670 return rc; 4671 } 4672 #endif 4673 4674 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx, 4675 u8 *mac_addr) 4676 { 4677 u32 rc = 0; 4678 struct hwrm_cfa_l2_filter_alloc_input req = {0}; 4679 struct hwrm_cfa_l2_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr; 4680 4681 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_ALLOC, -1, -1); 4682 req.flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX); 4683 if (!BNXT_CHIP_TYPE_NITRO_A0(bp)) 4684 req.flags |= 4685 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST); 4686 req.dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id); 4687 req.enables = 4688 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR | 4689 CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID | 4690 CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK); 4691 memcpy(req.l2_addr, mac_addr, ETH_ALEN); 4692 req.l2_addr_mask[0] = 0xff; 4693 req.l2_addr_mask[1] = 0xff; 4694 req.l2_addr_mask[2] = 0xff; 4695 req.l2_addr_mask[3] = 0xff; 4696 req.l2_addr_mask[4] = 0xff; 4697 req.l2_addr_mask[5] = 0xff; 4698 4699 mutex_lock(&bp->hwrm_cmd_lock); 4700 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 4701 if (!rc) 4702 bp->vnic_info[vnic_id].fw_l2_filter_id[idx] = 4703 resp->l2_filter_id; 4704 mutex_unlock(&bp->hwrm_cmd_lock); 4705 return rc; 4706 } 4707 4708 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp) 4709 { 4710 u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */ 4711 int rc = 0; 4712 4713 /* Any associated ntuple filters will also be cleared by firmware. */ 4714 mutex_lock(&bp->hwrm_cmd_lock); 4715 for (i = 0; i < num_of_vnics; i++) { 4716 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 4717 4718 for (j = 0; j < vnic->uc_filter_count; j++) { 4719 struct hwrm_cfa_l2_filter_free_input req = {0}; 4720 4721 bnxt_hwrm_cmd_hdr_init(bp, &req, 4722 HWRM_CFA_L2_FILTER_FREE, -1, -1); 4723 4724 req.l2_filter_id = vnic->fw_l2_filter_id[j]; 4725 4726 rc = _hwrm_send_message(bp, &req, sizeof(req), 4727 HWRM_CMD_TIMEOUT); 4728 } 4729 vnic->uc_filter_count = 0; 4730 } 4731 mutex_unlock(&bp->hwrm_cmd_lock); 4732 4733 return rc; 4734 } 4735 4736 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags) 4737 { 4738 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 4739 u16 max_aggs = VNIC_TPA_CFG_REQ_MAX_AGGS_MAX; 4740 struct hwrm_vnic_tpa_cfg_input req = {0}; 4741 4742 if (vnic->fw_vnic_id == INVALID_HW_RING_ID) 4743 return 0; 4744 4745 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_TPA_CFG, -1, -1); 4746 4747 if (tpa_flags) { 4748 u16 mss = bp->dev->mtu - 40; 4749 u32 nsegs, n, segs = 0, flags; 4750 4751 flags = VNIC_TPA_CFG_REQ_FLAGS_TPA | 4752 VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA | 4753 VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE | 4754 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN | 4755 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ; 4756 if (tpa_flags & BNXT_FLAG_GRO) 4757 flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO; 4758 4759 req.flags = cpu_to_le32(flags); 4760 4761 req.enables = 4762 cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS | 4763 VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS | 4764 VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN); 4765 4766 /* Number of segs are log2 units, and first packet is not 4767 * included as part of this units. 4768 */ 4769 if (mss <= BNXT_RX_PAGE_SIZE) { 4770 n = BNXT_RX_PAGE_SIZE / mss; 4771 nsegs = (MAX_SKB_FRAGS - 1) * n; 4772 } else { 4773 n = mss / BNXT_RX_PAGE_SIZE; 4774 if (mss & (BNXT_RX_PAGE_SIZE - 1)) 4775 n++; 4776 nsegs = (MAX_SKB_FRAGS - n) / n; 4777 } 4778 4779 if (bp->flags & BNXT_FLAG_CHIP_P5) { 4780 segs = MAX_TPA_SEGS_P5; 4781 max_aggs = bp->max_tpa; 4782 } else { 4783 segs = ilog2(nsegs); 4784 } 4785 req.max_agg_segs = cpu_to_le16(segs); 4786 req.max_aggs = cpu_to_le16(max_aggs); 4787 4788 req.min_agg_len = cpu_to_le32(512); 4789 } 4790 req.vnic_id = cpu_to_le16(vnic->fw_vnic_id); 4791 4792 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 4793 } 4794 4795 static u16 bnxt_cp_ring_from_grp(struct bnxt *bp, struct bnxt_ring_struct *ring) 4796 { 4797 struct bnxt_ring_grp_info *grp_info; 4798 4799 grp_info = &bp->grp_info[ring->grp_idx]; 4800 return grp_info->cp_fw_ring_id; 4801 } 4802 4803 static u16 bnxt_cp_ring_for_rx(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 4804 { 4805 if (bp->flags & BNXT_FLAG_CHIP_P5) { 4806 struct bnxt_napi *bnapi = rxr->bnapi; 4807 struct bnxt_cp_ring_info *cpr; 4808 4809 cpr = bnapi->cp_ring.cp_ring_arr[BNXT_RX_HDL]; 4810 return cpr->cp_ring_struct.fw_ring_id; 4811 } else { 4812 return bnxt_cp_ring_from_grp(bp, &rxr->rx_ring_struct); 4813 } 4814 } 4815 4816 static u16 bnxt_cp_ring_for_tx(struct bnxt *bp, struct bnxt_tx_ring_info *txr) 4817 { 4818 if (bp->flags & BNXT_FLAG_CHIP_P5) { 4819 struct bnxt_napi *bnapi = txr->bnapi; 4820 struct bnxt_cp_ring_info *cpr; 4821 4822 cpr = bnapi->cp_ring.cp_ring_arr[BNXT_TX_HDL]; 4823 return cpr->cp_ring_struct.fw_ring_id; 4824 } else { 4825 return bnxt_cp_ring_from_grp(bp, &txr->tx_ring_struct); 4826 } 4827 } 4828 4829 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss) 4830 { 4831 u32 i, j, max_rings; 4832 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 4833 struct hwrm_vnic_rss_cfg_input req = {0}; 4834 4835 if ((bp->flags & BNXT_FLAG_CHIP_P5) || 4836 vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID) 4837 return 0; 4838 4839 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1); 4840 if (set_rss) { 4841 req.hash_type = cpu_to_le32(bp->rss_hash_cfg); 4842 req.hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT; 4843 if (vnic->flags & BNXT_VNIC_RSS_FLAG) { 4844 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 4845 max_rings = bp->rx_nr_rings - 1; 4846 else 4847 max_rings = bp->rx_nr_rings; 4848 } else { 4849 max_rings = 1; 4850 } 4851 4852 /* Fill the RSS indirection table with ring group ids */ 4853 for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++, j++) { 4854 if (j == max_rings) 4855 j = 0; 4856 vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]); 4857 } 4858 4859 req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr); 4860 req.hash_key_tbl_addr = 4861 cpu_to_le64(vnic->rss_hash_key_dma_addr); 4862 } 4863 req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 4864 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 4865 } 4866 4867 static int bnxt_hwrm_vnic_set_rss_p5(struct bnxt *bp, u16 vnic_id, bool set_rss) 4868 { 4869 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 4870 u32 i, j, k, nr_ctxs, max_rings = bp->rx_nr_rings; 4871 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0]; 4872 struct hwrm_vnic_rss_cfg_input req = {0}; 4873 4874 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1); 4875 req.vnic_id = cpu_to_le16(vnic->fw_vnic_id); 4876 if (!set_rss) { 4877 hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 4878 return 0; 4879 } 4880 req.hash_type = cpu_to_le32(bp->rss_hash_cfg); 4881 req.hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT; 4882 req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr); 4883 req.hash_key_tbl_addr = cpu_to_le64(vnic->rss_hash_key_dma_addr); 4884 nr_ctxs = DIV_ROUND_UP(bp->rx_nr_rings, 64); 4885 for (i = 0, k = 0; i < nr_ctxs; i++) { 4886 __le16 *ring_tbl = vnic->rss_table; 4887 int rc; 4888 4889 req.ring_table_pair_index = i; 4890 req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[i]); 4891 for (j = 0; j < 64; j++) { 4892 u16 ring_id; 4893 4894 ring_id = rxr->rx_ring_struct.fw_ring_id; 4895 *ring_tbl++ = cpu_to_le16(ring_id); 4896 ring_id = bnxt_cp_ring_for_rx(bp, rxr); 4897 *ring_tbl++ = cpu_to_le16(ring_id); 4898 rxr++; 4899 k++; 4900 if (k == max_rings) { 4901 k = 0; 4902 rxr = &bp->rx_ring[0]; 4903 } 4904 } 4905 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 4906 if (rc) 4907 return rc; 4908 } 4909 return 0; 4910 } 4911 4912 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id) 4913 { 4914 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 4915 struct hwrm_vnic_plcmodes_cfg_input req = {0}; 4916 4917 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_PLCMODES_CFG, -1, -1); 4918 req.flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT | 4919 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 | 4920 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6); 4921 req.enables = 4922 cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID | 4923 VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID); 4924 /* thresholds not implemented in firmware yet */ 4925 req.jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh); 4926 req.hds_threshold = cpu_to_le16(bp->rx_copy_thresh); 4927 req.vnic_id = cpu_to_le32(vnic->fw_vnic_id); 4928 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 4929 } 4930 4931 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id, 4932 u16 ctx_idx) 4933 { 4934 struct hwrm_vnic_rss_cos_lb_ctx_free_input req = {0}; 4935 4936 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_FREE, -1, -1); 4937 req.rss_cos_lb_ctx_id = 4938 cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]); 4939 4940 hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 4941 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID; 4942 } 4943 4944 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp) 4945 { 4946 int i, j; 4947 4948 for (i = 0; i < bp->nr_vnics; i++) { 4949 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 4950 4951 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) { 4952 if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID) 4953 bnxt_hwrm_vnic_ctx_free_one(bp, i, j); 4954 } 4955 } 4956 bp->rsscos_nr_ctxs = 0; 4957 } 4958 4959 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx) 4960 { 4961 int rc; 4962 struct hwrm_vnic_rss_cos_lb_ctx_alloc_input req = {0}; 4963 struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp = 4964 bp->hwrm_cmd_resp_addr; 4965 4966 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC, -1, 4967 -1); 4968 4969 mutex_lock(&bp->hwrm_cmd_lock); 4970 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 4971 if (!rc) 4972 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = 4973 le16_to_cpu(resp->rss_cos_lb_ctx_id); 4974 mutex_unlock(&bp->hwrm_cmd_lock); 4975 4976 return rc; 4977 } 4978 4979 static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp) 4980 { 4981 if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP) 4982 return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE; 4983 return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE; 4984 } 4985 4986 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id) 4987 { 4988 unsigned int ring = 0, grp_idx; 4989 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 4990 struct hwrm_vnic_cfg_input req = {0}; 4991 u16 def_vlan = 0; 4992 4993 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_CFG, -1, -1); 4994 4995 if (bp->flags & BNXT_FLAG_CHIP_P5) { 4996 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0]; 4997 4998 req.default_rx_ring_id = 4999 cpu_to_le16(rxr->rx_ring_struct.fw_ring_id); 5000 req.default_cmpl_ring_id = 5001 cpu_to_le16(bnxt_cp_ring_for_rx(bp, rxr)); 5002 req.enables = 5003 cpu_to_le32(VNIC_CFG_REQ_ENABLES_DEFAULT_RX_RING_ID | 5004 VNIC_CFG_REQ_ENABLES_DEFAULT_CMPL_RING_ID); 5005 goto vnic_mru; 5006 } 5007 req.enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP); 5008 /* Only RSS support for now TBD: COS & LB */ 5009 if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) { 5010 req.rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 5011 req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE | 5012 VNIC_CFG_REQ_ENABLES_MRU); 5013 } else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) { 5014 req.rss_rule = 5015 cpu_to_le16(bp->vnic_info[0].fw_rss_cos_lb_ctx[0]); 5016 req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE | 5017 VNIC_CFG_REQ_ENABLES_MRU); 5018 req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE); 5019 } else { 5020 req.rss_rule = cpu_to_le16(0xffff); 5021 } 5022 5023 if (BNXT_CHIP_TYPE_NITRO_A0(bp) && 5024 (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) { 5025 req.cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]); 5026 req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE); 5027 } else { 5028 req.cos_rule = cpu_to_le16(0xffff); 5029 } 5030 5031 if (vnic->flags & BNXT_VNIC_RSS_FLAG) 5032 ring = 0; 5033 else if (vnic->flags & BNXT_VNIC_RFS_FLAG) 5034 ring = vnic_id - 1; 5035 else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp)) 5036 ring = bp->rx_nr_rings - 1; 5037 5038 grp_idx = bp->rx_ring[ring].bnapi->index; 5039 req.dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id); 5040 req.lb_rule = cpu_to_le16(0xffff); 5041 vnic_mru: 5042 req.mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + VLAN_HLEN); 5043 5044 req.vnic_id = cpu_to_le16(vnic->fw_vnic_id); 5045 #ifdef CONFIG_BNXT_SRIOV 5046 if (BNXT_VF(bp)) 5047 def_vlan = bp->vf.vlan; 5048 #endif 5049 if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan) 5050 req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE); 5051 if (!vnic_id && bnxt_ulp_registered(bp->edev, BNXT_ROCE_ULP)) 5052 req.flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp)); 5053 5054 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5055 } 5056 5057 static void bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id) 5058 { 5059 if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) { 5060 struct hwrm_vnic_free_input req = {0}; 5061 5062 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_FREE, -1, -1); 5063 req.vnic_id = 5064 cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id); 5065 5066 hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5067 bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID; 5068 } 5069 } 5070 5071 static void bnxt_hwrm_vnic_free(struct bnxt *bp) 5072 { 5073 u16 i; 5074 5075 for (i = 0; i < bp->nr_vnics; i++) 5076 bnxt_hwrm_vnic_free_one(bp, i); 5077 } 5078 5079 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id, 5080 unsigned int start_rx_ring_idx, 5081 unsigned int nr_rings) 5082 { 5083 int rc = 0; 5084 unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings; 5085 struct hwrm_vnic_alloc_input req = {0}; 5086 struct hwrm_vnic_alloc_output *resp = bp->hwrm_cmd_resp_addr; 5087 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5088 5089 if (bp->flags & BNXT_FLAG_CHIP_P5) 5090 goto vnic_no_ring_grps; 5091 5092 /* map ring groups to this vnic */ 5093 for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) { 5094 grp_idx = bp->rx_ring[i].bnapi->index; 5095 if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) { 5096 netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n", 5097 j, nr_rings); 5098 break; 5099 } 5100 vnic->fw_grp_ids[j] = bp->grp_info[grp_idx].fw_grp_id; 5101 } 5102 5103 vnic_no_ring_grps: 5104 for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++) 5105 vnic->fw_rss_cos_lb_ctx[i] = INVALID_HW_RING_ID; 5106 if (vnic_id == 0) 5107 req.flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT); 5108 5109 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_ALLOC, -1, -1); 5110 5111 mutex_lock(&bp->hwrm_cmd_lock); 5112 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5113 if (!rc) 5114 vnic->fw_vnic_id = le32_to_cpu(resp->vnic_id); 5115 mutex_unlock(&bp->hwrm_cmd_lock); 5116 return rc; 5117 } 5118 5119 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp) 5120 { 5121 struct hwrm_vnic_qcaps_output *resp = bp->hwrm_cmd_resp_addr; 5122 struct hwrm_vnic_qcaps_input req = {0}; 5123 int rc; 5124 5125 bp->hw_ring_stats_size = sizeof(struct ctx_hw_stats); 5126 bp->flags &= ~(BNXT_FLAG_NEW_RSS_CAP | BNXT_FLAG_ROCE_MIRROR_CAP); 5127 if (bp->hwrm_spec_code < 0x10600) 5128 return 0; 5129 5130 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_QCAPS, -1, -1); 5131 mutex_lock(&bp->hwrm_cmd_lock); 5132 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5133 if (!rc) { 5134 u32 flags = le32_to_cpu(resp->flags); 5135 5136 if (!(bp->flags & BNXT_FLAG_CHIP_P5) && 5137 (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP)) 5138 bp->flags |= BNXT_FLAG_NEW_RSS_CAP; 5139 if (flags & 5140 VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP) 5141 bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP; 5142 bp->max_tpa_v2 = le16_to_cpu(resp->max_aggs_supported); 5143 if (bp->max_tpa_v2) 5144 bp->hw_ring_stats_size = 5145 sizeof(struct ctx_hw_stats_ext); 5146 } 5147 mutex_unlock(&bp->hwrm_cmd_lock); 5148 return rc; 5149 } 5150 5151 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp) 5152 { 5153 u16 i; 5154 u32 rc = 0; 5155 5156 if (bp->flags & BNXT_FLAG_CHIP_P5) 5157 return 0; 5158 5159 mutex_lock(&bp->hwrm_cmd_lock); 5160 for (i = 0; i < bp->rx_nr_rings; i++) { 5161 struct hwrm_ring_grp_alloc_input req = {0}; 5162 struct hwrm_ring_grp_alloc_output *resp = 5163 bp->hwrm_cmd_resp_addr; 5164 unsigned int grp_idx = bp->rx_ring[i].bnapi->index; 5165 5166 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_ALLOC, -1, -1); 5167 5168 req.cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id); 5169 req.rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id); 5170 req.ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id); 5171 req.sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx); 5172 5173 rc = _hwrm_send_message(bp, &req, sizeof(req), 5174 HWRM_CMD_TIMEOUT); 5175 if (rc) 5176 break; 5177 5178 bp->grp_info[grp_idx].fw_grp_id = 5179 le32_to_cpu(resp->ring_group_id); 5180 } 5181 mutex_unlock(&bp->hwrm_cmd_lock); 5182 return rc; 5183 } 5184 5185 static void bnxt_hwrm_ring_grp_free(struct bnxt *bp) 5186 { 5187 u16 i; 5188 struct hwrm_ring_grp_free_input req = {0}; 5189 5190 if (!bp->grp_info || (bp->flags & BNXT_FLAG_CHIP_P5)) 5191 return; 5192 5193 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_FREE, -1, -1); 5194 5195 mutex_lock(&bp->hwrm_cmd_lock); 5196 for (i = 0; i < bp->cp_nr_rings; i++) { 5197 if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID) 5198 continue; 5199 req.ring_group_id = 5200 cpu_to_le32(bp->grp_info[i].fw_grp_id); 5201 5202 _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5203 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID; 5204 } 5205 mutex_unlock(&bp->hwrm_cmd_lock); 5206 } 5207 5208 static int hwrm_ring_alloc_send_msg(struct bnxt *bp, 5209 struct bnxt_ring_struct *ring, 5210 u32 ring_type, u32 map_index) 5211 { 5212 int rc = 0, err = 0; 5213 struct hwrm_ring_alloc_input req = {0}; 5214 struct hwrm_ring_alloc_output *resp = bp->hwrm_cmd_resp_addr; 5215 struct bnxt_ring_mem_info *rmem = &ring->ring_mem; 5216 struct bnxt_ring_grp_info *grp_info; 5217 u16 ring_id; 5218 5219 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_ALLOC, -1, -1); 5220 5221 req.enables = 0; 5222 if (rmem->nr_pages > 1) { 5223 req.page_tbl_addr = cpu_to_le64(rmem->pg_tbl_map); 5224 /* Page size is in log2 units */ 5225 req.page_size = BNXT_PAGE_SHIFT; 5226 req.page_tbl_depth = 1; 5227 } else { 5228 req.page_tbl_addr = cpu_to_le64(rmem->dma_arr[0]); 5229 } 5230 req.fbo = 0; 5231 /* Association of ring index with doorbell index and MSIX number */ 5232 req.logical_id = cpu_to_le16(map_index); 5233 5234 switch (ring_type) { 5235 case HWRM_RING_ALLOC_TX: { 5236 struct bnxt_tx_ring_info *txr; 5237 5238 txr = container_of(ring, struct bnxt_tx_ring_info, 5239 tx_ring_struct); 5240 req.ring_type = RING_ALLOC_REQ_RING_TYPE_TX; 5241 /* Association of transmit ring with completion ring */ 5242 grp_info = &bp->grp_info[ring->grp_idx]; 5243 req.cmpl_ring_id = cpu_to_le16(bnxt_cp_ring_for_tx(bp, txr)); 5244 req.length = cpu_to_le32(bp->tx_ring_mask + 1); 5245 req.stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 5246 req.queue_id = cpu_to_le16(ring->queue_id); 5247 break; 5248 } 5249 case HWRM_RING_ALLOC_RX: 5250 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX; 5251 req.length = cpu_to_le32(bp->rx_ring_mask + 1); 5252 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5253 u16 flags = 0; 5254 5255 /* Association of rx ring with stats context */ 5256 grp_info = &bp->grp_info[ring->grp_idx]; 5257 req.rx_buf_size = cpu_to_le16(bp->rx_buf_use_size); 5258 req.stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 5259 req.enables |= cpu_to_le32( 5260 RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID); 5261 if (NET_IP_ALIGN == 2) 5262 flags = RING_ALLOC_REQ_FLAGS_RX_SOP_PAD; 5263 req.flags = cpu_to_le16(flags); 5264 } 5265 break; 5266 case HWRM_RING_ALLOC_AGG: 5267 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5268 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX_AGG; 5269 /* Association of agg ring with rx ring */ 5270 grp_info = &bp->grp_info[ring->grp_idx]; 5271 req.rx_ring_id = cpu_to_le16(grp_info->rx_fw_ring_id); 5272 req.rx_buf_size = cpu_to_le16(BNXT_RX_PAGE_SIZE); 5273 req.stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 5274 req.enables |= cpu_to_le32( 5275 RING_ALLOC_REQ_ENABLES_RX_RING_ID_VALID | 5276 RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID); 5277 } else { 5278 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX; 5279 } 5280 req.length = cpu_to_le32(bp->rx_agg_ring_mask + 1); 5281 break; 5282 case HWRM_RING_ALLOC_CMPL: 5283 req.ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL; 5284 req.length = cpu_to_le32(bp->cp_ring_mask + 1); 5285 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5286 /* Association of cp ring with nq */ 5287 grp_info = &bp->grp_info[map_index]; 5288 req.nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id); 5289 req.cq_handle = cpu_to_le64(ring->handle); 5290 req.enables |= cpu_to_le32( 5291 RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID); 5292 } else if (bp->flags & BNXT_FLAG_USING_MSIX) { 5293 req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX; 5294 } 5295 break; 5296 case HWRM_RING_ALLOC_NQ: 5297 req.ring_type = RING_ALLOC_REQ_RING_TYPE_NQ; 5298 req.length = cpu_to_le32(bp->cp_ring_mask + 1); 5299 if (bp->flags & BNXT_FLAG_USING_MSIX) 5300 req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX; 5301 break; 5302 default: 5303 netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n", 5304 ring_type); 5305 return -1; 5306 } 5307 5308 mutex_lock(&bp->hwrm_cmd_lock); 5309 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5310 err = le16_to_cpu(resp->error_code); 5311 ring_id = le16_to_cpu(resp->ring_id); 5312 mutex_unlock(&bp->hwrm_cmd_lock); 5313 5314 if (rc || err) { 5315 netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n", 5316 ring_type, rc, err); 5317 return -EIO; 5318 } 5319 ring->fw_ring_id = ring_id; 5320 return rc; 5321 } 5322 5323 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx) 5324 { 5325 int rc; 5326 5327 if (BNXT_PF(bp)) { 5328 struct hwrm_func_cfg_input req = {0}; 5329 5330 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1); 5331 req.fid = cpu_to_le16(0xffff); 5332 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR); 5333 req.async_event_cr = cpu_to_le16(idx); 5334 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5335 } else { 5336 struct hwrm_func_vf_cfg_input req = {0}; 5337 5338 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_CFG, -1, -1); 5339 req.enables = 5340 cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR); 5341 req.async_event_cr = cpu_to_le16(idx); 5342 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5343 } 5344 return rc; 5345 } 5346 5347 static void bnxt_set_db(struct bnxt *bp, struct bnxt_db_info *db, u32 ring_type, 5348 u32 map_idx, u32 xid) 5349 { 5350 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5351 if (BNXT_PF(bp)) 5352 db->doorbell = bp->bar1 + DB_PF_OFFSET_P5; 5353 else 5354 db->doorbell = bp->bar1 + DB_VF_OFFSET_P5; 5355 switch (ring_type) { 5356 case HWRM_RING_ALLOC_TX: 5357 db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SQ; 5358 break; 5359 case HWRM_RING_ALLOC_RX: 5360 case HWRM_RING_ALLOC_AGG: 5361 db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SRQ; 5362 break; 5363 case HWRM_RING_ALLOC_CMPL: 5364 db->db_key64 = DBR_PATH_L2; 5365 break; 5366 case HWRM_RING_ALLOC_NQ: 5367 db->db_key64 = DBR_PATH_L2; 5368 break; 5369 } 5370 db->db_key64 |= (u64)xid << DBR_XID_SFT; 5371 } else { 5372 db->doorbell = bp->bar1 + map_idx * 0x80; 5373 switch (ring_type) { 5374 case HWRM_RING_ALLOC_TX: 5375 db->db_key32 = DB_KEY_TX; 5376 break; 5377 case HWRM_RING_ALLOC_RX: 5378 case HWRM_RING_ALLOC_AGG: 5379 db->db_key32 = DB_KEY_RX; 5380 break; 5381 case HWRM_RING_ALLOC_CMPL: 5382 db->db_key32 = DB_KEY_CP; 5383 break; 5384 } 5385 } 5386 } 5387 5388 static int bnxt_hwrm_ring_alloc(struct bnxt *bp) 5389 { 5390 bool agg_rings = !!(bp->flags & BNXT_FLAG_AGG_RINGS); 5391 int i, rc = 0; 5392 u32 type; 5393 5394 if (bp->flags & BNXT_FLAG_CHIP_P5) 5395 type = HWRM_RING_ALLOC_NQ; 5396 else 5397 type = HWRM_RING_ALLOC_CMPL; 5398 for (i = 0; i < bp->cp_nr_rings; i++) { 5399 struct bnxt_napi *bnapi = bp->bnapi[i]; 5400 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5401 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 5402 u32 map_idx = ring->map_idx; 5403 unsigned int vector; 5404 5405 vector = bp->irq_tbl[map_idx].vector; 5406 disable_irq_nosync(vector); 5407 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 5408 if (rc) { 5409 enable_irq(vector); 5410 goto err_out; 5411 } 5412 bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id); 5413 bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons); 5414 enable_irq(vector); 5415 bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id; 5416 5417 if (!i) { 5418 rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id); 5419 if (rc) 5420 netdev_warn(bp->dev, "Failed to set async event completion ring.\n"); 5421 } 5422 } 5423 5424 type = HWRM_RING_ALLOC_TX; 5425 for (i = 0; i < bp->tx_nr_rings; i++) { 5426 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 5427 struct bnxt_ring_struct *ring; 5428 u32 map_idx; 5429 5430 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5431 struct bnxt_napi *bnapi = txr->bnapi; 5432 struct bnxt_cp_ring_info *cpr, *cpr2; 5433 u32 type2 = HWRM_RING_ALLOC_CMPL; 5434 5435 cpr = &bnapi->cp_ring; 5436 cpr2 = cpr->cp_ring_arr[BNXT_TX_HDL]; 5437 ring = &cpr2->cp_ring_struct; 5438 ring->handle = BNXT_TX_HDL; 5439 map_idx = bnapi->index; 5440 rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx); 5441 if (rc) 5442 goto err_out; 5443 bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx, 5444 ring->fw_ring_id); 5445 bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons); 5446 } 5447 ring = &txr->tx_ring_struct; 5448 map_idx = i; 5449 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 5450 if (rc) 5451 goto err_out; 5452 bnxt_set_db(bp, &txr->tx_db, type, map_idx, ring->fw_ring_id); 5453 } 5454 5455 type = HWRM_RING_ALLOC_RX; 5456 for (i = 0; i < bp->rx_nr_rings; i++) { 5457 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 5458 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct; 5459 struct bnxt_napi *bnapi = rxr->bnapi; 5460 u32 map_idx = bnapi->index; 5461 5462 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 5463 if (rc) 5464 goto err_out; 5465 bnxt_set_db(bp, &rxr->rx_db, type, map_idx, ring->fw_ring_id); 5466 /* If we have agg rings, post agg buffers first. */ 5467 if (!agg_rings) 5468 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 5469 bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id; 5470 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5471 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5472 u32 type2 = HWRM_RING_ALLOC_CMPL; 5473 struct bnxt_cp_ring_info *cpr2; 5474 5475 cpr2 = cpr->cp_ring_arr[BNXT_RX_HDL]; 5476 ring = &cpr2->cp_ring_struct; 5477 ring->handle = BNXT_RX_HDL; 5478 rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx); 5479 if (rc) 5480 goto err_out; 5481 bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx, 5482 ring->fw_ring_id); 5483 bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons); 5484 } 5485 } 5486 5487 if (agg_rings) { 5488 type = HWRM_RING_ALLOC_AGG; 5489 for (i = 0; i < bp->rx_nr_rings; i++) { 5490 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 5491 struct bnxt_ring_struct *ring = 5492 &rxr->rx_agg_ring_struct; 5493 u32 grp_idx = ring->grp_idx; 5494 u32 map_idx = grp_idx + bp->rx_nr_rings; 5495 5496 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 5497 if (rc) 5498 goto err_out; 5499 5500 bnxt_set_db(bp, &rxr->rx_agg_db, type, map_idx, 5501 ring->fw_ring_id); 5502 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 5503 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 5504 bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id; 5505 } 5506 } 5507 err_out: 5508 return rc; 5509 } 5510 5511 static int hwrm_ring_free_send_msg(struct bnxt *bp, 5512 struct bnxt_ring_struct *ring, 5513 u32 ring_type, int cmpl_ring_id) 5514 { 5515 int rc; 5516 struct hwrm_ring_free_input req = {0}; 5517 struct hwrm_ring_free_output *resp = bp->hwrm_cmd_resp_addr; 5518 u16 error_code; 5519 5520 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) 5521 return 0; 5522 5523 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_FREE, cmpl_ring_id, -1); 5524 req.ring_type = ring_type; 5525 req.ring_id = cpu_to_le16(ring->fw_ring_id); 5526 5527 mutex_lock(&bp->hwrm_cmd_lock); 5528 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5529 error_code = le16_to_cpu(resp->error_code); 5530 mutex_unlock(&bp->hwrm_cmd_lock); 5531 5532 if (rc || error_code) { 5533 netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n", 5534 ring_type, rc, error_code); 5535 return -EIO; 5536 } 5537 return 0; 5538 } 5539 5540 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path) 5541 { 5542 u32 type; 5543 int i; 5544 5545 if (!bp->bnapi) 5546 return; 5547 5548 for (i = 0; i < bp->tx_nr_rings; i++) { 5549 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 5550 struct bnxt_ring_struct *ring = &txr->tx_ring_struct; 5551 5552 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 5553 u32 cmpl_ring_id = bnxt_cp_ring_for_tx(bp, txr); 5554 5555 hwrm_ring_free_send_msg(bp, ring, 5556 RING_FREE_REQ_RING_TYPE_TX, 5557 close_path ? cmpl_ring_id : 5558 INVALID_HW_RING_ID); 5559 ring->fw_ring_id = INVALID_HW_RING_ID; 5560 } 5561 } 5562 5563 for (i = 0; i < bp->rx_nr_rings; i++) { 5564 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 5565 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct; 5566 u32 grp_idx = rxr->bnapi->index; 5567 5568 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 5569 u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr); 5570 5571 hwrm_ring_free_send_msg(bp, ring, 5572 RING_FREE_REQ_RING_TYPE_RX, 5573 close_path ? cmpl_ring_id : 5574 INVALID_HW_RING_ID); 5575 ring->fw_ring_id = INVALID_HW_RING_ID; 5576 bp->grp_info[grp_idx].rx_fw_ring_id = 5577 INVALID_HW_RING_ID; 5578 } 5579 } 5580 5581 if (bp->flags & BNXT_FLAG_CHIP_P5) 5582 type = RING_FREE_REQ_RING_TYPE_RX_AGG; 5583 else 5584 type = RING_FREE_REQ_RING_TYPE_RX; 5585 for (i = 0; i < bp->rx_nr_rings; i++) { 5586 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 5587 struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct; 5588 u32 grp_idx = rxr->bnapi->index; 5589 5590 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 5591 u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr); 5592 5593 hwrm_ring_free_send_msg(bp, ring, type, 5594 close_path ? cmpl_ring_id : 5595 INVALID_HW_RING_ID); 5596 ring->fw_ring_id = INVALID_HW_RING_ID; 5597 bp->grp_info[grp_idx].agg_fw_ring_id = 5598 INVALID_HW_RING_ID; 5599 } 5600 } 5601 5602 /* The completion rings are about to be freed. After that the 5603 * IRQ doorbell will not work anymore. So we need to disable 5604 * IRQ here. 5605 */ 5606 bnxt_disable_int_sync(bp); 5607 5608 if (bp->flags & BNXT_FLAG_CHIP_P5) 5609 type = RING_FREE_REQ_RING_TYPE_NQ; 5610 else 5611 type = RING_FREE_REQ_RING_TYPE_L2_CMPL; 5612 for (i = 0; i < bp->cp_nr_rings; i++) { 5613 struct bnxt_napi *bnapi = bp->bnapi[i]; 5614 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5615 struct bnxt_ring_struct *ring; 5616 int j; 5617 5618 for (j = 0; j < 2; j++) { 5619 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j]; 5620 5621 if (cpr2) { 5622 ring = &cpr2->cp_ring_struct; 5623 if (ring->fw_ring_id == INVALID_HW_RING_ID) 5624 continue; 5625 hwrm_ring_free_send_msg(bp, ring, 5626 RING_FREE_REQ_RING_TYPE_L2_CMPL, 5627 INVALID_HW_RING_ID); 5628 ring->fw_ring_id = INVALID_HW_RING_ID; 5629 } 5630 } 5631 ring = &cpr->cp_ring_struct; 5632 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 5633 hwrm_ring_free_send_msg(bp, ring, type, 5634 INVALID_HW_RING_ID); 5635 ring->fw_ring_id = INVALID_HW_RING_ID; 5636 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID; 5637 } 5638 } 5639 } 5640 5641 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 5642 bool shared); 5643 5644 static int bnxt_hwrm_get_rings(struct bnxt *bp) 5645 { 5646 struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr; 5647 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 5648 struct hwrm_func_qcfg_input req = {0}; 5649 int rc; 5650 5651 if (bp->hwrm_spec_code < 0x10601) 5652 return 0; 5653 5654 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1); 5655 req.fid = cpu_to_le16(0xffff); 5656 mutex_lock(&bp->hwrm_cmd_lock); 5657 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5658 if (rc) { 5659 mutex_unlock(&bp->hwrm_cmd_lock); 5660 return rc; 5661 } 5662 5663 hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings); 5664 if (BNXT_NEW_RM(bp)) { 5665 u16 cp, stats; 5666 5667 hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings); 5668 hw_resc->resv_hw_ring_grps = 5669 le32_to_cpu(resp->alloc_hw_ring_grps); 5670 hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics); 5671 cp = le16_to_cpu(resp->alloc_cmpl_rings); 5672 stats = le16_to_cpu(resp->alloc_stat_ctx); 5673 hw_resc->resv_irqs = cp; 5674 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5675 int rx = hw_resc->resv_rx_rings; 5676 int tx = hw_resc->resv_tx_rings; 5677 5678 if (bp->flags & BNXT_FLAG_AGG_RINGS) 5679 rx >>= 1; 5680 if (cp < (rx + tx)) { 5681 bnxt_trim_rings(bp, &rx, &tx, cp, false); 5682 if (bp->flags & BNXT_FLAG_AGG_RINGS) 5683 rx <<= 1; 5684 hw_resc->resv_rx_rings = rx; 5685 hw_resc->resv_tx_rings = tx; 5686 } 5687 hw_resc->resv_irqs = le16_to_cpu(resp->alloc_msix); 5688 hw_resc->resv_hw_ring_grps = rx; 5689 } 5690 hw_resc->resv_cp_rings = cp; 5691 hw_resc->resv_stat_ctxs = stats; 5692 } 5693 mutex_unlock(&bp->hwrm_cmd_lock); 5694 return 0; 5695 } 5696 5697 /* Caller must hold bp->hwrm_cmd_lock */ 5698 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings) 5699 { 5700 struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr; 5701 struct hwrm_func_qcfg_input req = {0}; 5702 int rc; 5703 5704 if (bp->hwrm_spec_code < 0x10601) 5705 return 0; 5706 5707 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1); 5708 req.fid = cpu_to_le16(fid); 5709 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5710 if (!rc) 5711 *tx_rings = le16_to_cpu(resp->alloc_tx_rings); 5712 5713 return rc; 5714 } 5715 5716 static bool bnxt_rfs_supported(struct bnxt *bp); 5717 5718 static void 5719 __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, struct hwrm_func_cfg_input *req, 5720 int tx_rings, int rx_rings, int ring_grps, 5721 int cp_rings, int stats, int vnics) 5722 { 5723 u32 enables = 0; 5724 5725 bnxt_hwrm_cmd_hdr_init(bp, req, HWRM_FUNC_CFG, -1, -1); 5726 req->fid = cpu_to_le16(0xffff); 5727 enables |= tx_rings ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0; 5728 req->num_tx_rings = cpu_to_le16(tx_rings); 5729 if (BNXT_NEW_RM(bp)) { 5730 enables |= rx_rings ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0; 5731 enables |= stats ? FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0; 5732 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5733 enables |= cp_rings ? FUNC_CFG_REQ_ENABLES_NUM_MSIX : 0; 5734 enables |= tx_rings + ring_grps ? 5735 FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 5736 enables |= rx_rings ? 5737 FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; 5738 } else { 5739 enables |= cp_rings ? 5740 FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 5741 enables |= ring_grps ? 5742 FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS | 5743 FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; 5744 } 5745 enables |= vnics ? FUNC_CFG_REQ_ENABLES_NUM_VNICS : 0; 5746 5747 req->num_rx_rings = cpu_to_le16(rx_rings); 5748 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5749 req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps); 5750 req->num_msix = cpu_to_le16(cp_rings); 5751 req->num_rsscos_ctxs = 5752 cpu_to_le16(DIV_ROUND_UP(ring_grps, 64)); 5753 } else { 5754 req->num_cmpl_rings = cpu_to_le16(cp_rings); 5755 req->num_hw_ring_grps = cpu_to_le16(ring_grps); 5756 req->num_rsscos_ctxs = cpu_to_le16(1); 5757 if (!(bp->flags & BNXT_FLAG_NEW_RSS_CAP) && 5758 bnxt_rfs_supported(bp)) 5759 req->num_rsscos_ctxs = 5760 cpu_to_le16(ring_grps + 1); 5761 } 5762 req->num_stat_ctxs = cpu_to_le16(stats); 5763 req->num_vnics = cpu_to_le16(vnics); 5764 } 5765 req->enables = cpu_to_le32(enables); 5766 } 5767 5768 static void 5769 __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, 5770 struct hwrm_func_vf_cfg_input *req, int tx_rings, 5771 int rx_rings, int ring_grps, int cp_rings, 5772 int stats, int vnics) 5773 { 5774 u32 enables = 0; 5775 5776 bnxt_hwrm_cmd_hdr_init(bp, req, HWRM_FUNC_VF_CFG, -1, -1); 5777 enables |= tx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0; 5778 enables |= rx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS | 5779 FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; 5780 enables |= stats ? FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0; 5781 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5782 enables |= tx_rings + ring_grps ? 5783 FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 5784 } else { 5785 enables |= cp_rings ? 5786 FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 5787 enables |= ring_grps ? 5788 FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0; 5789 } 5790 enables |= vnics ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0; 5791 enables |= FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS; 5792 5793 req->num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX); 5794 req->num_tx_rings = cpu_to_le16(tx_rings); 5795 req->num_rx_rings = cpu_to_le16(rx_rings); 5796 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5797 req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps); 5798 req->num_rsscos_ctxs = cpu_to_le16(DIV_ROUND_UP(ring_grps, 64)); 5799 } else { 5800 req->num_cmpl_rings = cpu_to_le16(cp_rings); 5801 req->num_hw_ring_grps = cpu_to_le16(ring_grps); 5802 req->num_rsscos_ctxs = cpu_to_le16(BNXT_VF_MAX_RSS_CTX); 5803 } 5804 req->num_stat_ctxs = cpu_to_le16(stats); 5805 req->num_vnics = cpu_to_le16(vnics); 5806 5807 req->enables = cpu_to_le32(enables); 5808 } 5809 5810 static int 5811 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 5812 int ring_grps, int cp_rings, int stats, int vnics) 5813 { 5814 struct hwrm_func_cfg_input req = {0}; 5815 int rc; 5816 5817 __bnxt_hwrm_reserve_pf_rings(bp, &req, tx_rings, rx_rings, ring_grps, 5818 cp_rings, stats, vnics); 5819 if (!req.enables) 5820 return 0; 5821 5822 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5823 if (rc) 5824 return rc; 5825 5826 if (bp->hwrm_spec_code < 0x10601) 5827 bp->hw_resc.resv_tx_rings = tx_rings; 5828 5829 return bnxt_hwrm_get_rings(bp); 5830 } 5831 5832 static int 5833 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 5834 int ring_grps, int cp_rings, int stats, int vnics) 5835 { 5836 struct hwrm_func_vf_cfg_input req = {0}; 5837 int rc; 5838 5839 if (!BNXT_NEW_RM(bp)) { 5840 bp->hw_resc.resv_tx_rings = tx_rings; 5841 return 0; 5842 } 5843 5844 __bnxt_hwrm_reserve_vf_rings(bp, &req, tx_rings, rx_rings, ring_grps, 5845 cp_rings, stats, vnics); 5846 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5847 if (rc) 5848 return rc; 5849 5850 return bnxt_hwrm_get_rings(bp); 5851 } 5852 5853 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, int tx, int rx, int grp, 5854 int cp, int stat, int vnic) 5855 { 5856 if (BNXT_PF(bp)) 5857 return bnxt_hwrm_reserve_pf_rings(bp, tx, rx, grp, cp, stat, 5858 vnic); 5859 else 5860 return bnxt_hwrm_reserve_vf_rings(bp, tx, rx, grp, cp, stat, 5861 vnic); 5862 } 5863 5864 int bnxt_nq_rings_in_use(struct bnxt *bp) 5865 { 5866 int cp = bp->cp_nr_rings; 5867 int ulp_msix, ulp_base; 5868 5869 ulp_msix = bnxt_get_ulp_msix_num(bp); 5870 if (ulp_msix) { 5871 ulp_base = bnxt_get_ulp_msix_base(bp); 5872 cp += ulp_msix; 5873 if ((ulp_base + ulp_msix) > cp) 5874 cp = ulp_base + ulp_msix; 5875 } 5876 return cp; 5877 } 5878 5879 static int bnxt_cp_rings_in_use(struct bnxt *bp) 5880 { 5881 int cp; 5882 5883 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 5884 return bnxt_nq_rings_in_use(bp); 5885 5886 cp = bp->tx_nr_rings + bp->rx_nr_rings; 5887 return cp; 5888 } 5889 5890 static int bnxt_get_func_stat_ctxs(struct bnxt *bp) 5891 { 5892 int ulp_stat = bnxt_get_ulp_stat_ctxs(bp); 5893 int cp = bp->cp_nr_rings; 5894 5895 if (!ulp_stat) 5896 return cp; 5897 5898 if (bnxt_nq_rings_in_use(bp) > cp + bnxt_get_ulp_msix_num(bp)) 5899 return bnxt_get_ulp_msix_base(bp) + ulp_stat; 5900 5901 return cp + ulp_stat; 5902 } 5903 5904 static bool bnxt_need_reserve_rings(struct bnxt *bp) 5905 { 5906 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 5907 int cp = bnxt_cp_rings_in_use(bp); 5908 int nq = bnxt_nq_rings_in_use(bp); 5909 int rx = bp->rx_nr_rings, stat; 5910 int vnic = 1, grp = rx; 5911 5912 if (bp->hwrm_spec_code < 0x10601) 5913 return false; 5914 5915 if (hw_resc->resv_tx_rings != bp->tx_nr_rings) 5916 return true; 5917 5918 if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5)) 5919 vnic = rx + 1; 5920 if (bp->flags & BNXT_FLAG_AGG_RINGS) 5921 rx <<= 1; 5922 stat = bnxt_get_func_stat_ctxs(bp); 5923 if (BNXT_NEW_RM(bp) && 5924 (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp || 5925 hw_resc->resv_vnics != vnic || hw_resc->resv_stat_ctxs != stat || 5926 (hw_resc->resv_hw_ring_grps != grp && 5927 !(bp->flags & BNXT_FLAG_CHIP_P5)))) 5928 return true; 5929 if ((bp->flags & BNXT_FLAG_CHIP_P5) && BNXT_PF(bp) && 5930 hw_resc->resv_irqs != nq) 5931 return true; 5932 return false; 5933 } 5934 5935 static int __bnxt_reserve_rings(struct bnxt *bp) 5936 { 5937 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 5938 int cp = bnxt_nq_rings_in_use(bp); 5939 int tx = bp->tx_nr_rings; 5940 int rx = bp->rx_nr_rings; 5941 int grp, rx_rings, rc; 5942 int vnic = 1, stat; 5943 bool sh = false; 5944 5945 if (!bnxt_need_reserve_rings(bp)) 5946 return 0; 5947 5948 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 5949 sh = true; 5950 if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5)) 5951 vnic = rx + 1; 5952 if (bp->flags & BNXT_FLAG_AGG_RINGS) 5953 rx <<= 1; 5954 grp = bp->rx_nr_rings; 5955 stat = bnxt_get_func_stat_ctxs(bp); 5956 5957 rc = bnxt_hwrm_reserve_rings(bp, tx, rx, grp, cp, stat, vnic); 5958 if (rc) 5959 return rc; 5960 5961 tx = hw_resc->resv_tx_rings; 5962 if (BNXT_NEW_RM(bp)) { 5963 rx = hw_resc->resv_rx_rings; 5964 cp = hw_resc->resv_irqs; 5965 grp = hw_resc->resv_hw_ring_grps; 5966 vnic = hw_resc->resv_vnics; 5967 stat = hw_resc->resv_stat_ctxs; 5968 } 5969 5970 rx_rings = rx; 5971 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 5972 if (rx >= 2) { 5973 rx_rings = rx >> 1; 5974 } else { 5975 if (netif_running(bp->dev)) 5976 return -ENOMEM; 5977 5978 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 5979 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 5980 bp->dev->hw_features &= ~NETIF_F_LRO; 5981 bp->dev->features &= ~NETIF_F_LRO; 5982 bnxt_set_ring_params(bp); 5983 } 5984 } 5985 rx_rings = min_t(int, rx_rings, grp); 5986 cp = min_t(int, cp, bp->cp_nr_rings); 5987 if (stat > bnxt_get_ulp_stat_ctxs(bp)) 5988 stat -= bnxt_get_ulp_stat_ctxs(bp); 5989 cp = min_t(int, cp, stat); 5990 rc = bnxt_trim_rings(bp, &rx_rings, &tx, cp, sh); 5991 if (bp->flags & BNXT_FLAG_AGG_RINGS) 5992 rx = rx_rings << 1; 5993 cp = sh ? max_t(int, tx, rx_rings) : tx + rx_rings; 5994 bp->tx_nr_rings = tx; 5995 bp->rx_nr_rings = rx_rings; 5996 bp->cp_nr_rings = cp; 5997 5998 if (!tx || !rx || !cp || !grp || !vnic || !stat) 5999 return -ENOMEM; 6000 6001 return rc; 6002 } 6003 6004 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6005 int ring_grps, int cp_rings, int stats, 6006 int vnics) 6007 { 6008 struct hwrm_func_vf_cfg_input req = {0}; 6009 u32 flags; 6010 6011 if (!BNXT_NEW_RM(bp)) 6012 return 0; 6013 6014 __bnxt_hwrm_reserve_vf_rings(bp, &req, tx_rings, rx_rings, ring_grps, 6015 cp_rings, stats, vnics); 6016 flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST | 6017 FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST | 6018 FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST | 6019 FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST | 6020 FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST | 6021 FUNC_VF_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST; 6022 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 6023 flags |= FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST; 6024 6025 req.flags = cpu_to_le32(flags); 6026 return hwrm_send_message_silent(bp, &req, sizeof(req), 6027 HWRM_CMD_TIMEOUT); 6028 } 6029 6030 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6031 int ring_grps, int cp_rings, int stats, 6032 int vnics) 6033 { 6034 struct hwrm_func_cfg_input req = {0}; 6035 u32 flags; 6036 6037 __bnxt_hwrm_reserve_pf_rings(bp, &req, tx_rings, rx_rings, ring_grps, 6038 cp_rings, stats, vnics); 6039 flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST; 6040 if (BNXT_NEW_RM(bp)) { 6041 flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST | 6042 FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST | 6043 FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST | 6044 FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST; 6045 if (bp->flags & BNXT_FLAG_CHIP_P5) 6046 flags |= FUNC_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST | 6047 FUNC_CFG_REQ_FLAGS_NQ_ASSETS_TEST; 6048 else 6049 flags |= FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST; 6050 } 6051 6052 req.flags = cpu_to_le32(flags); 6053 return hwrm_send_message_silent(bp, &req, sizeof(req), 6054 HWRM_CMD_TIMEOUT); 6055 } 6056 6057 static int bnxt_hwrm_check_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6058 int ring_grps, int cp_rings, int stats, 6059 int vnics) 6060 { 6061 if (bp->hwrm_spec_code < 0x10801) 6062 return 0; 6063 6064 if (BNXT_PF(bp)) 6065 return bnxt_hwrm_check_pf_rings(bp, tx_rings, rx_rings, 6066 ring_grps, cp_rings, stats, 6067 vnics); 6068 6069 return bnxt_hwrm_check_vf_rings(bp, tx_rings, rx_rings, ring_grps, 6070 cp_rings, stats, vnics); 6071 } 6072 6073 static void bnxt_hwrm_coal_params_qcaps(struct bnxt *bp) 6074 { 6075 struct hwrm_ring_aggint_qcaps_output *resp = bp->hwrm_cmd_resp_addr; 6076 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 6077 struct hwrm_ring_aggint_qcaps_input req = {0}; 6078 int rc; 6079 6080 coal_cap->cmpl_params = BNXT_LEGACY_COAL_CMPL_PARAMS; 6081 coal_cap->num_cmpl_dma_aggr_max = 63; 6082 coal_cap->num_cmpl_dma_aggr_during_int_max = 63; 6083 coal_cap->cmpl_aggr_dma_tmr_max = 65535; 6084 coal_cap->cmpl_aggr_dma_tmr_during_int_max = 65535; 6085 coal_cap->int_lat_tmr_min_max = 65535; 6086 coal_cap->int_lat_tmr_max_max = 65535; 6087 coal_cap->num_cmpl_aggr_int_max = 65535; 6088 coal_cap->timer_units = 80; 6089 6090 if (bp->hwrm_spec_code < 0x10902) 6091 return; 6092 6093 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_AGGINT_QCAPS, -1, -1); 6094 mutex_lock(&bp->hwrm_cmd_lock); 6095 rc = _hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 6096 if (!rc) { 6097 coal_cap->cmpl_params = le32_to_cpu(resp->cmpl_params); 6098 coal_cap->nq_params = le32_to_cpu(resp->nq_params); 6099 coal_cap->num_cmpl_dma_aggr_max = 6100 le16_to_cpu(resp->num_cmpl_dma_aggr_max); 6101 coal_cap->num_cmpl_dma_aggr_during_int_max = 6102 le16_to_cpu(resp->num_cmpl_dma_aggr_during_int_max); 6103 coal_cap->cmpl_aggr_dma_tmr_max = 6104 le16_to_cpu(resp->cmpl_aggr_dma_tmr_max); 6105 coal_cap->cmpl_aggr_dma_tmr_during_int_max = 6106 le16_to_cpu(resp->cmpl_aggr_dma_tmr_during_int_max); 6107 coal_cap->int_lat_tmr_min_max = 6108 le16_to_cpu(resp->int_lat_tmr_min_max); 6109 coal_cap->int_lat_tmr_max_max = 6110 le16_to_cpu(resp->int_lat_tmr_max_max); 6111 coal_cap->num_cmpl_aggr_int_max = 6112 le16_to_cpu(resp->num_cmpl_aggr_int_max); 6113 coal_cap->timer_units = le16_to_cpu(resp->timer_units); 6114 } 6115 mutex_unlock(&bp->hwrm_cmd_lock); 6116 } 6117 6118 static u16 bnxt_usec_to_coal_tmr(struct bnxt *bp, u16 usec) 6119 { 6120 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 6121 6122 return usec * 1000 / coal_cap->timer_units; 6123 } 6124 6125 static void bnxt_hwrm_set_coal_params(struct bnxt *bp, 6126 struct bnxt_coal *hw_coal, 6127 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req) 6128 { 6129 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 6130 u32 cmpl_params = coal_cap->cmpl_params; 6131 u16 val, tmr, max, flags = 0; 6132 6133 max = hw_coal->bufs_per_record * 128; 6134 if (hw_coal->budget) 6135 max = hw_coal->bufs_per_record * hw_coal->budget; 6136 max = min_t(u16, max, coal_cap->num_cmpl_aggr_int_max); 6137 6138 val = clamp_t(u16, hw_coal->coal_bufs, 1, max); 6139 req->num_cmpl_aggr_int = cpu_to_le16(val); 6140 6141 val = min_t(u16, val, coal_cap->num_cmpl_dma_aggr_max); 6142 req->num_cmpl_dma_aggr = cpu_to_le16(val); 6143 6144 val = clamp_t(u16, hw_coal->coal_bufs_irq, 1, 6145 coal_cap->num_cmpl_dma_aggr_during_int_max); 6146 req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val); 6147 6148 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks); 6149 tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_max_max); 6150 req->int_lat_tmr_max = cpu_to_le16(tmr); 6151 6152 /* min timer set to 1/2 of interrupt timer */ 6153 if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_INT_LAT_TMR_MIN) { 6154 val = tmr / 2; 6155 val = clamp_t(u16, val, 1, coal_cap->int_lat_tmr_min_max); 6156 req->int_lat_tmr_min = cpu_to_le16(val); 6157 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE); 6158 } 6159 6160 /* buf timer set to 1/4 of interrupt timer */ 6161 val = clamp_t(u16, tmr / 4, 1, coal_cap->cmpl_aggr_dma_tmr_max); 6162 req->cmpl_aggr_dma_tmr = cpu_to_le16(val); 6163 6164 if (cmpl_params & 6165 RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_NUM_CMPL_DMA_AGGR_DURING_INT) { 6166 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks_irq); 6167 val = clamp_t(u16, tmr, 1, 6168 coal_cap->cmpl_aggr_dma_tmr_during_int_max); 6169 req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(val); 6170 req->enables |= 6171 cpu_to_le16(BNXT_COAL_CMPL_AGGR_TMR_DURING_INT_ENABLE); 6172 } 6173 6174 if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_TIMER_RESET) 6175 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET; 6176 if ((cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_RING_IDLE) && 6177 hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh) 6178 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE; 6179 req->flags = cpu_to_le16(flags); 6180 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_ENABLES); 6181 } 6182 6183 /* Caller holds bp->hwrm_cmd_lock */ 6184 static int __bnxt_hwrm_set_coal_nq(struct bnxt *bp, struct bnxt_napi *bnapi, 6185 struct bnxt_coal *hw_coal) 6186 { 6187 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req = {0}; 6188 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 6189 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 6190 u32 nq_params = coal_cap->nq_params; 6191 u16 tmr; 6192 6193 if (!(nq_params & RING_AGGINT_QCAPS_RESP_NQ_PARAMS_INT_LAT_TMR_MIN)) 6194 return 0; 6195 6196 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, 6197 -1, -1); 6198 req.ring_id = cpu_to_le16(cpr->cp_ring_struct.fw_ring_id); 6199 req.flags = 6200 cpu_to_le16(RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_IS_NQ); 6201 6202 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks) / 2; 6203 tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_min_max); 6204 req.int_lat_tmr_min = cpu_to_le16(tmr); 6205 req.enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE); 6206 return _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 6207 } 6208 6209 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi) 6210 { 6211 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0}; 6212 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 6213 struct bnxt_coal coal; 6214 6215 /* Tick values in micro seconds. 6216 * 1 coal_buf x bufs_per_record = 1 completion record. 6217 */ 6218 memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal)); 6219 6220 coal.coal_ticks = cpr->rx_ring_coal.coal_ticks; 6221 coal.coal_bufs = cpr->rx_ring_coal.coal_bufs; 6222 6223 if (!bnapi->rx_ring) 6224 return -ENODEV; 6225 6226 bnxt_hwrm_cmd_hdr_init(bp, &req_rx, 6227 HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1); 6228 6229 bnxt_hwrm_set_coal_params(bp, &coal, &req_rx); 6230 6231 req_rx.ring_id = cpu_to_le16(bnxt_cp_ring_for_rx(bp, bnapi->rx_ring)); 6232 6233 return hwrm_send_message(bp, &req_rx, sizeof(req_rx), 6234 HWRM_CMD_TIMEOUT); 6235 } 6236 6237 int bnxt_hwrm_set_coal(struct bnxt *bp) 6238 { 6239 int i, rc = 0; 6240 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0}, 6241 req_tx = {0}, *req; 6242 6243 bnxt_hwrm_cmd_hdr_init(bp, &req_rx, 6244 HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1); 6245 bnxt_hwrm_cmd_hdr_init(bp, &req_tx, 6246 HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1); 6247 6248 bnxt_hwrm_set_coal_params(bp, &bp->rx_coal, &req_rx); 6249 bnxt_hwrm_set_coal_params(bp, &bp->tx_coal, &req_tx); 6250 6251 mutex_lock(&bp->hwrm_cmd_lock); 6252 for (i = 0; i < bp->cp_nr_rings; i++) { 6253 struct bnxt_napi *bnapi = bp->bnapi[i]; 6254 struct bnxt_coal *hw_coal; 6255 u16 ring_id; 6256 6257 req = &req_rx; 6258 if (!bnapi->rx_ring) { 6259 ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring); 6260 req = &req_tx; 6261 } else { 6262 ring_id = bnxt_cp_ring_for_rx(bp, bnapi->rx_ring); 6263 } 6264 req->ring_id = cpu_to_le16(ring_id); 6265 6266 rc = _hwrm_send_message(bp, req, sizeof(*req), 6267 HWRM_CMD_TIMEOUT); 6268 if (rc) 6269 break; 6270 6271 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 6272 continue; 6273 6274 if (bnapi->rx_ring && bnapi->tx_ring) { 6275 req = &req_tx; 6276 ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring); 6277 req->ring_id = cpu_to_le16(ring_id); 6278 rc = _hwrm_send_message(bp, req, sizeof(*req), 6279 HWRM_CMD_TIMEOUT); 6280 if (rc) 6281 break; 6282 } 6283 if (bnapi->rx_ring) 6284 hw_coal = &bp->rx_coal; 6285 else 6286 hw_coal = &bp->tx_coal; 6287 __bnxt_hwrm_set_coal_nq(bp, bnapi, hw_coal); 6288 } 6289 mutex_unlock(&bp->hwrm_cmd_lock); 6290 return rc; 6291 } 6292 6293 static void bnxt_hwrm_stat_ctx_free(struct bnxt *bp) 6294 { 6295 struct hwrm_stat_ctx_free_input req = {0}; 6296 int i; 6297 6298 if (!bp->bnapi) 6299 return; 6300 6301 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 6302 return; 6303 6304 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_FREE, -1, -1); 6305 6306 mutex_lock(&bp->hwrm_cmd_lock); 6307 for (i = 0; i < bp->cp_nr_rings; i++) { 6308 struct bnxt_napi *bnapi = bp->bnapi[i]; 6309 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 6310 6311 if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) { 6312 req.stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id); 6313 6314 _hwrm_send_message(bp, &req, sizeof(req), 6315 HWRM_CMD_TIMEOUT); 6316 6317 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID; 6318 } 6319 } 6320 mutex_unlock(&bp->hwrm_cmd_lock); 6321 } 6322 6323 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp) 6324 { 6325 int rc = 0, i; 6326 struct hwrm_stat_ctx_alloc_input req = {0}; 6327 struct hwrm_stat_ctx_alloc_output *resp = bp->hwrm_cmd_resp_addr; 6328 6329 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 6330 return 0; 6331 6332 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_ALLOC, -1, -1); 6333 6334 req.stats_dma_length = cpu_to_le16(bp->hw_ring_stats_size); 6335 req.update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000); 6336 6337 mutex_lock(&bp->hwrm_cmd_lock); 6338 for (i = 0; i < bp->cp_nr_rings; i++) { 6339 struct bnxt_napi *bnapi = bp->bnapi[i]; 6340 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 6341 6342 req.stats_dma_addr = cpu_to_le64(cpr->hw_stats_map); 6343 6344 rc = _hwrm_send_message(bp, &req, sizeof(req), 6345 HWRM_CMD_TIMEOUT); 6346 if (rc) 6347 break; 6348 6349 cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id); 6350 6351 bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id; 6352 } 6353 mutex_unlock(&bp->hwrm_cmd_lock); 6354 return rc; 6355 } 6356 6357 static int bnxt_hwrm_func_qcfg(struct bnxt *bp) 6358 { 6359 struct hwrm_func_qcfg_input req = {0}; 6360 struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr; 6361 u32 min_db_offset = 0; 6362 u16 flags; 6363 int rc; 6364 6365 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1); 6366 req.fid = cpu_to_le16(0xffff); 6367 mutex_lock(&bp->hwrm_cmd_lock); 6368 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 6369 if (rc) 6370 goto func_qcfg_exit; 6371 6372 #ifdef CONFIG_BNXT_SRIOV 6373 if (BNXT_VF(bp)) { 6374 struct bnxt_vf_info *vf = &bp->vf; 6375 6376 vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK; 6377 } else { 6378 bp->pf.registered_vfs = le16_to_cpu(resp->registered_vfs); 6379 } 6380 #endif 6381 flags = le16_to_cpu(resp->flags); 6382 if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED | 6383 FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) { 6384 bp->fw_cap |= BNXT_FW_CAP_LLDP_AGENT; 6385 if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED) 6386 bp->fw_cap |= BNXT_FW_CAP_DCBX_AGENT; 6387 } 6388 if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST)) 6389 bp->flags |= BNXT_FLAG_MULTI_HOST; 6390 6391 switch (resp->port_partition_type) { 6392 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0: 6393 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5: 6394 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0: 6395 bp->port_partition_type = resp->port_partition_type; 6396 break; 6397 } 6398 if (bp->hwrm_spec_code < 0x10707 || 6399 resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB) 6400 bp->br_mode = BRIDGE_MODE_VEB; 6401 else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA) 6402 bp->br_mode = BRIDGE_MODE_VEPA; 6403 else 6404 bp->br_mode = BRIDGE_MODE_UNDEF; 6405 6406 bp->max_mtu = le16_to_cpu(resp->max_mtu_configured); 6407 if (!bp->max_mtu) 6408 bp->max_mtu = BNXT_MAX_MTU; 6409 6410 if (bp->db_size) 6411 goto func_qcfg_exit; 6412 6413 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6414 if (BNXT_PF(bp)) 6415 min_db_offset = DB_PF_OFFSET_P5; 6416 else 6417 min_db_offset = DB_VF_OFFSET_P5; 6418 } 6419 bp->db_size = PAGE_ALIGN(le16_to_cpu(resp->l2_doorbell_bar_size_kb) * 6420 1024); 6421 if (!bp->db_size || bp->db_size > pci_resource_len(bp->pdev, 2) || 6422 bp->db_size <= min_db_offset) 6423 bp->db_size = pci_resource_len(bp->pdev, 2); 6424 6425 func_qcfg_exit: 6426 mutex_unlock(&bp->hwrm_cmd_lock); 6427 return rc; 6428 } 6429 6430 static int bnxt_hwrm_func_backing_store_qcaps(struct bnxt *bp) 6431 { 6432 struct hwrm_func_backing_store_qcaps_input req = {0}; 6433 struct hwrm_func_backing_store_qcaps_output *resp = 6434 bp->hwrm_cmd_resp_addr; 6435 int rc; 6436 6437 if (bp->hwrm_spec_code < 0x10902 || BNXT_VF(bp) || bp->ctx) 6438 return 0; 6439 6440 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_BACKING_STORE_QCAPS, -1, -1); 6441 mutex_lock(&bp->hwrm_cmd_lock); 6442 rc = _hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 6443 if (!rc) { 6444 struct bnxt_ctx_pg_info *ctx_pg; 6445 struct bnxt_ctx_mem_info *ctx; 6446 int i, tqm_rings; 6447 6448 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 6449 if (!ctx) { 6450 rc = -ENOMEM; 6451 goto ctx_err; 6452 } 6453 ctx->qp_max_entries = le32_to_cpu(resp->qp_max_entries); 6454 ctx->qp_min_qp1_entries = le16_to_cpu(resp->qp_min_qp1_entries); 6455 ctx->qp_max_l2_entries = le16_to_cpu(resp->qp_max_l2_entries); 6456 ctx->qp_entry_size = le16_to_cpu(resp->qp_entry_size); 6457 ctx->srq_max_l2_entries = le16_to_cpu(resp->srq_max_l2_entries); 6458 ctx->srq_max_entries = le32_to_cpu(resp->srq_max_entries); 6459 ctx->srq_entry_size = le16_to_cpu(resp->srq_entry_size); 6460 ctx->cq_max_l2_entries = le16_to_cpu(resp->cq_max_l2_entries); 6461 ctx->cq_max_entries = le32_to_cpu(resp->cq_max_entries); 6462 ctx->cq_entry_size = le16_to_cpu(resp->cq_entry_size); 6463 ctx->vnic_max_vnic_entries = 6464 le16_to_cpu(resp->vnic_max_vnic_entries); 6465 ctx->vnic_max_ring_table_entries = 6466 le16_to_cpu(resp->vnic_max_ring_table_entries); 6467 ctx->vnic_entry_size = le16_to_cpu(resp->vnic_entry_size); 6468 ctx->stat_max_entries = le32_to_cpu(resp->stat_max_entries); 6469 ctx->stat_entry_size = le16_to_cpu(resp->stat_entry_size); 6470 ctx->tqm_entry_size = le16_to_cpu(resp->tqm_entry_size); 6471 ctx->tqm_min_entries_per_ring = 6472 le32_to_cpu(resp->tqm_min_entries_per_ring); 6473 ctx->tqm_max_entries_per_ring = 6474 le32_to_cpu(resp->tqm_max_entries_per_ring); 6475 ctx->tqm_entries_multiple = resp->tqm_entries_multiple; 6476 if (!ctx->tqm_entries_multiple) 6477 ctx->tqm_entries_multiple = 1; 6478 ctx->mrav_max_entries = le32_to_cpu(resp->mrav_max_entries); 6479 ctx->mrav_entry_size = le16_to_cpu(resp->mrav_entry_size); 6480 ctx->mrav_num_entries_units = 6481 le16_to_cpu(resp->mrav_num_entries_units); 6482 ctx->tim_entry_size = le16_to_cpu(resp->tim_entry_size); 6483 ctx->tim_max_entries = le32_to_cpu(resp->tim_max_entries); 6484 ctx->ctx_kind_initializer = resp->ctx_kind_initializer; 6485 ctx->tqm_fp_rings_count = resp->tqm_fp_rings_count; 6486 if (!ctx->tqm_fp_rings_count) 6487 ctx->tqm_fp_rings_count = bp->max_q; 6488 6489 tqm_rings = ctx->tqm_fp_rings_count + 1; 6490 ctx_pg = kcalloc(tqm_rings, sizeof(*ctx_pg), GFP_KERNEL); 6491 if (!ctx_pg) { 6492 kfree(ctx); 6493 rc = -ENOMEM; 6494 goto ctx_err; 6495 } 6496 for (i = 0; i < tqm_rings; i++, ctx_pg++) 6497 ctx->tqm_mem[i] = ctx_pg; 6498 bp->ctx = ctx; 6499 } else { 6500 rc = 0; 6501 } 6502 ctx_err: 6503 mutex_unlock(&bp->hwrm_cmd_lock); 6504 return rc; 6505 } 6506 6507 static void bnxt_hwrm_set_pg_attr(struct bnxt_ring_mem_info *rmem, u8 *pg_attr, 6508 __le64 *pg_dir) 6509 { 6510 u8 pg_size = 0; 6511 6512 if (BNXT_PAGE_SHIFT == 13) 6513 pg_size = 1 << 4; 6514 else if (BNXT_PAGE_SIZE == 16) 6515 pg_size = 2 << 4; 6516 6517 *pg_attr = pg_size; 6518 if (rmem->depth >= 1) { 6519 if (rmem->depth == 2) 6520 *pg_attr |= 2; 6521 else 6522 *pg_attr |= 1; 6523 *pg_dir = cpu_to_le64(rmem->pg_tbl_map); 6524 } else { 6525 *pg_dir = cpu_to_le64(rmem->dma_arr[0]); 6526 } 6527 } 6528 6529 #define FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES \ 6530 (FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP | \ 6531 FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ | \ 6532 FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ | \ 6533 FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC | \ 6534 FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) 6535 6536 static int bnxt_hwrm_func_backing_store_cfg(struct bnxt *bp, u32 enables) 6537 { 6538 struct hwrm_func_backing_store_cfg_input req = {0}; 6539 struct bnxt_ctx_mem_info *ctx = bp->ctx; 6540 struct bnxt_ctx_pg_info *ctx_pg; 6541 __le32 *num_entries; 6542 __le64 *pg_dir; 6543 u32 flags = 0; 6544 u8 *pg_attr; 6545 u32 ena; 6546 int i; 6547 6548 if (!ctx) 6549 return 0; 6550 6551 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_BACKING_STORE_CFG, -1, -1); 6552 req.enables = cpu_to_le32(enables); 6553 6554 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP) { 6555 ctx_pg = &ctx->qp_mem; 6556 req.qp_num_entries = cpu_to_le32(ctx_pg->entries); 6557 req.qp_num_qp1_entries = cpu_to_le16(ctx->qp_min_qp1_entries); 6558 req.qp_num_l2_entries = cpu_to_le16(ctx->qp_max_l2_entries); 6559 req.qp_entry_size = cpu_to_le16(ctx->qp_entry_size); 6560 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 6561 &req.qpc_pg_size_qpc_lvl, 6562 &req.qpc_page_dir); 6563 } 6564 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ) { 6565 ctx_pg = &ctx->srq_mem; 6566 req.srq_num_entries = cpu_to_le32(ctx_pg->entries); 6567 req.srq_num_l2_entries = cpu_to_le16(ctx->srq_max_l2_entries); 6568 req.srq_entry_size = cpu_to_le16(ctx->srq_entry_size); 6569 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 6570 &req.srq_pg_size_srq_lvl, 6571 &req.srq_page_dir); 6572 } 6573 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ) { 6574 ctx_pg = &ctx->cq_mem; 6575 req.cq_num_entries = cpu_to_le32(ctx_pg->entries); 6576 req.cq_num_l2_entries = cpu_to_le16(ctx->cq_max_l2_entries); 6577 req.cq_entry_size = cpu_to_le16(ctx->cq_entry_size); 6578 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, &req.cq_pg_size_cq_lvl, 6579 &req.cq_page_dir); 6580 } 6581 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC) { 6582 ctx_pg = &ctx->vnic_mem; 6583 req.vnic_num_vnic_entries = 6584 cpu_to_le16(ctx->vnic_max_vnic_entries); 6585 req.vnic_num_ring_table_entries = 6586 cpu_to_le16(ctx->vnic_max_ring_table_entries); 6587 req.vnic_entry_size = cpu_to_le16(ctx->vnic_entry_size); 6588 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 6589 &req.vnic_pg_size_vnic_lvl, 6590 &req.vnic_page_dir); 6591 } 6592 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) { 6593 ctx_pg = &ctx->stat_mem; 6594 req.stat_num_entries = cpu_to_le32(ctx->stat_max_entries); 6595 req.stat_entry_size = cpu_to_le16(ctx->stat_entry_size); 6596 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 6597 &req.stat_pg_size_stat_lvl, 6598 &req.stat_page_dir); 6599 } 6600 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV) { 6601 ctx_pg = &ctx->mrav_mem; 6602 req.mrav_num_entries = cpu_to_le32(ctx_pg->entries); 6603 if (ctx->mrav_num_entries_units) 6604 flags |= 6605 FUNC_BACKING_STORE_CFG_REQ_FLAGS_MRAV_RESERVATION_SPLIT; 6606 req.mrav_entry_size = cpu_to_le16(ctx->mrav_entry_size); 6607 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 6608 &req.mrav_pg_size_mrav_lvl, 6609 &req.mrav_page_dir); 6610 } 6611 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) { 6612 ctx_pg = &ctx->tim_mem; 6613 req.tim_num_entries = cpu_to_le32(ctx_pg->entries); 6614 req.tim_entry_size = cpu_to_le16(ctx->tim_entry_size); 6615 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 6616 &req.tim_pg_size_tim_lvl, 6617 &req.tim_page_dir); 6618 } 6619 for (i = 0, num_entries = &req.tqm_sp_num_entries, 6620 pg_attr = &req.tqm_sp_pg_size_tqm_sp_lvl, 6621 pg_dir = &req.tqm_sp_page_dir, 6622 ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP; 6623 i < 9; i++, num_entries++, pg_attr++, pg_dir++, ena <<= 1) { 6624 if (!(enables & ena)) 6625 continue; 6626 6627 req.tqm_entry_size = cpu_to_le16(ctx->tqm_entry_size); 6628 ctx_pg = ctx->tqm_mem[i]; 6629 *num_entries = cpu_to_le32(ctx_pg->entries); 6630 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, pg_attr, pg_dir); 6631 } 6632 req.flags = cpu_to_le32(flags); 6633 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 6634 } 6635 6636 static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp, 6637 struct bnxt_ctx_pg_info *ctx_pg) 6638 { 6639 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 6640 6641 rmem->page_size = BNXT_PAGE_SIZE; 6642 rmem->pg_arr = ctx_pg->ctx_pg_arr; 6643 rmem->dma_arr = ctx_pg->ctx_dma_arr; 6644 rmem->flags = BNXT_RMEM_VALID_PTE_FLAG; 6645 if (rmem->depth >= 1) 6646 rmem->flags |= BNXT_RMEM_USE_FULL_PAGE_FLAG; 6647 return bnxt_alloc_ring(bp, rmem); 6648 } 6649 6650 static int bnxt_alloc_ctx_pg_tbls(struct bnxt *bp, 6651 struct bnxt_ctx_pg_info *ctx_pg, u32 mem_size, 6652 u8 depth, bool use_init_val) 6653 { 6654 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 6655 int rc; 6656 6657 if (!mem_size) 6658 return -EINVAL; 6659 6660 ctx_pg->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE); 6661 if (ctx_pg->nr_pages > MAX_CTX_TOTAL_PAGES) { 6662 ctx_pg->nr_pages = 0; 6663 return -EINVAL; 6664 } 6665 if (ctx_pg->nr_pages > MAX_CTX_PAGES || depth > 1) { 6666 int nr_tbls, i; 6667 6668 rmem->depth = 2; 6669 ctx_pg->ctx_pg_tbl = kcalloc(MAX_CTX_PAGES, sizeof(ctx_pg), 6670 GFP_KERNEL); 6671 if (!ctx_pg->ctx_pg_tbl) 6672 return -ENOMEM; 6673 nr_tbls = DIV_ROUND_UP(ctx_pg->nr_pages, MAX_CTX_PAGES); 6674 rmem->nr_pages = nr_tbls; 6675 rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg); 6676 if (rc) 6677 return rc; 6678 for (i = 0; i < nr_tbls; i++) { 6679 struct bnxt_ctx_pg_info *pg_tbl; 6680 6681 pg_tbl = kzalloc(sizeof(*pg_tbl), GFP_KERNEL); 6682 if (!pg_tbl) 6683 return -ENOMEM; 6684 ctx_pg->ctx_pg_tbl[i] = pg_tbl; 6685 rmem = &pg_tbl->ring_mem; 6686 rmem->pg_tbl = ctx_pg->ctx_pg_arr[i]; 6687 rmem->pg_tbl_map = ctx_pg->ctx_dma_arr[i]; 6688 rmem->depth = 1; 6689 rmem->nr_pages = MAX_CTX_PAGES; 6690 if (use_init_val) 6691 rmem->init_val = bp->ctx->ctx_kind_initializer; 6692 if (i == (nr_tbls - 1)) { 6693 int rem = ctx_pg->nr_pages % MAX_CTX_PAGES; 6694 6695 if (rem) 6696 rmem->nr_pages = rem; 6697 } 6698 rc = bnxt_alloc_ctx_mem_blk(bp, pg_tbl); 6699 if (rc) 6700 break; 6701 } 6702 } else { 6703 rmem->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE); 6704 if (rmem->nr_pages > 1 || depth) 6705 rmem->depth = 1; 6706 if (use_init_val) 6707 rmem->init_val = bp->ctx->ctx_kind_initializer; 6708 rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg); 6709 } 6710 return rc; 6711 } 6712 6713 static void bnxt_free_ctx_pg_tbls(struct bnxt *bp, 6714 struct bnxt_ctx_pg_info *ctx_pg) 6715 { 6716 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 6717 6718 if (rmem->depth > 1 || ctx_pg->nr_pages > MAX_CTX_PAGES || 6719 ctx_pg->ctx_pg_tbl) { 6720 int i, nr_tbls = rmem->nr_pages; 6721 6722 for (i = 0; i < nr_tbls; i++) { 6723 struct bnxt_ctx_pg_info *pg_tbl; 6724 struct bnxt_ring_mem_info *rmem2; 6725 6726 pg_tbl = ctx_pg->ctx_pg_tbl[i]; 6727 if (!pg_tbl) 6728 continue; 6729 rmem2 = &pg_tbl->ring_mem; 6730 bnxt_free_ring(bp, rmem2); 6731 ctx_pg->ctx_pg_arr[i] = NULL; 6732 kfree(pg_tbl); 6733 ctx_pg->ctx_pg_tbl[i] = NULL; 6734 } 6735 kfree(ctx_pg->ctx_pg_tbl); 6736 ctx_pg->ctx_pg_tbl = NULL; 6737 } 6738 bnxt_free_ring(bp, rmem); 6739 ctx_pg->nr_pages = 0; 6740 } 6741 6742 static void bnxt_free_ctx_mem(struct bnxt *bp) 6743 { 6744 struct bnxt_ctx_mem_info *ctx = bp->ctx; 6745 int i; 6746 6747 if (!ctx) 6748 return; 6749 6750 if (ctx->tqm_mem[0]) { 6751 for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++) 6752 bnxt_free_ctx_pg_tbls(bp, ctx->tqm_mem[i]); 6753 kfree(ctx->tqm_mem[0]); 6754 ctx->tqm_mem[0] = NULL; 6755 } 6756 6757 bnxt_free_ctx_pg_tbls(bp, &ctx->tim_mem); 6758 bnxt_free_ctx_pg_tbls(bp, &ctx->mrav_mem); 6759 bnxt_free_ctx_pg_tbls(bp, &ctx->stat_mem); 6760 bnxt_free_ctx_pg_tbls(bp, &ctx->vnic_mem); 6761 bnxt_free_ctx_pg_tbls(bp, &ctx->cq_mem); 6762 bnxt_free_ctx_pg_tbls(bp, &ctx->srq_mem); 6763 bnxt_free_ctx_pg_tbls(bp, &ctx->qp_mem); 6764 ctx->flags &= ~BNXT_CTX_FLAG_INITED; 6765 } 6766 6767 static int bnxt_alloc_ctx_mem(struct bnxt *bp) 6768 { 6769 struct bnxt_ctx_pg_info *ctx_pg; 6770 struct bnxt_ctx_mem_info *ctx; 6771 u32 mem_size, ena, entries; 6772 u32 entries_sp, min; 6773 u32 num_mr, num_ah; 6774 u32 extra_srqs = 0; 6775 u32 extra_qps = 0; 6776 u8 pg_lvl = 1; 6777 int i, rc; 6778 6779 rc = bnxt_hwrm_func_backing_store_qcaps(bp); 6780 if (rc) { 6781 netdev_err(bp->dev, "Failed querying context mem capability, rc = %d.\n", 6782 rc); 6783 return rc; 6784 } 6785 ctx = bp->ctx; 6786 if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED)) 6787 return 0; 6788 6789 if ((bp->flags & BNXT_FLAG_ROCE_CAP) && !is_kdump_kernel()) { 6790 pg_lvl = 2; 6791 extra_qps = 65536; 6792 extra_srqs = 8192; 6793 } 6794 6795 ctx_pg = &ctx->qp_mem; 6796 ctx_pg->entries = ctx->qp_min_qp1_entries + ctx->qp_max_l2_entries + 6797 extra_qps; 6798 mem_size = ctx->qp_entry_size * ctx_pg->entries; 6799 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, true); 6800 if (rc) 6801 return rc; 6802 6803 ctx_pg = &ctx->srq_mem; 6804 ctx_pg->entries = ctx->srq_max_l2_entries + extra_srqs; 6805 mem_size = ctx->srq_entry_size * ctx_pg->entries; 6806 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, true); 6807 if (rc) 6808 return rc; 6809 6810 ctx_pg = &ctx->cq_mem; 6811 ctx_pg->entries = ctx->cq_max_l2_entries + extra_qps * 2; 6812 mem_size = ctx->cq_entry_size * ctx_pg->entries; 6813 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, true); 6814 if (rc) 6815 return rc; 6816 6817 ctx_pg = &ctx->vnic_mem; 6818 ctx_pg->entries = ctx->vnic_max_vnic_entries + 6819 ctx->vnic_max_ring_table_entries; 6820 mem_size = ctx->vnic_entry_size * ctx_pg->entries; 6821 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, true); 6822 if (rc) 6823 return rc; 6824 6825 ctx_pg = &ctx->stat_mem; 6826 ctx_pg->entries = ctx->stat_max_entries; 6827 mem_size = ctx->stat_entry_size * ctx_pg->entries; 6828 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, true); 6829 if (rc) 6830 return rc; 6831 6832 ena = 0; 6833 if (!(bp->flags & BNXT_FLAG_ROCE_CAP)) 6834 goto skip_rdma; 6835 6836 ctx_pg = &ctx->mrav_mem; 6837 /* 128K extra is needed to accommodate static AH context 6838 * allocation by f/w. 6839 */ 6840 num_mr = 1024 * 256; 6841 num_ah = 1024 * 128; 6842 ctx_pg->entries = num_mr + num_ah; 6843 mem_size = ctx->mrav_entry_size * ctx_pg->entries; 6844 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 2, true); 6845 if (rc) 6846 return rc; 6847 ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV; 6848 if (ctx->mrav_num_entries_units) 6849 ctx_pg->entries = 6850 ((num_mr / ctx->mrav_num_entries_units) << 16) | 6851 (num_ah / ctx->mrav_num_entries_units); 6852 6853 ctx_pg = &ctx->tim_mem; 6854 ctx_pg->entries = ctx->qp_mem.entries; 6855 mem_size = ctx->tim_entry_size * ctx_pg->entries; 6856 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, false); 6857 if (rc) 6858 return rc; 6859 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM; 6860 6861 skip_rdma: 6862 min = ctx->tqm_min_entries_per_ring; 6863 entries_sp = ctx->vnic_max_vnic_entries + ctx->qp_max_l2_entries + 6864 2 * (extra_qps + ctx->qp_min_qp1_entries) + min; 6865 entries_sp = roundup(entries_sp, ctx->tqm_entries_multiple); 6866 entries = ctx->qp_max_l2_entries + extra_qps + ctx->qp_min_qp1_entries; 6867 entries = roundup(entries, ctx->tqm_entries_multiple); 6868 entries = clamp_t(u32, entries, min, ctx->tqm_max_entries_per_ring); 6869 for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++) { 6870 ctx_pg = ctx->tqm_mem[i]; 6871 ctx_pg->entries = i ? entries : entries_sp; 6872 mem_size = ctx->tqm_entry_size * ctx_pg->entries; 6873 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, false); 6874 if (rc) 6875 return rc; 6876 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP << i; 6877 } 6878 ena |= FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES; 6879 rc = bnxt_hwrm_func_backing_store_cfg(bp, ena); 6880 if (rc) { 6881 netdev_err(bp->dev, "Failed configuring context mem, rc = %d.\n", 6882 rc); 6883 return rc; 6884 } 6885 ctx->flags |= BNXT_CTX_FLAG_INITED; 6886 return 0; 6887 } 6888 6889 int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all) 6890 { 6891 struct hwrm_func_resource_qcaps_output *resp = bp->hwrm_cmd_resp_addr; 6892 struct hwrm_func_resource_qcaps_input req = {0}; 6893 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 6894 int rc; 6895 6896 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESOURCE_QCAPS, -1, -1); 6897 req.fid = cpu_to_le16(0xffff); 6898 6899 mutex_lock(&bp->hwrm_cmd_lock); 6900 rc = _hwrm_send_message_silent(bp, &req, sizeof(req), 6901 HWRM_CMD_TIMEOUT); 6902 if (rc) 6903 goto hwrm_func_resc_qcaps_exit; 6904 6905 hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs); 6906 if (!all) 6907 goto hwrm_func_resc_qcaps_exit; 6908 6909 hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx); 6910 hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx); 6911 hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings); 6912 hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings); 6913 hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings); 6914 hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings); 6915 hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings); 6916 hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings); 6917 hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps); 6918 hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps); 6919 hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs); 6920 hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs); 6921 hw_resc->min_vnics = le16_to_cpu(resp->min_vnics); 6922 hw_resc->max_vnics = le16_to_cpu(resp->max_vnics); 6923 hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx); 6924 hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx); 6925 6926 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6927 u16 max_msix = le16_to_cpu(resp->max_msix); 6928 6929 hw_resc->max_nqs = max_msix; 6930 hw_resc->max_hw_ring_grps = hw_resc->max_rx_rings; 6931 } 6932 6933 if (BNXT_PF(bp)) { 6934 struct bnxt_pf_info *pf = &bp->pf; 6935 6936 pf->vf_resv_strategy = 6937 le16_to_cpu(resp->vf_reservation_strategy); 6938 if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC) 6939 pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL; 6940 } 6941 hwrm_func_resc_qcaps_exit: 6942 mutex_unlock(&bp->hwrm_cmd_lock); 6943 return rc; 6944 } 6945 6946 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp) 6947 { 6948 int rc = 0; 6949 struct hwrm_func_qcaps_input req = {0}; 6950 struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr; 6951 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 6952 u32 flags; 6953 6954 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1); 6955 req.fid = cpu_to_le16(0xffff); 6956 6957 mutex_lock(&bp->hwrm_cmd_lock); 6958 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 6959 if (rc) 6960 goto hwrm_func_qcaps_exit; 6961 6962 flags = le32_to_cpu(resp->flags); 6963 if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED) 6964 bp->flags |= BNXT_FLAG_ROCEV1_CAP; 6965 if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED) 6966 bp->flags |= BNXT_FLAG_ROCEV2_CAP; 6967 if (flags & FUNC_QCAPS_RESP_FLAGS_PCIE_STATS_SUPPORTED) 6968 bp->fw_cap |= BNXT_FW_CAP_PCIE_STATS_SUPPORTED; 6969 if (flags & FUNC_QCAPS_RESP_FLAGS_HOT_RESET_CAPABLE) 6970 bp->fw_cap |= BNXT_FW_CAP_HOT_RESET; 6971 if (flags & FUNC_QCAPS_RESP_FLAGS_EXT_STATS_SUPPORTED) 6972 bp->fw_cap |= BNXT_FW_CAP_EXT_STATS_SUPPORTED; 6973 if (flags & FUNC_QCAPS_RESP_FLAGS_ERROR_RECOVERY_CAPABLE) 6974 bp->fw_cap |= BNXT_FW_CAP_ERROR_RECOVERY; 6975 if (flags & FUNC_QCAPS_RESP_FLAGS_ERR_RECOVER_RELOAD) 6976 bp->fw_cap |= BNXT_FW_CAP_ERR_RECOVER_RELOAD; 6977 6978 bp->tx_push_thresh = 0; 6979 if (flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED) 6980 bp->tx_push_thresh = BNXT_TX_PUSH_THRESH; 6981 6982 hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx); 6983 hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings); 6984 hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings); 6985 hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings); 6986 hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps); 6987 if (!hw_resc->max_hw_ring_grps) 6988 hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings; 6989 hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs); 6990 hw_resc->max_vnics = le16_to_cpu(resp->max_vnics); 6991 hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx); 6992 6993 if (BNXT_PF(bp)) { 6994 struct bnxt_pf_info *pf = &bp->pf; 6995 6996 pf->fw_fid = le16_to_cpu(resp->fid); 6997 pf->port_id = le16_to_cpu(resp->port_id); 6998 memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN); 6999 pf->first_vf_id = le16_to_cpu(resp->first_vf_id); 7000 pf->max_vfs = le16_to_cpu(resp->max_vfs); 7001 pf->max_encap_records = le32_to_cpu(resp->max_encap_records); 7002 pf->max_decap_records = le32_to_cpu(resp->max_decap_records); 7003 pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows); 7004 pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows); 7005 pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows); 7006 pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows); 7007 bp->flags &= ~BNXT_FLAG_WOL_CAP; 7008 if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED) 7009 bp->flags |= BNXT_FLAG_WOL_CAP; 7010 } else { 7011 #ifdef CONFIG_BNXT_SRIOV 7012 struct bnxt_vf_info *vf = &bp->vf; 7013 7014 vf->fw_fid = le16_to_cpu(resp->fid); 7015 memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN); 7016 #endif 7017 } 7018 7019 hwrm_func_qcaps_exit: 7020 mutex_unlock(&bp->hwrm_cmd_lock); 7021 return rc; 7022 } 7023 7024 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp); 7025 7026 static int bnxt_hwrm_func_qcaps(struct bnxt *bp) 7027 { 7028 int rc; 7029 7030 rc = __bnxt_hwrm_func_qcaps(bp); 7031 if (rc) 7032 return rc; 7033 rc = bnxt_hwrm_queue_qportcfg(bp); 7034 if (rc) { 7035 netdev_err(bp->dev, "hwrm query qportcfg failure rc: %d\n", rc); 7036 return rc; 7037 } 7038 if (bp->hwrm_spec_code >= 0x10803) { 7039 rc = bnxt_alloc_ctx_mem(bp); 7040 if (rc) 7041 return rc; 7042 rc = bnxt_hwrm_func_resc_qcaps(bp, true); 7043 if (!rc) 7044 bp->fw_cap |= BNXT_FW_CAP_NEW_RM; 7045 } 7046 return 0; 7047 } 7048 7049 static int bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(struct bnxt *bp) 7050 { 7051 struct hwrm_cfa_adv_flow_mgnt_qcaps_input req = {0}; 7052 struct hwrm_cfa_adv_flow_mgnt_qcaps_output *resp; 7053 int rc = 0; 7054 u32 flags; 7055 7056 if (!(bp->fw_cap & BNXT_FW_CAP_CFA_ADV_FLOW)) 7057 return 0; 7058 7059 resp = bp->hwrm_cmd_resp_addr; 7060 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_ADV_FLOW_MGNT_QCAPS, -1, -1); 7061 7062 mutex_lock(&bp->hwrm_cmd_lock); 7063 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 7064 if (rc) 7065 goto hwrm_cfa_adv_qcaps_exit; 7066 7067 flags = le32_to_cpu(resp->flags); 7068 if (flags & 7069 CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V2_SUPPORTED) 7070 bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2; 7071 7072 hwrm_cfa_adv_qcaps_exit: 7073 mutex_unlock(&bp->hwrm_cmd_lock); 7074 return rc; 7075 } 7076 7077 static int bnxt_map_fw_health_regs(struct bnxt *bp) 7078 { 7079 struct bnxt_fw_health *fw_health = bp->fw_health; 7080 u32 reg_base = 0xffffffff; 7081 int i; 7082 7083 /* Only pre-map the monitoring GRC registers using window 3 */ 7084 for (i = 0; i < 4; i++) { 7085 u32 reg = fw_health->regs[i]; 7086 7087 if (BNXT_FW_HEALTH_REG_TYPE(reg) != BNXT_FW_HEALTH_REG_TYPE_GRC) 7088 continue; 7089 if (reg_base == 0xffffffff) 7090 reg_base = reg & BNXT_GRC_BASE_MASK; 7091 if ((reg & BNXT_GRC_BASE_MASK) != reg_base) 7092 return -ERANGE; 7093 fw_health->mapped_regs[i] = BNXT_FW_HEALTH_WIN_BASE + 7094 (reg & BNXT_GRC_OFFSET_MASK); 7095 } 7096 if (reg_base == 0xffffffff) 7097 return 0; 7098 7099 writel(reg_base, bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 7100 BNXT_FW_HEALTH_WIN_MAP_OFF); 7101 return 0; 7102 } 7103 7104 static int bnxt_hwrm_error_recovery_qcfg(struct bnxt *bp) 7105 { 7106 struct hwrm_error_recovery_qcfg_output *resp = bp->hwrm_cmd_resp_addr; 7107 struct bnxt_fw_health *fw_health = bp->fw_health; 7108 struct hwrm_error_recovery_qcfg_input req = {0}; 7109 int rc, i; 7110 7111 if (!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 7112 return 0; 7113 7114 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_ERROR_RECOVERY_QCFG, -1, -1); 7115 mutex_lock(&bp->hwrm_cmd_lock); 7116 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 7117 if (rc) 7118 goto err_recovery_out; 7119 fw_health->flags = le32_to_cpu(resp->flags); 7120 if ((fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) && 7121 !(bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL)) { 7122 rc = -EINVAL; 7123 goto err_recovery_out; 7124 } 7125 fw_health->polling_dsecs = le32_to_cpu(resp->driver_polling_freq); 7126 fw_health->master_func_wait_dsecs = 7127 le32_to_cpu(resp->master_func_wait_period); 7128 fw_health->normal_func_wait_dsecs = 7129 le32_to_cpu(resp->normal_func_wait_period); 7130 fw_health->post_reset_wait_dsecs = 7131 le32_to_cpu(resp->master_func_wait_period_after_reset); 7132 fw_health->post_reset_max_wait_dsecs = 7133 le32_to_cpu(resp->max_bailout_time_after_reset); 7134 fw_health->regs[BNXT_FW_HEALTH_REG] = 7135 le32_to_cpu(resp->fw_health_status_reg); 7136 fw_health->regs[BNXT_FW_HEARTBEAT_REG] = 7137 le32_to_cpu(resp->fw_heartbeat_reg); 7138 fw_health->regs[BNXT_FW_RESET_CNT_REG] = 7139 le32_to_cpu(resp->fw_reset_cnt_reg); 7140 fw_health->regs[BNXT_FW_RESET_INPROG_REG] = 7141 le32_to_cpu(resp->reset_inprogress_reg); 7142 fw_health->fw_reset_inprog_reg_mask = 7143 le32_to_cpu(resp->reset_inprogress_reg_mask); 7144 fw_health->fw_reset_seq_cnt = resp->reg_array_cnt; 7145 if (fw_health->fw_reset_seq_cnt >= 16) { 7146 rc = -EINVAL; 7147 goto err_recovery_out; 7148 } 7149 for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) { 7150 fw_health->fw_reset_seq_regs[i] = 7151 le32_to_cpu(resp->reset_reg[i]); 7152 fw_health->fw_reset_seq_vals[i] = 7153 le32_to_cpu(resp->reset_reg_val[i]); 7154 fw_health->fw_reset_seq_delay_msec[i] = 7155 resp->delay_after_reset[i]; 7156 } 7157 err_recovery_out: 7158 mutex_unlock(&bp->hwrm_cmd_lock); 7159 if (!rc) 7160 rc = bnxt_map_fw_health_regs(bp); 7161 if (rc) 7162 bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY; 7163 return rc; 7164 } 7165 7166 static int bnxt_hwrm_func_reset(struct bnxt *bp) 7167 { 7168 struct hwrm_func_reset_input req = {0}; 7169 7170 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESET, -1, -1); 7171 req.enables = 0; 7172 7173 return hwrm_send_message(bp, &req, sizeof(req), HWRM_RESET_TIMEOUT); 7174 } 7175 7176 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp) 7177 { 7178 int rc = 0; 7179 struct hwrm_queue_qportcfg_input req = {0}; 7180 struct hwrm_queue_qportcfg_output *resp = bp->hwrm_cmd_resp_addr; 7181 u8 i, j, *qptr; 7182 bool no_rdma; 7183 7184 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_QUEUE_QPORTCFG, -1, -1); 7185 7186 mutex_lock(&bp->hwrm_cmd_lock); 7187 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 7188 if (rc) 7189 goto qportcfg_exit; 7190 7191 if (!resp->max_configurable_queues) { 7192 rc = -EINVAL; 7193 goto qportcfg_exit; 7194 } 7195 bp->max_tc = resp->max_configurable_queues; 7196 bp->max_lltc = resp->max_configurable_lossless_queues; 7197 if (bp->max_tc > BNXT_MAX_QUEUE) 7198 bp->max_tc = BNXT_MAX_QUEUE; 7199 7200 no_rdma = !(bp->flags & BNXT_FLAG_ROCE_CAP); 7201 qptr = &resp->queue_id0; 7202 for (i = 0, j = 0; i < bp->max_tc; i++) { 7203 bp->q_info[j].queue_id = *qptr; 7204 bp->q_ids[i] = *qptr++; 7205 bp->q_info[j].queue_profile = *qptr++; 7206 bp->tc_to_qidx[j] = j; 7207 if (!BNXT_CNPQ(bp->q_info[j].queue_profile) || 7208 (no_rdma && BNXT_PF(bp))) 7209 j++; 7210 } 7211 bp->max_q = bp->max_tc; 7212 bp->max_tc = max_t(u8, j, 1); 7213 7214 if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG) 7215 bp->max_tc = 1; 7216 7217 if (bp->max_lltc > bp->max_tc) 7218 bp->max_lltc = bp->max_tc; 7219 7220 qportcfg_exit: 7221 mutex_unlock(&bp->hwrm_cmd_lock); 7222 return rc; 7223 } 7224 7225 static int __bnxt_hwrm_ver_get(struct bnxt *bp, bool silent) 7226 { 7227 struct hwrm_ver_get_input req = {0}; 7228 int rc; 7229 7230 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VER_GET, -1, -1); 7231 req.hwrm_intf_maj = HWRM_VERSION_MAJOR; 7232 req.hwrm_intf_min = HWRM_VERSION_MINOR; 7233 req.hwrm_intf_upd = HWRM_VERSION_UPDATE; 7234 7235 rc = bnxt_hwrm_do_send_msg(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT, 7236 silent); 7237 return rc; 7238 } 7239 7240 static int bnxt_hwrm_ver_get(struct bnxt *bp) 7241 { 7242 struct hwrm_ver_get_output *resp = bp->hwrm_cmd_resp_addr; 7243 u32 dev_caps_cfg, hwrm_ver; 7244 int rc; 7245 7246 bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN; 7247 mutex_lock(&bp->hwrm_cmd_lock); 7248 rc = __bnxt_hwrm_ver_get(bp, false); 7249 if (rc) 7250 goto hwrm_ver_get_exit; 7251 7252 memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output)); 7253 7254 bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 | 7255 resp->hwrm_intf_min_8b << 8 | 7256 resp->hwrm_intf_upd_8b; 7257 if (resp->hwrm_intf_maj_8b < 1) { 7258 netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n", 7259 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b, 7260 resp->hwrm_intf_upd_8b); 7261 netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n"); 7262 } 7263 7264 hwrm_ver = HWRM_VERSION_MAJOR << 16 | HWRM_VERSION_MINOR << 8 | 7265 HWRM_VERSION_UPDATE; 7266 7267 if (bp->hwrm_spec_code > hwrm_ver) 7268 snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d", 7269 HWRM_VERSION_MAJOR, HWRM_VERSION_MINOR, 7270 HWRM_VERSION_UPDATE); 7271 else 7272 snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d", 7273 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b, 7274 resp->hwrm_intf_upd_8b); 7275 7276 snprintf(bp->fw_ver_str, BC_HWRM_STR_LEN, "%d.%d.%d.%d", 7277 resp->hwrm_fw_maj_8b, resp->hwrm_fw_min_8b, 7278 resp->hwrm_fw_bld_8b, resp->hwrm_fw_rsvd_8b); 7279 7280 if (strlen(resp->active_pkg_name)) { 7281 int fw_ver_len = strlen(bp->fw_ver_str); 7282 7283 snprintf(bp->fw_ver_str + fw_ver_len, 7284 FW_VER_STR_LEN - fw_ver_len - 1, "/pkg %s", 7285 resp->active_pkg_name); 7286 bp->fw_cap |= BNXT_FW_CAP_PKG_VER; 7287 } 7288 7289 bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout); 7290 if (!bp->hwrm_cmd_timeout) 7291 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT; 7292 7293 if (resp->hwrm_intf_maj_8b >= 1) { 7294 bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len); 7295 bp->hwrm_max_ext_req_len = le16_to_cpu(resp->max_ext_req_len); 7296 } 7297 if (bp->hwrm_max_ext_req_len < HWRM_MAX_REQ_LEN) 7298 bp->hwrm_max_ext_req_len = HWRM_MAX_REQ_LEN; 7299 7300 bp->chip_num = le16_to_cpu(resp->chip_num); 7301 bp->chip_rev = resp->chip_rev; 7302 if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev && 7303 !resp->chip_metal) 7304 bp->flags |= BNXT_FLAG_CHIP_NITRO_A0; 7305 7306 dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg); 7307 if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) && 7308 (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED)) 7309 bp->fw_cap |= BNXT_FW_CAP_SHORT_CMD; 7310 7311 if (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_KONG_MB_CHNL_SUPPORTED) 7312 bp->fw_cap |= BNXT_FW_CAP_KONG_MB_CHNL; 7313 7314 if (dev_caps_cfg & 7315 VER_GET_RESP_DEV_CAPS_CFG_FLOW_HANDLE_64BIT_SUPPORTED) 7316 bp->fw_cap |= BNXT_FW_CAP_OVS_64BIT_HANDLE; 7317 7318 if (dev_caps_cfg & 7319 VER_GET_RESP_DEV_CAPS_CFG_TRUSTED_VF_SUPPORTED) 7320 bp->fw_cap |= BNXT_FW_CAP_TRUSTED_VF; 7321 7322 if (dev_caps_cfg & 7323 VER_GET_RESP_DEV_CAPS_CFG_CFA_ADV_FLOW_MGNT_SUPPORTED) 7324 bp->fw_cap |= BNXT_FW_CAP_CFA_ADV_FLOW; 7325 7326 hwrm_ver_get_exit: 7327 mutex_unlock(&bp->hwrm_cmd_lock); 7328 return rc; 7329 } 7330 7331 int bnxt_hwrm_fw_set_time(struct bnxt *bp) 7332 { 7333 struct hwrm_fw_set_time_input req = {0}; 7334 struct tm tm; 7335 time64_t now = ktime_get_real_seconds(); 7336 7337 if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) || 7338 bp->hwrm_spec_code < 0x10400) 7339 return -EOPNOTSUPP; 7340 7341 time64_to_tm(now, 0, &tm); 7342 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FW_SET_TIME, -1, -1); 7343 req.year = cpu_to_le16(1900 + tm.tm_year); 7344 req.month = 1 + tm.tm_mon; 7345 req.day = tm.tm_mday; 7346 req.hour = tm.tm_hour; 7347 req.minute = tm.tm_min; 7348 req.second = tm.tm_sec; 7349 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 7350 } 7351 7352 static int bnxt_hwrm_port_qstats(struct bnxt *bp) 7353 { 7354 struct bnxt_pf_info *pf = &bp->pf; 7355 struct hwrm_port_qstats_input req = {0}; 7356 7357 if (!(bp->flags & BNXT_FLAG_PORT_STATS)) 7358 return 0; 7359 7360 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS, -1, -1); 7361 req.port_id = cpu_to_le16(pf->port_id); 7362 req.tx_stat_host_addr = cpu_to_le64(bp->hw_tx_port_stats_map); 7363 req.rx_stat_host_addr = cpu_to_le64(bp->hw_rx_port_stats_map); 7364 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 7365 } 7366 7367 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp) 7368 { 7369 struct hwrm_port_qstats_ext_output *resp = bp->hwrm_cmd_resp_addr; 7370 struct hwrm_queue_pri2cos_qcfg_input req2 = {0}; 7371 struct hwrm_port_qstats_ext_input req = {0}; 7372 struct bnxt_pf_info *pf = &bp->pf; 7373 u32 tx_stat_size; 7374 int rc; 7375 7376 if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT)) 7377 return 0; 7378 7379 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS_EXT, -1, -1); 7380 req.port_id = cpu_to_le16(pf->port_id); 7381 req.rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext)); 7382 req.rx_stat_host_addr = cpu_to_le64(bp->hw_rx_port_stats_ext_map); 7383 tx_stat_size = bp->hw_tx_port_stats_ext ? 7384 sizeof(*bp->hw_tx_port_stats_ext) : 0; 7385 req.tx_stat_size = cpu_to_le16(tx_stat_size); 7386 req.tx_stat_host_addr = cpu_to_le64(bp->hw_tx_port_stats_ext_map); 7387 mutex_lock(&bp->hwrm_cmd_lock); 7388 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 7389 if (!rc) { 7390 bp->fw_rx_stats_ext_size = le16_to_cpu(resp->rx_stat_size) / 8; 7391 bp->fw_tx_stats_ext_size = tx_stat_size ? 7392 le16_to_cpu(resp->tx_stat_size) / 8 : 0; 7393 } else { 7394 bp->fw_rx_stats_ext_size = 0; 7395 bp->fw_tx_stats_ext_size = 0; 7396 } 7397 if (bp->fw_tx_stats_ext_size <= 7398 offsetof(struct tx_port_stats_ext, pfc_pri0_tx_duration_us) / 8) { 7399 mutex_unlock(&bp->hwrm_cmd_lock); 7400 bp->pri2cos_valid = 0; 7401 return rc; 7402 } 7403 7404 bnxt_hwrm_cmd_hdr_init(bp, &req2, HWRM_QUEUE_PRI2COS_QCFG, -1, -1); 7405 req2.flags = cpu_to_le32(QUEUE_PRI2COS_QCFG_REQ_FLAGS_IVLAN); 7406 7407 rc = _hwrm_send_message(bp, &req2, sizeof(req2), HWRM_CMD_TIMEOUT); 7408 if (!rc) { 7409 struct hwrm_queue_pri2cos_qcfg_output *resp2; 7410 u8 *pri2cos; 7411 int i, j; 7412 7413 resp2 = bp->hwrm_cmd_resp_addr; 7414 pri2cos = &resp2->pri0_cos_queue_id; 7415 for (i = 0; i < 8; i++) { 7416 u8 queue_id = pri2cos[i]; 7417 u8 queue_idx; 7418 7419 /* Per port queue IDs start from 0, 10, 20, etc */ 7420 queue_idx = queue_id % 10; 7421 if (queue_idx > BNXT_MAX_QUEUE) { 7422 bp->pri2cos_valid = false; 7423 goto qstats_done; 7424 } 7425 for (j = 0; j < bp->max_q; j++) { 7426 if (bp->q_ids[j] == queue_id) 7427 bp->pri2cos_idx[i] = queue_idx; 7428 } 7429 } 7430 bp->pri2cos_valid = 1; 7431 } 7432 qstats_done: 7433 mutex_unlock(&bp->hwrm_cmd_lock); 7434 return rc; 7435 } 7436 7437 static int bnxt_hwrm_pcie_qstats(struct bnxt *bp) 7438 { 7439 struct hwrm_pcie_qstats_input req = {0}; 7440 7441 if (!(bp->flags & BNXT_FLAG_PCIE_STATS)) 7442 return 0; 7443 7444 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PCIE_QSTATS, -1, -1); 7445 req.pcie_stat_size = cpu_to_le16(sizeof(struct pcie_ctx_hw_stats)); 7446 req.pcie_stat_host_addr = cpu_to_le64(bp->hw_pcie_stats_map); 7447 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 7448 } 7449 7450 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp) 7451 { 7452 if (bp->vxlan_port_cnt) { 7453 bnxt_hwrm_tunnel_dst_port_free( 7454 bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN); 7455 } 7456 bp->vxlan_port_cnt = 0; 7457 if (bp->nge_port_cnt) { 7458 bnxt_hwrm_tunnel_dst_port_free( 7459 bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE); 7460 } 7461 bp->nge_port_cnt = 0; 7462 } 7463 7464 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa) 7465 { 7466 int rc, i; 7467 u32 tpa_flags = 0; 7468 7469 if (set_tpa) 7470 tpa_flags = bp->flags & BNXT_FLAG_TPA; 7471 else if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) 7472 return 0; 7473 for (i = 0; i < bp->nr_vnics; i++) { 7474 rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags); 7475 if (rc) { 7476 netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n", 7477 i, rc); 7478 return rc; 7479 } 7480 } 7481 return 0; 7482 } 7483 7484 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp) 7485 { 7486 int i; 7487 7488 for (i = 0; i < bp->nr_vnics; i++) 7489 bnxt_hwrm_vnic_set_rss(bp, i, false); 7490 } 7491 7492 static void bnxt_clear_vnic(struct bnxt *bp) 7493 { 7494 if (!bp->vnic_info) 7495 return; 7496 7497 bnxt_hwrm_clear_vnic_filter(bp); 7498 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) { 7499 /* clear all RSS setting before free vnic ctx */ 7500 bnxt_hwrm_clear_vnic_rss(bp); 7501 bnxt_hwrm_vnic_ctx_free(bp); 7502 } 7503 /* before free the vnic, undo the vnic tpa settings */ 7504 if (bp->flags & BNXT_FLAG_TPA) 7505 bnxt_set_tpa(bp, false); 7506 bnxt_hwrm_vnic_free(bp); 7507 if (bp->flags & BNXT_FLAG_CHIP_P5) 7508 bnxt_hwrm_vnic_ctx_free(bp); 7509 } 7510 7511 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path, 7512 bool irq_re_init) 7513 { 7514 bnxt_clear_vnic(bp); 7515 bnxt_hwrm_ring_free(bp, close_path); 7516 bnxt_hwrm_ring_grp_free(bp); 7517 if (irq_re_init) { 7518 bnxt_hwrm_stat_ctx_free(bp); 7519 bnxt_hwrm_free_tunnel_ports(bp); 7520 } 7521 } 7522 7523 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode) 7524 { 7525 struct hwrm_func_cfg_input req = {0}; 7526 7527 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1); 7528 req.fid = cpu_to_le16(0xffff); 7529 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE); 7530 if (br_mode == BRIDGE_MODE_VEB) 7531 req.evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB; 7532 else if (br_mode == BRIDGE_MODE_VEPA) 7533 req.evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA; 7534 else 7535 return -EINVAL; 7536 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 7537 } 7538 7539 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size) 7540 { 7541 struct hwrm_func_cfg_input req = {0}; 7542 7543 if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803) 7544 return 0; 7545 7546 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1); 7547 req.fid = cpu_to_le16(0xffff); 7548 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE); 7549 req.options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64; 7550 if (size == 128) 7551 req.options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128; 7552 7553 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 7554 } 7555 7556 static int __bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id) 7557 { 7558 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 7559 int rc; 7560 7561 if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) 7562 goto skip_rss_ctx; 7563 7564 /* allocate context for vnic */ 7565 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0); 7566 if (rc) { 7567 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n", 7568 vnic_id, rc); 7569 goto vnic_setup_err; 7570 } 7571 bp->rsscos_nr_ctxs++; 7572 7573 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 7574 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1); 7575 if (rc) { 7576 netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n", 7577 vnic_id, rc); 7578 goto vnic_setup_err; 7579 } 7580 bp->rsscos_nr_ctxs++; 7581 } 7582 7583 skip_rss_ctx: 7584 /* configure default vnic, ring grp */ 7585 rc = bnxt_hwrm_vnic_cfg(bp, vnic_id); 7586 if (rc) { 7587 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n", 7588 vnic_id, rc); 7589 goto vnic_setup_err; 7590 } 7591 7592 /* Enable RSS hashing on vnic */ 7593 rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true); 7594 if (rc) { 7595 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n", 7596 vnic_id, rc); 7597 goto vnic_setup_err; 7598 } 7599 7600 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 7601 rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id); 7602 if (rc) { 7603 netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n", 7604 vnic_id, rc); 7605 } 7606 } 7607 7608 vnic_setup_err: 7609 return rc; 7610 } 7611 7612 static int __bnxt_setup_vnic_p5(struct bnxt *bp, u16 vnic_id) 7613 { 7614 int rc, i, nr_ctxs; 7615 7616 nr_ctxs = DIV_ROUND_UP(bp->rx_nr_rings, 64); 7617 for (i = 0; i < nr_ctxs; i++) { 7618 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, i); 7619 if (rc) { 7620 netdev_err(bp->dev, "hwrm vnic %d ctx %d alloc failure rc: %x\n", 7621 vnic_id, i, rc); 7622 break; 7623 } 7624 bp->rsscos_nr_ctxs++; 7625 } 7626 if (i < nr_ctxs) 7627 return -ENOMEM; 7628 7629 rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic_id, true); 7630 if (rc) { 7631 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n", 7632 vnic_id, rc); 7633 return rc; 7634 } 7635 rc = bnxt_hwrm_vnic_cfg(bp, vnic_id); 7636 if (rc) { 7637 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n", 7638 vnic_id, rc); 7639 return rc; 7640 } 7641 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 7642 rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id); 7643 if (rc) { 7644 netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n", 7645 vnic_id, rc); 7646 } 7647 } 7648 return rc; 7649 } 7650 7651 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id) 7652 { 7653 if (bp->flags & BNXT_FLAG_CHIP_P5) 7654 return __bnxt_setup_vnic_p5(bp, vnic_id); 7655 else 7656 return __bnxt_setup_vnic(bp, vnic_id); 7657 } 7658 7659 static int bnxt_alloc_rfs_vnics(struct bnxt *bp) 7660 { 7661 #ifdef CONFIG_RFS_ACCEL 7662 int i, rc = 0; 7663 7664 if (bp->flags & BNXT_FLAG_CHIP_P5) 7665 return 0; 7666 7667 for (i = 0; i < bp->rx_nr_rings; i++) { 7668 struct bnxt_vnic_info *vnic; 7669 u16 vnic_id = i + 1; 7670 u16 ring_id = i; 7671 7672 if (vnic_id >= bp->nr_vnics) 7673 break; 7674 7675 vnic = &bp->vnic_info[vnic_id]; 7676 vnic->flags |= BNXT_VNIC_RFS_FLAG; 7677 if (bp->flags & BNXT_FLAG_NEW_RSS_CAP) 7678 vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG; 7679 rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1); 7680 if (rc) { 7681 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n", 7682 vnic_id, rc); 7683 break; 7684 } 7685 rc = bnxt_setup_vnic(bp, vnic_id); 7686 if (rc) 7687 break; 7688 } 7689 return rc; 7690 #else 7691 return 0; 7692 #endif 7693 } 7694 7695 /* Allow PF and VF with default VLAN to be in promiscuous mode */ 7696 static bool bnxt_promisc_ok(struct bnxt *bp) 7697 { 7698 #ifdef CONFIG_BNXT_SRIOV 7699 if (BNXT_VF(bp) && !bp->vf.vlan) 7700 return false; 7701 #endif 7702 return true; 7703 } 7704 7705 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp) 7706 { 7707 unsigned int rc = 0; 7708 7709 rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1); 7710 if (rc) { 7711 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n", 7712 rc); 7713 return rc; 7714 } 7715 7716 rc = bnxt_hwrm_vnic_cfg(bp, 1); 7717 if (rc) { 7718 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n", 7719 rc); 7720 return rc; 7721 } 7722 return rc; 7723 } 7724 7725 static int bnxt_cfg_rx_mode(struct bnxt *); 7726 static bool bnxt_mc_list_updated(struct bnxt *, u32 *); 7727 7728 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init) 7729 { 7730 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 7731 int rc = 0; 7732 unsigned int rx_nr_rings = bp->rx_nr_rings; 7733 7734 if (irq_re_init) { 7735 rc = bnxt_hwrm_stat_ctx_alloc(bp); 7736 if (rc) { 7737 netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n", 7738 rc); 7739 goto err_out; 7740 } 7741 } 7742 7743 rc = bnxt_hwrm_ring_alloc(bp); 7744 if (rc) { 7745 netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc); 7746 goto err_out; 7747 } 7748 7749 rc = bnxt_hwrm_ring_grp_alloc(bp); 7750 if (rc) { 7751 netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc); 7752 goto err_out; 7753 } 7754 7755 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 7756 rx_nr_rings--; 7757 7758 /* default vnic 0 */ 7759 rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings); 7760 if (rc) { 7761 netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc); 7762 goto err_out; 7763 } 7764 7765 rc = bnxt_setup_vnic(bp, 0); 7766 if (rc) 7767 goto err_out; 7768 7769 if (bp->flags & BNXT_FLAG_RFS) { 7770 rc = bnxt_alloc_rfs_vnics(bp); 7771 if (rc) 7772 goto err_out; 7773 } 7774 7775 if (bp->flags & BNXT_FLAG_TPA) { 7776 rc = bnxt_set_tpa(bp, true); 7777 if (rc) 7778 goto err_out; 7779 } 7780 7781 if (BNXT_VF(bp)) 7782 bnxt_update_vf_mac(bp); 7783 7784 /* Filter for default vnic 0 */ 7785 rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr); 7786 if (rc) { 7787 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc); 7788 goto err_out; 7789 } 7790 vnic->uc_filter_count = 1; 7791 7792 vnic->rx_mask = 0; 7793 if (bp->dev->flags & IFF_BROADCAST) 7794 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST; 7795 7796 if ((bp->dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp)) 7797 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 7798 7799 if (bp->dev->flags & IFF_ALLMULTI) { 7800 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 7801 vnic->mc_list_count = 0; 7802 } else { 7803 u32 mask = 0; 7804 7805 bnxt_mc_list_updated(bp, &mask); 7806 vnic->rx_mask |= mask; 7807 } 7808 7809 rc = bnxt_cfg_rx_mode(bp); 7810 if (rc) 7811 goto err_out; 7812 7813 rc = bnxt_hwrm_set_coal(bp); 7814 if (rc) 7815 netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n", 7816 rc); 7817 7818 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 7819 rc = bnxt_setup_nitroa0_vnic(bp); 7820 if (rc) 7821 netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n", 7822 rc); 7823 } 7824 7825 if (BNXT_VF(bp)) { 7826 bnxt_hwrm_func_qcfg(bp); 7827 netdev_update_features(bp->dev); 7828 } 7829 7830 return 0; 7831 7832 err_out: 7833 bnxt_hwrm_resource_free(bp, 0, true); 7834 7835 return rc; 7836 } 7837 7838 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init) 7839 { 7840 bnxt_hwrm_resource_free(bp, 1, irq_re_init); 7841 return 0; 7842 } 7843 7844 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init) 7845 { 7846 bnxt_init_cp_rings(bp); 7847 bnxt_init_rx_rings(bp); 7848 bnxt_init_tx_rings(bp); 7849 bnxt_init_ring_grps(bp, irq_re_init); 7850 bnxt_init_vnics(bp); 7851 7852 return bnxt_init_chip(bp, irq_re_init); 7853 } 7854 7855 static int bnxt_set_real_num_queues(struct bnxt *bp) 7856 { 7857 int rc; 7858 struct net_device *dev = bp->dev; 7859 7860 rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings - 7861 bp->tx_nr_rings_xdp); 7862 if (rc) 7863 return rc; 7864 7865 rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings); 7866 if (rc) 7867 return rc; 7868 7869 #ifdef CONFIG_RFS_ACCEL 7870 if (bp->flags & BNXT_FLAG_RFS) 7871 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings); 7872 #endif 7873 7874 return rc; 7875 } 7876 7877 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 7878 bool shared) 7879 { 7880 int _rx = *rx, _tx = *tx; 7881 7882 if (shared) { 7883 *rx = min_t(int, _rx, max); 7884 *tx = min_t(int, _tx, max); 7885 } else { 7886 if (max < 2) 7887 return -ENOMEM; 7888 7889 while (_rx + _tx > max) { 7890 if (_rx > _tx && _rx > 1) 7891 _rx--; 7892 else if (_tx > 1) 7893 _tx--; 7894 } 7895 *rx = _rx; 7896 *tx = _tx; 7897 } 7898 return 0; 7899 } 7900 7901 static void bnxt_setup_msix(struct bnxt *bp) 7902 { 7903 const int len = sizeof(bp->irq_tbl[0].name); 7904 struct net_device *dev = bp->dev; 7905 int tcs, i; 7906 7907 tcs = netdev_get_num_tc(dev); 7908 if (tcs) { 7909 int i, off, count; 7910 7911 for (i = 0; i < tcs; i++) { 7912 count = bp->tx_nr_rings_per_tc; 7913 off = i * count; 7914 netdev_set_tc_queue(dev, i, count, off); 7915 } 7916 } 7917 7918 for (i = 0; i < bp->cp_nr_rings; i++) { 7919 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 7920 char *attr; 7921 7922 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 7923 attr = "TxRx"; 7924 else if (i < bp->rx_nr_rings) 7925 attr = "rx"; 7926 else 7927 attr = "tx"; 7928 7929 snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name, 7930 attr, i); 7931 bp->irq_tbl[map_idx].handler = bnxt_msix; 7932 } 7933 } 7934 7935 static void bnxt_setup_inta(struct bnxt *bp) 7936 { 7937 const int len = sizeof(bp->irq_tbl[0].name); 7938 7939 if (netdev_get_num_tc(bp->dev)) 7940 netdev_reset_tc(bp->dev); 7941 7942 snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx", 7943 0); 7944 bp->irq_tbl[0].handler = bnxt_inta; 7945 } 7946 7947 static int bnxt_setup_int_mode(struct bnxt *bp) 7948 { 7949 int rc; 7950 7951 if (bp->flags & BNXT_FLAG_USING_MSIX) 7952 bnxt_setup_msix(bp); 7953 else 7954 bnxt_setup_inta(bp); 7955 7956 rc = bnxt_set_real_num_queues(bp); 7957 return rc; 7958 } 7959 7960 #ifdef CONFIG_RFS_ACCEL 7961 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp) 7962 { 7963 return bp->hw_resc.max_rsscos_ctxs; 7964 } 7965 7966 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp) 7967 { 7968 return bp->hw_resc.max_vnics; 7969 } 7970 #endif 7971 7972 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp) 7973 { 7974 return bp->hw_resc.max_stat_ctxs; 7975 } 7976 7977 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp) 7978 { 7979 return bp->hw_resc.max_cp_rings; 7980 } 7981 7982 static unsigned int bnxt_get_max_func_cp_rings_for_en(struct bnxt *bp) 7983 { 7984 unsigned int cp = bp->hw_resc.max_cp_rings; 7985 7986 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 7987 cp -= bnxt_get_ulp_msix_num(bp); 7988 7989 return cp; 7990 } 7991 7992 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp) 7993 { 7994 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7995 7996 if (bp->flags & BNXT_FLAG_CHIP_P5) 7997 return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_nqs); 7998 7999 return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings); 8000 } 8001 8002 static void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs) 8003 { 8004 bp->hw_resc.max_irqs = max_irqs; 8005 } 8006 8007 unsigned int bnxt_get_avail_cp_rings_for_en(struct bnxt *bp) 8008 { 8009 unsigned int cp; 8010 8011 cp = bnxt_get_max_func_cp_rings_for_en(bp); 8012 if (bp->flags & BNXT_FLAG_CHIP_P5) 8013 return cp - bp->rx_nr_rings - bp->tx_nr_rings; 8014 else 8015 return cp - bp->cp_nr_rings; 8016 } 8017 8018 unsigned int bnxt_get_avail_stat_ctxs_for_en(struct bnxt *bp) 8019 { 8020 return bnxt_get_max_func_stat_ctxs(bp) - bnxt_get_func_stat_ctxs(bp); 8021 } 8022 8023 int bnxt_get_avail_msix(struct bnxt *bp, int num) 8024 { 8025 int max_cp = bnxt_get_max_func_cp_rings(bp); 8026 int max_irq = bnxt_get_max_func_irqs(bp); 8027 int total_req = bp->cp_nr_rings + num; 8028 int max_idx, avail_msix; 8029 8030 max_idx = bp->total_irqs; 8031 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 8032 max_idx = min_t(int, bp->total_irqs, max_cp); 8033 avail_msix = max_idx - bp->cp_nr_rings; 8034 if (!BNXT_NEW_RM(bp) || avail_msix >= num) 8035 return avail_msix; 8036 8037 if (max_irq < total_req) { 8038 num = max_irq - bp->cp_nr_rings; 8039 if (num <= 0) 8040 return 0; 8041 } 8042 return num; 8043 } 8044 8045 static int bnxt_get_num_msix(struct bnxt *bp) 8046 { 8047 if (!BNXT_NEW_RM(bp)) 8048 return bnxt_get_max_func_irqs(bp); 8049 8050 return bnxt_nq_rings_in_use(bp); 8051 } 8052 8053 static int bnxt_init_msix(struct bnxt *bp) 8054 { 8055 int i, total_vecs, max, rc = 0, min = 1, ulp_msix; 8056 struct msix_entry *msix_ent; 8057 8058 total_vecs = bnxt_get_num_msix(bp); 8059 max = bnxt_get_max_func_irqs(bp); 8060 if (total_vecs > max) 8061 total_vecs = max; 8062 8063 if (!total_vecs) 8064 return 0; 8065 8066 msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL); 8067 if (!msix_ent) 8068 return -ENOMEM; 8069 8070 for (i = 0; i < total_vecs; i++) { 8071 msix_ent[i].entry = i; 8072 msix_ent[i].vector = 0; 8073 } 8074 8075 if (!(bp->flags & BNXT_FLAG_SHARED_RINGS)) 8076 min = 2; 8077 8078 total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs); 8079 ulp_msix = bnxt_get_ulp_msix_num(bp); 8080 if (total_vecs < 0 || total_vecs < ulp_msix) { 8081 rc = -ENODEV; 8082 goto msix_setup_exit; 8083 } 8084 8085 bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL); 8086 if (bp->irq_tbl) { 8087 for (i = 0; i < total_vecs; i++) 8088 bp->irq_tbl[i].vector = msix_ent[i].vector; 8089 8090 bp->total_irqs = total_vecs; 8091 /* Trim rings based upon num of vectors allocated */ 8092 rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings, 8093 total_vecs - ulp_msix, min == 1); 8094 if (rc) 8095 goto msix_setup_exit; 8096 8097 bp->cp_nr_rings = (min == 1) ? 8098 max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) : 8099 bp->tx_nr_rings + bp->rx_nr_rings; 8100 8101 } else { 8102 rc = -ENOMEM; 8103 goto msix_setup_exit; 8104 } 8105 bp->flags |= BNXT_FLAG_USING_MSIX; 8106 kfree(msix_ent); 8107 return 0; 8108 8109 msix_setup_exit: 8110 netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc); 8111 kfree(bp->irq_tbl); 8112 bp->irq_tbl = NULL; 8113 pci_disable_msix(bp->pdev); 8114 kfree(msix_ent); 8115 return rc; 8116 } 8117 8118 static int bnxt_init_inta(struct bnxt *bp) 8119 { 8120 bp->irq_tbl = kcalloc(1, sizeof(struct bnxt_irq), GFP_KERNEL); 8121 if (!bp->irq_tbl) 8122 return -ENOMEM; 8123 8124 bp->total_irqs = 1; 8125 bp->rx_nr_rings = 1; 8126 bp->tx_nr_rings = 1; 8127 bp->cp_nr_rings = 1; 8128 bp->flags |= BNXT_FLAG_SHARED_RINGS; 8129 bp->irq_tbl[0].vector = bp->pdev->irq; 8130 return 0; 8131 } 8132 8133 static int bnxt_init_int_mode(struct bnxt *bp) 8134 { 8135 int rc = 0; 8136 8137 if (bp->flags & BNXT_FLAG_MSIX_CAP) 8138 rc = bnxt_init_msix(bp); 8139 8140 if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) { 8141 /* fallback to INTA */ 8142 rc = bnxt_init_inta(bp); 8143 } 8144 return rc; 8145 } 8146 8147 static void bnxt_clear_int_mode(struct bnxt *bp) 8148 { 8149 if (bp->flags & BNXT_FLAG_USING_MSIX) 8150 pci_disable_msix(bp->pdev); 8151 8152 kfree(bp->irq_tbl); 8153 bp->irq_tbl = NULL; 8154 bp->flags &= ~BNXT_FLAG_USING_MSIX; 8155 } 8156 8157 int bnxt_reserve_rings(struct bnxt *bp, bool irq_re_init) 8158 { 8159 int tcs = netdev_get_num_tc(bp->dev); 8160 bool irq_cleared = false; 8161 int rc; 8162 8163 if (!bnxt_need_reserve_rings(bp)) 8164 return 0; 8165 8166 if (irq_re_init && BNXT_NEW_RM(bp) && 8167 bnxt_get_num_msix(bp) != bp->total_irqs) { 8168 bnxt_ulp_irq_stop(bp); 8169 bnxt_clear_int_mode(bp); 8170 irq_cleared = true; 8171 } 8172 rc = __bnxt_reserve_rings(bp); 8173 if (irq_cleared) { 8174 if (!rc) 8175 rc = bnxt_init_int_mode(bp); 8176 bnxt_ulp_irq_restart(bp, rc); 8177 } 8178 if (rc) { 8179 netdev_err(bp->dev, "ring reservation/IRQ init failure rc: %d\n", rc); 8180 return rc; 8181 } 8182 if (tcs && (bp->tx_nr_rings_per_tc * tcs != bp->tx_nr_rings)) { 8183 netdev_err(bp->dev, "tx ring reservation failure\n"); 8184 netdev_reset_tc(bp->dev); 8185 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 8186 return -ENOMEM; 8187 } 8188 return 0; 8189 } 8190 8191 static void bnxt_free_irq(struct bnxt *bp) 8192 { 8193 struct bnxt_irq *irq; 8194 int i; 8195 8196 #ifdef CONFIG_RFS_ACCEL 8197 free_irq_cpu_rmap(bp->dev->rx_cpu_rmap); 8198 bp->dev->rx_cpu_rmap = NULL; 8199 #endif 8200 if (!bp->irq_tbl || !bp->bnapi) 8201 return; 8202 8203 for (i = 0; i < bp->cp_nr_rings; i++) { 8204 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 8205 8206 irq = &bp->irq_tbl[map_idx]; 8207 if (irq->requested) { 8208 if (irq->have_cpumask) { 8209 irq_set_affinity_hint(irq->vector, NULL); 8210 free_cpumask_var(irq->cpu_mask); 8211 irq->have_cpumask = 0; 8212 } 8213 free_irq(irq->vector, bp->bnapi[i]); 8214 } 8215 8216 irq->requested = 0; 8217 } 8218 } 8219 8220 static int bnxt_request_irq(struct bnxt *bp) 8221 { 8222 int i, j, rc = 0; 8223 unsigned long flags = 0; 8224 #ifdef CONFIG_RFS_ACCEL 8225 struct cpu_rmap *rmap; 8226 #endif 8227 8228 rc = bnxt_setup_int_mode(bp); 8229 if (rc) { 8230 netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n", 8231 rc); 8232 return rc; 8233 } 8234 #ifdef CONFIG_RFS_ACCEL 8235 rmap = bp->dev->rx_cpu_rmap; 8236 #endif 8237 if (!(bp->flags & BNXT_FLAG_USING_MSIX)) 8238 flags = IRQF_SHARED; 8239 8240 for (i = 0, j = 0; i < bp->cp_nr_rings; i++) { 8241 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 8242 struct bnxt_irq *irq = &bp->irq_tbl[map_idx]; 8243 8244 #ifdef CONFIG_RFS_ACCEL 8245 if (rmap && bp->bnapi[i]->rx_ring) { 8246 rc = irq_cpu_rmap_add(rmap, irq->vector); 8247 if (rc) 8248 netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n", 8249 j); 8250 j++; 8251 } 8252 #endif 8253 rc = request_irq(irq->vector, irq->handler, flags, irq->name, 8254 bp->bnapi[i]); 8255 if (rc) 8256 break; 8257 8258 irq->requested = 1; 8259 8260 if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) { 8261 int numa_node = dev_to_node(&bp->pdev->dev); 8262 8263 irq->have_cpumask = 1; 8264 cpumask_set_cpu(cpumask_local_spread(i, numa_node), 8265 irq->cpu_mask); 8266 rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask); 8267 if (rc) { 8268 netdev_warn(bp->dev, 8269 "Set affinity failed, IRQ = %d\n", 8270 irq->vector); 8271 break; 8272 } 8273 } 8274 } 8275 return rc; 8276 } 8277 8278 static void bnxt_del_napi(struct bnxt *bp) 8279 { 8280 int i; 8281 8282 if (!bp->bnapi) 8283 return; 8284 8285 for (i = 0; i < bp->cp_nr_rings; i++) { 8286 struct bnxt_napi *bnapi = bp->bnapi[i]; 8287 8288 napi_hash_del(&bnapi->napi); 8289 netif_napi_del(&bnapi->napi); 8290 } 8291 /* We called napi_hash_del() before netif_napi_del(), we need 8292 * to respect an RCU grace period before freeing napi structures. 8293 */ 8294 synchronize_net(); 8295 } 8296 8297 static void bnxt_init_napi(struct bnxt *bp) 8298 { 8299 int i; 8300 unsigned int cp_nr_rings = bp->cp_nr_rings; 8301 struct bnxt_napi *bnapi; 8302 8303 if (bp->flags & BNXT_FLAG_USING_MSIX) { 8304 int (*poll_fn)(struct napi_struct *, int) = bnxt_poll; 8305 8306 if (bp->flags & BNXT_FLAG_CHIP_P5) 8307 poll_fn = bnxt_poll_p5; 8308 else if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 8309 cp_nr_rings--; 8310 for (i = 0; i < cp_nr_rings; i++) { 8311 bnapi = bp->bnapi[i]; 8312 netif_napi_add(bp->dev, &bnapi->napi, poll_fn, 64); 8313 } 8314 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 8315 bnapi = bp->bnapi[cp_nr_rings]; 8316 netif_napi_add(bp->dev, &bnapi->napi, 8317 bnxt_poll_nitroa0, 64); 8318 } 8319 } else { 8320 bnapi = bp->bnapi[0]; 8321 netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64); 8322 } 8323 } 8324 8325 static void bnxt_disable_napi(struct bnxt *bp) 8326 { 8327 int i; 8328 8329 if (!bp->bnapi) 8330 return; 8331 8332 for (i = 0; i < bp->cp_nr_rings; i++) { 8333 struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring; 8334 8335 if (bp->bnapi[i]->rx_ring) 8336 cancel_work_sync(&cpr->dim.work); 8337 8338 napi_disable(&bp->bnapi[i]->napi); 8339 } 8340 } 8341 8342 static void bnxt_enable_napi(struct bnxt *bp) 8343 { 8344 int i; 8345 8346 for (i = 0; i < bp->cp_nr_rings; i++) { 8347 struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring; 8348 bp->bnapi[i]->in_reset = false; 8349 8350 if (bp->bnapi[i]->rx_ring) { 8351 INIT_WORK(&cpr->dim.work, bnxt_dim_work); 8352 cpr->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 8353 } 8354 napi_enable(&bp->bnapi[i]->napi); 8355 } 8356 } 8357 8358 void bnxt_tx_disable(struct bnxt *bp) 8359 { 8360 int i; 8361 struct bnxt_tx_ring_info *txr; 8362 8363 if (bp->tx_ring) { 8364 for (i = 0; i < bp->tx_nr_rings; i++) { 8365 txr = &bp->tx_ring[i]; 8366 txr->dev_state = BNXT_DEV_STATE_CLOSING; 8367 } 8368 } 8369 /* Stop all TX queues */ 8370 netif_tx_disable(bp->dev); 8371 netif_carrier_off(bp->dev); 8372 } 8373 8374 void bnxt_tx_enable(struct bnxt *bp) 8375 { 8376 int i; 8377 struct bnxt_tx_ring_info *txr; 8378 8379 for (i = 0; i < bp->tx_nr_rings; i++) { 8380 txr = &bp->tx_ring[i]; 8381 txr->dev_state = 0; 8382 } 8383 netif_tx_wake_all_queues(bp->dev); 8384 if (bp->link_info.link_up) 8385 netif_carrier_on(bp->dev); 8386 } 8387 8388 static void bnxt_report_link(struct bnxt *bp) 8389 { 8390 if (bp->link_info.link_up) { 8391 const char *duplex; 8392 const char *flow_ctrl; 8393 u32 speed; 8394 u16 fec; 8395 8396 netif_carrier_on(bp->dev); 8397 if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL) 8398 duplex = "full"; 8399 else 8400 duplex = "half"; 8401 if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH) 8402 flow_ctrl = "ON - receive & transmit"; 8403 else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX) 8404 flow_ctrl = "ON - transmit"; 8405 else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX) 8406 flow_ctrl = "ON - receive"; 8407 else 8408 flow_ctrl = "none"; 8409 speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed); 8410 netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s duplex, Flow control: %s\n", 8411 speed, duplex, flow_ctrl); 8412 if (bp->flags & BNXT_FLAG_EEE_CAP) 8413 netdev_info(bp->dev, "EEE is %s\n", 8414 bp->eee.eee_active ? "active" : 8415 "not active"); 8416 fec = bp->link_info.fec_cfg; 8417 if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED)) 8418 netdev_info(bp->dev, "FEC autoneg %s encodings: %s\n", 8419 (fec & BNXT_FEC_AUTONEG) ? "on" : "off", 8420 (fec & BNXT_FEC_ENC_BASE_R) ? "BaseR" : 8421 (fec & BNXT_FEC_ENC_RS) ? "RS" : "None"); 8422 } else { 8423 netif_carrier_off(bp->dev); 8424 netdev_err(bp->dev, "NIC Link is Down\n"); 8425 } 8426 } 8427 8428 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp) 8429 { 8430 int rc = 0; 8431 struct hwrm_port_phy_qcaps_input req = {0}; 8432 struct hwrm_port_phy_qcaps_output *resp = bp->hwrm_cmd_resp_addr; 8433 struct bnxt_link_info *link_info = &bp->link_info; 8434 8435 bp->flags &= ~BNXT_FLAG_EEE_CAP; 8436 if (bp->test_info) 8437 bp->test_info->flags &= ~(BNXT_TEST_FL_EXT_LPBK | 8438 BNXT_TEST_FL_AN_PHY_LPBK); 8439 if (bp->hwrm_spec_code < 0x10201) 8440 return 0; 8441 8442 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCAPS, -1, -1); 8443 8444 mutex_lock(&bp->hwrm_cmd_lock); 8445 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 8446 if (rc) 8447 goto hwrm_phy_qcaps_exit; 8448 8449 if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) { 8450 struct ethtool_eee *eee = &bp->eee; 8451 u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode); 8452 8453 bp->flags |= BNXT_FLAG_EEE_CAP; 8454 eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0); 8455 bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) & 8456 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK; 8457 bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) & 8458 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK; 8459 } 8460 if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EXTERNAL_LPBK_SUPPORTED) { 8461 if (bp->test_info) 8462 bp->test_info->flags |= BNXT_TEST_FL_EXT_LPBK; 8463 } 8464 if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_AUTONEG_LPBK_SUPPORTED) { 8465 if (bp->test_info) 8466 bp->test_info->flags |= BNXT_TEST_FL_AN_PHY_LPBK; 8467 } 8468 if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_SHARED_PHY_CFG_SUPPORTED) { 8469 if (BNXT_PF(bp)) 8470 bp->fw_cap |= BNXT_FW_CAP_SHARED_PORT_CFG; 8471 } 8472 if (resp->supported_speeds_auto_mode) 8473 link_info->support_auto_speeds = 8474 le16_to_cpu(resp->supported_speeds_auto_mode); 8475 8476 bp->port_count = resp->port_cnt; 8477 8478 hwrm_phy_qcaps_exit: 8479 mutex_unlock(&bp->hwrm_cmd_lock); 8480 return rc; 8481 } 8482 8483 static int bnxt_update_link(struct bnxt *bp, bool chng_link_state) 8484 { 8485 int rc = 0; 8486 struct bnxt_link_info *link_info = &bp->link_info; 8487 struct hwrm_port_phy_qcfg_input req = {0}; 8488 struct hwrm_port_phy_qcfg_output *resp = bp->hwrm_cmd_resp_addr; 8489 u8 link_up = link_info->link_up; 8490 u16 diff; 8491 8492 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCFG, -1, -1); 8493 8494 mutex_lock(&bp->hwrm_cmd_lock); 8495 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 8496 if (rc) { 8497 mutex_unlock(&bp->hwrm_cmd_lock); 8498 return rc; 8499 } 8500 8501 memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp)); 8502 link_info->phy_link_status = resp->link; 8503 link_info->duplex = resp->duplex_cfg; 8504 if (bp->hwrm_spec_code >= 0x10800) 8505 link_info->duplex = resp->duplex_state; 8506 link_info->pause = resp->pause; 8507 link_info->auto_mode = resp->auto_mode; 8508 link_info->auto_pause_setting = resp->auto_pause; 8509 link_info->lp_pause = resp->link_partner_adv_pause; 8510 link_info->force_pause_setting = resp->force_pause; 8511 link_info->duplex_setting = resp->duplex_cfg; 8512 if (link_info->phy_link_status == BNXT_LINK_LINK) 8513 link_info->link_speed = le16_to_cpu(resp->link_speed); 8514 else 8515 link_info->link_speed = 0; 8516 link_info->force_link_speed = le16_to_cpu(resp->force_link_speed); 8517 link_info->support_speeds = le16_to_cpu(resp->support_speeds); 8518 link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask); 8519 link_info->lp_auto_link_speeds = 8520 le16_to_cpu(resp->link_partner_adv_speeds); 8521 link_info->preemphasis = le32_to_cpu(resp->preemphasis); 8522 link_info->phy_ver[0] = resp->phy_maj; 8523 link_info->phy_ver[1] = resp->phy_min; 8524 link_info->phy_ver[2] = resp->phy_bld; 8525 link_info->media_type = resp->media_type; 8526 link_info->phy_type = resp->phy_type; 8527 link_info->transceiver = resp->xcvr_pkg_type; 8528 link_info->phy_addr = resp->eee_config_phy_addr & 8529 PORT_PHY_QCFG_RESP_PHY_ADDR_MASK; 8530 link_info->module_status = resp->module_status; 8531 8532 if (bp->flags & BNXT_FLAG_EEE_CAP) { 8533 struct ethtool_eee *eee = &bp->eee; 8534 u16 fw_speeds; 8535 8536 eee->eee_active = 0; 8537 if (resp->eee_config_phy_addr & 8538 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) { 8539 eee->eee_active = 1; 8540 fw_speeds = le16_to_cpu( 8541 resp->link_partner_adv_eee_link_speed_mask); 8542 eee->lp_advertised = 8543 _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0); 8544 } 8545 8546 /* Pull initial EEE config */ 8547 if (!chng_link_state) { 8548 if (resp->eee_config_phy_addr & 8549 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED) 8550 eee->eee_enabled = 1; 8551 8552 fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask); 8553 eee->advertised = 8554 _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0); 8555 8556 if (resp->eee_config_phy_addr & 8557 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) { 8558 __le32 tmr; 8559 8560 eee->tx_lpi_enabled = 1; 8561 tmr = resp->xcvr_identifier_type_tx_lpi_timer; 8562 eee->tx_lpi_timer = le32_to_cpu(tmr) & 8563 PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK; 8564 } 8565 } 8566 } 8567 8568 link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED; 8569 if (bp->hwrm_spec_code >= 0x10504) 8570 link_info->fec_cfg = le16_to_cpu(resp->fec_cfg); 8571 8572 /* TODO: need to add more logic to report VF link */ 8573 if (chng_link_state) { 8574 if (link_info->phy_link_status == BNXT_LINK_LINK) 8575 link_info->link_up = 1; 8576 else 8577 link_info->link_up = 0; 8578 if (link_up != link_info->link_up) 8579 bnxt_report_link(bp); 8580 } else { 8581 /* alwasy link down if not require to update link state */ 8582 link_info->link_up = 0; 8583 } 8584 mutex_unlock(&bp->hwrm_cmd_lock); 8585 8586 if (!BNXT_PHY_CFG_ABLE(bp)) 8587 return 0; 8588 8589 diff = link_info->support_auto_speeds ^ link_info->advertising; 8590 if ((link_info->support_auto_speeds | diff) != 8591 link_info->support_auto_speeds) { 8592 /* An advertised speed is no longer supported, so we need to 8593 * update the advertisement settings. Caller holds RTNL 8594 * so we can modify link settings. 8595 */ 8596 link_info->advertising = link_info->support_auto_speeds; 8597 if (link_info->autoneg & BNXT_AUTONEG_SPEED) 8598 bnxt_hwrm_set_link_setting(bp, true, false); 8599 } 8600 return 0; 8601 } 8602 8603 static void bnxt_get_port_module_status(struct bnxt *bp) 8604 { 8605 struct bnxt_link_info *link_info = &bp->link_info; 8606 struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp; 8607 u8 module_status; 8608 8609 if (bnxt_update_link(bp, true)) 8610 return; 8611 8612 module_status = link_info->module_status; 8613 switch (module_status) { 8614 case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX: 8615 case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN: 8616 case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG: 8617 netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n", 8618 bp->pf.port_id); 8619 if (bp->hwrm_spec_code >= 0x10201) { 8620 netdev_warn(bp->dev, "Module part number %s\n", 8621 resp->phy_vendor_partnumber); 8622 } 8623 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX) 8624 netdev_warn(bp->dev, "TX is disabled\n"); 8625 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN) 8626 netdev_warn(bp->dev, "SFP+ module is shutdown\n"); 8627 } 8628 } 8629 8630 static void 8631 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req) 8632 { 8633 if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) { 8634 if (bp->hwrm_spec_code >= 0x10201) 8635 req->auto_pause = 8636 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE; 8637 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX) 8638 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX; 8639 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX) 8640 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX; 8641 req->enables |= 8642 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE); 8643 } else { 8644 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX) 8645 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX; 8646 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX) 8647 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX; 8648 req->enables |= 8649 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE); 8650 if (bp->hwrm_spec_code >= 0x10201) { 8651 req->auto_pause = req->force_pause; 8652 req->enables |= cpu_to_le32( 8653 PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE); 8654 } 8655 } 8656 } 8657 8658 static void bnxt_hwrm_set_link_common(struct bnxt *bp, 8659 struct hwrm_port_phy_cfg_input *req) 8660 { 8661 u8 autoneg = bp->link_info.autoneg; 8662 u16 fw_link_speed = bp->link_info.req_link_speed; 8663 u16 advertising = bp->link_info.advertising; 8664 8665 if (autoneg & BNXT_AUTONEG_SPEED) { 8666 req->auto_mode |= 8667 PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK; 8668 8669 req->enables |= cpu_to_le32( 8670 PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK); 8671 req->auto_link_speed_mask = cpu_to_le16(advertising); 8672 8673 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE); 8674 req->flags |= 8675 cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG); 8676 } else { 8677 req->force_link_speed = cpu_to_le16(fw_link_speed); 8678 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE); 8679 } 8680 8681 /* tell chimp that the setting takes effect immediately */ 8682 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY); 8683 } 8684 8685 int bnxt_hwrm_set_pause(struct bnxt *bp) 8686 { 8687 struct hwrm_port_phy_cfg_input req = {0}; 8688 int rc; 8689 8690 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1); 8691 bnxt_hwrm_set_pause_common(bp, &req); 8692 8693 if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) || 8694 bp->link_info.force_link_chng) 8695 bnxt_hwrm_set_link_common(bp, &req); 8696 8697 mutex_lock(&bp->hwrm_cmd_lock); 8698 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 8699 if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) { 8700 /* since changing of pause setting doesn't trigger any link 8701 * change event, the driver needs to update the current pause 8702 * result upon successfully return of the phy_cfg command 8703 */ 8704 bp->link_info.pause = 8705 bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl; 8706 bp->link_info.auto_pause_setting = 0; 8707 if (!bp->link_info.force_link_chng) 8708 bnxt_report_link(bp); 8709 } 8710 bp->link_info.force_link_chng = false; 8711 mutex_unlock(&bp->hwrm_cmd_lock); 8712 return rc; 8713 } 8714 8715 static void bnxt_hwrm_set_eee(struct bnxt *bp, 8716 struct hwrm_port_phy_cfg_input *req) 8717 { 8718 struct ethtool_eee *eee = &bp->eee; 8719 8720 if (eee->eee_enabled) { 8721 u16 eee_speeds; 8722 u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE; 8723 8724 if (eee->tx_lpi_enabled) 8725 flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE; 8726 else 8727 flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE; 8728 8729 req->flags |= cpu_to_le32(flags); 8730 eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised); 8731 req->eee_link_speed_mask = cpu_to_le16(eee_speeds); 8732 req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer); 8733 } else { 8734 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE); 8735 } 8736 } 8737 8738 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee) 8739 { 8740 struct hwrm_port_phy_cfg_input req = {0}; 8741 8742 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1); 8743 if (set_pause) 8744 bnxt_hwrm_set_pause_common(bp, &req); 8745 8746 bnxt_hwrm_set_link_common(bp, &req); 8747 8748 if (set_eee) 8749 bnxt_hwrm_set_eee(bp, &req); 8750 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 8751 } 8752 8753 static int bnxt_hwrm_shutdown_link(struct bnxt *bp) 8754 { 8755 struct hwrm_port_phy_cfg_input req = {0}; 8756 8757 if (!BNXT_SINGLE_PF(bp)) 8758 return 0; 8759 8760 if (pci_num_vf(bp->pdev)) 8761 return 0; 8762 8763 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1); 8764 req.flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN); 8765 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 8766 } 8767 8768 static int bnxt_fw_init_one(struct bnxt *bp); 8769 8770 static int bnxt_hwrm_if_change(struct bnxt *bp, bool up) 8771 { 8772 struct hwrm_func_drv_if_change_output *resp = bp->hwrm_cmd_resp_addr; 8773 struct hwrm_func_drv_if_change_input req = {0}; 8774 bool resc_reinit = false, fw_reset = false; 8775 u32 flags = 0; 8776 int rc; 8777 8778 if (!(bp->fw_cap & BNXT_FW_CAP_IF_CHANGE)) 8779 return 0; 8780 8781 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_IF_CHANGE, -1, -1); 8782 if (up) 8783 req.flags = cpu_to_le32(FUNC_DRV_IF_CHANGE_REQ_FLAGS_UP); 8784 mutex_lock(&bp->hwrm_cmd_lock); 8785 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 8786 if (!rc) 8787 flags = le32_to_cpu(resp->flags); 8788 mutex_unlock(&bp->hwrm_cmd_lock); 8789 if (rc) 8790 return rc; 8791 8792 if (!up) 8793 return 0; 8794 8795 if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_RESC_CHANGE) 8796 resc_reinit = true; 8797 if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_HOT_FW_RESET_DONE) 8798 fw_reset = true; 8799 8800 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state) && !fw_reset) { 8801 netdev_err(bp->dev, "RESET_DONE not set during FW reset.\n"); 8802 return -ENODEV; 8803 } 8804 if (resc_reinit || fw_reset) { 8805 if (fw_reset) { 8806 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 8807 bnxt_ulp_stop(bp); 8808 bnxt_free_ctx_mem(bp); 8809 kfree(bp->ctx); 8810 bp->ctx = NULL; 8811 bnxt_dcb_free(bp); 8812 rc = bnxt_fw_init_one(bp); 8813 if (rc) { 8814 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 8815 return rc; 8816 } 8817 bnxt_clear_int_mode(bp); 8818 rc = bnxt_init_int_mode(bp); 8819 if (rc) { 8820 netdev_err(bp->dev, "init int mode failed\n"); 8821 return rc; 8822 } 8823 set_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 8824 } 8825 if (BNXT_NEW_RM(bp)) { 8826 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 8827 8828 rc = bnxt_hwrm_func_resc_qcaps(bp, true); 8829 hw_resc->resv_cp_rings = 0; 8830 hw_resc->resv_stat_ctxs = 0; 8831 hw_resc->resv_irqs = 0; 8832 hw_resc->resv_tx_rings = 0; 8833 hw_resc->resv_rx_rings = 0; 8834 hw_resc->resv_hw_ring_grps = 0; 8835 hw_resc->resv_vnics = 0; 8836 if (!fw_reset) { 8837 bp->tx_nr_rings = 0; 8838 bp->rx_nr_rings = 0; 8839 } 8840 } 8841 } 8842 return 0; 8843 } 8844 8845 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp) 8846 { 8847 struct hwrm_port_led_qcaps_output *resp = bp->hwrm_cmd_resp_addr; 8848 struct hwrm_port_led_qcaps_input req = {0}; 8849 struct bnxt_pf_info *pf = &bp->pf; 8850 int rc; 8851 8852 bp->num_leds = 0; 8853 if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601) 8854 return 0; 8855 8856 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_LED_QCAPS, -1, -1); 8857 req.port_id = cpu_to_le16(pf->port_id); 8858 mutex_lock(&bp->hwrm_cmd_lock); 8859 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 8860 if (rc) { 8861 mutex_unlock(&bp->hwrm_cmd_lock); 8862 return rc; 8863 } 8864 if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) { 8865 int i; 8866 8867 bp->num_leds = resp->num_leds; 8868 memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) * 8869 bp->num_leds); 8870 for (i = 0; i < bp->num_leds; i++) { 8871 struct bnxt_led_info *led = &bp->leds[i]; 8872 __le16 caps = led->led_state_caps; 8873 8874 if (!led->led_group_id || 8875 !BNXT_LED_ALT_BLINK_CAP(caps)) { 8876 bp->num_leds = 0; 8877 break; 8878 } 8879 } 8880 } 8881 mutex_unlock(&bp->hwrm_cmd_lock); 8882 return 0; 8883 } 8884 8885 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp) 8886 { 8887 struct hwrm_wol_filter_alloc_input req = {0}; 8888 struct hwrm_wol_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr; 8889 int rc; 8890 8891 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_ALLOC, -1, -1); 8892 req.port_id = cpu_to_le16(bp->pf.port_id); 8893 req.wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT; 8894 req.enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS); 8895 memcpy(req.mac_address, bp->dev->dev_addr, ETH_ALEN); 8896 mutex_lock(&bp->hwrm_cmd_lock); 8897 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 8898 if (!rc) 8899 bp->wol_filter_id = resp->wol_filter_id; 8900 mutex_unlock(&bp->hwrm_cmd_lock); 8901 return rc; 8902 } 8903 8904 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp) 8905 { 8906 struct hwrm_wol_filter_free_input req = {0}; 8907 8908 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_FREE, -1, -1); 8909 req.port_id = cpu_to_le16(bp->pf.port_id); 8910 req.enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID); 8911 req.wol_filter_id = bp->wol_filter_id; 8912 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 8913 } 8914 8915 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle) 8916 { 8917 struct hwrm_wol_filter_qcfg_input req = {0}; 8918 struct hwrm_wol_filter_qcfg_output *resp = bp->hwrm_cmd_resp_addr; 8919 u16 next_handle = 0; 8920 int rc; 8921 8922 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_QCFG, -1, -1); 8923 req.port_id = cpu_to_le16(bp->pf.port_id); 8924 req.handle = cpu_to_le16(handle); 8925 mutex_lock(&bp->hwrm_cmd_lock); 8926 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 8927 if (!rc) { 8928 next_handle = le16_to_cpu(resp->next_handle); 8929 if (next_handle != 0) { 8930 if (resp->wol_type == 8931 WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) { 8932 bp->wol = 1; 8933 bp->wol_filter_id = resp->wol_filter_id; 8934 } 8935 } 8936 } 8937 mutex_unlock(&bp->hwrm_cmd_lock); 8938 return next_handle; 8939 } 8940 8941 static void bnxt_get_wol_settings(struct bnxt *bp) 8942 { 8943 u16 handle = 0; 8944 8945 bp->wol = 0; 8946 if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP)) 8947 return; 8948 8949 do { 8950 handle = bnxt_hwrm_get_wol_fltrs(bp, handle); 8951 } while (handle && handle != 0xffff); 8952 } 8953 8954 #ifdef CONFIG_BNXT_HWMON 8955 static ssize_t bnxt_show_temp(struct device *dev, 8956 struct device_attribute *devattr, char *buf) 8957 { 8958 struct hwrm_temp_monitor_query_input req = {0}; 8959 struct hwrm_temp_monitor_query_output *resp; 8960 struct bnxt *bp = dev_get_drvdata(dev); 8961 u32 temp = 0; 8962 8963 resp = bp->hwrm_cmd_resp_addr; 8964 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TEMP_MONITOR_QUERY, -1, -1); 8965 mutex_lock(&bp->hwrm_cmd_lock); 8966 if (!_hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT)) 8967 temp = resp->temp * 1000; /* display millidegree */ 8968 mutex_unlock(&bp->hwrm_cmd_lock); 8969 8970 return sprintf(buf, "%u\n", temp); 8971 } 8972 static SENSOR_DEVICE_ATTR(temp1_input, 0444, bnxt_show_temp, NULL, 0); 8973 8974 static struct attribute *bnxt_attrs[] = { 8975 &sensor_dev_attr_temp1_input.dev_attr.attr, 8976 NULL 8977 }; 8978 ATTRIBUTE_GROUPS(bnxt); 8979 8980 static void bnxt_hwmon_close(struct bnxt *bp) 8981 { 8982 if (bp->hwmon_dev) { 8983 hwmon_device_unregister(bp->hwmon_dev); 8984 bp->hwmon_dev = NULL; 8985 } 8986 } 8987 8988 static void bnxt_hwmon_open(struct bnxt *bp) 8989 { 8990 struct pci_dev *pdev = bp->pdev; 8991 8992 if (bp->hwmon_dev) 8993 return; 8994 8995 bp->hwmon_dev = hwmon_device_register_with_groups(&pdev->dev, 8996 DRV_MODULE_NAME, bp, 8997 bnxt_groups); 8998 if (IS_ERR(bp->hwmon_dev)) { 8999 bp->hwmon_dev = NULL; 9000 dev_warn(&pdev->dev, "Cannot register hwmon device\n"); 9001 } 9002 } 9003 #else 9004 static void bnxt_hwmon_close(struct bnxt *bp) 9005 { 9006 } 9007 9008 static void bnxt_hwmon_open(struct bnxt *bp) 9009 { 9010 } 9011 #endif 9012 9013 static bool bnxt_eee_config_ok(struct bnxt *bp) 9014 { 9015 struct ethtool_eee *eee = &bp->eee; 9016 struct bnxt_link_info *link_info = &bp->link_info; 9017 9018 if (!(bp->flags & BNXT_FLAG_EEE_CAP)) 9019 return true; 9020 9021 if (eee->eee_enabled) { 9022 u32 advertising = 9023 _bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0); 9024 9025 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) { 9026 eee->eee_enabled = 0; 9027 return false; 9028 } 9029 if (eee->advertised & ~advertising) { 9030 eee->advertised = advertising & eee->supported; 9031 return false; 9032 } 9033 } 9034 return true; 9035 } 9036 9037 static int bnxt_update_phy_setting(struct bnxt *bp) 9038 { 9039 int rc; 9040 bool update_link = false; 9041 bool update_pause = false; 9042 bool update_eee = false; 9043 struct bnxt_link_info *link_info = &bp->link_info; 9044 9045 rc = bnxt_update_link(bp, true); 9046 if (rc) { 9047 netdev_err(bp->dev, "failed to update link (rc: %x)\n", 9048 rc); 9049 return rc; 9050 } 9051 if (!BNXT_SINGLE_PF(bp)) 9052 return 0; 9053 9054 if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) && 9055 (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) != 9056 link_info->req_flow_ctrl) 9057 update_pause = true; 9058 if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) && 9059 link_info->force_pause_setting != link_info->req_flow_ctrl) 9060 update_pause = true; 9061 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) { 9062 if (BNXT_AUTO_MODE(link_info->auto_mode)) 9063 update_link = true; 9064 if (link_info->req_link_speed != link_info->force_link_speed) 9065 update_link = true; 9066 if (link_info->req_duplex != link_info->duplex_setting) 9067 update_link = true; 9068 } else { 9069 if (link_info->auto_mode == BNXT_LINK_AUTO_NONE) 9070 update_link = true; 9071 if (link_info->advertising != link_info->auto_link_speeds) 9072 update_link = true; 9073 } 9074 9075 /* The last close may have shutdown the link, so need to call 9076 * PHY_CFG to bring it back up. 9077 */ 9078 if (!bp->link_info.link_up) 9079 update_link = true; 9080 9081 if (!bnxt_eee_config_ok(bp)) 9082 update_eee = true; 9083 9084 if (update_link) 9085 rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee); 9086 else if (update_pause) 9087 rc = bnxt_hwrm_set_pause(bp); 9088 if (rc) { 9089 netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n", 9090 rc); 9091 return rc; 9092 } 9093 9094 return rc; 9095 } 9096 9097 /* Common routine to pre-map certain register block to different GRC window. 9098 * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows 9099 * in PF and 3 windows in VF that can be customized to map in different 9100 * register blocks. 9101 */ 9102 static void bnxt_preset_reg_win(struct bnxt *bp) 9103 { 9104 if (BNXT_PF(bp)) { 9105 /* CAG registers map to GRC window #4 */ 9106 writel(BNXT_CAG_REG_BASE, 9107 bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12); 9108 } 9109 } 9110 9111 static int bnxt_init_dflt_ring_mode(struct bnxt *bp); 9112 9113 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 9114 { 9115 int rc = 0; 9116 9117 bnxt_preset_reg_win(bp); 9118 netif_carrier_off(bp->dev); 9119 if (irq_re_init) { 9120 /* Reserve rings now if none were reserved at driver probe. */ 9121 rc = bnxt_init_dflt_ring_mode(bp); 9122 if (rc) { 9123 netdev_err(bp->dev, "Failed to reserve default rings at open\n"); 9124 return rc; 9125 } 9126 } 9127 rc = bnxt_reserve_rings(bp, irq_re_init); 9128 if (rc) 9129 return rc; 9130 if ((bp->flags & BNXT_FLAG_RFS) && 9131 !(bp->flags & BNXT_FLAG_USING_MSIX)) { 9132 /* disable RFS if falling back to INTA */ 9133 bp->dev->hw_features &= ~NETIF_F_NTUPLE; 9134 bp->flags &= ~BNXT_FLAG_RFS; 9135 } 9136 9137 rc = bnxt_alloc_mem(bp, irq_re_init); 9138 if (rc) { 9139 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc); 9140 goto open_err_free_mem; 9141 } 9142 9143 if (irq_re_init) { 9144 bnxt_init_napi(bp); 9145 rc = bnxt_request_irq(bp); 9146 if (rc) { 9147 netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc); 9148 goto open_err_irq; 9149 } 9150 } 9151 9152 bnxt_enable_napi(bp); 9153 bnxt_debug_dev_init(bp); 9154 9155 rc = bnxt_init_nic(bp, irq_re_init); 9156 if (rc) { 9157 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc); 9158 goto open_err; 9159 } 9160 9161 if (link_re_init) { 9162 mutex_lock(&bp->link_lock); 9163 rc = bnxt_update_phy_setting(bp); 9164 mutex_unlock(&bp->link_lock); 9165 if (rc) { 9166 netdev_warn(bp->dev, "failed to update phy settings\n"); 9167 if (BNXT_SINGLE_PF(bp)) { 9168 bp->link_info.phy_retry = true; 9169 bp->link_info.phy_retry_expires = 9170 jiffies + 5 * HZ; 9171 } 9172 } 9173 } 9174 9175 if (irq_re_init) 9176 udp_tunnel_get_rx_info(bp->dev); 9177 9178 set_bit(BNXT_STATE_OPEN, &bp->state); 9179 bnxt_enable_int(bp); 9180 /* Enable TX queues */ 9181 bnxt_tx_enable(bp); 9182 mod_timer(&bp->timer, jiffies + bp->current_interval); 9183 /* Poll link status and check for SFP+ module status */ 9184 bnxt_get_port_module_status(bp); 9185 9186 /* VF-reps may need to be re-opened after the PF is re-opened */ 9187 if (BNXT_PF(bp)) 9188 bnxt_vf_reps_open(bp); 9189 return 0; 9190 9191 open_err: 9192 bnxt_debug_dev_exit(bp); 9193 bnxt_disable_napi(bp); 9194 9195 open_err_irq: 9196 bnxt_del_napi(bp); 9197 9198 open_err_free_mem: 9199 bnxt_free_skbs(bp); 9200 bnxt_free_irq(bp); 9201 bnxt_free_mem(bp, true); 9202 return rc; 9203 } 9204 9205 /* rtnl_lock held */ 9206 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 9207 { 9208 int rc = 0; 9209 9210 rc = __bnxt_open_nic(bp, irq_re_init, link_re_init); 9211 if (rc) { 9212 netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc); 9213 dev_close(bp->dev); 9214 } 9215 return rc; 9216 } 9217 9218 /* rtnl_lock held, open the NIC half way by allocating all resources, but 9219 * NAPI, IRQ, and TX are not enabled. This is mainly used for offline 9220 * self tests. 9221 */ 9222 int bnxt_half_open_nic(struct bnxt *bp) 9223 { 9224 int rc = 0; 9225 9226 rc = bnxt_alloc_mem(bp, false); 9227 if (rc) { 9228 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc); 9229 goto half_open_err; 9230 } 9231 rc = bnxt_init_nic(bp, false); 9232 if (rc) { 9233 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc); 9234 goto half_open_err; 9235 } 9236 return 0; 9237 9238 half_open_err: 9239 bnxt_free_skbs(bp); 9240 bnxt_free_mem(bp, false); 9241 dev_close(bp->dev); 9242 return rc; 9243 } 9244 9245 /* rtnl_lock held, this call can only be made after a previous successful 9246 * call to bnxt_half_open_nic(). 9247 */ 9248 void bnxt_half_close_nic(struct bnxt *bp) 9249 { 9250 bnxt_hwrm_resource_free(bp, false, false); 9251 bnxt_free_skbs(bp); 9252 bnxt_free_mem(bp, false); 9253 } 9254 9255 static void bnxt_reenable_sriov(struct bnxt *bp) 9256 { 9257 if (BNXT_PF(bp)) { 9258 struct bnxt_pf_info *pf = &bp->pf; 9259 int n = pf->active_vfs; 9260 9261 if (n) 9262 bnxt_cfg_hw_sriov(bp, &n, true); 9263 } 9264 } 9265 9266 static int bnxt_open(struct net_device *dev) 9267 { 9268 struct bnxt *bp = netdev_priv(dev); 9269 int rc; 9270 9271 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 9272 netdev_err(bp->dev, "A previous firmware reset did not complete, aborting\n"); 9273 return -ENODEV; 9274 } 9275 9276 rc = bnxt_hwrm_if_change(bp, true); 9277 if (rc) 9278 return rc; 9279 rc = __bnxt_open_nic(bp, true, true); 9280 if (rc) { 9281 bnxt_hwrm_if_change(bp, false); 9282 } else { 9283 if (test_and_clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) { 9284 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 9285 bnxt_ulp_start(bp, 0); 9286 bnxt_reenable_sriov(bp); 9287 } 9288 } 9289 bnxt_hwmon_open(bp); 9290 } 9291 9292 return rc; 9293 } 9294 9295 static bool bnxt_drv_busy(struct bnxt *bp) 9296 { 9297 return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) || 9298 test_bit(BNXT_STATE_READ_STATS, &bp->state)); 9299 } 9300 9301 static void bnxt_get_ring_stats(struct bnxt *bp, 9302 struct rtnl_link_stats64 *stats); 9303 9304 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init, 9305 bool link_re_init) 9306 { 9307 /* Close the VF-reps before closing PF */ 9308 if (BNXT_PF(bp)) 9309 bnxt_vf_reps_close(bp); 9310 9311 /* Change device state to avoid TX queue wake up's */ 9312 bnxt_tx_disable(bp); 9313 9314 clear_bit(BNXT_STATE_OPEN, &bp->state); 9315 smp_mb__after_atomic(); 9316 while (bnxt_drv_busy(bp)) 9317 msleep(20); 9318 9319 /* Flush rings and and disable interrupts */ 9320 bnxt_shutdown_nic(bp, irq_re_init); 9321 9322 /* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */ 9323 9324 bnxt_debug_dev_exit(bp); 9325 bnxt_disable_napi(bp); 9326 del_timer_sync(&bp->timer); 9327 bnxt_free_skbs(bp); 9328 9329 /* Save ring stats before shutdown */ 9330 if (bp->bnapi && irq_re_init) 9331 bnxt_get_ring_stats(bp, &bp->net_stats_prev); 9332 if (irq_re_init) { 9333 bnxt_free_irq(bp); 9334 bnxt_del_napi(bp); 9335 } 9336 bnxt_free_mem(bp, irq_re_init); 9337 } 9338 9339 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 9340 { 9341 int rc = 0; 9342 9343 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 9344 /* If we get here, it means firmware reset is in progress 9345 * while we are trying to close. We can safely proceed with 9346 * the close because we are holding rtnl_lock(). Some firmware 9347 * messages may fail as we proceed to close. We set the 9348 * ABORT_ERR flag here so that the FW reset thread will later 9349 * abort when it gets the rtnl_lock() and sees the flag. 9350 */ 9351 netdev_warn(bp->dev, "FW reset in progress during close, FW reset will be aborted\n"); 9352 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 9353 } 9354 9355 #ifdef CONFIG_BNXT_SRIOV 9356 if (bp->sriov_cfg) { 9357 rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait, 9358 !bp->sriov_cfg, 9359 BNXT_SRIOV_CFG_WAIT_TMO); 9360 if (rc) 9361 netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n"); 9362 } 9363 #endif 9364 __bnxt_close_nic(bp, irq_re_init, link_re_init); 9365 return rc; 9366 } 9367 9368 static int bnxt_close(struct net_device *dev) 9369 { 9370 struct bnxt *bp = netdev_priv(dev); 9371 9372 bnxt_hwmon_close(bp); 9373 bnxt_close_nic(bp, true, true); 9374 bnxt_hwrm_shutdown_link(bp); 9375 bnxt_hwrm_if_change(bp, false); 9376 return 0; 9377 } 9378 9379 static int bnxt_hwrm_port_phy_read(struct bnxt *bp, u16 phy_addr, u16 reg, 9380 u16 *val) 9381 { 9382 struct hwrm_port_phy_mdio_read_output *resp = bp->hwrm_cmd_resp_addr; 9383 struct hwrm_port_phy_mdio_read_input req = {0}; 9384 int rc; 9385 9386 if (bp->hwrm_spec_code < 0x10a00) 9387 return -EOPNOTSUPP; 9388 9389 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_MDIO_READ, -1, -1); 9390 req.port_id = cpu_to_le16(bp->pf.port_id); 9391 req.phy_addr = phy_addr; 9392 req.reg_addr = cpu_to_le16(reg & 0x1f); 9393 if (mdio_phy_id_is_c45(phy_addr)) { 9394 req.cl45_mdio = 1; 9395 req.phy_addr = mdio_phy_id_prtad(phy_addr); 9396 req.dev_addr = mdio_phy_id_devad(phy_addr); 9397 req.reg_addr = cpu_to_le16(reg); 9398 } 9399 9400 mutex_lock(&bp->hwrm_cmd_lock); 9401 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 9402 if (!rc) 9403 *val = le16_to_cpu(resp->reg_data); 9404 mutex_unlock(&bp->hwrm_cmd_lock); 9405 return rc; 9406 } 9407 9408 static int bnxt_hwrm_port_phy_write(struct bnxt *bp, u16 phy_addr, u16 reg, 9409 u16 val) 9410 { 9411 struct hwrm_port_phy_mdio_write_input req = {0}; 9412 9413 if (bp->hwrm_spec_code < 0x10a00) 9414 return -EOPNOTSUPP; 9415 9416 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_MDIO_WRITE, -1, -1); 9417 req.port_id = cpu_to_le16(bp->pf.port_id); 9418 req.phy_addr = phy_addr; 9419 req.reg_addr = cpu_to_le16(reg & 0x1f); 9420 if (mdio_phy_id_is_c45(phy_addr)) { 9421 req.cl45_mdio = 1; 9422 req.phy_addr = mdio_phy_id_prtad(phy_addr); 9423 req.dev_addr = mdio_phy_id_devad(phy_addr); 9424 req.reg_addr = cpu_to_le16(reg); 9425 } 9426 req.reg_data = cpu_to_le16(val); 9427 9428 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 9429 } 9430 9431 /* rtnl_lock held */ 9432 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 9433 { 9434 struct mii_ioctl_data *mdio = if_mii(ifr); 9435 struct bnxt *bp = netdev_priv(dev); 9436 int rc; 9437 9438 switch (cmd) { 9439 case SIOCGMIIPHY: 9440 mdio->phy_id = bp->link_info.phy_addr; 9441 9442 /* fallthru */ 9443 case SIOCGMIIREG: { 9444 u16 mii_regval = 0; 9445 9446 if (!netif_running(dev)) 9447 return -EAGAIN; 9448 9449 rc = bnxt_hwrm_port_phy_read(bp, mdio->phy_id, mdio->reg_num, 9450 &mii_regval); 9451 mdio->val_out = mii_regval; 9452 return rc; 9453 } 9454 9455 case SIOCSMIIREG: 9456 if (!netif_running(dev)) 9457 return -EAGAIN; 9458 9459 return bnxt_hwrm_port_phy_write(bp, mdio->phy_id, mdio->reg_num, 9460 mdio->val_in); 9461 9462 default: 9463 /* do nothing */ 9464 break; 9465 } 9466 return -EOPNOTSUPP; 9467 } 9468 9469 static void bnxt_get_ring_stats(struct bnxt *bp, 9470 struct rtnl_link_stats64 *stats) 9471 { 9472 int i; 9473 9474 9475 for (i = 0; i < bp->cp_nr_rings; i++) { 9476 struct bnxt_napi *bnapi = bp->bnapi[i]; 9477 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 9478 struct ctx_hw_stats *hw_stats = cpr->hw_stats; 9479 9480 stats->rx_packets += le64_to_cpu(hw_stats->rx_ucast_pkts); 9481 stats->rx_packets += le64_to_cpu(hw_stats->rx_mcast_pkts); 9482 stats->rx_packets += le64_to_cpu(hw_stats->rx_bcast_pkts); 9483 9484 stats->tx_packets += le64_to_cpu(hw_stats->tx_ucast_pkts); 9485 stats->tx_packets += le64_to_cpu(hw_stats->tx_mcast_pkts); 9486 stats->tx_packets += le64_to_cpu(hw_stats->tx_bcast_pkts); 9487 9488 stats->rx_bytes += le64_to_cpu(hw_stats->rx_ucast_bytes); 9489 stats->rx_bytes += le64_to_cpu(hw_stats->rx_mcast_bytes); 9490 stats->rx_bytes += le64_to_cpu(hw_stats->rx_bcast_bytes); 9491 9492 stats->tx_bytes += le64_to_cpu(hw_stats->tx_ucast_bytes); 9493 stats->tx_bytes += le64_to_cpu(hw_stats->tx_mcast_bytes); 9494 stats->tx_bytes += le64_to_cpu(hw_stats->tx_bcast_bytes); 9495 9496 stats->rx_missed_errors += 9497 le64_to_cpu(hw_stats->rx_discard_pkts); 9498 9499 stats->multicast += le64_to_cpu(hw_stats->rx_mcast_pkts); 9500 9501 stats->tx_dropped += le64_to_cpu(hw_stats->tx_drop_pkts); 9502 } 9503 } 9504 9505 static void bnxt_add_prev_stats(struct bnxt *bp, 9506 struct rtnl_link_stats64 *stats) 9507 { 9508 struct rtnl_link_stats64 *prev_stats = &bp->net_stats_prev; 9509 9510 stats->rx_packets += prev_stats->rx_packets; 9511 stats->tx_packets += prev_stats->tx_packets; 9512 stats->rx_bytes += prev_stats->rx_bytes; 9513 stats->tx_bytes += prev_stats->tx_bytes; 9514 stats->rx_missed_errors += prev_stats->rx_missed_errors; 9515 stats->multicast += prev_stats->multicast; 9516 stats->tx_dropped += prev_stats->tx_dropped; 9517 } 9518 9519 static void 9520 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) 9521 { 9522 struct bnxt *bp = netdev_priv(dev); 9523 9524 set_bit(BNXT_STATE_READ_STATS, &bp->state); 9525 /* Make sure bnxt_close_nic() sees that we are reading stats before 9526 * we check the BNXT_STATE_OPEN flag. 9527 */ 9528 smp_mb__after_atomic(); 9529 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 9530 clear_bit(BNXT_STATE_READ_STATS, &bp->state); 9531 *stats = bp->net_stats_prev; 9532 return; 9533 } 9534 9535 bnxt_get_ring_stats(bp, stats); 9536 bnxt_add_prev_stats(bp, stats); 9537 9538 if (bp->flags & BNXT_FLAG_PORT_STATS) { 9539 struct rx_port_stats *rx = bp->hw_rx_port_stats; 9540 struct tx_port_stats *tx = bp->hw_tx_port_stats; 9541 9542 stats->rx_crc_errors = le64_to_cpu(rx->rx_fcs_err_frames); 9543 stats->rx_frame_errors = le64_to_cpu(rx->rx_align_err_frames); 9544 stats->rx_length_errors = le64_to_cpu(rx->rx_undrsz_frames) + 9545 le64_to_cpu(rx->rx_ovrsz_frames) + 9546 le64_to_cpu(rx->rx_runt_frames); 9547 stats->rx_errors = le64_to_cpu(rx->rx_false_carrier_frames) + 9548 le64_to_cpu(rx->rx_jbr_frames); 9549 stats->collisions = le64_to_cpu(tx->tx_total_collisions); 9550 stats->tx_fifo_errors = le64_to_cpu(tx->tx_fifo_underruns); 9551 stats->tx_errors = le64_to_cpu(tx->tx_err); 9552 } 9553 clear_bit(BNXT_STATE_READ_STATS, &bp->state); 9554 } 9555 9556 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask) 9557 { 9558 struct net_device *dev = bp->dev; 9559 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 9560 struct netdev_hw_addr *ha; 9561 u8 *haddr; 9562 int mc_count = 0; 9563 bool update = false; 9564 int off = 0; 9565 9566 netdev_for_each_mc_addr(ha, dev) { 9567 if (mc_count >= BNXT_MAX_MC_ADDRS) { 9568 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 9569 vnic->mc_list_count = 0; 9570 return false; 9571 } 9572 haddr = ha->addr; 9573 if (!ether_addr_equal(haddr, vnic->mc_list + off)) { 9574 memcpy(vnic->mc_list + off, haddr, ETH_ALEN); 9575 update = true; 9576 } 9577 off += ETH_ALEN; 9578 mc_count++; 9579 } 9580 if (mc_count) 9581 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST; 9582 9583 if (mc_count != vnic->mc_list_count) { 9584 vnic->mc_list_count = mc_count; 9585 update = true; 9586 } 9587 return update; 9588 } 9589 9590 static bool bnxt_uc_list_updated(struct bnxt *bp) 9591 { 9592 struct net_device *dev = bp->dev; 9593 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 9594 struct netdev_hw_addr *ha; 9595 int off = 0; 9596 9597 if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1)) 9598 return true; 9599 9600 netdev_for_each_uc_addr(ha, dev) { 9601 if (!ether_addr_equal(ha->addr, vnic->uc_list + off)) 9602 return true; 9603 9604 off += ETH_ALEN; 9605 } 9606 return false; 9607 } 9608 9609 static void bnxt_set_rx_mode(struct net_device *dev) 9610 { 9611 struct bnxt *bp = netdev_priv(dev); 9612 struct bnxt_vnic_info *vnic; 9613 bool mc_update = false; 9614 bool uc_update; 9615 u32 mask; 9616 9617 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) 9618 return; 9619 9620 vnic = &bp->vnic_info[0]; 9621 mask = vnic->rx_mask; 9622 mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS | 9623 CFA_L2_SET_RX_MASK_REQ_MASK_MCAST | 9624 CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST | 9625 CFA_L2_SET_RX_MASK_REQ_MASK_BCAST); 9626 9627 if ((dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp)) 9628 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 9629 9630 uc_update = bnxt_uc_list_updated(bp); 9631 9632 if (dev->flags & IFF_BROADCAST) 9633 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST; 9634 if (dev->flags & IFF_ALLMULTI) { 9635 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 9636 vnic->mc_list_count = 0; 9637 } else { 9638 mc_update = bnxt_mc_list_updated(bp, &mask); 9639 } 9640 9641 if (mask != vnic->rx_mask || uc_update || mc_update) { 9642 vnic->rx_mask = mask; 9643 9644 set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event); 9645 bnxt_queue_sp_work(bp); 9646 } 9647 } 9648 9649 static int bnxt_cfg_rx_mode(struct bnxt *bp) 9650 { 9651 struct net_device *dev = bp->dev; 9652 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 9653 struct netdev_hw_addr *ha; 9654 int i, off = 0, rc; 9655 bool uc_update; 9656 9657 netif_addr_lock_bh(dev); 9658 uc_update = bnxt_uc_list_updated(bp); 9659 netif_addr_unlock_bh(dev); 9660 9661 if (!uc_update) 9662 goto skip_uc; 9663 9664 mutex_lock(&bp->hwrm_cmd_lock); 9665 for (i = 1; i < vnic->uc_filter_count; i++) { 9666 struct hwrm_cfa_l2_filter_free_input req = {0}; 9667 9668 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_FREE, -1, 9669 -1); 9670 9671 req.l2_filter_id = vnic->fw_l2_filter_id[i]; 9672 9673 rc = _hwrm_send_message(bp, &req, sizeof(req), 9674 HWRM_CMD_TIMEOUT); 9675 } 9676 mutex_unlock(&bp->hwrm_cmd_lock); 9677 9678 vnic->uc_filter_count = 1; 9679 9680 netif_addr_lock_bh(dev); 9681 if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) { 9682 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 9683 } else { 9684 netdev_for_each_uc_addr(ha, dev) { 9685 memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN); 9686 off += ETH_ALEN; 9687 vnic->uc_filter_count++; 9688 } 9689 } 9690 netif_addr_unlock_bh(dev); 9691 9692 for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) { 9693 rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off); 9694 if (rc) { 9695 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", 9696 rc); 9697 vnic->uc_filter_count = i; 9698 return rc; 9699 } 9700 } 9701 9702 skip_uc: 9703 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0); 9704 if (rc && vnic->mc_list_count) { 9705 netdev_info(bp->dev, "Failed setting MC filters rc: %d, turning on ALL_MCAST mode\n", 9706 rc); 9707 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 9708 vnic->mc_list_count = 0; 9709 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0); 9710 } 9711 if (rc) 9712 netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %d\n", 9713 rc); 9714 9715 return rc; 9716 } 9717 9718 static bool bnxt_can_reserve_rings(struct bnxt *bp) 9719 { 9720 #ifdef CONFIG_BNXT_SRIOV 9721 if (BNXT_NEW_RM(bp) && BNXT_VF(bp)) { 9722 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 9723 9724 /* No minimum rings were provisioned by the PF. Don't 9725 * reserve rings by default when device is down. 9726 */ 9727 if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings) 9728 return true; 9729 9730 if (!netif_running(bp->dev)) 9731 return false; 9732 } 9733 #endif 9734 return true; 9735 } 9736 9737 /* If the chip and firmware supports RFS */ 9738 static bool bnxt_rfs_supported(struct bnxt *bp) 9739 { 9740 if (bp->flags & BNXT_FLAG_CHIP_P5) { 9741 if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) 9742 return true; 9743 return false; 9744 } 9745 if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp)) 9746 return true; 9747 if (bp->flags & BNXT_FLAG_NEW_RSS_CAP) 9748 return true; 9749 return false; 9750 } 9751 9752 /* If runtime conditions support RFS */ 9753 static bool bnxt_rfs_capable(struct bnxt *bp) 9754 { 9755 #ifdef CONFIG_RFS_ACCEL 9756 int vnics, max_vnics, max_rss_ctxs; 9757 9758 if (bp->flags & BNXT_FLAG_CHIP_P5) 9759 return bnxt_rfs_supported(bp); 9760 if (!(bp->flags & BNXT_FLAG_MSIX_CAP) || !bnxt_can_reserve_rings(bp)) 9761 return false; 9762 9763 vnics = 1 + bp->rx_nr_rings; 9764 max_vnics = bnxt_get_max_func_vnics(bp); 9765 max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp); 9766 9767 /* RSS contexts not a limiting factor */ 9768 if (bp->flags & BNXT_FLAG_NEW_RSS_CAP) 9769 max_rss_ctxs = max_vnics; 9770 if (vnics > max_vnics || vnics > max_rss_ctxs) { 9771 if (bp->rx_nr_rings > 1) 9772 netdev_warn(bp->dev, 9773 "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n", 9774 min(max_rss_ctxs - 1, max_vnics - 1)); 9775 return false; 9776 } 9777 9778 if (!BNXT_NEW_RM(bp)) 9779 return true; 9780 9781 if (vnics == bp->hw_resc.resv_vnics) 9782 return true; 9783 9784 bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, vnics); 9785 if (vnics <= bp->hw_resc.resv_vnics) 9786 return true; 9787 9788 netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n"); 9789 bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, 1); 9790 return false; 9791 #else 9792 return false; 9793 #endif 9794 } 9795 9796 static netdev_features_t bnxt_fix_features(struct net_device *dev, 9797 netdev_features_t features) 9798 { 9799 struct bnxt *bp = netdev_priv(dev); 9800 netdev_features_t vlan_features; 9801 9802 if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp)) 9803 features &= ~NETIF_F_NTUPLE; 9804 9805 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) 9806 features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 9807 9808 if (!(features & NETIF_F_GRO)) 9809 features &= ~NETIF_F_GRO_HW; 9810 9811 if (features & NETIF_F_GRO_HW) 9812 features &= ~NETIF_F_LRO; 9813 9814 /* Both CTAG and STAG VLAN accelaration on the RX side have to be 9815 * turned on or off together. 9816 */ 9817 vlan_features = features & (NETIF_F_HW_VLAN_CTAG_RX | 9818 NETIF_F_HW_VLAN_STAG_RX); 9819 if (vlan_features != (NETIF_F_HW_VLAN_CTAG_RX | 9820 NETIF_F_HW_VLAN_STAG_RX)) { 9821 if (dev->features & NETIF_F_HW_VLAN_CTAG_RX) 9822 features &= ~(NETIF_F_HW_VLAN_CTAG_RX | 9823 NETIF_F_HW_VLAN_STAG_RX); 9824 else if (vlan_features) 9825 features |= NETIF_F_HW_VLAN_CTAG_RX | 9826 NETIF_F_HW_VLAN_STAG_RX; 9827 } 9828 #ifdef CONFIG_BNXT_SRIOV 9829 if (BNXT_VF(bp)) { 9830 if (bp->vf.vlan) { 9831 features &= ~(NETIF_F_HW_VLAN_CTAG_RX | 9832 NETIF_F_HW_VLAN_STAG_RX); 9833 } 9834 } 9835 #endif 9836 return features; 9837 } 9838 9839 static int bnxt_set_features(struct net_device *dev, netdev_features_t features) 9840 { 9841 struct bnxt *bp = netdev_priv(dev); 9842 u32 flags = bp->flags; 9843 u32 changes; 9844 int rc = 0; 9845 bool re_init = false; 9846 bool update_tpa = false; 9847 9848 flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS; 9849 if (features & NETIF_F_GRO_HW) 9850 flags |= BNXT_FLAG_GRO; 9851 else if (features & NETIF_F_LRO) 9852 flags |= BNXT_FLAG_LRO; 9853 9854 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) 9855 flags &= ~BNXT_FLAG_TPA; 9856 9857 if (features & NETIF_F_HW_VLAN_CTAG_RX) 9858 flags |= BNXT_FLAG_STRIP_VLAN; 9859 9860 if (features & NETIF_F_NTUPLE) 9861 flags |= BNXT_FLAG_RFS; 9862 9863 changes = flags ^ bp->flags; 9864 if (changes & BNXT_FLAG_TPA) { 9865 update_tpa = true; 9866 if ((bp->flags & BNXT_FLAG_TPA) == 0 || 9867 (flags & BNXT_FLAG_TPA) == 0 || 9868 (bp->flags & BNXT_FLAG_CHIP_P5)) 9869 re_init = true; 9870 } 9871 9872 if (changes & ~BNXT_FLAG_TPA) 9873 re_init = true; 9874 9875 if (flags != bp->flags) { 9876 u32 old_flags = bp->flags; 9877 9878 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 9879 bp->flags = flags; 9880 if (update_tpa) 9881 bnxt_set_ring_params(bp); 9882 return rc; 9883 } 9884 9885 if (re_init) { 9886 bnxt_close_nic(bp, false, false); 9887 bp->flags = flags; 9888 if (update_tpa) 9889 bnxt_set_ring_params(bp); 9890 9891 return bnxt_open_nic(bp, false, false); 9892 } 9893 if (update_tpa) { 9894 bp->flags = flags; 9895 rc = bnxt_set_tpa(bp, 9896 (flags & BNXT_FLAG_TPA) ? 9897 true : false); 9898 if (rc) 9899 bp->flags = old_flags; 9900 } 9901 } 9902 return rc; 9903 } 9904 9905 static int bnxt_dbg_hwrm_ring_info_get(struct bnxt *bp, u8 ring_type, 9906 u32 ring_id, u32 *prod, u32 *cons) 9907 { 9908 struct hwrm_dbg_ring_info_get_output *resp = bp->hwrm_cmd_resp_addr; 9909 struct hwrm_dbg_ring_info_get_input req = {0}; 9910 int rc; 9911 9912 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_DBG_RING_INFO_GET, -1, -1); 9913 req.ring_type = ring_type; 9914 req.fw_ring_id = cpu_to_le32(ring_id); 9915 mutex_lock(&bp->hwrm_cmd_lock); 9916 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 9917 if (!rc) { 9918 *prod = le32_to_cpu(resp->producer_index); 9919 *cons = le32_to_cpu(resp->consumer_index); 9920 } 9921 mutex_unlock(&bp->hwrm_cmd_lock); 9922 return rc; 9923 } 9924 9925 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi) 9926 { 9927 struct bnxt_tx_ring_info *txr = bnapi->tx_ring; 9928 int i = bnapi->index; 9929 9930 if (!txr) 9931 return; 9932 9933 netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n", 9934 i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod, 9935 txr->tx_cons); 9936 } 9937 9938 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi) 9939 { 9940 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 9941 int i = bnapi->index; 9942 9943 if (!rxr) 9944 return; 9945 9946 netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n", 9947 i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod, 9948 rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod, 9949 rxr->rx_sw_agg_prod); 9950 } 9951 9952 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi) 9953 { 9954 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 9955 int i = bnapi->index; 9956 9957 netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n", 9958 i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons); 9959 } 9960 9961 static void bnxt_dbg_dump_states(struct bnxt *bp) 9962 { 9963 int i; 9964 struct bnxt_napi *bnapi; 9965 9966 for (i = 0; i < bp->cp_nr_rings; i++) { 9967 bnapi = bp->bnapi[i]; 9968 if (netif_msg_drv(bp)) { 9969 bnxt_dump_tx_sw_state(bnapi); 9970 bnxt_dump_rx_sw_state(bnapi); 9971 bnxt_dump_cp_sw_state(bnapi); 9972 } 9973 } 9974 } 9975 9976 static void bnxt_reset_task(struct bnxt *bp, bool silent) 9977 { 9978 if (!silent) 9979 bnxt_dbg_dump_states(bp); 9980 if (netif_running(bp->dev)) { 9981 int rc; 9982 9983 if (silent) { 9984 bnxt_close_nic(bp, false, false); 9985 bnxt_open_nic(bp, false, false); 9986 } else { 9987 bnxt_ulp_stop(bp); 9988 bnxt_close_nic(bp, true, false); 9989 rc = bnxt_open_nic(bp, true, false); 9990 bnxt_ulp_start(bp, rc); 9991 } 9992 } 9993 } 9994 9995 static void bnxt_tx_timeout(struct net_device *dev, unsigned int txqueue) 9996 { 9997 struct bnxt *bp = netdev_priv(dev); 9998 9999 netdev_err(bp->dev, "TX timeout detected, starting reset task!\n"); 10000 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event); 10001 bnxt_queue_sp_work(bp); 10002 } 10003 10004 static void bnxt_fw_health_check(struct bnxt *bp) 10005 { 10006 struct bnxt_fw_health *fw_health = bp->fw_health; 10007 u32 val; 10008 10009 if (!fw_health->enabled || test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 10010 return; 10011 10012 if (fw_health->tmr_counter) { 10013 fw_health->tmr_counter--; 10014 return; 10015 } 10016 10017 val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 10018 if (val == fw_health->last_fw_heartbeat) 10019 goto fw_reset; 10020 10021 fw_health->last_fw_heartbeat = val; 10022 10023 val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 10024 if (val != fw_health->last_fw_reset_cnt) 10025 goto fw_reset; 10026 10027 fw_health->tmr_counter = fw_health->tmr_multiplier; 10028 return; 10029 10030 fw_reset: 10031 set_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event); 10032 bnxt_queue_sp_work(bp); 10033 } 10034 10035 static void bnxt_timer(struct timer_list *t) 10036 { 10037 struct bnxt *bp = from_timer(bp, t, timer); 10038 struct net_device *dev = bp->dev; 10039 10040 if (!netif_running(dev)) 10041 return; 10042 10043 if (atomic_read(&bp->intr_sem) != 0) 10044 goto bnxt_restart_timer; 10045 10046 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) 10047 bnxt_fw_health_check(bp); 10048 10049 if (bp->link_info.link_up && (bp->flags & BNXT_FLAG_PORT_STATS) && 10050 bp->stats_coal_ticks) { 10051 set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event); 10052 bnxt_queue_sp_work(bp); 10053 } 10054 10055 if (bnxt_tc_flower_enabled(bp)) { 10056 set_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event); 10057 bnxt_queue_sp_work(bp); 10058 } 10059 10060 #ifdef CONFIG_RFS_ACCEL 10061 if ((bp->flags & BNXT_FLAG_RFS) && bp->ntp_fltr_count) { 10062 set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event); 10063 bnxt_queue_sp_work(bp); 10064 } 10065 #endif /*CONFIG_RFS_ACCEL*/ 10066 10067 if (bp->link_info.phy_retry) { 10068 if (time_after(jiffies, bp->link_info.phy_retry_expires)) { 10069 bp->link_info.phy_retry = false; 10070 netdev_warn(bp->dev, "failed to update phy settings after maximum retries.\n"); 10071 } else { 10072 set_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event); 10073 bnxt_queue_sp_work(bp); 10074 } 10075 } 10076 10077 if ((bp->flags & BNXT_FLAG_CHIP_P5) && !bp->chip_rev && 10078 netif_carrier_ok(dev)) { 10079 set_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event); 10080 bnxt_queue_sp_work(bp); 10081 } 10082 bnxt_restart_timer: 10083 mod_timer(&bp->timer, jiffies + bp->current_interval); 10084 } 10085 10086 static void bnxt_rtnl_lock_sp(struct bnxt *bp) 10087 { 10088 /* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK 10089 * set. If the device is being closed, bnxt_close() may be holding 10090 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear. So we 10091 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl(). 10092 */ 10093 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 10094 rtnl_lock(); 10095 } 10096 10097 static void bnxt_rtnl_unlock_sp(struct bnxt *bp) 10098 { 10099 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 10100 rtnl_unlock(); 10101 } 10102 10103 /* Only called from bnxt_sp_task() */ 10104 static void bnxt_reset(struct bnxt *bp, bool silent) 10105 { 10106 bnxt_rtnl_lock_sp(bp); 10107 if (test_bit(BNXT_STATE_OPEN, &bp->state)) 10108 bnxt_reset_task(bp, silent); 10109 bnxt_rtnl_unlock_sp(bp); 10110 } 10111 10112 static void bnxt_fw_reset_close(struct bnxt *bp) 10113 { 10114 bnxt_ulp_stop(bp); 10115 /* When firmware is fatal state, disable PCI device to prevent 10116 * any potential bad DMAs before freeing kernel memory. 10117 */ 10118 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) 10119 pci_disable_device(bp->pdev); 10120 __bnxt_close_nic(bp, true, false); 10121 bnxt_clear_int_mode(bp); 10122 bnxt_hwrm_func_drv_unrgtr(bp); 10123 if (pci_is_enabled(bp->pdev)) 10124 pci_disable_device(bp->pdev); 10125 bnxt_free_ctx_mem(bp); 10126 kfree(bp->ctx); 10127 bp->ctx = NULL; 10128 } 10129 10130 static bool is_bnxt_fw_ok(struct bnxt *bp) 10131 { 10132 struct bnxt_fw_health *fw_health = bp->fw_health; 10133 bool no_heartbeat = false, has_reset = false; 10134 u32 val; 10135 10136 val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 10137 if (val == fw_health->last_fw_heartbeat) 10138 no_heartbeat = true; 10139 10140 val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 10141 if (val != fw_health->last_fw_reset_cnt) 10142 has_reset = true; 10143 10144 if (!no_heartbeat && has_reset) 10145 return true; 10146 10147 return false; 10148 } 10149 10150 /* rtnl_lock is acquired before calling this function */ 10151 static void bnxt_force_fw_reset(struct bnxt *bp) 10152 { 10153 struct bnxt_fw_health *fw_health = bp->fw_health; 10154 u32 wait_dsecs; 10155 10156 if (!test_bit(BNXT_STATE_OPEN, &bp->state) || 10157 test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 10158 return; 10159 10160 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 10161 bnxt_fw_reset_close(bp); 10162 wait_dsecs = fw_health->master_func_wait_dsecs; 10163 if (fw_health->master) { 10164 if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) 10165 wait_dsecs = 0; 10166 bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW; 10167 } else { 10168 bp->fw_reset_timestamp = jiffies + wait_dsecs * HZ / 10; 10169 wait_dsecs = fw_health->normal_func_wait_dsecs; 10170 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 10171 } 10172 10173 bp->fw_reset_min_dsecs = fw_health->post_reset_wait_dsecs; 10174 bp->fw_reset_max_dsecs = fw_health->post_reset_max_wait_dsecs; 10175 bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10); 10176 } 10177 10178 void bnxt_fw_exception(struct bnxt *bp) 10179 { 10180 netdev_warn(bp->dev, "Detected firmware fatal condition, initiating reset\n"); 10181 set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 10182 bnxt_rtnl_lock_sp(bp); 10183 bnxt_force_fw_reset(bp); 10184 bnxt_rtnl_unlock_sp(bp); 10185 } 10186 10187 /* Returns the number of registered VFs, or 1 if VF configuration is pending, or 10188 * < 0 on error. 10189 */ 10190 static int bnxt_get_registered_vfs(struct bnxt *bp) 10191 { 10192 #ifdef CONFIG_BNXT_SRIOV 10193 int rc; 10194 10195 if (!BNXT_PF(bp)) 10196 return 0; 10197 10198 rc = bnxt_hwrm_func_qcfg(bp); 10199 if (rc) { 10200 netdev_err(bp->dev, "func_qcfg cmd failed, rc = %d\n", rc); 10201 return rc; 10202 } 10203 if (bp->pf.registered_vfs) 10204 return bp->pf.registered_vfs; 10205 if (bp->sriov_cfg) 10206 return 1; 10207 #endif 10208 return 0; 10209 } 10210 10211 void bnxt_fw_reset(struct bnxt *bp) 10212 { 10213 bnxt_rtnl_lock_sp(bp); 10214 if (test_bit(BNXT_STATE_OPEN, &bp->state) && 10215 !test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 10216 int n = 0, tmo; 10217 10218 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 10219 if (bp->pf.active_vfs && 10220 !test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) 10221 n = bnxt_get_registered_vfs(bp); 10222 if (n < 0) { 10223 netdev_err(bp->dev, "Firmware reset aborted, rc = %d\n", 10224 n); 10225 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 10226 dev_close(bp->dev); 10227 goto fw_reset_exit; 10228 } else if (n > 0) { 10229 u16 vf_tmo_dsecs = n * 10; 10230 10231 if (bp->fw_reset_max_dsecs < vf_tmo_dsecs) 10232 bp->fw_reset_max_dsecs = vf_tmo_dsecs; 10233 bp->fw_reset_state = 10234 BNXT_FW_RESET_STATE_POLL_VF; 10235 bnxt_queue_fw_reset_work(bp, HZ / 10); 10236 goto fw_reset_exit; 10237 } 10238 bnxt_fw_reset_close(bp); 10239 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 10240 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN; 10241 tmo = HZ / 10; 10242 } else { 10243 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 10244 tmo = bp->fw_reset_min_dsecs * HZ / 10; 10245 } 10246 bnxt_queue_fw_reset_work(bp, tmo); 10247 } 10248 fw_reset_exit: 10249 bnxt_rtnl_unlock_sp(bp); 10250 } 10251 10252 static void bnxt_chk_missed_irq(struct bnxt *bp) 10253 { 10254 int i; 10255 10256 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 10257 return; 10258 10259 for (i = 0; i < bp->cp_nr_rings; i++) { 10260 struct bnxt_napi *bnapi = bp->bnapi[i]; 10261 struct bnxt_cp_ring_info *cpr; 10262 u32 fw_ring_id; 10263 int j; 10264 10265 if (!bnapi) 10266 continue; 10267 10268 cpr = &bnapi->cp_ring; 10269 for (j = 0; j < 2; j++) { 10270 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j]; 10271 u32 val[2]; 10272 10273 if (!cpr2 || cpr2->has_more_work || 10274 !bnxt_has_work(bp, cpr2)) 10275 continue; 10276 10277 if (cpr2->cp_raw_cons != cpr2->last_cp_raw_cons) { 10278 cpr2->last_cp_raw_cons = cpr2->cp_raw_cons; 10279 continue; 10280 } 10281 fw_ring_id = cpr2->cp_ring_struct.fw_ring_id; 10282 bnxt_dbg_hwrm_ring_info_get(bp, 10283 DBG_RING_INFO_GET_REQ_RING_TYPE_L2_CMPL, 10284 fw_ring_id, &val[0], &val[1]); 10285 cpr->sw_stats.cmn.missed_irqs++; 10286 } 10287 } 10288 } 10289 10290 static void bnxt_cfg_ntp_filters(struct bnxt *); 10291 10292 static void bnxt_init_ethtool_link_settings(struct bnxt *bp) 10293 { 10294 struct bnxt_link_info *link_info = &bp->link_info; 10295 10296 if (BNXT_AUTO_MODE(link_info->auto_mode)) { 10297 link_info->autoneg = BNXT_AUTONEG_SPEED; 10298 if (bp->hwrm_spec_code >= 0x10201) { 10299 if (link_info->auto_pause_setting & 10300 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE) 10301 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL; 10302 } else { 10303 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL; 10304 } 10305 link_info->advertising = link_info->auto_link_speeds; 10306 } else { 10307 link_info->req_link_speed = link_info->force_link_speed; 10308 link_info->req_duplex = link_info->duplex_setting; 10309 } 10310 if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) 10311 link_info->req_flow_ctrl = 10312 link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH; 10313 else 10314 link_info->req_flow_ctrl = link_info->force_pause_setting; 10315 } 10316 10317 static void bnxt_sp_task(struct work_struct *work) 10318 { 10319 struct bnxt *bp = container_of(work, struct bnxt, sp_task); 10320 10321 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 10322 smp_mb__after_atomic(); 10323 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 10324 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 10325 return; 10326 } 10327 10328 if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event)) 10329 bnxt_cfg_rx_mode(bp); 10330 10331 if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event)) 10332 bnxt_cfg_ntp_filters(bp); 10333 if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event)) 10334 bnxt_hwrm_exec_fwd_req(bp); 10335 if (test_and_clear_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event)) { 10336 bnxt_hwrm_tunnel_dst_port_alloc( 10337 bp, bp->vxlan_port, 10338 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN); 10339 } 10340 if (test_and_clear_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event)) { 10341 bnxt_hwrm_tunnel_dst_port_free( 10342 bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN); 10343 } 10344 if (test_and_clear_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event)) { 10345 bnxt_hwrm_tunnel_dst_port_alloc( 10346 bp, bp->nge_port, 10347 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE); 10348 } 10349 if (test_and_clear_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event)) { 10350 bnxt_hwrm_tunnel_dst_port_free( 10351 bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE); 10352 } 10353 if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) { 10354 bnxt_hwrm_port_qstats(bp); 10355 bnxt_hwrm_port_qstats_ext(bp); 10356 bnxt_hwrm_pcie_qstats(bp); 10357 } 10358 10359 if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) { 10360 int rc; 10361 10362 mutex_lock(&bp->link_lock); 10363 if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, 10364 &bp->sp_event)) 10365 bnxt_hwrm_phy_qcaps(bp); 10366 10367 if (test_and_clear_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, 10368 &bp->sp_event)) 10369 bnxt_init_ethtool_link_settings(bp); 10370 10371 rc = bnxt_update_link(bp, true); 10372 mutex_unlock(&bp->link_lock); 10373 if (rc) 10374 netdev_err(bp->dev, "SP task can't update link (rc: %x)\n", 10375 rc); 10376 } 10377 if (test_and_clear_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event)) { 10378 int rc; 10379 10380 mutex_lock(&bp->link_lock); 10381 rc = bnxt_update_phy_setting(bp); 10382 mutex_unlock(&bp->link_lock); 10383 if (rc) { 10384 netdev_warn(bp->dev, "update phy settings retry failed\n"); 10385 } else { 10386 bp->link_info.phy_retry = false; 10387 netdev_info(bp->dev, "update phy settings retry succeeded\n"); 10388 } 10389 } 10390 if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) { 10391 mutex_lock(&bp->link_lock); 10392 bnxt_get_port_module_status(bp); 10393 mutex_unlock(&bp->link_lock); 10394 } 10395 10396 if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event)) 10397 bnxt_tc_flow_stats_work(bp); 10398 10399 if (test_and_clear_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event)) 10400 bnxt_chk_missed_irq(bp); 10401 10402 /* These functions below will clear BNXT_STATE_IN_SP_TASK. They 10403 * must be the last functions to be called before exiting. 10404 */ 10405 if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event)) 10406 bnxt_reset(bp, false); 10407 10408 if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event)) 10409 bnxt_reset(bp, true); 10410 10411 if (test_and_clear_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event)) 10412 bnxt_devlink_health_report(bp, BNXT_FW_RESET_NOTIFY_SP_EVENT); 10413 10414 if (test_and_clear_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event)) { 10415 if (!is_bnxt_fw_ok(bp)) 10416 bnxt_devlink_health_report(bp, 10417 BNXT_FW_EXCEPTION_SP_EVENT); 10418 } 10419 10420 smp_mb__before_atomic(); 10421 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 10422 } 10423 10424 /* Under rtnl_lock */ 10425 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs, 10426 int tx_xdp) 10427 { 10428 int max_rx, max_tx, tx_sets = 1; 10429 int tx_rings_needed, stats; 10430 int rx_rings = rx; 10431 int cp, vnics, rc; 10432 10433 if (tcs) 10434 tx_sets = tcs; 10435 10436 rc = bnxt_get_max_rings(bp, &max_rx, &max_tx, sh); 10437 if (rc) 10438 return rc; 10439 10440 if (max_rx < rx) 10441 return -ENOMEM; 10442 10443 tx_rings_needed = tx * tx_sets + tx_xdp; 10444 if (max_tx < tx_rings_needed) 10445 return -ENOMEM; 10446 10447 vnics = 1; 10448 if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS) 10449 vnics += rx_rings; 10450 10451 if (bp->flags & BNXT_FLAG_AGG_RINGS) 10452 rx_rings <<= 1; 10453 cp = sh ? max_t(int, tx_rings_needed, rx) : tx_rings_needed + rx; 10454 stats = cp; 10455 if (BNXT_NEW_RM(bp)) { 10456 cp += bnxt_get_ulp_msix_num(bp); 10457 stats += bnxt_get_ulp_stat_ctxs(bp); 10458 } 10459 return bnxt_hwrm_check_rings(bp, tx_rings_needed, rx_rings, rx, cp, 10460 stats, vnics); 10461 } 10462 10463 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev) 10464 { 10465 if (bp->bar2) { 10466 pci_iounmap(pdev, bp->bar2); 10467 bp->bar2 = NULL; 10468 } 10469 10470 if (bp->bar1) { 10471 pci_iounmap(pdev, bp->bar1); 10472 bp->bar1 = NULL; 10473 } 10474 10475 if (bp->bar0) { 10476 pci_iounmap(pdev, bp->bar0); 10477 bp->bar0 = NULL; 10478 } 10479 } 10480 10481 static void bnxt_cleanup_pci(struct bnxt *bp) 10482 { 10483 bnxt_unmap_bars(bp, bp->pdev); 10484 pci_release_regions(bp->pdev); 10485 if (pci_is_enabled(bp->pdev)) 10486 pci_disable_device(bp->pdev); 10487 } 10488 10489 static void bnxt_init_dflt_coal(struct bnxt *bp) 10490 { 10491 struct bnxt_coal *coal; 10492 10493 /* Tick values in micro seconds. 10494 * 1 coal_buf x bufs_per_record = 1 completion record. 10495 */ 10496 coal = &bp->rx_coal; 10497 coal->coal_ticks = 10; 10498 coal->coal_bufs = 30; 10499 coal->coal_ticks_irq = 1; 10500 coal->coal_bufs_irq = 2; 10501 coal->idle_thresh = 50; 10502 coal->bufs_per_record = 2; 10503 coal->budget = 64; /* NAPI budget */ 10504 10505 coal = &bp->tx_coal; 10506 coal->coal_ticks = 28; 10507 coal->coal_bufs = 30; 10508 coal->coal_ticks_irq = 2; 10509 coal->coal_bufs_irq = 2; 10510 coal->bufs_per_record = 1; 10511 10512 bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS; 10513 } 10514 10515 static void bnxt_alloc_fw_health(struct bnxt *bp) 10516 { 10517 if (bp->fw_health) 10518 return; 10519 10520 if (!(bp->fw_cap & BNXT_FW_CAP_HOT_RESET) && 10521 !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 10522 return; 10523 10524 bp->fw_health = kzalloc(sizeof(*bp->fw_health), GFP_KERNEL); 10525 if (!bp->fw_health) { 10526 netdev_warn(bp->dev, "Failed to allocate fw_health\n"); 10527 bp->fw_cap &= ~BNXT_FW_CAP_HOT_RESET; 10528 bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY; 10529 } 10530 } 10531 10532 static int bnxt_fw_init_one_p1(struct bnxt *bp) 10533 { 10534 int rc; 10535 10536 bp->fw_cap = 0; 10537 rc = bnxt_hwrm_ver_get(bp); 10538 if (rc) 10539 return rc; 10540 10541 if (bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL) { 10542 rc = bnxt_alloc_kong_hwrm_resources(bp); 10543 if (rc) 10544 bp->fw_cap &= ~BNXT_FW_CAP_KONG_MB_CHNL; 10545 } 10546 10547 if ((bp->fw_cap & BNXT_FW_CAP_SHORT_CMD) || 10548 bp->hwrm_max_ext_req_len > BNXT_HWRM_MAX_REQ_LEN) { 10549 rc = bnxt_alloc_hwrm_short_cmd_req(bp); 10550 if (rc) 10551 return rc; 10552 } 10553 rc = bnxt_hwrm_func_reset(bp); 10554 if (rc) 10555 return -ENODEV; 10556 10557 bnxt_hwrm_fw_set_time(bp); 10558 return 0; 10559 } 10560 10561 static int bnxt_fw_init_one_p2(struct bnxt *bp) 10562 { 10563 int rc; 10564 10565 /* Get the MAX capabilities for this function */ 10566 rc = bnxt_hwrm_func_qcaps(bp); 10567 if (rc) { 10568 netdev_err(bp->dev, "hwrm query capability failure rc: %x\n", 10569 rc); 10570 return -ENODEV; 10571 } 10572 10573 rc = bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(bp); 10574 if (rc) 10575 netdev_warn(bp->dev, "hwrm query adv flow mgnt failure rc: %d\n", 10576 rc); 10577 10578 bnxt_alloc_fw_health(bp); 10579 rc = bnxt_hwrm_error_recovery_qcfg(bp); 10580 if (rc) 10581 netdev_warn(bp->dev, "hwrm query error recovery failure rc: %d\n", 10582 rc); 10583 10584 rc = bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false); 10585 if (rc) 10586 return -ENODEV; 10587 10588 bnxt_hwrm_func_qcfg(bp); 10589 bnxt_hwrm_vnic_qcaps(bp); 10590 bnxt_hwrm_port_led_qcaps(bp); 10591 bnxt_ethtool_init(bp); 10592 bnxt_dcb_init(bp); 10593 return 0; 10594 } 10595 10596 static void bnxt_set_dflt_rss_hash_type(struct bnxt *bp) 10597 { 10598 bp->flags &= ~BNXT_FLAG_UDP_RSS_CAP; 10599 bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 | 10600 VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 | 10601 VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 | 10602 VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6; 10603 if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) { 10604 bp->flags |= BNXT_FLAG_UDP_RSS_CAP; 10605 bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 | 10606 VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6; 10607 } 10608 } 10609 10610 static void bnxt_set_dflt_rfs(struct bnxt *bp) 10611 { 10612 struct net_device *dev = bp->dev; 10613 10614 dev->hw_features &= ~NETIF_F_NTUPLE; 10615 dev->features &= ~NETIF_F_NTUPLE; 10616 bp->flags &= ~BNXT_FLAG_RFS; 10617 if (bnxt_rfs_supported(bp)) { 10618 dev->hw_features |= NETIF_F_NTUPLE; 10619 if (bnxt_rfs_capable(bp)) { 10620 bp->flags |= BNXT_FLAG_RFS; 10621 dev->features |= NETIF_F_NTUPLE; 10622 } 10623 } 10624 } 10625 10626 static void bnxt_fw_init_one_p3(struct bnxt *bp) 10627 { 10628 struct pci_dev *pdev = bp->pdev; 10629 10630 bnxt_set_dflt_rss_hash_type(bp); 10631 bnxt_set_dflt_rfs(bp); 10632 10633 bnxt_get_wol_settings(bp); 10634 if (bp->flags & BNXT_FLAG_WOL_CAP) 10635 device_set_wakeup_enable(&pdev->dev, bp->wol); 10636 else 10637 device_set_wakeup_capable(&pdev->dev, false); 10638 10639 bnxt_hwrm_set_cache_line_size(bp, cache_line_size()); 10640 bnxt_hwrm_coal_params_qcaps(bp); 10641 } 10642 10643 static int bnxt_fw_init_one(struct bnxt *bp) 10644 { 10645 int rc; 10646 10647 rc = bnxt_fw_init_one_p1(bp); 10648 if (rc) { 10649 netdev_err(bp->dev, "Firmware init phase 1 failed\n"); 10650 return rc; 10651 } 10652 rc = bnxt_fw_init_one_p2(bp); 10653 if (rc) { 10654 netdev_err(bp->dev, "Firmware init phase 2 failed\n"); 10655 return rc; 10656 } 10657 rc = bnxt_approve_mac(bp, bp->dev->dev_addr, false); 10658 if (rc) 10659 return rc; 10660 10661 /* In case fw capabilities have changed, destroy the unneeded 10662 * reporters and create newly capable ones. 10663 */ 10664 bnxt_dl_fw_reporters_destroy(bp, false); 10665 bnxt_dl_fw_reporters_create(bp); 10666 bnxt_fw_init_one_p3(bp); 10667 return 0; 10668 } 10669 10670 static void bnxt_fw_reset_writel(struct bnxt *bp, int reg_idx) 10671 { 10672 struct bnxt_fw_health *fw_health = bp->fw_health; 10673 u32 reg = fw_health->fw_reset_seq_regs[reg_idx]; 10674 u32 val = fw_health->fw_reset_seq_vals[reg_idx]; 10675 u32 reg_type, reg_off, delay_msecs; 10676 10677 delay_msecs = fw_health->fw_reset_seq_delay_msec[reg_idx]; 10678 reg_type = BNXT_FW_HEALTH_REG_TYPE(reg); 10679 reg_off = BNXT_FW_HEALTH_REG_OFF(reg); 10680 switch (reg_type) { 10681 case BNXT_FW_HEALTH_REG_TYPE_CFG: 10682 pci_write_config_dword(bp->pdev, reg_off, val); 10683 break; 10684 case BNXT_FW_HEALTH_REG_TYPE_GRC: 10685 writel(reg_off & BNXT_GRC_BASE_MASK, 10686 bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4); 10687 reg_off = (reg_off & BNXT_GRC_OFFSET_MASK) + 0x2000; 10688 /* fall through */ 10689 case BNXT_FW_HEALTH_REG_TYPE_BAR0: 10690 writel(val, bp->bar0 + reg_off); 10691 break; 10692 case BNXT_FW_HEALTH_REG_TYPE_BAR1: 10693 writel(val, bp->bar1 + reg_off); 10694 break; 10695 } 10696 if (delay_msecs) { 10697 pci_read_config_dword(bp->pdev, 0, &val); 10698 msleep(delay_msecs); 10699 } 10700 } 10701 10702 static void bnxt_reset_all(struct bnxt *bp) 10703 { 10704 struct bnxt_fw_health *fw_health = bp->fw_health; 10705 int i, rc; 10706 10707 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 10708 #ifdef CONFIG_TEE_BNXT_FW 10709 rc = tee_bnxt_fw_load(); 10710 if (rc) 10711 netdev_err(bp->dev, "Unable to reset FW rc=%d\n", rc); 10712 bp->fw_reset_timestamp = jiffies; 10713 #endif 10714 return; 10715 } 10716 10717 if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_HOST) { 10718 for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) 10719 bnxt_fw_reset_writel(bp, i); 10720 } else if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) { 10721 struct hwrm_fw_reset_input req = {0}; 10722 10723 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FW_RESET, -1, -1); 10724 req.resp_addr = cpu_to_le64(bp->hwrm_cmd_kong_resp_dma_addr); 10725 req.embedded_proc_type = FW_RESET_REQ_EMBEDDED_PROC_TYPE_CHIP; 10726 req.selfrst_status = FW_RESET_REQ_SELFRST_STATUS_SELFRSTASAP; 10727 req.flags = FW_RESET_REQ_FLAGS_RESET_GRACEFUL; 10728 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 10729 if (rc) 10730 netdev_warn(bp->dev, "Unable to reset FW rc=%d\n", rc); 10731 } 10732 bp->fw_reset_timestamp = jiffies; 10733 } 10734 10735 static void bnxt_fw_reset_task(struct work_struct *work) 10736 { 10737 struct bnxt *bp = container_of(work, struct bnxt, fw_reset_task.work); 10738 int rc; 10739 10740 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 10741 netdev_err(bp->dev, "bnxt_fw_reset_task() called when not in fw reset mode!\n"); 10742 return; 10743 } 10744 10745 switch (bp->fw_reset_state) { 10746 case BNXT_FW_RESET_STATE_POLL_VF: { 10747 int n = bnxt_get_registered_vfs(bp); 10748 int tmo; 10749 10750 if (n < 0) { 10751 netdev_err(bp->dev, "Firmware reset aborted, subsequent func_qcfg cmd failed, rc = %d, %d msecs since reset timestamp\n", 10752 n, jiffies_to_msecs(jiffies - 10753 bp->fw_reset_timestamp)); 10754 goto fw_reset_abort; 10755 } else if (n > 0) { 10756 if (time_after(jiffies, bp->fw_reset_timestamp + 10757 (bp->fw_reset_max_dsecs * HZ / 10))) { 10758 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 10759 bp->fw_reset_state = 0; 10760 netdev_err(bp->dev, "Firmware reset aborted, bnxt_get_registered_vfs() returns %d\n", 10761 n); 10762 return; 10763 } 10764 bnxt_queue_fw_reset_work(bp, HZ / 10); 10765 return; 10766 } 10767 bp->fw_reset_timestamp = jiffies; 10768 rtnl_lock(); 10769 bnxt_fw_reset_close(bp); 10770 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 10771 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN; 10772 tmo = HZ / 10; 10773 } else { 10774 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 10775 tmo = bp->fw_reset_min_dsecs * HZ / 10; 10776 } 10777 rtnl_unlock(); 10778 bnxt_queue_fw_reset_work(bp, tmo); 10779 return; 10780 } 10781 case BNXT_FW_RESET_STATE_POLL_FW_DOWN: { 10782 u32 val; 10783 10784 val = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 10785 if (!(val & BNXT_FW_STATUS_SHUTDOWN) && 10786 !time_after(jiffies, bp->fw_reset_timestamp + 10787 (bp->fw_reset_max_dsecs * HZ / 10))) { 10788 bnxt_queue_fw_reset_work(bp, HZ / 5); 10789 return; 10790 } 10791 10792 if (!bp->fw_health->master) { 10793 u32 wait_dsecs = bp->fw_health->normal_func_wait_dsecs; 10794 10795 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 10796 bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10); 10797 return; 10798 } 10799 bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW; 10800 } 10801 /* fall through */ 10802 case BNXT_FW_RESET_STATE_RESET_FW: 10803 bnxt_reset_all(bp); 10804 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 10805 bnxt_queue_fw_reset_work(bp, bp->fw_reset_min_dsecs * HZ / 10); 10806 return; 10807 case BNXT_FW_RESET_STATE_ENABLE_DEV: 10808 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) { 10809 u32 val; 10810 10811 val = bnxt_fw_health_readl(bp, 10812 BNXT_FW_RESET_INPROG_REG); 10813 if (val) 10814 netdev_warn(bp->dev, "FW reset inprog %x after min wait time.\n", 10815 val); 10816 } 10817 clear_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 10818 if (pci_enable_device(bp->pdev)) { 10819 netdev_err(bp->dev, "Cannot re-enable PCI device\n"); 10820 goto fw_reset_abort; 10821 } 10822 pci_set_master(bp->pdev); 10823 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW; 10824 /* fall through */ 10825 case BNXT_FW_RESET_STATE_POLL_FW: 10826 bp->hwrm_cmd_timeout = SHORT_HWRM_CMD_TIMEOUT; 10827 rc = __bnxt_hwrm_ver_get(bp, true); 10828 if (rc) { 10829 if (time_after(jiffies, bp->fw_reset_timestamp + 10830 (bp->fw_reset_max_dsecs * HZ / 10))) { 10831 netdev_err(bp->dev, "Firmware reset aborted\n"); 10832 goto fw_reset_abort; 10833 } 10834 bnxt_queue_fw_reset_work(bp, HZ / 5); 10835 return; 10836 } 10837 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT; 10838 bp->fw_reset_state = BNXT_FW_RESET_STATE_OPENING; 10839 /* fall through */ 10840 case BNXT_FW_RESET_STATE_OPENING: 10841 while (!rtnl_trylock()) { 10842 bnxt_queue_fw_reset_work(bp, HZ / 10); 10843 return; 10844 } 10845 rc = bnxt_open(bp->dev); 10846 if (rc) { 10847 netdev_err(bp->dev, "bnxt_open_nic() failed\n"); 10848 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 10849 dev_close(bp->dev); 10850 } 10851 10852 bp->fw_reset_state = 0; 10853 /* Make sure fw_reset_state is 0 before clearing the flag */ 10854 smp_mb__before_atomic(); 10855 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 10856 bnxt_ulp_start(bp, rc); 10857 if (!rc) 10858 bnxt_reenable_sriov(bp); 10859 bnxt_dl_health_recovery_done(bp); 10860 bnxt_dl_health_status_update(bp, true); 10861 rtnl_unlock(); 10862 break; 10863 } 10864 return; 10865 10866 fw_reset_abort: 10867 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 10868 if (bp->fw_reset_state != BNXT_FW_RESET_STATE_POLL_VF) 10869 bnxt_dl_health_status_update(bp, false); 10870 bp->fw_reset_state = 0; 10871 rtnl_lock(); 10872 dev_close(bp->dev); 10873 rtnl_unlock(); 10874 } 10875 10876 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev) 10877 { 10878 int rc; 10879 struct bnxt *bp = netdev_priv(dev); 10880 10881 SET_NETDEV_DEV(dev, &pdev->dev); 10882 10883 /* enable device (incl. PCI PM wakeup), and bus-mastering */ 10884 rc = pci_enable_device(pdev); 10885 if (rc) { 10886 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n"); 10887 goto init_err; 10888 } 10889 10890 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { 10891 dev_err(&pdev->dev, 10892 "Cannot find PCI device base address, aborting\n"); 10893 rc = -ENODEV; 10894 goto init_err_disable; 10895 } 10896 10897 rc = pci_request_regions(pdev, DRV_MODULE_NAME); 10898 if (rc) { 10899 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n"); 10900 goto init_err_disable; 10901 } 10902 10903 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 && 10904 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) { 10905 dev_err(&pdev->dev, "System does not support DMA, aborting\n"); 10906 goto init_err_disable; 10907 } 10908 10909 pci_set_master(pdev); 10910 10911 bp->dev = dev; 10912 bp->pdev = pdev; 10913 10914 /* Doorbell BAR bp->bar1 is mapped after bnxt_fw_init_one_p2() 10915 * determines the BAR size. 10916 */ 10917 bp->bar0 = pci_ioremap_bar(pdev, 0); 10918 if (!bp->bar0) { 10919 dev_err(&pdev->dev, "Cannot map device registers, aborting\n"); 10920 rc = -ENOMEM; 10921 goto init_err_release; 10922 } 10923 10924 bp->bar2 = pci_ioremap_bar(pdev, 4); 10925 if (!bp->bar2) { 10926 dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n"); 10927 rc = -ENOMEM; 10928 goto init_err_release; 10929 } 10930 10931 pci_enable_pcie_error_reporting(pdev); 10932 10933 INIT_WORK(&bp->sp_task, bnxt_sp_task); 10934 INIT_DELAYED_WORK(&bp->fw_reset_task, bnxt_fw_reset_task); 10935 10936 spin_lock_init(&bp->ntp_fltr_lock); 10937 #if BITS_PER_LONG == 32 10938 spin_lock_init(&bp->db_lock); 10939 #endif 10940 10941 bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE; 10942 bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE; 10943 10944 bnxt_init_dflt_coal(bp); 10945 10946 timer_setup(&bp->timer, bnxt_timer, 0); 10947 bp->current_interval = BNXT_TIMER_INTERVAL; 10948 10949 clear_bit(BNXT_STATE_OPEN, &bp->state); 10950 return 0; 10951 10952 init_err_release: 10953 bnxt_unmap_bars(bp, pdev); 10954 pci_release_regions(pdev); 10955 10956 init_err_disable: 10957 pci_disable_device(pdev); 10958 10959 init_err: 10960 return rc; 10961 } 10962 10963 /* rtnl_lock held */ 10964 static int bnxt_change_mac_addr(struct net_device *dev, void *p) 10965 { 10966 struct sockaddr *addr = p; 10967 struct bnxt *bp = netdev_priv(dev); 10968 int rc = 0; 10969 10970 if (!is_valid_ether_addr(addr->sa_data)) 10971 return -EADDRNOTAVAIL; 10972 10973 if (ether_addr_equal(addr->sa_data, dev->dev_addr)) 10974 return 0; 10975 10976 rc = bnxt_approve_mac(bp, addr->sa_data, true); 10977 if (rc) 10978 return rc; 10979 10980 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 10981 if (netif_running(dev)) { 10982 bnxt_close_nic(bp, false, false); 10983 rc = bnxt_open_nic(bp, false, false); 10984 } 10985 10986 return rc; 10987 } 10988 10989 /* rtnl_lock held */ 10990 static int bnxt_change_mtu(struct net_device *dev, int new_mtu) 10991 { 10992 struct bnxt *bp = netdev_priv(dev); 10993 10994 if (netif_running(dev)) 10995 bnxt_close_nic(bp, true, false); 10996 10997 dev->mtu = new_mtu; 10998 bnxt_set_ring_params(bp); 10999 11000 if (netif_running(dev)) 11001 return bnxt_open_nic(bp, true, false); 11002 11003 return 0; 11004 } 11005 11006 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc) 11007 { 11008 struct bnxt *bp = netdev_priv(dev); 11009 bool sh = false; 11010 int rc; 11011 11012 if (tc > bp->max_tc) { 11013 netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n", 11014 tc, bp->max_tc); 11015 return -EINVAL; 11016 } 11017 11018 if (netdev_get_num_tc(dev) == tc) 11019 return 0; 11020 11021 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 11022 sh = true; 11023 11024 rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings, 11025 sh, tc, bp->tx_nr_rings_xdp); 11026 if (rc) 11027 return rc; 11028 11029 /* Needs to close the device and do hw resource re-allocations */ 11030 if (netif_running(bp->dev)) 11031 bnxt_close_nic(bp, true, false); 11032 11033 if (tc) { 11034 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc; 11035 netdev_set_num_tc(dev, tc); 11036 } else { 11037 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 11038 netdev_reset_tc(dev); 11039 } 11040 bp->tx_nr_rings += bp->tx_nr_rings_xdp; 11041 bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) : 11042 bp->tx_nr_rings + bp->rx_nr_rings; 11043 11044 if (netif_running(bp->dev)) 11045 return bnxt_open_nic(bp, true, false); 11046 11047 return 0; 11048 } 11049 11050 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 11051 void *cb_priv) 11052 { 11053 struct bnxt *bp = cb_priv; 11054 11055 if (!bnxt_tc_flower_enabled(bp) || 11056 !tc_cls_can_offload_and_chain0(bp->dev, type_data)) 11057 return -EOPNOTSUPP; 11058 11059 switch (type) { 11060 case TC_SETUP_CLSFLOWER: 11061 return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data); 11062 default: 11063 return -EOPNOTSUPP; 11064 } 11065 } 11066 11067 LIST_HEAD(bnxt_block_cb_list); 11068 11069 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type, 11070 void *type_data) 11071 { 11072 struct bnxt *bp = netdev_priv(dev); 11073 11074 switch (type) { 11075 case TC_SETUP_BLOCK: 11076 return flow_block_cb_setup_simple(type_data, 11077 &bnxt_block_cb_list, 11078 bnxt_setup_tc_block_cb, 11079 bp, bp, true); 11080 case TC_SETUP_QDISC_MQPRIO: { 11081 struct tc_mqprio_qopt *mqprio = type_data; 11082 11083 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 11084 11085 return bnxt_setup_mq_tc(dev, mqprio->num_tc); 11086 } 11087 default: 11088 return -EOPNOTSUPP; 11089 } 11090 } 11091 11092 #ifdef CONFIG_RFS_ACCEL 11093 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1, 11094 struct bnxt_ntuple_filter *f2) 11095 { 11096 struct flow_keys *keys1 = &f1->fkeys; 11097 struct flow_keys *keys2 = &f2->fkeys; 11098 11099 if (keys1->basic.n_proto != keys2->basic.n_proto || 11100 keys1->basic.ip_proto != keys2->basic.ip_proto) 11101 return false; 11102 11103 if (keys1->basic.n_proto == htons(ETH_P_IP)) { 11104 if (keys1->addrs.v4addrs.src != keys2->addrs.v4addrs.src || 11105 keys1->addrs.v4addrs.dst != keys2->addrs.v4addrs.dst) 11106 return false; 11107 } else { 11108 if (memcmp(&keys1->addrs.v6addrs.src, &keys2->addrs.v6addrs.src, 11109 sizeof(keys1->addrs.v6addrs.src)) || 11110 memcmp(&keys1->addrs.v6addrs.dst, &keys2->addrs.v6addrs.dst, 11111 sizeof(keys1->addrs.v6addrs.dst))) 11112 return false; 11113 } 11114 11115 if (keys1->ports.ports == keys2->ports.ports && 11116 keys1->control.flags == keys2->control.flags && 11117 ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) && 11118 ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr)) 11119 return true; 11120 11121 return false; 11122 } 11123 11124 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb, 11125 u16 rxq_index, u32 flow_id) 11126 { 11127 struct bnxt *bp = netdev_priv(dev); 11128 struct bnxt_ntuple_filter *fltr, *new_fltr; 11129 struct flow_keys *fkeys; 11130 struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb); 11131 int rc = 0, idx, bit_id, l2_idx = 0; 11132 struct hlist_head *head; 11133 u32 flags; 11134 11135 if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) { 11136 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 11137 int off = 0, j; 11138 11139 netif_addr_lock_bh(dev); 11140 for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) { 11141 if (ether_addr_equal(eth->h_dest, 11142 vnic->uc_list + off)) { 11143 l2_idx = j + 1; 11144 break; 11145 } 11146 } 11147 netif_addr_unlock_bh(dev); 11148 if (!l2_idx) 11149 return -EINVAL; 11150 } 11151 new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC); 11152 if (!new_fltr) 11153 return -ENOMEM; 11154 11155 fkeys = &new_fltr->fkeys; 11156 if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) { 11157 rc = -EPROTONOSUPPORT; 11158 goto err_free; 11159 } 11160 11161 if ((fkeys->basic.n_proto != htons(ETH_P_IP) && 11162 fkeys->basic.n_proto != htons(ETH_P_IPV6)) || 11163 ((fkeys->basic.ip_proto != IPPROTO_TCP) && 11164 (fkeys->basic.ip_proto != IPPROTO_UDP))) { 11165 rc = -EPROTONOSUPPORT; 11166 goto err_free; 11167 } 11168 if (fkeys->basic.n_proto == htons(ETH_P_IPV6) && 11169 bp->hwrm_spec_code < 0x10601) { 11170 rc = -EPROTONOSUPPORT; 11171 goto err_free; 11172 } 11173 flags = fkeys->control.flags; 11174 if (((flags & FLOW_DIS_ENCAPSULATION) && 11175 bp->hwrm_spec_code < 0x10601) || (flags & FLOW_DIS_IS_FRAGMENT)) { 11176 rc = -EPROTONOSUPPORT; 11177 goto err_free; 11178 } 11179 11180 memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN); 11181 memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN); 11182 11183 idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK; 11184 head = &bp->ntp_fltr_hash_tbl[idx]; 11185 rcu_read_lock(); 11186 hlist_for_each_entry_rcu(fltr, head, hash) { 11187 if (bnxt_fltr_match(fltr, new_fltr)) { 11188 rcu_read_unlock(); 11189 rc = 0; 11190 goto err_free; 11191 } 11192 } 11193 rcu_read_unlock(); 11194 11195 spin_lock_bh(&bp->ntp_fltr_lock); 11196 bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap, 11197 BNXT_NTP_FLTR_MAX_FLTR, 0); 11198 if (bit_id < 0) { 11199 spin_unlock_bh(&bp->ntp_fltr_lock); 11200 rc = -ENOMEM; 11201 goto err_free; 11202 } 11203 11204 new_fltr->sw_id = (u16)bit_id; 11205 new_fltr->flow_id = flow_id; 11206 new_fltr->l2_fltr_idx = l2_idx; 11207 new_fltr->rxq = rxq_index; 11208 hlist_add_head_rcu(&new_fltr->hash, head); 11209 bp->ntp_fltr_count++; 11210 spin_unlock_bh(&bp->ntp_fltr_lock); 11211 11212 set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event); 11213 bnxt_queue_sp_work(bp); 11214 11215 return new_fltr->sw_id; 11216 11217 err_free: 11218 kfree(new_fltr); 11219 return rc; 11220 } 11221 11222 static void bnxt_cfg_ntp_filters(struct bnxt *bp) 11223 { 11224 int i; 11225 11226 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) { 11227 struct hlist_head *head; 11228 struct hlist_node *tmp; 11229 struct bnxt_ntuple_filter *fltr; 11230 int rc; 11231 11232 head = &bp->ntp_fltr_hash_tbl[i]; 11233 hlist_for_each_entry_safe(fltr, tmp, head, hash) { 11234 bool del = false; 11235 11236 if (test_bit(BNXT_FLTR_VALID, &fltr->state)) { 11237 if (rps_may_expire_flow(bp->dev, fltr->rxq, 11238 fltr->flow_id, 11239 fltr->sw_id)) { 11240 bnxt_hwrm_cfa_ntuple_filter_free(bp, 11241 fltr); 11242 del = true; 11243 } 11244 } else { 11245 rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp, 11246 fltr); 11247 if (rc) 11248 del = true; 11249 else 11250 set_bit(BNXT_FLTR_VALID, &fltr->state); 11251 } 11252 11253 if (del) { 11254 spin_lock_bh(&bp->ntp_fltr_lock); 11255 hlist_del_rcu(&fltr->hash); 11256 bp->ntp_fltr_count--; 11257 spin_unlock_bh(&bp->ntp_fltr_lock); 11258 synchronize_rcu(); 11259 clear_bit(fltr->sw_id, bp->ntp_fltr_bmap); 11260 kfree(fltr); 11261 } 11262 } 11263 } 11264 if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event)) 11265 netdev_info(bp->dev, "Receive PF driver unload event!\n"); 11266 } 11267 11268 #else 11269 11270 static void bnxt_cfg_ntp_filters(struct bnxt *bp) 11271 { 11272 } 11273 11274 #endif /* CONFIG_RFS_ACCEL */ 11275 11276 static void bnxt_udp_tunnel_add(struct net_device *dev, 11277 struct udp_tunnel_info *ti) 11278 { 11279 struct bnxt *bp = netdev_priv(dev); 11280 11281 if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET) 11282 return; 11283 11284 if (!netif_running(dev)) 11285 return; 11286 11287 switch (ti->type) { 11288 case UDP_TUNNEL_TYPE_VXLAN: 11289 if (bp->vxlan_port_cnt && bp->vxlan_port != ti->port) 11290 return; 11291 11292 bp->vxlan_port_cnt++; 11293 if (bp->vxlan_port_cnt == 1) { 11294 bp->vxlan_port = ti->port; 11295 set_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event); 11296 bnxt_queue_sp_work(bp); 11297 } 11298 break; 11299 case UDP_TUNNEL_TYPE_GENEVE: 11300 if (bp->nge_port_cnt && bp->nge_port != ti->port) 11301 return; 11302 11303 bp->nge_port_cnt++; 11304 if (bp->nge_port_cnt == 1) { 11305 bp->nge_port = ti->port; 11306 set_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event); 11307 } 11308 break; 11309 default: 11310 return; 11311 } 11312 11313 bnxt_queue_sp_work(bp); 11314 } 11315 11316 static void bnxt_udp_tunnel_del(struct net_device *dev, 11317 struct udp_tunnel_info *ti) 11318 { 11319 struct bnxt *bp = netdev_priv(dev); 11320 11321 if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET) 11322 return; 11323 11324 if (!netif_running(dev)) 11325 return; 11326 11327 switch (ti->type) { 11328 case UDP_TUNNEL_TYPE_VXLAN: 11329 if (!bp->vxlan_port_cnt || bp->vxlan_port != ti->port) 11330 return; 11331 bp->vxlan_port_cnt--; 11332 11333 if (bp->vxlan_port_cnt != 0) 11334 return; 11335 11336 set_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event); 11337 break; 11338 case UDP_TUNNEL_TYPE_GENEVE: 11339 if (!bp->nge_port_cnt || bp->nge_port != ti->port) 11340 return; 11341 bp->nge_port_cnt--; 11342 11343 if (bp->nge_port_cnt != 0) 11344 return; 11345 11346 set_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event); 11347 break; 11348 default: 11349 return; 11350 } 11351 11352 bnxt_queue_sp_work(bp); 11353 } 11354 11355 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 11356 struct net_device *dev, u32 filter_mask, 11357 int nlflags) 11358 { 11359 struct bnxt *bp = netdev_priv(dev); 11360 11361 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0, 11362 nlflags, filter_mask, NULL); 11363 } 11364 11365 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 11366 u16 flags, struct netlink_ext_ack *extack) 11367 { 11368 struct bnxt *bp = netdev_priv(dev); 11369 struct nlattr *attr, *br_spec; 11370 int rem, rc = 0; 11371 11372 if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp)) 11373 return -EOPNOTSUPP; 11374 11375 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 11376 if (!br_spec) 11377 return -EINVAL; 11378 11379 nla_for_each_nested(attr, br_spec, rem) { 11380 u16 mode; 11381 11382 if (nla_type(attr) != IFLA_BRIDGE_MODE) 11383 continue; 11384 11385 if (nla_len(attr) < sizeof(mode)) 11386 return -EINVAL; 11387 11388 mode = nla_get_u16(attr); 11389 if (mode == bp->br_mode) 11390 break; 11391 11392 rc = bnxt_hwrm_set_br_mode(bp, mode); 11393 if (!rc) 11394 bp->br_mode = mode; 11395 break; 11396 } 11397 return rc; 11398 } 11399 11400 int bnxt_get_port_parent_id(struct net_device *dev, 11401 struct netdev_phys_item_id *ppid) 11402 { 11403 struct bnxt *bp = netdev_priv(dev); 11404 11405 if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV) 11406 return -EOPNOTSUPP; 11407 11408 /* The PF and it's VF-reps only support the switchdev framework */ 11409 if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_DSN_VALID)) 11410 return -EOPNOTSUPP; 11411 11412 ppid->id_len = sizeof(bp->dsn); 11413 memcpy(ppid->id, bp->dsn, ppid->id_len); 11414 11415 return 0; 11416 } 11417 11418 static struct devlink_port *bnxt_get_devlink_port(struct net_device *dev) 11419 { 11420 struct bnxt *bp = netdev_priv(dev); 11421 11422 return &bp->dl_port; 11423 } 11424 11425 static const struct net_device_ops bnxt_netdev_ops = { 11426 .ndo_open = bnxt_open, 11427 .ndo_start_xmit = bnxt_start_xmit, 11428 .ndo_stop = bnxt_close, 11429 .ndo_get_stats64 = bnxt_get_stats64, 11430 .ndo_set_rx_mode = bnxt_set_rx_mode, 11431 .ndo_do_ioctl = bnxt_ioctl, 11432 .ndo_validate_addr = eth_validate_addr, 11433 .ndo_set_mac_address = bnxt_change_mac_addr, 11434 .ndo_change_mtu = bnxt_change_mtu, 11435 .ndo_fix_features = bnxt_fix_features, 11436 .ndo_set_features = bnxt_set_features, 11437 .ndo_tx_timeout = bnxt_tx_timeout, 11438 #ifdef CONFIG_BNXT_SRIOV 11439 .ndo_get_vf_config = bnxt_get_vf_config, 11440 .ndo_set_vf_mac = bnxt_set_vf_mac, 11441 .ndo_set_vf_vlan = bnxt_set_vf_vlan, 11442 .ndo_set_vf_rate = bnxt_set_vf_bw, 11443 .ndo_set_vf_link_state = bnxt_set_vf_link_state, 11444 .ndo_set_vf_spoofchk = bnxt_set_vf_spoofchk, 11445 .ndo_set_vf_trust = bnxt_set_vf_trust, 11446 #endif 11447 .ndo_setup_tc = bnxt_setup_tc, 11448 #ifdef CONFIG_RFS_ACCEL 11449 .ndo_rx_flow_steer = bnxt_rx_flow_steer, 11450 #endif 11451 .ndo_udp_tunnel_add = bnxt_udp_tunnel_add, 11452 .ndo_udp_tunnel_del = bnxt_udp_tunnel_del, 11453 .ndo_bpf = bnxt_xdp, 11454 .ndo_xdp_xmit = bnxt_xdp_xmit, 11455 .ndo_bridge_getlink = bnxt_bridge_getlink, 11456 .ndo_bridge_setlink = bnxt_bridge_setlink, 11457 .ndo_get_devlink_port = bnxt_get_devlink_port, 11458 }; 11459 11460 static void bnxt_remove_one(struct pci_dev *pdev) 11461 { 11462 struct net_device *dev = pci_get_drvdata(pdev); 11463 struct bnxt *bp = netdev_priv(dev); 11464 11465 if (BNXT_PF(bp)) 11466 bnxt_sriov_disable(bp); 11467 11468 bnxt_dl_fw_reporters_destroy(bp, true); 11469 if (BNXT_PF(bp)) 11470 devlink_port_type_clear(&bp->dl_port); 11471 pci_disable_pcie_error_reporting(pdev); 11472 unregister_netdev(dev); 11473 bnxt_dl_unregister(bp); 11474 bnxt_shutdown_tc(bp); 11475 bnxt_cancel_sp_work(bp); 11476 bp->sp_event = 0; 11477 11478 bnxt_clear_int_mode(bp); 11479 bnxt_hwrm_func_drv_unrgtr(bp); 11480 bnxt_free_hwrm_resources(bp); 11481 bnxt_free_hwrm_short_cmd_req(bp); 11482 bnxt_ethtool_free(bp); 11483 bnxt_dcb_free(bp); 11484 kfree(bp->edev); 11485 bp->edev = NULL; 11486 kfree(bp->fw_health); 11487 bp->fw_health = NULL; 11488 bnxt_cleanup_pci(bp); 11489 bnxt_free_ctx_mem(bp); 11490 kfree(bp->ctx); 11491 bp->ctx = NULL; 11492 bnxt_free_port_stats(bp); 11493 free_netdev(dev); 11494 } 11495 11496 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt) 11497 { 11498 int rc = 0; 11499 struct bnxt_link_info *link_info = &bp->link_info; 11500 11501 rc = bnxt_hwrm_phy_qcaps(bp); 11502 if (rc) { 11503 netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n", 11504 rc); 11505 return rc; 11506 } 11507 if (!fw_dflt) 11508 return 0; 11509 11510 rc = bnxt_update_link(bp, false); 11511 if (rc) { 11512 netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n", 11513 rc); 11514 return rc; 11515 } 11516 11517 /* Older firmware does not have supported_auto_speeds, so assume 11518 * that all supported speeds can be autonegotiated. 11519 */ 11520 if (link_info->auto_link_speeds && !link_info->support_auto_speeds) 11521 link_info->support_auto_speeds = link_info->support_speeds; 11522 11523 bnxt_init_ethtool_link_settings(bp); 11524 return 0; 11525 } 11526 11527 static int bnxt_get_max_irq(struct pci_dev *pdev) 11528 { 11529 u16 ctrl; 11530 11531 if (!pdev->msix_cap) 11532 return 1; 11533 11534 pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl); 11535 return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1; 11536 } 11537 11538 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, 11539 int *max_cp) 11540 { 11541 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 11542 int max_ring_grps = 0, max_irq; 11543 11544 *max_tx = hw_resc->max_tx_rings; 11545 *max_rx = hw_resc->max_rx_rings; 11546 *max_cp = bnxt_get_max_func_cp_rings_for_en(bp); 11547 max_irq = min_t(int, bnxt_get_max_func_irqs(bp) - 11548 bnxt_get_ulp_msix_num(bp), 11549 hw_resc->max_stat_ctxs - bnxt_get_ulp_stat_ctxs(bp)); 11550 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 11551 *max_cp = min_t(int, *max_cp, max_irq); 11552 max_ring_grps = hw_resc->max_hw_ring_grps; 11553 if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) { 11554 *max_cp -= 1; 11555 *max_rx -= 2; 11556 } 11557 if (bp->flags & BNXT_FLAG_AGG_RINGS) 11558 *max_rx >>= 1; 11559 if (bp->flags & BNXT_FLAG_CHIP_P5) { 11560 bnxt_trim_rings(bp, max_rx, max_tx, *max_cp, false); 11561 /* On P5 chips, max_cp output param should be available NQs */ 11562 *max_cp = max_irq; 11563 } 11564 *max_rx = min_t(int, *max_rx, max_ring_grps); 11565 } 11566 11567 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared) 11568 { 11569 int rx, tx, cp; 11570 11571 _bnxt_get_max_rings(bp, &rx, &tx, &cp); 11572 *max_rx = rx; 11573 *max_tx = tx; 11574 if (!rx || !tx || !cp) 11575 return -ENOMEM; 11576 11577 return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared); 11578 } 11579 11580 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx, 11581 bool shared) 11582 { 11583 int rc; 11584 11585 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared); 11586 if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) { 11587 /* Not enough rings, try disabling agg rings. */ 11588 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 11589 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared); 11590 if (rc) { 11591 /* set BNXT_FLAG_AGG_RINGS back for consistency */ 11592 bp->flags |= BNXT_FLAG_AGG_RINGS; 11593 return rc; 11594 } 11595 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 11596 bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 11597 bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 11598 bnxt_set_ring_params(bp); 11599 } 11600 11601 if (bp->flags & BNXT_FLAG_ROCE_CAP) { 11602 int max_cp, max_stat, max_irq; 11603 11604 /* Reserve minimum resources for RoCE */ 11605 max_cp = bnxt_get_max_func_cp_rings(bp); 11606 max_stat = bnxt_get_max_func_stat_ctxs(bp); 11607 max_irq = bnxt_get_max_func_irqs(bp); 11608 if (max_cp <= BNXT_MIN_ROCE_CP_RINGS || 11609 max_irq <= BNXT_MIN_ROCE_CP_RINGS || 11610 max_stat <= BNXT_MIN_ROCE_STAT_CTXS) 11611 return 0; 11612 11613 max_cp -= BNXT_MIN_ROCE_CP_RINGS; 11614 max_irq -= BNXT_MIN_ROCE_CP_RINGS; 11615 max_stat -= BNXT_MIN_ROCE_STAT_CTXS; 11616 max_cp = min_t(int, max_cp, max_irq); 11617 max_cp = min_t(int, max_cp, max_stat); 11618 rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared); 11619 if (rc) 11620 rc = 0; 11621 } 11622 return rc; 11623 } 11624 11625 /* In initial default shared ring setting, each shared ring must have a 11626 * RX/TX ring pair. 11627 */ 11628 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp) 11629 { 11630 bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings); 11631 bp->rx_nr_rings = bp->cp_nr_rings; 11632 bp->tx_nr_rings_per_tc = bp->cp_nr_rings; 11633 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 11634 } 11635 11636 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh) 11637 { 11638 int dflt_rings, max_rx_rings, max_tx_rings, rc; 11639 11640 if (!bnxt_can_reserve_rings(bp)) 11641 return 0; 11642 11643 if (sh) 11644 bp->flags |= BNXT_FLAG_SHARED_RINGS; 11645 dflt_rings = is_kdump_kernel() ? 1 : netif_get_num_default_rss_queues(); 11646 /* Reduce default rings on multi-port cards so that total default 11647 * rings do not exceed CPU count. 11648 */ 11649 if (bp->port_count > 1) { 11650 int max_rings = 11651 max_t(int, num_online_cpus() / bp->port_count, 1); 11652 11653 dflt_rings = min_t(int, dflt_rings, max_rings); 11654 } 11655 rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh); 11656 if (rc) 11657 return rc; 11658 bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings); 11659 bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings); 11660 if (sh) 11661 bnxt_trim_dflt_sh_rings(bp); 11662 else 11663 bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings; 11664 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 11665 11666 rc = __bnxt_reserve_rings(bp); 11667 if (rc) 11668 netdev_warn(bp->dev, "Unable to reserve tx rings\n"); 11669 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 11670 if (sh) 11671 bnxt_trim_dflt_sh_rings(bp); 11672 11673 /* Rings may have been trimmed, re-reserve the trimmed rings. */ 11674 if (bnxt_need_reserve_rings(bp)) { 11675 rc = __bnxt_reserve_rings(bp); 11676 if (rc) 11677 netdev_warn(bp->dev, "2nd rings reservation failed.\n"); 11678 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 11679 } 11680 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 11681 bp->rx_nr_rings++; 11682 bp->cp_nr_rings++; 11683 } 11684 if (rc) { 11685 bp->tx_nr_rings = 0; 11686 bp->rx_nr_rings = 0; 11687 } 11688 return rc; 11689 } 11690 11691 static int bnxt_init_dflt_ring_mode(struct bnxt *bp) 11692 { 11693 int rc; 11694 11695 if (bp->tx_nr_rings) 11696 return 0; 11697 11698 bnxt_ulp_irq_stop(bp); 11699 bnxt_clear_int_mode(bp); 11700 rc = bnxt_set_dflt_rings(bp, true); 11701 if (rc) { 11702 netdev_err(bp->dev, "Not enough rings available.\n"); 11703 goto init_dflt_ring_err; 11704 } 11705 rc = bnxt_init_int_mode(bp); 11706 if (rc) 11707 goto init_dflt_ring_err; 11708 11709 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 11710 if (bnxt_rfs_supported(bp) && bnxt_rfs_capable(bp)) { 11711 bp->flags |= BNXT_FLAG_RFS; 11712 bp->dev->features |= NETIF_F_NTUPLE; 11713 } 11714 init_dflt_ring_err: 11715 bnxt_ulp_irq_restart(bp, rc); 11716 return rc; 11717 } 11718 11719 int bnxt_restore_pf_fw_resources(struct bnxt *bp) 11720 { 11721 int rc; 11722 11723 ASSERT_RTNL(); 11724 bnxt_hwrm_func_qcaps(bp); 11725 11726 if (netif_running(bp->dev)) 11727 __bnxt_close_nic(bp, true, false); 11728 11729 bnxt_ulp_irq_stop(bp); 11730 bnxt_clear_int_mode(bp); 11731 rc = bnxt_init_int_mode(bp); 11732 bnxt_ulp_irq_restart(bp, rc); 11733 11734 if (netif_running(bp->dev)) { 11735 if (rc) 11736 dev_close(bp->dev); 11737 else 11738 rc = bnxt_open_nic(bp, true, false); 11739 } 11740 11741 return rc; 11742 } 11743 11744 static int bnxt_init_mac_addr(struct bnxt *bp) 11745 { 11746 int rc = 0; 11747 11748 if (BNXT_PF(bp)) { 11749 memcpy(bp->dev->dev_addr, bp->pf.mac_addr, ETH_ALEN); 11750 } else { 11751 #ifdef CONFIG_BNXT_SRIOV 11752 struct bnxt_vf_info *vf = &bp->vf; 11753 bool strict_approval = true; 11754 11755 if (is_valid_ether_addr(vf->mac_addr)) { 11756 /* overwrite netdev dev_addr with admin VF MAC */ 11757 memcpy(bp->dev->dev_addr, vf->mac_addr, ETH_ALEN); 11758 /* Older PF driver or firmware may not approve this 11759 * correctly. 11760 */ 11761 strict_approval = false; 11762 } else { 11763 eth_hw_addr_random(bp->dev); 11764 } 11765 rc = bnxt_approve_mac(bp, bp->dev->dev_addr, strict_approval); 11766 #endif 11767 } 11768 return rc; 11769 } 11770 11771 #define BNXT_VPD_LEN 512 11772 static void bnxt_vpd_read_info(struct bnxt *bp) 11773 { 11774 struct pci_dev *pdev = bp->pdev; 11775 int i, len, pos, ro_size; 11776 ssize_t vpd_size; 11777 u8 *vpd_data; 11778 11779 vpd_data = kmalloc(BNXT_VPD_LEN, GFP_KERNEL); 11780 if (!vpd_data) 11781 return; 11782 11783 vpd_size = pci_read_vpd(pdev, 0, BNXT_VPD_LEN, vpd_data); 11784 if (vpd_size <= 0) { 11785 netdev_err(bp->dev, "Unable to read VPD\n"); 11786 goto exit; 11787 } 11788 11789 i = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA); 11790 if (i < 0) { 11791 netdev_err(bp->dev, "VPD READ-Only not found\n"); 11792 goto exit; 11793 } 11794 11795 ro_size = pci_vpd_lrdt_size(&vpd_data[i]); 11796 i += PCI_VPD_LRDT_TAG_SIZE; 11797 if (i + ro_size > vpd_size) 11798 goto exit; 11799 11800 pos = pci_vpd_find_info_keyword(vpd_data, i, ro_size, 11801 PCI_VPD_RO_KEYWORD_PARTNO); 11802 if (pos < 0) 11803 goto read_sn; 11804 11805 len = pci_vpd_info_field_size(&vpd_data[pos]); 11806 pos += PCI_VPD_INFO_FLD_HDR_SIZE; 11807 if (len + pos > vpd_size) 11808 goto read_sn; 11809 11810 strlcpy(bp->board_partno, &vpd_data[pos], min(len, BNXT_VPD_FLD_LEN)); 11811 11812 read_sn: 11813 pos = pci_vpd_find_info_keyword(vpd_data, i, ro_size, 11814 PCI_VPD_RO_KEYWORD_SERIALNO); 11815 if (pos < 0) 11816 goto exit; 11817 11818 len = pci_vpd_info_field_size(&vpd_data[pos]); 11819 pos += PCI_VPD_INFO_FLD_HDR_SIZE; 11820 if (len + pos > vpd_size) 11821 goto exit; 11822 11823 strlcpy(bp->board_serialno, &vpd_data[pos], min(len, BNXT_VPD_FLD_LEN)); 11824 exit: 11825 kfree(vpd_data); 11826 } 11827 11828 static int bnxt_pcie_dsn_get(struct bnxt *bp, u8 dsn[]) 11829 { 11830 struct pci_dev *pdev = bp->pdev; 11831 u64 qword; 11832 11833 qword = pci_get_dsn(pdev); 11834 if (!qword) { 11835 netdev_info(bp->dev, "Unable to read adapter's DSN\n"); 11836 return -EOPNOTSUPP; 11837 } 11838 11839 put_unaligned_le64(qword, dsn); 11840 11841 bp->flags |= BNXT_FLAG_DSN_VALID; 11842 return 0; 11843 } 11844 11845 static int bnxt_map_db_bar(struct bnxt *bp) 11846 { 11847 if (!bp->db_size) 11848 return -ENODEV; 11849 bp->bar1 = pci_iomap(bp->pdev, 2, bp->db_size); 11850 if (!bp->bar1) 11851 return -ENOMEM; 11852 return 0; 11853 } 11854 11855 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 11856 { 11857 struct net_device *dev; 11858 struct bnxt *bp; 11859 int rc, max_irqs; 11860 11861 if (pci_is_bridge(pdev)) 11862 return -ENODEV; 11863 11864 /* Clear any pending DMA transactions from crash kernel 11865 * while loading driver in capture kernel. 11866 */ 11867 if (is_kdump_kernel()) { 11868 pci_clear_master(pdev); 11869 pcie_flr(pdev); 11870 } 11871 11872 max_irqs = bnxt_get_max_irq(pdev); 11873 dev = alloc_etherdev_mq(sizeof(*bp), max_irqs); 11874 if (!dev) 11875 return -ENOMEM; 11876 11877 bp = netdev_priv(dev); 11878 bnxt_set_max_func_irqs(bp, max_irqs); 11879 11880 if (bnxt_vf_pciid(ent->driver_data)) 11881 bp->flags |= BNXT_FLAG_VF; 11882 11883 if (pdev->msix_cap) 11884 bp->flags |= BNXT_FLAG_MSIX_CAP; 11885 11886 rc = bnxt_init_board(pdev, dev); 11887 if (rc < 0) 11888 goto init_err_free; 11889 11890 dev->netdev_ops = &bnxt_netdev_ops; 11891 dev->watchdog_timeo = BNXT_TX_TIMEOUT; 11892 dev->ethtool_ops = &bnxt_ethtool_ops; 11893 pci_set_drvdata(pdev, dev); 11894 11895 bnxt_vpd_read_info(bp); 11896 11897 rc = bnxt_alloc_hwrm_resources(bp); 11898 if (rc) 11899 goto init_err_pci_clean; 11900 11901 mutex_init(&bp->hwrm_cmd_lock); 11902 mutex_init(&bp->link_lock); 11903 11904 rc = bnxt_fw_init_one_p1(bp); 11905 if (rc) 11906 goto init_err_pci_clean; 11907 11908 if (BNXT_CHIP_P5(bp)) 11909 bp->flags |= BNXT_FLAG_CHIP_P5; 11910 11911 rc = bnxt_fw_init_one_p2(bp); 11912 if (rc) 11913 goto init_err_pci_clean; 11914 11915 rc = bnxt_map_db_bar(bp); 11916 if (rc) { 11917 dev_err(&pdev->dev, "Cannot map doorbell BAR rc = %d, aborting\n", 11918 rc); 11919 goto init_err_pci_clean; 11920 } 11921 11922 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 11923 NETIF_F_TSO | NETIF_F_TSO6 | 11924 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | 11925 NETIF_F_GSO_IPXIP4 | 11926 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM | 11927 NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH | 11928 NETIF_F_RXCSUM | NETIF_F_GRO; 11929 11930 if (BNXT_SUPPORTS_TPA(bp)) 11931 dev->hw_features |= NETIF_F_LRO; 11932 11933 dev->hw_enc_features = 11934 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 11935 NETIF_F_TSO | NETIF_F_TSO6 | 11936 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | 11937 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM | 11938 NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL; 11939 dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM | 11940 NETIF_F_GSO_GRE_CSUM; 11941 dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA; 11942 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX | 11943 NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX; 11944 if (BNXT_SUPPORTS_TPA(bp)) 11945 dev->hw_features |= NETIF_F_GRO_HW; 11946 dev->features |= dev->hw_features | NETIF_F_HIGHDMA; 11947 if (dev->features & NETIF_F_GRO_HW) 11948 dev->features &= ~NETIF_F_LRO; 11949 dev->priv_flags |= IFF_UNICAST_FLT; 11950 11951 #ifdef CONFIG_BNXT_SRIOV 11952 init_waitqueue_head(&bp->sriov_cfg_wait); 11953 mutex_init(&bp->sriov_lock); 11954 #endif 11955 if (BNXT_SUPPORTS_TPA(bp)) { 11956 bp->gro_func = bnxt_gro_func_5730x; 11957 if (BNXT_CHIP_P4(bp)) 11958 bp->gro_func = bnxt_gro_func_5731x; 11959 else if (BNXT_CHIP_P5(bp)) 11960 bp->gro_func = bnxt_gro_func_5750x; 11961 } 11962 if (!BNXT_CHIP_P4_PLUS(bp)) 11963 bp->flags |= BNXT_FLAG_DOUBLE_DB; 11964 11965 bp->ulp_probe = bnxt_ulp_probe; 11966 11967 rc = bnxt_init_mac_addr(bp); 11968 if (rc) { 11969 dev_err(&pdev->dev, "Unable to initialize mac address.\n"); 11970 rc = -EADDRNOTAVAIL; 11971 goto init_err_pci_clean; 11972 } 11973 11974 if (BNXT_PF(bp)) { 11975 /* Read the adapter's DSN to use as the eswitch switch_id */ 11976 rc = bnxt_pcie_dsn_get(bp, bp->dsn); 11977 } 11978 11979 /* MTU range: 60 - FW defined max */ 11980 dev->min_mtu = ETH_ZLEN; 11981 dev->max_mtu = bp->max_mtu; 11982 11983 rc = bnxt_probe_phy(bp, true); 11984 if (rc) 11985 goto init_err_pci_clean; 11986 11987 bnxt_set_rx_skb_mode(bp, false); 11988 bnxt_set_tpa_flags(bp); 11989 bnxt_set_ring_params(bp); 11990 rc = bnxt_set_dflt_rings(bp, true); 11991 if (rc) { 11992 netdev_err(bp->dev, "Not enough rings available.\n"); 11993 rc = -ENOMEM; 11994 goto init_err_pci_clean; 11995 } 11996 11997 bnxt_fw_init_one_p3(bp); 11998 11999 if (dev->hw_features & NETIF_F_HW_VLAN_CTAG_RX) 12000 bp->flags |= BNXT_FLAG_STRIP_VLAN; 12001 12002 rc = bnxt_init_int_mode(bp); 12003 if (rc) 12004 goto init_err_pci_clean; 12005 12006 /* No TC has been set yet and rings may have been trimmed due to 12007 * limited MSIX, so we re-initialize the TX rings per TC. 12008 */ 12009 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 12010 12011 if (BNXT_PF(bp)) { 12012 if (!bnxt_pf_wq) { 12013 bnxt_pf_wq = 12014 create_singlethread_workqueue("bnxt_pf_wq"); 12015 if (!bnxt_pf_wq) { 12016 dev_err(&pdev->dev, "Unable to create workqueue.\n"); 12017 goto init_err_pci_clean; 12018 } 12019 } 12020 bnxt_init_tc(bp); 12021 } 12022 12023 bnxt_dl_register(bp); 12024 12025 rc = register_netdev(dev); 12026 if (rc) 12027 goto init_err_cleanup; 12028 12029 if (BNXT_PF(bp)) 12030 devlink_port_type_eth_set(&bp->dl_port, bp->dev); 12031 bnxt_dl_fw_reporters_create(bp); 12032 12033 netdev_info(dev, "%s found at mem %lx, node addr %pM\n", 12034 board_info[ent->driver_data].name, 12035 (long)pci_resource_start(pdev, 0), dev->dev_addr); 12036 pcie_print_link_status(pdev); 12037 12038 return 0; 12039 12040 init_err_cleanup: 12041 bnxt_dl_unregister(bp); 12042 bnxt_shutdown_tc(bp); 12043 bnxt_clear_int_mode(bp); 12044 12045 init_err_pci_clean: 12046 bnxt_hwrm_func_drv_unrgtr(bp); 12047 bnxt_free_hwrm_short_cmd_req(bp); 12048 bnxt_free_hwrm_resources(bp); 12049 kfree(bp->fw_health); 12050 bp->fw_health = NULL; 12051 bnxt_cleanup_pci(bp); 12052 bnxt_free_ctx_mem(bp); 12053 kfree(bp->ctx); 12054 bp->ctx = NULL; 12055 12056 init_err_free: 12057 free_netdev(dev); 12058 return rc; 12059 } 12060 12061 static void bnxt_shutdown(struct pci_dev *pdev) 12062 { 12063 struct net_device *dev = pci_get_drvdata(pdev); 12064 struct bnxt *bp; 12065 12066 if (!dev) 12067 return; 12068 12069 rtnl_lock(); 12070 bp = netdev_priv(dev); 12071 if (!bp) 12072 goto shutdown_exit; 12073 12074 if (netif_running(dev)) 12075 dev_close(dev); 12076 12077 bnxt_ulp_shutdown(bp); 12078 bnxt_clear_int_mode(bp); 12079 pci_disable_device(pdev); 12080 12081 if (system_state == SYSTEM_POWER_OFF) { 12082 pci_wake_from_d3(pdev, bp->wol); 12083 pci_set_power_state(pdev, PCI_D3hot); 12084 } 12085 12086 shutdown_exit: 12087 rtnl_unlock(); 12088 } 12089 12090 #ifdef CONFIG_PM_SLEEP 12091 static int bnxt_suspend(struct device *device) 12092 { 12093 struct net_device *dev = dev_get_drvdata(device); 12094 struct bnxt *bp = netdev_priv(dev); 12095 int rc = 0; 12096 12097 rtnl_lock(); 12098 bnxt_ulp_stop(bp); 12099 if (netif_running(dev)) { 12100 netif_device_detach(dev); 12101 rc = bnxt_close(dev); 12102 } 12103 bnxt_hwrm_func_drv_unrgtr(bp); 12104 pci_disable_device(bp->pdev); 12105 bnxt_free_ctx_mem(bp); 12106 kfree(bp->ctx); 12107 bp->ctx = NULL; 12108 rtnl_unlock(); 12109 return rc; 12110 } 12111 12112 static int bnxt_resume(struct device *device) 12113 { 12114 struct net_device *dev = dev_get_drvdata(device); 12115 struct bnxt *bp = netdev_priv(dev); 12116 int rc = 0; 12117 12118 rtnl_lock(); 12119 rc = pci_enable_device(bp->pdev); 12120 if (rc) { 12121 netdev_err(dev, "Cannot re-enable PCI device during resume, err = %d\n", 12122 rc); 12123 goto resume_exit; 12124 } 12125 pci_set_master(bp->pdev); 12126 if (bnxt_hwrm_ver_get(bp)) { 12127 rc = -ENODEV; 12128 goto resume_exit; 12129 } 12130 rc = bnxt_hwrm_func_reset(bp); 12131 if (rc) { 12132 rc = -EBUSY; 12133 goto resume_exit; 12134 } 12135 12136 if (bnxt_hwrm_queue_qportcfg(bp)) { 12137 rc = -ENODEV; 12138 goto resume_exit; 12139 } 12140 12141 if (bp->hwrm_spec_code >= 0x10803) { 12142 if (bnxt_alloc_ctx_mem(bp)) { 12143 rc = -ENODEV; 12144 goto resume_exit; 12145 } 12146 } 12147 if (BNXT_NEW_RM(bp)) 12148 bnxt_hwrm_func_resc_qcaps(bp, false); 12149 12150 if (bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false)) { 12151 rc = -ENODEV; 12152 goto resume_exit; 12153 } 12154 12155 bnxt_get_wol_settings(bp); 12156 if (netif_running(dev)) { 12157 rc = bnxt_open(dev); 12158 if (!rc) 12159 netif_device_attach(dev); 12160 } 12161 12162 resume_exit: 12163 bnxt_ulp_start(bp, rc); 12164 rtnl_unlock(); 12165 return rc; 12166 } 12167 12168 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume); 12169 #define BNXT_PM_OPS (&bnxt_pm_ops) 12170 12171 #else 12172 12173 #define BNXT_PM_OPS NULL 12174 12175 #endif /* CONFIG_PM_SLEEP */ 12176 12177 /** 12178 * bnxt_io_error_detected - called when PCI error is detected 12179 * @pdev: Pointer to PCI device 12180 * @state: The current pci connection state 12181 * 12182 * This function is called after a PCI bus error affecting 12183 * this device has been detected. 12184 */ 12185 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev, 12186 pci_channel_state_t state) 12187 { 12188 struct net_device *netdev = pci_get_drvdata(pdev); 12189 struct bnxt *bp = netdev_priv(netdev); 12190 12191 netdev_info(netdev, "PCI I/O error detected\n"); 12192 12193 rtnl_lock(); 12194 netif_device_detach(netdev); 12195 12196 bnxt_ulp_stop(bp); 12197 12198 if (state == pci_channel_io_perm_failure) { 12199 rtnl_unlock(); 12200 return PCI_ERS_RESULT_DISCONNECT; 12201 } 12202 12203 if (netif_running(netdev)) 12204 bnxt_close(netdev); 12205 12206 pci_disable_device(pdev); 12207 rtnl_unlock(); 12208 12209 /* Request a slot slot reset. */ 12210 return PCI_ERS_RESULT_NEED_RESET; 12211 } 12212 12213 /** 12214 * bnxt_io_slot_reset - called after the pci bus has been reset. 12215 * @pdev: Pointer to PCI device 12216 * 12217 * Restart the card from scratch, as if from a cold-boot. 12218 * At this point, the card has exprienced a hard reset, 12219 * followed by fixups by BIOS, and has its config space 12220 * set up identically to what it was at cold boot. 12221 */ 12222 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev) 12223 { 12224 struct net_device *netdev = pci_get_drvdata(pdev); 12225 struct bnxt *bp = netdev_priv(netdev); 12226 int err = 0; 12227 pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT; 12228 12229 netdev_info(bp->dev, "PCI Slot Reset\n"); 12230 12231 rtnl_lock(); 12232 12233 if (pci_enable_device(pdev)) { 12234 dev_err(&pdev->dev, 12235 "Cannot re-enable PCI device after reset.\n"); 12236 } else { 12237 pci_set_master(pdev); 12238 12239 err = bnxt_hwrm_func_reset(bp); 12240 if (!err && netif_running(netdev)) 12241 err = bnxt_open(netdev); 12242 12243 if (!err) 12244 result = PCI_ERS_RESULT_RECOVERED; 12245 bnxt_ulp_start(bp, err); 12246 } 12247 12248 if (result != PCI_ERS_RESULT_RECOVERED) { 12249 if (netif_running(netdev)) 12250 dev_close(netdev); 12251 pci_disable_device(pdev); 12252 } 12253 12254 rtnl_unlock(); 12255 12256 return result; 12257 } 12258 12259 /** 12260 * bnxt_io_resume - called when traffic can start flowing again. 12261 * @pdev: Pointer to PCI device 12262 * 12263 * This callback is called when the error recovery driver tells 12264 * us that its OK to resume normal operation. 12265 */ 12266 static void bnxt_io_resume(struct pci_dev *pdev) 12267 { 12268 struct net_device *netdev = pci_get_drvdata(pdev); 12269 12270 rtnl_lock(); 12271 12272 netif_device_attach(netdev); 12273 12274 rtnl_unlock(); 12275 } 12276 12277 static const struct pci_error_handlers bnxt_err_handler = { 12278 .error_detected = bnxt_io_error_detected, 12279 .slot_reset = bnxt_io_slot_reset, 12280 .resume = bnxt_io_resume 12281 }; 12282 12283 static struct pci_driver bnxt_pci_driver = { 12284 .name = DRV_MODULE_NAME, 12285 .id_table = bnxt_pci_tbl, 12286 .probe = bnxt_init_one, 12287 .remove = bnxt_remove_one, 12288 .shutdown = bnxt_shutdown, 12289 .driver.pm = BNXT_PM_OPS, 12290 .err_handler = &bnxt_err_handler, 12291 #if defined(CONFIG_BNXT_SRIOV) 12292 .sriov_configure = bnxt_sriov_configure, 12293 #endif 12294 }; 12295 12296 static int __init bnxt_init(void) 12297 { 12298 bnxt_debug_init(); 12299 return pci_register_driver(&bnxt_pci_driver); 12300 } 12301 12302 static void __exit bnxt_exit(void) 12303 { 12304 pci_unregister_driver(&bnxt_pci_driver); 12305 if (bnxt_pf_wq) 12306 destroy_workqueue(bnxt_pf_wq); 12307 bnxt_debug_exit(); 12308 } 12309 12310 module_init(bnxt_init); 12311 module_exit(bnxt_exit); 12312