xref: /openbmc/linux/drivers/net/ethernet/broadcom/bnxt/bnxt.c (revision 781095f903f398148cd0b646d3984234a715f29e)
1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2015 Broadcom Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation.
8  */
9 
10 #include <linux/module.h>
11 
12 #include <linux/stringify.h>
13 #include <linux/kernel.h>
14 #include <linux/timer.h>
15 #include <linux/errno.h>
16 #include <linux/ioport.h>
17 #include <linux/slab.h>
18 #include <linux/vmalloc.h>
19 #include <linux/interrupt.h>
20 #include <linux/pci.h>
21 #include <linux/netdevice.h>
22 #include <linux/etherdevice.h>
23 #include <linux/skbuff.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/bitops.h>
26 #include <linux/io.h>
27 #include <linux/irq.h>
28 #include <linux/delay.h>
29 #include <asm/byteorder.h>
30 #include <asm/page.h>
31 #include <linux/time.h>
32 #include <linux/mii.h>
33 #include <linux/if.h>
34 #include <linux/if_vlan.h>
35 #include <net/ip.h>
36 #include <net/tcp.h>
37 #include <net/udp.h>
38 #include <net/checksum.h>
39 #include <net/ip6_checksum.h>
40 #if defined(CONFIG_VXLAN) || defined(CONFIG_VXLAN_MODULE)
41 #include <net/vxlan.h>
42 #endif
43 #ifdef CONFIG_NET_RX_BUSY_POLL
44 #include <net/busy_poll.h>
45 #endif
46 #include <linux/workqueue.h>
47 #include <linux/prefetch.h>
48 #include <linux/cache.h>
49 #include <linux/log2.h>
50 #include <linux/aer.h>
51 #include <linux/bitmap.h>
52 #include <linux/cpu_rmap.h>
53 
54 #include "bnxt_hsi.h"
55 #include "bnxt.h"
56 #include "bnxt_sriov.h"
57 #include "bnxt_ethtool.h"
58 
59 #define BNXT_TX_TIMEOUT		(5 * HZ)
60 
61 static const char version[] =
62 	"Broadcom NetXtreme-C/E driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION "\n";
63 
64 MODULE_LICENSE("GPL");
65 MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
66 MODULE_VERSION(DRV_MODULE_VERSION);
67 
68 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
69 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
70 #define BNXT_RX_COPY_THRESH 256
71 
72 #define BNXT_TX_PUSH_THRESH 92
73 
74 enum board_idx {
75 	BCM57301,
76 	BCM57302,
77 	BCM57304,
78 	BCM57402,
79 	BCM57404,
80 	BCM57406,
81 	BCM57304_VF,
82 	BCM57404_VF,
83 };
84 
85 /* indexed by enum above */
86 static const struct {
87 	char *name;
88 } board_info[] = {
89 	{ "Broadcom BCM57301 NetXtreme-C Single-port 10Gb Ethernet" },
90 	{ "Broadcom BCM57302 NetXtreme-C Dual-port 10Gb/25Gb Ethernet" },
91 	{ "Broadcom BCM57304 NetXtreme-C Dual-port 10Gb/25Gb/40Gb/50Gb Ethernet" },
92 	{ "Broadcom BCM57402 NetXtreme-E Dual-port 10Gb Ethernet" },
93 	{ "Broadcom BCM57404 NetXtreme-E Dual-port 10Gb/25Gb Ethernet" },
94 	{ "Broadcom BCM57406 NetXtreme-E Dual-port 10GBase-T Ethernet" },
95 	{ "Broadcom BCM57304 NetXtreme-C Ethernet Virtual Function" },
96 	{ "Broadcom BCM57404 NetXtreme-E Ethernet Virtual Function" },
97 };
98 
99 static const struct pci_device_id bnxt_pci_tbl[] = {
100 	{ PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
101 	{ PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
102 	{ PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
103 	{ PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
104 	{ PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
105 	{ PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
106 #ifdef CONFIG_BNXT_SRIOV
107 	{ PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = BCM57304_VF },
108 	{ PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = BCM57404_VF },
109 #endif
110 	{ 0 }
111 };
112 
113 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
114 
115 static const u16 bnxt_vf_req_snif[] = {
116 	HWRM_FUNC_CFG,
117 	HWRM_PORT_PHY_QCFG,
118 	HWRM_CFA_L2_FILTER_ALLOC,
119 };
120 
121 static bool bnxt_vf_pciid(enum board_idx idx)
122 {
123 	return (idx == BCM57304_VF || idx == BCM57404_VF);
124 }
125 
126 #define DB_CP_REARM_FLAGS	(DB_KEY_CP | DB_IDX_VALID)
127 #define DB_CP_FLAGS		(DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
128 #define DB_CP_IRQ_DIS_FLAGS	(DB_KEY_CP | DB_IRQ_DIS)
129 
130 #define BNXT_CP_DB_REARM(db, raw_cons)					\
131 		writel(DB_CP_REARM_FLAGS | RING_CMP(raw_cons), db)
132 
133 #define BNXT_CP_DB(db, raw_cons)					\
134 		writel(DB_CP_FLAGS | RING_CMP(raw_cons), db)
135 
136 #define BNXT_CP_DB_IRQ_DIS(db)						\
137 		writel(DB_CP_IRQ_DIS_FLAGS, db)
138 
139 static inline u32 bnxt_tx_avail(struct bnxt *bp, struct bnxt_tx_ring_info *txr)
140 {
141 	/* Tell compiler to fetch tx indices from memory. */
142 	barrier();
143 
144 	return bp->tx_ring_size -
145 		((txr->tx_prod - txr->tx_cons) & bp->tx_ring_mask);
146 }
147 
148 static const u16 bnxt_lhint_arr[] = {
149 	TX_BD_FLAGS_LHINT_512_AND_SMALLER,
150 	TX_BD_FLAGS_LHINT_512_TO_1023,
151 	TX_BD_FLAGS_LHINT_1024_TO_2047,
152 	TX_BD_FLAGS_LHINT_1024_TO_2047,
153 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
154 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
155 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
156 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
157 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
158 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
159 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
160 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
161 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
162 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
163 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
164 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
165 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
166 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
167 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
168 };
169 
170 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
171 {
172 	struct bnxt *bp = netdev_priv(dev);
173 	struct tx_bd *txbd;
174 	struct tx_bd_ext *txbd1;
175 	struct netdev_queue *txq;
176 	int i;
177 	dma_addr_t mapping;
178 	unsigned int length, pad = 0;
179 	u32 len, free_size, vlan_tag_flags, cfa_action, flags;
180 	u16 prod, last_frag;
181 	struct pci_dev *pdev = bp->pdev;
182 	struct bnxt_tx_ring_info *txr;
183 	struct bnxt_sw_tx_bd *tx_buf;
184 
185 	i = skb_get_queue_mapping(skb);
186 	if (unlikely(i >= bp->tx_nr_rings)) {
187 		dev_kfree_skb_any(skb);
188 		return NETDEV_TX_OK;
189 	}
190 
191 	txr = &bp->tx_ring[i];
192 	txq = netdev_get_tx_queue(dev, i);
193 	prod = txr->tx_prod;
194 
195 	free_size = bnxt_tx_avail(bp, txr);
196 	if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
197 		netif_tx_stop_queue(txq);
198 		return NETDEV_TX_BUSY;
199 	}
200 
201 	length = skb->len;
202 	len = skb_headlen(skb);
203 	last_frag = skb_shinfo(skb)->nr_frags;
204 
205 	txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
206 
207 	txbd->tx_bd_opaque = prod;
208 
209 	tx_buf = &txr->tx_buf_ring[prod];
210 	tx_buf->skb = skb;
211 	tx_buf->nr_frags = last_frag;
212 
213 	vlan_tag_flags = 0;
214 	cfa_action = 0;
215 	if (skb_vlan_tag_present(skb)) {
216 		vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
217 				 skb_vlan_tag_get(skb);
218 		/* Currently supports 8021Q, 8021AD vlan offloads
219 		 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
220 		 */
221 		if (skb->vlan_proto == htons(ETH_P_8021Q))
222 			vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
223 	}
224 
225 	if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh) {
226 		struct tx_push_bd *push = txr->tx_push;
227 		struct tx_bd *tx_push = &push->txbd1;
228 		struct tx_bd_ext *tx_push1 = &push->txbd2;
229 		void *pdata = tx_push1 + 1;
230 		int j;
231 
232 		/* Set COAL_NOW to be ready quickly for the next push */
233 		tx_push->tx_bd_len_flags_type =
234 			cpu_to_le32((length << TX_BD_LEN_SHIFT) |
235 					TX_BD_TYPE_LONG_TX_BD |
236 					TX_BD_FLAGS_LHINT_512_AND_SMALLER |
237 					TX_BD_FLAGS_COAL_NOW |
238 					TX_BD_FLAGS_PACKET_END |
239 					(2 << TX_BD_FLAGS_BD_CNT_SHIFT));
240 
241 		if (skb->ip_summed == CHECKSUM_PARTIAL)
242 			tx_push1->tx_bd_hsize_lflags =
243 					cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
244 		else
245 			tx_push1->tx_bd_hsize_lflags = 0;
246 
247 		tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
248 		tx_push1->tx_bd_cfa_action = cpu_to_le32(cfa_action);
249 
250 		skb_copy_from_linear_data(skb, pdata, len);
251 		pdata += len;
252 		for (j = 0; j < last_frag; j++) {
253 			skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
254 			void *fptr;
255 
256 			fptr = skb_frag_address_safe(frag);
257 			if (!fptr)
258 				goto normal_tx;
259 
260 			memcpy(pdata, fptr, skb_frag_size(frag));
261 			pdata += skb_frag_size(frag);
262 		}
263 
264 		memcpy(txbd, tx_push, sizeof(*txbd));
265 		prod = NEXT_TX(prod);
266 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
267 		memcpy(txbd, tx_push1, sizeof(*txbd));
268 		prod = NEXT_TX(prod);
269 		push->doorbell =
270 			cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod);
271 		txr->tx_prod = prod;
272 
273 		netdev_tx_sent_queue(txq, skb->len);
274 
275 		__iowrite64_copy(txr->tx_doorbell, push,
276 				 (length + sizeof(*push) + 8) / 8);
277 
278 		tx_buf->is_push = 1;
279 
280 		goto tx_done;
281 	}
282 
283 normal_tx:
284 	if (length < BNXT_MIN_PKT_SIZE) {
285 		pad = BNXT_MIN_PKT_SIZE - length;
286 		if (skb_pad(skb, pad)) {
287 			/* SKB already freed. */
288 			tx_buf->skb = NULL;
289 			return NETDEV_TX_OK;
290 		}
291 		length = BNXT_MIN_PKT_SIZE;
292 	}
293 
294 	mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
295 
296 	if (unlikely(dma_mapping_error(&pdev->dev, mapping))) {
297 		dev_kfree_skb_any(skb);
298 		tx_buf->skb = NULL;
299 		return NETDEV_TX_OK;
300 	}
301 
302 	dma_unmap_addr_set(tx_buf, mapping, mapping);
303 	flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
304 		((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
305 
306 	txbd->tx_bd_haddr = cpu_to_le64(mapping);
307 
308 	prod = NEXT_TX(prod);
309 	txbd1 = (struct tx_bd_ext *)
310 		&txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
311 
312 	txbd1->tx_bd_hsize_lflags = 0;
313 	if (skb_is_gso(skb)) {
314 		u32 hdr_len;
315 
316 		if (skb->encapsulation)
317 			hdr_len = skb_inner_network_offset(skb) +
318 				skb_inner_network_header_len(skb) +
319 				inner_tcp_hdrlen(skb);
320 		else
321 			hdr_len = skb_transport_offset(skb) +
322 				tcp_hdrlen(skb);
323 
324 		txbd1->tx_bd_hsize_lflags = cpu_to_le32(TX_BD_FLAGS_LSO |
325 					TX_BD_FLAGS_T_IPID |
326 					(hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
327 		length = skb_shinfo(skb)->gso_size;
328 		txbd1->tx_bd_mss = cpu_to_le32(length);
329 		length += hdr_len;
330 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
331 		txbd1->tx_bd_hsize_lflags =
332 			cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
333 		txbd1->tx_bd_mss = 0;
334 	}
335 
336 	length >>= 9;
337 	flags |= bnxt_lhint_arr[length];
338 	txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
339 
340 	txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
341 	txbd1->tx_bd_cfa_action = cpu_to_le32(cfa_action);
342 	for (i = 0; i < last_frag; i++) {
343 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
344 
345 		prod = NEXT_TX(prod);
346 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
347 
348 		len = skb_frag_size(frag);
349 		mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
350 					   DMA_TO_DEVICE);
351 
352 		if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
353 			goto tx_dma_error;
354 
355 		tx_buf = &txr->tx_buf_ring[prod];
356 		dma_unmap_addr_set(tx_buf, mapping, mapping);
357 
358 		txbd->tx_bd_haddr = cpu_to_le64(mapping);
359 
360 		flags = len << TX_BD_LEN_SHIFT;
361 		txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
362 	}
363 
364 	flags &= ~TX_BD_LEN;
365 	txbd->tx_bd_len_flags_type =
366 		cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
367 			    TX_BD_FLAGS_PACKET_END);
368 
369 	netdev_tx_sent_queue(txq, skb->len);
370 
371 	/* Sync BD data before updating doorbell */
372 	wmb();
373 
374 	prod = NEXT_TX(prod);
375 	txr->tx_prod = prod;
376 
377 	writel(DB_KEY_TX | prod, txr->tx_doorbell);
378 	writel(DB_KEY_TX | prod, txr->tx_doorbell);
379 
380 tx_done:
381 
382 	mmiowb();
383 
384 	if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
385 		netif_tx_stop_queue(txq);
386 
387 		/* netif_tx_stop_queue() must be done before checking
388 		 * tx index in bnxt_tx_avail() below, because in
389 		 * bnxt_tx_int(), we update tx index before checking for
390 		 * netif_tx_queue_stopped().
391 		 */
392 		smp_mb();
393 		if (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)
394 			netif_tx_wake_queue(txq);
395 	}
396 	return NETDEV_TX_OK;
397 
398 tx_dma_error:
399 	last_frag = i;
400 
401 	/* start back at beginning and unmap skb */
402 	prod = txr->tx_prod;
403 	tx_buf = &txr->tx_buf_ring[prod];
404 	tx_buf->skb = NULL;
405 	dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
406 			 skb_headlen(skb), PCI_DMA_TODEVICE);
407 	prod = NEXT_TX(prod);
408 
409 	/* unmap remaining mapped pages */
410 	for (i = 0; i < last_frag; i++) {
411 		prod = NEXT_TX(prod);
412 		tx_buf = &txr->tx_buf_ring[prod];
413 		dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
414 			       skb_frag_size(&skb_shinfo(skb)->frags[i]),
415 			       PCI_DMA_TODEVICE);
416 	}
417 
418 	dev_kfree_skb_any(skb);
419 	return NETDEV_TX_OK;
420 }
421 
422 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts)
423 {
424 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
425 	int index = txr - &bp->tx_ring[0];
426 	struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, index);
427 	u16 cons = txr->tx_cons;
428 	struct pci_dev *pdev = bp->pdev;
429 	int i;
430 	unsigned int tx_bytes = 0;
431 
432 	for (i = 0; i < nr_pkts; i++) {
433 		struct bnxt_sw_tx_bd *tx_buf;
434 		struct sk_buff *skb;
435 		int j, last;
436 
437 		tx_buf = &txr->tx_buf_ring[cons];
438 		cons = NEXT_TX(cons);
439 		skb = tx_buf->skb;
440 		tx_buf->skb = NULL;
441 
442 		if (tx_buf->is_push) {
443 			tx_buf->is_push = 0;
444 			goto next_tx_int;
445 		}
446 
447 		dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
448 				 skb_headlen(skb), PCI_DMA_TODEVICE);
449 		last = tx_buf->nr_frags;
450 
451 		for (j = 0; j < last; j++) {
452 			cons = NEXT_TX(cons);
453 			tx_buf = &txr->tx_buf_ring[cons];
454 			dma_unmap_page(
455 				&pdev->dev,
456 				dma_unmap_addr(tx_buf, mapping),
457 				skb_frag_size(&skb_shinfo(skb)->frags[j]),
458 				PCI_DMA_TODEVICE);
459 		}
460 
461 next_tx_int:
462 		cons = NEXT_TX(cons);
463 
464 		tx_bytes += skb->len;
465 		dev_kfree_skb_any(skb);
466 	}
467 
468 	netdev_tx_completed_queue(txq, nr_pkts, tx_bytes);
469 	txr->tx_cons = cons;
470 
471 	/* Need to make the tx_cons update visible to bnxt_start_xmit()
472 	 * before checking for netif_tx_queue_stopped().  Without the
473 	 * memory barrier, there is a small possibility that bnxt_start_xmit()
474 	 * will miss it and cause the queue to be stopped forever.
475 	 */
476 	smp_mb();
477 
478 	if (unlikely(netif_tx_queue_stopped(txq)) &&
479 	    (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
480 		__netif_tx_lock(txq, smp_processor_id());
481 		if (netif_tx_queue_stopped(txq) &&
482 		    bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh &&
483 		    txr->dev_state != BNXT_DEV_STATE_CLOSING)
484 			netif_tx_wake_queue(txq);
485 		__netif_tx_unlock(txq);
486 	}
487 }
488 
489 static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping,
490 				       gfp_t gfp)
491 {
492 	u8 *data;
493 	struct pci_dev *pdev = bp->pdev;
494 
495 	data = kmalloc(bp->rx_buf_size, gfp);
496 	if (!data)
497 		return NULL;
498 
499 	*mapping = dma_map_single(&pdev->dev, data + BNXT_RX_DMA_OFFSET,
500 				  bp->rx_buf_use_size, PCI_DMA_FROMDEVICE);
501 
502 	if (dma_mapping_error(&pdev->dev, *mapping)) {
503 		kfree(data);
504 		data = NULL;
505 	}
506 	return data;
507 }
508 
509 static inline int bnxt_alloc_rx_data(struct bnxt *bp,
510 				     struct bnxt_rx_ring_info *rxr,
511 				     u16 prod, gfp_t gfp)
512 {
513 	struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
514 	struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
515 	u8 *data;
516 	dma_addr_t mapping;
517 
518 	data = __bnxt_alloc_rx_data(bp, &mapping, gfp);
519 	if (!data)
520 		return -ENOMEM;
521 
522 	rx_buf->data = data;
523 	dma_unmap_addr_set(rx_buf, mapping, mapping);
524 
525 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
526 
527 	return 0;
528 }
529 
530 static void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons,
531 			       u8 *data)
532 {
533 	u16 prod = rxr->rx_prod;
534 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
535 	struct rx_bd *cons_bd, *prod_bd;
536 
537 	prod_rx_buf = &rxr->rx_buf_ring[prod];
538 	cons_rx_buf = &rxr->rx_buf_ring[cons];
539 
540 	prod_rx_buf->data = data;
541 
542 	dma_unmap_addr_set(prod_rx_buf, mapping,
543 			   dma_unmap_addr(cons_rx_buf, mapping));
544 
545 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
546 	cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
547 
548 	prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
549 }
550 
551 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
552 {
553 	u16 next, max = rxr->rx_agg_bmap_size;
554 
555 	next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
556 	if (next >= max)
557 		next = find_first_zero_bit(rxr->rx_agg_bmap, max);
558 	return next;
559 }
560 
561 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
562 				     struct bnxt_rx_ring_info *rxr,
563 				     u16 prod, gfp_t gfp)
564 {
565 	struct rx_bd *rxbd =
566 		&rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
567 	struct bnxt_sw_rx_agg_bd *rx_agg_buf;
568 	struct pci_dev *pdev = bp->pdev;
569 	struct page *page;
570 	dma_addr_t mapping;
571 	u16 sw_prod = rxr->rx_sw_agg_prod;
572 
573 	page = alloc_page(gfp);
574 	if (!page)
575 		return -ENOMEM;
576 
577 	mapping = dma_map_page(&pdev->dev, page, 0, PAGE_SIZE,
578 			       PCI_DMA_FROMDEVICE);
579 	if (dma_mapping_error(&pdev->dev, mapping)) {
580 		__free_page(page);
581 		return -EIO;
582 	}
583 
584 	if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
585 		sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
586 
587 	__set_bit(sw_prod, rxr->rx_agg_bmap);
588 	rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
589 	rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod);
590 
591 	rx_agg_buf->page = page;
592 	rx_agg_buf->mapping = mapping;
593 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
594 	rxbd->rx_bd_opaque = sw_prod;
595 	return 0;
596 }
597 
598 static void bnxt_reuse_rx_agg_bufs(struct bnxt_napi *bnapi, u16 cp_cons,
599 				   u32 agg_bufs)
600 {
601 	struct bnxt *bp = bnapi->bp;
602 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
603 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
604 	u16 prod = rxr->rx_agg_prod;
605 	u16 sw_prod = rxr->rx_sw_agg_prod;
606 	u32 i;
607 
608 	for (i = 0; i < agg_bufs; i++) {
609 		u16 cons;
610 		struct rx_agg_cmp *agg;
611 		struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
612 		struct rx_bd *prod_bd;
613 		struct page *page;
614 
615 		agg = (struct rx_agg_cmp *)
616 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
617 		cons = agg->rx_agg_cmp_opaque;
618 		__clear_bit(cons, rxr->rx_agg_bmap);
619 
620 		if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
621 			sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
622 
623 		__set_bit(sw_prod, rxr->rx_agg_bmap);
624 		prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
625 		cons_rx_buf = &rxr->rx_agg_ring[cons];
626 
627 		/* It is possible for sw_prod to be equal to cons, so
628 		 * set cons_rx_buf->page to NULL first.
629 		 */
630 		page = cons_rx_buf->page;
631 		cons_rx_buf->page = NULL;
632 		prod_rx_buf->page = page;
633 
634 		prod_rx_buf->mapping = cons_rx_buf->mapping;
635 
636 		prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
637 
638 		prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
639 		prod_bd->rx_bd_opaque = sw_prod;
640 
641 		prod = NEXT_RX_AGG(prod);
642 		sw_prod = NEXT_RX_AGG(sw_prod);
643 		cp_cons = NEXT_CMP(cp_cons);
644 	}
645 	rxr->rx_agg_prod = prod;
646 	rxr->rx_sw_agg_prod = sw_prod;
647 }
648 
649 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
650 				   struct bnxt_rx_ring_info *rxr, u16 cons,
651 				   u16 prod, u8 *data, dma_addr_t dma_addr,
652 				   unsigned int len)
653 {
654 	int err;
655 	struct sk_buff *skb;
656 
657 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
658 	if (unlikely(err)) {
659 		bnxt_reuse_rx_data(rxr, cons, data);
660 		return NULL;
661 	}
662 
663 	skb = build_skb(data, 0);
664 	dma_unmap_single(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
665 			 PCI_DMA_FROMDEVICE);
666 	if (!skb) {
667 		kfree(data);
668 		return NULL;
669 	}
670 
671 	skb_reserve(skb, BNXT_RX_OFFSET);
672 	skb_put(skb, len);
673 	return skb;
674 }
675 
676 static struct sk_buff *bnxt_rx_pages(struct bnxt *bp, struct bnxt_napi *bnapi,
677 				     struct sk_buff *skb, u16 cp_cons,
678 				     u32 agg_bufs)
679 {
680 	struct pci_dev *pdev = bp->pdev;
681 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
682 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
683 	u16 prod = rxr->rx_agg_prod;
684 	u32 i;
685 
686 	for (i = 0; i < agg_bufs; i++) {
687 		u16 cons, frag_len;
688 		struct rx_agg_cmp *agg;
689 		struct bnxt_sw_rx_agg_bd *cons_rx_buf;
690 		struct page *page;
691 		dma_addr_t mapping;
692 
693 		agg = (struct rx_agg_cmp *)
694 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
695 		cons = agg->rx_agg_cmp_opaque;
696 		frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
697 			    RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
698 
699 		cons_rx_buf = &rxr->rx_agg_ring[cons];
700 		skb_fill_page_desc(skb, i, cons_rx_buf->page, 0, frag_len);
701 		__clear_bit(cons, rxr->rx_agg_bmap);
702 
703 		/* It is possible for bnxt_alloc_rx_page() to allocate
704 		 * a sw_prod index that equals the cons index, so we
705 		 * need to clear the cons entry now.
706 		 */
707 		mapping = dma_unmap_addr(cons_rx_buf, mapping);
708 		page = cons_rx_buf->page;
709 		cons_rx_buf->page = NULL;
710 
711 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
712 			struct skb_shared_info *shinfo;
713 			unsigned int nr_frags;
714 
715 			shinfo = skb_shinfo(skb);
716 			nr_frags = --shinfo->nr_frags;
717 			__skb_frag_set_page(&shinfo->frags[nr_frags], NULL);
718 
719 			dev_kfree_skb(skb);
720 
721 			cons_rx_buf->page = page;
722 
723 			/* Update prod since possibly some pages have been
724 			 * allocated already.
725 			 */
726 			rxr->rx_agg_prod = prod;
727 			bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs - i);
728 			return NULL;
729 		}
730 
731 		dma_unmap_page(&pdev->dev, mapping, PAGE_SIZE,
732 			       PCI_DMA_FROMDEVICE);
733 
734 		skb->data_len += frag_len;
735 		skb->len += frag_len;
736 		skb->truesize += PAGE_SIZE;
737 
738 		prod = NEXT_RX_AGG(prod);
739 		cp_cons = NEXT_CMP(cp_cons);
740 	}
741 	rxr->rx_agg_prod = prod;
742 	return skb;
743 }
744 
745 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
746 			       u8 agg_bufs, u32 *raw_cons)
747 {
748 	u16 last;
749 	struct rx_agg_cmp *agg;
750 
751 	*raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
752 	last = RING_CMP(*raw_cons);
753 	agg = (struct rx_agg_cmp *)
754 		&cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
755 	return RX_AGG_CMP_VALID(agg, *raw_cons);
756 }
757 
758 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
759 					    unsigned int len,
760 					    dma_addr_t mapping)
761 {
762 	struct bnxt *bp = bnapi->bp;
763 	struct pci_dev *pdev = bp->pdev;
764 	struct sk_buff *skb;
765 
766 	skb = napi_alloc_skb(&bnapi->napi, len);
767 	if (!skb)
768 		return NULL;
769 
770 	dma_sync_single_for_cpu(&pdev->dev, mapping,
771 				bp->rx_copy_thresh, PCI_DMA_FROMDEVICE);
772 
773 	memcpy(skb->data - BNXT_RX_OFFSET, data, len + BNXT_RX_OFFSET);
774 
775 	dma_sync_single_for_device(&pdev->dev, mapping,
776 				   bp->rx_copy_thresh,
777 				   PCI_DMA_FROMDEVICE);
778 
779 	skb_put(skb, len);
780 	return skb;
781 }
782 
783 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
784 			   struct rx_tpa_start_cmp *tpa_start,
785 			   struct rx_tpa_start_cmp_ext *tpa_start1)
786 {
787 	u8 agg_id = TPA_START_AGG_ID(tpa_start);
788 	u16 cons, prod;
789 	struct bnxt_tpa_info *tpa_info;
790 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
791 	struct rx_bd *prod_bd;
792 	dma_addr_t mapping;
793 
794 	cons = tpa_start->rx_tpa_start_cmp_opaque;
795 	prod = rxr->rx_prod;
796 	cons_rx_buf = &rxr->rx_buf_ring[cons];
797 	prod_rx_buf = &rxr->rx_buf_ring[prod];
798 	tpa_info = &rxr->rx_tpa[agg_id];
799 
800 	prod_rx_buf->data = tpa_info->data;
801 
802 	mapping = tpa_info->mapping;
803 	dma_unmap_addr_set(prod_rx_buf, mapping, mapping);
804 
805 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
806 
807 	prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
808 
809 	tpa_info->data = cons_rx_buf->data;
810 	cons_rx_buf->data = NULL;
811 	tpa_info->mapping = dma_unmap_addr(cons_rx_buf, mapping);
812 
813 	tpa_info->len =
814 		le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
815 				RX_TPA_START_CMP_LEN_SHIFT;
816 	if (likely(TPA_START_HASH_VALID(tpa_start))) {
817 		u32 hash_type = TPA_START_HASH_TYPE(tpa_start);
818 
819 		tpa_info->hash_type = PKT_HASH_TYPE_L4;
820 		tpa_info->gso_type = SKB_GSO_TCPV4;
821 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
822 		if (hash_type == 3)
823 			tpa_info->gso_type = SKB_GSO_TCPV6;
824 		tpa_info->rss_hash =
825 			le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
826 	} else {
827 		tpa_info->hash_type = PKT_HASH_TYPE_NONE;
828 		tpa_info->gso_type = 0;
829 		if (netif_msg_rx_err(bp))
830 			netdev_warn(bp->dev, "TPA packet without valid hash\n");
831 	}
832 	tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
833 	tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
834 
835 	rxr->rx_prod = NEXT_RX(prod);
836 	cons = NEXT_RX(cons);
837 	cons_rx_buf = &rxr->rx_buf_ring[cons];
838 
839 	bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
840 	rxr->rx_prod = NEXT_RX(rxr->rx_prod);
841 	cons_rx_buf->data = NULL;
842 }
843 
844 static void bnxt_abort_tpa(struct bnxt *bp, struct bnxt_napi *bnapi,
845 			   u16 cp_cons, u32 agg_bufs)
846 {
847 	if (agg_bufs)
848 		bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
849 }
850 
851 #define BNXT_IPV4_HDR_SIZE	(sizeof(struct iphdr) + sizeof(struct tcphdr))
852 #define BNXT_IPV6_HDR_SIZE	(sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
853 
854 static inline struct sk_buff *bnxt_gro_skb(struct bnxt_tpa_info *tpa_info,
855 					   struct rx_tpa_end_cmp *tpa_end,
856 					   struct rx_tpa_end_cmp_ext *tpa_end1,
857 					   struct sk_buff *skb)
858 {
859 #ifdef CONFIG_INET
860 	struct tcphdr *th;
861 	int payload_off, tcp_opt_len = 0;
862 	int len, nw_off;
863 	u16 segs;
864 
865 	segs = TPA_END_TPA_SEGS(tpa_end);
866 	if (segs == 1)
867 		return skb;
868 
869 	NAPI_GRO_CB(skb)->count = segs;
870 	skb_shinfo(skb)->gso_size =
871 		le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
872 	skb_shinfo(skb)->gso_type = tpa_info->gso_type;
873 	payload_off = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
874 		       RX_TPA_END_CMP_PAYLOAD_OFFSET) >>
875 		      RX_TPA_END_CMP_PAYLOAD_OFFSET_SHIFT;
876 	if (TPA_END_GRO_TS(tpa_end))
877 		tcp_opt_len = 12;
878 
879 	if (tpa_info->gso_type == SKB_GSO_TCPV4) {
880 		struct iphdr *iph;
881 
882 		nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
883 			 ETH_HLEN;
884 		skb_set_network_header(skb, nw_off);
885 		iph = ip_hdr(skb);
886 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
887 		len = skb->len - skb_transport_offset(skb);
888 		th = tcp_hdr(skb);
889 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
890 	} else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
891 		struct ipv6hdr *iph;
892 
893 		nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
894 			 ETH_HLEN;
895 		skb_set_network_header(skb, nw_off);
896 		iph = ipv6_hdr(skb);
897 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
898 		len = skb->len - skb_transport_offset(skb);
899 		th = tcp_hdr(skb);
900 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
901 	} else {
902 		dev_kfree_skb_any(skb);
903 		return NULL;
904 	}
905 	tcp_gro_complete(skb);
906 
907 	if (nw_off) { /* tunnel */
908 		struct udphdr *uh = NULL;
909 
910 		if (skb->protocol == htons(ETH_P_IP)) {
911 			struct iphdr *iph = (struct iphdr *)skb->data;
912 
913 			if (iph->protocol == IPPROTO_UDP)
914 				uh = (struct udphdr *)(iph + 1);
915 		} else {
916 			struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
917 
918 			if (iph->nexthdr == IPPROTO_UDP)
919 				uh = (struct udphdr *)(iph + 1);
920 		}
921 		if (uh) {
922 			if (uh->check)
923 				skb_shinfo(skb)->gso_type |=
924 					SKB_GSO_UDP_TUNNEL_CSUM;
925 			else
926 				skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
927 		}
928 	}
929 #endif
930 	return skb;
931 }
932 
933 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
934 					   struct bnxt_napi *bnapi,
935 					   u32 *raw_cons,
936 					   struct rx_tpa_end_cmp *tpa_end,
937 					   struct rx_tpa_end_cmp_ext *tpa_end1,
938 					   bool *agg_event)
939 {
940 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
941 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
942 	u8 agg_id = TPA_END_AGG_ID(tpa_end);
943 	u8 *data, agg_bufs;
944 	u16 cp_cons = RING_CMP(*raw_cons);
945 	unsigned int len;
946 	struct bnxt_tpa_info *tpa_info;
947 	dma_addr_t mapping;
948 	struct sk_buff *skb;
949 
950 	tpa_info = &rxr->rx_tpa[agg_id];
951 	data = tpa_info->data;
952 	prefetch(data);
953 	len = tpa_info->len;
954 	mapping = tpa_info->mapping;
955 
956 	agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
957 		    RX_TPA_END_CMP_AGG_BUFS) >> RX_TPA_END_CMP_AGG_BUFS_SHIFT;
958 
959 	if (agg_bufs) {
960 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
961 			return ERR_PTR(-EBUSY);
962 
963 		*agg_event = true;
964 		cp_cons = NEXT_CMP(cp_cons);
965 	}
966 
967 	if (unlikely(agg_bufs > MAX_SKB_FRAGS)) {
968 		bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
969 		netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
970 			    agg_bufs, (int)MAX_SKB_FRAGS);
971 		return NULL;
972 	}
973 
974 	if (len <= bp->rx_copy_thresh) {
975 		skb = bnxt_copy_skb(bnapi, data, len, mapping);
976 		if (!skb) {
977 			bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
978 			return NULL;
979 		}
980 	} else {
981 		u8 *new_data;
982 		dma_addr_t new_mapping;
983 
984 		new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC);
985 		if (!new_data) {
986 			bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
987 			return NULL;
988 		}
989 
990 		tpa_info->data = new_data;
991 		tpa_info->mapping = new_mapping;
992 
993 		skb = build_skb(data, 0);
994 		dma_unmap_single(&bp->pdev->dev, mapping, bp->rx_buf_use_size,
995 				 PCI_DMA_FROMDEVICE);
996 
997 		if (!skb) {
998 			kfree(data);
999 			bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1000 			return NULL;
1001 		}
1002 		skb_reserve(skb, BNXT_RX_OFFSET);
1003 		skb_put(skb, len);
1004 	}
1005 
1006 	if (agg_bufs) {
1007 		skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
1008 		if (!skb) {
1009 			/* Page reuse already handled by bnxt_rx_pages(). */
1010 			return NULL;
1011 		}
1012 	}
1013 	skb->protocol = eth_type_trans(skb, bp->dev);
1014 
1015 	if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1016 		skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1017 
1018 	if (tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) {
1019 		netdev_features_t features = skb->dev->features;
1020 		u16 vlan_proto = tpa_info->metadata >>
1021 			RX_CMP_FLAGS2_METADATA_TPID_SFT;
1022 
1023 		if (((features & NETIF_F_HW_VLAN_CTAG_RX) &&
1024 		     vlan_proto == ETH_P_8021Q) ||
1025 		    ((features & NETIF_F_HW_VLAN_STAG_RX) &&
1026 		     vlan_proto == ETH_P_8021AD)) {
1027 			__vlan_hwaccel_put_tag(skb, htons(vlan_proto),
1028 					       tpa_info->metadata &
1029 					       RX_CMP_FLAGS2_METADATA_VID_MASK);
1030 		}
1031 	}
1032 
1033 	skb_checksum_none_assert(skb);
1034 	if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1035 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1036 		skb->csum_level =
1037 			(tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1038 	}
1039 
1040 	if (TPA_END_GRO(tpa_end))
1041 		skb = bnxt_gro_skb(tpa_info, tpa_end, tpa_end1, skb);
1042 
1043 	return skb;
1044 }
1045 
1046 /* returns the following:
1047  * 1       - 1 packet successfully received
1048  * 0       - successful TPA_START, packet not completed yet
1049  * -EBUSY  - completion ring does not have all the agg buffers yet
1050  * -ENOMEM - packet aborted due to out of memory
1051  * -EIO    - packet aborted due to hw error indicated in BD
1052  */
1053 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_napi *bnapi, u32 *raw_cons,
1054 		       bool *agg_event)
1055 {
1056 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1057 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1058 	struct net_device *dev = bp->dev;
1059 	struct rx_cmp *rxcmp;
1060 	struct rx_cmp_ext *rxcmp1;
1061 	u32 tmp_raw_cons = *raw_cons;
1062 	u16 cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
1063 	struct bnxt_sw_rx_bd *rx_buf;
1064 	unsigned int len;
1065 	u8 *data, agg_bufs, cmp_type;
1066 	dma_addr_t dma_addr;
1067 	struct sk_buff *skb;
1068 	int rc = 0;
1069 
1070 	rxcmp = (struct rx_cmp *)
1071 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1072 
1073 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1074 	cp_cons = RING_CMP(tmp_raw_cons);
1075 	rxcmp1 = (struct rx_cmp_ext *)
1076 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1077 
1078 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1079 		return -EBUSY;
1080 
1081 	cmp_type = RX_CMP_TYPE(rxcmp);
1082 
1083 	prod = rxr->rx_prod;
1084 
1085 	if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) {
1086 		bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp,
1087 			       (struct rx_tpa_start_cmp_ext *)rxcmp1);
1088 
1089 		goto next_rx_no_prod;
1090 
1091 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1092 		skb = bnxt_tpa_end(bp, bnapi, &tmp_raw_cons,
1093 				   (struct rx_tpa_end_cmp *)rxcmp,
1094 				   (struct rx_tpa_end_cmp_ext *)rxcmp1,
1095 				   agg_event);
1096 
1097 		if (unlikely(IS_ERR(skb)))
1098 			return -EBUSY;
1099 
1100 		rc = -ENOMEM;
1101 		if (likely(skb)) {
1102 			skb_record_rx_queue(skb, bnapi->index);
1103 			skb_mark_napi_id(skb, &bnapi->napi);
1104 			if (bnxt_busy_polling(bnapi))
1105 				netif_receive_skb(skb);
1106 			else
1107 				napi_gro_receive(&bnapi->napi, skb);
1108 			rc = 1;
1109 		}
1110 		goto next_rx_no_prod;
1111 	}
1112 
1113 	cons = rxcmp->rx_cmp_opaque;
1114 	rx_buf = &rxr->rx_buf_ring[cons];
1115 	data = rx_buf->data;
1116 	prefetch(data);
1117 
1118 	agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) & RX_CMP_AGG_BUFS) >>
1119 				RX_CMP_AGG_BUFS_SHIFT;
1120 
1121 	if (agg_bufs) {
1122 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1123 			return -EBUSY;
1124 
1125 		cp_cons = NEXT_CMP(cp_cons);
1126 		*agg_event = true;
1127 	}
1128 
1129 	rx_buf->data = NULL;
1130 	if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
1131 		bnxt_reuse_rx_data(rxr, cons, data);
1132 		if (agg_bufs)
1133 			bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
1134 
1135 		rc = -EIO;
1136 		goto next_rx;
1137 	}
1138 
1139 	len = le32_to_cpu(rxcmp->rx_cmp_len_flags_type) >> RX_CMP_LEN_SHIFT;
1140 	dma_addr = dma_unmap_addr(rx_buf, mapping);
1141 
1142 	if (len <= bp->rx_copy_thresh) {
1143 		skb = bnxt_copy_skb(bnapi, data, len, dma_addr);
1144 		bnxt_reuse_rx_data(rxr, cons, data);
1145 		if (!skb) {
1146 			rc = -ENOMEM;
1147 			goto next_rx;
1148 		}
1149 	} else {
1150 		skb = bnxt_rx_skb(bp, rxr, cons, prod, data, dma_addr, len);
1151 		if (!skb) {
1152 			rc = -ENOMEM;
1153 			goto next_rx;
1154 		}
1155 	}
1156 
1157 	if (agg_bufs) {
1158 		skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
1159 		if (!skb) {
1160 			rc = -ENOMEM;
1161 			goto next_rx;
1162 		}
1163 	}
1164 
1165 	if (RX_CMP_HASH_VALID(rxcmp)) {
1166 		u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
1167 		enum pkt_hash_types type = PKT_HASH_TYPE_L4;
1168 
1169 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1170 		if (hash_type != 1 && hash_type != 3)
1171 			type = PKT_HASH_TYPE_L3;
1172 		skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
1173 	}
1174 
1175 	skb->protocol = eth_type_trans(skb, dev);
1176 
1177 	if (rxcmp1->rx_cmp_flags2 &
1178 	    cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) {
1179 		netdev_features_t features = skb->dev->features;
1180 		u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
1181 		u16 vlan_proto = meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT;
1182 
1183 		if (((features & NETIF_F_HW_VLAN_CTAG_RX) &&
1184 		     vlan_proto == ETH_P_8021Q) ||
1185 		    ((features & NETIF_F_HW_VLAN_STAG_RX) &&
1186 		     vlan_proto == ETH_P_8021AD))
1187 			__vlan_hwaccel_put_tag(skb, htons(vlan_proto),
1188 					       meta_data &
1189 					       RX_CMP_FLAGS2_METADATA_VID_MASK);
1190 	}
1191 
1192 	skb_checksum_none_assert(skb);
1193 	if (RX_CMP_L4_CS_OK(rxcmp1)) {
1194 		if (dev->features & NETIF_F_RXCSUM) {
1195 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1196 			skb->csum_level = RX_CMP_ENCAP(rxcmp1);
1197 		}
1198 	} else {
1199 		if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
1200 			if (dev->features & NETIF_F_RXCSUM)
1201 				cpr->rx_l4_csum_errors++;
1202 		}
1203 	}
1204 
1205 	skb_record_rx_queue(skb, bnapi->index);
1206 	skb_mark_napi_id(skb, &bnapi->napi);
1207 	if (bnxt_busy_polling(bnapi))
1208 		netif_receive_skb(skb);
1209 	else
1210 		napi_gro_receive(&bnapi->napi, skb);
1211 	rc = 1;
1212 
1213 next_rx:
1214 	rxr->rx_prod = NEXT_RX(prod);
1215 
1216 next_rx_no_prod:
1217 	*raw_cons = tmp_raw_cons;
1218 
1219 	return rc;
1220 }
1221 
1222 static int bnxt_async_event_process(struct bnxt *bp,
1223 				    struct hwrm_async_event_cmpl *cmpl)
1224 {
1225 	u16 event_id = le16_to_cpu(cmpl->event_id);
1226 
1227 	/* TODO CHIMP_FW: Define event id's for link change, error etc */
1228 	switch (event_id) {
1229 	case HWRM_ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
1230 		set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
1231 		schedule_work(&bp->sp_task);
1232 		break;
1233 	default:
1234 		netdev_err(bp->dev, "unhandled ASYNC event (id 0x%x)\n",
1235 			   event_id);
1236 		break;
1237 	}
1238 	return 0;
1239 }
1240 
1241 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
1242 {
1243 	u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
1244 	struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
1245 	struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
1246 				(struct hwrm_fwd_req_cmpl *)txcmp;
1247 
1248 	switch (cmpl_type) {
1249 	case CMPL_BASE_TYPE_HWRM_DONE:
1250 		seq_id = le16_to_cpu(h_cmpl->sequence_id);
1251 		if (seq_id == bp->hwrm_intr_seq_id)
1252 			bp->hwrm_intr_seq_id = HWRM_SEQ_ID_INVALID;
1253 		else
1254 			netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id);
1255 		break;
1256 
1257 	case CMPL_BASE_TYPE_HWRM_FWD_REQ:
1258 		vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
1259 
1260 		if ((vf_id < bp->pf.first_vf_id) ||
1261 		    (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
1262 			netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
1263 				   vf_id);
1264 			return -EINVAL;
1265 		}
1266 
1267 		set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
1268 		set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event);
1269 		schedule_work(&bp->sp_task);
1270 		break;
1271 
1272 	case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
1273 		bnxt_async_event_process(bp,
1274 					 (struct hwrm_async_event_cmpl *)txcmp);
1275 
1276 	default:
1277 		break;
1278 	}
1279 
1280 	return 0;
1281 }
1282 
1283 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
1284 {
1285 	struct bnxt_napi *bnapi = dev_instance;
1286 	struct bnxt *bp = bnapi->bp;
1287 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1288 	u32 cons = RING_CMP(cpr->cp_raw_cons);
1289 
1290 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1291 	napi_schedule(&bnapi->napi);
1292 	return IRQ_HANDLED;
1293 }
1294 
1295 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
1296 {
1297 	u32 raw_cons = cpr->cp_raw_cons;
1298 	u16 cons = RING_CMP(raw_cons);
1299 	struct tx_cmp *txcmp;
1300 
1301 	txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1302 
1303 	return TX_CMP_VALID(txcmp, raw_cons);
1304 }
1305 
1306 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
1307 {
1308 	struct bnxt_napi *bnapi = dev_instance;
1309 	struct bnxt *bp = bnapi->bp;
1310 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1311 	u32 cons = RING_CMP(cpr->cp_raw_cons);
1312 	u32 int_status;
1313 
1314 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1315 
1316 	if (!bnxt_has_work(bp, cpr)) {
1317 		int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
1318 		/* return if erroneous interrupt */
1319 		if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
1320 			return IRQ_NONE;
1321 	}
1322 
1323 	/* disable ring IRQ */
1324 	BNXT_CP_DB_IRQ_DIS(cpr->cp_doorbell);
1325 
1326 	/* Return here if interrupt is shared and is disabled. */
1327 	if (unlikely(atomic_read(&bp->intr_sem) != 0))
1328 		return IRQ_HANDLED;
1329 
1330 	napi_schedule(&bnapi->napi);
1331 	return IRQ_HANDLED;
1332 }
1333 
1334 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
1335 {
1336 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1337 	u32 raw_cons = cpr->cp_raw_cons;
1338 	u32 cons;
1339 	int tx_pkts = 0;
1340 	int rx_pkts = 0;
1341 	bool rx_event = false;
1342 	bool agg_event = false;
1343 	struct tx_cmp *txcmp;
1344 
1345 	while (1) {
1346 		int rc;
1347 
1348 		cons = RING_CMP(raw_cons);
1349 		txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1350 
1351 		if (!TX_CMP_VALID(txcmp, raw_cons))
1352 			break;
1353 
1354 		if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) {
1355 			tx_pkts++;
1356 			/* return full budget so NAPI will complete. */
1357 			if (unlikely(tx_pkts > bp->tx_wake_thresh))
1358 				rx_pkts = budget;
1359 		} else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
1360 			rc = bnxt_rx_pkt(bp, bnapi, &raw_cons, &agg_event);
1361 			if (likely(rc >= 0))
1362 				rx_pkts += rc;
1363 			else if (rc == -EBUSY)	/* partial completion */
1364 				break;
1365 			rx_event = true;
1366 		} else if (unlikely((TX_CMP_TYPE(txcmp) ==
1367 				     CMPL_BASE_TYPE_HWRM_DONE) ||
1368 				    (TX_CMP_TYPE(txcmp) ==
1369 				     CMPL_BASE_TYPE_HWRM_FWD_REQ) ||
1370 				    (TX_CMP_TYPE(txcmp) ==
1371 				     CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) {
1372 			bnxt_hwrm_handler(bp, txcmp);
1373 		}
1374 		raw_cons = NEXT_RAW_CMP(raw_cons);
1375 
1376 		if (rx_pkts == budget)
1377 			break;
1378 	}
1379 
1380 	cpr->cp_raw_cons = raw_cons;
1381 	/* ACK completion ring before freeing tx ring and producing new
1382 	 * buffers in rx/agg rings to prevent overflowing the completion
1383 	 * ring.
1384 	 */
1385 	BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
1386 
1387 	if (tx_pkts)
1388 		bnxt_tx_int(bp, bnapi, tx_pkts);
1389 
1390 	if (rx_event) {
1391 		struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1392 
1393 		writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
1394 		writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
1395 		if (agg_event) {
1396 			writel(DB_KEY_RX | rxr->rx_agg_prod,
1397 			       rxr->rx_agg_doorbell);
1398 			writel(DB_KEY_RX | rxr->rx_agg_prod,
1399 			       rxr->rx_agg_doorbell);
1400 		}
1401 	}
1402 	return rx_pkts;
1403 }
1404 
1405 static int bnxt_poll(struct napi_struct *napi, int budget)
1406 {
1407 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
1408 	struct bnxt *bp = bnapi->bp;
1409 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1410 	int work_done = 0;
1411 
1412 	if (!bnxt_lock_napi(bnapi))
1413 		return budget;
1414 
1415 	while (1) {
1416 		work_done += bnxt_poll_work(bp, bnapi, budget - work_done);
1417 
1418 		if (work_done >= budget)
1419 			break;
1420 
1421 		if (!bnxt_has_work(bp, cpr)) {
1422 			napi_complete(napi);
1423 			BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
1424 			break;
1425 		}
1426 	}
1427 	mmiowb();
1428 	bnxt_unlock_napi(bnapi);
1429 	return work_done;
1430 }
1431 
1432 #ifdef CONFIG_NET_RX_BUSY_POLL
1433 static int bnxt_busy_poll(struct napi_struct *napi)
1434 {
1435 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
1436 	struct bnxt *bp = bnapi->bp;
1437 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1438 	int rx_work, budget = 4;
1439 
1440 	if (atomic_read(&bp->intr_sem) != 0)
1441 		return LL_FLUSH_FAILED;
1442 
1443 	if (!bnxt_lock_poll(bnapi))
1444 		return LL_FLUSH_BUSY;
1445 
1446 	rx_work = bnxt_poll_work(bp, bnapi, budget);
1447 
1448 	BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
1449 
1450 	bnxt_unlock_poll(bnapi);
1451 	return rx_work;
1452 }
1453 #endif
1454 
1455 static void bnxt_free_tx_skbs(struct bnxt *bp)
1456 {
1457 	int i, max_idx;
1458 	struct pci_dev *pdev = bp->pdev;
1459 
1460 	if (!bp->tx_ring)
1461 		return;
1462 
1463 	max_idx = bp->tx_nr_pages * TX_DESC_CNT;
1464 	for (i = 0; i < bp->tx_nr_rings; i++) {
1465 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
1466 		int j;
1467 
1468 		for (j = 0; j < max_idx;) {
1469 			struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
1470 			struct sk_buff *skb = tx_buf->skb;
1471 			int k, last;
1472 
1473 			if (!skb) {
1474 				j++;
1475 				continue;
1476 			}
1477 
1478 			tx_buf->skb = NULL;
1479 
1480 			if (tx_buf->is_push) {
1481 				dev_kfree_skb(skb);
1482 				j += 2;
1483 				continue;
1484 			}
1485 
1486 			dma_unmap_single(&pdev->dev,
1487 					 dma_unmap_addr(tx_buf, mapping),
1488 					 skb_headlen(skb),
1489 					 PCI_DMA_TODEVICE);
1490 
1491 			last = tx_buf->nr_frags;
1492 			j += 2;
1493 			for (k = 0; k < last; k++, j++) {
1494 				int ring_idx = j & bp->tx_ring_mask;
1495 				skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
1496 
1497 				tx_buf = &txr->tx_buf_ring[ring_idx];
1498 				dma_unmap_page(
1499 					&pdev->dev,
1500 					dma_unmap_addr(tx_buf, mapping),
1501 					skb_frag_size(frag), PCI_DMA_TODEVICE);
1502 			}
1503 			dev_kfree_skb(skb);
1504 		}
1505 		netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
1506 	}
1507 }
1508 
1509 static void bnxt_free_rx_skbs(struct bnxt *bp)
1510 {
1511 	int i, max_idx, max_agg_idx;
1512 	struct pci_dev *pdev = bp->pdev;
1513 
1514 	if (!bp->rx_ring)
1515 		return;
1516 
1517 	max_idx = bp->rx_nr_pages * RX_DESC_CNT;
1518 	max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
1519 	for (i = 0; i < bp->rx_nr_rings; i++) {
1520 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
1521 		int j;
1522 
1523 		if (rxr->rx_tpa) {
1524 			for (j = 0; j < MAX_TPA; j++) {
1525 				struct bnxt_tpa_info *tpa_info =
1526 							&rxr->rx_tpa[j];
1527 				u8 *data = tpa_info->data;
1528 
1529 				if (!data)
1530 					continue;
1531 
1532 				dma_unmap_single(
1533 					&pdev->dev,
1534 					dma_unmap_addr(tpa_info, mapping),
1535 					bp->rx_buf_use_size,
1536 					PCI_DMA_FROMDEVICE);
1537 
1538 				tpa_info->data = NULL;
1539 
1540 				kfree(data);
1541 			}
1542 		}
1543 
1544 		for (j = 0; j < max_idx; j++) {
1545 			struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[j];
1546 			u8 *data = rx_buf->data;
1547 
1548 			if (!data)
1549 				continue;
1550 
1551 			dma_unmap_single(&pdev->dev,
1552 					 dma_unmap_addr(rx_buf, mapping),
1553 					 bp->rx_buf_use_size,
1554 					 PCI_DMA_FROMDEVICE);
1555 
1556 			rx_buf->data = NULL;
1557 
1558 			kfree(data);
1559 		}
1560 
1561 		for (j = 0; j < max_agg_idx; j++) {
1562 			struct bnxt_sw_rx_agg_bd *rx_agg_buf =
1563 				&rxr->rx_agg_ring[j];
1564 			struct page *page = rx_agg_buf->page;
1565 
1566 			if (!page)
1567 				continue;
1568 
1569 			dma_unmap_page(&pdev->dev,
1570 				       dma_unmap_addr(rx_agg_buf, mapping),
1571 				       PAGE_SIZE, PCI_DMA_FROMDEVICE);
1572 
1573 			rx_agg_buf->page = NULL;
1574 			__clear_bit(j, rxr->rx_agg_bmap);
1575 
1576 			__free_page(page);
1577 		}
1578 	}
1579 }
1580 
1581 static void bnxt_free_skbs(struct bnxt *bp)
1582 {
1583 	bnxt_free_tx_skbs(bp);
1584 	bnxt_free_rx_skbs(bp);
1585 }
1586 
1587 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
1588 {
1589 	struct pci_dev *pdev = bp->pdev;
1590 	int i;
1591 
1592 	for (i = 0; i < ring->nr_pages; i++) {
1593 		if (!ring->pg_arr[i])
1594 			continue;
1595 
1596 		dma_free_coherent(&pdev->dev, ring->page_size,
1597 				  ring->pg_arr[i], ring->dma_arr[i]);
1598 
1599 		ring->pg_arr[i] = NULL;
1600 	}
1601 	if (ring->pg_tbl) {
1602 		dma_free_coherent(&pdev->dev, ring->nr_pages * 8,
1603 				  ring->pg_tbl, ring->pg_tbl_map);
1604 		ring->pg_tbl = NULL;
1605 	}
1606 	if (ring->vmem_size && *ring->vmem) {
1607 		vfree(*ring->vmem);
1608 		*ring->vmem = NULL;
1609 	}
1610 }
1611 
1612 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
1613 {
1614 	int i;
1615 	struct pci_dev *pdev = bp->pdev;
1616 
1617 	if (ring->nr_pages > 1) {
1618 		ring->pg_tbl = dma_alloc_coherent(&pdev->dev,
1619 						  ring->nr_pages * 8,
1620 						  &ring->pg_tbl_map,
1621 						  GFP_KERNEL);
1622 		if (!ring->pg_tbl)
1623 			return -ENOMEM;
1624 	}
1625 
1626 	for (i = 0; i < ring->nr_pages; i++) {
1627 		ring->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
1628 						     ring->page_size,
1629 						     &ring->dma_arr[i],
1630 						     GFP_KERNEL);
1631 		if (!ring->pg_arr[i])
1632 			return -ENOMEM;
1633 
1634 		if (ring->nr_pages > 1)
1635 			ring->pg_tbl[i] = cpu_to_le64(ring->dma_arr[i]);
1636 	}
1637 
1638 	if (ring->vmem_size) {
1639 		*ring->vmem = vzalloc(ring->vmem_size);
1640 		if (!(*ring->vmem))
1641 			return -ENOMEM;
1642 	}
1643 	return 0;
1644 }
1645 
1646 static void bnxt_free_rx_rings(struct bnxt *bp)
1647 {
1648 	int i;
1649 
1650 	if (!bp->rx_ring)
1651 		return;
1652 
1653 	for (i = 0; i < bp->rx_nr_rings; i++) {
1654 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
1655 		struct bnxt_ring_struct *ring;
1656 
1657 		kfree(rxr->rx_tpa);
1658 		rxr->rx_tpa = NULL;
1659 
1660 		kfree(rxr->rx_agg_bmap);
1661 		rxr->rx_agg_bmap = NULL;
1662 
1663 		ring = &rxr->rx_ring_struct;
1664 		bnxt_free_ring(bp, ring);
1665 
1666 		ring = &rxr->rx_agg_ring_struct;
1667 		bnxt_free_ring(bp, ring);
1668 	}
1669 }
1670 
1671 static int bnxt_alloc_rx_rings(struct bnxt *bp)
1672 {
1673 	int i, rc, agg_rings = 0, tpa_rings = 0;
1674 
1675 	if (!bp->rx_ring)
1676 		return -ENOMEM;
1677 
1678 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
1679 		agg_rings = 1;
1680 
1681 	if (bp->flags & BNXT_FLAG_TPA)
1682 		tpa_rings = 1;
1683 
1684 	for (i = 0; i < bp->rx_nr_rings; i++) {
1685 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
1686 		struct bnxt_ring_struct *ring;
1687 
1688 		ring = &rxr->rx_ring_struct;
1689 
1690 		rc = bnxt_alloc_ring(bp, ring);
1691 		if (rc)
1692 			return rc;
1693 
1694 		if (agg_rings) {
1695 			u16 mem_size;
1696 
1697 			ring = &rxr->rx_agg_ring_struct;
1698 			rc = bnxt_alloc_ring(bp, ring);
1699 			if (rc)
1700 				return rc;
1701 
1702 			rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
1703 			mem_size = rxr->rx_agg_bmap_size / 8;
1704 			rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
1705 			if (!rxr->rx_agg_bmap)
1706 				return -ENOMEM;
1707 
1708 			if (tpa_rings) {
1709 				rxr->rx_tpa = kcalloc(MAX_TPA,
1710 						sizeof(struct bnxt_tpa_info),
1711 						GFP_KERNEL);
1712 				if (!rxr->rx_tpa)
1713 					return -ENOMEM;
1714 			}
1715 		}
1716 	}
1717 	return 0;
1718 }
1719 
1720 static void bnxt_free_tx_rings(struct bnxt *bp)
1721 {
1722 	int i;
1723 	struct pci_dev *pdev = bp->pdev;
1724 
1725 	if (!bp->tx_ring)
1726 		return;
1727 
1728 	for (i = 0; i < bp->tx_nr_rings; i++) {
1729 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
1730 		struct bnxt_ring_struct *ring;
1731 
1732 		if (txr->tx_push) {
1733 			dma_free_coherent(&pdev->dev, bp->tx_push_size,
1734 					  txr->tx_push, txr->tx_push_mapping);
1735 			txr->tx_push = NULL;
1736 		}
1737 
1738 		ring = &txr->tx_ring_struct;
1739 
1740 		bnxt_free_ring(bp, ring);
1741 	}
1742 }
1743 
1744 static int bnxt_alloc_tx_rings(struct bnxt *bp)
1745 {
1746 	int i, j, rc;
1747 	struct pci_dev *pdev = bp->pdev;
1748 
1749 	bp->tx_push_size = 0;
1750 	if (bp->tx_push_thresh) {
1751 		int push_size;
1752 
1753 		push_size  = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
1754 					bp->tx_push_thresh);
1755 
1756 		if (push_size > 128) {
1757 			push_size = 0;
1758 			bp->tx_push_thresh = 0;
1759 		}
1760 
1761 		bp->tx_push_size = push_size;
1762 	}
1763 
1764 	for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
1765 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
1766 		struct bnxt_ring_struct *ring;
1767 
1768 		ring = &txr->tx_ring_struct;
1769 
1770 		rc = bnxt_alloc_ring(bp, ring);
1771 		if (rc)
1772 			return rc;
1773 
1774 		if (bp->tx_push_size) {
1775 			struct tx_bd *txbd;
1776 			dma_addr_t mapping;
1777 
1778 			/* One pre-allocated DMA buffer to backup
1779 			 * TX push operation
1780 			 */
1781 			txr->tx_push = dma_alloc_coherent(&pdev->dev,
1782 						bp->tx_push_size,
1783 						&txr->tx_push_mapping,
1784 						GFP_KERNEL);
1785 
1786 			if (!txr->tx_push)
1787 				return -ENOMEM;
1788 
1789 			txbd = &txr->tx_push->txbd1;
1790 
1791 			mapping = txr->tx_push_mapping +
1792 				sizeof(struct tx_push_bd);
1793 			txbd->tx_bd_haddr = cpu_to_le64(mapping);
1794 
1795 			memset(txbd + 1, 0, sizeof(struct tx_bd_ext));
1796 		}
1797 		ring->queue_id = bp->q_info[j].queue_id;
1798 		if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1))
1799 			j++;
1800 	}
1801 	return 0;
1802 }
1803 
1804 static void bnxt_free_cp_rings(struct bnxt *bp)
1805 {
1806 	int i;
1807 
1808 	if (!bp->bnapi)
1809 		return;
1810 
1811 	for (i = 0; i < bp->cp_nr_rings; i++) {
1812 		struct bnxt_napi *bnapi = bp->bnapi[i];
1813 		struct bnxt_cp_ring_info *cpr;
1814 		struct bnxt_ring_struct *ring;
1815 
1816 		if (!bnapi)
1817 			continue;
1818 
1819 		cpr = &bnapi->cp_ring;
1820 		ring = &cpr->cp_ring_struct;
1821 
1822 		bnxt_free_ring(bp, ring);
1823 	}
1824 }
1825 
1826 static int bnxt_alloc_cp_rings(struct bnxt *bp)
1827 {
1828 	int i, rc;
1829 
1830 	for (i = 0; i < bp->cp_nr_rings; i++) {
1831 		struct bnxt_napi *bnapi = bp->bnapi[i];
1832 		struct bnxt_cp_ring_info *cpr;
1833 		struct bnxt_ring_struct *ring;
1834 
1835 		if (!bnapi)
1836 			continue;
1837 
1838 		cpr = &bnapi->cp_ring;
1839 		ring = &cpr->cp_ring_struct;
1840 
1841 		rc = bnxt_alloc_ring(bp, ring);
1842 		if (rc)
1843 			return rc;
1844 	}
1845 	return 0;
1846 }
1847 
1848 static void bnxt_init_ring_struct(struct bnxt *bp)
1849 {
1850 	int i;
1851 
1852 	for (i = 0; i < bp->cp_nr_rings; i++) {
1853 		struct bnxt_napi *bnapi = bp->bnapi[i];
1854 		struct bnxt_cp_ring_info *cpr;
1855 		struct bnxt_rx_ring_info *rxr;
1856 		struct bnxt_tx_ring_info *txr;
1857 		struct bnxt_ring_struct *ring;
1858 
1859 		if (!bnapi)
1860 			continue;
1861 
1862 		cpr = &bnapi->cp_ring;
1863 		ring = &cpr->cp_ring_struct;
1864 		ring->nr_pages = bp->cp_nr_pages;
1865 		ring->page_size = HW_CMPD_RING_SIZE;
1866 		ring->pg_arr = (void **)cpr->cp_desc_ring;
1867 		ring->dma_arr = cpr->cp_desc_mapping;
1868 		ring->vmem_size = 0;
1869 
1870 		rxr = bnapi->rx_ring;
1871 		if (!rxr)
1872 			goto skip_rx;
1873 
1874 		ring = &rxr->rx_ring_struct;
1875 		ring->nr_pages = bp->rx_nr_pages;
1876 		ring->page_size = HW_RXBD_RING_SIZE;
1877 		ring->pg_arr = (void **)rxr->rx_desc_ring;
1878 		ring->dma_arr = rxr->rx_desc_mapping;
1879 		ring->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
1880 		ring->vmem = (void **)&rxr->rx_buf_ring;
1881 
1882 		ring = &rxr->rx_agg_ring_struct;
1883 		ring->nr_pages = bp->rx_agg_nr_pages;
1884 		ring->page_size = HW_RXBD_RING_SIZE;
1885 		ring->pg_arr = (void **)rxr->rx_agg_desc_ring;
1886 		ring->dma_arr = rxr->rx_agg_desc_mapping;
1887 		ring->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
1888 		ring->vmem = (void **)&rxr->rx_agg_ring;
1889 
1890 skip_rx:
1891 		txr = bnapi->tx_ring;
1892 		if (!txr)
1893 			continue;
1894 
1895 		ring = &txr->tx_ring_struct;
1896 		ring->nr_pages = bp->tx_nr_pages;
1897 		ring->page_size = HW_RXBD_RING_SIZE;
1898 		ring->pg_arr = (void **)txr->tx_desc_ring;
1899 		ring->dma_arr = txr->tx_desc_mapping;
1900 		ring->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
1901 		ring->vmem = (void **)&txr->tx_buf_ring;
1902 	}
1903 }
1904 
1905 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
1906 {
1907 	int i;
1908 	u32 prod;
1909 	struct rx_bd **rx_buf_ring;
1910 
1911 	rx_buf_ring = (struct rx_bd **)ring->pg_arr;
1912 	for (i = 0, prod = 0; i < ring->nr_pages; i++) {
1913 		int j;
1914 		struct rx_bd *rxbd;
1915 
1916 		rxbd = rx_buf_ring[i];
1917 		if (!rxbd)
1918 			continue;
1919 
1920 		for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
1921 			rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
1922 			rxbd->rx_bd_opaque = prod;
1923 		}
1924 	}
1925 }
1926 
1927 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
1928 {
1929 	struct net_device *dev = bp->dev;
1930 	struct bnxt_rx_ring_info *rxr;
1931 	struct bnxt_ring_struct *ring;
1932 	u32 prod, type;
1933 	int i;
1934 
1935 	type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
1936 		RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
1937 
1938 	if (NET_IP_ALIGN == 2)
1939 		type |= RX_BD_FLAGS_SOP;
1940 
1941 	rxr = &bp->rx_ring[ring_nr];
1942 	ring = &rxr->rx_ring_struct;
1943 	bnxt_init_rxbd_pages(ring, type);
1944 
1945 	prod = rxr->rx_prod;
1946 	for (i = 0; i < bp->rx_ring_size; i++) {
1947 		if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL) != 0) {
1948 			netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
1949 				    ring_nr, i, bp->rx_ring_size);
1950 			break;
1951 		}
1952 		prod = NEXT_RX(prod);
1953 	}
1954 	rxr->rx_prod = prod;
1955 	ring->fw_ring_id = INVALID_HW_RING_ID;
1956 
1957 	ring = &rxr->rx_agg_ring_struct;
1958 	ring->fw_ring_id = INVALID_HW_RING_ID;
1959 
1960 	if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
1961 		return 0;
1962 
1963 	type = ((u32)PAGE_SIZE << RX_BD_LEN_SHIFT) |
1964 		RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
1965 
1966 	bnxt_init_rxbd_pages(ring, type);
1967 
1968 	prod = rxr->rx_agg_prod;
1969 	for (i = 0; i < bp->rx_agg_ring_size; i++) {
1970 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL) != 0) {
1971 			netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
1972 				    ring_nr, i, bp->rx_ring_size);
1973 			break;
1974 		}
1975 		prod = NEXT_RX_AGG(prod);
1976 	}
1977 	rxr->rx_agg_prod = prod;
1978 
1979 	if (bp->flags & BNXT_FLAG_TPA) {
1980 		if (rxr->rx_tpa) {
1981 			u8 *data;
1982 			dma_addr_t mapping;
1983 
1984 			for (i = 0; i < MAX_TPA; i++) {
1985 				data = __bnxt_alloc_rx_data(bp, &mapping,
1986 							    GFP_KERNEL);
1987 				if (!data)
1988 					return -ENOMEM;
1989 
1990 				rxr->rx_tpa[i].data = data;
1991 				rxr->rx_tpa[i].mapping = mapping;
1992 			}
1993 		} else {
1994 			netdev_err(bp->dev, "No resource allocated for LRO/GRO\n");
1995 			return -ENOMEM;
1996 		}
1997 	}
1998 
1999 	return 0;
2000 }
2001 
2002 static int bnxt_init_rx_rings(struct bnxt *bp)
2003 {
2004 	int i, rc = 0;
2005 
2006 	for (i = 0; i < bp->rx_nr_rings; i++) {
2007 		rc = bnxt_init_one_rx_ring(bp, i);
2008 		if (rc)
2009 			break;
2010 	}
2011 
2012 	return rc;
2013 }
2014 
2015 static int bnxt_init_tx_rings(struct bnxt *bp)
2016 {
2017 	u16 i;
2018 
2019 	bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
2020 				   MAX_SKB_FRAGS + 1);
2021 
2022 	for (i = 0; i < bp->tx_nr_rings; i++) {
2023 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2024 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
2025 
2026 		ring->fw_ring_id = INVALID_HW_RING_ID;
2027 	}
2028 
2029 	return 0;
2030 }
2031 
2032 static void bnxt_free_ring_grps(struct bnxt *bp)
2033 {
2034 	kfree(bp->grp_info);
2035 	bp->grp_info = NULL;
2036 }
2037 
2038 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
2039 {
2040 	int i;
2041 
2042 	if (irq_re_init) {
2043 		bp->grp_info = kcalloc(bp->cp_nr_rings,
2044 				       sizeof(struct bnxt_ring_grp_info),
2045 				       GFP_KERNEL);
2046 		if (!bp->grp_info)
2047 			return -ENOMEM;
2048 	}
2049 	for (i = 0; i < bp->cp_nr_rings; i++) {
2050 		if (irq_re_init)
2051 			bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
2052 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
2053 		bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
2054 		bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
2055 		bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
2056 	}
2057 	return 0;
2058 }
2059 
2060 static void bnxt_free_vnics(struct bnxt *bp)
2061 {
2062 	kfree(bp->vnic_info);
2063 	bp->vnic_info = NULL;
2064 	bp->nr_vnics = 0;
2065 }
2066 
2067 static int bnxt_alloc_vnics(struct bnxt *bp)
2068 {
2069 	int num_vnics = 1;
2070 
2071 #ifdef CONFIG_RFS_ACCEL
2072 	if (bp->flags & BNXT_FLAG_RFS)
2073 		num_vnics += bp->rx_nr_rings;
2074 #endif
2075 
2076 	bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
2077 				GFP_KERNEL);
2078 	if (!bp->vnic_info)
2079 		return -ENOMEM;
2080 
2081 	bp->nr_vnics = num_vnics;
2082 	return 0;
2083 }
2084 
2085 static void bnxt_init_vnics(struct bnxt *bp)
2086 {
2087 	int i;
2088 
2089 	for (i = 0; i < bp->nr_vnics; i++) {
2090 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2091 
2092 		vnic->fw_vnic_id = INVALID_HW_RING_ID;
2093 		vnic->fw_rss_cos_lb_ctx = INVALID_HW_RING_ID;
2094 		vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
2095 
2096 		if (bp->vnic_info[i].rss_hash_key) {
2097 			if (i == 0)
2098 				prandom_bytes(vnic->rss_hash_key,
2099 					      HW_HASH_KEY_SIZE);
2100 			else
2101 				memcpy(vnic->rss_hash_key,
2102 				       bp->vnic_info[0].rss_hash_key,
2103 				       HW_HASH_KEY_SIZE);
2104 		}
2105 	}
2106 }
2107 
2108 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
2109 {
2110 	int pages;
2111 
2112 	pages = ring_size / desc_per_pg;
2113 
2114 	if (!pages)
2115 		return 1;
2116 
2117 	pages++;
2118 
2119 	while (pages & (pages - 1))
2120 		pages++;
2121 
2122 	return pages;
2123 }
2124 
2125 static void bnxt_set_tpa_flags(struct bnxt *bp)
2126 {
2127 	bp->flags &= ~BNXT_FLAG_TPA;
2128 	if (bp->dev->features & NETIF_F_LRO)
2129 		bp->flags |= BNXT_FLAG_LRO;
2130 	if ((bp->dev->features & NETIF_F_GRO) && (bp->pdev->revision > 0))
2131 		bp->flags |= BNXT_FLAG_GRO;
2132 }
2133 
2134 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
2135  * be set on entry.
2136  */
2137 void bnxt_set_ring_params(struct bnxt *bp)
2138 {
2139 	u32 ring_size, rx_size, rx_space;
2140 	u32 agg_factor = 0, agg_ring_size = 0;
2141 
2142 	/* 8 for CRC and VLAN */
2143 	rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
2144 
2145 	rx_space = rx_size + NET_SKB_PAD +
2146 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2147 
2148 	bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
2149 	ring_size = bp->rx_ring_size;
2150 	bp->rx_agg_ring_size = 0;
2151 	bp->rx_agg_nr_pages = 0;
2152 
2153 	if (bp->flags & BNXT_FLAG_TPA)
2154 		agg_factor = 4;
2155 
2156 	bp->flags &= ~BNXT_FLAG_JUMBO;
2157 	if (rx_space > PAGE_SIZE) {
2158 		u32 jumbo_factor;
2159 
2160 		bp->flags |= BNXT_FLAG_JUMBO;
2161 		jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
2162 		if (jumbo_factor > agg_factor)
2163 			agg_factor = jumbo_factor;
2164 	}
2165 	agg_ring_size = ring_size * agg_factor;
2166 
2167 	if (agg_ring_size) {
2168 		bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
2169 							RX_DESC_CNT);
2170 		if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
2171 			u32 tmp = agg_ring_size;
2172 
2173 			bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
2174 			agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
2175 			netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
2176 				    tmp, agg_ring_size);
2177 		}
2178 		bp->rx_agg_ring_size = agg_ring_size;
2179 		bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
2180 		rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
2181 		rx_space = rx_size + NET_SKB_PAD +
2182 			SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2183 	}
2184 
2185 	bp->rx_buf_use_size = rx_size;
2186 	bp->rx_buf_size = rx_space;
2187 
2188 	bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
2189 	bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
2190 
2191 	ring_size = bp->tx_ring_size;
2192 	bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
2193 	bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
2194 
2195 	ring_size = bp->rx_ring_size * (2 + agg_factor) + bp->tx_ring_size;
2196 	bp->cp_ring_size = ring_size;
2197 
2198 	bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
2199 	if (bp->cp_nr_pages > MAX_CP_PAGES) {
2200 		bp->cp_nr_pages = MAX_CP_PAGES;
2201 		bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
2202 		netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
2203 			    ring_size, bp->cp_ring_size);
2204 	}
2205 	bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
2206 	bp->cp_ring_mask = bp->cp_bit - 1;
2207 }
2208 
2209 static void bnxt_free_vnic_attributes(struct bnxt *bp)
2210 {
2211 	int i;
2212 	struct bnxt_vnic_info *vnic;
2213 	struct pci_dev *pdev = bp->pdev;
2214 
2215 	if (!bp->vnic_info)
2216 		return;
2217 
2218 	for (i = 0; i < bp->nr_vnics; i++) {
2219 		vnic = &bp->vnic_info[i];
2220 
2221 		kfree(vnic->fw_grp_ids);
2222 		vnic->fw_grp_ids = NULL;
2223 
2224 		kfree(vnic->uc_list);
2225 		vnic->uc_list = NULL;
2226 
2227 		if (vnic->mc_list) {
2228 			dma_free_coherent(&pdev->dev, vnic->mc_list_size,
2229 					  vnic->mc_list, vnic->mc_list_mapping);
2230 			vnic->mc_list = NULL;
2231 		}
2232 
2233 		if (vnic->rss_table) {
2234 			dma_free_coherent(&pdev->dev, PAGE_SIZE,
2235 					  vnic->rss_table,
2236 					  vnic->rss_table_dma_addr);
2237 			vnic->rss_table = NULL;
2238 		}
2239 
2240 		vnic->rss_hash_key = NULL;
2241 		vnic->flags = 0;
2242 	}
2243 }
2244 
2245 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
2246 {
2247 	int i, rc = 0, size;
2248 	struct bnxt_vnic_info *vnic;
2249 	struct pci_dev *pdev = bp->pdev;
2250 	int max_rings;
2251 
2252 	for (i = 0; i < bp->nr_vnics; i++) {
2253 		vnic = &bp->vnic_info[i];
2254 
2255 		if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
2256 			int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
2257 
2258 			if (mem_size > 0) {
2259 				vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
2260 				if (!vnic->uc_list) {
2261 					rc = -ENOMEM;
2262 					goto out;
2263 				}
2264 			}
2265 		}
2266 
2267 		if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
2268 			vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
2269 			vnic->mc_list =
2270 				dma_alloc_coherent(&pdev->dev,
2271 						   vnic->mc_list_size,
2272 						   &vnic->mc_list_mapping,
2273 						   GFP_KERNEL);
2274 			if (!vnic->mc_list) {
2275 				rc = -ENOMEM;
2276 				goto out;
2277 			}
2278 		}
2279 
2280 		if (vnic->flags & BNXT_VNIC_RSS_FLAG)
2281 			max_rings = bp->rx_nr_rings;
2282 		else
2283 			max_rings = 1;
2284 
2285 		vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
2286 		if (!vnic->fw_grp_ids) {
2287 			rc = -ENOMEM;
2288 			goto out;
2289 		}
2290 
2291 		/* Allocate rss table and hash key */
2292 		vnic->rss_table = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
2293 						     &vnic->rss_table_dma_addr,
2294 						     GFP_KERNEL);
2295 		if (!vnic->rss_table) {
2296 			rc = -ENOMEM;
2297 			goto out;
2298 		}
2299 
2300 		size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
2301 
2302 		vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
2303 		vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
2304 	}
2305 	return 0;
2306 
2307 out:
2308 	return rc;
2309 }
2310 
2311 static void bnxt_free_hwrm_resources(struct bnxt *bp)
2312 {
2313 	struct pci_dev *pdev = bp->pdev;
2314 
2315 	dma_free_coherent(&pdev->dev, PAGE_SIZE, bp->hwrm_cmd_resp_addr,
2316 			  bp->hwrm_cmd_resp_dma_addr);
2317 
2318 	bp->hwrm_cmd_resp_addr = NULL;
2319 	if (bp->hwrm_dbg_resp_addr) {
2320 		dma_free_coherent(&pdev->dev, HWRM_DBG_REG_BUF_SIZE,
2321 				  bp->hwrm_dbg_resp_addr,
2322 				  bp->hwrm_dbg_resp_dma_addr);
2323 
2324 		bp->hwrm_dbg_resp_addr = NULL;
2325 	}
2326 }
2327 
2328 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
2329 {
2330 	struct pci_dev *pdev = bp->pdev;
2331 
2332 	bp->hwrm_cmd_resp_addr = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
2333 						   &bp->hwrm_cmd_resp_dma_addr,
2334 						   GFP_KERNEL);
2335 	if (!bp->hwrm_cmd_resp_addr)
2336 		return -ENOMEM;
2337 	bp->hwrm_dbg_resp_addr = dma_alloc_coherent(&pdev->dev,
2338 						    HWRM_DBG_REG_BUF_SIZE,
2339 						    &bp->hwrm_dbg_resp_dma_addr,
2340 						    GFP_KERNEL);
2341 	if (!bp->hwrm_dbg_resp_addr)
2342 		netdev_warn(bp->dev, "fail to alloc debug register dma mem\n");
2343 
2344 	return 0;
2345 }
2346 
2347 static void bnxt_free_stats(struct bnxt *bp)
2348 {
2349 	u32 size, i;
2350 	struct pci_dev *pdev = bp->pdev;
2351 
2352 	if (!bp->bnapi)
2353 		return;
2354 
2355 	size = sizeof(struct ctx_hw_stats);
2356 
2357 	for (i = 0; i < bp->cp_nr_rings; i++) {
2358 		struct bnxt_napi *bnapi = bp->bnapi[i];
2359 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2360 
2361 		if (cpr->hw_stats) {
2362 			dma_free_coherent(&pdev->dev, size, cpr->hw_stats,
2363 					  cpr->hw_stats_map);
2364 			cpr->hw_stats = NULL;
2365 		}
2366 	}
2367 }
2368 
2369 static int bnxt_alloc_stats(struct bnxt *bp)
2370 {
2371 	u32 size, i;
2372 	struct pci_dev *pdev = bp->pdev;
2373 
2374 	size = sizeof(struct ctx_hw_stats);
2375 
2376 	for (i = 0; i < bp->cp_nr_rings; i++) {
2377 		struct bnxt_napi *bnapi = bp->bnapi[i];
2378 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2379 
2380 		cpr->hw_stats = dma_alloc_coherent(&pdev->dev, size,
2381 						   &cpr->hw_stats_map,
2382 						   GFP_KERNEL);
2383 		if (!cpr->hw_stats)
2384 			return -ENOMEM;
2385 
2386 		cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
2387 	}
2388 	return 0;
2389 }
2390 
2391 static void bnxt_clear_ring_indices(struct bnxt *bp)
2392 {
2393 	int i;
2394 
2395 	if (!bp->bnapi)
2396 		return;
2397 
2398 	for (i = 0; i < bp->cp_nr_rings; i++) {
2399 		struct bnxt_napi *bnapi = bp->bnapi[i];
2400 		struct bnxt_cp_ring_info *cpr;
2401 		struct bnxt_rx_ring_info *rxr;
2402 		struct bnxt_tx_ring_info *txr;
2403 
2404 		if (!bnapi)
2405 			continue;
2406 
2407 		cpr = &bnapi->cp_ring;
2408 		cpr->cp_raw_cons = 0;
2409 
2410 		txr = bnapi->tx_ring;
2411 		if (txr) {
2412 			txr->tx_prod = 0;
2413 			txr->tx_cons = 0;
2414 		}
2415 
2416 		rxr = bnapi->rx_ring;
2417 		if (rxr) {
2418 			rxr->rx_prod = 0;
2419 			rxr->rx_agg_prod = 0;
2420 			rxr->rx_sw_agg_prod = 0;
2421 		}
2422 	}
2423 }
2424 
2425 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
2426 {
2427 #ifdef CONFIG_RFS_ACCEL
2428 	int i;
2429 
2430 	/* Under rtnl_lock and all our NAPIs have been disabled.  It's
2431 	 * safe to delete the hash table.
2432 	 */
2433 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
2434 		struct hlist_head *head;
2435 		struct hlist_node *tmp;
2436 		struct bnxt_ntuple_filter *fltr;
2437 
2438 		head = &bp->ntp_fltr_hash_tbl[i];
2439 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
2440 			hlist_del(&fltr->hash);
2441 			kfree(fltr);
2442 		}
2443 	}
2444 	if (irq_reinit) {
2445 		kfree(bp->ntp_fltr_bmap);
2446 		bp->ntp_fltr_bmap = NULL;
2447 	}
2448 	bp->ntp_fltr_count = 0;
2449 #endif
2450 }
2451 
2452 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
2453 {
2454 #ifdef CONFIG_RFS_ACCEL
2455 	int i, rc = 0;
2456 
2457 	if (!(bp->flags & BNXT_FLAG_RFS))
2458 		return 0;
2459 
2460 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
2461 		INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
2462 
2463 	bp->ntp_fltr_count = 0;
2464 	bp->ntp_fltr_bmap = kzalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR),
2465 				    GFP_KERNEL);
2466 
2467 	if (!bp->ntp_fltr_bmap)
2468 		rc = -ENOMEM;
2469 
2470 	return rc;
2471 #else
2472 	return 0;
2473 #endif
2474 }
2475 
2476 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
2477 {
2478 	bnxt_free_vnic_attributes(bp);
2479 	bnxt_free_tx_rings(bp);
2480 	bnxt_free_rx_rings(bp);
2481 	bnxt_free_cp_rings(bp);
2482 	bnxt_free_ntp_fltrs(bp, irq_re_init);
2483 	if (irq_re_init) {
2484 		bnxt_free_stats(bp);
2485 		bnxt_free_ring_grps(bp);
2486 		bnxt_free_vnics(bp);
2487 		kfree(bp->tx_ring);
2488 		bp->tx_ring = NULL;
2489 		kfree(bp->rx_ring);
2490 		bp->rx_ring = NULL;
2491 		kfree(bp->bnapi);
2492 		bp->bnapi = NULL;
2493 	} else {
2494 		bnxt_clear_ring_indices(bp);
2495 	}
2496 }
2497 
2498 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
2499 {
2500 	int i, j, rc, size, arr_size;
2501 	void *bnapi;
2502 
2503 	if (irq_re_init) {
2504 		/* Allocate bnapi mem pointer array and mem block for
2505 		 * all queues
2506 		 */
2507 		arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
2508 				bp->cp_nr_rings);
2509 		size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
2510 		bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
2511 		if (!bnapi)
2512 			return -ENOMEM;
2513 
2514 		bp->bnapi = bnapi;
2515 		bnapi += arr_size;
2516 		for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
2517 			bp->bnapi[i] = bnapi;
2518 			bp->bnapi[i]->index = i;
2519 			bp->bnapi[i]->bp = bp;
2520 		}
2521 
2522 		bp->rx_ring = kcalloc(bp->rx_nr_rings,
2523 				      sizeof(struct bnxt_rx_ring_info),
2524 				      GFP_KERNEL);
2525 		if (!bp->rx_ring)
2526 			return -ENOMEM;
2527 
2528 		for (i = 0; i < bp->rx_nr_rings; i++) {
2529 			bp->rx_ring[i].bnapi = bp->bnapi[i];
2530 			bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
2531 		}
2532 
2533 		bp->tx_ring = kcalloc(bp->tx_nr_rings,
2534 				      sizeof(struct bnxt_tx_ring_info),
2535 				      GFP_KERNEL);
2536 		if (!bp->tx_ring)
2537 			return -ENOMEM;
2538 
2539 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
2540 			j = 0;
2541 		else
2542 			j = bp->rx_nr_rings;
2543 
2544 		for (i = 0; i < bp->tx_nr_rings; i++, j++) {
2545 			bp->tx_ring[i].bnapi = bp->bnapi[j];
2546 			bp->bnapi[j]->tx_ring = &bp->tx_ring[i];
2547 		}
2548 
2549 		rc = bnxt_alloc_stats(bp);
2550 		if (rc)
2551 			goto alloc_mem_err;
2552 
2553 		rc = bnxt_alloc_ntp_fltrs(bp);
2554 		if (rc)
2555 			goto alloc_mem_err;
2556 
2557 		rc = bnxt_alloc_vnics(bp);
2558 		if (rc)
2559 			goto alloc_mem_err;
2560 	}
2561 
2562 	bnxt_init_ring_struct(bp);
2563 
2564 	rc = bnxt_alloc_rx_rings(bp);
2565 	if (rc)
2566 		goto alloc_mem_err;
2567 
2568 	rc = bnxt_alloc_tx_rings(bp);
2569 	if (rc)
2570 		goto alloc_mem_err;
2571 
2572 	rc = bnxt_alloc_cp_rings(bp);
2573 	if (rc)
2574 		goto alloc_mem_err;
2575 
2576 	bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
2577 				  BNXT_VNIC_UCAST_FLAG;
2578 	rc = bnxt_alloc_vnic_attributes(bp);
2579 	if (rc)
2580 		goto alloc_mem_err;
2581 	return 0;
2582 
2583 alloc_mem_err:
2584 	bnxt_free_mem(bp, true);
2585 	return rc;
2586 }
2587 
2588 void bnxt_hwrm_cmd_hdr_init(struct bnxt *bp, void *request, u16 req_type,
2589 			    u16 cmpl_ring, u16 target_id)
2590 {
2591 	struct hwrm_cmd_req_hdr *req = request;
2592 
2593 	req->cmpl_ring_req_type =
2594 		cpu_to_le32(req_type | (cmpl_ring << HWRM_CMPL_RING_SFT));
2595 	req->target_id_seq_id = cpu_to_le32(target_id << HWRM_TARGET_FID_SFT);
2596 	req->resp_addr = cpu_to_le64(bp->hwrm_cmd_resp_dma_addr);
2597 }
2598 
2599 int _hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
2600 {
2601 	int i, intr_process, rc;
2602 	struct hwrm_cmd_req_hdr *req = msg;
2603 	u32 *data = msg;
2604 	__le32 *resp_len, *valid;
2605 	u16 cp_ring_id, len = 0;
2606 	struct hwrm_err_output *resp = bp->hwrm_cmd_resp_addr;
2607 
2608 	req->target_id_seq_id |= cpu_to_le32(bp->hwrm_cmd_seq++);
2609 	memset(resp, 0, PAGE_SIZE);
2610 	cp_ring_id = (le32_to_cpu(req->cmpl_ring_req_type) &
2611 		      HWRM_CMPL_RING_MASK) >>
2612 		     HWRM_CMPL_RING_SFT;
2613 	intr_process = (cp_ring_id == INVALID_HW_RING_ID) ? 0 : 1;
2614 
2615 	/* Write request msg to hwrm channel */
2616 	__iowrite32_copy(bp->bar0, data, msg_len / 4);
2617 
2618 	for (i = msg_len; i < HWRM_MAX_REQ_LEN; i += 4)
2619 		writel(0, bp->bar0 + i);
2620 
2621 	/* currently supports only one outstanding message */
2622 	if (intr_process)
2623 		bp->hwrm_intr_seq_id = le32_to_cpu(req->target_id_seq_id) &
2624 				       HWRM_SEQ_ID_MASK;
2625 
2626 	/* Ring channel doorbell */
2627 	writel(1, bp->bar0 + 0x100);
2628 
2629 	i = 0;
2630 	if (intr_process) {
2631 		/* Wait until hwrm response cmpl interrupt is processed */
2632 		while (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID &&
2633 		       i++ < timeout) {
2634 			usleep_range(600, 800);
2635 		}
2636 
2637 		if (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID) {
2638 			netdev_err(bp->dev, "Resp cmpl intr err msg: 0x%x\n",
2639 				   req->cmpl_ring_req_type);
2640 			return -1;
2641 		}
2642 	} else {
2643 		/* Check if response len is updated */
2644 		resp_len = bp->hwrm_cmd_resp_addr + HWRM_RESP_LEN_OFFSET;
2645 		for (i = 0; i < timeout; i++) {
2646 			len = (le32_to_cpu(*resp_len) & HWRM_RESP_LEN_MASK) >>
2647 			      HWRM_RESP_LEN_SFT;
2648 			if (len)
2649 				break;
2650 			usleep_range(600, 800);
2651 		}
2652 
2653 		if (i >= timeout) {
2654 			netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d\n",
2655 				   timeout, req->cmpl_ring_req_type,
2656 				   req->target_id_seq_id, *resp_len);
2657 			return -1;
2658 		}
2659 
2660 		/* Last word of resp contains valid bit */
2661 		valid = bp->hwrm_cmd_resp_addr + len - 4;
2662 		for (i = 0; i < timeout; i++) {
2663 			if (le32_to_cpu(*valid) & HWRM_RESP_VALID_MASK)
2664 				break;
2665 			usleep_range(600, 800);
2666 		}
2667 
2668 		if (i >= timeout) {
2669 			netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d v:%d\n",
2670 				   timeout, req->cmpl_ring_req_type,
2671 				   req->target_id_seq_id, len, *valid);
2672 			return -1;
2673 		}
2674 	}
2675 
2676 	rc = le16_to_cpu(resp->error_code);
2677 	if (rc) {
2678 		netdev_err(bp->dev, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n",
2679 			   le16_to_cpu(resp->req_type),
2680 			   le16_to_cpu(resp->seq_id), rc);
2681 		return rc;
2682 	}
2683 	return 0;
2684 }
2685 
2686 int hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
2687 {
2688 	int rc;
2689 
2690 	mutex_lock(&bp->hwrm_cmd_lock);
2691 	rc = _hwrm_send_message(bp, msg, msg_len, timeout);
2692 	mutex_unlock(&bp->hwrm_cmd_lock);
2693 	return rc;
2694 }
2695 
2696 static int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp)
2697 {
2698 	struct hwrm_func_drv_rgtr_input req = {0};
2699 	int i;
2700 
2701 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
2702 
2703 	req.enables =
2704 		cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
2705 			    FUNC_DRV_RGTR_REQ_ENABLES_VER |
2706 			    FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
2707 
2708 	/* TODO: current async event fwd bits are not defined and the firmware
2709 	 * only checks if it is non-zero to enable async event forwarding
2710 	 */
2711 	req.async_event_fwd[0] |= cpu_to_le32(1);
2712 	req.os_type = cpu_to_le16(1);
2713 	req.ver_maj = DRV_VER_MAJ;
2714 	req.ver_min = DRV_VER_MIN;
2715 	req.ver_upd = DRV_VER_UPD;
2716 
2717 	if (BNXT_PF(bp)) {
2718 		DECLARE_BITMAP(vf_req_snif_bmap, 256);
2719 		u32 *data = (u32 *)vf_req_snif_bmap;
2720 
2721 		memset(vf_req_snif_bmap, 0, sizeof(vf_req_snif_bmap));
2722 		for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++)
2723 			__set_bit(bnxt_vf_req_snif[i], vf_req_snif_bmap);
2724 
2725 		for (i = 0; i < 8; i++)
2726 			req.vf_req_fwd[i] = cpu_to_le32(data[i]);
2727 
2728 		req.enables |=
2729 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
2730 	}
2731 
2732 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2733 }
2734 
2735 static int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
2736 {
2737 	struct hwrm_func_drv_unrgtr_input req = {0};
2738 
2739 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_UNRGTR, -1, -1);
2740 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2741 }
2742 
2743 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
2744 {
2745 	u32 rc = 0;
2746 	struct hwrm_tunnel_dst_port_free_input req = {0};
2747 
2748 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_FREE, -1, -1);
2749 	req.tunnel_type = tunnel_type;
2750 
2751 	switch (tunnel_type) {
2752 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
2753 		req.tunnel_dst_port_id = bp->vxlan_fw_dst_port_id;
2754 		break;
2755 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
2756 		req.tunnel_dst_port_id = bp->nge_fw_dst_port_id;
2757 		break;
2758 	default:
2759 		break;
2760 	}
2761 
2762 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2763 	if (rc)
2764 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
2765 			   rc);
2766 	return rc;
2767 }
2768 
2769 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
2770 					   u8 tunnel_type)
2771 {
2772 	u32 rc = 0;
2773 	struct hwrm_tunnel_dst_port_alloc_input req = {0};
2774 	struct hwrm_tunnel_dst_port_alloc_output *resp = bp->hwrm_cmd_resp_addr;
2775 
2776 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_ALLOC, -1, -1);
2777 
2778 	req.tunnel_type = tunnel_type;
2779 	req.tunnel_dst_port_val = port;
2780 
2781 	mutex_lock(&bp->hwrm_cmd_lock);
2782 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2783 	if (rc) {
2784 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
2785 			   rc);
2786 		goto err_out;
2787 	}
2788 
2789 	if (tunnel_type & TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN)
2790 		bp->vxlan_fw_dst_port_id = resp->tunnel_dst_port_id;
2791 
2792 	else if (tunnel_type & TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE)
2793 		bp->nge_fw_dst_port_id = resp->tunnel_dst_port_id;
2794 err_out:
2795 	mutex_unlock(&bp->hwrm_cmd_lock);
2796 	return rc;
2797 }
2798 
2799 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
2800 {
2801 	struct hwrm_cfa_l2_set_rx_mask_input req = {0};
2802 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
2803 
2804 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_SET_RX_MASK, -1, -1);
2805 	req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
2806 
2807 	req.num_mc_entries = cpu_to_le32(vnic->mc_list_count);
2808 	req.mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
2809 	req.mask = cpu_to_le32(vnic->rx_mask);
2810 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2811 }
2812 
2813 #ifdef CONFIG_RFS_ACCEL
2814 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
2815 					    struct bnxt_ntuple_filter *fltr)
2816 {
2817 	struct hwrm_cfa_ntuple_filter_free_input req = {0};
2818 
2819 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_FREE, -1, -1);
2820 	req.ntuple_filter_id = fltr->filter_id;
2821 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2822 }
2823 
2824 #define BNXT_NTP_FLTR_FLAGS					\
2825 	(CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID |	\
2826 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE |	\
2827 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR |	\
2828 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE |	\
2829 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR |	\
2830 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK |	\
2831 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR |	\
2832 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK |	\
2833 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL |	\
2834 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT |		\
2835 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK |	\
2836 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT |		\
2837 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK |	\
2838 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
2839 
2840 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
2841 					     struct bnxt_ntuple_filter *fltr)
2842 {
2843 	int rc = 0;
2844 	struct hwrm_cfa_ntuple_filter_alloc_input req = {0};
2845 	struct hwrm_cfa_ntuple_filter_alloc_output *resp =
2846 		bp->hwrm_cmd_resp_addr;
2847 	struct flow_keys *keys = &fltr->fkeys;
2848 	struct bnxt_vnic_info *vnic = &bp->vnic_info[fltr->rxq + 1];
2849 
2850 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_ALLOC, -1, -1);
2851 	req.l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[0];
2852 
2853 	req.enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
2854 
2855 	req.ethertype = htons(ETH_P_IP);
2856 	memcpy(req.src_macaddr, fltr->src_mac_addr, ETH_ALEN);
2857 	req.ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
2858 	req.ip_protocol = keys->basic.ip_proto;
2859 
2860 	req.src_ipaddr[0] = keys->addrs.v4addrs.src;
2861 	req.src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
2862 	req.dst_ipaddr[0] = keys->addrs.v4addrs.dst;
2863 	req.dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
2864 
2865 	req.src_port = keys->ports.src;
2866 	req.src_port_mask = cpu_to_be16(0xffff);
2867 	req.dst_port = keys->ports.dst;
2868 	req.dst_port_mask = cpu_to_be16(0xffff);
2869 
2870 	req.dst_id = cpu_to_le16(vnic->fw_vnic_id);
2871 	mutex_lock(&bp->hwrm_cmd_lock);
2872 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2873 	if (!rc)
2874 		fltr->filter_id = resp->ntuple_filter_id;
2875 	mutex_unlock(&bp->hwrm_cmd_lock);
2876 	return rc;
2877 }
2878 #endif
2879 
2880 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
2881 				     u8 *mac_addr)
2882 {
2883 	u32 rc = 0;
2884 	struct hwrm_cfa_l2_filter_alloc_input req = {0};
2885 	struct hwrm_cfa_l2_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
2886 
2887 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_ALLOC, -1, -1);
2888 	req.flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX |
2889 				CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
2890 	req.dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
2891 	req.enables =
2892 		cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
2893 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
2894 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
2895 	memcpy(req.l2_addr, mac_addr, ETH_ALEN);
2896 	req.l2_addr_mask[0] = 0xff;
2897 	req.l2_addr_mask[1] = 0xff;
2898 	req.l2_addr_mask[2] = 0xff;
2899 	req.l2_addr_mask[3] = 0xff;
2900 	req.l2_addr_mask[4] = 0xff;
2901 	req.l2_addr_mask[5] = 0xff;
2902 
2903 	mutex_lock(&bp->hwrm_cmd_lock);
2904 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2905 	if (!rc)
2906 		bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
2907 							resp->l2_filter_id;
2908 	mutex_unlock(&bp->hwrm_cmd_lock);
2909 	return rc;
2910 }
2911 
2912 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
2913 {
2914 	u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
2915 	int rc = 0;
2916 
2917 	/* Any associated ntuple filters will also be cleared by firmware. */
2918 	mutex_lock(&bp->hwrm_cmd_lock);
2919 	for (i = 0; i < num_of_vnics; i++) {
2920 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2921 
2922 		for (j = 0; j < vnic->uc_filter_count; j++) {
2923 			struct hwrm_cfa_l2_filter_free_input req = {0};
2924 
2925 			bnxt_hwrm_cmd_hdr_init(bp, &req,
2926 					       HWRM_CFA_L2_FILTER_FREE, -1, -1);
2927 
2928 			req.l2_filter_id = vnic->fw_l2_filter_id[j];
2929 
2930 			rc = _hwrm_send_message(bp, &req, sizeof(req),
2931 						HWRM_CMD_TIMEOUT);
2932 		}
2933 		vnic->uc_filter_count = 0;
2934 	}
2935 	mutex_unlock(&bp->hwrm_cmd_lock);
2936 
2937 	return rc;
2938 }
2939 
2940 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
2941 {
2942 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
2943 	struct hwrm_vnic_tpa_cfg_input req = {0};
2944 
2945 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_TPA_CFG, -1, -1);
2946 
2947 	if (tpa_flags) {
2948 		u16 mss = bp->dev->mtu - 40;
2949 		u32 nsegs, n, segs = 0, flags;
2950 
2951 		flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
2952 			VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
2953 			VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
2954 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
2955 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
2956 		if (tpa_flags & BNXT_FLAG_GRO)
2957 			flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
2958 
2959 		req.flags = cpu_to_le32(flags);
2960 
2961 		req.enables =
2962 			cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
2963 				    VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
2964 				    VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
2965 
2966 		/* Number of segs are log2 units, and first packet is not
2967 		 * included as part of this units.
2968 		 */
2969 		if (mss <= PAGE_SIZE) {
2970 			n = PAGE_SIZE / mss;
2971 			nsegs = (MAX_SKB_FRAGS - 1) * n;
2972 		} else {
2973 			n = mss / PAGE_SIZE;
2974 			if (mss & (PAGE_SIZE - 1))
2975 				n++;
2976 			nsegs = (MAX_SKB_FRAGS - n) / n;
2977 		}
2978 
2979 		segs = ilog2(nsegs);
2980 		req.max_agg_segs = cpu_to_le16(segs);
2981 		req.max_aggs = cpu_to_le16(VNIC_TPA_CFG_REQ_MAX_AGGS_MAX);
2982 
2983 		req.min_agg_len = cpu_to_le32(512);
2984 	}
2985 	req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
2986 
2987 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2988 }
2989 
2990 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
2991 {
2992 	u32 i, j, max_rings;
2993 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
2994 	struct hwrm_vnic_rss_cfg_input req = {0};
2995 
2996 	if (vnic->fw_rss_cos_lb_ctx == INVALID_HW_RING_ID)
2997 		return 0;
2998 
2999 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1);
3000 	if (set_rss) {
3001 		vnic->hash_type = BNXT_RSS_HASH_TYPE_FLAG_IPV4 |
3002 				 BNXT_RSS_HASH_TYPE_FLAG_TCP_IPV4 |
3003 				 BNXT_RSS_HASH_TYPE_FLAG_IPV6 |
3004 				 BNXT_RSS_HASH_TYPE_FLAG_TCP_IPV6;
3005 
3006 		req.hash_type = cpu_to_le32(vnic->hash_type);
3007 
3008 		if (vnic->flags & BNXT_VNIC_RSS_FLAG)
3009 			max_rings = bp->rx_nr_rings;
3010 		else
3011 			max_rings = 1;
3012 
3013 		/* Fill the RSS indirection table with ring group ids */
3014 		for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++, j++) {
3015 			if (j == max_rings)
3016 				j = 0;
3017 			vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
3018 		}
3019 
3020 		req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
3021 		req.hash_key_tbl_addr =
3022 			cpu_to_le64(vnic->rss_hash_key_dma_addr);
3023 	}
3024 	req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx);
3025 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3026 }
3027 
3028 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
3029 {
3030 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3031 	struct hwrm_vnic_plcmodes_cfg_input req = {0};
3032 
3033 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_PLCMODES_CFG, -1, -1);
3034 	req.flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT |
3035 				VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
3036 				VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
3037 	req.enables =
3038 		cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID |
3039 			    VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
3040 	/* thresholds not implemented in firmware yet */
3041 	req.jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
3042 	req.hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
3043 	req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
3044 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3045 }
3046 
3047 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id)
3048 {
3049 	struct hwrm_vnic_rss_cos_lb_ctx_free_input req = {0};
3050 
3051 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_FREE, -1, -1);
3052 	req.rss_cos_lb_ctx_id =
3053 		cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx);
3054 
3055 	hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3056 	bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx = INVALID_HW_RING_ID;
3057 }
3058 
3059 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
3060 {
3061 	int i;
3062 
3063 	for (i = 0; i < bp->nr_vnics; i++) {
3064 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3065 
3066 		if (vnic->fw_rss_cos_lb_ctx != INVALID_HW_RING_ID)
3067 			bnxt_hwrm_vnic_ctx_free_one(bp, i);
3068 	}
3069 	bp->rsscos_nr_ctxs = 0;
3070 }
3071 
3072 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id)
3073 {
3074 	int rc;
3075 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_input req = {0};
3076 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp =
3077 						bp->hwrm_cmd_resp_addr;
3078 
3079 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC, -1,
3080 			       -1);
3081 
3082 	mutex_lock(&bp->hwrm_cmd_lock);
3083 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3084 	if (!rc)
3085 		bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx =
3086 			le16_to_cpu(resp->rss_cos_lb_ctx_id);
3087 	mutex_unlock(&bp->hwrm_cmd_lock);
3088 
3089 	return rc;
3090 }
3091 
3092 static int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
3093 {
3094 	unsigned int ring = 0, grp_idx;
3095 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3096 	struct hwrm_vnic_cfg_input req = {0};
3097 
3098 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_CFG, -1, -1);
3099 	/* Only RSS support for now TBD: COS & LB */
3100 	req.enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP |
3101 				  VNIC_CFG_REQ_ENABLES_RSS_RULE);
3102 	req.rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx);
3103 	req.cos_rule = cpu_to_le16(0xffff);
3104 	if (vnic->flags & BNXT_VNIC_RSS_FLAG)
3105 		ring = 0;
3106 	else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
3107 		ring = vnic_id - 1;
3108 
3109 	grp_idx = bp->rx_ring[ring].bnapi->index;
3110 	req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
3111 	req.dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
3112 
3113 	req.lb_rule = cpu_to_le16(0xffff);
3114 	req.mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + ETH_FCS_LEN +
3115 			      VLAN_HLEN);
3116 
3117 	if (bp->flags & BNXT_FLAG_STRIP_VLAN)
3118 		req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
3119 
3120 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3121 }
3122 
3123 static int bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
3124 {
3125 	u32 rc = 0;
3126 
3127 	if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
3128 		struct hwrm_vnic_free_input req = {0};
3129 
3130 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_FREE, -1, -1);
3131 		req.vnic_id =
3132 			cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
3133 
3134 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3135 		if (rc)
3136 			return rc;
3137 		bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
3138 	}
3139 	return rc;
3140 }
3141 
3142 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
3143 {
3144 	u16 i;
3145 
3146 	for (i = 0; i < bp->nr_vnics; i++)
3147 		bnxt_hwrm_vnic_free_one(bp, i);
3148 }
3149 
3150 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
3151 				unsigned int start_rx_ring_idx,
3152 				unsigned int nr_rings)
3153 {
3154 	int rc = 0;
3155 	unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
3156 	struct hwrm_vnic_alloc_input req = {0};
3157 	struct hwrm_vnic_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3158 
3159 	/* map ring groups to this vnic */
3160 	for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
3161 		grp_idx = bp->rx_ring[i].bnapi->index;
3162 		if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
3163 			netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
3164 				   j, nr_rings);
3165 			break;
3166 		}
3167 		bp->vnic_info[vnic_id].fw_grp_ids[j] =
3168 					bp->grp_info[grp_idx].fw_grp_id;
3169 	}
3170 
3171 	bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx = INVALID_HW_RING_ID;
3172 	if (vnic_id == 0)
3173 		req.flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
3174 
3175 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_ALLOC, -1, -1);
3176 
3177 	mutex_lock(&bp->hwrm_cmd_lock);
3178 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3179 	if (!rc)
3180 		bp->vnic_info[vnic_id].fw_vnic_id = le32_to_cpu(resp->vnic_id);
3181 	mutex_unlock(&bp->hwrm_cmd_lock);
3182 	return rc;
3183 }
3184 
3185 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
3186 {
3187 	u16 i;
3188 	u32 rc = 0;
3189 
3190 	mutex_lock(&bp->hwrm_cmd_lock);
3191 	for (i = 0; i < bp->rx_nr_rings; i++) {
3192 		struct hwrm_ring_grp_alloc_input req = {0};
3193 		struct hwrm_ring_grp_alloc_output *resp =
3194 					bp->hwrm_cmd_resp_addr;
3195 		unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
3196 
3197 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_ALLOC, -1, -1);
3198 
3199 		req.cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
3200 		req.rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
3201 		req.ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
3202 		req.sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
3203 
3204 		rc = _hwrm_send_message(bp, &req, sizeof(req),
3205 					HWRM_CMD_TIMEOUT);
3206 		if (rc)
3207 			break;
3208 
3209 		bp->grp_info[grp_idx].fw_grp_id =
3210 			le32_to_cpu(resp->ring_group_id);
3211 	}
3212 	mutex_unlock(&bp->hwrm_cmd_lock);
3213 	return rc;
3214 }
3215 
3216 static int bnxt_hwrm_ring_grp_free(struct bnxt *bp)
3217 {
3218 	u16 i;
3219 	u32 rc = 0;
3220 	struct hwrm_ring_grp_free_input req = {0};
3221 
3222 	if (!bp->grp_info)
3223 		return 0;
3224 
3225 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_FREE, -1, -1);
3226 
3227 	mutex_lock(&bp->hwrm_cmd_lock);
3228 	for (i = 0; i < bp->cp_nr_rings; i++) {
3229 		if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
3230 			continue;
3231 		req.ring_group_id =
3232 			cpu_to_le32(bp->grp_info[i].fw_grp_id);
3233 
3234 		rc = _hwrm_send_message(bp, &req, sizeof(req),
3235 					HWRM_CMD_TIMEOUT);
3236 		if (rc)
3237 			break;
3238 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
3239 	}
3240 	mutex_unlock(&bp->hwrm_cmd_lock);
3241 	return rc;
3242 }
3243 
3244 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
3245 				    struct bnxt_ring_struct *ring,
3246 				    u32 ring_type, u32 map_index,
3247 				    u32 stats_ctx_id)
3248 {
3249 	int rc = 0, err = 0;
3250 	struct hwrm_ring_alloc_input req = {0};
3251 	struct hwrm_ring_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3252 	u16 ring_id;
3253 
3254 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_ALLOC, -1, -1);
3255 
3256 	req.enables = 0;
3257 	if (ring->nr_pages > 1) {
3258 		req.page_tbl_addr = cpu_to_le64(ring->pg_tbl_map);
3259 		/* Page size is in log2 units */
3260 		req.page_size = BNXT_PAGE_SHIFT;
3261 		req.page_tbl_depth = 1;
3262 	} else {
3263 		req.page_tbl_addr =  cpu_to_le64(ring->dma_arr[0]);
3264 	}
3265 	req.fbo = 0;
3266 	/* Association of ring index with doorbell index and MSIX number */
3267 	req.logical_id = cpu_to_le16(map_index);
3268 
3269 	switch (ring_type) {
3270 	case HWRM_RING_ALLOC_TX:
3271 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
3272 		/* Association of transmit ring with completion ring */
3273 		req.cmpl_ring_id =
3274 			cpu_to_le16(bp->grp_info[map_index].cp_fw_ring_id);
3275 		req.length = cpu_to_le32(bp->tx_ring_mask + 1);
3276 		req.stat_ctx_id = cpu_to_le32(stats_ctx_id);
3277 		req.queue_id = cpu_to_le16(ring->queue_id);
3278 		break;
3279 	case HWRM_RING_ALLOC_RX:
3280 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
3281 		req.length = cpu_to_le32(bp->rx_ring_mask + 1);
3282 		break;
3283 	case HWRM_RING_ALLOC_AGG:
3284 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
3285 		req.length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
3286 		break;
3287 	case HWRM_RING_ALLOC_CMPL:
3288 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_CMPL;
3289 		req.length = cpu_to_le32(bp->cp_ring_mask + 1);
3290 		if (bp->flags & BNXT_FLAG_USING_MSIX)
3291 			req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
3292 		break;
3293 	default:
3294 		netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
3295 			   ring_type);
3296 		return -1;
3297 	}
3298 
3299 	mutex_lock(&bp->hwrm_cmd_lock);
3300 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3301 	err = le16_to_cpu(resp->error_code);
3302 	ring_id = le16_to_cpu(resp->ring_id);
3303 	mutex_unlock(&bp->hwrm_cmd_lock);
3304 
3305 	if (rc || err) {
3306 		switch (ring_type) {
3307 		case RING_FREE_REQ_RING_TYPE_CMPL:
3308 			netdev_err(bp->dev, "hwrm_ring_alloc cp failed. rc:%x err:%x\n",
3309 				   rc, err);
3310 			return -1;
3311 
3312 		case RING_FREE_REQ_RING_TYPE_RX:
3313 			netdev_err(bp->dev, "hwrm_ring_alloc rx failed. rc:%x err:%x\n",
3314 				   rc, err);
3315 			return -1;
3316 
3317 		case RING_FREE_REQ_RING_TYPE_TX:
3318 			netdev_err(bp->dev, "hwrm_ring_alloc tx failed. rc:%x err:%x\n",
3319 				   rc, err);
3320 			return -1;
3321 
3322 		default:
3323 			netdev_err(bp->dev, "Invalid ring\n");
3324 			return -1;
3325 		}
3326 	}
3327 	ring->fw_ring_id = ring_id;
3328 	return rc;
3329 }
3330 
3331 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
3332 {
3333 	int i, rc = 0;
3334 
3335 	for (i = 0; i < bp->cp_nr_rings; i++) {
3336 		struct bnxt_napi *bnapi = bp->bnapi[i];
3337 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3338 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3339 
3340 		rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_CMPL, i,
3341 					      INVALID_STATS_CTX_ID);
3342 		if (rc)
3343 			goto err_out;
3344 		cpr->cp_doorbell = bp->bar1 + i * 0x80;
3345 		BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
3346 		bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
3347 	}
3348 
3349 	for (i = 0; i < bp->tx_nr_rings; i++) {
3350 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3351 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
3352 		u32 map_idx = txr->bnapi->index;
3353 		u16 fw_stats_ctx = bp->grp_info[map_idx].fw_stats_ctx;
3354 
3355 		rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_TX,
3356 					      map_idx, fw_stats_ctx);
3357 		if (rc)
3358 			goto err_out;
3359 		txr->tx_doorbell = bp->bar1 + map_idx * 0x80;
3360 	}
3361 
3362 	for (i = 0; i < bp->rx_nr_rings; i++) {
3363 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3364 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
3365 		u32 map_idx = rxr->bnapi->index;
3366 
3367 		rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_RX,
3368 					      map_idx, INVALID_STATS_CTX_ID);
3369 		if (rc)
3370 			goto err_out;
3371 		rxr->rx_doorbell = bp->bar1 + map_idx * 0x80;
3372 		writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
3373 		bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
3374 	}
3375 
3376 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
3377 		for (i = 0; i < bp->rx_nr_rings; i++) {
3378 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3379 			struct bnxt_ring_struct *ring =
3380 						&rxr->rx_agg_ring_struct;
3381 			u32 grp_idx = rxr->bnapi->index;
3382 			u32 map_idx = grp_idx + bp->rx_nr_rings;
3383 
3384 			rc = hwrm_ring_alloc_send_msg(bp, ring,
3385 						      HWRM_RING_ALLOC_AGG,
3386 						      map_idx,
3387 						      INVALID_STATS_CTX_ID);
3388 			if (rc)
3389 				goto err_out;
3390 
3391 			rxr->rx_agg_doorbell = bp->bar1 + map_idx * 0x80;
3392 			writel(DB_KEY_RX | rxr->rx_agg_prod,
3393 			       rxr->rx_agg_doorbell);
3394 			bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
3395 		}
3396 	}
3397 err_out:
3398 	return rc;
3399 }
3400 
3401 static int hwrm_ring_free_send_msg(struct bnxt *bp,
3402 				   struct bnxt_ring_struct *ring,
3403 				   u32 ring_type, int cmpl_ring_id)
3404 {
3405 	int rc;
3406 	struct hwrm_ring_free_input req = {0};
3407 	struct hwrm_ring_free_output *resp = bp->hwrm_cmd_resp_addr;
3408 	u16 error_code;
3409 
3410 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_FREE, cmpl_ring_id, -1);
3411 	req.ring_type = ring_type;
3412 	req.ring_id = cpu_to_le16(ring->fw_ring_id);
3413 
3414 	mutex_lock(&bp->hwrm_cmd_lock);
3415 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3416 	error_code = le16_to_cpu(resp->error_code);
3417 	mutex_unlock(&bp->hwrm_cmd_lock);
3418 
3419 	if (rc || error_code) {
3420 		switch (ring_type) {
3421 		case RING_FREE_REQ_RING_TYPE_CMPL:
3422 			netdev_err(bp->dev, "hwrm_ring_free cp failed. rc:%d\n",
3423 				   rc);
3424 			return rc;
3425 		case RING_FREE_REQ_RING_TYPE_RX:
3426 			netdev_err(bp->dev, "hwrm_ring_free rx failed. rc:%d\n",
3427 				   rc);
3428 			return rc;
3429 		case RING_FREE_REQ_RING_TYPE_TX:
3430 			netdev_err(bp->dev, "hwrm_ring_free tx failed. rc:%d\n",
3431 				   rc);
3432 			return rc;
3433 		default:
3434 			netdev_err(bp->dev, "Invalid ring\n");
3435 			return -1;
3436 		}
3437 	}
3438 	return 0;
3439 }
3440 
3441 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
3442 {
3443 	int i;
3444 
3445 	if (!bp->bnapi)
3446 		return;
3447 
3448 	for (i = 0; i < bp->tx_nr_rings; i++) {
3449 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3450 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
3451 		u32 grp_idx = txr->bnapi->index;
3452 		u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
3453 
3454 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3455 			hwrm_ring_free_send_msg(bp, ring,
3456 						RING_FREE_REQ_RING_TYPE_TX,
3457 						close_path ? cmpl_ring_id :
3458 						INVALID_HW_RING_ID);
3459 			ring->fw_ring_id = INVALID_HW_RING_ID;
3460 		}
3461 	}
3462 
3463 	for (i = 0; i < bp->rx_nr_rings; i++) {
3464 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3465 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
3466 		u32 grp_idx = rxr->bnapi->index;
3467 		u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
3468 
3469 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3470 			hwrm_ring_free_send_msg(bp, ring,
3471 						RING_FREE_REQ_RING_TYPE_RX,
3472 						close_path ? cmpl_ring_id :
3473 						INVALID_HW_RING_ID);
3474 			ring->fw_ring_id = INVALID_HW_RING_ID;
3475 			bp->grp_info[grp_idx].rx_fw_ring_id =
3476 				INVALID_HW_RING_ID;
3477 		}
3478 	}
3479 
3480 	for (i = 0; i < bp->rx_nr_rings; i++) {
3481 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3482 		struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
3483 		u32 grp_idx = rxr->bnapi->index;
3484 		u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
3485 
3486 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3487 			hwrm_ring_free_send_msg(bp, ring,
3488 						RING_FREE_REQ_RING_TYPE_RX,
3489 						close_path ? cmpl_ring_id :
3490 						INVALID_HW_RING_ID);
3491 			ring->fw_ring_id = INVALID_HW_RING_ID;
3492 			bp->grp_info[grp_idx].agg_fw_ring_id =
3493 				INVALID_HW_RING_ID;
3494 		}
3495 	}
3496 
3497 	for (i = 0; i < bp->cp_nr_rings; i++) {
3498 		struct bnxt_napi *bnapi = bp->bnapi[i];
3499 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3500 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3501 
3502 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3503 			hwrm_ring_free_send_msg(bp, ring,
3504 						RING_FREE_REQ_RING_TYPE_CMPL,
3505 						INVALID_HW_RING_ID);
3506 			ring->fw_ring_id = INVALID_HW_RING_ID;
3507 			bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
3508 		}
3509 	}
3510 }
3511 
3512 int bnxt_hwrm_set_coal(struct bnxt *bp)
3513 {
3514 	int i, rc = 0;
3515 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req = {0};
3516 	u16 max_buf, max_buf_irq;
3517 	u16 buf_tmr, buf_tmr_irq;
3518 	u32 flags;
3519 
3520 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS,
3521 			       -1, -1);
3522 
3523 	/* Each rx completion (2 records) should be DMAed immediately */
3524 	max_buf = min_t(u16, bp->coal_bufs / 4, 2);
3525 	/* max_buf must not be zero */
3526 	max_buf = clamp_t(u16, max_buf, 1, 63);
3527 	max_buf_irq = clamp_t(u16, bp->coal_bufs_irq, 1, 63);
3528 	buf_tmr = max_t(u16, bp->coal_ticks / 4, 1);
3529 	buf_tmr_irq = max_t(u16, bp->coal_ticks_irq, 1);
3530 
3531 	flags = RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
3532 
3533 	/* RING_IDLE generates more IRQs for lower latency.  Enable it only
3534 	 * if coal_ticks is less than 25 us.
3535 	 */
3536 	if (BNXT_COAL_TIMER_TO_USEC(bp->coal_ticks) < 25)
3537 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
3538 
3539 	req.flags = cpu_to_le16(flags);
3540 	req.num_cmpl_dma_aggr = cpu_to_le16(max_buf);
3541 	req.num_cmpl_dma_aggr_during_int = cpu_to_le16(max_buf_irq);
3542 	req.cmpl_aggr_dma_tmr = cpu_to_le16(buf_tmr);
3543 	req.cmpl_aggr_dma_tmr_during_int = cpu_to_le16(buf_tmr_irq);
3544 	req.int_lat_tmr_min = cpu_to_le16(buf_tmr);
3545 	req.int_lat_tmr_max = cpu_to_le16(bp->coal_ticks);
3546 	req.num_cmpl_aggr_int = cpu_to_le16(bp->coal_bufs);
3547 
3548 	mutex_lock(&bp->hwrm_cmd_lock);
3549 	for (i = 0; i < bp->cp_nr_rings; i++) {
3550 		req.ring_id = cpu_to_le16(bp->grp_info[i].cp_fw_ring_id);
3551 
3552 		rc = _hwrm_send_message(bp, &req, sizeof(req),
3553 					HWRM_CMD_TIMEOUT);
3554 		if (rc)
3555 			break;
3556 	}
3557 	mutex_unlock(&bp->hwrm_cmd_lock);
3558 	return rc;
3559 }
3560 
3561 static int bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
3562 {
3563 	int rc = 0, i;
3564 	struct hwrm_stat_ctx_free_input req = {0};
3565 
3566 	if (!bp->bnapi)
3567 		return 0;
3568 
3569 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_FREE, -1, -1);
3570 
3571 	mutex_lock(&bp->hwrm_cmd_lock);
3572 	for (i = 0; i < bp->cp_nr_rings; i++) {
3573 		struct bnxt_napi *bnapi = bp->bnapi[i];
3574 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3575 
3576 		if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
3577 			req.stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
3578 
3579 			rc = _hwrm_send_message(bp, &req, sizeof(req),
3580 						HWRM_CMD_TIMEOUT);
3581 			if (rc)
3582 				break;
3583 
3584 			cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
3585 		}
3586 	}
3587 	mutex_unlock(&bp->hwrm_cmd_lock);
3588 	return rc;
3589 }
3590 
3591 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
3592 {
3593 	int rc = 0, i;
3594 	struct hwrm_stat_ctx_alloc_input req = {0};
3595 	struct hwrm_stat_ctx_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3596 
3597 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_ALLOC, -1, -1);
3598 
3599 	req.update_period_ms = cpu_to_le32(1000);
3600 
3601 	mutex_lock(&bp->hwrm_cmd_lock);
3602 	for (i = 0; i < bp->cp_nr_rings; i++) {
3603 		struct bnxt_napi *bnapi = bp->bnapi[i];
3604 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3605 
3606 		req.stats_dma_addr = cpu_to_le64(cpr->hw_stats_map);
3607 
3608 		rc = _hwrm_send_message(bp, &req, sizeof(req),
3609 					HWRM_CMD_TIMEOUT);
3610 		if (rc)
3611 			break;
3612 
3613 		cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
3614 
3615 		bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
3616 	}
3617 	mutex_unlock(&bp->hwrm_cmd_lock);
3618 	return 0;
3619 }
3620 
3621 int bnxt_hwrm_func_qcaps(struct bnxt *bp)
3622 {
3623 	int rc = 0;
3624 	struct hwrm_func_qcaps_input req = {0};
3625 	struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
3626 
3627 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1);
3628 	req.fid = cpu_to_le16(0xffff);
3629 
3630 	mutex_lock(&bp->hwrm_cmd_lock);
3631 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3632 	if (rc)
3633 		goto hwrm_func_qcaps_exit;
3634 
3635 	if (BNXT_PF(bp)) {
3636 		struct bnxt_pf_info *pf = &bp->pf;
3637 
3638 		pf->fw_fid = le16_to_cpu(resp->fid);
3639 		pf->port_id = le16_to_cpu(resp->port_id);
3640 		memcpy(pf->mac_addr, resp->perm_mac_address, ETH_ALEN);
3641 		memcpy(bp->dev->dev_addr, pf->mac_addr, ETH_ALEN);
3642 		pf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
3643 		pf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
3644 		pf->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
3645 		pf->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
3646 		pf->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
3647 		if (!pf->max_hw_ring_grps)
3648 			pf->max_hw_ring_grps = pf->max_tx_rings;
3649 		pf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
3650 		pf->max_vnics = le16_to_cpu(resp->max_vnics);
3651 		pf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
3652 		pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
3653 		pf->max_vfs = le16_to_cpu(resp->max_vfs);
3654 		pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
3655 		pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
3656 		pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
3657 		pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
3658 		pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
3659 		pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
3660 	} else {
3661 #ifdef CONFIG_BNXT_SRIOV
3662 		struct bnxt_vf_info *vf = &bp->vf;
3663 
3664 		vf->fw_fid = le16_to_cpu(resp->fid);
3665 		memcpy(vf->mac_addr, resp->perm_mac_address, ETH_ALEN);
3666 		if (is_valid_ether_addr(vf->mac_addr))
3667 			/* overwrite netdev dev_adr with admin VF MAC */
3668 			memcpy(bp->dev->dev_addr, vf->mac_addr, ETH_ALEN);
3669 		else
3670 			random_ether_addr(bp->dev->dev_addr);
3671 
3672 		vf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
3673 		vf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
3674 		vf->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
3675 		vf->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
3676 		vf->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
3677 		if (!vf->max_hw_ring_grps)
3678 			vf->max_hw_ring_grps = vf->max_tx_rings;
3679 		vf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
3680 		vf->max_vnics = le16_to_cpu(resp->max_vnics);
3681 		vf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
3682 #endif
3683 	}
3684 
3685 	bp->tx_push_thresh = 0;
3686 	if (resp->flags &
3687 	    cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED))
3688 		bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
3689 
3690 hwrm_func_qcaps_exit:
3691 	mutex_unlock(&bp->hwrm_cmd_lock);
3692 	return rc;
3693 }
3694 
3695 static int bnxt_hwrm_func_reset(struct bnxt *bp)
3696 {
3697 	struct hwrm_func_reset_input req = {0};
3698 
3699 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESET, -1, -1);
3700 	req.enables = 0;
3701 
3702 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_RESET_TIMEOUT);
3703 }
3704 
3705 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
3706 {
3707 	int rc = 0;
3708 	struct hwrm_queue_qportcfg_input req = {0};
3709 	struct hwrm_queue_qportcfg_output *resp = bp->hwrm_cmd_resp_addr;
3710 	u8 i, *qptr;
3711 
3712 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_QUEUE_QPORTCFG, -1, -1);
3713 
3714 	mutex_lock(&bp->hwrm_cmd_lock);
3715 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3716 	if (rc)
3717 		goto qportcfg_exit;
3718 
3719 	if (!resp->max_configurable_queues) {
3720 		rc = -EINVAL;
3721 		goto qportcfg_exit;
3722 	}
3723 	bp->max_tc = resp->max_configurable_queues;
3724 	if (bp->max_tc > BNXT_MAX_QUEUE)
3725 		bp->max_tc = BNXT_MAX_QUEUE;
3726 
3727 	qptr = &resp->queue_id0;
3728 	for (i = 0; i < bp->max_tc; i++) {
3729 		bp->q_info[i].queue_id = *qptr++;
3730 		bp->q_info[i].queue_profile = *qptr++;
3731 	}
3732 
3733 qportcfg_exit:
3734 	mutex_unlock(&bp->hwrm_cmd_lock);
3735 	return rc;
3736 }
3737 
3738 static int bnxt_hwrm_ver_get(struct bnxt *bp)
3739 {
3740 	int rc;
3741 	struct hwrm_ver_get_input req = {0};
3742 	struct hwrm_ver_get_output *resp = bp->hwrm_cmd_resp_addr;
3743 
3744 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VER_GET, -1, -1);
3745 	req.hwrm_intf_maj = HWRM_VERSION_MAJOR;
3746 	req.hwrm_intf_min = HWRM_VERSION_MINOR;
3747 	req.hwrm_intf_upd = HWRM_VERSION_UPDATE;
3748 	mutex_lock(&bp->hwrm_cmd_lock);
3749 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3750 	if (rc)
3751 		goto hwrm_ver_get_exit;
3752 
3753 	memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
3754 
3755 	if (resp->hwrm_intf_maj < 1) {
3756 		netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
3757 			    resp->hwrm_intf_maj, resp->hwrm_intf_min,
3758 			    resp->hwrm_intf_upd);
3759 		netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
3760 	}
3761 	snprintf(bp->fw_ver_str, BC_HWRM_STR_LEN, "bc %d.%d.%d rm %d.%d.%d",
3762 		 resp->hwrm_fw_maj, resp->hwrm_fw_min, resp->hwrm_fw_bld,
3763 		 resp->hwrm_intf_maj, resp->hwrm_intf_min, resp->hwrm_intf_upd);
3764 
3765 hwrm_ver_get_exit:
3766 	mutex_unlock(&bp->hwrm_cmd_lock);
3767 	return rc;
3768 }
3769 
3770 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
3771 {
3772 	if (bp->vxlan_port_cnt) {
3773 		bnxt_hwrm_tunnel_dst_port_free(
3774 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
3775 	}
3776 	bp->vxlan_port_cnt = 0;
3777 	if (bp->nge_port_cnt) {
3778 		bnxt_hwrm_tunnel_dst_port_free(
3779 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
3780 	}
3781 	bp->nge_port_cnt = 0;
3782 }
3783 
3784 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
3785 {
3786 	int rc, i;
3787 	u32 tpa_flags = 0;
3788 
3789 	if (set_tpa)
3790 		tpa_flags = bp->flags & BNXT_FLAG_TPA;
3791 	for (i = 0; i < bp->nr_vnics; i++) {
3792 		rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
3793 		if (rc) {
3794 			netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
3795 				   rc, i);
3796 			return rc;
3797 		}
3798 	}
3799 	return 0;
3800 }
3801 
3802 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
3803 {
3804 	int i;
3805 
3806 	for (i = 0; i < bp->nr_vnics; i++)
3807 		bnxt_hwrm_vnic_set_rss(bp, i, false);
3808 }
3809 
3810 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
3811 				    bool irq_re_init)
3812 {
3813 	if (bp->vnic_info) {
3814 		bnxt_hwrm_clear_vnic_filter(bp);
3815 		/* clear all RSS setting before free vnic ctx */
3816 		bnxt_hwrm_clear_vnic_rss(bp);
3817 		bnxt_hwrm_vnic_ctx_free(bp);
3818 		/* before free the vnic, undo the vnic tpa settings */
3819 		if (bp->flags & BNXT_FLAG_TPA)
3820 			bnxt_set_tpa(bp, false);
3821 		bnxt_hwrm_vnic_free(bp);
3822 	}
3823 	bnxt_hwrm_ring_free(bp, close_path);
3824 	bnxt_hwrm_ring_grp_free(bp);
3825 	if (irq_re_init) {
3826 		bnxt_hwrm_stat_ctx_free(bp);
3827 		bnxt_hwrm_free_tunnel_ports(bp);
3828 	}
3829 }
3830 
3831 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
3832 {
3833 	int rc;
3834 
3835 	/* allocate context for vnic */
3836 	rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id);
3837 	if (rc) {
3838 		netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
3839 			   vnic_id, rc);
3840 		goto vnic_setup_err;
3841 	}
3842 	bp->rsscos_nr_ctxs++;
3843 
3844 	/* configure default vnic, ring grp */
3845 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
3846 	if (rc) {
3847 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
3848 			   vnic_id, rc);
3849 		goto vnic_setup_err;
3850 	}
3851 
3852 	/* Enable RSS hashing on vnic */
3853 	rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
3854 	if (rc) {
3855 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
3856 			   vnic_id, rc);
3857 		goto vnic_setup_err;
3858 	}
3859 
3860 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
3861 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
3862 		if (rc) {
3863 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
3864 				   vnic_id, rc);
3865 		}
3866 	}
3867 
3868 vnic_setup_err:
3869 	return rc;
3870 }
3871 
3872 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
3873 {
3874 #ifdef CONFIG_RFS_ACCEL
3875 	int i, rc = 0;
3876 
3877 	for (i = 0; i < bp->rx_nr_rings; i++) {
3878 		u16 vnic_id = i + 1;
3879 		u16 ring_id = i;
3880 
3881 		if (vnic_id >= bp->nr_vnics)
3882 			break;
3883 
3884 		bp->vnic_info[vnic_id].flags |= BNXT_VNIC_RFS_FLAG;
3885 		rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1);
3886 		if (rc) {
3887 			netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
3888 				   vnic_id, rc);
3889 			break;
3890 		}
3891 		rc = bnxt_setup_vnic(bp, vnic_id);
3892 		if (rc)
3893 			break;
3894 	}
3895 	return rc;
3896 #else
3897 	return 0;
3898 #endif
3899 }
3900 
3901 static int bnxt_cfg_rx_mode(struct bnxt *);
3902 
3903 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
3904 {
3905 	int rc = 0;
3906 
3907 	if (irq_re_init) {
3908 		rc = bnxt_hwrm_stat_ctx_alloc(bp);
3909 		if (rc) {
3910 			netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
3911 				   rc);
3912 			goto err_out;
3913 		}
3914 	}
3915 
3916 	rc = bnxt_hwrm_ring_alloc(bp);
3917 	if (rc) {
3918 		netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
3919 		goto err_out;
3920 	}
3921 
3922 	rc = bnxt_hwrm_ring_grp_alloc(bp);
3923 	if (rc) {
3924 		netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
3925 		goto err_out;
3926 	}
3927 
3928 	/* default vnic 0 */
3929 	rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, bp->rx_nr_rings);
3930 	if (rc) {
3931 		netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
3932 		goto err_out;
3933 	}
3934 
3935 	rc = bnxt_setup_vnic(bp, 0);
3936 	if (rc)
3937 		goto err_out;
3938 
3939 	if (bp->flags & BNXT_FLAG_RFS) {
3940 		rc = bnxt_alloc_rfs_vnics(bp);
3941 		if (rc)
3942 			goto err_out;
3943 	}
3944 
3945 	if (bp->flags & BNXT_FLAG_TPA) {
3946 		rc = bnxt_set_tpa(bp, true);
3947 		if (rc)
3948 			goto err_out;
3949 	}
3950 
3951 	if (BNXT_VF(bp))
3952 		bnxt_update_vf_mac(bp);
3953 
3954 	/* Filter for default vnic 0 */
3955 	rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
3956 	if (rc) {
3957 		netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
3958 		goto err_out;
3959 	}
3960 	bp->vnic_info[0].uc_filter_count = 1;
3961 
3962 	bp->vnic_info[0].rx_mask = CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
3963 
3964 	if ((bp->dev->flags & IFF_PROMISC) && BNXT_PF(bp))
3965 		bp->vnic_info[0].rx_mask |=
3966 				CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
3967 
3968 	rc = bnxt_cfg_rx_mode(bp);
3969 	if (rc)
3970 		goto err_out;
3971 
3972 	rc = bnxt_hwrm_set_coal(bp);
3973 	if (rc)
3974 		netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
3975 			    rc);
3976 
3977 	return 0;
3978 
3979 err_out:
3980 	bnxt_hwrm_resource_free(bp, 0, true);
3981 
3982 	return rc;
3983 }
3984 
3985 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
3986 {
3987 	bnxt_hwrm_resource_free(bp, 1, irq_re_init);
3988 	return 0;
3989 }
3990 
3991 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
3992 {
3993 	bnxt_init_rx_rings(bp);
3994 	bnxt_init_tx_rings(bp);
3995 	bnxt_init_ring_grps(bp, irq_re_init);
3996 	bnxt_init_vnics(bp);
3997 
3998 	return bnxt_init_chip(bp, irq_re_init);
3999 }
4000 
4001 static void bnxt_disable_int(struct bnxt *bp)
4002 {
4003 	int i;
4004 
4005 	if (!bp->bnapi)
4006 		return;
4007 
4008 	for (i = 0; i < bp->cp_nr_rings; i++) {
4009 		struct bnxt_napi *bnapi = bp->bnapi[i];
4010 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4011 
4012 		BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
4013 	}
4014 }
4015 
4016 static void bnxt_enable_int(struct bnxt *bp)
4017 {
4018 	int i;
4019 
4020 	atomic_set(&bp->intr_sem, 0);
4021 	for (i = 0; i < bp->cp_nr_rings; i++) {
4022 		struct bnxt_napi *bnapi = bp->bnapi[i];
4023 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4024 
4025 		BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
4026 	}
4027 }
4028 
4029 static int bnxt_set_real_num_queues(struct bnxt *bp)
4030 {
4031 	int rc;
4032 	struct net_device *dev = bp->dev;
4033 
4034 	rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings);
4035 	if (rc)
4036 		return rc;
4037 
4038 	rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
4039 	if (rc)
4040 		return rc;
4041 
4042 #ifdef CONFIG_RFS_ACCEL
4043 	if (bp->flags & BNXT_FLAG_RFS)
4044 		dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
4045 #endif
4046 
4047 	return rc;
4048 }
4049 
4050 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
4051 			   bool shared)
4052 {
4053 	int _rx = *rx, _tx = *tx;
4054 
4055 	if (shared) {
4056 		*rx = min_t(int, _rx, max);
4057 		*tx = min_t(int, _tx, max);
4058 	} else {
4059 		if (max < 2)
4060 			return -ENOMEM;
4061 
4062 		while (_rx + _tx > max) {
4063 			if (_rx > _tx && _rx > 1)
4064 				_rx--;
4065 			else if (_tx > 1)
4066 				_tx--;
4067 		}
4068 		*rx = _rx;
4069 		*tx = _tx;
4070 	}
4071 	return 0;
4072 }
4073 
4074 static int bnxt_setup_msix(struct bnxt *bp)
4075 {
4076 	struct msix_entry *msix_ent;
4077 	struct net_device *dev = bp->dev;
4078 	int i, total_vecs, rc = 0, min = 1;
4079 	const int len = sizeof(bp->irq_tbl[0].name);
4080 
4081 	bp->flags &= ~BNXT_FLAG_USING_MSIX;
4082 	total_vecs = bp->cp_nr_rings;
4083 
4084 	msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
4085 	if (!msix_ent)
4086 		return -ENOMEM;
4087 
4088 	for (i = 0; i < total_vecs; i++) {
4089 		msix_ent[i].entry = i;
4090 		msix_ent[i].vector = 0;
4091 	}
4092 
4093 	if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
4094 		min = 2;
4095 
4096 	total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
4097 	if (total_vecs < 0) {
4098 		rc = -ENODEV;
4099 		goto msix_setup_exit;
4100 	}
4101 
4102 	bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
4103 	if (bp->irq_tbl) {
4104 		int tcs;
4105 
4106 		/* Trim rings based upon num of vectors allocated */
4107 		rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
4108 				     total_vecs, min == 1);
4109 		if (rc)
4110 			goto msix_setup_exit;
4111 
4112 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
4113 		tcs = netdev_get_num_tc(dev);
4114 		if (tcs > 1) {
4115 			bp->tx_nr_rings_per_tc = bp->tx_nr_rings / tcs;
4116 			if (bp->tx_nr_rings_per_tc == 0) {
4117 				netdev_reset_tc(dev);
4118 				bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
4119 			} else {
4120 				int i, off, count;
4121 
4122 				bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tcs;
4123 				for (i = 0; i < tcs; i++) {
4124 					count = bp->tx_nr_rings_per_tc;
4125 					off = i * count;
4126 					netdev_set_tc_queue(dev, i, count, off);
4127 				}
4128 			}
4129 		}
4130 		bp->cp_nr_rings = total_vecs;
4131 
4132 		for (i = 0; i < bp->cp_nr_rings; i++) {
4133 			char *attr;
4134 
4135 			bp->irq_tbl[i].vector = msix_ent[i].vector;
4136 			if (bp->flags & BNXT_FLAG_SHARED_RINGS)
4137 				attr = "TxRx";
4138 			else if (i < bp->rx_nr_rings)
4139 				attr = "rx";
4140 			else
4141 				attr = "tx";
4142 
4143 			snprintf(bp->irq_tbl[i].name, len,
4144 				 "%s-%s-%d", dev->name, attr, i);
4145 			bp->irq_tbl[i].handler = bnxt_msix;
4146 		}
4147 		rc = bnxt_set_real_num_queues(bp);
4148 		if (rc)
4149 			goto msix_setup_exit;
4150 	} else {
4151 		rc = -ENOMEM;
4152 		goto msix_setup_exit;
4153 	}
4154 	bp->flags |= BNXT_FLAG_USING_MSIX;
4155 	kfree(msix_ent);
4156 	return 0;
4157 
4158 msix_setup_exit:
4159 	netdev_err(bp->dev, "bnxt_setup_msix err: %x\n", rc);
4160 	pci_disable_msix(bp->pdev);
4161 	kfree(msix_ent);
4162 	return rc;
4163 }
4164 
4165 static int bnxt_setup_inta(struct bnxt *bp)
4166 {
4167 	int rc;
4168 	const int len = sizeof(bp->irq_tbl[0].name);
4169 
4170 	if (netdev_get_num_tc(bp->dev))
4171 		netdev_reset_tc(bp->dev);
4172 
4173 	bp->irq_tbl = kcalloc(1, sizeof(struct bnxt_irq), GFP_KERNEL);
4174 	if (!bp->irq_tbl) {
4175 		rc = -ENOMEM;
4176 		return rc;
4177 	}
4178 	bp->rx_nr_rings = 1;
4179 	bp->tx_nr_rings = 1;
4180 	bp->cp_nr_rings = 1;
4181 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
4182 	bp->flags |= BNXT_FLAG_SHARED_RINGS;
4183 	bp->irq_tbl[0].vector = bp->pdev->irq;
4184 	snprintf(bp->irq_tbl[0].name, len,
4185 		 "%s-%s-%d", bp->dev->name, "TxRx", 0);
4186 	bp->irq_tbl[0].handler = bnxt_inta;
4187 	rc = bnxt_set_real_num_queues(bp);
4188 	return rc;
4189 }
4190 
4191 static int bnxt_setup_int_mode(struct bnxt *bp)
4192 {
4193 	int rc = 0;
4194 
4195 	if (bp->flags & BNXT_FLAG_MSIX_CAP)
4196 		rc = bnxt_setup_msix(bp);
4197 
4198 	if (!(bp->flags & BNXT_FLAG_USING_MSIX)) {
4199 		/* fallback to INTA */
4200 		rc = bnxt_setup_inta(bp);
4201 	}
4202 	return rc;
4203 }
4204 
4205 static void bnxt_free_irq(struct bnxt *bp)
4206 {
4207 	struct bnxt_irq *irq;
4208 	int i;
4209 
4210 #ifdef CONFIG_RFS_ACCEL
4211 	free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
4212 	bp->dev->rx_cpu_rmap = NULL;
4213 #endif
4214 	if (!bp->irq_tbl)
4215 		return;
4216 
4217 	for (i = 0; i < bp->cp_nr_rings; i++) {
4218 		irq = &bp->irq_tbl[i];
4219 		if (irq->requested)
4220 			free_irq(irq->vector, bp->bnapi[i]);
4221 		irq->requested = 0;
4222 	}
4223 	if (bp->flags & BNXT_FLAG_USING_MSIX)
4224 		pci_disable_msix(bp->pdev);
4225 	kfree(bp->irq_tbl);
4226 	bp->irq_tbl = NULL;
4227 }
4228 
4229 static int bnxt_request_irq(struct bnxt *bp)
4230 {
4231 	int i, j, rc = 0;
4232 	unsigned long flags = 0;
4233 #ifdef CONFIG_RFS_ACCEL
4234 	struct cpu_rmap *rmap = bp->dev->rx_cpu_rmap;
4235 #endif
4236 
4237 	if (!(bp->flags & BNXT_FLAG_USING_MSIX))
4238 		flags = IRQF_SHARED;
4239 
4240 	for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
4241 		struct bnxt_irq *irq = &bp->irq_tbl[i];
4242 #ifdef CONFIG_RFS_ACCEL
4243 		if (rmap && bp->bnapi[i]->rx_ring) {
4244 			rc = irq_cpu_rmap_add(rmap, irq->vector);
4245 			if (rc)
4246 				netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
4247 					    j);
4248 			j++;
4249 		}
4250 #endif
4251 		rc = request_irq(irq->vector, irq->handler, flags, irq->name,
4252 				 bp->bnapi[i]);
4253 		if (rc)
4254 			break;
4255 
4256 		irq->requested = 1;
4257 	}
4258 	return rc;
4259 }
4260 
4261 static void bnxt_del_napi(struct bnxt *bp)
4262 {
4263 	int i;
4264 
4265 	if (!bp->bnapi)
4266 		return;
4267 
4268 	for (i = 0; i < bp->cp_nr_rings; i++) {
4269 		struct bnxt_napi *bnapi = bp->bnapi[i];
4270 
4271 		napi_hash_del(&bnapi->napi);
4272 		netif_napi_del(&bnapi->napi);
4273 	}
4274 }
4275 
4276 static void bnxt_init_napi(struct bnxt *bp)
4277 {
4278 	int i;
4279 	struct bnxt_napi *bnapi;
4280 
4281 	if (bp->flags & BNXT_FLAG_USING_MSIX) {
4282 		for (i = 0; i < bp->cp_nr_rings; i++) {
4283 			bnapi = bp->bnapi[i];
4284 			netif_napi_add(bp->dev, &bnapi->napi,
4285 				       bnxt_poll, 64);
4286 		}
4287 	} else {
4288 		bnapi = bp->bnapi[0];
4289 		netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64);
4290 	}
4291 }
4292 
4293 static void bnxt_disable_napi(struct bnxt *bp)
4294 {
4295 	int i;
4296 
4297 	if (!bp->bnapi)
4298 		return;
4299 
4300 	for (i = 0; i < bp->cp_nr_rings; i++) {
4301 		napi_disable(&bp->bnapi[i]->napi);
4302 		bnxt_disable_poll(bp->bnapi[i]);
4303 	}
4304 }
4305 
4306 static void bnxt_enable_napi(struct bnxt *bp)
4307 {
4308 	int i;
4309 
4310 	for (i = 0; i < bp->cp_nr_rings; i++) {
4311 		bnxt_enable_poll(bp->bnapi[i]);
4312 		napi_enable(&bp->bnapi[i]->napi);
4313 	}
4314 }
4315 
4316 static void bnxt_tx_disable(struct bnxt *bp)
4317 {
4318 	int i;
4319 	struct bnxt_tx_ring_info *txr;
4320 	struct netdev_queue *txq;
4321 
4322 	if (bp->tx_ring) {
4323 		for (i = 0; i < bp->tx_nr_rings; i++) {
4324 			txr = &bp->tx_ring[i];
4325 			txq = netdev_get_tx_queue(bp->dev, i);
4326 			__netif_tx_lock(txq, smp_processor_id());
4327 			txr->dev_state = BNXT_DEV_STATE_CLOSING;
4328 			__netif_tx_unlock(txq);
4329 		}
4330 	}
4331 	/* Stop all TX queues */
4332 	netif_tx_disable(bp->dev);
4333 	netif_carrier_off(bp->dev);
4334 }
4335 
4336 static void bnxt_tx_enable(struct bnxt *bp)
4337 {
4338 	int i;
4339 	struct bnxt_tx_ring_info *txr;
4340 	struct netdev_queue *txq;
4341 
4342 	for (i = 0; i < bp->tx_nr_rings; i++) {
4343 		txr = &bp->tx_ring[i];
4344 		txq = netdev_get_tx_queue(bp->dev, i);
4345 		txr->dev_state = 0;
4346 	}
4347 	netif_tx_wake_all_queues(bp->dev);
4348 	if (bp->link_info.link_up)
4349 		netif_carrier_on(bp->dev);
4350 }
4351 
4352 static void bnxt_report_link(struct bnxt *bp)
4353 {
4354 	if (bp->link_info.link_up) {
4355 		const char *duplex;
4356 		const char *flow_ctrl;
4357 		u16 speed;
4358 
4359 		netif_carrier_on(bp->dev);
4360 		if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
4361 			duplex = "full";
4362 		else
4363 			duplex = "half";
4364 		if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
4365 			flow_ctrl = "ON - receive & transmit";
4366 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
4367 			flow_ctrl = "ON - transmit";
4368 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
4369 			flow_ctrl = "ON - receive";
4370 		else
4371 			flow_ctrl = "none";
4372 		speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
4373 		netdev_info(bp->dev, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
4374 			    speed, duplex, flow_ctrl);
4375 	} else {
4376 		netif_carrier_off(bp->dev);
4377 		netdev_err(bp->dev, "NIC Link is Down\n");
4378 	}
4379 }
4380 
4381 static int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
4382 {
4383 	int rc = 0;
4384 	struct bnxt_link_info *link_info = &bp->link_info;
4385 	struct hwrm_port_phy_qcfg_input req = {0};
4386 	struct hwrm_port_phy_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
4387 	u8 link_up = link_info->link_up;
4388 
4389 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCFG, -1, -1);
4390 
4391 	mutex_lock(&bp->hwrm_cmd_lock);
4392 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4393 	if (rc) {
4394 		mutex_unlock(&bp->hwrm_cmd_lock);
4395 		return rc;
4396 	}
4397 
4398 	memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
4399 	link_info->phy_link_status = resp->link;
4400 	link_info->duplex =  resp->duplex;
4401 	link_info->pause = resp->pause;
4402 	link_info->auto_mode = resp->auto_mode;
4403 	link_info->auto_pause_setting = resp->auto_pause;
4404 	link_info->force_pause_setting = resp->force_pause;
4405 	link_info->duplex_setting = resp->duplex;
4406 	if (link_info->phy_link_status == BNXT_LINK_LINK)
4407 		link_info->link_speed = le16_to_cpu(resp->link_speed);
4408 	else
4409 		link_info->link_speed = 0;
4410 	link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
4411 	link_info->auto_link_speed = le16_to_cpu(resp->auto_link_speed);
4412 	link_info->support_speeds = le16_to_cpu(resp->support_speeds);
4413 	link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
4414 	link_info->preemphasis = le32_to_cpu(resp->preemphasis);
4415 	link_info->phy_ver[0] = resp->phy_maj;
4416 	link_info->phy_ver[1] = resp->phy_min;
4417 	link_info->phy_ver[2] = resp->phy_bld;
4418 	link_info->media_type = resp->media_type;
4419 	link_info->transceiver = resp->transceiver_type;
4420 	link_info->phy_addr = resp->phy_addr;
4421 
4422 	/* TODO: need to add more logic to report VF link */
4423 	if (chng_link_state) {
4424 		if (link_info->phy_link_status == BNXT_LINK_LINK)
4425 			link_info->link_up = 1;
4426 		else
4427 			link_info->link_up = 0;
4428 		if (link_up != link_info->link_up)
4429 			bnxt_report_link(bp);
4430 	} else {
4431 		/* alwasy link down if not require to update link state */
4432 		link_info->link_up = 0;
4433 	}
4434 	mutex_unlock(&bp->hwrm_cmd_lock);
4435 	return 0;
4436 }
4437 
4438 static void
4439 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
4440 {
4441 	if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
4442 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
4443 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
4444 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
4445 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
4446 		req->enables |=
4447 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
4448 	} else {
4449 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
4450 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
4451 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
4452 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
4453 		req->enables |=
4454 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
4455 	}
4456 }
4457 
4458 static void bnxt_hwrm_set_link_common(struct bnxt *bp,
4459 				      struct hwrm_port_phy_cfg_input *req)
4460 {
4461 	u8 autoneg = bp->link_info.autoneg;
4462 	u16 fw_link_speed = bp->link_info.req_link_speed;
4463 	u32 advertising = bp->link_info.advertising;
4464 
4465 	if (autoneg & BNXT_AUTONEG_SPEED) {
4466 		req->auto_mode |=
4467 			PORT_PHY_CFG_REQ_AUTO_MODE_MASK;
4468 
4469 		req->enables |= cpu_to_le32(
4470 			PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
4471 		req->auto_link_speed_mask = cpu_to_le16(advertising);
4472 
4473 		req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
4474 		req->flags |=
4475 			cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
4476 	} else {
4477 		req->force_link_speed = cpu_to_le16(fw_link_speed);
4478 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
4479 	}
4480 
4481 	/* currently don't support half duplex */
4482 	req->auto_duplex = PORT_PHY_CFG_REQ_AUTO_DUPLEX_FULL;
4483 	req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_DUPLEX);
4484 	/* tell chimp that the setting takes effect immediately */
4485 	req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
4486 }
4487 
4488 int bnxt_hwrm_set_pause(struct bnxt *bp)
4489 {
4490 	struct hwrm_port_phy_cfg_input req = {0};
4491 	int rc;
4492 
4493 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
4494 	bnxt_hwrm_set_pause_common(bp, &req);
4495 
4496 	if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
4497 	    bp->link_info.force_link_chng)
4498 		bnxt_hwrm_set_link_common(bp, &req);
4499 
4500 	mutex_lock(&bp->hwrm_cmd_lock);
4501 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4502 	if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
4503 		/* since changing of pause setting doesn't trigger any link
4504 		 * change event, the driver needs to update the current pause
4505 		 * result upon successfully return of the phy_cfg command
4506 		 */
4507 		bp->link_info.pause =
4508 		bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
4509 		bp->link_info.auto_pause_setting = 0;
4510 		if (!bp->link_info.force_link_chng)
4511 			bnxt_report_link(bp);
4512 	}
4513 	bp->link_info.force_link_chng = false;
4514 	mutex_unlock(&bp->hwrm_cmd_lock);
4515 	return rc;
4516 }
4517 
4518 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause)
4519 {
4520 	struct hwrm_port_phy_cfg_input req = {0};
4521 
4522 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
4523 	if (set_pause)
4524 		bnxt_hwrm_set_pause_common(bp, &req);
4525 
4526 	bnxt_hwrm_set_link_common(bp, &req);
4527 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4528 }
4529 
4530 static int bnxt_update_phy_setting(struct bnxt *bp)
4531 {
4532 	int rc;
4533 	bool update_link = false;
4534 	bool update_pause = false;
4535 	struct bnxt_link_info *link_info = &bp->link_info;
4536 
4537 	rc = bnxt_update_link(bp, true);
4538 	if (rc) {
4539 		netdev_err(bp->dev, "failed to update link (rc: %x)\n",
4540 			   rc);
4541 		return rc;
4542 	}
4543 	if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
4544 	    link_info->auto_pause_setting != link_info->req_flow_ctrl)
4545 		update_pause = true;
4546 	if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
4547 	    link_info->force_pause_setting != link_info->req_flow_ctrl)
4548 		update_pause = true;
4549 	if (link_info->req_duplex != link_info->duplex_setting)
4550 		update_link = true;
4551 	if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
4552 		if (BNXT_AUTO_MODE(link_info->auto_mode))
4553 			update_link = true;
4554 		if (link_info->req_link_speed != link_info->force_link_speed)
4555 			update_link = true;
4556 	} else {
4557 		if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
4558 			update_link = true;
4559 		if (link_info->advertising != link_info->auto_link_speeds)
4560 			update_link = true;
4561 		if (link_info->req_link_speed != link_info->auto_link_speed)
4562 			update_link = true;
4563 	}
4564 
4565 	if (update_link)
4566 		rc = bnxt_hwrm_set_link_setting(bp, update_pause);
4567 	else if (update_pause)
4568 		rc = bnxt_hwrm_set_pause(bp);
4569 	if (rc) {
4570 		netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
4571 			   rc);
4572 		return rc;
4573 	}
4574 
4575 	return rc;
4576 }
4577 
4578 /* Common routine to pre-map certain register block to different GRC window.
4579  * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
4580  * in PF and 3 windows in VF that can be customized to map in different
4581  * register blocks.
4582  */
4583 static void bnxt_preset_reg_win(struct bnxt *bp)
4584 {
4585 	if (BNXT_PF(bp)) {
4586 		/* CAG registers map to GRC window #4 */
4587 		writel(BNXT_CAG_REG_BASE,
4588 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
4589 	}
4590 }
4591 
4592 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
4593 {
4594 	int rc = 0;
4595 
4596 	bnxt_preset_reg_win(bp);
4597 	netif_carrier_off(bp->dev);
4598 	if (irq_re_init) {
4599 		rc = bnxt_setup_int_mode(bp);
4600 		if (rc) {
4601 			netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
4602 				   rc);
4603 			return rc;
4604 		}
4605 	}
4606 	if ((bp->flags & BNXT_FLAG_RFS) &&
4607 	    !(bp->flags & BNXT_FLAG_USING_MSIX)) {
4608 		/* disable RFS if falling back to INTA */
4609 		bp->dev->hw_features &= ~NETIF_F_NTUPLE;
4610 		bp->flags &= ~BNXT_FLAG_RFS;
4611 	}
4612 
4613 	rc = bnxt_alloc_mem(bp, irq_re_init);
4614 	if (rc) {
4615 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
4616 		goto open_err_free_mem;
4617 	}
4618 
4619 	if (irq_re_init) {
4620 		bnxt_init_napi(bp);
4621 		rc = bnxt_request_irq(bp);
4622 		if (rc) {
4623 			netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
4624 			goto open_err;
4625 		}
4626 	}
4627 
4628 	bnxt_enable_napi(bp);
4629 
4630 	rc = bnxt_init_nic(bp, irq_re_init);
4631 	if (rc) {
4632 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
4633 		goto open_err;
4634 	}
4635 
4636 	if (link_re_init) {
4637 		rc = bnxt_update_phy_setting(bp);
4638 		if (rc)
4639 			goto open_err;
4640 	}
4641 
4642 	if (irq_re_init) {
4643 #if defined(CONFIG_VXLAN) || defined(CONFIG_VXLAN_MODULE)
4644 		vxlan_get_rx_port(bp->dev);
4645 #endif
4646 		if (!bnxt_hwrm_tunnel_dst_port_alloc(
4647 				bp, htons(0x17c1),
4648 				TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE))
4649 			bp->nge_port_cnt = 1;
4650 	}
4651 
4652 	set_bit(BNXT_STATE_OPEN, &bp->state);
4653 	bnxt_enable_int(bp);
4654 	/* Enable TX queues */
4655 	bnxt_tx_enable(bp);
4656 	mod_timer(&bp->timer, jiffies + bp->current_interval);
4657 
4658 	return 0;
4659 
4660 open_err:
4661 	bnxt_disable_napi(bp);
4662 	bnxt_del_napi(bp);
4663 
4664 open_err_free_mem:
4665 	bnxt_free_skbs(bp);
4666 	bnxt_free_irq(bp);
4667 	bnxt_free_mem(bp, true);
4668 	return rc;
4669 }
4670 
4671 /* rtnl_lock held */
4672 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
4673 {
4674 	int rc = 0;
4675 
4676 	rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
4677 	if (rc) {
4678 		netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
4679 		dev_close(bp->dev);
4680 	}
4681 	return rc;
4682 }
4683 
4684 static int bnxt_open(struct net_device *dev)
4685 {
4686 	struct bnxt *bp = netdev_priv(dev);
4687 	int rc = 0;
4688 
4689 	rc = bnxt_hwrm_func_reset(bp);
4690 	if (rc) {
4691 		netdev_err(bp->dev, "hwrm chip reset failure rc: %x\n",
4692 			   rc);
4693 		rc = -1;
4694 		return rc;
4695 	}
4696 	return __bnxt_open_nic(bp, true, true);
4697 }
4698 
4699 static void bnxt_disable_int_sync(struct bnxt *bp)
4700 {
4701 	int i;
4702 
4703 	atomic_inc(&bp->intr_sem);
4704 	if (!netif_running(bp->dev))
4705 		return;
4706 
4707 	bnxt_disable_int(bp);
4708 	for (i = 0; i < bp->cp_nr_rings; i++)
4709 		synchronize_irq(bp->irq_tbl[i].vector);
4710 }
4711 
4712 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
4713 {
4714 	int rc = 0;
4715 
4716 #ifdef CONFIG_BNXT_SRIOV
4717 	if (bp->sriov_cfg) {
4718 		rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
4719 						      !bp->sriov_cfg,
4720 						      BNXT_SRIOV_CFG_WAIT_TMO);
4721 		if (rc)
4722 			netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
4723 	}
4724 #endif
4725 	/* Change device state to avoid TX queue wake up's */
4726 	bnxt_tx_disable(bp);
4727 
4728 	clear_bit(BNXT_STATE_OPEN, &bp->state);
4729 	smp_mb__after_atomic();
4730 	while (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state))
4731 		msleep(20);
4732 
4733 	/* Flush rings before disabling interrupts */
4734 	bnxt_shutdown_nic(bp, irq_re_init);
4735 
4736 	/* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
4737 
4738 	bnxt_disable_napi(bp);
4739 	bnxt_disable_int_sync(bp);
4740 	del_timer_sync(&bp->timer);
4741 	bnxt_free_skbs(bp);
4742 
4743 	if (irq_re_init) {
4744 		bnxt_free_irq(bp);
4745 		bnxt_del_napi(bp);
4746 	}
4747 	bnxt_free_mem(bp, irq_re_init);
4748 	return rc;
4749 }
4750 
4751 static int bnxt_close(struct net_device *dev)
4752 {
4753 	struct bnxt *bp = netdev_priv(dev);
4754 
4755 	bnxt_close_nic(bp, true, true);
4756 	return 0;
4757 }
4758 
4759 /* rtnl_lock held */
4760 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4761 {
4762 	switch (cmd) {
4763 	case SIOCGMIIPHY:
4764 		/* fallthru */
4765 	case SIOCGMIIREG: {
4766 		if (!netif_running(dev))
4767 			return -EAGAIN;
4768 
4769 		return 0;
4770 	}
4771 
4772 	case SIOCSMIIREG:
4773 		if (!netif_running(dev))
4774 			return -EAGAIN;
4775 
4776 		return 0;
4777 
4778 	default:
4779 		/* do nothing */
4780 		break;
4781 	}
4782 	return -EOPNOTSUPP;
4783 }
4784 
4785 static struct rtnl_link_stats64 *
4786 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
4787 {
4788 	u32 i;
4789 	struct bnxt *bp = netdev_priv(dev);
4790 
4791 	memset(stats, 0, sizeof(struct rtnl_link_stats64));
4792 
4793 	if (!bp->bnapi)
4794 		return stats;
4795 
4796 	/* TODO check if we need to synchronize with bnxt_close path */
4797 	for (i = 0; i < bp->cp_nr_rings; i++) {
4798 		struct bnxt_napi *bnapi = bp->bnapi[i];
4799 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4800 		struct ctx_hw_stats *hw_stats = cpr->hw_stats;
4801 
4802 		stats->rx_packets += le64_to_cpu(hw_stats->rx_ucast_pkts);
4803 		stats->rx_packets += le64_to_cpu(hw_stats->rx_mcast_pkts);
4804 		stats->rx_packets += le64_to_cpu(hw_stats->rx_bcast_pkts);
4805 
4806 		stats->tx_packets += le64_to_cpu(hw_stats->tx_ucast_pkts);
4807 		stats->tx_packets += le64_to_cpu(hw_stats->tx_mcast_pkts);
4808 		stats->tx_packets += le64_to_cpu(hw_stats->tx_bcast_pkts);
4809 
4810 		stats->rx_bytes += le64_to_cpu(hw_stats->rx_ucast_bytes);
4811 		stats->rx_bytes += le64_to_cpu(hw_stats->rx_mcast_bytes);
4812 		stats->rx_bytes += le64_to_cpu(hw_stats->rx_bcast_bytes);
4813 
4814 		stats->tx_bytes += le64_to_cpu(hw_stats->tx_ucast_bytes);
4815 		stats->tx_bytes += le64_to_cpu(hw_stats->tx_mcast_bytes);
4816 		stats->tx_bytes += le64_to_cpu(hw_stats->tx_bcast_bytes);
4817 
4818 		stats->rx_missed_errors +=
4819 			le64_to_cpu(hw_stats->rx_discard_pkts);
4820 
4821 		stats->multicast += le64_to_cpu(hw_stats->rx_mcast_pkts);
4822 
4823 		stats->tx_dropped += le64_to_cpu(hw_stats->tx_drop_pkts);
4824 	}
4825 
4826 	return stats;
4827 }
4828 
4829 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
4830 {
4831 	struct net_device *dev = bp->dev;
4832 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
4833 	struct netdev_hw_addr *ha;
4834 	u8 *haddr;
4835 	int mc_count = 0;
4836 	bool update = false;
4837 	int off = 0;
4838 
4839 	netdev_for_each_mc_addr(ha, dev) {
4840 		if (mc_count >= BNXT_MAX_MC_ADDRS) {
4841 			*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
4842 			vnic->mc_list_count = 0;
4843 			return false;
4844 		}
4845 		haddr = ha->addr;
4846 		if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
4847 			memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
4848 			update = true;
4849 		}
4850 		off += ETH_ALEN;
4851 		mc_count++;
4852 	}
4853 	if (mc_count)
4854 		*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
4855 
4856 	if (mc_count != vnic->mc_list_count) {
4857 		vnic->mc_list_count = mc_count;
4858 		update = true;
4859 	}
4860 	return update;
4861 }
4862 
4863 static bool bnxt_uc_list_updated(struct bnxt *bp)
4864 {
4865 	struct net_device *dev = bp->dev;
4866 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
4867 	struct netdev_hw_addr *ha;
4868 	int off = 0;
4869 
4870 	if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
4871 		return true;
4872 
4873 	netdev_for_each_uc_addr(ha, dev) {
4874 		if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
4875 			return true;
4876 
4877 		off += ETH_ALEN;
4878 	}
4879 	return false;
4880 }
4881 
4882 static void bnxt_set_rx_mode(struct net_device *dev)
4883 {
4884 	struct bnxt *bp = netdev_priv(dev);
4885 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
4886 	u32 mask = vnic->rx_mask;
4887 	bool mc_update = false;
4888 	bool uc_update;
4889 
4890 	if (!netif_running(dev))
4891 		return;
4892 
4893 	mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
4894 		  CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
4895 		  CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST);
4896 
4897 	/* Only allow PF to be in promiscuous mode */
4898 	if ((dev->flags & IFF_PROMISC) && BNXT_PF(bp))
4899 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
4900 
4901 	uc_update = bnxt_uc_list_updated(bp);
4902 
4903 	if (dev->flags & IFF_ALLMULTI) {
4904 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
4905 		vnic->mc_list_count = 0;
4906 	} else {
4907 		mc_update = bnxt_mc_list_updated(bp, &mask);
4908 	}
4909 
4910 	if (mask != vnic->rx_mask || uc_update || mc_update) {
4911 		vnic->rx_mask = mask;
4912 
4913 		set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
4914 		schedule_work(&bp->sp_task);
4915 	}
4916 }
4917 
4918 static int bnxt_cfg_rx_mode(struct bnxt *bp)
4919 {
4920 	struct net_device *dev = bp->dev;
4921 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
4922 	struct netdev_hw_addr *ha;
4923 	int i, off = 0, rc;
4924 	bool uc_update;
4925 
4926 	netif_addr_lock_bh(dev);
4927 	uc_update = bnxt_uc_list_updated(bp);
4928 	netif_addr_unlock_bh(dev);
4929 
4930 	if (!uc_update)
4931 		goto skip_uc;
4932 
4933 	mutex_lock(&bp->hwrm_cmd_lock);
4934 	for (i = 1; i < vnic->uc_filter_count; i++) {
4935 		struct hwrm_cfa_l2_filter_free_input req = {0};
4936 
4937 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_FREE, -1,
4938 				       -1);
4939 
4940 		req.l2_filter_id = vnic->fw_l2_filter_id[i];
4941 
4942 		rc = _hwrm_send_message(bp, &req, sizeof(req),
4943 					HWRM_CMD_TIMEOUT);
4944 	}
4945 	mutex_unlock(&bp->hwrm_cmd_lock);
4946 
4947 	vnic->uc_filter_count = 1;
4948 
4949 	netif_addr_lock_bh(dev);
4950 	if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
4951 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
4952 	} else {
4953 		netdev_for_each_uc_addr(ha, dev) {
4954 			memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
4955 			off += ETH_ALEN;
4956 			vnic->uc_filter_count++;
4957 		}
4958 	}
4959 	netif_addr_unlock_bh(dev);
4960 
4961 	for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
4962 		rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
4963 		if (rc) {
4964 			netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n",
4965 				   rc);
4966 			vnic->uc_filter_count = i;
4967 			return rc;
4968 		}
4969 	}
4970 
4971 skip_uc:
4972 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
4973 	if (rc)
4974 		netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %x\n",
4975 			   rc);
4976 
4977 	return rc;
4978 }
4979 
4980 static bool bnxt_rfs_capable(struct bnxt *bp)
4981 {
4982 #ifdef CONFIG_RFS_ACCEL
4983 	struct bnxt_pf_info *pf = &bp->pf;
4984 	int vnics;
4985 
4986 	if (BNXT_VF(bp) || !(bp->flags & BNXT_FLAG_MSIX_CAP))
4987 		return false;
4988 
4989 	vnics = 1 + bp->rx_nr_rings;
4990 	if (vnics > pf->max_rsscos_ctxs || vnics > pf->max_vnics)
4991 		return false;
4992 
4993 	return true;
4994 #else
4995 	return false;
4996 #endif
4997 }
4998 
4999 static netdev_features_t bnxt_fix_features(struct net_device *dev,
5000 					   netdev_features_t features)
5001 {
5002 	struct bnxt *bp = netdev_priv(dev);
5003 
5004 	if (!bnxt_rfs_capable(bp))
5005 		features &= ~NETIF_F_NTUPLE;
5006 	return features;
5007 }
5008 
5009 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
5010 {
5011 	struct bnxt *bp = netdev_priv(dev);
5012 	u32 flags = bp->flags;
5013 	u32 changes;
5014 	int rc = 0;
5015 	bool re_init = false;
5016 	bool update_tpa = false;
5017 
5018 	flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
5019 	if ((features & NETIF_F_GRO) && (bp->pdev->revision > 0))
5020 		flags |= BNXT_FLAG_GRO;
5021 	if (features & NETIF_F_LRO)
5022 		flags |= BNXT_FLAG_LRO;
5023 
5024 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
5025 		flags |= BNXT_FLAG_STRIP_VLAN;
5026 
5027 	if (features & NETIF_F_NTUPLE)
5028 		flags |= BNXT_FLAG_RFS;
5029 
5030 	changes = flags ^ bp->flags;
5031 	if (changes & BNXT_FLAG_TPA) {
5032 		update_tpa = true;
5033 		if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
5034 		    (flags & BNXT_FLAG_TPA) == 0)
5035 			re_init = true;
5036 	}
5037 
5038 	if (changes & ~BNXT_FLAG_TPA)
5039 		re_init = true;
5040 
5041 	if (flags != bp->flags) {
5042 		u32 old_flags = bp->flags;
5043 
5044 		bp->flags = flags;
5045 
5046 		if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
5047 			if (update_tpa)
5048 				bnxt_set_ring_params(bp);
5049 			return rc;
5050 		}
5051 
5052 		if (re_init) {
5053 			bnxt_close_nic(bp, false, false);
5054 			if (update_tpa)
5055 				bnxt_set_ring_params(bp);
5056 
5057 			return bnxt_open_nic(bp, false, false);
5058 		}
5059 		if (update_tpa) {
5060 			rc = bnxt_set_tpa(bp,
5061 					  (flags & BNXT_FLAG_TPA) ?
5062 					  true : false);
5063 			if (rc)
5064 				bp->flags = old_flags;
5065 		}
5066 	}
5067 	return rc;
5068 }
5069 
5070 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
5071 {
5072 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
5073 	int i = bnapi->index;
5074 
5075 	if (!txr)
5076 		return;
5077 
5078 	netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
5079 		    i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
5080 		    txr->tx_cons);
5081 }
5082 
5083 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
5084 {
5085 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
5086 	int i = bnapi->index;
5087 
5088 	if (!rxr)
5089 		return;
5090 
5091 	netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
5092 		    i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
5093 		    rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
5094 		    rxr->rx_sw_agg_prod);
5095 }
5096 
5097 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
5098 {
5099 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5100 	int i = bnapi->index;
5101 
5102 	netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
5103 		    i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
5104 }
5105 
5106 static void bnxt_dbg_dump_states(struct bnxt *bp)
5107 {
5108 	int i;
5109 	struct bnxt_napi *bnapi;
5110 
5111 	for (i = 0; i < bp->cp_nr_rings; i++) {
5112 		bnapi = bp->bnapi[i];
5113 		if (netif_msg_drv(bp)) {
5114 			bnxt_dump_tx_sw_state(bnapi);
5115 			bnxt_dump_rx_sw_state(bnapi);
5116 			bnxt_dump_cp_sw_state(bnapi);
5117 		}
5118 	}
5119 }
5120 
5121 static void bnxt_reset_task(struct bnxt *bp)
5122 {
5123 	bnxt_dbg_dump_states(bp);
5124 	if (netif_running(bp->dev)) {
5125 		bnxt_close_nic(bp, false, false);
5126 		bnxt_open_nic(bp, false, false);
5127 	}
5128 }
5129 
5130 static void bnxt_tx_timeout(struct net_device *dev)
5131 {
5132 	struct bnxt *bp = netdev_priv(dev);
5133 
5134 	netdev_err(bp->dev,  "TX timeout detected, starting reset task!\n");
5135 	set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
5136 	schedule_work(&bp->sp_task);
5137 }
5138 
5139 #ifdef CONFIG_NET_POLL_CONTROLLER
5140 static void bnxt_poll_controller(struct net_device *dev)
5141 {
5142 	struct bnxt *bp = netdev_priv(dev);
5143 	int i;
5144 
5145 	for (i = 0; i < bp->cp_nr_rings; i++) {
5146 		struct bnxt_irq *irq = &bp->irq_tbl[i];
5147 
5148 		disable_irq(irq->vector);
5149 		irq->handler(irq->vector, bp->bnapi[i]);
5150 		enable_irq(irq->vector);
5151 	}
5152 }
5153 #endif
5154 
5155 static void bnxt_timer(unsigned long data)
5156 {
5157 	struct bnxt *bp = (struct bnxt *)data;
5158 	struct net_device *dev = bp->dev;
5159 
5160 	if (!netif_running(dev))
5161 		return;
5162 
5163 	if (atomic_read(&bp->intr_sem) != 0)
5164 		goto bnxt_restart_timer;
5165 
5166 bnxt_restart_timer:
5167 	mod_timer(&bp->timer, jiffies + bp->current_interval);
5168 }
5169 
5170 static void bnxt_cfg_ntp_filters(struct bnxt *);
5171 
5172 static void bnxt_sp_task(struct work_struct *work)
5173 {
5174 	struct bnxt *bp = container_of(work, struct bnxt, sp_task);
5175 	int rc;
5176 
5177 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5178 	smp_mb__after_atomic();
5179 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
5180 		clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5181 		return;
5182 	}
5183 
5184 	if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
5185 		bnxt_cfg_rx_mode(bp);
5186 
5187 	if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
5188 		bnxt_cfg_ntp_filters(bp);
5189 	if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
5190 		rc = bnxt_update_link(bp, true);
5191 		if (rc)
5192 			netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
5193 				   rc);
5194 	}
5195 	if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
5196 		bnxt_hwrm_exec_fwd_req(bp);
5197 	if (test_and_clear_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event)) {
5198 		bnxt_hwrm_tunnel_dst_port_alloc(
5199 			bp, bp->vxlan_port,
5200 			TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
5201 	}
5202 	if (test_and_clear_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event)) {
5203 		bnxt_hwrm_tunnel_dst_port_free(
5204 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
5205 	}
5206 	if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event)) {
5207 		/* bnxt_reset_task() calls bnxt_close_nic() which waits
5208 		 * for BNXT_STATE_IN_SP_TASK to clear.
5209 		 */
5210 		clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5211 		rtnl_lock();
5212 		bnxt_reset_task(bp);
5213 		set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5214 		rtnl_unlock();
5215 	}
5216 
5217 	smp_mb__before_atomic();
5218 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5219 }
5220 
5221 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
5222 {
5223 	int rc;
5224 	struct bnxt *bp = netdev_priv(dev);
5225 
5226 	SET_NETDEV_DEV(dev, &pdev->dev);
5227 
5228 	/* enable device (incl. PCI PM wakeup), and bus-mastering */
5229 	rc = pci_enable_device(pdev);
5230 	if (rc) {
5231 		dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
5232 		goto init_err;
5233 	}
5234 
5235 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
5236 		dev_err(&pdev->dev,
5237 			"Cannot find PCI device base address, aborting\n");
5238 		rc = -ENODEV;
5239 		goto init_err_disable;
5240 	}
5241 
5242 	rc = pci_request_regions(pdev, DRV_MODULE_NAME);
5243 	if (rc) {
5244 		dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
5245 		goto init_err_disable;
5246 	}
5247 
5248 	if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
5249 	    dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
5250 		dev_err(&pdev->dev, "System does not support DMA, aborting\n");
5251 		goto init_err_disable;
5252 	}
5253 
5254 	pci_set_master(pdev);
5255 
5256 	bp->dev = dev;
5257 	bp->pdev = pdev;
5258 
5259 	bp->bar0 = pci_ioremap_bar(pdev, 0);
5260 	if (!bp->bar0) {
5261 		dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
5262 		rc = -ENOMEM;
5263 		goto init_err_release;
5264 	}
5265 
5266 	bp->bar1 = pci_ioremap_bar(pdev, 2);
5267 	if (!bp->bar1) {
5268 		dev_err(&pdev->dev, "Cannot map doorbell registers, aborting\n");
5269 		rc = -ENOMEM;
5270 		goto init_err_release;
5271 	}
5272 
5273 	bp->bar2 = pci_ioremap_bar(pdev, 4);
5274 	if (!bp->bar2) {
5275 		dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
5276 		rc = -ENOMEM;
5277 		goto init_err_release;
5278 	}
5279 
5280 	INIT_WORK(&bp->sp_task, bnxt_sp_task);
5281 
5282 	spin_lock_init(&bp->ntp_fltr_lock);
5283 
5284 	bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
5285 	bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
5286 
5287 	bp->coal_ticks = BNXT_USEC_TO_COAL_TIMER(4);
5288 	bp->coal_bufs = 20;
5289 	bp->coal_ticks_irq = BNXT_USEC_TO_COAL_TIMER(1);
5290 	bp->coal_bufs_irq = 2;
5291 
5292 	init_timer(&bp->timer);
5293 	bp->timer.data = (unsigned long)bp;
5294 	bp->timer.function = bnxt_timer;
5295 	bp->current_interval = BNXT_TIMER_INTERVAL;
5296 
5297 	clear_bit(BNXT_STATE_OPEN, &bp->state);
5298 
5299 	return 0;
5300 
5301 init_err_release:
5302 	if (bp->bar2) {
5303 		pci_iounmap(pdev, bp->bar2);
5304 		bp->bar2 = NULL;
5305 	}
5306 
5307 	if (bp->bar1) {
5308 		pci_iounmap(pdev, bp->bar1);
5309 		bp->bar1 = NULL;
5310 	}
5311 
5312 	if (bp->bar0) {
5313 		pci_iounmap(pdev, bp->bar0);
5314 		bp->bar0 = NULL;
5315 	}
5316 
5317 	pci_release_regions(pdev);
5318 
5319 init_err_disable:
5320 	pci_disable_device(pdev);
5321 
5322 init_err:
5323 	return rc;
5324 }
5325 
5326 /* rtnl_lock held */
5327 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
5328 {
5329 	struct sockaddr *addr = p;
5330 	struct bnxt *bp = netdev_priv(dev);
5331 	int rc = 0;
5332 
5333 	if (!is_valid_ether_addr(addr->sa_data))
5334 		return -EADDRNOTAVAIL;
5335 
5336 #ifdef CONFIG_BNXT_SRIOV
5337 	if (BNXT_VF(bp) && is_valid_ether_addr(bp->vf.mac_addr))
5338 		return -EADDRNOTAVAIL;
5339 #endif
5340 
5341 	if (ether_addr_equal(addr->sa_data, dev->dev_addr))
5342 		return 0;
5343 
5344 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5345 	if (netif_running(dev)) {
5346 		bnxt_close_nic(bp, false, false);
5347 		rc = bnxt_open_nic(bp, false, false);
5348 	}
5349 
5350 	return rc;
5351 }
5352 
5353 /* rtnl_lock held */
5354 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
5355 {
5356 	struct bnxt *bp = netdev_priv(dev);
5357 
5358 	if (new_mtu < 60 || new_mtu > 9000)
5359 		return -EINVAL;
5360 
5361 	if (netif_running(dev))
5362 		bnxt_close_nic(bp, false, false);
5363 
5364 	dev->mtu = new_mtu;
5365 	bnxt_set_ring_params(bp);
5366 
5367 	if (netif_running(dev))
5368 		return bnxt_open_nic(bp, false, false);
5369 
5370 	return 0;
5371 }
5372 
5373 static int bnxt_setup_tc(struct net_device *dev, u8 tc)
5374 {
5375 	struct bnxt *bp = netdev_priv(dev);
5376 
5377 	if (tc > bp->max_tc) {
5378 		netdev_err(dev, "too many traffic classes requested: %d Max supported is %d\n",
5379 			   tc, bp->max_tc);
5380 		return -EINVAL;
5381 	}
5382 
5383 	if (netdev_get_num_tc(dev) == tc)
5384 		return 0;
5385 
5386 	if (tc) {
5387 		int max_rx_rings, max_tx_rings, rc;
5388 		bool sh = false;
5389 
5390 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
5391 			sh = true;
5392 
5393 		rc = bnxt_get_max_rings(bp, &max_rx_rings, &max_tx_rings, sh);
5394 		if (rc || bp->tx_nr_rings_per_tc * tc > max_tx_rings)
5395 			return -ENOMEM;
5396 	}
5397 
5398 	/* Needs to close the device and do hw resource re-allocations */
5399 	if (netif_running(bp->dev))
5400 		bnxt_close_nic(bp, true, false);
5401 
5402 	if (tc) {
5403 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
5404 		netdev_set_num_tc(dev, tc);
5405 	} else {
5406 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
5407 		netdev_reset_tc(dev);
5408 	}
5409 	bp->cp_nr_rings = max_t(int, bp->tx_nr_rings, bp->rx_nr_rings);
5410 	bp->num_stat_ctxs = bp->cp_nr_rings;
5411 
5412 	if (netif_running(bp->dev))
5413 		return bnxt_open_nic(bp, true, false);
5414 
5415 	return 0;
5416 }
5417 
5418 #ifdef CONFIG_RFS_ACCEL
5419 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
5420 			    struct bnxt_ntuple_filter *f2)
5421 {
5422 	struct flow_keys *keys1 = &f1->fkeys;
5423 	struct flow_keys *keys2 = &f2->fkeys;
5424 
5425 	if (keys1->addrs.v4addrs.src == keys2->addrs.v4addrs.src &&
5426 	    keys1->addrs.v4addrs.dst == keys2->addrs.v4addrs.dst &&
5427 	    keys1->ports.ports == keys2->ports.ports &&
5428 	    keys1->basic.ip_proto == keys2->basic.ip_proto &&
5429 	    keys1->basic.n_proto == keys2->basic.n_proto &&
5430 	    ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr))
5431 		return true;
5432 
5433 	return false;
5434 }
5435 
5436 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
5437 			      u16 rxq_index, u32 flow_id)
5438 {
5439 	struct bnxt *bp = netdev_priv(dev);
5440 	struct bnxt_ntuple_filter *fltr, *new_fltr;
5441 	struct flow_keys *fkeys;
5442 	struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
5443 	int rc = 0, idx, bit_id;
5444 	struct hlist_head *head;
5445 
5446 	if (skb->encapsulation)
5447 		return -EPROTONOSUPPORT;
5448 
5449 	new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
5450 	if (!new_fltr)
5451 		return -ENOMEM;
5452 
5453 	fkeys = &new_fltr->fkeys;
5454 	if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
5455 		rc = -EPROTONOSUPPORT;
5456 		goto err_free;
5457 	}
5458 
5459 	if ((fkeys->basic.n_proto != htons(ETH_P_IP)) ||
5460 	    ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
5461 	     (fkeys->basic.ip_proto != IPPROTO_UDP))) {
5462 		rc = -EPROTONOSUPPORT;
5463 		goto err_free;
5464 	}
5465 
5466 	memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
5467 
5468 	idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
5469 	head = &bp->ntp_fltr_hash_tbl[idx];
5470 	rcu_read_lock();
5471 	hlist_for_each_entry_rcu(fltr, head, hash) {
5472 		if (bnxt_fltr_match(fltr, new_fltr)) {
5473 			rcu_read_unlock();
5474 			rc = 0;
5475 			goto err_free;
5476 		}
5477 	}
5478 	rcu_read_unlock();
5479 
5480 	spin_lock_bh(&bp->ntp_fltr_lock);
5481 	bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
5482 					 BNXT_NTP_FLTR_MAX_FLTR, 0);
5483 	if (bit_id < 0) {
5484 		spin_unlock_bh(&bp->ntp_fltr_lock);
5485 		rc = -ENOMEM;
5486 		goto err_free;
5487 	}
5488 
5489 	new_fltr->sw_id = (u16)bit_id;
5490 	new_fltr->flow_id = flow_id;
5491 	new_fltr->rxq = rxq_index;
5492 	hlist_add_head_rcu(&new_fltr->hash, head);
5493 	bp->ntp_fltr_count++;
5494 	spin_unlock_bh(&bp->ntp_fltr_lock);
5495 
5496 	set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
5497 	schedule_work(&bp->sp_task);
5498 
5499 	return new_fltr->sw_id;
5500 
5501 err_free:
5502 	kfree(new_fltr);
5503 	return rc;
5504 }
5505 
5506 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
5507 {
5508 	int i;
5509 
5510 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
5511 		struct hlist_head *head;
5512 		struct hlist_node *tmp;
5513 		struct bnxt_ntuple_filter *fltr;
5514 		int rc;
5515 
5516 		head = &bp->ntp_fltr_hash_tbl[i];
5517 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
5518 			bool del = false;
5519 
5520 			if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
5521 				if (rps_may_expire_flow(bp->dev, fltr->rxq,
5522 							fltr->flow_id,
5523 							fltr->sw_id)) {
5524 					bnxt_hwrm_cfa_ntuple_filter_free(bp,
5525 									 fltr);
5526 					del = true;
5527 				}
5528 			} else {
5529 				rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
5530 								       fltr);
5531 				if (rc)
5532 					del = true;
5533 				else
5534 					set_bit(BNXT_FLTR_VALID, &fltr->state);
5535 			}
5536 
5537 			if (del) {
5538 				spin_lock_bh(&bp->ntp_fltr_lock);
5539 				hlist_del_rcu(&fltr->hash);
5540 				bp->ntp_fltr_count--;
5541 				spin_unlock_bh(&bp->ntp_fltr_lock);
5542 				synchronize_rcu();
5543 				clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
5544 				kfree(fltr);
5545 			}
5546 		}
5547 	}
5548 }
5549 
5550 #else
5551 
5552 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
5553 {
5554 }
5555 
5556 #endif /* CONFIG_RFS_ACCEL */
5557 
5558 static void bnxt_add_vxlan_port(struct net_device *dev, sa_family_t sa_family,
5559 				__be16 port)
5560 {
5561 	struct bnxt *bp = netdev_priv(dev);
5562 
5563 	if (!netif_running(dev))
5564 		return;
5565 
5566 	if (sa_family != AF_INET6 && sa_family != AF_INET)
5567 		return;
5568 
5569 	if (bp->vxlan_port_cnt && bp->vxlan_port != port)
5570 		return;
5571 
5572 	bp->vxlan_port_cnt++;
5573 	if (bp->vxlan_port_cnt == 1) {
5574 		bp->vxlan_port = port;
5575 		set_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event);
5576 		schedule_work(&bp->sp_task);
5577 	}
5578 }
5579 
5580 static void bnxt_del_vxlan_port(struct net_device *dev, sa_family_t sa_family,
5581 				__be16 port)
5582 {
5583 	struct bnxt *bp = netdev_priv(dev);
5584 
5585 	if (!netif_running(dev))
5586 		return;
5587 
5588 	if (sa_family != AF_INET6 && sa_family != AF_INET)
5589 		return;
5590 
5591 	if (bp->vxlan_port_cnt && bp->vxlan_port == port) {
5592 		bp->vxlan_port_cnt--;
5593 
5594 		if (bp->vxlan_port_cnt == 0) {
5595 			set_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event);
5596 			schedule_work(&bp->sp_task);
5597 		}
5598 	}
5599 }
5600 
5601 static const struct net_device_ops bnxt_netdev_ops = {
5602 	.ndo_open		= bnxt_open,
5603 	.ndo_start_xmit		= bnxt_start_xmit,
5604 	.ndo_stop		= bnxt_close,
5605 	.ndo_get_stats64	= bnxt_get_stats64,
5606 	.ndo_set_rx_mode	= bnxt_set_rx_mode,
5607 	.ndo_do_ioctl		= bnxt_ioctl,
5608 	.ndo_validate_addr	= eth_validate_addr,
5609 	.ndo_set_mac_address	= bnxt_change_mac_addr,
5610 	.ndo_change_mtu		= bnxt_change_mtu,
5611 	.ndo_fix_features	= bnxt_fix_features,
5612 	.ndo_set_features	= bnxt_set_features,
5613 	.ndo_tx_timeout		= bnxt_tx_timeout,
5614 #ifdef CONFIG_BNXT_SRIOV
5615 	.ndo_get_vf_config	= bnxt_get_vf_config,
5616 	.ndo_set_vf_mac		= bnxt_set_vf_mac,
5617 	.ndo_set_vf_vlan	= bnxt_set_vf_vlan,
5618 	.ndo_set_vf_rate	= bnxt_set_vf_bw,
5619 	.ndo_set_vf_link_state	= bnxt_set_vf_link_state,
5620 	.ndo_set_vf_spoofchk	= bnxt_set_vf_spoofchk,
5621 #endif
5622 #ifdef CONFIG_NET_POLL_CONTROLLER
5623 	.ndo_poll_controller	= bnxt_poll_controller,
5624 #endif
5625 	.ndo_setup_tc           = bnxt_setup_tc,
5626 #ifdef CONFIG_RFS_ACCEL
5627 	.ndo_rx_flow_steer	= bnxt_rx_flow_steer,
5628 #endif
5629 	.ndo_add_vxlan_port	= bnxt_add_vxlan_port,
5630 	.ndo_del_vxlan_port	= bnxt_del_vxlan_port,
5631 #ifdef CONFIG_NET_RX_BUSY_POLL
5632 	.ndo_busy_poll		= bnxt_busy_poll,
5633 #endif
5634 };
5635 
5636 static void bnxt_remove_one(struct pci_dev *pdev)
5637 {
5638 	struct net_device *dev = pci_get_drvdata(pdev);
5639 	struct bnxt *bp = netdev_priv(dev);
5640 
5641 	if (BNXT_PF(bp))
5642 		bnxt_sriov_disable(bp);
5643 
5644 	unregister_netdev(dev);
5645 	cancel_work_sync(&bp->sp_task);
5646 	bp->sp_event = 0;
5647 
5648 	bnxt_hwrm_func_drv_unrgtr(bp);
5649 	bnxt_free_hwrm_resources(bp);
5650 	pci_iounmap(pdev, bp->bar2);
5651 	pci_iounmap(pdev, bp->bar1);
5652 	pci_iounmap(pdev, bp->bar0);
5653 	free_netdev(dev);
5654 
5655 	pci_release_regions(pdev);
5656 	pci_disable_device(pdev);
5657 }
5658 
5659 static int bnxt_probe_phy(struct bnxt *bp)
5660 {
5661 	int rc = 0;
5662 	struct bnxt_link_info *link_info = &bp->link_info;
5663 	char phy_ver[PHY_VER_STR_LEN];
5664 
5665 	rc = bnxt_update_link(bp, false);
5666 	if (rc) {
5667 		netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
5668 			   rc);
5669 		return rc;
5670 	}
5671 
5672 	/*initialize the ethool setting copy with NVM settings */
5673 	if (BNXT_AUTO_MODE(link_info->auto_mode))
5674 		link_info->autoneg |= BNXT_AUTONEG_SPEED;
5675 
5676 	if (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) {
5677 		if (link_info->auto_pause_setting == BNXT_LINK_PAUSE_BOTH)
5678 			link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
5679 		link_info->req_flow_ctrl = link_info->auto_pause_setting;
5680 	} else if (link_info->force_pause_setting & BNXT_LINK_PAUSE_BOTH) {
5681 		link_info->req_flow_ctrl = link_info->force_pause_setting;
5682 	}
5683 	link_info->req_duplex = link_info->duplex_setting;
5684 	if (link_info->autoneg & BNXT_AUTONEG_SPEED)
5685 		link_info->req_link_speed = link_info->auto_link_speed;
5686 	else
5687 		link_info->req_link_speed = link_info->force_link_speed;
5688 	link_info->advertising = link_info->auto_link_speeds;
5689 	snprintf(phy_ver, PHY_VER_STR_LEN, " ph %d.%d.%d",
5690 		 link_info->phy_ver[0],
5691 		 link_info->phy_ver[1],
5692 		 link_info->phy_ver[2]);
5693 	strcat(bp->fw_ver_str, phy_ver);
5694 	return rc;
5695 }
5696 
5697 static int bnxt_get_max_irq(struct pci_dev *pdev)
5698 {
5699 	u16 ctrl;
5700 
5701 	if (!pdev->msix_cap)
5702 		return 1;
5703 
5704 	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
5705 	return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
5706 }
5707 
5708 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
5709 				int *max_cp)
5710 {
5711 	int max_ring_grps = 0;
5712 
5713 #ifdef CONFIG_BNXT_SRIOV
5714 	if (!BNXT_PF(bp)) {
5715 		*max_tx = bp->vf.max_tx_rings;
5716 		*max_rx = bp->vf.max_rx_rings;
5717 		*max_cp = min_t(int, bp->vf.max_irqs, bp->vf.max_cp_rings);
5718 		*max_cp = min_t(int, *max_cp, bp->vf.max_stat_ctxs);
5719 		max_ring_grps = bp->vf.max_hw_ring_grps;
5720 	} else
5721 #endif
5722 	{
5723 		*max_tx = bp->pf.max_tx_rings;
5724 		*max_rx = bp->pf.max_rx_rings;
5725 		*max_cp = min_t(int, bp->pf.max_irqs, bp->pf.max_cp_rings);
5726 		*max_cp = min_t(int, *max_cp, bp->pf.max_stat_ctxs);
5727 		max_ring_grps = bp->pf.max_hw_ring_grps;
5728 	}
5729 
5730 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
5731 		*max_rx >>= 1;
5732 	*max_rx = min_t(int, *max_rx, max_ring_grps);
5733 }
5734 
5735 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
5736 {
5737 	int rx, tx, cp;
5738 
5739 	_bnxt_get_max_rings(bp, &rx, &tx, &cp);
5740 	if (!rx || !tx || !cp)
5741 		return -ENOMEM;
5742 
5743 	*max_rx = rx;
5744 	*max_tx = tx;
5745 	return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
5746 }
5747 
5748 static int bnxt_set_dflt_rings(struct bnxt *bp)
5749 {
5750 	int dflt_rings, max_rx_rings, max_tx_rings, rc;
5751 	bool sh = true;
5752 
5753 	if (sh)
5754 		bp->flags |= BNXT_FLAG_SHARED_RINGS;
5755 	dflt_rings = netif_get_num_default_rss_queues();
5756 	rc = bnxt_get_max_rings(bp, &max_rx_rings, &max_tx_rings, sh);
5757 	if (rc)
5758 		return rc;
5759 	bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
5760 	bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
5761 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
5762 	bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
5763 			       bp->tx_nr_rings + bp->rx_nr_rings;
5764 	bp->num_stat_ctxs = bp->cp_nr_rings;
5765 	return rc;
5766 }
5767 
5768 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
5769 {
5770 	static int version_printed;
5771 	struct net_device *dev;
5772 	struct bnxt *bp;
5773 	int rc, max_irqs;
5774 
5775 	if (version_printed++ == 0)
5776 		pr_info("%s", version);
5777 
5778 	max_irqs = bnxt_get_max_irq(pdev);
5779 	dev = alloc_etherdev_mq(sizeof(*bp), max_irqs);
5780 	if (!dev)
5781 		return -ENOMEM;
5782 
5783 	bp = netdev_priv(dev);
5784 
5785 	if (bnxt_vf_pciid(ent->driver_data))
5786 		bp->flags |= BNXT_FLAG_VF;
5787 
5788 	if (pdev->msix_cap)
5789 		bp->flags |= BNXT_FLAG_MSIX_CAP;
5790 
5791 	rc = bnxt_init_board(pdev, dev);
5792 	if (rc < 0)
5793 		goto init_err_free;
5794 
5795 	dev->netdev_ops = &bnxt_netdev_ops;
5796 	dev->watchdog_timeo = BNXT_TX_TIMEOUT;
5797 	dev->ethtool_ops = &bnxt_ethtool_ops;
5798 
5799 	pci_set_drvdata(pdev, dev);
5800 
5801 	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
5802 			   NETIF_F_TSO | NETIF_F_TSO6 |
5803 			   NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
5804 			   NETIF_F_GSO_IPIP | NETIF_F_GSO_SIT |
5805 			   NETIF_F_RXHASH |
5806 			   NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO;
5807 
5808 	dev->hw_enc_features =
5809 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
5810 			NETIF_F_TSO | NETIF_F_TSO6 |
5811 			NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
5812 			NETIF_F_GSO_IPIP | NETIF_F_GSO_SIT;
5813 	dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
5814 	dev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
5815 			    NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX;
5816 	dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
5817 	dev->priv_flags |= IFF_UNICAST_FLT;
5818 
5819 #ifdef CONFIG_BNXT_SRIOV
5820 	init_waitqueue_head(&bp->sriov_cfg_wait);
5821 #endif
5822 	rc = bnxt_alloc_hwrm_resources(bp);
5823 	if (rc)
5824 		goto init_err;
5825 
5826 	mutex_init(&bp->hwrm_cmd_lock);
5827 	bnxt_hwrm_ver_get(bp);
5828 
5829 	rc = bnxt_hwrm_func_drv_rgtr(bp);
5830 	if (rc)
5831 		goto init_err;
5832 
5833 	/* Get the MAX capabilities for this function */
5834 	rc = bnxt_hwrm_func_qcaps(bp);
5835 	if (rc) {
5836 		netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
5837 			   rc);
5838 		rc = -1;
5839 		goto init_err;
5840 	}
5841 
5842 	rc = bnxt_hwrm_queue_qportcfg(bp);
5843 	if (rc) {
5844 		netdev_err(bp->dev, "hwrm query qportcfg failure rc: %x\n",
5845 			   rc);
5846 		rc = -1;
5847 		goto init_err;
5848 	}
5849 
5850 	bnxt_set_tpa_flags(bp);
5851 	bnxt_set_ring_params(bp);
5852 	if (BNXT_PF(bp))
5853 		bp->pf.max_irqs = max_irqs;
5854 #if defined(CONFIG_BNXT_SRIOV)
5855 	else
5856 		bp->vf.max_irqs = max_irqs;
5857 #endif
5858 	bnxt_set_dflt_rings(bp);
5859 
5860 	if (BNXT_PF(bp)) {
5861 		dev->hw_features |= NETIF_F_NTUPLE;
5862 		if (bnxt_rfs_capable(bp)) {
5863 			bp->flags |= BNXT_FLAG_RFS;
5864 			dev->features |= NETIF_F_NTUPLE;
5865 		}
5866 	}
5867 
5868 	if (dev->hw_features & NETIF_F_HW_VLAN_CTAG_RX)
5869 		bp->flags |= BNXT_FLAG_STRIP_VLAN;
5870 
5871 	rc = bnxt_probe_phy(bp);
5872 	if (rc)
5873 		goto init_err;
5874 
5875 	rc = register_netdev(dev);
5876 	if (rc)
5877 		goto init_err;
5878 
5879 	netdev_info(dev, "%s found at mem %lx, node addr %pM\n",
5880 		    board_info[ent->driver_data].name,
5881 		    (long)pci_resource_start(pdev, 0), dev->dev_addr);
5882 
5883 	return 0;
5884 
5885 init_err:
5886 	pci_iounmap(pdev, bp->bar0);
5887 	pci_release_regions(pdev);
5888 	pci_disable_device(pdev);
5889 
5890 init_err_free:
5891 	free_netdev(dev);
5892 	return rc;
5893 }
5894 
5895 static struct pci_driver bnxt_pci_driver = {
5896 	.name		= DRV_MODULE_NAME,
5897 	.id_table	= bnxt_pci_tbl,
5898 	.probe		= bnxt_init_one,
5899 	.remove		= bnxt_remove_one,
5900 #if defined(CONFIG_BNXT_SRIOV)
5901 	.sriov_configure = bnxt_sriov_configure,
5902 #endif
5903 };
5904 
5905 module_pci_driver(bnxt_pci_driver);
5906